Symposium on New Scientific Research Related to the Health Effects of Trichloroethylene Washington, DC, February 26-27, 2004

VHL Alterations and Renal Tumorigenesis

Yih-Horng Shiao, Ph.D. Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, MD

The VHL gene

- The von Hippel-Lindau (*VHL*) disease: A hereditary syndrome with predisposition to various tumors, including renal cell carcinomas, because of *VHL* gene alterations.
- Sporadic clear cell renal carcinomas (the common form of kidney tumors): LOH at 3p25 (>90%), *VHL* mutations (30-60%), and hypermethylation in the *VHL* promoter (up to 19%).

The von Hippel-Lindau disease				
<u>Pher</u>	<u>Genotype</u>			
Type 1	Renal cell carcinomas or cysts (25-60%)	Deletion Frameshift		
Type 2A	CNS hemangio- blastomas (44-72%)	Missense		
Type 2B	Retinal hemangio- blastomas (25-60%)	Deletion Frameshift Missense		
Type 2C	 Pancreatic tumors or cysts (35-70%) Pheochromo- cytomas (10-29%) 	Missense		

Sporadic renal cell carcinomas

PhenotypeGenotype (VHL mutations)

Clear cell (70-80%)

Deletion/frameshift (>50%) Missense (<50%)

Papillary (10-15%)

Rare

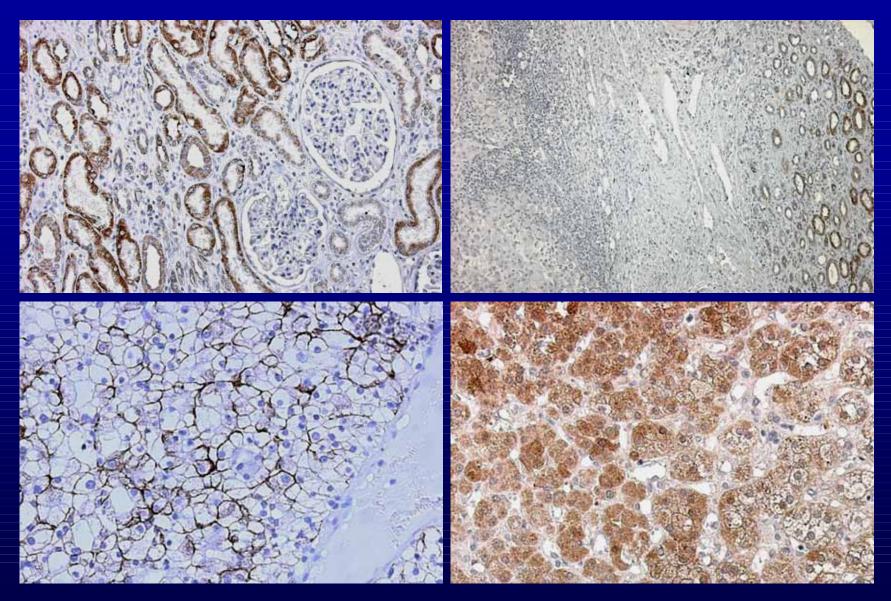
Chromophobe (5%)

Rare

Oncocytoma (5%)

Rare

Association of VHL gene alteration with renal clinicopathological data


• Tumor stage: Inconsistent

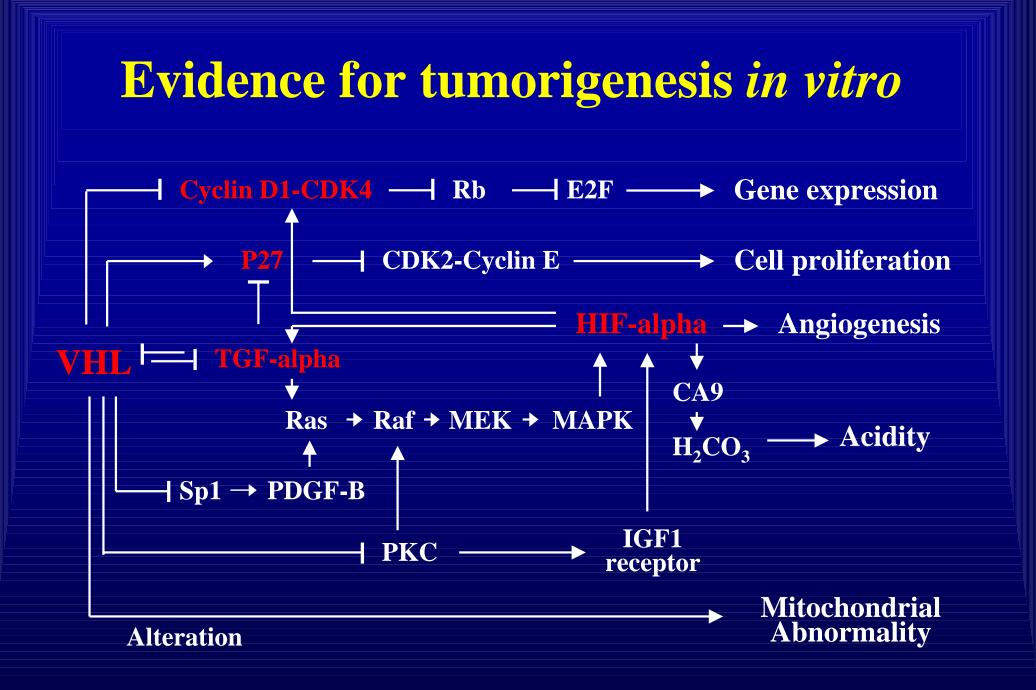
• Nuclear grade: Inconsistent

Metastasis: Inconsistent

• Cancer-free or cancer-specific survival: "Better" with VHL gene alterations

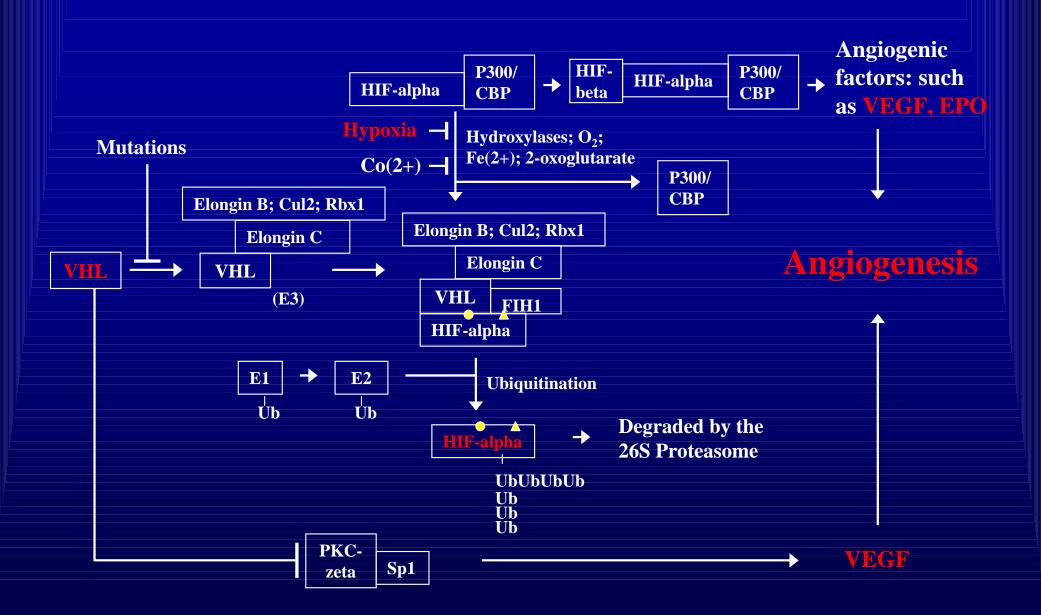
VHL protein in renal cell carcinomas

Shiao et al., Kidney Int. 64:1671, 2003


Association of VHL protein expression with renal clinicopathological data

		Cytoplasm	Pa	Nuclei/		–– Р ^b ––
	Membrane	/Negative	value	Cytoplasm	Negative	value
Missense	9 (64%)	5 (36%)	0.0025	-	-	-
Others	14 (23%)	47 (77%)				
Grade 1	6 (50%)	6 (50%)	0.2214	40 (87%)	6 (13%)	<0.0001
Grade 2	11 (31%)	25 (69%)		171 (76%)	54 (24%)	
Grade 3/4	6 (22%)	21 (78%)		64 (50%)	63 (50%)	
П	23 (<mark>38%</mark>)	37 (62%)	0.0034			
TII/TIII	0 (0%)	15 (100%)				
TI/TII				131 (76%)	42 (24%)	0.0121
				144 (64%)	81 (36%)	
Survival	-			Better	Poor	0.04
(Cox model)						

^aShiao et al., Kidney Int. 64:1671, 2003; ^bSchraml et al., Am J Pathol. 163:1013, 2003


 Does VHL alteration initiate renal tumorigenesis?

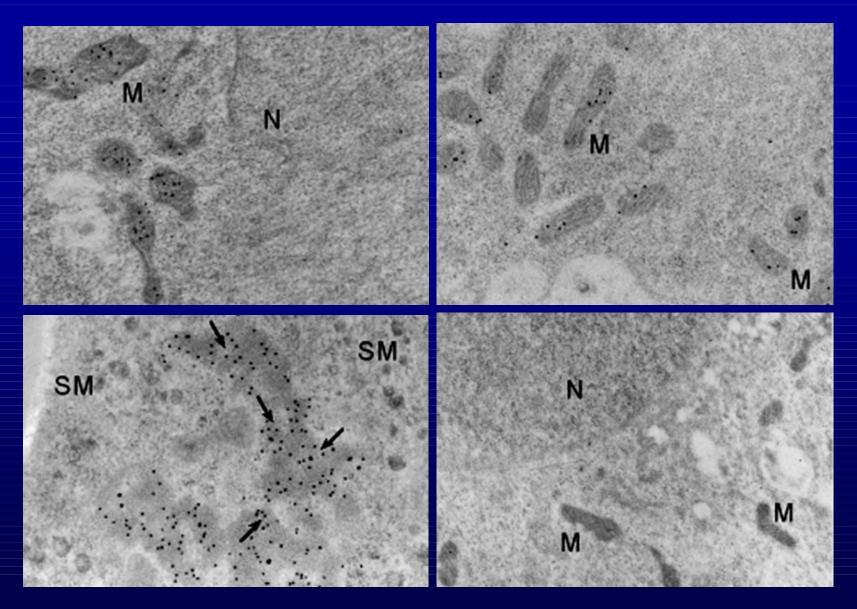
 Do different VHL alterations have diverse tumorigenic potentials?

Shiao YH, Curr Med Chem. 10:2461, 2003

Evidence for angiogenesis in vitro

Shiao YH, Curr Med Chem. 10:2461, 2003

Evidence from VHL-knockout animals


• *VHL*-/- mice: Embryonic lethality

• VHL^{+/-} mice: Susceptible to vascular lesions in the liver (21%)

• Mice with conditional *VHL*^{lox/-} and *Cre* alleles: Vascular lesions in the liver (>90% over 12 months of age), heart, kidney, and pancreas

Tumor initiation vs Tumor progression

VHL immunogold electron microscopy

Shiao et al., Cancer Res. 60:2816, 2000.

Mutation spectra indicative of exposures

Missense	Possible causes
Transitions	
GC to AT	Deamination of 5-methyl-C (CpG sites) or C
	Alkylation of G at O ⁶ position
AT to GC	Deamination of A; alkylation of T at O ² or O ⁴ position
Transversions	
GC to TA	Mispairing of A with 8-OH-G or with apurinic G
AT to TA	Mispairing of A with apurinic A site
AT to CG	Misincorporation of 8-OH-G; error-prone repair of O ² -
	or O ⁴ -alkyl T
GC to CG	Mispairing of G with oxidatively-damaged G

VHL mutations and TCE exposure

	Base #	Mutation(s)			GC to	Missense
exposure	454	No	1	≥2	AT	
High	7/17	2	4	11		
	(41%)	(11%)	(24%)	(65%)	21/27	27/50
Medium	6/24	6	15	3	(78%)	(54%)
	(25%)	(25%)	(63%)	(13%)		
Low	0/3	3	0	0		
	(0%)	(100%)	(0%)	(0%)		
No	0/107	31/73	42/73	0/73	~25%o ^b	~30% ^b
	(0%)	(42%)	(58%)	(0%)		
P value	<0.0001		<0.0001			-

^{*a*}Patients working in metal-processing plant ^{*b*}Beroud et al., Human Mut. 15:86, 2000.

Brauch et al., JNCI. 91:854, 1999

Conclusion

- There is still lack of direct evidence that VHL alterations initiate renal tumorigenesis, although they may be involved in tumor progression.
- Different VHL alterations have distinct tumorigenic potential: Higher tumorigenicity tends to associate with frameshift mutations and protein down-regulation.
- Comparison of mutation spectra in renal cell carcinomas may be able to identify specific base changes associated with TCE exposure but more population-based studies are needed to have sufficient statistical power.
- Co-exposures, such as metals, smoking, hypertension, obesity, and chronic renal disease, need to be examined.