#### Association for Information and Image Management 1100 Wayne Avenue, Suite 1100 Silver Spring, Maryland 20910 301/587-8202 ## Centimeter MANUFACTURED TO AILM STANDARDS BY APPLIED IMAGE. INC. ## CODING FORM FOR SRC INDEXING | Microfiche No. | | | <i>\$1</i> | | | ļ | |-----------------------------------------|-------------------------------|--------------------|---------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------| | | ∭ aTSØST31 | 178 | | | | | | | | | | | | | | | | | | | | | | New Doc I.D. | | Į. | Old Doc I.D. | | | | | | 86-930000198 | i.i | | | | Ì | | | | | | | | | | | | | | | | | | | | | | | | | | Date Produced | J <sub>4/06/93</sub> | Date Reciev | e <b>d</b><br>4/윤원/9) | <u> </u> | TSCA section | 8D | | | 4/06/93 | | 4/22/3 | | * ; | 0.0 | | *************************************** | | | | | | | | | | | | | | | | | | | | | | | | Submitting Organ | | nu <i>mana</i> 2 2 | in manager | | | | | | កម្មា | ON CARBID | E CORP | | | | | | | | | | | | | | | | | | | | | Contractor | | 1. YY | | | - | | | | BUSHY RUN RES | CTR | | * | | 1 | | | | | ···· | • | | | | | | | | | | | | Document Title | | | | | | | | Decoment the | | | | | | | | PROPISHAL | DERYDE: COMBIN | ED REPEAT | ED-EXPOSUR | RE AND | | ्रम्<br>क | | | IVE/DEVELOPMEN<br>ATED 041493 | LUT LOYIO | CITY STUDY | IN RATE | S WITH COVE | R | | LEITER DE | HIED WALASS | g t | | | | | | | ,e, • | | / | ŧ | | | | A 0.0 | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | | <b>₽</b> | 92 | ·- | | | | | | | | | " <u> </u> | | | | | | | | | | | | | | | | | | Chemical | Calegory | <del></del> | Ş. | | in the second se | · . | | | | 15 | 0<br> | | • | | | PROPIONAL | _DEHYDE (123-38 | <b>1–6</b> ) | र्म् | | e - 4 | | | 1 ' | · · | | | | <del></del> | | ## UNION CARBIDE CORPORATION 35 GLD PIOGEBURY ROAD, DANBURY, CT 06817-0001 April 14, 1993 ## CERTIFIED MAIL RETURN RECEIPT REQUESTED Contains NO CBI" Document Processing Center (TS-790) Office of Pollution Prevention & Toxics U.S. Environmental Protection Agency 401 M Street, SW Washington, DC 20460 Attn: 8(d) Health and Safety Reporting Rule (Notification/Reporting) Dear Sir or Madam: As a follow-up to our May 8, 1992 letter of notification concerning a range-finding and reproductive/developmental toxicology study in rats for propionaldehyde (CASRN 123-38-6) (copy attached), Union Carbide Corporation ("Union Carbide") herewith submits the following report: "Propionaldehyde: Combined Repeated-Exposure and Reproductive/Developmental Toxicity Study in Rats", Bushy Run Research Center, BRRC Report 91U0086, April 6, 1993. In this report the term "CONFIDENTIAL" may appear. This term was entered for internal control at the time of issuance of the report. There is no information in this report for which Union Carbide asserts a claim of confidentiality, and the Agency may se the information as necessary in the discharge of its duties. We advise the Agency, however, that publication rights to the information are the preperty of Union Carbide. Please contact the undersigned with questions, if any, at 203/794-5230. 96730000198 Very truly yours. William C. Kuryla, Ph.D. Associate Director **Product Safety** WCK/cr **Attachment** # UNION CARBIDE CORPORATION 38 OLD HIDGEBURY ROAD, DAMBURY, CT 05817-0001 May 8, 1992 # CERTIFIED MAIL RETURN RECEIPT REQUESTED Document Processing Center (TS-790) Room L-100 Office of Toxic Substances U.S. Environmental Protection Agency 401 M Street, SW Washington, DC 20460 "Contains NO CBI" 50 NUN 05 Washington, DC 20460 Atm: 8(d) Health and Safety Reporting Rule (Notification/Reporting) . . ) tut Dear Sir or Madam: In accordance with 40 CFR Part 716.20 (A)(3), Union Carbide Corporation ("Union Carbide") hereby notifies the Agency of the initiation of toxicology studies for the following chemicals. Propionaldehyde (CASRN 123-38-6): acute toxicity and irritancy study (Bushy Run Research Center, Export, PA); Study started: March 9, 1992; Report expected: June 1992. Propionaldehyde (CASRN 123-38-6): rat range-finding study [SIDS] (Bushy Run Research Center, Export, PA); Study started: October 14, 1991; Report will be an appendix to the definitive study, described below (expected late 1992). Propionaldehyde (CASRN 123-38-6): rat definitive study [SIDS] (Bushy Run Research Center, Export, PA); Study started: December 23, 1991; Report expected: late 1992. Please contact the undersigned with questions, if any, at 203/794-5230. Very truly yours, William C. Kuryla, Ph.D. Associate Director Product Safety WCK/cr ## FINAL PROJECT REPORT 91U0086 Propionaldehyde Combined Repeated-Exposure and Reproductive/Developmental Toxicity Study in CD® Rats April 6, 1993 ## BUSHY RUN RESEARCH CENTER 6702 Mellon Road, Export, Pennsylvania 15632-8902 Telephone (412) 733-5200 Telecopier (412) 733-4804 ## STUDY TITLE Propionaldehydc: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD® Rats ## TEST SUBSTANCE Propionaldehyde "lontains NO CBI" ## DATA REQUIREMENT Not Applicable ## **AUTHOR** C. D. Driscoll ## STUDY COMPLETION DATE April 6, 1993 ## PERFORMING LABORATORY Bushy Run Research Center (BRRC) Union Carbide Chemicals and Plastics Company Inc. 6702 Mellon Road Export, PA: 15632-8902 ## LABORATORY PROJECT ID 9100086 ## SPONSOR Solvents and Coatings Materials Division Union Carbide Chemicals and Plastics Company Inc. 39 Old Ridgebury Road Danbury, CT 06817-0001 Page 1 of 366 Union Carbide Chemicals and Plastics Company Inc. Excellence Through Quality ĖQ, 93 APR 22 AT 0:5 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD® Ratel ## COMPLIANCE WITH GOOD LABORATORY PRACTICE STANDARDS This study meets the requirements of the following Good Laboratory Practice Standards: Toxic Substances Control Act (TSCA), 40 CFR Part 792; Organisation for Economic Co-operation and Development (OECD), C(81)30(Final) with exceptions. The exceptions are: The Study Director had no knowledge of the procedures used for chemical analysis for interfering contaminants in the water conducted by the supplier, the NUS Corporation, Materials Engineering and Testing Co., and Lancaster Laboratories, Inc. or procedures used for diet analysis by Purina Mills, Inc. These exceptions are not expected to compromise the integrity of the results and conclusion of the study. Study Director: Cymhia Museell ~-*5*/13 Date ## TABLE OF CONTENTS | COMPLIANCE WITH GOOD LABORATORY PRACTICE STANDARDS | 2 | |-----------------------------------------------------------------|-----| | LIST OF TABLES | 4 | | SUMMARY | 5 | | OBJECTIVES | 7 | | BACKGROUND INFORMATION | 7 | | TARGET CONCENTRATION SELECTION | 7 | | MATERIALS AND METHODS | 7 | | Test Substance | 7 | | Animals and Husbandry | 7 | | Animal Acclimation | 8 | | Study Organization | 8 | | Inhalation Chamber Description and Operation | 9 | | Vapor Generation | 9 | | Observations and Measurements | 10 | | In-life Evaluations | 10 | | Mating, Gestation, and Lactation | 10 | | Reproductive Indices | 10 | | Offspring Evaluations | 11 | | Clinical Pathology Evaluations | 11 | | Anatomic Pathology Evaluations | 12 | | Data Analyses | 13 | | RETENTION OF RECORDS | 13 | | RESULTS AND DISCUSSION | 13 | | Chamber Atmospheres | 13 | | Clinical Observations and Mortality | 14 | | Body Weights | 14 | | Food Consumption | 14 | | Reproductive Parameters | 15 | | F1 Offspring | 15 | | Litter Size and Sex Ratio | 15 | | Viability and Survival | 15 | | Pup Body Weights | 15 | | Clinical Pathology Evaluations | 15 | | Organ Weights, Necropsy Observations, and Microscopic Diagnoses | 16 | | CONCLUSIONS | 16 | | REVIEW AND APPROVAL | 17 | | KEY PERSONNEL | 17 | | REFERENCES | 18 | | TABLES | 19 | | QUALITY ASSURANCE STATEMENT | 45 | | Chamber Atmosphere Report | x 1 | | Anatomic Pathology Report | | | Clinical Pathology Report | | | Individual Animal Data: In-Life Appendix | | | Reproductive Parameters | | | Individual Anatomic Pathology Data Appendix | | | Individual Clinical Pathology Data Appendix | | | Protocol, Protocol Amendment, and Protocol Deviations Appendix | | | Propionaldehyde: Combined Repeated-Exposure and Reproductive/ | , | | Developmental Toxicity Range-Finding Study in CD® Rats Appendix | x 9 | | | | ## LIST OF TABLES | Table | 1 | Summary of Chambon At- | | |---------|-----|-----------------------------------------------------------|----| | Table | _ | Summary of Chamber Atmosphere Data | 19 | | Table | _ | | 20 | | Table | _ | Dody Weight (Grains) | 2] | | Table | • | The second readily dath (Glams). | 22 | | Table | | | 23 | | Table | | Females - Summary of Clinical Observations | 24 | | Table | • | Females - Summary of Body Weight (Grams) | 25 | | Table | | Females - Summary of Body Weight Gain (Grams) | 26 | | Table | | remaies F Summary Of Food Consumption (Grams/Animal/Dans) | 27 | | TUDIE | 10 | remaies - Summary of Gestational Body Weight and Body | | | Table | | weight Change | 28 | | Table | | remaies - Summary of Gestational Food Consumption | 29 | | Table | 12 | remaies - Summary or Lactational Body Weight and Body | | | Table | 12 | Weight Change | 30 | | Table | | Summary of Reproductive Parameters | 31 | | Tanté | 14. | remaies - Summary of Gestational Length and Reproductive | | | meh? - | | Parameters | 32 | | Table | | Summary Of Litter Size and Sex Ratio (% Males) | 33 | | Table | | Summary of Ditter Viability. | 34 | | Table | | Summary Or Pup Survival Indices | 35 | | Table | 18 | Summary of Pup Body Weight and Weight Change (Grame) | | | <b></b> | | Per Litter | 36 | | Table | | Males - Summary Or Organ Weights (Grams) | 37 | | Table | 20 | males - Summary of Organ Weights as % of Final Body | ٠. | | | | weight | 38 | | Table | | remaies - Summary of Organ Weights (Grams) | 39 | | Table | 22 | remales - Summary of Organ Weights as % of Final Body | | | | | Weight | 40 | | Table | | males - Summary of Necropsy Observations | 41 | | Table | | Females - Summary of Necropsy Observations | 42 | | Table | 25 | Males - Summary of Microscopic Diagnoses by Grade | 72 | | | | (Nasa' Cavity) | 43 | | Table | 26 | remaies - Summa of Microscopic Diagnoses by Grade | 43 | | 4. | | (Nasal Cavity) | 44 | | | | | | Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD® Rats ## SUMMARY Young adult CD® male and female rats (15/sex/group) were exposed to propionaldehyde (CAS No. 123-38-6) vapor at concentrations of 0, 150, 750, or 1500 ppm. Exposures were conducted daily, 6 hours/day, 7 days/week, for both males and females during a 2-week premating period, and a 14-day (maximum) mating phase. The males continued to be exposed until scheduled sacrifice in Week 7; a total of 52 exposures. The mated females were exposed daily through Day 20 of gestation only. The females were then allowed to deliver their litters naturally and raise their offspring until Day 4 of lactation. Clinical observations were made daily following exposures, and body weights and food consumption were measured at regular intervals throughout the study. Offspring body weight, viability, and disposition were monitored from birth until postnatal Day 4. Following the last exposure, males were fasted and blood samples were obtained for clinical pathology analyses prior to necropsy. On Day 4 of lactation, necropsies were performed on the adult females and the offspring were examined externally and sacrificed without pathologic evaluation. The means of daily mean chamber atmosphere concentrations (± S.D.) were 151 ± 4.1, $745 \pm 15.2$ , and $1522 \pm 23.7$ ppm, for target concentrations of 150, 750, and 1500 ppm, respectively. The adult males did not display any overt signs of toxicity at any time during the study. Body weights, weight gains, clinical observations, and food consumption were similar among all 3 exposure groups and controls. Successful mating performance and fertility were also unaffected. Hematology and clinical chemistry analyses revealed elevated erythrocyte counts, with a corresponding increase in hemoglobin and hematocrit values, and an increase in monocytes for the males from the 1500 ppm group. At necropsy, kidney weights, as a percentage of final body weight, were elevated in the males from the 1500 ppm group. There were no gross lesions observed that could be attributed to propionaldehyde exposure. Microscopic examination indicated an exposure-related effect on the olfactory epithelium in the anterior 2 sections of the nasal cavity. Vacuolization was primarily evident in the low and intermediate exposure groups and atrophy was seen in the intermediate and high exposure groups. Squamous metaplasia was seen in 2 males from the 1500 ppm group and 1 male in the 750 ppm group. The adult females did not display any exposure-related clinical signs. However, body weight gains and food consumption were significantly decreased during the first week of exposures at the mid and high concentrations. During gestation, the body weights of the high concentration females were less than controls on Days 0, 7, and 14. Small, but consistent decreases in food consumption were noted in the females from the 1500 ppm group throughout gestation. During Days 14-17 of gestation, the intermediate group of females were also found to have a slight, but significant, decrease in food consumption. On Day 0 of lactation, body weights at the high and mid concentrations were significantly less than controls but were within normal limits by Day 4. At sacrifice on Day 4 of lactation, no gross lesions observed could be attributed to propionaldehyde exposure. The findings of the adult female microscopic examinations were similar to those observed in the males. Vacuolization of the olfactory epithelium was apparent in the low and intermediate exposure groups and atrophy was seen primarily at the high concentration. None of the females at any level had findings of squamous metaplasia. The decline in the severity of the nasal lesions in females relative to males is likely to be attributable to the 6-day (approximately) period between the cessation of exposures after gd 20 and the sacrifice on lactation Day 4 for the females. There were no significant effects of exposure on any of the reproductive parameters assessed. Litter size and viability were similar among the groups. Pup body weights on Postnatal Days 0 and 4 were not affected by exposure although the high concentration body weight gain for that period was slightly depressed. In summary, repeated exposure to propional dehyde vapor at concentrations of 0, 150, 750, or 1500 ppm was associated with minimal toxicity at the two highest concentrations in females, but males showed no apparent toxicity. Microscopic assessment of the nasal epithelium, however, revealed treatment-related effects at all concentrations of propional dehyde exposure in both sexes. Reproductive parameters were not affected at any concentration. A slight decrease in body weight gain in the 1500 ppm of feprica was the only finding of possible significance in the neonates. #### **OBJECTIVES** The objective of this study was to evaluate the potential of the test substance to 1) produce toxicity in adult male and female CD® rats, 2) affect male and female reproductive performance, and 3) produce developmental toxicity following repeated inhalation exposure. ## BACKGROUND INFORMATION This study was conducted by Union Carbide Chemicals and Plastics Company Inc. as part of voluntary participation in the OECD High Production Volume Chemical testing program. A dose range-finding study was conducted at BERC, Project Number 91-13-25601 (see Appendix 9 of this report), to establish the maximum tolerated concentration of propionaldehyde vapor in pregnant CD\* rats to aid in the dose selection process for the definitive study. In the range finding study, five groups were exposed to propionaldehyde at concentrations of 0, 500, 1000, 1500, or 2500 ppm, 6 hours/day, from gestation day (gd) 0 through 20. Concentration-related decreases in body weight, body weight gain and food consumption were observed in groups exposed to 1000 ppm or above. Fetal body weights were also decreased at the highest concentration. #### TARGET CONCENTRATION SELECTION Target propionaldehyde vapor concentrations of 0 (control), 150, 750, and 1500 ppm were selected in conjunction with the Sponsor based on the results of the range-finding study. ## MATERIALS AND METHODS The protocol, protocol amendment, and protocol deviations (BRRC Project No. 91-13-25602) detailing the design and conduct of this study are presented in Appendix 8. #### Test Substance Two 55-gallon stainless steel drums of propionaldehyde; Lot No. T-1258; CAS No. 123-38-6 were received on October 15, 1991, from Union Carbide Chemicals and Plastics Company Inc. (South Charleston, WV) and assigned BRRC Sample No. 54-351-A and 54-351-B. The test substance was a water-white odorous liquid. The test substance was stored in the original containers in a special enclosure under a nitrogen atmosphere. The purity of the test substance was determined by the GLP Analytical Skills Center at the UCCAP South Charleston, WV, Technical Center to be approximately 99% and the report is included in Appendix 1. Pertinent chemical and physical properties of propionaldehyde are listed in Appendices 1 and 8. ## Animals and Husbandry Seventy-five male and 75 female CD® rats arrived on December 23, 1991, from Charles River Laboratories, Inc. (Portage, MI). They were designated by the supplier to be approximately 56 days old (birth date was recorded as approximately October 28, 1991) and 234-275 and 177-209 g upon arrival for males and females, respectively. The females were nulliparous and nonpregnant. Animals were housed in Room 101 from arrival to termination of the study, except during exposures. Within 2 days of receipt, the animals were examined by a Clinical Veterinarian, and representative animals were subjected to a pretest health screen including full necropsy, histologic examination of selected tissues, and serum viral antibody analyses. Based on the results of these data, the Clinical Veterinarian indicated that these animals were in good health and suitable for use. All animals were assigned a unique number and identified by cage tags. Animals considered available for the study were also identified by a tail tattooing procedure. Animals selected for the pretest health screen were identified by a toe-clipping procedure after sacrifice. The animals were housed 1 or 2/cage for approximately 14 days in stainless steel, wire mesh cages (22.5 x 15.5 x 18 cm). DACB® (Deotized Animal Cage Board; Shepherd Specialty Papers, Inc., Kalamazoo, MI) was placed under each cage and changed regularly. An automatic timer was set to provide fluorescent lighting for a 12-hour photoperiod (approximately 0500 to 1700 hours for the light phase). Temperature and relative humidity were recorded continuously (Cole-Parmer Hygrothermograph® Seven-Day Continuous Recorder, Model No. 8368-00, Cole-Parmer Instrument Co., Chicago, IL). Temperature was routinely maintained at 65-77°F; relative humidity was routinely maintained at 40-70%. Any minor exceptions to these specified ranges were noted in the raw data. Tap water 'Municipal Authority of Westmoreland County, Greensburg, PA) was available ad libitum, except during exposures, and was delivered by an automatic watering system with demand control valves mounted on each rack (water bottles were used for females while in shoe box cages). Water analyses were provided by the supplier, the NUS Corporation, Materials and Engineering Testing Co., and Lancaster Laboratories, Inc. at regular intervals. EPA standards for maximum levels of contaminants were not exceeded. Ground, certified Rodent Chow® \$5002 (Purina Mills, Inc.) was available ad libitum, except during exposures. Analyses for chemical composition and possible contaminants of each feed lot were performed by Purina Mills, Inc., and the results were included in the raw data. ## Animal Acclimation The acclimation period was approximately 2 weeks. During this period, the animals were weighed at least 2 times at scheduled intervals. Detailed clinical observations were conducted in conjunction with body weight measurements. Cage-side animal observations were conducted at least once daily, and mortality checks were conducted twice daily (morning and afternoon). The animals were examined just prior to the end of the acclimation period by a Clinical Veterinarian. Animals considered unacceptable for the study, based on the clinical signs, body weights, or body weight gains, were rejected. The fate of rejected animals and the reasons for rejection were documented in the raw data. #### Study Organization Following the second pretest body weight, the animals were assigned to 3 exposure groups and a control group using a stratified randomization procedure based on body weight. At the time of group assignment, only animals with body weights within ± 20% of the population mean for each sex were included. The body weight range on the day of first exposure was 31%.1 to 377.5 g for males and 201.3 to 243.1 g for females. The following table summarizes the organization of the study. | | | ber of imals | Test Vapor Concentration | |---------|------|--------------|--------------------------| | Group | Male | Female | (ppm) | | Control | 15 | 15 | 0 | | Low | 15 | 15 | 150 | | Mid | 15 | 15 | 750 | | High | 15 | 15 | 1500 | The exposures began on January 6, 1992. Maler were exposed for 6 hours/day for 52 consecutive days. Females were exposed for a minimum of 35, and a maximum of 48 consecutive days (depending upon when they mated). The 6-hour exposure period was defined as the time when the generation system was turned on and subsequently turned off. All control animals were exposed to filtered air only, using the same exposure regimen. Fifteen females/group were sacrificed during the period February 14 - 28, 1992 on Day 4 of lactation (after approximately 38 exposures and 6 days of recovery). Fifteen males/group were sacrificed on February 27, 1992 after 52 exposures. ## Inhalation Chamber Description and Operation The inhalation chambers used for this study were located in Room 138. They were constructed from stainless steel with glass windows for animal observation. The volume of each chamber volume was approximately 4320 liters, and the airflow was approximately 1000 liters/minute. Chamber airflow was calibrated with a Kurz Model 505 mass flowmeter. A Dwyer Magnehelic® pressure gauge (Dwyer Instruments, Inc., Michigan City, IN) was used to monitor chamber airflow. Chamber temperature and relative humidity was used to monitor chamber industrial thermometers (Control Specialties, Inc., Houston, TX) and Airguide Humidity Indicators (Airguide Instrument Company, Chicago, IL), respectively. Temperature and relative humidity measurements were recorded approximately every 30 minutes during each exposure. Prior to the start of exposures and on Exposure Days 1 and 45, the oxygen content or all the chambers was measured with an O2 indicator (Model 245R, Mine Safety Appliances, Pittsburgh, PA). ## Vapor Generation For all exposure chambers, propionaldehyde was metered from a piston pump (Fluid Metering, Inc., Oyster Bay, NY) into a heated glass evaporator similar in design to that described by Snellings and Dodd (1990). The temperature of the evaporators was maintained at the lowest level sufficient to vaporize the liquid. The resultant vapor was carried into the chamber by a countercurrent air stream that entered the bottom of the evaporator. Prior to the start of exposures and on Exposure Days 18 and 45, temperature measurements were taken from the inside surface of the evaporators thing a Fluke 51 K/J thermometer. ## Observations and Measurements n-life Evaluations All animals were individually observed for signs of toxic effects immediately following daily exposures. Preceding and following each exposure, observations were recorded for animals exhibiting overt clinical signs. On days when exposures were not conducted, detailed observations were generally conducted in the morning. Body weight data were collected for all males on the morning prior to initiation of the first exposure and weekly thereafter. Female body weight data were collected weekly during the premating phase on Days 0, 7, and 14, during gestation of Days 0, 7, 14, and 21, and Days 0 and 4 of lactation. Food consumption was measured weekly throughout the study for males, except during the 2-week mating period. Female food consumption was measured weekly during the premating period, and at 3 to 4-day intervals during gd 0 through 20. Mating, Gestation, and Lactation After the 2-week prebreed exposure period was completed, the animals within each exposure group were randomly mated, one male to one female, to produce the Fl generation. The following mating procedure was used: the animals were paired for 7 days; after the first 7 days of the mating period, females of unsuccessfully mated pairs were randomly placed with another male in the same exposure group. The observation of a dropped copulation plug or the presence of vaginal sperm was considered evidence of successful mating and was designated gd 0. Once evidence of successful mating was observed, the male and female from that mating pair were individually housed. For any mating pairs which did not show evidence of successful mating, the last scheduled mating day was considered gd 0 for that female and the animals were treated accordingly for subsequent events. Females were observed 2 times daily beginning on gd 21 for evidence of littering. The dams were allowed to rear their young until Day 4 of lactation. On Day 4 of lactation, FO parental females were necropsied and the Fl pups were examined grossly and then euthanized and discarded. FO males were necropsied after parturition of the Fl litters. Reproductive Indices The following indices were calculated for parental animals: Mating index (females) = Number of plug-/sperm-positive females Total number of females paired X 100 Mating index (males) = Number of males impregnating females X 100 Total number of males paired Fertility index (female) = Number of pregnant females Number of plug-/sperm-positive females Fertility index (male) = Number of males siring litters Number of males impregnating females Gestational index = Number of females with live litters Number of females pregnant X 100 The following indices were calculated for litters: Live birth index = Number of live pups at birth Total number of pups born X 100 4-Day survival index = Number of pups surviving 4 days Total number of live pups at birth ## Offspring Evaluations All pups from the Fl generation were examined as soon as possible on the day of birth (Day 0) to determine the number of viable and stillborn male and female members of each litter. Litters were evaluated twice daily for survival. Survival indices were calculated at 0 and 4 days after birth. The sex of each pup was determined and verified daily. All live pups were weighed individually on Postnatal Day 0 and 4. The body weights and sexes were recorded on an individual basis but the pups were not uniquely identified. All pups were examined for physical abnormalities at birth and on Postnatal Day 4. All pups dying during lactation were necropsied when possible to investigate the cause of death. ## Clinical Pathology Evaluations Prior to sacrifice, blood was obtained from all adult males for hematology and clinical chemistry determinations. Blood samples were collected by retroorbital bleeding in methoxyflurane anesthetized rats. All males were fasted prior to bleeding following their last exposure. The following were measured or calculated: ## Hematology hematocrit hemoglobin erythrocyte count mean corpuscular volume (MCV) mean corpuscular hemoglobin (MCH) mean corpuscular hemoglobin concentration (MCHC) total leukocyte count differential leukocyte count platelet count ## Clinical Chemistry glucose (fasting) urea nitrogen creatinine total protein total bilirubin aspartate aminotransferase (AST) gamma-glutamyl transferase (GGT) calcium phosphorus sodium potassium chloride alanine aminotransferase (ALT) Details of the clinical pathology procedures are included in Appendix 3. Anatomic Pathology Evaluations At the time of sacrifice, adult females and fasted adult males were anesthetized with methoxyflurane and euthanized by severing the brachial vessels to permit exsanguination. On the day of sacrifice, body weights were obtained to allow expression of relative organ weights. A complete necropsy, which included examination of the thoracic cavity, was performed on all animals. The liver, lungs, kidneys, thymus, uterus (females), testes and epididymides (male) were weighed and retained in 10% neutral buffered formalin (NBF) for all sacrificed animals. The following tissues were also collected and retained in 10% NBF: gross lesions brain pituitary upper and lower respiratory tract (including nasal turbinates, larynx, and trachea) heart spleen adrenal gland ovaries (females) wagina (females) uterus (females) seminal vesicles (males) The following tissues were collected and retained in Bouin's fixative: testes (males) epididymides (males) Tails were saved for identification purposes. The underlined tissues from the control and high concentration animals were processed histologically and examined microscopically. In addition, the first 2 sections of the nasal cavity for all animals from the low and intermediate groups were examined. Details of the anatomic pathology procedures are included in Appendix 2. ## Data Analyses The unit of comparison was the male, the pregnant dam or the litter. The data for quantitative continuous variables were intercompared for the 3 exposure groups and the control group by use of Levene's test for equality of variances, analysis of variance (ANOVA), and t-tests. The t-tests were used when the F value from the ANOVA was significant. When Levene's test indicated similar variances, and the ANOVA was significant, a pooled t-test was used for pairwise comparisons. When Levene's test indicated heterogeneous variances, all groups were compared by an ANOVA for unequal variances followed, when necessary, by a separate variance t-test for pairwise comparisons. Nonparametric data were statistically evaluated using the Kruskal-Wallis test followed by the Mann-Whitney U test when appropriate. Incidence data were compared using the Fisher's Exact Test. For all statistical tests, the probability value of < 0.05 (two-tailed) was used as the critical level of significance (Dixon, 1990; Sokal and Rohlf, 1981). Various models of calculators, computers, and computer programs may have been used to analyze data for this study. Since various models round or truncate numbers differently, values in some tables may differ slightly from those in other tables or from independently calculated data. The integrity of the study and interpretation of the data were unaffected by these differences. ## RETENTION OF RECORDS All raw data, documentation, records, the protocol, protocol amendment, and protocol deviations, specimens, and a copy of the final report generated as a result of this study are retained in the BRRC Archives. Due to the nature of the test substance, a reserve sample was not retained in the BRRC Archives. ## RESULTS (AND DISCUSSION All references of differences in group mean values in the following text refer to comparisons of statistically significant differences between the exposure/treatment group and the control group, unless otherwise noted. Repeated reference to the control and the statistical significance will not be made in order to simplify the text. ## Chamber Atmospheres A summary of the chamber atmosphere measurements is presented in Table 1. Detailed results and discussion of the chamber atmosphere measurements are included in Appendix 1. During exposures, the mean of daily mean chamber temperatures for all exposure groups ranged from 20 to 21°C (Appendix 1), and the relative humidity ranged from 47 to 48% (Appendix 1). For all measurements, the chamber oxygen content was 20.8%. The evaporator temperature measurements ranged from 37 to 55°C. The means of daily mean chamber atmosphere concentrations (± S.D.) were 151 (± 4.1), 745 (± 15.2), and 1522 (± 23.7), for target concentrations of 150, 750, and 1500 ppm, respectively. No propional dehyde was detected (minimum detection limit 5 ppm) in the control chamber atmosphere during the study. The distribution of propional device vapor concentration in each of the three exposure chambers was examined and the vapor concentrations were found to be uniformly distributed. A description and results of the chamber distributions are presented in Appendix 1. ## Clinical Observations and Mortality Summaries of the clinical observations are presented in Tables 2 and 6, for adult males and females, respectively. Individual animal clinical observation data are included in Appendix 4. Individual animal fate data are included in Appendix 4. No adult males or females died prior to the scheduled sacrifice. Neither the adult males nor the adult females displayed any overt signs of toxicity at any time during the study. ## Body Weights Summaries of absolute body weights and body weight gains are presented in Tables 3 and 4 for males and Tables 7, 8, 10, and 12 for females. Individual animal body weight data are included in Appendix 4. Adult male body weights and weight gains were similar among all three exposure groups and controls. The adult female body weight gains, but not absolute body weights, were decreased during the first week of exposures at the mid and high concentrations. During gestation, the body weights of the high concentration females were less than controls on Days 0, 7, and 14. However, weight gain during gestation was similar to controls. On Day 0 of lactation, body weights in the high and mid concentrations were less than controls but were similar to controls by Day 4. #### Food Consumption Summaries of food consumption data are presented in Table 5 for males and Tables 9 and 11 for females. Individual food consumption data are included in Appendix 4. Although there was no significant effect upon food consumption in adult males at any interval measured, there appeared to be a slight decrease at the highest level throughout the study. During the first week of exposures, the females at the two highest concentrations displayed slight decreases in food consumption. By the second week, however, all groups had similar levels of intake. Small, but consistent, decreases in food consumption were also noted in the high dose females throughout gestation. A transient decrease in food consumption was also noted for the intermediate group of females during Days 14-17 of gestation, but there was a tendency towards reduced consumption throughout much of gestation. ## Reproductive Parameters A summary of reproductive parameters is presented in Tables 13 and 14. Individual reproductive data are included in Appendix 5. Successful mating performance and fertility were unaffected by exposure to propionaldehyde. Of the 15 mating pairs, only one male in each group failed to sire a litter. The mating, fertility, and gestational indices ranged from 93.3 to 100% for all groups. Gestational length, number of corpora lutea, number of uterine implants, pre and postimplantation loss, and number of pups born alive were not differentially affected as a function of exposure. ## Fl Offspring Litter Size and Sex Ratio A summary of litter sizes and sex ratios (% males) are presented in Table 15. The corresponding individual data are included in Appendix 5. There were no effects on litter size or sex ratio on the day of birth or Postnatal Day 4. ## Viability and Survival The summary of litter viability is included in Table 16 and a summary of pup survival indices is presented in Table 17. The corresponding individual data are included in Appendix 5. There were no effects on Fl pup viability or survival indices. ## Pup Body Weights Pup body weights and body weight gains are summarized in Table 18. Individual pup body weight data are presented in Appendix 5. Average pup body weights were similar among groups through the first 4 days of lactation, however, pups at the high concentration showed slightly depressed body weight gains during that period. ## Clinical Pathology Evaluations Individual adult male clinical pathology data are included in Appendix 7. Detailed results and discussion of the clinical pathology measurements are included in Appendix 3. Hematology and clinical chemistry analyses revealed elevated erythrocyte counts, with accompanying increases in hemoglobin and hematocrit values, and an increase in monocytes in the males exposed to 1500 ppm. These findings may reflect a dehydration and irritation effect of exposure to propional dehyde at the highest concentration. ## Organ Weights, Necropsy Observations, and Microscopic Diagnoses Summary results of organ weights and organ weights relative to body weights are presented in Tables 19 and 20 for adult males and Tables 21 and 22 for adult females. Summary results of necropsy observations are presented in Tables 23 and 24 for adult males and females, respectively. A summary of the microscopic diagnosis of the nasal cavity is presented in Tables 25 and 26 for adult males and females, respectively. Detailed results and discussion of the anatomic pathology results, including microscopic evaluations, are included in Appendix 2. Individual anatomic pathology data are included in Appendix 6. The mean absolute thymic region weight was significantly increased in males, but not females, in the 1500 ppm group. Although no other absolute organ weights were affected, the 1500 ppm male relative kidney weight was increased. A similar change in females was not observed. There were no gross lesions observed at necropsy that could be attributed to propional dehyde exposure. Microscopic examination indicated an exposure-related effect on the olfactory epithelium in the anterior 2 sections of the nasal cavity in the males and females. Vacuolization was primarily evident in the low and intermediate group males and atrophy was seen in the intermediate and high group males. Squamous metaplasia was seen in 2 males from the 1500 ppm group and 1 male in the 750 ppm group. The findings of the adult female microscopic examinations were similar to those observed in the males although somewhat less severe. Vacuolization of the olfactory epithelium was apparent in the low and intermediate exposure groups and atrophy was seen primarily in the high concentration. None of the females at any level had findings of squamous metaplasia. ## CONCLUSIONS Although the lack of overt clinical signs in this study was consistent with the dose range-finding data, given the general irritating properties of the aldehyde chemical class, it was somewhat surprising. The microscopic changes observed in the nasal epithelium, however, are consistent with anticipated effects of chemical irritants. Interestingly, neither the lungs nor other portions of the respiratory tract were adversely affected. The absence of effects in other aspects of the respiratory tract is generally consistent with findings of other aldehydes (Appelman et al., 1982, 1988; Maronpot et al., 1986; Woutersen et al., 1987; Zwart et al., 1988). Previous reports (Gage, 1970) of liver damage following six days of exposure to 1300 ppm propional dehyde were not substantiated under the conditions of this study of 52 days of consecutive exposures. In summary, repeated exposure to propional dehyde vapor at concentrations of 0, 150, 750, or 1500 ppm was associated with minimal overt toxicity at the two highest concentrations in females, but males showed no apparent toxicity. Microscopic assessment of the nasal epithelium, however, revealed treatment-related effects at all concentrations of propional dehyde exposure in both sexes. Reproductive parameters were not affected at any concentration. A slight decrease in body weight gain in the 1500 ppm offspring was the only neonatal finding of possible significance. ## REVIEW AND APPROVAL Study Director: Cynthu O Drescolf 4/5/23 Cynthia D. Driscoll, Ph.D. Date Director: John P. Van Miller, Ph.D., DABT Date ## KEY PERSONNEL Study Director: C. D. Driscoll Study Coordinators: M. A. Copeman M. F. Rubena Supervisor: L. C. Fisher Scientists: D. A. Neptun I. M. Pritts Additional personnel are listed in the raw data. ## REFERENCES Appelman, L. M., Woutersen, R. A. and V. J. Feron (1982). Inhalation toxicity of acetaldehyde in rats. I. Acute and subacute studies. *Toxicology* 23, 293-307. Appelman, L. M., Woutersen, R. A., Zwart, A., Falke, H. E. and V. J. Feron (1988). Inhalation toxicity of acetaldehyde in rats. I. Acute and subacute studies. Journal of Applied Toxicology 8, 85-90. Dixon, W. J. (1990). BMDP Statistical Software. University of California Press, Berkeley, CA. Gage, J. C. (1970). The subacute inhalation toxicity of 109 industrial chemicals. Brit. J. Industr. Med. 27, 1-18. Maronpot, R. R., Miller, R. A., Clarke, W. J., Westerberg, R. B., Decker, J. R. and O. R. Moss (1986). Toxicity of formaldehyde in B6C3Fl mice exposed for 13 weeks. *Toxicology* 41, 253-266. Snellings, W. M. and Dodd, D. E. (1990). Inhalation Studies. In: <u>Handbook of In Vivo Toxicity Testing</u>. D. L. Arnold, H. C. Grice, and D. R. Krewski, eds., 186-246. Academic Press, New York, NY. Sokal, R. R. and Rohlf, F. J. (1981). <u>Biometry</u>, 2nd Edition, W. H. Freeman and Co., San Francisco, CA. Woutersen, R. A., Appelman, L. M., Wilmer, J. W. G. M., Falke, H. E. and V. J. Feron (1987). Subchronic (13-week) inhalation toxicity study of formaldehyde in rats. *Journal of Applied Toxicology* 7, 43-49. Zwart, A., Woutersen, R. A., Wilmer, J. W. G. M., Spit, B. J. and V. J. Feron (1987). Cytotoxic and adaptive effects in rat nasal epithelium after 3-day and 13-week exposure to low concentrations of formaldehyde. *Toxicology* 51, 87-99. ## TABLE 1 ## PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD\* PATS SUMMARY OF CHAMBER ATMOSPHERE DATA | Target | | | | | | |---------------|-----------|-----------|---------------------------------------|-----------|------------| | Concentration | Temp | RH | A | МОМ | | | (ppm) | (°C) | (1) | (ppm) | (ppm) | A/NOM | | 0 | 20.5±0.70 | 47.5±1.50 | <mdl< td=""><td></td><td></td></mdl<> | | | | 150 | 20.9±0.87 | 46.7±1.53 | 151± 4.1 | 151± 6.4 | 1.00±0.046 | | 750 | 20.5±1.00 | 48.2±1.21 | 745±15.2 | 717±18.8 | 1.04±0.022 | | 1500 | 20.0±0.92 | 48.4±1.83 | 1522±23.7 | 1453± 7.8 | 1.05±0.019 | Temp = temperature RK = relative humidity A = analytical concentration NOM = nominal concentration A/NOM = analytical concentration/nominal concentration <MDL = less than the minimum estimated detection limit WORDFILE-FORMS-TBPROAN March 11, 1993 TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF CLINICAL OBSERVATIONS<sup>a</sup> | | | _ | FO ADULT MALES | Ø | | |------------------------------------------------|-------|--------------------------|----------------|---------------------------------------------|----------------| | | GRADE | 0<br>(DAYS) <sup>C</sup> | 150<br>(DAYS) | 750 1<br>(DAYS) | 1500<br>(DAYS) | | NORMAL<br>NO SIGNIFICANT CLINICAL OBSERVATIONS | ū. | 15( 0- 52) | 15( 0- 52) | 15( 0- 52) 15( 0- 52) 15( 0- 52) 15( 0- 52) | 15( 0- 52) | | DEAD<br>SCHEDULED SACRIFICE | ę. | 15 ( 52) | 15 ( 52) | 15 ( 52) | 15 ( 52) | | BODY<br>URINE STAINS | ρ. | 0 | 0 | 0 | 1( 44- 52) | | EYES/EARS/NOSE<br>LACRIMATICÀ | | 0 | | 0 | | | (EYE-BOTH) | Ç, | 0 | 1 ( 1) | 0 | 0 | | (GYE-LEFT) | o. | 0 | 0 | 0 | 1 ( 2) | | PERINASAL ENCRUSTATION | a. | 1 ( 43) | 0 | 0 | 2( 17- 49) | | Oral/Dental<br>Perioral Wetness | ē. | 0 | 0 | 0 | 1 (11) | | Skin<br>Alopecia ( Pam-Fore—Both ) | ۵ | 0 | 0 | 1( 22- 31) | 3( 21- 52) | | EXCORIATED | | 0 | 0 | - | 1 | | (PAW-FORE-BOTH) | o. | 0 | 0 | 1( 22- 31) | 0 | | (PAW-FORE-LEFT) | ρ. | | 0 | 0 | 1( 21- 26) | | RAISED AREAS ( RED AND OR BROWN ) (TAIL) | ۵ | 6(17-52) | | 5( 17- 52) 7( 17- 52) | 3( 17- 52) | Anumber of animals exhibiting the finding at least once during the study. bGradus: P = present, 1 = mild, 2 = moderate, 3 = severe. Gratiest to latest day a finding of the specified grade was observed. s). TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF BCDY WEIGHT (GRAMS) FO ADULT MALES | GROUP: PPH | 0 | 150 | 750 | 1500 | • | |------------|-------|-------|-------|-------|---| | WEEK 0 | | | | | | | MEAN | 349.2 | 345.0 | 348.4 | 347.6 | | | S.D. | 16.72 | 15.25 | 13.09 | 16.65 | | | N | 15 | 15 | 15 | 15 | | | WEEK 1 | | | | | | | MEAN | 374.2 | 365.8 | 369.7 | 366.2 | | | S.D. | 19.45 | 22.70 | 15.49 | 19.44 | | | N | 15 | 15 | 15 | 15 | | | WEEK 2 | | | | | | | MEAN | 392.6 | 378.9 | 384.4 | 381.1 | | | S.D. | 24.87 | 26.91 | 17.39 | 25.72 | | | И | 15 | 15 | 15 | 15 | | | WEEK 3 | | | | | | | MEAN | 416.4 | 401.5 | 410.6 | 405.3 | | | S.D. | 27.02 | 30.20 | 22.19 | 26.79 | | | N | 15 | 15 | 15 | 15 | | | WEEK 4 | | | | | | | MEAN | 437.4 | 419.8 | 430.8 | 423.4 | | | S.D. | 30.39 | 34.17 | 24.03 | 27.60 | | | N | 15 | 15 | 15 | 15 | | | WEEK 5 | | | | | | | MEAN | 455.5 | 435.7 | 448.2 | 438.2 | | | S.D. | 35.82 | 36.38 | 26.09 | 31.03 | | | N | 15 | 15 | 15 | 15 | | | WEEK 6 | | | | | | | MEAN | 465.8 | 444.4 | 459.2 | 447.1 | | | S.D. | 40.49 | 43.20 | 31.86 | 34.08 | | | N | 15 | 15 | 15 | 15 | | None significantly different from control group TABLE 4 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPROLUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF BODY WEIGHT GAIN (GRAMS) FC ADULT MALES | | | 10,0001 | | | | |--------------|-------|---------|------|------------|--| | GROUP: PPM | 0 | 150 | 750 | 1500 | | | WEEK 0 TO 1 | | | | | | | MEAN | 25.0 | 20.0 | 21.3 | 18.6 | | | S.D. | 9.85 | 9.04 | 6.99 | 6.86 | | | N | 15 | 15 | 15 | 15 | | | WEEK 1 TO 2 | | | | _ | | | MEAN | 16.4 | 13.1 | 14.7 | 14.9 | | | S.D. | 6.87 | 6.44 | 5.33 | 8.19 | | | N | 15 | 15 | 15 | 15 | | | WEEK. 2 TO 3 | | | | | | | MEAN | 23.8 | 22.6 | 26.2 | 24.3 | | | S.D. | 6.49 | 7.60 | 8.23 | 7.00 | | | N | 15 | 15 | 15 | 15 | | | WEEK 3 TO 4 | | | | | | | MEAN | 20.9 | 18.4 | 20.2 | 18.1 | | | S.D. | 5.54 | 6.92 | 5.28 | 4.01 | | | N | 15 | 15 | 15 | <b>i.5</b> | | | WEEK 4 TO 5 | | | | *<br>22 | | | MEAN | 18.1 | 15.9 | 17.4 | 14.8 | | | S.D. | 7.63 | 3.91 | 5.52 | 9.70 | | | N | 15 | 15 | 15 | 15 | | | WEEK 5 TO 6 | | | | | | | MEAN | 10.3 | 8.7 | 11.0 | 8.9 | | | S.D. | 10.93 | 9.62 | 8.49 | 9.44 | | | N | 15 | 15 | 15 | 15 | | None significantly different from control group TABLE 5 PROPIGNALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF FGG.: CONSUMPTION (GPAMS/ANIMAL/DAY) | | FG ADULT MALES | | | | | | |----------------------------------|--------------------|--------------------|--------------------|--------------------|--|--| | GROUP: PPM | 0 | 150 | 750 | 1500 | | | | WEEK 0 TO 1<br>HEAN<br>S.D.<br>N | 26.5<br>1.68<br>15 | 25.1<br>2.78<br>15 | 26.1<br>1.00<br>15 | 24.8<br>1.98<br>15 | | | | WEEK 1 TO 2<br>MEAN<br>S.D.<br>N | 26.4<br>1.91<br>14 | 25.4<br>2.97<br>12 | 25.4<br>2.12<br>12 | 24.5<br>2.71<br>14 | | | | WEEK 4 TO 5<br>HEAN<br>S.D.<br>N | 28.0<br>2.46<br>14 | 27.0<br>2.37<br>13 | 27.7<br>1.74<br>10 | 26.9<br>2.31<br>15 | | | | WEEK 5 TO 6<br>MEAN<br>S.D.<br>N | 27.3<br>2.90<br>15 | 26.6<br>3.30<br>15 | 27.¢<br>2.19<br>15 | 25.9<br>2.70<br>15 | | | | WEEK 6 TO 7<br>MEAN<br>S.D.<br>N | 20.1<br>2.31<br>15 | 27.0<br>2.89<br>15 | 27.9<br>1.43<br>15 | 26.3<br>2.79<br>15 | | | None significantly different from control group Data not included for animals with observed food spillage. TABLE 6 PROPIONALDEHYDE: COMBINED REPEATZD-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD RATS SUMMARY OF CLINICAL OBSERVATIONS | .#<br> | | FO | FO ADULT FEMALES | ξž | | |------------------------------------------------|-----------------------|-----------------------|------------------|---------------|-------------------------| | ION) | GRADE <sup>D</sup> (D | AYS) <sup>C</sup> | 150<br>(DAYS) | 750<br>(DAYS) | 1500<br>(DAYS) | | NORMAL<br>NO SIGNIFICANT CLINICAL OBSERVATIONS | C <sub>1</sub> | 15( 0- 43) 15( 0- 43) | 15( 0- 43) | 15( 0-44) 15( | 15( 0- 53) | | DEAD SCHEDULED SACRIFICE | <u>~</u> | 15( 39-'43) | 15( 40- 43) | 15( 39- 44) | 15( 39- 44) 15( 39- 53) | | eyes/ears/nose<br>Lacrination(eye-both) | ۵. | 0 | 0 | 0 | 1( 27- 28) | | PERIOCULAR ENCRUSTATION | | .: | 0 | | 1 | | (EYE-BOTH) | c. | 0 | c | 1 ( 7) | 0 | | (EYE-LEFT) | ۵. | 0 | o | 0 | 1( 29- 33) | | PERINASAL ENCRUSTATION | c. | c | 1( 23- 30) | 0 | 0 | | SKIN<br>ALOPECIA | | | | | 1 | | (FACE) | ۵ | 0 | 1( 31- 36) | 0 | 0 | | (LEG-FRONT-BOTH) | Δ | 0 | 0 | 1( 7- 43) | 1( 18- 21) | | (MULTIPLE AREAS-NOS) | ō. | 0 | 0 | 0 | 1( 22- 40) | | (PAW-Pore-Both) | ρ | 1( 31- 41) | 0 | 0 | 0 | | CRUST(FACE) | <b>A</b> | 0 | 1 ( 40) | 0 | 0 | | RAISED AREAS ( RED AND OR BROWN ) (TAIL) | ρ | 0 | 1( 17- 42) | 6( 17- 43) | 0 | Anumber of animals exhibiting the finding at least once during the study. borados: P = present, l = mild, 2 = moderate, 3 = severc. Gearliest to latest day a finding of the specified grade was observed. TABLE 7 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF BODY WEIGHT (GRAMS) FO ADULT FEMALES | | | I'U ADUDI II | | | | |------------|---------|--------------|-------|-------|--| | GROUP: PPM | 0 | 150 | 750 | 1500 | | | WEEK 0 | | | | | | | MEAN | 220.1 . | 219.8 | 219.5 | 218.7 | | | S.D. | 9.89 | 7.60 | 7.94 | 8.95 | | | N | 15 | 15 | 15 | 15 | | | WEEK 1 | | | _ | | | | HEAN | 230.9 | 227.3 | 223.9 | 221.9 | | | S.D. | 10.40 | 8.75 | 8.07 | 12.05 | | | N | 15 | 15 | 15 | 15 | | | WEEK 2 | | | | | | | MEAN | 236.6 | 234.5 | 232.0 | 233.4 | | | S.D. | 10.58 | 13.80 | 11.24 | 10.46 | | | N | 9 | 11 | 8 | 8 | | None significantly different from control group # TABLE 8 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF BODY WEIGHT GAIN (GRAMS) FO ADULT PEMALES | 0 | 150 | 750 | 1500 | |------|-----------------------------------|--------------------------------------------------------|--------------------------------------------------------------------| | 10.9 | 7.4 | 4.4** | 3.2** | | 4.77 | 6.99 | 5.29 | 4.62<br>15 | | 15 | 15 | 13 | 13 | | s 0 | 7 7 | 5.9 | 7.9 | | | 6.17 | 6.29 | 7.56 | | 9 | 11 | 8 | 8 | | | 10.9<br>4.77<br>15<br>5.8<br>3.69 | 10.9 7.4<br>4.77 6.99<br>15 15<br>5.8 7.7<br>3.69 6.17 | 10.9 7.4 4.4** 4.77 6.99 5.29 15 15 15 5.8 7.7 5.9 3.69 6.17 6.29 | <sup>\*\*</sup> Significantly different from control group (p < .01) # TABLE 9 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF FOOD CONSUMPTION (GRAMS/ANIMAL/DAY) FO ADULT FEMALES | EQ WDQII EFWNDO | | | | | |----------------------------------|--------------------|--------------------|---------------------|----------------------| | GROUP: PPH | 0 | 150 | 750 | 1500 | | WEEK 0 TO 1<br>MEAN<br>S.D.<br>N | 10.1<br>0.87<br>14 | 17.5<br>1.50<br>11 | 16.9*<br>1.63<br>11 | 16.6**<br>1.69<br>13 | | WEEK 1 TO 2<br>MEAN<br>S.D.<br>N | 18.6<br>0.89<br>11 | 18.6<br>1.60<br>14 | 18.3<br>1.21<br>9 | 17.2<br>1.64<br>14 | <sup>\*</sup> Significantly different from control group (p < .05) \*\* Significantly different from control group (p < .01) Data not included for animals with observed food spillage. TABLE 10 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF GESTATIONAL BODY WEIGHT AND WEIGHT CHANGE (GRAMS) FO ADULT FEMALES | | | FO ADULT F | emales | | |---------------|--------------------|--------------|-----------------|----------| | GROUP: PPM | 0 | 150 | 750 | 1500 | | GESTATIONAL F | ODY WEIGHTS (q) | | <del> </del> | | | DAY 0 | | | | | | MEAN | 241.38 | 239.59 | 234.52 | 227.63** | | S.D. | 12.974 | 11.773 | 12.051 | 8.921 | | N | 14 | 15 | 14 <sup>a</sup> | 14 | | DAY 7 | | | | | | MEAN | 275.71 | 273.14 | 266.53 | 260.25** | | S.D. | 15.765 | 16.693 | 11.528 | 10.055 | | N | 14 | 15 | 14 | 14 | | DAY 14 | | | | | | MEAN | 305.37 | 302.13 | 293.63 | 288.38* | | S.D. | 20.166 | 20.499 | 13.367 | 12.537 | | N | 14 | 15 | 14 | 14 | | DAY 21 | | | | | | MEAN | 377.39 | 376.35 | 364.31 | 360.45 | | S.D. | 29.478 | 49.184 | 23.938 | 18.336 | | N | 14 | 15 | 14 | 14 | | GESTATIONAL 1 | BODY WEIGHT CHANGE | <u>S (q)</u> | | | | DAY 0 TO 7 | | | | | | MEAN | 34.33 | 33.56 | 32.02 | 32.62 | | S.D. | 5.767 | 7.504 | 5.370 | 3.744 | | N | 14 | 15 | 14 | 14 | | DAY 7 TO 14 | | | | | | MEAN | 29.67 | 28.99 | 27.09 | 28.13 | | S.D. | 6.245 | 8.913 | 3.229 | 6.497 | | N | 14 | 15 | 14 | 14 | | DAY 14 TO 21 | | | | | | MEAN | 72.02 | 74.22 | 70.68 | 72.08 | | S.D. | 14.320 | 35.019 | 19.982 | 14.573 | | N | 14 | 15 | 14 | 1.4 | | DAY 0 TO 21 | (GESTATION) | | | | | MEAN | 136.01 | 136.76 | 129.79 | 132.03 | | S.D. | 20.679 | 45.314 | 23.046 | 15.970 | | N | 14 | 15 | 14 | 14 | <sup>\*</sup> Significantly different from control group (p < .05) \*\* Significantly different from control group (p < .01) a The plug was missed for one pregnant female in the 750 ppm group, data not included. 22.18 2.474 13 20.32\*\* 13 14 1.469 22.02\* 1.713 22.88\* 2.017 13 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF GESTATIONAL FOOD CONSUMPTION (GRAMS/ANIMAL/DAY) FO ADULT FEMALES " 1500 750 150 0 GROUP: PPM DAY 0 TO 4 20.25\*\* 22.03 22.10 22.51 MEAN 1.374 2.509 2.304 S.D. 2.137 14 13 N 14 DAY 4 TO 7 21.50\*\* 23.83 22.99 24.27 MEAN 1.667 1.755 2.453 S.D. 2.300 14 13 N 14 DAY 7 TO 11 21.67\*\* 22.63 HEAN 24.09 24.16 1.831 3.004 2.304 S.D. 2.303 14 14 15 14 N DAY 11 TO 14 22.48 24.65 24.63 23.39 MEAN 1.825 1.921 3.343 S.D. 2.618 14 14 15 N 14 DAY 14 TO 17 24.01\* 23.89\* MEAN 26.42 25.17 1.730 2.281 3.670 S.D. 2.249 14 14 14 N 24.64 4.146 22.71 2.419 24.32 3.056 24.87 3.778 15 23.14 1.835 22.48 1.811 22.96 1.949 23.37 1.482 13 14 13 24.58 2.883 23.27 2.164 24.37 2.329 25.37 2.295 14 14 14 3.C DAY 17 TO 21 MEAN S.D. N DAY 0 TO 7 MEAN S.D. N DAY 7 TO 14 MEAN S.D. MEAN S.D. N N DAY 14 TO 21 <sup>\*</sup> Significantly different from control group (p < .05) \*\* Significantly different from control group (p < .01) Data not included for animals with observed food spillage. TABLE 12 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF LACTATIONAL BODY WEIGHT AND WEIGHT CHANGE (GRAMS) | PÛ | ADULT | FEMALES | |----|-------|---------| |----|-------|---------| | GROUP: PPM | 0 | 150 | 750 | 1500 | | | |----------------|-------------------|--------------|---------|---------|------|--| | LACTATIONAL BO | DY WEIGHTS (q) | | | | | | | DAY 0 | | | | | | | | Mean | 277.18 | 275.59 | 262.64* | 261.47* | | | | S.D. | 21.870 | 16.896 | 11.954 | 11.294 | | | | N | 14 | 14 | 15 | 14 | | | | DAY 4 | | | | | | | | Mean | 299.72 | 297.12 | 288.44 | 283.73 | | | | S.D. | 20.054 | 19.045 | 15.192 | 12.956 | | | | N | 14 | 14 | 15 | 14 | 1 72 | | | LACTATIONAL E | DDY WEIGHT CHANGE | <u>S (a)</u> | | | | | | DAY 0 TO 4 | | | | | | | | Mean | 22.54 | 21.53 | 25.80 | 22.26 | | | | S.D. | 10.704 | 10.661 | 9.757 | 9.540 | | | | N | 14 | `_4 | 15 | 14 | | | TABLE 13 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS # SUMMARY OF REPRODUCTIVE PARAMETERS FG PARENTS | GROUP: PPM | 0 | 150 | 750 | 1500 | | |---------------------------------------------|-------|-------|-----------------|-------|----| | No. FO pairs at study start | 15 | 15 | 15 | 15 | _ | | No. FO pairs | 15 | 15 | 15 | 15 | | | No. males impregnating females <sup>a</sup> | 15 | 15 | 14 | 14 | | | No. plug/sperm-positive females | 15 | 15 | 15 <sup>b</sup> | 14 | | | No. pregnant <sup>C</sup> | 14 | 15 | 15 | 14 | | | No. males siring litters | 14 | 14 | 14 | 14 | | | No. live litters on postnatal day 0 | 14 | 14 | 15 | 14 | | | <u>indices<sup>d</sup></u> | | | | | | | Mating Index (females) | 100.0 | 100.0 | 100.0 | 93.3 | | | Mating Index (males) | 100.0 | 190.0 | 93.3 | 93.3 | 17 | | Fertility Index (females) | 93.3 | 100.0 | 100.0 | 100.0 | | | Fertility Index (males) | 93.3 | 93.3 | 100.0 | 100.0 | | | Gestational Index | 100.0 | 93.3 | 100.0 | 100.0 | | Defined as the number of males producing plug- or sperm-positive females. Copulation plug and sperm were missed in one female. Determined by delivery of litters/uterine staining. The indices are defined in the text. TABLE 14 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF GESTATIONAL LENGTH AND REPRODUCTIVE PARAMETERS FO ADULT FEMALES | | FU ADULT FEMALES | | | | | | | |----------------|------------------|-----------------|------|------|--|--|--| | GROUP: PPM | 0 | 150 | 750 | 1500 | | | | | LENGTH OF GEST | ATION (DAYS) | | | | | | | | MEAN | 21.8 | 21.9 | 21.8 | 21.8 | | | | | S.D. | 0.43 | 0.36 | 0.43 | 0.43 | | | | | N | 14 | 14 | 14 | 14 | | | | | CORPORA LUTEA | | | | | | | | | MEAN | 15.4 | 16.0 | 15.0 | 14.7 | | | | | S.D. | 1.91 | 2.48 | 1.46 | 1.73 | | | | | N | 14 | 15 | 15 | 14 | | | | | UTERINE IMPLAN | TS | | | | | | | | MEAN | 15.4 | 15.9 | 15.9 | 15.3 | | | | | S.D. | 1.45 | 2.77 | 1.36 | 1.38 | | | | | N | 14 | 14 | 15 | 14 | | | | | PREIMPLANTATIO | N LOSS (%) | | | | | | | | MEAN | 2.5 | 12.0 | 1.2 | 1.4 | | | | | S.D. | 4.50 | 26.54 | 3.44 | 3.78 | | | | | N | 14 | 15 <sup>a</sup> | 15 | 14 | | | | | PUPS BORN ALIV | E | | | | | | | | MEAN | 14.2 | 15.0 | 15.0 | 14.5 | | | | | S.D. | 1.63 | 2.72 | 1.41 | 1.22 | | | | | N | 14 | 14 | 15 | 14 | | | | | POSTIMPLANTATI | ON LOSS (1) | | | | | | | | MEAN | 6.1 | 5.3 | 5.8 | 4.9 | | | | | S.D. | 7.23 | 5.52 | 5.63 | 5.59 | | | | | H | 14 | 14 | 15 | 14 | | | | None significantly different from control group a One 150 PPM female, which did not deliver, was found to have eleven corpora lutea but no implantation sites following staining of the uterus. ## TABLE 15 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF LITTER SIZE AND SEX RATIO (& MALES) F1 PUPS | GROUP: PPM | 0 | 150 | 750 | 1500 | | |-----------------|-------------|-------|---------------|------|--| | LACTATIONAL DAY | <u> </u> | · · | <del></del> · | | | | TOTAL BORN/L | ITTER | | | | | | MEAN | 14.5 | 15.1 | 15.0 | 14.6 | | | S.D. | 1.87 | 2.70 | 1.41 | 1.09 | | | N | 14 | 14 | 15 | 14 | | | TOTAL BORN A | LIVE/LITTER | | | | | | MEAN | 14.2 | 15.0 | 15.0 | 14.5 | | | S.D. | 1.63 | 2.72 | 1.41 | 1.22 | | | N | 14 | 14 | 15 | 14 | | | SEX RATIO | | | | | | | MEAN | 54.9 | 45.1 | 51.8 | 49.3 | | | S.D. | 9.95 | 16.48 | 10.30 | 9.08 | | | N | 14 | _ 14 | 15 | 14 | | | LACTATIONAL DA | <u>Y_4_</u> | | | | | | LITTER SIZE | | | | | | | MEAN | 14.0 | 14.9 | 14.4 | 14.2 | | | S.D. | 1.62 | 2.79 | 1.40 | 1.31 | | | N | 14 | 14 | 15 | 14 | | | SEX RATIO | | | | | | | MEAN | 55.8 | 45.4 | 51.3 | 49.7 | | | S.D. | 10.05 | 16.71 | 10.41 | 9.31 | | | 27 | 14 | 14 | 15 | 14 | | ## TABLE 16 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF LITTER VIABILITY | <b>P1</b> | 10 | mo | |-----------|----|----| | ROUP: PPM | 0 | 150 | 750 | 1500 | |---------------------------|-----|-----|-----|------| | ACTATIONAL DAY 0 | | | | | | TOTAL BORN | 203 | 211 | 225 | 204 | | TOTAL BORN ALIVE | 199 | 210 | 225 | 203 | | NO. STILLBORN | 4 | 1 | 0 | 1 | | LACTATIONAL DAY 4 | | | | | | NO. ALIVE | 196 | 209 | 216 | 199 | | NO. DEAD<br>(DAYS 0 TO 4) | _ | _ | | | | | 3 | 1 | 9 | 4 | ## TABLE 17 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF PUP SURVIVAL INDICES F1 PUPS | GROUP: PPM | 0 | 150 | 750 | 1500 | | | |-----------------|-------|------|-------|------|--|--| | LIVE BIRTH INDI | EX | | | | | | | MEAN | 98.2 | 99.5 | 100.0 | 99.5 | | | | S.D. | 3.66 | 1.78 | 0.00 | 2.06 | | | | N | 14 | 14 | 15 | 14 | | | | 4-DAY SURVIVAL | INDEX | | | | | | | HEAN | 98.5 | 99.5 | 96.2 | 98.0 | | | | S.D. | 2.99 | 2.06 | 6.76 | 4.05 | | | | n | 14 | 14 | 15 | 14 | | | | | | | | | | | None significantly different from control group The equations used for calculating pup survival indices are recorded in the text. TABLE 18 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVALY DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF PUP BODY WEIGHT AND WEIGHT CHANGE (GRAMS) PER LITTER | | | FL PUP | s | | | |----------------|-----------------|-------------|-------|--------|--| | GROUP: PPM | C | 150 | 750 | 1500 | | | PUP BODT WEIGH | TS (q) | <del></del> | | | | | LACTATIONAL | DAY U_ | | | | | | ENTIRE LITTER | _ | | | | | | MPAN | 5.83 | 5.94 | 5.80 | 5.89 | | | S.D. | 0.469 | 0.334 | 0.614 | 0.525 | | | 31 | 14 | 14 | 15 | 14 | | | MALE PUPS | | | | * | | | Hean | 5.95 | 6.12 | 5.97 | 6.06 | | | S.D. | 0.495 | 0.374 | 0.614 | 0.561 | | | N | 14 | 14 | 15 | 14 | | | FEHALE PUPS | | | | | | | MEAN | 5.70 | 5.80 | 5.61 | 5.73 | | | S.D. | 0.467 | 0.313 | 0.601 | 0.509 | | | N | 14 | 14 | 15 | 14 | | | LACTATIONAL | DAY 4 | | | | | | ENTIRE LITTER | | | | | | | MEAN | 9.47 | 9.30 | 8.91 | 6.73 | | | S.D. | 0.885 | 0.848 | 0.999 | Q.98G | | | n | 14 | 14 | 15 | 14 | | | MALE PUPS | | | | | | | MEAN | 9.60 | 9.53 | 9.10 | 8.93 | | | S.D. | 0.899 | 0.860 | 1.008 | 1.042 | | | N | 14 | 14 | 15 | 14 | | | PEMALE PUPS | | | | | | | MEAN | 9.29 | 9.10 | 8.71 | 8.54 | | | S.D. | 0.874 | 0.797 | 0.988 | 0.931 | | | N | 14 | 14 | 15 | 14 | | | PUP BODT WEIGH | ets Changes (q) | | | | | | LACTATIONAL | L DAY 0 TO 4 | | | | | | ENTIRE LITTER | | | | | | | MEAN | 3.63 | 3.36 | 3.11 | 2.84** | | | S.D. | 0.651 | 0.642 | 0.550 | 1.051 | | | N | 14 | 14 | 15 | 14 | | | MALE PUPS | | | | | | | MEAN | 3.65 | 3.42 | 3.13 | 2.86 | | | S.D. | 0.701 | 0.634 | 0.576 | 1.089 | | | n | 1.4 | 14 | 15 | 14 | | | PEMALE PUPS | | | | | | | HEAN | 3.59 | 3.30 | 3.10 | 2.91** | | | S.D. | 0.614 | 0.593 | 0.552 | 1.028 | | | n | 14 | 14 | 15 | 14 | | <sup>\*\*</sup> Significantly different from control group (p < .01) ### PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF ORGAN WEIGHTS (GRAMS) ANIMALS SACRIFICED AT WEEK 7 | PA. | A PM | T.T | MAT | FC | |-----|------|-----|-----|----| | | | | | | | | _ | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | _ <u> </u> | | |---------------|--------|--------|----------------------------------------|------------|--| | GROUP: PPH | 0 | 150 | 750 | 1500 | | | FINAL BODY WE | IGHT | | <del></del> | | | | MEAN | 454.1 | 430.4 | 446.4 | 431.0 | | | S.D. | 41.21 | 43.56 | 31.52 | 35.03 | | | N | 15 | 15 | . 15 | 15 | | | LIVER | | | | | | | MEAN | 11.490 | 10.936 | 11.455 | 11.190 | | | S.D. | 1.4926 | 1.1531 | 1.2211 | 1.3477 | | | N | 15 | 15 | 15 | 15 | | | KIDNEYS | | | | | | | MEAN | 3.203 | 3.086 | 3.338 | 3.357 | | | s.b. | 0.3994 | €-4059 | 0.4671 | 0.3229 | | | N | 15 | 15 | 15 | 15 | | | LUNGS | | | | | | | HEAN | 1.552 | 1.532 | 1.572 | 1.522 | | | S.D. | 0.0709 | 0.1315 | 0.1447 | 0.1042 | | | N | 14 | 15 | 14 | 15 | | | THYMIC REGION | 1 | | | | | | MEAN | 0.349 | 0.338 | 0.350 | 0.292** | | | S.D. | 0.0522 | 0.1064 | 0.0978 | 0.0577 | | | N | 15 | 15 | : 15 | 15 | | | EPIDIDYMIDES | | | | | | | MEAN | 1.319 | 1.236 | <sup>=</sup> 1.267 | 1.253 | | | S.D. | 0.1269 | 0.1848 | 0.0883 | 0.1000 | | | N | 15 | 15 | 15 | 15 | | | TESTES | | | | | | | MEAN | 3.430 | 3.272 | 3.331 | 3.363 | | | S.D. | 0.3192 | 0.4861 | 0.1552 | 0.2602 | | | N | 15 | 15 | 15 | 15 | | <sup>\*\*</sup> Significantly different from control group (p < .01) ### PROPIONALDEHYDE: COMBINED REPRATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF ORGAN WEIGHTS AS & OF FINAL BODY WEIGHT ANIMALS SACRIFICED AT WEEK 7 | GROUP: PPM | 0 | 150 | 750 | 1500 | |---------------|--------|--------|--------|---------| | LIVER | | | | | | MEAN | 2.528 | 2.543 | 2.563 | 2.591 | | S.D. | 0.1945 | 0.1392 | 0.1667 | 0.1668 | | N | 15 | 15 | 15 | 15 | | KIDNEYS | | | | | | MEAN | 0.706 | 0.720 | 0.747 | 0.780** | | S.D. | 0.0662 | 0.0891 | 0.0853 | 0.0513 | | N | 15 | 15 | 15 | 15 | | LUNGS | | | | | | MEAN | 0.341 | 0.357 | 0.352 | 0.354 | | S.D. | 0.0292 | 0.0206 | 0.0264 | 0.0244 | | N | 14 | 15 | 14 | 15 | | THYMIC REGION | * | | | | | MEAN | 0.077 | 0.079 | 0.078 | 0.068 | | S.D. | 0.0135 | 0.0248 | 0.0208 | 0.0140 | | N | 15 | 15 | 15 | 15 | | EPIDIDYMIDES | | | | | | MEAN | 0.294 | 0.288 | 0.285 | 0.293 | | S.D. | 0.0493 | 0.0422 | 0.0246 | 0.0365 | | N | 15 | 15 | 15 | 15 | | TESTES | | | | | | MEAN | 0.758 | 0.762 | 0.749 | 0.785 | | S.D. | 0.0674 | 0.1126 | 0.0550 | 0.0810 | | N | 15 | 15 | 15 | 15 | <sup>\*\*</sup> Significantly different from control group (p < .01) # TABLE 21 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF ORGAN WEIGHTS (GRAMS) ANIMALS SACRIFICED AT WEEK 5 FO ADULT FEMALES | | 2 | 150 | 750 | 1500 | | |---------------|----------|--------|--------|--------|--| | GROUP: PPM | <u> </u> | | | | | | PINAL BODY WE | IGHT ≥ | | | | | | MEAN | 296.4 | 295.4 | 288.4 | 283.6 | | | S.D. | 23.29 | 19.58 | 15.19 | 12.49 | | | N | 15 | 15 | 15 | 15 | | | LIVER | | | | | | | MEAN | 12.980 | 12.995 | 12.589 | 12.336 | | | S.D. | 1.4890 | 1.5997 | 1.0985 | 1.1210 | | | N | 15 | 15 | 15 | 15 | | | KIDNEYS | | | | | | | MEAN | 1.991 | 1.973 | 2.040 | 1.968 | | | S.D. | 0.1760 | Q.2125 | 0.1821 | 0.1300 | | | N | 15 | 15 | 15 | 15 | | | LUNGS | | | | | | | MEAN | 1.219 | 1.313 | 1.191 | 1.217 | | | S.D. | 0.0502 | 0,2631 | 0.0823 | 0.1113 | | | N | 15 | 15 | 15 | 15 | | | THYMIC REGION | | | | | | | MEAN | 0.240 | 0.225 | 0.189 | 0.214 | | | S.D. | 0.0626 | 0.0437 | 0.0533 | 0.0620 | | | N | 15 | 15 | 15 | 15 | | None significantly different from control group # PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF ORGAN WEIGHTS AS % OF FINAL BODY WEIGHT ANIMALS SACRIFICED AT WEEK 5 FO ADULT FEMALES | | FU ADUST FEMALU | | | | | | |---------------|-----------------|--------|--------|--------|---|--| | GROUP: PPM | 0 | 150 | 750 | 1500 | _ | | | LIVER | | | | 4 347 | | | | HEAN | 4.377 | 4.393 | 4.364 | 4.347 | | | | S.D. | 0.3472 | 0.3981 | 0.2909 | 0.3140 | | | | N | 15 | 15 | 15 | 15 | | | | KIDNEYS | | | | | | | | HEAN | 0.674 | 0.669 | 0.708 | 0.695 | | | | S.D. | 0.0641 | 0.0703 | 0.0627 | 0.0528 | | | | N | 15 | 15 | 15 | 15 | | | | LUNGS | | | | | | | | MEAN | 0.414 | 0.445 | 0.414 | 0.429 | | | | S.D. | 0.0357 | 0.0839 | 0.0293 | 0.0351 | | | | N | 15 | 15 | 15 | 15 | | | | THYNIC REGION | ľ | | | | | | | MEAN | 0.082 | 0.076 | 0.066 | 0.076 | | | | S.D. | 0.0224 | 0.0164 | 0.0184 | 0.0227 | | | | N | 15 | 15 | 15 | 15 | | | None significantly different from control group ## TABLE 23 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD \*\* RATS SUMMARY OF NECROPSY OBSERVATIONS ### ANIMALS SACRIFICED AT WEEK 7 FO ADULT MALES | | GROUP: | 1 | 2 | 3 | 4 | | |-----------------------------------------------------------------|--------|----------|----------|----------|----------|--| | NUMBER OF ANIMALS IN DOSE GROUP<br>NUMBER OF ANIMALS SACRIFICED | | 15<br>15 | 15<br>15 | 15<br>15 | 15<br>15 | | | STOHACH ADVOCANT | | 3 | G | o | 0 | | | CONTENTS ABNORMAL | | • | Ū | • | Ū | | | LIVER | | • | • | | • | | | COLOR CHANGE, FOCAL/MULTIFOCAL<br>SIZE DECREASE | | 0 | 2 | 0 | 2<br>0 | | | COLON | | | | | | | | PARASITE | | 1 | 0 | 0 | 0 | | | skin | | | | - | • | | | SHAPE/CONTOUR CHANGE<br>ALOPECIA | | 5<br>0 | 0 | 7<br>0 | 1 | | | spleen | | | | | | | | ACCESSORY | | 1 | 0 | 0 | 0 | | | LYMPH ND, S-MAN | | | | | | | | SIZE INCREASE | | 7 | 3 | 9 | 2 | | | COLOR CHANGE, FOCAL/MULTIFOCAL | | 2<br>1 | 1 | 4 | 2<br>3 | | | COLOR CHANGE, DIFFUSE | | - | 3 | U | • | | | THYMIC REGION | | _ | | | _ | | | COLOR CHANGE, FOCAL/MULTIFOCAL | | 2 | 4 | 1 | 4 | | | SIZE DECREASE | | U | r | U | U | | | TESTES | | _ | | _ | _ | | | SIZE DECREASE | | 0 | 1 | 0 | 0<br>1 | | | CONSISTENCY CHANGE | | Ū | U | v | _ | | | EPIDIDYMIDES | | | | | • | | | NODULE | | 2 | 0 | 0 | 0 | | | LUNGS | | | | | | | | COLOR CHANGE, FOCAL/MULTIFOCAL | | 5 | 2 | 8 | 6 | | | KIDNEYS | | | | | | | | DILATED PELVIS | | G | 0 | 0 | 1 | | Page 41 of 366 V. Ç ## TABLE 24 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF MECROPSY OBSERVATIONS #### FO ADULT FEMALES | | GROUP: | 1 | 2 | 3 | 4 | | |------------------------------------------------------|--------|--------|--------|--------|--------|--| | UMBER OF ANIMALS IN DOSE GROUP | | 15 | 15 | 15 | 15 | | | UMBER OF ANIMALS SACRIFICED | | 15 | 15 | 15 | 15 | | | тонасн | | | | | | | | ULCERATED<br>CONTENTS AENORMAL | | 0 | 0 | 0 | 1 | | | IVER | | | | | | | | COLOR CHANGE, DIFFUSE | | 0 | 0 | 1 | 0 | | | COLON | | 0 | 1 | • | • | | | GASEOUS | | U | _ | 1 | 0 | | | ADRENAL GL<br>COLOR CHANGE, FOCAL/MULTIFOCAL | | 1 | 2 | 4 | 3 | | | COLOR CHANGE, DIFFUSE | | 0<br>1 | 0 | 1 | 1 | | | SIZE INCREASE | | 1 | U | 0 | 0 | | | CRUST/SCAB/SCALE | | ٥ | 1 | 0 | 0 | | | SURFACE CHANGE | | 0 | 1 | 4 | Ö | | | ALOPECIA | | 1 | 0 | 1 | 1 | | | SPLESN | | • | • | | | | | SIZE INCREASE<br>SHAPE/CONTOUR CHANGE | | 1 | 0 | 0 | 0 | | | LTHPH ND, S-HAN | | | | | | | | SIZE INCREASE | | 6<br>0 | 4 | 2 | 0 | | | COLOR CHANGE, FOCAL/HULTIFOCAL | | U | U | 1 | U | | | LYMPH ND, HED COLOR CHANGE, DIFFUSE | | ٥ | 1 | 0 | 0 | | | | | _ | _ | _ | • | | | THYMIC REGION SIZE DECREASE | | 0 | 0 | 2 | 1 | | | OVARIES | | | | | | | | CYST | | 0 | 1 | 0 | 2 | | | LUNGS | | _ | _ | | | | | COLOR CHANGE, DIFFUSE COLOR CHANGE, FOCAL/MULTIFOCAL | | 2<br>5 | 0<br>4 | 0<br>6 | 0<br>5 | | | | | • | •• | • | • | | | Kidneys<br>Dilated Pelvis | | 1 | 1 | 0 | 0 | | | URETER | | | | | | | | DILATATION/DISTENTION | | 1 | 0 | 0 | 0 | | GROUP LEGEND: 1 is 0 PPH, 2 is 150 PPH, 3 is 750 PPH, 4 is 1500 PPM ## TABLE 25 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF MICROSCOPIC DIAGNOSES BY GRADE (NASAL CAVITY) #### ANIMALS SACRIFICED AT WEEK 7 FO ADULT MALES | | GROUP: | 1 | 2 | 3 | 4 | |-----------------------------------------------------------------|--------|----------|----------|----------|----------| | NUMBER OF ANIHALS IN DOSE GROUP<br>NUMBER OF ANIHALS SACRIFICED | | 15<br>15 | 15<br>15 | 15<br>15 | 15<br>15 | | NASAL CAVITY | | | | | | | TOTAL NUMBER EXAMINED EXAMINED, UNREMARKABLE | | 15<br>15 | 15<br>3 | 15<br>0 | 15<br>0 | | RHIMITIS | | 0 | 0 | 7** | 14** | | HINIMAL | | 0 | 0 | 1 | 3 | | MILD | | 0 | 0 | 5 | 7 | | MODERATE | | 0 | 0 | 1 | 4 | | SQUAMOUS KETAPLASIA | | 0 | 0 | 1 | 2 | | HILD | | 0 | 0 | 1 | 0 | | MCDERATE | | 0 | 0 | 0 | 2 | | ATROPHI, OLFACTORI EPITHELIUM | | 0 | 2 | 10** | 15** | | HINIMAL | | 0 | 2 | 1 | 8 | | HILD | | 0 | 0 | 6 | 1 | | MODERATE | | 0 | 0 | 3 | 8 | | HARKED | | 0 | O | 0 | 6 | | VACUOLIZATION OF OLFACTORY EPITHELIUM | | 0 | 12** | 14** | 2 | | MINIMAL | | C | 6 | 2 | C | | MILD | | 0 | 4 | 3 | 0 | | HODERATE | | 0 | 2 | 2 | Ç | | MARKED | | . 0 | 0 | 7 | 2 | GROUP LEGEND: 1 is 0 PPM, 2 is 150 PPM, 3 is 750 PPM, 4 is 1500 PPM <sup>\*\*</sup> Significantly different from control group (p < .01) ## TABLE 26 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF MICROSCOPIC DIAGNOSES BY GRADE (MASAL CAVITY) #### FO ADULT FEMALES | | GROUP: | 1 | 2 | 3 | 4 | |-----------------------------------------------------------------|--------|----------|----------|----------|----------| | NUMBER OF ANIMALS IN DOSE GROUP<br>NUMBER OF ANIMALS SACRIFICED | | 15<br>15 | 15<br>15 | 15<br>15 | 15<br>15 | | NASAL CAVITY<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | | 15<br>15 | 15<br>0 | 15 | 15 | | RETRITIS | | 0 | 1 | 6* | 1 | | HINIHAL | | 0 | 1 | 0<br>6 | 0 | | MILD | | U | U | 6 | ı | | ATROPHY, OLFACTORY EPITHELIUM | | 0 | 0 | 2 | 15** | | MINIMAL | | 0 | 0 | 1 | 0 | | MILD | | 0 | 0 | 1 | G<br>6 | | MODERATE | | 0 | 0 | 0 | 6 | | HARKED | | 0 | 0 | 0 | 9 | | MECROSIS OF OLFACTORY EPITHELIUM | | 0 | 0 | 0 | 1 | | HODERATE | | 0 | 0 | 0 | 1 | | VACUOLIZATION OF OLFACTORI EPITHELIUM | | 0 | 15** | 15** | . 0 | | HINIMAL | | c | 8 | 0 | 0 . | | HILD | | ō | 7 | 7 | Ŏ | | HODERATE | | ā | á | ė | ă | GROUP LEGEND: 1 is 0 PPH, 2 is 150 PPH, 3 is 750 PPH, 4 is 1500 PPH Significantly different from control group (p < .05) significantly different from control group (p < .01) ### BUSH': RUN RESEARCH CENTER 6702 Mellon Road, Export, Pennsylvania 15632-8902 Telephone (412) 733-5200 Telecopier (412) 733-4804 #### Quality Assurance Unit Study Inspection Summary Test Substance: Propionaldehyde Study: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD® Rats Study Director: C. D. Driscoll, Ph.D. The Quality Assurance Unit of BRRC conducted the inspections listed below and reported the results to the study director and to management on the dates indicated. It is the practice of this Quality Assurance Unit to report the results of <u>each</u> inspection to both the study director and management. | Inspect | ion | Date QAU Report Issued | | | | |----------|---------------------------------------------|------------------------|---------------|--|--| | Date | Type | To Study Director | To Management | | | | 10-8-91 | Protocol<br>Range-Finding Study | 10-11-91 | 10-15-91 | | | | 10-8-91 | Protocol<br>Full Study | 10-11-91 | 12-6-91 | | | | 10-15-91 | Event-Animal Receipt<br>Range-Finding Study | 10-25-91 | 12-9-91 | | | | 10-23-91 | Event-Exposure<br>Range-Finding Study | 10-23-91 | 12-9-91 | | | | 11-12-91 | Event-Sacrifice<br>Range-Finding Study | 11-12-91 | 12-9-91 | | | | 12-24-91 | Event-Animal Receipt Full Study | 12-30-91 | 2-18-92 | | | | 1-6-92 | Event-Exposure<br>Full Study | 1-6-92 | 2-18-92 | | | | 2-18-92 | Event-Sacrifice Full Study | 2-18-92 | 4-15-92 | | | | 2-27-92 | Event-Male Sacrifice Full Study | <b>2-27-92</b> | 4-15-92 | | | Page 45 of 366 | Inspection | | Date QAU Report Issued | | | | | |---------------------|-----------------------------------------------------------|------------------------|---------------|--|--|--| | Date | Type | To Study Director | To Management | | | | | 7-10-92 | Protocol Amendment 1<br>Range-Finding and<br>Full Studies | 7-14-92 | 7-21-92 | | | | | 8-18 to<br>12-22-92 | Raw Data and Report<br>Range-Finding and<br>Full Studies | 1-11-93 | 4-2-93 | | | | | 9-17 to<br>12-14-92 | Anatomic Pathology<br>Raw Data and Report<br>Full Study | 1-11-93 | 4-2-93 | | | | | 9-23 to<br>12-9-92 | Analytical Chemistry<br>Raw Data and Report<br>Full Study | 1-11-93 | 4-2-93 | | | | | 9-22 to<br>12-10-92 | Clinical Pathology<br>Raw Data and Report<br>Full Study | 1-11-93 | 4-2-93 | | | | | 4-1-93 | Archives<br>Range-Finding and<br>Full Studies | 4-1-93 | 4-2-93 | | | | Linda J. Calisti, Manager Date Good Laboratory Practices/Quality Assurance BRRC Report 91U0086 Appendix 1 Page 1 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD® Rats Chamber Atmosphere Report (27 Pages) #### TABLE OF CONTENTS | SUMMARY | 3 | |----------------------------------------------------------------|-----| | MATERIALS AND METHODS | 3 | | Test Substance | 3 | | Test Substance Generation | 3 | | | _ | | Chamber Distribution Setup | 3 | | Analytical Instrumentation | 4 | | Calibration | 4 | | RESULTS AND DISCUSSION | 5 | | Chamber Atmosphere Analysis | 5 | | Analytical/Nominal Concentration Ratio | 5 | | Temperature and Relative Humidity | 5 | | Chamber Distribution | 5 | | Chamber Distribution | , | | mile a mile i di ci di mbiratana mile ci di m | 7 | | Table 1 - Chemical and Physical Properties | • | | Table 2 - Test Substance Analysis | 8 | | Table 3 - Gas Chromatograph Operating Parameters | 9 | | Table 4 - Chamber Atmosphere Data - Control Chamber | 10 | | Table 5 - Chamber Atmosphere Data - 150 ppm Chamber | 11 | | Table 6 - Chamber Atmosphere Data - 750 ppm Chamber | 12 | | Table 7 - Chamber Atmosphere Data - 1500 ppm Chamber | 1.3 | | Table 8 - Chamber Description and Position of Chamber Sampling | | | Probes | 14 | | | 15 | | Table 9 - Chamber Distribution Data | | | Figure 1 - Calibration Curve | 16 | | Attachment 1 - Test Substance Characterization Report | 17 | 7.5 #### SUMMARY The concentration of propionaldehyde vapor in the exposure chamber was monitored throughout the 52 days of exposure by flame ionization gas chromatography. The concentration in each exposure chamber atmosphere was determined approximately 11 times during each 6-hour exposure. The overall mean (± standard deviation) chamber atmosphere concentrations were 151 (± 4.1), 745 (± 15.2), and 1522 (± 23.7) ppm, for target concentrations of 150, 750, and 1500, ppm, respectively. Propionaldehyde was not detected in the control chamber atmosphere. The test substance was analyzed before and after the exposure regimen and remained over 99% pure. The uniformity of propional dehyde vapor concentration in each of 3 exposure chambers was examined. Each chamber was tested once prior to the start of the exposure regimen. Vapor concentrations were measured by gas chromatography using flame ionization detection. Concentrations were measured at 5 positions for each individual distribution test. In each test, these concentrations were representative of a uniform vapor distribution as indicated by low coefficient of variation (CV) values. CV values of less than 4% were found for each of the 3 distribution tests. Furthermore, the results indicate that the "normal" analytical sampling position for each chamber was properly located within the chamber such that sampling results were representative of propional dehyde concentrations in the breathing zone of the animals. #### MATERIALS AND METHODS #### Test Substance Two 55-gallon containers of propionaldehyde (CAS No. 123-38-6, Lot T-1258, BRRC Sample No. 54-351 A and B) were received from Union Carbide Chemicals and Plastics Company Inc. (UCC&P), S. Charleston, WV, on October 15, 1991. The chemical and physical properties of the test substance are described in Table 1. The compositional analyses were provided by the GLP Analytical Skills Center at the UCC&P South Charleston, WV, Technical Center. A summary of the reports is presented in Table 2; the entire report is presented as Attachment 1. The prestudy and poststudy compositional analyses indicated that the test substance was over 99% pure and had remained stable for the duration of the exposure regimen. #### Test Substance Generation The methods used to generate propionaldehyde vapor in the exposure chambers are described in the text of the main report. #### Chamber Distribution Setup The distribution tests simulated actual animal exposures, including the use of similar animal cages, cage carriers with collection trays, and airflow rates. No animals were present in the exposure chambers. The positions of the sampling probes within the chambers are provided in Table 8. One of these positions was the "normal" analytical probe position. It is important to note the analytical sampling consisted of three "cycles," each cycle requiring approximately 30 minutes to complete. Since the chamber concentrations may vary slightly with time, the data from the three cycles (Table 9) were averaged to eliminate time dependent concentration variations. Also, the sampling occurred after the equilibration of the chamber concentration (t99) had been obtained. #### Analytical Instrumentation A Perkin-Elmer Sigma 2000 gas chromatograph (GC) equipped with a flame ionization detector was used to analyze the exposure chamber atmospheres for propionaldehyde vapor. The GC operating conditions are presented in Table 3. A Spectra-Physics 4270 Integrator provided a record of the chromatograms and chromatographic analyses as well as peak integration. The data were captured using an IBM PS/2 Computer with Spectra-Physics Chromstation/2 software. In-house software was used to compute daily statistics and also to provide an alarm system which monitored chamber concentrations. #### Calibration Calibration of the gas chromatograph was achieved by injecting gas standards which were prepared by syringe injection of propionaldehyde test substance into Tedlar gas bags containing UHP nitrogen or air. These standards were prepared using the mathematica? relationship: $$V = \frac{C \times V_h \times MW \times 298 \times P \times 10^{-6}}{d \times 24.45 \times T \times 760}$$ where: V = required volume of calibration liquid in milliliters at temperature T (degrees K) C = desired calibration concentration, in ppm Vh = volume of container, in liters MW = molecular weight of the calibration liquid P = barometric pressure, in millimeters of mercury d = density of the calibration liquid in grams per milliliter at temperature T 24.45 = molecular volume at 298 degrees K and 760 millimeters of mercury, in liters T = temperature, in degrees Kelvin The calibration curve (Figure 1) was constructed by plotting peak areas versus the gas standard concentrations. The calibration was checked at least once each week during the exposure regimen. #### RESULTS AND DISCUSSION #### Chamber Atmosphere Analysis Each chamber atmosphere was analyzed for propionaldehyde approximately twice each hour during each 6-hour exposure by flame ionization gas chromatography. The daily mean analytical concentrations are listed in Tables 4 through 7. The means of daily mean chamber atmosphere concentrations (± standard deviations) were 151 (± 4.1), 745 (± 15.2), and 1522 (± 23.7) ppm, for target concentrations of 150, 750, and 1500 ppm, respectively. No concentration of propionaldehyde above the estimated minimum detection limit of 5 ppm was detected in the control chamber atmosphere during the study. #### Analytical/Nominal Concentration Ratio The daily analytical/nominal (A/NOM) propionaldehyde concentration ratios are given in Tables 5 through 7; the nominal concentration being an estimate calculated from the quantity of test substance delivered and the chamber airflow rate. The overall mean A/NOM concentration ratios were 1.00, 1.04, and 1.05, for propionaldehyde target concentrations of 150, 750, and 1500 ppm, respectively. #### Temperature and Relative Humidity The daily mean temperature and relative humidity values for the exposure chambers are also presented in Tables 4 through 7. The means of daily mean temperature values were 20, 21, 20, and 20°C, for propional dehyde target concentrations of 0, 150, 750, and 1500 ppm, respectively. The means of daily mean relative humidity values were 48, 47, 48, and 48%, respectively. #### Chamber Distribution The uniformity of propional dehyde vapor concentration in 3 test substance exposure chambers was examined. Each chamber was tested prior to the exposure regimen. Concentrations were measured at 5 positions for each distribution test. The results and the statistical summaries are presented in Table 9. BRRC Report 91U0086 Appendix 1 Page 6 In each test, these concentrations were representative of a uniform vapor distribution as indicated by low coefficient of variation (CV) values. CV values of 0.3, 0.2, and 3.2% were obtained for exposure chambers 38-1, 38-2, and 38-4, respectively. Furthermore, the results indicate that the "normal" analytical sampling position for each chamber was properly located within the chamber such that sampling results were representative of propional dehyde concentrations in the breathing zone of the animals. Analytical Chemist: Tryin M. Pritts, Ph.D. 4-6-93 Date INHALIANALYTPROPF March 16, 1993 ### TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY STUDY IN CD® RATS #### CHEMICAL AND PHYSICAL PROPERTIES1 Propanal; Propylaldehyde Synonyms: 58.08 Molecular Weight: C2H5CHO Molecular Formula: 2.0 Vapor Density (air = 1) Appearance and Odor: Water-white liquid; suffocating odor 48°C Boiling Point, 760 mm Hg: 22% @ 20°C Solubility in Water: 19.9 Evaporation Rate (but acetate=1): Vapor Pressure at 20°C: approx. 258 mm Hg 0.7982 @ 20/20°C Specific Gravity (H2O = 1): <sup>1</sup>Material Safety Data Sheet, Union Carbide Chemicals and Plastics Company Inc., Revised 8/29/90. Flash Point (Tag Closed Cup): < -18°C ### TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY STUDY IN CD\* RATS #### TEST SUBSTANCE ANALYSIS1 | Component | Prestudy<br>Areat | Poststudy<br>Areas | | | |-------------------------|-------------------|--------------------|--|--| | Propionaldehyde | 99.77 (approx.) | 99.42 (approx.) | | | | n-Propanol | 0.01 | 0.02 | | | | 2-Methyl Butyraldehyde | 0.02 | 0.02 | | | | Valeraldehyde | y 0.06 | 0.02 | | | | Propionic Acid | 0.07 | 0.37 | | | | Propionaldehyde Dimers | 0.03 | 0.04 | | | | Propionaldehyde Trimers | 0.01 | 0.04 | | | | All Other Impurities | 0.03 | 0.07 | | | | | | | | | The capillary gas chromatographic compositional analyses were provided by the GLP Analytical Skills Center at the UCCsP South Charleston, WV, Technical Center. In addition, gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy were independently used to confirm the sample's identity. ### TABLE 3 PROPIONALDEHIDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY STUDY IN CD® RATS #### GAS CHROHATOGRAPH OPERATING PARAMETERS Perkin-Elmer Sigma 2000 Chromatograph: Plame Ionization Detector: 10% SP-1900, on 80/100 mesh Column: Supelcoport, 10 ft. x 1/8 in. stainless steel Column temperature: 170°C Injector temperature: 100°C gas sample valve Detector temperature: 250°C Carrier flow rate: 20 mL/minute nitrogen Sample size: 0.5 cc Retention time: 1.4 minutes GC attenuation: Range = 100 Approximately 5 ppm 128 Minimum detection limit: Integrator attenuation: TABLE 4 PROPIONALDENIDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY STUDY IN CD\* RATS CHAMBER ATMOSPHERE DATA: 0 PPM CHAMBER | Exposure | TEMP | RH<br>(%) | A<br>(ppm) | | |----------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Day | (°C) | | | | | 1 | 20.0 | 47.6 | ₽DL | | | 2 | 19.8 | 50.2 | →DL | | | 3 | 20.7 | 48.8<br>49.3 | odi<br>odi | | | 4 | 20.5<br>21.0 | 46.8 | <00L | | | 5<br>6 | 20.0 | 47.9 | ◆©L | | | 7 | 20.0 | 47.9 | <b>₽</b> DL | | | 8 | 20.0 | 46.7 | <b>⊘</b> DL | | | 9 | 20.0 | 46.1 | <b>⊅</b> DL | | | 10 | 22.0 | 49.8 | <b>⇔</b> DL | | | 11 | 22.6 | 49.6 | <b>⇔</b> ©L | | | 12 | 21.8 | 49.9 | <#DL | | | 13 | 21.7 | 49.9 | <#DL | | | 14 | 21.8 | 49.2 | <#OL | | | 15 | 20.0 | 47.5 | <#DL | | | 16 | 20.3 | 48.5 | <b>⇔</b> ©L | | | 17 | 20.0 | 46.9 | <b>⊲e</b> l | | | 16 | 20.0 | 48.5 | <#Dī | | | 19 | 20.0 | 46.1 | < <u>√</u> 01. | | | 20 | 20.8 | 47.3 | <b>dor</b> | | | 21 | 20.0 | 46.8 | 40L | | | 22 | 20.0 | 46.5 | <### <### Company of the | | | 23 | 21.0 | 46.6<br>47.3 | ODT<br>ODT | | | 24<br>25 | 21.0<br>20.8 | 47.2 | 4Dr | | | 26 | 21.0 | 46.9 | <b>₩</b> | | | 27 | 20.3 | 45.7 | → DL | | | 28 | 20.1 | 42.8 | <#DL | | | 29 | 20.7 | 45.8 | <##DL | | | 30 | 21.0 | 46.8 | <1DL | | | 31 | 21.9 | 46.2 | <b>⇔</b> DL | | | 32 | 20.0 | 46.0 | ODI. | | | 33 | 20.0 | 45.5 | <b>₽</b> DL | | | 34 | 22.0 | 46.5 | <pdi ddi<="" td="" →=""><td></td></pdi> | | | 35 | 20.0 | 44.3 | <100 L | | | 36 | 21.0 | 45.9 | → DL | | | 37 | 21.0 | 46.6 | ◆DL | | | 38 | 20.3 | 46.8 | <b>₽</b> DL | | | 39 | 20.0 | 49.1 | ₽®L | | | 40 | 20.0 | 47.8 | | | | 41 | 20.3 | 47.4 | | | | 42 | 20.0 | 46.4 | ODL | | | 43 | 20.0 | 49.1<br>48.4 | <0.007<br><0.007 | | | 44<br>45 | 20.0<br>20.0 | 49.1 | <b>⊲₩</b> | | | 46<br>46 | 20.0 | 48.7 | 400r | | | 47 | 20.0 | 48.2 | <b>√</b> ©L | | | 48 | 20.0 | 48.6 | <b>₩</b> DL | | | 49 | 20.0 | 48.0 | <##DL | | | 50 | 20.0 | 48.6 | <b>₫₽</b> L | | | 51 | 20.0 | 48.8 | <b>⊲c</b> t | | | 52 | 20.0 | 47.8 | <b>d</b> ⊕r | | | | | | amt | | | Mean: | 20.5 | 47.5 | <b>₩</b> | | | SD: | 0.70 | 1.50 | <del>-</del> | | TEMP = temperature (daily mean) RH = relative humidity (daily mean) A = analytical concentration (daily mean) SD = standard deviation of A → DL = less than the minimum estimated detection limit TABLE 5 PROPIONALDEHIDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY STUDY IN CD® BATS CHAMBER ATMOSPHERE DATA: 150 PPM CHAMBER | Exposure | TEC | RH | λ | | HOH | _ | |----------|------|------|--------|-----|-------|-------| | Day | (°C) | (%) | (ppm) | ±SD | (ppm) | A/BOH | | 1 | 20.0 | 44.5 | 153 | 2.8 | 168 | 0.91 | | 2 | 20.7 | 48.5 | 153 | 2.1 | 165 | 0.93 | | 3 | 20.9 | 47.5 | 154 | 6.9 | 158 | 0.97 | | 4 | 20.9 | 46.8 | 146 | 2.4 | 145 | 1.01 | | 5 | 21.0 | 46.4 | 146 | 2.3 | 147 | 0.99 | | 6 | 20-9 | 46.8 | 151 | 2.7 | 151 | 1.00 | | 7 | 20.6 | 46.9 | 155 | 1.5 | 153 | 1.01 | | 8 | 20.8 | 46.0 | 148 | 3.0 | 147 | 1.01 | | 9 | 20.0 | 45.3 | 146 | 2.1 | 147 | 0.99 | | 10 | 21.7 | 46.7 | 148 | 2.8 | .147 | 1.01 | | 11 | 22.9 | 50.8 | 152 | 2.9 | 147 | 1.03 | | 12 | 22.8 | 49.8 | 152 | 5.0 | 143 | 1.06 | | 13 | 22.9 | 49.1 | 155 | 5.7 | 147 | 1.05 | | 14 | 22.9 | 49.6 | 150 | 9.4 | 145 | 1.03 | | 15 | 20.8 | 46.9 | 148 | 5.0 | 145 | 1.02 | | 16 | 21.4 | 47.1 | 153 | 5.7 | 146 | 1.05 | | 17 | 20.9 | 46.2 | 143 | 1.9 | 145 | 0.99 | | 18 | 20.8 | 47.1 | 155 | 4.2 | 145 | 107 | | 19 | 21.0 | 45.7 | 151 | 5.5 | 148 | 1.02 | | 20 | 20.0 | 46.3 | 153 | 5.4 | 148 | 1.03 | | 21 | 21.1 | 46.1 | 157 | 6.3 | 147 | 1.07 | | 22 | 20.8 | 46.1 | 150 | 6.0 | 148 | 1.01 | | 23 | 21.0 | 45.8 | 143 | 1.2 | 146 | 0.98 | | 24 | 20.8 | 47.7 | 150 | 6.1 | 146 | 1.03 | | 25 | 20.8 | 47.6 | 148 | 6.6 | 145 | 1.02 | | 26 | 20.8 | 47.6 | 150 | 4.2 | 143 | 1.05 | | 27 | | 45.1 | 153 | 4.4 | 149 | 1.03 | | 28 | 21.0 | | 152 | 6.4 | 148 | 1.03 | | 29 | 20.0 | 46.1 | 146 | 7.2 | 147 | 0.99 | | 30 | 20.8 | 44.7 | 148 | | 146 | 1.01 | | | 22.0 | 45.9 | | 6.5 | 149 | | | 31 | 21.9 | 45.5 | 161 | 4.7 | 149 | 1.08 | | 32 | 21.8 | 45.4 | 151 | 4.6 | | 1.02 | | 33 | 20.9 | 43.6 | 146 | 3.7 | 148 | 0.99 | | 34 | 21.0 | 44.4 | 158 | 3.1 | 149 | 1.06 | | 35 | 20.8 | 44.2 | 161 | 4.2 | 152 | 1.06 | | 36 | 22.0 | 44.5 | 148 | 3.3 | 152 | 0.97 | | 37 | 21.0 | 45.2 | 148 | 7.9 | 151 | 0.98 | | 38 | 21.9 | 44.0 | 154 | 9.2 | 149 | 1.03 | | 39 | 20.0 | 46.0 | 144 | 3.9 | 155 | 0.93 | | 40 | 20.9 | 47.2 | 147 | 1.0 | 158 | 0.93 | | 41 | 21.0 | 48.5 | 148 | 1.2 | 159 | 0.93 | | 42 | 20.0 | 47.9 | 150 | 1.4 | 159 | 0.94 | | 43 | 20.0 | 47.5 | 151 | 2.1 | 160 | 0.94 | | 44 | 20.6 | 47.1 | 150 | 0.7 | 159 | 0.94 | | 45 | 20.0 | 48.4 | 146 | 0.8 | 158 | 0.92 | | 46 | 20.0 | 47.4 | 151 | 1.0 | 159 | 0.95 | | 47 | 20.0 | 47.6 | 153 | 1.2 | 161 | 0.95 | | 48 | 19.0 | 46.3 | 155 | 1.0 | 159 | 0.97 | | 49 | 19.3 | 47.0 | 156 | 2.2 | 161 | 0.97 | | 50 | 20.0 | 48.0 | 149 | 2.3 | 157 | 0.95 | | 51 | 20.0 | 47.9 | 152 | 0.8 | 160 | 0.95 | | 52 | 20.7 | 47.2 | 148 | 1.6 | 159 | 0.93 | | Kean: | 20.9 | 46.7 | 15). ÷ | | 151 | 1.00 | | SD: | 0.87 | 1.53 | 4.1 | | 6.4 | 0.046 | TEMP = temperature (daily mean) RH = relative humidity (daily mean) A = analytical concentration (daily mean) SD = standard deviation of A NOH = nominal concentration TABLE 6 PROPIONALDENTDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY STUDY IN CD\* RATS CHAMBER ATMOSPHERE DATA: 750 PPM CHAMBER | Exposure | TEMP | RH | λ | | BOH | | |----------|-------------|------|-------|-----|------------|--------| | Day | (°C) | (%) | (bba) | ±SD | (ppa) | y\zioh | | 1 | 20.8 | 47.6 | 747 | 5 | 705 | 1.06 | | 2 | 22.3 | 49.5 | 747 | 7 | 699 | 1.07 | | 3 | 20.7 | 49.2 | 743 | 5 | 698 | 1.06 | | 4 | 20.9 | 47.8 | 731 | 5 | 699 | 1.05 | | 5 | 20.0 | 47.4 | 733 | 6 | 699 | 1.05 | | 6 | 20.8 | 48.2 | 727 | 13 | 683 | 1.06 | | 7 | 20.4 | 48.4 | 758 | 8 | 764 | 1.08 | | 8 | 20.0 | 46.9 | 706 | 4 | 675 | 1.05 | | 9 | 19.8 | 47.0 | 719 | 8 | 694 | 1.04 | | 10 | 21.1 | 49.7 | 737 | 6 | 698 | 1.06 | | 11 | 22.6 | 50.7 | 744 | 10 | 695 | 1.07 | | 12 | 21.8 | 50.2 | 739 | 19 | 697 | 1.06 | | 13 | 22.5 | 50.6 | 754 | 8 | 695 | 1.08 | | 14 | 22.8 | 50.5 | 747 | 12 | 700 | 1.07 | | 15 | 21.7 | 49.2 | 754 | 8 | 705 | 1.07 | | 16 | 20.6 | 49.7 | 745 | 10 | 704 | 1.06 | | 17 | 20.6<br>19. | 48.1 | 724 | 9 | 695 | 1.04 | | | | 48.6 | 749 | 12 | 700 | 1.07 | | 18 | 19.5 | 47.2 | 728 | 7 | 704 | 1.03 | | 19 | 20-0 | 48.8 | 743 | 25 | 703 | 1.06 | | 20 | 20.9 | 48.6 | 734 | . 7 | 697 | 1.05 | | 21 | 20.0 | | 722 | | 700 | 1.03 | | 22 | 20.7 | 46.8 | | 11 | 700<br>716 | 1.03 | | 23 | 21.0 | 47.7 | 734 | 15 | | | | 24 | 20.8 | 48.3 | 765 | 4 | 730 | 1.05 | | 25 | 20.8 | 48.8 | 752 | 14 | 724 | 1.04 | | 26 | 20.8 | 47.8 | 751 | 4 | 723 | 1.04 | | 27 | 19.0 | 46.5 | 722 | 7 | 723 | 1.00 | | 28 | 21.0 | 44.8 | 758 | 9 | 723 | 1.05 | | 29 | 20.1 | 47.2 | 734 | 15 | 721 | 1.02 | | 30 | 21.8 | 47.4 | 746 | 12 | 730 | 1.02 | | 31 | 21.8 | 47.8 | 759 | 9 | 730 | 1.04 | | 32 | 20.8 | 48.0 | 751 | 17 | 723 | 1.04 | | 33 | 20.0 | 46.5 | 741 | 11 | 732 | 1.01 | | 34 | 20.9 | 46.7 | 752 | 5 | 728 | 103 | | 35 | 19.0 | 46.0 | 761 | 6 | 723 | 1.05 | | 36 | 21.9 | 46.4 | 748 | 14 | 727 | 1.03 | | 37 | 21.9 | 47.1 | 759 | 23 | 728 | 1.04 | | 38 | 21.3 | 48.5 | 745 | 3 | 727 | 1.02 | | 39 | 19.9 | 48.3 | 759 | 9 | 729 | 1.04 | | 40 | 20.0 | 48.0 | 730 | 5 | 722 | 1.01 | | 41 | 20.0 | 49.7 | 741 | 8 | 732 | 1.01 | | 42 | 19.9 | 48.4 | 736 | 4 | 726 | 1.01 | | 43 | 19.8 | 48.3 | 738 | 4 | 720 | 1.02 | | 44 | 19.9 | 48.5 | 738 | 16 | 728 | 1.01 | | 45 | 19.2 | 49.0 | 726 | 8 | 724 | 1.00 | | 46 | 19.0 | 48.9 | 750 | 14 | 744 | 1.01 | | 47 | 19.0 | 48.8 | 772 | 8 | 753 | 1.03 | | 48 | ີ 20.0 | 47.8 | 788 | 7 | 745 | 1.06 | | 49 | 20.0 | 48.7 | 760 | 7 | 746 | 1.02 | | 50 | 19.0 | 48.8 | 770 | 3 | 752 | 1.02 | | | | 49.4 | 767 | 4 | 751 | 1.02 | | 51 | 19.0 | | | 5 | 744 | 1.01 | | 52 | 20.0 | 48.2 | 749 | | 717 | | | Mean: | 20.5 | 48.2 | 745 | | | 1.04 | | SD: | 1.00 | 1.2 | 15.2 | | 18.8 | 0.022 | TEMP = temperature (daily mean) RH = relative humidity (daily mean) A = analytical concentration (daily mean) SD = standard deviation of A NOW = nominal concentration TABLE 7 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY STUDY IN CD® RATS CHAMBER ATMOSPHERE DATA: 1500 PPM CHAMBER | Exposure | TEMP | RH | λ | | HOH | | | |--------------|--------------|--------------|--------------|----------|-------|---------------|--| | Day | (°C) | (\$) | (ppm) | ±SD | (ppm) | A/HOH | | | 1 | 19.8 | 47.4 | 1543 | 4 | 1456 | 1.96 | | | 2 | 20.3 | 49.8 | 1537 | 6 | 1449 | 1.06 | | | 3 | 20.7 | 49.1 | 1548 | 5 | 1455 | 1.06 | | | 4 | 20.0 | 47.4 | 1538 | 3 | 1450 | 1.06 | | | 5 | 19.0 | 47.9 | 1529 | 5 | 1451 | 1.05 | | | 6 | 19.8 | 48.1 | 1528 | 1.9 | 1433 | 1.07 | | | 7 | 21.6 | 48.8 | 1555 | 38 | 1450 | 1.07 | | | 8 | 19.8 | 46.9 | 1554 | 13 | 1455 | 1.07 | | | ğ | 19.0 | 47.0 | 1490 | 11 | 1445 | 1.03 | | | 10 | 20.8 | 50.5 | 1545 | 8 | 1444 | 1.07 | | | 11 | 21.8 | 51.2 | 1540 | 13 | 1435 | 1.07 | | | 12 | 22.8 | 50.9 | 1547 | 15 | 1437 | 1.08 | | | 13 | 21.5 | 51.0 | 1563 | 12 | 1440 | 1.09 | | | 14 | 21.8 | 50.7 | 1553 | 38 | 1440 | 1.08 | | | 15 | 20.0 | 49.2 | 1550 | 7 | 1452 | 1.07 | | | 16 | 19.9 | 49.8 | 1551 | 10 | 1456 | 1.07 | | | 17 | 20.5 | 47.8 | 1540 | 7 | 1458 | 1.06 | | | 18 | 19.8 | 48.5 | 1562 | á | 1456 | 1.07 | | | 7) | 20.0 | 47.1 | 1508 | 5 | 1446 | 1.04 | | | 20 | | 48.6 | 1529 | 17 | 1450 | 1.05 | | | | 19.9 | 48.3 | 1561 | 14 | 1466 | 1.06 | | | 21 | 19.9 | 46.8 | | 18 | 1455 | 1.04 | | | 22 | 20.0 | | 1520 | | 1452 | | | | 23 | 20.0 | 47.0 | 1491 | 7 | 1456 | 1.03 | | | 24 | 19.8 | 47.8 | 1536 | 12 | | 1.05 | | | 25 | 19.8 | 48.0 | 1522 | 9 | 1464 | 1.04 | | | 26 | 19.8 | 47.6 | 1498 | 6 | 1445 | 1.04 | | | 27 | 20.0 | 45.7 | 1524 | 12 | 1447 | 1.05 | | | 28 | 20.5 | 43.3 | 1515 | 22 | 1456 | 1.04 | | | 29 | 19.2 | 47.2 | 1485 | 12 | 1449 | 1.02 | | | 30 | 21.4 | 47.8 | 1492 | 22 | 1452 | 1.03 | | | 31 | 20.4 | 47.4 | 1514 | 5 | 1453 | 1.04 | | | 32 | 19.8 | 46.6 | 1505 | 18 | 1450 | 1.04 | | | 33 | 19.8 | 45.4 | 1488 | 10 | 1452 | 1.02 | | | 34 | 20.7 | 46.5 | 1495 | 4 | 1451 | 1.03 | | | 35 | 20.0 | 46.0 | 1500 | 6 | 1453 | 1.03 | | | 36 | 20.8 | 46.6 | 1522 | 30 | 1461 | 1.04 | | | 37 | 20.0 | √ 46.1 | 1498 | 20 | 1455 | 1.03 | | | 38 | 21.9 | 46.7 | 1505 | 7 | 1456 | 1.03 | | | 39 | 19.0 | 48.0 | 1540 | 20 | 1457 | 1.06 | | | 40 | 19.4 | 47.8 | 1504 | 10 | 1468 | 1.02 | | | 41 | 19.0 | 48.8 | 1492 | 13 | 1458 | 1.02 | | | 42 | 19.0 | 48.6 | 1507 | 10 | 1468 | 1.03 | | | 43 | 19.0 | 51.1 | 1509 | 10 | 1449 | 1.04 | | | 44 | 20.0 | 50.4 | 1494 | 10 | 1446 | 1.03 | | | 45 | 18.8 | 51.2 | 1493 | 14 | 1461 | 1.02 | | | 46 | 18.9 | 50.7 | 1512 | -6 | 1464 | 1.03 | | | 47 | 19.0 | 50.8 | 1502 | 14 | 1459 | 1.03 | | | 48 | 19.0 | 50.0 | 1541 | 23 | 1446 | 1.07 | | | 49 | 19.0 | 50.1 | 1557 | 10 | 1456 | 1.07 | | | 50 | | 50.6 | 1523 | 5 | 1463 | 1.04 | | | 50<br>51 | 19.0 | 51.2 | 1516 | 4 | 1450 | 1.04 | | | 51<br>52 | 20.0 | 50.0 | 1490 | 3 | 1455 | 1.02 | | | | 19.0 | | | <b>3</b> | 1453 | | | | Mean:<br>SD: | 20.0<br>0.92 | 46.4<br>1.83 | 1522<br>23.7 | | 7.8 | 1.05<br>0.019 | | TEMP = temperature (daily mean) RH = relative humidity (daily mean) A = analytical concentration (daily mean) SD = standard deviation (A NOM = nominal concentration ### TABLE 8 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY STUDY IN CD® RATS ### CHAMBER DISTRIBUTION STUDY CHAMBER DESCRIPTION AND POSITION OF CHAMBER SAMPLING PROBES #### CHAMBER Construction: Stainless steel and glass. Manufacturer: Wahmann Manufacturing Company (Timonium, MD) Shape: Rectangular Dimensions: Hwight: 207 cm Width: 98 cm Depth: 213 cm #### Chamber #38-1 Probe Placement (1500 ppm Target) | Probe Number | Location (x:y:z)* Units (C | | | | | | |--------------------|----------------------------|---|-----|---|-----|--| | 1 | 70 | ı | 54 | : | 47 | | | 2 | 33 | : | 130 | | 45 | | | 3 Analytical Probe | 39 | : | 98 | : | 168 | | | 4 | 67 | | 130 | : | 163 | | | 5 | 36 | | 56 | : | 160 | | #### Chamber #38-2 Probe Placement (750 ppm Target) | Probe Number | Location (x:y:z)* Units (cm) | | | | | |--------------------|------------------------------|---|-----|---|-----| | 1 | 71 | : | 128 | : | 163 | | 2 Analytical Probe | 53 | * | 98 | | 163 | | 3 | 32 | | 52 | t | 162 | | 4 | 34 | : | 130 | : | 46 | | 5 | 68 | : | 51 | | 49 | #### Chamber #38-4 Probe Placement (150 ppm Target) | Probe Number | Location (x:y:z)* Units (cm) | | | | | |--------------------|------------------------------|---|-----|----------|-----| | 1 | 31 | | 55 | 1 | 162 | | 2 | 30 | | 128 | | 46 | | 3 | 63 | : | 126 | : | 167 | | 4 Analytical Probe | 52 | | 98 | | 168 | | 5 | 64 | 1 | 5€ | <b>.</b> | 47 | \*Location described by a 3-dimensional coordinate system: x = width coordinate; y = depth coordinate; z = height coordinate. The origin of the coordinate system (0:0:0) is the lower left front corner of the internal chamber. TABLE 9 PROPIORALDEHYDR: COMBINED REPRATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY STUDY IN CD® RATS ### CHAMBER DISTRIBUTION DATA PROPIONALDEHYDE CONCENTRATION (PPM) AT CHAMBER PROBE POSITION | | | (Ch | amber 38-1) | | | |-------|------|-------------------|--------------|---------------------------------------|------| | | 1 | 2 | 3 | 4 | 5 | | | 1522 | 1515 | 1530 | 1530 | 1532 | | | 1537 | 1524 | 1533 | 1529 | 1535 | | | 1529 | 1516 | 1529 | 1525 | 1523 | | iean: | 1529 | 1518 | 1530 | 1528 | 1530 | | SD: | 7.2 | 5.0 | 2.1 | 2.5 | 6.5 | | | | Grand mean = 1527 | SD = 5.1 | % CV = 0.3 | | | | | (Ch | amber 38-2) | | | | | 1 | 2 | 3 | 4 | 5 | | | 800 | 796 | 794 | 806 | 806 | | | 805 | 799 | 809 | 800 | 799 | | | 797 | 796 | 800 | 794 | 800 | | lean: | 801 | 797 | 801 | 800 | 802 | | SD: | 4.2 | 1.9 | 7.6 | 6.3 | 4.1 | | | | Grand mean = 800 | SD = 1.9 | % CV = 0.2 | | | | | | namber 38-4) | · · · · · · · · · · · · · · · · · · · | | | | 1 | 2 | 3 | 4 | 5 | | | 146 | 157 | 157 | 162 | 155 | | | 146 | 156 | 158 | 162 | 157 | | | 1,46 | 155 | 156 | 152 | 157 | | Kean: | 146 | 156 | 157 | 158 | 156 | | SD: | 0.2 | 1.1 | 0.6 | 5.7 | 1.5 | | | | Grand mean = 155 | SD = 4.9 | 4 CV = 3.2 | | FIGURE 1. PROPIONALDEHYDE CALIBRATION CURVE BRRC Report 91U0086 Appendix 1 Page 17 Attachment 1 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD® Rats Test Substance Characterization Report #### **PROPIONAL DEHYDE** #### GLP ANALYSIS - FINAL REPORT AUTHORS: A. E. Gabany (2) DATE: August 26, 1992 A. M. Harrison (4) R. A. McDocie (2) STUDY #: 100-SLW-4 SUPERVISORS: P. D. Garrenstroom FILE NO: 39461 T. L. Dawson (3) SUMMARY Two samples of propionaldehyde, for toxicity testing at Bushy Run Research Center, were analyzed by Good Laboratory Practice (GLP) standards to meet EPA requirements. Gas chromatography-mass spectrometry (GC/MS) and nuclear magnetic resonance spectroscopy (NMR) techniques were independently used to confirm the sample's identity. Sample purity, measured by capillary GC, is = 99.77% for the pre-study sample and 99.42% for the post-study sample based on area percent. The slightly lower purity of the post-study sample is due to the increase of propionic acid in the sample. All raw data, decumentation, records, protocols, sample and final reports are being retained. Richard C. Wise, this study's sponsor, requested that the Bushy Run Research Center test propionaldehyde for genetic toxicity. Such studies INTRODUCTION must follow GLP standards established by the EPA that require they be conducted with authentic materials whose identity and purity are verified analytically. A sample of propionaldehyde (100-SLW-6; lot # T-1258) was received 10/14/91 in a clear glass bonile from UCC&P, Texas City, TX for analytical characterization. This sample is a subsample of a larger quantity of propionaldehyde, (BRRC # 54-351B) tested at Bushy Run Research Center. A GLP protocol describing the analytical characterization of the sample was prepared (Appendix 1). The protocol called for structural identification by NMR and GC/MS and for the capillary GC quantitative measurement of any impurities identified by GC/MS. The post-study sample (100-SLW-6R; BRRC # 54-351B) was received on 2/28/92. Shown at right is the structure of Propionaldehyde; its Chemical Abstracts Service Registry number (CAS #) is 123-38-6. CH3CH2CHO Propionaldehyde DISCUSSION The data from the analyses are summarized below. Proton and carbon NMR data were collected in the UCC&P NMR Skill Proton and caroon NMK data were conceind in the ULUAP NMK Skill Center using a General Electric GN-300NB spectrometer. The acquisition parameters are shown in the figures; for the <sup>1</sup>H NMR spectrum, the pulses used correspond to 3° flip angles; the <sup>13</sup>C flip angles were 30°; the <sup>13</sup>C (<sup>1</sup>H) (proton decoupled <sup>13</sup>C) spectrum used Waltz 16 modulation for <sup>1</sup>H decoupling. The spectra were not acquired under quantitative conditions; the acquisition conditions were established to identify the major component and to look for any miserage limitative. look for any substantial impurities. The sample was dissolved in deuterochloroform for analysis; tetramethylsilane (TMS) was added to provide an internal chemical shift reference. The TMS KEY WORDS: RN=123-38-6. RESEARCH AND DEVELOPMENT UNION CARBIDE CHEMICALS AND PLASTICS COMPANY INC. (UCCAP) SOUTH CHARLESTON, WEST VIRGINIA BRRC Report 9100086 Appendix 1: Page 19 Attachment 1 #### and deuterochloroform were used as received. Figure 1 shows the 1H NMR spectrum obtained from the sample 100-SLW-6. The observed chemical shifts, spin-spin coupling patterns, and relative intensities are appropriate for propionaldehyde The aldehydic proton appears as a triplet at 9.78 ppm; the methyl hydrogens as a triplet at 1.09 ppm; and the methylene hydrogens as a quartet of doublets at 2.48 ppm. The minor peak at 7.57 ppm is probably due to residual protonated solvent. Several very minor peaks are observed but have not been assigned; they probably include spinning side bands, 13C satellites, and minor by-products. Figure 2 shows the <sup>13</sup>C(<sup>1</sup>H) spectrum for the same sample. No unusual a mexpected resonances are seen; the three types of carbons present in propional dehyde are seen; the carbonyl at 202.2 ppm, the methyl at 5.2 ppm, and the methylene at 36.5 ppm. The triplet at 77 ppm is the deuterochloroform solvent, which was used as a secondary chemical shift reference. Several minor peaks are observed at 101.7, 27.0, 8.3, and 7.1 ppm, which could arise from expected impurities such as the utimer. The NMR spectra are totally consistent with the sample being remained by the contains no main cases in the sample being propionaldehyde which contains no major organic impurities. Electron ionization (El) and isobutane chemical ionization (Cl) mass spectral data were collected in the UCC&P MS Skill Center using a GC/MS Analysis Finnigan TSQ-70 mass spectrometer interfaced to a Hewlett-Packard (HP) 5890 gas chromatograph. The sample, 100-SLW-6, was analyzed by injecting 0.1 µL aliquots onto a DB-1 capillary column held at 30°C for 4 minutes, and then programmed to 250°C at 8°/minute. Figure 3 shows the El total ion current chromatogram for the sample (scanned from m/z 10 to m/z 310 in the EI mode, and m/z 60-360 in the CI mode). The chromatogram is annotated with identifications based on the components EI and CI spectra. The propional dehyde trimers identified by capillary GC were confirmed by GC/CI/MS only. A HP 5890 gas chromatograph equipped with a flame ionization detector was used to analyze the sample. Aliquots (1 µL) were injected via Capillary GC autoinjector with a 100:1 split ratio onto a DB-1 capillary column started at 60°C and held for 4 minutes, then programmed to 250° at 12°/minute (see Figure 4 for the pre-study sample and Figure 5 for the post-study sample). The averages of triplicate analyses are given below (normalized chromatogram area percent). The slightly lower purity of the post-study sample is due to the increase of propionic acid in the sample. | | 100-SLW-6 | 100-SLW-6R | |--------------------------|----------------|------------| | Component name | <b>99.77</b> | = 99.42 | | Propionaldehyde | 0.01 | 0.02 | | n propanol | 0.02 | 0.02 | | 2-methyl butyraldehyde | 0.06 | 0.02 | | valeraldehyde | 0.07 | 0.37 | | propionic acid | 0.03 | 0.04 | | propionaldehyde dimers | 0.01 | 0.04 | | propionaliehyde utiliers | <b>- 0</b> .03 | = 0.07 | | all other impurities | - 6.05 | | NMR spectral data and mass spectral fragmentation data from the UCC&P Skill Centers show that this sample is propionaldehyde. These in-CONCLUSION dependent methods satisfy the analytical requirements for structural identification, as defined in the sample protocol. Sample purity, measured by capillary GC, is = 99.77% and 99.42%. VES All raw data, records, protocols, samples and final reports are being retained at UCC&P's South Charleston, WV, Technical Center as follows: raw data from GC, NMR and GC/MS studies are in 770-127 and 720-151, respectively; ARCHIVES protocols, notebook and other records are to be kept in the GLP archives; the remainder of each sample is being kept in a locked GLP sample box in 770-333. Final Report, GLP Study # 100-SLW-4 page 2 of 10 BRRC Report 91U0086 Appendix 1 Page 20 Attachment 1 ACKNOWLEDGEMENTS We would like to thank Jo Ann Coffey for sample handling, collecting the GC data, and preparing the report, Greg Richards for collecting the GC/MS data, and Kathy Canterbury for collecting the NMR data. 100-SLW-4 and related pages NOTEBOOK REFERENCE: No claim of confidentiality is made for any information contained in this sudy as it pertains to use by any government agency to which it is submitted. This document, however, is proprietary to UCC&P and is confidential and trade secret information in all other countries and for all purposes other than those directly related to the purposes of the residential and trade and tr purposes of the reviewing agency. Information contained in these studies should not be reviewed, abstracted or used by persons other than the agency without the expressed written consent of UCC&P except as required to carry out stanuory requirements. GLP Compliance This study was conducted to fully comply with the forming GLP standards: FDA, 21 CFR, Part 58; TSCA, 40 CFR, Part 792; FIFRA, 40 CFR, Part 160. Ruhard a Mc Done. 8/18/92 AEG/AMH/RAM Date Study initiated: Manuscript date (Date Study completed): Anachments: 10/14/91 August 13, 1992 5 Figures: Sample Protocol; QAU statement Figure 1 — <sup>1</sup>H NMR Spectrum of 100-SLW-6 (Propionaldehyde) Final Report, GLP Study # 100-SLW-4 page 4 of 10 BRRC Report 91U0086 Appendix 1 Page 22 Attachment 1 Figure 2 — 13C NMR Spectrum of 100-SLW-6 (Propionaldehyde) Final Report, GLP Study # 100-SLW-4 page 5 of 10 Figure 3 - Capillary GC/MS RIC of 100-SLW-6 (Propional dehyde) ERRC Report 91U0086 Appendix 1 Page 24 Attachment 1 Figure 4 — Capillary Gas Chromatogram of 100-SLW-e (Propionaldehyde) Final Report, GLF Study # 100-SLW-4 page 7 of 10 Figure 5 - Capillary Gas Chromatogram of 100-SLW-6R (Propionaldehyde) APPENDIX 1 100-SLW-4 Protocol ### **PROTOCOL** GOOD LABORATORY PRACTICE (GLP) STUDY Propinseldebyde **PUPPOR** Analysical Characterization of Sample(s) for Tenicology Soulies at Busby Rate Research Comer (BRAC) stady samber 100-SLW-4 SPOMOT SOLVENTS AND COATING MATERIALS DIVISION (SCHID) Union Carbide Charmen's and Planter Company Inc. (UCCAP) 39 Old Ridgebury Road. Denbury, Conn. 06817-0001 mering trailing UCCAP Technical Comer. South Charlemon, WV 25303 (Location 511) Proposed Starting Date: Proposed Completion Desc: Estimated Desc of Final Report Monday, October 14, 1991 December, 14, 1991 January 14, 1992 Test Substance(s)(CC-SLW-S Name Proviocaldehyde TS-2151011; UCCAF, SOAD, Texas City, Texas Source CAS Registry No. 123-31-6 Descripcon Water-white, son-viscous liquid; sufficients odor Purity >99 % Stable: highly toxic. MSDS available upon request Health/Safety Storage Conditions embient conditions, sway from beat The sex subsunce(s) will be characterized by: Verification of identity by proton- and carton-NMR. Verification of identity by GC/MS. An assempt will be made to identify all impurisec at the concentration of 20.1 wt. %. Quantization of the identified imperious by capillary CC. evicand and Approved by: Welloos 10/11/ Dezise L. Josephon GLO C ality Assessment Unit (QAU) Representative Manager of Product Solety. CLP Study Diraces This sudy will be performed in compliance with the following TLP standards: FDA, 21 CFR, Part 58: TSCA, 40 CFR, Part 792; and FIFRA, 40 CFR, Part 160. All charges of an approved protectly and the reasons therefor shall be documented injured by the study director, dated, and maintained with the procecol. All raw data, reports and a sample of test substance from this study will be retained at Location 511 for at least 10 years after completion of the study. A comprehensive final report will be submitted to the Spontor within one month after the completion of prehensive final report will be submitted to the Spontor within one month after the completion of an appropriate to the Spontor with countries and quality assumbles. SOCK PRINCES page 9 of 10 BRRC Report 91U0086 Appendix 1 Page 27 Attachment 1 #### **QAU STATEMENT** Quality Assurance Unit Study Inspection Summary Test Substance: PROPIONALDEHYDE Study No.: 100-5LW-4 Study Director: A.E. Gabany, B.S. The Quality Assurance Unit of the Union Carbide Technical Center conducted the inspections listed below and reported the results to the study director and management on the date indicated. It is the practice of this Quality Assurance Unit to report the results to both the study director and management. | <u>Dan</u> | ection<br>Type | Date OAU Re<br>To Study Director | To Management | |---------------|-----------------------------------|----------------------------------|---------------| | Oct. 18, 1991 | Protocol Compliance<br>Review | Oct. 18, 1991 | Oct. 18, 1991 | | Feb. 10, 1992 | Laboratory Compliance<br>Review | Feb. 10, 1992 | May, 1992 | | Aug. 25, 1992 | Final Report<br>Compliance Review | Aug. 25, 1992 | Aug 25, 1992 | Denise L. Johnson QAU Representative (Date) Good Laboratory Practices/Quality Assurance Final Report, GLP Study # 100-SLW-4 page 10 of 10 BRRC Report 91U0086 Appendix 2 Page 1 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD\* Rats Anatomic Pathology Report (21 Pages) #### TABLE OF CONTENTS | SUMMAR! | 7 | | | ••••••••••• | 3 | |---------|-----|----------------|-----|---------------------------------------------|----| | MATERIA | LS | AND METE | IOD | S | 3 | | Nec | ror | 98V | | | 3 | | His | tor | athology | | | 4 | | | | | | | 5 | | | | | | ON | 5 | | | | | | *************************************** | 5 | | | | | | | 6 | | | | | | | | | Table | 1 | Males | - | Summary of Organ Weights (Grams) - | | | | | | | Animals Sacrificed at Week 7 | 7 | | Table | 2 | Males | - | Summary of Organ Weights as % of Final | | | | | | | Body Weight - Animals Sacrificed at Week 7 | 8 | | Table | 3 | Females | - | Summary of Organ Weights (Grams) | 9 | | Table | 4 | <b>Females</b> | - | Summary of Organ Weights as % of Final | | | | | | | Body Weight | 10 | | Table | 5 | Males | _ | Summary of Necropsy Observations - | | | | | | | Animals Sacrificed at Week 7 | 11 | | Table | 6 | Females | _ | Summary of Necropsy Observations | 12 | | Table | 7 | | | Summary of Microscopic Diagnosis by Grade - | | | | - | | | Animals Sacrificed at Week 7 | 13 | | Table | 8 | Females | _ | Summary of Microscopic Diagnosis by Grade | 18 | | | - | | | | | #### SUMMARY Young adult CD® male and female rats (15/sex/group) were exposed to propionaldehyde (CAS No. 123-38-6) vapor at concentrations of 0, 150, 750, or 1500 ppm. Exposures were conducted daily, 6 hours/day, for both males and females during a 2-week premating period, and a 14-day (maximum) mating phase. The males continued to be exposed until scheduled sacrifice; a total of 52 exposures. The mated females were exposed daily through Day 20 of gestation only. The females were then allowed to deliver their litters naturally and raise their offspring until Day 4 of lactation. All adult animals received a complete necropsy at the time of sacrifice, with selected tissues being saved and fixed for possible microscopic evaluation. On Postnatal Day 4, all pups were euthanized and discarded without pathologic evaluation. Organ weights were obtained at the time of necropsy for the adult animals. Microscopic examinations were performed on selected tissues of all parental rats from the control and high exposure groups. Subsequent to the initial evaluation, nasal tissues were evaluated from the intermediate and low exposure groups. The kidneys in the high exposure concentration male rats were significantly heavier than controls relative to the total body weight. There were no gross lesions observed at necropsy that could be attributed to exposure to the propional dehyde vapor. The only tissues that were affected microscopically by exposure to the vapor were in the nasal cavity. The olfactory epithelium in the anterior 2 sections of the cavity had evidence of vacuolization and atrophy, with the vacuolization primarily evident in the low and intermediate exposure groups and the atrophy seen primarily in the intermediate and high exposure groups. There was no no-observed-effect level (NOEL) seen for this tissue in this study. In addition to the effects seen in the olfactory epithelium, there was evidence of rhinitis and squamous metaplasia of the respiratory epithelium seen in some of the animals, primarily involving the intermediate and high exposure groups. #### MATERIALS AND METHODS Male and female CD® rats, purchased from Charles River Laboratories, Portage, Michigan, were exposed daily, 6 hours/day, 7 days/week to 0 (control), 150, 750, or 1500 ppm of propionaldehyde vapor. Fifteen rats/group/sex were randomly assigned to 1 of the 3 exposure groups or the control group. The exposure period included a 2-week premating and a 14-day mating phase, and a period of gestation. Females were exposed only through Day 20 of gestation, while males continued to be exposed throughout the study. #### Necropsy On postnatal Day 4, the pups were euthanized and discarded without a pathologic examination. All adult rats were anesthetized with methoxyflurane and euthanized by severing their brachial vessels to permit exsanguination and received a complete necropsy. The following tissues were saved in Bouin's fixative for microscopic examination: testes epididymides The following tissues were saved in 10% neutral buffered formalin for microscopic examination: gross lesions nasal turbinates larynx trachea lungs heart spleen liver brain cerebral cortex cerebellar cortex medulla/pons kidneys thymus adrenals reminal vesicles (males) varies (females) The following tissues were saved in 10% neutral buffered formalin, but were not processed for microscopic examination. vagina (females) uterus (females) corpus and cervix pituitary Lung sections included 2 coronal cuts through all lobes and mainstem bronchi. The right kidney was sectioned transversely and the left was cut longitudinally. The following tissues were weighed at necropsy: liver kidneys lungs thymus testes epididymides uterus Tails were saved for animal identification purposes. #### Histopathology Microscopic examinations were performed on the tissues indicated above for male and female animals from the control and high exposure groups. Following the initial evaluation, the first 2 sections of nasal cavity were processed from the intermediate and low exposure groups for evaluation. All tissues to be examined were paraffin embedded, sectioned at approximately 5 microns and stained with hematoxylin and eosin. Lesions were graded, when possible, into 5 categories (minimal, mild, moderate, marked and severe). #### Statistics The frequency of histologic lesions was compared between each exposure and control group using the Fisher's exact test. The probability value of < 0.05 (two-tailed) was used as the critical level of significance. #### RESULTS AND DISCUSSION Tables 1 through 4 include the organ weight data obtained at necropsy. Tables 1 and 3 include the absolute values for male and female rats, respectively, and Tables 2 and 4 include the organ weights relative to body weights for male and female rats, respectively. The only organ weights that were significantly increased were the kidney weights relative to total body weights for male rats in the high exposure concentration group. The reason for this increase could not be determined from the morphologic evaluation, but may have been due in part to the tighter values (lower standard deviation) for the kidney weights in the 1500 ppm group. Tables 5 and 6 include the necropsy observations for the males sacrificed at Week 7 (Table 5) and the female rats (Table 6). Only those organs and tissues in which gross lesions were observed are included in the tables. There were no gross lesions that indicated an effect from the test substance administration. Tables 7 and 8 include the microscopic diagnoses by grade for the male rats sacrificed at Week 7 and the female rats sacrificed at Week 5, respectively. The only organ in which there was an exposure-related effect was the nasal cavity, in which the anterior two sections had evidence of vacuolization and atrophy of the olfactory epithelium, with the vacuolization being evident in the lower exposure groups and the atrophy being evident in the higher exposure groups. There was rhinitis and occasional squameus metaplasia involving the respiratory epithelium in some of the rats as well, but the involvement of the olfactory epithelium was the more significant of the lesions. The effect was primarily observed in the dorsal portion of the masal cavity from the anterior 2 sections. This selective effect, where more severe lesions were found involving the olfactory epithelium, has been reported to occur in rats exposed to acetaldehyde (Appleman, et al, 1982). The lesions observed with propionaldehyde were very-similar to those reported for acetaldehyde. were no other lesions that could be attributed to exposure to propionaldehyde vapor. #### CONCLUSION Male and female CD® rats were exposed to propionaldehyde vapor at concentrations of 0 (control), 150, 750, or 1500 ppm, 6 hours/day, 7 days/week, for the duration of the study. At the termination of the study, animals were humanely euthanatized and subjected to a complete necropsy. Selected tissues were fixed and examined microscopically. The kidneys from the high exposure concentration group male rats were significantly increased in weight relative to total body weight, but not in absolute values, the reason for which cannot be determined from the morphologic evaluation. The standard deviation for the kidney weights in the 1500 ppm group was smaller than for any other group and may have been responsible for the statistical flag. There were no gross lesions observed at necropsy that could be attributed to exposure to the propionaldehyde vapor. The only tissues that were affected microscopically by exposure to the vapor were in the masal cavity. The olfactory epithelium in the anterior 2 sections of the cavity had evidence of vacuolization and atrophy, with the vacuolization primarily evident in the low and intermediate exposure groups and the atrophy seen primarily in the intermediate and high exposure groups. There was no NOEL seen for this tissue in this study. In addition to the effects seen in the olfactory epithelium, there was evidence of rhinitis and squamous metaplasia of the respiratory epithelium seen in some of the animals, primarily involving the intermediate and high exposure groups. Pathologist: E. H. Fowler, DVM, Ph.D. Diplomate, ACVP Date #### REFERENCE Appelman, L. M., Woutersen, R. A., and Feron, V. J. (1982). Inhalation Toxicity of Acetaldehyde in Rats. I. Acute and Subacute Studies. *Toxicology*. 23, 293-307. # TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPROIDENTAL TOXICITY STUDY IN CD RATS SUMMARY OF ORGAN WEIGHTS (GRAMS) ANIMALS SACRIFICED AT WEEK 7 FO ADULT MALES | | | EO MDGRI E | MLES | | |---------------|---------------|--------------|----------|----------------| | GROUP: PPM | n | 150 | 750 | 1500 | | HAL I | CHT | | | 423.0 | | MEAN | 54.1 | 430.4 | 44 t . 4 | 431.0 | | S.D. | .11 | 43.56 | 31.52 | 35.03 | | N | 15 | 1' | 15 | 15 | | LIVER | | | 488 | 11.190 | | MEAN | 11.490 | 10.936 | 11.455 | | | s.D. | 1.4926 | 1.1531 | 1.2211 | 1.3477 | | N | 15 | 15 | 15 | 15 | | CIDNEYS | | | | 3.357 | | MEAN | 3.2 <b>03</b> | <b>ା ଓ 6</b> | 3.338 | | | S.D. | 0.3994 | €J <b>59</b> | 0.4671 | 0.3229 | | N | 15 | 15 | 15 | 15 | | LUNGS | | | | 1 622 | | MEAN | 1. ,2 | 1.532 | 1.572 | 1.522 | | S.D. | 0.0/09 | 0.131 | 0.1417 | ð.10 <b>42</b> | | N | 14 | 15 | L. | 15 | | THE TIC REGIO | N | | | 0.292** | | 1Z.N | 0.349 | 0.338 | ٥٠ ، | | | S.D. | 0.0522 | 0.1064 | 0. | 0.0577 | | N | 15 | 15 | | 15 | | PIDIDYMIDES | | | | | | MEAN | 1.319 | 1.236 | | 1.253 | | S.D. | 0.1269 | 0.1849 | ي . 0 | 0.1000 | | N | 15 | 15 | 15 | 15 | | TESTES | | | | 2 242 | | MEAN | 3.430 | 3.272 | 3.331 | 3,363 | | S.D. | 0.3192 | 0.4861 | 0.1552 | 0.200 | | N N | 15 | 15 | 15 | • • | \*\* Significantly different from control group (p < .01) # TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF ORGAN WEIGHTS AS & OF FINAL BODY WEIGHT ANIMALS SACRIFICED AT WEEK 7 0 ADULT HALES | | | JU ADULT | | <del></del> | |--------------|--------|----------|---------------------------|-------------| | GROUP: PPM | 0 | 150 | 750 | 1500 | | LIVER | | | | | | MEAN | 2.528 | 2.543 | 2.563 | 2.591 | | S.D. | 0.1945 | 0.1392 | 0.1667 | 0.1668 | | N | 15 | 15 | 15 | 15 | | KIDNE/S | | | | | | MEAN | 0.706 | 0.72 | 0.7.7 | 0.780** | | S.D. | 0.0662 | 0.0891 | 0.0853 | 0.0513 | | N | 15 | 15 | 15 | 15 | | LUNGS | | | | | | MEAN | 0.341 | 0.357 | 0.352 | 0.354 | | S.D. | 0.0292 | 0.0206 | 0.0264 | 0.0244 | | N | 14 | 15 | 14 | 15 | | THYMIC REGIO | N | | | | | MEAN | 0.077 | 0.079 | 0.078 | 0.060 | | S.D. | 0.0135 | 0.0248 | 0.0208 | 0.0140 | | И | 15 | 15 | <sub>(*</sub> n <b>15</b> | 15 | | EP! TOYHIDES | | | | | | | 0.294 | 0.268 | 0.285 | G.293 | | s.c. | 0.4493 | 0.0422 | 0.0246 | 0.0365 | | N | 15 | 15 | 15 | 1 5 | | TESTES | | | | | | MEA!! | 0.753 | 0.762 | 0.749 | 0./85 | | S.D. | 0.0674 | 0.1126 | 0.0: | 0.0810 | | N | 15 | 15 | 15 | 15 | ## TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD \* RATS SUMMARY OF ORGAN WEIGHTS (GRAMS) FO ADULT FEMALES | | | FO ADULT F | LALES | | | |---------------|--------|------------|----------------|--------|--| | GROUP: PPH | 0 | 150 | 750 | 1500 | | | FINAL BODY WE | ICH: | | | 283.6 | | | MEAN | 296.4 | 295.4 | 288.4 | 12.49 | | | S.D. | 23.29 | 19.58 | 15. | 12.49 | | | R | 15 | 15 | 15 | 7.3 | | | LIVER | | • | | 12 226 | | | MEAN | 12.980 | 12.995 | 12.589 | 12.336 | | | S.D. | 1.4890 | 1.5997 | 1.0985 | 1.1210 | | | N | 15 | 15 | 15 | 15 | | | KIDNEYS | | | | 3 060 | | | MEAN | 1.991 | 1.973 | 2.040 | 1.968 | | | S.D. | 0.1760 | 0.2125 | 0.1821 | 0.1388 | | | 11 | 15 | 15 | 15 | 15 | | | LUNGS | | | | | | | MEAN | 1.219 | 1.313 | 191 | 1.217 | | | S.D. | 0.0502 | 0.2631 | υ.082 <u>3</u> | .1113 | | | N | 15 | 15 | 15 | 15 | | | THYMIC REGION | 1 | | | 0.014 | | | MEAN | 0.240 | 0.225 | 0.189 | 0.214 | | | S.D. | 0.0626 | 0.0437 | 0.0533 | 0.0620 | | | N | 15 | 15 | 15 | 15 | | home significantly different from control group ### TABLE 4 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF ORGAN WEIGHTS AS A OF FINAL BODY WEIGHT FO ADULT FEMALES | GROUP: PPM | 0 | 150 | 750 | 1500 | | |---------------|--------|--------|--------|--------|--| | LIVER | | | | | | | HEAR | 4.377 | 4.393 | 4.364 | 4.347 | | | s.D. | 0.3472 | 0.3981 | 0.2909 | 0.3140 | | | N | 15 | 15 | 15 | 15 | | | KIDNEYS | | | | | | | HEA!: | 0.674 | 0.669 | 0.708 | 0.695 | | | S.D. | 0.0641 | 0.0703 | 0.0627 | 0.0513 | | | N | 15 | 15 | 15 | 15 | | | LUNGS | | | | | | | MEAN | 0.414 | 0.445 | 0.414 | 0.429 | | | 5.D. | 0.0357 | 0.0839 | 0.0290 | 0.0351 | | | N | 15 | 15 | 15 | 15 | | | THYMIC REGION | 1 | | | | | | MEAN | 0.092 | 0.076 | 0.066 | 0.076 | | | S.D. | 0.0224 | 0.0164 | 0.0184 | 0.0227 | | | N | 15 | 15 | 15 | 15 | | None significantly different from control group ### PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD PATS SUMMARY OF NECROPSY OBSTRVATIONS ### ANIMALS SACRIFICED AT WEEK. 7 FO ADULT MALES | | GROUP: | 1 | 2 | 3 | 4 | |--------------------------------------------------------------------------------------------|--------|-------------|-------------|----------|-------------| | NUMBER OF ANIMALS IN DOSE GROUP<br>NUMBER OF ANIMALS SACRIFICED | | 15<br>15 | 15<br>15 | 15<br>15 | | | ETOMACH<br>CONTENTS ADNORMAL | | 3 | 0 | 0 | a | | .IVER COLOR CHANGE, FOCAL MULTIFOCAL SIZE DECREASE | | 2 | ò | 1 0 | 2<br>0 | | COLON<br>ZARASITE | | 1 | o | G | 0 | | KIN<br>SHAPE/CONTOUR CHANGE<br>ALOPECIA | | 5<br>0 | 4 0 | 7<br>0 | 2 | | PLEEN ACCESSONY | | 1 | 0 | 0 | 2 | | YMPH ND, J-MAN<br>SIZE INCREASE<br>COLOR CHANGE, FOMAL/MULTIFOCAL<br>COLOR CHANGE, DIFFUSE | | 7<br>2<br>1 | 3<br>1<br>3 | | 2<br>2<br>3 | | HYMIC REGION COLOR CHANGE, FOCAL/MULTIFOCAL STOR DECREASE | | 2 | 4 | 1 | 4 | | este<br>Size dechease<br>Consistency Change | | 0 | 1 | 0<br>? | 0 | | EPIDIDYMIDES<br>NODULE | | 2 | 0 | ¢ | : | | MINGS COLOR CHANGE, FOCAL/MULTIFOCAL | | 5 | 2 | 8 | 6 | | KIDNEYS<br>SILATED PELVIS | | ç | 0 | 0 | | GROUP LEGEND: 1 is 0 PPM, 2 is 150 PPM, 3 is 750 PPM, ## TABLE 6 PROPIONALDEHYDE: COMBINED PEPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD \* RATS SUMMARY OF NECROPSY OBSERVATIONS FO ADULT FEMALES | | GROUP: | 1 | 2 | 3 | 4 | | |---------------------------------------------------------|--------|----------|---------------|----------|----------|-------| | UMBER OF ANIHALS IN DOSE GROUP | | 15<br>15 | 15<br>15 | 15<br>15 | 15<br>15 | · — - | | TUMBER OF ANIMALS SACRIFICED | | | | | | | | Tomalh<br>Ulcepated | | 0 | 0 | 0 | 1 | | | CONTENTS AEMORKAL | | ٥ | 0 | O | 1 | | | IVER<br>COLOR CHANGE, DIFFUSE | | 0 | 0 | 1 | 0 | | | | | | | | | | | COLON | | 0 | 1 | 1 | 0 | | | ADREMAL GL<br>COLOR CHANGE, FOCAL/MULTIFOCAL | | : | | 4 | - | | | COLOR CHANGE, FIGURE | | 5<br>1 | 5 | 1 | ō | | | SIZE INCREASE | | _ | , | 5 | ŭ | | | SEIN<br>CRUST/SCAB/SCALE | | 3 | 1 | 0 | S | | | SURFACE CHANGE | | 0 | 1 | 4 | 0<br>1 | | | ALOPECIA | | + | U | _ | • | | | SPLEEN | | - | 0 | o | o | | | SILE INCREASE<br>SHAPE/CONTOUR CHANGE | | 2 | Ö | O | 0 | | | LYMPH ND, E-MAN | | 6 | 4 | 2 | 0 | | | SIZE INCREASE<br>COLOR CHANGE, FOC+L/MULTIFOCAL | | ō | ō | 1 | 0 | | | LYMPH NO, MED | | 0 | 1 | 0 | o | | | COLOR CHANGE, DIFFUSE | | • | • | · | ŭ | | | THYMIC REGION SIZE DECREASE | | p | 0 | 2 | 1 | | | | | | | | | | | CYST<br>CYST | | 0 | 1 | 0 | 2 | | | LUNGS | | 2 | n | 0 | บ | | | COLOR CHANGE, DIFFUSE<br>COLOR CHANGE, FOCAL/MULTIFOCAL | | 5 | 0<br><b>4</b> | 6 | 5 | | | KIDNEYS DILATED PELVIS | · | 1 | 1 | ن | 9 | | | URETER | | | | | | | | DILATATION/DISTENTION | | · 1 | 0 | 0 | 0 | | GROUP LEGEND: 1 is 0 PPM, 2 is 150 PPM, 3 is 750 PPM, 4 is 1500 PPM ### TABLE 7 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF MICROSCOPIC DIAGNOSES BY GRADE ### ARIHALS SACRIFICED AT WEEK 7 FO ALULT MALES | | EO NOSEL E | <b>-</b> | | | | <u></u> | | | | |-----------------------------------------------------------------|------------|----------|----------------|--------------|----------|-----------------|--|--|--| | | | GROUP: | 1 | 2 | 3 | 4 | | | | | NUMBER OF ANIMALS IN DOSE GROUP<br>NUMBER OF ANIMALS SACRIFICED | | : | 15<br>15 | 15<br>15 | 15<br>15 | <b>15</b><br>15 | | | | | HEART<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | | | 15<br>15 | 0 - | 0<br>~ | 15<br>15 | | | | | STOMACH<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | į. | | 3 | <u>0</u> | 0 - | <u>o</u> | | | | | LIVER<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | | | // 15<br>// 14 | 0 | 6 | 15<br>15 | | | | | LIPOSTOMATA | | | 1 | - | - | 5 | | | | | PF.ESENT | | | 1 | - | - | 0 | | | | | ADRENAL GL<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | | | 1.5<br>1.4 | <del>-</del> | 0 | 15<br>14 | | | | | CORTICAL CELL VACUOLIZATION | | | 1 | - | - | 1 | | | | | MILD<br>MODEFATE | • | | 10 | - | - | 0 | | | | | SKIN<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | | | 5<br>0 | <u>c</u> | 0 | 3<br>1 | | | | | Hyperkeratosis | | 1 | 3 | - | _ | 1 | | | | | MCDERATE<br>** RKED | | | <b>3</b><br>0 | <del>-</del> | - | C<br>1 | | | | | <b>E</b> PIDERHITIS | | | 1 | - | - | 1 | | | | | hoderate<br>Mar <sup>y</sup> Ed | | 1 . | Q<br>1 | - | - | 1<br>0 | | | | CROUP LEGEND: 1 is 0 PPM, 2 id 150 PPM, 3 is 750 TPM, 4 id 1500 PPM None significantly different from control group #### TABLE 7 (Continued) #### PROPIONALDEHNDE: COMEINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CO PATTO SUMMARY OF MICROSCOPIC DIAGNOSES BY GRADE ### ANIMALS SACRIFICED AT WEEK 7 FO ADULT MALES | | | | | 3 | 4 | |--------------------------------------------------------------------|--------|------------------|-------------|------------------|-----------------| | | GROUP: | 1 | 2 | . <u>.</u> | 4 | | NUMBER OF ANIMALS IN DODE GROUP<br>NUMBER OF ANIMALS SACRIFICED | | 15<br>10 | 15<br>15 | 15<br>11 | <b>15</b><br>15 | | SKIN (CONTINUED) | | | | | | | POLLICULITIS | | -7 | - | - | Ü | | MODERATE<br>MARKED | | 2<br>2 | - | - | 0<br>0 | | DETROIL PIEROSIS | | 1 | - | - | 0 | | MODERATE | | 1 | - | - | 0 | | SPLEEN TOTAL NUMBER EXAMINED LXAMINED. UNREMARKABLE | | 15<br>14 | 2 | o<br>- | 15<br>15 | | ACCESSORY SPIEEN | | 1 | _ | - | 0 | | MILD | | 1 | - | - | 0 | | TYMPH ND, SHIPN<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | | <b>7</b><br>6 | <u>0</u> | 0 | 5<br>1 | | HENCRRHAGE | | 2 | - | - | 3 | | MILD<br>MODERATE<br>MARYED | | 1<br>1<br>0 | -<br>-<br>- | - | 1<br>1<br>1 | | LYMPHOID HYPERPLASIA | | 7 | - | - | 3 | | MODERATE<br>MARKED | | 3<br>4 | - | - | 2 | | PLASMACTTOSIS | | 6 | - | - | 3 | | MILD<br>MODERATE<br>MARYED<br>SEVENE | | 1<br>1<br>3<br>1 | -<br>-<br>- | -<br>-<br>-<br>- | 1<br>1<br>0 | | THYMI REGION TOTAL NUMBER EXAMINED EXAMINED, UNREMAPPABLE | | .5<br>1. | 0 | ·.<br>- | 15<br>14 | GROUP L' HD: 1 % 0 PPM, 2 is 100 PPM, 3 is 750 PPM, 4 is 1500 PPM None significant'y different from cont' - group ## TABLE 7 (Continued) PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DISCLOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF MICROSCOPIC DIAGNOSES BY GRADE ANIMALS SACRIFICED AT WEEF 7 FO ADULT MALES | | GROUP: | 1 | 2 | 3 | 4 | | |-----------------------------------------------------------------|--------|----------|--------------|-------------|------------------|--| | UMBER OF ANIMALS IN DOSE GROUP<br>UMBER OF ANIMALS SACRIFICED | | 15<br>15 | 15<br>15 | 15<br>15 | 15<br>15 | | | THENIC REGION (CONTINUES) | | | | | | | | HEMORRHAGE | | 2 | - | - | 1 | | | MODERATE | | 2 | - | - | 1 | | | BRAIN<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | | 15<br>15 | <u>o</u> | <u>o</u> | 15<br>15 | | | TOTAL NUMBER EXAMINED EXAMINED EXAMINED. | | 15<br>14 | <u>o</u> . | <u>o</u> | 15<br>14 | | | SEMINIPEROUS TUBULE ATROPHY | | 1 | - | - | 1 | | | MARKED<br>SEVERE | | 1<br>0 | <del>-</del> | - | 0 | | | EPIDIDYMIDES TOTAL NUMBER EXAMMED EXAMMMED, UNREMARKABLE | | 15<br>14 | 0 | 0 | 1 <b>5</b><br>15 | | | CPETH GRANILOMA | | 1 | | - | 0 | | | MARKED | | 1 | - | - | ú | | | CEMINAL VESICLE TOTAL NUMBER EXAMINED EXAMINED, UNREMARKABLE | : | 15<br>15 | <u>o</u> | 0 | 15<br>15 | | | NASAL CAVITY<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | , | 15<br>15 | 15<br>3 | 15<br>0 | 15<br>0 | | | RHINITIS | | ٥ | 0 | 7*1 | 14** | | | MINIMAL<br>MILD<br>MODERATE | | 0<br>0 | 0<br>0 | 1<br>5<br>1 | 3<br>7<br>4 | | <sup>\*\*</sup> Signific actly different from control group (p < $\frac{1}{2}$ f1) ### TABLE 7 (Continued) PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF MICROSCOPIC DIAGNOSES BY GPADE ### ANIMALS SACRIFICED AT WEEK 7 FO ADULT MALES | | GROUP: | 7 | 2 | 3 | 4 | |---------------------------------------|--------|------------|------|------|----------| | MBER OF ANIMALS IN DOSE GROUP | | | 15 | 15 | 15 | | MBER OF ANIMALS SACRIFICED | | 2.5 | 15 | Ib" | 15 | | SAL CAVITY (CONTINUED) | | | | | | | SQUANOUS METAPLASIA | | 0 | 0 | 1 | 2 | | MILD | | 0 | 0 | 1 | 0 | | MODERATE | | 0 | 0 | 0 | 2 | | ATROPHI, OLYACTORY EPITHP' IUM | | 0 | 2 | 10** | 15** | | MINIMAL | | 0 | 2 | 1 | 0 | | MILD | | ŋ | 0 | 6 | 1 | | MODERATE | | G | 0 | 3 | 8 | | MARKED | | 0 | 0 | 0 | 6 | | VACUOLIZATION OF OLFACTORY EPITHELIUM | | 0 | 12** | 14** | 2 | | MINIMAL | | 0 | 4 | 2 | 0 | | MILD | | 0 | 4 | 3 | 0 | | MODERATE | | ٥ | 2 | 2 | 3 | | MARKED | | 0 | • | 7 | 2 | | RYNX | | 15 | 0 | 0 | 15 | | TOTAL WUMBER EXAMINED | | 15 | - | - | 15 | | EXA SD, UNREMARKABLE | | 13 | | _ | 13 | | ACHEA | | | _ | _ | | | TOTAL NUMBER EXAMINED | | : | 0 | 0 | 15<br>15 | | EXAMINED, UNREMARKABLE | | . 5 | - | - | 13 | | ungs | | | | | | | TOTAL NUMBER EXAM! | | 15 | 0 | 0 | 15 | | EXAMINED, UNREMAR | | 14 | - | - | 15 | | ALVEOLAT TYTOSIS | | 1 | | _ | 0 | | BUT BOTH CO. STATEMENT | | | | | | | м | | • | - | - | 0 | | IDNEYS | | <u>.</u> 5 | C | 0 | 15 | | TOTAL NUMBER EXAMINED | | 12 | | - | 13 | GROUP LEGIND: 1 is 0 PPM, 2 is 150 PPM, 3 is 750 PPM, 4 is 1500 PPM <sup>\*\*</sup> Significantly different from control group (p < .01) ## TABLE 7 (Continued) PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF MICROSCOPIC DIAGNOSES BY GRADE #### ANIMALS SACRIFICED AT WEEK 7 FO ADULT MALES | | GROUP: | 1 | 2 | 3 | 4 | |-----------------------------------------------------------------|----------|--------------|-------------|-------------|-----------------| | NUMBER OF ANIMALS IN DOSE GROUP<br>NUMBER OF ANIMALS SACRIFICED | | 15<br>15 | 15<br>15 | 15<br>15 | 15<br><b>15</b> | | IDNEYS (CONTINUED) | | | | | | | REPHRITIS, INTERSTITUAL | | 1 | - | - | 0 | | HILD | | 1 | - | - | 0 | | TUBULAR BASOPEILIA | | 3 | - | - | 2 | | MILD<br>MODERATE<br>MARKED | | 1<br>1<br>1 | -<br>-<br>- | -<br>-<br>- | 0<br>2<br>0 | | | ррм, 4 і | 1<br>is 1500 | | - | 0 | | None conficantly different from control group | | | | | | ### TABLE 8 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF MICROSCOPIC DIAGNOSES BY GRADE #### FO ADULT FEMALES | ro | ADULT FERRIES | | | | | | |-----------------------------------------------------------------|---------------|-------------|----------|----------|----------|--| | | GROUP: | 1 | 2 | 3 | 4 | | | NUMBER OF ANIMALS IN DOSE GROUP<br>NUMBER OF ANIMALS SACRIFICED | | 15<br>15 | 15<br>15 | 15<br>15 | 15<br>15 | | | HEART<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | | 15<br>15 | 0 - | 0 | 15<br>15 | | | STOMACH TOTAL NUMBER EXAMINED EXAMINED, UNREMARKABL | | 0 | 0 - | 0 | ì | | | LIVER TOTAL NUMBER EXAMINED EXAMINED, UNREMARKABLE | | 15<br>15 | 0 - | 0 | 15<br>15 | | | ADRENAL GL<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | | 15<br>14 | - | | 1. | | | MINERALIZATION | | Ü | - | <b></b> | Ü | | | WYYKED | | 1 | | | | | | CORTICUL CELL HIPELLHOPHY | | U | | | ; | | | MODERANE | | Ú | | - | 1 | | | SKIN TOTAL NUMBER EXAMINED EXAMINED, UNREMARKABLE | | 1 | 0 | 0 | 1 | | | SPLETS TOTAL NUMBER EXAMINED EXAMINED, UNREMARKABLE | | 15<br>15 | 0 - | 0 - | 15<br>15 | | | LYMPH ND, S-MAN<br>TOTAL NUMBER EXAMINED | | 6 | 0 | 0 | 0 | | | LYMPHOID HYPERPLASIA | | 6 | - | - | _ | | | MILD<br>Hoderate<br>Harked | | 1<br>3<br>2 | - | = | - | | GROUP LEGEND: 1 is 0 PPM, 2 is 150 PPM, 3 is 750 PPH, 4 is 1500 PPM Home significantly different from control group ### TABLE 8 (Continued) PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF MICROSCOPIC DIAGNOSES BY GRADE #### FO ADULT FEMALES | | GROUP: | 1 | 2 | 3 | 4 | | |-----------------------------------------------------------------|---------------------------------------|-------------|-------------|-------------|------------------|---| | NUMBER OF ANIMALS IN DOSE GROUP<br>NUMBER OF ANIMALS SACRIFICED | · · · · · · · · · · · · · · · · · · · | 15<br>15 | 15<br>15 | 15<br>15 | 1.5<br>15 | | | LYMPH ND, S-MAN (CONTINUED) | • | | | | | | | PLASHACTTOSIS | | 6 | - | - | ··· - | | | MARKED<br>SEVERE | | 5<br>1 | · - | - | - | | | THYMIC REGION TOTAL NUMBER EXAMINED EXAMINED, UNREMARKABLE | | 15<br>15 | <u>o</u> | <u>o</u> | 15<br>15 | | | BRAIN TOTAL NUMBER EXAMINED EXAMINED, UNREMARKABLE | | 15<br>15 | <u>o</u> | 0 | 15<br>15 | | | OVARIES<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | | 15<br>15 | 0 - | 0 | 15<br>15 | | | NASAL CAVITY TOTAL NUMBER EXAMINED EXAMINED, UNREMARKABLE | | 15<br>15 | 15<br>0 | 15<br>0 | 15<br>0 | | | REINITIS | | 0 | 1 | 6* | ì | | | MINIMAL<br>MILD | | 0 | 1 | 0<br>6 | 0<br>1 | | | ATROPET, OLFACTORY EPITHELIUM | | 0 | C | 2 | 15** | | | MINIMAL<br>MILD<br>MODERATE<br>MARKED | | 0<br>0<br>0 | 0<br>0<br>0 | 1<br>1<br>0 | 0<br>0<br>6<br>9 | · | | MECROSIS OF OLFACTORY EPITHELIUM | | 0 | 0 | 0 | 1 | 1 | | MODERATE | | 0 | 0 | 0 | 1 | | GROUP LEGEND: 1 is 0 PPM, 2 is 150 PPM, 3 is 750 PPM, 4 is 1500 PPM Significantly different from control group (p < .05) significantly different from control group (p < .01) ## TABLE 8 (Continued) PROPIONALDEHYDE: CCMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS SUMMARY OF MICROSCOPIC DIAGNOSES BY GRADE #### FO ADULT FEMALES | 10 100 | DI FERMIES | | | | | | |----------------------------------------------|------------|--------|------|------|--------|---| | | GROUP: | 1 | 2 | 3 | 4 | | | NUMBER OF ANIMALS IN DOSE GROUP | | 15 | 15 | 15 | 15 | · | | NUMBER OF ANIMALS SACRIFICED | | 1.5 | 15 | 15 | 15 | | | NASAL CAVITY (CONTINUED) | | | | | | | | VACUOLIZATION OF OLFACTORY EPITHELIUM | | 0 | 15** | 15** | 0 | | | HINIMAL | | 0 | 8 | 0 | 0 | | | HILD<br>MODERATE | | 0 | 7 | 7 | 0 | | | MODERATE | | 0 | 0 | 8 | 0 | | | LARYNX ( | | | | | | | | TOTAL NUMBER EXAMINED EXAMINED, UNREMARKABLE | | 15 | 0 | 0 | 15 | | | EXAMINED, UNKEMARKABLE | | 15 | - | - | 15 | | | rachi. | | | | | | | | TOTAL NUMBER EXAMINED | | 15 | 0 | 0 | 15 | | | EXAMINED, UNREMARKABLE | | 15 | - | - | 15 | | | LUNGS | | | | | | | | TOTAL NUMBER EXAMINED | | 15 | G | 0 | 15 | | | EXAMINED, UNREMARKAELE | | 14 | - | - | 14 | | | ALVEOLAR HISTIOCYTOSIS | | 0 · 0 | - | - | 1 | | | MILD | | 0 | - | - | 1 | | | PERIVASCULAR INPILTRATE(S) | | 1 | _ | _ | 1 | | | HINIMAL | | | | | _ | | | HILD | | 1<br>0 | = | _ | 0<br>1 | | | PREUMONITIS, INTERSTITIAL | | 0 | _ | _ | 1 | | | MILD | | 0 | _ | _ | 1 | | | IIDNEYS | 74 | | | | | | | TOTAL NUMBER EXAMINED | | 15 | 0 | 0 | 15 | | | EXAMINED, UNREMARKABLE | | 11 | = | - | 12 | | | HYDRONEPHROSIS | | 1 | _ | _ | 0 | | | MARKED | | | | | | | | . 2 24/44 | | 1 | - | - | 0 | | GROUP LEGEND: 1 is 0 PPM, 2 is 150 PPM, 3 is 750 PPM, 4 is 1500 PPM <sup>\*\*</sup> Significantly different from control group (p < .01) ## TABLE 8 (Continued) PROPIONALDZHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF HICROSCOPIC DIAGNOSES BY GRADE #### FO ADULT FEMALES | | GROUP: | 1 | 2 | 3 | 4 | | |-----------------------------------------------------------------|--------|-------------|----------|----------|----------|----| | NUMBER OF ANIMALS IN DOSE GROUP<br>NUMBER OF ANIMALS SACRIFICED | | 15<br>15 | 15<br>15 | 15<br>15 | 15<br>15 | | | KIDNEYS (CONTINUED) | | | | | | | | NIMERALIZATION | | 2 | - | - | 3 | | | MINIMAL<br>MILD<br>MODERATE | | 0<br>1<br>1 | - | = | 1<br>1 | | | MEPERITIS, INTERSTITIAL | | 2 | - | - | 0 | | | MILD<br>MODERATE | | 1 | - | | 0 | | | TUBULAR BASOPHILIA | | 2 | - | - | 0 | •• | | MINIMAL<br>MILD | | 1 | -<br>- | - | 0 | | | IRETER<br>TOTAL NUMBER EXAMINED<br>EXAMINED, UNREMARKABLE | | 1 | 0 - | 0 | 0 - | | GROUP LEGEND: 1 is 0 PPM, 2 is 150 PPM, 3 is 750 PPM, 4 is 1500 PPM None significantly different from control group BRRC Report 91U0086 Appendix 3 Page 1 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD® Rats Clinical Pathology Report (8 Pages) ERRC Report 91U0086 Appendix 3 Page 2 #### TABLE OF CONTENTS | SUMMAR | Y | | | | | • • • • • • | | | | | | | | <br>• | 3 | |--------|------|----------|---------|----------|-------|-------------|-------------|-------------|-------|---------|---------|-------|-------|-------|---| | | | | | S | | | | | | | | | | - | 3 | | Нег | nate | ology | | | | • • • • • • | | | | | | | | <br>• | 3 | | | | | | emistry. | | | | | | | | | | | 3 | | Dat | ta i | Analyses | · • • • | | | • • • • • • | | | | • • • • | | | | <br>• | 4 | | RESULT | SA | ND DISC | USSI | ON | | | | | | • • • • | • • • • | | | <br>• | 4 | | Her | nate | ology | | | | | | | • • • | | | | | <br>• | 4 | | C1: | ini | cal Chem | nistr | у | | • • • • • • | • • • • • • | | | | | | | <br>• | 5 | | CONCLU | SIQ | N | | | | • • • • • • | | | | • • • • | | | | | 5 | | KEFERE | NCE | | | | • • • | • • • • • • | • • • • • | • • • • • • | ••• | • • • • | • • • | • • • | • • • | <br>• | 5 | | Table | 1 | Males | | Summary | of. | Hemate | ologv · | - Week | . 7. | | | | | <br> | 6 | | | - | | | Summary | | | | | | | | | | | 8 | #### SUMMARY Male CD® rats were exposed to propional dehyde (0, 150, 750, or 1500 ppm) by vapor inhalation for 6 hours/day, 7 days/week during a 2-week premating phase, a 14-day mating phase, and continuing for a total of 52 exposures. Blood samples were collected for clinical pathology evaluation at sacrifice (Week 7). Male rats in the 1500 ppm group had an increase in total erythrocyte count with an increase in hemoglobin and hematocrit values indicating a possible slight dehydration effect. Monocytes were increased in male rats in the 1500 ppm group, indicating some irritation. No exposure-related differences in clinical chemistry determinations were observed in male animals from any exposure group. #### MATERIALS AND METHODS In this study, male CD<sup>®</sup> rats were exposed to propionaldehyde by vapor inhalation for 6 hours/day, 7 days/week for a total of 52 exposures. Target concentrations were 0 (control), 150, 750, and 1500 ppm. Blood samples for all clinical pathology analyses were collected by retroorbital bleeding from methoxyflurane anesthetized rats at sacrifice. All rats were fasted prior to bleeding. All analyses were performed in a predetermined random order. #### **Rematology** Approximately 2.0 ml of blood was collected into blood collection tubes containing EDTA as an anticoagulant for the hematologic determinations. The following hematologic parameters were measured or calculated: leukocyte count, erythrocyte count, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and platelet count. These hematologic analyses were performed on an ABX MINOS<sup>TM</sup> VET (ABX, Inc., France) on the day of the sample collection. Commercially available quality control samples (Minitrol<sup>TM</sup>, Roche Diagnostic Systems, Inc., Nutley, NJ) were analyzed prior to the animal samples. Blood smears for differential leukocyte counts were prepared and evaluated for all animals. #### Serum Clinical Chemistry Approximately 2.0 ml of blood was collected into blood collection tubes without anticoagulant for serum chemistry analysis. The following clinical chemistry analyses were performed: 1. glucose 8. gamma glutamyl transferase (GGT) urea nitrogen calcium 3. creatinine 10. phosphorus 4. total protein 11. sodium 5. total bilirubin 12. potassium 6. aspartate aminotransferase (AST) 13. chloride 7. alanine aminotransferase (ALT) The Monarch<sup>TM</sup> 2000 Chemistry System (Instrumentation Laboratory, Lexington, MA) was used to analyze serum concentrations of glucose, urea nitrogen, creatinine, total protein, total bilirubin, AST, ALT, GGT, calcium, phosphorus, sodium, potassium, and chloride. Serum controls (SeraChem® Levels 1 and 2, Instrumentation Laboratory, Lexington, MA) were assayed with each run cf samples. #### Data Analyses The results of the clinical pathology analyses for continuous variables were intercompared for the experimental groups and the control group by use of Levene's test for equality of variance, analysis of variance (ANOVA), and tests. The t-tests were used when the F value from the ANOVA was significant. When Levene's test indicated similar variances, and the ANOVA was significant, a pooled t-test was used for pairwise comparisons. When Levene's test indicated heterogeneous variances, all groups were compared by an ANOVA for unequal variances followed, when necessary, by a separate variance t-test for pairwise comparison. GGT and all of the parameters of the leukocyte differential count, except segmented neutrophils and lymphocytes, were considered nonparametric data but reported as means and standard deviations on the tables. These nonparametric data were statistically evaluated using the Kruskal-Wallis test followed by the Mann-Whitney U test when appropriate. All statistical analyses were performed using BMDP Statistical Software (Dixon, 1990). For all statistical tests the probability value of p < 0.05 (two-tailed) was used as the critical level of significance. #### RESULTS AND DISCUSSION All references of differences in group mean values in the following text refer to comparisons of statistically significant differences between the treatment group and the control group, unless otherwise noted. Repeated reference to the control and the statistical significance will not be made in order to simplify the text. #### Hematology The summary results of hematology determinations for male rats are presented in Table 1. The individual results for these animals are found in Appendix 7. A slight increase in total erythrocytes was observed in the 1500 ppm group. A slight increase in hemoglobin and hematocrit values, although not statistically significant, was also noted in male animals in the 1500 ppm group. These results suggest a possible dehydration effect. Monocytes were increased in male rats in the 1500 ppm group, indicating some slight irritation. #### Clinical Chemistry The summary results of serum clinical chemistry determinations for male rats are presented in Table 2. The individual results for these animals are found in Appendix 7. No exposure-related differences in clinical chemistry determinations were observed in male animals from any exposure group. #### CONCLUSION A slight increase in total erythrocytes was observed in the 1500 ppm group indicating a possible slight dehydration effect of the exposure. Monocytes were increased in male rats in the 1500 ppm group, indicating some irritation. No exposure-related differences in clinical chemistry determinations were observed in male animals from any exposure group. Clinical Pathologist: Douglas A. Neptun, B.S., CC(NRCC), MT(ASCP) Date #### REFERENCE Dixon, W. J. BMDP Statistical Software. University of California Press, Berkeley, CA, 1990. CLINPATH/REPORT/PROP March 11, 1993 # TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENT/AL TOXICITY STUDY IN CD PATS SUMMARY OF HEMATOLOGY WEEK 7 PO ADULT HALES | | · | PO ADULT | HALES | | |----------------------------|----------------------|-------------|------------|------------| | GROUP: PPM | 0 | 150 | 750 | 1500 | | ERY' ROCYTES ( | 10 <sup>6</sup> /µl) | | | | | MEAN | 8.41 | €.50 | 8.36 | 8.78* | | S.D. | 0.274 | 0.305 | 0.378 | 0.365 | | н | 10 | 10 | 10 | 10 | | HEMOGLOBIN (g/ | d1 v | | | | | MEAN | 16.7 | 17.1 | 16.7 | | | S.D. | 0.53 | | | 17.4 | | N | 10 | 0.64<br>10 | 0.79<br>10 | 0.86 | | | | 10 | 10 | 10 | | HEMATOCRIT (%) | | | | | | MEAN | 44.1 | 44.8 | 44.0 | 45.5 | | 8.D. | 1.27 | 1.06 | 1.62 | 1.70 | | N | 10 | 70 | 10 | 10 | | HCV (μm <sup>3</sup> ) | | | | | | MEAN | 52. | 53. | 53. | <b>50</b> | | S.D. | 1.5 | | | 52. | | N | | 1.4 | 1.3 | 1.7 | | • • | 10 | 10 | 10 | 10 | | MCH (pg) | | | | | | MEAN | 19.8 | 20.1 | 20.0 | 19.8 | | S.D. | 0.55 | 0.53 | 0.65 | 0.84 | | N | 10 | 10 | 10 | 10 | | MCHC (g/dl) | | | | 20 | | MEAN | 37.8 | 38.2 | | | | S.D. | | | 38.0 | 38.2 | | | 0.80 | 0.93 | 0.67 | 0.76 | | N | 10 | 10 | 10 | 10 | | PLATELETS (10 <sup>3</sup> | /µl) | | | | | MEAN | 745. | 760. | 733. | 730. | | 8.5. | 73.8 | 106.8 | 62.8 | | | N | 10 | 9 | 10 | 79.9<br>10 | | LEUROCYTES (10 | 3/411 | • | | 10 | | MEAN | 10.4 | | | | | S.D. | | 9.6 | 9.6 | 11.4 | | й.<br>И | 1.73 | 2.21 | 2.68 | 3.31 | | | 10 | 10 | 10 | 10 | | Segmented Neut | ROPHILS (cells/µ | | | | | mean | 2668. | 1636. | 2682. | 2294. | | 5.D. | 1516.1 | 603.5 | 1340.7 | 1355.8 | | N | 10 | 10 | 10 | 1355.8 | | LYMPHOCYTES (c | a11 = (u11 | <del></del> | | 10 | | MEAN | | 7203 | 5545 | | | 8.D. | 7074. | 7301. | 6343. | 8180. | | N | 1266.0<br>10 | 2161.0 | 1596.7 | 2220.2 | | | | 10 | 10 | 10 | | MONOCYTES (Cel | ls/μ1) | | | | | mean | 437. | 389. | 440. | 723.* | | s.d. | 241.2 | 190.8 | 332.9 | 315.8 | | N | 10 | 10 | 10 | 10 | <sup>\*</sup> Significantly different from control group (p < .05) # TABLE 1 (continued) PROPIONALDEHIDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD C RATS SUMMARY OF HEMATOLOGY WEEK 7 PO ADULT MALES | FU ADULT RALES | | | | | | | | |--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|--|--|--| | 0 | 150 | 750 | 1500 | | | | | | 11s/µ1) | | | | | | | | | 0. | 0. | 0. | 0. | | | | | | 0.0 | 0.0 | 0.0 | | | | | | | 10 | 10 | 10 | 10 | | | | | | cells/ul) | | | | | | | | | 211. | 174. | 106. | 164 | | | | | | 142.2 | | | | | | | | | 10 | 10 | 1. | | | | | | | PHILS (cells/ul) | | | | | | | | | | 0. | n. | • | | | | | | | | | | | | | | | 10 | 10 | | | | | | | | PS (ex)14/011 | | | 20 | | | | | | | 0 | n | • | | | | | | | | | | | | | | | 10 | 10 | 10 | | | | | | | TLOCYTES Scalls/ul | | | | | | | | | | | 0. | ^ | | | | | | | | | | | | | | | 10 | 10 | 10 | | | | | | | PROCYTES (cells/u) | | | | | | | | | | | n. | • | | | | | | | | | | | | | | | 10 | 10 | | | | | | | | s (cells/100 WECs) | 1 | | | | | | | | | | 0 | • | | | | | | | | | | | | | | | 10 | 10 | 10 | 10 | | | | | | | 11s/µ1) 0. 0.0 10 cells/µ1) 211. 142.2 10 PHILS (cells/µ1) 0. 0.0 10 ES (cells/µ1) 0. 0.0 10 HROCYTES (cells/µ1) 0. 0.0 10 EROCYTES (cells/µ1) 0. 0.0 | 0 150 ils/µl) 0. 0. 0. 0.0 10 10 cells/µl) 211. 174. 142.2 13U.7 10 10 PHILS (cells/µl) 0. 0. 0. 0.0 10 10 ES (cells/µl) 0. 0. 0. 0.0 10 ES (cells/µl) 0. 0. 0. 0.0 10 10 PHILS (cells/µl) 0. 0. 0. 0.0 10 10 ES (cells/µl) 0. 0. 0. 0.0 10 10 EROCYTES (cells/µl) 0. 0. 0. 0.0 10 10 EROCYTES (cells/µl) 0. 0. 0. 0.0 10 10 EROCYTES (cells/µl) 0. 0. 0.0 10 10 EROCYTES (cells/µl) 0. 0. 0.0 10 10 EROCYTES (cells/µl) 0. 0. 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0 150 750 ils/µl) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0 150 750 1500 ils/µ1) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | | | | None significantly different from control group # TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS SUMMARY OF CLINICAL CHEMISTRY WEEK 7 FO ADULT MALES | | FO ADULT MALES | | | | | | | | |-------------------------|--------------------------|-----------|-----------------|----------|--|--|--|--| | GROUP: PPM | 0 | 150 | 750 | 1500 | | | | | | GLUCOSE (g/1) | | | | | | | | | | Mean | 1.21 | 1.17 | 1.20 | 1.17 | | | | | | S.D. | (1.109 | 0.147 | 0.110 | 0.086 | | | | | | N | .' 10 | 10 | 10 | 10 | | | | | | urea nitrogen<br>Mzan | (mg/l)<br>150. | 163. | 168. | 154. | | | | | | S.D. | 17.6 | 20.3 | 21.9 | 17.3 | | | | | | N | 10 | 10 | 10 | 17:3 | | | | | | CREATININE (mg | /11 | | | | | | | | | MEAN | 7. | 7. | 8. | 7. | | | | | | B.D. | 0.7 | 0.7 | 1.1 | 0.9 | | | | | | N | 10 | ió | 10 | 10 | | | | | | TOTAL PROTEIN | (a/1) | | | | | | | | | KEAN | 67. | 66. | 67. | <b>.</b> | | | | | | S.D. | 4.6 | 3.1 | 3.8 | 67. | | | | | | N | 10 | 10 | 10 | 3,6 | | | | | | | <del></del> | T i: | 10 | 10 | | | | | | TOTAL BILIRUBI | | _ | | | | | | | | MEAN | 2. | 2. | 2. | 2. | | | | | | 8.D. | 0.0 | 0.0 | c.o | 0.3 | | | | | | N | 10 | 10 | 10 | 10 | | | | | | CALCIUM (mg/1) | | | | | | | | | | Mean | 95. | 95. | <del>9</del> 5. | 97. | | | | | | S.D. | 2.2 | 3.5 | 1.3 | 2.1 | | | | | | n | 10 | 70 | 10 | 10 | | | | | | INORGANIC PHOS | PHCRUS (mg/l) | | | | | | | | | | 66. | 63. | 62. | 64. | | | | | | S.D. | 4.9 | 5.0 | 4.6 | 8.4 | | | | | | n | 10 | 10 | 10 | 10 | | | | | | SODIUM (mmol/1 | 1 | | | · - | | | | | | HEAN | 142. | 142. | 141. | 141. | | | | | | S.D. | 1.9 | 1.7 | 1.9 | 1.2 | | | | | | N | 10 | 10 | 10 | 10 | | | | | | POTASSIUM (mmo | 1 (1) | | | 20 | | | | | | MEAN | 5.4 | | | | | | | | | S.D. | | 5.2 | 5.3 | 5.4 | | | | | | 5.D.<br>N | 0.41<br>10 | 0.50 | 0.28 | 0.35 | | | | | | | | 1.0 | 10 | 10 | | | | | | CHLORIDE (mmol | | | | | | | | | | MEAN | 110. | 109. | 108. | 109. | | | | | | s.D. | 1.7 | 1.5 | 0.6 | 1.6 | | | | | | N | 10 | 10 | 10 | 10 | | | | | | aspartate amin | OTRANSPERASE (IU/1 | .) | | | | | | | | Mean | 68. | 64. | 76. | 70. | | | | | | 8.D. | 8.7 | 8.3 | 11.2 | 10.5 | | | | | | N | 10 | 10 | 10 | 10 | | | | | | Alanine aminoti<br>Mean | RANSFERASE (IU/1)<br>31. | 22 | ** | • | | | | | | 8.D. | 4.1 | 33. | 33. | 32. | | | | | | N | 10 | 3.9<br>10 | 6.0<br>10 | 6.9 | | | | | | | <u></u> | 70 | 10 | 10 | | | | | | MEAN | HSFERASE (IU/1) | • | | | | | | | | KEAN<br>8.D. | 4. | .4. | .4. | 4. | | | | | | S.D.<br>N | 0.7 | 0.0 | 0.4 | 0.5 | | | | | | П | 10 | 10 | 10 | 10 | | | | | Mone significantly different from control group BRRC Report 91U0086 Appendix 4 Page 1 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD\* Rats Individual Animal Data: In-Life (28 Pages) BRRC Report 31U0086 Appendix 4 Page 2 # LIST OF TABLES | Table | 1 | Abbreviations | 3 | |-------|---|----------------------------------------------------|----| | Table | 2 | FO Adult Males -Individual Clinical Observations | 5 | | Table | 3 | FO Adult Males -Individual Body Weight (Grams) | 9 | | Table | 4 | FO Adult Males -Individual Food Consumption | • | | | | (Grams/Animal/Day) | 13 | | Table | 5 | FO Adult Females -Individual Clinical Observations | 17 | | Table | 6 | FO Adult Females -Individual Body Weight (Grams) | 21 | | Table | 7 | FO Adult Females -Individual Food Consumption | ** | | | | (Grams/Animal/Day) | 25 | ## TABLE 1 # PROPIONALDEHYDE: COMEINED REPEATED-EXPOSURE AND REPFODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD# RATS ## ABBREVIATIONS # INDIVIDUAL ANIMAL DATA: IN-LIFE Abbreviations for the locations of clinical signs appgar in parentheses next to the clinical signs in the following tables. The number included with the abbreviation is the number of times that clinical sign for that location was entered into the computer for that animal during the course of the study. The following is a list of three letter abbreviations for locations of clinical signs that may appear in this appendix. ABD ABDOMEN ANS ANUS ... AXB AXILLA-BOTH AXL AXILLA-LEFT AXR AXILLA-RIGHT ECK BACK BDY ENTIRE BCDY CHS CHEST EAR EAR-BOTH EAL EAR-LEFT EAR EAR-RIGHT ELB EYELID-BOTH ELL EYELID-LEFT ELR EYELID-RIGHT ETK FIFFID-EIGHT EAB EAE-BOWH EYL EYE-LEFT EYR EYE-RIGHT FAC FACE GEN GENITAL HED HEAD нрв нір-вотн HPL HIP-LEFT HPR HIP-RIGHT INB INGUINAL-BOTH INL INGUINAL-LEFT INR INGUINAL-RIGHT LAL LEGS-ALL LFB LEG-FORE-BOTH LFL LEG-FORE-LEFT LFR LEG-FORE-RIGHT LHB LEG-HIND-BOTH LHL LEG-HIND-LEFT LHR LEG-HIND-RIGHT LNS LOCATION NOT SPECIFIED HTH MOUTH MUL MULTIPLE AREAS, NOS\* NCK NECK NSE NGSE PAL PAWS-ALL FFB PAW-FORE-EOTH PFL PAW-FORE-LEFT PFR PAW-FORE-RIGHT PHB PAW-HIND-BOTH FILE FAN HIND DOIN THL PAW-HIND-LEFT PHR PAW-HIND-RIGHT PNS PENIS SCR SCROTUM SDB SIDE-BOTH SDL SIDE-LEFT SDR SIDE-RIGHT SHB SHOULDER-BOTH SHL SHOULDER-LEFT SHR SHOULDER-RIGHT TAL TAIL TEE TEETH TRA TREATMENT AREA TSB TESTIS-BOTH TSL TESTIS-LEFT TSR TESTIS-RIGHT VAG VAGINA \*NOS NOT OTHERWISE SPECIFIED # TABLE 1 (Continued) PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD\* RATS # ABBREVIATIONS # INDIVIDUAL ANIMAL DATA: IN-LIFE The following is a list of abbreviations or words that may appear in this appendix in reference to individual body weight or food consumption value. - r/s = indicates that the animal was removed from the consumption period due to spillage. - r/e = indicates that the animal was removed from the consumption period due to excreta in the feeder - r/o = indicates that the animals was removed from the consumption period for reasons specified in the raw data. - r/dead = indicates that the animal was removed from the consumption period because it died or was sacrificed during the period in which this abbreviation appears. - dead = indicates that the animal died prior to the period in which this word appears. - sacr = indicates that the animal was a scheduled sacrifice prior to the period in which this abbreviation appears. - a = combined interval value removed due to removal of at least one individual interval value (see individual interval footnotes). - no bwt = no body weights were collected because the animal was in gestation. - r = data not collected during mating period. TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD® RATS # INDIVIDUAL CLINICAL OBSERVATIONS FG ADULT MALES | * 6 | | | | STUDY | | | |--------------|--------|----------------|-----|-------------|----------------------------------------------------------|-----| | DOSAGE GROUP | ANIMAL | CATEGORY | - | DAYS | FINDING | i | | O PPM | | | | | | | | | 28200 | NORMAL | 52 | 0- 51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | _ | 52 | SCHEDULED SACRIFICE | | | | | SKIN | 7 | 50- 52 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 7) | | | 28171 | HORMAL | 5.4 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | 28156 | NORMAL | 53 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | 7 | 52 | SCHEDULED SACRIFICE | | | | | EYES/EARS/NOSE | - | 43 | PERINASAL ENCRUSTATION | | | | 28173 | NORMAL | 25 | 0-51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | | SKIN | 7 | 50- 52 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 2) | | | 28191 | NORMAL | 52 | 0- 51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | | SKIN | 7 | 50- 52 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 2) | | | 28162 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | ~ | 52 | SCHEDULED SACRIFICE | | | | 28153 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | 28155 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | 4 | 52 | SCHEDULED SACRIFICE | | | | 28198 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | 7 | 52 | SCHEDULED SACRIFICE | | | | 28178 | NURMAL | 25 | 0- 51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | | SKIN | ~ | 27- 52 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 5) | | | 28201 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | 28180 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | 28159 | NORMAL | 25 | 0- 51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | ~ | 52 | SCHEDULED SACRIFICE | , | | | | SKIN | 7 | 17- 52 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 2) | | | 28167 | NORHAL | 53 | 0- 51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | ~ | 52 | SCHEDULED SACRIFICE | | | | | SKIN | - | 52 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 1) | | | 28174 | NORMAL | 24 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | 3.50 PPH | | | | | | | | | 28184 | NORMAL | קר | 0- 52<br>52 | NO SIGNIFICANT CLINICAL UBSERVATIONS SCHEDNIED SACRIETOR | | | | | 310 | ٠- | , , | DATCED ADERS / RED AND OR RROWN ) (TAIL | 111 | | | 28187 | MORMAT | 1 7 | 0-52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | ì | | | 10107 | FATE | ζ- | | SCHEDILED SACRIFICE | | | | | | • | 1 | | | TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED—EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL CLINICAL OBSERVATIONS FO ADULT MALES | | | | | CTITO | | | |--------------|--------|----------------|----|--------|----------------------------------------|----| | DOSAGE GROUP | ANIHAL | CATEGORY | - | DAYS | FINDING | | | 150 PPH | | | | | | | | | 28195 | NORMAL | 25 | 0-51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | | SKIN | ~ | 17- 52 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 2) | | | 28181 | NORMAL | S | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | 28165 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | ~ | 52 | SCHEDULED SACRIFICE | | | | 28199 | NORMAL | 25 | 0- 51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | PATE | - | 52 | SCHEDULED SACRIFICE | | | | | SKIN | 7 | 17- 52 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 2) | | | 28150 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | 28210 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | ~ | 52 | SCHEDULED SACRIFICE | | | | 28212 | NORMAL | 51 | 0-51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | ~ | 52 | SCHEDULED SACRIFICE | | | | | EYES/EARS/NOSE | ~ | -1 | LACRIMATION (EYB 1) | | | | | SKIN | ~ | 18- 52 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 5) | | | 28194 | NORWAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | 28168 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | 28160 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | ~ | 52 | SCHEDULED SACAIFICE | | | | 28169 | NORMAL | 52 | 0- 51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | | | SKIN | 7 | 17- 52 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 5) | | | 28188 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | -4 | 52 | SCHEDULED SACRIFICE | | | | 28193 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OESTRVATIONS | | | | | FATE | ~ | 25 | SCHEDULED SACRIFICE | | | 750 PPM | | | | | | | | | 28146 | NOPHAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 25 | SCHEDULED SACRIFICE | | | | 28203 | NORMAL | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 25 | SCHEDULED SACRIFICE | | | | 28149 | NORHAL | 24 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | | 52 | SCHEDULED SACRIFICS | | | | 28190 | NORMAL | 25 | 0- 51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATS | ~1 | | SCHEDULED SACRIFICE | ı | | | | SKIN | ~ | 18- 52 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 2) | | | 28192 | NORMAL | 25 | 0- 51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | FATE | - | 25 | SCHEDULED SACRIFICE | | TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS # INDIVIDUAL CLINICAL OBSERVATIONS FO ADULT HALES | 750 PPH 28192 SKTH 2 50-52 RAISED MEDG ( RED AND OR BROWN ) (TAL. 2) | DOSAGE GROUP | ANIHAL | CATEGORY | - | STUDY | FINDING | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|----------|-----|--------|------------------------------------------------------------------------------|----------| | 28192 SKIN 5 20-52 HOLDER SACHERICE STRUNGS WORNAL 5.00-52 HOLDER SACHERICE | 750 PPH | | | , | ; | | | | 281 PATE 1 2 2 SCHEDULED SACRIFICE | | 28192 | SKIN | 2 7 | 50-52 | RAISED AREAS ( RED AND OR BROWN ) (TALL NO STENIETCANT CLINICAL DRSERVATIONS | (7 | | 28176 WORMAL 28209 28200 | | 17707 | FATE | ξ~ | 25 | SCHEDULED SACRIFICE | | | PATE 1 52 SCHEDULED SACRIFICE | | 28176 | NORMAL | 5.4 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | 28209 NORMAL 52 0-51 NO SIGNIFICATE CINICAL OBSERVATIONS STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-52 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND OR BROWN ) (TAL STATE 10-51 RAISED AREAS ( RED AND RAISED AREAS ( RED AND RAISED AREAS ( RED AND RAISED AREAS ( RED AN | | | FATE | - | 25 | SCHEDULED SACRIFICE | | | FATE 1 | | 28209 | NORMAL | 25 | 0- 51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | SKIN 2 17-51 RAISED AREAS (RED AND OR BROWN ) (TALL ORBERVATIONS FATE PATE 1 52 SCHEDULED SACRIFICE 29186 NORMAL 54 5-1 SCHEDULED SACRIFICE 2917 NORMAL 54 0-5 NO SIGNIFICANT CLINICAL ORSERVATIONS 2917 NORMAL 52 SCHEDULED SACRIFICE ORSERVATIONS 2917 NORMAL 52 SCHEDULED SACRIFICE ORSERVATIONS 2917 NORMAL 52 NO SIGNIFICANT CLINICAL ORSERVATIONS 2918 NORMAL 52 NO SIGNIFICANT CLINICAL ORSERVATIONS 2919 NORMAL 51 NO SIGNIFICANT CLINICAL ORSERVATIONS 2910 NORMAL 51 NO SIGNIFICANT CLINICAL ORSERVATIONS 2914 NORMAL 51 NO SIGNIFICANT CLINICAL ORSERVATIONS 2919 NORMAL 52 CHEDULED SACRIFICE 3019 NORMAL 52 SCHEDULED SACRIFICE 3019 NORMAL 52 CHEDULED SACRIFICE 3019 NORMAL 52 32 | | | FATE | -1 | | SCHEDULED SACRIFICE | | | 28182 WORML 5. 2 O'SIGNIFICANT CLINICAL OBSERVATIONS SKIN DRAWL 5. 2 NO SIGNIFICANT CLINICAL OBSERVATIONS FATE 1. 5. 2 NO SIGNIFICANT CLINICAL OBSERVATIONS SKIN DORAGE 1. 5. 2 O'SIGNIFICANT CLINICAL OBSERVATIONS SKIN DRAWL 5. 5. SCHEDULED SACRIFICE SKIN DORAGE 1. 5. SCHEDULED SACRIFICE SKIN DRAWL 4. 6. 5. NO SIGNIFICANT CLINICAL OBSERVATIONS SKIN D. 5. SCHEDULED SACRIFICE SKIN D. 5. SCHEDULED SACRIFICE SKIN DRAWL 1. 5. SCHEDULED SACRIFICE SKIN D. D. 5. NO SIGNIFICANT CLINICAL OBSERVATIONS SKIN D. 5. D. 5. NO SIGNIFICANT CLINICAL OBSERVATIONS D. 5. D. 5. SCHEDULED SACRIFICE SKIN D. 5. D. 5. SCHEDULED SACRIFICE SKIN D. 5. D. 5. SCHEDULED SACRIFICE SKIN D. 5. D | | | SKIN | 7 | | RAISED AREAS ( RED AND OR BROWN ) (TAL | 5 | | State | 3 | 28182 | NORMAL | 25 | | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | SELIN 2 17-52 NATISED REASE (RED AND OR BROWN ) (TALL 1918) NORMAL 54 9-52 NO SIGNIFICANT CLINICAL OBSTRVATIONS | ( | | FATE | - | | SCHEDULED SACRIFICE | ; | | 28166 NORHAL 28167 FATE 29147 NORHAL 28158 2815 | Ć_ | | SKIN | ~ | | RAISED AREAS ( RED AND OR BROWN ) (TAL | <b>~</b> | | PATE FATE 1 | دارسي | 28186 | NORWAL | \$ | | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | 28147 NORMAL 54 0-52 NO SIGNIFICANT CLINICAL OBSERVATIONS 28158 NORMAL 44 0-52 SCHEDULED SACRIFICE SKIN 10 22-31 SCHEDULED SACRIFICE SKIN 10 22-31 ALOPECIA (PFB 10) 28-31 12) ALO | <i>()</i> | | FATE | ٦ : | | SCHEDULED SACRIFICE | | | SATE 1 | | 29147 | NORHAL | 54 | , | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | 28158 NORMAL FATE 1 25 SCHEDULED SACHFICE SKIN 10 22- 31 ALOPECIA (PFB 10) 28203 NORMAL 10 22- 31 ALOPECIA (PFB 10) 28204 NORMAL 28108 NORMAL 28108 NORMAL 28107 NORMAL 28106 NORMAL 28106 NORMAL 28106 NORMAL 28107 NORMAL 28106 NORMAL 28107 NORMAL 28107 NORMAL 28107 NORMAL 28106 NORMAL 28107 NORMAL 28107 NORMAL 28106 NORMAL 28107 NORMAL 28107 NORMAL 28107 NORMAL 28107 NORMAL 28108 NORMAL 28108 NORMAL 28109 NORMAL 28109 NORMAL 28109 NORMAL 28109 NORMAL 28100 2810 NORMAL 28100 2810 NORMAL 28100 NORMAL 28100 NORMAL 28100 NORMAL 2810 NORMAL 2810 NORMAL 2810 NORMAL 2810 NORMAL 2810 NORMAL 2810 NORMAL | | | FATE | ~ | | SCHEDULED SACRIFICE | | | SKIN 1 | | 28158 | NORMAL | 4 | | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | SKIN 10 22-31 EXCORLATED (PFB 10) | | | FATE | | | SCHEDULED SACRIFICE | | | 28138 NORMAL 28148 28157 NORMAL 28158 NORMAL 28158 NORMAL 28158 NORMAL 28158 NORMAL 28158 NORMAL 28159 NORMAL 28159 NORMAL 28159 NORMAL 28150 NORMAL 28151 NORMAL 28151 NORMAL 28152 NORMAL 28153 NORMAL 28153 NORMAL 28154 NORMAL 28155 NORMAL 28155 NORMAL 28155 NORMAL 28155 NORMAL 28156 NORMAL 28157 NORMAL 28158 NORMAL 28158 NORMAL 28159 NORMAL 28159 NORMAL 28150 28 | | | SKIN | 2 | 22- 31 | EXCORIATED (PFB 10) | | | 28128 WORNAL 51 0-51 NO SIGNIFICANT CLINICAL OBSERVATIONS FRATE SKIN 52 SCHEDULED SACRIFICE SKIN (TAL STATE SKIN ) (TAL SED AREAS (RED AND OR BROWN ) (TAL SKIN ) (TAL SED AREAS (RED AND OR BROWN ) (TAL SKIN ) (TAL SED AREAS (RED AND OR BROWN ) (TAL SEL NORMAL STATE SKIN ) (TAL SEL | | | | 2 | | ALOPECIA (PFB 10) | | | State | | 28238 | NORMAL | 51 | | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | SKIN 3 18-52 RAISED AREAS ( RED AND OR BROWN ) (TAL RATE 1 5.2 CHEDULED SCAFFICE 2 10.5 SIGNIFICE 2 10.5 SIGNIFICE 2 2.6 ED SAND OR BROWN ) (TAL SKIN 5.2 CHEDULED SCAFFICE 2 28.197 NORMAL 5.2 CHEDULED SACRIFICE 2 44-52 RAISED AREAS ( RED AND OR BROWN ) (TAL SKIN 2 17-52 RAISED AREAS ( RED AND OR BROWN ) (TAL SKIN 2 17-52 RAISED AREAS ( RED AND OR BROWN ) (TAL SKIN 2 17-52 RAISED AREAS ( RED AND OR BROWN ) (TAL SKIN 2 17-52 RAISED AREAS ( RED AND OR BROWN ) (TAL SKIN 2 17-52 RAISED AREAS ( RED AND OR BROWN ) (TAL SKIN 2 17-52 RAISED AREAS ( RED AND OR BROWN ) (TAL SKIN 2 17-52 RAISED AREAS ( RED AND OR BROWN ) (TAL SKIN 2 17-52 RAISED AREAS ( RED AND OR BROWN ) (TAL SKIN 3 2 11-52 RAISED AREAS ( RED AND OR BROWN ) (TAL SKIN 5 2 CHEDULED SACRIFICE 1 | | | FATE | ~ | | SCHEDULED SACRIFICE | į | | 28148 NORMAL EATE SIND SIGNIFICANT CLINICAL DESERVATIONS SKIN SO - 51 NO SIGNIFICANT CLINICAL DESERVATIONS SKIN SETT 2 4- 52 SCHEDULED SACRIFICE SKIN SKIN SKIN SETT SETT SETT SKIN SETT SE | 1, | | SKIN | m | | RAISED AREAS ( RED AND OR BROWN ) (TALL | 7 | | SATE STATE 1 | | 28148 | NORMAL | χ, | | NO SIGNIFICANT CLINICAL OBSERVATIONS | • | | 28197 NORMAL 28197 NORMAL 28196 FATE SKIN 28196 HORMAL 28196 HORMAL 28196 HORMAL 28196 HORMAL 28197 SCHEDULED SACRIFICE SKIN | | | FATE | 4 ( | | SCHEDULED SACKIFICE | ć | | 28196 NORMAL 28 | | | SKIN | ٠, | 30 -05 | NAISEU AREAS ( RED AND OR BROWN ) (104 | 7 | | SKIN 2 44 52 R-ISED AREAS ( RED AND OR BROWN ) (TAL SEL) | | 76187 | NORMAL | 7. | 1 C | NO SIGNIFICANI CENNICAN DESENVATIONS | | | 28196 NORMAL 28196 NORMAL 52 0-51 NO SIGNIFICANT CLINICAL OBSERVATIONS FATE 28153 NORMAL 28154 NORMAL 28155 NORMAL 28155 NORMAL 28157 NORMAL 28157 NORMAL 28158 NORMAL 28158 NORMAL 28159 NORMAL 28159 NORMAL 28159 NORMAL 28159 NORMAL 28159 NORMAL 28150 | | | FATE | ٠, | | SCHEDULED SACRIFICE | í | | 28156 HORHAL 52 0-51 NO SIGNIFICANT CLINICAL OBSERVATIONS FATE 1 52 SCHEDULED SACRIFICE SKIN 2 17-52 RAISED ARRAS ( RED AND OR BROWN ) (TAL 28157 NORHAL 22 0-23 NO SIGNIFICANT CLINICAL OBSERVATIONS SKIN 32 21-52 ALOPECIA (PFB 32) 6 21- 26 EXCORIATED (PFL 6) 6 21- 26 EXCORIATED (PFL 6) 7 ALOPECIA (PFB 32) 8 ALOPECIA (PFB 32) 8 ALOPECIA (PFB 32) 8 ALOPECIA (PFB 32) 6 21- 26 EXCORIATED (PFL 6) 7 ALOPECIA (PFB 32) 8 ( | | | SKIN | 7 | | M.ISEU AREAS ( RED AND OR BROWN ) (IAL | 7 | | SCHEDULED SACRIFICE | TODO LAN | 28106 | HOBERT | S | | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | SKIN 2 17-52 RAISED AREAS ( RED AND OR BROWN ) (TAL NORHAL 22 0-23 NO SIGNIFICANT CLINICAL OBSERVATIONS | | | FATE | ; - | | SCHEDULED SACRIFICE | | | NORMAL 1 52 SCHEDULED SACRIFICE 6 21 - 26 EXCORIATED (PFL 6) 7 2 2 2 2 2 2 2 2 2 | | | SKIK | | | RAISED AREAS ( RED AND OR BROWN ) (TAL | 7) | | S SCHEDULED SACRIFICE | | 28153 | NORMAL | 22 | | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | SKIN 32 21-52 ALOPECIA (PFB 32) NORHAL 6 21-26 EXCORIATED (PFL 6) NORHAL 54 0-52 NO SIGNIFICANT CLINICAL OBSERVATIONS FATE 1 52 SCHEDULED SACRIFICE NORHAL 54 0-52 NO SIGNIFICANT CLINICAL OBSERVATIONS FATE 1 52 SCHEDULED SACRIFICE NOKHAL 52 NO SIGNIFICANT CLINICAL OBSERVATIONS FATE 1 52 SCHEDULED SACRIFICE FATE 1 52 SCHEDULED SACRIFICE ACHADULED SACRIFICE 3 ACHADULED SACRIFICE ACHADULED SACRIFICE 3 ACHADULED SACRIFICE | | | FATE | - | | SCHEDULED SACRIFICE | | | 6 21- 26 EXCORIATED (PFL 6) NORMAL | | | SKIN | 32 | | ALOPECIA (PFB 32) | | | NORMAL 54 0- 52 NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | 9 | | EXCORIATED (PFL 6) | | | FATE 1 52 SCHEDULED SACRIFICE NORMAL 54 0~52 NO SIGNIFICANT CLINICAL OBSERVATIONS FATE 1 52 SCHEDULED SACRIFICE NORMAL 52 0~51 NO SIGNIFICANT CLINICAL OBSERVATIONS FATE 1 52 SCHEDULED SACRIFICE CONTROLLED CONT | | 28157 | NORMAL | 54 | | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | NORMAL 54 0-52 NO SIGNIFICANT CLINICAL OBSERVATIONS FATE 1 52 SCHEDULED SACRIFICE NORMAL 52 0-51 NO SIGNIFICANT CLINICAL OBSERVATIONS FATE 1 52 SCHEDULED SACRIFICE CONTROL OF STATE SA | | | FATE | - | 52 | SCHEDULED SACRIFICE | | | FATE 1 52 SCHEDULED SACRIFICE NOWHAL 52 0-51 NC SIGNIFICANT CLINICAL OBSERVATIONS FATE 52 SCHEDULED SACRIFICE COMMAND OF SOME SACRIFICE COMMAND OF SOME SACRIFICE COMMAND OF SOME SOME SACRIFICE COMMAND OF SOME SOME SOME SOME SOME SOME SOME SOME | | 28166 | NORMAL | 54 | | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | NORMAL 52 U- 51 NC SIGNIFICANI CLINICAL UBSERVATIONS FATE 1 52 SCHEDULED SACRIFICATION 52 SCHEDULED SACRIFICATION DEDOUN 1 (42) | | | FATE | - : | | SCHEDULED SACRIFICE | | | 1 SZ SCHEDURED SACHIFICE<br>2 CO. C. DRIESED RESS / DED AND OB BOOLK / (TAI) | | 28189 | NOKMAL | 25 | | NO SIGNIFICANT CLINICAL UBSERVATIONS | | | | | | FATE | ٠ ، | | SCHEDULED SACRIFICE | ć | TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS # INDIVIDUAL CLINICAL OBSERVATIONS FO ADULT MALES | 28207 NORMAL 46 0-4 FATE SKIN 8 45-5 SKIN 45 0-4 PATE 1 BODY 9 44-5 28214 NORMAL 54 0-5 FATE 1 28213 NORMAL 31 0-5 FATE 1 28205 NORMAL 53 0-5 FATE 1 SKIN 22 27-4 SKIN 28205 NORMAL 52 0-5 FATE 28172 NORMAL 52 0-5 FATE 1 28205 NORMAL 53 0-5 FATE 1 28206 NORMAL 52 0-5 FATE 1 28206 NORMAL 52 0-5 FATE 1 28207 NORMAL 52 0-5 FATE 1 28207 NORMAL 53 0-5 FATE 1 SKIN 54 0-5 FATE 1 SKIN 54 0-5 FATE 1 FATE 1 SKIN 54 0-5 FATE 1 FATE 1 SAN 54 0-5 FATE 1 FATE 1 SAN 54 0-5 FATE 1 FATE 1 FATE 1 SAN 54 0-5 FATE 1 FATE 1 SAN 54 0-5 FATE 1 FATE 1 FATE 1 SAN 54 0-5 FATE 1 FATE 1 FATE 1 SAN 54 0-5 FATE 1 | ANIMAL CATEGORY | ** | STUDY | FINDING | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|--------|----------------------------------------|----| | 28207 NORMAL FATE 58179 NORMAL FATE 1 BODY 28214 NORMAL FATE 1 EYATE | 1 | | | | | | EATE 1 SKIN 45 NORHAL 45 FATE 1 BODY 9 NORHAL 54 FATE 1 FATE 1 SKIN 22 NORHAL 53 SKIN 22 NORHAL 53 EYES/EARS/NOSE 1 ORAL/DENTAL 1 NORHAL 52 FATE 1 SKIN 22 NORHAL 53 FATE 1 SKIN 22 FATE 1 NORHAL 54 FATE 1 NORHAL 54 FATE 1 NORHAL 53 FATE 1 NORHAL 54 NORHAL 54 | _ | 46 | 0- 44 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | SKIN 8 NORMAL 45 FATE 1 BODY 9 NORMAL 54 FATE 1 NORMAL 31 FATE 1 SKIN 22 NORMAL 53 RATE 1 ORAL/DENTAL 1 NORMAL 52 KATE 1 SKIN 52 CALL 52 NORMAL 53 FATE 1 SKIN 52 NORMAL 53 FATE 1 SKIN 54 FATE 1 NORMAL | | - | 25 | SCHEDULED SACRIFICE | | | NORMAL PATE BODY BODY PATE BODY PATE I NORMAL FATE FATE FATE FATE FATE FATE FATE FATE | SKIN | æ | 45- 52 | ALOPECIA (PFB 8) | | | PATE 1 1 1 1 1 1 1 1 1 | _ | 45 | 0- 43 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | BODY 9 NORHAL 54 NORHAL 1 FATE 1 NORHAL 31 EYES/EARS/NOSE 1 SKIN 22 NORHAL 53 FATE 1 SKIN 53 FATE 1 NORHAL 52 NORHAL 52 FATE 1 NORHAL 52 FATE 1 NORHAL 54 | | - | 55 | SCHEDULED SACRIFICE | | | NORHAL 54 NORHAL 1 FATE 1 FATE 1 FATE 2 NORHAL 53 SKIN 22 NORHAL 53 CRAL/DENTAL 1 NORHAL 52 FATE 1 SKIN 2 NORHAL 52 FATE 1 NORHAL 54 NORHAL 54 | BODY | 0 | 44- 52 | URINE STAINS | | | FATE 1 NORHAL 31 FATE 1 EYSES/EARS/NOSE 1 SKIN 22 NORHAL 53 FATE 1 NORHAL 52 FATE 1 SKIN 22 NORHAL 52 FATE 1 NORHAL 52 FATE 1 NORHAL 54 FATE 1 NORHAL 54 FATE 1 NORHAL 53 FATE 1 NORHAL 54 FATE 1 NORHAL 53 FATE 1 NORHAL 54 | _ | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | NORHAL FATE FRATE SKIN SKIN 22 NORHAL EYES/EARS/NOSE 1 ORAL/DENTAL 1 NORHAL SKIN SKIN SKIN SKIN SKIN FATE NORHAL SA SA SA SA SA SA SA SA SA | _ | -4 | 52 | SCHEDULED SACRIFICE | | | FATE 1 SKIN 22 NORMAL 22 NORMAL 53 FATE 1 EYES/EARS/NOSE 1 ORAL/DENTAL 1 NORMAL 52 NORMAL 52 NORMAL 54 FATE 1 NORMAL 54 FATE 1 NORMAL 53 FATE 1 NORMAL 54 NORMAL 54 | ~ | 33 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | EYES/EARS/NOSE 1 SKIN 22 NORHAL 53 FATE 1 ORAL/DENTAL 1 NORHAL 52 NORHAL 52 NORHAL 54 FATE 1 NORHAL 54 NORHAL 54 | FATE | - | 52 | SCHEDULED SACRIFICE | | | SKIN 22 NORMAL 53 FATE EYES/EARS/NOSE 1 ORAL/DENTAL 1 NORMAL 52 FATE 1 SKIN 2 SKIN 2 SKIN 2 NORMAL 54 FATE 1 NORMAL 53 FATE 1 NORMAL 53 FATE 1 NORMAL 53 FATE 1 NORMAL 53 NORMAL 54 NORMAL 54 | EYES/EARS/NOSE | - | 49 | PERINASAL ENCRUSTATION | | | NORMAL 53 FATE | SKIN | 22 | 27- 48 | ALOPECIA (PFB 22) | | | EYES/FARS/NOSE 1 EYES/FARS/NOSE 1 ORAL/DENTAL 51 NORHAL 52 NORHAL 54 FATE 1 NORHAL 53 FATE 1 EYES/FARS/NOSE | | 53 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | EYES/EARS/NOSE 1 ORAL/DENTAL 1 NORHAL 52 FATE 1 SKIN 2 1 NORHAL 54 NORHAL 54 FATE 1 KATE KA | FATE | | 25 | SCHEDULED SACRIFICE | | | ORAL/DENTAL 1 NORMAL 52 FATE 1 SKIN 2 1 NORMAL 54 FATE 1 NORMAL 53 FATE 1 NORMAL 53 FATE 1 NORMAL 53 NORMAL 54 FATE 1 NORMAL 54 FATE 1 NORMAL 54 | EYES/EARS/NOSE | æ | 11 | PERINASAL ENCRUSTATION | | | NORMAL 52 FATE 1 SKIN 2 1 NORMAL 54 FATE 1 NORMAL 53 ENES/EARS/NOSE 1 NORMAL 54 NORMAL 53 NORMAL 54 NORMAL 54 FATE 1 NORMAL 54 | ORAL/DENTAL | 7 | 17 | PERIORAL WETNESS | | | FATE 1 SKIN 2 1 NORHAL 2 1 NORHAL 54 NORHAL 53 EYES/EARS/NOSE 1 NORHAL 1 NORHAL 54 NORHAL 54 NORHAL 54 | _ | 25 | 0- 51 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | SKIN 2 1 NORHAL 54 FATE 1 NORHAL 53 FATE 1 EVES/FARS/NOSE 1 NORHAL 54 FATE 1 NORHAL 54 | FATE | - | 52 | SCHEDULED SACRIFICE | | | NORMAL 54 FATE 1 NORMAL 53 EXES/EARS/NOSE 1 NORMAL 54 FATE 1 NORMAL 54 NORMAL 54 | SKIN | 7 | 17- 52 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 5) | | FATE 1 NORHAL 53 FATE 1 EYATE 1 NORHAL 54 FATE 1 NORHAL 54 NORHAL 54 | _ | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | NORMAL 53 ( FATE 1 EVES/EARS/NOSE 1 NORMAL 54 FATE 1 NORMAL 54 | FATE | 7 | 52 | SCHEDULED SACRIFICE | | | FATE 1<br>EVES/FARS/NOSE 1<br>NORHAL 54 1<br>FATE 1 54 1 | _ | 53 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | EYES/EARS/NOSE 1 NORHAL 54 FATE 1 NORHAL 54 | FATE | - | 52 | SCHEDULED SACRIFICE | | | NORHAL 54 FATE 1 NORHAL 54 | EYES/EARS/NOSE | - | 7 | LACRIMATION (EYL 1) | | | FATE 1 | _ | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | NORMAL 54 | FATE | - | 25 | SCHEDULED SACRIFICE | | | | | 54 | 0- 52 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | FATE 1 5 | FATE | - | 25 | SCHEDULED SACRIFICE | | | | | <b>ব</b> | PROPION | PROPIONALDEHYDE:<br>DEVELOP | TABLE 3 .HYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE, DEVELOPMENTAL TOXICITY STUDY IN CD HATS | ATED-EXPOSUR | E AND REPROD | UCTIVE/ | | |--------|-------|----------|---------|-----------------------------|-----------------------------------------------------------------------------------------------------|---------------------------|--------------|---------|---| | | , | | , | FO AD | INDIVIDUAL BODY WEIGHT<br>ADULT MALES GROUP: | WEIGHT (GRAMS<br>P: 0 PPM | HS) | , | | | WEEK | o | 1 | 2 | m | ₹ | 5 | 9 | 7 | : | | ANIMAL | | | | | | | ij | | | | 28200 | 320.1 | 342.8 | 350.9 | 376.7 | 391.1 | 405.3 | 389.8 | 379.5 | | | 28171 | 328.4 | 362.9 | 375.9 | 7.766 | 423.2 | 449.3 | 465.8 | 453.7 | | | 28156 | 333.8 | 371.3 | 390.7 | 423.9 | 440.6 | 461.4 | 490.6 | 469.6 | | | 28173 | 337.1 | 356.2 | 367.6 | 390.5 | 405.8 | 415.5 | 423.0 | 410.5 | | | 28191 | 331.9 | 349.9 | 358.4 | 378.1 | 396.3 | 409.8 | 412.8 | 400.3 | | | 28162 | 346.8 | 377.1 | 401.3 | 431.B | 455.4 | 479.0 | 488.1 | 480.0 | | | 28153 | 348.5 | 375.1 | 390.8 | 417.2 | 436.4 | 450.7 | 458.5 | 449.2 | | | 28155 | 354.2 | 383.2 | 403.9 | 440.5 | 473.1 | 488.7 | 505.1 | 492.5 | | | 26198 | 344.7 | 354.1 | 370.1 | 383.2 | 403.0 | 403.2 | 418.2 | 402.2 | | | 28178 | 356.1 | 372.6 | 393.4 | 410.9 | 426.8 | 451.9 | 467.1 | 453.8 | | | 28201 | 365.6 | 385.6 | 406.6 | 424.2 | 445.1 | 460.0 | 480.6 | 464.6 | | | 28180 | 358.4 | 387.3 | 416.6 | 437.1 | 463.5 | 485.4 | 503.9 | 502.3 | | | 28159 | 371.3 | 418.8 | 445.8 | 472.9 | 497.8 | 528.4 | 544.1 | 530.2 | | | 28167 | 363.7 | 380.9 | 409.0 | 426.7 | 440.1 | 457.4 | 473.4 | 460.6 | | | 28174 | 377.5 | 395.1 | 408.7 | 435.4 | 462.2 | 487.4 | 475.7 | 463.1 | | | HEAN | 349.2 | 374.2 | 392.6 | 416.4 | 437.4 | 455.5 | 465.8 | 454.1 | | | S.D. | 16.72 | 19.45 | 24.87 | 27.02 | 30.39 | 35.82 | 40.49 | 41.21 | | | z | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | 3/12/93 TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS | | | 13 | | ONI | IVIDUAL BODY | | (S) | | |--------|-------|----------|-------|-------|-------------------|----------------------------------|------------------------------------------------|-------| | | | | | | ADULT HALES GROUP | JP: 150 PPH | · = | | | WEEK | 0 | <b>-</b> | ĸ | m | | s | 9 | 7 | | ANIMAL | | | <br> | | <br> | <br> <br> <br> <br> <br> | :<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: | <br> | | 28184 | 323.5 | 341.2 | 354.4 | 383.7 | 388.0 | 400.2 | 403.4 | 378.3 | | 28187 | 323.6 | 326.6 | 332.7 | 351.5 | 361.4 | 369.1 | 373.6 | 360.5 | | 28195 | 329.2 | 346.0 | 358.5 | 375.5 | 400.4 | 418.2 | 431.9 | 419.2 | | 28181 | 332.7 | 342.8 | 356.9 | 384.3 | 400.2 | 421.0 | 423.5 | 405.5 | | 28165 | 337.2 | 351.5 | 349.3 | 369.4 | 379.4 | 394.9 | 379.7 | 372.3 | | 28199 | 339.8 | 360.7 | 370.9 | 390.5 | 412.7 | 429.2 | 437.9 | 433.2 | | 28150 | 345.7 | 373.9 | 394.8 | 419.1 | 440.3 | 457.8 | 467.6 | 453.9 | | 26210 | 342.6 | 362.6 | 378.2 | 393.4 | 413.9 | 427.4 | 435.8 | 423.9 | | 28212 | 349.1 | 372.6 | 378.8 | 399.0 | 425.0 | 440.1 | 458.5 | 445.6 | | 28194 | 348.0 | 366.3 | 383.0 | 403.7 | 429.4 | 448.1 | 457.3 | 440.0 | | 28168 | 361.5 | 380.4 | 390.1 | 429.3 | 444.8 | 455.1 | 456.0 | 434.5 | | 28160 | 362.8 | 395.0 | 412.3 | 433,3 | 456.5 | 478.2 | 504.2 | 490.2 | | 28169 | 360.8 | 383.3 | 401.4 | 416.9 | 429.8 | 446.4 | 460.2 | 446.3 | | 28188 | 374.3 | 414.9 | 438.3 | 475.0 | 502.2 | 522.4 | 542.2 | 530.5 | | 28193 | 356.3 | 369.5 | 383.9 | 397.4 | 413.6 | 427.7 | 433.9 | 422.4 | | HEAN | 345.8 | 365.8 | 378.9 | 401.5 | 419.8 | 435.7 | 444.4 | 430.4 | | s.p. | 15.25 | 22.70 | 26.91 | 30.20 | 34.17 | 36.38 | 43.20 | 43.56 | | 2 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | e TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS 0 | | | | | 14 | - | SODY WEIGHT (GRAMS | IS) | | | |--------|------------|-------|-------|-------|--------------------|--------------------|----------|-----------|-----| | | | | | FO AL | ADULT MALES GROUP! | JP: 750 PPH | <b>.</b> | ı | | | WRESK | 0 | 7 | e | | Ą | S | 9 | 7 | - 1 | | ANIMAL | <br> | | | | | | | | | | 28146 | 327.5 | 358.1 | 377.7 | 390.1 | 411.5 | 435,9 | 441.8 | 428.8 | | | 2000 | 234.2 | 359.7 | 375.3 | 408.3 | 428.7 | 453.6 | 456.4 | 443.4 | | | 201.40 | . C. C. C. | 378.F | 395.0 | 417.8 | 433.7 | 458.0 | 465.6 | 452.1 | | | 00100 | | 337.5 | 341.2 | 356.2 | 369.3 | 379.1 | 376.6 | 368.5 | | | 26192 | 143.0 | 356.4 | 378.1 | 407.2 | 431.8 | 445.6 | 462.5 | 443.5 | | | 28211 | 341.0 | 366.9 | 379.6 | 400.0 | 418.5 | 431.6 | 447.8 | 439.7 | | | 28176 | 343.1 | 358.9 | 379.7 | 399.5 | 417.1 | 432.6 | 443.3 | 427.9 | | | 28200 | 343.2 | 356.8 | 365.9 | 395.2 | 417.9 | 425.8 | 432.0 | 413.8 | | | 28182 | 350.4 | 370.8 | 385.8 | 419.8 | 451.3 | 468.8 | 483.1 | 466.8 | | | 28186 | 350.0 | 370.4 | 380.9 | 407.6 | 422.5 | 442.7 | 456.8 | 440.9 | | | 28147 | 352.2 | 376.4 | 387.8 | 415.4 | 434.5 | 452.2 | 446.4 | 430.4 | | | 28358 | 361.3 | 391.8 | 405.0 | 449.4 | 461.6 | 484.9 | 503.2 | 498.0 | | | 28208 | 366.3 | 379.5 | 402.7 | 423.1 | 443.0 | 464.7 | 485.9 | 467.8 | | | 28348 | 362.5 | 389.0 | 405.5 | 430.2 | 453.1 | 467.8 | 484.5 | 477.7 | | | 28197 | 371.0 | 392.1 | 406.0 | 439.2 | 467.0 | 479.5 | 502.4 | 485.7 | | | | | | , | ; | | | | 7 377 | | | HEAN | 348.4 | 369.7 | 384.4 | 410.6 | 430.8 | 448.2 | 429.4 | P . O . O | | | S.D. | 13.09 | 15.49 | 17.39 | 22.19 | 24.03 | 56.09 | 31.86 | 31.52 | | | z | 15. | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | | | | PROPION | PROPIONALDEHYDE: | COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE, | ATED-EXPOSUR | E AND REPROD | OUCTIVE/ | |--------|-------|-------|---------|------------------|----------------------------------------------|----------------------------------------|--------------|----------| | | | | | DEVELOP | DEVELOPMENTAL TOXICITY | TY STUDY IN CD. | CD RATS | | | | | | | ~ ~ | INDIVIDUAL BODY WALES GROUP: | BODY WEIGHT (GRAMS)<br>GROUP: 1500 PPH | HS) | | | WEEK | 0 | 1 | 2 | m | 4 | 5 | 9 | 7 | | ANIMAL | | | | | | | | | | 28196 | 318.1 | 335.0 | 347.1 | 368.6 | 386.1 | 398.6 | 401.0 | 386.0 | | 28163 | 325.1 | 338.6 | 339.2 | 368.0 | 393.2 | 417.7 | 439.4 | 425.7 | | 28157 | 333.5 | 351.2 | 372.2 | 389.1 | 404.8 | 415.7 | 421.7 | 412.2 | | 28166 | 331.8 | 350.2 | 364.3 | 397.0 | 415.3 | 424.9 | 430.6 | 410.5 | | 28189 | 339.3 | 359.1 | 366.6 | 389.9 | 411.0 | 414.4 | 411.4 | 389.6 | | 28207 | 342.1 | 362.4 | 376.8 | 405.1 | 426.4 | 444.5 | 456.7 | 445.3 | | 28179 | 356.1 | 386.1 | 415.2 | 455.6 | 401.1 | 517.7 | 530.5 | 507.9 | | 28214 | 349.1 | 363.0 | 368.8 | 388.6 | 405.2 | 417.4 | 430.3 | 413.2 | | 28213 | 343.1 | 359.2 | 375.4 | 399.9 | 411.9 | 439.8 | 465.8 | 448.1 | | 28205 | 360.0 | 390.6 | 412.4 | 441.6 | 462.4 | 480.3 | 498.0 | 485.3 | | 28206 | 347.1 | 366.2 | 374.7 | 391.4 | 404.6 | 427.4 | 420.1 | 405.6 | | 28172 | 359.3 | 363.6 | 373.7 | 462.2 | 417.3 | 426.9 | 439.3 | 421.3 | | 28183 | 360.7 | 376.1 | 307.5 | 405.6 | 422.1 | 425.9 | 432.9 | 402.0 | | 28202 | 375.3 | 403.6 | 428.3 | 447.7 | 462.8 | 472.2 | 467.8 | 464.3 | | 28204 | 372.7 | 387.7 | 413.8 | 429.5 | 446.4 | 449.5 | 460.8 | 447.6 | | HEAN | 347.6 | 366.2 | 381.1 | 405.3 | 423.4 | 438.2 | 447.1 | 431.0 | | S.D. | 16.65 | 19.44 | 25.72 | 26.79 | 27.60 | 31.03 | 34.08 | 35.03 | | 2 | 1.5 | 15 | 15 | 15 | 5.7 | 15 | 15 | 15 | TABLE 3 TABLE 4 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL FOOD CONSUMPTION (GRAMS/ANIMAL/DAY) FO ADULT MALES GROUP: 0 PPM 5 6 7 | WEEK 1 | | • | 7 | u | 4 | ۲ | |------------|-------|--------------------------------------------------------------------------------------------------|----------|------|------|------| | | | | • | n | - | | | • | 7<br> | F<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | | | | | | • | .5 | 23.9 | ы | 25.9 | 21.0 | 25.1 | | | ۳. | 27.0 | <b>L</b> | 28.5 | 29.5 | 29.3 | | • | ₹. | 27.8 | <b>.</b> | r/s | 29.7 | 30.1 | | | 5. | 23.9 | M | 24.9 | 24.6 | 25.0 | | | ۳. | 23.6 | L | 25.7 | 25.0 | 24.8 | | | | 27.0 | H | 29.4 | 26.7 | 27.9 | | | 6 | 25.7 | ы | 27.8 | 26.3 | 28.6 | | | 0 | 26.4 | h. | 29.5 | 28.8 | 29.5 | | | • | 1/8 | ы | 23.6 | 25.1 | 25.8 | | | 0 | 26.3 | 4 | 27.8 | 27.6 | 28.4 | | | 'n | 26.8 | <b>L</b> | 28.8 | 30.3 | 31.0 | | | 9 | 27.1 | н | 29.7 | 29.7 | 30.7 | | | : -: | 31.2 | 4 | 32.2 | 32.4 | 31.5 | | | m | 26.2 | ь | 26.7 | 27.7 | 27.1 | | 28174 26.7 | ., | 26.3 | be . | 31.5 | 25.1 | 26.0 | | HEAN 26.5 | s. | 26.4 | | 28.0 | 27.3 | 28.1 | | S.D. 1.6 | 58 | 1.91 | | 2.46 | 2.90 | 2.31 | | ų. | 51 | 14 | | 14 | 15 | 15 | TABLE 4 PROPIGNALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD RATS | | | | | INDIVIDUAL I | INDIVIDUAL FOCD CONSUMPTION FO ADULT MALES GROUP: | _ | |--------|------|-------------|-----------|--------------|---------------------------------------------------|------| | WEEK | 1 | 7 | ₹ | 5 | 9 5 | • | | AHIMAE | | ;<br>;<br>; | <br> | <br> | | | | 28184 | 23.7 | 23,9 | ы | 25.9 | 23.9 | 24.8 | | 28187 | 19.5 | 19.3 | 4 | 21.6 | 20.9 | 21.5 | | 28195 | 22.6 | 1/5 | ы | 26.8 | 26.3 | 26.5 | | 28181 | 21.9 | 22.2 | ы | 25.7 | 24.9 | 24.1 | | 28165 | 23.1 | 23.8 | | 25.5 | 20.6 | 23.2 | | 28199 | 23.8 | 23.5 | <b>.</b> | 27.0 | 26.0 | 26.5 | | 28150 | 27.5 | 27.9 | | 30.8 | 30.1 | 31.1 | | 28210 | 26.2 | 1/3 | ы | 28.9 | 26.4 | 27.0 | | 28212 | 25.4 | 26.0 | 14 | 26.2 | 26.9 | 26.5 | | 28194 | 25.9 | 26.3 | <b></b> | 27.3 | 26.4 | 25.7 | | 28168 | 25.2 | 1/3 | | r/s | 27.2 | 28.2 | | 28160 | 29.6 | 28.6 | ы | 1/8 | 32.4 | 31.7 | | 28169 | 27.1 | 27.2 | ы | 28.6 | 28.2 | 28.8 | | 28188 | 29.6 | 29.9 | | 30.4 | 31.6 | 30.5 | | 28193 | 25.1 | 25.8 | <b>L.</b> | 26.4 | 27.1 | 28.1 | | KEAN | 25.1 | 25.4 | | 27.0 | 26.6 | 27.0 | | S.D. | 2.78 | 2.97 | | 2.37 | 3.30 | 2.89 | | z | 15 | 12 | | 13 | 15 | 15 | Ç. TABLE 4 PROPIONALDEHYDE: COMBINE REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS | | | | | INDIVIDUAL<br>FO ADU | INDIVIDUAL FOOD CONSUMPTION FO ADULT MALES GROUP: | N (GRANS/NiTHAL/DAY) | |--------|------|------|-----|----------------------|---------------------------------------------------|----------------------| | WEEK | -1 | 7 | • | S | 5 6 | 7 | | ANIMAL | | | | | | | | 28146 | 29.5 | 28.1 | ы | 1/5 | 29.7 | 23.8 | | 28203 | 26.0 | 25.3 | ы | 27.7 | 26.8 | 26.0 | | 28149 | 27.7 | 27.6 | | 28.3 | 28.0 | 28.5 | | 28190 | 21.2 | 19.5 | ы | 23.1 | 21.5 | 24.0 | | 28192 | 25.3 | 25.6 | | 27.7 | 27.4 | 27.8 | | 28211 | 25.7 | 25.7 | L | 26.9 | 27.6 | 28.3 | | 28176 | 26.1 | 26.8 | ы | 1/5 | 27.8 | 27.6 | | 28269 | 24.7 | 24.7 | ** | 1/8 | 26.6 | 27.4 | | 28182 | 27.1 | 1/3 | H | 1/3 | 31.1 | 28.7 | | 28186 | 27.3 | 1/8 | J.a | 28.7 | 28.4 | 28.9 | | 28147 | 27.2 | 2/3 | ы | r/3 | 26.8 | 28.4 | | 28158 | 26.7 | 25.9 | b. | 29.3 | 27.8 | 29.1 | | 28208 | 24.7 | 25.9 | | 28.2 | 29.9 | 28.0 | | 28148 | 25.3 | 25.5 | ., | 28.2 | 27.9 | 27.6 | | 28197 | 27.4 | 24.9 | H | 29.0 | 29.9 | 30.1 | | KEAN | 26.1 | 25.4 | | 27.7 | 27.8 | 27.9 | | S.D. | 1.88 | 2.12 | | 1.74 | 2,19 | 1.43 | | 2 | 5. | 12 | | 10 | 15 | 15 | TABLE 4 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD BATS | | | | PROPIO | PROPIONALDEHYDE: C<br>Develophi | HYDE: COMBINED REPEATED-EXPOSURE ANDELOPMENTAL TOXICITY STUDY IN CD. ■ | COMBINED REFEATED-EXPOSURE AND REPRODUCTIVE, HENTAL TOXICITY STUDY IN CD RATS | |--------|------|------|----------|---------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------| | | | | | INDIVIDUAL<br>FO ADUI | VIDUAL FOOD CONSUMPTIC<br>FO ADULT MALES GROUP: | INDIVIDUAL FOOD CONSUMPTION (GRAMS/ANIMAL/DAY) FO ADULT MALES GROUP: 1500 PPM | | WEEK | 7 | 2 | ₹ | 5 | 9 | _ | | ANTHAL | | | | | | | | 28196 | 22.0 | 21.5 | ы | 24.7 | 23.5 | 23.7 | | 28163 | 23.2 | 21.7 | u | 26.7 | 27.3 | 26.5 | | 28157 | 24.2 | 24.0 | ı | 25.1 | 24.7 | 25.3 | | 28166 | 23.1 | 23.9 | • | 56.9 | 25.2 | 25.5 | | 28189 | 23.6 | 22.9 | L | 24.5 | 21.9 | 23.1 | | 28207 | 25.3 | 1/8 | <b></b> | 28.2 | 56.9 | | | 20179 | 27.6 | 29.5 | | 34.1 | 33.2 | 35.2 | | 28214 | 24.7 | 24.2 | ы | 26.8 | 25.3 | 25.7 | | 28213 | 22.3 | 23.0 | <b>L</b> | 27.3 | 28.6 | 26.7 | | 28205 | 26.0 | 26.8 | | 28.3 | 27.8 | 26.7 | | 28206 | 24.0 | 24.1 | <b>L</b> | 26.5 | 23.0 | 24.5 | | 28172 | 24.0 | 20.3 | ** | 25.5 | 24.9 | 25.7 | | 28183 | 25.7 | 26.0 | ы | 25.3 | 25.3 | 24.4 | | 28202 | 27.6 | 28.9 | ы | 27.5 | 24.6 | 26.3 | | 28204 | 28.5 | 27.1 | H | 27.1 | 26.8 | 28.2 | | HEAS | 24.8 | 24.5 | | 26.9 | 25.9 | 26.3 | | S.D. | 1.98 | 2.71 | | 2.31 | 2.70 | 2.79 | | z | 15 | 14 | | 15 | 15 | 15 | | | | | | | | | # TABLE 5 PROPIONALDEHYDB: COMBINED REPEATED-EXFOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS # INDIVIDUAL CLINICAL OBSERVATIONS FO ADULT PEMALES 9 | ) | | | | STUDY | • | | |------------------|------------|-------------------------|--------------|-----------------------------------------|--------------------------------------|-----------------------------------------| | DOSAGE GROUP | ANIHAE | CATEGORY | ** | DAYS | FINDING | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | NAG O | | | | | | | | | 28229 | ROZEAL | 41 | ŋ- 39 | NO SIGNIFICANT CHI. VG. | (C. OBSERVATIONS | | | | 3,7,1 | - | 39 | SCHEDULED SACHTTE | | | , | 28228 | NORMAI. | 45 | 0- 43 | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | FATE | ~ | 43 | SCHEDULED SACRIFICE | | | | 28244 | NCPMAL | 41 | 0- 39 | _ | OBSERVATIONS | | | | FATE | -1 | 39 | ŝ | | | | 28287 | KNEWAL | 43 | -5<br>17: | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | 7. F. F. B. | - | 41 | SCHEDULED SACRIFICE | | | T <sub>2</sub> , | 28239 | NORMAL | 43 | -0<br>-41 | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | FATE | ٠; | 78 | SCHEDULED SACKIFICE | | | | 28240 | NORMAL | 4. | 0- 40 | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | MATE | 7 4 | 5 C | NO CICNIETTANE CLINICAL ORSEBUARIONS | OBSERVATIONS | | | 74707 | PANT | ; - | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | SCHEDILED SACRIFICE | | | | 28276 | NOFMAL | 4 2 | 0- 42 | NO SIGNIFICANT CLINICAL OBSTRVATIONS | OBSTRVATIONS | | | )<br> <br> | FATE | | 42 | SCHEDULED SACRIFICE | | | | 28245 | NORMAL | 42 | 0- 40 | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | FATE | - | 40 | SCHEDULED SACRIFICE | | | | 28226 | NORMAL | 32 | 0~ 30 | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | PATE | -4 | 41 | _ | ٠ | | • | | 2000年 | 11 | 31- 41 | ALOPECIA (PFB 11) | 1 | | | 28255 | NORMAL | 42 | 0- 4C | NO SIGNIFICANT CLINICAL | CLINICAL OBSERVATIONS | | | | FATS | <b>-</b> | <b>9</b> . | SCHEDULED SACRIFICE | | | | 28249 | NORWAL | 43 | 0- 41 | NO SIGNIFICANT CLINICAL DESERVATIONS | OBSERVATIONS | | | | FATE | <b>⊣</b> ; | ₹: | SCHEDULED SACRIFICE | | | | 28275 | NORMAL | ٠<br>د | -0 | NO SIGNIFICANT CLINICAL UNSERVATIONS | UNSERVATIONS | | | 4.6 | PATE | ٦; | 4. | SCHEDULED SACRIFICE | OBCT MATIBED BO | | | 28718 | NORMAL | <del>,</del> | 7 | ACCUMENT TO CACAMITATE | OBSERVALIONS | | | 79000 | PATE | <b>→</b> Ç | 7 4 | NO STENIETCANT CLINICAL DESERVATIONS | OBSERVATIONS | | | 10707 | TABLE TO SERVICE STATES | r | 40 | SCHEDILED SACRIFICE | | | ו ביט ממה | į | 1 | • | 2 | | )¢ | | | 28277 | NORMAL | 4 | 0- 42 | NO SIGNIFICANT CLINICAL UBSERVATIONS | CESERVATIONS | | | | FATE | - | 42 | SCHEDULED SACRIFICE | | | | .28272 | NORMAL | 42 | 0- 40 | | OBSERVATIONS | | | | FATE | - | 4 | c. | | | | 28270 | NORMAL | 46 | ≥0- 42 | ; | OBSERVATIONS | | | . ! | E STAN | <b>→</b> ! | 76 | | | | 4 ** | 38288 | NORMAL | 15) 'A | - 43 | COURTINES OF CLINICAL | IN CLINICAL OBSERVATIONS | | | 2000 | Mobile | 4 5 | } | NO STENIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | 66707 | PATE | } - | 4 4 | SCHEDILED SACRIFICE | | | | 28264 | NORMAT. | 4.5 | 0- 41 | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | | ! | ; | | | TABLE 5 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RAIS # INDIVIDUAL CLINICAL OBSERVATIONS FO ADULT FEMALES | STULY DAYS FINDING | |-----------------------------------------------------------------------------------------------| | | | 42 SCHEDULED SARRIFICE<br>0-43 NO SIGNIFICANT CLINICAL OBSERVATIONS<br>41 SCHEDULED SACRIFICE | | 0- 39 NO SIGNIFICANT CLINICAL OBSERVATIONS AN SCHEDHLED SACRIFICE | | 23- 30 PERINASAL ENCRUSTATION<br>40 CRUST (FAC 1) | | 31- 36 ALOPECIA (FAC 6)<br>0- 42 NO SIGNIFICANT CLINICAL OBSERVATIONS | | 42 | | 4 | | , | | 0- 40 NO SIGNIFICANT CLINICAL OBSERVATIONS | | 0- 41 NO SIGNIFICANT CLINICAL OBSERVATIONS | | 41 SCHEDULED SACRIFICE<br>0~ 41 NO SIGNIFICANT CLINICAL OBSERVATIONS | | 41 | | 0- 39 NO SIGNIFICANT CLINICAL OBSERVATIONS | | 39 | | 0- 41 NO SIGNIFICANT CLINICAL OBSERVATIONS 41 SCHEDULED SACRIFICE | | 0- 43 NO SIGNIFICANT CLINICAL OBSERVATIONS 43 SCHEDULED SACRIFICE | | | | 39 SCHEDOLED SACKIFICE<br>0- 40 NO SIGNIFICANT CLINICAL OBSERVATIONS | | 40 | | 0- 43 NO SIGNIFICANT CLINICAL OBSERVATIONS | | 0- 39 NO SIGNIFICANT CLINICAL OBSERVATIONS | | 0 | | 17- 40 RAISED AREAS ( RED AND OR BROWN ) (TAL | | 0- 39 NO SIGNIFICANI CLIN.<br>40 SCHEDULED SACRIFICE | | 7 PERIOCULAR ENCRUSTATION (EYB 1)<br>17-40 RAISED AREAS ( RED AND OR BROWN ) | TABLE 5 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD ® RATS INDIVIDUAL CLINICAL OBSERVATIONS FO ADULT FEMALES | 01000 404904 | NATERAL | CAMERODRY | | STUDY | FINDING | | | |--------------|---------------------|----------------|----------|---------------|----------------------------------------|----|----| | DOSUGE GROOT | POLITICAL PROPERTY. | | • | | | | ł | | 750 PPM | | | | | | | | | | 28260 | NORMAL | 45 | 0- 44 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | FATE | 7 | 44 | SCHEDULED SACRIFICE | | | | | : . | SKIN | - | 17 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 7 | | | | 28259 | NORMAL | 14 | 0- 16 | NC SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | FATE | -1 | 43 | SCHEDULED SACRIFICE | | | | F | | SKIN | 7 | 17- 43 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 2) | | | : | | 1 | 30 | 7- 43 | ALOPECIA (LFB 30) | | | | | 28252 | NORMAL | 43 | 0-41 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | <br> | | - | 41 | SCHEDULED SACRIFICE | | | | | 28222 | - | 40 | 0~ 39 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | | - | 40 | SCHEDULED SACRIFICE | | | | | | SKIN | ~ | 17- 40 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 2) | | | • | 28224 | | 42 | 0- 40 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | | ٦, | <b>Q</b> | SCHEDULED SACRIFICE | | | | | 28221 | MORMAL | 40 | 0- 39 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | FATE | - | 40 | SCHEDULED SACRIFICE | | | | | | CKIN | , | 17- 40 | RAISED AREAS ( RED AND OR BROWN ) (TAL | 2) | | | | 28220 | SOBKAT. | 44 | 0- 42 | NO SIGNIFICANT CLINICAL OBSERVATIONS | • | | | | | 444 | ; - | 4.5 | SCHEDILED SACRIFICE | | | | 1500 PPM | | 9164 | 4 | ; | | | | | | 28265 | NORHAL | 42 | 0- 40 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | ٠. | | | | | - | \$ | SCHEDULED SACRIFICE | | | | | 28269 | NORHAL | 40 | 0-39 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | FATE | - | 39 | SCHEDULED SACRIFICE | | | | | 28279 | NORMAL | 42 | 0- 40 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | PATE | - | 40 | SCHEDULED SACRIFICE | | | | | 28268 | NORMAL | 42 | 0- 40 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | FATE | ~ | 40 | SCHEDULED SACRIFICE | | | | | 28254 | NORMAL | 42 | 0- 40 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | ÷ | FATE | | 40 | SCHEDULED SACRIFICE | | | | | 28243 | NORMAL | 43 | 0-41 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | FATE | - | 41 | SCHEDULED SACRIFICE | | | | | 28247 | NORMAL | 43 | 0-41 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | FATE | - | 41 | SCHEDULED SACRIFICE | | | | | 28285 | NORMAL | 44 | 0- 42 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | FATE | - | 42 | SCHEDULED SACRIFICE | | | | | 28231 | NORMAL | 19 | 0- 17 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | FATE | - | <del>\$</del> | IFICE | | | | | | SKIN | 23 | - | ALOPECIA (LFB 4, MUL 19) | | | | | 28246 | NORMAL | 34 | 0- 39 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | | | PATE | <b>-</b> | 33 | | | | | | | EYES/EARS/NOSE | 'n | | | | | | | | | 7 | 27- 28 | LACRIMATION (EYB 2) | | | TABLE 5 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL CLINICAL OBSERVATIONS FO ADULT FEMALES | | | | | STUDY | | |--------------|--------|----------|-----|-------|-----------------------------------------------| | DOSAGE GROUP | ANIMAL | CATEGORY | *** | DAYS | FINDING | | 1500 PPM | | | | | | | | 28234 | NORMAL | 44 | 0- 42 | 44 0- 42 NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | FATE | ~ | 42 | SCHEDULED SACRIFICE | | | 28241 | NORMAL | 45 | 0- 43 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | FATE | -1 | 43 | SCHEDULED SACRIFICE | | | 28251 | NORMAL | 42 | 0- 40 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | | | FATE | ~ | 40 | SCHEDULED SACRIFICE | | | 28284 | MORMAL | 43 | 0- 41 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | • | ~ | FATE | ~ | 41 | SCHEDULED SACRIFICE | | | 28237 | NORMAL | 55 | 0- 53 | NO SIGNIFICANT CLINICAL OBSERVATIONS | | • | | FATE | - | 53 | SCHEDULED SACRIFICE | | TABLE 6 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRCDUCTIVE/ | DEVELOPMENTAL TOXICITY STUDY IN CD RATS | |-----------------------------------------------------------------------|-----------------------------------------| |-----------------------------------------------------------------------|-----------------------------------------| | | ı | | • | INDIVIDUAL BODY WEIGHT<br>FO ADULT FEMALES GROUP: | (GRAMS)<br>0 PPH | |--------|-------|-------|---------|---------------------------------------------------|------------------| | WEEK | 0 | 1 | 2 | £1 | | | ANIMAL | | | | | | | 28229 | 212.0 | 219.2 | no bet. | no but. | | | 28228 | 219.0 | 238.0 | 245.3 | no but. | | | 28244 | 210.5 | 221.6 | no bwt. | no bwt. | | | 28287 | 208.9 | 222.0 | 228.2 | no bwt. | | | 28239 | 208.0 | 220.7 | 222.7 | no bwt. | | | 28240 | 216.1 | 7.722 | no but. | no bwt. | | | 28242 | 228.1 | 236.8 | 246.3 | no bwt. | | | 28276 | 208.2 | 227.8 | 229.7 | no byt. | | | 28245 | 225.7 | 234.8 | no bwt. | | | | 28226 | 215.5 | 219.4 | 229.6 | no but. | | | 28255 | 223.6 | 233.3 | no but. | | | | 28249 | 224.1 | 227.3 | 231.4 | no but. | | | 28275 | 238.3 | 251.9 | 253.4 | no bwt. | | | 28278 | 226.5 | 233.1 | 243.2 | no but. | | | 28256 | 236.3 | 250.6 | no but. | no bwt. | | | HEAN | 220.1 | 230.9 | 236.6 | | | | S.D. | 9.89 | 10.40 | 10.58 | | | | 2 | 15 | 15 | Ó | | | TABLE 6 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVGLOPHENTAL TOXICITY STUDY IN CD® RATS | INDIVIDUAL BODY WEIGHT (GRANS) RO ADULT FEMALES GROUP: 150 PPN 3 | byt. | bwt.<br>bwt. | bwt.<br>but. | bot. | ber.<br>Der | bwt. | byt. | bwt. | bwt. | but. | but. | bwt. | | | | |-------------------------------------------------------------------|-----------------|----------------|--------------|-------|-------------|---------|-------|-------|-------|---------|-------|-------|-------|-------|----| | | S. | 5 5 | 5 5 | Ş | 6 5 | 5 | 9 | 5 | 5 | 5 | 5 | 5 | | | | | ~ | 218.6 | no byt. | 222.0 | 224.7 | 232.6 | no but. | 243.2 | 242.2 | 237.5 | no bwt. | 265.8 | 239.1 | 234.5 | 13.80 | 11 | | 7 | 214.1 | 220.0<br>229.4 | 216.2 | 223.3 | 224.2 | 231.2 | 233.6 | 235.9 | 234.9 | 233.3 | 242.3 | 226.4 | 227.3 | 8.75 | 15 | | , <b>o</b> | 201.3 | 223.9 | 212.2 | 221.5 | 217.7 | 224.4 | 221.7 | 213.3 | 226.4 | 226.4 | 227.5 | 225.6 | 219.8 | 7.50 | 15 | | WEEK | ANTHAL<br>28277 | 28272<br>28270 | 28288 | 28264 | 28233 | 28238 | 28257 | 28267 | 28280 | 28258 | 28262 | 28220 | KEAN | S.D. | z | TABLE 6 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS Ö | 208.0 217.4 no bwt. no bwt. 208.1 207.3 217.6 no bwt. 208.2 218.1 217.1 no bwt. 223.0 224.4 no bwt. no bwt. 223.7 224.4 no bwt. no bwt. 222.9 227.4 241.4 no bwt. 220.5 229.6 241.7 no bwt. 220.6 226.5 no bwt. 220.6 227.3 no bwt. no bwt. 221.7 223.9 232.0 261.4 221.7 233.3 244.2 no bwt. 221.7 233.9 232.0 261.4 261.4 27.8 no bwt. no bwt. 221.7 233.9 232.0 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 261.4 | | ć | • | ſ | INDIVIDUAL BODY WEIGHT (GRAMS) PO ADULT FEMALES GROUP: 750 PPH | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-------|-----------|----------------------------------------------------------------| | 217.4 no but. no 207.3 217.6 no 218.1 217.1 no 218.1 217.1 no 217.2 224.4 no but. no 227.4 241.3 no 227.6 226.5 no 227.2 227.3 no but. no 223.9 232.0 so 244.2 no 233.9 232.0 | - | | 4 | | | | 207.3 217.6 218.1 217.1 210.8 0 | 000 | | 1 110 | Acre Acre | 477 | | 2107.3 217.6 218.1 210.8 210.4 210.8 210.4 210.3 210.3 220.4 220.4 220.6 220.5 227.4 220.5 227.8 227.2 227.8 227.2 227.8 227.8 227.8 227.8 227.8 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 227.9 | ,<br>00, | | 177 | - Tag Off | | | 218.1 217.1 no<br>210.8 no bwt. no<br>224.4 no bwt. no<br>237.2 241.4 no<br>219.3 no bwt. no<br>227.4 240.3 no<br>228.6 226.5 no<br>227.0 227.2 no<br>227.3 no bwt. no<br>227.8 no bwt. no<br>227.8 no bwt. no<br>227.8 no bwt. no<br>227.9 no bwt. no | 206. | m | 207.3 | 217.6 | no bwt. | | 210.8 no byt. no 224.4 no byt. no 237.2 241.4 no 241.4 no 227.4 241.7 no 227.6 226.5 no 227.2 no byt. no 227.8 223.9 232.0 signal like like like like like like like lik | 208. | Ŋ | 218.1 | 217.1 | no bwt. | | 224.4 no bwt. no 219.3 219.3 no bwt. no 227.4 240.3 no 226.5 226.5 227.2 227.3 no bwt. no 227.8 244.2 no 237.9 no 244.2 no 223.9 232.0 significant zignificant 223.0 zignificant no 223.9 zignificant no 223.0 | 209 | ٦. | 210.8 | no byt. | no bwt. | | 237.2 241.4 no 219.3 no bwc. no 229.6 241.7 no 228.6 241.7 no 227.3 no bwc. no 227.3 no bwc. no 227.8 no bwc. no 227.8 no bwc. no 227.8 no bwc. no 227.9 no bwc. no | 223 | 0 | 224.4 | no but. | no but. | | 219.3 no bwt. no 227.4 240.3 no 228.6 241.7 no 228.6 226.5 no 227.2 227.3 no bwt. no 227.8 no bwt. no 227.8 no bwt. no 227.8 no bwt. no 223.9 232.0 s.00 | 223 | ., | 237.2 | 241.4 | no bwt. | | 227.4 240.3 no 229.6 241.7 no 228.6 226.5 no 227.0 227.2 | 219 | ₹. | 219.3 | no byt. | no bwt. | | 229.6 241.7 no 228.5 no 227.2 23.3 no bwt. no 227.8 no bwt. no 227.8 no bwt. no 227.8 no bwt. no 227.8 no bwt. no 223.9 232.0 s | 222 | 6. | 227.4 | 240.3 | no bwt. | | 228.6 226.5 no<br>227.0 227.2<br>223.5 no bwt. no<br>227.8 no bwt. no<br>227.8 no bwt. no<br>223.9 244.2 no<br>8.07 11.24 | 220 | در | 229.6 | 241.7 | no bwt. | | 227.0 227.2 no 223.5 no bwt. no 227.3 no bwt. no 227.8 no bwt. no 233.3 244.2 no 233.9 232.0 no 233.9 232.0 no 223.9 232.0 no 246.2 no 223.9 232.0 no 246.2 no 223.9 232.0 no 246.2 no 223.9 | 22 | 9.0 | 228.6 | 226.5 | no but. | | 223.5 no bwt. no 227.3 no bwt. no 227.8 no bwt. no 233.3 244.2 no 223.9 232.0 31.24 8.07 31.24 | 219 | 8. | 227.0 | 227.2 | 261.4 | | 227.3 no bwt. no 227.8 no bwt. no 233.3 244.2 no 223.9 232.0 31.24 15 8.07 | 224 | 9. | 223.5 | no bwt. | no bwt. | | 227.8 no bwt. no 233.3 244.2 no 223.9 232.0 : | 23 | 9.6 | 227.3 | no but. | no bwt. | | 233.3 244.2 no<br>223.9 232.0 3<br>8.07 11.24<br>15 8 | 22 | 6.5 | 227.8 | no bwt. | no bwt. | | 223.9 232.0<br>8.07 11.24<br>15 8 | 221 | | 233.3 | 244.2 | no bwt. | | 8.07 11.24<br>15 8 | 219 | ٠. | 223.9 | 232.0 | 261.4 | | 15 8 | ۲. | 94 | 8.07 | 11.24 | 0.00 | | | | 15 | 15 | œ | - | TABLE 6 PROPIONALCEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL BODY WEIGHT (GRAMS) FO ADULT FEMALES GROUP: 1500 PPM 3 ~ 0 WEEK | | no but. | no hvt. | no but. | no but. | no but. | no bwt. | no bwt. | no byt. | no bwt. | 294.5 | 294.5 | 0.00 | - | |--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|-------|-------|----| | | no bwt. | no bwt. | no but. | no bwt. | no bwt. | 227.9 | 229.5 | 230.8 | 225.0 | no byt. | 223.4 | 235.2 | no byt. | 240.1 | 255.6 | 233.4 | 10.46 | œ | | | 216.7 | 205.7 | 215.0 | 215.8 | 221.4 | 213.4 | 207.0 | 222.4 | 221.5 | 219.7 | 222.2 | 231.6 | 229.8 | 230.8 | 255.4 | 221.9 | 12.05 | 15 | | • | ≟ | : | _: | _: | ÷. | ٠. | ÷ | ~ | 215.7 | _ | ~ | 223.2 | 224.4 | 230.4 | 243.1 | 218.7 | 8.95 | 15 | | ANIHAL | 28265 | 28269 | 28279 | 28268 | 28254 | 28243 | 28247 | 28265 | 28231 | 28246 | 28234 | 28241 | 28251 | 28284 | 28237 | MEAN | S.D. | z | 03/12/93 TABLE 7 PROPIONALDEHYDE: COHBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL FOOD CONSUMPTION (GRAMS/ANIMAL/DAY) FO ADULT FEMALES GROUP: 0 PPM WEEK | 9 91 | | 18.3 | 1/3 | 18.3 | 18.8 | 19.3 | 18.3 | 1/3 | 19.3 | 17.5 | 1/8 | 19.3 | 20.1 | 18.3 | 1/3 | | 0.89 | | |--------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|-----------| | | | <u>.</u> | Ġ | ä | ä | 18.6 | æ | Ġ | ÷ | ė | ë | å | ó | ä | r/3 | æ | 0.87 | <b>14</b> | | ANIMAL | 67707 | 28228 | 28244 | 28287 | 28239 | 28240 | 28242 | 28276 | 28245 | 28226 | 28255 | 28249 | 28275 | 28278 | 28256 | MEAN | S.D. | z | Page 127 of 366 \_\_ TABLE 7 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL FOOD CONSUMPTION (GRAMS/ANIHAL/DAY) FO ADULT FEMALES GROUP: 150 PFH N WEEK | ~ | ٠. | |----|------------------------------------------------------------------------------------| | | 1 | | ė | | | Š | 7 | | Š | | | ŝ | ŝ. | | 7 | ö | | 6 | æ | | | ė. | | ť | ó | | 6 | æ | | | 18.6 | | | æ | | ` | 7 | | | 6 | | | | | ; | | | 'n | | | | | | | r/s<br>118.9<br>118.6<br>118.6<br>118.6<br>119.8<br>117.2<br>17.2<br>17.6<br>11.50 | 0 TABLE 7 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL FOOD CONSUMPTION (GRAMS/ANIMAL/DAX) FO ADULT FEMALES GROUP: 750 PPM WEEK | 19.1<br>19.4<br>19.5<br>19.5<br>19.5<br>19.5<br>17.8<br>17.8<br>17.8<br>17.8 | 18.3<br>1.21<br>9 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------| | 16.5<br>17.4<br>14.0<br>14.0<br>16.2<br>17.3<br>17.0<br>16.6<br>16.6 | 16.9<br>1.63<br>11 | | ANIMAL<br>28266<br>28281<br>28281<br>28281<br>28250<br>28251<br>28253<br>28259<br>28259<br>28259<br>28252<br>28252<br>28222<br>28222<br>28222<br>28222<br>28222<br>28222 | HEAN<br>S.D. | Δ TABLE 7 PROPIONALDEHYDE: COMPINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL FOOD CONSUMPTION (GRAMS/ANIMAL/DAY) | INDIVIDUAL FOOD CONSUNPTION (GRANS/ANIMA)<br>FO ADULT FEMALES GROUP: 1500 PPM | (GRAMS/ANIMAL | 1500 PPM | | |-------------------------------------------------------------------------------|-----------------------------|-------------------------|--| | | INDIVIDUAL FOOD CONSUMPTION | FO ADULT FEMALES GROUP: | | cı WEEK ij | | ~ | ÷ | è | | | ė | ó | è | 18.5 | ÷ | Š | ۲. | 8 | 6 | ë | | 1.64 | | |--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|---| | | ė | ë | ś | ė | | 5 | ď | ń | 18.2 | 'n | ÷ | ς. | ~ | 7 | ë | | 1.69 | | | ANIKAL | 28265 | 28269 | 28279 | 28268 | 28254 | 28243 | 28247 | 28285 | 28231 | 28246 | 28234 | 28241 | 28251 | 28284 | 28237 | MEAN | s.D. | z | BRRC Report 91U0086 Appendix 5 Page 1 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD<sup>©</sup> Rats Reproductive Parameters (35 Pages) # LIST OF TABLES | Table | 1 | Abbreviations | 3 | |-------|---|-------------------------------------------------------------|----| | | | FO Adults -Individual Mating and Pregnancy Data | 4 | | Table | 3 | FO Adult Females -Individual Gestational Body Weight | | | | | (Grams) | 8 | | Table | 4 | FO Adult Females -Individual Food Consumed During Gestation | | | | | (Grams/Animal/Day) | 12 | | Table | 5 | FO Adult Females -Individual Lactational Body Weight | | | | | (Grams) | 16 | | Table | 6 | Fl Pups - Individual Litter Viability | 20 | | Table | 7 | Fl Pups - Individual Pup Body Weight (Grams) Per Litter | 28 | # TABLE 1 # PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD<sup>2</sup> RATS # REPRODUCTIVE PARAMETERS The following is a list of abbreviations or words that may appear in this appendix in reference to individual food consumption values. - r,'s = indicates that the animal was removed from the consumption period due to spillage. - r/e = indicates that the animal was removed from the consumption period due to excreta in the feeder - r/o = indicates that the animal was removed from the consumption period for reasons specifieó in the raw data. - r/dead = indicates that the animal was removed from the consumption period because it died or was sacrificed during the period in which this abbreviation appears. - r/l = indicates that the data is not included because there were no live pups left in litter. - r/c = indicates that the animal was removed from the consumption period due to excessive bedding in the feeder. - dead = indicates that the animal died prior to the period in which this word appears. - sacr = indicates that the animal was a scheduled sacrifice prior to the period in which this abbreviation appears. - a = Combined interval value removed due to removal of at least one individual interval value (see individual interval footnotes). TABLE 2 PROPIONALDEHYDE: COMBINE REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL MATING AND PREGNANCY DATA FO ADULTS GROUP: 0 PPM | UTEKINE STAINING<br>RESULTS | | | | NO IMPLANTATION SITES | | | | | | | | | | | | |-------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | UTEKIN | | | | NO IMPLA | | | | | | | | | | | | | MBER IMPREGNATION DELIVERY GESTATION LENGTH UTEKINE WITCH <sup>a</sup> Date in Days | 21 | 22 | 21 | 1 | 22 | 22 | 21 | 22 | 22 | 22 | 22 | 22 | 3.2 | . 22 | 22 | | DELIVERY<br>DATE | 10-FEB-92 | 14-FEB-92 | 16-FEB-92 | DID NOT DELIVER | 12-FEB92 | 11-FEB-92 | 13-FEB-92 | 13-FEB-92 | 11-FEB-92 | 12-FEB-92 | 11-FEB-92 | 12-FEB-92 | 14-FEB-92 | 13-FEB-92 | 11-FEB-92 | | IMPREGNATION<br>DATE | 20-JAN-92 | 23-JAN-92 | 20-JAN-92 | 21-JAN-92 | 21-JAN-92 | 20-JAN-92 | 23-JAN-92 | 22-JAN-92 | 20-JAN-92 | 21-JAN-92 | 20-JAN-92 | 21-JAN-92 | 23~JAN-92 | 22~JAM-92 | 20-JAN-92 | | MALE NUMBER<br>AFTER SWITCH <sup>a</sup> | | | | | | | î | | | | | | | | | | MALE<br>NUMBER | 28155 | 28178 | 28162 | 28198 | 28153 | 28200 | 28167 | 28156 | 28171 | 28159 | 28191 | 28201 | 28173 | 28180 | 28174 | | FEMALE<br>NUMBER | 28229 | 28228 | 28244 | 28287 | 28239 | 28240 | 28242 | 28276 | 28245 | 28226 | 28255 | 28249 | 28275 | 28278 | 28256 | a Date of switch, January 26, 1992. No switches occurred as all pairs had mated by this date. TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL HATING AND PREGNANCY DATA FO ADULTS GROUP: 150 PPM | Female<br>Number | MALE<br>NUMBER | HALE NUMBER<br>AFTER SWITCH <sup>a</sup> | IMPRESNATION<br>DATE | DELIVERY<br>DATE | GESTATION LENGTH<br>IN DAYS | UTERINE STAINING<br>RESULTS | |------------------|----------------|------------------------------------------|----------------------|------------------|-----------------------------|-----------------------------| | 28277 | 28181 | | 23~JAN-92 | 13-FEB-92 | 21 | | | 272 | 28187 | | 20-JAN-92 | 11-FEB-92 | 22 | | | 3270 | 28165 | | 22-JAN-92 | 13-FEB-92 | 22 | | | 28288 | 28195 | | 23-JAN-92 | 14-FEB-92 | 22 | | | 3253 | 28212 | | 21-JAN-92 | 12-FEB-92 | 22 | | | 1264 | 28160 | | 23-JAN-92 | 13-FEB-92 | 77 | | | 1233 | 28139 | | 22-JAN-92 | 13-FEB-92 | 22 | | | 1225 | 28150 | | 23-JAN-92 | 14-FEB-92 | 22 | | | 1238 | 28184 | | 20-JAN-92 | DID NOT DELIVER | 1 | PREGNANT - I RESORPTION | | 1257 | 28210 | | 22-JAN-92 | 13-FEB-92 | 22 | | | 1267 | 28194 | | 22-JAN-92 | 13-FEB-92 | 22 | | | 1280 | 28193 | | 23-JAN-92 | 14-FEB-92 | 22 | | | 3258 | 28168 | | 20-JAN-92 | 11-FEB-92 | 22 | | | 1262 | 28188 | | 21-JAN-92 | 12-FEB-92 | 22 | | | 1220 | 28169 | | 21-JAN-92 | 12-FEB-92 | 22 | | a Date of switch, January 26, 1992. No switches occurred as all pairs had mated by this date. TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL HATING AND PRESNANCY DATA FO ADULTS GROUP: 750 PPH | UTERINE STAINING<br>RESULTS | | | | | | | | | | | | | | | | |------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------------------|-----------|-----------|-----------|-----------| | GESTATION LENGTH<br>IN DAYS | 21 | 22 | 22 | 21 | 22 | 22 | 22 | 21 | 22 | 22_ | 196 | 22 | 22 | 22 | 22 | | DELIVERY<br>DATE | 10-FEB-92 | 12-FEB-92 | 14-FEB-92 | 10-FEB-92 | 11-FEB-92 | 14-FEB-92 | 11-FEB-92 | 11-FEB-92 | 15-FEB-92 | 14-FEB-92 | 12-FEB-92 | 11-FEB-92 | 11-FEB-92 | 11-FEB-92 | 13-FEB-92 | | INPREGNATION<br>DATE | 20-JAN-92 | 21-JAN-92 | 23-JAN-92 | 20-JAN-92 | 20-JAN-92 | 23-JAN-92 | 20-JAN-92 | 21-JAN-92 | 24-JAN-92 | 23-JAN-92, | 2-FEB-92 <sup>D</sup> | 20-JAN-92 | 20-JAN-92 | 20-JAN-92 | 22-JAN-92 | | HALE NUMBER<br>AFTER SWITCH <sup>a</sup> | | | | | | | | | | | 17146 | | | | | | MALE<br>' NUMBER | 28147 | 28176 | 28146 | 28158 | 28186 | 28190 | 28148 | 28192 | 28149 | 28197 | 28203 | 28182 | 28208 | 28209 | 28211 | | FEMALE | 28266 | 28281 | 28236 | 28250 | 28271 | 28263 | 28223 | 28283 | 28260 | 28259 | 28252 | 28222 | 2822€ | 28221 | 28230 | a Date of switch, January 26, 1992. b No evidence of successful mating. Assigned a gestation day 0 on last scheduled mating day. c Rissed copulation plug, apparent successful mating with the first male. ((( TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL MATING AND PREGNANCY DATA FO ADULTS GROUP: 1500 PPM | <b>9</b> | | | | | | | | | | | | | | | | | | SITES | | |------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------------------|---------------------| | UTERINE STAINING<br>RESULTS | | | | | | | | | | | | | | | | | | NO IMPLANTATION SITES | | | GESTATION LENGTH<br>IN DAYS | 22 | 77 | 22 | 1 6 | 77 | 22 | 22 | 22 | 22 | ונ | 17 | 21 | 22 | 22 | | 77 | 22 | ; | | | DELIVERY<br>DATE | 11-FEB-92 | 10-FEB-92 | 11-070-02 | 76-034-11 | 11-FEB-92 | 11-FEB-92 | 12-FEB-92 | 12-FEB-92 | 13-FEB-92 | | 11-FEB-92 | 10-FEB-92 | 13-FEB-92 | 1.4-FEH-92 | | 11-FEB-92 | 12-FEB-92 | משות ושני הנות מבת | DID NOT DESIGNATION | | IMPREGNATION<br>DATE | 20-JAN-92 | 20-M4E-05 | | 20-74N-92 | 20-JAN-92 | 20-JAN-92 | 21-JAN-92 | 21-JAN-92 | 22-TAT-92 | | 21-JAN-92 | 20-JAN-92 | 22-JAN-92 | 22-TAN-02 | 10 150 01 | 20-JAN-92 | 21-JAN-92 | dro min | - 7 E-B-3 Y-7 | | NALE KUMBER<br>AFTER SWITCH <sup>3</sup> | | | | | | | | | | | | | | | | | | | 28214 | | HALE | 33100 | 20100 | 50707 | 28207 | 28179 | 28189 | 28206 | 4000 | 1000 | ***** | 28172 | 28163 | 28157 | | 79797 | 28183 | 20100 | 00707 | 28213 | | FEMALE | 25000 | 50707 | 69797 | 28279 | 28268 | 2825A | 20262 | | 18707 | C8797 | 28233 | 28246 | 16000 | 7040 | 28241 | 28251 | 1000 | 19707 | 28237 | <sup>a</sup> Date of switch, January 26, 1992. b No evidence of successful mating. Assigned a gestation day 0 on last scheduled mating day. TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS Q INDIVIDUAL GESTATIONAL BODY WEIGHT (GRAMS) FO ADULT FEMALES GROUP: 0 PPM | | PREGNANCY<br>STATUS | DAY 0 | 7 | 14 | 21 | 26 | 36 | 43 | |----|---------------------|--------|--------|--------|--------|--------|----|----| | • | 28229 P | 222.19 | 252.34 | 272.16 | 338.48 | = | | | | | 28228 P | 253.45 | 285.33 | 319.51 | 386.18 | 4 | | | | | 28244 P | 238.08 | 274.97 | 300.22 | 382.06 | | | | | 1 | 29287 NP | 227.75 | 242.13 | 245.20 | 242.43 | 249.39 | | | | | 28239 P | 225.63 | 256.98 | 286.50 | 367.25 | | | | | | 28240 P | 240.71 | 271.66 | 305.41 | 362.94 | | | | | | 28242 P | 253.31 | 296.94 | 334.19 | 417.12 | | | | | ., | 28276 P | 232.50 | 261.71 | 282.86 | 358.03 | | | | | | 28245 P | 235.10 | 278.70 | 312.05 | 385.28 | | | | | | 28226 P | 231.91 | 259.13 | 290.13 | 332.08 | | | | | | 28255 P | 239.97 | 269.04 | 295.27 | 376.87 | | | | | | 28249 P | 232.73 | 269.52 | 295.62 | 353.67 | | | | | | 28275 P | 259.92 | 289.33 | 312.20 | 377.51 | | | | | | 28278 P | 247.86 | 289.74 | 330.08 | 405.92 | | | | | | 28256 P | 262.92 | 304.50 | 339.03 | 440.05 | | | | | | MEAN | 241.38 | 275.71 | 305.37 | 377.39 | 0.00 | | | | | S.D. | 12.974 | 15.765 | 20.156 | 29.478 | 0.000 | | | | | 2 | 14 | 14 | 1.4 | 14 | 0 | | | | | | | | | | | | | P-PREGNANT, NP-NOT PREGNANT, RFS-REMCVED FROM STUDY, mp-MISSED PLUC mp, NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF HEAN TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD ® RAIS INDIVIDUAL GESTATIONAL BODY WEIGHT (GRAHS) FO ADULT FEWALES GROUP: 150 PPH | 18277 P | DAY 0 | • | <b>*</b> T | 21 | 26 | 36 | 43 | |---------|--------|--------|------------|--------|--------|----|----| | 6 | 231.01 | 271.90 | 310.19 | 403.85 | | | | | 7 7/7 | 229.09 | 264.32 | 291.05 | 349.20 | | | | | 270 P | 237.15 | 272.13 | 300.87 | 382.59 | | | | | 286 P | 223.09 | 252.71 | 289.93 | 366.85 | | | | | 253 P | 226.64 | 243.34 | 277.75 | 379.06 | | | | | 28264 P | 231.34 | 253.40 | 295.74 | 377.17 | | | | | 233 P | 238.61 | 273.03 | 296.81 | 369.54 | | | | | 225 P | 244.48 | 286.28 | 312.27 | 418.41 | | | | | 238 P | 242.45 | 269.34 | 277.15 | 242.56 | 270.65 | | | | 257 P | 242.87 | 274.11 | 300.85 | 383.06 | | | | | 267 P | 251.97 | 288.83 | 311.81 | 403.09 | | | | | 280 P | 249.54 | 274.73 | 299.12 | 366.24 | | | | | 258 P | 240.33 | 271.60 | 299.27 | 371.22 | | | | | 262 P | 270.03 | 317.65 | 365.69 | 481.23 | | | | | 220 P | 235.19 | 273.79 | 303.52 | 351.19 | | | | | ENN | 239.59 | 273.14 | 302.13 | 376.35 | 270.65 | | | | S.D. | 11.773 | 16.693 | 20.499 | 49.184 | 000.0 | | | | z | 15 | 15 | 15 | 15 | - | | | P=PREGNANT, NP=NOT PREGNANT, RFS=REHOVED FROM STUDY, mp=HISSED PLUG mp, NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF HEAN زر TABLE 3 FROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL GESTATIONAL BODY WEIGHT (GRAMS) FO ADULT FEMALES GROUP: 750 PPH 43 | 36 | | | | | | | | 17 | ~ | ٤, | ĸ. | 1 | | | | | | | |------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|---------|--------|--------|---------|--------|--------|----| | 26 | | | | | | | | | | | | | | | | | | | | 21 | 342.20 | 376.17 | 362.98 | 336.17 | 362.03 | 415.81 | 352.78 | 383.78 | 367.52 | 386.37 | | 362.80 | 370.36 | 365.21 | 316.14 | 364.31 | 23.938 | 14 | | 14 | 274.36 | 283.94 | 295.13 | 271.09 | 288.17 | 318.45 | 278.93 | 307.04 | 301.62 | 297.69 | | 291.43 | 294.72 | 304.02 | 304.18 | 293.63 | 13.367 | 14 | | 7 | 249.26 | 253,82 | 266.52 | 251.57 | 263.48 | 287.62 | 254.02 | 279.57 | 272.66 | 269.97 | 322.47 | 266.86 | 263.33 | 274.23 | 278.55 | 266.53 | 11,528 | 14 | | DAY 0 | 224.04 | 217.27 | 230.29 | 213.37 | 235.92 | 252.18 | 226.95 | 248.18 | 249.65 | 234.95 | 279.41 | 235.18 | 233.27 | 232.56 | 249.44 | 234.52 | 12.051 | 14 | | PREGNANCY STATUS | 28266 P | 28281 P | 28236 P | 28250 P | 28271 P | 28263 P | 28223 P | 28283 P | 28260 P | - | | 28222 P | | | 28230 P | KEVN | S.D. | Z | P-PREGNANT, NP-NOT PREGNANT, RFS-REMOVED FROM STUDY, mp-HISSED PLUG mp, NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF HEAN TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPROJUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL CESTATIONAL BODY WEIGHT (GRAMS) FO ADULT FEHALES GROUP: 1500 PPM 43 | 21 26 36 | 342.98<br>326.77<br>328.56<br>2 328.37<br>2 372.70<br>372.26<br>3 36.72<br>3 375.03<br>3 377.39<br>3 36.91<br>3 36.91 | 1 360.45 0.00 | |------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------| | 7 14 | 257.42 280.75 238.62 271.36 241.84 268.55 256.70 292.52 264.37 285.23 252.90 275.58 252.90 275.58 253.79 304.25 277.47 302.11 257.47 288.85 | 260.25 288.38<br>10.855 12.537 | | DAY 0 | 227.93<br>210.69<br>216.09<br>224.22<br>232.43<br>229.48<br>223.29<br>231.29<br>231.29<br>231.29<br>231.06<br>231.06<br>231.06<br>231.06<br>231.06<br>231.06<br>231.06<br>231.06 | 227.63 20<br>8.921 10 | | PREGNANCY STATUS | 28265 P<br>28269 P<br>28279 P<br>28279 P<br>28279 P<br>28234 P<br>28231 P<br>28231 P<br>28231 P<br>28251 P<br>28251 P<br>28251 P | HEAN<br>S.D. | P=PREGNANT, NP=NOT PRECNANT, RFS=REMOVED FROM STUDY, #p=HISSED PLUG #p, NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF HEAN $\hat{U}$ TABLE 4 PROPIONALDEHYDE: CONBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD® RATS O | NX) | | |---------------------------------------------------|------------------------| | ME/D | | | FOOD CONSUMED DURING GESTATION (GRAMS/ANIMAL/DAY) | | | RAMS | | | 20 | PPH | | TATIC | 0 | | CES | P: | | RING | FO ADULT FEMALES GROUP | | ង | ALES | | SUME | FEH | | Ö | DULT | | 8 | 202 | | DUAL | | | INDIVIDA | | | z | | | 28229 P 21 20.44 22.81 21.38 21.41 24.25 22.23 21.46 21.39 23.09 28.29 28244 P 21 20.07 21.35 22.82 24.02 23.40 23.38 21.05 23.34 22.33 21.05 23.34 22.33 28244 P 21 24.36 23.34 22.32 25.73 24.76 23.99 22.90 25.18 28239 P 22 20.07 21.35 23.94 22.32 25.73 24.76 23.99 22.90 25.18 28239 P 22 22.80 23.94 25.00 24.70 26.07 25.53 23.29 24.87 25.75 24.07 25.53 23.29 24.87 25.75 26.240 P 22 22.72 23.44 23.63 24.67 28.04 18.68 23.03 24.07 25.59 22.40 28.240 P 22 22.72 23.44 23.63 24.67 28.04 18.68 23.03 24.07 25.59 22.20 24.68 27.37 26.14 27.81 30.13 26.69 25.83 26.26 23.80 23.80 28.25 P 22 22.64 24.54 23.63 24.15 25.34 21.41 20.92 21.78 23.09 24.05 28.25 P 22 20.52 22.08 23.19 24.15 25.34 21.41 20.92 21.79 26.09 24.15 25.34 21.41 20.92 21.79 26.09 23.86 24.86 26.56 24.53 22.28 22.17 24.46 27.19 26.09 23.86 24.86 26.56 24.53 22.28 22.17 24.46 27.19 26.09 23.86 24.86 26.56 24.53 22.24 27.27 24.53 22.74 21.69 23.03 24.53 22.74 21.69 23.20 24.53 22.24 27.29 24.53 22.74 21.69 23.20 24.53 22.24 27.29 24.53 22.24 27.29 24.53 22.24 27.29 24.24 27.61 28.27 24.53 27.89 25.68 29.17 28.29 24.53 27.29 24.53 27.29 24.53 27.29 27.89 25.68 29.17 28.29 27.55 27.79 27.89 25.69 29.17 27.96 29.37 27.89 25.64 27.37 27.39 27.29 27.29 24.24 27.20 27.30 27.89 25.89 25.17 24.37 25.37 27.29 27.29 27.29 27.30 27.30 27.89 25.89 25.17 24.37 25.37 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 27.29 2 | | | | | 1 | | | | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|---------------|-------|---------|-------|-------|-------|-------|-------|-------|-------| | P 21 20.44 22.81 21.38 21.41 24.25 22.23 21.46 21.39 P 21 20.07 21.35 22.82 24.02 23.40 23.38 21.05 23.34 P 21 20.07 21.35 22.82 24.02 23.40 23.38 21.05 23.34 P 21 23.71 24.36 23.34 22.32 25.73 24.76 23.99 22.90 18.92 17.49 18.12 18.98 22.40 18.85 17.76 P 22 22.72 23.44 23.60 24.70 26.07 25.53 23.29 24.87 P 22 22.72 23.44 23.63 24.67 28.04 18.68 23.03 24.07 P 22 22.72 23.44 23.63 24.67 28.04 18.68 23.03 24.07 P 22 22.64 24.84 23.63 24.67 28.04 18.68 23.03 24.07 P 22 22.64 24.84 23.63 22.54 23.70 23.91 22.01 23.45 23.80 P 22 20.52 22.84 23.83 22.43 27.57 26.51 23.45 23.00 P 22 20.52 22.08 23.17 24.46 27.19 26.09 23.86 24.86 P 22 20.56 23.10 19.99 24.15 25.14 24.26 21.19 23.05 P 22 22.88 25.17 25.17 24.46 27.19 26.09 23.86 24.86 P 22 20.56 23.19 23.44 22.95 24.53 32.74 21.69 23.23 P 22 22.77 8 29.01 27.96 29.31 28.47 30.05 28.31 28.54 2.32 22.31 28.47 30.05 28.31 28.54 2.32 22.31 28.47 30.05 28.31 28.54 2.32 22.31 28.34 2.32 22.31 28.34 2.32 22.31 28.34 2.32 22.32 22.31 28.34 2.32 22.34 2.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23.32 23. | ! _ | | | | 4-7 | 7-11 | 11-14 | 14-17 | 17-21 | 7 -0 | 7-14 | 14-21 | | P 22 20.07 (23),36 22.82 24.02 23,40 23,38 21.05 23,34 21.05 23,34 21.05 23,71 24,36 23,34 22,32 25,73 24,76 23,99 22.90 24,76 23,99 22,90 24,76 22,20 24,76 23,99 22,90 24,77 25,72 23,44 23,63 24,67 26,07 25,53 23,29 24,07 22 22,72 23,44 23,63 24,67 26,04 18,68 23,03 24,07 22 22,72 23,84 23,63 24,67 26,09 26,69 25,85 26,86 22,22 22,64 24,34 23,63 22,54 24,37 26,14 27,81 30,13 26,69 25,83 26,86 24,07 22 22,64 24,54 23,18 22,10 23,49 22,01 23,49 23,18 22 20,52 22,08 23,55 22,41 25,14 24,26 21,19 23,06 29,22 20,56 23,19 22,17 25,17 25,17 24,46 27,19 26,09 23,86 24,86 27,18 22 20,56 23,19 23,17 24,46 27,19 26,09 23,86 24,86 27,19 22 20,56 23,19 23,17 25,17 24,46 27,19 26,09 23,86 24,86 27,19 22 20,56 23,19 23,17 24,46 27,19 26,09 23,86 24,86 27,19 22 20,56 23,10 27,96 29,31 28,47 30,05 28,31 28,54 21,37 22,23 27,74 27,96 29,31 28,47 30,05 28,31 28,54 21,37 22,31 24,27 24,37 2,31 28,47 30,05 24,88 21,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 24,37 | 28229 | 2 | - | 20.44 | 22.81 | 21.38 | 21.41 | 24.25 | 22.23 | 21.46 | 21.39 | 23.09 | | NP 21 23.71 24.36 23.34 22.32 25.73 24.76 23.99 22.90 NP 22 22.80 18.92 17.49 18.12 18.98 22.40 18.85 17.76 P 22 22.72 23.44 23.63 24.70 26.07 25.53 23.29 24.87 P 22 22.72 23.44 23.63 24.67 26.07 25.53 23.29 24.87 P 22 22.72 23.44 23.63 24.67 26.07 25.69 23.03 24.07 P 22 22.73 22.84 23.83 22.54 23.70 23.91 22.01 23.28 P 22 20.64 24.54 23.83 22.54 23.70 23.91 22.01 23.89 P 22 20.64 24.54 23.83 22.44 23.75 26.93 23.45 23.80 P 22 20.65 22.88 25.17 24.15 25.14 24.26 21.19 23.06 P 22 20.56 23.10 19.99 24.15 25.14 24.26 21.19 23.06 P 22 20.56 23.19 23.44 22.95 24.53 22.74 24.26 24.86 P 22 20.56 23.10 23.44 22.95 24.53 22.74 24.26 23.17 25.17 24.46 27.19 26.09 23.86 24.86 P 22 20.56 23.19 23.44 22.95 24.53 22.74 21.69 23.23 P 22 22.25 27.78 29.01 27.96 29.31 28.47 30.05 27.89 25.68 29.17 P 22 22.21 24.27 24.36 29.31 28.47 30.05 27.89 25.68 29.17 P 22 22.51 24.27 24.16 24.65 26.42 24.58 23.27 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24 | 28228 | 2 | 2 | 20.07 | €211,38 | 22.82 | 24.02 | 23.40 | 23.38 | 21.05 | 23.34 | 23.39 | | NP 18.80 18.92 17.49 18.12 18.98 22.40 18.85 17.76 P 22 22.80 23.94 25.00 24.70 26.07 25.53 23.29 24.87 P 21 22.72 23.44 23.63 24.67 28.04 18.68 23.29 24.87 P 21 24.58 27.37 26.14 27.81 30.13 26.69 25.83 26.86 P 22 21.39 22.84 23.83 22.54 23.70 23.91 22.01 23.28 P 22 22.64 24.54 23.38 24.35 27.57 26.51 23.45 23.80 P 22 20.79 21.10 19.99 24.15 25.34 21.41 20.92 21.78 P 22 20.52 22.08 23.55 22.41 25.14 24.26 21.19 23.06 P 22 20.56 23.19 23.44 22.13 25.14 24.26 21.19 23.06 P 22 24.24 27.61 28.57 29.97 30.30 27.89 25.68 29.17 P 22 24.24 27.61 28.57 29.97 30.30 27.89 25.68 29.17 P 22 24.24 27.61 28.57 29.97 30.30 27.89 25.68 29.17 P 22 22.51 24.27 24.34 27.31 28.47 30.05 28.31 28.54 27.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24. | 28244 | 2 | | 23,71 | 24.36 | 23.34 | 22.32 | 25.73 | 24.76 | 23.99 | 22.90 | 25.18 | | P 22 22.80 23.94 25.00 24.70 26.07 25.53 23.29 24.87 P 22 22.72 23.44 23.63 24.67 28.04 18.68 23.03 24.07 P 21 24.68 27.37 26.14 27.81 30.13 26.69 25.83 26.86 P 22 21.39 22.84 23.84 23.54 23.70 23.91 22.01 23.28 P 22 22.64 24.54 23.38 24.35 27.57 26.51 23.45 23.89 P 22 20.79 21.10 19.99 24.15 25.34 21.41 20.92 21.78 P 22 20.52 22.08 23.55 22.41 25.14 24.26 21.19 23.06 P 22 20.56 23.17 25.17 24.46 27.19 26.09 23.86 24.86 P 22 20.56 23.19 22.05 23.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25.89 25. | 28287 | 2 | ! | 18.80 | 18.92 | 17.49 | 18,12 | 18.98 | 22.40 | 18.85 | 17.76 | 20.94 | | P 22 22.72 23.44 23.63 24.67 28.04 18.68 23.03 24.07 P 21 24.68 27.37 26.14 27.81 30.13 26.69 25.83 26.86 P 22 22.64 24.54 23.70 26.91 22.01 23.28 P 22 20.64 24.54 23.36 24.35 27.57 26.51 23.45 23.89 P 22 20.52 22.08 23.55 22.41 25.14 20.92 21.19 23.06 P 22 22.88 25.17 24.46 27.19 26.09 23.18 23.06 P 22 26.24 27.19 26.09 23.18 23.23 P 22 24.24 27.19 26.09 23.18 23.23 P 22 24.24 27.99 24.18 24.86 29.17 P 22 27.74 29.97 20.30 27.89 | 28239 | ۵ | 2 | 22.80 | 23.94 | 25.00 | 24.70 | 26.07 | 25.53 | 23.29 | 24.87 | 25.76 | | P 21 24.68 27.37 26.14 27.81 30.13 26.69 25.85 26.86 P 22 21.39 22.84 23.63 22.54 23.70 23.91 22.01 23.28 P 22 20.54 24.35 27.57 26.51 23.45 23.28 P 22 20.52 22.08 23.55 22.41 24.26 21.19 23.06 23.78 P 22 22.88 25.17 24.46 27.19 26.09 23.86 24.86 P 22 20.56 23.14 24.26 21.19 23.06 23.06 P 22 20.56 23.44 22.95 24.53 22.74 21.69 23.23 P 22 27.78 29.01 27.96 29.97 30.30 27.89 25.17 29.31 28.54 P 22 24.26 24.16 24.65 26.42 24.37 29.31 29.31 29 | 28240 | a | ~ | 22.72 | 23.44 | 23.63 | 24.67 | 28.04 | 18.68 | 23.03 | 24.07 | 22.69 | | P 22 21.39 22.84 23.63 22.54 23.70 23.91 22.01 23.28 P 22 22.64 24.54 23.38 24.35 27.57 26.51 23.45 23.80 P 22 20.79 21.10 19.99 24.15 25.34 21.41 20.92 21.78 P 22 20.65 22.08 23.45 22.41 24.26 21.19 23.06 23.06 P 22 20.56 23.19 23.44 22.95 24.73 21.69 23.86 24.86 P 22 24.24 27.61 28.57 29.97 30.30 27.89 25.68 29.17 P 22 24.24 27.61 28.57 29.97 30.30 27.89 25.68 29.17 P 22 27.78 29.01 27.96 29.31 28.47 30.05 28.31 28.54 P 22 24.27 24.16 24 | 28242 | | : <del></del> | 24.58 | 27.37 | 26.14 | 27.81 | 30.13 | 26.69 | 25.83 | 26.86 | 28.16 | | P 22 22.64 24.54 23.38 24.35 27.57 26.51 23.45 23.80 P 22 20.79 21.10 19.99 24.15 25.34 21.41 20.92 21.78 P 22 22.08 23.55 22.41 25.14 24.26 21.19 23.06 P 22 22.68 23.17 23.44 22.95 24.26 21.69 23.86 24.86 P 22 24.24 27.61 28.57 29.97 30.30 27.89 25.68 29.17 P 22 27.78 29.01 29.97 30.30 27.89 25.68 29.17 P 22 27.78 29.01 29.97 30.30 27.89 25.68 29.17 P 22 27.78 29.01 27.96 29.31 28.47 30.05 28.31 28.54 2 P 22 24.27 24.16 24.65 26.42 24.58< | 28275 | , p. | 2 | 21.39 | 22.84 | 23.83 | 22.54 | 23.70 | 23.91 | 22.01 | 23.28 | 23.82 | | P 22 20.79 21.10 19.99 24.15 25.34 21.41 20.92 21.78 P 22 20.52 22.08 23.55 22.41 25.14 24.26 21.19 23.06 P 22 20.56 23.17 24.46 27.19 26.09 23.86 24.86 P 22 24.24 27.61 28.57 29.95 24.34 27.74 21.69 23.23 P 22 24.24 27.61 28.57 29.97 30.30 27.89 25.68 29.17 P 22 27.78 29.01 27.96 29.31 28.47 30.05 28.31 28.54 P 22 27.18 29.01 27.96 29.31 28.47 30.05 28.31 28.54 P 22 21.37 23.07 24.37 23.27 24.37 23.29 P 22 21.37 24.37 23.29 23.29 23.29 23 | 28245 | P. | 2 | 22.64 | 24.54 | 23,38 | 24.35 | 27,57 | 26.51 | 23.45 | 23.80 | 26.96 | | P 22 20.52 22.08 23.55 22.41 25.14 24.26 21.19 23.06 3 P 22 22.88 25.17 25.17 24.46 27.19 26.09 23.86 24.86 P 22 20.56 23.19 23.44 22.95 24.53 22.74 21.69 23.23 3 P 22 24.24 27.61 28.57 29.97 30.05 25.68 29.17 22 27.78 29.01 27.96 29.31 28.47 30.05 28.31 28.54 2 P 22 27.78 29.01 27.96 29.31 28.47 30.05 28.31 28.54 2 22.51 24.27 24.16 24.65 26.42 24.58 23.27 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 24.37 | 28226 | P. | 2 | 20.79 | 21.10 | 19.99 | 24.15 | 25.34 | 21.41 | 20.92 | 21.78 | 23.09 | | P 22 22.88 25.17 25.17 24.46 27.19 26.09 23.86 24.86 3 P 22 20.56 23.19 23.44 22.95 24.53 22.74 21.69 23.23 P 22 24.24 27.61 28.57 29.97 30.30 27.89 25.68 29.17 P 22 27.78 29.01 27.96 29.31 28.47 30.05 28.31 28.54 2 22.51 24.27 24.16 24.65 26.42 24.58 23.27 24.37 2 2.137 2.300 2.303 2.518 2.249 2.883 2.164 2.329 3 | 28255 | . A | 2 | 20.52 | 22.08 | 23.55 | 22.41 | 25.14 | 24.26 | 21.19 | 23.06 | 24.63 | | P 22 20.56 23.19 23.44 22.95 24.53 22.74 21.69 23.23 7 2 24.24 27.61 28.57 29.97 30.30 27.89 25.68 29.17 2 2 27.78 29.01 27.96 29.31 28.47 30.05 28.31 28.54 2 22.51 24.27 24.16 24.65 26.42 24.58 23.27 24.37 2 2.137 2.300 2.303 2.518 2.249 2.883 2.164 2.329 2 14 14 14 14 14 14 14 | 28249 | , CA | 2 | 22.88 | 25.17 | 25.17 | 24.46 | 27.19 | 26.09 | 23.86 | 24.86 | 26.56 | | P. 22 24.24 27.61 28.57 29.97 30.30 27.89 25.68 29.17 3 P. 22 27.78 29.01 27.96 29.31 28.47 30.05 28.31 28.54 2 22.51 24.27 24.16 24.65 26.42 24.58 23.27 24.37 2 2.137 2.300 2.303 2.518 2.249 2.883 2.164 2.329 3 14 14 14 14 14 14 14 14 | 28275 | A | 2 | 20.56 | 23.19 | 23.44 | 22.95 | 24.53 | 22.74 | 21.69 | 23.23 | 23.51 | | P 22 27.78 29.01 27.96 29.31 28.47 30.05 28.31 28.54 2 22.51 24.27 24.16 24.65 26.42 24.58 23.27 24.37 2 2.137 2.300 2.318 2.249 2.883 2.164 2.329 2 14 14 14 14 14 14 14 14 | 28278 | A | 2 | 24.24 | 27.61 | 28.57 | 29.97 | 30.30 | 27.89 | 25.68 | 29.17 | 28.92 | | 4 22.51 24.27 24.16 24.65 26.42 24.58 23.27 24.37 2<br>2.137 2.300 2.303 2.518 2.249 2.883 2.164 2.329 2<br>14 14 14 14 14 14 14 14 14 14 14 14 | 28256 | a. | 2 | 27.78 | 29.01 | 27.96 | 29.31 | 28.47 | 30.05 | 28.31 | 28.54 | 29.37 | | 2.137 2.300 2.303 2.518 2.249 2.883 2.164 2.329 3 | MEAN | | | 22,51 | 24.27 | 24.16 | 24.65 | 26.42 | 24.58 | 23.27 | 24.37 | 25.37 | | 14 14 14 14 14 14 14 14 | S.D. | | | 2,137 | 2,300 | 2.303 | 2.518 | 2.249 | 2.883 | 2.164 | 2.329 | 2.295 | | | 2 | | | 14 | 7. | 14 | 74 | 14 | 14 | 14 | 14 | 14 | PS=FREGNANCY STATUS, GDD=GESTATION DAY OF DELIVERY P=FNEGNANT, NP=NOT PREGNANT, RFS=REMOVED FROM STUDY, mp=HISSED PLUG mp, NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF HEAM ĵ. TABLE 4 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD® RATS | (GRAMS/ANIMAL/DAY) | PPK | |--------------------|--------------------| | GESTATION | P: 150 | | DURING | LES GROU | | CONSUMED | <b>JULT FEHALE</b> | | F000 | FO AL | | INDIVIDUAL | | | NINAL PS | 8 | DAY | -0 | 4-7 | 7-11 | 11-14 | 14-17 | 17-21 | 0- 7 | 7-14 | 14-21 | |----------|----|-----|-------------|-------|-------|-------|-------|-------|-------|----------|-------| | G 7728 | 2 | | 24.55 | 26.47 | 27.61 | 29.45 | 27.90 | 26.58 | 25.37 | 28.40 | 27.14 | | 28272 P | 22 | | 23.45 | 24.82 | 24.19 | 24.36 | 25.16 | 21.69 | 24.04 | 24.26 | 23.18 | | 28220 P | 22 | | 23.23 | 25.39 | 23.51 | 22.91 | 23.64 | 24.23 | 24.15 | 23.25 | 23.98 | | 28288 P | 22 | | 20.69 | 21.99 | 21.58 | 24.46 | 26.36 | 23.58 | 21.25 | 22.82 | 24,77 | | 28253 P | 22 | | 18.11 | 18.03 | 19.73 | 21.28 | 23.38 | 25.81 | 16.08 | 20.39 | 24.77 | | 28264 P | 2 | | 18.41 | 22.65 | 21.30 | 24.19 | 24.60 | 23.70 | 20.23 | 22.54 | 24.08 | | 28233 P | 22 | _ | - S / 3 | 24.33 | 23.36 | 22.72 | 22.00 | 23.45 | 43 | 23.08 | 22.83 | | 28225 P | 22 | | <b>8</b> /2 | 26.18 | 25.65 | 25.11 | 25.43 | 27.75 | 43 | 25.42 | 26.75 | | Q 85.28C | ! | | 21.83 | 22.77 | 21.68 | 19.63 | 16.87 | 15.79 | 22.23 | 20.80 | 16.25 | | 28257 P | 22 | | 21.07 | 22.44 | 23.20 | 23.82 | 24.68 | 25.22 | 21.66 | 23.47 | 24.99 | | 28267 P | 22 | | 22.81 | 26.74 | 24.17 | 24.88 | 27.34 | 29.05 | 24.49 | 24.47 | 28.32 | | 28280 P | 22 | | 22,35 | 24.99 | 24.42 | 23.41 | 23.10 | 23.06 | 23.48 | 23.99 | 23.08 | | 28258 P | 22 | | 20.45 | 20.87 | 24.41 | 22.99 | 26.52 | 20.35 | 20.33 | 23.80 | 22.99 | | 28262 P | 22 | | 27.61 | 26.61 | 32,50 | 33.65 | 34.26 | 34.36 | 27.18 | 32.99 | 34.32 | | 28220 P | 22 | | 21.76 | 23.23 | 24.10 | 26.56 | 26.24 | 25.03 | 22.39 | 25.15 | 25.54 | | MEAN | | | 22.03 | 23.83 | 24.09 | 24.63 | 25.17 | 24.64 | 22.71 | 24.32 | 24.87 | | ď | | | 2.509 | 2,453 | 3.004 | 3.343 | 3.670 | 4.146 | 2.419 | 3.056 | 3.778 | | 2 | | | - | | 4 | 7 | 7 | 2 | ~ | <u>.</u> | - | PS-PREGNANCY STATUS, GDD=GESTATION DAY OF DELIVERY P=PREGNANT, NP=NOT PREGNANT, RFS=REMOVED FROM STUDY, mp=MISSED PLUG mp, NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCUIATION OF MEAN . The TABLE 4 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL FOOD CONSUMED DURING GESTATION (GRAMS/ANIMAL/DAY) 21.74 22.75 23.67 20.65 22.61 25.27 26.27 26.27 21.61 23.91 24.08 24.09 24.00 24.76 23.37 21.75 22.59 24.35 20.94 21.77 26.17 26.17 24.94 21.95 7-14 22.22 22.85 24.74 26.00 22.96 1.949 14 750 PPM 21.94 22.15 20.47 21.36 22.45 25.78 ٥- ۲ 24.25 20.73 20.71 20.71 21.51 20.95 25.25 22.48 1.811 21,20 23,16 23,66 20,11 21,69 25,67 21,72 21,72 23,59 24,59 FO ADULT FEMALES GROUP: 24.76 21.22 25.97 1/0 23.14 1.835 13 17-21 22.47 23.67 23.67 21.36 23.83 23.83 27.08 21.46 24.34 14-17 23.21 27.71 23.13 28.48 24.01 2.281 14 21.60 22.06 26.80 21.43 22.43 24.32 21.91 23.39 1.921 14 23.50 24.84 24.83 25.99 11-14 21.87 23.15 22.51 20.57 21.27 27.18 27.18 20.29 20.29 20.38 21.26 21.36 24.67 26.00 22.63 2.304 14 7-11 23.82 24.33 21.75 21.62 22.86 24.31 22.28 25.15 22.28 21.51 22.71 21.68 24.01 25.71 22.99 1.667 14 22.10 2.304 20.53 20.52 20.52 21.16 22.13 26.88 20.73 21.68 20.68 20.68 20.41 26.18 24.57 ٩ DAY 9 26266 P 28281 P 28236 P 28250 P 28251 P 28253 P 28253 P 28259 P 28252 P 28252 P 28224 P 28224 P ANIMAL PS NEAN S.D. PS=PREGNANCY STATUS, GDD=GESTATION DAY OF DELIVERY P=PREGNANT, NP=NOT PREGNANT, RFS=RENOVED FRON STUDY, mp=HISSED PLUG mp, NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN TABLE 4 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS 0 INDIVIDUAL FOOD CONSUNED DURING GESTATION (GRAMS/ANIMAL/DAY) F.3 ADULT FEMALES GROUP: 1500 PPM | ANINAL PS | S GB | DAX | 0- 4 | 4-7 | 11-7 | 11-14 | 14-17 | 17-21 | 0- 7 | 7-14 | 14-21 | | |-----------|------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|--| | 28265 P | ~ | ~ | 19.34 | 20.84 | 20.33 | 19.87 | 21.77 | 18.09 | 19.98 | 20,13 | 19.67 | | | 28259 P | 7 | | 17.55 | 18.37 | 18.55 | 19.92 | 21.29 | 21.76 | 17.90 | 19.14 | 21.56 | | | 28279 P | 7 | . ~ | 18.00 | 18.90 | 19.46 | 20.30 | 20.77 | 17.84 | 18.39 | 19.82 | 19.09 | | | 28268 P | , A | . ~ | 19.50 | 1/0 | 22.13 | 22.51 | 24.93 | 19.68 | 45 | 22.29 | 21.93 | | | 28254 P | i | | 21.25 | 22.43 | 19.96 | 21.50 | 23,84 | 23.35 | 21.75 | 20.62 | 23.56 | | | 28243 9 | | . ~ | 22.18 | 23,37 | 23.03 | 22.46 | 24.41 | 22.25 | 22.69 | 22.79 | 23.18 | | | 78247 P | i | . ~ | 20.58 | 23.54 | 23.58 | 22.14 | 23.99 | 23.49 | 21.85 | 22.97 | 23.71 | | | 28285 | i | . ~ | 20.48 | 23.68 | 23.23 | 24.59 | 24.65 | 1/5 | 21.85 | 23.81 | ~ | | | 28233 P | i | ٠ | 21.66 | 21.95 | 23,35 | 24,30 | 24.82 | 25.27 | 21.78 | 23.76 | 25.08 | | | 28246 P | 'n | | 19.02 | 19.82 | 18.95 | 20.88 | 24,26 | 22.03 | 19.36 | 19.77 | 22.99 | | | 28234 P | 7 | | 21.23 | 20.04 | 22.37 | 23.74 | 24.91 | 22.53 | 20.72 | 22.96 | 23.55 | | | 28241 P | i | | 21.14 | 21.85 | 21.95 | 25.68 | 27.44 | 26.16 | 21.44 | 23.55 | 26.71 | | | 28251 P | i ~ | | 23.02 | 22.30 | 22.93 | 23.68 | 22.89 | 23.86 | 21.57 | 23.25 | 23.44 | | | 28284 P | 22 | . ~ | 20,58 | 22,39 | 23.60 | 23.16 | 24.44 | 21.97 | 21.36 | 23.41 | 23.03 | | | 28237 N | ۵. | , | 19.91 | 21.22 | r/s | 30.50 | r/s | r/s | 20.47 | 43 | n | | | MEAN | | | 20.25 | 21.50 | 21.57 | 22.48 | 23.89 | 22,18 | 20.82 | 22.02 | 22.88 | | | S.D. | | | 1.374 | 1.755 | 1,831 | 1.825 | 1.730 | 2.474 | 1,469 | 1.713 | 2.017 | | | 2 | | | 14 | 13 | 14 | 7.4 | 14 | 13 | 13 | 14 | 13 | | | : | | | , | 1 | | | | | | | | | PS=PREGNANCY STATUS, CDD=GESTATION DAY OF DELIVERY P=PREGNANT, NP=NOT PREGNANT, RFS=REMOVED FROM STUDY, mp=MISSED PLUG mp, NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF WEAN === TABLE 5 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL LACTATIONAL BODY WEIGHT (GRAMS) FO ADULT FEMALES GROUP: 0 PPM ANIMAL LACTATION DAY 0 | | 1) | | | | | | | 275 | | | ] | j | | | | | |--------|--------|------|------|--------|--------|-----|------|-----|---|------|-------------|--------|--------|--------|--------|----| | 268.58 | 296.81 | ζ. | 9.0 | 9.1 | 311.40 | 7.4 | 4.3 | 6.0 | ä | 9.5 | 9.6 | 332.86 | Š | 299.72 | 0.0 | 14 | | S | 79. | 37.5 | 50.1 | ~ | 304.32 | • | 90.2 | 55. | 9 | 46.0 | <b>(22)</b> | • | 324.31 | 77. | 21.870 | 7. | | 2827.9 | 28228 | ~ | N | $\sim$ | 28242 | * | 7 | 2 | N | 2 | 2 | 2 | 23 | HEAN | S.D. | z | 0 药 : To 0 0 TABLE 5 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL LACTATIONAL BODY WEIGHT (GRAMS) FO ADULT PEMALES GROUP: 150 PPH | 4 | 98.8 | 4 | 7.9 | 2.5 | 0.5 | 7.4 | 287.30 | 0.0 | 3.4 | 1.6 | 8 | 02.6 | 33,1 | ₽. | | 297.12 | 19,045 | 14 | |---------------|-------|-------|---------|-------|--------|--------|--------|--------|--------|--------|-------|--------|-------|-------|---|--------|--------|----| | DAY 0 | 92.9 | ų | 72. | o. | 259.43 | 271.54 | 267.53 | 286.52 | 272.61 | 282.10 | 76.9 | 269.87 | 21.8 | 68.9 | | 275.59 | 16.896 | 14 | | LACTATION DAY | | | 's | | | | | | | 72 | | | | | | | | | | AHIMAL | 28277 | 28272 | . 28270 | 28288 | 28253 | 28264 | 28233 | 20225 | 28257 | 28267 | 28280 | 28258 | 28262 | 28220 | • | HEAN | S.D. | 2 | TABLE 5 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ GEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL JACTATIONAL BODY WEIGHT (GRAMS) FO ADULT FEMALES GROUP: 750 PPM | 4 | 67.5 | 93.8 | 83.1 | 6.99 | 91.0 | 25.3 | 76.7 | 95.1 | 91.5 | 91.3 | 9.69 | 89.5 | 00.6 | 01.7 | 7 | • | 15.192 | Ä | |-----------|------|------|------|------|------|------|------|------|------|------|--------|------|------|------|-----------|------|--------|---| | DAY 0 | 58.2 | 66.4 | 60.1 | 43.7 | 54.7 | 83.5 | 53.8 | 82.7 | 73.2 | 56.0 | 254.63 | 68.4 | 67.7 | 70.2 | 45.7 | S | 11.954 | | | LACTATION | | | | | | | | | | | | | | | <i>t)</i> | * | | | | ANIMAL | 826 | 828 | 823 | 30 | ت | 9 | 822 | 628 | 826 | 825 | 28252 | 822 | 622 | 822 | 823 | MAGN | S C | z | TABLE 5 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DETELOPHENTAL TOXICITY STUDY IN CD BRATS 1,7 INDIVIDUAL LACTATIONAL BODY WEIGHT (GRAMS) FO ADULT FEMALES GROUP: 1500 PPM | ₹ | 72.3 | 71.9 | 60.9 | 83. | 89.9 | 83.6 | 75.1 | 94.6 | 76.1 | 93.2 | 89.2 | 314.14 | 95. | 81.1 | ì | | 2.95 | 7. | |-----------------|------|------|------|-------|------|------|------|------|------|------|-------|--------|------|-------|-----|--------|------|----| | LACTATION DAY 0 | - | 55.9 | 37.8 | 60.6 | 68.0 | 54.3 | 69.3 | 63.1 | 51.9 | 73.8 | 0.69 | 275.42 | 64.1 | 72.5 | | 261.47 | | 14 | | ANIMAL LACTAT | 826 | 826 | 827 | 28268 | 825 | 82 | 8 | 8 | 82 | 82 | 28234 | 28241 | 8 | 28284 | - : | KEAN | S.D. | z | v(C) TABLE 6 PROPIONALDEHYDB: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD BATS INDIVIDUAL LITTER VIAGILITY PIPPS GROUP: 0 FPM | < | | | | V. | | | | | | | | |----------------|--------------------------|------------------|------------------|-----------------------------|------------------|-------------------------------|------------------|------------------------|-------------------------------|------------------|------------------| | B 71 | | | | | | | | | | | | | - | ro in | N CO | 8 ~ | 8 7 | စ အ | 10 | യ ഹ | ထေးက | <b>∞</b> <del>•</del> | 7 | <b>6</b> 10 | | ~ | 910 | ωœ | 8 ~ | 8 ~ | 0 80 | 10 | <b>∞ ₁∪</b> | eo n | <b>&amp;</b> 4 | ~ | an no | | 7 | വ | wω | 80 ~ | 8 ~ | σ <b>, α</b> | 10 | <b>8</b> W | es ru | æ ≠ | ~ | ത ഗ | | - | 20.4 | ĸΛα | 8 7 | 8 ~ 1 | 60 B | 16 | ω v | <b>80</b> I/O | ∞ ಈ | ~ | ov nu | | ٥ | 9 9 | n m | ø r | <b>60 60</b> | O1 00 | 70<br>70<br>8 | oo ru | . <b>60) (/)</b><br>1. | <b>∞</b> ≠ ⊣ | ~ | O F1 | | LACTATION DAYS | KALES<br>FEMALES<br>DEAD | MALES<br>FEMALES | NALES<br>FENALES | MALES<br>FENALES<br>MISSING | NALES<br>FEXALES | MALES<br>STILLBORN<br>FEMALES | MALES<br>FEMALES | HALES<br>FEMALES | MALES<br>FEMALES<br>STILLBORN | MALES<br>FENALES | Hales<br>Fenales | | DAN + LA | 28229 | 28228 | 28244 | 28239 | 28240 | 26242 | 28276 | 28245 | 28226 | 28255 | 28249 | B= BEFORE CULLING, A= AFTER CULLING į TABLE 6 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD BY REPRODUCTIVE STUDY IN CD RATS INDIVIDUAL LITTER VIABILITY F1 PUPS GROUP; 0 PPM < | DAN # L | DAH # LACTATION DAYS | 0 | | ~ | m | 4 | B<br>17 | |---------|----------------------|------|------|------|-------|-----|---------| | 28275 | NALES<br>FEMALES | ∞ ın | so n | æ v | εο ισ | 8 5 | | | 28278 | HALES<br>FEMALES | 201 | 501 | 30 | 10 | 30 | | | 28256 | MALES | 10 | 10 | 10 | 10 | 10 | | | | FEMALES DEAD | 4 49 | ø | 2 -1 | S | S | | TABLE 6 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS NEDIVIDUAL LITTER VIABILITY FI PUPS GROUP: 150 PPM | DAH # LA | LACTATION DAYS | 0 | -1 | 7 | m | 4 | B<br>17 | « | |----------|-------------------------------|-------|------------|------------|------------|------------|---------|---| | 28277 | HALES<br>FEHALES | 99 | 901 | 907 | 10 | 10 | | | | 28272 | HALES<br>FEMALES | 2 ~ | 2 ~ | 97 | N I | 2 5 | | | | 28270 | HALES<br>FEMALES | 12 | 12 | 12 | 12 | 12 | | | | 28288 | NALES<br>FEMALES<br>STILLBORN | 7 | ~ | , | | ~~ | | | | 28253 | MALES<br>FEMALES | 12 | 12 | 12 | 12 | 12 | | | | 28264 | HALES<br>FEMALES | 8 ~ | 8 7 | 8 | 9 7 | 8 ~ | | | | 28233 | NALES<br>FEMALES | 9 ~ | 7 | 9 ~ | 9 | 9 | | | | 28225 | HALES<br>FEMALES | 13 | 13 | 13 | 13 | 13 | | | | 28257 | HALES<br>FENALES | 10 | 10 | 10 | 10 | 10 | | | | 28267 | HALES<br>FEMALES | 00 O1 | <b>8</b> 6 | <b>8</b> 0 | <b>∞</b> o | œ o | | | | 28280 | MALES<br>FEMALES<br>MISSING | 6 | 5 1 | 6 | <b>c</b> s | <b>6</b> 2 | | | | 28258 | HALES<br>FEMALES | 6 | 6 ~ | 6 ~ | 6 7 | 6. | | | | B= BEFOR | BEFORE CULLING. A= | AFTER | | CULLING | 2 | | | | TABLE 6 FROPIONALDEHYDB: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL LITTER VIABILITY F1 PUPS GROUP: 150 PPM | ∢ | | | |----------------|--------------------|------------------| | 17 8 | | | | 4 | 611 | ∞ ~ | | m | 9 | 80 ~ | | 8 | 61 | ∞ ~ | | 7 | 6٦ | <b>@</b> ~! | | 0 | 94 | <b>∞</b> ⊣ | | LACTATION DAYS | HALES<br>FEMALES 1 | NALES<br>PEMALES | | DAN # LAC | 28262 | 28220 | TABLE 6 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL LITTER VIABILITY FI F S GROUP: 750 PPM | 28251 NALES | DAN # LA | LACTATION DAYS | 0 | 7 | ~ | ~ | 7 | - F | i | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------|----------------|--------------------|------------|--------------|--------------|-----|---| | HALES 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 | 28266 | HALES<br>FEMALES | o vi | 9 3 | o 0 | o 12 | o n | | | | HALES 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 <td>28281</td> <td></td> <td>7</td> <td>12</td> <td>12</td> <td>12</td> <td>12</td> <td></td> <td></td> | 28281 | | 7 | 12 | 12 | 12 | 12 | | | | HALES FEMALES HALES HALE | 28236 | HALES<br>FEMALES | ru qu | iù Q | ro e | no ev | w 60 | | | | HALES 7 7 7 7 FEMALES 8 8 8 8 HALES 9 9 8 8 HALES 6 6 6 6 6 HALES 6 6 6 6 6 6 DEAD 1 1 1 8 8 DEAD 1 1 8 8 MALES 7 7 7 6 NISSING 7 7 7 6 HALES 9 9 9 9 8 HALES 7 7 7 7 FEMALES 8 8 8 8 HALES 7 7 7 7 FEMALES 5 5 5 5 | 28250 | MALES<br>FEMALES | 00 CO | <b>® ©</b> | Ø Ø | <b>60</b> 60 | <b>80</b> 00 | | | | HALES FEMALES HISSING HALES HA | 18271 | HALES<br>FEHALES | 68 | 8 | 7 | 7 8 | ~ @ | | | | MALES 9 9 9 9 HALES 6 6 6 6 6 DEAD 1 1 1 1 1 FEMALES 10 10 8 8 8 DEAD NALES 7 7 6 1 MALES 7 7 7 6 1 HALES 9 9 9 8 FEMALES 7 7 7 7 FEMALES 7 7 7 7 FEMALES 5 5 5 5 | 28253 | MALES<br>FEMALES<br>MISSING | <b>&amp;</b> & | <b>&amp; &amp;</b> | 8887 | ထထ | <b>60 60</b> | | | | MALES 6 5 5 5 DEAD 1 1 8 8 DEAD 2 2 8 8 MALES 7 7 7 6 MISSING 9 9 9 8 MISSING 1 1 1 1 HALES 7 7 7 7 FEMALES 8 8 8 8 FEMALES 5 5 5 5 | 28223 | HALES<br>FENALES | Ø 49 | 6.9 | <b>6 9</b> | φ.φ | 6.0 | | | | HALES 7 7 6 MISSING 9 9 8 REMALES 9 9 8 HALES 7 7 7 FEMALES 8 8 8 FEMALES 7 7 7 FEMALES 5 5 5 | 28283 | HALES<br>DEAD<br>FEHALES<br>DEAD | 10 | 10 | 2 8 2 | v es | N E | | | | HALES 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 | 28260 | HALES<br>HISSING<br>FEMALES<br>HISSING | <b>6</b> | 6 | r 6 | 9 8 | vo en | | | | HALES 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 28259 | HALES<br>FEMALES | <b>6</b> | 8 | 8 | 7 8 | 8 | | | | | 28252 | HALES<br>FEMALES | 5 | 5 | <b>~</b> s | <b>~</b> s | 2 | | | TABLE 6 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD® RATS 3 INDIVIDUAL LITTER VIABILITY F1 PUPS GROUP: 750 PPM | DAM ( I | DAM # LACTATION DAYS | 0 | н | ~ | м | 7 | B 71 | ~ | |---------|----------------------|-----|------------|-----|------------|-----|------|---| | 28222 | i ' | 80 | 80 | ۰, | 7 | 7 | | | | | MISSING | S | ď | - 5 | Ŋ | S | | | | 28224 | HALES<br>FENALES | 8 ~ | 8 ~ | 9 | 8 | 8 ~ | | | | 28221 | | φ, | 9 | 9 | 9 | 9 | | | | | DEAD | ٦ ٢ | 7 | 2 | ~ | 7 | | | | 28230 | MALES | ~ 6 | <b>८</b> 6 | ٥ م | <b>~</b> 6 | 6 | | | $\langle \hat{I} \rangle$ TABLE 6 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RAIS INDIVIDUAL LITTER VIABILITY FI PUPS GROUP: 1500 PPM | LACTATION DAYS | MALES<br>DEAD<br>FEMALES<br>WISSING | HALES<br>FENALES | NALES<br>FEMALES | MALES<br>FEMALES<br>EAD | HALES<br>FEMALES | HALES<br>FEMALES | MALES<br>STILLBORN<br>FEMALES | HALES<br>FEHALES<br>HISSING | HALES<br>FENALES | NALES<br>FEMALES | MALES | |----------------|-------------------------------------|------------------|------------------|-------------------------|------------------|------------------|-------------------------------|-----------------------------|------------------|------------------|------------| | S | | | | | | | 7 | | | | | | 0 | 9 01 | r & | N O | " | 8 ~ | 30 | r-1 s | 9 2 | n eo | 6 9 | ₩. | | - | 25 rd 60 r | ~ 8 | ۍ<br>وه | ~~ | œ ~ | 20 | ر<br>د | 997 | sy es | 6 9 | <b>a</b> p | | R | e e | r• co | ur: On | 6 1 | 8 ~ | 20 | r s | 9 9 | ν <b>ω</b> | 6 9 | 8 | | - | es es | ~ & | N D | 6 3 | ® ► | 20 | ۲ s | 9 9 | o Or | 6 9 | ₩. | | - | n o | ~ ∞ | აი | <b>6</b> 2 | 8 ~ | 20 | ر<br>د | 9 9 | N GO | 6 9 | <b>6</b> | | 17 | | | | | | | | | | | | TABLE 6 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL LITTER VIABILITY FI PUPS GROUP: 1500 PPM | | 28241 HALES 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | |------------------------------|---------------------------------------------------|------------------|--------------------| | < | | | | | B<br>17 | | | | | 4 | ~0 | <b>80 49</b> | <b>6</b> | | m | <b>~</b> 6 | & v | r & | | 8 | ~0 | 8 9 | <b>~</b> 8 | | - | ~0 | <b>8</b> 9 | <b>8</b> | | 0 | L- 0 | æ <b>9</b> | ~ 8 | | DAM # LACTATION DAYS 0 1 2 3 | 28241 MALES<br>FEMALES | NALES<br>FEMALES | H HALES<br>FEMALES | | DAM # | 2824 | 28251 | 28284 | TABLE 7 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL PUP BODY WEIGHT (GRAMS) PER LITTER FI PUPS GROUP: 0 PPM | | | | | | | ų | ron. | פאססוני: | | 0 550 | | | | | | | | | | |----------------|----------|---------|--------------|--------|------|--------|----------|----------|------------|----------|--------|--------|--------|--------|--------|--------|----------|--------|---| | LACTATION DAY: | ) : X | | 6 | | | | | | | | | | | | | | | | | | | 2 | VERN | 0 £4<br>54 ≃ | | | | | | | | | | | | | | | | | | LITER | :<br>:: | e. | | WEIGHT | i × | WEIGHT | 2<br>2 | WEIGHT | × | WEIGHT | ! | | 28229 | 5.37 | 5.15 | X | 5.61 | | 5 | m | 5.65 | t | 4.72 | | 5.18 | | 5.50 | | 5.21 | 1 | 5.27 | | | | | | а<br>6 | 5.48 | 10 F | 4.98 | 11 | 2.07 | 12 F | 4.90 | | | | | | | | ; | | | 28228 | 6.83 | 6.50 | <b>x</b> | 7.01 | | • | m | | | 6.47 | | e, i | e. | 6.41 | -<br>E | 6.18 | يد<br>50 | 7.28 | | | : | | | 9<br>F | 6.12 | | • | = | • | | 6.39 | ي<br>س | 6.54 | | | | , | | • | | | 28244 | 5.60 | 5.24 | Z. | 5.88 | | ų, | m | .78 | <b>.</b> | 5.58 | | 2: | | 5.45 | _ | | X<br>W | 5.53 | | | | | | <u>с.</u> | 5.74 | | | 7 | 47 | | 4.76 | | 42 | 4 : | 4.82 | en : | 2.03 | | • | | | 28239 | 6.03 | 5.75 | × | 6.02 | | • | m | . 47 | ₩ | 6.28 | | 9 | ٠. | 41 | _ | 2.32 | | ٠, ١ | | | | | | £4 | 5.45 | | ur | = | .73 | | 5.72 | | . 26 | ₩. | 5.89 1 | S I | 2.97 | F . | 5.73 | | | 28240# | 5.31 | 5.08 | <b>X</b> | 5.92 | | ٠, | m | . 26 | 4 | 5.03 | | .85 | 9 | 5.27 | | 5.49 | | 7. | | | | | | 9<br>9 | 5.35 | | ~ | = | • | | 5.03 | | | | 5.15 1 | | 4.98 | | m, | | | | | | 17 F | 5.13 | | | | | | | | į | | | | : | | 6 | | | 28242# | 5.41 | 5.16 | z<br>H | 5.26 | | 5.53 | m | 4.95 | 4 | 6.10 | 'n | 5.18 | 2 | 5.50 | X<br>~ | 5.11 | Z : | 2.7 | | | | | | X. | 5.14 | 10 F | 5.04 | 11 F | 43 | 12 F | ₹. | | .34 1 | M<br>M | • | | 5 | | 4.52 | | | | | | 17 34 | o<br>s | | | | | | | | | | | | | | ; | | | 28276 | 5.92 | 5.83 | × | 6.08 | | | m | 5.62 | | . 26 | | .55 | z<br>9 | 5.97 | I | 5.11 | X, | 6.61 | | | | | | G<br>G | 5.77 | | | 7 | 5.81 | | 7 | | .80 | | | | | | | | | 28245 | 6.32 | 6.32 | × | 5.91 | | | m | .53 | 4 | 38. | | .46 | I. | 5.72 | × | 6.16 | T<br>C | 6.55 | | | | | | 6 | 6.25 | | | 11 | .18 | N | 54 | | 69. | | , | | | | 4 | | | 28226 | 6.33 | 5.90 | Z. | 6.63 | | | m | ٦, | ~ | .58 | | 70. | I | 6.45 | × | 6.53 | X | 6.19 | | | | | | G, | 5.87 | | | = | ₽9. | C) | .19 | | 0 | | | | | | , | | | 28255 | 99.9 | 6.08 | # | 98.9 | | | m | 33 | 7 | .73 | 'n | \$ | | | X<br>~ | 97.9 | بر<br>ش | 2.97 | | | | | | su<br>O | 6.11 | | | = | 77 | | <u>۾</u> | m | \$ | | • | | | | • | | | 28249 | 5.79 | 5.39 | X : | 5,38 | | | m : | 8. | <b>~</b> ( | 9 | | 5 | z : | 9.6 | × | 0.13 | Z. | 0.40 | | | | • | ; | z: : | 6.01 | | | <b>1</b> | 20 | ٧ - | | | : 6 | | • | 7 | 6.32 | Z G | 6.41 | | | C/707 | 0.0 | • • • • | 10 | 5.44 | 10 F | 6.45 | 11. | 6.42 | 12 F | 6.58 ] | 13 E | 6.30 | | , | | , | | | | | 28278 | 5.82 | 5.64 | | 6.02 | | | m | 5.96 | 4 | 70, | | .17 | | 5.87 | 7 5 | 5.85 | 64<br>69 | 5.37 | | | !<br>!<br>! | | 1 | 9 | 5.89 | | | 7 | 5.75 | | ۲. | | . 28 1 | EL T | 5.74 1 | s | • | | | | | 28255# | 5.57 | 5.54 | × | 5.77 | | | m | 5.09 | | ő. | | .32 | 9 | .15 | ~ | . 39 | X<br>Ø | 2.00 | | | | | | <b>X</b> | 5.93 | | | 11 | 5.38 | | .63 | | . 29 1 | - | 5.24 1 | | 2 | | ٠ | | | | | | 17 H | 8 | | | | | | | | | | | | | | | | | MEAN | 5.95 | 5.70 | | | | | | | | | | | | | | | | | | | S.D. | 0.50 | 0.47 | | | | | | | | | | | | | | | | | | | Z. | <b>*</b> | 7 | | | | | | | | | | | | | | | | | | s= STILLBORN }= AT LEAST ONE PUP IN LITTER MISSEXED 9/71/80 TABLE 7 PROPYONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATE INDIVIDUAL PUP BODY WEIGHT (GRAMS) PER LITTER | | | | | | | INDIVIDUAL FOR BODY REIGHT (SEASONS) | E E | GROUP: | ֡֞֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֓֡֓֓֡֓ | Had OSI | 5 | | | | | | | | | |----------------|-------------|-------|----------|--------|----------|--------------------------------------|--------|--------|--------------------------------------------|---------|------------|--------|--------|--------|--------|----------|------------|------------|---------| | LACTATION DAY: | OAY: 0 | | | | | | | | | | | | | | | | | | | | | | | T.<br>CS | | co<br>co | | | | | | | | | | | | | | | | | z | KEAN | | | <b>4</b> | | | | ω | | 14 | | | | М | | <b>□</b> | | | | LITTER | æ | 84 | ж<br>Д | WEIGHT | × | WEIGHT | ₽<br>P | WEIGHT | ×<br>a | WEIGHT | × | WEICHT | a<br>a | WEIGHT | μ<br>Δ | WEIGHT | g. | WEIGHT | | | 28277 | 5.56 | 5.36 | - | 5.73 | × | - 69 | x | | I | 5.29 | X | 5.78 | | 5.58 | | | æ | 5.2 | - | | | )<br>)<br>) | | 0 | 5.19 | 10 F | 5.65 | 11 F | | | 5.14 | | 5.46 | 14 F | 5.21 | | 5.62 | | 5.29 | • | | 28272 | 5.95 | 6.09 | <b>X</b> | 5.79 | Z<br>N | . 28 | | .19 | | 6.24 | | 5.27 | | 6.10 | | ٠ | | 9 | 'n | | | | | ρ.<br>Ο | 6.10 | 10 F | 9. | | .27 | | 5.54 | | | | | | | | | | | 28270 | 5.75 | 5.41 | <b>Z</b> | 5.66 | Z<br>Z | 20 | | 20. | | 5.84 | | 4.70 | | 5.50 | | 5.69 | | 5.5 | 'n | | | | | 6 | 2.66 | 10 F | 99. | | .63 | | 5.58 | | 5.40 | | 5.40 | | 5.37 | 16 F | 5.73 | m | | 28288 | 6.07 | 5.50 | <b>X</b> | 6.14 | z<br>n | 3 | | . 16 | | 6.51 | S | 5.78 | | 5.75 | | 6.51 | | 5.1<br>2.1 | s. | | | | | S. | 5.42 | 10 F | 88. | | .46 | | 4.83 | | 5.63 | | 5.64 | | <b>S</b> | | | | | 28253 | 6.58 | 5.88 | #<br>~ | 6.19 | X<br>~ | . 26 | | .93 | | 6.33 | S | 5.79 | | 4.93 | | 6.01 | <b>6</b> 0 | 4.73 | <b></b> | | | | | 0, | 5.97 | 10 F | 86. | | 96. | | 6.21 | | 6.54 | | 6.55 | | 5.91 | | ŏ.9 | _ | | 28264 | 5.48 | 5.32 | <b>=</b> | 5.49 | X<br>N | .64 | | ₽. | | 5.36 | S<br>Z | 5.29 | Z. | 5.61 | I<br>C | 5.78 | | S. 3 | _ | | | | | Q) | 5.10 | 10 F | .43 | | 45 | | 5.71 | | 5.19 | | 5.29 | | 5.07 | | | | | 28233 | 6.49 | 6.10 | 7. | 6.28 | X<br>N | .65 | | 37 | | 6.81 | | 6.57 | | 6.28 | | 6.31 | B | 6.10 | _ | | | | | 6 | 6.59 | 10 F | .15 | | 86. | | 5.90 | | 5.68 | | | | | | | | | 28275 | 5.79 | 5.77 | × | 5.22 | X<br>~ | .18 | | .97 | | 5.76 | S | 5.84 | 4 | 5.15 | ~ | 5.29 | <b>6</b> 0 | 6.37 | _ | | | | | 9 | 6.10 | 10 F | Ξ. | | 22 | | 5.99 | | 5.99 | | ď. | | 5.67 | | • | _ | | | | | 17 F | 6.21 | 18 F | .56 | | | | | | | | | | | | , | | | 28257 | 5.99 | 5.83 | <b>X</b> | 5.94 | X<br>N | 7 | | .78 | | • | | 5.59 | | 5.89 | | 5.69 | (L., | 5.65 | | | | | | S<br>S | 5.68 | 10 F | 77 | | 55. | | 5.96 | 13 F | 5.37 | 14 F | 6.22 | 15 F | 5.85 | | | | | 28267 | 6.27 | 5.64 | <b>X</b> | 6.22 | X<br>N | 6. | | 6 | | • | | 6.58 | | 6.75 | | 6.63 | æ | 5.93 | _ | | | | | 9 | 5.62 | 10 F | .83 | 11 F | 5.69 | 12 F | • | 13 F | 6.05 | | 5.52 | | €.99 | 16 F | 6.1 | ۰, | | | | | 17 F | 5.85 | | | | | | | | | | | | | | | | | 28280 | 6.39 | 5.98 | #<br>~ | • | X<br>Y | 6.98 | X<br>M | 5.99 | I. | 5.80 | X : | 7.10 | I<br>G | 6.27 | Z. | 6.05 | œ | 6.12 | ~ | | | | | Q) | ٠, | 10 F | .12 | | E. | | • | | 5.47 | | ; | | ; | | • | | | 28258 | 6.27 | 5.90 | ≖<br>~ | • | X<br>N | . 26 | | . 25 | | • | | 6.31 | | 6.60 | | 0.41 | - | | | | | | | ST. | _ | 10 F | .68 | | 90. | | • | | 5.82 | | 5.77 | | 5.83 | 16 F | 5.96 | | | 28252 | 6.53 | 90.9 | <b>X</b> | | X<br>~ | 99. | | .73 | | • | | 6.77 | | 6.37 | | 6.05 | | 9.9 | _ | | | | | 9 | -40 | 10 F | .91 | | .70 | | | | 6.35 | 14 5 | 5.68 | 15 F | 6.59 | 16 F | 5.7 | _ | | | | | 17 F | L. | 18 F | 66. | | .91 | | • | | | | | | | | | | | 06686 | 6.51 | F. 34 | | • | X | 6 | | . 47 | | | <b>2</b> 2 | 6.59 | ¥ | 6.19 | Z. | 6.67 | æ | 6.51 | _ | | | <u> </u> | } | (A) | | ;<br>! | | | | | | | | | | | | | | | | NEAN | 6.12 | 5.80 | | | | | | | | | | | | | | | | | | | S.D. | 0.37 | 6.31 | | | | | | | | | | | | | | | | | | | Z | 14 | 14 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | s= STILLBORN TABLE 7 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL PUP BODY WEIGHT (GRAHS) PER LITTER FI PUPS GROUP: 750 PPH | ٠, | | | | | | Ei, | FI PUPS | S GROUP | | 750 РРМ | | | | | | | | | | |----------------|-------------|----------|----------|---------------|--------|------------|---------|----------|------|---------|-----|--------|------|--------|----------|--------|------------|----------|--------| | LACTATION DAY: | DAY: 0 | | | | | | | | | | | | | | | | | ď | | | | | NEAN | | | | | | | | | | | | | . A | | . = | ы | | | LITTER | x | i. | 1 × | WEIGHT | | WEIGHT | | Ž, | , μ. | WEIGHT | Α. | WEIGHT | Q, | WEIGHT | | WEIGHT | p, | X WEIGHT | Ħ | | 28266 | 5.38 | 5.05 | 1 7 | " | | 5 | H | | I | 5.6 | . S | 5.15 | ! | 'n | _ | 5.42 | 8 | π<br>5. | .39 | | | i<br>!<br>! | | | | 20 | 'n | | 4 | | ~ | | 5.21 | 7 | 4 | | | | | | | 28281 | 6.12 | 5.72 | | • | ~ | å | | 9 | | 7 | | 5.86 | 9 | ۰ | Z. | 5.86 | œ <u>;</u> | | E | | | | | | 4, | 2 | 'n | | \$ | | e. | | 6.22 | 7 | 'n | 12 | 'n | 9 | ۰ ص | 59 | | 28236 | 6.29 | 6.16 | <b>=</b> | | 7 | 9 | Æ ! | 6.38 | ¥ ( | 6.56 | 'n. | 6.20 | 9; | 5.72 | ^ | ė | æ | 40 | 30 | | | | : | | | 10 | ۰ | | Λ, | | ٦. | ٠, | 4.0 | 4 | ė, | • | ٠ | • | • | 9 | | 28250 | 5.07 | 4.78 | | • | ~ | 'n | | · • | | ٦, | n e | 4.92 | ٠: | ń | - : | 'n· | <b>.</b> | • | , . | | \$ | | | | • | 70 | <b>.</b> | | i. | | æ. ( | | 4.4 | 7 | ÷ . | | • . | 9 9 | | | | 28271 | 6.01 | 5.91 | | <b>U</b> 13 + | 7 | 4 | | ייי | | Ä١ | n | 6.13 | ٠. | ń. | ٠, | 'n | D | 0 | 97 | | | | | | <b>4</b> 1 | 2 | <i>n</i> : | | <i>.</i> | | `;' | 7 | 28.6 | • | 'n | Ç. | ń v | ٥ | 4 | 2 | | 28263 | 5.96 | 5.60 | | -0 | 7 | 'n | | 'n | | ņ | | | ٠; | 'n | - ! | • • | 9 | | 5 6 | | | | | | un i | 2 | 'n | | 4 | | ۲. | ~ე | . v | 5 | 'n | 7 | • | 9 | n | 4 | | | | | | n | • | | | • | | • | | ; | ٠ | , | t | ٠ | a | 4 | 9 | | 28223 | 6.28 | 2.88 | | | X | 6.04 | E I | 6.86 | T ( | 2.68 | Σ I | 6.37 | E ( | 20 | E 6 | 17.0 | 0 | ٥ | Ç | | | | | | 9 | 2 | 'n | | e | | ٠. | 71 | 71.0 | 4 | 9.0 | 9 | 'n | • | | 6 | | 28283 | 4.94 | 4.45 | | u 1 | ~ | 4 | | 7 | | 6 | | 4.79 | ِ م | 5.35 | - : | φ. | <b>»</b> : | | 20 10 | | | | | | • | ទ | 4 | | • | | ∹. | m | 4.72 | T | 4.15 | î | 4 | 9 | | C<br>Q | | | | | | | | | | | | | | | | | | | | , | į | | 28260 | 60.9 | 5,30 | | 5 | ~ | œ | CT. | ĽΩ | | ۲. | S | w | 9 | | ~ | ÷ | <u>ය</u> | ru. | . 20 | | | | | | •• | 2 | 67 | H | <i>ي</i> | | ΥŢ | 13 | ഹ | 7 | • | 12 | ıń. | 9 | ~ | 9 | | 28259 | 6.77 | 6.10 | | ~ | ~ | 9 | 'n | 7 | | • | S | 9 | 9 | • | _ | ė | œ | ۰ | 46 | | | | | | ٠, | 20 | L | 7 | | | ۳. | 13 | S | 14 F | 6.26 | 15 | 6.10 | | | | | 28252 | 6.61 | 6.15 | | v | ~ | _ | m | 9 | | ۳. | ۍ | 6.52 | 9 | • | | ė. | œ | | .65 | | | | | | ٠, | 2 | φ | # | 9 | | 7. | | | , | | ( | • | • | • | | | 28222 | 6.59 | 6.17 | | • | ~ | _ | m | 9 | | ∹' | S ( | 91 | Z. | 6.29 | <b>X</b> | 6.19 | ₽ | E | ŗ. | | | | | | <b>.</b> | 20 | • | Ξ, | اعد | | ٠. | 13 | a | • | ; | r | • | • | , | ţ | | 28224 | 6.35 | 6.15 | | | 7 5 | | m ; | 94 | £ 6 | 77.9 | 0 0 | 07.0 | 2 4 | | | 90.4 | 5 | 9 | ÷ | | | 30 | 31. 3 | | <b>0 4</b> | ۲<br>۲ | 9 42 | ; ~ | o ur | | | ju | יי י | 4 | 6.55 | - | | 8 | F 6. | 24 | | 17707 | 0.43 | 71.0 | | , v | 1 5 | 9 40 | `= | ۍ ۱ | | . 6 | 13 | . 12 | 7 | 0 0 | | | | | | | 78230 | 9 80 | 47.4 | | | ? | • | , ca | יעו | | . ~ | V. | 4 | 9 | 5.01 | 7 | 7 | 80 | F 4. | 99 | | | ; | <u>;</u> | | 4.67 | 10 F | 5.23 | 11 F | 4.78 | | Θ. | 13 | Ŋ | 14 | 5.03 | 52 | ÷ | 16 | 4 | 22 | | | | | | | | | | | | | | | | | | | | | | | MEAN | 5.97 | 5.61 | | | | | | | | | | | | | | | | | | | | 19.0 | 0.60 | | | | | | | | | | | | | | | | | | | • | } | } | | | | | | | | | | | | | | | | | | | D= DEAD | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Table 7 Propionaldehyde: Cohbined Reprated-Exposure and Reproductive/develophental toxicity study in $\mathrm{CD}^{\pmb{\Theta}}$ rats INDIVIDUAL PUP BODY WEIGHT (GRAMS) PER LITTER F1 PUPS GROUP: 1500 PPM | <br> | | ; | | | | | F | | PUPS CROUP: | | 1500 PFH | • | | - | | | | | | | |------|----------------|-------|----------|-----------|--------|------|--------|------|-------------|------|----------|------------|--------|-------|--------|--------------|--------|-----------|--------|--| | S | CACTATION DAY: | AY: J | | 6 | | | | | | | | | | | | | | | | | | | | • | NEAN | ν E | | n ± | | 0 EL | 21 | | | د .<br>ن ن | | 9 101 | | 4 ==<br>44 € | | 4 ⊃ | | | | 3 | LITTER | ī | C. | ) P4 | WEIGHT | × | WEIGHT | × | WEIGH | × | WEIGHT | × | WEIGHT | | WEIGHT | | WEIGHT | | WEIGHT | | | | 28265 | 5.50 | 5.13 | 7.<br>7.1 | 5 | | | | .27 | £ | | ν<br>Σ | 5.43 | | 5.11 | | 5.01 | 8 5 | 5.11 | | | ! | | | | 97.6 | S | | | | .97 | | | | 5.10 | | 5.22 | 15 F | 5.57 | 16 F | 4.98 | | | ,, | 28269 | 5.76 | 5.53 | I | 'n | | | | .95 | | | | 5.90 | | 3.15 | | 6.07 | | 5.90 | | | | | | | 9 E | S | | | | .44 | | | | 5.66 | | 5,39 | | 5.42 | | | | | • • | 28279 | 7.73 | 7.52 | ٦<br>٣ | _ | | | | .83 | | | | 7.44 | | 7.50 | | 7.30 | 8 | 7.82 | | | | , | | | 9 F | 7.43 | 10 F | 7.23 | 11 F | 7.38 | 12 F | 7.40 | 13 F | 6.53 | 14 F | 7.36 | | 1 | | i | | | • | 28268 | 5.61 | 5.63 | T. | un. | | | | .39 | | | | 5.37 | | 5.71 | I | 5.84 | 33<br>Pri | 5.51 | | | | i, | | | EL<br>O | ur. | | | | .49 | | | | 9.00 | | 5.42 | | • | | ; | | | | 28254# | 6.12 | 5.77 | <b>T</b> | 9 | | | | .82 | | | | 6.04 | | 6.17 | X. | 9 | Σ.<br>Φ | 5.95 | | | | | | | I. | 9 | | | | .79 | | | | 5.82 | | 5.72 | | 5.64 | | , | | | •• | 28243 | 6.13 | 5.65 | Ξ. | | | | | .62 | | | | 5.73 | | 5.76 | | 12.16 | X<br>® | 6.78 | | | | | | | 6 | | | | | :53 | | | | 5.35 | | 6.14 | | 5.28 | | | | | • | 28247# | 6.34 | 5,80 | × | | | | | . 59 | | | | 5.99 | | 6.30 | | 07.9 | <b>8</b> | 9.00 | | | | | | : | 9 F | | | | | .60 | | | | e<br>0 | | | | | | | | | . • | 28285 | 6.21 | 5.75 | - | | | | | • 99 | | | | 6.20 | ¥ | 6.22 | 7 E | 6.11 | 8<br>F | 6.00 | | | | | | | 9 P | | | | | .67 | | | | 2.68 | | | | | | | | | • | 28231 | 5.74 | 5.36 | × | | | | | .86 | | | | 5.59 | 6 P | 5.22 | 7. F | 5.23 | 8)<br>M | 2.07 | | | | | | | 9 F | | | | | .46 | | | | 5.60 | | | | | | | | | | 28246 | 5.44 | 5.33 | Ξ, | | | | | .15 | | | | 5,63 | | 38 | 7<br>H | 5.33 | Œ | 6.28 | | | | | | ē. | ₹ | | | | | .35 | | | | 5.25 | | 33 | | 5.10 | | | | | •• | 28234 | 6.13 | 5.77 | I<br>~ | | | | | .93 | | | | 5.99 | | .47 | | 5.97 | | 6.23 | | | | | | | G, | | | | | .80 | | | | 5.70 | | .88 | 15 F | 5.39 | 16 F | 5.70 | | | • • | 28241 | 5.97 | 5.55 | π<br>- | | | | | .0 | | | | 6.04 | | .91 | | 5.56 | | 5.91 | | | 3. | | | | 9 F | | | | | .7 | | | | 5.24 | | .97 | | 5.77 | | 5.70 | | | | 28251 | 6.29 | 5.99 | <b>3</b> | | | | | .68 | | | | 6.38 | | .43 | | 6.17 | | 6.03 | | | (( | | | | 0, | | | | | . 29 | | | | 5.85 | 14 F | 6.32 | | | | | | | • • | 28284 | 5.90 | 5.57 | Ξ | | | | | .79 | | | | 6.34 | | 6.23 | Ľ | 6.34 | G<br>F | 4,32 | | | | | | | 9 | | | | | .85 | | | | 5.59 | | 5.97 | | • | | | | | | MEAN | 90.9 | 5.73 | | | | | | | | | | | | | | | | | | | | S.D. | 0.56 | 0.51 | | | | | | | | | | | | | | | | | | | - | <br><b>Z</b> | 7 | <b>7</b> | | | | | | , | | | | | | | | | | | | s= STILLBORN p= AT LEAST ONE PUP IN LITTER MISSERED TABLE 7 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY STUDY IN ${\sf CD}^{m{\Theta}}$ rats | | | O PPM | | GROUP: | F1 PUPS | F | |--------|-----|---------|--------|----------|---------|------------| | LITTER | PER | (GEAMS) | WEIGHT | P BODY W | 딢 | INDIVIDUAL | | | | | | | | FJ | PUPS | GROUP: | | O PPM | | | | | | | | | | |----------------|------------|-------------|-----------|--------|--------|---------|--------|--------|------|--------|------|--------|-----------------|--------|--------|--------|----------------|--------|--| | LACTATION DAY: | DAY: | | | | | | | | | | | | | | | | | | | | | | VENU. | ս :<br>Մ | | 0 E | | | | | | | | | | 0 G | | | | | | LITTER | X | ar. | | WEIGHT | ) × | WEIGHT | | EIGHT | | WEIGHT | | | 28220 | 8 17 | B 35 | | " | 2 | 1 | 2 | 0 13 | 1 | 5, 35 | • | 7 93 | | 8 64 | | - | | - 1 | | | | ; | | | 8.41 | | 03 | | 50. | | 7.95 | | • | | : | | | | ; | | | 28228 | 9.30 | 9.11 | X | 8.51 | H<br>N | 9.64 | X<br>m | 9.56 | ¥ | 9.26 | | 9.51 | 9 | 9.00 | 7 5 | 9.14 | 8 | 9.14 | | | | | | | 9.37 | | ۲۲: | | .85 | | 8.85 | | 8,85 | | | | | | | | | 28244 | 8.94 | 8.46 | | 8.95 | | .55 | | .03 | | 8.57 | S. | 9.11 | | 8.69 | | 9.41 | <b>X</b> | 9.20 | | | | | | | 9.14 | | .34 | | 96. | | 8.35 | | 8.74 | | 9.16 | | 7.56 | | | | | 28239 | 9.57 | 9.33 | | 9.77 | | .17 | | .82 | | 9.20 | | 8.20 | Œ<br>9 | 8.97 | 7 | 10.52 | 60 | 9.9 | | | | | | | X | | 90. | | .27 | | 9.44 | | 9.18 | | 8.92 | | 9.70 | 16 F | 8.89 | | | 28240 | 9.08 | 8.71 | | 8.93 | | .89 | | . 56 | | 9.40 | S | 8.45 | 9 | 9.05 | ~ | 8.33 | 8 | 9.1 | | | | | | | 9.00 | | .57 | | 6. | | 7.97 | | 7.99 | | 8.44 | | 8.14 | 16 | 9.9 | | | | | | | 9.72 | | | | | | | | | | | | | | | | | 28242 | 8.11 | 7.85 | | 7.68 | | 69. | | • | | | | 10.08 | Œ<br>G | 8.72 | | 6.48 | æ | 6 | | | | | | | 8.14 | 10 H | 7.13 1 | 11 F | 8.21 | 12 F | 8.86 | 13 F | 7.56 | 14 F | 9.15 | 15 F | 5.67 | 16 F | 7.45 | | | | | | | 0 s | | | | | | | | | | | | | | | | | 28276 | 10.27 | 10.04 | | 11.16 | | | | | | 9.25 | | 10.26 | 9<br>X | 9.78 | ~<br>X | 10.41 | 8 | 98.6 | | | | | | | 9.92 | | | | | | 10.21 | | 10.03 | | | | | | | | | 28245 | 10.80 | 10.66 | | 11.18 | | | | | | 11.61 | | 11.64 | ن <u>ہ</u><br>و | 10.63 | 7<br>¥ | 10.40 | æ | 10.34 | | | | | | | 10.46 | | | | | | 10.51 | | 10.04 | | | | | | | | | 28226 | 11.11 | 10.58 | | 11.45 | | | | | | 10.74 | | 11.25 | X<br>Y | 11.21 | X. | 11.31 | <b>ಪ</b><br>ಟಾ | 11.81 | | | | | | | 10.25 | | | | | | 10.36 | | 0<br>8 | | | | | | | | | 28255 | 9.92 | 9.31 | | 9.85 | | | | | | 10.26 | | 9.89 | | • | × | 9.39 | 8 | 9.85 | | | | | | | 9.32 | 10 F | 9.80 1 | 11 F | 8.77 | 12 F | 9.18 | 13 F | 9.21 | 14 F | 9.03 | | | | | | | 28249 | 9.63 | 8.80 | | 9.37 | N | | | | | 9.05 | | 10.02 | | • | 7<br>H | 9.85 | æ | 9.01 | | | | | | | 10.28 | | | | | | 8.05 | | 9.35 | | • | | | | | | | 28275 | 10.55 | 10.41 | | 10.42 | ~ | | | | | 10.60 | | 10.71 | | • | X<br>~ | 11.63 | B | 9.71 | | | | | | | 10.96 | | | | | | 8.94 | | 10.64 | | | | | | | | | 28278 | 9.84 | 9.63 | | 10.36 | ~ | | | | | 9.54 | | 10.61 | 5<br>F | 10.46 | 7 5 | 9.2] | <u>ш</u> | 9.18 | | | | | | | 9.94 | | | | | | 9.95 | | 8.73 | | • | | 9.93 | | | | | 28255 | 9.13 | 8.83 | | 8.83 | ~ | | | | | 9.00 | | 8.01 | | • | | 9.19 | æ | 8.78 | | | | | | | 9.50 | | | | | | 8.41 | | 8.49 | | • | | 9.69 | | 9.97 | | | | | | | o<br>s | 8 | 0<br>81 | | | | | | | | | | | | | | | | ; | ; | | | | | | | | | | | | | | | | | | | HEAN | 0.6 | 9.29 | | | | | | | | | | | | | | | | | | | | 0.5<br>1.4 | 14 | | | | | | | | | | | | | | | | | | | | ı | | | | | | | | | | | | | | | | | | | | D= DEAD, M= | | MISSING. S= | STILLBORN | 3 | | | | | | | | | | | | | | | | D= DEAD, M= HISSING, s= STILLBORN TABLE 7 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL PUP BODY WEIGHT (GRANS) PER LITTER FI PUPS GROUP: 150 PPM | | | | | | | 4 | 1 PUPS | GROUP: | | TSO PPM | | | | | | | | | | |----------------|---------|-----------|----------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|------------|--------|----------|--------|---| | LACTATION DAY: | AY: | | | | | | | | | | | | | | | | | | | | | | | e<br>S | | | | | | | | | | | | | | | | | | | | MEAN | 3<br>13 | | | | | | | | ы | | | 1 | <b>(4)</b> | | | | | | LITTER | X | E4 | <u>ч</u> | WEIGHT | α<br>A | WEIGHT | × | WEIGHT | ኋ<br>ተ | WEIGHT | ×<br>A | WEIGHT | × | WEIGHT | | WEIGHT | × | WEIGHT | ! | | 28277 | 8.45 | 8.15 | 7 | 8.61 | X | ļ | X. | 12 | Z. | 8.15 | , | 8.31 | | 98 | 7 F | 8.37 | £.,<br>Ф | 8.24 | | | | | ) | 9 | 8.58 | | 7.38 | 11 5 | 8.36 | 12 F | 8.04 | 13 F | 7.77 | | 8.27 | | ٩. | | 8.16 | | | 28272 | 9.38 | 9.83 | I | 8.54 | | ۲. | | 9. | | 9.01 | | 10.00 | | • | | ٠. | | 10.37 | | | | | | 9 | 90.6 | | ₹. | | ۲۲. | | 4.95 | | | | | | | | | | | 28270 | 9.46 | 8.81 | <b>X</b> | 9.07 | | 9. | | 39 | | 9.74 | | 'n | | .54 | | 7.53 | | ٠ | | | | | | 9 | 3.51 | | ņ | | .63 | | 9.38 | | ∹ | | .47 | | 9.18 | 16 F | 8.82 | | | 28288 | 9.31 | 8.36 | æ | 9.20 | | 'n | | . 20 | | 8.78 | | ₹. | X<br>9 | 6.77 | T. | 9.22 | | • | | | | | | 9 | 7.48 | | ~ | | .35 | | 9.01 | | ₹. | | .52 | | a<br>O | | | | | 28253 | 9.51 | 8.61 | . X | 9.28 | | ۰. | | 7 | | 9.85 | | m, | | .49 | | 9.46 | | 9.25 | | | | -<br> - | | 9 | 9.56 | | ٣. | | .17 | | 9.07 | | 'n | | 69. | | 8.31 | | • | | | 28264 | 8.55 | 8.23 | æ | 8.62 | | ٧. | | . 24 | | 8.95 | | ۲. | | .31 | | 8.50 | X<br>® | • | | | | | | Q | 8.44 | | ų, | | - 95 | | 7.56 | | ٩. | | 80. | | 8.37 | | | | | 28233 | 9.72 | 9.41 | - | 9.97 | | 9 | | 90. | | 9.85 | S<br>S | 10.32 | X<br>O | .67 | 7 F | 8.91 | 8 | 9.51 | | | | | | G, | 9.52 | | 27 | | 92. | | 9.05 | | ۲. | | | | | | | | | 28225 | 9.35 | 86.8 | X. | 9.24 | | 9. | | .52 | | 9.05 | | 7 | 9 | 49 | 7 F | 9.96 | 8<br>14 | 9.52 | | | 1 | | | 9 | 9.28 | | ĸ, | | .80 | | 8.45 | | ۳. | 14 F | .27 | | .19 | | • | | | | | | 17 F | 8.62 | | ٦: | | | | | | | | | | | | | | | 28257 | 9.05 | 8.74 | <b>X</b> | 9.69 | | Ψ, | X<br>M | 8.87 | T. | 8.33 | ω<br>Ξ | 9.52 | 4<br>4 | 8.80 | ۲-<br>۲۳ | B. 22 | œ | 8.44 | | | | | | 9 | 9.63 | | ۲. | | 99. | | .37 | | 8.38 | | 9.49 | | 8.68 | | | | | 28267 | 9.88 | 8.98 | <b>X</b> | 10.46 | | ۳, | | .62 | | .60 | | 9.56 | | 9.16 | | 10.16 | æ | 9.40 | | | | • | | 9 | 8.75 | | ٧. | | .02 | | 11. | | 8.13 | | 9.21 | | 9.16 | | 9.57 | | | | | | 17 F | 7.80 | | | | | | | | | | | | | | | | | 28280 | 11,00 | 10.67 | <b>X</b> | 11.16 | | .79 | | 28 | | | | 9.54 | ¥ | 9.70 | Z. | 12.34 | <u>Έ</u> | X | | | | | • | 6 | 11.20 | 10 F | 10.18 | 11 F | 10.66 | 12 F | 11.03 | 13 F | 10.28 | | | | | | | | | 28258 | 9.24 | 60.6 | H | 9.23 | | ٥. | | 60 | | | | 9.48 | X. | 9.52 | Z. | 9.04 | <b>T</b> | 8-45 | | | | | | <b>X</b> | 9.48 | | Ξ. | | 5 | | | | 9.12 | | • | | 9.26 | | • | | | 28262 | 9.21 | 8.79 | X | 9.67 | | .58 | | 54 | | | | 9.48 | a | • | | 9.16 | | | | | | | | T. | 9.74 | | .72 | | 12 | | | | 8.42 | | • | | 9.59 | | • | | | | | | 17 F | 7.29 | | 80 | | 8 | | | | | | | | | | • | | | 28220 | 11.37 | 10.66 | ٦. | 11.30 | | .36 | | 18 | | | Z<br>S | 11.12 | X<br>W | 11.33 | ľ | 11.13 | X.<br>CO | 11.36 | | | | | | Q. | 10.66 | | | | | | ٠ | | | | | | | | | | | 2 | 0 | 9 | | | | | | | | | | | | | | | | | | | N C | ה<br>ה | 07.6 | | | | | | | | | | | | | | | | | | | Z | 14 | ) T | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | M= MISSING, s= | | STILLBORN | | | | | | | | | | | | | | | | | | TABLE 7 PROPIONALDEHYDE: CCMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL PUP BODY WEIGHT (GRAMS) PER LITTER | | | | | | Z | INDIVIDUAL<br>F1 | ana 1 | PUPS GROUP: 750 PPM | EIGHT: | (GRAMS)<br>SO PPH | E . | LITTER | | | | | | | | |----------------|-----------|--------|------------|---------|------------|------------------|-------|---------------------|--------|-------------------|--------|--------|--------|------------|----------|--------|----------|--------|--| | LACTATION DAY: | NY: 4 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | MEAN | # ;<br>> f | | )<br> <br> | True A Carrier | ⊃ p | THO LAW | 4 × | WEIGHT | 3 × | WEIGHT | a × | WEIGHT | n<br>N | WEIGHT | n<br>N | WEIGHT | | | LITTER | E | ¥ | - 1 | TLOTON. | - 1 | 100101 | - 1 | | ۱, | | : | | : | | | | Ì | | | | 28266 | 7.03 | 7.33 | ~ | | ~ | 7.92 | | 1.71 | Y | 7.51 | N<br>X | 7.94 | ¥<br>• | 8.03 | ~<br>H | 8.09 | E<br>E | 8.25 | | | | • | • | : X | | 10 F | 7.37 | 11 F | 8.32 | | 39 | | 6.61 | | 6.97 | | | | | | | ואכאכ | 9.30 | 8.83 | . ~ | | ~ | 9.12 | | 96.6 | | .61 | | 9.05 | | 5.46 | | æ | æ | 9.17 | | | | , | | , Z. | | 10 | 9.68 | | 10.38 | | .88 | | 9.81 | | 9.76 | 15 F | 7.94 | 16 F | 7.82 | | | 78236 | 9.42 | 90.6 | | | ~ | 9.17 | | 9.77 | | .22 | | 9.65 | | 9.12 | | ď. | | 9.57 | | | | | 1 | | | 2 | 9.14 | | 9.43 | | .54 | | 8.69 | | .75 | | | | | | | 28250 | 7 70 | 7.20 | | | ~ | 6.94 | | 7.14 | | -97 | | 6.78 | | 41 | <b>~</b> | 8.12 | Z<br>O | 7.20 | | | 06787 | (1.1) | | | | 10 | 6.77 | | 7.21 | | .86 | | 7.46 | | .81 | | 7.42 | | • | | | 1622 | 0 43 | 60.0 | | | 1 | 9.15 | | 9.94 | | .57 | | 8.50 | | .62 | | 8.60 | | • | | | 71797 | , | | | | 9 | 2.33 | | 9.45 | | .52 | | 9.23 | | Ξ. | | 8.90 | | , | | | 58283 | 75.0 | 8.91 | | | 4 | 8.85 | | 9.63 | | . 97 | | 9.02 | | 84 | | 9.21 | Œ | 8.80 | | | | | ! | | | 10 | 8.91 | | 9.70 | | .61 | | 9.86 | | 90 | | 9.28 | | 7.25 | | | | | | 17 F | | | | | | | | | | | ; | | ; | | • | | | 28223 | 8.55 | 8.24 | | | ~ | 8.47 | | | | .75 | | • | | . 67 | | 8.00 | <b>Ξ</b> | 8.52 | | | | 1 | !<br>! | on<br>on | | 20 | 8.01 | | • | | .62 | | m, | | .76 | | 8.32 | | 1 | | | 28283 | 8.00 | 7.18 | π<br>- | | 7 | 7.68 | E, | 8.69 | Z<br>Z | 7.98 | Y. | 7.74 | ψ | 7.93 | (L | 2 0 | 64 I | 2 0 | | | | ) | <br> | 9 | | 20 | 7.45 | | | | .51 | | 8 | | 0 | | 7.71 | | 7.19 | | | | | | 17 1 | | | | | | | | | | | | | ; | | ; | | | 28260 | 01.0 | B.76 | 7 | | 7 | 9.15 | | 9.71 | | 45 | | 9.61 | | 8.91 | | 8.79 | ω, | n i | | | 00707 | 1 | | 10 | | 2 | 9.41 | | 9.63 | | 67 | 13 F | 9.51 | 14 F | 8.48 | 15 F | 8.73 | 16 F | 9.16 | | | 20750 | 6 77 | 9.24 | | | ~ | 10.24 | | 8.93 | | 42 | | 11.28 | | 8.86 | | 9.64 | | 9.37 | | | 66.101 | | | | | 10 | 9.42 | | 9.40 | | 32 | | 8.93 | | 9.23 | | 9.68 | | | | | 28252 | 10.75 | 10.29 | | _ | ~ | 10.63 | | 11.03 | | 33 | | 10.42 | | 10.66 | | 11.51 | ц<br>8 | 10.53 | | | | | | | ., | 20 | 9.37 | | 10.64 | | ., | | | | | | | | • | | | 28222 | 9.97 | 9.58 | X | X X | | 9.81 | M | 10.05 | Ŧ | 10.14 | N<br>X | 96.6 | X<br>W | 10.11 | × | 10.27 | <b>X</b> | 9.42 | | | | | | | | 9 | 9.33 | | 9.90 | | 85 | | 9.18 | | | | | | | | | 28224 | 9.39 | 8.92 | | | ~ | 8.98 | | 9.94 | | 35 | | 8.82 | ۰ | 9.07 | Z : | 0.0 | E<br>D | v.v | | | | | | a, | | 20 | 9.65 | | 8.36 | | 4 | | 8.71 | 4 | 50.6 | | 20.0 | | | | | 23221 | 10.56 | 10.21 | - | • | N | 10.26 | | 10.28 | | .79 | | 10.37 | 9 | 10.79 | | 10.63 | ي.<br>ت | 10.13 | | | | | | | | 10 | 11.18 | | 10.61 | | .61 | | 9.53 | Y . | ۵ ;<br>۵ ; | | , | | | | | 28236 | 7.82 | 7.83 | | | ~ | 7.92 | | 8.37 | | . 26 | | 7.57 | 0 | 7.17 | <b>Z</b> | 1.37 | 24 I | . u | | | | i<br>! | | S | | 2 | 8.13 | | 7.62 | | 20 | | 7.99 | 14 | 8.38 | | 6.90 | | • | | | | | | | | | | | | | | | | | | | | | | | | HEAN | 9.10 | 17.8 | | | | | | | | | | | | | | | | | | | S.D. | 1.01 | 0.99 | | | | | | | | | | | | | | | | | | | z | 15 | 15 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | D= DEAD, N= | = MISSING | INC | | | | | | | | | | | | | | | | | | TABLE 7 PROPIONALDEHYDE: COMPINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL PUP BODY WEIGHT (GRAMS) PER LITTER FI PUPS GROUP: 1500 PPM | | | | | | | • | FI PU | PUPS GROUP: | ě | 1500 | Kdd | | | | | | | | | | |----------------|--------------|--------------|-----------|-------|----------|--------|--------------------------|-------------|------|----------|------|----------|--------|-----|--------|----------|--------|---------------|--------|---| | LACTATION DAY: | DAY: 4 | | | | | | | | | , | | | | | | | | | | | | | į | ; | | | | | | n ( | | n u | | n G | 4 = | | | | | | | | | COMMENT 1 | z;<br>7 | MEAN | 4 K | WETCH | ) A | WEIGHT | <b>Δ</b> | NEIGHT | ο д. | X WEIGHT | 5 i4 | X WEIGHT | HTP | 1 × | WEIGHT | -<br>1 ж | WEIGHT | )<br>Д | WEIGHT | | | 4 | : ; | , 6 | - 1 | 1 | | ľ | . ~ | ' | | 9 | 9 | | 1 | Ł | 7.78 | 1 | | | | i | | C9787 . | 6.03 | 9.02 | | | 1 2 | , | ֚֝֓֞֝֟֝֟֝֟֝֟֝֟֝ <u>֚</u> | | 7 | , ~ | 13 | | 91 14 | | 8.10 1 | | .24 | 16 F | 7.57 | | | 28269 | 8.62 | 8.36 | , X | 8.34 | <b>X</b> | 9.22 | m | ₩ 8.58 | 4 | 86.8 H | 5 | | 7.86 6 | X | 8.99 | H ~ | 8.35 | | • | | | | | )<br>)<br>) | | | 10 | Φ. | 11 | æ | 12 | ^ | 13 | | | | 8.10 1 | | 90.8 | | , | | | 28279 | 8.59 | 8.04 | | | 7 | Ф | m | | 77 | Φ. | ហ | | | | 8.56 | | 7.72 | е,<br>СО | 7.99 | | | | | | | | 20 | | 7 | œ | 12 | 00 | 13 | | | | 8.32 | | | | | | | 28268 | 9.63 | 9.71 | | | ~ | on | m | 0 | 7 | o, | 'n | | | | 9.40 | Z. | 10.13 | 6,<br>ED | 7 (7 | | | | | | | _ | 9 | o, | Ξ | 0 | 12 | 2 | 73 | | | | -02 | | ; | | | | | 28254 | 9.40 | 8.95 | | | ~ | 2 | m | ∞ | ₹ | Φ'n | 'n. | | | | .02 | X | 9.30 | E:<br>E: | 9.14 | | | | | | | | 10 | Φ, | Ξ | σ, | 12 | O, | 13 | | | | .57 1 | | 9.74 | | | | | 28243 | 9.09 | 8.16 | | | ~ | σ. | m | σ | ₩ | ው | w | | | | 4 | | 9.15 | × | 9.16 | | | | | | | | 31 | O, | 1 | <b>a</b> | 12 | • | 13 | | | | . 27 1 | | 8.67 | | | | | 28247 | 9.39 | 8.90 | | | ~ | 6 | m | 2 | ಶ | 6 | w | | | | .95 | | 9.10 | <u>د</u><br>د | 9.31 | | | | | | | | 2 | S. | 7 | œ | 75 | œ | 13 | | | | | | | | | | | 28285 | 10.49 | 9.66 | | | 7 | 70 | m | 2 | 4 | 유 | S | _ | 36 6 | I | 10.71 | 7 F | ٦<br>٣ | e<br>Eu | 9.73 | | | | | | | | 7 | 2 | 7 | ٥, | 12 | 6 | 2 | | | | | | | | | | | 28231 | 8.41 | 7.93 | | | ~ | ω | m | <b>40</b> | 4 | œ | Ŋ | | 37 6 | p. | 7.73 | 7 15 | 8.05 | сэ<br>(ц | 7.53 | | | | | | | | 10 | • | 7 | Φ, | 15 | ~ | 13 | | | | | | | | ; | | | 28246 | 8.13 | 8.41 | | | 7 | ω | m | 'n | 4 | 8 | Ŋ | | 900. | X | .56 | | 8.15 | <b>X</b> | 9.05 | | | | )<br> <br> - | | | | 20 | ω, | 7 | <b>6</b> 0 | 77 | Φ. | 13 | | | á, | .57 | | 5 | | , | | | 28234 | 9.43 | 9.24 | | | ~ | S. | m | φ. | 4 | 0 | ς, | | | X | 6. | | .46 | | 10.03 | | | | | <br> -<br> - | | | 10 | ω | I | œ | 12 | ∞ | 13 | | 57 14 | ρ, | 9.36 1 | 15 F | 11.21 | 16 F | 9.68 | | | 28241 | 9.60 | 8,58 | | | ~ | S) | m | ጥ | 4 | Φ | 'n | | | X | 52 | | 11. | | 9.67 | | | | 1 | | | | 10 | | 1 | œ | 12 | œ, | 7 | | | Ē4 | .54 | | 6 | | 9.86 | | | 28251 | 9.89 | 9.46 | | | 7 | 5 | m | 2 | 4 | 6 | S | -, | | X | 60 | | 66. | | 10.21 | | | | 1 | | | | 2 | | Ħ | 0 | 12 | o | 13 | | | D4 | 9.88 | | | | | | | 28284 | 6.24 | 6.11 | | | 7 | • | m | * | 4 | u, | 'n | | | X | 6.15 | X | 7.13 | 64<br>00 | 6.49 | | | | ı<br>I | | | | 10 | | ส | Ç | 77 | 'n | 13 | | | L. | 5.50 1 | | ₹, | | | | | | | | | | | | | | | | | | | | | | | | | | | MEAN | 8.93 | 8.54 | | | | | | | | | | | | | | | | | | | | S.D. | 1.04 | 0.93 | | | | | | | | | | | | | | | | | | | | z | 14 | 14 | | | | | | | | | | | | | | | | | | | | DEAD. WE | | MISSING, S= | STILLBORN | 2 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | £5/21/£0 BRRC Report 91U0086 Appendix 6 Page 1 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD® Rats Individual Anatomic Pathology Data (41 Pages) BRRC Report 91U0086 Appendix 6 Page 2 ### LIST OF TABLES | Table | 1 | Males | _ | Necropsy Protocol | 3 | |-------|---|---------|---|-----------------------------------------|----| | Table | 2 | Males | - | Individual Necropsy Observations and/or | | | | | | | Microscopic Diagnoses | 4 | | Table | 3 | Females | - | Necropsy Protocol | 24 | | | | | | Individual Necropsy Observations and/or | | | | | | | Microscopic Diagnoses | 25 | ## PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS ### NECROPSY PROTOCOL #### FO ADULT MALES The following tissues were examined at necropsy with no significant lesions observed unless specified on individual animal page: | TOTAL BODY | ADIPOSE TISSUE | MESENTERY/OM'TUM | PERITONEUM | PERITONEAL CAV | |----------------|-----------------|------------------|-----------------|----------------| | PLEURA | THORACIC CAV | HEART | PERICARDIAL CAV | AORTA | | VASCULATURE | SALIVARY GL | ORAL/PHARYNGEAL | TONGUE | esophagus | | STOMACH | LIVER | PANCREAS | DUODENUM | JEJUNUM | | ILEUM | CECUM | COLON | RECTUM | ANUS | | PITUITARY | THYROID GL | PARATHYROID GL | ADRENAL GL | SKIN | | SUBCUTIS | HEAD | EARS | NARES/NOSE | MAMMARY GL | | PAWS/FEET | TAIL | SPLEEN | LYMPH ND, S-MAN | LYMPH ND, MED | | LYMPH ND, MES | THYMIC REGION | BONE/JOINT | BONE, STERNUM | BONE, FEMUR | | BONE, VERTEBRA | SKELETAL MUSCLE | DIAPHRAGM | BRAIN | SPINAL CORD | | NERVE, SCIATIC | EYE | HARDEPIAN GL | LACRIMAL GL | TESTES | | EPIDIDYMIDES | VASA DEFERENTIA | SEMINAL VESICLE | COAGULATING GL | PROSTATE | | PENIS | LARYNX | TRACHEA | LUNGS | KIDNEYS | | URETER | URINARY BLADDER | URETHRA | | | The following organs were weighed at necropsy: LIVER THYMIC REGION TESTES EPIDIDYMIDES LUNGS KIDNEYS The microscopic procedures used in this study are described in the methods section of the text. Micro diagnosis grade codes: 1=MINIMAL, 2=MILD, 3=MODERATE, 4=MARKED, 5=SEVERE, P=PRESENT Micro diagnosis prefix codes: # = NEOPLASM, B = BENIGN, M = MALIGNANT, #PM = PRE-NEOPLASTIC MICRO+ indicates histologic confirmation of preceding gross diagnosis. . . . # TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD \*\* RATS INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES PO ADULT | | | | | | PO AD | ULT | | | | | |------------|----------|----------|----------------|-------|--------------|----------|------|---------------------|---------------------|------| | GROUP: | O PPM | | LE | | • | | | | | | | ANIMAL | 28200 | | -92 | STUDY | DAV | | | | | | | TYPE OF DE | | | | | DAI | 32 | | | | | | ORGAN WEIG | SHT. | ABS. (G) | REL. | SKI | J | | | | | | | LIVER | | 10.602 | 2.794 | | GROSS | | | SHAPE/CONTOUR CHAP | NGE | | | KIDNEYS | | 2.905 | | | | • | | PUNCTATE RED | | | | LUNGS | | 1.557 | | | MICR | 0+ ( | (4) | FOLLICULITIS | | | | THYMIC REC | SION | 0.266 | | | MICRO | | | HYPERKERATOSIS | | | | EPIDIDYMI | DES | 1.382 | 0.364 | THE | | | | SSUES WERE MICROSC | OPICALLY NORMAL: | | | TESTES | | 3.385 | 0.364<br>0.892 | HE | ART | | | LIVER | ADRENAL GL | | | TERMINAL E | BODY WT. | | | SP | LEEN<br>STES | | | THYMIC REGION | BRAIN | | | | | | | TE: | STES | | | EPIDIDYMIDES | SEMINAL VESICLE | | | | | | | | SAI, CA | | ľ | LARYNX | TRACHEA | | | | | | | LU | NGS | | | KIDNEYS | | | | | | | | | | | | | | | | ANTHAL | 28171 | 27-FEB- | -92 | STUDY | DAY | 52 | | | | | | TYPE OF DE | | | ACRIFICE | | | | | | | | | ORGAN WEIG | SHY | ABS.(G) | REL. | LYM | PH ND, | 5-1 | MAN | | | | | LIVER | | 12.664 | 2.791 | | GROSS | : | | SIZE INCREASE | | | | KIDNEYS | | | 0.716 | | | | | SLIGHT | | | | LUNGS | | 1.575 | 0.347 | | MICE | 10+ | 3 | LYMPHOID HYPERPLA | SIA | | | THYMIC REC | GION | 0.399 | 0.088 | | MICRO | ): | 3 | PLASMACYTOSIS | | | | EPIDIDYMI | DES | 1.186 | 0.261<br>0.769 | KID | NEYS | | | | | | | TESTES | | 3.487 | 0.769 | | MICRO | ): | (4) | TUBULAR BASOPHILI | A | | | TERMINAL I | BODY WT. | | | | FOLLO | WIN | S TI | SSUES WERE MICROSC | OPICALLY HORMAL: | | | | | | | HE | ART | | | LIVER | ADRENAL GL | | | | | | | SP | LEEN | | | THYMIC REGION | BRAIN | | | | | | | TE | STES | | | <b>EPIDIDYMIDES</b> | SEMINAL VESICLE | | | | | | | NA | SAL CA | VIT' | Y | LARYNX | TRACHEA | | | | | | | LU | NGS | | | | | | | | | | | | | | | | | | | ANIKAL | 28156 | 27-FEB | -92 | STUDY | DAY | 52 | | | | | | TYPE OF D | | | ACRIFICE | ; | | | | | | | | ORGAN WEI | | ABS.(G) | | | GS | | | | | | | LIVEP. | | 11.486 | | | GROSS | 3: | | COLOR CHANGE, FOC | AL/MULTIFOCAL | | | KIDNEYS | | 3.030 | | | | | | | RED FOCAL AREAS | | | LUNGS | | 1.437 | | | | | | SCATTERED THR | OUGHOUT | | | THYMIC RE | GION | 0.321 | 0.069 | MIC | RO: I | NAXS | INED | - NO SIGNIFICANT | LESIONS | | | EPIDIDYMI | | 1.244 | 0.265 | THE | | | | SSUES WERE MICROSC | | | | TESTES | | 3.381 | 0.722 | HE | ART | | | LIVER | ADRENAL GL | | | TERMINAL | BODY WT. | 468.6 | | SP | LEEN | | | THYMIC REGION | BRAIN | | | | | | | TE | STES | | | EPIDIDYMIDES | SEMINAL VESICLE | | | | | | | | SAL C | | Y | LARYNX | TPACHEA | | | | | | | | NGS | | | KIDNEYS | 27 1. 21 | | | | | | | | | | | | | | | ANIMAL | 29172 | 27-PEB | -92 | STUDY | DAV | 52 | | | | | | TYPE OF D | | | | | 2.11 | <u> </u> | | | | | | ORGAN WEL | | ABS.(G) | | | <b>)</b> 2 | | | | | | | LIVER | 4 | 9.817 | | | GROS | ۹, | | SHAPE/CONTOUR CHA | NGE | | | KIDNEYS | | 3.142 | | | J | •• | | TWO 1X1 MM RA | | | | LUNGS | | 1.395 | | | MIC | 30+ | 4 | | | | | THYMIC RE | GTON | 0.346 | | | .,,,,, | , | - | | NPLAMMATION WITH BR | OKEN | | EPIDIDYMI | | 1.197 | | | | | | HAIR SHAFTS | | | | TESTES | | 3.100 | 0.755 | LYM | מא אם | | MAN | 9144 19 | | | | IFOIES | | 3.100 | 0.,55 | - 11 | ER NU | , 3- | | | | | See necropsy progocol page for list of tissues examined grossly and for explanation of grades. ### PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FO ADULT GROUP: MALE ANIMAL 28173 (CONTINUED) SIZE INCREASE TERMINAL BODY WT. GROSS: 410.5 ONE NODE, 12X12X7 MM PLASMACYTOSIS MICRO+ 4 MICRO: 3 LYMPHOID HYPERPLASIA THE FOLLOWING TISSUES WERE MICROSCOPICALLY NORMAL: ADRENAL GL LIVER HEART THYMIC REGION BRAIN SPLEEN SEMINAL VESICLE EPIDIDYMIDES TESTES NASAL CAVITY LARYNX TRACHEA KIDNEYS LUNGS STUDY DAY 52 28191 27-FEB-92 ANIHAL TYPE OF DEATH: SCHEDULED SACRIFICE STOMACH ABS.(G) REL. ORGAN WEIGHT CONTENTS ABNORMAL 2.385 GROSS: LIVER 9.549 CONTAINS BRIGHT YELLOW FLUID 0.741 KIDNEYS 2.965 **EPIDIDYMIDES** 0.385 LUNGS 1.541 NODULE GROSS: 0.087 THYMIC REGION 0.348 YELLOW, 6X6X4MM, TIP OF HEAD 0.422 EPIDIDYMIDES 1.688 HICRO: EXAMINED - NO SIGNIFICANT LESIONS 3.240 0.809 TESTES THE FOLLOWING TISSUES WERE MICROSCOPICALLY NORMAL: 400.3 TERMINAL BODY WT. LIVER STOMACH HEART THYMIC REGION SPLEEN ADRENAL GL EPIDIDYMIDES **ERAIN** TESTES SEMINAL VESICLE NASAL CAVITY LARYNX KIDNEYS LUNGS TRACHEA | ANIMAL 28162 TYPE OF DEATH: SC ORGAN WEIGHT LIVER KIDHEYS LUNGS THYMIC REGION EPIDIDYHIDES TESTES TERMINAL BODY WT. | ABS.(G) REL.<br>11.130 2.319<br>3.281 0.683<br>1.506 0.314<br>0.412 0.086<br>1.270 0.265<br>3.171 0.661 | STOMACH GROSS: LIVER GROSS: MICRO: EXAMINED THE FOLLOWING TI: HEART ADRENAL GL ERAIN | COLOR CHANGE, FOC<br>TAN PUNCTATE<br>SURFACE, ALL<br>- NO SIGNIFICANT<br>SSUES WERE MICROSC<br>STOMACH<br>SPLEEN<br>TESTES | ISH-ORANGE FLUID AL/MULTIFOCAL FOCI, MULTIPLE, VISCERAL LOBES LESIONS | |---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------| | | | BRAIN<br>SEMINAL VESICLE<br>TRACHEA | | | | ANIHAL 2815 | 3 27-FEB-92 | STUDY DAY 52 | | |--------------------------------|-------------------------------------|---------------------------|----------------------------------------------| | TYPE OF DEATH:<br>ORGAN WEIGHT | SCHEDULED SACRIFICE<br>ABS.(G) REL. | LIVER | COLOR CHANGE, FOCAL/MULTIFOCAL | | LIVER<br>KIDNEYS | 10.682 2.378<br>3.144 0.700 | GROSS: | TAN FOCUS BETWEEN MEDIAN LOBES | | LUNGS<br>THYHIC REGION | 1.529 0.340<br>0.372 0.083 | MICRO+ P | LIPOSTOMATA ATTACHMENT OF FALCIFORM LIGAMENT | | EPIDIDYMIDES<br>TESTES | 1.355 0.302<br>3.793 0.844 | LYMPH ND, S-MAN<br>GROSS: | SIZE INCREASE | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. ## TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FO ADULT GROUP: O PPM MALE ANTHAL 28153 (CONTINUED) TERMINAL BODY WT. 449.2 2-3X NORMAL, LEFT MICRO+ 4 LYMPHOID HYPERPLASIA THE FOLLOWING TISSUES WERE MICROSCOPICALLY HORMAL: HEART ADRENAL GL SPLEEN THYMIC REGION BRAIN TESTES SEMINAL VESICLE NASAL CAVITY EPIDIDYMIDES TRACHEA LARYNX LUNGS KIDNEYS ANIKAL 28155 27-FEB-92 STUDY DAY 52 TYPE OF DEATH: SCHEDULED SACRIFICE REL. 2.439 ORGAN WEIGHT ABS. (G) LYMPH ND, S-MAN SIZE INCREASE LIVER 12.011 GROSS: KIDNEYS 3.609 0.733 3X NORMAL, LEFT LUNGS 1.549 0.315 MICRO+ 3 LYMPHOID HYPERPLASIA THYMIC REGION 0.296 0.060 LYMPH ND, S-MAN EPIDIDYMIDES 0.270 COLOR CHANGE, DIFFUSE 1.329 GROSS: 3.772 DARK RED, BILATERAL TESTES 0.766 TERMINAL BODY WT. HEMORRHAGE 492.5 MICRO+ 3 MICRO: PLASMACYTOSIS 2 THYMIC REGION GROSS: COLOR CHANGE, FOCAL/MULTIFOCAL MULTIPLE DARK RED FOCI HEMORRHAGE MICRO+ 3 LUNGS COLOR CHANGE, FOCAL/MULTIFOCAL MULTIPLE DARK RED FOCI, ALL LORES GROSS: THE FOLLOWING TISSUES WERE MICRGSCOPICALLY NORMAL. HEART LIVER ADRENAL GL BRAIN SPLEEN TESTES SEMINAL VESICLE NASAL CAVITY **EPIDIDYMIDES** TRACHEA LARYNX LUNGS KIDNEYS | ANTHAL 20198 | 27-PEB-92 | STUDY DAY 52 | | |-------------------|-------------------|------------------|------------------------------------| | TYPE OF DEATH: SO | HEDULED SACRIFICE | | | | ORGAN WEIGHT | ABS.(G)REL. | COLON | | | LIVER | 9.084 2.259 | GROSS: | PARASITE | | KIDNEYS | 2.472 0.615 | | PINWORM | | THYMIC REGION | 0.423 6.105 | EPIDIDYMIDES | | | EPIDIDYHIDES | 1.368 0.340 | GROSS: | NODULE | | TESTES | 2.848 0.708 | | 4X4X3MM, TIP OF HEAD, YELLOW | | TERMINAL BODY WT. | 402. | | RIGHT | | | | MICRO+ (4) | SPERM GRANULOMA | | | | | UNILATERAL | | | | LUNGS | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | DARK RED FOCI, LEFT LOBE | | | | THE FOLLOWING TI | SSUES WERE MICROSCOPICALLY NORMAL: | | | | HEART | LIVER ADRENAL GL | | | | SPLEEN | THYMIC REGION BRAIN | | | | TESTES | SPMINAL UPSICLE NACAL CAUTTY | LARYNX KIDNEYS See necropsy protocol page for list of tissues examined grossly and for explanation of grades. TRACHEA LUNGS ## TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FO ADULT | | | | LO VIOLI | | | |------------------------------------|------------|---------------|------------------|----------------------|--------------------------| | GROUP: 0 PPM | МА | LE | | | | | ANDKAL 28178 | 27-FEB- | .02 | | | | | ANIMAL 28178<br>TYPE OF DEATH: SCH | | | STUDY DAY 52 | | | | ORGAN WEIGHT | ABS.(G) | | SKIN | | | | LIVER | 11.339 | 2.498 | GROSS: | SHAPE/CONTOUR CHA | NCP | | KIDNEYS | 3.651 | 0.804 | GROSSI | | BROWN, LXLXLMM, TAIL | | LUNGS | 1.601 | 0.353 | HTCDOA//311 | HYPERKERATOSIS | BROWN, IXIXIPM, IXIA | | THYMIC REGION | 0.364 | 0.080 | MICRO: (4) | | | | EPIDIDYMIDES | 1.408 | 0.310 | | SSUES WERE MICROSC | OPTOATITY MORNATO | | TESTES | 3.713 | 0.818 | HEART | LIVER | ADRENAL GL | | TERMINAL BODY WT. | 453.8 | 0.010 | SPLZEN | THYMIC REGION | BRAIN | | IDIAIZIAD EODI WI. | 433.0 | | TESTES | EPIDIDYMIDES | SEMINAL VESICLE | | | | | NASAL CAVITY | LARYNX | TRACHEA | | | | | LUNGS | KIDNEYS | 1141411111 | | | | | -41145 | | | | | | | | | | | ANTHAL 28201 | 27-FEB- | 92 | STUDY DAY 52 | | | | TYPE OF DEATH: SCI | HEDULED SA | CRIFICE | | | | | ORGAN WEIGHT | ABS.(G) | REL. | STOMACH | | ± 1. | | LIVER | 11.749 | 2.529 | GROSS: | CONTEN. 3 ABNORMAL | • | | KIDNEYS | 3.068 | 0.660 | | CC.ITAINS BRIC | HT YELLOW MATERIAL | | LUNGS | 1.618 | 0.348 | Lungs | | | | THYMIC REGION | 0.420 | 0.090 | GROSS: | COLOR CHANCE, POC | AL/MULTIPOCAL | | EPIDIDYMIDES | 1.379 | 0.297 | | PUNCTATE RED | FOCI, LEFT, RIGHT | | TESTES | 3.124 | 0.672 | | APICAL, RIGHT | CARDIAC | | TERMINAL BODY WT. | 464.6 | | | AND RIGHT DIA | APHRAGMATIC LOBES | | | | | MICRO: EXAMINED | - NO SIGNIFICANT | LESIONS | | | | | THE FOLLOWING TI | SSUES WERE MICROSO | COPICALLY NORMAL: | | | | | HEART | STOMACH | LIVER | | | | | ADRENAL GL | SPLEEN | THYMIC REGION | | | | | Brain | TESTES | <b>EPIDIDYMIDES</b> | | | | | SEMINAL VESICLE | HASAL CAVITY | LARYNX | | | | | TRACHEA | LUNGS | KIDNEYS | | | | | | | | | | | | | | | | ANIMAL 28180 | 27-FEB | | STUDY DAY 52 | | | | TYPE OF DEATH: SC | | | | | | | ORGAN WEIGHT | ABS.(G) | REL.<br>2.961 | ADRENAL GL | CORNICAL CRILL UN | 71107 T# LM TON | | LIVER | 14.874 | | MICRO: 2 | CORTICAL CELL VAC | JUGLIZATION | | KIDNEYS | 3.024 | 0.602 | LYMPH ND, S-MAN | CTTV THOUSE | | | LUNGS | 1.587 | 0.316 | GROSS: | SIZE INCREASE | 141 Aug 104 1441 144 144 | | THYMIC REGION | 0.350 | 0.070 | 147000 | | 0X10X2 MM, 16X12X4 MM | | EPIDIDYMIDES | 1.311 | 0.261 | MICRO+ 5 | PLASMACYTOSIS | | | TESTES | 3.459 | 0.689 | LYMPH ND, S-MAN | 401 AD 4011 NATE DAY | *** //*** | | TERMINAL BODY WT. | 502.3 | | GROSS: | COLOR CHANGE, PO | | | | | | | | FOCI, BOTH NODES | | | | | MICRO: 4 | LYMPHOID HYPERPLA | | | | | | | SSUES WERE MICROSO | | | | | | HEART | LIVER | SPLEEN | | | | | THYMIC REGION | BRAIN | TESTES | | | | | EPIDIDYHIDES | SEMINAL VESICLE | | | | | | LARYNX | Trachea | LUNGS | | | | | Ridneys | | | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. # TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | FΟ | ADULT | | |----|-------|--| | | | | | | | | | FO ADULT | | |-------------|---------|---------|-------|-----------------------------------------|-----------------------------------------| | GROUP: | 0 PPM | AM | LE | | | | ANTHAL : | 28159 | 27-FEB- | 92 | STUDY DAY 52 | | | TYPE OF DEF | | | | | | | ORGAN WEIGH | TT . | ABS.(G) | | SKIN | | | LIVER | | 13,379 | 2.524 | GROSS: | SHAPE/CONTOUR CHANGE | | KIDNEYS | | 4.132 | 0.779 | | ONE BROWN PUNCTATE RAISED AREA NEAR | | LUNGS | | 1.659 | 0.313 | | BASE OF TAIL | | THYMIC REGI | | 0.331 | 0.062 | MICRO+ (3) | POLLICULITIS | | EPIDIDYMIDE | 25 | 1.212 | 0.229 | Spleen | | | TESTES | | 3,991 | 0.753 | GROSS: | ACCESSORY | | TERMINAL BO | DDY WT. | 530.2 | | | 4X5X2MM ATTACHED TO ONE POLE | | | | | | | ACCESSORY SPLEEN | | | | | | LYMPH ND, S-MAN | | | | | | | GROSS: | SIZE INCREASE RIGHT SIDE ONE 20X10X4MM | | | | | | MICRO+ 4 | LYMPHOID HYPERPLASIA | | | | | | MICRO: 4 | PLASHACYTOSIS | | | | | | THYMIC REGION | FURSHACTIOSIS | | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | | GRODD: | MULTIPLE PUNCTATE RED FOCAL AREAS | | | | | | | SCATTERED THROUGHOUT | | | | | | MTCRO+((3)) | HEMORRHAGE | | | | | | TESTES | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | <del>-</del> | SEMINIFEROUS TUBULE ATROPHY | | | | | | *************************************** | UNILATERAL, PERIPHERY OF TESTICLE | | | | | | KIDNEYS | · | | | | | | MICRO: ((3)) | TUBULAR BASOPHILIA | | | | | | | ISSUES WERE MICROSCOPICALLY NORMAL: | | | | | | HEART | LIVER ADRENAL GL | | | | | | BRAIN | EPIDIDYHIDES SEMINAL VESICLE | | | | | | NASAL CAVITY | LARYNX TRACHEA | | | | | | LUNGS | | | | | | | | | | ANIMAL | 28167 | 27-FEB- | -92 | STUDY DAY 52 | | | TYPE OF DE | | | | | | | ORGAN WEIG | HT | ABS.(G) | | SKIN | | | LIVER | | 11.980 | 2.601 | GROSS: | SHAPE/CONTOUR CHANGE | | KIDNEYS | | 3.523 | 0.765 | | MULTIPLE, DARK BROWN RAISED AREAS, | | LUNGS | | 1.548 | 0.336 | | NEAR TATTOOING NUMBERS | | THYMIC REG | | 0.335 | 0.073 | HICRO+ 3 | DERMAL FIBROSIS | | EPIDIDYMID | ES | 1.253 | 0.272 | | FOLLICULITIS | | TESTES | | 3.738 | 0.812 | | ) HYPERKERATOSIS | | TERMINAL B | ODY WT. | 460.6 | | LYMPH ND, S-MAN | | | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | | W70004//31 | MULTIPLE DARK RED FOCI, BILATERAL | | | | | | | ) HEMORRHAGE | | | | | | LYMPH ND, S-MAN<br>GROSS: | SIZE INCREASE | | | | | | GNUSSI | 15X10X5MM, LEFT | | | | | | HICRO+ 4 | | | | | | | | LYMPHOID HYPERPLASIA | | | | | | LUNGS 4 | MINIMARA DIRECTORIA | | | | | | GROSS: | COLOR CHANGE, POCAL/MULTIFOCAL | | | | | | GROSSI | DARK RED FOCI, ALL RIGHT LOBES | | | | | | KIDNEAS | | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. KIDNEYS #### TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS #### INDIVIDUAL NECROPSY OBSERVATIONS AND/OR HICROSCOPIC DIAGNOSES FO ADULT MALE GROUP: 0 PPM ANTHAL 28167 (CONTINUED) MICRO: (2) TUBULAR BASOPHILIA (2) NEPHRITIS, INTERSTITIAL THE FOLLOWING TISSUES WERE MICROSCOPICALLY HORMAL: HEART LIVER THYMIC REGION EPIDIDYMIDES SPLEEN BRAIN SEMINAL VESICLE TESTES NASAL CAVITY LARYNX TRACHEA LUNGS | ANIMAL 28174 | 27-FEB-92 | STUDY DAY | 52 | | | |-----------------|----------------|---------------|-------------------|-------------------|---------| | TYPE OF DEATH: | SCHEDULED SACR | FICE | <del></del> | | | | ORGAN WEIGHT | ABS.(G) 1 | REL. GROSS: | EXAMINED - NO SIG | NIFICANT LESIONS | | | LIVER | 12.006 2 | 592 LUNGS | | | | | KIDNEYS | 2.847 0 | .615 MICR | O: (3) ALVEOLAR | HISTIOCYTOSIS | | | LUNGS | 1.620 0 | .350 THE FOLL | OWING TISSUES WER | E HICROSCOPICALLY | NORMAL: | | THYMIC REGION | 0.252 0 | .054 HEART | LIVER | ADRENAL | GL | | EPIDIDYMIDES | 1.202 0 | .260 SPLEEN | THYMIC | REGION BRAIN | | | TESTES | 3.243 0 | .700 TESTES | EPIDIDY | MIDES SEMINAL | VESICLE | | TERMINAL BODY W | T. 463.1 | NASAL C | | TRACHEA | | | TERMINAL BODY W | 71, 403.1 | KIDNEYS | | TRACHEA | | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. ## TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPLIGHE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FO ADULT | | | | FO ADULT | • | |--------------------|---------|-------|-----------------|-----------------------------------------------------| | GROUP: 150 PPF | em l | LE | - | | | | | | | | | ANIMAL 28184 | | | STUDY DAY 52 | | | TYPE OF DEATH: SCH | | | | | | ORGAN WEIGHT | | | THYMIC REGION | 00-40 CHANGE | | LIVER | 9.508 | 2.513 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | RIDNEYS | 2.601 | 0.688 | | MULTIPLE DARK RED FOCI | | LUNGS | 1.366 | 0.361 | | Anna Durantan | | THYMIC REGION | 0.298 | 0.079 | GROSS: | SIZE DECREASE | | EPIDIDYMIDES | | 0.178 | | 0.50 OF NORMAL, LEFT | | TESTES | 1.846 | | | | | TERMINAL BODY WT. | 378.3 | | MICRO: 1 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | | | | | ANIHAL 26187 | 27 555 | 0.2 | eminus pau ea | | | TYPE OF DEATH: SCH | | | STUDY DAY 52 | | | | | | | | | CRGAN WEIGHT | | 2.452 | NASAL CAVITY | THE COOL TRANSPORT OF ON DESCRIPTION OF THE | | | 8.840 | | | VACUOLIZATION OF OLFACTORY EPITHELIUM | | RIDNEYS | | 0.704 | | COLOR CHANGE COST COST COST | | LUNGS | 1.338 | 0.371 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | THYMIC REGION | 0.273 | 0.076 | | LEFT LOBE 1MM RED FOCAL AREAS | | EPICIDYMIDES | | 0.319 | | SCATTERED THROUGHOUT | | TESTES | 3.192 | 0.885 | | | | TERMINAL BODY WT. | 360.5 | | | | | | | | | | | | | •• | CD: 53 | | | ANIMAL 28195 | 27-FEB- | | STUDY DAY 52 | | | TYPE OF DEATH: SCH | | | | | | | ABS.(G) | | | Sur- of /Gormolm, cut year | | LIVER | 10.300 | 2.600 | GROSS: | SHAPE/CONTOUR CHANGE | | KIDNEYS | 3.162 | 0.754 | | RAISED AREAS, BROWN, ADJACENT TO | | LUNGS | 1.492 | J.356 | | NUMBERS, 1X1X1MM, TAIL | | THYMIC REGION | 0.477 | 0.114 | MICRO: EXAMINED | - NO SIGNIFICANT LESIONS | | EPIDIDYMIDES | 1.251 | 0.298 | | SSUES WERE NICROSCOPICALLY NORMAL: | | TESTES | 3.074 | 0.733 | NASAL CAVITY | | | TERMINAL BODY WT. | 419.2 | | | | | | | | | | | ANIMAL 28181 | 27-FEB- | -02 | STUDY DAY 52 | | | TYPE OF DEATH: SCI | | | | | | | ABS.(G) | REL. | LIVER | | | LIVER | 9.830 | 2.424 | GROSS: | SIZE DECREASE | | KIDNEYS | 3.264 | 0.805 | GROSS. | SLIGHT, ALL LOBES | | LUNGS | 1.509 | 0.372 | LYMPH ND, S-MAN | parduri wan nobel | | THYMIC REGION | 0.415 | 0.102 | GROSS: | SIZE INCREASE | | EPIDIDYMIDES | 1.306 | 0.322 | GRUSS: | SLIGHT, BILATERAL | | TESTES | 3.766 | 0.929 | LYMPH ND, S-MAN | parguit property | | | | 0.929 | | COLOR CUANCE DIFFUGE | | T_RMINAL BODY WT. | 405.5 | | GROSS: | COLOR CHANGE, DIFFUSE RED AND TAN, RIGHT | | | | | THYMIC REGION | NED MID THE THE THE | | | 1 - | | | COLOR CURNER BOCK MAIL BALLOCK | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | 111.017 | MULTIPLE DARK RED FOCI | | | | | NASAL CAVITY | TINGUAL TOURS ON AS OT HE PERSON CONT. L. CO. T. C. | | €. | | | | VACUOLIZATION OF OLFACTORY EPITHELIUM | | ٧. | | | 1 | ATROPHY, OLFACTORY EPITHELIUM | | | | | LUNGS | COLOR CHANCE BOOK ANTENDED | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. O #### INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FO ADULT | | | | | FO ADULT | | |-------------|----------|------------|---------|-----------------------------------------|---------------------------------------| | GROUP: | 150 PPM | AM I | LE | | | | ANIHAL 2 | B181 (C | ONTINUED) | | | | | | <u> </u> | | | | MULTIPLE DARK RED FOCI, ALL LOBES | | ENTHAL 2 | 8165 | 27-FEB- | 92 | STUDY DAY 52 | | | TYPE OF DEA | TH: SCH | EDULED SA | CRIFICE | | | | ORGAN WEIGH | T | ABS.(G) | REL. | LYMPH ND, S-MAN | | | LIVER | | 9.616 | 2.591 | GROSS: | COLOR CHARGE, DIFFUSE | | KIDNEYS | | 2,301 | 7 9711 | | DARK RED, RIGHT | | LUNGS | | 1.380 | 0.371 | MADAL MATER | • | | THYMIC REGI | ON | 0.270 | 0.073 | MICRO: 1 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | EPIDIDYMIDE | | 1.381 | 0.371 | *************************************** | | | TESTES | • | 3.587 | 0.963 | | | | TERMINAL BO | DY WT. | 372.3 | ***** | | | | | | | | | | | ANIHAL 2 | | 27-FEB- | | STUDY DAY 52 | | | TYPE OF DEA | | TEDULED SA | CRIFICE | | | | CRGAN WEIGH | 7 | 700 . (G)_ | | 2KIN | | | LIVER | - · - | 11 224 | 2.591 | GROSS: | SHAPE/CONTOUR CHANGE | | K:L!/L: | | 3.081 | 0.711 | | ONE RAISED RED AREA, TAIL | | LUNGS | | 1.405 | 0.324 | MICRO: EXAMINED | - HO SIGNIFICANT LESIONS | | THYMIC REGI | 011 | 0.527 | 0.122 | THE FOLLOWING TI | ISSUES WERE MICROSCOPICALLY NORMAL: | | EPIDIDYMIDE | S | 1.417 | 0.327 | NASAL CAVITY | | | TESTES | _ | 3.227 | 0.745 | | | | TERMINAL BO | DY WT. | | | | | | | | | | | | | ANIMAL 2 | 8150 | 27-FEB- | 92 | STUDY DAY 52 | | | TYPE OF DEA | TH: SC | REDULED SA | CRIFICE | | | | ORGAN WEIGH | T | ABS.(G) | REL. | NAM-S, CM HAMYI | | | LIVER | | 11.392 | 2.510 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | KIDNEYS | | 2.863 | 0.631 | | MULTIPLE DARK RED FOCI, BILATERAL | | LUNGS | | 1.481 | 0.326 | THYMIC REGION | | | THYMIC REGI | ON | 0.359 | 0.079 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | EPIDIDYMIDE | S | 1.159 | 0.255 | | MULTIPLE DARK RED FOCI | | TESTES | | 3,263 | 0.719 | NASAL CAVITY | | | TERMINAL BO | DY WT. | 453.9 | | MICRO: 1 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | | | | | | | 8210 | 27-FEB- | | STUDY DAY 52 | | | TYPE OF DEA | | | | | | | ORGAN WEIGH | T. | ABS.(G) | | LYMPH ND, S-MAN | CITE INChesce | | LIVER | | 11.238 | 2.651 | GROSS: | SIZE INCREASE | | KIDNEYS | | 3.797 | 0.896 | NACAT CANTEN | 4X NORMAL, BILATERAL | | LUNGS | | 1.616 | 0.381 | NASAL CAVITY | | | THYMIC REGI | | 0.269 | 0.063 | MICRO: 3 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | EPIDIDYMIDE | S | 1.222 | 0.298 | | | | TESTES | | 3.192 | 0.753 | | | | TERMINAL BO | ינא אמי. | 423.9 | | | | | ANIMAL 2 | 8212 | 27-FEB- | -92 | STUDY DAY 52 | | | TYPE OF DEA | | | | | | | ORGAN WEIGH | | ABS.(G) | REL. | SKIN | • | | LIVER | | 12.398 | 2.782 | GROSS: | SHAPE/CONTOUR CHANGE | | KIDNEYS | | 2.813 | 0.631 | | PUNCTATE RED AREAS, TAIL | | LUNGS | | 1.621 | 0.364 | LYMPH ND, S-MAN | | | THYMIC REGI | ON | 0.545 | 0.123 | GROSS: | COLOR CHANGE, DIFFUSE | | | | VI0 | -, | | | INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | F۸ | ADULT | | |----|-------|--| | | | | | GROUP: 150 PPM | MA | LE | FU ADULT | | |------------------------------------|------------------|-------|----------------|---------------------------------------| | | | | | | | ANTHAL 28212 (CO | <u>OHTINUED)</u> | 0 207 | | DADY DED | | EPIDIDYMIDES<br>TESTES | 1.281 | 0.287 | NASAL CAVITY | DARK RED | | TERMINAL BODY WT. | | 0.729 | | VACUOLIZATION OF OLFACTORY EPITHELIUM | | TERMINAL BODY WI. | 443.0 | | HICKOI I | AUCHORITANIAN OF ORFUCTORE PETERSON, | | | | | | | | | 27-FEB- | | STUDY DAY 52 | | | TYPE OF DEATH: SCHOORGAN WEIGHT | ABS.(G) | | LIVER | | | LIVER | 10.344 | 2,351 | GROSS: | SIZE DECREASE | | KIDNEYS | 2.562 | 0.582 | | SLIGHT, ALL LOBES | | LUNGS | 1.573 | | NASAL CATITY | | | THYMIC REGION | | 0.049 | MICHO: 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | EPIDIDYMIDES | | 0.285 | | | | TESTES | | 0.652 | | | | TERMINAL BODY WT. | 440.0 | | | | | | | | | | | ANTHAL 20160 | 27-FEB- | | STUDY DAY 52 | | | TYPE OF DEATH: SCH | | | | | | | ABS.(G) | | | | | | 10.61% | | GROSS: | SIZE INCREASE | | KIDNEYS<br>LUNGS | 3.105 | 0.715 | THYMIC REGION | HORMAN, LEFT SIDE | | THYMIC REGION | 0.211 | | | SIZE DECREASE | | EPIDIDYHIDES | 1.240 | | 3,10001 | 0.50 OF NORMAL | | TESTES | | | HASAL CAVITY | | | TERMINAL BODY WT. | 434.5 | | MICRO: 2 | VACUULIANTION OF GLEACTORY PRITHERIUM | | | | | | | | ANTHAL 28160 | 27 <b>-</b> FFB- | 92 | STUDY DAY 52 | | | TYPE OF DEATH: SCH | | | | | | ORGAN WEIGHT | | | | O - NO SIGNIFICANT LESIONS | | LIVER | 12.592 | 2.569 | NASAL CAVITY | | | KIDNEYS | 3.446 | 0.703 | MICRO: 1 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | LUNCS | 1.629 | 0.332 | | | | THYMIC PEGION | 0.268 | 0.055 | | | | EPIDIDYMIDES | 1.296 | 0.264 | | | | TESTES<br>TERMINAL BODY WT. | 3.664 | 0.747 | | | | TERMINAL BODY WT. | 490.2 | | | | | | | | | | | ANTHAL 28169 | | | STUDY DAY 52 | | | TYPE OF DEATH: SCH<br>ORGAN WEIGHT | | REL. | SKIN | | | LIVER | 12.393 | 2.777 | GROSS: | SHAPE/CONTOUR CHANGE | | KIDNEYS | 3.841 | 0.861 | GRODD. | 1X1 MM RED RAISED AREAS, TAIL | | LUNGS | 1.599 | 0.358 | NASAL CAVITY | • | | THYMIC REGION | 0.332 | 0.074 | HICRO: 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | EPIDIDYMIDES | 1.311 | 0.294 | | | | Testes | 3.457 | 0.775 | | | | TERMINAL BODY WT. | 446.3 | | | | | | | | | | | ANIMAL 28188 | 27-FEB | -92 | STUDY DAY 52 | | | TYPE OF DEATH: SCH | | | | | | | ABS.(G) | REL. | GROSS: EXAMINE | D - NO SIGNIFICANT LESIONS | | LIVER | 12.142 | 2.289 | | D - NO SIGNIFICANT LESIONS | | KIDNEYS | 3.361 | 0.634 | | ISSUES WERE MICROSCOPICALLY NORMAL: | | Lungs | 1.813 | 0.342 | NASAL CAVITY | | #### INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | FΠ | ΔDI | 11 m | |----|-----|------| | | | | | GROUP: 150 PP | AM P | LE<br> | | <b>_</b> | | |-------------------|------------|---------|---------------|----------|---------------------------------------| | ANIMAL 28188 ( | CONTINUED) | | | | | | THYMIC REGION | 0.328 | 0.062 | | | | | EPIDIDYMIDES | 1.501 | 0.283 | | | | | Testes | 3.984 | 0.751 | | | | | TERMINAL BODY WY. | 530.5 | | | | | | | | | | | | | ANTHAL 28193 | 27-FEB- | 92 | STUDY DAY 52 | | | | TYPE OF DEATH: SC | HEDULED SA | CRIFICE | | | | | ORGAN WEIGHT | ABS.(G) _ | REL. | THYMIC REGION | l | | | LIVER | 10.978 | 2.599 | GROSS: | | COLOR CHANGE, FOCAL/MULTIFOCAL | | KIDNEYS | 2.876 | 0.681 | | | MULTIPLE DARK RED FOCI | | LUNGS | 1.676 | 0.397 | NASAL CAVITY | | | | THYMIC REGION | 0.286 | 0.068 | MICRO: | 3 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | EPIDIDYMIDES | 1.192 | 0.282 | | 1 | ATROPHY, OLFACTORY EPITHELIUM | | meanne | 2 416 | 0.00 | | | | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. 0.202 0.809 3.415 422.4 TERMINAL BODY WT. TESTES INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | F | n | AD | 111 | T. | |---|---|----|-----|----| | | | | | | | | | | | r, | n whi | TI'L | | | |-----------|-----------|------------|----------|---------|--------------|------------|------|---------------------------------------| | GROUP: | 750 PPI | ч ма | LE | | | | | | | ANIHAI, | 28146 | 27-FEB- | 92 | STUDY D | AY | <br>52 | | | | | | EDULED SA | | | | ¥.E. | | | | ORGAN WE | | ABS.(C) | REL. | LYMPH | ND. | S-1 | 4AN | | | LIVER | | 10.821 | 2.524 | | ROSS | | | SIZE INCREASE | | KIDNEYS | | 2,762 | 0.644 | _ | | • | | ONE NODE, 12X10X4 MM | | LUNGS | | 1.712 | 0.399 | NASAL | CAU | צידיז | | | | THYMIC RI | CTON | 0.210 | 0.051 | | ICRO | | 2 | RHINITIS | | EPIDIDYM | | 1.297 | 0.302 | • • | | • | 3 | ATROPHY, OLFACTORY EPITHELIUM | | TESTES | | 3.221 | 0.751 | | | | 4 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | TERMINAL | BODY WT. | 28.8 | 0.,50 | | | | | | | | | | | | | | | | | ANTMAL | 28203 | 27-FEB- | | STUDY D | AY | 52 | | | | | | HEDULED SA | | | | | | | | ORGAN WE | GHT | ABS.(C) | REL. | LYMPH | | | MAN | | | LIVER | | 11,368 | 2.564 | G | ROSS | 1 | | SIZE INCREASE | | KIDNEYS | | 3.261 | 0.736 | | | | | ONE NODE 17X12X4 MM | | LUNGS | | 1.651 | 6.372 | NASAL | | | | | | THYMIC RI | | 0.308 | 0.069 | М | IICRO | 1 | 4 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | EDIDIDAW | (DE3 | 1.331 | 0.300 | | | | 3 | ATROPHY, OLFACTORY EPITHELIUM | | TESTES | | 3,522 | 0.794 | | | | | | | TERMINAL | BODY WT. | 443.4 | | | | | | | | ANIMAL | 28149 | 27-FEB | -02 | S.upy b | N V | <b>5</b> 2 | | | | | | HEDULED SA | | | ·n · | . J. A. | | | | ORGAN WE | | ABS.(G) | REL. | GROSS | | VAM | TNED | - NO SIGNIFICANT LESIONS | | LIVER | LGHT | 11.650 | 2 577 | NASAL | | | | - NO SIGNILICANI BESIDNS | | KIDNEYS | | 3.410 | 0.756 | | : CAV | | 2 | RHINITIS | | LUNGS | | 1.461 | 0.323 | | . ICRO | •• | 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | THYMIC R | CTON. | 0.236 | 0.052 | | | | • | VACUULIER TOW OF CHERCICKE ETTINGSTON | | EPIDIDYM | | 1.238 | 0.274 | | | | | | | TESTES | LDES | 3.295 | 0.729 | | | | | | | | BODY WT. | | 0.723 | | | | | | | TERMINAL | BODE WI. | 432.1 | | | | | | | | ANTHAL | 28190 | 27-FEB | -92 | STUDY [ | YAC | 52 | | | | TYPE OF | DEATH: SC | HEDULED S. | ACRIFICE | , | | | | | | ORGAN WE | IGHT | ABS.(G) | REL, | SKIN | | | | | | LIVER | | 8.952 | 2.429 | | ROSS | : : | | SHAPE/CONTOUR CHANGE | | KIDNEYS | | 2.765 | 0.750 | | | | | MULTIPLE PUR PATE BROWN RAISED AREAS | | LUNGS | | 1.296 | 0.352 | | | | | ALONG TAIL | | THYMIC R | EGION | 0.256 | 0.069 | NACAI | CAV | /ITY | | | | EVIDIDAW | IDES | 1.249 | 0.339 | 1 | 4ICRC | ) t | 3 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | Testes | | 3.115 | 0.845 | | | | 2 | ATROPHY, OLFACTORY EPITHELIUM | | Terminal | BODY WT. | 368.5 | | | | | | | | | | | | | | | | | | ANIMAL. | 28192 | 27-FEB | | STUDY I | 1,3 <u>X</u> | 24 | | | | | | HEDULED S | | | ·- 2 = | | | | | ORGAN WE | IGHT | ABS. (C) | REL. | SKIN | | | | CULDO (CINICATO CULNOS | | Liver | | 10.212 | 2.272 | ( | GROSS | j į | | SHAPE/CONTOUR CHANGE | | KIDNEYS | | 3.136 | 0.698 | | | | | TAN AND BROWN RAISED AREAS, TAIL, | | LUNGS | | 1.444 | 0.321 | v | | _ | | TXTXTHW | | THYMIC R | | 0.446 | 0.099 | LYMPI | | | MAN | CITE INCORNER | | EPIDIDYM | TDER | 1.175 | 0.261 | ( | GROSS | <b>1</b> | | SIZE INCREASE | | | | | | | | | | | INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | FO AL | ULT | |-------|-----| |-------|-----| | | | | | FO ADULT | | |------------------------------------------------------------------------------------------|--------------------|-------------------------------------|----------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------| | GROUP: | 750 PPM | МА | LE | | | | ANTHAZ | 28192 (C | ONTINUED) | | | | | TESTES | | 3.239 | 0.720 | | 20X11X4MM, LEFT | | TERMINAL 8 | ODY WT. | 449.5 | | LYMPH ND, S-MA<br>GROSS: | N<br>COLOR CHANGE, FOCAL/MULTIFOCAL<br>MOTTLED DARK RED AND RED, LEFT | | | | | | NASAL CAVITY MICRO: 2 LUNGS | | | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL DARK RED PUNCTATE FOCI, ALL LOBES | | ANTHAL | 28211 | 27-FEB- | | STUDY DAY 52 | | | TYPE OF DE | | | | | | | ORGAN WEIG | HT | ABS.(G) | | NASAL CAVITY | TIACUAL TERRETAIN AR AT REARRANG PREMIURI VIRG | | LIVER<br>KIDNEYS | | 11.621<br>3.485 | 2.643<br>0.906 | MICRO: 4 | | | THYMIC REC | CTON | 0.264 | 0.060 | LUNGS | AIROPHI, OBFACTORI EPITHEBIUM | | EPIDIDYMIC | | 1.390 | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | TESTES | | 3.685 | 0.838 | | PUNCTATE RED FOCI, SCATTERED ON ALL | | TERMINAL E | BODY WT. | 439.7 | | | LOBES | | ANTHAL TYPE OF DE ORGAN WEIG LIVER KIDNEYS LUNGS THYMIC REC EPIDIDYMII TESTES TERMINAL I | GHT<br>GION<br>DES | ABS.(G)<br>10.285<br>3.087<br>1.656 | | | SIZE INCREASE 2X NORMAL, LEFT 1)) VACUOLIZATION OF OLFACTORY EPITHELIUM 2)) RHINITIS COLOR CHANGE, FOCAL/MULTIFOCAL MULTIPLE PUNCTATE RED FOCI, ALL LOBES | | ANIHAL | 28209 | 27-FEB | | STUDY DAY 52 | | | TYPE OF DE | | ABS.(G) | | SKIN | | | LIVER | 711.1 | 10.549 | 2.519 | GROSS: | SHAPE/CONTOUR CHANGE | | KIDNEYS | | 3,054 | 0.729 | | BROWN MULTIPLE PUNCTATE RAISED AREAS | | LUNGS | | 1.391 | 0.332 | | ON TAIL | | THYMIC REC | GION | 0.325 | 0.078 | LYMPH ND, S-MA | | | EPIDIDYMII<br>TESTES<br>TERMINAL I | | 1,051<br>3,179<br>418,8 | 0.251<br>0.759 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL MULTIPLE PUNCTATE RED FOCAL AREAS ON ONE NODE LEFT SIDE | | | | | | NASAL CAVITY | | | | | | | • | 2 RHINITIS<br>4 VACUOLIZATION OF OLFACTORY EPITHELIUM<br>2 ATROPHY, OLFACTORY EPITHELIUM | | | | | | LUNGS | | | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL<br>LEFT LOBE SEVERAL BROWN 1MM FOCAL<br>AREAS SCATTERED THROUGHOUT | INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FO ADULT | | | | | FO ADULT | | |--------------------|------------|-------------------|----------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | GROUP: | 750 PPM | | LE | | | | ANIMAL | 28182 | 27-FEB- | | STUDY DAY 5? | | | | EATH: SCH | | | | | | ORGAN WEI | CHT | ABS.(G) | REL. | SKIN | | | LIVER | | 11.388 | 2.440 | GROSS: | SHAPE/CONTOUR CHANGE | | KIDNEYS | | 3.067 | 0.657 | | MULTIPLE RED RAISED AREAS, TAIL | | UNGS | | | 0.343 | LYMPH ND, S-MAN | | | THYMIC RE | EGION | 0.495 | 0.106 | GROSS: | SIZE INCREASE | | EPIDIDYMI | IDES | 1,309 | | | ONE NODE 12X10X3 MM | | restes | | 3.230 | 0.692 | LYMPH ND. S-MAN | | | rerminal | BODY WT. | 466.8 | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL PUNCTATE RED FOCI | | | | | | NASAL CAVITY | | | | | | | MICRO: 3 | VACUGLIZATION OF OLFACTORY EPITHELIUM | | | | | | LUNGS | | | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL<br>SCATTERED PUNCTAYE RED FOCI, ALL LOBE: | | ANTHAL | 26186 | 27-FEB- | .92 | STUDY DAY 52 | | | | DEATH: SCH | | | | | | ORGAN WEI | LGHT | ABS.(G) | | LYMPH ND, S-MAN | | | LIVER | | 13.176 | | GROSS: | SIZE INCREASE | | RIDNEYS | | 3,730 | 0.846 | ****** | 2X NORMAL TO 12X9X3 MM | | LUNGS | | | 0.386 | | COLOR GUANGE POCAL AND EXPANA | | THYMIC RE | | 0.508 | 0.115<br>0.303 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL TAN WITH RED FOCI | | EPIDIDYMI | IDES | 1.33/ | 0.303 | MUVILLA BEGYON | TAN WITH RED FOLT | | TEGTES<br>TERMINAL | BODY WT. | | 0.733 | THYMIC REGION<br>GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL<br>RED FOCAL AREAS | | | | | | NASAL CAVITY | NED TOCKS MICKE | | | | | | MICRO: 2 | RHINITIS | | | | | | | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | | | LUNGS | | | | | | | GROSS: | COLUR CHANGE, FOCAL/MULTIFOCAL SCATTERED PUNCTATE RED FOCI, ALL LOBE | | ANIMAL | 28147 | 27-FEB- | -92 | STUDY DAY 52 | | | | DEATH: SCI | | | | | | | | ABS.(G) | | | | | LIVER | | 11.037 | | | COLOR CHANGE, FOCAL/MULTIFGCAL | | KILNEYS | | 3.085 | 0.717 | | 2X2MM TAN FOCUS BETWEEN MEDIAN LOBES | | LUNGS | | 1.468 | 0.341 | NASAL CAVITY | | | THYMIC R | EGION | 0.324 | 0.075 | MICRO: 4 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | EPIDIDYM: | IDES | 1.150 | 0.267 | | ATROPHY, OLFACTORY EPITHELIUM | | TESTES | | 3.347 | 0.778 | LUNGS | | | TERMINAL | BODY WT. | 430.4 | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL DARK RED FOCAL AREA, AZYGOUS LOBE | | | | | | : | | | ANTHAL | 28158 | 27-FEB | | STUDY DAY 52 | | | | DEATH: SC | | | | - NO SIGNIFICANT LESIONS | | ORGAN WE | rau.i | ABS.(G)<br>12.733 | | | NO TIGHTE FOUNT DESTONS | | KIONEYS | | 3.334 | 0.670 | | VACUOLIZATION OF OLFACTORY EPITHELIUM | | LUNGS | | 1.659 | | 3 | ATROPHY, OLFACTORY EPITHELIUM | | THYMIC R | EGION | 0.312 | 0.063 | • | THE PERSON NAMED IN PE | | | | V744 | | | | #### INDIVIDUAL NECROFSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | ምበ | Δħι | T. TI | |----|-----|-------| | GROUP: 750 PPM | М.А | LE | | | |--------------------|-----------|-------|-----------------|---------------------------------------| | | ONTINUED) | | | | | EPIDIDYMIDES | 1.243 | 0.250 | | | | ESTES | 3.334 | 0.670 | | | | ERMINAL BODY WT. | 498.0 | | | | | NIMAL 28208 | 27-FEB- | -92 | STUDY AY 52 | | | YPE OF DEATH: SCH | EDULED SA | | | | | RGAN WEIGHT | ABS.(G) | REL. | SKIN | | | IVER | 12.241 | 2.617 | GROSS: | SHAPE/CONTOUR CHANGE | | CIDNEYS | 3.406 | 0.728 | | RAISED AREA NEAR THE 2 ON THE | | JUNGS | 1.509 | 0.323 | | TATTOOING NUMBERS | | HYMIC REGION | 0.268 | 0.057 | LYMPH ND, S-MAN | | | PIDIDYMIDES | 1.341 | 0.287 | GROSS: | SIZE INCREASE | | ESTES | 3.223 | 0.689 | 01.0001 | 2X NORMAL, RIGHT; 15X5X3MM, LEFT | | ERMINAL BODY WT. | 467.8 | 0.000 | NASAL CAVITY | in notable trains, thanking peri | | | 407.0 | | | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | | 2 | ATROPHY, OLFACTORY EPITHELIUM | | | | | | | | | | | | RHINITIS | | | | | LUNGS | AALAN AUSUNA PRAIS GAMMANA | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | | DARK RED FOCI, ALL RIGHT LOBES | | NTHAI. 20148 | 27-FEB- | | STUDY DAY 52 | | | TYPE OF DEATH: SCH | | | 547.1 | | | RGAN WEIGHT | ABS. (G) | | SKIN | ALLER MANTENER CHANGE | | LIVER | 12.239 | 2.562 | GROSS: | SHAPE/CONTOUR CHANGE | | CIDNEYS | 3.424 | 0.717 | | BROWN RAISED AREAS, TAIL, SEVERAL, | | UNGS | 1.657 | 0.347 | | IXIXIMM | | HYMIC REGION | 0.445 | 0.093 | LYMPH ND, S-MAN | | | PIDIDYMIDES | 1.308 | 0.274 | GROSS: | SIZE INCREASE | | estes | 3.468 | 0.726 | | 21X11X6MM, LEFT | | ERMINAL BODY WT. | 477.7 | | NASAL CAVITY | | | | | | MICRO: 1 | ATROPHY, OLFACTORY EPITHELIUM | | NIMAL 28197 | 27-FEB- | -92 | STUDY DAY 52 | | | YPE OF DEATH: SCI | | | | ė. | | RGAN WEIGHT | ABS.(G) | HEL. | SKIN | | | IVER | 13.551 | 2.790 | GROSS: | SHAPE/CONTOUR CHANGE | | IDNEYS | 4.553 | 0.937 | 31.0001 | SEVERAL RAISED RED AREAS, TAIL | | UNCS | 1.804 | 0.371 | LYMPH hD, S-MAN | DEFENDING TOTAL CONTROL TOTAL TAIL | | HYMIC REGION | U.413 | 0.685 | GROSS: | SIZE INCREASE | | | | | GRO221 | | | PIDIDYMIDES | 1.334 | 0.275 | Wash Carrier | 20X10X5 MM, ONE NODE | | ESTES | 5.373 | 0.695 | NASAL CAVITY | | | CERMINAL BODY WT. | 485.7 | | MICRO: 3 | RHINITIS | | | | | | SQUAMOUS METAPLASIA | | | | | (2) | VACUOLIZATION OF OLFACTORY EPITHELIUM | INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FO ADULT | | | FO ADULT | | |--------------------------|----------------------------------|---------------|----------------------------------------------| | GROUP: 1500 PPM | MALE | | : | | ******* 2010/ 27 P | | | | | ANIMAL 28196 27-F | | TUDY DAY 52 | | | | | COOCC. PYNY | THEN - NO CICHIEFCAND I POTONO | | LIVER 9.21 | 2 200 | NASAL CAVITY | INED - NO SIGNIFICANT LESTONS | | KIDNEYS 3.35 | 19 2.366<br>50 0.866<br>41 0.373 | MADAL CAVITY | | | LUNGS 1.44 | 1 0.373 | wicko: ( | (2) RHINITIS 3 ATROPHY, OLFACTORY EPITHELIUM | | | 26 0.004 | | | | | 26 0.318 | KIDNESS | ANTERIOR TWO SECTIONS, DORSAL PORTION | | | 50 0.819 | | (3)) TUBULAR BASOPHILIA | | TERMINAL BODY WT. 386. | | | IG TISSUES WERE MICROSCOPICALLY NORMAL: | | TENGTIAND BODY III. 300 | | HEART | LITER ADRENAL GL | | | , | SPLEEN | THYMIC REGION BRAIN | | | | TESTES | EPIDIDYMIDES SEMINAL VESICLE | | | | LARYNX | TRACHEA LUNGS | | | | HIMITIA | 2100CHEA DUINGS | | | | | | | ANIMAL 28163 27-E | FEB-92 S | TUDY DAY 52 | | | TYPE OF DEATH: SCHEDULE | | 7001 1771 31 | | | | S) REL. | LIVER | | | LIVER 12.01 | | · | CCLOR CHANGE, FOCAL/MULTIFOCAL | | | 12 2.022<br>47 0.739 | 05551 | TAN PUNCTATE FOCAL AREA, CENTER OF | | | 36 0.361 | | LEFT LATERAL LOBE | | THYMIC REGION 0.25 | 9 0.061 | SKIN | | | EPIDIDYMIDES 1.3 | .; C.318 | GROSS: | ALOPECIA | | | 0.777 | 4 | FOREPAW, BILATERAL | | TERMINAL BODY WT. 425 | | NASAL CAVITY | | | | • | MICRO: | 2 RHINITIS | | | | | 3 ATROPHY, OLFACTORY EPITHELIUM | | | | | ANTERIOR TWO SECTIONS, DORSAL PORTION | | | | LUNGS | · <b>,</b> | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | PUNCTATE RED FOCI, ALL LOBES | | | | THE FOLLOWING | NG TISSUES WERE MICROSCOPICALLY NORMAL: | | | | HEART | LIVER ADRENAL GL | | | | SKIN | SPLEEN THYMIC REGION | | | | BRAIN | TESTES EPIDIDYMIDES | | | | SEMINAL VEST | SICLE LARYNX TRACHEA | | | | LUNGS | KIDNEYS | | | | | | | | | | | | ANIMAL 28157 27-1 | FEB-92 5 | TUDY DAY 52 | | | TYPE OF DEATH: SCHEDULES | SACRIFICE | | | | | G) REL. | LYMPH ND, S-N | -man | | LIVER 11.2 | 30 2.725 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | KIDNEYS 3.1: | 25 0.758 | | DAR! RED FOCI, LEFT | | LUNGS 1.40 | 84 0.360 | MICRO+ | 2 HEMORRHAGE | | THYMIC REGION 0.2 | 72 0.066 | MICRO: | 3 LYMPHOID HYPERPLASIA | | EPIDIDYMIDES 1.3 | | | 2 PLASMACYTOSIS | | TESTES 3.63 | 19 0.878 | THYMIC REGION | DN | | TERMINAL BODY WY. 412 | . 2 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | MULTIPLE DARK RED FOCI | | | | NASAL CAVITY | Y | | | | MICRO: | 3 ATROPHY, OLFACTORY EPITHELIUM | | | | | 1 RHINITIS | | | | | 4 VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | LUNGS | | | | | | | INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FO ADULT GROUP: TESTES TESTES TERMINAL BODY WT. TERMINAL BODY WT. 1500 PPM MALE ANTHAL 28157 (CONTINUED) GROSS: COLOR CHANGE, FOCAL/MULTIFOCAL DARK RED FOCI, ALL RIGHT LOZES KIDNEYS GROSS: DILATED PELVIS HILD, RIGHT THE FOLLOWING TISSUES WERE MICROSCOPICALLY NORMAL: LIVER ADRENAL GL HEART SPLEEN THYMIC RECION BRAIN TESTES EPIL DYNIDES SEMINAL VESICLE LARYNX TRACHEA KIDNEYS LUNGS AHIMAL 28166 27-FEB-92 STUDY DAY 52 TYPE OF DEATH: SCHEDULED SACRIFICE ORGAN WEIGHT ABS.(G) REL. GROSS: EXAMINED - NO SIGNIFICANT LESIONS LIVER 10.510 2.560 NASAL CAVITY KIDNEYS 2.897 0.706 RHINITIS MICRO: 2 LUNGS 1.388 0.338 ATROPHY, OLFACTORY EPITHELIUM THYMIC REGION 0.359 0.087 THE FOLLOWING TISSUES WERE MICROSCOPICALLY NORMAL: **EPIDIDYMIDES** 1.302 0.317 0.822 0.791 HEART SPLEEN TESTES LARYNX LIVER THYMIC REGION EPIDIDYMIDES TRACHEA ADRENAL GL BRAIN SEMINAL VESICLE LUNGS KIDNEYS AHIHAL 28189 27-FEB-92 STUDY DAY 52 TYPE OF DEATH: SCHEDULED SACRIFICE ORGAN WEIGHT ABS.(G) REL. SKIN 2.259 LIVER 8.800 GROSS: KIDNEYS 0.796 3.102 LUNGS 1.314 0.337 THYMIC REGION 0.240 0.062 MICRO+ (4) EPIDIDYMIDES 1.210 0.311 LYMPH ND, S-MAN 3.082 389.6 3.373 410.5 SHAPE/CONTOUR CHANGE SEVERAL PUNCTATE BROWN FOCAL AREAS NEAR BASE OF TAIL HYPERKERATOSIS GROSS: COLOR CHANGE, DIFFUSE DARK RED MICRO+((3)) HEMORRHAGE NASAL CAVITY MICRO: RHINITIS ATROPHY, OLFACTORY EPITHELIUM ANTERIOR TWO SECTIONS, DORSAL PORTION KIDNEYS MICRO: ((3)) TUBULAR BASOPHILIA THE FOLLOWING TISSUES WERE MICROSCOPICALLY NORMAL: HEART SPLEEN LIVER THYMIC REGION ADRENAL GL BRAIN TESTES EPIDIDYMIDES LARYNX TRACHEA SEMINAL VESICLE LUNGS ANIMAL 27-FEB-92 STUDY DAY 52 28207 TYPE OF DEATH: SCHEDULED SACRIFICE GRGAN WEIGHT ABS.(G) REL. LIVER 11.666 2.620 KIDNEYS 3.487 0.783 THYMIC REGION GROSS: COLOR CHANGE, FGCAL/MULTIFOCAL MULTIPLE DARK RED FOCI LUNGS 1.549 0.348 NASAL CAVITY See necropsy protocc' page for list of tissues examined grossly and for explanation of grades. Page 184 of 366 INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FO ADULT | GROUP: 1500 PP | и и | LE | TO ADULT | | | |-----------------------------|----------------|-------|------------------------------------------|------------------------------------------------------------------|------| | droop, 1900 FF | | | | | | | | ONT THUED) | | | | | | THYMIC REGION | 0.279 | | | SQUAMOUS METAPLASIA | | | EPIDIDYMIDES<br>PESTES | 1.219<br>3.429 | | 3<br>4 | RHINITIS | | | redies<br>rerminal body wt. | 445.3 | 0.770 | 4 | ATTOPHY, OLFACTORY EPITHELIUM ANTERIOR TWO SECTIONS, DORSAL PORT | TTOL | | CERCITAND BODT WI. | 443.3 | | THE FOLLOWING TH | SUES WERE MICROSCOPICALLY NORMAL: | Lion | | | | | HEART | LIVER ADRENAL GL | | | | | | SPLEEN | THYMIC REGION BRAIN | | | | | | TESTES | EPIDIDYMIDES SEMINAL VESICLE | | | | | | LARYNX | TRACHEA LUNGS | | | | | | KIDNEYS | | | | ANIMAL 28179 | 27-FEB- | .0.2 | STUDY LAY 52 | | | | TYPE OF DEATH: SCH | | | 310111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | ORGAN_WEIGHT | ABS.(G)_ | REL. | LYMPH ND, S-MAN | | | | LIVER | 12.005 | 2.537 | GROSS: | SIZE INCREASE | | | KIDNEYS | 3.703 | 0.729 | | 3X NORMAL, LEFT | | | LUNGS | 1.495 | 0.294 | MICPO+ 4 | LYMPHOID HYPERPLASIA | | | THYMIC REGION | 0.275 | 0.054 | LYMPH ND, S-MAN | | | | EPIDIDYMIDES | | 0.258 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | restes | 3.751 | 0.739 | | MULTIPLE DARK RED FOCI, LEFT | | | TERMINAL RODY WT. | 507.9 | | MICRG+ (4) | HEMORRHAGE | | | | | | LYMPH ND, S-MAN | COLOR THINCE DIFFUER | | | | | | GROSS: | COLOR CHANGE, DIFFUSE<br>DARK RED, RIGHT | | | | | | MICEO: (3) | PLASMACYTOSIS | | | | | | HASAL CAVITY | PINSHALITOSIS | | | | | | MICRO: 3 | RHINITIS | | | | | | , | ATROPHY, OLFACTORY EPITHELIUM | | | | | | | ANTERIOR TWO SECTIONS, DORSAL POR | TIO | | | | | LUNGS | | | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | | | DARK RED FOCI, ALL LOBES | | | | | | | SSUES WEPE MICROSCOPICALLY HORMAL: | | | | | | | LIVER ADRENAL GL | | | | | | SPLEEH | THYMIC REGION BRAIN | | | | | | TESTES | EPIDINYMIDES SEMINAL VESICLE | | | | | | LARYHY | TRACHEA LUNGS | | | | | | KIDNEYS | | | | ANTHAL 28214 | 27-FEB- | -92 | STUDY DAY 52 | | | | TYPE OF DEATH: SCH | | | | | | | ORGAN WEIGHT | ABS.(G) | | NASAL CAVITY | | | | LIVER | 10.523 | 2.547 | MICRO: 2 | RHINITIS | | | KIDNEYS | | 0.731 | 3 | ATROPHY, OLPACTORY SPITHELIUM | | | LUNGS | | 0.375 | | | | | THYMIC REGION | | 0.083 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | EPIDIDYMIDES | | 0.328 | MUD 001 / 0/17/10 | DARK RED FOCAL AREA, LEFT LOBE | | | TESTES | 3.633 | 0.879 | | SSUES WERE MICROSCOPICALLY NORMAL: | | | TERMINAL BODY WT. | 413.2 | | Heart<br>Spleen | LIVER ADRENAL GL THYMIC REGION BRAIN | | | | | | TESTES | EPIDIDYMIDES SEMINAL VESICLE | | | | | | LARYNX | TRACHEA LUNGS | | | | | | KIDNEYS | amonus builds | | | | | | | | | | | | | | | | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. UC INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | FO ADUL | T | |---------|---| |---------|---| | GROUP: 1500 PF | M Mall | 3 | TO ADULT | | |------------------------------------|--------------------|-------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | | | ANIMAL 28213 | | 2 STU | DY DAY 52 | | | TYPE OF DEATH: SCH<br>ORGAN WEIGHT | | | Dames | | | LIVER | ABS.(G)<br>12.636 | 2.820 | ESTES | | | KIDNEYS | | 0.746 | GROSS: | CONSISTENCY CHANGE | | LUNGS | 1.491 | | MICEON 15 | RIGHT, SOFT | | THYMIC REGION | 0.407 | | MICHOT (5 | ) SEMINIFERCUS TUBULE ATROPHY UNILATERAL, PERIPHERAL | | EPIDIDYMIDES | 1.014 | | ASAL CAVITY | diffully restricted | | TESTES | | 0.715 | MICRO: 1 | RHINITIS | | TERMINAL BODY WT. | 448.1 | • | 4 | | | | | | • | ANTERIOR TWO SECT. JNS. DORSAL PORTION | | | | т | HE FOLLOWING | TISSUES WERE MICROSCOPICALLY HORMAL: | | | | | HEART | LIVER ADRENAL GL | | | | | SPLEEN | THYMIC REGION BRAIN | | | | | EPIDIDYMIDES | | | | | | TRACHEA | LUNGS KIDNEYS | | | | | | | | ANIMAL 282U5 | 27-FEB-92 | 2 STU | DY DAY 52 | | | TYPE OF DEATH: SCH | EDULED SACE | | | | | | ABS.(G) | | | ED - NO SIGNIFICANT LESIONS | | LIVER | | | ASAL CAVITY | | | KIDNEYS | 4.0 \ | | MICRO: 2 | | | LUNGS | | 3.356 | 3 | The state of s | | THYMIC REGION<br>EPIDIDYHIDES | 0.203 (<br>1.123 ( | | | VACUOLIZATION OF OLFACTORY EPITHELIUM | | TESTES | | | HE FOLLOWING | TISSUES WERE MICROSCOPICALLY NORMAL: LIVER ADRENAL GL | | TERMINAL BODY WT. | | | SPLEZN | LIVER ADRENAL GL THYMIC REGION BRAIN | | Tanadania Baga mi | 10513 | | TESTES | EPIDIDYMIDES CEMINAL VESICLE | | | | | Lancua | TRACHEA LUNGS | | | | | KIDHEYS | 101125 | | | | | | | | ANIHAL 28206 | 27-FEh-92 | 2 571 | DY DAY 52 | | | TYPE OF DEATH: SCH | | | DI DK1 12 | | | ORGAN WEIGHT | | | rin | | | LIVER | 9.618 | 2.17: | (Hota) | Car (R. CONTOURC) HANGE | | KIDNEYS | 3.257 | 1.804 | | SEVERAL RAISER ALLES, AALL | | LUNGS | 1.625 | | MICRO: (3 | | | THYMIC REGION | 0.254 ( | | HYMIC REGION | | | EPIDIDYMIDES | 1.412 | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | TESTES | | 0.923 | | RED FOCAL AREAS | | TEMMINAL BODY WT. | 405.6 | | MICRO+ (3 | ) HEMORRHAGE | | | | P. | ASAL CAVITY | AGRARIA AV TAGRARIA GOVERNA | | | | | MICRO: 3<br>UNGS | ATROPHY, OLFACTORY EPITHELIUM | | | | L | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | dicoan | PUNCTATE TO 1X1 MM RED FOCI, ALL LOBES | | | II. | Т | HE FOLLOWING | TISSUES WERE MICROSCOPICALLY NORMAL: | | | 14 | | HEART | LIVER ADRENAL GL | | | | | SPLEEN | BRAIN TESTES | | | 12. | | <b>EPIDIDYMIDES</b> | SEMINAL VESICLE LARYNX | | | | | TRACHEA | LUNGS KIDNEYS | INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICHOSCOPIC DIAGNOSES FO ADULT | GROUP: 1500 PP | | FO ADULT | |------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ANTHAL 28172 | 27-FEB-92 | STUDY DAY 52 | | TYPE OF DEATH: SCH | EDULED SACRIFIC | - | | ORGAN WEIGHT | ABS.(G) REL. | | | LIVER | 11.567 2.746 | GROSS: COLOR CHANGE, FOCAL/HULTIFOCAL | | KIDNEYS | 3.513 0.834 | | | LUNGS | 1.499 0.356 | | | THYMIC REGION | 0.251 0.060<br>1.286 0.305 | | | EPIDIDYMIDES<br>TESTES | 3.458 0.821 | | | TERHINAL BODY WT. | 421.3 | LUNGS | | IZATINAL ZODY WI. | 421.3 | GROSS: COLOR CHANGE, FOCAL/MULTIFOCAL DARK RED FOCI, RIGHT DIAPHRAGMATIC LOBE AND LEFT LOBE THE FOLLOWING TISSUES WERE WICROSCOPICALLY MORMAL: HEART LIVER ADRENAL GL SPLEEN THYMIC REGION BRAIN TESTES EPIDIDYMIDES SEMINAL VESTCLE LARYNX TRACHEA LUNGS KIDNEYS | | ANTHAL 26103 | | STUDY DAY 52 | | TYPE OF DEATH: SCH | | | | ORGAN WEIGHT | ABS.(G) REL.<br>9.916 2.467 | | | KIDNEYS | 3.074 0.765 | | | LUNGS | 1.517 0.377 | | | THYMIC REGION | 0.228 0.057 | MICRO: 3 LYMPHOID HYPERPLASIA | | EPIDIDYMIDES | 1.211 0.301 | NASAL CAVITY | | TESTES | 3.165 0.787 | | | TERMINAL BODY WT. | 402.0 | 4 ATROPHY, OLFACTORY FEITHELIUM | | | | INTOLVES SOME OF THE OLFACTORY | | | | ALTONS | | | | THE FOLLOWING THE HICROSC WHICHLIA HORMAN | | | | HEART ALLES AND MALES | | | | SILEAN CONTROL MAKIN<br>TESTES EPIDICATIONS SIMILAR CONTROL | | | | LARYNX TRACHEA LBRGS | | | | KIDNEYS | | ANIMAL 20202 TYPE OF DEATH: SCH ORGAN WEIGHT LIVER KIDNEYS LUNGS | 27-FEB-92<br>EDULED SACRIFIC<br>ABS.(G) REL<br>12.356 2.661<br>3.442 0.741<br>1.683 0.364 | LYMPH ND, S-MAN GROSS: COLOR CHANGE, DIFFUSE ONE NODE LEFT SIDE, DARK RED | | THYMIC REGION | 0.328 9.07 | | | EPIDIDYMIDES | 1.223 0.26 | | | TESTES | 3.532 0.76 | | | TERMINAL BODY WT. | | 4 ATROPHY, OLFACTORY EPITHELIUM<br>INVOLVES DORSAL EPITHELIUM BACK TO | | | | THE THIRD SECTION THE FOLLOWING TISSUES WERE MICROSCOPICALLY NORMAL: HEART LIVER ADRENAL GL SPLEEN LYMPH ND, S-MAN THYMIC REGION | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. #### INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | GROUP: 1500 F | PH M | \LE | FO ADULT | | | |-----------------------------------|-----------|----------|-----------------------------------|-----------------------------|-------------------------| | ANIMAL 28202 ( | CONTINUED | <u> </u> | BRAIN<br>SEMINAL VESICLE<br>LUNGS | TESTES<br>LARYNX<br>KIDNEYG | EPIDIDYMIDES<br>TRACHEA | | ANIMAL 28204<br>TYPE OF DEATH: SO | 27-FEB- | | STUDY DAY 52 | ' | | | ORGAN WEIGHT | ABS.(G) | REL. | ADPENAL GL | | | | LIVER | 12.111 | 2.706 | MICRO: 3 | CORTICAL CELL | VACUOLIZATION | | KIDNEYS | 3.877 | 0.866 | THYMIC REGION | | | | LUNGS | 1.529 | 0.341 | GROSS: | COLOR CHANGE, | FOCAL/MULTIFOCAL | | THYMIC REGION | 0.357 | 0.080 | | RED FOCAL | AREAS | | EPIDIDYMIDES | 1.216 | 0.272 | NASAL CAVITY | | | | TESTES | 3.071 | 0.686 | MICRO: 2 | ATROPHY, OLFAC | CTORY EPITHELIUM | | TERMINAL BODY WT. | 447.6 | | 3 | RHINITIS | | | | | | | SSUES WERE MIC | ROSCOPICALLY NORMAL: | | | | | HEART | LIVER | SPLEEN | | | | | THYMIC REGION | BRAIN | TESTES | | | | | EPIDIDYMIDES | SEMINAL VESIO | | | | | | TRACHEA | LUNGS | KIDNEYS | #### NECROPSY PROTOCOL #### FO ADULT FEMALES The following tissues were examined at necropsy with no significant lesions observed unless specified on individual animal page: | TOTAL BODY PLEURA VASCULATURE STOMACH ILEUM PITUITARY SUBCUTIS PAWS/FEET LYMPH ND, MES BONE, VERTEBRA NERVE, SCIATIC OVIDUCT LARYNX URINARY BLADDER | ADIPOSE TISSUE THORACIC CAV SALIVARY GL LIVER CECUM THYROID GL HEAD TAIL THYMIC REGION SKELETAL MUSCLE EYE UTERUS TRACHEA URETHRA | MESENTEPY/OM'TUM HEART ORAL/PHARYNGEAL PANCREAS COLON PARATHYROID GL EARS SPLEEN BONE/JOINT DIAPHRAGM HARDERIAN GL CERVIX LUNGS | PERITONEUM PERICARDIAL CAV TONGUE DUODENUM RECTUM ADRENAL GL NARES/NOSE LYMPH ND, S-MAN EONE, STERNUM BRAIN LACRIMAL GL VAGINA KIDNEYS | PERITONEAL CAV AORTA ESOPHAGUS JFJUNUM ANUS SKIN MAMMARY GL LYMPH ND, MED BONE, FEMUR SPINAL COPD OVARIES VULVA URETER | |-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------| |-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------| The following organs were weighed at necropsy: LIVER THYMIC LEGION LUNGS KIDNEYS The microscopic procedures used in this study are described in the methods section of the text. Micro diagnosis grade codes: 1=MINIMAL, 2=MILD, 3=MODERATE, 4=MARKED, 5=SEVERE, P=PRESENT Micro diagnosis distribution codes: ( )=FOCAL, (( ))=MULTIFOCAL, NO PARENTHESES=DIFFUSE Micro diagnosis prefix codes: # = NEOPLASM, B = BENIGN, M = MALIGNANT, @PN = PRE-NEOPLASTIC MICRO: indicates histologic confirmation of preceding gross diagnosis. INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | En 1 | ADMIT T | | |------|---------|--| | | | | | FO ADULT | | | |--------------|-------|---------|-------|------------------|--------------------|--------------------------| | GROUP: | 0 PPM | FI | EMALE | | | | | <del></del> | | | | | | | | ANIKAL 28 | 3229 | 14-FEB- | -92 | STUDY DAY 39 | | | | TYPE OF DEAT | | | | 3.00.00.00.00 | | | | ORGAN WEIGHT | | 3S.(G) | | LUNGS | | | | LIVER | | 0.898 | 4.058 | | COLOR CULUER DOC | | | KIDNEYS | - | 2.033 | | GROSS: | COLOR CHANGE, FOO | | | LUNGS | | | | | DARK RED FOCA | L AREA, 1X1MM, LEFT LOSE | | | | | 0.439 | KIDNEYS | | | | THYMIC REGIO | | | 0.102 | | MINERAL JATION | | | TERMINAL BOD | X WT. | 268.6 | | THE FOLLOWING TI | SSUES WERE MICROSC | OPICALLY NORMAL: | | | | | | HEART | LIVER | /DRENAL GL | | | | | | SPLEEN | THYMIC REGION | BRAIN | | | | | | OVARIES | NASAL CAVITY | LARYNX | | | | | | TRACHEA | LUNGS | 2.2.2.7 | | | | | | 2001011201 | | | | | | | | | | | | ANIMAL 28 | 3228 | 18-FEB- | -0.2 | Drudy day 43 | | | | TYPE OF DEAT | | | | STODE DAY 43 | | | | ORGAN WEIGHT | | | | | | | | | | 35.(C) | | ADRENAL GL | | | | LIVER | | 1.959 | | GROSS: | SIZE INCREASE | | | Kidneys | | | 0.626 | | SLIGHT, LEFT | | | LUNGS | | | 0.433 | MICRO+((4)) | MINERALIZATION | | | THYMIC REG_C | N | 0.160 | 0.054 | SPLEEN | | | | TERMINAL BOD | Y WY. | 296.8 | | GROSS: | SHAPE/CONTOUR CHA | NGE | | | | | | | INDENTED AT C | | | | | | | LYMPH ND, S-MAN | | | | | | | | GROSS: | SIZE INCREASE | | | | | | | OKO551 | | | | | | | | WTCDO: 4 | 3-4X NORMAL, | LEFT | | | | | | MICRO+ 4 | PLASMACYTOSIS | | | | | | | MICRO: 4 | | | | | | | | THE FOLLOWING TI | SSUES WERE MICROSC | OPICALLY NORMAL: | | | | | | HEART | LIVER | SPLEEN | | | | | | THYMIC REGION | BRAIN | CVARIES | | | | | | NASAL CAVITY | LARYNX | TRACHEA | | | | | | LUNGS | KIDNEYS | | | | | | | | | | | | | | | | | | | ANIKAL 28 | 244 | 14-FEF- | -32 | STUDY DAY 39 | | | | TYPE OF DEAT | | | | STODE DAT 39 | | | | | | | | | | | | ORGAN WEIGHT | | | REL. | | | | | LIVER | - | | 4.448 | GROSS: | COLOR CHANGE, FOC | AL/MULTIFOCAL | | KIDNEYS | | 2.009 | | | EILATERAL, ON | E EROWN FOCAL AREA | | Lungs | | 1.277 | 0.436 | | PUNCTATE | | | THYMIC REGIO | N | 0.376 | 0.128 | LYMPH ND, S-MAN | | | | TERMINAL BOD | | 292.8 | - | GROSS: | SIZE INCPEASE | | | | | | | | | NORMAL, ONE NODE | | | | | | MICRO+ 4 | PLASMACYTOSIS | NORMAL, ONE NODE | | | | | | | | | | | | | | MICRO: 3 | LYMPHOID HYPERPLA | SIA | | | | | | LUNGS | | | | | | | | GROSS: | COLOR CHANGE, DIP | | | | | | | | ALL LOBES, PA | LE PINK | | | | | | THE FOLLOWING TI | SSUES WERE MICROSC | OPICALLY NORMAL: | | | | | | HEART | LIVER | ADRENAL GL | | | | | | SPLEEN | THYMIC REGION | ERAIN | | | | | | OVARIES | NASAL CAVITY | LARYNX | | | | | | TRACHEA | LUNGS | | | | | | | ADDURED | 201103 | KIDNEYS | | | | | | | | | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | GROUP: 0 PPH | FEMALS | FO ADULT | | |-----------------------------------|-----------------------------|-----------------------|------------------------------------------------------------------| | ANINA 28287 | | STUDY DAY 41 | | | TYPE OF DEATH: SO<br>ORGAN WEIGHT | HEDULED SACRIF | CE<br>LYMTH ND, S-MAN | | | LIVER<br>KIDNEY 3 | 10.056 4.03 | GROSS: | SIZE INCREASE | | LUNGS<br>THYMIC REGION | 1.249 C.50<br>C.245 G.09 | | 2-3X NORMAL ALL NODES<br>LYMPHOID HYPERPLASIA | | TERMINAL BODY WT. | | LUNGS | · · · · · · · · · · · · · · · · · · · | | | | MICRO: ((1) | ) PERIVASCULAR INFILTRATE(S) ISSUES WERE MICROSCOPICALLY NORMAL: | | | | HEART | LIVER ADRENAL GL | | | | SPLEEN | THYMIC REGION ENAIN | | | | OVARIES | NASAL CAVITY LARYNY | | | | Trachea | KIDNEYS | | ANIKAL 28239 | 16-FEB-92 | STUDY DAY 41 | | | TYPE OF DEATH: SC<br>ORGAN WEIGHT | | CE | | | LIVER | ABS.(G) REL<br>14.247 4.94 | 7 | | | KIDNEYS | 2.187 0.75 | | SIZE INCREASE | | Lungs | 1.287 0.44 | | SLIGHY | | THYMIC REGION | 0.258 0.09 | | SIZO INCREASE | | TERMINAL BODY WT. | 288.0 | | TWO NODES: 10X6X3 MM, 12X8X3 MM | | | | MICRO+ 5 | PLASMACYTOSIS | | | | MICRO: 2 | LYMPHOID HYPERPLASIA | | | | LUNGS | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | THE FOLLOWING B | CHE 2X2 MM WHITE FOCUS, LEFT LORE | | | | HEART | ISSUES WERE MICROSCOPICALLY NORMAL: | | | | SPLEEN | THYMIC REGION ERAIN | | | | OVARIES | NASAL CAVITY LARYNX | | | | TRACHEA | LUNGS KIDNEYS | | INDIAL 28240 | 15-FEB-92 | STUDY DAY 40 | | | YPE OF DEATH: SCH | EDULED SACRIFIC | E | •** | | RGAN WEIGHT | ABS.(G) REL | | | | CIDNEYS | 15.389 4.970<br>2.453 0.793 | 41,444 | COLOR CHANGE, FOCAL/MULTIFOCAL | | UNGS | 1.178 0.30 | | PUNCTATE RED FOCI, RIGHT | | HYMIC REGION | 0.169 0.03 | | DIAPHRAGMATIC LORE | | ERMINAL BODY WT. | 309.2 | GROSS: | DILATED PELVIS | | | | | SEVERE, BILATERAL | | | | MICRO+ 4 | HYDRONEPHROSIS<br>BILATERAL | | | | MICRO: ((3)) | NEPHRITIS, INTERSTITIAL | | | | ((2)) | UNILATERAL, LEFT KIDNEY TUBULAR BASOPHILIA | | | | ((2)) | ASSOCIATED WITH INPLANMATION IN LEFT | | | | | RIDNEY | | | | URETER | | | | | GROSS: | DILATATION/DISTENTION | | | | | 2Y NORMAL Diller | GROSS: DILATATION/DISTENTION 2X NORMAL, BILATERAL THE FOLLOWING TISSUES WERE MICROSCOPICALLY BORMAL: INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | GRGUP: 0 PPH | FEMALE | | | | |------------------------------------|-----------------|------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------| | ANIMAL 28240 ( | | | | | | | <del></del> | HEART | LIVER<br>THYMIC REGION<br>NASAL CAVITY<br>LUNGS | ADRENAL GL | | | | SPLEEN | THYMIC REGION | ERAIN | | | | OVARIES | NASAL CAVITY | LARYHX | | | | TRACHEA | LUNGS | URETER | | ANIMAL 28242 | 17-FEE-92 | STUDY DAY 42 | | | | | | | | | | TTUES | ABS. (G) RE | LYMPH ND, 5-MAN 16 GROSS: 4 MICRO+ 4 8 MICRO: 3 KIDNEYS MICRO: (2) | | | | MITCHITAGE | 11./89 3./ | GROSS: | SICE INCREASE | | | TIDICS | 1.9/4 0.6. | | ZX NORHAL, S | EVERAL NODES | | THYMIC DECION | 0.213 0.44 | 4 MICRO+ 4 | PLASHACITOSIS | | | TERMINE FOR OF | 211 4 | MICRO: 3 | LYMPHOID HYPERPL | ASIA | | TERRITARE BODI WI. | 311.4 | KIDNEYS | | | | | | | | | | | | (1) | TUBULAR BASOPHIL | IA | | | | THE FOLLOWING T | ISSUES WERE MICROS | COPICALLY NORMAL: | | | | nrakT<br>Entrod | LIVER<br>THYMIC REGION<br>NASAL CAVITY | ADRENAL GL | | | | SPLEEN | THYMIC REGION | ERAIN | | - | | TRACHEA | NASAL CAVITY | LARYNX | | | | IRACHEA | Lungs | | | ANIMAL 28276 | 17-FEB-92 | STUDY DAY 42 | | | | TYPE OF DEATH: SCI | EDULED SACRIF | CE | | | | ORGAN WEIGHT | ABS. (G) REI | Lungs | | | | LIVER | 11.999 4.17 | 5 GROSS: | COLOR CHANGE, PO | CAL/MULTIFOCAL | | KIDHEAS | 1.622 0.63 | 14 | MOTTLED PINK | AND TAH, ALL LOBES | | LUNGS | 1.138 0.39 | 6 MICRO: EXAMINE | D - NO SIGNIFICANT | LESIONS | | THYMIC REGION | 0.290 0.10 | I THE FOLLOWING T | ISSUES WERE MICROS | COPICALLY HORHAL: | | TERMINAL BODY WT. | 287.4 | HEART | LIVER | ADRENAL GL | | | | Spleen | THYMIC REGION | Frain | | | | Gyaries | NASAL CAVITY | LARYNX | | | | STUDY DAY 42 CE LUNGS GROSS: 4 6 MICRO: EXAMINE 1 THE FOLLOWING T HEART SPLEEN OVARIES TRACHEA | LUNGS | KIDNEYS | | | | | | | | AFINAL 28245<br>TYPE OF DEATH: SCH | EDULED SACRIF | CE | | | | ORGAN WEIGHT | ABS.(G) REI | CE GROSS: EXAMINE KIDNEYS HICRO: ((3) THE FOLLOWING T HEART SPLEEN OVARIES TRACHEA | D - NO SIGNIFICANT | LESTORS | | I.IVER | 14.018 4.46 | 0 KIDNEYS | | | | Kidneys | 2.140 0.66 | 1 HICRO: ((3) | ) MINERALIZATION | | | Lungs | 1.219 0.36 | 8 THE FOLLOWING T | ISSUES WERE MICROS | COPICALLY NORMAL: | | THYMIC REGION | 0.155 0.04 | 9 HEART | LIVER | ADRENAL GL | | TERMINAL BODY WT. | 314.3 | SPLEEN | THYMIC REGION | ERATH | | | | OVARIES | NASAL CAVITY | LARYNX | | | | TRACHEA | LUNGS | | | ANIMAL 28226 | 16-FEE-92 | STITUY DAY 41 | | | | TYPE OF DELTH. COL | COULTED SACRIES | C D | | | | ORGAN WEIGHT | ABS.(G) EFF | SKIN GROSS: 4 0 LUNGS | | | | LIVER | 13.464 4 84 | 3 CDOES. | ATORROTA | | | KIDNEYS | 1.762 0.63 | 4 | SYLITODII == | DOWN THUS THOMTS! 37514 | | LUNGS | 1.167 0.42 | ñ | BIDNIERAD, F. | RGHT PAWS, PARTIAL, 3X5MM | | THYMIC REGION | 0.246 0.06 | 8 LINGS | AREA | | | TERMINAL BODY WT. | 278.0 | GROSS | COLOR CHANGE, FO | CLI /MITMYPOCAT | | | | -twas; | Concretion, FO | CALL/ HULT, LEGICAL | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FC ADULT GEGITP . 0 PPM FEMALE ANIMAL 28226 (CONTINUED) ALL LOBES MOTTLED LIGHT BROWN TO LIGHT PINK HICRO: EXAMINED - NO SIGNIFICANT LESIONS THE FOLLOWING TISSUES WERE MICROSCOPICALLY MORNAL: HEART SKIN LIVER SPLEEN ADRENAL GL THYMIC REGION ERAIN LARYNX OVARIES TRACHEA NASAL CAVITY LUNGS KIDNEYS 28255 15-FEE-92 TYPE OF DEATH: SCHEDULED SACRIFICE ORGAN WEIGHT PEL. AES.(G) LIVER 13.155 4.506 KIDNEYS 1.968 0.674 LUNGS 1.218 0.417 THYMIC REGION 0.256 0.088 TERMINAL BODY WT. 291.9 STUDY DAY 40 LUNGS COLOR CHANGE, DIFFUSE GROSS: DARK PINK, ALL LOBES MICRO: EXAMINED - NO SIGNIFICANT LESIONS THE FOLLOWING TISSUES WERE MICROSCOPICALLY HORMAL: HEART LIVER ADRENAL GL SPLEEN **OVARIES** TRACHEA SPLEEN OVARIES TRACHEA THYMIC REGION NASAL CAVITY LUNGS BRAIN LARYNX KIDNEYS 28249 16-FEE-92 STUDY DAY 41 TYPE OF DEATH: SCHEDULED SACRIFICE ORGAN WEIGHT AES. (G) REL. LIVER 12.317 4.40€ KIDNEYS 1.900 0.680 LUNGS 0.417 1.166 THYMIC REGION 0.205 0.073 TERMINAL ECDY WT. 279.5 GROSS: EXAMINED - NO SIGNIF CANT LESIONS MICRO: EXAMINED - NO SIGNIFICANT LESIONS THE FOLLOWING TISSUES WERE MICROSCOPICALLY NORMAL: HEART LIVER ADRENAL GL THYRIC REGION NASAL CAVITY LUNGS BRAIN LARYNX KIDNEYS ANIMAL 28275 18-PEB-92 STUDY DAY 43 TYPE OF DEATH: SCHEDULED SACRIFICE ORGAN WEIGHT REL. AES.(G) LIVER 13.170 4.267 **EIDNEYS** 2,033 0.659 LUNGS 1.184 0.384 THYRIC REGION 0.205 0.066 TERMINAL BODY WT. 308.6 LYMPH IID, S-MAN GROSS: SIZE INCREASE 3X NORMAL, LEFT MIGRO+ 4 PLASMACYTOSIS LYMPHOID HYPERPLASIA MICRO: 3 THE FOLLOWING TISSUES WERE MICROSCOPICALLY HORMAL: HEART PLEEN **OVARIES** TRACHEA LIVER THYMIC REGION HASAL CAVITY LUNGS ADRENAL GL BRAIN LARYNX KIDNEYS 28278 17-PEB-92 STUDY DAY 42 TYPE OF DEATH: SCHEDULED SACRIFICE ORGAN WEIGHT ABS.(G) REL LIVER 14.254 4.262 KIDNEYS 1.856 0.558 LUNGS 1.207 0.363 THYMIC REGION 0.217 0.065 TERHINAL BODY WT. 332.9 GROSS: EXAMINED - NO SIGNIFICANT LESIONS MICRO: EXAMINED - NO SIGNIFICANT LESIONS THE FOLLOWING TISSUES WERE MICROSCOPICALLY MORNAL: HEART LIVER ADRENAL GL SPLEEN THYMIC REGION ERAIN OVARTES NASAL CAVITY LARYNX TRACHEA LUNGS KIDNEYS See necropsy protocol page for list of tissues examined grossly and for explanation of grades. 730 3 INDIVIDUAL NECROPSY OECERVATIONS AND/OR MICHOSCOPIC DIAGNOSES | GROUP: 0 PPM | Penale | F3 ADULT | |-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ANIMAL 28256 TYPE OF DEATH: SC ORGAN WEIGHT LIVER KIDNEYS LUNGS THYMIC REGION TERMINAL BODY WT. | 15-FEB-92 HEDULED SACRIFICE ABS.(G) REL. 14.953 4.443 2.040 0.606 1.240 0.368 0.339 0.101 336.6 | GROSS: EXAMINED - NO SIGNIFICANT LESIONS MICRO: EXAMINED - NO SIGNIFICANT LESIONS THE PARAMETER OF SIGNIFICANT LESIONS THE PARAMETER OF SIGNIFICANT LESIONS THE PARAMETER OF SIGNIFICANT LESIONS THEART LIVER ADRENAL GL SPLEEN THYMIC REGION BRAIN OVARIES NASAL CAVITY LARYNX TRACHER LUNGS KINNEYS | INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | GROUP: 150 | 0 PPM 1 | PEMALE | FO ADULT | | |--------------------------------|-------------------|---------------|-----------------|---------------------------------------| | ANTHAL 282 | 77 17-FE | | | | | TYPE OF DEATH | | | STUDY DAY 42 | | | ORGAN WEIGHT | | REL. | ADRENAL GL | | | LIVER | 13.869 | 4.640 | GROSS: | COLOR CHANCE BOOM AND COLOR | | KIDNEYS | 2.0 | | GROSS. | COLOR CHANGE, FOCAL/MULTIFOCAL | | Lungs | 1.254 | | LYMPH ND, S-MAN | BILATERAL, PUNCTATE BROWN FOCUS | | THYMIC REGION | 0.291 | 0.097 | GROSS: | SIZE INCREASE | | TERMINAL BODY | WT. 298.9 | | | ONE NODE ON RIGHT SIDE 3X NORMAL | | | | | NASAL CAVITY | a divident dibb on holabia | | | | | MICRO: 1 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | | | | | ANIMAL 2827 | 72 15-FEE | 1-92 | CTITU DAY 40 | | | TYPE OF DEATH: | SCHEDULED S | ACRIFICE | STUDY DAY 40 | | | ORGAN WEIGHT | ABS.(G) | REL. | | - NO SIGNIFICANT LESIONS | | LIVER | 13.910 | 4.773 | NASAL CAVITY | NO SIGNIFICALL DESIGNS | | KIDNEYS | 1.942 | 0.666 | MICRO: 1 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | LUNGS | 1.195 | 0.410 | | OLINCIONI EFIINELICM | | THYMIC REGION | 0.173 | 0.059 | | | | TERMINAL BODY | WT. 291.4 | | | | | | | | | | | AN1 HAL 2827 | 0 17-FEE | 1-92 | STUDY DAY 42 | | | TYPE OF DEATH: | SCHEDULED S | ACRIPICE | | | | ORGAN WEIGHT | λBS.(G) | | | - NO SIGNIFICANT LESIONS | | LIVER | 12.512 | 4.199 | NASAL CAVITY | | | KIDNEYS | 2.430 | 0.815 | MiCRO: 1 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | LUNGS | 1.139 | | | | | THYMIC REGION | | 0.082 | | | | TERMINAL BODY | WT. 298.0 | | | | | 41 | | | | | | ANIMAL 2828 | | | STUDY DAY 43 | | | TYPE OF DEATH: | | | | • | | ORGAN WEIGHT | ABG. (G) | | NASAL CAVITY | | | LIVER | 12.112 | 4.613 | MICRO: 1 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | Kidneys<br>Lungs | 1.736 | 0.661 | LUNGS | | | THYMIC REGION | 1.248 | 0.475 | GROSS: | COLOR CHANGE, FOCAL/HULTIFOCAL | | TERMINAL BODY | | 0.073 | | MOTTLED TAN AND RED, ALL LOBES | | TOTALLINA DODI | WI. 202.5 | | | | | | | | | | | ANIHAL 2825 | | -92 | STUDY DAY 41 | | | TYPE OF DEATH: | | ACRIFICE | | | | ORGAN WEIGHT | ABS. (G) | REL | GROSS: EXAMINED | - NO SIGNIFICANT LESIONS | | KIDNEYS | 13.230 | 4.717 | NASAL CAVITY | | | LUNGS | 1.939<br>1.270 | 0.691 | MICRO: 1 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | THYMIC REGION | 0.239 | 0.085 | | | | TERMINAL BODY | WT. 280.5 | 0.005 | | | | | | | | | | EMPLLY ACC- | | | | : | | ANIHAL 2826 | | | STUDY DAY 42 | | | TYPE OF DEATH:<br>ORGAN WEIGHT | | | 0V TN | | | LIVER | ABS.(G)<br>13.193 | REL.<br>4.590 | SKIN | OUTS AND ALLEYS | | KIDNEYS | 1.937 | 0.674 | GROSS: | SURFACE CHANGE | | LUNGS | 1.346 | 0.468 | | MULTIPLE BROWN 1MM RAISED AREAS ALONG | | <del>-</del> | ~,,, | 31700 | | LENGTH OF TAIL | #### INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | FO | 4 23117 M | |----|-----------| | rv | ADULT | | | | | | FO ADULT | | |-----------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------| | GROUP: | 150 PP | M F | EMALE | | | | | | | | ~~~~~ | | | ANIKAI. | | CONT INDED | | | | | THYMIC R | | 0.184 | 0.064 | NASAL CAVITY | | | TERMINAL | BODY WT. | 287.4 | | MICRO: 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | | | | | | ANIHAL | 28233 | 17-FEB | -02 | CRITIC DATE 45 | | | | | HEDULED S | | STUDY DAY 42 | | | ORGAN WE | | ABS. (G) | REL. | IVATEL NO C-MAN | | | LIVER | | 12.478 | 4.343 | LYMPH ND, S-MAN<br>GROSS: | SIZE INCREASE | | KIDNEYS | | 1.025 | 0.670 | GRO33: | 2X NORMAL | | LUNGS | | 1.537 | 0.465 | NASAL CAVITY | an notona | | THYMIC R | EGION | 0.262 | 0.091 | MICRO: 1 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | TERMINAL | BODY WT. | 287.3 | | | THE PROPERTY OF STEELINGS OF | | | | | | | | | | | | | | | | ANIKAL | 28225 | 18-FEB | | STUDY DAY 43 | | | | | HEDULED S | | | | | ORGAN WE | IGHT | ABS.(G) | | COLON | | | LIVER | | 14.775 | 4.476 | GROSS: | GASEOUS | | KIDNEYS | | 2.058 | 0.624 | LYMPH ND, MED | | | LUNGS | ec tou | 1.195 | 0.362 | GROSS: | COLOR CHANGE, DIFFUSE | | THYMIC RI | | 0.218 | 0.066 | ****** | DARK RED | | TEMILIAL | BODY WY. | 330.1 | | NASAL CAVITY | | | | | | | MICRO: 2<br>LUNGS | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | | | GROSS: | COLOR CHANCE FOOL GOVERNOON | | | | | | GRUSSI | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | | | MULTIPLE DARK RED FOCI, ALL LOBES | | TYPE OF I<br>ORGAN WE:<br>LIVER<br>KIDNEYS<br>LINGS<br>THYMIC RI<br>TERMINAL | CGHT<br>CGION | ABS.(G)<br>9.031<br>2.006<br>1.355<br>0.322<br>270.6 | REL.<br>3.337<br>0.741<br>0.501<br>0.119 | SKIN GROSS: NASAL CAVITY MICRO: 2 | CRUST/SCAB/SCALE LEFT PERINASAL REGION 2X2MM RED CRUST VACUOLIZATION OF OLFACTORY EPITHELIUM | | I DIGITINA | DODI WI. | 270.0 | | | | | | | | | | | | ANIMAL | 28257 | 17-FEB | -92 | STUDY DAY 42 | | | TYPE OF I | DEATH: SCI | HEDULED S | ACRIFICE | | | | ORGAN WE | <u> Ght</u> | ABS.(G) | REL. | LYMPH ND, S-MAN | | | LIVER | | 12.400 | 4.225 | GROSS: | SIZE INCREASE | | KIDNEYS | | | 0.645 | | | | | | 1.894 | | | TWO NODES, 10x6x4 MM, 15x8x4 MM | | LUNGS | | 1.127 | 0.384 | NASAL CAVITY | TWO NODES, 10X6X4 MM, 15X8X4 MM | | LUNGS<br>THYMIC RE | | 1.127<br>0.217 | | MICRO: 2 | TWO NODES, 10X6X4 MM, 15X8X4 MM VACUOLIZATION OF OLFACTORY EPITHELIUM | | LUNGS | | 1.127 | 0.384 | HICRO: 2<br>LUNGS | VACUOLIZATION OF OLFACTORY EPITHELIUM | | LUNGS<br>THYMIC RE | | 1.127<br>0.217 | 0.384 | MICRO: 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM COLOR CHANGE, FOCAL/MULTIFOCAL | | LUNGS<br>THYMIC RE | | 1.127<br>0.217 | 0.384 | HICRO: 2<br>LUNGS | VACUOLIZATION OF OLFACTORY EPITHELIUM | | LUNGS<br>THYMIC RE | | 1.127<br>0.217 | 0.384 | HICRO: 2<br>LUNGS | VACUOLIZATION OF OLFACTORY EPITHELIUM COLOR CHANGE, FOCAL/MULTIFOCAL | | LUNGS<br>THYMIC RE<br>TERMINAL | BODY WT. | 1.127<br>0.217<br>293.5 | 0.384 | MICRO: 2<br>LUNGS<br>GROSS: | VACUOLIZATION OF OLFACTORY EPITHELIUM COLOR CHANGE, FOCAL/MULTIFOCAL | | LUNGS THYMIC RE TERMINAL | BODY WT. | 1.127<br>0.217<br>293.5 | 0.384<br>0.074 | HICRO: 2<br>LUNGS | VACUOLIZATION OF OLFACTORY EPITHELIUM COLOR CHANGE, FOCAL/MULTIFOCAL | | LUNGS THYMIC RETERMINAL | BODY WT. 28267 DEATH: SCI | 1.127<br>0.217<br>293.5 | 0.384<br>0.074 | MICRO: 2 LUNGS GROSS: STUDY DAY 42 | VACUOLIZATION OF OLFACTORY EPITHELIUM COLOR CHANGE, FOCAL/MULTIFOCAL 1X1 MM RED FOCI, LEFT LOBE | | LUNGS THYMIC RETERMINAL ANIMAL TYPE OF I | BODY WT. 28267 DEATH: SCI | 1.127<br>0.217<br>293.5 | 0.384<br>0.074 | MICRO: 2 LUNGS GROSS: STUDY DAY 42 | VACUOLIZATION OF OLFACTORY EPITHELIUM COLOR CHANGE, FOCAL/MULTIFOCAL | | LUNGS THYMIC RETERMINAL TYPE OF CORGAN WES | BODY WT. 28267 DEATH: SCI | 1.127<br>0.217<br>293.5<br>17-FEB:<br>HEDULED SI<br>ABS.(G) | 0.384<br>0.074<br>-92<br>ACRIFICE<br>REL. | MICRO: 2 LUNGS GROSS: STUDY DAY 42 GROSS: EXAMINED NASAL CAVITY | VACUOLIZATION OF OLFACTORY EPITHELIUM COLOR CHANGE, FOCAL/MULTIFOCAL 1X1 MM RED FOCI, LEFT LOBE - NO SIGNIFICANT LESIONS | | LUNGS THYMIC RETERMINAL ANYMAL TYPE OF I ORGAN WEI LIVER | BODY WT. 28267 DEATH: SCI | 1.127<br>0.217<br>293.5<br>17-FEB-<br>HEDULED S/<br>ABS.(G)<br>14.510 | 0.384<br>0.074<br>-92<br>ACRIFICE<br>REL.<br>4.656 | MICRO: 2 LUNGS GROSS: STUDY DAY 42 GROSS: EXAMINED | VACUOLIZATION OF OLFACTORY EPITHELIUM COLOR CHANGE, FOCAL/MULTIFOCAL 1X1 MM RED FOCI, LEFT LOBE - NO SIGNIFICANT LESIONS RHINITIS | | LUNGS THYMIC RETERMINAL ANIMAL TYPE OF CORGAN WEIL LIVER KIDNEYS LUNGS THYMIC RE | 28267<br>DEATH: SCI | 1.127<br>0.217<br>293.5<br>17-FEB<br>HEDULED S/<br>ABS.(G)<br>14.510<br>1.482<br>2.223<br>0.193 | 0.384<br>0.074<br>-92<br>ACRIFICE<br>REL.<br>4.656<br>0.476 | MICRO: 2 LUNGS GROSS: STUDY DAY 42 GROSS: EXAMINED NASAL CAVITY MICRO: ((1)) | VACUOLIZATION OF OLFACTORY EPITHELIUM COLOR CHANGE, FOCAL/MULTIFOCAL 1X1 MM RED FOCI, LEFT LOBE - NO SIGNIFICANT LESIONS | | LUNGS THYMIC RETERMINAL TYPE OF LORGAN WEILIVER KIDNEYS LUNGS | 28267<br>DEATH: SCI | 1.127<br>0.217<br>293.5<br>17-FEB-<br>HEDULED S/<br>ABS.(G)<br>14.510<br>1.462<br>2.223 | 0.384<br>0.074<br>-92<br>ACRIFICE<br>REL.<br>4.656<br>0.476<br>0.713 | MICRO: 2 LUNGS GROSS: STUDY DAY 42 GROSS: EXAMINED NASAL CAVITY MICRO: ((1)) | VACUOLIZATION OF OLFACTORY EPITHELIUM COLOR CHANGE, FOCAL/MULTIFOCAL 1X1 MM RED FOCI, LEFT LOBE - NO SIGNIFICANT LESIONS RHINITIS | INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | GROUP: 150 PP | M FEMALE | FO ADULT | | |--------------------|----------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ANIMAL 28280 | 18-FEE-92 | STUDY DAY 43 | | | TYPE OF DEATH: SC | | 3 | | | ORGAN WEIGHT | ABS.(G) REL. | NASAL CAVITY | | | LIVER | 12.878 4.238 | MICRO: 1 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | KIDNEYS | 2.112 0.695 | KIDNEYS | | | LUNGS | 1.225 0.403 | GROSS: | DILLTED PELVIS | | THYMIC REGION | 0.223 0.073 | | MODERATE, RIGHT | | TERMINAL BODY WT. | 303.9 | | | | ANIMAL 28258 | 15-FER-92 | STUDY DAY 40 | | | TYPE OF DEATH: SC | | | | | ORGAN WEIGHT | ABS.(G) REL. | NASAL CAVITY | | | LIVER | 14.665 4.845 | MICRO: 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | KIDNEYS | 2.001 0.661 | LUNGS | | | LUNCS | 1.216 0.402 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | THYMIC REGION | 0.178 0.059 | | BROWN FOCAL AREAS, RIGHT LOBES | | TERMINAL BODY WT. | 302.7 | | | | ANIMAL 28262 | 16-FEB-92 | STUDY DAY 41 | | | TYPE OF DEATH: SC | | | | | ORGAN WEIGHT | ABS.(G) REL. | ADRENAL GL | | | KIDNEYS | 14.721 4.419 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | LUNGS | 2.203 0.661 | | BILATERAL ONE BROWN PUNCTATE FOCAL | | THYMIC REGION | 1.373 0.412<br>0.250 0.075 | ******** | AREA | | TERMINAL BODY WT. | 333.1 | LYMPH ND, S-MAN | | | TERMINAL BODI WT. | 333.1 | GROSS: | SIZE INCREASE | | | | Washing and the second | ALL NODES, 3-4X NORMAL | | | | NASAL CAVITY | MANAGEMENT OF THE PARTY | | | | MICRO: 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | ANIMAL 28220 | 16-FEB-92 | STUDY DAY 41 | | | TYPE OF DEATH: SCI | | | | | ORGAN WEIGHT | ABS.(G) REL. | OVARIES | | | LIVER | 10.642 3.817 | GROSS: | CYST | | KIDNEYS | 1.838 0.659 | | LEFT 10MM IN DIAMETER, FILLED WITH | | LUNGS | 1.191 0.427 | | CLEAR RED FLUID | | THYMIC REGION | 0.186 0.067 | NASAL CAVITY | | | TERMINAL BODY WT. | 278.8 | MICRO: 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | GROUP: 750 PP | | FEMALE | FO ADULT | | | |------------------------------------|----------------|----------------|------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | | | | ANTMAL 28266 | 14-FE | | STUDY DAY 39 | | | | TYPE OF DEATH: SCI<br>ORGAN WEIGHT | ABS.(G) | | CDOOG THE | | | | LIVER | 11.162 | REL.<br>4.171 | GROSS: EXAMI | NED | - NO SIGNIFICANT LESIONS | | KIDNEYS | 2.213 | 0.827 | NASAL CAVITY<br>HICRO: | 2 | RHINITIS | | LUNGS | 1.219 | 0.456 | | 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | THYMIC REGION | 0.242 | 0.090 | | - | THE SECTION OF CHIRCION EPITHELIUM | | TERMINAL BODY WT. | 267.6 | | | | | | ANIMAL 28281 | 16-FE | 3-92 | STUDY DAY 41 | | | | TYPE OF DEATH: SCI | HEDULED S | ACRIFICE | | | | | ORGAN WEIGHT | ABS.(G) | REL. | LYMPH ND, S-M | AN | | | LIVER | 14.382 | 4.895 | GROSS: | | SIZE INTREASE | | KIDNEYS<br>LUNGS | 2.168 | 0.738 | | | SLIGHT TO 2X NORMAL | | THYMIC REGION | 1.166 | 0.397 | NASAL CAVITY | _ | | | TERMINAL BODY WT. | 0.229<br>293.8 | 0.078 | MTCRO: | 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | | | | | | ANIMAL 28236 | 18-FEE | | STUDY DAY 43 | | | | TYPE OF DEATH: SC! | | | | | | | ORGAN WEIGHT | ABS.(G) | REL. | COLON | | • | | LIVER<br>KIDNEYS | 11.857 | 4.188 | GROSS: | | GASEOUS | | LUNGS | 1.841 | 0.650<br>0.382 | NASAL CAVITY | 4 | mustle=== | | THYMIC REGION | 0.186 | 0.966 | | 2<br>2 | RHINITIS | | TERMINAL BODY WT. | 283.1 | 0.00 | | 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | | | | | | ANIMAL 28250 | 14-FEE | | EAUDY DAY 39 | | | | TYPE OF DEATH: SCH | | | | | | | ORGAN WEIGHT | ABS.(G) | REL. | ADRENAL GL | | | | KIDNEYS | 12.259 | 4.592<br>0.769 | GROSS: | | COLOR CHANGE, FOCAL/MULTIFOCAL | | LUNGS | 1.138 | 0.426 | | | BILATERAL, PUNCTATE BROWN FOCAL<br>AREAS, SEVERAL | | THYMIC REGION | 0.099 | 0.037 | LYMPH ND, S-M | AN | AREAS, SEVERAL | | TERMINAL BODY WT. | 267.0 | | GROSS: | <i>7</i> 21 | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | | | RIGHT SIDE MOTTLED RED AND CREAM | | | | | THYMIC REGION | | The state of s | | | | | GROSS: | | SIZE DECREASE | | | | | | | 0.50 OF NORMAL | | | 1 | | NASAL CAVITY | _ | | | | | | | 2<br>2 | PHINITIS | | | | | LUNGS | 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | | GROSS: | | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | | | ALL LOBES MOTTLED LIGHT BROWN AND PALE PINK | | | | | | | | | ANIMAL 28271 | 15-FEB | | STUDY DAY 40 | | | | TYPE OF DEATH: SCH<br>ORGAN WEIGHT | ABS.(G) | REL. | CROCK. BY | . I Eiro | NO OZGUTURGANIE A INC. | | LIVER | 12.319 | 4.233 | NASAL CAVITY | MED | - NO SIGNIFICANT LESIONS | | KIDNEYS | 1.737 | 0.597 | | 3 | VACUOLIZATION OF ULFACTORY EPITHELIUM | | LUNGS | 1.124 | 0.386 | ********* | - | THE TENTE OF OF OBSACTORY EPITHESIUM | | THYMIC REGION | 0.200 | 0.069 | | | | | | | | | | | INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FO ADULT GROUP: 750 PPM FEMALE. ANIMAL 28271 (CONTINUED) TERMINAL BODY WT. 291.0 | ANIMIL 20263 | 10-FEB-92 | STUDY DAY 43 | | |-----------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------| | TYPE OF DEATH: SCI | LDULED SACRIFICE | | | | ORGAN WEIGHT | ABS.(G) REL. | ADRENAL GL | | | LIVER KIDNEYS LUNGS THYMIC REGION TERMINAL BODY WT. | 14.076 4.327<br>2.206 0.678<br>1.329 0.409<br>0.176 0.054<br>325.3 | GROSS: LYMPH ND, S-MAN GROSS: NASAL CAVITY MICRO: 2 | COLOR CHANGE, FOCAL/MULTIFOCAL PUNCTATE BROWN FOCI, 1X1X1MM, BILATERAL SIZE INCREASE 2X NORMAL, RIGHT RHINITIS | | | | LUNGS 3 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL MOTTLED DARK RED AND TAN, ALL LOBES DARK RED FOCAL AREA, 1X2X2MM, RIGHT DIAPHRAGMATIC LOBE | | ANIMAL 28223 | 15-FEB-92 | STUDY DAY 40 | | |-------------------|-------------------|--------------|-----------------------------------------| | | HEDULED SACRIFICE | | | | ORGAN WEIGHT | ABS.(G) REL. | LIVER | | | LIVER | 13.283 4.800 | GROSS: | COLOR CHANGE, DIFFUSE | | KIDNEYS | 1.953 0.706 | | DARK RED, ALL LOBES | | LUNGS | 1.250 0.452 | ADRENAL GL | | | THYMIC REGION | 0.197 0.071 | GROSS: | COLOR CHANGE, DIFFUSE | | TERMINAL BODY WT. | 276.7 | | RED-BROWN, BILATERAL | | | | NASAL CAVITY | | | | | MICRO: 3 | 3 VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | | | | DARK RED FOCAL AREAS, ALL LOBES | | ANIMAL 28283 | 15-FEB-92 | STUDY DAY 40 | | |-------------------|----------------|-----------------|----------------------------------------| | | HEDULED SACRIE | ICE | | | ORGAN WEIGHT | ABS.(G) RE | L. SKIN | | | LIVER | 12.305 4.3 | 70 GROSS: | SURFACE CHANGE | | Kidneys | 2.178 0.7 | 38 | 1X1 MM, BROWN, RAISED AREAS, TAIL SKIN | | LUNGS | 1.265 0.4 | 29 NASAL CAVITY | THE SKIN | | THYMIC REGION | 0.207 0.0 | 70 MICRO: ((2)) | RHINITIS | | TERMINAL BODY WT. | 295.1 | ``3`` | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | 2 | ATROPHY, OLFACTORY EPITHELIUM | | ANIMAL 2826 | | 92 | STUDY DAY 44 | | | |----------------|--------------|-------|--------------|---|---------------------------------------| | TYPE OF DEATH: | SCHEDULED SA | | | | | | ORGAN WEIGHT | ABS.(G)_ | REL. | NASAL CAVITY | | | | LIVER | 11.953 | 4.100 | MICRO: | 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | Kidneys | 1.808 | 0.620 | LUNGS | - | THE STATE OF CAPACIONS EPISHEDISM | | Lungs | 1.070 | 0.367 | GROSS: | | COLOR CHANGE, FOCAL/MULTIFOCAL | | THYMIC REGION | 0.290 | 0.099 | | | MOTTLED RED AND TAN, ALL LOBES | INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | GROUP: 750 | ) PPM | FEMALE | ro ADULT | | |--------------------------------|---------------|----------------------|-----------------------------|--------------------------------------------------------------------------------| | ANIMAL 2826 | O (CONTIN | | | | | TERMINAL BODY<br>ANIKAL 2825 | | .0<br>FEB-92 | STUDY DAY 43 | DARK RED FOCI, RIGHT APICAL LOBE | | TYPE OF DEATH: | SCHEDULE | D SACPIFICE | STODE DAT 43 | | | ORGAN WEIGHT | ABS.( | | ADRENAL GL | | | LIVE | 12.2 | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | KIDNEYS<br>LUNGS | 2.1<br>1.2 | | | DARK RED FOCUS, LEFT | | THE TIC REGION | 0.2 | | SKIN | | | TERMINAL BODY | | | GROSS: | SURFACE CHANGE MULTIPLE RAISED AREAS, PUNCTATE, NEAR TAIL TATTOOING NUMBERS | | | | | SKIN | THE TREE OF THE NUMBERS | | | | | GROSS: | ALOPECIA | | | | | | BILATERAL, FRONT PAWS, 25415MM AND 15X10MM | | | | | NASAL CAVITY | | | | | | MICRO: 2 | VACUGLIZATION OF OLFACTORY EPITHPLIUM | | | | | | | | ANIMAL 2825 | 216-1 | FEB-92 | STUDY DAY 41 | | | TYPE OF DEATH: | | | | | | OPGAN WEIGHT | ABS. ( | | GROSS: EXAMINE | ED - NO SIGNIFICANT LESIONS | | KIDNEYS | 10.57<br>1.88 | | NASAL CAVITY | | | LUNGS | 1.15 | | MICRO: 2 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | THYMIC REGION | 0.16 | | | | | TERMINAL BODY | | | | | | | | • | | | | ANIMAL 2822 | | FEB-92 | STUDY DAY 40 | | | TYPE OF DEATH: | | | | | | DRGAN WEIGHT | ABS.(C | | SKIN | | | LIVER<br>KIDNEYS | 12.25 | | GROSS: | SURFACE CHANGE | | LUNGS | | 54 0.747<br>04 0.381 | | TAIL NEAR BASE, 1X1X1MM BROWN RAISED | | THYMIC REGION | 0.19 | | NASAL CAVITY | AREA | | TERMINAL BODY | WT. 289. | | | VACUOLIZATION OF OLFACTORY EPITHELIUM | | | | | LUNGS | Western of Ouractori Epithebion | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL SEVERAL DARK RED 2X2MM FOCAL AREAS ON LEFT LOBE | | | | | | | | ANIMAL 2822 | | EB-92 | STUDY DAY 40 | | | TYPE OF DEATH:<br>ORGAN WEIGHT | ABS.(G | | CDACC. SULVEN | D 10 Graverson | | LIVER | 14.39 | | GROSE: EXAMINE NASAL CAVITY | D - NO SIGNIFICANT LESIGNA | | KIDNEYS | 2.32 | | MICRO: 3 | VACIOLIZATION OF OURLOSSES PRIMITE | | LUNGS | 1.30 | | (2) | VACUOLIZATION OF OLFACTORY EPITHELIUM RHINITIS | | THYMIC REGION | 0.22 | | (-/ | | | TERMINAL BODY V | vr. 300. | 6 | | | 15-FEB-92 ANIMAL 28221 STUDY DAY 40 TYPE OF DEATH: SCHEDULED SACRIFICE REL. 4.287 ADRENAL GL ORGAN WEIGHT ABS.(G' LIVER 12.9. COLOR CHANGE, FOCAL/MULTIFOCAL BILATERAL, MULTIPLE 1X1MM BROWN FOCI GROSS: 2.067 KIDNEYS 0.685 1.175 LUNGS 0.389 SKIN INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | GROUP: 750 PP | M FEHALE | FO ADULT | | |-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ANIMAL 28221 (C<br>THYMIC REGION<br>TERMINAL BODY WT. | CONTINUED)<br>0.194 0.064<br>301.7 | GROSS: | SURFACE CHANGE TAIL, SEVERAL RAISED BROWN ARFAS 1X1X1MM | | | | MICRO: 3 | VACUOLIZATION OF OLFACTORY EPITHELIUM | | ANIHAL 28230 TYPE OF DEATH: SCHORGAN WEIGHT LIVER KIDNEYS LUNGS THYMIC REGION TERMINAL BODY WT. | 17-FEB-32 HEDULED SACRIFICE ABS.(G) REL. 12.881 4.560 1.837 0.650 1.282 0.454 0.075 0.027 282.5 | THYMIC REGION GROSS: NASAL CAVITY MICRO: 3 LUNGS GROSS: | SIZE DECREASE 0.50 OF NORMAL VACUOLIZATION OF OLFACTORY EPITHELIUM ATROPHY, OLFACTORY EPITHELIUM COLOR CHANGE, FOCAL/MULTIFOCAL MOTTLED LIGHT BROWN AND LIGHT PINK | INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES | | | | FO ADULT | | |------------------------------------|-----------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | GROUP: 1500 P | PM 1 | FEMALE | | | | ANIMAL 28265 | 15-FE | <br>6-92 | STUDY DAY 40 | *************************************** | | TYPE OF DEATH: SC | HEDULED S | | DIGDI DAI 40 | | | ORGAN WEIGHT | | REL. | ADRENAL GL | | | LIVER | | 4.942 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | KIDNEYS | | 0.653 | | BILATERAL, SEVERAL BROWN PUNCTATE FOCI | | LUNGS | 1.067 | 0.392 | NASAL CAVITY | Total Divini Londini Divini Londini Divini Londini Divini | | THYMIC REGION | 0.133 | 0.049 | MICRO: 3 | | | TERMINAL BODY WT. | 2/2.4 | | | ANTERIOR TWO SECTIONS, DORSAL FORTION | | | | | THE FOLLOWING TI | SSUES WERE MICROSCOPICALLY MORMAL: | | | | | HEART | LIVER ADRENAL GL | | | | | SPLEEN | THYMIC REGION BRAIN | | | | | OVARIES | LARYNX TRACHEA | | | | | LUNGS | KIDNEYS | | | | | | | | ANIMAL 28269<br>TYPE OF DEATH: SCI | 14-FEE | 3-92 | STUDY DAY 39 | | | | | | | | | LIVER | 12.250 | REL. | ADRENAL GL | | | KIDNEYS | | 4.505<br>0.717 | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL | | LUNGS | | 0.451 | | BILATERAL, PUNCTATE BROWN FOCI, 2 ON | | THYMIC REGION | | 0.102 | NASAL CAVITY | EACH | | TERMINAL BODY WT. | 271.9 | | MICRO: 4 | ARRODIES AS EL GRADU PROGRESS CO. | | | | | MICRO: 4 | THE PLANT OF THE PARTY P | | | · | | THE FOLLOWING TI | ANTERIOR TWO SECTIONS, DORSAL PORTION SSUES WERE MICROSCOPICALLY NORMAL: | | | | | HEART | LIVER ADRENAL GL | | | | | SPLEEN | THYMIC REGION BRAIN | | | | | OVARIES | LARYNX TRACHEA | | | | | LUNGS | KIDNEYS | | | | | ** | | | ANIHAL 28279 | 15-FEE | -92 | STUDY DAY 40 | | | TYPE OF DEATH: SCH | IEDULED S | ACRIFICE | | | | ORGAN WEIGHT<br>LIVER | ABS.(G) | REL. | GROSS: EXAMINED | - NO SIGNIFICANT LESIONS | | KIDNEYS | 10.542 | 4.040 | NASAL CAVITY | | | LUNGS | | 0.721<br>0.409 | | | | THYMIC REGION | 0.227 | | | PRESENT ONLY IN ANTERIOR SECTION | | TERMINAL BODY WT. | | | | PRESENT ON LATERAL TURBINATE AND | | TENERAL BODI WI. | 200.9 | | 3 | LATERAL WALL | | | | | 3 | ATROPHY, OLFACTORY EFITHELIUM | | | | | THE FOLLOWING TO | PRESENT IN SECOND AND THIRD SECTIONS SSUES WERE MICROSCOPICALLY NORMAL: | | | | | HEART | LIVER ADRENAL GL | | • | | | SPLEEN | THYMIC REGION BRAIN | | • | | | OVARIES | LARYNX TRACHEA | | | | | LUNGS | KIDNEYS | | | | | | | | ANINAL 28268 | 15-FEB | -92 <sup>1</sup> | STUDY DAY 40 | | | TYPE OF DEATH: SCH | | | DAI 40 | | | ANIMAL 2826 | 8 | 15-FE | B-92 | STUDY DAY 40 | | |----------------|-----|---------|-----------|--------------|-----------------------------------| | TYPE OF DEATH: | SCI | HEDULED | SACRIFICE | | | | ORGAN WEIGHT | | ABS.(G) | REL. | STOMACH | • | | LIVER | | 11.942 | 4.216 | GROSS: | ULCERATED | | KIDNEYS | C | 1.888 | 0.667 | | GLANDULAR PORTION, MARKED | | LUNGS | | 1.187 | 0.419 | STOMACH | | | THYMIC REGION | | 0.169 | 0.060 | GROSS: | CONTENTS ABNORMAL | | TERMINAL BODY | WT. | 283.3 | | | BRIGHT YELLOW SEMI-SOLID MATERIAL | | | | | | OVARIES | | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. .=) #### TABLE 4 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FO ADULT CROID. 1500 PPM FEMALE ANIMAL 28268 (CONTINUED) CYST 2X2X2 MM, RIGHT (BRUKEN AT NECROPSY) GROSS: NASAL CAVITY MICRO: ATROPHY, OLFACTORY EPITHELIUM ANTERIOR TWO SECTIONS, DORSAL PORTION THE FOLLOWING TISSUES WERE MICROSCOPICALLY MORNAL: LIVER HEART STOMACH ADRENAL GL SPLEEN THYMIC REGION **OVARIES** LARYNX BRAIN TRACHEA LUNGS KIDNEYS ANIMAL 28254 15-FEB-92 TYPE OF DEATH: SCHEDULED SACRIFICE STUDY DAY 40 ORGAN WEIGHT ABS.(G) REL. ADRENAL GL 290.0 283.7 LIVER 11.915 4.109 KIDNEYS 1.926 0.661 1.134 LUNGS 0.391 THYMIC REGION 0.083 0.241 TERMINAL BODY WT. GROSS: COLOR CHANGE, DIFFUSE LIGHT RED, BILATERAL NASAL CAVITY MICRO: 3 ATROPHY, OLFACTORY EPITHELIUM ANTERIOR TWO SECTIONS, DORSAL PORTION THE FOLLOWING TISSUES WERE MICROSCOPICALLY NORMAL: LIVER HEART SPLEEN **OVARIES** LUNGS THYMIC REGION BRAIN LARYNX KIDNEYS ADRENAL GL TRACHEA 28243 16-FEB-92 TYPE OF DEATH: SCHEDULED SACRIFICE ORGAN WEIGHT ABS.(G) REL. LIVER 12.668 4.466 KIDNEYS 1.959 0.691 LUNGS 1.253 0.442 THYMIC REGION 0.204 0.072 TERMINAL BODY WT. STUDY DAY 41 GROSS: EXAMINED - NO SIGNIFICANT LESIONS NASAL CAVITY MICRO: ATROPHY, OLFACTORY EPITHELIUM ANTERIOR TWO SECTIONS, DORSAL PORTION THE FOLLOWING TISSUES WERE MICROSCOPICALLY NORMAL: HEART SPLEEN OVARIES LIVER THYMIC REGION ADRENAL GL BRAIN TRACHEA LUNGS LARYNX KIDNEYS <u>an ihal</u> 28247 16-FEB-92 TYPE OF DEATH: SCHEDULED SACRIFICE ORGAN WEIGHT ABS.(G) 11.224 REL. 4.079 LIVER 2.025 KIDNEYS 0.736 LUNGS 1.094 0.398 THYMIC REGION 0.201 0.073 TERMINAL BODY WT. 275-1 STUDY DAY 41 NASAL CAVITY MICRO: 3 ATROPHY, OLFACTORY EPITHELIUM ANTERIOR TWO SECTIONS, DORSAL PORTION LUNGS 🎊 GROSS: COLOR CHANGE, FOCAL/HULTIFCCAL PUNCTATE RED FOCI, ALL LOBES THE FOLLOWING TISSUES WERE MICROSCOPICALLY NORMAL: LIVER ADRENAL GL HEART SPLEEN THYMIC REGION 9 **OVARIES** LARYNX BRAIN TRACHEA LUNGS KIDNEYS ANIMAL 28285 17-FEB-92 STUDY DAY 42 TYPE OF DEATH: SCHEDULED SACRIFICE ō 1,0 O Q #### TABLE 4 ### PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES FO ADULT | | | | FO ADULT | | | |------------------------------------|----------|--------|-------------------|----------------------------------|---------------------------------------------| | GROUP: 1500 P | PM 1 | FEMALE | | | | | ANTHAL 28285 ( | CONTINUE | <br>)} | | | | | ORGAN WEIGHT | ABS.(G) | REL. | ADRENAL GL | | | | LIVER | 13.212 | 4.484 | | CORTICAL CELL HY | PERTROPHY | | KIDNEYS | 1.844 | | NASAL CAVITY | | | | LUNGS | | 0.459 | MICRO: 4 | ATROPHY, GLFACTO | DRY EPITHELIUM | | THYMIC REGION | 0.256 | | | | D SECTIONS, DORSAL PORTION | | TERMINAL BODY WT. | 294.6 | | ((3)) | NECROSIS OF OLFA THIRD SECTION | ACTORY EPITHELIUM | | | | | LUNGS | | | | | | | GROSS: | | E BLACK FOCUS, RIGHT | | | | | KIDTTYS | DIAPHRAGMATI | IC LOBE | | | | | | MINERALIZATION | | | | | | | MINERALIZATION | SCOPICALLY NORM/L: | | | | | HEART | LIVER | SPLEEN | | | | | THYMIC REGION | BRAIN | OVARIES | | | | | LARYNX | TRACHEA | LUNGS | | | | | | | | | ANIHAL 28231 | | | CMITTURE DATE AND | | | | ANIMAL 28231<br>TYPE OF DEATH: SCI | 15-FEI | | STUDY DAY 40 | | | | ORGAN WEIGHT | | REL. | SKIN | | | | LIVER | 11.554 | | GRUSS: | ALOPECIA | · · | | KIDNEYS | 2.128 | 0.771 | | | EAS PARTIAL, ABDOMINAL | | Lungs | 1.199 | 0.434 | | REGION AND I | LEFT SIDE | | THYMIC REGION | 0.182 | 0.066 | NASAL CAVITY | | | | TERMINAL BODY WT. | 276.2 | | MICRO: 3 | ATROPHY, OLFACTO<br>ANTERIOR TWO | DRY EPITHELIUM<br>D SECTIONS, DORSAL PORTIO | | | | | | SSUES WERE MICROS | SCOPICALLY NORMAL: | | | | | HEART | LIVER | ADRENAL GL | | | | | SKIN | SPLEEN | THYMIC REGION | | | | | ERAIN | OVARIES | LARYNX | | | | | TRACHEA | Lungs | KIDNEYS | | | | | | | | | ANIMAL 28246<br>TYPE OF DEATH: SCH | 14-FEI | | STUDY DAY 39 | | | | | | REL. | ADRENAL GL | | | | LIVER | 12.610 | | GROSS: | COLOR CHANGE, FO | CAL/MULTIFOCAL | | KIDNEYS | 1.883 | 0.665 | | | ATE FOCI, BILATERAL | | Lungs | 1.386 | 0.489 | NASAL CAVITY | | ,,,, | | THYMIC REGION | 0.340 | 0.120 | HICRO: 4 | ATROPHY, OLFACTO | ORY EPITHELIUM | | PERMINAL BODY WT. | 283.2 | | | ANTERIOR TWO | SECTIONS, DORSAL PORTION | | | | | LUNGS | | | | | | | GROSS: | COLOR CHANGE, PO | | | | | | | | CI, LEFT LOEE | | | | | | | SCOPICALLY NORMAL: | | | | | HEART | LIVER | ADRENAL GL | | | | | SPLEEN | THYMIC REGION | BRAIN | | | | | OVARIES<br>LUNGS | Larynx<br>Kidneys | TRACHEA | | | | | 201102 | | | | | | | | | d t | | | | | | | | | AMIMAL 28234<br>TYPE OF DEATH: SCH | 17-FE | | STUDY DAY 42 | | | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. OVARIES ABS.(G) REL. ORGAN WEIGHT INDIVIDUAL NECROPSY GESERVATIONS AND/OR MICROSCOPIC DIAGNOSES | P | n | ADULT | |---|---|-------| | | | | | | | _ | | FO ADULT | | |------------------------|--------------------|-------------------|----------------|-----------------------------------------|------------------------------------------------------------------| | GROUP: | 1500 PF | M F | emale | | | | ANTHAL | 28234 (0 | ONTINUED | } | | | | LIVER | | 13.934 | 4.817 | GROSS: | CYST | | KIDNEYS | | 1.759 | 0.608 | | 1GX5X2 MM, LEFT | | LUNGS | | 1.106 | 0.382 | *************************************** | | | THYMIC RE | | 0.198 | 0.068 | MICRO: 4 | ATROPHY, OLFACTORY EPITHELIUM | | TERMINAL | EODY WT. | 289.3 | | | ANTERIOR TWO SECTIONS, DORSAL PORTION | | | | | | I'MGS | COLOR GUILLER - BOOLS (MIN | | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL PUNCTATE RED FOCI, LEFT LOBES | | | | | | KIDNEYS | | | | | | | | ) MINERALIZATION | | | | | | | ISSUES WERE MICROSCOPICALLY HORMAL: | | | | | | HEART<br>SPLEEN | LIVER ADRENAL GL | | | | | | OVARIES | THYMIC REGION BRAIN LARYNX TRACHEA | | | | | | LUNGS | LARYNX TRACHEA | | | | | | | | | ANDIAL | 28241 | 18-FEB | | STUDY DAY 43 | | | TYPE OF D<br>ORGAN WEI | | | | | | | LIVER | GHI | ABS.(G)<br>14.019 | A 463 | THYMIC REGION GROSS: | SIZE DECREASE | | KIDNEYS | | | 0.654 | GROSS: | 0.50 OF NORMAL | | LUNGS | | | | NASAL CAVITY | 0.30 OF MCMAN | | THYMIC RE | GION | 0.130 | 0.419<br>0.041 | MICRO: 4 | ATROPHY, OLFACTORY EPITHELIUM | | TERMINAL : | BODY WT. | 314.1 | | | ANTERIOR TWO SECTIONS, DORSAL PORTICH | | | | | | LUNGS | | | | | | | GROSS: | COLOR CHANGE, FOCAL/MULTIFOCAL MULTIPLE DARK RED FOCI, ALL LOBES | | | | | | MICRO+((2) | ) PERIVASCULAR INFILTRATE(S) | | | | | | | ALVEOLAR HISTIOCYTOSIS | | | | | | | PHEUMONITIS, INTERSTITIAL | | | | | | | ISSUES WERE MICROSCOPICALLY NORMAL: | | | | | | HEART | LIVER ADRENAL GL | | | | | | SPLEEN | THYMIC REGION ERAIN | | | | | | OVARIES | LARYNX TRACHEA | | | | | | KIDNEYS | | | ANIDIAL | 28251 | 15-FEB | -92 | STUDY DAY 40 | | | TYPE OF D | | | | | · . | | ORGAN WEI | | | | | D - NO SIGNIFICANT LESTONS | | LIVER | | 13.231 | 4.473 | NASAL CAVITY | D - NO SIGNIFICANT LESIONS | | Kidneys | | 2.142 | 0.724 | MICRO: 3 | ATROPHY, OLFACTORY EPITHELIUM | | Lungs | | 1.193 | 0.403 | | ANTERIOR TWO SECTIONS, DORSAL PORTION | | THYMIC RE | | 0.141 | 0.048 | | ISSUES WERE MICROSCOPICALLY HORMAL: | | TERMINAL | BODY WT. | 295.8 | | HEART | LIVER ADRENAL GL | | | | | | SPLEEN | THYHIC REGION BRAIN | | | | | | ovaries<br>Lungs | LARYNX TRACHEA<br>KIDNEYS | | | | | | | | | ANIMAL<br>TYPE OF D | 28284<br>PATH: SCH | 16-FEB | | STUDY DAY 41 | | | ORGAN WEI | | ABS.(G) | | | D - NO SIGNIFICANT LESIONS | | LIVER | | 12.074 | | NASAL CAVITY | n na andres samet MeditANG | | KIDHEYS | | 2.049 | 0.728 | MICRO: 4 | ATROPHY, OLFACTORY EPITHELIUM | | LUNGS | | 1.297 | | · | | | | | / | | • | | See necropsy protocol page for list of tissues examined grossly and for explanation of grades. KIDNEYS 0.074 THYMIC REGION INDIVIDUAL NECROPSY OBSERVATIONS AND/OR MICROSCOPIC DIAGNOSES PO ADULT 1500 PPM ANIMAL 28284 (CONTINUED) TERMINAL BODY WT. GROUP: MICRO: ((3)) MINERALIZATION THE POLLOWING TISSUES WERE MICROSCOPICALLY HORMAL: HEART SPLEEN LIVER THYMIC REGION ADRENAL GL BRAIN **OVARIES** LUNGS LARYNX TRACHEA STUDY DAY 53 28-FEE-92 28237 FEMALE ANIHAL TYPE OF DEATH: SCHEDULED SACRIFICE REL. ORGAN WEIGHT AES, (G) 3.686 10.409 LIVER 0.796 FIDNEYS 2.247 1.385 0.490 LUNGS G.307 0.109 THYHIC REGION GROSS: EXAMINED - NO SIGNIFICANT LESIONS HASAL CAVITY ATROPHY, OLPACTORY EPITHELIUM HICRO: ANTERIOR TWO SECTIONS, DORSAL PORTION THE FOLLOWING TISSUES WERE MICROSCOPICALLY HORMAL: 282.4 TERMINAL EODY WT. HEART SPLEEN **OVARIES** LIVER ADRENAL GL THYMIC REGION LARYNX ERAIN TRACHEA KIDNEYS LUNGS BRRC Report 91U0086 Appendix 7 Page 1 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD® Rats Individual Clinical Pathology Data (12 Pages) BRRC Report 91U0086 Appendix 7 Page 2 #### TABLE OF CONTENTS | Table | 1 | Abbreviati | Ons | 3 | |-------|---|------------|----------------------------------------|---| | Table | 2 | Males - | Individual Hematology - Week 7 | 5 | | Table | 3 | Males - | Individual Clinical Chemistry - Week 7 | 9 | #### TABLE 1 # PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY STUDY IN CD® RATS ABBREVIATIONS The following abbreviations appear in hematology reports when the parameter is reported. WBC = LEUROCYTES $(10^3/\mu 1)$ RBC = ERYTHROCYTES $(10^6/\mu 1)$ HGB = HENOGLOBIN (g/dl) HCT = REMATOCRIT (%) HCV . MEAN CORPUSCULAR VOLUME (um3) MCH = MEAN CORPUSCULAR HEHOGLOPEN (pg) MCHC = MEAN CORPUSCULAR HEMOGLOBIN CONCENTRATION (g/dl) PLAT = PLATELETS $(10^3/\mu 1)$ SEGS = SEGMENTED NEUTROPHILS (cells/ $\mu$ 1) LMPH = LYMP: TYTES (cells/µl) HONO = MONOCYTES (cells/µl) BASO \* BASOPHILS (cells/ $\mu$ l) $EOS = EOSINOPHILS (cells/<math>\mu$ l) BAND = BANDED NEUTROPHILS (cells/µ1) J LMON = LARGE MONOCYTES (cells/µl) IGRN = IMMATURE GRANULOCYTES (cells/µl) IERY = INMATURE ERYTHROCYTES (cells/#1) NRBC = NUCLEATED RBCs (cells/100 WBCs) RET = RETICULOCYTES (% of RECs) PT = PROTHROHBIN TIME (sec) APTT = ACTIVATED PARTIAL THRONBOPLASTIN TIME (sec) HBOD = HEINZ BODY (%) MHGB = METHEMOGLOBIN (g/d1) CLOT = CLOTTED QNS = QUANTITY NOT SUFFICIENT LA = LAB ACCIDENT NOS = NO SAMPLE DE = DATA ELIMINATED #### TABLE 1 ## PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS ABBREVIATIONS The following abbreviations appear in serum clinical chemistry reports when the parameter is reported. GLU = GLUCOSE (g/l) UN = UREA NITROGEN (mg/l) CREA = CREATININE (mg/l) AST = ASPARTATE AMINOTRANSFERASE (IU/1) ALT = ALANINE AMINOTRANSPERASE (IU/1) TP = TOTAL PROTEIN (g/l) ALB = ALBUHIN (g/1) GLOB = GLOBULIN (g/1) A/G = ALBUMIN/GLOBULIN RATIO TBIL = TOTAL BILIRUBIN (mg/l) DBIL = DIRECT BILIRUBIN (mg/l) IBIL = INDIRECT BILIRUBIN (mg/l) CPE = CREATINE KINASE (IU/1) LDH = LACTATE DEHYDROGENASE (IU/1) GGT = GAMMA-GLUTA TRANSFERASE (IU/1) SDH = SORBITOL DE. DROGENASE (IU/1) CHOL = CHOLESTEROL (g/1) TRIG = TRIGLYCERIDES (g/1) ALK = ALKALINE PHOSPHATASE (IU/1) $C\lambda = CALCIUM (mg/1)$ PROS = INORGANIC PHOSPHORUS (mg/1) NA = SODIUM (mmol/1) K = POTASSIUM (mmol/1) CL = CHLORIDE (mmol/1) GLDH = GLUTAMATS DEHYDROGENASE (IU/1) HB = SERUM HEMOGLOBIN (mg/1) QNS = QUANTITY NOT SUFFICIENT NOS = NO SAMPLE LA = LAB ACCIDENT DE = DATA ELIMINATED CLINPATHIREPORTS/PROP March 11, 1993 ### INDIVIDUAL HEMATOLOGY MALES GROUP: 0 PPM WEEK 7 | ANIMAL | RBC | HGB | нст | HCV | исн | MCHC | PLAT | WBC | SEGS | LMPH | |--------|-------|------|-------|------|------|------|------|------|--------|--------| | 28200 | 8.64 | 16.7 | 44.4 | 51. | 19.3 | 37.6 | 850. | 8.1 | 1053. | 6480. | | 28156 | 8.26 | 16.4 | 43.2 | 52. | 19.8 | 37.9 | 776. | 8.6 | 2752. | 5332. | | 29173 | 8.48 | 16.6 | 43.2 | 51. | 19.5 | 38.4 | 780. | 10.8 | 1728. | | | 28162 | B.35 | 16.1 | 42.9 | 51. | 19.2 | 37.5 | 744. | 9.2 | 920. | 8640. | | 28155 | 8.67 | 17.4 | 45.3 | 52. | 20.0 | 38.4 | 600. | 8.7 | | 7360. | | 28198 | 8.23 | 16.5 | 45.6 | 55. | 20.0 | 36.1 | 667. | 11.1 | 1653. | 6438. | | 28201 | 0.13 | 16.0 | 42.0 | 52. | 19.6 | 38.0 | 683. | | 2442. | 7881. | | 28180 | 7.91 | 16.7 | 43.5 | 55. | 21.1 | 38.3 | 799. | 10.7 | 3852. | 6206. | | 28159 | 8.64 | 16.9 | 45.3 | 52. | 19.5 | 37.3 | 764. | 13.6 | 4760. | 8704. | | 28167 | 8.74 | 17.7 | 45.3 | 52. | 20.2 | 39.0 | | 12.1 | 5324. | 5445. | | | | | -5.0 | J | 20.2 | 39.0 | 785. | 11.0 | 2200. | 8250. | | MEAN | 8.41 | 16.7 | 44.1 | 52. | 19.8 | 37.8 | 745 | | | | | S.D. | 0.274 | 0.53 | 1.27 | 1.5 | 0.55 | | 745. | 10.4 | 2668. | 7074. | | N | 10 | 10 | 10 | 10 | 10 | 0.80 | 73.8 | 1.73 | 1516.1 | 1266.0 | | | | | | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | ANIMAL | моно | BASO | EOS | BAND | THON | IGRN | IERY | NRBC | | | | 28200 | 405. | 0. | 162. | 0. | 0. | 0. | 0. | 0. | | ~~~~~ | | 28156 | 344. | 0. | 172. | Ó. | ō. | ö. | Ö. | | | | | 28173 | 324. | 0. | 108. | o. | ŏ. | ŏ. | ŏ. | ٥. | | | | 28162 | 368. | 0. | 552. | ō. | ŏ. | ŏ. | o. | 0. | | | | 28155 | 435. | 0. | 174. | ŏ. | ŏ. | o. | o. | 0. | | | | 28198 | 555. | ō. | 222. | ö. | ö. | 0. | | ٥. | | | | 28201 | 535. | ō. | 107. | ŏ. | ŏ. | 0. | 0. | ٥. | | | | 28180 | 0. | õ. | 136. | ő. | 0. | | ٥. | Q. | | | | 28159 | 968. | ō. | 363. | Õ. | | o. | 0. | ٥. | | | | 28167 | 440. | ŏ. | 110. | | 0. | 0. | 0. | ٥. | | | | _ , , | | ٠. | 440. | 0. | 0. | 0. | 0. | ٥. | | | | Mean | 437. | 0. | 211. | ٥. | 0. | 0. | 0. | • | | | | S.D. | 241.2 | 0.0 | 142.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0. | | | | N | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 0.0 | | | | | | | | | | 10 | TO | 10 | | | # PROPIONALDEHYDE: COMBINED REPRATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS #### INDIVIDUAL HEHATOLOGY MALES GROUP: 150 PPM WEEK 7 | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | |--------|-------|------|-------|------|---------------------------------------|------|-------|------|-------|--------| | ANIHAL | REC | HGB | HCT | HCV | нсн | HCHC | PLAT | WBC | SEGS | LMPH | | 28184 | 8.42 | 17.4 | 45.3 | 54. | 20.6 | 38.4 | CLOT | 7.3 | 1387. | 5621. | | 26167 | 0.26 | 16.1 | 43.8 | 53. | 19.4 | 36.7 | 646. | 9.4 | 846. | 7708. | | 28181 | 0.45 | 17.4 | 46.2 | 55. | 20.5 | 37.6 | 628. | 10.7 | 2354. | 8239. | | 28165 | 8.70 | 17.1 | 45.6 | 52. | 19.6 | 37.5 | 660. | 8.8 | 880. | 7304. | | 28199 | 8.01 | 16.4 | 42.9 | 54. | 20.4 | 38.2 | 854. | 8.8 | 1320. | 6688. | | 28150 | 8.64 | 17.0 | 44.4 | 51. | 19.6 | 38.2 | 781. | 10.4 | 1352. | 8216. | | 28212 | 8.83 | 18.4 | 45.6 | 52. | 20.6 | 40.3 | 858. | 15.1 | 2114. | 12533. | | 28194 | B.96 | 17.5 | 45.6 | 51. | 19.5 | 39.3 | 828. | 8.3 | | | | 28168 | 9.61 | 17.2 | 44.4 | 52. | 19.9 | 38.7 | 906. | 7.7 | 2324. | 5395. | | 28160 | 8.13 | 16.7 | 43.8 | 54. | 20.5 | 38.1 | 683. | 9.3 | 2387. | 4051. | | | | • | | | 20.5 | 30.2 | 003. | 9.3 | 1395. | 7254. | | Hean | 8.50 | 17.1 | 44.8 | 53. | 20.1 | 38.2 | 760. | | | | | 8.D. | 0.305 | 0.64 | 1.06 | 1.4 | 0.53 | 0.93 | 106.8 | 9.6 | 1636. | 7381. | | N | 10 | 10 | 10 | 10 | 10 | 10 | 100.0 | 2.21 | 603.5 | 2161.0 | | | | | | 20 | 10 | 10 | , | 10 | 10 | 10 | | ANIHAL | моно | BASO | BOS | BAND | LHON | IGRN | IERY | NRBC | | | | 28184 | 146. | 0. | 146. | 0. | 0. | 0. | 0. | o. | | | | 28187 | 470. | ٥. | 376. | 0. | Ŏ. | ō. | ō. | ŏ. | | | | 28181 | 107. | 0. | 0. | 0. | Ŏ. | ŏ. | ō. | ŏ. | | | | 28165 | 616. | 0. | 0. | 0. | ŏ. | ō. | ŏ. | ŏ. | | | | 28199 | 616. | 0. | 176. | 0. | | ō. | ō. | ő. | | | | 28150 | 520. | 0. | 312. | Ó. | | õ. | õ. | ŏ. | | | | 28212 | 302. | 0. | 151. | o. | | Ö. | ŏ. | o. | | | | 28194 | 249. | 0. | 332. | o. | Ö. | õ. | ö. | 0. | | | | 28168 | 308. | 0. | 154. | Ö. | | ŏ. | õ. | 0. | | | | 28160 | 558. | O. | 93. | ō. | o. | ö. | ŏ. | 0. | | | | Mean | 389. | 0. | 174. | 0. | 0. | 0. | 0. | • | | | | 8.D. | 190.8 | 0.0 | 130.7 | 0.0 | 0.0 | 0.0 | 0.0 | ٥. | | | | N | 10 | 10 | 10 | 10 | 10 | 10 | | 0.0 | | | | | ~~ | | | 10 | TO | 10 | 10 | 10 | | | # PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY STUDY IN CD RATS #### INDIVIDUAL HEMATOLOGY MALES GROUP: 750 PPM WEEK 7 | ANIHAL | RBC | HÇB | HCT | HCV | нсн | MCHC | PLAT | WBC | SEGS | LMPH | |--------|-------|------|------|-------|------|------|-------|------|--------|--------| | 28149 | 8.26 | 17.0 | 44.1 | 53. | 20.5 | 38.5 | 713. | 7.6 | 1140. | 6156. | | 28192 | 8.93 | 18.1 | 47.4 | 53. | 20.2 | 38.1 | 732. | 16.0 | 4640. | 10080. | | 28211 | 8,29 | 16.1 | 42.5 | 52. | 19.4 | 37.5 | 734. | 6.4 | 1408. | 4608. | | 28176 | 8.07 | 15.9 | 42.9 | 53. | 19.7 | 37.0 | 637. | 9.9 | 4356. | 4950. | | 28209 | 8.39 | 17.5 | 45.0 | 54. | 20.8 | 30.0 | 706. | 10.3 | 3090. | | | 28182 | 7.66 | 15.4 | 41.1 | 54. | 20.1 | 37.4 | 640. | 9.9 | | 6901. | | 28186 | 0.23 | 17.0 | 43.8 | 53. | 20.6 | 38.8 | 763. | | 2772. | 6336. | | 29158 | 8.77 | 16.5 | 64.4 | 51. | 18.8 | 37.1 | 828. | 10.3 | 2060. | 7519. | | 28208 | 8.23 | 16.7 | 43.8 | 53. | 20.2 | 38.1 | 791. | 6.8 | 1156. | 5304. | | 28148 | 8.77 | 16.9 | 44.1 | 50. | 19.2 | 38.3 | | 8.8 | 2024. | 6336. | | | •••• | | | ٠, ٥٠ | 19.2 | 30.3 | 790. | 9.7 | 4171. | 5238. | | MRAN | 8.36 | 16.7 | 44.0 | 53. | 20.0 | 38.0 | 722 | | | | | s.p. | 0.378 | 0.79 | 1.62 | 1.3 | | | 733. | 9.6 | 2682. | 6343. | | N | 10 | 10 | 10 | | 0.65 | 0.67 | 62.8 | 2.68 | 1340.7 | 1596.7 | | | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | ANIMAL | MONO | BASO | EOS | BAND | IMON | IGRN | iery | NRBC | | | | 28149 | 228. | 0. | 76. | 0. | 0. | 0. | 0. | 0. | | | | 28192 | 1280. | 0. | ٥. | ō. | õ. | ŏ. | Ŏ. | | | | | 28211 | 320. | ō. | 64. | ŏ. | ŏ. | ő. | 0. | ٥. | | | | 28176 | 495. | Ď. | 99. | ŏ. | ö. | ő. | 0. | ٥. | | | | 28209 | 309. | o. | G. | ŏ. | ŏ. | ŏ. | o. | 0. | | | | 28182 | 693. | ō. | 99. | ŏ. | o. | 0. | | o. | | | | 28186 | 412. | Ö. | 309. | ō. | 0. | Ö. | ٥. | Q. | | | | 20158 | 204. | ŏ. | 136. | o. | | | ٥. | o. | | | | 28208 | 264. | ö. | 176. | ů. | 0. | 0. | o. | 0. | | | | 28148 | 194. | ŏ. | 97. | | ٥. | ٥. | Q. | ٥. | | | | | 274. | ٠. | 37. | ٥. | ٥. | G. | ം 9 . | 0. | | | | MEAN | 440. | 0. | 106. | 0. | ٥. | 0. | ٥. | _ | | | | S.D. | 332.9 | 0.0 | 89.6 | 0.0 | 0.0 | 0.0 | | ٥. | | | | N | 10 | 10 | 10 | 10 | 10 | 10 | 0.0 | 0.0 | | | | | ~~ | | ~~ | 70 | TO | 10 | 10 | 10 | | | # TABLE 2 PROPIONALDEHYDE: COMBINED REPRATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS # INDIVIDUAL HEMATOLOGY MALES GROUP: 1500 PPM WEER 7 | ANIHAL | RBC | HGB | HCT | HCV | HCH | MCHC | PLAT | WBC | SEGS | LMPH | |--------|-------|------|------|------|----------|----------|----------|-----------|--------|--------| | 28196 | 8.13 | 16.4 | 43.8 | 54. | 20.1 | 37.4 | 762. | 10.9 | 1308. | 8629. | | 28163 | 9.15 | 17.4 | 46.5 | 51. | 19.0 | 37.4 | 695. | 6.4 | 1536. | 4544. | | 20157 | 8.35 | 17.4 | 45.3 | 54. | 20.8 | 38.4 | 765. | 10.6 | 1166. | 8692. | | 28189 | 9.02 | 19.3 | 49.2 | 55. | 21.3 | 39.2 | 590. | 10.8 | 1296. | 8748. | | 28179 | P.48 | 17.1 | 44.1 | 52. | 20.1 | 38.7 | 822. | 14.5 | 4640. | 8410. | | 28214 | 8.58 | 16.3 | 43.5 | 51. | 18.9 | 37.4 | 740. | 8.9 | 1068. | 7209. | | 28205 | 8.96 | 17.1 | 44.4 | 50. | 19.0 | 38.5 | 663. | 10.2 | 2040. | 7446. | | 28206 | 9.06 | 17.2 | 45.9 | 51. | 18.9 | 37.4 | 664. | 11.7 | 3510. | 6903. | | 28183 | 9.12 | 18.0 | 46.5 | 51. | 19.7 | 38.7 | 860. | 18.8 | 4324. | 13348. | | 28202 | 8.99 | 17.9 | 45.6 | 51. | 19.9 | 39.2 | 739. | 10.0 | 2052. | 7668. | | MEAN | 8.78 | 17.4 | 45.5 | 52. | 19.8 | 38.2 | 730. | 11.4 | 2294. | 6180. | | 8.D. | 0.365 | 0.86 | 1.70 | 1.7 | 0.84 | 0.76 | 79.9 | 3.31 | 1355.8 | 2220.2 | | n | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 10 | 10 | | ANIHAL | MONO | BASO | BOS | BAND | LMON | IGRN | IERY | NRBC | | | | 28196 | 654. | 0. | 109. | 0. | 0. | 0. | 0. | 0. | | | | 28163 | 192, | ٥. | 128. | ō. | o. | ŏ. | õ. | 0. | * | | | 28137 | 742. | 0. | 0. | ō. | ō. | ŏ. | ö. | 0. | | | | 28189 | 540. | 0. | 216. | ō. | o. | ŏ. | o. | | | | | 28179 | 1305. | 0. | 145. | š. | ŏ. | o. | 0. | Q. | | | | 20214 | 534. | D. | 89. | õ. | 0. | 0. | | Õ. | | | | 28205 | 510. | ő. | 204. | ő. | 0. | 0. | o. | ٥. | | | | 28206 | 1053. | ŏ. | 234. | Ů. | | | ٥. | 0. | | | | 28183 | 940. | ŏ. | 188. | 0. | Q. | 0. | ٥. | ٥. | | | | 28202 | 756. | ŏ. | 324. | o. | o.<br>o. | 0.<br>0. | 0.<br>0. | 0.<br>0. | | | | MBAN | 723. | 0. | 164. | 0. | 0. | 0. | 0. | | | | | S.D. | 315.8 | 0.0 | 89.8 | 0.0 | 0.0 | 0.0 | 0.0 | ٥. | | | | N | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 0.0<br>10 | | | # PROPIONALDESTOS: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD RATS # INDIVIDUAL CLINICAL CHEMISTRY MALES GROUP: 0 PPM WEEK 7 | ANIHAL | GLU | UN . | CREA | 7P | TRIL | CA | PHOS | NA | x | CL | |--------------|------------|------------|-----------|-------------|--------------------------------|-----|------|------|-------------|--------------| | 28200 | 1.23 | 191. | 6. | 61. | 2, | 91. | 68. | 143. | 4.8 | 111. | | 20156 | 1.07 | 161. | 6. | 61. | 2. | 93. | 69. | 143. | 5.1 | 110. | | 28173 | 1.25 | 170. | 7. | 70. | 2, | 95. | 63. | 137. | 4.7 | 106. | | 28162 | 1.38 | 153. | В. | 66. | 2. | 95. | 60. | 143. | 5.7 | | | 28155 | 1.11 | 124. | 7. | 71. | $\tilde{\mathbf{z}}$ . | 96. | 57. | 143. | 5.6 | 109. | | 28198 | 1.07 | 163. | 7. | 69. | 2. | 97. | 67. | 141. | 5.3 | 112.<br>110. | | 28201 | 1.11 | 161. | 7. | 62. | 2, | 97. | 59. | 142. | 5.3 | | | 28180 | 3.32 | 157. | 8. | 71. | 2. | 99. | 70. | 142, | 5.9 | 111. | | 28157 | 1.27 | 173. | 7. | 70. | 2. | 95 | | 141. | 5.6 | 109. | | 28167 | 1.25 | 146. | 7. | 73. | 2, | 96. | 72. | 140. | 5.8 | 108.<br>109. | | HEAN | 1.21 | 160. | 7. | 67.: | - 2, | 95. | 66. | 3.42 | | | | 8.D. | 0.109 | 17.6 | 0.7 | 4.6 | 0.0 | 2.2 | 4.9 | 142. | 5.4 | 110. | | N | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 1.9 | 0.41<br>10 | 1.7 | | ANIMAL | AST | ALT | GGT | | | t. | | | | | | 28200 | 66. | 37. | 4. | <del></del> | ****************************** | | | | <del></del> | | | 28156 | 61. | 32. | 5. | | | | | | | | | 28173 | 60. | 25. | 4. | | | | | | | | | 28162 | 70. | 33. | 5. | | | | | | | | | 28155 | 03. | 36. | 5. | | | | | | | | | 28198 | 62. | 25. | 5. | | | | | | | | | 28201 | 55. | 28. | 4. | | | | | | | | | 28180 | 73. | 32. | 4. | | | | | | | | | 28159 | 75. | 32. | i. | | | | | | 421 | | | 28167 | 76. | 31. | 3. | | | | | | | | | | | | | | | | | | | | | HEAN | 68. | 31. | 4. | | | | | | | | | MEAN<br>8.D. | 68.<br>8.7 | 31.<br>4.1 | 4.<br>0.7 | | | | | | | | 5 # TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS # INDIVIDUAL CLINICAL CHEMISTRY MALES GROUP: 150 PPM WHER 7 | | | | | | , | | | | | | |--------|-------|------|------|-----|------|------|-------------|--------------|------------|--------------| | ANIKAL | GLU | UN | CREA | TP | TBIL | CA | PHOS | NA | K | CL | | 28184 | 1.00 | 179. | 7. | 64. | 2. | 93. | 66. | 143. | 4.7 | 108 | | 28187 | 1.03 | 162. | 7. | 64. | 2. | 96. | 62. | 143. | 4.6 | 110. | | 28181 | 1.14 | 163. | 6. | 60. | 2. | 93. | 62. | 141. | 4.8 | 109 | | 28165 | 1.22 | 156. | 7. | 64. | 2. | 92. | 70. | 143. | 5.3 | 112 | | 28199 | 1.25 | 170. | 7. | 66. | 2. | 93. | 64. | 143. | 5.3 | 109 | | 28150 | 1.37 | 141. | 7. | 66. | 2. | 96. | 58. | 141. | 5.3 | | | 28212 | 1.42 | 208. | 8. | 69. | 2. | 100. | 70. | 143. | | 111. | | 28194 | 0.99 | 158. | 7. | 70. | 2. | 98. | 60. | 141. | 6.2 | 110. | | 28168 | 1.15 | 157. | 8. | 69. | 2. | 89. | 55. | | 5.7 | 108. | | 28160 | 1.13 | 135. | 6. | 64. | 2. | 99. | 67. | 138.<br>140. | 5.0<br>4.8 | 107.<br>108. | | MEAN | 1.17 | 163. | 7. | | | | | | | | | S.D. | 0.147 | 20.3 | | 66. | 2. | 95. | 63. | 142. | 5.2 | 109. | | N N | 10 | 10 | 0.7 | 3.1 | 0.0 | 3.5 | 5.0 | 1.7 | 0.50 | 1.! | | 44 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | ANIMAL | AST | ALT | GGT | | | | | | | | | 28184 | 74. | 32. | 4. | | | · | <del></del> | | ~~~~~ | | | 28187 | 48. | 30. | 4. | | Ď. | | | | | | | 28181 | 62. | 37. | 4. | | | | | | | | | 28165 | 60. | 33. | 4. | | | | | | | | | 28199 | 62. | 41. | 4. | | | | | | | | | 28150 | 67. | 31. | 4. | | | | | | | | | 28212 | 59. | 32. | 4. | | | | | | | | | 28194 | 75. | 35. | 4. | | | | | | | | | 28168 | 71. | 33. | 4. | | | | | | | | | 28160 | 58. | 27. | 4. | | | ÷ | | | | | | MEAN | 64. | 33. | 4. | | | | | | 1, | | | S.D. | 8.3 | 3.9 | 0.0 | 2 | | | | | | | | N | 10 | 10 | 10 | | | | | | | | | 44 | 10 | 10 | 10 | | | | | | | | ## PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS ### INDIVIDUAL CLINICAL CHEMISTRY MALES GROUP: 750 PPM WEEK 7 | Anihal | GLU | אט | CREA | TP | TBIL | CA | PHOS | NA | ĸ | CL | |--------|-------|------|------|-----|------|-----|------|------|------|------| | 28149 | 1.32 | 145. | 8. | 64. | 2. | 97. | 72. | 141 | | | | 28192 | 1.09 | 133. | 7. | 71. | 2. | 95. | 62. | 141. | 5.8 | 108. | | 28211 | 1.17 | 160. | 6. | 64. | 2. | 93. | 61. | 141. | 5.4 | 108. | | 28176 | 1.13 | 192. | 7. | 65. | 2. | 94. | | 141. | 5.2 | 110. | | 28209 | 1.05 | 181. | 7. | 65. | 2. | 96. | 64. | 138. | 5.2 | 108. | | 28182 | 1.43 | 156. | 7. | 66. | 2. | 96. | 58. | 142. | 5.2 | 108. | | 28186 | 1,19 | 196. | 8. | 69. | 2. | | 60. | 138. | 5.1 | 106. | | 28158 | 1.20 | 171. | 10. | 66. | 2. | 95. | 62. | 143. | 5.6 | 109. | | 28208 | 1.19 | 146. | 7. | 68. | 2. | 95. | 62. | 144. | 4.8 | 108. | | 28148 | 1.18 | 186. | | 76. | 2. | 97. | 54. | 141. | 5.1 | 109. | | | | | • | 70. | 4. | 96. | 60. | 140. | 5.3 | 107. | | Mean | 1.20 | 168. | 8. | 67. | | | | | | | | S.D. | 0.110 | 21.9 | 1.i | | 2. | 95. | 62. | 141. | 5.3 | 108. | | N | 10 | 10 | 10 | 3.8 | 0.0 | 1.3 | 4.6 | 1.9 | 0.28 | 0.8 | | | -4 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | ANIMAL | AST | ALT | GGT | | | | | | | | | 28149 | 77. | 27. | 4. | | | | | | | | | 28192 | 90. | 33. | 4. | | | | | | | | | 28211 | 76. | 31. | 4. | | | | | | | | | 28176 | 63. | 28. | 4. | | | | | | | | | 28209 | 68. | 34. | 4. | | | | | | | | | 28182 | 73. | 36. | 4. | | | | | | | | | 28186 | 71. | 29. | 3. | | | | | | | | | 28158 | 98. | 47. | 4. | | | | | | | | | 28208 | 63. | 28. | 3. | | | | e . | | | | | 28148 | 78. | 36. | 4. | | | | *** | | | | | MEAN | 76. | 33. | 4. | | | | | | | | | S.D. | 11.2 | 6.0 | 0.4 | | | | | | | | | N | 10 | 10 | | | | | | | | | | | 10 | 7.0 | 10 | | | | | | | | # TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND PEPRODUCTIVE/ DEVELOPMENTAL TOXICITY STUDY IN CD® RATS #### INDIVIDUAL CLINICAL CHEMISTRY MALES GROUP: 1500 PPM WEEK 7 | ANIHAL | GLU | UN | CREA | TP | TBIL | CA | PHOS | NA | ĸ | CL | |--------|-------|------|------------|-----|------|-----|------|------|------|------| | 28196 | 1.08 | 168. | 6. | 64. | 2. | 95. | 75. | 142. | 4.6 | 109. | | 28163 | 1.16 | 153. | 7. | 68. | 1. | 99. | 60. | 141. | 5.8 | 109. | | 28157 | 1.07 | 166. | 7. | 70. | 2. | 99. | 60. | 141. | 5.4 | 108. | | 28189 | 1.23 | 175. | 9. | 61. | 2. | 96. | 79. | 143. | 5.4 | 109. | | 28179 | 1.23 | 143. | 7. | 69. | 2. | 93. | 57. | 140. | 5.0 | 107. | | 28214 | 1.30 | 164. | 6. | 62. | 2. | 96. | 62. | 141. | 5.2 | 110. | | 28205 | 1.12 | 152. | 7. | 69. | 2. | 95. | 64. | 139. | 5.6 | 106. | | 28206 | 1.30 | 151. | 8. | 68. | 2. | 98. | 54. | 141. | 5.3 | 111. | | 28183 | 1.10 | 113. | 7. | 71. | 2. | 96. | 58. | 139. | 5.9 | 110. | | 28202 | 1.15 | 153. | 7. | 70. | 2. | 99. | 72. | 141. | 5.7 | 107. | | MEAN | 1.17 | 154. | 7. | 67. | 2. | 97. | 64. | 141. | 5.4 | 109. | | s.D. | 0.086 | 17.3 | 0.9 | 3.6 | 0.3 | 2.1 | 8.4 | 1.2 | 0.35 | 1.6 | | N | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | ANIHAL | AST | ALT | GGT | | | | | | | | | 28196 | 62. | 29. | 5. | | | | | | · | | | 28163 | 71. | 32. | 4. | | | | | | | | | 28157 | 76. | 36. | 4. | | | | | | | | | 28189 | 67. | 32. | 4. | | | | | | | | | 28179 | 58. | 20. | 4. | | | | | | | | | 28214 | 58. | 27. | 3. | | | | | | | | | 28205 | 63. | 30. | 4. | | | | | | | | | 28206 | 82. | 44. | 4. | | | | | | | | | 28183 | 79. | 40. | <b>4</b> . | | | | | | | | | 28202 | 64. | 27. | 4. | | | | | | | | | Mean | 70. | 32. | 4. | | | | | | | | | S.D. | 10.5 | 6.9 | 0.5 | | | | | | | | | N | 10 | 10 | 10 | | | | | | | | BRRC Report 91U0086 Appendix 8 Page 1 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD® Rats Protocol, Protocol Amendment and Protocol Deviations (29 Pages) ## BUSHY RUN RESEARCH CENTER 6702 Meilon Road, Export, Pennsylvania 15632-8902 Telephone (412) 733-5260 Telecopier (412) 733-4804 #### PROTOCOL TITLE: Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CDS (Sprague-Dawley) Rate BERC PROJECT NUMBER: 91-13-25602 SPONSOR: Solvents and Coatings Materials Division Union Carbide Chemicals and Plastics Company Inc. 39 Old Ridgebury Road Danbury, CT 06817-0001 TESTING FACILITY: Bushy Pun Research Center (BRRC) Union Carbide Chemicals and Plastics Company Inc. 6702 Hellon Road Export, PA 15632-8902 Reviewed and Approved by: Bushy Run Research Center: Conthia D. Driscoll 12/6/91 Cylithia D. Driscoll, Ph.D. Dat Study Director Linda J. Calisti/B.S. Date Manager, Good Laboratory Practices/Quality Assurance John P. Van Hiller, Ph.D., DABT Date Union Carbide Chemical's and Plastics Company Inc.: 1 Juston Date Tipton R. Tyler, Ph.D., DABT Date Associate Director of Applied Toxicology Division: Pullin 12-17-91 Richard C. Wise Manager, Product Safety Date Union Carbide Chemicals and Plastics Company Inc. Excellence Through Quality EQ. #### **OBJECTIVES** The objective of this study is to evaluate the potential of the test substance to 1) produce toxicity in adult male and female CD® (Sprague-Dawley) rats, 2) affect male and female reproductive performance, and 3) produce developmental toxicity following repeated inhelation exposure. #### CENERAL IMPORMATION Sponsor Solvents and Coatings Materials Division Union Carbide Chemicals and Plastics Company (UCC&P) Inc. 39 Old Ridgebury Road Danbury, CT 06817-0001 Project Monitor Tipton R. Tyler, Ph.D., DABT Testing Facility Bushy Run Research Center, Export, PA 15632-8902 Personnel Developmental Toxicology and Animal Care R. R. Altman P. J. Benson, B.S. T. R. Brownfield, B.S. B. L. Butler, A.H.T., AALAS Cert. II H. A. Copeman, A.A., B.A. D. L. Pait, B.S., AALAS Cert. II L. C. Pisher, B.S., AALAS Gert. III Supervisor M. F. Kubena, B.S., AALAS Cert. III T. L. Neeper-Bradley, Ph.D. D. J. Tarasi, A.H.T., A.S., AALAS Cert. II Inhalation Toxicology I. H. Pritts, Ph. D. L. E. Lipko, AALAS Cert. II Attending Veterinarian M. K. Walter, DVH, Diplomate ACVP All personnel who participate in the conduct of the study will be documented in the raw data. Starting Date of Acclimation December 23, 1991. Starting Date of Test Substance Exposure January 6, 1992. Proposed Date for Completion of In-Life Phase February 28, 1992. Proposed Date for Submission of the Draft Final Report To be added by amendment. #### Basis for the Study This study will consist of three exposure groups and an air-only control . group. At the time of the study start, each group will consist of 15 rats/sex. Exposures will begin when the rats are at least 70 days of age and continue daily, 6 hr/day, 7 days/week, throughout the entire study. The exposure period will include a 2-week premating phase, a 14-day (maximum) mating phase, the period of gestation and lactation (females exposed only through day 20 of gestation, males continue to be exposed through approximately the last lactation day 4). Female exposures will cease after gd 20 due to the technical considerations of an inhalation reproduction study, and thus allow for natural delivery and evaluation of the offspring. The portions of this study conducted at the Bushy Run Research Center will be performed in compliance with the U.S. EPA Good Laboratory Fractice Regulations, 40 CFR Part 792 and Annex 2 of the OECD Guidelines for Testing Chemicals (c(81)30 (Final)). #### Alteration of Design Alterations to this protocol may be made as the study progresses. We changes in the protocol will be made without the specific written request or consent of the Sponsor. In the event that the Sponsor authorizes a protocol change verbally, such change will be honored. However, it then becomes the responsibility of the Sponsor to follow such verbal change with a written verification. BRRC reserves the right to revise the protocol or deviate therefrom solely at the discretion of the Study Director if prior approval of the Sponsor cannot be obtained and the integrity of the study is considered in jeopardy. In this event, the Sponsor shall be notified of the alteration as soon as possible, and written verification of the change will be the responsibility of the Study Director. All protocol modifications will be signed by the Study Director and a representative of the Sponsor. #### METHODS | Test Substance | Te | at | Su | bs. | t a | nc | | |----------------|----|----|----|-----|-----|----|--| |----------------|----|----|----|-----|-----|----|--| Chemical Name Propionaldehyde Source UCC&P Texas City, Texas CAS Registry Number 123-38-6 .... Sponsor Identification Number T-1258 BRRC Number 54-351A and 54-351B Description Water-white liquid; suffocating odor Percent Active Approximately 98.5% by weight (approximately 1.5% Material water added to shipping containers as required by DOT regulations). Solubility 22% at 20°C by weight in water Boiling Point 760 mm Hg 48°C Stability of Test Substance The test substance is considered to be stable under proper storage conditions. Compositional analysis of the test substance will be used as a measure of stability. Storage Conditions The test substance will be stored in stainless steel drums, the original containers, in a special enclosure under a nitrogen atmosphere. Estimated Quantity Needed Approximately two, 55 gallon drums of the compound will be used throughout all phases of this study. After the assigned studies have been completed, all unused test substance will be returned to the Sponsor. Reserve Sample Due to the nature of the test substance, a reserve sample will not be retained and stored by BRRC. Test Substance Characterization Prior to initiation of the range-finding study and following the definitive study, a compositional analysis of the test substance will be performed by the Sponsor. Safety A Material Safety Data Sheet (MSDS; Attachment 1) supplied by the Sponsor will be reviewed by all personnel prior to the initiation of the study. This review will be documented. This chemical is extremely flammable; keep away from heat, sparks and flame; reactive with oxygen. Normal precautions for untested chemicals will be used. These procedures include the use of disposable paper or plastic coats or jumpsuits, hats, booties or shoe covers, and butyl or PVC coated gloves while in the animal rooms. Eye protection will include the use of safety glasses. #### Test Animals Species Crl:CD®BR rats, commonly referred to as CD® rats Supplier Charles River Breeding Laboratories, Portage, Michigan Rationale The rat is the preferred species for this type of toxicity testing. The CD® albino rat was selected due to its high fecundity and routine use in rodent reproduction and developmental toxicity studies. Number and Sex A total of 75 males and 75 nulliparous, nonpregnant females will be ordered from which 60 of each sex will be selected for the study. Age and Weight The rats will be approximately 63 days of age on scheduled animal receipt date. The males will weigh approximately 230-275 g and the females approximately 175-210 g upon arrival. Acclimation and Pretest Evaluations Shortly after their arrival at the laboratory, the animals will be transported to the room selected for the study. Once in the room, the animals will be removed from the shipping cartons and examined. All animals with evidence of disease or physical abnormalities will be discarded and their rejection from the shipment will be recorded. If an unusually large number of rats show evidence of disease or physical abnormalities, the shipment of rats will be rejected for use in the study. A total of 10 rats (5 male and 5 female) will be randomly selected for a health screen as discussed below. All remaining rats will be housed two per cage for an acclimation period of approximately two weeks. During the acclimation period, animals will be fed the same diet which will be used during the study. Animals will be observed twice daily for any overt c'inical signs of disease or abnormality. Individual detailed physical examinations will be conducted twice prior to the mating period. Animals showing abnormalities deemed by the Study Director or other appropriate supervisory personnel to render the animal unacceptable for placement on the study will be sacrificed and discarded on the day observed. If an unusually large number of rats show signs of disease, the shipment of rats will be rejected for use in the study. Rats will be weighed twice during the acclimation period, once during each week of acclimation. Any rat whose weight gain during this period is not considered normal for this age and strain of rat, or whose absolute body weight at the second weighing is outside 20% of the population mean for their sex, will not be considered for use in the study. Quality Control Quality control will be performed within two days after the receipt of the animals. The pretest health screen will consist of a wiral screen, examinations for fecal parasites, necropsy examinations, and histopathological evaluations of selected tissues. The screen will be performed on 5 animals/sex selected directly from the shipping cartons with as many cartons as possible being represented. The gross examinations and the viral screen will be conducted on all 10 rats selected for the health screen. The following viruses will be included in the viral screen: Pneumonia virus of mice (PVM) Reovirus type 3 (Reo3) Kilham rat virus Toolan H-1 Sendai Lymphocytic choriomeningitis (LCM) Rat coronavirus BDA Minute virus of mice (MVM) Mycoplasma pulmonis Polyoma virus Encephalomyelitis (GDVII) Mouse adenovirus FL/K87 (MAD) Fecal examination for parasites will be conducted using a cellophane tape test on the 10 animals selected for the prestudy screen, and by zinc sulfate flotation from cecal contents obtained at their necropsy. Histopathology will be performed on three sacrificed animals/sex. At least the following tissues will be examined: liver, kidneys, trachea, lungs, heart, spleen, salivary glands, submandibular lymph nodes, and nasal cavities. The purpose of this screen is to determine the suitability of the population of animals proposed for this study. Therefore, the results of this screen will be available before the study begins. Identification Animals shall be uniquely identified prior to initiation of the study by cage identification and ear tags or tail tattoos. The individual animal numbers will be documented in the study records. Culled Animals Δ Animals received with the initial shipment but not used in the study will be authorized or used for training or methods development. Records will be kept documenting the fate of all animals received for the study. Husbandry The experiment will be carried out under standard laboratory conditions in the Chemical Hygiene Fellowship Building of BRRC. The animals will be housed one to two per cage during the acclimation period. Thereafter, they will be housed individually except during mating and lactation. Stainless steel cages with wire mesh floors will be used throughout the study with the exceptions noted below. BRRC Report 91U0086 Appendix 8 Page 8 Page 7 Study animals will be housed two per cage (one male:one female from the same exposure level) during the mating period. Females will be caged individually once they have successfully mated (or at the end of the mating period). Successfully mated females will be transferred to shoebox cages and furnished with appropriate nesting materials on Day 20 of gestation following exposure. Stainless steel cages will be changed at the end of the acclimation period and just prior to the mating period. Male caging will be changed at least once every two weeks thereafter. Mated females will remain in the same stainless steel cages from gd 0 through gd 20 at which time they will be transferred to shoebox cages. Paperboard kept under each cage will be changed regularly and daily during mating. For exposures, animals will be transferred, one per cage (except during mating) to stainless steel wiremesh cages. Stainless steel shelf pans will be placed under each row of cages to prevent urinary and fecal contamination of animals at lover levels. Animal room temperature and humidity will be recorded continuously using an automatic recorder. Temperature will be maintained at 66-77°F and relative humidity will be maintained at 40-70%. The temperature and humidity will be checked by a technician at each room check and a record will be kept indicating that it was done. Appropriate corrective action will be taken whenever readings outside the specified limits are observed. If the temperature or humidity remains outside the prescribed range for more than 24 hours, the Sponsor's representative will be notified. The accuracy of the temperature and humidity recording devices will be checked periodically and calibrated when necessary. The verification and calibration data will be recorded. Any time the continuous recording equipment is found to be malfunctioning, the temperature and humidity of the animal room will be manually measured and recorded at each room check. Pluorescent lighting will provide illumination 12 hours per day using an automatic timer. There will be at least ten air changes per hour. Certified Ground Rodent Chow (#5002, Ralston Purina Company) will be available ad libitum except during exposures. The analyses of chemical composition and possible contaminants of each batch of diet will be Diet performed by Ralston Purina Company (St. Louis, HO) and the results of their analysis will be checked by the Study Director. Water Tap water (Municipal Authority of Westmoreland County, Greensburg, PA) will be available ad libitum, except during exposures, by an automatic watering system with demand control valves mounted on each rack. Water pressure and function of the individual cage rack systems will be checked at each room check and a record will be kept indicating it was done. Drinking water contaminant levels will be measured at regular intervals per EPA specifications, to include the 129 "priority" pollutants, identified in the Federal Register 45 (98), Appendix D, Part 122, and shall comply with human requirements. #### Study Design Number of Groups The study will consist of a control and three exposure groups. Number of Animals per Group The study will begin with 15 rats/sex/group in order to yield at least 8 pregnant females per group. Organization | Group | Number of<br>Animals<br>(per Sex) | Test Vapor Concentration (ppm) | |---------|-----------------------------------|--------------------------------| | Control | 15 | 0 | | Low | 15 | 150 | | Hid | 15 | 750 | | High | 15 | 1500 | | | | | #### Group Assignment Pollowing approximately two weeks of acclimation, animals will be assigned to one of four groups, using a computer-generated, weight-stratified, randomization procedure. The stratified randomization procedure will assign animals to groups such that the body weights of all groups are homogenous, within a sex, by statistical analysis at study initiation. Animals not assigned to the study will be authanized and discarded, used for training of BRRC staff or used for methods development. The fate of all animals not selected for use in this study will be documented in the raw data. Duration of Exposures Exposures will begin when the rats are at least 70 days of age and continue daily, 6 hr/day, 7 days/week, throughout the entire study. The exposure period will include a 2-week premating phase, a 14-day (maximum) mating phase, the period of gestation and lactation (females will be exposed only through day 20 of gestation, males continue to be exposed through approximately the last lactation day 4). The females will be exposed only through gd 20 due to the technical considerations of an inhalation reproduction study, allowing for natural delivery and evaluation of the offspring. #### Administration of Test Substance and Inhalation Chamber Operation Route and Justification The route of exposure will be by inhalation. Inhalation is a potential route of human exposure and is considered to be a meaningful way to evaluate the toxicity of the test substance. Exposure Chambers Four stainless steel chambers (approximately 4.3 cubic meters) with glass doors and windows for animal observations will be used. The chamber size adequate to ensure that the total "volume" of test animals shall not exceed 5% of the volume of the test chamber. The exposure chambers in room 138 will be utilized. Chambers will be provided with air at a flowrate of approximately 14 air changes per hour to ensure an adequate oxygen content of 19%. Oxygen content will be measured at the start of the study. The rate of airflow will be monitored and recorded approximately every 30 minutes. All chambers will be maintained at a slightly negative pressure to prevent any vapor from entering the room containing the chambers. The temperature and relative humidity of the exposure chambers will be monitored continuously and recorded approximately 12 times during each exposure. Temperature will be maintained at 68-75°F (22 ± 2°C) and relative humidity will be maintained between 40 and 60%. To compensate for any (undetected) differences in environment or test substance concentration within the chamber, all exposure cage positions will be rotated weekly. A description of the rotation will be provided in the raw data. Target Exposure Concentration Selection Three graduated concentration levels of the test substance as a vapor will be selected by the Sponsor, for evaluation in three groups of rats. An additional group, a concurrent control, will be placed in an inhalation chamber and exposed to air only. Test Vapor Generation The test liquid will be metered from a piston pump into a heated glass evaporator similar in design to that described by Smellings and Dodd (1990). Temperatures in the evaporator will be maintained at the lowest level sufficient to vaporize the liquid, and will be recorded. Test Vapor Analysis Chamber concentration of the test substance will be determined approximately once each hour by a gas chromatographic (GC) technique. The details of the GC method will be described in the study report. The analytical monitoring system will be set to alarm at concentrations < or > 10% of the target chamber concentrations. The chamber sampling probes will be placed in the breathing zone of the animals. The daily nominal (estimated) chamber concentrations will also be determined. Chamber Concentration Distribution The uniformity of the vapor in each of the three exposure chambers and the reproducibility of target vapor concentrations will be examined prior to initiation of the study. For each individual distribution test, vapor concentrations will be measured at five positions situated in the breathing zone of the study animals. #### Experimental Evaluations Mortality Checks and Clinical Signs All animals assigned to study will be observed for mortality twice daily, seven days per week. During the 5-day work week, the first daily mortality check will be conducted prior to exposures or before 9:00 a.m., and the second one will generally be conducted following exposures or after 2:00 p.m. On weekends, the first daily mortality check will be conducted prior to exposures or before 9:00 a.m. and the second mortality check will be conducted following exposure or, if exposures are not conducted, after noon. Study animals will be given detailed examinations for clinical signs of toxicity once daily following exposure. Overt signs of toxicity will be monitored visually in the morning while transferring animals to the exposure cages. From gestation Day 21 through Lactation Day 4, when dams are not exposed to the test substance, detailed clinical observations of the dams will be conducted once daily before noon. Their litters will be examined as soon as possible after birth, Day 0 of lactation, and again on Day 4 of lactation to determine the number, sex, and condition of viable and dead pups. Overt signs of toxicity will be monitored visually in conjunction with the afternoon mortality checks. Observed mortality and/or clinical signs will be recorded on the day observed. Lack of clinical signs during daily detailed physical examinations will also be recorded. Body Weight The body weights of the male rats will be determined and recorded on the study days 0 (first exposure day), 7, 14, 21, 28, and on the day of termination. Females will be weighed on study days 0, 7, and 14 of the premating period, Days 0, 7, 14, and 21 of gestation, and Days 0 and 4 of lactation. Body weight gains will be computed. Females which do not produce live litters will be weighed weekly until scheduled sacrifice. Litter weights, by sex, will be determined on Days 0 and 4 of lactation. Food Consumption Individual food consumption measurements will be collected weekly for all males except during the mating period when food consumption will not be measured. Food consumption measurements will be conducted weekly for all females during the premating periods of this study. During gestation, food consumption will be measured at three-to four-day intervals for determination of food consumption during the following gestational intervals: gestation day (gd) 0-7, 7-14 and 14-21. During lactation, food consumption will not be measured. Food consumption for females which do not deliver live litters will be measured weekly until sacrifice. During the course of the study, the area under the cage will be examined for food spillage during each daily room check and significant food spilled will be noted in the raw data. Significant food spillage will be defined as any amount that can be easily measured. No effort will be made to make this measurement. Food consumption data for animals with recorded spills will not be used in summarization of results within a particular interval. Kating Procedures The animals will be mated at approximately 13 weeks of age, one male: one female, on the basis of random selection of mates within an exposure group. The mating period will be of 14 days duration. The observation of a dropped or vaginal copulation plug or of vaginal sperm will be considered evidence of successful mating. Females will be examined twice daily (a.m. and p.m.) during the cohabitation period for the presence of dropped or vaginal copulation plugs, and once daily (p.m. following exposures) for the presence of vaginal sperm. The day a copulation plug or vaginal sperm is observed will be designated gestational day (gd) 0. Once successful mating has been observed, the male and female from that mating pair will be individually housed. Each male and female mating pair will be co-housed for a maximum period of 7 days. If at the end of the 7 days there is no evidence of mating, the female will be co-habited with another male from the same exposure level that has mated successfully previously. For any mating pairs which do not show evidence of successful mating, the last scheduled mating day will be considered gd 0 for that female and the animals will be treated accordingly for subsequent events. Gestation On gd 20, after exposure, each female will be transferred to a shoebox cage. Females will be observed twice daily (a.m and p.m.) after transfer for evidence of littering. Lactation After delivery, the dams will be allowed to rear their young to Day 4 postpartum, at which time the dam and the litter will be authanized. Clinical Pathology At the end of the exposure period, ten males selected at random from each of the exposure concentrations will be fasted for approximately 16 hours before being lightly anesthetized using methoxyflurane for blood collection by orbital sinus puncture. Fixed blood smesrs will be prepared and stored. The following hematological parameters will be measured: Clinical chemistry tests will include: glucose ures nitrogen crestinine total protein total bilirubin calcium phosphorus sodium potassium chloride AST ALT gamma glutamyl transferase #### Necropsy and Pathology **ADULTS** All parental animals in all groups will be subjected to a complete necropsy. Parental males will be euthanized after the last litter reaches lactation day 4 (approximately). Parental females will be euthanized on day 4 of lactation. Females that fail to litter will be euthanized approximately 5 days after their expected delivery data. On the day of scheduled sacrifice, animals will be anesthetized with methoxyflurane and humanely sacrificed by exsanguination. The necropsy will include: examination of external surfaces; all orifices; cranial cavity; carcass; external and cut surfaces of the brain and spinal cord; the thoracic, abdominal, and pelvic cavities and their viscera; and cervical tissues and organs. The number of implantation sites and copora lutea for each female will also be determined at necropsy. The following tissues will be weighed and preserved in buffered neutral 10% formalin: liver kidney(2) lungs thymus The following tissues will be weighed and preserved in Bouin's fixative: testes epididymides The following tissues will be preserved in buffered eneutral 10% formalin for all adult...imals: upper and lower respiratory tract (including masal turbinates) brain (3 sections including medulla oblongata, pons, cerebellar cortex and cerebral cortex) heart spleen adrenals ovaries (females only) seminal vesicles (males only) target organs if previously identified all gross lesions The following tissues will be preserved in buffered neutral 10% formalin but not processed further unless deemed necessary by the Study Director or Pathologist: vagina (females only) uterus (females only) pituitary Microscopic Evaluation of Adult Fixed Tissues Histopathologic evaluation will be performed on all retained tissues, except as noted above, from the control and high exposure concentration males and females. Organs demonstrating pathology in these animals will be reported to the Sponsor and, at the Sponsor's request and at additional cost to the Sponsor, such organs will be examined in the other dose groups. OFFSPRING On postnatal day 4, pups will be weighed, examined externally, sexed, authanized and discarded without pathological evaluation. Dead or Moribund Animals Necropsies will be performed seven days per week on animals not surviving to scheduled sacrifice (including pups) in an attempt to determine the cause of death. The pregnancy status of moribund females or females that are found dead following the mating period, will be determined at necropsy. Any animal showing signs of severe debilitation or toxicity, particularly if death appears imminent, will be humanely sacrificed by carbon dioxide asphyziation to prevent loss of tissues through autolysis. For mated females, the uterus will be examined and the status of implantation sites will be recorded. Organ weights of animals that are found dead or sacrificed moribund will not be determined at necropsy. Abortion or Premature Delivery If signs of abortion or premature delivery are observed, the animal will be euthanized by carbon dioxide asphyxiation and a complete necropsy will be performed. The uterus will be opened and examined, and site descriptions will be identified and recorded. Ovarian corpora lutes of pregnancy will be counted. Maternal tissues will be retained in fixative only as deemed necessary by the gross findings. Organ weights of animals that abort or deliver early will not be determined at necropsy. Monpregnant Females The fixed uteri from any females which fail to produce a litter will be stained with potassium ferricyanide for confirmation of pregnancy status. This staining procedure does not interfere with possible subsequent histologic evaluation. Statistical Evaluation The unit of comparison will be the male, the female (prebreeding exposure parameters), the pregnant female or the litter. Data collected for nonpregnant females and females which abort or deliver early, will not be included in the statistical analyses. The data for continuous, parametric variables will be intercompared for the exposure and control groups by use of Levene's test for homogeneity of variance, by analysis of variance and by t-tests. The t-tests will be used, if the analysis of variance is significant, to delineate which groups differ from the control group. If Levene's test indicates homogeneous variances, the groups will be compared by an analysis of variance for equal variances followed, when appropriate, by pooled variance t-tests. If Levene's test indicates heterogeneous variances, the groups will be compared by an analysis of variance for unequal variances followed, when appropriate, by separate variance t-tests. For discontinuous data, the Kruskal-Wallis test followed, when appropriate, by Mann-Whitney U tests. Frequency data will be compared using Fisher's exact test. All statistical tests, except the frequency comparisons, will be performed using BMDP Statistical Software (Dixon, 1990). The frequency data tests are described in Biometry (Sokal, R. R. and Rohlf, F. J., W. H. Freeman and Company: San Prancisco, 1969). The probability value of p < 0.05 (two-tailed) will be used as the critical level of significance for all tests. #### RECORDS All raw data and reports from this study will be retained by BRRC for at least 10 years after completion of the study. Tissues preserved in fixative will be retained for at least five years. Paraffin blocks and tissue slides will be retained indefinitely. Prior to discarding any of the above data or materials, the Sponsor will be contacted and given the option of obtaining it or arranging for continued storage. All data and materials mentioned above will remain the sole property of the Sponsor and can be removed from BREC at the Sponsor's discretion. #### REPORT #### Draft Final Report A draft of the final report will be submitted to the Sponsor within six months after the completion of the terminal sacrifice. This report will be a comprehensive report which will include all information necessary to provide a complete and accurate description and evaluation of the test procedures and results. It will include: a summary; appropriate text discussions of the experimental design, materials and methods and results; and summary mean or incidence tables of in-life and necropsy data. #### Pinal Report The draft final report will be reviewed by the Sponsor, and comments on the report will be provided to BRRC within six weeks from the date of submission of the draft version. BRRC will consider these comments in preparing the final report. Assuming the Sponsor's comments are received at the specified time and no major revisions are required, BRRC will submit a final report within twelve weeks of issuance of the draft report. The final report will be audited by the QA department and contain a signed quality assurance statement. In addition, it will contain appendices with individual animal data and other pertinent information. ### AWIHAL USE POLICY It is the goal of BRRC, through the establishment and activities of the Institutional Animal Care and Use Committee (IACUC), to comply with the U.S. Animal Welfare Act and the subsequent rules promulgated by the U.S. Department of Agriculture and in effect on the date of this protocol. It has been determined that the work described herein minimizes the number of animals used, is necessary, and uses the most appropriate species and strain in order to provide meaningful results and the most useful information for comparative purposes relative to previous studies. Furthermore, this study will be conducted humanely, and to the best of our knowledge, neither unnecessarily duplicates any previous work, nor can it be accomplished using currently available, validated non-animal models. #### GOOD LABORATORY PRACTICE COMPLIANCE The Bushy Run Research Center, through the administration of a quality assurance program by the Good Laboratory Practices Committee and Quality Assurance Unit, assures compliance of all phases of toxicological studies conducted at the Bushy Run Research Center with existing regulations and generally accepted good laboratory practices. The study will be subjected to periodic inspections and the final report will be reviewed by the BRRC Quality Assurance Unit. All quality assurance inspection records and the Master Schedule will be made available to the Sponsor during Sponsor visits. #### REFERENCES Organization for Economic Cooperation and Development (OECD) (1981). OECD Principles of Good Laboratory Practice, c(81)30(Final). Proposed OECD Guidelines for Testing of Chemicals (1990). Combined Repeat Dose and Reproductive/Developmental Toxicity Screening Test. Snellings, W. M. and D. E. Dodd (1990). Inhalation studies. In: <u>Handbook of In Vivo Toxicity Testing</u> (D. L. Arnold, H. C. Grice and D. R. Krewski, eds.) pp 189-246, Academic Press, New York. Sokal, R. R. and F. J. Rohlf (1969). <u>Biometry</u>, W. H. Freeman and Co., San Francisco, pp 369-371, 299-340, 370-372, 589-595. PROPISID.DOC December 5. 1991 0 #### ATTACIMENT 1 PAGE 1 FOR INTERNAL USE ONLY UNION CARBIDE CORFORATION Solvents and Coatings Materials Division MATERIAL BAFETY DATA SHEET EFFECTIVE DATE: 08/29/90 Union Carbide urges each customer or recipient of this MSDS to study it carefully to become aware of and understand the hazards associated with the product. The reader should consider consulting reference works or individuals who are experts in ventilation, toxicology, and fire prevention, as necessary or appropriate to use and understand the data contained in this MSDS. To promote safe handling, each customer or rocipient should: (1) sutify its employees, agents, contractors and others whom it knows or believes will use this material of the information in this MSDS and any other information regarding hazards or safety; (E) furnish this same information to each of its customers for the product; and (2) request its customers to notify their employees, customers, and other users of the product of this information. #### I. IDENTIFICATION PRODUCT NAME: PROPIONALDEHYDE CHEMICAL NAME: Propionaldehyde CHEMICAL FAMILY: Aldehydes FORMULA: CE HS CHO MOLECULAR WEIGHT: 58.08 SYNONYMS: Propanal: Pro SYNONYMS: Propanal; Propylaldehyde CAS # AND 123~28-6 CAS NAME: Propanal #### II. PHYSICAL DATA BOILING POINT, 760 am Hg: 48 C (118.4 F) SPECIFIC BRAVITY(H20 =1): 0.7982 FREEZING POINT: ~80 C (-112 F) VAPOR PRESSURE AT 20'C: 258 am Hg VAPOR DENSITY (air = 1): 2.0 EVAPORATION RATE (Butyl Acetate = 1): 19.9 SOLUBILITY IN MATER by wt: 22X 8 20 C APPEARANCE AND ODOR: Mater-whito liquid; zuffecating oder PERCENT VOLATILES (by volume): 100 Copyright 1990 Union Carbido Chemicals & Plastics Tech. Corp. UNION CARBIDE is a trademark of Union Carbido Corporation EMERGENCY PHONE NAMEER: 1-800-UCC-HELP (Number available at all times) UNION CAMBIDE CORPORATION Solvents and Coatings Materials Division 29 Old Ridgebury Road, Danbury, Cf. 06817-0001 V. ### ATTACHMENT 1 (Continued) | MATERIAL Z TLY (IID1252 Ha) | | |---------------------------------------------------------------------|-----| | | ard | | Propionaldehyde 100 None extablished Haref<br>(CAS #123-38-4) Inkal | | FLASH POINT <0 F (<-18 C) Tag Closed Cup; <0 F (<-18 C) Tag Open Cup</p> FLANHABLE LIHITS IN AIR, by volume: LOWER: 2.4 UPPER: 17.0 EXTINGUISHING MEDIA: Apply alcohol-type or all-purpose-type foams by manufacturer's recommended techniques for large fires. Uso CO2 or dry chosical media for maall fires. SPECIAL FIRE FIGHTING PROCEDURFE: Use water spray to cool fire-exposed containers and structures. Use water spray to disperse vapors; reignition is possible. Use self-contained breathing apparatus and protective clothing. Usu remote spray conitors or fight fire From belief shields. UNUSUAL FIRE AND EXPLOSION HAZARDS: Vapors form from this product and may travel or be moved by air currents and ignited by pilot lights, other flames, sparks, heaters, electrical equipment, static discharges or other ignition sources at locations distant from product handling point. Vapors may settle in low or confined areas, or travel a lung distance to an ignition source and flash back explosively. This esterial may produce a floating fire hezard. ### ATTACHMENT 1 (Continued) | PAGE 2 | FOR INTERNAL USE DALY | | |---------------------------------------|-----------------------|---| | EBODUCI NOME: | 680510A0T DEHADE | | | | V. HEALTH HAZARD DATA | | | EXPOSURE LIHIT(E)<br>None established | | , | | | | | #### **EFFECTS OF SINGLE OVEREXPOSURE** MULICUING: Moderately toxic. Severely irritating to the gastrointestinal tract causing a burning sensation in the mouth and throat, nauses, headache, dizzinuse, abdominal disconfort, vomiting and diarrhea. SKIH ABSORPTION: No evidence of adverse effects from available information. INMALATION: Vapors may be irritating to the respiratory tract. High concentrations may cause headache, nausea, vomiting, coughing, and difficulty breathing, narcosis, and may result in the inhalation of potentially lethal amounts of acterial. SKIN CONTACT: May cause slight irritation, seen as mild local rednecs. EYE CONTACT: Causes severe irritation, seem as marked excess redness and swelling of the conjunctive. EFFECTS OF REPEATED OVEREXPOSURE: Repeated or prolonged exposure may result in the development of dermatities. PEDICAL CONDITIONS AGGRAVATED BY OVEREXPOSURZ: Breathing of vapor and/or mist may aggravate asthma and inflammatory or fibrotic pulmonary disease. SIGNIFICANT LABORATORY DATA WITH POSSIBLE RELEVANCE TO HUMAN HEALTH HAZARD EVALUATION: Rats exposed to 1300 ppm for six days experienced liver dawage. OTHER EFFECTS OF OVEREXPOSURE: None currently known. EMERGENCY AND FIRST AID PROCEOURES: SHALLOHING: If patient is conscious and has a gag ruflex, give two glasses of water and induce vositing. Call a physician immediately. SKIN: Immediately flush skin with plenty of water while removing contaminated clothing and shoes. Obtain medical attention. Wash clothing bufore equiling again. Discard shoes. INMATION: Remove to fresh wir. Give entificial respiration if not broothing. Oxygen may be given by qualified personnel if broathing is difficult. 17 ### ATTACHMENT 1 (Continued) | PAGE 4 FOR INTERNAL LIBE DALY | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------| | ECODICI NOMET - EBOSTONOLDEHADE | | | Obtain medical attention. | | | EYES:<br>Immediately flush eyes thoroughly with water and continue washing for at 1:<br>15 minutes. Obtain medical attention, preferably from an aphthalmologist,<br>organtly. | HEST | | NOTES TO PHYSICIAN: There is no specific antidote. Treatment of everexposure should be directed the control of symptoms and the clinical condition of the patient. | ಚಿತ | | VI. REACTIVITY DATA | | | STABILITY: Stable | | | COMDITIONS TO AVOID: Avoid contamination with basic materials. Contamination with basic material (examples: sodium hydroxide, Caustic soda, amines, amonia, etc.) can result a rapid exothermic reaction. | ic<br>It | | Avoid contamination with strong minoral acids:<br>Contamination with strong minerals acids can result in a rapid exothermic<br>reaction. | | | Avoid air (oxygen):<br>Contact with air results in Carboxylic acid formation. Oxidation can also<br>Cause formation of hazardous peroxides or peracids. | | | INCOMPATIBILITY (MATERIALS TO AVOID): Alcohols, alkalies, asinos, assonia, caustics, halogen-containing compounds oxygen, strong mineral acids. | i e | | HAZARDOUS COMBUSTION OR DECOMPOSITION PRODUCTS: Burning will produce carbon monoxide and/or carbon dioxide. Carbon monoxide is highly toxic if inhalod; carbon dioxide in sufficient concentrations can act as an asphyxiant. | | | HAZARDOUS POLYMERIZATION: MAY DCCUR | | | CONDITIONS TO AUDID: May react with evolution of heat in the presence of alkalios, amines, and acids. | | | VII. SPILL OR LEAK PROCEDURES | | | STEPS TO BE TAKEN IF MATERIAL IS RELEASED OR SPILLED Eliminate sources of ignition. Hear suitable, protective equipment; avoid contact with liquid and vapors. Collect for disposal. Highly toxic to equatic life. Avoid discharge to sewers or maternays. | . <b></b> | MASTE DISPOSAL METHOD: Incinerate in a furnace where possitted under appropriate Foderal, State and local regulations. This product can be toxic to the microorganizes in a ### ATTACHMENT 1 (Continued) PAGE 5 FOR INTERNAL USE ONLY PROPUCT NAME: PROPJONOLDEHYOE wastewater treatment plant; however, a solution of about 10 ppm concentration was found to be biodegradable in laboratory studies. VIII. SPECIAL PROTECTION INFORMATION RESPIRATORY PROTECTION (SPECIFY TYPE): Self-contained breathing apparatus in high vapor concentrations. VEHTILATION: This product should be stored and handled in vapor-tight equipment, under an atmosphere of exygen-free nitrogen. When this is done, general (mechanical) room ventilation should be gatisfactory. Special, local ventilation is needed at points where vapors can be expected to escape to the workplace air. PROTECTIVE BLOVES: Butyl or PVC coated EYE PROTECTION: Monogoggles OTHER PROTECTIVE EQUIPMENT: Eye bath, safety shower IX. SPECIAL PRECAUTIONS PRECAUTIONS TO BE TA. IN IN HANDLING AND STORAGE: DANGER: Extremely Flammable. Harmful if inhaled. Causes eye irritation. Keep away from heat, sparks, and flame. Avoid breathing vapor. Avoid contact with eyes. Keep container closed. Use with adequate ventilation. Hash thoroughly after handling. FOR INDUSTRY USE ONLY OTHER PRECAUTIONS: STORAGE: Reacts with oxygen; store under oxygen-free nitrogen. (See Incompatibility). ### ATTACHMENT 1 (Continued) PAGE 4 FOR INTERNAL USE DALY PRODUCT NAME: PROPIONAL DENYDE PROCESS MAZICO: Sudden release of hot organic chemical vapors or mists from process equipment eperating at elevated temperature and pressure, or sudden ingress of air into vacuum equipment, may result in ignitions without the presence of obvious ignition sources. Published "autoignition" or "ignition" temperature values cannot be treated as safe operating temperatures in chemical processes without analysis of the actual process Conditions. Any use of this product in alwated-temperature processus whould be thoroughly evaluated to establish and asintain safe operating conditions. Further information is available in a technical bulletin entitled "Ignition Hazards of Organic Chemical Vapors." TRANSFER HAZARD: Vapors of this product may be ignited by static sparks. Usu proper bonding and grounding during liquid transfer as described in National Fire Protection Association document NFPA 77. #### I. REGULATORY INFORMATION STATUS ON SUBSTANCE LISTS: THE CONCENTRATIONS SHOWN ARE MAXIMUM OR CEILING LEVELS (MEISHT X) TO BE USED FOR CALCULATIONS FOR RESULATIONS. TRADE SECRETS ARE INDICATED BY "IS". #### FEDERAL EPA COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT OF 1980 (CERCLA) REQUIRES NOTIFICATION OF THE NATIONAL RESPONSE CONTER OF RELCASE OF DUANTITIES OF HAZARDOUS SUBSTANCES EDUAL TO OR BREATER THAN THE REPORTABLE DUANTITIES (ROS) IN 40 CFR 302.4. COMPONENTS PREJENT IN THIS PRODUCT AT A LEVEL MHICH COLLD REQUIRE NOTE INTO LINE THE STATUTE ARE: Superfund Amendments and Reauthorization Act of 1984 (SARA) Title III requires Emergency Planning Based on Threshold Planning Quantities (IPOs) and release Reporting Based on Reportable Quantities (ROs) in 40 CFR 255 (Used for SARA 302, 311 AND 312) Components Present in this Product at a level which could require Raporting under the statute are: SUPERFURD AMENDMENTS AND REALTHORIZATION ACT OF 1984 (SANA) TITLE III REGUIRES SUBMISSION OF AMMUAL REPORTS OF RELEASE OF TOXIC CHEMICALS THAT APPEAR IN 40 CFR 372 (FOR SARA 313). THIS INFORMATION MUST BE INCLUDED IN ALL MEDIS THAT ARE COPIED AND DISTRIBUTED FOR THIS MATERIAL FORMATION ACT OF THE MATERIAL COMPONENTS PRESENT IN THIS PRODUCT AT A LEVEL MAICH COULD REQUIRE REPORTING UNDER THE STATUTE ARE: CHEMICAL Propional dehyde 0 Cas marber 153-35-4 CONCENTRATION X 100 : V: ## ATTACHMENT 1 (Continued) | PAGE 7 | FOR INTERNAL USE | DMLY | | |-----------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------|----------------------------------------| | SECONO HORET BENETO | HALDEHYDE | | | | | STATE RIGHT-TU-IO | - | | | CALIFORNIA PROPOSITION &<br>This product does not con<br>found to Cause Cancer, b | ntain materials .d.c. | the State of Cal<br>reproductive ha | ifornia has<br>ra. | | the pulling purpose the finite | extraordinarily Hazar<br>nt in products.<br>t in this product at a | doue Substances | on the MSL muct | | CHEMICAL<br>Propionaldehyde | | CAS NIMBER<br>183-33-4 | UPPER ROUND<br>CONCENTRATION X<br>100 | | aber erid citible one breeft | Special Hazardous Sub<br>n products.<br>; in this product at a | Teams ou the Fi | | | CHEMICAL<br>Propionaldehyde | | CAS NAMBER<br>123-28-6 | LIPPER BOUND<br>CONCENSIATION X<br>100 | | TECA INVENTORY STATUS The ingredients of | this product are on | the TSCA inventor | γ. | | CALIFORNIA RULE 443.1 VOC<br>VOC 797 g/l; Vapor pressu | 'S:<br>ra 258 ma Hg 9 20 C | | | | THER REGULATORY INFORMAT | ION: | <del></del> | | | | | | | NOTE The spinions expressed are those of qualified experts within Union Carbide. He believe that the information contained is current as of the date of this Material Safety Date Sheet. Since the use of this information and of these opinions and the conditions of the use of the product are not within the control of Union Carbide, it is the user's obligation to determine the conditions of safe use of the product. ## ATTACHMENT 1 (Continued) PAGE B FOR INTERNAL USE DNLY ERDEUCT NAME: PROPIONAL DEHYDE DATE: 08/29/90 REVISION DATE: 08/29/90 REVISED SECTIONS Section III: INGREDIENTS CORRECTION PRODUCT: 70771 F NUMBER: CO322D Printed in USA ## BUSHY RUN RESEARCH CENTER 6702 Mellon Road, Export, Pennsylvania 15632-8902 Terephone (412) 733-5200 Telecopier (412) 733-4804 #### PROTOCOL AMENDMENT 1 TITLE: Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CDS Rats BERC PROJECT NUMBER: 91~13-25602 SPONSOR: Solvents and Coatings Materials Division Union Carbide Chemicals and Plastics Company Inc. 39 Old Ridgebury Road Danbury, CT 06817-0001 TESTING FACILITY: Bushy Run Research Center (BRRC) Union Carbide Chemicals and Plastics Company Inc. 6702 Mellon Road Export, PA 15632-8902 Reviewed and Approved by: Bushy Run Research Center: Cynthia D. Driscoll, Study Director Manager, Good Laboratory Practices/Quality Assurance Director Union Carbide Chemicals and Plastics Company Inc.: Tipton R. Tyler, Wh.D., DABT Da' Associate Director of Applied Toxicology Division: Richard C. Wise Manager, Product Safety Union Carbide Chemicals and Plastics Company Inc. **Excellence Through Quality** BRRC Report 91U0086 Appendix 8 Page 28 BRRC Project 91-13-25602 Protocol Amendment 1 Page 2 The protocol is amended as follows: Item 1 Location of Protocol Deletion Page 1, Title Description of Protocol Deletion (Sprague-Dawley) Rationale The parenthetical designation of (Sprague-Dawley) in reference to Charles River CD® rats has been gemoved in order to accurately reflect the strain designation as provided by the supplier. Item 2 Location of Protocol Deletion Page 2, Objectives Description of Protocol Deletion (Sprague-Dauley) Rationale See rationale for Item 1. Item 3 Location of Protocol Deletion Page 4, Supplier Description of Protocol Deletion Breeding Rationale The correct name of the supplier is Charles River Laboratories. Item 4 Location of Protocol Change Page 15, Nonpregnant Females Description of Protocol Change The uteri from females which fail to produce a litter will be stained with ammonium sulfide for confirmation of pregnancy status. Rationale Presh tissue was stained with ammonium sulfide rather than having fixed tissue stained with potassium farricyanide. Either chemical can be used to stain the uterus to detect very early resorptions. reprotox\protocol\apropion July 15, 1992 #### PROTOCOL DEVIATIONS TITLE: Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD® Rats BRRC PROJECT NUMBER: 91-13-25602 The following deviations from the written protocol for this study or from BRRC Standard Operating Procedures occurred during this study: - In the protocol, it was stated that the date for submission of the Draft Final Report would be added to the protocol by amendment. The Draft Final Report was issued on June 17, 1992, but an amendment was not written. - 2. Male rats were weighed on Day 35, 42, and 49 of the study. These weights were in addition to those specified in the protocol. REPROTOXPROTOCOL®PROPION April 1, 1893 13 BRRC Report 91U0086 Appendix 9 Page 1 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Study in CD® Rats Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Range-Finding Study in CD® Rats (119 Pages) ## TABLE OF CONTENTS | LIST OF TABLES | | 7 | |---------------------------------------------------------------|---------------|-----| | SUMMARY | • • • • • • • | 4 | | OBJECTIVES | • • • • • • • | 4 | | BACKGROUND INFORMATION | • • • • • • • | 2 | | TARGET CONCENTRATION SELECTION | • • • • • • • | 5 | | MATERIALS AND METHODS | • • • • • • • | 2 | | Test Substance | | 2 | | Animals and Husbandry | • • • • • • • | 2 | | Animal Acclimation | | 0 | | Study Organization | • • • • • • • | 0 | | Inhalation Chamber Description and Operation | | , | | Vapor Generation | • • • • • • • | 7 | | Observations and Measurements | • • • • • • • | 8 | | Maternal In-Life Evaluations | • • • • • • • | 8 | | Maternal Necropsy and Laparotomy | • • • • • • • | 8 | | Fetal Examinations | • • • • • • • | 8 | | Data Analyses | • • • • • • • | 8 | | RETENTION OF RECORDS | | 8 | | RESULTS AND DISCUSSION | • • • • • • • | 9 | | Chamber Acmosphere | • • • • • • | 9 | | Animal Fate | • • • • • • | 9 | | Clinical Observations | • • • • • • • | 9 | | Body Weights | • • • • • • • | 10 | | Food Ponsymption | • • • • • • • | 10 | | Food Consumption | • • • • • • • | 10 | | Maternal Necropsy and Laparotomy | • • • • • • • | 10 | | CONCLUSIONS | ****** | 11 | | KEY PERSONNEL | • • • • • • • | 11 | | REPERENCES | • • • • • • | 12 | | TARLES | * * * * * * * | 12 | | TABLES | • • • • • • • | 13 | | Chamber Atmosphere Report | | _ | | Individual Maternal In-Life Data | Attachment | 1. | | Individual Maternal Necropsy and Laparotomy Data | Attachment | 2 | | Incidence of Malformations and Variations by Individual | Attachment | 3 | | Fetuses and Litters (Including Individual Fetal Body | | | | Weights) | | | | Weights) Protocol, Protocol Amendment, and Protocol Deviation | Attachment | 4 | | | Betsahmast | - 6 | BRRC Report 91U0086 Appendix 9 Page 3 # LIST OF TABLES | Table | 1 | Summary of Chamber Atmosphere Data | 13 | |-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----| | Table | 2 | Summary of Distribution and Fate | | | Table | | Tanilly of Distribution and Fate | 14 | | rante | 3 | Incidence of Clinical Observations by | | | | | Gestation Day | 15 | | Table | 4 | Summary of Gestational Body Weight and | | | | | Weight Change (Grams) | 16 | | Table | 5 | Summary of Gestational Food Consumption | | | | | (Grams/Animal/Day) | 17 | | Table | 6 | Summary of Necropsy Observations | -• | | Table | | Cummers of Metornel Open William | 18 | | | • | Summary of Maternal Organ Weights (Grams) | 19 | | Table | 8 | Summary of Gestational Parameters | 20 | | Table | 9 | Summary of Malformations in Fetuses and Litters | 21 | | Table | 10 | Commence of Control on the Control of Contro | | | TOUTE | <i>5</i> .0 | Summary of Variations in Fetuses and Litters | 22 | Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Range-Finding Study in CD® Rats #### SUMMARY Young adult CD® female rats (7/group) were exposed to propional dehyde (CAS No. 123-38-6) vapor at concentrations of 0, 500, 1000, 1500, or 2500 ppm. Inhalation exposures were conducted daily, 6 hours each day, from gestation day (gd) 0-20, following successful mating with naive males of the same strain. Clinical observations were made daily following exposures, and maternal body weights were measured on gd 0, 7, 14, and 21. Food consumption was measured at least weekly throughout the study. At scheduled sacrifice on gd 21, the dams were evaluated for liver and gravid uterine weights, number of corpora lutea, and number and status of implantation sites (including early and late resorptions, and dead and live fetuses). Fetuses were dissected from the uterus, weighed, and examined externally for malformations, variations, and gender determinations. The means of daily mean chamber atmosphere concentrations ( $\pm$ S.D.) were 490 $\pm$ 7.7, 1009 $\pm$ 13.2, 1509 $\pm$ 9.9, and 2592 $\pm$ 39.0, for target concentrations of 500, 1000, 1500, and 2500 ppm, respectively. The pregnancy rate was equivalent among groups and ranged from 85.7 to 100%. No females died, delivered early, or were removed from the study prior to scheduled sacrifice. One female in the 1000 ppm group was found to have only non-viable implants. Six to 7 live litters were available for evaluation from each group. None of the groups displayed any exposure-related clinical signs. Maternal toxicity was evident, however, as exposure-related decreases in body weight, body weight gains, and food consumption. At 2500 ppm, body weights were reduced on gd 14 and 21, body weight gains were depressed during the first week of exposures (gd 0 to 7) and for the entire period of gestation (gd 0 to 21), and food consumption was reduced throughout the study. During the same intervals, the 1500 ppm group showed similar, but less severe, decreases in body weight, body weight gain, and food consumption. At 1000 ppm, body weight gain was depressed during the first week of exposures, but absolute body weights were not significantly affected. Food consumption, however, was also decreased throughout gestation. No effects on any of these measures were observed at 500 ppm. At sacrifice, corrected body weight was decreased in the 1000 and 2500 ppm groups, and a similar tendency was present at 1500 ppm. Exposure-related effects in corrected weight change were observed at 1000 ppm and above. There were no exposure-related differences in gestational parameters including total number of implants, and the number of viable and nonviable implants. The 2500 ppm exposure group fetal body weights were reduced, however, there was no evidence of any treatment-related external malformations or variations. Ŷ. In summary, repeated exposure to propional dehyde vapor at concentrations of 1000 ppm to 2500 ppm was associated with overt maternal toxicity. In this study, the "no-observed-adverse-effect level" (NOAEL) for maternal toxicity was 500 ppm, and the NOAEL for developmental toxicity was 1500 ppm. Based upon these data, exposure concentrations of 0, 150, 750, and 1500 ppm were selected for use in a follow-up study. #### OBJECTIVES The objective of this study was to establish the concentration-response range of propional dehyde administered by inhalation for maternal and/or developmental toxicity in CD® rats. This information was used to select appropriate exposure concentrations for use in the definitive repeated exposure study designed to assess the reproductive and developmental toxicity potential of propional dehyde. #### BACKGROUND INFORMATION This study was conducted by UCCLP as part of voluntary participation in the OECD High Production Volume Chemical testing program. Bas d upon previous studies of propional dehyde (Gage, 1970; Steinhagen and Barrow, 1984), concentrations of 0, 500, 1000, 1500, and 2500 ppm were selected for use in this study to establish the maximum tolerated concentration of propional dehyde vapor in pregnant CD<sup>©</sup> rats. #### TARGET CONCENTRATION SELECTION Target propionaldehyde vapor concentrations of 0 (control), 500, 1000, 1500, and 2500 ppm were selected in conjunction with the Sponsor based upon the available literature. #### MATERIALS AND METHODS The protocol, protocol amendment, and protocol deviation (BRRC Project No. 91-13-25601) detailing the design and conduct of this study are presented in Attachment 5. #### Test Substance Two 55-gallon stainless steel drums of propionaldehyde; Lot No. T-1258; CAS No. 123-38-6 were received on October 15, 1991, from Union Carbide Corporation (South Charleston, WV) and assigned BRRC Sample No. 54-351-A and B. The test substance was a water-white odorous liquid. The test substance was stored in the original containers in a special enclosure under a nitrogen atmosphere. The purity of the test substance was determined by the GLP Analytical Skills Center at the UCCLP South Charleston, WV, Technical Center to be approximately 99% and the report is included in Appendix 1. Pertinent chemical and physical properties of propionaldehyde are listed in Attachments 1 and 5. # Animals and Husbandry Sixty male and 60 female CD® rats arrived on October 14, 1991, from Charles River Laboratories, Inc. (Portage, MI). The males were designated by the supplier to be approximately 70 days old (birth date was recorded as approximately August 5, 1991) and 286-350 g upon arrival. Females were approximately 63 days old (birth date approximately August 15, 1991), 186-221 g, nulliparous, and nonpregnant upon arrival. Animals were housed in Room 101 from arrival to termination of the study, except during exposures. Within 2 days of receipt, the animals were examined by a Clinical Veterinarian, and representative animals were subjected to a pretest health screen including full necropsy, histologic examination of selected tissues, and serum viral antibody analyses. Based on the resulting these data, the Clinical Veterinarian indicated that these animals were in good health and suitable for use. All animals were assigned a unique number and identified by cage tags. Animals considered available for the study were also identified by an ear tag. Animals selected for the pretest health screen were identified by a toe-clipping procedure after sacrifice. The animals were housed 1-2/cage for approximately 7 days in stainless steel, wire mesh cages (30.5 x 15.5 x 18.0 cm). DACB® (Deotized Animal Cage Board; Shepherd Specialty Papers, Inc., Kalamazoo, MI) was placed under each cage and changed regularly. An automatic timer was set to provide fluorescent lighting for a 12-hour photoperiod (approximately 0500 to 1700 hours for the light phase). Temperature and relative humidity were recorded continuously (^ole-Parmer Hygrothermograph® Seven-Day Continuous Recorder, Model No. 8368-00, Cole-Parmer Instrument Co., Chicago, Th). Temperature was routinely maintained at 65-77°F; relative humidity was routinely maintained at 40-73%. Any minor exceptions to these specified ranges were noted in the raw data. Tap water (Municipal Authority of Westmoreland County, Greensburg, PA) was available ad libitum, except during exposures, and was delivered by an automatic watering system with demand control valves mounted on each rack (water bottles were used for females while in shoe box cages). Water analyses were provided by the supplier, the NUS Corporation, Materials and Engineering Testing Co., and Lancaster Laboratories, Inc. at regular intervals. EPA standards for maximum levels of contaminants were not exceeded. Ground, certified Rodent Chow \$5002 (Purina Mills, Inc.) was available ad libitum, except during exposures. Analyses for chemical composition and possible contaminants of each feed lot were performed by Purina Mills, Inc., and the results were included in the raw data. ## Animal Acclimation The acclimation period was approximately 1 week. During this period, the animals were weighed at least 2 times at scheduled intervals. Detailed clinical observations were conducted in conjunction with body weight measurements. Cage-side animal observations were conducted at least once daily, and mortality checks were conducted twice daily (morning and afternoon). The animals were examined just prior to the end of the acclimation period by a Clinical Veterinarian. Animals considered unacceptable for the study, based on the clinical signs, body weights, or body weight gains, were rejected. The fate of rejected animals and the reasons for rejection were documented in the raw data. #### Study Organization On each gd 0, prior to initializing exposures, the animals were assigned to one of 4 exposure groups and a control group using a stratified randomization procedure based on body weight. At the time of group assignment, only animals with body weights within ± 20% of the population mean were included. The female body weight range on the first day of exposure was 206.14 to 241.76 g. The following table summarizes the organization of the study. | Group | Number of<br>Female<br>Animals | Test Vapor Concentration (ppm) | |---------|--------------------------------|--------------------------------| | Control | 7 | 0 | | Low | 7 | 150 | | Mid | 7 | 750 | | High | 7 | 1500 | The exposures began on Gctober 22, 1991 and continued through November 13, 1991. Females were exposed 6 hour/day, 7 days/week, on gd 0-20. The 6-hour exposure period was defined as the time when the generation system was turned on and subsequently turned off. All control animals were exposed to filtered air only using the same exposure regimen. Seven females/group were sacrificed on gd 21 during the period of November 12 - 14, 1991. # Inhalation Chamber Description and Operation The inhalation chambers used for this study were located in Room 138. They were constructed from stainless steel with glass windows for animal observation. The volume of each chamber volume was approximately 4320 liters, and the airflow was approximately 1000 liters/minute. Chamber airflow was calibrated with a Kurz Model 505 mass flowmeter. A Dwyer Magnehelic® pressure gauge (Dwyer Instruments, Inc., Michigan City, IN) was used to monitor chamber airflow. Chamber temperature and relative humidity were recorded using industrial thermometers (Control Specialties, Inc., Houston, TX) and Airguide Humidity Indicators (Airguide Instrument Company, Chicago, IL), respectively. Temperature and relative humidity measurements were recorded approximately every 30 minutes during each exposure. Prior to the start of exposures, and on Exposure Day 2, the oxygen content of all the chambers was measured with an O2 indicator (Model 245R, Mine Safety Appliances, Pittsburgh, PA). # Vapor Generation For all exposure chambers, propionaldehyde was metered from a piston pump (Fluid Metering, Inc., Oyster Bay, NY) into a heated glass evaporator similar in design to that described by Snellings and Dodd (1990). The temperature of the evaporators was maintained at the lowest level sufficient to vaporize the liquid. The resultant vapor was carried into the chamber by a countercurrent air stream that entered the bottom of the evaporator. Prior to the start of exposures and on day 21 of the exposure regimen, temperature measurements were taken from the inside surface of the evaporators using a Fluke 51 K/J # Observations and Measurements # Maternal In-Life Evaluations All animals were individually observed for signs of toxicity immediately following daily exposures. Preceding and following each exposure, observations were recorded for animals exhibiting overt clinical signs. On days when exposures were not conducted, detailed observations were generally conducted in the morning. Female body weight data were collected on gd 0, 7, gestation period. # Maternal Necropsy and Laparotomy At scheduled sacrifice on gd 21, all surviving dams were sacrificed by carbon dioxide asphyxiation and necropsied. The maternal body cavities were opened by midline thoracolaparotomy. The gravid uterus, ovaries (including corpora lutea), cervix, vagina, and peritoneal and thoracic cavities were examined grossly. Ovarian corpora lutea of pregnancy were counted. Maternal liver weights were determined. Each uterus was externally examined for signs of hemorrhage, removed from the peritoneal cavity, weighed and dissected longitudinally to expose the contents. All live and dead fetuses and resorption sites (early and late) were noted and recorded. Uteri from females detection of early resorptions (Salewski, 1964). # Fetal Examinations All live fetuses were weighed, examined externally for gender determinations and for variations and malformations including cleft palate. # Data Analyses The unit of comparison was the pregnant female or the litter. The data for quantitative continuous variables were intercompared for the 4 exposure groups and the control group by use of Levene's test for equality of variances, analysis of variance (ANOVA), and t-tests. The t-tests were used when the F variances, and the ANOVA was significant. When Levene's test indicated similar pairwise comparisons. When Levene's test indicated heterogeneous variances, all groups were compared by an ANOVA for unequal variances followed, when necessary, by a separate variance t-test for pairwise comparisons. Nonparametric data were statistically evaluated using the Kruskal-Wallis test followed by the Mann-Whitney U test when appropriate. Incidence data were compared using the Fisher's Exact Test. For all statistical tests, the probability value of < 0.05 (two-tailed) was used as the critical level of significance. (Dixon, 1990; Sokal and Rohlf, 1981). Various models of calculators, computers, and computer programs may have been used to analyze data for this study. Since various models round or truncate numbers differently, values in some tables may differ slightly from those in other tables or from independently calculated data. The integrity of the study and interpretation of the data were unaffected by these differences. ## RETENTION OF RECORDS All raw data, documentation, records, the protocol, protocol amendment, and protocol deviation, specimens, and a copy of the final report generated as a result of this study are retained in the BRRC Archives. Due to the nature of the test substance, a reserve sample was not retained in the BRRC Archives. #### RESULTS AND DISCUSSION All references of differences in group mean values in the following text refer to comparisons of statistically significant differences between the exposure group and the control group, unless otherwise noted. Repeated reference to the control and the statistical significance will not be made in order to simplify the text. # Chamber Atmosphere A summary of the chamber atmosphere measurements is presented in Table 1. Detailed results and discussion of the chamber atmosphere measurements are included in Attachment 1. During exposures, the mean of daily mean chamber temperatures for all exposure groups ranged from 20 to 21°C (Attachment 1), and the relative humidity ranged from 46 to 49%. For all measurements, the chamber oxygen content was 20.8%. The evaporator temperature measurements ranged from 43 to 83°C. The means of daily mean chamber atmosphere concentrations ( $\pm$ S.D.) were 490 ( $\pm$ 7.7), 1009 ( $\pm$ 13.2), 1509 ( $\pm$ 9.9), and 2592 ( $\pm$ 39.0), for target concentrations of 500, 1000, 1500, and 2500 ppm, respectively. No propional dehyde was detected (minimum detection limit 5 ppm) in the control chamber atmosphere during the study. #### Animal Fate The distribution and fate for all female rats placed on study are presented in Table 2. Individual animal data are included in Attachment 2. No females delivered early or died prior to scheduled sacrifice. The overall pregnancy rate was equivalent for all groups and ranged from 85.7 to 100%. One pregnant female from the 1000 ppm group bore a litter which had no viable fetuses. Six to 7 litters were available for evaluation. All subsequent summary tables and discussion involve data from gravid dams only. #### Clinical Observations Summaries of the clinical observations are presented in Table 3. Individual clinical observation data are included in Attachment 2. No treatment-related clinical signs of toxicity were observed during the study. #### Body Weights Summaries of absolute body weights and body weight gains are presented in Table 4. Individual animal body weight data are included in Attachment 2. There was a nonsignificant exposure-related decrease in body weights in groups exposed to 1000 ppm and above by gd 7. By gd 14, significant decreases in body weight occurred at 2500 and 1500 ppm and body weights remained depressed through gd 21. Body weight gains for gd 0-7 were decreased at 1000 ppm and above. Although weight gains continued to be somewhat lower than controls in the groups exposed to 1000 ppm or greater, a significant overall decrease for gd 0-21 was seen only in the two highest concentrations. #### Food Consumption Summaries of food consumption data are presented in Table 5. Individual food consumption data are included in Attachment 2. Significant decreases in food consumption were evident throughout gestation for all groups exposed to 1000 ppm or greater. # Maternal Necropsy and Laparotomy A summary of necropsy observations in dams at scheduled sacrifice is presented in Table 6. Maternal organ weights and terminal body weight are presented in Table 7. Gestational parameters are presented in Table 8. Individual maternal necropsy and laparotomy data are presented in Attachment 3. At necropsy, there was no evidence of any lesions that could be attributed to propional dehyde exposure. Terminal body weight was lower in the 1500 and 2500 ppm groups, and there was a similar tendency for the 1000 ppm group. Corrected weight gain was less than controls in the 1000, 1500, and 2500 ppm groups, and the outcome for corrected body weight was similar. Relative and absolute liver weights were significantly depressed only in the 1000 ppm group. There were no effects of exposure on the number of ovarian corpora lutea, on the number of total implants, number of viable or nonviable (early and late resorptions, and dead fetuses) implants, or on sex ratio. #### Fetal Examinations Fetal body weights per litter (males, females and total fetuses) are presented in Table 8. The summary incidence and frequency of fetal malformations and variations observed in the study are presented in Tables 9 and 10, respectively. Malformations and variations for individual fetuses grouped by litters are presented in Attachment 4. Individual fetal body weights (by uterine location, sex and litter) are also presented in Attachment 4. Fetal body weights were reduced in the 2500 ppm exposure group. A statistically significant decrease in fetal body weight also occurred in the 500 ppm group, but was not considered to be related to exposure due to the lack of a dose-response relationship. No external malformations were observed in any group, and there was no evidence of any treatment-related variations. The decrease in fetal body weight at 2500 ppm was observed in conjunction with a significant degree of maternal toxicity. Although not directly addressed in this study, a previous report (Steinhagen and Barrow, 1984) of brief exposures (less than 1 hour) to propionaldehyde in B6C3Fl mice and Fischer 344 rats at 2078 and 6789 ppm for mice and rats respectively, resulted in a 50% decrease in respiratory rate. The effect on fetal body weight, therefore, may be due in part to effects of propionaldehyde exposure on the dam's respiratory rate. Although the effective concentration range appears to vary across species, and perhaps strains, repeated exposure to 2500 ppm, and perhaps lower, may have had a significant impact on respiratory rate in the present study. The observation of reduced fetal weights in the 500 ppm exposure group is not considered to be related to exposure due to the lack of a clear relationship to concentration, the significance of this finding is questionable and not considered biologically significant. #### CONCLUSIONS In summary, repeated exposure to propional dehyde vapor at concentrations of 1000, 1500, or 2500 ppm was associated with overt maternal toxicity. In this study, the NOAEL for maternal toxicity was 500 ppm, and the NOAEL for developmental toxicity was 1500 ppm. Based upon these data, exposure concentrations of 0, 150, 750, and 1500 ppm were selected for use in a follow-up study. #### KEY PFRSONNEL Study Director: C. D. Driscoll Study Coordinators: M. A. Copeman M. F. Rubena Supervisors: L. C. Fisher Scientists: D. A. Neptun I. M. Pritts Additional personnel are listed in the raw data. #### REFERENCES Dixon, W. J. (1990). BMDP Statistical Software. University of California Press, Berkeley, CA. Gage, J. C. (1970). The subacute inhalation toxicity of 109 industrial chemicals. Brit. J. Industr. Med. 27, 1-18. Snellings, W. M. and Dodd, D. E. (1990). Inhalation Studies. In: <u>Handbook of In Vivo Toxicity Testing</u>. D. L. Arnold, H. C. Grice, and D. R. Krewski, eds., 186-246. Academic Press, New York, NY. Sokal, R. R. and Rohlf, F. J. (1981). Biometry, 2nd Edition, W. H. Freeman and Co., San Francisco, CA. Steinhagen, W. H. and Barrow, C. S. (1984). Sensory irritation structure-activity study of inhaled aldehydes in B6C3Fl and Swiss-Webster mice. *Toxicol. Appl. Pharmacol.* 72, 495-503. TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD\* RATS SUMMARY OF CHAMBER ATMOSPHERE DATA | Target<br>Concentration | Temp | RH | λ | нои | | |-------------------------|-----------|-----------|---------------------------------------|-----------|------------| | (ppm) | (°C) | (1) | (ppm) | (ppm) | A/NOM | | 0 | 20.0±0.49 | 49.211.40 | <mdl< td=""><td></td><td></td></mdl<> | | | | 500 | 21.3±0.51 | 46.0±0.94 | 490± 7.7 | 507± 8.1 | 0.97±0.011 | | 1000 | 20.7±0.53 | 46.6±0.76 | 1009±13.2 | 986± 6.0 | 1.02±0.013 | | 1500 | 20.6±0.85 | 47.4±0.61 | 1509± 9.9 | 1450± 6.7 | 1.04±0.008 | | 2500 | 20.2±0.59 | 48.0±0.55 | 2592±39.0 | 2503±43.1 | 1.04±0.008 | Temp = temperature RH = relative humidity A = analytical concentration NOM = nominal concentration A/NOM = analytical concentration/nominal concentration <MDL = less than the minimum estimated detection limit</pre> PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS #### SUMMARY OF DISTRIBUTION AND FATE | GROUP: PPM | 0 | 500 | 1000 | 1500 | 2500 | |---------------------------------------|------------|------------|-------|------------|-------| | FEMALES ON STUDY | 7 | 7 | 7 | 7 | 7 | | FEMALES THAT DIED | 0.0 | 0 | 0 | 0 | 0 | | | 0.0 | 0.0 | 0.0 | 0,0 | 0.0 | | PREGNANT | 0.0 | 0.0 | 0.0 | 0.0 | o.o | | FEMALES THAT ABORTED | G | 0 | 0 | • | • | | 1300 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | EMALES THAT DELIVERED | 0 | G | 0 | 0 | 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | FEMALES REMOVED FROM STUDY | 0.0 | 0.0 | 0.0 | 0.0 | 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | FEMALES EXAMINED AT LAPAROTOMY | 7<br>100.0 | 7<br>100.0 | 100.0 | 7<br>100.0 | 7 | | | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | | NONPREGNANT | 14.3 | 0 | 0 | 0 | 0 | | | 14.3 | 0.0 | 0.0 | 0.0 | 0.0 | | PREGNANT | 6 | 7 | 7 | 7 | 7 | | | 85.7 | 100.0 | 100.0 | 100.0 | 100.0 | | FEMALES WITH NON-VIABLE IMPLANTS ONLY | | 0 | 1 | 0 | 0 | | | 0.0 | 0.0 | 14.3 | 0.0 | 0.0 | | FEMALES WITH VIABLE FETUSES | 6 | 7 | 6 | 7 | 7 | | | 160.0 | 100.0 | 85.7 | 100.0 | 100.0 | | FEMALES THAT WERE PREGNANT | 6 | 7 | 7 | 7 | 7 | | | 85.7 | 100.0 | 100.0 | 100.0 | 100.0 | For all parameter; the data are presented as the number of dams on top and the percentage beneath. G TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS INCIDENCE OF CLINICAL OBSERVATIONS BY GESTATION DAY FEMALES | | | GESTATIONAL | | | FPN | | | |----------------|----------------------------------------------|-------------|---|-----|------|------|------| | CATEGORY | FINDING (LOCATION) | DAYS | 0 | 200 | 1000 | 1500 | 2500 | | NORMAL | | | | | | | į | | | NO SIGNIFICANT CLINICAL OBSERVATIONS | -6<br>-6 | 2 | ۲ | • | r- | , | | DEAD | | i<br>i | • | • | • | - | • | | | SCHEDULED SACRIFICE | | | | | | | | | | 0- 21 | 9 | ~ | 7 | ٢ | 7 | | BODY | | | | | | | | | | UROGENITAL DISCHARGE, RED | | | | | | | | | | 0- 21 | ۵ | 0 | - | 0 | ٥ | | EYES/EARS/NOSE | NOSE | | | | | | | | | LACRIMATION (EYE-RIGHT) | | | | | | | | | | 0- 21 | 0 | 0 | - | G | 0 | | | PERIOCULAR ENCRUSTATION (EYE-BOTH, EYE-LEFT) | S-LEFT) | | | | | | | | | 0- 21 | 0 | 0 | 0 | 7 | 7 | | OTHER | | | | | | | | | | MISSING EAR TAG | | | | | | | | | | 0- 21 | 0 | ٥ | 0 | ٥ | ~ | $^{\rm R}$ Number of enimals exhibiting finding at least once within the specified range of days. None significantly different from control group g' G 1 TABLE 4 PROPIGNALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS SUMMARY OF GESTATIONAL BODY WEIGHT AND WEIGHT CHANGE (GRAMS) **FEMALES** GRO'IP: PPM Λ 500 1000 1500 2500 GESTATIONAL BODY WEIGHTS (4) DAY 0 MEAN 226.01 226.67 225.1.8 224.68 226.52 S.D. 8.918 9.892 10.909 10.867 12,556 N 6 DAY 7 MEAN 260.89 257.37 248.37 246,62 241.88 S.D. 4.268 13.262 .780 19.156 10.692 N DAM 14 **MEAN** 297.24 293.40 260.45\*\* 275.71 270.21\*\* S.D. 7.150 16.341 27.711 9.035 16.316 N DAY 21 MEAN 369.90 380.65 360.21\*\* 352.54 347.14\*\* S.D. 6.863 23.533 57.266 16.721 20.151 GESTATIONAL BODY WEIGHT CHANGES (q) PAY 0 TO 7 MEAN 34.88 30.70 21.93\*\* 23.18\*\* 15.37\*\* S.D. 5.994 9.558 5.766 N DAY 7 TO 14 MEAN 36.35 34.03 29.09 32.09 28.33 S.D. 5.732 6.647 10.079 5.901 4.926 N DAY 14 TO 21 MEAN 92.66 89,25 76.83 79.76 76.93 S.D. 4.399 9.229 31.412 10.439 8.120 н DAY 0 TO 21 (GESTATION) MEAN 163.89 153,98 127.86 135.03\*\* 120.63\*\* s.p. 6.853 17.573 47.919 15.415 14.168 N 6 \*\* Significantly different from control group (p < .01) TABLE 5 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS SUMMARY OF GESTATIONAL FOOD CONSUMPTION (GRAMS/ANIMAL/DAY) | | | | FEMALES | | | |--------------|--------------|-------|-------------|---------|---------| | GROUP: PPM | 0 | 500 | 1000 | 1500 | 2500 | | DAY 0 TO 7 | | | ···· | | | | MEAN | 21.98 | 20.84 | 18.70** | 19.00** | 18.40** | | s.ď. | 1.609 | 1.311 | 2.023 | 0.988 | 1.362 | | N | 6 | 7 | 7 | 7 | 7 | | DAY 7 TO 11 | | | | · | • | | MEAN | 24.38 | 22.71 | 20.13** | 21.21** | 20.43** | | S.D. | 1.099 | 1.828 | 2.000 | 1.516 | 1.817 | | n | 6 | 7 | 7 | 7 | 7 | | DAY 11 TO 14 | | | • | | • | | MEAN | 25.23 | 23.46 | 21.80** | 22.54** | 21.45** | | S.D. | 0.860 | 1.623 | 2.490 | 1.323 | | | H | 6 | 7 | 7.430 | 2.323 | 1.636 | | DAY 14 TO 17 | | , | , | , | ′ | | HEAN | 26.42 | 25.30 | 22.93** | 24.12* | 00 0044 | | S.D. | 1.275 | 1.855 | 3.097 | 1.678 | 22.27** | | N | 6 | 2,033 | 3.097 | 7 | 1.420 | | DAY 17 TO 21 | | · | , | , | , | | MEAN | 26.96 | 25.82 | 23.16** | 24.19* | 81 6644 | | S.D. | 1.095 | 1.576 | 3.286 | | 21.99** | | N | 6 | 2.3.0 | J, 200<br>7 | 1.635 | 1.335 | | DAY 7 TO 14 | <del>-</del> | • | , | , | , | | MEAN | 24.75 | 23.03 | 20.84** | 21.78** | 20 0744 | | S.D. | 0.821 | 1.668 | 2.149 | | 20.67** | | N | 6 | 7 | 7 . 143 | 1.321 | 1.674 | | DAY 14 TO 21 | • | , | • | , | , | | MEAN | 26.76 | 25.60 | 22 06** | 74 164 | | | S.D. | 1.112 | 1.551 | 23.06** | 24.16* | 22.11** | | N | 4.114 | 1.337 | 3.160 | 1.634 | 1.241 | <sup>\*</sup> Significantly different from control group (p < .05) \*\* Significantly different from control group (p < .01) Data not included for animals with observed food spillage. # TABLE 6 PROPIONALDEHYDE: COMEINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS SUMMARY OF NECROSSY OBSERVATIONS # ALL PREGNANT FEMALES SACRIFICED AT SCHEDULED LAPAROTOMY FEMALES | | GROUP: | 1 | 2 | 3 | 4 | 5 | |-----------------------------------------------------------------|--------|--------|--------|--------|-----|-------------| | NUMBER OF ANIMALS IN DOSE GROUP<br>NUMBER OF ANIMALS SACRIFICED | | 7<br>6 | 7 7 | 7<br>7 | 7 7 | 7 | | LIVER | | | | | | | | COLOR CHANGE | | 0 | 0 | 0 | 1 | 0 | | OVARIES | | | | | | | | CYST | | 1 | 1 | 1 | Q | 0 | | UTERUS | | | | | | | | CONTENTS - COAGULATED BLOOD | | 1 | 0 | 0 | 0 | 2 | | NO IMPLANTS IN ONE HORN<br>CONTAINS BLOOD (BY HEMASTIX) | | 0 | 0 | 0 | 1 | 2<br>0<br>0 | | • | | U | U | O | ı | U | | LUNGS | | | | | | | | COLOR CHANGE<br>FOCUS OR FOCI | | 5<br>0 | 5<br>0 | 6<br>1 | . 7 | 6<br>1 | | FOCUS ON FOCI | | 0 | 0 | ı | 1 | 1 | | KIDNEYS | | | | | | | | Hydronephrosis | | 1 | Q | 0 | 0 | 0 | TABLE 7 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD PATS SUMMARY OF MATERNAL ORGAN WEIGHTS (GRAMS) | | | | Fehales | | | |---------------|-----------------|---------|----------|----------|----------| | GROUP: PPM | 0 | 500 | 00 | 1500 | 2590 | | INITIAL BODY | WEIGHT (g) | | | | | | Mean | 226.01 | 226.67 | 224.68 | 225.18 | 226.52 | | S.D. | 8.918 | 9.892 | 10.909 | 10.867 | 12.556 | | N | 6 | 7 | 7 | 7 | 7 | | BODY WEIGHT A | T SACRIFICE (q) | | | | | | HEAN | 369.90 | 380.65 | 352.54 | 360.21** | 347.14** | | S.D. | 6.863 | 23.533 | 57.266 | 16.721 | 20.151 | | Ħ | 6 | 7 | 7 | 7 | 7 | | GRAVID UTERIN | E WEICHT (q) | | | | | | MEAN | 108.390 | 101.090 | 90.039 | 93.165 | 95.756 | | S.D. | 9.0443 | 7.7693 | 40.5703 | 16.5047 | 11.2159 | | N | 5 | 7 | 7 | 7 | 7 | | CORRECTED BOD | Y WEIGHT (g) a | | | | | | Mean | 281.51 | 279.56 | 262,50* | 267.05 | 251.39** | | S.D. | 12.348 | 16.875 | 22.761 | 11.636 | 13.039 | | H | 6 | 7 | 7 | 7 | 7 | | CORRECTED WEI | GHT CHANGE (g) | ) | | | | | MEAN | 55.50 | 52.89 | 37.82* | 41.87* | 24.87** | | S.D. | 8.787 | 11.848 | 14.500 | 6.459 | 4.600 | | N | 6 | 7 | 7 | 7 | 7 | | LIVER WEIGHT | (g) : | | | | | | Mean | 13.449 | 13.099 | 11.221** | 12.216 | 12.128 | | S.D. | 1.3877 | 1.2964 | 1.4138 | 1.0767 | 1.1271 | | Ħ | 6 | 7 | 7 | 7 | 7 | | RELATIVE LIVE | R WEIGHT (1)C | | | | | | HEAN | 4.772 | 4.680 | 4.266** | 4.571 | 4.819 | | S.D. | 0.3689 | 0.3050 | 0.2541 | 0.2916 | 0.2758 | | N | 6 | 7 | 7 | 7 | 7 | <sup>\*</sup> Significantly different from control group (p < .05) \*\* Significantly different from control group (p < .01) a Corrected body weight = body weight at sacrifice minus gravid uterine weight. b Corrected weight change = corrected body weight minus initial body weight. c Value is a percentage of corrected body weight. TABLE 8 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS SUMMARY OF GESTATIONAL PARAMETERS | | | | Pehales | | | |------------------|----------------------------------------|-------------|-------------|---------------------|---------| | GROUP: PPH | 0 | 500 | 1000 | 1500 | 2500 | | CORPORA LUTEA | | | | | | | Hean | 15.8 | 15.6 | 16.3 | 16.4 | 15.9 | | S.D. | 0.75 | 2.07 | 3.64 | 3.60 | 0.69 | | H | 6 | 7 | 7 | 7 | 7 | | OTAL IMPLANTS | 3 | | | | | | MEAN | 15.0 | 14.3 | 3.3.4 | 13.4 | 15.4 | | S.D. | 1.10 | 1.11 | 5.80 | 2.30 | 0.79 | | N | 6 | 7 | 7 | 7 | 7 | | POCEUM BORTIO | ************************************** | - | • | • | • | | ERCENT PREIMI | PLANTATION LOSS<br>5.3 | | | | _ | | S.D. | 4.73 | 7.5 | 20.6 | 14.4 | 2.7 | | 8.D. | 4.73 | 7.37 | 32.14 | 21.86 | 3.36 | | ** | • | 7 | 7 | 7 | 7 | | iable implant | | | | | | | Mean | 14.5 | 14.0 | 12.4 | 12.9 | 14.6 | | S.D. | 1.38 | 1.15 | 5.80 | 2.19 | 1.13 | | H | Ó | 7 | 7 | 7 | 7 | | ON-VIABLE IM | PLANTS | | | | | | HEAN | 0.5 | 0.3 | 1.0 | C.6 | 0.9 | | S.D. | 0.84 | 0.49 | 1.15 | 0.79 | 1,21 | | N | 6 | 7 | 7 | 7 | 7 | | Pinty secon | | , | , | , | , | | EARLY RESORT | | | | | | | S.D. | 0.5<br>0.84 | 0.3 | C.9 | 0.6 | 0.9 | | ธ.บ.<br>พ | 6 | 0.49 | 1.07 | 0.79 | 1.21 | | Я | 0 | 7 | 7 | 7 | 7 | | LATE RESORPT | riors | | | | | | Keah | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | | S.D. | 0.00 | 0.00 | 0.38 | 0.00 | 0.00 | | H | 6 | 7 | 7 | 7 | 7 | | DEAD FETUSES | • | | | | | | MEAN | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | | S.D. | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 | | N | 6 | 7 | 7 | 7 | 7 | | | • | , | • | , | , | | ERCENT LIVE F | | | | | | | MEAN | 96.6 | 98.0 | 80.3 | 96.0 | 94.6 | | s.b. | 5.85 | 3.43 | 36.07 | 5.50 | 7.60 | | N | 6 | 7 | 7 | 7 | 7 | | EX RATIO (4 H | (ALE FETUSES) | | | | | | MEAN | 47.9 | 53.5 | 55.1 | 44.1 | 46 3 | | S.D. | 16.97 | 15.92 | 14.75 | 12.64 | 13.36 | | N | 6 | 7 | 6 | 7 | 7 | | ETAL BODY WEI | GHTS PER LITTE | R (GRAMS) | | | | | LL PETUSZS | | <del></del> | | | | | MEAN | 5.303 | 5.092* | 5.180 | K 124 | 4 70044 | | S.D. | 0.1509 | 0.1720 | 0.4086 | 5.134 | 4.706** | | n | 6 | 7 | U.4U80<br>6 | 0.241 <i>€</i><br>7 | 0.3246 | | • | U | , | O | 7 | 7 | | ALE PETUSES | - 4 | | | | | | MEAN | 5.417 | 1 254 | 5.330 | 5.308 | 4.890** | | S.D. | 0.1843 | 0.2517 | 0.3826 | 0.2661 | 0.3838 | | Ħ | 6 | 7 | 6 | 7 | 7 | | EHALE PETUSES | 3 | | | | | | KEAN | 5.177 | 4.935* | 5.037 | 5.014 | 4.557** | | · <del>-</del> - | | | | | | | 8.D. | 0.1831 | 0.1636 | 0.4516 | 0.2597 | 0.3043 | <sup>\*</sup> Significantly different from control group (p < .05) \*\* Significantly different from control group (p < .01) a Percent preimplantation loss=[(corpora lutea - total implants)/corpora lutea] x 100. TABLE 9 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS SUPPLARY OF MALFORMATIONS IN FETUSES AND LITTERS<sup>A</sup> | GROUP: PPM | • 0 | 500 | 0 500 1000 1500 2500 | 1500 | 2500 | 0 | 0 500 1000 1500 2500 | 10001 | 1500 | 2500 | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------|----------------------|---------------|-------------------------------|-------|----------------------|--------|------|------| | NE SER EXAMINED EXTERNALLYD | 87 | 98 | 87 | 9 | 102 | ٠ | ~ | 9 | ~ | ^ | | EXTERNAL FINDINGS | | | | | | | | | | | | TOTAL MALFORMATIONS<br>NUMBER WITH EXTERNAL MALFORMATIONS | 0 | 0 | 0 | 0 | o | 0 | ٥ | 0 | 0 | 0 | | PERCENT WITH EXTERNAL MALFORMATIONS | 0.0 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 0.0 0.0 | 0.0 | 0.0 | 0.0 | | None significantly different from control ( 0 PPM ) Record of fetuses affected or litters with one or more affected fetuses) is presented on top and the percentage of the total (fetuses or litters) examined is presented beneath. A single fetus may be represented more than once in listing individual defects. Only live fetuses were examined. All fetuses were examined externally. | )<br>litters<br>itters)<br>defects | with<br>exami | one or<br>ined is | more<br>prese | affected fet<br>inted beneath | uses) | is pres | etus # | Ye | | Ü TABLE 10 FROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY HANGE-FINDING STUDY IN CD RATS SUMMARY OF VARIATIONS IN FETUSES AND LITTERS | | GROIP: PFN | F<br>0 | 5 7 U<br>500 | S E S | FETUSES<br>0 500 1000 1500 2500 | 2500 | 0 | L I T<br>500 | LITTERS<br>0 500 1000 1500 2500 | 1500 | 2500 | |-----------------------------------------------------------------------------------|------------|--------|-----------------|-------|---------------------------------|-----------|------|--------------|---------------------------------------|------|------| | MUMBER EXAMINED EXTERNALLY | | 87 | 98 | 87 | 90 | 102 | 9 | 1 | 9 | 7 | ^ | | SCCHYMOSIS - TRUNK | | 4.6 | 4.1 | 9.0 | 4.6 4.1 8.0 3.3 | 5.9 | 50.0 | 42.9 | 3 3 3 3 4 50.0 42.9 57.1 | 42.9 | 57.1 | | BOCHYMOSIS - EXTREMITIES | | 1.1 | 1.1 1.0 0.0 0.0 | 0.0 | 0.0 | 0.0 | 16.7 | 1 1 | 1 1 0 0 0<br>16.7 14.3 0.0 0.0 0.0 | 0.0 | 0.0 | | TOTAL VARIATIONS NUMBER WITH EXTERNAL VARIATIONS PERCENT WITH EXTERNAL VARIATIONS | S | ۶. د. | 5 5.3 | 9.0 | 7 3 6<br>8.0 3.3 5.9 | رة<br>د و | 66.7 | 57.1 | 4 4 3 3 4<br>66.7 57.1 50.0 42.9 57.1 | 42.9 | 57.1 | None significantly different from control ( 0 PPH ) A For all findings, the number (of fetuses affected or litters with one or more affected fetuses) is presented on top and the percentage of the total (fetuses or litters) examined is presented beneath. A single fetus may be represented more than once in listing individual defects. Only live fetuses were examined. b All fetuses were examined externally. g **(**) BRRC Report 91U0086 Appendix 9 Page 23 Attachment 1 Propionaldehyde: Reproductive/Developmental Toxicity Range-Finding Study in CD® Rats 22.55 Chamber Atmosphere Report BRRC Report 9100086 Appendix 9 Page 24 Attachment 1 4/3/ 65 # TABLE OF CONTENTS | SUMMARY | 25 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----| | | | | Test Substance | 25 | | Test Substance | 25 | | Analytical Instrumentation | 25 | | Calibration | 26 | | RESOLTS AND DISCUSSION | 26 | | Chamber Atmosphere Apalusis | | | Analytical (Nominal Concentration Publication Publicat | 26 | | Analytical/Nominal Concentration Ratio | 26 | | Temperature and Relative Humidity | 27 | | Table 1 - Chemical and Physical Properties | 28 | | | | | Table 1 - Cas Chromatograph Openition with the | 29 | | operating relative fermi | 30 | | Control Chambel | 31 | | - July ppm Champer | 32 | | rable 5 - Chamber Atmosphere Data - 1000 ppm Chamber | 33 | | TADIO / - Chambor brokenbore bake sroot of t | 34 | | 17401H N = 1754MBOY DYMOONBOYO DALA OCOO | | | Figure 1 - Calibration Curvo | 35 | | Figure 1 - Calibration Curve | 36 | | Test Substance Characterization Report | 37 | BRRC Report 91U0086 Appendix 9 Page 25 Attachment 1 #### Chamber Atmosphere Report #### SUMMARY The concentration of propional dehyde vapor in the exposure chamber was monitored throughout the 23 days of exposure by flame ionization gas thromatography. The concentration in each exposure chamber atmosphere was determined approximately 11 times during each technology. The overall mean (± standard deviation) chamber atmosphere concentrations were 490 (± 7.7), 1009 (± 13.2), 1509 (± 9.9), and 2592 (± 39.0) ppm, for target concentrations of 500, 1000, 1500, and 2500 ppm, respectively. Propional dehyde was not detected in the control chamber atmosphere. The test substance was analyzed before and after the exposure regimen and remained nearly over 99% pure. #### MATERIALS AND METHODS #### Test Substance Two 55-gallon containers of propionaldehyde (CAS No. 123-38-6, Lot T-1258, BRRC Sample No. 54-351 A and B) were received from Union Carbide Chemicals and Plastics Company Inc. (UCC&P), S. Charleston, WV, on October 15, 1991. The chemical and physical properties of the test substance are described in Table 1. The compositional analyses were provided by the GLP Analytical Skills Center at the UCC&P South Charleston, WV, Technical Center. A summary of this report is presented in Table 2; the entire report is presented beginning with page 37 of this attachment. The entire report is also presented as Attachment 1 in Appendix 1. The prestudy and poststudy compositional analyses indicated that the test substance was over 99% pure and had remained stable for the duration of the exposure regimen. ## Analytical Instrumentation Perkin-Elmer Sigma 2000 gas chromatograph (GC) equipped with a flame ionization detector was used to analyze the exposure chamber atmospheres for propionaldehyde vapor. The GC operating conditions are presented in Table 3. A Spectra-Physics 4270 Integrator provided a record to be chromatograms and chromatographic analyses as well as peak integration. The data were captured using an IBM PS/2 Computer with Spectra-Physics Chromatation/2 software. In-house software was used to compute daily statistics and also to provide an alarm system which monitored chamber concentrations. BRRC Report 91U0086 Appendix 9 Page 26 Attachment 1 #### Calibration Calibration of the gas chromatograph was achieved by injecting gas standards, which were prepared by syringe injection of propionaldehyde test substance into Tedlar<sup>m</sup> gas bags containing UHP nitrogen. These standards were prepared using the mathematical relationship: $$V = \frac{C \times V_b \times MW \times 298 \times P \times 10^{-6}}{d \times 24.45 \times T \times 760}$$ where: V = required volume of calibration liquid in milliliters at temperature T (degrees K) C = desired calibration concentration, in ppm $V_h$ = volume of container, in liters MW = molecular weight of the calibration liquid P = barometric pressure, in millimeters of mercury d = density of the calibration liquid in grams per milliliter at temperature T 24.45 = molecular volume at 298 degrees K and 760 millimeters of mercury, in liters T = temperature, in degrees Kelvin The calibration curve (Figure 1) was constructed by plotting peak areas versus the gas standard concentrations. The calibration was checked at least once each week during the exposure regimen. #### RESULTS AND DISCUSSION ## Chamber Atmosphere Analysis Each chamber atmosphere was analyzed for propional dehyde approximately twice each hour during each 6-hour exposure by flame ionization gas chromatography. The daily mean analytical concentrations are listed in Tables 4 through 7. The means of daily mean chamber atmosphere concentrations (± standard deviations) were 490 (± 7.7), 1009 (± 13.2), 1509 (± 9.9), and 2592 (± 39.0) ppm, for the target concentrations of 500, 1000, 1500, and 2500 ppm, respectively. No concentration of propional dehyde above the estimated minimum detection limit of 5 ppm was detected in the control chamber atmosphere during the study. # Analytical/Nominal Concentration Ratio The daily analytical/nominal (A/NOM) propionaldehyde concentration ratios are given in Tables 5 through 7, the nominal concentration being an estimate BRRC Report 91U0086 Appendix 9 Page 27 Attachment 1 calculated from the quantity of test substance delivered and the chamber airflow rate. The overall mean A/NOM concentration ratios were 0.97, 1.02, 1.04, and 1.04, for propional dehyde target concentrations of 500, 1000, 1500, and 2500 ppm, respectively. # Temperature and Relative Humidity The daily mean temperature and relative humidity values for the exposure chambers are also presented in Tables 4 through 7. The means of daily mean temperature values were 20, 21, 21, 21, and 20°C, for propionaldehyde target concentrations of 0, 500, 1000, 1500, and 2500 ppm, respectively. The means of daily mean relative humidity values were 49, 46, 47, 47, and 48%, respectively. Analytical Chemist: 4-6-93 Irvin M. Pritts, Ph.D. Date BRRC Report 9100086 Appendix 9 Page 2: Attachment 1 #### TABLE 1 PROPIONAGOEMYDE: COMBIN: REFERENCE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY NARGE-FINDING STUDY IN CLASSARTS #### CHEMICAL AND PHYSICAL PROPERTIES1 | Synonyms: | Propanal; Propylaldehyda | |-----------------------------------|--------------------------------------| | Molecular Weights | 58.68 | | Molecular Formula: | С2H5CH0 | | Vapor Density (air = 1) | 2.0 | | Appearance and Odors | Water-white liquid; suffocating odor | | Boiling Point, 760 mm Hg: | 48°C | | Solubility in Water: | 22% @ 20°C | | Evaporation Rate (but acetate=1); | 19.9 | | Vapor Pressure at 20°C: | app.ox. 25% mading | | Specific Gravity (HgO = 1); | 0.7982 @ 20/20°C | | Flash Point (Tag Closed Cup): | < -lt°C | TABLE 2 PROPIONALDENTOR: COMMINED COMMINED COMMINED DESPOSABLE AND REMODUCTIVE/DEVELOPMENTS. TOYMOUTY BANGES, INDIAG STUDY IN CO. SATS #### TEST SUBSTANCE ANALYSIS1 | Component | Prestudy<br>Arest | Poststudy<br>Areal | |-------------------------|-------------------|--------------------| | Propionaldshyde | 99.77 (approx.) | 99.42 (арргож.) | | n-Propanol | 0.01 | 0.02 | | 2-Hethyl Eutyraldehyde | 0.02 | 0.02 | | Valeraldehyde | 0.06 | 0.02 | | Propionic Acid | G.07 | 0.37 | | Propionaldehyde Dimarm | 0.03 | 0.04 | | Propionaldehyda Grimera | 0.01 | 0.04 | | All Games Tempus : wies | 0.03 | 0.07 | The capillary gas chromatographic compositional analyses were provided by the GLP Analytical Skills Center at the UCCSP South Charleston, WV, Technical Center. In addition, gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy were independently used to confirm the sample's identity. BRRC Report 9100086 Appendix 9 Pag. 30 Attachment 1 #### TABLE 3 PHORICALIDERYPE: COMBTHED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY NAMES STUDY IN CO. RATS #### GAS CHROHATOGRAPH OPERATING PARAMETERS | Chromatograph: | Perkin-Elmer Sigma 2000 | |-----------------------|---------------------------------------------------------------------------------| | Detector: | Flame foniration | | Column: | 10t SP-1960, on 80/100 mesh<br>Supalcoport, 10 ft. x 1/0 in.<br>scrinless steel | | Column temperature: | 170°C | | Injector temperature: | 100°C gas sample valve | | Detector temperature: | 250°C | | Carrier flow rates | 20 mL/minute nitrogen | | Sample size: | 0.5 cc | | Stention time: | 1.4 minutes | | GC attenuation: | Range = 100 | 128 Integrator attenuation: TAble 4 PROPIONALDEHYDE: COMBINED REPRATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN COS RATS CHARBER THOSPHERE TAI 6 PPM CHARBER | Exposure<br>Day | TEMP<br>(°C) | RH<br>(%) | A<br>(ppm) | <b>19</b> D | | |-------------------|--------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| | | | | | | <del></del> | | 1.<br>2<br>3<br>4 | 10.7 | 50.2 | <hdl< td=""><td>-</td><td></td></hdl<> | - | | | 2 | 19.8 | 49.8 | <hdl< td=""><td></td><td></td></hdl<> | | | | 3 | 20.0 | <b>48.8</b> | TOL | | | | 4 | 20.1 | 49.4 | JC. | V <del></del> | | | 5 | 20.6 | 48.2 | SHOL | | | | 6, | 20.2 | 48.4 | <#IDL | 94,000 | | | 7 | 20.8 | 52.8 | <#DL | No. | | | 8 | 20.7 | 52.2 | <\NDT | ***** | | | 9 | 20.4 | 51.3 | <hdl< td=""><td></td><td></td></hdl<> | | | | 10 | 20.5 | 50.9 | <mdl< td=""><td>- Operation in the Control of Co</td><td></td></mdl<> | - Operation in the Control of Co | | | 1.1 | 20.0 | 48.5 | <hdl< td=""><td></td><td></td></hdl<> | | | | 12 | 20.4 | 48.3 | <mdi.< td=""><td></td><td></td></mdi.<> | | | | 13 | 20.6 | 48.2 | <md1< td=""><td>New New York</td><td></td></md1<> | New New York | | | 1.4 | 19.9 | 47.8 | <hdl< td=""><td>Appropriate</td><td></td></hdl<> | Appropriate | | | 15 | 20.0 | 49.0 | <)fDL | Action to the second se | | | 16 | 19.9 | 48.U | <hdl< td=""><td><del></del></td><td></td></hdl<> | <del></del> | | | 17 | 20.0 | 49.0 | <#DL | | | | 18 | 19.8 | 48.4 | <mdl< td=""><td>100 at</td><td></td></mdl<> | 100 at | | | 19 | 19.8 | 48.5 | <mdl< td=""><td></td><td></td></mdl<> | | | | 20 | 12:0 | 47.7 | <mdl< td=""><td></td><td></td></mdl<> | | | | 21 | 20.0 | 48.6 | <mdl< td=""><td></td><td></td></mdl<> | | | | 22 | 20.0 | 49.0 | <mdl< td=""><td></td><td></td></mdl<> | | | | 23 | 19.5 | 48,4 | <mdl< td=""><td></td><td></td></mdl<> | | | | | | | -1100 | | | | Hean: | 20.0 | 49.2 | <mdl< td=""><td></td><td></td></mdl<> | | | | SD: | 0.51 | 1.40 | | ÷ | | TEMP = temperature (daily mean) RH = relative hunidity (daily mean) A = analytical concentration (daily mean) SD = standard deviation of A <HDL = less than the minimum estimated detection limit</pre> BRRC Report 9100086 Appendix 9 Page 32 Attachment 1 TABLE 5 PROPIONALDESTYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS CHAMBER ATHORISMED DATA: 500 PPH CHARMER | Exposure<br>Day | TEMP<br>(°C) | RII<br>(%) | A<br>(ppm) | ŕsd | HOH | 3. 0104 | |-----------------|--------------|------------|------------|-----|-------|---------| | | | | (74-1 | | (ppm) | A/NOH | | 1 | 19.8 | 47.2 | 489 | 6 | 501 | | | 2 | 20.6 | 67.6 | 468 | 3 | 503 | 0.98 | | 3 | 20.8 | 47.2 | 494 | 3 | | 0.97 | | 4 | 21.4 | 47.6 | 492 | | 506 | 0.98 | | 5 | 21.7 | 46.2 | 512 | 0 | 507 | 0.97 | | 6 | 21.6 | 46.7 | | • | 530 | 0.97 | | 7 | 21.6 | 47.4 | 482 | 3 | 503 | 0.96 | | Ŕ | 21.6 | 45.8 | 496 | 6 | 507 | 0.98 | | 8<br>9 | 21.8 | 45.5 | 500 | 7 | 509 | G.98 | | 10 | 21.6 | 46.0 | 491 | 2 | 507 | 0.97 | | 11 | 21.6 | 46.9 | 495 | 2 | 507 | 0.98 | | 12 | 21.6 | | 483 | 7 | 500 | 0.97 | | 13 | | 45.7 | 485 | 5 | 512 | 0.95 | | | 21.8 | 44.9 | 502 | 22 | 529 | 0.95 | | 1.4 | 21.6 | 44.5 | 494 | 2 | 503 | 0.28 | | 15 | 21.6 | 44.9 | 492 | 4 | 505 | 0.97 | | 16 | 20.8 | 45.2 | 482 | 4 | 497 | 0.97 | | 17 | 21.6 | 45.9 | 484 | 5 | 503 | 0.96 | | 18 | 21.1 | 45.7 | 488 | 5 | 505 | 0.97 | | 19 | 21.0 | 45.0 | 488 | 7 | 498 | 0.98 | | 20 | 21.2 | 45.0 | 482 | 14 | 504 | 0.96 | | 21 | 20.9 | 46.0 | 489 | 5 | 507 | 0.96 | | 22 | 21.7 | 46.5 | 478 | 4 | 501 | 0.95 | | 23 | 20.8 | 45.6 | 467 | 4 | 512 | 0.95 | | Meant | 21.3 | 46.0 | 490 | | 507 | 0.97 | | SD: | 0.51 | 0.94 | 7.7 | | 8.1 | 0.011 | TEMP = temperature (daily mean) RH = relative humidity (daily mean) A = analytical concentration (daily mean) SD = standard deviation of A NOH = nominal concentration A/NOM = analytical concentration/nominal concentration BRRC Report 9100086 Appendix 9 Page 33 Attachment 1 TABLE 6 PROPIONALDEHTDE: CONLINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS CHAMBER ATMOSPHERE DATA: 1000 FPM CHAMBER | Exposure | TEMP | RH | Х | | 28C/16 | | |----------------------------|------|------|-------|--------|--------|-------| | Day | (°C) | (4) | (ppm) | ±80 | (ppm) | HOK/K | | 1 | 20.8 | 46.8 | 1006 | 27 | 985 | 1.02 | | 2 | 213 | 46.8 | 1016 | 13 | 991 | 1.03 | | 1<br>2<br>3 | 21.8 | 47.0 | 1003 | 14 | 908 | 1.02 | | | 21.2 | 47.3 | 1023 | 26 | 969 | 1.03 | | 5 | 21.6 | 46.1 | 993 | 15 | 983 | 1.01 | | 6 | 20.8 | 46.6 | 1005 | 16 | 988 | | | 7 | 20.8 | 46.4 | 1022 | 10 | 995 | 1.02 | | 4<br>5<br>6<br>7<br>8<br>9 | 20.8 | 45.4 | 1022 | 14 | 991 | 1.03 | | 9 | 20.6 | 44.8 | 566 | 13 | 967 | 1.03 | | 10 | 20.7 | 45.8 | 1011 | 7 | 985 | 1.00 | | 11 | 20.8 | 46.2 | 1002 | 33 | 989 | 1.03 | | 12 | 20.7 | 45.3 | 987 | 25 | 979 | 1.01 | | 13 | 20.7 | 46.1 | 1208 | | 986 | 1.01 | | 14 | 20.0 | 46.5 | 1010 | 9<br>7 | 983 | 1.02 | | 15 | 20.7 | 47.1 | 1004 | 10 | 985 | 1.03 | | 16 | 20.5 | 47.3 | 1012 | 13 | 993 | 1.02 | | 17 | 20.7 | 47.6 | 992 | 13 | 973 | 1.02 | | 18 | 20.3 | 47.2 | 1020 | | 991 | 1.02 | | 19 | 20.0 | 47.4 | 1028 | 6<br>7 | 981 | 1.03 | | 20 | 19.7 | 46.8 | 1025 | 22 | 974 | 1.05 | | 21 | 19.9 | 47.4 | 985 | 11 | | 1.05 | | 22 | 20.6 | 47.2 | 1027 | | 985 | 1.00 | | 23 | 19.6 | 47.2 | | 10 | 989 | 1.04 | | | 27.0 | 47.2 | 1010 | 9 | 998 | 1.01 | | Kean: | 20.7 | 46.6 | 1009 | | 986 | 1.02 | | SD: | 0.52 | 0.76 | 13.2 | | 6.0 | 0.013 | TEMP = temperature (daily mean) RH = relative humidity (daily mean) A = analytical concentration (daily mean) BD = standard deviation of A NOH = nominal concentration A/NOH = analytical concentration/nominal concentration BRRC Report 9100086 Appendix 9 Page 34 Attachment 1 TABLE 7 PROPIONALDEMIDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY FANGE-FIRMING STUDY IN CD® RATS # CHAMBER ATMOSPHERE DATA: 1500 PPH CHAMBER | Exposura<br>Day | TEMP<br>(*C) | RH<br>(%) | (ppm) | <b>±8</b> D | ₩ОН<br>(ррш) | A/HOH | |-----------------------|--------------|-----------|-------|-------------|--------------|---------------| | | | | | | | | | 1 2 | 19.5 | 40.2 | 1500 | 17 | 1446 | 1.04 | | 2 | 20.2 | 48.4 | 1509 | 5 | 1455 | | | 3 | 20.0 | 47.5 | 1505 | 10 | 1459 | 1.04 | | 4 | 21.1 | 46.0 | 1521 | 19 | 1457 | 1.03 | | 5 | 21.9 | 47.0 | 1500 | 12 | 1453 | 1.04 | | 6 | 22.5 | 47.2 | 1502 | 9 | 1459 | 1.03 | | 5<br>6<br>7<br>8<br>9 | 22.2 | 47.2 | 1519 | 6 | 1452 | 1.03 | | 8 | 20.6 | 47.2 | 1526 | 8 | | 1.05 | | 9 | 21.0 | 46.7 | 1501 | 25 | 1450 | 1.05 | | 10 | 20.7 | 46.6 | 1511 | | 1446 | 1.04 | | 11 | 21.1 | 47.4 | 1510 | 6 | 1447 | 204 | | 12 | 18.7 | 46.7 | 1500 | 8 | 1449 | 1.04 | | 13 | 19.5 | 46.5 | | • | 1449 | 1.04 | | 14 | 20.8 | 47.1 | 1500 | 4 | 1456 | 1.03 | | 15 | 20.8 | 48.1 | 1533 | В | 1452 | 1.06 | | 16 | 20.5 | | 1511 | 8 | 1449 | 1.04 | | 17 | 20.5 | 47.4 | 1502 | 18 | 2444 | 1.04 | | 18 | | 47.4 | 1514 | 13 | 1445 | 1,05 | | 19 | 20.7 | 47.3 | 1434 | 14 | 1450 | 1.03 | | 20 | 20.6 | 47.2 | 1502 | 14 | 1434 | 1.05 | | 21 | 20.5 | 46.8 | 1512 | 12 | 1437 | 1.05 | | | 19.9 | 48.8 | 1507 | 8 | 1459 | 1.03 | | 22 | 20.7 | 48.0 | 1521 | 12 | 1452 | 1.05 | | 23 | 20.2 | 47.4 | 1517 | 1.3 | 1459 | 1.04 | | | | | | | | <del></del> - | | łosn: | 20.6 | 47.4 | 1509 | | 1450 | | | BD: | 0.05 | 0.50 | 9.9 | | 6.7 | 1.04<br>0.000 | TEMP = temperature (daily mean) RH = relative humidity (daily mean) A = analytical concentration (daily mean) SD = standard deviation of A NOM = nominal concentration A/NOM = analytical concentration/nominal concentration ERRC Report 9100086 Appendix 9 Page 35 Attachment 1 TABLE 8 PROPIONALDEHYDE: COMBINED REPEATED-TYPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS ## CHAMBER ATMOSPHERE DATA: 2500 PPH CHAMBER | Exposure | TEMP | RH | A | | MOH | | |-------------|-------|------|-------|-----|--------------|---------| | Day | (°C) | (9) | (ppm) | 18D | (ppm) | у/нон | | 1 | 1.0.5 | 48.0 | 2620 | 27 | 2556 | 1.03 | | 1<br>2<br>3 | 19.6 | 48.4 | 2593 | 44 | 2519 | 1.03 | | 3 | 19.8 | 48.6 | 2561 | 74 | 2475 | 1.03 | | 4 | 19.E | 47.8 | 2566 | 63 | 2436 | 1.03 | | 5 | 19.5 | 47.8 | 2598 | 24 | <b>250</b> 9 | 1.04 | | 5<br>6<br>7 | 20.3 | 47.4 | 2639 | 36 | 2571 | 1.03 | | 7 | 20.8 | 48.0 | 2616 | 92 | 2513 | 1.04 | | 8<br>9 | 20.4 | 48.0 | 2546 | 40 | 2426 | 1.05 | | 9 | 19.9 | 47.4 | 2517 | 48 | 2433 | 1.03 | | 10 | 19.9 | 47.5 | 2537 | 37 | 2455 | 1.03 | | 11 | 19.9 | 48.1 | 2550 | 59 | 2473 | 1.03 | | 12 | 20.8 | 48.0 | 2579 | 51 | 2480 | 1.04 | | 13 | 21.3 | 48.1 | 2592 | 57 | 2490 | 1.04 | | 14 | 20.7 | 48.5 | 2613 | 36 | 2504 | 1.04 | | 15 | 20.8 | 43.1 | 2599 | 50 | 2501 | 1.04 | | 1.6 | 20.5 | 48.3 | 2594 | 12 | 2506 | 1.04 | | 17 | 20.7 | 48.5 | 2585 | 43 | 2516 | 1.03 | | 18 | 20.7 | 48.4 | 2580 | 47 | 2491 | 1.04 | | 19 | 20.6 | 47.1 | 2583 | 263 | 2481 | 1.04 | | 20 | 20.5 | 46.7 | 2611 | 56 | 2457 | 1.08 | | 21 | 19.9 | 48.9 | 2618 | 24 | 2559 | 1.02 | | 22 | 20.7 | 48.5 | 21.79 | 27 | 2577 | 1.02 | | 23 | 19.8 | 47.5 | 2650 | 36 | 2580 | 1.02 | | | | | | | - 44,7 | A . 113 | | Konni | 20.2 | 48.0 | 2592 | | 2503 | 1.04 | | ED: | 0.59 | 0.53 | 39.0 | | 43.1 | 0.008 | TEMP \* temperature (Jaily mean) RH = relative humidity (daily mean) A = analytical concentration (daily mean) BD = standard deviation of A NOM = nominal concentration A/NOM = analytical concentration/nominal concentration FIGURE 1. PROPIONALDEHYDE CALIBRATION CURVE ### **PROPIONAL DEHYDE** ## GLP ANALYSIS - FINAL REPORT **AUTHORS:** A. E. Gabany (2) **DATE:** August 26, 1992 A. M. Harrison (4) R. A. McDonie (2) STUDY #: 100-SLW-4 SUPERVISORS: P. D. Gastenstroom FILE NO: 39461 T. L. Dawson (3) SUMMARY Two samples of propionaldehyde, for toxicity testing at Bushy Run Research Center, were analyzed by Good Laboratory Practice (GLP) standards to meet EPA requirements. Gas chromatography-mass spectrometry (GC/MS) and nuclear magnetic resonance spectroscopy (NMR) techniques were independently used to confirm the sample's identity. Sample purity, measured by capillary GC, is = 99.77% for the pre-study sample and 99.42% for the post-study sample based on area percent. The slightly lower purity of the post-study sample is due to the increase of propionic acid in the sample. All raw data, documentation, records, protocols, sample and final reports are being retained. Richard C. Wise, this study's sponsor, requested that the Bushy Run Research Center test propional dehyde for genetic toxicity. Such studies INTRODUCTION must follow GLP standards established by the EPA that require they be conducted with authentic materials whose identity and purity are verified analytically. A sample of propionaldehyde (100-SLW-6; lot # T-1258) was received 10/14/91 in a clear glass bottle from UCC&P, Texas City, TX for analytical characterization. This sample is a subsample of a larger quantity of propionaldehyde, (BRRC # 54-351B) tested at Bushy Run Research Center. A GLP protocol describing the analytical characterization of the sample was prepared (Appendix 1). The protocol called for structural identification by NMR and GC/MS and for the capillary GC quantitative measurement of any impurities identified by GC/MS. The post-study sample (100-SLW-6R; BRRC # 54-351B) was received on 2/28/92. Shown at right is the structure of Propionaldehyde; its Chemical Abstracts Service Registry number (CAS #) is 123-38-6. CH<sub>3</sub>CH<sub>2</sub>CHO Propionaldehyde DISCUSSION The data from the analyses are summarized below. NMR Analyses Proton and carbon NMR data were collected in the UCC&P NMR Skill Center using a General Electric GN-300NB spectrometer. The acquisition parameters are shown in the figures; for the <sup>1</sup>H NMR spectrum, the pulses used correspond to an angles; the <sup>13</sup>C flip angles were 30°; the <sup>13</sup>C(<sup>1</sup>H) (proton decoupled <sup>13</sup>C) spectrum used Waltz 16 medulation for <sup>1</sup>H decoupling. The spectra were not acquired under quantitative conditions; the acquisition conditions were established to identify the major component and to look for any substantial impurities. The sample was dissolved in deuterochloroform for analysis; tetramethylsilane (TMS) was added to provide an internal chemical shift reference. The TMS **KEY WORDS:** RN=123-38-6. RESEARCH AND DEVELOPMENT UNION CARBIDE CHEMICALS AND PLASTICS COMPANY INC. (UCCAP) SOUTH CHARLESTON, WEST VIRGINIA and deuterochloroform were used as received. Figure 1 shows the <sup>1</sup>H NMR spectrum obtained from the sample 100-SLW-6. The observed chemical shifts, spin-spin coupling patterns, and relative intensities are appropriate for propionaldehydic. The aldehydic proton appears as a triplet at 9.78 ppm; the methyl hydrogens as a triplet at 1.02 ppm; and the methylene hydrogens as a quartet of doublets at 2.48 ppm. The minor peak at \$3.7 ppm is probably due to residual protonated solvent. Several very minor peaks are observed put have not been assigned; they probably include spinning side bands, <sup>13</sup>C satellites, and minor by-products. Figure 2 shows the <sup>13</sup>C(<sup>1</sup>H) spectrum for the same sample. No musual or unexpected resonances are seen; the three types of carbons present in propionaldehyde are seen: the carbonyl at 202.2 ppm, the methyl at 5.2 ppm, and the methylene at 36.5 ppm. The triplet at 77 ppm is the deuterochloroform solvent, which was used as a secondary chemical shift reference. Several minor peaks are observed at 101.7, 27.0, 8.3, and 7.1 ppm, which could arise from expected impurities such as the trimer. The NMR spectra are totally consistent with the sample being propionaldehyde which contains no major organic impurities. GC/MS Analysis Electron ionization (EI) and isobutane chemical ionization (CI) mass spectral data were collected in the UCC&P MS Skill Center using a Finnigan TSQ-70 mass spectrometer interfaced to a Hewlett-Packard (HP) 5890 gas chromatograph. The sample, 100-SLW-6, was analyzed by injecting 0.1 µL aliquots onto a DB-1 capillary column held at 30°C for 4 minutes, and then programmed to 250°C at 8°/minute. Figure 3 shows the EI total ion current chromatogram for the sample (scanned from m/z 10 to m/z 310 in the EI mode, and m/z 60-360 in the CI mode). The chromatogram is annotated with identifications based on the components' EI and CI spectra. The propional dehyde trimers identified by capillary GC were confirmed by GC/CI/MS only. Capillary GC A HP 5890 gas chromatograph equipped with a flame ionization detector was used to analyze the sample. Aliquots (1 µL) were injected via autoinjector with a 100:1 split ratio onto a DB-1 capillary column started at 60°C and held for 4 minutes, then programmed to 250° at 12°/minute (see Figure 4 for the pre-study sample and Figure 5 for the post-study sample). The averages of triplicate analyses are given below (normalized chromatogram area percent). The slightly lower purity of the post-study sample is due to the increase of propionic acid in the sample. | Component name | 100-SLW-6. | 100-SLW-6R | |-------------------------|------------|---------------| | Propionaldehyde | = 99.77 | = 99.42 | | n propanol | 0.01 | 0.02 | | 2-methyl butyraldehyde | 0.02 | 0.02 | | valeraldehyde | 0.06 | 0.02 | | propionic acid | 0.07 | 0.37 | | propionaldehyde dimers | 0.03 | 0.04 | | propionaldehyde trimers | 0.01 | 0.04 | | all other impurities | - 0.03 | <b>~</b> 0.07 | CONCLUSION NMR spectral data and mass spectral fragmentation data from the UCC&P Skill Centers show that this sample is propionaldehyde. These independent methods satisfy the analytical requirements for structural identification, as defined in the sample protocol. Sample purity, measured by capillary GC, is = 99.77% and 99.42%. ARCHIVES All raw data, records, protocols, samples and final reports are being retained at UCC&P's South Charleston, WV, Technical Center as follows: - raw data from GC, NMR and GC/MS studies are in 770-127 and 720-151, respectively; - protocols, notebook and other records are to be kept in the GLP archives; - the remainder of each sample is being kept in a locked GLP sample box in 770-333. Final Report, GLP Study # 100-SLW-4 page 2 of 10 BRRC Report 91U0086 Appendix 9 Page 39 Attachment 1 ACKNOWLEDG. AENTS We would like to thank Jo Ann Coffey for sample handling, collecting the GC data, and preparing the report, Greg Richards for collecting the GC/MS data, and Kathy Canterbury for collecting the NMR data. NOTEBOOK REFERENCE: 100-SLW-4 and related pages Confidentiality No claim of confidentiality is made for any information contained in this study as it pertains to use by any government agency to which it is submitted. This document, however, is proprietary to UCC&P and is confidential and trade secret information in all other countries and for all purposes other than those directly related to the purposes of the reviewing agency. Information contained in these studies should not be reviewed, abstracted or used by persons other than the agency without the expressed written consent of UCC&P except as required to carry out statutory requirements. GLP Compliance This study was conducted to fully comply with the following GLP standards: FDA, 21 CFR, Part 58; FDA, 21 CFR, Part 58; TSCA, 40 CFR, Part 792; FIFRA, 40 CFR, Part 16Q Alexander E. Gabany, B. S., Study Director Arnold M. Harrison, Ph. D., NMR Skill Center date Ruhard a Mc Dones \_\_\_\_ Richard A. McDonie, B. S. MS Skill Center date AEG/AMH/RAM Date Study initiated: Manuscript date (Date Study completed): Anachments: 10/14/91 August 13, 1992 5 Figures; Sample Protocol; OAU statement Figure 1 — <sup>1</sup>H NMR Spectrum of 100-SLW-6 (Propionaldehyde) page 4 of 10 Figure 2 - 13C NMR Spectrum of 100-SLW-6 (Propionaldehyde) page 5 of 10 Figure 3 - Capillary GC/MS RIC of 100-SLW-6 (Propionaldehyde) page 6 of 10 0 BRRC Report 9 086 Appendix 9 Page 43 Atmachment 1 Figure 4 — Capillary Gas Chromatogram of 100-SLW-6 (Propional Shyde) Final Report, GLP Study # 100-SLW-4 page 7 of 10 o (0)= Figure 5 - Capillary Gas Chromatogram of 100-SLW-6R (Propionaldehyde) BRRC Report 9100086 Appendix 9 Page 45 Attachment 1. APPENDIX 1 100-SLW-4 Protocol ## PROTOCOL GOOD LABORATORY PRACTICE (GLP) STUDY ricle Propionaldehyde purpose Analytical Characterization of Sample(s) for Toxicology Studies at Bushy Run Research Center (BRRC) emdy assiber 100-SLW-4 SDODIOT SOLVENTS AND COATING MATERIALS DIVISION (SCMD) Union Carbide Chemicals and Plastics Company Inc. (UCC&P) 39 Old Ridgebury Road. Danbury, Conn. 06817-0001 serving facility UCCAP Technical Center. South Charleston, WV 25303 (Location 511) Proposed Starting Date: Proposed Completion Date: Estimated Date of Final Report: Monday, October 14, 1991 December, 14, 1991 January 14, 1992 Test Substance(s)100-SLW-6 Name Source CAS Registry No. Propionaldehyde TS-2151011; UCCAP, SCMD, Texas City, Texas 123-38-6 Description Punity Water-white, non-viscous liquid; suffocating odor Health/Safety Storage Conditions Stable; highly soxic. MSDS available upon request ambient conditions, away from heat Study Design The sest substance(s) will be characterized by: Verification of identity by proton- and curton-NMR. Verification of identity by GC/MS. An anampt will be made to identify all impurities at the concentration of 20.1 wt. %. Quantitation of the identified impurities by capillary GC. Reviewed and Approved by: Welloos Stephen L GLP Study Director Denise L. Johnson Richard C. Wise GLP Quality Assurance Unit (QAU) Representative Manager of Product Safety, SCMD, Sponsor This study will be performed in compliance with the following GLP standards: FDA, 21 CFR, Part 52: TSCA, 40 CFR, Part 792; and FIFRA, 40 CFR, Part 160. All changes of an approved protocol and the reasons therefor shall be documented, signed by the study director, dated, and maintained with the protocol. All raw data, reports and a sample of test substance from this study will be retained at Location 511 for at least 10 years after completion of the study. A comprehensive final report will be submitted to the Sponsor within one month after the completion of the analysis. The final report will be impected by the QAU and will contain a signed quality assurtance transvent. ance miement Final Report, GLP Study # 100-SLW-4 page 9 of 10 BRRC Report 91U0086 Appendix 9 Page 46 Attachment 1 #### **OAU STATEMENT** Ouality Assurance Unit Study Inspection Summary Test Substance: PROPIONAL DEHYDE Study No.: 100-SLW-4 Study Director: A.E. Gabany, B.S. The Quality Assurance Unit of the Union Carbide Technical Center conducted the inspections listed below and reported the results to the study director and management on the c : a indicated. It is the practice of this Quality Assurance Unit to report the results to both the study director and management. | Date | Inspection Type | Date OAU Re<br>To Study Director | non Issued<br>To Management | |---------------|---------------------------------|----------------------------------|-----------------------------| | Oct. 18, 1991 | Protocol Compliance<br>Review | Oct. 18, 1991 | Oct. 18, 1991 | | Feb. 10, 1992 | Laboratory Compliance<br>Review | Feb. 10, 1992 | May, 1992 | | Aug. 25, 1992 | Final Report | Aug. 25, 1992 | Aug 25, 1992 | Denise L. Johnson QAU Representative (Date) Good Laboratory Practices/Quality Assurance Final Report, GLP Study # 100-SLW-4 page 10 of 10 BRRC Report 91U0086 Appendix 9 Page 47 Attachment 2 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Range-Finding Study in CD® Rats Individual Maternal In-Life Data BRRC Report 9100086 Appendix 9 Page 48 Attachment 2 ## LIST OF TABLES | Table | 1 | Abbreviations | 49 | |-------|---|--------------------------------------------------------------|-------------| | | | Incidence of Clinical Observations by Gestation Day | 51 | | | | Individual Gestational Body Weight (Grams) | <b>₹ 53</b> | | | | Individual Food Consumed During Gestation (Grams/Animal/Day) | 58 | BRRC Report 91U0086 Appendix 9 Page 49 Attachment 2 #### TABLE 1 PROPIONALDEHYDE: COMBINED REFEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD2 RATS #### **ABBREVIATIONS** #### INDIVIDUAL MATERNAL IN-LIFE DATA Abbreviations for the locations of clinical signs appear in parentheses next to the clinical signs in the following tables. The number included with the abbreviation is the number of times that clinical sign for that location was entered into the computer for that animal during the course of the study. The following is a list of three letter abbreviations for locations of clinical signs that may appear in this appendix. ABD ABDOMEN ANS ANUS AXB AXILLA-BOTH AXL AXILLA-LEFT AXR AXILLA-RIGHT BCK BACK BDY ENTIRE BODY CHS CHEST EAB EAR-BOTH EAL EAR-LEFT EAR EAR-RIGHT ELB EYELID-BOTH ELL EYELID-LEFT ELR EYELID-RIGHT EYB EYE-BOTH EYL EYE-LEFT EYR EYE-RIGHT FAC FACE GEN GENITAL HED HEAD HPB HIP-BOTH HPL HIP-LEFT HPR HIP-RIGHT INB INGUINAL-BOTH INL INGUINAL-LEFT INR INGUINAL-RIGHT I.AL LEGS-ALL LFB LEG-FORE-BOTH LFL LEG-FORE-LEFT LFR LEG-FORE-RIGHT LHB LEG-HIND-BOTH LHL LEG-HIND-LEFT LHR LEG-HIND-RIGHT LNS LOCATION NOT SPECIFIED MTH MOUTH MUL MULTIPLE AREAS, NOS\* NCK NECK NSE NOSE PAL PAWS-ALL PFB PAW-FORE-BOTH PFL PAW-FORE-LEFT PFR PAW-FORE-RIGHT PHB PAW-HIND-BOTH PHL PAW-HIND-LEFT PHR PAW-HIND-RIGHT PNS PENIS SCR SCROTUM SDB SIDE-BOTH SDL SIDE-LEFT SDR SIDE-RIGHT SHB SHOULDER-BOTH SHL SHOULDER-LEFT SHR SHOULDER-RIGHT TAL TAIL TEE TEETH TRA TREATMENT AR' TSB TESTIS-1 TIR-TSL TESTIS-LEFT TSR TESTIS-RIGHT \*NOS NOT OTHE: ISE SPECIFIED VAG VAGINA BRRC Report 91U0086 Appendix 9 Page 50 Attachment 2 #### TABLE 1 (Continued) ## PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CDP RATS #### ABBREVIATIONS ### INDIVIDUAL MATERNAL IN-LIFE DATA The following is a list of abbreviations or words that may appear in this appendix in reference to individual food consumption values. - r/s = indicates that the animal was removed from the consumption period due to spillage. - r/e = indicates that the animal was removed from the consumption period due to excreta in the feeder - r/o = indicates that the animal was removed from the consumption period for reasons specified in the raw data. - r/dead = indicates that the animal was removed from the consumption period because it died or was sacrificed during the period in which this abbreviation appears. - dead = indicates that the animal died prior to the period in which this word appears. $\circ$ \_== - sacr = indicates that the animal was a scheduled sacrifice prior to the period in which this abbreviation appears. - a = Combined interval value removed due to removal of at least one individual interval value (see individual interval footnotes). TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS INCIDENCE OF CLINICAL OBSERVATIONS BY GESTATION DAY FEMALES | | | | | CESTATIONAL | NOI. | | | |--------------|--------|----------|-----|-------------|----------|--------------------------------------|--------------| | DOSAGE GROUP | ANIMAL | CATEGORY | - | DAYS | ္ဌာ | FINDING | 1 | | Mag C | | | | | | | | | 54. | 25172 | NORHAL | 22 | 9 | _ | NO SIGNIFICANT CLINICAL OBSERVATIONS | SERVATIONS | | | | FATE | 4 | | - | SCHEDULED SACRIFICE | 1 | | 3<br>1. | 25169 | NORMAL | 22 | 6 | ה<br>נצ | NO SIGNIFICANT CLINICAL OBSERVATIONS | SERVATIONS | | z<br>į li | | FATE | ~ | • | | SCHEDULED SACRIFICE | | | | 25171 | NORMAL | 22 | 6 | 77 | NO SIGNIFICANT CLINICAL OBSERVATIONS | SERVATIONS | | | <br> | FATE | - | | 51 | SCHEDULED SACRIFICE | | | | 25160 | NORMAL | 22 | 9 | ี | NO SIGNIFICANT CLINICAL OBSERVATIONS | SERVATIONS | | | | PATE | 7 | ••• | 77 | SCHEDULED SACRIFICE | * . ! | | | 25157 | NORMAL | 22 | 6 | 7 | NO SIGNIFICANT CLINICAL OBSERVATIONS | SERVATIONS | | | | FATE | - | •• | 21 | SCHEDULED SACRIFICE | | | | 25163 | NORMAL | 22 | 6 | 7 | NO SIGNIFICANT CLINICAL OBSERVATIONS | SERVATIONS | | | <br> | FATS | - | •• | 21 | SCHEDULED SACRIFICE | 1 | | | 25149 | NORMAL | 22 | 9 | 77 | NO SIGNIFICANT CLINICAL OBSERVATIONS | SERVATIONS | | | | FATE | - | •• | 71 | SCHEDULED SACRIFICE | | | Mdd UUS | | | | | | | | | | 25152 | NORMAL | 22 | 6 | :: | NO SIGNIFICANT CLINICAL OBSERVATIONS | BSERVATIONS | | | | FATE | ~ | • | <b>≂</b> | SCHEDULED SACRIFICE | • | | | 25179 | NORMAL | 22 | 6 | 21 | NO SIGNIFICANT CLINICAL OBSERVATIONS | SERVATIONS | | | | FATE | - | | 21 | SCHEDULED SACRIFICE | | | | 25180 | NORMAL | 22 | 6 | 77 | CAL | OBSERVATIONS | | | | FATE | 7 | •• | 77 | SCHEDULED SACRIFICE | | | | 25155 | NORMAL | 22 | 9 | 21 | NO SIGNIFICANT CLINICAL OBSERVATIONS | SERVATIONS | | | | FATE | - | | 21 | SCHEDULED SACRIFICE | | | | 25140 | NORMAL | 22 | 6 | 77 | NO SIGNIFICANT CLINICAL OBSERVATIONS | SERVATIONS | | | | FATE | - | | 77 | SCHEDULED SACRIFICE | | | | 25144 | LOBMAL | 22 | 6 | 21 | NO SIGNIFICANT CLINICAL OBSERVATIONS | BSERVATIONS | | | 1 | PATE | -4 | | 21 | SCHEDULED SACRIFICE | | | | 25129 | NORMAL | 22 | 6 | 77 | NO SIGNIFICANT CLINICAL OBSERVATIONS | BSERVATIONS | | | | FATE | - | | 21 | SCHEDULED SACRIFICE | | | 1000 PPM | | | ; | | ; | SNOTHER DESCRIPTION OF STREET | SECTIONS | | | 25156 | NORMAI. | 7. | 5 | 7 5 | NO SIGNIFICAMI CERTIFICA | | | | | FATE | | | 7 7 | LACRIMATION (EYR 1) | | | | 25130 | - | , , | L | : = | NO SIGNIFICANT CLINICAL OBSERVATIONS | BSERVATIONS | | | 06767 | • | ! ~ | | 12 | SCHEDULED SACRIFICE | | | | 25137 | NORMAL | 22 | 6 | 77 | NO SIGNIFICANT CLINICAL OBSERVATIONS | BSERVATIONS | | | 1 | ******* | 4 | | 77 | SCHEDULED SACRIFICE | | | | 25134 | NORMAL | 21 | 6 | 77 | NO SIGNIFICANT CLINICAL OBSERVATIONS | BSERVAT ONS | | | | FATE | - | | 77 | SCHEDULED SACRIFICE | | | | | RODY | - | | 13 | UROGENITAL DISCHARGE, RED | | | | 25158 | NORMAL | 22 | 9 | 77 | NO SIGNIFICANT CLINICAL OBSERVATIONS | BSERVATIONS | | | | FATE | | • | 7 5 | SCHEDGLED SACRIFICE | SKOTERMOSO | | | 25132 | NORMAL | 22 | 6 | 21 | NO SIGNIFICANT CLINICAL OBSERVALIONS | DOEMVAL LONG | TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND RECRODUCTIVE/ DEVELOPHENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS INCIDENCE OF CLINICAL OBSERVATIONS BY GESTATION DAY FEMALES | DOSAGE GROUP | AHIMAL | CATEGORY | * | GESTATIONAL<br>DAYS | NOI | L FINDING | | |--------------|--------|----------------|------------|---------------------|-------------------|-------------------------------------------------------------|---------------| | 1000 PPK | | | | •<br>•<br>•<br>• | | | | | | 25132 | FATE | ~ | | | SCHEDULED SACRIFICE | | | u<br>u | 25127 | NORMAL | 77. | 6 | 777 | NO SIGNIFICANT CLIMICAL UBSERVATIONS | OBSERVATIONS | | | | FATE | 4 | • | | | | | משל השני | 25162 | HORMAI, | 22 | -0 | - | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | FATE | - | r. | ~ | SCHEDULED SACRIFICE | | | <br>© | 25177 | NORMAL | 75 | 6 | er v | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | LATE | ٦ <u>ز</u> | 1 | ., <sub>-</sub> | SCHEDULED SACHIFICE<br>NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | 32162 | FATE | 7 - | ) | : | SCHEDULED SACRIFICE | | | ( ) t | 25168 | NORMAL | 22 | -0 | 1. | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | ()<br>) | | FATE | - | | ٠,<br>ح | EDULED SACRIFICE | | | | 25176 | NORMAL | 77 | 6 | <u>۔</u><br>ت | CAL | OBSERVATIONS | | | | FATE | - | | | SCHEDULED SACRIFICE | | | -: | | EYES/EARS/NOSE | -1 | - | 9 | PERIOCULAR ENCRUSTATION | (EYL I) | | 11 | 25136 | NORMAL | 22 | 6 | = | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | * | | FATE | - | | :<br>:: | SCHEDULED SACRIFICE | | | | 25130 | NCRMAL | (21 | 6 | <u>۔</u> | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | CATE | _ | | <u>.</u> | SCHEDULED SACRIFICE | | | •• | 5 | EYES/EAPS/NOSE | - | - | 8 | PERIOCULAR ENCRUSTATION (EYB | (EYB 1) | | 2500 PPM | | | : | , | | | 3001841143340 | | | 25164 | NORMAL | <b>5</b> 5 | 6 | ~<br>= | NO SIGNIFICANT CLINICAL UBSERVATIONS | OBSERVATIONS | | | ٠., | FATE | 7 | • | ;<br>≂ | SCHEDULED SACRIFICE | | | | 25167 | NORMAL | 75 | 6 | <del>د</del><br>ت | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | FATE | - | •• | ٠<br>۲ | SCHEDULED SACRIFICE | | | | 25143 | NORMAL | 22 | 6 | ~<br>≅ | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | FATE | - | • | ;<br>; | SCHEDULED SACRIFICE | | | | 25154 | 'n | 13 | 6 | ז | NO SIGNIFICANT CLINICAL OBSERVATIONS | CBSELVATIONS | | | | FATE | - | • | | SCHEDULED SACRIFICE | • | | | | EYES/SARS/NOSE | 7 | 17-1 | -<br>81 | PERIOCULAR ENCRUSTATION (EYB | (EYB 2) | | | | OTHER | - | _ | ~ | HISSING EAR TAG | | | | 25151 | NORMAL | 22 | 6 | ٠<br>۲ | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVATIONS | | | | FATE | | • | ;<br>; | SCHEDULED SACRIFICE | | | | 25128 | NORMAL | 22 | 6 | 7 | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSCRVATIONS | | | | FATE | ٦; | , | ~<br>∷ : | SCHEDULED SACRIFICE | SUCTEMBER | | | 25159 | NORMAL | 22 | 6 | ~<br>T : | NO SIGNIFICANT CLINICAL OBSERVATIONS | OBSERVALIONS | | | | FATE | - | | "<br>≾ | SCHEDULED SACRIFICE | | TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS INDIVIDUAL GESTATIONAL BODY WEIGHT (GRAMS) GROUP: 0 PPM | 21 | 378.01<br>250.84<br>392.40<br>394.43<br>397.76<br>389.13 | 38.90<br>6.863<br>A | |-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------| | 77 | 286.63<br>237.18<br>300.09<br>307.58<br>298.14<br>298.75 | 297.24<br>7.150<br>6 | | ~ | 257.76<br>236.13<br>264.45<br>266.96<br>256.10<br>258.01<br>262.06 | 260.89<br>4.288 | | DAY 0 | 214.28 257.76 286.63<br>224.84 236.13 237.18<br>229.01 264.45 300.09<br>236.52 266.96 307.58<br>227.49 256.10 298.14<br>216.23 258.01 298.75<br>232.55 262.06 292.25 | 226.01<br>8.918<br>6 | | PREGNANCE | 25172 P<br>25169 NP<br>25171 P<br>25160 P<br>25160 P<br>25167 P<br>25163 P | NEAN<br>S.D.<br>N | | | · | | PEPREGNANT, NP-NOT PREGNANT, RES-REMOVED FROM STUDY, NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN TABLE 3 PROPIONALDERFOR: COMBINED REFEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY "ANGE-FINDING STUDY IN CD RATS INDIVIDUAL GESTATIONAL BODY WEIGHT (GRAMS) GROUP: 500 PPM | 21 | | | |---------------------|--------------------------------------------------------------------------------------|----------------------| | 21 | 371.48<br>371.97<br>379.34<br>422.56<br>382.51<br>344.88 | 380.65<br>23.533 | | 1.4 | 277.40<br>285.71<br>285.94<br>319.85<br>298.87<br>271.03 | 291.40<br>16.341 | | ^ | 244.73<br>244.47<br>256.55<br>281.94<br>261.86<br>248.93 | 257.37<br>13.262 | | DAY 0 7 14 | 216.34<br>217.71<br>235.82<br>241.76<br>231.91<br>219.45 | 226.67<br>9.892<br>7 | | PREGNANCY<br>STATUS | 25152 P<br>25179 P<br>25179 P<br>25180 P<br>25155 P<br>25140 P<br>25144 P<br>25129 P | KEAN<br>S.D. | P-PREGNANT, NP-NOT PREGNANT, RES-REMOVED FROM STUDY, NP AND RFS WEIGHT(S) NOT INCL'DED IN CALCULATION OF MEAN TABLE 3 PROPIONALDEHYDE: CONBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS INDIVIDUAL GESTATIONAL BODY WEIGHT (GRAMS) GROUP: 1000 PPM | | 5 | : | | | |----------|--------|--------|--------|--------| | <u>a</u> | DAY 0 | ~ | 7. | 21 | | | 210.10 | 221.14 | 229.20 | | | | 221.95 | 249.83 | 286.26 | 364.67 | | | 233.05 | 269.14 | 306.31 | 404.73 | | | 237.38 | 261.95 | 297.52 | 400.02 | | | 230.05 | 247.69 | 278.06 | 368.83 | | | 210,32 | 220.12 | 247.09 | 320.48 | | | 229.93 | 256.45 | 285.52 | 370.27 | | | 224.68 | 246.62 | 175.71 | 352.54 | | | 10.909 | 19.156 | 27.71 | 57.266 | | | _ | 1 | 7 | ~ | | | | | | | $\simeq$ P\*PRECNANT, NP:NOT PRECHANY, RFS=REMOVED FROM STUDY, NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN TABLE 3 PROPIONALDENYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOTICITY RANGE-FINDING STUDY IN CD RATS INDIVIDUAL GESTATIONAL BODY WEIGHT (GRAMS) GROUP: 1500 PPN | PRECNANCY | 1 | | ; | 7 | | |-----------|--------|--------|--------|--------|--| | STATUS | DAY | , | 7 | 17 | | | 36169 B | 11.11 | 236.37 | 269.26 | 346.68 | | | 25177 p | 218.87 | 234.86 | 276.64 | 363.68 | | | 25165 | 226.79 | 248.66 | 273.61 | 332.84 | | | 25168 P | 238.73 | 259.53 | 294.47 | 385.94 | | | 25176 P | 230.36 | 247.98 | 277.31 | 360.06 | | | 25136 P | 213.53 | 246.75 | 281.56 | 365.57 | | | 25130 P | 236.60 | 264.43 | 290.22 | 366.73 | | | MEAN | 225.18 | 248.37 | 280.45 | 360.21 | | | S.D. | 10.867 | 10.892 | 9.036 | 16.721 | | | Z | 7 | _ | ~ | ^ | | P=PREGNANT, NP=NOT PREGNANT, RFS=REMOVED FROM STUDY, NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF HEAN TABLE 3 PAOPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS INDIVIDUAL GESTATIONAL BODY WEIGHT (GRANS) GROUP: 2500 PPN | PRECNANCI | DAY 0 | ۲ | 14 | 21 | |-----------|--------|--------|--------|--------| | 25164 P | 206.14 | 219.26 | 251.26 | 334.50 | | 4 C2152 | 219.87 | 235.39 | 263.73 | 340.87 | | G F4120 | 235.73 | 242.07 | 263.07 | 334,71 | | 0 75156 | 236.89 | 250.73 | 280.97 | 369.76 | | 25151 | 236.58 | 261.85 | 289.95 | 371.08 | | 25128 | 215.47 | 230.11 | 253.40 | 318.53 | | 25159 P | 234.93 | 253.76 | 289.11 | 360.54 | | MEAN | 226,52 | 241.88 | 270.21 | 347.14 | | S.D. | 12.556 | 14.780 | 16.316 | 20.151 | | Z | ^ | 7 | 7 | 7 | P-PREGNANT, NP-NOT PREGNANT, RES-REMOVED FROM STUDY, NF AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF HEAN TABLE 4 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY NAMCH-FINDING STUDY IN CD® RATS | - | | | DEVELO | LURUIUM . | DEVELORABILITY LOST CO. | | | |-----------|---------|-------|-------------------|------------|-------------------------|--------------------|---------------------------------------------------------------------------| | | | | INDIVIDUA | 1. FOOD CC | NSUMED DU<br>GROUP: | RING GEST<br>0 PPN | INDIVIDUAL FOOD CONSUMED DURING GESTATION (GRAMS/ANIMAL/DAY) GROUP: 0 PPM | | | | 7-11 | 11-14 14-17 17-21 | 14-17 | 17-21 | 7-14 | 14-21 | | ANIMAL PS | מאני סו | į | - ; | | | | i | | 25172 B | 24.96 | • | 25.39 | | 27.80 | 19.41 | 21.45 | | 4X 69150 | 18.64 | | 19.25 | | 26.42 | 24.91 | 26.69 | | 25171 P | 21.93 | | 25.92 | | 37.35 | 23.87 | 26.84 | | 25160 P | 20.25 | | 25.34 | | 28.42 | 24.89 | 27.93 | | 25157 P | 20.97 | | טבילג | | 26,35 | 25.55 | 26.07 | | 25163 P | 21.83 | 23.76 | 23.53 | 24.60 | 25.42 | 23.66 | 25.07 | | 3 63707 | i<br>i | | , | | 26.96 | 24.75 | 26.76 | | NEAN | 21.98 | 1.099 | 0.860 | 1,275 | 1,095 | 0.821 | 1.112<br>6 | | i<br>i | 9 | | æ | ٥ | • | • | | PS=PRECNANCY STATUS, P=PRECNANT, NP=NOT PRECNANT, RFS=REHOVED FROH STUDY NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF HEAN ::: TABLE 4 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS INDIVIDUAL FOOD CONSUMED DURING GESTATION (GRAMS/ANIMAL/DAY) GROUP: 500 PPM | | | | 1 | | | | | |-----------|----------|---------|-------|-------|-------|-------|-------| | ANIMAL PS | DAY 0- 7 | 7-11 | 11-14 | 14-17 | 17-21 | 7-14 | 14-21 | | | Ca 00 | 22.67 | 23.87 | 25.15 | 27.18 | 23.12 | 26.31 | | 4 7CTC7 | 20.04 | 31 | 24 53 | 26.21 | 26.65 | 23.17 | 26.46 | | 4 K/TCZ | TC 1 6 Y | | | | 30 | 20 00 | 24.93 | | 25180 P | 19.19 | 21.19 | 57.13 | 74.17 | 73.30 | | | | 26166 0 | >2.84 | 25.82 | 25.65 | 28.16 | 27.54 | 25.75 | 27.81 | | 1 66167 | | 32.41 | 22 90 | 26.10 | 24.06 | 23,20 | 24.93 | | 2514U P | 07.07 | 4 2 . 4 | | | *** | 33 | 23 03 | | 25144 P | 21.09 | 20,18 | 20.24 | 77.77 | 73.40 | 50.33 | 76.77 | | 25129 P | 22.07 | 23.63 | 24.02 | 25.15 | 26.52 | 23.80 | 25.93 | | NEW | 20.84 | 22.71 | 23.46 | 25.30 | 25.82 | 23.03 | 25.60 | | S.D. | 1.311 | 1.828 | 1.623 | 1.855 | 1.576 | 1.668 | 1.551 | | 2 | 7 | 7 | ٧ | ۲ | - | - | • | PS=PREGNANCY STATUS, P=PREGNANT, NP=NOT PREGNANT, RFS=REHOVED FROM STUDY NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN TABLE 4 PROPIONALDEHYDF: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ TOYICITY RANGE-FINDING STUDY IN CD RATS | | | | DEVELO | PHENTAL 1 | OXICITY R | ANGE-FINE | DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RAIS | Š | |-----------|---------|-------|-----------|------------|----------------------|---------------------|-----------------------------------------------------------------------------|-------| | | | | INDIVIDUA | AL FOCD CO | ONSUMED DU<br>GROUP: | PING GEST<br>1000 F | INDIVIDUAL FOCD CONSUMED DURING GESTATION (GRAMS, HAL/DA<br>GROUP: 1000 PPH | ra/11 | | ANIHAL PS | DAY 0-7 | 7-11 | 11-14 | 14-17 | 17-21 | 7-14 | 14-21 | | | 26166 10 | 16.00 | 16.33 | 17.78 | ì | | 16.96 | 17.15 | | | 25113 | 18.65 | 20.50 | 23.63 | 22.66 | 23.37 | 21.84 | 23.07 | | | מ להואנ | 21.31 | 22,36 | 25.57 | 26.03 | 24.39 | 23.74 | 25.09 | | | 2 15152 | 20.59 | 21.85 | 22.74 | 26.26 | 27.48 | 22.23 | 26.95 | | | 25158 | 18.08 | 19.23 | 21.21 | 23.48 | 25.14 | 20.08 | 24.43 | | | 95130 | 16.43 | 19.73 | 20.40 | 21.10 | 21.24 | 20.02 | 21.18 | | | 25127 P | 19.85 | 20.88 | 21.25 | 23.74 | 23.39 | 21.04 | 23.54 | | | MEAN | 18.70 | 20,13 | 21.80 | 22.93 | 23.16 | 20.84 | 23.06 | | | ď | 2.023 | 2.000 | 2.490 | 3.097 | 3.286 | 2.149 | 3.160 | | | z | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | PS=PREGNANCY STATUS, P=PREGNANT, NP=NOT PREGNANT, RFS=REMOVED FROM STUDY NP AND RPS WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN N TABLE 4 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS | e. | | | | INDIVIDUA | L FOOD CC | NSUMED DI<br>GROUP: | RING GESTAT<br>1500 PPM | INDIVIDUAL FOOD CONSUMED DURING GESTATION (GRAMS/ANIMAL/DAY) GROUP: 1500 PPM | |-----------|----------|-----|-------|-----------|-----------|---------------------|-------------------------|------------------------------------------------------------------------------| | ANIMAL PS | DAY 0- 7 | | 7-11 | i | 14-17 | 17-21 | 7-14 | 14-21 | | | AA 04 | | 21 69 | 24.26 | 25.08 | 26,49 | 22.75 | | | 25162 P | | | • | 23.68 | 26.09 | 25.37 | 22.13 | 25.68 | | 25177 P | 01 | | | 20.02 | 22.08 | 23.07 | 20.10 | 22.65 | | 25165 P | | | | 23.10 | 26.80 | 25.50 | 23.53 | 26.06 | | 25168 P | .61 | | 0,,0 | | 23.66 | 35 66 | 20 17 | 22.49 | | 25176 P | 18. | | 9.60 | 70.95 | 10.77 | | | 22 02 | | d 35126 | 19. | | 2.26 | 22.96 | 23.56 | 26.43 | 25.30 | | | 25130 P | 20.40 | | 20.75 | 21.87 | 22.52 | 24.12 | 21.23 | 63.43 | | | 9 | | 12.1 | 22.54 | 24.12 | 24.19 | 21.78 | 24.16 | | N C | | . ~ | 516 | 1,323 | 1.878 | 1.635 | 1.321 | 1.634 | | 2 | 7 | • | 7 | 7 | 7 | 7 | ~ | ~ | PS=PREGNANCY STATUS, P=PREGNANT, NP=NOT PREGNANT, RFS=REHOVED FROM STUDY NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN TABLE 4 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS | SACE ACMINISTRATION OF THE PROPERTY PRO | DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS | INDIVIDUAL FOOD CONSUMED DURING GESTATION (GRAMS/ANIMAL/DAY) GROUP: 2500 PPH | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------| | TOTAL PORTUGUES OF THE PROPERTY PROPERT | DEVELOPHENTAL | INDIVIDUAL FOOD C | | | | | | ANIMAL | PS | DAY | 7 -0 | 7-11 | 11-14 | 14-17 | 17-21 | 7 -14 | 14-21 | | |--------|----------|------|-------|-------|-------|-------|-------|-------|-------|-----| | 25164 | n a | - | 6.65 | 19.59 | 19.47 | 21.05 | 21.57 | 19.54 | 21.35 | | | 25167 | . 4 | | 7.09 | 20.07 | 20.88 | 21.73 | 22.19 | 20.42 | 21.99 | : 1 | | 25143 | , д | - | 7.80 | 18.63 | 20.51 | 21.28 | 22.21 | 19.43 | 21.82 | | | 25154 | <u> </u> | | 8.37 | 20.42 | 21.41 | 23.38 | 24.02 | 20.84 | 23.75 | | | 25151 | م. | | 0.20 | 21.96 | 24.02 | 24.58 | 22.52 | 22.84 | 23.40 | | | 25128 | | - | 8.67 | 18.70 | 20,53 | 20.79 | 19.54 | 19.48 | 20.08 | | | 25159 | . 0. | 1.74 | 20.04 | 23.66 | 23.31 | 23.06 | 21.88 | 23.51 | 22.39 | | | HEAN | | ~ | 8.40 | 20.43 | 21.45 | 22.27 | 21.99 | 20.87 | 22.11 | | | S.D. | | - | 1.362 | 1.817 | 1.636 | 1.420 | 1.335 | 1.674 | 1.241 | | | z | | | 7 | 7 | 7 | ~ | ` | • | • | | PS=PREGNANCY STATUS, P=PREGNANT, NP=NOT PREGNANT, RFS=REMOVED FROM STUDY NP AND RFS WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN BRRC Report 91U0086 Appendix 9 Page 63 Attachment 3 Propionaldehyde: Combined Repeated~Exposure and Reproductive/ Developmental Toxicity Range-Finding Study in CD® Rats Individual Maternal Necropsy and Laparotomy Data BRRC Report 91U0086 Appendix 9 Page 64 Attachment 3 ## LIST OF TABLES | Table | 1 | Individual Maternal Necropsy Observations | 65 | |-------|---|-------------------------------------------|----| | Table | 2 | Individual Maternal Organ Weights and Net | | | | | Body Weight (Grams) | 75 | | Table | 3 | Individual Gestational Parameters | 80 | # PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS #### NECROPSY PROTOCOL #### FEMALES The following tissues were examined at necropsy with no significant lesions observed unless specified on individual animal page: THORACIC CAV STOMACH NON-GL PERICARDIAL CAV **ESOPHAGUS** PERITONEAL CAV ADIPOSE TISSUE LIVER PAHCREAS STOMACH GTAND ADRENAL GL STOMACH DIAPHRAGM OVARIES INTESTINES SPLEEN VAGINA CORPORA LUTEA OVIDUCT UTERUS CERVIX AMNIOTIC SACS TRACH/BRONC BIF **PLACENTAG** NOSE/TURBINATES LARYNX VULVA KIDNEYS URETER LUNGS TRACHEA URINARY BLADDER The following organs were weighed at necropsy: LIVER UTERUS #### TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS #### INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS GROUP: O PPM FEMALE 25172 12-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES KIDNEYS GROSS: HYDRONEPHROSIS BILATERAL EXAMINED MICRO: NOT 25169 12-NOV-91 ANIMAL TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES EXAMINED MICRO: NOT 12-NOV-91 ANTHAL 25171 12-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE UTERUS CONTENTS - COAGULATED BLOOD GROSS: SURROUNDING IMPLANTS #1,#2,#3 AND #4 LUNGS GROSS: COLOR CHANGE SOLID DARK RED , ALL LOBES EXAMINED MICRO: NOT ANIMAL 25160 12-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE GROSS: EXAMINED - NG SIGNIFICANT LESIONS EXAMINED MICRO: NOT 13-NOV-91 25157 ANTHAL TYPE OF DEATH: SCHEDULED SACRIFICE OVARIES GROSS: LEFT , CLEAR FLUID FILLED LUNGS GROSS: COLOR CHANGE DARK RED , SOLID , ALL LOBES E X A M I N E D HICRO: NOT 13-NOV-91 25163 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES EXAMINED MICRO: NOT BRRC Report 9100085 Appendix 9 Page 67 Attachm: t 3 #### TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS GROUP: O PPM PEHALE ANIMAL 25149 14-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS COLOR CHANGE GROSS: DARK RED ARRAS , ALL LOBES E X A M I N E D MICRO: NOT #### TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS #### INDIVIDUAL MATERNAL NECROPSY QESERVATIONS GROUP: 506 PPM FEMALE ANIHAL 12-NOV-91 25152 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS COLOR CHANGE GROSS: DARK RED AREAS , ALL LOBES MICRO: HOT EXAMINED ANIMAL 25179 12-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES EXAMINED MICRO: NOT 12-1107-91 ANIMAL 25180 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE SOLID DARK RED , ALL LOBES EXAMINED MICRO: N G T ANTHAL 25155 12-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE 12-NOV-91 GROSS: EXAMINED - NO SIGNIFICANT LESIONS MICRO: N O T E X A M I N E D ANDMAL 25140 13-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE OVARIES GROSS: CYST RIGHT , CLEAR PLUID FILLED LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES MICRO: NOT EXABINED 251.44 13-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED , SCLID , ALL LOBES EXAMINED MICRO: NOT ANTHAL 25129 14-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE 14-NOV-91 GROSS: EXAMINED - NO SIGNIFICANT LESIONS MICRO: NOT EXAMINED #### TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS #### INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS GROUP: 1000 PPH PEKALE ANYMAL 25156 12-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE LINGS GRCSS: COLOR CHANGE DARK RED , ALL LOBES E X A H I N E D MICRO: NOT ANDKAL 12-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: FOCUS OR FOCI PEW BLACK , ALL LOBES MICRO: NOT EXAHINED TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES HICRO: NOT EXAMINED : 25134 13-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE **OYARIES** GROSS: LEFT , CLEAR PLUID FILLED LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES EXAMINED MICRO: NOT ANIMAL 25158 13-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES EXAHINED MICRO: NOT ANTHAL 25132 13-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS COLOR CHANGE GROSS: DARK RED AREAS ,ALL LOBES MICRO: NOT EXAMINED 14-NOV-91 25127 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE # TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD.® RATS INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS GROUP: 1000 PPM FEMALE ANTHAL 25127 (CONTINUED) DARK RED AREAS , ALL LOBES E X A M I N E D MICRO: NOT EXAMINED #### TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS #### INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS GROUP: 1500 PPM PEMALE AMTHAL 25162 12-NOV-91 TYPE OF DEATH: SCHEDULED SACHIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES MICRO: NOT EXAMINED 25177 ANIHAL 12-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES MICRO: N C T EXAMINED AMINAL 25165 12-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE UTERUS GROSS: NO IMPLANTS IN ONE HORN LEFT , NO APPARENT BLOCKAGE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES EXAMINED MICRO: NOT AMIMAL 25168 13-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES EXANINED MICRO: NOT 13-NOV-91 ANTIKAL 25176 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE MICRO: NOT DARK RED AREAS . ALL LOBES EXAMINED ANTHAL 13-NOY-91 25136 TYPE OF DEATH: SCHEDULED SACRIFICE LIVER GROSS: COLOR CHANGE DARK BROWN AREAS , RIGHT AND LEFT MEDIAN LOBES UTERUS GROSS: CONTAINS BLOOD (BY HEMASTIX) RIGHT HORN LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES LUNGS #### TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS #### INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS GROUP: 1500 PPM PEHALE AMINAL 25136 (CONTINUED) GROSS: POCUS OR FOCI PEW BROWN , RIGHT DIAPHRAGMATIC LOBE E X A M I N E D MICRO: NOT ANTHAL 25130 14-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES E X A M I N E D HICRO: NOT #### TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS #### INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS GROUP: 2500 PPM PEHALE ANIMAL 12-HOV-91 25164 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS . ALL LOBES MICRO: NOT EXAMINED **VHINYT** 25167 12-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE GROSS: EXAMINED - NO SIGNIFICANT LESIONS EXAMINED MICRO: NOT ANTHAL 25143 12-107-91 TYPE OF DEATH: SCHEDULED SACRIFICE UTERUS GROSS: CONTENTS - COAGULATED ELOOD BOTH HORNS LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES EXAMINED MICRO: NOT 13-NOV-91 AMINAL 25154 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES MICRO: NOT EXAMINED 13-NOV-91 25151 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES HICRO: NOT EXAKINED 25128 13-NOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE UTERUS GROSS: CONTENTS - COAGULATED BLOOD RIGHT LUNGS GROSS: COLOR CHANGE DARK RED AREAS , ALL LOBES EXAHINED MICRO: NOT ANDIAL 25159 14-HOV-91 TYPE OF DEATH: SCHEDULED SACRIFICE LUNGS GROSS: COLOR CHANGE See necropsy protocol page for list of tissues examined grossly and for explanation of grades. BRRC Report 91U0086 Appendix 9 Page 74 Attachment 3 #### TABLE 1 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS ## INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS GROUP: 2500 PPM FEMALE ARIKAL 25159 (CONTINUED) DARK RED AREAS , ALL LOBES LUNGS GROSS: FOCUS OR FOCI FEW BLACK , ALL LOBES E X A M I N E D HICRO: NOT See necropsy protocol page for list of tissues examined grossly and for explanation of grades. TABLE 2 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS n | NET BODY WT.<br>WEIGHT CHANGE LIVER | 51.41<br>22.48<br>44.40<br>165.73<br>105.02<br>64.84 | 1 55.50 13.45<br>6 8.79 1.39 | |-------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------| | | | 39 281.51<br>04 12.35 | | | 378.01 112.320<br>250.84 13.516<br>392.45 118.990<br>394.43 92.180<br>397.76 112.250<br>389.13 108.060 | 389.90 108.39<br>6.86 9.04 | | NITIAL<br>ODY WT. | 214.28<br>224.28<br>229.01<br>236.52<br>227.49<br>216.23 | 226.01 | | PREGNANC? I<br>STATUS B | 25172 P<br>25172 P<br>25171 P<br>25160 P<br>25167 P<br>25163 P<br>251649 P | MEAN | P= Pregnant, NP=Not pregnant, RFS=Removed from study, "-"= No data, PD= Pregnant, dead before scheduled laparotcmy day, NFD= Not pregnant, dead before scheduled laparotomy day. NP, NPD, PD and RFS Weight(s) not included in calculation of mean. TABLE 2 COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS PROP IONALDEHYDE: Ü. INDIVIDUAL HATERNAL ORGAN WEIGHTS AND NET BODY WEIGHT (GRAMS) GROUP: 500 PPM | , PREGNANCY STATUS | INITIAL<br>BODY WT. | TERMINAL<br>BCDY WT. | UTERUS | NET BODY<br>WEIGHT | NET BODY WT.<br>CHANGE | LIVER | <br> <br> 1<br> 1<br> 1 | |--------------------|---------------------|----------------------|---------|--------------------|------------------------|--------------------|------------------------------| | 25152 P | 216.34 | 371.48 | 94.960 | 276.52 | 60.18 | 13.257 | | | 25179 10 | 217.71 | 371.97 | 105.020 | 266.95 | 49.54 | 13.276 | | | 251R0 D | 235.83 | 379.34 | 102.940 | 276.40 | 40.57 | 13.668 | | | 25155 0 | 241.76 | 422.56 | 112.310 | 310.25 | 68.49 | 14.716 | | | 26140 0 | 231.91 | 382.61 | 100.990 | 281.62 | 49.71 | 12.449 | | | 25144 0 | 219.45 | 344.88 | 87.900 | 256.98 | 37.53 | 10.595 | | | 25129 P | 223.69 | 391.69 | 103.510 | 288.18 | 64.49 | 13.729 | | | HEAN<br>S.D. | 226.67 | 380.65<br>23.53 | 101.09 | 279.56<br>16.87 | 52.89<br>11.85<br>7 | 13.10<br>1.30<br>7 | | P\* Pregnant, NP=Not pregnant, RFS=Removed from study, "-"= No data, PD= Pregnant, dead before scheduled laparotomy day, NPD= Not pregnant, dead before scheduled laparotomy day. NP, NPD, PD and RFS weight(s) not included in calculation of mean. 4 j TABLE 2 COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPHENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS PROPIONALDEHYDE: INDIVIDUAL HATERNAL ORGAN WEIGHTS AND NET BODY WEIGHT (GRAMS) GROUP: 1000 PPM | PREGNANCE | INITIAL<br>BODY WT. | TERHINAL<br>BODY WT. | UTERUS | WEIGHT | NET BODY WT.<br>CHANGE | LIVER | <br> <br> <br> <br> | |------------|---------------------|----------------------|---------|-----------------|------------------------|--------|---------------------------| | 26166 U | 210.10 | 238.77 | 3.012 | 235.76 | 25.66 | 9.068 | | | 25138 P | 221.95 | 364.67 | 87.730 | 276.94 | 54.99 | 11.238 | | | 25133 0 | 233.05 | 404.73 | 116.470 | 288.26 | 55.21 | 13.169 | | | 0 VC126 | 237.38 | 400.02 | 123.100 | 276.92 | 39.54 | 12.529 | | | 0 84.44° | 230.05 | 368.83 | 95.890 | 272.94 | 42.89 | 11.622 | | | 0 05.120 | 210.32 | 320.48 | 92.470 | 228.01 | 17.69 | 9.944 | | | 25127 P | 229.93 | 370.27 | 111.600 | 258.67 | 28.74 | 10.974 | | | HEAN S. D. | 224.68 | 352.54 | 90.04 | 262.5C<br>22.76 | 37.82<br>14.50 | 11.22 | | | z | 1 | 7 | 7 | 1 | 7 | 7 | | P= Pregnant, NP=Not pregnant, RFS=Removed from study, "-"= No data, PD= Pregnant, dead before scheduled laparotomy day, NPD= Not pregnant, dead before scheduled laparotomy day. NP, NPD, PD and RFS weight(s) not included in calculation of mean. TABLE 2 PROPIONALDENYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS | Individual maternal organ weights and Net Body Weight (Grams)<br>Group: 1500 PPM | BONÂNCY INITIAL TERMINAL NET BODY NET BODY WT. 11VER<br>PATUS BODY WT. DODY WT. UTERUS WEIGHT CHANGE 11VER | 12 410 | |----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ORGAN WEIGHTS AND NET<br>GROUP: 1500 PPM | NET BODY NET BODY WT.<br>WEIGHT CHANGE | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | | MATERNAL OR | NET BODY<br>WEIGHT | 30 336 | | LAUCIVION | UTERUS | 000 | | | SCHÄNCY INITIAL TERMINAL<br>PATUS BODY WT. DODY WT. | 710 | | \$ } | INITIAL<br>BODY WT. | | | 3., | EGNANCY | | | 1 tver | 2.410 | 0.939 | 717.2 | .3.437 | 1.225 | 11.273 | 13.510 | 12.22 | 1.08 | 1 | |------------------------|---------|-----------|-----------|---------|---------|-----------|---------|--------|--------|---| | NET BODY WT.<br>CHANGE | | | | | | | 38.77 | 41.87 | . 97.9 | 7 | | NET BODY<br>WEICHT | 255.95 | 266.52 | 273.27 | 285.30 | 259.94 | 253.00 | 275.37 | 267.05 | 11.64 | ^ | | UTERUS | 90.730 | 97.160 | 59.572 | 100.640 | 100.120 | 112.570 | 91.360 | 93.16 | 16.50 | ٢ | | TERMINAL DODY WT. | 346.68 | 363.68 | 332.84 | 385.94 | 360.06 | 365,57 | 366.73 | 360:21 | 16.72 | ~ | | INITIAL BODY WE. | 211.41 | 216.87 | 226.79 | 238.73 | 230.36 | 213.53 | 236.60 | 225.18 | 10.01 | 7 | | PREGNANCY | 25162 P | c 25177 P | 6 25165 P | 25,58 | 25176 P | -d: 9E15C | 25130 P | MEAN O | S.D. | 2 | Pm Pregnant, NP-Not pregnant, RFS-Removed from study, "-"= No data, PDm Pregnant, dead before scheduled laparotomy day, NPDm Not pregnant, dead before scheduled laparotomy day. NP, NPD, PD and RFS weight(s) not included in calculation of mean. TABLE 2 PROPIONALDEHYDE: COMBINED REFEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS | r.<br>LIVER | 10.849<br>12.239<br>12.343<br>12.041<br>12.891<br>10.637<br>13.893 | 12.13 | |------------------------|--------------------------------------------------------------------|---------------------| | NET BODY WT.<br>CHANGE | 29.07<br>28.51<br>21.23<br>22.86<br>30.94<br>17.65 | 24.87<br>4.80<br>7 | | NET BODY<br>WEIGHT | 235.21<br>248.38<br>256.96<br>259.75<br>267.52<br>233.12 | 251.39<br>13.04 | | UTERUS | 99.290<br>92.490<br>77.750<br>110.010<br>103.560<br>85.410 | 95.76<br>11.22<br>7 | | TERMINAL<br>BODY WT. | 34.50<br>340.87<br>334.71<br>369.76<br>371.08<br>318.53 | 347.14<br>20.15 | | INITIAL<br>BODY WT. | 206.14<br>219.87<br>235.73<br>236.89<br>236.89<br>215.47<br>234.93 | 226.52<br>12.56 | | PREGNANCY | 25164 P<br>25167 P<br>25143 P<br>25154 P<br>25151 P<br>25128 P | MEAN<br>S.D. | P= Pregnant, NP=Not pregnant, RFS=Removed from study, "-"= No data, PD= Pregnant, dead before scheduled laparotomy day, NPD= Not pregnant, dead before scheduled laparotomy day. NP, NPD, PD and RFS weight(s) not included in calculation of mean. TABLE 3 | RODUCTIVE/ | RATS | | |---------------------------------------------------------------|-------------------------------------------------------|--| | ) REP | 8<br>2 | | | E AN | UDY | | | POSUR | 3G ST | | | ED-EX | FINDI | | | EPEAT | ANGE- | | | COMBINED | TOXICITY R | | | PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ | DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS | | | | | | | | | | | | <u>.</u> . | | | | | | | | | 926 | |---------------------------------------------------------------------------------------------------------|-------------------------|------------|---------------|------------|------------|------------|------------------------------|---------------|----------------------------------------------------|------------------------------------------------| | គ្ន | TOTAL | 15 | 17 | 36 | 12 | 95 | 0.75 | | 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 109<br>15.6<br>2.07 | | RA LU | | īU | 10 | <b>ر</b> ه | · | 44 | 1.63 | | 8<br>7<br>11<br>7<br>6<br>9 | 61<br>8.7<br>1.50 | | CORPORA LUTEA | RIGKT LEFT<br>OVARY | 0 <u>2</u> | r- 6 | σn 0 | • • | รา | 1.05 | | 01000AL | 48<br>6.9<br>1.77 | | SITES | TOTAL | 15 | 17 | 15 | 14 | 8 5 | 1:10 | | 13<br>14<br>15<br>13<br>13 | 100<br>14.3<br>1.11 | | ATION | LEFT<br>HORN TOTAL | | 10 | ~: | ~ ~ | <b>4</b> . | 1.60 | | rra11866 | 57<br>8.1<br>1.95 | | PARAMETERS 1 20 LATE RESORPTIONS IMPLANTATION SITES | | 10 | ~ ~ | . co ( | » ~ | 47 | 1.17 | | <b>6460046</b> | 43<br>5.1<br>1.57 | | LONS | TOTAL | 0 | 00 | 0 | 00 | 0 0 | 0.00 | | 000000 | 0.00 | | TERS<br>LESORP1 | | 0 | 06 | 0 | 00 | 0 0 | 0.00 | | 000000 | 0.00 | | PARAME | RIGHT | 0 | 00 | 0 | 00 | 0 | 0.00 | × | 000000 | 0.00 | | TONAL<br>D PPM<br>TING GD | OTAL | 0 | ٦, | | 00 | <b>m</b> | 0.8 | 500 PPM | 0000000 | 0.3<br>0.49 | | GESTAT<br>IP:<br>.ES HAV | | 0 | ٦, | 4 C | 00 | m | 0.84 | P: | 0000000 | 0.3 | | INDIVIDUAL GESTATIONAL PARAMETERS FEMALE GROUP: ALL FEMALES HAVING GDO S EARLY RESORPTIONS LATE RESOR | RIGHT LEFT<br>HORN HORN | 0 | 0 | 0 | 00 | 0 | 0.00 | FEMALE GROUP: | 000000 | 0.00 | | INDIV<br>FEMAI<br>ALI | TOTAL | 0 | 00 | 0 | <b>a a</b> | 0 | 0.0 | FEMA | 000000 | 0.0 | | II<br>FI<br>DEAD FETUSES | LEFT<br>HORN 1 | 0 | 0 | - 0 | 00 | 0 | 0.00 | | 000000 | 0.00 | | DEAD | RIGHT | 0 | 0 | <b>-</b> - | 00 | 0 | 0.00 | | 000000 | 0.00 | | USES | OTAL | 15 | 16 | 12 52 | 15 | 87 | 14.5 | | 13<br>12<br>13<br>13<br>15<br>15<br>15 | 98<br>14.0<br>1.15 | | VIABLE FET | LEFT<br>HORN 7 | 5 | σ. | ر<br>د | ~~ | 9 | 6.7 | | 7 C 6 1 8 8 8 8 | 55<br>7.9<br>1.68 | | VIAB | RIGHT | 2 | PREGNANT<br>5 | ~ @ | 8 ~ | 47 | .5 7.8<br>43 1.17<br>FEMALES | | 9 F B N B J B | 45 43<br>.4 6.1<br>99 1.57<br>FEMALES | | | ) A | و ا | • | 9 [ | 1 2 | 45 | 7.5<br>2.43<br>NT FED | | ο κα α α <u>ν</u> ώ | 45<br>6.4<br>1.99 | | | SEX | 6 | Z Z | <b>9</b> | ∞ 4 | 42 | 0.88 | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | TAL 53<br>AN 7.6 6<br>D. 2.57 1.<br>7 PRECNANT | | | ANTHAL | 25172 | 25169 | 25160 | 25163 | TOTAL | MEAN 7<br>S.D. 2.<br>6 PRE | | 25152<br>25179<br>25180<br>25185<br>25140<br>25129 | TOTAL<br>MEAN<br>S.D. 2 | TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND RETRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS | | .9 4 | <b></b> | , es re | 20.10 | <b>4</b> 6 4 | | <b>.</b> | |--------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|----------|----------------|----------------------------------------------------------------------------|---------------|------------| | TEA | TOTAL | 222 | ini | aa | 114<br>16.3<br>3.64 | | 77 | | 2 E | Z KEET | ഗക | 15 | ٥, | 63<br>9.0<br>3.06 | | ∞ ; | | CORPORA LUTEA | RICHT LEFT<br>OVARY | 9 ~ 0 | , eo -e | 68 | 51<br>7.3<br>1.11 | | 9 | | SITES | LEFT<br>HORN TOTAL | 15 | 18 | 13 | 94<br>13.4<br>5.80 | | 14 | | ATION | LEFT | 000 | מן • | 8 ~ | 52<br>7.4<br>3.51 | | <b>6</b> 0 | | PARAMETERS PM 10 LATE RESORPTIONS IMPLANTATION SITES | RIGHT | ~ · · · | n | o o | 42<br>6.0<br>2.58 | | 9 | | TIONS | LEFT<br>HORN TOTAL | 944 | 9 9 9 | 000 | 0.1<br>0.38 | | ٥ | | PARAMETERS PM 0 LATE RESORPT | | 0 ~ 0 | 900 | 000 | 0.1<br>0.38 | | 0 | | PARAMI<br>PPM<br>DO<br>LATE 1 | RIGHT | 00 | 900 | 000 | 0.00 | Mdd | 0 | | INDIVIDUAL GESTATIONAL PARAMETERS<br>FEMALE GROUP: 1000 PPM<br>ALL FEMALES HAVING GDD<br>S EARLY RESORPTIONS LATE RESORI | LEFT<br>HORN TOTAL | | m 0 4 | 9 ~ 0 | 6.0<br>1.07 | 1500 PPM | 7 | | IDUAL GESTATIONA<br>E GROUP: 1000<br>FEMALES HAVING<br>ARLY RESORPTIONS | LEFT | 0 1 | r1 O ( | 0 | 0.53 | uP: | - | | INDIVIDUAL GESTATIONAL FEMALE GROUP: 1000 ALL FEMALES HAVING CEMALY RESORPTIONS | RIGIT LEFT<br>HORN HORN | н0 | n 0 1 | | 3<br>0.4<br>0.79 | FEMALE GROUP: | - | | INDIV<br>FEMAI<br>ALI | TOTAL | 00 | 00 | | 0.00 | FEHA | G | | II<br>FI<br>DEAD FETUSES | TORN | _ | 00 | 000 | 0.00 | | c | | DEAD | RICHT | 00 | 00 | 000 | 0.00 | | | | USES | TOTAL | 0 M | 15<br>18 | 1 7 7 S | 87<br>12.4<br>5.80 | | Ç | | VIABLE FETUSES | i | 0. | 8<br>1 | 80 m m | 6.9<br>3.34 | | r | | VIAB | RIGHT LEFT<br>HORN HORN | 00 | | ro ro α | 39<br>5.6<br>2.64<br>ALES | | ı | | | p4 | 0 | 6 2 | <b>→</b> W t | 5.7<br>5.7<br>7.55 | | • | | | SEX | 0 4 | · • • | 200 | FAL 47 40 39<br>AN 6.7 5.7 5.6<br>D. 3.30 3.55 2.64<br>7, PRECNANT FEMALES | | • | | ( | ANIMAL | 25156 | 25137 | 25158<br>25132 | TOTAL 47 40 HEAN 6.7 5.7 S.D. 3.30 3.51 7 PREGNANT 1 | | | | | 4 C 4 2 4 C 4 | 115<br>16.4<br>3.60 | |---------|----------------------------------------------------|-------------------------------------------------------------------------| | | 8 8 8 7 7 | 8.0<br>1.00 | | | 26 16 16 16 16 16 16 16 16 16 16 16 16 16 | 8.4<br>3.60 | | | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 94<br>13.4<br>2.30 | | | 8601845 | 6.1<br>3.02 | | | 66<br>70<br>10<br>10<br>10 | 51<br>7.3 | | | 000000 | 0.00 | | | 000000 | 0.00 | | Mdd | 000000 | 0.0 | | 1500 PE | 0104000 | 0.6 | | | H00000 | 0.1 | | GEOUP | 4404000 | 3<br>0.4<br>0.53 ( | | FEMALE | 000000 | 0.00 | | | 000000 | 0.00 | | | 00000 | 0.00 | | | 12<br>13<br>13<br>14<br>15<br>15 | 90<br>12.9<br>2.19 0 | | | | 42<br>6.0<br>2.94 2 | | | 226665 | | | | 8169641 | TOTAL 41 49 48 KEAN 5.9 7.0 6.9 S.D. 2.54 1.15 1.95 7 DEFENMENT FEMALES | | | 41-W480R | 41<br>5.9<br>2.54 1 | | | 25162<br>25177<br>25165<br>25168<br>25176<br>25136 | TOTAL<br>KEAN<br>S.D. | TABLE 3 PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS | PARANETERS | | |-------------|--| | GESTATIONAL | | | INDIVIDUAL | | | | | | | | | | | FEAN | FEMALE GROUP: | | 2500 8.59 | £ 5 | | | | | | | | | |-------|------------------|----------|-------------------------|----------------|----------|----------|------------|---------------|---------------------------|------------|--------------------------|-----------------|-------------|----------|--------------|-------|-------|---------------------|------------|-------| | | | | WIN | VIABLE FETUSES | TUSES | DEAD | FETUSES | | ALL FEMALES<br>EARLY RESO | | HAVING GDU<br>RPTIONS LA | ATE | RESORPTIONS | | INPLANTATION | ATION | SITES | CORPORA | RA LUTEA | 2 | | Tear | SEX | 6 | RIGHT LEFT<br>HORN HORN | LEFT | TOTAL | RIGHT | LEFT | TOTAL | RIGHT | LEFT | TOTAL | R I GHT<br>HORN | LEFT | TOTAL | RICHT | LEFT | TOTAL | RIGHT LEFT<br>OVARY | • | TOTAL | | | | ١ | | | | | | | 1 | | 1 | | | | 5 | ,<br> | 1.5 | 9 | | 15 | | 1164 | (p | 11 | 20 | S | 57 | <b>-</b> | ۰ د | 9 0 | <b>&gt;</b> | <b>3</b> 6 | > < | 9 6 | o c | <b>-</b> | 9 | יט ר | 7 | 9 | 'n | 15 | | 167 | w | ø, | <b>a</b> | <b>(7)</b> | 7 | ۰ ۰ | <b>5</b> 6 | <b>-</b> | <b>-</b> | <b>.</b> | ۰ د | ء د | • | • = | • • | . ~ | 16 | g on | ^ | 16 | | 143 | S | 4 | φ | _ | FT : | <b>D</b> | <b>-</b> | <b>-</b> | n ( | > < | ۰ د | <b>,</b> | • | · c | . 4 | · c | 91 | ع. | 10 | 16 | | 154 | <b>Ø</b> | <b>æ</b> | ٠ | 2 | 16 | 9 | - | <b>&gt;</b> ( | <b>-</b> | ۰ د | • | • | • | | 2 | 2 | 7 | 9. | 40 | 7.6 | | 151 | ~ | Ø | 2 | vo | 76 | 0 | 0 | 0 | Э. | ، د | <b>&gt;</b> | > 0 | > < | > < | ? : | · | ? ? | 12 | , N. | 1, | | 3128 | ~ | ~ | 2 | ₹ ( | <b>]</b> | 0 | 0 ( | 0 9 | ٦, | c | ٧, | <b>~</b> < | <b>,</b> | - | <b>.</b> | . L | 15 | نه ا | <b>.</b> | 91 | | 5159 | ~ | ~ | ~ | ^ | 7 | > | <b>-</b> | > | • | • | • | • | • | • | • | • | ) | | | | | COTAL | 4 | 55 | 85 | ₹ | | 0 | 0 | 0 | \$ | <b>-</b> | 9 | 0 0 | 0 0 | | 63 | 45 | 108 | 9 0 | <b>9</b> 9 | 15.9 | | EAN | NEAN 6.7 7.9 8.3 | 7.9 | 8.3 | 6.3 | 14:6 | 0.0 | 0 | 0.0 | 0.7 | 7. | o , | 9.0 | 2 6 | 5 | 2.6 | | , , | 2 | 90 | 0.69 | | .a. | 1.30 2 | .19 | 1.89 | 3.98 | | 9.0 | 0.00 | 0.00 | 1.11 | BF .0 | 1.21 | 9.0 | 0 | | 7 | 1 | | } | ) | | | ř | 343000 | | 747 | | | | | | | | | | | | | | | | | | $\mathcal{O}$ BRRC Report 91U0086 Appendix 9 Page 83 Attachment 4 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Range-Finding Study in CD® Rats Incidence of Malformations and Variations by Individual Fetuses and Litters (Including Individual Fetal Body Weights) PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS INDIVIDUAL FETAL EXTERNAL OBSERVATIONS AT TIME OF LAPAROTOMY | Pemale | IMPLANT | SEX WI | IGHT (G) | 0 PPM<br>PINDING | |--------|---------------------|-----------------------------------------|----------------|----------------------------------------------------------| | | | _ | | | | 25172 | 1 LP# 1 | 2 | 5.435<br>5.195 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2<br>3 LF# 3 | H | 5.189 | NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS | | | 4 LP4 4 | н<br>н<br>н<br>г<br>н | 5.704 | NO REMARKABLE OBSERVATIONS | | | 5 LF# 5 | n<br>M | 5.279 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | P | 5.447 | NO REMARKABLE OBSERVATIONS | | | 7 LP# 7 | M | 5.123 | NO REMARKABLE OBSERVATIONS | | | 8 LF# 8 | M | 5.330 | NO REMARKABLE GESERVATIONS | | | 9 LF4 9 | P | 5.160 | NO REMARKABLE OBSERVATIONS | | | 10 LF#10 | М | 5.550 | no remarkable observations | | | CERVIX PO | | | | | | ll Lreil | H | 5.755 | NO REMARKABLE OBSERVATIONS | | | | 7 | 5.570 | NO REMARKABLE OBSERVATIONS | | | 13 LF#13 | F | 5.010 | NO REMAPKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS | | | 14 LP414 | и<br>Г | 5.890<br>4.595 | NO REMARKABLE CESERVATIONS | | | 15 LP#15 | • | 4,3,3 | NO KEIBERGER | | 25171 | 1 LP# 1 | H | 5.414 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2 | H | 5.737 | no remarkable deservations | | | 3 LP# 3 | K | 5.677 | NO REMARKABLE OBSERVATIONS | | | 4 LF# 4 | H<br>H<br>P | 5.529 | NO REMARKABLE OBSERVATIONS | | | | 7 | 5.033 | NO REMARKABLE OBSERVATIONS | | | 6 LP¢ 5 | ĸ | 5.484 | no remarkable observations<br>no remarkable observations | | | 7 LP# 7 CERVIX PO | H | 5.552 | HO REPARRADE OBSERVATIONS | | | 8 | 2111011 | | EARLY(W/PLACENTAL TISSUE) | | | 9 LP# B | м | 5.280 | NO REMARKABLE DESERVATIONS | | | 10 LF# 9 | Ж | 5.358 | NO REMARKABLE OBSERVATIONS | | | 11 LP#10 | н | 5.325 | no remarkable observations | | | 12 LF#11 | P<br>M | 4.864 | HO REMARKABLE OBSERVATIONS | | | 13 LF#12 | М | 5.396 | NO REMARKABLE DESERVATIONS | | | 14 LF#13 | F | 5.229 | NO REMARKABLE GESERVATIONS | | | 15 LF#14 | H<br>F | 5.377 | NO REMARKABLE OBSERVATIONS | | | 16 LF#15 | | 5.138 | V ECCHYMOSIS - EXTREMITIES<br>RIGHT HIND PAW | | | 17 LF#16 | P | 4.844 | NO REMARKABLE OBSERVATIONS | | | 17 51 410 | • | | | | 25160 | 1 LF# 1 | М | 4.738 | HO REMARKABLE DESERVATIONS | | | 2 LF# 3 | М | 5.071 | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | r | 5.067 | NO REMARKABLE OBSERVATIONS | | | 4 LF9 4 | r | 4.690 | NO REMARKABLE OBSERVATIONS | | | 5 LPO 5 | М. | 5.397 | NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | ŗ | 5,441<br>4.658 | NO REMARKABLE OBSERVATIONS | | | 7 LF# 7<br>CERVIX P | | 030 | IN UTURAL CHRISTING | | | 8 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | EARLY (W/PLACENTAL TISSUE) | | | 9 LF# 8 | н | 5.599 | NO REMARKABLE OBSERVATIONS | | | 10 | | | EARLY (W/PLACENTAL TISSUE) | | | 11 LF# 9 | H | 5.642 | NO REMARKABLE DESERVATIONS | | | 12 LF#10 | | 5.215 | NO REMARKABLE OBSERVATIONS | | | 13 LF#11 | 7 | 5.411 | HO REMARKABLE DESERVATIONS | | | 14 LF#12 | K | 5.340 | NO REMARKABLE OBSERVATIONS | | 25157 | 1 LF# 1 | 2 | 5.397 | NO REMARKABLE OBSERVATIONS | | ~3.3/ | 2 LF4 2 | _ | 5.577 | NO REMARKABLE OBSERVATIONS | | | 3 LF9 3 | - | 5.038 | no remarkable observations | | | 4 LP# 4 | _ | 5.435 | no remarkable observations | | | 5 LF# 5 | P | 5.314 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | | 5.536 | NO REMARKABLE OBSERVATIONS | | | 7 LP# 7 | | 5.083 | NO REMARKABLE OBSERVATIONS | | | 8 LE# 8 | P | 5.373 | v ecchynosis – trunk<br>Between scapulae | M-MALFORMATION, V-VARIATION, LF4- LIVE PETUS NUMBER SEX: M-MALE, F-PEMALE, U- UNABLE TO DETERMINE SEX CERVIX POSITION PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN $CD^{\oplus}$ RATS INDIVIDUAL FETAL EXTERNAL GESERVATIONS AT TIME OF LAPAROTOMY | | IMDI | IDUAL FETAL | EXTERNAL OBSERVATIONS AT TIME | |--------|--------------------------|------------------|----------------------------------------------------------| | | | | O PPM | | PEHALE | IMPLANT SEX | WEIGHT (G) | FINDING | | | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | 25157 | 9 LF# 9 P | | NO REMARKABLE DESERVATIONS | | | 10 LP#10 M | | NO REMARKABLE OBSERVATIONS | | | 11 LP#11 P | | NO REMARKABLE OBSERVATIONS | | | 12 LF012 F | | NO REMARKABLE OBSERVATIONS<br>NO REMARKABLE OBSERVATIONS | | | 13 LF#13 H | | NO REMARKABLE OBSERVATIONS | | | 14 LP#14 P<br>15 LP#15 H | 5.609 | NO REMARKABLE OBSERVATIONS | | | TO PEATO W | 3.007 | NO REPUBLICE OFFICE VALUE | | 25163 | 1 LF4 l F | | NO REMARKABLE OBSERVATIONS | | | 2 LF\$ 2 F | 4.710<br>5.305 | NO REMARKABLE DESERVATIONS | | | 3 LP# 3 H | 5.305 | NO REMARKABLE OBSERVATIONS | | | 4 LFO 4 H | | no remarkable observations | | | 5 LP# 5 P | 5.059 | v ecchihosis - trunk | | | | | EETWEEN SCAPULAR | | | 6 LF\$ 6 H | | no reharkable observations | | | 7 LPO 7 H | | no reparkable observations | | | 8 LP4 8 P | | HO REMARKABLE OBSERVATIONS | | | CERVIX POSITI | | V ECCHYMOSIS - TRUNK | | | 9 LP# 9 H | 5.119 | EETWEEN SCAPULAE | | | 10 LF#10 H | 4.934 | NO REMARKABLE OBSERVATIONS | | | 11 LPell P | | NO REMARKABLE OBSERVATIONS | | | 12 LF#12 M | | NO REMARKABLE OBSERVATIONS | | | 13 LP#13 H | 5.127 | NO REMARKABLE OBSERVATIONS | | | 13 LP#13 H<br>14 LF#14 F | 5.060 | NO REMARKABLE OBSERVATIONS | | | 15 LP#15 E | | NO REMARKABLE OBSERVATIONS | | | | | | | 25149 | 1 LPC 1 F | | NO REMARKABLE OBSERVATIONS | | | 2 LP# 2 | 5.274 | V ECCHYMOSIS - TRUIK | | | | | EETWEEN SCAPULAE | | | 3 LF¢ 3 1 | · | NO REMARKABLE OBSERVATIONS | | | | 5.534 | NO REMARKABLE OBSERVATIONS | | | 5 LP# 5 | | NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS | | | | 1 5.690<br>5.219 | NO REMARKABLE OBSERVATIONS | | | 7 LP4 7 S | | NO REPARAMETE GESERANTIONS | | | | 5,289 | NO REMARKABLE DESERVATIONS | | | | 1 5.236 | NO REMARKABLE DESERVATIONS | | | 10 LP#10 | | NO REMARKABLE OBSERVATIONS | | | 11 LF#11 | 5.123 | NO REMARKABLE OBSERVATIONS | | | 12 LF612 | 5,446 | NO REMARKABLE OBSERVATIONS | | | 13 LP#13 | 5.108 | NO REMARKABLE OBSERVATIONS | | | | 5.431 | NO REMARKABLE OBSERVATIONS | | | - · · | | | M-MALFORMATION, V-VARIATION, LFS- LIVE FETUS MUMBER SEX: M-MALE, F-FEMALE, U- UNABLE TO DETERMINE SEX ## PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS INDIVIDUAL FETAL EXTERNAL OBSERVATIONS AT TIME OF LAPAROTOMY | ¢ | a | Λ | PPH | |---|---|---|-----| | | | | | | | | | | 500 PPH | |--------|-----------|-------------|-------------------------|----------------------------| | PEHALE | IMPLANT | SEY W | reight(G) | | | | | | | | | | | | | | | 25152 | 1 7 84 1 | - | 5.226 | NO REMARKABLE OBSERVATIONS | | 23132 | 1 LP# 1 | F<br>H | 5.522 | NO REMARKABLE CESERVATIONS | | | | | | | | | 3 LP0 3 | 7 | 5.146 | NO REMARKABLE DESERVATIONS | | | 4 LF# 4 | r<br>H | 5.375 | NO REMARKABLE OBSERVATIONS | | | 5 LP# 5 | М | 5.508 | NO REMARKABLE OBSERVATIONS | | | o LFP b | ĸ | 5.522 | no remarkable observations | | | CERVIX PO | SITION | | | | | 7 LP# 7 | F | 4.807 | NO REMARKABLE OBSERVATIONS | | | 9 T.P4 8 | r | 5.259 | NO REMAFRABLE OBSERVATIONS | | | 9 LP# 9 | F<br>F | 5.236 | NO REMARKABLE OBSERVATIONS | | | 10 LF610 | - | 4.541 | NO REMARKABLE GESERVATIONS | | | 11 LP411 | • | 5.265 | NO REMARKABLE OBSERVATIONS | | | 11 05 411 | - | 4.622 | NO REMARKABLE OBSERVATIONS | | | 12 LP#12 | P<br>P<br>H | | | | | 13 LF#13 | Ж | 4.979 | BO REMARGABLE OBSERVATIONS | | | , | | | | | 25179 | 1 LP# 1 | H<br>P | 5.071 | NO REMARKABLE DESERVATIONS | | | 2 LF# 2 | F | 4.890 | no remarkable deservations | | | 3 LP# 3 | Г<br>И<br>Г | 4.956 | no remarkable deservations | | | 4 LP# 4 | и | 5.205 | NO REMARKABLE OBSERVATIONS | | | 5 LF4 5 | 7 | 4.721 | NO REMARKABLE OBSERVATIONS | | | 6 LP# 6 | ĸ | 5.099 | NO REMARKABLE OBSERVATIONS | | | 7 LP6 7 | F | 5.208 | NO REMARKABLE OBSERVATIONS | | | | _ | | NO KENDEREDE CONSTITUTION | | | CERVIX PO | | 5.666 | NO REMARKABLE OBSERVATIONS | | | 8 LF# 8 | ĸ | | | | | 9 LP# 9 | H | 5.352 | NO REMARKABLE OBSERVATIONS | | | 10 LP#10 | и | 5.216 | no remarkable observations | | | 11 LP#11 | P | 4.970 | no remarkable observations | | | 12 LP#12 | P<br>H<br>P | 5.035<br>5.107<br>5.293 | NO REMARKABLE OBSERVATIONS | | | 13 LF#13 | ¥ | 5.107 | NO REMARKABLE OBSERVATIONS | | | 14 LP#14 | К | 5.293 | NO REMARKABLE DESERVATIONS | | | ". | •• | | | | 25180 | 1 LPs 1 | ж | 4.901 | V ECCHYMOSIS - EXTREMITIES | | 43240 | 2 2 | •• | **** | LEFT HIND PAW | | | 2 LF 0 2 | F | 4.748 | NO REMARKABLE OBSERVATIONS | | | | _ | 4.794 | NO REMARKABLE OBSERVATIONS | | | 3 LP# 3 | H | | NO REMARKABLE OBSERVATIONS | | | 4 LP# 4 | P | 4.761 | | | | 5 LP# 5 | K. | 5.225 | MO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | H | 4.913 | NO REMARKABLE OBSERVATIONS | | | CERVIX PO | COLTISC | | | | | 7 LF# 7 | И | 5.048 | no remarkable deservations | | | 8 LP4 B | м | 4.769 | NO REMARKABLE DESERVATIONS | | | 9 LF4 9 | × | 4.513 | NO REMARKABLE OBSERVATIONS | | | 10 LPe10 | ĸ | 4.918 | NO REMARKABLE OBSERVATIONS | | | 11 LPell | 7 | 4.849 | NO REMARKABLE CESERVATIONS | | | 12 LF#12 | _ | A DOA | NO REMARKABLE OBSERVATIONS | | | | | 5.175 | NO REMARKABLE DESERVATIONS | | | 13 LP#13 | | 4.781 | NO REMARKABLE OBSERVATIONS | | | 14 LP#14 | H<br>H | 4./01 | NO REMARKABLE OBSERVATIONS | | | 15 LP#15 | £ | 4.176 | NO KENARGABLE CESERVATIONS | | | | | | 110 | | 25155 | 1 LP# 1 | ĸ | 5.840 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2 | 7 | 5.315 | no remarkable observations | | | 3 LP# 3 | 7 | 5.198 | NO REMARKABLE CESERVATIONS | | | 4 LP4 4 | 7 | 5.419 | NO REMARKABLE OBSERVATIONS | | | 5 LP# 5 | | 5.545 | NO REMARKABLE CESERVATIONS | | | CERVIX P | | | | | | 6 LF4 6 | | 5.463 | NO REMARKABLE OBSERVATIONS | | | 7 LF6 7 | | 5.406 | V ECCHYNOSIS - TRUME | | | , mr 4 / | ** | 2,,,,, | BETWEEN SCAPULAE | | | 0 1=4 0 | _ | 5.132 | NO REMARKABLE OBSERVATIONS | | | B LF# B | ľ | 2.132 | PARLY (W/PLACENTAL TISSUE) | | | 9 | | | | | | 10 LP# 9 | | 5.404 | NO REMARKABLE DESERVATIONS | | | 11 LP#10 | | 5.295 | HO REMARKABLE OBSERVATIONS | | | 12 LF#11 | . <b></b> | 4.784 | no remarkable deservations | M-MALFORMATION, V-VARIATION, LP4- LIVE FETUS NUMBER SEX: M-MALE, F-FEMALE, U- UMABLE TO DETERMINE SEX ## PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS INDIVIDUAL PETAL EXTERNAL OBSERVATIONS AT TIME OF LAPAROTOMY | n | | |---|--| | | | | | | | | 500 PPH | |--------|----------------------|--------|----------------|-------------------------------------------------------| | Pehale | implant | SEX F | reight (G) | FINDING | | | | | 4.797 | NO REMARKABLE OBSERVITIONS | | 25155 | 13 LF612 | K<br>K | 5.731 | NO REMARKABLE OBSERVITIONS | | | 14 LP#13<br>15 LF#14 | ĸ | 5.701 | NO REMARKABLE OBSERVATIONS | | | 16 LF#15 | r<br>F | 5.206 | NO REMARKABLE OBSERVATIONS | | | TO PEATS | - | 3.200 | NO RESERVOIDED OFFICE | | 25140 | 1 LP6 1 | F | 4.792 | NO REMARKABLE OBSERVATIONS | | 13140 | 2 LF# 2 | Й | 5.362 | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | H. | 4.714 | NO REMARKABLE OBSERVATIONS | | | 4 LP# 4 | н | 5.712 | NO REMARKABLE OBSERVATIONS | | | 5 LP# 5 | н | 5.427 | NO REMARKABLE OBSERVATIONS | | | 6 LP# 6 | F | 4.913 | NO REMARKABLE OBSERVATIONS | | | 7 LP# 7 | F | 4.788 | NO REMARKABLE OBSERVATIONS | | | 8 LF# 8 | н | 5.018 | NO REMARKABLE OBSERVATIONS | | | 9 LF# 9 | H | 5.059 | NO REMARKABLE OBSERVATIONS | | | CERVIX PO | | | | | | 10 LF#10 | H | 5.649 | NO REMARKABLE OBSERVATIONS | | | 11 LF#11 | М | 5.145 | V ECCHYMOSIS - TRUNK | | | | | | BETWEEN SCAPULAE | | | 12 LF#12 | ĸ | 5.504 | NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS | | | 13 LP#13 | ĸ. | 3.435<br>5.234 | NO REMARKABLE OBSERVATIONS | | | 14 LF#14 | P | 3.234 | NO REMARKABLE OBSERVATIONS | | 25144 | 1 LPs 1 | P | 5.324 | NO REMARKABLE OBSERVATIONS | | -3144 | 2 LF 2 | и | 5.587 | NO REMARKABLE OBSERVATIONS | | | 3 LP# 3 | F | 5.039 | NO REMARKABLE OBSERVATIONS | | | 4 LF6 4 | М | 5.298 | NO REMARKABLE OBSERVATIONS | | | CERVIX PO | SITION | | | | | 5 LP# 5 | F | 4.674 | NO REMARKABLE OBSERVATIONS | | | 6 LP# 6 | P | 4.732 | NO REMARKABLE OBSERVATIONS | | | 7 LP# 7 | F | 4.724 | NO REMARKABLE OBSERVATIONS | | | 8 LF# 8 | P | 5.214 | NO REMARKABLE OBSERVATIONS | | | 9 LP# 9 | | 5.307 | NO REMARKABLE OBSERVATIONS | | | 10 LP#10 | н | 5.419 | NO REMARKABLE OBSERVATIONS | | | 11 | | 5.475 | EARLY(W/PLACENTAL TISSUE) NO REMARKABLE OBSERVATIONS | | | 12 LP#11 | | 3.891 | MO REMARKABLE OBSERVATIONS | | | 13 LP#12 | P | 3.631 | NO REPARRABLE OBSERVATIONS | | 25129 | 1 LPs 1 | H | 5.060 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2 | | 4.955 | HO REMARKABLE OBSERVATIONS | | | 3 LP# 3 | | 5.117 | HO REMARKABLE OBSERVATIONS | | | 4 LF# 4 | 7 | 4.825 | NO REMARKABLE OBSERVATIONS | | | 5 LF# 5 | P | 4.566 | NO REMARKABLE OBSERVATIONS | | | 6 LP# 6 | ĸ | 5.140 | no remarkable observations | | | CERVIX P | | | | | | 7 LP# 7 | | 5.078 | NO REMARKABLE OBSERVATIONS | | | 8 LF# 8 | И | 4.944 | V ECCHYNOSIS - TRUNK | | | <u> </u> | | 4 050 | BETWEEN SCAPULAE | | | 9 LP4 9 | × | 4.956 | NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS | | | 10 LF#10 | | 4.996<br>4.703 | NO REMARKABLE OBSERVATIONS | | | 11 LF#11 | | 5.013 | NO REMARKABLE OBSERVATIONS | | | 12 LP#12<br>13 LP#13 | | 4.991 | NO REMARKABLE GESERVATIONS | | | 14 LP014 | | 4.812 | NO REMARKABLE OBSERVATIONS | | | 15 LF#15 | | 4.704 | V ECCHINOSIS - TRUMK | | | | | 30.04 | BETWEEN SCAPULAE | M-HALFORMATION, V-VARIATION, LFG- LIVE FETUS NUMBER SEX: M-MALE, F-FEMALE, U- UNABLE TO DETERMINE SEX PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN $CD^{\Theta}$ RATS INDIVIDUAL FETAL EXTERNAL OBSERVATIONS AT TIME OF LAPAROTOMY | • | ^ | ^ | ^ | PPM | |---|---|---|---|-----| | L | u | u | 0 | rrn | | | | | | 1000 PPM | |--------|-----------|------------|------------|----------------------------| | FEMALE | IMPLANT | SEX V | reight (G) | FINDING | | | | | | | | | | | | | | | | | | | | 25138 | 1 LF# 1 | M | 4.855 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2 | н | 4.881 | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | F | 4.676 | NO REMARKABLE OBSERVATIONS | | | - | | | NO REMARKABLE OBSERVATIONS | | | 4 LP# 4 | H | 4.977 | | | | 5 LF# 5 | F | 4.411 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | P | 3.990 | NO REMARKABLE OBSERVATIONS | | | CERVIX PO | | | | | | | | | NO DESCRIPTIONS | | | 7 LY# 7 | н | 4.465 | NO REMARKABLE OBSERVATIONS | | | 8 LP# B | f | 4.193 | NO REMARKABLE OBSERVATIONS | | | 9 LF# 9 | ľ | 3.943 | NO REMARKABLE OBSERVATIONS | | | 10 LF#10 | И | 4.884 | NO REMARKABLE OBSERVATIONS | | | 10 22 910 | H<br>P | 4.467 | NO REMARKABLE OBSERVATIONS | | | | F | 4.40/ | | | | 12 | | | LATE(W/FETAL TISSUE) | | | 13 LF#12 | r | 4.363 | NO REMARKABLE OBSERVATIONS | | | 14 | | | EARLY(W/PLACENTAL TISSUE) | | | | •• | 4.821 | NO REMARKABLE OBSERVATIONS | | | 15 LP#13 | М | 4.021 | NO REMARKABLE OBSERVATIONS | | | | | | | | 25137 | 1 LF# 1 | н | 5.414 | no remarkable observations | | | 2 LF# 2 | P | 5.513 | NO REMARKABLE CESERVATIONS | | | | _ | | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | ĸ | 6.240 | NO REMARKABLE OBSERVATIONS | | | 4 LF# 4 | P | 5.464 | NO REMARKABLE OBSERVATIONS | | | 5 LF# 5 | F | 5.392 | NO REMARKABLE OBSERVATIONS | | | | | 5.732 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | E | 3.,,2 | | | | 7 | | | EARLY (W/PLACENTAL TISSUE) | | | 8 | | | EARLY(W/PLACENTAL TISSUE) | | | 9 LF# 7 | И | 5.92G | NO REMARKABLE OBSERVATIONS | | | CERVIX PO | | | | | | | | | 10 00000111TTONS | | | 10 LF# 8 | ĸ | 5.641 | NO REMARKABLE OBSERVATIONS | | | 11 LF# 9 | И | 5.803 | NO REMARKABLE OBSERVATIONS | | | 12 LF#10 | 2 | 5.657 | NO REMARKABLE OBSERVATIONS | | | 13 LF611 | F | 5.286 | NO REMARKABLE OBSERVATIONS | | | | | | | | | 14 LF#12 | P | 5.172 | NO REMARKABLE OBSERVATIONS | | | 15 LF#13 | P | 5.619 | NO REMARKABLE OBSERVATIONS | | | 16 LF#14 | | 5.066 | NO REMARKABLE DESERVATIONS | | | | - | 2,,,, | EARLY(W/PLACENTAL TISSUE) | | | 17 | | | | | | 18 LF#15 | н | 5.878 | v ecchynosis - Trunk | | | | | | Between Scapulae | | | | | | | | 25124 | 1 784 1 | | 5.264 | NO REMARKABLE OBSERVATIONS | | 25134 | 1 LF# 1 | H | | | | | 2 LF# 2 | н | 5.463 | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | М | 5.609 | NO REMARKABLE OBSERVATIONS | | | 4 LF# 4 | P | 5.391 | NO REMARKABLE CESERVATIONS | | | | | 4.882 | NO REMARKABLE OBSERVATIONS | | | 5 LP# 5 | 7 | | NO REMARKABLE ODJEKTATIONS | | | 6 LP# 6 | F | 5.051 | NO REMARKABLE OBSERVATIONS | | | 7 LEG 7 | И | 5.953 | v ecchynosis - Trunk | | | | - | | BETWEEN SCAPULAE | | | ~ ~ | 00 TM T/12 | 2 | <del></del> | | | CERVIX P | | | 110 | | | 8 LP# 8 | 7 | 5.438 | NO REMARKABLE OBSERVATIONS | | | 9 LF# 9 | ľ | 5.430 | NO REMARKABLE CESERVATIONS | | | 10 LP#10 | | 4.998 | NO REMARKABLE OBSERVATIONS | | | | | 5.042 | NO REMARKABLE CESERVATIONS | | | 11 LP#11 | | | NO REMARKABLE OBSERVATIONS | | | 12 LF#12 | Н | 5.168 | NO REMARKABLE OBSERVATIONS | | | 13 LF#13 | 7 | 4.743 | NO REMARKABLE OBSERVATIONS | | | | | 4.661 | NO REMARKABLE OBSERVATIONS | | | 14 LP#14 | | | NO REMARKABLE OBSERVATIONS | | | 15 LF#15 | | 4.491 | | | | 16 LF#16 | ĸ | 5.239 | NO REMARKABLE DESERVATIONS | | | 17 LF#17 | | 4.867 | NO REMARKABLE OBSERVATIONS | | | | | 3.847 | BO REMARKABLE OBSERVATIONS | | | 18 LF#18 | I | 3.04/ | | | | | | | ; | | 25158 | 1 LF# 1 | . K | 4.595 | HO REMARKABLE CESERVATIONS | | | 2 LF6 2 | | 5.242 | NO REMARKABLE DESERVATIONS | | | 3 LF6 3 | | 5.113 | NO REMARKABLE OBSERVATIONS | | | | | | NO REMARKABLE OBSERVATIONS | | | 4 LP# 4 | И | 5.204 | BO KEMARKABLE UDSERVATIONS | N-HALFORMATION, V-VARIATION, LPG- LIVE PETUS NUMBER SEX: N-HALE, F-PENALE, U- UNABLE TO DETERMINE SEX PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN $CD^{\bullet}$ RATS INDIVIDUAL PETAL EXTERNAL OBSERVATIONS AT TIME OF LAPAROTOMY 1000 PPH | | | | | 1000 PPM | |--------|---------------|--------|-------------|----------------------------| | FEMALE | IMPLANT | SEX W | EIGHT(G) | FINDING | | | ~ <del></del> | | | | | 25158 | 5 LP# 5 | P | 4.719 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | F | 4.977 | no remarkable observations | | | CERVIX POS | | | | | | 7 LP# 7 | н | 4.885 | NO REMARKABLE OBSERVATIONS | | | 8 LP# 8 | P | 4.813 | NO REMARKABLE OBSERVATIONS | | | 9 LP# 9 | н | 5.070 | NO REMARKABLE OBSERVATIONS | | | 10 LF#10 | н | 5.386 | NO REMARKABLE CESERVATIONS | | | 11 LP#11 | P | 4.763 | NO REMARKABLE CHSERVATIONS | | | 12 LP#12 | н | 4.665 | NO REMARKABLE CESERVATIONS | | | 13 LP#13 | M | 5.034 | VO REMARKABLE OBSERVATIONS | | | 14 LP414 | H | 4.526 | NO REMARKABLE OBSERVATIONS | | | | | | | | 25132 | 1 LF# 1 | F | 5.370 | NO REMARKABLE UBSERVATIONS | | | 2 LF# 2 | H | 5.382 | NO REMARKABLE OBSERVATIONS | | | 3 LP# 3 | М | 5.728 | NO REMARKABLE DESERVATIONS | | | 4 LP# 4 | P | 5.713 | NO REMARKABLE DESERVATIONS | | | 5 LF# 5 | М | 5.505 | NO REMARKABLE OBSERVATIONS | | | CERVIX PO | SITION | | | | | 6 LF 6 6 | М | 5.807 | NO REMARKABLE DESERVATIONS | | | 7 LF4 7 | М | 5.534 | NO REMARKABLE DESERVATIONS | | | 8 T.F. 8 | H | 5.552 | no remarkable jeservations | | | 9 LF4 9 | F | 5.347 | NO REMARKABLE CESERVATIONS | | | 10 | - | | EARLY (W/PLACENTAL TISSUE) | | | 11 LF#10 | м | 5.444 | NO REMARKABLE CESERVATIONS | | | 12 LF411 | H | 5.346 | NO REMARKABLE DESERVATIONS | | | 13 LP#12 | H | 5.527 | NO REMAPKABLE OBSERVATIONS | | | | •• | | | | 25127 | 1 LPs 1 | F | 5.327 | NO REMARKABLE DESERVATIONS | | | 2 LF# 2 | Ж | 5.741 | NO REMARKABLE CESERVATIONS | | | 2 1 74 2 | 5 | 5.164 | NO REMARKABLE DESERVATIONS | | | 4 LF 4 | M<br>P | 5.426 | NO REMARKABLE DESERVATIONS | | | 5 LP4 5 | ₽ | 5.470 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | F | 5.264 | NO RZMARKABLE OBSERVATIONS | | | 7 LF# 7 | Ж | 5.496 | V ECCHIMOSIS - TRUNK | | | ,, | •• | | BETWEEN SCAPULAE | | | 8 LF# 8 | P | 5.210 | NO REMARKABLE OBSERVATIONS | | | CERVIX PO | _ | | | | ** | 9 LP# 9 | | 5.419 | V ECCHYMOSIS - TRUNK | | | , 4. 7 | • | • • • • • • | BETWEEN SCAPULAE | | | 10 LF#10 | н | 5.707 | NO REMARKABLE DESERVATIONS | | | 11 LP#11 | ĸ | 5.567 | NO REMARKABLE OBSERVATIONS | | | 12 LP412 | ĸ | 5.463 | V ECCHYMOSIS - TRUNK | | | 12.45412 | n | 2.403 | BETWEEN SCAPULAE | | | 13 LP#13 | F | 5.046 | V ECCHYMOSIS - TRUNK | | | 13 45413 | r | 2.040 | BETWEEN SCAPULAE | | | 14 LF#14 | м | 5.940 | V ECCHYMOSIS - TRUNK | | | TA PEATA | n | 3.540 | BETWEEN SCAPULAE | | | 15 18415 | н | 5.193 | NO REMARKABLE OBSERVATIONS | | | 15 LF#15 | r. | 3.173 | NO SELVENDED OFFICEAUTIONS | M-MALFORMATION, V-VARIATION, LF4- LIVE FETUS NUMBER SEX: M-MALE, F-FEMALE, U- UNABLE TO DETERMINE SEX PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS INDIVIDUAL FETAL EXTERNAL OBSERVATIONS AT TIME OF LAPAROTOMY 1500 PPM | | | | | 1500 PPM | |-------------|------------|----------|-----------|--------------------------------------------------------------| | FEMALE | IMPLANT | CPY 1 | WEIGHT(G) | | | T Erome | Time mount | J., | | | | <del></del> | | | | | | | | | | | | 25162 | 1 LF# 1 | M | 5.343 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2 | F | 5.240 | NO REMARKABLE OBSERVATIONS | | | | P | 5.285 | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | F | 3.203 | NO REPARRABLE OBSERVATIONS | | | 4 | | | EARLY(W/PLACENTAL TISSUE) | | | 5 LF# 4 | М | 5.755 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 5 | F | 4.890 | NO REMARKABLE DESERVATIONS | | | | _ | | | | | CERVIX PO | | | | | | 7 LF# 6 | F | 5.374 | NO REMARKABLE OBSERVATIONS | | | 8 LF# 7 | м | 5.993 | NO REMARKABLE OBSERVATIONS | | | 9 LF # 6 | - | 5.258 | NO REMARKABLE DESERVATIONS | | | | <u>-</u> | | NO REMARKABLE OBSERVATIONS | | | 10 LF# 9 | e<br>P | 5.198 | NO REMARKABLE OBSERVATIONS | | | 11 LF#10 | P | 5.380 | NO REMARKABLE OBSERVATIONS | | | 12 LF#11 | м | 5.599 | NO REMARKABLE OBSERVATIONS | | | | M<br>P | 5.206 | NO REMARKABLE OBSERVATIONS | | | 13 LF#12 | E | 3.200 | | | | 14 | | | EARLY(W/PLACENTAL TISSUE) | | | | | | | | 25177 | 1 LF# 1 | w | 5.315 | NO REMARKABLE OBSERVATIONS | | 23111 | | H<br>H | 5.254 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2 | | | | | | 3 LF# 3 | М | 5.349 | NO REMARKABLE OBSERVATIONS | | | 4 LF# 4 | F | 5.304 | NO REMARKABLE OBSERVATIONS | | | 5 | - | | EARLY (W/PLACENTAL TISSUE) | | | _ | _ | c 201 | | | | 6 LF# 5 | f | 5.281 | NO REMARKABLE OBSERVATIONS | | | CERVIX PO | SITION | Ī | | | | 7 LF# 6 | F | 4.657 | NO REMARKABLE OBSERVATIONS | | | B LF# 7 | F | 4.825 | NO REMARKABLE OBSERVATIONS | | | | | | NO REMARKABLE OBSERVATIONS | | | 9 LF# 8 | H | 5.134 | NO REMARKABLE OBSERVATIONS | | | 10 LF# 9 | H | 4.822 | NO REMARKABLE OBSERVATIONS | | | 11 LF#10 | F | 4.494 | NO REMARKABLE OBSERVATIONS | | | | - | 4.909 | NO REMARKABLE OBSERVATIONS | | | 12 LF#11 | F<br>M | | NO REMARKABLE OBSERVATIONS | | | 13 LF#12 | H | 5.046 | NO REMARKABLE OBSERVATIONS | | | 14 LP#13 | F | 4.774 | NO REMAPKABLE DESERVATIONS | | | 15 LF#14 | m. | 5.025 | NO REMARKABLE OBSERVATIONS | | | TO PERTA | L. | 3.023 | NO REPURSONED CONTINUES - | | | | | | | | 25165 | l LF# 1 | f | 4.688 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2 | M | 4.836 | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | F | 5.040 | NO REMARKABLE OBSERVATIONS | | | | | | NO REMARKABLE OBSERVATIONS | | | 4 LP# 4 | F | 4.623 | NO REMARKABLE OBSERVATIONS | | | 5 LF# 5 | M | 5.211 | NO REMARKABLE OBSERVATIONS | | | 6 LP# 6 | F | 4.278 | V ECCHYMOSIS - TRUNK | | | 0 21 7 0 | - | | BETWEEN SCAPULAE | | | _ | | | DETWEEN SCAPOUNG | | | 7 LF# 7 | H | 5.112 | NO REMARKABLE OBSERVATIONS | | | 8 LP# 8 | F | 3.998 | NO REMARKABLE OBSERVATIONS | | | 9 LP# 9 | P | 5.123 | NO REMARKABLE OBSERVATIONS | | | | | | | | | CERVIX P | OSITIO | N | | | | | | | | | 25168 | 1 | | | EARLY(W/PLACENTAL TISSUE) | | | 2 LF# 1 | H | 5.769 | NO REMARKABLE OBSERVATIONS | | | | | | NO REMARKABLE OBSERVATIONS | | | 3 LP# 2 | | 5.582 | NO REMARKABLE OBSERVALIONS | | | 4 LF# 3 | P | 5.567 | NO REMARKABLE OBSERVATIONS | | | 5 LP4 4 | | 5.449 | NO REMARKABLE DESERVATIONS | | | | _ | 5.565 | NO REMARKABLE DESERVATIONS | | | 6 LF# 5 | | | NO REPORTABLE OFFICE AND | | | 7 LP# 6 | F | 5.478 | NO REMARKABLE CESERVATIONS | | | CERVIX P | | 27 | | | | 8 LP# 7 | | 5.148 | NO REMARKABLE OBSERVATIONS | | | | | | NO REMARKABLE OBSERVATIONS | | | 9 LF# 8 | | 5.441 | | | | 10 LP# 9 | | 5.094 | NO REMARKABLE OBSERVATIONS | | | 11 LF#10 | | 5.732 | NO REMARKABLE CESSRVATIONS | | | | | 5.566 | NO REMARKABLE OBSERVATIONS | | | 12 LP#11 | | | MA DEMONSTRUCT ARCCOURTANCE | | | 13 LF#12 | . P | 5.203 | NO REMARKABLE DESERVATIONS | | | 14 LP#13 | H H | 5.394 | NO REMARKABLE OBSERVATIONS | | | | | | | | | 1 1 | v | 5.026 | NO REMARKABLE DESERVATIONS | | 25176 | 1 LP# 1 | | | NA STANDARD OFFERINGE | | | 2 LF# 2 | 2 M | 5.013 | NO REMARKABLE OESERVATIONS | | | | | | | M-MALFORMATION, V-VARIATION, LF4- LIVE PETUS NUMBER SEX: M-MALE, P-FEMALE, U- UNABLE TO DETERMINE SEX PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS INDIVIDUAL FETAL EXTERNAL OBSERVATIONS AT TIME OF LAPAROTOMY | | | | | 1500 PPM | |--------|-----------------------|--------|---------|----------------------------------------------------------| | FEMALE | IMPLANT | SEX WE | IGHT(G) | FINDING | | 25176 | 3 LF# 3 | ľ | 5.216 | NO REMARKABLE OBSERVATIONS | | -5-7 | 4 LFe 4 | 7 | 5.160 | NO REMARKABLE OBSERVATIONS | | | 5 LF# 5 | М | 5.092 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | M | 4.914 | NO REMARKABLE OBSERVATIONS | | | CERVIX POS | ITION | | | | | 7 LP# 7 | f | 5.173 | NO REMARKABLE OBSERVATIONS | | | 8 LF# 8 | М | 4.995 | NO REMARKABLE OBSERVATIONS | | | 9 LF# 9 | ľ | 5.359 | NO REMARKABLE OBSERVATIONS | | | 10 LF#10 | Ħ | 5.697 | NO REMARKABLE OBSERVATIONS | | | 11 LF#11 | F | 4.903 | V ECCHYMOSIS - TRUNK | | | | | | BETWEEN SCAPULAE | | | 12 LF#12 | | 5.136 | NO REMARKABLE OBSERVATIONS | | | 13 LF#13 | P<br>H | 4.615 | NO REMARKABLE OBSERVATIONS | | | 14 LF#14 | н | 5.329 | NO REMARKABLE OBSERVATIONS | | 25136 | 1 LP# 1 | P | 4.692 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2 | | 4.670 | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | M<br>M | 5.482 | NO REMARKABLE OBSERVATIONS | | | 4 LF# 4 | F<br>F | 4.723 | NO REMARKABLE OBSERVATIONS | | | 5 LF# 5 | F | 4.975 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | M<br>M | 4.830 | NO REMARKABLE OBSERVATIONS | | | 7 LF# 7 | M | 4.995 | NO REMARKABLE OBSERVATIONS | | | 8 LF# 8 | F | 4.563 | NO REMARKABLE OBSERVATIONS | | | 9 LF# 9 | H | 4.972 | NO REMARKABLE OBSERVATIONS | | | 10 LF#10 | M | 5.230 | NO REMARKABLE OBSERVATIONS | | | CERVIX PO | | | | | | 11 LF#11 | М | 4.884 | NO REMARKABLE OBSERVATIONS | | | 12 LF#12 | | 4.946 | NO REMARKABLE OBSERVATIONS | | | 13 LF#13 | М | 5.129 | NO REMARKABLE OBSERVATIONS | | | 14 LP#14 | F | 4.956 | NO REMARKABLE OBSERVATIONS | | | 15 LF#15.<br>16 LF#16 | M | 5.457 | NO REMARKABLE OBSERVATIONS<br>NO REMARKABLE OBSERVATIONS | | | 16 LF#16 | М | 4.902 | | | 25130 | 1 LFs 1 | F | 4.361 | NO REMARKABLE OBSERVATIONS | | | 2 LFs 2 | М | 5.151 | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | М | 5.514 | NO REMARKABLE OBSERVATIONS | | - | 4 LF# 4 | M | 5.535 | V ECCHYMOSIS - TRUNK | | | | | | BETWEEN SCAPULAE | | 5 | 5 LF# 5 | ₹ | 5.034 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | F | 5.202 | NO REMARKABLE OBSERVATIONS | | | 7 LF# 7 | F | 5.066 | NO REMARKABLE OBSERVATIONS | | | CERVIX PO | | | | | | 8 LF# 8 | F | 5.512 | NO REMARKABLE OBSERVATIONS | | | 9 LF# 9 | M | 5.530 | NO REMARKABLE OBSERVATIONS | | | 10 LF#10 | | 5.386 | HO REMARKABLE OBSERVATIONS | | | 11 LP#11 | | 4.987 | NO REMARKABLE DESERVATIONS | | | 12 LF#12 | H | 5.553 | NO REMARKABLE OBSERVATIONS | M-MALFORMATION, V-VARIATION, LF4- LIVE FETUS NUMBER SEX: M-MALE, F-PEMALE, U- UNABLE TO DETERMINE SEX # PROPIONALDEHYDE: CCMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD RATS INDIVIDUAL FETAL EXTERNAL OBSERVATIONS AT TIME OF LAPAROTOMY | - | | ^ | ^ | MEN | |---|---|---|---|-----| | £ | ₽ | u | 0 | PPH | | | | | | 2500 PPM | |-------------|------------|--------|----------|-------------------------------| | FEMALE | implant | SEX W | ZIGHT(G) | FINDING | | | | | | | | | | | | • | | 25164 | 1 LF# 1 | P | 4.181 | NO REMARKABLE OBSERVATIONS | | | | | 4.725 | NO REPARKABLE OBSERVATIONS | | C | 2 LF# 2 | F | | | | | 3 LP# 3 | P | 4.755 | NO REMARKABLE OBSERVATIONS | | | 4 LP¢ 4 | P | 4.872 | NO REMARKABLE OBSERVATIONS | | | 5 LF# 5 | P | 4.874 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | P | 4.844 | NO REMARKABLE CESERVATIONS | | | 7 LP# 7 | М | 5.131 | NO REMARKABLE OBSERVATIONS | | | | | | | | | 8 LF# 8 | F | 4.757 | NO REMARKABLE OBSERVATIONS | | | 9 LF# 9 | F | 4.574 | NO REMARKABLE OBSERVATIONS | | | 10 LF#10 | M | 5.072 | NO REMARKABLE OBSERVATIONS | | ** | CERVIX PO | SITION | | | | | 11 LF#11 | P | 4.916 | NO REMARKABLE OBSERVATIONS | | | | | 5.070 | NO REMARKABLE OBSERVATIONS | | | 12 LF012 | P | | | | | 13 LF#13 | H | 5.468 | NO REMARKABLE OBSERVATIONS | | | 14 LF#14 | P | 5.073 | NO REMARKABLE GESERVATIONS | | | 15 LF#15 | ĸ | 4.962 | NO REMARKABLE OBSERVATIONS | | | | | | | | 25167 | 1 LF# 1 | н | 4.841 | NO REMARKABLE OBSERVATIONS | | 25167 | | | | NO REMARKABLE CESERVATIONS | | | 2 LF# 2 | P | 4.585 | | | | 3 LF# 3 | F | 4.531 | NO REMARKABLE OBSERVATIONS | | | 4 LP# 4 | H | 4.942 | NO REMARKABLE OBSERVATIONS | | | 5 LF# 5 | P. | 4.968 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | M | 4.956 | NO REMARKABLE OBSERVATIONS | | | | | 4.578 | NO REMARKABLE OBSERVATIONS | | | 7 LF# 7 | K | | N. LMARKABLE OBSERVATIONS | | <b>-</b> .· | 8 LP# 8 | P | 4.696 | N ZEMARKABLE OBSERVATIONS | | | 9 LF# 9 | F | 4.534 | NO REMARKABLE OBSERVATIONS | | | CERVIX PO | SITION | | • | | | 10 LF#10 | н | 5.236 | NO REMARKABLE OBSERVATIONS | | | 11 LF#11 | F | 4.668 | NO REMARKABLE OBSERVATIONS | | | 12 LF#12 | P | 4.746 | NO REMARKABLE OBSERVATIONS | | | | | 4.626 | NO REMARKABLE OBSERVATIONS | | | 13 LF013 | P | | | | | 14 LF#14 | F | 4.685 | NO REMARKABLE OBSERVATIONS | | | | | | | | 25143 | 1 LP# 1 | М | 4.687 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2 | P | 4.580 | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | М | 3.570 | NO REMARKABLE OBSERVATIONS | | | 4 LF# 4 | м | 4.694 | V ECCHYHOSIS - TRUNK | | | 4 25 4 | ra . | 4.03. | | | | | | | BETWEEN SCAPULAE | | | 5 LP# 5 | H | 4.735 | V ECCHYMOSIS - TRUNK | | | | | | BETWEEN SCAPULAE | | | € LF# 6 | F | 4.116 | NO REMARKABLE OBSERVATIONS | | | 7 | | | EARLY(W/PLACENTAL TISSUE) | | | 8 | | | EARLY(W/PLACENTAL TISSUE) | | | | | | EARLY (W/PLACENTAL TISSUE) | | | 9 | | | EMEDI (W) FRACERIAN 115555) | | | CERVIX P | | | NO DESCRIPTIONS OF COUNTY ONE | | 1 | 10 LF# 7 | P | 4.235 | NO REMARKABLE OBSERVATIONS | | | 11 LF# 8 | F | 3.909 | NO REMARKABLE OBSERVATIONS | | | 12 LF# 9 | М | 4.583 | NO REMARKABLE OBSERVATIONS | | | 13 LF#10 | H | 3.964 | NO REMARKABLE OBSERVATIONS | | *** | 14 LP#11 | H | 4.410 | NO REMARKABLE OBSERVATIONS | | · · | | | | NO REMARKABLE OBSERVATIONS | | *. | 15 LF012 | Н | 4.643 | | | | 16 LP#13 | · H | 4.551. | no remarkable observations | | | | ` | | | | g . 25154 | 1 LF# 1 | Н | 5.155 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2 | | 4.873 | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | | 4.648 | NO REMARKABLE OBSERVATIONS | | | | | 5.027 | NO REMARKABLE OBSERVATIONS | | | 4 LP# 4 | | | | | | 5 LF# 5 | | 4.993 | NO REMARKABLE OBSERVATIONS | | 12 | 6 LF# 6 | F | · 5.043 | V ECCHYMOSIS - TRUNK | | - | - | | ** | BETWERN SCAPULAE | | | CERVIX P | OSITIO | <b>1</b> | • | | | 7 LP# 7 | H | 5.160 | NO REMARKABLE OBSERVATIONS | | | 8 LP# 8 | | 5.062 | NO REMARKABLE OBSERVATIONS | | 11 | 0 115 17 0 | | | | M-MALFORMATION, V-VARIATION, LF4- LIVE PETUS NUMBER SEX: M-MALE, F-PEMALE, U- UNABLE TO DETERMINE SEX PROPIONALDEHYDE: COMBINED REPEATED-EXPOSURE AND REPRODUCTIVE/ DEVELOPMENTAL TOXICITY RANGE-FINDING STUDY IN CD® RATS INDIVIDUAL FETAL EXTERNAL OBSERVATIONS AT TIME OF LAPAROTOMY | | | | | 2500 PPM | |--------|----------------------|----------|-----------------------------------------|-------------------------------------------------------| | FEMALE | IMPLANT | SEX WI | EIGHT(G) | FINDING | | | | · | 4 500 | NO REMARKABLE OBSERVATIONS | | 25154 | 9 LF# 9 | F | 4.508<br>5.412 | NO REMARKABLE OBSERVATIONS | | | 10 LF#10 | M<br>M | 5.355 | NO REMARKABLE OBSERVATIONS | | | 11 LF#11<br>12 LF#12 | F | 4.760 | NO REMARKABLE OBSERVATIONS | | | 13 LF#13 | ж | 5.459 | NO REMARKABLE OBSERVATIONS | | | 14 LF614 | H | 5.032 | NO REMARKABLE OBSERVATIONS | | | 15 LF#15 | H | 5.098 | NO REMARKABLE OBSERVATIONS | | | 16 LF#16 | М | 4.923 | NO REMARKABLE OBSERVATIONS | | | | | - | | | 25151 | 1 LP# 1 | М | 4.796 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2 | M | 4.731 | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | М | 4.961 | NO REMARKABLE OBSERVATIONS | | | 4 LF# 4 | F | 4.478 | NO REMARKABLE OBSERVATIONS | | | 5 LP# 5 | F | 4.510 | NO REMARKABLE OBSERVATIONS | | | 6 LF# 6 | М | 4.739 | NO REMARKABLE OBSERVATIONS | | | 7 LF# 7 | F | 4.549 | NO REMARKABLE OBSERVATIONS | | | 8 LF# 8 | | 4.287 | NO REMARKABLE OBSERVATIONS | | | 9 LF# 9 | | 4.684 | NO REMARKABLE OBSERVATIONS NO REMARKABLE OBSERVATIONS | | | 10 LF#10 | | 4.899 | NO REMARKABLE OBSERVATIONS | | | CERVIX P | | 4.150 | NO REMARKABLE OBSERVATIONS | | | 12 LF#12 | | 4.719 | NO REMARKABLE OBSERVATIONS | | | 13 LF#13 | | 4.894 | V ECCHYMOSIS - TRUNK | | | 12 21 413 | •• | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | BETWEEN SCAPULAE | | | 14 LF#14 | F | 4.467 | NO REMARKABLE OBSERVATIONS | | | 15 LF#15 | | 3.100 | NO REMARKABLE OBSERVATIONS | | | 16 LF#16 | . M | 4.929 | NO REMARKABLE OBSERVATIONS | | | | | | | | 25128 | 1 LF# 1 | | 3.915 | NO REMARKABLE OBSERVATIONS | | | 2 LF# 2 | | 4.330 | NO REMARKABLE OBSERVATIONS | | | 3 LF# 3 | | 4.290 | NO REMARKABLE OBSERVATIONS | | | 4 LF# 4 | l M | 4.346 | NO REMARKABLE OBSERVATIONS | | | 5 | _ | 4 001 | EARLY(W/PLACENTAL TISSUE) NO REMARKABLE OBSERVATIONS | | | 6 LF# 5 | | 4.291 | NO REMARKABLE OBSERVATIONS | | | 7 LF# 6<br>8 LF# 7 | | 4.560<br>4.310 | NO REMARKABLE OBSERVATIONS | | | 9 LF# 6 | | 4.129 | NO REMARKABLE OBSERVATIONS | | | 10 LF# 9 | | 4.052 | NO REMARKABLE OBSERVATIONS | | | 11 LF#10 | | 3.958 | NO REMARKABLE OBSERVATIONS | | | CERVIX I | | | | | | 12 LF#1 | | 4.594 | NO REMARKABLE OBSERVATIONS | | | 13 LF#12 | 2 F | 4.017 | NO REMARKABLE OBSERVATIONS | | | 14 | | | EARLY (W/PLACENTAL TISSUE) | | | 15 LF#1 | | 4.521 | NO REMARKABLE OBSERVATIONS | | | 16 LF#1 | 4 P | 4.437 | NO REMARKABLE OBSERVATIONS | | | | | 4.740 | V ECCHYMOSIS - TRUNK | | 25159 | 1 LF# 1 | l P | 4.740 | BETWEEN SCAPULAE | | | 2 LF¢ | 2 F | 4.657 | NO REMARKABLE OBSERVATIONS | | | 3 | 2 = | 4.057 | EARLY (W/PLACENTAL TISSUE) | | | 4 LP# | з н | 5.478 | NO REMARKABLE OBSERVATIONS | | | 5 LFe | | 5.483 | NO REMARKABLE OBSERVATIONS | | | | 5 P | 4.735 | NO REMARKABLE OBSERVATIONS | | | 7 LP# | - | 5.192 | NO REMARKABLE OBSERVATIONS | | | 8 LF# | 7 M | 5.230 | NO REMARKABLE OBSERVATIONS | | | | POSITION | | | | | 9 LF# | | 5.498 | NO REMARKABLE OBSERVATIONS | | | 10 LF# | | 4.798 | NO REMARKABLE OBSERVATIONS | | | 11 LF#1 | 0 н | 5.225 | V ECCHYMOSIS - TRUNK<br>BETWEEN SCAPULAE | | | | | E 427 | NO REMARKABLE OBSERVATIONS | | | 12 LP#1 | | 5.437 | NO REMARKABLE OBSERVATIONS | | | 13 LP#1 | | 5.386<br>4.570 | | | | 14 LP#1 | - | 4.987 | NO REMARKABLE OBSERVATIONS | | | 15 LF#1 | . T | 7.341 | | M-MALFORMATION, V-VARIATION, LF#- LIVE FETUS NUMBER SEX: M-MALE, F-FEMALE, U- UNABLE TO DETERMINE SEX BRRC Report 91U0086 Appendi: 9 Page 94 Attachment 5 Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Range-Finding Study in CD® Rats Protocol, Protocol Amendment, and Protocol Deviation Page 341 of 366 ## BUSHY RUN RESEARCH CENTER 670. Mellon Road, Export, Pennsylvania 15632-8902 Telephone (412) 733-5200 Telecopier (412) 733-4804 #### PROTOCOL TITLE: Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Range-Finding Study in CDS (Sprague-Dawley) Rats BRRC PROJECT NUMBER: 91-13-25601 SPONSOR: Solvents and Coatings Materials Division Union Carbide Chemicals and Plastics Company Inc. 39 Old Ridgebury Road Danbury, CT 06817-0001 TESTING FACILITY: Bushy Run Research Center (BRRC) Union Carbide Chemicals and Plastics Company Inc. 6702 Mellon Road Export, PA 15632-8902 Reviewed and Approved by: Bushy Run Research Center: Cynchia D. Driscoll, Ph.D. Study Director Linda J. Galisti, B.S Manager, Good Laboratory Practices/Quality Assurance John P. Director Union Carbide Chemicals and Plastics Company Inc.: Tiptod R. Tyler, M.D., DART Da Associate Director of Applied Toxicology Division: Richard C. Wise Manager, Product Safety Union Carbide Chemicals and Plassics Company Inc. **Excellence Through Quality** S - 2 70. BRRC Report 91U0086 Appendix 9 Page 96 Attachment 5 Page 2 #### **OBJECTIVES** The objective of this study is to establish the concentration-response range of propional dehyde administered by inhalation for maternal and/or developmental toxicity in CD® (Sprague-Dawley) rats. This information will be used to select appropriate exposure concentrations for use in the definitive repeated exposure study which will assess the reproductive and developmental toxicity potential of the test substance. #### GENERAL INFORMATION Sponsor Solvents and Coatings Materials Division Union Carbide Chemicals and Plastics (UCC&P) Company Inc. 39 Old Ridgebury Road Danbury, CT 06817-0001 Project Monitor Tipton R. Tyler, Ph.D., DABT Testing Facility Bushy Run Research Center, Export, PA 15632-8902 Personnel. Developmental Toxicology and R. R. Altman P. J. Benson, B.S. Toxicology and Animal Care T. R. Brownfield, B.S. B. L. Butler, A.H.T., AALAS Cert. II M. A. Copeman, A.A., B.A. D. L. Fait, B.S., AALAS Cert. II Supervisor L. C. Fisher, B.S., AALAS Cert. L. C. Fisher, B.S., AALAS Cert. III M. F. Kubena, B.S., AALAS Cert. III T. L. Neeper-Bradley, Ph.D. D. J. Tarasi, A.H.T., A.S., AALAS Cert. II Inhalation Toxicology I. M. Pritts, Ph. D. L. E. Lipko, AALAS Cert. II Attending Veterinarian H. K. Walter, DVM, Diplomate ACVP All personnel who participate in the conduct of the study will be documented in the raw data. Starting Date of Acclimation October 14, 1991 Starting Date of Test Substance Exposure October 22, 1991 Proposed Date for Completion of In-Life Phase November 13, 1991 Proposed Date for Submission of the Draft Final Report To be added by amendment. BRRC Report 91U0086 Appendix 9 Page 97 Attachment 5 Page 3 ## Basis for the Study Pregnant rats, 7/group, will be exposed to the test substance on gestation days (gd) 0 through 20, 6 hours/day. The study will consist of four treatment groups, 2500, 1500, 1000 and 500 ppm, and an air only, 0 ppm, control. Seven pregnant rats will be randomly assigned to each group. On gd 21, females will be authenized, and the uterine contents will be examined grossly. This study will be conducted in accordance with the U.S. EPA Good Laboratory Practice Regulations, 40 CPR Part 792 and Annex 2 of the OECD Guidelines for Testing Chemicals (C(81)30 (Pinal)). ## Alteration of Design Alterations to this protocol may be made as the study progresses. No changes in the protocol will be made without the specific written request or consent of the Sponsor. In the event that the Sponsor authorizes a protocol change verbally, such change will be honored. However, it then becomes the responsibility of the Sponsor to follow such verbal change with a written verification. BRRC reserves the right to revise the protocol or deviate therefrom solely at the discretion of the Study Director if prior approval of the Sponsor cannot be obtained and the integrity of the study is considered in jeopardy. In this event, the Sponsor shall be notified of the alteration as soon as possible, and written verification of the change will be the responsibility of the Study Director. All protocol modifications will be signed by the Study Director and a representative of the Sponsor. #### METHODS #### Test Substance Chemical Name Propionaldehyde Source UCC&P Texas City, Texas CAS Registry Mumber 123-38-6 Sponsor UCCL70771/UN1275 Idenzification Number BRRC Number 54-351A and 54-351B Percent Active Material Approximately 98.5% by weight (approximately 1.5% water added to shipping containers as required by DOT regulations). Description Water-white liquid; suffocating odor Solubility 22% at 20°C by weight in water Boiling Point 760 mm Hg 48°C Page 4 Stability of Test Substance The test substance is considered to be stable under proper storage conditions. Compositional analysis of the test substance will be used as a measure of stability. Storage Conditions The test substance will be stored in stainless steel drums, the original containers, in a special unclosure under a nitrogen atmosphere. Reserve Sample Due to the nature of the test substance, a reserve sample will not be retained and stored by BRRC. Estimated Quantity Needed Approximately two, 55 gallon drums of the compound will be used throughout all phases of testing. After the assigned studies have been completed, all unused test substance will be returned to the Sponsor. Test Substance Characterization Prior to initiation of the range-finding study and following the definitive study, a compositional analysis of the test substance will be performed by the Sponsor. Safety A Material Safety Data Sheet (MSDS; Attachment 1) supplied by the Sponsor will be reviewed by all personnel prior to the initiation of the study. This review will be documented. This chemical is extremely flammable; keep away from heat, sparks and flame; reactive with oxygen. Normal precautions for untested chemicals will be used. These procedures include the use of disposable paper or plastic coats or jumpsuits, hats, booties or shoe covers, and butyl or PVC coated gloves while in the animal rooms. Eye protection will include the use of safety glasses. #### Test Animals Species Crl:CD®BR rats, commonly referred to as CD® rats Supplier Charles River Breeding Laboratories, Portage, Michigan Rationale The rat is the preferred species for this type of toxicity testing. The CD® albino rat was selected due to its high fecundity and routine use in rodent reproduction and developmental toxicity studies. Number A total of 60 males and 60 females will be ordered and Sex from which 35 successfully mated (plug-positive) females will be selected for the study. Age and The male rats will be approximately 70 days of age and Weight will weigh approximately 285-350 g on scheduled animal BRRC Report 91U0086 Appendix 9 Page 99 Attachment 5 Page 5 receipt date. Female rats will be approximately 63 days of age and 185-225 g upon arrival. Acclimation and Pretest Evaluations Shortly after their arrival at the laboratory, the animals will be transported to the room selected for the study. Once in the room, the animals will be removed from the shipping cartons and examined. All animals with evidence of disease or physical abnormalities will be discarded and their rejection from the shipment will be recorded. If an unusually large number of rats show evidence of disease or physical abnormalities, the shipment of rats will be rejected for use in the study. A total of 10 rats (5 male and 5 female) will be randomly selected for a health screen as discussed below. All remaining rats will be housed two per cage for an acclimatization period of approximately one week. At least 24 hours prior to mating males will be transferred to their mating cages and housed individually. During the acclimation period, animals will be fed the same diet which will be used during the study. Animals will be observed twice daily for any overt clinical signs of disease or abnormality. Individual detailed physical examinations will be conducted twice prior to the mating period. Animals showing abnormalities deemed by the Study Director or other appropriate supervisory personnel to render the animal unacceptable for placement on the study will be sacrificed and discarded on the day observed. If an unusually large number of rats show signs of disease, the shipment of rats will be rejected for use in the study. Eats will be weighed twice during the acclimation period. Any rat whose weight gain during this period is not considered normal for this age and strain of rats, or whose absolute body weight at the second weighing is outside 20% of the population mean for each sex, will not be considered for use in the study. Quality Control Quality control will be performed within two days after the receipt of the animals. The pretest health screen will consist of a viral screen, examinations for fecal parasites, necropsy examinations, and histopathological evaluations of selected tissues. The screen will be performed on 5 animals/sex selected directly from the shipping cartons with as many cartons as possible being represented. The gross examinations will be conducted on all 10 rats selected BRRC Peport 91U0086 Appendix 9 Page 100 Attachment 5 Page 6 for the health screen. The viral screen will be conducted on five animals/sex selected from the 10 rats designated for the health screen. The following wiruses will be included in the wiral screen: Pneumonia wirus of mice (PVM) Reovirus type 3 (Reo3) Kilham rat wirus Toolen B-1 Sendai Lymphocytic choriomeningitis (LCM) Rat coronavirus SDA Minute Girus of mice (MVM) Mycoplasma pulmonis Polyona virus Encephalomyelitis (CDVII) Mouse adenovirus FL/K87 (MAD) Feral examination for parasites will be conducted using a cellophane tape test on 5 animals/sex from the 10 animals selected for the prestudy screen, and by zinc sulfate flotation from cecal contents obtained at necropsy on 5 animals/sex. Histopathology will be performed on three sacrificed animals/sex. At least the following tissues will be examined: liver, kidneys, traches, lungs, heart, spleen, salivary glands, submandibular lymph nodes, and nasal cavities. The purpose of this screen is to determine the suitability of the population of animals proposed for this study. Therefore, the results of this screen will be available before the study begins. Identification Animals shall be uniquely identified prior to initiation of the study by cage identification and ear tags. The individual animal numbers will be documented in the study records. Colled Animals Animals received with the initial shipment but not used in the study will be enthanized or used for training or methods development. Records will be kept documenting the fate of all animals received for the study. Husbandry The experiment will be carried out under standard laboratory conditions in the Chemical Hygiene Fellowship Building of BRRC. Stainless steel cages with wire mesh floors will be used throughout the study. $\bigcirc$ BRRC Report 91U0086 Appendix 9 Page 101 Attachment 5 Page 7 Stainless steel cages will be changed at least once every two weeks. Paperboard kept under each cage will be changed regularly. During the mating period, paperboard will be changed daily. For exposures, animals will be transferred, one per cage to stainless steel wire-mesh cages. Stainless steel shelf pans will be placed under each row of cages to prevent urinary and fecal contamination of animals at lower levels. Animal room temperature and humidity will be recorded continuously using an automatic recorder. Temperature will be maintained at 66-77°F and relative humidity will be maintained at 40-70%. The temperature and humidity will be checked by a technician at each room check and a record will be kept indicating that it was done. Appropriate corrective action will be taken whenever readings outside the specified limits are observed. If the temperature or humidity remains outside the prescribed range for more than 24 hours, the Sponsor's representative will be notified. The accuracy of the temperature and humidity recording devices will be checked periodically and calibrated when necessary. The verification and calibration data will be recorded. Any time the continuous recording equipment is found to be malfunctioning, the temperature and humidity of the animal room will be manually measured and recorded at each room check. Fluorescent lighting will provide illumination 12 hours per day using an automatic timer. There will be at least ten air changes per hour. Certified Ground Rodent Chow (#5002, Ralston Purina Company) will be available ad libitum except during exposures. The analyses of chemical composition and possible contaminants of each batch of diet will be performed by Ralston Purina Company (St. Louis, MO) and the results of their analysis will be checked by the Study Director. Tap water (Municipal Authority of Westmoreland County, Greensburg, PA) will be available ad libitum, except during exposures, by automatic watering system with demand control valves mounted on each rack. Water pressure and function of the individual cage rack systems will be checked at each room check and a record will be kept indicating it was done. Drinking water contaminant levels will be measured at regular Diet Water BRRC Report 91U0086 Appendix 9 Page 102 Attachment 5 Page 8 intervals per EPA specifications, to include the 129 "priority" pollutants, identified in the Federal Register 45 (98), Appendix D, Part 122, and shall comply with human requirements. #### Study Design Number of Groups The study will consist of a control and four exposure groups. Number of Animals per Group The study will begin with 7 females/group in order to yield at least 5 pregnant females per group. Organization | Group | Number of<br>Female<br>Animals | Concentration of<br>Propionaldehyde Vapor<br>(ppm) | |---------|--------------------------------|----------------------------------------------------| | Control | 7 | 0 | | Low | 7 | 500 | | Mid-1 | 7 | 1000 | | Mid-2 | 7 | 1500 | | High | 7 | 2500 | | | | | ### Mating At approximately 10 weeks of age, virgin female rats considered to be in good health (as noted by the Study Veterinarian) will be randomly mated on a 1:1 basis to virgin male rats approximately 11 weeks of age. The observation of a copulation plug in the morning beneath the mating cage will be considered evidence of successful mating. Females observed with copulation plugs when checked in the afternoon will be removed from the study. The day the copulation plug is observed will be designated gestation day (gd) 0. Plug-positive females will be transferred to individual study carriers for conducting exposures and individually housed for the remainder of the study. The males will be used for a single mating and then removed from the study room at the completion of the mating portion of the study. Group Assignment On each designated gd 0, when there are at least five successfully mated females, they will be assigned to one of five groups, using a weight stratified randomization procedure. On a day when there are less than five successfully mated females, the females for that day will not be assigned to the study. BRRC Report 91U0086 Appendix 9 Page 103 Attachment 5 Page 9 The stratified randomization procedure will assign animals to groups such that the body weights of all groups are homogenous by statistical analysis at study initiation. Animals not assigned to the study will be euthanized and discarded, used for training of BREC staff or used for methods development. The fate of all animals not selected for use in this study will be documented in the raw data. Duration of Exposures Successfully mated females will be exposed on gestation day (gd) 0 through 20, 6 hours/day. #### Administration of Test Substance and Inhalation Chamber Operation Route and Justification Animals will be administered the test substance as a vapor. The inhalation route of administration is considered to be a meaningful way to evaluate the toxicity of chemicals with the use pattern of propionaldehyde. Inhalation is a potential route of human exposure. Exposure Chambers Five stainless steel chambers (approximately 4.3 cubic meters) with glass doors and windows for animal observations will be used. The chamber size is adequate to ensure that the total "volume" of test animals shall not exceed 5% of the volume of the test chamber. The exposure chambers are located in room 138. Chambers will be provided with air at a flowrate of approximately 1000 liters/minute (13-14 air changes per hour) to ensure an adequate oxygen content of 19%. The rate of airflow will be monitored continuously and recorded approximately every 30 minutes. All chambers will be maintained at a slightly negative pressure to prevent any vapor from entering the room containing the chambers. The temperature and relative humidity of the exposure chambers will be monitored continuously and recorded approximately 12 times during each exposure. Temperature will be maintained at 68-75°F (22 ± 2°C) and relative humidity will be maintained between 40 and 60%. To compensate for any (undetected) differences in environment or test substance concentration within the chamber, all exposure cage positions will be rotated weekly. A description of the rotation will be provided in the raw data. BRRC Report 91U0086 Appendix 9 Page 104 Attachment 5 Page 10 Target Exposure Concentration Selection Four graduated concentration levels of the test substance as a vapor will be selected by the Sponsor, for evaluation in four groups of rats. An additional group, a concurrent control, will be placed in an inhalation chamber and exposed to air only. Test Vapor Ceneration The test liquid will be metered from a piston pump into a heated glass evaporator similar in design to that described by Snellings and Dodd (1990). Temperatures in the evaporator will be maintained at the lowest level sufficient to vaporize the liquid, and will be recorded. Test Vapor Analysis Chamber concentration of the test substance will be determined approximately once each hour by a gas chromatographic (GC) technique. The details of the GC method will be described in the study report. The analytical monitoring system will be set to alarm at concentrations < or > 10% of the target chamber concentrations. The chamber sampling probes will be placed in the breathing zone of the animals. The daily nominal (estimated) chamber concentrations will also be determined. Chamber Concentration Distribution The uniformity of propional dehyde vapor in each of the exposure chambers will be examined prior to initiating the definitive study. At termination of the definitive study, the last container used to generate the test vapors will be returned to the Sponsor for compositional (stability) analysis. ## Experimental Evaluations Mortality Checks and Clinical Signs All females assigned to the study will be observed for mortality twice daily, 7 days/week. During the 5-day work week, the first daily mortality check will be conducted prior to exposures or before 9:00 a.m., and the second one will generally be conducted following exposures or after 2:00 p.m. On weekends, the first daily mortality check will be conducted prior to exposures or before 9:00 a.m. and the second mortality check will be conducted following exposure or, if exposures are not conducted, after noon. Study animals will be given detailed examinations for clinical signs of toxicity once daily following exposure. Overt signs of toxicity will be monitored visually in the morning while transferring animals to the exposure cages. Overt signs of toxicity will be monitored visually in conjunction with the afternoon mortality checks. BRRC Repolt 91U0086 Appendix 9 Page 105 Attachment 5 Page 11 Observed mortality and/or clinical signs will be recorded on the day observed. Lack of clinical signs during daily detailed physical examinations will also be recorded. Body Weight Individual maternal body weights will be measured on gd 0, 7, 14 and 21. Body weight gains will be computed. Food Consumption Individual food consumption measurements will be collected for intervals gd 0-7, 7-14 and 14-21. During the course of the study, the area under the cage will be examined for food spillage during each daily roum check and significant food spilled will be noted in the raw data. Significant food spillage will be defined as any arount that can be easily discerned. No effort will be made to measure spilled food. Food consumption data for animals with recorded spills will not be used in summarization of results within a particular interval. Dead or Moribund Animals Mecropsies will be performed seven days per week on all females not surviving to scheduled sacrifice in an attempt to determine the cause of death. If possible, the uterus will be examined and the status of implantation sites will be recorded. For apparently nongravid uteri, pregnancy status will be determined by staining with 10% ammonium sulfide (Salewski, 1964). Maternal organ weights will not be measured for animals which are found dead. Any animal showing signs of severe debilitation or toxicity, particularly if death appears imminent, will be humanely sacrificed by carbon dioxide asphyxiation to prevent loss of tissues through autolysis. The uterus will be examined and the status of implantation sites will be recorded. For apparently nongravid uteri, pregnancy status will be determined by staining with 10% ammonium sulfide. Maternal organ weights (as specified for animals surviving to scheduled sacrifice) will be collected for animals which are sacrificed in extremis. Abortion or Premature Delivery If signs of abortion or premature delivery are observed, the animal will be authanized by injection of pentobarbital and a complete necropsy will be performed. The uterus will be opened and examined, and site descriptions will be identified and recorded. Ovarian corpora lutes of pregnancy will be counted. Maternal organs (as specified for animals surviving to scheduled sacrifice) will be weighed. Maternal tissues will be retained in fixative only as deemed necessary by the gross findings. Page 12 ## Maternal Sacrifice and Laparotomy On gd 21, all surviving dams will be sacrificed by carbon divide apphyziation. The order of sacrifice will be random. The maternal body cavities be opened by a midline thoracolaparotomy. The gravid uterus, ovaries (including corpora lutea), cervix, vagina and abdominal and thoracic cavities will be examined grossly. The interus with ovaries and oviducts attached will be externally examined for signs of hamorrhage and then removed from the peritoneal cavity and weighed. Ovaries will then be removed and corpora lutes will be counted. The liver will be removed, weighed and discarded. The uterus will be dissected longitudinally to expose the contents. All live and dead fetuses and resorptions and their locations within the uterus will be recorded. Uteri from females that appear nongravid will be placed in 10% ammonium sulfide solution for confirmation of pregnancy status (Salewski, 1964). #### Fetal Evaluations All fetuses designated as live will be weighed, sexed and examined for external malformations (including cleft palate) and variations and then anesthetized by hypothermia, secrificed by decapitation and discarded. All fetuses designated as dead will be weighed. examined externally and discarded. #### Statistical Evaluation The unit of comparison will be the pregnant female or the litter. Data collected for nonpregnant females and females which abort or deliver early, will not be included in the statistical analyses. The data for continuous, parametric variables will be intercompared for the exposure and control groups by use of Levene's test for homogeneity of variance, by analysis of variance and by t-tests. The t-tests will be used, if the analysis of variance is significant, to delineate which groups differ from the control group. If Levene's test indicates homogeneous variances, the groups will be compared by an analysis of variance for equal variances followed, when appropriate, by pooled variance t-tests. If Levene's test indicates heterogeneous variances, the groups will be compared by an analysis of variance for unequal variances followed, when appropriate, by separate variance t-tests. For discontinuous data, the Kruskal-Wallis test followed, when appropriate, by Mann-Whitney U tests. Prequency data will be compared using Fisher's exact test. All statistical tests, except the frequency comparisons, will be performed using BMDP Statistical Software (Dixon, 1990). The frequency data tests are described in Biometry (Sokal, BRRC Report 91U0086 Appendix 9 Page 107 Attachment 5 Page 13 R. R. and Rohlf, F. J., W. H. Freeman and Company: San Francisco, 1969). The probability value of p < 0.05 (two-tailed) will be used as the critical level of significance for all tests. #### RECORDS All raw data and reports from this study will be retained by BRRC for at least 10 years after completion of the study. Tissues preserved in fixative will be retained for at least five years. Paraffin blocks and tissue slides, if any, will be retained indefinitely. Prior to discarding any of the above data or materials, the Sponsor will be contacted and given the option of obtaining it or arranging for continued storage. All data and materials mentioned above will remain the sole property of the Sponsor and can be removed from BRRC at the Sponsor's discretion. #### REPORT ## Draft Data Summary An unaudited draft data summary covering all partiters evaluated in the study will be prepared and issued approximately one week after the completion of the terminal sacrifice. Data on continuous variables will be summarized on tables as means and standard deviations while data on discrete variables will be summarized on incidence tables. Narratives will be included where necessary. The purpose of this report will be to provide statistically evaluated draft summary data for use in selection of exposure concentrations for use in a definitive repeated-exposure and reproductive/developmental toxicity screen with this compound. #### Draft Final Report A draft of the final report will be submitted to the Sponsor within four months after the completion of the terminal sacrifice. This report will be a comprehensive report which will include all information necessary to provide a complete and accurate description and evaluation of the test procedures and results. It will include: a summary; appropriate text discussions of the experimental design, materials and methods and results; and summary mean or incidence tables of maternal in-life and necropsy data and fetal evaluations. #### Final Report The draft final report will be reviewed by the Sponsor, and comments on the report will be provided to BRRC within six weeks from the date of submission of the draft version. BRRC will consider these comments in preparing the final report. Assuming the Sponsor's comments are received at the specified time and no major revisions are required, BRRC will submit a final report within twelve weeks of issuance of the draft report. BRRC Report 91U0086 Appendix 9 Page 108 Attachment 5 Page 14 The final report will be sudited by the QA department and contain a signed quality assurance statement. In addition, it will contain appendices with individual animal data and other pertinent information. Two copies of the final report will be submitted to the Sponsor. ## ANIHAL USE POLICY It is the goal of BRRC, through the establishment and activities of the Institutional Animal Care and Use Committee (IACUC), to comply with the U.S. Animal Welfare Act and the subsequent rules promulgated by the U.S. Department of Agriculture and in effect on the date of this protocol. It has been determined that the work described herein minimizes the number of animals used, is necessary, and uses the most appropriate species and strain in order to provide meaningful results and the most useful information for comparative purposes relative to previous studies. Furthermore, this study will be conducted humanely, and to the best of our knowledge, neither unnecessarily duplicates any previous work, nor can it be accomplished using currently available, validated non-animal models. #### GOOD LABORATORY PRACTICE COMPLIANCE The Bushy Run Research Center, through the administration of a quality assurance program by the Good Laboratory Practices Committee and Quality Assurance Unit, assures compliance of all phases of toxicological studies conducted at the Bushy Run Research Center with existing regulations and generally accepted good laboratory practices. The study will be subjected to periodic inspections and the final report will be reviewed by the BRRC Quality Assurance Unit. All quality assurance inspection records and the Master Schedule will be made available to the Sponsor during Sponsor visits. #### REFERENCES Organization for Economic Cooperation and Development (OECD) (1981). OECD Principles of Good Laboratory Practice, C(81)30(Final). Proposed OECD Guidelines for Testing of Chemicals (1990). Combined Repeat Dose and Reproductive/Developmental Toxicity Screening Test. Salewski, E. (1964). Pabermethode Zum Macroscopischen Nachweis Von Implantation-Stellen am Uterus der Ratte. <u>Maunyn-Schmeidebergs</u>, <u>Arch. Exp.</u> <u>Pathol. Pharmacol. 247</u>, 367. Sokal, R. R. and F. J. Rohlf (1969). <u>Biometry</u>, W. H. Fraeman and Co., San Francisco, pp 369-371, 299-340, 370-372, 589-595. PROPIORF DOC October 15, 1861 1. BRRC Report 91U0086 Appendix 9 Page 169 Attachment 5 Page 15 ## ATTACEMENT 1 PAGE 1 FOR INTERNAL USE ONLY UNION CARBIDE CORFORATION Solvents and Coatings Haterials Division HATERIAL BAFETY DATA BHEET EFFECTIVE DATE: 08/24/70 Union Carbide urges each customer or recipient of this f 35 to study it carefully to become ware of and understand the hazards associated with the product. The reader should consider consulting reference works or individuals who are experts in ventilation, Coxicology, and fire prevention, as necessary or appropriate to use and understand the data contained in this MSDS. To promote made handling, each customer or recipient should: (1) swifty its employees, agents, contractors and others whom it knows or bulieves will use this material of the information in this MSDS and any other information regarding hazards or safety; (2) furnish this same information to each of its customers for the product; and (3) request its customers to not: fy their employees, customers, and other users of the product of this information. #### I. IDENTIFICATION PROPIONAL DEHYDE PRODUCT NAME: CHEKICAL NAME! Propionaldehyde CHEMICAL FAMILY: Aldehydes FORMULA: CE H5 CH0 HOLECULAR HEIGHT: 58.08 SYNONYHS Propanal; Propylaldehyde CAS # AND 123-38-6 CAS NAME: Propanal #### II. PHYSICAL DATA BOILING POINT, 760 em Hg: SPECIFIC GRAVITY(H20 =1): 48 C (113.4 F) 0.7982 FREEZING POINT -80 C (-118 F) VAPOR PRESSURE (.T 201C) 258 am Hg 2.0 VAPOR DENSITY (air = 1): EVAPORATION RATE (Butyl Acetate # 1): SOLUBILITY IN WATER by with REX 8 20 C AFFEARANCE AND DDOR: Water-white liquid; sufficating odor PERCENT VOLATILES (by volume): 100 Copyright 1990 Union Carbido Chemicals & Plastics Tech. Corp. UNION CARBIDE is a trademark of Union Carbide Corporation EMERGENCY PHONE NAMBER: 1-800-UCC-HELP (Number available at all times) > LINION CARBIDE CORPORATION Solvents and Coatings Haterials Division 39 Old Ridgebury Road, Danbury, Cf. 04817 0001 > > () BRRC Report 91U0086 Appendix 9 Page 110 / ent 5 Page 16 $\mathbb{N}_{\leq 2}$ ## ATTACL GENT 1 (Continued) | FAGE & . | 280210NALDEHYDE | REDIENTS | | |------------------------------------|-------------------|-------------------|----------------------------------------------| | MATERIAL | * | TLY_(!lb1\$5) | Matard | | Propionaldehyde<br>(CAS 0129-30-6) | 100 | Sione established | Harmful if<br>inhalod; eye<br>irritent, flom | | | IV, FIRE AND EXPL | DEION HOZARD DATA | · · · - · | FLASH POINT <0 F (<-18 C) Tag Closed Cup; <0 F (<-18 C) Tag Open Cup FLANMABLE LIMITS IN AIR, by volume: LOWER: R.6 UPPER: 17.0 EXTINGUISHING MEDIA: Apply alcohol-type or all-purpose-type foams by manufacturer's recommended techniques for large fires. Use CO2 or dry chemical media for small fires. SPECIAL FIRE FIGHTING PROCEDURES: Use water spray to cool fire—exposed containers and structures. Use water spray to disperse vapors; reignition is possible. Use self-contained breathing apparatus and protective clothing. Use remote spray monitors or fight fire from behind shields. UNUSUAL FIRE AND EXPLOSION HAZARDS: Vapors form from this product and may travel or be moved by air currents and ignited by pilot lights, other flames, sparks, heaters, electrical equipment, static discharges or other ignition sources at locations distant from product handling point. Vapors may settle in low or confined areas, or travel a long distance to an ignition source and flash back explosively. This material may produce a floating fire hazard. Page 17 # ATTACHMENT 1 (Continued) | PAGE | 3 | | FOR INT | TERNAL USE ONLY | |--------------|--------------|----------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 280M | CI. | NONET | PROPIOUOLDEHYDE | The state of s | | | | | V. HE | OLTH HAZARD DATA | | | | | <del></del> | | | | | LIMIT(S | i);<br>by ACOIH or OSHA. | | | EFFE | .YS | OF SINGL | E OVEREXPOSURE | | | Moder | rate | NO SEROSAT | . Sameraly teritat | ting to the gastrointestinal tract causing and throat, nauses, hawdsche, dizzinuse, distribuse, | | No en | Vide | ABSORPT | 'ION:<br>dverse effects from | available information. | | | | MATION:<br>May be in<br>Madache,<br>Femul: 1 | ritating to the rem<br>nauses, vomiting,<br>in the inhalation | piratory tract. High concentrations may onling, and difficulty breathing, narcosis, exentially lethal assumis of actericl. | | Hay i | EXII<br>EAU: | N CONTAIN<br>Se mlight | (:<br>; irritation, seen a | as mild local redness. | | Caus | <b>0</b> 5 1 | CONTACTO<br>Severe in<br>tiva. | ritation, seen as a | marked excess radness and swelling of the | | EFFE<br>Repe | CTS<br>atm | OF REPEA | ATED OVEREXPOSURE:<br>longed exposure may | result in the development of dermatities. | | Bres | thi | ng of val | DNS AGGRAVATED BY O'<br>por and/or mist may<br>bry disease. | VEREXPOSURE:<br>aggravate asthma and inflammatory or | | MEN | TH I | LAZARN FI | 1KOTTALLIAL | OSSIBLE RELEVANCE TO HUMWN ays experienced liver damage. | | OTHE | R E | FFECTS OF | F OVEREXPOSURZI<br>known. | • | | EHER | BEN | CY AND F | IRST AID PROCEOURES | • | | ** - | - 4 5 | LLOUING:<br>ent is cour<br>uce vowi | onscious and her a ting. Call a physi | gag ruflex, give two glasses of water<br>cian immodiately. | | Iaño<br>clot | hin | A-1.4 #1 | ows. Obtain medica | of water while removing contaminated<br>i attuntion. Mash clothing bufore sparing | Remove to fresh air. Give artificial respiration if not oreathing. Oxygen may be given by qualified personnel if breathing is difficult. INHALATION ## ATTACHMENT 1 (Continued) FASE 4 POR INTERNAL LIBE DNLY EBODUCT NAME: PROPIONAL DENYDE Cotain medical attention. EYES: Immediately flush eyes thoroughly with mater and continue mashing for al luant 15 minutes. Obtain medical attention, preferably from an aphthalmologist, orgently. NOTES TO PHYSICIAN: There is no specific antidote. Treatment of ever-exputure thould be directed at the control of symptoms and the clinical condition of the patient. VI. REACTIVITY DATA STABILITY: CONDITIONS TO AVOID: Avoid contamination with basic materials. Contamination with basic materials (examples: sodium hydroxide, caustic soda, saines, asmonia, etc.) can result in a rapid exotheraic reaction. Avoid contamination with strong minoral acids: Avoid air (exygen): Contact with air results in carboxylic acid foraction. Oxidation can also cause foraction of hazardous peroxides or peracids. Contamination with strong minorals acids can result in a rapid exotheral, INCOMPATIBILITY (MATERIALS TO AVOID): Alcohols, alkalies, aminos, aminia, caustics, halogem-containing compounds, oxygen, strong mineral acids. MAZARDOUS COMBUSTION OR DECOMPOSITION PRODUCTS: Burning will produce carbon monoxide and/or carbon dioxide. Carbon monoxide is highly toxic if inhalod; carbon dioxide in sufficient concentrations can act as an esphyxiant. HAZARDOUS POLYHERIZATION: HAY OCCUR reaction. CONDITIONS TO AVOID: May react with evolution of heat in the presence of alkalies, asince, and acids. VII. SPILL UR LEAK PROCECURES STEPS TO BE TAKEN IF MATERIAL IS RELEASED OR SPILLED Eliminate sources of ignition. Hear suitable, protective equipment; avoid contact with liquid and vapors. Collect for disposal. Highly toxic to equatic life. Avoid discharge to sewers or waterways. MASTE DISPOSAL METHOD: Incinerate in a furnace where permitted under appropriate Fuderal, State and local regulations. This product can be toxic to the microorganizes in a 1 BRRC Report 91U0086 Appendix 9 Page 113 Attachment 5 Page 19 # ATTACHMENT 1 (Continued) | PAGE 3 | FOR INTERME, USE UNC. | |-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | PRODUCT HAMEL | PROPJOHALDEHYDE | | wastewater treat | tment plant; however, a solution of about 10 ppe concentration biodegradable in laboratory studies. | | | VIII. SPECIAL PROTECTION INFORMATION | | | TECTION (SPECIFY TYPE):<br>breathing apparatus in high vapor concentrations. | | atmosphere of ex | ould be stored and handled in vapor-tight equipment, under an<br>xygen-free nitrogon. When this is done, general (mechanical)<br>n should be satisfactory. Special, local ventilation is needed<br>vapors can be expected to escape to the workplace air. | | PROTECTIVE BLOW<br>Butyl or PVC co. | | | EYE PROTECTION:<br>Monogoggles | | | OTHER PROTECTIVE | <del></del> | | | IX. BPECIAL PRECAUTIONS | PRECAUTIONE TO BE TAKEN IN HANDLING AND STORAGE: DANGER! Extracely Flammable. Harmful if inhaled. Causes eye irritation. Keep away from heat, sparks, and flows. Avoid breathing vapor. Avoid contact with eyes. Keen container closed. Use with adequate ventilation. Wash thoroughly after handling. FOR INDUSTRY USE ONLY OTHER PRECAUTIONS: STORAGE: Reacts with oxygen; store under exygen-free mitrogen. (See Incompatibility). BRRC Report 91U0086 Appendix 9 Page 114 Attachment 5 Page 20 ė. ## ATTACEMENT 1 (Continued) PAGE 4 FOR INTERNAL LISE CALY PRODUCT HAME! PROPIONAL DEHYDE PROCESS HAZARD: Sudden rolease of hot organic chemical vapors or mists from process equipment operating at elevated temperature and pressure, or sudden ingross of air into vacuum equipment, may result in ignitions without the presence of abvious ignition sources. Published "autolynition" or "ignition" tosperature values cannot be treated as safe operating Ecoperatures in chonical processes without enalyziz of the actual process conditions. Any use of this product in slavatod-temperature processes abould be thoroughly evaluated to establish and maintain safe operating conditions. Further information is available in a technical bulletin entitled "Ignition Hazards of Organic Chemical Vapors." TRANSFER HAZARD: Vapors of this product may be ignited by static eparks. Use proper bonding and grounding during liquid transfer as described in National Fire Protection Association document NFPA 77. #### X. REGULATORY INFORMATION STATUS ON SUBSTANCE LISTE: THE CONCENTRATIONS SHOWN ARE HAXIMUM OR CEILING LEVELS (WEIGHT X) TO BE USED FOR CALCULATIONS FOR RESULATIONS. TRADE SECRETS ARE INDICATED BY "TB". #### FEDERAL EPA COMPREHEDISIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIMBILITY ACT OF 1980 (CERCLA) REQUIRES NOTIFICATION OF THE NATIONAL RESPONSE CONTER OF RELEASE OF QUANTITIES OF VAZAPOOUS SUBSTANCES EQUAL TO OR GREATER TIKEN THE REPORTABLE QUANTITIES (ROS) IN 40 CFR 202.4. COMPONENTS PRESENT IN THIS PRODUCT AT A LEVEL MATCH COULD REQUIRE REPORTING UNDER THE STATUTE ARE: None Superfund Amendments and Resuthorization Act of 1986 (SAGA) Title III requires Emergency Planning Based on Threshold Planning Quantities (TPGs) and release Reporting Based on Reportable Quantities (RQs) in 40 CFR 255 (Used for SARA 202, 311 AND 312). Components Present in this Product at a level which could require Reporting under the statute are: SUPERFURD AMEDIMENTS AND REAUTHORIZATION ACT OF 1984 (SA'A) TITLE III REGUIRES SUBHISSION OF AMEUAL REPORTS OF RELEASE OF TOXIC CHEMICALS THAT APPEAR IN 40 OFR 272 (FOR SARA 312). THIS INFORMATION HUST BE INJUDED IN ALL HSD'ES THAT ARE COPIED AND DISTRIBUTED FOR THIS MATERIAL COMPONENTS PRESENT IN THIS PRODUCT AT A LEVEL WHICH COULD INDUIRE REPORTING UNDER THE STATUTE ARE: UPPER SOUND CAS NUMBER CONCENTRATION X 100 % Propious Idenyde 112-24-4 39 BRRC Report 9100 36 Appendix 9 Page 115 Attachment 5 Page 21 # ATTACEMENT 1 (Continued) | PRODUCT HAME: FRUPT | The state of s | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------| | | STATE RISHT-TU-IOIDH | | | | | 45<br>Ontain materials which the<br>birth defacts, or other re | | | | Hezerdour Substances en<br>be identified when pres | nt in this product at a le<br>TUTE PRE: | re Substances : | on the MSL must | | | HAZARDOUE MUBSTANCES ( | -> 1%) | UPPER ROUND | | CHEMICAL<br>Propionaldehyde | | CAS JUNGER | CONSSITRATION | | Pennsylvania Right-to-k<br>Mazardous Substances en<br>identified when present | | incurs on the Li | | | Pennsylvania Right-to-k<br>Mazardous Substances an<br>identified when present<br>Components prese<br>reporting under the sta | d Special Hazardous Substi<br>in products.<br>Ht in this product at a le<br>tute are: | ist<br>uncus on the L<br>wal which cou | ist aust bo | | Pennsylvania Right-to-k<br>Hazardous Substances en<br>identified when present<br>Components prese<br>reporting under the sta | d Special Hazardous Substi<br>in products.<br>Ht in this product at a le<br>tute are: | ist<br>uncurs on the L | ist must be | | Pennsylvania Right-to-k<br>Mazardous Substances an<br>identified when present<br>Components prese<br>reporting under the Eta | d Special Hazardous Substi<br>in products.<br>Ht in this product at a le<br>tute are: | ist<br>uncus on the L<br>wal which cou | ist aust bo | | Pennsylvania Right-to-k Mazardous Substances en identified when present Components prese reporting under the sta CHEMICAL Propionaldehyde TECA INVENTORY STATUS | d Special Hazardous Substrain products. in products. int in this product at a latute are: HAZARDOUS SUBSTRACES ( of this product are on the | ist<br>uncus on the L<br>mul which cou<br>=> 121<br>CAS MLMBER<br>123-33-5 | ist must be id require UPPER BOUND CONCENTRATION 100 | The opinions expressed are those of qualified experts within Union Carbide. We believe that the information contained is current as of the date of this Noterial Safety Date Sheet. Since the use of this information and of these opinions and the conditions of the use of the product are not within the control of Union Carbide, it is the user's obligation to determine the conditions of safe use of the product. BRRC Report 9100086 Appendix 9 Page 116 Attachment 5 Page 22 Printed in USA # ATTACEMENT 1 (Continued) PAGE 8 FOR INTERNAL USE DALY ERODUCT NAME: PROPIDMALDEHYDE DAIE: 08/29/90 REVISION DATE: 08/29/90 REVISED SECTIONS Section III: IMPREDIENTS EDRAECTION PRODUCT: 70771 F MARKE: CO222D # BUSHY RUN RESEARCH CENTER 5702 Mellon Road, Export, Pennsylvania 15632-8902 Telephone (412) 733-5200 Telecopie: (412) 733-480- ## PROTOCOL AMERICHIERT 1 TITLE: Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Range-Finding Study in CD® Rats BERC PROJECT MUMBER: 91-13-25601 EPCHSOR: Solvents and Coatings Materials Division Union Carbide Chemicals and Plastics Company Inc. 39 Old Ridgebury Road Danbury, CT 06817-0001 TESTING PACILITY: Bushy Run Research Center (BRRC) Union Carbide Chemicals and Plastics Company Inc. 6702 Mellon Road Export, PA 15632-8902 Reviewed and Approved by: Bushy Run Research Center: Cynthia D. Driscoll, Study Director Linda J. Calista, B.S. Manager, Good Laboratory Practices/Quality Assurance Union Carbide Chemicals and Plastics Company Inc.: Ph.D., DART Director of Applied Toxicology Division: Richard C. Wise Manager, Product Safety Union Carbide Chemicals and Plastics Company Inc. Excellence Through Quality $\mathbf{E}\mathbf{0}_{2}$ BRRC Report 91U0086 Appendix 9 Page 118 Attachment 5 BRRC Project 9. 13-25601 Protocol Amendment 1 Page 2 The protocol is amended as follows: Item 1 Location of Protocol Deletion Page 1, Title Description of Protocol Deletion (Sprague-Dawley) Rationale The parenthetical designation of (Sprague-Dawley) in reference to Charles River CD® rats has been removed in order to accurately reflect the strain designation as provided by the supplier. Item 2 Location of Protocol Deletion Page 2, Objectives Description of Protocol Deletion (Sprague-Dawley) Rationale See rationale for Item 1. Item 3 Location of Protocol Change Page 3, Sponsor Identification Number Description of Protocol Change Change UCC70771/UN1275 to T-1258 Rationale The incorrect number was listed in the range-finder protocol. Item 4 Location of Protocol Deletion Page 4, Supplier Description of Protocol Deletion Breeding Kationale The correct name of the supplier is Charles River Laboratories. reprotor/protocol/APROPING Suly 14, 1992 $f(\cdot)$ BRRC Report 91U0086 Appendix 9 Page 119 Attachment 5 ## PROTOCOL DEVIATION TITLE: Propionaldehyde: Combined Repeated-Exposure and Reproductive/ Developmental Toxicity Range-Finding Study in CD® Rats PRRC PROJECT NUMBER: 91-13-25601 The following deviations from the written protocol for this study or from BRRC Standard (perating Procedures occurred during this study: 1. In the protocol, it was stated that the date for submission of the Draft Final Report would be added to the protocol by amendment. The Draft Final Report was issued on June 17, 1992, but an amendment was not written. # CERTIFICATE OF AUTHENTICITY THIS IS TO CERTIFY that the microimages appearing on this microfiche are accurate and complete reproductions of the records of U.S. Environmental Protection Agency documents as delivered in the regular course of business for microfilming. | Data produced. | (Month) | (Day) | (Year) | Camera Operator | |----------------|---------|-------|--------|-----------------| | | . 8 | . 1 | 94 | Marcia lubalino | | Place | Syracuse | New York | |-------|----------|----------| | 7 | City) | (State) |