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FOREWORD 

This report was developed by the U.S. Environmental Protection Agency's (EPA) 
Office of Research and Development (ORD), National Center for Environmental 
Assessment - Cincinnati Office (NCEA-Cin) in collaboration with EPA’s Office of 
Pesticide Programs. It contains information concerning biological concepts and 
statistical procedures for improving the application of Relative Potency Factors (RPFs) 
to pesticide mixtures. This research supports the need for chemical mixtures risk 
assessment research as mandated in 1996 by both the Food Quality Protection Act 
(FQPA) and the Safe Drinking Water Act Amendments. Research results are presented 
regarding the theoretical basis for RPF-based risk assessments; new quantitative 
methods for applying RPFs are shown. The RPF approach assumes toxicity of the 
mixture components can be characterized using dose addition. Thus, the basic tenets of 
dose addition, common toxic modes of action and similarly-shaped dose-response 
curves among the mixture components, are investigated and discussed. This research 
was undertaken to continue exploring and developing cumulative risk assessment 
strategies beyond current applications and is intended to improve future applications of 
RPF based risk assessments. 

The statistical methods presented in this effort are based on research conducted 
by Jim Chen, Yi-Ju Chen, and Ralph Kodell through an Interagency Agreement 
between EPA and the Food and Drug Administration’s National Center for Toxicological 
Research. An external review was conducted by Drs. Christine F. Chaisson, Pavel 
Muller, and Walter W. Peigorsch under EPA Contract No. 68-C-02-060/061 with Versar, 
Inc. 
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KEY DEFINITIONS 

Absorbed Dose - the amount of a substance crossing a specific barrier through uptake 
processes.1 

Additivity - When the "effect" of the combination is estimated by the sum of the 
exposure levels or the effects of the individual chemicals. The terms "effect" and "sum" 
must be explicitly defined. Effect may refer to the measured response or the incidence 
of adversely affected animals. The sum may be a weighted sum (see "dose addition") 
or a conditional sum (see "response addition").3 

Bioavailability - The state of being capable of being absorbed and available to interact 
with the metabolic processes of an organism. Bioavailability is typically a function of 
chemical properties, physical state of the material to which an organism is exposed, and 
the ability of the individual organism to physiologically take up the chemical.1 

Chemical Classes - Groups of components that exhibit similar biologic activities, and 
that frequently occur together in environmental samples, usually because they are 
generated by the same commercial process. The composition of these mixtures is often 
well controlled, so that the mixture can be treated as a single chemical. Dibenzo-dioxins 
are an example.3  (Note: this is slightly modified from the original version). 

Chemical Mixture - Any set of multiple chemical substances that may or may not be 
identifiable, regardless of their sources, that may jointly contribute to toxicity in the 
target population. May also be referred to as a “whole mixture” or as the “mixture of 
concern.”3 

Complex Mixture - A mixture containing so many components that any estimation of its 
toxicity based on its components’ toxicities contains too much uncertainty and error to 
be useful. The chemical composition may vary over time or with different conditions 
under which the mixture is produced. Complex mixture components may be generated 
simultaneously as by-products from a single source or process, intentionally produced 
as a commercial product, or may coexist because of disposal practices. Risk 
assessments of complex mixtures are preferably based on toxicity and exposure data 
on the complete mixture. Gasoline is an example.3 

Components - Single chemicals that make up a chemical mixture that may be further 
classified as systemic toxicants, carcinogens, or both.3 

Dose Additivity - When the effect of the combination is the effect expected from the 
equivalent dose of an index chemical. The equivalent dose is the sum of component 
doses scaled by their potency relative to the index chemical.3 

Dose - The amount of a substance available for interaction with metabolic processes or 
biologically significant receptors after crossing the outer boundary of an organism1. 
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Dose-Response Assessment - A determination of the relationship between the 
magnitude of an administered, applied, or internal dose and a specific biological 
response. Response can be expressed as measured or observed incidence, percent 
response in groups of subjects (or populations), or as the probability of occurrence 
within a population.2 

Dose-Response Relationship - The relationship between a quantified exposure 
(dose), and the proportion of subjects demonstrating specific, biological changes 
(response).2  U.S. EPA’s draft 1996 Cancer Guidelines further state: “Whether animal 
experiments or epidemiologic studies are the sources of data, questions need to be 
addressed in arriving at an appropriate measure of dose for the anticipated 
environmental exposure. Among these are: 

•	 whether the dose is expressed as an environmental concentration, applied 
dose, or delivered dose to the target organ, 

•	 whether the dose is expressed in terms of a parent compound, one or 
more metabolites, or both, 

• the impact of dose patterns and timing where significant, 
•	 conversion from animal to human doses, where animal data are used, 

and 
•	 the conversion metric between routes of exposure where necessary and 

appropriate.” 

Effective Dose (ED10) - The dose corresponding to a 10% increase in an adverse 
effect, relative to the control response.2 

Exposure - Contact made between a chemical, physical, or biological agent and the 
outer boundary of an organism. Exposure is quantified as the amount of an agent 
available at the exchange boundaries of the organism (e.g., skin, lungs, gut).2 

Exposure Assessment - An identification and evaluation of the human population 
exposed to a toxic agent, describing its composition and size, as well as the type, 
magnitude, frequency, route and duration of exposure.2 

Extrapolation, low dose - An estimate of the response at a point below the range of 
the experimental data, generally through the use of a mathematical model.2 

Human Equivalent Concentration (HEC) or Dose (HED) - The human concentration 
(for inhalation exposure) or dose (for other routes of exposure) of an agent that is 
believed to induce the same magnitude of toxic effect as the experimental animal 
species concentration or dose. This adjustment may incorporate toxicokinetic 
information on the particular agent, if available, or use a default procedure, such as 
assuming that daily oral doses experienced for a lifetime are proportional to body weight 
raised to the 0.75 power.2 

ix 



Index Chemical -The chemical selected as the basis for standardization of toxicity of 
components in a mixture. The index chemical must have a clearly defined 
dose-response relationship.3 

Index Chemical Equivalent Dose -The exposure to a chemical that is expected to elicit 
the same response as that of the index chemical, when the chemicals are administered 
by the same route, at the same duration and frequency. The chemical and the index 
chemical must share a common mode of action. 

Internal dose - A more general term denoting the amount absorbed without regard to 
absorption process.1 

Independence of Action - Mixture components that cause different kinds of toxicity, or 
effects in different target organs; the risk assessor may then combine the probabilities of 
toxic effects for the individual components.3 

Mechanism of Toxicity or Mechanism of Toxic Action - The set of molecular and 
cellular events leading to a toxicologic outcome. [A toxicologic outcome is considered to 
be damage to the organism at any level of biological organization (i.e., molecular, 
cellular, tissue,...).]4 

Mode of Action - The set of biological events at the target tissue or target organ 
leading to a toxicologic outcome. [A toxicologic outcome is considered to be damage to 
the organism at any level of biological organization (i.e., molecular, cellular, tissue,...).]4 

Model - A mathematical function with parameters that can be adjusted so the function 
closely describes a set of empirical data. A mechanistic model usually reflects observed 
or hypothesized biological or physical mechanisms, and has model parameters with real 
world interpretation. In contrast, statistical or empirical models selected for particular 
numerical properties are fitted to data; model parameters may or may not have real 
world interpretation. When data quality is otherwise equivalent, extrapolation from 
mechanistic models (e.g., biologically based dose-response models) often carries 
higher confidence than extrapolation using empirical models (e.g., logistic model).2 

Physiologically Based Pharmacokinetic (PBPK) Model - Physiologically based 
compartmental model used to characterize pharmacokinetic behavior of a chemical. 
Available data on blood flow rates, and metabolic and other processes which the 
chemical undergoes within each compartment are used to construct a mass-balance 
framework for the PBPK model.2 

Point of Departure - The dose-response point that marks the beginning of a low-dose 
extrapolation. This point is most often the upper bound on an observed incidence or on 
an estimated incidence from a dose-response model.2 

Risk - The probability of deleterious effects on health.1 
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Relative Potency Factor Method - A mixtures risk assessment approach used to 
assess risks posed by mixture components that exhibit a common mode of action. The 
toxic potency of each mixture component is compared to that of an index chemical 
generating a measure of potency for each component that is relative to the toxicity of 
the index chemical. For application, the shapes of the individual component dose-
response functions must be similarly over the region of the mixture exposure. 

Response Additivity - When the response (rate, incidence, risk, or probability) of 
effects from the combination is equal to the conditional sum of component responses as 
defined by the formula for the sum of independent event probabilities.3 

Similar Components - Single chemicals that cause the same biologic activity or are 
expected to cause a type of biologic activity based on chemical structure. Evidence of 
similarity may include parallel log-probit dose-response curves and same mechanism of 
action or toxic endpoint. These components are expected to have comparable 
characteristics for fate, transport, physiologic processes, and toxicity.3 

Similar Mixtures - Mixtures that are slightly different, but are expected to have 
comparable characteristics for fate, transport, physiologic processes, and toxicity. 
These mixtures may have the same components but in slightly different proportions, or 
have most components in nearly the same proportions with only a few different (more or 
fewer) components. Similar mixtures cause the same biologic activity or are expected 
to cause the same type of biologic activity due to chemical composition. Similar 
mixtures act by the same mechanism of action or affect the same toxic endpoint. Diesel 
exhausts from different engines are an example.3 

Simple Mixture - A mixture containing two or more identifiable components, but few 
enough that the mixture toxicity can be adequately characterized by a combination of 
the components’ toxicities and the components’ interactions.3 

Target Organ - The biological organ(s) most adversely effected by exposure to a 
chemical substance.2 

Uptake - The process by which a substance crosses an absorption barrier and is 
absorbed into the body.1 

Sources 

1U.S. EPA. 1992. Guidelines for Exposure Assessment; Notice. Federal Register. 
57(104):22888-22938. 

2U.S. EPA. 2003. Integrated Risk Information System. Office of Research and 
Development, National Center for Environmental Assessment, Washington, DC. 
Online. http://www.epa.gov/iris 
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3U.S. EPA. 2001. Supplementary Guidance for Conducting Health Risk Assessment of 
Chemical Mixtures. Office of Research and Development, Washington, DC. 
EPA/630/R-00/002. Available in PDF format at: www.epa.gov/NCEA/raf/chem_mix.htm 

4U.S. EPA. 2002. The Feasibility of Performing Cumulative Risk Assessments for 
Mixtures of Disinfection By-Products in Drinking Water. NCEA-C-1257. Final Draft. 
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EXECUTIVE SUMMARY


Cumulative Risk Assessment (CRA) is defined in U.S. EPA’s Risk Assessment 

Forum (RAF) CRA Framework (U.S. EPA, 2002a) as “the combined risks from 

aggregate exposures to multiple agents or stressors.” CRA has become an important 

research area, reflecting the interest of U.S. EPA’s regional risk assessors, program 

offices, Office of Environmental Justice, and Office of Children’s Risk. In implementing 

the requirements of the Food Quality Protection Act of 1996, U.S. EPA’s Office of 

Pesticide Programs has developed guidance for conducting CRA’s of chemicals that 

appear to act by a common mechanism of toxicity (U.S. EPA, 2002b). Because the 

organophosphorus pesticides (OPs) are considered to exert some of their toxic effects 

via a common toxicologic mechanism (i.e., cholinesterase inhibition), these compounds 

have been the subject of a CRA (U.S. EPA, 2001b). Additional CRA’s may be 

performed on additional pesticide classes (e.g., triazinines, carbamates) and other co­

occurring substances for which a common mode of action can be identified. The risk 

assessment method employed in the OP cumulative risk study is the Relative Potency 

Factor (RPF) approach (U.S. EPA, 2000). Dose addition is the critical methodological 

assumption, requiring the mixture components to act by the same toxic mode of action 

and to have similarly-shaped dose-response curves. 

Assessing the cumulative toxicological effects of multiple chemicals has been 

addressed from time to time (NRC, 1988; U.S. EPA, 1986, 2000). Methods and data 

that can be used to estimate the risk of exposures to multiple chemicals have been 

developed. Although U.S. EPA guidance exists regarding the basic theory for RPFs, 
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the toxicological criteria for defining and determining a common mode of action among 

chemicals continue to need refinement; results on this subject are presented in this 

report. Further, results are presented on appropriate statistical methods for CRA, based 

on research published in Chen et al. (2001, 2003). Biostatistical approaches are shown 

for grouping chemicals identified as having common modes of action, proposing two 

classification algorithms to cluster chemicals into subclasses within which chemicals 

have similarly-shaped dose-response functions. Chemicals within subclasses are 

combined using the RPF method when a constant relative potency among chemicals 

exists. Additional methods are shown to calculate cumulative risks inclusive of these 

subclasses (i.e., combining across subclasses for which a non-constant relative potency 

exists) using either a joint dose-response approach or by integrating the concepts of 

dose addition and response addition. 

An important question in mixtures risk assessment research is how to assess a 

mixture containing some chemicals that share a common toxic mode of action and other 

chemicals that do not. Current additivity methods have evolved to handle either the 

former (dose addition) or the latter (response addition). Alternatively, the risk assessor 

may choose to do the assessment based on whole mixture data. The biostatistical 

methods developed in this report provide alternative methods to evaluate a mixture 

under three scenarios. The simple case occurs when there is certainty that a common 

toxic mode of action is operating, so a dose addition approach can be applied. The 

second case occurs when the mixtures can be divided into independent mode of action 

subclasses; dose addition and response addition can be integrated to make the 

assessment. The third case occurs when mode of action is uncertain, so a joint 
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dose-response modeling procedure is used to create a range of risk estimates. Thus, 

these approaches enrich the available library of mixture risk assessment methods 

beyond what is currently published by the U.S. EPA (1986, 2000). Further, these 

approaches may be useful in future assessments of pesticide mixtures to be evaluated 

under FQPA. Finally, the results presented here are generalizable to assessments of 

other environmental mixtures; the risk assessments that support environmental 

regulations of important environmental mixtures such as dioxins, polychlorinated 

biphenyls, and OPs are based on concepts of additivity (U.S. EPA, 1989b, 2000, 

2001b). 

The research results in this report can be applied to reduce uncertainties in 

RPF-based risk assessments of chemical mixtures. These results also show how 

mixtures risk assessments can be conducted using additivity concepts. Various sources 

of uncertainty exist in most mixtures risk assessments, including uncertainties 

addressed in this report regarding several factors: 

• Common mode of action across mixture components (Sections 2, 3) 

•	 Similarly shaped dose-response curves across mixture components 

(Sections 2, 5) 

• Value of internal vs. external dose estimates for developing RPFs (Section 

4) 

•	 Choice of dose metric (moles vs. mass) to use in a cumulative risk 
assessment (Section 4) 

• Cross-species extrapolation of relative potency factors (Section 4) 

•	 Estimating risks for a mixture with two or more common mode of action 
subclasses (Section 5). 
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Biostatistical modeling in this report presents ways to combine dose-response 

information, partitioning the mixtures into common mode of action subclasses. These 

models can then be used to estimate risks for specific exposure scenarios or used to 

develop toxicity values, such as a reference dose for the mixture. Three RPF-based 

methods are discussed, reflecting what is known or uncertain about the mixture 

toxicology. These approaches can be applied using internal or external doses. 

Development of approaches based on internal doses may reduce some toxicokinetic 

uncertainties associated with RPFs based on administered doses. In the Chen et al. 

papers (2001, 2003) in Appendices A and B, external doses were used to develop 

statistical methods for grouping components into common mode of action subclasses. 

The next step in this process is to use RPFs based on internal doses and compare 

subclass groupings and modeling results with those developed using external doses. 

Recommendations for future RPF research on pesticide mixtures are listed here. 

1) Develop kinetic models for pesticide mixtures in rodents. 

2)	 Using experimental cholinesterase inhibition measures, determine RPFs 
based on both external and internal dose estimates for the rodent. 

3)	 Determine if the RPFs based on internal dose estimates significantly differ 
from RPFs developed from external doses for the rodent. 

4)	 Apply the biostatistical methods for grouping by common dose-response 
curves using RPFs based on internal and external doses and compare the 
groupings that result. 

5) Develop kinetic models for pesticide mixtures in humans. 

6)	 Estimate human risks using rodent cholinesterase inhibition responses, 
RPFs based on rodent internal doses, and human internal dose estimates 
using the three approaches presented in Chen et al. (2001, 2003), as 
appropriate. 
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7)	 Compare subclass groupings and human risk estimates for all scenarios 
of internal and external RPFs. 

8)	 Ealuate the toxicity of different human exposure scenarios with the RPF 
models developed. 

This research was undertaken to continue exploring and developing cumulative 

risk assessment strategies based on dose addition concepts beyond current 

applications and is intended to improve future applications of RPF based risk 

assessments. 
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1. INTRODUCTION 

The U.S. Environmental Protection Agency (U.S. EPA) and other regulatory 

agencies use risk assessment to evaluate the risk posed to humans through chemical 

exposures to contaminants in food, drinking water, or environmental media. Risk 

assessment for toxic agents is often conducted to evaluate the potential risks from 

exposure to a single toxic agent through a single route of exposure. Although it is 

important to evaluate individual toxic agents, people frequently are exposed to many 

chemicals simultaneously or in sequence by different exposure routes. These 

exposures to multiple chemicals through various media could cause unexpected 

cumulative effects. The combined risk from such exposures may be greater or less than 

what would typically be predicted from data on individual chemicals. Assessing the 

cumulative toxicological effects of multiple chemicals has been addressed from time to 

time (NRC, 1988; U.S. EPA, 1986, 2000). However, new methods and improvements 

to existing approaches are still needed to estimate risk from exposures to multiple 

chemicals. 

Cumulative Risk Assessment (CRA) is defined in U.S. EPA’s Risk Assessment 

Forum (RAF) CRA Framework (U.S. EPA, 2002a) as “the combined risks from 

aggregate exposures to multiple agents or stressors.” CRA can include both chemical 

and non-chemical stressors, multiple-route exposures, population factors that 

differentially affect exposure or toxicity, and community based assessments. CRA has 

become an important research area, reflecting the interest of U.S. EPA’s regional risk 

assessors, program offices, Office of Environmental Justice, and Office of Children’s 
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Risk. In 2002, U.S. EPA’s Office of Research and Development (ORD) jointly 

sponsored a workshop with U.S. EPA’s Regions to discuss current case studies, 

methods and research needs regarding CRA (U.S. EPA, 2003a). Regional scientists are 

confronted with conducting community-based CRA’s (e.g., assessing risks from multi-

media, multi-stressor exposures to a population in a specified geographic area). 

Successful completion of such assessments require development of new data, 

methods, and guidance. 

U.S. EPA’s Program Offices generally conduct CRA’s on a select group of co­

occurring chemicals, and set broad national standards. Examples of programmatic 

interests include: 

•	 The Office of Water needs to conduct chemical mixtures research to support 
requirements of the Safe Drinking Water Act Amendments of 1996 (U.S. EPA, 
1996). 

•	 The Office of Air Quality Planning and Standards has used a CRA approach in 
conducting the National Air Toxics Assessment of 33 air pollutants (a subset of 
32 air toxics from the Clean Air Act's list of 188 air toxics plus diesel particulate 
matter) (U.S. EPA, 2001a). 

•	 The Office of Solid Waste and Emergency Response assesses contaminant 
mixtures at Superfund Sites (U.S. EPA, 1989a) under the Comprehensive 
Environmental Response, Compensation, and Liability Act (U.S. EPA, 1980). 

•	 The Office of Pesticide Programs has conducted a CRA on organophosphorus 
pesticide (OP) mixtures (U.S. EPA, 2001b), under the Food Quality Protection 
Act (FQPA) of 1996 (U.S. EPA, 1997). Case studies may be performed on 
additional pesticide classes (e.g., triazinines, carbamates) and other co-occurring 
substances for which a common mode of action can be identified. 

The FQPA is the most specific act regarding CRA, requiring EPA to consider the 

potential human health risks of multiple route exposures to multiple pesticide residues 
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and substances that have a common mechanism of toxicity (U.S. EPA, 1997).1  The first 

pesticide group to be evaluated (U.S. EPA, 2002b) is the organophosphorus pesticides 

(OPs), a group of closely related pesticides that affect nervous system function. They 

are applied to many food crops, as well as to residential and commercial buildings and 

lawns. The many uses of this class of pesticides result in frequent and consistent 

human exposures. The acute and chronic effects of OPs in humans, wild animals, and 

test animals are well known. OPs are neurotoxic because they bind to and 

phosphorylate the enzyme acetylcholinesterase in both the central (brain) and 

peripheral nervous systems, reducing the ability of the enzyme cholinesterase to 

function properly in regulating acetylcholine, a neurotransmitter. Acetylcholine is a 

critical factor in the transfer of nerve impulses from a nerve cell to a muscle cell or 

another nerve cell. If acetylcholine levels are not properly reduced by cholinesterase, 

the nerve impulses or neurons remain active longer than they should, overstimulating 

the nerves and muscles and causing toxic effects at many sites, including 

neuromuscular junctions and synapses of the central and autonomic nervous system. 

As part of the implementation of FQPA, U.S. EPA’s Office of Pesticide Programs 

has developed guidance for conducting cumulative risk assessments of chemicals that 

appear to act by a common mechanism of toxicity (U.S. EPA, 2002b). Because the 

OPs are considered to exert some of their toxic effects via a common toxicologic 

1The terms mechanism of toxicity (or mechanism of toxic action) and mode of action represent a 
continuum of understanding regarding a toxicodynamic process (U.S. EPA, 2002c). A toxicologic outcome 
is considered to be damage to the organism at any level of biological organization (i.e., molecular, cellular, 
tissue,...). Knowledge of a chemical’s mechanism of toxicity or mechanism of toxic action implies that the 
molecular and cellular events leading to a toxicologic outcome are described and well-understood. 
Knowledge of a chemical’s mode of action implies a general understanding of the key toxicodynamic 
events that occur at a tissue level, but not a detailed description of these events at the cellular or 
molecular level. Mode of action is defined as the set of biological events at the target tissue or target organ 
leading to a toxicologic outcome. 
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mechanism (i.e. cholinesterase inhibition), these compounds have been the subject of a 

CRA (U.S. EPA, 2001b). The risk assessment method employed in the OP CRA and 

likely to be used in future pesticide CRA’s is the Relative Potency Factor (RPF) 

approach (U.S. EPA, 2000). This report examines the theoretical basis for the RPF 

method, providing useful information to improve and enhance such future applications. 

The RPF approach is appropriate under FQPA because dose addition is the 

critical RPF methodological assumption; implementation requires that the mixture 

components act by the same toxic mode of action. As explained in Section 2, a 

theoretical consequence of this assumption is that the components should have 

similarly-shaped dose-response curves between the response threshold and the 

maxima. To summarize the procedure, doses of mixture components are scaled by their 

potency relative to a well-studied component of the chemical mixture (referred to as the 

index chemical) using scaling factors called RPFs. The product of each mixture 

component’s dose and its RPF is considered to be its equivalent dose in units of the 

index chemical. These dose equivalents of all the mixture components are summed to 

express the total mixture dose in terms of an Index Chemical Equivalent Dose (ICED).2 

The risk posed by the mixture is then quantified by comparing the mixture’s ICED to the 

dose-response assessment of the index chemical. To implement this approach, the 

index chemical must have an adequate toxicologic dose-response data set. 

U.S. EPA (2000) characterized the RPF methodology as a generalized form of 

the toxicity equivalence factor (TEF) methodology that has been used to assess risks 

2The ICED has the same mathematical interpretation as the dioxin toxicity equivalents (TEQ). 
TEQ refers to the quantification of dioxin concentrations based on the congeners’ equivalent 2,3,7,8-
TCDD toxicity (U.S. EPA, 1989b). ICED is applied to mixtures other than dioxins. 
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posed by some dioxins (U.S. EPA, 1989b). The TEF approach uses a single TEF for 

each dioxin congener, applying this same TEF to all exposure routes, health effects, 

and exposure durations. The RPF methodology was developed for application to a 

broad set of chemical groups whose data sets are either less complete than the dioxins 

or indicate more variation in mode of action across route, effects and duration. The 

significant generalizations in the RPF methodology include the following: 

1.	 RPFs may be developed to assess risks for a subset of the health effects 

caused by a mixture’s components.  For example, the same mixture 

components may be shown to cause both hepatotoxicity and renal toxicity in 

bioassays. Different RPFs may be developed to address the risk of each type of 

toxicity following human exposures. Mixture Component A may exhibit greater 

hepatotoxicity than Component B when compared to Index Chemical C; to reflect 

this, the RPF for the hepatotoxicity of Component A should be greater than the 

RPF of Component B. However, mixture Component B may exhibit greater renal 

toxicity than Component A when compared to Index Chemical C and, to reflect 

this, the RPF for the renal toxicity of Component A should be less than that of 

Component B. 

Note that some mixture components may act through multiple modes of action on 

different target tissues. It is conceivable that several RPFs may need to be 

developed to adequately address the risks posed by human exposures to the 

mixture. Thus, the membership of component chemicals may differ across 

groups of RPFs and may also overlap. 
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2.	 RPFs may be developed to assess risk for a single route of exposure.  For 

example, the same mixture components may pose risk through inhalation and 

oral exposures. Based on differences in the relative toxicity of the components 

measured in inhalation and oral bioassays, different RPFs may be developed to 

address the human health risks following inhalation or oral exposures. 

3.	 RPFs may be developed to assess risks for different durations of exposure. 

The toxicity of a group of mixture components may change relative to each other 

depending on the duration and frequency of the exposures. Different RPFs may 

be developed to address the human health risks following different exposure 

frequencies or exposure durations (e.g., different RPFs may be developed for 

exposures that achieve steady-state tissue concentrations of mixture 

components than for those exposures that do not result in steady-state tissue 

concentrations of the mixture components over the duration of the experiment). 

4.	 RPFs may be developed to assess risks within a restricted range of dose 

levels of the mixture’s components. The toxicities of different chemicals 

relative to each other may change with dose.  For example, at higher dose levels 

where significant adverse responses are observed, an assumption of additivity 

may not be appropriate (i.e., observed effects may be greater than or less than 

those expected under an assumption of additivity). Thus, it is appropriate to 

restrict the dose range of the components in two ways: limit the range to levels 

for which additivity is an appropriate assumption and, ensure the range reflects 

the exposure levels of interest to the risk assessment. Different RPFs may be 

developed to assess risks to humans for these different ranges. 
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These generalizations of the TEF methodology allow RPF development to be limited to 

specific aspects of mixture toxicity and exposure, allowing the RPF approach to be more 

broadly applied. 

An identified research need for the RPF methodology is continued development 

of appropriate statistical methods to support the assumption of a common toxic mode of 

action. One way to examine this assumption is to evaluate the similarity of the dose 

response curves across the mixture’s components. Components with similar dose 

response curves can be grouped together into a mode of action subclass for which an 

RPF-based risk assessment can be developed. 

Chen et al. (2001, 2003) present biostatistical approaches for grouping chemicals 

suspected to have common modes of action, proposing two classification algorithms to 

cluster chemicals into subclasses within which chemicals have similarly-shaped dose-

response functions. Chemicals within subclasses are combined using the RPF method 

when a constant relative potency among chemicals exists. Additional methods are 

shown to calculate cumulative risks inclusive of these subclasses (i.e., combining 

across subclasses for which a non-constant relative potency exists) using either a joint 

dose-response approach or by integrating the concepts of dose addition and response 

addition. 

Users of the RPF approach should appreciate that this model of mixtures toxicity 

is actually a fairly simplistic depiction of the risk posed by the mixture. Theoretically, the 

number of mixture components that can be included in an RPF-based approach is 

unlimited, as long as each component is truly a toxicologic clone of the index chemical. 

Pragmatically, there are a number of limitations including the availability of relevant 
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toxicologic data upon which to base the RPFs. The Chen et al. biostatistical methods 

were developed for pesticide mixtures. Pesticide mixtures are unusual among 

environmental mixtures because component toxicologic data are often available due to 

the laws that govern U.S. pesticides. These approaches can likely be used on as many 

as 30 or so individual components. The key limitations are having data describing the 

dose-response function for each component and toxicologic evidence that each 

component shares a common toxic mode-of-action.  A statistical issue is caused by the 

toxic potency weighting of the exposure levels. If a poorly studied (high uncertainty) 

chemical has high potency, its equivalent dose is high with no discounting for the 

uncertainty. As the number of components increases, there may be an increased 

likelihood of such a dominant uncertainty. This emphasizes the need for careful 

discussion of uncertainties: their sources and impact on the final risk assessment. 

This report presents research results regarding the theoretical basis for RPF 

based risk assessments and presents quantitative methods for applying RPFs. The two 

basic assumptions of dose addition, common toxic modes of action and similarly-

shaped dose-response curves, are investigated and discussed. Research results 

produced by Chen et al. are presented, showing the integration of this research with 

applications of the RPF approach. This research was undertaken to continue exploring 

and developing cumulative risk assessment strategies beyond current applications and 

is intended to improve future applications of RPF based risk assessments. 
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2. DOSE ADDITION CONCEPTS 

U.S. EPA guidance documents on chemical mixtures risk assessment (U.S. EPA, 

1986, 2000) recommend no-interaction approaches under dose addition for the risk 

assessment of mixtures of toxicologically similar chemicals. Assuming the chemicals in 

a mixture are noninteractive and elicit a common response through similar actions on a 

biological system, the chemicals are then assumed to act as if one is a simple dilution or 

concentration of the index chemical, and, by extension, each other. The joint action of 

the chemicals, then, can be described by “dose addition” (Finney, 1971). 

The fundamental assumption of dose addition is that the components of a 

mixture exhibit a common toxic mode of action, underlying the addition of scaled doses. 

Research issues include the development of meaningful toxicological criteria for 

identifying a common toxic mode of action and the application of these criteria to 

evaluate and identify mixture components that share a common toxic mode of action.3 

A theoretical consequence of this assumption is that the dose-response functions 

of the components exhibit similar shapes. Theoretically, mixture components sharing a 

common mode of action act as either concentrates or dilutions of each other. The 

components interact with a common toxicological target, eliciting the same response. 

Because the chemicals act as concentrates or dilutions of each other, the number of 

organisms within a dose group responding to the same dose of different chemicals 

should differ in a consistent manner across doses. The consistent differences in the 

3There are other mixtures approaches that are based on dose additivity. The hazard index (U.S. 
EPA, 2000), for example, provides a quantitative method that indicates whether a mixture may pose risk or 
not. The hazard index method may be used when detailed toxicity data are not available; for example, a 
hazard index can be developed from exposure estimates and Reference Doses. 
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responses across dose groups will yield similarly shaped response functions, 

sometimes referred to as “constant relative potency.” For example, if chemical 2 is one-

half as toxic as chemical 1, then, at the same dose, chemical 2 should elicit a response 

in half as many test organisms as that dose of chemical 1. This pattern should persist 

with increases of dose until a maximum response is achieved (e.g., 100% response). 

The similar shapes should also persist as doses are diminished until a response 

threshold is observed or until one molecule of chemical 2 elicits an observable 

response. Between the toxicity threshold and the response maximum, similar shapes of 

the dose-response curves should hold. 

In practice, toxicological assays of chemicals having a common mode of action 

may not exhibit similarly-shaped dose-response functions. Differences in the observed 

dose-response function shapes between chemicals that share a common mode of 

action may result from toxicokinetic differences or toxicodynamic differences. Other 

factors could include differences in age or gender of the animals tested in the bioassay, 

differences in animal stress status either within or across studies, and differences in 

whether or not the test animals were naive to the chemical prior to testing. Random 

errors of response may also explain differences in shape. These random errors 

describe, from a biostatistical perspective, the distance that an individual’s response 

may be from the population mean response at a given dose. These differences in the 

observed dose-response functions may result in different maximal responses as well as 

different thresholds of response within the exposed population. 

These differences in shape of the dose-response functions may preclude 

application of a dose-additive model. If the dose-response functions exhibit different 
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shapes and the resulting risk estimate predicted by dose addition is quite different from 

the expected joint mixture response, then scaling the toxicity of one chemical by that of 

the other may be an inappropriate means of estimating a mixture’s risk. The RPF 

mixture risk model may be rejected under these circumstances, even if the chemicals 

exhibit a common toxic mode of action. 

On the other hand, these differences in shape of the dose-response functions 

may not preclude application of a dose-additive model. If the components exhibit 

similarly shaped response functions over the relevant range of doses, as judged by the 

exposure assessment, then the use of dose addition may be valid. This relevant range 

includes the range of exposures to the individual components and extends to the range 

of the additive dose (i.e., the total mixture dose in units of the index chemical). 

Dose-response modeling research for dose addition includes assessing what is 

meant statistically by a “similar shape” (see Section 5), including approaches to quantify 

the amount of uncertainty potentially introduced in the risk estimate when the slopes are 

dissimilar. Methods and criteria are needed to “determine” when a group of 

components share a common dose-response function. To conclude, both common 

mode of toxic action and similarity shaped dose-response functions are prerequisites for 

valid application of dose addition to a chemical mixture. 
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3. RELATIVE POTENCY FACTORS 

U.S. EPA (2000) developed the RPF approach to assess risks posed by mixtures 

that are comprised of chemical components exhibiting a common mode of action for a 

toxic effect. The RPF approach is based on the concept of dose addition. Mixture 

components are grouped using scientific judgment into subclasses called “RPF Sets” 

using data on characteristics such as membership in a chemical class (relating to 

observed toxicity), and commonality of toxicologic effects, exposure routes, exposure 

durations, or dose ranges. To implement the approach, the exposure level of each 

component of an RPF Set is scaled by a measure of the component’s toxicity relative to 

a selected index chemical (a toxicologically well-studied component of the RPF Set). 

This scaling factor, the RPF, is based on a comparison of the component’s toxicity with 

a similar measure of toxicity for the index chemical (e.g., a ratio of equally effective 

doses of the component to the index chemical). The product of the measured 

administered dose of each mixture component and its RPF is defined as an Index 

Chemical Equivalent Dose (ICED). The ICEDs of all the mixture components are 

summed to express the total mixture dose in terms of an equivalent dose of the index 

chemical. The risk posed by the mixture is quantified by comparing a mixture’s total 

ICED to the dose-response assessment of the index chemical. [The mathematical 

formulas for the RPF are detailed in Text Box 3-1.] 
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Appropriate application of the RPF 

method requires a judgment that the 

mixture components share a common 

mode of toxic action and evidence that 

the components have similarly shaped 

dose-response curves. Evidence that a 

chemical class fulfills one of these 

requirements does not necessarily imply 

that the second requirement is fulfilled. 

For the first assumption, the term, 

Common Mode of Action, implies that 

chemicals in a mixture exhibit a common 

toxicologic outcome when tested and that 

the principal toxicodynamic events 

leading to this common outcome after the 

chemicals reach the target site and the 

sequence of these events is understood, 

but many of the details are not known. 

Because detailed toxicodynamic data are 

not abundant for most chemical mixtures 

and their components, analysts typically 

Text Box 3-1 

Mathematical Representations and RPF Formulas 

d1 = dose of chemical 1 present in a mixture (units 
not specified) 

d2 = dose of chemical 2 present in a mixture (units 
not specified; must be consistent with those of d1) 

pot1 = potency estimate (e.g., a slope factor) for 
chemical 1 (risk per unit of dose specified for d1) 

pot2 = potency estimate (e.g., a slope factor) for 
chemical 2 (risk per unit of dose specified for d2) 

ICED = index chemical equivalent dose based on 
relative potency estimates (units consistent with d1 
and d2) 

f1(*)=dose-response function of the index chemical 
for the response(s) common to chemical 1 and 
chemical 2 (units consistent with d1 and d2) 

h(d1,d2) = mixture risk from  dose d1 of chemical 1 
and dose d2 of chemical 2 

[ED10]1 = dose of chemical 1 that results in a 10% 
response, either as a fraction of exposed test animals 
that respond, or as a fractional change in a measured 
physiological value. 

[ED10]2 = dose of chemical 2 that also results in the 
same 10% response 

Then, designating chemical 1 as the index chemical 
in the RPF approach, 

RPF2 = [ED10]1 / [ED10]2 , 
(or equivalently = pot2 / pot1) 

ICED = d1 + (RPF2* d2) 

h(d1,d2)=f1(ICED) = mixture risk from chemicals 1 
and 2 evaluated at the ICED of chemical 1 

must judge whether or not the mixture components exhibiting a common toxicologic 

outcome also share a common mode of action. At times, the term Common Mechanism 
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of Action is used. This term implies a greater degree of understanding of toxicodynamic 

events, such that the chemicals in a mixture exhibit a common toxicologic outcome 

when tested and that the underlying molecular and cellular toxicodynamic events 

leading to this outcome are the same for each chemical, after they reach the target site. 

(Toxicodynamic events include the initial interaction of a toxicant with its molecular or 

cellular target and subsequent responses to the toxic insult.) These two terms 

represent a continuum of toxicodynamic understanding; they are degrees of scientific 

resolution. For RPFs, there must be a judgment that chemicals exhibiting a common 

mode of action either do or do not share a common mechanism of action. If judged that 

they do, then subclasses are not needed. If judged that they do not, then subclasses 

should be developed and a second set of assumptions should be identified and used to 

combine (or not combine) the toxicities that the subclasses exhibit. 

The second prerequisite for applying an assumption of dose-addition is that the 

chemicals have similarly shaped dose-response functions at least within the region of 

exposure of interest for the risk assessment. An evaluation will often be needed of the 

expected shapes of the dose-response functions in the low dose region including the 

region that may lie below the lowest dose tested in the relevant toxicological bioassay. 

In Section 5 of this report, we describe procedures that can be used to evaluate 

similarity among the observable regions of dose-response functions. If there is an 

evaluation of shape below the experimental response region, it may include an 

assessment of the mechanism/mode of action. 

RPFs are based on comparisons with an index chemical, and the mixture risk is 

estimated using the dose-response function of the index chemical. Criteria pertaining to 
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the inclusion of compounds in an RPF Set apply to the index chemical. The index 

chemical should be a well-studied member of the RPF Set; studies on the index 

chemical need to provide exposure data for routes of interest and health assessment 

data for health endpoints of interest. To estimate relative potency, toxicity studies of 

compounds in the RPF Set need to be comparable to studies conducted on the index 

chemical. 

3.1. JUDGMENTS OF COMMON TOXICOLOGIC ACTION 

“Pesticides are determined to have a "common mechanism of toxicity" if they act 

the same way in the body; that is, if scientifically reliable data demonstrate that upon 

exposure to these chemicals, the same toxic effect occurs in or at the same organ or 

tissue by essentially the same sequence of major biochemical events” (U.S. EPA, 

2002b). The issue of a common mechanism of toxicity has been addressed by a 

working group of experts convened by the International Life Sciences Institute Risk 

Science Institute (Mileson et al., 1998).4  The working group presented three criteria to 

describe a common mechanism of toxicity: (1) cause the same critical toxic effect; (2) 

act on the same molecular target at the same target tissue; and (3) act by the same 

biochemical mechanism of action or share a common toxic intermediate. The working 

group agreed that all three points are useful to apply to chemicals that may act by a 

common mechanism of toxicity, but did not state whether all three points must be met 

before a firm common mechanism of toxicity determination can be reached. It is 

recognized, however, that precise mechanistic information on animal or human effects 

4Subsequent to the International Life Sciences Institute expert panel, U.S. EPA issued a guidance 
document for identifying pesticides with a common mechanism of toxicity (U.S. EPA, 2002b) and a CRA 
case study for the organophosphorus pesticides (U.S. EPA, 2001b). 
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for pesticides and most environmental chemicals is scant. Common mechanism 

determinations will therefore be difficult to establish with these three points because 

chemicals often exhibit spectra of adverse effects rather than the same critical toxic 

effect (criterion 1) (Mileson et al., 1998). 

Knowledge of a chemical’s mode of action implies a general understanding of the 

key toxicodynamic events that occur at a tissue level, rather than a detailed description 

of the cascade of events at the cellular or molecular level such as is suggested by the 

term “mechanism of action.” For chemical mixtures, the term, “common mode of action”, 

implies that chemicals exhibit a common toxicologic outcome in the same tissue when 

tested. However, the toxicodynamic events that lead to this common outcome after the 

chemicals reach the target site are not well understood; they may be the same (or 

similar) or not (it is simply not known). A common mode of action is sufficient 

justification to consider or employ a dose additive model. The terms "mode of action" 

and "mechanism of action" represent degrees of scientific understanding of 

toxicodynamic events underlying observed toxic responses rather than separate 

categories. 

The distinction between these two terms is discussed here using a hypothetical 

cancer assessment to illustrate when dose additive models, such as RPFs, can be used 

and when they should not be used. (RPFs are relatively simple mixture risk models 

typically developed from empirical bases; as additional detailed toxicodynamic data are 

generated for mixture components, these simple models are likely to be replaced by 

biologically-based mixture risk models.) Tumors occurring in a specific liver tissue in an 

16




animal bioassay may arise through a number of different modes of action. Consider two 

examples. 

Example Chemical 1: 

Repeated episodes of chemical-induced liver cell necrosis may result in random 

DNA replication errors as the surviving cells undergo compensatory reproduction. 

These random DNA replication errors may occur in genes critical to control of cell 

replication (e.g., tumor suppressor genes and proto-oncogenes) and become 

“fixed” in the genome through replication, ultimately giving rise to liver tumors. 

Example Chemical 2: 

A mutagen may interact directly with liver cell DNA that codes for genes in the 

cell replication cycle and cause a mutation that gets fixed in the DNA after a 

round of replication. Some of these mutations reduce the cells’ ability to properly 

regulate their own replication and this lack of replicative control ultimately results 

in tumor development after a series of additional mutations and changes occur in 

the affected cells. 

These two chemicals do not share a common mechanism of action because the first 

induces carcinogenesis through necrosis and the second induces carcinogenesis 

through mutation of the target tissue. 

Now, assume that two chemicals that comprise an environmental mixture both 

cause necrosis in the same hepatic tissue when tested individually in separate animal 

bioassays. The ultimate result of the liver tissue necrosis that occurs when each 

chemical is tested in a bioassay is the formation of observable liver tumors in the same 

tissues (as in Example Chemical 1 in the preceding paragraph, the tumors form when 
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random errors in DNA replication occur in genes that control the cell cycle get “fixed” 

during compensatory liver cell replication). The same bioassay outcome (i.e., liver tumor 

formation arising from a specific tissue when each individual chemical is tested) may 

occur through a number of different possible necrotic processes that lead to dead liver 

cells: 

1)	 The chemicals may cause liver tissue cell necrosis by the same mechanism of 

toxic action. The chemicals may be shown to cause the same sequence of 

necrotic events in affected liver cells after the chemicals reach the target tissue. 

This is clearly a case of chemicals exhibiting a common mechanism of action. 

Lacking the level of mechanistic detail provided in this description, analysts could 

still logically conclude that the chemicals may share a common mode of action 

based on the occurrence of liver tumors arising in the same hepatic tissue. 

2)	 The chemicals may cause tissue necrosis in the same liver cells by different 

necrotic mechanisms (i.e., either different toxicodynamic events or different 

sequences of toxicodynamic events that are observed to lead to cell 

death...ultimately resulting in tumor formation through random errors in 

compensatory replication in remaining living cells). In this case, one could 

reasonably judge that the chemicals still exhibit a common mechanism of action. 

Lacking the mechanistic detail, analysts could still logically judge that the 

chemicals share a common mode of action because of the occurrence of liver 

tumors arising in the same hepatic tissues. 

For the two cases above, RPFs for the chemicals could be developed (given 

appropriate data). 
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3)	 If the chemicals cause tumors in different types of cells of the same organ, then, 

based on evidence from animal bioassays, it is concluded that the chemicals do 

not share a common mode of action. Because they are not causing necrosis in 

the same types of cells, it could be concluded that the chemicals cause toxicity 

through different modes of action.This outcome could occur because of 

toxicokinetic differences between the chemicals, toxicodynamic differences 

between the chemicals, or both. In any case, it is not appropriate to use RPFs 

for the assessment of risk posed by this mixture, based on the available 

toxicodynamic information.5 

5In practice, U.S. EPA (2000) suggests use of the Hazard Index (HI) method as an indicator of risk 
when mixture components cause toxicity in the same target organ. In this case dose addition is loosely 
defined to accomodate the lack of accessible mechanistic data. 
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4. 	CHOICE OF DOSE METRIC IN CHARACTERIZING MIXTURE 
TOXICITY BY DOSE ADDITION 

Two separate issues are discussed in this section. First, the potential significance 

of using kinetic data in the development of relative potency factors is described. If 

kinetic differences exist between test species and humans, relative potency factors will 

change when modeling risks on the basis of a administered dose versus an internal 

dose. Second, a discussion is presented regarding choice of dose metric in an RPF-

based approach. In modeling human health risks posed by exposure to a mixture by the 

RPF method, the type of dose measures employed do not appear to alter the outcome 

of the risk estimation procedure. Two dose measures commonly used for delivered 

dose are units of mass (mg/kg) or moles (mmol/kg). The key is to be consistent in 

development of an RPF application, using either mass measures or molar measures. 

4.1. RPF DOSE ISSUES 

Measures of either an administered dose or internal dose may provide the basis 

for estimation of relative potency for a chemical group. Administered or applied doses 

are the amount of a substance applied to an external body barrier and available for 

absorption. Administered doses include those doses applied to external body 

membranes such as the gastrointestinal tract, the lungs and the skin. Internal doses 

measure or estimate the quantity of a contaminant that is present in an internal tissue 

(U.S. EPA, 1992). The entire administered dose may not cross the barrier. Tissue 

concentrations of interest could include those occurring at either toxicologic target 

tissues and or tissues not targeted by the chemical. 
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4.1.1. Administered Dose.  Most applications of RPFs in the literature are based on 

measures of administered doses. For example, the EPA has developed four sets of 

RPFs that estimate the toxicity of a mixture of related compounds based upon 

administered dose measures for individual compounds: the dioxins, the polychlorinated 

biphenyls, the polycyclic aromatic hydrocarbons, and the organophosphorus pesticides 

(OP) (U.S. EPA, 2000, 2001b). In each case, the risk estimates based on RPFs were 

described as interim, pending the emergence of additional chemical mixture-specific 

toxicokinetic and toxicodynamic data. The type of dose upon which the RPFs are based 

will not alter the interim nature of the risk estimate. Ultimately, biologically-based 

mixtures risk models will likely be developed for each case; these models will replace 

the simpler RPF models and be based upon the emergence of additional chemical 

mixture-specific toxicokinetic and toxicodynamic data. 

4.1.2. Internal Dose.  Measures or estimates of internal doses may provide an 

improved basis both for estimating risks posed by chemical mixtures that occur through 

multiple exposure routes and for estimating human health risks for some mixtures by 

the same exposure route. To date, RPFs based on internal doses have not been 

developed because the ability to predict internal organ or tissue doses through 

physiologically-based pharmacokinetic (PBPK) models is relatively new or because, 

given the simplistic assumptions of the RPF approach, refined estimates of dose would 

provide little resolution to overall uncertainty. 

4.1.3. Mixtures Exposures Through Multiple Exposure Routes.  In 2002, U.S. EPA 

completed a report showing that a multiple exposure route mixtures risk assessment 

can be conducted based on internal dose estimates developed in both test animals and 
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humans for toxicants that do not cause portal of entry effects (U.S. EPA, 2002c). The 

document combines exposure modeling results, PBPK modeling results, and the RPF 

mixtures risk assessment approach. Human internal doses (e.g., blood, tissue, and 

organ concentrations) were estimated using PBPK models, accounting for external 

exposures from multiple routes (as dictated by the exposure scenario) and human PK 

processes. Hypothetical RPFs were developed for a subset of chemicals based on test 

animal data. Although the application of a full PBPK model was recognized as the 

preferred approach to estimating rodent internal doses (i.e., blood concentrations), for 

the example data used in the report, administered doses were assumed to be 100% 

bioavailable to the rat. The rodent response data were assumed to be constant between 

internal and external exposures and were used to evaluate the human dose-response 

relationship. The use of internal dose measures (i.e., blood concentrations in both 

humans and rodents) both for developing the RPFs based on rodent data and as an 

indicator of human multi-route exposure provides a necessary and consistent basis for 

extrapolating across species. Clearly, these approaches should not be used and are 

inappropriate for toxicants that elicit responses at points of contact with the body (e.g., 

skin, intestinal tract, and nasopharyngeal, bronchial and lung epithelium). 

4.1.4. Mixtures Exposures Through a Single Exposure Route in Different Species. 

For some mixtures, basing RPFs on internal doses may reduce some uncertainty in 

applying RPFs for individual exposure routes. From a single route of exposure to a 

given chemical mixture, the animal kinetics and human kinetics that give rise to 

respective internal doses of the mixture components may result either in the same 

internal doses or different internal doses, when the same amount of chemical is applied 
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externally. If the kinetics result in the 

same internal doses or internal doses 

that differ consistently across the 

mixture (i.e., comparisons of the ratios 

of external to internal doses for each 

component between test animal and 

human are constant), then basing RPFs 

on internal dose estimates is not 

necessary, because the relative 

potencies will not change. When 

kinetic differences between humans 

and test animals lead to non-constant 

differences in internal dose 

concentrations across a chemical class, 

then basing RPFs on internal doses 

provides a more scientifically sound 

basis for applying RPFs (see Text 

Boxes 4-1 and 4-2). 

Consider the same 2 component 

mixture example presented in Text Box 

3-1 where chemical 1 again serves as 

the index chemical. Rodent data exist 

Text Box 4-1 

Mathematical Representations and Formulas for RPF 
Based on Internal Doses to Rats (test animal) 

Let: 

d1 = exposure to chemical 1 as a result of its presence 
in a mixture (units not specified) 

d2 = exposure to chemical 2 as a result of its presence 
in a mixture (units not specified; consistent with d1) 

I1 = internal dose of chemical 1 present in a mixture 
(units not specified) 

I2 = internal dose of chemical 2 present in a mixture 
(units not specified; consistent with I1) 

ICEDI = index chemical equivalent dose based on 
relative potency estimates (units consistent for I1 , I2) 

f1(*)=dose-response function of the index chemical 
for response(s) common to chemicals 1 and 2 (units 
consistent with I1 and I2; they are based on internal 
measures of dose but use the same response 
measures as developed in Text Box 3-1) 

h(I1,I2) = mixture hazard or risk from joint exposure 
of dose d1 to chemical 1 and dose d2 to chemical 2; 
however, these doses are based on internal measures 
I1 and I2 rather than administered doses d1 and d2. 

[ED10]I1 = internal dose of chemical 1 that results in a 
10% response, either as a fraction of exposed test 
animals that respond, or as a fractional change in a 
measured physiological value. 

[ED10]I2 = internal dose of chemical 2 that also 
results in the same 10% response 
Then, designating chemical 1 as the index chemical 
in the internal dose based RPF approach, 

RPF2I = [ED10]I1 / [ED10]I2 

ICEDI = I1 + (RPF2* I2) 

h(I1,I2)=f1(ICEDI) 
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such that a RPF2 can be developed based 

on the administered doses (RPF2E) or the 

internal doses (RPF2I) of chemical 1 and 

chemical 2. Response data are available 

for the test animals only, and the human 

mode of action is considered to be the 

same as that in the test animal. The ratio, 

RPF2E/RPF2I, in the rodent will either 

approximately equal the ratio of human 

administered dose to human internal dose 

or not. If these ratios are equal, then, when 

estimating risk using the RPF approach for 

a single exposure route, it does not matter 

whether external or internal doses are used 

as the basis of the RPF. If these ratios are 

not equal, then, when estimating risk using 

the RPF approach for a single exposure 

route, it matters whether external or 

internal doses are used as the basis of the 

RPF. The RPFs should be based on 

internal doses because the 

Text Box 4-2

Potential Use Of Internal Dose Based RPFs


Assume that the toxicodynamics are the same for

humans and rats. Let:

K1R= I1/d1 in Rat for chemical 1

K2R= I2/d2,in Rat for chemical 2

K1H= I1/d1 in Human for chemical 1

K2H= I2/d2,in Human for chemical 2

From Text Box 3-1, the mixture risk in rats is

h(d1,d2)=f1(ICED)

This is based upon ICED = d1 + (RPF2* d2), where

RPF2 = [ED10]1 / [ED10]2.

An implicit assumption in the Chemical Mixture

Guidance is that RPF2 is the same in rodents and

humans. Thus, the human ICED for d2 is calculated

as the product of the human administered dose and

RPF2. 

The risk posed to humans from this mixture is

estimated to be h(d1,d2)=f1(ICED), 

where ICED = d1 + (RPF2* d2) and RPF2 = [ED10]1 /

[ED10]2. The ratio of [ED10]s is calculated from the

rodent administered dose data. 

Proposal:If K1R = K1H  and K2R … K2HY RPF2 is not

a valid estimate of the relative potency of chemical

2 for the human.

Proof: Let chemical 2 be converted to chemical 1

on a 2 to 1 molar basis in the rat (i.e., 2 moles of

chemical 2 is converted thru some kinetic process

into 1 mole of chemical 1 in the rat). For an RPF

model, chemical 2 would be one-half as toxic

relative to chemical 1 based on the administered

doses Y RPF2 = 0.5, when chemical 1 is the index

chemical and RPF1 = 1. 

Let the conversion of chemical 2 to chemical 1

cause toxicity of chemical 2 in the human also and

assume that the toxicodynamics of chemical 1 are

identical for humans and rats. 

Because K2R … K2H, the conversion of chemical 2

into chemical 1 will not exhibit a 2 to 1 ratio, the

RPF2 estimated from rodent external data … the

human RPF2. The kinetic differences between

humans and rodents lead to different internal tissue

doses which influence the toxicity of chemical 2

relative to chemical 1. 

Further Implication

If K1R/K1H = K2R/K2H Y It is valid to apply RPF2


estimated from rat data to human administered dose

data due to kinetic differences. The kinetic

differences between species do not change the

relative potency of Chemical 2 to Chemical 1.
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pharmacokinetic differences result in inaccuracies when the RPFs are developed in test 

animals and applied to humans. 

4.2. CHOICE OF DOSE MEASURES 

For modeling of a mixture’s toxicity or joint action under the assumptions of 

relative potency factors, representation of dose as either a molecular (molar) 

representation of dose or a representation by chemical mass does not matter in the 

conduct of the risk assessment. It does not matter because the molecular weights of 

the compounds relative to each other are constant. 

Consider two compounds, C1 and C2, that exhibit a common mechanism of toxic 

action. Let the molecular weight of C2 be twice that of C1. Administration of 1 milligram 

of C1 elicits the same response in test animals as administration of 2 milligrams of C2. 

(Molecules of C1 and C2 are equally potent.) If the experimental evidence for RPFs is 

based on single chemical experiments where dose is measured in milligrams, then the 

relative potency of C2 to C1 will be 0.5. If the experimental evidence for RPFs is based 

on single chemical experiments where dose is measured in moles, then the relative 

potency of C2 to C1 will be 1. Because a molecule of C2 has twice the mass of C1, the 

conversion of mass doses to molar doses in a risk assessment will result in an RPF for 

C2 of 0.5 (i.e., = ½). Equivalent human exposures (resulting in the same predicted risk) 

result from exposures to 1 mole of each chemical or some mass of C1 and ½ the same 

mass of C2. Thus, the chemical potency comparisons when applied to estimate human 

risk will be the same regardless of whether the measures are based on moles or 

masses. 
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5. BIOSTATISTICAL DOSE-RESPONSE MODELING FOR CUMULATIVE RISK 

Biostatistical modeling results can be integrated with exposures to calculate 

cumulative risk estimates depending on expected toxicological action of the mixture 

components. Three methods discussed in this section: 

1)	 Dose Addition: When the chemicals of interest act in accordance with a common 

mode of action, a dose addition approach can be employed. Dose Addition is a 

chemical mixtures risk assessment method in which doses are summed (after 

scaling for relative potency) across chemicals that have a similar mode of action; 

risk is then estimated using the combined total dose. 

2)	 Integration of Dose Addition and Response Addition: When mixture components 

can be classified into subgroups within which a common mode of action exists, 

then, by definition, independence of toxic action is expected between subgroups. 

Response addition is a chemical mixtures risk assessment method applied to 

chemicals whose modes of action are independent of each other (i.e., the 

presence of one chemical in the body does not influence the effects caused by 

another chemical); risk of a whole body effect (e.g., non-specific cancer), is then 

estimated by summing the risks (e.g., skin cancer, liver cancer) of the individual 

chemicals. Integrating dose addition and response addition in this case means to 

estimate the subgroup risks and then sum them to estimate cumulative risks 

(U.S. EPA, 2002c). 
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3)	 Joint Dose-Response Model: Finally, a joint dose-response model using scaled 

doses is applied when commonality of toxic mode of action is uncertain. This 

method produces a range of cumulative risk estimates. 

EPA-sponsored research on the use of dose-addition in cumulative risk assessment, 

focusing on the issue of similarly shaped component dose-response curves, has 

resulted in the publication of two papers by Chen et al. (2001, 2003). The information in 

this chapter relies heavily on the research presented in the Chen et al. papers, which 

are reproduced in their entirety in Appendices A and B. The first paper (Chen et al., 

2001) demonstrates methods for dichotomous data using the log probit and logistic 

dose-response functions. The second paper (Chen et al., 2003) further extends the 

statistical methods to continuous endpoints, using cholinesterase inhibition as an 

example. To demonstrate use of these models in cumulative risk assessment, without 

loss of generality, the discussions in this section are limited to dichotomous data using 

the log probit dose-response function. 

5.1. DOSE–RESPONSE MODEL FOR COMBINED EXPOSURES 

To begin discussion of dose-addition as a tool for risk assessment, let F1 and F2 

be the dose-response functions for chemical 1 and chemical 2, respectively. Under 

dose addition, the response, R, to the combination of doses d1 and d2 for chemicals 1 

and 2, respectively, is 

R d1 ,d2 ) = F1 (d1 + ρ d2 ) = F2 (d1 ρ + d2 ) (5-1)( 

where D is the relative potency of chemical 2 to chemical 1. When one chemical acts as 

if it is a simple dilution or concentration of the other, then the relative potency between 

the two chemicals is constant. In other words, for all response levels, the effective dose 
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of one chemical is a constant multiple of the effective dose of the other chemical. 

Hewlett and Plackett (1959) viewed the concept of dose addition (similar action) in a 

slightly broader sense than requiring a constant relative potency between two 

chemicals. Mathematically, their characterization can be interpreted as allowing the 

relative potency factor to be different for different response levels. Thus, the biological 

bases and mathematical models required to characterize an RPF-based assessment 

are different depending on whether or not constant relative potency is assumed. 

Dose addition allows for summing the individual doses into an equivalent dose in 

terms of an index chemical and using the index chemical’s dose-response function to 

estimate the mixture response from the equivalent total mixture dose. A dose-response 

function for binary response data, denoted Pi(d)= F, relates the probability of response 

to the dose, d, of chemical i, where F is a probability distribution function. The general 

model can be expressed in the logarithm of dose as 

Pi d( ) = F(α i + β i logd ) (5-2) 

A commonly used dose-response model, used throughout this disscussion to illustrate 

the methods, is the probit function, which is, 

α β logd+( ) = c + (1 − c)∫−∞ 
(1 

2
exp − 

π 
1 2  t 2 )dt (5-3)P d  

where the parameter c represents background effect and P(d) is defined to be c when 

d = 0. The parameters " and $ are the intercept and slope parameters of the 

dose-response function under its inverse, F-1(P(d)). For the rest of this discussion, the 

log probit function for binary data will be used to demonstrate dose addition methods; 
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however, other functions and continuous endpoints can also be utilized in these 

approaches (see Appendices A and B). 

For an example with two chemicals, if the relative potency of chemical 2 to 

chemical 1 is constant, then the dose-response for one chemical can be expressed in 

terms of the equivalent dose of the other chemical by using a relative potency factor. In 

this case, D = (d1 / d2) (i.e., P1(d1) = P2(d1 / D) = P1(Dd2) = P2(d2)), where the dose d1 of 

chemical 1 and d2 of chemical 2 are equal effective doses (i.e., they cause the same 

magnitude of response). Now, given that P1(d1) = P2(d1/D), then 

α 1 + β1 log d1 = α 2 + β2 log(d1 / ρ ) (5-4) 

The above equality holds for all doses of chemical 1, d1. To simplify, then, let d1 = 1, and 

the equation, that holds true for all doses, becomes 

α 1 = α 2 − β2 log ρ (5-5) 

This implies that 

log ρ = (α 2 − 
β2 

)α 1 (5-6) 

Repeating the process for P2(d2) = P1(Dd2), then, analogously, we get, 

log ρ = (α 2 − 
β1 

)α 1 (5-7) 
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Hence, because Equations 5-6 and 5-7 are both true, $1 = $2 , and it can be shown that 

two chemicals have a constant relative potency if and only if the slopes of the (log) 

dose-response functions are equal. (See Appendix A for a more complete proof.) 

5.1.1. Constant Relative Potency.  The term, constant relative potency, implies that 

for all response levels, the effective dose of one chemical is a constant multiple of the 

effective dose of the other chemical. Constant relative potency is a desired condition to 

conduct an RPF based risk assessment, at least for the dose ranges pertinent to the 

exposure of interest (see Section 2). 

5.1.1.1. Dose Addition —  If two chemicals have a constant relative potency 

and if the joint response is dose-additive, then the dose-response function from 

exposure to d1 of chemical 1 and d2 of chemical 2, using chemical 1 as the index 

chemical is, 

F d1 , d2 ) = P1 (d1 + ρ d2 ) = F(α 1 + β log(d1 + ρ d2 )) (5-8)( 

For a group of m chemicals in which the relative potency between any two chemicals is 

constant, the joint response of the m chemicals can be derived in the same way as 

Equation 5-8, using a relative potency factor Dt for each component as it is paired with 

the index chemical(s). 

(   m   
F d1 ,...dm ) = F α s + β log


 ds + ∑ ρ t dt 

  (5-9)
≠ t s   

where, Dt = exp[ ("t - "s) / $ ] for t … s. In this case, the estimated risk at any set of 

doses does not depend on the choice of index chemical (i.e., when constant relative 
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potency is operational, the risk estimate will be the same regardless of the choice of


index chemical).


5.1.2. Nonconstant Relative Potency.  Constant relative potency is a fairly restrictive


assumption that may not hold true for many mixtures. Thus, if the relative potency


between chemical 1 and chemical 2 is different for different response levels, then the


slopes of the dose-response functions for the two chemicals will be different and the


modes of action for the two chemicals may also differ. In this case, at the equal effective


doses of d1 for chemical 1 and d2 for chemical 2 such that P1(d1) = P2(d2), it can be


shown that the equivalent dose of chemical 2 in terms of chemical 1 is,


d d21 ( ) = exp 


 

α 2 

β
− 

1 

α 1 



 
d β β  

2
2 1 (5-10) 

and the equivalent dose of chemical 1 in terms of chemical 2 is, 

d d1 β2 
2 ( ) = exp 



 

α 1 − α 2 



 
d β β  

1
1 2 (5-11) 

Under these conditions, the joint response can still be estimated by an index chemical 

approach, using doses adjusted by a ratio of the slopes. The joint dose-response from 

an exposure to d1 of chemical 1 and d2 of chemical 2 in terms of chemical 1 as the index 

chemical is, 

F d1 , d2 ) = P1 (d1 + d1(d2 )) = F(α 1 + β1 log(d1 + ρ12 d2 
w )) (5-12)( 
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where w = $2 / $1, and D12 = exp[("2 - "1 ) / $1]. On the other hand, the joint response in 

terms of chemical 2 as the index chemical is, 

F d1 , d2 ) = P2 (d2 + d2 (d1)) = F(α 2 + β2 log(d2 + ρ21d2
1/ w )) (5-13)( 

where w = $2 / $1, and D21 = exp[("1 - "2 ) / $2]. Note that the joint response predicted 

from chemical 1, P1(d1 +d1(d2)), will differ from that predicted from chemical 2, P2(d2 + 

d2(d1)). For m chemicals, the combined response in terms of chemical s can be derived 

as, 

(  m    m   
F d1 ,..., dm ) = Ps 

 ds + ∑ ρ st dt
wst 


 = F


α s + βs log


 ∑ ρ st dt

wst 


 
 

(5-14)
t s  t s≠ ≠ 

The Dst = exp[("t - "s ) / $s] is a potency ratio of chemical t to the index chemical s, and


wst = $t / $s, is the slope ratio, where t = 1,...,m, and t …s.


5.1.3. Constant and Nonconstant Relative Potencies in the Same Mixture.  In


many cases, a mixture may be comprised of component subsets, where within each


subset a constant relative potency may exist (dose addition for common modes of


action), but where nonconstant relative potencies occur between subsets (response


addition for independence of action between subsets). In this case, a set of m chemicals


can be clustered into several subclasses of constant relative potency. For example, the


set of six chemicals,


{{C1,C2,C3},{C4,C5},{C6}}, 

represents a set where the chemicals C1, C2, and C3 in the first subclass have 

constant relative potency with respect to each other, as do the chemicals C4 and C5 in 
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the second subclass; the relative potency factor between the last chemical C6 and the 

other chemicals is different at different response levels. Two approaches are proposed 

here for evaluating a set of chemicals with varying relative potencies. 

5.1.3.1. Integrating Dose Addition and Response Addition —  The first 

approach is appropriate to apply when data on the toxic modes of action are available 

so there is some certainty that the subclasses represent groups of chemicals with a 

common mode of action distinctly different from the other subclasses. The toxicity 

associated with each subclass is produced independently from the other subclasses. 

The statistical method is then to estimate the dose-response function for the chemicals 

within each subclass under dose addition, using a different index chemical from within 

each subclass, and calculate the joint cumulative risk under response addition as the 

sum of the subclass risk estimates. Hence, the joint dose-response function is 

expressed as, 

F d1 ,...dm ) = P1[d1 + ρ12 d2 + ...]+ ...+ Pq [dq + ρq ,q +1dq +1 + ...]+ ... Pm [ ]  (5-15)( dm

where Dst is the relative potency factor for chemical s and index chemical t. In this case 

the risk estimate would be made using a unique index chemical for each subclass; the 

risk estimates for each subclass would be summed using response addition. (The 

complete derivation for Equation 5-15 can be found in Appendix B.) 

5.1.3.2. Joint Dose Response Modeling to Reflect Uncertainty of Mode of 

Action — The second approach is applied when the toxic modes of action for the 

components are more uncertain. In this case, it is proposed that a range of risk 

estimates be produced, repeating the risk calculations several times, each time 
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selecting an index chemical from a separate subclass. Based on Equation 5-14 

developed above, the joint response for m chemicals can be expressed in terms of a 

single index chemical 1 for the entire mixture (i.e., including all subclasses) as, 

wlF d( 1 ,...dm ) = P1[(d1 + ρ2 d2 + ...)+ ...+(ρ ldl
wl + ρ l+1dl+1 + ...)+ ...+ ρ d wm ] (5-16)m m  

The chemicals in the same subclass will have the same slope ratio w t = ($t / $1). Also, 

the chemicals within the same subclass will have the same cumulative risk estimate, 

regardless of the choice of index chemical. (The complete derivation for Equation 5-16 

can be found in Appendix A.) However, the estimated combined response will depend 

on the subclass in which the index chemical is selected, a different subclass will predict 

a different risk estimate. Thus a range of risk estimates can be produced, reflecting the 

uncertainty in the mode of action determinations. 

5.2.	 STATISTICAL ALGORITHMS FOR SUBCLASS GROUPINGS WITHIN A 
MIXTURE 

Two classification algorithms are proposed to cluster mixture components into 

subclasses such that the chemicals in the same subclass have a common slope. The 

joint response is estimated by fitting the dose-response model of the mixture under 

dose addition. Chemicals within subclasses are first combined using simple dose 

addition (constant relative potency), and then subclasses of chemicals are combined 

using a general form of dose addition (non-constant relative potency). Thus, the 

proposed method allows one to estimate the joint toxic response for chemicals having 

different dose-response slopes. (A complete example of the classification algorithms 

and subsequent response calculations for six hypothetical pesticides in a mixture are 

shown in Section 4 of Appendix B.) 
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Since two chemicals have a constant relative potency if and only if the slopes of 

the (log) dose-response functions are equal, the clustering algorithm is based on testing 

for the equality of the slopes of dose-response functions. Either the likelihood ratio test 

or the analysis of variance F test can be used for the comparison. (See Appendix B for 

more information on these tests.) The clustering algorithms begin with a fitting of each 

individual dose-response function for the m chemicals. Let, β$ 1,β$ 2,...β$ m denote the 

maximum likelihood estimates of the dose-response functions. The estimates of the m 

slopes can be arranged in an ascending order: 

β$ c1≤ β$ c2 ≤...≤ β$ cm. 

That is, the chemical c1 has the smallest slope estimate, the chemical c2 has the second 

smallest slope estimate, and so on. The classification algorithms are applied to this 

ordered set. These iterative (stepwise) processes systematically test the adjacent 

chemicals in an ordered set for equal slopes and end up with subclasses of chemicals 

that can be characterized as having the same slope. The top-down approach begins 

with the assumption that all of the slopes are different and uses an iterative process to 

group chemicals with common slopes into subclasses; the bottom-up approach begins 

with the assumption that all of the slopes are equal and uses an iterative process to 

divide the chemicals into subclasses that have different slopes. 

In classical statistics, when the null hypothesis is rejected, this result does not 

imply that the null is then true and can be accepted. For example, in the bottom-up 

approach, the procedure keeps dividing the chemicals into RPF subclasses until the null 

hypothesis is not rejected. We complete the procedure when we can accept the null 
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hypothesis that dose-response slopes among chemicals are the same. In the top-down 

approach, the procedure keeps grouping the chemicals until the null model is rejected. 

We complete the procedure when we can reject the null hypothesis that dose-response 

slopes among chemicals are the same. Thus, the top-down approach may be a 

preferred method because there, the procedure is more consistent with traditional 

statistics. For this application, however, useful information is gained using either 

approach regarding how different two or more curves might be, offering a quantitative 

method to assess similarity in dose-response beyond the more typical visual check 

using graphics. Because we want to "travel up" the dose-response curve of the index 

chemical to predict mixture risk, we need some comfort level that the dose-response 

curves of the subclass chemicals share a common shape. 

5.2.1. Top-Down Approach.  In the top-down classification, the procedure begins 

using an initial model in which the slopes of the m chemicals are assumed to all be 

different. Figure 5-1 illustrates the iterative procedure followed using the top-down 

approach. (See also Table 3 in Appendix B for example calculations.) The initial model, 

M0, of chemicals is denoted by the partition set M0 = {{C1}, {C2}, {C3}, {C4}, {C5}, 

{C6}}. Consider the null and alternative hypotheses, comparing two adjacent slopes, 

Hoq: $c,q = $c,q+1  versus Haq: $c,q … $c,q+1 (5-17) 

for q = 1, 2 ,..., m-1. Under the null hypothesis, a joint dose-response function can be fit 

for the mixture of chemicals Cq and Cq+1, using a constant relative potency model, based 

on Equation (5-8) of, 
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FIGURE 5-1 

Flow Chart for Top-Down Approach 
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(F dq , dq +1 ) = Pq (dq + ρ cq ,cq +1 dq +1 ) = F(α cq + βcq log(dq + ρ cq ,cq +1 dq +1 )) (5-18) 

The null model H0q can be represented by the partition set, 

B1 = {{C1}, ... {Cq = Cq+1}, ... {Cm}}.  (5-19) 

The hypothesis of comparing two adjacent slopes, equivalently, can be expressed in 

terms of testing the two models, the null model (B1) vs. the initial model (M0): 

Hoq: B1 = {{C1}, ... {Cq = Cq+1}, ... {Cm}} versus Haq: M0 = {{C1}, {C2}, ... , {Cm}}. 

Let poq be the p-value associated with the test Hoq versus Haq, for q = 1, 2 ,..., m-1; and 

let pcr = Max { pc1, pc2, ...pcm} (i.e., pcr is the largest p value associated with testing for a 

common slope between two adjacent chemicals in the set). When the largest value, pcr, 

is less than a pre-specified significance level, say, " k then the procedure stops, we 

reject the null model that the chemicals can be further grouped, and the model M0 that 

the slopes of the m chemicals are different is concluded. On the other hand, if pcr is 

greater than the significance level, then we cannot reject the null model, so the 

chemicals Cr and Cr+1 are classified into one subclass. That is, a new “initial” model, M1 

= {{C1}, ... {Cq = Cq+1}, ... {Cm}}, is formed and the procedure continues to the next step. 

Under the model M1, the two chemicals cr and cr+1 can be treated as one 

chemical. Let, β$ cr 
'  denote the maximum likelihood estimate of the common slope for the 

two chemicals cr and cr+1. The m-1 slope estimates are now arranged in ascending 

order as: 

β$ c1≤ ...β$ cr −1 ≤ β$ c 
' 
r ≤ β$ cr +2 ...≤ β$ cm . 
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That is, the two individual slope estimates, β$ cr and β$ cr +1 are replaced by their common 

slope estimate, β$ cr 
' . The same algorithm is applied by performing m-2 comparisons of 

two adjacent estimates. The hypothesis can be expressed as 

H0q : B2 versus Haq : M1 

where 

B2	 = { ..., {Cq ,Cq+1}, ... , {Cr,Cr+1}, ...} if q … ( r - 1) or q … ( r + 1) 

= { ..., {Cr-1,Cr ,Cr+1}, ...} if q = ( r - 1) 

= { ..., {Cr ,Cr+1, Cr+2}, ...} if q = ( r + 1) 

Again, if the largest p-value is less than the significance level, then the procedure stops, 

the null hypothesis that the slopes are the same is rejected, and the model M1 is 

concluded. If the largest p-value is greater than the significance level, then the null 

model is adopted as a new “initial” model and the procedure continues to the next step. 

The procedure keeps grouping the chemicals until the null model is rejected. Note that 

in the last step, if the null hypothesis is not rejected, then the model {C1, C2,...,Cm}, that 

all slopes are equal, is used for the risk assessment. 

5.2.2. Bottom-Up Approach.  In the bottom-up classification, the procedure starts with 

the initial model, MO, where the slopes of the m chemicals are equal, denoted as the 

partition set, M0 = {C1, C2,...,Cm}. (The same notation is used to illustrate the 

parallelism between the two classification schemes.) Figure 5-2 illustrates the iterative 

procedure followed using the bottom-up approach. (See also Table 4 in Appendix B for 

example calculations.) We now form a new model B1 = {{C1, ... Cq}, {Cq+1, ... , Cm}} 

constructed by the split of M0 into two subclasses. Consider the hypothesis of a 
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FIGURE 5-2


Flow Chart for Bottom-Up Approach
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constant relative potency model M0 against the alternative model B1 of two subclasses 

of constant relative potency factors: 

H0q : M0 versus Haq : B1. 

To test every possible combination of two subclasses while holding the order of the 

slopes constant, there are (m-1) tests. Let pcq be the p-value associated with the test 

H0q versus Haq, for q = 1, ..., m-1, and let pcr = Min { pc1, pc2, ...pcm} (i.e., pcr is the smallest 

p value associated with testing for a common slope between two adjacent subclasses of 

chemicals). If pcr is greater than a pre-specified significance level, say, "b, then the 

procedure stops, and the initial model M0 where all the slopes are the same is 

accepted. On the other hand, if pcr is less than the significance level, then the 

corresponding alternative model dividing the chemicals into two RPF groups, M1 = {{C1, 

... Cq}, {Cq+1, ... , Cm}} is accepted, and the procedure continues to the next step. The 

algorithm repeats until a null model is accepted. Note that in the last step, if the null 

hypothesis is rejected, then the model that all slopes are different is concluded, {{C1}, 

{C2}, {C3}, {C4}, {C5}, {C6}}. 

The two clustering schemes described above are tree structure classifications. 

The top-down algorithm forms the tree from the top. It assumes that the slopes of the 

chemicals are different. In each step, a chemical (or subclass of chemicals) is combined 

with another chemicals (or subclass of chemicals) to form a new subclass. Therefore, 

the number of subclasses at each step is one less than the previous step. On the other 

hand, the bottom-up algorithm forms a tree in a division fashion. It assumes that the 

slopes of the chemicals are equal. A new subclass is formed in each step. These two 

algorithms may result in different tree structures. In both procedures, a goodness-of-fit 
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( )  

test (a global test) can be performed on the terminal tree against the two trivial trees 

{{C1}, {C2}, {C3}, {C4}, {C5}, {C6}} and {{C1, C2, C3, C4, C5, C6}}. 

5.3. CUMULATIVE RISK ASSESSMENT 

The fitted dose-response model for the mixture from multiple chemical exposures 

can be used for quantitative risk estimation in terms of the equivalent total mixture dose 

of the index chemical. For a group of m chemicals in which the relative potency factor 

between any two chemicals is constant, the estimated cumulative risk from exposure to 

the specific doses d10,...,dm0, for chemicals 1, ...., m, respectively, is derived as, 

m

( $ $F d10 ,..., dm0 ) = F


 
α s + β$ log



 ∑ ρ st dt 0 


 


 

(5-20) 
t =1 

whereα β ρ are the maximum likelihood estimates of the model parameters, and$ s , $ , $ st 

$ s1 10 + ..., $ smdm0 ) is the equivalent total mixture in terms of the index chemicalD = (ρ d ρ

s, and Dss = 1. The cumulative risk can be expressed as a response of the mixture dose 

in terms of the dose-response function of the index chemical, 

$P D  = F(α s + β log d ) (5-21)

Using this equation, either the effective dose (EDp) for a given response level p% or an 

acceptable dose level D* corresponding to a given risk level r can be computed (i.e., 

P(EDp) = p% or P(D*) = r). In general, when the relative potency factor is not constant, 

the estimated cumulative risk will depend on the index chemical. In this case, the 

average risk or the maximum risk over all possible index chemicals can be calculated. 
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5.3.1. Mixtures Reference Dose. The equations developed using RPFs may be 

useful in calculating a mixtures Reference Dose (RfD). The RfD is a “safe” level for 

environmental pollutants, which represents a human exposure level below which 

deleterious non-cancer effects are not expected to occur (U.S. EPA, 2003b). The RfD 

has traditionally been derived by dividing an experimental dose level, a No-Observed-

Adverse-Effect Level (NOAEL) or a Lowest-Observed-Adverse-Effect Level (LOAEL) 

from an animal toxicity study by several uncertainty factors (UFs), and a modifying 

factor (MF): 

NOAEL or LOAEL
RfD = 

UFs X MF 
(5-22) 

An alternative method is to replace the NOAEL or LOAEL by a modeled benchmark 

dose (e.g., the lower 95% confidence limit on an ED10, that is, an effective dose that 

produces a 10% response). These UFs are used to specifically account for uncertainty 

in the RfD estimate due to extrapolations across species (UFA), within species (UFH), 

across durations of exposure (UFS), between experimental dose levels (UFL) and from 

weak to strong databases (MF). In the absence of statistical treatment, the default 

value of these UFs has typically been set equal to 10. For a single chemical, a 

benchmark dose (e.g., ED10) often serves as the point-of departure for low-dose 

extrapolation in order to minimize model dependency at low dose levels. 

Using the mixture dose response models in this section, a mixtures reference 

dose (RfDm) can be developed. For a mixture of components with the same mode of 

action, Equation 5-21 can be used to calculate the point-of-departure for the mixture. 
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The RfDm in terms of an index chemical is defined as RfDm = EDp / UFm; where EDp is 

the mixture dose corresponding to a risk level of p% and UFm is the uncertainty factor 

for the mixture. The UFm would need to consider all of the same UFs shown above for 

the single chemicals RfD development. For given exposure doses, risks above the 

RfDm can be calculated using an appropriate mixture dose response model (Wilkinson 

et al., 2000). (A complete example of the this procedure is shown in Appendix A.) 
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6. CONCLUSIONS 

An important question in mixtures risk assessment research is how to assess a 

mixture containing some chemicals that share a common toxic mode of action and other 

chemicals that do not. Current additivity methods have evolved to handle either the 

former (dose addition) or the latter (response addition). Alternatively, the risk assessor 

may choose to do the assessment based on whole mixture data. The biostatistical 

methods developed in this report provide alternative methods to evaluate a mixture 

under three scenarios. The simple case occurs when there is certainty that a common 

toxic mode of action is operating, so a dose addition approach can be applied. The 

second case occurs when the mixtures can be divided into independent mode of action 

subclasses; dose addition and response addition can be integrated to make the 

assessment. The third case occurs when mode of action is uncertain, so a joint 

dose-response modeling procedure is used to create a range of risk estimates. Thus, 

these approaches enrich the available library of mixture risk assessment methods 

beyond what is currently published by the U.S. EPA (1986, 2000). Further, these 

approaches are available if needed for the evaluation of additional pesticide mixtures 

under FQPA. Finally, the results presented here are generalizable to assessments of 

other environmental mixtures; the risk assessments that support environmental 

regulations of important environmental mixtures such as dioxins, polychlorinated 

biphenyls, and OPs are based on concepts of additivity (U.S. EPA, 1989b, 2000, 

2001b). 

The research results in this report can be applied to reduce uncertainties in 

RPF-based risk assessments of chemical mixtures. These results also show how 
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mixtures risk assessments can be conducted using additivity concepts. Various sources 

of uncertainty exist in most mixtures risk assessments, including uncertainties 

addressed in this report regarding several factors: 

• Common mode of action across mixture components (Sections 2, 3) 

•	 Similarly shaped dose-response curves across mixture components (Sections 
2, 5) 

• Value of internal vs. external dose estimates for developing RPFs (Section 4) 

•	 Choice of dose metric (moles vs. mass) to use in a cumulative risk assessment 
(Section 4) 

• Cross-species extrapolation of relative potency factors (Section 4) 

•	 Estimating risks for a mixture with two or more common mode of action 
subclasses (Section 5). 

Biostatistical modeling in this report presents ways to combine dose-response 

information, partitioning the mixtures into common mode of action subclasses. These 

models can then be used to estimate risks for specific exposure scenarios or used to 

develop toxicity values, such as a reference dose for the mixture. Three RPF-based 

methods are discussed, reflecting what is known or uncertain about the mixture 

toxicology. These approaches can be applied using internal or external doses. 

Development of approaches based on internal doses may reduce some toxicokinetic 

uncertainties associated with RPFs based on administered doses. In the Chen et al. 

papers (2001, 2003) in Appendices A and B, external doses were used to develop 

statistical methods for grouping components into common mode of action subclasses. 

The next step in this process is to use RPFs based on internal doses and compare 

subclass groupings and modeling results with those developed using external doses. 

Recommended future RPF research on pesticide mixtures is to: 
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1) Develop kinetic models for pesticide mixtures in rodents. 

2)	 Using experimental cholinesterase inhibition measures, determine RPFs based 
on both external and internal dose estimates for the rodent. 

3)	 Determine if the RPFs based on internal dose estimates significantly differ from 
RPFs developed from external doses for the rodent. 

4)	 Apply the biostatistical methods for grouping by common dose-response curves 
using RPFs based on internal and external doses and compare the groupings 
that result. 

5) Develop kinetic models for pesticide mixtures in humans. 

6)	 Estimate human risks using rodent cholinesterase inhibition responses, RPFs 
based on rodent internal doses, and human internal dose estimates using the 
three approaches presented in Chen et al. (2001, 2003), as appropriate. 

7)	 Compare subclass groupings and human risk estimates for all scenarios of 
internal and external RPFs. 

8)	 Evaluate the toxicity of different human exposure scenarios with the RPF models 
developed. 

This research was undertaken to continue exploring and developing cumulative 

risk assessment strategies based on dose addition concepts beyond current 

applications and is intended to improve future applications of RPF based risk 

assessments. 
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SUMMARY 

The Food Quality Protection Act (FQPA) of 1996 requires the EPA to consider the cumulative 

risk from exposure to multiple chemicals that have a common mechanism of toxicity. Three 

methods, hazard index (HI), point of departure index (PODI), and toxicity equivalence factor 

(TEF), have commonly been considered to estimate the cumulative risk. These methods are 

based on estimates of ED10 (point of departure) and reference doses from the dose response 

functions of individual chemicals. They do not incorporate the actual dose response function of 

the mixture from multiple chemical exposures. Dose addition is considered to be an appropriate 

approach to cumulative risk assessment because it assumes that the chemicals of interest act 

in accordance with a common mode of action (a similar action). This paper proposes a formal 

statistical procedure to estimate the cumulative risk by fitting the dose response model of the 

mixture under dose addition. The relative potency between two chemicals is estimated directly 

from the joint dose response model of the mixture. An example data set of four drugs representing 

four chemicals is used to illustrate the proposed procedure and compare it to the HI, PODI, and 

TEF methods. 

Key Words: Chemical mixture; Low-dose extrapolation; Relative potency factor (RPF); Similar 

action; Toxicity equivalence factor (TEF); 
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1. Introduction 

Regulatory agencies use risk assessment to derive acceptable levels of exposure to chemicals 

that may exist as contaminants in food, drinking water, air, or the environment. Risk assessment 

for toxic agents is usually conducted to evaluate the potential risks from exposure to a single 

toxic agent through a single route of exposure. Although it is important to establish safe levels 

of exposure for humans for each toxic agent, people frequently are exposed to many chemicals 

simultaneously or in sequence by different routes. The exposures to multiple chemicals could 

cause unexpected cumulative potential effects through various media. The risks may combine 

additively, multiplicatively or in some other fashion. The combined risk may be greater, or less 

than what would be predicted from data on individual chemicals. Concerns about the problems 

of multiple chemical exposure have been an important issue. The risk associated with exposure 

to more than one toxic chemical by different routes may be characterized by cumulative exposure 

and risk assessments. 

Assessing the cumulative toxicological effects of multiple chemicals has been addressed from 

time to time (NRC, 1988; EPA, 1986, 1999a). Methods and data, which can be used to estimate 

the risk of exposures to multiple chemicals, have been developed over the years. But there is no 

consensus on appropriate statistical methods for cumulative risk assessments (CRA). The Food 

Quality Protection Act (FQPA) of 1996 requires that, in future risk assessments, the EPA must 

consider not only the risk of a single pesticide chemical residue, but also the risk of exposures to 

other pesticide residues and substances that have a common mechanism of toxicity. The FQPA 

specifically focuses on available information concerning the potential cumulative effects of such 

exposures. 

The issue of a common mechanism of toxicity has recently been addressed by a working group 

of experts convened by the ILSI Risk Science Institute (RSI) (Mileson et al., 1998). The working 

group presented three criteria to describe a common mechanism of toxicity: 1) cause the same 

critical toxic effect; 2) act on the same molecular target at the same target tissue; and 3) act by 
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the same biochemical mechanism of action, or share a common toxic intermediate. The working 

group agreed that all three points are useful to apply to chemicals that may act by a common 

mechanism of toxicity, but did not state whether all three points must be met before a firm com­

mon mechanism of toxicity determination can be reached. It is recognized, however, that precise 

mechanistic information on animal or human effects of pesticide chemicals is scant. Common 

mechanism determinations will therefore be difficult to establish with these three points because 

chemicals often exhibit a different spectrum of adverse effects in different organs and tissues 

(Mileson et al. 1998). 

Wilkinson, et al., (2000) evaluated three methods of assessment of cumulative risk from ex­

posures to multiple chemicals: hazard index (HI), point of departure index (PODI), and toxicity 

equivalence factor (TEF). They also considered two the other methods of assessment: the margin 

of exposure (MOE) and cumulative risk index (CRI) that are the reciprocals of the PODI and 

HI approaches, respectively. The approach of these methods is based on estimates of reference 

doses or point-of-departure doses (e.g., ED10) from the fitted individual dose response functions. 

There is no attempt to incorporate the dose response function of the mixture from combined 

exposures to multiple chemicals. In this paper, we propose a quantitative approach to estimating 

the cumulative risk by directly fitting the dose-response function of the mixture through the dose 

addition model. 

Under the assumption of a common mode of action (chemicals are non-interactive and act on 

similar biological systems in eliciting a common response) for multiple chemicals, the chemicals 

are commonly assumed to act as if one is a simple dilution of the other. The joint action of 

the chemicals, then, can be described by “dose addition” (Finney, 1971). The assumption of 

addition of individual exposures (dose addition) to predict a cumulative toxic effect is reasonable 

(Wilkinson, et al., 2000). Furthermore, dose additivity is consonant with EPA policy that “pes­

ticide chemicals that cause related pharmacological effects will be regarded, in the absence of 

evidence to the contrary, as having an additive deleterious actions” (CFR, 1998); also the EPA 
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(1986) recommended no-interaction approaches of dose addition for risk assessment of mixtures. 

Let F1 and F2 be the dose response functions for chemical 1 and chemical 2, respectively. 

Under dose-addition, the response to the combination of d1 and d2 for chemical 1 and chemical 

2, respectively, is 

R(d1, d2) = F1(d1 + ρd2) 

= F2(d1/ρ + d2), 

where ρ is the relative potency of chemical 2 to chemical 1. When one chemical acts as if it is a 

simple dilution of the other, then the relative potency between the two chemicals is constant. In 

other words, for all response levels, the effective dose of one chemical is a constant multiple of 

the effective dose of the other chemical. Hewlett and Plackett (1959) viewed the concept of dose 

addition (similar action) in a slightly broader sense than requiring a constant relative potency 

between two chemicals. Mathematically, their characterization can be interpreted as allowing 

the relative potency factor to be different for different response levels. 

Dose addition allows for summing the individual doses into an equivalent dose in terms of an 

index chemical, and using the index chemical’s dose-response function to estimate the response 

from the equivalent total mixture dose. Dose addition is considered to be an appropriate ap­

proach to cumulative risk assessment because it assumes that the chemicals of interest act in 

accordance with a common mechanism of toxicity. The main purpose of this paper is to pro-

pose an approach to calculating cumulative risk under the broader definition of dose addition in 

which the relative potency is not constant (Hewlett and Plackett, 1959). The approach involves 

estimating the relative potencies between chemicals from the joint dose response function of the 

mixture through addition of the doses of individual compounds. 
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2. Dose Response Model for Combined Exposures 

A dose response function for binary response data, denoted P (d) = F , relates the probability 

of response to the dose, d, where F is a probability distribution function. The general model can 

be expressed in the logarithm of dose as 

P (d) = F (α + βlogd), d > 0, 

or in the un-transformed dose as 

P (d) = F (α + βd). 

Two commonly used dose response models are the probit model and the logistic model. The 

log-probit model is � α+βlogd 1 
P (d) = c + (1 − c) √ 

2π 
exp(−1/2t2)dt 

−∞ 

and the log-logistic model is 

exp(α + βlogd)
P (d) = c + (1 − c)

1 + exp(α + βlogd) 
, 

where the parameter c represents background effect and P (d) is defined to be c when d = 0. 

The parameters α and β are the intercept and slope of the dose response models under F −1(P (d)). 

Consider only two chemicals and denote the dose response functions for chemical 1 and 

chemical 2 as 

P1(d) = F (α1 + β1logd) 

and 

P2(d) = F (α2 + β2logd). 

If the relative potency ρ of chemical 2 to chemical 1 is constant, then the dose response for one 

chemical can be expressed in terms of the equivalent dose of the other chemical, i.e., P1(d1) = 

P2(d1/ρ) = P1(ρd2) = P2(d2), where the dose d1 of chemical 1 and d2 of chemical 2 have an equal 

effect (ρ = d1/d2). Now, if P1(d1) = P2(d1/ρ), then 

α1 + β1logd1 = α2 + β2logd1/ρ. 
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The above equality holds for all d1. In particular, letting d1 = 1, the equation becomes α1 = 

α2 − β2logρ. This implies logρ = (α2 − α1)/β2. Similarly, If P2(d2) = P1(ρd2), then 

α2 + β2logd2 = α1 + β1logd2ρ, for all d2. 

It implies analogously that logρ = (α2 − α1)/β1. Hence, β1 = β2. Conversely, assume that the 

slopes of the dose response functions are equal (β1 = β2 = β). If P1(d1) = P2(d2) then 

α1 + βlogd1 = α2 + βlogd2. 

The relative potency of chemical 2 to chemical 1 is logρ = (α2 −α1)/β. Thus, the relative potency 

ρ between the two chemicals is constant for all dose (response) levels. We have shown that two 

chemicals have a constant relative potency if and only if the slopes of the (log) dose response 

functions are equal. 

If the dose-response functions are modeled in terms of un-transformed doses instead of log 

doses, then the relative potency is constant if and only if the intercepts of the dose-response 

functions are equal, where the relative potency is the ratio of the slopes. The remainder of this 

paper will address only log-dose models. 

2.1 Constant Relative Potency 

If two chemicals have a constant relative potency and if the joint response is dose-additive, 

then the dose-response function from exposure to d1 of chemical 1 and d2 of chemical 2 is 

F (d1, d2) = P1(d1 + ρd2) 

= F (α1 + βlog(d1 + ρd2)). 

For a group of m chemicals in which the relative potency between any two chemicals is constant, 

the joint response of the m chemicals can be derived as 
m 

F (d1, · · · , dm) = P1(d1 + ρtdt) 
t=2 

m 

= F (α1 + βlog(d1 + ρtdt)), 
t=2 
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where ρt = exp[(αt − α1)/β] is the relative potency of chemical t to the index chemical 1, 

t = 2, · · · ,m. The joint response can also be expressed in terms of any other chemical as an 

index chemical s, 

F (d1, · · · , dm) = F (αs + βlog(ds + 
m 

t�=s 

ρ� tdt)), 

where ρ� t = exp[(αt − αs)/β]. It can be seen that ρ� t = ρt/ρs for t = 1, ·,m, where ρ1 = 1. The 

two models are equivalent, i.e., the estimated risk at any set of doses does not depend on the 

choice of index chemical. 

2.2 Non-Constant Relative Potency 

If the relative potency factor between chemical 1 and chemical 2 is different for different 

response levels, then the slopes of the dose response functions for the two chemicals are different. 

At the equal effective doses of d1 for chemical 1 and d2 for chemical 2 such that P1(d1) = P2(d2), 

it can be shown that the equivalent dose of chemical 2 in terms of chemical 1 is 

d1(d2) = exp( 
α2 − α1 

)d
β2 /β1 ,2β1 

and the equivalent dose of chemical 1 in terms of chemical 2 is 

α1 − α2
d2(d1) = exp( )d

β1 /β2 
1 . 

β2 

Under dose-addition, the joint response from an exposure to d1 of chemical 1 and d2 of chemical 

2 in terms of chemical 1 is 

F (d1, d2) = P1(d1 + d1(d2)) 

= F (α1 + β1log(d1 + ρ12d
w 
2 )), 

where w = β2/β1, and ρ12 = exp[(α2 − α1)/β1]. On the other hand, the joint response in terms 

of chemical 2 is 

F (d1, d2) = P2(d2(d1) + d2) 

= F (α2 + β2log(d2 + ρ21d
1/w 

),2 
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where ρ21 = exp[(α1 − α2)/β2]. Note that the joint response predicted from chemical 1, P1(d1 + 

d1(d2)), will differ from that predicted from chemical 2, P2(d2(d1) + d2)). 

For m chemicals, the combined response in terms of chemical s can be derived as 

m 

F (d1, · · · , dm) = Ps(ds + ρstd
w
t 

st ) 
t�=s 

m 

= F (αs + βslog(ds + ρstd
w
t 

st )). 
t�=s 

The ρst = exp[(αt − αs)/βs] is a potency ratio of chemical t to the index chemical s, and 

wst = βt/βs is the slope ratio, t = 1, · · · ,m, and t �= s. 
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2.3 General Cases


For a set of m chemicals, the chemicals can be clustered into several subclasses of constant 

relative potency. For example, the set {{C1, C2, ..}, {Cl, C(l+1)..}, .. {Cm}} represents that the 

chemicals 1, 2, .. in the first subclass have constant relative potency with respect to each other 

as do the chemicals Cl, C(l+1) .. in the second subclass; the relative potency factor between 

the last chemical Cm and the other chemicals is different at different response levels. For this 

example, the joint response in terms of chemical 1 is 

F (d1, · · · , dm) = P1((d1 + ρ2d + ...) + ... + (ρldl
wl + ρl+1d

wl 
ml+1 + ...) + ... + ρmdwm ). 

The chemicals in the same subclass will have the same slope ratio wt (= βt/β1). Also, the chemi­

cals in the same subclass will have the same cumulative risk estimate, regardless of which is used 

as the index chemical. 

3. Cumulative Risk Estimation 

The fitted dose response model for the mixture from multiple chemical exposures can be used 

for quantitative risk estimation in terms of the equivalent total mixture dose of the index chemical. 

For a group of m chemicals in which the relative potency factor between any two chemicals is 

constant, the estimated cumulative risk from exposure to the specific doses d10, . . . , dm0 for 

chemicals 1, . . ., m, respectively, is 

m 
ˆF (d10, · · · , dm0) = F (α̂s + βlog( ρ̂ stdt0)), 

t=1 

ˆwhere α̂s, β, ρ̂ st are the maximum likelihood estimates of the model parameters, and D = ρ̂ s1d10 + 

· · · , ρ̂ smdm0) is the equivalent total mixture in terms of the index chemical s, and ρss = 1. The 

cumulative risk can be expressed as a response of the mixture dose in terms of the dose response 

function of the index chemical 

ˆP (D) = F (α̂s + βlogD). 
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Using this equation, either the EDp for a given response level p% or an acceptable dose level D∗ 

corresponding to a given risk level r can be computed, i.e., P (EDp) = p% or P (D∗) = r. 

In general, when the relative potency factor is not constant, the estimated cumulative risk 

will depend on the index chemical. In this case, the average risk or the maximum risk over all 

possible index chemicals can be used. 

For a single chemical, a benchmark dose (e.g., ED10) often serves as the so-called point-of-

departure for low-dose extrapolation in order to minimize model dependency at low dose levels. 

The above equation can be used to calculate the point-of-departure. The reference dose for the 

mixture in terms of an index chemical is defined as 

Ref = EDp/GUF, 

where EDp is the mixture dose corresponding to a risk level of p% and GUP is the group uncer­

tainty factor. For given exposure doses, the estimated risk unit with respective to the risk at the 

reference dose can be calculated (Wilkinson, et al. 2000). 

4. An Example for Cumulative Risk Estimation 

A data set of four analgesics given by Finney (1971, Chapter 6, p 104) is used as an example to 

illustrate the proposed procedure. These represent typical toxicological data obtained from dose 

response experiments. The four analgesics can be regarded as four chemicals having a common 

mode of toxicity. The logistic dose response function is used in the analysis, 

exp(α + βlogd)
P (d) = c + (1 − c) 

1 + exp(α + βlogd). 

Table 1 contains the maximum likelihood estimates with standard error estimates in paren­

theses and the maximum value of the log-likelihood (LL) of the fitted logistic dose response 
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function for the four chemicals. The ED10, ED.10, and specific exposure doses with corre­

sponding predicted risk of the four chemicals are also listed in Table 1. The ED10 and ED.10 

are used later to describe the three cumulative risk assessment methods presented by Wilkin­

son et al. (2000). We are interested in estimating the cumulative risk at the exposure doses 

d10 = .005, d20 = .010, d30 = .005, d40 = .010. The sum of the four individual risks is 6.67 × 10−5 . 

The likelihood ratio (LR) test is used to test for the equality of the slopes. The LL value under 

a common slope model is -729.225. The LR χ2 statistic under the null hypothesis is 2[729.225-

(209.358+157.447+139.797+221.716)] = 1.814. The χ2 value shows no evidence of any differences 

among the four slopes. 

The data set of the four chemicals is fitted to the model of constant relative potency given 

by 
exp(αs + βlog(ds + ρs2d2 + ρs3d3 + ρs4d4)

P (d1, d2, d3, d4) = c + (1 − c)
1 + exp(αs + βlog(ds + ρs2d2 + ρs3d3 + ρs4d4) 

, 

where ρst is the relative potency factor of chemical t to the index chemical s. Table 2 contains 

the maximum likelihood estimates with standard error estimates of the coefficients of the dose 

response function, the equivalent exposure dose D with the predicted cumulative risk, and the 

ED10 and ED.10 using four different index chemicals (s = 1, 2, 3, 4). Note that ρa, ρb, and ρc are 

the estimates of the relative potency factors between chemicals relative to the index chemical. For 

example, when s = 1, then ρa = ρ12, ρb = ρ13, ρc = ρ14. The maximum likelihood estimates of 

ˆthe model parameters are ĉ = .056, α̂ = −2.605, β = 1.90, ρ̂ 12 = 1.26, ρ̂ 13 = 3.61, and ρ̂ 14 = 0.34. 

The total mixture dose is D = .005 + 1.26 × .010 + 3.61 × .005 + 0.34 × .010 = 0.0391. The 

predicted cumulative risk is 1.47 × 10−4 . The predicted risk can be computed using a different 

index chemical. Table 2 shows that risk estimate is the same regardless of which chemical is se­

lected as the index chemical. For a convex dose response function, the estimated (low dose) risk 

based on simply summing the individual risks (6.67× 10−5 shown in Table 1) will underestimate 

the cumulative risk through dose addition (1.47 × 10−4 shown in Table 2) under a model of a 
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common mode of action.


Alternatively, using the ED10 as the point-of-departure, the reference dose for the mixture 

in terms of the index chemical 1 can be calculated by 

Ref = 1.2820/GUF. 

If GUF = 50, then Ref = 1.2820/50 = 0.026. This value is smaller than the mixture dose 0.039. 

Similarly, the reference doses for the mixture in terms of other index chemicals 2, 3, and 4 are 

0.020, 0.007, and 0.076 respectively. These values are smaller than their corresponding mixture 

doses shown in Table 2. 

For illustration purposes, assume that the relative potency factors between chemicals 1, 3, 

and 4 (with each other) are constant, and the relative potency factors between chemical 2 and 

chemicals 1, 3, and 4 are different. The four chemicals are grouped into two subclasses { {1,3,4}, 
{2} }. If chemical 1 is used as the index chemical (to represent the subset {1,3,4}), then the 

joint dose response function is 

exp(α1 + β1log(d1 + ρ12d
w + ρ13d3 + ρ14d4)2P (d1, d2, d3, d4) = c + (1 − c) . 

1 + exp(α1 + β1log(d1 + ρ12dw + ρ13d3 + ρ14d4)2 

If chemical 2 is used as the index chemical, then dose response function becomes 

exp(α2 + β2log(d2 + ρ21d
w� + ρ23d

w� + ρ24d
w� )1 3 4 .P (d1, d2, d3, d4) = c + (1 − c)

1 + exp(α2 + β2log(d2 + ρ21dw� + ρ23dw� + ρ24dw� )1 3 4 

Table 3 contains the maximum likelihood estimates of the model parameters. Table 3 shows 

that chemicals 1, 3, and 4 give the same predicted risk (1.39 × 10−4). But the cumulative risk 

predicted by chemical 2 is 1.75 × 10−4 . The estimated slope ratio between the chemical 2 to 

chemical 1 (or 3, 4) is w = 1.12 = 1/.89. 

5. Discussion 

Wilkinson et al. (2000) described the three methods, HI, PODI, and TEF, of cumulative 

risk assessment based on the estimates of the ED10 and reference doses of individual chemicals. 
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For given exposure doses, the risk unit estimate can be obtained by multiplying an uncertainty 

factor (UF) for the chemical. In the present context, using the ED10 as the POD, the risk unit 

for the three methods is 

HI	 = UF × (0.005/0.9110 + 0.010/1.4214 + 0.005/0.3397 + 0.010/2.9082) 

= UF × 0.031 (= PODI = TEF), 

where UF is the common uncertainty factor for the four chemicals. The risk unit estimate is 0.31 

when UF=10, and it is 3.10 when UF = 100. The ED.10 can also be used as POD to calculate 

the HI, PODI, and TEF but with UF = 1, the risk unit is HI (0.005/0.0462 + 0.010/0.1855 + 

0.005/0.0311 + 0.010/0.1733) = 0.380 (= PODI = TEF). 

The ED.10 can also be used as the reference dose in the TEF method as in the context of 

the Wilkinson et al. (2000) examples. When the ED10 is used as POD and ED.10 as reference 

dose, applying the TEF method to estimate the risk unit will depend on the choice of the index 

chemicals. For example, the risk unit estimate for TEF method in terms of the index chemical 

1 is 

0.9110 × (0.005/0.9110 + 0.010/1.4214 + 0.005/0.3397 + 0.010/2.9082) 
= 6.05 × 10−4 . 

0.0462


In the same way, the calculated risk units are 5.15 × 10−4 , 3.34 × 10−4 , and 2.35 × 10−4 for 

chemicals 2, 3, and 4 as the index chemical. The risk predicted from the proposed dose-addition 

model given in Table 2 is 1.47 × 10−4 irrespective of which chemical is selected as the index 

chemical. 

The HI, PODI, and TEF methods all assume that the dose response functions for the chem­

icals considered have a similar slope. The relative potency factors among chemicals are often 

based on a particular effective dose EDp (e.g., ED10) of individual dose response functions. In 

this approach, the relative potency estimate will depend on the choice of the particular effective 

dose if the slopes are not estimated to be equal. For example, the relative potency between 

chemical 3 and chemical 1 is 0.9110/0.3397 = 2.68 based on ED10, and it is 0.0462/0.0311 = 
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1.49 based on ED.10 (Table 1). Because the proposed approach takes into account a common 

slope in fitting the joint dose response function, the estimate of the relative potency for a subset 

of chemicals that have the same slope is invariant to the choice of effective doses or the index 

chemicals. In Table 2, for example, the estimated relative potency of chemical 3 to chemical 1 is 

3.61. This value can be also computed from the ratio of the ED10 or ED.10 of the chemical 1 to 

chemical 3. 

The proposed approach of fitting a single joint dose-response function to the dose response 

data (from all chemicals) is consistent with the current approach to a single chemical risk as­

sessment. The fitted dose-respopnse function can be used to estimate the cumulative risk for a 

given set of exposure doses or to derive a reference mixture dose from a benchmark dose from 

the index chemical. The proposed approach is similar to the TEF method. But, unlike the 

TEF method, the proposed method will give the same predicted risk regardless of the choice of 

the index chemical under the constant relative potency model. Perhaps most importantly, the 

proposed approach can be used when the relative potency factor differs for different subclasses 

of chemicals. This flexibility, which is based on a broader than usual concept of dose addition, 

makes the procedure broadly applicable for estimating cumulative risk. 
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Table 1. The maximum likelihood estimates (standard errors) of the coefficients of the logistic 

dose-response model, and the estimated ED10, ED.10 and maximized log-likelihood value for the 

four chemicals. 

Chemical c α β LL ED10 ED.10 Exposure Pred. 

1 0.00 

(0.27) 

2 0.12 

(0.15) 

3 0.00 

(0.59) 

4 0.00 

(0.33) 

-2.05 1.58 -209.358 0.9110 0.0462 0.005 2.98×10−5 

(1.54) (0.71) 

-2.87 2.32 -157.447 1.4214 0.1855 0.010 0.11×10−5 

(1.31) (0.71) 

-0.07 1.97 -139.797 0.3397 0.0311 0.005 2.73×10−5 

(1.41) (0.88) 

-3.98 1.67 -221.716 2.9082 0.1733 0.010 0.85×10−5 

(2.59) (0.77) 

Sum 6.67×10−5 
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Table 2. The maximum likelihood estimates (standard errors) of the coefficients of the joint dose


response function from multiple exposures of chemicals having constant relative potency factors.


s c α β ρa ρb ρc D Pred. ED10 ED.10 

1	 0.056 -2.605 1.90 1.26 3.61 0.34 0.0391 1.47× 10−4 1.2820 0.1071 

(0.09) (0.67) (0.30) (0.39) (0.03) (0.13) 

2	 0.056 -2.165 1.90 0.79 2.86 0.27 0.0310 1.47× 10−4 1.0170 0.0850 

(0.09) (0.60) (0.30) (0.08) (0.32) (0.03) 

3	 0.056 -0.167 1.90 0.28 0.35 0.09 0.0108 1.47× 10−4 0.3553 0.0297 

(0.09) (0.32) (0.30) (0.03) (0.01) (0.04) 

4	 0.056 -4.674 1.90 2.97 3.75 10.72 0.1160 1.47× 10−4 3.8090 0.3183 

(0.09) (0.97) (0.30) (0.29) (1.14) (0.38) 
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Table 3. The maximum likelihood estimates (standard errors) of the coefficients of the joint 

dose response function from multiple exposures of chemicals that do not have constant relative 

potency factors. 

s c α β ρa ρb ρc w D Pred. ED10 ED.10 

1	 0.054 -2.535 1.84 1.08 3.64 0.34 1.12 0.0328 1.39× 10−4 1.2426 0.0958 

(0.10) (0.67) (0.31) (0.41) (0.03) (0.28) (0.20) 

3	 0.054 -0.153 1.84 0.27 0.30 0.09 1.12 0.0090 1.39× 10−4 0.3405 0.0262 

(0.10) (0.32) (0.31) (0.03) (0.01) (0.08) (0.20) 

4	 0.054 -4.541 1.84 2.97 3.21 10.80 1.12 0.0973 1.39× 10−4 3.6966 0.2849 

(0.10) (0.98) (0.31) (0.29) (1.18) (0.84) (0.20) 

2	 0.054 -2.389 2.08 0.93 2.93 0.36 0.89 0.0505 1.75× 10−4 1.1297 0.1170 

(0.10) (0.72) (0.43) (0.23) (0.32) (0.14) (0.16) 
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Data set of four chemicals from Finney (1971)


Chemical Dose Response Total


1 1.50 19 103 

1 3.00 53 120 

1 6.00 83 123 

2 1.50 14 60 

2 3.00 54 110 

2 6.00 81 100 

3 0.75 31 90 

3 1.50 54 80 

3 3.00 80 90 

4 5.00 13 60 

4 7.50 27 85 

4 10.00 32 60 

4 15.00 55 90 

4 20.00 44 60 
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SUMMARY 

The Relative Potency Factor approach (RPF) is used to normalize and combine different toxic 

potencies among a group of chemicals selected for cumulative risk assessment. The RPF method 

assumes that the slopes of the dose response functions are all equal; but this method depends 

on the choice of the index chemical, i.e., different index chemicals will give different predicted 

mean estimates. This paper is part of an approach to explore and develop cumulative risk 

assessment strategies. As part of this approach this paper proposes a procedure for cumulative 

risk assessment from exposure to multiple chemicals that have a common mechanism of toxicity. 

We propose two classification algorithms to cluster the chemicals into subclasses such that the 

chemicals in the same subclass have a common slope. The joint response is estimated by fitting 

the dose response model of the mixture under dose addition. The proposed method will give the 

same predicted mean response regardless of the selection of the index chemical for the chemicals 

in the same subclass. The proposed method also allows one to estimate the joint response for 

chemicals having different slopes. An example data set of six hypothetical pesticide chemicals is 

used to illustrate the proposed procedure. 

Key Words: Chemical mixture; Classification tree; Point of departure (POD); Relative potency 

factor (RPF); Similar action. 
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1. Introduction


Quantitative risk assessment is used to derive acceptable exposure levels or to estimate the 

risks from exposure to chemicals that may exist as contaminants in food, drinking water, air, or 

the environment. Estimation of potential risks for toxic agents is usually conducted on a single 

toxin by a single route of exposure. However, people frequently are exposed to many chemicals 

simultaneously or in sequence by different routes from different sources. Exposures to multiple 

chemicals could cause unexpected potential adverse effects through a variety of toxicological in­

teractions. Various chemical components may induce similar or dissimilar effects over time. The 

Food Quality Protection Act (FQPA) of 1996 requires the Environmental Protection Agency 

(EPA) to consider not only the risk of a single pesticide chemical residue but also the risk of 

exposures to other pesticide residues and substances that have a common mechanism of toxic­

ity. The FQPA specifically states the available information concerning the potential cumulative 

effects of such exposures. The process of risk assessment of concurrent exposure by all relevant 

routes for a group of compounds that cause a common toxic effect by a common mechanism is 

designated as cumulative risk assessment. 

The issue of determining a common mechanism of toxicity has been addressed by a working 

group of experts convened by the International Life Sciences Institute (ILSI) Risk Science Insti­

tute (RSI) (Mileson et al., 1998). Subsequently, the EPA (EPA, 1999; http:/www.epa.gov/oppfeadl/ 

trac/science/) has issued a guidance document for identifying pesticide chemical that have a com­

mon mechanism of toxicity. Recently, the EPA issued the results of the revised cumulative risk 

assessment for organophosphorus pesticides [http;//www.epa.gov/pesticides/cumulative/]. The 

current paper is part of an approach to continue exploring and developing cumulative risk assess­

ment strategies. In this paper, we assume that common mechanism groups can be satisfactorily 

determined. In this context, a common mechanism group is defined as a group of pesticides 

determined to cause a common toxic effect by a common mechanism of toxicity. Such chemicals 

are said to occupy the same “risk cup” (EPA, 1999). 
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One important issue in cumulative risk assessment is how to incorporate the probability model 

for estimating cumulative risk. Methods and data, which can be used to conduct risk assessment 

of exposures to multiple chemical mixtures, have been developed over the years (NRC, 1988; 

EPA, 1986, 1989, 1999). Because of complexity of evaluating multiple chemicals there are no 

statistical methods for assessing risks from multiple chemicals that can be routinely applied to 

all chemical mixtures. Methods for risk assessment of chemical mixtures fall into two general 

approaches: 1) whole mixture of concern, and 2) component-based. The whole mixture approach 

involves either direct evaluation of the mixture of concern or an assessment of the mixture of 

concern using data available on a sufficiently similar mixture. The component-based approach 

considers the additive or interactive actions among the mixture components. The existing toxico­

logical database for pesticides contains data generated primarily to evaluate the hazard potential 

of individual chemicals. The most widely used component-based methods are dose addition and 

response addition. Dose addition assumes that the chemicals act on the same biological site, 

similar biological systems and behave similarly in terms of the primary physiologic processes 

(absorption, metabolism, distribution, elimination), and elicit a common response (EPA, 2000a). 

Response addition assumes that the chemicals behave independently of one another, so that the 

body’s response to the first chemical is the same whether or not the second chemical is present; 

in simplest terms, a response addition model is described by statistical independence. Given that 

cumulative risk assessment will be based on the chemicals sharing a common toxic effect that 

arises by a common mechanism of toxicity, dose addition is considered to be the most appropriate 

model to use for estimating cumulative risk. 

Dose-addition models presented in the literature are often in terms of a probability measure 

(e.g., Finney, 1971; EPA, 1986). Let F1 and F2 be the dose-response functions for chemical 1 

and chemical 2, respectively. Under dose addition, the response to the combination of d1 and 

d2 for chemical 1 and chemical 2 is F1(d1 + ρd2) = F2(d1/ρ + d2), where ρ is the relative po­

tency of chemical 2 to chemical 1. F1 and F2 are the probability of occurrence of a toxic effect 

for chemical 1 and chemical 2, respectively. The commonly used models are the probit, logis-
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tic, and multistage models. The data for a probability model are quantal responses measured 

by the presence or absence of a toxic endpoint such as death. Recently, Chen et al. (2001) 

applied the dose-addition model approach to estimating cumulative risk for quantal effects by 

directly fitting the combined dose-response function for a set of chemicals in the same “risk cup”. 

The toxic responses from exposures to pesticide residues often are measured by a continuous 

quantitative value, such as altered blood concentration or altered neurological function. In the 

context of the FQPA, EPA has recently concluded that the organophosphorus pesticides act by 

a common mechanism of toxicity, which is manifested through inhibition of acetylcholinesterase 

(Mileson et al., 1998). The common endpoints measured in cholinesterase bioassays are plasma, 

red blood cell, and brain cholinesterase activity levels. In this paper, we develop a dose-addition 

model for quantitative response data to estimate cumulative risk. 

Risk is customarily defined as the statistical probability of the occurrence of an adverse effect 

at a level of exposure. Dose-response models for adverse quantal response data are well defined 

since an adverse effect is self-evident, that is, the occurrence of an adverse effect is observed on 

individual subjects empirically. By contrast, a clear-cut adverse effect for continuous quantitative 

responses is difficult both to define and to observe unequivocally. The characterization of risk 

for continuous quantitative responses in terms of probability of occurrence does not naturally 

follow. Methods for risk estimation of continuous quantitative response data for a single toxin 

have been proposed by many authors (e.g., Crump, 1984; Gaylor and Slikker, 1990; Chen and 

Gaylor, 1992; Kodell and West, 1993; Chen et al., 1996). Dose response modeling of continuous 

quantitative data for cumulative risk assessment has not been developed. The main purpose of 

this paper is to propose an approach to estimating the cumulative response and cumulative risk 

of an adverse continuous quantitative effect for an individual concurrently exposed to pesticides 

in a common mechanism group. 

2. Dose Response Model for Combined Exposure 
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Let y(d) be a control-adjusted response variable (after a proper scaling or transformation, 

if necessary) of an individual exposed to a chemical at dose d. The control-adjusted response 

y(d) is calculated either by subtracting the control mean from responses in the treatment groups 

(difference scale) or by dividing the responses by the control mean (ratio scale). Assume that 

y(d) has a normal distribution with mean E(y(d)) = µ(d) and variance σ. 2 (Note that we assume 

a constant variance across dose groups of a chemical.) The mean response is often expressed as 

a linear function of the natural logarithm of dose, 

µ(d) = α + β log d, 

where α is the response for d = 1. The parameters α and β are the intercept and slope of the 

log-dose response function, respectively. 

Without loss of generality, suppose c is a critical value for an abnormally low level of response, 

a level below which a response is considered to be atypical. For example, c may be a certain 

threshold such as a 3 standard deviation reduction (difference) from the control mean or 20% 

reduction relative to the control mean. Under the difference scale, c can alternatively be expressed 

as c = −kσ, where k is appropriately chosen to yield a specific low percentage point of the 

distribution of unexposed individuals. For exposure to a given dose d, the proportion of the 

individuals with response y(d) below the critical value c = −kσ is given by 

P (d) = P [y(d) ≤ c] 

= P [y(d) ≤ −kσ] 

= Φ[−k − 
µ(d)

]
σ 

where Φ is the standard normal cumulative distribution function. Under the ratio scale, µ(0) = 1; 

c can be expressed as c = 1 − kσ. The probability of adverse effect at dose d becomes 

P (d) = Φ[−k − 
µ(d) − 1

]. 
σ 

Note that in either case P (0) = Φ(−k). The dose d∗ corresponding to the critical level y(d∗) = c 

is regarded as a safe dose. The risk is the probability that y(d) is less than or equal to the critical 
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value c. By expressing c in terms of k and σ the probability of an adverse effect can be calculated. 

2.1 Dose Addition Model 

Consider only two chemicals and denote the dose response functions for chemical 1 and 

chemical 2, respectively, as 

µ1(d1) = α1 + β1 log d1 

and 

µ2(d2) = α2 + β2 log d2. 

If µ1(d1) = µ2(d2), the ratio of the equally effective doses ρ12 = d1/d2 is called the relative 

potency of chemical 2 to chemical 1. Chen et al. (2001) showed that two chemicals have a 

constant relative potency if and only if the slopes of the (log) dose response functions are equal, 

i.e., β1 = β2. The combined mean response can be derived through addition of doses of chemical 

1 and chemical 2 based on the relative potency factor. Briefly, under dose addition, if two 

chemicals have a constant relative potency, then the dose-response function from exposure to d1 

of chemical 1 and d2 of chemical 2 is 

µ(d1, d2) = µ1(d1 + ρ12 d2) 

= α1 + β1 log(d1 + ρ12 d2). 

If the relative potency factor between chemical 1 and chemical 2 is different for different response 

levels, the joint response from exposure to d1 of chemical 1 and d2 of chemical 2 in terms of 

chemical 1 is 

µ(d1, d2) = α1 + β1 log(d1 + ρ12 d
w12 ),2 

where w12 = β2/β1, and ρ12 = exp[(α2 − α1)/β1]. The cumulative response from exposure to 

chemical 1 and chemical 2 can also be expressed in terms of chemical 2. However, if the relative 

potency is not constant, then the response predicted based on chemical 1 will differ from that 

7




predicted based on chemical 2. 

For a set of m chemicals, the chemicals can be clustered into several subclasses of constant 

relative potency {S1, S2, ..., Sk }, where each Si consists of chemicals having constant relative po­

tency. For example, the set {{c1, c2, ..}, {cq , cq+1..}, ..{cm}} represents that the chemicals c1, c2, .. 

in the first subclass have constant relative potency with respect to each other as do the chemicals 

cq , cq+1, .. in the second subclass; the relative potency factor between the last chemical cm and the 

other chemicals is different at different response levels. For notation simplification, let ci = i. The 

joint dose response function from exposure to the set of m chemicals {{1, 2, ..}, {q, q + 1..}, ..{m}} 

in terms of chemical 1 (called the index chemical) is 

µ(d1, · · · , dm) = µ1[(d1 + ρ12d2 + ...) + ... + (ρ1q d
w1q + ρ1(q+1)d

w1q 
mq q+1 + ...) + ... + ρ1mdw1m ]. 

The chemicals in the same subclass will have the same slope ratio w1t (= βt/β1), and give the 

same predictive estimate, regardless of which is used as the index chemical. 

One difficulty with the use of the above approach is that the estimated combined response 

will depend on the subclass in which the index chemical is selected, a different subclass will 

predict a different estimate. An alternative approach is to estimate the dose-response function 

for the chemicals within each subclass, and calculate the joint dose response function as the sum 

of the dose response functions of the subclasses. For the example above, the joint dose-response 

function is 

µ(d1, · · · , dm) = µ1(d1 + ρ12d2 + ...) + ... + µq (dq + ρq(q+1)dq+1 + ...) + ... + µm(dm). 

2.2 Maximum Likelihood Estimation 

Let yijl denote the control-adjusted response data for the j-th observation at the dose level 

dil from the l-th chemical (j = 1, · · · , nil, i = 1, · · · , gl, and l = 1, · · · ,m), where nil denotes the 
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number of subjects in dose group i from chemical l, and gl is the number of dose groups from 

chemical l. Suppose yijl is normally distributed with mean µl(dil) and variance σl 
2 . Estimation of 

the mean and variance parameters for an individual chemical can be obtained by the maximum 

likelihood method. The log-likelihood function for the chemical l is 

LL = −

1

2


gl 

i=1 

nil 

j=1 

 
[yijl − µl(dil)]

2 

 
σ2 

l 

+ log 2πσl 
2 

 

 , 

where µl(dil) = αl + βl log dil. The log-likelihood function for the m chemicals in terms of the 

chemical s (the index chemical) is 
 

[yijl − µs(Dil)]
2 

 
σ2 

l 

 

 ,LL = −

1

2


m 

l=1 

gl 

i=1 

nil 

j=1 

+ log 2πσl 
2 

m 
t�=s ρstd

wst .itwhere µs(Dil) = αs + βs log Dil and Dil = dis + 

ˆDenote the maximum likelihood estimate (MLE) of αs, βs, ρst, wst, and σl 
2 as α̂  s, βs, ρ̂  st, ŵ  st, 

ˆ σl 
2 , respectively. If the control-adjusted response yijl is measured on the difference scale,and


then the estimated cumulative risk from exposure to the m chemicals in terms of the chemical s 

can be derived from � 

−k −

µ̂s(D) 

σ̂s 
.
ˆ P (D) = Φ 

If yijl is measured on the ratio scale, then the risk estimate is given by 

µs(D) − 1]−k − 
[ˆ

σ̂s 
.
ˆP (D) = Φ 

ˆ P (D) will depend on the standard deviation of a selectedIn both cases, the estimated probability


index chemical. 

3. Tree Classification Algorithms 

In this section, we propose two classification algorithms to cluster a group of chemicals into 

subclasses of constant relative potency factors. Since two chemicals have a constant relative 
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potency if and only if the slopes of the (log) dose response functions are equal, the clustering 

algorithm is based on testing for the equality of the slopes of dose response functions. Either the 

likelihood ratio test (LR) or the analysis of variance F test can be used for the comparison. 

The procedure begins with a fitting of each individual dose response function for the m 

ˆ ˆ ˆ chemicals. Let β1, β2, · · · , βm denote the MLEs of the slopes of the dose response functions. The 

estimates of the m slopes can be arranged in an ascending order: 

ˆ ˆ ˆβc1 ≤ βc2 ≤ · · · ≤ βcm . 

That is, the chemical c1 has the smallest slope estimate, the chemical c2 has the second smallest 

slope estimate, and so on. Two tree classification algorithms, top-down and bottom-up, are 

proposed. 

In the top-down classification, the procedure starts with the model that the slopes of the m 

chemicals are all different, denoted as M0 = {{1}, {2}, · · · , {m}}. Consider the hypothesis of 

comparing two adjacent slopes, 

H0q : βcq = βcq+1 versus Haq : βcq �= βcq+1 

for q = 1, 2, · · · ,m− 1. Under the null hypothesis H0q , the dose addition model for the mixture 

of chemical cq and chemical cq+1 is 

µ(dq , dq+1) = αc 
� 
q 
+ βc 

� 
q 
log(dq + ρcq cq+1 dq+1). 

The null model H0q can be represented by the partition set B1= {{c1}, ...{cq , cq+1 }, ...{cm}}. 
The hypothesis of comparing two adjacent slopes, equivalently, can be expressed in terms of 

testing the two models: 

H0q : B1 = {{c1}, ..., {cq , cq+1},..., {cm}} versus Haq : M0 = {{c1}, {c2}, · · · , {cm}}. 

Let pcq be the p-value associated with the test H0q versus Haq , for q = 1, 2, · · · ,m− 1; and let pcr 

= Max {pc1 , pc2 , · · · , pcm−1 }. If pcr is less than a pre-specified significance level, say, αt, then the 
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procedure stops, and the model M0 that the slopes of the m chemicals are different is concluded. 

On the other hand, if pcr is greater than the significance level, then the chemicals cr and cr+1 

can be classified into the one subclass. That is, the model M1= {{c1}, ...,{ cr , cr+1 }, ...} is 

accepted, and the procedure continues to the next step. 

Under the model M1, the two chemicals cr and cr+1 can be treated as one chemical. Let β̂  
c 
� 
r 

be the MLE of the common slope for the two chemicals cr and cr+1. The (m− 1) slope estimates 

listed in the ascending order become 

β̂  
c1 ≤ · · · β̂  

cr−1 ≤ β̂  
c 
� 
r 
≤ β̂  

cr+2 · · · ≤ β̂  
cm . 

ˆ ˆThat is, the two individual slope estimates βcr and βcr+1 are replaced by their common slope 

estimate β̂  
c 
� 
r 
. The same algorithm is applied by performing m − 2 comparisons of two adjacent 

estimates. The hypothesis can be expressed as 

H0q : B2 versus Haq : M1 

where 

B2= {...,{cq , cq+1},...,{cr , cr+1}, ...}, if q �= (r − 1) or q �= (r + 1) 

= {...,{cr−1, cr , cr+1},...}, if q = (r − 1) 

= {...,{cr , cr+1, cr+2}, ...}, if q = (r + 1). 

Again, if the largest p-value is less than the significance level, then the procedure stops, and the 

model M1 is concluded. If the largest p-value is greater than the significance level, then the null 

model is accepted and the procedure continues to the next step. Note that in the last step, if 

the null hypothesis is not rejected, then the model {{ c1, c2, · · · , cm}} that all slopes are equal is 

accepted. 

In the bottom-up classification, the procedure starts with the model that the slopes of the 

m chemicals are equal, denoted as M0 = {{c1, c2, · · · , cm}}. (We use the same notations to 

illustrate the parallelism between the two classification schemes.) Consider the model B1 = 
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{{c1, ...cq }, {cq+1, · · · , cm}} constructed by the split of M0 into two subclasses, q = 1, 2, · · · ,m−1. 

Consider the hypothesis of a constant relative potency model M0 against the alternative model 

B1 of two subclasses of constant relative potency factors: 

H0q : M0 versus Haq : B1. 

There are (m-1) tests. Let pcq be the p-value associated with the test H0q versus Haq , for 

q = 1, · · · ,m − 1, and let pcr = Min {pc1 , pc2 , · · · , pcm−1 }. If pcr is greater than a pre-specified 

significance level, say, αb, then the procedure stops and the model M0 is accepted. On the 

other hand, if pcr is less than the significance level, then the corresponding alternative model 

M1= {{c1...cr }, {cr+1, · · · , cm}} is accepted, and the procedure continues to the next step. The 

algorithm repeats until a null model is accepted. Note that in the last step, if the null hypothesis 

is rejected, then the model that all slopes are different is concluded, {{c1}, {c2}, · · · , {cm}}. 

The two clustering schemes described above are tree structure classifications. The top-down 

algorithm forms the tree from the top. It assumes that the slopes of the chemicals are different. 

In each step, a chemical (or subclass of chemicals) is combined with another chemicals (or sub-

class of chemicals) to form a new subclass. Therefore, the number of subclasses at each step is 

one less than the previous step. On the other hand, the bottom-up algorithm forms a tree in a 

division fashion. It assumes that the slopes of the chemicals are equal. A new subclass is formed 

in each step. These two algorithms may result in different tree structures. In both procedures, a 

goodness-of-fit test (a global test) can be performed on the terminal tree against the two trivial 

trees {1,2,...,m} and {{1,2,...,m}}. 

4. An Example 

A data set consisting of a group of six chemicals was constructed for the example. The data 

are the measures of different cholinesterase activity levels. These data represent typical endpoints 

measured in a cholinesterase bioassay. Table 1 shows the sample size (n), mean response, and 
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standard error (S.E.) for each of the five dose groups of the six chemicals. The control means for 

the six chemicals are 340, 345, 334, 304, 359, and 450. The Bartlett test indicates that a constant 

variance model among dose groups is rejected for every chemical. Therefore, a natural logarithmic 

transformation of the response is applied to achieve a constant variance. The constant variance 

model for a given chemical appears to be adequate for the transformed data (Bartlett test). The 

transformed data are then adjusted by subtracting their respective control means. The linear 

dose-response function using the natural logarithm of the dose, 

µ(d) = α + β log(d). 

is fit to the control-adjusted data for each chemical. Table 2 contains the maximum likelihood 

estimates (MLEs) with standard error estimates in parentheses and the log-likelihood (LL) of 

the fitted dose response function for each of the six chemicals. The six slope estimates listed in 

ascending order are given as 

ˆ ˆ ˆ ˆ ˆ ˆβ3(−0.289) < β4(−0.260) < β5(−0.232) < β2(−0.221) < β1(−0.212) < β6(−0.169). 

The likelihood ratio test is used in the analysis. The significance level for the top-down approach 

is set to be αt=0.25, and for the bottom-up approach is αb = 0.05. 

In the first step of the top-down classification the different relative potency model M0= 

{{3},{4},{5},{2},{1},{6}} is compared with each of the five models: B11 ={{3,4},{5},{2},{1}, 
{6}}, B12 ={{3},{4,5},{2},{1},{6}}, B13 ={{3},{4},{5,2},{1},{6}}, B14 ={{3},{4},{5},{2,1}, 
{6}}, and B15 ={{3},{4},{5},{2},{1,6}}. The model B13 gives the largest p-value 0.6048 (> 

0.25). Therefore, the model B13 is used as the null model in the next step, and the procedure 

continues. Table 3 provides the details of the analysis in each step. This procedure concludes 

that the six chemicals are classified into three subclasses as {{3,4},{5,2,1},{6}}. 

In the first step of the bottom-up classification, the constant relative potency model M0 = 

{{3,4,5,2,1,6}} is compared with each of the five models: B11 ={{3},{4,5,2,1,6}}, B12 ={{3,4},{5, 

2,1,6}}, B13 ={{3,4,5},{2,1,6}}, B14 ={{3,4,5,2},{1,6}}, B15 ={{3,4,5,2,1},{6}}. The details of 
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analysis in given in Table 4. The bottom-up classification comes to the same three subclasses of 

constant relative potency model, {{3,4},{5,2,1},{6}}. In this example, the top-down algorithm 

requires four steps, while the bottom-up algorithm requires three steps. 

The goodness-of-fit test can be performed using the likelihood ratio test to compare the termi­

nal tree {{3,4},{5, 2,1},{6}} against the trivial trees {{3},{4},{5},{2},{1},{6}} and {{3,4,5,2,1,6}} 

for the top-town and bottom-up procedures, respectively. In the top-down procedure, the p-

value associated with the test of comparing the null model {{3,4},{5,2,1},6} and the alternative 

model {{3},{4},{5},{2},{1},{6}} is greater than the significance level 0.05 (p-value=0.4984). 

Therefore, we conclude that the model with the three subclasses of constant relative potency 

{{3,4},{5,2,1},{6}} is adequate. Similarly, the goodness-of-fit test indicates a significant fit of 

the same model with the p-value 0.00246 (< 0.05) by testing the null mode1 {{3,4,5,2,1,6}} 

against the alternative model {{3,4},{5,2,1},{6}} for the bottom-up classification. 

Both classification algorithms indicate that the six chemicals can be grouped into the three 

subclasses {3,4},{5,2,1},{6} of constant relative potency factors. The data set of six chemicals 

can be fitted based on the three subclasses. For example, if chemical 1 is used as the index 

chemical (to represent the subset {5,2,1}), then the joint dose-response function is 

µ(d1, · · · , d6) = α1 + β1log(d1 + ρ12d2 + ρ15d5 + ρ13d
w13 + ρ14d

w13 + ρ16d
w16 ).3 4 6 

Using chemical 2 or chemical 5 as an index chemical, it will have a similar dose response function 

and give the same prediction at given exposure levels. If chemical 3 is chosen as the index 

chemical (to represent the subclass {3,4}), the joint dose-response function becomes 

µ(d1, · · · , d6) = α3 + β3log(d3 + ρ34d4 + ρ31d
w31 + ρ32d

w31 + ρ35d
w31 + ρ36d

w36 ).1 2 5 6 

Finally if chemical 6 is used to be the index chemical, then the joint dose-response function is 

given by 

µ(d1, · · · , d6) = α6 + β6log(d6 + ρ61d
w61 + ρ62d

w61 + ρ65d
w61 + ρ63d

w63 + ρ64d
w63 ).1 2 5 3 4 
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Table 5 (columns 1-11) contains the maximum likelihood estimates with standard errors of 

the model parameters for the different index chemicals. The notations ρa, ρb, ρc, ρd, ρe, wa, and 

wb denote the relative potency factors and slope ratios between chemicals relative to the index 

chemical, and σ is the standard deviation of the index chemical. Suppose we are interested in a 

cumulative risk assessment at the exposure doses d1 = 0.030, d2 = 0.035, d3 = 0.020, d4 = 0.020, 

d5 = 0.030, and d6 = 0.002. The equivalent exposure dose D can be estimated using an index 

chemical. For instance, when the index chemical s = 1, the maximum likelihood estimates of 

the coefficients are ρ̂  12 = 1.032, ρ̂  15 = 1.600, ρ̂  13 = 0.437, ρ̂  14 = 0.273, ρ̂  16 = 4.718, ŵ  13 = 1.215, 

ŵ  16 = 0.762, and σ̂  1 = 0.171. The total mixture dose is D = 0.030+1.032×0.035+1.600×0.020+ 

0.437 × (0.020)1.215 + 0.273 × (0.030)1.215 + 4.718 × (0.002)0.762 = 0.2560. The predicted mean 

response is -0.4585 or, taking anti-logarithm, a 36.8% reduction of activity of cholinesterase. The 

total mixture dose and predicted responses are shown in the last two columns of Table 5. It can 

be seen that the chemicals 1, 2,and 5 give the same predicted mean response of -0.4585 as do 

the chemicals 3 and 4 (-0.5247). 

Alternatively, the combined response may be computed for each subclasses of chemicals with 

the joint dose-response function being the sum of the three dose-response functions for the three 

subclasses 

µ(d1, · · · , d6) = [α1 + β1log(d1 + ρ12d2 + ρ15d5)] + [α3 + β3log(d3 + ρ34d4)] + [α6 + β6logd6)]. 

The mixture dose for the subclass {1,2,5} is D = 0.030 + 1.032 × 0.035 + 1.600 × 0.020 = 0.1141 

with chemical 1 as index chemical. The predictive response is -0.2796. Similarly, the mixture 

dose for the subclass {3,4} is D = 0.3360 (chemical 3 as index chemical) with the predictive 

response -0.2844, and the predictive response for chemical 6 is -0.0548. The estimated cumula­

tive response becomes (-0.2796)+(-0.2833)+(-0.0548)=-0.6177. This alternative approach uses a 

response addition to combine results from the dose-additive subclasses. 
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The estimate of adverse probability based on the joint dose-response function from exposure 

to the six chemicals can be calculated in terms of the critical value c = −kσ. For k = 3, 

the cumulative risk is the probability of the control-adjusted response less than or equal to 

three standard-deviation units. For chemical 1, 3 standard deviations below the control mean is 

0.513; this value corresponds to exp(-0.513)=0.600 in terms of original measurement. Therefore, 

the critical value can be interpreted as 40% reduction from the control mean. The estimated 

probability is computed based on the choice of the index chemical. If the index chemical s = 1 

and k = 3, then the cumulative risk for six chemicals in terms of chemical 1 is 

P (D) = Φ
 −3 −

µ̂1(D) 

σ̂1 
= Φ
 −3 −


−0.4585

0.171


= 0.3748.


The cumulative risk estimate can be interpreted as follows. Assume that a 40% (or more) reduc­

tion of a cholinesterase level, as compared to the mean of unexposed individuals, is considered 

to be abnormal, then the probability of an adverse effect for an individual exposed to the doses 

d1 = 0.030, d2 = 0.035, d3 = 0.020, d4 = 0.020, d5 = 0.030, and d6 = 0.002 of the six chemicals 

is 0.3748. For the alternative approach, the cumulative risk (in terms of chemical 1) is 

P a(D) = Φ −3 −

−0.6177

0.171


= 0.7368.


The estimated cumulative risk of the joint response depends on the standard deviation of the in­

dex chemical. Therefore, different index chemicals (even in the same subclass) will give different 

risk estimates. Table 6 contains the predicted risks from the individual dose-response functions 

at the given exposure level (column 2), and the cumulative risk predicted by six different index 

chemicals (columns 3-4). 

5. Disscussion 

EPA (2000b) recommended using the Relative Potency Factor (RPF) approach to normalize 

and combine the different toxic potencies among the chemicals for cumulative risk assessment. 

An initial step of the RPF approach is to identify a point of departure (POD). A POD is 
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generally defined as a point estimate of the dose or exposure level that is used to depart from 

the observed range of empirical response (or incidence) data for the purpose of extrapolation 

(EPA, 2000b). In the case of a cumulative risk assessment, POD is a dose reflecting a uniform 

response for the common toxic effect for each chemical. The RPF is defined as the ratio of 

the POD of the index chemical to that of each other chemical in the group. The exposure 

dose to each chemical is multiplied by the RPF to express all exposures in terms of the index 

chemical. The summation of these values provides a total combined exposure dose expressed in 

terms of the index chemical for prediction. In the present context, suppose that the estimated 

dose corresponding to the predicted mean response of -0.05 is defined to be the POD, such 

ˆthat α̂ + β log(POD) = −0.05. For the given exposure doses considered in this example, Table 7 

contains the estimate of POD, the total combined (equivalent) exposure dose, predicted response, 

and the cumulative risk estimate for each index chemical. For example, the total exposure 

normalized to the chemical 1 is 

dRPF = 0.030(0.0327/0.0327) + 0.035(0.0327/0.0387) + 0.020(0.0327/0.1782) 

+ 0.020(0.0327/0.1894) + 0.030(0.0327/0.0315) + 0.002(0.0327/0.0019) = 0.1965. 

The predicted mean response associated with the total combined exposure dRPF can be estimated 

by using the individual dose response model of the index chemical 1 

ˆPred(dRPF ) = α̂  1 + β1log(dRPF ) 

= −0.774 + (−0.212) × log(0.1965) = −0.4290. 

The cumulative risk estimates using the RPF method is calculated as 

P(dRPF ) = Φ −3 −

−0.4290

0.171


= 0.3169.


Tables 6 and 7 show that the risk estimates obtained from the RPF method are, on average, 

slightly smaller than those obtained from the proposed model. On the other hand, the estimated 

risk based on simply summing the individual probabilities (0.0155, second column of Table 6) 

will heavily understate the risk estimated either from RPF method or from the proposed method, 
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as does the predicted mean response (−0.3001, shown in Table 2). The alternative version of 

the proposed approach, which combines dose addition and response addition, gives substantially 

higher risk estimates than the version that employs dose addition only. 

The proposed dose addition model is similar to the RPF method. Although the RPF method 

assumes that the dose response functions for all chemicals have a similar slope (a constant relative 

potency), different index chemicals will give different predicted mean estimates. The proposed 

method does incorporate the actual dose response function of the mixture from multiple chemical 

exposures. The method allows one to estimate the joint response for the chemicals in a common 

mechanism group but having different relative potency factors. It will give the same predicted 

mean response regardless of the selection of the index chemical for the chemicals in the same 

subclass, but risk estimates will depend on the variance of the index chemical. 
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Table 1: A hypothetical group of six chemicals∗ 

Chemical Dose n Mean† S.E. Chemical Dose n Mean S.E. 

1	 control 5 340.0 6.97 4 control 10 304.0 5.65 

0.02 5 323.8 15.19 0.03 10 382.3 4.93 

2.3 5 167.0 11.63 1.1 10 266.4 6.27 

22.5 5 80.0 3.41 15.0 10 87.6 1.87 

213 5 45.6 1.63 168 10 44.4 1.51 

2	 control 5 345.0 15.20 5 control 5 359.0 9.75 

0.017 5 360.8 26.58 0.019 5 299.8 18.57 

1.7 5 187.4 12.92 1.3 5 220.0 13.49 

17.0 5 74.4 1.50 13.8 5 92.6 1.86 

177 5 50.2 3.80 189 5 35.0 2.55 

3	 control 5 334.0 7.52 6 control 5 450.0 13.03 

0.05 5 360.8 8.05 0.01 5 301.6 24.24 

2.0 5 268.8 8.71 0.1 5 264.2 21.23 

19.0 5 68.6 1.99 10.8 5 104.6 6.09 

205 5 38.0 2.77 250 5 59.6 8.89 

∗ Data represent hypothetical events for inhibition of the activity of the enzyme of 

cholinesterase in laboratory animals treated with increasing doses of six different 

chemicals. 

† Mean activity of cholinesterase after dosing. 
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Table 2: The Maximum Likelihood Estimates (Standard Errors) of the coefficients of the


individual dose response model, and Log-likelihood values for the six chemicals


Chemical α β σ LL d Pred(d)∗ 

1 -0.774 -0.212 0.170 7.0439 0.030 -0.0316 

(0.041) (0.011) (0.027) 

2 -0.768 -0.221 0.201 3.6799 0.035 -0.0278 

(0.047) (0.013) (0.032) 

3 -0.548 -0.289 0.322 -5.6999 0.020 -0.0832 

(0.080) (0.023) (0.051) 

4 -0.483 -0.260 0.233 1.5159 0.020 -0.0642 

(0.039) (0.012) (0.026) 

5 -0.853 -0.232 0.307 -4.7730 0.030 -0.0385 

(0.072) (0.020) (0.049) 

6 -1.104 -0.169 0.248 -0.4775 0.002 -0.0548 

(0.056) (0.014) (0.039) 

sum 1.2891 0.1202 -0.3001 

∗ Pred(d) is the natural logarithm of the predicted response. 
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Table 6: The estimated cumulative risks from the individual model and


the two proposed dose addition approaches for the six chemicals


Individual model Dose-addition model 

Chemical P (d) P (D) P a(D) 

1 0.0024 0.3748 0.7368 

2 0.0021 0.2396 0.5353 

5 0.0020 0.0666 0.1616 

3 0.0031 0.0961 0.1397 

4 0.0032 0.2544 0.3679 

6 0.0027 0.0645 0.3052 

sum 0.0155 
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6

Table 7: The estimates of the POD, total exposure dose (dRPF ), 

predicted response (Pred(dRPF )), and cumulative risk (P(dRPF )) 

for the six chemicals from the RPF method 

Chemical POD dRPF Pred(dRPF ) P(dRPF ) 

0.0327 0.1965 -0.4290 0.3169 

0.0387 0.2324 -0.4455 0.2166 

0.1782 1.0701 -0.5676 0.1079 

0.1894 1.1370 -0.5164 0.2166 

0.0315 0.1892 -0.4668 0.0695 

0.0019 0.0114 -0.3480 0.0552 
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