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PREFACE 

This draft report, Approaches for the Application of Physiologically Based 

Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment, addresses the 

application and evaluation of PBPK models for risk assessment purposes. These models 

represent an important class of dosimetry models that are useful for predicting internal dose at 

target organs for risk assessment applications. This report is primarily meant to serve as a 

learning tool for EPA scientists and risk assessors who may be less familiar with the field.  In 

addition, this report can be informative to PBPK modelers within and outside the Agency, as it 

provides an assessment of the types of data and models that the EPA requires for consideration 

of a model for use in risk assessment. This draft report will be externally peer-reviewed by an 

independent panel of experts prior to making the report final. 
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EXECUTIVE SUMMARY 

Physiologically based pharmacokinetic (PBPK) models represent an important class of 

dosimetry models that are useful for predicting internal dose at target organs for risk assessment 

applications. Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) 

Models and Supporting Data in Risk Assessment addresses the following questions: Why are risk 

assessors interested in using PBPK models?  How are PBPK models evaluated for use in a risk 

assessment?  What are the questions or data gaps in a risk assessment that can be addressed by 

PBPK models? 

Because PBPK modeling efforts to date have largely focused on chemicals that cause 

systemic effects (i.e., water-insoluble gases and some nonvolatile organics), this document draws 

upon the experience and literature on these efforts.    

The text is organized into four chapters.  Chapter 1 outlines the scope of the document, 

the intended audience, and the topics covered in the remaining chapters.  Chapter 2 presents the 

rationale for using PBPK models in risk assessment and the pharmacokinetic data and models 

needed to derive a reference dose (RfD), a reference concentration (RfC), and unit risk estimates 

in cancer risk assessment (e.g., cancer slope factor). Chapter 3 describes how models are 

evaluated, the main model characteristics to review, and the on-going development of acceptance 

criteria for model use in risk assessment.  Chapter 4 discusses applications of PBPK model 

simulations within the current U.S. Environmental Protection Agency risk assessment 

framework. Useful resources are provided as appendices, including (1) a list of publications 

relating to PBPK modeling and its use in health risk assessment, (2) a compilation of parameters 

of several published PBPK models, and (3) a list of published algorithms for estimating 

parameters for PBPK models of environmental chemicals. 

PBPK models consist of a series of equations for compartments, fluid flows, and 

chemical reactions that represent real biological tissues and physiological processes in the body 

and that simulate the absorption, distribution, metabolism, and excretion of chemicals that enter 

the body. PBPK models are designed to estimate an internal dose of a proposed toxic moiety to 

a target tissue(s) or some appropriate surrogate dose metric for a target tissue dose. The choice of 

an internal dose metric is based on an understanding of the chemical’s mode of action. The 

internal dose metric (sometimes called the biologically effective dose) replaces the applied dose 

in a quantitative dose-response assessment, with the intent of reducing the uncertainty inherent in 
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using the applied dose to derive risk values. This reduction in uncertainty and improved 

scientific basis for the risk value are the main advantages of PBPK models and the reasons for 

the growing interest in their use. PBPK models also can simulate an internal dose from exposure 

conditions of interest where no data are available, i.e., to extrapolate to conditions beyond those 

of the data set used to develop the model. An important and active area of research is the 

characterization of the uncertainty in risk assessments based on PBPK model results compared 

with the uncertainty in results based on the applied dose.   

Examples of PBPK model applications in risk assessments include interspecies 

extrapolation of the dose-response (based on estimates of the internal dose), route-to-route 

extrapolation, estimation of response from varying exposure condition, estimation of human 

variability (within the whole population or subpopulations), and high-to-low dose extrapolation. 

PBPK models used in risk assessments should, at a minimum, (1) contain a compartment that is 

either identified with the target tissue, contains the target tissue, or is identified as a surrogate for 

the target tissue; (2) have defensible physiological parameter values that are within the known 

plausible range; and (3) have undergone a thorough evaluation for their structure, 

implementation, and predictive capability.  As a resource, appendices to this document provide a 

compilation of parameters of several published PBPK models, a list of available animal-

alternative algorithms for parameter estimation, and key references. 

Evaluation of PBPK models intended for risk assessments includes a review of the model 

purpose, model structure, mathematical representation, parameter estimation (calibration), and 

computer implementation. Criteria for acceptance of a PBPK model for use in risk assessment 

include the following: (1) the model represents the species and life stage of relevance to a 

particular risk assessment, (2) the model has been evaluated and peer-reviewed for the adequacy 

of its structure and parameters, and (3) the model provides adequate simulations of the 

concentration of the toxic moiety (parent chemical or metabolite) in the target organ (or a 

surrogate compartment) following the relevant route(s) of exposure and over the time-course for 

which the chemical is present in that tissue.   

When a PBPK model is available for the appropriate test species, it is used to estimate the 

value of internal dose metrics, which are then use to derive a given point of departure (e.g., 

NOAEL, LOAEL, BMD, BMC) for use in dose-response analyses for toxicity endpoints, 

including cancer, chronic toxicity, and other toxicity endpoints.  Some risk assessment 

applications can be accomplished using only a model for the test species, e.g., prediction of the 
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toxicity in that species by another route of exposure for purposes of route extrapolation.  For 

most applications, a version of the PBPK model is also developed to simulate kinetics in humans 

for estimating the applied dose to a human needed to achieve the relevant internal dose predicted 

from the animal toxicity or, less frequently, human clinical or epidemiology study. PBPK model 

analysis is accepted as a scientifically sound approach to estimating the internal dose of a 

chemical at a target site and as a means to evaluate and describe the uncertainty in risk 

assessments. 
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1. INTRODUCTION 

1.1. SCOPE OF DOCUMENT 

The objective of this document is to provide a description of approaches for using 

physiologically based pharmacokinetic (PBPK) data and models in human health risk 

assessment.  The document focuses primarily on the evaluation and use of PBPK models for 

predicting internal dose at target organs in risk assessment applications.  Many of the past efforts 

on PBPK modeling have focused on water-insoluble gases that cause systemic toxicity (i.e., 

producing effects remote from the site of exposure), as well as some nonvolatile organics.  This 

document primarily draws on the experience and literature on these efforts.  The approaches are 

not intended, for example, to apply directly to agents, gaseous or particulate, where the target 

organ is the respiratory tract; the reference concentration (RfC) methodology (U.S. EPA, 1994) 

should be consulted for these circumstances.  However, the elements of discussion found in this 

document are also conceptually applicable, in a broader sense, to other kinds of dosimetry 

models and a wider range of substances. 

In developing this document, it was assumed that risk assessors are familiar with the 

basic concepts of PBPK modeling and that model developers are familiar with the basic concepts 

of risk assessment; therefore, the document contains only brief descriptions of PBPK modeling 

and risk assessment methods.  Appropriate references to secondary review articles and reports 

from which readers can obtain additional information are provided.  

Finally, it is important to realize that the application of PBPK models in risk assessment 

is evolving. Thus, this document does not specify (or recommend) when the effort to construct 

and apply PBPK modeling is justified by the additional insight it provides; rather it highlights 

some of the benefits of PBPK modeling in risk assessment. 

1.2. INTENDED AUDIENCE 

The document was prepared with two primary audiences in mind:  (1) risk assessors who 

need to know about the potential applications of PBPK models in risk assessments, and (2) 

PBPK model developers who need to be familiar with potential applications in health risk 

assessment. 
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1.3. ORGANIZATION OF THE DOCUMENT 

Three key chapters form the main core of this document.  They describe what risk 

assessors need in terms of pharmacokinetic data, and why (Chapter 2); how to evaluate PBPK 

models for use in risk assessments (Chapter 3); and how to use PBPK models in risk assessments 

to address specific areas of uncertainty (Chapter 4). 

Chapter 2 addresses data needs in terms of reference dose (RfD) and RfC derivation, as 

well as predictive estimates in cancer risk assessment.  This chapter also contains a brief 

discussion on the minimal data requirements for constructing PBPK models, as well as the use of 

pharmacokinetic data and PBPK models to improve exposure assessments.  

Chapter 3 presents an approach and some criteria for evaluating PBPK models intended 

for use in risk assessments.  The issues relating to the evaluation of PBPK models that are 

discussed in this chapter will facilitate the assessor’s decision on whether or not an available 

model is adequate and scientifically defensible for use in reducing uncertainties in a given risk 

assessment.  In this regard, the PBPK modeling issues are considered under each of the 

following topic areas: model structure, mathematical description, parameter estimation 

(calibration), computer implementation, and evaluation.  Current criteria as well as accepted 

methods are identified and then assembled to facilitate the identification of PBPK models that 

meet the requirement for use in risk assessment.   

Chapter 4 discusses how PBPK models and data can be applied within the current 

Agency risk assessment framework to address specific areas of uncertainty.  The following types 

of PBPK model applications in risk assessment are presented in this chapter: high-dose to low-

dose extrapolation, interspecies extrapolation, intraspecies extrapolation, route-to-route and 

scenario extrapolation, mixture risk assessment, and linkage with pharmacodynamic models.  

This chapter also highlights how PBPK models are used in cancer and noncancer assessments.   

The appendices provide a list of publications relating to PBPK modeling and its use in 

health risk assessment, a compilation of parameters of several published PBPK models, and a list 

of published algorithms for estimating parameters for PBPK models of environmental chemicals. 
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2. PHARMACOKINETIC DATA AND MODEL NEEDS IN RISK ASSESSMENT 

2.1. PHARMACOKINETICS AND DOSIMETRY MODELING 

Pharmacokinetics (pharmakon + kinetics; pharmakon (Greek) = drugs and poisons; 

kinetics = change as a function of time) involves the study of the time course of the parent 

chemical or metabolite concentrations or amounts in biological fluids, tissues, and excreta and 

the construction of mathematical models to interpret such data (Wagner, 1981).  The time course 

of the concentration of a chemical or its metabolite in biota is determined by the rate and extent 

of absorption, distribution, metabolism, and excretion (ADME).  The pharmacokinetics or 

ADME of a substance determines the delivered dose or the amount of chemical available for 

interaction in the tissues. Relating adverse response observed in biota to an appropriate measure 

of delivered dose (e.g., concentration of the toxic chemical in the target tissue) rather than 

administered dose or exposure concentration is likely to improve the characterization of many 

dose-response relationships. 

A range of modeling approaches is used to characterize exposures and resulting delivered 

doses. This variety of approaches reflects differences in chemical and physical characteristics 

(e.g., stable or reactive gases, particulate matter, lipophilic organics, water-soluble compounds) 

and their ability to cause contact site or systemic toxic effects (Andersen and Jarabek, 2001; 

Overton, 2001; U.S. EPA, 1994; 2004).  Many drugs and toxic chemicals that cause systemic 

effects are absorbed following oral exposures, so compartmental and noncompartmental 

pharmacokinetic modeling has focused on these characteristics (O’Flaherty 1981; Renwick 

2001). Compartmental modeling, generally described as a set of mathematical equations that 

describe empirical pharmacokinetic data concerning a chemical, evolved to include mathematical 

descriptions of biological processes (e.g., partition coefficients, tissue volumes), which is the 

focus of this document.   

Because the respiratory tract is a frequent site of both exposure and toxicity, it has been a 

particular focus for a range of modeling approaches.  These approaches include those developed 

for gases of various reactivity and solubility, as well as for particulate matter (see U.S. EPA, 

1994). More refined approaches are available and useful for reactive gases and particulate 

matter, including two-dimensional and three-dimensional modeling such as computational fluid 

dynamics models (Kimbell et al., 1993; Martonen et al., 2001; Overton, 2001, U.S. EPA, 2004).  

Predicting behaviors of volatile anesthetics, including compounds now used exclusively as 
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industrial chemicals, was a driving force for the development of PBPK models (Krishnan and 

Andersen, 2001). 

Another significant factor influencing modeling approaches is the role of metabolism. 

For example, a range of volatile compounds can cause nasal or other respiratory toxicities that 

require metabolism of the chemical in respiratory tract tissue.  These kinds of chemicals have 

been modeled using elaborate PBPK models of the nose (with or without representation of the 

rest of the body) that have been linked with computational fluid dynamic models to describe the 

deposition of chemical in different regions of the nose (Frederick et al., 2002; Bogdanffy et al., 

2001). Similarly, compounds that are relatively water soluble require specific approaches that 

address aspects such as fractional absorption or “wash-in, wash-out” effects (Johanson, 1991; 

Medinsky et al., 1993; Perkins et al., 1995).  

Although the approaches detailed in the RfC methodology do not address all of these 

aspects, there is recognition of the need for additional approaches that address these and other 

challenging aspects of respiratory tract dosimetry (U.S. EPA, 1994). 

The relevant modeling approach, therefore, depends on the physical and chemical 

characteristics of the material, the method and route of exposure or delivery, and the toxicities 

under consideration. All of these modeling approaches attempt to describe the dose delivered to 

the relevant areas of the body, whether that is a region of the respiratory tract or skin, or systemic 

delivery through the blood supply to target organs.  These approaches permit estimation of some 

measure of delivered dose for improved understanding of the dose-response relationship. 

2.2. DOSE-RESPONSE AND MEASURES OF DELIVERED DOSE 

Dose-response relationships that appear unclear or confusing at the administered dose 

level can become more understandable when expressed on the basis of internal dose of the 

chemical.  Figure 2-1 depicts the case of a hypothetical chemical for which the correlation between 

dose and response is weak or complex (Panel A).  However, once the relationship is based on 

internal dose, there emerges a clear and direct relationship between dose and response (Panels B 

and C). The major advantage of constructing dose-response relationships on the basis of internal 

or delivered dose is that it can provide a stronger biological basis for conducting extrapolations and 

for comparing responses across studies, species, routes, and dose levels (Andersen et al., 1987; 

Clewell and Andersen, 1997; Aylward et al., 1996; Benignus et al., 1998; Melnick and Kohn, 

2000). 
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2 Figure 2-1. Relationship between the exposure concentration and adverse 

3 response for a hypothetical chemical. Panel A depicts the case of a chemical 

4 for which the correlation between dose and response is weak or complex, along 

5 with equally plausible curve fits (linear, Hill, and Weibull). This dose-response 

6 relationship is improved when it is based on an appropriate measure of internal 

7 dose (Panels B and C). 


8 

9 

10 The use of blood and tissue concentrations for relating dose and response in exposed 

11 organisms has long been recognized in pharmacology (e.g., Wagner, 1981). The target tissue 

12 dose closely related to ensuing adverse responses is often referred to as the “dose metric” 

13 (Andersen and Dennison, 2001). Dose metrics used for risk assessment applications should 

14 reflect the biologically active form of the chemical (parent chemical, metabolites, or adducts), its 

15 level (concentration or amount), duration of internal exposure (instantaneous, daily, lifetime, or 

16 specific window of susceptibility), and intensity (peak, average, or integral), as well as the 

17 appropriate biological matrix (e.g., blood, target tissue, surrogate tissues). For assessment of 

18 health risks related to lifetime exposure of systemically acting chemicals, in the absence of mode 
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1 of action (MOA) information to the contrary, the integrated concentration of the toxic form of 

2 chemical over lifetime (i.e., area under the concentration versus time curve [AUC]) in target 

3 tissue has been considered to be the appropriate dose metric (Collins, 1987; Voisin et al., 1990; 

5 Clewell et al., 2002). 

7 When the carcinogen is not the parent 

9 chemical but a reactive intermediate, the 

11 amount of metabolite produced per unit time 

13 or the amount of metabolite in target tissue 

15 over a period of time (e.g., mg metabolite/L 

17 tissue during 24 hr) has been used as the dose 

19 metric (Andersen and Dennison, 2001).  For 

21 developmental effects, the dose surrogate is 

23 defined in the context of window of 

25 susceptibility for a particular gestational 

27 event (e.g., Welsch et al., 1995; Luecke et 

29 al., 1997). 

31 Even though the AUC and rate of 

33 metabolite formation are among the most 

Box 2-1. 

• Peak concentration 
• 
• 
• AUC 

Metabolite 
• Peak concentration 
• 
• 
• 
• 
• AUC 

• 
• 
• 

Examples of dose metrics useful for 
exploring dose-response relationships 

Parent chemical 

Average concentration 
Amount or quantity 

Average concentration 
Amount or quantity 
Rate of production 
Cumulative rate of formed/time/L tissue 

Miscellaneous 
Receptor occupancy (extent/duration) 
Macromolecular adduct levels 
Depletion of cofactors 

34 commonly investigated dose metrics, other surrogates of tissue exposure may also be appropriate 

35 for risk assessment purposes, depending on the chemical and its MOA (Clewell et al., 2002).  

36 Box 2-1 lists dose metrics that can be used to derive dose-response relationships for risk 

37 assessment. 

38 

39 2.3. PHARMACOKINETIC DATA NEEDS IN RISK ASSESSMENTS 

40 The dose-response assessment portion of the risk assessment process can be used to 

41 determine a point of departure (POD) for one or more of the most sensitive critical effects, based 

42 on the relationship between administered dose and observed responses in laboratory or field 

43 studies. For noncancer and nonlinear cancer assessments, adjustments to the POD are then made 

44 to account for uncertainties in the estimate of a POD for humans and to protect the most sensitive 

45 human subpopulation exposed by specific routes (e.g., inhalation, oral).  This process frequently 

46 requires conducting interspecies, intraspecies, high-dose to low-dose, duration, and exposure 

47 route extrapolations of responses. Based on information about the MOA of the compound, an 
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appropriate approach for the extrapolation can be identified.  Such an approach implies that 

when the value of the dose metric is identical in two situations (rat vs. human, oral vs. inhalation, 

6-hr exposure vs. 24-hr exposure), the two administered doses are pharmacokinetically 

equivalent. For example, exposure of rats to 50 ppm toluene for 6 hr and of humans to 17.7 ppm 

toluene for 24 hr yields the same blood AUC (3.8 mg/L-hr), implying that these exposure 

scenarios in rats and humans are pharmacokinetically equivalent (Figure 2-2). Alternatively, if 

one were to assume that the pharmacokinetics in humans were identical to those in rats, an 

equivalent 24 hr exposure would be calculated to be 12.5 ppm (i.e., 6 hr × 50 ppm is equivalent 

to 24 hr × 12.5 ppm). 

For reactive gases that cause contact site toxicity, the concentration of chemical or its 

delivery rate to the target may be the relevant dose metric, whereas for anesthetic effects of 

volatile organics, the current concentration in the blood has been an effective dose metric.  In 

these cases, the acute effects are more —or entirely— dependent upon concentration than on 

time, so the extrapolations would be dependent upon that dose metric, potentially without 

adjustments for duration of exposure. 

The most robust pharmacokinetic data set needed for risk assessment would consist of the 

time-course data on the dose metric associated with exposure scenarios and doses used in the 

critical studies chosen for the assessment (e.g., animal bioassays or human epidemiological 

studies) and relevant human exposure conditions.  An example of such a dose metric is the 

concentration of a toxic metabolite in target tissue over a 24 hr period in the test species and in 

humans.  This information should be obtained for the window of susceptibility, route and 

scenario of exposure associated with the critical study as well as for the window of susceptibility, 

appropriate route, and exposure scenarios in humans.  If such a pharmacokinetic data set is 

available for each scenario of interest, then there is no real need for any pharmacokinetic models, 

even though their availability can facilitate simulation of other potential scenarios of interest and 

critical determinants of tissue dose.  

In almost all cases, dose metric measurements associated with human exposures to 

environmental chemicals will not be available.  Even the available animal pharmacokinetic data 

may not correspond to the active toxic moiety, relevant route, or appropriate dose levels.  In the 

absence of experimental data on the biologically active form of the chemical in target tissues, 

data on blood concentration of the parent chemical, urinary metabolite levels, or fraction 
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2 

3 Figure 2-2. Rat-human extrapolation of exposure concentrations of toluene 

4 on the basis of equivalent dose metrics (AUC of toluene in blood; 3.8 mg/L-

5 hr). Rat exposures are for 6 hr to 50 ppm; human exposures are for 24 hr to 17.7 

6 ppm.  Both exposures yield the same AUC, as determined using species-specific 

7 PBPK models published by Tardif et al. (1997). Similar exercises can be done to 

8 determine the exposure concentrations that yield equivalent peak concentrations 

9 (Cmax) in rats and humans. 


10 
11 absorbed may be used as a surrogate of dose metrics.  These data can be used to develop a PBPK 

12 model to estimate the level of the toxic moiety of interest, and the uncertainty in those estimates 

13 can be formally characterized.   
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2.4. PHARMACOKINETIC MODELS IN RISK ASSESSMENT 

Regulatory agencies have a mandate to develop guidelines for toxicity testing and 

formulate risk values based on the current understanding of the dose-response relationship.  

Reference values correspond to an estimate of an exposure level for a given duration that is 

likely to be without an appreciable risk of adverse effects over the lifetime in humans, including 

sensitive subpopulations. The reference values developed at EPA include reference 

concentration (RfC) for chronic inhalation exposures and reference dose (RfD) for chronic oral 

exposures. For chronic oral and inhalation cancer risk assessments with an unknown or a linear 

MOA (e.g., mutagenic carcinogens), EPA develops unit risk estimates, such as cancer slope 

factor (CSF) and inhalation unit risk (IUR) estimates. The underlying assumption in these 

processes is that the exposure concentration (or applied dose) results in a toxic chemical moiety 

in a target organ that will be less than or equal to a level not associated with significant adverse 

responses during a lifetime (reference value) or that yields a likely risk at or below the estimated 

lifetime risk (unit risk). 

Even though a key factor in the induction of adverse effects is the presence of the toxic 

form of a chemical in the target organ, it is rare that data are available on the time course of the 

toxic moiety of chemicals in the target tissue(s) in humans.  Even in animal studies, it is more 

practical to get measures of blood, plasma, and urinary concentrations of toxic chemicals and 

their metabolites than to get data on the time course on the actual tissue dose of a toxic moiety 

relevant for use in risk assessment.  Pharmacokinetic models are therefore used to simulate the 

tissue concentration of toxic substances. There are both noncompartmental and compartmental 

pharmacokinetic models (Renwick, 2001); however, we will focus on compartmental models.  

Among the compartmental pharmacokinetic models, those that allow for prediction of 

target organ concentration are most appropriate and useful for conducting extrapolations 

essential for risk assessment.  These models are commonly referred to as PBPK models 

(Himmelstein and Lutz, 1979; Rowland, 1985; Leung, 1991; Andersen, 1995; Krishnan and 

Andersen, 2001). By simulating the kinetics and dose metric of chemicals, they attempt to 

reduce the uncertainty related to the interspecies, intraspecies, high-dose to low-dose, route-to-

route, and exposure scenario extrapolations essential in the context of RfC, RfD, and cancer unit 

risk estimate processes.  The following sections discuss how the PBPK models are used in the 

context of health risk assessment. 
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2.5. ROLE OF PBPK MODELS IN RfC DERIVATION 

2.5.1. Reference Concentration 

The RfC corresponds to an estimate of continuous inhalation exposure (mg/m3) for a 

human population, including sensitive subgroups, that is likely to be without an appreciable risk 

of adverse health effects during a lifetime (U.S. EPA, 1994).  Notationally, RfC is defined as: 

RfC = POD[HEC]/UF 

where: 

POD[HEC] = POD (no-observed-adverse-effect level [NOAEL], lowest-observed-adverse-
effect level [LOAEL], or benchmark concentration [BMC]) dosimetrically 
adjusted to a human equivalent concentration (HEC) 

UF = uncertainty factors to account for the extrapolations associated with the POD (i.e., 
interspecies differences in sensitivity, intraspecies extrapolation, subchronic-to-
chronic extrapolation, LOAEL-to-NOAEL extrapolation, and incompleteness of 
database) 

The starting point for an RfC derivation is the identification of the POD for the critical 

effect in a key study. Subsequent steps involve (1) adjustment for the difference in duration 

between experimental exposure (e.g., 6 hr) and expected human exposure (24 hr); (2) calculation 

of the HEC, based on dosimetric adjustments; and (3) application of uncertainty factors.  The 

benefit of using PBPK models in the RfC process is discussed below.  Specifically, the role of 

PBPK models in determining the POD, duration adjustment factor, HEC, and uncertainty factors 

is presented in Sections 2.5.2 through 2.5.5. 

2.5.2. Point of Departure 

Ideally, the POD used in the RfC process should be the inhalation route-specific NOAEL, 

LOAEL, or BMC. These PODs essentially correspond to exposure concentrations of an 

experimental or field study (NOAEL, LOAEL) or to the lower confidence limit (95th percentile) 

of the exposure concentration (BMCL) associated with a specified response level (generally in 

the range of 1 to 10 %; e.g., BMCL10%) derived from statistical analysis of experimental dose-

response data (U.S. EPA, 1994, 2000a). 

Route-to-route extrapolation can be conducted on the basis of equivalent potential doses 

when information on the POD was available only for a noninhalation route of exposure (e.g., oral 

6/29/05 2-8 DRAFT—DO NOT CITE OR QUOTE 




1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

route) (Pauluhn, 2003). For example, the NOAEL (mg/kg/day) associated with a particular 

exposure route (e.g., oral) was converted to milligrams per day and then to equivalent inhaled 

concentration, based on breathing rate and body weight of the test species.  This simplistic 

approach assumes that the rates of absorption, distribution, metabolism, excretion, and tissue 

dosimetry of chemicals are the same for a given total dose, regardless of the exposure route and 

intake rate. Such an approach essentially neglects the route-specific differences in 

pharmacokinetics—more specifically, absorption, clearance, and first-pass effects.  When data 

on the route-specific fraction absorbed are available, they are used to determine the equivalent 

inhalation concentration on the basis of equivalent absorbed doses (U.S. EPA, 1999a), but 

preference would be given to more complete pharmacokinetic modeling.  

The POD for RfC derivation cannot be identified or established with only 

pharmacokinetic data or PBPK models, independent of the dose-response data.  On the other 

hand, better characterization of dose-response relationships has been demonstrated by the use of 

integrated pharmacokinetic-pharmacodynamic models (e.g., Gearhart et al., 1990, 1994; 

Timchalk et al., 2002).  Such models might be capable of predicting response and thus 

determining a POD if sufficient data are available.  More commonly, however, PBPK modeling 

will be useful for conducting route-to-route extrapolation on the basis of equivalent delivered 

dose from PODs identified from NOAEL, LOAEL, or BMC (e.g., oral to inhalation). 

2.5.3. Duration Adjustment 

RfCs are intended for continuous exposure of human populations, such that the POD used 

in its derivation should correspond to 24 hr/day exposures (U.S. EPA, 1994).  Because the PODs 

are frequently obtained from animal exposures or occupational exposures that occur for 6 to 8 

hr/d, 5 d/wk, adjustment to a continuous 24 hr exposure is conducted on the basis of hours per 

day and days per week (i.e., 6/24 × 5/7), which essentially results in a lower concentration for 

continuous exposures (U.S. EPA, 2002). This simple adjustment, generally referred to as 

Haber’s Rule, implies that the AUC (i.e., concentration × time [C × t]) and not peak 

concentration is the dose metric associated with the toxicity endpoints (U.S. EPA, 2002).  When 

data indicate that a given toxicity is more dependent on concentration than on duration (time), 

this adjustment would not be used.  If neither dose metric is demonstrable experimentally to be 

the appropriate measure of internal dose, the Agency uses adjustment to a continuous inhalation 
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exposure based on the C × t relationship as a matter of health-protective policy (U.S. EPA, 

2002). 

Depending on the dose metric identified or hypothesized to be the most appropriate for 

the chemical and endpoint, the duration-adjusted exposure values can be obtained with PBPK 

models (Jarabek, 1994; U.S. EPA, 2002). This approach is based on the expectation that the 

pharmacodynamic aspect does not change between the various durations of within-day exposures 

(<24 hr). Consistent with the Agency’s policy (U.S. EPA, 2002), the AUC of a chemical for the 

exposure scenario of the critical study should be determined initially using the PBPK model 

(e.g., 6 hr/d, 5 d/wk); then the atmospheric concentration for continuous exposures (24 hr/d) 

during lifetime or particular window of susceptibility yielding the same AUC or Cmax can be 

determined by iterative simulation.   

2.5.4. Dosimetric Adjustment Factor 

In the RfC process, a dosimetric adjustment factor (DAF), intended to account for 

pharmacokinetic differences between test species and humans, is applied to the duration-adjusted 

POD (NOAEL, LOAEL, or BMC) to derive HECs (U.S. EPA, 1994).  The DAF depends on the 

nature of the inhaled toxicant and MOA as well as the endpoint (local effects vs. systemic 

effects). The dosimetry data in the test animals and humans (e.g., deposition data, region-

specific dosimetry, blood concentration of systemic toxicants), if available, can help estimate the 

DAF. In the absence of such data, knowledge of critical parameters or mathematical models in 

the test species and humans can be useful in estimating the DAF.   

For highly reactive or water-soluble gases that do not significantly accumulate in blood 

(e.g., hydrogen fluoride, chlorine, formaldehyde, volatile organic acids, and esters), the DAF is 

derived using simulated delivery of chemical to different regions of the respiratory tract, based 

on regional mass transfer coefficients, as well as differences in surface area and ventilation rates 

(U.S. EPA, 1994). For gases that are water soluble with some blood accumulation (e.g., acetone, 

ethyl acetate, ozone, sulfur dioxide, propanol, isoamyl alcohol) and potential for both respiratory 

and remote effects, the DAF could be calculated on the basis of uptake, defined by overall mass 

transfer coefficient, as well as flow-limited perfusion distribution models.  The DAF for poorly 

water-soluble gases that cause remote effects (e.g., xylene, toluene, styrene) is determined on the 

basis of blood:air partition coefficients and flow-limited perfusion models (U.S. EPA, 1994).   
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A variety of computational tools are available for determining the uptake and deposition 

of gases and particulates in nasal pathways and the respiratory tract (Kimbell et al., 1993; 

Jarabek, 1994; Asgharian et al., 1995; Tran et al., 1997; Bush et al., 1998; Hanna et al., 2001, 

Bogdanffy and Sarangapani, 2003; U.S. EPA, 2004).  PBPK models have most frequently been 

applied to systemically acting gases and vapors. They have also been applied, in conjunction 

with other models (e.g., computational fluid dynamics), to more locally acting gases.  Their use 

(discussed above) in estimating dose metrics over time allows for a more refined duration 

adjustment. Also, the other RfC approaches do not account for metabolism of the more reactive 

gases, so PBPK modeling approaches would clearly be preferable for these compounds if 

adequate data are available. There is little doubt that further applications of PBPK models to the 

more reactive gases and agents will be developed and realized in the near future.  

2.5.5. Uncertainty Factors: Role of PBPK Models 

The uncertainty/variability factors used in RfC derivation include one or more of the 

following: an interspecies uncertainty factor (IUF) of 3 to account for possible pharmacodynamic 

differences; an intraspecies variability factor (IVF) of 10 for variability in kinetics and dynamics 

among humans; subchronic-to-chronic extrapolation factor of 10; a LOAEL-to-NOAEL factor of 

10; and a database deficiency factor of 1 to 10 (U.S. EPA, 1994; Jarabek, 1994).  The total of all 

uncertainty factors generally should not exceed 3,000 (U.S. EPA, 2002).  With the exception of 

the IVF, the magnitude of the factors listed above cannot be estimated using pharmacokinetic 

data or PBPK models alone, although they can be determined either by conducting appropriate 

experiments or by using integrated pharmacokinetic-pharmacodynamic models.  Experiments to 

estimate the IVF for each toxic chemical in each population of interest is neither plausible nor 

ethical. It has been possible, however, to estimate the IVF by analyzing available data on 

pharmaceutical products collected in human volunteers and patients over the years (Hattis et al., 

1999; Silverman et al., 1999). 

The IVF of 10 conventionally used in RfC derivation implies that for the same level of 

response or nonresponse, the potential doses among individuals may differ by as much as—but 

not more than—an order of magnitude.  The factor of 10 is a composite of the interindividual 

differences in pharmacokinetics and pharmacodynamics (Renwick and Lazarus, 1998).  The 

magnitude of the pharmacokinetic component of the IVF can be estimated with the use of PBPK 

models and applied in conjunction with the remaining interindividual pharmacodynamic 
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variability factor of 3, and this is entirely consistent with what is done under the RfC process to 

account for dosimetry and pharmacodynamic differences between species (Jarabek, 1994; U.S. 

EPA, 2002). The PBPK models are also potentially useful for estimating the magnitude of the 

pharmacokinetic component of the uncertainty factors for LOAEL-to-NOAEL and subchronic-

to-chronic extrapolations, but the feasibility of such estimations has not yet been explored 

systematically (Thomas et al., 1996b).  

2.5.6. Summary 

The potential role of the PBPK 

model in the RfC process is summarized 

in Box 2-2. 

Box 2-2.

• 
• 
• 
• 

  Role of PBPK models in the RfC process 

Route-to-route extrapolation of the POD 
Duration adjustment calculation 
Dosimetric adjustment factor 
Intraspecies variability factor (PK component) 

2.6. ROLE OF PBPK MODELS IN RfD DERIVATION 

2.6.1. Reference Dose 

An RfD is an estimate of a daily exposure to the human population (including sensitive 

subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime 

(Barnes and Dourson 1988; Dourson et al., 1992).  It is expressed in units of milligrams per 

kilogram per day.  An RfD is calculated as follows: 

RfD = POD/UF 

where: 


POD = NOAEL, LOAEL, or BMD 


UF = uncertainty factors related to extrapolations associated with the POD (i.e., 


interspecies extrapolation, intraspecies extrapolation, subchronic-to-chronic 


extrapolation, LOAEL-to-NOAEL extrapolation) or incompleteness of the database. 


An RfD derivation begins with the identification of the POD for the critical effect.  

Subsequently, the uncertainty factors are applied as appropriate.  Regarding the RfD process, 

PBPK models are potentially useful in determining the POD as well as the extrapolation factors, 

as described in Sections 2.6.2 and 2.6.3. 
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2.6.2. Point of Departure 

Where possible, the RfD derivation uses an oral NOAEL, LOAEL, or BMD as the POD.  

The oral route-specific NOAEL and LOAEL correspond to experimentally tested doses, whereas 

the BMD is obtained from statistical modeling of dose-response data (U.S. EPA, 2000a).  When 

the LOAEL or NOAEL has not been identified in an oral dosing study but has been obtained for 

another route of exposure, the route-to-route dose conversion in the past assumed that absorption 

by both routes is 100% and that equal potential doses administered via inhalation and oral route 

are equitoxic (Pauluhn, 2003). In other words, this overly simplistic approach assumed that the 

rates of absorption, distribution, metabolism, excretion, and tissue dose of toxic moiety of 

chemicals are identical, regardless of the exposure route, particularly if the same dose (mg/kg/d) 

is administered by both routes.  The data on route-specific fraction absorbed, when available, 

have been used to improve the scientific basis of the route-to-route extrapolation process (e.g., 

U.S. EPA, 1999a). 

When the oral NOAEL, LOAEL, or BMD is unavailable for a given route of exposure, 

PBPK models can be particularly useful in deriving such values on the basis of results obtained 

for other dosing routes (e.g., inhalation, intravenous, dermal).  PBPK models facilitate the 

conduct of route-to-route extrapolation (e.g., inhalation to oral) to establish the oral route-

specific POD (NOAEL, LOAEL, BMD), based on equivalent internal dose.  The use of PBPK 

models represents a significant improvement in the scientific basis of the conventional route-to-

route extrapolation approach, because it takes into account the route-specific rates and magnitude 

of absorption, clearance, and first-pass effects. 

PBPK models, however, are not able to establish an oral POD in the absence of some 

route-specific experimental dose-response and kinetic data.  Development of a biologically based 

dose-response (BBDR) model linked with a PBPK model could potentially improve the 

quantification of the dose-response and POD for RfD derivation.  There has been some success 

in developing BBDR models for simple adverse effects (e.g., cholinesterase inhibition, 

cytotoxicity, hematoxicity) (Gearhart et al., 1990, 1994; Reitz et al., 1990a; Cox, 1996; Ashani 

and Pistinner, 2004), but these models are not routinely used to estimate PODs for RfD 

derivation because of the lack of data needed to calibrate and test the models.  New technologies 

(e.g., toxicogenomics) offer the potential for generating the needed data, and more integrated 

PBPK and BBDR models may be an attainable goal in the near future. 
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2.6.3. Uncertainty Factors 

The uncertainty factors used in RfD derivation include extrapolations across species 

(interspecies) and across duration of exposure (subchronic to chronic), degree of response (e.g., 

LOAEL-to-NOAEL), variability within a population (intraspecies variability), and to account for 

poor or absent data in the database (database deficiency).  If the NOAEL for a chemical with an 

adequate database has been identified in a chronic study, only the IUF and IVF are used in the 

assessment.  The IUF of 10 conventionally used in RfD derivation addresses the possibility that 

the same level of response or nonresponse is associated with a HED that is 10 times lower than 

the dose administered to animals.  Similarly, the IVF of 10 is presumed to account for both the 

differences in tissue dosimetry and tissue response within a human population.   

If in vivo pharmacokinetic and pharmacodynamic data are available for humans and the 

test species as well as for the various subgroups of the population, chemical-specific adjustment 

factors can be derived to replace the default uncertainty factors.  The IUF and IVF may also be 

estimated from an understanding of the key pharmacokinetic and pharmacodynamic 

determinants of a chemical’s disposition in the body (e.g., isoenzyme levels, enzyme activity 

levels, tissue volumes, breathing rates, cell proliferation rates) (e.g., Dorne et al., 2001a, b, 2002; 

Walton et al., 2001). Extrapolating among species or estimating interindividual variability must 

be performed carefully because the magnitude of variability associated with individual 

determinants is neither cumulative nor additive.  A one-by-one evaluation of the determinants of 

interspecies differences or interindividual variability is useful for understanding the mechanistic 

basis and their relative importance, but such an isolated approach can easily lead to unrealistic 

estimates of the overall magnitude of an IVF or IUF.  The net impact of various determinants on 

the IVF and IUF is more properly evaluated by integrating the available information with a 

PBPK or BBDR model. 

PBPK models are useful for characterizing the magnitude of the pharmacokinetic 

component of the IUF as well as the IVF used in the RfD process.  When using PBPK models to 

adjust for pharmacokinetic differences, a factor of 3 is generally used to account for the potential 

interspecies differences and interindividual variability in pharmacodynamics, as with the RfC 

process (Jarabek et al., 1995; Clewell et al., 2002; U.S. EPA, 2003).  However, chemical-specific 

information on the pharmacodynamic aspect of inter- and intraspecies differences may inform on 

further reduction of these uncertainty factors.  It should be recognized that in their current state 
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of advancement, PBPK and BBDR models are not suitable for characterizing the magnitude of 

LOAEL-NOAEL and subchronic-chronic factors. 

Although a thoroughly characterized BBDR model might address the LOAEL-NOAEL 

issue, it is unlikely that such models will be capable of extrapolating from subchronic to chronic 

effects because of the multiplicity of feedback systems and plasticity within organisms, nor will 

such models be capable of accounting for the potential for different adverse effects over the 

lifespan. 

2.6.4. Summary 

PBPK models, by facilitating the 

simulation of tissue dose of the toxic 

moiety of chemicals, address specific areas 

of uncertainty associated with derivation of 

the RfD, as shown in Box 2-3. 

Box 2-3.

• 
• 
• 

  Role of PBPK models in the RfD process 

Route-to-route extrapolation 
Interspecies uncertainty factor (PK component) 
Intraspecies variability factor (PK component) 

2.7. ROLE OF PBPK MODELS IN CANCER RISK ASSESSMENT 

The dose-response assessment portion of cancer risk assessment may vary, depending on 

MOA considerations. It can involve the determination of a slope factor based on linear 

extrapolation from the POD (i.e., high-dose to low-dose extrapolation) or it may involve the use 

of the POD for nonlinear analysis (U.S. EPA, 2005a).  Either approach may also require 

extrapolation of animal data to humans.  In addition, some of the assessments may require route-

to-route extrapolations. The role of PBPK models in conducting these extrapolations is 

discussed in the following sections (2.7.1 through 2.7.4). 

2.7.1. High-Dose to Low-Dose Extrapolation 

The oral slope factor or IUR has frequently been determined by modeling the relationship 

between the cancer response and the administered dose (or exposure concentration) (U.S. EPA, 

2005a). According to the revised cancer guidelines, however, either a nonlinear (i.e., RfC or 

RfD) or linear (i.e., unit risk estimate) extrapolation based on the POD can be conducted,  as 

justified by the MOA of the carcinogen (U.S. EPA, 2005a).  Further, the use of internal dose or 

delivered dose in such analysis has been encouraged. 
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Because high doses of chemicals are often administered in rodent cancer bioassays, the 

tumors observed in such studies are not always directly proportional to the exposure dose.  

Rather, the cancer dose-response relationships appear complex, in part due to nonlinearity in the 

pharmacokinetic processes occurring at high doses. In other words, the target tissue dose of the 

toxic moiety is often disproportional to the administered doses used in animal bioassays (Figure 

2-1). Therefore, dose-response analysis based on the appropriate dose metric often results in the 

linearization of the relationship (Andersen et al., 1987; Clewell et al., 1995, 2002).  The slope 

factor derived using the dose metric versus the response curve will have units of (dose metric)-1; 

similarly, NOAELs are converted using PBPK models to the dose metric at which no significant 

incidence of cancer is expected on the basis of MOA of the chemical and dose-response data. 

Linkage of PBPK models with BBDR models (e.g., clonal expansion and progression 

models as well as two-stage models) would represent the ideal framework for characterizing the 

health risk associated with human exposure to chemical carcinogens.  However, such models still 

continue to be developed and improved upon, and currently there is not a standard model that is 

used or recommended (U.S. EPA, 2005a). 

2.7.2. Interspecies Extrapolation 

The default procedure for conducting interspecies extrapolation (e.g., rat to humans) of 

the oral dose of carcinogens involves scaling in proportion to body weight to the 0.75 power 

(U.S. EPA, 2005a). This scaling approach is based on the observation that several physiological, 

anatomical, and biochemical processes in mammalian species are closely related to body surface 

area (Voisin et al., 1990; U.S. EPA, 2002). In other words, this default approach implies that the 

delivered doses (following oral exposure) are related to applied dose by 0.75 power of body 

weight, independent of the species. For gases and particulates, however, the default procedure 

for interspecies extrapolation would involve the derivation of a HEC, as described in Section 

2.4.4 (U.S. EPA, 1994; Jarabek, 1995a, b). 

The nature and slope of the dose-response relationship for carcinogens may not be 

identical in test species and humans due to pharmacokinetic and pharmacodynamic differences 

(Monro, 1994). Interspecies extrapolations of an equivalent dose of carcinogens can be 

conducted if appropriate data (tissue or blood concentrations of potential toxic moiety or 

promutagenic adducts) are available in both the test species and humans.  In the absence of such 

data, PBPK models can be used to characterize the relationship between applied dose and 
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delivered dose of carcinogens in the species of interest for subsequent extrapolation to humans 

(Andersen et al., 1987). 

2.7.3. Route-to-Route Extrapolation 

Route-to-route extrapolation is necessary if the cancer dose-response data were obtained 

in test species exposed by a route different from the anticipated human exposure and the effect is 

considered pertinent to the human exposure route.  Route-to-route extrapolation is considered 

appropriate for a chemical that induces tumors at a site different from the portal of entry and if 

the chemical is absorbed to give an internal dose.  Simplistic route-to-route extrapolations are 

performed by assuming that the relationship between applied dose and tissue dose of toxic 

moiety (dose metric) is the same, regardless of the exposure route.  The uncertainty associated 

with this approach is that the first-pass effect as well as the rates and extent of absorption and 

metabolism may vary from one route to another (Pauluhn, 2003).  The data on route-specific 

fraction absorbed are now used to improve the scientific basis of the route-to-route extrapolation 

process (e.g., U.S. EPA, 1999a). 

PBPK models, by accounting for the route-specific rate and magnitude of absorption, 

first-pass effect, and metabolism, facilitate the conduct of route-to-route extrapolation (Clewell 

and Andersen, 1994). The slope factor or the NOAEL associated with an exposure route can be 

translated into applied dose by another route on the basis of equal delivered doses.  Basically, by 

simulating the tissue dose of toxic moiety associated with the applied doses given by different 

routes, PBPK models facilitate conducting route-to-route extrapolation of the NOAEL or slope 

factor of chemical carcinogens (Gerrity et al., 1990; U.S. EPA, 2000b). 

2.7.4. Intraspecies Variability 

Intraspecies variability in pharmacokinetics or pharmacodynamics has not usually been 

considered in the context of cancer risk assessment.  In characterizing risk, the CSF has been 

used without adjustment for susceptible populations.  The newer supplemental guidance suggests 

the use of an adjustment factor to the cancer slope or unit risk value to account for enhanced 

susceptibility related to early-life exposures of neonates and young children, particularly for 

carcinogens exhibiting a mutagenic MOA (U.S. EPA, 2005b).  Further, when assessing the less-

than-lifetime exposures occurring in childhood, the guidelines stipulate adjustments for adult-
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children differences in exposure factors (e.g., skin surface area, drinking water ingestion rate) 

(U.S. EPA, 2005b). 

PBPK models are potentially of use in evaluating the pharmacokinetic basis of the adult-

children differences in tissue dose of carcinogens (Price et al., 2003b; Gentry et al., 2003; 

Ginsberg et al., 2004). However, the quantitation of the tissue dose differences between adults 

and children would not be sufficient to account for pharmacodynamic differences related to 

early-life exposures of neonates and children.  PBPK models can still be of use in determining 

the adjustment factor for early-life exposures of neonates and young children on the basis of 

equivalent internal doses. 

2.7.5. Summary 

PBPK models, by facilitating the 

simulation of tissue dose of toxic moiety of 

chemical carcinogens, play an important 

role in reducing the uncertainties associated 

with some of the extrapolations used in the cancer risk assessment process (Box 2-4). 

Box 2-4. Role of PBPK models in cancer risk 

• 
• 
• 

equivalent doses 

assessment 

High-dose to low-dose extrapolation 
Route-to-route extrapolation 
Interspecies extrapolations of pharmacokinetically 

2.8. USE OF PHARMACOKINETIC DATA AND MODELS IN EXPOSURE       
ASSESSMENT 

2.8.1. Conventional Approaches 

The conventional approach to exposure assessment involves the calculation of potential 

dose for each route of exposure, with knowledge of concentration of the chemical in the medium, 

frequency and duration of exposure, rate of contact with the medium, and body weight of the 

individual (Paustenbach, 2000).  With increased data availability, however, absorbed dose can be 

calculated (U.S. EPA, 1992). For calculating absorbed dose, pharmacokinetic data such as time-

course data on concentration or total quantity in alveolar air, urine, or blood would be required 

(Paustenbach, 2000). The conversion of biomarker data, absorbed dose, or potential dose into 

delivered dose is not straightforward and requires the use of appropriate modeling techniques.  

The need for the use of pharmacokinetic models is further emphasized by the fact that the tissue 

dose is not always directly proportional to the exposure concentration or potential dose. 
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2.8.2. Role of PBPK Models 

PBPK models allow the conversion of potential dose or exposure concentration to tissue 

dose, which can then be used for risk characterization purposes. As the dose-response 

relationships are being increasingly established on the basis of tissue dose, it is also essential that 

the potential doses calculated during exposure assessments be translated into tissue doses to 

facilitate risk characterization.  PBPK models are additionally useful in investigating and 

establishing the relationship between biomonitoring or biomarker data and potential dose as well 

as the relationship between biomarker levels and tissue dose of chemicals by iterative simulation 

(e.g., Fennell et al., 1992; Krishnan et al., 1992; Csanady et al., 1996; Timchalk et al., 2001).   

This ability of PBPK models has been explored for establishing biological exposure 

indices (e.g., breath, blood, or breath concentrations) associated with worker exposure to 

threshold limit values of solvents (Perbellini et al., 1990; Leung, 1992; Kumagai and Matsunaga, 

1995; Thomas et al., 1996b; Droz et al., 1999).  PBPK models also offer a framework for 

reconstructing human exposure over a period of time (Vinegar et al., 1990; Roy and 

Georgopoulos, 1998; Canuel et al., 2000).  Further, such dose reconstructions and tissue dose 

resulting from multiroute (oral, inhalation, dermal) and multimedia (air, water, food, soil) 

exposures can be computed with the use of PBPK models (e.g., Georgopoulos et al., 1994; Roy 

et al., 1996; Rao and Ginsberg, 1997; Corley et al., 2000; Levesque et al., 2002).  The net tissue 

dose associated with a particular exposure situation (multiroute and multisource) can then be 

obtained with PBPK models and used for risk characterization purposes. 

2.8.3. Summary 

The potential roles of PBPK 

models in exposure assessment are 

summarized in Box 2-5. 

Box 2-5.

• 
• 
• 

  Role of PBPK models in exposure assessment 

Conversion of potential dose into tissue dose 
Tissue dose estimation for aggregate exposures 
Dose reconstruction based on exposure biomarkers 

2.9. PHARMACOKINETIC DATA NEEDS IN RISK ASSESSMENT: SUMMARY  

Adverse tissue responses are more directly and closely related to tissue dose of the toxic 

moiety than is the concentration of the parent chemical in the environment.  Therefore, there is 

no question that the scientific basis of, and confidence in, risk assessments are enhanced by the 

use of tissue dose information. Because the tissue dose is not directly and simply related to 

exposure concentration or potential dose at all times, there is some uncertainty regarding the use 
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of potential dose in risk assessment.  If the relationship between potential dose and tissue dose of 

the toxic moiety of chemicals is linear and proportional at all dose levels used in animals and 

humans, then there is no need for PBPK models.  However, this is not usually the case. 

Therefore, the PBPK models are used for addressing specific areas of uncertainty in dose-

response assessment and exposure assessment on the basis of the simulation of tissue dose of 

potential toxic moiety.   

In the context of dose-response assessment, PBPK models are needed for conducting 

1. Route-to-route extrapolation of the POD (RfC, RfD, and unit risk estimates), 

2. Duration adjustment of the POD (RfC derivation), 

3. High-dose to low-dose extrapolation (unit risk estimates), 

4. Interspecies extrapolation of pharmacokinetically equivalent doses (RfD, RfC, and unit 

risk estimates), and  

5. Estimation of the pharmacokinetic component of the IVF (RfC and RfD derivation). 

In the context of exposure assessment, PBPK models are needed for 

1. Converting potential dose into tissue dose, 

2. Calculating tissue dose associated with multiroute and multimedia exposures, and 

3. Relating biomarker data to tissue dose and potential dose by exposure reconstruction. 

The PBPK models intended for use in dose-response and exposure assessments should be 

evaluated for their adequacy.  The next chapter presents the process and criteria for evaluating 

PBPK models intended for use in risk assessment. 
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1 3. EVALUATION OF PBPK MODELS INTENDED FOR USE IN  
2 RISK ASSESSMENT 
3 

4 PBPK models intended for risk assessment applications should be evaluated for their 

5 adequacy. There are no published documents that specify either model validation standards or 

6 criteria of adequate PBPK models.  However, several publications have dealt with good 

7 modeling practices as well as approaches for evaluating and documenting biological models 

8 intended for risk or safety assessments (Yates, 1978; Andersen et al., 1995; Clark et al., 2004).  

9 Evaluation of PBPK models intended for risk assessment applications should be undertaken 

10 along the lines of model purpose, model structure, mathematical representation, parameter 

11 estimation (calibration), and computer implementation aspects, as detailed in the following 

12 sections. 

13 

14 3.1. MODEL PURPOSE 

15 The purpose for which a PBPK model is developed basically determines its structure and 

16 level of detail. Not all PBPK models are developed for the purpose of supporting risk 

17 assessments.  Some are actually used as a tool for hypothesis testing for particular modes of 

18 action and for guiding improved experimental design.  The structure of a PBPK model used 

19 strictly for responding to the needs of a curiosity-driven researcher may not serve the intent and 

20 purposes of a risk assessor.  PBPK models, therefore, are of varying complexities and 

21 capabilities, according to the intended purpose.  PBPK models, in general, are developed for one 

22 of the following three purposes: 

23 1. Integrate diverse sets of pharmacokinetic data on a particular chemical,  

24 2. Investigate the pharmacokinetic basis of toxicity of a chemical that appears complex 
25 at the administered dose level, and  

26 3. Predict tissue dosimetry for situations other than what has been or could be tested 
27 experimentally (see Section 3.6). 
28 

29 Models that permit the integration of diverse sets of data are useful in uncovering 

30 mechanistic determinants of pharmacokinetics of specific chemicals (e.g., Clewell and Andersen, 

31 1997; Haddad et al., 1998). However, PBPK models resulting from such efforts are not routinely 

32 evaluated for their predictive value but still are useful for the purpose of uncovering unusual 
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determinants of pharmacokinetics (e.g., suicide inhibition, diffusion-limited uptake).  On the 

other hand, PBPK models developed to improve the understanding of toxicological behavior of 

chemicals that appears complex at the administered dose level (e.g., species, sex, or route 

differences in response) may be either predictive or integrative. Typically, the PBPK models of 

use to the risk assessor are those that have predictive value at the quantitative level with respect 

to the production or pharmacokinetics of potential toxic moieties (parent chemical or 

metabolite).  

A PBPK model capable of predicting the pharmacokinetics and tissue dose of the 

potential toxic moiety of a chemical is the preferred one for risk assessment applications.   

3.2. MODEL STRUCTURE 

The structure of a PBPK model in large part depends upon the purpose for which the 

model is developed and the philosophy of the modeler. There is virtually no limit to the number 

and size of compartments in a model intended to describe molecular/cellular events.  Parsimony 

in selecting model structures, however, is an important and guiding principle in developing 

models for use in risk assessments.  The complexity of PBPK models used in risk assessment is 

often constrained by limited data available to calibrate and test the model, and the need for risk 

assessors to defend the model assumptions and the values derived from model simulations. 

The simplest conceptual model represents the organism as a one-compartment system.  

PBPK models differ from single-compartment models by representing many more physiological 

and biochemical processes that are relevant to the toxicokinetics of the chemical in question. 

This complexity is represented by differentiating or lumping tissues into specific compartments 

each with a unique set of physiological (i.e., blood flows) and biochemical parameters (i.e., 

partition coefficients). A PBPK model intended for risk assessment applications should, 

preferably, include the target organ as one of the compartments.  Minimally, it should facilitate 

the calculation of blood concentration, which is often used as a surrogate for tissue 

concentrations. Major portals of entry (e.g., lung, gastrointestinal tract), storage organs (e.g., 

adipose tissue), metabolism/transformation sites (e.g., liver, kidney) as well as elimination routes 

(e.g., renal, pulmonary, fecal) should be included. It is often acceptable to mathematically 

describe absorption, distribution, metabolism and excretion (ADME) of chemicals in PBPK 

models without physically representing the tissues where these processes occur (Krishnan and 
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Andersen 2001), provided that this lack of physical representation does not interfere with a 

model’s use as an extrapolation tool. In some cases, a compartment is subdivided into several 

sub-compartments based on mechanistic and biological considerations. For example, the liver 

can be divided into separate compartments depending on the localization of enzymatic activity. 

Figure 3-1 represents examples of PBPK model structures that have been commonly used to 

simulate the kinetics of volatile and nonvolatile substances.  Note that all these models facilitate 

the simulation of the concentration of chemicals or their metabolites in the target organ or a 

surrogate tissue (usually blood). 

It is important to realize that compartments in PBPK models are usually assumed to be 

homogenously and completely mixed reactors. This means that the concentration of the chemical 

anywhere in the tissue is the same and equal to the concentration of the chemical as it leaves the 

tissue in venous blood. This assumption is necessary to simplify the differential equations 

representing the mass balance of the chemical in the tissue. The numerical solution of the final 

set of equations representing the PBPK model is further simplified because of the complete-

mixing assumption. 

The structure of a PBPK model intended for risk assessment applications should contain 

the target organ (or a surrogate tissue) as well as compartments representing tissues of unique 

physiological and biochemical relevance to the pharmacokinetics of the chemical in question. 

3.3. MATHEMATICAL REPRESENTATION 

In PBPK modeling, each tissue compartment is generally described with a mass balance 

differential equation (MBDE) that consists of a series of clearance terms with units of volume 

per time, i.e., liters per hour or milliliters per minute.  The clearance terms, in most cases, relate 

to tissue uptake, tissue-to-blood transfer, metabolism, or excretion of chemicals.  The uptake of a 

chemical in systemic circulation by a tissue is described according to Fick’s law of simple 

diffusion, which states that the flux of a chemical is proportional to its concentration gradient.  

Descriptions of passive and blood flow-limited uptake have been used successfully in many of 

the past efforts in PBPK modeling that dealt with small-molecular-weight organics.  For high-

molecular-weight compounds, however, membrane diffusion is often the rate-limiting process, 

and in such cases chemical uptake is described with differential equations for the tissue blood 

and cellular matrix subcompartments (Rowland, 1985; Leung, 1991; Andersen, 1995; Krishnan 

and Andersen, 2001) (Tables 3-1 and 3-2). 
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5 Figure 3-1. Conceptual representations of PBPK models for (A) toluene, (B) 
6 ethylene oxide, (C) 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and (D) 
7 vinyl acetate. The input and output arrows associated with individual 
8 compartments represent arterial and venous blood flows. Note that model D 
9 contains 5 compartments for the nasal cavity alone (the site of toxicity). From 

10 Bogdanffy et al. (1999), Krishnan et al. (1992), and Andersen et al. (1993). 
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1 Table 3-1. Equations of a four-compartment PBPK model to simulate the 
2 inhalation exposure of volatile organic compounds   
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1 Table 3-1. Equations of a four-compartment PBPK model to simulate the 
2 inhalation exposure of volatile organic compounds (continued) 

Tissue Compartments Equationsa 

Venous blood 
Qc 

CvQsCvQrCvQfCvQl
Cv snr nf nl n 

n 

×+×+×+× 
= 

Alveolar air 

b 

n 
n P 

Ca
Calv = 

3 a Equations are from Ramsey and Andersen (1984).

4 b The arterial blood equation in this example is used for chemicals that reach rapid equilibrium in blood, such as 

5 highly fat-soluble volatile chemicals.  In other cases, a detailed mass-balance equation for the arterial blood may be

6 needed. 
7 

A = amount (mg) 
a = arterial blood 
alv = alveolar air  
b = blood:air 
C = concentration (mg/L or mmol/L) 
c = cardiac output  
f = fat 
inh = inhaled air 
Km = Michaelis Menten affinity constant (mg/L)  
l = liver 
n = current time  
n-1 = previous simulation time 
P = partition coefficient 

8 
9 

10 

V

p = pulmonary ventilation 
Q = flow rate (L/hr-1) 
r = richly perfused tissues 
s = slowly perfused tissues 
t = tissue:blood 
V = Volume (L)  
v = mixed venous blood 
vf = venous blood leaving fat 
vl = venous blood leaving liver  

max  = maximal velocity of enzymatic reaction (mg/hr-1) 
vr = venous blood leaving richly perfused tissue  
vs = venous blood leaving poorly perfused tissue 

11 Table 3-2. Equations used for describing diffusion-limited uptake in PBPK 
12 models 

Subcompartments Equations 

Tissue blood ( ) [ ] ( )21 
1 

1 CCPACCQ
dt 

dC
V outintt +×−−×= 

Cellular matrix [ ] ( )21 
2 

2 CCPA
dt 

dC
Vt −×= 

A = amount (mg) Q = flow rate (L/hr-1) 
C = concentration (mg/L or mmol/L) t1 = tissue blood 
in = inflow t2 = cellular matrix 
out = outflow V = volume (L) 

13 
PA = permeability-area coefficient 

14 
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The rate of the amount of chemical consumed by macromolecular binding process is 

described in PBPK models as a second-order reaction or by using equations based on reversible 

equilibrium relationship.  The rate of metabolism in PBPK models has been described as a first-

order, second-order, or saturable process. Conjugation reactions, on the other hand, are 

traditionally described as a second-order process with respect to the concentrations of the 

cofactor and the chemical.  Alternatively, descriptions based on ping-pong mechanism have also 

been used successfully.  In each case, the reason for using a particular description should be 

clearly provided. PBPK models using particular mathematical descriptions of tissue uptake, 

metabolism, and binding without any justification cannot be used confidently for risk assessment 

applications.  For example, if enzyme-mediated metabolism is described as a first-order process 

in a PBPK model, the scientific rationale for employing such a description is needed before the 

model can be used for purposes of extrapolation and prediction.  Because PBPK models are 

simplified representations of the real systems, the actual details and complexity of the 

physiological and biochemical processes are not reflected by the equations used.  Depending on 

the level of detail required and the objective of the modeling effort, appropriate descriptions of 

the biochemical processes can be included in these models. 

The MBDEs in PBPK models should have units of mass per time (e.g., mg/hr) or 

concentration per time (mg/L-hr-1), and the type of equations chosen to describe tissue uptake, 

binding, and metabolism should be justified. 

3.4. PARAMETER ESTIMATION 

Knowledge of chemical-specific and species-specific parameters would be required to 

solve the equations constituting PBPK models.  For a model to be used for estimating 

interindividual differences in tissue dosimetry, knowledge of the distributions of input 

parameters is essential.  However, for all other purposes, the knowledge of the average value or 

the range of plausible values of model parameters is sufficient.  Typically, PBPK models require 

the numerical values of physiological parameters, such as alveolar ventilation rate, cardiac 

output, tissue blood flow rates and tissue volumes, and clearance parameters related to renal, 

hepatic, and biliary excretion pathways, as well as certain partition coefficients (blood:air, 

skin:water, skin:air, and tissue:blood). Additional parameters (e.g., tissue DNA levels, 

hematocrit, number and concentration of binding proteins) may be required in some cases.   
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3.4.1. Physiological Parameters 

The physiological parameters used in PBPK models should either correspond to those 

obtained in the experimental pharmacokinetic study or be within the range of plausible values for 

the species and life stage.  Even though peer-reviewed compilations of ranges and reference 

values of physiological parameters for adult animals and humans are available (Arms and Travis, 

1988; Leggett and Williams, 1991; Fiserova-Bergerova, 1995; Brown et al., 1997; Davies and 

Morris, 1997) (Tables 3-3 through 3-6), this is not the case with respect to physiological 

parameters for specific subgroups of populations (e.g., developing and lactating animals, 

pregnant women, children).  There are some reports on physiological parameters for specific 

subgroups but no compilations as yet of definitive ranges or reference values (Luecke et al., 

1994; Schoeffner et al., 1999; Haddad et al., 2001a; Hattis et al., 2003; Price et al., 2003a, b; 

Pelekis et al., 2003). 

In PBPK models for organic chemicals, the sum total of the volumes of compartments 

corresponding to soft tissues should be smaller than the body weight, usually about 91% of the 

body weight (100% [body weight] – 9% [weight of skeletal/structural components as percent 

body weight]). Even though the tissue volumes (L) are needed for PBPK modeling, tissue 

weights (kg) are usually used with the assumption of unit density (L = Kg).  This assumption, 

which may seem questionable, is inconsequential for practical reasons, particularly with respect 

to the application of PBPK models in risk assessment.   

The tissue flow rates in the model should add up to cardiac output.  Fundamentally, 

maintaining the mass balance in PBPK models requires that the sum of the flows to the 

compartments be equal to the cardiac output.  The ratio of cardiac output to alveolar ventilation 

rate is around 1 in a resting individual (e.g., Andersen et al., 1987).  The specification of cardiac 

output independent of the value of ventilation rate is unacceptable, particularly if the their ratio 

(ventilation:perfusion ratio) is not in the normal physiological range.  Frequently in PBPK 

models, ventilation rate, cardiac output, and tissue perfusion rates and tissue volumes are 

specified for an individual animal or human being simulated.  For predicting kinetics in another 

animal or human with a different body weight, the physiological parameters are calculated anew.  

To simplify this process, all tissue volumes are expressed as fractions of body weight such that 

for any given body weight, the volumes in liters can be readily calculated by multiplying the 

body weight by the corresponding fractional value.  Similarly, because the cardiac output and 

alveolar ventilation rate are related to body surface rather than body weight, the PBPK models  
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1 Table 3-3. Reference physiological parameters for mice, rats, and humans 

Physiological parameters Mouse Rat Humans 

Body weight (BW) (kg) 0.025 0.25 70 

Tissue volume (fraction of BW) 

Liver 0.055 0.04   0.026 

Fat 0.1 0.07   0.19 

Organs 0.05 0.05 0.05 

Muscle and skin 0.7 0.75   0.62 

Cardiac output (Qc) (L/min) 0.017 0.083 6.2 

Tissue perfusion (fraction of Qc) 

Liver 0.25 0.25 0.26 

Fat 0.09 0.09 0.05 

Organs 0.51 0.51 0.44 

Muscle and skin 0.15 0.15   0.25 

Minute volume (L/min) 0.037 0.174 7.5 

Alveolar ventilation (L/min) 0.025 0.117 5 
2 

3 Source:  Travis and Hattemer-Frey (1991). 

4 


5 

6 Table 3-4. Range of values of the volume and perfusion of select tissues in 
7 the mouse 

Tissue 
Volume 

(% body weight) 
Regional blood flow 
(% cardiac output) 

Adipose    5–14a 

Brain 1.35–2.03 3.1–3.5 

Heart 0.4–0.6 5.9–7.2 

Kidneys 1.35–1.88   7–11.1 

Liver 4.19–7.98 

Lungs 0.66–0.86 

Muscle 35.8–39.9 12.2–19.6 

Skin 15.9–20.8 3.3–8.3 
8 a Varies proportionately with body weight. 

9 


10 Source:  Brown et al. (1997). 
11 
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1 Table 3-5. Range of values of the volume and perfusion of select tissues in 
2 the rat 

Tissue Volume (% body weight) 
Regional blood flow 
(% cardiac output) 

Adipose 4.6–12a 

Brain 0.38–0.83 1.5–2.6 

Heart 0.27–0.4 4.5–5.1 

Kidneys 0.49–0.91 9.5–19 

Liver 2.14–5.16 13.1–22.1 

Lungs 0.37–0.61 11.1–17.8 

Muscle 35.4–45.5 

Skin 15.8–23.6 
3 a Varies proportionately with body weight. 

4 

5 Source:  Brown et al. (1997). 

6 

7 

8 Table 3-6. Range of values of perfusion of select tissues in humans  

Regional blood flow 
Tissue (% cardiac output) 

Adipose 3.7–11.8a 

Brain 8.6–20.4 

Heart 3.8–8 

Kidneys 12.2–22.9 

Liver 11–34.2 

Muscle 5.7–42.2 

Skin 3.3–8.6 
9 a Varies proportionately with body weight. 

10 
11 Source:  Brown et al. (1997). 
12 

13 

14 specify these parameters as a power function of body weight, with the exponent varying from 

15 0.67 to 0.75 (e.g., Andersen et al., 1987; Tardif et al., 1997). 

16 An acceptable PBPK model should contain tissue volumes, flow rates, and 

17 ventilation:perfusion ratios that are within physiological limits.  Particularly, the sum total of 
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the tissue volumes should not exceed the body weight, and the sum total of tissue blood flow rates 

should equal cardiac output. 

3.4.2. Partition Coefficients 

The calibration of PBPK models for partition coefficients has sometimes been done using 

in vivo data. In such cases, pharmacokinetic data collected following a single bolus dose or 

repeated doses leading to steady state are analyzed to determine the tissue:blood partition 

coefficients (Chen and Gross, 1979; Lam et al., 1982; Gabrielsson and Bondesson, 1987; Gallo 

et al., 1987). The steady-state data provide the most straight forward data for model calibration; 

however, they are valid only for tissues in which there are no significant binding or metabolic 

processes. In case of significant level of metabolism or binding, the calculation of tissue:blood 

partition coefficients should account for  the amount of chemical consumed by such processes 

(Chen and Gross, 1979). The estimation of partition coefficients for PBPK models from in vivo 

data is acceptable as long as the same data set is not used for external evaluation later on.  

The tissue:air, skin:water, skin:air, and blood:air partition coefficients required for PBPK 

modeling of volatile organic chemicals are conveniently determined in vitro using vial 

equilibration method (Sato and Nakajima, 1979; Gargas et al., 1989; Johanson and Dynesius, 

1988; Fiserova-Bergerova and Diaz, 1986; Kaneko et al., 1994; Perbellini et al., 1995; Beliveau 

and Krishnan, 2000). Tissue:blood partition coefficients for nonvolatile chemicals can be 

determined in vitro using radioactive chemicals in ultrafiltration, equilibrium dialysis, or vial 

equilibration procedure (Lin et al., 1982; Igari et al., 1983; Sultatos et al., 1990; Jepson et al., 

1994; Murphy et al., 1995). The partition coefficients estimated by these in vitro methods are 

acceptable, provided equilibrium is attained during the experimental conditions.  The 

experimenter/modeler should have conducted a time-course analysis to choose an appropriate 

time point (at which equilibrium is attained) for determining partition coefficients in vitro. 

Algorithms based on the consideration of solubility and binding of chemicals in 

biological matrices have been developed and applied for predicting tissue:blood, tissue:air, and 

blood:air partition coefficients of volatile organic chemicals.  This approach requires knowledge 

of tissue and blood composition in terms of lipid and water contents, and octanol:water or 

oil:water partition coefficients of the chemical as well as the binding association constants, if 

applicable (e.g., Poulin and Krishnan, 1995, 1996a,b; Poulin and Thiel, 2000).  At the present 

time, there is no validated animal-replacement approach for predicting association constants for 
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blood or tissue protein binding of organic chemicals (Poulin and Krishnan, 1996b).  The 

biologically based algorithms as such are useful in providing initial estimates of tissue:blood 

partition coefficients solely based on the consideration of solubility in water and lipid contents of 

tissues and blood. A number of other empirical or semiempirical methods relating molecular 

structure or physicochemical characteristics to tissue:blood and blood:air partition coefficients of 

chemicals are also available (Payne and Kenney, 2002; Beliveau and Krishnan, 2003) (Appendix 

1). Their use is acceptable, as long as the qualitative and quantitative aspects of structural 

features and physicochemical characteristics of the new chemical are within those used in 

calibrating the algorithm. 

Partition coefficients required for PBPK models should be obtained using in vitro 

methods, in vivo data obtained at steady-state, or theoretical algorithms within the boundary of 

valid application. 

3.4.3. Biochemical Parameters 

Absorption rates, metabolic parameters (e.g., first-order or second-order rate constants, 

maximal velocity, and Michaelis affinity constant) and tissue diffusion constants (for describing 

diffusion-limited uptake) required for PBPK modeling can confidently be determined using in 

vivo studies. For estimating these parameters, pharmacokinetic data (e.g., time course of tissue 

or blood concentration of parent chemicals, urinary metabolite levels) obtained following a 

single bolus dose or infusion may be used.  For volatile organic chemicals, the use of exhaled 

breath and gas uptake studies has frequently been adopted with success (Filser and Bolt, 1979, 

1981; Andersen et al., 1980; Gargas et al., 1986).  The rate constants of chemical reaction with 

hemoglobin and tissue proteins determined in vitro or in vivo have been incorporated into the 

PBPK model to make predictions of these phenomena in vivo (e.g., Krishnan et al., 1992).  The 

use of in vivo data for parameter estimation is acceptable, as long as the same data set is not used 

for model evaluation purposes as well.  The use of Bayesian approach is likely to enhance the 

precision of parameter estimations from in vivo data (e.g., Vicini et al., 1999). 

Receptor binding and DNA-binding properties of chemicals have been successfully 

described with PBPK models on the basis of in vitro-derived data (Terasaki et al., 1984; Farris et 

al., 1988). The appropriateness of the usefulness of in vitro systems (e.g., freshly isolated 

hepatocytes, microsomes, post-mitochondrial fractions, cytosols) to provide metabolic constants 

for incorporation into PBPK models continues to be an active area of investigation.  These data 
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may be applicable to modeling using the parallelogram approach. For example, chemical-

specific in vitro metabolic data from cultured hepatocytes can be scaled to represent in vivo liver 

clearance using in vitro data such as estimates of the number of hepatocytes present per one gram 

of liver tissue and the average liver weight (in grams) of the species and age group of interest .  

In vitro data for humans is then extrapolated to in vivo by assuming that the same relationship 

that successfully describes the in vitro to in vivo relationship in animals effectively converts the 

human in vitro data to the in vivo situation.  Even though there are several examples of 

successful application based on appropriate in vitro-in vivo scaling methods (Reitz et al., 1989, 

1996a; Gearhart et al., 1990; Hwang et al., 1996; De Jongh and Blaauboer, 1996, 1997; Iwatsubo 

et al., 1996; Kedderis and Held, 1996; Mortensen et al., 1997; Mortensen and Nilsen, 1998; Cole 

et al., 2001; Hissink et al., 2002; Lipscomb et al., 1998, 2003), the extrapolation of in vitro data 

to intact animal is not clear in all cases (e.g., Haddad et al., 1997, 1998).  But the in vitro studies 

are particularly useful for evaluating the extent of metabolism in target tissues, characterizing 

interindividual differences in metabolism, and conducting animal-human extrapolation of 

metabolism constants based on a parallelogram approach (Andersen et al., 1991; Reitz et al., 

1996b; Ploeman et al., 1997; Thrall et al., 2000; Kedderis and Lipscomb, 2001).  

Biochemical parameters for PBPK models can be estimated using in vivo data or on the 

basis of adequate scaling of in vitro data. 

3.5. COMPUTER IMPLEMENTATION 

Most of the PBPK models require the use of numerical simulation methods because they 

contain differential equations and descriptions of nonlinear processes.  Therefore, the PBPK 

model equations are written along with the integration algorithms and solved using programming 

languages, simulation software, or spreadsheets.  Simulation languages and commercially 

available packages (Table 3-7) routinely make use of integration algorithms to obtain numerical 

solution to differential equations (Menzel et al., 1987; Burmaster and Murray, 1997; Easterling et 

al., 2000, Reddy et al., 2003) such that there is no need either for the modeler or the risk assessor 

to evaluate this aspect. However, if a programming language (FORTRAN, BASIC) or 

spreadsheet (Lotus 1-2-3, QuattroPro, Microsoft Excel) is used for modeling, then the modeler 

should write the codes for an appropriate numerical integration algorithm (e.g., Euler, Gear, 

Runge-Kutta routines; predictor-corrector methods).  In such cases, the integration algorithm as  
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1 Table 3-7. Examples of simulation software used for PBPK modeling 

Software Developer/vendor Salient features Examples of application 

Fortran compiler with 
IMSL library packages, 
C, Pascal, Basic 

Many vendors sell different 
compiler packages available 
on the market. 

Machine language compiler 
packages that require certain 
knowledge of computer 
programming; models can be 
customized to simulate 

Hoang (1995); Karba et al. 
(1990) 

specific condition   
ACSL, ACSL-Tox , or 
acslXtreme (Advance 
Continuous Simulation 

The Aegis Technologies 
Group, Inc., Huntsville, AL 

The most commonly used 
for PBPK modeling in the 
toxicology community. 

Ramsey and Andersen 
(1984); Thomas et al. 
(1996); Dong (1994) 

Language) Language designed for 
modeling and evaluating the 
performance of continuous 
systems described by time-
dependent, nonlinear 
differential equations. 

SimuSolv Dow Chemical Company, 
Midland, MI (no longer 

Makes use of ACSL 
language to write the 

Rey and Havranek (1996) 

distributed outside the dynamic nonlinear systems 
company) that are translated into 

FORTRAN at run time 
Matlab The MathWorks, 

Natick, MA 
Mathematical software with 
matrix-related computations, 

Easterling et al. (2000) 

numerical integration 
algorithms capable of 
solving systems of ordinary 
differential equations, and 
graphical nonlinear 
simulation (Simulink) 

Microsoft Excel Microsoft Corporation, Neither translation of the Johanson and Naslund 
Redmond, WA model nor the compilation (1988); Haddad et al. (1996) 

into a program is required,  
but integration algorithm and 
interval should be specified 
by the user. 

ScoP (Simulation 
Control Program) 

Simulation Resources, Inc., 
Redlands, CA 

An interactive control 
program for constructing 
models; when used with a C 

Menzel et al. (1987) 

compiler, SCoP greatly 
simplifies the construction of 
a simulation program 

Stella Isee Systems, Lebanon, NH 
(formerly High Performance 

Macintosh, interactive 
graphical user interface 

Hoang (1995) 

Systems Inc.) software; enables the user to 
generate models with 
diagrams, where a minimal 
knowledge of computer 
programming is required 
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1 Table 3-7. Examples of simulation software used for PBPK modeling 
2 (continued) 

Software Developer/vendor Salient features Examples of application 

Mathematica Wolfram Research, Inc., Mathematical software with Burmaster and Murray 
Champaign, IL matrix-related computations; (1997) 

numerical integration 
algorithms capable of 
solving systems of ordinary 
differential equations 

Berkely Madonna Robert Macey and George 
Oster, University of 
California at Berkeley, CA 

This program is a general-
purpose differential equation 
solver. Developed on the 
Berkeley campus under the 
sponsorship of National 
Science Foundation and the 

Reddy et al. (2003) 

National Institutes of Health.  
It is currently used by 
academic and commercial 
institutions for constructing 
mathematical models for 
research and teaching. 

SONCHES (Simulation 
of Nonlinear Complex 
Hierarchical Ecological 

Central institute of 
Cybernetics and Information 
Processes, Academy of 

A computer system where 
connections between various 
data libraries in the 

Wünscher et al. (1991)  

Systems) Sciences of GDR, Berlin preparation and post­
processing of simulation are 
executed by macro 
commands 

CMATRIX Robert Ball and Sorell L. 
Schwartz, Georgetown 
University, Washington, DC 

A system that allows the 
user to create compartmental 
models based on personal 
biological knowledge, 
leaving the construction and 
numerical solution of the 

Ball and Schwartz (1994) 

differential equations to the 
software 

BASICA California Department of 
Pesticide Regulation, 
Sacramento, CA 

Numerical integration 
algorithms developed by the 
Department for PBPK 
modeling 

Dong (1994) 

AVS  
(Application 
Visualization System) 

Advanced Visual Systems, 
Inc., Waltham, MA 

A visualization software 
package capable of 
importing processed 
resonance images and 
combining the use of ACSL 
to create three-dimensional 

Nichols et al. (1994) 

representations of the PBPK 
of a chemical in an organism 

MCSim Drs. Bois and Maszle  This software facilitates the Jonsson and Johanson 
conduct of Bayesian analysis 
with PBPK models but has 

(2003) 

no graphical interphase. 
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well as the integration interval used should be specified (e.g., Blancato and Saleh, 1994; Haddad 

et al., 1996). 

The modeler should also be aware of the optimization routine offered by software 

packages, particularly if parameters are to be estimated from experimental data by statistical 

optimization (Holmes et al., 2000).  The personal and portable computers marketed today 

possess the acceptable speed, disk space, and run time memory required for PBPK modeling and 

parameter optimization; therefore, this aspect needs no formal evaluation. 

The accuracy of computational representation of PBPK models is evaluated by 

“debugging,” which refers to the process of error detection in computer programs.  The “bugs” in 

PBPK models written as a program may result either from typing errors or from illogical 

mathematical statements.  To eliminate these errors, it is essential to carefully verify the model 

codes after entry into the computer.  Commercially available simulation software, while 

converting the model codes written in a source language to machine language, can detect 

syntax/language errors related to incorrect writing of model codes.  However, such error 

diagnostic features cannot detect errors associated with incorrect mathematical representation of 

a process written in correct programming language without any typing mistakes.  The onus is on 

the modeler to ensure that the equations are entered correctly using the programming/simulation 

software, and risk assessors cannot be expected to go through the PBPK model codes to perform 

a routine error diagnostic check. Such verification should be done by the developer initially and 

then by individuals not involved in model development, such as peer-reviewers and co-workers 

(Clark et al., 2004). 

The computer implementation of PBPK model need not be evaluated by risk assessors if a 

highly reputable commercial or open source simulation software has been used.  The onus is on 

the model developer to ensure that the computer implementation of the PBPK model is free from 

errors. When the modeler writes his/her own program, the appropriateness of the integration 

algorithm and integration intervals should be justified; similar concerns would exist initially for 

newly developed commercial or open source software. 

3.6. MODEL EVALUATION 

The purpose of model evaluation is to assess the adequacy of the model and its 

parameters to consistently describe the available data sets representing the pharmacokinetics of a 

chemical. A model that has been adequately evaluated would not only capture the critical 
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determinants of the pharmacokinetics of a chemical but also characterize the elements of 

uncertainty associated with the parameters.  

The first step to ensure validity of the PBPK model is to check on the mass balance of the 

chemical in the whole body. The model should not create or destroy matter. Basically, when all 

the tissue levels, blood levels, and any excretion or metabolic transformation levels are added 

they should sum up to the same exposure dose level used in the model. Although trivial, this 

check is important in understanding the sources in the model that would falsely increase or 

decrease the level of the chemical in tissues. Another initial evaluation step is to check the model 

behavior when exposure is set to zero. The zero check is necessary to make sure that the model 

can represent steady-state levels of the chemical and to make sure that this level does not change 

with time in the absence of exposure.  

The PBPK model evaluation to date has not been done rigorously from a statistical 

perspective. The most common approach to model evaluation has involved visual inspection of 

the plots of model predictions (usually continuous and represented by solid lines) with 

experimental values (usually discrete and represented by symbols) against a common 

independent variable (usually time).  The rationale underlying this qualitative approach to model 

evaluation is that the greater the commonality between the predicted and experimental data, the 

greater the confidence in the model structure and parameters.  The correspondence between 

predictions and experimental data should be not only at the level of numbers (e.g., blood 

concentration values) but also at the level of the profile (i.e., bumps and valleys in the 

pharmacokinetic curve).  Because PBPK modeling is not a fitting exercise, model simulations 

are not expected to touch upon each experimental data point.  Rather, the shape of the simulated 

curve should correspond to that of the experimental data, and the simulated data should 

preferably be within two standard deviations of the mean of experimental values, even though 

this is not a rule of thumb used by the modeling community.   

Figure 3-2 shows several examples of visual evaluation of the adequacy of PBPK models.  

The models used in cases A and C would be considered adequate because they simulate the 

behavior of the experimental data even though they do not accurately simulate every single 

experimental data.  On the other hand, models used in cases B and D would not be considered 

adequate, and further work would be required to refine the models, either because they do not 

simulate the profile appropriately (B) or the model simulations are outside two standard 

deviations of the experimental data (D). 
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12 The above approach to model evaluation says nothing about the adequacy of the model 

13 structure or parameters.  It only reflects an individual’s judgment of how closely the model 

14 predicts the observed behaviour.  Evaluating the adequacy of model structure and equations is 

15 fairly straightforward when compared with the evaluation of the model parameter values.  For 

16 example, inadequacies in PBPK model structures can be inferred simply by observing the 

17 simulated and experimental pharmacokinetic profiles.  Figure 3-2 (B) depicts a model whose 

18 structure is inadequate because the simulated profile is not consistent with the experimental data 

19 for the chemical. As a caveat, it is possible that the lack of fit in Figure 3-2 (B) is due to a 

20 problem with the model parameters, not the structure.  If the model cannot fit the 
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pharmacokinetic profiles for any realistic parameter values, or only using values that are 

inconsistent with other data, then one can reasonably conclude that the structure is inadequate.   

This evaluation of model structure provides the developer an opportunity to think about 

the need for additional compartments, critical determinants of disposition, or different 

quantitative descriptions of the phenomena, and to improve the capability of the model, 

accordingly.  A useful way of comparing the experimental and simulated data is to plot the 

residuals (i.e., difference between experimental and simulated data) as a function of time or as a 

function of various controllable variables.  If more than one model fits the experimental data 

equally well, new experiments may be designed to identify the model that more accurately 

predicts the other attributes of the biological system (Kohn, 1995). 

Prior to the discussion about evaluating model parameters, it is important to correct a 

common misunderstanding about what a “validated model” means. A model that has been 

calibrated against one dataset, and that adequately simulates a different data set, can be said to be 

“validated,” but it is only validated to the extent to which those two dataset accurately represent 

the larger population, not in any global sense independent from the data used to develop the 

model. PBPK models are used to extrapolate to other exposure conditions or dosing regimens, 

but here again, only to the extent that the data used to calibrate and test the model are of 

sufficient quality to support the extrapolations.  To avoid giving the impression that a model is 

“validated” to predict outcomes for which it has not been adequately tested, many PBPK 

modelers today prefer to use the terms “calibrated” model (accompanied by a description of the 

data used to calibrate the model) and the “predictive capability” or utility of the model, again 

specifying the data that the model was adequately able to simulate. In this sense, the more quality 

data available to calibrate and test the model, the more confidence one can place in the model’s 

predictive capability. PBPK modelers are in the process of developing better qualitative and 

quantitative descriptors for both models and the data used to develop models, to assist risk 

assessors in their evaluation and application of PBPK models. 

The adequacy of model parameter values may be evaluated in different ways; no single 

method has been accepted or endorsed by the modeling or regulatory community as yet.  

Statistical methods required for evaluating the adequacy of model parameters are based on 

comparison of simulations with experimental data, and depend on whether the objective is to 

perform internal evaluation (in which all model parameters are estimated from the same data 

set), external evaluation (in which different datasets are used for model calibration and testing 
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the predictive capability of the model) or semi-external evaluation (in which some of the model 

parameters are based on the data set).  Although no systematic research effort or guidance is 

available in this regard, there is much interest in developing consistent and acceptable evaluation 

methods, and progress is being made.   

For external evaluations, none of the classical tests (t, Mann-Whitney, two-sample χ2, 

two-sample Kolmogrov, etc.) that determine whether the underlying distributions of the two 

datasets are similar is applicable, since the output processes of almost all real world systems and 

simulations are non-stationary and autocorrelated.  Furthermore, there is a question of whether 

the use of statistical hypothesis tests is even appropriate. Since the model is only an 

approximation of the actual system, a null hypothesis that the system and model are the same is 

clearly false. The more appropriate question is to ask whether or not the differences between the 

system and the model are significant enough to affect conclusions derived from the model. In 

this regard, Haddad et al. (1995) screened various statistical procedures (correlation, regression, 

confidence interval approach, lack fit F test, univariate analysis of variance, and multivariate 

analysis of variance) for their potential usefulness in evaluating the degree of agreement between 

PBPK model simulations and experimental data. According to these authors, the multivariate 

analysis of variance represents the most appropriate statistical test for the purpose of comparing 

PBPK model predictions with experimental data.  For now, however, the visual inspection is the 

most frequently used approach, if not the best approach, to the external evaluation of the 

performance of PBPK models.   

One approach for determining if the level of complexity (number of parameters) in a 

model is justified by the data is to use a nested modeling approach, where the model is reduced 

to a simpler (nested) model when one or more parameters are set to zero.  The increase in 

goodness-of-fit obtained by allowing those parameters to be non-zero can then be evaluated 

statistically using a χ2 statistic, to determine if the additional degrees of freedom afforded by 

those parameters are justified (Collins et al., 1999). 

There is increasing concern about the relevance and usefulness of external evaluation in 

PBPK modeling, particularly as it relates to humans.  External evaluation requires that some of 

the available pharmacokinetic data not be used during model calibration phase, but kept for 

evaluating the performance of the model.  Not everyone is in agreement with such an approach.  

Some people believe that all the data used for model evaluation should be used to improve the 

parameter estimates, so that no data are “wasted” towards that end.  Such an iterative approach to 
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model evaluation and calibration maximizes the use of the available data.  This is particularly an 

issue of relevance to human data since the actual parameters for each individual in a population 

might be different such that a model with a single set of parameters may not be reasonably 

expected to simulate the observed kinetics in all individuals.  Therefore, the process of modeling 

should not only take into account the existing information on parameters, but also be able to 

accommodate the new information based on fits to additional datasets.  In this context, Bayesian 

analysis is being increasingly explored for use in PBPK modeling (Bois et al., 2000a, b; Jonsson 

and Johanson 2001, 2002). In the Bayesian approach, the prior information on parameters is 

updated with new pharmacokinetic data such that the resulting posterior estimates consistently 

describe all data, and support better characterization of the uncertainty and distribution in the 

parameter values. Cross validation is another potentially useful approach in this regard (Keys et 

al., 2003). As used in structure-activity relationship modeling arena (Beliveau et al., 2003), cross 

validation involves using all the available data sets by repeated sub-sampling.  This type of a 

leave-one-out cross validation allows the use of available data both for estimation and evaluation 

of model parameters. It is likely that no single approach will be sufficient or applicable in all 

contexts. Each of these approaches has its merits and limitations, and their applicability for 

PBPK model evaluation depends upon the purpose of the model and data availability.  

PBPK models intended for use in risk assessment should be evaluated to ensure that they 

provide simulations of pharmacokinetic profile consistent with the experimental data and that 

the parameters (point estimates, range of values, or distributions) are appropriate for the 

intended application. 

3.7. SENSITIVITY, UNCERTAINTY, AND VARIABILITY ANALYSES 

The variability, uncertainty, and sensitivity of parameters constituting the PBPK models 

may need to be evaluated, depending on the intended application(s) of the model.   

3.7.1. Sensitivity Analysis 

Sensitivity analysis deals with the quantitative evaluation of how parameters or input 

functions influence the outcome.  Such an analysis conducted in the context of risk assessment 

would identify how each parameter influences the risk estimate and which specific one(s) 

drive(s) the risk estimate (U.S. EPA, 2001).  By identifying the most sensitive parameters, 

sensitivity analysis facilitates focused use of resources for uncertainty and variability analyses. 
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1 Sensitivity analysis in the context of PBPK modeling involves determining the magnitude 

2 of change in pharmacokinetic simulations for a defined change in the input parameters.  The 

3 results of sensitivity analysis are the sensitivity ratios that correspond to the ratio of change in 

4 simulation output (e.g., tissue dose) to change in parameter value.  Figure 3-3 depicts the 

5 sensitivity ratios associated with some input parameters of a PBPK model.  The greater the 

6 absolute value of the sensitivity ratio, the more important the parameter.  In this example, the 

7 sensitivity ratio for breathing rate is the highest of all input parameters, indicating that it is the 

8 most sensitive PBPK model parameter with respect to the dose metric (i.e., parent chemical AUC 

9 in target tissue).  In this case, a sensitivity ratio of 2 associated with the breathing rate signifies 

10 that 1% change in the numerical value of this parameter will lead to a 2% change in the dose 

11 metric (Figure 3-3).   
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14 
15 Figure 3-3. Sensitivity ratios associated with certain input parameters of a 

16 PBPK model. 

17 


18 

19 Sensitivity analysis is informative for identifying the key parameters that are likely to 

20 affect the performance of the model and output such that efficient resource allocation for further 

21 research to enhance confidence in the parameter estimates can be done (e.g., Bois et al., 1991; 

22 Hetrick et al., 1991; Clewell et al., 1994).  A sensitivity analysis is not obligatory for a PBPK 
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model to be acceptable for risk assessment applications, but it greatly strengthens the credibility 

of the model and guides resource allocation for risk assessment-oriented research. 

One caveat when conducting individual parameter sensitivity analyses (such as described 

above) is that they only show the sensitivity of the model predictions to a change in the single 

parameter when all other parameters are held constant. For example, consider the sensitivity to 

breathing rate depicted in Figure 3-3.  What would have happened if one had known, before 

starting the modeling process, that the breathing rate was 20% higher than the default value 

actually used?  Would the predicted dose metric have then turned out to be 40% higher?  Only if 

none of the other parameters were calibrated to the model data during the modeling process.  If 

in each case (default breathing rate vs. 40% higher) one had started with that value of the 

breathing rate, and then calibrated the Vmax and other parameters to the data, the result would be 

different values of Vmax, etc., that would compensate to some extent for the change in Vmax. As a 

simple analogy, consider the fit of a straight line to some data, where the intercept is a “known” 

parameter and the slope is fitted.  After fitting the line one might determine that the “fit” is very 

sensitive to the intercept by showing that if the intercept is changed while holding the slope 

constant (i.e., standard sensitivity analysis), the value of the line equation changes a lot.  But if 

one had started with a larger value of the intercept at the beginning of the “modeling” process, 

fitting the line to the data would have resulted in a lower value for the slope, such that the value 

of the line equation would not change as much as when only the intercept is increased.  In short, 

the parameter estimation process leads to certain correlations between the values of parameters 

that are fixed as inputs and those that are fitted.  Thus, standard sensitivity analysis, while very 

informative about the importance of individual parameters, over-estimates the actual impact of 

changes in individual parameters because it does not account for correlations.  In the case of 

Figure 3-3, it might be that starting with a different breathing rate and then calibrating Vmax, etc., 

would have yielded almost identical values for the dose metric, and that the overall modeling 

process is insensitive to breathing rate, even though the model predictions are sensitive to 

changes in breathing rate when none of the other parameters are changed. 

3.7.2. Variability Analysis 

The focus of a variability analysis is to evaluate the range of values for a parameter 

expected to be present in individuals of a population and its impact on tissue dose simulations.  

PBPK models accounting for individual-specific parameters (e.g., enzyme levels, tissue volumes, 
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body weights, workload) may be constructed to simulate tissue dose variability in populations 

(e.g., Sato et al., 1991; Dankovic and Bailer, 1994).  Alternatively, PBPK models for an average 

individual representing specific subgroups of populations (e.g., adult women, pregnant women, 

lactating women, children) may be constructed by accounting for subgroup-specific 

physiological, biochemical, and physicochemical parameters (e.g., Fisher et al., 1997; Krishnan 

and Andersen, 1998; Corley et al., 2003; Price et al., 2003b).  These analyses, however, would 

not provide the probability or likelihood of a particular output for a population.   

With information such as the tissue dose corresponding to the 95th percentile and 50th 

percentile, the magnitude of the interindividual variability factor can be computed.  For this 

purpose, Monte Carlo simulation approaches based on prior distributions of input parameters 

(physiological parameters, enzyme content/activity with or without the consideration of 

polymorphism) have frequently been used (Thomas et al., 1996; El-Masri et al., 1999; Bogaards 

et al., 2001; Haber et al., 2002; Lipscomb and Kedderis, 2002; Timchalk et al., 2002; Lipscomb 

et al., 2003). This method involves repeated computations using inputs selected at random from 

statistical distributions for each parameter in order to provide a statistical distribution of the 

output, i.e., dose metric (Figure 3-4).  The Monte Carlo approach to variability analysis has also 

helped in evaluating the net impact of the variability of critical biochemical and physiological 

parameters (e.g., Portier and Kaplan, 1989).  

When conducting variability analysis, it is important that correlations in model 

parameters be included in the evaluation.  For example, cardiac output (QC) and breathing rate 

(QA) are expected to vary in proportion to each other, so using independent distributions that 

might give a very high value of QC with a very low value of QA would be unrealistic. On the 

other hand, one could consider the distributions of QC and the distribution of the fAC = QA/Q, and 

multiply the value selected from the fAC distribution by the value selected from the QC 

distribution to obtain the value of QA to be used. 

More recent research has indicated the potential usefulness of Bayesian framework based 

on Markov Chain Monte Carlo simulation (Jonsson and Johanson, 2001, 2002).  This method 

combines prior knowledge about parameters and data from new experimental studies to generate 

posterior parameter distributions, which in turn are used in Monte Carlo simulations for 

conducting variability and uncertainty analyses (Bois, 1999; Johanson et al., 1999; Bernillon and 

Bois, 2000). 
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8 

9 Conducting a variability analysis with a PBPK model is not a prerequisite for its use in 

10 risk assessment applications. The assessment of the impact of parameter variability on tissue 

11 dose, however, is a prerequisite for a PBPK model intended for use in estimating the 

12 interindividual variability factor (pharmacokinetic component). 

13 

14 3.7.3. Uncertainty Analysis 

15 Uncertainty analysis in the context of PBPK modeling refers to the evaluation of the 

16 impact of the lack of precise knowledge about the numerical value of a parameter or model 

17 structure itself on dose metric simulations. The uncertainty regarding model structure and 

18 parameter values may contribute to uncertain predictions of dose metrics, particularly for low­

19 dose exposure situations (Hattis et al., 1990). The uncertainty analysis is particularly useful 

20 when a PBPK model does not adequately simulate the experimental data. Such a situation may 

21 arise due to either lack of precise estimates of parameter values or inadequacy of the model 

22 structure chosen for the study. In these cases, either a quantitative uncertainty analysis or model­

23 directed mechanistic studies should help improve the predictive ability and robustness of the 

24 PBPK model (Clewell and Andersen, 1997; Haddad et al., 1998). 
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1 Quantitative uncertainty analyses of PBPK model have frequently been conducted using 

2 either a Monte Carlo approach or Bayesian framework based on Markov Chain Monte Carlo 

3 simulations with respect to specific endpoints (e.g., amount metabolized, tissue concentration of 

4 parent chemical at a specific time, cancer estimates) (e.g., Farrar et al., 1989; Krewski et al., 

5 1995; Gelman et al., 1996; Elder, 1999). Alternatively, a stochastic response surface method or a 

6 fuzzy simulation approach may be used for uncertainty analysis with PBPK models (Isukapalli et 

7 al., 1998; Nesterov, 2001).  The latter method is particularly useful when statistical distributions 

8 of parameters cannot be defined reliably and only semiquantitative, qualitative, and vague 

9 information is available.   

10 If there is a lack of confidence regarding the numerical value of a parameter (e.g., 

11 imprecision due to the method used for parameter estimation), a quantitative analysis of the 

12 uncertainty associated with parameter(s) of the PBPK model should be conducted.  Such analysis 

13 will provide an indication of the impact on tissue dose simulations of the imprecision or lack of 

14 accurate knowledge of a parameter value.  However, if a PBPK model has been evaluated using 

15 various sets of data (e.g., species, dose levels, routes), then the benefits of uncertainty analysis 

16 are limited.  Particularly, if the model with its set of parameters has been shown to predict 

17 adequately the kinetics of a chemical following various dose levels administered by more than 

18 one route in more than one species, conducting a quantitative uncertainty analysis cannot help 

19 improve any further the closeness of model predictions to experimental data.  In other words, the 

20 improvement of the precision of parameter estimates, after a certain level, may not help improve 

21 the predictive ability of the model.  Models that have been adequately evaluated may therefore 

22 be used for risk assessment applications without detailed uncertainty analysis.  Where possible 

23 and relevant, uncertainty analysis should be performed to strengthen the credibility of the PBPK 

24 model and guide resource allocation to risk assessment-oriented research.   

25 The conduct of sensitivity, uncertainty, and variability analyses should be based on 

26 acceptable statistical methods.  EPA has published guiding principles for Monte Carlo analysis 

27 (U.S. EPA, 1997), but there is no such guidance for Bayesian and Markov Chain Monte Carlo 

28 methods.  When using these methods, care should be taken to ensure that the resulting PBPK 

29 model simulations respect the following basic conditions: 

30 • The numerical values of physiological parameters (representing prior or posterior 
31 distributions) are within known, plausible limits; 

6/29/05 3-26 DRAFT—DO NOT CITE OR QUOTE 




1 • The sum of tissue volumes is lower than the body weight; 

2 • The sum of tissue blood flows is equal to cardiac output; 

3 • The mass balance is respected (chemical absorbed = chemical in body + chemical 

4 eliminated); and 


5 • The covariant nature of the parameters is appropriately respected (e.g., the person 
6 with lowest breathing rate should not be the one receiving the highest cardiac output) 
7 

8 While taking advantage of the sophisticated statistical approaches, it is important to 

9 ensure that the resulting model and parameters are within plausible range or representative of the 

10 reality. 

11 Sensitivity, uncertainty, and variability analyses can help improve the credibility of 

12 PBPK models as well as prioritize research needs to improve the model for risk assessment 

13 applications.  However, such analyses may not be required for all PBPK models intended for 

14 risk assessment applications. 

15 

16 3.8. DEVELOPING PBPK MODELS FOR USE IN RISK ASSESSMENT: 
17 STRATEGIES FOR DEALING WITH DATA-POOR SITUATIONS 

18 3.8.1. Minimal Data Needs for Constructing PBPK Models 

19 When an adequately evaluated PBPK model is not available for the species, life stage, 


20 and route relevant to a risk assessment application, significant resources may be needed to 


21 develop such a model, depending on the chemical, the availability of prior information, and the 


22 complexity of disposition mechanisms being modeled.  The minimal data required for 


23 developing such models for a chemical in any given species are: 


24 • Partition coefficients, 


25 • Biochemical constants, 


26 • Route-specific absorption parameters, and  


27 • In vivo pharmacokinetic data for model evaluation.  

28 


29 As outlined in this chapter, the partition coefficients required for PBPK modeling may be 


30 estimated using the theoretical algorithms found in the literature (Appendix 1).  Their use, 


31 however, should be limited to the domain of validity and the families of chemicals for which 
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such algorithms have been developed and validated.  Biochemical constants such as metabolism 

rates may be obtained using in vitro systems.  Other biochemical parameters, such as binding 

association constants and renal clearance, may be required, depending on the chemical.  

Additionally, route-specific absorption parameters such as the rate of oral absorption and the skin 

permeability constant are required for describing oral absorption and dermal absorption, 

respectively.  Of these, the skin permeability coefficient can be obtained using available 

quantitative structure-activity relationships (QSARs) (Appendix 1).  However, such absorption 

parameters are not required for simulating intravenous administration and inhalation exposures.  

Finally, some in vivo pharmacokinetic data (at a minimum blood concentration time-course data 

at two dose levels) are required for evaluating the PBPK model for a particular route of 

exposure. 

The minimal data set identified above should be available for the species used in the 

critical study. Human models, however, may be constructed with knowledge of species-specific 

blood solubility/binding characteristics.  Other model parameters, including metabolism rates, 

may be either scaled or kept species-invariant according to the current state of knowledge 

(Section 4.5). The availability of the data set for external evaluation in humans, of course, may 

be a limiting factor.  In such cases surrogate data sets may be used for model evaluation 

purposes. 

3.8.2. Surrogate Data for Interspecies and Interchemical Extrapolations 

In the absence of human data for model evaluation purposes, a parallelogram approach 

based on surrogate data has been used successfully.  This approach uses two data sets (e.g. one 

demonstrating the relationship between in vitro and in vivo findings in a test species and the 

other demonstrating the relationship between in vitro human and in vitro test species findings) in 

order to predict the in vivo effects in humans. Accordingly, if human data either cannot be 

collected or is not available for a chemical of interest, it suffices to evaluate a related chemical 

for which such data are available. Jarabek et al. (1994) used this parallelogram approach for 

model development and interspecies extrapolation of the pharmacokinetics of HCFC-123 (2,2-

dichloro-1,1,1-trifluoroethane).  In this case, the authors developed rat PBPK models for HCFC­

123 as well as a structural analog (halothane) by estimating partition coefficients and metabolic 

constants.  Following the evaluation of the rat PBPK model for each of these chemicals, human 

models were constructed. The adequacy of the human model for halothane was evaluated using 
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available pharmacokinetic data and by structural and metabolic analogy.  HCFC-123 was 

assumed to be able to reasonably simulate the in vivo pharmacokinetics in humans, even though 

human data were not available for this chemical for model evaluation purposes (Jarabek et al., 

1994; Williams et al., 1996).  This is one practical way of getting around the lack of human data 

for model evaluation, particularly when external evaluation is intended.  

To deal with situations of lack of data on PODs for closely related chemicals, a family 

approach has been suggested. This approach, proposed by Barton et al. (2000), is based on the 

principle that the acceptable concentrations for related chemicals, particularly metabolites, can 

be derived using data on the parent chemical.  Thus, if the NOAEL for the parent chemical is 

established, there would also have been internal systemic exposures to its metabolites.  By 

determining the external exposure levels for these compounds that result in the same systemic 

exposure, the NOAELs for these compounds can be established.  The determination of the 

internal dose and systemic exposures for the parent chemical and metabolites is accomplished 

using PBPK models, thus facilitating the derivation and establishment of the RfD/RfC with a 

poor database. 

QSAR approaches are also available for constructing inhalation PBPK models for 

volatile organic chemicals in the rat (Beliveau et al., 2003).  Accordingly, the contributions of 

various molecular fragments (CH3, CH2, CH, C, C=C, H, Cl, Br, F, benzene ring, and H in 

benzene ring) toward the parameters of PBPK models have been determined.  With the 

knowledge of the number of the fragments occurring in a given molecule, the partition 

coefficients and metabolic constants required for constructing a first-generation PBPK model can 

be obtained. This QSAR approach is useful to initially develop PBPK models for other 

chemicals, as long as the number and nature of fragments do not exceed the ones in the 

calibration set used in the study (Beliveau et al., 2003). 

Finally, in dealing with data-poor situations, the parameters, algorithms, and references 

provided in the appendices provide a good starting point.  Useful data and equations for PBPK 

modeling may also be found in reliable electronic resources.  For example, Nestorov (1998) 

outlines a web-based resource for PBPK modeling (http://www.capkr.man.ac.uk).  The site 

provides instant access to resources such as data, methodology, and tools necessary to start a 

PBPK modeling effort.  Another site pioneered by Dr. Loizou (England) will become available 

in the near future. 
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1 

2 3.9. EVALUATION OF PBPK MODELS:  SUMMARY 

3 The basic criteria for evaluation of PBPK models, as outlined in Sections 3.1 through 3.7, 

4 are summarized below.  

5 • The structure of a PBPK model intended for risk assessment applications should 

6 contain the target organ (or a surrogate tissue). 


7 • The MBDEs in PBPK models should have units of quantity per time (e.g., mg/hr) or 
8 concentration per time (mg/L-hr-1), and the type of equations chosen to describe 
9 ADME should be justified on the basis of hypothetical or known mechanisms of such 

10 processes. 

11 • The tissue volumes, flow rates, and ventilation:perfusion ratios specified in the model 
12 should be within physiological limits.  Particularly, the sum total of the tissue 
13 volumes should be within the body weight, and the sum total of tissue blood flow 
14 rates should equal cardiac output. 
15 
16 • The power function used for scaling of physiological flows on the basis of body 
17 weight should be within 0.67 and 0.75, unless species- or individual-specific data are 
18 available. 

19 • The power function used for scaling physiological flows and maximal velocity of 
20 metabolism on the basis of body weight should be within 0.67 and 0.75. 

21 • Maximal velocities of metabolism may also be scaled on the basis of body weight, but 
22 measured values for specific enzymes in humans do not generally correlate with body 
23 weight, so the choice of whether and how to scale metabolism is at the discretion of 
24 the modeler. 

25 • Partition coefficients required for PBPK models should be obtained from in vivo data,  
26 in vitro data, or theoretical algorithms in the application domain. 

27 • Biochemical parameters for PBPK models should be estimated using in vivo data or 
28 valid in vitro methods. 

29 • The PBPK model should be implemented using commercially available software.  If 
30 the modeler chooses to write his/her own program, then the appropriateness of the 
31 integration algorithm and integration interval should be justified.   
32 
33 • It is suggested that the PBPK model code be checked for accuracy of units, mass 
34 balance, blood flow balance, and behavior at zero dose.  A model used in a risk 
35 assessment should be accompanied by sufficient documentation to support an 
36 independent evaluation and reconstruction of the model and simulation results. A 
37 more rigorous verification that may be considered by the risk assessor is to 
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1 independently re-code the model to assure that the documentation is thorough and that 
2 there are no “bugs” in the code. 

3 • Evaluation of the PBPK model structure and parameters should be conducted to 
4 ensure that the model adequately predicts the pharmacokinetic behavior (i.e., bumps 
5 and valleys in the concentration vs. time plot) of the chemical and that the parameters 
6 (point estimates, range of values or distributions) consistently describe available data. 
7 
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1 4. APPLICATION OF PBPK MODELS IN RISK ASSESSMENT  

2 


3 4.1. CHOOSING PBPK MODELS APPROPRIATE FOR USE IN RISK ASSESSMENT 

4 Whether or not a PBPK model was initially intended for risk assessment purposes, it can 

5 be useful for risk assessment if it permits simulations of the tissue and blood concentrations of 

6 the toxic moiety (parent chemical or metabolite) associated with the animal toxicity or human 

7 epidemiological study serving as the basis for the derivation of health protective values (e.g., 

8 RfC, RfD, cancer slope factors).  Specifically, the model should be able to simulate the dose 

9 metrics in the test species as well as in humans for the exposure route and exposure scenario of 

10 relevance. For use in risk assessment, a PBPK model:  

11 • Should have been developed or calibrated for species and life stage of relevance to the 
12 risk assessment, 

13 • Must have been peer-reviewed and evaluated for its structure and parameters, 

14 • Should consist of parameters essential for simulating uptake via routes associated 
15 with human exposures as well as the critical study chosen for the assessment, and 

16 • Should be able to provide predictions of the time-course of concentration of toxic 
17 moiety (parent chemical or metabolite) in the target organ or a surrogate 
18 compartment. 
19 

20 Figure 4-1 depicts how the above criteria can be applied for selecting appropriate PBPK models.  

21 Basically, a peer-reviewed PBPK model for the relevant species and life stage consisting of 

22 parameters for simulating relevant routes of exposure and potentially relevant dose metrics is 

23 appropriate for use in risk assessment. 

24 The first criterion, though appearing self-evident, is quite fundamental, because the 

25 models available in the literature sometimes may not have been developed for the specific life 

26 stage and species used in the critical toxicological study forming the basis of a risk assessment.  

27 For example, PBPK models for methanol have been developed in rats, monkeys, and humans 

28 (Horton et al., 1992; Rogers et al., 1993; Bouchard et al., 2001), yet the critical study appears to 

29 be a developmental toxicity study in mice, although a newer two-generation study in rats may 

30 also be important (Clark et al., 2004).  When the PBPK model has not been developed for the life 

31 stage or species used in the study forming the basis of the POD for an assessment, additional  

32 
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3 Figure 4-1. Decision tree for selecting PBPK models appropriate for use in 

4 risk assessment.
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work may have to be undertaken to 

resolve the situation before the PBPK 

model can be used for that particular 

assessment. 

The PBPK model for the 

relevant species and life stage should 

have been peer-reviewed to determine 

the adequacy of the structure, 

parameter estimation methods, and 

the evaluation efforts. If the PBPK 

model for a chemical is available in 

the species and life stage 

corresponding to the study forming 

the basis of an assessment but it has 

not been peer-reviewed, then efforts 

may be directed towards such a 

review. Box 4-1 enlists the 

fundamental questions and issues to 

be considered while conducting a 

peer-review evaluation of the 

adequacy of PBPK models intended 

for risk assessment applications.  

Finally, the peer-reviewed model(s) 

chosen for risk assessment 

applications should be able to provide 

simulations of the tissue dose of the 

toxic moiety or an appropriate dose 

metric for exposure scenarios and 

routes associated with the critical 

study as well as human exposures.   

Peer-reviewed PBPK models 

that facilitate the prediction of dose 

Box 4-1. 

• 

• j

• 

• 

acceptable.) 

• 

:

• 

• 

• 

• 

• 

• 
coefficients valid? 

• 

• 

• 

• 

Questions and issues to be considered while 
evaluating the adequacy of a PBPK model 

Is an appropriate target organ or a surrogate tissue 
identified as one of the model compartments? 

Are the known ma or sites of storage, 
transformation, and clearance included in the 
model structure? 

Is the form of equation used to describe chemical 
uptake justified on the basis of hypothesis of tissue 
uptake of the chemical? 

Have enzymatic processes been described 
appropriately? (If simulated exposure levels are 
well below saturation, use of first-order kinetics is 

Are the units throughout differential equations 
consistent (e.g., concentration should not be in 
mg/ml in one place and M in another)? 

Are the input parameters related to the 
characteristics of the host, chemical, or 
environment? 

Is the sum total of compartment volumes within 
100% of the body weight? 

Do the tissue blood flow rates add up to the cardiac 
output? 

Is the ventilation:perfusion ratio specified in the 
model within physiological limits? 

Is the volume of each tissue compartment within 
known physiological limits? 

Is the approach used to establish partition 

Is the method used for estimating biochemical 
parameters adequate? 

Is the allometric scaling done appropriately? 

Is the integration algorithm used in the study 
known for solving differential equations and 
dealing with stiff and nonstiff conditions? 

Does the shape of the pharmacokinetic curve 
generated by the model match that obtained 
experimentally? 
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1 metrics of chemicals for relevant exposure route and life stage of species used in the critical 


2 study as well as humans are a prerequisite for their use in risk assessments. 


3 


4 4.2. EVALUATION OF DOSE METRICS FOR PBPK MODEL-BASED ASSESSMENTS 

5 When using PBPK models in risk assessment (RfD, RfC, and unit risk estimates), the 


6 basic data needed are: 


7 1. POD and critical effect from one or more key studies,  

8 2. Peer-reviewed PBPK model for the relevant test species and humans, and 

9 3. Dose metric appropriate for the risk assessment. 
10 

11 The methods and challenges associated with the identification of critical effects and 

12 PODs for an assessment remain the same regardless of whether one uses PBPK models or not.  

13 The approaches for identifying PODs can be found elsewhere (U.S. EPA, 1994, 2005a).  The 

14 criteria and issues associated with the selection of PBPK models useful for risk assessment were 

15 considered in the previous section.  The third data need noted above, i.e., the identification of the 

16 appropriate dose metric, is a key aspect determining the use of PBPK models in risk assessment.   

17 The dose metric, or the appropriate form of chemical closely associated with the toxicity, 

18 varies from chemical to chemical, depending on the MOA and critical effect.  The dose metric 

19 for PBPK-based risk assessment is chosen following the identification of the potential toxic 

20 moiety and evaluation of the relationship with the end point of concern.  Analysis of available 

21 information on MOA of a chemical along with descriptive toxicity data from various studies, 

22 including those using inhibitors or inducers of hepatic metabolism, should be useful in 

23 identifying the potential toxic moiety (parent chemical or metabolite).  Further, the available data 

24 on closely related chemicals may be used to infer the likely toxic moiety.  If the induction of 

25 toxic effects by a chemical is not altered following treatment with a specific inhibitor of hepatic 

26 metabolism, then it would implicate the parent chemical as the toxic moiety.  Alternatively, if the 

27 induction of the rate of metabolism enhances the extent of toxic effects produced, it would 

28 indicate the metabolite as the toxic moiety.  Similarly, the toxicity data for various exposure 

29 routes and modes of administration may be compared to infer the potential toxic moiety (IPCS, 

30 2001). 
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After the potential toxic moiety has been identified, the appropriate measure of tissue 

exposure to the toxic moiety should be chosen (Figure 4-2).  For example, the peak concentration 

has been related to neurotoxic effects of solvents (e.g., Bushnell, 1997; Benignus et al., 1998; 

Pierce et al., 1998; MacDonald et al., 2002), and concentration of trichloroethylene at the time of 

testing correlated with effects on behavioural and visual functions (Boyes et al., 2000).  Tissue 

concentrations of TCDD measured during a critical period of gestation have been reported to 

predict the intensity of developmental responses (Hurst et al., 2000).  Gender-specific genotoxic 

effects of benzene in mice are related to differences in the rate of oxidative metabolism (Kenyon 

et al., 1996). 

For chronic effects of chemicals, the integrated concentration of the toxic form of 

chemical in target tissue over time (i.e., AUC) is often considered a reasonable dose metric 

(Andersen et al., 1987; Collins, 1987; Voisin et al., 1990; Clewell et al., 2002).  For carcinogens 

producing reactive intermediates, the amount of metabolite produced per unit time and the 

amount of metabolite in target tissue over a period of time (e.g., mg metabolite/L tissue during 

24 hours) have been used as dose metrics (Andersen and Dennison, 2001).  For developmental 

effects, the dose surrogate is defined in the context of window of susceptibility for a particular 

gestational event (e.g., Welsch et al., 1985). Although the AUC and rate of metabolite formation 

figure among the most commonly investigated dose metrics, other surrogates of tissue exposure 

may also be appropriate for risk assessment purposes, depending on the chemical and its MOA 

(e.g., maximal concentration of the toxic moiety, duration and extent of receptor occupancy, 

macromolecular adduct formation, or depletion of glutathione) (Clewell et al., 2002).  Table 4-1 

lists the dose metrics used successfully in a number of PBPK-based cancer and noncancer risk 

assessments.  

When the appropriate dose metric cannot be identified readily, the evaluation of the 

relationship with the end point of concern should be undertaken with each of the dose metrics in 

order to identify the one that exhibits the closest or the best association (e.g., Andersen et al., 

1987; Kirman et al., 2000).  This becomes particularly important when there are little or 

confusing data on the plausible MOA of the chemical.  At a minimum, the appropriate dose 

metric can be identified as the one that demonstrates a consistent relationship with positive and 

negative responses observed at various dose levels, routes, and scenarios in a given species.  In 
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1 Table 4-1. Dose metrics used in PBPK model-based cancer and noncancer 
2 risk assessments 

Chemical Endpoint Dose metric Reference 
Acrylonitrile Brain tumors Peak metabolite Kirman et al. (2000) 

concentration in target 
tissue 

Bromotrifluoromethane Cardiac sensitization Concentration of parent Vinegar and Jepson (1996) 
chemical at the end of 
exposure 

Butoxyethanol (2-) Forestomach lesions and 
tumors 

Levels of butoxyethanol/ 
butoxy acetic acid in 
forestomach 

Poet et al. (2003) 

Chloroform Liver cancer 

Hepatic effects and kidney 
tumor 

Amount of metabolites 
covalently bound to 
biological macromolecules 
per L liver per day; % cell 
kill/day 

Reitz et al. (1990) 
Meek et al. (2002) 

Maximal rate of 
metabolism per unit kidney 
cortex volume 

Chloropentafluorobenzene Liver toxicity AUC of parent chemical in 
liver 

Clewell and Jarnot (1994) 

Dichlorofluoroethane Cardiac sensitization Concentration of parent Vinegar and Jepson (1996) 
chemical at the end of 
exposure 

1,4-Dioxane Liver tumors Time-weighted average 
concentration in liver over 
lifetime 

Leung and Paustenbach 
(1990) 

Liver AUC Reitz et al. (1990b) 
Ethyl acrylate Forestomach tumors Tissue-specific glutathione Frederick et al. (1992) 

depletion 
Ethylene glycol ethers Developmental toxicity Peak concentration and 

average daily AUC of the 
Sweeney et al. (2001) 

alkoxyacetic acid 
(metabolite) in blood 

Formaldehye Cancer DNA-protein crosslinks Casanova et al. (1996); 
Schlosser et al. (2003) 

Heptafluoropropane Cardiac sensitization Concentration of parent Vinegar and Jepson (1996) 
chemical at the end of 
exposure 

Isopropanol Neurobehavioral effects Peak blood concentration Gentry et al. (2002)
 Developmental/ AUC of isopropanol and its Gentry et al. (2002) 

reproductive effects metabolite (acetone) 
Methoxyacetic acid Developmental effects AUC of parent chemical Clarke et al. (1992, 1993) 

(gestational day 11) 
Maximal concentration of Welsch et al. (1995) 
parent chemical (g, day 8) 

Methyl chloroform Hepatic effects Area under the liver 
concentration vs. time 

Reitz et al. (1988a) 

curve 
Methyl mercury Neurological effects Fetal brain concentrations Gearhart et al. (1995) 
Methyl methacrylate Nasal lesions Amount metabolized/time Andersen et al. (1999, 

2002) 
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1 Table 4-1. Dose metrics used in PBPK model-based cancer and noncancer 
2 risk assessments (continued) 

Chemical Endpoint Dose metric Reference 
Methylene chloride Cancer Rate of glutathione Andersen et al. (1987) 

metabolites produced/L 
liver/time 

Pentafluoroethane Cardiac sensitization Concentration of parent 
chemical at the end of 

Vinegar and Jepson (1996) 

exposure 
Styrene Lung tumors (mouse) Steady state concentration 

of ring oxidation 
Cruzen et al. (2002) 

metabolite mediated by 
CYP2F 

TCDD Biochemical responses Body burden Kim et al. (2002) 
 Cancer risk Time-weighted receptor Andersen  et al. (1993);  

occupancy 

Up/down regulation of 
receptor occupancy 

Portier et al. (1993); 

Number of cells induced Conolly and Andersen 
(1997) 

Toluene Behavioral effects Brain concentrations at the van Asperen et al. (2003) 
time of testing 

Trichloroethylene Renal toxicity Metabolite production/L Barton and Clewell (2000) 
kidney/day 

 Neurotoxicity Blood concentration of 
metabolite 

Barton & Clewell (2000) 

(trichloroethanol) 
Cancer (liver lung and 
kidney) 

Amount 
metabolized/kg/day; AUC 
for trichloroacetic acid or 

Fisher and Allen (1993); 
Clewell et al. (2000) 

dichloroacetic acid in 
plasma; production of 
thioacetylating 
intermediate from 
dichlorovinylcysteine in 
kidney 

Trifluoroiodomethane Cardiac sensitization Concentration of parent 
chemical at the end of 

Vinegar and Jepson (1996) 

exposure 
Vinyl acetate Olfactory, degeneration 

and tumor development 
Intracellular pH change 
associated with the 
production of acetic acid; 
proton concentration in 
olfactory tissue 

Bogdanffy et al. (1999, 
2001) 

Vinyl chloride Angiosarcoma mg metabolized/L liver; 
mg metabolite produced/L 
liver/day 

Clewell et al. (2001); 
Reitz et al. (1996b) 

3 AUC = area under the curve 
4 

5 
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other words, the level of the dose metric should be lower for exposure conditions with no effect 

and higher for toxic exposures, regardless of the route and exposure scenario (Clewell et al., 

2002). 

Where there is inadequate basis for giving priority to one dose metric over another, the 

most conservative one (the dose metric producing the highest risk or lowest acceptable exposure 

level) should be used in order to be health protective (Clewell et al., 2002).  The use of 

appropriate dose metric helps to reconcile route and species differences in cancer responses, 

provided there are no pharmacodynamic differences. There has been at least one instance in 

which PBPK model-derived dose measures could not reconcile rat and mouse kidney tumor data 

(Smith et al., 1995), indicating the significant role of factors other than the target tissue exposure 

to toxic moiety. 

The following section describes the various plausible applications of PBPK models in 

risk assessment.  These applications relate to high-dose to low-dose extrapolation, interspecies 

extrapolation, intraspecies extrapolation, route-to-route extrapolation, and duration extrapolation 

as required for RfD derivation, RfC derivation, and cancer risk assessment. 

4.3. EXAMPLES OF THE USE OF PBPK MODELS IN RISK ASSESSMENT 

4.3.1. High-Dose to Low-Dose Extrapolation 

PBPK models facilitate high-dose to low-dose extrapolation of tissue dosimetry by 

accounting for the dose-dependency of relevant processes (e.g., saturable metabolism, enzyme 

induction, enzyme inactivation, protein binding, and depletion of glutathione reserves) (Clewell 

and Andersen, 1997). The description of metabolism in PBPK models has frequently included a 

capacity-limited metabolic process that becomes saturated at high doses.  Nonlinearity arising 

from mechanisms other than saturable metabolism, such as enzyme induction, enzyme 

inactivation, depletion of glutathione reserves, and binding to macromolecules, have also been 

described with PBPK models (e.g., Clewell and Andersen, 1997; Krishnan et al., 1992).  A 

PBPK model intended for use in high-dose to low-dose extrapolation should have the equations 

and parameters describing dose-dependent phenomena if dose-dependence occurs in the range of 

interest or assessment.  Because the determinants of nonlinear behavior may not be identical 

across species and age groups (e.g., maximal velocity for metabolism, glutathione 

concentrations), these parameters are required for each species/age group.  During the conduct of 
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high-dose to low-dose extrapolation, no change in the parameters of PBPK model is required 

except for the administered dose or exposure concentration. 

An example of high-dose to low-dose extrapolation is presented in Figure 4-3.  In this 

figure, both the blood AUC and the amount metabolized over a period of time (12 hr) are plotted 

as a function of exposure concentrations of toluene.  For conducting high-dose to low-dose 

simulation in this particular example, only the numerical value of the exposure concentration 

(which is an input parameter for the PBPK model) was changed during every model run.  All 

other model parameters remained the same.  The model simulations shown in Figure 4-3 indicate 

the nonlinear nature of blood AUC as well as the amount of toluene metabolized per unit time in 

the exposure concentration range simulated. In such cases, the high-dose to low-dose 

extrapolation of tissue dosimetry should not be conducted assuming linearity; rather it should be 

performed using tools such as the PBPK models. 

4.3.2. Interspecies Extrapolation 

The application of PBPK models for interspecies extrapolation of tissue dosimetry is 

performed in several steps.  First, a rodent model is developed to describe the uptake and 

disposition of the chemical in question by integrating information on the physiological, 

biochemical, and physicochemical parameters.  Then, a priori predictions of the PBPK model 

are compared with experimental observations to evaluate the adequacy of the structure and the 

parameter estimates of the rodent model.  The next step involves using species-specific or 

allometrically scaled physiological parameters in the model and replacement of the chemical-

specific parameters with appropriate estimates for the species of interest (e.g., humans). Thus, in 

this approach, the qualitative determinants of pharmacokinetics are considered to be invariant 

among the various mammalian species.  Qualitative differences between species, if any, can also 

be factored into the existing structure of PBPK models (e.g., if different metabolic pathways 

existed among species). 

For conducting interspecies extrapolation of pharmacokinetic behavior of a chemical, 

quantitative estimates of model parameter values (i.e., partition coefficients, physiological 

parameters, and metabolic rate constants) in the second species are required.  The tissue:air 

partition coefficients of chemicals appear to be relatively constant across species, whereas 

blood:air partition coefficients show some species-dependent variability.  Therefore, the 

tissue:blood partition coefficients for human PBPK models have been calculated by dividing the  
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1 

2 
3 Figure 4-3. High-dose to low-dose extrapolation of dose metrics using PBPK 

4 model for toluene. Inhalation exposures were for 4 hr and AUCs and amount 

5 metabolized were calculated for 12 hr.  Based on Tardif et al. (1997).


6 


7 rodent tissue:air partition coefficients by the human blood:air partition values (Krishnan and 


8 Andersen, 2001). The tissue:air and blood:air partition coefficients for volatile organic 


9 chemicals may also be predicted using appropriate data on the content of lipids and water in 


10 human tissues and blood (Poulin and Krishnan, 1996a, b). 

11 Whereas the adult physiological parameters vary coherently across species, the kinetic 

12 constants for metabolizing enzymes do not necessarily follow any type of readily predictable 

13 pattern, making the interspecies extrapolation of xenobiotic metabolism difficult.  Therefore, the 

14 metabolic rate constants for xenobiotics should be obtained in the species of interest.  In vivo 

15 approaches for determining metabolic rate constants are not always feasible for application in 
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humans.  The alternative is to obtain such data under in vitro conditions (e.g., Lipscomb et al., 

1998, 2003). A parallelogram approach may also be used to predict values for the human PBPK 

model on the basis of metabolic rate constants obtained in vivo in rodents as well as in vitro 

using rodent and human tissue fractions (Reitz et al., 1988b; Lipscomb et al., 1998).  Alternately, 

for chemicals exhibiting high affinity (low Km) for metabolizing enzymes, Vmax has been scaled 

to the 0.75 power of body weight, keeping the Km species invariant.  This approach may be 

useful as a crude approximation, but it should be used only when other direct measurements of 

metabolic parameters are not available or feasible.  

An example of rat-human extrapolation of the kinetics of toluene using a PBPK model is 

presented in Figure 2-2. Here the structure of the PBPK model developed in rats was kept 

unchanged, but the species-specific parameters were determined either by scaling or 

experimentally, as described above (Tardif et al., 1997).  The model was then able to predict 

accurately the kinetics of toluene in humans (Figure 2-2).  Whenever the human data for a 

particular chemical are not available for evaluation purposes, a corollary approach permitting the 

use of human data on similar chemicals may be attempted (Jarabek et al., 1994). 

4.3.3. Route-to-Route Extrapolation 

There are two different approaches to route extrapolation involving PBPK models.  The 

first one is to use an animal model to extrapolate a POD for one route to POD by another route 

on the basis of equivalent dose metric.  The second approach would involve the estimation of the 

human POD for one route from the available animal POD for another route on the basis of 

equivalent dose metric.   

The extrapolation of the kinetic behavior of a chemical from one exposure route to 

another is performed by adding appropriate equations to represent each exposure pathway.  For 

simulating the intravenous administration of a chemical, a single input representing the dose 

administered to the animal is included in the equation for mixed venous concentration.  Oral 

gavage of a chemical dissolved in a carrier solvent may be modeled by introducing a first-order 

or a zero-order uptake rate constant, and dermal absorption has been modeled by including a 

diffusion-limited compartment to represent skin as a portal of entry (Krishnan and Andersen, 

2001). After the equations describing the route-specific entry of chemicals into systemic 

circulation are included in the model, it is possible to conduct extrapolations of pharmacokinetics 

and dose metrics.  This approach is illustrated in Figure 4-4 for inhalation → oral extrapolation 
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1 

2 

3 Figure 4-4. Oral-to-inhalation extrapolation of the pharmacokinetics of 

4 chloroform on the basis of same AUC in blood (7.06 mg/L-hr).  The oral dose 

5 was 1 mg/kg and the inhaled concentration was 83.4 ppm (4 hr).  Based on Corley 

6 et al. (1990). 


7 


8 of the kinetics of chloroform in rats.  For simulating the inhalation pharmacokinetics, the oral 

9 dose was set to zero, whereas for simulating chloroform kinetics following oral dosing the 

10 inhaled concentration was set to zero (Figure 4-4).  Accordingly, 4-hr inhalation exposure to 83.4 

11 ppm chloroform is equal to an oral dose of 1 mg/kg, as determined with PBPK models on the 

12 basis of equivalent dose metric (i.e., parent chemical AUC in blood) (Figure 4-4). 

13 
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4.3.4.  Duration Adjustment 1 

On the basis of equivalent dose metric, the duration-adjusted exposure values can be 2 

obtained with PBPK models (Andersen et al., 1987; Brodeur et al., 1990).  Accordingly, the 3 

AUC of a chemical for the exposure duration of the critical study is determined initially using the 4 

PBPK model, and then the atmospheric concentration for a continuous exposure (during a day, 5 

window of exposure, or lifetime) yielding the same AUC is determined by iterative simulation.  6 

Figure 4-5 depicts an example of 4 hr-to-24 hr extrapolation of the pharmacokinetics of toluene 7 

in rats, based on equivalent 24-hr AUC (2.4 mg/L-hr).  The rats exposed to 50 ppm for 4 hr and 8 

9.7 ppm for 24 hr of toluene would receive the same dose metric. 9 

 10 

 11 

 12 
Figure 4-5.  Duration adjustment (4 hr to 24 hr) of toluene exposures in rats, 13 
based on equivalent AUC (2.4 mg/L-hr).  The rats were exposed to 50 ppm 14 
toluene for 4 hr and 9.7 ppm for 24 hr.  Based on Tardif et al. (1997). 15 
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1 4.3.5. Intraspecies Extrapolation 

2 Intraspecies extrapolation of the dose metric is conducted using PBPK models with the 

3 sole intent of estimating the magnitude of the interindividual variability factor (pharmacokinetic 

4 component) for RfC and RfD derivations. In this regard, the population distributions of 

5 parameters, particularly those relating to physiology and metabolizing enzymes, are specified in 

6 a Monte Carlo approach, such that the PBPK model output corresponds to distributions of dose 

7 metric in a population. Using the Monte Carlo approach, repeated computations based on inputs 

8 selected at random from statistical distributions for each input parameter (physiological 

9 parameters, enzyme content/activity with or without the consideration of polymorphism) are 

10 conducted to provide a statistical distribution of the output, i.e., tissue dose. Using the 

11 information on the dose metric corresponding to the 95th percentile and 50th percentile for 

12 unimodel, normal distribution (Naumann et al., 2001), the magnitude of the inter-individual 

13 variability factor can be computed for risk assessment purposes (Figure 4-6). 

14 

15 
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16 

17 Figure 4-6. Estimation of the interindividual factor from the 50th (median) 
18 and 95th percentile values of a dose metric simulated with a probabilistic 
19 PBPK model. 
20 

21 
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1 Even though several past efforts have characterized the impact of the distributions of 


2 parameters in adult population, such variability analyses should also account for the life stage­


3 specific changes in physiology, tissue composition, and metabolic activity (reviewed in 


4 O’Flaherty, 1994, Corley et al., 2003). 


5 


6 4.3.6. RfD Derivation 

7 When a PBPK model is available for the oral route in test species and adult humans, RfD 

8 derivation has been accomplished as follows (e.g., U.S. EPA, 1999b): 

9 1. The PBPK model with the parameters of the test species is exercised to determine the 
10 dose metric associated with the POD (NOAEL, LOAEL, or BMD), 

11 2. The human PBPK model is exercised to determine the oral dose that is associated 
12 with the dose metric established in step (1) above, and 

13 3. The resulting oral dose is divided by the appropriate uncertainty factors to establish 
14 the RfD. 
15 

16 A variant of the above approach involved dividing the dose metric associated with the 

17 POD by the uncertainty factors before exercising the human model to determine equivalent doses 

18 (e.g., Gentry et al., 2002). The outcome is essentially the same if the uncertainty factors are 

19 being applied to doses (internal or external) in the linear range of pharmacokinetic processes in 

20 the species of interest. Clewell et al., (2002) suggest that the uncertainty factors are more 

21 appropriately applied to the dose metric rather than to the external dose.  The difference in 

22 outcome between the two approaches is likely to exist if the POD is in the partially or completely 

23 saturating range. Because the Agency has traditionally applied the uncertainty factors to the 

24 external dose and not to the internal dose, it may be useful to undertake a systematic evaluation 

25 of the outcome of applying the uncertainty factors to the external and internal doses for various 

26 chemicals and situations. 

27 In the PBPK model-based approach to RfD derivation, the magnitude of uncertainty 

28 factors used is identical to that of the conventional approach except that the animal-to-human 

29 uncertainty factor is reduced to three to account for the pharmacodynamic aspect (e.g., Clewell et 

30 al., 1997; Gentry et al., 2002).   

31 The RfD derivation for ethylene glycol monobutyl ether exemplifies the current approach 

32 of PBPK model application (U.S. EPA, 1999b).  In this case, the LOAEL identified in an animal 

6/29/05 4-16 DRAFT—DO NOT CITE OR QUOTE 




1 study (59 mg/kg-d) was provided as input to the PBPK model to determine the maximal 

2 concentration of the metabolite, butoxy acetic acid in blood (BAAmax) (Corley et al., 1997). The 

3 dose metric (BAAmax) associated with LOAEL was established in the test species (103 FM). The 

4 human PBPK model was then run to determine the exposure dose that would give the target dose 

5 metric (103 µM) (Corley et al., 1997). The resulting human-equivalent dose of 7.6 mg/kg-d was 

6 divided by the appropriate uncertainty factors (30; 10 for interindividual differences and 3 for 

7 LOAEL-to-NOAEL extrapolation) to establish the RfD (0.3 mg/kg-d).  In this particular case, 

8 the interspecies pharmacodynamic factor was set to 1 because in vitro studies suggested that 

9 humans are less sensitive than rats to the hematologic effects of ethylene glycol monobutyl ether 

10 (U.S. EPA, 1999b). 

11 When the BMD is available, a similar approach is used to establish the RfD.  In the case 

12 of ethylene glycol monobutyl ether, initially the dose metric associated with the BMD was 

13 established (BAAmax = 64 FM) and then the human PBPK model was used to back-calculate the 

14 equivalent dose (5.1 mg/kg-d).  Using the appropriate uncertainty factor (10 for interindividual 

15 variability), the RfD was derived (0.5 mg/kg-d) (U.S. EPA, 1999b).  If the human PBPK model 

16 was probabilistic in nature, accounting for the population distribution of parameters 

17 (biochemical, physiological, and physicochemical), the pharmacokinetic component of the 

18 interindividual variability factor could be addressed.  Such a PBPK model-based assessment of 

19 interindividual variability factor in the derivation of the RfD has been shown with methyl 

20 mercury (Clewell et al., 1999). 

21 

22 4.3.7. RfC Derivation 

23 When an inhalation PBPK model is available for the test species and humans, the HEC is 

24 derived as follows: 

25 1. The PBPK model with the parameters of the test species is run to determine the dose 
26 metric associated with the POD (unadjusted or duration-adjusted NOAEL, LOAEL, 
27 BMC), and 

28 2. The PBPK model with the parameters for an average individual is run to determine 
29 the continuous exposure concentration that is associated with the dose metric 
30 established in step (1) above. 
31 

32 Subsequently, appropriate uncertainty factors are used the same way as in the conventional 

33 approach (e.g., Clewell et al., 1997; Gentry et al., 2002; also see Section 4.3.6). 
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The RfC derivations for m-xylene and vinyl chloride exemplify the application of PBPK 

models. In the case of m-xylene, using the adjusted NOAEL of 39 mg/m3 as input to the rat 

PBPK model, the steady-state blood concentration was established (0.144 mg/L) (Tardif et al., 

1997). The human model was then run to determine the exposure concentration yielding that 

same dose metric (HEC = 41 mg/m3) (U.S. EPA, 2003). In an alternative approach, the dose 

metric associated with the unadjusted NOAEL (217 mg/m3, 6 hr/d, 5 d/wk, 13 wks) in the rat 

was determined using the PBPK model (time-weighted average blood concentration = 0.198 

mg/L). Then, the human PBPK model was used to determine the 24-hr exposure concentration 

that would produce this target dose metric (39 mg/m3). Dividing this value by the appropriate 

uncertainty factors (3 for interspecies pharmacodynamic differences, 10 for interindividual 

variability, 3 for subchronic to chronic extrapolation, and 3 for database deficiency), the RfC was 

determined (0.1 mg/m3). 

In the case of vinyl chloride, the RfC was derived from the NOAEL for the oral route 

(U.S. EPA, 2000b). The PBPK model was initially used to derive the dose metric associated 

with the rat NOAEL (0.13 mg/kg-d).  Then, the human PBPK model was exercised to determine 

the continuous exposure concentration associated with the same dose metric (2.5 mg/m3) 

(Clewell et al., 1995). Using a total uncertainty factor of 30 (3 for toxicodynamic component of 

IUF, 10 for interindividual variability factor), the RfC was established (0.1 mg/m3). 

If the available human PBPK model is probabilistic in nature, accounting for the 

population distribution of parameters (biochemical, physiological, and physicochemical), the 

magnitude of the interindividual variability factor can be estimated (Delic et al., 2000).  In that 

case, the interindividual variability factor will be set to 3 (to account only for pharmacodynamic 

differences). 

4.3.8. Cancer Risk Assessment (unit risk estimates, RfC, and RfD) 

When data for the MOA in a cancer risk assessment suggest a threshold (curvilinear) 

dose-response relationship, the applications of PBPK models are similar to those in the 

reference dose process (i.e., RfD and RfC derivation).  If a linear dose-response model is 

more applicable, or the MOA is unknown, then the following steps describe uses for a PBPK 

model (e.g., Andersen et al., 1987): 

6/29/05 4-18 DRAFT—DO NOT CITE OR QUOTE 




1 

2 1. The relationship between administered dose or exposure concentration and dose 

3 metric is established for the test species using PBPK model, 


4 2. The quantitative relationship between dose metric and the cancer incidence observed 
5 in the bioassay(s) is characterized to estimate the dose metric-based slope factor, and 

6 3. The potential doses or exposure concentrations yielding the dose metric associated 
7 with various levels of risk (e.g., 1 × 10-6) are back-calculated using the human PBPK 
8 model. 
9 

10 For assessing the cancer risk associated with human exposures, the exposure 

11 concentration is provided as input to human PBPK model to simulate the dose metric, which is 

12 then multiplied with the dose metric-based slope factor.  In the cancer risk assessments using 

13 PBPK models, it is assumed that the tissue response associated with a given level of dose metric 

14 in the target tissue is the same in test animals and in humans (e.g., Andersen et al., 1987).  It is a 

15 reasonable assumption that can be revised as a function of species-specific mechanistic 

16 information available for a given chemical. 

17 The demonstration of the applicability of PBPK models in cancer risk assessment was 

18 first accomplished with dichloromethane, which caused liver and lung tumors in mice exposed to 

19 2,000 or 4,000 ppm 6 hr/d, 5 d/wk for lifetime (Andersen et al., 1987).  In this case, the mouse 

20 PBPK model was used to calculate the tissue dose of metabolites and parent chemical arising 

21 from exposure scenarios comparable to those of the cancer bioassay study, and their relationship 

22 to the observed tumor incidence was then examined.  Because the parent chemical is nonreactive, 

23 Andersen et al. (1987) considered it an unlikely candidate responsible for the tumorigenicity. 

24 Hence the relationship between the tissue exposure to its metabolites and tumor incidence was 

25 examined (Table 4-2). Whereas the dose metric based on oxidative pathway varied little 

26 between 2,000 and 4,000 ppm, the flux through the glutathione pathway increased with 

27 increasing dose of dichloromethane and corresponded well with the degree of dichloromethane­

28 induced tumors at these exposure concentrations.  

29 The model prediction of the target tissue dose of the glutathione conjugate resulting from 

30 6-hour inhalation exposures to 1–4,000 ppm dichloromethane is presented in Figure 4-7 

31 (Andersen et al., 1987). The estimation of target tissue dose of dichloromethane-glutathione 

32 conjugate by linear back-extrapolation gives rise to a 21-fold higher estimate than that obtained 

33 by the PBPK modeling approach. This discrepancy arises from the nonlinear behavior of  
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1 Table 4-2. Relationship between tumor prevalence and dichloromethane 
2 metabolites produced by microsomal and glutathione pathway for the 
3 bioassay conditions (methylene chloride-dose response in female mice) 
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4 a Tissue dose is cumulative daily exposure (mg metabolized/volume tissue/day). 

5 

6 Source:  Adapted from Andersen et al. (1987). 
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9 Figure 4-7. PBPK model predictions of glutathione-pathway metabolites in 

10 liver in mice.  The three curves are for a linear extrapolation from the bioassay 
11 exposures of 2,000 and 4,000 ppm (upper curve), the expected tissue dose-based 
12 on model parameters for the mouse (middle line), and the expected dose expected 
13 in humans, based on human model parameters (bottom line).  Similar curves were 
14 published in Andersen et al. (1987). The curvature occurs because oxidation 
15 reactions that are favored at low inhaled concentrations become saturated as 
16 inhaled concentration increases above several hundred ppm.  

17 
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1 dichloromethane metabolism at high-exposure concentrations. At exposure concentrations 

2 exceeding 300 ppm, the cytochrome P-450-mediated oxidation pathway is saturated, giving rise 

3 to a corresponding disproportionate increase in the flux through glutathione conjugation 

4 pathway. By accounting for the species-specific differences in metabolism rates and physiology 

5 in the PBPK model, the target tissue dose for humans was estimated to be some 2.7 times lower 

6 than that for the mouse.  The target tissue dose-based slope factor has subsequently been used for 

7 characterizing the cancer risk associated with human exposures (Andersen et al., 1987; Reitz et 

8 al., 1989; Haddad et al., 2001).  The case of dichloromethane exemplifies how PBPK models can 

9 be used for improving the dose-response relationship on the basis of appropriate dose metrics, 

10 thus leading to scientifically sound conduct of interspecies and high-dose to low-dose 

11 extrapolations essential for cancer risk assessments. 

12 

13 4.3.9. Mixture Risk Assessment 

14 PBPK models permit the risk assessment of chemical mixtures by facilitating the 

15 simulation of change in dose metrics due to multichemical interactions (Haddad et al., 2001).  

16 For conducting tissue dosimetry-based assessments for mixtures, adequately evaluated PBPK 

17 models for the mixture in the test species and in humans are required.  Further, the health­

18 protective values for the individual chemicals (e.g., slope factor, RfD, RfC) should be known.  

19 The approach for using PBPK models in risk assessment of mixtures of systemic toxicants or 

20 carcinogens exhibiting threshold mechanism of action, would consist of (Haddad et al., 2001): 

21 1. Characterizing the dose metrics associated with the RfC or RfD of mixture 

22 components, 


23 2. Obtaining predictions of dose metrics of each mixture component in humans, based 

24 on information on exposure levels provided as input to the mixture PBPK model; and 


25 3. Determining the sum total of the ratios of the results of steps (1) and (2) for each 

26 component during mixed exposures. 

27 


28 Notationally, for chemicals in mixture acting on the same target organ: 


Cn 

∑
= 

= 
i 1 

itissue . exp, , HI 
C
 , . , i ref tissue 

29 

30 
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1 

2 where HI is the hazard index, Ctissue,exp,i refers to the tissue concentration of the dose metric of 

3 component i predicted in the experimental animal at the POD using PBPK model that accounts 

4 for multiple interactions occurring in the mixture, and Ctissue,ref,i is the dose metric associated with 

5 human exposure to the RfD or RfC of component i. 

6 

7 Similarly, for carcinogens with slope factor (Haddad et al., 2001): 

8 1. The dose metric-based slope factor should be established for each component using 

9 the animal PBPK model, 


10 2. The dose metric associated with human exposure concentrations should be 

11 established using mixture PBPK models, and 


12 3. The results of steps (1) and (2) should be combined to determine the potentially 

13 altered cancer response during mixed exposures. 

14 


15 Notationally,  


16 

∗( ) = ∑q , , 17 d P tissue i ⋅ d tissue i 

i 

18 

19 where P(d) is the probability of excess cancer incidence in an exposed population, q*i,tissue = dose 

20 metric-based cancer slope factor for each of the mixture components (i = 1,2, …, n), and di,tissue 

21 refers to the dose metric for each mixture component simulated using PBPK models that account 

22 for multi-chemical interactions. 

23 Risk assessments based on the use of PBPK models for single chemicals and mixtures, as 

24 detailed in Section 4.3, account for only the pharmacokinetic aspect or, more specifically, target 

25 tissue exposure to toxic moiety. If these tissue exposure simulations are combined with 

26 pharmacodynamic models, then better characterization of dose-response relationships and 

27 prediction of PODs (NOAEL, BMD, BMC) may become possible. 

28 

29 4.4. LINKAGE TO PHARMACODYNAMIC MODELS 

30 The identification of PODs by simulation may become possible with the use of BBDR 

31 models.  These models would require the linkage of quantitative descriptions of 

32 pharmacokinetics and pharmacodynamics via mechanism of action.  Accordingly, the output of 
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1 PBPK models is linked to the pharmacodynamic model using an equation that reflects the 

2 researchers’ hypothesis of how the toxic chemical participates in the initiation of cellular 

3 changes leading to measurable toxic responses.  For example, certain DNA adducts cause 

4 mutations, cytotoxic metabolites kill individual cells, and expression of growth factors can act as 

5 a direct proliferation stimulus.  In each of these cases, the temporal change in the dose metric 

6 simulated by the PBPK model is linked with mathematical descriptions of the process of adduct 

7 formation, cytotoxicity, or proliferation in the BBDR models to simulate the quantitative 

8 influence of these processes on tumor outcome.   

9 Figure 4-8 presents an example of the relationship between dose metric (simulated by the 

10 PBPK model) and fraction of liver cells killed (simulated by pharmacodynamic model) for 

11 chloroform.  In this case, the pharmacodynamic model consisted of difference equations to 

12 simulate time-dependent changes in the number of hepatocytes in the liver as a function of basal  

13 

14 Figure 4-8. Relationship between the dose metric (µmol metabolized/g 
15 liver/hr) simulated by PBPK model and the cell killing inferred from 
16 pharmacodynamic model for chloroform.  

17 
18 Source: Page et al. (1997). 
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rates of cell division and death, chloroform-induced cytolethality, and regenerative replications 

(Conolly and Butterworth, 1995; Page et al., 1997). 

Table 4-3 presents a list of pharmacodynamic models for cancer and noncancer 

endpoints. A characteristic of several of these pharmacodynamic models is that they are able to 

simulate the normal physiological processes (e.g., cell proliferation rates, hormonal cycle) and 

additionally account for the ways in which chemicals perturbate such phenomena, leading to the 

onset and progression of injury.  The pharmacodynamic models, for linkage with PBPK models, 

are not available for a number of toxic effects and modes of action.  This situation is a result, in  

part, of the complex nature of these models and the extensive data requirements for development 

and evaluation of these models for various exposure and physiological conditions. 

With the availability of integrated pharmacokinetic-pharmacodynamic models, the 

scientific basis of the process of estimating PODs and characterizing the dose-response curve 

will be significantly enhanced.  Additionally, such a modeling framework will facilitate a 

quantitative analysis of the impact of pharmacodynamic determinants on the toxicity outcome, 

such that the magnitude of the pharmacodynamic component of the interspecies and intraspecies 

factors can be characterized more confidently.  Even though some PBPK models have been used 

in RfD, RfC, and unit risk estimate derivation for a number of substances (Table 4-1), the need 

for applying such models (where possible) should be continuously explored.  
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1 Table 4-3. Examples of biologically based models of endpoints and processes 
2 of toxicological relevance 

Toxicity end 
point or process Features Chemical studied References 

Cancer Simulation of relative roles of 2-acetylamino fluorine Armitage and Doll (1957); 
initiation, promotion, Chloroform Moolgavkar and Venzon 
cyclothality, and proliferation Dimethylnitrosamine (1979); Moolgavkar and 

Formaldehyde Knudson (1981); Cohen and 
PCBs Ellwein (1990); Moolgavkar 
Pentachlorobenzene 
Saccharin 

& Luebeck (1990); Luebeck et 
al. (1991); Chen (1993); 
Conolly and Andersen (1997); 
Conolly and Kimbell (1994); 
Thomas et al. (2000); Conolly 
et al. (2003); Tan et al. (2003) 

Cholinesterase 
inhibition 

Simulation of dose-dependent 
inhibition of plasma 
cholinesterase, red blood cell 

Organophophates Gearhart et al. (1990, 1994); 
Timchalk et al. (2002) 

acetyl cholinesterase and brain 
acetyl cholinesterase, and 
nontarget B-esterase 

Developmental Simulation of altered cell Methyl mercury Leroux et al. (1996); Faustman 
toxicity kinetics as the biological basis et al. (1999) 

of developmental toxicity 
Estrus cycle Simulation of interactions of 

estradiol and lutenizing 
hormone 

Endocrine-modulating 
substances 

Andersen et al. (1997) 

Gene expression Simulation of induction of TCDD Santostefano et al. (1998) 
CYP1A1/2 protein expression 
in multiple tissues 

Granulopoiesis Simulation of loss of 
proliferating cells and loss of 
functional cells 

Cyclophosphamide Steinbach et al. (1980) 

Nephrotoxicity Simulation of induction of 
renal 2µ globulin in male rat 

2,2,4-trimethyl-2-phenol Kohn and Melnick (1999) 

kidney as a function of 
proteolytic degradation and 
hepatic production 

Teratogenic effect Sensitivity distribution of 
embryo as a function of age 
and stage of development 

Hydroxyurea Luecke et al. (1997) 

3 

4 

5 
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GLOSSARY 


Absorbed dose:  The amount crossing a specific absorption barrier (e.g., the exchange 
boundaries of the skin, lung, and digestive tract) through uptake processes. 

Applied dose:  The amount presented to an absorption barrier and available for absorption 
(although not necessarily having yet crossed the outer boundary of the organism). 

Area under the curve: The concentration of a chemical in tissues or blood integrated over time.  
It is a measure of tissue exposure to chemicals over a period of time. 

Bayesian statistics:  An approach that considers a model’s parameters as random variables with 
a probability distribution for describing each parameter.  The distribution based only on prior 
information and assumptions is called the prior distribution. Analysis of new data yields a 
posterior distribution that reconciles the prior information and assumptions with the new data. 

Benchmark dose (BMD) or benchmark concentration (BMC):  A dose or concentration that 
produces a predetermined change in response rate of an adverse effect (called the benchmark 
response) compared to background. 

Biologically based dose response model:  A predictive model that describes biological 
processes at the cellular and molecular level linking the target organ dose to the adverse effect.   

Cancer scope factor: An estimate of the increased cancer risk from a lifetime exposure to an 
agent. This estimate, usually expressed in units of proportion (of a population) affected, is 
generally reserved for use in the low-dose region of the dose-response relationship.  It is often an 
upper bound, approximating a 95% confidence limit. 

Clearance:  Volume containing the amount of drug eliminated per unit time by a specified 
organ; it has the dimension of a flow per unit time. 

Critical effect:  The first adverse effect, or its known precursor, that occurs to the most sensitive 
species as the dose rate of an agent increases. 

Delivered dose:  The amount of a substance available for interactions with biologically 
significant receptors in the target organ.   

Dose metric:  The target tissue dose that is closely related to ensuing adverse responses.  Dose 
metrics, used for risk assessment applications, should reflect the biologically active form of 
chemical, its level, and duration of internal exposure, as well as intensity. 

Dose-response assessment:  The process of determining the relationship between the magnitude 
of administered, applied, or internal doses and biological responses.  Response can be expressed 
as measured or observed incidence or change in level of response, percent response in groups of 
subjects (or populations), or the probability of occurrence or change in level of response within a 
population. 
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Exposure assessment:  The process of identifying and evaluating the human population exposed 
to a toxic agent by describing its composition and size, as well as the type, magnitude, frequency, 
route, and duration of exposure. 

Half-life:  Interval of time required for one-half of a given substance present in an organ to leave 
it through processes other than physical decay. It is a constant only for mono-exponential 
functions. 

Human equivalent concentration (HEC):  The human concentration (for inhalation exposure) 
of an agent that is believed to induce the same magnitude of toxic effect as the exposure 
concentration in experimental animal species.  This adjustment may incorporate pharmacokinetic 
information on the particular agent, if available, or use a default procedure. 

Internal dose:  A more general term denoting the amount absorbed without respect to specific 
absorption barriers or exchange boundaries. The amount of the chemical available for 
interaction by any particular organ or cell is termed the delivered or biologically effective dose 
for that organ or cell. 

Markov-chain Monte-Carlo simulation:  An approach that has frequently been used within a 
Bayesian statistical framework to (i) sample each model’s parameters from their prior 
distributions, (ii) fit the model with the sampled parameters to several additional experimental 
data sets, and (iii) compare the model’s predictions with the experimental results to obtain 
posterior distributions for the model’s parameters that improve the model’s fit.  These steps are 
repeated thousands of times until each parameter’s posterior distribution converges to a more 
robust distribution that reflects a wider database. 

Pharmacokinetic models:  Mathematical descriptions simulating the relationship between 
external exposure levels and the biologically effective dose at a target tissue.  Pharmacokinetic 
models take into account absorption, distribution, metabolism, and elimination of the 
administered chemical and its metabolites. 

Pharmacodynamic models:  Mathematical descriptions simulating the relationship between a 
biologically effective dose and the occurrence of a tissue response. 

Physiologically based pharmacokinetic (PBPK) model:  A model that estimates the dose to 
target tissue by taking into account the rate of absorption into the body, distribution and storage 
in tissues, metabolism, and excretion on the basis of interplay among critical physiological, 
physicochemical, and biochemical determinants.  

Point of departure:  The dose-response point that marks the beginning of a low-dose 
extrapolation. This point can be the lower bound on dose for an estimated incidence or a change 
in response level from a dose-response model (BMD, BMC), or a NOAEL or LOAEL for an 
observed incidence or change in level or response. 

Potential dose:  The amount ingested, inhaled, or applied to the skin. 

Reference concentration (RfC):  An estimate (with uncertainty spanning perhaps an order of 
magnitude) of a continuous inhalation exposure to the human population (including sensitive 
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subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime.  
It can be derived from a NOAEL, LOAEL, or benchmark concentration, with uncertainty factors 
generally applied to reflect limitations of the data used.   

Reference dose (RfD):  An estimate (with uncertainty spanning perhaps an order of magnitude) 
of a daily oral exposure to the human population (including sensitive subgroups) that is likely to 
be without an appreciable risk of deleterious effects during a lifetime.  It can be derived from a 
NOAEL, LOAEL, or benchmark dose, with uncertainty factors generally applied to reflect 
limitations of the data used.  

Steady state:  A variable is said to have attained steady state when its value stays constant in a 
given interval of time, i.e., when its derivative is zero. 

Target organ:  The biological organ(s) most adversely affected by exposure to a chemical or 
physical agent. 

Terminal half-life:  The terminal half-life is the interval of time for the concentration of the 
drug in a compartment to decrease 50% in its final phase. 

Uncertainty: Uncertainty occurs because of lack of knowledge.  Uncertainty can often be 
reduced with greater knowledge of the system or by collecting more and better experimental or 
simulation data. 

Uncertainty/variability factors:  Generally 10-fold, default factors used in operationally 
deriving the RfD and RfC from experimental data.  The factors are intended to account for (i) 
variation in sensitivity among the members of the human population (i.e., interindividual 
variability), (ii) uncertainty in extrapolating animal data to humans (i.e., interspecies 
uncertainty), (iii) uncertainty in extrapolating from data obtained in a study with less-than-
lifetime exposure to lifetime exposure (i.e., extrapolating from subchronic to chronic exposure), 
(iv) uncertainty in extrapolating from a LOAEL rather than from a NOAEL, and (v) uncertainty 
associated with extrapolation when the database is incomplete.  

Variability:  Variability refers to true heterogeneity or diversity.  Differences among individuals 
in a population are referred to as interindividual variability; differences for one individual over 
time are referred to as intraindividual variability.  

Volume of distribution:  The volume of distribution is the ratio between the administered dose 
and plasma or blood concentration of a chemical. 
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