Case Study: Consequences of climate change for biocriteria

Jeroen Gerritsen Anna Hamilton Lei Zheng

Approach

- Examine effects of temperature, hydrologic parameters, and climate <u>within</u> single data set
- o Data requirements:
 - Fish and benthic macroinvertebrates
 - Long time period to cover climate variations (dry and wet periods)
 - Cover range of at least some stressors (least to most)
 - Data QA complete

Conceptual model

Data – Maryland Biological Stream Survey (MBSS)

- 0 1995-2005
- Fish (summer) and bugs (spring)
- Land cover, water chemistry
- 5-year rotating basin design
- Stream segments stratified by order; sites selected from list frame of segmentmiles
- Used Piedmont and highlands regions: 0-100% urban, some agriculture

Stressors

- Habitat alteration
- Impervious surface
- Baker's flashiness index (from model)
- Nutrients (summer)
- Temperature (summer)
- Climate
 - Palmer Hydrological Drought Index (NCDC; monthly estimate by region)

Response variables

- Maryland benthic IBI (B-IBI)
- o EPT taxa
- Maryland fish IBI
- o Fish taxa

Biological Responses

- o Fish
 - Habitat
 - Flow (stream size)
 - Flashiness
- Macroinvertebrates
 - Physical habitat, embeddedness
 - Flashiness, impervious surface
 - Total P
 - Conductivity

Fish responses

EPT responses

Temperature

- Fish taxa richness higher in warm water habitats
- Invertebrate taxa richness declines with increased temperature in highland streams
- No effect on invertebrates in Piedmont streams

Fish and Temperature

Invertebrates and temperature - Highland streams

Detection of impairment

Oclimate condition:

```
• "Dry": PHDI < -2.5
```

"Normal": -1.1 < PHDI < 1.0</p>

• "Wet": PHDI > 3.5

 Ability to detect impairment, reference and stressed sites

Benthic IBI

EPT

Fish IBI

Detection of Impairment

- Greater variability in "non-normal" conditions, especially in reference
- Slight decline of reference value
- Reduces ability to detect impairment

Stressor Identification

- Example stress-response relationships
- Re-examine under wet and dry conditions
- Conductivity, impervious surface

Conductivity CDFs Piedmont

Red =dry blue =normal black = wet

Conductivity Stress-Response Piedmont

Red =dry blue =normal black = wet

Conductivity response

 Stress-response of EPT: more likely to have reduced EPT under wet conditions (but slope unchanged)

Impervious Surface stress-response Piedmont

Red =dry blue =normal

Impervious surface

 In dry years, EPT reduced in lessstressed sites, but EPT in highly stressed sites are less affected by the dry conditions

Fish IBI Stress-response to habitat.

Red =dry blue =normal black = wet

Fish IBI response to habitat

 Slope of response unchanged, but wet or dry conditions equivalent to 10-20% reduction of habitat index

Consequences

- Loss of cold and cool-water habitats
- Decreased ability to detect impairment
- General increase in variability
- Decreased precision of some stressresponse relationship
- Projected changes from this analysis NOT devastating or overwhelming
- O Adaptation?

Conceptual model

Time -----

Recommendations

 Adopt universal measurement scale: calibrate biological condition gradient

The Biological Condition Gradient

- Conceptual model describe changes with increasing stress
- Biologically identifiable levels (tiers) of condition
- Ecological theory and empirical knowledge
- Universal yardstick for degree of change from natural
- Regional calibration
 - Conceptual model
 - Quantitative decision model

	1 Native or natural condi	tion	
Natural	Minimal loss of species; some density changes may occur		
Biological Condition	Some replacement of sensitive species; functions fully maintained	Some sensitive maintained; no replacement be tolerant taxa; distributions; largely maintal	otable by more altered functions
ш О Degraded	Tolerant species show increasing dominance; sensitive species are rafunctions altered	5	<u>6</u>
	Low Stressor	function Gradient	High

BCG (cont.)

- Levels of biological condition can be used directly as regulatory criteria and management goals
- Direct bridge between technical observation and management for ecological endpoints

Recommendations (cont.)

- Nationwide calibration of BCG: establishes
 2 baselines
 - Level 1 pristine condition (relies on historical descriptions)
 - Present-day minimally or least stressed condition
- Protect reference sites, least stressed or better
- Monitor sentinel sites (reference and nonref)
- Research on analytical methods, indicators, for stressor identification