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EXECUTIVE SUMMARY

The US EPA conducts risk assesgnents for an array of hedth effeds that may result from
exposure to environmental agents, and that require an analysis of the relationship between
exposure and hedth-related oucomes. The dose-respornse asesgnent is esentialy atwo-step
process the first being the definition o apoint of departure (POD), and the second extrapalation
from the POD to low environmentall y-relevant expasure levels. The benchmark dose (BMD)
approadh provides a more quantitative dternative to the first step in the dose-resporse
asesgnent than the aurrent NOAEL/LOAEL processfor noncancer hedth effeds, andis smilar
to that for determining the POD propased for cancer endpants (EPA, 1996. Asthe Agency
moves toward harmonization d approacdhes for cancer and norcancer risk assessnent, the
dichotomy between cancer and nortance hedth effedsis being replacel by consideration d
mode of adion and whether the dfeds of concern are likely to be linea or noninea at low
doses. Thus, the purpose of this document isto provide guidancefor the Agency and the outside
community onthe gplication d the BMD approach in determining the POD for all types of
hedth eff eds data, whether alinea or norlinea low dose extrapalationis used.

This guidance document discusses the computation d BMDs and benchmark
concentrations (BMCs), their lower confidencelimits, data requirements, dase-resporse analysis,
and reporting requirements that are spedfic to the use of BMDs or BMCs. The foll owing
convention for terminaogy has been adopted in this document: BMD is used genericdly to refer
to the benchmark dose gproad; in the more speafic cases, BMD and BMC refer to the centra
estimates, for example the EDx or ECx for dichotomous endpadnts (with x referring to some
level of resporse &ove background,e.g., 5% or 10%). BMDL or BMCL refersto the
correspondng lower limit of aone-sided 9%% confidenceinterval onthe BMD or BMC,
respedively. Thisis consistent with the terminalogy introduced by Crump (1995 and with that
used in the EPA’s BMD software (BMDS) which is fredy avail able onthe Internet at

http://www.epa.gov/ncedbmds.htm. Thisterminology isa dange, howvever, from that used in

previous Agency documents (e.g., EPA, 1995, bu has been adopted because it more dealy
conweysthe fad that the BMDL refersto the lower confidencelimit on the dose that would result
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in the required response.

Asindicated above, the BMD approach is an alternative to the NOAEL/LOAEL approach
that has been used for many years in dose-response assessment. The development of this
approach has been pursued because of recognized limitations in the NOAEL/LOAEL approach.
However, it islikely that there will continue to be endpoints that are not amenable to modeling
and for which aNOAEL/LOAEL approach must be used. In some cases, there may be a
combination of BMDs and NOAEL s to be considered in the assessment of a particular agent, and
the most appropriate value to use for dose-response assessment must be made by the risk assessor
on the basis of scientific judgment and the modeling results.

This document addresses a number of issues that must be resolved in order to apply the
BMD approach for dose-response assessment in a consistent manner:

1. Determination of appropriate studies and endpoints on which to base BMD calculations;
Selection of the benchmark response (BMR) value;

Choice of the model to use in computing the BMD;

Details surrounding computation of the confidence limit for the BMD (BMDL); and

o &~ WD

Reporting requirements for BMD and BMDL computation.

Determination of appropriate studies and endpoints on which to base BMD calculations.
Following the hazard characterization and selection of appropriate endpoints to use for the dose-
response assessment, the studies appropriate for modeling and BMD analysis can be evaluated.
All studies that show a graded monotonic response with dose likely will be useful for BMD
anaysis, and the minimum data set for calculating aBMD should at least show a significant
dose-related trend in the selected endpoint(s). It is preferable to have studies with one or more
doses near the level of the BMR to give a better estimate of the BMD, and thus, a shorter
confidenceinterval. Studiesin which all the dose levels show changes compared with control
values (i.e., thereisno NOAEL) are readily useable in BMD analyses, unless the lowest response
level is much higher than the BMR.

There are at |east three types of endpoint data: dichotomous (quantal), continuous, and
categorical. This guidance provides definitions of these three types of data, and what information

isneeded in order to model the responses. For example, a dichotomous response may be

Vi
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reported as elther the presence or absenceof an effed, a cntinuous response may be reported as
an adual measurement, or as a @ntrast (absolute dhange from control or relative dhange from
control). Inthe cae of continuous data, when individual data ae not avail able, the number of
subjeds, mean o the resporse variable, and a measure of resporse variability (e.g., standard
deviation (SD), standard error (SE), or variance) are neaded for eat group. For caegoricd data,
the resporses in the treament groups are often charaderized in terms of the severity of effea
(e.g., mild, moderate, or severe histologicd change). In general, endpants that have been judged
by the risk assesor to be gpropriate and relevant to the expaosure shoud be modeled if their
LOAEL isupto 10fold above the lowest LOAEL. Thiswill help ensure that no endpants with
the potential to have the lowest BMDL are excluded from the analysis on the basis of the value of
the LOAEL or NOAEL. Seleded endpantsfrom different studiesthat arelikely to beused in
the dose-resporse assessnent shoud al be modeled, espedally if different uncertainty fadors
may be used for different studies and endpdnts. Asindcaed above, the seledion d the most
appropriate BMDs and/or NOAELs (if some endpadnts canna be modeled) to use for
determination d the POD must be made by the risk assessor using scientific judgement and
principles of risk assesgnent, as well as the results of the modeling process

Selection of the benchmark response (BMR) value. The cdculation d aBMD isdiredly
determined by the seledion d the BMR. This guidance provides default criteriato be used for
seleding the BMR in the cae of quantal data and continuouws data. For quantal data, an excess
risk of 10% isthe default BMR, sincethe 10% resporseis at or nea the limit of sensitivity in
most cancer bioassays and in some norcancer bioassays aswell. If astudy has greaer than usual
sensitivity, then alower BMR can be used, although the ED,, and LED,, shoud always be
presented for comparison pupaoses.

For continuows data, if there is an accepted level of change in the endpant that is
considered to be biologicdly significant then that amourt of changeisthe BMR. Otherwise, if
individual data ae avail able and adeasion can be made &ou what individual levels soud be
considered adverse, the data can be “dichotomized” based onthat cutoff value, andthe BMR set
asabowefor quantal data. Alternatively, inthe ésenceof any other ideaof what level of

resporse to consider adverse, a change in the mean equal to ore wntrol SD from the control

vii
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mean can be used. The control SD can be computed including historical control data, but the
control mean must be from data concurrent with the treatments being considered. Regardless of
which method of defining the BMR is used for a continuous dataset, the effective dose
corresponding to one control SD from the control mean response, as would be calculated for the
latter definition, should always be presented for comparison purposes.

Choice of the model to usein computing the BMD. The goa of the mathematical
modeling in BMD computation is to fit amodel to dose-response data that describes the data set,
especialy at the lower end of the observable dose-response range. In practice, thisinvolvesfirst
selecting afamily or families of models for further consideration, based on characteristics of the
data and experimental design, and fitting the models using one of afew established methods.
Subsequently, alower bound on dose is calculated at the BMR. The guidance document
introduces the topic of dose-response modeling and provides information on model selection for
different types of data. In addition, model fitting, determining goodness-of-fit, and comparing
models to decide which one to use for obtaining the POD are discussed. The guidance
recommends that «=0.1 ke used to compute the aitica value for goodressof fit, insteal of the
more conventional values of 0.05 o 0.01,and that agraphicd display of the model fit be
examined aswell. For comparison d models and seledion d the model to use for BMDL
computation, the use of Akaike's Information Criterion (AIC) is recommended.

Computation of the confidence limit for the BMD (BMDL). The guidance document
discusses the computation d the confidencelimit for the BMD, the fad that the method by which
the confidencelimit i sobtained istypicdly related to the data type, and the manner in which the
BMD isestimated from the model. Detail s for approades to Cl computation spedfic to
particular datatypes (quantal, clustered, continuous, multi ple outcomes) are provided in the
document.

Reporting requirements from the BMD/BMDL calculations. The guidance document lists
anumber of reporting requirements for the BMD and BMDL. These ae cnsidered important
for the risk assesor to judge whether or not the dhoice of studies and endpants for modeling has
been dore gpropriately and whether the most appropriate BMD and BMDL have been seleded
asthe POD for low dose extrapadlation.

viii
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In summary, the guidance document provides a decision tree that discusses step-by-step
the process to be used in evaluating studies and endpoint types that are appropriate for modeling,
selecting the BMR level, model fitting and BMD computation, judging the fit of the model, and
the calculation of the BMDL. Finaly, the document provides several examples of BMD and
BMDL derivation using the EPA BMDS software.
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. INTRODUCTION

A. Purpose of This Guidance Document

The purpose of this document isto provide guidancefor the Agency and the outside
community onthe gplication d the benchmark dose goproacd to determining the paint of
departure (POD) for linea or nonlinea extrapalation d hedth effeds data. This guidance
discusses computation d benchmark dases and benchmark concentrations (BMDs and BMCs)
andtheir lower confidencelimits, data requirements, dose-resporse analysis, and reporting
requirements. The document provides guidance based ontoday's knowledge and understanding,
and onexperiencegained in using this approach. The Agency isadively applying this
methoddogy and eval uating the outcomes for the purpose of gaining experiencein using it with
avariety of endpants. This document isintended to be updated as new information becomes
avail able that would suggest approaches and default options alternative or additional to thase
indicated here and shoud na be viewed as preduding additional reseacch onmodified o
aternative gproades that will im prove quantitative risk assesanent. In fad, the use of
improved scientific understanding and development of more mechanisticdl y-based approadches to
dose-resporse modeling is grongly encouraged by the Agency.

Benchmark dose modeling isahighly technicd exercise and this guidanceis atechnicd
document generally targeted at readers with sufficient badkgroundin thisarea The document is
not intended as a primer on modeling or risk assessment. The avail ability of software to fadlit ate
the analysis can make the modeling appea deceotively simple, bu often interpretation d the
resultsisnat trivial. It isrecommended that BMD modeling be performed by or in collaboration
with a statistician or someone familiar with the potential pitfall s of this type of analysis.
Similarly, this document is nat intended as a primer on toxicology; the procedures described
herein do na replacethe expert judgements of toxicologists and ahers who addressthe hazard
charaderizationisauesin risk assesgnent. Expert judgements on study quality, toxicologicd

significance of observed effeds, etc., are required independent of the use of BMD analysis and

1
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are beyondthe scope of this document. It is li kewise beyondthe scope of this document to
provide guidancefor RfC, RfD, or cancer potency computation, which are dso more general risk
asessnent issues.

Sincethe methods for BMD computation require gpropriate software, another purpose
of this document isto provide enough information abou preferred computational algorithms to
allow users to make an informed choicein the seledion o that software. The document does not
advocae use of any particular software padage, although it is recommended that software with
well documented algorithms, such as the Agency’s BMDS padkage, be used. Nor isthis
guidanceintended to dacument any particular software padkage, athouwgh it will present
examples for ill ustrative purposes that use the Agency’s BMDS padage. It isalso expeded that
this guidance will i nform the design of studies for the cmmputation & BMDs and dcse-respornse

analysis, though thiswill not be mvered explicitly.

B. Background

The US EPA conducts risk assesgnents for an array of hedth effeds that may result from
expaosure to environmental agents. The processof risk assessnent, based onthe National
Reseach Courcil paradigm (NRC, 1983, has svera steps: hazard charaderization, dse-
resporse agLsInent, exposure aessnent, and risk charaderization. Hazard charaderization
includes athorough evaluation d all the avail able data to identify and charaderize potential
hedth hazards. Dose-respornse asessnent involves an analysis of the relationship between
exposure to the chemicd and hedth-related outcomes, and historicdly has been dore very
differently for cancer and norcancer hedth eff eds because of perceived dff erences between the
medchanistic underpinnings of cancer and aher toxic dfeds. Asour understanding of the
underlying biology of toxic dfeds has grown, havever, the goparent diff erences between cancer
and nortance eff eds have lessened, to the point where it seems reasonable to develop
quantitative methods based onsimilar considerations for all types of hedth effeds, and to make
approadies to dose-resporse asEsInent as consistent acosshedth endpants as our current

medhanistic understanding allows. This sdion provides an overview of EPA’s approades to
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dose-resporse asesgnent for cancer and nonrcancer effeds, and d the basis for developing more
broadly appli cable quantitative methods.

The primary distinction between charaderizing risks of cancer and norcancer effeds has
been the expedation that cancer induction could result from even a single gene mutationin a
single cdl, while norcancer effeds were generally assumed to occur only if aminimum, bu
possbly large, anourt of damage had occurred. The pradicefor assessng dose-resporse for
cance effeds has been to fit a statisticd model (lineaized multi stage procedure) to tumor
incidencedata, and to assume low dose lineaity to extrapolate risk at lower doses (USEPA,
1986. The modeling addresses variahility in the data through an upper 95% bound orthe slope
of the relationship between exposure and risk at very low risk levels, typicdly 10°to 10°.

In contrast, the standard pradicefor the dose-respornse analysis of hedth effeds other
than cancer has been to estimate the minimum dose not to be excealed, by identifying alowest-
observed-adverse-effed-level (LOAEL) and a no-observed-adverse-effed-level (NOAEL) from
an appropriate study. The LOAEL isthe lowest dose for a given chemicd at which adverse
effeds have been deteded, while the NOAEL is the highest dose & which noadverse dfeds
have been deteded. The NOAEL (or LOAEL, if aNOAEL isnat present) is adjusted dovnward
by uncertainty fadorsintended to acurt for limitations and urcertaintiesin the avail able data,
to arrive & an exposure that is likely to be without an appredablerisk of deleterious effedsin
humans, that is, the referencedose (RfD) or reference oncentration (RfC). Unlike cancer dose-
response modeli ng, variability in the observed resporsesis not addressed.

It has been tempting to use the dose level below which noeffeds are observed in a study
(sometimes cdled a “pradicd threshold”) as an important paint for describing a dose-resporse
curve because of a presumed relationship between such apradicd threshold and true thresholds
(i.e., true noeffed levels) in the dose-resporse. Infad, the pradicd threshodisredly a
consequence of the fad that any finite study has an inherent limit of detection, andis of littl e
pradicd utility in describing toxicologicd dose-resporses. In aher words, the NOAEL does not
represent a biologicd threshald and daes not imply that lower exposure levels are withou risk.
Spedfic limitations of the NOAEL/LOAEL approach are well known and have been discussed
extensively (Crump, 1984 Gaylor, 1983 Kimmel and Gaylor, 1988 Leisenring and Ryan, 1992
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EPA, 1986b, 1988b, 198¢; 199%):

. The NOAEL/LOAEL is highly dependent on dese seledion sincethe NOAEL/LOAEL is
limited to being one of the dosesincluded in a study.

. The NOAEL/LOAEL is highly dependent on sample size. The aility of abioassay to
distinguish atreament response from a @ntrol resporse deaeases as smple size
deaeases', so that the NOAEL for a ompound(and thus the POD) will tend to be higher
in studies with small er numbers of animals per dose group.

. More generally, the NOAEL/LOAEL approach dces not acourt for the uncertainty in the
estimate of the dose-resporse which is due to the dharaderistics of the study design.

. NOAELS/LOAELs do nd correspondto consistent resporse levels for comparisons
aaoss sudies/chemicds/endpants and for use a PODs for the derivation d RfCs.

. The slope of the dose-resporse arveisnaot taken into acourt in the seledion d a
NOAEL or LOAEL, andis not usualy considered unessthe slopeisvery steg o very
shall ow.

. A LOAEL canna be used to derive aNOAEL when a NOAEL does not exist in a study.
Instead, atenfold urcertainty fador has been routinely applied to the LOAEL to acount
for thislimitation.

. While the NOAEL has typicdly been interpreted as athreshad (no-effed level),
simulation studies (i.e, Leisenring and Ryan, 1992 and reanalyses of developmental
toxicity bioassay data (Allen et al, 1994) have demonstrated that the rate of response
above oontrol at doses fitting the aiteriafor NOAELS, for arange of study designs, is
abou 5-20% on average, na 0%.

In an eff ort to address ®me of the limitations of the LOAEL and NOAEL, Crump (1984
proposed the benchmark dose (BMD) approacd as an dternative (seesedion |.C. for more

'Note that for a study utili zing 6 animals per dose group, the 95% upper confidencelimit (UCL)
onan observed adverse resporse rate of 0% is49%. That is, NOAELs chosen onthe basis of no
observed resporse in 6 animals could be too high asubstantial propation d thetime. The 95%
UCLsfor groups of 10, 20and 50animals are 31% , 176, and P, respedively, underscoring the
importance of adequate sample sizes.
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detail s). Benchmark dose modeling makes no particular assumption abou the nature of
toxicologicd dose-resporses, ather than that the dhange in resporse generally does nat deaease
with higher doses. In particular, thereis no speafic assumption d the relationship between a
putative no-effed level in the dose-resporse and the benchmark dase. The goal of the BMD
approadh isto define astarting point of departure (POD) for the mmputation o areferencevalue
(e.g., the RfD or RfC) or for linea low-dose extrapadlation that is more independent of study
design.

The BMD approach perall €ls the recmmendations in EPA's Proposed Guidelines for
Carcinogen Risk Asssgnent (1996) regarding modeling tumor data and aher (non-cancer)
resporses thought to be important preaursor events in the cacinogenic process The proposed
guideli nes promote the understanding of an agent’s mode of adionin determining the dose-
resporse(s). Moreover, the dose-resporse extrapalation procedure foll ows conclusionsin the
hazard assesgnent abou the agent’ s carcinogenic mode of adion. The dose-resporse asssnent
under the proposed guidelinesis atwo-step process (1) resporse data ae modeled in the range
of empiricd observation -- modeling in the observed range is dore with hiological y-based, case-
spedfic, or appropriate aurve-fitting models, and then (2) extrapolation kelow the range of
observationis acomplished by modeling if there ae sufficient data or by a default procedure
(linea, norinea, or bath). For the default procedures, a paint of departure (POD) for
extrapolationis estimated from this modeling. The linea default is a straight-line extrapolation
to the badgroundresporse level from the POD, whil e the norinea default approach begins at
theidentified POD and provides either amargin of exposure (MOE) analysis or areferencevalue
such as and RfD or RfC rather than estimating the probability of effeds at low doses.

In the cae of deriving reference values for noncancer effeds, the POD is adjusted
downward, to acourt for the uncertainty that is contributed by extrapaation from experimental
animalsto humans and to acourt for within human variability, aswell as other limitationsin the
avail able data. Note that the NOAEL or LOAEL has been used as a default POD for low dose
estimation a extrapalation, so that the primary diff erence between the two approaciesisin howv
the starting paint is determined. The POD for BMD modeling isthe BMDL, or the lower 95%
bound orthe dose/expasure associated with the benchmark resporse, typicdly 10% above the
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control resporse. Using the lower boundacounts for the uncertainty inherent in a given study,
and asaures (with 9%% confidence) that the desired BMR is not excealed (seesedion I1.B. for a
complete discusson d seleding the benchmark resporse).

As detail ed above, the BMD approac is generally a preferable dternative to the
NOAEL/LOAEL approach. For instance, aBMDL can be estimated even when all dosesin a
study are asociated with asignificant adverse resporse (i.e., when thereisno NOAEL). Note,
however, that there ae some instances in which the NOAEL/LOAEL isthe better choice In
particular, the avail able data may not be anenable to modeling, such aswhen al individualsin
expaosed groups respond. In such a cae, BMD models may falil to fit the observed data, which
provide very littl e resolution in the region d the benchmark resporse (usually 10%) anyway
(athough in such a case, the LOAEL is nat very informative, either). Ancther circumstance may
happen when an olserved effed is o rarethat it is not statisticaly significantly diff erent from
the control resporse, bu may be foundto be biologicdly meaningful (e.g., anincreasein arare
malformation).

Note that the literature has used the terms BMD and BMDL in a enfusing way (Crump,
1984, 1995 Thereisfrequent need to refer to the central estimate and the lower confidence
limit, as well as amore genericdly-defined pant of departure in discussons of dose-resporse
asessnent. In thisdocument, when talking in technicd detail abou the processof deriving
benchmark dases, “BMD” or “BMC” will refer to the central estimate of the dose that is
expeded to yield the BMR, for example, the ED,,, or EC,, and“BMDL” or “BMCL” will refer
to the lower end d a one-sided confidenceinterval for that central estimate. “BMD” will be used
to refer to the entire process The POD for low dose extrapalation a for setting the RfD/C will
bethe BMDL or BMCL. To simplify further discusgonin this document, we will use BMD and
BMDL genericdly to mean oral or inhalation values, uness sated atherwise.

[lustrative Example:  Using the BMD approad, the experimental data ae modeled, and
the benchmark dose (BMD) in the observable rangeis estimated (seeFig. 1). Unlike NOAELs
and LOAELSs, the BMD isnot constrained to be one of the experimental doses, and the BMDL
can thus be used as a more @nsistent POD than either the LOAEL or NOAEL. The BMDL

acourns for the uncertainty in the estimate of the dose-resporse that is due to charaderistics of
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Figure 1 Sample of amodé fit to dichotomous data, with
BMD and BMDL indicated. The fraction of animals affected
in each dose group is indicated by diamonds. The error bars
indicate 95% confidence intervals for the fraction affected.
The BMR for this exampleis an ExtraRisk of 10%. The
dashed curve indicates the BMDL for arange of BMRs. The
dose labeled BMDL corresponds to the lower end of a one-
sided 95% confidence interval for the BMD.

the experimental design. The BMD approach models all of the datain a study and the shape of
the dose-response curveisintegral to the BMDL estimation.

Since the benchmark dose procedure is quite general, a number of issues need to be
addressed before benchmark doses can be used in a consistent manner for dose-response
assessment:
how to select studies on which to base BMD calculations;
selection of endpoints on which to base BMD calculations;
selection of the benchmark response (BMR) value;
choice of the model to use in computing the BMD;

details surrounding computation of the confidence limit for the BMD (BMDL);

© g & w N PP

what information from the BMD cal culation should be reported

These issues will be covered in some detail in the following chapters.
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C. A Brief Review of Literature Relating to Benchmark Dose
1. Earlier uses of benchmark modeling in dose-r esponse assessment

Benchmark dose-like approaches to dose-response assessment are not new. The
procedure of Mantel and Bryan (1961) formerly was used widely for conservative low-dose
cancer risk assessment. Their procedure calculated an upper confidence limit on the excess
tumor incidence at the lowest experimental dose or an upper confidence limit on the tumor
incidence at the dose estimated to produce a 1% tumor incidence, essentially a benchmark dose.
Assuming a probit-log dose model, a conservative |low-dose slope of one probit per factor of 10
reduction in dose below the upper limit on the benchmark dose was used to provide an upper
bound estimate of cancer incidence at low doses. Gaylor and Kodell (1980), Van Ryzin (1980),
and Farmer et al. (1982) proposed low-dose linear extrapolation to zero excess risk from the
upper confidence limit on the excess incidence above background of an adverse effect at the
lowest experimental dose or dose corresponding to a 1% incidence, again, a benchmark dose, to
provide an upper bound on low-dose risks for convex (sublinear) dose-response curves. Gaylor
(1983) and Krewski et al. (1984) compare linear extrapolation and safety factors for controlling
low-dose risk. Crump (1984) first coined the term "benchmark dose,” athough variations of a
benchmark dose procedure had been in use since the process developed by Mantel and Bryan
(1961).
2. Properties of the Benchmark Dose

A number of research efforts, many of which have dealt with reproductive and
developmental toxicity data, have provided extremely useful information for application of the
BMD approach (e.g., Alexeeff et a., 1993; Catalano et al., 1993; Chen et al., 1991; Krewski and
Zhu, 1994, 1995; Auton, 1994; Crump, 1995; Fowles, et a., 1999). In a series of papers by
Faustman et a. (1994), Allen et a. (1994a and b), and Kavlock et al. (1995), the BMD approach
was applied to a large database of developmental toxicity studies. In brief, the results of these
studies showed that when the data were expressed as the proportion of affected fetuses per litter
(nested dichotomous data), the NOAEL was on average 0.7 times the BMDL for a 10%
probability of response, and was approximately equal, on average, to the BMDL for a 5%

probability of response. When data were expressed as counts of dichotomous endpoints (i.e.,
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number of litters per dose groupwith resorptions or malformations), the NOAEL was
approximately 2-3 times higher than the BMDL for a 10% probability of response ébove @nitrol
values (approximately 20 animals per dose group), and 46 times higher than the BMDL for a5%
probability of resporse. Expressng the data as the propation d aff eded fetuses per litter isthe
more gpropriate way to analyze developmental toxicity data. However, the results of the
guantal data analysis also may apply to using the BMDL approach with ather quantal data, and
suggest that the NOAEL in these caes may be & or above the 10% true resporse level,
depending on sample size and badkgroundrate.

Sincereduced fetal weight in developmental toxicity studies often shows the lowest
NOAEL among the various endpants evaluated, the gplicaion d the BMD to these @mntinuows
data dso was evaluated (Kavlock et a., 1995. A variety of cutoff values was explored for
defining an adverse level of weight reduction below control values. In some caes, datawere
anayzed using a ontinuows power model, andin aher cases, the data were transformed to
dichotomous data. Comparisons with the NOAEL showed that several cutoff values could be
used to give values smilar to the NOAEL. These analyses suggest ways in which BMDLs may
be developed for continuous data from a variety of endpants.

Fowles, et a. (1999 examined aaute inhalation lethality data, and compared NOAELSs to
benchmark dases correspondng to 1%, 5%, and 1®% resporse incidences. Sample sizes
averaged around10 — 2@nimals per dose group. Similarly to the “quantal” parts of the results of
the Allen et al. (1994,a and b) studies, BMDLs based on 1% incidence mrresponcd
approximately to NOAELS. However, because the dose-resporse for lethality is 0 steep,
BMDLs for 5% and 1% incidences were very close to those for 10% incidence. Asaresult, the
BMDLsfor a 1% incidencewere on average only abou 1.6 a 3.6times snaller than aNOAEL,
depending on whether alog-probit or Weibull model was used.

A simulation study by Kavlock et al. (1996 examined various aspeds of study design
(number of dose groups, dose spadng, dose placanent, and sample size per dose group) for two
endpdnts of developmental toxicity (incidence of malformations and reduced fetal weight). Of
the designs evaluated, the best results (that is, thase with the shortest confidenceintervals) were

obtained when two dcse levels had resporse rates above the badkgroundlevel, ore of which was
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near the BMR. In this study, there was virtually no advantage in increasing the sample size from
10 to 20 litters per dose group. When neither of the two dose groups with response rates above
the background level was near the BMR, satisfactory results were also obtained, but the BMDLs
tended to be lower. When only one dose level with aresponse rate above background was
present and near the BMR, reasonabl e results for the maximum likelihood estimate and BMDL
were obtained, but in this case, there were benefits of larger dose group sizes. The poorest
results were obtained when only a single group with an elevated response rate was present, and
the response rate was much greater than the BMR.
3. Approachesto BMD Computation

Many noncancer health effects are characterized by multiple endpoints that are not
completely independent of one another. Lefkopoulou et al. (1989), Chen et a. (1991), Ryan
(1992), Catalano et a. (1993), Zhu et al. (1994), Krewski and Zhu (1995), and Fung et al. (1998)
have worked on this issue using developmental toxicity data, and have shown that, in general, the
BMDL derived from a multinomial modeling approach islower than that for any individual
endpoint. This approach has not been applied to other health effects data, but should be kept in
mind when multiple related outcomes are being considered for a particular health effect.

Dose-response modeling for continuous endpoints is made more difficult because there is
not a natural probability scalein which to characterizerisk. Of course, one approach isto
explicitly dichotomize such continuous endpoints, and then model the explicitly dichotomized
endpoints as any other quantal endpoint. In separate 1995 papers, Crump and Kodell et al.
detailed a new approach to deriving aBMDL for continuous data based on a method originally
proposed by Gaylor and Slikker (1990). This approach makes use of the distribution of
continuous data, estimates the incidence of individuals falling above or below alevel considered
to be adverse or at least abnormal, and gives the probability of responses at specified doses above
the control levels. Thisresultsin an expression of the datain the same terms as that derived
from analyses of quantal data, that is, it implicitly dichotomizes the data while retaining the full
power of modeling the continuous data while allowing direct comparison of BMDs and BMDLs
derived from continuous and quantal data. Gaylor (1996) compared benchmark doses computed

for continuous endpoints directly to those computed after first explicitly dichotomizing the data,

10
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and found that, even for moderate sample sizes, substantial precision was lost upon explicitly
dichotomizing the data. West and Kodell (1999) compared such an implicit method for
continuous data to the result of modeling explicitly dichotomized endpoints. They found that, for
sample sizesin the range of 10 to 20 animals per dose group, the implicit approach gave
substantially better results than did the approach of modeling explicitly dichotomized data. Thus,
when it is possible to do, it is generally better to derive BMDs and BMDLs for continuous data
from models of the continuous data (perhaps using the hybrid approaches described by Gaylor
and Slikker, 1990, Crump, 1995 or Kodell et al., 1995).

Most approaches to benchmark dose modeling have focused on modeling asingle or
multiple responses from a single study. Categorical regression modeling (Dourson et al., 1985;
Hertzberg, 1989; Hertzberg and Miller, 1985; Guth et a, 1997; Simpson et al, 1996ab) alows the
results for multiple endpoints across studies to be used to make an overall assessment of the
toxicity of acompound, based on alarger data base. Although so far this method has not been
widely used for benchmark dose computation, it shows promise as away to more quantitatively
and rigorously combine information from arich database.

Bayesian approaches to benchmark dose cal culation express the uncertainty in the
benchmark dose estimate with a probability distribution (in Bayesian parlance, the posterior
distribution), in contrast to the confidence limits used by the more commonly used frequentist
approach (Hasselblad and Jarabek, 1995). Although the Bayesian approach has not been widely
used so far, it has some potentially useful features. It would be relatively easy to combine results
from different data sets to provide a more robust estimate, along with an evaluation of the
uncertainty in that estimate that would take into account the variability among studies. This
would be a clear improvement over the more widely used methods, which only quantify the
uncertainty inherent in a single study.

Gaylor, et a. (1998) reviewed statistical methods for computing benchmark doses, and
Murrel et al. (1998) discussed some consequences of basing the benchmark dose on a confidence

limit and suggested an approach for setting benchmark response levels for continuous endpoints.

11
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4. General Discussions of Standardsfor the Benchmark Dose

Severa workshops and symposia have been held to discuss the application of the BMDL
and appropriate methodology (Kimmel et a., 1989; California EPA, 1993; Beck et al., 1993;
SRA Symposium, 1994; Barnes et a., 1995). The participants at the EPA/AIHC workshop
(Barnes et a., 1995) generally endorsed the application of the BMD approach for all quantal
noncancer endpoints and particularly for developmental toxicity, where a good deal of research
has been done. Less information was available at the time of the workshop on the application of
the BMD approach to continuous data, and more work was encouraged. A number of other
issues concerning the application of the BMD approach were discussed. The guidance and
default options set forth in the current document are based in part on the outcome of this
workshop, the background document (EPA, 1995c), and on more recent information and
discussions, including those at a peer consultation workshop on the 1996 draft of this report
(USEPA, 1996).

12
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II. BENCHMARK DOSE GUIDANCE

This sdion describes the propased approach for carrying out a complete BMDL analysis.
It isorganized in the form of adedsion pocessincluding the rationale and defaults for
proceading through the analysis, and foll ows a simil ar framework to that outlined in the
badkground deaument (EPA, 199%). The guidance hereimpases some cnstraints onthe
BMDL analysisthrough deasion criteria, and provides defaults when more than ore feasible

approad exists.

A. Data Evaluation and Endpoint Selection

Thefirst step in the processof hazard charaderizationis a cmplete review of the toxicity
data avail able on an agent to identify and charaderize the hazards related to a particular
compound @ exposure situation. Thisinvolves the determination d adverse dfeds or
preaursors of adverse dfeds from all avail able data and the most appropriate endpants, the so-
cdled “criticd effed(s),” onwhich to basethe NOAEL or BMD. Guidanceonreview of
endpant data for hazard charaderization can be foundin a number of EPA pulicaions (EPA,
19913, 1994, 1995, 1996 and b). This processis esentialy the same whether using aBMD or
aNOAEL approadh. The following discusson summarizes osme of the more important issues
related to study design and data reporting when using the BMD approach. This guidancedoes
not change the way in which hazard charaderization is dore, particularly regarding the
determination d adversity and seledion o endpants. It does discussthe types of data and study
designs most amenable to dase-response modeling, but al ows for the posshility that NOAELs
will continue to be used for some endpdnts, and that in some caes there will be a @mbination

of BMDs and NOAELSsto be amnsidered in the assessment of a particular agent.

13
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1. Data Evaluation
a. Design

In general, studies with more dose groups and a graded monotonic response with dose
will be more useful for BMD analysis. Studies with only a single dose showing a response
different from controls may not be appropriate for BMD analysis, though if the one elevated
response is near the BMR, adequate BMD and BMDL computation may result (see Kavlock, et
a, 1996). Studiesin which responses are only at the same level as background or at or near the
maximal response level are not considered adequate for BMD analysis. It is preferableto have
studies with one or more doses near the level of the BMR to give a better estimate of the BMD,
and thus, a shorter confidence interval . Studies in which all dose levels show changes compared
with control values (i.e., no NOAEL) are readily useable in BMD analyses, unless the lowest
response level is much higher than that at the BMR.
b. Agpects of Data Reporting

In many cases, the risk assessor must rely on published reports of key toxicological
studies in performing a dose-response assessment. Reports from the peer-reviewed literature
may contain summary information which can vary in completeness vis-a-vis the data
requirements of the BMD method. The optimal situation isto have information on individua
subjects, but thisisunlikely in published reports. It is more common to have summary
information (group level information, e.g., mean and standard deviation) concerning the
measured effect, especially for continuous response variables, and it must be determined whether
the summary information is adequate for the BMD method to proceed.

Dichotomous data are normally reported at the individual level (e.g., 11/50 animals
showed the effect). Occasionally a dichotomous endpoint will be reported as being observed in a
group with no mention of the number of animals showing the effect. This usually occurs when
the incidence of the endpoint reported is ancillary to the focus of the report. For BMD modeling
of dichotomous data, both the number showing the response and the total number of subjectsin
the group are necessary.

Continuous data are reported as a measurement of the effect, such as body weights or

enzyme activity in control and exposed groups. The response might be reported in severa
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different ways, e.g., as an actual measurement, or as a contrast (absol ute change from control or
relative change from control). To model continuous data when individual animal data are not
available, the number of subjects, mean of the response variable, and a measure of variability
(e.g., standard deviation, SD; standard error, SE; or variance) are needed for each group. The
lack of anumerically reported SD or SE precludes the calculation of the BMD. In some cases, a
measure of variability is presented for the control group only and this information can be used for
modeling by making an assumption, for example, that the variance in the exposed groupsis the
same as the controls. However, the modeling of data and calculation of the confidence limits
will not be as precise as when the variance information is available for individual groups.

Categorical data are defined as atype of quantal datain which there is more than one
defined category in addition to the no-effect category and the responses in the treatment groups
are characterized in terms of the severity of effect (e.g., mild, moderate, or severe histological
change). Results may be classified by reporting an entire treatment group in terms of category
(group level reporting), or by reporting the number of animals from each group in each category
(individual level reporting). For example, areport of epithelial degenerative lesions might state
that an exposed group showed a mild effect (group level) or that in the exposed group there were
7 animals with amild effect and 3 with no effect (individual level reporting). Inthe latter case,
the BMD can be calculated using a quantal model after combining datain severity categories
(e.g., model al animals with a particular severity of effect or al with greater than amild effect).
Dichotomous data can be viewed as a specia casein which thereis one effect category and the
possible responseis binary (e.g., effect or no effect). Information may also be treated as
categorical in cases where an endpoint is inherently a dichotomous or continuous variable, but
because the endpoint is reported only descriptively, and the number affected and total number
exposed are not reported, it cannot be treated quantitatively. Modeling approaches have been
discussed for categorica data with multiple categories (Dourson et al., 1985; Hertzberg, 1989;
Hertzberg and Miller, 1985) and for group level categorical data (Guth et a., 1997, Simpson et
al., 1996a,b). These regression models can aso be used to derive aBMD, by estimating the
probability of effects of different levels of severity.

15
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2. Selection of Studiesto be M odeled

Following a complete review of the toxicity data, the risk assessor must select the studies
appropriate for benchmark dose analysis. The selection of the appropriate studies is based on the
human exposure situation being addressed, the quality of the studies, and the relevance and
reporting adequacy of the endpoints.

The process of selecting studies for benchmark dose analysisis intended to identify those
studies for which modeling isfeasible, so that BMDLSs can be calculated and used in dose-
response assessment. In most cases, the selection process will identify a single study or very few
studies for which calculations are relevant; all studies considered relevant should be modeled.
Cases in which there are a number of studies, or studies with a number of endpoints reported may
require alarge number of BMD calculations. In these cases, it may be possible to select a subset
of endpoints as representative of the effects in the target organ or the study. This selection can be
made on the basis of sensitivity or severity, which may be more easily compared within asingle
study in the same target organ than across studies.

3. Selection of Endpointsto be Modeled.

Once studies have been evaluated with regard to their appropriateness for BMD modeling,
the selection of endpointsto model should focus on the dose-response relationships. For example,
differencesin slope (at the BMR) among endpoints could affect the relative values of the BMDLSs
tothe corresponding LOAELS/NOAELSs. Thus, selection of endpoints should not belimited to only
the one with the lowest LOAEL. In general, endpoints within a study that have been judged by the
risk assessor to be appropriate and rel evant to the exposure should be modeled if their LOAEL isup
to 10-fold above the lowest LOAEL. Thiswill help ensure that no endpoints with the potential to
have the lowest BMDL are excluded from the analysis on the basis of the value of the LOAEL or
NOAEL. Selected endpointsfrom different studiesthat arelikely to be used in determination of the
POD should al be modeled, especidly if different uncertainty factors may be used for different
studiesand endpoints. The selection of the most appropriate BMDsto usefor determining the POD
must be made by the risk assessor using scientific judgement and principles of risk assessment, as

well as the results of the modeling process.
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4. Minimum Data Set for Calculatinga BMD

Oncethecritical endpointshave been sel ected, datasetsare examined for the appropriateness

of aBMD analysis. The following constraints on data sets to use for BMD cal culations should be
applied:

¢

There must be at least a statistically or biologically significant dose-related trend in the
selected endpoint.
The data set should contain information relevant to dose-response for modeling. A
determination of the amount of information about the dose-response that is available need
not be quantitative or technical. For example, adataset in which al non-control doses have
essentially the same response level provides limited information about the dose-response,
since the compl ete range of response from background to maximum must occur somewhere
below the lowest dose: the BMD may be just below the first dose, or orders of magnitude
lower. When thissituation arisesin quantal data, especialy if the maximum responseisless
than 100%, it is tempting to use amodel like the Weibull with no restrictions on the power
parameter, because such models reach a plateau of less than 100% and most modeling
programsdo not include other modelsfor quantal datathat havethisproperty. Thissituation
can result in serioudly distorted BMDs, because the model predictions jump rapidly from
background levels to the maximum level. In principle, other models could be found that
forcethe BM D to beanywhere between that extreme and thelowest administered dose. Thus
the BMD computed here depends solely on the model sel ected, and goodness of fit provides
no help in selecting among the possibilities. (see the quantal data examplesin the appendix
for aworked example of this situation). The sad reality in such situations is that the data
provide little useful information about dose-response; the ideal solution isto collect further
data in the dose-range missed by the studies in hand.

When thereis ajump between non-control doses between no response and maximal
response, there is still limited information about dose-response, but the dose-spacing may
ameliorate the situation, sincethe BMD is effectively bracketed between the two doses that

determine the jump.
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5. Combining Data for aBMD Calculation

Data sets that are statisticaly and biologicaly compatible may be combined prior to dose-
resporsemodeli ng, resultinginincreased confidence, bah statisticd and biologicd, inthe cdcul ated
BMD. Inaddition,the use of combined datasets may encouragefurther studiesif the alditional data
canaffed theBMD estimate. Allenet al. (1996 provided an exampleof a caewheredataon baon
developmental effeds could be combined for the BMD analysis. The simplest approach to
combining datasets is sSmply to tred the data & if they were dl colleded simultaneously. Ifitis
plausible that the multiple datasets represent a homogeneous picture of the dose-resporse (for
example, the resporses at doses common to two or more datasets are essentialy the same, and
statisticadly undff erentiable), then thisisan appropriate approach. Morelikely, therewill be some
variability among datasets which will require more elaborate modeling to include properly. There
is as yet too littl e pradicd as well as theoreticd experience with this situation to allow spedfic
guidance in the matter, other than to say that statisticaly appropriate methods must be used and
justified if data sets are combined for modeling. An example of statisticdly accommodating
variability among studiesisthemodel for categoricd regressondevel oped by Simpson, et al. (1996,
aadb.

B. Criteriafor Selecting the Benchmark Response Level (BMR)

At the time of this writing, the Agency is developing gudance for the seledion d the
appropriateresporselevel, or BMR, for usewith BMD modeling. Intheinterim, thisdocument will
describe BMR seledion as it has typicdly been doreto date.

The mgor am of benchmark dose modeling is to model the dose-resporse data for an
adverse effed in the observablerange (i.e., aaossthe range of dosesfor which toxicity studies have
reasonable power to deted effects) and then seled a “benchmark dose” a the low end d the
observablerangeto useasa* point of departure” for deriving quantitative estimates below therange
of observation andto use a abasis for comparison of effedive doses correspondng to acommon
resporse level aaoss chemicals or endpants. Because different study designs have diff erent

sensiti vitiesto observe adverse effeds (i.e., limit sof detedion), thelow end of the observablerange
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will correspondto different resporse levels for different study designs. A 10% resporse level is
conventionally used (at least for dichctomous endpdnts) to define dfedive doses (i.e., ED, ;s and
LED,s) for comparing potencies aaosschemicds or endpants (e.g., for chemicd rankings). This
resporse level isused for such comparisons becauseit is at the low end of the observable range for
many commonstudy designs, although for somedesignsthelimit of detedionisabovethe 10% level
andfor othersit isbelow. For the POD, onthe other hand, it isnat criticd that a mmmonresporse
level be used for all chemicas or endpants, andfor the purpases of deriving quantitative estimates
at doses below the observable range, it may be desirable to use resporse levels below 10%, if
paossble, in order to minimize the degree of low-dose extrapadation required. Thus, while it is
important to alwaysreport ED,,sand LED, ;sfor comparison purpaoses, theadua “benchmark dose”
used as a POD may correspondto resporse levels below (or sometimes above) 10%, athough for
conveniencestandard levels of 1%, 5%, or 10% havetypicaly been used rather than afloating level
dependent onthe adual limit of detedion d the relevant study.

For continuous data, there are various posshiliti es for seleding the BMR (see below);
however, regardlessof which of the optionsisused, it isrecommended that the BMD (and BMDL)
correspondng to a change in the mean resporse equal to ore control standard deviation from the
control mean always be presented for comparison purposes (seebelow, third bull et for continuous
data). This value would serve & a standardized basis for comparison, akin to the ED,, for
dichotomous data.

The foll owing describes the criteria conventionally used currently for seleding the BMR.
For quantal (dichotomous) data, the conventional approadies are fairly straight forward. For
continuous data, onthe other hand, there islesshistoricd precealenceto draw upon,however some
reasonable options are presented. Once aBBMR is sleded andthe dose-resporse data ae modeled,
the BMD is explicitly determined.

. Quantal data:

. Anexcessrisk of 10% hasgenerall y been the default BMR for quantal data. The 10%

resporseis at or nea the limit of sensitivity in most cancer bioassays and in some

norcance bioassays as well.
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If astudy has greaer than usual sensitivity, then alower BMR can be used, although
the ED,, and LED,, are always presented for comparison purpases. For example,
reproductive and developmental studies having nested study designs often have
greder sensitivity, and for such studies a BMR of 5% has typicdly been used.
Simil arly, epidemiology studiesoften havegreaer sensiti vitiesandaBMR of 1% has

typicdly been used for quantal human data.

Continuous data:

If thereisaminimal level of change in the endpant that is generally considered to
be biologicdly significant (for example, a change in average adult body weight of
10%, or the douHing of average level for some liver enzyme), then that amount of
change can be used to definethe BMR. (The BMD [and BMDL] correspondng to
a change in the mean response equal to ore @ntrol standard deviation from the
control mean shoud aso be presented for comparison pupaoses [seethird bulet].)
If individual data are avail able and a dedsion can be made abou which individual
levels can be reasonably considered adverse (perhaps based on a quantile of the
control distribution,for example), then the datacan be“ dichotomized” based onthat
cutoff value, and the BMR can be set as above for quantal data. (The BMD [and
BMDL] correspondng to a dhange in the mean resporse equal to ore cntrol
standard deviation from the control mean should also be presented for comparison
purposes [seethird bulet].)

In the absence of any other ideaof what level of resporse to consider adverse, a
change in the mean equal to ore @ntrol standard deviation from the control mean
(seeSedion |l C2e) can be used. The @ntrol standard deviation can be computed
including historicd control data, but the control mean must be from data concurrent
with the treaments being considered (Crump, 1995. This gives an excessrisk of
approximately 10% for the propation o individuals below the 2™ percentile or
above the 98" percentil e of controls for normally distributed effeds.
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C. Modeling the Data

1. Introduction

The goal of the mathematical modeling in benchmark dose computation isto fit amodel to
dose-response data that describes the data set, especialy at the lower end of the observable dose-
response range. The fitting must be done in a way that allows the uncertainty associated with
parameter estimates to be quantified and related to the estimate of the dose that would yield the
benchmark response. In practice, this procedure will involvefirst selecting afamily or families of
models for further consideration, based on characteristics of the data and experimental design, and
fitting the model s using one of afew established methods. Subsequently, alower bound on doseis
calculated at the BMR. This section istoo brief to do more than introduce the topic of modeling.
Some references for further reading are: Chapter 10 of Draper and Smith (1981), Gallant (1987),
Bates and Watts (1988), McCullagh and Nelder (1989), Seber and Wild (1989), Ross (1990),
Clayton and Hills (1993), Davidian and Giltinan (1995).

Dose-response models are expressed as functions of dose, possibly covariates, and a set of
constants, called parameters, that govern the details of the shape of the resulting curve. They are
fitted to a data set by finding values of the parameters that adjust the predictions of the model for
observed values of dose and covariatesto be closeto the observed response. Dose-response models
for toxicology data are usually of the type caled "nonlinear” in mathematical terminology. In a
linear model, the value the model predictsisalinear combination of the parameters. For example,

in alinear regression of aresponse y on dose, the predicted value is alinear combination of a and

b, namely,a X 1+ b x dose .Note that, even a quadratic or other polynomial is alinear model, in
thissense: y =a +b x dose + ¢ x dose® +d x dose’ is a third degree polynomial (a cubic)

equation, but isstill alinear combination of the parameters, a, b, ¢, and d. In contrast, in anonlinear
model, for example the log-logistic with background,

1- R,
1 + e—[a+b|og(dose)]

p="PR+ theresponseis not alinear combination of the parameters (here, P,
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a, andb). Thedistinctionisimportant, becaise noninea models are usually more difficult to fit to
data, requiring morecompli cated cd culations, andstatisticd inferenceismoretypicdl y approximate
thanwith linea models. Notethat thisdefinition o "linea” isin contrast to theway theterm isused
in reference to cancer dose-resporse asesgnent, in which the phrase "low-dose linea” refers to
modelsin which thelinea coefficient on daseis positive.

At the present, although biologicd modelsmay often be expressed asnorlinea models(e.g.,
Michadis-Menten curves), norlinea models do not necessarily have a biologicd interpretation.
Thus, criteriafor final model seledionwill be based solely onwhether various model s describe the
data, conventions for the particular endpant under consideration, and, sometimes, the desire to fit
the same basic model form to multiple data sets. Since it is preferable to use speda purpose
modeli ng software, EPA isinthe processof devel oping softwarewhichincludes several modelsand

default processes as described in this document (http://www.epa.gov/ncedbmds.htm).

2. Background for Model Selection

This sedion provides some basic statisticd badkgroundand guidance on hawv to go abou
choasingamodel structure appropriateto the databeing analyzed, seledionof “equivalent” models,
and confidencelimit cdculationto derive the BMDL to use & the point of departure.
a. Selecting the M odel

Theinitial seledion of agroup d modelsto fit to the datais governed by the nature of the
measurement that represents the endpant of interest and the experimental design used to generate
thedata. Inaddition, certain constraints onthe modelsor their parameter values sometimes need to
be observed, and may influence model seledion. Finaly, it may be desirable to model multiple
endpdnts, at the sametime. Thediversity of possble endpants and shapes of their dose-resporses
for diff erent agents predudes gedfying asmall set of modelsto use for BMD computation. This
will inevitably lead to the need for judgement and occasional ambiguity when seleding the final
model and BMDL for dose-resporse assessnent. It ishoped that, as experience using benchmark
dose methoddogy in dose-respornse assessnent acaimulates, it will be possible to narrow the

number of acceptable models.
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i. Type of endpoint

The kind of measurement variable that represents the endpoint of interest is an important
consideration in selecting mathematical models. Commonly, such variables are either continuous,
like liver weight or the activity of a given liver enzyme, or discrete, commonly dichotomous, like
the presence or absence of abnormal liver status. However, other types are common in biological
data; for example: ordered categorical, like a histology score that ranges from 1-normal to 5-
extremely abnormal; counts, such as counts of deaths or the numbers of cases of illness per thousand
person-years of exposure to a given exposure condition; waiting time, such asthetimeit takes for
an illness to appear after exposure, or age at death, or multiple endpoints (such as survival, weight,
and malformationsin adevelopmental toxicity study) considered jointly (see, referencesin section
[.C.2). Itisbeyond the scope of this document to consider all possible kinds of variablesthat might
be encountered, so further discussion will concentrate on dichotomous and continuous variables.

Dichotomous variables. Data on dichotomous variables are commonly presented as a

fraction or percent of individualsthat exhibit the given condition at a given dose or exposure level.
For such endpoints, normally we sel ect probability density modelslikelogistic, probit, Weibull, and
so forth, whose predictions lie between zero and one for any possible dose, including zero.

Continuous variables. Data for continuous variables are often presented as means and

standard deviations or standard errors, but may also be presented as a percent of control or some
other standard. From amodeling standpoint, the most desirable form for such datais by individual.
Unliketheusual situation for dichotomousvariables, summarization of continuous variablesresults
in aloss of information about the distribution of those variables.

The preferred approach to expressing the BMR will determine the approach to modeling
continuous data. Two broad categories of approach have been proposed: 1) to expressthe BMR as
aparticular changein the mean response, possibly asafraction of the control mean, afraction of the
range of theresponse (whenthereisaclear maximum response), afraction of the standard deviation
of the measurement from untreated individuals, or alevel of the response that expert opinion holds
isadverse; or 2) to decide on alevel of the outcometo consider adverse, and treat the proportion of
individuals with the adverse outcome much as one would a dichotomous variable.

Typical modelsto usein thefirst situation include linear and polynomia models, and power

23



© 00 N O o1~ W DN P

N DN N DN DN NN DN N DNMNDN P PP PR RPR PR
© 00 N oo o W N PP O O 0 N O 0o b 0O N+ O

models or other nonlinear models such as Hill models. In the second situation, one approach isto
classify each individual as affected or not, and model the resulting variable as dichotomous.

Anadternativeisto use aso-called "hybrid" approach, such as that described by Gaylor and
Slikker (1990), Kodell et al. (1995), and Crump (1995), which fits continuous model sto continuous
data, and, presuming a distribution of the data, calculatesa BMD in terms of the fraction affected.
Using thisapproach, the probability (risk) of anindividual with an adverselevel isestimated directly
as a function of dose in four steps (Gaylor and Slikker,1990). In the first step, the probability
distribution amongindividual sof the continuous measureis established for the control group. Often
thisdistribution may be approximately log-normal, i.e., thelogarithm of the values of the biological
measure are normally distributed. Since most biological effects do not assume negative values, the
log-normal distribution satisfies this condition. If high values are adverse, alarge percentile (e.g.,
99th percentile) of the distribution may be selected as a cutoff value for normal levels with larger
values considered adverse. Conversdly, if low values are adverse, a small percentile (e.g., first
percentile) may be selected to classify individuals with lower values as adverse.

In the second step, adose-response curveisfit to the datato establish how the average value
changes as a function of dose. In the third step, the variability of individuals about the average
dose-respose curveiscal culated. Oftenthiscan be expressed simply by the standard deviation about
the dose-response curve. It iscommon for the standard deviation of biological measurementsto be
proportional to their averagevalue, i.e., aconstant coefficient of variation. Again, thisisaproperty
of the log-normal distribution. However, the coefficient of variation may change with dose which
leadsto amore complicated analysisof thedata. Inthiscase, itisoften useful to model the variance
as proportional to the mean raised to apower. Thismodel includes the case where the coefficient
of variation is constant, where the variance is proportional to the square of the mean, and the
coefficient of variation is the square root of the constant of proportionality.

From the average val ues estimated from the dose-response curvein step 2 and the variability
of values about the curve estimated in step 3, it ispossiblein the 4th step to estimate the probability,
for any dose, that an individual isin the adverse range established in the 1st step. Hence, the BMD
can be estimated for aspecified BMR. The BMDL can then be calculated for use asa POD for low

dose risk assessment.
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ii. Experimental design

The aspects of experimental design that bear on model selection include the total number of
dose groups used and possible clustering of experimental subjects. The number of dose groups has
abearing on the number of parameters that can be estimated: the number of parameters that affect
the overall shape of the dose-response curve generally cannot exceed the number of dose groups.

Clustering of experimental subjects is actually more of an issue for methods of fitting the
models than for choice of the model form itself. The most common situation in which clustering
occursisin developmental toxicity experiments, in which the agent is applied to the mother, and
individual offspring are examined for adverse effects. Another example is for designs in which
individuals yield multiple observations (repeated measures). This can happen, for example, when
each subject receives both treatment and control (common in studies with human subjects), or each
subject is observed multiple times after treatment (e.g., neurotoxicity studies). Theissuein al of
these examplesisthat individual observations cannot be taken as independent of each other. Most
methods used for fitting models rely heavily on the assumption that the data are independent, and
specia fitting methods need to be used for data sets that exhibit more complicated patterns of
dependence (see, for example, Ryan 1992; Davidian and Giltinan, 1995).
iii. Constraints and covariates

An obvious constraint on models for dichotomous data has already been been discussed:
probabilitiesare constrai ned to be positive numbersno greater than one. However, biological redlity
may impose other constraints on models. For example, most biological quantities are constrained
to be positive, so models should be selected so that their predicted values, at least in the region of
application, conform to that constraint. In models in which dose is raised to a power which isa
parameter to be estimated (such asaWeibull model), if that parameter isallowed to belessthan 1.0,
the slope of the dose-response curve becomes infinite at a dose of zero. This often results in
numerical problemssin calculating the confidenceinterval. Thisisan undesirablesituation, and the
default isto constrain these parameters to be at least 1.0 (see Example 1).

In quantal models, often abackground parameter quantifiesthe probability that the outcome
being modeled can occur in the absence of exposure. It may be tempting to reduce the number of

parameters to be estimated by fixing the value of the background parameter to be zero. However,
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only when it is clea that an oucomeisimpossible in the ésenceof the exposureisit permissble
to fix the value of the badgroundto zero.

It is preferred that a so-cdled “threshdd” term not be included in the models used for
BMD/C anaysis becaise, whileit isnat an estimate of abiologicd threshald, it is easily confused
with such because of confusing terminaogy, and becaise most data sets can be fit adequately
withou this parameter and the asociated lossof a degreeof freedom. The software aurrently
distributed by EPA doesnat currently includethisparameter. However, occasionaly, it may happen
that theincrease in aresporseis 9 predpitous that including athreshold parameter fadlit ates the
dose-response modeling, and in such casesit is acceptable to include the parameter.

It is sometimes desirable to include covariates on individuals when fitting dose-resporse
models. For example, litter size has often been included as a @variate in modeling laboratory
animal datain developmental toxicity studies. Another exampleisin modeling epidemiol ogy data,
when certain covariates (e.g., age, parity) are included that are expeded to affed the outcome and
might be correlated with exposure. In continuows models, if the mvariate has an effed on the
resporse, including it in amodel may improve the predasion of the overall estimate by aceourting
for variationthat would otherwiseendupintheresidua variance Inany kind d model, any variable
that is correlated (non-causally) with dose, and which aff eds outcome, would need to be included
asa ovariate.

b. Modd Fitting

The goal of the fitting processis to find values for all the model parameters so that the
resulti ng fitted model describesthosedataaswell aspaossble; thisistermed " parameter estimation.”
In practice, this happens when the dose-group means predicted by the model come & close &
possble to the data means. One way to adiieve this is to write down a function (the objedive
function) of al the parameters and al the data, with the property that the parameter values that
correspondeither to an overall minimum (or, equivaently, an overall maximum) of thefunction,or
that result in function values of zero, give the desired model predictions.

The adual fitting processis caried ou iteratively, and starts with an initial guessfor the
parameter values. Thisguessisiteratively updated to produce asequenceof estimatesthat (usually)

converge. Many modelswill convergeto theright estimates for most data sets from just abou any
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reasonable set of initial parameter values; however, some models, and some data sets, may require
multiple guesses at initial values before the model converges. It also happens occasionally that the
fitting procedure will converge to different estimates from different initial guesses. Only one of
these sets of estimateswill be"best". It isalwaysgood practice when fitting nonlinear modelsto try
different initial values, just in case.

There are afew common ways to construct objective functions: the methods of nonlinear
least squares, maximum likelihood, and generalized estimating equations (GEE). The choice of
objective function is determined in large part by the nature of the variability of the data around the
fitted model. The method of nonlinear least squares, where the objective function isthe sum of the
squared differences between the observed dataval ues and the model -predicted values, isacommon
method for continuous variables when observations can be taken as independent. A basic
assumption of this method is that the variance of individual observations around the dose-group
meansisaconstant across doses. When this assumption isviolated (commonly, when the variance
of a continuous variable changes as a function of the mean, often proportional to the square of the
mean, giving aconstant coefficient of variation), amodification of the method may be used inwhich
each term in the sum of squaresis weighted by the reciprocal of an estimate of the variance at the
corresponding dose. Thismethod isespecially appropriate when the datato befitted can be supposed
to be at least approximately normally distributed.

Maximum likelihood is ageneral way of deriving an objective function when areasonable
supposition about the distribution of the data can be made. Because estimates derived by maximum
likelihood methods have good statistical properties, such as asymptotic normality, maximum
likelihood is often a preferred form of estimation when that assumption is reasonably close to the
truth. An example of such asituation isthe case of individua independently treated animals (e.g.,
not clustered in litters) scored for adichotomous response. Hereit isreasonableto supposethat the
number of responding animals follows a binomia distribution with the probability of response
expressed asafunction of dose. Continuousvariables, especially meansof several observations, are
often normal (gaussian) or log-normal. When variables are normally distributed with a constant
variance, minimizing the sum of squaresisequivalent to maximizing thelikelihood, which explains

in part why least squares methods are often used for continuousvariables. In developmental toxicity
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data, the distribution of the number of animals with an adverse outcome is often taken to be
approximately beta-binomial. This particular likelihood is used to accommodate for the lack of
independence among littermates.

A third group of approachesto estimating parametersaretherel ated quasi-likelihood method
(McCullagh and Nelder, 1989) and the method of GEE (see Zeger and Liang, 1986), which require
only that the mean, variance, and correlation structure of the data be specified. GEE methods are
similar to maximum likelihood estimation procedures in that they require an iterative solution,
provide estimates of standard errors and correlations of the parameter estimates, and estimates are
asymptotically normal. Their useso far has primarily been to handleformsof lack of independence,
asinlitter data, and would be useful in any of anumber of kinds of repeated measures designs, such
as occur in clinical studies and repeated neurobehavioral testing.

c. Assessing How Well the Model Describesthe Data

An important criterion isthat the selected model should describe the data, especidly in the
region of the BMR. Most fitting methods will provide a global goodness-of-fit measure, usually
providing a P-value. These measures quantify the degree to which the dose-group means that are
predicted by the model differ from the actual dose-group means, relative to how much variation of
the dose-group meansonemight expect. Small P-valuesindicatethat it would be unlikely to achieve
avalue of the goodness-of-fit statistic at least this extreme if the data were actually sampled from
the model, and, consequently, the model is a poor fit to the data. Sinceit is particularly important
that the data be adequately modeled for BMD calculation, it isrecommended that «=0.1 be used to
compute the critical value for goodness of fit, instead of the more conventional values of 0.05 or
0.01. P-vaues cannot be compared from one model to another since they assume the different
models are correct; they can only identify those models that are consistent with the experimental
results. When there are other covariatesin the models, such aslitter size, theideaisthe same, just
more complicated to calculate. Inthiscase, therange of dosesand other covariatesisbroken upinto
cells, and the number of observations that fall into each cell is compared to that predicted by the
model.

It can happen that the model is never very far from the data points (so the P-value for the

goodness-of -fit statistic is not too small), but is always on one side or the other of the dose-group
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means. Also, there could beawiderangein theresponse, and the model predictsthe high responses
well, but misses the low dose responses. In such cases, the goodness-of-fit statistic might not be
significant, but the fit should be treated with caution. One way to detect such situations is with
tables or plots of residuals: measures of the deviation of the response predicted by the model from
the actual data. If theresiduals are scaled by an estimate of their standard deviation, then residuals
that exceed 2.0 in absolute value warrant further examination of the model.

Another way to detect the form of these deviationsfrom fit iswith graphical displays. Plots
should always supplement goodness-of -fit testing. Itisextremely helpful that plotsthat include data
points also include a measure of dispersion of those data points, such as confidence limits.

In certain cases, the typical models for a standard study design cannot be used with the
observed dataas, for example, when the data are not monotonic, or when the responserises abruptly
after some lower doses that give only the background response. In these cases, adjustmentsto the
data(e.g., alog-transformation of dose) or the model (e.g., adjustments for unrelated deaths) may
be necessary. In the absence of a mechanistic understanding of the biological response to atoxic
agent, datafrom exposures that give responses much more extreme than the BMR do not redlly tell
us very much about the shape of the responsein the region of the BMR. Such exposures, however,
may very well have a strong effect on the shape of thefitted model in theregion of theBMD. Thus,
if lack of fit is due to characteristics of the dose-response data for high doses, the data may be
adjusted by eliminating the high dose group. The practice carries with it the loss of a degree of
freedom, but may be useful in cases where the response plateaus or drops off at high doses. Since
thefocus of the BMD analysisison thelow dose and response region, eliminating high dose groups
isreasonable. Alternatively, an entirely different model could be fit.

d. Comparing Models

It will often happen that several models provide an adequate fit to a given data set. These
models may be essentially unrelated to each other (for example alogistic model and a probit model
often do about as well at fitting dichotomous data) or they may be related to each other in the sense
that they are members of the same family that differ in which parameters are fixed at some default
value. For example, one can consider the log-logistic, the log-logistic with non-zero background,

and the log-logistic with threshold and non-zero background to al be members of the same family
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of models. Goodressof fit statistics are not designed to compare diff erent models, so adternative
approadies to seleding amodel to use for BMDL computation need to be pursued.

Generally, within a family of models, as additional parameters are introduced the fit will
appea toimprove. Thisgeneral behavior isdue solely to theincreasein the alditional parameters.
Likelihoodratio tests can be used to eval uate whether theimprovement infit aff orded by estimating
additional parametersisjustified. Such tests canna be gplied to compare models from diff erent
families, however. Some statistics, naably Akaike's Information Criterion (AIC) (Akaike, 1973
Linhart and Zucchini, 1986 Stone, 1998 AIC is-2L + 2p, where L is the log-likelihood at the
maximum li kelihoodestimatesfor the parameters, andp isthe number of model degreesof freedom)
can be used to compare model swith diff erent numbers of parameters using asimil ar fitting method
(for example, least squares or a binomial maximum likelihood. Although such methods are not
exad, they can provide useful guidancein model seledion.

When other data sets for similar endpants exist, an external consideration can be applied.
It may be possbleto compare the result of BMDL computations acossstudiesif al the datawere
fit using the same form of model, presuming that a model can be foundthat describes all the data
sets. Anacther considerationisthe existenceof a mnventional approach to fitting akind o data. In
thiscase, communicationwith spedalistsinthat typeof dataiseased when afamiliar model isused
to fit the data. Neither of these mnsiderations shoud be seen asjustificaion for using ill -fitting
models. Finaly, it is generaly considered preferable to use models with fewer parameters, when
possble.

e. Using ConfidenceLimitsto Get aBMDL

Confidence limits expressthe uncertainty in a parameter estimate that is due to sampling
and/or experimental error. The interval between two confidence limits is cdled a confidence
interval. Confidenceintervals can be two-sided, that is, locdi ze their correspondng parameter on
both sides, or one-sided, that is, locdi ze their correspondng parameter ononly one side. It may be
convenient to think of aone-sided confidenceinterval as one limit of atwo-sided interval goesto
either infinity or minusinfinity. For example, aone-sided 93% confidenceinterval for a parameter
would share alimit with the two-sided 90% confidenceinterval for the parameter, and have plus or

minus infinity (or, perhaps, 0, for a parameter such as the BMD that must be non-negative) as its
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seaondlimit. Confidencelimits bradket thase values which, within a particular model family, are
consistent with the data, but donot aceurt for or assume any corresponcence between the modeled
animal dataandthe human popuation of concern. The “confidence” or "coverage" asociated with
aninterval indicaesthe percent of repeaed interval s based on experiments of the same sort that are
expeded to include the parameter being estimated, for example, theBMD. Withrare but important
exceptions, cdculated confidenceintervalsare approximations, in the sensethat theadual coverage
of the interval usually diverges somewhat from the desired. The coice of confidence level
represents tradeoffs in data wlledion costs and the neaded data predsion. Just as 0.05is a
convenient (but not necessarily goodfor all data) level for tests, 95% isaconvenient choicefor most
limits and is the default value recommended in this guidance

A lower confidencelimit is placed onthe BMD to obtain adose (BMDL) that assureswith
high confidence(e.g., 95%) that theBMRisnot excealed. Thisprocessrewardsbetter experimental
design and procedures that provide more predse estimates of the BMD, resulting in tighter
confidence intervals and thus higher BMDLs. Some procedures and examples for caculating
BMDLsor BMCLsare given by Gaylor et al. (1998.

The method ky which the confidence limit is obtained istypicadly related to the manner in
which the BMD is estimated from the model. When parameters are estimated using the method d
maximum-li keli hood,confidenceinterval s (Cls) may be based onthe asymptotic distribution of the
likelihoodratio or on the asymptotic distribution of the maximum likelihood estimates (MLES).
While bath can give problems in ranges where the assumptions needed to use asymptotic theory
beginto weden (e.g., assample sizesdeaease), in generd it ispreferred to base Clsfor parameters
estimated by maximum likelihood onthe asymptotic distribution d the likelihoodratio, owing to
their tendency to give better coverage behavior (Crump and Howe, 1985.

To computeaCl for amodel parameter based onthedistribution of thelikelihoodratio, first
compute the maximum likelihoodestimate of all the parametersin the model. Next, separate the
model parameters into one parameter whose CI is being computed (cdl it ) and al the other
parameters. Then find the value of u such that, when the other parameters are adjusted to maximise
the likelihood, the log-likelihood is reduced from that at the maximum likelihood estimates by

exactly x°, 1../2, Wherex?, ,.,, representsthe quantile of the* distribution corresponding to 1 degree
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of freedom and an upper tail probability of o (see, for example, Crump and Howe, 1985; Venzon and
Moolgavkar, 1988). When thevalueof interest cannot be expressed asamodel parameter, asimilar,
but more complicated, approach is used.

Details for other approaches to Cl computation specific to particular data types follow:

Quantal Data. For quantal data each individual is classified according to whether or not it
exhibitsaparticular adverse effect, e.g., death or cancer. Quantal data providethe simplest casefor
estimating BMDs. Consider an experiment consisting of animals exposed to several doses of a
substance, and suppose that the number of animals exhibiting a particular adverse effect is
binomially distributed at each dose level. After a suitable dose-response curve has been fit to the
experimental data, the BMDL is defined as a lower confidence limit on the exposure level that
corresponds to a specified excess risk (e.g., 10%) above background. The exposure level itself is
the effectivedose, or theBMD,,. Thereare several waysto calculatealower confidencelimit. One
is to apply standard statistical theory (specifically, the delta method, see for example Gart et al.,
1986) to approximate the variance of the estimated BMD. This estimated variance can then be used
asthe basis for constructing alower confidence limit on the BMD. The logarithm of doses can be
used to ensure apositive BMDL. A second approach is to calculate an upper confidence limit on
the excess proportion (risk) of animals possessing an adverse effect as a function of dose. The
BMDL isthedosewherethe upper confidencelimit for the estimate of risk equalsthe specified level
of risk, e.g., 10%, desired for the BMD (see e.g., Kimmel and Gaylor, 1988).

Clustered Data: Reproductive and Developmental Effects The issue of litter effects for

reproductive and devel opmental experiments complicatesthe cal culation of aconfidencelimit. The
pregnant mother is the experimental unit and statistical methods must account for the tendency of
littermates to respond similarly. Chen and Kodell (1989) and Williams (1975) have proposed
methods based on the assumption that the number of affected individuals in a litter follows a
beta-binomial distribution. The probability of an affected individual increases with dose of atoxic
agent. Tofitthismodel, maximum likelihood estimates can be obtained from the beta-binomial log
likelihood (Chen and Kodell, 1989).

One disadvantage of the beta-binomia distribution and other correlated binomial

distributionsistheir computational complexity. A second disadvantageisalack of robustnessif the
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asumed distribution is incorred. Alternative analyses can be based on qusi-likelihood, @ more
generally, generali zed estimating equations. Liang and Zeger (1986 and Liang (1986 describe a
genera approach for the analysis of correlated data. This approach is referred to as Generali zed
Estimating Equations (GEE). Ryan (1992 discusses the use of this approac for devel opmental
toxicity. The GEE approach requires gedficaion d only the mean and variance functions of the
data. To estimate dispersion parameters, a separate equationisrequired. A simple exampleisthe
moment estimates. An important addition in the GEE method is the inclusion d an empiricd
variance“fix-up’ that relaxesthe distributional assumptions so that the model parametersandtheir
variances will be estimated corredly, even if the variancefunctionis mispeafied. Thereis dill
incentiveto corredly spedfy thevariancefunctionsinceit improvesstatistica efficiency (Liangand
Zeger, 1986.

Continuows Data Different techniques for caculating a BMD are required for continuous

measurements. Examples of continuows endpdnts are body weights, organ weights, and
hematologica andclinica chemistry measurements. For such datameasured ona wntinuum, there
generaly is no sharp demarcation between normal and adverse values. In the dsenceof a dinicd
definition of an adverse level, alow or high percentile (e.g., the first and 99" percentil €) could be
used to define an abnarmal observation. For valuesthat are normally distributed, these percentil es
areestimated by themean + 2.33standard deviationsfrom the control animals. Such extremevalues
might be considered adverse or, at least, uncesirable and can be dassfied as abnamal.

Crump (1995 showstherelationship between achangein the mean resporse, relativeto the
standard deviation, and the excessrisk. For example, if values beyondthe 98" to 99" percentil e of
control animals are cnsidered abnamal, a dose that causes a shift in the average of one standard
deviationresultsin approximately an excessrisk of 10% of theanimalsintheabnamal range. This
providesavery smplemethodfor establi shingaBMD asociated with arisk of approximately 10%.
A lower confidencelimit onthisBMD can be cdculated using standard regresson rocedures.

Multi ple Outcomes In addition to the dustering or litter effed, multi variate outcomes are

oftenencountered. Thisisparticularly true of devel opmental andreproductivetoxicity databecaise
exposure to agents can aff ed many diff erent stagesin the reproductive process Onceimplantation

has occurred, expaosures to toxicants can result in ealy pregnancy loss maformation, low fetal
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weight, and/or subsequent developmental problems. The BMD can be based ontherisk of being

abnamal. Abnamality is defined as exhibiting any of several seleded abberative endpoints.

Severd authorshavediscussed thedevel opment of dose-responsemodel sfor multi variatedata(Chen

et al, 1991 Ryan et al., 1991, Catalano and Ryan, 1991; Ryan, 1992h Catalanoet al., 1993 Zhu

et al., 1994 Krewski and Zhu, 1994, 1996
Thus, the BMDL is determined by 1) seleding an endpant(s), 2) identifying a BMR (a

predetermined level of change in resporse relative to controls), 3) establi shing, by an appropriate

estimation procedure, amodd that fits the data adequately, and 4) cdculating a confidencelimit at
the BMR using the model and the same estimation procedure.

At thetime of thiswriting, commercia softwareisavail ablethat is designed spedaficdly for
carying out steps 3) and 4 by maximum likelihood @ GEE methods. EPA has ftware for this
purpose (using maximum likelihoodmethods) that is widely-avail able to all potential users.

f. Selecting themodel to use for POD computation
To summarize the preceeling sedions, it is recmmended that the following steps be

foll owed to seled the model(s) to use for computing the POD:

. Assssgoodressof-fit, using avalue of «=0.1to determine a citicd value.

. Further rejed models that apparently do not adequately describe the relevant low-dose
portion d the dose-resporse, examining residuals and graphs of model and data.

. As the models remaining have met the default statisticd criteriafor adequacy and visually
fit the data, any of them theoreticdly could be used for determining the BMDL. The
remaining criteria for seleding the BMDL are necessrily somewhat arbitrary, and are
adopted as defaults.

. If the BMDL estimates from the remaining models are within a fador of 3, then they are
considered to show no appredable model dependence and will be nsidered
indistinguishable in the context of the predsion of the methods. Models are ranked based
onthevalues of their Akaike Information Criterion (AIC), ameasure of the devianceof the
model fit adjusted for the degrees of freedom, and the model with the lowest AIC isused to
cdculate the BMDL. If thisis not unique, the smple average or geometric mean o the
BMDLs with the lowest AIC is used.
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If the BMDL estimates from the remaining models are nat within afador of 3, some model
dependence of the estimate is assumed. Since there is no clea remaining biologicd or
statisticd basis on which to chocse anong them, the lowest BMDL is sleded as a
reasonable mnservative estimate. If the lowest BMDL from the avail able models appeas
to be an outli er, compared to the other results (e.g., there are severa other results, al within
afador of 3), then additional analysis and discusson would be appropriate. Additional
anaysismight includethe use of additi onal models, the examination of the parameter values
for the modelsused, or an evaluation of the BMDsto determineif the same pattern existsas
for the BMDLs. Discusson d the dedsion procedure shoud always be provided.

In some cases, relevant data for a given agent are nat amenable to modeling and a mixture
of BMDLs and NOAEL/LOAELSs results. When this occurs, and the most biologicdly
relevant effed is from a study considered adequate but not amenable to modeling, the
NOAEL shoud be used as the point of departure.

D. Reporting Requirements

Any computation d aBMD or BMDL shoud include the foll owing elements:

Study or Studies Seleded for BMD Calculation(s)

. Rationale for study seledion

. Rationale for endpants (effeds)

. List dose resporse data used

Dose-Resporse Model(s) Chosen for eat Case

. Rationale

. Estimation procedure (e.g., maximum likelihood, least sgquares, generalized

estimating equations)
. Estimates of model parameters with standard errors
. Goodressof fit test statistics
. Standardized residuals (observed minus predicted response/standard deviation)
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. Choiceof BMR for Each Case

. Rationae

. Procedure used if for continuous data
. Computation d the BMD

. List the BMD Value.

. Calculation d the Lower Confidence Limit for the BMD (BMDL) for Each Case
. Confidencelimit procedure (e.g., likelihood pofil e, delta method, bodastrap)
. List BMDL Value(s)

. Graphicsfor Each Case

. Plot of data points with error (standard deviation) bars
. Plot of fitted dose-resporse
. Plot of confidence limits for the fitted curve (optional; if included, the narative
shoud describe the methods used to compute them.)
. Identify BMD and BMDL
. BMDs and BMDLs for Default BMRs

. For dichatomous data, the BMD and BMDL for an extrarisk of 0.10
. For continuous data, the BMD and BMDL correspondng to a change in the mean
resporse gjual to ore antrol standard deviation from the control mean.

E. Decision Tree

The following dedsion treedepicts the genera progresson of stepsin aBMD cdculation.
A separate BMD cdculation shoud be conduwcted for ead endpant/study combination that is a
reasonable candidate for beaoming the basisfor afinal quantitativerisk estimate. Unlike comparing
NOAELs or LOAELSs aaossendpants or studies, the relative values of potential BMDs are not
readily transparent until after the modeling has been completed.

For eat candidate endpant/study combination:

1. Seled the gpropriate BMR based onthe type of data (i.e., quantal vs. continuots),

sensitivity of study design, toxicity endpant, and judgements abou the adversity of the
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endpoint if continuous (see Section I1.B).

2. Model thedose-response data, using appropriate model structuresfor thetypeof data(i.e.,
guantal vs. continuous, depending on how the BMR is defined) and study design (e.g.,
nested) (see Section 11.C.2.a). For modeling cancer bioassay data, a specific default
algorithm is generally used except for case-specific situations in which an alternate model
may be superior (e.g. atime-to-tumor model, a biologically-based model). For other types
of experimental animal data, curve-fitting can be attempted with any appropriate models.
Human data are modeled in a case-specific way which may need to account for covariates,
competing causes of mortality, etc.

3. Assess the fit of the models (see Section [1.C.2.c). Retain models that are not rejected
using ap-valueof 0.1. Examinetheresidualsand plot the data and models; check that the
models adequately describe the data, especialy in the region of the BMR. (Sometimes it
may be necessary to transform the datain someway or to drop the highest exposure group(s)
(e.g., if the behavior at high exposures can be attributed to early mortality or enzyme
saturation effects) and repeat the modeling in order to get a good fit.)

4. Calculate 95% lower confidence limits on the candidate BMDs (i.e., BMDLS) using the
models which adequately fit the data (see Section 11.C.2.€).

5. Select from among the models which adequately fit the data (see Section 11.C.2.f). If the
BMDL estimates from these remaining models are within afactor of 3 they are considered
indistinguishabl e, and the model with the lowest AIC can be selected to providethe BMDL.
If theBMDL estimates are not within afactor of 3, some model dependenceisassumed, and
the model with the lowest BMDL estimate should be selected unless it appears to be an
outlier, in which case further analysis may be appropriate.

6. Document the BMD analysis as outlined in Section I1.D. on reporting requirements.
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EXAMPLES

1. Introduction

The foll owing examples were seleded to ill ustrate some important aspeds of computing
BMDs and BMDLs for single data sets and single endpants. Of course, other dedsions, na
ill ustrated here with examples, need to be made before aPOD is determined, in particular which
endpants and chta sets to model, and haw to seled a POD from among several BMDLSs.

2. Quantal Data: SelectingaMode

Thisexampleill ustrates computing abenchmark dosefor asimple quantal dataset, usingthe
dose-resporse models avail able in BMDS. The main point is to ill ustrate seleding a benchmark
dose, given that the criticd data set and benchmark resporse level have drealy been seleded. In
addition, it provides sme badgroundinto why, in four commonly used models for quantal data,
avalable in EPA’s BMDS padage (Weibull, log-logistic, log-probit, and gamma), a parameter
(“power” or “slope”) is often constrained to be nolessthan 1.0.

Consider the foll owing dose-resporse data:

Dose Number Affeded Fradion Affeaed Number of Animals
0 1 0.02 50
21 15 0.31 49
60 20 0.44 45

We want to compute a benchmark dose and BMDL for an extrarisk of 0.10(as suggested
by this document), using aone-sided 95% confidenceinterval. If we definethe BMD to correspond
to an extrarisk of 0.10(= BMR), then, if P(BMD) isthe propartion of affeded animalsat the BMD,
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andP(0) isthepropartioninthecontrol group,BMRisdefinedtobe BMR =

canberearangedtoyield P(BMD) = P(0) +[1— P(O)]BMR ).Sincewearelooking foraBMR of

0.10,that will correspondto aresporseof 0.02+ (0.98* 0.1) =0.118. Noticethat 31% of thetested
animals were dfeded in the lowest non-control dose.

Thus the expeded resporse & the BMD is substantially lower than the lowest observed
resporse. We need to be avare that model choicewill have some dfed onthe BMD cdculation.

First, we fit anumber of models to the data.

Results of fitting the models, sorted in order of increasing AIC[ =-2 x (LL - p), where LL
isthe log-likelihoad at the maximum likelihoodestimates, and pis the degrees of freedom of the
model; generally everything else being equal, lower AIC values are preferred]:

Model x> P-value AlC BMD BMDL
log-logistic (slope > 1) 0.93 0.34 136.907 7.21 4.93
log-probit (unconstrained) 0 NA? 137.995 275 NA
Weibull (unconstrained) 0 NA 137995 1.71 NA
log-logistic (unconstrained) 0 NA 137.995 2.25 NA
gamma (unconstrained) 0 NA 137995 1.33 ~0
Multistage (degree=2) 2.27 0.13 138.17  9.29 6.92
gamma (power > 1) 2.27 0.13 138.17 9.29 6.92
Weibull (power »1) 2.27 0.13 13817  9.29 6.92
log-probit (slope > 1) 6.05 0.0139 141.692 14.82 11.53
probit 7.83 0.0051 144448  19.50 15.71
logistic 8.30 0.004 145179  20.95 16.78

! Degrees of freedom are 0, since there are three dose groups and three estimated parameters.

Eight of the models have chi-squared values that exceed the recommended cutoff P-value of

0.1 (thisincludes four models with perfect fits, even though their P-values are undefined because
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there are no degrees of freedom left to test the chi-square statistic). The model withthebest AIC is
the log-logistic model with slope parameter constrained to be no lessthan 1. For this model, the

standardized residuals [i.e.,( observed value - expected value)/standard error] are all small:

Dose Est._Prob. Expect ed bserved Si ze Resi dual
0. 0000 0. 0218 1.091 1 50 -0. 0881
21. 0000 0. 2609 12. 784 15 49 0. 7208
60. 0000 0. 4917 22.125 20 45 -0. 6335

and avisual examination seems OK, since the predicted curve comes well within the confidence

limits for each data point:

Log-Logistic Model with 0.95 Confidence Level

Loé—Logistic
0.6 f

05 F

04 F

03 F

Fraction Affected

0.2

01f T]\

N
BMDL [BMD ‘ ‘ ‘ ‘
10 20 30 40 50 60

o

dose
16:05 09/08 2000

Figure A-2.1 Example data with 95% confidence limits,
and constrained log-logistic model fit.
Four other models have only dlightly greater AIC values and perfectly fit the data, the models

with unconstrained slope or power parameters. Their AIC values are greater than that for the
constrained log logistic only because an extra parameter counts against them: BMDS does not
assign amodel degree of freedom to parameters that end up on a constraint, so that model has
only 2 degrees of freedom, while the models with unconstrained parameters have 3. The BMDs
computed from the unconstrained models differ slightly among themselves, but are all quite a bit
smaller than that computed from the constrained log-logistic, and, finally, there seemsto be a

problem with computing a BMDL for those models. Nevertheless, these models also describe
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the data quite well, as the following graph of the unconstrained log-logistic model fit attests:

Log-Logistic Model

Loé—Logistic ‘

Fraction Affected

0 10 20 30 40 50 60

dose
16:37 09/08 2000

Figure A-2.2 Example data, 95% confidence limits, and
unconstrained log-logistic model fit.

The main difference between the two log-logistic curvesisin the region between the control and
the lowest dose, where the unconstrained model curves upward more sharply than does the
constrained model, which accounts for the lower BMDs from these models.

Finally, three models, the second-degree multistage, constrained Weibull, and constrained
gamma, all give exactly the samefit and BMD prediction: in fact, for these data, they are really
the same model. While the P-value for the fit is approaching the recommended cutoff, the AIC is
only slightly worse than that for the unconstrained models. The predicted values and residuals

are summarized in the table below:

Scal ed
Dose Est. Prob. Expect ed bserved Si ze Resi dual
0. 0000 0. 0251 1. 257 1 50 -0.232
21. 0000 0.2318 11. 356 15 49 1.234
60. 0000 0.5064 22.787 20 45 -0.831

Thefit at the lower two dosesis alittle worse than it was for the constrained log-logistic,

56



© 00 N o o1 b W

10
11
12
13
14
15
16
17
18
19

andthisis apparent with close inspedion d the graph, shown in Figure A-2.3.

Multistage Model with 0.95 Confidence Level

Muitistage
0.6 —
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dose
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Figure A-2.3 Example datawith 95% confidencelimits,
and seaond degreemulti stage model fit.
The primary questionto be addressd hereis, “Which model shoud | use to compute the

BMD and BMDL". Inthiscase, sincethe AIC of the mnstrained log-logistic model is dightly
below those for the other models, the constrained log-logistic model can be considered preferable
to them. However, the threelowest AIC valuesin the table @&ove ae so similar that it might be
tempting to consider the models with the perfed fit to the data, even though this guidance
recommends against using models such as the Weibull or log-logistic withou constraining the
power parameter or the slope parameter to be nolessthan 1.0. Therest of the narrative of this
exampleis devoted to showing why all owing the slope parameter to be lessthan 1.0might nat be
such agoodidea

The answer centers ontheinterpretation & BMDLs and haw they are omputed. When
BMDLs are omputed using the profil e likelihoodapproad, thisis particularly easy to visualize.
In this case, conceptually at least, the BMD istreded as a parameter in the dose-response model,
and, for ead in arange of BMD values, the other parameters in the model are adjusted to
maximize the log-li kelihoodwhil e keguing the BMD constant at the seleded value. The
resulting curve, plotting the log-likelihoodas afunction d BMD value, is cdled aprofile
likelihood. This curve has amaximum at the BMD that corresponds to the maximum likelihood

estimates for all the parameters, and drops off for values above and below that point. The BMDL
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for a(1l- a) x 100% confidenceinterval isthe BMD value where the log-li kelihoodis reduced
from the maximum value by (x*.4 ,.)/2. Sincewe mmpute one-sided confidenceintervals, we
neel oy consider the shape of the aurve below the maximum likelihoodestimate for the BMD.
The upper left hand panel of Figure A-2.4 shows this half of the profil e likelihoodfor the BMD
for the constrained log-logistic model fitted to the example data. The horizontal lineindicates
the aiticd value of the log-likelihoodfor determining a 95% confidencelimit.

Since eab BMD value onthe x-axis of the figure has correspondng model parameter
estimates, we can examine the plausibility of the dose-resporse awrveswe ae daiming are
consistent with the data. The upper right panel of Figure A-2.4 shows this for some BMD values
including the maximum likelihoodestimate (lowest dose-resporse airve) and the lower
confidencelimit (highest dose-resporse airve). Although clealy the range of curves does not
exhaust the set of plausible dose-resporse aurves one might consider for these data, they are
catanly al plausible shapes. So, nd only does the maximum likeli hoodfit of the model to the
data represent a plausible dose-response shape, so doall the models between that and the model
implied by the lower confidencebound orthe BMD.

The story is diff erent for the unconstrained log-logistic modedl, ill ustrated in the lower two
panels of Figure A-2.4. First of al, the profil e likelihoodis substantialy flatter for this model. It
never even achieves the necessary drop in log-likelihoodfor there to be alower 95% confidence
limit, indicated by the horizontal li ne (the lowest, left-most paint onthe aurveisthe limiti ng
value & BMD approaches 0). Thisexplains why thereisno BMDL for this model in the table:
the confidencelimit includes 0! The lower right panel shows the dose-resporse aurves that
correspondto the BMD valuesindicated by X’sin the lower left panel. Whil e the maximum
likelihoodfit may be aplausible fit to the data, the aurves become increasing implausible &
BMD drops, with the arve shoaing up more and more rapidly from the control resporse & the
BMD for the model isreduced. Thelog-likelihoodis never reduced very much, becaise thereis
littl e evidencefor trend in the resporses at the two noncontrol doses. Indeed, at the limiti ng
value for the BMD, 0, the airveisdiscontinuois: the control isfit perfedly, and the non-control
resporses are fit by ahorizontal li ne, and the log-li kelihoodis not reduced sufficiently to reged

thismodel as aplausiblefit to thedatal This stuation dten occurs when models such as the log-
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logistic (also log-probit) are fit without constraining the slope parameter, and the Weibull,
gamma, Hill, or power models are fit without constraining the power parameter. The
implausibility of the curves that sometimes result when such models arefit to datais why this
document recommends that such models not be used with unconstrained power or slope
parameters, or only with great care.

In conclusion, for the reasons stated above, the log-logistic model, with the slope
constrained to be greater than one, is selected as the preferred model for these data. Thisgivesa
BMD of 7.2 and BMDL of 4.9 for an extrarisk of 10% for this dataset.
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Figure A-2.4 Profile likelihoods (left) and correspondng dose-resporse airves (right) for log-
logistic models fit to the example data set. The top two figures correspondto models with slope
constrained to be nolessthan 1.Q the battom two figures correspondto models with slope
constrained to be positive. “Xs” onthe profil e likelihoods correspondt the plotted dcse response
curves. Verticd lines onthe dose-resporse graphs indicae 95% confidencelimits for the data
means. The horizonta linesin the profil e likelihood pots correspondto the likelihood \alue that
defines the 95% confidencelimit for the BMD.
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3. Continuous Data: Getting a Good-Fitting Model

This example ill ustrates sme of the cae required when using nonlinea modeling
software and some of the data manipulation that may be required to get an adequate model fit for
computingaBMD and BMDL. Several paints are being made here: (1) convergenceof a
norlinea model does not guaranteethat maximum likelihoodestimates have been achieved,;
sometimes KmMe mwmmon sense and refitting is required to get MLES; (2) even orce maximum
likelihoodestimates have been achieved, the model may nat fit well enough, and aher adions
may need to be taken to get a better fitting model; (3) one of the BMRs for this exampleis 5% of
the dynamic range of the resporse (Murrell et al., 1998,suggest that the fradion d the dynamic
range of a continuols variable may often be agood quantificaion d the biologicd significance
of the change); sometimes it may require some common sense and ingenuity to compute the
BMD correspondng to suchaBMR. NOTE: Some of the behavior of this example depends on
the way the April 3, 2000 ersion d the Hill model from BMDS, seledsitsinitia values. Other
software, and even later versions of the Hill model from BMDS, may well behave diff erently on
thesedata. Thisdoes nat indicae “bugs’ in the software, but rather that, for some datasets, there
can be multiple “locd maxima” for the likelihoodfunction; software that uses purely locd
methods for optimization (as does BMDS) can get trapped at alocd maximum, and may require
experimenting with alternative initial parameter values to assure cnwvergenceto atrue global
maximum of the likelihoodfunction. Software padkages differ in the dgorithm used to seled the
starting parameter values for optimization, so may end upin dfferent locd maxima.

For this example, consider the foll owing data set:

Dose subjed/group Mean Std. Dev.
0. 8 100. 30.4
0.3 8 98.24 49.8
1. 8 111.34 59.9
3. 8 172.16 58.4

10. 8 357.48 167.5
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Dose subject/group Mean Std. Dev.

30. 8 1695.03 260.9
100. 8 1576.11 169.7
300. 8 1896.22 141.7

The data represent a biochemical responsein rats after dosing. For this example, we will
compute a BMD as the dose where the response has increased over background by an amount of
5% of the range between the background and the maximum response, per the suggestion of
Murrell, et al. (1998), as well as the dose where the mean has been displaced by one control
standard deviation, as this document suggests. As can be seen from Figure A-3.1, the dose-
responseis clearly sigmoidal.
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Figure A-3.1: Mean and 95% confidence intervals for
example data.
It is natural in such datato fit aflexible model that allows a sigmoidal response; the Hill

model is one such model, availablein BMDS. Sinceit isusua in biochemical datafor the
variance to be proportional to the square of the mean (approximately), and since it looks asiif the
varianceis larger in this data set for larger means, in general, for this example, we fit amodel to
the datain which the variance is model ed as being proportional to the power of the mean. That

is, our moddl is:;
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where d represents dose, (d) represents the mean response, and ¢%(d) represents the variance of
the observations at dose d. Rough estimates of this model can be read off the graph of the data,
and this provides a useful check of the fitting algorithm. When we fit a Hill modéel to the
example data, we would expect 4 (intercept) to be aound 100sincethat is abou the badkground
level of the resporse, V shoud be aound 1600sincethat is abou the increment at the highest
doses over the backgroundlevel. k represents the dose where half the resporse has occurred, and
shoud bein therange of 10 — 30. Furthermore, based onexperience, n shoud berelatively
small, say between 1and 10,and o ought to fall between 1 and 2, or so, since it is common for
variances to be proportional to the square of meansin such data.

If that model isfit to these data using the April 3, 2000 version of the Hill model from
BMDS (the current version as of this writing), the fitting algorithm apparently converges on a

solution. The parameter estimates from this solution are:

Vari abl e Esti mat e Std. Err.
al pha 4381. 57 2211. 67

rho 0. 266572 0. 0668979

i ntercept 105. 045 22.8759
% 1634. 05 51. 087

n 4. 76591 1.62145

k 14. 256 1.80324

Note that al the estimates arein their expected ranges except for the estimate of o (rho), which is

0.27, though we said we would have expected avalue in the range 1-2.
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The resulting predicted values are:

Dose N Obs Mean Obs Std Dev Est Mean Est Std Dev Chi "2 Res.
0 8 100 30.4 105 123 -0.115
0.3 8 98.2 49. 8 105 123 -0.156
1 8 111 59.9 105 123 0.138
3 8 172 58. 4 106 123 1.518
10 8 357 168 360 145 -0. 059
30 8 1. 7e+003 261 1. 69e+003 178 0. 028
100 8 1.58e+003 170 1. 74e+003 179 -2.570
300 8 1. 9e+003 142 1. 74e+003 179 2.483

While the model predicts the mean values and the standard deviations at the higher doses
pretty well, the standard deviations at the lower doses are overestimated by factors of 2 to 4. For
future reference, the log-likelihood for this model fit is-345.786.

This may be the best this model can do, but it looks suspicioudly like the fitting algorithm
got caught in alocal maximum of the likelihood surface, and that, perhaps, if we could get better
initial values for some of the parameters, we could get a better set of estimates. Since the model
for the mean seems to describe the data pretty well, we will restart the model, selecting the old
estimates as initial values for the parameters of the model for the mean, and get new starting
values for estimating the variance function parameters. These new estimates will come from

regressing the log of the observed variance (that is, the square of the standard deviation), on the

log of the observed mean (that is, log(var) = log(a) + plog(mean) ). The parameter

estimates from this regression are: p=1.0, log(2)=3.166, so the estimate of « is e*'® = 23.7.

Starting from these new values, the final estimates are:

Vari abl e Estinmate Std. Err.
al pha 24,8892 24,5755

rho 1.04671 0.162142

i ntercept 117. 097 10. 798
v 1629.2 64. 9209

n 4.18855 1.33386

k 14. 8385 1. 86453
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and the new predicted values:

Dose N Cbs Mean Cbs Std Dev Est Mean Est Std Dev Chi 2 Res.
0 8 100 30. 4 117 60. 3 -0.797
0.3 8 98. 2 49. 8 117 60. 3 -0. 882
1 8 111 59.9 117 60. 3 -0.281
3 8 172 58. 4 119 60.9 2.462
10 8 357 168 379 112 - 0. 556
30 8 1. 7e+003 261 1.67e+003 242 0. 351
100 8 1.58e+003 170 1. 75e+003 248 -1.939
300 8 1. 9e+003 142 1. 75e+003 248 1.711
BVD = 7. 3467
BMVDL = 5.96733

The log-likelihood for thisfit is-333.127, a substantial improvement over the previous
fit. Furthermore, now not only do the estimated means accord with those observed, but the
estimated standard deviations are alot closer to those observed. Most likely, the current
estimates are really the maximum likelihood estimates for this model and this dataset.

However, even though the fit isimproved, neither the variance model (see the result of
Test 3, below) nor the model for the mean (result of Test 4, below) fits the data, as the following

excerpt from BMDS output for this example illustrates:

Li kel i hoods of I nterest

Model Log(li kel i hood) DF Al C
Al -343.706 9 705. 412
A2 -317.77 16 667.539
A3 -324.533 10 669. 065
fitted -333.127 6 678. 253
R -458. 043 2 920. 086

Expl anation of Tests
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31
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33

Test 1: Does response and/or variances differ anong Dose | evel s?
(A2 vs. R

Test 2: Are Variances Honbgeneous? (Al vs A2)

Test 3: Are variances adequately nodel ed? (A2 vs. A3)

Test 4: Does the Mddel for the Mean Fit? (A3 vs. fitted)

Tests of Interest

Test -2*l og(Li kel i hood Ratio) Test df p- val ue
Test 1 280. 547 14 <. 0001
Test 2 51. 8732 7 <. 0001
Test 3 13.5263 6 0.0354
Test 4 17.1876 4 0. 001777

What is going on? Thetable of fitted values, above (particularly the column labeled
“chi"2 residuals’) shows that the aurrent model seriously underpredicts the respornse & a dose of
3, and misses the resporse a the two highest doses on either side. Furthermore, the model over
predicts the standard deviation at the two highest doses (which is probably why the model for the
varianceisregjeded). It isthe under prediction at the lower doses that is most important,
however, becaise that isin theregion d the BMD, as far asthis model can tell.

The threehighest doses, at 30, 100and 300,are quite far from the BMD; if we drop those
doses, we will be diminating doses whose responses the model canna acourt for very well,
and, sincethey are far from the BMD, we shoud na be diminating much information abou the
adual locaion d the BMD. Furthermore, sincethe resporses onthe plateau have dl been
dropped, aher monaonic dose-resporse models can be fit to the data. We wnsider threehere:
the Hill, afirst degreepaynomia (adding higher degreeterms to the model did na add
significantly to the aility of the model’s ability to fit the data; the model used is

u(d) = B, + B,d ), andthe power model (u(d) = B, + B,dY).

However, ore of the BMRs we want to cdculate is based ona change in the mean
resporse gjual to 5% of the range of the resporse (that is 5% of the maximum vaue minus the
minimum value). In the Hill model, the BMD and BMDL correspondng to this change can be
computed dredly by the softwarein BMDS, bu thisis not so for the other models (sincethase
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modelsto na allow for a horizontal asymptote). Furthermore, sincethis reduced data set redly
contains no information about the maximum resporse, even the Hill model’ s estimate of that is
susped (the estimate of the maximum value from the model reported in the dowve tableis
ridiculously large: 143289 with ahuge standard error: 5.8 x 1(%, so it is clealy not useful for
setting aBMR). The way aroundthisisto cdculate 5% of the observed dynamic range for this
endpant, and look for the dose that would result in an absolute change of this amourt. The
minimum value, based onthe variance-weighted mean o the lower two dose groups, is99.51,
and the maximum value, based onthe variance-weighted mean o the upper threedase groups, is
1758.3 5% of the difference of thetwo is82.9.

5% Dyn. Range 1 SD Change

Model GOF P-value AlC BMD BMDL BMD BMDL
polynomial 0.98 375.46 3.23 2.46 1.46 1.11
power 0.95 377.35 3.46 2.47 1.66 1.11
Hill 0.76 379.35 3.46 2.47 1.70 1.14

All threemodelsfit the datawell, ac@rding to bah the summary results reported here anda
more detail ed examination d the graphs and residuals (not shown here), but the AIC for the
polynomia model is ssmewhat better than that for the other two, so that is the model to chocse
to cdculatethe BMD and BMDL. That is, the BMD and BMDL based on %% of the dynamic
range of the resporse ae 3.23and 2.46 based onaone standard deviation change, 1.46and 1.11.
This example ill ustrates threepaints, nore of which is gedfic to modeling continuows
data: (1) it isimportant to exercise some judgment when fitting models to data; no software
padkage can guaranteethat the parameters returned are adually maximum likelihoodestimates,
and the analyst may have to dosome “twe&king” to get an acceptable answer; (2) we want
models that describe the data well in the region d the BMR/BMD, which may involve some
judicious narrowing of the dose range we d@tempt to model; (3) it may be necessary to exercise
some aedivity to compute BMDs for the BMR we want, and what scientific and risk analytic

judgment dictate & desirable answer shoud na be subservient to what the software can do.
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4. Cancer Bioassay Data: Modeling POD for Cancer Slope Factor

For cancer response modeling from standard cancer bioassay data, U.S. EPA is
developing a spedfic dgorithm which will be included in the BMDS padkage. The dgorithm
uses a multi stage (paynomial) model with some @nstraints. Asthis model is under
development at the time of this writing, the standard BMDS version d the multi stage model will
be used for the purposes of this example. Under EPA’s propased 1996Guidelines for
Carcinogen Risk Assesgnent, quantitative risk estimates from cancer bioassay data ae typicdly
cdculated by modedling the datain the observed range to estimate aBMDL for aBMR of 10%
extrarisk, which is generaly at the low end d the observable range for standard cancer bioassay
data. ThisBMDL then serves asthe “paint of departure” for linea extrapdation a anorinea
guantitative goproach, as warranted by the mode of adion d the cacinogen.

This example uses the dose-resporse data presented in EPA’s 1988Hedth and
Environmental Effeds Document for Dibromochloromethane for the quantitative estimate of
cacinogenic risk from oral expasure. Therationale for study seledion and endpant seledion,
whil e important comporents of any comprehensive write-up o aBMD cdculation, are beyond

the scope of this quantitative example.

BMD Modeling for Dibromochloromethane
tumor type: hepatocdlular adenoma or carcinoma
test animal: B6C3F1 mouse, female

route of exposure: gavage
study: NTP, 1985
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DOSE-RESPONSE DATA

administered human equivalent
dose (ma/ka/day) dose (mg/ka/day)

0 0
50 2.83
100 5.67

tumor

incidence

6/50
10/49
19/50

As discussed above, the multistage model was used becauseit is considered the default model for

cancer bioassay data; although, in the future there will be a specific algorithm for modeling such

cancer data. Similarly, aBMR of 10% extrarisk was used, asistypical for standard cancer

bioassay data.

BMR: 10%
model: multistage, extrarisk

First, a second-degree (i.e., n-1) multistage model isfit to the data.

model form: background + (1-background) * [1-EXP(-betal* dose1-beta2* dose™2)]

parameter estimate (MLES)
background 0.12

beta (1) 0.00930036
beta (2) 0.00925286

AIC = 158.688
p-value=1
Chi?=0

residuas=0

std.error

0.132665
0.141898
0.0246904
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Pultistage Model with 0.95 Confidence Level
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Figure A-4.1 Second-degree multistage model.

BMD (ED,,) = 2.91 mg/kg/day

BMDL (LED,; 95% confidence limit estimated by likelihood profile) = 1.25 mg/kg/day

The second-degree model provides agood fit. Next, afirst-degree multistage model isfit to the

datato seeif a more parsimonious model can also provide an adequate fit.

model form: background + (1-background) * [1-EXP(-betal* dose™1)]

parameter
background

beta (1)

estimate (MLES) std.error

0.111488
0.0559807

0.120556
0.0391492
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AIC = 157.272
p-vaue = 0.4446

Goodness of Fit:

Dose Est. Prob. Expected Obsarved Size Chi”2 Residuals

© 00 N O o1~ W DN P

L =
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0.0000 0.1115 5.574 6 50 0.086
2.8300 0.2417 11.842 10 49  -0.205
5.6700 0.3531 17.657 19 50 0.118

Chi-sguare = 0.57

DF=1 P-value = 0.4494

BMD (ED,,) = 1.88 mg/kg/day

BMDL (LED,,; 95% confidence limit estimated by likelihood profile) = 1.20 mg/kg/day

Fraction Affected

05

04

03 F

0.2

0.1 F

Pultistage Model with 0.95 Confidence Level

Mﬁltistage

/f_,_,./—"’_'_f

. EmDL BMD . .

] 1 2 3 4
dose

Figure A-4.2 First-degree multistage model.
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The AIC islower for the first-degree model suggesting that thisis the preferred model; however,
because the multistage model isreally afamily of k-degree models, alikelihood ratio test can be
used to evaluate whether the improvement in fit afforded by estimating additional parametersis
justified. In this case, the log likelihood for the second-degree model was -76.3439 and for the
first-degree model was -76.6361. Thus twice the absolute difference in the log likelihoods is less
than 3.84, i.e., a Chi-square with one degree of freedom (i.e., 2-1), suggesting that the first-
degree multistage model is not significantly different from the second-degree model. Under the
recommendations of the benchmark dose guidance, the more parsimonious first-degree model
would be generally preferred. Fina judgement on this may be subject to endpoint-specific

guidance.

References

NTP (National Toxicology Program). 1985. Toxicology and carcinogenesis
studies of chlorodibromomethane (CAS No. 124-48-1) in F344/N rats and B6C3F1
mice (gavage studies). NTP Tech. Report Series No. 282. NTIS PB 86-166675.

U.S. EPA. 1988. Health and Environmental Effects Document for
Dibromochloromethane. Prepared by the Office of Health and Environmental
Assessment, Environmenta Criteria and Assessment Office, Cincinnati, OH. ECAO-CIN-
GO40.
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5. Developmental Toxicity Example

In general, data from devel opmental toxicity studies in rodents are best modeled using
nested models. These models account for any intralitter correlation, or the tendency of
littermates to respond similarly to one another relative to the other littersin adose group. If this
correlation (which may vary with dose) is not estimated, variance estimates, and hence the
confidence limits on benchmark responses and doses, will generally be misspecified.

This example uses dose-response data reported by George et a. (1992), regarding the
developmental toxicity of ethylene glycol diethyl ether administered orally to mice. Aswith the
other examplesin this guidance, this exampleillustrates fitting a model to one dose-response
pattern. Note that the rationale for study selection and endpoint selection, while important
components of any comprehensive BMD cal culation write-up, are beyond the scope of this
guantitative example.

The outcome model ed was prevalence of malformations, a quantal endpoint. The nested
logistic model was considered for the purpose of illustrating fitting these quantal, nested data.
Elements of the analysis addressing the reporting requirementsin Section 11.D. are documented
in Table A-4.1, including a brief description of the experiment. The model input and model
output data are summarized in Table A-4.2.

The nested logistic model demonstrated a reasonably good visua fit to the mean
responses of the dose groups (not shown), but the goodness of fit p-value was 0.061, less than the
value of 0.10 recommended in Section II.E. Since the coefficients which gauge the influence of
litter size in predicting the response rate were fairly close to zero (0.0013 and -0.1507,
respectively, not shown), suggesting that litter size was not important in this case, the model was
re-fit without litter size. The resulting fit yielded a p-value of 0.184 ®, adequate for suppating
BMD evaluation. Its AIC (at 450.9 was also dlightly lower than thefirst fit (at 452.5.

Ancther variation onthis model was also fitted, setting the intralitter correlations (the
coefficients phil — ph5) to zero. Thisfit was nat succesSul, with agoodressof fit p-value of O
andan AIC of 570.4(compare to 450.6,above). Theintralitter correlations are therefore
important for describing the observed variability in this data set.

73



e
NRPOWOWO~NOU h W N

The fitted model and the mean responses by dose group are shown in Figure A-5.1. The

Mested Logistic Model with 0.95 Confidence Level

1 Nested Lngistic'
f
0s f
=
= 0B}
-
=
2 04 Ff
L]
1]
o
0z f
H—P‘f;#
|:| L
. BhDL BnD . .
0 200 400 kOO aoo 1000
dose

Figure A-5.1 Developmental Example Model Fit.

results for the selected nested logistic fit (the second fit described above) are provided in Table
A-5.2.

Reference

George JD, Price CJ, Marr MC, Kimmel CA, Schwetz BA, Morrissey RE. (1992). The

Developmental Toxicity of Ethylene Glycol Diethyl Ether in Mice and Rabbits. Fund. App. Tox.
19:15-25.
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Table A-5.1: Summary of benchmark dose estimate, and key to Table 4-2

Study Title/ldentifier Ethylene glycol diethyl ether, administered to mice
by gavage (in mg/kg/day), days 6-15 of gestation
(George et al., 1992)
Rationale for study selection Selected by developmental toxicologist as an
adequate study
Rationale for endpoints (effects) Skeletal malformations - Developmental toxicologist
selected as an important endpoint
List dose response data used See @ inTable4-2
Dose - Form Nested logistic model in BMDS package, see @ in
Response Table4-1
Model
Rationale Fits awide variety of dose-response shapes for nested
data
Estimation procedure Maximum likelihood
Estimates of model parameters with See @
standard errors
Goodness-of fit test statistics See @,5,®
Standardized residuals See ®,®
Choice of Rationale Quantal data, used default 10% extrarisk level.
BMR
Benchmark Lower Confidence Limit Procedure Likelihood profile
Dose
BMD 485 mg/kg/day (@)
BMDL 410 mg/kg/day (®)
Graphics Data points See mean response rates and confidence limitsin
Figure 4-1
Fitted dose-response model See Figure 4-1
Confidence limits for fitted curve Not provided
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Table A-5.2: Output from Model Run (EPA BMDS NLogistic Model. Revision: 2.6, Date: 2000/03/03)

The probability function is

Prob. = alpha + thetal*Rij + [1 - alpha - thetal*Rij]/ 1l+exp(-beta-theta2*Rij-rho*log(Dose))], @®
where Rij is the litter specific covariate

Restrict Power rho >= 1.

Total nunber of observations = 105

Total nunber of records with mssing values = 0
Total nunber of paraneters in nmodel = 10

Total nunber of specified paraneters = 2

Maxi mum nunber of iterations = 250
Rel ati ve Function Convergence has been set to: 1le-008
Par amet er Conver gence has been set to: le-008

User specifies the followi ng paraneters
0

thetal =
theta2 = 0

Default Initial Paraneter Val ues

al pha = 0. 0370596
beta = - 36. 6368
thetal = 0 Specified
theta2 = 0 Speci fi ed
rho = 5.56873
phil = 0. 64095
phi2 = 0. 999996
phi 3 = 0. 159461
phi 4 = 0. 284719
phi5 = 0. 231641
Paramet er Estinates @
Vari abl e Estimate Std. Err.
al pha 0. 0370596 0. 0142364
bet a - 36. 6368 0. 289861
rho 5. 56873 242.744
phi 1 0. 64095 0.107174
phi 2 0. 999996 0. 13603
phi 3 0. 159461 0. 130185
phi 4 0. 284719 0
phi 5 0. 231641 0
Al C 450. 56
Litter Data
Lit. - Spec. Litter chi - squar ed
Dose Cov. Est . _Prob. Si ze Expect ed Observed Resi dua
0. 0000 6. 0000 0. 037 6 0. 222 0 -0.2343
0. 0000 8. 0000 0. 037 8 0. 296 0 -0. 2369
0. 0000 8. 0000 0. 037 8 0. 296 0 -0. 2369
0. 0000 9. 0000 0. 037 9 0. 334 0 -0.2378
0. 0000 9. 0000 0. 037 9 0. 334 0 -0.2378
0. 0000 10. 0000 0. 037 10 0.371 0 -0. 2385
0.0000  10. 0000 0. 037 10 0.371 0 -0.2385
0. 0000 11. 0000 0. 037 11 0. 408 0 -0. 2390
0.0000 11.0000 0. 037 11 0. 408 0 -0.2390
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Table A-5.2: Output from Model Run (EPA BMDS NLogistic Model. Revision: 2.6, Date: 2000/03/03)

0. 0000 11. 0000 0. 037 11 0. 408 0 -0.2390

0. 0000 11. 0000 0. 037 11 0. 408 0 -0. 2390

0. 0000 11. 0000 0. 037 11 0. 408 0 -0.2390

4 0. 0000 11. 0000 0. 037 11 0. 408 0 -0. 2390
0. 0000 11. 0000 0. 037 11 0. 408 0 -0.2390

O 0. 0000 11. 0000 0. 037 11 0. 408 0 -0. 2390
4 0. 0000 12. 0000 0. 037 12 0. 445 0 -0. 2395
Q 0. 0000 14. 0000 0. 037 14 0.519 0 -0.2403
9 0. 0000 14. 0000 0. 037 14 0.519 0 -0. 2403
() 0. 0000 14. 0000 0. 037 14 0.519 4 1.6122
0. 0000 15. 0000 0. 037 15 0. 556 0 -0. 2406

0. 0000 15. 0000 0. 037 15 0. 556 0 -0. 2406

J 0. 0000 15. 0000 0. 037 15 0. 556 0 -0. 2406
50. 0000 2. 0000 0. 037 2 0.074 0 -0.1962

O 50. 0000 5. 0000 0. 037 5 0. 185 0 -0.1962
4 50. 0000 9. 0000 0. 037 9 0. 334 0 -0.1962
Q 50. 0000 9. 0000 0. 037 9 0.334 0 -0.1962
9 50. 0000 9. 0000 0. 037 9 0. 334 0 -0.1962
() 50. 0000 10. 0000 0. 037 10 0.371 0 -0.1962
50. 0000 10. 0000 0. 037 10 0.371 0 -0.1962

50. 0000 11. 0000 0. 037 11 0. 408 0 -0.1962

50. 0000 12. 0000 0. 037 12 0. 445 0 -0.1962

4 50. 0000 12. 0000 0. 037 12 0. 445 0 -0.1962
50. 0000 12. 0000 0. 037 12 0. 445 0 -0.1962

O 50. 0000 12. 0000 0. 037 12 0. 445 0 -0.1962
4 50. 0000 13. 0000 0. 037 13 0. 482 0 -0.1962
Q 50. 0000 13. 0000 0. 037 13 0. 482 0 -0.1962
9 50. 0000 13. 0000 0. 037 13 0. 482 0 -0.1962
() 50. 0000 13. 0000 0. 037 13 0. 482 0 -0.1962
50. 0000 13. 0000 0. 037 13 0. 482 0 -0.1962

50. 0000 14. 0000 0. 037 14 0.519 0 -0.1962

50. 0000 15. 0000 0. 037 15 0. 556 0 -0.1962

150. 0000 3. 0000 0. 037 3 0.112 0 -0. 2965

150. 0000 10. 0000 0. 037 10 0.372 1 0.6722

150. 0000 10. 0000 0. 037 10 0.372 0 -0. 3984

150. 0000 11. 0000 0. 037 11 0. 409 5 4.5396

150. 0000 11. 0000 0. 037 11 0. 409 4 3. 5507

4 150. 0000 11. 0000 0. 037 11 0. 409 0 -0. 4048
4 150. 0000 12. 0000 0. 037 12 0. 447 1 0. 5086
4 150. 0000 12. 0000 0. 037 12 0. 447 0 -0. 4104
" 150. 0000 12. 0000 0. 037 12 0. 447 0 -0.4104
44 150. 0000 12. 0000 0. 037 12 0. 447 0 -0. 4104
45 150. 0000 12. 0000 0. 037 12 0. 447 0 -0. 4104
40 150. 0000 12. 0000 0. 037 12 0. 447 0 -0. 4104
‘. 150. 0000 13. 0000 0. 037 13 0. 484 1 0. 4431
40 150. 0000 13. 0000 0. 037 13 0. 484 0 -0.4153
49 150. 0000 13. 0000 0. 037 13 0. 484 0 -0.4153
() 150. 0000 13. 0000 0. 037 13 0. 484 0 -0. 4153
150. 0000 13. 0000 0. 037 13 0. 484 0 -0.4153

150. 0000 14. 0000 0. 037 14 0.521 0 -0. 4196

150. 0000 14. 0000 0. 037 14 0.521 0 -0.4196

150. 0000 15. 0000 0. 037 15 0. 558 1 0. 3352

150. 0000 18. 0000 0. 037 18 0. 670 0 -0.4330

500. 0000 6. 0000 0. 149 6 0. 893 0 -0. 6581

500. 0000 8. 0000 0. 149 8 1.191 0 -0. 6839

500. 0000 9. 0000 0. 149 9 1. 340 6 2.4099

500. 0000 10. 0000 0. 149 10 1.489 2 0. 2404

500. 0000 10. 0000 0. 149 10 1. 489 0 -0.7008

500. 0000 10. 0000 0. 149 10 1.489 0 -0. 7008

500. 0000 11. 0000 0. 149 11 1.638 7 2.3153

500. 0000 11. 0000 0. 149 11 1.638 4 1.0199

500. 0000 11. 0000 0. 149 11 1.638 3 0. 5881

500. 0000 11. 0000 0. 149 11 1.638 2 0. 1563

500. 0000 11. 0000 0. 149 11 1.638 1 -0. 2755

500. 0000 11. 0000 0. 149 11 1.638 0 -0.7073

500. 0000 11. 0000 0. 149 11 1.638 0 -0.7073

500. 0000 12. 0000 0. 149 12 1.787 4 0. 8828

500. 0000 12. 0000 0. 149 12 1.787 1 -0.3139

500. 0000 12. 0000 0. 149 12 1.787 0 -0.7128

500. 0000 12. 0000 0. 149 12 1.787 0 -0.7128

4 500. 0000 12. 0000 0. 149 12 1.787 0 -0.7128
500. 0000 12. 0000 0. 149 12 1.787 1 -0.3139

O 500. 0000 13. 0000 0. 149 13 1.936 6 1. 5066
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Table A-5.2: Output from Model Run (EPA BMDS NLogistic Model. Revision: 2.6, Date: 2000/03/03)

500. 0000 13. 0000 0. 149 13 1.936 0 -0.7176
500. 0000 15. 0000 0. 149 15 2.234 0 -0.7255
1000. 0000 3. 0000 0. 867 3 2.601 3 0. 5609
1000. 0000 3. 0000 0. 867 3 2.601 3 0. 5609
1000. 0000 3. 0000 0. 867 3 2.601 3 0. 5609
1000. 0000 3. 0000 0. 867 3 2.601 3 0. 5609
1000. 0000 3. 0000 0. 867 3 2.601 3 0. 5609
1000. 0000 9. 0000 0. 867 9 7.803 9 0. 6958
1000. 0000 9. 0000 0. 867 9 7.803 9 0. 6958
1000. 0000 9. 0000 0. 867 9 7.803 8 0.1147
1000. 0000 10. 0000 0. 867 10 8.670 10 0. 7053
1000. 0000 10. 0000 0. 867 10 8.670 8 -0. 3550
1000. 0000 10. 0000 0. 867 10 8.670 7 -0. 8851
1000. 0000 10. 0000 0. 867 10 8.670 5 -1.9454
1000. 0000 11. 0000 0. 867 11 9. 536 11 0. 7135
1000. 0000 11. 0000 0. 867 11 9. 536 11 0. 7135
1000. 0000 11. 0000 0. 867 11 9. 536 5 -2.2115
1000. 0000 12. 0000 0. 867 12 10. 403 12 0. 7204
1000. 0000 12. 0000 0. 867 12 10. 403 11 0. 2692
1000. 0000 12. 0000 0. 867 12 10. 403 7 -1.5358
1000. 0000 13. 0000 0. 867 13 11.270 13 0. 7265
1000. 0000 13. 0000 0. 867 13 11. 270 8 -1.3737
1000. 0000 14. 0000 0. 867 14 12.137 13 0. 3389

Conmbine litters with adjacent levels of the litter-specific covariate
wi thin dose groups until the expected count exceeds 3.0, to help inprove
the fit of the X2 statistic to chi-squared

G ouped Data

Mean chi - squar ed
Dose Lit.-Spec. Cov. Expected bserved Resi dua
0. 0000 9.1111 3.039 0 -0.7043
0. 0000 11. 5000 3.409 0 -0.6744
0. 0000 14. 6000 2.705 4 0. 2572
50. 0000 8. 9000 3.298 0 -0.5882
50. 0000 12. 7143 3.298 0 -0.5187
50. 0000 14. 5000 1. 075 0 -0.2773
150. 0000 10. 2222 3.424 11 2.5976
150. 0000 12.5714 3.275 1 -0.7591
150. 0000 14.8000 2.754 1 -0.5991
500. 0000 7.6667 3.425 6 0.8773
500. 0000 10. 0000 4. 467 2 -0.6704
500. 0000 11. 0000 11. 466 17 0. 9031
500. 0000 12. 0000 10. 722 6 -0.7689
500. 0000 13. 0000 3.872 6 0. 5579
500. 0000 15. 0000 2.234 0 -0.7255
1000. 0000 3. 0000 13. 004 15 1.2542
1000. 0000 9. 0000 23.408 26 0. 8696
1000. 0000 10. 0000 34.678 30 -1. 2400
1000. 0000 11. 0000 28. 609 27 -0. 4530
1000. 0000 12. 0000 31. 210 30 -0.3153
1000. 0000 13. 0000 22.541 21 -0.4577
1000. 0000 14. 0000 12.137 13 0. 3389
Chi -square = 17. 35 DF = 13 P-val ue = 0. 1837

To cal culate the BVMD and BMDL, the litter specific covariate is fixed
at the mean litter specific covariate of control group: 11.227273

Benchmar k Dose Conputati on

Speci fied effect 0.1

Ri sk Type = Extra risk
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Table A-5.2: Output from Model Run (EPA BMDS NLogistic Model. Revision: 2.6, Date: 2000/03/03)

Confidence |evel = 0.95
BMD = 485. 152
BMDL = 409. 019
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6. Human Data

Oppartunities for modeling human toxicologicd data ae limited, and the human studies
areless sandardized than studies of experimental animals; thus modeling of human datais dore
ona cae-spedfic basis. For some examples of benchmark dose modeling of human deta, please
refer to the foll owing references; athouwgh it shoud be noted that these examples precede this
benchmark dose modeling guidance and may nat strictly adhere to the recommendations
described herein. One example presented in EPA’s RIS database is for peripheral nervous
system dysfunctioninduced by carbon dsulfide in occupationally exposed workers (U.S.
Environmental Protedion Agency, 1995). Ancther examplein IRIS isfor developmental
neurologic ebnamaliti esin human infants from exposure to methylmercury (U.S. Environmental
Protedion Agency, 1995). More recent examples of benchmark dose modeli ng of
methylmercury developmental neurologic ef eds from diff erent databases are reported by Crump
et al. (2000 and Budtz-Jorgensen et a. (2000.

References
IRIS (2000 ...

Budtz-Jorgensen E, Grandiean P, Keiding N, White RF, Weihe P (2000 Benchmark dose
cdculations of methylmercury-associated neurobehavioural deficits. Toxicology Letters 112-
113193199.

Crump KS, Van Landingham C, Shamlaye C, Cox C, Davidson PW, et a. (2000 Benchmark
concentrations for methylmercury obtained from the Seychell es Child Development Study.
Environ Hedth Persped 108257-263.

U.S. Environmenta Protedion Agency (EPA). (199%). Integrated Risk Information System
(IRIS): Online substancefile for carbon dsulfide
(http://www.epa.gov/ngispgm3/irisindex.html). National Center for Environmental Assesamnent,
Washington, DC.

U.S. Environmenta Protedion Agency (EPA). (1995h. Integrated Risk Information System
(IRIS): Online substancefil e for methylmercury (http://www.epa.gov/ngispgm3/irisindex.html).
National Center for Environmental Assessnent, Washington, DC.
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GLOSSARY

Akaike Information Criteria (AIC) : A statisticd procedure that provides a measure of the
goodressof-fit of adose-response model to aset of data. AIC=-2x (LL - p), where LL isthe
log-likelihoodat the maximum likelihoodfit, and pis the degrees of freedom of the model
(usually, the number of parameters estimated).

Asymptotic Test : Statisticd tests that approach known properties as ssample sizes increase.

Benchmark Concentration (BMC): The concentration d a substanceinhaled that is associated
with aspedfied low incidence of risk, generaly in the range of 1% to 10%, of a hedth effed; or
the concentration asociated with a spedfied measure or change of abiologicd effed.

Benchmark Dose (BMD) : An exposure due to adose of a substance aciated with a speadfied
low incidenceof risk, generaly in the range of 1% to 10%, of ahedth effed; or the dose
asciated with a spedfied measure or change of abiologicd effed.

Benchmark Resporse (BMR): The resporse, generally expressed as in excessof badground(see
for example, Extra Risk), at which abenchmark dose or concentrationis desired (seeBenchmark
Dose, Benchmark Concentration).

Beta-Binomial Distribution: A statisticd distribution o clustered values, e.g., measures on
offspring in alitter, where the average propartions of an event for clusters are described by a Beta
distribution and the propartions of eventsin a duster are described by a binomial distribution.

Binomial Distribution: The statisticd distribution d the probabiliti es of observing 0,1,2; - - ,n
eventsin asample of n independent trials ead with the same individual probability that the event
oceurs.

BMCL: A lower one-sided confidencelimit onthe BMC.

BMDL: A lower one-sided confidencelimit onthe BMD.

Boatstrap : A statisticd tedhnique based onmullti ple resampling with replacanent of the sample
values or resampling of estimated dstributions of the sample values that is used to cdculate
confidencelimits or perform statisticd tests for complex situations or where the distribution o
an estimate or test statistic canna be assumed.

Cance Potency ( Cancer Slope Fador ) : A number that estimates the cancer risk ( incidence)
for alifetime exposure to a substance per unit of dose. doseis generally expressed asmg / kg
body wt / day.

Categoricd Data: Results obtained where observations or measurements onindividuals or
samples are stratified acrding to degreeor severity of an effed, e.g., nore, mild, moderate,or
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Severe.

Chi-square Test : A statistical test used to examine the deviation of an observed number of
events from an expected number of events.

Clustered Data : Measurements collected on some grouping of individuals, e.g., littersin
reproductive and developmental studies.

Confidence Interval ( Two-Sided ) : An estimated interval from the lower to upper confidence
limit of an estimate of a parameter. Thisinterval is expected to include the true value of the
parameter with a specified confidence percentage, e.g., 95% of such intervals are expected to
include the true values of the estimated parameters.

Confidence Interval ( One-Sided ) : Aninterval below the estimated upper confidence limit, or
interval above the estimated lower confidence limit, that is expected to include the true value of
an estimated parameter with a specified confidence ( percent of thetime).

Confidence Limit : An estimated value below ( or above ) which the true value of an estimated
parameter is expected to lie for a specified percentage of such estimated limits.

Constrained Dose-Response Model : Estimates of one or more parameters of the model are
restricted to a specified range, e.g., equal to or greater than zero.

Continuous Data : Effects Measured on a continuum, e.g., organ weight or enzyme concentration,
as opposed to quantal or categorical datawhere effects are classified by assignment to aclass.

Convergence : Estimates of a parameter approach a single value with increasing sample size or
increasing number of computer iterations.

Convex : Region of a dose-response relationship that curves upward, i.e., the slope becomes
steeper with increasing dose.

Correlated Binomial Distribution : Clustered data where the individual valuesin acluster ,e.g., a
litter, each have the same probability of expressing an effect.

Covariate : An independent variable other than dose that may influence the outcome of an effect,
e.g., age, body weight, or polymorphism.

Coverage : See confidence intervals or confidence limits.
Cubic : An effect isafunction of ameasure raised to the third power.
Degrees of Freedom : For dose-response model fitting, the number of data points minus the

number of model parameters estimated from the data.
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DeltaMethod : Variance of afunction of random variables approximated from the derivatives of
the function with respect to the random variables and the variances of the random variables.

Dichotomous Data : Quantal data where an effect for an individual may be classified by one of
two possibilities, e.g., dead or aive, with or without a specific type of tumor.

Dispersion : Variation ( differences) from a central ( mean or median ) value.

Dose-Response Model : A mathematical relationship ( function ) that relates ( predicts) a
measure of an effect to a dose.

Dose-Response Trend : Relationship between incidence or severity of a biological effect and a
function of dose. Simply the slope for alinear dose-response.

EC _x : Effective exposure concentration associated with a biological effect in x% of the
individuals. Often used for inhalation exposures based on the airborne concentration.

ED_x : Effective dose associated with abiological effect in x% of the individuals. Dose may be
the external exposure often expressed in mg per day of the substance per kg body weight raised
to apower ( generaly 1, 3/4, or 2/3) or area under the curve (AUC) in blood or target tissue
where the substance remains in the body over a period of time.

Estimate : An empirical value derived from data for a parameter.

Excess Risk : Proportion of individuals or animals observed or estimated to possess an effect in
addition to the spontaneous background risk.

ExtraRisk: [P(d)-P(0)]/[1 - P(0)], where P(d) istherisk at a dose = d and P(0) is the background
risk at zero dose.

Gamma Distribution : A unimodal statistical distribution ( relative proportion of responders as a
function of some measure) that is restricted to effects greater than or equal to zero that can
describe awide variety of shapes, e.g., flat, peaked, asymmetrical.

Gaussian ( Normal ) Distribution : A unimodal symmetrical ( bell-shaped ) distribution where the
most prevalent value is the mean ( average ) and the spread is measured by the standard
deviation. Mathematically, the distribution varies from minus infinity with zero probability to
plus infinity with zero probability.

Generalized Estimating Equation ( GEE ) : A statistical technique used for estimating parameters
that requires only specification of the first two moments of the distribution of the estimator as
opposed to a complete specification of the distribution.

Goodness-of -Fit : A statistic that measures the dispersion of data about a dose-response curve in
order to provide atest for rejection of amodel due to lack of an adequate fit, e.g., aP-value < 0.1.
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Hazard Identification : Detection of an adverse biological effect, or precursor to an adverse
effect, as aresult of exposure to a substance.

Hill Equation : A dose-response curve, frequently used for enzyme kinetics, that monotonically
approaches an asymptote ( maximum value ) as afunction of dose raised to a power.

Hybrid Model : For continuous data establishes abnormal values based on the extremesin
controls (unexposed individuals or animals) and estimates the risk of abnormal levelsasa
function of dose.

Incidence : Proportion or probability of individuals or animals exhibiting an effect, that varies
from zero to one, sometimes expressed as a percent from 0% to 100%.

Independence : The result in one animal or individual does not influence the result in another
animal or individual.

Intercept Term : The estimated value at zero dose or the dose corresponding to a zero effect.
Least Squares : A statistical procedure that estimates the values of dose-response parameters such
that the sum of squares of deviations of data points from their estimated valuesis minimized, i.e.,
minimizes the estimated variance.

Likelihood Ratio : Ratio of the probability that the observed data arise from a set of model
parameters relative to the maximum probability that arises from the set of maximum likelihood
estimates.

Linear Dose-Response Model : The amount of change in aresponse is proportiona to the amount
of change in some function of dose.

Linearized Multistage Model : Dose-response model based on the multistage model of
carcinogenesis that is restricted to aform that is approximately linear at low doses.

Local Maximum : Mathematical solution that maximizes afunction in aregion that may not be
the overall global maximum.

Likelihood Function : Relative probabilities that various values of population parameters would
arise from the sample observations.

Logistic Mode : A sigmoid ( S-shaped ) function that relates the proportion of individuals with a
specified characteristic to an independent variable, e.g., dose.

Log Transformation : Logarithm of raw data.

Maximum Likelihood Estimate (MLE) : Estimate of a population parameter most likely to have
produced the sample observations.
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Michaelis-Menten Equation : A dose-response curve, frequently used for enzyme kinetics, with
maximum slope at zero dose that approaches a maximum asymptote at increasing dose.

Margin of Exposure (MOE) : Ratio of adose that produces a specified effect, e.g., abenchmark
dose, to an expected human dose.

Moment Estimates : A statistical estimation procedure that equates population moments to
sample moments.

Monotonic Dose-Response : A dose-response that never decreases as dose increases. A
monotonic function may be flat (constant) up to athreshold dose or may be flat at high dosesif a
biological limit, e.g., saturation, is attained.

Multinomial : Animals or individuals may be classified by more than two (binomial) categories,
e.g., in areproductive study fetuses may be : dead, alive normal, or aive abnormal.

Nonlinear Dose-Response Model : Mathematical relationship that cannot be expressed simply as
the change in response being proportional to the amount of change of some function of dose.

Objective Function : Choice of function that is optimized for maximum likelihood estimation.
Ordina Data: Integers designating the rank, order, or counts.

P-Vaue: In testing a hypothesis, the probability of atypel error (false positive) . The
probability that the sample (experimental) results are compatible with a specific hypothesis.

Parameter : A value used to numerically describe a population of values, e.g., the mean and
standard deviation; or a value used to describe a dose-response curve, e.g., the intercept and the
slope of alinear dose-response.

Point of Departure (POD) : The point on a dose-response curve established from experimental
data, e.g., the benchmark dose, generally corresponding to an estimated low effect level ( e.g.,
1% to 10% incidence of an effect ). Depending on the mode of action and available data, some
form of extrapolation below the POD may be employed for low-dose risk assessment or the POD
may be divided by a series of uncertainty factorsto arrive at areference dose.

Polynomial : A mathematical function of the sum of a constant, linear term, quadratic term, cubic
term, etc.

Probability : The proportion (on ascae of 0to 1) of cases for which a particular event occurs.
Zero indicates the event never occurs and one indicates the event always occurs.

Probability Distribution : A mathematical description of the relative probabilities of al possible
outcomes of a measurement.
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Probit Function : Assumes that the relative probabilities of effects as afunction of dose are
described by a Normal distribution. The cumulative probability as a function of dose has a
sigmoid shape.

Profile Likelihood : A plot of the likelihood function versus the estimated value of a parameter.

Quadratic Term : A quantity in a mathematical formulathat is raised to the second power (
squared ).

Quantal Data: Dichotomous ( Binomial ) classification where an individual or animal is placed
in one of two categories, e.g., dead or alive, with or without a particular type of tumor, normal or
abnormal level of ahormone.

Quantile : Percentile ( cumulative probability ) of a distribution that ranges from zero to the
100th percentile.

Quasi-Likelihood : Likelihood function that is not totally defined and generally based on only an
expression including the mean and variance.

Rectangular Hyperbola : A mathematical function of the form y squared equals x squared plusc
squared, where x and y are variables and c is a constant.

Regression Analysis: A statistical process that produces a mathematical function ( regression
eguation ) that relates a dependent variable ( biological effect ) to independent variable, e.g., dose
rate, duration of exposure, age.

Repeated Measures : A biological endpoint is measured for the same individual or animal at
different times ( ages).

Residual Variance : The variance in experimental measurements remaining after accounting for
the variance due to the independent variables, e.g., dose rate, duration of exposure, age.
Typically referred to as the inherent unaccountable experimental variation.

Residuals : The numerical differences between observed and estimated effects.

Reference Concentration ( RfC ) : An estimate of the concentration of daily exposure to a
substance ( with uncertainty spanning perhaps an order of magnitude ) for a human population (
including sensitive subgroups) that is likely to be without an appreciable risk of deleterious
effects during alifetime.

Reference Dose ( RfD ) : Replace ™ concentration " by " dose " in the above definition.

Risk : Probability that an animal or individual exhibits a particular adverse effect for a specified
exposure, expressed on a probability scale of 0to 1. May be expressed as the proportion of a
population effected and often converted to the percent effected.
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Risk Characterization : The process of combining dose-response information with exposure
information in order to estimate risk.

S-Plus : Computer software for performing statistical analyses.
SAS: Computer software for performing statistical analyses.
Second Degree : A mathematical function that contains a quadratic term.

Shape Parameter : The exponent on dose in a dose-response function that dictates the curvature
of the function.

Significance ( Statistical Significance) : See P-value.

Threshold Dose : Dose below which a specified biological effect does not occur, generally for a
particular population. Hence, the threshold dose is for the most sensitive individual in a
population.

Uncertainty : The unknown effects of parameters, variables, or relationships that cannot or have
not been verified or estimated by measurement or experimentation.

Uncertainty Factor : The value ( often adefault value of 10 ) used as adivisor of a NOAEL,
LOAEL, or benchmark dose to calculate a RfC or RfD. Uncertainty factors are applied as needed
for extrapolation of resultsin experimental animals to humans, interindividual variability
including sensitive subgroups, extrapolation from a LOAEL to aNOAEL, extrapolation of
results from subchronic exposures to chronic exposures, and database inadequacies.

Unconstrained Dose-Response Model : No restrictions imposed on the estimates of parameters.
Upper-Tail Probability : Probability that a variable exceeds a specified value.

Variability: Observable diversity in biological sensitivity or response, and in exposure parameters
(such as breathing rates, food consumption, etc.) These differences can be better understood, but
generaly not reduced by further research.

Variance : Measure of variability , standard deviation squared.

Weibull : Form of a dose-response curve characterized by arelatively shallow slope at low doses
that increases sharply as dose increases before leveling off at high doses.

Weighted Least Squares Estimate : Parameter estimate obtained by minimizing the sum of

squares of observed and estimated values weighted by a function, frequently the reciprocal of the
variance of an observation.
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