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Overview

• Biological Models
• Evaluating consistency of data and integrating diverse data

– Examples
• Pharmacokinetics & Response
• Pharmacodynamics

• Conclusions & Challenges

This presentation does not necessarily reflect policy of the US 
Environmental Protection Agency.
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What is a biological model?

• Explicit mathematical representation 
of biological hypotheses, knowledge 
of the physical system

• Biological & Association Models 
Systems Biology & Bioinformatics 

• Toxicological Context: Source to 
Outcome Continuum, Mode of Action

• Toxicity Pathway (National Academy of 
Sciences 2007 Toxicity Testing in the Twenty-
first Century: A Vision and a Strategy)
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PK and/or PD Model
Hierarchical Statistical 

Model Measurement Model

P(ε)

Measurement Error ε

Estimate all parameters simultaneously

Models for full characterization of variability and uncertainty
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Uses of Biological Models

• Analysis and Integration of Data
– Multiple study designs (in vitro, in vivo)
– Different measured endpoints

• Hypothesis Generation and Testing
– Alternative biological structures/descriptions

• Predictions
– Improved risk and safety assessments

• Interspecies, dose, route-to-route extrapolations 
(predictions)

– Evaluating population variability
• Modeling populations (e.g., polymorphisms) versus 

individuals
• Modeling life stages (e.g., children, elderly, ill)

– Evaluating uncertainties
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Iterative 
processes

Draft Guidance on the 
Development, Evaluation, and 
Application of Regulatory 
Environmental Models

http://cfpub.epa.gov/crem/ 
knowledge_base/knowbase.cfm
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Evaluating consistency of data and integrating diverse data

• Examples
– Vinyl chloride liver angiosarcomas
– Chloroprene lung cancer risk
– Receptor mediated processes
– Systems biology
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Clewell HJ, Gentry PR, Gearhart 
JM, Allen BC, Andersen ME. 

Comparison of cancer risk 
estimates for vinyl chloride using 
animal and human data with a 
PBPK model. 

Sci Total Environ. 2001 Jul 
2;274(1-3):37-66. 
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Vinyl chloride Animal & Human Derived Risk Estimates

15.78.68
Maltoni –
rat gavage
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Maltoni –
rat inhalation
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Maltoni –
mouse inhalation
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0.40 – 0.79Simonato et al.

0.97 – 3.60Jones et al.

0.71 – 4.22Fox & Collier
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Epidemiological 
Study

Human risk estimates (per million) for 
lifetime exposure to 1 ppb vinyl 
chloride in air based on the incident of 
liver angiosarcoma in animal 
bioassays or epidemiological studies.



9Office of Research and Development
National Center for Computational Toxicology

Why are such different incidences across species observed for the same exposures?
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Himmelstein MW, Carpenter 
SC, Evans MV, Hinderliter
PM, Kenyon EM. 

Kinetic modeling of beta-
chloroprene metabolism: II. 
The application of 
physiologically based 
modeling for cancer dose 
response analysis.

Toxicol Sci. 2004 79(1):28-37
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Pharmacological Agents: Diazepam
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Wide range of statistical and 
mathematical analyses:
Gueorguieva I, Aarons L, Rowland M. Diazepam 
pharamacokinetics from preclinical to phase I 
using a Bayesian population physiologically based 
pharmacokinetic model with informative prior 
distributions in WinBUGS. J Pharmacokinet
Pharmacodyn. 2006 Oct;33(5):571-94. 

Gueorguieva I, Nestorov IA, Rowland M. Reducing 
whole body physiologically based pharmacokinetic 
models using global sensitivity analysis: diazepam 
case study. J Pharmacokinet Pharmacodyn. 2006 
Feb;33(1):1-27. 

Gueorguieva I, Nestorov IA, Rowland M. Fuzzy 
simulation of pharmacokinetic models: case study 
of whole body physiologically based model of 
diazepam. J Pharmacokinet Pharmacodyn. 2004 
Jun;31(3):185-213. 
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Endocrine System Modeling

• Pharmacokinetics
– Classical compartmental model – luteinizing hormone (LH)
– PBPK models – testosterone (T), dihydrotestosterone (DHT)

• Pharmacodynamics
– Central axis – LH positively regulates T, T negatively regulates LH
– Prostate – androgen (DHT) dependent function

Potter LK, Zager MG, Barton HA. Mathematical model for the androgenic regulation of the 
prostate in intact and castrated adult male rats. Am J Physiol Endocrinol Metab. 2006 
291(5):E952-64 
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Prostate: Modeling Gene to Tissue Response

Blood 
flow

Fluid 
secretion

Ventral Prostate

T D H T⇒
5 -Rα

Dimerization

DNA binding

Protein synthesis

Cell 
proliferation

Apoptosis

(-)
(+)

(+)

(+)

DHT + AR ⇔ DHT:AR
AR ⇒ degradation



15Office of Research and Development
National Center for Computational Toxicology

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Days after castration

Fr
ac

tio
n 

of
 in

ta
ct

Prostate weight
Lee 1981
Lekas et al. 1997
Rittmaster et al. 1995
Prins 1989

Serum T
Kyprianou and Isaacs 1988
Coyotupa et al. 1973

Serum DHT
Coyotupa et al. 1973

Prostatic AR
Suzuki et al. 1997

Cell mass

Duct lumen mass
Rittmaster et al. 1995

Predicted Prostate Regression Following Castration: 
Model Calibration and Validation



16Office of Research and Development
National Center for Computational Toxicology

Systems Biology Modeling

Workman CT, Mak HC, McCuine S, 
Tagne JB, Agarwal M, Ozier O, Begley 
TJ, Samson LD, Ideker T. 

A systems approach to mapping DNA 
damage response pathways.

Science. 2006 May 19;312(5776):1054-9 

Bottom Up – from molecular 
reactions to network 
behavior, describe system & 
write equations

Top Down – from network 
behavior to molecular 
reactions – perturb system 
over range of dose & time, 
measure response, derive 
system
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Kinds of Data

• In vitro measurements: 
– metabolism rates, protein binding, tissue partitioning

• In vivo measurements
– Physiology: serum protein or receptor concentrations, blood flow

rates, tissue volumes 
– Exposed: oral gavage, diet, inhalation at different dose levels for 

varying durations
– Chemical in blood, urine, feces, tissues (time course)
– Molecular, biochemical, cellular, tissue level responses

• Transcriptomics, proteomics, metabonomics, imagining – in vitro or in 
vivo, control and exposed (perturbed)
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Conclusions & Challenges

Mathematical models help evaluate consistency among datasets and
integrate diverse kinds of data and information.

• Acceptance among trained toxicologists & other scientists.
• Acceptance process for application of models in public decision making.
• Transparency: One person’s transparency (e.g., mathematical equations 

or biological descriptions) is another person’s opacity.
• Technical challenges: systems biology for response processes, 

characterizing uncertainty in model outputs
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EBT & NAS Vision of Toxicity Testing in 21st Century

Moves towards:
• Characterizing perturbations of toxicity 

pathways applicable to humans
• Data from human-derived materials
• In vitro assays of Toxicity Pathways
• Doses perturbing toxicity pathways 
• Combine in vitro pathway data with computer 

models to predict in vivo

Moves away from:
• Data from animals
• In vivo assessments in animals 

except for targeted testing for 
specific purposes

• “High” dose toxicity studies
• Histopathology as dominant 

adverse endpoint to molecular 
perturbations of toxicity pathways
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Toxicity Pathways • Assessed using batteries of in 
vitro assays

• Need agreement on 
perturbations distinguishing 
normal biology from pathway to 
toxicity
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Challenges

• In vitro to in vivo extrapolation of toxicity pathways replaces cross-species 
extrapolation as dominant focus.

• Computational models integral to data analysis and interpretation.
• Demonstrating approach works
• Proposed as phased in over 20 years requiring substantial research & 

development budget

National Academy of Sciences 2007 Toxicity Testing in 
the Twenty-first Century: A Vision and a Strategy


