

Integrated Science Assessment for Sulfur Oxides – Health Criteria

(First External Review Draft)

Integrated Science Assessment for Sulfur Oxides – Health Criteria

National Center for Environmental Assessment-RTP Division Office of Research and Development U.S. Environmental Protection Agency Research Triangle Park, NC

DISCLAIMER

This document is a first external review draft being released for review purposes only and does not constitute U.S. Environmental Protection Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

PREFACE

Legislative Requirements

Two sections of the Clean Air Act (CAA) govern the establishment and revision of the national ambient air quality standards (NAAQS). Section 108 (U.S. Code, 2003a) directs the Administrator to identify and list "air pollutants" that "in his judgment, may reasonably be anticipated to endanger public health and welfare" and whose "presence … in the ambient air results from numerous or diverse mobile or stationary sources" and to issue air quality criteria for those that are listed. Air quality criteria are intended to "accurately reflect the latest scientific knowledge useful in indicating the kind and extent of identifiable effects on public health or welfare which may be expected from the presence of [a] pollutant in ambient air …."

Section 109 (U.S. Code, 2003b) directs the Administrator to propose and promulgate "primary" and "secondary" NAAQS for pollutants listed under section 108. Section 109(b)(1) defines a primary standard as one "the attainment and maintenance of which in the judgment of the Administrator, based on such criteria and allowing an adequate margin of safety, are requisite to protect the public health."¹ A secondary standard, as defined in section 109(b)(2), must "specify a level of air quality the attainment and maintenance of which, in the judgment of the Administrator, based on such criteria, is required to protect the public welfare from any known or anticipated adverse effects associated with the presence of [the] pollutant in the ambient air."²

¹ The legislative history of section 109 indicates that a primary standard is to be set at "the maximum permissible ambient air level . . . which will protect the health of any [sensitive] group of the population," and that for this purpose "reference should be made to a representative sample of persons comprising the sensitive group rather than to a single person in such a group" [U.S. Senate (1970)].

² Welfare effects as defined in section 302(h) [U.S. Code, 2005] include, but are not limited to, "effects on soils, water, crops, vegetation, man-made materials, animals, wildlife, weather, visibility and climate, damage to and deterioration of property, and hazards to transportation, as well as effects on economic values and on personal comfort and well-being."

The requirement that primary standards include an adequate margin of safety was intended to address uncertainties associated with inconclusive scientific and technical information available at the time of standard setting. It was also intended to provide a reasonable degree of protection against hazards that research has not yet identified. See *Lead Industries Association v. EPA*, 647 F.2d 1130, 1154 (D.C. Cir 1980), <u>cert. denied</u>, 449 U.S. 1042 (1980); *American Petroleum Institute v. Costle*, 665 F.2d 1176, 1186 (D.C. Cir. 1981), <u>cert. denied</u>, 455 U.S. 1034 (1981). Both kinds of uncertainties are components of the risk associated with pollution at levels below those at which human health effects can be said to occur with reasonable scientific certainty. Thus, in selecting primary standards that include an adequate margin of safety, the Administrator is seeking not only to prevent pollution levels that have been demonstrated to be harmful but also to prevent lower pollutant levels that may pose an unacceptable risk of harm, even if the risk is not precisely identified as to nature or degree.

In selecting a margin of safety, the U.S. Environmental Protection Agency (EPA) considers such factors as the nature and severity of the health effects involved, the size of sensitive population(s) at risk, and the kind and degree of the uncertainties that must be addressed. The selection of any particular approach to providing an adequate margin of safety is a policy choice left specifically to the Administrator's judgment. See *Lead Industries Association v. EPA*, <u>supra</u>, 647 F.2d at 1161-62.

In setting standards that are "requisite" to protect public health and welfare, as provided in section 109(b), EPA's task is to establish standards that are neither more nor less stringent than necessary for these purposes. In so doing, EPA may not consider the costs of implementing the standards. See generally *Whitman v. American Trucking Associations*, 531 U.S. 457, 465-472, 475-76 (2001).

Section 109(d)(1) requires that "not later than December 31, 1980, and at 5-year intervals thereafter, the Administrator shall complete a thorough review of the criteria published under section 108 and the national ambient air quality standards … and shall make such revisions in such criteria and standards and promulgate such new standards as may be appropriate …." Section 109(d)(2) requires that an independent scientific review committee "shall complete a review of the criteria … and the national primary and secondary ambient air quality standards … and shall recommend to the Administrator any new … standards and revisions of existing criteria and standards as may be appropriate …." Since the early 1980s, this

iii

independent review function has been performed by the Clean Air Scientific Advisory Committee (CASAC) of EPA's Science Advisory Board.

History of Reviews of the Primary NAAQS for Sulfur Dioxide

On April 30, 1971, the EPA promulgated primary NAAQS for sulfur dioxide (SO₂). These primary standards, which were based on the findings outlined in the original 1969 Air Quality Criteria (hereafter "AQCD") for Sulfur Oxides (U.S. DHEW, 1969), were set at 0.14 parts per million (ppm) averaged over a 24-hour period, not to be exceeded more than once per year, and 0.030 ppm annual arithmetic mean. In 1982, EPA published the AQCD for Particulate Matter (PM) and Sulfur Oxides along with an addendum of newly published controlled human exposure studies (U.S. Environmental Protection Agency, 1982), which updated the scientific criteria upon which the initial standards were based. In 1986, a second addendum was published presenting newly available evidence from epidemiologic and controlled human exposure studies (U.S. Environmental Protection Agency, 1986). In 1988, EPA reviewed and revised the health criteria upon which the SO₂ standards were based. As a result of that review, EPA published a proposed decision not to revise the existing standards (Federal Register, 1988). However, EPA specifically requested public comment on the alternative of revising the current standards and adding a new 1-h primary standard of 0.4 ppm.

As a result of public comments on the 1988 proposal and other post-proposal developments, EPA published a second proposal on November 15, 1994 (Federal Register, 1994). The 1994 re-proposal was based in part on a supplement to the second addendum of the criteria document, which evaluated new findings on short-term SO₂ exposures in asthmatics (U.S. Environmental Protection Agency, 1994). As in the 1988 proposal, EPA proposed to retain the existing 24-h and annual standards. The EPA also solicited comment on three regulatory alternatives to further reduce the health risk posed by exposure to high 5-min peaks of SO₂ if additional protection were judged to be necessary. The three alternatives included (1) revising the existing primary SO₂ NAAQS by adding a new 5-min standard of 0.60 ppm SO₂; (2) establishing a new regulatory program under section 303 of the Act to supplement protection provided by the existing standards by focusing on those sources or source types likely to produce high 5-min peak concentrations of SO₂. On May 22, 1996, EPA's final decision, that revisions of the NAAQS for sulfur oxides were not appropriate at that time, was announced in

iv

the Federal Register (Federal Register, 1996). In that decision, EPA announced an intention to propose guidance, under section 303 of the Act, to assist states in responding to short-term peak levels of SO₂.

TABLE OF CONTENTS

				<u>Page</u>	
	0		and Daviana		
	Authors, Contributors, and Reviewersxii U.S. Environmental Protection Agency Project Teamxvii				
			otection Agency Science Advisory Board (SAB)	XVIII	
			Air Scientific Advisory Committee (CASAC)	vvi	
			onyms		
110010					
1.	INTRO		ON		
	1.1	DOCUM	MENT DEVELOPMENT	1-2	
	1.2	ORGAN	NIZATION OF THE DOCUMENT	1-5	
2.	SOUR	CE-TO-7	LISSUE DOSE		
	2.1		SPHERIC CHEMISTRY		
	2.2		ES OF SULFUR OXIDES		
	2.3		JREMENT METHODS AND ASSOCIATED ISSUES		
	<u>2.4</u>		ONMENTAL CONCENTRATIONS OF SULFUR OXIDES		
	2	2.4.1	Ambient Air Quality Data for Sulfur Dioxide and		
			Other Sulfur Oxides		
		2.4.2	Spatial and Temporal Variability of Ambient Sulfur Dioxide		
			Concentrations		
		2.4.3	Policy Relevant Background Concentrations of Sulfur Dioxide	2-24	
	2.5	ISSUES	ASSOCIATED WITH EVALUATING EXPOSURES		
		TO SUL	LFUR OXIDES		
		2.5.1	General Considerations for Personal Exposures		
		2.5.2	Methods Used for Monitoring Personal Exposure to SO ₂	2-31	
		2.5.3	Relationships between Personal Exposures and Ambient		
			Concentrations	2-33	
		2.5.4	Exposure Measurement Errors in Epidemiological Studies	2-37	
	2.6	DOSIM	ETRY OF INHALED SO ₂	2-42	
3.	INTEC	RATED	HEALTH EFFECTS OF EXPOSURE TO		
0.			XIDE		
	3.1		DITY ASSOCIATED WITH SHORT-TERM SO ₂		
	011		URE		
		3.1.1	Respiratory Effects Associated with Short-Term		
			Exposure to SO ₂		
		3.1.2	Cardiovascular Effects Associated with Short-Term		
			SO ₂ Exposure	3-45	
		3.1.3	Other Systemic Effects Associated with Short-Term		
			SO ₂ Exposure	3-58	

TABLE OF CONTENTS

(cont'd)

3.2	MORT	TALITY ASSOCIATED WITH SHORT-TERM SO2	<u>Page</u>
0.2		SURE	
	3.2.1	Associations of Mortality and Short-Term SO ₂ Exposure	
		in Multicity Studies and Meta-Analyses	3-64
	3.2.2	Cause-Specific Mortality Associated with Short-Term	
		SO ₂ Exposure	
	3.2.3	Evidence from an Intervention Study	
	3.2.4	Summary of Effects of Short-Term SO ₂ Exposure on	
		Mortality	
3.3		SIDITY ASSOCIATED WITH LONG-TERM SO ₂	2.00
		SURE	
	3.3.1	Respiratory Effects Associated with Long-Term Exposure to SO ₂	2.90
	3.3.2	Carcinogenic Effects Associated with Long-Term	
	5.5.2	Exposure to SO ₂	3-86
	3.3.3	Prenatal and Neonatal Outcomes Associated with	
	5.5.5	Long-Term SO ₂ Exposure	
3.4	MORT	FALITY ASSOCIATED WITH LONG-TERM SO ₂	
		SURE	
	3.4.1	Associations of Mortality and Long-Term SO ₂ Exposure	
		in Key Studies	3-94
	3.4.2	Summary of Effects of Long-Term SO ₂ Exposure	
		on Mortality	3-103
PUB	LIC HEA	ALTH IMPACT	
4.1	ASSES	SSMENT OF CONCENTRATION-RESPONSE FUNCTION	
		POTENTIAL THRESHOLDS	
4.2	SUSCI	EPTIBLE AND VULNERABLE POPULATIONS	
	4.2.1	Exposure of Susceptible and Vulnerable Populations to SO ₂	
	4.2.2	0	
	4.2.3	Age-Related Variations in Susceptibility	4-12
	4.2.4	Genetic Factors for Oxidant and Inflammatory Damage	
		from Air Pollutants	
4.3		NTIAL PUBLIC HEALTH IMPACTS	
	4.3.1	Concepts Related to Defining Adverse Health Effects	
	4.3.2	Estimation of Potential Numbers of Persons in At-Risk	
		Susceptible Population Groups in the United States	4-17
KFV	FINDIN	GS AND CONCLUSIONS	5_1
	I II 1 1 1 II 1		

4.

5.

TABLE OF CONTENTS

(cont'd)

				Page
	5.1	SUMN	ARY OF KEY FINDINGS RELATED TO THE	
		SOUR	CE-TO-DOSE RELATIONSHIP	5-1
		5.1.1	Emission Sources, Atmospheric Science, and Ambient	
			Monitoring Methods	5-1
		5.1.2	Ambient Concentrations	5-2
		5.1.3	Exposure Assessment	5-3
		5.1.4	Dosimetry	5-4
	5.2	SUM	ARY OF KEY HEALTH EFFECTS FINDINGS	5-4
		5.2.1	Findings from the Previous Review of the NAAQS for SO ₂	
		5.2.2	New Findings on the Health Effects of Exposure to SO ₂	5-6
	5.3	CONC	CLUSIONS	5-15
APPEN	NDIX 5.	A. SU	JMMARY OF NEW ANIMAL TOXICOLOGICAL,	
		H	JMAN CLINICAL, AND EPIDEMIOLOGICAL STUDIES	
		OF	FHEALTH EFFECTS ASSOCIATED WITH EXPOSURES	
		TC) SULFUR DIOXIDE	5A-1
6.	REFEF	RENCE	ES	6-1

6.

LIST OF TABLES

<u>Number</u>		Page
2.4-1.	Regional Distribution of SO ₂ and SO ₄ ²⁻ Ambient Concentrations, Averaged for 2003-2005	2-48
2.4-2.	Distributions of Temporal Averaging Inside and Outside CMSAs	2-49
2.4-3.	Range of mean SO ₂ concentrations and Pearson correlation coefficients in urban areas having at least four monitors	2-50
2.5-1.	Relationships of Indoor to Outdoor SO ₂ Concentrations	2-51
3.1-1.	SO ₂ Effects on Guinea Pig and Rat Brain	3-61
4.3-1.	Gradation of Individual Responses to Short-Term SO ₂ Exposure in Individuals with Impaired Respiratory Systems	4-20
4.3-2.	Prevalence of Selected Respiratory Disorders by Age Group and by Geographic Region in the United States (2004 [U.S. Adults] and 2005 [U.S. Children] National Health Interview Survey)	4-21
5A-1.	Key Respiratory Health Effects of Exposure to Sulfur Dioxide Observed in Animal Toxicological Studies	. 5A-2
5A-2.	Key Human Health Effects of Peak Exposure to Sulfur Dioxide Observed in Clinical Studies	. 5A-4
5A-3.	Effects Of Short-Term Exposure To Sulfur Dioxide On Respiratory Symptom Among Children	
5A-4.	Effects of Short-Term SO ₂ Exposure On Emergency Department Visits And Hospital Admissions For Respiratory Outcomes	5A-10

LIST OF FIGURES

Number		<u>Page</u>
2.4-1.	State-level SO ₂ emissions, 1990-2005	2-9
2.4-2.	Annual mean ambient SO ₂ concentration, (a) 1989 through 1991, and (b) 2003 through 2005.	. 2-10
2.4-3.	Annual mean ambient SO_4^{2-} Concentration, (a) 1989 through 1991, and (b) 2003 through 2005.	. 2-11
2.4-4.	Annual SO ₂ Emissions in 2006 for Acid Rain Program Cooperating Facilities.	. 2-12
2.4-5.	Boxplot of hourly SO ₂ concentrations across all cities in focus	. 2-13
2.4-6(a).	Monthly mean, minimum, and maximum SO ₂ concentrations at Steubenville, OH for the years 2003 through 2005.	. 2-15
2.4-6(b).	Monthly mean, minimum, and maximum SO_4^{2-} concentrations at Steubenville OH for the years 2003 through 2005.	
2.4-6(c).	Monthly mean SO_4^{2-} concentrations as a function of SO_2 concentrations at Steubenville, OH for the years 2003 through 2005.	. 2-16
2.4-7(a).	Monthly mean, minimum, and maximum SO ₂ concentrations at Philadelphia, PA for the years 2003 through 2005	. 2-17
2.4-7(b).	Monthly mean, minimum, and maximum SO ₄ ²⁻ concentrations at Philadelphia PA for the years 2003 through 2005	
2.4-7(c).	Monthly mean SO_4^{2-} concentrations as a function of SO_2 concentrations at Philadelphia, PA for the years 2003 through 2005	. 2-18
2.4-8(a).	Monthly mean, minimum, and maximum SO ₂ concentrations at Los Angeles, CA for the years 2003 through 2005	. 2-18
2.4-8(b).	Monthly mean, minimum, and maximum SO ₄ ²⁻ concentrations at Los Angeles, CA for the years 2003 through 2005	. 2-19
2.4-8(c).	Monthly mean SO_4^{2-} concentrations as a function of SO_2 concentrations at Los Angeles, CA for the years 2003 through 2005.	. 2-19
2.4-9(a).	Monthly mean, minimum, and maximum SO ₂ concentrations at Riverside, CA for the years 2003 through 2005	. 2-20
2.4-9(b).	Monthly mean, minimum, and maximum SO_4^{2-} concentrations at Riverside, CA for the years 2003 through 2005	. 2-20
2.4-9(c).	Monthly mean SO_4^{2-} concentrations as a function of SO_2 concentrations at Riverside, CA for the years 2003 through 2005	. 2-21
2.4-10(a).	Monthly mean, minimum, and maximum SO ₂ concentrations at Phoenix, AZ for the years 2003 through 2005	. 2-21

LIST OF FIGURES

(cont'd)

<u>Number</u>		Page
2.4-10(b).	Monthly mean, minimum, and maximum SO_4^{2-} concentrations at Phoenix, AZ for the years 2003 through 2005	2-22
2.4-10(c).	Monthly mean SO_4^{2-} concentrations as a function of SO_2 concentrations at Phoenix, AZ for the years 2003 through 2005	2-22
2.4-11.	Annual mean model-predicted concentrations of SO ₂ (ppb) in surface air over the United States in the present-day (upper panel) and policy relevant background (middle panel) MOZART-2 simulations	2-26
2.5-1.	Percentage of time people spend in different environments in the United States as determined by the National Human Activity Pattern Survey (NHAPS)	2-28
2.5-2.	Average annual indoor and outdoor SO ₂ concentrations for each of the six cities included in the analysis.	2-34
3.1-1.	Odds ratios for daily asthma symptoms associated with a 10-ppb increase in within-subject concentrations of 24-h average SO ₂ , using data collected from November 1993 to September 1995	3-7
3.1-2.	Relative odds ratio of incidence of lower respiratory symptoms smoothed against 24-h average SO ₂ concentrations on the previous day, controlling for temperature, city, and day of week	3-8
3.1-3.	Odds ratios (95% CI) for the incidence of cough among children, grouped by season	3-10
3.1-4.	Odds ratios (95% CI) for the incidence of lower respiratory or asthma symptoms among children, grouped by season	3-11
3.1-5.	Specific airways resistance (sRaw) of 16 mild and 24 moderate asthmatic subjects exposed to 0-, 0.4-, and 0.6-ppm SO ₂	3-20
3.1-6.	Distribution of individual airway sensitivity to SO ₂	3-21
3.1-7.	Relative risks (95% CI) of SO ₂ -associated emergency department visits (*) and hospitalizations for all respiratory causes among all ages	3-32
3.1-9.	Relative risks (95% CI) of SO ₂ -associated emergency department visits (*) and hospitalizations for asthma among all ages	3-36
3.1-10.	Relative risks (95% CI) of SO ₂ -associated emergency department visits (*) and hospitalizations for asthma, stratified by age groups	3-37
3.1-12.	Relative risks (95% CI) of SO ₂ -associated emergency department visits and hospitalizations for all cardiovascular causes	3-54

LIST OF FIGURES

(cont'd)

<u>Number</u>		Page
3.1-13.	Relative risks (95% CI) of SO ₂ -associated emergency department visits (*) and hospitalizations for cardiovascular causes, with and without copollutant adjustment	3-59
3.2-1.	Posterior means and 95% posterior intervals of national average estimates of SO_2 effects on total mortality from non-external causes per 10-ppb increase in 24-h average SO_2 at 0-, 1-, and 2-day lags within sets of the 62 cities with pollutant data available	3-66
3.2-2.	All cause (nonaccidental) SO ₂ mortality risk estimates (95% CI) from multicity and meta-analysis studies.	3-73
3.2-3.	All-cause (nonaccidental) and broad cause-specific (respiratory and cardiovascular) SO ₂ mortality risk estimates (95% CI) from multicity studies.	3-76
3.3-1.	Relative risks (95% CI) for low birth weight, grouped by trimester of SO ₂ exposure.	3-90
3.4-1.	Total SO ₂ -mortality relative risk estimates (95% CI) from longitudinal cohort studies	3-102
4.2-1.	Relative risks (95% CI) of age-specific associations between short-term exposure to SO ₂ and respiratory ED visits and hospitalizations	4-13

Authors, Contributors, and Reviewers

Authors

Dr. Jee Young Kim (SO_x Team Leader)—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Jeffrey Arnold—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. James S. Brown—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Douglas Bryant-Intrinsik Science, 1900 Minnesota Court, Mississauga, Ontario L8S 1P5

Dr. Ila Cote—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Arlene Fiore—Geophysical Fluid Dynamics Laboratory/National Oceanographic & Atmospheric Administration, 201 Forrestal Rd., Princeton, NJ 08542-0308

Dr. Panos Georgopoulos—Computational Chemodynamics Laboratory, EOHSI Room 308, 170 Frelinghuysen Road, Piscataway, New Jersey 08854

Dr. Brett Grover—National Exposure Research Laboratory (D205-03), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Vic Hasselblad—Duke University Medical Center, Box 17969, Durham, NC 27715

Dr. Larry Horowitz—Geophysical Fluid Dynamics Laboratory/National Oceanographic & Atmospheric Administration, Princeton University Forrestal Campus, 201 Forrestal Road, Princeton, NJ 08540-5063

Dr. Annette Ianucci—Sciences International, 1800 Diagonal Road, Suite 500, Alexandria, VA 22314

Dr. Kazuhiko Ito—New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987

Dr. Doug Johns—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Ellen Kirrane—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Authors, Contributors, and Reviewers

(cont'd)

Authors

Dr. Jane Koenig—University of Washington, Department of Environmental and Occupational Health Sciences, Box 357234, Seattle, WA 98195-7234

Dr. Thomas Long—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Thomas Luben—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Therese Mar—University of Washington, Department of Environmental and Occupational Health Sciences, Box 357234, Seattle, WA 98195-7234

Dr. Qingyu Meng—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Anu Mudipalli—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Joseph Pinto—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Mary Ross—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. David Svendsgaard—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Lori White—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

xiv

Dr. William Wilson—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Authors, Contributors, and Reviewers (cont'd)

Contributors

- Dr. Dale Allen, University of Maryland, College Park, MD
- Ms. Louise Camalier, U.S. EPA, OAQPS, Research Triangle Park, NC
- Dr. Russell Dickerson, University of Maryland, College Park, MD
- Dr. Tina Fan, EOHSI/UMDNJ, Piscataway, NJ
- Dr. William Keene, University of Virginia, Charlottesville, VA
- Dr. Randall Martin, Dalhousie University, Halifax, Nova Scotia
- Dr. Maria Morandi, University of Texas, Houston, TX
- Dr. William Munger, Harvard University, Cambridge, MA
- Mr. Charles Piety, University of Maryland, College Park, MD
- Dr. Sandy Sillman, University of Michigan, Ann Arbor, MI
- Dr. Helen Suh, Harvard University, Boston, MA
- Dr. Charles Wechsler, EOHSI/UMDNJ, Piscataway, NJ
- Dr. Clifford Weisel, EOHSI/UMDNJ, Piscataway, NJ
- Dr. Jim Zhang, EOHSI/UMDNJ, Piscataway, NJ

Reviewers

Dr. Tina Bahadori—American Chemistry Council, 1300 Wilson Boulevard, Arlington, VA 22209

Dr. Tim Benner—Office of Science Policy, Office of Research and Development, Washington, DC 20004

Dr. Daniel Costa—National Program Director for Air, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

XV

Authors, Contributors, and Reviewers

(cont'd)

Reviewers

Dr. Robert Devlin—National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC

Dr. Judy Graham—American Chemistry Council, LRI, 1300 Wilson Boulevard, Arlington, VA 22209

Dr. Stephen Graham—Office of Air Quality Planning and Standards (C504-06), Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Ms. Beth Hassett-Sipple—Office of Air Quality Planning and Standards (C504-06), Office of Air and Radiation, U.S. Environmental Protection Agency (C504-06), Research Triangle Park, NC 27711

Dr. Gary Hatch—National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Scott Jenkins—Office of Air Quality Planning and Standards (C504-06), Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. David Kryak—National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Mr. John Langstaff—Office of Air Quality Planning and Standards (C504-06), Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Morton Lippmann—NYU School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987

Dr. Karen Martin—Office of Air Quality Planning and Standards (C504-06), Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. William McDonnell—William F. McDonnell Consulting, 1207 Hillview Road, Chapel Hill, NC 27514

Dr. Dave McKee—Office of Air Quality Planning and Standards (C504-06), Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Lucas Neas—National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27711

Authors, Contributors, and Reviewers (cont'd)

Reviewers

Dr. Russell Owen—National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Haluk Ozkaynak—National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Jennifer Peel—Colorado State University, 1681 Campus Delivery, Fort Collins, CO 80523-1681

Mr. Harvey Richmond—Office of Air Quality Planning and Standards (C504-06), Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Mr. Steven Silverman—Office of General Counsel, U.S. Environmental Protection Agency, Washington, DC 20460

Dr. Michael Stewart—Office of Air Quality Planning and Standards (C504-06), Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Ms. Susan Stone—Office of Air Quality Planning and Standards (C504-06), Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Ms. Chris Trent—Office of Air Quality Planning and Standards (C504-06), Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. John Vandenberg—National Center for Environmental Assessment (B243-01), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Alan Vette—National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Mr. Ron Williams— National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

U.S. Environmental Protection Agency Project Team for Development of Integrated Scientific Assessment for Sulfur Oxide

Executive Direction

Dr. Ila Cote (Acting Director)—National Center for Environmental Assessment-RTP Division, (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Scientific Staff

Dr. Jee Young Kim (SO_x Team Leader)—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Jeff Arnold—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. James S. Brown—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Ellen Kirrane—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Dennis Kotchmar—National Center for Environmental Assessment (B243-01), Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Tom Long—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Thomas Luben—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Quingyu Meng—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Joseph Pinto—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Paul Reinhart—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

U.S. Environmental Protection Agency Project Team for Development of Integrated Scientific Assessment for Sulfur Oxide

(cont'd)

Scientific Staff

(cont'd)

Dr. Mary Ross—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. David Svendsgaard—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Lori White—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. William Wilson—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Technical Support Staff

Ms. Emily R. Lee—Management Analyst, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Ms. Christine Searles—Management Analyst, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Ms. Debra Walsh—Program Analyst, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Mr. Richard Wilson—Clerk, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Document Production Staff

Ms. Barbra H. Schwartz—Task Order Manager, Computer Sciences Corporation, 2803 Slater Road, Suite 220, Morrisville, NC 27560

Mr. John A. Bennett—Technical Information Specialist, Library Associates of Maryland, 11820 Parklawn Drive, Suite 400, Rockville, MD 20852

U.S. Environmental Protection Agency Project Team for Development of Integrated Scientific Assessment for Sulfur Oxide

(cont'd)

Document Production Staff

(cont'd)

Mrs. Melissa Cesar—Publication/Graphics Specialist, Computer Sciences Corporation, 2803 Slater Road, Suite 220, Morrisville, NC 27560

Mrs. Rebecca Early—Publication/Graphics Specialist, TekSystems, 1201 Edwards Mill Road, Suite 201, Raleigh, NC 27607

Mr. Eric Ellis—Records Management Technician, InfoPro, Inc., 8200 Greensboro Drive, Suite 1450, McLean, VA 22102

Ms. Stephanie Harper—Publication/Graphics Specialist, TekSystems, 1201 Edwards Mill Road, Suite 201, Raleigh, NC 27607

Ms. Sandra L. Hughey—Technical Information Specialist, Library Associates of Maryland, 11820 Parklawn Drive, Suite 400, Rockville, MD 20852

Dr. Barbara Liljequist—Technical Editor, Computer Sciences Corporation, 2803 Slater Road, Suite 220, Morrisville, NC 27560

XX

Ms. Molly Windsor—Graphic Artist, Computer Sciences Corporation, 2803 Slater Road, Suite 220, Morrisville, NC 27560

U.S. Environmental Protection Agency Science Advisory Board (SAB) Staff Office Clean Air Scientific Advisory Committee (CASAC) CASAC NO_x and SO_x Primary NAAQS Review Panel

<u>Chair</u>

Dr. Rogene Henderson*, Scientist Emeritus, Lovelace Respiratory Research Institute, Albuquerque, NM

Members

Mr. Ed Avol, Professor, Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA

Dr. John R. Balmes, Professor, Department of Medicine, Division of Occupational and Environmental Medicine, University of California, San Francisco, CA

Dr. Ellis Cowling*, University Distinguished Professor At-Large, North Carolina State University, Colleges of Natural Resources and Agriculture and Life Sciences, North Carolina State University, Raleigh, NC

Dr. James D. Crapo [M.D.]*, Professor, Department of Medicine, National Jewish Medical and Research Center, Denver, CO

Dr. Douglas Crawford-Brown*, Director, Carolina Environmental Program; Professor, Environmental Sciences and Engineering; and Professor, Public Policy, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC

Dr. Terry Gordon, Professor, Environmental Medicine, NYU School of Medicine, Tuxedo, NY

Dr. Dale Hattis, Research Professor, Center for Technology, Environment, and Development, George Perkins Marsh Institute, Clark University, Worcester, MA

Dr. Patrick Kinney, Associate Professor, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY

Dr. Steven Kleeberger, Professor, Laboratory Chief, Laboratory of Respiratory Biology, NIH/NIEHS, Research Triangle Park, NC

Dr Timothy Larson, Professor, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA

U.S. Environmental Protection Agency Science Advisory Board (SAB) Staff Office Clean Air Scientific Advisory Committee (CASAC) CASAC NO_x and SO_x Primary NAAQS Review Panel (cont'd)

Members

(cont'd)

Dr. Kent Pinkerton, Professor, Regents of the University of California, Center for Health and the Environment, University of California, Davis, CA

Mr. Richard L. Poirot*, Environmental Analyst, Air Pollution Control Division, Department of Environmental Conservation, Vermont Agency of Natural Resources, Waterbury, VT

Dr. Edward Postlethwait, Professor and Chair, Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL

Dr. Armistead (Ted) Russell*, Georgia Power Distinguished Professor of Environmental Engineering, Environmental Engineering Group, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA

Dr. Richard Schlesinger, Associate Dean, Department of Biology, Dyson College, Pace University, New York, NY

Dr. Christian Seigneur, Vice President, Atmospheric and Environmental Research, Inc., San Ramon, CA

Dr. Elizabeth A. (Lianne) Sheppard, Research Professor, Biostatistics and Environmental & Occupational Health Sciences, Public Health and Community Medicine, University of Washington, Seattle, WA

Dr. Frank Speizer [M.D.]*, Edward Kass Professor of Medicine, Channing Laboratory, Harvard Medical School, Boston, MA

Dr. George Thurston, Associate Professor, Environmental Medicine, NYU School of Medicine, New York University, Tuxedo, NY

Dr. James Ultman, Professor, Chemical Engineering, Bioengineering Program, Pennsylvania State University, University Park, PA

Dr. Ronald Wyzga, Technical Executive, Air Quality Health and Risk, Electric Power Research Institute, P.O. Box 10412, Palo Alto, CA

U.S. Environmental Protection Agency Science Advisory Board (SAB) Staff Office Clean Air Scientific Advisory Committee (CASAC) CASAC NO_x and SO_x Primary NAAQS Review Panel (cont'd)

SCIENCE ADVISORY BOARD STAFF

Mr. Fred Butterfield, CASAC Designated Federal Officer, 1200 Pennsylvania Avenue, N.W., Washington, DC, 20460, Phone: 202-343-9994, Fax: 202-233-0643 (<u>butterfield.fred@epa.gov</u>) (Physical/Courier/FedEx Address: Fred A. Butterfield, III, EPA Science Advisory Board Staff Office (Mail Code 1400F), Woodies Building, 1025 F Street, N.W., Room 3604, Washington, DC 20004, Telephone: 202-343-9994)

* Members of the statutory Clean Air Scientific Advisory Committee (CASAC) appointed by the EPA Administrator

Abbreviations and Acronyms

α	alpha
ACS	American Cancer Society
ADS	annular denuder system
AHR	airways hyperreactiveness
AM	alveolar macrophages
APHEA	Air Pollution on Health: a European Approach (study)
APEX	Air Pollution Exposure (model)
APIMS	atmospheric pressure ionization mass spectrometer
ARIC	Atherosclerosis Risk in Communities (study)
ARP	Acid Rain Program
AQCD	Air Quality Criteria Document
asl	above sea level
atm	atmosphere
β	beta; the calculated Health Effect Parameter
B[a]P	benzo[a]pyrene
BHR	bronchial hyperresponsiveness
BS	black smoke
CAA	Clean Air Act
CAMP	Childhood Asthma Management Program
CASAC	Clean Air Scientific Advisory Committee
CASTNet	Clean Air Status and Trends Network
CDC	Centers for Disease Control and Prevention
CHAD	Consolidated Human Activities Database
CHF	congestive heart failure
CHS	Children's Health Study
CH ₃ -S-H	methyl mercaptan
CH ₃ -S-S-CH ₃	dimethyl disulfide
CI	confidence interval
CMSA	consolidated metropolitan statistical area
CO	carbon monoxide
СоН	coefficient of haze
CONUS	continental United States
COPD	chronic obstructive pulmonary disease
CS_2	carbon disulfide
CVD	cardiovascular disease
DEN	diethylnitrosamine
DEP	diesel exhaust particle
DL	detection limit
DMS	dimethyl sulfide

ED	emergency department
ECG	electrocardiography; electrocardiogram
EIB	exercise-induced bronchial reactivity
ELF	epithelial lining fluid
EMECAM	Spanish Multicentre Study on Air Pollution and Mortality
EPA	U.S. Environmental Protection Agency
eNO	exhaled nitric oxide
ET	extrathoracic
FEMs	Federal Equivalent Methods
FEV _{0.75}	forced expiratory volume in 0.75 second
$FEV_{0.75}$ FEV_1	forced expiratory volume in 1 second
FPD	- ·
FPD FPD-TA	flame photometric detection
FPD-TA FRM	flame photometric detection-thermal analysis Federal Reference Method
FVC	forced vital capacity
GAM	Generalized Additive Model(s)
GIS	Geographic Information System
GLM	Generalized Linear Model(s)
GSH	glutathione; reduced glutathione
GST	glutathione S-transferase (e.g., GSTM1, GSTP1, GSTT1)
H^+	hydrogen ion
HEADS	Harvard-EPA Annular Denuder System
HEI	Health Effects Institute
HF	high frequency
HNO ₂	nitrous acid
HNO ₃	nitric acid
HO_2	hydroperoxyl; hydroperoxy radical
H_2O_2	hydrogen peroxide
HR	hazard ratio
HRV	heart rate variability
H_2S	hydrogen sulfide
HSO_3^-	hydrogen sulfite, bisulfite
HSO_4^-	bisulfate ion
H_2SO_4	sulfuric acid
hv	solar ultraviolet photon
ICD9	International Classification of Diseases, Ninth Revision
ICDs	implanted cardioverter defibrillators
Ig	immunoglobulin (e.g., IgA, IgE, IgG)
IHD	ischemic heart disease
IL	interleukin (e.g., IL-4, IL-6, IL-8)

IQR	interquartile range
ISA	Integrated Science Assessment
IUGR	intrauterine growth retardation
K	mass transfer coefficient
LF	low frequency
LOD	limit of detection
LRD	lower respiratory disease
MCh	methacholine
MENTOR	Modeling Environment for Total Risk for One-Atmosphere studies
MI	myocardial infarction
MEF _{50%}	maximal midexpiratory flow at 50% of forced vital capacity
MMEF	maximal midexpiratory flow
MONICA	Monitoring Trend and Determinants in Cardiovascular Disease (registry)
MOZART-2	Model for Ozone and Related Chemical Tracers, version 2
MSA	metropolitan statistical area
N, n	number of observations
NAAQS	National Ambient Air Quality Standards
NaCl	sodium chloride
NaCO ₃	sodium carbonate
NADP	National Atmospheric Deposition Program
NAMS	National Air Monitoring Stations
NAS	Normative Aging Study
NCICAS	National Cooperative Inner-City Asthma Study
NCore	National Core Monitoring Network
NERL	National Exposure Research Laboratory
$\mathrm{NH_4}^+$	ammonium ion
NHAPS	National Human Activity Pattern Survey
NHANES	National Health and Nutrition Examination Survey
NMMAPS	National Morbidity, Mortality, and Air Pollution Study
NO	nitric oxide
NO_2	nitrogen dioxide
NO ₃	nitrate radical
NO_3^-	nitrate ion
NO _x	oxides of nitrogen
NR	not reported
NTN	National Trends Network
O_2	molecular oxygen, diatomic oxygen
O ₃	ozone
OCS	carbonyl sulfide
OH	hydroxyl radical

OR	odds ratio
P, p	probability value
PAARC	Air Pollution and Chronic Respiratory Diseases (study)
РАН	polycyclic aromatic hydrocarbon
$PC(SO_2)$	provocative concentration of SO_2 that produces a 100% increase in
、 <i>_/</i>	specific airways resistance
PD20FEV ₁	20% decrease in forced expiratory volume in 1 second
PD20	provocative dose that produces a 20% decrease in FEV_1
PD100	provocative dose that produces a 100% increase in sRAW
PEACE	Pollution Effects on Asthmatic Children in Europe (study)
PEC	pulmonary endocrine cell
PEF	peak expiratory flow
PEMs	personal exposure monitors
PF	pulsed fluorescence
PM	particulate matter
PM _{2.5}	particulate matter with 50% upper cut point aerodynamic diameter of 2.5 μ m for sample collection; surrogate for fine PM
PM ₁₀	particulate matter with 50% upper cut point aerodynamic diameter of 10 μ m for sample collection
PM _{10-2.5}	particulate matter with 10 μ m as upper cut point aerodynamic diameter and 2.5 μ m as lower cut point for sample collection; surrogate for thoracic coarse PM (does not include fine PM)
PM ₁₃	particulate matter with 50% upper cut point aerodynamic diameter of 13 μ m for sample collection
PMT	photomultiplier tube
ppb	parts per billion
ppbv	parts per billion by volume
ppm	parts per million
pptv	parts per trillion by volume
PRB	policy relevant background
PS	passive sample
r	correlation coefficient
R^2	multiple correlation coefficient
RAS	roll-around system
Raw	airways resistance
RH	relative humidity
r-MSSD	root mean square of successive differences in R-R intervals.
RR	rate ratio; relative risk
S^{2-}	sulfur radical
SAPALDIA	Study of Air Pollution and Lung Diseases in Adults
SAVIAH	Small-Area Variation in Air Pollution and Health (study)

~-	
SD	standard deviation
SDNN	standard deviation of normal R-R intervals
SES	socioeconomic status
SHEDS	Simulation of Human Exposure and Dose System
SIDS	sudden infant death syndrome
SNP	single nucleotide polymorphism
³⁵ S	sulfur-35 radionuclide
SLAMS	State and Local Air Monitoring Stations
SO	sulfur monoxide
SO_2	sulfur dioxide
SO ₃	sulfur trioxide
SO_{3}^{2-}	sulfite ion
SO_4^{2-}	sulfate ion
SO _x	sulfur oxides
S_2O	disulfur monoxide
SPM	suspended particulate matter
sRaw	specific airways resistance
STN	Speciation Trends Network
τ	tau; atmospheric lifetime
TBARS	thiobarbituric acid reactive substances
TEA	triethanolamine
TNF	tumor necrosis factor (e.g., TNF-α)
TSP	total suspended particles
URI	upper respiratory infections
UV	ultraviolet
\dot{V}_{E}	minute ventilation

1. INTRODUCTION

3	
4	The draft Integrated Science Assessment (ISA) presents a concise synthesis of the most
5	policy-relevant science to form the scientific foundation for the review of the primary (health-
6	based) National Ambient Air Quality Standards (NAAQS) for sulfur dioxide (SO_2) . ¹ The draft
7	ISA is intended to "accurately reflect the latest scientific knowledge useful in indicating the kind
8	and extent of identifiable effects on public health which may be expected from the presence of
9	[a] pollutant in ambient air" (Clean Air Act, Section 108 (42 U.S.C. 7408)). ² The draft ISA
10	contains the key information and judgments formerly found in the Air Quality Criteria Document
11	(AQCD) for Sulfur Oxides (SO _{x}), and a series of Annexes to the draft ISA provide more
12	extensive and detailed summaries of the most pertinent scientific literature. The draft ISA thus
13	serves to update and revise the information included in the AQCD published by the U.S.
14	Environmental Protection Agency (EPA) in 1982 (U.S. Environmental Protection Agency,
15	1982).
16	The draft ISA for this review of the SO ₂ NAAQS critically evaluates and integrates
17	scientific information on the health effects associated with exposure to sulfur oxides in the
18	ambient air. It focuses on scientific information that has become available since the last review
19	and reflects the current state of knowledge on the most relevant issues pertinent to the review of
20	the primary SO ₂ NAAQS. The ISA is supported by a more detailed and comprehensive
21	assessment of the scientific literature, which will be compiled into a series of annexes. Together,
22	the ISA and annexes replace the AQCD that was prepared in previous NAAQS reviews.
23	SO_2 is one of a group of substances known as sulfur oxides, which include multiple
24	gaseous (e.g., SO ₂ , sulfur trioxide [SO ₃], particulate (e.g., sulfate [SO ₄ ^{2^{-}}], or sulfuric acid
25	[H ₂ SO ₄]) species. For the current review, multiple species of sulfur oxides are considered as
26	appropriate and as allowed by the available data. For example, descriptions of the atmospheric
27	chemistry of sulfur oxides include both gaseous and particulate species, because a meaningful
28	analysis would not be possible otherwise. In addition, the health effects of gaseous sulfur oxides
29	other than SO_2 are considered when information on these other species is available. Finally, the
27	outer than 50% are considered when information on these other species is available. Thiany, the

¹ Information on legislative requirements and history of SO₂ NAAQS reviews are presented in the Preface.

1 2

 $^{^{2}}$ The secondary NAAQS for SO₂ is being reviewed independently, in conjunction with the review of the secondary NAAQS for nitrogen dioxide (NO₂). A review of the primary NAAQS for NO₂ is also underway.

1	possible influence of other atmospheric pollutants on the interpretation of the role of SO ₂ in
2	health effects studies is considered, including interactions of SO ₂ with other pollutants that co-
3	occur in the environment (e.g., nitrogen oxides, carbon monoxide [CO], ozone [O ₃], particulate
4	matter [PM]).
5	As discussed in the Draft Integrated Plan for the Review of the Primary NAAQS for
6	Sulfur Dioxide (U.S. Environmental Protection Agency, 2007), a series of policy-relevant
7	questions frames this review of the scientific evidence to provide a scientific basis for a decision
8	on whether the current primary NAAQS for SO_2 (0.030 parts per million [ppm], annual average;
9	0.14 ppm, 24-h average) should be retained or revised. The draft ISA focuses on evaluation of
10	the newly available scientific evidence to best inform consideration of these framing questions,
11	including the following:
12	• Has new information altered/substantiated the scientific support for the
13	occurrence of health effects following short- and/or long-term exposure to levels
14	of SO_x found in the ambient air?
15	• Does new information impact conclusions from the previous review regarding the
16	effects of SO _x on susceptible populations?
17	• At what levels of SO _x exposure do health effects of concern occur?
18	• Has new information altered conclusions from previous reviews regarding the
19	plausibility of adverse health effects caused by SO_x exposure?
20	• To what extent have important uncertainties identified in the last review been
21	reduced and/or have new uncertainties emerged?
22	• What are the air quality relationships between short-term and longer-term
23	exposures to SO_x ?
24	
25 26	1.1 DOCUMENT DEVELOPMENT
20 27	EPA formally initiated the current review of the SO_2 NAAQS by announcing the
28	commencement of the review in the Federal Register with a call for information in May 2006
20 29	(Federal Register, 2006). In addition to the call for information, publications are identified
30	through an ongoing literature search process that includes searching MEDLINE and other

31 databases using as key words the terms: sulfur oxides, sulfur dioxide, SO_x , SO_2 , and reduced

1 sulfur gases. This search strategy is periodically reexamined and modified to enhance 2 identification of pertinent published papers. Additional papers are identified for inclusion in the 3 publication base in several ways. First, EPA staff reviews pre-publication tables of contents for 4 journals in which relevant papers may be published. Second, expert chapter authors are charged 5 with independently identifying relevant literature. Finally, additional publications that may be 6 pertinent are identified by both the public and the Clean Air Scientific Advisory Committee 7 (CASAC) during the external review process. The studies identified include research published 8 or accepted for publication by a date determined to be as inclusive as possible given the relevant 9 target dates in the NAAQS review schedule. Some additional studies, published after that date, 10 may also be included if they provide new information that impacts one or more key scientific 11 issues. The combination of these approaches should produce a comprehensive collection of 12 pertinent studies to form the basis of the ISA and to appear summarized in the next ISA annexes. 13 The following sections briefly summarize criteria for selection of studies for this draft 14 ISA. Consideration of these issues informs our judgments on the relative quality of individual 15 studies and allows us to focus the assessment on the most pertinent studies.

16

17 Criteria for Selecting Epidemiological Studies

18 In selecting epidemiological studies for the present assessment, EPA considers whether a 19 given study contains information on (1) short- or long-term exposures at or near ambient levels of SO_x ; (2) health effects of specific SO_x species or indicators related to SO_2 sources; (3) health 20 21 endpoints that repeat or extend findings from earlier assessments as well as those not previously 22 researched; (4) susceptible and vulnerable populations to SO_x exposure; (5) multiple pollutant 23 analyses and other approaches to address issues related to potential interactions (e.g., synergistic 24 effects of SO_x with other pollutants), confounding (e.g., SO_x associations with health endpoints 25 independent of copollutants), and effect modification (e.g., copollutant modification of SO_x 26 effects on health endpoints); and/or (6) important methodological issues (e.g., lag of effects, 27 model specifications, thresholds, mortality displacement). Among the epidemiological studies, 28 particular emphasis is focused on those relevant to standard setting in the United States. 29 Specifically, studies conducted in the United States or Canada will be generally accorded more 30 text discussion than those from other geographic regions, as the potential impacts of different 31 health care systems and the underlying health status of populations need to be accounted for in 32 the assessment. In addition, emphasis in the text is placed on discussion of (1) new, multicity

studies that employ standardized methodological analyses for evaluating SO_x effects, provide overall estimates for effects based on combined analyses of information pooled across cities, and examine results for consistency across cities; (2) new studies that provide quantitative effect estimates for populations of interest; and (3) studies that regard SO_x as a component of a complex mixture of air pollutants and, thus, give consideration to the levels of other copollutants, correlations of SO_x with these copollutants, and conduct multipollutant analyses.

7

8 Criteria for Selecting Experimental Studies

9 A set of explicit criteria is also used to select experimental studies for discussion. The 10 selection of research evaluating controlled exposures of laboratory animals focuses primarily on 11 those studies conducted at or near ambient SO_x concentrations and those studies that 12 approximate expected human exposure conditions in terms of concentration and duration which 13 will depend on the toxicokinetics and biological sensitivity of the particular laboratory animal 14 examined. In discussing the mechanisms of SO_x toxicity, studies conducted under 15 atmospherically relevant conditions are emphasized whenever possible. However, studies at 16 higher levels are also considered to allow for species-to-species differences and potential 17 differences in sensitivity between study subjects and especially susceptible human populations. 18 For research evaluating controlled human exposures to SO_x , emphasis is placed on studies that 19 (1) investigate effects on potentially susceptible populations such as asthmatics, particularly 20 studies where subjects serve as their own control to compare responses following SO_x exposure 21 and sham exposure and where responses in susceptible individuals are compared with those in 22 age-matched healthy controls; (2) address issues such as dose-response or time-course of 23 responses; (3) investigate exposure to SO_x separately and in combination with other pollutants; 24 (4) include controlled exposures to filtered air; and (5) have sufficient sample size to adequately 25 assess findings.

In assessing the scientific quality and relevance of epidemiological, animal toxicological, and human controlled exposure studies, the following considerations are taken into account: (1) where ambient air measurements are used, to what extent are the data of adequate quality and sufficiently representative to serve as credible exposure indicators; (2) were the study populations adequately selected and are they sufficiently well-defined to allow for meaningful comparisons between study groups; (3) are the health endpoint measurements meaningful and reliable; (4) are the statistical analyses appropriate, properly performed, and properly interpreted;

1-4 DRAFT-DO NOT QUOTE OR CITE

(5) are likely covariates (i.e., potential confounders or effect modifiers) adequately controlled or
taken into account in the study design and statistical analyses; and (6) are the reported findings
internally consistent. Consideration of these issues informs our judgments on the relative quality
of individual studies and will allow us to focus the assessment on the most pertinent studies.

- 5 6
- 7

1.2 ORGANIZATION OF THE DOCUMENT

8 This draft ISA includes five chapters. This introductory chapter (Chapter 1) presents 9 background information on the purpose of the document and characterizes how policy-relevant 10 scientific studies are identified. Chapter 2 highlights key concepts or issues relevant to 11 understanding the atmospheric chemistry, sources, exposure, and dosimetry of sulfur oxides, 12 following a "source-to-dose" paradigm. Chapter 3 evaluates and integrates health information 13 relevant to the review of the primary NAAQS for SO₂. In this chapter, findings from 14 epidemiological, toxicological, and human clinical studies are integrated in an assessment of the 15 relationships between exposure to ambient SO_x and health outcomes. The focus of this chapter 16 is on the strength of underlying epidemiological or toxicological evidence and the coherence and 17 plausibility of the body of evidence for effects on the respiratory, cardiovascular, or other 18 system. Chapter 4 provides information relevant to the public health impact of exposure to 19 ambient SO_x, including potential susceptible population groups. Finally, Chapter 5 summarizes 20 key findings and conclusions from the atmospheric sciences, ambient air data analyses, exposure 21 assessment, dosimetry, and health effects in consideration of the review of the NAAQS for SO₂. 22 The draft ISA is supplemented by a series of annexes, which are focused on 23 accomplishing two goals. The first goal is to identify scientific research that is relevant to 24 informing key policy issues. The second goal is to produce a base of evidence containing all of 25 the publications relevant to the SO_2 NAAQS review. The annexes provide information on 26 (1) the atmospheric chemistry of SO_x as well as the sampling/analytic methods for measurement 27 of SO_x^{3} , (2) environmental concentrations and human exposure to SO_x , (3) dosimetry; 28 (4) toxicological studies of SO_x health effects in laboratory animals, and (5) epidemiological

1-5

³ This section will also provide information on NO₂ in order to support the reviews of the primary and secondary NAAQS for both SO₂ and NO₂. The atmospheric chemistry of NO_x and SO_x are intricately linked. Therefore, discussion of their combined chemistry is more effective and more efficient than a separate discussion of each pollutant.

- 1 studies of health effects from short- and long-term exposure to SO_x . More detailed information
- 2 on various methods and results for the health studies is summarized in tabular form in the annex.
- 3 These tables are generally organized to include information about (1) concentrations of SO_x and
- 4 averaging times, (2) description of study methods employed, (3) results and comments, and
- 5 (4) quantitative outcomes for SO_x effect estimates.

1 2 3

2. SOURCE-TO-TISSUE DOSE

3 4	This chapter provides basic information about concepts and findings that relate to
5	considerations in atmospheric science, human exposure assessment, and human dosimetry. It is
6	meant to serve as a prologue for detailed discussions of evidence on health effects that will
7	follow in Chapters 3 and 4. Section 2.1 provides an overview of the atmospheric chemistry
8	processes involved in the oxidation of SO_2 and those involved in the production of SO_2 from
9	reduced sulfur gases in the atmosphere. Sources of SO_2 are presented in Section 2.2. A
10	description of the methods for measuring SO_2 and issues associated with its measurement are
11	presented in Section 2.3. Data for ambient SO_2 concentrations are characterized in Section 2.4.
12	Policy Relevant Background concentrations of SO ₂ , i.e., those concentrations that basically
13	define uncontrollable levels are also presented in Section 2.4. Factors governing personal
14	exposures to SO ₂ and associated issues are discussed in Section 2.5. Finally, the dosimetry of
15	SO_2 in the respiratory tract is discussed in Section 2.6. The order of topics in this chapter
16	follows in large measure that given in the National Research Council paradigm for integrating air
17	pollutant research (National Research Council, 1998).

18

19

20

29

2.1 ATMOSPHERIC CHEMISTRY

The only forms of monomeric sulfur oxides of interest in tropospheric chemistry are sulfur dioxide (SO₂) and sulfur trioxide (SO₃). SO₃ can be emitted from the stacks of power plants and factories; however, it reacts extremely rapidly with H_2O in the stacks or immediately after release into the atmosphere to form sulfuric acid (H_2SO_4) which then partitions into the aqueous phase of particles. Thus, only SO₂ is present in the tropospheric boundary layer at concentrations significant for atmospheric chemistry and human exposures.

SO₂ is oxidized either in the gas phase or in the aqueous phase in cloud drops because it
is highly water-soluble. The gas phase oxidation of SO₂ proceeds through the reaction:

$$SO_2 + OH + M \rightarrow HSO_3 + M$$
 (2-1)

30 followed by:

$$HSO_3 + O_2 \rightarrow SO_3 + HO_2$$
 (2-2)

3

4

5

$$SO_3 + H_2O \rightarrow H_2SO_4$$
 (2-3)

Because H_2SO_4 is extremely soluble, it will be removed rapidly by transfer to the aqueous phase of aerosol particles and cloud drops. Rate coefficients for the reactions of SO_2 with either the hydroperoxyl (HO₂) or nitrate radical (NO₃) are too low to be significant (JPL, 2003).

The major sulfur species in clouds are hydrogen sulfite (HSO₃⁻) and the sulfite ion
(SO₃²⁻) (both of which are derived from the dissolution of SO₂ in water and are referred to as
S(IV)), and bisulfate ion (HSO₄⁻) and sulfate (SO₄²⁻) (which are referred to as S(VI)). The chief
species capable of oxidizing S(IV) to S(VI) in cloud water are ozone (O₃), peroxides (either
hydrogen peroxide [H₂O₂] or organic peroxides), hydroxyl (OH) radicals, and ions of transition
metals such as Fe and Cu that can catalyze the oxidation of S(IV) to S(VI) by O₂.
The basic mechanism of the aqueous phase oxidation of SO₂ has long been studied and

13 can be found in numerous texts on atmospheric chemistry, e.g., Seinfeld and Pandis (1998),

14 Jacob (1999), and Jacobson (2002). Following Jacobson (2002), the steps involved in the

15 aqueous phase oxidation of SO_2 can be summarized as follows:

16 Dissolution of SO₂

17 $SO_2(g) \Leftrightarrow SO_2(aq)$ (2-4)

18 The formation and dissociation of H₂SO₃

19
$$SO_2(aq) + H_2O(aq) \Leftrightarrow H_2SO_3 \Leftrightarrow H^+ + HSO_3^- \Leftrightarrow 2H^+ + SO_3^{2-}$$
 (2-5)

In the pH range commonly found in rainwater (2 to 6), the most important reaction converting
S(IV) to S(VI) is:

22

$$HSO_{3}^{-} + H_{2}O_{2} + H^{+} \Leftrightarrow SO_{4}^{2-} + H_{2}O + 2H^{+}$$
(2-6)

23 as SO_3^{2-} is much less abundant than HSO_3^{-} .

For pH up to about 5.3, H_2O_2 is the dominant oxidant, while at pH > 5.3, O_3 followed by Fe(III) become dominant. Higher pH levels are expected to be found mainly in marine aerosols. However, in marine aerosols, the chloride-catalyzed oxidation of S(IV) may be more important (Zhang and Millero, 1991; Hoppel and Caffrey, 2005). Because the ammonium ion (NH₄⁺) is so
 effective in neutralizing acidity, when present, it affects the rate of oxidation of S(IV) to S(VI)
 and the rate of dissolution of SO₂ in particles and cloud drops.

4 A comparison of the relative rates of oxidation by gas and aqueous phase reactions by 5 Warneck (1999) indicates that only about 20% of SO₂ is oxidized by gas phase reactions. Thus, 6 SO₂ is oxidized mainly by aqueous phase reactions. SO₂ is also removed from the atmosphere 7 by dry deposition to moist surfaces, resulting in an atmospheric lifetime (τ) with respect to deposition on the order of 1 week, depending on humidity. The rate of oxidation of SO_2 to SO_4^{2-} 8 ranges from 0.5 to $\sim 2\%$ h⁻¹ as measured in power plant plumes (Pueschel and van Valin, 1978), 9 resulting in an atmospheric lifetime ranging from about 2 days to about a week, with respect to 10 11 this process. These two processes, oxidation and deposition, lead to an overall lifetime of SO_2 in 12 the atmosphere of a few days.

13

14

15

2.2 SOURCES OF SULFUR OXIDES

16 Anthropogenic emissions of SO_2 are mainly from combustion of fossil fuels by electrical 17 utilities (~66 %) and industry (~29%), with transportation-related sources making only a minor 18 contribution (\sim 5%) in 2002 (U.S. Environmental Protection Agency, 2006a). Thus, most SO₂ 19 emissions originate from point sources. Since sulfur is a volatile component of fuels, it is almost quantitatively released during combustion. Hence, sulfur emissions can be calculated on the 20 21 basis of sulfur content in fuel stocks to greater accuracy than can be done for other pollutants like 22 nitrogen oxides or primary particulate matter (PM). However, the estimates given above are 23 nationwide averages and may not accurately reflect the contribution of specific local sources 24 determining a person's exposures to SO₂ at any given location and time. For example, shipping 25 and associated in-port activities may be a significant source of SO₂ in some coastal cities (Wang 26 et al., 2007).

The largest natural sources of SO₂ are volcanoes and biomass burning. Even so, SO₂
constitutes a relatively minor fraction (0.005% by volume) of total volcanic emissions (Holland,
1978). Volcanic sources of SO₂ in the United States are limited to the Pacific Northwest,
Alaska, and Hawaii. Emissions of SO₂ from burning vegetation are generally in the range of 1 to
2% of the biomass burned (see e.g., Levine and Pinto, 1998). Sulfur is bound in amino acids in

vegetation and is released during combustion. Gaseous sulfur emissions from this source are
 mainly in the form of SO₂.

3 In addition to its role as an emitted primary pollutant, SO₂ is also produced by the 4 photochemical oxidation of reduced sulfur compounds such as dimethyl sulfide, or DMS, 5 (CH₃-S-CH₃), hydrogen sulfide (H₂S), carbon disulfide (CS₂), carbonyl sulfide (OCS), methyl 6 mercaptan (CH₃-S-H), and dimethyl disulfide (CH₃-S-S-CH₃). The sources for these compounds 7 are mainly biogenic and are discussed in Annex Section 2.5. Emissions of reduced sulfur species 8 are associated typically with marine organisms living either in pelagic or coastal zones and with 9 anaerobic bacteria in marshes and estuaries. Emissions of dimethyl sulfide (DMS) from marine 10 plankton represent the largest single source of reduced sulfur species to the atmosphere (e.g., 11 Berresheim et al., 1995). Except for OCS, which is lost mainly by photolysis ($\tau \sim 6$ months), all 12 the other species are lost mainly by reaction with OH and NO₃ radicals and are relatively short-13 lived, having lifetimes of the order of a few hours to a few days (see Annex Section 2.3). 14 Reaction with NO₃ radicals at night most likely represents the major loss process for DMS and 15 methyl mercaptan. Although the mechanisms for the oxidation of DMS are still not completely 16 understood, excess sulfate in marine aerosol appears related mainly to the production of SO₂ 17 from the oxidation of DMS. Emissions of sulfur from natural sources are small compared to 18 anthropogenic emissions within the United States. However, important exceptions occur locally 19 as the result of volcanic activity, wildfires and in certain coastal zones as described here. 20 Because OCS is relatively long lived, it can survive oxidation in the troposphere and be 21 transported upwards into the stratosphere. Crutzen (1976) proposed that its oxidation to sulfate 22 in the stratosphere serves as the major source of mass in the stratospheric aerosol layer.

However, Myhre et al. (2004) proposed that SO₂ transported upwards from the troposphere by
deep convection is the most likely source, as the flux of OCS is too small. In addition, in-situ
measurements of the isotopic composition of sulfur in stratospheric sulfate do not match those of
OCS (Leung et al., 2002). Thus, anthropogenic SO₂ emissions could be important precursors to
the formation of the stratospheric aerosol layer.

28 29

1 2.3 MEASUREMENT METHODS AND ASSOCIATED ISSUES

2 Currently, ambient SO₂ is measured using instruments based on pulsed ultraviolet (UV) 3 fluorescence. The UV fluorescence monitoring method for atmospheric SO₂ was developed to 4 improve upon the flame photometric detection (FPD) method, which in turn had displaced the 5 pararosaniline wet chemical method. The pararosaniline method is still the EPA Federal 6 Reference Method (FRM) for atmospheric SO₂, but it is rarely used because of its complexity 7 and slow response, even in its automated forms. Both the UV fluorescence and FPD methods are 8 designated as Federal Equivalent Methods (FEMs) by EPA, but UV fluorescence has largely 9 supplanted the FPD approach because of the UV method's inherent linearity, sensitivity, and the 10 need for consumable hydrogen gas for the FPD method.

In the UV fluorescence method, SO_2 molecules absorb UV light at one wavelength and emit UV light at longer wavelengths in the process known as fluorescence through excitation of the SO_2 molecule to a higher energy (singlet) electronic state. Once excited, the molecule decays nonradiatively to a lower-energy electronic state from which it then decays to the original, or ground, electronic state by emitting a photon of light at a longer wavelength (i.e., a lower-energy photon) than the original, incident photon. The intensity of the emitted light is thus proportional to the number of SO_2 molecules in the sample gas.

18 In commercial analyzers, light from a high-intensity UV lamp passes through a 19 bandwidth filter, allowing only photons with wavelengths around the SO_2 absorption peak (near 20 214 nm) to enter the optical chamber. The light passing through the source bandwidth filter is 21 collimated using a UV lens and passes through the optical chamber, where it is detected on the 22 opposite side of the chamber by the reference detector. A photomultiplier tube (PMT) is offset 23 from and placed perpendicular to the light path to detect the SO₂ fluorescence. Since the SO₂ 24 fluorescence at 330 nm is different from its excitation wavelength, an optical bandwidth filter is 25 placed in front of the PMT to filter out any stray light from the UV lamp. A lens is located 26 between the filter and the PMT to focus the fluorescence onto the active area of the detector and 27 optimize the fluorescence signal. The limit of detection (LOD) for a non-trace level SO₂ 28 analyzer is 10 ppb (CFR, 2006). However, most commercial analyzers have detection limits of 29 about 3 ppb. The EPA through its NCore initiative (U.S. Environmental Protection Agency, 30 2005) is engaged in a program to install and operate newer trace-level SO₂ instruments that will 31 increase the accuracy and precision of measurements at much lower levels.

1 Sources of Positive Interference

2 The most common source of interference to the UV fluorescence method for SO₂ is from 3 other gases that fluoresce in a similar fashion to SO₂ when exposed to UV radiation of that 4 wavelength. The most significant of these are polycyclic aromatic hydrocarbons (PAHs), of 5 which naphthalene is a prominent example. Xylene is another common hydrocarbon that can 6 cause fluorescent interference. Consequently, any such aromatic hydrocarbons that are in the 7 optical chamber can act as a positive interference. To remove this source of interference, high-8 sensitivity SO_2 analyzers like those to be used in the NCore network (U.S. Environmental 9 Protection Agency, 2005), have hydrocarbon scrubbers to remove these compounds from the 10 sample stream before the sample air enters the optical chamber.

11 Luke (1997) reported the positive artifacts of a modified pulsed fluorescence detector 12 generated by the coexistence of nitric oxide (NO), CS₂, and a number of highly fluorescent 13 aromatic hydrocarbons such as benzene, toluene, o-xylene, m-xylene, p-xylene, m-ethyltoluene, 14 ethylbenzene, and 1,2,4-trimethylbenzene. The positive artifacts could be reduced by using a hydrocarbon "kicker" membrane. At a flow rate of 300 standard cc min⁻¹ and a pressure drop of 15 16 645 torr across the membrane, the interference from ppm levels of many aromatic hydrocarbons 17 was eliminated entirely. NO fluoresces in a spectral region close to that of SO₂. However, in 18 high-sensitivity SO₂ analyzers, the bandpass filter in front of the PMT is designed to prevent NO 19 fluorescence from being detected at the PMT. Care must be exercised when using 20 multicomponent calibration gases containing both NO and SO₂ so that the NO rejection ratio of 21 the SO₂ analyzer is sufficient to prevent NO interference.

22 The most common source of positive bias (as contrasted with positive spectral 23 interference) in high-sensitivity SO₂ monitoring is stray light reaching the optical chamber. 24 Since SO₂ can be electronically excited by a broad range of UV wavelengths, any stray light with 25 an appropriate wavelength that enters the optical chamber can excite SO_2 in the sample and 26 increase the fluorescence signal. Furthermore, stray light at the wavelength of the SO_2 27 fluorescence that enters the optical chamber may impinge on the PMT and increase the 28 fluorescence signal. Several design features are incorporated to minimize the stray light that 29 enters the chamber. These features include the use of light filters, dark surfaces, and opaque 30 tubing to prevent light from entering the chamber.

1 Nicks and Benner (2001) reported a sensitive SO_2 chemiluminescence detector based on 2 a differential measurement where response from ambient SO_2 is determined by the difference 3 between air containing SO₂ and air scrubbed of SO₂ when both air samples contain other 4 detectable sulfur species. Assuming monotonic efficiency of the sulfur scrubber, all positive 5 artifacts should also be reduced with this technique.

6 7

Sources of Negative Interference

8 Nonradiative deactivation (quenching) of excited SO_2 molecules can occur from 9 collisions with common molecules in air, including nitrogen, oxygen, and water. During 10 collisional quenching, the excited SO₂ molecule transfers energy, kinetically allowing the SO₂ 11 molecule to return to the original lower energy state without emitting a photon. Collisional 12 quenching results in a decrease in the SO₂ fluorescence and, hence, an underestimation of SO₂ 13 concentration in the air sample. Of particular concern is the variable water vapor content of air. 14 Luke (1997) reported that the response of the detector could be reduced by about 7 and 15% at 15 water vapor mixing ratios of 1 and 1.5 mole percent (relative humidity [RH] = 35 to 50% at 20 to 16 25°C and 1 atm for a modified pulsed fluorescence detector (Thermo Environmental 17 Instruments, Model 43s). Condensation of water vapor in sampling lines must be avoided, as 18 water on the inlet surfaces can absorb SO₂ from the sample air. The simplest approach to avoid 19 condensation is to heat sampling lines to a temperature above the expected dewpoint and to 20 within a few degrees of the controlled optical bench temperature. At very high SO_2 21 concentrations, reactions between electronically excited SO₂ and ground state SO₂ might occur, 22 forming SO₃ and SO (Calvert et al., 1978). However, the possibility that this artifact might be 23 affecting measurements at very high SO₂ levels has not been examined. 24 25

Other Techniques for Measuring SO₂

26 More sensitive techniques for measuring SO_2 are available, but most of these systems are 27 too complex and expensive for routine monitoring applications. However, techniques such as 28 those described by Luke (1997) can be used to improve the sensitivity of ambient 29 SO₂ monitors by eliminating sources of common interference.

30

31

1 2 2.4

ENVIRONMENTAL CONCENTRATIONS OF SULFUR OXIDES

3 2.4.1 Ambient Air Quality Data for Sulfur Dioxide and Other
 4 Sulfur Oxides

5 SO₂ data collected from the State and Local Air Monitoring Stations (SLAMS) and 6 National Air Monitoring Stations (NAMS) networks show that the decline in SO₂ emissions 7 from electric generating utilities has improved air quality. There has not been a single monitored 8 exceedance of the SO₂ annual ambient air quality standard in the United States since 2000, 9 according to the U.S. Environmental Protection Agency Acid Rain Program (ARP) 2005 10 Progress Report (U.S. Environmental Protection Agency, 2006b). EPA's trends data 11 (www.epa.gov/airtrends) reveal that the national composite average SO_2 annual mean ambient 12 concentration decreased by 48% from 1990 to 2005, with the largest single-year reduction 13 coming in 1994-1995, the ARP's first operating year (U.S. Environmental Protection Agency, 14 2006b). Figure 2.4-1 depicts data for SO₂ emissions in the continental United States (CONUS) 15 in these years that reflect this reduction with individual state-level totals. 16 These emissions data trends are consistent with the trends in the observed ambient 17 concentrations from the Clean Air Status and Trends Network (CASTNet). Following implementation of the Phase I controls on ARP sources between 1995 and 2000, significant 18 reductions in SO₂ and ambient SO₄^{2^{-}} concentrations were observed at CASTNet sites throughout 19 the eastern United States. The mean annual concentrations of SO_2 and SO_4^{2-} from CASTNet's 20 21 long-term monitoring sites can be compared using two 3-year periods (1989 through 1991 and 22 2003 through 2005) in Figures 2.4-2a and 2.4-2b for SO₂, and Figures 2.4-3a and 2.4-3b for SO_4^{2-} . 23 24 From 1989 through 1991, that is, in the years prior to implementation of the ARP Phase I, the highest ambient mean concentrations of SO_2 and SO_4^{2-} were observed in western 25 Pennsylvania and along the Ohio River Valley: >20 μ g m⁻³ (~8 ppb) SO₂ and >15 μ g m⁻³ 26 SO_4^{2-} . As with SO_2 , in the years since the ARP controls were enacted, both the magnitude of 27

27 504 . As with 502, in the years since the ART controls were endeded, both the magnitude of

 SO_4^{2-} concentrations and their areal extent have been significantly reduced, with the largest

29 decreases again coming along the Ohio River Valley.

Figure 2.4-1. State-level SO₂ emissions, 1990-2005.

Source: Environmental Protection Agency Clean Air Markets Division (www.epa.gov/airmarkets/index.html).

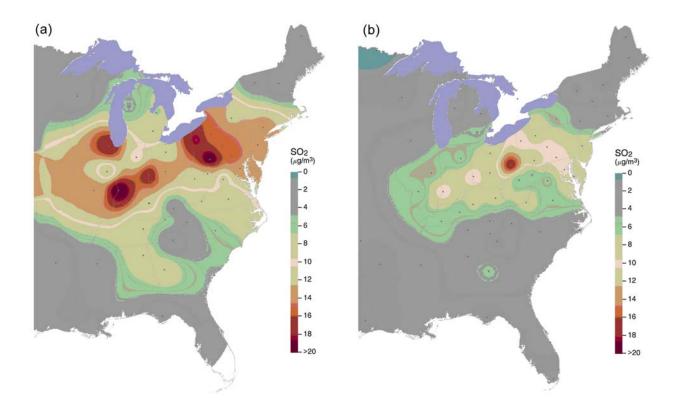


Figure 2.4-2. Annual mean ambient SO₂ concentration, (a) 1989 through 1991, and (b) 2003 through 2005.

* Dots on all maps represent monitoring sites. Lack of shading for Southern Florida indicates lack of monitoring coverage.

Source: Environmental Protection Agency, CASTNet (www.epa.gov/castnet/).

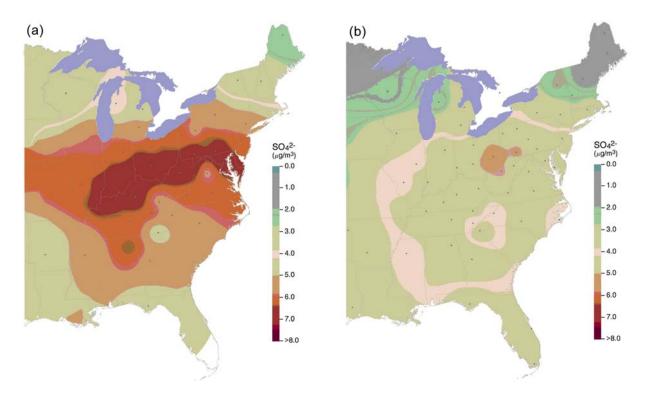


Figure 2.4-3. Annual mean ambient SO_4^{2-} Concentration, (a) 1989 through 1991, and (b) 2003 through 2005.

* Dots on all maps represent monitoring sites. Lack of shading for Southern Florida indicates lack of monitoring coverage.

Source: Environmental Protection Agency, CASTNet (www.epa.gov/castnet/).

Figure 2.4-4 depicts for the CONUS the magnitude and spatial distribution of SO_2 emissions in 2006 from sources in the ARP. This depiction shows clearly the continuing overrepresentation of SO_2 sources in the United States east of the Mississippi River as compared to west of it, a trend even stronger in the central Ohio River Valley and which was evident in the smoothed concentration plots in Figures 2.4-2a and 2.4-2b. As shown in Table 2.4-1, regional distributions of SO_2 and SO_4^{2-} concentrations averaged for the 3 years 2003 through 2005 reflect this geospatial emissions source difference as well.

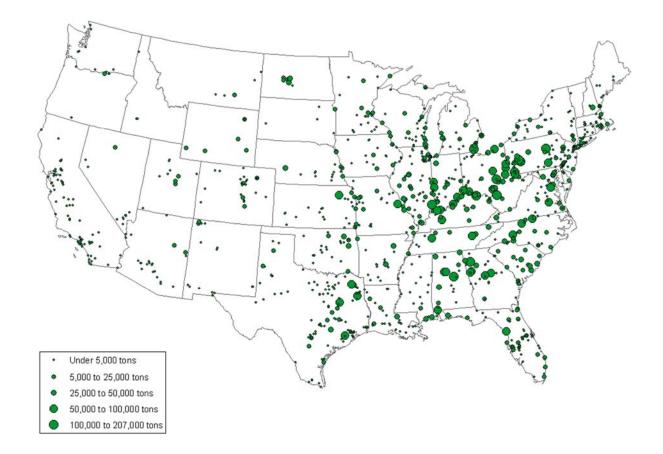


Figure 2.4-4. Annual SO₂ Emissions in 2006 for Acid Rain Program Cooperating Facilities.

Source: Environmental Protection Agency, Clean Air Markets Division (www.epa.gov/airmarkets/index.html).

12.4.2Spatial and Temporal Variability of Ambient Sulfur Dioxide2Concentrations

3 SO₂ concentrations have been falling throughout all regions of the United States as

- 4 demonstrated by the CASTNet data reviewed above. In and around most individual
- 5 Consolidated Metropolitan Statistical Areas (CMSAs), the trends are also toward lower SO₂
- 6 levels. Table 2.4-2 shows that many annual and even 1-h mean concentrations for the years 2003
- 7 through 2005 were consistently at or below the operating LOD of \sim 3 ppb for the standard SO₂
- 8 monitor deployed in the regulatory networks, while the aggregate mean value over all 3 years
- 9 and all sites in and around the CMSAs was just above the LOD at ~4 ppb, and identical to the

1-h and 24-h means. Hence, it appears reasonable to aggregate up in time from available 1-h
 samples to daily and even annual exposure estimates.

3 Figure 2.4-5 shows the composite diurnal variation in hourly SO₂ concentrations in 4 boxplot form from all monitors reporting SO₂ data into the Air Quality System (AQS) database. 5 The AQS contains measurements of air pollutant concentrations in the 50 states, plus the District 6 of Columbia, Puerto Rico, and the Virgin Islands for the six criteria air pollutants (SO₂, NO₂, 7 PM, CO, Pb, O₃) and hazardous air pollutants. The same data were used to construct Table 2.4-2 8 and to configure Figure 2.4-5. As can be seen from Figure 2.4-5, concentrations beneath the 9 95th percentile level are indistinguishable from each other, but are typically in the range of only 10 a few ppb. However, the peaks in the distribution at any hour of the day can be a factor of 10 or 11 more higher than values in the bulk of the concentration distribution. Overall, there is some 12 indication that the highest values are reached either at midday or during the middle of the night. 13 Daytime peaks could result from down-mixing of air aloft due to convective activity, as SO₂ is 14 emitted mainly by elevated sources. Nighttime peaks are more likely due to trapping of local 15 emissions beneath a shallow nocturnal boundary layer.

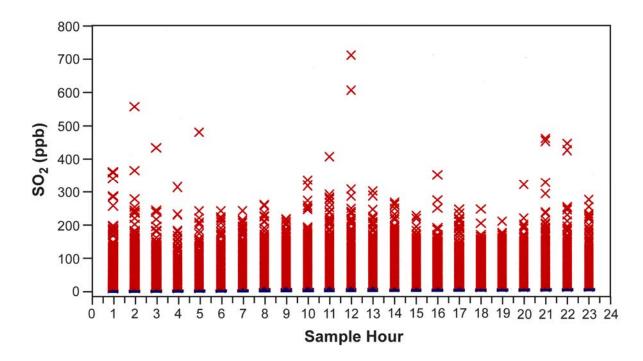


Figure 2.4-5. Boxplot of hourly SO₂ concentrations across all cities in focus.

1 To be sure, the maximum 1-h concentration observed at some sites in and around some 2 CMSAs did still exceed the mean by a large margin, with maximum 1-h values in Table 2.4-2 of 3 >600 ppb. However, the 50th percentile maximum value outside CMSAs, 5 ppb, was only 4 slightly greater than the 1-h, 24-h, and annual mean value, 4 ppb. The 50th percentile maximum 5 value inside CMSAs, 7 ppb, was 75% greater than these longer-term averages, reflecting 6 heterogeneity in source strength and location. In addition, even with 1-h maximum values of 7 >600 ppb, the maximum annualized mean value for all CMSAs was still <16 ppb, and, hence, 8 below the current annual primary SO₂ NAAQS.

9 The strong east-to-west gradient in SO_2 emissions described above is well replicated in 10 the observed concentrations in individual CMSAs. Thus, for example, values in Table 2.4-3 11 represent the mean annual concentrations in the years 2003 through 2005 for the 12 CMSAs with 12 four or more SO_2 regulatory monitors, ranging from a reported low of ~1 ppb in Riverside, CA 13 and San Francisco, CA to a high of ~12 ppb in Pittsburgh, PA and Steubenville, OH in the 14 highest SO_2 source region.

15 The Pearson correlation coefficients (r) for multiple monitors in these CMSAs (see also 16 Table 2.4-3) were generally very low for all cities, especially at the lower end of the observed 17 concentration ranges, and are even negative at the very lowest levels on the West Coast. This 18 reflects strong heterogeneity in SO₂ ambient concentrations even within any one CMSA and, 19 therefore, indicates possibly different exposures of spatially distinct subgroups of humans in 20 these CMSAs to these very low concentrations of SO₂. At higher concentrations, the r values 21 were also higher. In some CMSAs, this heterogenerity may result from meteorological effects 22 whereby a generally well-mixed subsiding air mass containing one or more relatively high 23 concentration SO₂ plumes would be spread more nearly uniformly across an area than would 24 faster-moving plumes with lower SO₂ concentrations. However, because the highest r values, 25 i.e., those >0.7, correspond to the highest SO₂ concentrations, i.e., >6 and >10 ppb, instrument 26 error may also play a role. Since the lowest SO_2 concentrations are at or below the operating 27 LOD and demonstrate the lowest correlation across monitors that share at least some air mass 28 characteristics most of the year, the unbiased instrument error in this range may be confounding 29 interpretation of any possible correlation. This could be because the same actual ambient value 30 would be reported by different monitors (with different error profiles) in the CMSA as different 31 values in this lowest concentration range.

1 To better characterize the extent and spatiotemporal variance of SO₂ concentrations 2 within each of the CMSAs having more than four SO₂ monitors (listed in Table 2.4-3), the 3 means, minima, and maxima were computed from daily mean data across all available monitors 4 for each month for the years 2003 through 2005. Because many of these CMSAs with SO₂ monitors also reported $SO_4^{2^-}$, it is possible to compute the degree of correlation between SO_2 , 5 the emitted species, and $SO_4^{2^-}$, the most prominent oxidized product from SO₂. $SO_4^{2^-}$ values, 6 7 however, while averaged over all available data, are generally available at their monitoring sites on a schedule of only 1 in 3 days or 1 in 6 days. Furthermore, SO_2 and SO_4^{2-} monitors are not 8 9 collocated throughout the CMSAs. For each of five example CMSAs, Figures 2.4-6 through 10 2.4-10 depict monthly values aggregated from daily means of (a) the monthly mean, minimum, and maximum SO₂ concentrations; (b) the monthly mean, minimum and maximum SO_4^{2-} 11 concentrations; and (c) a scatterplot of SO₂ versus SO_4^{2-} concentrations. 12

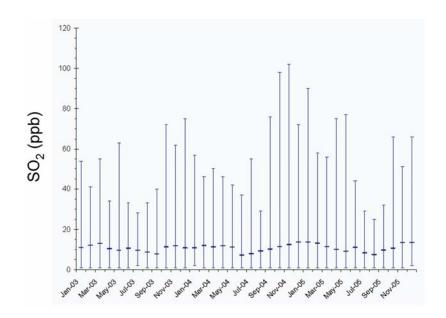


Figure 2.4-6(a).Monthly mean, minimum, and maximum SO2 concentrations at
Steubenville, OH for the years 2003 through 2005.

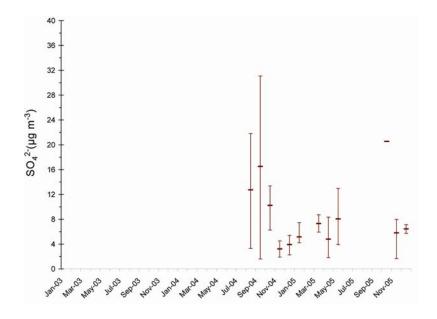


Figure 2.4-6(b). Monthly mean, minimum, and maximum SO_4^{2-} concentrations at Steubenville, OH for the years 2003 through 2005.

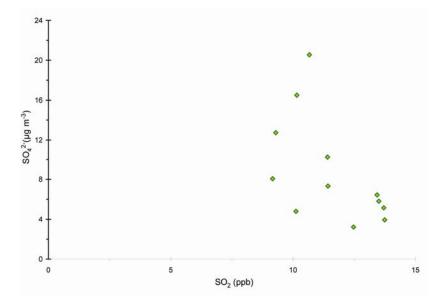


Figure 2.4-6(c). Monthly mean SO_4^{2-} concentrations as a function of SO_2 concentrations at Steubenville, OH for the years 2003 through 2005.

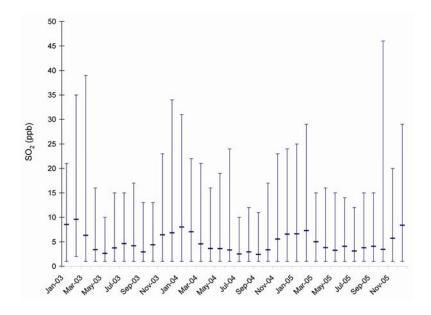


Figure 2.4-7(a). Monthly mean, minimum, and maximum SO₂ concentrations at Philadelphia, PA for the years 2003 through 2005.

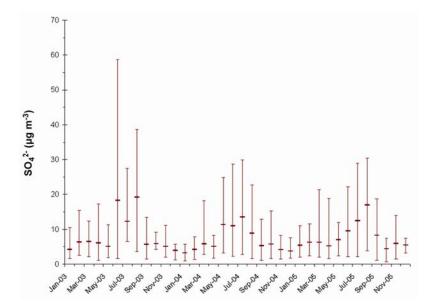


Figure 2.4-7(b). Monthly mean, minimum, and maximum SO_4^{2-} concentrations at Philadelphia, PA for the years 2003 through 2005.

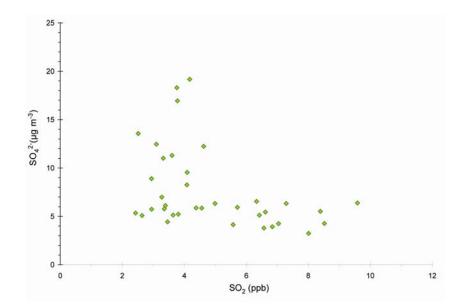


Figure 2.4-7(c). Monthly mean SO_4^{2-} concentrations as a function of SO_2 concentrations at Philadelphia, PA for the years 2003 through 2005.

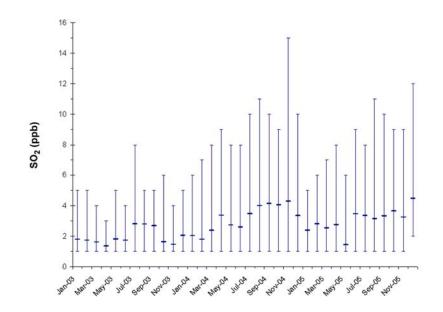


Figure 2.4-8(a). Monthly mean, minimum, and maximum SO₂ concentrations at Los Angeles, CA for the years 2003 through 2005.

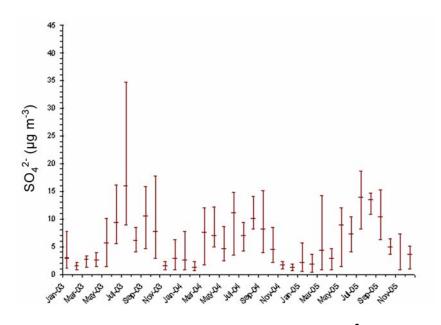


Figure 2.4-8(b). Monthly mean, minimum, and maximum SO_4^{2-} concentrations at Los Angeles, CA for the years 2003 through 2005.

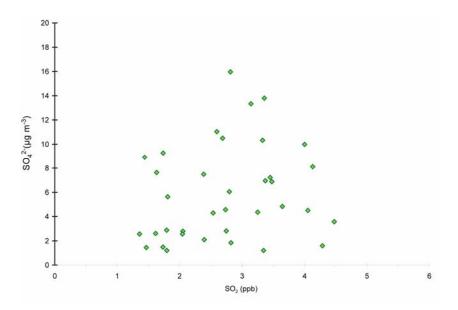


Figure 2.4-8(c). Monthly mean SO_4^{2-} concentrations as a function of SO_2 concentrations at Los Angeles, CA for the years 2003 through 2005.

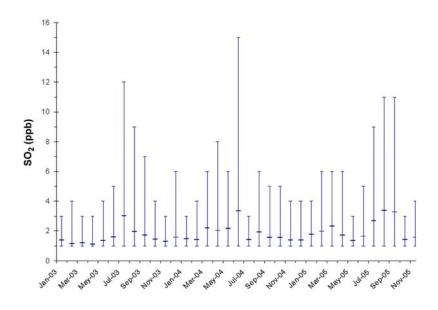


Figure 2.4-9(a). Monthly mean, minimum, and maximum SO₂ concentrations at Riverside, CA for the years 2003 through 2005.

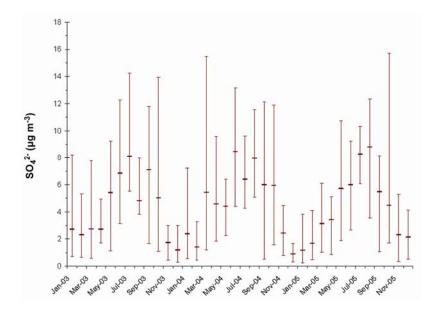


Figure 2.4-9(b). Monthly mean, minimum, and maximum $SO_4^{2^-}$ concentrations at Riverside, CA for the years 2003 through 2005.

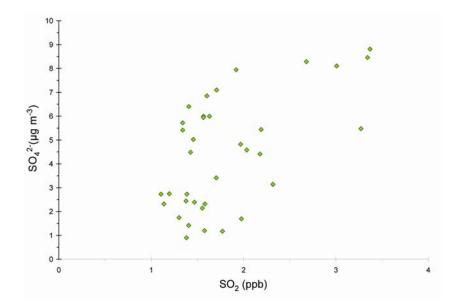


Figure 2.4-9(c). Monthly mean SO_4^{2-} concentrations as a function of SO_2 concentrations at Riverside, CA for the years 2003 through 2005.

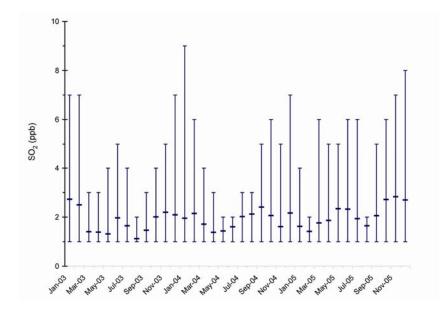


Figure 2.4-10(a). Monthly mean, minimum, and maximum SO₂ concentrations at Phoenix, AZ for the years 2003 through 2005.

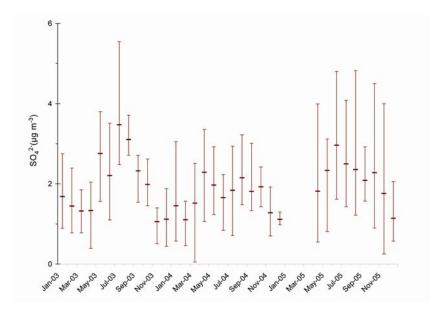


Figure 2.4-10(b). Monthly mean, minimum, and maximum SO₄²⁻ concentrations at Phoenix, AZ for the years 2003 through 2005.

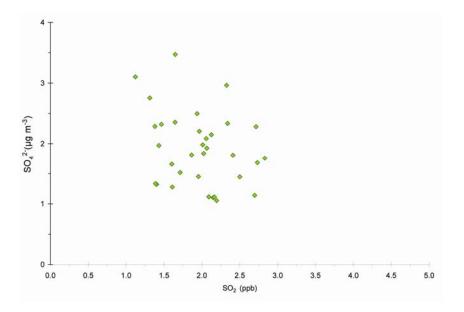


Figure 2.4-10(c). Monthly mean SO_4^{2-} concentrations as a function of SO_2 concentrations at Phoenix, AZ for the years 2003 through 2005.

Moving in order from the region of highest to lowest SO₂ concentrations, consider Steubenville, OH (Figure 2.4-6), where the SO₂ concentrations were highest of all 12 CMSAs with more than four monitors. Even here, however, all monthly mean SO₂ concentrations (Figure 2.4-6a) were substantially <30 ppb, though maximum daily means in some months were often >60 ppb, or even >90 ppb. Sulfate data at Steubenville (Figure 2.4-6b) were insufficient to make meaningful comparisons, though the 12 months of available SO_4^{2-} data suggest no correlation with SO₂ (see Figure 2.4-6c).

8 Next, consider Philadelphia, PA. SO_2 in Philadelphia, PA (Figure 2.4-7a) is present at 9 roughly one-half the monthly mean concentrations in Steubenville, OH (compare Figures 2.4-6a 10 and 2.4-7a), and demonstrates a strong seasonality with SO_2 concentrations peaking in winter. 11 By contrast, SO_4^{2-} concentrations (Figure 2.4-7b) in Philadelphia peak in the three summer 12 seasons, with pronounced wintertime minima. This seasonal anticorrelation still contains 13 considerable monthly scatter, however, as Figure 2.4-7c makes clear.

14 Los Angeles, CA (see Figure 2.4-8a-c) presents a special case since its size and power requirements place a larger number of SO₂ emitters near it than would otherwise be expected on 15 16 the West Coast. Concentrations of SO₂ (Figure 2.4-8a) demonstrate weak seasonality in these 17 3 years, with summertime means of ~3 to 4 ppb, and maxima generally higher than wintertime ones, though the highest means and maxima occur during the winter of 2004-2005. SO_4^{2-} at Los 18 Angeles (Figure 2.4-8b) shows stronger seasonality, most likely because the longer summer days 19 of sunny weather allow for additional oxidation of SO_2 to $SO_4^{2^{-1}}$ than would be available in 20 21 winter. Weak seasonal effects in SO₂ likely explain the complete lack of correlation between SO_2 and SO_4^{2-} here, as Figure 2.4-8c shows. 22

23 The Riverside, CA CMSA (see Figure 2.4-9a-c) presents the strongest example among the 12 examined for this study of correlation between SO_2 and SO_4^{2-} (Figure 2.4-9c), though 24 even here the R^2 value is merely 0.3. Seasonal peaks are obvious in summertime for SO₂ and 25 SO_4^{2-} , both at roughly half the ambient concentrations seen in Los Angeles (compare Figures 26 27 2.4-8a and 2.4-8b to Figures 2.4-9a and 2.4-9b). This is very likely due to Riverside's 28 geographic location just downwind of the regionally large sources near Los Angeles and the 29 prevailing westerly winds in summer. Again, as with Los Angeles, the summertime peaks in SO_4^{2-} are most likely due to the combination of peaking SO_2 and favorable meteorological 30 31 conditions allowing more complete oxidation.

Phoenix, AZ was the CMSA with the lowest monthly mean SO_2 and SO_4^{2-} 1 2 concentrations examined here (see Figures 2.4-10a and b). In Phoenix, nearly all monthly mean SO_2 values were at or below the regulatory monitors' operating LOD of ~3 ppb. SO_4^{2-} 3 concentrations were equivalently low, roughly one-half the concentrations seen in Riverside, CA, 4 5 for example. The monthly mean data in Figures 2.4-10a and 2.4-10b show strong summertime peaks for even these very low-level SO_4^{2-} observations, which, at ~1 to 3 µg m⁻³, were generally 6 one-half those in Philadelphia (compare Figure 2.4-7b). Figure 2.4-10a suggests some 7 seasonality in SO₂, though anticorrelated with $SO_4^{2^-}$; however, the trend is very weak, as the 8 9 correlation scatterplot (Figure 2.4-10c) shows.

- 10
- 11

2.4.3 Policy Relevant Background Concentrations of Sulfur Dioxide

12 Background concentrations of SO₂ used for purposes of informing decisions about 13 NAAQS are referred to as Policy Relevant Background (PRB) concentrations. PRB 14 concentrations are those concentrations that would occur in the United States in the absence of 15 anthropogenic emissions in continental North America (defined here as the United States, 16 Canada, and Mexico). PRB concentrations include contributions from natural sources 17 everywhere in the world and from anthropogenic sources outside these three countries. 18 Background levels so defined facilitate separation of cases where pollution levels can be 19 controlled by U.S. regulations (or through international agreements with neighboring countries) 20 from cases where pollution is generally uncontrollable by the United States. EPA assesses risks 21 to human health and environmental effects from SO₂ levels in excess of PRB concentrations.

22 Contributions to PRB concentrations include natural emissions of SO₂ and photochemical reactions involving reduced sulfur compounds of natural origin as well as their long-range 23 24 transport from outside of North America from whatever source. As an example, transport of SO_2 25 from Eurasia across the Pacific Ocean or the Arctic Ocean would carry PRB SO₂ into the U.S. A 26 schematic diagram showing the major photochemical processes involved in the sulfur cycle 27 including natural sources of reduced sulfur species from anaerobic microbial activity in wetlands 28 and volcanic activity appears in Annex 2. Volcanoes and biomass burning are the major natural 29 source of SO₂. Biogenic emissions from agricultural activities are not considered in the 30 formation of PRB concentrations. Discussions of the sources and estimates of emissions are 31 given in Annex Section 2.6.2.

Analysis of PRB Contributions to Sulfur Oxide Concentrations and Deposition over the United States

3 The MOZART-2 global model of tropospheric chemistry (Horowitz et al., 2003) is used 4 to estimate the PRB contribution to nitrogen and sulfur oxide concentrations, as well as to total 5 (wet plus dry) deposition. The model setup for the present-day simulation, i.e., including all 6 sources in the U.S. Canada and Mexico, was published in a series of papers from a recent model 7 intercomparison (Dentener et al., 2006a,b; Shindell et al., 2006; Stevenson et al., 2006; van Noije 8 et al., 2006). MOZART-2 is driven by the National Oceanic and Atmospheric Administration's 9 National Center for Environmental Prediction (NOAA/NCEP) meteorological fields and the 10 International Institute for Applied Systems Analysis (IIASA) 2000 emissions at a resolution of $1.9^{\circ} \times 1.9^{\circ}$ with 28 σ (sigma) levels in the vertical, and includes gas- and aerosol-phase 11 12 chemistry. Results shown in Figure 2.4-11 are for the meteorological year 2001. An additional 13 PRB simulation was conducted in which continental North American anthropogenic emissions 14 were set to zero. 15 The role of PRB in contributing to SO₂ concentrations in surface air is examined first. 16 Figure 2.4-11 shows the annual mean predicted SO_2 concentrations in surface air in the 17 simulation including all sources, or the "base case" (top panel); the PRB simulation (middle 18 panel); and the percentage contribution of the background to the total base case SO₂ (bottom 19 panel). Maximum concentrations in the base case simulation, >5 ppb, occur along the Ohio 20 River Valley (upper panel Figure 2.4-11). Background SO_2 concentrations are orders of 21 magnitude smaller, below 10 parts per trillion (ppt) over much of the United States (middle 22 panel; of Figure 2.4-11). Maximum PRB concentrations of SO_2 are 30 ppt. In the Northwest 23 where there are geothermal sources of SO₂, the contribution of PRB to total SO₂ is 70 to 80%. 24 However, with the exception of the West Coast where volcanic SO₂ emissions cause high PRB 25 concentrations, the PRB contributes <1% to present-day SO₂ concentrations in surface air 26 (bottom panel Figure 2.4-11).

When estimating background concentrations it is instructive to consider also
measurements of SO₂ at relatively remote monitoring sites, i.e., sites located in sparsely
populated areas not subject to obvious local sources of pollution. Berresheim et al. (1993) used a
type of atmospheric pressure ionization mass spectrometer (APIMS) at Cheeka Peak, WA
(48.20°N 124.62°W 480 m osl) in April 1001 during a field study for dimethal sulfide (DMS)

31 (48.30°N 124.62°W, 480 m asl), in April 1991 during a field study for dimethyl sulfide (DMS)

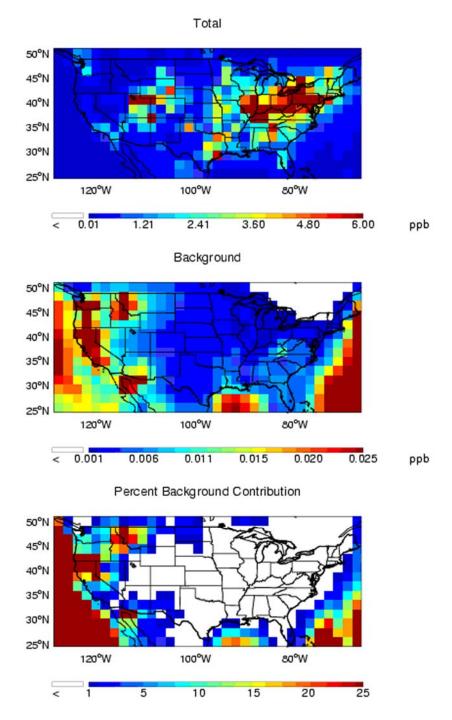


Figure 2.4-11. Annual mean model-predicted concentrations of SO₂ (ppb) in surface air over the United States in the present-day (upper panel) and policy relevant background (middle panel) MOZART-2 simulations. The bottom panel shows the percentage contribution of the background to the present-day concentrations. oxidation products. SO₂ concentrations ranged between 20 and 40 ppt. Thornton et al. (2002)
 have also used an APIMS with an isotopically

3 labeled internal standard to determine background SO₂ levels. SO₂ concentrations of 25 to

4 40 ppt were observed in northwestern Nebraska in October 1999 at 150 m above ground using

5 the National Center for Atmospheric Research (NCAR)'s C-130 research aircraft. These data are

6 comparable to remote central South Pacific convective boundary layer SO₂ data (Thornton et al.,

7 1999).

As noted earlier in Section 2.4.2, volcanic sources of SO₂ in the United States are found 8 9 in the Pacific Northwest, Alaska, and Hawaii. The most serious impact in the United States from 10 volcanic SO₂ occurs on the island of Hawaii. Nearly continuous venting of SO₂ from Mauna 11 Loa and Kilauea produces SO_2 in such large amounts that as far as >100 km downwind of the 12 island SO_2 concentrations can exceed 30 ppb (Thornton and Bandy, 1993). Depending on the 13 wind direction, the west coast of Hawaii (Kona region) has had significant impacts from SO₂ and acidic SO₄²⁻ aerosols for the past decade. Indeed, SO₂ levels in Volcanoes National Park, HI 14 15 exceeded both the secondary 3-h and the primary 24-h average (24-h avg) NAAQS in 2004-16 2005. Since 1980, the Mount St. Helens volcano in Washington Cascade Range (46.20°N, 17 122.18°W, summit 2549 m asl) has been a variable source of SO₂. Its major effects came in the 18 explosive eruptions of 1980, which primarily affected the northern part of the mountain west of 19 the United States. The Augustine volcano near the mouth of the Cook Inlet in southwestern 20 Alaska (59.363°N, 153.43°W, summit 1252 m asl) has emitted variable quantities of SO₂ since 21 its last major eruptions in 1986. Volcanoes in the Kamchatka peninsula in far eastern Siberia do 22 not particularly affect the surface concentrations in northwestern North America.

Overall, the background contribution to SO_x over the United States is relatively small,
with a maximum PRB of 0.030 ppb SO₂, except for areas with volcanic activity.

25 26

27 2.5 ISSUES ASSOCIATED WITH EVALUATING EXPOSURES TO 28 SULFUR OXIDES

29

30 2.5.1 General Considerations for Personal Exposures

Human exposure to an airborne pollutant consists of contact between the human and the
 pollutant at a specific concentration for a specified period of time. People spend various

amounts of time in different microenvironments (Figure 2.5-1) characterized by different
pollutant concentrations. The figure represents a composite average across the United States
across all age groups. Different cohorts, e.g., the elderly, might be expected to exhibit different
activity patterns. The integrated exposure of a person to a given pollutant is the sum of the
exposures over all time intervals for all microenvironments in which the individual spent time.

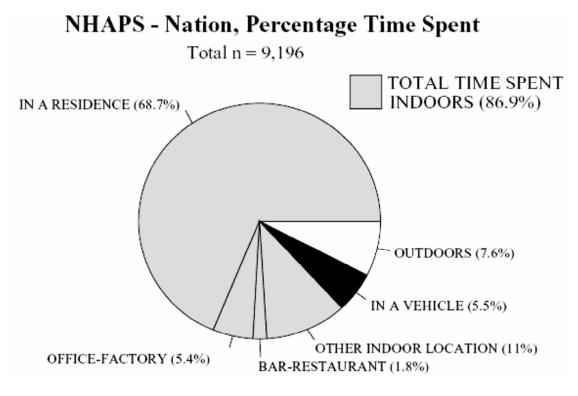


Figure 2.5-1. Percentage of time people spend in different environments in the United States as determined by the National Human Activity Pattern Survey (NHAPS).

Source: Klepeis et al. (2001).

6 Therefore, the total personal exposure to a pollutant, such as SO₂, can be represented by
7 the following equation:

$$E_t = \sum_{i=1}^n C_i f_i \tag{2-7}$$

8

1 where E_t is the time-weighted personal exposure concentration over a certain period of time, n is 2 the total number of microenvironments that a person encounters, f_i is the fraction of time spent in 3 the *i*th microenvironment, and C_i is the average concentration in the *i*th microenvironment during 4 the time fraction, f_i . The types of exposure a person experiences can be characterized as an 5 instantaneous exposure, a peak exposure, an average exposure, or an integrated exposure over all 6 the environments a person encounters. These distinctions are important because health effects 7 caused by long-term, low-level exposures may differ from those caused by short-term, peak 8 exposures.

9

An individual's total exposure (E_t) can also be represented by the following equation:

10
$$E_T = E_a + E_{na} = \{y_o + \sum_i y_i \left[P_i a_i / (a_i + k_i) \right] \} C_a + E_{na} = \{y_o + \sum_i y_i F_{inf_i} \} C_a + E_{na}$$
(2-8)

11 subject to the constraint

 $y_o + \sum_i y_i = 1$ (2-9)

13 where E_a is the person's exposure to pollutants of ambient origin; E_{na} is the person's exposure to 14 pollutants that are not of ambient origin; y_o is the fraction of time people spend outdoors and y_i is the fraction of time they spend in the *i*th microenvironment; F_{infi} , P_i , a_i , and k_i are the infiltration 15 16 factor, penetration coefficient, air exchange rate, and decay rate for a pollutant in the *i*th 17 microenvironment. In this equation, it is assumed that each microenvironment is well mixed 18 (i.e., concentrations are homogeneous) and that air exchange occurs with ambient air only, not 19 between microenvironments.

20 In the case where microenvironmental exposures occur mainly in one microenvironment, 21 Equation 2-8 may be approximated by

22
$$E_T = E_a + E_{na} = \{y + (1-y)[Pa/(a+k)]\}C_a + E_{na} = \alpha C_a + E_{na}$$
(2-10)

23 where y is the fraction of time people spend outdoors, α is the ratio of a person's exposure to a 24 pollutant of ambient origin to the pollutant's ambient concentration. Other symbols have the 25 same definitions in Equation 2-8 and 2-9. If microenvironmental concentrations are considered, 26 then Equation 2-10 can be recast as

$$C_{me} = C_a + C_{na} = [Pa / (a+k)]C_a + S/[V(a+k)]$$
(2-11)

1

where C_{me} is the concentration in a microenvironment; C_a and C_{na} are the contributions to C_{me} 2 3 from ambient and nonambient sources; S is the microenvironmental source strength; V is the 4 volume of the microenvironment, and the symbols in brackets have the same meaning as in 5 Equation 2-10. 6 Microenvironments in which people are exposed to air pollutants typically include 7 residential indoor environments, other indoor locations, outdoor environments, and in vehicles, 8 as shown in Figure 2.5-1. Indoor combustion sources such as kerosene space heaters need to be 9 considered when evaluating exposures to SO₂. Exposure misclassification may result when total 10 human exposure is not disaggregated between various microenvironments, and this may obscure 11 the true relationship between ambient air pollutant exposures and health outcomes. 12 In a given microenvironment, the ambient component of a person's microenvironmental 13 exposure to a pollutant is determined by the following physical factors: 14 Ambient concentration, 15 • The air exchange rate, 16 The pollutant specific penetration coefficient, • 17 The pollutant specific decay rate, and • 18 The fraction of time an individual spends in the microenvironment. ٠ 19 20 These factors are in turn determined by the following potential exposure factors: 21 Environmental conditions, such as weather and season; • 22 Dwelling conditions, such as the location of the house which determines proximity to • 23 sources and geographical features that can modify transport from sources; the amount of 24 natural ventilation (e.g., open windows and doors, and the "draftiness" of the dwelling) 25 and ventilation system (e.g., filtration efficiency and operation cycle); 26 Personal activities (e.g., time spent cooking or commuting); • 27 Socioeconomic status (e.g., level of education and the income level); • 28 Demographic factors (e.g., age and gender); ٠ 29 Indoor sources and sinks of a pollutant; and ٠ 30 Microenvironmental line and point sources (e.g., lawn equipment). •

September 2007

2-30 DRAFT-DO NOT QUOTE OR CITE

In general, the relationship between personal exposures and ambient concentrations can
 be modified by microenvironments in the following ways. (1) Ambient pollutants can be lost
 through chemical and physical loss processes during infiltration, and therefore, the ambient
 component of a pollutant's concentration in a microenvironment is not the same as its ambient
 concentration. Instead it is the product of the ambient concentration and the infiltration factor
 (*F_{inf}* or α if people spend 100% of their time indoors) and (2) exposure to nonambient,
 microenvironmental sources.

8 Time activity diaries, completed by study participants, are often used in exposure models 9 and assessments. The EPA's National Exposure Research Laboratory (NERL) has consolidated the majority of the most significant human activity databases into one comprehensive database 10 11 called the Consolidated Human Research Laboratory Database (CHAD). Eleven different 12 human activity pattern studies were united to obtain over 22,000 person-days of 24-h human 13 activities in CHAD (McCurdy et al., 2000). These data can be useful in assembling population 14 cohorts for exposure modeling and analysis and determining inhalation rates for dosimetry 15 calculations.

16 In practice, it is extremely difficult to characterize community exposures by 17 measurements of each individual's personal exposures. Instead, the distribution of personal 18 exposures in a community, or the population exposure can be characterized by extrapolating 19 measurements of personal exposure using various techniques or by stochastic, deterministic, or 20 hybrid exposure modeling approaches such as APEX, SHEDS, and MENTOR (see Annex AX3 21 for a description of these modeling methods). Variations in community-level personal exposures 22 are determined by cross-community variations in ambient pollutant concentrations and the 23 physical and exposure factors mentioned above. These factors also determine the strength of the 24 association between population exposure to SO₂ of ambient origin and ambient SO₂ 25 concentrations.

26

27 2.5.2 Methods Used for Monitoring Personal Exposure to SO₂

Three basic methods of analysis have been used as personal exposure monitors (PEMs) to measure personal exposure to SO₂. The Harvard-EPA annular denuder system (HEADS) was initially developed to measure particles and acid gases simultaneously (Koutrakis et al, 1988). The aerosol is initially sampled at 10 L/min through an impactor that is attached to an annular denuder to remove particles. Subsequently, the aerosol is sampled through an annular denuder coated with sodium carbonate (Na₂CO₃). This denuder is used to trap SO₂, nitric acid (HNO₃), and nitrous acid (HNO₂). Following sampling, the denuder is extracted with ultrapure water and analyzed by ion chromatography. Collection efficiencies of SO₂ in the denuder are typically around 0.993, which compares well with predicted values. Because the HEADS system is not easily converted for use as a PEM, other personal monitoring systems have been employed more recently in exposure monitoring studies.

8 For a study conducted in Baltimore, MD, Chang et al., (2000) developed and employed a 9 personal roll-around system (RAS, an active sampling system designed to measure short-term 10 exposure) to measure personal exposure concentrations of several atmospherically relevant 11 species, including SO₂. For the measurement of SO₂, the RAS employed an NO₂/SO₂ sorbent 12 denuder worn on a vest by the study participant. The hollow glass denuder, incased in an 13 aluminum jacket, is coated with triethanolamine (TEA) for the collection of SO_2 and NO_2 , and 14 aerosol is sampled through the denuder at 100 cc/min. Following sampling, the denuder can be 15 extracted and analyzed for SO_2 concentrations by ion chromatography. The detection limit for 16 1-h sampling of SO₂ was reported to be 66 ppb.

17 The most commonly employed SO_2 PEM method for personal exposure studies is the 18 passive badge sampler. A personal multipollutant sampler has been developed to measure 19 particulate and gaseous pollutants simultaneously (Demokritou et al, 2001). A single elutriator, 20 operating at 5.2 L/min, is employed to sample particulate pollutants. A passive SO₂ badge is 21 attached diametrically to the elutriator, which has been coated with Teflon to minimize reactive 22 gas losses. The passive badge sample is coated with TEA for the collection of SO₂ and NO₂. 23 Because wind speed can affect the collection rate of the passive badge sampler, this system 24 employs a constant face velocity across the passive badge sampler. For 24-h sampling times, the 25 estimated limit of detection (LOD) for SO₂ is 5 ppb.

Currently, limits exist in using PEM systems to measure personal exposure to SO₂.
Because SO₂ concentrations have been declining annually in the United States, little focus has
been placed on improving methods of analysis for SO₂. LODs for SO₂ PEMs (~5 ppb) are often
greater than the concentrations of SO₂ that are typically observed in urban ambient
environments. Personal exposure monitoring studies often suffer from many of the SO₂ samples
(30 to 70%) being collected being below the sampler's LOD.

1 2

2.5.3 Relationships between Personal Exposures and Ambient Concentrations

Relationships between personal, indoor, outdoor, and ambient concentrations are
examined in this section. Because SO₂ concentrations have declined markedly over the past few
decades, relatively few studies have focused on SO₂ since the last AQCD for SO₂ was published.
Another consideration is that currently, indoor and outdoor levels in many areas are often
beneath detection personal monitor limits for SO₂.

8

9

2.5.3.1 Indoor versus Outdoor SO₂ Concentrations

10 Several studies in the United States, Canada, Europe, and Asia have examined the 11 relationships of indoor, outdoor, and personal concentrations of SO₂ to ambient SO₂ 12 concentrations. Perhaps the most comprehensive set of indoor-outdoor data was obtained by 13 Spengler et al. (1979) during the Harvard Six Cities Study. These data are shown in Figure 14 2.5-2. Twenty-four-hour ambient and indoor SO_2 concentrations were measured every sixth day 15 for 1 year in a minimum of 10 homes or public facilities for each of the cities studied. One-year 16 average concentrations for indoor and outdoor concentrations of SO₂ for each city studied are 17 shown in Figure 2.5-2.

18 A summary of ratios of indoor to outdoor concentrations found in this and other studies is 19 given in Table 2.5-1. As can be seen from Table 2.5-1, a wide range is found in the ratio of 20 indoor to outdoor concentrations among the different studies. These differences among studies 21 could be due in part to differences in building characteristics (e.g., residences versus schools or 22 other public buildings), in activities affecting air exchange rates, and in analytical capabilities. In several studies, high values for R^2 were found, suggesting that indoor levels were largely 23 24 driven by outdoor levels. A few studies found higher levels of SO₂ indoors than outdoors in 25 some samples. This situation could have arisen if there were indoor sources or because of 26 analytical measurement issues. One would expect to find lower concentrations indoors than 27 outdoors, because SO_2 is consumed by reactions on indoor surfaces, especially those that are 28 moist. Chao (2001) acknowledged this point but could not account for the findings of this study. 29 It was noted that two samples had unusually high indoor to outdoor ratios and that the mean 30 ratios would have been much lower otherwise. Winter-summer differences in the indoor:outdoor 31 ratio are consistent with seasonal differences in air exchange rates, as noted by Brauer et al. 32 (1991).

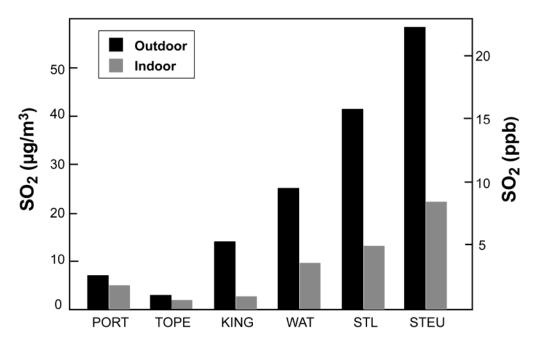


Figure 2.5-2. Average annual indoor and outdoor SO₂ concentrations for each of the six cities included in the analysis. PORT = Portage, WI; TOPE = Topeka, KS; KING = Kingston, TN; WAT = Watertown, MA; STL = St. Louis, MO; STEU = Steubenville, OH.

Source: Adapted from Spengler et al. (1979).

1 Indoor, or nonambient, sources of SO_2 could complicate associations between personal 2 exposure to ambient SO_2 and ambient SO_2 . Possible sources of indoor SO_2 are associated with 3 the use of sulfur-containing fuels, with higher levels expected when emissions are poorly vented. 4 Brauer et al. (2002) noted that only one study (Biersteker et al., 1965) conducted inferential 5 analyses of potential determinants of exposure to indoor SO_2 levels. In the Biersteker et al. 6 study, conducted in the Netherlands, indoor levels increased with oil, coal, and gas heating and 7 smoking in homes and with increased outdoor levels. 8 Triche et al. (2005) measured SO_2 levels in homes in which secondary heating sources 9 (fireplaces, kerosene heaters, gas space heaters, and wood stoves) were used. They found elevated indoor levels of SO₂ when kerosene heaters were in use. Median levels of SO₂ when 10 11 kerosene heaters were used (6.4 ppb) were much higher than when they were not in use

- 12 (0.22 ppb). The maximum SO_2 level associated with kerosene heater use was 90.5 ppb. They
- 13 did not find elevated SO_2 levels when the other secondary heating sources were in use.

1 2.5.3.2 Relationship of Personal Exposure to Ambient Concentrations

A few studies evaluated the association of personal exposure to SO₂ to ambient
concentrations (Brauer et al., 1989; Chang et al., 2000; Sarnat et al., 2000, 2001, 2005, 2006).
Some of these studies fall under the umbrella of the Health Effects Institute's Characterization of
Particulate and Gas Exposures of Sensitive Subpopulations Living in Baltimore and Boston
research plan (Koutrakis et al., 2005). However, the focus of many of these studies has been
exposure to particles, with acid gases included to evaluate confounder or surrogate issues.

8 Brauer et al. (1989) determined the slope of the regression line between personal and ambient concentrations to be 0.13 ± 0.02 , $R^2 = 0.43$, based on 44 measurements made in Boston, 9 MA during the summer of 1988. Most if not all of the data points obtained using the HEADS 10 11 appeared to be above analytical detection limits based on the use of laboratory blanks and ion 12 chromatography instrument sensitivity instead of field blanks, which are used in most other 13 studies to calculate the overall method detection limit. Note that calculating detection limits in 14 this way could result in lower detection limits than if field blanks are used. The authors reported 15 significance at the p<0.001 level, but the intercept was not significant at the p<0.001 level. 16 Since the stationary monitoring site was located at an elevation of 250 m above street level, the 17 use of data from this ambient monitoring site will overestimate personal exposure, as the 18 concentration of SO_2 increases with height because it is emitted mainly by elevated point 19 sources. Indeed, the ambient concentrations are about a factor of two higher than the outdoor 20 concentrations.

21 A few personal exposure studies were conducted in Baltimore, MD (Chang et al., 2000; 22 Sarnat et al., 2000, 2001). Chang et al. (2000) tested a new personal active sampling device 23 (a RAS with a TEA-based denuder) on volunteer participants to measure hourly personal 24 exposure to SO_2 . However, the method detection limit was too high for SO_2 (62 ppb for 25 1-h sampling) to generate a robust SO_2 exposure dataset to perform further analysis, and so the 26 authors did not use the SO_2 data for this purpose. Sarnat et al. (2000) reported a longitudinal 27 exposure study with older adults as participants. Twenty-four-hour averaged personal SO_2 28 exposures were measured with TEA-based passive sampler badges. The authors reported that 29 70% of the personal exposure concentrations of SO_2 were below the method detection limit 30 (6.5 ppb for 24-h sampling). The mean ambient and personal exposure concentrations were 31 reported as 8.9 and 0.0 ppb, respectively, during February and March of 1999. The maximum,

1 minimum, and median Spearman rank correlation coefficients between personal exposure and 2 ambient concentrations over 12 days for 14 participants were 0.65, -0.75, and 0.02, respectively. 3 Sarnat et al. (2001) reported another (8- to 12-day) longitudinal exposure study with a cohort that 4 was similar to that used in Sarnat et al. (2000) except for including children and patients with 5 chronic obstructive pulmonary disease (COPD). Data quality was not specifically discussed in 6 Sarnat et al., (2001), but the readers were referred to Sarnat (2000) and Chang et al. (2000) for 7 information about precision, accuracy, and method-detection limits. During the study, the 8 median ambient and personal exposures were 8 and 1 ppb, respectively (estimated from Figure 9 1 in Sarnat et al., 2001). The authors reported that during the winter of 1999, ambient SO_2 was a 10 significant predictor (at 5% significance level) of personal exposure to SO₂ (slope = -0.05), personal exposure to fine particulate matter (PM_{2.5}) (slope = -0.24), personal exposure to SO₄²⁻ 11 12 (slope = -0.03), and personal exposure to PM_{2.5} of ambient origin (slope = -0.16). However, it 13 should be noted that all the slopes are negative.

14 Sarnat et al. (2005) conducted a longitudinal 12-day exposure study on 43 children and older adults in Boston, MA during the summer of 1999 and the following winter (1999-2000). 15 16 They reported that 95.4 and 96.5% of the SO₂ concentrations were below detection limits 17 (3.2 and 2.3 ppb, respectively, for winter and summer 24-h sampling). The absolute and relative 18 sampling precisions for SO_2 were 0.8 ppb and 69.5%, respectively. The authors reported that the 19 mean ambient concentrations ranged from 2.8 to 10.7 ppb during the study, while the mean 20 personal exposure concentrations were <1.9 ppb. Associations between ambient SO₂ and either 21 personal exposures or ambient concentrations of other pollutants were found for personal SO_4^{2-} (winter, slope = 0.06), personal SO_4^{2-} (summer, slope = 0.39), personal PM_{2.5} (summer, 22 slope = 1.68), ambient SO_4^{2-} (winter, slope = 0.19), and ambient $PM_{2.5}$ (winter, slope = 0.80). 23 24 Sarnat et al. (2006) reported the results of a personal exposure study in Steubenville, OH. 25 The authors reported that 36.5 and 33.8% of ambient SO₂ were below the detection limit during 26 the summer (5.5 ppb) and fall (3.8 ppb), and 53.5 and 36.1% of personal concentrations of SO_2 27 were below the detection limit during the summer (5.5 ppb) and fall (3.8 ppb), respectively. On 28 average, personal exposures were lower than the ambient concentrations (1.5 ppb for personal 29 and 2.7 for ambient during the summer; 0.7 ppb for personal and 5.4 ppb for ambient during the 30 fall); however, the maximum personal exposure could be higher than the ambient concentration 31 (30.4 ppb for personal and 21.9 ppb for ambient during the summer). Ambient SO₂ was

observed to be significantly associated with personal SO₂ exposures during the fall (slope = 0.08
 for overall population, 0.07 for subjects in buildings with low ventilation rates, and 0.13 for
 subjects in buildings with high ventilation rates).

- 4 Of significant concern is the ability of currently available techniques for monitoring 5 either personal exposures or ambient concentrations to measure SO_2 concentrations that are 6 typically found in most urban environments. In some studies, most data, especially data for 7 monitoring personal exposure and indoor concentrations, might be beneath detection limits. 8 Indeed, in one study (Chang et al., 2000), the investigators had to discard data for SO_2 , because 9 the values were mostly beneath detection limits. In the study of Kindzierski and Ranganathan 10 (2006), all indoor concentration data were beneath detection limits. In Sarnat et al. (2000), 11 \sim 70% of personal measurements were beneath detection limits, and \sim 33% of personal 12 measurements returned apparent negative concentration values. In such situations, associations 13 between ambient concentrations and personal exposure are inadequately characterized. When 14 personal exposure concentrations are above detection limits, a reasonably strong association is 15 observed between personal exposures and ambient concentrations.
- 16

17

2.5.4 Exposure Measurement Errors in Epidemiological Studies

18 For the purposes of the draft Integrated Science Assessment (ISA), the effects of 19 exposure error on epidemiological study results refers to changes in the point estimate and in the 20 standard error of the calculated health effect estimate, β , that result from using the concentration 21 of an air pollutant as an exposure indicator rather than using the actual personal exposure to the 22 causal factor in the epidemiological statistical analysis. There are many assumptions made in 23 going from the available experimental measurement of a pollution indicator to an estimate of the 24 personal exposure to the causal factor. The importance of these assumptions and their effect on 25 β depend on the type of epidemiological study.

The considerations of exposure error for SO_2 are simplified compared to those for NO_2 and PM. The only experimental measure available is the ambient concentration of SO_2 . In addition, indoor and other nonambient sources of SO_2 are not thought to be important in population studies, lessening concerns about the possible influence of exposures other than to ambient SO_2 . The only known significant indoor source of SO_2 in the United States is the use of kerosene heaters, which is not thought to be widespread enough to influence population studies. In addition, as is the case with other air pollutants, exposure to nonambient SO₂ would not affect
 β in time-series studies using ambient concentrations as the exposure surrogate unless the
 nonambient exposures were correlated with the ambient concentrations.

4 5

2.5.4.1 Community Time-Series Studies

6 This section applies primarily to studies of the association of daily average SO₂ 7 concentrations with daily measures of mortality or morbidity. With SO₂ time-series 8 epidemiological analysis, the following four exposure issues are of primary concern: (1) the 9 relationship of the experimental measurement of SO_2 to the true concentration of SO_2 ; (2) the 10 relationship of day-to-day variations of the concentration of the indicator, as measured at a 11 central monitoring site, with the corresponding variations in the average concentration of the 12 indicator over the geographic area from which the health measurements are drawn; (3) the 13 relationship of the community average concentration of SO_2 to the average personal exposure to 14 ambient SO_2 ; and (4) the relationship of SO_2 to the true causal factor. These four issues are 15 described below.

16

17

2.5.4.1.1 Relationship of Experimental Measurement of SO₂ to the True Concentration

18 Since there is always some instrumental measurement error, the correlation of the 19 measured SO₂ with the true SO₂, on either a 24-h or 1-h basis, will be less than 1. Sheppard 20 et al. (2005) indicate that instrument error in the individual or daily average concentrations have 21 "the effect of attenuating the estimate of α ." However, Zeger et al. (2000) state that the 22 "instrument error in the ambient levels is close to the Berkson type" and in order for this error to 23 cause substantial bias in β_C , the error term (the difference between the true concentrations and 24 the measured concentrations) must be strongly correlated with the measured concentrations. 25 Zeger et al. (2000) suggest that, "Further investigations of this correlation in cities with many monitors are warranted." Averaging across multiple unbiased ambient monitors in a region 26 27 should reduce the instrument measurement error (Sheppard et al., 2005; Wilson and Brauer, 28 2006; Zeger et al., 2000). There are concerns about the precision and accuracy of the ambient 29 concentration measurements, because SO₂ concentrations are much lower now than when the 30 SO₂ standards were first promulgated. Current ambient concentrations of SO₂ in the United 31 States are nearly all at or very near the detection limit of the monitors currently used in the 32 regulatory network. Thus, greater uncertainty is most often observed at the lower ambient

concentrations as compared with the less frequent higher concentration exposures because of the
 plume downwash near local sources or entrainment of plumes downwind from large power
 plants or smelters. It is unclear how uncertainties in the true concentrations of SO₂, i.e.,
 instrument measurement error, will change β. Zeger et al. (2000) suggest that instrument error
 has both Berkson and non-Berkson error components.

- 6
- 7

2.5.4.1.2 Relationship of Day-to-day Variations of the Concentration of the Indicator

8 There has been little analysis of the spatial variation of SO_2 across communities. SO_2 is 9 thought to come primarily from power plants or smelters. New power plants and smelters in the 10 United States generally have SO₂ emission controls and are no longer located within urban areas. 11 However, older sources may still be located within urban areas and may not have as effective 12 SO₂ emission controls. Therefore, it is not clear whether SO₂ will act as a regional or local 13 pollutant and whether its spatial behavior might differ in different cities. Site-to-site correlations 14 of SO₂ concentrations, as shown for several cities in Table 2.4-3 include some very low values. This suggests the concentration of SO₂, measured at any given monitoring site, may not be 15 16 highly correlated with the average community concentration. This could be due to local sources 17 that cause the SO_2 to be unevenly distributed spatially, to a monitoring site being chosen to 18 represent a nearby source, or to terrain features, source, or sink locations that divide the 19 community into several subcommunities that differ in the temporal pattern of pollution. It is also 20 possible that errors in the measurement of the low concentrations of SO₂ present at most sites 21 contribute to the lack of high correlations between monitors. To the extent that the correlation of 22 the ambient concentration with the community average concentration is <1, β will be reduced if 23 the single pollutant model is the true model. Similarly, β will be reduced if there are subareas of 24 the community where the correlation of the subarea average concentrations with the 25 concentrations measured at the ambient monitoring site is <1. Concentrations in an area of a 26 community impacted by plumes from local SO₂ sources or a large power plant or smelter might 27 be higher than, and not well-correlated with, the concentrations measured at the community 28 measurement site. If such high concentrations affected a sizable portion of the population, that 29 community might not be suitable for time-series epidemiological analyses. 30

1 2

2.5.4.1.3 Relationship of Community Average Concentration of SO₂ to Average Personal Exposure to Ambient SO₂

People spend much of their time indoors and, in the absence of indoor sources, indoor 3 4 concentrations are lower than outdoor concentrations. It is necessary to consider how this 5 difference between the ambient concentration, which is used in epidemiological analyses, and the 6 personal exposure to the ambient concentration (which includes exposure to the full outdoor 7 concentration while outdoors and exposure of only a fraction of the outdoor concentrations while 8 indoors) will affect the calculated β . The contribution of the ambient concentration of SO₂ to the personal exposure to ambient SO₂ is given by $E^A = \alpha \bullet C$ where E^A is exposure to ambient SO₂, α 9 is the exposure factor (or more correctly the ambient exposure factor) with value between 0 and 10 11 1 as defined in Equation 2-10, and C is the ambient SO_2 concentration as measured at a 12 community monitoring site. Zeger et al. (2000) made a major contribution to our understanding 13 of exposure error by pointing out that for community time-series epidemiology, which analyzes 14 the association between health effects and potential causal factors at the community scale rather 15 than the individual scale, it is the correlation of the daily community average personal exposure to the ambient concentration, X_t^A , with daily community average concentration, C_t , that is 16 important, not the correlation of each individual's exposure X_{it}^{A} with C_{t} . Thus, the low 17 correlation of X_{it}^{A} with C_{t} , as frequently found in pooled panel exposure studies, is not relevant to 18 19 error in community time-series epidemiological analysis. Unfortunately, few experimental 20 studies provide adequate information to calculate the community average exposure. Most 21 exposure panel studies measure one or a few subjects on 1 day, and another one or a few subjects 22 on the next day, etc. (i.e., a pooled study design). A few studies have measured one subject for 23 several days and another subject for a different several days (i.e., a longitudinal study design). 24 However, in order to use experimental data to calculate a community average ambient exposure, 25 it is necessary to measure the personal exposure of every subject on every day and to have 26 sufficient information to estimate the ambient exposure from the measured total personal exposure. Such information is available from one study of combined coarse and fine PM (PM_{10}) 27 and shows that the correlation of X_t^A with C_t is much greater than the correlation of X_{it}^A with C_t 28 (U.S. Environmental Protection Agency, 2004). The Research Triangle Park PM Panel Study 29 30 found similar effects in the relationship of outdoor and personal PM2.5 concentrations (Williams 31 et al., 2003). Ott et al. (2000) have provided a statistical argument that such an increase in the 32 correlation of the daily average over the individual values should be expected.

1 There has also been concern with the variation of α . Zeger et al. (2000) have stated (for 2 PM) and Sheppard et al. (2005) have used simulations (for PM or other nonreactive pollutant 3 such as CO) to show that the variations in individual daily values of α_{it} around the daily average 4 α_t is a Berkson error and will not change the point estimate of β , although it may increase the 5 standard error. Sheppard et al. (2005) have shown that day-to-day variations in the average α 6 will not change the point estimate unless α_t is correlated with C_t . (Since most time-series 7 epidemiology uses 24-h concentrations, no anaylsis is available for shorter time periods.)

8 Both Zeger et al. (2000) and Sheppard et al. (2005) show that if β_A is the health effect 9 parameter that would be obtained with an epidemiological analysis using the ambient exposure 10 and β_C is the health effect parameter that would be obtained with an epidemiological analysis 11 using the ambient concentration, C_t , then $\beta_C = \alpha \cdot \beta_A$. Thus, an epidemiological analysis using 12 the ambient concentration, C_t , yields not β_A , but $\alpha \cdot \beta_A$. Overestimation of exposure by 13 substitution of the ambient concentration for the ambient exposure leads to underestimation of 14 the effect estimate, or bias toward the null.

15

16

2.5.4.1.4 Relationship of SO₂ to the True Causal Factor

17 The remaining and most critical assumption is whether SO_2 is the causal factor (pollutant 18 that causes the examined health effect) or whether SO_2 is a surrogate for some other pollutant, 19 mixture of other pollutants, or mixture of pollutants including SO_2 that is the true causal factor. 20 For example, depending on the source of SO_2 , SO_2 might be a surrogate for vanadium and nickel 21 from oil-fired power plants; selenium, arsenic, and mercury from coal-fired power plants; and/or 22 nickel and copper from smelters. The current data do not permit a quantitative assessment of the 23 relative contribution of SO_2 and correlated pollutants to the observed β value.

24 25

2.5.4.2 Long-Term Cohort Studies

For long-term exposure epidemiologic studies, concentrations are integrated over time periods of a year or more, and usually for spatial areas the size of a city, county, or metropolitan statistical area (MSA), although integration over smaller areas may be feasible. Health effects are then regressed, in a statistical model, against the average concentrations in the series of cities (or other areas). In time-series studies, a constant difference between the measured and the true concentration (instrument offset) will not affect β , nor will variations in the daily average α or the daily average nonambient exposure, unless the variations are correlated with the daily 1 variations in concentrations. However, in long-term exposure epidemiologic studies, if

2 instrument measurement errors, long-term average values of α , or long-term averages of

3 nonambient exposure differ for different cities (or other areas used in the analysis), the city-to-

4 city long-term ambient SO₂ concentrations will not be perfectly correlated with the long-term

5 average exposure to either ambient or total SO_2 . This lack of correlation would be expected to

6 lead to a lowering of the point estimate of β .

7 In summary, the use of ambient concentrations of SO₂ as a surrogate for exposure to 8 ambient SO_2 is not generally expected to change the principal conclusions from SO_2 9 epidemiological studies, because the errors and uncertainties would be expected to reduce rather 10 to increase β . However, SO₂ may not be the causal agent, or the sole causal agent, but may be 11 serving as a surrogate for some other pollutant, or mix of pollutants, whose concentration is 12 correlated with that of SO_2 . This may be particularly relevant for SO_2 because of atmospheric chemistry linking it to its oxidation products SO_4^{2-} and to fine particulate matter. Therefore, 13 14 while population health risk estimates derived using ambient SO₂ levels are useful, evidence 15 from clinical and animal toxicological studies also needs to be considered in attempting to 16 understand the potential effects of SO₂ on human health.

17

18 19

2.6 DOSIMETRY OF INHALED SO₂

20 This section is intended to present an overview of general concepts related to the 21 dosimetry of SO₂ in the respiratory tract. Dosimetry of SO₂ refers to the measurement or 22 estimation of the amount of SO₂ or its reaction products reaching and persisting at specific 23 respiratory tract sites after exposure. One of the principal effects of inhaled SO₂ is that it 24 stimulates bronchial epithelial receptors and initiates a reflexive contraction of smooth muscles 25 in the bronchial airways. The compound most directly responsible for health effects may be the 26 inhaled SO₂ or perhaps its chemical reaction products. Complete identification of the causative 27 agents and their integration into SO₂ dosimetry is a complex issue that has not been thoroughly 28 evaluated. Few studies have investigated SO₂ dosimetry since the 1982 AQCD and the 1986 29 Second Addendum.

The major factors affecting the transport and fate of aerosols and gases in the respiratory tract are the morphology of the respiratory tract; the physiochemical properties of the mucous and surfactant layers; tidal volume, flow rate, and route of breathing; physicochemical properties

1 of the gas; and the physical processes that govern gas transport. When SO_2 contacts the fluids 2 lining the airways, it dissolves into the aqueous fluid and forms hydrogen (H⁺) ions and bisulfite (HSO_3^{-}) and sulfite (SO_3^{2-}) anions (Bascom et al., 1996). The majority of anions are expected to 3 be present as HSO_3^{-} at a concentration proportional to the gas phase concentration of SO_2 4 5 (Ben-Jebria et al., 1990). Because of the chemical reactivity of these anions, various reactions are possible, leading to the oxidation of SO_3^{2-} to SO_4^{2-} (see Section 12.2.1, U.S. Environmental 6 Protection Agency, 1982). Clearance of SO_3^{2-} from the respiratory tract may involve several 7 intermediate chemical reactions and transformations (see Section 12.2.1.2, U.S. Environmental 8 9 Protection Agency, 1982). Gunnison and Benton (1971) identified S-sulfonate in blood as a 10 reaction product of inhaled SO₂.

11 Physicochemical properties of SO_2 relevant to respiratory tract uptake include its 12 solubility and diffusivity in epithelial lining fluid (ELF), as well as its reaction-rate with ELF 13 constituents. Henry's law relates the gas phase and liquid phase interfacial concentrations at 14 equilibrium and is a function of temperature and pressure. Henry's law shows that the amount of 15 SO_2 in the aqueous phase is directly proportion to the partial pressure or concentration of SO_2 in 16 the gas phase. Although the solubility of most gases in mucus and surfactant is not known, the 17 Henry's law constant is known for many gases in water. The Henry's law constant for SO_2 is 18 0.048 (mole/liter)air / (mole/liter)water at 37 °C and 1 atm; for comparison, the value for O₃ is 19 6.4 under the same conditions (Kimbell and Miller, 1999). In general, the more soluble a gas is 20 in biological fluids, the sooner, and more proximally, it is absorbed in the respiratory tract. 21 When the partial pressure of SO_2 on mucosal surfaces exceeds that of the gas phase, such as 22 during expiration, some desorption of SO₂ from the ELF may be expected.

23 Because SO_2 is highly soluble in water, it is expected to be almost completely absorbed 24 in the nasal passages of subjects at rest. The dosimetry of SO_2 can be contrasted with the lower 25 solubility gas, O_3 , for which the predicted tissue doses (O_3 flux to liquid-tissue interface) are 26 very low in the trachea and increase to a maximum in the terminal bronchioles or first airway 27 generation in the pulmonary region (see Chapter 4, U.S. Environmental Protection Agency, 28 2006b). Similar to O_3 , the nasal passages remove SO_2 more efficiently than the oral pathway 29 (Brain, 1970; Melville, 1970; Nodelman and Ultman, 1999). With exercise, the pattern of SO₂ 30 absorption shifts from the upper airways to the tracheobronchial airways in conjunction with a 31 shift from nasal to oronasal breathing and increased ventilatory rates. Due to its effect on

delivery and uptake, mode of breathing is also recognized as an important determinant of the
 severity of SO₂-induced bronchoconstriction, with the greatest responses occurring during oral
 breathing followed by oronasal breathing and the smallest responses observed during nasal
 breathing.

5 Melville (1970) measured the absorption of SO₂ (1.5 to 3.4 ppm) during nasal and oral 6 breathing in 12 healthy volunteers. Total respiratory tract absorption of SO_2 was significantly 7 greater (p < 0.01) during nasal than oral breathing (85 versus 70%, respectively) and was 8 independent of the inspired concentration. Respired flows were not reported. Andersen et al. 9 (1974) measured the nasal absorption of SO_2 (25 ppm) in 7 volunteers at an average inspired 10 flow of 23 L/min (i.e., eucapnic hyperpnea [presumably] to simulate light exertion). These 11 investigators reported that the oropharyngeal SO₂ concentration was below their limit of 12 detection (0.25 ppm), implying that at least 99% of SO_2 was absorbed in the nose of subjects 13 during inspiration. Speizer and Frank (1966) also measured the absorption of SO_2 (16.1 ppm) in 14 7 healthy subjects at an average ventilation of 8.5 L/min (i.e., at rest). They reported that 14% of 15 the inhaled SO₂ was absorbed within the first 2 cm into nose. The concentration of SO₂ reaching 16 the pharynx was below the limit of detection, suggesting that at least 99% was absorbed during 17 inspiration. On expiration, 12% of the SO₂ absorbed during inspiration was desorbed into the 18 expired air. During the first 15 min after the 25- to 30-min SO₂ exposure, another 3% was 19 desorbed. In total, 15% of the amount originally inspired and absorbed SO₂ was desorbed from 20 the nasal mucosa.

Frank et al. (1969) and Brain (1970) investigated the oral and nasal absorption of SO_2 in the surgically isolated upper respiratory tract of anesthetized dogs. Radiolabeled SO_2 ($^{35}SO_2$) at the concentrations of 1, 10, and 50 ppm was passed separately through the nose and mouth at the steady flows of 3.5 and 35 L/min for 5 min. The nasal absorption of SO_2 (1 ppm) was 99.9% at 3.5 L/min and 96.8% at 35 L/min. The oral absorption of SO_2 (1 ppm) was 99.56% at 3.5 L/min, but only 34% at 35 L/min. The nasal absorption of SO_2 at 3.5 L/min increased with

concentration at 1, 10, and 50 ppm and was reported to be 99.9, 99.99, and 99.999%,

respectively. This increase in absorption with concentration was hypothesized to be due to

29 increased mucous secretion and increased nasal resistance at the higher SO_2 concentrations. The

30 increased mucus was thought to provide a larger reservoir for SO₂ uptake. The increased nasal

31 resistance may increase turbulence in the airflow and, thereby, decrease the boundary layer

between the gas and liquid phases. Dissimilar to the nose, SO_2 absorption in the mouth decreased from 99.56 to 96.3% when the concentration was increased from 1 to 10 ppm at 3.5 L/min. Frank et al. (1969) reported that up to 18% of the SO_2 was desorbed within ~10 min after exposure. The authors noted that the aperture of the mouth may vary considerably, and that this variation may affect SO_2 uptake in the mouth. Although SO_2 absorption was dependent on inhaled concentration, the rate and route of flow had a greater effect on the magnitude of SO_2 absorption in the upper airways.

8 Strandberg (1964) studied the uptake of SO_2 in the respiratory tract of rabbits. A tracheal 9 cannula with two outlets was utilized to allow sampling of inspired and expired air, and SO_2 10 absorption was observed to depend on inhaled concentration. The absorption during maximal 11 inspiration was 95% at high concentrations (100 to 700 ppm), reflecting an increased SO₂ 12 removal in the extrathoracic (ET) airways, whereas it was only 40% at low concentrations (0.05 to 0.1 ppm). On expiration, the total SO₂ absorbed (i.e., inspiratory removal in the ET airways 13 14 plus removal in the lower airways) was 98% at high concentrations and only 80% at the lower 15 concentrations.

Amdur (1966) examined changes in airways resistance in guinea pigs due to SO₂ 16 17 exposure. Guinea pigs were exposed for 1 h to 0.1- to 800-ppm SO_2 during natural 18 unencumbered breathing or to 0.4 to 100 ppm while breathing through a tracheal cannula. 19 At concentrations of 0.4- to 0.5-ppm SO₂, route of administration did not affect the airway 20 resistance response, whereas at concentrations of >2 ppm, the responses were greater in animals 21 exposed by tracheal cannula. Based on the concentration-dependent absorption of SO₂ in the ET 22 airways observed by Strandberg (1964), Amdur (1966) concluded that the airway resistance 23 responses at low-exposure concentrations were independent of method of administration, 24 because the lung received nearly the same concentration with or without the cannula as 25 evidenced by minimal ET absorption. 26 More recently, Ben-Jebria et al. (1990) investigated the absorption of SO_2 in excised 27 porcine tracheae. Absorption was monitored over a 30-min period following the introduction of 28 SO_2 (0.1 to 0.6 ppm, inlet concentration) at a constant flow (2.7 to 11 L/min). The data were

analyzed using diffusion-reactor theory. An overall mass transfer coefficient (K_{SO2}) was

30 determined and separated into its contributions due to gas (convection and diffusion) and tissue

31 phase (diffusivity, solubility, and reaction rates) resistances. SO₂ in the liquid phase was

1 assumed to form HSO_3^- rapidly, in proportion with the gas phase SO_2 concentration, HSO_3^- then 2 diffused down the concentration gradient into the tissues where it reacted irreversibly with 3 biochemical substrates. Initially, K_{SO2} was limited only by gas phase resistance, but decreased 4 exponentially over the first 5 to 10 min of SO₂ exposure to a smaller steady-state value because 5 of tissue resistance to SO₂ absorption. The initial and steady-state K_{SO2} values were found to be 6 independent of inlet SO_2 concentration, i.e., for a given flow, the fractional absorption of SO_2 did 7 not depend on SO₂ concentration. An increased K_{SO2} (initial and steady-state) was observed with 8 an increasing flow that was thought to be due to a decrease in the boundary layer near the walls 9 of the trachea for radial SO_2 transport. This is in agreement with Aharonson et al. (1974), who 10 also reported that the transfer rate coefficient for SO₂ increases with increasing flow. However, 11 the initial molar flux of SO₂ across the gas-tissue interface appears to increase purely as a 12 function of the increase in mass transport occurring with increasing flow (see Figure 5 in Ben-13 Jebria, 1990). Given that the steady-state K_{SO2} remained stable during the 10 to 30 min of 14 exposure and that no SO_2 leakage through the tissue was identified, the authors concluded that 15 there was an irreversible sink for SO_2 within the tissue.

16 In summary, inhaled SO_2 is readily absorbed in the upper airways. During nasal 17 breathing, the majority of available data suggests 95% or greater SO₂ absorption occurs in the 18 nasal passages, even under ventilation levels comparable to exercise. One study, however, 19 reported only 85% nasal absorption of SO₂ in humans. Somewhat less SO₂ is absorbed in the 20 oral passage than in the nasal passages. The difference in SO₂ absorption between the mouth and 21 the nose is highly dependent on respired flow rates. In one study, for example, with an increase 22 in flow from 3.5 to 35 L/min, nasal absorption was reduced from 100 to 97%; whereas, oral 23 absorption was reduced from 100 to 34%. Several in vivo studies have reported greater 24 respiratory tract absorption of SO₂ at high versus low SO₂ concentrations. However, the ex vivo 25 uptake of SO_2 is not related to SO_2 concentration. It has been postulated that increased mucous 26 secretion and/or increased nasal resistance at high SO₂ concentrations may account for the 27 increased absorption efficiency observed in vivo. Although SO₂ absorption may depend on 28 inhaled SO₂ concentration, the rate and route of breathing have a greater effect on the magnitude 29 of SO₂ absorption in the upper airways. In exercising humans, the pattern of SO₂ absorption 30 should be expected to shift from the upper airways to the tracheobronchial airways in

- 1 conjunction with a shift from nasal to oronasal breathing and associated increased ventilatory
- 2 rates.

	Conce	ntration
Region	SO ₂ (ppb)	$SO_4^{2-} (\mu g m^{-3})$
Mid-Atlantic	3.3	4.5
Midwest	2.3	3.8
Northeast	1.2	2.5
Southeast	1.3	4.1

TABLE 2.4-1. REGIONAL DISTRIBUTION OF SO2 AND SO42- AMBIENT CONCENTRATIONS, AVERAGED FOR 2003-2005

		-	Percentiles											
Averaging Time Monitor Locations	n	Mean	1	5	10	25	30	50	70	75	90	95	99	Max
1-h Maximum Concentration														
Inside CMSAs	332405	13	1	1	1	3	4	7	13	16	30	45	92	714
Outside CMSAs	53417	13	1	1	1	1	2	5	10	13	31	51	116	636
1-h Average Concentration														
Inside CMSAs	7408145	4	1	1	1	1	1	2	4	5	10	15	34	714
Outside CMSAs	1197179	4	1	1	1	1	1	2	3	3	7	13	36	636
24-h Average Concentration														
Inside CMSAs	327918	4	1	1	1	1	2	3	5	6	10	13	23	148
Outside CMSAs	52871	4	1	1	1	1	1	2	3	4	8	12	25	123
Annual Average Concentratio	n													
Inside CMSAs	898	4	1	1	1	1	2	4	5	6	8	10	12	15
Outside CMSAs	143	4	1	1	1	1	2	3	4	5	8	9	13	14
Aggregate 3-yr Average Concentration, 2003-2005														
Inside CMSAs	283	4	1	1	1	2	3	3	5	5	8	10	12	14
Outside CMSAs	42	4	1	1	1	2	2	3	4	5	8	9	13	13

TABLE 2.4-2. DISTRIBUTIONS OF TEMPORAL AVERAGING INSIDE AND OUTSIDE CMSAS

* Values are ppb

** CMSA = Consolidated Metropolitan Statistical Area

Metropolitan Area (Number of Monitors)	Mean SO ₂ Concentration (ppb)	Pearson Correlation Coefficient
Philadelphia, PA (10)	3.6 - 5.9	0.37 – 0.84
Washington, DC (5)	3.2 - 6.5	0.30 - 0.68
Jacksonville, FL (5)	1.7 - 3.4	-0.03 - 0.51
Tampa, FL (8)	2.0 - 4.6	-0.02 - 0.18
Pittsburgh, PA (10)	6.8 - 12	0.07 - 0.77
Steubenville, OH (13)	8.6 - 14	0.11 - 0.88
Chicago, IL (9)	2.4 - 6.7	0.04 - 0.45
Salt Lake City, UT (5)	2.2 - 4.1	0.01 - 0.25
Phoenix, AZ (4)	1.6 - 2.8	-0.01 - 0.48
San Francisco, CA (7)	1.4 - 2.8	-0.03 - 0.60
Riverside, CA (4)	1.3 - 3.2	-0.06 - 0.15
Los Angeles, CA (5)	1.4 - 4.9	-0.16 - 0.31

TABLE 2.4-3. RANGE OF MEAN SO₂ CONCENTRATIONS AND PEARSON CORRELATION COEFFICIENTS IN URBAN AREAS HAVING AT LEAST FOUR MONITORS

Reference	Location	Notes			
		(number of samples)	ples)		
Spengler et al. (1979)	Portage, WI	0.67 (349)	One year during		
	Topeka, KS	0.50 (389)	Harvard Six Cities		
	Kingston, TN	0.08 (425)	study. West-Gaeke		
	Watertown, MA	0.33 (486)	method.		
	St. Louis. MO	0.31 (543)			
	Steubenville, OH	0.39 (499)			
Stock et al. (1985)	Houston, TX	0.54 (2425)	May to October, continuous FRM for indoor and outdoor.		
Meranger and Brule (1987)	Antigonish, NS, Canada	0.84 (8)	Early spring, 1 wk avg in 1 house with oil furnace, FPD-TA		
Brauer et al. (1989)	Boston, MA	0.23 (24)	Summer, HEADS		
Li and Harrison (1990)	Essex, UK	0.22	Summer		
Brauer et al. (1991)	Boston, MA	0.39 (geom. mean) (29), $R^2 = 0.89$	Summer, HEADS		
		0.05 (geom. mean) (23), $R^2 = 0.73$	Winter, HEADS		
Chan et al. (1994)	Taipei, Taiwan	0.24 (15)	Summer, PS		
	-	0.23 (37)	Winter, PS		
Lee et al. (1999)	Hong Kong	$0.92, R^2 = 0.56$	Winter, PF		
Patterson and Eatough (2000)	Lindon, UT	0.027 ± 0.0023 , $R^2 = 0.73$	Winter, ADS, all samples		
Kindzierski and Sembaluk (2001)	Boyle, Alberta, Canada	0.12 (12)	Late Fall, PS		
	Sherwood Park, Alberta, Canada	0.14 (13)	Late Fall, PS		
Chao (2001)	Hong Kong	1.01 ± 0.78 (10)	Summer. Windows mainly kept closed, PS		
Kindzierski and Ranganathan (2006)	Fort McKay, Alberta, Canada	0.35 (30)	Fall. All indoor levels < LOD and set =1/2 LOD, PS		

TABLE 2.5-1. RELATIONSHIPS OF INDOOR TO OUTDOOR SO2 CONCENTRATIONS

FPD-TA = Flame Photometric Detection-Thermal Analysis

HEADS = Harvard-EPA Annular Denuder System

PS= passive sampler

PF = pulsed fluorescence

ADS = Annular Denuder System

3. INTEGRATED HEALTH EFFECTS OF EXPOSURE TO SULFUR DIOXIDE

2 3

1

4 5 This integrated discussion is structured to provide a coherent framework for the 6 assessment of health risks associated with human exposure to ambient sulfur dioxide (SO_2) in the 7 United States. The main goal of this chapter is to integrate newly available epidemiological, 8 human clinical, and animal toxicological evidence with consideration of key findings and 9 conclusions from the 1982 Air Quality Criteria Document (AQCD) for Sulfur Oxides (U.S. 10 Environmental Protection Agency, 1982), 1986 Second Addendum (U.S. Environmental 11 Protection Agency, 1986b), and 1994 Supplement to the Second Addendum, (U.S. 12 Environmental Protection Agency, 1994a), so as to address issues central to the U.S. 13 Environmental Protection Agency (EPA)'s assessment of evidence needed to support the current 14 review of the primary SO₂ National Ambient Air Quality Standards (NAAQS). 15 This chapter is organized to present morbidity and mortality associated with short-term 16 exposures to SO₂, followed by morbidity and mortality associated with long-term exposures. 17 These sections describe the findings of epidemiological studies that have examined the 18 association between short-term (generally 24-h average) and long-term (generally months to 19 years) ambient SO_2 exposure and heath outcomes such as increases in respiratory symptoms in 20 asthmatics; increases in emergency department (ED) visits and hospital admissions for 21 respiratory and cardiovascular diseases (CVDs); and increased risk of premature mortality. 22 Human clinical studies examining the effect of peak (1 h or less, generally 5-15 min) exposures 23 of SO₂ on respiratory symptoms and lung function are also discussed in this chapter. These 24 outcomes are presented with relevant animal toxicological data to assess coherence, biological 25 plausibility, and potential mechanistic evidence. 26 The epidemiological studies constitute important information on associations between

health effects and exposures of human populations to ambient levels of SO_2 and also help to identify susceptible subgroups and associated risk factors. However, associations observed between specific air pollutants and health outcomes in epidemiological studies may be confounded by copollutants and/or meteorological conditions and influenced by model specifications in the analytical methods. Extensive discussion of issues related to confounding effects among air pollutants in epidemiological studies are provided in the 2004 AQCD for

1 Particulate Matter (PM) and therefore not reported here. Briefly, the use of multipollutant 2 regression models has been the prevailing approach for controlling potential confounding by 3 copollutants in air pollution health effects studies. A specific concern is that a given pollutant 4 may act as a surrogate for other unmeasured or poorly measured pollutants. In the event that one 5 or more pollutants act as surrogates for an unmeasured component of a mixture actually 6 responsible for the observed association, the strongest predictor in a multipollutant model could 7 simply indicate which measured pollutant is the best surrogate for the unmeasured pollutant of 8 interest. Particularly in the case of SO₂, atmospheric chemistry links SO₂ to SO₂-derived fine sulfate $(SO_4^{2^-})$ particles. Since SO_2 and $SO_4^{2^-}$ particles coexist in most ambient situations, 9 10 observational epidemiologic studies have little ability to distinguish between the adverse health effects of pure gaseous SO₂ with $SO_4^{2^-}$ or other particulate matter (PM) indices. Attempts to 11 12 distinguish the gaseous and particle effects related to SO₂ using multipollutant epidemiologic 13 models must be interpreted with caution. Despite the limitations, the use of multipollutant 14 models is still the prevailing approach employed in most studies of SO_2 health effects and serves 15 as an important tool in addressing the issue of confounding by copollutants.

16 Model specification and model selection also are factors to consider in the interpretation 17 of the epidemiological evidence. Epidemiological studies investigated the association between 18 various measures of SO₂ (e.g., multiple lags, different exposure metrics) and various health 19 outcomes using different model specifications (for further discussion, see 2006 AQCD for Ozone 20 [O₃] and Related Photochemical Oxidants). The summary of health effects in this chapter is 21 vulnerable to the errors of publication bias and multiple testing. Efforts have been made to 22 reduce the impact of multiple testing errors on the conclusions in this document. For example, 23 although many studies examined multiple single-day lag models, priority was given to effects 24 observed at 0- or 1-day lags rather than at longer lags. Both single- and multiple-pollutant 25 models that include SO₂ were considered and examined for robustness of results. Analyses of 26 multiple model specifications for adjustment of temporal or meteorological trends will be 27 considered sensitivity analyses.

In addition to evaluating available evidence from epidemiologic studies, this chapter also examined human clinical studies. Human clinical studies conducted in controlled exposure chambers use fixed concentrations of air pollutants under carefully regulated environmental conditions and subject activity levels to minimize possible confounding of the health associations

1 by other factors. While human clinical studies do in fact provide a direct quantitative assessment 2 of the SO_2 exposure-health response relationship, such studies have a number of limitations. 3 First, study subjects must be either healthy individuals or individuals whose level of illness does 4 not preclude them from participating in the study. Subjects with a recent history of upper 5 respiratory tract infections are typically excluded from clinical studies of exposure to SO₂, as are 6 asthmatics who are unable to withhold the use of brochodilators for at least 6 hours prior to 7 exposure. Therefore, the results of human clinical studies may underestimate the health effects 8 of exposure to certain sensitive subpopulations. In addition, studies of controlled exposure to 9 SO_2 have typically used peak concentrations for shorter durations (5-15 min). While these 10 studies provide important information on the biological plausibility of associations observed 11 between SO₂ exposure and health outcomes in epidemiological studies, the concentration-12 response relationships cannot be directly extrapolated to concentrations below those 13 administered in the laboratory. Finally, human clinical studies are normally conducted on a 14 relatively small number of subjects, which reduces the power of the study to detect significant 15 differences in the health outcomes of interest between exposure to varying concentrations of SO_2 16 and clean air. 17 The chapter discussion focuses on the important new scientific studies, with emphasis on 18 those conducted at or near current ambient concentrations. The attached annexes include a broad 19 survey of the epidemiology and toxicology literature to supplement the information presented 20 here. 21 22 23 3.1 **MORBIDITY ASSOCIATED WITH SHORT-TERM SO2 EXPOSURE** 24 25 26 3.1.1 **Respiratory Effects Associated with Short-Term Exposure to SO₂** 27 In the 1982 AQCD for Sulfur Oxides, only a few epidemiological studies were useful in 28 determining the concentration-response relationship of respiratory health effects from short-term 29 exposure to SO_2 . The most notable study was by Lawther et al. (1970), which examined the 30 association between air pollution and worsening health status in bronchitic patients. It was 31 concluded in the 1982 AQCD that worsening of health status among chronic bronchitic patients

32 was associated with daily black smoke (BS) levels of 250 to 500 μ g/m³ in the presence of SO₂

levels in the range of 500 to 600 μ g/m³ (191 to 229 ppb). In the 1986 Second Addendum, 1 2 additional studies investigated morbidity associated with short-term exposure to SO₂. The most 3 relevant study was by Dockery et al. (1982), which examined pulmonary function in school 4 children in Steubenville, OH as part of the Harvard Six Cities Study. This study found that small 5 but statistically significant reversible decrements in forced vital capacity (FVC) and forced 6 expiratory volume in 0.75 s (FEV $_{0.75}$) were associated with increases in 24-h average 7 concentrations of total suspended particles (TSP) at levels ranging up to 220 to 420 μ g/m³ and SO₂ at levels ranging up to 280 to 460 μ g/m³ (107 to 176 ppb). However, it was impossible to 8 9 separate the relative contributions of TSP and SO₂, and no threshold level for the observed 10 effects could be discerned from the wide range of exposure levels. 11 Epidemiological evidence for an association between SO₂ and morbidity as indicated by increased use of ED facilities or increased hospital admissions for respiratory disease outcomes 12 13 were also reported in the 1982 AQCD. Overall, these results suggested increased upper 14 respiratory tract morbidity, especially among older adults, during episodic marked elevations of 15 PM or SO₂ (0.4 to 0.5 ppm). The 1982 AQCD further concluded that the reviewed studies 16 provided essentially no evidence for an association between asthma attacks and acute exposures 17 at typical ambient 24-h average PM or SO₂ levels in the United States. 18 The majority of the SO₂ human clinical studies reviewed in the 1982 AQCD evaluated 19 respiratory effects of SO_2 exposure in healthy adults, with some limited data from clinical studies 20 of adults with asthma. Respiratory effects from SO₂ exposure such as increased airway 21 resistance and decreased forced expiratory volume in 1 s (FEV_1) were well documented. The 22 1986 Second Addendum and 1994 Supplement to the Second Addendum reviewed several 23 additional controlled studies involving both healthy and asthmatic individuals. In general, these 24 studies found no pulmonary effects of SO₂ exposure in healthy subjects exposed to 25 concentrations of <1.0 ppm (Bedi et al., 1984; Folinsbee et al., 1985; Kulle et al., 1984; Stacy 26 et al., 1983). However, in exposures of asthmatic adults, respiratory effects have been observed 27 following short-term exposures (<5 min) to levels of <1.0 ppm (Balmes et al., 1987; Horstman 28 et al., 1988). Decreases in lung function have consistently been demonstrated in relatively 29 healthy, exercising asthmatic adults following 5-15 minute exposures to 0.5-1.0 ppm SO₂. 30 The 1982 AQCD also noted that numerous effects on the respiratory system were 31 observed in animals exposed to SO_2 . Effects were generally observed at levels exceeding

1 ambient exposure levels and included morphological changes, altered pulmonary function, lipid 2 peroxidation, and changes in host lung defenses. The immediate effect of acute SO₂ exposure in 3 animals was observed to be increased pulmonary resistance to airflow, a measure of 4 bronchoconstriction. It was postulated that increased pulmonary resistance is mediated through 5 bronchial epithelial receptors that activate an autonomic reflex arc through the vagus nerve, a 6 process that is also believed to occur in humans. Because the reflex was blocked by atropine, it 7 was determined to be cholinergic. SO₂-induced bronchoconstriction was hypothesized to involve 8 smooth muscle contraction, because it was reversed by β -adrenergic agonists such as 9 isoproterenol. Acetylcholine and histamine were also thought to be involved in SO₂-induced 10 bronchoconstriction. The 1982 AQCD reported some effects of SO₂ on lung defenses that 11 usually occurred at concentrations exceeding ambient exposure concentrations. Alterations in 12 the antiviral defense system and pulmonary immune system and slowed mucociliary clearance 13 were reported in mice exposed to 2- to 10-ppm SO₂.

14 Collectively, the epidemiological, human clinical, and animal toxicological studies 15 provided biological plausibility and coherent evidence of an adverse effect of ambient SO_2 on 16 respiratory health. Since the 1982 AQCD, 1986 Second Addendum, and 1994 Supplement to the 17 Second Addendum, additional studies have been conducted on the relationship between short-18 term exposures to ambient SO_2 and adverse respiratory health effects, including respiratory 19 symptoms, lung function, airways inflammation, airways hyperresponsiveness, lung host 20 defenses, and ED visits and hospitalizations for respiratory causes. The epidemiological, human 21 clinical, and animal toxicological evidence on the effects of SO₂ on these various endpoints are 22 discussed below.

23 24

3.1.1.1 Respiratory Symptoms

Respiratory symptoms in air pollution field studies are usually measured using questionnaire forms (or "daily diaries") that are filled out by study subjects. Questions address the daily experience of coughing, wheezing, shortness of breath (or difficulty breathing), production of phlegm, and others. In this section, the effects of short-term exposure to SO₂ on respiratory symptoms in children and adults will be discussed separately. Epidemiological studies on respiratory symptoms published since the last review are summarized in Annex Table AX5-1 with key studies discussed in further detail below.

1 Children

2 The strongest epidemiological evidence for an association between respiratory symptoms 3 and exposure to ambient SO₂ comes from two large U.S. multicity studies (Mortimer et al., 2002; 4 Schildcrout et al., 2006). Mortimer et al. (2002) examined 846 asthmatic children from eight 5 U.S. urban areas in the National Cooperative Inner-City Asthma Study (NCICAS) for 6 summertime air pollution-related respiratory symptoms. Median 3-h average SO₂ (8 to 11 a.m.) 7 levels ranged from 17 ppb in Detroit to 37 ppb in East Harlem. Morning symptoms were found 8 to be most strongly associated with an average of a 1- to 2-day lag of SO_2 concentrations. In 9 two-pollutant models with O_3 and nitrogen dioxide (NO₂) (measured in seven cities), the SO₂ 10 association remained robust. When particulate matter with an aerodynamic diameter of $\leq 10\mu$ 11 (PM₁₀) was also included in the multipollutant models using data from three cities, the effect 12 estimate remained similar, but became nonsignificant likely due to reduced statistical power. 13 In the Childhood Asthma Management Program (CAMP) study, the association between 14 ambient air pollution and asthma exacerbations in children (n = 990) from eight North American 15 cities was investigated (Schildcrout et al., 2006). SO₂ measurements were available in seven of 16 the eight cities. The median 24-h average SO₂ concentrations ranged from 2.2 ppb (interquartile 17 range [IQR]: 1.7, 3.1) in San Diego to 7.4 ppb (IQR: 5.3, 10.7) in St. Louis. Results for the 18 associations between asthma symptoms and all pollutants are shown in Figure 3.1-1. Analyses 19 indicated that, although SO₂ lags were positively related to increased risk of asthma symptoms, 20 only the 3-day moving average was statistically significant. Stronger associations were observed 21 for carbon monoxide (CO) and NO₂. In two-pollutant models with CO, NO₂, and PM₁₀, the 22 effect estimate and 95% confidence interval (CI) remained consistent (Figure 3.1-1). 23 A longitudinal study of 1,844 schoolchildren during the summer from the Harvard Six 24 Cities Study suggested that the association between SO₂ and respiratory symptoms could be 25 confounded by PM₁₀ (Schwartz et al., 1994). The median 24-h average SO₂ concentration 26 during this period was 4.1 ppb (10th–90th percentile: 0.8, 17.9; maximum 81.9). SO₂

27 concentrations were found to be associated with cough incidence and lower respiratory

28 symptoms. Of the pollutants examined, PM_{10} had the strongest associations with respiratory

29 symptoms. In two-pollutant models, the effect of PM_{10} was found to be robust to adjustment for

30 other copollutants, while the effect of SO_2 was substantially reduced after adjustment for PM_{10} .

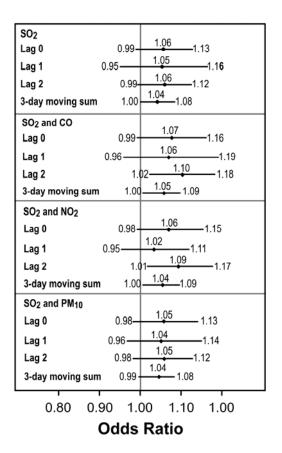


Figure 3.1-1.Odds ratios for daily asthma symptoms associated with a 10-ppb
increase in within-subject concentrations of 24-h average SO2, using
data collected from November 1993 to September 1995. All city-
specific estimates of pollutant effects were included in calculations of
study-wide effects except SO2 in Albuquerque, NM and NO2 in
Seattle, WA.

Source: Schildcrout et al. (2006).

- 1 As the PM₁₀ concentrations were correlated strongly to SO₂-derived SO₄²⁻ particles (r = 0.80),
- 2 the diminution of the SO₂ effect estimate may indicate that for PM_{10} dominated by fine SO₄²⁻
- 3 particles, PM_{10} has a slightly stronger association than SO_2 . This study further investigated the
- 4 concentration-response function and observed a nonlinear relationship between SO₂
- 5 concentrations and respiratory symptoms. A figure plotting the relative odds of incidence of
- 6 lower respiratory symptoms against SO₂ concentrations lagged 1 day indicated that no
- 7 statistically significant increase in the incidence of lower respiratory symptoms was seen until

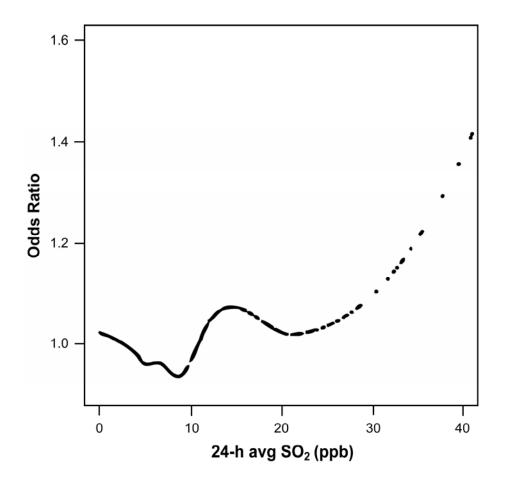


Figure 3.1-2.Relative odds ratio of incidence of lower respiratory symptoms
smoothed against 24-h average SO2 concentrations on the previous
day, controlling for temperature, city, and day of week.

Source: Schwartz et al. (1994).

1 concentrations exceeded a 24-h average SO₂ of 22 ppb though an increasing trend was observed

2 at concentrations as low as 10 ppb (Figure 3.1-2).

3 In the Pollution Effects on Asthmatic Children in Europe (PEACE) study, a multicenter

4 study of 14 cities across Europe, the effects of acute exposure to various pollutants including SO₂

- 5 on the respiratory health of children with chronic respiratory symptoms (n = 2,010) was
- 6 examined during the winter of 1993-1994 (Roemer et al., 1998). Mean 24-h average SO₂
- 7 concentrations ranged from $2 \mu g/m^3$ (1 ppb) in the urban area of Umeå, Sweden, to 113.9 $\mu g/m^3$
- 8 (43 ppb) in the urban area of Prague, Czech Republic. No associations were observed between
- 9 SO₂ and daily prevalence of respiratory symptoms or bronchodilator use at any of the single- and

1 multiday lags considered. In addition, no associations were observed for any of the other 2 pollutants examined. It should be noted that during the study period, there were only two major 3 air pollution episodes, one at the beginning and one at the end of the study period. In the 4 epidemiologic model, the control for time trend was accomplished through the use of linear and 5 quadratic terms. Given the timing of the air pollution episodes, the quadratic trend term would 6 have removed most of the air pollution effect. Other studies that participated in the PEACE 7 study and analyzed results for longer periods of times have observed statistically significant 8 associations between SO_2 and respiratory symptoms in children (for example, see van der Zee 9 et al., 1999, presented below).

10 Other studies have examined the relationship between respiratory symptoms and ambient 11 SO_2 concentrations. These studies generally indicated positive associations, including two U.S. 12 studies (Delfino et al., 2003; Neas et al., 1995) and several European studies (Hoek and Brunekreef, 1994; Peters et al., 1996; Roemer et al., 1993; Segala et al., 1998; Timonen and 13 14 Pekkanen, 1997; van der Zee et al., 1999). However, some studies found no consistent 15 association (e.g., Hoek and Brunekreef, 1993, 1995; Romieu et al., 1996) between respiratory 16 symptoms and SO₂ concentrations. Given the high correlations among the air pollutants, particularly with PM indices or sulfate $(SO_4^{2^-})$, it is possible that SO_2 might be an indicator for 17 particulate air pollution characterized by PM_{10} or SO_4^{2-} or it might also be a surrogate for other 18 19 unmeasured combustion products. Only one of these studies examined possible confounding of 20 the SO₂ effect by copollutants. Van der Zee et al. (1999) studied the association between 21 respiratory symptoms and SO₂ in 7- to 11-year-old children (n = 633) with and without chronic 22 respiratory symptoms in the Netherlands. Significant associations with lower respiratory symptoms and increased bronchodilator use were observed for SO₂, as well as PM₁₀, BS, and 23 SO_4^{2-} , in symptomatic children living in urban areas (n = 142). In a two-pollutant model with 24 25 PM₁₀, the results were robust for bronchodilator use, but slightly reduced for lower respiratory 26 symptoms.

Figures 3.1-3 and 3.1-4 present the odds ratios for SO₂-related cough and lower respiratory or asthma symptoms, respectively, from several epidemiological studies with relevant data. The results for cough are somewhat variable with wide confidence intervals, as shown in Figure 3.1-3. The studies conducted in the summer generally indicate increased risk of cough from exposure to SO₂. A more consistent effect of SO₂ is observed on lower respiratory or

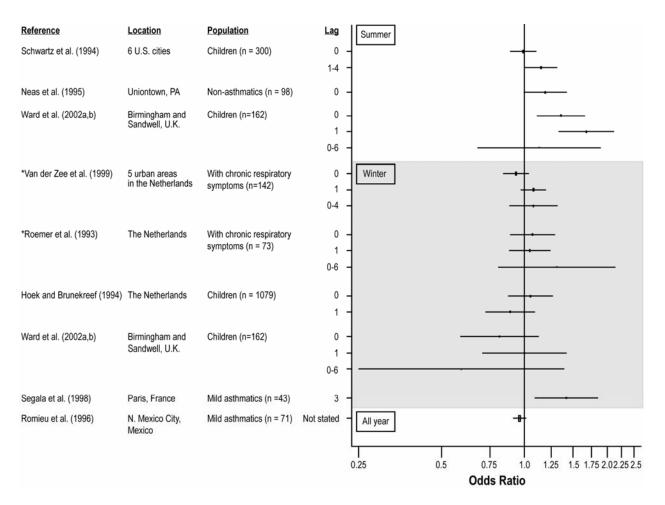


Figure 3.1-3.Odds ratios (95% CI) for the incidence of cough among children,
grouped by season. For single-day lag models, current day and/or
previous day SO2 effects are shown, except for Ségala et al. (1998),
which only presented results for a 3-day lag. Risk estimates are
standardized per 10-ppb increase in 24-h average SO2 level. The size
of the box of the central estimate represents the relative weight of that
estimate based on the width of the 95% CI.

* Note that van der Zee et al. (1999) and Roemer et al. (1993) presented results for prevalence of cough.

- 1 asthma symptoms (Figure 3.1-4). Although there is some variability in the individual effect
- 2 estimates, the majority of the odds ratios appear to be >1. Similar to cough, stronger associations
- 3 with lower respiratory or asthma symptoms were observed in the summer compared to the
- 4 winter. There was some variability among the different lags of exposure; however, effects were

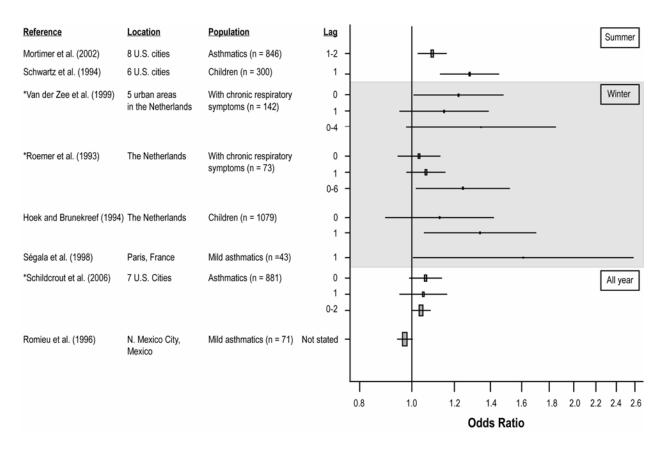


Figure 3.1-4.Odds ratios (95% CI) for the incidence of lower respiratory or asthma
symptoms among children, grouped by season. For single-day lag
models, current day and/or previous day SO2 effects are shown. Risk
estimates are standardized per 10-ppb increase in 24-h average SO2
level. The size of the box of the central estimate represents the
relative weight of that estimate based on the width of the 95% CI.

* Note that van der Zee et al. (1999), Roemer et al. (1993), and Schildcrout et al. (2006) presented results for prevalence of symptoms.

- 1 generally observed with current day or previous day exposure and, in some cases, with a
- 2 distributed lag of 2 to 3 days.

3 The 1982 AQCD concluded that there was insufficient evidence on the effect of SO_2 and

4 PM on asthma attacks but that exposure to these pollutants was associated with increases in the

- 5 occurrence of upper respiratory symptoms, including exacerbation of preexisting chronic
- 6 bronchitis. A study by Keles et al. (1999) evaluated the prevalence of chronic rhinitis among
- 7 high school students before and after installation of a natural gas network for domestic heating

1 and industrial works in a polluted area of Istanbul, Turkey. Concentrations of CO, NO₂, and

2 hydrocarbons were relatively low compared to SO₂ and TSP in this area. After the intervention,

3 the annual mean TSP concentration declined by 23% from 89.7 μ g/m³ to 68.8 μ g/m³. An even

4 greater decline (46%) was observed for SO₂, from an annual mean of 185.4 μ g/m³ (70.8 ppb) to

5 100.0 μ g/m³ (38.2 ppb). The prevalence of rhinitis decreased significantly from 62.5 to 51% of

6 the student population (p < 0.05) following the installation of the natural gas network.

7 Symptoms of rhinitis were associated with air pollution levels but not with any of the other

8 factors considered, including sex, household crowding, heating source, and smoking status.

9 Although the effects from TSP could not be separated from SO₂, this study demonstrated that

10 reductions in both pollutants (with greater declines in SO₂) resulted in significant reductions in

11 the prevalence of chronic rhinitis in a highly polluted area.

12 Overall, recent epidemiological studies provide evidence for an association between ambient SO₂ exposure and increased respiratory symptoms in children, particularly those with 13 14 asthma or chronic respiratory symptoms. Recent U.S. multicity studies observed significant 15 associations between SO_2 and respiratory symptoms at a median range of 17 to 37 ppb 16 (75th percentile: ~25 to 50) across cities for 3-h average SO₂ (NCICAS, Mortimer et al., 2002) 17 and 2.2 to 7.4 ppb (90th percentile: 4.4 to 14.2) for 24-h average SO₂ (CAMP, Schildcrout et al., 18 2006). However, an earlier study that examined the concentration-response function found that a 19 statistically significant increase in the incidence of lower respiratory symptoms was not observed 20 until concentrations exceeded a 24-h average SO₂ of 22 ppb, though an increasing trend was 21 observed at concentrations as low as 10 ppb (Harvard Six Cities Study, Schwartz et al., 1994). 22 In the limited number of studies that examined potential confounding by copollutants through 23 multipollutant models, the SO₂ effect was generally found to be robust after adjusting for PM 24 and other copollutants.

25

26 Epidemiological Studies of Adults

Compared to the number of studies conducted with children, fewer studies were performed that examined the effect of ambient SO_2 exposure on respiratory symptoms in adults. Most of these studies focused on potentially susceptible populations, i.e., those with asthma or chronic obstructive pulmonary disease (COPD). One of the larger studies was conducted by van der Zee et al. (2000) in 50- to 70-year-old adults, with (n = 266) and without (n = 223) chronic respiratory symptoms in the Netherlands. In adults both with and without chronic respiratory symptoms, no consistent associations were observed between SO₂ levels and respiratory
 symptoms or medication use.

3 Studies by Desqueyroux et al. (2002a,b) examined the association between air pollution 4 and respiratory symptoms in other potentially susceptible populations, i.e., those with severe 5 asthma (n = 60, mean age 55 years) and COPD (n = 39, mean age 67 years), in Paris, France. The mean 24-h average SO₂ concentration was 7 μ g/m³ (3 ppb, range: 1, 10) in the summer and 6 7 $19 \,\mu\text{g/m}^3$ (7 ppb, range: 1, 31) in the winter. No associations were observed between SO₂ 8 concentrations and the incidence of asthma attacks or episodes of symptom exacerbation in the 9 severe asthmatics or individuals with COPD. O_3 was found to have the strongest effect in these 10 studies.

11 Several other European studies did observe an association between ambient SO₂ 12 concentrations and respiratory symptoms in adults with asthma or chronic bronchitis (Higgins 13 et al., 1995; Neukirch et al., 1998; Peters et al., 1996; Taggart et al., 1996). However, only one 14 of these studies examined possible confounding of the association by copollutants. Higgins et al. 15 (1995) examined the effect of summertime air pollutant exposure on respiratory symptoms in 62 adults with either asthma, COPD, or both. The maximum 24-h average SO_2 level was 117 μ g/m³ 16 17 (45 ppb). An association was observed between SO_2 and symptoms of wheeze, and it remained 18 robust to adjustment for O₃ and NO₂. The effects of PM were not examined in this study. 19 Results from the epidemiological studies examining the association between SO_2 and

respiratory symptoms in adults are generally mixed, with some showing positive associations
and others finding no relationship at current ambient levels.

22 23

Human Clinical Studies of Adults

The 1994 Supplement to the Second Addendum described in detail several studies that evaluated respiratory symptoms following controlled human exposures to SO₂. Briefly, following 1-h exposures to 0-, 0.2-, 0.4-, and 0.6-ppm SO₂, Linn et al. (1987) reported that the severity of respiratory symptoms (i.e., cough, chest tightness, throat irritation) increased relative to air exposures only in moderate/severe asthmatics who were exposed at the highest exposure concentration (0.6 ppm). It was also observed that these symptoms abated within <1 h after exposure. Balmes et al. (1987) reported that 7/8 asthmatic adults developed respiratory 1 symptoms including wheezing and chest tightness following 3-min exposures to 0.5-ppm SO₂ 2 during eucapnic hyperpnea (minute ventilation $[V_E] = 60 \text{ L/min}$).

3 Since the publication of the 1994 Supplement to the Second Addendum, several 4 additional publications have evaluated the effect of SO₂ exposure on respiratory symptoms in a 5 laboratory setting. In a human clinical study with SO_2 -sensitive asthmatics, Gong et al. (1995) 6 reported that respiratory symptoms (i.e., shortness of breath, wheeze, and chest tightness) 7 increased with increasing SO₂ concentration (0-, 0.5-, and 1.0-ppm SO₂) following exposures of 8 10 min with varying levels of exercise. It was also observed that exposure to 0.5-ppm SO₂ 9 during light exercise evoked a more severe symptomatic response than heavy exercise in clean 10 air. In a more recent study, Tunnicliffe et al. (2003) found no association between respiratory 11 symptoms (i.e., throat irritation, cough, wheeze) and 1-h exposures at rest to 0.2-ppm SO₂ in 12 either asthmatics or healthy adults.

Collectively, evidence from the previous review along with a limited number of new
 human clinical studies indicate increased respiratory symptoms with peak (5-15 min) SO₂
 exposures as low as 0.5 ppm in asthmatic subjects.

16

17 **3.1.1.2** Lung Function

Most of the studies discussed in the previous section for effects of SO₂ on respiratory symptoms also examined lung function. In studies assessing the relationship between acute exposure to air pollution and lung function, self-administered PEF meters were primarily used. Since PEF follows a circadian rhythm, with the highest values found during the afternoon and lowest values during the night and early morning (Borsboom et al., 1999), these studies generally have analyzed PEF data stratified by time of day. The epidemiological studies on lung function are summarized in Annex Table AX5-1.

25

26 Children

Mortimer et al. (2002) examined 846 asthmatic children from eight U.S. urban areas in the NCICAS for changes in PEF related to air pollution. The mean 3-h average SO_2 was 22 ppb across the eight cities during the study period of June through August 1993. No associations were observed between SO_2 concentrations and morning or evening PEF. Of all the pollutants examined, including PM_{10} , O_3 , and NO_2 , only O_3 was associated with changes in morning PEF. In another U.S. study (Neas et al., 1995), 83 children from Uniontown, PA reported
twice-daily PEF measurements during the summer of 1990. The mean daytime 12-h average
SO₂ concentration was 14.5 ppb (maximum 44.9). No associations were observed between
daytime 12-h average SO₂ concentrations and mean deviation in evening PEF, even after
concentrations were weighted by the proportion of hours spent outdoors during the prior 12 h.
Statistically significant associations were observed for O₃, total SO₄²⁻ particles, and particlestrong acidity.

A study by van der Zee et al. (1999) observed associations between ambient SO₂ concentrations and daily PEF measurements in 7- to 11-year-old children (n = 142) with chronic respiratory symptoms living in urban areas of the Netherlands (van der Zee et al., 1999). The odds ratio (OR) for a >10% decrement in evening PEF per 10-ppb increase in 24-h average SO₂ was 1.20 (95% CI: 0.97, 1.47) with same-day exposure. A greater effect was observed at a 2-day lag, OR = 1.40 (95% CI: 1.18, 1.67), and this effect remained robust in a two-pollutant model with PM₁₀, OR = 1.34 (95% CI: 1.08, 1.64).

Multipollutant analyses also were conducted in a study by Chen et al. (1999), which examined the effects of short-term exposure to air pollution on the pulmonary function of 895 children (age 8 to 13 years) in three communities in Taiwan. The daytime 1-h max SO₂ the day before spirometry ranged from 0 to 72.4 ppb. In a single-pollutant model, 1-h max SO₂ concentration at a 2-day lag was significantly associated with FVC, -50.80 mL (95% CI: -97.06, -4.54), or a 2.6% decline, per 40-ppb 1-h max SO₂. However, in multipollutant models, only O₃ remained significantly associated with FVC and FEV₁.

While additional studies have observed associations between ambient SO₂ concentrations
and changes in lung function in children (e.g., Hoek and Brunekreef, 1993; Peters et al., 1996;
Roemer et al., 1993; Segala et al., 1998; Timonen and Pekkanen, 1997), several other studies did
not find a significant association between SO₂ and lung function parameters (e.g., Delfino et al.,
2003; Peacock et al., 2003; Romieu et al., 1996).

In a human clinical study of asthmatic adolescents (12 to 16 years old), Koenig et al. (1983) evaluated changes in FEV₁ following a 10-min exposure during moderate exercise to 0.5- and 1.0-ppm SO₂ + 1-mg/m³ NaCl. Significant decreases of 15 and 23% were reported in FEV₁ following exposure to 0.5- and 1.0-ppm SO₂, respectively. No significant changes in FEV₁ were observed between pre- and postexposure to 1-mg/m³ NaCl without SO₂.

1 The mixed results observed in epidemiological studies, along with the high to moderate 2 correlation between SO₂ levels and other copollutants, most notably PM, reported in most studies 3 generally suggest that short-term exposure to ambient SO₂ does not have an independent effect 4 on lung function in children. One human clinical study provided evidence that during exercise, 5 peak exposures (10 min) to SO₂ at concentrations of as low as 0.5 ppm in the presence of 6 hygroscopic particles that can carry SO₂ deeper into the lung can elicit significant changes in 7 pulmonary function in asthmatic adolescents.

8

9 Epidemiological Studies of Adults

10 Van der Zee et al. (2000) observed an association between SO₂ and morning PEF in 11 50- to 70-year-old adults (n = 138) with chronic respiratory symptoms living in urban areas of 12 the Netherlands. No associations were observed with evening PEF. The OR for a >20%13 decrement in PEF was 1.21 (95% CI: 0.76, 1.92) per 10-ppb increase in 24-h average SO₂ with 14 same-day exposure and 1.56 (95% CI: 1.02, 2.39) at a 1-day lag. No associations were observed 15 for a >10% decrement in PEF. The authors hypothesized that while SO_2 level did not have much 16 effect on PEF in most subjects, there was a small subgroup of individuals who experienced fairly 17 large PEF decrements when SO₂ levels were high. No multipollutant analyses were conducted. 18 Higgins et al. (1995) examined the association between pulmonary function and air 19 pollution in 75 adults with either asthma, COPD, or both. Exposure to SO₂ was associated with 20 increased variation in PEF but not with mean or minimum PEF. The SO₂ effects on PEF 21 variation were robust to adjustment for O₃ and NO₂. Effects of PM were not considered. 22 Neukirch et al. (1998) also observed associations between lung function and SO₂ concentrations 23 in a study of asthmatic adults in Paris, France, but significant associations were found for all 24 pollutants examined, including BS, PM₁₃, and NO₂. 25 In a cross-sectional survey, Xu et al. (1991) investigated the effects of indoor and outdoor 26 air pollutants on the respiratory health of 1,140 adults (aged 40 to 69 years) living in residential,

27 industrial, and suburban areas of Beijing, China. The annual mean concentrations of SO_2 in

28 residential, industrial, and suburban areas from 1981 to 1985 were 128 μ g/m³ (49 ppb), 57 μ g/m³

29 (22 ppb), and 18 μ g/m³ (7 ppb), respectively. Log-transformed SO₂ and TSP were significantly

30 associated with reductions in FEV_1 and FVC. The authors cautioned that since SO_2 and TSP

31 concentrations were strongly correlated, the effect of SO₂ could not be separated from that

32 of TSP.

1 Others observed no relationship between ambient SO₂ concentrations and lung function in adults (Peters et al., 1996; Taggart et al., 1996). Similar to the results observed for children, 2 3 the epidemiological studies examining adults do not provide strong evidence for an association 4 between short-term exposure to ambient SO₂ and lung function. While some studies did observe 5 significant associations between SO₂ exposure and decrements in lung function parameters, the 6 results were not consistent across studies. In addition, the strong correlation between SO_2 and 7 various copollutants in most studies limits interpretation of independent effects of SO₂ on lung 8 function.

9

10 Human Clinical Studies of Adults

11

12 Healthy Individuals

13 In controlled SO₂ exposures of healthy human subjects under resting conditions,

14 respiratory effects including increased respiration rates, decrements in peak flow,

15 bronchoconstriction, and increased airway resistance have been observed. Most of these studies

16 report effects at concentrations of >5 ppm (Abe, 1967; Andersen et al., 1974; Frank et al., 1962;

17 Lawther, 1955; Sim and Pattle, 1957), with only a few studies reporting significant health effects

18 at concentrations as low as 1 ppm. Snell and Luchsinger (1969) observed a significant decrease

19 in maximum expiratory flow at 50% of forced vital capacity (MEF_{50%}) in healthy resting adult

20 subjects following 15-min inhalation exposures through a mouthpiece to 1-ppm SO₂. Amdur

et al. (1953) reported an increase in respiration rate and a decrease in tidal volume at 1-ppm SO₂;
however, this may be considered to be an irritant response rather than an adverse health effect of
exposure.

24 The respiratory effects of SO_2 can be potentiated by increasing ventilation rate either 25 through eucapnic hyperpnea or by performing light exercise during exposure. This effect is likely due to an increased uptake of SO₂ because of both the increase in \dot{V}_E as well as a shift from 26 nasal breathing to oronasal breathing. Lawther et al. (1975) found that deep breathing of 1-ppm 27 28 SO₂ by mouth resulted in an increase in specific airways resistance (sRaw) compared to 29 breathing air alone. Stacy et al. (1981) exposed 16 healthy males to 0.75-ppm SO₂ for 2 h with a 30 15-min period of exercise at the end of the first hour of exposure ($\dot{V}_{\rm E} \sim 60$ L/min). A separate 31 group of 15 healthy males were exposed to clean air for 2 h and served as the control for this 32 study. In the SO₂-exposed group, airways resistance (Raw) decreased by 2 to 55% compared to

baseline after the 15 min of exercise, but then returned to the baseline value by the end of the 2-h
exposure. However, in the control group, Raw decreased throughout the 2-h exposure, resulting
in statistically significant differences between the two groups in the change in Raw occurring
between both baseline and post-exercise and between baseline and postexposure.

5

6 Asthmatic Individuals

7 During the last review, it was established that subjects with asthma are more sensitive to 8 the effects of SO_2 exposure than healthy individuals without asthma. In fact, it has been 9 demonstrated that asthmatic individuals exposed to <1-ppm SO₂ while performing moderate to 10 heavy exercise for 5 min suffer significant bronchoconstriction or increases in sRaw (Bethel 11 et al., 1983; Linn et al., 1983, 1984). Gong et al. (1995) was able to show an exposure-response 12 relationship between SO₂ and respiratory effects by exposing 14 unmedicated, SO₂-sensitive 13 asthmatics to 0-, 0.5-, and 1-ppm SO_2 under 3 different levels of exercise. It was shown that 14 increasing SO₂ concentration had a greater effect on sRaw and FEV₁ than increasing exercise 15 level. Tunnicliffe et al. (2003) evaluated the effect of a lower exposure concentration of SO_2 in 16 resting healthy and asthmatic subjects. No significant changes in lung function as measured by 17 FEV₁, FVC, and maximal midexpiratory flow (MMEF) were observed following 1-h exposure to 18 0.2-ppm SO₂. The authors reported a small but statistically significant increase in respiratory 19 rate in the asthmatic group after SO_2 exposure compared to placebo (958.9 breaths/h with SO_2) 20 compared to 906.8 breaths/h with air). However, this effect was counterbalanced by a reduction 21 in tidal volume, resulting in no net change in volume breathed during exposure.

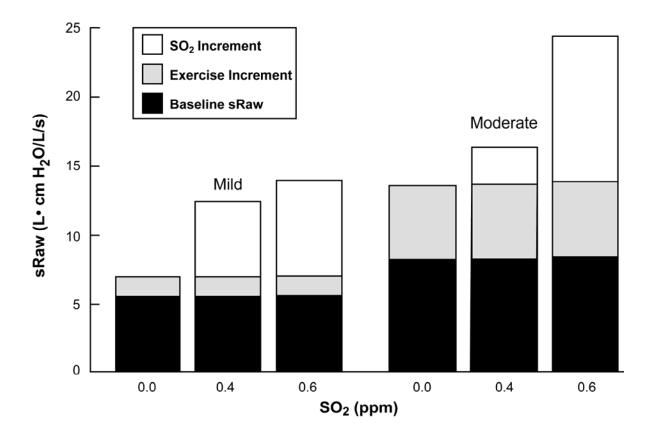
Since some of the studies involving asthmatic subjects have used change in sRaw as the
endpoint of interest while others have measured changes in FEV₁ or both, a comparison of FEV₁
and sRaw based on data from Linn et al. (1987, 1990) were provided in the 1994 Supplement to
the Second Addendum. Based on simple linear interpolation of the data from these two studies
(Linn et al., 1987, 1990), a 100% increase in sRaw corresponded to a 12 to 15% decrease in
FEV₁ and a 200% increase in sRaw corresponded to a 25 to 30% decrease in FEV₁.
One of the aims of the Linn et al. (1987) study was to determine how the intensity of

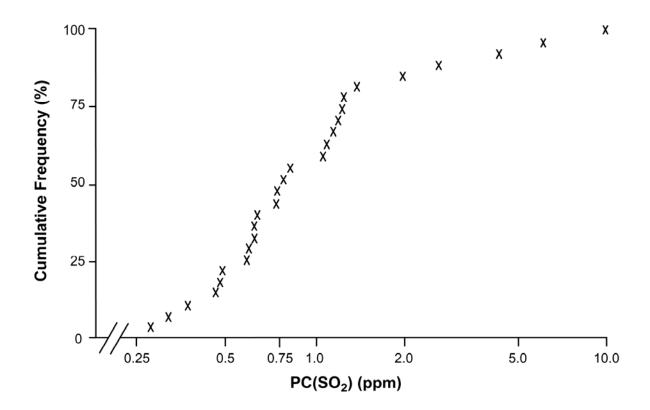
response varied with asthma severity or status. In this study, 24 normal, 21 atopic (but not
asthmatic), 16 mild asthmatic, and 24 moderate/severe asthmatic subjects were exposed to
0-, 0.2-, 0.4-, and 0.6-ppm SO₂. The exposure protocol consisted of 1-h exposures that included

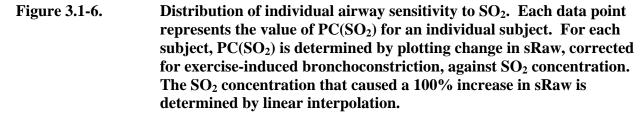
1three 10-min exercise periods ($\dot{V}_E \sim 40$ L/min). Physiological responses were measured at2approximately 15- and 55-min of exposure. Pooling data from both the mild and3moderate/severe asthmatic groups (n = 40) and using only measurements made at 15 min into the4exposure, the group mean sRaw was doubled with 0.6-ppm SO₂ exposure. In the project report5(Hackney et al., 1987) upon which the Linn et al. (1987) article was based, individual data were6presented that showed that 15/40 moderate/severe subjects (37.5%) had a doubling of the sRaw7at concentrations of <0.6-ppm SO₂.

8 Linn et al. (1987) demonstrated that moderate and severe asthmatics had the most severe 9 physiological and symptom responses. While the moderate/severe asthmatics were more 10 responsive than mild asthmatics following exposure to clean air during exercise, their increases 11 in response with increasing SO_2 concentrations were similar to the mild asthmatic group. Thus, 12 it was concluded that SO₂ response was not strongly dependent on the clinical severity of 13 asthma. Figure 3.1-5 illustrates the effect of varying concentrations of SO₂ on sRaw for the mild 14 and moderate/severe asthmatics groups after adjusting for the effect of exercise. The apparent 15 lack of correlation between SO₂ response and asthma severity should be interpreted with caution, 16 since the SO_2 response may have been attenuated by medication usage or its persistence. Three 17 of the moderate/severe asthmatics were unable to withhold medication usage during the exposure period. It was also suggested that individual SO₂ response could not be predicted by severity of 18 19 asthma or asthma status, since a few of the atopic individuals who were not asthmatic nor had 20 exercise-induced bronchoconstriction were reactive to SO₂. On the other extreme, a few of the 21 asthmatics, including some in the moderate/severe group, did not react to 0.6-ppm SO₂. 22 Nevertheless, the largest sRaw increases and most substantial decrements in FEV₁ occurred in 23 the moderate/severe asthmatic group.

One of the key studies discussed in the 1986 Second Addendum was by Horstman et al. (1986) who exposed 27 asthmatic subjects for 10 min on different days to concentrations of SO₂ between 0- and 2-ppm SO₂ under exercising conditions ($\ddot{V}_E = 42 \text{ L/min}$). These authors reported that for 25% of the subjects, the concentration of SO₂ needed to produce a doubling of the sRaw (PC(SO₂)) was <0.5 ppm, and for about 20% of the subjects the PC(SO₂) was >1.95 ppm, with a median PC(SO₂) of 0.75 ppm. Based on a cumulative frequency plot of PC(SO₂) versus SO₂ concentration (Figure 3.1-6), approximately 35% of asthmatic subjects in the Horstman et al.




Figure 3.1-5. Specific airways resistance (sRaw) of 16 mild and 24 moderate asthmatic subjects exposed to 0-, 0.4-, and 0.6-ppm SO₂. The exercise increment represents the increase in sRaw following exercise with exposure to clean air. Redrawn from the 1994 Supplement to the Second Addendum (U.S. Environmental Protection Agency, 1994).


Source: Linn et al. (1987).

1 study (1986) reached PC(SO₂) at \leq 0.6-ppm SO₂. This is consistent with the 37.5% incidence of

```
2 PC(SO_2) at concentrations <0.6 ppm observed by Hackney et al. (1987).
```

Though Hackney et al. (1987) demonstrated the distribution of bronchial sensitivity of asthmatics to SO₂, the authors cautioned against expressing SO₂ response in terms of PC(SO₂). Hackney et al. (1987) noted several limitations to using PC(SO₂) analysis for risk assessment purposes. First, the choice of a 100% increase in sRaw is arbitrary and may not necessarily have any health significance. For example, as noted by the authors, an increase in sRaw from 2 to 4 would meet the 100% criterion but may not be of clinical significance. However, an increase from 12 to 22, while not meeting the criterion, would be of clinical significance. Second, there

Source: Horstman et al. (1986).

1 may be loss of information from the rest of the exposure-response curve other than the chosen 2 point. For example, two subjects may have similar values of PC(SO₂) but substantially different 3 overall risk because of differences in threshold levels and slopes. Finally, PC(SO₂) based on the Hackney et al. (1987) study was not necessarily a stable and reproducible measurement. In some 4 5 cases, the sRaw change exceeded 100% at low concentrations but not at high concentrations. 6 Two key studies have shown that a bronchoconstrictive response to SO_2 can occur in as 7 little as 2 min in asthmatic subjects. Horstman et al. (1988) exposed 12 SO₂-sensitive asthmatic 8 subjects to 1.0-ppm SO₂ with exercise ($\dot{V}_E = 40 \text{ L/min}$). Correcting for exercise-induced responses, sRaw was shown to increase by 121% after a 2-min exposure and by 307% after a 9

1 5-min exposure. Balmes et al. (1987) exposed 8 asthmatic subjects to 0.5- and 1.0-ppm SO_2

2 during eucapnic hyperpnea (60 L/min) by mouthpiece on separate days for 1-, 3- and 5-min

3 durations. The magnitude of bronchoconstriction increased progressively over the three time

4 periods. At 0.5-ppm SO₂, sRaw increased by 34, 173, and 234% compared to baseline at 1, 3,

5 and 5 min of exposure, respectively. For the 1.0-ppm SO₂ exposure, sRaw increased by 93, 395,

6 and 580% compared to baseline at 1, 3, and 5 min of exposure, respectively.

7 The interaction of SO_2 with other common air pollutants or the sequential exposure of 8 SO_2 after prior exposure to another pollutant can modify the SO_2 -induced respiratory effects. 9 However, only a few studies have looked at the interactive effects of coexisting ambient air 10 pollutants. These few studies have been well summarized in the 1994 Supplement to the Second 11 Addendum. In brief, Koenig et al. (1990) examined the effect of 15-min exposures to 0.1-ppm 12 SO_2 in adolescent asthmatics engaged in moderate levels of exercise. Immediately preceding 13 this exposure, subjects were exposed for 45 min to 0.12-ppm O₃ during intermittent moderate 14 exercise. In this study, subjects also underwent two additional exposure sequences with the same 15 exercise regimen: 15-min exposure to 0.1-ppm SO₂ following a 45-min exposure to clean air, 16 and 15-min exposure to 0.12-ppm O₃ following a 45-min exposure to 0.12-ppm O₃. The authors 17 found that the change in FEV_1 compared to baseline was significantly different following the 18 O_3 -SO₂ exposure (8% decrease) when compared to the change following the air-SO₂ or O_3 - O_3 19 exposures (decreases of 3 and 2%, respectively). Jörres and Magnussen (1990) and Rubinstein 20 et al. (1990) investigated the effects of a prior NO₂ exposure on SO₂-induced 21 bronchoconstriction in asthmatic adults. While Jörres and Magnussen (1990) suggested that 22 prior exposure to NO₂ increased the responsiveness to SO₂, Rubinstein et al. (1990) did not find 23 that NO₂ exacerbated the effects of SO₂.

24

25 Individuals with Chronic Obstructive Pulmonary Disease

Linn et al. (1985) examined the respiratory effects of SO₂ exposure on subjects with COPD. In this controlled laboratory study, 24 subjects with COPD were exposed for 1 h to 0-, 0.4-, and 0.8-ppm SO₂ with two 15-min periods of light exercise ($V_E = 18 \text{ L/min}$). In contrast to studies with asthmatics, most of the subjects in this study regularly used bronchodilators and were permitted their use up to 4 h prior to the study. The authors reported no SO₂ effects on sRaw, spirometric measures, or arterial oxygen saturation. While it was concluded that older adults with COPD seem less reactive to SO₂ compared to heavily exercising young adult
 asthmatics, it was thought that this may be due to differences in medication usage as well as to
 the lower ventilation rate observed in subjects with COPD, which would itself result in a
 reduction in the pulmonary uptake of SO₂.

5 6

Summary of Human Clinical Studies on Lung Function in Adults

7 Results from human clinical studies have consistently demonstrated decreases in lung 8 function (e.g., decreased forced expiratory volume in 1 s $[FEV_1]$ and increased specific airways 9 resistance [sRaw]) following peak exposures (5 to 15 min) to SO₂. These effects have clearly 10 and consistently been shown to be exacerbated among individuals with asthma, with asthmatics 11 exhibiting significant decrements in lung function following 5- to 15-min exposures to SO_2 12 concentrations of as low as 0.5 ppm while performing moderate levels of exercise (e.g., Gong 13 et al., 1995; Horstman et al., 1986; Linn et al., 1987; Sheppard et al., 1981). The effect of peak 14 SO_2 exposure on lung function has been shown to increase in magnitude with increasing SO_2 15 concentrations above 0.5 ppm. Studies have further observed significant decrements in lung 16 function in some sensitive asthmatics following 5-15 min exposures to SO_2 concentrations of as 17 low as 0.25 ppm while performing moderate levels of exercise (Horstman et al., 1986; Sheppard 18 et al., 1981). Thus, the observations of increased bronchoconstriction and airway resistance in 19 human clinical studies provide clear evidence for SO_2 effects with peak exposure.

20

21 Animal Toxicological Studies

The 1982 AQCD reported bronchoconstriction (as indicated by increased pulmonary resistance) as the most sensitive indicator of lung function effects of acute SO₂ exposure based on the observations of increased pulmonary resistance in guinea pigs that were acutely exposed to 0.16-ppm SO₂. Some of the new animal toxicological studies are consistent with these observations. These studies on lung function are summarized in Annex Table AX4-1. Increases in pulmonary resistance and decreased dynamic compliance were the most

28 frequently observed effects in conscious guinea pigs exposed to 1-ppm SO₂ for 1 h (Amdur et al.,

- 29 1983). Studies to understand the potential role of neuronal component in SO₂-induced
- 30 pulmonary resistance used the anesthetics ketamine in guinea pigs exposed to 1-ppm SO₂ for
- 31 3 h/day for 6 days (Conner et al., 1985), carbamate in rabbits exposed to 5-ppm SO₂ for 45 min
- 32 (Barthélemy et al., 1988), or surgical manipulation (bivagotomy). These studies indicted that

1 pulmonary resistance was increased in ethyl carbamate-anesthetized rabbits exposed to SO₂ but 2 not in ketamine-anesthetized guinea pigs and that the SO₂-induced increase in lung resistance 3 was not mediated by the vagus nerve in rabbits. Further, observations of the elimination of 4 reflex bronchoconstrictor response by phenyldiguanide in rabbits exposed to 5-ppm SO₂, but not 5 the lung resistance induced by histamine, suggested that SO₂-induced bronchoconstriction in 6 rabbits is not mediated through the vagus nerve. Though these results provided some 7 understanding on the mechanisms involved in the development of SO₂-induced 8 bronchoconstriction, these studies were carried out using only one SO₂ exposure dose and 9 precluded assessment of concentration-response relationships and identification of a no-effect

10 level.

In summary, animal studies have shown that guinea pigs exposed to 0.16- to 1-ppm and rabbits exposed to 5-ppm SO₂ have increased pulmonary resistance that is not mediated through the vagus nerve.

- 14
- 15

3.1.1.3 Airway Inflammation

16 One epidemiological study by Adamkiewicz et al. (2004) examined exhaled nitric oxide 17 (eNO) as a biological marker for inflammation in 29 older adults (median age 70.7 years) in 18 Steubenville, OH. The mean 24-h average SO_2 concentration was 12.5 ppb (IQR 11.5). The 19 authors reported that, while significant and robust associations were observed between increased 20 daily levels of fine PM (PM_{2.5)} and increased eNO, no associations were observed with any of 21 the other pollutants examined, including SO_2 , NO_2 , and O_3 .

22 In a controlled-exposure, time-response study, Sandstrom et al. (1989) exposed 22 23 healthy male subjects for 20 min to 8-ppm SO₂ under light exercising conditions. 24 Bronchoalveolar lavage was performed in all subjects at least 2 weeks prior to exposure, as well 25 as at 4, 8, 24, and 72 h after exposure in 8/22 subjects. The authors found that as early as 4 h 26 after exposure to SO₂, lysozyme-positive macrophages, lymphocytes, and mast cells were 27 significantly increased compared to baseline. Twenty-four hours after exposure, these markers 28 of inflammation, as well as the total alveolar macrophages (AM) and total cell number, were at 29 peak levels. This study demonstrated that SO₂-induced inflammation may extend beyond the 30 short time period often associated with SO₂ effects. A limitation of this study, however, is that 31 the levels of exposure used are well above air pollution levels normally encountered. Tunnicliffe 32 et al. (2003) measured levels of eNO in asthmatic and healthy adult subjects before and after 1-h

exposure to 0.2-ppm SO₂ under resting conditions. While eNO concentrations were higher in the
 asthmatic versus healthy subjects, no significant difference was observed between pre- and
 postexposure in either group.

4 Two recent studies that examined inflammatory responses in animals exposed to SO_2 5 report characteristic responses such as leukocyte influx and changes in enzyme levels or 6 activities in the lung at high SO_2 concentrations. In brief, Meng et al. (2005) observed elevated 7 levels of pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-α in lung tissue of 8 mice exposed to SO_2 concentrations of 5.35 and 10.7 ppm. The levels of anti-inflammatory 9 cytokine transforming growth factor- β 1 were not affected at any exposure level. For example, in 10 rats exposed to 5, 50, or 100 ppm of SO₂ for 5 h/day for 28 days, increased leukocyte numbers in 11 bronchoalveolar lavage fluid was observed at 100 ppm, but no such infiltration of leukocytes was 12 observed in rats exposed to 5 or 50 ppm (Langley-Evans et al., 1996). The animal toxicological 13 studies on airway inflammation are summarized in Annex Table AX4-2.

Overall, the limited epidemiological, human clinical, and toxicological evidence does not
 indicate that exposure to SO₂ at current ambient concentrations is associated with inflammation
 in the airways.

- 17
- 18

3.1.1.4 Airway Hyperresponsiveness and Allergy

19 A limited number of epidemiological studies have examined the association between SO₂ 20 and airway hyperresponsiveness (AHR). Other studies have also considered individuals with 21 AHR and atopy as a potentially susceptible subgroup to SO_2 -related health effects. These studies 22 are summarized in Annex Table AX5-1. Søyseth et al. (1995) investigated the effect of short-23 term exposure to SO₂ and fluoride on the number of capillary blood eosinophils and the 24 prevalence of bronchial hyperresponsiveness (BHR) in schoolchildren aged 7 to 13 years 25 (n = 620) from two regions in Norway, a valley containing an SO₂-emitting aluminum smelter 26 and a similar but nonindustrialized valley. The median 24-h average SO₂ concentration was 27 22.2 μ g/m³ (8 ppb, 10th–90th percentile: 1, 33) in the exposed area and 2.5 μ g/m³ (1 ppb, 28 10th–90th percentile: 0, 4). The mean number of eosinophils was significantly greater in 29 children living near the aluminum smelter compared to the nonindustrialized area. However, 30 within children in the exposed area, a negative concentration-response relationship was observed 31 between mean eosinophils and previous-day 24-h average SO₂. The observed association

between SO₂ and eosinophils was limited to atopic children. In children living in the exposed area, a statistically significant positive association was observed between prevalence of BHR and previous-day 24-h average SO₂ concentrations. Similar associations were observed for fluoride. The authors hypothesized that recent exposure to SO₂ may have induced changes in the airways leading to BHR, in addition to recruitment of eosinophils to the airways in atopic subjects. Exposure to PM was not assessed in this study.

A study by Taggart et al. (1996) examined the effect of summertime air pollution levels in northwestern England on BHR in nonsmoking, asthmatic subjects (n = 38) aged 18 to 80 years who were determined to be methacholine (MCh) reactors. Subjects were tested multiple times, for a total of 109 evaluable challenge tests. The maximum 24-h average SO₂ concentration during the study period was 103.7 μ g/m³ (40 ppb). This study reported that 24-h average SO₂ levels were marginally associated with a decreased dose of MCh required for a 20% drop in the postsaline FEV₁ (PD20FEV₁).

14 Other epidemiological studies investigated the effect of exposure to SO_2 on children and 15 adults with BHR and atopy. Boezen et al. (1999) examined children (n = 459) aged 7 to 11 years 16 old in the Netherlands and tested them for BHR using MCh and relatively high serum 17 concentrations of total IgE (>60 kU/L, the median value). These children were a subset of a 18 larger cohort examined in van der Zee et al. (1999). It was hypothesized that children with BHR 19 and atopy, indicated by raised serum total IgE, may be susceptible to the effects of air pollution. 20 One of the strengths of this study was that the use of BHR and serum IgE concentration as a 21 marker for susceptibility was less prone to error than self-reported chronic respiratory symptoms. 22 A total of 121 children were found to have BHR and relatively high serum total IgE, 67 had 23 BHR and relatively low serum total IgE, 104 had no BHR but had a relatively high serum total 24 IgE concentration, and 167 were found to have neither BHR nor relatively high serum total IgE. 25 In the subset of children with relatively low serum total IgE with or without BHR, no 26 associations were observed between SO_2 and any respiratory symptoms. However, for children 27 with relatively high serum total IgE either with or without BHR, the prevalence of lower 28 respiratory symptoms increased with increasing SO₂ concentrations. For children with BHR and 29 relatively high serum total IgE, the OR for the prevalence of lower respiratory symptoms was 30 1.70 (95% CI: 1.26, 2.29) with a 5-day moving average for every 10-ppb increase in SO₂. For

children without BHR but with relatively high serum total IgE the OR was 1.82 (95% CI: 1.33,
 2.50) with a 5-day moving average.

3 Boezen et al. (2005) did a similar study in 50- to 70-year-old adults (n = 327) in the 4 Netherlands. Subjects underwent spirometry and MCh challenges to determine AHR. The 5 subgroup of individuals with elevated serum total IgE, both with (n = 48) and without (n = 112)6 AHR were found to be more susceptible to air pollutants compared to those who did not have 7 elevated serum total IgE (n = 167). Significant associations were observed between previous-8 day 24-h average SO_2 concentrations and the prevalence of upper respiratory symptoms in those 9 with elevated serum total IgE. Stratified analyses by gender indicated that, among those with 10 AHR and elevated IgE, only males (n = 25) were at a higher risk for respiratory symptoms. The 11 OR for these males was 3.54 (95% CI: 1.79, 7.07) increase in 24-h average SO₂ for a 5-day 12 moving average, compared to 1.05 (95% CI: 0.59, 1.91) for the females. 13 One human clinical study investigated the relationship between hyperresponsiveness to 14 SO₂ and AHR to MCh (Nowak et al., 1997). Responsiveness to both MCh and SO₂ were tested 15 on 790 subjects between the ages of 20 and 44. The authors reported that among subjects with 16 AHR to MCh, 22.4% were hyperresponsive to SO₂, whereas among the MCh-nonresponsives 17 only 0.4% were hyperresponsive to SO₂. Using a logistic regression model, they also determined 18 that a positive skin test (p < 0.05), a positive history of respiratory symptoms (p < 0.05), and 19 hyperresponsiveness to MCh (p < 0.0001) were significant predictors of a positive SO₂ response. 20 A limited number of animal studies also suggest acute SO₂-induced increases in airway 21 obstruction and hypersensitivity in allergen-sensitized guinea pigs and sheep. These 22 toxicological studies are summarized in Annex Table AX4-3. Bronchial responses (pulmonary 23 resistance or reduced dynamic compliance to agonists (i.e., histamine, MCh, 24 5-hydroxytryptamine) are examined after exposure to evaluate toxic effects of pulmonary 25 toxicants. Exposure of rabbits to 5-ppm SO_2 for 2 h had no effect on airway responsiveness to 26 histamine (Douglas et al., 1994). Even at higher concentrations of 10-ppm SO_2 for 5 min, 27 hyperresponsiveness and hyperreactivity effects to aerosolized MCh or 5-hydroxytryptamine 28 were not observed in dogs (Lewis and Kirchner, 1984), but positive responses were observed at 29 the higher concentration of 30 ppm. Studies with chronic exposure of dogs suggest no increased 30 sensitivity to agonists at SO₂ concentrations of \geq 15 ppm (Scanlon et al., 1987).

1Riedel et al. (1988) studied the effect of SO2 exposure in ovalbumin-sensitized guinea2pigs exposed to SO2 at 0.1, 4.3, or 16.6 ppm for 8 h/day for 5 days. On bronchial provocation,3they observed increased bronchial obstruction in animals exposed to 0.1-ppm SO2 compared to4air-exposed animals. In addition, increased amounts of anti-ovalbumin IgG antibodies were5detected in bronchoalveolar lavage fluid of animals exposed to \geq 4.3-ppm SO2 and in the serum6of animals exposed to \geq 0.1-ppm SO2.

Similar findings were observed in studies in which guinea pigs were exposed to a single SO₂ concentration. Airway obstruction induced by an ovalbumin challenge was higher in ovalbumin-sensitized guinea pigs exposed to 0.1-ppm SO₂ for 5 h/day for 5 days compared to sensitized guinea pigs that were not exposed to SO₂ (Park et al., 2001). In guinea pigs sensitized with *Candida albicans*, exposure to 5-ppm SO₂ for 4 h/day on 5 days/week for 6 weeks resulted in an increased number of animals displaying prolonged expiration or inspiration after an inhalation challenge with *C. albicans* (Kitabatake et al., 1992, 1995).

The effect of SO₂ on antigen-induced sensitivity reactions was assessed in sheep. A 4-h exposure to 5-ppm SO₂ increased airway reactivity in response to carbachol in sheep that had been sensitized to *Ascaris suum* antigen 24-h postexposure, but increased sensitivity was not observed in nonsensitized sheep (Abraham et al., 1981).

Limited epidemiological evidence suggests that exposure to SO₂ may lead to AHR in atopic individuals. Toxicological studies that observed increased airway obstruction and hypersensitivity in allergen-sensitized animals provide biological plausibility. The epidemiological evidence further indicates that atopic individuals may be at increased risk for SO₂-induced respiratory symptoms.

23

24 **3.1.1.5** Lung Host Defense

An additional concern has been the potential for SO₂ exposure to enhance susceptibility to, or the severity of illness resulting from, respiratory infections, especially in children. School absenteeism is an indicator of morbidity in children resulting from acute conditions. Respiratory conditions are the most frequent cause, particularly influenza and the common childhood infectious diseases. Park et al. (2002) examined the association between air pollution and school absenteeism in 1,264 first- to sixth-grade students attending school in Seoul, Korea. The study period extended from March 1996 to December 1999, with a mean 24-h average SO₂

1 concentration of 9.19 ppb (SD 4.61). Note that analyses were performed using Poisson 2 Generalized Additive Model (GAM) with default convergence criteria. Same-day SO₂ 3 concentrations were positively associated with illness-related absences (9% increase [95% CI: 7, 4 12] per 5.68-ppb increase in 24-h average SO₂), but inversely associated with non-illness-related 5 absences (5% decrease [95% CI: 1, 8]). PM₁₀ and O₃ concentrations also were positively 6 associated with illness-related absences. In two-pollutant models containing SO₂ and either 7 PM_{10} or O_3 , the SO₂ estimates were robust. These results are consistent with those of Pönka 8 (1990), who observed that absenteeism due to febrile illnesses among children in day care 9 centers and schools and in adults was significantly higher on days of higher SO₂ concentrations $(>21.1 \ \mu g/m^3 \ [8.1 \ ppb]$ weekly mean of 1-h average) compared to days of lower SO₂ 10 11 concentrations. In addition, on days of higher SO₂ concentrations, the mean weekly number of 12 cases of upper respiratory infections and tonsillitis reported from health centers increased. 13 Temperature, but not NO₂, was also found to be associated with febrile illnesses and respiratory 14 tract infections. From these epidemiological studies, it is unknown whether SO_2 increases 15 susceptibility to infection or whether they exacerbate preexisting morbidity following infection. 16 Pino et al. (2004) examined the association between air pollution and respiratory illnesses 17 in a cohort of 504 infants recruited at 4 months of age from primary health care units in 18 southeastern Santiago, Chile. The infants were followed through the first year of life. The mean 19 24-h average SO₂ concentration was 11.6 ppb (5th–95th percentile: 3.0, 29.0). The most 20 frequent diagnosis during follow-up was wheezing bronchitis. No associations were observed 21 between current-day or previous-day SO_2 and wheezing bronchitis, but with a 7-day lag, a 21% 22 (95% CI: 8, 39) increased risk in wheezing bronchitis was observed per 10-ppb increase in 24-h 23 average SO_2 . However, it should be noted that stronger associations were observed with $PM_{2.5}$, 24 which was well correlated with SO_2 (r = 0.73). These epidemiological studies are summarized in 25 Annex Table AX5-1. 26 The animal toxicological studies reviewed in the 1982 AQCD on the effects of SO_2 on 27 lung defenses reported concentration and species-specific differential effects. In rats exposed to 28 0.1-ppm SO₂ for \sim 2 to 3 weeks, clearance of labeled particles from the lung was accelerated at

29 10 and 23 days following exposure. While this clearance was accelerated at 10 days, it slowed

- 30 down at 25 days in rats exposed to 1 ppm for ~2 to 3 weeks. No difference in macrophage-
- 31 containing particles was observed in rats chronically-exposed to up to 3-ppm SO₂. Only one

study published after the last review evaluated mucociliary clearance in rats after exposure to
 SO₂. In this subchronic study, no effect on clearance of radiolabeled particles from the lung was
 observed in rats exposed to 5-ppm SO₂ for 2 h/day for 4 weeks (Wolff et al., 1989), which is in
 contrast to the altered clearance reported in the 1982 AQCD. The current studies are

5 summarized in Annex Table AX4-4.

6 There was only limited data available in the 1982 AQCD from animal toxicological
7 studies on effects of SO₂ on immune and macrophage function. The studies reviewed there
8 indicated no effect on susceptibility to bacterial infection with exposure to SO₂ at ≤5 ppm for
9 3 months and alterations in pulmonary immune system were reported with chronic exposure of

10 mice to 2-ppm SO₂. At high-dose exposures to 7- to 10-ppm SO₂ for 7 days, impairment of

11 antiviral defenses was observed in mice.

Two recent studies using a 10-ppm SO₂ exposure regimen in mice found no effect on bactericidal activity toward *Staphylococcus aureus* following acute (4 h) exposure (Clarke et al., 2000; Jakab et al., 1996). However, increased mortality rate and decreased survival time were observed in mice that were exposed to the same dose for 1 day or 1, 2, or 3 weeks and then challenged with an aerosol of *Klebsiella pneumoniae* (Azoulay-Dupuis et al., 1982). No effects on macrophage phagocytosis of red blood cells were observed in mice exposed to 10-ppm SO₂ for 4 h (Clarke et al., 2000; Jakab et al., 1996).

Although the limited epidemiologicical evidence weakly suggests a possible association
 between ambient SO₂ concentrations and increased respiratory illnesses, there is little
 toxicological evidence to support this observed relationship.

22 23

3.1.1.6 Emergency Department Visits and Hospitalizations for Respiratory Diseases

Total respiratory causes for ED visits typically include asthma, pneumonia, bronchitis, and emphysema (collectively referred to as COPD), upper and lower respiratory infections, and other minor categories (U.S. Environmental Protection Agency, 2006d). Temporal associations between ED visits or hospital admissions for respiratory diseases and the ambient concentrations of SO₂ have been the subject of >50 well-conducted research publications since 1994. In addition to considerable statistical and analytical refinements, the more recent studies have examined responses of morbidity in different age groups, the effect of seasons on ED and hospital usage, and multipollutant models to evaluate potential confounding effects of
 copollutants.

3

4 All Respiratory Diseases

5 Relatively few studies of ED visits for all respiratory causes were conducted in 6 comparison with studies that examined hospital admissions for all respiratory causes as the 7 outcome. Collectively, studies of ED visits and hospitalizations provide suggestive evidence of 8 an association between ambient SO_2 levels and ED visits and hospitalizations for all respiratory 9 causes among children (0 to 14 years) and older adults (65+ years). The studies that examined 10 the association of these outcomes and SO₂ levels among adults (15 to 64 years) overwhelmingly 11 reported null results. When all age groups were combined, the results of ED and hospitalization 12 studies were mixed; it is likely that any significant effect estimates found in these studies were 13 driven by increases in the very young and/or older adult subpopulations. The epidemiological 14 studies of ED visits and hospital admissions for respiratory causes are summarized in Annex 15 Tables AX5-2.

16 The results from the hospitalization and ED studies, separated by analyses among all ages 17 or age-specific analyses, are shown in Figures 3.1-7 and 3.1-8. Wilson et al. (2005) examined 18 ED visits for all respiratory causes in Portland, ME from 1996 through 2000 and in Manchester, 19 NH from 1998 through 2000. The mean 1-h max SO₂ concentration in Portland was 11.1 ppb 20 (SD 9.1), and it was higher during the winter months (mean 17.1 ppb (SD 12.0]) and lower in the 21 summer months (mean 9.1 ppb [SD 8.0]). In Manchester, the mean 1-h max SO₂ concentration 22 was 16.5 ppb (SD 14.7 ppb), and it was higher in the winter months (mean 25.7 ppb [SD 15.8]) 23 compared to the summer months (mean 10.6 ppb [SD 15.1]). When all ages where included in 24 analyses, Wilson et al. (2005) found positive associations between ED visits and SO₂, with an 25 8% (95% CI: 3.0, 11) and 11% (95% CI: 0.0, 20.0) increased risk per 10-ppb increase in 24-h 26 average SO₂ at a 0-day lag in Portland, ME and Manchester, NH, respectively. 27 Peel et al. (2005) investigated ED visits for all respiratory causes in Atlanta, GA from 28 1993 through 2000. This study included 484,830 ED visits. The mean 1-h max SO_2 29 concentration during the study period was 16.5 ppb (SD 17.1). Peel et al. (2005) found a weak 30 positive relationship between ED visits and SO₂, though the increased risk was not statistically

31 significant (1.6% [95% CI: -0.6, 3.8]). Tolbert et al. (2007 in press) recently reanalyzed these

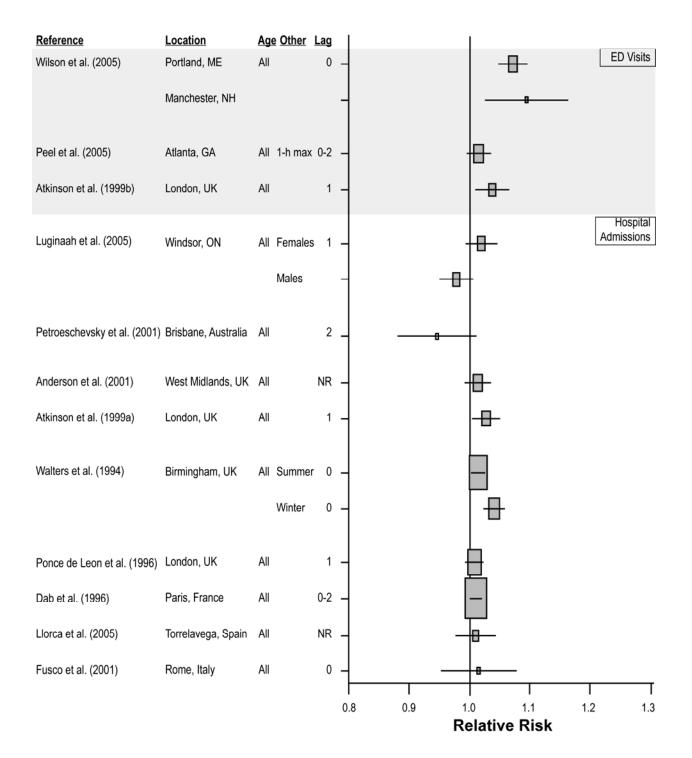


Figure 3.1-7.Relative risks (95% CI) of SO2-associated emergency department
visits (*) and hospitalizations for all respiratory causes among all
ages. Risk estimates are standardized per 10-ppb increase in 24-h
average SO2 concentrations or 40-ppb increase in 1-h max SO2. The
size of the box of the central estimate represents the relative weight of
that estimate based on the width of the 95% CI.

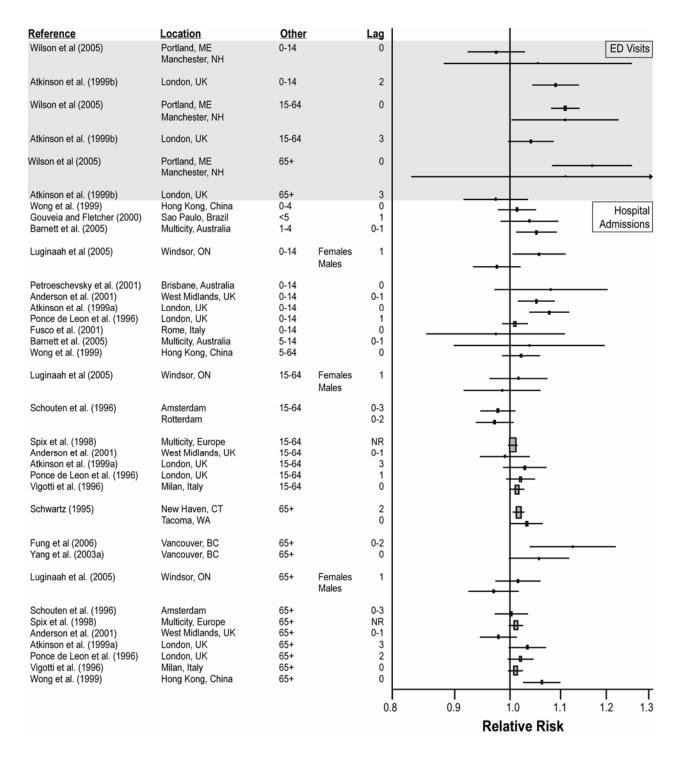


Figure 3.1-8. Relative risks (95% CI) of SO₂-associated emergency department visits and hospitalizations for all respiratory causes, stratified by age groups. Risk estimates are standardized per 10-ppb increase in 24-h average SO₂ concentrations or 40-ppb increase in 1-h max SO₂. The size of the box of the central estimate represents the relative weight of that estimate based on the width of the 95% CI.

1 data with 4 additional years of data and found the same results. An analysis by Dab et al. (1996)

2 examined the association between SO₂ and hospital admissions for all respiratory causes using

3 both the 24-h average and 1-h max. It should be noted that they observed similar effect estimates

4 for both exposure metrics, but only the estimate using 24-h average was statistically significant

5 (1.1% [95% CI: 0.1, 2.0] per 10-ppb increase in 24-h average SO₂ versus 1.9% [95% CI: -1.3,

5.0]) per 40-ppb increase in 1-h max SO₂).

7 When analyses were stratified to include only children (0 to 14 years), Wilson et al. 8 (2005) did not find statistically significant associations between ED visits and SO₂ in Portland, 9 ME or Manchester, NH. Additional evidence of a modest association between SO₂ and ED visits 10 or hospitalizations for all respiratory causes in children from several Australian (Barnett et al., 11 2005; Petroeschevsky et al., 2001) and European (Anderson et al., 2001; Atkinson et al., 12 1999a,b) studies. Increased risks ranging from 3 to 22% per 10-ppb increase in 24-h average 13 SO₂ were reported by these studies. In a multicity study spanning Australia and New Zealand, 14 Barnett et al. (2005) compared hospital admission data collected from 1998 through 2001 with 15 ambient SO_2 concentrations, where the mean 24-h average SO_2 concentration ranged from 0.9 to 16 4.8 ppb. The authors found a 5% (95% CI: 1, 9) increased risk per 10-ppb increase in 24-h 17 average SO_2 among children (1 to 4 years) in these cities. However, some additional European 18 (Fusco et al., 2001; Ponce de Leon et al., 1996) and Latin American (Braga et al., 1999, 2001) 19 studies did not find statistically significant associations between ambient SO₂ concentrations and 20 hospitalizations for all respiratory causes among children.

21 Wilson et al. (2005) found a positive association between ED visits and SO₂, with a 16% 22 (95% CI: 8.0, 25.0) increased risk per 10-ppb increase in 24-h average SO₂ at a 0-day lag in 23 Portland, ME and a null association in Manchester, NH when only older adults (65+ years) were 24 considered. In another two-city study, Schwartz (1995) compared 13,740 hospital admissions in 25 New Haven, CT and Tacoma, WA from 1988 through 1990 with ambient SO₂ concentrations. 26 The mean 24-h average SO₂ concentration was 29.8 ppb (90th percentile: 159) in New Haven 27 and 16.8 ppb (90th percentile: 74) in Tacoma. Schwartz found positive associations between 28 hospitalizations and SO₂, with a 2% (95% CI: 1.0, 3.0) and 3% (95% CI: 1.0, 6.0) increased risk 29 per 10-ppb increase in 24-h average SO₂ at a 0-day lag in New Haven and Tacoma, respectively. 30 In two-pollutant models, the SO₂ effect estimate from New Haven, but not Tacoma, was found to 31 be robust to adjustment for PM₁₀. Here, the term robust is used to indicate that there was little

1 change in the magnitude of the central estimate, though statistical significance may have been

2 lost. In Vancouver, BC, both Fung et al. (2006) and Yang et al. (2003a) also found positive

3 associations between hospitalizations and SO₂. In a multipollutant model including coefficient

4 of haze (CoH), NO₂, O₃, and CO, the SO₂ effect estimate diminished slightly (Yang et al.,

5 2003a).

6 Additional evidence of a positive association between ED visits or hospitalizations for 7 all respiratory causes among older adults and SO₂ comes from several European (Spix et al., 8 1998; Sunyer et al., 2003a; Vigotti et al., 1996) and Australian (Petroeschevsky et al., 2001) 9 studies. Increased risks ranging from 1 to 12% per 10-ppb increase in 24-h average SO₂ were 10 reported by these studies. Petroeschevsky et al. (2001) examined 33,710 hospital admissions 11 in Brisbane, Australia from 1987 through 1994. The mean 24-h average SO₂ concentration was 12 4.1 ppb and was highest in the winter months (4.8 ppb) and lowest in the spring months 13 (3.7 ppb). Petroeschevsky et al. found a 12% (95% CI: 2.0, 23.0) increased risk per 10-ppb 14 increase in 24-h SO₂ at 0-day lag. Additional European studies did not find statistically 15 significant associations between ambient SO₂ concentrations and hospitalizations for all 16 respiratory causes among older adults (Schouten et al., 1996; Anderson et al., 2001; Atkinson 17 et al., 1999a; Ponce de Leon et al., 1996).

In summary, many studies have observed positive, though not statistically significant
 associations between ambient SO₂ concentrations and ED visits and hospitalizations, particularly
 among children and older adults (age 65+ years).

21

22 Asthma

Studies of ED visits and hospitalizations provide suggestive evidence of an association between ambient SO_2 levels and ED visits and hospitalizations for asthma among children (0 to 14 years). The studies that examined the association of these outcomes and SO_2 levels among adults (15 to 64 years) and older adults (65+ years) overwhelmingly reported null results. When all age groups were combined, the results of ED and hospitalization studies were mixed, and it is likely that any significant effect estimates found in these studies were driven by increases in the young subpopulations.

The results from the hospitalization and ED studies, separated by analyses among all ages and age-specific analyses, are shown in Figures 3.1-9 and 3.1-10. When all ages were included in analyses, Wilson et al. (2005) found a positive association between ED visits and SO₂, with a

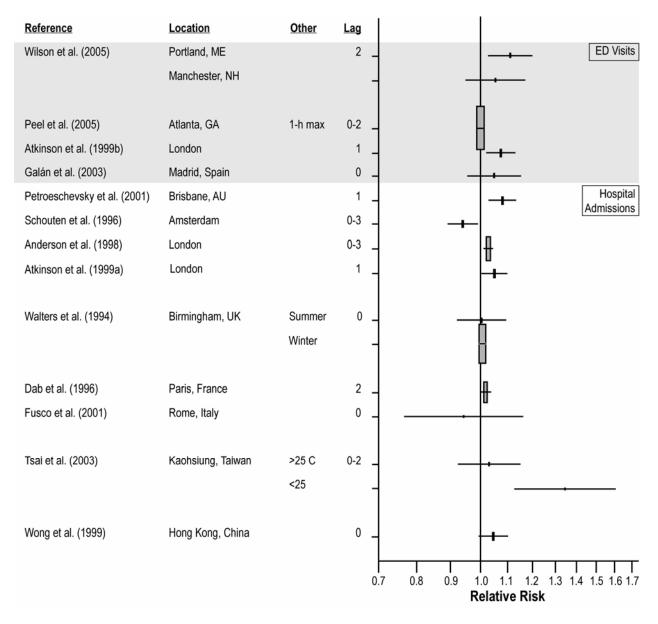


Figure 3.1-9.Relative risks (95% CI) of SO2-associated emergency department
visits (*) and hospitalizations for asthma among all ages. Risk
estimates are standardized per 10-ppb increase in 24-h average SO2
concentrations or 40-ppb increase in 1-h max SO2. The size of the box
of the central estimate represents the relative weight of that estimate
based on the width of the 95% CI.

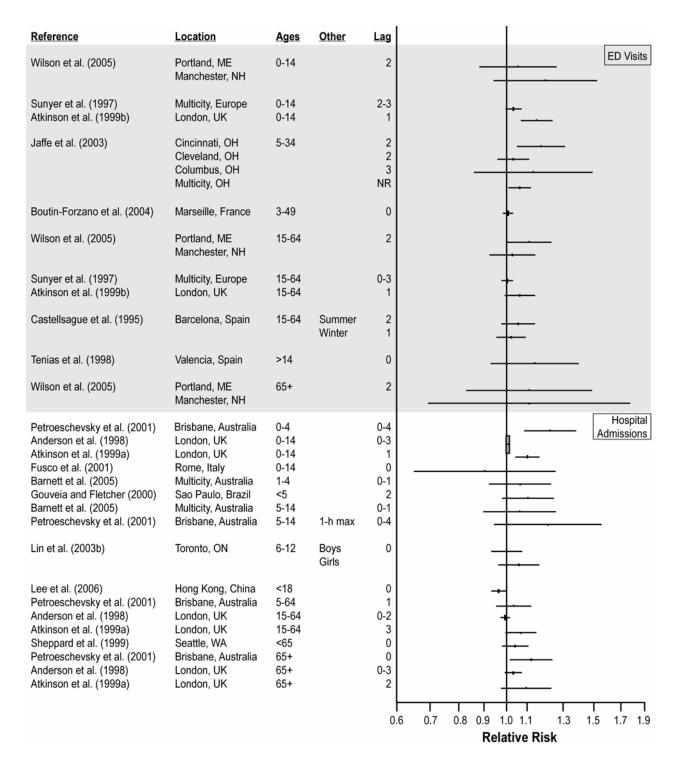


Figure 3.1-10.Relative risks (95% CI) of SO2-associated emergency department
visits (*) and hospitalizations for asthma, stratified by age groups.
Risk estimates are standardized per 10-ppb increase in 24-h average
SO2 concentrations or 40-ppb increase in 1-h max SO2. The size of the
box of the central estimate represents the relative weight of that
estimate based on the width of the 95% CI.

10% (95% CI: 2.0, 20.0) increased risk per 10-ppb increase in 24-h average SO₂ at a 0-day lag
 in Portland, ME and a null association in Manchester, NH. Peel et al. (2005) found a null
 relationship between asthma ED visits and 1-h max SO₂.

When analyses were stratified to include only children (0 to 14 years), Wilson et al.
(2005) found positive, but not statistically significant, associations between ED visits and SO₂ in
Portland, ME or Manchester, NH. Similarly, Lin et al. (2003a) (Toronto, ON; mean 24-h
average SO₂ of 5.36 ppb [SD 5.90]) observed a weak positive association between
hospitalizations for asthma and SO₂ among girls and a null association for boys.

A study by Jaffe et al. (2003) examined the association between SO₂ and ED visits for asthma in three cities in Ohio, i.e., Cincinnati, Cleveland, and Columbus, in asthmatics aged 5 to 34 years. The mean 24-h average SO₂ concentrations were 14 ppb (range: 1, 50) in Cincinnati, 15 ppb (range: 1, 64) in Cleveland, and 4 ppb (range: 0, 22) in Columbus. A positive association was observed in the multicity analysis, with a 6.1% (95% CI: 0.5, 11.5) increase in asthma visits observed per 10-ppb increase in 24-h average SO₂. In the city-stratified analyses, significant associations were only observed for Cincinnati (17.0% [95% CI: 4.6, 30.8]).

16 Stronger evidence of a positive association between ED visits or hospitalizations for 17 asthma and SO₂ comes from several European (Anderson et al., 1998; Atkinson et al., 1999a,b; 18 Hajat et al., 1999; Sunyer et al., 1997, 2003b; Thompson et al., 2001) and Asian (Lee et al., 19 2002) studies. Increased risks ranging from 2 to 10% per 10-ppb increase in 24-h average SO₂ 20 were reported by these studies. Several of these studies observed that the SO₂ effect estimate 21 was robust to adjustment for BS and NO₂ (Anderson et al., 1998; Sunyer et al., 1997), but one 22 study observed that the SO₂ effect diminished considerably with adjustment for PM₁₀ and 23 benzene (Thompson et al., 2001). Atkinson et al. (1999a) compared 165,032 hospital admissions 24 in London from 1992 through 1994 with ambient SO₂ levels (mean 24-h average of 7.2 ppb [SD 25 4.7]). They found a 10% (95% CI: 4.0, 16.0) increased risk per 10-ppb increase in 24-h average 26 SO_2 at 1-day lag. Additional European (Fusco et al., 2001), Australian (Barnett et al., 2005; 27 Petroeschevsky et al., 2001), Asian (Lee et al., 2006), and Latin American (Gouveia and Fletcher 28 2000) studies did not find statistically significant associations between ambient SO₂ 29 concentrations and hospitalizations for all respiratory causes among children.

In general, positive associations were observed between ambient SO₂ concentrations and
 ED visits and asthma hospitalizations, particularly among children, in various epidemiologic
 studies conducted in different study locations and during varying time periods.

4 5

Chronic Obstructive Pulmonary Disease

6 Relatively few studies have examined the association of ED visits and hospitalizations for 7 COPD and ambient SO₂ levels, and very little evidence exists for an association. Only three 8 studies reported positive and statistically significant results for COPD and SO₂, and all three of 9 these studies included asthma in their diagnostic definition of COPD (Anderson et al., 2001; 10 Moolgavkar 2003; Sunyer et al., 2003b). Anderson et al. (2001) reported a 12% (95% CI: 5.0, 11 20.0) increased risk per 10-ppb increase in 24-h average SO₂ among children, while Moolgavkar 12 (2003) and Sunyer et al. (2003b) found a 5 and 2% increased risk per 10-ppb increase in 24-h 13 average SO_2 among older adults populations, respectively. All of the other studies examining 14 this outcome reported null results (Atkinson et al., 1999a; Burnett et al., 1999; Michaud et al., 15 2004; Peel et al., 2005; Tenias et al., 2002).

- Overall, this limited evidence does not support a relationship between ED visits and
 hospitalizations for COPD and ambient SO₂ levels.
- 18

19 Respiratory Diseases Other than Asthma or COPD

20 Emergency visits or hospital admissions for respiratory diseases include upper respiratory 21 infections (URIs), pneumonia, bronchitis, allergic rhinitis, and lower respiratory disease (LRD). 22 There are limited studies with mixed results for URIs (Burnett et al., 1999; Hajat et al., 2002; Lin 23 et al., 2005; Peel et al., 2005), pneumonia (Barnett et al., 2005; Moolgavkar et al., 1997; Peel 24 et al., 2005), bronchitis (Barnett et al., 2005; Michaud et al., 2004), and allergic rhinitis (Hajat 25 et al., 2001; Villeneuve et al., 2006). The evidence for an association between SO₂ levels and 26 ED visits for LRD, though limited, is suggestive of an effect. All of the studies that 27 characterized this relationship found a positive and statistically significant increase in risk 28 associated with increases in SO₂ (Farhat et al. 2005, Martins et al., 2002; Lin et al., 1999; Hajat 29 et al., 1999; Atkinson et al., 1999a). Increased risks ranging from 3 to 33% per 10-ppb increase 30 in 24-h average SO₂ were reported in these studies.

In summary, there were limited studies providing mixed results for many of the health outcomes other than asthma and COPD, making it difficult draw conclusions about the effects of SO₂ on these diseases. Limited evidence does exist to support a suggestive association between
 ambient SO₂ levels and ED visits for LRD.

3

4 Potential Confounding by Copollutants

5 Multipollutant regression analyses indicated that SO₂ risk estimates for respiratory ED 6 visits and hospitalizations, in general, were not sensitive to the inclusion of copollutants, 7 including O_3 (Anderson et al., 1998; Hajat et al., 1999; Yang et al., 2003a, 2005), PM (Lin et al., 8 2003a, 2005; Hagen et al., 2000; Schwartz, 1995), CO (Farhat et al., 2005), and NO₂ (Anderson 9 et al., 1998; Lin et al., 2004a; Sunyer et al., 1997). There is limited evidence that the inclusion of 10 benzene in copollutant models attenuates SO₂ risk estimates (Hagen et al., 2000; Thompson 11 et al., 2001). Figure 3.1-11 presents SO_2 risk estimates with and without adjustment for various 12 copollutants, with a focus on PM and NO₂ as these pollutants tend to be moderately to highly 13 correlated with SO_2 and have known respiratory health effects. Although the studies show that 14 copollutant adjustment had varying degrees of influence on the SO₂ effect estimates, among the 15 studies with tighter confidence intervals (an indicator of study power), the effect of SO_2 on 16 respiratory health outcomes appears to be generally robust and independent of the effects of 17 ambient particles or other gaseous copollutants.

18

19 Seasonal Effects of SO₂

20 The results of several studies (Anderson et al., 1998; Hajat et al., 1999; Schouten et al., 21 1996; Spix et al., 1998; Wong et al., 1999) have demonstrated a greater increase in ED visits and 22 hospitalizations for respiratory illnesses during the summer months despite the fact that the 23 average concentrations for SO₂ in some of the areas were greater in the winter months (Anderson 24 et al., 1998; Schouten et al., 1996; Wong et al., 1999). In contrast, some studies found the 25 associations between ED visits and hospital admission and respiratory disease with similar 26 increases in SO_2 to be greater in winter than in summer months (Vigotti et al. 1996; Walters 27 et al., 1994). Additional studies were unable to discern a seasonal difference in ED visits and 28 hospitalizations for respiratory causes (Castellsague et al., 1995; Tenías et al., 1998; Wong et al., 29 2002). These effects were not consistent across age groups. Warmer months were more likely to 30 show evidence of an association with adverse respiratory outcomes in children, while older 31 adults appeared to be more likely to be affected during the cooler months. These seasonal 32 associations remain somewhat uncertain and require additional investigation.

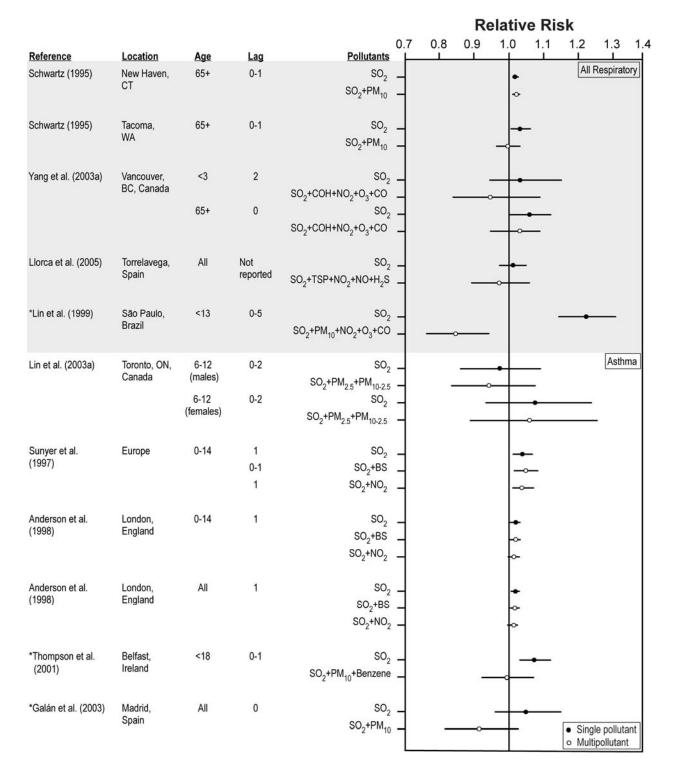


Figure 3.1-11. Relative risks (95% CI) of SO₂-associated emergency department visits and hospitalizations for all respiratory causes and asthma, with and without copollutant adjustment. Risk estimates are standardized per 10-ppb increase in 24-h average SO₂ concentrations or 40-ppb increase in 1-h max SO₂.

1 Summary of ED Visits and Hospitalizations for Respiratory Diseases

2 A large number of epidemiologic studies provide evidence of positive, but not always 3 statistically significant, associations between ambient SO₂ concentrations and ED visits and 4 hospitalizations for all respiratory causes and asthma, particularly among children and older 5 adults. These findings are generally robust when additional copollutants are included in the 6 model. Biologic plausibility for these findings of increased ED visits and hospitalizations is 7 found in the epidemiologic and human clinical studies that observed increased respiratory 8 symptoms and decreased lung function, and the animal toxicological studies that observed SO₂-9 induced altered lung host defenses. Season may modify the effect of SO_2 on ED visits and 10 hospitalizations for children in warmer months, and for older adults in cooler months.

11 12

3.1.1.7 Integration of Respiratory Effects Associated with Short-Term SO₂ Exposure

The previous reviews examining adverse health effects associated with short-term exposures of SO₂ have shown some biological plausibility and coherent evidence in the epidemiological, human clinical, and animal toxicological studies completed to that time for a limited number of respiratory effects. New studies of associations between SO₂ exposure and respiratory symptoms, lung function, airway inflammation, AHR, lung host defenses, and ED visits/hospitalizations have added modestly to this evidence base.

19 *Respiratory symptoms.* Two important new multicity studies (Mortimer et al., 2002; 20 Schildcrout et al., 2006) and several other studies (e.g., Delfino et al., 2003; Neas et al., 1995) 21 have shown an association between short-term (24-h average) ambient SO₂ concentrations and 22 respiratory symptoms in children. However, some other studies (e.g., Hoek and Brunekreef, 23 1993; Romieu et al., 1996) found no consistent association. Several new studies (e.g., 24 Desqueyroux et al., 2002a,b; van der Zee et al., 2000) found no association between SO₂ levels 25 and respiratory symptoms in adults. These findings suggest supportive evidence for an 26 association between short-term (24-h average) exposure to ambient SO₂ exposure and respiratory 27 symptoms in children, particularly those with asthma, but not in adults. Evidence from the 28 previous review along with a limited number of new human clinical studies indicate increased 29 respiratory symptoms with peak (5-15 min) SO_2 exposures as low as 0.5 ppm in asthmatic 30 subjects. 31

Lung function. Epidemiological studies do not provide strong evidence of associations
 between short-term (24–h average) ambient SO₂ exposures and lung function in either children

1 (e.g., Mortimer et al., 2002; Roemer et al., 1998) or adults (e.g., Peters et al., 1996; Taggart et al., 2 1996). Though several other studies reported positive findings, the mixed results and correlation 3 between SO₂ levels and other ambient copollutants suggests a lack of independent effects on 4 lung function. In human clinical studies of lung function in healthy resting adults, a few studies 5 reported effects at 1 ppm, but most effects were observed at concentrations of >5 ppm. In 6 asthmatic adults, significant bronchoconstriction and increases in sRaw have been observed with 7 5- to 15-min peak (5-15 min) exposures to < 1-ppm SO₂, with some studies reporting a 8 bronchoconstrictive response to SO_2 within minutes of the start of exposure (Balmes et al., 1987; 9 Horstman et al., 1988). Increasing SO_2 levels from 0 to 0.5 ppm has been shown to have a 10 greater effect on sRaw and FEV₁ than increasing the level of exercise (Gong et al., 1995). 11 Moderate to severe asthmatics have greater exercise-induced sRaw increases and FEV₁ 12 decrements compared to normal and mild asthmatics; however, respiratory response with 13 increasing SO₂ concentration has not been shown to differ significantly between mild and 14 moderate/severe asthmatics (Linn et al., 1987). Lung function has been shown to be unaffected 15 by SO_2 exposures up to 0.8 ppm in individuals with COPD (Linn et al., 1985). Thus, the 16 observations of increased bronchoconstriction and airway resistance in human clinical studies 17 provide biological plausibility for SO₂ effects with peak exposure. 18 Airway inflammation. Only one epidemiological study (Adamkiewicz et al., 2004) 19 evaluated inflammation, as indexed by eNO, and found no association with SO_2 exposure. One 20 human clinical study observed increased markers of inflammation (i.e., increased macrophages, 21 lymphocytes, mast cells), but only at a concentration of 8-ppm SO₂ in healthy adults (Sandström 22 et al., 1989). A study at more environmentally relevant levels (0.2 ppm) found no effects in 23 either healthy or asthmatic adults (Tunnicliffe et al., 2003). One animal study found increases in 24 inflammatory cytokines at 5.35 ppm but may not be relevant due to the inherent limitations of 25 high-concentration studies. Thus, the limited epidemiological, human clinical, and toxicological 26 evidence does not suggest that exposure to SO_2 at environmentally relevant concentrations is 27 associated with inflammation in the airways. However, studies of other ambient pollutants 28 indicate that influx of macrophages and other inflammatory cells, with the related release of 29 inflammatory cytokines, is a common mechanism of injury. 30 Airway hyperresponsiveness. Only a limited number of epidemiological studies have

found an association between SO₂ exposure and AHR. Søyseth et al. (1995) observed an

1 association between low (8 ppb) ambient SO_2 levels and eosinophil numbers in atopic children. 2 Taggart et al. (1996) found a marginal association between 40-ppb SO₂ concentrations and 3 decreased responses to MCh challenge in adult asthmatics. Boezen et al. (1999, 2005) reported 4 complex associations between SO₂ concentrations, BHR, and serum IgE levels in both children 5 and adults. As with other respiratory endpoints, a limited toxicological database provides some 6 biological plausibility for these findings. Bronchial responses were not observed in rabbits at 7 5-ppm SO₂ (Douglas et al., 1994) or in dogs at 10-ppm SO₂ (Lewis and Kirchner, 1984). 8 Ovalbumin-sensitized guinea pigs demonstrated increased bronchial obstruction following 9 exposure to 0.1-ppm SO₂ (Park et al., 2001; Riedel et al., 1988). Guinea pigs, as a species, are 10 typically more sensitive to air pollution than other laboratory animals (U.S. Environmental 11 Protection Agency, 2006d) and, thus, may provide a better model for characterizing the effects of 12 air pollutants on AHR. The finding of increased pulmonary resistance in this species is in 13 concordance with the limited epidemiological findings of SO₂-induced AHR. 14 Lung host defenses. Two epidemiological studies (Park et al., 2002; Pönkä, 1990) 15 provide limited evidence of an association between school absences due to respiratory illness and 16 ambient SO₂. Scant animal evidence, typically at levels much higher than ambient, provides 17 weak biological plausibility for these epidemiological findings. SO₂-induced modulation of 18 clearance and macrophage function were found in some subchronic and chronic studies but does 19 little to inform the mechanism(s) of action occurring in humans with short-term exposures. 20 ED visits/hospitalizations. Epidemiological studies provide suggestive evidence for an 21 association between ambient SO_2 levels and ED visits and hospitalizations for all respiratory

22 diseases, particularly among children and older adults (65+ years of age). A modest association 23 between ambient SO₂ and ED visits and hospitalizations for asthma particularly among children 24 <14 years old is also suggested. No relationship is apparent in the limited number of studies 25 evaluating ED visits and hospitalizations for COPD or other respiratory diseases, though there is 26 a somewhat suggestive association between ambient SO_2 levels and ED visits for LRD. Overall, 27 SO₂ risk estimates were not sensitive to the inclusion of copollutants, including PM, O₃, CO, and 28 NO₂, indicating that the observed effects of SO₂ on respiratory endpoints is independent of the 29 effects of other ambient air pollutants. Biologic plausibility for these findings of increased ED

30 visits and hospitalizations is found in the epidemiologic and human clinical studies that observed

increased respiratory symptoms and decreased lung function, and the animal toxicological
 studies that observed SO₂-induced altered lung host defenses.

- 3
- 4

3.1.2 Cardiovascular Effects Associated with Short-Term SO₂ Exposure

5 The studies reviewed in the 1982 AQCD primarily investigated respiratory health 6 outcomes. No epidemiological studies linking exposure to SO₂ with cardiovascular 7 physiological endpoints or CVD ED visits or hospital admissions were examined in the last 8 review. There were also key human clinical and animal toxicological studies available at the last 9 review to address effects of SO₂ exposure on the cardiovascular system. The only report from a 10 study in dogs exposed to air pollutant mixtures $(SO_2 + sulfuric acid [H_2SO_4])$, with or without 11 nonirradiated or irradiated auto exhaust) reported no changes in cardiovascular function at the 12 end of 3 years of exposure and 3 years after exposure.

13 A few recent animal toxicological studies have investigated the potential effects of SO_2 14 exposure on physiological and biochemical parameters of cardiovascular effects and reported 15 oxidation (Meng et al., 2003a) and glutathione (GSH) depletion (Langley-Evans et al., 1996; Meng et al., 2003a; Wu and Meng, 2003) in the hearts of rodents (see Annex Table AX4-5). 16 17 Several recent epidemiological studies also have examined the association between air pollution 18 and cardiovascular effects, including increased heart rate (HR), reduced heart rate variability 19 (HRV), incidence of ventricular arrhythmias, changes in blood pressure, incidence of myocardial 20 infarctions (MI), and ED visits and hospitalizations due to cardiovascular causes. The results of 21 these cardiovascular studies are summarized in Annex Tables AX5-3 and AX5-4.

22 23

3.1.2.1 HR and HRV

24 HRV is generally determined by analyses of time (e.g., standard deviation of normal R-R 25 intervals [SDNN]) and frequency domains (e.g., low frequency [LF] / high frequency [HF] ratio 26 by power spectral analysis, reflecting autonomic balance) measured during 24 h of 27 electrocardiography (ECG). Brook et al. (2004) state that HRV, resting HR, and blood pressure 28 are modulated by a balance between the two determinants of autonomic tone (the sympathetic 29 and parasympathetic nervous systems). They note that decreased HRV predicts an increased risk 30 of cardiovascular morbidity and mortality in older adults and those with significant heart disease. 31 Liao et al. (2004) investigated short-term associations between ambient pollutants and 32 cardiac autonomic control from the fourth cohort examination (1996 through 1998) of the

1 population-based Atherosclerosis Risk in Communities (ARIC) study using a cross-sectional 2 study design. Men and women aged 45 to 64 years (n = 6,784) from three U.S. study centers in 3 North Carolina, Minnesota, and Mississippi were examined. Resting, supine, 5-min beat-to-beat 4 R-R interval data were collected. The mean 24-h average SO₂ level measured 1 day prior to the 5 HRV measurement was 4 ppb (SD 4). In addition to SO₂, the potential effects of PM₁₀, O₃, CO, 6 and NO_2 were evaluated. Previous-day SO_2 concentrations were positively associated with HR 7 and inversely associated with SDNN and LF power. Consistently more pronounced associations 8 were suggested between SO_2 and HRV among persons with a history of coronary heart disease. 9 Significant associations with HRV indices also were observed for PM_{10} and the other gaseous 10 pollutants. When the regression coefficients for each individual pollutant model were compared, 11 the effects of PM₁₀ on HRV were considerably larger than the effects for the gaseous pollutants, 12 including SO₂. No multipollutant analyses were conducted.

13 Gold et al. (2000; reanalysis Gold et al., 2003) examined the effect of short-term changes 14 in air pollution on HRV in a panel study of 21 older adults (aged 53 to 87 years) in Boston, MA. 15 The study participants were observed up to 12 times from June to September 1997. The mean 16 24-h average SO₂ concentration was 3.2 ppb (range: 0, 12.6). The 24-h average SO₂ 17 concentration was associated with decreased HR in the first 5-min rest period, but not in the 18 overall 25-min study protocol. The effect estimate for SO₂ slightly diminished but remained 19 marginally significant in a two-pollutant model with $PM_{2.5}$. The inverse association between 20 SO₂ and HR observed in this study are in contrast to the SO₂-related increases in HR observed by Liao et al. (2004) and Peters et al. (1999). No associations were observed between HRV and 21 22 SO_2 . The strongest associations with HRV were observed for $PM_{2.5}$ and O_3 . 23 Another study of air pollutants and HRV was conducted in Boston, MA on 497 men from 24 the VA Normative Aging Study (NAS) (Park et al., 2005). The best 4-consecutive-min interval 25 from a 7-min sample was used for the HRV calculations. For the exposure variable, 4-, 24-, and 26 48-h moving averages matched on the time of the ECG measurement for each subject were 27 considered. The mean 24-h average SO_2 concentration was 4.9 ppb (range: 0.95, 24.7). 28 Associations with measures of HRV were reported for PM_{2.5} and O₃, but not with SO₂ for any of 29 the averaging periods. In another study conducted in Boston, MA, Schwartz et al. (2005) found

- 30 significant effects of increases in PM_{2.5} on measures of HRV, while no associations with SO₂
- 31 were observed. Other studies have examined the relationship of SO₂ with HRV (Chan et al.,

2005; de Paula Santos et al., 2005; Holguín et al., 2003; Luttmann-Gibson et al., 2006). Most of
 these studies, with the exception of de Paula Santos et al. (2005), did not observe associations
 with SO₂.

4 A limited number of human clinical studies examined the effect of SO₂ on HRV. During 5 a controlled exposure of 12 healthy subjects and 12 subjects with asthma to 0.2-ppm SO₂ for 1 h 6 under resting conditions, Tunnicliffe et al. (2001) reported that HF power, LF power, and total 7 power were higher with SO_2 exposures compared to air exposure in the healthy subjects, but that 8 these indices were reduced during SO_2 exposure in the subjects with asthma. The LF/HF ratios 9 were unchanged in both groups. The authors postulated that these results suggest that there are 10 two autonomic pathways for SO₂-mediated bronchoconstriction. The investigators proposed that 11 in healthy subjects, the dominant pathway was via the rapidly adapting receptor/C-fiber route, 12 which results in a central nervous system reflex with an increase in vagal tone. In the asthmatic 13 subjects, proximal airway narrowing was proposed as the dominant response, possibly through 14 neurogenic inflammation. This likely causes a compensatory central nervous system-mediated 15 reduction in vagal tone, resulting in bronchodilation of the distal airways. While there were no 16 detectable changes in symptoms or lung function in either of the groups, this study suggests that 17 exposure to SO_2 can provoke autonomic responses at these low levels (0.2 ppm).

18 In a similar study, Routledge et al. (2006) exposed patients with stable angina as well as healthy subjects to $50-\mu g/m^3$ carbon particles and to 0.2-ppm SO₂, alone and in combination, for 19 20 1 h under resting conditions. HRV, C-reactive protein, and markers of coagulation markers were 21 measured. These authors reported that in the healthy subjects, SO_2 exposure was associated with 22 a decrease in HRV markers of cardiac vagal control 4 h after exposure. However, it should be 23 noted that there was no apparent difference in the absolute value of the root mean square of 24 successive RR interval differences (r-MSSD) at 4 h postexposure between the control, SO₂, 25 carbon, and carbon/SO₂ groups. The significant difference reported in the change in r-MSSD 26 from baseline to 4 h postexposure with SO_2 appears to be due to a higher baseline value of r-27 MSSD preceding the SO₂ exposure compared to the baseline value of r-MSSD preceding the air 28 exposure. There were no changes in HRV among the patients with stable angina. It was noted 29 by the authors that this lack of response in the heart patients may be due to a drug treatment 30 effect rather than decreased susceptibility; a large portion of the angina patients were taking β -31 blockers, which are known to increase indices of cardiac vagal control.

In the limited number of epidemiological and human clinical studies that examined a
 possible effect of SO₂ on HRV, there are some suggestive findings; however, the overall
 evidence that SO₂ affects cardiac autonomic control is weak and inconsistent.

4 5

3.1.2.2 **Repolarization Changes**

6 In addition to the role played by the autonomic nervous system in arrhythmogenic 7 conditions, myocardial vulnerability and repolarization abnormalities are believed to be key 8 factors contributing to the mechanism of such diseases. Measures of repolarization include QT 9 duration, T-wave complexity, variability of T-wave complexity, and T-wave amplitude. 10 Henneberger et al. (2005) examined the association of repolarization parameters with air 11 pollutants in patients with preexisting coronary heart disease (n = 56, all males) in East 12 Germany. The patients were examined repeatedly once every 2 weeks for 6 months, for a total 13 of 12 ECG recordings. The mean 24-h average SO_2 concentration was 4.1 µg/m³ (2 ppb [range: 14 1, 4]). Ambient SO₂ concentrations during the 24-h preceding the ECG were associated with the 15 QT interval duration, but not with any other repolarization parameters. Stronger associations 16 were observed between PM indices and QT interval duration, T-wave amplitude, and T-wave 17 complexity.

18 Two in vitro studies (Nie and Meng, 2005, 2006) conducted with a 1:3 molar:molar mixture of the SO₂ derivatives bisulfite (HSO₃⁻) and sulfite (SO₃^{2^{-}}) demonstrated effects of a 19 20 10-µm bisulfite:sulfite mixture on sodium and L-type calcium currents (which included changes 21 in inactivation and/or activation, recovery from inactivation, and inactivation/activation time 22 constants) in ventricular myocytes. These in vitro observations suggest a potential role for 23 L-type calcium current in cardiac injury following SO₂ exposure; however, in vivo 24 cardiovascular effects were observed only at high SO₂ concentrations (10 ppm and higher). 25 Additional epidemiological and toxicological studies are necessary to evaluate the evidence of an 26 association between SO₂ and repolarization changes.

27 28

3.1.2.3 Cardiac Arrhythmias

In a panel study of 100 patients with implanted cardioverter defibrillators (ICDs) in Eastern Massachusetts, Peters et al (2000) tested the hypothesis that patients with ICDs would experience life-threatening arrhythmias after an air pollution episode. The mean 24-h average SO₂ concentration measured at two sites in Boston during the study period was 7 ppb (5th–95th

1 percentile: 1, 19). ICDs monitor ECG abnormalities and treat ventricular fibrillation or 2 ventricular tachycardias by administering shock therapy to restore the normal cardiac rhythm. 3 The ICD device also stores information on each tachyarrhythmia and shock. There was no 4 association between SO₂ and defibrillator discharges in the 33 subjects who had any defibrillator 5 discharges during the follow-up period or in the 6 subjects who had at least 10 discharges. There 6 was some evidence that NO_2 was associated with increased defibrillatory interventions in the 7 subjects with any defibrillator discharges. Among the patients with at least 10 events, NO₂, CO, 8 and PM_{2.5} was found to be associated with defibrillator discharges.

9 In a follow-up study designed to confirm the findings of Peters et al. (2000), Dockery 10 et al. (2005) used a larger sample of ICD patients in Boston (n = 203) with a longer follow-up 11 period. The median concentration of 48-h average SO₂ averaged across multiple sites in Boston 12 was 4.9 ppb (IQR 4.1). No significant associations were found between ventricular arrhythmic 13 episode days and any of the air pollutants. However, when the analysis was stratified by recent 14 arrhythmias (i.e., within 3 days), there was evidence of an increased risk of ventricular 15 arrhythmia with SO₂, PM_{2.5}, black carbon, NO₂, and CO. Since PM_{2.5}, black carbon, NO₂, and 16 CO were correlated with each other and SO₂, the authors noted that differentiating the 17 independent effects of the pollutants would be difficult. A case-crossover analysis of the same 18 data by Rich et al. (2005) also observed associations with 48-h average SO₂, but the SO₂ effect 19 was not found to be robust to adjustment by $PM_{2.5}$. In a similar study conducted in St. Louis, 20 MO, an increased risk was associated with SO₂ concentrations in the 24 h prior to an arrhythmia, 21 but not with $PM_{2.5}$ and O_3 (Rich et al., 2006). In this study, none of the other measured 22 pollutants (PM, elemental carbon, O₃, CO, NO₂) were correlated with SO₂. The authors 23 suggested that the different effects observed in St. Louis and Boston may be due to differences in 24 the source or mix of air pollutants in these cities. 25 Additional studies have examined the relationship of SO_2 with arrhythmias in Vancouver, 26 Canada (Rich et al., 2004; Vedal et al., 2004) and observed associations at very low ambient SO_2 27 concentrations (mean 24-h average SO₂ of ~2.5 ppb with a maximum of 8.1 ppb). Vedal et al.

28 (2004) stated that of all pollutants examined, the only one with somewhat consistent positive

associations with arrhythmia events was SO₂. In season-stratified analyses, SO₂ was positively

30 associated with arrhythmias in the winter, while in the summer the association was negative. On

the other hand, in the Rich et al. (2004) study, positive associations were observed in the summer
 but not in the winter. The authors stated that it was difficult to interpret these findings.

One toxicological study examined the effects of PM, ultrafine carbon, and SO₂ on spontaneous arrhythmia frequency in 18-month-old rats (Nadziejko et al., 2004). The rats were exposed to 1-ppm SO₂ for 4 h. No significant change in the frequency of spontaneous arrhythmias was found with SO₂ and ultrafine carbon exposure. However, rats exposed to concentrated ambient PM had a significantly greater increase in the frequency of delayed beats than rats exposed to air.

9 Collectively, the epidemiological evidence for an association between short-term
10 exposure to SO₂ and arrhythmias is inconsistent. The limited toxicological evidence did not
11 provide biological plausiblity of an effect of SO₂ on arrhythmias.

- 12
- 13

3.1.2.4 Blood Pressure

Ibald-Mulli et al. (2001) examined the association between blood pressure and SO₂ using survey data from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Project. Blood pressure measurements were taken from 2,607 men and women. The mean 24-h average SO₂ concentration was $60.2 \mu g/m^3$ (23 ppb [range: 5, 91]). An increase in systolic blood pressure was associated with 24-h average SO₂ and TSP. However, in a twopollutant model with TSP, the effect of SO₂ on blood pressure was substantially reduced and became nonsignificant while the effect of TSP was robust.

21 In a study by de Paula Santos et al. (2005), changes in blood pressure in association with 22 SO_2 were investigated in vehicular traffic controllers (n = 48) aged 31 to 55 years living in São 23 Paulo, Brazil, where vehicles are the primary source of air pollution. The mean 24-h average 24 SO_2 level, measured at six different stations around the city, was 17.1 μ g/m³ (7 ppb [SD 3]). 25 Blood pressure was measured every 10 min when subjects were awake (6 a.m. to 11 p.m.) and 26 every 20 min during sleep (11 p.m. to 6 a.m.). Results indicated that SO₂, as well as CO, were 27 associated with increases in systolic and diastolic blood pressure. However, when a two-28 pollutant model was used to test the robustness of the associations, only the CO effect remained 29 statistically significant. 30 Several animal toxicological studies examined the effect of SO₂ on blood pressure.

31 Hälinen et al. (2000a) examined blood pressure changes in guinea pigs that were exposed to 1-,

32 2.5-, or 5-ppm SO₂ in cold, dry air while being hyperventilated to simulate exercise. Animals

1 received 10-min exposures to each SO_2 concentration that were separated by 15-min exposures 2 to clean warm, humid air. A transient increase in blood pressure was observed during exposure 3 to 5-ppm SO₂ in cold, dry air. In a second study (Hälinen et al., 2000b), guinea pigs were 4 exposed to cold, dry air alone or 1-ppm SO₂ in cold, dry air for 60 min while being 5 hyperventilated. The study reported similar increases in blood pressure and HR with exposure to 6 cold, dry air or cold, dry air plus SO₂. The increase in HR was gradual, while increases in blood 7 pressure generally occurred during the first 10 to 20 min of exposure. Similar effects were 8 observed with exposure to cold, dry air or SO_2 in cold, dry air, suggesting that effects were 9 associated with cold, dry air rather than SO_2 . Opposite effects (a transient decrease in blood 10 pressure) was observed when rats were exposed to a higher dose (10-ppm SO_2) in air that was 11 presumably at room temperature for 3 days (Meng et al., 2003b).

Collectively, the limited epidemiological and toxicological evidence does not suggest that
 short-term exposure to SO₂ has effects on blood pressure.

14

15

3.1.2.5 Blood Markers of Cardiovascular Risk

16 Folsom et al. (1997) demonstrated that elevated levels of fibrinogen, white blood cell 17 count, factor VIII coagulant activity (factor VIII-C), and von Willebrand factor were associated 18 with risk of CVD. Schwartz (2001) investigated the association between various blood markers 19 of cardiovascular risk and air pollution among subjects in the Third National Health and 20 Nutrition Examination Survey (NHANES III) in the United States conducted between 1989 and 21 1994 across 44 counties. The NHANES III is a random sample of the U.S. population with 22 oversampling for minorities (30% of NHANES sample) and the elderly (20% of the sample). 23 The mean SO₂ concentration was 17.2 ppb (IQR 17) across the 25 counties where data were 24 available. This study looked at fibrinogen levels, platelet counts, and white blood cell counts. 25 After controlling for age, ethnicity, gender, body mass index, and smoking status and number of 26 cigarettes per day, SO₂ was found to be positively associated with white blood cell counts. PM₁₀ 27 was associated with all blood markers. In two-pollutant models, PM₁₀ remained a significant 28 predictor of white blood cell counts after controlling for SO_2 , but not vice versa.

A recent cross-sectional study by Liao et al. (2005) investigated the effects of air pollution on plasma hemostatic and inflammatory markers in the ARIC study (n = 10,208). The authors hypothesized that short-term exposure to air pollutants was associated with increased levels of inflammatory markers and lower levels of albumin, as serum albumin is inversely 1 associated with inflammation. The mean 24-h average SO₂ concentration was 5 ppb (SD 4).

2 Significant curvilinear relationships were observed between SO₂ and factor VIII-C, white blood

3 cell counts, and serum albumin. The authors noted that since no biological explanation could be

4 offered for the "U"-shaped curve between SO₂ and factor VIII-C and the "inverse U"-shape

5 between SO_2 and albumin, generalization of the association should be exercised with caution.

6 No associations were observed between SO₂ and fibrinogen or von Willebrand factor.

In another large cross-sectional study of 7,205 office workers in London, Pekkanen et al. (2000) examined the association between plasma fibrinogen and ambient air pollutants. The mean 24-h average SO₂ was $23.2 \mu g/m^3$ (9 ppb [10th–90th percentile: 5, 19]). Associations with fibrinogen were observed for all pollutants examined, either in all-year or summer-only analyses, except for SO₂ and O₃. Taken together, results from the limited number of studies do not suggest that SO₂ is associated with various blood markers of cardiovascular risk.

13

14 **3.1.2.6** Acute Myocardial Infarctions

15 The association between air pollution and the incidence of MI was examined in a small 16 number of studies. As part of the Determinants of Myocardial Infarction Onset Study, Peters 17 et al. (2001) examined 772 patients with MI living in greater Boston, MA. A case-crossover 18 design was used to assess changes in the risk of acute MI after exposure to potential triggers. 19 The mean 24-h average SO_2 was 7 ppb (range: 1, 20) during the study period. Similarly, the 20 mean 1-h average SO_2 was 7 ppb (range: 0, 23). In an analysis that considered both the 2-h 21 average (between 60 and 180 min before the onset of symptoms) and 24-h average (between 24 22 and 48 h before the onset) concentrations jointly, the study found no significant association 23 between risk of MI and SO₂. Of all the pollutants considered, only PM_{2.5} and PM₁₀ were found 24 to be associated with an increased risk of MI.

In the MONICA Project, the effect of air pollution on acute MI was studied in Toulouse, France, using a case-crossover study design (Ruidavets et al., 2005). The mean 24-h average SO₂ level was $8.3 \mu g/m^3$ (3 ppb [5th–95th percentile: 1, 5]). A total of 399 cases of acute MI were recorded during the study period. O₃, but not SO₂ nor NO₂, was found to be associated with the incidence of acute MI. Exposure to PM was not considered in this study.

Only a limited number of studies examined the association between ambient SO₂
 concentrations and incidence of acute MI. These studies provide no evidence that exposure to
 SO₂ increases the risk of MI.

1 **3.1.2.7 ED** Visits and Hospitalizations for CVD

The current review includes more than 30 studies that address the effect of sulfur oxides (SO_x) exposure on ED visits or hospitalizations for CVD. Cases of CVD are typically identified using ICD codes recorded on hospital discharge records. However, counts of hospital or ED admissions are also used. Studies of ED visits include cases that may be less severe than those requiring hospitalization and may be subject to greater misclassification compared to studies that rely on confirmed doctors diagnoses coded on discharge records. Studies of hospital admissions and ED visits are clearly distinguished on figures and in the Annex Tables AX5-4.

9

10 *All CVD*

The disease grouping "All CVD" typically includes all diseases of the circulatory system
(e.g., heart diseases and cerebrovascular diseases, ICD9 Codes 390-459). A summary of the
results are presented in Figure 3.1-12.

14 In a study of 11 cities in Spain, an increase of 3.6% (95% CI: 0.6, 6.7) per 10-ppb 15 increase in 24-h average SO_2 at a 0-1 day lag was observed for all CVD admissions (Ballester 16 et al., 2006). The mean 24-h average SO₂ level in the cities studied was 6.6 ppb. In addition, 17 time-series data linking SO₂ with hospital admissions for CVD in three metropolitan areas in the 18 United States (i.e., Cook, Maricopa, Los Angeles Counties) was conducted (Moolgavkar, 2000; 19 reanalysis, Moolgavkar, 2003). A 13.7% (95% CI: 11.3, 16.1) increase in admissions per 20 10-ppb increase in 24-h average SO_2 at lag 0 day, using Generalized Linear Model(s) (GLM) and 21 natural splines to adjust for temporal trends, was observed among older adults (65+ years) in Los 22 Angeles County. The median 24-h average SO₂ level for Los Angeles County was 2 ppb during 23 the study period. Results for Maricopa and Cook counties were not presented in the reanalysis. 24 However, in previous GAM analyses, increases of 4.1% (95% CI: 2.7, 5.3) and 7.5% (95% CI: 25 4.1, 10.8) were reported for Cook and Maricopa Counties, respectively (Moolgavkar, 2000), per 26 10-ppb increase in 24-h average SO_2 level. The author indicates that the use of stringent 27 convergence criteria did not appreciably change results (but increased smoothing did diminish 28 effect estimates) (Moolgavkar, 2003). 29 Metzger et al. (2004) examined approximately 4.4 million hospital visits to 31 hospitals

from 1993 to 2000 in Atlanta, GA and reported null associations between SO₂ and ED visits for all CVD. A 1.4% (95% CI: -1.5, 4.4) increase in admissions per 40-ppb increase in 1-h max

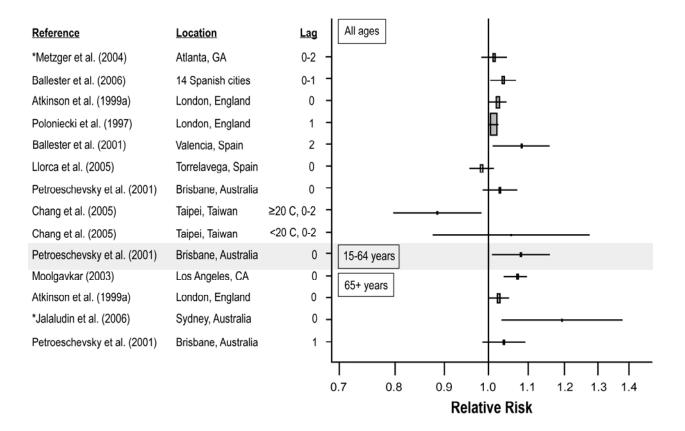


Figure 3.1-12.Relative risks (95% CI) of SO2-associated emergency department
visits and hospitalizations for all cardiovascular causes. Risk
estimates are standardized per 10-ppb increase in 24-h average SO2
concentrations or 40-ppb increase in 1-h max SO2. The size of the box
of the central estimate represents the relative weight of that estimate
based on the width of the 95% CI.

- 1 SO₂ level was observed. The median 1-h max SO₂ level in Atlanta during the study period was
- 2 11 ppb (10th–90th percentile: 2, 39).
 - Results from single-city studies in Europe, Australia, and Taiwan are inconsistent.
- 4 Atkinson et al. (1999a) reported a significant increase in CVD admissions in London (2.3%
- 5 [95% CI: 0.3, 4.3] per 10-ppb increase in 24-h average SO₂), while Llorca et al. (2005) reported
- 6 a null association in Torrelavega, Spain. A time-series analysis conducted in Sydney, Australia,
- 7 reported an increase in all CVD admissions of 19.3% (95% CI: 3.3, 38) per 10-ppb increase in
- 8 24-h average SO₂ at lag 0 day among those 65+ years of age (Jalaludin et al., 2006). The mean
- 9 24-h average SO₂ level in Sydney during the study period was 1.07 ppb (IQR 0.75) (the authors'

3

1 estimates related the percent increase in admissions to an incremental increase in SO_2 equivalent 2 to the IQR [1.33%, 95% CI: 0.24, 2.43]). A study conducted in Brisbane reported a 3 nonsignificant increase of 3.8% (95% CI: -1.2, 9.1) at lag 1-day for all CVD per 10-ppb 4 increase in 24-h average SO₂, among those 65+ years (Petroeschevsky et al., 2001). In a study 5 conducted in Taipei, Taiwan, Chang et al. (2005) reported a significant decrease in CVD 6 admissions of -11.5% (95% CI: -20.2, -1.8) per 10-ppb increase in 24-h average SO₂ at a lag 7 of 0 to 2 days, among all ages, when the temperature was greater than 20 °C. A nonsignificant 8 increase of 5.6% (95% CI: -12.4, 27.2) was reported for cooler days. The mean 24-average SO₂ 9 level in Taiwan during the study period was 4.3 ppb. 10 Some studies have observed positive associations between ambient SO₂ concentrations 11 and ED visits and hospital admissions for all CVD, particularly among individuals 65+ years of 12 age. Given the limited number of studies that assessed potential confounding by copollutants for 13 this outcome, which is of concern given the moderate to strong correlation between SO₂ and 14 various copollutants in most studies, and the lack of supportive data from panel/field studies and 15 human clinical studies on cardiovascular health effects, the collective evidence that ambient SO₂ 16 has an effect of CVD ED visits and hospitalizations is weak. 17 18 Specific Cardiac Diseases 19 Cardiac disease (ICD9 Codes 390-429) is defined to exclude diseases of the 20 cerebrovascular system and is further restricted in some studies to include only ischemic heart 21 disease (IHD, ICD9 Codes 410-414), dysrhythmia (ICD9 Code 427), congestive heart failure 22 (CHF, ICD9 Code 428) or MI (410). 23 In a study of seven European cities (Milan, Paris, Rome, London, Birmingham, the

Netherlands, and Stockholm), an increase of 1.9% (95% CI: 0.8, 2.9) per 10-ppb increase in 24-h
average SO₂ lagged 0-1 day, was observed for cardiac disease hospital admissions (Sunyer et al.,

26 2003b; used GAM with default convergence criteria). The mean 24-h average SO_2 level in the

- cities studied was 5.2 ppb. Ballester et al. (2006) reported a 4.6% (95% CI: 1.3, 8.0) increased
- risk of cardiac disease admissions per 10-ppb increase in 24-h average SO₂ at lag 0-1 day, pooled
- 29 across 14 Spanish cities. Adjustment for PM_{10} and CO in two-pollutant models diminished the
- 30 effect estimate by approximately half.

1 In a time-series study of cardiac disease and SO₂ in Windsor, Ontario, similar results 2 were observed for those aged <65 years (4.5% [95% CI: -3.7, 14.1) per 40-ppb increase in 1-h 3 max SO₂] and 65+ years (5.5% [95% CI: 0.0, 11.3]) (Fung et al., 2005). These results were 4 found to be generally robust to adjustment for PM_{10} . The mean 1-h max SO₂ level in Windsor 5 during the study period was 27.5 ppb (range: 0, 129). Michaud et al. (2004) conducted a study 6 of hospital visits for cardiac disease in Hilo, HI, where volcanic eruptions contribute to ambient 7 SO₂ levels. A -5.0% (95% CI: -13.5, 4.4) change in hospital visits for cardiac disease was 8 observed per 10-ppb increase in SO₂ (averaging time 12:00 p.m. to 6:00 a.m.). The mean daily 9 SO₂ level in Hilo during the study period was 1.97 ppb (range: 0, 108.5). In Sydney, Australia, 10 an increase in cardiac admissions among those 65+ years of age of 1.6% (95% CI: 0.33, 2.93) 11 was reported per 0.75-ppb increase (an IQR change) in 24-h average SO₂ level (Jalaludin et al., 12 2006). Standardized to a 10-ppb increase in 24-h average SO₂, the increased risk is 23.9% (95% 13 CI: 4.5, 46.9). The mean 24-h average SO₂ level in Sydney during the study period was 14 1.07 ppb (range: 0.09, 3.94). Llorca et al. (2005) reported a null association for cardiac disease 15 hospital admissions and SO₂ in Torrelavega, Spain. 16 Analyses restricted to diagnoses of IHD (Jalaludin et al., 2006; Lee et al., 2003a; Lin 17 et al., 2003b; Metzger et al., 2004; Peel et al., 2007), CHF (Koken et al., 2003; Metzger et al., 18 2004; Peel et al., 2007; Wellenius et al., 2005a), dysrhythmia (Koken et al., 2003; Metzger et al., 19 2004; Peel et al., 2007), MI (Koken et al., 2003; Lin et al., 2003b), and angina pectoris 20 (Hosseinpoor et al., 2005) were conducted. Two studies conducted in Atlanta, GA reported no 21 significant associations between SO₂ and admissions for specific cardiac outcomes (Metzger 22 et al. 2004; Peel et al. 2007). Metzger et al. observed null associations of 1-h max SO₂ with 23 IHD, CHF, and dysrhythmia. Using the same dataset, Peel et al. (2007) investigated effect 24 modification of CVD outcomes across comorbid disease status categories, including 25 hypertension, diabetes, COPD, dysrhythmia, and CHF. Authors observed no significant 26 associations for any cardiac disease outcome studied (i.e., IHD, CHF, dysrhythmia) with ambient 27 1-h max SO₂ level in any comorbid disease category. 28 SO₂-associated increases in admissions for CHF, IHD, and dysrhythmia were reported in 29 a limited number of studies (Jalaludin et al., 2006; Koken et al., 2003; Wellenius et al., 2005a). 30 Results from other analyses of specific cardiac disease endpoints were null (Hosseinpoor et al., 31 2005; Lee et al., 2003a; Lin et al., 2003b).

In conclusion, the strongest evidence comes from a large multicity study conducted in
 Spain (Ballester et al., 2006) that observed statistically significant positive associations between
 ambient SO₂ and cardiac disease; however, the SO₂ effect was found to diminish by half with
 PM₁₀ and CO adjustment. Overall, findings on the relationship between ambient SO₂ and
 cardiac disease are generally inconsistent.

6 7

Cerebrovascular Disease and Stroke

8 Cerebrovascular diseases include diseases of the blood vessels supplying the brain (ICD9 9 Codes 430-438). Separate analyses for ischemic stroke (ICD9 434-436), hemorrhagic stroke 10 (ICD9 Codes 431-432), and transient ischemic attack (ICD9 435) are often conducted. 11 Positive findings were reported for ischemic stroke and SO_2 in a study of nine U.S. cities 12 (Wellenius et al., 2005a). This study examined time-series data including more than 155,500 13 ischemic stroke hospitalizations between 1986 and 1999 in the cities of Birmingham, AL, 14 Chicago, IL, Cleveland, OH, Detroit, MI, New Haven, CT, Pittsburgh, PA, Salt Lake, UT, and 15 Seattle, WA. The median 24-h average SO_2 level in these cities was 6.2 ppb (10th, 90th 16 percentile: 2.17, 16.17). The study reported a 1.2% (95% CI: 0.1, 2.4) increase of ischemic 17 stroke hospitalizations per 10-ppb increase in 24-h average SO₂ level at lag 0-2 days. Wellenius 18 et al. did not analyze multipollutant models, but the authors noted that other pollutants studied 19 (i.e., NO_2 , CO) were more strongly were associated with increased admissions for ischemic 20 stroke. In a study in Edmonton, Canada, Villeneuve et al. (2006) found significantly increased 21 risk of ischemic stroke during the warm season among older adults and a significant association 22 between transient ischemic attacks and SO₂ among older adults in the warm season and all year. 23 The positive results were diminished in multipollutant models. 24 By contrast, Metzger et al. (2004) reported a null increase for all peripheral and 25 cerebrovascular diseases of 0.2% (95% CI: -4.4, 5.0) per 40-ppb increase in 1-h max SO₂. Peel

et al. (2007) also observed null results for this Atlanta population across comorbid disease status
categories. Similarly, Jalaludin et al. (2006) observed a null association between cerebrovascular

admissions and SO₂ in Sydney. Furthermore, primary intracerebral hemorrhage and ischemic

29 stroke were not found to be significantly associated with SO₂ in a study of admissions records

30 from 63 hospitals in Taiwan (Tsai et al., 2003).

A limited number of studies have examined the effect of ambient SO₂ on cerebrovascular
 disease and stroke. In general, findings relating ambient SO₂ level to these outcomes have been
 inconsistent.

4

5 Potential Confounding by Copollutants

6 Studies of all CVD or cardiac diseases that report multipollutant results are summarized in 7 Figure 3.1-13. Overall, effects for all CVD, cardiac diseases, and specific cardiac outcomes 8 were diminished in multipollutant models (Ballester et al., 2001, 2006; Morris et al., 1995; 9 Wellenius et al., 2005b). In addition, Jalaludin et al. (2006) reported a 3% increase in CVD 10 hospital admissions per 0.75-ppb incremental change in 24-h average SO₂ in single-pollutant 11 models, which was reduced to null when CO was included. This study was not included in 12 Figure 3.1-13, because the range of SO₂ concentrations was far below the 10-ppb increment to 13 which other effect sizes were standardized. A study by Chang et al. (2005) examined the effect 14 of SO₂ on all CVD hospitalizations by season and observed a nonsignificant negative association 15 in single-pollutant models for the cool season in Taiwan. After adjusting for NO₂, PM₁₀, and CO 16 in two-pollutant models, this negative association strengthened and achieved significance. The 17 authors attributed this finding to possible collinearity problems between SO₂ and copollutants. 18 Collectively, these results suggest that the effect of SO₂ on cardiovascular ED visits and 19 hospitalizations is likely confounded by copollutant exposures.

20

21

3.1.3 Other Systemic Effects Associated with Short-Term SO₂ Exposure

22 The effects of SO_2 on the nervous system and other organ systems were not examined in 23 the previous review. The 1982 AQCD presented only one chronic exposure study (68 months), 24 in which dogs were exposed to a mixture of SO₂ and H₂SO₄. This study reported no effects on 25 visual evoked brain potentials during or immediately after exposure to the SO_x mixture. In the 26 past 25 years, an increased number of animal toxicological studies evaluated the effects of SO_2 27 exposure on neurophysiological, biochemical, and neurobehavior as well as on other organ 28 systems in adult and developing animals. The most recent studies on SO_2 effects on various 29 organ systems are summarized in Annex Tables AX4-6 through AX4-9.

30

31 3.1.3.1 Nervous System Effects Associated with Short-Term SO₂ Exposure

<u>Reference</u> Ballester et al. (2001)	<u>Location</u> Valencia, Spain	<u>Age</u> All	Lag 2	0.9 Pollutants SO ₂ SO ₂ +BS SO ₂ +CO	Relative Risk
Fung et al. (2005)	Windsor, OH, Canada	65+	0	SO ₂ SO ₂ +PM ₁₀	Cardiac Disease
Ballester et al. (2006)	Multicity Spain	All	0-1	SO ₂ SO ₂ +PM ₁₀ SO ₂ +CO SO ₂ +NO ₂	
Ballester et al. (2001)	Valencia, Spain	All	2	SO ₂ SO ₂ +BS SO ₂ +CO	
Llorca et al. (2005)	Torrelavega, Spain	All	0 SC	SO ₂ 9 ₂ +TSP+NO ₂ +NO+H ₂ S	- _
Morris et al. (1995)	Los Angeles, CA	65+	Not reported	SO ₂ SO ₂ +CO+NO ₂ +O ₃	Congestive Heart Failure
Morris et al. (1995)	Chicago, IL	65+	Not reported	SO ₂ SO ₂ +CO+NO ₂ +O ₃	↓
Morris et al. (1995)	Philadelphia, PA	65+	Not reported	SO ₂ SO ₂ +CO+NO ₂ +O ₃	
Morris et al. (1995)	New York, NY	65+	Not reported	SO ₂ SO ₂ +CO+NO ₂ +O ₃	→ ->-
Morris et al. (1995)	Detroit, MI	65+	Not reported	SO ₂ SO ₂ +CO+NO ₂ +O ₃	
Morris et al. (1995)	Houston, TX	65+	Not reported	SO ₂ SO ₂ +CO+NO ₂ +O ₃	
Morris et al. (1995)	Milwaukee, WI	65+	Not reported	SO ₂ SO ₂ +CO+NO ₂ +O ₃	
Wellenius et al. (2005a)	Allegheny County, PA	65+	0	SO ₂ SO ₂ +PM ₁₀ SO ₂ +NO ₂	Single pollutant Multipollutant

Figure 3.1-13. Relative risks (95% CI) of SO₂-associated emergency department visits (*) and hospitalizations for cardiovascular causes, with and without copollutant adjustment. Risk estimates are standardized per 10-ppb increase in 24-h average SO₂ concentrations or 40-ppb increase in 1-h max SO₂.

1 2

Effects of Sulfur Oxides on Neurotransmitters, Receptors, Voltage-Gated Channels, and Other Neurophysiological and Biochemical Components

3 The effects of SO₂ exposure (10-ppm SO₂, 1 h/day) on lipids, lipid peroxidation, and 4 lipase activity in different regions of the brain were investigated in guinea pigs exposed for 21 to 5 24 days (Haider et al., 1981) and in rats exposed for 30 days (Haider et al., 1982). As 6 summarized in Table 3.1-1, exposure to SO_2 resulted in altered lipid profiles in both species that 7 were qualitatively and/or quantitatively brain-region specific. While levels of total lipids and 8 free fatty acids were generally lowered, the effects on phospholipids, cholesterol, esterified fatty 9 acids, and gangliosides were variable. Lipase activity and lipid peroxidation (as measured by 10 malonaldehyde content) were elevated in brain tissue due to SO₂ exposure. These studies 11 suggest that subacute exposure to 10-ppm SO_2 can lead to degradation of brain lipids. Similar 12 findings were observed in a study in which guinea pigs were exposed to 10-ppm SO₂ alternated 13 daily with 20-ppm of H_2S (i.e., 15 daily 1-h exposures to each gas by itself) for 1 h/day for 30 14 days (Haider and Hasan, 1984). No lower concentrations were examined to determine possible 15 concentration-response relationships or a no-effect level, and effects observed at these higher 16 levels may be due to mechanisms not induced at more environmentally relevant concentrations.

17 The effect of SO₂ exposure on neuronal GSH level, antioxidant status, and antioxidant 18 enzymes was investigated in mice and rats. Wu and Meng (2003) did not observe any exposure-19 induced changes in GSH level or related enzyme activity in brain at the lowest concentration 20 (8.4 ppm) studied. Studies that investigated oxidant status (thiobarbituric acid reactive 21 substances [TBARS] levels) in brain regions and retina in rats exposed to 10-ppm SO_2 for 22 1 h/day, 7 days/week, for 6 weeks also included effect of age (Kilic, 2003; Yargicoğlu et al., 23 1999) and experimentally induced diabetes (Ağar et al., 2000; Küçükatay et al., 2003). These 24 studies reported consistent increases in TBARS levels in brain regions in both normal and 25 diabetic rats, but results from the retina were not consistent.

SO₂-induced changes in neurophysiological endpoints (i.e., somatosensory-evoked
potentials, peak-to-peak amplitudes, visual-evoked potentials) were also investigated. SO₂induced changes in somatosensory-evoked potentials and peak-to-peak amplitudes were
observed in young (3 months), but not in older (24 months), rats. The effects of SO₂ exposure on
visual-evoked potential in experimental diabetic rats were found to be additive.

	Responses^a in Different Brain Regions								
Parameter	Cerel	oral Hemisphere	Cerebellum		Brain Stem				
Total Lipids	Û	¥	(彔)	+	Û	ŧ			
Free Fatty Acids	Û		Û		Û	_			
Phospholipids	仓	⇔	Û	†	\Leftrightarrow	\leftrightarrow			
Cholesterol	仓	t	Û	†	Û	(♠)			
Esterified Fatty Acids	Û	_	仓	_	Û	_			
Gangliosides		¥	_	†	_	↑			
Lipid Peroxidation	仓	ŧ	仓	†	仓	(♠)			
Lipase Activity	仓	t	仓	_	仓	—			

TABLE 3.1-1. SO₂ EFFECTS ON GUINEA PIG AND RAT BRAIN

^a Open symbols = guinea pig, closed symbols = rat; vertical arrows = significant changes (p < 0.001-0.05), vertical arrows in parentheses = statistically nonsignificant changes $\geq 10\%$, horizontal arrows = statistically nonsignificant changes < 10\%, dashes = parameter not measured.

Source: Haider et al. (1981, 1982).

Three ex vivo acute exposure studies using SO₂ derivatives on hippocampal or dorsal
 root ganglion neurons isolated from Wistar rats (Du and Meng, 2004a,b, 2006) observed
 perturbations in potassium-, sodium-, and calcium-gated channels. These authors speculated that
 such effects might correlate with the neurotoxicity that has been associated with SO₂ inhalation.
 Details about all the above studies are presented in Table AX4-6.

6

7 Neurodevelopmental and Neurobehavioral Effects

8 Three studies conducted in rodents provide some information on possible

9 neurodevelopmental effects. In offspring of mice exposed to \geq 5-ppm SO₂ from 9 days before

- 10 mating through the 12th to 14th day of gestation, there were no effects on somatic and
- 11 neurobehavioral development (e.g., eyelid and ear opening, incisor eruption, reflex development)
- 12 or passive avoidance testing of adult males (Petruzzi et al., 1996). A second study reported
- 13 delayed righting and negative geotaxis reflexes in offspring of mice exposed to \ge 32-ppm SO₂ on
- 14 gestation days 7 through 18 (Singh, 1989).

- 1 Neurobehavioral responses were examined in adult male offspring of mice exposed to 2 \geq 5-ppm SO₂ from 9 days before mating through gestation day 14 (Fiore et al., 1998). Compared 3 to controls, SO₂-exposed male offspring displayed an increased duration of self-grooming 4 (5-ppm group), decreased frequency and duration of tail rattling (\geq 5-ppm groups), and decreased 5 duration of defensive postures in response to an intruder mouse (≥ 12 -ppm groups). 6 Studying the influence of age and diabetes on SO₂-induced lipid peroxidation, antioxidant 7 enzyme status, and active avoidance learning in rats, Yargiçoğlu et al. (2001) and Küçükatay 8 et al. (2007) reported that TBARS levels (indicative of lipid peroxidation) was significantly 9 increased and antioxidant status was altered in all the experimental groups studied. The authors 10 also concluded that SO_2 exposure induces impairments in learning in young (3 month old) 11 animals and potentiates diabetes-induced learning impairments in rats. 12 Behavioral effects in adult animals were examined in male and female mice exposed to 13 \geq 5-ppm SO₂ from 9 days before mating through gestation days 12 through 14 (Petruzzi et al., 1996). No effects were observed at concentrations of <30 ppm. 14 15 16 Summary of Nervous System Effects 17 In a limited number of toxicological studies, exposure to SO_2 has been shown to affect 18 certain neurodevelopmental and cognitive effects. There was suggestive evidence that young 19 animals and those with preexisting conditions such as diabetes were more susceptible to these 20 effects. These effects were observed only at high concentrations of SO₂. 21 22 3.1.3.2 Other Organ System Effects Associated with Short-Term SO₂ Exposure 23 A review of animal toxicological studies published since the 1982 AQCD indicates a 24 limited number of research inquiries were conducted into the systemic effects of SO₂ exposure in 25 various other organ systems such as reproductive, hematological, gastrointestinal, renal, 26 lymphatic, and endocrine systems. The majority of these studies examined alteration profiles of 27 lipid peroxidation and antioxidant levels (Langley-Evans et al., 1996; Meng and Bai, 2004; 28 Meng et al., 2003c). 29 Though limited, the overall animal toxicological database on SO₂ exposure suggests no adverse effects on development or reproduction. Acute exposure to SO₂ (0.87 ppm) in rats has 30 31 been found to induce hematological alterations such as increased hematocrit and decreased
- 32 whole blood and packed cell viscosities (Baskurt, 1988).

1 No overt pathological changes were observed in the liver and gastrointestinal system of rats in acute or subchronic exposure studies (Gunnison et al., 1987; Langley-Evans et al., 1996). 2 3 Decreases in the expression of certain cytochrome P450s (CYP1A2 and CYP1A1) in liver were 4 reported at higher concentrations (Qin and Meng, 2005). Smith et al. (1989) did not find any 5 significant effects on spleen weight or mitogen-induced activation of peripheral blood 6 lymphocytes or spleen cells in Sprague-Dawley rats exposed to 1-ppm SO_2 for 5 h/day, 7 5 days/week for 4 months. Two studies that examined the effects of SO₂ exposure in rodents 8 (Langley-Evans et al., 1996; Wu and Meng, 2003) reported alterations in GSH levels or GSH-9 related enzymes. 10 The available studies that examined the effects of SO_2 exposures on the endocrine system

10 The available studies that examined the effects of SO_2 exposures on the endocrine system 11 evaluated insulin-related parameters in diabetic rats that were fed a standard diet (normal), a high 12 cholesterol diet, or treated with streptozotocin to induce diabetes (Lovati et al., 1996). Exposure 13 to ≥ 5 -ppm SO₂ had been found to lower plasma insulin levels in normal and 14 hypercholesterolemic rats and to result in a nonsignificant increase in plasma insulin levels in

15 diabetic rats.

- 16
- 17
- 18 19

3.2 MORTALITY ASSOCIATED WITH SHORT-TERM SO₂ EXPOSURE

20 The studies available to review in the 1982 AQCD were mostly from historical data 21 including London, England, and New York City air pollution episodes. Effects of SO_x (mainly 22 SO₂) were investigated along with PM indices because they shared a common source, coal 23 burning, and separating their associations with mortality was a challenge that many of the earlier 24 episodic studies could not necessarily resolve. The SO₂ levels observed in these air pollution 25 episodes were several tens of times higher than the current average levels observed in U.S. cities 26 (e.g., in the 1962 New York City episode, SO₂ in Manhattan peaked at 400 to 500 ppb). Some of these London and New York City studies suggested that PM, not SO₂, was associated with 27 28 observed mortality, but the 1982 AQCD could not resolve the relative roles of these two 29 pollutants and suggested that the clearest mortality associations were seen when both pollutants were at high levels (24-h average values of both BS and SO₂ exceeding 1000 μ g/m³ [~ 400 ppb 30 31 for SO_2) and less so at lower ranges although the review of the studies and reanalyses found no 32 clear evidence of a threshold for SO₂.

1 The 1986 Second Addendum to the 1982 AQCD reviewed more reanalyses of the 2 London data and analyses of New York City, Pittsburgh, and Athens data. While these 3 reanalyses and some new analyses confirmed earlier findings (and suggested stronger evidence 4 of BS effects than of the SO₂ effects), given the remaining uncertainties with exposure error and 5 statistical modeling, there was not sufficient information to quantitatively determine 6 concentration-response relationships at lower concentrations of either PM or SO₂. In the analysis 7 of nonepisodic London data, there was an indication that mortality effects were seen at BS levels 8 as low as 150 to 200 μ g/m³.

A series of short-term mortality effects studies in the late 1980s and early 1990s (e.g.,
Pope, 1989; Fairley, 1990; Dockery et al., 1992; Pope et al., 1992; Schwartz and Dockery,
11 1992a,b) showed associations between mortality and PM indices at relatively low levels. Since
then, a large number of epidemiological studies have investigated the adverse health effects of
air pollution with hypotheses mainly focused on PM, and SO₂ was often analyzed as one of the
potential confounders in these studies.

- 15
- 16 17

3.2.1 Associations of Mortality and Short-Term SO₂ Exposure in Multicity Studies and Meta-Analyses

18 In reviewing the range of SO₂ mortality risk estimates, multicity studies provide especially useful information, because they analyze data from multiple cities using a consistent 19 20 method, avoiding potential publication bias. There have been several multicity studies from the 21 United States, Canada, and Europe, some of which will be discussed in the sections below. 22 Meta-analysis studies also provide useful information on describing heterogeneity of risk 23 estimates across studies; however, unlike multicity studies, the heterogeneity of risk estimates 24 seen in meta-analysis may reflect the variation in analytical approaches across studies. These 25 studies, as well as many other single-city studies, are summarized in Annex Table AX5-5.

26 27

3.2.1.1 Multicity Studies

28

29 National Morbidity, Mortality, and Air Pollution Study of 90 U.S. Cities

The time-series analysis of the largest 90 U.S. cities (Samet et al., 2000; Dominici et al.,
2003) in the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) is by far the
largest multicity study conducted to date to investigate the mortality effects of air pollution, but

September 2007

1 its primary interest was PM_{10} . It should also be noted that, according to the table of mean 2 pollution levels in the original report (Samet et al., 2000), SO_2 was missing in 28/90 cities. 3 Annual 24-h average mean SO₂ levels ranged from 0.4 ppb (Riverside, CA) to 14.2 ppb 4 (Pittsburgh, PA), with a mean of 5.9 ppb during the study period of 1987 to 1994. The analysis 5 in the original report used GAM models with default convergence criteria. Dominici et al. 6 (2003) reanalyzed the data using GAM with stringent convergence criteria as well as using 7 GLM. It should be noted that this model's adjustment for weather effects employs more terms 8 than other time-series studies in the literature, suggesting that the model adjusts for potential 9 confounders more aggressively than the models in other studies.

10 PM_{10} and O_3 (in summer) appeared to be more strongly associated with mortality than the 11 other gaseous pollutants. The authors stated that the results did not indicate associations of SO₂, NO₂, and CO with total mortality. However, as with PM₁₀, the gaseous pollutants SO₂, NO₂, and 12 13 CO each showed the strongest association at a 1-day lag (for O₃, a 0-day lag). In contrast to 14 PM_{10} and NO₂, the inclusion of copollutants in the regression models generally resulted in 15 reduced SO_2 risk estimates. Figure 3.2-1 shows the total mortality risk estimates for SO_2 from 16 Dominici et al. (2003). The mortality risk estimate with a 1-day lag was 0.60% (95% CI: 0.26, 17 (0.95) per 10-ppb increase in 24-h average SO₂. The model with PM₁₀ and NO₂ resulted in an 18 appreciably reduced SO₂ risk estimate, 0.38% (95% CI: -0.62, 1.38) per 10-ppb increase in 24-h 19 average SO_2 . These results suggest that the observed SO_2 -mortality association could be 20 confounded by PM_{10} and NO_2 .

21

22 Canadian Multicity Studies

23 There have been three Canadian multicity studies examining the association between 24 mortality and short-term exposure to air pollutants: (1) an analysis of gaseous pollutants in 11 25 cities from 1980 to 1991 (Burnett et al., 1998); (2) an analysis of $PM_{2.5}$, coarse PM ($PM_{10-2.5}$), 26 and gaseous pollutants in 8 cities from 1986 to 1996 (Burnett et al., 2000); and (3) an analysis of 27 PM_{2.5}, PM_{10-2.5}, and gaseous pollutants in 12 cities from 1981 to 1999 (Burnett et al., 2004). The 28 first two studies utilized GAM with default convergence criteria. Only the PM indices were 29 reanalyzed for the Burnett et al. (2000) study by Burnett and Goldberg (2003). 30 Burnett et al. (2004) is the most extensive Canadian multicity study, both in terms of the

31 length and coverage of cities. The discussion in this study focused on NO₂, because NO₂ was the

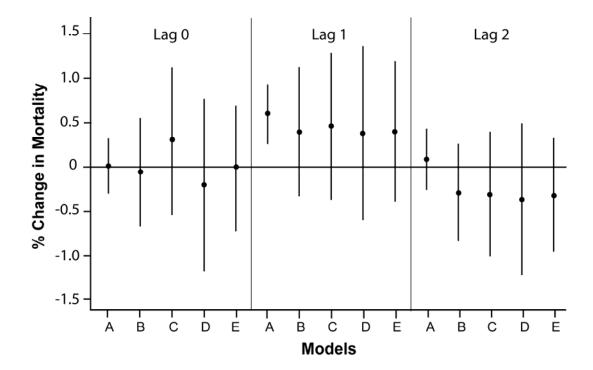


Figure 3.2-1. Posterior means and 95% posterior intervals of national average estimates of SO₂ effects on total mortality from non-external causes per 10-ppb increase in 24-h average SO₂ at 0-, 1-, and 2-day lags within sets of the 62 cities with pollutant data available. Models A = SO₂ alone; B = SO₂ + PM₁₀; C = SO₂ + PM₁₀ + O₃; D = SO₂ + PM₁₀ + NO₂; E = SO₂ + PM₁₀ + CO.

Source: Dominici et al. (2003).

1 best predictor of short-term mortality fluctuations among the pollutants. This was also the case

2 in the Burnett et al. (1998) study of the gaseous pollutants in 11 Canadian cities. The mean 24-h

3 average SO_2 levels across the 12 cities was 5.8 ppb, with city means ranging from 1 ppb in

4 Winnipeg to 10 ppb in Halifax. The population-weighted average was 5 ppb. The mean SO₂

5 levels in this study were similar to those in the NMMAPS (mean 24-h average SO₂ levels across

```
6 the 62 NMMAPS cities was 5.9 ppb).
```

7 Total (nonaccidental), cardiovascular, and respiratory mortality were analyzed in Burnett

8 et al. (2004). For SO₂, PM_{2.5}, PM_{10-2.5}, PM₁₀ (arithmetic addition of PM_{2.5} and PM_{10-2.5}), CoH,

9 and CO, the strongest mortality association was found at a 1-day lag, whereas for NO₂, it was the

10 3-day moving average (i.e., average of 0-, 1-, and 2-day lags), and for O₃, it was the 2-day

11 moving average. The daily 24-h average values showed stronger associations than the daily 1-h

1 max values for all the gaseous pollutants and CoH except for O_3 . The SO₂ total mortality risk 2 estimate was 0.74% (95% CI: 0.29, 1.19) per 10-ppb increase in the 24-h average SO₂ with a 1-3 day lag. After adjusting for NO₂, the SO₂ risk estimate was reduced to 0.42% (95% CI: 0.01, 4 (0.84), while the NO₂ risk estimate was only slightly affected. In this analysis, no regression 5 analysis using both SO₂ and PM was conducted. The Burnett et al. (2000) analysis observed that 6 the simultaneous inclusion of SO₂ and PM_{2.5} in the model reduced the SO₂ risk estimate by half, 7 whereas the $PM_{2.5}$ estimate was only slightly reduced. Overall, these results suggest that SO_2 8 was not an important predictor of daily mortality in the Canadian cities and that its mortality 9 associations could be confounded by NO₂ or PM.

10

11

Air Pollution and Health: A European Approach, Studies 1 and 2

12 Several Air Pollution and Health: a European Approach (APHEA) analyses have reported 13 SO_2 mortality risk estimates. Katsouyanni et al. (1997) examined the association of PM_{10} , BS, 14 and SO₂ with total mortality in 12 European cities using the standard APHEA1 (GLM) approach. 15 The same data set was reanalyzed using nonparametric smooth functions in GAM models with 16 default convergence criteria to adjust for the seasonal cycles (Samoli et al., 2001) and using 17 GAM with more stringent convergence criteria as well as a parametric smoother in GLM 18 (Samoli et al., 2003). An analysis of cardiovascular and respiratory mortality in 10/12 APHEA 19 cities was conducted by Zmirou et al. (1998). The reanalysis by Samoli et al. (2003) produced 20 results that were similar to those in the original analysis by Katsouyanni et al. (1997). Since the 21 original analysis presented more results, including multipollutant model results, discussion will 22 focus on this analysis.

23 The study by Katsouyanni et al. (1997) includes seven western European cities (Athens, 24 Barcelona, Cologne, London, Lyon, Milan, and Paris) and five central eastern European cities 25 (Bratislava, Kracow, Lodz, Poznan, and Wroclaw). The data covered at least 5 consecutive 26 years for each city within the years 1980 through 1992. The SO₂ levels in these cities were generally higher than in the United States or Canada, with the median 24-h average SO₂ ranging 27 from 13 μ g/m³ (5 ppb) in Bratislava to 74 μ g/m³ (28 ppb) in Kracow. Analysis was restricted to 28 days when PM and SO₂ concentrations did not exceed 200 μ g/m³ (76 ppb for SO₂). The data 29 30 were analyzed by each center separately following a standardized method, but the lag for the 31 "best" model was allowed to vary in these cities from 0 to 3 days. The city-specific risk 32 estimates were then examined in the second stage for source of heterogeneity using city-specific variables such as mean pollution and weather variables, accuracy of the air pollution
 measurements, health of the population, smoking prevalence, and geographical differences.

3 The city-specific estimates were found to be heterogeneous and, among the explanatory 4 variables, only the separation between western and central eastern European cities resulted in 5 more homogeneous groups. The total mortality risk estimates were 1.14% (95% CI: 0.88, 1.39), 6 1.99% (95% CI: 1.15, 2.83), and 0.46% (95% CI: -0.23, 1.15) for all the 12 cities combined, 7 western cities, and central eastern cities, respectively, per 10-ppb increase in the 24-h average 8 SO_2 at variable single-day lags. Seasonal analyses indicated that the summer estimate was 9 slightly higher than the winter estimate in the western cities, but the difference was not 10 statistically significant. The results for the two-pollutant model with SO₂ and BS were presented 11 for the western cities, with a similar extent ($\sim 30\%$) of reductions in the estimates of both 12 pollutants (1.31% [95% CI: 0.40, 2.23] for SO₂). Furthermore, for western cities, they estimated 13 effects for SO₂ for days with high or low BS levels and the corresponding BS effects for days 14 with high or low SO₂ levels and found that their effects were similar for days with low or high 15 levels of the other pollutant. From these results, Katsuoyanni et al. (1997) suggested that the 16 effects of the two pollutants were independent.

17 Overall, the APHEA studies provide some suggestive evidence that the effect of short-18 term exposure to SO_2 on mortality is independent of PM. This is somewhat in contrast to the 19 U.S. and Canadian studies. The SO_2 levels were much higher in the European cities, but the type 20 of PM constituents also might be different.

21

22 The Netherlands Study

23 In the Netherlands studies by Hoek et al. (2000, 2001; reanalysis Hoek, 2003), the 24 association between air pollutants and mortality were examined in a large population (14.8 25 million for the entire country) over the period of 1986 through 1994. The Netherlands were not 26 part of the APHEA SO₂ analysis. The median 24-h average SO₂ level in the Netherlands was 4 27 ppb (6 ppb for the four major cities). All the pollutants examined, including PM₁₀, BS, O₃, NO₂, SO_2 , CO, SO_4^{2-} , and nitrate, were associated with total mortality, and for single-day models, a 28 29 1-day lag showed the strongest associations for all the pollutants. The following risk estimates 30 are all from the GLM models with natural splines for smoothing functions. The SO₂ risk 31 estimate in a single-pollutant model was 1.31% (95% CI: 0.69, 1.93) per 10-ppb increase in 24-h

1	average SO ₂ at a 1-day lag and 1.78% (95% CI: 0.86, 2.70) at an average of 0- to 6-day lag.						
2	Seasonal analyses showed slightly greater effect estimates during the summer compared to the						
3	winter. SO ₂ was most highly correlated with BS ($r = 0.70$). The correlation pattern of SO ₂ with						
4	other pollutants was similar to that for NO2, but weaker (e.g., correlation between NO2 and BS						
5	was 0.87). The simultaneous inclusion of SO_2 and BS reduced the risk estimates for both						
6	pollutants (SO ₂ risk estimate was 1.07% [95% CI: -0.27, 2.42] per 10-ppb increase with an						
7	average of 0- to 6-day lag of 24-h average SO ₂). PM_{10} was less correlated with SO ₂ (r = 0.65),						
8	and the simultaneous inclusion of these pollutants resulted in an increase in the SO ₂ risk						
9	estimate. These results from the analysis of the Netherlands data suggested some indication of						
10	confounding between SO ₂ and BS. Generally, the SO ₂ -mortality associations resembled the						
11	pattern for NO ₂ -mortality associations, but weaker.						
12							
13	Other European Multicity Studies						
14	Other European multicity studies were conducted in 8 Italian cities (Biggeri et al., 2005),						
15	9 French cities (Le Tertre et al., 2002), and 13 Spanish cities (Ballester et al., 2002). The studies						
16	by Le Tertre et al. (2002) and Ballester et al. (2002) were conducted using GAM methods with						
17	the default convergence setting.						
18	Biggeri et al. (2005) analyzed eight Italian cities (Turin, Milan, Verona, Ravenna,						
19	Bologna, Florence, Rome, and Palermo) for mortality and hospital admissions (mortality data						
20	were not available for Ravenna and Verona). The study period varied from city to city between						
21	1990 and 1999. Only single-pollutant models were examined in this study. The SO_2 risk						
22	estimates were 4.14% (95% CI: 1.05, 7.33), 4.94% (95% CI: 0.41, 9.67), and 7.37% (95% CI:						
23	-3.58, 19.57) per 10-ppb increase with an average of 0-1-day lag of 24-h average SO ₂ for total,						
24	cardiovascular, and respiratory deaths, respectively. Since all the pollutants showed positive						
25	associations with these mortality categories and the correlations among the pollutants were not						
26	presented, it is not clear how much of the observed associations are shared or confounded. The						
27	mortality risk estimates were not heterogeneous across cities for all the gaseous pollutants. It						
28	should be noted that in Turin, Milan, and Rome, the mean SO_2 values declined by 50% from the						
29	first half to the second half of the study period, while the levels of other pollutants declined by						
30	smaller fractions. This also complicates the interpretation of SO ₂ risk estimates in this study,						
31	which are much higher than those from the APHEA studies.						
	September 2007 3-69 DRAFT-DO NOT OUOTE OR CITE						

1 The French nine cities study by Le Tertre et al. (2002) examined BS, SO₂, NO₂, and O₃ 2 by generally following the APHEA protocol, but using GAM with default convergence criteria 3 and using the average of lags 0 and 1 day for combined estimates. SO₂ data were not available in 4 one of the nine cities (Toulouse). All four pollutants were positively associated with mortality 5 outcomes. The study did not report descriptions of correlation among the pollutants or conduct 6 multipollutant models, and therefore, it is difficult to assess the potential extent of confounding 7 among these pollutants. The SO₂ risk estimates were homogeneous across cities, with the 8 exception of Bordeaux, which was the only city that used strong acidity as a proxy for SO_2 .

9 The Spanish Multicentre Study on Air Pollution and Mortality (EMECAM) examined the 10 association of PM indices (i.e., PM₁₀, TSP, BS) and SO₂ with mortality in 13 cities (Ballester 11 et al., 2002). These studies followed the APHEA protocol, but using the GAM approach. The daily mean 24-h average SO₂ concentrations ranged from 8.1 to 44.5 μ g/m³ (3 to 17 ppb). In the 12 13 seven cities where 1-h max SO_2 data were also available, mean concentrations ranged from 54.9 to 113.2 μ g/m³ (21 to 43 ppb). The combined effect estimates for total and respiratory mortality 14 15 were statistically significant for both 24-h average SO₂ and 1-h max SO₂. Controlling for PM 16 indices substantially diminished the risk estimates for 24-h average SO₂, but not for 1-h max 17 SO_2 . The authors reported that these results could indicate an independent impact of peak values 18 of SO₂ more than an effect due to a longer exposure.

19 20

3.2.1.2 Meta-Analyses of Air Pollution-Related Mortality Studies

21

22 Meta-Analysis of All Criteria Pollutants (1985 to 2000)

23 Stieb et al. (2002) reviewed time-series mortality studies published between 1985 and 24 2000, and conducted a meta-analysis to estimate combined effects for PM₁₀, CO, NO₂, O₃, and 25 SO₂. Since many of the studies reviewed in that analysis used GAM wth default convergence 26 parameters, Stieb et al. (2003) updated the estimates by separating the GAM versus non-GAM 27 studies. In addition, separate combined estimates were presented for single- and multipollutant 28 models. There were more GAM estimates than non-GAM estimates for all the pollutants except 29 for SO₂. For SO₂, there were 29 non-GAM estimates from single-pollutant models and 10 30 estimates from multipollutant models. The lags and multiday averaging used in these estimates 31 varied. The combined estimate for total mortality was 0.95% (95% CI: 0.64, 1.27) per 10-ppb 32 increase in the daily average SO₂ from the single-pollutant models and 0.85% (95% CI: 0.32,

1 1.39) from the multipollutant models. Because these estimates are not from an identical set of 2 studies, the difference (or lack of a difference, as in this case) between the two estimates may not 3 necessarily be due to the effect of adding a copollutant in the model. Note that the data 4 extraction procedure of this meta-analysis for the multipollutant models was to include from 5 each study the multipollutant model that resulted in the greatest reduction in risk estimates 6 compared with that observed in single-pollutant models. It should also be noted that all the 7 multicity studies whose combined estimates have been discussed in the previous section were 8 published after this meta-analysis.

9

10 Health Effects Institute Review of Air Pollution Studies in Asia

11 The Health Effects Institute (HEI) conducted a comprehensive review of air pollution 12 health effects studies (HEI, 2004). They summarized the results from mortality and hospital 13 admission studies of the health effects of ambient air pollution in Asia (East, South, and 14 Southeast) published in peer-reviewed scientific literature from 1980 through 2003. Of the 138 15 papers the report identified, most were studies conducted in East Asia (mainland China, Taipei, 16 Hong Kong, South Korea, and Japan). The levels of SO_2 in these Asian cities were generally 17 higher than in U.S. or Canadian cities, with more than half of these studies reporting mean 24-h 18 average SO_2 levels of >10 ppb. Based on a comparison of the reported mean SO_2 levels from the 19 same cities in different time periods, it is clear that the SO₂ levels declined significantly in the 20 1990s. However, the meta-analysis used the most recent estimate for each city to reflect recent 21 pollution levels. Based on the criteria of having at least 1 year of data, model adjustment for 22 major time-varying confounders, and reporting risk estimates per unit increase in air pollution, 23 the meta-analysis included 28 time-series studies (11 from South Korea, 6 from mainland China, 24 6 from Hong Kong, and 1 each from Taipei, India, Singapore, Thailand, and Japan). The lags 25 selected to compute combined estimates were inevitably variable; a systematic approach was 26 used to favor the a priori lag stated in the study, followed by the most significant lag, and then 27 the largest effect estimate. Eleven mortality risk estimates were used to compute a combined 28 estimate for SO_2 . In general, the report focused on the results of single-pollutant models only, as 29 there were too few studies with results of comparable multipollutant models to allow meaningful 30 analysis. The SO₂ mortality risk estimates were found to be heterogeneous. The publication bias 31 test suggested some indication of bias. The combined estimate for total mortality was 1.49% 32 (95% CI: 0.86, 2.13) per 10-ppb increase in 24-h average SO₂. The report mentioned that the

resulting combined risk estimates for PM and SO₂ were similar to those found in Western
countries.

- 3
- 4

3.2.1.3 Summary of Risk Estimates from Multicity Studies and Meta-Analyses

5 Figure 3.2-2 shows combined estimates for total mortality per the standardized 6 increments (10-ppb increase for 24-h average SO₂) from the multicity studies and meta-analyses 7 discussed above. The mortality risk estimates from single-pollutant models range from 0.6% 8 (the NMMAPS) to 4.1% (the Italian 8-cities study), but given the large confidence band in the 9 Italian study, a more stable range may be 0.6 to 2%. The heterogeneity of estimates in these 10 studies may be due to several factors, including the differences in model specifications, 11 averaging/lag time, SO_2 levels, and effect-modifying factors. However, given the variability of 12 SO₂ and copollutants concentrations and differences in other effect-modifying factors, the range 13 of SO_2 risk estimates appear to be rather narrow. It is noteworthy that the SO_2 risk estimates for 14 the NMMAPS and Canadian 12-city studies are quite comparable (0.6 and 0.7%, respectively), 15 considering the difference in the modeling approach. This is in contrast to the pattern for the 16 PM₁₀ (U.S. Environmental Protection Agency, 2004) and NO₂ (U.S. Environmental Protection 17 Agency, draft, 2007) mortality risk estimates, in which the risk estimates for NMMAPS tended 18 to be smaller than those from the Canadian or other multicity studies.

There was not enough evidence to suggest a difference in risk estimates due to lag or averaging time. In the Netherlands study, the estimate for the average of 0 to 6 days (1.8%) was larger than that for the 1-day lag (1.3%). In the APHEA1 study, the estimate for "cumulative effects" (2.3%, for the average of 2 to 4 consecutive days including the current day) for the western cities was only slightly larger than that for the single-day lag estimate (2%). Thus, while the risk estimates for multiday effects may be larger than the single-day estimates, the evidence so far indicates that the magnitude of such multiday effects is not substantial.

26 Only the APHEA study examined possible source of effect modifications for SO_2 in 27 multicity or meta-analyses. They examined several potential effect modifiers such as the mean 28 levels of pollution and weather variables, accuracy of the air pollution measurements, health of 29 the population, smoking prevalence, and geographical differences. The only variable that could 30 explain the heterogeneity of city-specific risk estimates was the geographic separation (western

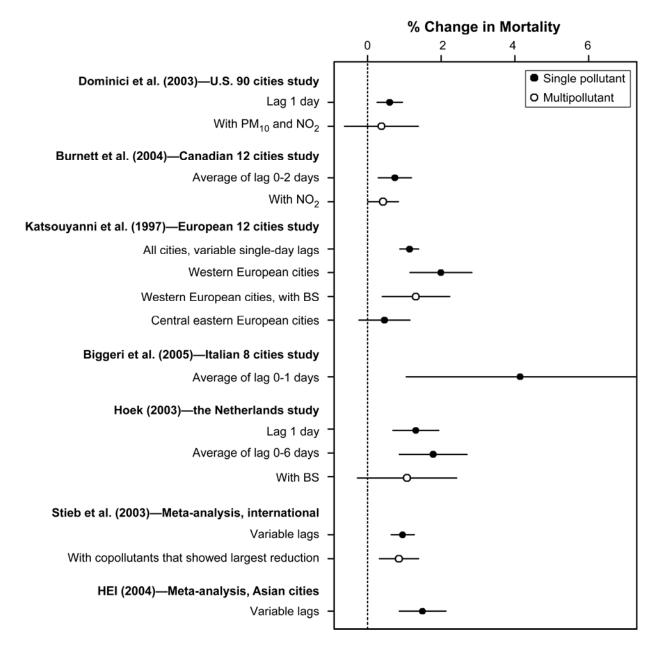


Figure 3.2-2.All cause (nonaccidental) SO2 mortality risk estimates (95% CI) from
multicity and meta-analysis studies. Risk estimates are standardized
per 10-ppb increase in 24-h average SO2 concentrations. For
multipollutant models, results from the models that resulted in the
greatest reduction in SO2 risk estimates are shown.

versus central eastern European cities) for both SO₂ and BS, but heterogeneity in the SO₂ risk
 estimates remained within the western cities.

In summary, the range of SO₂ total mortality risk estimates is 0.4 to 2% per 10-ppb increase in 24-h average SO₂. There was some suggestion of confounding between SO₂ and PM and/or NO₂. The extent of multiday effects, if they exist, is not substantial. There is no clear effect modifier, but the larger European study suggested that the observed heterogeneity in SO₂ risk estimates is at least in part regional.

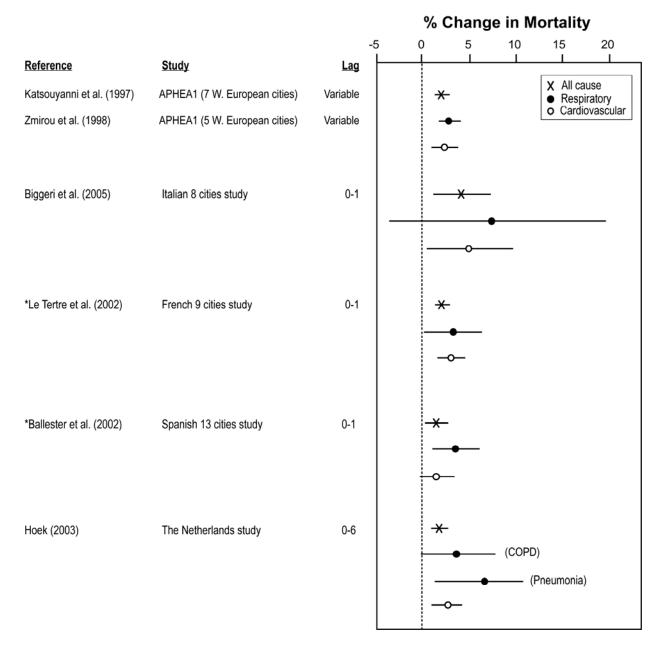
- 8
- 9 10

3.2.1.4 Potential Confounding by Copollutants of the Association of Mortality and Short-Term SO₂ Exposure

11 As shown in Figure 3.2-2, the mortality risk estimates from the multipollutant models in 12 the multicity studies suggest some extent of confounding between SO₂ and PM and/or NO₂, as 13 indicated by the reduced magnitude of the SO₂ risk estimates. NMMAPS and the Canadian 14 study showed a similar extent of reductions in the SO₂ risk estimates in the multipollutant 15 models (from 0.6 to 0.4% in the NMMAPS and from 0.7 to 0.4% in the Canadian study). In both 16 the European APHEA1 analysis and the Netherlands analysis, the SO₂ mortality associations 17 were reduced (though not eliminated) when BS was added to the model. The meta-analysis by 18 Stieb et al. (2003) does not suggest confounding of SO_2 by copollutants, but this was not a direct 19 comparison of estimates from the same set of studies (29 studies for single pollutant models and 20 10 studies for multipollutant models). Thus, the results from multicity studies suggest some 21 evidence of confounding, in the sense of instability of risk estimates in multipollutant models.

22 Additional single-city studies have also examined potential confounding of the SO₂ effect 23 on mortality by copollutants through multipollutant analyses. The studies that examined SO_2 and 24 PM indices and did not find substantial (i.e., more than 50%) reductions in SO_2 risk estimates 25 after adjustment for PM include analyses of data from Philadelphia, PA, with TSP (Kelsall et al., 26 1997, using GAM with default convergence criteria; Moolgavkar et al., 1995); Cook County, IL, 27 with PM₁₀ (Moolgavkar, 2003, using GAM with default convergence criteria); and Los Angeles, 28 CA, with PM₁₀ or PM_{2.5} (Moolgavkar, 2003, using GAM with default convergence criteria). 29 Other studies that analyzed SO₂ and PM indices and did find major reductions in SO₂ risk 30 estimates after adjustment for PM include analyses of data from Philadelphia, PA, with TSP 31 (Schwartz, 2000); New York City, NY, with PM₁₀ (De Leon et al., 2003); and Santiago, Chile, 32 with PM_{2.5} (Cifuentes et al., 2000). It is difficult to find a consistent pattern of evidence of

confounding with PM in these single-city results. It is also possible that the constituents of PM
 (e.g., relative contribution of traffic-related pollution to PM mass) vary from city to city, and
 hence correlations of PM with SO₂ vary, contributing to apparently inconsistent results.


Fewer single-city studies examined multipollutant models with SO₂ and other gaseous pollutants. Most studies observed that adjusting for other gaseous pollutants generally did not substantially influence the SO₂ risk estimate (Bremner et al., 1999; Kelsall et al., 1997; Kwon et al., 2001; Wong et al., 2001). However, one study by Cifuentes et al. (2000) did find that the SO₂ risk estimate was reduced substantially by adding any of CO, O₃, or NO₂ in the twopollutant model in Santiago, Chile. Again, the results from these single-city studies are too limited to exhibit a consistent pattern.

11 In summary, because of the lack of consistency in the way multipollutants were examined 12 (e.g., lags examined, combination of pollutants examined, model specification) and because of 13 the limited statistical power in individual cities, it is difficult to extract information that help 14 elucidate a pattern of confounding between SO_2 and other pollutants from these single-city 15 studies. The multipollutant results from multicity studies provide more useful information on 16 this issue. As noted before, the results from the multicity studies from the United States, Canada, 17 and Europe generally suggest that SO_2 mortality risk estimates may be confounded by 18 copollutants.

19 20

3.2.2 Cause-Specific Mortality Associated with Short-Term SO₂ Exposure

21 Assessing cause-specific mortality is complicated by the lack of clarifying information on 22 contributing causes of death. That is, attribution to one or the other of the more specific 23 cardiopulmonary causes may underplay contributions of chronic CVD to respiratory-related 24 deaths (e.g., a heart attack victim succumbing to acute pneumonia) or vice versa. Several 25 multicity studies provided risk estimates for broad cause-specific categories, typically respiratory 26 and cardiovascular mortality. A summary of these risk estimates, along with the all-cause 27 mortality estimates for comparison, are presented in Figure 3.2-3. These results from multicity 28 studies suggest that the mortality risk estimates for cardiovascular and respiratory causes were 29 generally larger than that for all-cause mortality, though in some cases the effects were not 30 statistically significant, possibly because of reduced statistical power by which to examine cause-31 specific associations. In these studies, the effect estimates for respiratory mortality were also

Figure 3.2-3. All-cause (nonaccidental) and broad cause-specific (respiratory and cardiovascular) SO₂ mortality risk estimates (95% CI) from multicity studies. Risk estimates are standardized per 10-ppb increase in 24-h average SO₂ concentrations.

*Note: Le Tertre et al. (2002) and Ballester et al. (2002) performed analyses using Poisson GAM with default convergence criteria.

found to be larger than the cardiovascular mortality risk estimates, suggesting a stronger association of SO₂ with respiratory mortality compared to cardiovascular mortality. However, this pattern was not unique to SO₂; other pollutants often showed similar patterns. There were numerous single-city studies that also examined broad specific causes (cardiovascular and respiratory), but the patterns were not always consistent, likely due to smaller sample size, or the lags reported were not consistent across the specific causes examined.

7 Some studies examined more specific causes within cardiovascular or respiratory causes. 8 In the Netherlands study (Hoek et al. 2001; reanalysis Hoek, 2003), the risk estimates for heart 9 failure (7.1% [95% CI: 2.6, 11.7] per 10-ppb increase in the average of 0- through 6-day lags of 10 24-h average SO₂) and thrombosis-related deaths (9.6% [95% CI: 3.1, 16.6]) were larger than 11 that for total cardiovascular (2.7% [95% CI: 1.3, 4.1]) causes. However, a similar pattern was 12 seen for PM₁₀, CO, and NO₂ as well. In the analysis by Goldberg et al. (2003) of Montreal data, 13 the risk estimates for death with underlying cause of CHF and those deaths classified as having 14 CHF 1 ear before death were compared. They did not find associations between air pollution 15 and those with underlying cause of CHF (e.g., SO₂ risk estimate was -0.1% [95% CI: -8.9, 9.6] 16 per 10-ppb increase in 24-h average SO₂ with a 1-day lag), but they found associations between 17 some of the air pollutants examined (i.e., CoH, SO₂, NO₂) and the deaths that were classified as 18 having CHF 1 year before death (SO₂ risk estimate was 5.4% [95% CI: 1.3, 9.5]). Again, the 19 association with the specific cause of death was not unique to SO₂. This pattern of association 20 between multiple pollutants (including, but not specific to, SO_2) and specific causes of deaths 21 was seen for an asthma mortality (Saez et al., 1999) cohort with severe asthma (Sunyer et al. 22 2002), a cohort of patients with intrauterine mortality (Pereira et al., 1998), and a cohort with 23 CHF (Kwon et al., 2001).

In summary, both cardiovascular and respiratory causes, as well as more specific causes or categories of death, have been shown to be associated with ambient SO₂ concentrations. However, since other pollutants also showed similar associations with these causes or categories, the possibility of confounding by these copollutants remains. While SO₂ may have contributed to these associations as part of the mixture of pollutants or as a surrogate index, it is difficult to evaluate the specificity of SO₂ effects on these specific causes of death.

30

1 **3.2.3** Evidence from an Intervention Study

2 Many time-series studies provide estimates of excess risk of mortality, but a question 3 remains as to the likelihood of a reduction in deaths when SO₂ levels are actually reduced. 4 Hedley et al. (2002) took advantage of a sudden change in regulation in Hong Kong in July 1990 5 that required all power plants and road vehicles to use fuel oil with a sulfur content of $\leq 0.5\%$ by 6 weight. The SO₂ levels after the intervention declined about 50% (from about 17 ppb to 8 ppb), but the levels for PM_{10} , NO₂, and SO_4^{2-} did not change and O₃ levels slightly increased. The 7 8 seasonal mortality analysis results showed that the apparent reduction in seasonal death rate 9 occurred only during the first winter, and this was followed by a rebound (i.e., higher than 10 expected death rate) in the following winter. Using Poisson regression of the monthly deaths, 11 the average annual trend in death rate significantly declined after the intervention for all causes 12 (2.1%), respiratory causes (3.9%), and cardiovascular causes (2.0%), but not from other causes. 13 These results seem to suggest that a reduction in SO₂ leads to an immediate reduction in deaths. 14 Hedley et al. (2002) estimated that the expected average gain in life expectancy per year due to 15 the lower SO₂ levels was 20 days for females and 41 days for males.

16 Interpreting these results is somewhat complicated by an upward trend in mortality across 17 the intervention point, which the authors noted was due to increased population size and aging. 18 The results suggest that such an upward trend is less steep after the introduction of low sulfur 19 fuel. While the Poisson regression model of monthly deaths does adjust for trend and seasonal 20 cycles, the regression model does not specifically address the influence of influenza epidemics, 21 which can vary from year to year. This issue also applies to the analysis of warm to cool season 22 change in death rates. The most prominent feature of the time-series plot (or the fitted annual 23 cycle of monthly deaths) presented in this study is the lack of a winter peak for respiratory and 24 all-cause mortality during the year immediately following the intervention. Much could be made 25 of this lack of a winter peak, but no discussion of the potential impact of (or a lack of) influenza 26 epidemics is provided. These issues make the interpretation of the estimated decline in upward 27 trend of mortality rate or the apparent lack of winter peak difficult.

Further, the decline in mortality following the intervention does not preclude the possibility that other constituents of the pollution mixture that share the same source as SO_2 is responsible for the adverse effects. Even though the PM_{10} levels before and after the intervention were stable in Hong Kong, it is possible that constituents that do not explain a major fraction of PM may have declined. Lippmann et al. (2006) mentioned that unpublished data from Hedley and coworkers reported large reductions in nickel and vanadium but not in other metals in Hong Kong after the intervention. SO₂ also may be serving as a modifier of the effect of respirable particles. Thus, while the Hong Kong intervention data are supportive of SO₂ mortality effects, the possibility of mortality effects by other constituents that are associated with SO₂ sources remains.

7 8

3.2.4 Summary of Effects of Short-Term SO₂ Exposure on Mortality

9 The 1982 AQCD could not resolve the relative effects of short-term exposure to PM and 10 SO₂ on mortality and suggested that the clearest mortality associations were seen when both 11 pollutants were at high levels (24-h average values of both BS and SO₂ exceeding 1000 μ g/m³ 12 [~400 ppb for SO₂]), and less so at lower ranges. The 1986 Secondary Addendum reviewed 13 more reanalyses of the London data and analyses of New York City, Pittsburgh, and Athens data, 14 but it concluded that there was not sufficient information to quantitatively determine 15 concentration-response relationships at lower concentrations of either PM or SO₂. However, in 16 the analysis of nonepisodic London data, there was an indication that mortality effects were seen 17 at BS levels as low as 150 to 200 μ g/m³.

18 Recent epidemiological studies have reported associations between mortality and SO_2 , 19 often at mean 24-h average levels of <10 ppb. The range of SO₂ all cause (nonaccidental) 20 mortality risk estimates is 0.4 to 2% per 10-ppb increase in 24-h average SO₂ in several large 21 multicity studies and meta-analyses. Limited information suggests that the extent of multiday 22 effects, if present, is not substantial. The risk estimates for more specific categories may be 23 larger. In the large multicity time-series studies, the SO₂ risk estimates were generally reduced 24 when copollutants, either PM indices and/or NO₂, were added in the model. Thus, some extent 25 of confounding among these pollutants is suggested.

The APHEA analysis of 12 European cities sought possible sources of heterogeneity in the city-specific risk estimates, but the only important effect modifier was the geographical area, with western cities showing larger SO_2 risk estimates than central eastern cities. However, this pattern was also seen for BS. Both SO_2 and BS showed slightly larger estimates in the warm season. 1 The intervention study from Hong Kong supports the idea that a reduction in SO₂ levels 2 results in a reduction in deaths, but this does not preclude the possibility that the causal agent is 3 not SO₂ but rather something else that is associated with SO₂ sources. Overall, the evidence that 4 SO₂ is causally related to mortality at current ambient levels is suggestive but limited by 5 potential confounding in the epidemiological data and the absence of strong biological 6 plausibility.

- 7 8
- 9

3.3 MORBIDITY ASSOCIATED WITH LONG-TERM SO₂ EXPOSURE

10 11

3.3.1 Respiratory Effects Associated with Long-Term Exposure to SO₂

12 In the 1982 AQCD, only a few studies provided sufficient quantitative evidence relating 13 respiratory symptoms or pulmonary functions changes to long-term exposure to SO₂. Briefly, a 14 study by Lunn et al. (1967) in Sheffield, England, provided the strongest evidence of an 15 association between pulmonary function decrements and increased frequency of lower 16 respiratory symptoms in 5- to 6-year-old children chronically exposed to ambient BS (annual level of 230 to 301 μ g/m³) and SO₂ levels (181 to 275 μ g/m³ [69 to 105 ppb]). A follow-up 17 18 study in 1968 by Lunn found no effect with much lower levels of BS (range: 48, 169 μ g/m³) and SO₂ (range: 94, 253 μ g/m³ [36, 97 ppb]); it was suggested that this might be due to insufficient 19 20 power to detect small health effect changes.

21 The 1986 Second Addendum presented three additional studies that examined the effects 22 of long-term exposure on respiratory health. A study by Ware et al. (1986) reported that respiratory symptoms were associated with annual average TSP in the range of ~ 30 to $150 \,\mu g/m^3$ 23 24 in children (n = 8,380) from six U.S. studies. Only cough was found to be significantly 25 associated with SO₂. Although the increase in symptoms did not appear concomitantly with any 26 decrements in lung function, this may indicate different mechanisms of effect. Other studies by 27 Chapman et al. (1985) and Dodge et al. (1985) also observed increased prevalence of cough 28 among children and young adults living in areas of higher SO_2 concentrations; however, it was 29 noted the observed effects might have been due to intermittent high SO₂ peak concentrations. 30 The 1982 AQCD noted no remarkable pulmonary pathological findings in animals 31 (monkeys and dogs) following chronic exposures to SO₂ at \leq 5.1 ppm; however, this could have 32 been due to the conventional light microscopic examination applied, which could not detect

alterations in surface membranes or cilia. Nasal mucosal alterations were observed in mice
 exposed to 10-ppm SO₂ for 72 h by inhalation. Lack of data on morphological effects of SO₂ at
 near ambient concentrations was noted.

Since the 1982 AQCD and the 1986 Second Addendum, long-term exposure studies
of SO₂ have investigated effects on asthma, bronchitis and respiratory symptoms, lung
function, and morphological effects. The epidemiological studies are summarized in Annex
Table AX5-6.

8

9

3.3.1.1 Asthma, Bronchitis, and Respiratory Symptoms

10 In the Six Cities Study of Air Pollution and Health, cross-sectional associations between 11 air pollutants and respiratory symptoms were examined in 5,422 white children aged 10 to 12 12 years old from Watertown, MA, St. Louis, MO, Portage, WI, Kingston-Harriman, TN, 13 Steubenville, OH, and Topeka, KS (Dockery et al., 1989). Annuals means of 24-h average SO₂ 14 concentrations ranged from 3.5 ppb in Topeka to 27.8 ppb in Steubenville. Except for O₃, the 15 correlations among pairs of pollution measures varied between 0.53 and 0.98. No associations 16 were observed between SO_2 and a variety of respiratory symptoms, including bronchitis, chronic 17 cough, chest illness, persistent wheeze, and asthma. Stronger associations were observed for PM 18 indices.

19 Dockery et al. (1996) examined the respiratory health effects of acid aerosols in 13,369 20 white children aged 8 to 12 years old from 24 communities in the United States and Canada 21 between 1988 and 1991. The city-specific annual mean SO₂ concentration was 4.8 ppb, with a 22 range of 0.2 to 12.9 ppb. With the exception of the gaseous acids, nitrous and nitric acid, none of 23 the particulate or gaseous pollutants, including SO₂, were associated with increased asthma or 24 any asthmatic symptoms. Stronger associations with particulate pollutants were observed for 25 bronchitis and bronchitic symptoms. For SO₂, the only significant association found was with 26 chronic phlegm, with an OR of 1.19 (95% CI: 1.00, 1.40) per 5-ppb increase in SO₂. 27 As part of the international SAVIAH (Small-Area Variation in Air Pollution and Health) 28 study, Pikhart et al. (2001) examined the respiratory health effects from long-term exposure to 29 SO_2 in children (n = 6,959) from two central European cities with high pollution levels (Prague,

30 Czech Republic, and Poznan, Poland). A novel technique was used to estimate the outdoor

31 concentrations of SO_2 at a small-area level. Outdoor SO_2 was measured by passive samplers at

32 130 sites in the two cities during 2-week periods. Concentrations of SO_2 at each location in the

1 study areas were estimated from these data by modeling using a geographic information system (GIS). The estimated mean exposure to outdoor SO₂ was 84 μ g/m³ (32 ppb), with a range of 66 2 to 97 μ g/m³ (25, 37 ppb), in Prague and 80 μ g/m³ (31 ppb), with a range of 44 to 140 μ g/m³ (17, 3 4 53 ppb) in Poznan. The prevalence of wheezing or whistling in the past 12 months was 5 associated with SO₂ (OR of 1.08 [95% CI: 1.03, 1.13] per 5-ppb increase in SO₂). Moreover, 6 the lifetime prevalence of wheezing or whistling (OR 1.03 [95% CI: 1.00, 1.07]) and lifetime 7 prevalence of physician-diagnosed asthma (OR 1.09 [95% CI: 1.00, 1.19]) also were associated 8 with SO₂ levels.

9 Pénard-Morand et al. (2005) examined the effect of long-term exposures to air pollution 10 and prevalence of exercise-induced bronchial reactivity (EIB), flexural dermatitis, asthma, 11 allergic rhinitis, and atopic dermatitis in 9,615 children aged 9 to 11 years in six French 12 communities. Using 3-year averaged concentrations of SO_2 , the investigators reported that the 13 prevalence of exercise-induced bronchial reactivity, lifetime asthma, and allergic rhinitis were 14 significantly associated with increases in SO_2 exposure. The estimated 3-year averaged 15 concentration of SO₂ was 4.6 μ g/m³ (2 ppb) in the low-exposure schools and 9.6 μ g/m³ (4 ppb) 16 in the high-exposure schools. In a single-pollutant model, the ORs were 2.37 (95% CI: 1.44, 17 3.77) for EIB and 1.58 (95% CI: 1.00, 2.46) for lifetime asthma per 5-ppb increase in SO₂. In this study, SO₂ was moderately correlated with PM_{10} (r = 0.76) but not with O₃ (r = -0.02). 18 19 Using a two-pollutant model that included PM₁₀, the associations of SO₂ with EIB and lifetime 20 asthma were fairly robust (<5% change). 21 Herbarth et al. (2001) performed a meta-analysis of three cross-sectional surveys 22 conducted in East Germany investigating the relationship between lifetime exposure (from birth 23 to completion of questionnaire survey) to SO₂ and TSP in children and the prevalence of chronic

bronchitis. Using a logistic model that included variables on parental predisposition (mother or
father with bronchitis) and environmental tobacco smoke exposure, the authors reported that the
OR for bronchitis due to a lifetime exposure to SO₂ was 3.51 (95% CI: 2.56, 4.82) (the
concentration change for which the OR was based was not presented). No associations were
found between TSP and the prevalence of bronchitis in children.
In a German study of 5,421 children, the annual mean SO₂ concentration was associated

with morning cough over the last 12 months, but not bronchitis (Hirsch et al., 1999). This study further observed that the association of SO_2 and other air pollutants with respiratory symptoms were stronger in nonatopic than in atopic children. The authors noted that these findings were in line with the hypothesis that these air pollutants induce nonspecific irritative rather than allergic inflammatory changes in the airway mucosa, as irritative effects would affect the clinical course in nonatopic children more strongly than in atopics whose symptoms are also determined by allergen exposure.

6 In a cross-sectional analysis, Heinrich et al. (2002) examined the influence of decreased 7 air pollution levels on respiratory symptoms in children aged 5 to 14 years (n = 7,632) in the 8 reunified Germany. Questionnaires were collected from the children during 1992-1993, 1995-9 1996, and 1998-1999 in three study areas. Improvements in air quality were associated with 10 decreasing prevalence of nonallergic respiratory symptoms. The effect estimates were stronger 11 among children without indoor exposures. For those without indoor exposures, ORs of 1.21 12 (95% CI: 1.11, 1.32) were observed for prevalence of bronchitis and 1.11 (95% CI: 1.02, 1.22) 13 for frequent colds per 5-ppb increase in the annual mean of SO₂. The authors concluded that the 14 decreasing prevalence of respiratory symptoms following decreases in air pollution levels might 15 indicate the reversibility of adverse health effects in children.

16 In France, Ramadour et al. (2000) performed a cross-sectional epidemiological survey of 17 2,445 children aged 13 to 14 years living in communities with contrasting levels of air pollution 18 to determine the relationship between long-term exposure to gaseous air pollutants and 19 prevalence rate of rhinitis, asthma, and asthma symptoms. The average SO_2 concentrations during the 2-month survey period ranged from 17.3 μ g/m³ (7 ppb) to 57.4 μ g/m³ (22 ppb) across 20 21 the seven communities. This study found no relationship between the mean levels of SO_2 , NO_2 , 22 or O_3 and the above-mentioned symptoms. Another study conducted in eight nonurban 23 communities in Austria observed no consistent associations between SO₂ and prevalence of 24 asthma and symptoms (Studnicka et al., 1997).

In California, Euler et al. (1987) studied the effects of long-term cumulative exposure to TSP and SO₂ on COPD symptoms in 7,445 nonsmoking non-Hispanic white adult participants in the Adventist Health Study. Using indices of cumulative exposure, this study reported that cumulative exposure levels of SO₂ above 400 ppb (the former California 24-h standard) resulted in an increased risk of chronic obstructive pulmonary disease symptoms. Exposure levels >400 ppb for 500 h/year resulted in an 18% increased risk of having COPD symptoms,

31 250 h/year, a 9% increased risk, and 100 h/year, a 3% risk.

1 Goss et al. (2004) conducted a cohort study to examine the effect of air pollutants on 2 11,484 patients (mean age 18.4 years) with cystic fibrosis. Study participants were enrolled in 3 the Cystic Fibrosis Foundation National Patient Registry in 1999-2000. Exposure was assessed 4 by linking air pollution values from ambient monitors with the patient's home ZIP code. During 5 the study period, the mean SO₂ concentration was 4.9 ppb (SD 2.6, IQR: 2.7, 5.9). This study 6 found no association between SO_2 and the odds of having two or more pulmonary exacerbations. 7 One of the limitations addressed by the authors was the lack of information regarding tobacco 8 use or environmental tobacco smoke, an important risk factor for pulmonary exacerbations.

9 Several studies that examined the effects of long-term exposure to SO_2 on asthma, 10 bronchitis, and respiratory symptoms observed positive associations in children, with the notable 11 exception of the Harvard Six Cities study. However, there are inconsistencies in the findings 12 observed, with some finding effects on bronchitic but not asthma symptoms and vice versa. A 13 major limitation of some studies is that subjects were asked to recall prevalence of symptoms in 14 the last 12 months or in a lifetime; such long recall periods may result in significant recall bias. 15 Overall, while the evidence is suggestive, the variety of outcomes examined and the 16 inconsistencies in the observed results make it difficult to assess the impact of long-term 17 exposure of SO₂ on respiratory health.

18 19

3.3.1.2 Lung Function

Two major U.S. studies, the Harvard Six Cities Study by Dockery et al. (1989) and a cross-sectional analysis of NHANES II data by Schwartz (1989), reported that no associations were observed between long-term exposure to SO₂ and lung function. Additional studies conducted in Europe observed mixed results.

24 In a longitudinal cohort study of 1,150 children in nine communities in Austria, Frischer 25 et al. (1999) examined the effect of long-term exposure to air pollutants on lung function. Lung 26 function was measured in the spring and fall over a 3-year period from 1994 through 1996. 27 Annual mean SO₂ concentrations ranged from 2 to 6 ppb across the nine communities. The authors reported no consistent associations between SO₂, PM₁₀, or NO₂ and lung function. 28 29 Horak et al. (2002a,b) extended the study of Frischer et al. (1999) with an additional year of data. The mean SO₂ concentration was 16.8 μ g/m³ (6 ppb) in the winter and 6.9 μ g/m³ (3 ppb) in the 30 31 summer. This study found a positive association between wintertime SO₂ concentrations and

32 changes in FVC, which became null with PM_{10} in a two-pollutant model.

1 Frye et al. (2003) observed changes in lung function parameters associated with declines 2 in SO₂ concentrations in a cross-sectional study of children (n = 2,493) conducted in East 3 Germany. During the period from 1992-1993 to 1998-1999, the annual mean SO₂ level dramatically declined from 113 μ g/m³ (42 ppb) to 6 μ g/m³ (2 ppb) and corresponding increases 4 5 in FVC and FEV₁ were observed. The annual mean of TSP declined from 79 μ g/m³ to 25 μ g/m³ as well. This study reported a 4.9% (95% CI: 0.7, 9.3) increase in FVC and a 3.0% (95% CI: 6 -1.1, 7.2) increase in FEV₁ per 100-µg/m³ (38 ppb) decrease in the annual mean of SO₂. Results 7 8 from this study indicated that a reduction of air pollution in a short time period may improve 9 children's lung function; however, the observed increases in lung function parameters were 10 likely not solely attributable to decreases in SO₂.

11 Ackermann-Liebrich et al. (1997) examined the effect of long-term exposure to air 12 pollutants in a cross-sectional population-based sample of adults aged 18 to 60 years old 13 (n = 9,651) residing in eight different areas in Switzerland (Study on Air Pollution and Lung 14 Diseases in Adults [SAPALDIA]). They observed a 1.2% decrease in FEV₁ per 109- μ g/m³ 15 (42 ppb) increase in SO_2 for adults. Significant associations also were observed for PM_{10} and 16 NO₂. The limited number of study areas and high intercorrelation between the pollutants made it 17 difficult to assess the effect of an individual pollutant. The authors concluded that air pollution 18 from fossil fuel combustion, which was the main source of air pollution for SO_2 , NO_2 , and PM_{10} 19 in Switzerland, was associated with decrements in lung function parameters in this study.

An animal toxicological study in rabbits that were exposed to 5-ppm SO_2 for 13 weeks beginning in the neonatal period (Douglas et al., 1994) did not observe any alterations in pulmonary function or respiratory parameters, i.e., lung resistance, dynamic compliance, transpulmonary pressure, tidal volume, respiration rate, minute volume. These results, taken together with the epidemiological evidence, do not indicate that long-term exposure to SO_2 has a detrimental effect on lung function.

26

27 **3.3.1.3** Morphological Effects

Three animal toxicological studies published since the 1982 AQCD reported some
histopathological changes in the respiratory system following acute (<24 h) to chronic
(>6 month) exposures and lesions were primarily observed in airways. No alveolar lesions
(including electron microscopic evaluation) were observed in guinea pigs exposed to 1-ppm SO₂

1 for 3 h/day for 6 days (Conner et al., 1985). No pulmonary or nasal lesions were observed in rats 2 exposed to 5-ppm SO₂ for 5 days/week for 4 weeks (Wolff et al., 1989). A weakness of the 3 study is that histopathological methods were not reported. Smith et al. (1989) exposed rats for 4 4 to 8 months to 1-ppm SO_2 and observed increased incidence of bronchiolar epithelial hyperplasia 5 and a small increase (12%) in numbers of nonciliated epithelial cells in terminal respiratory 6 bronchioles at 4 but not 8 months of exposure. A limitation of the study was the examination of 7 a single concentration, which does not allow for concentration-response assessment or 8 identification of a no-effect-level. The studies on the morphological effects are summarized in 9 Annex Table AX4-10.

10

11

3.3.2 Carcinogenic Effects Associated with Long-Term Exposure to SO₂

12 The 1982 AQCD concluded that little or no clear epidemiological evidence substantiated 13 the hypothesized links between SO_2 or other SO_x and cancer. From the toxicological studies, it was noted that while there were some indications of carcinogenicity for both SO_2 and SO_2 + 14 15 benzo[a]pyrene (B[a]P), complex exposure regimens, problematic dose determinations, and/or 16 inadequately reported experimental details led to the conclusion that SO_2 could only be 17 considered a suspect carcinogen/cocarcinogen. More recent studies on SO₂-related 18 carcinogenicity are summarized in Annex Tables AX5-7 (epidemiological studies) and AX4-11 19 (toxicological studies).

20 A limited number of recent epidemiological studies have investigated the relationship 21 between long-term exposure to SO_2 and lung cancer incidence. Nyberg et al. (2000) conducted a 22 case-control study of men aged 40 to 75 years with (n = 1,042) and without (n = 2,364) lung 23 cancer in Stockholm County, Sweden. They mapped residence addresses to a GIS database to 24 assign individual exposures to SO₂ from defined emission sources (mainly local oil-fueled 25 residential heating). Available SO_2 measurement data were used to calibrate the model. In this 26 study, SO_2 was considered an indicator of air pollution from residential heating. Exposure to 27 NO₂, considered to be a marker of traffic pollution, also was evaluated in this study. The 90th 28 percentile 30-year average SO₂ level was 78.20 μ g/m³ (30 ppb). After adjusting for potential 29 confounders (e.g., smoking, occupational exposures), long-term average heating-related SO₂ 30 exposure was not associated with an increase in risk of lung cancer. A weak association for the 31 30-year average traffic-related NO₂ exposure was observed.

Very similar results were reported in a Norwegian study by Nafstad et al. (2003). The
 study population is a cohort of 16,209 men who enrolled in a study of CVD in 1972. The
 Norwegian cancer registry identified 422 incident cases of lung cancer. SO₂ exposure data were
 modeled based on residence using data for observed concentrations and emission from point
 sources (e.g., industry and heating of buildings and private homes) and traffic. Once again, no
 association was observed between long-term exposure to SO₂ and lung cancer incidence.

7 The carcinogenic potential of SO₂ was examined more extensively in animal 8 toxicological studies. Gunnison et al. (1988) conducted a two-part study in which rats were 9 exposed either for 21 weeks (6 h/day, 5 days/week) to 0-, 10-, or 30-ppm SO₂, or for 21 weeks to 10 two tungsten-supplemented, molybdenum-deficient diets. This latter regimen induces a 11 condition of sulfite oxidase deficiency, resulting in elevated systemic levels of sulfite:bisulfite 12 relative to control values (e.g., in plasma, from 0 to 44 μ M; and in tracheal tissue, from 33 to 69 13 or 550 nmol/g wet wt.). Beginning with week 4, some groups from each regimen received 14 weekly tracheal installations of 1-mg B[a]P for 15 weeks. Overall results indicated that 15 squamous cell carcinoma was not induced, or in the B[a]P groups coinduced or promoted, by 16 SO₂ inhalation or elevated systemic sulfite:bisulfite. Due to the very high incidences of animals 17 with tumors in the groups exposed to only B[a]P(65/27, 63/72), carcinogenicity or 18 cocarcinogenicity of SO₂ or sulfite:bisulfite could only have been detected as a shortening of 19 tumor induction time and/or an increase in rate of tumor appearance, and neither was observed. 20 As noted by the authors, these findings do not support the hypothesis that SO₂ exposure might 21 enhance the carcinogenicity of B[a]P by elevating systemic sulfite:bisulfite that could generate 22 glutathione-S-sulfonates, which in turn could inhibit glutathione S-transferase (GST) and reduce 23 intracellular GSH and, thus, interfere with a major detoxication pathway.

24 Two similar studies were published that investigated the ability of 10 to 11 months of 25 exposure (16 h/day) to 4-ppm SO_2 , 6-ppm NO_2 , or their combination to affect the carcinogenicity 26 of either urban suspended PM (SPM) (Ito et al., 1997) or diesel exhaust particle (DEP) (Ohyama 27 et al., 1999) extract-coated carbon particles. The former study found that, while exposure to 28 SPM extract-coated carbon particles significantly increased pulmonary endocrine cell (PEC) 29 hyperplasia, coexposure to SO₂, NO₂, or their combination was without additional affect. Also, 30 irrespective of gas coexposure, SPM extract-coated carbon particles demonstrated a few PEC 31 papillomas versus control frequencies of zero.

September 2007

1 Using Syrian golden hamsters, Heinrich et al. (1989) investigated whether coexposure to 2 10-ppm SO₂ and 5-ppm NO₂ for 6 to 8 months (5 days/week, 19 hours/day) could enhance 3 tumorigenesis induced by a single subcutaneous injection of diethylnitrosamine (DEN) during 4 week 2. The combined gas exposure did not affect body weight gain and only minimally 5 shortened survival times. Compared to the DEN groups, serial sacrifices of gas-exposed animals 6 demonstrated progressively increasing numbers of tracheal mucosal cells and aberrant tracheal 7 cell cilia. In the lung, gas-mixture-related effects were largely limited to a progressing type of 8 alveolar lesion that involved a lining of bronchiolar epithelium and the appearance of pigment-9 containing AM and to a mild, diffuse thickening of the alveolar septa. Exposure to the combined 10 gases by itself did not induce tumors of the upper respiratory tract, nor did it enhance the 11 induction of such tumors by DEN.

In conclusion, the epidemiological studies did not provide any evidence that long-term exposure to SO_2 is associated with an increased risk of lung cancer. The toxicological studies indicate that any potential pathways of SO_x to induce carcinogenesis, cocarcinogenesis, or tumor promotion appear complex and may be highly situational. SO_2 and its derivatives appear unlikely to have significant carcinogenic potential.

- 17
- 18 19

3.3.3 Prenatal and Neonatal Outcomes Associated with Long-Term SO₂ Exposure

20 In recent years, the effects of prenatal and neonatal exposure to air pollution have been 21 examined by several investigators. The most common endpoints studied are low birth weight, 22 preterm delivery, and measures of intrauterine growth. Preterm birth and low birth weight may 23 result in serious long-term health outcomes for the infant. Preterm birth is the leading cause of 24 infant mortality and is a major determinant of a variety of adverse neurodevelopmental outcomes 25 and chronic respiratory effects (Berkowitz and Papiernik, 1993). Low birth weight has also been 26 linked with increased risk of infant mortality and morbidity. Additional studies have examined 27 sudden infant death syndrome (SIDS) and neonatal hospitalizations. Epidemiological studies of 28 ambient SO_2 effects on prenatal and neonatal exposure are summarized in Annex Table AX5-8. 29 Usually, these studies have used routinely collected air pollution data and birth

certificates from a given area for their analysis. In evaluating the results of these studies, the
limitations of both fixed site monitoring for routine air pollution and the limitations of data on
birth certificates must be kept in mind. The reliability and validity of birth certificate data has

been reviewed (Buescher et al., 1993; Piper et al., 1993) and found to vary in degrees of
reliability by specific variables. Variables rated the most reliable included birth weight, maternal
age, race, and insurance status. Gestational age, parity, and delivery type (vaginal versus
cesarean) were reasonably reliable, while obstetrical complications and personal exposures such
as smoking and alcohol consumption, were not.

6 While most studies analyzed average SO₂ exposure for the whole pregnancy, many also 7 considered exposure during specific trimesters or other time periods. Fetal growth, for example, 8 is much more variable during the third trimester. Thus, studies of fetal growth might anticipate 9 that exposure during the third trimester would have the greatest likelihood of an association. 10 However, growth can also be affected through placentation, which occurs in the first trimester. 11 Similarly, preterm delivery might be expected to be related to exposure early in pregnancy 12 affecting placentation, or through acute effects occurring just prior to delivery.

13 Epidemiological studies examining the effects of air pollutants on low birth weight are 14 summarized in Figure 3.3-1. Maisonet et al. (2001) examined the association between air 15 pollution and low birth weight in six northeastern cities of the United States, i.e., Boston, MA, 16 Hartford, CT, Philadelphia, PA, Pittsburgh, PA, Springfield, MA, and Washington, DC. The 17 study population consisted of 89,557 singleton, term live births (37 to 44 weeks of gestation) 18 born between January 1994 and December 1996. Low birth weight was classified as <2500 g. 19 This large multicity study observed an association between low birth weight and SO_2 20 concentrations among whites during each trimester. This association was not robust to the 21 inclusion of all races and ethnicities. A consistent concentration-response relationship was not 22 observed.

An increased risk for low birth weight associated with ambient SO₂ concentrations was reported by Dugandzic et al. (2006) in a large cohort study of 74,284 women with term, singleton births from 1988 through 2000 in Nova Scotia, Canada. The mean 24-h average SO₂ concentration over the study period was 10 ppb (IQR 7). These investigators found that SO₂ concentrations during the first trimester, but not the other two trimesters, were associated with increased risk of low birth weight. The effect estimate was 1.14 (95% CI: 1.04, 1.26) per 5-ppb increase in SO₂ level.

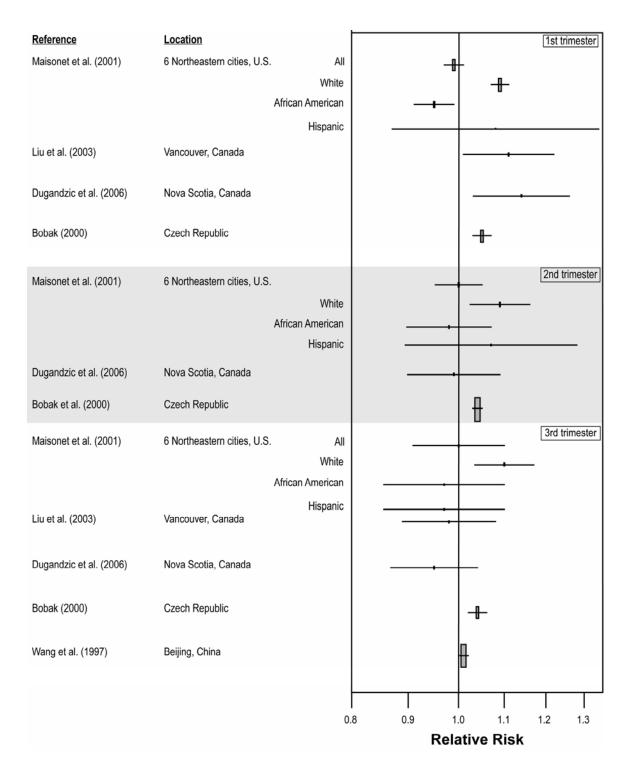


Figure 3.3-1.Relative risks (95% CI) for low birth weight, grouped by trimester of
SO2 exposure. Risk estimates are standardized per 5-ppb increase in
SO2 concentrations. The size of the box of the central estimate
represents the relative weight of that estimate based on the width of
the 95% CI.

1 Liu et al. (2003) found similar results in a study of pregnancy outcomes and air pollution 2 in Vancouver, Canada. The mean 24-h average SO₂ concentration was 4.9 ppb (IQR 7.7) from 3 1985 to 1998. Maternal exposure during the first month was associated with an increased risk of 4 low birth weight (OR 1.11 [95% CI: 1.01, 1.22]). Additional studies from the United States, 5 Europe, Latin America, and Asia have reported positive associations between low birth weight 6 and maternal exposure during the first (Bell et al., 2007; Bobak, 2000; Ha et al., 2001; 7 Mohorovic, 2004; Yang et al., 2003b), second (Bobak, 2000; Gouveia et al., 2004; Lee et al., 8 2003b), and third (Bobak, 2000; Lin et al., 2004b; Wang et al., 1997) trimesters.

9 Preterm delivery, intrauterine growth retardation (IUGR), and birth defects are additional 10 adverse birth outcomes that have been associated with ambient SO₂ levels. In a time-series 11 analysis using data from four Pennsylvania counties, Sagiv et al. (2005) reported that the mean 12 6-week SO_2 exposure prior to birth was associated with increased risk of preterm birth with a 13 relative risk (RR) of 1.05 (95% CI: 1.00, 1.10) per 5-ppb increase in SO₂. A 5-ppb increase in 14 SO₂ concentrations 3 days before birth was associated with an RR of 1.02 (95% CI: 0.99, 1.05). 15 The authors discussed two plausible mechanisms for the effects of air pollution on preterm birth: 16 (1) changes in blood viscosity due to inflammation as a result of air pollution (citing Peters et al., 17 1997), and (2) maternal infection during pregnancy as a consequence of impaired immunity from 18 air pollution exposure. Liu et al. (2003) reported that SO₂ exposure during the last month of 19 pregnancy was associated with preterm birth with an OR of 1.09 (95% CI: 1.01, 1.19) for a 20 5-ppb increase in SO₂, in Vancouver, Canada. Similar results were found for studies conducted 21 in the Czech Republic (Bobak, 2000), Korea (Leem et al., 2006), and Beijing (Xu et al., 1995). Liu et al. (2003) further reported that SO₂ exposure during the last month of pregnancy 22 23 was associated with IUGR (OR = 1.07 [95% CI: 1.01, 1.13]). However, in a later study in the 24 Canadian cities of Calgary, Edmonton, and Montreal, Liu et al. (2006) did not observe 25 associations between maternal exposure to SO₂ and increased risk of IUGR. 26 Pereira et al. (1998) found a positive association between SO_2 and intrauterine mortality 27 in São Paulo, Brazil, during a 2-year period, though the effect was sensitive to model 28 specifications and did not support a concentration-response relationship. The most robust 29 association was observed for an index of three gaseous pollutants (i.e., NO₂, SO₂, CO) with 30 mortality.

1 Gilboa et al. (2005) conducted a population-based case-control study to investigate the 2 association between maternal exposure to air pollutants during weeks 3 through 8 of pregnancy 3 and the risk of selected cardiac birth defects and oral clefts in live births and fetal deaths between 4 1997 and 2000 in seven Texas counties. When the highest quartile of exposure was compared to 5 the lowest, the authors observed a positive association between SO₂ and isolated ventricular 6 septal defects (OR = 2.16 [95% CI: 1.51, 3.09]). This study supports the notion that the 7 developing embryo and growing fetus constitute a subpopulation susceptible to air pollution 8 exposure.

9 Several studies have examined adverse health outcomes in relation to SO_2 concentrations 10 during the neonatal period. Dales et al. (2006) evaluated hospitalizations for respiratory 11 disorders in neonates <4 weeks of age from hospitals in 11 large Canadian cities during a 15-year 12 study period (population-weighted average 24-h average SO₂ of 4.3 ppb). They observed a 5.5% 13 (95% CI: 2.8, 8.3) increase in respiratory hospitalizations associated with a 10-ppb increase in 24-h average SO₂ concentrations with a 2-day lag. This effect was slightly attenuated after 14 15 adjusting for PM_{10} and gaseous copollutants. To investigate the influence of ambient SO_2 16 concentrations on SIDS, Dales et al. (2004) conducted a time-series analysis comparing daily 17 rates of SIDS and daily SO₂ concentrations from 12 large Canadian cities during a 16-year 18 period. The mean 24-h average SO₂ level across the 12 cities was 5.51 ppb (IQR 4.92). There 19 was an 18.0% (95% CI: 4.4, 33.4) increase in SIDS incidence for a 10-ppb increase in 24-h 20 average SO₂ levels. The authors concluded that the effect of SO₂ was independent of 21 sociodemographic factors, temporal trends, and weather.

In summary, studies on birth outcomes have found suggestive positive associations 22 23 between SO₂ exposure and low birth weight. While most of these studies adequately controlled 24 for maternal education, parity, age, and sex of child, many could not adjust for socioeconomic 25 status, occupational exposures, indoor pollution levels, maternal smoking, alcohol use, or 26 prenatal care. This may make comparisons across studies difficult to interpret. Additional 27 limitations affecting the interpretation of these studies is a lack of evidence for biological 28 plausibility of an effect, inconsistencies across trimesters of pregnancy, and a lack of evidence to 29 evaluate confounding by copollutants. The limited number of studies addressing preterm 30 delivery, IUGR, birth defects, neonatal hospitalizations, and infant mortality make it difficult to 31 draw conclusions regarding these outcomes.

1

3.4

MORTALITY ASSOCIATED WITH LONG-TERM SO₂ EXPOSURE

At the time of the 1982 AQCD, the available studies on the effects of long-term exposure to SO_2 on mortality were all ecological cross-sectional studies. This study design could not take into consideration such confounders as cigarette smoking, occupational exposures, and social status. In addition, there were questions regarding how representative the aerometric data used were for community exposure. Therefore, it was concluded that the epidemiological studies did not provide valid quantitative data relating respiratory disease or other types of mortality to longterm (annual average) exposures to SO_2 or PM.

9 The 1986 Secondary Addendum reviewed more studies of this type, with information on more detailed components of PM (inhalable and fine particles and particulate SO_4^{2-}). While 10 some studies suggested importance of the size of PM, the fundamental problem of the study 11 12 design made it difficult to interpret the risk estimates. The 1986 Secondary Addendum also 13 reviewed a Japanese study in which the death rates from asthma and chronic bronchitis in a 14 highly polluted section of Yokkaichi, an industrial city with large SO₂ emissions from the largest 15 oil-fired power plant in Japan, were compared with those in a less polluted area of the same city. 16 SO levels in the polluted harbor area ranged from around 1.0 to 2.0 mg/day (annual average) 17 during 1964 through 1972 and then steadily declined to less than 0.5 mg/day in 1982. This is in 18 contrast to levels consistently <0.3 mg/day in the low pollution areas throughout 1967 through 19 1982. Annual average levels for other pollutants (i.e., NO₂, TSP, oxidants) monitored in the high 20 pollution area were consistently low from 1974 through 1982. The results indicated elevated 21 rates of chronic bronchitis mortality in the highly polluted area compared to the less polluted 22 area, but the 1986 Secondary Addendum could not conclude that this was due to SO₂ alone, because SO_4^{2-} or other sulfur agents such as H_2SO_4 could have been responsible. 23

Several, more recent studies have examined long-term exposure effects of air pollution, including SO₂, on mortality. These studies are summarized in Annex Table AX5-9. As with short-term exposure studies, the focus of most of these studies was mainly on PM though some focused on traffic-related air pollution. They all used Cox-proportional hazards regression models with adjustment for potential confounders. The designs of these studies are epidemiologically better than earlier cross-sectional studies in that the outcome and most of the potential confounders (e.g., smoking history, occupational exposure) are measured on an individual basis. However, the geographic scale and method for exposure estimates varied
 across these studies.

4 3.4.1 Associations of Mortality and Long-Term SO₂ Exposure in Key
 5 Studies

6 7

8

3

3.4.1.1 U.S. Cohort Studies

9 Harvard Six Cities Studies

10 Dockery et al. (1993) conducted a prospective cohort study to study the effects of air 11 pollution with the main focus on PM components in six U.S. cities. These cities were chosen 12 based on the levels of air pollution, with Portage, WI and Topeka, KS representing the less 13 polluted cities and Steubenville, OH representing the most polluted city. Mean SO₂ levels 14 ranged from 1.6 ppb in Topeka to 24.0 ppb in Steubenville from 1977 to 1985. Cox proportional hazards regression was conducted with data from a 14- to 16-year follow-up of 8,111 adults in 15 16 the six cities. Dockery et al. reported that lung cancer and cardiopulmonary mortality were more strongly associated with the levels of inhalable and fine PM and SO_4^{2-} particles than with the 17 18 levels of TSP, SO₂, NO₂, or acidity of the aerosol. 19 Krewski et al. (2000) conducted a sensitivity analysis of the Harvard Six Cities study and

examined associations between gaseous pollutants (i.e., O_3 , NO_2 , SO_2 , and CO) and mortality. SO₂ showed positive associations with total (RR = 1.05 [95% CI: 1.02, 1.09] per 5-ppb increase in the average SO₂ over the study period) and cardiopulmonary (1.05 [95% CI: 1.00, 1.10]) deaths, but in this dataset SO₂ was highly correlated with PM_{2.5} (r = 0.85), $SO_4^{2^-}$ (r = 0.85), and NO_2 (r = 0.84).

25

26 American Cancer Society Cohort Studies

Pope et al. (1995) investigated associations between long-term exposure to PM and the mortality outcomes in the American Cancer Society (ACS) cohort. Ambient air pollution data from 151 U.S. metropolitan areas in 1981 were linked with individual risk factors in 552,138 adults who resided in these areas when enrolled in the prospective study in 1982. Death outcomes were ascertained through 1989. $PM_{2.5}$ and SO_4^{2-} were associated with total, cardiopulmonary, and lung cancer mortality, but not with mortality for all other causes. Gaseous pollutants were not analyzed in the 1995 Pope et al. study. Krewski and co-investigators

1 (Krewski et al., 2000; Jerrett et al., 2003) conducted an extensive sensitivity analysis of the Pope 2 et al. (1995) ACS data, augmented with additional gaseous pollutants data. The mean SO_2 3 concentrations were 7.18 ppb in the warm season (April to September) and 11.24 ppb in the cool 4 season (October to March). Among the gaseous pollutants examined, only SO_2 showed positive 5 associations with mortality. The relative risk estimates for total mortality was 1.06 (95% CI: 6 1.05, 1.07) per 5-ppb increase in the annual average SO₂. Analysis using SO₂ measured in 7 different seasons produced a somewhat higher estimate for the warm season than that for the 8 cool season (7% compared to 5% per 5-ppb increase). Although the subjects in the ACS cohort 9 came from all regions of the United States, the majority of the cities fall in the eastern United States, where both SO₂ and SO₄^{2^-} tend to be higher. PM_{2.5} levels are also higher in the East. To 10 11 address the influence of these spatial patterns, which may confound associations between 12 mortality and these pollutants, Krewski et al. (2000) conducted extensive two-stage regression 13 modeling. In these models, the association between SO_2 and mortality persisted after adjusting for SO_4^{2-} , $PM_{2.5}$, and other variables. For example, in the spatial filtering model (which resulted 14 in the largest reduction of SO₂ risk estimate when SO₄²⁻ was included), the SO₂ total mortality 15 16 RR estimate was 1.07 (95% CI: 1.03, 1.11) in the single-pollutant model and 1.04 (95% CI: 1.02, 1.06) with SO_4^{2-} in the two-pollutant model. The risk estimates for $PM_{2.5}$ and SO_4^{2-} were 17 diminished when SO₂ was included in the models. The results also showed that SO₂ risk 18 19 estimates were generally insensitive to adjustment for spatial correlation. Thus, these results 20 suggest that the association between SO₂ and mortality may be confounded with PM, but the association cannot be accounted for by $PM_{2.5}$ or SO_4^{2-} alone. Krewski et al. (2000) noted that 21 22 their reanalysis of the ACS and Harvard Six Cities studies suggested that mortality might be 23 attributed to more than one component of the complex mixture of ambient air pollutants in urban 24 areas in the United States. 25 The original Pope et al. (1995) study and the Krewski et al. (2000) reanalysis both used

the air pollution exposure estimates that are based on the average over the Metropolitan Statistical Area (MSA), which consists of multiple counties. To investigate the effects of geographic scale over which the air pollution exposures are averaged, Willis et al. (2003) reanalyzed the ACS cohort data using the exposure estimates averaged over the county scale, and compared the results with those based on the MSA-scale average exposure. Less than half of the cohort used in the MSA-based study was used in the county-scale based analysis, because of the

limited availability of SO_4^{2-} monitors and because of the loss of subjects with the use of five-1 2 digit ZIP codes. The mean (9.3 ppb versus 10.7 ppb) and range (0.0 to 29.3 ppb versus 0.0 to 3 27.2 ppb) of the MSA- and county-level SO₂ data sets were similar. In the analysis comparing the two-pollutant model with SO_4^{2-} and SO_2 , they found that the inclusion of SO_2 reduced SO_4^{2-} 4 risk estimates substantially (>25%) in the MSA-scale model but not substantially (<25%) in the 5 county-scale model. In the MSA-level analysis (with 113 MSAs), the SO₂ RR estimate was 1.04 6 (95% CI: 1.02, 1.06) per 5-ppb increase, with SO_4^{2-} in the model. In the county-level analysis 7 (91 counties) with SO_4^{2-} in the model, the corresponding estimate was smaller (1.02 [95% CI: 8 9 1.00, 1.05]). It should also be noted that the correlation between covariates are different between the MSA-level data and county-level data. The correlation between SO_2 and SO_4^{2-} was 0.48 in 10 the MSA-level data, but it was 0.56 in the county-level data. The correlation between poverty 11 12 rate and SO₂ was -0.16 in the MSA-level data, but it was 0.15 in the county-level data. Thus, the extent of confounding between SO₂ and PM components as well as among other covariates in 13 14 the model can be affected by the geographic scale of aggregation of exposure estimates. It is not 15 clear, however, if the smaller geographic scale increases or decreases exposure characterization 16 error for SO₂, because a certain extent of smoothing (averaging) over distance may reduce very 17 local concentration peaks that are not relevant to the city-wide population.

Pope et al. (2002) extended analysis of the ACS cohort with double the follow-up time (to 1998) and triple the number of deaths compared to the original Pope et al. (1995) study. In addition to $PM_{2.5}$, all the gaseous pollutants were retrieved for the extended period and analyzed for their associations with death outcomes. As in the 1995 analysis, the air pollution exposure estimates were based on the MSA-level averages. $PM_{2.5}$ was associated with total,

cardiopulmonary, and lung cancer mortality but not with deaths for all other causes. SO_2 was associated with all the mortality outcomes, including all other causes of deaths. The SO_2 RR estimate for total mortality was 1.03 (95% CI: 1.02, 1.05) per 5-ppb increase (1982 to 1998 average). The association of SO_2 with mortality for all other causes ($SO_4^{2^-}$ also showed this pattern) makes it difficult to interpret the risk estimates. The sensitivity analysis by Krewski et al. (2000) did not provide SO_2 risk estimates for all other causes, and it is not clear whether

29 this pattern is found in other data sets.

30

1 Women's Health Initiative Cohort Study

Miller et al. (2007) studied 65,893 postmenopausal women between the ages of 50 and 79 years without previous CVD in 36 U.S. metropolitan areas from 1994 to 1998. They examined the association between one or more fatal or nonfatal cardiovascular events and the air pollutant concentrations. Subjects' exposures to air pollution were estimated by assigning the annual mean levels of air pollutants measured at the nearest monitor to the location of residence on the basis of its five-digit ZIP code centroid, which allowed estimation of effects due to both within-city and between-city variation of air pollution (this was only done for $PM_{2.5}$).

9 A total of 1,816 women had one or more fatal or nonfatal cardiovascular events, 10 including 261 deaths from cardiovascular causes. Hazard ratios (HR) for the first cardiovascular 11 event were estimated. The results for models that only included subjects with non-missing 12 exposure data for all pollutants (n = 28,402 subjects, resulting in 879 CVD events) are described 13 here. In the single-pollutant models, PM_{2.5} showed the strongest associations with the 14 cardiovascular events by far among the pollutants (HR = 1.24 [95% CI: 1.04, 1.48] per $10-\mu$ g/m³ increase in annual average), followed by SO₂ (1.07 [95% CI: 0.95, 1.20] per 5-ppb 15 16 increase in the annual average). In the multipollutant model where all the pollutants (i.e., $PM_{2.5}$, 17 PM_{10-2.5}, CO, SO₂, NO₂, O₃) were included in the model, the PM_{2.5} association with overall 18 cadiovascular events was even stronger (1.53 [95% CI: 1.21, 1.94]). The association with SO₂ 19 also became stronger (1.13 [95% CI: 0.98, 1.30]). Correlations among these pollutants were not 20 described and, therefore, the extent of confounding among these pollutants in these associations 21 could not be examined, but PM_{2.5} clearly was the best predictor of cardiovascular events. Miller 22 et al. (2007) did not report the associations between SO_2 with cardiovascular mortality. 23 However, because the PM2.5 HR for cardiovascular deaths was even larger than that for the 24 overall cardiovascular events, it also seems possible that this may be the case for SO_2 , though the 25 concern for potential confounding remains.

26

27

The EPRI-Washington University Veterans' Cohort Mortality Studies

Lipfert et al. (2000) conducted an analysis of a national cohort of ~70,000 male U.S. military veterans who were diagnosed as hypertensive in the mid 1970s and were followed up for about 21 years (up to 1996). This cohort was 35% black and 57% were current smokers (81% of the cohort had been smokers at one time). $PM_{2.5}$, PM_{10} , $PM_{10-2.5}$, TSP, SO_4^{2-} , CO, O₃, NO₂, SO₂, and lead were examined in this analysis. No mean or median level of SO₂ was reported. The

1 county of residence at the time of entry to the study was used to estimate exposures. Four 2 exposure periods (1960-1974, 1975-1981, 1982-1988, and 1989-1996) were defined, and deaths 3 during each of the three most recent exposure periods were considered. The results for SO₂ were presented only qualitatively as part of their preliminary screening regression results. Lipfert 4 5 et al. (2000) noted that lead and SO_2 were consistently negative and were not considered further. 6 They also noted that the pollution risk estimates were sensitive to the regression model 7 specification, exposure periods, and the inclusion of ecological and individual variables. The 8 authors reported that indications of concurrent mortality risks were found for NO_2 and peak O_3 .

9 Lipfert et al. (2006a) examined associations between traffic density and mortality in the 10 same cohort, whose follow-up period was extended to 2001. As in their 2000 study, four 11 exposure periods were considered but including more recent years. The 95th percentiles of daily 12 average in each of the exposure periods were considered for SO₂. They reported that traffic 13 density was a better predictor of mortality than ambient air pollution variables with the possible 14 exception of O₃. The log-transformed traffic density variable was only weakly correlated with 15 SO_2 (r = 0.32) and PM_{2.5} (r = 0.50) in this data set. For the 1997-2001 data period (apparently 16 this was the only period in which SO₂ was considered), the estimated mortality relative risk for 17 SO₂ was 0.99 (95%CI: 0.97, 1.01) per 5-ppb increase in a single-pollutant model. The two-18 pollutant model with the traffic density variable did not affect SO₂ risk estimate. Interestingly, 19 as the investigators pointed out, the risk estimates due to traffic density did not vary appreciably 20 across these four periods. They speculated that other environmental factors such as tire particles, 21 traffic noise, and spatial gradients in socioeconomic status might have been involved. 22 Lipfert et al. (2006b) further extended analysis of the veterans' cohort data to include the

EPA's Speciation Trends Network (STN) data, which collected chemical components of PM_{2.5}.
They analyzed the STN data for year 2002, again using county-level averages. PM_{2.5} and

25 gaseous pollutants data for 1999 through 2001 were also analyzed. As in the previous Lipfert

26 et al. (2006a) study, traffic density was the most important predictor of mortality, but

associations were also seen for elemental carbon, vanadium, nickel, and nitrate. O₃, NO₂, and

- 28 PM_{10} also showed positive but weaker associations. The risk estimate for SO₂ was essentially
- 29 the same as that reported in the Lipfert et al. (2006a) analysis (RR = 0.99 [95% CI: 0.96, 1.01]
- 30 per 5 ppb) in a single-pollutant model. Multipollutant model results were not presented for SO₂.
- 31

1 Seventh-day Adventist Study

2 Abbey et al. (1999) investigated associations between long-term ambient concentrations 3 of PM₁₀, O₃, NO₂, SO₂, and CO (1973 through 1992) and mortality (1977 through 1992) in a 4 cohort of 6,338 nonsmoking California Seventh-day Adventists. Monthly indices of ambient air 5 pollutant concentrations at 348 monitoring stations throughout California were interpolated to 6 ZIP code centroids according to home or work location histories of study participants, 7 cumulated, and then averaged over time. They reported associations between PM_{10} and total 8 mortality for males and nonmalignant respiratory mortality for both sexes. SO_2 was not 9 associated with total (RR = 1.07 [95% CI: 0.92, 1.24] for male and 1.00 [95% CI: 0.88, 1.14] 10 for female per 5-ppb increase in multiyear average SO_2), cardiopulmonary, or respiratory 11 mortality for either sex. Lung cancer mortality showed large risk estimates for most of the 12 pollutants in either or both sexes, but the number of lung cancer deaths in this cohort was very 13 small (12 for female, 18 for male) and, therefore, it is difficult to interpret these estimates.

14 15

3.4.1.2 European Cohort Studies

16 Nafstad et al. (2004) investigated the association between mortality and long-term 17 exposure to air pollution exposure in a cohort of Norwegian men followed from 1972-1973 18 through 1998. Data from 16,209 men (aged 0 to 49 years) living in Oslo, Norway, in 1972-1973 19 were linked with data from the Norwegian Death Register and with estimates of the average 20 annual air pollution levels at the participants' home addresses. PM was not considered in this 21 study because measurement methods changed during the study period. Exposure estimates for 22 nitrogen oxides (NO_x) and SO₂ were constructed using models based on subject addresses, 23 emission data for industry, heating, and traffic, and measured concentrations. While NO_x was 24 associated with total, respiratory, lung cancer, and ischemic heart disease deaths, SO₂ did not 25 show any associations with mortality. The authors noted that the SO_2 levels were reduced by a 26 factor of 7 during the study period (from 5.6 ppb in 1974 to 0.8 ppb in 1995), whereas NO_x did 27 not show any clear downward trend. The very low levels of SO_2 may be related to the lack of 28 association in this data set.

Filleul et al. (2005) investigated long-term effects of air pollution on mortality in 14,284 adults who resided in 24 areas from seven French cities when enrolled in the PAARC (Air Pollution and Chronic Respiratory Diseases) survey in 1974. Daily measurements of SO₂, TSP, BS, NO₂, and NO were made in the 24 areas for 3 years (1974 through 1976). Models were run

1 before and after exclusion of six area monitors influenced by local traffic as determined by a 2 $NO:NO_2$ ratio of > 3. Before exclusion of the six areas, none of the air pollutants was associated 3 with mortality outcomes. After exclusion of these areas, analyses showed associations between 4 total mortality and TSP, BS, NO₂, and NO but not SO₂ (1.01 [95% CI: 0.97, 1.06] per 5-ppb 5 multiyear average) or acidimetric measurements. From these results, the authors noted that 6 inclusion of air monitoring data from stations directly influenced by local traffic could 7 overestimate the mean population exposure and bias the results. It should be noted that SO_2 8 levels in these French cities declined markedly between the 1974 through 1976 period and the 9 1990 through 1997 period by a factor of 2 to 3, depending on the city. The changes in air 10 pollution levels over the study period complicate interpretation of reported risk estimates.

- 11
- 12

3.4.1.3 Cross-Sectional Analysis Using Small Geographic Scale

13 Elliott et al. (2007) examined associations of BS and SO₂ with mortality in Great Britain 14 using a cross-sectional analysis. However, unlike the earlier ecological cross-sectional mortality 15 analyses in the United States in which mortality rates and air pollution levels were compared 16 using large geographic boundaries (i.e., MSAs or counties), in the Elliot et al. analysis, the 17 mortality rates and air pollution were compared using a much smaller geographic unit, the electoral ward, with a mean area of 7.4 km^2 and a mean population of 5,301 per electoral ward. 18 19 Death rates were computed for four successive 4-year periods from 1982 to 1994 and associated 20 with 4-year exposure periods starting in 1966 to 1970 and ending in 1990 to 1994. The number 21 of deaths from all causes in the 10,520 wards from 1982 to 1994 was 420,776. Of note, SO₂ 22 levels declined from 41.4 ppb in the 1966 to 1970 period to 12.2 ppb in 1990 to 1994. This type 23 of analysis does not allow adjustments for individual risk factors, but the study did adjust for 24 socioeconomic status data available for each ward from the 1991 census. Social deprivation and 25 air pollution were more highly correlated in the earlier exposure windows. They observed 26 associations for both BS and SO₂ and mortality outcomes. The estimated effects were stronger 27 for respiratory illness than other causes of mortality for the most recent exposure period and 28 most recent mortality period (when pollution levels were lower). The adjustment for social 29 deprivation reduced the risk estimates for both pollutants. The adjusted mortality risk estimates 30 for SO_2 for the pooled mortality periods using the most recent exposure windows were 1.021 31 (95% CI: 1.018, 1.024) for all causes, 1.015 (95% CI: 1.011, 1.019) for cardiovascular, and 32 1.064 (95% CI: 1.056, 1.072) for respiratory causes per 5-ppb increase in SO₂. The effect

1 estimates for the most recent mortality period using the most recent exposure windows were 2 larger. Simultaneous inclusion of BS and SO_2 reduced risk estimates for BS but not SO_2 . Elliott 3 et al. (2007) noted that the results were consistent with those reported in the Krewski et al. 4 (2000) reanalysis of the ACS study. This analysis was ecological, but the exposure estimates in 5 the smaller area compared to that in the U.S. cohort studies may have resulted in less exposure 6 misclassification error, and the large underlying population appears to be reflected in the narrow 7 confidence bands of risk estimates. The results from this study suggest an association between 8 long-term exposures (especially in recent years) to SO_2 and mortality.

9 10

3.4.1.4 Summary of Risk Estimates from Long-Term Exposure Studies

11 Figure 3.4-1 summarizes the SO₂ risk estimates per 5-ppb increase in the annual (or 12 longer period) average SO₂ for total mortality in the studies reviewed above. The overall range 13 of RRs spans 0.97 to 1.07, but considering the precision of estimates (width of confidence 14 bands), relevance to the U.S. setting, representativeness of study population, and the extent of 15 sensitivity analyses conducted of the data, the analyses of the Harvard Six Cities and the ACS 16 cohort data likely provide the risk estimates that are most useful for evaluating possible health 17 effects in the United States. This narrows the range of RRs to 1.02 to 1.07. Note that each of the 18 U.S. cohort data has its own advantages and limitations. The Harvard Six Cities data have a 19 small number of exposure estimates, but the location of the monitors were chosen carefully for 20 epidemiological purposes. The ACS cohort had far more subjects, but the population was more 21 highly educated than the representative U.S. population. Since educational status appeared to be 22 an important effect modifier of air pollution effects in both studies, the overall effect estimate for 23 the ACS cohort may underestimate that for the more general population.

Another important issue that these studies could not resolve was the possible confounding among PM indices and SO₂. The possibility that the observed effects may not be due to SO₂, but other constituents that come from the same source as SO₂, cannot be ruled out. In these longterm exposure studies, the strong correlation observed between SO₂ and PM is mainly because both SO₂, which tends to be locally impacted, and SO_4^{2-} , which is regionally distributed, tend to be higher in the eastern United States. Despite the geographic variation in the studies, most concentrated on major cities in the eastern United States, even the nationwide ACS cohort.

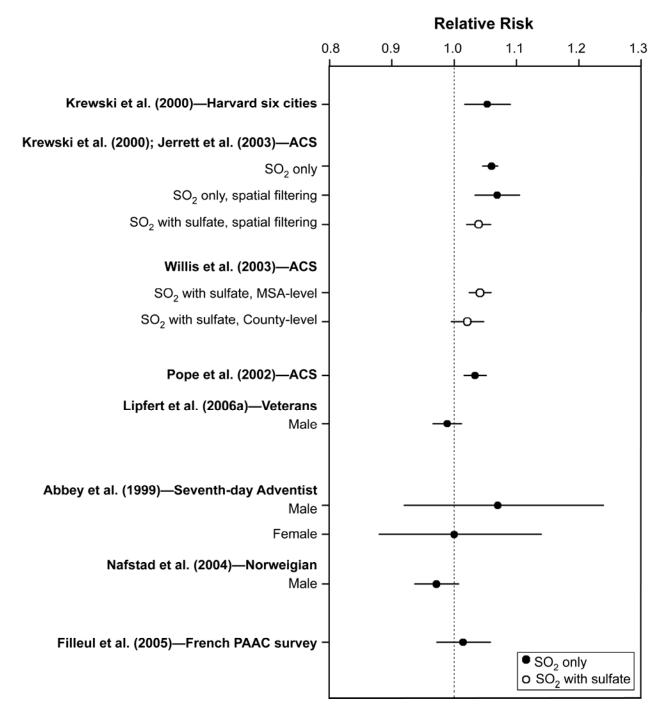


Figure 3.4-1.Total SO2-mortality relative risk estimates (95% CI) from
longitudinal cohort studies. Risk estimates are standardized per
5-ppb increase in SO2 concentrations. The exposure estimates for the
ACS analyses in the Krewski et al. (2000) and Pope et al. (2002)
studies are based on MSA-level averaging; Lipfert et al. (2006a) used
county-level averaging.

Therefore, even with sophisticated spatial modeling, separating possible confounding of SO₂
 effects by PM is challenging.

Finally, the extent of uncertainty related to the geographic scale used to aggregate air pollution exposure estimates is not clear at this point. Willis et al. (2003) showed that the SO₂ risk estimate based on the county-level analysis (1.02) was smaller than that from the MSA-level analysis (1.04). For $SO_4^{2^-}$, the opposite pattern was found. Thus, the impact of the geographic scale of analysis may also depend on the spatial distribution of air pollutants. These complications must be considered when interpretating SO_2 risk estimates.

9

10 **3.4.2** Summary of Effects of Long-Term SO₂ Exposure on Mortality

11 The ecological cross-sectional studies examined in the 1982 AQCD and 1986 Secondary 12 Addendum found suggestive relationships between long-term exposure to SO_2 and mortality. 13 However, there were concerns as to whether the observed association was due to SO_2 alone, 14 because $SO_4^{2^-}$ or other sulfur agents such as H_2SO_4 could have been responsible. In the more 15 recent longitudinal cohort studies, once again, positive associations have been observed between 16 long-term exposure to SO_2 and mortality; however, several issues affect the interpretation of 17 these results.

18 In the limited number of available studies, the risk estimates for total mortality that are 19 most relevant to the current U.S. population ranged from 2 to 7% per 5-ppb increase in annual or 20 longer averages of SO₂. However, it should also be noted that several other U.S. and European 21 studies did not observe an association between long-term exposure to SO_2 and mortality. The 22 geographic scale of analysis appears to affect SO₂ risk estimates and also likely affects exposure 23 error in the analysis. In a reanalysis of the ACS data, the county-level analysis showed a smaller 24 SO₂ risk estimate than MSA-level analysis. The cross-sectional analysis in Great Britain using 25 small-scale electoral wards observed a risk estimate similar to the lower end of the range of risk 26 estimates for all-cause mortality from U.S. cohort studies, though it is not clear if the risk 27 estimates from this cross-sectional study are directly comparable to those from cohort studies. 28 In the long-term studies of the ACS cohort, the peculiar spatial pattern of the 29 concentration of major cities and SO₂ sources in the eastern United States dominated the overall mortality associations with $PM_{2.5}$, SO_4^{2-} , and SO_2 , making it difficult to separate out 30 31 the potential confounding or mixture effects. Future and on-going studies that take into

September 2007

consideration within- versus between-city variation of these air pollutants may help resolve
 this issue.

3 Overall, the results from two major U.S. epidemiological studies suggest an association 4 between long-term exposure to SO₂ or sulfur-containing particulate air pollution. However, it 5 should be noted that authors of the reanalyses of these studies concluded that in the absence of a 6 plausible toxicological mechanism by which SO₂ could lead to increased mortality suggested that 7 SO₂ might be acting as a marker for other mortality-associated pollutants (Krewski et al., 2000). 8 The inability to distinguish potential confounding by copollutants, uncertainties regarding the 9 geographic scale of analysis and copollutant confounding limit the interpretation of a causal 10 relationship.

4. PUBLIC HEALTH IMPACT

4 This chapter addresses several issues relating to the broader public health impact from 5 exposure to ambient sulfur oxides (SO_x) . First, the shape of the concentration-response 6 relationship for sulfur dioxide (SO_2) is discussed and the evidence for a threshold value for 7 health effects is evaluated. The next section identifies characteristics of subpopulations which 8 may experience increased risks from SO_2 exposures, through either enhanced susceptibility (e.g., 9 as a result of age, pre-existing disease, genetic factors) and/or differential vulnerability 10 associated with increased exposure owing to close proximity to sources, for example. The final 11 section defines adverse health effects associated with SO_2 and classifies them according to 12 severity for individuals with impaired respiratory systems. The prevalence of such respiratory 13 disorders in the U.S. population is considered to assess the impact of ambient SO_2 exposure on 14 public health.

15

1 2 3

- 16
- 17 18

4.1 ASSESSMENT OF CONCENTRATION-RESPONSE FUNCTION AND POTENTIAL THRESHOLDS

An important consideration in characterizing the public health impacts associated with SO₂ exposure is whether the concentration-response relationship is linear across the full concentration range that is encountered or if there are concentration ranges where there are departures from linearity (i.e., nonlinearity). Of particular interest is the shape of the concentration-response curve at and below the level of the current SO₂ NAAQS level of a 24-h average level of 0.14 ppm or the annual average of 0.03 ppm.

Identifying possible "thresholds" in air pollution epidemiological studies is challenging. A threshold in this case would be defined as the level of SO₂ that must be exceeded to elicit a health response. Low data density in the lower concentration range, measurement error in the response, exposure measurement error, and a shallow slope near the threshold are some of the error sources that complicate determining the shape of the concentration-response curve. Biological characteristics that tend to linearize concentration-response relationships include individual differences in susceptibility to air pollution health effects additivity of SO₂-induced

32 effects to a naturally occurring background level and additivity of effects from other pollutant

exposures. With consideration of these limitations, epidemiological and human clinical studies
that examined the shape of the concentration-response function for different averaging times or
exposure durations are presented below. The discussion focuses on respiratory morbidity effects
associated with short-term exposure to SO₂, for which the strongest causal evidence exists.

5 Evidence from human clinical studies provides insights into the discussion of the 6 concentration-response function and possible thresholds of SO_2 health effects. In human clinical 7 studies, significant effects have been observed at the lowest levels tested (i.e., 0.2 to 0.25 ppm, 5-8 to 15-min exposures) in some sensitive individuals; however, there was great interindividual 9 variability in the observed SO₂-related responses. Human clinical studies largely examined the 10 effects of peak exposures (≤ 1 h, typically 5 or 15 min) to SO₂ on respiratory health. The 11 majority of these studies have involved short-term exposures of asthmatic adults to varying 12 concentrations of SO₂ while they perform light to heavy levels of exercise. Sheppard et al. 13 (1981) reported a significant SO₂-induced increase in specific airways resistance (sRaw) 14 compared to filtered-air exposures among asthmatic adults following 10-min exposures to SO_2 15 with moderate exercise at concentrations as low as 0.25 ppm. Doubling the exposure 16 concentration of SO₂ (0.5 ppm) increased sRaw by approximately 75% compared to the average 17 value of sRaw following exposure to 0.25-ppm SO₂. In a similar study, Linn et al. (1982) found 18 no significant SO₂-attributable increase in sRaw following 1-h exposures to 0.25- and 0.5-ppm 19 SO₂ among asthmatics engaged in 10-min intervals of moderate levels of exercise. The authors 20 suggested that the apparent contrast between their findings and those of Sheppard et al. (1981) 21 may be explained by differences in the exposure methods used. Linn et al. (1982) conducted 22 exposures in a chamber, allowing normal oronasal breathing, while Sheppard et al. (1981) 23 conducted exposures through a mouthpiece, which likely resulted in a relative increase of 24 pulmonary SO₂ uptake.

Linn et al. (1983) later evaluated the concentration-response relationship between SO₂ and respiratory effects following 5-min exposures to 0-, 0.2-, 0.4-, and 0.6-ppm SO₂ during heavy exercise (minute ventilation $[V_E] \sim 48$ L/min). The results appeared to demonstrate an increase in sRaw attributable to increasing SO₂ concentrations. However, only exposures to 0.4 and 0.6 ppm were found to significantly differ from the control (0-ppm SO₂). Schachter et al. (1984) found the SO₂-induced respiratory response to be highly variable among asthmatic adults. These investigators exposed asthmatic and healthy, non-asthmatic subjects to 0-, 0.25-,

1 0.5-, 0.75-, and 1.0-ppm SO₂ for 10 min during moderate levels of exercise. No SO₂-associated 2 respiratory effects were observed in the healthy, non-asthmatics at any of the exposure 3 concentrations. While some asthmatic subjects exhibited a decrease in forced expiratory volume 4 in 1 s (FEV₁) beginning at concentrations as low as 0.25 ppm, a consistent and significant 5 reduction in FEV₁ compared to baseline was not observed at levels <0.75-ppm SO₂. Finally, in a 6 study involving SO₂-sensitive asthmatics, Gong et al. (1995) observed a linear relationship 7 between SO₂ concentration (0-, 0.5-, and 1.0-ppm) and both lung function (decrease in FEV₁, 8 and increase in sRaw) and respiratory symptoms. The evidence from human clinical studies 9 demonstrates consistent SO₂-induced respiratory effects following 5-to 15-min exposures of SO₂ 10 at levels between 0.5 and 1.0 ppm, with weaker evidence of effects at concentrations as low as 11 0.25 ppm in some sensitive asthmatics.

Epidemiological studies have examined the concentration-response relationship for SO₂ using various statistical methods, including the comparison of effect estimates in increasing quartiles or quintiles, plotting the risk observed against increasing SO₂ concentrations, and using nonparametric smoothed curves to assess the nonlinearity of the SO₂-effect relationship. Most of the epidemiological studies that examined the concentration-response function between SO₂ exposure and respiratory morbidity observed that the relationship was linear across the entire concentration range, as discussed below.

19 Only one epidemiological study investigated the concentration-response function of peak 20 SO₂ exposures. The association between asthma hospitalizations and ambient 1-h maximum 21 (1-h max) SO₂ concentrations was examined in a case-control study of children in Bronx County, 22 NY (Lin et al., 2004). The 1-h max concentration ranged from 2.9 to 66.4 ppb. Lin et al. 23 categorized 1-h max SO₂ concentrations and estimated odds ratios (ORs) for each category using 24 the lowest exposure group as the reference (2.9 to 9.2 ppb). They observed an increasing linear 25 trend across the range of concentrations, suggesting that there was no threshold in the observed 26 association between asthma hospitalizations and 1-h max SO₂ concentrations.

Most epidemiological studies investigating the concentration-response function examined the effects of short-term 24-h average exposures to SO_2 . A study by Jaffe et al. (2003) examined the association between SO_2 and emergency department (ED) visits for asthma in three cities in Ohio, i.e., Cincinnati, Cleveland, and Columbus. The mean 24-h average SO_2 concentrations were 14 ppb (range: 1, 50) in Cincinnati, 15 ppb (range: 1, 64) in Cleveland, and 4 ppb (range: 0, 22) in Columbus. Significant associations were observed only in Cincinnati using the Poisson
 regression analysis. To examine the concentration-response function, they also conducted
 quintile analyses. In Cincinnati, an increasing linear trend in risk was observed across the range
 of concentrations.

5 Wong et al. (2002; using Generalized Additive Model(s) (GAM) with default 6 convergence criteria) observed that ambient SO₂ concentrations were associated with hospital 7 admissions for respiratory causes in adults aged 65+ years in Hong Kong (mean 24-h average 8 SO_2 of 7 ppb [range: 0, 34]), but not London (mean 24-h average SO_2 of 9 ppb [range: 2, 43]). 9 A plot of risk against 24-h average SO₂ concentrations was constructed to examine the 10 concentration-response relationship in these cities. In general, a linear relationship between risk 11 of respiratory hospitalizations and SO₂ was observed across the range of SO₂ concentrations in Hong Kong. 12

Burnett et al. (1997a,b) examined the relationship between adjusted hospital admission rates for respiratory diseases and ambient SO₂ concentrations for nonlinearity. A nonparametric smoothed curve using locally estimated smoothing splines (LOESS) was applied in the Toronto study (mean 1-h max SO₂ of 7.9 ppb [range: 0, 26]), while cubic polynomials and quadratic polynomials were fitted to the data in the 16 Canadian cities study (mean 1-h max SO₂ of 14.4 ppb [90th percentile: 97]. In no case did the results suggest that the association between respiratory hospitalizations and SO₂ deviated from linearity.

Additional European studies by Atkinson et al. (1999a), Hajat et al. (1999) and Hajat et al. (2002; using GAM with default convergence criteria) also did not find a threshold in the response. In Atkinson et al. (1999a), the bubble plot indicated that the relationship between hospital admission for respiratory causes and SO₂ concentrations was approximately linear. Hajat et al. (1999, 2002) reported a generally linear association between SO₂ concentrations and general practitioner visits for lower and upper respiratory conditions, using a bubble plot and a concentration-response plot across the range of SO₂ concentrations.

However, some studies did report a nonlinear relationship between SO₂ and respiratory health effects. The Harvard Six Cities study by Schwartz et al. (1994) examined the effects of summertime air pollution on the respiratory health of 1,844 schoolchildren. The median 24-h average SO₂ concentration during the study period was 4.1 ppb (10th–90th percentile: 0.8, 17.9, maximum 81.9). While SO₂ concentrations were found to be associated with increased cough incidence and lower respiratory symptoms, the relationship was nonlinear. A figure plotting the
relative odds of incidence of lower respiratory symptoms against SO₂ concentrations lagged
1 day indicated that no statistically significant increase in the incidence of lower respiratory
symptoms was seen until concentrations exceeded a 24-h average SO₂ of 22 ppb (see Figure 3.12 in Section 3.1), though an increasing trend was observed at concentrations as low as a 24-h
average SO₂ of 10 ppb.

7 Using time-series data, Ponce de Leon et al. (1996) studied the association between 8 hospitalizations for respiratory causes and ambient SO₂ concentrations in London. The mean 9 24-h average SO₂ concentration was 32.2 ppb (5th–95th percentile: 6, 21). Bubble plots of 10 adjusted residuals of log admission counts sorted by SO₂ level indicated that a weak relationship 11 with SO₂ was only observable at 24-h average SO₂ concentrations above 23 ppb. In both this study and the study by Schwartz et al. (1994), a statistically significant increased risk was 12 13 observable only at 24-h average SO_2 concentrations that were above the 90th percentile. These 14 possible threshold values are dependent on only a few influential observations; so the results 15 should be viewed with caution.

16 As discussed earlier in this section, many factors may obscure the presence of thresholds 17 in epidemiological studies at the population level. Using fine particulate matter ($PM_{2.5}$) as an 18 example, Brauer et al. (2002) examined the relationship between ambient concentrations and 19 mortality risk in a simulated population with specified common individual threshold levels. 20 They found that no population threshold was detectable when a low threshold level was 21 specified. Even at high-specified individual threshold levels, the apparent threshold at the 22 population level was much lower than specified. Brauer et al. (2002) concluded that the use of 23 surrogate measures of exposure (i.e., those from centrally located ambient monitors) that were 24 not highly correlated with personal exposures obscured the presence of thresholds in 25 epidemiological studies at the population level even if a common threshold exists for individuals 26 within the population.

The wide interindividual variability in sensitivity to SO_2 exposure further hinders the ability to find a threshold level in population studies. Human clinical studies have shown that asthmatics experience greater increases in sRaw following peak SO_2 exposures compared to healthy individuals (Linn et al., 1987). Amongst asthmatics, interindividual differences in response also have been noted, with some asthmatics experiencing SO₂-related effects at much
 lower levels than others (Horstman et al., 1986).

3 Another factor that complicates the identification of a possible threshold of effects is that 4 currently deployed ambient monitors may be inadequate for accurate and precise measurements 5 at lower 24-h average SO₂ levels. Ambient concentrations of SO₂ have been declining since the 6 1980s and are now at or very near the limit of detection of the ambient monitors in the regulatory 7 network. The mean 24-h average SO_2 concentration across the metropolitan statistical areas 8 (MSAs) from 2003 through 2005 was 4 ppb (5th–95th percentile: 1, 13). Thus, there is greater 9 uncertainty at the lower concentration range compared to the higher concentrations, which likely 10 limits the ability to detect a threshold.

11 In conclusion, evidence from human clinical studies indicated wide interindividual 12 variability in response to SO₂ exposures, with peak (5 to 10 min) exposures at levels as low as 13 0.25 ppm eliciting respiratory responses in some asthmatic individuals. Several epidemiological 14 studies that examined the concentration-response function between short-term (24-h average) 15 exposure to SO_2 and respiratory morbidity observed that the relationship was linear across the 16 entire concentration range, suggesting a lack of a threshold in effect. However, given the various 17 limitations in observing a possible threshold in population studies, the lack of evidence does not 18 necessarily indicate that there is indeed no threshold in SO₂ health effects. Two epidemiological 19 studies did report a possible threshold level of 22 to 23 ppb (24-h average) at which no 20 statistically significant SO₂-related respiratory health effect was observed. However, as these 21 observations were based on only a few influential data points (24-h average SO₂ concentrations 22 above the 90th percentile), the results should be viewed with caution. The overall limited 23 evidence from epidemiological studies examining the concentration-response function of SO_2 24 health effects is inconclusive regarding the presence of an effect threshold.

- 25
- 26 27

4.2 SUSCEPTIBLE AND VULNERABLE POPULATIONS

The previous review of the SO_2 NAAQS identified certain groups within the population that may be more susceptible to the effects of SO_2 exposure, including asthmatics, individuals not diagnosed as asthmatic but with atopic disorders (e.g., allergies), and individuals with chronic obstructive pulmonary disease (COPD) or cardiovascular disease (CVD). Other subgroups that were considered to be somewhat sensitive included children and the elderly. Many factors such as age, preexisting disease, gender, nutritional status, smoking, and genetic variability may contribute to the interindividual variability in responses to environmental pollutants, including SO₂. Individuals in potentially sensitive groups are of concern, as they may be affected by lower levels of SO₂ than the general population or experience a greater impact with the same level of exposure. This section focuses on vulnerable groups that may be exposed to SO₂ levels above the community average and differential effects among susceptible groups, including subpopulations with asthma as well as genetic factors and age-related variability.

8 9

4.2.1 Exposure of Susceptible and Vulnerable Populations to SO₂

10 A limited amount of information exists on exposures of susceptible and vulnerable 11 populations to SO₂. Indoor and personal SO₂ concentrations are generally much lower than 12 outdoor or ambient measurements and occur near or below the detection limit of the passive 13 samplers used in most studies (Kindzierski and Ranganathan, 2006; Sarnat et al., 2000, 2005, 14 2006). Infiltration of SO₂ into residences is limited (Brauer et al., 1989), partially due to its 15 reactivity with the building envelope and indoor surfaces. Contributions of indoor sources to 16 personal SO₂ exposures are low, with the possible exception of SO₂ emitted from indoor 17 kerosene or gas heaters (Triche et al., 2005). Hence, individuals that spend most of their time 18 indoors, such as older adults, are not anticipated to be vulnerable to high SO_2 exposures, though 19 in some cases they may be more susceptible to the effects of these exposures than the general 20 population. Other individuals with increased vulnerability include those who spend a lot of time 21 outdoors at increased exertion levels, for example outdoor workers and individuals who exercise 22 or play sports. Children, who generally spend more time playing outdoors, may qualify as both a 23 susceptible population due to their developing physiology and as a vulnerable population since 24 ambient SO₂ concentrations are several-fold higher than indoor concentrations.

Residential location is not as strong of a predictor of exposure vulnerability for SO₂ as for
 traffic-related pollutants, because meteorological conditions have a greater impact on pollutant
 plume direction from primary point sources such as coal-fired power plants.

28

29 4.2.2 Preexisting Disease as a Potential Risk Factor

Several researchers have investigated the effect of air pollution among potentially
 susceptible groups with preexisting medical conditions. A recent report of the National Research
 Council emphasized the need to evaluate the effect of air pollution on susceptible groups,

including those with respiratory illnesses and CVD (NRC 2004). Generally, asthma, COPD,
conduction disorders, congestive heart failure (CHF), diabetes, and MI are conditions believed to
put persons at greater risk of adverse events associated with air pollution. Asthmatics are known
to be one of the most SO₂-responsive subgroups in the population; the evidence related to
respiratory illness, including asthma, is discussed in further detail below.

6 7

4.2.2.1 Individuals with Respiratory Diseases

8 The 1982 Air Quality Criteria Document (AQCD) concluded that asthmatics are likely 9 more susceptible to effects from SO_2 exposures than the general public. Recent epidemiological 10 studies have strengthened this conclusion, reporting associations between a range of health 11 outcomes with both short-term and long-term SO₂ exposures in subjects with respiratory disease. 12 In controlled human exposure studies, asthmatics have been shown to be more responsive 13 to respiratory effects of SO_2 exposures than healthy, non-asthmatics. While SO_2 -attributable 14 decrements in lung function have not generally been demonstrated at concentrations <1.0 ppm in 15 non-asthmatics (Lawther et al., 1975; Linn et al., 1987; Schachter et al., 1984), increases in 16 respiratory symptoms and decreases in lung function have been observed in some asthmatics

 $17 \qquad following peak (5 to 15 min) SO_2 exposures to concentrations \\ \le 0.5 \ ppm \ (Gong \ et \ al., 1995;$

18 Horstman et al., 1986; Linn et al., 1983).

19 A number of epidemiological studies reported increased respiratory symptoms associated 20 with SO₂ exposures in asthmatics and atopic individuals. In contrast, lung function generally 21 was not positively associated with ambient SO₂ in epidemiological studies of asthmatic children 22 (Mortimer et al., 2002) or among adults with asthma or COPD (Higgins et al., 1995; Neukirch 23 et al., 1998; van der Zee et al., 2000). A series of epidemiological studies from the Netherlands 24 has investigated the effect of exposure to SO₂ and other air pollutants on children and adults with 25 airways hyperreactiveness (AHR) and atopy. In 1998, Boezen et al. found that adults with 26 airway lability (defined as the presence of AHR or an increase in peak expiratory flow [PEF] 27 variability) had a significantly increased prevalence of respiratory symptoms, including lower 28 and upper respiratory symptoms, cough, and phlegm, with increasing levels of SO_2 . In 29 subsequent analyses, the authors examined whether children with AHR and elevated levels of 30 IgE were vulnerable to the effects of SO₂ (Boezen et al., 1999). In a panel study of children aged 31 7 to 11 years, the authors found no associations between SO_2 and any respiratory symptoms in

1 the subset of children with relatively low serum total IgE with or without AHR. However, for 2 children with relatively high serum total IgE either with or without AHR, the prevalence of lower 3 respiratory symptoms increased in relation to increasing SO₂ concentrations. In a similar study 4 conducted among older adults aged 50 to 70 years, Boezen et al. (2005) found that the subgroup 5 of individuals with elevated serum total IgE, both with and without AHR, to be more susceptible 6 to air pollutants compared to those who did not have elevated serum total IgE. Significant 7 associations were observed between previous-day 24-h average SO_2 concentrations and the 8 prevalence of upper respiratory symptoms in those with elevated serum total IgE. Stratified 9 analyses by gender indicated that among those with AHR and elevated IgE, only males were at a 10 higher risk for respiratory symptoms.

11 In a German study of 5,421 children, the annual mean SO₂ concentration was associated 12 with morning cough over the previous 12 months, but not bronchitis (Hirsch et al., 1999). In 13 contrast to the results reported by Boezen et al. (1999, 2005), this study observed that the 14 association of SO_2 and other air pollutants with respiratory symptoms were stronger in nonatopic 15 than in atopic children. The authors noted that these findings were in line with the hypothesis 16 that these air pollutants induce nonspecific irritative rather than allergic inflammatory changes in 17 the airway mucosa, as irritative effects would affect the clinical course in nonatopic children 18 more strongly than in atopics whose symptoms are also determined by allergen exposure.

19 U.S. multicity studies of ambient SO_2 exposure also examined respiratory symptoms in 20 asthmatic children (Mortimer et al., 2002; Schildcrout et al., 2006). In the National Cooperative 21 Inner-City Asthma Study (NCICAS; Mortimer et al., 2002), the greatest effect was seen for 22 morning symptoms, i.e., cough, wheeze, shortness of breath (range of median 3-h average SO_2) 23 across eight cities: 17 to 37 ppb). In the Childhood Asthma Management Program (CAMP) 24 study (Schildcrout et al., 2006), the strongest association between SO₂ and increased asthma 25 symptoms was found for a 3-day moving average lag (range of median 24-h average SO_2 across 26 seven cities: 2.2, 7.4 ppb [90th percentile range: 4.4, 14.2]). The Harvard Six Cities Study 27 found an association between SO₂ concentration and cough incidence and lower respiratory 28 symptoms among healthy children, but suggested that the relationship was nonlinear, with 29 increased risk only observed at levels >20 ppb (Schwartz et al., 1994). These studies indicate 30 that SO₂ effects on respiratory symptoms were observed in asthmatics at lower ambient levels of 31 SO₂ compared to healthy children.

September 2007

1 Other studies have examined the relationship between respiratory symptoms among 2 subpopulations with asthma and/or COPD and ambient SO₂ concentrations. These studies 3 generally indicated positive associations for asthma among children and included a U.S. study 4 (Delfino et al., 2003) and several European studies (Higgins et al., 1995; Neukirch et al., 1998; 5 Peters et al., 1996; Roemer et al., 1993; Ségala et al., 1998; Taggart et al., 1996; Timonen and 6 Pekkanen, 1997; van der Zee et al., 1999). Studies of asthma among adults found no consistent 7 association between respiratory symptoms among asthmatics and SO₂ concentrations 8 (Desqueyroux et al., 2002a,b; Romieu et al., 1996; van der Zee et al., 2000). 9 A suggestive association between ambient SO₂ concentrations and ED visits and 10 hospitalizations among children and the elderly provides evidence that asthmatics are susceptible 11 to the effects of SO₂. The associations between ambient concentrations of 24-h average SO₂ and 12 ED visits and hospitalizations for asthma in the United States are generally positive (Jaffe et al., 13 2003; Lin et al., 2004a; Michaud et al., 2004; Wilson et al., 2005), though a large time-series 14 study conducted in Atlanta, GA did not find an association between ambient 1-h max SO₂ levels 15 and ED visits (Peel et al., 2005). Studies conducted outside the United States (Atkinson et al., 16 1999b; Hajat et al., 1999; Sunyer et al., 1997; Thompson et al., 2001) also generally found

17 positive results.

There was no association between SO₂ levels and asthma mortality in the general
population (Saez et al., 1999) or among patients previously diagnosed with severe asthma
(Sunyer et al., 2002).

In summary, there is substantial evidence from epidemiological studies that suggests that individuals with preexisting respiratory diseases, particularly asthma, are more susceptible to respiratory health effects, though not mortality, from SO_2 exposures than the general public. The observations in human clinical studies of increased sensitivity to SO_2 exposures in asthmatic subjects compared to healthy subjects provide coherence and biological plausibility for these observations in epidemiological studies.

27 28

4.2.2.2 Individuals with CVDs

Routledge et al. (2006) exposed patients with stable angina as well as healthy subjects to 50- μ g/m³ carbon particles and 0.2-ppm SO₂, alone and in combination for 1 h. Heart rate variability (HRV), C-reactive protein, and markers of coagulation were measured. There was no evidence to suggest that patients with stable angina were more susceptible to SO₂-related health effects than healthy subjects. The authors noted that this lack of response in the heart patients
may be due to a drug treatment effect rather than decreased susceptibility, as a large portion of
the angina patients were taking beta blockers, which are known to increase indices of cardiac
vagal control.

Liao et al. (2004) investigated short-term associations between ambient pollutants and
cardiac autonomic control. Resting, supine, 5-min beat-to-beat R-R interval data were collected.
Previous-day SO₂ concentrations were positively associated with heart rate and inversely
associated with the standard deviation of normal R-R intervals (SDNN) and low frequency (LF)
power. Consistently more pronounced associations were suggested between SO₂ and HRV
among persons with a history of coronary heart disease.

11 Henneberger et al. (2005) examined the association of repolarization parameters with air 12 pollutants in men with preexisting coronary heart disease in East Germany. The patients were 13 examined repeatedly once every 2 weeks for 6 months, for a total of 12 electrocardiogram (ECG) recordings. The mean 24-h average SO₂ concentration was 4.1 μ g/m³ (2 ppb [range: 1, 4]). 14 15 Ambient SO₂ concentrations during the 24-h preceding the ECG were associated with the QT 16 interval duration, but not with any other repolarization parameters. Stronger associations were 17 observed between PM indices and QT interval duration, T-wave amplitude, and T-wave 18 complexity.

Evidence from ED visit and hospitalizations studies of the association between ambient levels of air pollutants and CVD is inconsistent. A recent epidemiological study investigated the association of SO₂ with cardiac hospital admissions among persons with preexisting cardiopulmonary conditions and observed no associations with ambient 1-h max SO₂ level for any cardiac disease investigated (i.e., ischemic heart disease [IHD], CHF, and dysrhythmia) across strata of comorbid disease status, including hypertension, diabetes, and COPD (Peel et al., 2007).

Goldberg et al. (2003) compared the risk estimates for death with the underlying cause of CHF and those deaths classified as having CHF 1 year before death and did not find associations between air pollution and those with CHF as an underlying cause of death. The authors found associations between some of the air pollutants examined (coefficient of haze [CoH], SO₂, and NO₂) and the deaths that were classified as having CHF 1 year before death, but the association with the specific cause of death was not unique to SO₂. This pattern of association, including but not specific to SO₂, with specific causes of death also was observed in an additional cohort of
patients with CHF (Kwon et al., 2001).

In summary, there is weak evidence from a small number of panel studies that suggests that individuals with preexisting CVD may be more susceptible to adverse health effects from ambient SO₂ exposures than the general public. The evidence from one human clinical study does not support these conclusions. Additional research is necessary to assess whether individuals with preexisting CVD constitute a susceptible group for SO₂ health effects.

8 9

4.2.3 Age-Related Variations in Susceptibility

10 The American Academy of Pediatrics (2004) notes that children and infants are among 11 the most susceptible to many air pollutants, including SO₂. Eighty percent of alveoli are formed 12 postnatal and changes in the lung continue through adolescence; furthermore, the developing 13 lung is highly susceptible to damage from exposure to environmental toxicants (Dietert et al., 14 2000). Children also have increased vulnerability as they spend more time outdoors, are highly 15 active, and have high minute ventilation, which collectively increase the dose they receive (Plunkett et al., 1992; Wiley et al., 1991a,b). In addition to children, the elderly are frequently 16 17 classified as being particularly susceptible to air pollution. The basis of the increased sensitivity 18 in the elderly is not known, but one hypothesis is that it may be related to changes in the 19 respiratory tract lining fluid antioxidant defense network (Kelly et al., 2003).

20 A number of studies investigating the association between ambient SO₂ levels and ED 21 visits or hospital admissions for all respiratory causes or asthma stratified their analyses by age 22 group. Figure 4.2-1 summarizes the evidence of age-specific associations between SO₂ and 23 acute respiratory ED visits and hospitalizations. Several studies demonstrated that the risk of ED 24 visits or hospitalizations for all respiratory causes or asthma associated with a 10-ppb increase in 25 24-h average SO₂ levels was higher for children (Anderson et al., 2001; Atkinson et al., 1999a,b; 26 Petroeschevsky et al., 2001; Ponce de Leon et al., 1996) and older adults (Anderson et al., 1998; 27 Petroeschevsky et al., 2001; Ponce de Leon et al., 1996; Wilson et al., 2005) when compared to 28 the risk for all ages together. Increased risks for children and older adults were more prevalent in 29 the studies of all respiratory disease than those considering asthma as the outcome. Two studies 30 investigated the association between ambient SO₂ levels and ED visits or hospital admissions for 31 all cardio vascular causes, with analyses stratified by age (Atkinson et al., 1999a,b; Sunyer et al.,

- 1 2003b). Neither of these studies found a difference in effect estimates when analyses were
- 2 stratified to ages 65+ years, compared to when all ages were included in the analyses.

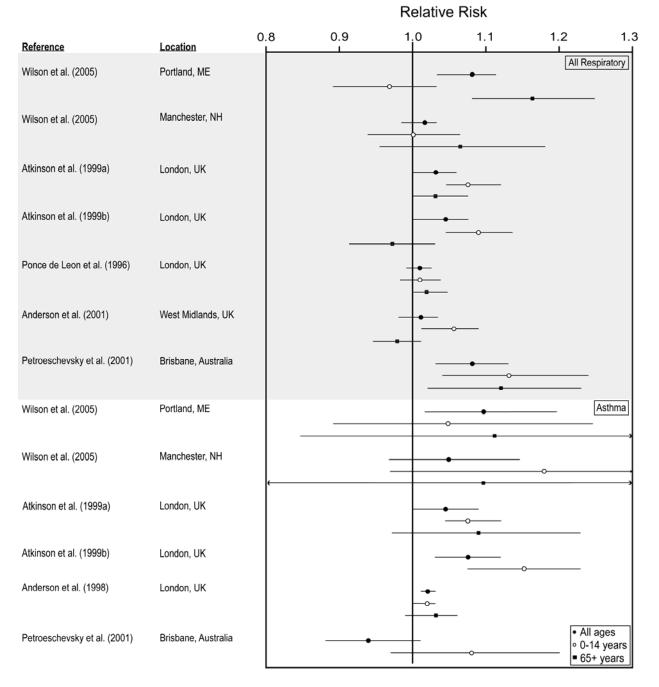


Figure 4.2-1.Relative risks (95% CI) of age-specific associations between short-
term exposure to SO2 and respiratory ED visits and hospitalizations.
Risk estimates are standardized per 10-ppb increase in 24-h average
SO2 concentrations or 40-ppb increase in 1-h max SO2.

Cakmak et al. (2007) reported that among seven Chilean urban centers, the percent
increase in nonaccidental mortality associated with a 10-ppb increase in 24-h average SO₂ was
3.4% (95% CI: 0.7, 6.1) for those <65 years of age and 5.6% (95% CI: 2.2, 9.1) for those >85
years of age. The authors concluded that the elderly are particularly susceptible to dying from
air pollution, and suggested that concentrations deemed acceptable for the general population
may not adequately protect the very elderly.

There is limited epidemiological evidence to suggest that children and older adults
(65+ years) are more susceptible to the adverse respiratory effects associated with ambient SO₂
concentrations when compared to the general population. The few studies that conducted agestratified analyses when examining cardiovascular outcomes did not find any difference in
outcomes when analyses were stratified by age.

12

4.2.4 Genetic Factors for Oxidant and Inflammatory Damage from Air Pollutants

15 A consensus now exists among scientists that genetic factors related to health outcomes 16 and ambient pollutant exposures merit serious consideration (Gilliland et al., 1999; Kauffmann 17 et al., 2004). Several criteria must be satisfied in selecting and establishing useful links between 18 polymorphisms in candidate genes and adverse respiratory effects. First, the product of the 19 candidate gene must be significantly involved in the pathogenesis of the adverse effect of 20 interest, which is often a complex trait with many determinants. Second, polymorphisms in the 21 gene must produce a functional change in either the protein product or in the level of expression 22 of the protein. Third, in epidemiological studies, the issue of confounding by other genes or 23 environmental exposures must be carefully considered.

Several glutathione *S*-transferase (GST) families have common, functionally important polymorphic alleles (e.g., homozygosity for the null allele at the GSTM1 and GSTT1 loci, homozygosity for the A105G allele at the GSTP1 locus) that significantly reduce expression of function in the lung. Exposure to radicals and oxidants in air pollution induces decreases in GSH that increase GST transcription. Individuals with genotypes that result in enzymes with reduced or absent glutathione peroxidase activity are likely to have reduced oxidant defenses and increased susceptibility to inhaled oxidants and radicals. Gilliland et al. (2002) examined effects of GSTM1, GSTT1, and GSTP1 genotypes and acute respiratory illness, specifically respiratory illness-related absences from school. The goal was to examine potential susceptibilities on this basis, but not specifically to air pollutants. They concluded that fourth grade schoolchildren who inherited a GSTP1 Val-105 variant allele had a decreased risk of respiratory illness-related school absences, indicating that GSTP1 genotype influences the risk and/or severity of acute respiratory infections in school-aged children.

Lee et al. (2004) studied ninth grade schoolchildren with asthma in Taiwan for a geneenvironmental interaction between GSTP1-105 genotypes and outdoor pollution. They examined general district air pollution levels of low (mean SO_2 level of 3.6 ppb from 1994 to 2001), moderate (mean SO_2 of 6.2 ppb), and high (mean SO_2 of 8.6 ppb) in the analysis and found that compared with individuals with any Val-105 allele in the low air pollution district, Ile-105 homozygotes in the high air pollution district had a significantly increased risk of asthma.

14 Gauderman et al. (2007) describe a study method that uses principal components analysis 15 computed on single nucleotide polymorphism (SNP) markers to test for an association between a 16 disease and a candidate gene. For example, they evaluated the association between respiratory 17 symptoms in children and four SNPs in the GSTP1 locus, using data from the Southern 18 California Children's Health Study (CHS). The authors observed stronger evidence of an 19 association using the principal components approach (p = 0.044) than using either a genotype-20 based (p = 0.13) or haplotype-based (p = 0.052) approach. This method may be applied to 21 relationships in this and other databases to evaluate aspects of air pollutants such as SO₂. 22 In 2001, Winterton et al. (2001) attempted to identify a genetic biomarker for 23 susceptibility to SO_2 . They screened 62 asthmatic subjects for SO_2 responsiveness using an 24 inhalation challenge and collected genetic material via buccal swabs to test for associations 25 between SO_2 sensitivity and specific gene polymorphisms. Subjects inhaled 0.5-ppm SO_2 by 26 mouthpiece for 10 min while wearing noseclips during moderate exercise on a treadmill. 27 Subjects were defined as SO₂-sensitive if FEV₁ dropped $\geq 12\%$. Genetic polymorphisms as 28 biomarkers of susceptibility were evaluated in five regions coding for the β 2-adrenergic receptor, 29 the α subunit of the interleukin-4 (IL-4) receptor, the Clara cell secretory protein (CC16), tumor 30 necrosis factor- α (TNF- α), and lymphotoxin- α (also known as TNF- β). The authors found a

- 30 herosis factor- α (114 - α), and fyinphotoxin- α (also known as 114 - β). The authors found a
- 31 significant association between response to SO_2 and the homozygous wild-type allele of TNF- α .

All of the SO₂-sensitive subjects had the homozygous wild-type allele for TNF-α, while 61% of
 the nonresponders had this genotype. Homozygosity for the TNF-1 allele was associated with a
 5-fold increased risk of physician-diagnosed asthma relative to other genotypes. None of the
 other polymorphisms showed significant trends.

5 In summary, the differential effects of air pollution among genetically diverse 6 subpopulations have been examined for a number of GST genes and other genotypes. The 7 limited number of studies may provide some insight into susceptible groups and a potential 8 genetic role in such. Only one of these studies specifically examined SO_2 as the exposure of 9 interest, and it found a significant association with the homozygous wild-type allele for TNF- α . 10 Khoury et al. (2005) states that while genomics is still in its infancy, opportunities exist for 11 developing, testing, and applying its tools to public health research of outcomes with possible 12 environmental causes. At this time, there are only very limited data on which to base a 13 conclusion regarding the effect of SO_2 exposure on genetically distinct subpopulations.

- 14 15
- 16

4.3 POTENTIAL PUBLIC HEALTH IMPACTS

Exposure to ambient SO₂ is associated with a variety of outcomes including increases in respiratory symptoms, particularly among asthmatic children, and ED visits and hospital admissions for respiratory diseases among children and older adults (65+ years). In protecting public health, a distinction must be made between health effects that are considered "adverse" and those that are not. What constitutes an adverse health effect varies for different population groups. Some changes in healthy individuals are not viewed as adverse while those of similar type and magnitude in other susceptible individuals with preexisting disease are.

24 25

4.3.1 Concepts Related to Defining Adverse Health Effects

The American Thoracic Society (ATS) published an official statement titled "What Constitutes an Adverse Health Effect of Air Pollution?" (ATS, 2000). This statement updated the guidance for defining adverse respiratory health effects that had been published 15 years earlier (ATS, 1985), taking into account new investigative approaches used to identify the effects of air pollution and reflecting concern for impacts of air pollution on specific susceptible groups. In the 2000 update, there was an increased focus on quality of life measures as indicators of adversity and a more specific consideration of population risk. Exposure to air pollution that

1 increases the risk of an adverse effect to the entire population is viewed as adverse, even though 2 it may not increase the risk of any identifiable individual to an unacceptable level. For example, 3 a population of asthmatics could have a distribution of lung function such that no identifiable 4 single individual has a level associated with significant impairment, and exposure to air pollution 5 could shift the distribution to lower levels that still do not bring any identifiable individual to a 6 level that is associated with clinically relevant effects. However, this shift to a lower level would 7 be considered adverse because individuals within the population would have diminished reserve 8 function and, therefore, would be at increased risk if affected by another agent.

9 Reflecting new investigative approaches, the ATS statement also describes the potential 10 usefulness of research into the genetic basis for disease, including responses to environmental 11 agents that provide insights into the mechanistic basis for susceptibility and provide markers of 12 risk status. Likewise, biomarkers that are indicators of exposure, effect, or susceptibility may 13 someday be useful in defining the point at which one or an array of responses should be 14 considered an adverse effect.

15 The 2006 O₃ AQCD (U.S. Environmental Protection Agency, 2006) provided 16 information useful in helping to define adverse health effects associated with ambient O₃ 17 exposure by describing the gradation of severity and adversity of respiratory-related O₃ effects. 18 The definitions that relate to responses in impaired individuals are reproduced and presented here 19 in Table 4.3-1. The severity of effects described in the tables and the approaches taken to define 12 their relative adversity are valid and reasonable in the context of the new ATS (2000) statement.

As assessed in detail in earlier chapters of this document and briefly recapitulated in preceding sections of this chapter, exposures to a range of SO₂ concentrations have been reported to be associated with increasing severity of health effects, ranging from respiratory symptoms to ED visits and hospital admission for respiratory causes. Respiratory effects associated with short-term SO₂ exposures have been by far the most extensively studied and most clearly shown to be causally related to SO₂ exposure. Such effects are observed among children, older adults, and persons with respiratory impairments.

- 28
- 4.3.2 Estimation of Potential Numbers of Persons in At-Risk Susceptible
 Population Groups in the United States

Although SO₂-related health risk estimates may appear to be small, they may well be
 significant from an overall public health perspective due to the large numbers of individuals in

1 the potential risk groups. Several subpopulations have been identified as possibly having 2 increased susceptibility or vulnerability to adverse health effects from SO₂, including children, 3 older adults, and individuals with preexisting pulmonary diseases. One consideration in the 4 assessment of potential public health impacts is the size of various population groups that may be 5 at increased risk for health effects associated with SO₂-related air pollution exposure. Table 6 4.3-2 summarizes information on the prevalence of chronic respiratory conditions in the U.S. 7 population in 2004 and 2005 (NHIS, 2006a,b). Individuals with preexisting cardiopulmonary 8 disease constitute a fairly large proportion of the population, with tens of millions of people 9 included in each disease category. Of most concern are those individuals with preexisting 10 respiratory conditions, with approximately 10% of adults and 13% of children having been 11 diagnosed with asthma and 6% of adults with COPD (chronic bronchitis and/or emphysema). 12 In addition, subpopulations based on age group also comprise substantial segments of the 13 population that may be potentially at risk for SO₂-related health impacts. Based on U.S. census 14 data from 2000, about 72.3 million (26%) of the U.S. population are under 18 years of age, 15 18.3 million (7.4%) are under 5 years of age, and 35 million (12%) are 65 years of age or older. 16 Hence, large proportions of the U.S. population are included in age groups that are considered 17 likely to have increased susceptibility and vulnerability for health effects from ambient SO_2 18 exposure.

19 The prevalence and number of people affected for selected respiratory disorders by age 20 group are summarized in Table 4.3-2. In addition to their high prevalence, these diseases may be 21 severe, resulting in deaths or hospitalizations. There are approximately 2.5 millions deaths from 22 all causes per year in the U.S. population, with about 100,000 deaths from chronic lower 23 respiratory diseases (Kochanek et al., 2004) and 4,000 from asthma (NCHS Health E Stats). For 24 respiratory health diseases, there are nearly 4 million hospital discharges per year (DeFrances 25 et al., 2005), 14 million ED visits (McCaig and Burt, 2005), 112 million ambulatory care visits 26 (Woodwell and Cherry, 2004), and an estimated 700 million restricted activity days per year due 27 to respiratory conditions (Adams et al., 1999). Of the total number of visits for respiratory 28 disease, 1.8 million annual ED visits are reported for asthma, including more than 750,000 visits 29 by children. In addition, nearly 500,000 annual hospitalizations for asthma are reported (NCHS 30 Health E Stats summarizing 2005 NHIS data).

1 Centers for Disease Control and Prevention (CDC) analyses have shown that the burden 2 of asthma has increased over the past two decades (NCHS Health E Stats 2005 NHIS data for 3 both adults and children). In 2005, approximately 22.2 million (7.7% of the population) 4 currently had asthma. The incidence was higher among children (8.9% of children) compared to 5 adults (7.2%) (Note: 2004 data is shown in Table 4.3-2, with a prevalence of 6.7%). In addition, 6 prevalence and severity is higher among certain ethnic or racial groups, such as Puerto Ricans, 7 American Indians, Alaskan Natives, and African Americans. The asthma hospitalization rate for 8 black people was 240% higher than that for white people. Puerto Ricans were reported to have 9 the highest asthma death rate (360% higher than non-Hispanic white people) and non-Hispanic 10 black people had an asthma death rate 200% higher than non-Hispanic white people. Gender and 11 age is also a determinant of prevalence and severity, with adult females having a 40% higher 12 prevalence than adult males, while boys had a 30% higher rate than girls. Overall, females had a hospitalization rate about 35% higher than males. 13 14 Evidence indicates that several groups are at increased risks from SO_2 exposures

compared to the average population. Susceptible subgroups include individuals with preexisting disease, especially asthma, and children and older adults. Other individuals with increased vulnerability include those who spend a lot of time outdoors at increased exertion levels (e.g., outdoor workers, children, individuals who exercise or play sports) and those in proximity to large uncontrolled or poorly controlled sources. The considerable size of the population groups at risk indicate that exposure to ambient SO₂ could have a significant impact on public health in the United States.

Functional	NT	Corr a H	Madamata	T		
Response	None	Small	Moderate	Large		
FEV ₁ change	Decrements of <3%	Decrements of 3 to $\leq 10\%$	Decrements of >10 but <20%	Decrements of ≥20%		
Nonspecific bronchial responsiveness ^a	Within normal range	Increases of <100%	Increase of ≤300%	Increases of >300%		
Airways resistance (sRaw)	Within normal range (±20%)	sRaw increased <100%	sRaw increased up to 200% or up to 15 cm H ₂ O·s	sRaw increased >200% or more than 15 cm H ₂ O·s		
Duration of response	None	<4 h	>4 h but ≤ 24 h	>24 h		
Symptomatic Response	Normal	Mild	Moderate	Severe		
Wheeze	None	With otherwise normal breathing	With shortness of breath	Persistent with shortness of breath		
Cough	Infrequent cough	Cough with deep breath	Frequent spontaneous cough	Persistent uncontrollable cough		
Chest pain	None	Discomfort just noticeable on exercise or deep breath	Marked discomfort on exercise or deep breath	Severe discomfort on exercise or deep breath		
Duration of response	None	< 4 h	>4 h, but ≤ 24 h	>24 h		
Impact of Responses	Normal	Mild	Moderate	Severe		
Interference with normal activity	None	Few individuals choose to limit activity	Many individuals choose to limit activity	Most individuals choose to limit activity		
Medical treatment	No change	Normal medication as needed	Increased frequency of medication use or additional medication	Physician or emergency room visit		

TABLE 4.3-1. GRADATION OF INDIVIDUAL RESPONSES TO SHORT-TERM SO2EXPOSURE IN INDIVIDUALS WITH IMPAIRED RESPIRATORY SYSTEMS

^aAn increase in nonspecific bronchial responsiveness of 100% is equivalent to a 50% decrease in PD20 or PD100.

Source: This table is reproduced from the 1996 O₃ AQCD (Table 9-2, page 9-25) (U.S. Environmental Protection Agency, 1996).

TABLE 4.3-2. PREVALENCE OF SELECTED RESPIRATORY DISORDERS BY AGE GROUP AND BY GEOGRAPHIC REGION IN THE UNITED STATES (2004 [U.S. ADULTS] AND 2005 [U.S. CHILDREN] NATIONAL HEALTH INTERVIEW SURVEY)

			Age (Years)			Region				
	Adults (18+ Years)		18-44	45-64	65-74	75+	Northeast	Midwest	South	West
Chronic Condition/Disease	Cases (× 10 ⁶)	%	%	%	%	%	%	%	%	%
Respiratory Conditions										
Asthma	14.4	6.7	6.4	7.0	7.5	6.6	6.8	6.8	6.0	7.5
COPD										
Chronic Bronchitis	8.6	4.2	3.2	4.9	6.1	6.3	4.0	4.7	4.4	3.5
Emphysema	3.5	1.7	0.3	2	4.9	6.0	1.5	1.7	2.0	1.1
			Age (Years)				Region			
	Children (<18 years)		0-4	5-11	12-17		Northeast	Midwest	South	West
Chronic Condition/Disease	Cases (× 10 ⁶)	%	%	%	%		%	%	%	%
Respiratory Conditions										
Asthma	6.5	8.9	6.8	9.9	9.6		10.1	8.5	9.3	7.9

Source: National Center for Health Statistics (2006a,b).

1 2

5. KEY FINDINGS AND CONCLUSIONS

3 4 The previous chapters have presented the most policy-relevant information related to the 5 atmospheric chemistry and exposures to sulfur dioxide (SO₂) and have discussed the health effects 6 of SO₂ exposure. This chapter provides concise summaries of key findings and reports conclusions 7 drawn from atmospheric sciences, ambient air data analyses, exposure assessment, dosimetry, and 8 health evidence in consideration of the review of the National Ambient Air Quality Standards 9 (NAAQS) for SO₂. 10 11 5.1 SUMMARY OF KEY FINDINGS RELATED TO THE 12 SOURCE-TO-DOSE RELATIONSHIP 13 14 Key elements linking sources to health effects are: emission source identification, 15 atmospheric chemistry and transport of a pollutant, techniques for ambient measurement, spatial 16 and temporal patterns in concentrations, correlations to other relevant chemical species, and patterns 17 of human exposures to ambient pollutants. 18 5.1.1 19 **Emission Sources, Atmospheric Science, and Ambient Monitoring** 20 **Methods** 21 The characteristics of anthropogenic sources and atmospheric chemistry and monitoring 22 methods for SO₂ are relatively well known. 23 Anthropogenic SO₂ is emitted mainly by fossil fuel combustion (chiefly coal and oil) and 24 metal smelting, with its largest emissions coming from elevated point sources like the stacks 25 of power plants and industrial facilities. 26 Anthropogenic SO₂ emissions from electric generating utilities and smelters have declined ٠ 27 substantially since 1990 28 SO_2 is a soluble gas that is oxidized mainly in the aqueous phase in cloud drops with gas • 29 phase oxidation being of secondary importance. Both pathways lead quantitatively to sulfate formation in cloud drops and/or in particles. Sulfur dioxide and sulfate are removed 30 31 from the atmosphere by wet and dry deposition. 32 Ambient SO_2 is most commonly monitored in regulatory networks using the pulsed 33 fluorescence technique and reported with a 1-h frequency, although finer time-scales are

sometimes available at selected sites. More sensitive techniques for measuring SO_2 are available, but most of these systems are too complex and expensive for routine monitoring applications.

3 4 5

1

2

5.1.2 Ambient Concentrations

The decline in SO₂ emissions from electric generating utilities and smelters since 1990 has
lowered ambient SO₂ concentrations and improved air quality dramatically, as demonstrated in the
data collected from the State and Local Air Monitoring Stations (SLAMS) and National Air
Monitoring Stations (NAMS) networks.

10 Measured annual mean SO_2 values have not been observed to exceed the annual primary 11 NAAQS (0.03 ppm) since 2000. Ambient concentrations decreased 48% between 1990 and 12 2005 owing to controls administered by EPA's Acid Rain Program and Clean Air Markets 13 Division. In addition, means and maxima of the 24-h concentrations in the 12 consolidated 14 metropolitan statistical areas (CMSAs) with >4 monitors in the years 2003 through 2005 15 were never in excess of the 24-h primary SO_2 NAAQS (0.14 ppm). The ambient monitors 16 currently deployed in the regulatory networks are fully adequate to determine compliance 17 with these standards.

• Monitors deployed in the current regulatory network are adequate to detect SO₂

concentrations above 3 ppb. But their detection technique is inadequate for accurate and
 precise measurements at or near the current mean 24-h SO₂ levels (~3 ppb). The U.S.

- precise measurements at or near the current mean 24-h SO₂ levels (~3 ppb). The U.S.
 Environmental Protection Agency (EPA) through its National Core Monitoring Network
 (NCore) initiative is engaged in a program to install and operate trace-level SO₂ instruments
 with lower limits of detection that will increase the accuracy and precision of observations at
 current low ambient levels.
- Ambient annual average concentrations reported in the regulatory monitoring networks of
 the continental U.S. (CONUS) over the years 2003 to 2005 ranged from a low of ~1 ppb
 (reported) on the West Coast to a high of ~3 ppb (reported) in the Mid-Atlantic region where
 SO₂ emissions remain highest. Both emissions and ambient concentrations demonstrate a
 strong east-to-west gradient, owing to the overrepresentation of SO₂-emitting electric
 generating units in the Ohio River Valley and upper South regions.

SO₂ concentrations demonstrate no correlation to concentrations of sulfate (SO₄²⁻) at the
 12 CMSAs with more than four SO₂ monitors except at Riverside, CA. This exception
 likely arises from Riverside's geographic location downwind of the regionally important
 SO₂ sources near Los Angeles, and the strongly correlated seasonality of SO₂ with SO₄²⁻,
 each showing peaks in summer when SO₂ oxidation would be maximized during transport to
 Riverside.

Policy relevant background levels of SO₂ are estimated to be <1% of typical ambient levels
 (or in the range of a few hundredths of a ppb) across most of the United States. However,
 much higher values are found in areas affected by volcanic or geothermal activity as in
 Hawaii (>30 ppb) or in the Pacific Northwest, or in areas affected by trans-Pacific or trans Arctic transport from Eurasia.

12

13

5.1.3 Exposure Assessment

The amount of time a person spends in different microenvironments and the infiltration characteristics of these microenvironments are strong determinants of the association between ambient SO₂ concentrations and human exposures. Relatively few studies have been conducted since the last review examining the relationships among personal exposures, and indoor, outdoor, and ambient concentrations of SO₂.

In studies in which personal exposure concentrations were above detection limits, or in studies using active denuder systems, reasonably strong associations were found between personal exposure and ambient SO₂ concentrations.

Passive badges used to monitor personal exposures generally cannot accurately measure
 concentrations of SO₂ over commonly used sampling periods because concentrations
 typically encountered by the subjects wearing them are often well below limits of detection.
 Hence, associations between ambient concentrations and personal exposure, using
 commonly deployed passive methods, can be incorrectly or inadequately characterized.

The main source of SO₂ in indoor environments is infiltration from outdoors, as evidenced
 by relatively high correlations between indoor and outdoor values and lower values indoors
 than outdoors. However, a wide range of indoor-outdoor ratios was reported in the studies
 examined here: from 0.03 to 1.01. A number of factors including instrument measurement
 error contribute to these results.

- In addition to ambient SO₂, people could also be exposed to SO₂ produced by indoor heating
 sources. Exposures of this sort would be limited, though, because the chief identified source
 activity, kerosene space heater use, is not widespread. However, disparities in
 socioeconomic status and behavior, and any differential susceptibilities related to such
 disparities may result in increased exposure of selected groups.
- The effect of exposure error on community time-series epidemiology studies has been
 investigated in a limited number of studies, although not specifically for SO₂. Variations in
 non-ambient exposure and in the fractional contribution of ambient pollutants to exposure
 will not influence the observed health effect estimate, unless they are correlated with the
 ambient concentration.
- 11

12 **5.1.4 Dosimetry**

Dosimetry of SO₂ is the measurement or estimation of the amount of SO₂ or its reaction
 products reaching and persisting at specific sites in the respiratory tract following exposures.

- Due to its high solubility, SO₂ is readily removed in the moist surfaces of the nose and other
 respiratory passages. With quiescent nasal breathing, almost all inhaled SO₂ is removed in
 the extrathoracic (head) region. This limits the potential for direct effects on the more
 sensitive thoracic regions of the respiratory tract. Factors that can increase penetration of
 SO₂ to these regions include oral and oronasal breathing, increased ventilation rates and the
 presence of particles or fog droplets that may act as carriers for SO₂.
- 21 22
- 23

5.2 SUMMARY OF KEY HEALTH EFFECTS FINDINGS

24 25

5.2.1 Findings from the Previous Review of the NAAQS for SO₂

In the previous review of the NAAQS for SO₂, the following conclusions were reached
 regarding health effects of SO₂ (U.S. Environmental Protection Agency, 1982b, 1994b):

- Although SO₂ may produce effects through several mechanisms, the most striking acute
 effects observed appear to result from stimulation of receptors in the tracheobronchial
 region, leading to a neurally mediated reflex bronchoconstriction.
- The major effects categories of concern associated with high exposures to SO₂ include
 sensory and other nonrespiratory responses, effects on respiratory mechanics and symptoms,

aggravation of existing respiratory and cardiovascular disease, effects on clearance and other
 host defense mechanisms, and mortality.

3 The major subgroups of the population that appear likely to be most sensitive to the effects 4 of SO₂ include asthmatics, individuals not diagnosed as asthmatic but with atopic disorders 5 (e.g., allergies), and individuals with chronic obstructive pulmonary or cardiovascular 6 disease. Other subgroups that may be somewhat sensitive include the elderly and children. 7 The major effects observed in human clinical studies following peak exposures (1 h or less, 8 generally 5 to 15 min) are increases in airway resistance and decreases in other functional 9 measures indicative of significant bronchoconstriction in relatively healthy asthmatic or 10 atopic subjects. At 0.4-0.6 ppm SO₂, changes in functional measures were accompanied by 11 mild increases in perceptible symptoms such as wheezing, chest tightness, and coughing. At 12 higher concentrations, effects were more pronounced and the fraction of asthmatic subjects 13 who responded increased, with clearer indications of clinically or physiologically significant 14 effects at 0.6 to 0.75 ppm and above.

15 A substantial percentage (25 to 50 percent) of mild to moderate asthmatic individuals 16 exposed for 5 to 15 minutes to 0.6 to 1.0 ppm SO_2 during moderate exercise would be 17 expected to have respiratory function changes. The effects observed after exposure to 0.6 to 18 1.0 ppm SO₂ are relatively transient (not lasting more than a few hours) and are not likely to 19 worsen or to reoccur with the same magnitude of response if re-exposure to another SO_2 20 peak occurred within the next several hours after the initial exposure. At SO_2 concentrations 21 at or below 0.5 ppm with moderate exercise, only a relatively small percentage (≥ 10 to 20 22 percent) of mild and moderate asthmatic individuals are likely to experience lung function changes distinctly larger than those they typically experience. Furthermore, compared to the 23 24 response at 0.6 to 1.0 ppm SO₂, the response at or below 0.5 ppm SO₂ is less likely to be 25 perceptible and of immediate health concern.

In the epidemiological studies, an association of short-term (generally hours to days) SO₂
 exposure with daily mortality was likely at levels of 0.19 to 0.38 ppm, an association with
 aggravation of bronchitis was likely at levels of 0.19 to 0.23 ppm and possible at levels
 below 0.19 ppm, and small, reversible declines in lung function in children were possible at
 0.10 to 0.18 ppm.

Although the possibility of effects from long-term (generally months to years) lower level
 exposures to SO₂ could not be ruled out, no quantitative rationale could be offered to
 support a specific range of interest for an annual standard. The limited available
 epidemiological data indicated associations between respiratory illnesses and symptoms and
 persistent exposures to SO₂ in areas with long-term averages exceeding 0.04 ppm.

- 6
- 7

5.2.2 New Findings on the Health Effects of Exposure to SO₂

8 New evidence developed since the previous NAAQS review for SO₂ has confirmed and 9 extended the conclusions articulated in the 1982 Air Quality Criteria Document (AQCD), 1986 10 Second Addendum, and 1994 Supplement to the Second Addendum. In the time since the previous 11 review, the epidemiological evidence has grown substantially, including new field or panel studies 12 on respiratory health outcomes, numerous time-series epidemiological studies of effects including 13 emergency department (ED) visits and hospital admissions, and a substantial number of studies 14 evaluating mortality risk with short-term (generally 24-h average) SO_2 exposures. Several new 15 studies have reported findings from prospective cohort studies on respiratory health effects and 16 mortality with long-term (generally months to years) SO_2 exposure. While not as marked as the 17 growth in epidemiological literature, a number of new human clinical and animal toxicological 18 studies provide some additional biological plausibility for the observed relationships between SO_2 19 exposure and health effects in epidemiological studies.

20 The key findings of this draft Integrated Science Assessment (ISA) on the health effects of 21 SO_2 exposure are presented below. Here, we build upon the discussions in Chapter 3 to draw 22 conclusions regarding the overall strength of the body of evidence and the extent to which causal 23 inferences may be made. Strong evidence from human clinical studies can lead to a conclusion of a 24 "causal" relationship between exposure and adverse health effects. Where the epidemiological 25 evidence is strong and there is coherent and plausible clinical or toxicological evidence, we have 26 concluded that the relationship is "likely causal." Where the epidemiological findings are generally 27 strong and consistent, but the available experimental evidence is too limited to draw conclusions 28 regarding coherence, mechanism(s) of action, or plausibility of the results, we have concluded that 29 this relationship is "suggestive." In some situations, the evidence from epidemiological and 30 experimental studies is not found to be strong or consistent (sometimes with very limited available 31 evidence) and there is limited support for coherence and plausibility; these relationships we judge to 7 {

1

2

be "inconclusive." Where possible, we have also included observations about the general levels or ranges of concentrations at which effects have been observed. A series of tables with information

3 supporting these observations are presented in the appendix following this chapter. Table 5A-1

4 summarizes key animal toxicological studies and the lowest levels at which effects have been seen

5 for a series of effect categories. Table 5A-2 summarizes the key findings of human clinical studies,

6 and the exposure levels at which those effects have been observed. The results of key new

7 epidemiological studies on respiratory health effects are presented in Tables 5A-3 (panel studies of

8 respiratory symptoms) and 5A-4 (population studies of ED visits and hospital admissions for

9 respiratory causes) and include information about the distribution of SO₂ levels (generally provided
10 as mean and range) as presented in the study.

- 11
- 12

5.2.2.1 Peak (5-15 min) Exposure to SO₂ and Respiratory Health Effects

We conclude that there is a *causal* relationship between peak (1-h or less, typically 5 to 15 min) exposure to SO_2 and effects on the respiratory system, based on evidence from human clinical studies. Human clinical studies provide clear evidence that peak exposures to SO_2 at levels of 0.5 to 1.0 ppm cause effects on the respiratory system, namely decrements in lung function and increases in respiratory symptoms in exercising asthmatic adults.

18

19 Respiratory Symptoms

The human clinical studies have reported increased respiratory symptoms with SO₂
 concentrations of as low as 0.5 ppm in asthmatic subjects (Section 3.1.1.1). One human
 clinical study with SO₂-sensitive asthmatics reported that respiratory symptoms (i.e.,
 shortness of breath, wheeze, and chest tightness) increased with increasing SO₂
 concentration (0-, 0.5-, and 1.0-ppm SO₂) following exposures of 10 min with varying levels
 of exercise (Gong et al., 1995). It was also observed that exposure to 0.5-ppm SO₂ during
 light exercise evoked a more severe symptomatic response than heavy exercise in clean air.

27

28 Lung Function

Human clinical studies have consistently demonstrated decreases in lung function (e.g.,
 decreased forced expiratory volume in 1 s [FEV₁] and increased specific airways resistance
 [sRaw]) following peak exposures (5 to 15 min) to SO₂ (Section 3.1.1.2). These effects
 have clearly and consistently been shown to be exacerbated among individuals with asthma,

5-7 DRAFT-DO NOT QUOTE OR CITE

1 with asthmatics exhibiting significant decrements in lung function following 5- to 15-min 2 exposures to SO₂ concentrations of as low as 0.5 ppm while performing moderate levels of 3 exercise (e.g., Gong et al., 1995; Horstman et al., 1986; Linn et al., 1987; Sheppard et al., 4 1981). The effect of peak SO_2 exposure on lung function has been shown to increase in 5 magnitude with increasing SO_2 concentrations above 0.5 ppm. Studies have further 6 observed significant decrements in lung function in some sensitive asthmatics following 5-7 15 min exposures to SO₂ concentrations of as low as 0.25 ppm while performing moderate 8 levels of exercise (Horstman et al., 1986; Sheppard et al., 1981). Thus, the observations of 9 increased bronchoconstriction and airway resistance in human clinical studies provide clear 10 evidence for SO₂ effects with peak exposure.

- 11
- 12

5.2.2.2 Short-Term (24-h average) Exposure to SO₂ and Respiratory Health Effects

13 We conclude that there is a *likely causal* relationship between short-term exposure to SO_2 at 14 ambient concentrations and effects on the respiratory system, based on consideration of all the data. 15 Numerous new epidemiological studies, supported by evidence from toxicological and human 16 clinical studies provide evidence of a relationship between short-term (24-h average) exposures to 17 SO_2 and respiratory health effects, ranging from respiratory symptoms and increasing in severity to 18 ED visits and hospital admissions for respiratory causes. These effects were observed particularly 19 in individuals with preexisting respiratory diseases, children, and older adults (65+ years). 20 Associations between short-term exposure to SO₂ and respiratory morbidity were generally robust 21 to adjustment for potential confounding by copollutants, as assessed using multipollutant models. 22 As shown in Tables 5A-3 and 5A-4, almost all of the epidemiologic studies have been conducted in 23 areas where the maximum ambient 24-h average SO₂ concentration was below the current 24-h 24 average NAAQS level of 0.14 ppm. Evidence related to specific types of respiratory effects is 25 highlighted below.

26

27 Respiratory Symptoms

Recent epidemiological studies provide evidence for an association between ambient SO₂
 exposure and increased respiratory symptoms in children, particularly those with asthma or
 chronic respiratory symptoms (Section 3.1.1.1, see Figures 3.1-3 and 3.1-4). Recent U.S.
 multicity studies observed significant associations between SO₂ and respiratory symptoms at
 a median range of 17 to 37 ppb (75th percentile: ~ 25 to 50) across cities for 3-h average

5-8 DRAFT-DO NOT QUOTE OR CITE

1		SO ₂ (National Cooperative Inner-City Asthma Study [NCICAS], Mortimer et al., 2002) and
2		2.2 to 7.4 ppb (90th percentile: 4.4 to 14.2) for 24-h average SO_2 (Childhood Asthma
3		Management Program [CAMP], Schildcrout et al., 2006). The SO ₂ effect was generally
4		found to be robust after adjusting for particulate matter (PM) and other copollutants.
5	•	Results from the epidemiological studies examining the association between SO_2 and
6		respiratory symptoms in adults are generally mixed, with some showing positive
7		associations and others finding no relationship at current ambient levels (Section 3.1.1.1).
8		
9	Lung	Function
10	•	Epidemiological studies observed mixed results for the association between 24-h average
11		ambient SO_2 and lung function in children and adults (Section 3.1.1.2). A limited number of
12		animal studies and human clinical studies of >1-h exposures provide some degree of
13		biologic plausibility and no concentration-response information to allow an understanding of
14		the inconclusive epidemiological findings.
15		
16	Airwa	ay Hyperresponsiveness
17	•	Very limited epidemiological evidence suggests that exposure to SO_2 may lead to airway
18		hyperresponsiveness in atopic individuals (Section 3.1.1.4). Toxicological studies that
19		observed increased airway obstruction and hypersensitivity at low levels (0.1 ppm) in
20		allergen-sensitized animals provide biological plausibility for these findings. The
21		epidemiological evidence further observed that atopic individuals may be at increased risk
22		for SO ₂ -induced respiratory symptoms.
23		
24	Inflan	nmation
25	•	The limited epidemiological, human clinical, and toxicological evidence does not suggest
26		that exposure to SO_2 at current ambient concentrations is associated with inflammation in
27		the airways (Section 3.1.1.3).
28 29	Resni	ratory ED Visits and Hospitalizations
30	•	A large number of epidemiologic studies provide evidence of positive, but not always
31	-	
		statistically significant, associations between ambient SO_2 concentrations and ED visits and
32		hospitalizations for all respiratory causes and asthma, particularly amount children and older

1adults (Section 3.1.1.6, see Figures 3.1-7 through 3.1-10). These findings are generally2robust when additional copollutants are included in the model (Figure 3.1-11). Biologic3plausibility for these findings of increased ED visits and hospitalizations is found in the4epidemiologic and human clinical studies that observed increased respiratory symptoms and5decreased lung function, and the animal toxicological studies that observed SO2-induced6altered lung host defenses (Section 3.1.1.5).

7 8

5.2.2.3 Short-Term Exposure to SO₂ and Cardiovascular Health Effects

9 The collective evidence with regard to the effect of SO₂ on the cardiovascular system is 10 *inconclusive*.

11 Evidence from epidemiological studies of heart rate variability (HRV), cardiac 12 repolarization changes, and cardiac rhythm disorders provide limited evidence of 13 associations with SO_2 exposure (Section 3.1.2.1 to 3.1.2.3). The parameters measured in 14 these studies were associated most strongly with PM compared to other ambient pollutants, 15 so the effects observed for SO₂ may have been confounded. Two human clinical studies 16 provided weak and inconsistent evidence for an effect of SO₂ on HRV, while one animal 17 toxicological study did not provide support for an effect on spontaneous arrhythmias. 18 Overall, evidence that SO₂ affects cardiac autonomic control and cardiac rhythm is 19 inconclusive.

20 Some studies have observed positive associations between ambient SO₂ concentrations and 21 ED visits and hospital admissions for all cardiovascular diseases (CVDs), particularly 22 among individuals 65 years or greater (Section 3.1.2.7, see Figure 3.1-12). Given the 23 limited number of studies that assessed potential confounding by copollutants for this 24 outcome (Figure 3.1-13), which is of concern because of the moderate to strong correlation 25 between SO_2 and various copollutants in most studies, and the lack of supportive data from 26 panel studies and human clinical studies on cardiovascular health effects, the collective 27 evidence that ambient SO₂ has an effect of CVD ED visits and hospitalizations is weak.

- 28
- 29

5.2.2.4 Short-Term Exposure to SO₂ and Other Systemic Effects

The limited toxicological evidence for SO₂-related effects on the nervous system and other
 organ systems is *inconclusive*.

- In a limited number of toxicological studies, exposure to SO₂ has been shown to affect
 certain neurodevelopmental and cognitive effects (Section 3.1.3.1). There was suggestive
 evidence that young animals and those with preexisting conditions such as diabetes were
 more susceptible to these effects. These effects were observed only at high concentrations
 of SO₂.
- Though limited, the overall animal toxicology database on SO₂ exposure suggests no overt
 adverse effects on the reproductive, hematological, gastrointestinal, renal, lymphatic, and
 endocrine systems (Section 3.1.3.2).
- 9

10 5.2.2.5 Effects of Short-Term Exposure to SO₂ on Mortality

Epidemiological evidence is *suggestive* of associations between SO₂ and nonaccidental allcause and cardiopulmonary-related mortality, but additional research is needed to more fully establish underlying mechanisms by which such effects occur.

- Recent epidemiological studies have reported associations between mortality and SO₂, often at mean 24-h average levels below 10 ppb (Section 3.2.1, see Figure 3.2-2). The range of SO₂ all cause (nonaccidental) mortality risk estimates is 0.4 to 2% per 10-ppb increase in 24-h average SO₂ in several large multicity studies and meta-analyses. In the large multicity time-series studies, the SO₂ risk estimates were generally reduced when copollutants, either PM indices and/or nitrogen dioxide (NO₂), were added in the model. Thus, some extent of confounding among these pollutants is suggested.
- Results from multicity studies indicate that the SO₂ effect estimates for respiratory mortality
 were generally larger than the cardiovascular mortality risk estimates, suggesting a stronger
 association of SO₂ with respiratory mortality compared to cardiovascular mortality;
 however, similar associations were observed for other pollutants, including PM and NO₂
 (Section 3.2.2, See Figure 3.2-3). There is some biological plausibility for the stronger
 associations observed between ambient SO₂ and respiratory mortality given the likely causal
 relationship between SO₂ and respiratory morbidity outcomes.
- An intervention study from Hong Kong (Hedley et al., 2002) supports the notion that a
 reduction in SO₂ levels results in a reduction in deaths, but this does not preclude the
 possibility that the causal agent is not SO₂ but rather something else that is emitted along
 with SO₂, such as the trace metals vanadium and nickel (Section 3.2.3). Overall, the
 - September 2007

evidence that SO_2 is causally related to mortality at current ambient levels is suggestive but limited by potential confounding in the epidemiological data and the absence of strong biological plausibility.

3 4

1

2

5

5.2.2.6 Effects of Long-Term Exposure to SO₂ on Morbidity

6 The epidemiological findings, along with the very limited toxicological findings, provide
7 *inconclusive* evidence that long-term exposure to SO₂ has adverse health effects.

Several epidemiological studies that examined the effects of long-term exposure to SO₂ on
 asthma, bronchitis, and respiratory symptoms observed positive associations in children
 (Section 3.3.1.1). However, there are inconsistencies in the findings observed, with some
 finding effects on bronchitic symptoms but not asthma symptoms and vice versa. Overall,
 while the evidence is suggestive, the variety of outcomes examined and the inconsistencies
 in the observed results make it difficult to assess the impact of long-term exposure of SO₂ on
 respiratory health.

The epidemiological evidence reported mixed results on the effect of long-term exposure on
 lung function (Section 3.3.1.2). An animal toxicological study in rabbits that were exposed
 to 5-ppm SO₂ for 13 weeks did not observe any alterations in pulmonary function or
 respiratory parameters. These results, collectively, do not indicate that long-term exposure
 to SO₂ has a detrimental effect on lung function.

- A very limited number of animal toxicological studies examined histopathological changes
 in the respiratory system following exposure to SO₂ (Section 3.3.1.3). In one study, rats
 were exposed for 4 to 8 months to 1-ppm SO₂ and an increased incidence of bronchiolar
 epithelial hyperplasia and a small increase (12%) in numbers of nonciliated epithelial cells
 in terminal respiratory bronchioles were observed at 4 but not at 8 months of exposure. Two
 other toxicological studies with shorter exposure periods (6 days and 4 weeks) did not report
 any alveolar or other pulmonary lesions.
- The epidemiological studies did not provide any evidence that long-term exposure to SO₂ is
 associated with an increased risk of lung cancer (Section 3.3.2). The toxicological studies
 indicate that any potential pathways for sulfur oxides (SO_x) to induce carcinogenesis,
- 30 cocarcinogenesis, or tumor promotion appear to be complex and may be highly situational.
- 31 SO₂ and its derivatives appear unlikely to have significant carcinogenic potential.

Epidemiological studies on birth outcomes have found suggestive positive associations
 between SO₂ exposure and low birth weight (Section 3.3.3, see Figure 3.3-1). One concern,
 however, is that many of these studies could not adjust for potential confounding factors.
 Additional limitations affecting the interpretation of these studies is a lack of evidence for
 biological plausibility of an effect, inconsistencies across trimesters of pregnancy, and a lack
 of evidence to evaluate confounding by copollutants.

- 7
- 8

5.2.2.7 Effects of Long-Term Exposure to SO₂ on Mortality

9 Results from the limited number of epidemiological studies are *inconclusive* regarding the
10 association between long-term exposure to SO₂ and mortality.

11 The results from two major U.S. epidemiological studies (Harvard Six Cities Study 12 [Dockery et al., 1993; reanalysis, Krewski et al., 2000] and the American Cancer Study 13 [ACS] [Pope et al., 1995; reanalysis, Krewski et al., 2000]) observed associations between 14 long-term exposure to SO_2 and mortality (Section 3.4.1, see Figure 3.4-1). However, 15 Krewski et al. concluded that in the absence of a plausible toxicological mechanism by 16 which SO₂ could lead to increased mortality suggested that SO₂ might be acting as a marker 17 for other mortality-associated pollutants. The inability to distinguish potential confounding 18 by copollutants, inconsistent observations across the various U.S. and European studies and 19 the remaining uncertainties regarding the geographic scale of analysis and copollutant 20 confounding limit the interpretation of a causal relationship.

21 22

5.2.2.8 Concentration-Response Function and Potential Thresholds

The limited evidence from epidemiological studies examining the concentration-response
function of SO₂ health effects is inconclusive regarding the presence of an effect threshold
(Section 4.1).

- Evidence from human clinical studies indicated wide interindividual variability in response
 to SO₂ exposures (Horstman et al., 1986; Linn et al., 1987). The evidence from human
 clinical studies demonstrates consistent SO₂-induced respiratory effects following 5 to 15
 min exposures of SO₂ at levels between 0.5 and 1.0 ppm, with weaker evidence of effects at
 concentrations as low as 0.25 ppm in some sensitive asthmatics.
- Several epidemiological studies that examined the concentration-response function between
 short-term (24-h average) exposure to SO₂ and respiratory morbidity observed a linear

1 relationship across the entire concentration range, suggesting a lack of a threshold in effect. 2 However, given the various limitations in observing a possible threshold in population 3 studies, the lack of evidence for a threshold does not necessarily indicate that there is indeed 4 no threshold for SO_2 health effects. Two epidemiological studies did report a possible 5 threshold level of 22 to 23 ppb (24-h average) at which no statistically significant SO₂-6 related respiratory health effect was observed. However, as these observations were based 7 on only a few influential data points (24-h average SO_2 concentrations above the 90th 8 percentile), the results should be viewed with caution.

In considering the factors that influence the dosimetry of SO₂, a mechanistic argument for
 individual thresholds in SO₂-related health effects can be made. The individual thresholds
 for response may not necessarily translate to a detectable population threshold. Additivity
 of SO₂-induced responses to a background level of response and interindividual differences
 in susceptibility to SO₂-related health effects will tend to linearize the concentration response relations and obscure any population threshold that exists.

- 15
- 16

5.2.2.9 Susceptible and Vulnerable Populations

Certain subgroups within the population have been found to be more susceptible or
vulnerable to the effects of SO₂ exposure, including individuals with preexisting respiratory
diseases, children, and older adults (65+ years) (Section 4.2). It should be further noted that other
individuals who may not generally be susceptible to SO₂-related health effects may experience
transient airways reactivity to respiratory irritants such as SO₂ following a recent viral respiratory
infection (Stempel and Boucher, 1981).

Substantial evidence from epidemiological studies suggests that subjects with respiratory
 illnesses, particularly asthma, are more susceptible to respiratory health effects from SO₂
 exposures than the general public (Section 4.2.2.1). The observations in human clinical
 studies of increased sensitivity to SO₂ exposures in asthmatic subjects compared to healthy
 subjects provide coherence and biological plausibility for these observations in
 epidemiological studies.

There is weak evidence from a small number of panel studies that suggests that individuals
 with preexisting CVD may be more susceptible to adverse health effects from ambient SO₂
 exposures than the general public (Section 4.2.2.2). Additional research is necessary to

assess whether individuals with preexisting CVD constitutes a susceptible group for SO₂
 health effects.

- Limited epidemiological evidence suggests that children and older adults (65+ years) are
 more susceptible to the adverse respiratory effects associated with ambient SO₂
 concentrations when compared to the general population (Section 4.2.3, see Figure 4.2-1).
 The few studies that conducted age-stratified analyses when examining cardiovascular
 outcomes did not find any difference in outcomes when analyses were stratified by age.
- Differential effects of air pollution among genetically diverse subpopulations have been
 examined for a number of glutathione S-transferase (GST) genes and other genotypes in a
 limited number of studies (Section 4.2.4). Only one of these studies specifically examined
 SO₂ as the exposure of interest, and it found a significant association with the homozygous
 wild-type allele for tumor necrosis factor-α (TNF-α). At this time there are only very
 limited data on which to base a conclusion regarding the effect of SO₂ exposure on
 genetically distinct subpopulations.
- 15

16 17

5.3 CONCLUSIONS

18 This draft ISA focused on scientific information that has become available since the last 19 review and reflects the current state of knowledge on the most relevant issues pertinent to the 20 review of the primary NAAQS for SO₂. The current primary SO₂ NAAQS has two parts – a 24-h 21 average of 0.14 ppm, not to be exceeded more than once per year, and an annual average of 22 0.03 ppm. Exceedances in recent years have become rare, as the mean 24-h average and annual 23 average SO₂ concentrations in the United States for the years 2003 to 2005 were ~4 ppb, with 24 maximum values of >120 ppb for the 24-h average and ~14-15 ppb for the annual average. For the 25 monitors reporting a 1-h max in these years, the mean concentration was ~13 ppb, with a maximum 26 value of >600 ppb.

In the review of the scientific literature for SO_2 , evidence from the various disciplines of atmospheric sciences, exposure assessment, dosimetry, human and animal toxicology, and epidemiology was integrated and collectively considered in formulating conclusions. Overall, we conclude that there is a *causal* relationship between *peak* (1 h or less, typically 5 to 15 min) exposure to SO_2 and effects on the respiratory system, based on evidence from human clinical studies. Human clinical studies provide clear and consistent evidence of a causal relationship

1 between peak exposures to SO_2 at levels of 0.5 to 1.0 ppm and effects on the respiratory system, 2 namely decrements in lung function in exercising asthmatic adults. We further conclude that there 3 is a likely causal relationship between short-term (generally 24-h average) SO₂ exposure at ambient 4 levels and respiratory health effects, mostly based on the epidemiological studies. A large body of 5 new epidemiological studies provides evidence of consistent and robust associations between short-6 term exposure to ambient SO_2 and respiratory health endpoints, ranging from increased respiratory 7 symptoms in children with asthma or chronic respiratory symptoms, and increasing in severity to 8 ED visits and hospital admissions for respiratory causes particularly in children and older adults 9 (65+ years of age). The public health impact of ambient SO_2 exposures may be large, owing to the 10 fact that these potentially susceptible subgroups constitute a large part of the general population. 11 Associations of health effects with ambient SO₂ exposure have been reported in locations where the 12 maximum 24-h average SO₂ concentration was below the levels of the current NAAQS (see Tables 13 5A-3 and 5A-4).

However, much uncertainty remains in the interpretation of the health evidence related to ambient SO₂ exposures. Exposure error is one key source of uncertainty, as typical indoor 24-h average SO₂ concentrations are often below the detection limit of personal exposure monitors, and ambient SO₂ concentrations in locations with low levels may be at or below the detection limit of existing monitors in the regulatory networks. Other sources of uncertainty include the magnitude of SO₂ risk estimates and the shape of concentration-health response relationships. Together, these uncertainties complicate our ability to attribute observed health effects to SO₂ directly.

21 The epidemiological observations of SO_2 health effects can be interpreted in several ways 22 that are not mutually exclusive. First, the reported SO₂ effect estimates in epidemiological studies 23 may be attributable to SO_2 per se, reflecting independent SO_2 effects on respiratory health. 24 Available human clinical and animal toxicological studies are conducted at higher than average 25 ambient SO_2 exposures, and do not examine the most susceptible populations. Due to its high 26 solubility, SO_2 is readily removed in the moist surfaces of the nose and other respiratory passages, 27 limiting the potential for direct effects on the more sensitive thoracic regions of the respiratory tract 28 during nasal breathing. Factors that can increase penetration of SO₂ to these regions, including oral 29 and oronasal breathing, increased ventilation rates, and the presence of high levels of particles or 30 fog droplets that may act as carriers for SO₂. Evidence from human clinical studies indicate that 31 peak exposures (5 to 15 min) to SO_2 at levels as low as 0.5 ppm have been associated with

increased respiratory symptoms and decreased lung function in exercising asthmatics, with levels as
low as 0.25 ppm eliciting respiratory responses in some sensitive individuals. These findings
provide supportive evidence that peak concentrations of SO₂ may be driving the observed
associations in epidemiological studies. SO₂ at levels such as these are found in only a very few
areas in the United States and under specific meteorological conditions.

6 Second, ambient SO_2 may be serving as an indicator of complex ambient air pollution 7 mixtures that share the same source as SO₂ (i.e., combustion of sulfur-containing fuels or metal smelting). Other components of mixed emissions from these sources include trace elements such as 8 vanadium, nickel, selenium, and arsenic. It should be noted that particulate SO_4^{2-} was found not to 9 be correlated with SO₂ in ambient data for 12 CMSAs with multiple monitors. In multipollutant 10 11 models adjusting for PM indices, SO₂ effect estimates generally were found to be robust. However, 12 in the event that one or more pollutants act as surrogates for an unmeasured component of a mixture 13 actually responsible for the observed association, the strongest predictor in a multipollutant model could indicate simply which measured pollutant is the best surrogate for the unmeasured pollutant 14 15 of interest. Therefore, reported SO_2 -related effects may represent those of the overall mixture.

16 Third, in the presence of complex pollution mixtures, copollutants may enhance the toxic 17 capability of SO_2 or SO_2 may influence the toxicity of copollutants. For example, water-soluble 18 gases such as SO_2 that are usually largely removed by deposition to wet surfaces in the upper 19 portion of the respiratory tract could be dissolved in particle-bound water and, thereby, be carried 20 into the lower regions of the respiratory tract. In turn, SO_2 can acidify particles, increasing the 21 bioavailability of soluble transition metals capable of inducing lung injury.

22 Assessment of the health effects directly attributable to SO₂ at current average ambient 23 concentrations is difficult at present, particularly due to the uncertainties related to exposure 24 characterization in epidemiological studies using ambient SO₂ concentration data and the inability 25 to discern the shape of the concentration-response function in the available epidemiology studies. 26 Lack of clear mechanistic understanding for low level exposures increases the difficulty with which 27 available findings can be integrated in assessing the coherence of SO₂-related evidence. Despite 28 these difficulties, the epidemiological evidence, along with limited toxicological and human clinical 29 information, indicates a likely causal association between short-term exposure to SO₂ and 30 respiratory health outcomes. Whether SO₂ has a direct effect, SO₂ is a surrogate for pollution 31 mixtures with the same source, and/or the toxicity of SO₂ is influencing or influenced by the

- 1 presence of copollutants, reduction of ambient SO₂ concentrations will result in decreased
- 2 frequency and severity of SO₂-related respiratory health effects.

1 APPEN	NDIX 5A.
2	
3 SUMMARY OF NEW AN	IMAL TOXICOLOGICAL,
4 HUMAN CLINICAL, AND E	PIDEMIOLOGICAL STUDIES
5 OF HEALTH EFFEC	FS ASSOCIATED WITH
6 EXPOSURES TO	SULFUR DIOXIDE
7	
8	

TABLE 5A-1. KEY RESPIRATORY HEALTH EFFECTS OF EXPOSURE TO SULFUR
DIOXIDE OBSERVED IN ANIMAL TOXICOLOGICAL STUDIES

SO ₂ Concentration &	Smoothag	Observed Effects	Defeneres
Exposure Duration	Species	Observed Effects	References
MORPHOLOGY 1 ppm, 3 h/day/6 day Evaluated up to 72 h postexposure	Male Hartely guinea pigs	No alveolar lesions.	Conner et al. (1985)
5 ppm, 2 h/day, 5 day/wk/4 wk	Male and female F344 rats	No nasal or pulmonary lesions. No effect on mucociliary clearance of radiolabeled aluminosilicate particles.	Wolff et al. (1989)
LUNG INJURY AND INFL	AMMATION		
1 ppm, 5 h/day, 5 day/wk up to 4 and 8 mos	Male Sprague- Dawley rats	Increased bronchial epithelial hyperplasia and number of nonciliated epithelial cells observed at 4 mos.	Smith et al. (1989)
5-21 ppm, 4 h/day/7 day Effects observed at as low as 5 ppm	Male Kunming albino mice	Elevated levels of pro-inflammatory cytokines IL-6 and TNF- α in lung and TNF- α in serum.	Meng et al. (2005a)
5, 50, and 100 ppm, 5 h/day/28 day	Male Wistar rats	No evidence of lung injury and lung epithelial permeability. Significant elevation in neutrophil number of 5-ppm group at day 14.	Langley-Evans et al. (1996)
AIRWAY HYPERRESPON	SIVENESS AND A	LLERGY	
0.1, 4.3, and 16.6 ppm 8 h/day/5 day With ovalbumin challenge in the last 3 days	Perlbright-female white guinea pigs	Bronchial obstruction with ovalbumin challenge in all the SO ₂ groups. SO ₂ - induced potentiation of allergic sensitization of airway.	Riedel et al. (1988)
0.1 ppm, 5 h/day/5 day With or without ovalbumin exposure	Male, Dunkin- Hartley guinea pigs	Enhanced eosinophil count in SO_2 - exposed, and SO_2 + ovalbumin- exposed group of animals. Infiltration of inflammatory cells. SO_2 potentiates ovalbumin-induced asthmatic reaction in guinea pigs.	Park et al. (2001)
5 ppm, whole body 4 h/day/5 day/6 wk Sensitization with Candida albicans after 2 wks of exposure to SO ₂	Male Hartley guinea pigs	The number of SO ₂ -exposed animals with prolonged expiration and inspiration increased after 15 h of challenge with the antigen. SO ₂ exposure increases dyspneic symptoms in guinea pigs.	Kitabatake et al. (1995)
5 ppm SO ₂ for 4 h Sensitized to Ascaris suum	Sheep	SO ₂ exposure significantly increased airway reactivity in allergic sheep.	Abraham et al. (1981)

SO ₂ Concentration &			
Exposure Duration	Species	Observed Effects	References
LUNG FUNCTION			
1 ppm SO ₂ for 1 h	Male Hartley guinea pigs	Increase in pulmonary resistance and decrease in dynamic compliance up to 1 h following exposure. No effect of SO_2 exposure on breathing frequency, tidal volume or minute volume.	Amdur et al. (1983)
1 ppm, nose only 3 h/day/6 day Analyses up to 48 h following exposure	Ketamine- anesthetized male Hartley guinea pigs	No effect of SO_2 exposure on residual volume, functional reserve capacity, vital capacity, total lung capacity, respiratory frequency, tidal volume, pulmonary resistance, or pulmonary compliance.	Conner et al. (1985)
5 ppm for 45 min	Adult rabbits	SO_2 exposure results in increased lung resistance. Bivagotomy had no effect on this phenomenon, indicating the noninvolvement of vagal reflex in this process. SO_2 had no effect on the lung resistance induced by intravenously administered histamine.	Barthelemy et al. (1988)
5 ppm, 2 h/day for 13 wks	New Zealand white male and female rabbits	SO ₂ exposure had no effect on lung resistance, dynamic compliance, transpulmonary pressure, tidal volume, respiration rate, or minute volume.	Douglas et al. (1994)
HOST DEFENSE			
10 ppm for 4 h, nose only	White Swiss mice	No effect on red blood cell Fc-receptor mediated phagocytosis or bactericidal activity.	Jakab et al. (1996)
10 ppm for 4 h, nose only	Male Wistar rats	No effect of SO_2 exposure on alveolar macrophage phagocytosis or bactericidal activity to <i>Staphylococcus aureus</i> .	Clarke et al. (2000)
10 ppm for 24 h, 1, 2, and 3 wks	OF1 mice	Respiratory challenge with <i>Klebsiella pneumoniae</i> resulted in increased mortality and decreased survival time in SO ₂ -exposed animals.	Azoulay-Dupuis et al. (1982)

TABLE 5A-1 (cont'd).KEY RESPIRATORY HEALTH EFFECTS OF EXPOSURETO SULFUR DIOXIDE OBSERVED IN ANIMAL TOXICOLOGICAL STUDIES

TABLE 5A-2. KEY HUMAN HEALTH EFFECTS OF PEAK EXPOSURE TO SULFUR DIOXIDE OBSERVED IN
CLINICAL STUDIES

SO ₂ Concentration (ppm)	Exposure Duration	Observed Effects	References
0.2-0.4	5 min-1 h	Significant reductions in FEV_1 and increases in specific airways resistance (sRaw) observed among some asthmatic adults. Some weak and inconsistent evidence to suggest that SO_2 exposure may lead to changes in heart rate variability.	Bethel et al. (1985); Horstman et al. (1986); Linn et al. (1982, 1983, 1987); Routledge et al. (2006); Schachter et al. (1984); Sheppard et al. (1981); Tunnicliffe et al. (2001, 2003)
0.4-0.6	1 min-2 h	Decrements in lung function observed between 0.4- and 0.6-ppm SO ₂ in asthmatic adults and adolescents during exercise. Significant interindividual variability in response has been consistently demonstrated. Effects observed within 1-5 min of exposure are generally not enhanced by increasing exposure duration. Respiratory symptoms (e.g., wheezing and chest tightness) increase with increasing exposure concentrations above 0.4 ppm. No respiratory effects reported in healthy, non-asthmatics.	Balmes et al. (1987); Bedi et al. (1979); Gong et al. (1995); Horstman et al. (1986); Koenig et al. (1983); Linn et al. (1982, 1983, 1987); Magnussen et al. (1990); Schachter et al. (1984); Sheppard et al. (1981)
0.6-1.0	1 min-2 h	Specific airway resistance shown to double following 10-min exposures to SO_2 concentrations between 0.25 and 0.75 ppm with moderate exercise in 50% of asthmatics tested. Some evidence of an increase in airway resistance in healthy, non-asthmatic subjects exposed to SO_2 concentrations of as low as 0.75 ppm during heavy exercise. Respiratory effects attributed to SO_2 among asthmatics during exercise may be diminished after cessation of exercise, even with continued SO_2 exposure.	Balmes et al. (1987); Gong et al. (1995); Hackney et al. (1984); Horstman et al. (1986, 1988); Koenig et al. (1983); Linn et al. (1985, 1987); Schachter et al. (1984); Stacy et al. (1981)
≥1.0	3 min-1 h	Among healthy adults, SO ₂ -attributed decrements in lung function generally occur at concentrations above 1 ppm during exercise and above 5 ppm at rest. Markers of airway inflammation are significantly elevated at 4 h postexposure, reaching peak levels 24 h postexposure.	Amdur et al. (1953); Kreisman et al. (1976); Lawther et al. (1955, 1975); Sandström et al. (1989); Sim and Pattle (1957); Snell and Luchsinger (1969)

		Averaging Time,		Stat Air Qu			
Reference, Study Location, and Period	Study Population	Mean (SD) SO ₂ Levels (ppb)	98th %	98th % 99th % Range		Upper Percentile	Standardized Odds Ratio (95% CI)a
UNITED STATES							
Schildcrout et al. (2006) Eight North American Cities 1993-1995	Asthmatic children (n = 990)	24-h avg: 2.2-7.4 (range of city- specific medians)	NR	NR	NR	75th: 3.1, 10.7 90th: 4.4, 14.2 (range in city specific estimates)	Asthma symptoms: SO_2 alone: 1.04 (1.00, 1.08), 3-day sum $SO_2 + NO_2$: 1.04 (1.00, 1.09), 3-day sum $SO_2 + PM_{10}$: 1.04 (0.99, 1.08), 3-day sum
Schwartz et al. (1994) Six cities, U.S. Apr-Aug 1985, 1986, 1987 (depends on the city)	Children in grades 2-5 (n = 1,844)	24-h avg: 4.1 (median)	NR	NR	NR	75th: 8.2 90th: 17.9 Max: 81.9	Cough incidence: SO_2 alone: 1.15 (1.02-1.31), 4-day avg $SO_2 + PM_{10}$: 1.08 (0.93, 1.25), 4-day avg $SO_2 + NO_2$: 1.09 (0.94, 1.30), 4-day avg
Neas et al. (1995) Uniontown, PA Summer 1990	Children in grades 4-5 (n = 83)	12-h avg: 10.2 5.9 overnight 14.5 daytime	NR	NR	IQR: 11.1	Max: 44.9	Evening cough: 1.19 (1.00, 1.42), lag 12 h
Mortimer et al. (2002) Eight urban areas, U.S. Jun-Aug 1993	Asthmatic children, aged 4-9 (n = 846)	3-h avg: 22 (shown in figure)	NR	NR	0-75 ppb (shown in graph)	NR	Asthma symptoms: SO ₂ alone (8 cities): 1.19 (1.06, 1.35), lag 1-2 SO ₂ + O3 + NO ₂ (7 cities): 1.19 (1.04, 1.37), lag 1-2 SO ₂ + O3 + NO ₂ + PM ₁₀ (3 cities): 1.23 (0.94, 1.62), lag 1-2

		Averaging Time,			ics for SO ₂ ty Data (ppb)	
Reference, Study Location, and Period	Study Population	Mean (SD) SO ₂ Levels (ppb)	98th %	5 99th %	Range	Upper Percentile	Standardized Odds Ratio (95% CI)a
EUROPE							
Timonen and Pekkanen (1997) Kuopio (urban and suburban), Finland 1994	Children 7-12 yrs with asthma or cough symptoms (n = 169)	24-h avg: 2.3	NR	NR	NR	75th: 2.7 Max: 12.3	Upper respiratory symptoms: 2.71 (1.19, 6.17), lag 0 3.17 (1.21, 8.78), lag 1
Ward et al. (2002) Birmingham and Sandwell, England Jan-Mar 1997 May-Jul 1997	Children, age at enrollment 9 yrs (n = 162)	24-h avg: Median 5.4, Winter 4.7, Summer	NR	NR	2, 18 Winter 2, 10 Summer	NR	Cough: 0.59 (0.25, 1.40), Winter 0.90 (0.49, 1.66), Summer Shortness of breath: 0.59 (0.32, 1.09), Winter 0.81 (0.30, 2.17), Summer Wheeze: 0.79 (0.38, 1.63), Winter 0.77 (0.28, 2.08), Summer (7-day avg lag for above results)
Segala et al. (1998) Paris, France Nov 1992-May 1993	Children 7-15 yrs with physician- diagnosed asthma (n = 84)	24-h avg: 8.3 (5.2)	NR	NR	1.7-32.2	NR	Prevalent asthma: 1.32 (1.08, 1.62), lag 0 1.26 (0.93, 1.71), lag 1 Prevalent shortness of breath: 1.17 (0.53, 2.62), lag 0 1.21 (0.99, 1.49) lag 1 Incident asthma 1.73 (1.15, 2.60), lag 0 1.60 (1.01, 2.53), lag 1 Incident wheeze 1.22 (0.95, 1.58), lag 0 1.13 (0.68, 1.88), lag 1

					tics for SO ₂ lity Data (ppl		
Reference, Study Location, and Period	Study Population	Averaging Time, Mean (SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Odds Ratio (95% CI)a
EUROPE (cont'd)							
Boezen et al. (1998) Amsterdam and Meppel (urban and rural), Netherlands Winter 1993-1994	Children 7-11 yrs, with and without BHR and high serum concentrations of total IgE (n = 632)	24-h avg: Means: 1.7, 8.7 Medians: 1.4, 8.3 (range in city- specific estimates)	NR	NR	1.9, 23.6	NR	Among children with BHR and relatively high serum total IgE: Lower respiratory symptoms: 1.27 (1.09, 1.49), lag 0 1.25 (1.06, 1.48), lag 1 1.69 (1.26, 2.28), 5-day avg
Roemer et al. (1993) Wageningen, the Netherlands Winter 1990-1991	Children with chronic respiratory conditions 6-12 yrs (n = 73)	24-h avg 1-h max	NR	NR	0, 40.4 (24-h avg)	Max: 56.5 (1-h max)	Asthma attack: 1.79 (1.35, 2.38), 7-day avg Wheeze: 1.97 (1.42, 2.72), 7-day avg Waken with symptoms: 1.79 (1.12, 2.87), 7-day avg Shortness of breath: 1.48 (1.06, 2.07), 7-day avg Cough: 1.97 (1.03, 3.77), 7-day avg
Hoek and Brunekreff (1993) Wageningen, Netherlands Winter 1991	Children 7-11 yrs, nonurban area (n = 112)	24-h avg	NR	NR	NR	Max: 40.4	Cough: 1.22 (0.20, 7.39), lag 0 0.25 (0.04, 1.65), lag 1 3.67 (0.002, 7.331.974), 7-day avg Lower respiratory symptoms: 1.82 (0.14, 24.3), lag 0 0.33 (0.02, 6.05), lag 1 0.005 (0.0, 44.7), 5-day avg

Reference, Study Location, and		Averaging Time, Mean (SD) SO ₂		St Air Q	Standardized Odds Ratio		
Period	Study Population	Levels (ppb)	98th %	99th %	Range	Upper Percentile	(95% CI)a
EUROPE (cont'd)							
Van der Zee et al. (1999) Urban and nonurban areas, the Netherlands 3 winters, 1992-1995	Children 7-11 yrs, with and without chronic respiratory symptoms (n = 633)	24-h avg: 1.4, 8.8 (range in city- specific medians)	NR	NR	NR	Max: 6.5, 58.5 (range in city-specific maximums)	Lower respiratory symptoms: Urban: SO ₂ alone: 1.22 (1.01, 1.46), lag 0 1.14 (0.95, 1.38), lag 1 1.34 (0.98, 1.82), 5-day av SO ₂ + PM ₁₀ : 1.18 (0.96, 1.45), lag 0 1.03 (0.83, 1.27), lag 1 1.08 (0.72, 1.63), 5-day av Nonurban: 0.94 (0.79, 1.12), lag 0 0.94 (0.78, 1.13), lag 1 1.10 (0.75, 1.63), 5-day av

		Averaging Time,		Statis Air Qual			
Reference, Study Location, and Period	Study Population	Mean (SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Odds Ratio (95% CI) ^a
EUROPE (cont'd)							
Van der Zee et al. (1999)							Cough:
(cont'd)							Urban:
							0.93 (0.84, 1.03), lag 0
							1.08 (0.98, 1.19), lag 1
							1.08 (0.89, 1.30) 5-day avg
							Nonurban:
							1.05 (0.96, 1.15), lag 0
							0.98 (0.90, 1.08), lag 1
							1.04 (0.83, 1.30), 5-day avg

 a 24-h avg SO₂ and 12-h avg SO₂ standardized to 10-ppb incremental change; 3-h avg SO₂ standardized to 20-ppb incremental change; and 1-h max SO₂ standardized to 40-ppb incremental change. NR = Not Reported

BHR = Bronchial Hyperresponsiveness

NR = Not Reported

BHR = Bronchial Hyperresponsiveness

		Averaging Time,		Sta Air Qu			
Reference, Study Location, and Period	Study Population	Mean (SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)
EMERGENCY DEPA	RTMENT VISITS - AL	L RESPIRATORY					
UNITED STATES							
Wilson et al. (2005) Portland, ME 1998-2000 Manchester, NH 1996-2000	≈ 84,000 ED visits	1-h max: Portland: 11.1 (9.1) Manchester: 16.5 (14.7)	NR	NR	NR	NR	Portland: All ages: 8% (3, 11) 0-14: -2.6% (-10.3, 2.7) 15-64: 11% (5.4, 13.9) 65+: 16.8% (8.2, 25.8) Manchester: All ages: 6% (1, 12) 0-14: 5.4% (-12.8, 25.8) 15-64: 11.0% (0.0, 22.7) 65+: 11.0% (-15.2, 48.4)
Peel et al. (2005) Atlanta, GA Jan 1993-Aug 2000	484,830 ED visits, all ages from 31 hospitals	1-h max: 16.5 (17.1)	NR	NR	NR	90th: 39.0	1.6% (-0.6, 3.8)
EUROPE							
Atkinson et al. (1999b) London, United Kingdom Jan 1992-Dec 1994	98,685 ED visits from 12 hospitals	24-h avg: 8.0 (2.9)	NR	NR	2.8, 30.9	50th: 7.4 90th: 11.7	All Ages: 4.2% (1.1, 7.4) 0-14: 9.0% (4.4, 13.8) 15-64: 4.0% (-0.3, 8.5) 65+: -2.7% (-5.4, 3.3)

TABLE 5A-4. EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

Reference, Study		Averaging Time,	Statistics for SO ₂ Air Quality Data (ppb)				
Location, and Period	Study Population	Mean (SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)
EMERGENCY DEPA	RTMENT VISITS - AS	STHMA					
UNITED STATES							
Jaffe et al. (2003) Cincinnati, Cleveland, Columbus, OH Jul 1991-Jun 1996	4,416 ED visits for asthma, age 5-34	24-h avg: Cincinnati: 13.5 (9.4) Cleveland: 14.7 (9.5) Columbus: 4.2 (3.2)	NR	NR	Cincinnati: 0.6, 49.6 Cleveland: 0.98, 62.8 Columbus: 0, 21.4	NR	Cincinnati: 17.3% (4.7, 30.8) Cleveland: 3.1% (-3.8, 10.7) Columbus: 13.1% (-14.2, 48.6) All Cities: 6.2% (0.5, 11.6)
Wilson et al. (2005) Portland, ME 1998-2000 Manchester, NH 1996-2000	≈ 84,000 ED visits	1-h max: Portland: 11.1 (9.1) Manchester: 16.5 (14.7)	NR	NR	NR	NR	Portland: All ages: 11.0% (0.0, 19.7) 0-14: 5.4% (-12.8, 25.8) 15-64: 11% (0, 22.7) 65+: 11.0% (-15.2, 48.4) Manchester: All ages: 5.4% (-2.6, 16.8) 0-14: 19.7% (-2.6, 51.8) 15-64: 2.7% (-7.8, 13.9) 65+: 11.0% (-28.8, 77.2)
Peel et al. (2005) Atlanta, GA Jan 1993-Aug 2000	Asthma ED visits, all ages and 2-18 yrs from 31 hospitals	1-h max: 16.5 (17.1)	NR	NR	NR	90th: 39.0	0.2% (-3.2, 3.4)

TABLE 5A-4 (cont'd). EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

Reference, Study Location, and Period		Averaging Time, Mean (SD) SO ₂ Levels (ppb)			Statistics for SO ₂ Quality Data (ppb)		– Standardized Percent Excess Risk (95% CI)
	Study Population		98th %	99th %	Range	Upper Percentile	
EUROPE							
Atkinson et al. (1999b) London, United Kingdom Jan 1992-Dec 1994	98,685 ED visits from 12 hospitals	24-h avg: 8.0 (2.9)	NR	NR	2.8, 30.9	50th: 7.4 90th: 11.6	All ages: 7.4% (2.3, 12.8) 0-14: 15.0% (7.1, 23.5) 15-64: 6.3% (-0.8, 13.8)
Hajat et al. (1999) London, United Kingdom 1992-1994	General practitioner visits for asthma	All yr: 24-h avg: 8.0 (2.9) Warm: 24-h avg: 7.7 (2.4) Cool: 24-h avg: 8.3 (3.4)	NR	NR	NR	All yr: 90th: 11.6 Warm: 90th: 10.7 Cool: 90th: 12.4	All ages: 6.6% (1.3, 11.9) 0-14: 6.6% (-1.0, 14.7) 15-64: 5.2% (-1.5, 12.3) 65+: 7.2% (-4.3, 20.1)
Boutin-Forzano et al. (2004) Marseille, France Apr 1997-Mar 1998	549 ED visits for asthma	24-h avg: 8.5	NR	NR	0.0, 35.3	NR	3-49: 0.6% (-1.4, 2.7)
Galan et al. (2003) Madrid, Spain 1995-1998	4,827 ED visits for asthma	24-h avg: 8.9 (5.8)	NR	NR	1.9, 45.6	50th: 7.0 75th: 11.8 90th: 16.5	All ages: 4.9% (-4.2, 15.0)

TABLE 5A-4 (cont'd). EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

Reference, Study		Averaging Time, Mean (SD) SO ₂ Levels (ppb)		S Air	_		
Location, and Period	Study Population		98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)
EUROPE (cont'd)							
Tenias et al. (1998) Valencia, Spain 1993-1995	734 ED visits for asthma	24-h avg: 10.0 Cold: 11.9 Warm: 8.2 1-h max: 21.2 Cold: 24.3 Warm: 18.1	NR	NR	NR	24-h avg: 50th: 9.8 75th: 12.9 95th: 16.0 1-h max: 50th: 19.6 75th: 27.1	>14 yrs: 13.9% (-7.0, 39.4)
						95th: 35.8	
Sunyer et al. (1997) Multicity, Europe (Barcelona, Helsinki, Paris, London) 1986-1992	All ED visits for asthma	24-h median: Barcelona: 15.4 Helsinki: 6.0 London: 11.6 Paris: 8.6	NR	NR	Barcelona: 0.8, 60.2 Helsinki: 1.1, 35.7 London: 3.4, 37.6 Paris: 0.4, 82.3	NR	0-14: 3.2% (-0.2, 6.8) 15-64: 0.2% (-2.2, 2.6)
Castellsague et al. (1995) Barcelona, Spain 1986-1989	ED visits for asthma from 4 hospitals	24-h avg: Summer: 15.3 Winter: 19.5	NR	NR	NR	Summer: 50th: 13.5 75th: 20.3 95th: 30.8 Winter: 50th: 18.4 75th: 25.2 95th: 35.3	Summer: 15-64: 5.5% (-2.1, 13.8) Winter: 15-64: 2.1% (-4.2, 9.0)

TABLE 5A-4 (cont'd). EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

		Averaging Time, Mean		St Air (_		
Reference, Study Location, and Period	Study Population	(SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)
	RTMENT VISITS - COPE)					
UNITED STATES Peel et al. (2005) Atlanta, GA Jan 1993-Aug 2000	COPD ED visits, all ages from 31 hospitals	1-h max: 16.5 (17.1)	NR	NR	NR	90th: 39.0	3.2% (-3, 10)
	DNS – ALL RESPIRATO	RY					
UNITED STATES Schwartz (1995) New Haven, CT Tacoma, WA 1988-1990	\approx 13,470 Hospital admissions, ages 65+	24-h avg: New Haven: 29.8 Tacoma: 16.8	NR	NR	NR	New Haven: 75th: 37.6 90th: 59.8 Tacoma: 75th: 21.1 90th: 27.8	New Haven: 1.6% (1.1, 2.6) Tacoma: 3.2% (0.5, 6.2
CANADA							
Fung et al. (2006) Vancouver, BC Jun 1995-Mar 1999	\approx 41,000 respiratory admissions for elderly (65+ yrs)	24-h avg: 3.46 (1.82)	NR	NR	0.0, 12.5	NR	12.6% (4.1, 22.0) 5% (-1, 12)
Yang et al. (2003) Vancouver, BC 1986-1998	Respiratory hospital admissions among young children (<3 yrs) and elderly (≥65 yrs)	24-h avg: 4.84 (2.84)	NR	NR	NR	75th: 6.25 100th: 24.00	<3 yrs: 3% (−6, 15) ≥65 yrs: 5.8% (0.0, 11.9)
*Burnett et al. (2001) Toronto, ON 1980-1994	All respiratory admissions for young children (<2 yrs)	1-h max: 11.8	NR	55	NR	75th: 15 95th: 32 100th: 110	11% (-0.3, 23.6)

Reference, Study		Averaging Time,		Ai	Statistics for SO ₂ r Quality Data (ppb)		
Location, and Period	Study Population	Mean (SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)
CANADA (cont'd)							
Luginaah et al. (2005) Windsor, ON Apr 1995-Dec 2000	All respiratory admissions ages 0-14, 15-64, and 65+ from 4 hospitals	1-h max: 27.5 (16.5)	NR	NR	0, 129	NR	All ages, female: 2.1% (-0.7, 5.0) All ages, male: -2.5% (-5.3, 0.5) 0-14, female: 5.6% (0.6, 10.9) 0-14, male: -2.5% (-6.8, 1.9) 15-64, female: 1.6% (-3.7, 7.2) 15-64, male: -4.5% (-8.4, 5.8) 65+, female: 1.5% (-2.6, 5.8) 65+, male: -3.1% (-7.5, 1.5)
AUSTRALIA							
Barnett et al. (2005) Multicity, Australia/New Zealand; (Auckland, Brisbane, Canberra, Christchurch, Melbourne, Perth, Sydney) 1998-2001	All respiratory hospital admissions	24-h avg: Auckland: 4.3 Brisbane: 1.8 Christchurch: 2.8 Sydney: 0.9 NA in Canberra, Melbourne, and Perth 1-h max: Brisbane: 7.6 Christchurch: 10.1 Sydney: 3.7 NA in Auckland, Canberra, Melbourne, and Perth	NR	NR	24-h avg: Auckland: 0, 24.3 Brisbane: 0, 8.2 Christchurch: 0, 11.9 Sydney: 0, 3.9 1-h max Brisbane: 0, 46.5 Christchurch: 0.1, 42.1 Sydney: 0.1, 20.2	NR	1-4 yrs: 5.1% (0.0, 9.1) 5-14: 3.7% (-9.9, 19.5)

TABLE 5A-4 (cont'd). EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

TABLE 5A-4 (cont'd)	. EFFECTS OF SHORT-TERM SO ₂ EXPOSURE ON EMERGENCY DEPARTMENT VISITS
	AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

Reference, Study		Averaging Time,			atistics for SO ₂ Quality Data (ppb)		
Location, and Period	Study Population	Mean (SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)
AUSTRALIA (cont'd	l)						
Petroeschevsky et al. (2001) Brisbane, Australia	33,710 hospital admissions	24-h avg: 4.1 1-h max: 9.2	NR	NR	NR	NR	All ages: -5.9% (-12.4, 1.1) 0-14: 8.0% (-2.9, 20.1) 15-64: -21.6% (-34.4, -6.2)
1987-1994							
EUROPE							
Oftedal et al. (2003) Drammen, Norway 1994-2000	All respiratory hospital admissions	24-h avg: 1.1 (0.8)	NR	NR	NR	NR	All ages: 71.8% (15.5, 152.7)
Fusco et al. (2001) Rome, Italy Period of study: 1/1995-10/1997	All respiratory hospital admissions	24-h avg: 3.4 (2.2)	NR	NR	NR	50th: 3.0 75th: 4.5	All age: 1.6% (-4.9, 8.8) 0-14: -2.7% (-4.6, 10.8)
Llorca et al. (2005) Torrelavega, Spain 1992-1995	Hospital admissions from one hospital	24-h avg: 5.0 (6.3)	NR	NR	NR	NR	All ages: 1.0% (-2.8, 4.7)
Anderson et al. (2001) West Midlands conurbation, United Kingdom Oct 1994-Dec 1996	Hospital admissions stratified by age	24-h avg: 7.2 (4.7)	NR	NR	1.9, 59.8	90th: 12.3	All ages: 1.4% (-0.8, 3.8) 0-14: 5.1% (1.6, 8.7) 15-64: -1.0% (-5.3, 3.7) 65+: -2.2% (-5.4, 1.2)

Reference, Study		Averaging Time,			tistics for SO ₂ uality Data (ppb)		
Location, and Period	Study Population	Mean (SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)
EUROPE (cont'd)							
Atkinson et al. (1999a) London, England 1992-1994	165,032 hospital admissions	24-h avg: 8.0 (2.9)	NR	NR	2.8, 30.9	50th: 7.4 90th: 11.7	All ages: 3.0% (0.4, 5.6) 0-14: 7.7% (3.8, 11.7) 15-64: 2.8% (-1.2, 7.0) 65+: 3.3% (-0.1, 6.9)
Schouten et al. (1996) Multicity, The Netherlands (Amsterdam, Rotterdam) Period of study: Apr 1977-Sep 1989	All respiratory hospital admissions	24-h avg: Amsterdam: 10.5 Rotterdam: 15.0 1-h max: Amsterdam: 24.4 Rotterdam: 37.2	NR	NR	NR	NR	Amsterdam: 15-64: -2.3% (-5.5, 0.9) 65+: 0.2% (-2.8, 3.3) Rotterdam: 15-64: -2.9% (-6.2, 0.5)
Spix et al. (1998) Multicity (London, Amsterdam, Rotterdam, Paris, Milan), Europe 1977-1991	All respiratory hospital admissions	24-h avg: London: 10.9 Amsterdam: 7.9 Rotterdam: 9.4 Paris: 8.6 Milan: 24.8	NR	NR	NR	NR	15-64: 0.5% (-0.4, 1.3) 65+: 1.1% (0.3, 2.4)

TABLE 5A-4 (cont'd). EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

Reference, Study		Averaging Time,			atistics for SO ₂ Quality Data (pp	b)	_
Location, and Period	Study Population	Mean (SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)
EUROPE (cont'd)							
Dab et al. (1996)	Hospital	All year:	NR	NR	NR	All year:	All ages: 1.1% (0.1, 2.1)
Paris, France	admissions from	24-h avg: 11.2				24-h avg:	
Period of study:	27 hospitals	1-h max: 22.5				99th: 50.0	
1/1/87-9/30/92						1-h max:	
		Warm season				99th: 87.5	
		24-h avg: 7.6					
		1-h max: 16.1				Warm season	
						99th: 18.5	
		Cold season				1-h max:	
		24-h avg: 15.1				99th: 50.3	
		1-h max: 29.4					
						Cold season	
						24-h avg:	
						99th: 56.0	
						1-h max:	
						99th: 100.9	
Ponce de Leon et al.	19,901 hospital	24-h avg: 12.1	NR	NR	NR	50th: 11.7	All ages: 0.8 (-0.7, 2.4)
(1996)	admissions	(4.7)				75th: 14.7	0-14: 0.9 (-1.5, 3.3)
London, England						90th: 17.7	15-64: 2.0% (-0.5, 4.7)
1987-1988 1991-1992						95th: 20.3	65+: 2.0% (-0.3, 4.4)

TABLE 5A-4 (cont'd).EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS
AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

Reference, Study		Averaging Time,		Air	- 		
Location, and Period	Study Population	Mean (SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)
EUROPE (cont'd)							
Walters et al. 1994 Birmingham, United Kingdom 1988-1990	All respiratory hospital admissions	24-h avg: All year: 14.7 Spring: 16.1 Summer: 14.2 Autumn: 15.4 Winter: 12.9	NR	NR	NR	Max: 47.5	All ages: Summer: 1.5% (0.3, 2.7) Winter: 4.5% (2.3, 6.5)
Hagen et al. (2000) Drammen, Norway 1994-1997	Hospital admissions for all respiratory outcomes	24-h avg: Winter: 21 Spring: 18 Summer: 15 Autumn: 19 Number of monitors: 1	NR	NR	Winter: 11, 33 Spring: 13, 29 Summer: 5, 24 Autumn: 16, 23	NR	All ages: 92.8% (16.8, 218.8)
LATIN AMERICA							
Gouveia and Fletcher (2000) São Paulo, Brazil Nov 1992-Sep 1994	All respiratory hospital admissions	24-h avg: 6.9 (3.4)	NR	NR	1.2, 22.9	50th: 6.2 75th: 8.3 95th: 13.5	<5 yrs: 3.7% (-1.7, 9.4)
ASIA							
Wong et al. (1999) Hong Kong 1994-1995	Hospital admissions from 12 hospitals	24-h avg: 6.4	NR	NR	1.0, 25.7	75th: 9.4	0-4 yrs: 1.3% (-2.4, 4.9) 5-64: 2.1% (-1.1, 5.7) 65+: 6.2% (3.2, 9.9)

TABLE 5A-4 (cont'd). EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

TABLE 5A-4 (cont'd). EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

Reference, Study		Averaging Time,			Statistics for Quality Da	-	_	
Location, and Period	Study Population	Mean (SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)	
HOSPITAL ADMISS	SIONS - ASTHMA							
UNITED STATES								
Sheppard et al. (1999; reanalysis 2003) Seattle, WA 1987-1994	7,837 asthma hospital admissions for patients <65 yrs	24-h avg: 8	NR	NR	NR	75th: 10.0 90th: 13.0	<65 yrs: 4.0% (-4.0, 10.3)	
CANADA								
*Burnett et al. (1999) Toronto, ON 1980-1994	Asthma hospital admissions	24-h avg: 5.35	NR	NR	NR	75th: 8 95th: 17 100th: 57	1.9% (-0.2, 4.0)	
Lin et al. (2003) Toronto, ON 1981-1993	7,319 asthma hospital admissions among 6-12 yr olds	24-h avg: 5.36 (5.90)	NR	NR	0, 57.0	75th: 8.00	Boys: 0% (-7.1, 7.2) Girls: 5.8% (-4.3, 16.1)	

Reference, Study		Averaging Time, Mean (SD) SO ₂ Levels (ppb)		Sta Air Q			
Location, and Period	Study Population		98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)
AUSTRALIA							
Barnett et al. (2005) Multicity, Australia/New Zealand; (Auckland, Brisbane, Canberra, Christchurch, Melbourne, Perth, Sydney) Period of study: 1998-2001	All respiratory hospital admissions	24-h avg: Auckland: 4.3 Brisbane: 1.8 Christchurch: 2.8 Sydney: 0.9 NA in Canberra, Melbourne, and Perth 1-h max: Brisbane: 7.6 Christchurch: 10.1 Sydney: 3.7 NA in Auckland, Canberra, Melbourne, and Perth	NR	NR	24-h avg: Auckland: 0, 24.3 Brisbane: 0, 8.2 Christchurch: 0, 11.9 Sydney: 0, 3.9 1-h max: Brisbane: 0, 46.5 Christchurch: 0.1, 42.1 Sydney: 0.1, 20.2	NR	1-4 yrs: 6.4% (-7.8, 22.5) 5-14: 6.2% (-10.1, 25.4)
Petroeschevsky et al. (2001) Brisbane, Australia 1987-1994	33,710 hospital admissions	24-h avg: 4.1 1-h max: 9.2	NR	NR	NR	NR	All ages: 8.0% (3.0, 13.1) 0-4: 22.4% (8.7, 37.7) 5-14: 21.1% (-5.5, 55.1) 15-64: 3.3% (-10.5, 11.8) 65+: 12.1% (1.9, 23.4)
EUROPE							
Fusco et al. (2001) Rome, Italy Jan 1995-Oct 1997	All respiratory hospital admissions	24-h avg: 3.4 (2.2)	NR	NR	NR	50th: 3.0 75th: 4.5	All ages: -5.7% (-23.2, 15.9) 0-14: -9.7% (-34.6, 25.2)

TABLE 5A-4 (cont'd). EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

	Study Population	Averaging Time,			tics for SO ₂ lity Data (pp	b)	-
Reference, Study Location, and Period		Mean (SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)
EUROPE (cont'd)							
Atkinson et al. (1999a) London, England 1992-1994	165,032 hospital admissions	24-h avg: 8.0 (2.9)	NR	NR	2.8, 30.9	50th: 7.4 90th: 11.7	All ages: 5.0% (0.6, 9.6) 0-14: 10.1% (4.3, 16.2) 15-64: 6.8% (-0.3, 14.5) 65+: 9.5% (-2.3, 22.7)
Schouten et al. (1996) Multicity, the Netherlands (Amsterdam, Rotterdam) Period of study: Apr 1977-Sep 1989	All respiratory hospital admissions	24-h avg:Amsterdam: 10.5Rotterdam: 15.01-h max:Amsterdam: 24.4Rotterdam: 37.2	NR	NR	NR	NR	Amsterdam: All ages: -6.0% (-10.7, -1.1)
Dab et al. (1996) Paris, France Jan 1987-Sep 1992	Hospital admissions from 27 hospitals	All year: 24-h avg: 11.2 1-h max: 22.5 Warm season 24-h avg: 7.6 1-h max: 16.1 Cold season 24-h avg: 15.1 1-h max: 29.4	NR	NR	NR	All year: 24 h avg: 99th: 50.0 1-h max: 99th: 87.5 Warm season 99th: 18.5 1-h max: 99th: 50.3 Cold season 24-h avg: 99th: 56.0 1-h max: 99th: 100.9	All ages: 1.8% (0.1, 3.6)

TABLE 5A-4 (cont'd). EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

TABLE 5A-4 (cont'd). EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS
AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

Reference, Study Location, and Period		Averaging Time, Mean (SD) SO ₂ Levels (ppb)	Statistics for SO ₂ Air Quality Data (ppb)				
	Study Population		98th %	99th %	Range	Upper Percentile	- Standardized Percent Excess Risk (95% CI)
EUROPE (cont'd)							
Anderson et al. (1998) London, England Apr 1987-Feb 1992	All hospital admissions for asthma	24-h avg: 12.0 (4.4)	NR	NR	3.4, 37.6	50th: 11.6 75th: 14.3 90th: 17.3 95th: 19.5	All ages: 2.8% (1.2, 4.3) 0-14: 0.5% (0.1, 1.0) 15-64: -0.7% (-2.7, 1.3) 65+: 3.1% (-0.7, 7.0)
Walters et al. (1994) Birmingham, United Kingdom 1988-1990	All respiratory hospital admissions	24-h avg: All year: 14.7 Spring: 16.1 Summer: 14.2 Autumn: 15.4 Winter: 12.9	NR	NR	NR	Max: 47.5	Summer: All ages: 0.4% (-2.8, 9.2) Winter: All ages: 0.7% (-2.2, 1.6)
LATIN AMERICA							
Gouveia and Fletcher (2000) São Paulo, Brazil Nov 1992-Sep 1994	All respiratory hospital admissions	24-h avg: 6.9 (3.4)	NR	NR	1.2, 22.9	50th: 6.2 75th: 8.3 95th: 13.5	<5 yrs: 10.4% (-1.9, 24.2)
ASIA							
Wong et al. (1999) Hong Kong, China 1994-1995	Hospital admissions from 12 hospitals	24-h avg: 6.4	NR	NR	1.0, 25.7	75th: 9.4	All ages: 4.6% (-0.5, 9.9)
Lee et al. (2006) Hong Kong, China 1997-2002	26,663 hospital admissions for asthma	24-h avg: 6.6 (4.0)	NR	NR	NR	50th: 5.7 75th: 8.2	<18 yrs: -3.7% (-6.7, -0.6)

TABLE 5A-4 (cont'd).EFFECTS OF SHORT-TERM SO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS
AND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES

Reference, Study		Averaging Time,	Statistics for SO ₂ Air Quality Data (ppb)				
Location, and Period	Study Population	Mean (SD) SO ₂ Levels (ppb)	98th %	99th %	Range	Upper Percentile	Standardized Percent Excess Risk (95% CI)
HOSPITAL ADMISS	SIONS - COPD						
UNITED STATES							
Moolgavkar (2000; reanalysis 2003) Chicago, Los Angeles, Phoenix, 1987-1995	Hospital admissions	24-h avg: Chicago: 6; LA: 2; Phoenix: 2	NR	NR	Chicago: 0.5, 36 LA: 0, 16 Phoenix: 0, 14	Chicago: 75th: 8 LA: 75th: 4 Phoenix: 75th: 4	Chicago: 5% (1.9, 8.2)
CANADA							
Yang (2005) Vancouver, BC 1994-1998	COPD admissions among elderly (65+)	24-h avg: 3.79 (2.12)	NR	NR	0.75, 22.67	NR	0.3% (-26, 15) 7.3% (-7, 23) 15% (-3.9, 31.6)
Burnett et al. (1999) Toronto, ON 1980-1994	COPD hospital admissions	24-h avg: 5.35	NR	NR	NR	75th: 8 95th: 17 100th: 57	0.1% (-2.1, 2.3)

^a 24-h avg SO₂ standardized to 10 ppb incremental change; 1-h max SO₂ standardized to 40 ppb incremental change.

* Analyses using Poisson GAM with default convergence criteria.

NA: Not Available

NR: Not Reported

1	6. REFERENCES
2 3	
4	Abbey, D. E.; Nishino, N.; McDonnell, W. F.; Burchette, R. J.; Knutsen, S. F.; Beeson, W. L.;
5	Yang, J. X. (1999) Long-term inhalable particles and other air pollutants related to
6	mortality in nonsmokers. Am. J. Respir. Crit. Care Med. 159: 373-382.
7 8	Abe, M. (1967) Effects of mixed NO ₂ -SO ₂ gas on human pulmonary functions: effects of air pollution on the human body. Bull. Tokyo Med. Dent. Univ. 14: 415-433.
9	Abraham, W. M.; Oliver, W., Jr.; Welker, M. J.; King, M. M.; Wanner, A.; Sackner, M. A.
10	(1981) Differences in airway reactivity in normal and allergic sheep after exposure to
11	sulfur dioxide. J. Appl. Physiol. 51: 1651-1656.
12	 Ackermann-Liebrich, U.; Leuenberger, P.; Schwartz, J.; Schindler, C.; Monn, C.; Bolognini, B.;
13	Bongard, J. P.; Brändli, O.; Domenighetti, G.; Elsasser, S.; Grize, L.; Karrer, W.; Keller,
14	R.; Keller-Wossidlo, H.; Künzli, N.; Martin, B. W.; Medici, T. C.; Perruchoud, A. P.;
15	Schöni, M. H.; Tschopp, J. M.; Villiger, B.; Wüthrich, B.; Zellweger, J. P.; Zemp, E.
16	(1997) Lung function and long term exposure to air pollutants in Switzerland. Am. J.
17	Respir. Crit. Care Med. 155: 122-129.
18 19 20	 Adamkiewicz, G.; Ebelt, S.; Syring, M.; Slater, J.; Speizer, F. E.; Schwartz, J.; Suh, H.; Gold, D. R. (2004) Association between air pollution exposure and exhaled nitric oxide in an elderly population. Thorax 59: 204-209.
21	 Adams, P. F.; Hendershot, G. E.; Marano, M. A. (1999) Current estimates from the National
22	Health Interview Survey, 1996. Hyattsville, MD: U.S. Department of Health and Human
23	Services, Public Health Service, National Center for Health Statistics; DHHS publication
24	no. (PHS) 99-1528. (Vital and health statistics: v. 10, data from the National Health
25	Survey, no. 200). Available:
26	http://www.cdc.gov/nchs/products/pubs/pubd/series/sr10/pre-200/pre-200.htm [12
27	March, 2001].
28	Ağar, A.; Küçükatay, V.; Yargiçoğlu, P.; Aktekin, B.; Kipmen-Korgun, S.; Gümüşlü, D.;
29	Apaydin, C. (2000) The effect of sulfur dioxide inhalation on visual evoked potentials,
30	antioxidant status, and lipid peroxidation in alloxan-induced diabetic rats. Arch. Environ.
31	Contam. Toxicol. 39: 257-264.
32	Aharonson, E. F.; Menkes, H.; Gurtner, G.; Swift, D. L.; Proctor, D. F. (1974) Effect of
33	respiratory airflow rate on removal of soluble vapors by the nose. J. Appl. Physiol. 37:
34	654-657.
35 36	Amdur, M. O. (1966) Respiratory absorption data and SO ₂ dose-response curves. Arch. Environ. Health 12: 729-732.
37 38	Amdur, M. O.; Melvin, W. W., Jr.; Drinker, P. (1953) Effects of inhalation of sulphur dioxide by man. Lancet 2: 758-759.
39	Amdur, M. O.; McCarthy, J. F.; Gill, M. W. (1983) Effect of mixing conditions on irritant
40	potency of zinc oxide and sulfur dioxide. Am. Ind. Hyg. Assoc. J. 44: 7-13.

1 American Academy of Pediatrics, Committee on Environmental Health. (2004) Ambient air 2 pollution: health hazards to children. Pediatrics 114: 1699-1707. 3 American Thoracic Society. (1985) Guidelines as to what constitutes an adverse respiratory 4 health effect, with special reference to epidemiologic studies of air pollution. Am. Rev. 5 Respir. Dis. 131: 666-668. 6 American Thoracic Society. (2000) What constitutes an adverse health effect of air pollution? 7 Am. J. Respir. Crit. Care Med. 161: 665-673. 8 Andersen, I.; Lundqvist, G. R.; Jensen, P. L.; Proctor, D. F. (1974) Human response to controlled 9 levels of sulfur dioxide. Arch. Environ. Health 28: 31-39. 10 Anderson, H. R.; Ponce de Leon, A.; Bland, J. M.; Bower, J. S.; Emberlin, J.; Strachen, D. P. 11 (1998) Air pollution, pollens, and daily admissions for asthma in London 1987-92. 12 Thorax 53: 842-848. 13 Anderson, H. R.; Bremner, S. A.; Atkinson, R. W.; Harrison, R. M.; Walters, S. (2001) 14 Particulate matter and daily mortality and hospital admissions in the west midlands 15 conurbation of the United Kingdom: associations with fine and coarse particles, black 16 smoke and sulphate. Occup. Environ. Med. 58: 504-510. 17 Atkinson, R. W.; Bremner, S. A.; Anderson, H. R.; Strachan, D. P.; Bland, J. M.; Ponce de Leon, 18 A. (1999a) Short-term associations between emergency hospital admissions for 19 respiratory and cardiovascular disease and outdoor air pollution in London. Arch. 20 Environ. Health 54: 398-411. 21 Atkinson, R. W.; Anderson, H. R.; Strachan, D. P.; Bland, J. M.; Bremner, S. A.; Ponce de Leon, 22 A. (1999b) Short-term associations between outdoor air pollution and visits to accident 23 and emergency departments in London for respiratory complaints. Eur. Respir. J. 13: 24 257-265. 25 Azoulay-Dupuis, E.; Bouley, G.; Blayo, M. C. (1982) Effects of sulfur dioxide on resistance to 26 bacterial infection in mice. Environ. Res. 29: 312-319. 27 Ballester, F.; Tenías, J. M.; Pérez-Hoyos, S. (2001) Air pollution and emergency hospital 28 admissions for cardiovascular diseases in Valencia, Spain. J. Epidemiol. Community 29 Health 55: 57-65. 30 Ballester, F.; Sáez, M.; Pérez-Hoyos, S.; Iñíguez, C.; Gandarillas, A.; Tobías, A.; Bellido, J.; 31 Taracido, M.; Arribas, F.; Daponte, A.; Alonso, E.; Cañada, A.; Guillén-Grima, F.; 32 Cirera, L.; Pérez-Boillos, M. J.; Saurina, C.; Gómez, F.; Tenías, J. M. (2002) The 33 EMECAM project: a multicentre study on air pollution and mortality in Spain: combined 34 results for particulates and for sulfur dioxide. Occup. Environ. Med. 59: 300-308. 35 Ballester, F.; Rodríguez, P.; Iñíguez, C.; Sáez, M.; Daponte, A.; Galán, I.; Taracido, M.; Arribas, F.; Bellido, J.; Cirarda, F. B.; Cañada, A.; Guillén, J. J.; Guillén-Grima, F.; López, E.; 36 37 Pérez-Hoyos, S.; Lertxundi, A.; Toro, S. (2006) Air pollution and cardiovascular 38 admisisons association in Spain: results within the EMECAS project. J. Epidemiol. 39 Community Health 60: 328-336. 40 Balmes, J. R.; Fine, J. M.; Sheppard, D. (1987) Symptomatic bronchoconstriction after shortterm inhalation of sulfur dioxide. Am. Rev. Respir. Dis. 136: 1117-1121. 41

1	Barnett, A. G.; Williams, G. M.; Schwartz, J.; Neller, A. H.; Best, T. L.; Petroeschevsky, A. L.;
2	Simpson, R. W. (2005) Air pollution and child respiratory health: a case-crossover study
3	in Australia and New Zealand. Am. J. Respir. Crit. Care Med. 171: 1272-1278.
4 5	Barthélemy, P.; Badier, M.; Jammes, Y. (1988) Interaction between SO ₂ and cold-induced bronchospasm in anesthetized rabbits. Respir. Physiol. 71: 1-10.
6	Bascom, R.; Bromberg, P. A.; Costa, D. A.; Devlin, R.; Dockery, D. W.; Frampton, M. W.;
7	Lambert, W.; Samet, J. M.; Speizer, F. E.; Utell, M. (1996) Health effects of outdoor air
8	pollution. Am. J. Respir. Crit. Care Med. 153: 3-50.
9	Baskurt, O. K. (1988) Acute hematologic and hemorheologic effects of sulfur dioxide inhalation.
10	Arch. Environ. Health 43: 344-348.
11 12	Bedi, J. F.; Folinsbee, L. J.; Horvath, S. M.; Ebenstein, R. S. (1979) Human exposure to sulfur dioxide and ozone: absence of a synergistic effect. Arch. Environ. Health 34: 233-239.
13	Bedi, J. F.; Folinsbee, L. J.; Horvath, S. M. (1984) Pulmonary function effects of 1.0 and 2.0
14	ppm sulfur dioxide exposure in active young male non-smokers. J. Air Pollut. Control
15	Assoc. 34: 1117-1121.
16 17	Bell, M. L.; Ebisu, K.; Belanger, K. (2007) Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environ. Health Perspect. 115: 1118-1125.
18	Ben-Jebria, A.; Full, A. P.; DeMaria, D. D.; Ball, B. A.; Ultman, J. S. (1990) Dynamics of sulfur
19	dioxide absorption in excised porcine tracheae. Environ. Res. 53: 119-134.
20 21	Berkowitz, G. S.; Papiernik, E. (1993) Epidemiology of preterm birth. Epidemiol. Rev. 15: 414-443.
22	Berresheim, H.; Eisele, F. L.; Tanner, D. J.; McInnes, L. M.; Ramsey-Bell, D. C.; Covert, D. S.
23	(1993) Atmospheric sulfur chemistry and cloud condensation nuclei (CCN)
24	concentrations over the northeastern Pacific coast. J. Geophys. Res. [Atmos.] 98: 12,701-
25	12,711.
26	Berresheim, H.; Wine, P. H.; Davis, D. D. (1995) Sulfur in the atmosphere. In: Singh, H. B., ed.
27	Composition, chemistry, and climate of the atmosphere. New York, NY: Van Nostrand
28	Reinhold; pp. 251-307.
29	Bethel, R. A.; Epstein, J.; Sheppard, D.; Nadel, J. A.; Boushey, H. A. (1983) Sulfur dioxide-
30	induced bronchoconstriction in freely breathing, exercising, asthmatic subjects. Am. Rev.
31	Respir. Dis. 128: 987-990.
32	Bethel, R. A.; Sheppard, D.; Geffroy, B.; Tam, E.; Nadel, J. A.; Boushey, H. A. (1985) Effect of
33	0.25 ppm sulfur dioxide on airway resistance in freely breathing, heavily exercising,
34	asthmatic subjects. Am. Rev. Respir. Dis. 131: 659-661.
35 36	Biersteker, K.; de Graaf, H.; Nass, C. A. G. (1965) Indoor air pollution in Rotterdam homes. Int. J. Air Water Pollut. 9: 343-350.
37	Biggeri, A.; Baccini, M.; Bellini, P.; Terracini, B. (2005) Meta-analysis of the Italian studies of
38	short-term effects of air pollution (MISA), 1990-1999. Int. J. Occup. Environ. Health 11:
39	107-122.

1 2	Bobak, M. (2000) Outdoor air pollution, low birth weight, and prematurity. Environ. Health Perspect. 108: 173-176.
3	Boezen, M.; Schouten, J.; Rijcken, B.; Vonk, J.; Gerritsen, J.; Van Der Zee, S.; Hoek, G.;
4	Brunekreef, B.; Postma, D. (1998) Peak expiratory flow variability, bronchial
5	responsiveness, and susceptibility to ambient air pollution in adults. Am. J. Respir. Crit.
6	Care Med. 158: 1848-1854.
7	Boezen, H. M.; Van Der Zee, S. C.; Postma, D. S.; Vonk, J. M.; Gerritsen, J.; Hoek, G.;
8	Brunekreef, B.; Rijcken, B.; Schouten, J. P. (1999) Effects of ambient air pollution on
9	upper and lower respiratory symptoms and peak expiratory flow in children. Lancet 353:
10	874-878.
11	Boezen, H. M.; Vonk, J. M.; Van Der Zee, S. C.; Gerritsen, J.; Hoek, G.; Brunekreef, B.;
12	Schouten, J. P.; Postma, D. S. (2005) Susceptibility to air pollution in elderly males and
13	females. Eur. Respir. J. 25: 1018-1024.
14 15 16 17	Borsboom, G. J. J. M.; Van Pelt, W.; Van Houwelingen, H. C.; Van Vianen, B. G.; Schouten, J. P.; Quanjer, P. H. (1999) Diurnal variation in lung function in subgroups from two Dutch populations. Consequences for longitudinal analysis. Am. J. Respir. Crit. Care Med. 159: 1163-1171.
18	Boutin-Forzano, S.; Adel, N.; Gratecos, L.; Jullian, H.; Garnier, J. M.; Ramadour, M.;
19	Lanteaume, A.; Hamon, M.; Lafay, V.; Charpin, D. (2004) Visits to the emergency room
20	for asthma attacks and short-term variations in air pollution. A case-crossover study.
21	Respiration 71: 134-137.
22	Braga, A. L. F.; Conceição, G. M. S.; Pereira, L. A. A.; Kishi, H. S.; Pereira, J. C. R.; Andrade,
23	M. F.; Gonçalves, F. L. T.; Saldiva, P. H. N.; Latorre, M. R. D. O. (1999) Air pollution
24	and pediatric respiratory hospital admissions in São Paulo, Brazil. J. Environ. Med. 1: 95-
25	102.
26	Braga, A. L. F.; Saldiva, P. H. N.; Pereira, L. A. A.; Menezes, J. J. C.; Conceição, G. M. C.; Lin,
27	C. A.; Zanobetti, A.; Schwartz, J.; Dockery, D. W. (2001) Health effects of air pollution
28	exposure on children and adolescents in São Paulo, Brazil. Pediatr. Pulmonol. 31: 106-
29	113.
30	Brain, J. D. (1970) Free cells in the lungs: some aspects of their role, quantitation and regulation.
31	Arch. Intern. Med. 126: 477-487.
32	Brauer, M.; Koutrakis, P.; Spengler, J. D. (1989) Personal exposures to acidic aerosols and gases.
33	Environ. Sci. Technol. 23: 1408-1412.
34	Brauer, M.; Koutrakis, P.; Keeler, G. J.; Spengler, J. D. (1991) Indoor and outdoor
35	concentrations of inorganic acidic aerosols and gases. J. Air Waste Manage. Assoc. 41:
36	171-181.
37	Brauer, M.; Henderson, S.; Kirkham, T.; Lee, K. S.; Rich, K.; Teschke, K. (2002) Review of the
38	health risks associated with nitrogen dioxide and sulfur dioxide in indoor air. Vancouver,
39	British Columbia, Canada: University of British Columbia, School of Occupational and
40	Environmental Hygiene. Report to Health Canada.

1 2 3	Bremner, S. A.; Anderson, H. R.; Atkinson, R. W.; McMichael, A. J.; Strachan, D. P.; Bland, J. M.; Bower, J. S. (1999) Short term associations between outdoor air pollution and mortality in London 1992-4. Occup. Environ. Med. 56: 237-244.
4	Brook, R. D.; Franklin, B.; Cascio, W.; Hong, Y.; Howard, G.; Lipsett, M.; Luepker, R.;
5	Mittleman, M.; Samet, J.; Smith, S. C., Jr.; Tager, I. (2004) Air pollution and
6	cardiovascular disease. A statement for healthcare professionals from the Expert Panel on
7	Population and Prevention Science of the American Heart Association. Circulation 109:
8	2655-2671.
9	Buescher, P. A.; Taylor K. P.; Davis, M. H.; Bowling, J. M. (1993) The quality of the new birth
10	certificate data: a validation study in North Carolina. Am. J. Public Health 83: 1163-
11	1165.
12	Burnett, R. T.; Goldberg, M. S. (2003) Size-fractionated particulate mass and daily mortality in
13	eight Canadian cities. In: Revised analyses of time-series studies of air pollution and
14	health. Special report. Boston, MA: Health Effects Institute; pp. 85-89. Available:
15	http://www.healtheffects.org/news.htm [16 May, 2003].
16 17 18	Burnett, R. T.; Cakmak, S.; Brook, J. R.; Krewski, D. (1997a) The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases. Environ. Health Perspect. 105: 614-620.
19	Burnett, R. T.; Brook, J. R.; Yung, W. T.; Dales, R. E.; Krewski, D. (1997b) Association
20	between ozone and hospitalization for respiratory diseases in 16 Canadian cities. Environ.
21	Res. 72: 24-31.
22 23	Burnett, R. T.; Cakmak, S.; Brook, J. R. (1998) The effect of the urban ambient air pollution mix on daily mortality rates in 11 Canadian cities. Can. J. Public Health 89: 152-156.
24	Burnett, R. T.; Smith-Doiron, M.; Stieb, D.; Cakmak, S.; Brook, J. R. (1999) Effects of
25	particulate and gaseous air pollution on cardiorespiratory hospitalizations. Arch. Environ.
26	Health 54: 130-139.
27 28 29 30	 Burnett, R. T.; Brook, J.; Dann, T.; Delocla, C.; Philips, O.; Cakmak, S.; Vincent, R.; Goldberg, M. S.; Krewski, D. (2000) Association between particulate- and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. In: Grant, L. D., ed. PM2000: particulate matter and health. Inhalation Toxicol. 12(suppl. 4): 15-39.
31	Burnett, R. T.; Smith-Doiron, M.; Stieb, D.; Raizenne, M. E.; Brook, J. R.; Dales, R. E.; Leech,
32	J. A.; Cakmak, S.; Krewski, D. (2001) Association between ozone and hospitalization for
33	acute respiratory diseases in children less than 2 years of age. Am. J. Epidemiol. 153:
34	444-452.
35	Burnett, R. T.; Stieb, D.; Brook, J. R.; Cakmak, S.; Dales, R.; Raizenne, M.; Vincent, R.; Dann,
36	T. (2004) Associations between short-term changes in nitrogen dioxide and mortality in
37	Canadian cities. Arch. Environ. Health 59: 228-236.
38 39	Cakmak, S.; Dales, R. E.; Vidal, C. B. (2007) Air pollution and mortality in Chile: susceptibility among the elderly. Environ. Health Perspect. 115: 524-527.
40 41	Calvert, J. G.; Su, F.; Bottenheim, J. W.; Strausz, O. P. (1978) Mechanism of the homogeneous oxidation of sulfur dioxide in the troposphere. In: Sulfur in the atmosphere: proceedings

1 of the international symposium; September 1977; Dubrovnik, Yugoslavia. Atmos. 2 Environ. 12: 197-226. 3 Castellsague, J.; Sunver, J.; Sáez, M.; Antó, J. M. (1995) Short-term association between air 4 pollution and emergency room visits for asthma in Barcelona. Thorax 50: 1051-1056. 5 Chan, C.-C.; Chuang, K.-J.; Su, T.-C.; Lin, L.-Y. (2005) Association between nitrogen dioxide and heart rate variability in a susceptible population. Eur. J. Cardiovasc. Prev. Rehabil. 6 7 12: 580-586. 8 Chang, L.-T.; Koutrakis, P.; Catalano, P. J.; Suh, H. H. (2000) Hourly personal exposures to fine 9 particles and gaseous pollutants—results from Baltimore, Maryland. J. Air Waste 10 Manage. Assoc. 50: 1223-1235. 11 Chang, C.-C.; Tsai, S.-S.; Ho, S.-C.; Yang, C.-Y. (2005) Air pollution and hospital admissions 12 for cardiovascular disease in Taipei, Taiwan. Environ. Res. 98: 114-119. 13 Chao, C. Y. (2001) Comparison between indoor and outdoor air contaminant levels in residential 14 buildings from passive sampler study. Build. Environ. 36: 999-1007. 15 Chapman, R. S.; Calafiore, D. C.; Hasselblad, V. (1985) Prevalence of persistent cough and 16 phlegm in young adults in relation to long-term ambient sulfur oxide exposure. Am. Rev. 17 Respir. Dis. 132: 261-267. 18 Chen, P.-C.; Lai, Y.-M.; Chan, C.-C.; Hwang, J.-S.; Yang, C.-Y.; Wang, J.-D. (1999) Short-term 19 effect of ozone on the pulmonary function of children in primary school. Environ. Health 20 Perspect. 107: 921-925. 21 Cifuentes, L. A.; Vega, J.; Köpfer, K.; Lave, L. B. (2000) Effect of the fine fraction of particulate 22 matter versus the coarse mass and other pollutants on daily mortality in Santiago, Chile. 23 J. Air Waste Manage. Assoc. 50: 1287-1298. 24 Clarke, R. W.; Antonini, J. M.; Hemenway, D. R.; Frank, R.; Kleeberger, S. R.; Jakab, G. J. 25 (2000) Inhaled particle-bound sulfate: effects on pulmonary inflammatory responses and 26 alveolar macrophage function. Inhalation Toxicol. 12: 169-186. 27 Code of Federal Regulations. (2006) Lower detectable limit—(1) technical definition. C. F. R. 28 40: §53.23c. 29 Conner, M. W.; Lam, H. F.; Rogers, A. E.; Fitzgerald, S.; Amdur, M. O. (1985) Lung injury in 30 guinea pigs caused by multiple exposures to submicron zinc oxide mixed with sulfur dioxide in a humidified furnace. J. Toxicol. Environ. Health 16: 101-114. 31 32 Crutzen, P. J. (1976) Upper limits on atmospheric ozone reductions following increased 33 application of fixed nitrogen to the soil. Geophys. Res. Lett. 3: 169-172. 34 Dab, W.; Medina, S.; Quénel, P.; Le Moullec, Y.; Le Tertre, A.; Thelot, B.; Monteil, C.; 35 Lameloise, P.; Pirard, P.; Momas, I.; Ferry, R.; Festy, B. (1996) Short term respiratory 36 health effects of ambient air pollution: results of the APHEA project in Paris. In: St 37 Leger, S., ed. The APHEA project. Short term effects of air pollution on health: a European approach using epidemiological time series data. J. Epidemiol. Commun. 38 Health 50(suppl. 1): S42-S46. 39

1 2	Dales, R.; Burnett, R. T.; Smith-Doiron, M.; Stieb, D. M.; Brook, J. R. (2004) Air pollution and sudden infant death syndrome. Pediatrics 113: 628-631.
3 4	Dales, R. E.; Cakmak, S.; Doiron, M. S. (2006) Gaseous air pollutants and hospitalization for respiratory disease in the neonatal period. Environ. Health Perspect. 114: 1751-1754.
5	DeFrances, C. J.; Hall, M. J.; Podgornik, M. N. (2005) 2003 National Hospital Discharge
6	Survey. Hyattsville, MD: National Center for Health Statistics; DHHS publication no.
7	(PHS) 2004-1250. (Advance data from vital and health statistics; no. 359). Available:
8	http://www.cdc.gov/nchs/data/ad/ad359.pdf [3 August, 2005].
9 10 11	De Leon, S. F.; Thurston, G. D.; Ito, K. (2003) Contribution of respiratory disease to nonrespiratory mortality associations with air pollution. Am. J. Respir. Crit. Care Med. 167: 1117-1123.
12	Delfino, R. J.; Gone, H.; Linn, W. S.; Pellizzari, E. D.; Hu, Y. (2003a) Asthma symptoms in
13	Hispanic children and daily ambient exposures to toxic and criteria air pollutants.
14	Environ. Health Perspect. 111: 647-656.
15	Demokritou, P.; Kavouras, I. G.; Ferguson, S. T.; Koutrakis, P. (2001) Development and
16	laboratory performance evaluation of a multipollutant sampler for simultaneous
17	measurements for particulate and gaseous pollutants. Aerosol Sci. Technol. 35: 741-752.
 18 19 20 21 22 23 24 25 	 Dentener, F.; Stevenson, D.; Ellingsen, K.; Van Noije, T.; Schultz, M.; Amann, M.; Atherton, C.; Bell, N.; Bergmann, D.; Bey, I.; Bouwman, L.; Butler, T.; Cofala, J.; Collins, B.; Drevet, J.; Doherty, R.; Eickhout, B.; Eskes, H.; Fiore, A.; Gauss, M.; Hauglustaine, D.; Horowitz, L.; Isaksen, I. S. A.; Josse, B.; Lawrence, M.; Krol, M.; Lamarque, J. F.; Montanaro, V.; Müller, J. F.; Peuch, V. H.; Pitari, G.; Pyle, J.; Rast, S.; Rodriguez, J.; Sanderson, M.; Savage, N. H.; Shindell, D.; Strahan, S.; Szopa, S.; Sudo, K.; Van Dingenen, R.; Wild, O.; Zeng, G. (2006a) The global atmospheric environment for the next generation. Environ. Sci. Technol. 40: 3586-3594.
26	 Dentener, F.; Drevet, J.; Lamarque, J. F.; Bey, I.; Eickhout, B.; Fiore, A. M.; Hauglustaine, D.;
27	Horowitz, L. W.; Krol, M.; Kulshrestha, U. C.; Lawrence, M.; Galy-Lacaux, C.; Rast, S.;
28	Shindell, D.; Stevenson, D.; Van Noije, T.; Atherton, C.; Bell, N.; Bergman, D.; Butler,
29	T.; Cofala, J.; Collins, B.; Doherty, R.; Ellingsen, K.; Galloway, J.; Gauss, M.;
30	Montanaro, V.; Müller, J. F.; Pitari, G.; Rodriguez, J.; Sanderson, M.; Solman, F.;
31	Strahan, S.; Schultz, M.; Sudo, K.; Szopa, S.; Wild, O. (2006b) Nitrogen and sulfur
32	deposition on regional and global scales: a multi-model evaluation. Global Biogeochem.
33	Cycles: 20(GB4003): 10.1029/2005GB002672.
34	De Paula Santos, U.; Braga, A. L. F.; Giorgi, D. M. A.; Pereira, L. A. A.; Grupi, C. J.; Lin, C. A.;
35	Bussacos, M. A.; Zanetta, D. M.; Saldiva, P. H. do N.; Terra Filho, M. (2005) Effects of
36	air pollution on blood pressure and heart rate variability: a panel study of vehicular traffic
37	controllers in the city of São Paulo, Brazil. Eur. Heart J. 26: 193-200.
38 39 40	Desqueyroux, H.; Pujet, JC.; Prosper, M.; Squinazi, F.; Momas, I. (2002a) Short-term effects of low-level air pollution on respiratory health of adults suffering from moderate to severe asthma. Environ. Res. A 89: 29-37.

1 Desqueyroux, H.; Pujet, J.-C.; Prosper, M.; Le Moullec, Y.; Momas, I. (2002b) Effects of air 2 pollution on adults with chronic obstructive pulmonary disease. Arch. Environ. Health 3 57: 554-560. 4 Dietert, R. R.; Etzel, R. A.; Chen, D.; Halonen, M.; Holladay, S. D.; Jarabek, A. M.; Landreth, 5 K.; Peden, D. B.; Pinkerton, K.; Smialowicz, R. J.; Zoetis, T. (2000) Workshop to identify critical window of exposure for children's health: immune and respiratory 6 7 systems work group summary. Environ. Health Perspect. Suppl. 108(3): 483-490. 8 Dockery, D. W.; Ware, J. H.; Ferris, B. G., Jr.; Speizer, F. E.; Cook, N. R.; Herman, S. M. 9 (1982) Change in pulmonary function in children associated with air pollution episodes. 10 J. Air Pollut. Control Assoc. 32: 937-942. 11 Dockery, D. W.; Speizer, F. E.; Stram, D. O.; Ware, J. H.; Spengler, J. D.; Ferris, B. G., Jr. 12 (1989) Effects of inhalable particles on respiratory health of children. Am. Rev. Respir. 13 Dis. 139: 587-594. 14 Dockery, D. W.; Schwartz, J.; Spengler, J. D. (1992) Air pollution and daily mortality: 15 associations with particulates and acid aerosols. Environ. Res. 59: 362-373. 16 Dockery, D. W.; Pope, C. A., III; Xu, X.; Spengler, J. D.; Ware, J. H.; Fay, M. E.; Ferris, B. G., 17 Jr.; Speizer, F. E. (1993) An association between air pollution and mortality in six U.S. 18 cities. N. Engl. J. Med. 329: 1753-1759. 19 Dockery, D. W.; Cunningham, J.; Damokosh, A. I.; Neas, L. M.; Spengler, J. D.; Koutrakis, P.; 20 Ware, J. H.; Raizenne, M.; Speizer, F. E. (1996) Health effects of acid aerosols on North 21 American children: respiratory symptoms. Environ. Health Perspect. 104: 500-505. 22 Dockery, D. W.; Luttmann-Gibson, H.; Rich, D. Q.; Link, M. S.; Mittleman, M. A.; Gold, D. R.; 23 Koutrakis, P.; Schwartz, J. D.; Verrier, R. L. (2005) Association of air pollution with 24 increased incidence of ventricular tachyarrhythmias recorded by implanted cardioverter 25 defibrillators. Environ. Health Perspect. 113: 670-674. 26 Dodge, R.; Solomon, P.; Moyers, J.; Hayes, C. (1985) A longitudinal study of children exposed 27 to sulfur oxides. Am. J. Epidemiol. 121: 720-736. 28 Dominici, F.; McDermott, A.; Daniels, M.; Zeger, S. L.; Samet, J. M. (2003) Mortality among 29 residents of 90 cities. In: Revised analyses of time-series studies of air pollution and 30 health. Special report. Boston, MA: Health Effects Institute; pp. 9-24. Available: 31 http://www.healtheffects.org/Pubs/TimeSeries.pdf [12 May, 2004]. 32 Douglas, G. J.; Price, J. F.; Page, C. P. (1994) A method for the long-term exposure of rabbits to 33 environmental pollutant gases. Eur. Respir. J. 7: 1516-1526. 34 Du, Z.; Meng, Z. (2004a) Effects of derivatives of sulfur dioxide on transient outward potassium currents in acutely isolated hippocampal neurons. Food Chem. Toxicol. 42: 1211-1216. 35 36 Du, Z.; Meng, Z. (2004b) Modulation of sodium currents in rat dorsal root ganglion neurons by 37 sulfur dioxide derivatives. Brain Res. 1010: 127-133. 38 Du, Z.; Meng, Z. (2006) Sulfur dioxide derivatives modulation of high-threshold calcium currents in rat dorsal root ganglion neurons. Neurosci. Lett. 405: 147-152. 39

1 2 3	Dugandzic, R. Dodds, L.; Stieb, D.; Smith-Doiron, M. (2006) The association between low level exposures to ambient air pollution and term low birth weight: a retrospective cohort study. Environ. Health 5: 3.
4 5 6	Elliott, P.; Shaddick, G.; Wakefield, J. C.; Hoogh, C. de; Briggs, D. J. (2007) Long-term associations of outdoor air pollution with mortality in Great Britain. Thorax 10.1136/thx.2006.076851.
7 8 9 10	Euler, G. L.; Abbey, D. E.; Magie, A. R.; Hodgkin, J. E. (1987) Chronic obstructive pulmonary disease symptom effects of long-term cumulative exposure to ambient levels of total suspended particulates and sulfur dioxide in California Seventh-Day Adventist residents. Arch. Environ. Health 42: 213-222.
11 12	Fairley, D. (1990) The relationship of daily mortality to suspended particulates in Santa Clara county, 1980-86. Environ. Health Perspect. 89: 159-168.
13 14 15 16	Farhat, S. C. L.; Paulo, R. L. P.; Shimoda, T. M.; Conceicao, G. M. S.; Lin, C. A.; Braga, A. L. F.; Warth, M. P. N.; Saldiva, P. H. N. (2005) Effect of air pollution on pediatric respiratory emergency room visits and hospital admissions. Braz. J. Med. Biol. Res. 38: 227-235.
17 18	Federal Register. (1988) Proposed decision not to revise the national ambient air quality standards for sulfur oxides (sulfur dioxide). F. R. (April 26) 53: 14,926-14,952.
19 20	Federal Register. (1994) National ambient air quality standards for sulfur oxides (sulfur dioxide)- -reproposal. F. R. (November 15) 59: 58958-58980.
21 22	Federal Register. (1996) National ambient air quality standards for sulfur oxides (sulfur dioxide)—final decision. F. R. (May 22) 61: 25566-25580.
23	Federal Register. (2006) Science assessment for sulfur oxides. F. R. 71 (May 15): 28023-28024.
24 25 26 27	 Filleul, L.; Rondeau, V.; Vandentorren, S.; Le Moual, N.; Cantagrel, A.; Annesi-Maesano, I.; Charpin, D.; Declercq, C.; Neukirch, F.; Paris, C.; Vervloet, D.; Brochard, P.; Tessier, J. F.; Kauffmann, F.; Baldi, I. (2005) Twenty five year mortality and air pollution: results from the French PAARC survey. Occup. Environ. Med. 62: 453-460.
28 29 30	Fiore, M.; Petruzzi, S.; Dell'Omo, G.; Alleva, E. (1998) Prenatal sulfur dioxide exposure induces changes in the behavior of adult male mice during agonistic encounters. Neurotoxicol. Teratol. 20: 543-548.
31 32	Folinsbee, L. J.; Bedi, J. F.; Horvath, S. M. (1985) Pulmonary response to threshold levels of sulfur dioxide (1.0 ppm) and ozone (0.3 ppm). J. Appl. Physiol. 58: 1783-1787.
33 34 35	 Folsom, A. R.; Wu, K. K.; Rosamond, W. D.; Sharrett, A. R.; Chambless, L. E. (1997) Prospective study of hemostatic factors and incidence of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 96: 1102-1108.
36 37 38	Frank, N. R.; Amdur, M. O.; Worcester, J.; Whittenberger, J. L. (1962) Effects of acute controlled exposure to SO ₂ on respiratory mechanics in healthy male adults. J. Appl. Physiol. 17: 252-258.

1 2 3	Frank, N. R.; Yoder, R. E.; Brain, J. D.; Yokoyama, E. (1969) SO ₂ (³⁵ S labeled) absorption by the nose and mouth under conditions of varying concentration and flow. Arch. Environ. Health 18: 315-322.
4	Frischer, T.; Studnicka, M.; Gartner, C.; Tauber, E.; Horak, F.; Veiter, A.; Spengler, J.; Kühr, J.;
5	Urbanek, R. (1999) Lung function growth and ambient ozone: a three-year population
6	study in school children. Am. J. Respir. Crit. Care Med. 160: 390-396.
7	Frye, C.; Hoelscher, B.; Cyrys, J.; Wjst, M.; Wichmann, H. E.; Heinrich, J. (2003) Association of
8	lung function with declining ambient air pollution. Environ. Health Perspect. 111: 383-
9	387.
10	Fung, K. Y.; Luginaah, I.; Gorey, K. M.; Webster, G. (2005) Air pollution and daily hospital
11	admissions for cardiovascular diseases in Windsor, Ontario. Can. J. Public Health 96: 29-
12	33.
13	Fung, K. Y.; Khan, S.; Krewski, D.; Chen, Y. (2006) Association between air pollution and
14	multiple respiratory hospitalizations among the elderly in Vancouver, Canada. Inhalation
15	Toxicol. 18: 1005-1011.
16	Fusco, D.; Forastiere, F.; Michelozzi, P.; Spadea, T.; Ostro, B.; Arcà, M.; Perucci, C. A. (2001)
17	Air pollution and hospital admissions for respiratory conditions in Rome, Italy. Eur.
18	Respir. J. 17: 1143-1150.
19 20	Galán, I.; Tobías, A.; Banegas, J. R.; Aránguez, E. (2003) Short-term effects of air pollution on daily asthma emergency room admissions. Eur. Respir. J. 22: 802-808.
21 22	Gauderman, W. J.; Murcray, C.; Gilliland, F.; Conti, D. V. (2007) Testing association between disease and multiple SNPs in a candidate gene. Genet. Epidemiol.: 10.1002/gepi.20219.
23 24 25	Gilboa, S. M.; Mendola, P.; Olshan, A. F.; Langlois, P. H.; Savitz, D. A.; Loomis, D.; Herring, A. H.; Fixler, D. E. (2005) Relation between ambient air quality and selected birth defects, seven county study, Texas, 1997-2000. Am. J. Epidemiol. 162: 238-252.
26	Gilliland, F. D.; McConnell, R.; Peters, J.; Gong, H, Jr. (1999) A theoretical basis for
27	investigation ambient air pollution and children's respiratory health. Environ. Health
28	Perspect. 107(suppl. 3): 403-407.
29 30 31	 Gilliland, F. D.; Rappaport, E. B.; Berhane, K.; Islam, T.; Dubeau, L.; Gauderman, W. J.; McConnell, R. (2002) Effects of glutathione S-Transferase P1, M1, and T1 on acute respiratory illness in school children. Am. J. Respir. Crit. Care Med. 166: 346-351.
32	Gold, D. R.; Litonjua, A.; Schwartz, J.; Lovett, E.; Larson, A.; Nearing, B.; Allen, G.; Verrier,
33	M.; Cherry, R.; Verrier, R. (2000) Ambient pollution and heart rate variability.
34	Circulation 101: 1267-1273.
35 36 37 38	Gold, D. R.; Schwartz, J.; Litonjua, A.; Verrier, R.; Zanobetti, A. (2003) Ambient pollution and reduced heart rate variability. In: Revised analyses of time-series studies of air pollution and health. Special report. Boston, MA: Health Effects Institute; pp. 107-112. Available: http://www.healtheffects.org/Pubs/TimeSeries.pdf [18 October, 2004].
39	Goldberg, M. S.; Burnett, R. T. (2003) Revised analysis of the Montreal time-series study. In:
40	Revised analyses of time-series studies of air pollution and health. Special report. Boston,

1	MA: Health Effects Institute; pp. 113-132. Available:
2	http://www.healtheffects.org/Pubs/TimeSeries.pdf [18 October, 2004].
3 4 5	Gong, H., Jr.; Lachenbruch, P. A.; Harber, P.; Linn, W. S. (1995) Comparative short-term health responses to sulfur dioxide exposure and other common stresses in a panel of asthmatics. Toxicol. Ind. Health 11: 467-487.
6	Goss, C. H.; Newsom, S. A.; Schildcrout, J. S.; Sheppard, L.; Kaufman, J. D. (2004) Effect of
7	ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis.
8	Am. J. Respir. Crit. Care Med. 169: 816-821.
9	Gouveia, N.; Fletcher, T. (2000) Respiratory diseases in children and outdoor air pollution in São
10	Paulo, Brazil: a time series analysis. Occup. Environ. Med. 57: 477-483.
11	Gouveia, N.; Bremner, S. A.; Novaes, H. M. D. (2004) Association between ambient air
12	pollution and birth weight in São Paulo, Brazil. J. Epidemiol. Community Health 58: 11-
13	17.
14 15	Gunnison, A. F.; Benton, A. W. (1971) Sulfur dioxide: sulfite. Interaction with mammalian serum and plasma. Arch. Environ. Health 22: 381-388.
16 17 18	Gunnison, A. F.; Sellakumar, A.; Currie, D.; Snyder, E. A. (1987) Distribution, metabolism and toxicity of inhaled sulfur dioxide and endogenously generated sulfite in the respiratory tract of normal and sulfite oxidase-deficient rats. J. Toxicol. Environ. Health 21: 141-162.
19 20 21	Gunnison, A. F.; Sellakumar, A.; Snyder, E. A.; Currie, D. (1988) The effect of inhaled sulfur dioxide and systemic sulfite on the induction of lung carcinoma in rats by benzo[<i>a</i>]pyrene. Environ. Res. 46: 59-73.
22 23	Ha, EH.; Hong, YC.; Lee, BE.; Woo, BH.; Schwartz, J.; Christiani, D. C. (2001) Is air pollution a risk factor for low birth weight in Seoul? Epidemiology 12: 643-648.
24	Hackney, J. D.; Linn, W. S.; Bailey, R. M.; Spier, C. E.; Valencia, L. M. (1984) Time course of
25	exercise-induced bronchoconstriction in asthmatics exposed to sulfur dioxide. Environ.
26	Res. 34: 321-327.
27	Hackney, J. D.; Linn, W. S.; Avol, E. L. (1987) Replicated dose-response study of sulfur dioxide
28	effects in normal, atopic, and asthmatic volunteers: interim special report. Palo Alto, CA:
29	Electric Power Research Institute; research project 1225-2.
30	Hagen, J. A.; Nafstad, P.; Skrondal, A.; Bjørkly, S.; Magnus, P. (2000) Associations between
31	outdoor air pollutants and hospitalization for respiratory diseases. Epidemiology 11: 136-
32	140.
33	Haider, S. S.; Hasan, M. (1984) Neurochemical changes by inhalation of environmental
34	pollutants sulfur dioxide and hydrogen sulfide: degradation of total lipids, elevation of
35	lipid peroxidation and enzyme activity in discrete regions of the guinea pig brain and
36	spinal cord. Ind. Health 22: 23-31.
37	Haider, S. S.; Hasan, M.; Hasan, S. N.; Khan, S. R.; Ali, S. F. (1981) Regional effects of sulfur
38	dioxide exposure on the guinea pig brain lipids, lipid peroxidation and lipase activity.
39	Neurotoxicology 2: 443-450.

1	Haider, S. S.; Hasan, M.; Khan, N. H. (1982) Air pollutant sulfur dioxide-induced alterations on
2	the levels of lipids, lipid peroxidation and lipase activity in various regions of the rat
3	brain. Acta Pharmacol. Toxicol. 51: 45-50.
4	Hajat, S.; Haines, A.; Goubet, S. A.; Atkinson, R. W.; Anderson, H. R. (1999) Association of air
5	pollution with daily GP consultations for asthma and other lower respiratory conditions in
6	London. Thorax 54: 597-605.
7 8 9	Hajat, S.; Haines, A.; Atkinson, R. W.; Bremner, S. A.; Anderson, H. R.; Emberlin, J. (2001)Association between air pollution and daily consultations with general practitioners for allergic rhinitis in London, United Kingdom. Am. J. Epidemiol. 153: 704-714.
10	Hajat, S.; Anderson, H. R.; Atkinson, R. W.; Haines, A. (2002) Effects of air pollution on
11	general practitioner consultations for upper respiratory diseases in London. Occup.
12	Environ. Med. 59: 294-299.
13	Hälinen, A. I.; Salonen, R. O.; Pennanen, A. S.; Kosma, V. M. (2000a) Combined respiratory
14	effects of cold air with SO ₂ or NO ₂ in repeated 10-minute exposures of hyperventilating
15	guinea pigs. Inhalation Toxicol. 12: 671-691.
16	Hälinen, A. I.; Salonen, R. O.; Pennanen, A. S. (2000b) Combined respiratory effects of cold air
17	with SO ₂ or NO ₂ in single 1-hour exposures of hyperventilating guinea pigs. Inhalation
18	Toxicol. 12: 693-713.
19 20 21	Health Effects Institute. (2004) Health effects of outdoor air pollution in developing countries of Asia: a literature review. Boston, MA: HEI International Scientific Oversight Committee; HEI Public Health and Air Pollution in Asia Program; special report 15.
22 23 24	Hedley, A. J.; Wong, CM.; Thach, T. Q.; Ma, S.; Lam, TH.; Anderson, H. R. (2002)Cardiorespiratory and all-cause mortality after restrictions on sulphur content of fuel inHong Kong: an intervention study. Lancet 360: 1646-1652.
25 26 27 28	Heinrich, U.; Mohr, U.; Fuhst, R.; Brockmeyer, C. (1989) Investigation of a potential cotumorigenic effect of the dioxides of nitrogen and sulfur, and of diesel-engine exhaust, on the respiratory tract of Syrian golden hamsters. Cambridge, MA: Health Effects Institute; research report no. 26. Available from: NTIS, Springfield, VA; PB90-111147.
29	Heinrich, J.; Hoelscher, B.; Frye, C.; Meyer, I.; Pitz, M.; Cyrys, J.; Wjst, M.; Neas, L.;
30	Wichmann, HE. (2002) Improved air quality in reunified Germany and decreases in
31	respiratory symptoms. Epidemiology 13: 394-401.
32 33 34	Henneberger, A.; Zareba, W.; Ibald-Mulli, A.; Rückerl, R.; Cyrys, J.; Couderc, JP.; Mykins, B.;Woelke, G.; Wichmann, HE.; Peters, A. (2005) Repolarization changes induced by airpollution in ischemic heart disease patients. Environ. Health Perspect. 113: 440-446.
35	Herbarth, O.; Fritz, G.; Krumbiegel, P.; Diez, U.; Franck, U.; Richter, M. (2001) Effect of sulfur
36	dioxide and particulate pollutants on bronchitis in childrena risk analysis. Environ.
37	Toxicol. 16: 269-276.
38	Higgins, B. G.; Francis, H. C.; Yates, C. J.; Warburton, C. J.; Fletcher, A. M.; Reid, J. A.;
39	Pickering, C. A. C.; Woodcock, A. A. (1995) Effects of air pollution on symptoms and
40	peak expiratory flow measurements in subjects with obstructive airways disease. Thorax
41	50: 149-155.

1 2 3	Hirsch, T.; Weiland, S. K.; Von Mutius, E.; Safeca, A. F.; Grafe, H.; Csaplovics, E.; Duhme, H.; Keil, U.; Leupold, W. (1999) Inner city air pollution and respiratory health and atopy in children. Eur. Respir. J. 14: 669-677.
4 5 6 7	Hoek, G. (2003) Daily mortality and air pollution in The Netherlands. In: Revised analyses of time-series studies of air pollution and health. Special report. Boston, MA: Health Effects Institute; pp. 133-141. Available: http://www.healtheffects.org/Pubs/TimeSeries.pdf [12 May, 2004].
8 9	Hoek, G.; Brunekreef, B. (1993) Acute effects of a winter air pollution episode on pulmonary function and respiratory symptoms of children. Arch. Environ. Health 48: 328-335.
10 11	Hoek, G.; Brunekreef, B. (1994) Effects of low-level winter air pollution concentrations on respiratory health of Dutch children. Environ. Res. 64: 136-150.
12 13	Hoek, G.; Brunekreef, B. (1995) Effect of photochemical air pollution on acute respiratory symptoms in children. Am. J. Respir. Crit. Care Med. 151: 27-32.
14 15	Hoek, G.; Brunekreef, B.; Verhoeff, A.; Van Wijnen, J.; Fischer, P. (2000) Daily mortality and air pollution in the Netherlands. J. Air Waste Manage. Assoc. 50: 1380-1389.
16 17 18	Hoek, G.; Brunekreef, B.; Fischer, P.; Van Wijnen, J. (2001) The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study. Epidemiology 12: 355-357.
19 20 21	Holguín, F.; Téllez-Rojo, M. M.; Hernández, M.; Cortez, M.; Chow, J. C.; Watson, J. G.; Mannino, D.; Romieu, I. (2003) Air pollution and heart rate variability among the elderly in Mexico City. Epidemiology 14: 521-527.
22	Holland, H. D. (1978) The chemistry of the atmosphere and oceans. New York, NY: Wiley.
23 24 25	Hoppel, W. A.; Caffrey, P. F. (2005) Oxidation of S(IV) in sea-salt aerosol at high pH: ozone versus aerobic reaction. J. Geophys. Res. [Atmos.] 110(D23202): 10.1029/2005JD006239.
26 27 28	Horak, F., Jr.; Studnicka, M.; Gartner, C.; Spengler, J. D.; Tauber, E.; Urbanek, R.; Veiter, A.; Frischer, T. (2002a) Particulate matter and lung function growth in children: a 3-yr follow-up study in Austrian schoolchildren. Eur. Respir. J. 19: 838-845.
29 30 31	 Horak, F., Jr.; Studnicka, M.; Gartner, C.; Spengler, J. D.; Tauber, E.; Urbanek, R.; Veiter, A.; Frischer, T. (2002b) Particulate matter and lung function growth in children: a 3-yr follow-up study in Austrian schoolchildren [author response]. Eur. Respir. J. 20: 1355.
32 33 34 35	 Horowitz, L. W.; Walters, S.; Mauzerall, D. L.; Emmons, L. K.; Rasch, P. J.; Granier, C.; Tie, X.; Lamarque, JF.; Schultz, M. G.; Tyndall, G. S.; Orlando, J. J.; Brasseur, G. P. (2003) A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J. Geophys. Res. [Atmos.] 108(D24): 10.1029/2002JD002853.
36 37	Horstman, D.; Roger, L. J.; Kehrl, H.; Hazucha, M. (1986) Airway sensitivity of asthmatics to sulfur dioxide. Toxicol. Ind. Health 2: 289-298.
38 39 40	Horstman, D. H.; Seal, E., Jr.; Folinsbee, L. J.; Ives, P.; Roger, L. J. (1988) The relationship between exposure duration and sulfur dioxide-induced bronchoconstriction in asthmatic subjects. Am. Ind. Hyg. Assoc. J. 49: 38-47.

1	Hosseinpoor, A. R.; Forouzanfar, M. H.; Yunesian, M.; Asghari, F.; Naieni, K. H.; Farhood, D.
2	(2005) Air pollution and hospitalization due to angina pectoris in Tehran, Iran: a time-
3	series study. Environ. Res. 99: 126-131.
4	Ibald-Mulli, A.; Stieber, J.; Wichmann, HE.; Koenig, W.; Peters, A. (2001) Effects of air
5	pollution on blood pressure: a population-based approach. Am. J. Public Health 91: 571-
6	577.
7	Ito, T.; Ohyama, KI.; Kusano, T.; Usuda, Y.; Nozawa, A.; Hayashi, H.; Ohji, H.; Kitamura, H.;
8	Kanisawa, M. (1997) Pulmonary endocrine cell hyperplasia and papilloma in rats induced
9	by intratracheal injections of extract from particulate air pollutants. Exp. Toxicol. Pathol.
10	49: 65-70.
11 12	Jacob, D. J. (1999) Introduction to atmospheric chemistry. Princeton, New Jersey: Princeton University Press.
13	Jacobson, M. Z. (2002) Atmospheric pollution: history, science, and regulation. New York, NY:
14	Cambridge University Press.
15 16	Jaffe, D. H.; Singer, M. E.; Rimm, A. A. (2003) Air pollution and emergency department visits for asthma among Ohio Medicaid recipients, 1991-1996. Environ. Res. 91: 21-28.
17	Jakab, G. J.; Clarke, R. W.; Hemenway, D. R.; Longphre, M. V.; Kleeberger, S. R.; Frank, R.
18	(1996) Inhalation of acid coated carbon black particles impairs alveolar macrophage
19	phagocytosis. Toxicol. Lett. 88: 243-248.
20	Jalaludin, B.; Morgan, G.; Lincoln, D.; Sheppeard, V.; Simpson, R.; Corbett, S. (2006)
21	Associations between ambient air pollution and daily emergency department attendances
22	for cardiovascular disease in the elderly (65+ years), Sydney, Australia. J. Exposure Sci.
23	Environ. Epidemiol. 16: 225-237.
24 25 26	Jerrett, M.; Burnett, R. T.; Willis, A.; Krewski, D.; Goldberg, M. S.; DeLuca, P.; Finkelstein, N. (2003) Spatial analysis of the air pollution-mortality relationship in the context of ecologic confounders. J. Toxicol. Environ. Health A 66: 1735-1777.
27 28 29 30	Jet Propulsion Laboratory (JPL). (2003) Chemical kinetics and photochemical data for use in atmospheric studies. Pasadena, CA: California Institute of Technology; JPL publication no. 02-25. Available: http://jpldataeval.jpl.nasa.gov/pdf/JPL_02-25_1_intro_rev0.pdf (18 December, 2003).
31 32	Jörres, R.; Magnussen, H. (1990) Airways response of asthmatics after a 30 min exposure, at resting ventilation, to 0.25 ppm NO ₂ or 0.5 ppm SO ₂ . Eur. Respir. J. 3: 132-137.
33 34 35 36 37	 Katsouyanni, K.; Touloumi, G.; Spix, C.; Schwartz, J.; Balducci, F.; Medina, S.; Rossi, G.; Wojtyniak, B.; Sunyer, J.; Bacharova, L.; Schouten, J. P.; Ponka, A.; Anderson, H. R. (1997) Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project. Br. Med. J. 314: 1658-1663.
38 39	Kauffmann, F.; Post Genome Respiratory Epidemiology Group. (2004) Post-genome respiratory epidemiology: a multidisciplinary challenge. Eur. Respir. J. 24: 471-480.
40	Keleş, N.; Ilicali, C.; Değer, K. (1999) The effects of different levels of air pollution on atopy
41	and symptoms of allergic rhinitis. Am. J. Rhinol. 13: 185-190.

1 Kelly, F. J.; Dunster, C.; Mudway, I. (2003) Air pollution and the elderly: oxidant/antioxidant 2 issues worth consideration. Eur. Respir. J. Suppl. 40: 70S-75S. 3 Kelsall, J. E.; Samet, J. M.; Zeger, S. L.; Xu, J. (1997) Air pollution and mortality in 4 Philadelphia, 1974-1988. Am. J. Epidemiol. 146: 750-762. 5 Khoury, M. J.; Davis, R.; Gwinn, M.; Lindegren, M. L.; Yoon, P. (2005) Do we need genomic research for the prevention of common diseases with environmental causes? Am. J. 6 7 Epidemiol. 161: 799-805. 8 Kilic, D. (2003) The effects of ageing and sulfur dioxide inhalation exposure on visual-evoked 9 potentials, antioxidant enzyme systems, and lipid-peroxidation levels of the brain and 10 eye. Neurotoxicol. Teratol. 25: 587-598. 11 Kimbell, J. S.; Miller, F. J. (1999) Regional respiratory-tract absorption of inhaled reactive 12 gases: a modeling approach. In: Gardner, D. E.; Crapo, J. D.; McClellan, R. O., eds. 13 Toxicology of the Lung. 3rd ed. New York, NY: Taylor and Francis; pp. 557-598. 14 Kindzierski, W. B.; Ranganathan, H. K. S. (2006) Indoor and outdoor SO₂ in a community near 15 oil sand extraction and production facilities in northern Alberta. J. Environ. Eng. Sci. 5: 16 S121-S129. 17 Kitabatake, M.; Yoshida, K.; Kasama, K.; Murase, S.; Yuan, P. F.; Manjurul, H.; Yamauchi, T. 18 (1992) Procedure for evaluating changes in respiratory symptoms of experimentally 19 asthma-induced guinea pigs by a personal computer. J. Toxicol. Environ. Health 37: 265-20 275. 21 Kitabatake, M.; Yamamoto, H.; Yuan, P. F.; Manjurul, H.; Murase, S.; Yamauchi, T. (1995) 22 Effects of exposure to NO₂ or SO₂ on bronchopulmonary reaction induced by *Candida* 23 albicans in guinea pigs. J. Toxicol. Environ. Health 45: 75-82. 24 Klepeis, N. E.; Nelson, W. C.; Ott. W. R.; Robinson, J. P. Tsang, A. M.; Switzer, P.; Behar, J. 25 V.; Hern, S. C.; Engelmann, W. H. (2001) The National Human Activity Pattern Survey 26 (NHAPS): a resource for assessing exposure to environmental pollutants. J. Exposure 27 Anal. Environ. Epidemiol. 11: 231-252. 28 Kochanek, K. D.; Murphy, S. L.; Anderson, R. N.; Scott, C. (2004) Deaths: final data for 2002. 29 Hyattsville, MD: U.S. Department of Health & Human Services, National Center for 30 Health Statistics; DHHS publication no. (PHS) 2005-1120. (National vital statistics 31 reports: v. 53, no. 5). Available: 32 http://www.cdc.gov/nchs/data/nvsr/nvsr53/nvsr53_05.pdf [3 August, 2005]. 33 Koenig, J. Q.; Pierson, W. E.; Horike, M.; Frank, R. (1983) A comparison of the pulmonary 34 effects of 0.5 ppm versus 1.0 ppm sulfur dioxide plus sodium chloride droplets in 35 asthmatic adolescents. J. Toxicol. Environ. Health 11: 129-139. 36 Koenig, J. Q.; Covert, D. S.; Hanley, Q. S.; Van Belle, G.; Pierson, W. E. (1990) Prior exposure 37 to ozone potentiates subsequent response to sulfur dioxide in adolescent asthmatic 38 subjects. Am. Rev. Respir. Dis. 141: 377-380. 39 Koken, P. J. M.; Piver, W. T.; Ye, F.; Elixhauser, A.; Olsen, L. M.; Portier, C. J. (2003) 40 Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environ. Health Perspect. 111: 1312-1317. 41

1 2 3	Koutrakis, P.; Wolfson, J. M.; Slater, J. L.; Brauer, M.; Spengler, J. D.; Stevens, R. K.; Stone, C. L. (1988) Evaluation of an annular denuder/filter pack system to collect acidic aerosols and gases. Environ. Sci. Technol. 22: 1463-1468.
4 5 6	Koutrakis, P.; Suh, H. H.; Sarnat, J. A.; Brown, K. W.; Coull, B. A.; Schwartz, J. (2005)Characterization of particulate and gas exposures of sensitive populations living inBaltimore and Boston. Boston, MA: Health Effects Institute; research report no. 131.
7 8	Kreisman, H.; Mitchell, C. A.; Hosein, H. R.; Bouhuys, A. (1976) Effect of low concentrations of sulfur dioxide on respiratory function in man. Lung 154: 25-34.
9 10 11 12 13 14	Krewski, D.; Burnett, R. T.; Goldberg, M. S.; Hoover, K.; Siemiatycki, J.; Jerrett, M.; Abrahamowicz, M.; White, W. H. (2000) Reanalysis of the Harvard Six Cities study and the American Cancer Society study of particulate air pollution and mortality: a special report of the Institute's Particle Epidemiology Reanalysis Project. Cambridge, MA: Health Effects Institute. Available: http://pubs.healtheffects.org/view.php?id=6 [6 March, 2007].
15 16 17	Küçükatay, V.; Ağar, A.; Yargiçoglu, P.; Gümüşlü, S.; Aktekin, B. (2003) Changes in somatosensory evoked potentials, lipid peroxidation, and antioxidant enzymes in experimental diabetes: effect of sulfur dioxide. Arch. Environ. Health 58: 14-22.
18 19 20	Küçükatay, V.; Bor-Küçükatay, M.; Atsak, P.; Ağar, A. (2007) Effect of ingested sulfite on hippocampus antioxidant enzyme activities in sulfite oxidase competent and deficient rats. Int. J. Neurosci. 117: 971-983.
21 22 23	Kulle, T. J.; Sauder, L. R.; Shanty, F.; Kerr, H. D.; Farrell, B. P.; Miller, W. R.; Milman, J. H. (1984) Sulfur dioxide and ammonium sulfate effects on pulmonary function and bronchial reactivity in human subjects. Am. Ind. Hyg. Assoc. J. 45: 156-161.
24 25 26	Kwon, HJ.; Cho, SH.; Nyberg, F.; Pershagen, G. (2001) Effects of ambient air pollution on daily mortality in a cohort of patients with congestive heart failure. Epidemiology 12: 413-419.
27 28 29	Langley-Evans, S. C.; Phillips, G. J.; Jackson, A. A. (1996) Sulphur dioxide: a potent glutathione depleting agent. Comp. Biochem. Physiol. Part C: Pharmacol. Toxicol. Endocrinol. 114: 89-98.
30 31	Lawther, P. J. (1955) Effects of inhalation of sulfur dioxide on respiration and pulse-rate in normal subjects. Lancet 2: 745-748.
32 33	Lawther, P. J.; Waller, R. E.; Henderson, M. (1970) Air pollution and exacerbations of bronchitis. Thorax 25: 525-539.
34 35	Lawther, P. J.; MacFarlane, A. J.; Waller, R. E; Brooks, A. G. F. (1975) Pulmonary function and sulphur dioxide, some preliminary findings. Environ. Res. 10: 355-367.
36 37 38	Lee, JT.; Kim, H.; Song, H.; Hong, YC.; Cho, YS.; Shin, SY.; Hyun, YJ.; Kim, YS. (2002) Air pollution and asthma among children in Seoul, Korea. Epidemiology 13: 481- 484.
39 40 41	Lee, JT.; Kim, H.; Cho, YS.; Hong, YC.; Ha, EH.; Park, H. (2003a) Air pollution and hospital admissions for ischemic heart diseases among individuals 64+ years of age residing in Seoul, Korea. Arch. Environ. Health 58: 617-623.

1 2 3	Lee, B. E.; Ha, E. H.; Park, H. S.; Kim, Y. J.; Hong, Y. C.; Kim, H.; Lee, J. T. (2003b) Exposure to air pollution during different gestational phases contributes to risks of low birth weight. Hum. Reprod. 18: 638-643.
4	Lee, YL.; Lin, YC.; Lee, YC.; Wang, JY.; Hsiue, TR.; Guo, Y. L. (2004) Glutathione S-
5	transferase P1 gene polymorphism and air pollution as interactive risk factors for
6	childhood asthma. Clin. Exp. Allergy 34: 1707-1713.
7 8	Lee, S. L.; Wong, W. H. S.; Lau, Y. L. (2006) Association between air pollution and asthma admission among children in Hong Kong. Clin. Exp. Allergy 36: 1138-1146.
9 10 11	Leem, JH.; Kaplan, B. M.; Shim, Y. K.; Pohl, H. R.; Gotway, C. A.; Bullard, S. M.; Rogers, J. F.; Smith, M. M.; Tylenda, C. A. (2006) Exposures to air pollutants during pregnancy and preterm delivery. Environ. Health Perspect. 114: 905-910.
12	Le Tertre, A.; Quenel, P.; Eilstein, D.; Medina, S.; Prouvost, H.; Pascal, L.; Boumghar, A.;
13	Saviuc, P.; Zeghnoun, A.; Filleul, L.; Declercq, C.; Cassadou, S.; Le Goaster, C. (2002)
14	Short-term effects of air pollution on mortality in nine French cities: a quantitative
15	summary. Arch. Environ. Health 57: 311-319.
16 17 18	Leung, FY. T.; Colussi, A. J.; Hoffmann, M. R. (2002) Isotopic fractionation of carbonyl sulfide in the atmosphere: implications for the source of background stratospheric sulfate aerosol. Geophys. Res. Lett. 29: 10.1029/2001GL013955.
19 20 21 22 23	 Levine, J. S.; Pinto, J. P. (1998) The production of CO by biomass burning. In: Khalil, M. A. K.; Pinto, J. P.; Shearer, M. J., eds. Atmospheric carbon monoxide and its environmental effects: proceedings of the international conference; December 1997; Portland, Oregon. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Research and Development; report no. EPA/600/R-98/047; pp. 251-256.
24	Lewis, A. J.; Kirchner, T. (1984) Modulation of sulfur dioxide-induced airways
25	hyperresponsiveness in the conscious dog. Int. Arch. Allergy Appl. Immunol. 75: 188-
26	190.
27	Liao, D.; Duan, Y.; Whitsel, E. A.; Zheng, ZJ.; Heiss, G.; Chinchilli, V. M.; Lin, HM. (2004)
28	Association of higher levels of ambient criteria pollutants with impaired cardiac
29	autonomic control: a population-based study. Am. J. Epidemiol. 159: 768-777.
30	Liao, D.; Heiss, G.; Chinchilli, V. M.; Duan, Y.; Folsom, A. R.; Lin, H. M.; Salomaa, V. (2005)
31	Association of criteria pollutants with plasma hemostatic/inflammatory markers: a
32	population-based study. J. Exposure Anal. Environ. Epidemiol. 15: 319-328.
33 34 35 36	 Lin, C. A.; Martins, M. A.; Farhat, S. C. L.; Pope, C. A., III; Conceição, G. M. S.; Anastácio, V. M.; Hatanaka, M.; Andrade, W. C.; Hamaue, W. R.; Böhm, G. M.; Saldiva, P. H. N. (1999) Air pollution and respiratory illness of children in São Paulo, Brazil. Paediatr. Perinat. Epidemiol. 13: 475-488.
37	Lin, M.; Chen, Y.; Burnett, R. T.; Villeneuve, P. J.; Krewski, D. (2003a) Effect of short-term
38	exposure to gaseous pollution on asthma hospitalisation in children: a bi-directional case-
39	crossover analysis. J. Epidemiol. Community Health 57: 50-55.

1	Lin, C. A.; Amador Pereira, L. A.; Souza Conceicao, G. M. de; Kishi, H. S.; Milani, R., Jr.;
2	Ferreira Braga, A. L.; Nascimento Saldiva, P. H. (2003b) Association between air
3	pollution and ischemic cardiovascular emergency room visits. Environ. Res. 92: 57-63.
4	Lin, M.; Chen, Y.; Villeneuve, P. J.; Burnett, R. T.; Lemyre, L.; Hertzman, C.; McGrail, K. M.;
5	Krewski, D. (2004a) Gaseous air pollutants and asthma hospitalization of children with
6	low household income in Vancouver, British Columbia, Canada. Am. J. Epidemiol. 159:
7	294-303.
8	Lin, CM.; Li, CY.; Yang, GY.; Mao, I-F. (2004b) Association between maternal exposure to
9	elevated ambient sulfur dioxide during pregnancy and term low birth weight. Environ.
10	Res. 96: 41-50.
11	Lin, S.; Hwang, SA.; Pantea, C.; Kielb, C.; Fitzgerald, E. (2004c) Childhood asthma
12	hospitalizations and ambient air sulfur dioxide concentrations in Bronx County, New
13	York. Arch. Environ. Health 59: 266-275.
14	Lin, M.; Stieb, D. M.; Chen, Y. (2005) Coarse particulate matter and hospitalization for
15	respiratory infections in children younger than 15 years in Toronto: a case-crossover
16	analysis. Pediatrics 116: 235-240.
17	Linn, W. S.; Bailey, R. M.; Shamoo, D. A.; Venet, T. G.; Wightman, L. H.; Hackney, J. D.
18	(1982) Respiratory responses of young adult asthmatics to sulfur dioxide exposure under
19	simulated ambient conditions. Environ. Res. 29: 220-232.
20	Linn, W. S.; Venet, T. G.; Shamoo, D. A.; Valencia, L. M.; Anzar, U. T.; Spier, C. E.; Hackney,
21	J. D. (1983) Respiratory effects of sulfur dioxide in heavily exercising asthmatics: a dose-
22	response study. Am. Rev. Respir. Dis. 127: 278-283.
23	Linn, W. S.; Shamoo, D. A.; Venet, T. G.; Bailey, R. M.; Wightman, L. H.; Hackney, J. D.
24	(1984) Comparative effects of sulfur dioxide exposures at 5° C and 22° C in exercising
25	asthmatics. Am. Rev. Respir. Dis. 129: 234-239.
26	Linn, W. S.; Fischer, D. A.; Shamoo, D. A.; Spier, C. E.; Valencia, L. M.; Anzar, U. T.;
27	Hackney, J. D. (1985) Controlled exposures of volunteers with chronic obstructive
28	pulmonary disease to sulfur dioxide. Environ. Res. 37: 445-451.
29	Linn, W. S.; Avol, E. L.; Peng, RC.; Shamoo, D. A.; Hackney, J. D. (1987) Replicated dose-
30	response study of sulfur dioxide effects in normal, atopic, and asthmatic volunteers. Am.
31	Rev. Respir. Dis. 136: 1127-1134.
32	Linn, W. S.; Shamoo, D. A.; Peng, RC.; Clark, K. W.; Avol. E. L.; Hackney, J. D. (1990)
33	Responses to sulfur dioxide and exercise by medication-dependent asthmatics: effect of
34	varying medication levels. Arch. Environ. Health 45: 24-30.
35	 Lipfert, F. W.; Perry, H. M., Jr.; Miller, J. P.; Baty, J. D.; Wyzga, R. E.; Carmody, S. E. (2000)
36	The Washington University-EPRI veterans' cohort mortality study: preliminary results.
37	In: Grant, L. D., ed. PM2000: particulate matter and health. Inhalation Toxicol. 12(suppl.
38	4): 41-73.
39	Lipfert, F. W.; Wyzga, R. E.; Baty, J. D.; Miller, J. P. (2006a) Traffic density as a surrogate
40	measure of environmental exposures in studies of air pollution health effects: long-term
41	mortality in a cohort of US veterans. Atmos. Environ. 40: 154-169.

1	Lipfert, F. W.; Baty, J. D.; Miller, J. P.; Wyzga, R. E. (2006b) PM _{2.5} constituents and related air
2	quality variables as predictors of survival in a cohort of U.S. military veterans. Inhalation
3	Toxicol. 18: 645-657.
4 5	Lippmann, M.; Ito, K.; Hwang, J. S.; Maciejczyk, P.; Chen, L. C. (2006) Cardiovascular effects of nickel in ambient air. Environ. Health Perspect. 114: 1662-1669.
6	Liu, S.; Krewski, D.; Shi, Y.; Chen, Y.; Burnett, R. T. (2003) Association between gaseous
7	ambient air pollutants and adverse pregnancy outcomes in Vancouver, Canada. Environ.
8	Health Perspect. 111: 1773-1778.
9	Liu, S.; Krewski, D.; Shi, Y.; Chen, Y.; Burnett, R. (2006) Association between maternal
10	exposure to ambient air pollutants during pregnancy and fetal growth restriction. J.
11	Exposure Sci. Environ. Epidemiol.: 10.1038/sj.jes.7500503.
12	Llorca, J.; Salas, A.; Prieto-Salceda, D.; Chinchon-Bengoechea, V.; Delgado-Rodríguez, M.
13	(2005) Nitrogen dioxide increases cardiorespiratory admissions in Torrelavega (Spain). J.
14	Environ. Health 68: 30-35.
15 16 17	Lovati, M. R.; Manzoni, C.; Daldossi, M.; Spolti, S.; Sirtori, C. R. (1996) Effects of sub-chronic exposure to SO ₂ on lipid and carbohydrate metabolism in rats. Arch. Toxicol. 70: 164-173.
18 19 20	Luginaah, I. N.; Fung, K. Y.; Gorey, K. M.; Webster, G.; Wills, C. (2005) Association of ambient air pollution with respiratory hospitalization in a government designated "area of concern": the case of Windsor, Ontario. Environ. Health Perspect. 113: 290-296.
21	Luke, W. T. (1997) Evaluation of a commercial pulsed fluorescence detector for the
22	measurement of low-level SO ₂ concentrations during the Gas-Phase Sulfur
23	Intercomparison Experiment. J. Geophys. Res. [Atmos.] 102: 16,255-16,265.
24 25	Lunn, J. E.; Knowelden, J.; Handyside, A. J. (1967) Patterns of respiratory illness in Sheffield infant schoolchildren. Br. J. Prev. Soc. Med. 21: 7-16.
26	Luttmann-Gibson, H.; Suh, H. H.; Coull, B. A.; Dockery, D. W.; Sarnet, S. E.; Schwartz, J.;
27	Stone, P. H.; Gold, D. R. (2006) Short-term effects of air pollution on heart rate
28	variability in senior adults in Steubenville, Ohio. J. Occup. Environ. Med. 48: 780-788.
29 30 31	Magnussen, H.; Jörres, R.; Wagner, H. M.; Von Nieding, G. (1990) Relationship between the airway response to inhaled sulfur dioxide, isocapnic hyperventilation, and histamine in asthmatic subjects. Int. Arch. Occup. Environ. Health 62: 485-491.
32 33 34	Maisonet, M.; Bush, T. J.; Correa, A.; Jaakkola, J. J. K. (2001) Relation between ambient air pollution and low birth weight in the northeastern United States. Environ. Health Perspect. Suppl. 109(3): 351-356.
35	Martins, L. C.; Latorre, M. R. D. O.; Saldiva, P. H. N.; Braga, A. L. F. (2002) Air pollution and
36	emergency room visits due to chronic lower respiratory diseases in the elderly: an
37	ecological time-series study in São Paulo, Brazil. J. Occup. Environ. Med. 44: 622-627.
38	McCaig, L. F.; Burt, C. W. (2005) National Hospital Ambulatory Medical Care Survey: 2003
39	Emergency Department Summary. Hyattsville, MD: National Center for Health
40	Statistics; DHHS publication no. (PHS) 2005-1250. (Advance data from vital and health

1 2	statistics; no. 358). Available: http://www.cdc.gov/nchs/data/ad/ad358.pdf [3 August, 2005].
3 4 5	McCurdy, T.; Glen, G.; Smith, L.; Lakkadi, Y. (2000) The National Exposure Research Laboratory's Consolidated Human Activity Database. J. Exposure Anal. Environ. Epidemiol. 10: 566-578.
6 7	Melville, G. N. (1970) Changes in specific airway conductance in healthy volunteers following nasal and oral inhalation of SO ₂ . West Indian Med. J. 19: 231-235.
8 9	Meng, Z.; Bai, W. (2004) Oxidation damage of sulfur dioxide on testicles of mice. Environ. Res. 96: 298-304.
10 11	Meng, Z.; Qin, G.; Zhang, B.; Geng, H.; Bai, Q.; Bai, W.; Liu, C. (2003a) Oxidative damage of sulfur dioxide inhalation on lungs and hearts of mice. Environ. Res. 93: 285-292.
12 13	Meng, Z.; Geng, H.; Bai, J.; Yan, G. (2003b) Blood pressure of rats lowered by sulfur dioxide and its derivatives. Inhalation Toxicol. 15: 951-959.
14 15	Meng, Z.; Zhang, B.; Bai, J.; Geng, H.; Liu, C. (2003c) Oxidative damage of sulfur dioxide inhalation on stomachs and intestines of mice. Inhalation Toxicol. 15: 397-410.
16 17	Meng, Z.; Liu, Y.; Wu, D. (2005) Effect of sulfur dioxide inhalation on cytokine levels in lungs and serum of mice. Inhalation Toxicol. 17: 303-307.
18 19 20	Metzger, K. B.; Tolbert, P. E.; Klein, M.; Peel, J. L.; Flanders, W. D.; Todd, K. H.; Mulholland, J. A.; Ryan, P. B.; Frumkin , H. (2004) Ambient air pollution and cardiovascular emergency department visits. Epidemiology 15: 46-56.
21 22	Michaud, JP.; Grove, J. S.; Krupitsky, D. (2004) Emergency department visits and "vog"- related air quality in Hilo, Hawai'i. Environ. Res. 95: 11-19.
23 24 25	Miller, K. A.; Siscovick, D. S.; Sheppard, L.; Shepherd, K.; Sullivan J. H.; Anderson, G. L.; Kaufman, J. D. (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 356: 447-458.
26 27 28	Mohorovic, L. (2004) First two months of pregnancy—critical time for preterm delivery and low birthweight caused by adverse effects of coal combustion toxics. Early Human Dev. 80: 115-123.
29 30	Moolgavkar, S. H. (2000) Air pollution and hospital admissions for diseases of the circulatory system in three U.S. metropolitan areas. J. Air Waste Manage. Assoc. 50: 1199-1206.
31 32 33 34	Moolgavkar, S. H. (2003) Air pollution and daily deaths and hospital admissions in Los Angeles and Cook counties. In: Revised analyses of time-series studies of air pollution and health. Special report. Boston, MA: Health Effects Institute; pp. 183-198. Available: http://www.healtheffects.org/news.htm [16 May, 2003].
35 36	Moolgavkar, S. H.; Luebeck, E. G.; Hall, T. A.; Anderson, E. L. (1995) Air pollution and daily mortality in Philadelphia. Epidemiology 6: 476-484.
37 38 39	Moolgavkar, S. H.; Luebeck, E. G.; Anderson, E. L. (1997) Air pollution and hospital admissions for respiratory causes in Minneapolis-St. Paul and Birmingham. Epidemiology 8: 364-370.

1	Morris, R. D.; Naumova, E. N.; Munasinghe, R. L. (1995) Ambient air pollution and
2	hospitalization for congestive heart failure among elderly people in seven large US cities.
3	Am. J. Public Health 85: 1361-1365.
4 5	Mortimer, K. M.; Neas, L. M.; Dockery, D. W.; Redline, S.; Tager, I. B. (2002) The effect of air pollution on inner-city children with asthma. Eur. Respir. J. 19: 699-705.
6 7 8	Myhre, G.; Berglen, T. F.; Myhre, C. E.; Isaksen, I. S. A. (2004) The radiative effect of the anthropogenic influence on the stratospheric sulfate aerosol layer. Tellus Ser. B 56: 294-299.
9	Nadziejko, C.; Fang, K.; Narciso, S.; Zhong, M.; Su, W. C.; Gordon, T.; Nadas, A.; Chen, L. C.
10	(2004) Effect of particulate and gaseous pollutants on spontaneous arrhythmias in aged
11	rats. Inhalation Toxicol. 16: 373-380.
12	Nafstad, P.; Håheim, L. L.; Oftedal, B.; Gram, F.; Holme, I.; Hjermann, I.; Leren, P. (2003)
13	Lung cancer and air pollution: a 27 year follow up of 16,209 Norwegian men. Thorax 58:
14	1071-1076.
15 16 17	Nafstad, P.; Håheim, L. L.; Wisloff, T.; Gram, F.; Oftedal, B.; Holme, I.; Hjermann, I.; Leren, P. (2004) Urban air pollution and mortality in a cohort of Norwegian men. Environ. Health Perspect. 112: 610-605.
18 19 20 21 22	National Center for Health Statistics. (2006a) Summary health statistics for U.S. adults: National Health Interview Survey, 2004. Hyattsville, MD: U.S. Department of Health & Human Services, Centers for Disease Control and Prevention. (Vital and Health Statistics, Series 10, no. 228). Available: http://www.cdc.gov/nchs/data/series/sr_10/sr10_228.pdf (14 September, 2007).
23	National Center for Health Statistics. (2006b) Summary health statistics for U.S. children:
24	National Health Interview Survey, —2005. Hyattsville, MD: U.S. Department of Health
25	& Human Services, Centers for Disease Control and Prevention. (Vital and Health
26	Statistics, Series 10, no. 231). Available:
27	http://www.cdc.gov/nchs/data/series/sr_10/sr10_231.pdf (14 September, 2007).
28	National Research Council. (1998) Research priorities for airborne particulate matter. I.
29	Immediate priorities and a long-range research portfolio. Washington, DC: National
30	Academy Press. Available: http://www.nap.edu/catalog/6131.html (4 June 2003).
31	National Research Council. (2004) Research priorities for airborne particulate matter. IV.
32	Continuing research progress. Washington, DC: National Academies Press. Available:
33	http://www.nap.edu/catalog.php?record_id=10957 [1 August, 2007].
34	Neas, L. M.; Dockery, D. W.; Koutrakis, P.; Tollerud, D. J.; Speizer, F. E. (1995) The
35	association of ambient air pollution with twice daily peak expiratory flow rate
36	measurements in children. Am. J. Epidemiol. 141: 111-122.
37 38 39	Neukirch, F.; Ségala, C.; Le Moullec, Y.; Korobaeff, M.; Aubier, M. (1998) Short-term effects of low-level winter pollution on respiratory health of asthmatic adults. Arch. Environ. Health 53: 320-328.
40 41	Nicks, D. K.; Benner, R. L. (2001) Subminute measurements of SO ₂ and low parts per trillion by volume mixing ratios in the atmosphere. J. Geophys. Res. [Atmos.] 106: 27,769-27,776.

1 Nie, A.; Meng, Z. (2005) Study of the interaction of sulfur dioxide derivative with cardiac 2 sodium channel. Biochim. Biophys. Acta 1718: 67-73. 3 Nie, A.; Meng, Z. (2006) Modulation of L-type calcium current in rat cardiac myocytes by sulfur 4 dioxide derivatives. Food Chem. Toxicol. 44: 355-363. 5 Nodelman, V.; Ultman, J. S. (1999) Longitudinal distribution of chlorine absorption in human airways: a comparison to ozone absorption. J. Appl. Physiol. 87: 2073-2080. 6 7 Nowak, D.; Jörres, R.; Berger, J.; Claussen, M.; Magnussen, H. (1997) Airway responsiveness to 8 sulfur dioxide in an adult population sample. Am. J. Respir. Crit. Care Med. 156: 1151-9 1156. 10 Nyberg, F.; Gustavsson, P.; Järup, L.; Bellander, T.; Berglind, N.; Jakobsson, R.; Pershagen, G. 11 (2000) Urban air pollution and lung cancer in Stockholm. Epidemiology 11: 487-495. 12 Oftedal, B.; Nafstad, P.; Magnus, P.; Bjørkly, S.; Skrondal, A. (2003) Traffic related air pollution 13 and acute hospital admission for respiratory diseases in Drammen, Norway 1995-2000. Eur. J. Epidemiol. 18: 671-675. 14 15 Ohyama, K.; Ito, T.; Kanisawa, M. (1999) The roles of diesel exhaust particle extracts and the 16 promotive effects of NO₂ and/or SO₂ exposure on rat lung tumorigenesis. Cancer Lett. 17 139: 189-197. 18 Ott, W.; Wallace, L.; Mage, D. (2000) Predicting particulate (PM_{10}) personal exposure 19 distributions using a random component superposition statistical model. J. Air Waste 20 Manage. Assoc. 50: 1390-1406. 21 Park, J.-K.; Kim, Y.-K.; Lee, S.-R.; Cho, S.-H.; Min, K.-U.; Kim, Y.-Y. (2001) Repeated 22 exposure to low levels of sulfur dioxide (SO₂) enhances the development of ovalbumin-23 induced asthmatic reactions in guinea pigs. Ann. Allergy Asthma Immunol. 86: 62-67. 24 Park, H.; Lee, B.; Ha, E.-H.; Lee, J.-T.; Kim, H.; Hong, Y.-C. (2002) Association of air pollution 25 with school absenteeism due to illness. Arch. Pediatr. Adolesc. Med. 156: 1235-1239. 26 Park, J. W.; Lim, Y. H.; Kyung, S. Y.; An, C. H.; Lee, S. P.; Jeong, S. H.; Ju, S.-Y. (2005) 27 Effects of ambient particulate matter on peak expiratory flow rates and respiratory 28 symptoms of asthmatics during Asian dust periods in Korea. Respirology 10: 470-476. 29 Peacock, J. L.; Symonds, P.; Jackson, P.; Bremner, S. A.; Scarlett, J. F.; Strachan, D. P.; 30 Anderson, H. R. (2003) Acute effects of winter air pollution on respiratory function in 31 schoolchildren in southern England. Occup. Environ. Med. 60: 82-89. 32 Peel, J. L.; Tolbert, P. E.; Klein, M.; Metzger, K. B.; Flanders, W. D.; Knox, T.; Mulholland, J. 33 A.; Ryan, P. B.; Frumkin, H. (2005) Ambient air pollution and respiratory emergency 34 department visits. Epidemiology 16: 164-174. 35 Peel, J. L.; Metzger, K. B.; Klein, M.; Flanders, W. D.; Mulholland, J. A.; Tolbert, P. E. (2007) 36 Ambient air pollution and cardiovascular emergency department visits in potentially 37 sensitive groups. Am. J. Epidemiol. 165: 625-633. 38 Pekkanen, J.; Brunner, E. J.; Anderson, H. R.; Tiittanen, P.; Atkinson, R. W. (2000) Daily 39 concentrations of air pollution and plasma fibrinogen in London. Occup. Environ. Med. 40 57: 818-822.

1	Pénard-Morand, C.; Charpin, D.; Raherison, C.; Kopferschmitt, C.; Caillaud, D.; Lavaud, F.;
2	Annesi-Maesano, I. (2005) Long-term exposure to background air pollution related to
3	respiratory and allergic health in schoolchildren. Clin. Exp. Allergy 35: 1279-1287.
4	Pereira, L. A. A.; Loomis, D.; Conceicão, G. M. S.; Braga, A. L. F.; Arcas, R. M.; Kishi, H. S.;
5	Singer, J. M.; Böhm, G. M.; Saldiva, P. H. N. (1998) Association between air pollution
6	and intrauterine mortality in São Paulo, Brazil. Environ. Health Perspect. 106: 325-329.
7	Peters, A.; Goldstein, I. F.; Beyer, U.; Franke, K.; Heinrich, J.; Dockery, D. W.; Spengler, J. D.;
8	Wichmann, HE. (1996) Acute health effects of exposure to high levels of air pollution
9	in eastern Europe. Am. J. Epidemiol. 144: 570-581.
10	Peters, A.; Döring, A.; Wichmann, HE.; Koenig, W. (1997) Increased plasma viscosity during
11	an air pollution episode: a link to mortality? Lancet 349: 1582-1587.
12 13	Peters, A.; Perz, S.; Doring, A.; Stieber, J.; Koenig, W.; Wichmann, HE. (1999) Increases in heart rate during an air pollution episode. Am. J. Epidemiol. 150: 1094-1098.
14	Peters, A.; Liu, E.; Verrier, R. L.; Schwartz, J.; Gold, D. R.; Mittleman, M.; Baliff, J.; Oh, J. A.;
15	Allen, G.; Monahan, K.; Dockery, D. W. (2000) Air pollution and incidence of cardiac
16	arrhythmia. Epidemiology 11: 11-17.
17 18	Peters, A.; Dockery, D. W.; Muller, J. E.; Mittleman, M. A. (2001) Increased particulate air pollution and the triggering of myocardial infarction. Circulation 103: 2810-2815.
19 20 21	Petroeschevsky, A.; Simpson, R. W.; Thalib, L.; Rutherford, S. (2001) Associations between outdoor air pollution and hospital admissions in Brisbane, Australia. Arch. Environ. Health 56: 37-52.
22	Petruzzi, S.; Dell'Omo, G.; Fiore, M.; Chiarotti, F.; Bignami, G.; Alleva, E. (1996) Behavioural
23	disturbances in adult CD-1 mice and absence of effects on their offspring upon SO ₂
24	exposure. Arch. Toxicol. 70: 757-766.
25	Pikhart, H.; Bobak, M.; Gorynski, P.; Wojtyniak, B.; Danova, J.; Celko, M. A.; Kriz, B.; Briggs,
26	D.; Elliot, P. (2001) Outdoor sulphur dioxide and respiratory symptoms in Czech and
27	Polish school children: a small-area study (SAVIAH). Int. Arch. Occup. Environ. Health
28	74: 574-578.
29 30	Pino, P.; Walter, T.; Oyarzun, M.; Villegas, R.; Romieu, I. (2004) Fine particulate matter and wheezing illnesses in the first year of life. Epidemiology 15: 702-708.
31	Piper, J. M.; Mitchel, E. F., Jr.; Snowden, M.; Hall, C.; Adams, M.; Taylor, P. (1993) Validation
32	of 1989 Tennessee birth certificates using maternal and newborn hospital records. Am. J.
33	Epidemiol. 137: 758-768.
34	Plunkett, L. M.; Turnbull, D.; Rodricks, J. V. (1992) Differences between adults and children
35	affecting exposure assessment. In: Guzelian, P. S.; Henry, D. J.; Olin, S. S., eds.
36	Similarities and differences between children and adults: implications for risk
37	assessment. Washington, DC: ILSI Press, pp. 79-96.
38	Poloniecki, J. D.; Atkinson, R. W.; Ponce de Leon, A.; Anderson, H. R. (1997) Daily time series
39	for cardiovascular hospital admissions and previous day's air pollution in London, UK.
40	Occup. Environ. Med. 54: 535-540.

1 2 3 4 5	 Ponce de Leon, A.; Anderson, H. R.; Bland, J. M.; Strachan, D. P.; Bower, J. (1996) Effects of air pollution on daily hospital admissions for respiratory disease in London between 1987-88 and 1991-92. In: St Leger, S., ed. The APHEA project. Short term effects of air pollution on health: a European approach using epidemiological time series data. J. Epidemiol. Community Health 50(suppl. 1): S63-S70.
6 7	Pönkä, A. (1990) Absenteeism and respiratory disease among children and adults in Helsinki in relation to low-level air pollution and temperature. Environ. Res. 52: 34-46.
8 9	Pope, C. A., III. (1989) Respiratory disease associated with community air pollution and a steel mill, Utah Valley. Am. J. Public Health 79: 623-628.
10 11	Pope, C. A., III; Schwartz, J.; Ransom, M. R. (1992) Daily mortality and PM ₁₀ pollution in Utah valley. Arch. Environ. Health 47: 211-217.
12 13 14	Pope, C. A., III; Thun, M. J.; Namboodiri, M. M.; Dockery, D. W.; Evans, J. S.; Speizer, F. E.; Heath, C. W., Jr. (1995) Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am. J. Respir. Crit. Care Med. 151: 669-674.
15 16 17	Pope, C. A., III; Burnett, R. T.; Thun, M. J.; Calle, E. E.; Krewski, D.; Ito, K.; Thurston, G. D. (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA J. Am. Med. Assoc. 287: 1132-1141.
18 19	Pueschel, R. F.; Van Valin, C. C. (1978) Cloud nucleus formation in a power plant plume. Atmos. Environ. 12: 307-312.
20 21	Qin, G.; Meng, Z. (2005) Effect of sulfur dioxide inhalation on CYP1A1 and CYP1A2 in rat liver and lung. Toxicol. Lett. 160: 34-42.
22 23 24	Ramadour, M.; Burel, C.; Lanteaume, A.; Vervloet, D.; Charpin, D.; Brisse, F.; Dutau, H.; Charpin, D. (2000) Prevalence of asthma and rhinitis in relation to long-term exposure to gaseous air pollutants. Allergy (Copenhagen) 55: 1163-1169.
25 26 27	Rich, K. E.; Petkau, J.; Vedal, S.; Brauer, M. (2004) A case-crossover analysis of particulate air pollution and cardiac arrhythmia in patients with implantable cardioverter defibrillators. Inhalation Toxicol. 16: 363-372.
28 29 30	Rich, D. Q.; Schwartz, J.; Mittleman, M. A.; Link, M.; Luttmann-Gibson, H.; Catalano, P. J.; Speizer, F. E.; Dockery, D. W. (2005) Association of short-term ambient air pollution concentrations and ventricular arrhythmias. Am. J. Epidemiol. 161: 1123-1132.
31 32 33 34	 Rich, D. Q.; Kim, M. H.; Turner, J. R.; Mittleman, M. A.; Schwartz, J.; Catalano, P. J.; Dockery, D. W. (2006) Association of ventricular arrhythmias detected by implantable cardioverter defibrillator and ambient air pollutants in the St Louis, Missouri metropolitan area. Occup. Environ. Med. 63: 591-596.
35 36	Riedel, F.; Krämer, M.; Scheibenbogen, C.; Rieger, C. H. L. (1988) Effects of SO ₂ exposure on allergic sensitization in the guinea pig. J. Allergy Clin. Immunol. 82: 527-534.
37 38 39	Roemer, W.; Hoek, G.; Brunekreef, B. (1993) Effect of ambient winter air pollution on respiratory health of children with chronic respiratory symptoms. Am. Rev. Respir. Dis. 147: 118-124.

1 2 3	Roemer, W.; Hoek, G.; Brunekreef, B.; Haluszka, J.; Kalandidi, A.; Pekkanen, J. (1998) Daily variations in air pollution and respiratory health in a multicentre study: the PEACE project. Eur. Respir. J. 12: 1354-1361.
4	Romieu, I.; Meneses, F.; Ruiz, S.; Sienra, J. J.; Huerta, J.; White, M. C.; Etzel, R. A. (1996)
5	Effects of air pollution on the respiratory health of asthmatic children living in Mexico
6	City. Am. J. Respir. Crit. Care Med. 154: 300-307.
7 8 9	Routledge, H. C.; Manney, S.; Harrison, R. M.; Ayres, J. G.; Townend, J. N. (2006) Effect of inhaled sulphur dioxide and carbon particles on heart rate variability and markers of inflammation and coagulation in human subjects. Heart 92: 220-227.
10 11 12	Rubinstein, I.; Bigby, B. G.; Reiss, T. F.; Boushey, H. A., Jr. (1990) Short-term exposure to 0.3 ppm nitrogen dioxide does not potentiate airway responsiveness to sulfur dioxide in asthmatic subjects. Am. Rev. Respir. Dis. 141: 381-385.
13 14 15	Ruidavets, JB.; Cassadou, S.; Cournot, M.; Bataille, V.; Meybeck, M.; Ferrières, J. (2005)Increased resting heart rate with pollutants in a population based study. J. Epidemiol.Community Health 59: 685-693.
16	Saez, M.; Tobías, A.; Muñoz, P.; Campbell, M. J. (1999) A GEE moving average analysis of the
17	relationship between air pollution and mortality for asthma in Barcelona, Spain. Stat.
18	Med. 18: 2077-2086.
19	Sagiv, S. K.; Mendola, P.; Loomis, D.; Herring, A. H.; Neas, L. M.; Savitz, D. A.; Poole, C.
20	(2005) A time-series analysis of air pollution and preterm birth in Pennsylvania, 1997-
21	2001. Environ. Health Perspect. 113: 602-606.
22	Samet, J. M.; Dominici, F.; Zeger, S. L.; Schwartz, J.; Dockery, D. W. (2000) National
23	morbidity, mortality, and air pollution study. Part I: methods and methodologic issues.
24	Cambridge, MA: Health Effects Institute; research report no. 94.
25	Samoli, E.; Schwartz, J.; Wojtyniak, B.; Touloumi, G.; Spix, C.; Balducci, F.; Medina, S.; Rossi,
26	G.; Sunyer, J.; Bacharova, L.; Anderson, H. R.; Katsouyanni, K. (2001) Investigating
27	regional differences in short-term effects of air pollution on daily mortality in the
28	APHEA project: a sensitivity analysis for controlling long-term trends and seasonality.
29	Environ. Health Perspect. 109: 349-353.
30	Samoli, E.; Schwartz, J.; Analitis, A.; Petasakis, Y.; Wojtyniak, B.; Touloumi, G.; Spix, C.;
31	Balducci, F.; Medina, S.; Rossi, G.; Sunyer, J.; Anderson, H. R.; Katsouyanni, K. (2003)
32	Sensitivity analyses of regional differences in short-term effects of air pollution on daily
33	mortality in APHEA cities. In: Revised analyses of time-series studies of air pollution
34	and health. Special report. Boston, MA: Health Effects Institute; pp. 205-210. Available:
35	http://www.healtheffects.org/Pubs/TimeSeries.pdf [18 October, 2004].
36	Sandström T.; Stjernberg, N.; Andersson, M. D.; Kolmodin-Hedman, B.; Lindström, K.;
37	Rosenhall, L. (1989) Cell response in bronchoalveolar lavage fluid after sulfur dioxide
38	exposure. Scand. J. Work Environ. Health 15: 142-146.
39	Sarnat, J. A.; Koutrakis, P.; Suh, H. H. (2000) Assessing the relationship between personal
40	particulate and gaseous exposures of senior citizens living in Baltimore, MD. J. Air
41	Waste Manage. Assoc. 50: 1184-1198.

1 2 3	Sarnat, J. A.; Schwartz, J.; Catalano, P. J.; Suh, H. H. (2001) Gaseous pollutants in particulate matter epidemiology: confounders or surrogates? Environ. Health Perspect. 109: 1053- 1061.
4 5 6	Sarnat, J. A.; Brown, K. W.; Schwartz, J.; Coull, B. A.; Koutrakis, P. (2005) Ambient gas concentrations and personal particulate matter exposures: implications for studying the health effects of particles. Epidemiology 16: 385-395.
7 8 9	Sarnat, S. E.; Coull, B. A.; Schwartz, J.; Gold, D. R.; Suh, H. H. (2006) Factors affecting the association between ambient concentrations and personal exposures to particles and gases. Environ. Health Perspect. 114: 649-654.
10 11 12	Scanlon, P. D.; Seltzer, J.; Ingram, R. H., Jr.; Reid, L.; Drazen, J. M. (1987) Chronic exposure to sulfur dioxide: physiologic and histologic evaluation of dogs exposed to 50 or 15 ppm. Am. Rev. Respir. Dis. 135: 831-839.
13 14 15	Schachter, E. N.; Witek, T. J., Jr.; Beck, G. J.; Hosein, H. R.; Colice, G.; Leaderer, B. P.; Cain, W. (1984) Airway effects of low concentrations of sulfur dioxide: dose-response characteristics. Arch. Environ. Health 39: 34-42.
16 17 18	Schildcrout, J. S.; Sheppard, L.; Lumley, T.; Slaughter, J. C.; Koenig, J. Q.; Shapiro, G. G. (2006) Ambient air pollution and asthma exacerbations in children: an eight-city analysis. Am. J. Epidemiol. 164: 505-517.
19 20 21 22 23	 Schouten, J. P.; Vonk, J. M.; de Graaf, A. (1996) Short term effects of air pollution on emergency hospital admissions for respiratory disease: results of the APHEA project in two major cities in The Netherlands, 1977-89. In: St Leger, S., ed. The APHEA project. Short term effects of air pollution on health: a European approach using epidemiological time series data. J. Epidemiol. Community Health 50(suppl. 1): S22-S29.
24 25	Schwartz, J. (1989) Lung function and chronic exposure to air pollution: a cross-sectional analysis of NHANES II. Environ. Res. 50: 309-321.
26 27	Schwartz, J. (1995) Short term fluctuations in air pollution and hospital admissions of the elderly for respiratory disease. Thorax 50: 531-538.
28 29	Schwartz, J. (2000) Daily deaths are associated with combustion particles rather than SO ₂ in Philadelphia. Occup. Environ. Med. 57: 692-697.
30 31	Schwartz, J. (2001) Air pollution and blood markers of cardiovascular risk. Environ. Health Perspect. Suppl. 109(3): 405-409.
32 33	Schwartz, J.; Dockery, D. W. (1992a) Increased mortality in Philadelphia associated with daily air pollution concentrations. Am. Rev. Respir. Dis. 145: 600-604.
34 35	Schwartz, J.; Dockery, D. W. (1992b) Particulate air pollution and daily mortality in Steubenville, Ohio. Am. J. Epidemiol. 135: 12-19.
36 37 38 39	Schwartz, J.; Dockery, D. W.; Neas, L. M.; Wypij, D.; Ware, J. H.; Spengler, J. D.; Koutrakis, P.; Speizer, F. E.; Ferris, B. G., Jr. (1994) Acute effects of summer air pollution on respiratory symptom reporting in children. Am. J. Respir. Crit. Care Med. 150: 1234- 1242.

1 2 3	Schwartz, J.; Litonjua, A.; Suh, H.; Verrier, M.; Zanobetti, A.; Syring, M.; Nearing, B.; Verrier, R.; Stone, P.; MacCallum, G.; Speizer, F. E.; Gold, D. R. (2005) Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax 60: 455-461.
4	Ségala, C.; Fauroux, B.; Just, J.; Pascual, L.; Grimfeld, A.; Neukirch, F. (1998) Short-term effect
5	of winter air pollution on respiratory health of asthmatic children in Paris. Eur. Respir. J.
6	11: 677-685.
7 8	Seinfeld, J. H.; Pandis, S. N. (1998) Atmospheric chemistry and physics: from air pollution to climate change. New York, NY: John Wiley & Sons, Inc.
9	Sheppard, D.; Saisho, A.; Nadel, J. A.; Boushey, H. A. (1981) Exercise increases sulfur dioxide-
10	induced bronchoconstriction in asthmatic subjects. Am. Rev. Respir. Dis. 123: 486-491.
11	Sheppard, L.; Levy, D.; Norris, G.; Larson, T. V.; Koenig, J. Q. (1999) Effects of ambient air
12	pollution on nonelderly asthma hospital admissions in Seattle, Washington, 1987-1994.
13	Epidemiology 10: 23-30.
14	Sheppard, L.; Slaughter, J. C.; Schildcrout, J.; Liu, LJ. S.; Lumley, T. (2005) Exposure and
15	measurement contributions to estimates of acute air pollution effects. J. Exposure Anal.
16	Environ. Epidemiol. 15: 366-376.
17 18 19 20 21 22 23 24 25 26	 Shindell, D. T.; Faluvegi, G.; Stevenson, D. S.; Krol, M. C.; Emmons, L. K.; Lamarque, JF.; Pétron, G.; Dentener, F. J.; Ellingsen, K.; Schultz, M. G.; Wild, O.; Amann, M.; Atherton, C. S.; Bergmann, D. J.; Bey, I.; Butler, T.; Cofala, J.; Collins, W. J.; Derwent, R. G.; Doherty, R. M.; Drevet, J.; Eskes, H. J.; Fiore, A. M.; Gauss, M.; Hauglustaine, D. A.; Horowitz, L. W.; Isaksen, I. S. A.; Lawrence, M. G.; Montanaro, V.; Müller, JF.; Pitari, G.; Prather, M. J.; Pyle, J. A.; Rast, S.; Rodriguez, J. M.; Sanderson, M. G.; Savage, N. H.; Strahan, S. E.; Sudo, K.; Szopa, S.; Unger, N.; Van Noije, T. P. C.; Zeng, G. (2006) Multimodel simulations of carbon monoxide: comparison with observations and projected near-future changes. J. Geophys. Res. [Atmos.] 111(D19306): 10.1029/2006JD007100.
27	Sim, V. M.; Pattle, R. E. (1957) Effect of possible smog irritants on human subjects. JAMA J.
28	Am. Med. Assoc. 165: 1908-1913.
29	Singh, J. (1989) Neonatal development altered by maternal sulfur dioxide exposure.
30	NeuroToxicology 10: 523-527.
31	Smith, L. G.; Busch, R. H.; Buschbom, R. L.; Cannon, W. C.; Loscutoff, S. M.; Morris. J. E.
32	(1989) Effects of sulfur dioxide or ammonium sulfate exposure, alone or combined, for 4
33	or 8 months on normal and elastase-impaired rats. Environ. Res. 49: 60-78.
34 35	Snell, R. E.; Luchsinger, P. C. (1969) Effects of sulfur dioxide on expiratory flow rates and total respiratory resistance in normal human subjects. Arch. Environ. Health 18: 693-698.
36 37	Søyseth, V.; Kongerud, J.; Broen, P.; Lilleng, P.; Boe, J. (1995) Bronchial responsiveness, eosinophilia, and short term exposure to air pollution. Arch. Dis. Child. 73: 418-422.
38 39	Speizer, F. E.; Frank, N. R. (1966) The uptake and release of SO ₂ by the human nose. Arch. Environ. Health 12: 725-728.

1	Spengler, J. D.; Ferris, B. G., Jr.; Dockery, D. W.; Speizer, F. E. (1979) Sulfur dioxide and
2	nitrogen dioxide levels inside and outside homes and the implications on health effects
3	research. Environ. Sci. Technol. 13: 1276-1280.
4	 Spix, C.; Anderson, H. R.; Schwartz, J.; Vigotti, M. A.; LeTertre, A.; Vonk, J. M.; Touloumi, G.;
5	Balducci, F.; Piekarski, T.; Bacharova, L.; Tobias, A.; Pönkä, A.; Katsouyanni, K. (1998)
6	Short-term effects of air pollution on hospital admissions of respiratory diseases in
7	Europe: a quantitative summary of APHEA study results. Arch. Environ. Health 53: 54-
8	64.
9	Stacy, R. W.; House, D. E.; Friedman, M.; Hazucha, M.; Green, J.; Raggio, L.; Roger, L. J.
10	(1981) Effects of 0.75ppm sulfur dioxide on pulmonary function parameters of normal
11	human subjects. Arch. Environ. Health 36: 172-178.
12	Stacy, R. W.; Seal, E., Jr.; House, D. E.; Green, J.; Roger, L. J.; Raggio, L. (1983) A survey of
13	effects of gaseous and aerosol pollutants on pulmonary function of normal males. Arch.
14	Environ. Health 38: 104-115.
15	Stempel, D. A.; Boucher, R. C. (1981) Respiratory infection and airway reactivity. Med. Clin.
16	North Am. 65: 1045-1053.
17	 Stevenson, D.; Dentener, F. J.; Schultz, M. G.; Ellingsen, K.; Van Noije, T. P. C.; Wild, O.;
18	Zeng, G.; Amann, M.; Atherton, C. S.; Bell, N.; Bergmann, D. J.; Bey, I.; Butler, T.;
19	Cofala, J.; Collins, W. J.; Derwent, R. G.; Doherty, R. M.; Drevet, J.; Eskes, H. J.; Fiore,
20	A. M.; Gauss, M.; Hauglustaine, D. A.; Horowitz, L. W.; Isaksen, I. S. A.; Krol, M. C.;
21	Lamarque, JF.; Lawrence, M. G.; Montanaro, V.; Müller, JF.; Pitari, G.; Prather, M. J.;
22	Pyle, J. A.; Rast, S.; Rodriguez, J. M.; Sanderson, M. G. (2006) Multimodel ensemble
23	simulations of present-day and near-future tropospheric ozone. J. Geophys. Res. [Atmos.]
24	111(D08301): 10.1029/2005JD006338.
25	Stieb, D. M.; Judek, S.; Burnett, R. T. (2002) Meta-analysis of time-series studies of air pollution
26	and mortality: effects of gases and particles and the influence of cause of death, age, and
27	season. J. Air Waste Manage. Assoc. 52: 470-484.
28	Stieb, D. M.; Judek, S.; Burnett, R. T. (2003) Meta-analysis of time-series studies of air pollution
29	and mortality: update in relation to the use of generalized additive models. J. Air Waste
30	Manage. 53: 258-261.
31	Strandberg, L. G. (1964) SO ₂ absorption in the respiratory tract: studies on the absorption in
32	rabbit, its dependence on concentration and breathing phase. Arch. Environ. Health 9:
33	160-166.
34	Studnicka, M.; Hackl, E.; Pischinger, J.; Fangmeyer, C.; Haschke, N.; Kuhr, J.; Urbanek, R.;
35	Neumann, M.; Frischer, T. (1997) Traffic-related NO ₂ and the prevalence of asthma and
36	respiratory symptoms in seven year olds. Eur. Respir. J. 10: 2275-2278.
37 38 39 40	 Sunyer, J.; Spix, C.; Quénel, P.; Ponce-de-León, A.; Pönkä, A.; Barumandzadeh, T.; Touloumi, G.; Bacharova, L.; Wojtyniak, B.; Vonk, J.; Bisanti, L.; Schwartz, J.; Katsouyanni, K. (1997) Urban air pollution and emergency admissions for asthma in four European cities: the APHEA project. Thorax 52: 760-765.
41 42	Sunyer, J.; Basagaña, X.; Belmonte, J.; Antó, J. M. (2002) Effect of nitrogen dioxide and ozone on the risk of dying in patients with severe asthma. Thorax 57: 687-693.

1 2 3 4	 Sunyer, J.; Atkinson, R.; Ballester, F.; Le Tertre, A.; Ayres, J. G.; Forastiere, F.; Forsberg, B.; Vonk, J. M.; Bisanti, L.; Anderson, R. H.; Schwartz, J.; Katsouyanni, K. (2003a) Respiratory effects of sulphur dioxide: a hierarchical multicity analysis in the APHEA 2 study. Occup. Environ. Med. 60: e2.
5 6 7 8	 Sunyer, J.; Ballester, F.; Le Tertre, A.; Atkinson, R.; Ayres, J. G.; Forastiere, F.; Forsberg, B.; Vonk, J. M.; Bisanti, L.; Tenías, J. M.; Medina, S.; Schwartz, J.; Katsouyanni, K. (2003b) The association of daily sulfur dioxide air pollution levels with hospital admissions for cardiovascular diseases in Europe (The Aphea-II study). Eur. Heart J. 24: 752-760.
9 10 11	Taggart, S. C. O.; Custovic, A.; Francis, H. C.; Faragher, E. B.; Yates, C. J.; Higgins, B. G.; Woodcock, A. (1996) Asthmatic bronchial hyperresponsiveness varies with ambient levels of summertime air pollution. Eur. Respir. J. 9: 1146-1154.
12 13	Tenías, J. M.; Ballester, F.; Rivera, M. L. (1998) Association between hospital emergency visits for asthma and air pollution in Valencia, Spain. Occup. Environ. Med. 55: 541-547.
14 15 16	Tenías, J. M.; Ballester, F.; Pérez-Hoyos, S.; Rivera, M. L. (2002) Air pollution and hospital emergency room admissions for chronic obstructive pulmonary disease in Valencia, Spain. Arch. Environ. Health 57: 41-47.
17 18 19	Thompson, A. J.; Shields, M. D.; Patterson, C. C. (2001) Acute asthma exacerbations and air pollutants in children living in Belfast, Northern Ireland. Arch. Environ. Health 56: 234- 241.
20 21	Thornton, D. C.; Bandy, A. R. (1993) Sulfur dioxide and dimethyl sulfide in the central Pacific troposphere. J. Atmos. Chem. 17: 1-13.
22 23 24	Thornton, D. C.; Bandy, A. R.; Blomquist, B. W.; Driedger, A. R.; Wade, T. P. (1999) Sulfur dioxide distribution over the Pacific Ocean 1991-1996. J. Geophys. Res. [Atmos.] 104: 5845-5854.
25 26 27 28	Thornton, D. C.; Bandy, A. R.; Tu, F. H.; Blomquist, B. W.; Mitchell, G. M.; Nadler, W.; Lenschow, D. H. (2002) Fast airborne sulfur dioxide measurements by atmospheric pressure ionization mass spectrometry (APIMS). J. Geophys. Res. [Atmos.] 107(D22): 10.1029/2002JD02289.
29 30	Timonen, K. L.; Pekkanen, J. (1997) Air pollution and respiratory health among children with asthmatic or cough symptoms. Am. J. Respir. Crit. Care Med. 156: 546-552.
31 32 33	Tolbert, P. E.; Klein, M.; Peel, J. L.; Sarnat, S. E.; Sarnat, J. A. (2007) Multipollutant modeling issues in a study of ambient air quality and emergency department visits in Atlanta. J. Exposure Sci. Environ. Epidemiol.: in press.
34 35 36	Triche, E. W.; Belanger, K.; Bracken, M. B.; Beckett, W. S.; Holford, T. R.; Gent, J. F.; McSharry, JE.; Leaderer, B. P. (2005) Indoor heating sources and respiratory symptoms in nonsmoking women. Epidemiology 16: 377-384.
37 38 39	Tsai, SS.; Goggins, W. B.; Chiu, HF.; Yang, CY. (2003) Evidence for an association between air pollution and daily stroke admissions in Kaohsiung, Taiwan. Stroke 34: 2612-2616.

- Tunnicliffe, W. S.; Hilton, M. F.; Harrison, R. M.; Ayres, J. G. (2001) The effect of sulphur
 dioxide exposure on indices of heart rate variability in normal and asthmatic adults. Eur.
 Respir. J. 17: 604-608.
- Tunnicliffe, W. S.; Harrison, R. M.; Kelly, F. J.; Dunster, C.; Ayres, J. G. (2003) The effect of
 sulphurous air pollutant exposures on symptoms, lung function, exhaled nitric oxide, and
 nasal epithelial lining fluid antioxidant concentrations in normal and asthmatic adults.
 Occup. Environ. Med. 60: e15.
- 8 U.S. Code. (2003a) Clean Air Act, §108, air quality criteria and control techniques. U. S. C. 42:
 9 §7408.
- U.S. Code. (2003b) Clean Air Act, §109, national ambient air quality standards. U. S. C. 42:
 §7409.
- 12 U.S. Code. (2005) Clean Air Act, §302, definitions. U. S. C. 42: §7602(h).
- U.S. Court of Appeals for the District of Columbia. (1980) Lead Industries v. U.S.
 Environmental Protection Agency. 647 F2d 1130, 1154 (DC Cir. 1980).
- U.S. Court of Appeals for the District of Columbia. (1981) American Petroleum Institute v.
 Costle. 665 F2d 1176, 1186 (DC Cir. 1981).
- U.S. Department of Health, Education, and Welfare (DHEW). (1969) Air quality criteria for
 sulfur oxides. Washington, DC: National Air Pollution Control Administration; report no.
 AP-50. Available from: NTIS, Springfield, VA; PB-190252.
- U.S. Environmental Protection Agency. (1982) Air quality criteria for particulate matter and
 sulfur oxides. Research Triangle Park, NC: Office of Health and Environmental
 Assessment, Environmental Criteria and Assessment Office; EPA report no. EPA-600/8 82-029aF-cF. 3v. Available from: NTIS, Springfield, VA; PB84-156777.
- U.S. Environmental Protection Agency. (1986a) Second addendum to air quality criteria for
 particulate matter and sulfur oxides (1982): assessment of newly available health effects
 information. Research Triangle Park, NC: Office of Health and Environmental
 Assessment, Environmental Criteria and Assessment Office; EPA report no. EPA-600/886-020F. Available from: NTIS, Springfield, VA; PB87-176574.
- U.S. Environmental Protection Agency. (1986b) Review of the national ambient air quality
 standards for sulfur oxides: updated assessment of scientific and technical information,
 addendum to the 1982 OAQPS staff paper. Research Triangle Park, NC: Office of Air
 Quality Planning and Standards, Strategies and Air Standards Division; report no.
 EPA/450/5-86-13. Available from: NTIS, Springfield, VA; PB87-200259/XAB.
- U.S. Environmental Protection Agency. (1994a) Supplement to the second addendum (1986) to
 air quality criteria for particulate matter and sulfur oxides (1982): assessment of new
 findings on sulfur dioxide acute exposure health effects in asthmatic individuals.
 Research Triangle Park, NC: Office of Health and Environmental Assessment,
 Environmental Criteria and Assessment Office; report no. EPA-600/FP-93/002. Available
- 39 from: NTIS, Springfield, VA; PB98-132384.
- 40 U.S. Environmental Protection Agency. (1994b) Review of the national ambient air quality
 41 standards for sulfur oxides: assessment of scientific and technical information,

1 2 3	supplement to the 1986 OAQPS staff paper addendum. Research Triangle Park, NC: Office of Air Quality Planning and Standards, Air Quality Management Division; report no. EPA/452/R-94/013.
4	U.S. Environmental Protection Agency. (1996) Air quality criteria for ozone and related
5	photochemical oxidants. Research Triangle Park, NC: Office of Research and
6	Development; report nos. EPA/600/AP-93/004aF-cF. 3v. Available from: NTIS,
7	Springfield, VA; PB96-185582, PB96-185590, and PB96-185608. Available:
8	http://cfpub2.epa.gov/ncea/.
9	U.S. Environmental Protection Agency. (2004) Air quality criteria for particulate matter.
10	Research Triangle Park, NC: National Center for Environmental Assessment; report no.
11	EPA/600/P-99/002aF-bF. 2v. Available: http://cfpub.epa.gov/ncea/ [9 November, 2004].
12	U.S. Environmental Protection Agency. (2005) Technical assistance document (TAD) for
13	precursor gas measurements in the NCore multi-pollutant monitoring network. Version 4.
14	Research Triangle Park, NC: Office of Air Quality Planning and Standards; report no.
15	EPA-454/R-05-003.
16 17 18	U.S. Environmental Protection Agency. (2006a) Technology Transfer Network clearinghouse for inventories and emission factors. Available: http://www.epa.gov/ttn/chief/net/2002inventory.html [19 September, 2007].
19	U.S. Environmental Protection Agency. (2006b) Report on air quality in nonattainment areas for
20	2003-2005 covering ozone, particulate matter, carbon monoxide, sulfur dioxide, nitrogen
21	dioxide, and lead. Research Triangle Park, NC: Office of Air Quality Planning and
22	Standards, Air Quality Assessment Division, Air Quality Analysis Group.
23	U.S. Environmental Protection Agency. (2006c) Acid rain program (ARP) 2005 progress report.
24	Washington, DC: Office of Air and Radiation, Clean Air Markets Division; EPA-430-R-
25	06-015. Available: http://www.epa.gov/airmarkets/progress/docs/2005report.pdf [12
26	March, 2007].
27	U.S. Environmental Protection Agency. (2006d) Air quality criteria for ozone and related
28	photochemical oxidants. Research Triangle Park, NC: National Center for Environmental
29	Assessment; report no. EPA/600/R-05/004aF-cF. 3v. Available:
30	http://cfpub.epa.gov/ncea/ [24 March, 2006].
31 32 33 34 35	U.S. Environmental Protection Agency. (2007) Draft integrated plan for review of the primary national ambient air quality standard for sulfur dioxide. Research Triangle Park, NC: National Center for Environmental Assessment. Available: http://nsdi.epa.gov/ttn/naaqs/standards/so2/data/so2_review_plan_draft_4-17-07.pdf [11 September, 2007].
36	 U.S. Senate. (1970) National Air Quality Standards Act of 1970: report of the Committee on
37	Public Works, United States Senate together with individual views to accompany S.
38	4358. Washington, DC: Committee on Public Works; report no. CONG/91-1196.
39	U.S. Supreme Court. (2001) Whitman v. American Trucking Association. 531 U.S. 457 (nos. 99-
40	1257 and 99-1426).

1	Van Der Zee, S. C.; Hoek, G.; Boezen, H. M.; Schouten, J. P.; Van Wijnen, J. H.; Brunekreef, B.
2	(1999) Acute effects of urban air pollution on respiratory health of children with and
3	without chronic respiratory symptoms. Occup. Environ. Med. 56: 802-813.
4	Van Der Zee, S. C.; Hoek, G.; Boezen, M. H.; Schouten, J. P.; Van Wijnen, J. H.; Brunekreef, B.
5	(2000) Acute effects of air pollution on respiratory health of 50-70 yr old adults. Eur.
6	Respir. J. 15: 700-709.
7	 Van Noije, T. P. C.; Eskes, H. J.; Dentener, F. J.; Stevenson, D. S.; Ellingsen, K.; Schultz, M. G.;
8	Wild, O.; Amann, M.; Atherton, C. S.; Bergmann, D. J.; Bey, I.; Boersma, K. F.; Butler,
9	T.; Cofala, J.; Drevet, J.; Fiore, A. M.; Gauss, M.; Hauglustaine, D. A.; Horowitz, L. W.;
10	Isaksen, I. S. A.; Krol, M. C.; Lamarque, JF.; Lawrence, M. G.; Martin, R. V.;
11	Montanaro, V.; Müller, JF.; Pitari, G.; Prather, M. J.; Pyle, J. A.; Richter, A.;
12	Rodriguez, J. M.; Savage, N. H.; Strahan, S. E.; Sudo, K., Szopa, S.; Van Roozendael, M.
13	(2006) Multi-model ensemble simulations of tropospheric NO ₂ compared with GOME
14	retrievals for the year 2000. Atmos. Chem. Phys. Discuss. 6: 2965-3047.
15	Vedal, S.; Rich, K.; Brauer, M.; White, R.; Petkau, J. (2004) Air pollution and cardiac
16	arrhythmias in patients with implantable cardiovascular defibrillators. Inhalation Toxicol.
17	16: 353-362.
18	 Vigotti, M. A.; Rossi, G.; Bisanti, L.; Zanobetti, A.; Schwartz, J. (1996) Short term effects of
19	urban air pollution on respiratory health in Milan, Italy, 1980-89. In: Leger, S., ed. The
20	APHEA project. Short term effects of air pollution on health: a European approach using
21	epidemiological time series data. J. Epidemiol. Community Health 50(suppl. 1): S71-S75.
22	Villeneuve, P. J.; Chen, L.; Stieb, D.; Rowe, B. H. (2006) Associations between outdoor air
23	pollution and emergency department visits for stroke in Edmonton, Canada. Eur. J.
24	Epidemiol. 21: 689-700.
25	Walters, S.; Griffiths, R. K.; Ayres, J. G. (1994) Temporal association between hospital
26	admissions for asthma in Birmingham and ambient levels of sulphur dioxide and smoke.
27	Thorax 49: 133-140.
28	Wang, C.; Corbett, J. J.; Firestone, J. (2007) Modeling energy use and emissions from North
29	American shipping: application of the ship traffic, energy, and environment model.
30	Environ. Sci. Technol. 41: 3226-3232.
31	Wang, X.; Ding, H.; Ryan, L.; Xu, X. (1997) Association between air pollution and low birth
32	weight: a community-based study. Environ. Health Perspect. 105: 514-520.
33	Ward, D. J.; Roberts, K. T.; Jones, N.; Harrison, R. M.; Ayres, J. G.; Hussain, S.; Walters, S.
34	(2002a) Effects of daily variation in outdoor particulates and ambient acid species in
35	normal and asthmatic children. Thorax 57: 489-502.
36	Ward, D. J.; Roberts, K. T.; Jones, N.; Harrison, R. M.; Ayres, J. G.; Hussain, S.; Walters, S.
37	(2002b) Effects of daily variation in outdoor particulates and ambient acid species in
38	normal and asthmatic children (correction). Thorax 57: 752.
39	Ware, J. H.; Ferris, B. G., Jr.; Dockery, D. W.; Spengler, J. D.; Stram, D. O.; Speizer, F. E.
40	(1986) Effects of ambient sulfur oxides and suspended particles on respiratory health of
41	preadolescent children. Am. Rev. Respir. Dis. 133: 834-842.

1 Warneck, P. (1999) The relative importance of various pathways for the oxidation of sulfur 2 dioxide and nitrogen dioxide in sunlit continental fair weather clouds. Phys. Chem. 3 Chem. Phys. 1: 5471-5483. 4 Wellenius, G. A.; Schwartz, J.; Mittleman, M. A. (2005a) Air pollution and hospital admissions 5 for ischemic and hemorrhagic stroke among medicare beneficiaries. Stroke 36: 2549-6 2553. 7 Wellenius, G. A.; Bateson, T. F.; Mittleman, M. A.; Schwartz, J. (2005b) Particulate air pollution 8 and the rate of hospitalization for congestive heart failure among medicare beneficiaries in Pittsburgh, Pennsylvania. Am. J. Epidemiol. 161: 1030-1036. 9 10 Wiley, J. A.; Robinson, J. P.; Piazza, T.; Garrett, K.; Cirksena, K.; Cheng, Y.-T.; Martin, G. (1991a) Activity patterns of California residents. Final report. Sacramento, CA: 11 12 California Air Resources Board; report no. ARB/R93/487. Available from: NTIS, 13 Springfield, VA.; PB94-108719. 14 Wiley, J. A.; Robinson, J. P.; Cheng, Y.-T.; Piazza, T.; Stork, L.; Pladsen, K. (1991b) Study of 15 children's activity patterns: final report. Sacramento, CA: California Air Resources Board; report no. ARB-R-93/489. 16 17 Williams, R.; Suggs, J.; Creason, J.; Rodes, C.; Lawless, P.; Kwok, R.; Zweidinger, R.; Sheldon, 18 L. (2000) The 1998 Baltimore Particulate Matter Epidemiology-Exposure Study: part 2. 19 Personal exposure assessment associated with an elderly study population. J. Exposure Anal. Environ. Epidemiol. 10: 533-543. 20 21 Williams, R.; Suggs, J.; Rea, A.; Sheldon, L.; Rodes, C.; Thornburg, J. (2003). The Research 22 Triangle Park particulate matter panel study: modeling ambient source contribution to 23 personal and residential PM concentrations. Atmos. Environ. 37: 5365-5378. 24 Willis, A.; Jerrett, M.; Burnett, R. T.; Krewski, D. (2003) The association between sulfate air 25 pollution and mortality at the county scale: an exploration of the impact of scale on a 26 long-term exposure study. J. Toxicol. Environ. Health Part A 66: 1605-1624. 27 Wilson, W. E.; Brauer, M. (2006) Estimation of ambient and non-ambient components of 28 particulate matter exposure from a personal monitoring panel study. J. Exposure Sci. 29 Environ. Epidemiol. 16: 264-274. 30 Wilson, A. M.; Wake, C. P.; Kelly, T.; Salloway, J. C. (2005) Air pollution, weather, and 31 respiratory emergency room visits in two northern New England cities: an ecological 32 time-series study. Environ. Res. 97: 312-321. 33 Winterton, D. L.; Kaufman, J.; Keener, C. V.; Quigley, S.; Farin, F. M.; Williams, P. V.; Koenig, 34 J. Q. (2001) Genetic polymorphisms as biomarkers of sensitivity to inhaled sulfur dioxide 35 in subjects with asthma. Ann. Allergy Asthma Immunol. 86: 232-238. 36 Wolff, R. K.; Griffith, W. C.; Henderson, R. F.; Hahn, F. F.; Harkema, J. R.; Rebar, A. H.; 37 Eidson, A. F.; McClellan, R. O. (1989) Effects of repeated inhalation exposures to 1nitropyrene, benzo(a)pyrene, Ga₂O₃ particles, and SO₂ alone and in combinations on 38 39 particle clearance, bronchoalveolar lavage fluid composition, and histopathology. J. 40 Toxicol. Environ. Health 27: 123-138.

1	Wong, T. W.; Lau, T. S.; Yu, T. S.; Neller, A.; Wong, S. L.; Tam, W.; Pang, S. W. (1999) Air
2	pollution and hospital admissions for respiratory and cardiovascular diseases in Hong
3	Kong. Occup. Environ. Med. 56: 679-683.
4 5	Wong, CM.; Ma, S.; Hedley, A. J.; Lam, TH. (2001) Effect of air pollution on daily mortality in Hong Kong. Environ. Health Perspect. 109: 335-340.
6 7 8	 Wong, CM.; Atkinson, R. W.; Anderson, H. R.; Hedley, A. J.; Ma, S.; Chau, P. YK.; Lam, TH. (2002) A tale of two cities: effects of air pollution on hospital admissions in Hong Kong and London compared. Environ. Health Perspect. 110: 67-77.
9	 Woodwell, D. A.; Cherry, D. K. (2004) National Ambulatory Medical Care Survey: 2002
10	summary. Hyattsville, MD: National Center for Health Statistics; DHHS publication no.
11	(PHS) 2004-1250. (Advance data from vital and health statistics; no. 346). Available:
12	http://www.cdc.gov/nchs/data/ad/ad346.pdf [3 August, 2005].
13	Wu, D.; Meng, Z. (2003) Effect of sulfur dioxide inhalation on the glutathione redox system in
14	mice and protective role of sea buckthorn seed oil. Arch. Environ. Contam. Toxicol. 45:
15	423-428.
16	Xu, X.; Dockery, D. W.; Wang, L. (1991) Effects of air pollution on adult pulmonary function.
17	Arch. Environ. Health 46: 198-206.
18	 Xu, X.; Ding, H.; Wang, X. (1995) Acute effects of total suspended particles and sulfur dioxides
19	on preterm delivery: a community-based cohort study. Arch. Environ. Health 50: 407-
20	415.
21	Yang, Q.; Chen, Y.; Shi, Y.; Burnett, R. T.; McGrail, K. M.; Krewski, D. (2003a) Association
22	between ozone and respiratory admissions among children and the elderly in Vancouver,
23	Canada. Inhalation Toxicol. 15: 1297-1308.
24	Yang, CY.; Tseng, YT.; Chang, CC. (2003b) Effects of air pollution on birthweight among
25	children born between 1995 and 1997 in Kaohsiung, Taiwan. J. Toxicol. Environ. Health
26	Part A 66: 807-816.
27	Yang, Q.; Chen, Y.; Krewski, D.; Burnett, R. T.; Shi, Y.; McGrail, K. M. (2005) Effect of short-
28	term exposure to low levels of gaseous pollutants on chronic obstructive pulmonary
29	disease hospitalizations. Environ. Res. 99: 99-105.
30 31 32	Yargiçoğlu, A.; Ağar, S.; Gümüşlü, S.; Bilmen, S.; Oğuz, Y. (1999) Age-related alterations in antioxidant enzymes, lipid peroxide levels, and somatosensory-evoked potentials: effect of sulfur dioxide. Arch. Environ. Contam. Toxicol. 37: 554-560.
33 34 35	Yargiçoğlu, P.; Gümüslüoriob, S.; Ağar, A.; Korgun, D. K.; Küçükatay, V. (2001) Effect of sulfur dioxide inhalation on erythrocyte antioxidant status, food intake, and lipid peroxidation during aging. Arch. Environ. Health 56: 53-57.
36	Zeger, S. L.; Thomas, D.; Dominici, F.; Samet, J. M.; Schwartz, J.; Dockery, D.; Cohen, A.
37	(2000) Exposure measurement error in time-series studies of air pollution: concepts and
38	consequences. Environ. Health Perspect. 108: 419-426.
39 40	Zhang, JZ.; Millero, F. J. (1991) The rate of sulfite oxidation in seawater. Geochim. Cosmochim. Acta 55: 677-685.

1	Zmirou, D.; Schwartz, J.; Saez, M.; Zanobetti, A.; Wojtyniak, B.; Touloumi, G.; Spix, C.; Ponce
2	de León, A.; Le Moullec, Y.; Bacharova, L.; Schouten, J.; Pönkä, A.; Katsouyanni, K.
3	(1998) Time-series analysis of air pollution and cause-specific mortality. Epidemiology
4	9: 495-503.

Please make all necessary changes in the below label, detach copy or copy, and return to the address in the upper left-hand corner.

If you do not wish to receive these reports CHECK HERE \Box ; detach copy or copy, and return to the address in the upper left-hand corner.

PRESORTED STANDARD POSTAGE & FEES PAID EPA PERMIT No. G-35

National Center for Environmental Assessment Research Triangle Park, NC 27711

Official Business Penalty for Private Use \$300

EPA/600/R-07/108 September 2007