

EPA/635/R-08/012A

DEVELOPMENT OF A RELATIVE POTENCY FACTOR (RPF) APPROACH FOR POLYCYCLIC AROMATIC HYDROCARBON (PAH) MIXTURES

DRAFT – DO NOT CITE OR QUOTE

September 2009

NOTICE

This document is an **interagency science consultation draft**. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications.

U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is a preliminary draft for review purposes only. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

EXECUTIVE SUMMARY

The U.S. Environmental Protection Agency's (U.S. EPA's) Integrated Risk Information System (IRIS) Program is releasing for scientific review a relative potency factor (RPF) approach for polycyclic aromatic hydrocarbon (PAH) mixtures as one approach to assessing cancer risk from exposure to PAH mixtures. The RPF approach is not a reassessment of individual PAH carcinogenicity, but rather provides a cancer risk estimate for PAH mixtures by summing doses of component PAHs after scaling the doses (with RPFs) relative to the potency of an index PAH (i.e., benzo[a]pyrene). The cancer risk is then estimated using the doseresponse curve for the index PAH. RPFs for seven individual PAHs were developed in the U.S. EPA (1993) *Provisional Guidance for Quantitative Risk Assessment of PAHs (Provisional Guidance)* and are utilized extensively within U.S. EPA program offices and other regulatory agencies. The *Provisional Guidance*, however, does not reflect the most recent research, nor does it consider additional PAHs with carcinogenic potential (such as fjord-region PAHs).

The Supplemental Guidance for Conducting Health Risk Assessment of Chemical Mixtures (U.S. EPA, 2000) highlights that approaches based on whole mixtures are preferred to component approaches, such as the RPF approach. Risk assessment approaches based on toxicity evaluations of whole mixtures inherently address specific interactions among PAHs and account for the toxicity of unidentified components of PAH mixtures. They also do not require assumptions regarding the toxicity of individual components (e.g., dose additivity or response additivity). While whole mixture assessment is preferred, there are challenges associated with using these approaches. There are very few toxicity data available for whole PAH mixtures and, in most cases, chemical analyses of the composition of mixtures are limited. In addition, PAHcontaining mixtures tend to be very complex; the composition of these mixtures appears to vary across sources releasing these mixtures to the environment and in various environmental media in which they occur. For these reasons, a whole mixtures approach may not always be practicable for risk assessment purposes.

This report provides recommendations for development of the RPF approach for PAH mixtures health risk assessment and includes:

- (1) A rationale for recommending an RPF approach (Section 2);
- (2) A summary of previous approaches for developing the RPF approach for PAHs (Section 3);
- (3) An evaluation of the carcinogenic potential of individual PAHs (Section 4);

iii

- (4) Methods for dose response assessment and individual study RPF calculation (Section 5);
- (5) Selection of PAHs for inclusion in the RPF approach (Section 6);
- (6) Derivation of RPFs for selected PAHs (Section 7); and
- (7) Characterization of strengths, weaknesses, and uncertainties associated with the RPF approach to PAH cancer risk assessment (Section 8).

The RPF approach involves two key assumptions: (1) similar toxicological action of PAH components in the mixture; and (2) interactions among PAH mixture components do not occur at low levels of exposure typically encountered in the environment (that is, additivity is assumed). Mechanistic studies indicate that the mutagenic and tumor-initiating activity of carcinogenic PAHs requires metabolic activation to reactive intermediates (e.g., dihydrodiol epoxides, quinones, radical cations), which covalently modify DNA targets resulting in mutation, and that tumor promotion and progression phases may involve parent compound binding to the Ah receptor (AhR) and subsequent alterations of gene expression or a cell proliferation response to metabolite cytotoxicity (see Section 2.4, Similarities in Carcinogenic Mode of Action for PAHs, and Figure 2-3, Overview of the Proposed Key Events in the Mode of Action for PAH Carcinogenicity). As such, there is evidence that an assumption of similar toxicological action is reasonable; however, the carcinogenic process for PAHs is likely to be related to some unique combination of multiple molecular events resulting from formation of several reactive species. The second assumption of no interactions at low levels of exposure is reasonable, but evidence of toxicological interactions among PAHs at higher dose levels has been observed (see Section 2.7, Additivity of PAHs in Combined Exposures).

Several approaches have been used previously for the determination of RPFs for PAHs (see Section 3). In the published literature, RPF values were proposed in at least one analysis for a total of 27 PAHs (see Table 3-1). Because these approaches generally relied on similar bioassay data and modeling methods, the resulting RPF values are generally comparable for most PAHs across studies. The RPF approach provided in the current report makes use of more recent data on genotoxicity and tumorigenicity of PAHs.

There is a large PAH database on carcinogenicity in animal bioassays, genotoxicity in various test systems, and bioactivation to tumorigenic and/or genotoxic metabolic intermediates. The RPF analysis presented here includes only unsubstituted PAHs with three or more fused aromatic rings containing only carbon and hydrogen atoms, because these are the most widely studied members of the PAH chemical class. The study types that were considered most useful for RPF derivation were rodent carcinogenicity bioassays (all routes) in which one or more PAHs was tested at the same time as benzo[a]pyrene. In addition, in vivo and in vitro data for

cancer-related endpoints in which one or more PAHs and benzo[a]pyrene were tested simultaneously were obtained, including studies on the formation of DNA adducts, mutagenicity, chromosomal aberrations, sister chromatid exchange frequency, aneuploidy, DNA damage/repair/recombination, unscheduled DNA synthesis, and cell transformation. Although it would be possible to calculate RPFs from studies where a PAH and benzo[a]pyrene were tested by the same laboratory using the same test system but at different times, this approach was not considered because it could introduce differences in the dose-response information that are unrelated to the chemical (e.g., variability associated with laboratory environment conditions, animal handling, food supply, etc.). Thus, studies in which benzo[a]pyrene was not tested simultaneously with another PAH were not considered in the RPF calculations.

Studies of AhR binding/activation were not considered for use in deriving RPFs because there is evidence indicating that highly mutagenic fjord-region PAHs are potent carcinogens despite exhibiting lower AhR affinity (reviewed by Bostrom et al., 2002). Likewise, some PAHs that strongly activate the AhR, such as benzo[k]fluoranthene (Machala et al., 2001), are only weakly carcinogenic. In addition, some studies have demonstrated the formation of DNA adducts in the liver of AhR knock-out mice following intraperitoneal or oral exposure to benzo[a]pyrene (Sagredo et al., 2006; Uno et al., 2006; Kondraganti et al., 2003), indicating that Ah responsiveness is not a prerequisite to genotoxicity. These findings suggest that there may be alternative (i.e., non-AhR mediated) mechanisms of benzo[a]pyrene activation in the mouse liver, and that AhR affinity would not be a good predictor of carcinogenic potency.

Several study types were excluded from the database because they did not provide carcinogenicity or cancer-related endpoint information for individual PAHs. These include biomarker studies measuring DNA adducts in humans, studies of PAH metabolism, and studies of PAH mixtures. Although these studies contain important information on human exposure to PAH mixtures and the mode of action for PAH toxicity, they generally do not contain dose-response information that would be useful for calculation of RPF estimates.

A database of primary literature relevant to the RPF approach for PAHs was developed by performing a comprehensive review of the scientific literature dating from the 1950s through 2009 on the carcinogenicity and genotoxicity of PAHs. The search identified over 900 individual publications for a target list of 74 PAHs (see Table 2-1) that have been identified in environmental media or for which toxicological data are available. Review of these publications resulted in the identification of more than 600 papers that included carcinogenicity or cancerrelated endpoint data on at least one PAH and benzo[a]pyrene tested at the same time.

References in the PAH database were sorted into the following major categories: cancer bioassays, in vivo studies of cancer-related endpoints, and in vitro studies of cancer-related endpoints. These categories were further sorted by route (for bioassays) or by endpoint (for

v

cancer-related endpoints). Each study was reviewed, and critical study details were extracted into tables for each individual endpoint (see Section 4). The tables also include an initial determination of whether the data from each study meet selection criteria for use in the RPF analysis. Studies with data on selected PAHs and benzo[a]pyrene were considered for RPF determination, even if a particular PAH has not been classified by U.S. EPA or International Agency for Research on Cancer (IARC) as a carcinogen. Studies were included in the analysis if the following selection criteria were met:

- Benzo[a]pyrene was tested simultaneously with another PAH;
- A statistically increased incidence of tumors was observed with benzo[a]pyrene administration, compared with control incidence;
- Benzo[a]pyrene produced a statistically significant change in a cancer-related endpoint finding;
- Quantitative results were presented;
- The carcinogenic response observed in either the benzo[a]pyrene- or other PAH-treated animals at the lowest dose level was not saturated (i.e., tumor incidence at the lowest dose was <90%), with the exception of tumor multiplicity findings; and
- There were no study quality concerns or potential confounding factors that precluded use (e.g., no concurrent control, different vehicles, strains, etc. were used for the tested PAH and benzo[a]pyrene; use of cocarcinogenic vehicle; PAHs of questionable purity; unexplained mortality in treated or control animals).

If the above criteria were met, studies were selected for use in the analysis regardless of whether positive or negative results were reported. Studies with positive findings were used for calculation of RPFs. Studies with negative findings were used in a weight of evidence evaluation of potential carcinogenicity (discussed in Section 6.1).

Dose-response data were extracted from studies with positive findings that met selection criteria. For studies that reported results graphically, individual data points were extracted using digitizing software. In all, over 300 data sets were extracted, reflecting dose-response data from at least one study for 50 of the 74 PAHs included in the analysis. All of the extracted data are presented in Appendix C of this report.

Statistical analyses were performed on tumor bioassay data to determine whether the tumor incidence or multiplicity observed at a particular dose represented a statistically significant increase over controls. If statistical analyses were not described in the original report, incidence data were analyzed using Fisher's Exact test and the Cochran-Armitage trend test. Positive

findings were indicated by a significant (p < 0.05) difference for at least one dose group by comparison to control (in Fisher's Exact or an equivalent test) or a significant dose-response trend (Cochran-Armitage or equivalent) for multi-dose studies. For tumor bioassay data reported as tumor count, a t-test was conducted (when variance data were available) to determine whether the count was significantly different from control (p < 0.05). The results of the statistical analyses are shown with the dose-response data in Appendix C. Statistical analyses of the cancer-related endpoint data were not conducted; the study author's conclusions as to response (positive or negative) was used.

Section 5 describes both the methods used for dose-response assessment and RPF calculation in detail. The general equation for estimating an RPF was the ratio of the slope of the dose-response curve for the subject PAH to the slope of the dose-response curve for benzo[a]pyrene. For bioassay data, tumor incidences were modeled using the multistage model within the U.S. EPA Benchmark Dose (BMD) Software (Version 1.3.2). For cancer-related endpoint data in quantal form, this model was also used; for continuous data (either tumor multiplicity or cancer-related endpoint data), the simplest continuous model (linear) within the software was applied. Whenever the data allowed, benchmark response (BMR) values of 10% for quantal data and 1 standard deviation from the control value for continuous data were used to calculate the slope by linear extrapolation to the origin for consistency across data sets. Alternative BMR values were used in select instances, as described in Section 5.3. For data sets that included only a single dose, or those for which no model fit was achieved with the selected models, a point estimate RPF was calculated.

The RPFs calculated from individual studies for each PAH were used in a weight of evidence evaluation to assess the potential carcinogenicity of each compound (see Section 6) and in the derivation of a final RPF for each compound (Section 7). The selection of PAHs to be included in the RPF approach began with an evaluation of whether the available data were adequate to assess the potential carcinogenicity of each compound. At least one RPF value was calculated for each of 50 PAHs. For 16 of these compounds, only a single RPF value derived from an in vitro cancer-related endpoint (primarily mutagenicity assays) was available (see Table 6-1). Due to the limited data available for these 16 compounds, no further evaluation of these PAHs was conducted, and they were not selected for inclusion in the RPF approach.

For the remaining 34 PAHs, a weight of evidence evaluation (see Figure 6-1) was conducted to assess the evidence that each PAH could induce a carcinogenic response. This evaluation did not constitute a formal weight of evidence evaluation of carcinogenic potential; rather, an expedited approach was developed using the data collected to determine whether the available information for each PAH was adequate to draw a conclusion regarding carcinogenic potential. When the data were considered adequate for a given PAH, it was selected for

vii

inclusion in the RPF approach; if the data were not considered adequate to assess potential carcinogenicity, the PAH was excluded. In vivo tumor bioassays that included benzo[a]pyrene were given the greatest weight in assessing the potential carcinogenicity of a given PAH; data from other bioassays and cancer-related endpoint studies were used to supplement the weight of evidence when the bioassay data that included benzo[a]pyrene were conflicting or negative. Structural alerts for PAH carcinogenicity or mutagenicity (as defined in Section 2.5 as the presence of a classic bay region or fjord region in a PAH containing at least four benzene rings) were noted in the evaluation for each PAH, but were not used explicitly in the weight of evidence evaluation.

The weight of evidence evaluation (Section 6) indicated that the available data were adequate to determine that 23 of the 34 PAHs were potentially carcinogenic, that three PAHs (anthracene, phenanthrene, and pyrene) exhibited little or no carcinogenic potential, and that data were inadequate to evaluate the carcinogenic potential for eight PAHs. The eight PAHs with inadequate data were excluded from the RPF approach. For the three PAHs for which there were sufficient data to conclude that the PAH had minimal carcinogenic potential (i.e., robust negative tumor bioassay data and cancer-related endpoint data), a final RPF of 0 was recommended. While there is little quantitative difference between selecting a final RPF of 0 for a given PAH and excluding that PAH from the RPF approach, this is an important distinction for uncertainty analysis. There is substantial uncertainty in the risk associated with PAHs that are excluded from the RPF approach due to inadequate data; these compounds could be of low or high potency. However, for PAHs with an RPF of 0, there is evidence to suggest that these compounds are of little or no carcinogenic potential, and the uncertainty associated with the cancer risk for these compounds is markedly reduced.

For each of the remaining 23 compounds, a final nonzero RPF was derived. A number of options were considered for deriving an RPF from among the numerous values calculated for each individual PAH. These options included: prioritizing bioassay RPFs from different exposure routes based on relevance to environmentally-relevant routes; prioritizing bioassay RPFs based on target organs considered relevant to human susceptibility to PAH carcinogenesis; prioritizing RPFs based on quality of the underlying study; prioritizing cancer-related endpoints by their correlation with bioassay potency (i.e., ability to predict bioassay potency); and aggregating RPFs across all bioassays, all cancer-related endpoints, or across all endpoints. In the end, it was concluded that the available data did not provide a clear scientific basis for prioritizing RPFs except for a preference for bioassay data over cancer-related endpoints. As a consequence, final RPFs were derived from bioassay data for any PAH that had at least one RPF based on a bioassay.

For each potentially carcinogenic PAH with bioassay data, the average RPF was calculated from bioassays with positive results. For those PAHs that did not have any estimated RPF based on a bioassay, but for which the weight of evidence evaluation indicated a potential for carcinogenic response (e.g., dibenz[a,c]anthracene), the final RPF was calculated from all cancer-related endpoint studies with positive results. In both cases, nonpositive results were not included in the calculation. The final RPF for each PAH was reported to one significant figure. The range of RPF values was also reported. Presenting the RPFs in this manner provides an average and maximum estimate for each PAH that has data from multiple studies.

All tumor bioassay RPFs (across all exposure routes, species, sexes, and including both tumor incidence and tumor multiplicity RPFs) were combined to estimate the mean and range, except as follows. In some cases, two separate RPFs were calculated in the same group of animals. There were two situations in which this occurred: RPFs for different target organs in the same animals, and RPFs based on incidence of tumors and tumor count in the same animals In these instances, the higher value of the two RPFs was included in the average and range, and the lower value was dropped from the combined data.

Several options were considered for the determination of a final RPFs (e.g., arithmetic mean, geometric mean, weighted average, maximum, or order of magnitude estimates). The arithmetic mean and range were chosen as a simple approach to describing the calculated RPF values available for each PAH. Other statistical measures (i.e., geometric mean, weighted average) were not considered appropriate due to the limited number of RPF values calculated for most PAHs and the variability in the RPF estimates. Most PAHs (19/26, 73%) had \leq 3 calculated RPF values and the range of RPF values was greater than an order of magnitude for several compounds (6/26 PAHs). The variability in RPF estimates is likely due to differences in study design parameters (e.g., route, species/strain, exposure duration, exposure during sensitive time periods, initiation vs. promotion and complete carcinogenesis protocols, tumor incidence vs. multiplicity reporting) and dose-response methods (modeled vs. point estimates). Calculation of a weighted average was not possible because there is no clear biological rationale for choosing among study types or tumor data outcomes. Providing order of magnitude estimates, as has been previously done for estimating RPFs for PAHs, was not considered to be superior to calculating simple means. Including the range in the estimated RPFs was considered to be informative to the user for characterizing uncertainty.

Once a final RPF was derived for a given PAH, the resulting value was assigned a relative confidence rating of *high, medium, or low confidence*. The relative confidence rating characterized the nature of the database upon which the final RPF was based. Confidence rankings were based on the robustness of the database. For final RPFs based on tumor bioassay data, confidence ratings considered both the available tumor bioassays and the size and

ix

consistency of the cancer-related endpoint database. The most important factors that were considered included the availability of in vivo data and whether multiple exposure routes were represented. Other database characteristics that were considered important included the strength of evidence of genotoxicity data and SAR information, the availability of more than one in vivo study, and whether effects were evident in more than one sex or species. *Very low relative confidence* was reserved for final RPFs based on cancer-related endpoint data only (e.g., dibenz[a,c]anthracene). An RPF of zero was only applied if the data implied *high* or *medium relative confidence*.

Table 1 shows the average RPFs based on tumor bioassay data with their associated range and relative confidence ratings, and an overview of the tumor bioassay database (total number of studies, exposure routes tested, species tested, sexes tested) for each PAH. Table 2 shows the average RPF for dibenz[a,c]anthracene, the only RPF based on cancer-related endpoint data, with its associated range, relative confidence rating, and an overview of the database for this compound.

DAU	Average	Range of	Relative	Number of		Species	
РАН	RPF	RPFs	confidence	datasets	Exposure routes tested	tested	Sexes tested
Anthanthrene	0.4	0.2–0.5	Medium	2	Dermal, lung implantation	Mouse, rat	F
Anthracene	0	0	Medium	1 (Negative)	Dermal	Mouse	F
Benz[a]anthracene	0.2	0.02-0.4	Medium	3	Dermal, intraperitoneal	Mouse	F, M
Benz[b,c]aceanthrylene, 11H-	0.05	0.05	Low	1	Dermal	Mouse	F
Benzo[b]fluoranthene	0.5	0.1–2	High	5	Dermal, intraperitoneal, lung implantation	Mouse, rat	F, M
Benz[e]aceanthrylene	0.9	0.5 - 1	Low	2	Dermal	Mouse	F, M
Benzo[g,h,i]perylene	0.009	0.009	Low	1	Lung implantation	Rat	F
Benz[j]aceanthrylene	60	60	Low	1	Intraperitoneal	Mouse	F
Benzo[j]fluoranthene	0.3	0.01-1	High	5	Dermal, intraperitoneal, lung implantation	Mouse, rat	F, M
Benzo[k]fluoranthene	0.03	0.03-0.03	Medium	2	Dermal, lung implantation	Mouse, rat	F
Benz[1]aceanthrylene	5	4–7	Low	2	Dermal	Mouse	F, M
Chrysene	0.1	0.04-0.2	High	7	Dermal, intraperitoneal, lung implantation	Mouse, rat	F, M
Cyclopenta[c,d]pyrene	0.4	0.07 - 1	Medium	5	Dermal, intraperitoneal	Mouse	F, M
Cyclopenta[d,e,f]chrysene, 4H-	0.3	0.2–0.5	Low	2	Dermal	Mouse	F
Dibenzo[a,e]fluoranthene	0.9	0.7 - 1	Low	2	Dermal	Mouse	F
Dibenzo[a,e]pyrene	0.4	0.3–0.4	Low	2	Dermal	Mouse	F
Dibenz[a,h]anthracene	6	1–10	High	3	Dermal, intraperitoneal, lung implantation	Mouse, rat	F, M
Dibenzo[a,h]pyrene	0.9	0.9	Low	1	Dermal	Mouse	F
Dibenzo[a,i]pyrene	0.6	0.5 - 0.7	Low	2	Dermal	Mouse	F
Dibenzo[a,l]pyrene	30	10–40	Medium	3	Dermal, intraperitoneal	Mouse	F, M
Fluoranthene	0.08	0.009-0.2	Low	6	Intraperitoneal	Mouse	F, M
Indeno[1,2,3-c,d]pyrene	0.07	0.07	Low	1	Lung implantation	Rat	F
Naphtho[2,3-e]pyrene	0.3	0.3	Low	1	Dermal	Mouse	F
Phenanthrene	0	0	High	3 (Negative)	Dermal, intraperitoneal, lung implantation	Mouse, rat	F, M
Pyrene	0	0	High	7 (Negative)	Dermal, intraperitoneal	Mouse	F, M

Table 1. PAHs with final RPFs based on tumor bioassay data

NA = not applicable; M = male; F = female

Table 2. PAHs with final RPFs based on cancer-related endpoint data (no tumor bioassay data available)

	Average	Range of	Relative		
РАН	RPF	RPFs	confidence	Types of studies	Multiple dose studies
Dibenz[a,c]anthracene	4	0.04–50	Very low	Total = 14 studies	Total = 6 studies
				One in vivo DNA adduct	Four in vitro bacterial
				Six in vitro bacterial	mutagenicity
				mutagenicity	One in vitro DNA
				One in vitro mammalian	damage
				mutagenicity	One in vitro DNA
				One in vitro	adduct
				morphological/malignant	
				transformation	
				Three in vitro DNA	
				damage	
				Two in vitro DNA adducts	

According to the *Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens* (U.S. EPA, 2005b), benzo[a]pyrene is carcinogenic by a mutagenic mode of action. The PAH compounds for which a RPF value was derived are also considered to be carcinogenic by a mutagenic mode of action (see Section 2.4 for discussion of similarities in mode of action for PAHs). When assessing PAH cancer risks for life-stages under 16 years of age, or for lifetime exposures that include early-life exposures, the RPF values should be applied with specific exposure information to the benzo[a]pyrene cancer risk estimates including adjustment for early-life susceptibility, through the application of age-dependent adjustment factors (ADAFs).

A description of uncertainties and limitations is crucial to interpretation of the RPF approach for PAH mixtures risk assessment (see Section 8). Many of the general uncertainties related to chemical-specific risk assessment are also applicable to the proposed RPF approach for PAHs (e.g., appropriateness of animal models, low-dose and interspecies extrapolation, variability within the human population). Use of a component-based approach for mixtures risk assessment leads to additional uncertainties related to adequate characterization of the mixture and the potential interactions that may occur between individual components within the mixture (i.e., PAHs and other chemicals). The RPF approach is limited by the small number of PAHs for which there are analytical chemistry and toxicology data, and thus may result in underestimation of actual cancer risks from complex PAH mixtures. There are uncertainties and limitations related to the size and nature of the PAH database, the human relevance of animal data, assumptions regarding mode of action and dose additivity, and cross-route extrapolation. Specific uncertainties that are related to dose-response assessment (i.e., calculation of RPFs) and the selection of single RPF values for each PAH are also discussed in Section 8.

In summary, the current analysis represents a significant improvement upon the previous component-based approaches for PAH mixtures risk assessment. One of the most important

xii

improvements is the consideration of data from a comprehensive review of the scientific literature dating from the 1950s through 2009 on the carcinogenicity and genotoxicity of PAHs. The search identified over 900 individual publications for a target list of 74 PAHs that have been identified in environmental media and for which toxicological data are available. Review of these publications resulted in the identification of more than 600 papers that included carcinogenicity or cancer-related endpoint data on at least one PAH and benzo[a]pyrene tested at the same time. Dose-response data were extracted, and RPFs from individual studies were calculated from over 300 data sets representing 50 individual PAHs. A weight of evidence evaluation was conducted to evaluate the evidence for potential carcinogenicity of 34 of these PAHs; data were inadequate to conduct such an evaluation for the remaining 16 compounds. A final RPF was derived for each PAH based on tumor bioassay data (if available) or cancer-related endpoint data (if no tumor bioassay RPFs were available). Final RPFs were derived for 26 PAHs, significantly increasing the number of PAHs that can be addressed through this approach. Each RPF was assigned a relative confidence rating reflecting the nature of the tumor bioassay or cancer-related endpoint database that was used to derive the final RPF for that PAH.

xiii

CONTENTS

LIST OF TABLES	xvii
LIST OF FIGURES	1
LIST OF ABBREVIATIONS AND ACRONYMS	4
AUTHORS, CONTRIBUTORS, AND REVIEWERS	5
1. BACKGROUND FOR THE DEVELOPMENT OF A PAH MIXTURES HEALTH	
ASSESSMENT	7
2. RATIONALE FOR RECOMMENDING AN RPF APPROACH	
2.1. PAHs AS A CHEMICAL CLASS	11
2.2. THE TOXICOLOGICAL DATABASE FOR PAHs	
2.3. BENZO[A]PYRENE AS AN INDEX CHEMICAL	
2.4. SIMILARITIES IN MODE OF CARCINOGENIC ACTION FOR PAHs	31
2.5. STRUCTURAL ALERTS FOR PAH CARCINOGENESIS	
2.6. SIMILARITIES IN RELATIVE POTENCY ACROSS ENDPOINTS	43
2.7. SIMILARITIES IN RELATIVE POTENCY ESTIMATES ACROSS SPECIES	
AND EXPOSURE ROUTES.	
2.8. DOSE ADDITIVITY OF PAHs IN COMBINED EXPOSURES	46
	50
3. DISCUSSION OF PREVIOUSLY PUBLISHED RPF APPROACHES	
3.1. PREVIOUS EFFORTS TO VALIDATE RPF APPROACH	
4 EVALUATION OF THE CARCINOCENICITY OF INDIVIDUAL DATE	(0)
4. EVALUATION OF THE CARCINOGENICITY OF INDIVIDUAL PARS	00
4.1. DATADASE OF STUDIES ON PAIT CARCINOGENICITT AND CANCER-	60
A 2 STUDIES IN HUMANS	00
4.2. STUDIES IN HUMANS	02 62
4.5. STODIES IN ANNWALS	
4.3.1.1 Dermal Exposure	
4.3.1.2 Intraperitoneal Exposure	
4.3.1.2. Intraperioreal Exposure	93
4 3 1 4 Oral Exposure	94
4 3 1 5 Other Routes	95
4.3.2 In Vivo Studies of Cancer-Related Endpoints	95
4.3.2.1. DNA Adducts	
4.3.2.2. Clastogenicity or Sister Chromatid Exchange Frequency	
4.3.2.3. In Vivo Mutagenicity	
4.3.3. In Vitro Studies of Cancer-Related Endpoints	100
4.3.3.1. Bacterial Mutagenicity	100
4.3.3.2. Mammalian Mutagenicity	101
4.3.3.3. Morphological/Malignant Cell Transformation	102
4.3.3.4. DNA Adducts	103
4.3.3.5. DNA Damage/Repair	104
4.3.3.6. Clastogenicity or Sister Chromatid Exchange Frequency	104
4.4. SUMMARY OF INFORMATION AVAILABLE TO DEVELOP RPFS FOR	
INDIVIDUAL PAHs	106

5. METHODS FOR DOSE-RESPONSE ASSESSMENT AND RPF CALCULATION	106
5.1. CHOICE OF DOSE-RESPONSE DATA	106
5.2. OVERALL FORM OF RPF ESTIMATE	108
5.3. RPF CALCULATION FOR MULTIDOSE DATASETS	108
5.4. RPF CALCULATION FOR SINGLE DOSE DATASETS	110
5.5. DOSE CONVERSION FOR RPF CALCULATION	111
5.6. SPECIAL CONSIDERATIONS FOR RPF CALCULATION USING TUMOR	
BIOASSAY DATA	112
5.7. SPECIAL CONSIDERATIONS FOR RPF CALCULATION USING CANCER-	
RELATED ENDPOINT DATA	112
6. SELECTION OF PAHS FOR INCLUSION IN RELATIVE POTENCY APPROACH.	113
6.1. METHOD FOR SELECTING PAHS FOR INCLUSION IN RELATIVE	
POTENCY APPROACH	115
6.2. WEIGHT OF EVIDENCE EVALUATION FOR 34 INDIVIDUAL PAHS	118
7. CONCLUSIONS	189
7.1. METHODS FOR DERIVING FINAL RPFs	189
7.2. CONFIDENCE RATINGS FOR FINAL RPFs	191
7.3. SUSCEPTIBILITY FROM EARLY LIFE EXPOSURE TO CARCINOGENS	195
8. UNCERTAINTIES ASSOCIATED WITH RPF APPROACHES	196
8.1. UNCERTAINTY IN DOSE-RESPONSE ASSESSMENT FOR INDIVIDUAL	
PAHS	197
8.2. UNCERTAINTY IN SELECTING PAHs FOR INCLUSION IN RPF	
APPROACH	199
8.3. UNCERTAINTY IN DERIVING A FINAL RPF FOR EACH PAH	201
8.4 UNCERTAINTY IN USE OF ANIMAL DATA TO PREDICT HUMAN	
CANCER RISK	205
8.5 UNCERTAINTY IN THE ASSUMPTIONS OF COMMON MODE OF ACTION	
AND DOSE ADDITIVITY	207
8.6 UNCERTAINTY IN EXTRAPOLATING RPFs ACROSS EXPOSURE ROUTES	208
	200
9 REFERENCES	214
	21 1
APPENDIX A SECONDARY SOURCES REVIEWED FOR IDENTIFICATION OF	
PRIMARY LITERATURE	
	1
APPENDIX B BIBLIOGRAPHY OF STUDIES WITHOUT BENZOLAIPYRENE AS A	
REFERENCE COMPOUND	B-1
B 1 BIBLIOGRAPHY OF BIOASSAYS WITHOUT BENZOLAIPYRENE	B-4
B 2 BIBLIOGRAPHY OF STUDIES ON CANCER-RELATED ENDPOINTS	
WITHOUT BENZOIAIPYRENE	B-10
APPENDIX C DOSE-RESPONSE DATA FOR POTENCY CALCULATIONS	C -1
The properties of the properti	$\cdots $ \cup 1

D-1
D-1
D-45
D-67
D-87
D-96
D-124
D-156
E-1
F-1
G-1
G-1
G-6

LIST OF TABLES

2-1.	PAHs evaluated in the RPF analysis	12
2-2.	Studies of binary mixtures of PAHs and tumorigenicity	47
3-1.	Comparison among various relative potency estimates for PAHs from the published literature and regulatory agencies (1984–2004)	51
4-1.	Study summaries: dermal bioassays of benzo[a]pyrene and at least one other PAH	64
4-2.	Study summaries: intraperitoneal bioassays of benzo[a]pyrene and at least one other PAH	68
4-3.	Study summaries: subcutaneous bioassays of benzo[a]pyrene and at least one other PAH	69
4-4.	Study summaries: oral bioassays of benzo[a]pyrene and at least one other PAH	70
4-5.	Study summaries: other route bioassays of benzo[a]pyrene and at least one other PAH	71
4-6.	Study summaries: in vivo DNA adducts with benzo[a]pyrene and at least one other PAH	72
4-7.	Study summaries: in vivo clastogenicity or sister chromatid exchange with benzo[a]pyrene and at least one other PAH	74
4-8.	Study summaries: in vivo mutagenicity with benzo[a]pyrene and at least one other PAH	75
4-9.	Study summaries: in vitro bacterial mutagenicity with benzo[a]pyrene and at least one other PAH	76
4-10	. Study summaries: in vitro mammalian mutagenicity assays with benzo[a]pyrene and at least one other PAH	79
4-11	. Study summaries: in vitro morphological/malignant cell transformation with benzo[a]pyrene and at least one other PAH	82
4-12	. Study summaries: in vitro DNA adducts with benzo[a]pyrene and at least one other PAH	84
4-13	. Study summaries: in vitro DNA damage, repair, or synthesis with benzo[a]pyrene and at least one other PAH	85
4-14	. Study summaries: in vitro clastogenicity or sister chromatid exchange with benzo[a]pyrene and at least one other PAH	87

5-1	Comparison between molar and mass-based RPF	111
6-1.	PAHs with only one RPF from in vitro cancer-related endpoint study and excluded from RPF approach	114
6-2.	Results of weight of evidence evaluation of 34 PAHsError! Bookmark not def	fined.
7-1.	Final RPFs based on tumor bioassay data	193
7-2.	Final RPFs based on cancer-related endpoint data (no tumor bioassay data available)	194
8-1.	Results of simple linear regression of log-transformed average genotoxicity RPF vs. log average tumor bioassay RPF	203
8-2.	PAHs with RPFs of varying confidence	204
8-3.	Comparisons among average tumor bioassay RPF values by exposure route and target organ	210
B-1.	Bioassays with and without benzo[a]pyrene by PAH	B-2
C-1.	Dermal bioassays: dose response information for incidence data	C-2
C-2.	Dermal bioassays: dose-response information for tumor multiplicity	C-8
C-3.	Intraperitoneal bioassays: dose response information for incidence data	C-13
C-4.	Intraperitoneal bioassays: dose-response information for tumor multiplicity	C-22
C-5.	Lung implantation bioassays: dose response information for incidence data	C-26
C-6.	In vitro bacterial mutagenicity: data use	C-30
C-7.	In vitro bacterial mutagenicity: dose response data	C-33
C-8.	In vitro mammalian mutagenicity: data use	C-51
C-9.	In vitro mammalian mutagenicity: dose response data	C-53
C-10	0. In vitro malignant/morphological cell transformation: data use	C-61
C-1	1. In vitro malignant/morphological cell transformation: dose response data	C-63
C-12	2. In vitro DNA adducts: data use	C-71
C-13	3. In vitro DNA adducts: dose response data	C-72

xviii

C-14. In vitro DNA damage: data use	C-75
C-15. In vitro DNA damage: dose response data	C-76
C-16. In vitro clastogenicity: data use	C-80
C-17. In vitro clastogenicity: dose response data	C-81
C-18. In vivo DNA adducts: data use	C-82
C-19. In vivo DNA adducts: dose response data	C-83
C-20. In vivo clastogenicity: data use	C-90
E-1. Dermal bioassays: RPF calculations for incidence data	E-2
E-2. Dermal bioassays: RPF calculations for multiplicity data	E-5
E-3. Intraperitoneal bioassays: RPF calculations for incidence data	E-7
E-4. Intraperitoneal bioassays: RPF calculations for multiplicity data	E-9
E-5. Lung implantation bioassays: RPF calculations (incidence data)	E-10
E-6. In vivo DNA adducts: RPF calculations	E-11
E-7. In vivo clastogenicity or sister chromatid exchange: RPF calculation	E-13
E-8. In vitro bacterial mutagenicity: RPF calculations	E-15
E-9. In vitro mammalian mutagenicity: RPF calculations	E-21
E-10. In vitro morphological/malignant transformation: RPF calculation	E-24
E-11. In vitro DNA adducts: RPF calculations	E-27
E-12. In vitro DNA damage: RPF calculations	E-29
E-13. In vitro clastogenicity or sister chromatid exchange: RPF calculations	E-31
F-1. Example data for calculation of RPF detection limit	F-1
G-1. Average RPF value by exposure route	G-3
G-2. Comparisons among average tumor bioassay-based RPF values by data availability or calculation method	G-5
G-3. Correlation between LED and TD ₂₅ by endpoint	G-7

G-4.	Correlation between tumor potency (log $1/TD_{50}$) and mutagenic potency	G- 7
G-5.	Results of simple linear regression of log–transformed average genotoxicity RPF vs. log average tumor bioassay RPF	3-9

1

2			
4 5	2-1.	Structural features of PAHs	27
5 6 7	2-2.	Metabolic pathways for benzo[a]pyrene	32
8 9 10	2-3.	Overview of the proposed key events in the mode of action for PAH carcinogenicity.	34
10 11 12 13 14	2-4.	Structures of the four stereoisomeric adduct moieties, $anti$ -[BaP]- N^2 -dG, derived from the <i>trans</i> - or <i>cis</i> -covalent binding of (+)- <i>anti</i> -BaP diol epoxide or (-)- <i>anti</i> -BaPdiol epoxide to dG residues in DNA.	35
15 16	2-5.	Depurinating adducts of benzo[a]pyrene formed by one-electron oxidation	36
17 18	2-6.	Spectrum of DNA adducts anticipated with PAH o-quinones.	37
19 20 21	2-7.	Interaction of PAHs with the Ah receptor – regulation of genes related to induction of metabolism and cell differentiation and proliferation	39
21 22 22	6-1.	Weight of evidence assessment of potential carcinogenicity1	16
23 24 25	6-2.	2,3-Acepyrene (ACEP) RPFs 1	21
25 26	6-3.	Anthanthrene (AA) RPFs 1	23
27 28	6-4.	Anthracene (AC) RPFs 1	25
29 30	6-5.	Benz[a]anthracene (BaA) RPFs 1	27
31 32	6-6.	Benz[b,c]aceanthrylene (BbcAC) RPFs 1	29
33 34	6-7.	Benzo[b]fluoranthene (BbF) RPFs 1	31
35 36	6-8.	11H-Benzo[b]fluorene (BbFE) RPFs1	33
37 38	6-9.	Benz[e]aceanthrylene (BeAC) RPFs 1	35
39 40	6-10	. Benzo[e]pyrene (BeP) RPFs 1	37
41 42	6-11	. Benzo[g,h,i]fluoranthene (BghiF) RPFs 1	39
43 44	6-12	. Benzo[g,h,i]perylene (BghiP) RPFs 1	41
45 46	6-13	. Benz[j]aceanthrylene (BjAC) RPFs 1	43
47 48 49	6-14	. Benzo[j]fluoranthene (BjF) RPFs 1	45

1	6-15.	Benzo[k]fluoranthene (BkF) RPFs	147
2 3	6-16.	Benz[1]aceanthrylene (BIAC) RPFs.	149
4 5 6	6-17.	Chrysene (CH) RPFs.	151
0 7 0	6-18.	Coronene (CO) RPFs	153
9 10	6-19.	Cyclopenta[c,d]pyrene (CPcdP) RPFs.	155
10 11 12	6-20.	Cyclopenta[d,e,f]chrysene (CPdefC) RPFs.	157
12 13 14	6-21.	Dibenz[a,c]anthracene (DBacA) RPFs	159
14 15 16	6-22.	Dibenzo[a,e]fluoranthene (DBaeF) RPFs	161
17 18	6-23.	Dibenzo[a,e]pyrene (DBaeP) RPFs	163
19 20	6-24.	Dibenz[a,h]anthracene (DBahA) RPFs.	165
20 21 22	6-25.	Dibenzo[a,h]pyrene (DBahP) RPFs.	167
22 23 24	6-26.	Dibenzo[a,i]pyrene (DbaiP) RPFs	169
24 25 26	6-27.	Dibenzo[a,l]pyrene (DBalP) RPFs.	172
20 27 28	6-28.	Fluoranthene (FA) RPFs	174
20 29 30	6-29.	Fluorene (FE) RPFs.	176
30 31 22	6-30.	Indeno[1,2,3-c,d]pyrene (IP) RPFs	178
32 33 24	6-31.	Naphtho[2,3-e]pyrene (N23eP) RPFs	180
34 35 26	6-32.	Perylene (Pery) RPFs	182
30 37 29	6-33.	Phenanthrene (PH) RPFs.	184
38 39	6-34.	Pyrene (Pyr) RPFs.	186
40 41 42	6-35.	Triphenylene (Tphen) RPFs	188
42 43	8-1.	Correlation between incidence and multiplicity RPFs	202
44 45	G-1.	Average bioassay RPF vs. average in vivo DNA adduct RPF	G-10
40 47 40	G-2.	Average bioassay RPF vs. average in vivo nonbioassay RPF	G-10
48 49	G-3.	Average bioassay RPF vs. average nonbioassay RPF	G-11

1	
2	G-4. Average bioassay RPF vs. average in vitro non-bioassay RPFG-11
3	

1		LIST OF ABBREVIATIONS AND ACRONYMS [*]
2		
3		
4	AEL	acceptable exposure level
5	Ah	aryl hydrocarbon
6	AhR	Ah receptor
7	AhRE _{DNA}	Ah-responsive elements of DNA
8	ARNT	Ah-receptor nuclear translocator
9	ATSDR	Agency for Toxic Substances and Disease Registry
10	AUC	area under the curve
11	BMD	benchmark dose
12	BMR	benchmark response
13	CASRN	Chemical Abstract Service Registry Number
14	СНО	Chinese hamster ovary
15	СҮР	cytochrome P450
16	dG	deoxyguanosine
17	EAL	environmental assessment level
18	EOPP	estimated order of potential potency
19	EROD	ethoxyresorufin O-deethylase
20	HPRT	hypoxanthine-guanine phosphoribosyl transferase gene
21	Hsp90	heat shock protein 90
22	IARC	International Agency for Research on Cancer
23	IRIS	Integrated Risk Information System
24	LED	lowest effective dose
25	MGP	manufactured gas plant
26	MVK	Moolgavkar-Venson-Knudsen two-stage model
27	OEHHA	Office of Environmental Health Hazard Assessment, California EPA
28	PAC	polycyclic aromatic compound
29	PAH	polycyclic aromatic hydrocarbon
30	PCR	polymerase chain reaction
31	PEF	potency equivalency factor
32	RTECS	Registry of Toxic Effects of Chemical Substances
33	RPF	relative potency factor
34	RTD	relative tumor dose
35	SMART	somatic mutation and recombination test
36	TK	thymidine kinase locus
37	TIDAL	time-integrated DNA adduct level
38	TEF	toxicity equivalency factor
39	TPA LIG EDA	12-O-tetra-decanoylphorbol-13-acetate
40	U.S. EPA	U.S. Environmental Protection Agency
41	WHU	world Health Organization
42	* 1	for DAIL showing and growided in T-11-0.1
43	Abbreviations	s for PAH chemical names are provided in Table 2-1.
44		

1	AUTHORS, CONTRIBUTORS, AND REVIEWERS
2	
3	CHEMICAL MANAGERS
4	
5	Lynn Flowers, Ph.D., DABT
6 7	Office of Bessereh and Development
/	US Environmental Protection Agency
0	Washington DC
9 10	washington, DC
11	Martin Gehlhaus, III
12	National Center for Environmental Assessment, IRIS Program
13	Office of Research and Development
14	U.S. Environmental Protection Agency
15	Washington, DC
16	
17	AUTHORS
18	
19	Lynn Flowers, Ph.D., DABT
20	National Center for Environmental Assessment
21	Office of Research and Development
22	U.S. Environmental Protection Agency
23	Washington, DC
24	
25	Martin Genihaus, III
26	Office of Bessereh and Development
21	US Environmental Protection Agency
20 20	Washington DC
30	Washington, DC
31	Karen Hogan
32	National Center for Environmental Assessment, IRIS Program
33	Office of Research and Development
34	U.S. Environmental Protection Agency
35	Washington, DC
36	
37	Channa Keshava, Ph.D.
38	National Center for Environmental Assessment, IRIS Program
39	Office of Research and Development
40	U.S. Environmental Protection Agency
41	Washington, DC
42	
43	Gienn Kice, Fn.D. National Conter for Environmental Assessment
44 15	Office of Pesearch and Development
45 46	US Environmental Protection Agency
40 47	Cincinnati OH
48	Chiefman, Off
.0	

- 1 Jamie Strong, Ph.D.
- 2 National Center for Environmental Assessment, IRIS Program
- 3 Office of Research and Development
- 4 U.S. Environmental Protection Agency
- 5 Washington, DC
- 6
- 7 Linda Teuschler, Ph.D.
- 8 National Center for Environmental Assessment
- 9 Office of Research and Development
- 10 U.S. Environmental Protection Agency
- 11 Cincinnati, OH
- 12
- 13 Stephen Nesnow, Ph.D.
- 14 Environmental Carcinogenesis Division
- 15 National Health and Environmental Effects Research Laboratory
- 16 Office of Research and Development
- 17 Research Triangle Park, NC
- 18

19 Chao Chen, Ph.D.

- 20 National Center for Environmental Assessment
- 21 Office of Research and Development
- 22 Washington, DC
- 23
- 24 Heather Carlson-Lynch, S.M.
- 25 Syracuse Research Corporation, Inc.
- 26 Syracuse, NY
- 27
- 28 Julie Stickney, Ph.D., DABT
- 29 Syracuse Research Corporation, Inc.
- 30 Syracuse, NY
- 31
- 32 Peter R. McClure, Ph.D., DABT
- 33 Syracuse Research Corporation, Inc.
- 34 Syracuse, NY
- 35
- 36 Amber Bacom
- 37 Syracuse Research Corporation, Inc.
- 38 Syracuse, NY
- 39
- 40
- 41

1. BACKGROUND FOR THE DEVELOPMENT OF A PAH MIXTURES HEALTH ASSESSMENT

2 3 4

1

The U.S. Environmental Protection Agency (U.S. EPA) IRIS Program is undertaking a 5 project to develop a PAH Mixtures Health Assessment. This assessment focuses on the RPF 6 7 approach which is based on component PAHs in the mixture. In preparation for the development of the PAH Mixtures Health Assessment, U.S. EPA held a peer consultation workshop to outline 8 some of the important issues. These issues are discussed in Peer Consultation Workshop on 9 Approaches to Polycyclic Aromatic Hydrocarbon (PAH) Health Assessment (U.S. EPA, 2002) 10 11 and the accompanying discussion document. Health assessments for 15 unsubstituted, nonheterocyclic polycyclic aromatic 12 hydrocarbons (PAHs) with three or more rings are currently entered on EPA's Integrated Risk 13 Information System (IRIS) database. Benzo[a]pyrene is the only PAH for which quantitative 14 oral, dermal, and inhalation data are available. 15 16 In 1993, U.S. EPA published the Provisional Guidance for Quantitative Risk Assessment of PAHs (Provisional Guidance). The Provisional Guidance recommended estimated orders of 17 potential potency (EOPP) for individual PAHs that could be used in a component-based 18 approach to PAH mixtures risk assessment. The Provisional Guidance recommended EOPPs for 19 20 7 PAHs categorized as Group B2 (probable human carcinogens) under 1986 U.S. EPA Cancer Guidelines: benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, 21 22 chrysene, dibenz[a,h]anthracene, and indeno[1,2,3-c,d]pyrene (U.S. EPA, 1993). The current analysis extends the 1993 Provisional Guidance and provides recommendations for further 23 development of this approach to PAH mixtures risk assessment. The assessment includes the 24 25 following: 26 (1) A rationale for recommending an order of potency, or relative potency factor (RPF), 27 approach; 28 29 (2) A summary of previous approaches for developing the RPF approach for PAHs; 30 31 (3) Identification of individual carcinogenic PAHs that could be included in the RPF 32 approach; 33 34 (4) Identification of potential index chemicals; 35 36 (5) Presentation of the available literature for in vivo carcinogenicity and both in vivo and in 37 38 vitro cancer-related endpoint assays for individual PAHs; 39 (6) Development of a recommendation for the RPF approach for PAH mixtures; and 40 41

- (7) Characterization of strengths, weaknesses, and uncertainties associated with the recommended approaches.
- 3 4

5 6 7

1 2

2. RATIONALE FOR RECOMMENDING AN RPF APPROACH

8 PAHs are a concern as human health hazards, because many PAHs are demonstrated tumorigenic agents in animal bioassays and are active in in vivo or in vitro tests for genotoxicity 9 10 or DNA damage. PAHs do not occur in the environment as isolated entities; they primarily 11 occur in complex mixtures generated from the combustion or pyrolysis of substances containing carbon and hydrogen. Several complex mixtures of PAHs have been classified as possibly 12 carcinogenic, probably carcinogenic, or carcinogenic to humans (Straif et al., 2005; U.S. EPA, 13 2002; Bostrom et al., 2002; WHO, 1998; ATSDR, 1995; IARC, 1985, 1984a, b, 1983). 14 15 In concordance with U.S. EPA (2000, 1986) guidance for health risk assessment of chemical mixtures, assessment of the cancer risk from long-term human exposure to a particular 16 PAH mixture would best be conducted with quantitative information on the dose-response 17 relationship for cancer from chronic exposure to the mixture of concern. When data for the 18 19 mixture of concern are not available, U.S. EPA (2000, 1986) guidance recommends using toxicity data on a "sufficiently similar" mixture. However, quantitative cancer dose-response 20 information exists only for a few complex mixtures generated from the combustion or pyrolysis 21 of organic matter; for example, tobacco smoke, coke oven emissions, and emissions from roofing 22 23 tar pots (see Bostrom et al., 2002; Albert et al., 1983). U.S. EPA's IRIS database currently includes assessments for only three PAH-containing mixtures: coke oven emissions, creosote, 24 and diesel emissions. The availability of oral carcinogenicity bioassays of manufactured gas 25 plant (MGP) residue (Weyand et al., 1995) and coal tar preparations (Culp et al., 1998; Gaylor et 26 al., 1998) has expanded the PAH mixture cancer database. 27

28 Component-based approaches, involving an analysis of the toxicity of components of the 29 mixture, are recommended when appropriate toxicity data on a complex mixture of concern, or on a "sufficiently similar" mixture, are unavailable (U.S. EPA, 2000, 1986). Component-based 30 approaches involving dose addition (such as the RPF approach) are recommended when 31 32 components in the mixture are judged to act in a toxicologically similar manner. In the RPF 33 approach, doses of component chemicals that act in a toxicologically similar manner are added together, after scaling the doses relative to the potency of an index chemical (U.S. EPA, 2000, 34 1986). Then, using the dose-response curve of the index chemical, the response to the total 35 equivalent dose in the mixture is estimated. The index compound is typically the best-studied 36 member of the class with the largest body of available data describing exposure and health 37 38 effects. The index chemical should have a quantitative dose-response assessment of acceptable

scientific quality and must have (or be expected to have) similar toxic effects to the rest of the
members of the class.

3 For chemicals that act independently (e.g., by different modes of action), U.S. EPA guidance (2000, 1986) recommends a component-based approach involving response addition. 4 In this approach, response is defined as the percentage or fraction of exposed individuals that 5 show the effect of concern (i.e., the risk of having the effect). To apply a response-addition 6 7 approach to a complex mixture, information on the dose-response relationships for the effect of concern from exposure to individual components must be available. Based on an analysis of the 8 9 amount of each component in the mixture and its dose-response relationship, risks from exposure to the individual components are calculated and added together to estimate the risk for the effect 10 11 from exposure to the complex mixture.

Component-based approaches, either involving dose addition or response addition, include a general assumption that interaction effects at low dose levels either do not occur or are small enough to be neglected (U.S. EPA, 2000, 1986). However, when information on interactions among the components is available, U.S. EPA guidance recommends incorporating this information into the risk assessment, either as a part of a quantitative approach or as a qualitative evaluation.

The assessment of cancer risk from chronic oral or inhalation exposure to complex PAH 18 19 mixtures using component-based approaches is restricted by the limited availability of cancer dose-response data for individual PAHs. Benzo[a]pyrene is the only PAH that has dose-response 20 21 data for cancer from chronic oral, inhalation or dermal exposure (WHO, 1998; ATSDR, 1995). The IRIS Program developed cancer assessments for 15 PAHs in the early 1990s, but a 22 quantitative cancer assessment was only developed for benzo[a]pyrene. Six other PAHs were 23 qualitatively assessed as B2, probable human carcinogens, but the available data were 24 characterized as inadequate to develop oral or inhalation risk estimates. Thus, data are 25 26 insufficient to use a component-based approach involving response addition for assessing cancer risks from PAH mixtures. Although a response addition approach does not require an 27 assumption of similar toxicological action, it does require dose-response data for individual 28 29 components. 30 For exposure situations in which dose-response data for the PAH mixture or a sufficiently similar mixture are not available (e.g., the source of the PAH contamination may be mixed or 31 unknown), there are at least three practical advantages of an RPF approach that uses 32 benzo[a]pyrene as the index PAH: 33

- 34
- 35
- 36 37

(1) Benzo[a]pyrene is routinely assayed and detected in environmental media contaminated with PAH mixtures;

(2) Benzo[a]pyrene is the only PAH for which cancer dose-response data involving chronic
 exposures are available; and

9

- (3) There is a large database of studies in which the potency of benzo[a]pyrene is compared with the potency of other PAHs in various assays.
- 3 4

1

2

5 The database includes animal tumorigenicity¹ assays involving dermal or parenteral 6 administration, and in vivo and in vitro assays of cancer-related endpoints (e.g., various 7 genotoxic endpoints). Thus, RPFs for a number of PAHs can be derived.

8 The RPF approach involves two key assumptions: (1) the assumption of similar 9 toxicological action as required by dose addition; and (2) the assumption that interactions among 10 PAH mixture components do not occur at low levels of exposure typically encountered in the 11 environment.

12 Mechanistic studies indicate that the mutagenic and tumor-initiating activity of most carcinogenic PAHs requires metabolic activation to reactive intermediates (e.g., stereospecific 13 dihydrodiol epoxides). For several PAHs, (e.g., benzo[a]pyrene, dibenz[a,h]anthracene, 14 15 dibenzo[a,l]pyrene) there is evidence that DNA damage associated with metabolism can lead to mutations in cancer-related genes. Tumor promotion and progression by PAHs may involve 16 parent compound binding to the aryl hydrocarbon (Ah) receptor and subsequent alterations of 17 gene expression, as well as by cell proliferation in response to cytotoxic effects from metabolites 18 (see Section 2.4, Similarities in Carcinogenic Mode of Action for PAHs). Thus, there is some 19 20 evidence that an assumption of similar toxicological action is reasonable, but some aspects of the diversity of biological activities among PAHs are unexplained. The second assumption of no 21 interactions at low levels of exposure may be reasonable, but some evidence of toxicological 22 interactions among PAHs and among PAHs and other chemicals is available (see Section 2.8, 23 24 Additivity of PAHs in Combined Exposures). 25 Other key limitations to the RPF approach, relative to whole mixture approaches, are: (1) RPFs have been derived for a limited number of PAHs; and (2) cancer risks from non-PAH 26 27 components, unidentified PAHs, and heterocyclic and substituted PAHs in PAH mixtures are not estimated. The first of these limitations is being addressed, to the degree allowable by available 28 29 data, by the derivation of RPFs for numerous PAHs as discussed in Sections 4 and 5 of this report. If non-PAH carcinogenic components are identified and quantified in the complex 30 mixture of concern and appropriate dose-response data are available, the second limitation can be 31

- addressed by using a response addition approach (i.e., adding the cancer risk from PAH
- components estimated by the RPF approach to cancer risks estimated for the non-PAH
- carcinogenic components of the mixture). Previous efforts to validate the RPF approach using
- 35 data for PAH mixtures are discussed in Section 6.7. These validation efforts compared the
- 36 cancer risk of a PAH mixture measured experimentally with the cancer risk that was predicted
- using the RPF method but were limited by the small number of compounds for which RPFs and

¹Throughout this report, the term "tumorigenicity" is used to describe the production of either benign or malignant tumors.

analytical data were available (Muller et al., 1997; McClure, 1996; Goldstein et al., 1994;
Clement Associates, 1990, 1988; Krewski et al., 1989). Validation of the updated approach
presented here wold be of value, either using previous data on PAH mixtures (human and
animal) or using new data collected with the main purpose of evaluating the validity of the
approach.

6

7 2.1. PAHs AS A CHEMICAL CLASS

8 The PAH chemical class has been variously defined to include organic compounds containing either two or more, or three or more, fused rings made up of carbon and hydrogen 9 atoms (i.e., unsubstituted parent PAHs and their alkyl-substituted derivatives) (WHO, 1998). 10 Most PAHs are high-melting, high-boiling point, lipophilic compounds, predominately generated 11 from the combustion or pyrolysis of organic matter. The PAH chemical class includes alkylated 12 PAHs (e.g., 1.4-dimethylphenanthrene and 5-methylchrysene), but not heterocyclic compounds 13 containing N, S, or O or PAHs substituted with N-, S-, or O-containing groups; these are 14 15 included in a larger chemical class, often referred to as polycyclic aromatic compounds (PACs) 16 (WHO, 1998). The number of chemicals that comprise the PAHs class is unknown; however, there are thought to be hundreds of individual PAHs present as components of complex mixtures 17 (WHO, 1998). The analysis presented here is limited in focus to include only unsubstituted 18 19 PAHs with three or more fused aromatic rings containing only carbon and hydrogen atoms, 20 because these are the most widely studied members of the PAH chemical class. Naphthalene is a 21 widely studied 2-ring PAH compound; however, a separate toxicological review and carcinogenicity assessment is being developed by the IRIS Program for this compound and it is 22 not included in this RPF approach. The list of PAH compounds that were considered for 23 inclusion in this analysis is presented in Table 2-1 along with the Chemical Abstracts Service 24 Registry Numbers (CASRNs) and the abbreviations that are utilized in tables throughout the 25 26 report.

11

РАН	CASDN		<u> </u>	Molecular weight
(common synonyms)	CASRN	Abbreviation	Structure	(g/mol)
Benzo[a]pyrene	50-32-8	BaP		252.31
Aceanthrylene	202-03-09	ACEA		202.26
Acenaphthene	83-32-9	AN		154.21
Acenaphthylene	208-96-8	ANL		152.20
Acephenanthrylene	201-06-9	APA		202.26

РАН				Molecular weight
(common synonyms)	CASRN	Abbreviation	Structure	(g/mol)
Acepyrene, 2,3-	25732-74-5	ACEP		228.29
Anthanthrene	191-26-4	AA		276.34
Anthracene	120-12-7	AC		178.23
Benzacenaphthylene	76774-50-0	BAN		202.26
Benz[a]anthracene	56-55-3	BaA		228.29
Benzo[a]fluoranthene	203-33-8	BaF		252.32

РАН	CASDN	Abburristion	Standard	Molecular weight
(common synonyms)	229.94.C	Abbreviation	Structure	(g/mol)
Benzolalingoiene	238-84-0	Dafe		210.28
Benzo[a]perylene	191-85-5	BaPery		302.38
Benz[b,c]aceanthrylene, 11H-	202-94-8	BbcAC	C C H ₂	240.30
Benz[b]anthracene (Naphthacene)	92-24-0	BbA		228.29
Benzo[b]chrysene	214-17-5	BbC		278.35

PAH (common supervise)	CASDN	Abbraviation	Stanotino	Molecular weight
(common synonyms)		Abbreviation	Structure	(g/mol)
Benzo[b]fluoranthene	205-99-2	Врг		252.32
Benzo[b]fluorene, 11H	243-17-4	BbFE		216.28
Benzo[b]perylene	197-70-6	BbPery		302.38
Benzo[c]chrysene	194-69-4	BcC		278.35
Benzo[c]fluorene	205-12-9	BcFE		216.28

РАН				Molecular weight
(common synonyms)	CASRN	Abbreviation	Structure	(g/mol)
Benzo[c]phenanthrene	195-19-7	ВсРН		228.29
Benz[e]aceanthrylene	199-54-2	BeAC		252.32
Benzo[e]pyrene	192-97-2	ВеР		252.32
Benzo[g,h,i]fluoranthene	203-12-3	BghiF		226.28
Benzo[g,h,i]perylene	191-24-2	BghiP		276.34
PAH (common synonyms)	CASDN	Abbroviation	Structuro	Molecular weight
--------------------------	------------	--------------	-----------	---------------------
(common synonyms)		Abbreviation	Structure	(g/1101)
Benzo[g]chrysene	196-78-1	BgC		278.35
Benz[j]aceanthrylene	202-33-5	BjAC		252.32
Benzo[j]fluoranthene	205-82-3	BjF		252.32
Benzo[k]fluoranthene	207-08-9	BkF		252.32
Benz[1]aceanthrylene	211-91-6	BIAC		252.32
Benzophenanthrene	65777-08-4	ВРН		228.29

РАН				Molecular weight
(common synonyms)	CASRN	Abbreviation	Structure	(g/mol)
Chrysene	218-01-9	СН		228.29
Coronene	191-07-1	CO		300.36
Cyclopent[h,i]aceanthrylene	131581-33-4	CPhiACEA		226.28
Cyclopenta[c,d]pyrene	27208-37-3	CPcdP		226.28
Cyclopenta[d,e,f]chrysene, 4H-	202-98-2	CPdefC		240.30
Cyclopenta[d,e,f]phenanthrene	203-64-5	CPdefPH		190.24

PAH (common synonyms)	CASRN	Abbreviation	Structure	Molecular weight
Cyclopenta[h i]acephenanthrylene	114959-37-4	CPhiAPA	Structure	226.28
Cyclopentaphenanthrene	219-08-9	СРРН		216.28
Cyclopenteno-1,2-benzanthracene, 5,6-	7099-43-6	СРВА		268.36
Dibenz[a,c]anthracene (Benzotriphenylene)	215-58-7	DBacA		278.35
Dibenzo[a,c]fluorene, 13H-	201-65-0	DBacFE		266.34

РАН				Molecular weight
(common synonyms)	CASRN	Abbreviation	Structure	(g/mol)
Dibenzo[a,e]fluoranthene	5385-75-1	DBaeF		302.38
Dibenzo[a,e]pyrene	192-65-4	DBaeP		302.38
Dibenzo[a,f]fluoranthene (Indeno[1,2,3-fg]naphthacene	203-11-2	DBafF		302.38
Dibenzo[a,g]fluorene, 13H-	207-83-0	DBagFE		266.34
Dibenz[a,h]anthracene	53-70-3	DBahA		278.35

PAH (common synonyms)	CASRN	Abbreviation	Structure	Molecular weight
Dibenzo[a,h]pyrene	189-64-0	DBahP		302.38
Dibenzo[a,i]pyrene	189-55-9	DBaiP		302.38
Dibenzo[a,l]pyrene	191-30-0	DBalP		302.38
Dibenzo[b,e]fluoranthene	2997-45-7	DBbeF		302.38
Dibenzo[e,l]pyrene (Dibenzo[fg,op]naphthacene)	192-51-8	DBelP		302.38

РАН	CASDN		Starsetars	Molecular weight
(common synonyms)	CASKN	Abbreviation	Structure	(g/mol)
Dibenzo[h,rst]pentaphene	192-47-2	DBhrstPent		352.43
Dibenz[j,mno]acephenanthrylene	153043-82-4	DBjmnoAPH		276.34
Dibenz[k,mno]acephenanthrylene	153043-81-3	DBkmnoAPH		276.34
Dihydroaceanthrylene, 1,2-	641-48-5	DACEA		204.27
				202.24
Fluoranthene	206-44-0	IFA		202.26

PAH (common synonyms)	CASRN	Abbreviation	Structure	Molecular weight (g/mol)
Fluorene	86-73-7	FE		166.22
Indeno [1,2,3-c,d] fluoranthene	193-43-1	IF		276.34
Indeno[1,2,3-c,d]pyrene	193-39-5	IP		276.34
Naphth[1,2,3-mno]acephenanthrylene	113779-16-1	N123mnoAPH		276.34

PAH (common synonyms)	CASRN	Abbreviation	Structure	Molecular weight
Naphtho[1.2-b]fluoranthene	111189-32-3	N12bF	Sir detur e	302.38
Naphtho[2,1-a]fluoranthene	203-20-3	N21aF		302.38
Naphtho[2,3-a]pyrene (Naphtho[2,1,8-qra]naphthacene)	196-42-9	N23aP		302.38
Naphtho[2,3-e]pyrene (Dibenzo[de,qr]naphthacene)	193-09-9	N23eP		302.38

РАН	CASDN		Storestown	Molecular weight
(common synonyms)	CASRN	Abbreviation	Structure	(g/mol)
Pentacene	135-48-8	PCE		278.35
Pentaphene	222-93-5	Pent		278.35
(Dibenzphenanthrene, 2,3:6,7-)				070.00
Perylene	198-55-0	Pery		252.32
Phenanthrene	85-01-8	РН		178.23
Picene	213-46-7	Pic		278.35

PAH (common synonyms)	CASRN	Abbreviation	Structure	Molecular weight (g/mol)
Pyrene	129-00-0	Pyr		202.26
Tribenzofluoranthene 3,4-10, 11-12,13-	13579-05-0	TBF		352.43
Triphenylene	217-59-4	Tphen		228.29

1 2

Unsubstituted PAHs have been further classified into alternant and nonalternant

3 compounds. Alternant PAHs are those compounds composed solely of fused benzene rings,

4 while nonalternant PAHs contain both benzene and five carbon rings. Among alternant PAHs,

5 important structural features related to enhanced mutagenicity and carcinogenicity include the

6 presence of at least four rings (Bostrom et al., 2002). Common structural features of PAH

7 compounds are illustrated in Figure 2-1.

Bay-region and Fjord-regions of PAHs

1	
2	Figure 2-1. Structural features of PAHs.
3	
4	2.2. THE TOXICOLOGICAL DATABASE FOR PAHs
5	Over the last 30- to 50-years, a large PAH database has been generated including studies
6	of carcinogenicity in animal bioassays, genotoxicity in various test systems, and metabolism
7	(bioactivation) to tumorigenic and/or genotoxic intermediates. Carcinogenicity and genotoxicity
8	data are sufficient to classify a number of individual PAHs as possibly carcinogenic to humans
9	(WHO, 1998; U.S. EPA, 1993; IARC, 1989, 1986, 1985, 1984a, b, 1983). Other PAHs have
10	been tested for tumorigenicity and/or genotoxicity, but either negative or equivocal results were
11	obtained; for many positive results were only observed in genotoxicity assays (e.g., pyrene).
12	Many studies have been performed to provide further understanding about the carcinogenic
13	mode of action of PAHs (see Bostrom et al., 2002; WHO, 1998; ATSDR, 1995). Therefore, the
14	PAH database contains studies that evaluate:
15	

1	• Metabolism to reactive intermediates;
2	• Characterization of PAH-DNA adducts;
4	
5	• Mutagenicity of PAHs in bacterial and mammalian cells;
0 7	• Mutation spectra in identified oncogene and tumor suppressor genes;
8	
9	• Clastogenic effects;
10	
11	• Cell transformation; and
12	• Initiation and promotion of carcinogenicity
14	initiation and promotion of carefulogement).
15	A significant limitation to the database is the lack of data from long-term oral or
16	inhalation cancer studies for most individual PAH compounds. In addition, benzo[a]pyrene is
17	the only chemical for which long-term animal studies have been conducted by multiple exposure
18	routes (Kroese et al., 2001; Culp et al., 1998, 1996a, b; Thyssen et al., 1981, 1980; Rigdon et al.,
19	1969; Rigdon and Neal, 1969, 1966; Neal and Rigdon, 1967). Furthermore, most of the
20	toxicological data available for PAHs relate to cancer or genotoxicity. Available information on
21	the systemic, noncarcinogenic effects of PAHs is limited although immunological, neurotoxic,
22	and developmental effects have been noted in animal studies (for earlier reviews see WHO,
23	1998; ATSDR, 1995). As a result, the relative potency methodology described here is applied
24	only to cancer risk assessment for PAHs.
25	
26	2.3. BENZO[A]PYRENE AS AN INDEX CHEMICAL
27	Because long-term animal studies are not available for many individual PAHs, it is
28	necessary to choose an appropriate index chemical for comparison of relative carcinogenic
29	potency. The index compound is typically the best-studied member of the class, with the largest
30	body of available data describing exposure and health effects. The index chemical should have a
31	quantitative dose-response assessment of acceptable scientific quality and must have (or be
32	expected to have) similar toxic effects to the rest of the members of the class.
33	Although the PAH composition of complex mixtures varies, benzo[a]pyrene is
34	considered to be present in significant amounts in certain occupational environments and urban
35	settings (WHO, 1998; Petry et al., 1996; ATSDR, 1995). Benzo[a]pyrene is one of the most

36 potent of the carcinogenic PAHs and has, therefore, been proposed to contribute significantly to

- the carcinogenicity of a PAH mixture, even when present in low concentrations (Petry, 1996).
- 38 Benzo[a]pyrene is also the best-studied PAH compound, with carcinogenicity bioassay data

1 available for several routes of exposure and a considerable number of studies on carcinogenic

2 mode of action.

3 The laboratory animal database for benzo[a]pyrene is robust. Benzo[a]pyrene has been shown to induce tumors at the site of administration and at distal sites in numerous studies. 4 Dose-response data for tumors are available for the oral, inhalation, and dermal routes of 5 administration in multiple species. There are methodological limitiations associated with the 6 7 inhalation data (Thyssen et al., 1981), although positive findings in intratracheal instillation studies support the observed positive response. Limited dermal exposure studies with several 8 strains of mice also provide data on dose-related tumor incidences (Albert et al., 1991; 9 Warshawsky and Barkley, 1987; Habs et al., 1984, 1980; Nesnow et al., 1983; Wynder et al., 10 1957). 11

12 The animal carcinogenicity database for benzo[a]pyrene includes several well-conducted oral cancer bioassays. Kroese et al. (2001) conducted a well-designed gavage study of 13 benzo[a]pyrene carcinogenicity and found that benzo[a]pyrene induced tumors at multiple sites 14 15 in rats of both sexes, specifically in the liver, forestomach, auditory canal, and oral cavity. In 16 another well-conducted study, using Ah-responsive B6C3F₁ female mice exposed in the diet (Beland and Culp, 1998; Culp et al., 1998), only portal-of-entry tumors were found, including 17 papillomas and/or carcinomas of the forestomach, esophagus, tongue, and larynx. Earlier, Neal 18 and Rigdon conducted a number of related studies evaluating the carcinogenicity of 19 benzo[a]pyrene in feed in Ah-responsive white Swiss mice (Rigdon and Neal, 1969, 1966; Neal 20 21 and Rigdon, 1967). These latter studies were not conducted using standard, modern toxicological methods and have limitations, including: inconsistent dosing protocols; varying 22 ages of the animals; use of benzene as a solvent; small numbers of animals; and evaluation of 23 only a limited number of tissues. However, the Neal and Rigdon studies provide useful dose-24 response information on benzo[a]pyrene carcinogenicity. Following oral administration via 25 26 feeding of benzo[a]pyrene, site-of-contact tumors, both papillomas and carcinomas, were induced in the forestomach, esophagus, and larynx of mice (Culp et al., 1998; Neal and Rigdon, 27 1967) and rats (Brune et al., 1981). The results following inhalation, dermal, or oral exposure 28 are further supported by numerous mechanistic studies or assays using infant mice, susceptible 29 30 transgenic strains, or Ah-receptor knockout mice.

Benzo[a]pyrene is a complete carcinogen and likely acts by initiating tumors through
 direct DNA damage as well as by promoting tumor growth. Benzo[a]pyrene has been shown to
 be mutagenic in multiple assay systems. Several modes of carcinogenic action are possible.
 These include:

- (1) Alteration of pathways regulating cell proliferation and survival (Tannheimer et al.,
 1998);
- 38

1 2	 (2) Inhibition of intracellular communication (Sharovskaia et al., 2003; Blaha et al., 2002; Rummel et al., 1999);
3 4 5	(3) Altered intracellular Ca ²⁺ signaling (Tannheimer et al., 1998);
5 6 7 8	 (4) Modulation of cell survival, cell proliferation, and altered growth via generation of oxidative stress and activation of oxidant stress signaling (Burdick et al., 2003; Miller and Ramos, 2001);
9 10 11	(5) Altered apoptosis processes (Chen et al., 2003);
11 12 13 14	(6) Dysregulation of normal circulating hormone levels or activity affecting tumorigenesis in reproductive tissues (Safe and Wormke, 2003; Archibong et al., 2002) or the central nervous system (Dasgupta and Lahiri, 1992);
15 16 17	(7) Disruption of cell cycle kinetics in breast cancer cells (Jeffy et al., 2002, 2000); and
18 19 20	(8) Disruption of DNA repair through alteration of RNA polymerase activity (Shah and Bhattacharya, 1989).
21	Oral (dietary) carcinogenicity bioassays are available that compare manufactured gas
22	plant (MGP) residue (Weyand et al., 1995) or coal tar preparations (Culp et al., 1998; Gaylor et
23	al., 1998) with benzo[a]pyrene. In both cases, there were significant differences in target organ
24	distribution of tumors between benzo[a]pyrene and complex mixtures of PAHs. Following
25	dietary administration, benzo[a]pyrene-induced tumors were observed primarily at the point of
26	contact (i.e., the forestomach), while MGP residue and coal tar produced tumors in the lung,
27	liver, forestomach, skin, and other organs. Tissue-specific differences in metabolic activation
28	and DNA binding of PAHs may contribute to the observed differences in target organ sensitivity
29	(Weyand and Wu, 1995; Culp and Beland, 1994). A recent gavage study in rats (Kroese et al.,
30	2001) demonstrated that oral exposure to benzo[a]pyrene could induce tumors at distal sites (i.e.,
31	liver, auditory canal); however, no lung tumors were observed. The lung appears to be a
32	sensitive target organ for complex mixture carcinogenicity, but is insensitive to benzo[a]pyrene-
33	induced tumorigenicity via oral and dermal exposures. The existing data limitations for other
34	PAHs, however, necessitate the use of benzo[a]pyrene as the only appropriate index chemical for
35	PAHs.
36	In summary, benzo[a]pyrene is the most appropriate compound to use as an index
37	chemical for carcinogenic PAHs. It is well-studied, with a robust database of both bioassay data
38	and mode of action information. Benzo[a]pyrene is a complete carcinogen with both initiating
39	and promoting properties, is among the most potent PAH carcinogens, and is prevalent in many
40	complex environmental mixtures. No alternative index chemical was identified from the list of
41	target PAHs.
42	

1 2.4. SIMILARITIES IN MODE OF CARCINOGENIC ACTION FOR PAHs

2 A common mode of action for chemicals is the basis for the assumption of dose additivity that underlies the RPF approach (U.S. EPA, 1990). The carcinogenic mode of action for PAHs 3 has been extensively reviewed (Ramesh, 2004; CCME, 2003; Bostrom et al., 2002; Larsen and 4 Larsen, 1998; WHO, 1998; Muller et al., 1997; Sjogren et al., 1996; ATSDR, 1995; Malcolm 5 and Dobson, 1994; U.S. EPA, 1990). The major key events that have been associated with PAH 6 7 carcinogenicity include: 8 9 • Oxidative metabolism to reactive intermediates that covalently bind to DNA, RNA, and 10 proteins (benzo[a]pyrene metabolism is illustrated in Figure 2-2); 11 Formation of DNA adducts; 12 • 13 Tumor initiation due to mutations in cancer-related genes (e.g., tumor suppressor genes 14 • 15 or oncogenes); and 16 17 • Tumor promotion related to cytotoxicity and formation of reactive oxygen species, and Ah receptor (AhR) affinity and upregulation of genes related to biotransformation, 18 growth, and differentiation. 19 20

Source: Miller and Ramos (2001).

Figure 2-2. Metabolic pathways for benzo[a]pyrene.

1 Formation of reactive intermediates and DNA adducts

2 Each of the key events identified above is affected by the chemical structure of the individual PAH. At least three distinct molecular mechanisms have been proposed to explain the 3 tumor initiation process of PAHs (Xu et al., 2009; Jiang et al., 2007, 2005; Xue and 4 Warshawsky, 2005; Bolton et al., 2000; Penning et al., 1999; Harvey, 1996; Cavalieri and 5 Rogan, 1995). These modes of action include the formation of diol epoxides, radical cations, 6 7 and o-quinones (Figure 2-3). Diol epoxide formation leads to stable and unstable DNA adducts, mainly at guanine and adenine, which can lead to mutations in proto-oncogenes and tumor-8 suppressor genes. Radical cation formation may lead to the generation of unstable adducts at 9 guanine and adenine, leading to apurinic sites and mutation in HRAS. Orthoquinone formation 10 could lead to stable and unstable DNA adducts and generation of reactive oxygen species, 11 inducing mutations in P53. The evidence supporting the role of these reactive metabolites in 12 tumor initiation includes a characterization of the specific DNA adducts arising from PAH 13 metabolism and observations of mutagenesis resulting from direct exposure. Figure 2-3 14 15 illustrates the proposed key steps in the mode of action for PAH carcinogenesis. These include 16 the interaction of reactive metabolites with DNA to form adducts, induction of depurination, transversion mutations (e.g., $GC \rightarrow TA$ or $AT \rightarrow TA$), and oxidative damage to DNA, and tumor 17 promotion mediated by AhR-mediated effects on gene regulation. 18

33

2 3 4

Figure 2-3. Overview of the proposed key events in the mode of action for PAH carcinogenicity.

5 6

7 The formation of diol epoxides is a proposed key step in the most established mode of action for PAH-induced carcinogenicity. Extensive studies of the metabolism of carcinogenic 8 PAHs suggest that bay-region and fjord-region diol epoxides are some of the ultimate reactive 9 metabolites of PAHs (Jerina et al., 1978; Jerina and Lehr, 1977). These metabolites are 10 generally formed through cytochrome P450 (CYP) oxidation to form epoxides and epoxide 11 hydrolase cleavage resulting in diol formation. CYP1A1 appears to be the primary isozyme 12 13 involved in diol epoxide formation; however, other isozymes may also contribute to PAH metabolism (i.e., CYPIA2, CYP1B1, CYP3A4) (Bostrom et al., 2002; ATSDR, 1995). Non-14 alternant PAHs, composed of fused benzenoid and five-membered rings, may be metabolized 15 through other pathways resulting in the formation of reactive intermediates that bind to DNA. 16 Classic bay- and fjord-region diol epoxides may be formed from these compounds; however, 17 epoxide formation at cyclopenta-ring structures has also been demonstrated to result in DNA 18 adduct formation (Bostrom et al., 2002). 19 Many studies have been performed to evaluate the formation of DNA adducts following 20 21 in vivo or in vitro exposure to PAHs. Diol epoxide metabolites interact preferentially with the

- 1 exocyclic amino groups of deoxyguanine and deoxyadenine (Geacintov et al., 1997; Jerina et al.,
- 2 1991). Adducts may give rise to mutations, unless these adducts are removed by DNA repair
- 3 processes prior to replication. The stereochemical nature of the diol epoxide metabolite (i.e.,
- 4 anti- versus syn-diol epoxides) affects the number and type of adducts and mutation that occurs.
- 5 Figure 2-4 presents the structures of four stereoisomeric adducts arising from the interaction of
- 6 benzo[a]pyrene diol epoxide metabolites with the deoxyguanosine (dG) residues in DNA
- 7 (Geacintov et al., 1997). Transversion mutations (e.g., $GC \rightarrow TA$ or $AT \rightarrow TA$) are the most
- 8 common type of mutation found in mammalian cells following diol epoxide exposure (Bostrom
- 9 et al., 2002).

10S (+)-trans-anti-[BaP]-№-dG

10R (-)-trans-anti-[BaP]-N²-dG

O

'N

NH

10R (+)-cis-anti-[BaP]-N²-dG

Source: Geacintov et al. (1997).

NH

10S (-)-cis-anti-[BaP]-N²-dG

- 10
- 11 12

13

14

15 16

Figure 2-4. Structures of the four stereoisomeric adduct moieties, *anti*-[BaP]-N²-dG, derived from the *trans*- or *cis*-covalent binding of (+)-*anti*-BaP diol epoxide or (-)-*anti*-BaP diol epoxide to dG residues in DNA.

Radical cation formation involves a one-electron oxidation that produces electrophilic
radical cation intermediates (Cavalieri and Rogan, 1995, 1992). Oxidation of this type can occur
by CYP or peroxidase enzymes (i.e., horseradish peroxidase, prostaglandin H synthetase).

Radical cations can be further metabolized to phenols and quinones (Cavalieri et al., 1988a), or 1 2 they can form unstable adducts with DNA that ultimately result in depurination (Cavalieri et al., 2005, 1993; Rogan et al., 1993). Radical cations have been shown to play a major role in 3 formation of DNA adducts for several carcinogenic PAHs (e.g., 7,12-dimethylbenzanthracene, 4 benzo[a]pyrene, dibenzo[a,l]pyrene). The predominant depurinating adducts occur at the N-3 5 and N-7 positions of adenine and the C-8 and N-7 positions of guanine (Cavalieri and Rogan, 6 7 1995; Li et al., 1995). Figure 2-5 illustrates three depurinating adducts of benzo[a]pyrene formed by one-electron oxidation. Abasic sites resulting from base depurination undergo error-8 prone excision repair to induce mutations. In the case of DBalP-treated mouse skin, repair error 9 from abasic sites resulted in H-ras oncogene mutations that underwent rapid clonal expansion 10 and regression (Chakravarti et al., 2000). H-ras mutations in mouse skin papillomas also 11 12 corresponded to adenine and guanine depurinating adducts resulting from exposure to DBalP, 7,12-dimethyl-benz[a]anthracene, benzo[a]pyrene, and benzo[a]pyrene-7,8-dihydrodiol 13

- 14 (Chakravarti et al., 2008).
- 15

BaP-6-C8-guanine

16

17 18

Source. Cavalieri and Rogan (1995).

Figure 2-5. Depurinating adducts of benzo[a]pyrene formed by one-electron oxidation.

BaP-6-N7-guanine

20 21

19

o-Quinone metabolites of PAHs are formed by enzymatic dehydrogenation of
dihydrodiols (Bolton et al., 2000; Penning et al., 1999; Harvey, 1996; ATSDR, 1995).
Dihydrodiol dehydrogenase enzymes are members of the α-keto reductase gene superfamily.
o-Quinone metabolites are potent cytotoxins, are weakly mutagenic, and are capable of
producing a broad spectrum of DNA damage. These metabolites can interact directly with DNA
and also result in production of reactive oxygen species (i.e., hydroxyl and superoxide radicals)
that may produce further cytotoxicity and DNA damage. The DNA damage caused by

- 29 o-quinones may include the formation of stable adducts (Balu et al., 2006), N-7 depurinating
- 30 adducts (McCoull et al., 1999), oxidative base damage (i.e., 8-oxo-2'-dG or 8-oxo-dG) (Park et

36

BaP-6-N7-adenine

al., 2006, 2005), and strand scission (Flowers-Geary et al., 1997). The reactive oxygen species

2 generated by the o-quinone of benzo[a]pyrene and other PAH o-quinones have been shown to

3 induce mutation in the p53 tumor suppressor gene (Park et al., 2008; Shen et al., 2006; Yu et al.,

- 4 2002). Figure 2-6 illustrates the spectrum of DNA adducts associated with PAH o-quinones.
- 5

6 7

8

9 10 Source: Bolton et al. (2000).

Figure 2-6. Spectrum of DNA adducts anticipated with PAH o-quinones.

- 11 The cytotoxicity of o-quinone metabolites may also contribute to tumor promotion via
- 12 inflammatory responses leading to cell proliferation (Burdick et al., 2003).
- 13
- 14 *Genotoxicity and mutagenicity*
- 15 The genotoxicity and mutagenicity of PAHs have been demonstrated in various bacterial
- and mammalian assays (see Section 4.3.2 below) (reviewed in WHO, 1998; ATSDR, 1995).
- 17 Mutagenesis of PAHs in the Ames assay (Salmonella typhimurium) as well as other bacterial

assays requires the presence of a mammalian metabolic enzyme system. In most cases, this is 1 2 supplied by postmitochondrial supernatant (S9) from the liver of rodents treated with an enzyme inducer. Mammalian cell mutagenesis in Chinese hamster V79 cells and mouse lymphoma 3 L5178Y cells also requires metabolic activation in the form of a rodent S9 mix or co-cultivation 4 with metabolically active rodent cells (i.e., cell-mediated assay). Several studies have noted a 5 correlation between mutagenic potency and tumor initiation potency in the 2-stage dermal 6 7 carcinogenicity assay for multiple PAH compounds (LaVoie et al., 1985, 1979; Raveh et al., 8 1982). 9 Tumor promotion and the AhR 10

The ability of certain PAHs to act as tumor promoters as well as initiators may increase 11 their carcinogenic potency (Andrews et al., 1978). The promotional effects of PAHs appear to 12 be related to AhR affinity and the upregulation of genes related to biotransformation (i.e., 13 induction of CYP1A1), growth, and differentiation (Bostrom et al., 2002). Figure 2-7 illustrates 14 15 the function of the AhR and depicts the genes regulated by this receptor as belonging to two 16 major functional groups (i.e., induction of metabolism or regulation cell differentiation and proliferation). PAHs bind to the cytosolic AhR in complex with heat shock protein 90 (Hsp90). 17 The ligand-bound receptor is then transported to nucleus in complex with the AhR nuclear 18 translocator protein (ARNT). The AhR complex interacts with the Ah responsive elements of 19 the DNA (AhRE_{DNA}) to increase the transcription of proteins associated with induction of 20 21 metabolism and regulation of cell differentiation and proliferation. 22

1 2

3

4

5 6 AhRAhRSource: Okey et al. (1994).

Figure 2-7. Interaction of PAHs with the Ah receptor – regulation of genes related to induction of metabolism and cell differentiation and proliferation.

7 In general, it has been demonstrated that fjord-region PAHs are strong mutagens and 8 carcinogens, but have a low binding affinity to the AhR. Conversely bay-region PAHs possess a greater affinity for AhR binding, and are better tumor promoters in carcinogenicity bioassays 9 (Bostrom et al., 2002). CYP1A1 induction by PAHs is considered to contribute to tumorigenesis 10 11 by increasing the production of DNA-reactive metabolites (Ayrton et al., 1990). However, several recent studies indicate that CYP1A1 induction potency does not correlate well with 12 carcinogenic potency. These studies compared CYP1A1 induction potency for several PAHs 13 using assays to measure ethoxyresorufin O-deethylase (EROD) activity, CYP1A1 protein, and 14 mRNA levels, or chemical-activated luciferase reporter gene expression (Bosveld et al., 2002; 15 Machala et al., 2001; Bols et al., 1999; Till et al., 1999; Willett et al., 1997). 16 17

18 *Tumor promotion and cytotoxicity*

PAHs are metabolized to o-quinones, which are cytotoxic and can generate reactive
oxygen species (Bolton et al., 2000; Penning, 1999). PAH o-quinones reduce the viability and
survival of rat and human hepatoma cells (Flowers-Geary et al., 1996, 1993). Inflammatory

1 responses to cytotoxicity may contribute to the tumor promotion process. For example,

2 benzo[a]pyrene quinones (1,6-, 3,6-, and 6,12-benzo[a]pyrene-quinone) generated reactive

- 3 oxygen species and increased cell proliferation by enhancing the epidermal growth factor
- 4 receptor pathway in cultured breast epithelial cells (Burdick et al., 2003). Dermal exposure of
- 5 mice to DBalP and dimethyl-benz[a]anthracene resulted in an inflammatory response that was
- 6 correlated with epidermal hyperplasia and skin tumor promotion (Casale et al., 2000, 1997). The
- 7 extent of epidermal hyperplasia was correlated with the cytokine mRNA response in lymph
- 8 nodes and skin of treated mice (Casale et al., 2000).
- 9

10 Genetic targets and tumor formation

DNA adducts and oncogenes/tumor suppressor gene mutations have been demonstrated 11 in tumor tissue from humans and laboratory animals. DeMarini et al. (2001) demonstrated 12 mutations in the p53 tumor suppressor gene and the K-ras oncogene in the lung tumors of 13 nonsmokers, whose tumors were associated with exposure to smoky coal. Lung tumors were 14 15 obtained from 24 nonsmoking women from China (age 30-63, mean age 48.5 + 8.8 years) who 16 used smoky coal in their homes without chimneys. Bronchioloalveolar adenocarcinoma and acinar adenocarcinoma were observed in 54 and 46% of the women studied, respectively. The 17 observed mutations in lung tumors were primarily $G \rightarrow T$ transversions at either K-ras or p53. 18 Mutation hotspots in the lung tumors examined corresponded with hot spots for PAH adducts 19 20 (codon 154), cigarette smoke associated mutations (codon 249), and both of these events 21 together (codon 273). The mutation spectrum was described as unique and consistent with exposure to PAHs in the absence of cigarette smoke. 22

Mutations in the K-ras, H-ras, and p53 genes were assessed in forestomach tumors 23 (n = 31) of mice fed benzo[a]pyrene in the diet (0, 5, 25, or 100 ppm) for 2 years (Culp et al., 24 2000). Forestomach tumors had K-ras mutations (68% of tumors), which were $G \rightarrow T$ or 25 C transversions in codon 12 or 13. H-ras (codon 13) and p53 mutations characterized as $G \rightarrow T$ 26 or C transversions were also each found in 10% of forestomach tumors. [³²P]-postlabeling of 27 forestomach DNA of benzo[a]pyrene-treated mice revealed one major adduct characterized as 28 dG-N²-BPDE. There was a linear relationship between the amount of benzo[a] pyrene consumed 29 and the concentration of $dG-N^2$ -BPDE in the forestomach of mice. For benzo[a]pyrene, 30 forestomach tumor incidence increased sharply with adduct concentrations between 50 and 31 140 fmol/mg DNA and in coal-tar fed mice. Tumor incidence increased sharply with 32 dG-N²-BPDE adduct levels between 20 and 60 fmol/mg DNA. The same levels of adduct were 33 present in lung and liver of benzo[a]pyrene-treated mice, although only the forestomach 34 exhibited benzo[a]pyrene-induced tumors (Goldstein et al., 1998). The presence of adducts in 35 tumor-free tissue suggests that DNA adduct levels alone are not necessarily predictors of tumor 36 37 outcome.

1	A series of experiments designed to evaluate the mechanistic relationship between PAH
2	DNA adducts, oncogene mutations, and lung tumorigenesis were performed in the A/J mouse
3	lung model (Nesnow et al., 1998a, 1996, 1995; Mass et al., 1993). Tumorigenic potency in the
4	lung of A/J mice varied over 2 orders of magnitude following a single intraperitoneal injection of
5	seven PAHs of varying structure (benzo[a]pyrene, benzo[b]fluoranthene, benz[j]aceanthrylene,
6	dibenz[a,h]anthracene, dibenzo[a,l]pyrene, cyclopenta[c,d]pyrene, and 5-methylchrysene).
7	When considering the non-alkylated PAHs, the number of lung adenomas per mouse was highest
8	for benz[j]aceanthrylene and cyclopenta[c,d]pyrene, each of which contain a pentacyclic ring
9	feature. The major DNA adducts identified in the mouse lung included:
10	
11 12 13	(1) Bay region diol epoxide adducts for benzo[a]pyrene, dibenz[a,h]anthracene, and 5-methylcholanthrene;
13 14 15	(2) Phenolic diol epoxide adducts for benzo[b]fluoranthene;
15 16 17	(3) Cyclopenta-ring adducts for cyclopenta[c,d]pyrene and benz[j]aceanthrylene;
17 18 19	(4) Bisdihydrodiol epoxide adducts for dibenz[a,h]anthracene; and
20 21 22	(5) Fjord-region diol epoxide adducts for dibenzo[a,l]pyrene (Nesnow et al., 1998a, 1996, 1995; Mass et al., 1993).
23	Guanine adducts were most common for all PAHs; however, adenine adducts were also
24	demonstrated for dibenzo[a,l]pyrene and benz[j]aceanthrylene. Quantitative analysis of DNA
25	adducts by [³² P]-postlabeling illustrates the importance of measuring DNA adduct levels over
26	time. A time-integrated DNA adduct level (TIDAL) was linearly related to the dose of a
27	particular PAH. The relationship of TIDAL level to tumor formation was similar for PAHs that
28	produce different types of adducts and different mutations in the Ki-ras oncogene. This suggests
29	that the probability of tumor formation for these PAHs may be related to the extent of overall
30	DNA damage and repair rather than the formation of specific adduct at specific sites.
31	The DNA sequence analysis of Ki-ras mutations in lung adenomas at codons 12 and 61
32	was generally consistent with the DNA adduct data in that PAHs that produced guanine adducts
33	also produced Ki-ras guanine mutations (Nesnow et al., 1998a, 1996, 1995; Mass et al., 1993).
34	Cyclopenta[c,d]pyrene, benz[j]aceanthrylene, and 5-methylchrysene produced large numbers of
35	adenomas per mouse (>90) and also produced a large proportion of tumors with CGT mutations
36	at Ki-ras codon 12. Cyclopenta-ring adduct formation by cyclopenta[c,d]pyrene and
37	benz[j]aceanthrylene was correlated with the formation of GGT \rightarrow CGT mutations at Ki-ras
38	codon 12. The primary mutation type for benzo[a]pyrene, benzo[b]fluoranthene, and
39	dibenzo[a,l]pyrene was the GGT \rightarrow TGT mutation, which is associated with the formation of diol
40	epoxide guanine adducts. Dibenz[a,h]anthracene did not induce mutations in Ki-ras codons 12

1 or 61; however, diol epoxide guanine adducts and lung adenomas in A/J mice were observed.

2 This suggests that a different genetic target may be involved in carcinogenicity of this

3 compound.

H-ras mutations were studied in skin papillomas of SENCAR mice resulting from dermal 4 initiation by benzo[a]pyrene or benzo[a]pyrene-7,8-dihydrodiol (400 nmol) followed by 12-O-5 tetra-decanoylphorbol-acetate (TPA) promotion (Chakravarti et al., 2008). PCR amplification of 6 7 the H-ras gene and sequencing revealed that codon 13 (GGC to GTC) and codon 61 (CAA to CTA) mutations in papillomas corresponded to the relative levels of depurinating adducts of 8 guanine and adenine, despite the formation of significant amounts of stable DNA adducts. 9 Other studies also suggest that multiple genetic targets may be involved in PAH 10 mutagenicity and carcinogenicity (Conney et al., 2001; Smith et al., 2000). Smith et al. (2000) 11 indicated that diol epoxide adducts and mutations were observed in the p53 tumor suppressor 12 gene following in vitro exposure of cultured human bronchial epithelial cells to metabolites of 13 benzo[a]pyrene, chrysene, benzo[c]phenanthrene, and benzo[g]chrysene. PAH adducts and 14 15 corresponding mutations preferentially formed at lung mutational hot spots (codons 154, 157, 158, 245, 248, and 273), suggesting that PAHs may contribute to the mutation spectrum 16 observed in human lung cancer. Conney et al. (2001) provided evidence that dose-dependent 17 differences may exist for the mutation spectra seen in PAH-induced tumors. Skin papillomas 18

induced by benzo[a]pyrene in female mice were examined for mutations in the c-Ha-ras protooncogene. The major difference between high- and low-dose groups was mutations at exon 2 of

the c-Ha-ras gene, with the proportion of AT base pair mutations higher in the low-dose group.

22 Dose-dependent changes in mutation profile were also evident in Chinese hamster V79 cells

exposed to the diol epoxides of benzo[a]pyrene and benzo[c]phenanthrene (i.e., the proportion of

24 AT mutations decreased with increasing concentration).

In conclusion, the available data indicate that there may be multiple mechanisms of PAH-induced carcinogenicity. However, a common mode of action involving oxidative metabolism to reactive intermediates, DNA adduct formation, and subsequent mutagenic events is considered to be the primary mode of carcinogenic action. For these reasons, the use of a RPF approach to estimate cancer risk associated with PAH exposure is considered appropriate. The uncertainties and limitations related to the mode of action assumption for PAH-induced cancer are further discussed in Section 8.5.

32

33

2.5. STRUCTURAL ALERTS FOR PAH CARCINOGENESIS

The carcinogenic activity of PAH compounds is influenced by specific structural features. For example, alternant PAHs having four or more benzene rings exhibit greater carcinogenic potency than PAHs with two or three benzene rings (Bostrom et al., 2002). The carcinogenic activity of PAHs is also related to the specific arrangement of the benzene rings. As described in Section 2.4, PAHs that form bay- and fjord-region diol or dihydrodiol epoxides 1 are more potent carcinogens compared with linear PAHs that lack this structural feature

- 2 (Bostrum et al., 2002). These metabolites are resistant to detoxification due to stereochemical
- 3 effects and, consequently, are more likely to be mutagenic and cause cancer (Flesher et al., 1976;
- 4 Buterin et al., 2000; Chang et al., 1981; Buening et al., 1979; MacLeod et al., 1979).
- 5 Dihydrodiol epoxides formed at other positions on the PAH molecule (i.e., not the bay or fjord-
- 6 regions) are more accessible to glutathione transferase detoxification and are less potent
- 7 mutagens and carcinogens (Flesher et al., 1976; MacLeod et al., 1979). Nonalternant PAHs
- 8 containing fused benzenoid and five-membered rings, can also be metabolized to bay- and fjord-
- 9 region diol epoxides (Bostrum et al., 2002); however, epoxide formation at the cyclopenta-ring
- structure may also contribute to carcinogenicity (Bostrum et al., 2002; Nyholm et al., 1996).

PAHs with at least four rings and a classic bay- or fjord-region (formed entirely by benzene rings; see Figure 2-1) may be characterized as containing structural alerts for carcinogenesis. However, this structural characterization is likely to be overly simplistic and other features may be important to carcinogenesis. Recent studies have applied quantitative structure activity relationship (QSAR) methods to evaluate the relationship between specific PAH structural features and mechanistic events related to carcinogenesis (Bruce et al., 2008; Vijayalakshmi et al., 2008).

- 18
- 19

2.6. SIMILARITIES IN RELATIVE POTENCY ACROSS ENDPOINTS

20 Studies that have evaluated the association between cancer-related endpoints and 21 tumorigencity of PAHs are briefly summarized below.

Several studies have been performed that compare the bacterial or mammalian cell 22 mutagenicity of various PAHs with tumor initiating activity or complete carcinogenesis (LaVoie 23 et al., 1985, 1981, 1979; Raveh et al., 1982; Andrews et al., 1978). In general, mutagenicity 24 appears to correlate best with tumor initiation. Complete carcinogenicity is not well-predicted by 25 positive findings in short-term mutagenicity assays. Andrews et al. (1978) tested 24 PAHs for 26 bacterial mutagenicity in the Ames test and compared these findings to evidence of 27 carcinogenicity (parent and metabolites) from previously published studies. Positive findings of 28 both mutagenicity and carcinogenicity were only reported for 14 of the 24 PAHs evaluated. 29 Eight of the 10 remaining PAHs were found to be mutagenic in the Ames assay, but were not 30 carcinogenic in animal studies. LaVoie et al. (1979) compared the mutagenicity, tumor-initiating 31 activity, and complete carcinogenicity of several series of structurally related PAHs. Tumor-32 initiating activity was found to correspond with complete carcinogenicity. Quantitation of 33 mutagenicity in the Ames assay for structurally related PAHs failed to provide a reliable 34 35 indication of tumor-initiating activity or complete carcinogenicity. In addition, mutagenicity results could not be used to predict which PAHs would be noncarcinogenic. Many PAHs were 36 active mutagens, but were not shown to be carcinogenic. Studies using methylated derivatives of 37 38 anthracene demonstrated a correlation between mutagenicity of specific metabolites and tumor

initiating activity in mouse skin (LaVoie et al., 1985). Raveh et al. (1982) reported that the
mutagenic response to PAHs in Chinese hamster V79 cells was similar to the skin tumor
initiating activity observed in SENCAR mice. Benzo[a]pyrene was demonstrated to be a more
potent mutagen and skin tumor initiator than cyclopenta[c,d]pyrene.

Sjogren et al. (1996) performed a multivariate analysis to evaluate the relevance of 5 different biological assays to the tumor initiating and promoting properties of PAHs. This 6 7 analysis considered carcinogenicity (strength of evidence), bacterial mutagenicity, inhibition or enhancement of bacterial mutagenicity, AhR affinity, and enzyme induction. A principle 8 components analysis indicated that bacterial mutagenicity data were poorly correlated with 9 cancer bioassay data (regression coefficients ranged from -0.1 to 0.15). Variables describing 10 AhR affinity showed the highest correlation with cancer data. A partial least squares regression 11 analysis showed that all of the AhR affinity variables analyzed in the report were statistically 12 relevant to describe cancer potency (regression coefficients ranged from 0.1 to 0.25). The 13 structural requirements for AhR affinity are the same as those required for enzyme induction and 14 15 bioactivation of PAHs. This analysis suggests that different chemical species (i.e., parent compounds or metabolites) may be responsible for the initiating and promoting properties of 16 PAHs. Sjogren et al. (1996) proposed that mutagenicity reflects the cancer initiation potency, 17 which may be more relevant at lower environmental exposure levels, and AhR affinity reflects 18 the promoting effect of some PAHs that occur primarily at high doses in animal bioassays. 19 Bostrom et al. (2002) suggested that the ability for a PAH to act as a promoter strongly increases 20 21 its carcinogenic potency in animal studies. However, highly mutagenic fjord-region PAHs are potent carcinogens, despite a lower AhR affinity (Bostrom et al., 2002; Jerina et al., 1991). 22 CYP1A1 induction by PAHs is considered to contribute to tumorigenesis by increasing 23 the production of DNA-reactive metabolites (Ayrton et al., 1990). However, CYP1A1 induction 24 potency alone does not appear to correlate well with carcinogenic potency of PAHs. EROD 25 26 activity was evaluated as a measure of CYP1A1 induction in rat hepatocytes (Bosveld et al., 2002; Till et al., 1999; Willett et al., 1997) and trout liver cells (Bols et al., 1999). Till et al. 27 (1999) additionally measured levels of CYP1A1 protein and mRNA. Machala et al. (2001) 28 measured PAH activation of the AhR using a chemical-activated luciferase reporter gene assay. 29 30 Comparable results were observed across studies and benzo[k]fluoranthene was consistently demonstrated to be the most potent inducer of CYP1A1. Chrysene, benzo[b]fluoranthene, 31 dibenz[a,h]anthracene, and indeno[1,2,3-c,d]pyrene were also demonstrated to be more potent 32 inducers of CYP1A1 than benzo[a]pyrene. However, most of these PAH compounds (except 33

dibenz[a,h]anthracene) are considerably less potent as carcinogens in animal bioassays.

Ross et al. (1995) evaluated the relationship between TIDAL values for DNA adduct formation and lung adenoma formation in A/J mice. The TIDAL value vs. tumor relationship was similar for five different PAHs, suggesting a correlation between adduct levels and tumor formation (regression analysis was not performed). As described above, the relationship of

1 TIDAL level to tumor formation was similar for PAHs that produce different types of adducts

- 2 and different mutations in the Ki-ras oncogene, suggesting that the probability of tumor
- 3 formation may be related to the extent of overall DNA damage and repair (Nesnow et al., 1998a,
- 4 1996, 1995; Mass et al., 1993).

5 To summarize, various cancer-related endpoints have been associated with PAH 6 carcinogenicity. Tumor initiation ability and AhR affinity were shown to correspond well with 7 complete carcinogenicity, while bacterial mutagenesis was not highly correlated with tumor 8 formation (Sjogren et al., 1996; Lavoie et al., 1979). DNA adduct formation corresponded with 9 lung adenoma formation in A/J mice for several PAHs (Sjogren et al., 1996; Ross et al., 1995; 10 LaVoie et al., 1979). The development of RPFs in this analysis considered both tumorigenicity 11 and cancer-related endpoints (e.g., mutagenicity, clastogenicity, morphological transformation).

2.7. SIMILARITIES IN RELATIVE POTENCY ESTIMATES ACROSS SPECIES AND EXPOSURE ROUTES

Available studies suggest that the potency of individual PAHs is generally consistent across species and study protocols. The consistency of potency estimates based on in vivo tumorigenicity studies conducted using different study protocols and exposure routes in varying species/strains of test animals is summarized below.

19 Nisbet and LaGoy (1992) and Clement Associates (1988) reported that RPFs for PAHs are reasonably consistent across different study protocols using varying species/strains of 20 21 laboratory animals. RPF estimates were calculated in multiple test systems including mouse skin complete carcinogenesis studies, mouse skin tumor initiation studies, studies in rat lung 22 (implantation), other rat studies (intrapulmonary injection, subcutaneous injection), and newborn 23 mouse (intraperitoneal injection). The RPF estimates for specific PAHs calculated from 24 different assay systems varied by less than an order of magnitude. The relative potency of 25 26 individual PAHs to benzo[a]pyrene was also shown to be very similar when based on data in different strains of mice using different mouse tumor initiation models (Slaga and Fisher, 1983). 27 Muller et al. (1997) compared the relative potency of benzo[a]pyrene and 3-methylcholanthrene 28 from data generated in three species (rat, mouse, and hamster). Similar RPF values (i.e., within a 29 30 factor of 2) were derived for oral exposures in mice, rats, and hamsters. In their comparison across different exposure routes (oral, respiratory, and dermal), Muller et al. (1997) reported 31 similar relative potencies for benzo[a]pyrene and 3-methylcholanthrene (within a factor of 2) for 32 data from rats exposed via oral and respiratory routes, and for mice exposed via oral and dermal 33 routes. The relative potency for respiratory exposure in mice was an order of magnitude lower 34 35 than relative potencies for the other two exposure routes. Schneider et al. (2002) performed a more recent evaluation of the impact of exposure 36

route on the determination of RPFs. Potency ratios were calculated for several carcinogenicity
 bioassays by dividing the carcinogenic potency of a PAH mixture by the carcinogenic potency of

DRAFT – DO NOT CITE OR QUOTE

benzo[a]pyrene as a single substance. The potency ratios were observed to vary by exposure 1 2 route and target organ. For example, potency ratios associated with forestomach tumors from oral exposure ranged from 0.7 to 1.2 (i.e., the potencies of the PAH mixtures and benzo[a]pyrene 3 to induce forestomach tumors were approximately equal). This suggested that these tumors may 4 be attributable to the benzo[a]pyrene content of the mixture. Potency ratios for skin tumor 5 production from dermal exposure ranged from 2 to 11, whereas RPFs calculated for lung tumors 6 7 from oral exposure, pulmonary implantation, or inhalation were greater than 20. These results suggested that the benzo[a]pyrene content of PAH mixtures may be only slightly responsible for 8 lung and dermal carcinogenicity. Schneider et al. (2002) suggested that RPF estimates should be 9 derived separately for oral, dermal, and inhalation exposure using studies with the relevant 10 11 exposure pathway.

12 To summarize, there is some consistency within the in vivo carcinogenicity database for relative potency estimates derived from different species and strains exposed by various routes, 13 although this is an area for which further research is needed. However, Schneider et al. (2002) 14 15 have cautioned that potency ratios appear to cluster by exposure route and target organ and have suggested that route-specific RPFs be developed. There is also some concern regarding the use 16 17 of benzo[a]pyrene as an index chemical to estimate lung cancer from PAH mixtures, considering that the lung is relatively insensitive to benzo[a]pyrene-induced tumorigenicity following oral 18 exposure (Gaylor et al., 1998). Section 8.6 provides a comparison of RPF values calculated in 19 this report, using bioassay data from different exposure routes and study designs. RPF values 20 21 were comparable across most exposure routes, with the exception of the newborn mouse 22 intraperitoneal injection studies.

23

24 **2.8. DOSE ADDITIVITY OF PAHs IN COMBINED EXPOSURES**

Use of the RPF approach assumes that doses of component chemicals that act in a similar 25 26 manner can be added together, after scaling the potencies relative to the index chemical, and that interaction effects do not occur (U.S. EPA, 2000, 1986). The level of confidence in the RPF 27 approach is increased if additivity can be demonstrated experimentally, even with simple 28 mixtures. For PAHs, the assumption of additivity cannot be confirmed or refuted based on the 29 available experimental data. It appears that risks may be generally additive for complex 30 mixtures, while binary mixtures can exhibit antagonism, synergism, or additivity as discussed 31 below. 32

The complexity of potential interactions for tumorigenesis of binary mixtures of PAHs is illustrated in Table 2-2. The nature of the interaction varies with the PAHs evaluated and the study conditions (e.g., vehicle used, dose selection, study method). Many studies were designed to evaluate the combined administration of a known carcinogen with either a weak carcinogen or a noncarcinogenic PAH. The true nature of the interaction (i.e., additive, synergistic, or antagonistic) can be difficult to determine in studies wherein the tumorigenic response is not

1 measured for both PAHs given alone and in combination. These studies can distinguish between

2 an enhanced or cocarcinogenic response and an inhibitory response, but a further classification

3 cannot be made. The interactions described as cocarcinogenic in Table 2-2 may be either

4 additive or synergistic in nature.

5

Reference	Endpoint	Findings	Net effect
Keterence Cavalieri et al., 1983 DiGiovanni et al., 1982	Endpoint Mouse skin carcinogenicity Skin tumor initiation in mice	Findings BaP and CPcdP given together resulted in synergistic effect at low and intermediate doses; three- to sevenfold increase in relative risk at intermediate dose of both BaP and CPcdP as compared to the sum of the relative risk for the same dose of each PAH given alone. BeP increased BaP tumor initiation $(30\%\uparrow)$, inhibited tumor initiation by DMBA $(84\%\downarrow)$ and DBabA $(48\%\downarrow)$ and produced no change in	Net effect S Co, I
		combination with 3-MC; DBacA inhibited tumor initiation by DMBA ($92\%\downarrow$), DBahA ($39\%\downarrow$), and 3-MC ($61\%\downarrow$) and produced no change in combination with BaP.	
Falk et al., 1964	Sarcoma induction in mice by subcutaneous injection	PH inhibited tumor response of DBahA in ethyl laurate vehicle (approximately 30%↓, estimated from graph); tumor response was enhanced in triethylene glycol vehicle (approximately 50%↑ to 100% tumor-bearing animals, estimated from graph).	Co, I
Lavik et al., 1942	Mouse skin tumors	3-MC and BaP, DBahA, or BaA essentially additive.	А
Pfeiffer, 1973	Sarcoma induction in mice by subcutaneous injection	BaP and DBahA less than additive; tumor response for combined treatment was within 10% of DBahA response.	Ι
Slaga et al., 1979	Skin tumor initiation in mice	BeP, Pyr, or FA increased skin tumor initiation by BaP (30, 35, and 23% ↑, respectively); BeP, Pyr, or FA decreased skin tumor initiation by DMBA (84, 50, and 34% ↓, respectively).	Co, I
Steiner, 1955; Steiner and Falk, 1951	Sarcoma induction in mice by subcutaneous injection	DBahA and 3-MC in combination roughly additive; BaA and CH in combination resulted in synergistic effect (9%↑ above additive response); BaA and DBahA in combination resulted in inhibition (48%↓ below additive response).	A, S, and I
Van Duuren and Goldschmidt, 1976; Goldschmidt et al., 1973	Mouse skin carcinogenicity	BeP, BghiP, Pyr, or FA and BaP increased tumors over BaP alone (>50% increase in incidence, also ↑multiplicity); no tumors were observed for PAHs without BaP.	S
Van Duuren et al., 1973	Mouse skin carcinogenicity	BaP and BghiP had cocarcinogenic effect (23% ↑ over BaP response alone).	Co
Warshawsky et al., 1993	Mouse skin carcinogenicity	Nontumorigenic dose of BaP increased tumor incidence produced by CH (16% \uparrow), anthracene (8% \uparrow), and FA (8% \uparrow).	S

Table 2-2.	Studies of binary	mixtures	of PAHs and	tumorigenicity
------------	-------------------	----------	-------------	----------------

3-MC = 3-methylchloanthrene; A = additive; Co = cocarcinogenic (enhanced tumorigenicity, study design does not allow for determination of A or S); DMBA = 7,12-dimethyl-benz[a]anthracene; I = inhibitory; S = synergistic

2 Slooff et al. (1989) reviewed the available data addressing the carcinogenicity of 3 individual PAHs and in combination. It was concluded that a generally additive effect was observed following administration of more than two different PAHs in weight ratios similar to 4 those occurring in ambient air or in various emissions. Combinations of only two PAHs 5 produced either additive, synergistic, or inhibitory effects. The complexity of the interaction 6 among single PAH compounds is thought to be related to effects on metabolic enzyme systems 7 including induction processes and competitive inhibition. The generally additive response noted 8 9 for a more complex mixture may reflect the balance between inhibitory and synergistic processes. 10

1

11 Additivity has been observed in carcinogenicity studies of complex mixtures of PAHs. 12 Schmähl et al. (1977) evaluated the production of skin tumors following combined dermal treatment with 11 PAHs found as constituents of automobile exhaust. Tumor findings were 13 presented separately for two groups of PAHs. High potency carcinogens (Group 1) included 14 15 benzo[a]pyrene, dibenz[a,h]anthracene, benz[a]anthracene, and benzo[b]fluoranthene. Lower potency PAHs (Group 2) included anthracene, benzo[e]pyrene, benzo[g,h,i]perylene, chrysene, 16 fluoranthene, phenanthrene, and pyrene. Chronic dermal exposure to PAHs in both groups 17 resulted in an additive response when compared to the tumor response for each group alone. 18 19 Nesnow et al. (1998b) evaluated lung tumor formation in A/J mice following combined administration of five carcinogenic PAH compounds (benzo[a]pyrene, benzo[b]fluoranthene, 20 21 dibenz[a,h]anthracene, 5-methylchrysene, and cyclopenta[c,d]pyrene). High and low doses were selected for each PAH in this study based on toxicity, survival, range of response, and predicted 22 tumor yield. The ratio of PAH doses was designed to simulate PAH ratios found in 23 environmental air and emissions samples. PAHs were administered to mice in a 2⁵ factorial 24 study design yielding 32 dose groups (combination of five PAHs at high and low doses). The 25 26 formation of lung adenomas was evaluated 8 months following intraperitoneal injection of PAH mixtures. A response surface model was used to evaluate specific interactions among PAHs. 27 The results of the study indicated that greater-than-additive effects were seen at low doses, while 28 less-than-additive effects were observed at high doses. However, the magnitude of the 29

interactions was relatively small (twofold), suggesting that potential interactions are limited in
 extent.

Dermal application of binary mixtures of PAHs has also been shown to produce additive, synergistic, and inhibitory effects on DNA binding in mouse skin (Hughes and Phillips, 1993, 1990). Hermann (1981) demonstrated that many PAHs could both enhance and inhibit the bacterial mutagenicity of benzo[a]pyrene depending on the relative concentrations in the binary mixture. Binary mixtures of benzo[a]pyrene and benzo[e]pyrene produced a synergistic response in the TA98 strain of *S. typhimurium* (which detects frameshift mutations), and antagonistic and additive effects in strain TA100 (which detects a broad spectrum of mutations)

1 depending on the concentration (Hass et al., 1981). Binary mixtures of PAHs have also been

2 shown to produce antagonistic or less than additive effects in the Ames assay of bacterial

3 mutagenicity (Barrai et al., 1992; Salamone et al., 1979a). Vaca et al. (1992) demonstrated an

4 additive effect for sister chromatid exchange induction by combined administration of

5 benzo[a]pyrene and fluoranthene in human peripheral lymphocytes cocultured with

6 PCB-induced rodent liver cells.

7 The effects of binary PAH mixtures on gene expression, DNA adduct formation, 8 apoptosis, and cell cycle are additive compared to the effects of the individual compounds in 9 human hepatoma cells (HepG2) (Staal et al., 2007). Equimolar and equitoxic mixtures of 10 benzo[a]pyrene with either dibenzo[a,l]pyrene, dibenz[a,h]anthracene, benzo[b]fluoranthene, 11 fluoranthene, or 1-methylphenanthrene were studied. PAH mixtures showed an additive effect 12 on apoptosis and on cell cycle blockage. The effects of binary mixtures of PAHs on gene 13 expression were generally additive or slightly antagonistic.

Additivity has also been observed for the mutagenicity of PAHs administered as a 14 complex mixture (Bostrom et al., 1998; Kaden et al., 1979). Kaden et al. (1979) evaluated the 15 bacterial mutagenicity of the PAH fraction of kerosene soot using resistance to 8-azaguanine as a 16 genetic marker for forward mutation in S. typhimurium. Approximately half of the PAHs tested 17 (34 of 70) produced a significant increase in the mutant fraction in this assay system. The 18 19 mutagenicity of the complex soot mixture was demonstrated to be approximately equal to the additive mutagenicity of the individual components. Bostrom et al. (1998) reported additivity in 20 21 the Ames test of bacterial mutagenesis (i.e., reversion to histidine independence) for a mixture of four PAHs (benzo[a]pyrene, benz[a]anthracene, fluorene, and pyrene) using four different strains 22 of S. typhimurium. 23

Mechanistic studies have suggested that the outcome of the interaction between two 24 PAHs in a binary mixture is dependent on changes in metabolism. PAHs can act as both 25 26 inducers and competitive inhibitors of the CYP enzymes that are responsible for generation of reactive metabolites. Benzo[e]pyrene has been shown to alter the oxidative metabolism of 27 benzo[a]pyrene, which may be related to the cocarcinogenic effect seen in skin tumor initiation 28 studies (Baird et al., 1984). Alterations in the types and amounts of benzo[a]pyrene metabolites 29 suggest that benzo[e]pyrene-induced changes may be isozyme specific (Smolarek and Baird, 30 1984). An increase in the formation of benzo[a]pyrene DNA adducts has also been 31 demonstrated for coadministration of benzo[e]pyrene in Sencar mouse skin (Smolarek et al., 32 1987). Fluoranthene and pyrene have been shown to increase the formation of benzo[a]pyrene-33 DNA adducts in mouse skin following a combined treatment (Rice et al., 1988, 1984). 34 35 Enhancement of the metabolism of benzo[a]pyrene to diol epoxide metabolites and subsequent DNA binding may explain the increased carcinogenic effect in this case. Phenanthrene did not 36 increase the formation of benzo[a]pyrene-DNA adducts and was not shown to be cocarcinogenic 37

following combined administration with benzo[a]pyrene in this study. Cherng et al. (2001)

49

DRAFT – DO NOT CITE OR QUOTE

demonstrated that benzo[g,h,i]perylene increased the formation of benzo[a]pyrene adducts in 1 2 hepatoma cells (HepG2) by enhancing benzo[a]pyrene induction of CYP1A1. Benzo[g,h,i] pervlene increased the nuclear accumulation of the AHR and/or the activation of the AhR to a 3 DNA-binding form (Cherng et al., 2001). Benzo[k]fluoranthene altered the metabolic profile of 4 benz[a]anthracene by increasing the activity of CYP1A1 (Schmoldt et al., 1981). The bacterial 5 mutagenicity of benz[a]anthracene was enhanced by use of a rodent liver S9 that was obtained 6 7 from animals previously exposed to other PAHs (Norpoth et al., 1984). Coadministration of benzo[a]pyrene and benz[a]anthracene to hamster embryo cell cultures resulted in a decrease in 8 the metabolism of benzo[a]pyrene, a decrease in the level of DNA binding, and a decrease in 9 mutation frequency in hamster V79 cells (Smolarek et al., 1986). 10 In summary, combined administration of binary mixtures of PAHs can result in several 11 types of joint action (i.e., additive, synergistic, or antagonistic). The nature of the joint action 12 appears to be dependent on the characteristics of the individual PAHs, related changes in 13 metabolism and possibly the test species/strain. PAHs can act as both inducers and competitive 14 inhibitors of the CYP enzymes that are responsible for generation of reactive metabolites. 15 Additivity has been observed for some complex mixtures of PAHs, suggesting a balance in the 16 relative metabolism of individual PAHs. For the purposes of this analysis, an assumption is 17 made that the combination of individual PAHs results in additive effects. Additional research is 18 needed to characterize the validity of this assumption. 19 20 21 3. DISCUSSION OF PREVIOUSLY PUBLISHED RPF APPROACHES 22 23 24 25 There are multiple analyses available for the derivation of relative potency estimates for individual PAHs. All of these analyses utilize benzo[a]pyrene as the index chemical. Table 3-1 26 compares relative cancer potency values for PAHs presented by several authors. A review of the 27 derivation of these relative potency values follows. 28 29 30

РАН	Abbr	U.S. EPA (1993)	Chu and Chen (1984)	Clement (1988)	Clement (1990)	Rugen et al. (1989)	Slooff et al. (1989)	Kroese et al. (2001)	Nisbet and LaGoy (1992)	Malcolm and Dobson (1994)	Meek et al. (1994)	Muller et al. (1997)	Larsen and Larsen (1998)	Collins et al. (1998)	Cali- fornia EPA (2004)
Acenaphthene	AN								0.001	0.001					
Acenaphthylene	ANL								0.001	0.001					
Anthanthrene	AA			0.32	0.316							0.28	0.3		
Anthracene	AC						0	0	0.01	0.01			0.0005		
Benzo[a]pyrene	BaP	1	1	1	1	1	1	1	1	1	1	1	1	1	
Benz[a]anthracene	BaA	0.1	0.013	0.145		0.004– 0.006	0-0.04	<0.1	0.1	0.1		0.014	0.005	0.1	
Benzo[b]fluoranthene	BbF	0.1	0.08	0.14	0.1228	0.0235			0.1	0.1	0.06	0.11	0.1	0.1	0.62
Benzo[c]phenanthrene	BcPH											0.023	0.023		
Benzo[e]pyrene	BeP			0.004	0.007					0.01		0	0.002		
Benzo[g,h,i]perylene	BghiP			0.022	0.0212		0.01-0.03	0.03	0.01	0.01		0.012	0.02		
Benzo[j]fluoranthene	BjF			0.061	0.0523	0.0763				0.1	0.05	0.045	0.05	0.1	0.52
Benzo[k]fluoranthene	BkF	0.01	0.004	0.066	0.0523		0.03-0.09	< 0.1	0.1	0.1	0.04	0.037	0.05	0.1	
Chrysene	СН	0.001	0.001	0.0044			0.05-0.89	0.1-0.03	0.01	0.01		0.026	0.03	0.01	0.17
Coronene	CO									0.001					
Cyclopenta[c,d] pyrene	CPcdP			0.023						0.1		0.012	0.02		
Dibenzo[a,h] anthracene	DBahA	1	0.69	1.11		0.599			5	1		0.89	1.1		
Dibenz[a,c]anthracene	DBacA									0.1					
Dibenzo[a,e]pyrene	DBaeP												0.2	1	
Dibenzo[a,h]pyrene	DBahP											1.2	1	10	11
Dibenzo[a,i]pyrene	DBaiP											1.1	0.1	10	12
Dibenzo[a,l]pyrene	DBalP												1	10	
Fluoranthene	FA						0-0.06	0.01	0.001	0.001			0.05		
Fluorene	FE								0.001	0.001					
Indeno[1,2,3- c,d]pyrene	IP	0.1	0.017	0.232	0.278	0.00599	0-0.08	0.1	0.1	0.1	0.12	0.067	0.1	0.1	
Perylene	Pery									0.001					

 Table 3-1. Comparison among various relative potency estimates for PAHs from the published literature and regulatory agencies (1984–2004)

Table 3-1. Comparison among various relative potency estimates for PAHs from the published literature and regulatory agencies (1984–2004)

РАН	Abbr	U.S. EPA (1993)	Chu and Chen (1984)	Clement (1988)	Clement (1990)	Rugen et al. (1989)	Slooff et al. (1989)	Kroese et al. (2001)	Nisbet and LaGoy (1992)	Malcolm and Dobson (1994)	Meek et al. (1994)	Muller et al. (1997)	Larsen and Larsen (1998)	Collins et al. (1998)	Cali- fornia EPA (2004)
Phenanthrene	PH						0.01	< 0.01	0.001	0.001		0.00064	0.0005		
Pyrene	Pyr			0.081					0.001	0.001		0	0.001		

Abbr = abbreviation
U.S. EPA (1993) presented RPFs (termed EOPPs) for seven PAHs (benzo[a]pyrene, 1 2 benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, 3 dibenz[a,h]anthracene, indeno[1,2,3-c,d]pyrene) as *Provisional Guidance* for the risk evaluation of PAHs at hazardous waste sites. On IRIS (U.S. EPA, 2009), all seven of these compounds 4 were assigned a cancer weight of evidence classification of Group B2 (probable human 5 carcinogen, based on sufficient evidence of carcinogenicity in animals) under the U.S. EPA 6 7 (1986) Guidelines for Carcinogen Risk Assessment. U.S. EPA (1993) indicated that the data for PAHs did not meet the criteria for the development of toxicity equivalency factors (TEFs). In 8 particular, the existing database was limited primarily to studies of metabolism, genotoxicity, 9 and cancer, and the assumption of additivity was not proven or refuted. The EOPP terminology 10 was used because this approach was limited to skin painting data and was based on 11 12 benzo[a]pyrene exposure from a single (oral) pathway (for the derivation of the slope factor). This analysis considered only a small subset of PAHs routinely measured in PAH mixtures at 13 hazardous waste sites. The EOPP values were based on previous evaluations conducted by Chu 14 15 and Chen (1984) and Clement Associates (1988) and were calculated for various test systems (i.e., mouse skin carcinogenesis, subcutaneous injection in mice, intrapulmonary administration 16 to rats, tumor initiation on mouse skin, and intraperitoneal injection in newborn mice) (Clement 17 Associates, 1988). Various statistical methods for combining data sets were considered; 18 however, final EOPP values were based on a single test system (skin painting) and were rounded 19 to the closest order of magnitude. The EOPPs were recommended for the oral exposure route 20 21 only, because the quantitative dose-response assessment for benzo[a]pyrene was from an oral carcinogenicity bioassay (i.e., an oral cancer slope factor). This recommendation was, however, 22 complicated by the fact that the EOPPs were derived from comparisons based on dermal 23 exposure. 24

Chu and Chen (1984) presented RPF values for the seven PAH compounds described in the *Provisional Guidance* described above (U.S. EPA, 1993) (see Table 3-1). These values were calculated using mouse skin painting data only. Tumor incidence data were modeled using the linearized multistage model and the resulting ED_{10} and $q1^*$ (upper confidence limit of the linear slope) were presented for target PAHs and benzo[a]pyrene. The RPFs listed in Table 3-1 represent the ratio of the q1* value for a PAH compound to the q1* value for benzo[a]pyrene (i.e., $q1^*_{PAH} \div q1^*_{BaP}$).

Clement Associates (1988) identified 11 published studies that concurrently compared the carcinogenicity of benzo[a]pyrene with one or more other PAHs, and used the data to derive relative cancer potencies for 13 PAHs, including benzo[a]pyrene. Test protocols used in this analysis included mouse skin complete carcinogenesis, initiation-promotion on mouse skin, subcutaneous injection into mice, lung implantation in rats, and intraperitoneal injection into newborn mice. Tumor incidence data were fit to a simplified version of the Moolgavkar-Venson-Knudsen (MVK) two-stage model and to the linearized multistage model to obtain low-

53

DRAFT – DO NOT CITE OR QUOTE

dose cancer potency values (transition rates and low-dose slope factors, respectively). Most of the estimates were derived using data for multiple exposure levels and controls, but some were based on a single exposure level and a control. RPFs were calculated as the ratio of the estimated transition rate or slope factor for a particular PAH to the corresponding values for benzo[a]pyrene from the same study. Clement Associates (1988) selected representative RPFs for each of the studied PAHs based on evaluations of the quality of the studies from which the estimates were obtained.

8 Clement Associates (1990) also derived relative cancer potencies for eight PAHs based on tumor incidence data from rat lung implantation data only (Deutsch-Wenzel, 1983). The data 9 were restricted to a single group of studies using a defined experimental protocol in order to 10 address issues of questionable data quality associated with other studies. Data quality concerns 11 cited for other studies include variation in survival, saturation of the carcinogenic effect, 12 outmoded pathological classification, and inadequate controls. The RPF values based on rat lung 13 implantation data were comparable to those originally derived by Clement Associates (1988) 14 15 (see Table 3-1).

16 Rugen et al. (1989) proposed a relative potency approach to establish acceptable exposure levels (AELs) for six carcinogenic PAHs in drinking water (listed in Table 3-1). These 17 authors reviewed mouse skin painting studies in which the cancer potency of benzo[a]pyrene 18 19 was compared with those of other PAHs (Bingham and Falk, 1969; Wynder and Hoffmann, 20 1961, 1959a, b). The following relationship was used to calculate conversion factors ("relative 21 tumor dose" = RTD) to derive AELs for these PAHs from the AEL for benzo[a]pyrene: RTD = $(d_1/n_1)/(d_2/n_2)$; where d_1 and n_1 represented a dosage level and associated tumor incidence after a 22 given exposure duration to a certain PAH, PAH₁, and d₂ and n₂ represented similar quantities for 23 exposure to the index PAH, benzo[a]pyrene, for the same exposure duration. The AEL for a 24 particular PAH was then derived with the following relationship: $AEL_{(PAHi)} = AEL_{(benzo[a]pyrene)} \times$ 25 RTD_(PAHi). In this approach, RTDs for PAHs more potent than benzo[a]pyrene were less 26 27 than 1 and RTDs for PAHs less potent than benzo[a]pyrene were greater than 1. The reciprocal of the RTDs derived by Rugen et al. (1989) were comparable to the RPFs presented by other 28 29 authors and are presented as such in Table 3-1.

The Netherlands (RIVM) proposed RPF values for 10 PAHs (naphthalene, anthracene, 30 phenanthrene, fluoranthene, chrysene, benz[a]anthracene, benzo[k]fluoranthene, benzo[a]pyrene, 31 32 benzo[g,h,i]perylene, and indeno[1,2,3-c,d]pyrene) (Slooff et al., 1989). RPFs were calculated as a ratio of ED_{50} values that were calculated using a simple linear model. For dermal studies in 33 which the latency period was determined, the tumor incidence was divided by latency and 34 concentration, and the values were averaged for the different concentrations. Kroese et al. 35 (2001) provided an update of the RPF values calculated by Slooff et al. (1989) by incorporating 36 37 more recent evaluations conducted by other authors (Larsen and Larsen, 1998; Nesnow et al.,

1998b; Muller, 1997; Nisbet and LaGoy, 1992). The RPF values for chrysene and fluoranthene 1 2 were decreased, while other values remained similar to those originally proposed (see Table 3-1). Nisbet and LaGoy (1992) proposed toxicity equivalence factors for 17 PAHs commonly 3 found at hazardous waste sites. These authors reviewed published studies in which the 4 tumorigenic potencies of one or more PAHs were compared with benzo[a]pyrene (essentially the 5 same as those reviewed by Clement Associates, 1988) and rounded, to an order of magnitude, the 6 7 estimates presented by Clement Associates (1988) for seven carcinogenic PAHs (dibenz[a,h]anthracene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, 8 indeno[1,2,3-c,d]pyrene, benzo[g,h,i]perylene, and chrysene) (see Table 3-1). Nisbet and LaGoy 9 (1992) argued that the rounded estimates more accurately reflected the uncertainty in the 10 estimates than the values presented by Clement Associates (1988). Nisbet and LaGoy (1992) 11 stated that Clement Associates (1988) proposed a TEF of 0.32 for anthracene (CASRN 12 120-12-7), but examination of the original report shows that Clement Associates (1988) 13 proposed this value for anthanthrene (CASRN 191-26-4) and did not propose a value for 14 15 anthracene. Nisbet and LaGoy (1992) assigned a value of 0.01 to anthracene. In addition, 16 Nisbet and LaGoy (1992) arbitrarily assigned TEFs of 0.001 to eight other PAHs for which adequate evidence of carcinogenicity in animals was not available (acenaphthene, 17 acenaphthylene, fluoranthene, fluorene, 2-methylnaphthalene, naphthalene, phenanthrene, and 18 pyrene). In defense of this assignment, the argument was made that some of these PAHs have 19 been shown to have some, albeit limited, evidence for carcinogenic or genotoxic activity in some 20 studies (e.g., phenanthrene and naphthalene²). The RPF value proposed for 21 dibenz[a,h]anthracene was substantially higher than that proposed by Clement Associates (1988). 22 Nisbet and LaGoy (1992) indicate that their analysis of the dose-response data suggests that an 23 RPF value of 5 is more appropriate for environmental exposures where the chemically-related 24 tumor incidence rate would be approximately <25%. 25 26 Malcolm and Dobson (1994) used RPFs for 23 PAHs to calculate environmental assessment levels (EALs) for atmospheric PAHs (sponsored by the Great Britain Department of 27 the Environment). The RPFs were derived from previously reported review papers (Nisbet and 28 LaGoy, 1992; Rugen et al., 1989; Clement Associates, 1988; Chu and Chen, 1984), as well as the 29 primary literature describing pulmonary implant, skin painting, subcutaneous injection, and 30 mouse skin DNA binding studies. No information was provided regarding the methodology used 31 to derive RPFs from specific experimental studies. The proposed RPF values for individual 32 PAHs were the highest values reported in the literature. Many of the RPF values are similar to 33 those reported by Nisbet and LaGoy (1992). RPFs were additionally reported for 34 35 benzo[e]pyrene, coronene, cyclopenta[c,d]pyrene, dibenz[a,c]anthracene, and perylene. The benzo[e]pyrene and cyclopenta[c,d]pyrene RPFs were apparently calculated directly from mouse 36

²It should be noted that a recent bioassay for naphthalene has shown increased incidence of nasal tumors in exposed rats (NTP, 2000).

2 1959a, b). Coronene and perylene were arbitrarily assigned RPF values of 0.001 given the International Agency for Research on Cancer (IARC) and U.S. EPA designation as "not 3 classifiable as to human carcinogenicity" (similar approach to Nisbet and LaGoy, 1992). 4 Dibenz[a,c]anthracene was assigned an RPF value of 0.1 based on the IARC designation of 5 "possibly carcinogenic to humans." 6 7 Health Canada (Meek et al., 1994) proposed RPFs for five PAHs (benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[j]fluoranthene, and indeno[1,2,3-cd]pyrene) 8 based on the results of multistage modeling of incidence data in Osborne-Mendel rats treated by 9 lung implantation (Deutsch-Wenzel et al., 1983). Values were based on a comparison of the 10 doses that caused a 5% increase in tumor incidence (ED₀₅). RPFs were calculated as the ratio of 11 12 the ED_{05} for benzo[a]pyrene to the ED_{05} for a specific PAH compound.

skin painting studies (Habs et al., 1980; Hoffmann and Wynder, 1966; Wynder and Hoffmann,

1

The Ontario Ministry of Environment and Energy (Muller et al., 1997) proposed RPF 13 values for 209 PAHs using data from dermal studies in mouse skin or rat lung bioassays. Most 14 15 of these PAHs were alkylated PAHs, PAH metabolites, or heterocyclic PAH compounds. The 16 17 unsubstituted PAHs that were evaluated in this analysis are listed in Table 3-1. Muller et al. (1997) derived a standard time of observation in order to account for varying study duration 17 across experiments. Several dose-response models were considered for the evaluation of tumor 18 incidence and multiplicity, and linear regression was selected as the preferable method. 19 20 Tumorigenic potency (i.e., the slope of incidence/mg) was determined separately for each data 21 set based on the following order of preference regarding study type: tumor initiation in CD-1 mice, tumor initiation in SENCAR mice, rat lung implantation, and complete 22 carcinogenicity in C57BL mice. RPFs were determined as the ratio of PAH potency to the 23 potency of benzo[a]pyrene. RPF values derived by Muller et al. (1997) were comparable to 24 values estimated by other authors. 25

26 Larsen and Larsen (1998) estimated RPFs for 23 PAHs based on a compilation of available carcinogenicity data in animals using oral, pulmonary, and skin application of PAHs. 27 The authors indicated that these values represent an entirely subjective estimate of relative 28 potency; however, further detail regarding the derivation of RPF estimates was not provided. 29 30 Collins et al. (1998) developed RPFs (termed potency equivalency factors [PEFs]) for 21 PAHs, 10 of these were either methyl- or nitro-substituted or heterocyclic PAHs. A hierarchy 31 of data types was utilized to provide an order of preference for data utilization in calculating 32 RPFs. Because the analysis focused on PAHs as air contaminants, tumor data from inhalation 33 studies were preferred (although none were found), followed by intratracheal or intrapulmonary 34 35 instillation, oral administration, skin-painting, and subcutaneous or intraperitoneal injection. Genotoxicity and structure activity data were considered the least-preferred data type for 36 calculation of RPFs. Collins et al. (1998) noted that a wide range of PEFs were observed for 37 individual chemicals using different types of data (e.g., mutagenicity versus tumor data). The 38

(0.5., indugementy versus tumor data). The

1 basis for the derivation of individual RPF values was presented in a California EPA (2002)

2 technical support document. RPF values for benz[a]anthracene, benzo[b]fluoranthene,

3 benzo[j]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene, and chrysene were similar

4 to those described by Clement Associates (1988). Additional RPFs for dibenzo[a,e]pyrene,

5 dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, and dibenzo[a,l]pyrene were calculated using mouse

6 skin and rat mammary gland data (Cavalieri et al., 1991, 1989). A cancer slope factor was

7 directly calculated for dibenz[a,h]anthracene using the tumor incidence data from a drinking

8 water study (Snell and Stewart, 1962). The relative potency of dibenz[a,h]anthracene was

9 estimated to be 0.1, when compared to the oral potency for benzo[a]pyrene.

Revised California EPA RPFs were recently developed for benzo[b]fluoranthene, 10 benzo[j]fluoranthene, chrysene, dibenzo[a,h]pyrene, and dibenzo[a,i]pyrene (California EPA, 11 12 2004). Cancer potency estimates were derived from lung adenoma data in newborn mice treated by intraperitoneal injection. Potency estimates represented the upper 95th percent confidence 13 limit on the linear term of the multistage model fit for the newborn mouse dose-response data. 14 15 Because benzo[a]pyrene was demonstrated to be 75 times more toxic in newborn mouse 16 intraperitoneal assays than in adult oral studies, oral equivalent potencies for individual PAHs were derived by adjusting the cancer potency downward by a factor of 75. The RPFs listed in 17 Table 3-1 were calculated as the ratio of the oral equivalent potency for a PAH to the oral 18 19 potency estimate for benzo[a]pyrene. This methodology resulted in a significant increase in RPF 20 values for benzo[b]fluoranthene, benzo[j]fluoranthene, and chrysene when compared with other 21 approaches.

22 In summary, several approaches are available for the determination of RPFs for PAHs. RPF values are proposed in at least one study for a total of 27 PAHs (see Table 3-1). Because 23 these approaches generally rely on similar bioassay data and modeling methods, the resulting 24 RPF values are fairly comparable for most PAHs across studies. Reports by Larsen and Larsen 25 26 (1998) and Malcolm and Dobbs (1994) did not provide sufficient information on the methodology used to calculate RPF estimates and are therefore more uncertain. Variable RPF 27 estimates were reported for benz[a]anthracene, chrysene, and indeno[1,2,3-c,d]pyrene. RPF 28 values were also highly variable for dibenzo[a,e]pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, 29 30 and dibenzo[a,l]pyrene; however, these were only presented in a few recent studies. As indicated above, the recent California EPA (2004) approach to estimating RPFs provides 31 considerably higher RPF values for benzo[b]fluoranthene, benzo[j]fluoranthene, and chrysene, 32 compared with other approaches. 33

U.S. EPA is reevaluating the RPF approach for PAHs in this analysis due to the evolution of the state of the science and increased understanding of PAH toxicology. A great deal of scientific research on PAHs has been conducted since the 1993 *Provisional Guidance* was developed. Toxicological data are available for a larger number of PAHs and cancer-related endpoints. However, the database for PAHs still does not meet the criteria for the derivation of

TEFs. U.S. EPA (2000) defines TEFs as special types of RPFs that are derived when there are 1 2 abundant data supporting a specific mode of action that is pertinent to all health endpoints. RPFs 3 may be derived when the mode of action is less certain or is known for only a subset of all health endpoints. The major differences in the use of TEFs and RPFs is that TEFs are applied to all 4 health endpoints, exposure routes, and exposure durations (U.S. EPA, 2000), while RPFs may be 5 limited to specific endpoints, routes, or durations. In the case of PAHs, there are inadequate data 6 7 to identify a specific mode of action that is applicable across all health endpoints. Most of the available toxicological data are limited to cancer endpoints and there are few data on the 8 9 potential mode(s) of action for other effects. As a result, the more generalized RPF approach is considered appropriate for PAHs. 10

11

12 **3.1. PREVIOUS EFFORTS TO VALIDATE RPF APPROACH**

Several studies have attempted to validate the RPF approach by comparing the cancer 13 risk of a PAH mixture measured experimentally with the cancer risk that was predicted using the 14 15 RPF method (Muller et al., 1997; McClure, 1996; Goldstein et al., 1994; Clement Associates, 1990, 1988; Krewski et al., 1989). These studies provide semi-quantitative information on the 16 overall uncertainty in using a component-based approach. Consistent findings were not reported 17 across these studies. Some studies suggested that the RPF approach would closely predict the 18 19 cancer risks associated with PAH mixtures while others indicated that cancer risks might be 20 over- or underestimated.

Clement Associates (1988) evaluated the usefulness of selected RPFs to predict the tumor incidence observed in a mouse skin painting assay. Schmähl et al. (1977) exposed groups of mice to multiple doses of benzo[a]pyrene alone or to one of two defined mixtures of PAHs. The first of these mixtures was comprised of benzo[a]pyrene, dibenz[a,h]anthracene,

25 benz[a]anthracene, and benzo[b]fluoranthene. The second mixture contained seven PAHs:

26 phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[e]pyrene, and

27 benzo[g,h,i]perylene. The predicted tumor incidences for the animals treated with the mixtures

were calculated from benzo[a]pyrene equivalents of the mixture and dose response modeling of
the Schmähl et al. (1977) data for benzo[a]pyrene alone. Predicted tumor incidences for the first

30 mixture were comparable to observed tumor incidences, while predicted values were greater than

31 the observed values for the second mixture.

Clement Associates (1990) examined the utility of a relative potency approach, in which relative cancer potency estimates of eight PAHs were used, to predict the cancer potencies of each of four complex mixtures containing many PAHs and other substances: gasoline engine exhaust condensate, flue-gas condensate from coal-fired residential furnaces, diesel engine exhaust condensate, and sidestream smoke condensate of cigarettes. Relative cancer potencies (compared to benzo[a]pyrene) for each of the four complex mixtures were calculated using a simplified version of the MVK two-stage model and tumor incidence data from a series of 1 published rat lung implantation studies that examined the carcinogenicity of each complex

2 mixture, various sub-fractions of the mixtures, and benzo[a]pyrene (Grimmer et al., 1988,

3 1987a, b, 1984). Lung implantation data (Deutsch-Wenzel, 1983) were used to calculate RPFs

4 for benzo[b]fluoranthene, benzo[e]pyrene, benzo[j]fluoranthene, benzo[k]fluoranthene,

5 indeno[1,2,3-c,d]pyrene, anthanthrene, benzo[g,h,i]perylene, and benzo[a]pyrene. The sum of

6 the benzo[a]pyrene exposure equivalents for the eight PAHs (i.e., the sum of the products of the

7 relative cancer potencies of the eight PAHs multiplied by their concentrations in the respective

8 complex mixtures) accounted for only minor fractions of the total carcinogenicity of each of the

9 four complex mixtures. When the assumption was made that each of the eight PAHs was as

10 potent as benzo[a]pyrene, the sum of the benzo[a]pyrene equivalents still accounted for only

11 minor fractions of the carcinogenicity of each mixture. Clement Associates (1990) concluded

12 that the cancer risk associated with a complex PAH mixture could not be estimated reliably from

13 measurements of a few indicator components, and further speculated that the underestimation

14 occurred because complex mixtures that occur in the environment contain many PAHs that have

15 not been studied in cancer tests, but which may be carcinogenic. In addition, complex PAH

16 mixtures found in the environment contain other potential carcinogens including substituted and

17 heterocyclic PAHs and non-PAH components.

18 Krewski et al. (1989) compared the observed tumor response rate for two PAH mixtures 19 in mice with the tumor response predicted using the RPFs for 13 individual PAHs; chemical 20 characterization of the mixture was not provided. With the exception of the highest dose, the 21 predicted tumor response for mixture 1 was similar to the observed response. For mixture 2, the 22 predicted tumor response value was higher than the observed response.

Goldstein et al. (1994) compared the experimental carcinogenicity of a MGP residue to the predicted cancer risk using the Nisbet and LaGoy (1992) RPF scheme. The RPF method underestimated the potential carcinogenicity of the mixture. The lack of correspondence was suggested to be related to the presence of unidentified carcinogens in the mixture or possible synergistic interactions between PAHs.

McClure et al. (1996) compared the tumor response predicted using U.S. EPA's 1993 28 provisional values (i.e., EOPPs) to the observed response reported in studies of mice exposed to 29 synthetic and complex mixtures of PAHs. The results of this analysis were mixed. EOPP values 30 closely predicted the mouse tumor response to subcutaneous or dermal application of synthetic 31 mixtures containing relatively potent carcinogens, while overestimating the response to synthetic 32 mixtures containing only relatively weak carcinogens (similar to findings of Clement Associates, 33 1988). Mouse skin tumor initiation with several coal liquids was closely predicted by the EOPP 34 35 approach; however, this method underestimated the tumor response from lung implantation of coal furnace emission condensate and its PAH-containing neutral fraction. 36

The validation analyses that were performed by Muller et al. (1997) consisted of component versus whole mixture risk comparisons using data for smoky coal and coke oven

1	emissions. The human lung cancer risks that were estimated using the RPF approach were
2	compared to the whole mixture cancer risk derived from epidemiology studies. The relative
3	content of PAHs (compared to benzo[a]pyrene) in the mixture was determined analytically (for
4	smoky coal and coke oven emissions) or was estimated as a standard mixture assumed to
5	represent an average PAH profile. The RPF method produced PAH cancer risk estimates that
6	were significantly lower than the risk estimates derived from epidemiology studies.
7	
8	
9	4. EVALUATION OF THE CARCINOGENICITY OF INDIVIDUAL PAHs
10	
11	4.1 DATADASE OF STUDIES ON DAIL CADCINGCENICITY AND CANCED
12	4.1. DATABASE OF STUDIES ON PAH CARCINOGENICITY AND CANCER-
13	KELATED ENDFOINTS
14 15	This was accomplished through the following means:
16	
17 18	• Definition of the study types that were considered relevant to relative potency development:
18	development,
20 21	• Review of reference lists from review articles and other secondary sources;
22 23	• Identification of selected PAHs to be included in search of open literature;
24 25	• Performance of targeted searches of open literature on selected PAHs; and
26 27	• Population of the database with references and meaningful keywords.
28	The study types that were considered most useful for RPF derivation were rodent
29	carcinogenicity bioassays (all routes) in which one or more PAHs was tested at the same time as
30	benzo[a]pyrene. In addition, in vivo and in vitro data for cancer-related endpoints (in which one
31	or more PAHs and benzo[a]pyrene were tested simultaneously) were obtained, including studies
32	on the formation of DNA adducts, mutagenicity, chromosomal aberrations, aneuploidy, DNA
33	damage/repair/recombination, unscheduled DNA synthesis, and cell transformation. Although it
34	would be possible to calculate RPFs from studies where a PAH and benzo[a]pyrene were tested
35	by the same laboratory using the same test system but at different times, this approach was not
36	considered because it could introduce differences in the dose-response information that are
37	unrelated to the chemical (e.g., variability associated with laboratory environment conditions,
38	animal handling, food supply). Thus, studies in which benzo[a]pyrene was not tested
39	simultaneously with another PAH were not considered in this analysis.
40	Studies of AhR binding/activation were not considered for use in deriving RPFs because
41	there is evidence indicating that highly mutagenic fjord-region PAHs are potent carcinogens,

despite a lower AhR affinity (reviewed by Bostrom et al., 2002). Likewise, some PAHs that
strongly activate the AhR, such as benzo[k]fluoranthene (Machala et al., 2001), are only weakly

3 carcinogenic. In addition, some studies have demonstrated the formation of DNA adducts in the

4 liver of AhR knockout mice following intraperitoneal or oral exposure to benzo[a]pyrene

5 (Sagredo et al., 2006; Uno et al., 2006; Kondraganti et al., 2003). These findings suggest that

there may be alternative (i.e., non-AhR mediated) mechanisms of benzo[a]pyrene activation in
the mouse liver, and the AhR affinity would not be a good predictor of carcinogenic potency.

Several study types were initially excluded from the database because they did not 8 9 provide carcinogenicity or cancer-related endpoint information for individual PAHs. These include biomarker studies measuring DNA adducts in humans, studies of PAH metabolism, and 10 studies of PAH mixtures. Although these studies contain important information on human 11 12 exposure to PAH mixtures and the mode of action for PAH toxicity, they generally do not contain dose-response information that would be useful for calculation of RPF estimates. In 13 addition to the primary bioassay and cancer-related endpoint studies described above, the RPF 14 15 database also includes information on PAH mode of carcinogenic action, interactions among 16 PAHs in mixtures, and the influence of exposure route on carcinogenic action of PAHs.

17 Primary studies were identified through review of available secondary sources and review articles, supplemented by a targeted literature search. A complete list of the secondary 18 19 sources that were reviewed is contained in Appendix A. A literature search strategy was developed by first constructing a list of the individual PAHs to be included. The list of PAHs 20 21 was restricted to unsubstituted PAHs with three or more fused aromatic rings containing only carbon and hydrogen atoms, because these are the most widely studied members of the PAH 22 chemical class. Heterocyclic PACs or PAHs with substituted groups (e.g., alkyl, hydroxyl, 23 sulfhydryl, amino, or nitro groups) were not included. An initial search yielded a list of PAHs 24 for which toxicological data are available. Individual PAHs were then chosen for the literature 25 26 search because they were known to have toxicological information relevant to cancer, and in most cases, their presence in environmental sources of PAH exposure was known. Using these 27 criteria and excluding benzo[a]pyrene, 74 PAHs were identified from primary and secondary 28 sources (see Table 2-1 in Section 2). 29

30 A search of the open literature was conducted in the Medline (PUBMED) database for the PAHs identified. This database encompasses many of the studies that would also be found in 31 TOXLINE and Cancer Lit (the latter is no longer available as a separate database). Medline 32 (PUBMED) was searched by CASRN in conjunction with cancer and cancer-related endpoint 33 keywords. The search was not limited by publication date to ensure that all relevant studies were 34 35 identified. A few compounds did not show any result when searched by CASRN. For these PAHs, an additional search by name was conducted. Search results, including Medline 36 keywords, were downloaded directly into the working RPF database. 37

In addition to Medline, computer searches of the following databases and websites were
 conducted: IARC, World Health Organization (WHO), Agency for Toxic Substances and
 Disease Registry (ATSDR), Health Canada, NTP, California EPA's Office of Environmental
 Health Hazard Assessment (OEHHA), the Substance Registry System, CCRIS, TSCATS, and
 DSSTOX.

6 Primary and secondary studies were entered in the RPF database and relevant keywords 7 (identifying study type, whether benzo[a]pyrene was included, route of administration, target 8 organ, etc.) were identified for each study. The list of keywords was developed in order to 9 facilitate database searching for references on a specific topic. Quality assurance procedures 10 were employed to ensure that database references were properly keyword-coded for retrieval.

11

12 **4.2. STUDIES IN HUMANS**

Numerous studies have evaluated cancer outcomes in PAH-exposed individuals 13 (reviewed in Bostrom et al., 2002; WHO, 1998; ATSDR, 1995; IARC, 1987, 1983, 1973). 14 15 However, since these exposures were to complex mixtures containing multiple PAH 16 carcinogens, they did not provide adequate data to evaluate the human carcinogenicity of individual PAH compounds. Epidemiology studies have focused on occupational exposure to 17 PAH mixtures. Emissions from coke production, coal gasification, aluminum production, iron 18 19 and steel founding, coal tars, coal tar pitches, and soot have produced lung cancer in humans (Bostrom et al., 2002). Skin and scrotal cancers have resulted from exposure to coal tar, coal tar 20 21 pitches, nonrefined mineral oils, shale oils, and soot (Larsen and Larsen, 1998; WHO, 1998; ATSDR, 1995). Occupational studies clearly demonstrate exposure-response relationships for 22 PAH mixtures; however, quantitative estimates of risk are limited primarily to lung cancer in 23 coke oven workers (Bostrom et al., 2002; Larsen and Larsen, 1998; ATSDR, 1995). 24

Biomonitoring of exposure to PAHs includes measurement of DNA and protein adducts and measurement of urinary metabolites of PAHs, studies on genetic polymorphisms of CYP450 and other enzymes, and changes in PAH metabolism (Bostrom et al., 2002; Larsen and Larsen, 1998; ATSDR, 1995). While these studies demonstrate the degree of exposure to PAHs from various settings, quantitative dose-response data for humans exposed to individual PAHs are not available. Cancer-related endpoint studies that were performed using human cell lines are presented with similar assays in other mammalian species in Section 4.3.

32

33 **4.3. STUDIES IN ANIMALS**

The database of studies investigating cancer or cancer-related endpoints in animals exposed to PAHs is extensive. For the purpose of developing relative potency estimates, only those studies that included at least one selected PAH and benzo[a]pyrene as a reference compound were reviewed. Studies were excluded if PAH potency comparisons were not conducted in the same laboratory in concurrent experiments. Studies without benzo[a]pyrene are

62

DRAFT – DO NOT CITE OR QUOTE

listed in two separate bibliographies in Appendix B. Table B-1 of the appendix shows PAHs that 1 2 were assayed with or without benzo[a]pyrene. Table B-1 shows that 32 of the 74 PAHs were assayed with benzo[a]pyrene; an additional 14 PAHs were not tested in the same study as 3 benzo[a]pyrene. The remaining 28 PAHs either have only cancer-related endpoint data, or have 4 neither bioassays nor cancer-related endpoint data. Bioassays without benzo[a]pyrene were 5 considered in the weight of evidence evaluation for individual PAHs (Section 6.1). Studies that 6 7 provided only information on PAH mixtures or PAH metabolites were not reviewed or summarized for this analysis. 8 9 References in the database were sorted by keyword into the following major categories: cancer bioassays, in vivo studies of cancer-related endpoints, and in vitro studies of cancer-10 related endpoints. These categories were further divided by route (for bioassays) or by endpoint 11 12 (for cancer-related endpoints). Each study was reviewed, and critical study details were extracted into tables (Tables 4-1 through 4-14) for each individual endpoint. Studies with data 13 on selected PAHs and benzo[a]pyrene were used, even if a particular PAH has not been 14 15 evaluated by U.S. EPA or IARC for carcinogenicity. Studies were included in the analysis if the 16 following selection criteria were met: 17 Benzo[a]pyrene was tested simultaneously with another PAH; 18 • 19 • A statistically increased incidence of tumors was observed with benzo[a]pyrene 20 administration; 21 22 • Benzo[a]pyrene produced a statistically significant change in a cancer-related endpoint 23 finding; 24 25 26 • Quantitative results were presented; 27 The carcinogenic response observed in either the benzo[a]pyrene- or other PAH-treated 28 • animals at the lowest dose level was not saturated (i.e., tumor incidence at the lowest 29 dose was <90%); and 30 31 There were no study quality concerns or potential confounding factors that precluded use 32 • (e.g., no concurrent control, different vehicles, strains, etc. were used for the tested PAH 33 and benzo[a]pyrene; use of cocarcinogenic vehicle; PAHs of questionable purity; 34 unexplained mortality in treated or control animals). 35 36

Record number	Reference	Mouse ^a strain	Exposure	Follow up	Vehicle	Promoter	Tumor type	Positive result	Negative result	Meets selection criteria?	Comments
						Complete car	rcinogenicity si	udies	8		I
480	Bingham and Falk, 1969	CH3/He	3 times/wk	50 wk	Toluene or n-do- decane	None	Malignant and benign	BaA		No	BaP administered in different vehicle. n-Dodecane cocarcinogenic with BaA. No concurrent untreated, toluene or n- dodecane control.
600	Habs et al., 1980	NMRI	2 times/wk (4 times for CO) for life	until moribund or dead	Acetone (DMSO for CO)	None	Papilloma, carcinoma, sarcoma	BbF	BkF, BjF, CPcdP, CO, IP	Yes	
22390	Wynder and Hoffmann, 1959a	Swiss	3 times/wk	6–14 mo	cyclo- hexane	None	Papilloma, carcinoma	BbF, BjF	BghiF, BkF	No	Deaths prior to first tumor appearance. No concurrent control.
19320	LaVoie et al., 1979	HA/ICR Swiss albino	3 times/wk	Unspecified	Acetone	None	Unspecified	CH, BbF, BjF, DBaeP, DBahP, DBaiP	AC, Pyr, BghiF, BkF, AA, BeP, DBelP, IP, BghiP, N23eP	No	Reiterates data published elsewhere.
22400	Wynder and Hoffmann, 1959b	Swiss	3 times/wk	10–22 mo	Acetone	None	Papilloma, carcinoma	CH, DBahA, DBaiP	AC, BeP, Pyr, FA	No	Deaths prior to first tumor appearance. Not clear if BaP administered simultaneously. No concurrent control.
13640	Cavalieri et al., 1983	Swiss	2 times/wk for 48 wk	Until 2 cm tumor or 61 wk	Acetone	None	Papilloma, adenoma, carcinoma	CPcdP		Yes	Reports both incidence and multiplicity.
13650	Cavalieri et al., 1981b	Swiss	2 times/wk for 30 wk	Until 2 cm tumor, moribund or 57 wk	Acetone	None	Primarily squamous cell carcinoma	CPcdP	ACEP	Yes	Tumor incidence not useable because BaP tumor incidence was 100%. Tumor multiplicity data available for dose-response assessment.
620	Hoffmann and Wynder, 1966	Ha/ICR/ Mil Swiss	3 times/wk for 12 mo	Up to 15 mo	Dioxane	None	Papillomas	DBaeP, DBahP, DBaiP, DBaeF		Yes	Paper in German. Paper reports compound as DBalP; LaCassagne et al. (1968) state that it is actually DBaeF. DBahP incidence \geq 90% at lowest dose.
17660	Cavalieri et al., 1977	Swiss	2 times/wk for 30 wk	Until moribund, dead, or after 70 wk	Acetone	None	Papilloma, kerato- acanthoma, carcinoma	DBahP, AA	BaA	Yes	DBahP incidence $\geq 90\%$ at lowest dose.
610	Higginbotham et al., 1993	Swiss	2 times/wk	40 wk	Acetone	None	Papilloma, carcinoma	DBalP		No	No tumors with BaP.
19760	Masuda and Kagawa, 1972	Ha/ICR/ Mil Swiss	3 times/wk for 60 applica- tions	7 months	Dioxane	None	Unspecified	DBalP		No	No concurrent untreated or vehicle control; lowest dose DBalP gave 100% incidence.
18570	Hecht et al., 1974	Ha/ICR/ Mil Swiss	3 times/wk for 17 mo	72 wk	Acetone	None	Unspecified	СН		No	BaP dose not reported.

Record number	Reference	Mouse ^a strain	Exposure	Follow up	Vehicle	Promoter	Tumor type	Positive result	Negative result	Meets selection criteria?	Comments
21310	Shubik et al., 1960	Syrian golden hamster	2 times/wk for 10 wk	75 wk	Mineral oil	None	None		DBahA, BaA	No	Small number of animals (5/sex/dose).
23310	Pfeiffer and Allen, 1948	Rhesus monkey	various	Various	Sesame oil	None	Various	Multiple		No	Sequential exposure to multiple compounds; no concurrent untreated control.
23840	Barry et al., 1935	Un- specified	2 times/wk	1–2+ yr	Benzene	None	Epithelioma, papilloma	Multiple		No	Test compounds from various sources gave differing results; purity may be suspect; use of benzene vehicle confounds tumorigenicity results; no benzene or untreated control.
						Initic	ation studies		•	•	
24800	Nesnow et al., 1984	SENCAR	Single	31 wk	Acetone	12-O-tetra- decanoyl- phorbol-13- acetate (TPA) 2 μg 2 times/wk for 30 wk	Papilloma	BeAC, BIAC		Yes	Reports both incidence and multiplicity.
21410	Slaga et al., 1978	CD-1	Single	27 wk	Acetone	TPA 10 μg 2 times/wk for 26 wk	Papilloma	BaA		Yes	Tumor incidence data not useable because BaP gave 93% tumor incidence. Tumor multiplicity data available for dose-response assessment.
630	LaVoie et al., 1982	Crl:CD- 1[ICR] BR	10 subdoses every other d	Unspecified	Acetone	TPA 3 times/wk 20 wk	Primarily squamous cell papilloma	BbF, BjF, BkF		Yes	Reports both incidence and multiplicity.
16310	Weyand et al., 1992	Crl:CD-1	5 or 10 applica- tions given every other d	Until promotion complete	Acetone	TPA 2.5 μg 3 times/wk for 20 wk	Unspecified	BjF		Yes	Tumor incidence data not useable because BaP gave 100% tumor incidence. Tumor multiplicity data available for dose-response assessment. DNA adducts, mutagenicity also evaluated.
10200	El-Bayoumy et al., 1982	Crl:CD- 1[ICR] BR	10 subdoses every other d	Unspecified	Acetone	TPA 2.5 µg 3 times/wk for 25 wk	Primarily squamous cell papilloma	СН	Pery, Pyr	Yes	Tumor incidence data not useable because single dose CH gave 100% tumor incidence; BaP gave 90% tumor incidence. Tumor multiplicity data available for dose-response assessment.
18570	Hecht et al., 1974	Ha/ICR/ Mil Swiss	10 subdoses every other d	Until promotion complete	Acetone	TPA 2.5 µg 3 times/wk for 20 wk	Unspecified	СН		Yes	Reports both incidence and multiplicity.

Record number	Reference	Mouse ^a strain	Exposure	Follow up	Vehicle	Promoter	Tumor type	Positive result	Negative result	Meets selection criteria?	Comments
22500	Van Duuren et al., 1966	ICR/HA	Single	63 wk	Acetone	Croton resin, 25 µg 3 times/wk	Papilloma, carcinoma	CH, BbF	BghiF	No	BaP gave 100% tumor incidence. Corollary data with acetone only as promotion agent not included.
24300	Rice et al., 1985	CD-1	10 subdoses every other d	Until promotion complete	Acetone	TPA 0.0025% 3 times/wk for 20 wk	Unspecified	CH, CPdefC		Yes	Tumor incidence data not useable because all compounds gave >90% tumor incidence. Tumor multiplicity data available for dose-response assessment.
19320	LaVoie et al., 1979	HA/ICR Swiss albino	10 subdoses every other d	Until promotion complete	Acetone or dioxane	TPA 2.5 µg 3 times/wk for 20 wk or croton oil 2.5% 3 times/wk	Unspecified	CH, DBaeP, DBahP, DBaiP, N23eP	FA, AA, DBelP, BghiP, IP	No	Reiterates data published elsewhere.
21420	Slaga, et al., 1980	Sencar	Single	15 wk	Acetone	TPA 2 μg 2 times/wk	Papilloma	CH, DBahA,	BeP, DBacA	Yes	Not clear if BaP done simultaneously but protocol, vehicle, follow up same. Reports both incidence and multiplicity.
15640	Raveh et al., 1982	Sencar	Single	25 wk	Un- specified	TPA 2 µg 2 times/wk for 25 wk	Papilloma	CPcdP		Yes	Reports both incidence and multiplicity.
620	Hoffmann and Wynder, 1966	Ha/ICR/ Mil Swiss	Single	6 mo	Dioxane	Croton oil	Papillomas	DBaeF, DBaeP, DBahP, DBaiP, N23eP	IP, AA, BghiP, DBelP	Yes	Paper reports compound as DBalP; LaCassagne et al. (1968) state that it is actually DBaeF.
610	Higginbotham et al., 1993	Sencar	Single	27 wk	Acetone	TPA 2.6 nmol, 2 times/wk	Papillomas, few carcinomas	DBalP		No	No tumors with BaP.
13660	Cavalieri et al., 1991	Sencar	Single	16 wk and 27 wk (two experiments)	Acetone	TPA 3.24 nmol 2 times/wk for 11 wk	Primarily papilloma	DBalP		Yes	Tumor incidence data not useable because lowest dose DBalP gave >90% tumor incidence. Tumor multiplicity data from both experiments available for dose- response assessment.
19360	LaVoie et al., 1985	Crl:CD/1 (ICR)BR	10 subdoses every other d	Unspecified	Acetone	TPA 2.5 µg 3 times/wk for 20 wk	Unspecified		AC	Yes	
13650	Cavalieri et al., 1981b	CD-1	10 subdoses every other d	57 wk	Acetone	TPA 0.017 μmol 2 times/wk for 40 wk	Papilloma	CPcdP	ACEP	Yes	Reports both incidence and multiplicity.

Record number	Reference	Mouse ^a strain	Exposure	Follow up	Vehicle	Promoter	Tumor type	Positive result	Negative result	Meets selection criteria?	Comments
20830	Roe, 1962	Albino	Single	Until promotion complete	Acetone	Croton oil once/wk for 20 wk	Papilloma		РН	No	BaP not simultaneous.
16440	Wood et al., 1980	CD-1	Single	27 wk	Acetone	TPA 16 nmol 2 times/wk for 26 weeks	Unspecified		Pyr, CPcdP	Yes	
17450	Brune et al., 1978	NMRI	Unspecified	Unspecified	Un- specified	TPA	Unspecified		AC	No	Study design not reported. Results reported qualitatively.
18680	Hoffmann et al., 1972	Ha/ICR/ Mil Swiss	10 subdoses every other d	Until promotion complete	Acetone	Croton oil 2.5% for 20 wk	Unspecified		FA	Yes	
19420	LaVoie et al., 1981	HA/ICR Swiss albino	10 subdoses every other d	Unspecified	Acetone	TPA 2.5 μg 3 times/wk for 20 wk	Unspecified		РН	Yes	
13660	Cavalieri et al., 1991	SENCAR	Single	27 wk	Acetone	None	Primarily papilloma	DBalP		Yes	Initiating dose only; no promoter. Tumor incidence data not useable because lowest dose DBalP gave >90% tumor incidence. Tumor multiplicity data available for dose- response assessment.
15700	Rice et al., 1988	CD-1	10 subdoses every other d	24 wk	Acetone	TPA 2.5 µg 3 times/wk for 20 wk	Unspecified	CH, BbcAC, CPdefC		Yes	Not clear if BaP done simultaneously for all PAHs.
		•	•	•		Cocarcin	ogenicity studi	es			•
18700	Horton and Christian, 1974	СЗН	2 times/wk for 80 wk	82 wk	n-Do- decane/ decalin mixture	None	Carcinoma, papilloma	DBacA, Pyr	CH, FA, Tphen, Pery,	No	Not clear if BaP done simultaneously. Experiments with decalin (noncarcinogen) and 50/50 decalin/ dodecane mix (cocarcinogenic). No data for BaP in 50/50 mix. No vehicle control in decalin.
21430	Slaga et al., 1979	CD-1	Single	30 wk	Acetone	TPA 10 µg 2 times/wk for 30 wk	Papilloma	BeP		No	No concurrent control. Study aimed at exploring interactions; not clear if BaP done simultaneously.
21840	Van Duuren and Goldschmidt, 1976	ICR/Ha Swiss	3 times/wk	368 or 440 d	Acetone	None	Papilloma		Pyr, BghiP, BeP, FA	Yes	
21850	Van Duuren et al., 1973	ICR/HA	3 times/wk for 52 wk	52 wk	Acetone	None	None		Pyr, BghiP, BeP	No	Qualitative results reported.
21920	Warshawsky et al., 1993	C3H/HEJ	2 times/wk	Until lesion developed or 104 wk	Toluene or n-do- decane	None	Unspecified		AC, CH, Pyr, FA, PH	No	No tumors with BaP.

^aExcept where noted, all studies were conducted in mice.

Record number	Reference	Mouse strain ^a	Exposure	Follow up	Vehicle	Target organ(s)	Tumor type(s)	Positive result	Neg- ative result	Meets selection criteria?	Comments
13610	Busby et al., 1984	Swiss- Webster BLU:Ha	1st, 8th, 15th d	26 wk	DMSO	Newborn Lung	Adenoma, adenocarcinoma	FA		Yes	Tumor incidence data not useable because lowest dose BaP gave >90% tumor incidence. Tumor multiplicity
17560	Busby et al., 1989	Swiss- Webster BLU:Ha	1st, 8th, 15th d	26 wk	DMSO	Lung	Adenoma, adenocarcinoma	FA	Pyr, CH	Yes	Reports both incidence and multiplicity.
640	LaVoie et al., 1987	(ICR) CD-1	1st, 8th, 15th d	52 wk	DMSO	Lung, liver	Adenoma, hepatoma	BbF, BjF	BkF, IP	Yes	
7510	LaVoie et al., 1994	CD-1	1st, 8th, 15th d	12 mo	DMSO	Lung, liver	Foci, adenoma, carcinoma	FA		Yes	Reports both incidence and multiplicity.
22040	Weyand and LaVoie, 1988	CD-1	1st, 8th, 15th d	Not reported	DMSO	Lung, liver	Unspecified	Not reported		No	Abstract only; dose-response information not included.
22510	Wislocki et al., 1986	CD-1	1st, 8th, 15th d	12 mo	DMSO	Lung, liver, lymphatic system	Adenoma, carcinoma, lymphoma	СН, ВаА	Pyr	Yes	Reports both incidence and multiplicity.
			•			Studies in	adult A/J mice				
11190	Mass et al., 1993	A/J	Single	8 mo	Tri- caprylin	Lung	Adenoma, carcinoma	BjAC		No	Reiterates data reported elsewhere (Record 24590).
23960 and 23450	Nesnow et al., 1998a, 1995	A/J	Single	8 mo	Tri- caprylin	Lung	Adenoma	BbF, DBahA, CPcdP		No	Reiterates data reported elsewhere (Record 24590).
22670	Nesnow et al., 1996	A/J	Single	8 mo	Tri- caprylin	Lung	Adenoma	BbF, DBahA, CPcdP		No	(Reiterates data reported elsewhere (Record 24590).)
24590	Nesnow et al., 1998b	A/J	Single	8 mo	Tri- caprylin	Lung	Adenoma	CPcdP, BbF, DBahA, BjAC, DBalP		Yes	Raw data obtained courtesy of S. Nesnow. Tumor incidence for BaP was 100% at lowest dose with significant increase over control; tumor multiplicity data available.
20920	Ross et al., 1995	A/J	Single	240 d	Tri- caprylin	Lung	Adenoma	BbF, DBahA, CPcdP	Pyr	No	Reiterates data reported elsewhere (Record 24590).

^aAll studies were conducted in mice.

Record number	Reference	Species	Strain	Exposure site	Exposure	Follow up	Vehicle	Target organ(s)	Tumor type(s)	Positive result	Negative result	Meets selection criteria?	Comments
23840	Barry et al., 1935	Mouse	Unspeci- fied	Unspecified	Single	1–2+ yr	Lard	Injection site	Sarcoma	Multiple		No	Test compounds from various sources gave differing results; purity may be suspect; no untreated control.
220	Bryan and Shimkin, 1943	Mouse	СЗН	Right axilla	Single	until 20 mm tumor	Tricaprylin	Injection site	Unspecified	DBahA		No	No concurrent untreated control.
18350	Grant and Roe, 1963	Mouse	Albino	Neck	1st d after birth	52–62 wk	Aqueous gelatin	Lung	Adenoma		РН	Yes	
23200	Homburger et al., 1972	Hamster	Various	Groin	Single	52 wk	Tricaprylin	Injection site; lung	Various	BaA		No	Study aimed at evaluating strain specificity of tumorigenicity. BaA results equivocal. Not clear if BaP treatment simultaneous. "Aged" mice used as controls; aged mice allowed to live 16 weeks longer.
660	Pfeiffer, 1977	Mouse	NMRI	Neck	Single	114 wk	Tricaprylin	Injection site	Sarcoma	DBahA		No	Less than 10% of 100 control mice alive at 114 wk; control data not provided.
23310	Pfeiffer and Allen, 1948	Monkey	Rhesus	Various	Various	variable	Sesame oil	Various	Various	Multiple		No	Sequential exposure to multiple compounds; no concurrent untreated control.
24290	Rask-Nielson, 1950	Mouse	Street	Thymus, lung, mammary area	Single	30 mo	Paraffin	Various	Various	DBahA		No	Number of control and exposed varies by tumor type reported; BaP nontumorigenic; DBahA results equivocal; results unclear.
24310	Roe and Waters, 1967	Mouse	Swiss albino	Not specified	1st d after birth	50–60 wk	Aqueous gelatin	Liver	Hepatoma	РН		No	Study methodology and results not detailed; PH results equivocal.
21560	Steiner, 1955	Mouse	C57BL	Interscapular	Single	22–28 mo	Tricaprylin	Injection site	Sarcoma	DBahA, BaA, CH	AC, PH	No	No concurrent untreated control; study aimed at evaluating interactions.

 Table 4-3. Study summaries:
 subcutaneous bioassays of benzo[a]pyrene and at least one other PAH

2 3

Record number	Reference	Species	Strain	Exposure route	Exposure	Follow up	Target organ(s)	Tumor type(s)	Positive result	Negative result	Meets selection criteria?	Comments
17280	Biancifiori and Caschera, 1962	Mouse	BALB/c	Gavage	2 times/wk, 15 wk	Variable; 50–60 wk	Mammary gland	Carcinomas and sarcomas	DBahA		No	Tumors observed after DBahA only in pseudopregnant mice, not virgin mice.
23880	Huggins and Yang, 1962	Rat	Sprague- Dawley	Gavage	Single	Not reported	Mammary gland	Unspecified		BaA, PH	No	Untreated control information not included.

Table 4-4. Study summaries: oral bioassays of benzo[a]pyrene and at least one other PAH

1

DRAFT – DO NOT CITE OR QUOTE

Record number	Reference	Species	Strain	Exposure route	Exposure	Follow up	Vehicle	Target organ(s)	Tumor type(s)	Positive result	Negative result	Meets selection criteria?	Comments
21750	Topping et al., 1981	Rat	F344	Implantation in transplanted tracheas	Release from pellet	28 mo	Beeswax pellet	Tracheal epithelium	Carcinoma, sarcoma		BeP	No	Interaction information included.
17620	Cavalieri et al., 1988b	Rat	Sprague- Dawley	Intramammillary	Single	20 wk	None	Mammary	Adeno- carcinoma, adenofibroma, fibrosarcoma		DBahA, BaA	No	Control data from untreated mammary glands of same rats.
13660	Cavalieri et al., 1991	Rat	Sprague- Dawley	Intramammillary	Single	Until 2 cm tumor or 24 wk	Trioctanoin	Mammary, other	Adeno- carcinoma, adenofibroma, fibrosarcoma, squamous cell carcinoma	DBalP		No	DBalP produced tumors in all animals at the lowest dose.
21620	Sugiyama, 1973	Rat	Long Evans	Intramuscular	Single	9 mo	Sesame oil	Injection site	Sarcoma		BaA	No	BaP gave 100% tumor incidence.
20280	Pataki and Huggins, 1969	Rat	Sprague- Dawley	Intravenous	3 doses 3 d apart	98 d	Lipid emulsion	Mammary	Unspecified		BaA	No	No control group.
17940	Deutsch-Wenzel et al., 1983	Rat	Osborne- Mendel	Lung implantation	Release from pellet	Until moribund or dead	Beeswax/ trioctanoin	Lung	Carcinoma, sarcoma	BbF, BjF, BkF, IP, AA, BghiP	BeP	Yes	
22000	Wenzel-Hartung et al., 1990	Rat	Osborne- Mendel	Lung implantation	Release from pellet	Until moribund or dead	Beeswax/ trioctanoin	Lung	Carcinoma	CH, DBahA	РН	Yes	
21500	Solt et al., 1987	Hamster	Syrian golden	Painting buccal pouch	2 times/wk for 20 wk	Up to 44 wk	Paraffin oil	Buccal pouch	Carcinoma		BaA	No	Fewer than 20 animals per group; negative result.
23910	Nikonova, 1977	Mouse	A	Subcutaneous (F0) and transplacental (F1)	GD 18 or 19	1 yr	Sunflower oil	Lung, mammary, liver, injection site	Adenoma		Pyr	No	Transplacental exposure not quantified.

 Table 4-5. Study summaries: other route bioassays of benzo[a]pyrene and at least one other PAH

Record number	Reference	Route of administration	Exposure frequency	Hours between dosing and sacrifice	Tissue analyzed	Method of analysis	PAHs evaluated ^a	Meets selection criteria?	Comments
6210	Arif et al., 1997	Intramammillary	Single dose	48	Mammary epithelium, lung	[³² P] postlabeling	DBalP	Yes	
17420	Brookes and Lawley, 1964	Dermal	Single dose	various to ~12 d	Skin	[³ H]- prelabeling	DBacA, DBahA	No	Data on individual compounds not reported.
17630	Cavalieri et al., 1981a	Dermal	Single dose	4, 24	Skin	[³ H] or [¹⁴ C] prelabeling	CPcdP, ACEP	Yes	
18810	Hughes and Phillips, 1990	Dermal	Single dose	0.5, 1, 2, 4, 7, 21, 84 d	Skin, lung	[³² P] postlabeling	DBalP, DBaeP, DBahP, DBaiP	Yes	24-hr experiment with DBaeP and DBalP; 84-d experiment with all.
18790	Hughes and Phillips, 1991	Dermal	Single dose	24	Skin	[³² P] postlabeling	DBaeP	No	No quantitative information; abstract only.
10900	Koganti et al., 2000	Oral-diet	14 d	not stated	Lung	[³² P] postlabeling	BcFE, BaFE, BbFE	No	Not quantified.
13200	Li et al., 2002	Oral-gavage or oral-diet	1 time/d for 1– 4 d; diet 14 d		Mammary gland and liver; lung	[³² P] postlabeling	BcFE	No	Not quantified; BaP administered by gavage, BcFE admin in diet.
11190	Mass et al., 1993	Intraperitoneal	Single dose	24, 48, 72	Lung	[³² P] postlabeling	BjAC	Yes	
8010	Nesnow et al., 1993b	Intraperitoneal	Single dose	1, 3, 7, 14, 28, 56 d	Lung, liver, peripheral blood lymphocytes	[³² P] postlabeling	BbF	Yes	Peaks differ temporally; study also correlates number of adducts in organs.
22670	Nesnow et al., 1996	Intraperitoneal	Single dose	7 d	Lung	[³² P] postlabeling	BbF, DBahA, CPcdP	No	Not quantified.
23960	Nesnow et al., 1995	Intraperitoneal	Single dose	7 d	Lung	[³² P] postlabeling	BbF, DBahA, CPcdP	No	Not quantified.
24590	Nesnow et al., 1998a	Intraperitoneal	Single dose	various to 21 d	Lung	[³² P] postlabeling	BbF, CPcdP, DBahA, DBalP	Yes	Used data from Ross et al., 1995 (ref 20920) to calculate slope.
22810	Phillips et al., 1979	Dermal	Single dose	19, 24, 48, 72, 96, 120, 144	Skin	[³ H]-Prelabeling	BaA, DBacA, DBahA	Yes	
20650	Reddy et al., 1984	Dermal	4 doses (0, 6, 30, 54 hr	24	Skin	[³² P] postlabeling	AC, BaA, BghiP, BeP, CH, DBacA, DBahA, Pery, Pyr	No	Semiquantitative data only.
20920	Ross et al., 1995	Intraperitoneal	Single dose	0, 1, 3, 5, 7, 14, 21 d	Lung	[³² P] postlabeling	BbF, CPcdP, DBahA	No	Reiterates data published elsewhere (see 24590)
16310	Weyand et al., 1992	Dermal	Single dose	24	Skin	[³² P] postlabeling	BjF	No	Not quantified.
22040	Weyand and LaVoie, 1988	Intraperitoneal	Postnatal d 1, 8, 15	24	Lung, liver	[³² P] postlabeling	BbF, BjF, BkF	No	No quantitative data; abstract only.

 Table 4-6. Study summaries: in vivo DNA adducts with benzo[a]pyrene and at least one other PAH

Table 4-6. Study summaries: in vivo DNA adducts with benzo[a]pyrene and at least one other PAH

73

DRAFT – DO NOT CITE OR QUOTE

Record number	Reference	Route of administration	Exposure frequency	Hours between dosing and sacrifice	Tissue analyzed	Method of analysis	PAHs evaluated ^a	Meets selection criteria?	Comments
24790	Kligerman et al., 2002	Intraperitoneal and oral	Single dose	7 d	Peripheral blood lymphocytes	[³² P] postlabeling	BaA, BbF, CH	Yes	Data in both rats and mice.

^aPositive findings were reported for all PAHs evaluated.

Table 4-7. Study summaries: in vivo clastogenicity or sister chromatid exchange with benzo[a]pyrene and at least one other PAH

Record				Route of			Hours between dosing and	Tissue	Clasto- genic	Positive	Negative	Meets selection	
number	Reference	Species	Strain	administration	Vehicle	Exposure	sacrifice	analyzed	endpoint	results	results	criteria?	Comments
24740	Allen et al., 1999	Mice	A/J or p53 +/+, +/-, and -/-	Intraperitoneal	Tricaprylin	Single	48 or 72 hr	Bone marrow or peripheral blood	Micro- nuclei	DBalP		Yes	
14270	He and Baker, 1991	Mice	HRA/Skh hairless	Dermal	Acetone	Single	24 hr	Keratino- cytes	Micro- nuclei	СН	Pyr	Yes	
17190	Bayer, 1978	Hamsters	Chinese	Intraperitoneal	Tricaprylin	Single	24 hr for aberrations; 30 hr for micronuclei	Bone marrow	Gaps, breaks, micro- nuclei, SCEs	PH (high dose only)		Yes	
19030	Katz et al., 1981	Mice	B6C3F ₁ / BR	Intraperitoneal	DMSO	At 0 and 24 hr	various; 24, 30, 48, 72 hr after last dose	Bone marrow	micro- nuclei		DBaiP, AC, BghiP, Pyr	No	No quantitative data.
24720	Kligerman et al., 1986	Mice	C57BL6	Gavage	Corn oil	Single	23.5–25 hr	Peripheral blood	SCEs	BlAC		Yes	
24790	Kligerman et al., 2002	Mice and rats	CD-1 Swiss mice; CD rats	Oral and intraperitoneal	Sunflower seed oil	Single	7 d	Whole blood or mono- nuclear leukocytes	SCE, micro- nuclei	BaA, BbF, CH		Yes	All positive for SCE via intraperitoneal administration; mixed results for oral administration.
20200	Oshiro et al., 1992	Mice	CD-1	Peroral	PEG	1 time/d, 4 d	24 hr after 2nd and 4th treatment	Peripheral blood	Micro- nuclei		Pyr, AC	No	No quantitative data; published as abstract.
20230	Paika et al., 1981	Mice	CBA/J	Intraperitoneal	DMSO	single	16–20 hr	Bone marrow	SCEs		Pyr	No	No quantitative data.
20950	Roszinsky- Kocher et al., 1979	Hamsters	Chinese	Intraperitoneal	Tricapryline	2 doses 24 hr apart	24 hr after 2nd treatment	Bone marrow	SCEs, aberr- ations	PH, CH, DBahA, BaA, BbF, BeP	AC	Yes	Positive results for SCEs, not aberrations.
21050	Salamone et al., 1981	Mice	B6C3F1	Intraperitoneal	Not specified	2 doses 24 hr apart	24, 48, 72 hr after 2nd treatment	Bone marrow	Micro- nuclei		AC, Pyr	Yes	
21770	Tsuchimoto and Matter, 1981	Mice	CD-1	Intraperitoneal	DMSO	2 doses 24 hr apart	6 hr after 2nd treatment	Bone marrow	Micro- nuclei		Pyr	Yes	
21390	Sirianni and Huang, 1978	Mice	C3H/St	V79 cells in dif- fusion chamber implanted in peritoneal cavity of mice				Chinese hamster V79 cells	SCEs		AC, Pyr, Pery	Yes	
21620	Sugiyama, 1973	Rats	Long- Evans	Intravenous	Lipid emulsion	Single	12, 24 hr	Bone marrow	Gaps, breaks		BaA	Yes	

2

Record number	Reference	Species/strain	Route of administration	Exposure frequency/follow up	Mutagenic endpoint	Positive result	Negative result	Meets selection criteria?	Comments
18130	Fahmy and Fahmy, 1980	Drosophila melanogaster	Suspension in media	48–72 hr	Somatic mutation; eye color mosaicism		BaA	Yes	
13980	Frolich and Wurgler, 1990	D. melanogaster	Suspension in media	48–72 hr	Somatic mutation and recombination test (SMART); wing spots		BaA	No	Inconsistent results for BaA; significant effects only seen with cross-breeding of strains selected for enhanced metabolic activity (not standard strains).
11190	Mass et al., 1993	A/J mice	Intraperitoneal	3 d/8 mo	Mutations in codon 12 of the Ki-ras oncogene; polymerase chain reaction (PCR) and DNA sequencing of lung tumor DNA	BjAC		No	Quantitative dose-response data were not available. Different mutation sequences observed; GGT→TGT for BaP and GGT→CGT for BjAC; mutation sequence for BjAC may correlate with cyclopenta-adduct formation.
23960	Nesnow et al., 1995	A/J mice	Intraperitoneal	Single injection/ 8 mo	Mutations in codon 12 of the Ki-ras oncogene; PCR and DNA sequencing of lung tumor DNA	BbF, DBahA, CPcdP		No	Quantitative dose-response data were not available. GGT→TGT mutations for BaP and BbF; GGT→CGT for CPcdP; no mutations seen for DBahA.
22670	Nesnow et al., 1996	A/J mice	Intraperitoneal	Single injection/ 8 mo	Mutations in codon 12 of the Ki-ras oncogene; PCR and DNA sequencing of lung tumor DNA	BbF, DBahA, CPcdP		No	Quantitative dose response data were not available. GGT→TGT mutations for BaP and BbF; GGT→CGT for CPcdP; no mutations seen for DBahA.
24590	Nesnow et al., 1998b	A/J mice	Intraperitoneal	Single injection/ 8 mo	Mutations in codons 12 and 61 of the Ki-ras oncogene; PCR and DNA sequencing of lung tumor DNA	BbF, DBahA, CPcdP, BjAC, DBalP		No	Quantitative dose-response data were not available. Mutations in codon 12, GGT→TGT for BaP, BbF, and DBalP; GGT→CGT for CPcdP and BjAC; no mutations seen for DBahA; GTT mutations seen for all other PAHs. Only DBalP caused mutations in codon 61.
21370	Simmon et al., 1979	Swiss Webster mice	PAHs intramuscular or peroral; microorganisms intraperitoneal	Single injection/4 hr	Intraperitoneal host mediated assay; mutagenicity in <i>S.</i> <i>typhimurium</i> and <i>S.</i> <i>cerevisiae</i> of recovered microorganisms		AC, BaA, BeP, CH, PH	No	Assay was not considered sensitive enough for detecting carcinogens.
21830	Valencia and Houtchens, 1981	D. melanogaster	Filter feeding	48–72 hr	Sex-linked recessive lethal test		Pyr	No	Results were negative for BaP.
22450	Zijlstra and Vogel, 1984	D. melanogaster	Abdominal injection	Not applicable	Sex-linked recessive lethal test; 2–3 translocation and ring-X loss		BaA	No	Results were negative for BaP.

Table 4-8. Study summaries: in vivo mutagenicity with benzo[a]pyrene and at least one other PAH

Record	Reference	Salmonella strain(s)	Activation system	Positive result	Negative result	Meets selection criteria?	Comments
17030	Andrews et al., 1978	TA100, TA1527, TA1538	Ar S9 and others	AA, DBahA, DBajA, DBacA, BghiP, BeP		Yes	TA100 results include BaP.
23830	Baker et al., 1980	TA100	Guinea pig MC S9 and others	DBaiP, BaA, DBacA, DBahA		Yes	
23660	Bartsch et al., 1980	TA100, TA1535, TA98	Rat MC S9	BaA		Yes	
17380	Bos et al., 1988	TA98, TA100	Rat Ar S9	PH, Pyr		Yes	Qualitative data for other PAHs (no BaP); quantitative data with BaP comparison for PH and Pyr in TA100.
9560	Carver et al., 1985	TA98, TA100	S9	Pery		No	The response varied at different concentrations of S9; BaP was more potent at low S9 while Pery was more potent at high S9.
17590	Carver et al., 1986	TA100	Ar rat and Ar hamster S9	BaA, BghiF, Pery		Yes	Qualitative data also presented for other PAHs. S9 concentration varied; 400 µL/plate optimal.
17630	Cavalieri et al., 1981a	TM677	Ar S9	CPcdP, ACEP, Pyr		Yes	BaP data from previous publication used. Dose-response data not provided for Pyr.
9620	Chang et al., 2002	TA100	Rat Ar S9	BghiF, BcPH		Yes	
24030	De Flora et al., 1984	TA1535, TA1537, TA1538, TA98, TA100	Rat AR S9	BaA, Pery, BeP	AC	Yes	
13860	Devanesan et al., 1990	TA100, TA98	Rat Ar S9	DBaeP, DBalP		No	No concurrent control.
18030	Dunkel et al., 1984	TA1535, TA1537, TA1538, TA98, TA100	Rat, mouse, hamster Ar S9	BaA, BeP, PH, Pyr	AC	No	Dose-response data not provided.
18050	Eisenstadt and Gold, 1978	TA1537, TA100	Rat Ar S9	CPcdP		Yes	
18180	Florin et al., 1980	TA98, TA100	Rat Ar and MC S9	BaA, CH, Pery, CO		Yes	
24080	Gibson et al., 1978	TA1535, TA1537, TA1538, TA98	Nonenzymatic (gamma radiation)	BaA, BghiP, CH, FE, Pyr	DBahA, AC, Pic, Tphen	Yes	AN, PH also tested; toxicity interfered with mutagenicity testing.
14080	Gold and Eisenstadt, 1980	TA100	Rat MC S9	CPcdP		Yes	BaP and CPcdP maximal responses occurred at different S9 levels.
14170	Guthrie et al., 1982	TA98, TA100	Rat Ar S9 compare to PGS from ram seminal vesicles	BaA, CH		No	BaP tested in TA98, BaA and CH tested in TA100.
14260	Hass et al., 1981	TA98, TA100	Rat Ar S9		BeP	Yes	

Table 4-9. Study summaries: in vitro bacterial mutagenicity with benzo[a]pyrene and at least one other PAH

Record	Defense	S-harmelle -tweig(-)	A	Destition morelé	N1	Meets selection	Commente
18650	Hermann, 1981	TA98	Rat Ar S9	BbA, BaA, CH, FA, Tphen, BeP, DBacA, DBahA, BbF, Pery, DBalP, DBaiP, AA, CO	AC, PH, FE, Pyr, BbFE	Yes	
10670	Johnsen et al., 1997	TA98	Rat control or PB S9	BjAC, BlAC		Yes	
19000	Kaden et al., 1979	TM677	Rat Ar or PB S9	AN, ANL, Pyr, BbFE, CPcdP, BaA, CH, Tphen, FA, BeP, Pery, BghiP, AA, DBacA, DBahA, DBbeF	FE, AC, PH, Pic, CO	Yes	Mutagenic activity relative to BaP reported.
24680	Lafleur et al., 1993	TM677	Ar PMS	CPcdP, APA, ACEA, CPhiAPA, CPhiACEA		Yes	
19320	LaVoie et al., 1979	TA98, TA100	Rat Ar S9	BeP, Pery		Yes	Several other PAHs were evaluated, but not concurrent with BaP.
19360	LaVoie et al., 1985	TA98, TA100	Rat Ar S9		AC	Yes	
23650	McCann et al., 1975	TA1535, TA1537, TA98, TA100	Rat Ar S9	DBaiP, BeP, DBacA, DBahA, CH, BaA	Pyr, AC, PH, FE	Yes	
15170	Norpoth et al., 1984	TA100	Rat and mouse S9; induction by Clophen A50 and 18 PAHs	BaA		No	S9 composition was different for BaA and BaP; result cannot be compared.
20220	Pahlman and Pelkonen, 1987	TA100	S9 from control, MC, or TCDD treated rats and mice	BaA, CH, Tphen, DBacA, DBahA	AN, AC, PH, FE, Pyr, BeP, Pery, PCE	Yes	
20530	Penman et al., 1980	TM677	Rat Ar or PB S9	Pery, CPcdP, DBacA		No	No concurrent control values were reported.
20450	Phillipson and Ioannides, 1989	TA100	S9 isolated from mouse, hamster, rat, pig, and human	BaA, DBaiP, DBahA		Yes	
20490	Poncelet et al., 1978	TA1530, TA1535, TA1537, TA1538, TA98, TA100	S9 (origin unknown)	CO, Tphen, FA, BghiP	BbF	No	Qualitative data reported in published abstract.
20560	Probst et al., 1981	TA1530, TA1535, TA1537, TA1538, TA98, TA100	Rat Ar S9	BbA, DBacA	AC, DBahA, PH, Pyr, DBaiP	No	Data reported as minimum mutagenic concentration (nmol/mL).
20880	Rosenkranz and Poirier, 1979	TA1530, TA1535	Uninduced rat S9		AC, BaA, BeP, CH, PH	Yes	
21000	Sakai et al., 1985	TA97, TA98, TA100	Rat Ar S9	FE (equiv.), AC, PH, FA, CH, Pyr, BeP, Pery, BghiP, CO		Yes	
21040	Salamone et al., 1979a	TA1535, TA1537, TA1538, TA98, TA100	Rat Ar S9	BaA, BeP (equiv), BghiP, DBaiP, BPH, CH, CO, DBacA, PCE	AC, BaFE, BbFE, FA, Pery, Pyr	No	Increase in spontaneous mutation rate was indicated, but dose data were not provided.

Table 4-9. Study summaries: in vitro bacterial mutagenicity with benzo[a]pyrene and at least one other PAH

Record number	Reference	Salmonella strain(s)	Activation system	Positive result	Negative result	Meets selection criteria?	Comments
13260	Salamone et al., 1979b	TA98, TA100	Rat Ar S9	DBaiP		No	Dose-response data were not completely reported; maximal response information (dose and number of revertants) was presented in text; BaP max response at different S9 than DBaiP.
11860	Sangaiah et al., 1983	TA1535, TA1537, TA1538, TA98, TA100	Rat Ar S9	BjAC		Yes	Dose-response data for BaP was presented for TA98 only.
21360	Simmon, 1979a	TA1535, TA1536, TA1537, TA1538, TA98, TA100	Rat Ar S9	BaA, BeP	АС, СН, РН	Yes	
21640	Teranishi et al., 1975	TA1535, TA1536, TA1537, TA1538	S9 from rats treated with PB and MC or DBahA	DBaiP, DBaeP	DBahA, BaA, BeP	Yes	
16180	Utesch et al., 1987	TA100	Intact or homogenized hepatocytes from Ar treated rats	BaA		Yes	
16440	Wood et al., 1980	TA98, TA100	Rat Ar S9 and purified MFO enzymes system	CPcdP		Yes	

Table 4-9. Study summaries: in vitro bacterial mutagenicity with benzo[a]pyrene and at least one other PAH

Ar = Arochlor 1254-treated; MC = 3-methylcholanthrene-treated; PB = phenobarbital-treated; PMS = postmitochondrial supernatant

Table 4-10. Study summaries: in vitro mammalian mutagenicity assays with benzo[a]pyrene and at least one other PAH

Record number	Reference	Cell type	Metabolic activation	Mutagenesis assay	Positive result	Negative result	Meets selection criteria?	Comments
16900	Allen-Hoffmann and Rheinwald, 1984	Human epidermal keratinocyte	None	6-Thioguanine resistance (HPRT)		BaA	Yes	
16920	Amacher and Paillet, 1982	Mouse lymphoma cells (L5178Y)	Syrian golden hamster S9 mix or cocultivated hamster hepatocytes	Trifluorothymidine resistance (thymidine kinase locus [TK])	BaA		Yes	
16930	Amacher and Paillet, 1983	Mouse lymphoma cells (L5178Y)	Cocultivated rat hepatocytes	Trifluorothymidine resistance (TK)		BaA	Yes	
16940	Amacher and Turner, 1980	Mouse lymphoma cells (L5178Y)	S9 from eight rodent species or strain; one rat strain induced by Ar	Trifluorothymidine resistance (TK)	AC, BaA		Yes	AC data not useable; BaP not simultaneous
16910	Amacher et al., 1980	Mouse lymphoma cells (L5178Y)	Rat Ar and noninduced S9	Trifluorothymidine resistance (TK)	BaA	AC, Pyr	Yes	
13440	Baird et al., 1984	V79 Chinese hamster cells	Hamster embryo cells	6-Thioguanine resistance (HPRT)		BeP	Yes	
17140	Barfknecht et al., 1982	TK6 human lymphoblast cells	Rat Ar S9	Trifluorothymidine resistance (TK)	FA, BaA, CH, Tphen, CPcdP	PH, AC, ACEP	Yes	
24670	Durant et al., 1999	H1A1v2 human lymphoblastoid cells	Transfected with cyp1a1 cDNA	Trifluorothymidine resistance (TK)	BaPery, BbPery, DBaeF, DBafF, DBahP, DBaiP, DBelP, N23aP, N23eP	DBjlF, N12bF	Yes	
18260	Gehly et al., 1982	C3H/10T1/2 clone 8 mouse fibroblast cells	None	Ouabain resistance (HPRT)		BeP	Yes	
14250	Hass et al., 1982	V79 Chinese hamster cells	Hamster embryo cells	Ouabain and 6-thioguanine resistance (HPRT)	DBaiP, DBahP		Yes	
18750	Huberman, 1975	V79 Chinese hamster cells	Hamster cells	8-Azaguanine resistance (HPRT)		BaA, Pyr	Yes	
18740	Huberman and Sachs, 1976	V79 Chinese hamster cells	Hamster embryo cells	Ouabain and 8-azaguanine resistance (HPRT)	DBacA, DBahA (both weak)	Pyr, PH, CH, BaA	Yes	
24120	Huberman and Sachs, 1974	V79 Chinese hamster cells	Hamster embryo cells	8-Azaguanine resistance (HPRT)		BaA	Yes	
18990	Jotz and Mitchell, 1981	Mouse lymphoma cells (L5178Y)	Rat Ar S9	Trifluorothymidine resistance (TK)	Pyr		Yes	
24720	Kligerman et al., 1986	Mouse lymphoma cells (L5178Y)	Rat Ar S9	Trifluorothymidine resistance (TK)	BIAC		Yes	

Table 4-10. Study summaries: in vitro mammalian mutagenicity assays with benzo[a]pyrene and at least one other PAH

Record number	Reference	Cell type	Metabolic activation	Mutagenesis assay	Positive result	Negative result	Meets selection criteria?	Comments
19180	Krahn and Heidelberger, 1977	V79 Chinese hamster cells	Rat MC S9	6-Thioguanine resistance (HPRT)	BaA, DBacA, DBahA		Yes	DBacA and DBahA data not useable; treatment different than BaP.
24680	Lafleur et al., 1993	MCL-3 human lymphoblastoid cells	Transfected with cyp1a2 and cyp2a6 cDNA	Trifluorothymidine resistance (TK)	CPcdP, ACEA, CPhiACEA	APA, CPhiAPA , BghiF	Yes	
24170	Langenbach et al., 1983	V79 Chinese hamster cells	Cocultivation with primary rodent cells from liver, lung, kidney, and bladder	Ouabain resistance (HPRT)		AC	Yes	
7550	Li and Lin, 1996	HS1 HeLa cells (human epithelial cells)	None	6-Thioguanine resistance (HPRT)	BaA		Yes	
19870	Mishra et al., 1978	Fischer rat embryo cells infected with Rauscher leukemia virus	Rat Ar S9	Ouabain resistance (HPRT)		AC, PH, Pyr, BeP	Yes	
20040	Myhr and Caspary, 1988	Mouse lymphoma cells (L5178Y)	Rat Ar and noninduced S9	Trifluorothymidine resistance (TK)	AC, BaA, BeP		No	Results reported as ranges.
11450	Nesnow et al., 1984	V79 Chinese hamster cells	Rat Ar S9	6-Thioguanine resistance (HPRT)	BlAC, BeAC, BjAC		Yes	
15630	Raveh and Huberman, 1983	V79 Chinese hamster cells	Hamster embryo fibroblasts	6-Thioguanine resistance(HPRT); phorbol myristate acetate used to enhance recovery	CPcdP	BaA	Yes	
15640	Raveh et al., 1982	V79 Chinese hamster cells	Hamster embryo fibroblasts	Ouabain and 6-thioguanine resistance (HPRT)	CPcdP		Yes	Mutagenicity correlated with skin tumor initiation.
21410	Slaga et al., 1978	V79 Chinese hamster cells	Hamster embryo cells	Ouabain resistance (HPRT)	BaA (weak)		Yes	
21720	Tong et al., 1983	Rat liver epithelial cells (ARL-18)		6-Thioguanine resistance (HPRT)		BaA, BeP, Pyr	No	Repeats data from 21730 Tong et al., 1981b
21730	Tong et al., 1981b	Rat liver epithelial cells (ARL-18)	None	6-Thioguanine resistance (HPRT)		BeP, Pyr, BaA	Yes	

Table 4-10. Study summaries: in vitro mammalian mutagenicity assays with benzo[a]pyrene and at least one other PAH

Record number	Reference	Cell type	Metabolic activation	Mutagenesis assay	Positive result	Negative result	Meets selection criteria?	Comments
16190	Vaca et al., 1992	UV-sensitive Chinese hamster ovary (CHO) cells	Rat Ar S9	6-Thioguanine resistance (HPRT)	FA		Yes	
21900	Wangenheim and Bolcsfoldi, 1988	Mouse lymphoma cells (L5178Y)	Rat Ar S9	Trifluorothymidine resistance (TK)	Pyr, FE		Yes	

HPRT = hypoxanthine-guanine phosphoribosyl transferase mutagenicity assay (resistance to 6-thioguanine, 8-azaguanine, or ouabain); TK = thymidine kinase mutagenicity assay (resistance to trifluorothymidine)

Table 4-11. Study summaries: in vitro morphological/malignant cell transformation with benzo[a]pyrene and at least one other PAH

Record number	Reference	Cell type	Metabolic activation system	Positive result	Negative result	Meets selection criteria?	Comments
13390	Atchison et al., 1985	BALB/3T3 mouse embryo fibroblasts	None		FA, Pyr	Yes	
17610	Casto, 1979	Syrian golden hamster embryo cells	None	DBahA	Pyr	Yes	
17730	Chen and Heidelberger, 1969	Adult C3H mouse ventral prostate cells	Cocultivated irradiated C3H mouse embryonic fibroblasts	DBahA	DBacA, Pyr	No	Control data not provided.
24750	Davis, 1999	C3H10T1/2 cells	None	DBalP, DBaeP, BcC, BgC, BcPH		No	Control data not provided.
17970	DiPaolo et al., 1969	Syrian golden hamster embryo cells	Cocultivated irradiated Sprague-Dawley rat fetal cells	DBahA, BaA, BeP, DBacA	Pyr, PH	Yes	
17990	DiPaolo et al., 1972	BALB/3T3	None		AC, Pyr	Yes	
23630	DiPaolo et al., 1973	Syrian golden hamster embryo cells	In vivo (transplacental) exposure		AC, PH, Pyr	No	No quantitative information.
18020	Dunkel et al., 1981	Balb/3T3, Syrian golden hamster embryo, and Rauscher murine leukemia virus- infected F344 rat embryo cells	None	BaA	BeP, PH, AC	Yes	Qualitative data only for R-MuLV- RE cells. BaA positive in SHEM, equivocal in Balb/3T3.
18080	Emura et al., 1980	Syrian golden hamster fetal lung cells	None	BbF, BaA, IP	BkF, BeP	Yes	
23640	Evans and DiPaolo, 1975	Strain 2 guinea pig fetal cells	None		AC, Pyr, PH	No	No quantitative information.
18260	Gehly et al., 1982	C3H10T1/2CL8 mouse embryo fibroblasts	None		BeP	Yes	
14130	Greb et al., 1980	BHK 21/CL 13	Rat Ar S9	CH, BaA, BbF, DBahA, BeP	РН, АС	Yes	
23890	Kakunaga, 1973	BALB/3T3 subclone A31-714	None		PH, Pyr	No	Not clear if BaP admin simultaneously.
14640	Krolewski et al., 1986	C3H10T1/2CL8 mouse embryo fibroblasts	None	CPcdP		Yes	
14700	Laaksonen et al., 1983	Newborn NMRI nu/nu nude mouse skin fibroblasts	None	BaA	AC	Yes	
14850	Lubet et al., 1983	C3H10T1/2CL8 mouse embryo fibroblasts	None	BeP	AC, DBahA, PH	Yes	
19870	Mishra et al., 1978	Rauscher leukemia virus-infected Fischer rat embryo	None		AC, PH, Pyr, BeP	No	No quantitative information.
24710	Mohapatra et al., 1987	C3H10T1/2CL8 mouse embryo fibroblasts	None	BeAC, BjAC, BlAC	BkAC	Yes	
24700	Nesnow et al., 1990	Human neonatal foreskin fibroblasts	None	BIAC		Yes	
7980	Nesnow et al., 1997	C3H10T1/2CL8 mouse embryo fibroblasts	None	DBalP		Yes	
7990	Nesnow et al., 1994	C3H10T1/2CL8 mouse embryo fibroblasts	None	DBahA		Yes	
8000	Nesnow et al., 1993a	C3H10T1/2CL8 mouse embryo fibroblasts	None	DBkmnoAPH	DBjmnoAPH, N123mnoAPH	Yes	
20120	Nesnow et al., 1991	C3H10T1/2CL8 mouse embryo fibroblasts	None		ACEA	Yes	

Table 4-11. Study summaries: in vitro morphological/malignant cell transformation with benzo[a]pyrene and at least one other PAH

Record number	Reference	Cell type	Metabolic activation system	Positive result	Negative result	Meets selection criteria?	Comments
23720	Pienta et al., 1977	Syrian golden hamster embryo	Cocultivated X-irradiated cells of same type	BaA, DBahA	CH, BeP, Pyr, AC, DBacA, PH	Yes	
8490	Sheu et al., 1994	BALB/3T3 A31-1-1	None		Pyr, BaA, CH	Yes	

Record number	Reference	Cell type or DNA source	Incubation time	Activation system	Method of analysis	PAHs evaluated ^a	Meets selection criteria?	Comments
16890	Allen and Coombs, 1980	Mouse embryo cells from TO mice	24 hr	None	[³ H] prelabeling	BaA	Yes	
6300	Binkova et al., 2000	Human diploid lung fibroblast cells	Various up to 24 hr	None	[³² P] postlabeling	DBalP	Yes	
9510	Bryla and Weyand, 1992	Calf thymus DNA	1 hr	None	[³² P] postlabeling	BaA, DBacA, PH	Yes	PH did not form measurable DNA adducts. Adduct formation enhanced when reacted under white light.
6570	Cherng et al., 2001	Human hepatoma HepG2 cells	24 hr	None	[³² P] postlabeling	BghiP	Yes	BghiP did not form measurable DNA adducts.
13780	Cooper et al., 1982	Fibroblasts and epithelial cells from Wistar rat mammary tissue	24 hr	None	[³ H] prelabeling	BaA	Yes	BaA formed little or no measurable DNA adducts.
22800	Grover and Sims, 1968	Salmon testes DNA	Not specified	Rat liver microsomes	[³ H] prelabeling	DBahA, DBacA, BaA, Pyr, PH	Yes	
10660	Johnsen et al., 1998	Human lymphocytes and human promyelocytic HL-60 cells	24 hr	None	[³² P] postlabeling	BjAC, BlAC	Yes	
10670	Johnsen et al., 1997	Rat lung Clara cells, Type 2 cells, and macrophages	2 hr	PCB pretreatment of whole animals	[³² P] postlabeling	BjAC, BlAC	Yes	
13200	Li et al., 2002	MCF-7 cells or rat lung DNA	7–24 hr	Human mammary microsomes with rat lung DNA	[³² P] postlabeling	DBalP, BcPH, DBahA	No	No quantitative results.
7870	Melendez-Colon et al., 2000	Human mammary carcinoma MCF-7 cells and leukemia HL-60 cells	4 or 24 hr	None	[³² P] postlabeling	DBalP	Yes	No adducts formed in HL-60 cells that lack significant P450 activity.
7990	Nesnow et al., 1994	C3H10T1/2CL8 fibroblasts	24 hr	None	³² P] postlabeling	DBahA	No	No quantitative results.
20120	Nesnow et al., 1991	C3H10T1/2 cells	24 hr	None	³² P] postlabeling	ACEA	No	Measures repair of adducts only, not synthesis.
21200	Segerback and Vodicka, 1993	Calf thymus DNA	3 hr	Rat Ar S9	³² P] postlabeling, ³ H- binding	CH, BaA, BbF, DBahA, FA, BghiP, Pyr	Yes	
24810	Baird et al., 2002	MCF-7 cells	24 hr	Morpholinos inhibition (antisense oligomer that blocks protein synthesis of CYPIA1)	[³² P] postlabeling	DBalP	No	Confounded by CYP1A1 inhibition by morpholinos.

Table 4-12. Study summaries: in vitro DNA adducts with benzo[a]pyrene and at least one other PAH

^aExcept where noted, positive findings were reported for all PAHs evaluated.

2

Table 4-13. Study summaries: in vitro DNA damage, repair, or synthesis with benzo[a]pyrene and at least oneother PAH

Record number	Reference	Cell type	Metabolic activation	Endpoint	Assay	Positive result	Negative result	Meets selection criteria?	Comments
16840	Agrelo and Amos, 1981	Human fibroblasts	Rat Ar S9	Unscheduled DNA synthesis	[³ H] Thymidine uptake	Pyr		Yes	
17610	Casto, 1979	Syrian golden hamster embryo	Intrinsic	Unscheduled DNA synthesis	[³ H] Thymidine uptake		DBahA, Pyr, PH	Yes	
24030	De Flora et al., 1984	<i>Escherichia coli</i> WP2, WP67, and CM871	Rat Ar S9	DNA damage	Differential killing repair- deficient strains	AC, BaA	Pery, BeP	No	Semiquantitative data.
18030	Dunkel et al., 1984	E. coli WP-2 uvrA	Rat, mouse, hamster Ar S9	DNA damage	Differential killing repair- deficient strains	BaA, BeP, PH, Pyr	AC	No	Dose-response data not provided.
23790	Ichinotsubo et al., 1977	E. coli Rec BC	S9 (origin unknown)	DNA damage		DBaiP, DBahA		Yes	
10670	Johnsen et al., 1997	Rat lung Clara cells, Type 2 cells, and macrophages	PCB pretreatment of whole animals	DNA damage	Alkaline elution		BjAC, BlAC	No	No untreated control.
10660	Johnsen et al., 1998	Human lymphocytes and human promyelocytic HL- 60 cells	Rat or human liver microsomes	DNA damage	Alkaline elution	BjAC, BIAC		Yes	
19270	Lake et al., 1978	Human foreskin epithelial cells	None	Unscheduled DNA synthesis	[³ H] Thymidine uptake	DBahA	AC, BeP, PH, Pyr	No	Doses reported as ranges.
19680	Mamber et al., 1983	E. coli WP2 and WP100	Rat Ar S9	DNA damage	Growth inhibition of repair deficient strains		AC, FE, Pyr	Yes	
19690	Mane et al., 1990	Human and rat mammary epithelial cells	None	Inhibition of DNA synthesis	[³ H] Thymidine uptake	BaA (in human MEC only)	BeP	No	Positive response for BaA not observed consistently.
19730	Martin and McDermid, 1981	HeLa S3 cells	PB-induced rat liver postmitochondrial supernatant	Unscheduled DNA synthesis	[³ H] Thymidine uptake	Pyr (authors: "dubious" result)	AC	No	No quantitative information.
19740	Martin et al., 1978	HeLa S3 cells	3-MC induced rat liver postmitochondrial supernatant	Unscheduled DNA synthesis	[³ H] Thymidine uptake	BeP, BaA, DBacA, DBahA	Pyr, AC	Yes	
23800	McCarroll et al., 1981	<i>E. coli</i> WP2, WP2 uvrA, WP67, CM611, WP100, W3110poIA+, and p3478pola-	Rat Ar S9	DNA damage	Differential killing repair- deficient strains		AC, PH	Yes	

Table 4-13. Study summaries: in vitro DNA damage, repair, or synthesis with benzo[a]pyrene and at least one other PAH

Record number	Reference	Cell type	Metabolic activation	Endpoint	Assay	Positive result	Negative result	Meets selection criteria?	Comments
19830	Mersch- Sundermann et al., 1992	E. coli PQ37	Rat Ar S9	Induction of SOS system	SOS chromotest	AA, BaA, BbF, BghiF, BjF, BbFE, BghiP, BeP, CH, DBacA, DBahA, DBalP, DBahP, DBaiP, FA, IP, PH, Tphen	AC, BaFE, CO, FE, Pery, Pyr	Yes	
19850	Milo et al., 1978	Human skin fibroblast NF and Detroit 550 cells	None	DNA damage	Alkaline elution		AC, Pyr, PH, BeP	Yes	
20050	Nagabhushan et al., 1990	Hamster buccal pouch epithelial cells and tissue fragments	Not specified	Inhibition of DNA synthesis	[³ H] Thymidine uptake		BaA	No	Abstract only. BaA inhibited synthesis 4%.
20560	Probst et al., 1981	Rat hepatocyte primary culture	None	Unscheduled DNA synthesis	[³ H] Thymidine uptake	BbA, DBacA	AC, DBahA, PH, Pyr, DBaiP, FE, BeP	No	Artifact of counting method resulted in control responses reported as negative values.
20810	Robinson and Mitchell, 1981	Human fibroblasts WI-38 cells	Rat Ar S9	Unscheduled DNA synthesis	[³ H] Thymidine uptake	Pyr (with activation)		Yes	
23900	Rosenkranz and Leifer, 1980	E coli pol A1-	Rat liver S9	DNA damage	Differential killing repair- deficient strains		AC, BaA, BeP, CH, PH	Yes	
20880	Rosenkranz and Poirier, 1979	E. coli pol A1-	Uninduced rat S9	DNA damage	Differential killing repair- deficient strains		АС, ВаА, ВеР, СН, РН	Yes	
20940	Rossman et al., 1991	$E coli WP2s(\lambda)$	Rat liver S9	DNA damage	Λ prophage induction	AC, DBacA, DBahA, PH	BeP, FA, Pyr	Yes	
21380	Simmon, 1979b	Saccharomyes cerevisiae D3	Rat Ar S9	induced recombination	Colony pigmentation on adenine medium		АС, ВаА, ВеР, СН, РН	Yes	
21720	Tong et al., 1983	Rat hepatocyte primary culture	None	Unscheduled DNA synthesis	[³ H] Thymidine uptake	BaA	BeP, AC, CH, Pyr	No	Repeats data from 21730 Tong et al., 1981b.
21730	Tong et al., 1981b	Rat hepatocyte primary culture	None	Unscheduled DNA synthesis	[³ H] Thymidine uptake	BaA	BeP, AC, CH, Pyr	Yes	
21790	Tweats, 1981	<i>E. coli</i> WP2, WP67(uvrA polA), CM871 (uvrA lexA recA)	Rat Ar S9	DNA damage	Differential killing repair- deficient strains		Pyr, AC	No	No quantitative information.
16190	Vaca et al., 1992	CHO cells	Rat Ar S9	DNA damage	Alkaline elution	FA		No	No untreated or vehicle control.
22260	Williams et al., 1982	Rat hepatocyte primary culture	None	Unscheduled DNA synthesis	[³ H] Thymidine uptake		Pyr, BeP	No	No quantitative information.

Table 4-14. Study summaries: in vitro clastogenicity or sister chromatid exchange with benzo[a]pyrene and at least one other PAH

Record number	Reference	Cell type	Metabolic activation	Clastogenic endpoint(s)	Positive results	Negative results	Meets selection criteria?	Comments
16740	Abe and Sasaki, 1977	Pseudodiploid Chinese Hamster D-6	None	Aberrations and SCEs		AC, Pyr	Yes	
17890	Dean, 1981	Near-diploid epithelial- type rat liver RL ₁	None	Various aberrations		AC, Pyr	No	Semiquantitative results.
17930	DeSalvia et al., 1988	Male Chinese hamster liver epithelial cells (CHEL)	None	SCEs		Pyr, FA	Yes	
18120	Evans and Mitchell, 1981	СНО	Rat Ar S9	SCEs	Pyr (with activation)		No	No untreated or vehicle control.
23640	Evans, and DiPaolo, 1975	Diploid strain 2 guinea pig fetal cells	None	Aneuploidy		AC	No	No quantitative data. Pyr, PH also evaluated using different protocol without BaP reference.
18260	Gehly et al., 1982	CH3/10T1/2 Clone 8 mouse fibroblasts	None	SCEs		BeP	Yes	
14620	Kochhar, 1982	Chinese hamster V79	None	Aberrations including gaps, rings, breaks, fragments, exchanges	BaA		Yes	Dose-dependent increase in % cells with aberrations.
14640	Krolewski et al., 1986	CH3/10T1/2 Clone 8 mouse embryo cells	None	SCEs	CPcdP		Yes	CPcdP appears to increase SCEs in dose- dependent fashion (two doses).
19690	Mane et al., 1990	Chinese hamster V79 cells	With and without rat mam- mary epithelial cell coculture	SCEs	BaA	BeP	Yes	
19770	Matsuoka et al., 1979	Male Chinese hamster lung (CHL)	Rat Ar S9	Aberrations and SCEs		PH	No	Not clear if BaP administered simultane- ously. No untreated control.
20020	Murison, 1988	P3 clonal isolate from human epithelial teratocarcinoma	BJ-015 human breast epithelial cell coculture	SCEs	CPcdP	BeP	No	Not clear if BaP administered simultaneously; no concurrent control.
20340	Perry and Thomson, 1981	CHO cells	Rat Ar S9	SCEs	Pyr	AC	No	No untreated control.

Table 4-14. Study summaries: in vitro clastogenicity or sister chromatid exchange with benzo[a]pyrene and at least one other PAH

Record				Clastogenic	Positive	Negative	Meets selection	
number	Reference	Cell type	Metabolic activation	endpoint(s)	results	results	criteria?	Comments
20500	Popescu et al., 1977	Chinese hamster V79-4 cells	With or without irradiated Syrian golden hamster secondary embryo feeder cells	Aberrations and SCEs	Pery, Pyr	РН	No	BaP increased SCEs but Pyr and Pery in- creased aberrations. Pery increased aber- rations w/o activation. 60% of Pyr treated cells (activated) polyploid. Increased aberrations in polyploid cells.
21710	Tong et al., 1981a	Adult rat liver epithelial (ARL 18) cells	None	SCEs	BaA	BeP, Pyr, AC	Yes	
21720	Tong et al., 1983	Adult rat liver epithelial (ARL 18) cells	None	SCEs	BaA	BeP, Pyr, AC	No	Repeats data from 21710 Tong et al., 1981a
8780	Vienneau et al., 1995	UDP-Glucuronosyl- transferases-deficient rat (RHA-J/J) skin fibroblasts	None	Micronuclei		BeP	Yes	
8850	Warshawsky et al., 1995	Human lymphocytes	None	Micronuclei and SCEs		BaA	Yes	
21980	Weinstein et al., 1977	Human diploid fibroblasts (WI-38)	With or without rat Ar s9	Chromosomal damage, mitotic index, abnormal metaphases		Pyr	Yes	
If the above criteria were met, studies were selected for use in the analysis regardless of 1 2 whether positive or negative results were reported. Studies with positive findings were used for calculation of RPFs. Studies with negative findings were used in a weight of evidence 3 evaluation of potential carcinogenicity (discussed later in Section 6.1). To be considered 4 adequate for use in the analysis, nonpositive bioassays were selected only if two additional 5 conditions were met: (1) at least 20 animals were used per dose group, and (2) animals were 6 7 observed for at least 6 months. More strict criteria were applied to nonpositive studies due to the difficulty in demonstrating the absence of an effect. For example, if a positive tumor response 8 (i.e., statistically significant increase in incidence) was observed after 3 months of treatment with 9 a given PAH, the positive finding is clear; however, if no response (or a nonsignificant response) 10 was observed after 3 months, the absence of response might reflect a lack of carcinogenic action, 11 but might also have resulted from inadequate follow-up time. The use of these additional criteria 12 for nonpositive studies served to ensure that PAHs would not be treated as noncarcinogenic 13 based on inadequate nonpositive bioassays. 14

15 Study design details, findings, limitations, and a determination of whether the study met 16 selection criteria are presented in Tables 4-1 through 4-14 for each study reviewed in each 17 category. Positive and negative findings as reported in the table are based on the author's determination except where noted. When statistical analysis of tumor bioassay data was not 18 19 included in the pertinent publication, statistical analysis was conducted to determine whether the 20 response differed from control. In the sections that follow, overviews of the data available in 21 each category are presented. The overviews address the nature of the studies available, concise information on general study methods, general findings for the tested compounds, and key 22 strengths and limitations of the available data for relative potency development. 23

24

25 **4.3.1. In Vivo Cancer Bioassays in Animals**

The PAH database contained a large number of cancer bioassay studies in which one or more PAHs was evaluated along with benzo[a]pyrene. The vast majority of the tumor bioassay studies were mouse skin painting studies (n = 43). In addition, there were 11 intraperitoneal studies, 9 subcutaneous exposure studies, 2 oral studies, and 9 studies using miscellaneous exposure routes.

31

32 **4.3.1.1.** *Dermal Exposure*

A summary of the 43 dermal bioassays is provided in Table 4-1. These studies were all conducted in mice. Fifteen studies tested the complete carcinogenicity of PAHs, while 23 studies tested PAHs as initiators in initiation-promotion protocols. In some cases, both complete and initiation-promotion studies were reported in the same reference. For these references, two entries are included in the table.

Complete carcinogenicity studies were conducted in mice using either dropper or 1 2 paintbrush application. Swiss mice were typically preferred for these studies. PAHs, usually in 3 acetone, were applied to the shaved interscapular skin 2 or 3 times/week. The duration of exposure varied from 10 weeks up to about 70 weeks; most studies continued exposure for at 4 least 30 weeks. Skin tumor counts were recorded on a weekly basis, and animals were sacrificed 5 when tumors reached a minimum size (e.g., 2 cm) or when the animals were moribund. These 6 7 studies generally focused exclusively on skin papillomas and carcinomas. Skin tumor data were reported as incidence (i.e., number of animals with tumors) and/or tumor count (mean number of 8 tumors per animal) (indicated in Table 4-1). 9

10 Several PAHs consistently (in two or more studies) proved to be complete carcinogens in 11 mouse skin painting assays, including benzo[b]fluoranthene, benzo[j]fluoranthene,

12 cyclopenta[c,d]pyrene, dibenzo[a,e]pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, and

dibenzo[a,l]pyrene. Chrysene gave positive results in two complete carcinogenicity studies

14 (LaVoie et al., 1979; Wynder and Hoffmann, 1959) and equivocal results in a third (Hecht et al.,

15 1974). Anthanthrene, dibenzo[a,e]fluoranthene, and dibenz[a,h]anthracene each gave positive

16 tumorigenicity results in a single assay (Cavalieri et al., 1977; Hoffmann and Wynder, 1966; and

17 Wynder and Hoffmann, 1959; respectively). Negative or equivocal results were reported for

18 benzo[k]fluoranthene, benzo[g,h,i]fluoranthene, dibenzo[e,l]pyrene, indeno[1,2,3-c,d]pyrene,

benzo[g,h,i]perylene, naphtho[2,3-e]pyrene, anthracene, pyrene, fluoranthene, 2,3-acepyrene,

20 benz[a]anthracene, coronene, and benzo[e]pyrene (see Table 4-1).

According to LaCassagne et al. (1968), in studies conducted prior to 1966, the compound reported as dibenzo[a,l]pyrene was actually dibenzo[a,e]fluoranthene. In the text and tables of this report, data from Hoffmann and Wynder (1966) are reported as dibenzo[a,e]fluoranthene in Table 4-1.

The initiation studies in Table 4-1 were performed under a generally consistent protocol, 25 26 as follows. During the early part of the second telogen phase of the hair cycle (at about 7-8weeks of age), PAHs in acetone were applied to the shaved interscapular skin of mice. In 27 general, female Swiss, CD-1, or SENCAR mice were used. Some studies used dropper 28 administration, but the majority employed a painting method using a camel's hair brush. About 29 half of the initiation studies used a single initiation dose, while the other half administered the 30 initiating compound in 10 subdoses given every other day. One to 2 weeks after the final 31 initiating dose, promotion was begun with twice or thrice weekly applications of a promoting 32 agent, usually TPA (12-0-tetra-decanoylphorbol-13-acetate) or croton oil. The dose of the 33 promoting agent varied by study. Promotion usually continued for about 20 weeks (with a range 34 across studies from 11 to 26 weeks). The incidence of skin papillomas was recorded on a weekly 35 basis until the promotion period was ended. Papillomas were removed at random for histological 36 verification. Some studies reported the number of tumors per animal; some reported only the 37

38 incidence.

The initiation studies in Table 4-1 consistently showed positive tumorigenicity across two 1 2 or more studies for the following compounds: benzo[j]fluoranthene, benzo[b]fluoranthene, 3 chrysene, dibenzo[a,e]pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, dibenzo[a,l]pyrene, and cyclopenta[d,e,f]chrysene. In at least one study, benzo[k]fluoranthene, benz[l]aceanthrylene, 4 benz[e]aceanthrylene, naphtho[2,3-e]pyrene, dibenz[a,h]anthracene, dibenz[a,c]anthracene, and 5 benz[b,c]aceanthrylene showed positive initiating activity. Negative results were reported for 6 7 pyrene, perylene, benzo[g,h,i]fluoranthene, fluoranthene, anthanthrene, dibenzo[e,l]pyrene, benzo[g,h,i]perylene, indeno[1,2,3-c,d]pyrene, benzo[e]pyrene, anthracene, 2,3-acepyrene, and 8 phenanthrene. Cyclopenta[c,d]pyrene gave negative results in one study—Wood et al. (1980)— 9 and positive results in two— Cavalieri et al. (1981b) and Raveh et al. (1982) (see Table 4-1). 10 The vast majority of the initiation and complete carcinogenicity studies were conducted 11 in female mice, so data on gender differences in skin tumor susceptibility are not available. 12 A few studies using dermal application (Warshawsky et al., 1993; Slaga et al., 1979; Van 13 Duuren and Goldschmidt, 1976; Horton and Christian, 1974; Van Duuren et al., 1973) were 14 15 designed to evaluate the cocarcinogenicity of two or more PAHs, or of a single PAH with 16 dodecane as a vehicle. These were primarily complete carcinogenicity studies, wherein PAHs were administered together over a chronic time period, although Slaga et al. (1979) used an 17 initiation-promotion design. Study design was similar to other complete carcinogenicity 18 19 experiments. In these studies, the carcinogenicity of single PAHs was evaluated for comparison with the results obtained when the PAHs were administered with a cocarcinogen. Data on single 20 21 PAHs (without a cocarcinogen) were generally limited to single dose levels. In the cocarcinogenesis studies, only dibenz[a,c]anthracene, benzo[e]pyrene, and pyrene gave positive 22 results when administered without a cocarcinogen; results for pyrene were judged to be 23 equivocal in the absence of statistical confirmation. The PAHs chosen for cocarcinogenesis 24 studies were often those traditionally understood to be nontumorigenic or weakly tumorigenic 25 26 when administered alone (e.g., perylene, pyrene, benzo[e]pyrene, benzo[g,h,i]perylene, phenanthrene, fluoranthene). 27 Several issues relating to the potential use of the dermal bioassay data for relative 28

potency development were identified during study review. Several studies did not include a 29 concurrent untreated or vehicle-treated control group (Masuda and Kagawa, 1972; Bingham and 30 Falk, 1969; Wynder and Hoffmann, 1959a, b). In a number of reports, it appears that bioassays 31 were done in batches and reported in a single publication. In these cases, it appears that 32 benzo[a]pyrene treatment may not have been undertaken concurrently with all of the compounds 33 in the report. For some of these studies (Horton and Christian, 1974; Bingham and Falk, 1969), 34 35 there are differences in the choice of vehicle or promoter, or other issues that argue against using the benzo[a]pyrene data for direct comparison. In several others studies, however (Rice et al., 36 1988; Slaga et al., 1980; Van Duuren and Goldschmidt, 1976; Wynder and Hoffmann, 1959), the 37 protocols (including vehicle and promoting agent) appear to have been the same. 38

Among the dermal tumor bioassay studies in Table 4-1, 24 studies met the selection criteria for use in this analysis.

3 4

1

2

4.3.1.2. Intraperitoneal Exposure

5 Eleven cancer bioassays in the literature used intraperitoneal injection. Six of these 6 studies were carried out in newborn mice, while the other five used adult A/J mice. All of the 7 studies focused on lung and liver tumorigenicity after PAH exposure. Study summaries for all of 8 these references are reported in Table 4-2. Tumor data were reported as incidence (i.e., number 9 of animals with tumors) and/or tumor count (mean number of tumors per animal) (indicated in 10 Table 4-2).

Newborn mouse studies. Six cancer bioassays in newborn mice were identified (LaVoie
et al., 1994, 1987; Busby et al., 1989, 1984; Weyand and LaVoie, 1988; Wislocki et al., 1986).
In general, PAHs were administered intraperitoneally to newborn mice (usually of the Swiss or
CD-1 strains). The dosing schedule called for 1/7th, 2/7^{ths}, and 4/7^{ths} of the total dose to be
administered on the 1st, 8th, and 15th days of life. Typically, the mice were sacrificed at either 6
months or 1 year, and lung and/or liver tumors were identified and classified.

The studies in newborn mice showed a distinct gender difference in liver tumorigenicity. 17 Male mice appear to be substantially more susceptible to liver tumor induction than females. In 18 19 contrast, both male and female mice developed lung tumors after exposure. Three studies 20 (LaVoie et al., 1994; Busby et al., 1989, 1984) reported that fluoranthene induced lung tumors in 21 both male and female mice, while one study reported that fluoranthene induced liver tumors in male mice only (LaVoie et al., 1994). LaVoie et al. (1987) reported that benzo[b]fluoranthene 22 and benzo[j]fluoranthene induced lung adenomas in both male and female mice, but induced 23 liver tumors only in males. Wislocki et al. (1986) reported that treatment with benz[a]anthracene 24 25 resulted in a significant increase in liver tumors in male mice. In this study, benz[a]anthracene 26 treatment resulted in an increased incidence of lung tumors in both males and females, although the tumor incidence was significantly increased only for females. The same authors (Wislocki et 27 al., 1986) reported a significant increase in liver tumors in male mice treated with chrysene, but 28 no increase in lung tumorigenicity. The lack of lung tumorigenicity in mice treated with 29 30 chrysene was also reported by Busby et al. (1989).

Negative tumorigenicity results in newborn mouse assays were reported for pyrene,
chrysene, benzo[k]fluoranthene, and indeno[1,2,3-c,d]pyrene (Busby et al., 1989; LaVoie et al.,
1987).

Most of the data from the newborn mouse assays met the criteria for relative potency development, although Weyand and LaVoie (1988) is an abstract and does not provide doseresponse information. LaVoie et al. (1994) noted that liver tumorigenicity in newborn mice exposed to weak tumorigenic agents may not be fully realized for 12 months; thus, the failure to 1 observe liver tumors in studies of shorter duration (Busby et al., 1989, 1984) may result from the

2 longer latency and should be taken into consideration in using these data.

Lung adenoma A/J mouse studies. Five studies (Nesnow et al., 1998a, b, 1996, 1995; Ross et al., 1995; Mass et al., 1993) were carried out in 6- to 8-week-old A/J mice by the same laboratory using a standard protocol (Table 4-2). Mice were given a single intraperitoneal injection of PAH in tricaprylin and followed for 8 months. Upon sacrifice, the lungs were removed and adenomas were counted. Tumor multiplicity was reported, while tumor incidence was not. Several of these studies include estimates of relative potency based on statistical analysis of the tumor multiplicity data.

These studies report positive tumor findings (reported as an increase in the number of
tumors per animal) for all of the PAHs tested (benz[j]aceanthrylene, benzo[b]fluoranthene,
dibenz[a,h]anthracene, cyclopenta[c,d]pyrene, and dibenzo[a,l]pyrene).

Among the intraperitoneal tumor bioassay studies in Table 4-2, eight studies met the selection criteria for use in this analysis.

15

16 **4.3.1.3.** Subcutaneous Injection Exposure

Nine studies employing a subcutaneous exposure design were identified. All of the
subcutaneous exposure studies are more than 25 years old; the most recent is Pfeiffer (1977).
Study descriptions are presented in Table 4-3.

20 Two studies utilized newborn mice (Roe and Waters, 1967; Grant and Roe, 1963). In 21 these studies, phenanthrene was administered subcutaneously to newborn albino mice on the first day of life. Ten mice of each group were sacrificed after 52 weeks, and the remaining animals 22 were sacrificed at 62 weeks. Grant and Roe (1963) reported lung tumorigenicity, while Roe and 23 Waters (1967) reported liver tumors in the same group of mice. Roe and Waters (1967) reported 24 an elevated incidence of liver tumors in male mice exposed subcutaneously to phenanthrene; 25 26 however, it is not clear whether the difference was significant. Roe and Waters (1967) is a brief communication with limited details of the study design and results. 27

In most of the remaining studies, single subcutaneous doses of one or more PAHs and benzo[a]pyrene were administered to mice, followed 1–2.5 years later by an evaluation of injection site and other tumors. Tumors at the injection site were most commonly reported; however, in some studies, investigators also examined other organs for tumors (Homburger et al., 1972; Roe and Waters, 1967; Grant and Roe, 1963; Rask-Nielsen, 1950; Pfeiffer and Allen, 1948).

Most of the subcutaneous bioassays suffer from critical shortcomings in design or reporting. One study used "aged" mice for controls, allowing these animals to live 16 weeks longer than the treated group (Homburger et al., 1972). Three studies gave apparently positive results for dibenz[a,h]anthracene (i.e., substantial tumor induction; Pfeiffer, 1977; Steiner, 1955; Bryan and Shimkin, 1943). However, neither Bryan and Shimkin (1943) nor Steiner (1955)

included untreated control groups. Pfeiffer (1977) included an untreated control group in which 1 2 there was 90% mortality prior to sacrifice of the treated animals; data on tumor incidence in controls were not reported. Several other studies (Pfeiffer and Allen, 1948; Barry et al., 1935) 3 also did not include a concurrent untreated or vehicle-treated control group. These studies were 4 not used for dose-response assessment due to the lack of appropriate controls. 5 Fundamental flaws were observed in two older studies. Pfeiffer and Allen (1948) 6 7 examined the effects of PAHs in Rhesus monkeys. Individual animals were exposed sequentially to several PAHs via multiple exposure routes; thus, the effect of any individual PAH 8 or benzo[a]pyrene cannot be discerned. Barry et al. (1935) treated mice with PAHs from varying 9 sources and of varying purity. Given the age of the study and the attendant issues with 10 nomenclature, purity, and analysis of the treatment compounds, data from this study are excluded 11 12 from use in relative potency development.

Among the subcutaneous tumor bioassay studies in Table 4-3, only a single study met
 selection criteria for use in this analysis.

15

16 **4.3.1.4.** *Oral Exposure*

The literature search identified two oral bioassays that included benzo[a]pyrene and at least one other PAH. Critical aspects of the study design for these studies are reported in Table 4-4.

20 Biancifiori and Caschera (1962) compared the induction of mammary tumors in virgin 21 and pseudopregnant mice (female mice mated with vasectomized males) after gavage exposure to dibenz[a,h]anthracene or benzo[a]pyrene. Tumor incidence was increased in pseudopregnant 22 mice given 1 mg/week of either compound for 15 weeks, but not in virgin mice given the same 23 dose. The relevance of the positive findings in pseudopregnant mice is uncertain given that an 24 increased incidence of tumors was not observed in virgin mice treated at the same dose. One 25 26 possible explanation for the disparate findings is that circulating hormones in pseudopregnant mice differed from those in virgin mice and interacted with the PAH to enhance tumor 27 formation. Huggins and Yang (1962) also evaluated mammary tumor incidence after a single 28 oral PAH exposure. Sprague-Dawley rats were given gavage doses of benzo[a]pyrene, 29 30 benz[a]anthracene, or phenanthrene. This study did not include an untreated or vehicle-treated control group. No tumors were observed in the rats treated with either benz[a]anthracene or 31 phenanthrene, while mammary tumors were observed in eight of the nine benzo[a]pyrene-treated 32 animals. 33 Among the oral tumor bioassay studies in Table 4-4, none met the selection criteria for 34

35 use in this analysis.

36

1 **4.3.1.5.** *Other Routes*

2 Nine bioassays were available that did not fit into other exposure route categories (i.e., 3 dermal, intraperitoneal, subcutaneous, or oral) (see Table 4-5). Among these were studies using intramammillary, intramuscular, and intravenous injection as well as lung implantation, tracheal 4 implantation, and transplacental exposure after subcutaneous injection. Seven studies were in 5 rats, with one each in mice and hamsters. 6 7 Deutsch-Wenzel et al. (1983) and Wenzel-Hartung et al. (1990) implanted PAH-containing pellets (consisting of beeswax and trioctanoin) into the lungs of inbred female 8 Osborne-Mendel rats. Lung tumor incidence was reported for a total of 10 PAHs and 9 benzo[a]pyrene. The authors reported relative potency estimates based on the lung tumor data. 10 Lung tumors were induced by benzo[b]fluoranthene, benzo[j]fluoranthene, 11 12 benzo[k]fluoranthene, benzo[g,h,i]perylene, indeno[1,2,3-c,d]pyrene, anthanthrene, chrysene, and dibenz[a,h]anthracene. Negative findings were reported for benzo[e]pyrene and 13 phenanthrene. 14 15 Cavalieri et al. (1991) treated Sprague-Dawley rats with single intramammillary injections of dibenzo[a,l]pyrene into the left mammary glands and followed them for up to 24 16 weeks. Tumors of the mammary gland, mesenchymal tissue, or skin were recorded. 17 Dibenzo[a,l]pyrene produced tumors in all animals at both doses. 18 19 In six studies, tumors were not induced after exposure to any target PAH. Intramammillary injection of dibenz[a,h]anthracene and benz[a]anthracene did not induce 20 21 mammary tumors in rats (Cavalieri et al., 1988b). Pregnant mice receiving subcutaneous injection of pyrene did not develop tumors, nor did their offspring (Nikonova, 1977). Rats 22 treated either intravenously or intramuscularly with benz[a]anthracene did not develop either 23 mammary or injection site tumors (Pataki and Huggins, 1969). Similarly, benz[a]anthracene was 24 not tumorigenic after intramuscular injection in rats (Sugiyama, 1973) or buccal pouch painting 25 26 in hamsters (Solt et al., 1987). Finally, benzo[e]pyrene was not tumorigenic when it was implanted into tracheas transplanted subcutaneously into isogenic rats (Topping et al., 1981). 27 28 Among the tumor bioassays that used alternative exposure routes in Table 4-5, four studies met the selection criteria for use in this analysis. 29 30 4.3.2. In Vivo Studies of Cancer-Related Endpoints 31 The database of cancer-related endpoints measured after in vivo exposure to PAHs is 32

The database of cancer-related endpoints measured after in vivo exposure to PAHs is much smaller than the in vitro database. Endpoints examined after in vivo exposure include mutagenicity, DNA adducts, and clastogenicity or sister chromatid exchange. As with the in vitro database, only studies of selected PAHs that included benzo[a]pyrene as a reference compound were reviewed. Each study that was reviewed for consideration in relative potency development is presented in tabular format in subsequent sections. The tables summarize studyspecific information and indicate whether a particular study is considered useful for doseresponse assessment. The text provides an overall description of the available studies, including
a general description of the methodology used for each study type, the results, and the
weaknesses or problems associated with specific studies or study types.

4

5 **4.3.2.1.** DNA Adducts

Eighteen studies evaluating DNA adduct formation for PAHs and benzo[a]pyrene were 6 7 identified in the database (Table 4-6). Nine studies presented quantitative data for DNA adduct formation and are discussed below. Among studies with data potentially useful for RPF 8 derivation, the route of exposure was intramammillary injection in one study (Arif et al., 1997), 9 intraperitoneal injection in five studies (Kligerman et al., 2002; Nesnow et al., 1998a, 1996, 10 1995; Ross et al., 1995; Mass et al., 1993), dermal in three studies (Hughes and Phillips, 1990; 11 Cavalieri et al., 1981b; Phillips et al., 1979), and oral in one study (Kligerman et al., 2002). 12 Adducts were identified by [³²P]-postlabeling in all of the studies except for two by Phillips et al. 13 (1979) and Cavalieri et al. (1981b), which utilized $[{}^{3}H]$ - or $[{}^{14}C]$ -radiolabeled PAHs. Two 14 papers described experiments with a single time point(s) at 24 or 48 hours (Arif et al., 1997, 15 16 Hughes and Phillips, 1990), whereas the rest had multiple time points. The duration of exposure was as short as 4 hours (Cavalieri et al., 1981b), although 24 hours was usually the first time 17 point(s) in time course studies. The longest duration for a time course study was 84 days 18 (Hughes and Phillips, 1990), but most were 3 weeks or less. The tissues evaluated included 19 20 mammary epithelium (Arif et al., 1997), skin (Hughes and Phillips, 1990; Cavalieri et al., 1981b; 21 Phillips et al., 1979), liver and peripheral blood lymphocytes (Kligerman et al., 2002; Nesnow et al., 1993b), and lung (Nesnow et al., 1998a, 1993b; Arif et al., 1997; Ross et al., 1995; Mass et 22 al., 1993; Hughes and Phillips, 1990). 23 Dermal-exposure studies typically involved application of the chemical in solution to the 24 25 shaved dorsal skin of mice (Hughes and Phillips, 1990; Cavalieri et al., 1981b; Phillips et al., 1979). After the scheduled sacrifice, the treated skin was excised and frozen; a scalpel was used 26 to scrape away the dermis from the epidermis that was subsequently powdered in liquid nitrogen. 27 In one study, the lung was also excised and frozen in liquid nitrogen (Hughes and Phillips, 28 1990). DNA was isolated from the frozen epidermis or lung. Liquid scintillation counting was 29 used to quantify DNA adducts to PAH labeled with $[{}^{3}H]$ or $[{}^{14}C]$ (Cavalieri et al., 1981b; Phillips 30 et al., 1979). For [³²P]-postlabeling, DNA was treated to selectively dephosphorylated 31 nonadducted nucleotides; after postlabeling, adducts were resolved by sequential anion-exchange 32

thin layer chromatography on PEI-cellulose plates in several directions using three solvents

34 (Hughes and Phillips, 1990). Adduct spots on chromatograms were located by autoradiography,

96

after which the spots were excised and radioactivity levels were determined by Cerenkov

36 counting.

Compounds administered by intraperitoneal or intramammillary injection were also
 delivered in solution. As in dermal-exposure studies, DNA was isolated from frozen tissues and
 adducts were identified by [³²P]-postlabeling and quantified via autoradiography.

Most studies reported the mean number of adducts formed within a tissue per unit of 4 DNA, with time-course data displayed graphically. Peak values were sometimes called out 5 specifically in the text or tables. As the shapes of dose-response curves differ among different 6 7 PAHs, the peak value is an imprecise measure for comparing the relative adduct-forming potency of the different compounds. The TIDAL has also been used for reporting results for a 8 time-course study (Ross et al., 1995). The TIDAL value is the area under the curve (AUC) for 9 adduct persistence (based on the rate of adduct formation and repair) for the duration of the 10 study. The TIDAL value expresses the total DNA adduct burden experienced by the tissue from 11 the time of treatment to the end of the study. The TIDAL versus administered dose curve 12 provides a convenient way to compare adduct-forming potency for different PAHs in time-13 course experiments. An important limitation of the TIDAL approach is the inherent assumption 14 15 that the ratios of specific adducts are relatively constant across dose and time course. Ross et al. 16 (1995) demonstrated that this assumption was valid for several different PAHs; however, it was also noted that two adducts of benzo[a]pyrene in rat liver did not conform to this general pattern. 17 Ross et al. (1995) presented data for lung adenoma incidence (measured at 8 months) in 18

several ways: as a function of administered dose, as a function of adduct levels per dose 19 measured 24 hours after dosing (results for 3 days postdosing were mentioned but not shown), as 20 21 a function of TIDAL values measured over 21 days (during which period adduct levels were specifically quantified), and as a function of TIDAL values extrapolated to 8 months. The 22 relative tumor induction potencies of the studied PAHs were similar for each assay for a single 23 PAH when described as functions of administered dose, the adduct levels per dose at 3 days, the 24 TIDAL values over 21 days, or the TIDAL values extrapolated to 8 months. The relative 25 26 potencies for tumor incidence as a function of adduct levels at 24 hours were not similar to those associated with the other measures of exposure. Ross et al. (1995) suggested that 27 pharmacokinetic differences in adduct formation among the PAHs were responsible for the 28 discrepancy, but suggested that peak levels could be used to compare the potencies of different 29 PAHs if adduct formation for those PAHs followed similar kinetics. 30

DNA adduct experiments were carried out in replicate and were usually analyzed statistically. It should be noted that, based on the work of Ross et al. (1995), relative potencies determined from studies that administered a single dose level and measured adducts at a single time point will be less reliable unless the shapes of the adduct formation curves are similar. However, the single dose and single measurement studies were also used for dose-response assessment.

Among the in vivo DNA adduct studies shown in Table 4-6, nine studies met the selection criteria for use in this analysis.

4.3.2.2. Clastogenicity or Sister Chromatid Exchange Frequency

The database included 13 studies in which clastogenic effects or frequency of sister chromatid exchanges of benzo[a]pyrene and at least one other PAH were tested in whole animal systems. Table 4-7 lists the studies along with important study design details. The clastogenic endpoints measured in these studies were micronuclei, chromosome gaps and breaks, and nonspecific aberrations; sister chromatid exchanges were also measured. These studies were all conducted in rodents, including mice, rats, and hamsters.

Eight of the studies evaluated micronuclei, sister chromatid exchanges, or chromosome
gaps or breaks in bone marrow from treated mice or hamsters (Allen et al., 1999; Katz et al.,
1981; Paika et al., 1981; Salamone et al., 1981; Tsuchimoto and Matter, 1981; Roszinsky-Kocher
et al., 1979; Bayer, 1978; Sugiyama, 1973). In these studies, one or two doses of PAH were
injected intraperitoneally into the animals, and sacrifice occurred at various time points thereafter
(typically 24 hours after). Bone marrow smears were examined microscopically and scored for
micronuclei, sister chromatid exchanges, gaps, or breaks.

He and Baker (1991) applied multiple dose levels of chrysene or phenanthrene to the skin of hairless mice and harvested keratinocytes upon sacrifice 24 hours later. The keratinocytes were incubated for 2 days and treated with cytochalasin B to identify binucleated cells. After 4 days in vitro, cells were mounted on slides and examined microscopically for micronuclei. Results were reported as the percent of binucleated cells with one or more micronuclei among the total number of binucleated cells scored. Chrysene treatment resulted in a dose-related increase in micronuclei, while pyrene did not.

Kligerman et al. (2002, 1986) measured sister chromatid exchanges and/or micronuclei in the blood of mice or rats given a single dose of PAH either orally or intraperitoneally. The study by Oshiro et al. (1992) involved two or four oral doses of pyrene or anthracene in mice. Blood obtained from the tail 24 hours after the last treatment was examined microscopically and micronuclei were scored in polychromatic erythrocytes. In an unusual study design, Sirianni and Huang (1978) measured sister chromatid exchanges in V79 cells placed in a diffusion chamber implanted in the peritoneal cavity of mice.

Thirteen individual PAHs were evaluated in these studies. Only chrysene gave positive results for more than one endpoint (for sister chromatid exchange and micronucleus frequency; He and Baker, 1991; Roszinsky-Kocher et al., 1979). Five other PAHs (phenanthrene, dibenz[a,h]anthracene, benz[a]anthracene, benzo[b]fluoranthene, and benzo[e]pyrene) increased the frequency of sister chromatid exchange in hamster bone marrow after intraperitoneal administration (Roszinsky-Kocher et al., 1979). Bayer (1978) also reported an increase in sister chromatid exchange frequency in hamster bone marrow after phenanthrene administration (high

- dose only). Anthracene and pyrene consistently gave negative results in several studies (Oshiro
- et al., 1992; He and Baker, 1991; Katz et al., 1981; Paika et al., 1981; Salamone et al., 1981;

1 Tsuchimoto and Matter, 1981; Roszinsky-Kocher et al., 1979; Sirianni and Huang, 1978).

2 Dibenzo[a,i]pyrene and benzo[g,h,i]perylene each gave negative results in an assay for bone

3 marrow micronuclei (Katz et al., 1981).

4 Among studies with positive results, only He and Baker (1991), Kligerman et al. (1986),

- 5 and Bayer (1978) administered PAHs at multiple dose levels. Bayer (1978) observed a positive
- 6 response only with the highest dose of phenanthrene. Of the single dose studies, only

7 Roszinsky-Kocher et al. (1979) reported responses clearly differing from controls.

Among the in vivo clastogenicity or sister chromatid exchange studies shown in
Table 4-7, 10 studies met the selection criteria for use in this analysis.

10

11 4.3.2.3. In Vivo Mutagenicity

The PAH database contains several studies that evaluate specific mutagenic end points following in vivo exposure to PAHs (see Table 4-8). These studies include mutagenicity experiments in *Drosophila melanogaster*, an intraperitoneal host-mediated assay using Salmonella strains or yeast, and DNA sequence analysis of specific codons in the Ki-ras

16 oncogene in mouse lung tumors.

17 Most Drosophila studies administered PAH compounds to either the suspension media or to the diet for 48–72 hours prior to cross-mating and analysis of mutations (Frolich and Wurgler, 18 19 1990; Valencia and Houtchens, 1981; Fahmy and Fahmy, 1980). One study used abdominal injection as an exposure pathway (Zijlstra and Vogel, 1984). The mutagenic endpoints evaluated 20 21 included somatic mutations (i.e., eye color mosaicism, wing spots) (Frolich and Wurgler, 1990; Fahmy and Fahmy, 1980) or sex-linked recessive lethal mutations (Zijlstra and Vogel, 1984; 22 Valencia and Houtchens, 1981). Only two PAHs were evaluated in the Drosophila studies in 23 addition to benzo[a]pyrene (benz[a]anthracene and pyrene), and the results were either negative 24 or inconsistent in all studies (Frolich and Wurgler, 1990; Zijlstra and Vogel, 1984; Valencia and 25 26 Houtchens, 1981; Fahmy and Fahmy, 1980). A significant effect was seen for benz[a]anthracene only with cross-breeding of strains selected for enhanced metabolic activity (Frolich and 27 Wurgler, 1990). No effect was observed using the standard strains. 28

- An intraperitoneal host-mediated assay was described by Simmon et al. (1979). Five
- 30 PAHs (anthracene, benz[a]anthracene, benzo[e]pyrene, chrysene, and phenanthrene) were
- administered to Swiss Webster mice by gavage or intramuscular injection (single dose only).
 Microorganisms (*S. typhimurium* and *Saccharomyces cerevisiae*) were injected intraperitoneally

into exposed mice and were recovered 4 hours later for mutation analysis. Negative results were

si into exposed intee and were recovered 4 nouis fater for induction analysis. Thegative results wer

34 observed and the host-mediated assay system was considered insensitive for detecting

35 carcinogenic PAHs.

A series of studies have investigated the mutation sequence in codons 12 and 61 of the Ki-ras oncogene from PAH-induced lung adenomas in A/J mice (Nesnow et al., 1998a, 1996, 1995; Mass et al., 1993). As discussed in Section 2.4 (Similarities in Mode of Action for PAHs),

the purpose of these studies was to correlate the tumorigenic potency of specific PAHs with the 1 2 formation of DNA adducts and the mutation of specific codons in the Ki-ras oncogene. Six nonalkylated PAHs were utilized in these studies (benzo[a]pyrene, benz[j]aceanthrylene, 3 benzo[b]fluoranthene, dibenz[a,h]anthracene, cyclopenta[c,d]pyrene, and dibenzo[a,l]pyrene). 4 Mutation analysis of the Ki-ras oncogene at codons 12 and 61 was carried out in PAH-induced 5 lung adenomas using polymerase chain reaction (PCR) amplification and dideoxy nucleotide 6 7 sequencing methods. The primary mutation type for benzo[a]pyrene, benzo[b]fluoranthene, and dibenzo[a,1]pyrene was the GGT \rightarrow TGT mutation. This guanine mutation was correlated with 8 the formation of diol epoxide guanine adducts. The GGT \rightarrow CGT mutation was the primary 9 mutation type for benz[j]aceanthrylene and cyclopenta[c,d]pyrene. The CGT mutation was 10 associated with the formation of cyclopenta-guanine adducts and increased tumorigenic potency 11 (i.e., >90 adenomas per mouse) in A/J mice. Dibenz[a,h]anthracene was the only PAH evaluated 12 that did not induce mutations in Ki-ras codons 12 or 61. This compound produced diol epoxide 13 guanine adducts and lung adenomas in A/J mice, suggesting a possible interaction at a different 14 genetic target. The Ki-ras mutation analysis data were presented as percent of tumors with a 15 16 specific mutation at either codon 12 or 61. No dose-response data were provided.

Among the in vivo mutagenicity studies shown in Table 4-8, only one study met the selection criteria for use in this analysis.

19

20 4.3.3. In Vitro Studies of Cancer-Related Endpoints

21 Many in vitro studies of cancer-related endpoints are present in the PAH database. As previously discussed, only those studies that included at least one selected PAH and 22 benzo[a]pyrene as a reference compound were reviewed. Each study that was reviewed for the 23 purpose of RPF development is included in Tables 4-9 through 4-14. The tables summarize 24 study-specific information and indicate whether a particular study is considered useful for dose-25 26 response assessment. The text provides an overall description of the available studies, including a general description of the methodology used for each study type, the results, and the 27 weaknesses or problems associated with specific studies or study types. 28

29

30 **4.3.3.1.** Bacterial Mutagenicity

The bacterial mutagenicity of many PAHs has been extensively studied (39 studies with benzo[a]pyrene; see Table 4-9). All of the studies used the Ames assay in *S. typhimurium*. A total of 38 PAHs have been evaluated for their ability to induce mutations in bacterial systems.

The Ames Salmonella assay is a bacterial reverse mutation assay, which measures the frequency at which histidine-independent bacteria arise from histidine-requiring bacterial strains in the presence of a chemical mutagen. The results are generally expressed as either the number of revertant colonies per plate or the number of revertants/nmol of the test compound (calculated from the linear portion of the dose-response curve). Several strains of *S. typhimurium* have been 1 used to evaluate specific PAH mutation types; for example TA98, TA1537, and TA1538 detect

2 various frameshift mutations, TA1535 responds to base-pair substitution and TA100 responds to

- a broad spectrum of mutations. Metabolism to reactive intermediates is required for PAH
- 4 mutagenicity in Salmonella and many metabolic activation systems have been employed. Rat
- 5 liver postmitochondrial supernatant (known as S9) from Aroclor-induced rats is most often used,
- 6 although other rodent species and enzyme inducers are sometimes employed. Isolated rat
- 7 hepatocytes or purified mixed-function oxidase enzymes were occasionally utilized for metabolic
- 8 activation of PAHs.

9 Of the PAHs tested for bacterial mutagenicity, most were considered positive in at least 10 one study under optimal study conditions. Compounds that produced negative results in multiple 11 studies include anthracene, fluorene, phenanthrene, and pyrene. The primary weakness of the 12 bacterial mutagenicity database for PAHs is the limited amount of multiple-dose data for many 13 PAHs. Many studies report findings at a single dose level for several PAHs.

Among the in vitro bacterial mutagenicity studies shown in Table 4-9, 29 studies met the selection criteria for use in this analysis.

16

17 **4.3.3.2.** *Mammalian Mutagenicity*

18 Studies that evaluate the mutagenicity of target PAHs in mammalian cells are described 19 in Table 4-10 (29 studies). The most common cell types used in these studies were the 20 V79 Chinese hamster cells and the L5178Y mouse lymphoma cells. Other cell types include 21 human epidermal keratinocytes, TK6 human lymphoblasts, human epithelial cells (HS1 HeLa), 22 human foreskin fibroblasts (D-550), mouse fibroblasts, rat embryo cells, rat liver epithelial cells 23 (ARL-18), and Chinese hamster ovary (CHO) cells. A total of 14 PAHs have been evaluated for 24 their ability to induce mutations in mammalian cell systems.

Each of the mammalian cell assays detects forward mutations that confer resistance to a 25 26 toxic chemical. Mutations in the hypoxanthine-guanine phosphoribosyl transferase gene (HPRT) result in resistance to purine analogs such as 6-thioguanine, 8-azaguanine, and ouabain. HPRT 27 mutations induced by PAHs were most often measured in V79 Chinese hamster cells, but have 28 also been detected in human, rat, and mouse cell lines. Forward mutation at the thymidine 29 30 kinase locus (TK) is measured as colony growth in the presence of thymidine analogs (e.g., trifluorothymidine or 5-bromo-2'-deoxyuridine). PAH-induced TK mutations were measured in 31 mouse lymphoma cells (L5178Y) and human lymphoblasts. Forward mutation assays are 32 considered to respond to a variety of mutation types (including frameshift, base-pair substitution, 33 deletions and rearrangements or complex mutations). Exogenous metabolic activation is 34 required for PAH mutagenicity in most mammalian cell assays. This was accomplished using a 35 rat liver S9 mix or cocultivation with other rodent cells able to metabolize PAHs to reactive 36 intermediates (i.e., hamster embryo cells, fibroblasts, or hepatocytes; rat hepatocytes). The 37

1 results of forward mutation assays in mammalian cell lines are generally expressed as mutant

2 frequency/ 10^x survivors.

Of the 26 PAHs tested for mammalian cell mutagenicity, all were considered positive in at least one study under optimal study conditions. Compounds that produced negative results in some studies include anthracene, benzo[e]pyrene, phenanthrene, and pyrene. Benzo[a]anthracene produced positive findings in seven studies and negative findings in four studies. The mammalian mutagenicity studies generally provide more multi-dose data than the bacterial mutagenicity studies.

9 Among the in vitro mammalian mutagenicity studies shown in Table 4-10, 27 studies met 10 the selection criteria for use in this analysis.

11

12 **4.3.3.3.** Morphological/Malignant Cell Transformation

Twenty-five studies examined the capacity of benzo[a]pyrene and other PAHs to 13 transform cells in culture (Table 4-11). All of these studies were conducted using mammalian 14 15 cells, most commonly mouse or hamster embryo cells. A few studies added feeder cells or rat 16 liver homogenate to enhance metabolic activation in the test system; however, the majority relied on the intrinsic metabolic capacity of the cells. The general test protocol involved seeding the 17 cultured cells in Petri dishes followed by exposure to a solution of the test compound, usually for 18 19 a period of 24 hours. The cells were then cultured for about 6 weeks before being fixed and stained. Transformed colonies (foci) were scored based on characteristics such as cell piling, 20 21 criss-crossing, basophilic staining, and/or invasion of surrounding (nontransformed) cell monolayer. In studies conducted by some laboratories, foci were classified as Type II or 22 Type III; the latter category included those with invasion of the surrounding monolayer, highly 23 criss-crossed arrays, and deep staining. Data were generally reported as the number of foci 24 (colony of transformed cells) per dish or per surviving cells and/or the percent of dishes with 25 26 foci.

In a few cases (e.g., Greb et al., 1980), transformation was assessed by growth of treated cells in soft agar. Transformed cell colonies growing in semi-solid agar are capable of anchorage-independent growth.

Three studies (Evans and DiPaolo, 1975; Kakunaga, 1973; DiPaolo et al., 1972) confirmed the identification of malignant cells by injecting the transformed cells into rodents and following tumor induction in the animals. In all three cases, cells identified as transformed gave rise to tumors, while the cells without these characteristics did not.

Cell transformation assays were identified that included 22 individual PAHs other than benzo[a]pyrene. Dibenz[a,h]anthracene consistently gave rise to transformed cells in all but one of the seven studies in which it was tested. Cyclopenta[c,d]pyrene, indeno[1,2,3-c,d]pyrene, benzo[j]aceanthralene, benz[e]aceanthrylene, and dibenz[k,mno]acephenanthrylene were each tested in a single study and gave positive results. Benz[a]anthracene, pyrene, phenanthrene,

1 benzo[e]pyrene, and anthracene each gave negative results in a number of studies, while

2 fluoranthene, benzo[k]fluoranthene, dibenz[j,mno]acephenanthrylene, naphth[1,2,3-mno]ace-

3 phenanthrylene, and aceanthrylene were each tested in a single study and gave negative results.

4 Only a single dose of the target PAH was applied in 8 of the 26 studies of in vitro morphological/

5 malignant cell transformation.

Among the in vitro morphological/malignant transformation studies shown in Table 4-11,
19 studies met the selection criteria for use in this analysis.

8 9

4.3.3.4. DNA Adducts

Several studies (14) were identified in which DNA adducts were measured after either 10 11 whole cells or extracted DNA were incubated with benzo[a]pyrene and at least one other PAH. 12 Table 4-12 shows general study details for these studies. Most of the studies involved measurement of DNA adducts in whole mammalian cells, while some measured adducts formed 13 when PAHs were incubated with extracted DNA. Whole cells were usually incubated with 14 15 PAHs for about 24 hours, while extracted DNA was exposed to PAH solutions for a shorter time 16 period (1–3 hours). Some of the studies added metabolic activation (usually rat liver microsomes) to the incubation solution. Melendez-Colon et al. (2000) evaluated DNA adduct 17 formation after dibenzo[a,l]pyrene exposure in two cell types: one having significant CYP450 18 activity (MCF-7 cells) and one lacking significant CYP450 activity (HL-60). The authors 19 20 reported that adducts were formed in the cells having CYP450 activity, but no adducts were 21 formed in the cells lacking such activity. Identification and quantification of adducts was generally done using a [³²P]-postlabeling 22 assay as follows. After exposure, DNA was isolated and digested to mononucleotides. 23 Mononucleotides were radiolabeled with $[^{32}P]$ -ATP, separated with thin layer chromatography, 24

and visualized by autoradiography. Relative adduct labeling was measured using a scintillation $\frac{1}{2}$

counter. A few early studies used $[^{3}H]$ -labeled PAHs to identify and quantify adducts. In some cases, adducts were identified by high-performance liquid chromatography and GC-MS.

The 14 studies reviewed examined 15 PAHs other than benzo[a]pyrene. Apart from phenanthrene, which did not result in measurable DNA adducts when incubated with calf thymus DNA under various conditions (Bryla and Weyand, 1992), each of the PAHs produced measurable DNA adducts in at least one study.

Major limitations associated with some of the in vitro DNA adduct data for relative potency development include the lack of data at multiple PAH exposure levels, the use of extracted DNA rather than whole cell assays, and the inconsistent use of extrinsic metabolic activation sources. Only three studies with positive adduct findings reported adduct measurements at multiple doses (concentrations) of PAH (Binkova et al., 2000; Melendez-Colon, 2000; Bryla and Weyand, 1992). Three studies used extracted DNA rather than whole cells to measure DNA binding (Segerback and Vodicka, 1993; Bryla and Weyand, 1992; Grover and

Sims, 1968). Finally, the available studies on DNA adduct formation use cell types with varying
degrees of PAH metabolic capacity, with and without added metabolic activation sources. Both
the types and the quantities of DNA adducts formed are likely to depend on the level of
metabolic activation for most PAHs.

5 Among the in vitro DNA adduct studies shown in Table 4-12, 10 studies met the 6 selection criteria for use in this analysis.

7 8

4.3.3.5. DNA Damage/Repair

Twenty-four reports in the database evaluated the effects of one or more PAHs on DNA 9 damage, repair, or synthesis. Table 4-13 summarizes the study design information and results of 10 these studies. Studies included measures of unscheduled DNA synthesis and DNA damage. 11 Unscheduled DNA synthesis was generally measured by increased radiolabeled (³H) thymidine 12 uptake in treated cells versus untreated cells. DNA damage was measured either using the 13 alkaline elution assay for DNA strand breakage in mammalian cells, or using the differential 14 15 killing of DNA repair-deficient bacterial strains. Metabolic activation of PAHs was most often 16 accomplished using a rat liver S9 mix.

Twenty-eight different PAHs have been tested for effects on DNA in one or more assays. In general, pyrene, anthracene, phenanthrene, perylene, fluorene, and benzo[e]pyrene gave negative results in multiple studies. Chrysene gave negative results in four assays and positive results in one assay (Mersch-Sundermann et al., 1992). More positive than negative results were reported for benz[a]anthracene, dibenz[a,h]anthracene, and dibenz[a,c]anthracene. Other PAHs were tested only once, or gave roughly an equal frequency of positive and negative responses in these assays.

Although a large number of PAHs have been tested for DNA damage/repair, the database includes both bacterial and mammalian cells and several different genotoxic endpoints. In addition, the use of external metabolic activation, or cell types with intrinsic metabolic capacity, was inconsistent across these studies. These limitations make it difficult to compare studies using the same target PAHs.

Among the in vitro DNA damage/repair studies shown in Table 4-13, 15 studies met the selection criteria for use in this analysis.

31

32 **4.3.3.6.** Clastogenicity or Sister Chromatid Exchange Frequency

The database contains 18 studies in which clastogenicity or sister chromatid exchange frequency was measured in cultured cells after exposure to benzo[a]pyrene and at least one other PAH (Table 4-14). A wide variety of cell types was used in these assays, including hamster liver, lung, CHO and V79 cells; rat liver epithelial cells; human teratocarcinoma epithelial cells; rat and human mammary epithelial cells; mouse, rat, and human fibroblasts; human lymphocytes; and guinea pig fetal cells. A number of the studies used a metabolic activation

system, typically either rat liver S9 or coculture with a cell type able to metabolize PAHs. While 1 2 laboratory methods varied widely, the general approach involved treating the cultured cells with 3 a solution of the test compound, either with or without metabolic activation. Usually, bromodeoxyuridine was added to the growth medium to provide a means of staining metaphase 4 chromosomes, and colcemid was used to arrest mitotic cells. Chromosomes were examined 5 microscopically and aberrations or exchanges were scored visually. In most cases, the endpoint 6 7 examined was frequency of sister chromatid exchanges. Other endpoints included frequency of micronuclei and scoring of chromosomal aberrations such as breaks, gaps, deletions, etc. 8 Only eight PAHs (anthracene, benz[a]anthracene, benzo[e]pyrene, cyclopenta-9 [c,d]pyrene, fluoranthene, perylene, phenanthrene, and pyrene) have been tested for clastogenic 10 effects in vitro. In many cases, the available studies were aimed at evaluating the validity of a 11 given test system to predict carcinogenicity. In these studies, a range of compounds of known or 12

believed carcinogenicity were used. Often, benzo[a]pyrene was included as a known carcinogen,
and other PAHs were chosen because they were known or believed to be noncarcinogenic or
weakly carcinogenic.

16 Among the tested compounds, four gave positive results in at least one study. With few 17 exceptions, PAHs administered without metabolic activation gave negative responses in these assays. Cyclopenta[c,d]pyrene was reported to increase the frequency of sister chromatid 18 19 exchanges in two assays, one with and one without metabolic activation (Murison, 1988; Krolewski et al., 1986). Benz[a]anthracene gave positive results in three studies of sister 20 21 chromatid exchange induction (Mane et al., 1990; Tong et al., 1983; 1981a) and negative results in a fourth (Warshawsky et al., 1995). Kochhar (1982) reported a dose-dependent increase in 22 chromosomal aberrations in V79 cells treated with benz[a]anthracene in the absence of metabolic 23 activation. Perylene increased aberrations in one system (Popescu et al., 1977), but did not 24 increase sister chromatid exchanges in another (Sirianni and Huang, 1978). Likewise, pyrene 25 26 gave positive results in a number of studies that included metabolic activation (Evans and Mitchell, 1981; Perry and Thomson, 1981; Popescu et al., 1977) and negative results in several 27 that did not include activation (DeSalvia et al., 1988; Tong et al., 1983, 1981a; Dean, 1981; Abe 28 29 and Sasaki, 1977).

The clastogenicity and sister chromatid exchange data for PAHs are variable with respect to cell type and use of extrinsic metabolic activation. Some cells have intrinsic metabolic activity, while others require activation from an external source. The degree to which metabolic activation is required for PAHs to exert a clastogenic effect in cell cultures is not well established. Another limitation of these data stems from the fact that a small number of PAHs, many traditionally believed to be noncarcinogenic or weakly carcinogenic, have been tested for clastogenic effects in vitro.

Among the in vitro clastogenicity/sister chromatid exchange studies shown in Table 4-14,
10 studies met the selection criteria for use in this analysis.

4.4. SUMMARY OF INFORMATION AVAILABLE TO DEVELOP RPFS FOR INDIVIDUAL PAHs

The PAH database contains several different types of data that may be used to estimate 4 relative potencies of individual PAHs. The data were summarized in Section 4.3 and include in 5 vivo tumor bioassays using various routes of exposure and data for cancer-related endpoints 6 7 from both in vivo and in vitro studies. As discussed above, the concurrent testing of benzo[a]pyrene as a reference compound was considered essential to allow for RPF calculation. 8 9 The introduction to Section 4.3 lists criteria for selecting studies or data sets for use in the analysis. Studies that met these criteria were used in the development of the RPF approach. 10 11 Section 5 discusses methods used for dose response assessment and RPF calculation from each 12 study or dataset, and Section 6 discusses the selection of PAHs to be included in the RPF approach using a weight of evidence evaluation of the available data. Section 7 describes the 13 derivation of final RPFs for each PAH included in the analysis. 14 15 16 5. METHODS FOR DOSE-RESPONSE ASSESSMENT AND RPF CALCULATION 17 18 19 A discussion of the available data on PAH carcinogenicity and cancer-related endpoints 20 21 and criteria for selection of studies was presented in Section 4. This section describes the 22 selection of dose-response data and methods for dose-response assessment and RPF calculation from the selected datasets. The dose-response data extracted from each study with positive 23 results and the results of the statistical analyses are shown in Appendix C. Appendix C also 24 contains information regarding the source of the dose-response data (i.e., the figure or table 25 26 number from the study and the particular data points that were used in the dose-response 27 assessment) and additional comments on the use of the data for dose-response assessment and 28 RPF calculation. The results of the RPF calculations are shown in tables in Appendix E. These tables provide summary information for each study, including the PAHs that were tested, the 29 data used to estimate the slopes (point estimate or BMD model result), the calculated RPF value, 30 and any specific comments related to the data analysis. 31

32

1

33 **5.1. CHOICE OF DOSE-RESPONSE DATA**

For each of the endpoints evaluated in Section 4 (dermal, intraperitoneal, subcutaneous, and other route bioassays; in vivo DNA adducts; in vivo clastogenicity or sister chromatid exchange frequency; in vitro bacterial and mammalian mutagenicity; in vitro morphological/ malignant transformation; in vitro clastogenicity or sister chromatid exchange frequency; and other in vitro endpoints [DNA adducts, unscheduled DNA synthesis, DNA damage, etc.]) there was at least one study that met selection criteria. For those studies with positive findings, dose response data were extracted for dose-response assessment and calculation of RPFs. Data that

were reported in graphical format in published studies were digitized (Grab It!TM Graph
Digitizer, Datatrend Software) to identify the dose-response data points.

As discussed in Section 4.3, statistics were used for tumor bioassay data to determine 5 whether the tumor incidence or multiplicity observed at a particular dose represented a 6 7 statistically significant increase over controls. If statistical analyses were not described in the original report, incidence data were analyzed using Fisher's Exact test and the Cochran-Armitage 8 trend test. Positive findings were indicated by a significant (p < 0.05) difference for at least one 9 dose group by comparison to control (in Fisher's Exact or an equivalent test) or a significant 10 11 dose-response trend (Cochran-Armitage or equivalent) for multi-dose studies. For tumor 12 bioassay data reported as tumor count, a t-test was conducted (when variance data were available) to determine whether the count was significantly different from control (p < 0.05). 13

The results of the statistical analyses are shown with the dose-response data in Appendix C.

14

15 The tumor bioassays that reported both incidence and tumor count were unique in offering two different datasets for the same study. For each dose of each PAH in the tumor 16 17 bioassays, the decision to calculate an RPF, and in some instances, the selection of the point of departure, was based on whether the tumor incidence or count was statistically significantly 18 19 increased over the control; if there was a significant increase, an RPF was calculated. There 20 were a few instances where the statistical tests for tumor incidence and tumor number were 21 inconsistent (i.e., the incidence of tumors was statistically significantly increased, but the tumor count was not, or vice versa). Sometimes, this circumstance existed only at a low dose, with 22 consistent findings at higher doses, so the conclusion as to whether there was treatment-related 23 tumorigenicity (and whether an RPF should be calculated) was clear. In one case, however, the 24 conclusion as to whether there was treatment-related tumorigenicity was not clear. In female 25 26 mice exposed at the high dose of fluoranthene in the study reported by Busby et al. (1984), the lung tumor count was significantly increased (albeit borderline, p = 0.0343) while the incidence 27 was not, and neither was statistically significantly increased at the lower dose. For the purpose 28 of this analysis, the multiplicity data were treated as an independent measure of carcinogenic 29 30 potency, and an RPF was calculated for the statistically increased tumor count irrespective of the analysis of incidence. It should be noted that average tumor count can be skewed by an unusual 31 response in a single animal, and no information was available to determine whether such 32 response represented an anomaly unrelated to exposure or an unusual susceptibility to the 33 exposure. Thus, reliance on statistical analysis of mean tumor count alone as a measure of 34 35 carcinogenic response may be subject to additional uncertainty. For cancer-related endpoint data, each study authors' conclusions regarding a positive or 36

negative response for each PAH were accepted, and RPFs were calculated when positive results
were reported.

In a few cases, the only data in a given publication were given as relative potency (relative to benzo[a]pyrene). For these publications, which included only in vitro cancer-related endpoint data (primarily mutagenicity), the relative potency estimates calculated by the authors were used without modification (except for dose adjustment where appropriate; see Section 5.5).

5 6

5.2. OVERALL FORM OF RPF ESTIMATE

The overall goal of the dose-response analysis was to calculate ratios representing the
relative potency of a given PAH compared with benzo[a]pyrene (i.e., RPFs). For all datasets, the
RPF was defined as the ratio (PAH_i:BaP) of the slopes of the dose-response curves in the lowdose region, following the equation (eq 5-1) below:

11

12 13 $RPF = slope PAH_i \div slope BaP$ (5-1)

- Data available for calculation of RPFs consisted of both quantal and continuous 14 15 endpoints. Quantal endpoints included tumor incidence or incidence of cancer-related endpoints (including frequency of mutations). Continuous endpoint datasets included tumor counts 16 (number of tumors per animal) or cancer-related endpoints of a continuous-variable nature (e.g., 17 number of sister chromatid exchanges, number of morphologically transformed colonies). Dose-18 response assessment methods were specific to each type of endpoint (quantal or continuous) and 19 differed depending on whether there were multiple dose groups or a single dose group in the 20 21 dataset. Methods for multidose and single dose quantal and continuous data are described below.
- 22

23 5.3. RPF CALCULATION FOR MULTIDOSE DATASETS

Dose-response modeling using U.S. EPA's Benchmark Dose (BMD) Software (Version 1.3.2) was conducted on multiple-dose data sets to estimate potency for both the target PAHs and benzo[a]pyrene. Modeled estimates consider information about the shape of the dose-response curve and are thus preferred over using a single dose group as the point of departure.

Dose-response modeling. For multidose quantal data, the multistage model was used and 28 the degree of the polynomial was assumed to equal the number of dose groups minus 2 (extra 29 risk with background subtracted). The multistage model was selected because it is the preferred 30 model for cancer risk assessment of animal bioassay data, and it provided a consistent model 31 form for all of the datasets. For multidose continuous data, the linear model was selected for all 32 datasets, as it is the simplest model form for continuous data. For both quantal and continuous 33 datasets, the goodness-of-fit criteria were used to evaluate model fit. If the model did not 34 35 provide adequate fit to the data, high-dose groups were sequentially eliminated in an effort to achieve adequate fit. The focus of the modeling effort is on the low dose and response region, so 36 doses and responses much higher than the benchmark response (BMR) are not as informative 37 38 and can be eliminated to improve model fit. If dose-group elimination did not improve the

1 model fit, a point-estimate ratio approach was used (see Section 5.4). The BMD modeling

2 output for all datasets that were successfully modeled are shown in Appendix D.

Selection of BMR: Multidose data for both PAH and benzo[a]pyrene. For tumor incidence data, the BMR used in estimating the point of departure was a 10% increase in tumor incidence over controls (extra risk form). For cancer-related endpoints such as frequency of mutations, endpoint-specific points of departure were selected based on the background/control frequency of the endpoint and the detection limit of the assay. For example, a 1% frequency was selected for a control mutation frequency of 1/10,000 and a detection limit of two- to threefold above background.

For multidose continuous data, the BMR used in estimating the point of departure was a change of 1 standard-deviation (1 SD) from the control mean. In the event that multiple-dose continuous data were reported in the absence of SD values, a point estimate ratio approach was employed to calculate the slope (see Section 5.4).

Selection of BMR: Multidose data for PAH, single dose benzo[a]pyrene. Some studies 14 15 included only one dose of benzo[a]pyrene as a positive control, while providing multiple-dose data for a selected PAH. In these cases, dose-response modeling was performed for the selected 16 PAH and the BMR used for modeling was the observed response for benzo[a]pyrene adjusted for 17 background response. For tumor incidence data, for example, if the benzo[a]pyrene dose was 18 associated with a 60% extra risk for tumors, the BMR chosen for modeling the data for the PAH 19 was 60% extra risk. RPFs were then calculated using a ratio of the slope factors calculated with 20 21 equivalent points of departure (e.g., ED_{60}). The goal of this approach was to compare PAH potencies at similar response locations on the dose-response curve. There is uncertainty 22 associated with relative potency estimates calculated at the high end of the dose-response curves 23 and using the resultant RPF for low-exposure scenarios, because the relative potency relationship 24 between any two PAHs may be different at the low end, compared with the high end, of the 25 26 dose-response curves. The uncertainties and limitations associated with the use of high-dose data to estimate relative potency are further discussed in Section 7. Data sets for which tumor 27 incidence was \geq 90% in the lowest dose group were not used to calculate potency estimates and 28 RPFs, because the response is near plateau and such data provide insufficient information on the 29 slope of the dose-response relationship. 30

For continuous data, when a point estimate was used to estimate the slope for benzo[a]pyrene and modeling was used to estimate the slope for a given PAH, the BMR used for BMD modeling was a point value set at the response (e.g., mean number of tumors per animal for tumor multiplicity data) observed in the benzo[a]pyrene group, adjusted for response in the control group. This approach is consistent with the BMR used for quantal data when only a single benzo[a]pyrene dose group was available. Provided that a linear model is fit to continuous data, the choice of a higher BMR would not appreciably change the RPF.

Selection of point of departure. The point of departure selected for slope estimation was 1 2 the BMD estimate rather than the lower confidence limit on the benchmark dose (BMDL). The BMD, as the central or "best" estimate of the dose associated with the selected BMR, was 3 considered a more stable basis for comparison between the potency of the selected PAH and 4 benzo[a]pyrene, and thus for calculation of relative potency, than the lower confidence limit. 5 Extrapolation from point of departure. The slopes of the dose-response curves in the 6 7 low-dose regions were calculated by linear extrapolation to the origin from the model-predicted points of departure. Equation 5-2 below shows the calculation of slope from multidose quantal 8 9 data. 10 11 Slope = $[0.1/ED_{10}]$ (5-2)12 Equation 5-3 below shows the calculation of slope from multidose continuous data. 13 14 15 $Slope = [1SDchange]/[ED_{1SD}]$ (5-3)16 5.4. RPF CALCULATION FOR SINGLE DOSE DATASETS 17 A number of studies reported data for only single doses of benzo[a]pyrene and other 18 PAHs; for these studies, a point estimate approach was used to calculate the RPF. A point 19 estimate approach was also used to calculate RPFs for multidose datasets when model fit was not 20 21 achieved, when variance data were not available for continuous data, or when problems with 22 model implementation were encountered. Selection of point of departure. When only one dose of each compound was used, there 23 was only one choice for the point of departure. However, when multidose data were available, 24 but a point estimate approach was used, the point of departure was chosen as follows. For tumor 25 26 bioassay data, the lowest dose associated with a statistically significant increase in tumor incidence or multiplicity over control values was selected as the point of departure. Variance 27 was not reported for tumor multiplicity data in any of the dermal studies and for some of the 28 intraperitoneal studies, so the corresponding incidence data were used to determine the dose at 29 30 which a significant difference from control was observed. The benzo[a]pyrene dose chosen in most instances was the lowest dose associated with a 31 significant increase in tumor count or incidence. For tumor multiplicity data, the PAH dose 32 chosen for the point estimate RPF calculation was the lowest dose associated with a tumor count 33 similar to that observed at the selected benzo[a]pyrene dose (similar to selecting a BMR similar 34 35 to the benzo[a]pyrene incidence). In the case of two dermal initiation studies conducted by Cavalieri et al. (1991), however, the tumor count at the lowest dose of DBalP was much higher 36 37 than the tumor count at the lowest benzo[a]pyrene dose associated with statistical significance. 38 In order to compare the doses associated with similar tumor counts (i.e., at a similar place on the

dose-response curve), a higher benzo[a]pyrene dose was chosen for the RPF calculation. A 1 2 comparison of the RPFs calculated using this approach with RPFs calculated using the lowest 3 dose associated with a statistically significant increase over controls for both dibenzo[a,l] pyrene and benzo[a]pyrene showed only small differences in the RPF values (9 vs. 10 in the 16-week 4 study and 39 vs. 42 in the 27-week study). A similar approach was used to calculate the RPF for 5 BjAC using the intraperitoneal multiplicity data from Mass et al. (1993). 6 7 For cancer-related endpoint data, statistical analysis was not always available for each dose group. For these data, the lowest dose that produced a near maximal change in the assay of 8 concern was selected as the point of departure. That is, the highest dose in the linear portion of 9 the dose-response curve (identified by visual display of the data) was selected in these cases. 10 Extrapolation from point of departure. As with multiple dose slope estimations, point 11 estimate slope calculations also used the extra risk form. Thus, for single dose quantal data, the 12 slope was calculated by linear extrapolation to the origin after an extra risk adjustment of the 13 observed response (eq 5-4): 14 15 16 Slope = $[(\text{Response at dose -Control Response}) \div (1-\text{Control Response})]/\text{Dose}$ (5-4)17 For single dose continuous data, the slope was calculated by linear extrapolation to the 18 19 origin after adjustment of the observed response in the PAH-treated animals for the control response (eq 5-5). 20 21 Slope = [(Value of variable at dose) - (Value of variable)_{control}]/Dose 22 (5-5)23 5.5. DOSE CONVERSION FOR RPF CALCULATION 24 Some of the studies used to calculate RPFs reported doses or test concentrations on a 25 26 molar basis (e.g., μ mol per mouse, μ mol/L), rather than a mass basis (mg or μ g). The molar ratio differs from the mass ratio for any PAH with a molecular weight that differs from that of 27 benzo[a]pyrene; thus, for these compounds, an RPF expressed on a mass basis will differ from 28 that expressed on a molar basis. Table 5-1 below shows a hypothetical example for 29 30 fluoranthene, a PAH with a molecular weight that differs from benzo[a] pyrene by 20%. As the 31 table shows, the RPF differs depending on which dose units are used. 32 Table 5-1 Comparison between molar and mass-based RPF

	Response	Dose in mol	Molecular weight (g/mol)	Dose in g	Molar RPF	Mass RPF
FA	0.1	5	202.26	1,011	0.20	0.25
BaP	0.1	1	252.32	252	1	1

111

In order to ensure that comparisons across endpoints used consistent units, the doses used to calculate RPFs were converted to mass-based units using the molecular weight of the relevant PAH prior to estimating the RPF. The mass-based RPF was selected to be consistent with dose metrics used to calculate cancer risk; RPFs are used with oral slope factors and inhalation unit risks reported on a mass basis (e.g., $[mg/kg-day]^{-1}$; $[\mu g/m^3]^{-1}$).

6

5.6. SPECIAL CONSIDERATIONS FOR RPF CALCULATION USING TUMOR BIOASSAY DATA

9 Several dermal bioassays reported significant mortality prior to the appearance of the first 10 skin tumor. For these data sets, an assumption was made that the number of animals at risk for 11 tumor development was equal to the total number of animals alive at the time of the appearance 12 of the first tumor. Benign and malignant tumor types within the same target organ were 13 combined for calculation of the RPF. The total incidence of animals with either a benign or 14 malignant lesion was directly reported in each study (i.e., the number of animals with adenoma 15 or carcinoma).

16 Tumor incidence data reported for different target organs within the same group of 17 animals were analyzed separately unless the joint incidence (incidence of either tumor type in each dose group) was reported in the publication. Liver and lung tumors were reported in 18 19 newborn mice exposed to PAHs by intraperitoneal injection (LaVoie et al., 1994, 1987; Busby et 20 al., 1989, 1984; Weyand and LaVoie, 1988; Wislocki et al., 1986). In most studies, tumor 21 incidence was reported separately for the different target organs and could not be combined as the joint incidence was unknown. A gender difference was observed in the newborn mouse 22 studies, with liver tumors observed in male mice only, and lung tumors reported for both male 23 and female mice. The tumor incidence data were, therefore, evaluated separately for male and 24 25 female mice. RPF values were calculated separately for male and female mice and for lung tumor incidence and liver tumor incidence in these studies. 26

27

5.7. SPECIAL CONSIDERATIONS FOR RPF CALCULATION USING CANCER RELATED ENDPOINT DATA

30 The in vitro studies of cancer-related endpoints included measurements of bacterial mutagenicity, mammalian mutagenicity, morphological/malignant cell transformation, DNA 31 adduct formation, DNA damage or repair, and clastogenicity or sister chromatid exchange 32 frequency. Many of the studies describing in vitro cancer-related endpoints provide dose-33 response data under varying study conditions. For example, bacterial mutagenesis studies used 34 multiple strains, different metabolic activation processes, and/or varying assay systems. In order 35 to limit the number of datasets used for dose-response analysis of in vitro mutagenicity studies, 36 and to provide a consistent basis for comparing RPFs for differenct PAHs, data associated with 37 the conditions that maximized the benzo[a]pyrene response within a particular study were used 38

for the dose-response assessment of PAHs. It should be noted that in several studies, test
 conditions that were optimal for benzo[a]pyrene were not necessarily optimal for the selected
 PAH (see Appendix C for specific studies). The uncertainties and limitations associated with

4 this approach are discussed further in Section 8.

5 For time-course studies of DNA adducts, results were reported as either AUC or peak 6 formation of adducts. AUC was considered preferable for dose-response assessment, because 7 this measure considers both adduct formation and repair. Adducts measured in more than one 8 organ were summed to derive a total measure of adduct formation (standardized per unit amount 9 of DNA).

The data for bacterial and mammalian cell mutagenicity and malignant cell 10 transformation were sometimes expressed as a mutation or transformation frequency (i.e., 11 mutants/total cell count or transformed cells/total cells). For multiple-dose studies, these quantal 12 variables were evaluated using the multistage model as described above. Problems were 13 sometimes encountered when using the multistage model for incidence data of this type. In some 14 15 cases, modifying the initial parameters in the multistage algorithm facilitated convergence. In a 16 select few cases, the quantal linear model was used when the multistage model would not converge. If neither the multistage nor quantal linear models provided adequate fit, a point 17 estimate approach was used. If possible, the point estimates for both benzo[a]pyrene and the 18 target PAH were chosen at a comparable response level (e.g., the doses of benzo[a]pyrene and 19 the target PAH that both gave two mutants in 10^5 cells). However, in many cases, a comparable 20 response rate was not available. In these instances, the RPF was derived from slopes calculated 21 22 by linear extrapolation from the peak response. As noted earlier, for studies that included only one dose of benzo[a]pyrene and multiple 23 dose data for a selected PAH, the BMR selected for dose-response modeling for the selected 24 PAH was the benzo[a]pyrene response with the background or control response subtracted. In 25

some instances, when the benzo[a]pyrene response level greatly exceeded the response at the

highest dose of the selected PAH, the software would fail to calculate the ED at the

- 28 benzo[a]pyrene response level. In these instances, a point estimate approach using the peak
- 29 response for the selected PAH was used.

The individual study RPFs calculated for each PAH were used in a weight of evidence evaluation to assess the potential carcinogenicity of each compound (see Section 6) and in the derivation of a final RPF for each compound (Section 7).

- 33 34
- 6. SELECTION OF PAHS FOR INCLUSION IN RELATIVE POTENCY APPROACH
 36
 37

The selection of PAHs to be included in the RPF approach began with an evaluation of whether the available data were adequate to assess the potential carcinogenicity of each compound. At least one RPF value was calculated for each of 50 PAHs. For 16 of these compounds, only a single RPF value derived from an in vitro cancer-related endpoint (primarily mutagenicity assays) was available. These PAHs are shown in Table 6-1. Due to the limited data available for these 16 compounds, no further evaluation of these PAHs was conducted, and they were not selected for inclusion in the RPF approach.

8

РАН	CASRN	Abbreviation
Aceanthrylene	202-03-09	ACEA
Acenaphthene	83-32-9	AN
Acenaphthylene	208-96-8	ANL
Acephenanthrylene	201-06-9	APA
Benzo[a]perylene	191-85-5	BaPery
Benz[b]anthracene	92-24-9	BbA
Benzo[b]perylene	197-70-6	BbPery
Benzo[c]phenanthrene	195-19-7	BcPH
Cyclopent[h,i]aceanthrylene	131581-33-4	CPhiACEA
Cyclopent[h,i]acephenanthrylene	114959-37-4	CPhiAPA
Dibenzo[a,f]fluoranthene	203-11-2	DBafF
Dibenz[a,j]anthracene	224-41-9	DBajA
Dibenzo[b,e]fluoranthene	2997-45-7	DBbeF
Dibenzo[e,1]pyrene	192-51-8	DBelP
Dibenz[k,mno]acephenanthrylene	153043-81-3	DBkmnoAPH
Naphtho[2,3-a]pyrene	196-42-9	N23aP

Table 6-1. PAHs with only one RPF from in vitro cancer-related endpoint study and excluded from RPF approach

9

10 The remaining 34 PAHs had RPF values calculated from at least one in vivo dataset or at least two in vitro cancer-related endpoint datasets. For these compounds, a weight of evidence 11 approach was used to determine whether the available data (including the calculated RPFs as 12 well as negative studies that met selection criteria) were adequate to assess the carcinogenic 13 14 potential. Using the calculated RPFs in the weight of evidence evaluation allowed consideration of the magnitude of calculated RPFs in assessing potential carcinogenicity. When data were not 15 considered adequate, the PAH was excluded from the RPF approach. When data were 16 considered adequate for a given PAH, it was selected for inclusion. 17 18 A PAH with adequate evidence to suggest that it has little or no carcinogenic potential was selected for inclusion in the RPF approach and assigned an RPF of 0. While there is little 19

20 quantitative difference between selecting a final RPF of zero for a given PAH and excluding that

21 PAH from the RPF approach, this is an important distinction for uncertainty analysis. There is

substantial uncertainty in the risk associated with a PAH that is excluded from the RPF approach 1 2 due to inadequate data; this compound could be of low or high potency. However, for a PAH with an RPF of 0, there is evidence to suggest that this compound exhibits little or no 3 carcinogenic potential, and the uncertainty associated with the cancer risk for this compounds is 4 markedly reduced. For anthracene, phenanthrene, and pyrene, it has been determined that the 5 available data support a practical RPF of zero. It is possible that the studies available may not 6 7 provide sufficient sensitivity to compare the potency of the PAHs of interest to benzo[a]pyrene, and thus, the RPF of zero should not be considered a characterization of the inherent 8 carcinogenicity of anthracene, phenanthrene, or pyrene. The weight of evidence analysis is 9 outlined in Section 6.1 and the results are described in narratives for each of the 34 individual 10 11 PAHs (Section 6.2). Section 7 describes how the RPFs from multiple datasets were used to 12 derive final RPFs for those PAHs selected for inclusion in the approach, and reports the final RPF information for each PAH. 13 14 15 6.1. METHOD FOR SELECTING PAHS FOR INCLUSION IN RELATIVE POTENCY 16 **APPROACH** For each of the 34 PAHs, a weight of evidence evaluation was conducted to assess the 17 evidence that each PAH could induce a carcinogenic response. This evaluation did not constitute 18 19 a formal weight of evidence evaluation of carcinogenic potential; rather, an approach was developed using the data collected for this analysis to determine whether the available 20 21 information for each PAH was adequate to draw a conclusion regarding carcinogenic potential. When the data were considered adequate for a given PAH, it was selected for inclusion in the 22

RPF approach. Figure 6-1 shows the decision tree that was used to evaluate the data for each
PAH and to determine whether it should be included in the RPF approach. The weight of

25 evidence evaluation concluded with one of two possible outcomes:

- 26
- 27 28

29

30

1. The data reviewed are adequate to evaluate potential carcinogenicity and the PAH should be included in the RPF analysis, or

- 2. The data reviewed are inadequate to assess carcinogenic potential and the PAH should be excluded from the RPF analysis.
- 31 32

- 2 ^aBioassays with benzo[a]pyrene that met study quality criteria (includes studies with 3 4 negative results). 5 ^bOther bioassays include those that did not test benzo[a]pyrene and/or those that were not suitable for RPF derivation (e.g., incidence at lowest dose exceeded 90%). 6 7 ^cCancer-related endpoint data examined in this process included studies of DNA adducts, 8 clastogenicity or sister chromatid exchange, mutagenicity, morphological transformation, 9 DNA damage, unscheduled DNA synthesis, etc. that included the selected PAH and benzo[a]pyrene. 10 11 Figure 6-1. Weight of evidence analysis of potential carcinogenicity. 12 13
- In vivo tumor bioassays that included benzo[a]pyrene were given the greatest weight in assessing the potential carcinogenicity of a given PAH; data from other bioassays and cancer-

related endpoint studies were used to supplement the weight of evidence when the bioassay data
that included benzo[a]pyrene were conflicting or negative. Structural alerts for PAH
carcinogenicity or mutagenicity (specifically, at least four aromatic rings, or the presence of a

classic bay region or fjord region formed entirely by aromatic rings) were noted in the evaluation
for each PAH, but were not used explicitly in the weight of evidence evaluation.

When there were bioassays including benzo[a]pyrene with positive findings, and none 6 7 with negative findings for a given PAH, that compound was selected for inclusion in the RPF approach, and no further evaluation of cancer-related endpoint data was conducted. However, 8 the cancer-related endpoint findings for these compounds were noted in the individual PAH 9 narratives (Section 6.2). Among the PAHs included in this analysis, there were none with 10 positive bioassay data and robust negative cancer-related endpoint data. Were this instance to 11 12 arise, it would require special consideration, as it might imply a different mode of carcinogenic action than the PAHs addressed herein. 13

Bioassays that met selection criteria (see Section 4.3) were included in the weight of evidence analysis, regardless of whether positive or nonpositive (i.e., negative) results were found. However, the weight of evidence evaluation assumed that a given compound may be active in one system (e.g., newborn mouse), and inactive or weakly active in another (e.g., dermal initiation). Thus, when conflicting results were observed in different test systems, different species, or different genders, the PAH was assumed to be potentially carcinogenic based on the positive findings and was included in the RPF approach.

21 In order to compare the results of bioassays with positive and nonpositive results in the same test system, an "RPF detection limit" was conceptualized as a means of approximating the 22 minimum RPF that could be determined under the conditions of the study. The "RPF detection 23 limit" was defined as the ratio of the dose-response slopes³, using the lowest statistically 24 significant response that could be calculated for the subject PAH and the actual benzo[a]pyrene 25 26 response, as points of departure for the slope calculation. The lowest statistically significant response was calculated using the incidence of tumors in the control group, number of animals in 27 the group treated with the subject PAH, and Fisher's exact test⁴ (employing a one-sided 28 *p*-value ≤ 0.05). Appendix F shows an example calculation of an "RPF detection limit." The 29 utility of this concept is in weighing positive and nonpositive bioassay results. If all of the 30 nonpositive studies had "RPF detection limits" in excess of what is observed in the positive 31 studies, then it is plausible that the nonpositive studies may not have been sufficiently sensitive 32 to estimate the low RPF appropriate to the subject PAH. In this event, the PAH was considered 33 potentially carcinogenic and included in the RPF approach. 34

³The standard RPF equation is RPF = slope PAH_i \div slope BaP = [response/dose]_{PAHi} \div [response/dose]_{BaP}.

⁴This calculation was implemented using trial and error within the Fisher's exact test in the online statistical calculator GraphPad[©].

If there were no bioassays with benzo[a]pyrene for a given compound, all of the selected 1 2 bioassays gave nonpositive results, or inconsistent results could not be explained by test system or "RPF detection limit", then the results of other bioassays (those without benzo[a]pyrene, or 3 those rejected from dose-response assessment exclusively because of concerns associated with 4 benzo[a]pyrene) and cancer-related endpoint data were evaluated. The weight of evidence 5 analysis then considered all of the following information: bioassays with benzo[a]pyrene, other 6 7 bioassays, and cancer-related endpoint data. If these data were determined to be inadequate to assess the carcinogenic potential for a given PAH, then that compound was excluded from the 8 9 RPF approach. If the data were considered adequate to assess the carcinogenic potential, the compound was retained and a final RPF was derived. Section 6.2 below describes the weight of 10 evidence evaluation for each of the 34 PAHs. Section 7.1 describes how final RPFs were 11 12 derived for the 26 PAHs selected for inclusion in the RPF approach.

- 13
- 14

6.2. WEIGHT OF EVIDENCE EVALUATION FOR 34 INDIVIDUAL PAHS

15 For each PAH, the structure is shown along with a brief reference to any structural alerts for potential carcinogenicity (specifically, more than three aromatic rings and/or bay or fjord 16 region in alternant PAH). Next, a brief narrative describing the weight of evidence evaluation is 17 given, with a graphical representation of the data that were available for RPF calculation 18 (Figures 6-2 to 6-35). The graph for each compound provides a visual representation of the 19 database of studies that included both the subject PAH and benzo[a]pyrene. The solid bars show 20 21 the values of the RPFs calculated from all studies with positive findings. The x-axis label shows the reference for the pertinent study. The RPFs are color-coded to distinguish among in vivo 22 tumor bioassays based on incidence data, in vivo tumor bioassays based on multiplicity data, in 23 vivo cancer-related endpoint studies, and in vitro cancer-related endpoint studies. Within these 24 categories, the RPFs are ordered (left to right in the graph) from highest to lowest, with positive 25 26 results shown before nonpositive results.

For each nonpositive bioassay, an empty, dotted bar shows what is termed the "RPF detection limit" (see Section 6.1 for description). Missing bars designate cancer-related studies that resulted in nonpositive findings. An RPF detection limit for nonpositive cancer-related studies was not included, because comparisons between nonpositive and positive studies were complicated by the wide variety of study conditions (e.g., test species and strains, metabolic activation sources, assay systems).

Each narrative concludes with a statement as to whether the subject PAH was selected for inclusion in the PAH RPF approach. The weight of evidence evaluation for the 34 PAHs with at least one in vivo RPF or at least 2 in vitro cancer-related endpoint RPFs resulted in the selection of 26 PAHs for inclusion in the RPF approach and the exclusion of 8 PAHs from the approach (see Table 6-2).

Table 6-2. Results of weight of evidence evaluation of 34 PAHs					
Adequate data: selected for inclusion in RPF approach					
РАН	CASRN	Abbreviation	PAH	CASRN	Abbreviation
Benzo[a]pyrene	50-32-8	BaP	Cyclopenta[d,e,f]chrysene, 4H-	202-98-2	CPdefC
Anthanthrene	191-26-4	AA	Dibenz[a,c]anthracene	215-58-7	DBacA
Anthracene	120-12-7	AC	Dibenzo[a,e]fluoranthene	5385-75-1	DBaeF
Benz[a]anthracene	56-55-3	BaA	Dibenzo[a,e]pyrene	192-65-4	DBaeP
Benz[b,c]aceanthrylene, 11H-	202-94-8	BbcAC	Dibenz[a,h]anthracene	53-70-3	DBahA
Benzo[b]fluoranthene	205-99-2	BbF	Dibenzo[a,h]pyrene	189-64-0	DBahP
Benz[e]aceanthrylene	199-54-2	BeAC	Dibenzo[a,i]pyrene	189-55-9	DBaiP
Benzo[g,h,i]perylene	191-24-2	BghiP	Dibenzo[a,l]pyrene	191-30-0	DBalP
Benz[j]aceanthrylene	202-33-5	BjAC	Fluoranthene	206-44-0	FA
Benzo[j]fluoranthene	205-82-3	BjF	Indeno[1,2,3-c,d]pyrene	193-39-5	IP
Benzo[k]fluoranthene	207-08-9	BkF	Naphtho[2,3-e]pyrene	193-09-9	N23eP
Benz[1]aceanthrylene	211-91-6	BlAC	Phenanthrene	85-01-8	PH
Chrysene	218-01-9	СН	Pyrene	129-00-0	Pyr
Cyclopenta[c,d]pyrene	27208-37-3	CPcdP			
		Inadequ	ate data		
PAH	CASRN	Abbreviation	PAH	CASRN	Abbreviation
Acepyrene, 2,3-	25732-74-5	ACEP	Coronene	191-07-1	СО
Benzo[b]fluorene, 11H-	243-17-4	BbFE	Fluorene	86-73-7	FE
Benzo[e]pyrene	192-97-2	BeP	Perylene	198-55-0	Pery
Benzo[g,h,i]fluoranthene	203-12-3	BghiF	Triphenylene	217-59-4	Tphen

f weight of avidence evaluation Table () D 14. £ 21 DA Ц

2

1

Γ

3 4 2,3-Acepyrene (CASRN 25732-74-5) is a nonalternant PAH comprised of four aromatic 5 rings and one five-membered ring. 2,3-Acepyrene does not contain a classic bay or fjord region 6 in its structure. 7 Five datasets for 2,3-acepyrene met selection criteria and included benzo[a]pyrene 8 (shown in Figure 6-2). Dermal initiation and complete carcinogenicity bioassays in mice both 9 resulted in nonpositive findings (both published by Cavalieri et al., 1981b). RPF detection limits 10 for these studies were 0.09 and 0.02, respectively. The limited cancer-related data are mixed, 11 with one positive dataset for in vivo DNA adduct formation, one positive bacterial mutagenicity 12 dataset (both published by Cavalieri et al., 1981a), and one negative mammalian mutagenicity 13 dataset (Barfknecht et al., 1982). There are no bioassays of 2,3-acepyrene without 14 15 benzo[a]pyrene. Overall, the database for 2,3-acepyrene is both limited and inconsistent. The database for 2,3-acepyrene does not provide adequate information with which to assess potential 16 carcinogenicity; this PAH was not selected for inclusion in the RPF approach. 17 18

Figure 6-2. 2,3-Acepyrene (ACEP) RPFs*.

3	
4	
5	Anthanthrene (CASRN 191-26-4) is an alternant PAH comprised of six fused aromatic
6	rings. Anthanthrene does not have a bay or fjord region in its structure.
7	There are seven datasets for anthanthrene that met selection criteria and included
8	benzo[a]pyrene (Figure 6-3). The database includes three in vivo tumor bioassays, three
9	bacterial mutagenicity datasets, and one in vitro DNA damage dataset. Statistically increased
10	tumor incidences were reported in both a rat lung implantation bioassay (Deutsch-Wenzel et al.,
11	1983) and a dermal complete carcinogenicity bioassay in mice (Cavalieri et al., 1977). No
12	increase over control tumor incidence was reported in a dermal initiation study (Hoffmann and
13	Wynder, 1966), but the RPF detection limit for this study was 0.3. All of the cancer-related
14	endpoint studies gave positive results. Because conflicting bioassay data can be explained by
15	differences in study design (initiation versus complete dermal carcinogenicity), anthanthrene was
16	considered potentially carcinogenic and selected for inclusion in the RPF approach.
17	

Figure 6-3. Anthanthrene (AA) RPFs.

Anthracene ((AC)	5
--------------	------	---

1 2

5 Anthracene (CASRN 120-12-7) is an alternant PAH comprised of three fused aromatic 6 rings. Anthracene does not have a bay or fjord region in its structure, and contains less than four 7 aromatic rings.

Thirty-seven datasets for anthracene met selection criteria and included benzo[a]pyrene, 8 including 1 dermal initiation tumor bioassay, 3 in vivo clastogenicity or sister chromatid 9 exchange datasets, 10 bacterial mutagenicity datasets, 4 mammalian mutagenicity datasets, 10 11 6 morphological/malignant cell transformation datasets, and 13 in vitro DNA adduct, DNA damage or clastogenicity datasets (Figure 6-4). The single dermal initiation bioassay gave a 12 nonpositive result, with a RPF detection limit of 0.2 (LaVoie et al., 1985). Only two datasets 13 gave positive results: an in vitro bacterial mutagenicity assay and an in vitro study of DNA 14 15 damage. The remaining 35 datasets reported nonpositive findings. To confirm the negative 16 findings in the one tumor bioassay that included benzo[a]pyrene, other bioassays and cancerrelated endpoint data for anthracene were considered in the weight of evidence evaluation. In 17 bioassays without benzo[a]pyrene, anthracene did not induce a statistically significant increase in 18 19 tumor incidence in two dermal initiation studies (LaVoie et al., 1983; Salaman and Roe, 1956) and a lung implantation bioassay (Stanton, 1972). Scribner (1973) reported a weak tumorigenic 20 response in a dermal initiation study in mice (4/28 mice developed papillomas by week 35 after 21 dermal treatment with 10 µmol anthracene in benzene followed by twice weekly treatment with 22 TPA, as compared with 0/30 control mice, p = 0.048). 23

24 In vitro assays of mutagenicity (both bacterial and mammalian) are nearly all negative for anthracene (13/14 studies). Studies of morphological/malignant cell transformation were all 25 26 negative. Finally, in numerous in vitro studies of DNA damage or clastogenicity, anthracene has given nonpositive results (12/13). Sakai et al. (1985) reported a mutagenic response in bacteria 27 treated with anthracene, and Rossman et al. (1991) observed evidence of unscheduled DNA 28 synthesis in *E. coli* treated with anthracene. Overall, the weight of evidence suggests that 29 30 anthracene is not carcinogenic or is of very low carcinogenic potential. In addition, anthracene 31 lacks all three known structural alerts (at least four rings, bay region or fjord region) for PAH carcinogenicity and/or mutagenicity. Because the weight of evidence evaluation suggests that 32 the data are adequate to assess the carcinogenic potential of anthracene, this compound was 33 34 selected for inclusion in the RPF approach and assigned a RPF of 0.

Figure 6-4. Anthracene (AC) RPFs*.

3 Benz[a]anthracene (CASRN 56-55-3) is an alternant PAH comprised of four fused 4 aromatic rings. Benz[a]anthracene contains a bay region but no fjord region in its structure. 5 There are 65 datasets for benz[a]anthracene that met selection criteria and included 6 7 benzo[a]pyrene (Figure 6-5). Included in the database are tumor bioassays (5), in vivo DNA adduct studies (4), in vivo clastogenicity studies (4), an in vivo mutagenicity study (1), bacterial 8 mutagenicity (15), mammalian mutagenicity (14), morphological/malignant cell transformation 9 10 assays (6), and in vitro studies of DNA damage, adducts, or clastogenicity (16). There are five tumor bioassay datasets of benz[a]anthracene that included benzo[a]pyrene; four gave positive 11 results, and one gave a nonpositive result. The positive findings were in different genders tested 12 in a newborn mouse study using intraperitoneal injection (Wislocki et al., 1986); the datasets 13 included both tumor incidence and multiplicity data for both sexes. Positive results were also 14 reported in a dermal initiation study (Slaga et al., 1978). The one nonpositive bioassay (Cavalieri 15 et al., 1977) was a dermal complete carcinogenicity study with an RPF detection limit of 0.2. 16 Benz[a]anthracene was shown to form DNA adducts when administered in vivo in both rats and 17 mice via injection and gavage (Kligerman et al., 2002). Mutagenicity and morphological/ 18 19 malignant cell transformation assays of benz[a]anthracene were predominantly positive, as were studies of other cancer-related endpoints. 20 Given that the differing bioassay results can be attributed to different test systems and 21 study design, benz[a]anthracene was considered potentially carcinogenic and was selected for 22

- 23 inclusion in the RPF approach.
- 24

1

11H-Benz[b,c]aceanthrylene (BbcAC)

2 3

- 11H-Benz[b,c]aceanthrylene (CASRN 202-94-8) is a nonalternant PAH comprised of
 four aromatic rings and one five-membered ring. 11H-Benz[b,c]aceanthrylene does not contain a
 classic bay or fjord region in its structure.
- 7 There was only one dataset for benz[b,c]aceanthrylene that met selection criteria and
- 8 included benzo[a]pyrene (Figure 6-6). This multi-dose dermal initiation study resulted in an
- 9 RPF estimate of 0.05 (Rice et al., 1988). Benz[b,c]aceanthrylene has not been tested in any
- 10 bioassay without benzo[a]pyrene. There are no cancer-related endpoint data for
- 11 benz[b,c]aceanthrylene. As the only available bioassay of this PAH was positive,
- 12 benz[b,c]aceanthrylene was considered potentially carcinogenic and was selected for inclusion in
- 13 the RPF approach.
- 14

Figure 6-6. 11H-Benz[b,c]aceanthrylene (BbcAC) RPFs.

Benzo[b]fluoranthene (BbF)

Benzo[b]fluoranthene (CASRN 205-99-2) is a nonalternant PAH comprised of four 4 5 aromatic rings and one five-membered ring. Benzo[b]fluoranthene contains one classic bay region but no fjord region in its structure. 6 There were 21 datasets of benzo[b]fluoranthene that met selection criteria and included 7 benzo[a]pyrene (Figure 6-7). Included in the database are in vivo tumor bioassay datasets (7), in 8 vivo DNA adduct datasets (7), in vivo clastogenicity datasets (3), mutagenicity and 9 morphological/malignant cell transformation datasets (3), and an in vitro DNA damage dataset 10 (1). Statistically significant increases in tumor incidence and/or multiplicity were reported in 11 12 male mice tested in two newborn mouse bioassays using intraperitoneal injection (Nesnow et al., 13 1998b; LaVoie et al., 1987), in dermal initiation (LaVoie et al., 1982) and dermal complete carcinogenicity (Habs et al., 1980) bioassays, and in a rat lung implantation bioassay (Deutsch-14 Wenzel et al., 1983). The one nonpositive result was in female mice tested in the newborn 15 mouse bioassay; the RPF detection limit was 0.8 (LaVoie et al., 1987). A number of studies 16 showed that benzo[b]fluoranthene forms DNA adducts when administered in vivo to rats or mice 17 18 via injection or gavage (Kligerman et al., 2002; Nesnow et al., 1998b, 1993b). One mutagenicity assay and two morphological/malignant cell transformation assays of benzo[b]fluoranthene were 19 positive, as were studies of other cancer-related endpoints; there were no negative studies of 20 cancer-related endpoints. Given that the differeing bioassay results can be attributed to different 21 gender, benz[a]anthracene was considered potentially carcinogenic and was selected for 22 23 inclusion in the RPF approach.

11H-Benzo[b]fluorene (BbFE)

11H-Benzo[b]fluorene (CASRN 243-17-4) is a nonalternant PAH comprised of three
aromatic rings and one five-membered ring. 11H-Benzo[b]fluorene does not contain a classic
bay or fjord region in its structure.

There were three datasets for 11H-benzo[b]fluorene that met selection criteria and 6 7 included benzo[a]pyrene (Figure 6-8): two mutagenicity datasets and an in vitro DNA damage dataset. There are no bioassays of 11H-benzo[b]fluorene that included benzo[a]pyrene, so 8 bioassays without benzo[a]pyrene and cancer-related endpoint data were considered. LaVoie et 9 10 al. (1981) conducted a study of skin tumor initiation in mice treated with 1.0 mg 11H-benzo[b] fluorene followed by 20 weeks of treatment with TPA. The incidence of tumor-bearing animals 11 (4/20) was not significantly increased over controls (1/20) (LaVoie et al., 1981). The limited 12 cancer-related endpoint data were mixed, with one positive mutagenicity study (Kaden et al., 13 1979), one negative mutagenicity study (Hermann, 1981), and one positive in vitro study of 14 DNA damage (Mersch-Sundermann et al., 1992). Overall, the database for 11H-benzo[b] 15 fluorene is both limited and inconsistent. Because the database for 11H-benzo[b]fluorene does 16 not provide adequate information with which to assess potential carcinogenicity, this PAH was 17 not selected for inclusion in the RPF approach. 18

19

1

Figure 6-8. 11H-Benzo[b]fluorene (BbFE) RPFs*.

2	
3	Benz[e]aceanthrylene (CASRN 199-54-2) is a nonalternant PAH comprised of four
4	aromatic rings and one five-membered ring. Benz[e]aceanthrylene contains a classic bay region
5	but no fjord region in its structure.
6	There were six datasets for benz[e]aceanthrylene that met selection criteria and included
7	benzo[a]pyrene (Figure 6-9); all gave positive results. The database includes an in vivo tumor
8	bioassay in two sexes (each reporting both incidence and multiplicity), a mammalian
9	mutagenicity study, and a morphological/malignant cell transformation study. Significantly
10	increased tumor incidence and tumor multiplicity were reported for both male and female mice
11	in a dermal initiation bioassay in mice (Nesnow et al., 1984). As the available bioassay that
12	included benzo[a]pyrene was positive, benz[e]aceanthrylene was considered potentially
13	carcinogenic and was selected for inclusion in the RPF approach.
14	

Figure 6-9. Benz[e]aceanthrylene (BeAC) RPFs.

2	
3	
4	Benzo[e]pyrene (192-97-2) is an alternant PAH comprised of five fused aromatic rings.
5	Benzo[e]pyrene contains two bay regions and no fjord region in its structure.
6	Thirty-seven datasets for benzo[e]pyrene met selection criteria and included
7	benzo[a]pyrene: 2 tumor bioassays, 1 in vivo clastogenicity dataset, 12 bacterial mutagenicity
8	datasets, 4 mammalian mutagenicity datasets, 7 morphological/malignant cell transformation
9	datasets, and 11 in vitro DNA damage or clastogenicity datasets (Figure 6-10). No increase in
10	tumor incidence was observed when benzo[e]pyrene was tested alone as part of a dermal
11	cocarcinogenicity bioassay (Van Duuren and Goldschmidt, 1976). When tested in a lung
12	implantation bioassay in rats, benzo[e]pyrene exposure did not result in a significant increase in
13	tumor incidence (Deutsch-Wenzel et al., 1983). The RPF detection limits of these studies were
14	approximately 0.01 and 0.1. To confirm the negative findings in the available tumor bioassays
15	that included benzo[a]pyrene, other bioassays and cancer-related endpoint data were considered.
16	In bioassays without benzo[a]pyrene, benzo[e]pyrene gave negative results in a dermal initiation
17	bioassay (1 mg/mouse; Van Duuren et al., 1968) and a newborn mouse bioassay (0.7 μ mol;
18	Chang et al., 1981). A significant increase in tumor incidence was reported in a single-
19	concentration dermal initiation study in mice; 11/13 surviving mice (20 were treated) had
20	papillomas by week 35 after dermal treatment with 10 µmol benzo[e]pyrene in benzene
21	(p < 0.0001), followed by twice weekly treatment with TPA; no control mice had papillomas
22	(Scribner, 1973).
23	In vitro assays of mutagenicity (both bacterial and mammalian) and morphological/
24	malignant cell transformation give inconsistent results for benzo[e]pyrene; 11/23 studies were
25	positive and the rest were negative. Positive studies include a mix of bacterial mutagenicity and
26	morphological/malignant cell transformation assays; four mammalian mutagenicity assays were
27	negative. One study of in vivo clastogenicity and two studies of in vitro DNA damage were
28	positive, while nine studies of in vitro DNA damage or clastogenicity were negative.
29	While the database for benzo[e]pyrene is quite large, the results are inconsistent; as a
30	result, no conclusion can be drawn as to potential carcinogenicity. This PAH was not selected

31 for inclusion in the RPF approach.

Figure 6-10. Benzo[e]pyrene (BeP) RPFs*.

2

DRAFT – DO NOT CITE OR QUOTE

2	
3	
4	Benzo[g,h,i]fluoranthene (CASRN 203-12-3) is a nonalternant PAH comprised of four
5	aromatic rings and one five-membered ring. Benzo[g,h,i]fluoranthene does not contain a classic
6	bay or fjord region in its structure.
7	There were six datasets for benzo[g,h,i]fluoranthene that met selection criteria and
8	included benzo[a]pyrene (Figure 6-11). A dermal initiation bioassay in mice (Van Duuren et al.,
9	1966) did not result in a statistically significant increase in tumor incidence; the RPF detection
10	limit was 0.06. There were no other bioassays that met selection criteria. There were three
11	positive bacterial mutagenicity studies (Chang et al., 2002; Lafleur et al., 1993; Carver et al.,
12	1986), one positive study of in vitro DNA damage (Mersch-Sundermann et al., 1992), and a
13	mammalian mutagenicity study with negative results (Lafleur et al., 1993). The RPF values for
14	the positive cancer-related endpoint datasets ranged from 0.6 to 1. Overall, the database for
15	benzo[g,h,i]fluroanthene is both limited and inconsistent. Because the database for
16	benzo[g,h,i]fluoranthene does not provide adequate information with which to assess potential
17	carcinogenicity, this PAH was not selected for inclusion in the RPF approach.
18	

* Missing bar indicates nonpositive cancer-related endpoint study

Figure 6-11. Benzo[g,h,i]fluoranthene (BghiF) RPFs*.

1

3 Benzo[g,h,i]perylene (CASRN 191-24-2) is an alternant PAH comprised of six fused 4 aromatic rings. Benzo[g,h,i]perylene contains a bay region but no fjord region in its structure. 5 6 There were 10 datasets for benzo[g,h,i]perylene that met selection criteria and included 7 benzo[a]pyrene (Figure 6-12). The database includes three in vivo tumor bioassays, four bacterial mutagenicity datasets, an in vitro DNA damage dataset, and two in vitro DNA adduct 8 datasets. Of the three bioassays, positive findings were only reported in one: a rat lung 9 10 implantation bioassay (Deutsch-Wenzel et al., 1983) that resulted in a RPF estimate of 0.009. In a dermal initiation bioassay (Hoffmann and Wynder, 1966) and a dermal cocarcinogenicity 11 bioassay (Van Duuren and Goldschmidt, 1976), there was no statistically significant increase in 12 13 tumor incidence, but these studies had relatively insensitive RPF detection limits (around 0.1) compared with the positive study. There were four positive mutagenicity studies; all were 14 conducted in bacterial systems. Studies of in vitro DNA adducts and DNA damage were 15 positive. Because the inconsistent bioassay results can be attributed to different test systems 16 (different species and route), benzo[g,h,i]perylene was considered potentially carcinogenic and 17 was selected for inclusion in the RPF approach. 18

* Missing bar indicates nonpositive cancer-related endpoint study

Figure 6-12. Benzo[g,h,i]perylene (BghiP) RPFs*.

Benz[j]aceanthrylene (CASRN 202-33-5) is a nonalternant PAH comprised of four
aromatic rings and one five-membered ring. Benz[j]aceanthrylene contains a classic bay region
but no fjord region in its structure.

8 There were 12 datasets for benz[j]aceanthrylene that met selection criteria and included benzo[a]pyrene (Figure 6-13); all of the studies gave positive results. The database includes one 9 in vivo tumor bioassay dataset, one in vivo DNA adduct dataset, four mutagenicity or 10 morphological/malignant cell transformation datasets, and six in vitro DNA damage or DNA 11 adduct datasets. In a bioassay of benz[j]aceanthrylene that used intraperitoneal injection in an 12 A/J mouse system (Mass et al., 1993), all mice treated with benz[j]aceanthrylene developed 13 tumors (incidence of 100% at doses of 20–100 mg/kg; incidence for benzo[a]pyrene was 63– 14 100% across the same dose range), precluding the derivation of an RPF using incidence data. 15 16 However, tumor multiplicity (average number of tumors per animal) data were available for dose-response modeling and resulted in an RPF estimate of 60. Benz[j]aceanthrylene treatment 17 resulted in a pronounced increase in the average number of tumors per animal (59.45 tumors per 18 animal at 20 mg/kg), much higher than benzo[a]pyrene treatment (5.05 tumors per animal at 19 20 100 mg/kg), indicating that this compound is very potent in this test system. In a dermal initiation bioassay that did not include benzo[a]pyrene, benz[j]aceanthrylene induced papillomas 21 in 90% of mice treated with an initiating dose of 40 µg (compared with 5% incidence in 22 23 controls). As the available bioassay that included benzo[a]pyrene was positive and suggested that this compound is very potent, benz[j]aceanthrylene was considered potentially carcinogenic 24 and was selected for inclusion in the RPF approach. 25

26

1 2

1 2

Figure 6-13. Benz[j]aceanthrylene (BjAC) RPFs.

Benzo[j]fluoranthene (CASRN 205-82-3) is a nonalternant PAH comprised of four
aromatic rings and one five-membered ring. Benzo[j]fluoranthene does not contain a classic bay
or fjord region in its structure.

There were eight datasets for benzo[j]fluoranthene that met selection criteria and 6 7 included benzo[a]pyrene (Figure 6-14): seven in vivo tumor bioassay datasets and one in vitro study of DNA damage. Of the seven bioassay datasets, significant increases in tumor incidence 8 9 or count were observed in all but one. Significant increases in tumor incidence were reported in both male and female mice tested in a newborn mouse bioassay using intraperitoneal injection of 10 single doses (LaVoie et al., 1987), a mouse dermal initiation study (LaVoie et al., 1982), and a 11 rat lung implantation bioassay (Deutsch-Wenzel et al., 1983). Significant increases in tumor 12 13 multiplicity were reported in two mouse dermal initiation studies (Weyand et al., 1992; LaVoie 14 et al., 1982). The one nonpositive bioassay was a mouse dermal complete carcinogenicity bioassay with an RPF detection limit of 0.1 (Habs et al., 1980). The in vitro study of DNA 15 damage gave positive results (Mersch-Sundermann et al., 1992). Because the inconsistent 16 17 bioassay results can be attributed to different test systems or study design, benzo[j]fluroanthene was considered potentially carcinogenic and was selected for inclusion in the RPF approach. 18 19

1 2

Figure 6-14. Benzo[j]fluoranthene (BjF) RPFs.

Benzo[k]fluoranthene (CASRN 207-08-9) is a nonalternant PAH comprised of four
aromatic rings and one five-membered ring. Benzo[j]fluoranthene does not contain a classic bay
or fjord region in its structure.

8 There were five datasets for benzo[k]fluoranthene that met selection criteria and included benzo[a]pyrene (Figure 6-15). The database includes four in vivo tumor bioassay datasets and 9 one morphological/malignant cell transformation dataset. Statistically significant increases in 10 tumor incidence and tumor count were reported in a mouse dermal initiation study (LaVoie et al., 11 1982) and increased tumor incidence was reported in a rat lung implantation bioassay (Deutsch-12 13 Wenzel et al., 1983). No significant increase in tumor incidence was observed in a dermal complete carcinogenicity study with an RPF detection limit of 0.1 (Habs et al., 1980). The 14 morphological/malignant cell transformation study (Emura et al., 1980) was negative. Because 15 the inconsistent bioassay results can be attributed to different test systems or study design 16 (dermal initiation vs. dermal complete carcinogenicity), benzo[k]fluroanthene was considered 17 18 potentially carcinogenic and was selected for inclusion in the RPF approach. 19

* Missing bar indicates nonpositive cancer-related endpoint study

Figure 6-15. Benzo[k]fluoranthene (BkF) RPFs*.

- Benz[l]aceanthrylene (CASRN 211-91-6) is a nonalternant PAH comprised of four
 aromatic rings and one five-membered ring. Benz[l]aceanthrylene does not contain a classic bay
 or fjord region in its structure.
- 7 There were 16 datasets for benz[1]aceanthrylene that met selection criteria and included benzo[a]pyrene (Figure 6-16); all of the studies gave positive results. The database includes four 8 in vivo tumor bioassay datasets, five mutagenicity or morphological/malignant cell 9 10 transformation datasets, one in vivo clastogenicity dataset, and six in vitro DNA adduct or DNA damage datasets. Significant increases in tumor count and multiplicity were reported in both 11 male and female mice in a dermal initiation bioassay (Nesnow et al., 1984). All of the cancer-12 related endpoint studies were positive as well. Relative potency estimates for most of the 13 available datasets were ≥ 1.0 , suggesting equivalent or greater potency than benzo[a]pyrene. As 14 the available bioassays that included benzo[a]pyrene were positive, benz[l]aceanthrylene was 15
- 16 considered potentially carcinogenic and was selected for inclusion in the RPF approach.

Figure 6-16. Benz[l]aceanthrylene (BIAC) RPFs.

1

Chrysene (CASRN 218-01-9) is an alternant PAH comprised of four fused aromatic
rings. Chrysene contains two bay regions but no fjord region in its structure.

There were 40 datasets for chrysene that met selection criteria and included 6 benzo[a]pyrene (Figure 6-17). Included in the database are 13 in vivo tumor bioassay datasets, 7 4 in vivo DNA adduct datasets, 3 in vivo clastogenicity datasets, 11 mutagenicity datasets, 8 9 3 morphological/malignant cell transformation datasets, and 6 in vitro studies of DNA damage, adducts, or clastogenicity. Among the bioassays that included benzo[a]pyrene, 11 reported 10 significant increases in tumor incidence or tumor multiplicity, and 3 did not. Significant 11 increases in tumor incidence and/or multiplicity were reported in three dermal initiation studies 12 in mice (Rice et al., 1988; Slaga et al., 1980; Hecht et al., 1974), a newborn mouse study in 13 males (Wislocki et al., 1986), and a rat lung implantation bioassay (Wenzel-Hartung et al., 14 1990). Female mice tested in the newborn mouse assay published by Wislocki et al. (1986) did 15 not have a significant increase in tumor incidence, resulting in one of the three nonpositive 16 studies. The other two nonpositive findings were in males and females tested in another 17 18 newborn mouse bioassay (Busby et al., 1989). The bioassays with nonpositive findings had RPF detection limits between 0.06 and 0.2. Conflicting results in male mice were reported in the two 19 newborn mouse bioassays (Busby et al., 1989; Wislocki et al., 1986). The major difference 20 between the two studies is the duration of follow-up; Busby et al. (1989) sacrificed the mice at 21 22 26 weeks, while Wislocki et al. (1986) followed the mice for a full year. LaVoie et al. (1994) 23 observed that liver tumor induction in the newborn mouse bioassay is not fully realized until the mice have reached 1 year of age, and the positive findings by Wislocki et al. (1986) indeed 24 25 reflect liver tumors in the male mice. Chrysene was shown to form DNA adducts when administered in vivo in both rats and mice via injection and gavage (Kligerman et al., 2002). 26 27 Bacterial and mammalian mutagenicity and morphological/malignant cell transformation assays of chrysene were all positive, as were studies of clastogenicity tested in vivo. In contrast, results 28 29 from in vitro studies of DNA adducts, DNA damage, and clastogenicity were not consistent. Because the inconsistent bioassay results can be attributed to different study designs 30 (gender, follow-up time), chrysene was considered potentially carcinogenic and was selected for 31 inclusion in the RPF approach. 32

2	
3	Coronene (CASRN 191-07-1) is an alternant PAH comprised of seven fused aromatic
4	rings. Coronene contains no bay or fjord regions in its structure.
5	There were six datasets for coronene that met selection criteria and included
6	benzo[a]pyrene (Figure 6-18). A dermal complete carcinogenicity bioassay in mice did not
7	result in a statistically significant increase in tumor incidence (Habs et al., 1980); the RPF
8	detection limit was 0.06. To confirm the nonpositive findings in the one tumor bioassay that
9	included benzo[a]pyrene, other bioassays and cancer-related endpoint data were considered.
10	There was one bioassay of coronene that did not include benzo[a]pyrene. Van Duuren et al.
11	(1968) conducted a dermal initiation bioassay of coronene using groups of 20 mice (0.5 mg
12	coronene in 0.5 mL benzene, followed by croton resin treatment until death). Although the
13	authors characterized coronene as a weak tumor initiator, the incidence of tumors was not
14	significantly increased over concurrent controls. The limited cancer-related endpoint data were
15	mixed, with three positive bacterial mutagenicity studies (with RPFs ranging from 0.01 to 0.5),
16	one negative bacterial mutagenicity study, and a negative in vitro DNA damage study.
17	Overall, the database for coronene is both limited and inconsistent. Because the database
18	for coronene does not provide adequate information with which to assess potential
19	carcinogenicity, this PAH was not selected for inclusion in the RPF approach.

Figure 6-18. Coronene (CO) RPFs*.

1

Cyclopenta[c,d]pyrene (CASRN 27208-37-3) is a nonalternant PAH comprised of four
aromatic rings and one five-membered ring. Cyclopenta[c,d]pyrene does not contain a classic
bay or fjord region in its structure.

There were 24 datasets for cyclopenta[c,d]pyrene that met selection criteria and included 6 benzo[a]pyrene (Figure 6-19). The database includes 10 in vivo tumor bioassay datasets, 2 in 7 vivo DNA adduct datasets, 11 studies of mutagenicity or morphological/malignant cell 8 9 transformation, and a single study of in vitro clastogenicity. Eight of the 10 tumor bioassay datasets and all of the cancer-related endpoint studies gave positive results. Statistically 10 11 significant increases in tumor incidence and/or multiplicity were reported in two dermal complete carcinogenicity bioassay (Cavalieri et al., 1983, 1981b), two dermal initiation 12 bioassays (Raveh et al., 1982; Cavalieri et al., 1981b), and an intraperitoneal study using adult 13 A/J mice (Nesnow et al., 1998b). Bioassays in which no significant increase in tumorigenicity 14 was observed included a dermal initiation (Wood et al., 1980) and complete carcinogenicity 15 study (Habs et al., 1980); these studies had RPF detection limits of 0.1 and 0.03, respectively. 16 After obtaining nonpositive results for low initiating doses of cyclopenta[c,d]pyrene, Wood et al. 17 (1980) repeated their experiment with higher doses and observed statistically significant 18 increases in tumor incidence. In the latter experiment, benzo[a]pyrene was not included, so an 19 20 RPF could not be calculated from these data. The study design of the nonpositive complete carcinogenicity bioassay was quite similar to that of the two positive studies of this type, with the 21 exception of the mouse strain used; Habs et al. (1980) used NMRI mice, while Cavalieri et al. 22 (1983, 1981b) used Swiss mice. Although the differing results in dermal complete 23 carcinogenicity studies may be explained by slight differences in strain susceptibility, these two 24 strains are of common origin, which argues against this explanation. 25 The available cancer-related endpoint data indicate that cyclopenta[c,d]pyrene is 26 mutagenic and capable of morphological/malignant cell transformation in vitro; a single study of 27 in vitro clastogenicity was also positive. Overall, the data supporting a finding of potential 28 29 carcinogenicity for cyclopenta[c,d]pyrene are very consistent, and this compound was selected

30 for inclusion in the RPF approach.

Reference

Value of RPF

Figure 6-19. Cyclopenta[c,d]pyrene (CPcdP) RPFs.

4H-Cyclopenta[d,e,f]chrysene (CPdefC)

2 3

- 4 4H-Cyclopenta[d,e,f]chrysene (CASRN 202-98-2) is a nonalternant PAH comprised of
 5 four aromatic rings and one five-membered ring. 4H-Cyclopenta[d,e,f]chrysene contains a
 6 classic bay region but no fjord region in its structure.
- 7 There were two datasets for 4H-cyclopenta[d,e,f]chrysene that met selection criteria and included benzo[a]pyrene (Figure 6-20): both were multi-dose dermal initiation datasets (Rice et 8 al., 1988, 1985). Rice et al. (1988) reported a statistically significant increase in tumor incidence 9 in a multi-dose dermal initiation study. In the second study, the incidence of tumors after 10 treatment with cyclopenta[d,e,f]chrysene exceeded 90%, precluding RPF derivation from 11 incidence data, but tumor multiplicity data were available for RPF calculation (Rice et al., 1985). 12 Cyclopenta[d,e,f]chrysene has not been tested in a bioassay without benzo[a]pyrene; however, 13 sterically hindered diol epoxides of this compound have given positive results in a newborn 14 mouse assay (Amin et al., 1995). Because the bioassay of cyclopenta[d,e,f]chrysene was 15 positive, this PAH was considered potentially carcinogenic and was selected for inclusion in the 16 RPF approach. 17

Figure 6-20. Cyclopenta[d,e,f]chrysene (CPdefC) RPFs.

Dibenz[a,c]anthracene (CASRN 215-58-7) is an alternant PAH comprised of five fused
aromatic rings. Dibenz[a,c]anthracene contains three bay regions but no fjord region in its
structure.

There were 15 datasets for dibenz[a,c]anthracene that met selection criteria and included benzo[a]pyrene (Figure 6-21). The database includes a single in vivo study of DNA adducts, nine mutagenicity or morphological/malignant cell transformation studies, and five studies of in vitro DNA damage or adducts. One morphological/malignant cell transformation assay gave nonpositive results, while the remaining studies were positive. In the absence of positive bioassays with benzo[a]pyrene, other bioassays and cancer-related data were considered to evaluate the potential carcinogenicity of dibenz[a,c]anthracene.

14 Conflicting results were reported in three dermal initiation bioassays of dibenz[a,c]anthracene in which benzo[a]pyrene was not included. Van Duuren et al. (1970) 15 observed a tumor incidence of 95% (19/20, compared to 1/20 controls) when mice were treated 16 with an initiating dose of 1 mg dibenz[a,c]anthracene in benzene followed by thrice weekly 17 treatment with phorbol myristate acetate. In contrast, there was no significant increase in tumor 18 19 formation when the same initiating dose was followed by thrice weekly application of croton resin (Van Duuren et al., 1968); however, the latency to first tumor was substantially reduced 20 (65 vs. 150 days in controls). Latency was also substantially reduced in the study by Van 21 Duuren et al. (1970), in which the first tumor appeared after 74 days, compared with 338 days in 22 23 controls.

Cancer-related endpoint data for dibenz[a,c]anthracene are predominantly positive 24 (8/9 mutagenicity or morphological/malignant cell transformation studies and 5/5 studies of in 25 vitro DNA adducts or DNA damage). Although the conflicting bioassay data are not easily 26 explained, the high incidence of tumors (19/20) in the study by Van Duuren et al. (1970), and the 27 reduced latency to tumor formation in both studies, coupled with predominantly positive cancer-28 related endpoint data, suggest that dibenz[a,c]anthracene is potentially carcinogenic. 29 Contributing to this conclusion is the observation that dibenz[a,c]anthracene is an alternant PAH 30 with known structural alerts for carcinogenicity (more than three rings, and three bay regions). 31

32 Thus, dibenz[a,c]anthracene was selected for inclusion in the RPF approach.

Figure 6-21. Dibenz[a,c]anthracene (DBacA) RPFs*.

Dibenzo[a,e]fluoranthene (CASRN 5385-75-1) is a nonalternant PAH comprised of five
aromatic rings and one five-membered ring. Dibenzo[a,e]fluoranthene contains a classic bay
region but no fjord region in its structure.
There were three datasets for dibenzo[a,e]fluoranthene that met selection criteria and
included benzo[a]pyrene (Figure 6-22); all gave positive results. The database includes two in
vivo tumor bioassays and one mammalian mutagenicity study. Statistically significant increases
in tumor incidence were reported in dermal initiation and complete carcinogenicity bioassays in
mice (both reported by Hoffmann and Wynder, 1966). As the available bioassays for
dibenzo[a,e]fluoranthene were positive, this compound was considered potentially carcinogenic
and was selected for inclusion in the RPF approach.

1 2

Figure 6-22. Dibenzo[a,e]fluoranthene (DBaeF) RPFs.

Dibenzo[a,e]pyrene (DBaeP)

3 4 Dibenzo[a,e]pyrene (CASRN 192-65-4) is an alternant PAH comprised of six fused aromatic rings. Dibenzo[a,e]pyrene contains three bay regions but no fjord region in its 5 structure. 6 7 There were three datasets for dibenzo[a,e]pyrene that met selection criteria and included benzo[a]pyrene (Figure 6-23). The database includes two in vivo tumor bioassay datasets and 8 one in vitro bacterial mutagenicity dataset, all of which gave positive results. Statistically 9 significant increases in tumor incidence were reported in dermal initiation and complete 10 carcinogenicity bioassays in mice (Hoffmann and Wynder, 1966). The complete carcinogenicity 11 bioassay was confounded by significant toxicity-related mortality unrelated to tumors (Hoffmann 12 and Wynder, 1966). The one bacterial mutagenicity study reported positive results. Because the 13 available bioassays with benzo[a]pyrene were both positive, dibenzo[a,e]pyrene was considered 14 potentially carcinogenic and was selected for inclusion in the RPF approach. 15 16

1

2

Figure 6-23. Dibenzo[a,e]pyrene (DBaeP) RPFs.

Dibenz[a,h]anthracene (CASRN 53-70-3) is an alternant PAH comprised of five fused
 aromatic rings. Dibenz[a,h]anthracene contains two bay regions and no fjord region in its
 structure.

There were 30 datasets for dibenz[a,h]anthracene that met selection criteria and included 6 7 benzo[a]pyrene (Figure 6-24). Included in the database are in vivo tumor bioassay datasets (4), 8 in vivo DNA adduct datasets (2), an in vivo clastogenicity dataset, mutagenicity datasets (10) morphological/malignant cell transformation datasets (6), and in vitro DNA damage, adducts, or 9 clastogenicity datasets (7). There were three tumor bioassays for dibenz[a,h]anthracene that 10 included benzo[a]pyrene, and all resulted in statistically significant increases in tumor incidence 11 and/or multiplicity. The bioassays were in three different test systems: a rat lung implantation 12 study (Wenzel-Hartung et al., 1990), a mouse dermal initiation study reporting both incidence 13 and multiplicity (Slaga et al., 1980), and an intraperitoneal study in A/J mice (Nesnow et al., 14 1998b). Dibenz[a,h]anthracene was shown to form DNA adducts when administered in vivo to 15 16 mice via intraperitoneal injection (Nesnow et al., 1998b) and dermal application (Phillips et al., 1979). Mutagenicity and morphological/malignant cell transformation assays of 17 dibenz[a,h]anthracene were predominantly positive (13/16), as were studies of other cancer-18 related endpoints. Because the available bioassays with benzo[a]pyrene were positive, 19 20 dibenz[a,h]anthracene was considered potentially carcinogenic and was selected for inclusion in 21 the RPF approach.

22

1

2	~
3	Dibenzo[a,h]pyrene (CASRN 189-64-0) is an alternant PAH comprised of six fused
4	aromatic rings. Dibenzo[a,h]pyrene contains two bay regions and no fjord region in its structure.
5	There were five datasets for dibenzo[a,h]pyrene that met selection criteria and included
6	benzo[a]pyrene (Figure 6-25); all gave positive results. The database includes one in vivo
7	bioassay dataset, one in vivo DNA adduct dataset, two in vitro mammalian mutagenicity
8	datasets, and one in vitro DNA damage dataset. A statistically significant increase in tumor
9	incidence was reported in a dermal initiation bioassay in mice (Hoffmann and Wynder, 1966).
10	In addition, two dermal studies of complete carcinogenicity that included benzo[a]pyrene gave
11	positive results, but no RPF could be calculated because the incidence of tumors in the mice
12	exposed to dibenzo[a,h]pyrene was \geq 90% at the lowest dose tested (Cavalieri et al., 1977;
13	Hoffmann and Wynder, 1966) and tumor multiplicity was not reported. As all of the available
14	bioassays that included benzo[a]pyrene showed exposure-related tumorigenic responses,
15	dibenzo[a,h]pyrene was considered potentially carcinogenic and was selected for inclusion in the
16	RPF approach.

1 2

Figure 6-25. Dibenzo[a,h]pyrene (DBahP) RPFs.

2	
3	Dibenzo[a,i]pyrene (CASRN 189-55-9) is an alternant PAH comprised of six fused
4	aromatic rings. Dibenzo[a,i]pyrene contains two bay regions and no fjord region in its structure.
5	There were 12 datasets for dibenzo[a,i]pyrene that met selection criteria and included
6	benzo[a]pyrene (Figure 6-26); all gave positive results. The database includes two in vivo
7	bioassay datasets, one in vivo DNA adduct dataset, seven in vitro mutagenicity datasets, and two
8	in vitro DNA damage datasets. Statistically significant increases in tumor incidence were
9	reported in dermal initiation and complete carcinogenicity bioassays in mice, both published by
10	Hoffmann and Wynder (1966). The cancer-related endpoint studies were all positive. As the
11	available bioassays that included benzo[a]pyrene were both positive, dibenzo[a,i]pyrene was
12	considered potentially carcinogenic and was selected for inclusion in the RPF approach.
13	

* Missing bar indicates nonpositive genotoxicity study

Reference

1

2	
3	Dibenzo[a,l]pyrene (CASRN 191-30-0) is an alternant PAH comprised of six fused
4	aromatic rings. Dibenzo[a,l]pyrene contains both a bay region and a fjord region in its structure.
5	There were 15 datasets for dibenzo[a,l]pyrene that met selection criteria and included
6	benzo[a]pyrene (Figure 6-27); all of the studies gave positive results. The database includes
7	three in vivo tumor bioassay datasets, three in vivo DNA adduct datasets, one bacterial
8	mutagenicity dataset, one morphological/malignant cell transformation dataset, four in vivo
9	clastogenicity datasets, and three in vitro DNA adduct or DNA damage datasets.
10	In three bioassays of dibenzo[a,l]pyrene included benzo[a]pyrene, RPFs could not be
11	calculated using incidence data, because the incidence of tumors associated with the lowest dose
12	of dibenzo[a,l]pyrene exceeded 90% (two dermal initiation experiments in mice and an
13	intramammilary injection study in rats, both reported by Cavalieri et al., 1991); however, tumor
14	multiplicity data were reported for the dermal initiation experiments and were used to calculate
15	RPFs of 10 and 40. Nesnow et al. (1998b) reported tumor multiplicity, but not tumor incidence
16	in A/J mice exposed intraperitoneally; an RPF of 30 was calculated. Because the available
17	studies indicated that dibenzo[a,l]pyrene may be much more potent benzo[a]pyrene, other studies
18	were also examined to confirm the potency of this compound.
19	Dibenzo[a,l]pyrene treatment resulted in significant increases in tumor incidence in seven
20	bioassays that did not include benzo[a]pyrene, including two dermal initiation studies (Gill et al.,
21	1994; Cavalieri et al., 1989), a dermal complete carcinogenicity study (Nakatsuru et al., 2004),
22	an intramammilary injection study in rats (Cavalieri et al., 1989), a newborn mouse bioassay
23	(Platt et al., 2004), an intraperitoneal bioassay using A/J mice (Prahalad et al., 1997), and a
24	gavage bioassay comparing the responses of cyp1B1 wild-type and null mice (Buters et al.,
25	2002). In several of these studies, there was significant toxicity associated with
26	dibenzo[a,l]pyrene treatment. Tumor incidences were very high in most of the studies, including
27	the gavage study (Buters et al., 2002), which reported an overall tumor incidence of 100% in
28	cyp1B1 wild-type mice treated with a single dose of dibenzo[a,l]pyrene. A recent study
29	examining in utero and/or lactational exposure to dibenzo[a,l]pyrene showed that mouse pups
30	exposed during late gestation develop T-cell lymphomas between 3 and 6 months of age, as well
31	multiple lung and liver tumors (Castro et al., 2008). All of the cancer-related data for
32	dibenzo[a,l]pyrene were positive and resulted in high RPF estimates, including in vivo and in
33	vitro studies of DNA adducts, in vivo clastogenicity studies, morphological/malignant cell
34	transformation, bacterial mutagenicity, and in vitro DNA damage or DNA adduct studies.

- 1 The weight of evidence supporting a finding of potential carcinogenicity for
- 2 dibenzo[a,l]pyrene is strong and suggests that this compound is very potent; thus, it was selected
- 3 for inclusion in the RPF approach.

Reference

Figure 6-27. Dibenzo[a,l]pyrene (DBalP) RPFs.

Fluoranthene (CASRN 206-44-0) is a nonalternant PAH comprised of three aromatic
rings and one five-membered ring. Fluoranthene does not contain a classic bay or fjord region in
its structure.

6 There were 21 datasets for fluoranthene that met selection criteria and included benzo[a]pyrene (Figure 6-28). Included in the database are in vivo tumor bioassay datasets (11), 7 bacterial and mammalian mutagenicity datasets (5), a morphological/malignant cell 8 transformation assay, and in vitro studies of DNA damage, DNA adducts, or clastogenicity (4). 9 Of the bioassay datasets that included benzo[a]pyrene, nine gave positive results and two gave 10 nonpositive results. Statistically significant increases in tumor incidence and tumor multiplicity 11 were reported in newborn mouse bioassays (in male and female mice [LaVoie et al., 1994] and in 12 female mice [Busby et al., 1989]). The tumor incidence was not significantly increased by 13 fluoranthene in a mouse dermal initiation study with an RPF detection limit of 0.01 (Hoffman et 14 15 al., 1972) and when fluoranthene was tested alone in a dermal cocarcinogenicity bioassay with an RPF detection limit of 0.1 (Van Duuren and Goldschmidt, 1976). In another newborn mouse 16 bioassay (Busby et al., 1984) that reported both incidence and multiplicity, the lowest dose of 17 benzo[a]pyrene resulted in a tumor incidence of >90%, precluding RPF calculation from the 18 19 incidence data; however, multiplicity data were available. Statistical analysis of the data for fluoranthene demonstrated positive findings for both incidence and multiplicity in male mice, but 20 the results for the two endpoints were inconsistent in females. In female mice exposed at the 21 high dose of fluoranthene in a newborn mouse bioassay reported by Busby et al. (1984), the lung 22 tumor count was significantly increased (albeit borderline, p = 0.0343) while the incidence was 23 24 not (p > 0.05), and neither was statistically significantly increased at the lower dose. For the purpose of this analysis, the multiplicity data were treated as an independent measure of 25 carcinogenic potency, and an RPF was calculated for the statistically increased tumor count in 26 female mice. 27 The mutagenicity studies of fluoranthene were all positive, but in vitro studies of DNA 28 29 damage, DNA adducts, and clastogenicity gave inconsistent results. Because the inconsistent bioassay results can be attributed to different test systems (different exposure route and/or 30

- 31 gender) or study design, fluoranthene was considered potentially carcinogenic and was selected
- 32 for inclusion in the RPF approach.
- 33

1

Fluorene (FE)

2	
3	Fluorene (CASRN 86-73-7) is a nonalternant PAH comprised of two aromatic rings and
4	one five-membered ring. Fluorene does not contain a classic bay or fjord region in its structure.
5	There were nine datasets for fluorene that met selection criteria and included
6	benzo[a]pyrene (Figure 6-29). There were no tumor bioassays of fluorene that included
7	benzo[a]pyrene, so other bioassays and cancer-related endpoint data were considered. LaVoie et
8	al. (1980) conducted a study of skin tumor initiation in mice treated with 1.0 mg fluorene
9	followed by 20 weeks of treatment with TPA; the study did not include benzo[a]pyrene. The
10	incidence of tumor-bearing animals (5%) was not significantly increased over controls (0%)
11	(LaVoie et al., 1980). The limited cancer-related endpoint data were mixed, with three positive
12	and four negative mutagenicity datasets, and two negative in vitro DNA damage datasets.
13	Overall, the database for fluorene is both limited and inconsistent. Because the database for
14	fluorene does not provide adequate information with which to assess potential carcinogenicity,
15	this PAH was not selected for inclusion in the RPF approach.
16	

Figure 6-29. Fluorene (FE) RPFs*.

Indeno[1,2,3-c,d]pyrene (CASRN 193-39-5) is a nonalternant PAH comprised of five
aromatic rings and one five-membered ring. Indeno[1,2,3-c,d]pyrene does not contain a classic
bay or fjord region in its structure.

6 There were five datasets for indeno[1,2,3-c,d]pyrene that met selection criteria and included benzo[a]pyrene (Figure 6-30). There are three tumor bioassays, one in vitro study of 7 morphological/malignant cell transformation (Emura et al., 1980), and one in vitro study of DNA 8 damage (Mersch-Sundermann et al., 1992). Of the three tumor bioassays, only one, a rat lung 9 10 implantation study (Deutsch-Wenzel et al., 1983), reported a statistically significant increase in tumor incidence or multiplicity; the RPF was 0.07. Nonpositive findings were reported in mouse 11 dermal initiation (Hoffmann and Wyner, 1966) and complete carcinogenicity (Habs et al., 1980) 12 studies with RPF detection limits in the range of 0.1–0.3. Because the inconsistent bioassay 13 results can be attributed to different test systems (different species and route), and the 14 15 nonpositive studies may not have been sufficiently sensitive to detect an effect, indeno[1,2,3-c,d] pyrene was considered potentially carcinogenic and was selected for inclusion in the RPF 16 approach. 17

18

1

Figure 6-30. Indeno[1,2,3-c,d]pyrene (IP) RPFs.

2	
3	Naphtho[2,3-e]pyrene (CASRN 193-09-9) is an alternant PAH comprised of six fused
4	aromatic rings. Naphtho[2,3-e]contains two bay regions and no fjord region in its structure.
5	There were two datasets for naphtho[2,3-e]pyrene that met selection criteria and included
6	benzo[a]pyrene (Figure 6-31): a tumor bioassay dataset and an in vitro mammalian mutagenicity
7	dataset (both were positive). The tumor bioassay was a single dose dermal initiation bioassay
8	(Hoffmann and Wynder, 1966). As the available bioassay reported a statistically significant
9	increase in tumor incidence, naphtho[2,3-e]pyrene was considered potentially carcinogenic, and
10	was selected for inclusion in the RPF approach.
11	

179 DRAFT – DO NOT CITE OR QUOTE

Figure 6-31. Naphtho[2,3-e]pyrene (N23eP) RPFs.

2 Perylene (CASRN 198-55-0) is an alternant PAH comprised of five fused aromatic rings. 3 Perylene contains two bay regions and no fjord region in its structure. 4 There were 11 datasets for perylene that met selection criteria and included 5 benzo[a]pyrene (Figure 6-32). The database includes an in vivo tumor bioassay dataset, an in 6 vivo clastogenicity dataset, eight bacterial mutagenicity datasets, and an in vitro DNA damage 7 dataset. The single tumor bioassay, a dermal initiation study, gave nonpositive results for 8 9 perylene (El-Bayoumy et al., 1982); the RPF detection limit was 0.01. To confirm the nonpositive bioassay findings, other bioassays and cancer-related endpoint data were considered. 10 In a study that did not include benzo[a]pyrene, Van Duuren et al. (1970) did not observe an 11 increase in tumor incidence over controls when mice were treated by dermal application with an 12 initiating dose of 0.8 mg perylene in benzene followed by thrice weekly treatment with phorbol 13 14 myristate acetate for 58 weeks. However, seven of the eight bacterial mutagenicity studies gave positive results, while perylene tested negative in one bacterial mutagenicity study, the 15 clastogenicity study, and the DNA damage study. Overall, the database for perylene is both 16 limited and inconsistent. Because the database for perylene does not provide adequate 17 18 information with which to assess potential carcinogenicity, this PAH was not selected for inclusion in the RPF approach. 19

20

Figure 6-32. Perylene (Pery) RPFs*.

Phenanthrene (CASRN 85-01-8) is an alternant PAH comprised of three fused aromatic 3 rings. Phenanthrene contains a bay region in its structure, but has less than four aromatic rings. 4 There were 34 datasets for phenanthrene that met selection criteria and included 5 benzo[a]pyrene, including 3 in vivo tumor bioassay datasets, 2 in vivo clastogenicity datasets, 6 11 mutagenicity datasets, 6 morphological/malignant cell transformation datasets, and 12 in vitro 7 studies of DNA adducts, DNA damage, or clastogenicity (Figure 6-33). Only seven studies 8 reported positive results; the remaining 27 studies reported nonpositive findings, including all 9 three bioassays. Nonpositive findings were reported in the three bioassays that included 10 benzo[a]pyrene, including a lung implantation study in rats (Wenzel-Hartung et al., 1990), a 11 dermal initiation study in mice (LaVoie et al., 1981), and a subcutaneous study in mice (Grant 12 and Roe, 1963). To confirm the nonpositive findings, other bioassays and cancer-related 13 endpoint data were considered. In bioassays without benzo[a]pyrene, phenanthrene did not 14 induce significant increases in tumors in a newborn mouse assay using a total dose of 1.4 µmol 15 16 (Buening et al., 1979) or in two dermal initiation assays (Wood et al., 1979; Salaman and Roe, 1956) using doses of 10 µmol and 540 mg, respectively. However, 12/30 mice developed 17 papillomas by week 35 after dermal treatment with 10 µmol phenanthrene (in benzene) followed 18 by twice weekly treatment with TPA; no control mice had papillomas (Scribner, 1973). The 19 20 response was statistically significantly increased over controls (p < 0.01). In vitro assays of mutagenicity and morphological/malignant cell transformation were 21 predominantly negative for phenanthrene. One of the two positive studies (Sakai et al., 1988) 22 reported a poor dose-response relationship for phenanthrene. Two studies found evidence of 23 clastogenicity after in vivo administration of phenanthrene (Roszinsky-Kocher et al., 1979; 24 Bayer, 1978). However, in the study by Bayer (1978), only the high dose gave a significant 25 response, and there was not a significant dose-response trend. When phenathrene was tested in 26 in vitro studies of DNA adducts, DNA damage, and clastogenicity, the results were 27 predominantly negative (9/12 studies). Overall, the database for phenanthrene is substantial, and 28 the weight of evidence suggests that this PAH is not carcinogenic or is of very low carcinogenic 29 potential. Based on the large number of negative bioassays and the abundant evidence that 30 31 phenanthrene lacks genotoxic action, this compound was selected for inclusion in the RPF

183

- 32 approach and assigned an RPF of 0.
- 33

1

Pyrene (CASRN 129-00-0) is an alternant PAH comprised of four fused aromatic rings. 4 Pyrene does not contain a bay or fjord region in its structure. 5 6 There were 49 datasets for pyrene that met study quality criteria and included benzo[a]pyrene (Figure 6-34). Included in the database are in vivo tumor bioassay datasets (7), 7 in vivo clastogenicity datasets (5), bacterial and mammalian mutagenicity datasets (14), 8 9 morphological/malignant cell transformation datasets (7), and in vitro DNA damage, DNA adducts, or clastogenicity datasets (16). There were seven bioassays of pyrene that included 10 11 benzo[a]pyrene; all gave nonpositive results. Nonpositive results were reported in two newborn mouse bioassays in which both males and females were tested (Busby et al., 1989; Wislocki et 12 al., 1986), two studies of dermal initiation (El-Bayoumy et al., 1982; Wood et al., 1980), and a 13 dermal cocarcinogenesis bioassay (Van Duuren and Goldschmidt, 1976). RPF detection limits in 14 these studies ranged from about 0.01 to 0.1 (see Figure 6-34). In an intraperitoneal bioassay 15 16 using A/J mice that included benzo[a]pyrene, the authors reported that pyrene treatment did not induce lung adenomas (Ross et al., 1995); data were not reported, so an RPF detection limit 17 could not be estimated. In bioassays without benzo[a]pyrene, pyrene did not induce a significant 18 increase in tumors in a dermal initiation bioassay (Salaman and Roe, 1956). Scribner (1973) 19 20 reported a weak tumorigenic response in a dermal initiation study in mice (5/29 mice developed papillomas 35 weeks after dermal treatment with 10 µmol pyrene in benzene followed by twice 21 weekly treatment with TPA as compared with 0/30 control mice, p = 0.02). 22 In vitro assays of bacterial and mammalian mutagenicity and morphological/malignant 23 24 cell transformation were predominantly negative for pyrene. In five studies of clastogenicity in animals exposed in vivo to pyrene, no evidence of clastogenic effects was reported. Further, in 25 vitro studies of DNA adducts, DNA damage, and clastogenicity using pyrene also largely 26 reported negative results. Overall, the database for pyrene is substantial, and the weight of 27 evidence suggests that this PAH is not carcinogenic or is of very low carcinogenic potential. 28

Based on the large number of negative bioassays and the abundant evidence that pyrene lacks

30 genotoxic action, this compound was selected for inclusion in the RPF approach and assigned an

31 **RPF** of 0.

32

1 2

3

* Missing bar indicates nonpositive cancer-related endpoint study

Reference

Figure 6-34. Pyrene (Pyr) RPFs*.

1

2	
3	Triphenylene (CASRN 217-59-4) is an alternant PAH comprised of four fused aromatic
4	rings. Triphenylene contains several bay regions and no fjord region in its structure.
5	There were six datasets for triphenylene that met selection criteria and included
6	benzo[a]pyrene (Figure 6-35); all but one of the studies gave positive results. The database
7	includes five mutagenicity studies (four positive and one negative) and a study of in vitro DNA
8	damage. There were no bioassays of triphenylene that met selection criteria, and no bioassays
9	without benzo[a]pyrene. Although all of the available cancer-related endpoint studies for
10	triphenylene gave positive results, the database is very limited, consisting of only a few in vitro
11	mutagenicity and DNA damage studies. The RPFs for cancer-related endpoints ranged from
12	0.02 to 0.4. Because the database for triphenylene does not provide adequate information with
13	which to assess potential carcinogenicity, this PAH was not selected for inclusion in the RPF
14	approach.
15	

Figure 6-35. Triphenylene (Tphen) RPFs*.

7. DERIVATION OF FINAL RPFs FOR SELECTED PAHs

The weight of evidence evaluation (Section 6) indicates that the available data are adequate to suggest that 23 of the 26 PAHs are potentially carcinogenic, three PAHs (anthracene, phenanthrene, and pyrene) exhibited little or no carcinogenic potential, and data are inadequate to evaluate the carcinogenic potential for eight PAHs. The eight PAHs with inadequate data are excluded from the RPF analysis.

For the three PAHs for which there were sufficient data to conclude that the PAH had 9 minimal carcinogenic potential (i.e., robust negative tumor bioassay data and cancer-related 10 11 endpoint data), a final RPF of 0 was recommended. While there is little quantitative difference between selecting a final RPF of 0 for a given PAH and excluding that PAH from the RPF 12 approach, this is an important distinction for uncertainty analysis. There is substantial 13 uncertainty in the risk associated with PAHs that are excluded from the RPF analysis due to 14 inadequate data, as these compounds could be of low or high potency. However, for PAHs with 15 16 an RPF of 0, there is evidence to suggest that these compounds are of little or no carcinogenic potential, and the uncertainty associated with the cancer risk for these compounds is markedly 17 reduced. 18

For each of the remaining 23 compounds, a final nonzero RPF was derived. A number of 19 20 options were considered for deriving a final RPF from among the numerous values calculated for each individual PAH. These options included: prioritizing bioassay RPFs from different 21 22 exposure routes based on relevance to environmentally-relevant routes; prioritizing bioassay RPFs based on target organs considered relevant to human susceptibility to PAH carcinogenesis; 23 prioritizing RPFs based on quality of the underlying study; prioritizing cancer-related endpoints 24 25 by their correlation with bioassay potency (i.e., ability to predict bioassay potency); and combining RPFs across all bioassays, all cancer-related endpoints, or across all endpoints. 26 Appendix G details analyses that were undertaken to assess various options for ranking or 27 prioritizing RPFs. It was concluded that the available data did not provide a basis for prioritizing 28 29 RPFs except for a preference for bioassay data over cancer-related endpoints. As a consequence, final RPFs were derived from bioassay data for any PAH that had at least one RPF based on a 30 31 bioassay. For potentially carcinogenic PAHs without bioassay data, final RPFs were calculated 32 from all cancer-related endpoint datasets with positive results (see next section). 33

34

1 2 3

7.1. METHODS FOR DERIVING FINAL RPFs

For each potentially carcinogenic PAH with bioassay data, the average RPF was calculated from bioassay datasets with positive results (nonpositive bioassay results were not included in the calculation). For those PAHs that did not have any RPF based on a bioassay, but for which the weight of evidence evaluation indicated a potential for carcinogenic response (e.g., dibenz[a,c]anthracene), the average RPF was calculated from all cancer-related endpoint datasets
with positive results (again, nonpositive results were not included in the calculation). The range
of RPF values was also reported. Presenting the average and the range provides an average and
maximum estimate for each PAH that has data from multiple studies.

Several options were considered for the estimation of a final RPF (e.g., arithmetic mean, 5 geometric mean, weighted average, maximum, or order of magnitude estimates). The arithmetic 6 7 mean and range were chosen as a simple approach to describing the calculated RPF values available for each PAH. Other statistical measures (i.e., geometric mean, weighted average) 8 were not considered due to the limited number of RPF values calculated for most PAHs and the 9 variability in the RPF estimates. There were usually not enough data (3 or fewer RPFs for 17/2310 PAHs with nonzero RPFs) to assess the shape of the RPF distribution for any given PAH, so a 11 geometric mean was not considered. Further, the range of RPF values from tumor bioassays was 12 greater than an order of magnitude for several compounds (6/23 PAHs). The variability in RPF 13 estimates is likely due to differences in study design parameters (e.g., route, species/strain, 14 15 exposure duration, exposure during sensitive time periods, initiation vs. complete carcinogenesis protocol, tumor incidence vs. tumor multiplicity reporting) and dose response methods (modeled 16 vs. point estimates). Calculation of a weighted average was considered, but without a rationale 17 for assigning weights among study types or tumor data outcomes, using a weighting approach 18 19 might increase uncertainty. Several previous approaches for generating RPF values for PAHs 20 have used order of magnitude estimates (Collins et al., 1998; Malcolm and Dobson, 1994; U.S. 21 EPA, 1993; Nisbet and LaGoy, 1992, see Section 3). Providing order of magnitude estimates was not considered to be superior to calculating simple means. The presentation of the 22 arithmetic mean and range of RPFs for each PAH was considered to be more transparent and 23 more reflective of the available data than an order-of-magnitude approach. Including the range 24 25 in the estimated RPFs was considered to be informative to the user for characterizing 26 uncertainty.

The range was reported as a measure of variability instead of a confidence interval on the 27 average RPF. The input data for the average RPF (bioassay RPFs of different route, species, sex, 28 and target organ, or cancer-related endpoint data across a wide variety of assays and test 29 conditions) are likely to be correlated in unquantifiable and variable ways. There may be a high 30 degree of correlation between RPFs calculated for a given PAH from dermal initiation and 31 complete carcinogenicity studies, or between RPFs calculated from incidence and multiplicity 32 data reported for the same study, but lower correlation between RPFs from dermal initiation and 33 intraperitoneal injection. In addition, there are differences between male and female target 34 35 organs after exposure to PAHs in newborn mouse tumor bioassays; RPFs from these datasets may have little or no correlation. As a result, a confidence interval on the average RPF was not 36 calculated, but rather the range of calculated values was used as a means of expressing 37 variability. 38

All tumor bioassay RPFs (across all exposure routes, species, sexes, and including both 1 2 tumor incidence and tumor multiplicity RPFs) were combined to estimate the mean and range, 3 except as follows. When separate RPFs were calculated for different endpoints in the same group of animals, the higher value of the two RPFs was included in the average and range, and 4 the lower value was dropped from the combined data. There were two situations in which this 5 occurred: RPFs for different target organs in the same animals, and RPFs based on incidence of 6 tumors and tumor count in the same animals. Different RPFs were calculated for liver and lung 7 tumors in male mice (females did not develop liver tumors) in newborn mouse studies that 8 9 reported incidences or tumor counts separately. This occurrence applied only to benz[a]anthracene, chrysene, and fluoranthene tested in studies reported by LaVoie et al. (1994) 10 and Wislocki et al. (1986). Likewise, when both incidence and multiplicity RPFs were 11 12 calculated from the same experiment, the higher of the two values was included in the combined data, and the lower value was excluded. A comparison between RPFs calculated from incidence 13 and tumor multiplicity data from the same experiment showed these values to be highly 14 correlated ($r^2 = 0.8$; see further discussion in Section 8), so RPFs from the two endpoints could 15 not be treated as independent measures of relative potency. 16

17

18 7.2. CONFIDENCE RATINGS FOR FINAL RPFs

19 Once a final RPF was derived for a given PAH, the resulting value was assigned a relative confidence rating of high, medium, low, or very low confidence. The relative confidence 20 21 rating characterized the nature of the database upon which the final RPF was based. Confidence rankings were based on the robustness of the database. For final RPFs based on tumor bioassay 22 data, confidence ratings considered both the available tumor bioassays and the size and 23 consistency of the cancer-related endpoint database. The most important factors that were 24 considered included the availability of in vivo data and whether multiple exposure routes were 25 26 represented. Other database characteristics that were considered important included the strength of evidence of genotoxicity data and SAR information, the availability of more than one in vivo 27 study, and whether effects were evident in more than one sex or species. Very low relative 28 confidence was used to describe final RPFs based on cancer-related endpoint data only (e.g., 29 dibenz[a,c]anthracene). 30

For RPFs of zero, the confidence rating considered both the available tumor bioassays and the size and consistency of the cancer-related endpoint database. An RPF of zero was only applied if the data implied *high* or *medium relative confidence*. For anthracene, phenanthrene, and pyrene, it has been determined that the available data supports a practical RPF of zero. It is possible that the studies available may not provide sufficient sensitivity to compare the potency of the PAHs of interest to benzo[a]pyrene, and thus, the RPF of zero should not be considered a characterization of the inherent carcinogenicity of anthracene, phenanthrene, or pyrene. Table 7-1 shows the average RPFs based on tumor bioassay data with their associated range and relative confidence ratings, and an overview of the tumor bioassay database (total number of studies, exposure routes tested, species tested, sexes tested, and number of RPFs derived from BMD modeling) for each PAH. Table 7-2 shows the average RPF for dibenz[a,c]anthracene, the only RPF based on cancer-related endpoint data, with its associated range, relative confidence rating, and an overview of the database for this compound.

РАН	Average RPF	Range of RPFs	Relative confidence	No. datasets	Exposure routes tested	Species tested	Sexes tested	RPFs based on BMD modeling
Anthanthrene	0.4	0.2–0.5	Medium	2	Dermal, lung implantation	Mouse, rat	F	1
Anthracene	0	0	Medium	1 (Negative)	Dermal	Mouse	F	NA
Benz[a]anthracene	0.2	0.02–0.4	Medium	3	Dermal, intraperitoneal	Mouse	F, M	0
Benz[b,c]aceanthrylene, 11H-	0.05	0.05	Low	1	Dermal	Mouse	F	0
Benzo[b]fluoranthene	0.5	0.1–2	High	5	Dermal, intraperitoneal, lung implantation	Mouse, rat	F, M	3
Benz[e]aceanthrylene	0.9	0.5–1	Low	2	Dermal	Mouse	F, M	2
Benzo[g,h,i]perylene	0.009	0.009	Low	1	Lung implantation	Rat	F	1
Benz[j]aceanthrylene	60	60	Low	1	Intraperitoneal	Mouse	F	0
Benzo[j]fluoranthene	0.3	0.01–1	High	5	Dermal, intraperitoneal, lung implantation	Mouse, rat	F, M	2
Benzo[k]fluoranthene	0.03	0.03-0.03	Medium	2	Dermal, lung implantation	Mouse, rat	F	2
Benz[1]aceanthrylene	5	4–7	Low	2	Dermal	Mouse	F, M	2
Chrysene	0.1	0.04–0.2	High	7	Dermal, intraperitoneal, lung implantation	Mouse, rat	F, M	3
Cyclopenta[c,d]pyrene	0.4	0.07-1	Medium	5	Dermal, intraperitoneal	Mouse	F, M	2
Cyclopenta[d,e,f]chrysene, 4H-	0.3	0.2–0.5	Low	2	Dermal	Mouse	F	1
Dibenzo[a,e]fluoranthene	0.9	0.7–1	Low	2	Dermal	Mouse	F	1
Dibenzo[a,e]pyrene	0.4	0.3–0.4	Low	2	Dermal	Mouse	F	1
Dibenz[a,h]anthracene	6	1–10	High	3	Dermal, intraperitoneal, lung implantation	Mouse, rat	F, M	1
Dibenzo[a,h]pyrene	0.9	0.9	Low	1	Dermal	Mouse	F	0
Dibenzo[a,i]pyrene	0.6	0.5–0.7	Low	2	Dermal	Mouse	F	1
Dibenzo[a,l]pyrene	30	10–40	Medium	3	Dermal, intraperitoneal	Mouse	F, M	0
Fluoranthene	0.08	0.009–0.2	Low	6	Intraperitoneal	Mouse	F, M	5
Indeno[1,2,3-c,d]pyrene	0.07	0.07	Low	1	Lung implantation	Rat	F	1
Naphtho[2,3-e]pyrene	0.3	0.3	Low	1	Dermal	Mouse	F	0
Phenanthrene	0	0	High	3 (Negative)	Dermal, intraperitoneal, lung implantation	Mouse, rat	F, M	NA
Pyrene	0	0	High	7 (Negative)	Dermal, intraperitoneal	Mouse	F, M	NA

Table 7-1. Final RPFs based on tumor bioassay data

NA = not applicable, M = male, F = female

Table 7-2. Final RPFs based on cancer-related endpoint data(no tumor bioassay data available)

РАН	Average RPF	Range of RPFs	Relative confidence	Types of studies	Multiple dose studies
Dibenz[a,c]anthracene	4	0.04–50	Very low	<u>Total = 14 studies</u> One in vivo DNA adduct Six in vitro bacterial mutagenicity One in vitro mammalian mutagenicity One in vitro morphological/malignant transformation Three in vitro DNA damage Two in vitro DNA adducts	<u>Total = 6 studies</u> Four in vitro bacterial mutagenicity One in vitro DNA damage One in vitro DNA adduct

7.3. SUSCEPTIBILITY FROM EARLY LIFE EXPOSURE TO CARCINOGENS

2 According to the Supplemental Guidance for Assessing Susceptibility from Early Life *Exposure to Carcinogens* (U.S. EPA, 2005b), benzo[a]pyrene is carcinogenic by a mutagenic 3 mode of action. For example, an acute dosing study using benzo[a]pyrene suggests that early-4 lifestage exposure would lead to an increased incidence of tumors compared with adult 5 exposures of a similar dose and duration (EPA 2005b). Mice that were treated with 6 7 benzo[a]pyrene (75 or 150 μ g/g body weight intraperitoneal) within 24 hours of birth or at 15 days of age developed hepatomas at a higher incidence than similarly treated animals at 42 days 8 9 of age (Vesselinovitch et al., 1975, as cited in EPA 2005b. The Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to 10 Carcinogens establishes ADAFs for three specific age groups. The current ADAFs and their age 11 groupings are 10 for <2 years, 3 for 2 to <16 years, and 1 for 16 years and above (U.S. EPA, 12 2005b). The 10-fold and 3-fold adjustments in slope factor are to be combined with age specific 13 exposure estimates when estimating cancer risks from early life (<16 years age) exposure to 14

15 PAHs.

16 Because a mutagenic mode of action for benzo[a]pyrene carcinogenicity is sufficiently supported in laboratory animals and relevant to humans, and in the absence of chemical-specific 17 data to evaluate differences in susceptibility, increased early-life susceptibility is assumed and 18 19 the age-dependent adjustment factors (ADAFs) should be applied, as appropriate.

20 The 23 PAH compounds for which a RPF value was determined (see Table 7-2) are also 21 considered to be carcinogenic by a mutagenic mode of action (see Section 2.4 for discussion of similarities in mode of action for PAHs). In the absence of chemical-specific data to evaluate 22 differences in susceptibility, increased early-life susceptibility to the 23 PAHs (for which RPFs 23 were derived) in this analysis is assumed and the age-dependent adjustment factors (ADAFs) 24 should be applied, along with exposure information, as appropriate. When assessing PAH cancer 25 26 risks, the RPF values should be applied to the benzo[a]pyrene risk estimates with adjustment for early life susceptibility (See Table 7-3 for example). 27

28

Table 7-3. Sample calculation of estimated cancer risk for
benz[a]anthracene (BaA) with the application of ADAFs

age group	ADAF	B[a]P oral slope factor (per mg/kg-day)	adjusted B[a]P cancer risk estimate	RPF	BaA estimated cancer risk (per mg/kg-day)
0 < 2	10	7.3	73	0.2	15
2<16	3	7.3	24	0.2	4.8
16+	1	7.3	7.3	0.2	1.5

3

8. UNCERTAINTIES ASSOCIATED WITH RPF APPROACHES

4 A description of uncertainties and limitations is an important component of the RPF 5 approach for PAH mixtures risk assessment. Many of the general uncertainties related to 6 chemical-specific risk assessment are also applicable to the proposed RPF approach for PAHs. 7 These include issues related to selection of an appropriate animal model, low-dose and 8 interspecies extrapolation, and variability within the human population. Use of a component-9 based approach to mixtures risk assessment leads to additional uncertainties, e.g., the lack of 10 11 experimental data on potential interactions among individual components within the mixture 12 (i.e., among PAHs and with other chemicals). The feasibility of conducting a robust component-based approach for PAH mixtures 13 (RPF approach) was evaluated by a PAH mixtures peer consultation workshop (U.S. EPA, 14 2002). Included in the discussion was a general evaluation of U.S. EPA's *Provisional Guidance* 15 16 (U.S. EPA, 1993). Workshop participants highlighted the following limitations of the 1993 guidance: 17 18 (1) The approach only considered a small subset of PAHs (that is unsubstituted PAHs only, 19 no heterocyclic compounds or nitro- or alkyl-substituted PAHs); 20 21 22 (2) There are no human toxicity data for any individual PAH; 23 (3) The assumption of additivity may not be valid, and there may be interactions among 24 PAHs or between PAHs and other components of a mixture (e.g., metals); 25 26 (4) PAHs may generally have a common mode of action (i.e., mutagenicity), but multiple 27 modes of action for carcinogenesis are possible; and 28 29 (5) The estimated order of potency (EOPP) approach was limited to the oral exposure route 30 (i.e., a recommendation was made not to apply the factors to dermal and inhalation 31 32 exposures). 33 The current analysis represents a significant improvement upon the previous component-34 based approach to PAH mixtures risk assessment. One of the most important improvements is a 35 comprehensive review of the scientific literature dating from the 1950s through 2009 on the 36 37 carcinogenicity and genotoxicity of PAHs. The search identified over 900 individual 38 publications for a target list of 74 PAHs that had been identified in environmental media or for which toxicological data were available. Review of these publications resulted in the 39 identification of more than 600 papers that included carcinogenicity or cancer-related endpoint 40 data on at least one PAH and benzo[a]pyrene tested at the same time. Dose-response data were 41 extracted, and individual RPFs were calculated from over 300 data sets representing 50 42
1	individual PAHs. A weight of evidence evaluation was conducted to evaluate the evidence for
2	potential carcinogenicity of 34 of these PAHs; data were inadequate to conduct such an
3	evaluation for the remaining 16 compounds. A final RPF was derived for each PAH based on
4	tumor bioassay data (if available) or cancer-related endpoint data if no tumor bioassay RPFs
5	were available. Final RPFs were derived for 26 PAHs (see Table 7-2 in Section 7), significantly
6	increasing the number of PAHs that can be addressed through this approach. Each RPF was
7	assigned a relative confidence rating reflecting the size and diversity of the tumor bioassay or
8	cancer-related endpoint database that was used to derive the final RPF for that PAH.
9	Despite these improvements, many of the uncertainties highlighted during the 2002 peer
10	consultation workshop (U.S. EPA, 2002) also apply to the current analysis. The following
11	sections describe some specific uncertainties and limitations associated with the development
12	and use of RPFs for PAHs. The uncertainties that are specific to the approach presented herein
13	are discussed below in Sections 8.1 and 8.2. The remaining sections (8.3–8.6) discuss the
14	general uncertainties associated with a component-based approach to PAH mixtures risk
15	assessment. These include the number of PAHs included in the approach, human relevance of
16	animal data, assumptions regarding mode of action and dose additivity, and cross-route
17	extrapolation.
18	
19	8.1. UNCERTAINTY IN DOSE-RESPONSE FOR INDIVIDUAL PAHS
20	Several uncertainties and limitations are specifically associated with the dose-response
21	assessment methodology used in this analysis to derive RPFs for PAHs. Uncertainties are
22	associated with the following decisions:
23	
24	• Use of a single dose-response model for quantal or continuous data;
25 26	• Use of varying BMR levels:
20 27	
28	• Use of tumor incidence data at the upper end of the dose-response curve (e.g., greater that
29 30	75% incidence) to calculate some RPFs;
31	• Use of tumor multiplicity data to calculate some RPFs;
32	
33	• Use of single-dose point estimates to calculate some RPFs;
34 35	• Reliance on data from cancer-related endpoint studies in the absence of bioassays: and
36	
37	• Use of cancer-related data from assay conditions that maximize the benzo[a]pyrene
38 39	response, even though these conditions were not necessarily optimal for other PAHs.
40	The decision was made to employ a single dose-response model for either quantal or
41	continuous data due to the large number of data sets that needed be analyzed from the $P\Delta H$
	continuous and due to the hunge hunder of and bets that needed be undyzed from the FAIT

database. The multistage model for incidence data and the linear model for continuous data were considered to be broadly applicable to different types of data as simple curve-fitting models. In some cases, the goodness-of-fit criteria indicated that the selected model did not fit the data. In these cases, high-dose groups were sequentially eliminated until an adequate fit was achieved, but other model structures (e.g., gamma, probit, logistic, etc.) were not considered.

Tumor bioassay data were modeled at a BMR of 10% (extra risk above control) in order 6 7 to target the low end of the dose-response curve as the point of departure for slope estimation. When this was not feasible, usually because only a single dose was used for benzo[a]pyrene, an 8 9 attempt was made to match individual target PAH response levels to the benzo[a]pyrene response chosen for the point estimate. This assumes that the shape of the dose-response curve 10 11 is similar for the target PAH and benzo[a]pyrene (also a necessary assumption of dose additivity) 12 and that the slope is constant across the dose-response curve. These assumptions may not hold, especially in studies of tumor incidence where the point estimate benzo[a]pyrene response was 13 very high or near maximal. In many cases, the dose of benzo[a]pyrene selected as the positive 14 15 control produced near maximal tumor incidence in exposed animals (i.e., >75%). There is uncertainty associated with comparing potency estimates at the high end of the dose-response 16 curves and using the resultant RPF to estimate risks associated with low environmental 17 exposures. The relative potency relationship between any two PAHs may be different at the low 18 end, compared with the high end, of the dose-response curves. 19 It is not clear whether relative potency values estimated at the high end of the dose-20 21 response curve are reasonably predictive of relative potency at low environmental exposure 22 levels. For this reason, additional uncertainty is involved in using RPFs that are not based on a BMR of 10% (especially those RPFs that are based on responses exceeding 75%) to estimate 23

risks associated with low exposures.

- If model fit was not achieved, then a point-estimate ratio approach was used. Point
 estimate ratios were also used for several other reasons:
- 27 28

29

32 33

34 35 (1) Only a single dose group was tested;

30 (2) When the standard deviation or number of replicates were not reported for continuous
 31 data sets; or

(3) High-dose groups from multiple dose data sets were not usable due to a saturated tumor response (>90% incidence in the lowest exposure group).

The point estimate approach is most reliable when the chosen point is in the linear portion of the dose-response curve. In many cases, however, especially for single-dose data, it was not possible to determine whether the chosen point was in a linear or nonlinear portion of the dose-response curve. The dose-response relationship observed in many studies of cancer-

1 related endpoints was nonlinear at high doses. Whenever possible, the point estimate was chosen

2 from the linear portion of the dose-response curve (i.e., before the response plateau that occurs at

3 high doses). Of 50 individual RPFs calculated from tumor incidence data, 19 were calculated

4 using a point of departure incidence $\leq 25\%$, 21 were calculated using a point of departure

5 incidence between 25 and 75%, and the remaining 10 were calculated using a point of departure

6 incidence between 75 and 90%. Thus, only 20% of the individual RPFs for tumor incidence data

7 were calculated from a point high (>75 and <90% incidence) on the dose-response curve.

8 For a few PAHs tested in older dermal bioassays, the authors reported mortality prior to the appearance of the first tumor. For these data sets, an assumption was made that the number 9 of animals at risk for tumor development was equal to the total number of animals alive at the 10 time of the appearance of the first tumor. This approach ensures that the incidence is not 11 12 underestimated by including animals that did not survive long enough to develop tumors. As this assumption applied to a small number of RPFs (specifically, individual RPFs for chrysene, 13 dibenzo[a,e]pyrene, dibenzo[a,e]fluoranthene, and dibenzo[a,h]pyrene calculated from data 14 15 reported by Hecht et al. [1974] and Hoffmann and Wynder [1966]), it had little impact on the 16 overall analysis. However, as the final RPFs for dibenzo[a,e]pyrene, dibenzo[a,e]fluoranthene, 17 and dibenzo[a,h]pyrene are based exclusively on the data reported by Hoffmann and Wynder (1966), there is additional uncertainty in these values stemming from the occurrence of early 18 19 mortality.

20 RPFs were calculated for many cancer-related endpoints. Many of the studies describing 21 in vitro cancer-related endpoints provided dose-response data under varying study conditions. For example, bacterial mutagenesis studies utilized multiple strains, different metabolic 22 activation processes, and varying assay systems. In order to minimize the amount of data used 23 for dose-response analysis of in vitro mutagenicity studies, and to provide a consistent basis for 24 comparing RPFs for differenct PAHs, the data from conditions that maximize the 25 26 benzo[a]pyrene response within a particular study were used for the dose-response assessment. In several studies, the conditions that were optimal for benzo[a]pyrene were not necessarily 27 optimal for the target PAH. For example, the concentration of S9 mix that produced the highest 28 mutation rate for benzo[a]pyrene did not produce a maximal response for perylene or 29 30 cyclopenta[c,d]pyrene (Carver et al., 1986; Eisenstadt and Gold, 1978). In vitro data were only used in the derivation of a single final RPF (for dibenz[a,c]anthracene; see Table 7-2); thus, the 31 uncertainties associated with the use of cancer-related endpoint data are important for 32 dibenz[a,c]anthracene but have minimal impact on the proposed RPFs for the other 25 PAHs. 33 34

35

8.2. UNCERTAINTY IN SELECTING PAHs FOR INCLUSION IN RPF APPROACH

One of the uncertainties highlighted by the peer consultation workshop (U.S. EPA, 2002) stemmed from the fact that U.S. EPA's 1993 provisional EOPP approach only considered a small subset of PAHs (i.e., unsubstituted PAHs only, no heterocyclic compounds or nitro- or alkyl1 substituted PAHs), and EOPPs were available for only seven PAHs. Although the present report

- 2 considered a larger number of PAHs than previous analyses (the toxicological literature was
- 3 searched for data on 74 individual PAHs identified in environmental media or for which there
- 4 were toxicological data), the focus of this analysis remains limited to unsubstituted PAHs with
- 5 three or more fused aromatic rings containing only carbon and hydrogen atoms. Thus, the RPF
- 6 analysis presented here does not account for the possible carcinogenicity of substituted or
- 7 heterocyclic PAHs that may be present in complex mixtures. This may result in an
- 8 underestimation of PAH mixture cancer risk.

9 Of the 74 unsubstituted PAHs with three or more aromatic rings, there were studies 10 including benzo[a]pyrene that were suitable for RPF calculation for 50 compounds. The 11 methodology for selecting PAHs for inclusion in the RPF approach from among these 50 PAHs 12 is described in Section 6. At the outset, 16 PAHs were excluded because only one or two in vitro 13 cancer-related endpoint RPFs were available. The remaining 34 were evaluated using a weight 14 of evidence approach. The primary uncertainties associated with the selection process relate to: 15

15 16

(1) The use of a weight of evidence approach that focused on tumor bioassays including benzo[a]pyrene as opposed to a comprehensive cancer assessment to select PAHs for inclusion in the approach; and

18 19

17

(2) The exclusion of PAHs with limited or inconclusive data.

20 21

22 The weight of evidence approach was used due to the large number of compounds that were under consideration. The approach was structured as a decision tree that focused primarily 23 on cancer bioassays that included benzo[a]pyrene, and only considered other data (e.g., bioassays 24 that did not include benzo[a]pyrene, or cancer-related data) when cancer bioassays with 25 benzo[a]pyrene were unavailable, nonpositive, or inconsistent (see Figure 6-1). The data 26 collection for this analysis was centered on studies that included benzo[a]pyrene, as these studies 27 28 would be most useful for RPF calculation. Consequently, information from bioassays that included benzo[a]pyrene were readily available for use in the weight of evidence determinations. 29 Bioassays that did not include benzo[a]pyrene and cancer-related endpoint data were considered 30 31 only when there were conflicting or negative results in the studies that did include benzo[a]pyrene. There is uncertainty in drawing conclusions as to potential carcinogenicity 32 33 based on a narrow subset of the available database. Other elements of a more comprehensive weight of evidence determination that were not considered include: cancer-related endpoint data 34 from studies that did not include benzo[a]pyrene; information on tumorigenicity of metabolites; 35 information on formation of reactive metabolites; other mechanistic data (e.g., Ah reactivity, 36 37 inhibition of gap junction intercellular communication, etc.); and quantitative structure-activity 38 assessment.

1 A number of PAHs (24 of 50 PAHs that had at least one RPF value) were excluded from 2 the relative potency approach because the available data were inadequate to draw a conclusion as 3 to potential carcinogenicity (see Tables 6-1 and 6-2). All of these PAHs had at least one RPF, indicating that the compounds were active in at least one cancer-related endpoint assay. 4 Excluding these PAHs from the approach increases the uncertainty in assessing risks from a 5 mixture that includes them, particularly if the excluded PAHs constitute a large fraction of the 6 7 mixture. In final, RPFs were proposed for only 26 of the 74 PAHs initially considered, because the 8 9 remaining 48 compounds did not have adequate data. Thus, even among the subset of PAHs upon which this analysis was focused, RPFs were only recommended for only about one-third of 10 11 the compounds. Because only a fraction of any given PAH mixture can be evaluated using the 12 RPF approach, it will be important to provide an evaluation of the proportion of the total mixture (i.e., mass fraction) that is comprised of compounds that are not considered in the component-13 based approach as part of the uncertainty evaluation of a risk assessment using these RPFs. 14 15 16 8.3. UNCERTAINTY IN DERIVING A FINAL RPF FOR EACH PAH 17 The methodology for deriving a final RPF value and assigning a relative confidence rating is described in Section 6.1. The primary uncertainties associated with RPF derivation 18 19 relate to: 20 21 (1) Combining RPFs across multiple exposure routes, species, sexes, tumor types, and 22 studies: 23 (2) Inclusion of RPFs based on tumor multiplicity data in the combined data; 24 25 (3) Use of an arithmetic mean to derive final RPFs; and 26 27 (4) Use of cancer-related endpoint data to derive final RPFs for compounds without tumor 28 bioassay RPFs. 29 30 31 A variety of options were considered for prioritizing and/or combining RPFs. Appendix G describes analyses that were undertaken to assess options for prioritizing RPFs. As the 32 appendix indicates, the current state of knowledge does not suggest a clear biological basis for 33 prioritizing RPFs. As a result, RPFs were combined across exposure routes, species, sexes, 34 35 tumor types, dose-response methods, and studies. 36 In addition to tumor incidence data, tumor multiplicity data were used to calculate RPFs. In some instances, tumor incidence data could not be used for RPF derivation (e.g., the incidence 37 at the lowest dose was in the plateau region of the dose-response curve; \geq 90% incidence), while 38 tumor multiplicity data were available. The relationship between tumor incidence RPFs and 39 40 tumor multiplicity RPFs is not known; however, this analysis resulted in the calculation of both

1 incidence and multiplicity RPFs for a number of studies. These data were plotted, and a linear

2 regression analysis was performed to assess the correlation between these two relative potency

3 estimates. Figure 8-1 shows the results.

4

5 6

7

8

Figure 8-1. Correlation between incidence and multiplicity RPFs.

As shown in Figure 8-1, there is a high degree of correlation between incidence and multiplicity RPFs calculated from results in the same animals. The regression analysis indicated an r^2 of 0.80 for the correlation. The figure also shows that multiplicity RPFs exhibit a slight tendency to underestimate the RPF from incidence data (more points are to the right of the 1:1 correspondence line). Nevertheless, the correlation plot and regression results provide support for the use of RPFs from tumor multiplicity data when incidence data were not available or not useable.

As the incidence and multiplicity RPFs from the same study were highly correlated, only one of the two metrics was included in the combined RPFs. Specifically, the higher of the incidence or multiplicity RPF from the same study was included in the average and range. Consistent with the figure, the higher value was usually calculated from incidence data. Final RPFs were calculated as the arithmetic mean and range of RPFs from tumor bioassay data when such data were available. Presenting the average and the range provides both an average and a maximum estimate for each PAH that has data from multiple studies. Other

options for deriving a central tendency RPF include geometric mean, median, weighted average, 1 2 and order of magnitude estimates. The arithmetic mean represents a simple approach to describing the calculated RPF values available for each PAH. There were usually not enough 3 data (≤3 RPFs for 17/23 PAHs with nonzero RPFs) to assess the shape of the RPF distribution 4 for any given PAH, so a geometric mean was not considered. Calculation of a weighted average 5 was considered, but without a clear biological rationale for assigning weights among study types 6 7 or tumor data outcomes, using a weighting approach might increase uncertainty. Finally, providing order of magnitude estimates, as has been previously done for estimating RPFs for 8 PAHs, was not considered to be superior to calculating simple means. Including the range in the 9 estimated RPFs was considered to be informative to the user for characterizing uncertainty. 10 Cancer-related endpoint data were relied upon for the derivation of a RPF for only one 11 12 PAH (dibenz[a,c]anthracene). For this compound, there were no tumor bioassay data suitable for the determination of an RPF. However, cancer-related endpoint data provided qualitative 13 support for the finding of potential carcinogenicity for this compound (see individual narrative 14 15 for this compound in Section 6.2). Although the mode of action for PAHs suggests that, in general, these endpoints may be relevant to PAH carcinogenicity, the predictive value of a 16 17 positive response in these tests has not been conclusively demonstrated. Thus, there is considerable uncertainty in an RPF based on cancer-related endpoint data. Appendix G includes 18 19 analysis of the correlation between average RPFs calculated from cancer-related endpoint data and tumor bioassay data. As shown in Table 8-1, and further discussed in Appendix G, cancer-20 21 related endpoint RPFs are reasonably predictive of tumor bioassay RPFs; however, the relationship between these RPFs and the relative potency of a given PAH in humans exposed via 22 environmentally-relevant routes is unknown. 23

24

Table 8-1. Results of simple linear regression of log-transformed average genotoxicity RPF vs. log average tumor bioassay RPF

Genotoxicity endpoint	\mathbf{R}^2	Slope	<i>p</i> -Value	n
All in vivo DNA adducts	0.64	1.24	< 0.01	9
All in vivo non-bioassays	0.54	1.05	0.016	10
All non-bioassay endpoints (in vitro and in vivo)	0.43	1.03	< 0.01	19
All in vitro non-bioassays	0.39	0.91	< 0.01	19
All in vivo micronuclei and sister chromatid exchanges	0.58	0.83	>0.05 (NS)	6
All in vitro mutagenicity	0.047	0.39	>0.05 (NS)	17

25 26

For three PAHs (anthracene, phenanthrene, and pyrene), a final RPF of 0 was

27 recommended. As noted earlier in Section 6, there is little quantitative difference between

selecting a final RPF of 0 for a given PAH and excluding that PAH from the RPF approach.

29 However, excluding PAHs from the RPF approach implies substantial uncertainty (these

30 compounds could be of low or high potency), while assigning an RPF of 0 suggests lower

uncertainty because there is evidence to suggest that these compounds are of little or no
carcinogenic potential. Nevertheless, there remains uncertainty in the RPFs for these three
compounds, as all of them included one or more studies suggesting activity in cancer-related
endpoint assays.

In the present analysis, RPFs for individual PAHs were based on data of varying quality 5 and reproducibility, so there is additional uncertainty in risks estimated for mixtures containing 6 7 differing concentrations of individual PAHs. Confidence ratings were assigned to each RPF to qualitatively characterize the uncertainty in each individual RPF. Table 8-2 shows the 8 distribution of PAHs with RPFs of each confidence rating. As the table indicates, there are 9 6 PAHs with RPFs of high confidence, 6 PAHs with RPFs of medium confidence, 14 PAHs with 10 RPFs of low confidence, and 1 PAH with an RPF of very low confidence. The confidence 11 ratings assigned to the RPFs may be used to qualitatively assess the uncertainty in a mixtures 12 risk assessment that utilizes the RPFs. For example, if a high proportion of the total cancer risk 13 predicted for a given mixture is attributable to benzo[a]pyrene and other PAHs with RPFs of 14 high or medium confidence, then the confidence in the overall cancer risk assessment will be 15 relatively high. If, in contrast, benzo[a]pyrene contributes a relatively small fraction of the 16 overall risk, and/or the mixture consists primarily of PAHs with RPFs of low confidence, then 17 the confidence in the overall cancer risk assessment will be correspondingly lower. Thus, it will 18 be important to consider the relative contribution of benzo[a]pyrene to the total risk, as well as 19 20 the relative confidence ratings of the RPF values for component PAHs, in the uncertainty 21 evaluation for cancer risk assessments that employ these RPFs. 22

Table 8-2.	PAHs	with RPFs	of varying	confidence
-------------------	------	-----------	------------	------------

High confidence RPF	Medium confidence RPF	Low confidence RPF	Very low confidence RPF
Benzo[b]fluoranthene	Anthanthrene	Benz[b,c]aceanthrylene, 11H-	Dibenz[a,c]anthracene
Benzo[j]fluoranthene	Anthracene	Benz[e]aceanthrylene	
Chrysene	Benz[a]anthracene	Benzo[g,h,i]perylene	
Dibenz[a,h]anthracene	Benzo[k]fluoranthene	Benz[j]aceanthrylene	
Phenanthrene	Cyclopenta[c,d]pyrene	Benz[1]aceanthrylene	
Pyrene	Dibenzo[a,l]pyrene	Cyclopenta[d,e,f]chrysene, 4H-	
		Dibenzo[a,e]fluoranthene	
		Dibenzo[a,e]pyrene	
		Dibenzo[a,h]pyrene	
		Dibenzo[a,i]pyrene	
		Fluoranthene	
		Indeno[1,2,3-c,d]pyrene	
		Naphtho[2,3-e]pyrene	

1 8.4. UNCERTAINTY IN USE OF ANIMAL DATA TO PREDICT HUMAN CANCER

2 **RISK**

Section 4.2 briefly summarizes the epidemiology and human biomarker data related to 3 exposure to PAH mixtures and carcinogenicity. Exposure to certain PAH mixtures is clearly 4 associated with cancer in humans. Epidemiology studies evaluating emissions from coke 5 production, coal gasification, aluminum production, iron and steel founding, coal tars, coal tar 6 7 pitches, and soot have demonstrated associations between exposure and increased risk of lung cancer in humans (see review of Bostrom et al., 2002). Skin and scrotal cancers have been 8 9 associated with exposure to coal tar, coal tar pitches, non-refined mineral oils, shale oils, and soot (Larsen and Larsen, 1998; WHO, 1998; ATSDR, 1995). While human epidemiology data 10 may be sufficient for the purpose of quantifying the cancer risks associated with exposure to a 11 12 few PAH mixtures, there are no data for many mixtures; hence the need for other approaches including surrogate-mixture and component-based approaches. As noted by the peer 13 consultation workshop (U.S. EPA, 2002), there are no human data on cancer response to 14 15 individual PAHs that could be used as the basis for, or as a supplement to, a component-based approach. As a result, the RPF approach relies on animal bioassay data to predict human cancer 16 17 risk associated with individual PAHs.

The use of animal bioassays in predicting relative carcinogenic potency in humans 18 19 represents a source of uncertainty in this approach. As there are no human data on cancer response to individual PAHs, including benzo[a]pyrene, there can be no quantitative evaluation 20 21 of uncertainty in extrapolating from RPFs based on animal bioassay data to relative potency in humans. Possible species differences in toxicokinetics, toxicodynamics, and mode of action 22 contribute to the uncertainty. Cancer-related endpoint data are available using human cells (e.g., 23 epidermal keratinocytes, lymphoblasts, human epithelial cells) for the evaluation of 24 mutagenicity, DNA adducts, unscheduled DNA synthesis, DNA damage, and clastogenicity or 25 26 sister chromatid exchange frequency (see Section 4.3). Findings in human cells were generally consistent with those in other mammalian cells; however, whether this finding of consistency 27 extends to effects in vivo, and specifically to formation of tumors, is not known. 28

In addition, animal bioassays use various routes of administration (e.g., intraperitoneal 29 and subcutaneous injection), which may not be directly relevant to expected routes of exposure 30 for humans. It is difficult to determine whether the relative potency based on animal bioassays 31 using injection routes of exposure is predictive of relative potency that would be observed in 32 humans exposed through environmentally relevant exposure routes (see further discussion of 33 exposure-route uncertainties in Section 6.6). An additional source of uncertainty in the use of 34 35 animal bioassay data stems from differences in the doses used in animal bioassays as compared with low doses received by humans exposed in the environment. Further discussion of this issue 36 as it relates to dose-response modeling is provided in Section 6.1. 37

Mechanistic data, primarily obtained using benzo[a]pyrene, provide support for the 1 2 human relevance of PAH tumorigenicity in animals. There is evidence linking three pathways 3 activating benzo[a]pyrene to DNA-reactive agents [(+)-anti-BPDE, radical cations, benzo[a]pyrene-7,8-dione, and reactive oxygen species] with key mutational events in genes 4 (p53 tumor suppressor gene and H-ras or K-ras oncogenes) that can lead to tumor initiation. 5 Results in support of mutagenic modes of action via the diol epoxide and radical cation pathways 6 7 include in vivo results in animals. All of these activation pathways occur in human tissues, and associations have been made between spectra of mutations in the p53 tumor suppressor gene or 8 ras oncogenes induced by benzo[a]pyrene metabolites with spectra of mutations in these genes in 9 tumor tissue from benzo[a]pyrene-exposed animals or tumor tissue in humans. 10

11 Support for the association between the diol epoxide pathway and tumor initiation includes observation that: (+)-anti-BPDE activated the H-ras-1 proto-oncogene to transform 12 NIH/3T3 cells via $G \rightarrow T$ point mutations in the 12th codon (Marshall et al., 1984); (+)-anti-13 BPDE reacts with the p53 tumor suppressor gene at several hotspots mutated in lung cancer 14 15 patients (Denissenko et al., 1996; Puisieux et al., 1991); the spectra of p53 and K-ras mutations in lung tumors of nonsmoking patients, chronically exposed to smoky coal emissions, was 16 consistent with (+)-anti-BPDE mutations in these genes (DeMarini et al., 2001); elevated BPDE-17 DNA adducts have been observed in coke oven workers and chimney sweepers (Pavanello et al., 18 19 1999); and the spectra of mutation in the K-ras, H-ras, and p53 genes in forestomach tumors of mice fed benzo[a]pyrene in the diet for 2 years were consistent with (+)-anti-BPDE DNA 20 21 reactions (Culp et al., 2000). 22 Support for the radical cation pathway includes observations that depurinated adducts,

(expected products from reactions of benzo[a]pyrene radical cations with DNA) accounted for 74% of identified DNA adducts in mouse skin exposed to benzo[a]pyrene (Rogan et al., 1993) and 9/13 examined tumors from mice exposed to dermal applications of benzo[a]pyrene had Hras oncogene mutations attributed to depurinated DNA adducts from benzo[a]pyrene radical cations (Chakravarti et al., 1995).

Support for the AKR pathway includes in vitro demonstration that several types of DNA damage can occur from o-quinones and reactive oxygen species (Park et al., 2006; Balu et al., 2004; McCoull et al., 1999; Flowers-Geary et al., 1997, 1996), benzo[a]pyrene-7,8-dione can induce mutations in the p53 tumor suppressor gene using an in vitro yeast reporter gene assay (Park et al., 2008; Shen et al., 2006; Yu et al., 2002), and dominant p53 mutations induced by benzo[a]pyrene,7,8-dione in this system corresponded with p53 mutation hotspots observed in human lung cancer tissue (Park, 2008).

All three activation pathways are expected to occur in human tissues (Jiang et al., 2007), and associations have been made between spectra of mutations in the p53 tumor suppressor gene or ras oncogenes induced by benzo[a]pyrene metabolites with spectra of mutations in these genes in tumor tissue from benzo[a]pyrene-exposed animals or humans. In particular, DeMarini et al.

(2001) demonstrated mutations in the p53 tumor suppressor gene and the K-ras oncogene in the 1 2 lung tumors of nonsmokers, whose tumors were associated with exposure to smoky coal. The available information supporting these actions for benzo[a]pyrene is consistent with 3

- what is known about the mode of action for other PAHs demonstrated to induce cancer in 4
- animals, including cyclopenta[cd]pyrene, dibenz[a,h]anthracene, and dibenzo[a,l]pyrene 5
- (Cogliano et al., 2008; Straif et al., 2005). All PAHs that have been studies require metabolic 6
- 7 activation to produce carcinogenic responses in animals and there is evidence for activation to

DNA reactive intermediates via several pathways (Straif et al., 2005; Xue and Warshawsky, 8

- 2005; WHO, 1998; Cavalieri and Rogan, 1995). For example, incubation of rat liver 9
- microsomes with dibenzo[a,l]pyrene, a PAH that is more tumorigenically potent than 10
- benzo[a]pyrene in mouse skin and rat mammary tissue, formed depurinated DNA adducts from 11
- 12 the radical cation pathway, as well as DNA adducts from the diol epoxide pathway (Cavalieri
- and Rogan, 1995). 13

In summary, the relevance of animal bioassay data to the prediction of human 14 15 carcinogenic potency remains a significant area of uncertainty in the use of this and other approaches to PAH cancer risk assessment. However, mechanistic data on benzo[a]pyrene and 16 other PAHs provide evidence that the molecular events leading to PAH-induced tumor formation 17 in animals are relevant to humans. 18

19

20

8.5. UNCERTAINTY IN THE ASSUMPTIONS OF COMMON MODE OF ACTION 21 AND DOSE ADDITIVITY

A discussion of the potential modes of action for PAH carcinogenicity is presented in 22 Section 2.4. Individual carcinogenic PAHs are linked by a common effect (i.e., tumorigenicity), 23 which may occur through multiple mechanisms. Reactive metabolites produced during 24 metabolic transformations of PAHs include diol epoxides, reactive oxygen species, radical 25 26 cations, and o-quinones. The formation of these metabolites is not mutually exclusive, and the carcinogenic process for PAHs is likely to be related to some combination of molecular events 27 resulting from formation of several reactive species. Reactive metabolites of PAHs interact with 28 DNA to form adducts and produce DNA damage resulting in mutations in cancer-related genes 29 such as tumor suppressor genes or oncogenes. These events appear to reflect the initiation 30 potency of an individual PAH (e.g., strong mutagens are generally potent initiators) (Sjogren et 31 al., 1996). Certain PAHs exhibit promotional effects that may be related to cytotoxicity and the 32 formation of reactive oxygen species, AHR affinity and the upregulation of genes related to 33 biotransformation (i.e., induction of CYP1A1), growth, and differentiation (Bostrom et al., 34 2002). The inhibition of gap junctional intracellular communication is also related to tumor 35 promotion by PAHs (Bostrom et al., 2002). The ability of certain PAHs to act as tumor 36 promoters as well as initiators may increase their carcinogenic potency in animal bioassays 37 conducted at high doses. Initiation potency may be more relevant to low level environmental 38

207

DRAFT – DO NOT CITE OR QUOTE

exposure in humans (Bostrom et al., 2002; Sjogren et al., 1996); however, the proposed RPF
approach is not unduly affected by this as it relies largely on high dose animal bioassay data for
selecting RPF values. This represents an uncertainty in the use of the RPF approach in
estimating human cancer risks from PAHs.

Conceptually, the uncertainty related to relative potency for initiation versus promotion 5 could be reduced by using separate RPF schemes for each part of the carcinogenic process. This 6 7 would require selection of indicator compounds that best represent the initiation and promotion processes, and use of mechanistic data to determine relative potency for each process (i.e., 8 mutagenicity for initiation, AhR binding or enzyme induction for promotion). There are several 9 problems with this approach, including the lack of data to support the selection of indicator 10 compounds and the complete carcinogenic nature of many PAHs (i.e., they act as both initiators 11 12 and promoters). The initiation and promotion potency of an individual PAH is determined by its chemical structure. Some PAHs are strong mutagens, but have low affinity for the AHR (e.g., 13 fjord region PAHs) (Bostrum et al., 2002; Sjogren et al., 1996). Other PAHs are complete 14 15 carcinogens, with initiating properties (i.e., mutagenesis) and AhR affinity leading to tumor promotion (e.g., benzo[a]pyrene, dibenz[a,h]anthracene) (Bostrum et al., 2002; Sjogren et al., 16 17 1996). Benzo[a]pyrene is considered a good indicator compound for similar PAHs with complete carcinogenic activity. However, the relative potency of other PAHs, especially those 18 19 that act primarily via either initiation or promotion, may be over- or underestimated.

20 The absence of a clearly-defined common mode of action increases the level of 21 uncertainty associated with the use of an RPF approach. It is not possible to determine whether cancer risks would be under- or overestimated by using a PAH RPF approach that assumes a 22 common mode of action. The assumption of dose additivity inherent in the RPF approach may 23 not be valid for a class of chemicals for which varying mechanisms of action occur to produce a 24 common effect. A response addition methodology would be used to assess the combined risks 25 26 from compounds with distinct mechanisms of action. For subgroups of PAHs with a common mechanism of action, an integrated RPF with a response addition approach may be applicable 27 28 (U.S. EPA, 2000).

The assumption of additivity cannot be confirmed or refuted based on evidence available in the peer-reviewed literature. The experimental data relating to dose additivity for PAH carcinogenicity are discussed in Section 2.7. Based on the available data, it appears that risks may be generally additive for complex mixtures, while binary mixtures can exhibit antagonism, synergism, or additivity. The level of confidence in the RPF approach would be increased if additivity could be demonstrated experimentally, even with simple mixtures. This remains a significant uncertainty in the proposed RPF approach.

36

8.6. UNCERTAINTY IN EXTRAPOLATING RPFs ACROSS EXPOSURE ROUTES

The peer consultation workshop (U.S. EPA, 2002) also identified uncertainty in 1 2 extrapolation of RPFs across exposure routes. As with the 1993 Provisional Guidance, RPFs proposed in this analysis are also based on in vivo bioassay data collected using various routes of 3 administration (e.g., dermal, intraperitoneal, subcutaneous, intramammillary, intramuscular, or 4 intravenous injection, as well as lung implantation, tracheal implantation, and transplacental 5 exposure after subcutaneous injection). The proposed RPF approach considers each bioassay 6 7 type equivalent for the purpose of determining relative potency to benzo[a]pyrene. 8 Table 8-3 compares the average RPFs (calculated from raw numbers and rounded to one significant digit) based on tumor bioassay data for each PAH across exposure routes. Dermal 9 studies are shown collectively as well as separated by study type (complete or initiation). 10 11

Table 8-3. Comparisons among average tumor bioassay RPF values byexposure route and target organ

	Dermal		Dermal Dermal complete		Dermal initiation		Intra- peritoneal		Intra- peritoneal, target organ = lung		Intra- peritoneal, target organ = liver		Lung implantation	
РАН	Ν	Average	N	Average	Ν	Average	Ν	Average	Ν	Average	Ν	Average	Ν	Average
AA	1	0.5	1	0.5	I	-	_	_	_	_	-	_	1	0.2
AC	I	-	Ι	-	I	-	_	-	-	-	-	-	-	-
BaA	1	0.02	Ι	-	1	0.02	3	0.3 ^a	1	0.08	2	0.4	-	_
BbcAC (1,12-MBA)	1	0.05		_	1	0.05	_	_	_	_	_	_	_	-
BbF	3	0.3	1	0.2	2	0.4	3 ^b	1 ^c	1	0.4	1	2	1	0.1
BeAC	4	0.7	_	_	4	0.7	-	-	_	-		-	_	_
BghiP	-	_	-	_	-	-	_	_	_	_	-	_	1	0.009
BjAC	-	_	-	_	-	-	1	60 ^d	1	60	-	_	-	_
BjF	3	0.06	-	_	3	0.06	5 ^b	0.6 ^a	2	0.5	1	0.7	1	0.03
BkF	2	0.02	I	_	2	0.02	Ι		_	_	Ι	_	1	0.03
BIAC	4	4	I	_	4	4	-		-	_		_	-	_
СН	7	0.1		_	7	0.1	3	0.1^{a}	1	0.1	2	0.2	1	0.04
CPcdP	7	0.2	3	0.3	4	0.1	1	1^d	1	1	Ι	_	_	_
CPdefC	2	0.3		_	2	0.3	1	Ι	-	_	I	_	_	_
DBacA	I	_		_	I	_	1	Ι	-	_	I	_	_	_
DBaeF	2	0.9	1	1	1	0.7	1	Ι	-	_	I	_	_	_
DBaeP	2	0.4	1	0.3	1	0.4	Ι	I	-	_	١	_	-	_
DBahA	2	1		_	2	1	1	10 ^d	1	10	I	_	1	2
DBahP	1	0.9	Ι	_	1	0.9	-	-	-	_		_	-	-
DBaiP	2	0.6	1	0.7	1	0.5	_	-	-	-	-	-	-	-
DBalP	2	30	_	-	2	30	1	30 ^d	1	30	-	_	-	_
FA		_	Ι	-		-	10	0.08^{a}	8	0.05	2	0.2	-	-
IP	_	_	_	_	_	_	_	_	_	_	_	_	1	0.07
N23eP	1	0.3	_	_	1	0.3	_	_	_	_	_	_	_	_
PH	_	_	_	_	_	—	_	_	_	_	-	_	_	_
Pyr	_	-	_	_	_	_	_	_	_	_	_	-	-	_

^aNewborn mouse model.

^bNumber of intraperitoneal RPFs includes those calculated for combined lung and liver incidence; these are not included in numbers of RPFs with lung or liver tumors.

^cIncludes both newborn mouse and adult A/J mouse models.

^dAdult A/J mouse model.

1 2

Likewise, intraperitoneal studies are shown grouped as well as separated by target organ

3 (lung and liver). In general, the table shows that RPFs calculated from lung implantation and

4 dermal studies are similar, while RPFs calculated from intraperitoneal studies tend to be higher

5 for most compounds. However, intraperitoneal RPFs for chrysene (CH) and dibenz[a,l]pyrene

6 (DBalP) are similar to dermal RPFs for these compounds.

One possible explanation for the higher intraperitoneal RPFs calculated from newborn 1 2 mouse assays (footnoted "a" in the table) might be that the newborn mouse is more sensitive to the carcinogenic action of PAHs than an adolescent or adult mouse. Likewise, the adult 3 A/J mouse is considered to be particularly sensitive to PAH lung tumorigenicity (Nesnow et al., 4 1995), which may result in higher RPFs with this model (in Table 8-3, the intraperitoneal RPFs 5 based on the A/J mouse model are footnoted "d"). There is little information to evaluate whether 6 7 the newborn mouse is more or less sensitive than the adult A/J mouse model. Only one compound, benzo[b]fluoranthene (BbF), had RPFs calculated from both newborn mouse and 8 adult A/J mouse models; the newborn mouse RPF was 2, while the A/J mouse RPF was 0.4. In 9 summary, it is not clear whether the intraperitoneal RPFs are higher than dermal or lung 10 implantation RPFs due to route-specific differences or animal model differences in susceptibility. 11 12 Cross-route extrapolation of relative potency estimates is a necessary, though uncertain, aspect of the RPF approach. It is difficult to determine which of the available study types (e.g., 13 dermal, intraperitoneal, intratracheal) is most predictive of potential risks from oral and 14 15 inhalation exposure in humans. In order to prioritize bioassays by exposure route, data are

needed on relative potencies through environmentally relevant exposure routes (oral, inhalation,
 dermal) with relative potencies based on experimental exposure routes.

The inhalation RPF scheme used by the California EPA (2004) employed a hierarchy of 18 19 bioassay data based on exposure route (inhalation studies were preferred followed by intratracheal or intrapulmonary instillation, oral administration, skin-painting, and subcutaneous 20 21 or intraperitoneal injection). Apart from the obvious preference for exposure routes that targeted the respiratory tract (inhalation, intratracheal, intrapulmonary), the basis for prioritizing the other 22 exposure routes is not evident. Pufulete et al. (2004), who were also focused on PAHs as air 23 contaminants, suggested that the clearance of PAHs after intratracheal instillation may be similar 24 to clearance after inhalation exposure. The authors acknowledged that the high concentrations of 25 26 PAHs used in intratracheal and intrapulmonary instillation studies may lead to major differences in pharmacokinetics, compared with inhalation exposure (Pufulete et al., 2004). Nevertheless, 27 the authors suggested that intratracheal instillation of low doses of PAHs might be an appropriate 28 surrogate exposure model for assessing relative potency of inhalation exposure. It is important 29 to note that no intratracheal instillation studies were identified in the search for studies from 30 which to calculate RPFs; thus, the information provided by Pufulete et al. (2004) is not directly 31 useful for suggesting route-specific RPFs. Pufulete et al. (2004) did not provide any specific 32 information on the relevance of intrapulmonary administration (a route used in several of the 33 bioassays used to calculate RPFs) to inhalation exposure. 34 35 As noted by U.S. EPA (2004), cross-route extrapolation would be contraindicated if there

As noted by U.S. EPA (2004), cross-route extrapolation would be contraindicated if there were convincing toxicokinetic evidence that absorption of PAHs does not occur by one or more exposure routes. However, available data on the absorption of PAHs indicates that, in general, PAHs are readily absorbed via ingestion, inhalation, and dermal exposure routes; however, the rate of uptake varies with route and other factors (e.g., matrix, intake of fats and oils) (ATSDR,
1995). Evidence for absorption of PAHs through these routes includes measurement of PAHDNA adducts at sites distal from the route of entry, measurement of urinary metabolites, and
radiotracer studies in animals (ATSDR, 1995). U.S. EPA (2004) indicated that demonstration of
any degree of uptake for each of the routes of interest is sufficient to allow the qualitative
judgment to apply the route-to-route extrapolation; thus, cross-route extrapolation is supported

7 by current data on the bioavailability of PAHs across several exposure routes.

U.S. EPA (1994, 2004) also noted that point-of-entry toxicity may be considered contrary 8 9 evidence for cross-route extrapolation. With respect to PAHs, available information on this issue is both limited and mixed. The one inhalation bioassay of benzo[a]pyrene, which suffered from 10 several methodological limitations, identified the upper respiratory tract as the site of tumor 11 formation, suggesting a point-of-entry effect (Thyssen et al., 1981). Dermal bioassays of 12 benzo[a]pyrene have generally evaluated only skin tumors, precluding their use in determining 13 whether distal tumors are induced. A number of early oral cancer bioassays of benzo[a]pyrene 14 suggested that tumor formation was limited to point-of-entry sites (Rigdon and Neal, 1969, 1966; 15 Neal and Rigdon, 1967). More recent oral carcinogenicity bioassays comparing MGP residue 16 (Weyand et al., 1995) or coal tar preparations (Culp et al., 1998; Gaylor et al., 1998) with 17 benzo[a]pyrene showed significant differences in target organ distribution of tumors between 18 19 benzo[a]pyrene and complex mixtures of PAHs. Benzo[a]pyrene-induced tumors were observed

20 primarily at the point of contact (i.e., the forestomach), while MGP residue and coal tar produced

21 tumors in the lung, liver, forestomach, skin, and other organs. Other PAHs (e.g.,

22 benzo[c]fluorine) are proposed to be responsible for tumors at distal sites such as the lung

23 (Koganti et al., 2000; Culp et al., 1998). However, a recent gavage study in rats (Kroese et al.,

24 2001) demonstrated that oral exposure to benzo[a]pyrene could induce tumors at distal sites,

25 including the liver and auditory canal. Tissue-specific differences in metabolic activation and

26 DNA binding of PAHs may contribute to the observed differences in target organ sensitivity

27 (Weyand and Wu, 1995; Culp and Beland, 1994).

In summary, available information provides some support for cross-route extrapolation. 28 Absorption of PAHs across oral, inhalation, and dermal routes is evident and, while many of the 29 cancer bioassays of benzo[a]pyrene suggested tumor formation limited to the point-of-entry, at 30 least one recent study (Kroese et al., 2001) suggests that tumors may also be induced at distal 31 sites. Furthermore, there is evidence that other PAHs (e.g., benzo[c]fluorene) may induce 32 tumors at distal sites after oral exposure to coal tar preparations (Koganti et al., 2000; Culp et al., 33 1998). However, cross-route extrapolation of RPFs is a significant source of uncertainty in this 34 35 approach.

Another approach to the issue of route-to-route extrapolation would be to prefer RPFs derived from particular target tissues deemed relevant to the exposure route of interest. For example, RPFs based on lung tumor data might be preferred for use in inhalation risk

- 1 assessment. To examine whether lung tumor RPFs were consistent across routes, RPFs
- 2 calculated from lung tumor potency in intraperitoneal studies (both newborn mouse and adult
- 3 A/J mouse models) were compared with RPFs from lung implantation studies in Table 8-3.
- 4 RPFs for both intraperitoneal-lung and lung implantation studies were available for only four
- 5 compounds (BbF, BjF, CH, and DBahA); for each of these, the intraperitoneal lung tumor RPF
- 6 exceeded the lung implantation RPF. No information assessing the concordance between lung
- 7 tumor potency after intraperitoneal administration and inhalation cancer potency was identified
- 8 in the literature. The use of the final RPFs derived in this analysis across all routes of exposure is
- 9 recommended given the information outlined above and in the absence of data to indicate
- 10 otherwise.

9. REFERENCES

Abe, S; Sasaki, M. (1977) Chromosome aberrations and sister chromatid exchanges in Chinese hamster cells exposed to various chemicals. J Natl Cancer Inst 58:1635–1641.

Agrelo, C; Amos, H. (1981) DNA repair in human fibroblasts. In: De Serres, FJ; Ashby, J, eds. Evaluation of short-term tests for carcinogens. Prog Mutat Res 1:528–532.

Albert, RE; Lewtas, J; Nesnow, S; et al. (1983) Comparative potency method for cancer risk assessment: Application to diesel particulate emissions. Risk Anal 3:101–117.

Albert, RE; Miller, ML; Cody TE; et al. (1991) Benzo[a]pyrene-induced skin damage and tumor promotion in the mouse. Carcinogenesis 12:1273–1280.

Allen, JA; Coombs, MM. (1980) Covalent binding of polycyclic aromatic hydrocarbons to mitochondrial and nuclear DNA. Nature 287:244–245.

Allen, CCR; Boyd, DR; Hempenstall, F; et al. (1999) Contrasting effects of a nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria. Appl Environ Microbiol 65:1335–1339.

Allen-Hoffmann, BL; Rheinwald, JG. (1984) Polycyclic aromatic hydrocarbon mutagenesis of human epidermal keratinocytes in culture. Proc Natl Acad Sci USA 81:7802–7806.

Amacher, DE; Paillet, SC. (1982) Hamster hepatocyte-mediated activation of procarcinogens to mutagens in the L5178Y/TK mutation assay. Mutat Res 106:305–316.

Amacher, DE; Paillet, SC. (1983) The activation of procarcinogens to mutagens by cultured rat hepatocytes in the L5178Y/TK mutation assay. Mutat Res 113:77–88.

Amacher, DE; Turner, GN. (1980) Promutagen activation by rodent-liver postmitochondrial fractions in the L5178Y/TK cell mutation assay. Mutat Res 74:485–501.

Amacher, DE; Paillet, SC; Turner, GN; et al. (1980) Point mutations at the thymidine kinase locus in L5178Y mouse lymphoma cells. II. Test validation and interpretation. Mutat Res 72:447–474.

Amin, S; Desai, D; Dai, W; et al. (1995) Tumorigenicity in newborn mice of fjord region and other sterically hindered diol epoxides of benzo[g]chrysene, dibenzo[a,l]pyrene (dibenzo[def,p]chrysene), 4H-cyclopenta[def]chrysene and fluoranthene. Carcinogenesis 16:2813–2817.

Andrews, AW; Thibault, LH; Lijinsky, W. (1978) The relationship between carcinogenicity and mutagenicity of some polynuclear hydrocarbons. Mutat Res 51:311–318.

Archibong, AE; Inyang, F; Ramesh, A; et al. (2002) Alteration of pregnancy related hormones and fetal survival in F-344 rats exposed by inhalation to benzo[a]pyrene. Reprod Toxicol 16:801–808.

Arif, JM; Smith, WA; Gupta, RC. (1997) Tissue distribution of DNA adducts in rats treated by intramammillary injection with dibenzo[a,l]pyrene, 7,12-dimethylbenz[a]anthracene and benzo[a]pyrene. Mutat Res 378:31–39.

Atchison, M; Atchison, ML; Van Duuren, BL. (1985) Cocarcinogenesis in vitro using Balb/3T3 cells and aromatic hydrocarbon cocarcinogens. Cell Biol Toxicol 1:323–331.

ATSDR (Agency for Toxic Substances and Disease Registry). (1995) Toxicological profile for polycyclic aromatic Hydrocarbons (PAHs). Public Health Service, U.S. Department of Health and Human Services. Available online at http://www.atsdr.cdc.gov/toxprofiles.

Ayrton, AD; McFarlane, M; Walker, R; et al. (1990) Induction of the P-450 I family of proteins by polycyclic aromatic hydrocarbons: possible relationship to their carcinogenicity. Toxicology 60:173–186.

Baird, WM; Salmon, CP; Diamond, L. (1984) Benzo[e]pyrene-induced alterations in the metabolic activation of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene by hamster embryo cells. Cancer Res 44:1445–1452.

Baird, WM; Hooven, LA; Mahadevan, B; et al. (2002) Responses of human cells to PAH-induced DNA damage. Polycyclic Aromatic Compounds 22:771–780.

Baker, RS; Bonin, AM; Stupans, I; et al. (1980) Comparison of rat and guinea pig as sources of the S9 fraction in the Salmonella/mammalian microsome mutagenicity test. Mutat Res 71:43–52.

Balu, N; Padgett, WT, Lambert, GR; et al. (2004) Identification and characterization of novel stable deoxyguanosine and deoxyadenosine adducts of benzo[a]pyrene-7,8-quinone from reactions of physiological pH. Chem Res Toxicol 17(6):827–838.

Balu, N; Padgett, WT; Nelson, GB. (2006) Benzo[a]pyrene-7,8-quinone-3'-mononucleotide adduct standards for ${}^{32}P$ postlabeling analysis: detection of benzo[a]pyrene-7,8-quinone-calf thymus DNA adducts. Anal Biochem 15(2):213–223.

Barfknecht, TR; Hites, RA; Cavaliers, EL; et al. (1982) Human cell mutagenicity of polycyclic aromatic hydrocarbon components of diesel emissions. Dev Toxicol Environ Sci 10:277–294.

Barrai, I; Barale, R; Scapoli, C; et al. (1992) The analysis of the joint effect of substances on reversion systems and the assessment of antimutagenicity. Mutat Res 267:173–182.

Barry, G; Cook, JW; Haslewood, GAD; et al. (1935) The production of cancer by pure hydrocarbons. Part III. Proc Royal Soc London 117:318–351.

Bartsch, H; Malaveille, C; Camus, AM; et al. (1980) Validation and comparative studies on 180 chemicals with S. *typhimurium* strains and V79 Chinese hamster cells in the presence of various metabolizing systems. Mutat Res 76:1–50.

Bayer, U. (1978) In vivo induction of sister chromatid exchanges by three polyaromatic hydrocarbons. Carcinogenesis 3:423–428.

Beland, F; Culp, S. (1998) Chronic bioassay of two composite samples from selected manufactured gas plant waste sites. Jefferson, AK: Division of Biochemical Toxicology, National Center for Toxicological Research. Technical Report 6722.02. Unpublished report.

Biancifiori, C; Caschera, F. (1962) The relation between pseudopregnancy and the chemical induction by four carcinogens of mammary and ovarian tumours in BALB/c mice. Br J Cancer 16:722–730.

Bingham, E; Falk, HL. (1969) The modifying effects of carcinogens on the threshold response. Arch Environ Health 19:779–783.

Binkova, B; Giguere, Y; Rossner, P, Jr; et al. (2000) The effect of dibenzo[a,1]pyrene and benzo[a]pyrene on human diploid lung fibroblasts: the induction of DNA adducts, expression of p53 and p21(WAF1) proteins and cell cycle distribution. Mutat Res 471:57–70.

Blaha, L; Kapplova, P; Vondracek, J; et al. (2002) Inhibition of gap-junctional intercellular communication by environmentally occurring polycyclic aromatic hydrocarbons. Toxicol Sci 65:43–51.

Bols, NC; Schirmer, K; Joyce, EM; et al. (1999) Ability of polycyclic aromatic hydrocarbons to induce 7-ethoxyresorufin-o-deethylase activity in a trout liver cell line. Ecotoxicol Environ Saf 44:118–128.

215

Bolton, JL; Trush, MA; Penning, TM; et al. (2000) Role of quinones in toxicology. Chem Res Toxicol 13(3):2–17.

Bos, RP; Theuws, JLG; Jongeneelen, FJ; et al. (1988) Mutagenicity of bi-,tri- and tetra-cyclic aromatic hydrocarbons in the 'taped-plate assay' and in the conventional Salmonella mutagenicity assay. Mutat Res 204:203–206.

Bostrom, E; Engen, S; Eide, I. (1998) Mutagenicity testing of organic extracts of diesel exhaust particles after spiking with polycyclic aromatic hydrocarbons (PAH). Arch Toxicol 72:645–649.

Bostrom, CC; Gerde, P; Hanberg, A; et al. (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(Suppl 3):451–488.

Bosveld, AT; de Bie, PA; van den Brink, NW; et al. (2002) In vitro EROD induction equivalency factors for the 10 PAHs generally monitored in risk assessment studies in The Netherlands. Chemosphere 49:75–83.

Brookes, P; Lawley, PD. (1964) Evidence of the binding of polynuclear aromatic hydrocarbons to the nucleic acids of mouse skin: relation between carcinogenic power of hydrocarbons and their binding to deoxyribonucleic acid. Nature 202:781–784.

Bruce, ED; Austenrieth, RL; Burghardt, RC; et al. (2008) Using quantitative structure-activity relationships (QSAR) to predict toxic endpoints for polycyclic aromatic hydrocarbons (PAH). J Toxicol Environ Health Part A 71:1073–1084.

Brune, K; Kalin, H; Schmidt, R; et al. (1978) Inflammatory, tumor initiating and promoting activities of polycyclic aromatic hydrocarbons and diterpene esters in mouse skin as compared with their prostaglandin releasing potency in vitro. Cancer Lett 4:333–342.

Brune, H; Deutsch-Wenzel, RP; Habs, M; et al. (1981) Investigation of the tumorigenic response to benzo[a]pyrene in aqueous caffeine solution applied orally to Sprague-Dawley rats. J Cancer Res Clin Oncol 102:153–157.

Bryan, WR; Shimkin, MB. (1943) Quantitative analysis of dose-response data obtained with three carcinogenic hydrocarbons in strain C3H male mice. J Natl Cancer Inst 3:503–531.

Bryla, P; Weyand, EH. (1992) Detection of PAH:DNA adducts from auto-oxidation using ³²P-postlabeling. Cancer Lett 65:35–41.

Buening, MK; Levin, W; Wood, A; et al. (1979) Tumorigenicity of the dihydrodiols of dibenz(a,h)anthracene on mouse skin and in newborn mice. Cancer Res 39:1310–1314.

Burdick, AD; Davis, JW; Liu, KJ; et al. (2003) Benzo[a]pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Res 63:7825–7833.

Busby, WFJ; Goldman, ME; Newberne, PM; et al. (1984) Tumorigenicity of fluoranthene in a newborn mouse lung adenoma bioassay. Carcinogenesis 5:1311–1316.

Busby, WFJ; Stevens, EK; Martin, CN; et al. (1989) Comparative lung tumorigenicity of parent and mononitropolynuclear aromatic hydrocarbons in the BLU: Ha newborn mouse assay. Toxicol Appl Pharmacol 99:555–563.

Buterin, T; Hess, MT; Luneva, N; et al. (2000) Unrepaired fjord region polycyclic aromatic hydrocarbon-DNA adducts in *ras* codon 61 mutational hot spots. Cancer Res 60:1849–1856.

Buters, JT; Mahadevan, B; Quintanilla-Martinez, L; et al. (2002) Cytochrome P450 1B1 determines susceptibility to dibenzo[a,l]pyrene-induced tumor formation. Chem Res Toxicol 15:1127–1135.

California EPA (California Environmental Protection Agency). (2002) Air toxics hot spots program risk assessment guidelines. Part II: Technical support document for describing available cancer potency factors. Office of Environmental Health Hazard Assessment, Air Toxicology and Epidemiology Section, Oakland, CA.

California EPA (California Environmental Protection Agency). (2004) No Significant Risk Levels (NSRLs) for the Proposition 65 carcinogens benzo[b]fluoranthene, benzo[j]fluoranthene, chrysene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, and 5-methylchrysene by the oral route. Office of Environmental Health Hazard Assessment, Reproductive and Cancer Hazard Assessment Section, Oakland, CA.

Carver, JH; Machado, ML; MacGregor, JA. (1985) Petroleum distillates suppress in vitro metabolic activation: higher (S-9) required in the Salmonella/microsome mutagenicity assay. Environ Mutagen 7:369–379.

Carver, JH; Machado, ML; MacGregor, JA. (1986) Application of modified Salmonella/microsome prescreen to petroleum-derived complex mixtures and polynuclear aromatic hydrocarbons (PAH). Mutat Res 174:247–253.

Casale, GP; Higginbotham, S; Johansson, SL; et al. (1997) Inflammatory response of mouse skin exposed to the very potent carcinogen dibenzo[a,l]pyrene: a model for tumor promotion. Fundam Appl Toxicol 36(1):71–78.

Casale, GP; Cheng, Z; Liu, J; et al. (2000) Profiles of cytokine mRNAs in the skin and lymph nodes of SENCAR mice treated epicutaneously with dibenzo[a,l]pyrene or dimethylbenz[a]anthracene reveal a direct correlation between carcinogen-induced contact hypersensitivity and epidermal hyperplasia. Mol Carcinog 27(2):125–140.

Casto, BC. (1979) Polycyclic hydrocarbons and Syrian hamster embryo cells: cell transformation, enhancement of viral transformation and analysis of DNA-damage. In: Jones, PW; Leber, P, eds. Polynuclear aromatic hydrocarbons. Ann Arbor, MI: Ann Arbor Science Publishers; pp. 51–66.

Castro, DJ; Lohr, CV; Fischer, KA; et al. (2008) Lymphoma and lung cancer in offspring born to pregnant mice dosed with dibenzo[a,l]pyrene: the importance of in utero vs. lactational exposure. Toxicol Appl Pharmacol 233:454–458.

Cavalieri, EL; Rogan, EG. (1992) The approach to understanding aromatic hydrocarbon carcinogenesis. The central role of radical cations in metabolic activation. Pharmacol Ther 55:183–199.

Cavalieri, EL; Rogan, EG. (1995) Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica 25:677–688.

Cavalieri, EL; Mailander, P; Pelfrene, A. (1977) Carcinogenic activity of anthanthrene on mouse skin. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol 89:113–118.

Cavalieri, E; Rogan, E; Thilly, WG. (1981a) Carcinogenicity, mutagenicity and binding studies of the environmental contaminant cyclopenteno(c,d]pyrene and some of its derivatives. In: Cook, M; Dennis, AJ, eds. Chemical analysis and biological fate: polynuclear aromatic hydrocarbons. Columbus, OH: Battelle; pp. 487–499.

Cavalieri, E; Rogan, E; Toth, B; et al. (1981b) Carcinogenicity of the environmental pollutants cyclopenteno-[cd]pyrene and cyclopentano[cd]pyrene in mouse skin. Carcinogenesis 2:277–281.

Cavalieri, E; Munhall, A; Rogan, E; et al. (1983) Syncarcinogenic effect of the environmental pollutants cyclopenteno[cd]pyrene and benzo[a]pyrene in mouse skin. Carcinogenesis 4:393–397.

Cavalieri, EL; Rogan, EG; Cremonesi, P; et al. (1988a) Radical cations as precursors in the metabolic formation of quinones from benzo[a]pyrene and 6-fluorobenzo[a]pyrene. Fluoro substitution as a probe for one-electron oxidation in aromatic substrates. Biochem Pharmacol 37(11):2173–2182.

Cavalieri, E; Rogan, E; Sinha, D. (1988b) Carcinogenicity of aromatic hydrocarbons directly applied to rat mammary gland . Cancer Res Clin Oncol 114:3–9.

Cavalieri, EL; Rogan, EG; Higginbotham, S; et al. (1989) Tumor-initiating activity in mouse skin and carcinogenicity in rat mammary gland of dibenzo[a]pyrenes: the very potent environmental carcinogen dibenzo[a,l]pyrene. J Cancer Res Clin Oncol 115:67–72.

Cavalieri, EL; Higginbotham, S; RamaKrishna, NV; et al. (1991) Comparative dose-response tumorigenicity studies of dibenzo[a,l]pyrene versus 7,12-dimethylbenz[a]anthracene, benzo[a]pyrene and two dibenzo[a,l]pyrene dihydrodiols in mouse skin and rat mammary gland. Carcinogenesis 12:1939–1944.

Cavalieri, EL; Rogan, EG; Ramakrishna NVS; et al. (1993) Mechanisms of benzo(a)pyrene and 7,12-diemthylbenz(a)antrhacene activation: qualitative aspects of the stable and depurination DNA adducts obtained from radical cations and diol epoxides. In: Polycyclic aromatic hydrocarbons: synthesis, properties, analytical measurements, occurrence and biological effects. Bordeaux, France: Gordon and Breach Science Publishers, pp. 725–732.

Cavalieri, EL; Rogan, EG; Li, KM; et al. (2005) Identification and quantification of the depurinating DNA adducts formed in mouse skin treated with dibenzo[a,l]pyrene (DB[a,l]P) or its metabolites and in rat mammary gland treated with DB[a,l]P. Chem Res Toxicol 18(6):976–983.

CCME (Canadian Council of the Ministers of the Environment). (2003) Canadian soil quality guidelines for potentially carcinogenic and higher molecular weight polycyclic aromatic hydrocarbons (environmental and human health aspects). Scientific supporting document. UMA Group, Ltd., Victoria, British Columbia.

Chakravarti, D; Pelling, JC; Cavalieri, EL; et al. (1995) Relating aromatic hydrocarbon-induced DNA adducts and c-H-ras mutations in mouse skin papillomas: the role of apurinic sites. Proc Natl Acad Sci USA 92(22):10422–10426.

Chakravarti, D; Mailander, PC; Cavalieri, EL; et al. (2000) Evidence that error-prone DNA repair converts dibenzo[a,l]pyrene-induced depurinating lesions into mutations: formation, clonal proliferation and regression of initiated cells carrying H-ras oncogene mutations in early preneoplasia. Mutat Res 456(1-2):17–32.

Chakravarti, D; Venugopal D; Mailander PC; et al. (2008) The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin. Mutat Res 649(1–2):161–178.

Chang, RL; Levin, W; Wood, AW; et al. (1981) Tumorigenicity of the diastereomeric bay-region benzo(e)pyrene 9,10-diol-11,12-epoxides in newborn mice. Cancer Res 41:915–918.

Chang, HF; Huffer, DM; Chiarelli, MP; et al. (2002) Characterization of DNA adducts derived from synbenzo[ghi]fluoranthene-3,4-dihydrodiol-5,5a-epoxide and comparative DNA binding studies with structurallyrelated anti-diolepoxides of benzo[ghi]fluoranthene and benzo[c]phenanthrene. Chem Res Toxicol 15:198–208.

Chen, TT; Heidelberger, C. (1969) Quantitative studies on the morphological/malignant cell transformation of mouse prostate cells by carcinogenic hydrocarbons in vitro. Int J Cancer 4:166–178.

Chen, S; Nguyen, N; Tamura, K; et al. (2003) The role of the Ah receptor and p38 in benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced apoptosis. J Biol Chem 278:19526–19533.

Cherng, SH; Lin, P; Yang, JL; et al. (2001) Benzo[g,h,i]perylene synergistically transactivates benzo[a]pyreneinduced CYP1A1 gene expression by aryl hydrocarbon receptor pathway. Toxicol Appl Pharmacol 170:63–68.

Chu, ML; Chen, CW. (1984) Evaluation and estimation of potential carcinogenic risks of polynuclear aromatic hydrocarbons. In: Polynuclear aromatic hydrocarbons in the workplace: proceedings of a symposium; 1984. Chemical Congress of Pacific Basin Societies.

Clement Associates. (1988) Comparative potency approach for estimating the cancer risk associated with exposure to mixtures of polycyclic aromatic hydrocarbons. ICF Clement Associates, Fairfax, VA.

Clement Associates. (1990) Development of relative potency estimates for PAHs and hydrocarbon combustion product fractions compared to benzo[a]pyrene and their use in carcinogenic risk assessments. ICF Clement Associates, Fairfax, VA.

Cogliano, VJ: Baan, RA; Straif, K; et al. (2008) Use of mechanistic data in IARC evaluations. Environ Mol Mutagen 49(2):100–109.

Collins JF; Brown, JP; Alexeeff, GV; et al. (1998) Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul Toxicol Pharmacol 28:45–54.

Conney, AH; Chang, RL; Cui, XX; et al. (2001) Dose-dependent differences in the profile of mutations induced by carcinogenic (R,S,S,R) bay- and fjord-region diol epoxides of polycyclic aromatic hydrocarbons. Adv Exp Med Biol 500:697–707.

Cooper, CS; Pal, K; Hewer, A; et al. (1982) The metabolism and activation of polycyclic aromatic hydrocarbons in epithelial cell aggregates and fibroblasts prepared from rat mammary tissue. Carcinogenesis 3:203–210.

Culp, SJ; Beland, FA. (1994) Comparison of DNA adduct formation in mice fed coal tar or benzo[a]pyrene. Carcinogenesis 15:247–252.

Culp, SJ; Gaylor, DW; Sheldon, WG; et al. (1996a) DNA adduct measurements in relation to tumor incidence during the chronic feeding of coal tar or benzo[a]pyrene to mice. Polycyclic Aromat Compd 11:161–168.

Culp, SJ; Gaylor, DW; Sheldon, WG; et al. (1996b) Relationship between DNA adduct levels and tumor incidence in mice fed coal tar or benzo[a]pyrene for two years. Proc Am Assoc Cancer Res 37:101.

Culp, SJ; Gaylor, DW; Sheldon, WG; et al. (1998) A comparison of the tumors induced by coal tar and benzo[a]pyrene in a 2-year bioassay. Carcinogenesis 19:117–124.

Culp, SJ; Warbritton, AR; Smith, BA; et al. (2000) DNA adduct measurements, cell proliferation and tumor mutation induction in relation to tumor formation in B6C3F1 mice fed coal tar or benzo[a]pyrene. Carcinogenesis 21(7):1433–1440.

Dasgupta, PS; Lahiri, T. (1992) Alteration of brain catecholamines during growth of benzo[a]pyrene induced murine fibrosarcoma. Neoplasma 39:163–165.

Davis, C; Desai, D; Amin, S; et al. (1999) Comparison of the morphological transforming activities of fjord-region PAHs with dibenzo[a,e]pyrene and benzo[a]pyrene. Polycyclic Aromatic Compounds 16:141–149.

Dean, BJ. (1981) Activity of 27 coded compounds in the RLl chromosome assay. In: De Serres, FJ; Ashby, J, eds. Evaluation of short-term tests for carcinogens. Prog Mutat Res 1:570–579.

De Flora, S; Zanacchi, P; Camoirano, A; et al. (1984) Genotoxic activity and potency of 135 compounds in the Ames reversion test and in a bacterial DNA-repair test. Mutat Res 133:161–198.

DeMarini, DM; Landi, S; Tian, D; et al. (2004) Lung tumor *KRAS* and *TP53* mutations in nonsmokers reflect exposure to PAH-rich coal combustión emissions. Cancer Res 61:6679–6681.

Denissenko, MF; Pao, A; Tang, M; et al. (1996) Preferential formation of benzo[a]pyrene adducts at lung cáncer mutational hotspots in P53. Science 274(5286):430–432.

DeSalvia, R; Meschini, R; Fiore, M; et al. (1988) Induction of sister-chromatid exchanges by procarcinogens in metabolically competent Chinese hamster epithelial liver cells. Mutat Res 207:69–75.

Deutsch-Wenzel, RP; Brune, H; Grimmer, G; et al. (1983) Experimental studies in rat lungs on the carcinogenicity and dose- response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons. J Natl Cancer Inst 71:539–544.

Devanesan, PD; Cremonesi, P; Nunnally, JE; et al. (1990) Metabolism and mutagenicity of dibenzo[a,e]pyrene and the very potent environmental carcinogen dibenzo[a,l]pyrene. Chem Res Toxicol 3:580–586.

DiGiovanni, J; Rymer, J; Slaga, TJ; et al. (1982) Anticarcinogenic and cocarcinogenic effects of benzo[e]pyrene and dibenz[u,c]anthracene on skin tumor initiation by polycyclic hydrocarbons. Carcinogenesis 3:371–375.

DiPaolo, JA; Donovan, JP; Nelson, RL. (1969) Quantitative studies of in vitro transformation by chemical carcinogens. J Natl Cancer Inst 42:867–874.

DiPaolo, JA; Takano, K; Popescu, NC. (1972) Quantitation of chemically induced neoplastic transformation of BALB/3T3 cloned cell lines. Cancer Res 35:2686–2695.

DiPaolo, JA; Nelson, RL; Donovan, PJ; et al. (1973) Host-mediated in vivo-in vitro assay for chemical carcinogenesis. Arch Pathol 95:380–385.

Dunkel, VC; Pienta, RJ; Sivak, A; et al. (1981) Comparative neoplastic transformation responses of Balb 3T3 cells, Syrian hamster embryo cells, and Rauscher mm-me leukemia virus-infected Fischer 344 rat embryo cells to chemical carcinogens. J Natl Cancer Inst 67:1303–1315.

Dunkel, VC; Zeiger, E; Brusick, D; et al. (1984) Reproducibility of microbial mutagenicity assays: Tests with *Salmonella typhimurium* and *Escherichia coli* using a standardized protocol. Environ Mutagen 6:1–251.

Durant, JL; Lafleur, AL; Busby, WF, Jr; et al. (1999) Mutagenicity of C24H14 PAH in human cells expressing CYP1A1. Mutat Res 446:1–14.

Eisenstadt, E; Gold, A. (1978) Cyclopenta[c,d]pyrene: A highly mutagenic polycyclic aromatic hydrocarbon. Proc Natl Acad Sci USA 75:1667–1669.

El-Bayoumy, K; Hecht, SS; Hoffmann, D. (1982) Comparative tumor initiating activity on mouse skin of 6-nitrobenzo[a]pyrene, 6-nitrochrysene, 3-nitroperylene, 1-nitropyrene and their parent hydrocarbons. Cancer Lett 16:333–337.

Emura, M; Richter-Reichhelm, HB; Schneider, P; et al. (1980) Sensitivity of Syrian golden hamster fetal lung cells to benzo[a]pyrene and other polycyclic hydrocarbons in vitro. Toxicology 17:149–155.

Evans, CH; DiPaolo, JA. (1975) Neoplastic transformation of guinea pig fetal cells in culture induced by chemical carcinogens. Cancer Res 35:1035–1044.

Evans, EL; Mitchell, AD. (1981) Effects of 20 coded chemicals on sister chromatid exchange frequencies in cultured Chinese hamster cells. In: De Serres FJ; Ashby J, eds. Evaluation of short-term tests for carcinogens. Prog Mutat Res 1:538–550.

Fahmy, M; Fahmy, OG. (1980) Altered control of gene activity in the soma by carcinogens. Mutat Res 72:165–172.

Falk, HL; Kotin, P; Thompson, S. (1964) Inhibition of carcinogenesis. The effect of hydrocarbons and related compounds. Arch Environ Health 13:169–179.

Flesher, JW; Harvey, RG; Sydnor, KL. (1976) Oncogenicity of K-region epoxides of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene. Int J Cancer 18:351–353.

Florin, I; Rutberg, L; Curvall, M; et al. (1980) Screening of tobacco smoke constituents for mutagenicity using the Ames' test. Toxicology 18:219–232.

Flowers, L; Ohnishi, T; Penning, TM. (1997) DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling and o-semiquinone anion radicals. Biochemistry 36:8640–8648.

Flowers-Geary, L; Harvey, RG; Penning, TM. (1993) Cytotoxicity of polycyclic aromatic hydrocarbon o-quinones in rat and human hepatoma cells. Chem Res Toxicol 6(3):252–260.

Flowers-Geary, L; Bleczinki, W; Harvey RG; et al. (1996) Cytotoxicity and mutagenicity of polycyclic aromatic hydrocarbon ortho-quinones produced by dihydrodiol dehydrogenase. Chem Biol Interact 99(1–3):55–72.

Frolich, A; Wurgler, FE. (1990) Drosophila wing-spot test: improved detectability of genotoxicity of polycyclic aromatic hydrocarbons. Mutat Res 234:71–80.

Gaylor, DW; Moolgavkar, S; Krewski, D; et al. (1998) Recent bioassay results on coal tars and benzo[a]pyrene: implications for risk assessment. Regul Toxicol Pharmacol 28:178–179.

Geacintov, NE; Cosman, M; Hingerty, BE; et al. (1997) NMR solution structures of stereoisomeric covalent polycyclic aromatic carcinogen – DNA adducts: principles, patterns, and diversity. Chem Res Toxicol 10(2):111–146.

Gehly, EB; Landolph, JR; Heidelberger, C; et al. (1982) Induction of cytotoxicity, mutation, cytogenetic changes and neoplastic transformation by benzo[a]pyrene and derivatives in C3H/10T 1/2 clone 8 mouse fibroblasts. Cancer Res 42:1866–1875.

Gibson, TL; Smart, VB; Smith, LL. (1978) Non-enzymic activation of polycyclic aromatic hydrocarbons as mutagens. Mutat Res 49:153–161.

Gill, HS; Kole, PL; Wiley, JC; et al. (1994) Synthesis and tumor-initiating activity in mouse skin of dibenzo[a,l]pyrene syn- and anti-fjord-region diolepoxides. Carcinogenesis 15:2455–2460.

Gold, A; Eisenstadt, E. (1980) Metabolic activation of cyclopenta[cd]pyrene to 3,4-epoxycyclopenta[cd]pyrene by rat liver microsomes. Cancer Res 40:3940–3944.

Goldschmidt, BM; Katz, C; Van Duuren, BL. (1973) The cocarcinogenic activity of noncarcinogenic aromatic hydrocarbons. Proc Am Assoc Cancer Res 14:84.

Goldstein, LS; Safe, S; Weyand, EH. (1994) Carcinogenicity of coal tars: a multidisciplinary approach. Polycyclic Aromatic Compounds 7:161–174.

Goldstein, LS; Weyland, EH; Safe, S; et al. (1998) Tumors and DNA adducts in mice exposed to benzo[a]pyrene and coal tars: implications for risk assessment. Environ Health Perspect 106(Suppl 6):1325–1330.

Grant, G; Roe, FJC. (1963) The effect of phenanthrene on tumour induction by 3,4-benzopyrene administered to newly born mice. Br J Cancer 17:261–265.

Greb,W; Strobel, R; Rohrborn, G. (1980) Transformation of BHK 21/CL 13 cells by various polycyclic aromatic hydrocarbons using the method of Styles. Toxicol Lett 7:143–148.

Grimmer, G; Brune, H; Deutsch-Wenzel, R; et al. (1984) Contribution of polycyclic aromatic hydrocarbons to the carcinogenic impact of gasoline engine exhaust condensate evaluated by implantation into the lungs of rats. J Natl Cancer Inst 72:733–739.

Grimmer, G; Brune, H; Deutsch-Wenzel, R; et al. (1987a) Contribution of polycyclic aromatic hydrocarbons and nitro-derivatives to the carcinogenic impact of diesel engine exhaust condensate evaluated by implantation into the lungs of rats. Cancer Lett 37:173–180.

Grimmer, G; Brune, H; Deutsch-Wenzel, R; et al. (1987b) Contribution of polycyclic aromatic hydrocarbons and polar polycyclic aromatic compounds to the carcinogenic impact of flue gas condensate from coal-fired residential furnaces evaluated by implantation into the rat lung. J Natl Cancer Inst 78:935–942.

Grimmer, G; Brune, H; Dettbarn, G; et al. (1988) Contribution of polycyclic aromatic compounds to the carcinogenicity of sidestream smoke of cigarettes evaluated by implantation into the lungs of rats. Cancer Lett 43:173–177.

Grover, PL; Sims, P. (1968) Enzyme-catalysed reactions of polycyclic hydrocarbons with deoxyribonucleic acid and protein in vitro. Biochem J 110:159–160.

Guthrie, J; Robertson, IG; Zeiger, E; et al. (1982) Selective activation of some dihydrodiols of several polycyclic aromatic hydrocarbons to mutagenic products by prostaglandin synthetase. Cancer Res 42:1620–1623.

Habs, M; Schmähl, D; Misfeld, J. (1980) Local carcinogenicity of some environmentally relevant polycyclic aromatic hydrocarbons after lifelong topical application to mouse skin. Arch Geschwulstforsch 50:266–274.

Habs, M; Jahn, SA; Schmahi, D. (1984) Carcinogenic activity of condensate from coloquint seeds (*Citrullus colocynthis*) after chronic epicutaneous administration to mice. J Cancer Res Clin Oncol 108:154–156.

Harvey, RG. (1996) Mechanisms of carcinogenesis of polycyclic aromatic hydrocarbons. Polycyclic Aromatic Compounds 9:1–23.

Hass, BS; Brooks, EE; Schumann, KE; et al. (1981) Synergistic, additive, and antagonistic mutagenic responses to binary mixtures of benzo[a]pyrene and benzo[e]pyrene as detected by strains TA98 and TA100 in the Salmonella/microsome assay. Environ Mutagen 3:159–166.

Hass, BS; McKeown, CK; Sardella, DJ; et al. (1982) Cell-mediated mutagenicity in Chinese hamster V79 cells of dibenzopyrenes and their bay-region fluorine-substituted derivatives. Cancer Res 42:1646–1649.

He, SL; Baker, R. (1991) Micronuclei in mouse skin cells following in vivo exposure to benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, chrysene, pyrene and urethane. Environ Mol Mutagen 17:163–168.

Hecht, SS; Bondinell, WE; Hoffman, D. (1974) Chrysene and methylchrysenes: presence on tobacco smoke and carcinogenicity. J Natl Cancer Inst 53:1121–1133.

Hermann, M. (1981) Synergistic effects of individual polycyclic aromatic hydrocarbons on the mutagenicity of their mixtures. Mutat Res 90:399–409.

Higginbotham, S; RamaKrishna, NV; Johansson, SL; et al. (1993) Tumor-initiating activity and carcinogenicity of dibenzo[a,l]pyrene versus 7,12-dimethylbenz[a]anthracene and benzo[a]pyrene at low doses in mouse skin. Carcinogenesis 14:875–878.

Hoffmann, D; Wynder, EL. (1966) [Contribution on the carcinogenic effect of dibenzopyrenes]. Z Krebsforsch 68:137–149.

Hoffmann, D; Rathkamp, G; Nesnow, S; et al. (1972) Fluoranthenes: quantitative determination in cigarette smoke, formation by pyrolysis and tumor initiating activity. J Natl Cancer Inst 49:1165–1175.

Homburger, F; Hsueh, SS; Kerr, CS et al. (1972) Inherited susceptibility of inbred strains of Syrian hamsters to induction of subcutaneous sarcomas and mammary and gastrointestinal carcinomas by subcutaneous and gastric administration of polynuclear hydrocarbons. Cancer Res 32:360–366.

Horton, AW; Christian, GM. (1974) Cocarcinogenic versus incomplete carcinogenic activity among aromatic hydrocarbons: Contrast between chrysene and benzo[b]-triphenylene. J Natl Cancer Inst 53:1017–1020.

Huberman, E. (1975) Mammalian cell transformation and cell-mediated mutagenesis by carcinogenic polycyclic hydrocarbons. Mutat Res 29:285–291.

Huberman, E; Sachs, L. (1974) Cell-mediated mutagenesis of mammalian cells with chemical carcinogens. Int J Cancer 13:326–333.

Huberman, E; Sachs, L. (1976) Mutability of different genetic loci in mammalian cells by metabolically activated carcinogenic polycyclic hydrocarbons. Proc Natl Acad Sci USA 73:188–192.

Huggins, C; Yang, NC. (1962) Induction and extinction of mammary cancer. A striking effect of hydrocarbons permits analysis of mechanisms of causes and cure of breast cancer. Science 137:257–262.

Hughes, NC; Phillips, DH. (1990) Covalent binding of dibenzpyrenes and benzo[a]pyrene to DNA: evidence for synergistic and inhibitory interactions when applied in combination to mouse skin. Carcinogenesis 11:1611–1620.

Hughes, NC; Phillips, DH. (1991) Dependence on dose of initial and persistent levels of benzo[a]pyrene and dibenzo[a,e]pyrene DNA adducts in mouse tissues. Proc Am Assoc Cancer Res 32:98.

Hughes, NC; Phillips, DH. (1993) ³²*P*-postlabeling analysis of the covalent binding of benzo[ghi]perylene to DNA in vivo and in vitro. Carcinogenesis 14:127–133.

IARC (International Agency for Research on Cancer). (1973) In: IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Certain polycyclic aromatic hydrocarbons and heterocyclic compounds. Vol. 3. Lyon, France.

IARC. (1983) In: IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Polynuclear aromatic compounds. Part 1. Chemical, environmental and experimental data. Vol. 32, Lyon, France.

IARC. (1984a) IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Polynuclear aromatic compounds. Part 2. Carbon black, mineral oils (lubricant base oils and derived products) and some nitroarenes. Lyon, France. pp. 87–168.

IARC. (1984b) IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Polynuclear aromatic compounds. Part 3. Industrial exposures in aluminum production, coal gasification, coke production, and iron and steel founding. Lyon, France, pp. 37–111,

IARC. (1985) IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Polynuclear aromatic compounds. Part 4. Bitumens, coal-tars and derived products, shale-oils and soots. Lyon, France. pp. 65–159.

IARC. (1986) IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Some halogenated hydrocarbons and pesticide exposures. Lyon, France.

IARC. (1987) IARC monographs on the evaluation of carcinogenic risks to humans. Overall evaluation of carcinogenicity: an updating of IARC Monographs volumes 1 to 42. Suppl. 7. Lyon, France.

IARC. (1989) IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Occupational exposures in petroleum refining; crude oil and major petroleum fuels. Vol. 45. Lyon, France, pp. 239–270.

Ichinotsubo, D; Mower, HF; Setliff, J; et al. (1977) The use of rec-bacteria for testing of carcinogenic substances. Mutat Res 46:53–56.

Jeffy, BD; Chen, EJ; Gudas, JM; et al. (2000) Disruption of cell cycle kinetics by benzo[a]pyrene: inverse expression patterns of BRCA-1 and p53 in MCF-7 cells arrested in S and G2. Neoplasia 2:460–470.

Jeffy, BD; Chirnomas, RB; Chen, EJ; et al. (2002) Activation of the aromatic hydrocarbon receptor pathway is not sufficient for transcriptional repression of BRCA-1: requirements for metabolism of benzo[a]pyrene to 7r,8t-dihydroxy-9t,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene. Cancer Res 62:113–121.

Jerina, DM; Lehr, RE. (1977) The bay-region theory: a quantum mechanical approach to aromatic hydrocarboninduced carcinogenicity. In: Microsomes and drug oxidations. Oxford: Pergamon Press; pp. 709–720.

Jerina, DM; Yagi, H; Lehr, RE; et al. (1978) The bay-region theory of carcinogenesis by polycyclic aromatic hydrocarbons. In: Polycyclic hydrocarbons and cancer: environment, chemistry and metabolism. Boca Raton, Florida: CRC Press; pp. 173–188.

Jerina, DM; Chadha, A; Cheh, AM; et al. (1991) Covalent bonding of bay-region diol epoxides to nucleic acids. Adv Exp Med Biol 283:533–553.

Jiang, H; Shen, YM; Quinn, AM; et al. (2005) Competing roles of cytochrom P450 1A1/1B1 and aldo-keto reductase 1A1 in the metabolic activation of (\pm) -7,8-dihydroxy-7,8-dihydro-benzo[a]pyrene in human bronchoalveolar cell extracts. Chem Res Toxicol 18:365–374.

Jiang, H; Gelhaus, SL; Mangal, D; et al. (2007) Metabolism of benzo[a]pyrene in human bronchoalveolar H358 cells using liquid chromatography-mass spectrometry. Chem Res Toxicol 20:1331–1341.

Johnsen, NM; Schwarze, PE; Nyholm, SH; et al. (1997) Genotoxic effects of cyclopenta-fused polycyclic aromatic hydrocarbons in different types of isolated rat lung cells. Carcinogenesis 18:193–199.

Johnsen, NM; Brunborg; G, Haug, K; et al. (1998) Metabolism and activation of cyclopenta polycyclic aromatic hydrocarbons in isolated human lymphocytes, HL-60 cells and exposed rats. Chem Biol Interact 114:77–95.

Jotz, MM; Mitchell, AD. (1981) Effects of 20 coded chemicals on the forward mutation frequency at the thymidine kinase locus in L5178Y mouse lymphoma cells. In: De Serres, FJ; Ashby, J, eds. Evaluation of short-term tests for carcinogens. Prog Mutat Res 1:580–593.

Kaden, DA; Hites, RA; Thilly, WG. (1979) Mutagenicity of soot and associated polycyclic aromatic hydrocarbons to *Salmonella typhimurium*. Cancer Res 39:4152–4159.

Kakunaga, T. (1973) A quantitative system for assay of morphological/malignant cell transformation by chemical carcinogens using a clone derived from BALB-3T3. Int J Cancer 12(2):463–473.

Katz, M; Heddle, JA; Salamone, MF. (1981) Mutagenic activity of polycyclic aromatic hydrocarbons and other environmental pollutants. Columbus, OH: Battelle Press; pp. 519–528.

Kligerman, AD; Moore, MM; Erexson, GL; et al. (1986) Genotoxicity studies of benz[l]aceanthrylene. Cancer Lett 31:123–131.

Kligerman, AD; Nelson, GB; Ross, JA; et al. (2002) Effect of the route of administration on the induction of cytogenetic damage and DNA adducts in peripheral blood lymphocytes of rats and mice by polycyclic aromatic hydrocarbons. Polycyclic Aromatic Compounds 22:814–851.

Kochhar, TS. (1982) Effects of polycyclic hydrocarbons on the induction of chromosomal aberrations in absence of an exogenous metabolic activation system in cultured hamster cells. Experientia 38:845–846.

Koganti, A; Singh, R; Rozett, K; et al. (2000) 7H-benzo[c]fluorene: a major DNA adduct-forming component of coal tar. Carcinogenesis 21:1601–1609.

Kondraganti, SR; Fernandez-Salguerro, P; Gonzalez, FJ; et al. (2003) Polycyclic aromatic hydrocarbon-inducible DNA adducts: evidence by ${}^{32}P$ -postlabeling and use of knockout mice for AH receptor-independent mechanisms of metabolic activation in vivo. Int J Cancer 103:5–11.

Krahn, DF; Heidelberger, C. (1977) Liver homogenate-mediated mutagenesis in Chinese hamster V79 cells by polycyclic aromatic hydrocarbons and aflatoxins. Mutat Res 46:27–44.

Krewski, D; Thorslund, T; Withey, J. (1989) Carcinogenic risk assessment of complex mixtures. Toxicol Ind Health 5:851–867.

Kroese, ED; Muller, JJA; Mohn, GR; et al. (2001) Tumorigenic effects in Wistar rats orally administered benzo[a]pyrene for two years (gavage studies). Implications for human cancer risks associated with oral exposure to polycyclic aromatic hydrocarbons. National Institute of Public Health and the Environment, Bilthoven, Netherlands.

Krolewski, B; Nagasawa, H; Little, JB. (1986) Effect of aliphatic amides on oncogenic transformation, sister chromatid exchanges, and mutations induced by cyclopenta[cd]-pyrene and benzo[a]pyrene. Carcinogenesis 7:1647–1650.

Laaksonen, AM; Mantyjarvi, RA; Hanninen, OO. (1983) Fibroblast cultures of nude mouse skin as targets for transformation by chemical carcinogens. Med Biol 61:59–64.

Lacassagne, A; Buu-Hoi, NP; Zajdela, F; et al. (1968) The true dibenzo[a,l]pyrene, a new, potent carcinogen. Naturwissenschaften 55:43.

Lafleur, AL; Longwell, JP; Marr, JA; et al. (1993) Bacterial and human cell mutagenicity study of some C18H10 cyclopenta-fused polycyclic aromatic hydrocarbons associated with fossil fuels combustion. Environ Health Perspect 101:146–153.

Lake, RS; Kropko, ML; Pezzutti, MR; et al. (1978) Chemical induction of unscheduled DNA synthesis in human skin epithelial cell cultures. Water Res 38:2091–2098.

Langenbach, R; Hix, C; Oglesby, L; et al. (1983) Cell-mediated mutagenesis of Chinese hamster V79 cells and *Salmonella typhimurium*. Ann NY Acad Sci 407:258–266.

Larsen, JC; Larsen, PB. (1998) Chemical carcinogens. In: Air pollution and health. Cambridge, UK: The Royal Society of Chemistry, pp. 33–56.

Lavik, PS; Moore, PR; Rusch, HP; et al. (1942) Some additive effects of carcinogenic hydrocarbons. Cancer Res 2:189–192.

LaVoie, EJ; Bedenko, V; Hirota, N; et al. (1979) A comparison of the mutagenicity, tumor-initiating activity and complete carcinogenicity of polynuclear aromatic hydrocarbons. In: Jones, PW; Leber, P, eds. Polynuclear aromatic hydrocarbons. Ann Arbor, MI; Ann Arbor Science Publishers; pp. 705–721.

LaVoie, EJ; Tulley, L; Bedenko, V; et al. (1980) Mutagenicity, tumor initiating activity, and metabolism of tricyclic polynuclear aromatic hydrocarbons. In: Bjorseth, A; Dennis, AJ, eds. Polynuclear aromatic hydrocarbons: chemistry and biological effects. Columbus, Ohio: Battelle Press; pp. 1041–1057.

LaVoie, EJ; Tulley, L; Bedenko, V; et al. (1981) Mutagenicity, tumor-initiating activity and metabolism of methylphenanthrenes. Cancer Res 41:3441–3447.

LaVoie, EJ; Amin, S; Hecht, SS; et al. (1982) Tumour initiating activity of dihydrodiols of benzo[b]fluoranthene, benzo[j]fluoranthene, and benzo[k]fluoranthene. Carcinogenesis 3:49–52.

LaVoie, EJ; Coleman, DT; Tonne, RL; et al. (1983) Mutagenicity, tumor initiating activity and metabolism of methylated anthracenes. In: Cooke, M; Dennis, AJ, eds. Proceedings of the seventh international symposium. Columbus, OH: Battelle Press; pp. 785–798.

LaVoie, EJ; Coleman, DT; Rice, JE; et al. (1985) Tumor-initiating activity, mutagenicity, and metabolism of methylated anthracenes. Carcinogenesis 6:1483–1488.

LaVoie, EJ; Braley, J; Rice, JE; et al. (1987) Tumorigenic activity of non-alternant polynuclear aromatic hydrocarbons in newborn mice. Cancer Lett 34:15–20.

LaVoie, EJ; Cai, ZW; Meschter, CL; et al. (1994) Tumorigenic activity of fluoranthene, 2-methylfluoranthene and 3-methylfluoranthene in newborn CD-1 mice. Carcinogenesis 15:2131–2135.

Li, CS; Lin, RH. (1996) Evaluation of low-dosage environmental mutagens with a long-term, cultured epithelial cell line. Bull Environ Contam Toxicol 56:919–925.

Li, KM; Todorovic, R; Rogan, EG; et al. (1995) Identification and quantitation of dibenzo[a,l]pyrene--DNA adducts formed by rat liver microsomes in vitro: preponderance of depurinating adducts. Biochemistry 34(25):8043–8049.

Li, D; Wang, M; Firozi, PF; et al. (2002) Characterization of a major aromatic DNA adduct detected in human breast tissues. Environ Mol Mutagen 39:193–200.

Lubet, RA; Kiss, E; Gallagher, MM; et al. (1983) Induction of neoplastic transformation and DNA single-strand breaks in C3H/10T1/2 clone 8 cells by polycyclic hydrocarbons and alkylating agents. J Natl Cancer Inst 71:991–997.

Machala, M; Vondracek, J; Blaha, L; et al. (2001) Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay. Mutat Res 497:49–62.

MacLeod, MC; Cohen, GM; Selkirk, JK. (1979) Metabolism and macromolecular binding of the carcinogen benzo(a)pyrene and its relatively inert isomer benzo(e)pyrene by hamster embryo cells. Cancer Res 39:3463–3470.

Malcolm, HM; Dobson S. (1994) The calculation of an environmental assessment level (EAL) for atmospheric PAHs using relative potencies. Department of the Environment, London, England; Report No. DoE/HMIP/RR/94/041.

Mamber, SW; Bryson, V; Katz, SE. (1983) The *Esherichia coli* WP2/WP100 ret assay for detection of potential chemical carcinogens. Mutat Res 119:135–144.

Mane, SS; Purnell, DM; Hsu, IC. (1990) Genotoxic effects of five polycyclic aromatic hydrocarbons in human and rat mammary epithelial cells. Environ Mol Mutagen 15:78–82.

Marshall, CJ; Vousden, KH; Phillips, DH. (1984) Activation of c-Ha-ras-1 proto-oncogene by in vitro modification with a chemical carcinogen, benzo(a)pyrene diol-epoxide. Nature 310(5978):586–589.

Martin, CN; McDermid, AC. (1981) Testing of 42 coded compounds for their ability to induce unscheduled DNA repair synthesis in HeLa cells. In: De Serres, FJ; Ashby, J, eds. Evaluation of short-term tests for carcinogens. Prog Mutat Res 1:533–537.

Martin, CN; McDermid, AC; Garner, RC. (1978) Testing of known carcinogens and noncarcinogens for their ability to induce unscheduled DNA synthesis in HeLa cells. Cancer Res 38:2621–2627.

Mass, MJ; Jeffers, AJ; Ross, JA; et al. (1993) Ki-ras oncogene mutations in tumors and DNA adducts formed by benz[j]aceanthrylene and benzo[a]pyrene in the lungs of strain A/J mice. Mol Carcinog 8:186–192.

Masuda, Y; Kagawa, R. (1972) A novel synthesis and carcinogenicity of dibenzo[a,l]pyrene. Chem Pharm Bull 20:2736–2737.

Matsuoka, A; Hayashi, M; Ishidate, MJ. (1979) Chromosomal aberration tests on 29 chemicals combined with S9 mix in vitro. Mutat Res 66:277–290.

Matthews E.J; Kruhlak, NL; Cimino, MC; et al. (2006a) An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. Identification of carcinogens using surrogate endpoints. Regul Toxicol Pharmacol 44:83–96.

Matthews E.J; Kruhlak, NL; Cimino, MC; et al. (2006b) An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods. Regul Toxicol Pharmacol 44:97–110.

McCann, J; Choi, E; Yamasaki, E; et al. (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci USA 72:5135–5139.

McCarroll, NE; Piper, CE; Keech, BH. (1981) An E coli microsuspension assay for the detection of DNA damage induced by direct-acting agents and promutagens. Environ Mutagen 3:429–444.

McClure, PR. (1996) Evaluation of a component-based relative potency approach to cancer risk assessment for exposure to PAHs. Toxicologist 30(1, Part 2):8.

McCoull, KD; Rindgen, D; Blair, IA; et al. (1999) Synthesis and characterization of polycyclic aromatic hydrocarbon o-quinone depurinating N7-guanine adducts. Chem Res Toxicol 12:237–246.

Meek, ME; Chan, PKL; Bartlett, S. (1994) Polycyclic aromatic hydrocarbons: evaluation of risks to health from environmental exposures in Canada. Environ Carcinog Ecotoxicol Rev C 12:443–452.

Melendez-Colon, VJ; Luch, A; Seidel, A; et al. (2000) Formation of stable DNA adducts and apurinic sites upon metabolic activation of bay and fjord region polycyclic aromatic hydrocarbons in human cell cultures. Chem Res Toxicol 13:10–17.

Mersch-Sundermann, V; Mochayedi, S; Kevekordes, S. (1992) Genotoxicity of polycyclic aromatic hydrocarbons in *Escherichia coli* PQ37. Mutat Res 278:1–9.

Miller, KP; Ramos, KS. (2001) Impact of cellular metabolism on the biological effects of benzo[a]pyrene and related hydrocarbons. Drug Metab Rev 33:1–35.

Milo, GE; Blakeslee, J; Yohn, DS; et al. (1978) Biochemical activation of aryl hydrocarbon hydroxylase activity, cellular distribution of polynuclear hydrocarbon metabolites, and DNA damage by polynuclear hydrocarbon products in human cells in vitro. Cancer Res 38:1638–1644.

Mishra, NK; Wilson, CM; Pant, KJ; et al. (1978) Simultaneous determination of cellular mutagenesis and transformation by chemical carcinogens in Fischer rat embryo cells. J Toxicol Environ Health 4:79–91.

Mohapatra, N; MacNair, P; Bryant, BJ; et al. (1987) Morphological transforming activity and metabolism of cyclopenta-fused isomers of benz[a]anthracene in mammalian cells. Mutat Res 188:323–334.

Muller, P; Leece, B; Raha, D. (1997) Scientific criteria document for multimedia standards development. Polycyclic aromatic hydrocarbons (PAHs). Part 1: Hazard identification and dose-response assessment. Ontario Ministry of the Environment, Standards Development Branch.

Murison, GL. (1988) Induction of sister-chromatid exchanges by direct and indirect agents in a human teratoma cell line. Mutat Res 203:347–354.

Myhr, BC; Caspary, WJ. (1988) Evaluation of the L5178Y mouse lymphoma cell mutagenesis assay: intralaboratory results for sixty-three coded chemicals tested at Litton Bionetics, Inc. Environ Mol Mutag 12 (Suppl 13):103–194.

Nagabhushan, M; Hussong, J; Polverini, PJ; et al. (1990) Inhibition of hamster buccal pouch epithelial cell replication during in vitro exposure to polycyclic aromatic hydrocarbons. Proc Am Assoc Cancer Res 31:86.

Nakatsuru, Y; Wakabayashi, K; Fujii-Kuriyama, Y; et al. (2004) Dibenzo[a,l]pyrene-induced genotoxic and carcinogenic responses are dramatically suppressed in aryl hydrocarbon receptor-deficient mice. Int J Cancer 112:179–183.

Neal, J; Rigdon, RH. (1967) Gastric tumors in mice fed benzo[a]pyrene: a quantitative study. Tex Rep Biol Med 25:553–557.

Nesnow, S; Triplett, LL; Slaga, TJ. (1983) Mouse skin tumor initiation-promotion and complete carcinogenesis bioassays: mechanisms and biological activities of emission samples. Environ Health Perspect 47:255–268.

Nesnow, S; Gold, A; Sangaiah, R; et al. (1984) Mouse skin tumor-initiating activity of benz[e]aceanthrylene and benz[l]aceanthrylene in Sencar mice. Cancer Lett 22:263–268.

Nesnow, S; Milo, G; Kurian, P; et al. (1990) Induction of anchorage-independent growth in human diploid fibroblasts by the cyclopenta-polycyclic aromatic hydrocarbon, benz[l]aceanthrylene. Mutat Res 244:221–225.

Nesnow, S; Ross, J; Mohapatra, N; et al. (1991) Genotoxicity and identification of the major DNA-adducts of aceanthrylene. In: Cooke M LKMJe, eds. Polynuclear aromatic hydrocarbons: Measurements, means, and metabolism. Columbus, OH: Battelle Press; pp. 629–639.

Nesnow, S; Beck, S; Ball, LM; et al. (1993a) Morphological transformation of C3H10T1/2CL8 cells by cyclopenta-fused derivatives of benzo[a]pyrene and benzo[e]pyrene. Cancer Lett 74:25–30.

Nesnow, S; Ross, J; Nelson, G; et al. (1993b) Quantitative and temporal relationships between DNA adduct formation in target and surrogate tissues: implications for biomonitoring. Environ Health Perspect 101(Suppl 6) 3:37–42.

Nesnow, S; Ross, J; Beck, S; et al. (1994) Morphological transformation and DNA adduct formation by dibenz[a,h]anthracene and its metabolites in C3H10T1/2CL8 cells. Carcinogenesis 15:2225–2231.

Nesnow, S; Ross, JA; Stoner, GD; et al. (1995) Mechanistic linkage between DNA adducts, mutations in oncogenes and tumorigenesis of carcinogenic environmental polycyclic aromatic hydrocarbons in strain A/J mice. Toxicology 105:403–413.

Nesnow, S; Ross, JA; Stoner, GD; et al. (1996) Tumorigenesis of carcinogenic environmental polycyclic aromatic hydrocarbons in strain A/J mice: linkage to DNA adducts and mutations in oncogenes. Polycyclic Aromatic Hydrocarbons 10:259–266.

Nesnow, S; Davis, C; Nelson, G; et al. (1997) Comparison of the morphological transforming activities of dibenzo[a,l]pyrene and benzo[a]pyrene in C3H10T1/2CL8 cells and characterization of the dibenzo[a,l]pyrene-DNA adducts. Carcinogenesis 18:1973–1978.

Nesnow, S; Mass, MJ; Ross, JA; et al. (1998a) Lung tumorigenic interactions in strain A/J mice of five environmental polycyclic aromatic hydrocarbons. Environ Health Perspect 106(Suppl 6):1337–1346.

Nesnow, S; Ross, JA; Mass, MJ; et al. (1998b) Mechanistic relationships between DNA adducts, oncogene mutations, and lung tumorigenesis in strain A mice. Exp Lung Res 24:395–405.

Nikonova, TV. (1977) Transplacental effect of benz[a]pyrene and pyrene. Bull Exp Biol Med 84:1025–1027.

Nisbet, ICT; LaGoy, PK. (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300.

Norpoth, K; Kemena, A; Jacob, J; et al. (1984) The influence of 18 environmentally relevant polycyclic aromatic hydrocarbons and Clophen A50, as liver monooxygenase inducers, on the mutagenic activity of benz[a]anthracene in the Ames test. Carcinogenesis 5:747–752.

NTP (National Toxicology Program). (2000) Toxicology and carcinogenesis studies of naphthalene (CAS no. 91-20-3) in F344/N rats (inhalation studies). National Toxicology Program. U.S. Department of Health and Human Services, National Institutes of Health, Rockville, MD. Technical report series no. 500.

Nyholm, SH; Alexander, J; Lundanes, E; et al. (1996) Biotransformation of the cyclopenta-fused polycyclic aromatic hydrocarbon benz[j]aceanthrylene in isolated rat liver cells: identification of nine new metabolites. Carcinogenesis 17(5):1111–1120.

Oshiro, Y; Balwierz, PS; Soelter, SG; et al. (1992) Evaluation of mouse peripheral blood micronucleus assay. Environ Mol Mutag 19(Suppl 20):47.

Pahlman, R; Pelkonen, O. (1987) Mutagenicity studies of different polycyclic aromatic hydrocarbons: the significance of enzymatic factors and molecular structure. Carcinogenesis 8:773–778.

Paika, IJ; Beauchesne, MT; Randall, M; et al. (1981) In vivo SCE analysis of 20 coded compounds. In: De Serres, FJ; Ashby, J, eds. Evaluation of short-term tests for carcinogens. Prog Mutat Res 1:672–681.

Park, JH; Gopishetty, S; Szewczuk, LM; et al. (2005) Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo) by PAH o-quinones: involvement of reactive oxygen species and copper(II)/copper(I) redox cycling. Chem Res Toxicol 18(6):1026–1037.

Park, JH; Troxel, AB; Harvey, RG; et al. (2006) Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by the aldo-keto-reductases (AKRs) generate abasic sites, oxidized pyrimidines, and 8-oxo-dGuo via reactive oxygen species. Chem Res Toxicol 19(5):719–728.

Park, JH; Gelhaus, S; Vedantam, S; et al. (2008) The pattern of p53 mutations caused by PAH o-quinones is driven by 8-oxo-dGuo formation while the spectrum of mutations is determined by biological selection for dominance. Chem Res Toxicol 21(5):1039–1049.

Pataki, J; Huggins, C. (1969) Molecular site of substituents of benz[a]anthracene related to carcinogenicity. Cancer Res 29:506–509.

Pavanello, S; Favretto, D; Brugnone, F; et al. (1999) HPLC/fluorescence determination of anti-BPDE-DNA adducts in mononuclear white blood cells from PAH-exposed humans. Carcinogenesis 20(3):431–435.

Penman, BW; Kaden, DA; Liber, HL; et al. (1980) Perylene is a more potent mutagen than benzo[a]pyrene for *Salmonella typhimurium*. Mutat Res 77:271–277.

Penning, TM; Burczynski, ME; Hung, CF; et al. (1999) Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of generation of reactive and redox active o-quinones. Chem Res Toxicol 12:1–18.

Perry, PE; Thomson, EJ. (1981) Evaluation of the sister chromatid exchange method in mammalian cells as a screening system for carcinogens. In: De Serres FJ; Ashby J, eds. Prog Mutat Res 1:560–569.

Petry, T; Schmid, P; Schlatter, C. (1996) The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere 32:639–648.

Pfeiffer, EH (1973) Investigations on the carcinogenic burden by air pollution in man. VII. Studies on the oncogenetic interaction of polycyclic aromatic hydrocarbons. Zbl Bakt Hyg, J Abt Org B158:69–83.

Pfeiffer, EH. (1977) Oncogenic interaction of carcinogenic and non-carcinogenic polycyclic aromatic hydrocarbons in mice. IARC Sci Publ 16:69–77.

Pfeiffer, CA; Allen, E. (1948) Attempts to produce cancer in rhesus monkeys with carcinogenic hydrocarbons and estrogens. Cancer Res 8:97–127.

Phillips, DH; Grover, PL; Sims, P. (1979) A quantitative determination of the covalent binding of a series of polycyclic hydrocarbons to DNA in mouse skin. Int J Cancer 23:201–208.

Phillipson, CE; Ioannides, C. (1989) Metabolic activation of polycyclic aromatic hydrocarbons to mutagens in the Ames test by various animal species including man. Mutat Res Mar 211:147–151.

Pienta, RJ; Poiley, JA; Lebherz, WB 3rd. (1977) Morphological transformation of early passage golden Syrian hamster embryo cells derived from cryopreserved primary cultures as a reliable in vitro bioassay for identifying diverse carcinogens. Int J Cancer 19:642–655.

Platt, KL; Dienes, HP; Tommasone, M; et al. (2004) Tumor formation in the neonatal mouse bioassay indicates that the potent carcinogen dibenzo[def,p]chrysene (dibenzo[a,l]pyrene) is activated in vivo via its *trans*-11,12-dihydrodiol. Chem Biol Interact 148:27–36.

Poncelet, F; Massanda, K; Fouassin, A; et al. (1978) Mutagenic study of some polycyclic aromatic hydrocarbons present in smoked fishes from Africa. Arch Int Phys Biochem 86:954–955.

Popescu, NC; Turnbull, D; DiPaolo, JA. (1977) Sister chromatid exchange and chromosome aberration analysis with the use of several carcinogens and noncarcinogens: brief communication. J Natl Cancer Inst 59:289–293.

Prahalad, AK; Ross, JA; Nelson, GB; et al. (1997) Dibenzo[a,l]pyrene-induced DNA adduction, tumorigenicity, and Ki-ras oncogene mutations in strain A/J mouse lung. Carcinogenesis 18:1955–1963.

Probst, GS; McMahon, RE; Hill, LE; et al. (1981) Chemically-induced unscheduled DNA synthesis in primary rat hepatocyte cultures: a comparison with bacterial mutagenicity using 218 compounds. Environ Mutagen 3:11–32.

Pufulete M.; Battershill, J; Boobis, A; et al.(2004) Approaches to carcinogenic risk assessment for polycylic aromatic hydrocarbons: a UK perspective. Regul Toxicol Pharmacol 40:54–66.

Puisieux, A; Lim, S; Groopman, J; et al. (1991) Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens. Cancer Res 51(22):6185–6189.

229

Ramesh, A; Walker, SA; Hood, DB; et al. (2004) Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol 23:301–333.

Rask-Nielson, R. (1950) The susceptibility of the thymus, lung, subcutaneous and mammary tissues in strain St mice to direct application of small doses of four different carcinogenic hydrocarbons. Br J Cancer 4:108–116.

Raveh, D; Huberman, E. (1983) A microtiter plate assay for the selection of 6-thioguanine-resistant mutants in Chinese hamster V79 cells in the presence of phorbol-12-myristate-13-acetate. Mutat Res 113:499–506.

Raveh, D; Slaga, TJ; Huberman, E. (1982) Cell-mediated mutagenesis and tumor-initiating activity of the ubiquitous polycyclic hydrocarbon, cyclopenta[c,d]pyrene. Carcinogenesis 3:763–766.

Reddy, MV; Gupta, RC; Randerath, E; et al. (1984) ³²*P*-Postlabeling test for covalent DNA binding of chemicals in vivo: application to a variety of aromatic carcinogens and methylating agents. Carcinogenesis 5:231–243.

Rice, JE; Hosted, TJ, Jr; LaVoie, EJ. (1984) Fluoranthene and pyrene enhance benzo[a]pyrene--DNA adduct formation in vivo in mouse skin. Cancer Lett 24:327–333.

Rice, JE; Makowski, GS; Hosted, TJ, Jr; et al. (1985) Methylene-bridged bay region chrysene and phenanthrene derivatives and their keto-analogs: mutagenicity in Salmonella typhimurium and tumor-initiating activity on mouse skin. Cancer Lett 27:199–206.

Rice, JE; Jordan, K; Little, P; et al. (1988) Comparative tumor-initiating activity of methylene-bridged and bayregion methylated derivatives of benz[a]anthracene and chrysene. Carcinogenesis 9:2275–2278.

Rigdon, RH; Neal, J. (1966) Gastric carcinomas and pulmonary adenomas in mice fed benzo[a]pyrene. Tex Rep Biol Med 24:195–207.

Rigdon, RH; Neal, J. (1969) Relationship of leukemia to lung and stomach tumors in mice fed benzo[a]pyrene. Proc Soc Exp Biol Med 130:146–148.

Rigdon, RH; Benge, MC; Kirchoff, H; et al. (1969) Leukemia in mice fed benzo (a) pyrene: a clinical, pathologic and hematologic study. Tex Rep Biol Med 27:803–820.

Robinson, DE; Mitchell, AD. (1981) Unscheduled DNA synthesis response of human fibroblasts, WI-38 cells, to 20 coded chemicals. In: De Serres, FJ; Ashby, J, eds. Evaluation of short-term tests for carcinogens. Prog Mutat Res 1:517–527.

Roe, FJC. (1962) Effect of phenanthrene on tumour-initiation by 3,4-benzpyrene. Br J Cancer 16:503–506.

Roe, FJ; Waters, MA. (1967) Induction of hepatoma in mice by carcinogens of the polycyclic hydrocarbon type. Nature 214:299–300.

Rogan, EG; Cavalieri, EL; Ramakrishna NVS; et al. (1993) Mechanisms of benzo(a)pyrene and 7,12-diemthylbenz(a)antrhacene activation: qualitative aspects of the stable and depurination DNA adducts obtained from radical cations and diol epoxides. In: Polycyclic aromatic hydrocarbons: synthesis, properties, analytical measurements, occurrence and biological effects. Gordon and Breach Science Publishers: Bordeaux, France, pp. 733–740.

Rosenkranz, HS; Leifer, Z. (1980) Determining the DNA-modifying activity of chemicals using DNA polymerasedeficient *Escherichia coli*. Chemical mutagens: principles and methods for their detection. New York, NY: Plenum Press; pp. 109–147.

Rosenkranz, HS; Poirier, LA. (1979) Evaluation of the mutagenicity and DNA-modifying activity of carcinogens and noncarcinogens in microbial systems. J Natl Cancer Inst 62:873–891.

Ross, JA; Nelson, GB; Wilson, KH; et al. (1995) Adenomas induced by polycyclic aromatic hydrocarbons in strain A/J mouse lung correlate with time-integrated DNA adduct levels. Cancer Res 55:1039–1044.

Rossman, TG; Molina, M; Meyer, L; et al. (1991) Performance of 133 compounds in the lambda prophage induction endpoint of the microscreen assay and a comparison with Salmonella typhimurium mutagenicity and rodent carcinogenicity assays. Mutat Res 260:349–367.

Roszinsky-Kocher, G; Basler, A; Rohrborn, G. (1979) Mutagenicity of polycyclic hydrocarbons. V. Induction of sister-chromatid exchanges in vivo. Mutat Res 66:65–67.

Rugen, PJ; Stern, CD; Lamm, SH. (1989) Comparative carcinogenicity of the PAHs as a basis for acceptable exposure levels (AELs) in drinking water. Regul Toxicol Pharmacol 9:273–283.

Rummel, AM; Trosko, JE; Wilson, MR; et al. (1999) Polycyclic aromatic hydrocarbons with bay-like regions inhibited gap junctional intercellular communication and stimulated MAPK activity. Toxicol Sci 49:232–240.

Safe, S; Wormke, M. (2003) Inhibitory aryl hydrocarbon receptor-estrogen receptor alpha cross-talk and mechanisms of action. Chem Res Toxicol 16:807–816.

Sagredo, C; Øvrebø, S; Haugen, A; et al. (2006) Quantitative analysis of benzo[a]pyrene biotransformation and adduct formation in AhR knockout mice. Toxicol Lett 167:173–182.

Sakai, M; Yoshida, D; Mizusaki, S. (1985) Mutagenicity of polycyclic hydrocarbons and quinones on *Salmonella thyphimurium* TA97. Mutat Res 156:61–67.

Salaman, MH; Roe, FJC. (1956) Further tests for tumour-initiating activity: N,N-di(2-chloroethyl)-p-amino-phenylbutic acid (CB1348) as an initiator of skin tumour formation in the mouse. Br J Cancer 10:363–378.

Salamone, MF; Heddle, JA; Katz, M. (1979a) The mutagenic activity of thirty polycyclic aromatic hydrocarbons (PAH) and oxides in urban airborne particulates. Environ Int 2:37–43.

Salamone, MF; Heddle, JA; Katz, M. (1979b) The use of the Salmonella/microsomal assay to determine mutagenicity in paired chemical mixtures. Can J Genet Cytol 21:101–107.

Salamone, MF; Heddle, JA; Katz, M. (1981) Mutagenic activity of 41 compounds in the in vivo micronucleus assay. In: De Serres, FJ; Ashby, J, eds. Evaluation of short-term tests for carcinogens. Prog Mutat Res 1:686–697.

Sangaiah, R; Gold, A; Toney, GE; et al. (1983) Benz[j]aceanthrylene: a novel polycyclic aromatic hydrocarbon with bacterial mutagenic activity. Mutat Res 119:259–266.

Sanner T; Dybing, E. (2005) Comparison of carcinogenic and in vivo genotoxic potency estimates. Basic Clin Pharmacol Toxicol 96:131–139.

Schmähl, D; Schmidt, KG; Habs, M. (1977) Syncarcinogenic action of polycyclic hydrocarbons in automobile exhaust gas condensates. IARC Sci Publ 16:53–59.

Schmoldt, A; Jacob, J; Grimmer, G. (1981) Dose-dependent induction of rat liver microsomal aryl hydrocarbon monooxygenase by benzo[k]fluoranthene. Cancer Lett 13:249–257.

Schneider, K; Roller, M; Kalberlah, F; et al. (2002) Cancer risk assessment for oral exposure to PAH mixtures. J Appl Toxicol 22:73–83.

Scribner, JD. (1973) Brief communication: Tumor initiation by apparently noncarcinogenic polycyclic aromatic hydrocarbons. J Natl Cancer Inst 50:1717–1719.

Segerback, D; Vodicka, P. (1993) Recoveries of DNA adducts of polycyclic aromatic hydrocarbons in the ³²*P*-postlabeling assay. Carcinogenesis 14:2463–2469.

Shah, GM; Bhattacharya, RK. (1989) Alteration in hepatic nuclear RNA polymerase activity following benzo[a]pyrene administration in rat. In Vivo 3:125–127.

Sharovskaia, I; Rokitskaia, TI; Kobliakov, VA. (2003) [Effect of some polycyclic aromatic hydrocarbons on gap junction intercellular communication in hepatoma Hep G2 cell culture]. Tsitologiia 45:51–58.

Shen, YM; Troxel, AB; Vedantam, S; et al. (2006) Comparison of p53 mutations induced by PAH o-quinones with those caused by anti-benzo[a]pyrene diol epoxide in vitro: role of reactive oxygen and biological selection. Chem Res Toxicol 19(11):1441–1450.

Sheu, CW; Dobras, SN; Rodriguez, I; et al. (1994) Transforming activity of selected polycyclic aromatic hydrocarbons and their nitro-derivatives in BALB/3T3 A31-1-1 cells. Food Chem Toxicol 32:611–615.

Shubik, P; Pietra, G; Della Porta, G. (1960) Studies of skin carcinogenesis in the Syrian golden hamster. Cancer Res 20:100–105.

Simmon, VF. (1979a) In vitro mutagenicity assays of chemical carcinogens and related compounds with *Salmonella typhimurium*. J Natl Cancer Inst 62:893–899.

Simmon, VF. (1979b) In vitro assays for recombinogenic activity of chemical carcinogens and related compounds with *Saccharomyces cerevisiae* D3. J Natl Cancer Inst 62:901–910.

Simmon, VF; Rosenkranz, HS; Zeiger, E; et al. (1979) Mutagenic activity of chemical carcinogens and related compounds in the intraperitoneal host-mediated assay. J Natl Cancer Inst 62:911–918.

Sirianni, SR; Huang, CC. (1978) Sister chromatid exchange induced by promutagens/carcinogens in Chinese hamster cells cultured in diffusion chambers in mice. Proc Soc Exp Biol Med 158:269–274.

Sjogren, M; Ehrenberg, L; Rannug, U. (1996) Relevance of different biological assays in assessing initiating and promoting properties of polycyclic aromatic hydrocarbons with respect to carcinogenic potency. Mutat Res 358:97–112.

Slaga, TJ; Fischer, SM. (1983) Strain differences and solvent effects in mouse skin carcinogenesis experiments using carcinogens, tumor initiators and promoters. Prog Exp Tumor Res 26:85–109.

Slaga, TJ; Hubermann, E; Selkirk, JK; et al. (1978) Carcinogenicity and mutagenicity of benz[a]anthracene diols and diol-epoxides. Cancer Res 38:1699–1704.

Slaga, TJ; Jecker, L; Bracken, WM; et al. (1979) The effects of weak or noncarcinogenic polycyclic hydrocarbons on 7,12-dimethylbenz[a]anthracene and benzo [a]pyrene skin tumor-initiation. Cancer Lett 7:51–59.

Slaga, TJ; Iyer, RP; Lyga, W; et al. (1980) Comparison of the skin tumor-initiating activities of dihydrodiols, diolepoxides, and methylated derivatives of various polycyclic aromatic hydrocarbons. In: Bjorseth, A; Dennis, AJ, eds. Polynuclear aromatic hydrocarbons: chemistry and biological effects. Columbus, OH: Battelle Press; pp. 753–769.

Slooff, W; Janus, JA; Matthijsen, AJCM; et al. (1989) Integrated criteria document PAHs (PDF includes addendum by Montizaan). National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands.

Smith, LE; Denissenko, MF; Bennett, WP; et al. (2000) Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. J Natl Cancer Inst 92:803–811.

Smolarek, TA; Baird, WM. (1984) Benzo[e]pyrene-induced alterations in the binding of benzo[a]pyrene to DNA in hamster embryo cell cultures. Carcinogenesis 5:1065–1069.

Smolarek, TA; Moynihan, CG; Salmon, CP; et al. (1986) Benz[a]anthracene-induced alterations in the metabolic activation of benzo[a]pyrene by hamster embryo cell cultures. Cancer Lett 30:243–249.

Smolarek, TA; Baird, WM; Fisher, EP; et al. (1987) Benzo[e]pyrene-induced alterations in the binding of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene to DNA in Sencar mouse epidermis. Cancer Res 47:3701–3706.

Snell, KC; Stewart, HL. (1962) Pulmonary adenomatosis induced in DBA/2 mice by oral administration of dibenz(a,h)anthracene. J Natl Cancer Inst 28:1043–1049.
Solt, DB; Polverini, PJ; Calderon, L. (1987) Carcinogenic response of hamster buccal pouch epithelium to 4 polycyclic aromatic hydrocarbons. J Oral Pathol 16:294–302.

Staal, YCM; Hebels DGAJ; van Herwijnen, MHM; et al. (2007) Binary PAH-mixture cause additive or antagonistic effects on gene expression but synergistic effects on DNA adduct formation. Carcinogenesis 28:2632–2640.

Stanton, MF; Miller, E; Wrench, C; et al. (1972) Experimental induction of epidermoid carcinoma in the lungs of rats by cigarette smoke condensate. J Nat1 Cancer Inst 49:867–877.

Steiner, PF. (1955) Carcinogenicity of multiple chemicals simultaneously administered. Cancer Res 15:632-635.

Steiner, PF; Falk, HL. (1951) Summation and inhibition effects of weak and strong carcinogenic hydrocarbons: 1:2-benzanthracene, chrysene, 1:2:5:6-dibenzanthracene, and 20-methylcholanthrene. Cancer Res 11:56–63.

Straif K; Baan, R; Grosse, Y; et al. (2005) Carcinogenicity of polycyclic aromatic hydrocarbons. Lancet 6:931–932.

Sugiyama, T. (1973) Chromosomal aberrations and carcinogenesis by various benz(a)-anthracene derivatives. Gann 64:637–639.

Tannheimer, SL; Ethier, SP; Caldwell, KK; et al. (1998) Benzo[a]pyrene- and TCDD-induced alterations in tyrosine phosphorylation and insulin-like growth factor signaling pathways in the MCF-10A human mammary epithelial cell line. Carcinogenesis 19:1291–1297.

Teranishi, K; Hamada, K; Watanabe, H. (1975) Quantitative relationship between carcinogenicity and mutagenicity of polyaromatic hydrocarbons in Salmonella typhimurium mutants. Mutat Res 31:97–102.

Thyssen, J; Althoff, J; Kimmerle, G; et al. (1980) Investigations on the carcinogenic burden of air pollution in man. XIX. Effect of inhaled benzo[a]pyrene in Syrian golden hamsters: a pilot study. Zentralbl Bakteriol Hyg I Abt Orig B 171:441–444.

Thyssen, J; Althoff, J; Kimmerle, G; et al. (1981) Inhalation studies with benzo[a]pyrene in Syrian golden hamsters. J Natl Cancer Inst 66:575–577.

Till, M; Riebniger, D' Schmitz, HJ; et al. (1999) Potency of various polycyclic aromatic hydrocarbons as inducers of CYP1A1 in rat hepatocyte cultures. Chem Biol Interact 117:135–150.

Tong, C; Brat, SV; Williams, GM. (1981a) Sister-chromatid exchange induction by polycyclic aromatic hydrocarbons in an intact cell system of adult rat-liver epithelial cells. Mutat Res 91:467–473.

Tong, C; Laspia, MF; Telang, S; et al. (1981b) The use of adult rat liver cultures in the detection of the genotoxicity of various polycyclic aromatic hydrocarbons. Environ Mutagen 3:477–487.

Tong, C; Brat, VS; Telang, S; et al. (1983) Effects of genotoxic polycyclic aromatic hydrocarbons in rat liver culture systems. In: Cooke, M; Dennis, AJ, eds. Polynuclear aromatic hydrocarbons: formation; metabolism, and measurement. Columbus, OH: Battelle Press; pp. 1189–1203.

Topping, DC; Martin, DH; Nettesheim, P. (1981) Determination of cocarcinogenic activity of benzo[e]pyrene for respiratory tract mucosa. Cancer Lett 11:315–321.

Travis C.C, Saulsbury, AW; Richter Pack, SA. (1990) Prediction of cancer potency using a battery of mutation and toxicity data. Mutagenesis 5:213–219.

Tsuchimoto, T; Matter, BE. (1981) Activity of coded compounds in the micronucleus test. In: De Serres, FJ; Ashby, J, eds. Evaluation of short-term tests for carcinogens. Prog Mutat Res 1:705–711.

Tweats, DJ. (1981) Activity of 42 coded compounds in a differential killing test using *Escherichia coli* strains WP2, WP67 (uvrA polA), and CM871 (uvrA 1exA recA). In: De Serres, FJ; Ashby, J, eds. Evaluation of short-term tests for carcinogens. Prog Mutat Res 1:199–209.

Uno, S; Dalton, TP; Dragin, N; et al. (2006) Oral benzo[a]pyrene in *Cyp1* knockout mouse lines: CYP1A1 important in detoxication, CYP1B1 metabolism required for immune damage independent of total-body burden and clearance rate. Mol Pharmacol 69:1103–1114.

U.S. EPA (United States Environmental Protection Agency). (1986) Guidelines for the health risk assessment of chemical mixtures. Federal Register 51(185):34014–34025.

U.S. EPA. (1990) Drinking water criteria document for polycyclic aromatic hydrocarbons. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, Ohio, for the Office of Drinking Water, Washington, DC.

U.S. EPA. (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, Ohio.

U.S. EPA. (2000) Supplementary guidance for conducting health risk assessment of chemical mixtures. EPA/630/R-00/002. Available online at http://www.epa.gov/iris/backgr-d.htm.

U.S. EPA. (2002) Peer consultation workshop on approaches to polycyclic aromatic hydrocarbon (PAH) health assessment. National Center for Environmental Assessment, Office of Research and Development, Washington, DC; EPA/635/R-02/005.

U.S. EPA. (2004) An examination of EPA risk assessment principles and practices. Staff paper prepared for the U.S. EPA by members of the Risk Assessment Task Force at the request of the EPA science advisor. Available online at http://www.epa.gov/osa/ratf.htm.

U.S. EPA. (2005a) Guidelines for carcinogen risk assessment. Risk Assessment Forum, Washington, DC; EPA/630/P-03/001B. Available online at http://www.epa.gov/iris/backgr-d.htm (accessed January 15, 2009).

U.S. EPA. (2005b) Supplemental guidance for assessing susceptibility from early-life exposure to carcinogens. Risk Assessment Forum, Washington, DC; EPA/630/R-03/003F. Available online at http://www.epa.gov/iris/backgr-d.htm (accessed January 15, 2009).

U.S. EPA. (2008) Polycyclic aromatic hydrocarbons (PAHs). Integrated Risk Information System (IRIS). National Center for Environmental Assessment, Washington, DC. Available online at http://www.epa.gov/iris.

Utesch, D; Glatt, H; Oesch, F. (1987) Rat hepatocyte-mediated bacterial mutagenicity in relation to the carcinogenic potency of benz[a]anthracene, benzo[a]pyrene, and twenty-five methylated derivatives. Cancer Res 47(6):1509–1515.

Vaca, C; Tornqvist, M; Rannug, U; et al. (1992) On the bioactivation and genotoxic action of fluoranthene. Arch Toxicol 66:538–545.

Valencia, R; Houtchens, K. (1981) Mutagenic activity of 10 coded compounds in the Drosophila sex-linked recessive lethal test. In: De Serres, FJ; Ashby, J, eds. Evaluation of short-term tests for carcinogens. Prog Mutat Res 1:652–659.

Van Duuren, BL; Sivak, A; Segal, A; et al. (1966) The tumor-promoting agents of tobacco leaf and tobacco smoke condensate. J Natl Cancer Inst 37:519–526.

Van Duuren, BL; Sivak, A; Langseth, L; et al. (1968) Initiators and promoters in tobacco carcinogenesis. Natl Cancer Inst Monogr 28:173–80.

Van Duuren, BL; Sivak, A; Goldschmidt, B.M; et al. (1970) Initiating activity of aromatic hydrocarbons in twostage carcinogenesis. J Natl Cancer Inst 44:1167–1173.

Van Duuren, BL; Katz, C; Goldschmidt, BM; et al. (1973) Brief communication: cocarcinogenic agents in tobacco carcinogenesis. J Natl Cancer Inst 51:703–705.

Van Duuren, BL; Goldschmidt, BM. (1976) Cocarcinogenic and tumor-promoting agents in tobacco carcinogenesis. J Natl Cancer Inst 56:1237–1242.

Vesselinovitch, SD; Kyriazis, AP; Mihailovich, N; et al. (1975) Factors influencing and/or acceleration of lymphoreticula tumors in mice by benzo[a]pyrene treatment. Cancer Res 35:1963–1969.

Vienneau, DS; DeBoni, U; Wells, PG. (1995) Potential genoprotective role for UDP-glucuronosyltransferases in chemical carcinogenesis: initiation of micronuclei by benzo[a]pyrene and benzo[e]pyrene in UDP-glucuronosyltransferase-deficient cultured rat skin fibroblasts. Cancer Res 55:1045–1051.

Vijayalakshmi, KP; Suresh, CH. (2008) Theoretical studies on the carcinogenicity of polycyclic aromatic hydrocarbons. J Comput Chem 29:1108–1117.

Wangenheim, J; Bolcsfoldi, G. (1988) Mouse lymphoma L5178Y thymidine kinase locus assay of 50 compounds. Mutagenesis 3:193–205.

Warshawsky, D; Barkley, W. (1987) Comparative carcinogenic potencies of 7H-dibenzo[c,g]carbazole, dibenz[a,j]acridine and benzo[a]pyrene in mouse skin. Cancer Lett 37:337–344.

Warshawsky, D; Barkley, W; Bingham, E. (1993) Factors affecting carcinogenic potential of mixtures. Fundam Appl Toxicol 20:376–382.

Warshawsky, D; Livingston, GK; Fonouni-Fard, M; et al. (1995) Induction of micronuclei and sister chromatid exchanges by polycyclic and N-heterocyclic aromatic hydrocarbons in cultured human lymphocytes. Environ Mol Mutagen 26:109–118.

Weinstein, D; Katz, ML; Kazmer, S. (1977) Chromosomal effects of carcinogens and noncarcinogens on WI-38 after short term exposures with and without metabolic activation. Mutat Res 46:297–304.

Wenzel-Hartung, R; Brune, H; Grimmer, G; et al. (1990) Evaluation of the carcinogenic potency of four environmental polycyclic aromatic compounds following intrapulmonary application in rats. Exp Pathol 40:221–227.

Weyand, EH; LaVoie, EJ. (1988) Comparison of PAH DNA adduct formation and tumor initiating activity in newborn mice. Proc Am Assoc Cancer Res 29:98.

Weyand, EH; Wu, Y. (1995) Covalent binding of polycyclic aromatic hydrocarbon components of manufactured gas plant residue to mouse lung and forestomach DNA. Chem Res Toxicol 8:955–962.

Weyand, EH; He, ZM; Ghodrati, F; et al. (1992) Effect of fluorine substitution on benzo[j]fluoranthene genotoxicity. Chem Biol Interact 84:37–53.

Weyand, EH; Chen, YC; Wu, Y; et al. (1995) Differences in the tumorigenic activity of a pure hydrocarbon and a complex mixture following ingestion: benzo[a]pyrene vs, manufactured gas plant residue. Chem Res Toxicol 8:949–954.

WHO (World Health Organization). (1998) Selected non-heterocyclic polycyclic aromatic hydrocarbons Environmental health criteria. Vol. 202. International Programme on Chemical Safety, Geneva, Switzerland.

Willett, KL; Gardinali, PR; Sericano, JL; et al. (1997) Characterization of the H4IIE rat hepatoma cell bioassay for evaluation of environmental samples containing polynuclear aromatic hydrocarbons (PAHs). Arch Environ Contam Toxicol 32:442–448.

Williams, GM; Laspia, MF; Dunkel, VC. (1982) Reliability of the hepatocyte primary culture/DNA repair test in testing of coded carcinogens and noncarcinogens. Mutat Res 97:359–370.

Wislocki, PG; Bagan, ES; Lu, AY; et al. (1986) Tumorigenicity of nitrated derivatives of pyrene, benz[a]anthracene, chrysene and benzo[a]pyrene in the newborn mouse assay. Carcinogenesis 7:1317–1322.

Wood, AW; Chang, RL; Levin, W; et al. (1979) Mutagenicity and tumorigenicity of phenanthrene and chrysene epoxides and diol epoxides. Cancer Res 39:4069–4077.

Wood, AW; Levin, W; Chang, RL; et al. (1980) Mutagenicity and tumor-initiating activity of cyclopenta[c,d]pyrene and structurally related compounds. Cancer Res 40:642–649.

Wynder, EL; Hoffmann, D. (1959a) The carcinogenicity of benzofluoranthenes. Cancer 12:1194–1199.

Wynder, EL; Hoffmann, D. (1959b) A study of tobacco carcinogenesis: VII. The role of higher polycyclic hydrocarbons. Cancer 12:1079–1086.

Wynder, EL; Hoffmann, D. (1961) Carcinogenicity of dibenzo[a,1]pyrene. Nature 192:1092–1093.

Wynder, EL; Fritz, L; Furth, N. (1957) Effect of concentration of benzopyrene in skin carcinogenesis. J Natl Cancer Inst 19:361–370.

Xu, D; Penning, TM; Blair, IA; et al. (2009) Synthesis of phenol and quinine metabolites of benzo[a]pyrene, a carcinogenic component of tobacco smoke implicated in lung cancer. J Org Chem 74:597–604.

Xue, W; Warshawsky, D. (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206:73–93.

Yu, C; Xu, S; Chen, S; et al. (2002) Investigation of photobleaching of hypocrellin B in non-polar organic solvent and in liposome suspension. J Photochem Photobiol B 68:73–78.

Zijlstra, JA; Vogel, EW. (1984) Mutagenicity of 7,12-dimethylbenz[a]anthracene and some other aromatic mutagens in Drosophila melanogaster. Mutat Res 125:243–261.

APPENDIX A. SECONDARY SOURCES REVIEWED FOR IDENTIFICATION OF PRIMARY LITERATURE

ATSDR (Agency for Toxic Substances and Disease Registry). (1995) Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). Atlanta, GA, Agency for Toxic Substances and Disease Registry.

Bostrom, CC; Gerde, P; Hanberg, A; et al. (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110[Suppl. 3]:451–488.

CalEPA. (2002) Air toxics hot spots program risk assessment guidelines Part II: technical support document for describing available cancer potency factors. California Environmental Protection Agency, Office of Environmental Health Hazard Assessment.

CalEPA. (2004) No Significant Risk Levels (NSRLs) for the Proposition 65 carcinogens benzo[b]fluoranthene, benzo[j]fluoranthene, chrysene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, and 5-methyl chrysene by the oral route. California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, Reproductive and Cancer Hazard Assessment Section.

CCME. (2003) Canadian soil quality guidelines for potentially carcinogenic and higher molcular weight polycyclic aromatic hydrocarbons (environmental and human health aspects). Scientific Supporting Document. UMA Group Ltd. Victoria, British Columbia

Clement Associates. (1988) Comparative potency approach for estimating the cancer risk associated with exposure to mixtures of polycyclic aromatic hydrocarbons. Report No. 68-02-4403.

Clement Associates. (1990) Development of relative potency estimates for PAHs and hydrocarbon combustion product fractions compared to benzo[a]pyrene and their use in carcinogenic risk assessments. Draft Report, prepared for the U.S.EPA. September 30, 1990.

Collins, JF; Brown, JP; Alexeeff, GV; et al. (1998) Potency equivalency factors for some polycyclic aromatic hydrocarbon derivatives. Regul Toxicol Pharmacol 28:45–54.

Health Canada. (1994) Canadian Environmental Protection Act; Priority substances list assessment report: polycyclic aromatic hydrocarbons. Government of Canada, Environment Canada, Health Canada.

IARC (International Agency for Research on Cancer). (1983) Polynuclear aromatic compounds. Part 1. Chemical, environmental and experimental data. International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Vol 32. Lyon, France: World Health Organization.

IARC. (1984a) Polynuclear aromatic compounds. Part 2. Carbon black, mineral oils (lubricant base oils and derived products) and some nitroarenes. International Agency for Research on Cancer. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Lyon, France: World Health Organization; pp. 87–168.

IARC. (1984b) Polynuclear aromatic compounds. Part 3. Industrial exposures in aluminum production, coal gasification, coke production, and iron and steel founding. International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Lyon, France: World Health Organization; pp. 37–111.

IARC. (1985) Polynuclear aromatic compounds. Part 4. Bitumens, coal-tars and derived products, shale-oils and soots. International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Lyon, France: World Health Organization; pp. 65–159.

IARC. (1989) In: Occupational exposures in petroleum refining; crude oil and major petroleum fuels, Vol. 45. International Agency for Research on Cancer. Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Lyon, France: World Health Organization; pp. 239–270.

IARC. (1996) Printing processes and printing inks, carbon black and some nitro compounds. International Agency for Research on Cancer. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 65. World Health Organization: Lyon, France.

IPCS/WHO. (1998) Environmental health criteria 202. International Programme on Chemical Safety. Selected nonheterocyclic polycyclic aromatic hydrocarbons. Available online at http://www.inchem.org/documents/ehc/ehc202.htm.

Krewski, D; Thorslund, T; Withey, J. (1989) Carcinogenic risk assessment of complex mixtures. Toxicol Ind Health 5:851–867.

Larsen, JC; Larsen, PB. (1998) Chemical carcinogens. Air Pollution and Health. Cambridge, UK: The Royal Society of Chemistry; pp. 33–56.

Malcolm, HM; Dobson S. (1994) The calculation of an environmental assessment level (EAL) for atmospheric PAHs using relative potencies. Report No. DoE/HMIP/RR/94/041. London, Department of the Environment.

McClure, P; Shoeny, R. (1995) Evaluation of a component-based relative potency approach to cancer risk assessment for exposure to PAH. In: Fifteenth international symposium on polycyclic aromatic compounds: Chemistry, biology and environmental impact. Belgirate, Italy, 19-22 September 1995. Ispra, Joint Research Centre European Commission; pp. 161.

Meek, ME; Chan, PKL; Bartlett, S. (1994) Polycyclic aromatic hydrocarbons: evaluation of risks to health from environmental exposures in Canada. Environ Carcinog Ecotoxicol Rev C 12(2):443–452.

Muller, P. (1997) Scientific criteria document for multimedia standards development polycyclic aromatic hydrocarbons (PAH). Part 1: hazard identification and dose-response assessment. Ontario Ministry of Environment and Energy, Standards Development Branch. Ontario.

Nisbet, ICT; LaGoy, PK. (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300.

Petry, T; Schmid, P; Schlatter, C. (1996) The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere 32(4):639–648.

Rugen, PJ; Stern, CD; Lamm, SH. (1989) Comparative carcinogenicity of the PAHs as a basis for acceptable exposure levels (AELs) in drinking water. Regul Toxicol Pharmacol 9(3):273–283.

Schneider, K; Roller, M; Kalberlah, F; et al. (2002) Cancer risk assessment for oral exposure to PAH mixtures. J Appl Toxicol 22(1):73–83.

Sjogren, M; Ehrenberg, L; Rannug, U. (1996) Relevance of different biological assays in assessing initiating and promoting properties of polycyclic aromatic hydrocarbons with respect to carcinogenic potency. Mutat Res 358(1):97–112.

Slooff, W; Janus, JA; Matthijsen, AJCM; et al. (1989) Integrated criteria document PAHs (PDF includes addendum by Montizaan). Bilthoven, The Netherlands, National Institute of Public Health and the Environment (RIVM).

SRC (Syracuse Research Corporation). (1993) Estimating cancer risk from exposure to PAHs: a relative potency approach. SRC TR-93-045. Draft report prepared for U.S. EPA, Environmental Criteria and Assessment Office, Cincinnati, OH.

U.S. EPA (Environmental Protection Agency). (1990) Drinking water criteria document for polycyclic aromatic hydrocarbons. Cincinnati, Ohio, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office.

U.S. EPA. (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. Cincinnati, Ohio, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office.

1	APPENDIX B. BIBLIOGRAPHY OF STUDIES WITHOUT BENZO[A]PYRENE AS A
2	REFERENCE COMPOUND
3	
4	
5	

5 6

			Bioas	says with ber	nzo[a]pyrene					Bioassa	ys without be	enzo[a]pyren	e	
		De	rmal	Intra-	Sub-			1	De	rmal	Intra-	Sub-	1	
РАН	CASRN	Initiation	Complete	peritoneal	cutaneous	Oral	Other		Initiation	Complete	peritoneal	cutaneous	Oral	Other
Aceanthrylene	202-03-09													
Acenaphthene	83-32-9							1						
Acenaphthylene	208-96-8								-					
Acephenanthrylene	201-06-9								-					
Acepyrene, 2,3-	25732-74-5	х	х											
Anthanthrene	191-26-4	Х	Х				х	1	Х	Х				
Anthracene	120-12-7	х	Х		х				Х	Х	х	х	х	х
Benz[a]anthracene	56-55-3	х	Х	Х	Х	х	х	1	Х	Х	Х	Х	х	х
Benz[b]anthracene	92-24-9							1						
Benz[b,c]aceanthrylene, 11H-	202-94-8	х												
Benz[e]aceanthrylene	199-54-2													
Benz[j]aceanthrylene	202-33-5			Х				1	Х					
Benz[1]aceanthrylene	211-91-6	х						1						
Benzacenaphthylene	76774-50-0							1						
Benzo[a]fluoranthene	203-33-8								Х					
Benzo[a]fluorene	238-84-6 or 30777-18-5								x					
Benzo[a]perylene	191-85-5													
Benzo[b]chrysene	214-17-5								х					
Benzo[b]fluoranthene	205-99-2	х	х	х			х		х		х			x
11H-Benzo[b]fluorene	243-17-4 or 30777-19-6								x					
Benzolblpervlene	197-70-6												-	1
Benzo[c]chrysene	194-69-4												-	1
Benzo[c]fluorene	205-12-9 or 30777-20-9								x					
Benzo[c]phenanthrene	195-19-7								х	х	х	х		
Benzo[e]pyrene	192-97-2	х	х				х		х		х			
Benzo[g]chrysene	196-78-1								-					
Benzo[g,h,i]fluoranthene	203-12-3	х	х						-					
Benzo[g,h,i]perylene	191-24-2	х	х				х		х					1
Benzo[j]fluoranthene	205-82-3	Х	х	Х			х		х		х			х
Benzo[k]fluoranthene	207-08-9	х	х	х			х		х					
Benzophenanthrene	65777-08-4													
Chrysene	218-01-9	х	х	Х	Х		х		Х	Х	Х	Х		
Coronene	191-07-1		Х						Х					
Cyclopenta[c,d]pyrene	27208-37-3	х	Х	Х							Х			
Cyclopenta[d,e,f]chrysene, 4H-	202-98-2	х						1			Х			
Cyclopenta[d,e,f]phenanthrene, 4H-	203-64-5													
Cyclopenta[h,i]acephenanthrylene	114959-37-4							1						Γ

Table B-1. Bioassays with and without benzo[a]pyrene by PAH

			Bioas	says with ber	zo[a]pyrene					Bioassa	ys without b	enzo[a]pyren	e	
		De	rmal	Intra-	Sub-				Der	rmal	Intra-	Sub-		
РАН	CASRN	Initiation	Complete	peritoneal	cutaneous	Oral	Other		Initiation	Complete	peritoneal	cutaneous	Oral	Other
Cyclopenta[h,i]aceanthrylene	131581-33-4													
Cyclopentaphenanthrene	219-08-9													
Cyclopenteno-1,2-benzanthracene, 5,6-	7099-43-6											х		
Dibenz[a,c]anthracene	215-58-7	Х	Х						х	Х	Х	х		
Dibenzo[a,e]fluoranthene	5385-75-1	Х	Х						Х					
Dibenz[a,j]anthracene	224-41-9								Х					
Dibenzo[b,e]fluoranthene	2997-45-7													
Dibenzo[a,c]fluorene, 13H-	201-65-0													
Dibenzo[a,e]pyrene	192-65-4	Х	Х						х					
Dibenzo[a,f]fluoranthene	203-11-2	Х	Х						х	Х				
Dibenzo[a,g]fluorene, 13H-	207-83-0									Х				
Dibenz[a,h]anthracene	53-70-3	Х	Х	Х	х	х	х		х	Х	Х	Х	х	х
Dibenzo[a,h]pyrene	189-64-0	Х	Х						Х		Х			
Dibenzo[a,i]pyrene	189-55-9	Х	Х						х	Х	Х	Х		х
Dibenzo[a,l]pyrene	191-30-0	х	х	х					Х	Х	Х	х	х	
Dibenzo[e,l]pyrene	192-51-8	х	х											
Dibenzo[h,rst]pentaphene	192-47-2													
Dibenz[k,mno]acephenanthrylene	153043-81-3													
Dibenzo[j,mno]acephenanthrylene	153043-82-4													
Dihydroaceanthrylene, 1,2-	641-48-5											Х		
Fluoranthene	206-44-0	Х	Х	Х							Х			х
Fluorene	86-73-7								х	х				
Indeno[1,2,3-c,d]fluoranthene	193-43-1													
Indeno[1,2,3-c,d]pyrene	193-39-5	х	Х	Х			х		х					
Naphtho[1,2-b]fluoranthene	111189-32-3								х					
Naphtho[1,2,3,-mno]acephenanthrylene	113779-16-1													
Naphtho[2,1-a]fluoranthene	203-20-3								х					
Naphtho[2,3-a]pyrene	196-42-9													
Naphtho[2,3-e]pyrene	193-09-9	х	Х											
Pentacene	135-48-8													
Pentaphene	222-93-5													
Perylene	198-55-0	Х	Х						х					
Phenanthrene	85-01-8	Х	Х	Х	х	х	х		х	Х	х	х		х
Picene	213-46-7								Х	х	Х	Х		
Pyrene	129-00-0	х	х	Х			х		х					х
Tribenzofluoranthene 3,4-10,11-12,13-	13579-05-0]						
Triphenylene	217-59-4		Х											

Table B-1. Bioassays with and without benzo[a]pyrene by PAH

PAHs in bold have at least one bioassay without BaP and no bioassays with BaP.

B.1. BIBLIOGRAPHY OF BIOASSAYS WITHOUT BENZO[A]PYRENE

Amin, S; Huie, K; Hecht, SS; (1985) Mutagenicity and tumor-initiating activity of methylated benzo[b]fluoranthenes. Carcinogenesis 6:1023–1025.

Amin, S; Hussain, N; Balanikas, G; et al. (1985) Mutagenicity and tumor initiating activity of methylated benzo[k] fluoranthenes. Cancer Lett 26:343–347.

Amin, S; Misra, B; Braley, J; et al. (1991) Comparative tumorigenicity in newborn mice of chrysene and 5-alkylchrysene-1,2-diol-3,4-epoxides. Cancer Lett 58:115–118.

Amin, S; Weyand, EH; Huie, K; et al. (1991) Effects of fluorine substitution on benzo[b]fluoranthene tumorgenicity and DNA adduct formation in mouse skin. In: Cooke, M; Loening, K; Merritt, J, eds. Polynuclear aromatic hydrocarbons: Measurements, means and metabolism. Columbus, OH, Battelle Press pp. 25–35.

Amin, S; Desai, D; Dai, W; et al. (1995) Tumorigenicity in newborn mice of fjord region and other sterically hindered diol epoxides of benzo[g]chrysene, dibenzo[a,l]pyrene (dibenzo[def,p]chrysene), 4H-cyclopenta[def]chrysene and fluoranthene. Carcinogenesis 16:2813–2817.

Barry, G; Cook, CW; Amin, S; et al. (1934) A comparison of the action of some polycyclic aromatic hydrocarbons in producing tumours of connective tissue. Am J Cancer 20:58–69.

Bhatt, TS; Coombs, MM. (1990) The carcinogenicity of cyclopenta[a]phenanthrene and chrysene derivatives in the Sencar mouse. Polycyclic Aromat Compd 1:51–58.

Bock, FG; King, DW. (1959) A study of the sensitivity of the mouse forestomach toward certain polycyclic hydrocarbons. J Natl Cancer Inst 23:833–838.

Bottomley, AC; Twort, CC. (1934) The carcinogenicity of chrysene and oleic acid. Am J Cancer 21:781–786.

Boyland, E; Burrows, H. (1935) The experimental production of sarcoma in rats and mice by a colloidal aqueous solution of 1:2:5:6-dibenzanthracene. J Pathol Bacteriol 41:231–238.

Boyland, E; Sims, P. (1967) The carcinogenic activities in mice of compounds related to benz[a]anthracene. Int J Cancer 2:500–504.

Buening, MK; Levin, W; Karle, JM; et al. (1979) Tumorigenicity of bay-region epoxides and other derivatives of chrysene and phenanthrene in newborn mice. Cancer Res 39:5063–5068.

Buening, MK; Levin, W; Wood, A; et al. (1979) Tumorigenicity of the dihydrodiols of dibenz[a,h]anthracene on mouse skin and in newborn mice. Cancer Res 39:1310–1314.

Buters, JT; Mahadevan, B; Quintanilla-Martinez, L; et al. (2002) Cytochrome P450 1B1 determines susceptibility to dibenzo[a,l]pyrene-induced tumor formation. Chem Res Toxicol 15:1127–1135.

Cavalieri, EL; Rogan, EG; Higginbotham, S; et al. (1989) Tumor-initiating activity in mouse skin and carcinogenicity in rat mammary gland of dibenzo[a]pyrenes: the very potent environmental carcinogen dibenzo[a, l]pyrene. J Cancer Res Clin Oncol 115:67–72.

Chang, RL; Levin, W; Wood, AW; et al. (1981) Tumorigenicity of the diastereomeric bay-region benzo[e]pyrene 9,10-diol-11,12-epoxides in newborn mice. Cancer Res 41:915–918.

Chang, RL; Levin, W; Wood, AW; et al. (1982) Tumorigenicity of bay-region diol-epoxides and other benzo-ring derivatives of dibenzo[a,h]pyrene and dibenzo[a,i]pyrene on mouse skin and in newborn mice. Cancer Res 42:25–29.

B-4

Chang, RL; Levin, W; Wood, AW; et al. (1983) Tumorigenicity of enantiomers of chrysene 1,2-dihydrodiol and of the diastereomeric bay-region chrysene 1,2-diol-3,4-epoxides on mouse skin and in newborn mice. Cancer Res 43:192–196.

Chouroulinkov, I; Coulomb, H; MacNicoll, AD; et al. (1983) Tumour-initiating activities of dihydrodiols of dibenz[a,c]anthracene. Cancer Lett 19:21–26.

Danz, M; Hartmann, A; Otto, M; et al. (1991) Hitherto unknown additive growth effects of fluorene and 2-acetylaminofluorene on bile duct epithelium and hepatocytes in rats. Arch Toxicol Suppl 14:71–74.

Flesher, JW; Horn, J; Lehner, AF. (2002) Comparative carcinogenicity of picene and dibenz[a,h]anthracene in the rat. Biochem Biophys Res Commun 290:275–279.

Forbes, PD; Davies, RE; Urbach, F. (1976) Phototoxicity and photocarcinogenesis: Comparative effects of anthracene and 8-methoxypsoralen in the skin of mice. Food Cosmet Toxicol 14:303–306.

Geddie, JE; Amin, S; Huie, K; et al. (1987) Formation and tumorigenicity of benzo[b]fluoranthene metabolites in mouse epidermis. Carcinogenesis 8:1579–1584.

Gill, HS; Kole, PL; Wiley, JC; et al. (1994) Synthesis and tumor-initiating activity in mouse skin of dibenzo[a,l]pyrene syn- and anti-fjord-region diolepoxides. Carcinogenesis 15:2455–2460.

Hecht, SS; LaVoie, E; Amin, S; et al. (1980) On the metabolic activation of the benzofluoranthenes. Polynucl Arom Hydrocarb 417–433.

Hecht, SS; LaVoie, EJ; Bedenko, V; et al. (1981a) On the metabolic activation of dibenzo[a,i]pyrene and dibenzo [a,h]pyrene. Chem Analy & Biol Fate: Polynucl Arom Hydrocarb 43–45.

Hecht, SS; LaVoie, EJ; Bedenko, V; et al. (1981b) Reduction of tumorigenicity and of dihydrodiol formation by fluorine substitution in the angular rings of dibenzo[a,i]pyrene. Cancer Res 41:4341–4345.

Hecht, SS; Amin, S; Lin, JM; et al. (1995) Mammary carcinogenicity in female CD rats of a diol epoxide metabolite of fluoranthene, a commonly occurring environmental pollutant. Carcinogenesis 16:1433–1435.

Hecht, SS; Rivenson, A; Amin, S; et al. (1996) Mammary carcinogenicity of diol epoxide metabolites of benzo[j]fluoranthene in female CD rats. Cancer Lett 106:251–255.

Hermann, M. (1981) Synergistic effects of individual polycyclic aromatic hydrocarbons on the mutagenicity of their mixtures. Mutat Res 90:399–409.

Hill, WT; Stanger, DW; Pizzo, A; et al. (1951) Inhibition of 9,10-dimethyl-1,2-benzanthracene skin carcinogenesis in mice by polycyclic hydrocarbons. Cancer Res 11:892–897.

Homburger, F; Treger, A. (1970) Transplantation technique for acceleration of carcinogenesis by benz[a]anthracene or 3,4,9,10-dibenzpyrene. J Natl Cancer Inst 44:357–360.

Homburger, F; Treger, A; Boger, E. (1971) Inhibition of murine subcutaneous and intravenous benzo[rst]pentaphene. Carcinogenesis by sweet orange oils and d-limonene. Oncology 25:1–10.

Jerina, DM; Sayer, JM; Yagi, H; et al. (1981) Highly tumorigenic bay-region diol epoxides from the weak carcinogen benzo[c]phenanthrene. Adv Exp Med Biol 136 Pt A:501–523.

Johnson, S. (1968) Effect of thymectomy on the induction of skin tumours by dibenzanthracene, and of breast tumours by dimethylbenzanthracene in mice of the IF strain. Br J Cancer 22:755–761.

Klein, M. (1952) Effect of croton oil on induction of tumors by 1,2-benzanthracene, deoxychloric or low doses of 20-methylcholanthrene in mice. J Nat1 Cancer Inst 13:333–341.

Klein, M. (1960) A comparison of the initiating and promoting actions of 9,10-dimethyl-1,2-benzanthracene and 1,2,5,6-dibenzanthracene in skin tumorigenesis. Cancer Res 20:1179–1183.

Klein, M. (1963) Susceptibility of strain B6AF1/J hybrid infant mice to tumorigenesis with 1,2-benzanthracene, deoxycholic acid, and 3-methylcholanthrene. II. Tumours called forth by painting the skin with dibenzpyrene. Cancer Res 23:1701–1707.

Kouri, RE; Connolly, GM; Nebert, DW; et al. (1983) Association between susceptibility to dibenzanthracene induced fibrosarcoma formation and the Ah locus. Int J Cancer 32:765–768.

Lacassagne, A; Buu-Hoi, NP; Zajdela, F; et al. (1968) The true dibenzo[a,l]pyrene, a new, potent carcinogen. Naturwissenschaften 55:43.

LaVoie, EJ; Tulley L; Bedenko, V; et al. (1980) Mutagenicity, tumor initiating activity, and metabolism of tricyclic polynuclear aromatic hydrocarbons. In: Bjorseth, A; Dennis, AJ, eds. Polynuclear aromatic hydrocarbons: Chemistry and biological effects. Columbus, OH: Battelle Press; pp. 1041–1057.

LaVoie, EJ; Tulley-Freiler, L; Bedenko, V; et al. (1981) Comparative studies on the tumor initiating activity and metabolism of methylfluorenes and methylbenzofluorenes. In: Cooke, M; Dennis, AJ, eds. Chemical analysis and biological fate: Polynuclear hydrocarbons. Columbus, OH: Battelle Press; pp. 417–427.

LaVoie, EJ; Coleman, DT; Tonne, RL; et al. (1983) Mutagenicity, tumor initiating activity and metabolism of methylated anthracenes. In: Cooke, M; Dennis, AJ, eds. Proceedings of the Seventh International Symposium. Columbus, OH: Battelle Press pp. 785–798.

LaVoie, EJ; Cai, ZW; Meegalla, RL; et al. (1993a) Evaluation of the tumor-initiating activity of 4-, 5-, 6-, and 7-fluorobenzo[b]fluoranthene in mouse skin. Chem Bio Interact 89:129–139.

LaVoie, EJ; He, ZM; Meegalla, RL; et al. (1993b) Exceptional tumor-initiating activity of 4-fluorobenzo[j]-fluoranthene on mouse skin: comparison with benzo[j]-fluoranthene, 10-fluoro-benzo[j]fluoranthene, benzo[a]pyrene, dibenzo[a,l]pyrene and 7,12-dimethylbenz[a]anthracene. Cancer Lett 70:7–14.

LaVoie, EJ; He, ZM; Wu, Y; et al. (1994) Tumorigenic activity of the 4,5- and 9,10-dihydrodiols of benzo[j]fluoranthene and their syn- and anti-diol epoxides in newborn mice. Cancer Res 54:962–968.

Levin, W; Wood, AW; Chang, RL; et al. (1978) Evidence for bay region activation of chrysene 1,2-dihydrodiol to an ultimate carcinogen. Cancer Res 38:1831–1834.

Levin, W; Wood, AW; Chang, RL; et al. (1980) Exceptionally high tumor-initiating activity of benzo[c]phenanthrene bay-region diol-epoxides on mouse skin. Cancer Res 40:3910–3914.

Levin, W; Chang, RL; Wood, AW; et al. (1984) High stereoselectivity among the optical isomers of the diastereomeric bay-region diolepoxides of benz[a]anthracene in the expression of tumorigenic activity in murine tumor models. Cancer Res 44:929–933.

Levin, W; Chang, RL; Wood, AW; et al. (1986) Tumorigenicity of optical isomers of the diastereomeric bay-region 3,4-diol-1,2-epoxides of benzo[c]phenanthrene in murine tumor models. Cancer Res 46:2257–2261.

Lijinsky, W; Garcia, H. (1972) Skin carcinogenesis tests of hydrogenated derivatives of anthanthrene and other polynuclear hydrocarbons. Z Krebsforsch 77:226–230.

Lijinsky, WH; Garcia, B; Terrracini, B. (1965) Tumorigenic activity of hydrogenated derivatives of dibenz[a,h]anthracene. J Natl Cancer Inst 34:1–6.

Lijinsky, W; Garcia, H; Saffiotti, U. (1970) Structure-activity relationships among some polynuclear hydrocarbons and their hydrogenated derivatives. J Natl Cancer Inst 44:641–649.

Lorenz, E; Stewart, HL. (1947) Tumors of the alimentary tract induced in mice by feeding olive oil emulsions containing carcinogenic hydrocarbons. J Natl Cancer Inst 7:227–238.

Lorenz, E; Stewart, HL. (1948) Tumors of alimentary tract in mice fed carcinogenic hydrocarbons in mineral-oil emulsions. J Natl Cancer Inst 9:173–180.

Lubet, RA; Connolly, GM; Nebert, DW; et al. (1983) Dibenz[a,h]anthracene-induced subcutaneous tumors in mice. Strain sensitivity and the role of carcinogen metabolism. Carcinogenesis 4:513–517.

Malament, DS; Shklar, G. (1981) Inhibition of DMBA carcinogenesis of hamster buccal pouch by phenanthrene and dimethylnaphthalene. Carcinogenesis 2:723–729.

Mass, MJ; Abu-Shakra, A; Roop, BC; et al. (1996) Benzo[b]fluoranthene: tumorigenicity in strain A/J mouse lungs, DNA adducts and mutations in the Ki-ras oncogene. Carcinogenesis 17:1701–1704.

Nakatsuru, Y; Wakabayashi, K; Fujii-Kuriyama, Y; et al. (2004) Dibenzo[a,l]pyrene-induced genotoxic and carcinogenic responses are dramatically suppressed in aryl hydrocarbon receptor-deficient mice. Int J Cancer 112:179–183.

Nesnow, S; Gold, A; Sangaiah, R; et al. (1993) Mouse skin tumor-initiating activity of benz[j]aceanthrylene in SENCAR mice. Cancer Lett 73:73–76.

Nesnow, S; Ross, JA; Nelson, G; et al. (1994) Cyclopenta[cd]pyrene-induced tumorigenicity, Ki-ras codon 12 mutations and DNA adducts in strain A/J mouse lung. Carcinogenesis 15:601–606.

O'Gara, RW; Kelly, MG; Brown, J; et al. (1965) Induction of tumors in mice given a minute single dose of dibenz[a,h]anthracene or 3-methylcholanthrene as newborns: A dose-response study. J Natl Cancer Inst 35(6):1027–1042.

Platt, KL; Pfeiffer, EH; Glatt, HR; et al. (1983) Bacterial mutagenicity and carcinogenicity of potential metabolites of dibenz[a,h]anthracene. J Cancer Res Clin Oncol 105:A23.

Platt, KL; Pfeiffer, E; Petrovic, P; et al. (1990) Comparative tumorigenicity of picene and dibenz[a,h]anthracene in the mouse. Carcinogenesis 11:1721–1726.

Platt, KL; Dienes, HP; Tommasone, M; et al. (2004) Tumor formation in the neonatal mouse bioassay indicates that the potent carcinogen dibenzo[def,p]chrysene (dibenzo[a,l]pyrene) is activated in vivo via its trans-11,12-dihydrodiol. Chem Biol Interact 148:27–36.

Pollia, JA. (1939) Investigations on the possible carcinogenic effect of anthracene and chrysene and some of their compounds. I. The effect of skin painting on the skin of mice. J Ind Hyg Toxicol 23:449–451.

Pollia, JA. (1941) Investigation on the possible carcinogenic effect of anthracene and chrysene and some of their compounds. II. The effect of subcutaneous injection in rats. J Ind Hyg Toxicol 223:449–451.

Prahalad, AK; Ross, JA; Nelson, GB; et al. (1997) Dibenzo[a,l]pyrene-induced DNA adduction, tumorigenicity, and Ki-ras oncogene mutations in strain A/J mouse lung. Carcinogenesis 18:1955–1963.

Ranadive, KJ; Karande, KA. (1963) Studies on 1,2,5,6-dibenzanthracene-induced mammary carcinogenesis in mice. Br J Cancer 17:272–280.

Rice, JE; Coleman, DT; Hosted, TJJ; et al. (1985) On the metabolism, mutagenicity, and tumor-initiating activity of indeno[1,2,3-cd]pyrene. pp. 1097–1109.

Rice, JE; Hosted, TJ Jr; DeFloria, MC; et al. (1986) Tumor-initiating activity of major in vivo metabolites of indeno[1,2,3-cd]pyrene on mouse skin. Carcinogenesis 7:1761–1764.

Rice, JE; Weyand, EH; Geddie, NG; et al. (1987) Identification of tumorigenic metabolites of benzo[j]fluoranthene formed in vivo in mouse skin. Cancer Res 47:6166–6170.

Rice, JE; Weyand, EH; Burrill, C; et al. (1990) Fluorine probes for investigating the mechanism of activation of indeno[1,2,3-cd]pyrene to a tumorigenic agent. Carcinogenesis 11:1971–1974.

Riegel, B; Watman, WB; Hill, WT. (1951) Delay of methylcholanthrene skin carcinogenesis in mice by 1,2,5,6-dibenzofluorene. Cancer Res 11:301–306.

Salaman, MH; Roe, FJC. (1956) Further tests for tumour-initiating activity: N,N-di(2-chloroethyl)paminophenylbutic acid (CB1348) as an initiator of skin tumour formation in the mouse. Br J Cancer 10:363–378.

Sardella, DJ; Boger, E; Ghoshal, PK. (1981) Active sites in hexacyclic carcinogens probed by the fluorine substitution methodology. Columbus, OH: Battelle Press; pp. 529–538.

Schmähl, D. (1955) [Testing of naphthalene and anthracene for carcinogenic effects in rats.] (in German). Z Krebsforsch 60:697–710.

Schoental, R. (1959) Carcinogenic activity of 3:4:9:10-dibenzopyrene. Acta Unio Int Contra Cancrum 15:216-219.

Schoket, B; Hewer, A; Grover, PL; et al. (1988) Covalent binding of components of coal-tar, creosote and bitumen to the DNA of the skin and lungs of mice following topical application. Carcinogenesis 9:1253–1258.

Scribner, JD. (1973) Brief communication: Tumor initiation by apparently noncarcinogenic polycyclic aromatic hydrocarbons. J Natl Cancer Inst 50:1717–1719.

Sellakumar, A; Shubik, P. (1974) Carcinogenicity of different polycyclic hydrocarbons in the respiratory tract of hamsters. J Natl Cancer Inst 53:1713–1719.

Shear, MJ. (1938) Studies in carcinogenesis. V. Methyl derivatives of 1,2-benzanthracene. Am J Cancer 33:499–537.

Shear, MJ; Leiter, J. (1941) Studies in carcinogenesis. XVI. Production of subcutaneous tumors in mice by miscellaneous polycyclic compounds. J Natl Cancer Inst 2:241–259.

Siebert, D; Marquardt, H; Friesel, H; et al. (1981) Polycyclic aromatic hydrocarbons and possible metabolites: Convertogenic activity in yeast and tumor initiating activity in mouse skin. J Cancer Res Clin Oncol 102:127–139.

Slaga, TJ; Gleason, GL; Mills, C; et al. (1980) Comparison of the tumour-initiating activities of dihydrodiols and diol-epoxides of various polycyclic aromatic hydrocarbons. Cancer Res 40:1981–1984.

Snell, KC; Stewart, HL. (1962) Pulmonary adenomatosis induced in DBA/2 mice by oral administration of dibenz(a,h]anthracene. J Natl Cancer Inst 28:1043–1049.

Snell, KC; Stewart, HL. (1963) Induction of pulmonary adenomatoses in DBA/2 mice by the oral administration of dibenz[a,h]anthracene. Acta Un Int Cancer 19:692–694.

Stanton, MF; Miller, E; Wrench, C; et al. (1972) Experimental induction of epidermoid carcinoma in the lungs of rats by cigarette smoke condensate. J Nat1 Cancer Inst 49:867–877.

Steiner, PE; Edgcomb, JH. (1952) Carcinogenicity of 1,2-benzanthracene. Cancer Res 12:657-659.

Steiner, PF; Falk, HL. (1951) Summation and inhibition effects of weak and strong carcinogenic hydrocarbons: 1:2-Benzanthracene, chrysene, 1:2:5:6-dibenzanthracene, and 20-methylcholanthrene. Cancer Res 11:56–63.

Stenbk, F; Sellakumar, A. (1974) Lung tumor induction by dibenz(a,i]pyrene in the Syrian golden hamster. Z Krebsforsch 82:175–182.

B-8

Stevenson, JL; Von Haam, E. (1965) Carcinogenicity of benz[a]anthracene and benzo[c]phenanthrene derivatives. Am Ind Hyg Assoc J 26:475–478.

Tawfic, HN. (1965) Studies on ear duct tumors in rats. Part II: Inhibitory effect of methylcholanthrene and 1,2-benzanthracene on tumor formation by 4-dimethylamino-stilbene. Acta Pathol Jpn 15:255–260.

Van Duuren, BL; Langseth, L; Goldschmidt, BM. (1967) Carcinogenicity of epoxides, lactones and peroxy compounds: VI. Structure and carcinogenic activity. J Nat1 Cancer Inst 39:1217–1227.

Van Duuren, BL; Sivak, A; Langseth, L; et al. (1968) Initiators and promoters in tobacco carcinogenesis. Natl Cancer Inst Monogr 28:173–180.

Van Duuren, BL; Sivak, A; Goldschmidt, BM; et al. (1970) Initiating activity of aromatic hydrocarbons in two-stage carcinogenesis. J Natl Cancer Inst 44:1167–1173.

Vulimiri, SV; Baer-Dubowska, W; Harvey, RG; et al. (1999) Analysis of highly polar DNA adducts formed in SENCAR mouse epidermis following topical application of dibenz[a,j]anthracene. Chem Res Toxicol 12:60–67.

Wang, JS; Busby, WF. Jr. (1993) Induction of lung and liver tumors by fluoranthene in a preweanling CD-1 mouse bioassay. Carcinogenesis 14:1871–1874.

Waravdekar, SS; Ranadive, KJ. (1958) Biologic testing of 3,4,9,10-dibenzpyrene. J Natl Cancer Inst 21:1151–1159.

Weyand, EH; Amin, S; Huie, K; et al. (1989) Effects of fluorine substitution on the DNA binding and tumorigenicity of benzo[b]fluoranthene in mouse epidermis. Chem Biol Interact 71:279–290.

Weyand, EH; Patel, S; LaVoie, EJ; et al. (1990) Relative tumor initiating activity of benzo[a]fluoranthene, benzo[b]fluoranthene, naphtho[1,2-b]fluoranthene and naphtho[2,1-a]fluoranthene on mouse skin. Cancer Lett 52:229–233.

Weyand, EH; Cai, ZW; Wu, Y; et al. (1993) Detection of the major DNA adducts of benzo[b]fluoranthene in mouse skin: role of phenolic dihydrodiols. Chem Res Toxicol 6:568–577.

White, FR; Eschenbrenner, AB. (1945) Note on the occurrence of hepatomas in rats following the ingestion of 1,2-benzoanthracene. J Natl Cancer Inst 6:19–21.

Wislocki, PG; Buening, MK; Levin, W; et al. (1979) Tumorigenicity of the diastereomeric benz[a]anthracene 3,4-diol-1,2-epoxides and the (+)-and (-)-enantiomers of benz [a]anthracene 3,4-dihydrodiol in newborn mice. J Natl Cancer Inst 63:201–204.

Wodinsky, I; Helinski, A; Kensler, CJ. (1964) Susceptibility of Syrian hamsters to induction of fibrosarcomas with a single injection of 3,4,9,10-dibenzpyrene. Nature 203:308–309.

Wood, AW; Chang, RL; Levin, W; et al. (1979) Mutagenicity and tumorigenicity of phenanthrene and chrysene epoxides and diol epoxides. Cancer Res 39:4069–4077.

Wynder, EL.; Hoffmann, D. (1961) Carcinogenicity of dibenzo (a,1]pyrene. Nature 192:1092–1093.

Zajdela, F; Perin-Roussel, O; Saguem, S. (1987) Marked differences between mutagenicity in Salmonella and tumour-initiating activities of dibenzo[a,e]fluoranthene proximate metabolites; initiation inhibiting activity of norharman. Carcinogenesis 8:461–464.

B.2. BIBLIOGRAPHY OF STUDIES ON CANCER-RELATED ENDPOINTS WITHOUT BENZO[A]PYRENE

Abe, S; Sasaki, M. (1977) Studies on chromosomal aberrations and sister chromatid exchanges induced by chemicals. Proc Jpn Acad 53:46–49.

Agarwal, SK; Sayer, JM; Yeh, HJC; et al. (1987) Chemical characterization of DNA adducts derived from the configurationally isomeric benzo[c]phenanthrene-3,4-diol 1,2-epoxides. J Am Chem Soc 109:2497–2504.

Agarwal, R; Canella, KA; Yagi, H; et al. (1996) Benzo[c]phenanthrene-DNA adducts in mouse epidermis in relation to the tumorigenicities of four configurationally isomeric 3,4-dihydrodiol 1,2-epoxides. Chem Res Toxicol 9:586–592.

Agarwal, R; Coffing, SL; Baird, WM; et al. (1997) Metabolic activation of benzo[g]chrysene in the human mammary carcinoma cell line MCF-7. Cancer Res 57:415–419.

Amin, S; Desai, D; Hecht, SS. (1993) Tumor-initiating activity on mouse skin of bay region diol-epoxides of 5,6-dimethylchrysene and benzo[c]phenanthrene. Carcinogenesis 14:2033–2037.

Arif, JM; Gupta, RC. (1997) Microsome-mediated bioactivation of dibenzo[a,l]pyrene and identification of DNA adducts by 32P-postlabeling. Carcinogenesis 18:1999–2007.

Arif, JM; Smith, WA; Gupta, RC. (1999) DNA adduct formation and persistence in rat tissues following exposure to the mammary carcinogen dibenzo[a,l]pyrene. Carcinogenesis 20:1147–1150.

Ayrton, AD; McFarlane, M; Walker, R; et al. (1990) Induction of the P-450 I family of proteins by polycyclic aromatic hydrocarbons: possible relationship to their carcinogenicity. Toxicology 60:173–186.

Babson, JR; Russo-Rodriguez, SE; Rastetter, WH; et al. (1986) In vitro DNA-binding of microsomally-activated fluoranthene: evidence that the major product is a fluoranthene N2-deoxyguanosine adduct. Carcinogenesis 7, 859–65.

Babson, JR; Russo-Rodriguez, SE; Wattley, RV; et al. (1986) Microsomal activation of fluoranthene to mutagenic metabolites. Toxicol Appl Pharmacol 85:355–366.

Baer-Dubowska, W; Nair, RV; Cortez, C; et al. (1995) Covalent DNA adducts formed in mouse epidermis from dibenz[a,j]anthracene: evidence for the formation of polar adducts. Chem Res Toxicol 8:292–301.

Ball, LM; Warren, SH; Sangaiah, R; et al. (1989) Bacterial mutagenicity of new cyclopenta-fused cata-annelated polycyclic aromatic hydrocarbons, and identification of the major metabolites of benz[j]acephenanthrylene formed by Aroclor-treated rat liver microsomes. Mutat Res 224:115–25.

Barfknecht, TR: Andon, BM: Thilly, WG; et al. (1981) Soot and mutation in bacteria and human cells. In: Cooke, M; Dennis, AJ, eds. Chemical Analysis and Biological Fate: Polynuclear Aromatic Hydrocarbons. pp. 231–242.

Barrai, I; Barale, R; Scapoli, C; et al. (1992) The analysis of the joint effect of substances on reversion systems and the assessment of antimutagenicity. Mutat Res 267:173–182.

Barratt, RW; Tatum, EL (1958) Carcinogenic mutagens. Ann NY Acad Sci 71:1072–1084.

Bartczak, AW; Sangaiah, S; Ball, LM; et al. (1987) Synthesis and bacterial mutagenicity of the cyclopenta oxides of the four cyclopenta-fused isomers of benzanthracene. Mutagenesis 2:101–105.

Basler, A; Herbold, B; Peter, S; et al. (1977) Mutagenicity of polycyclic hydrocarbons. II. Monitoring genetical hazards of chrysene in vitro and in vivo. Mutat Res 48:249–254.

Baum, M; Amin, S; Guengerich, FP; et al. (2001) Metabolic activation of benzo[c]phenanthrene by cytochrome P450 enzymes in human liver and lung. Chem Res Toxicol 14:686–693.

Beach, AC; Gupta, RC. (1991) Analysis of cyclopenta[CP)-fused and 'pseudo-CP' polycyclic aromatic hydrocarbon (PAH)-DNA adducts by 32P-postlabeling. Proc Am Assoc Cancer Res 32:98.

Beach, AC; Gupta, RC. (1994) DNA adducts of the ubiquitous environmental contaminant cyclopenta[cd]pyrene. Carcinogenesis 15:1065–1072.

Beach, AC; Agarwal, SC; Lamberg, GR; et al. (1993) Reaction of cyclopenta (c,d]pyrene-3,4-epoxide with DNA and desoxynucleotides. Carcinogenesis 14:767–771.

Bos, RP; Prinsen, WJ; van Rooy, JG; et al. (1987) Fluoranthene, a volatile mutagenic compound, present in creosote and coal tar. Mutat Res 187:119–125.

Boutwell, RK. (1989) Model systems for defining initiation, promotion, and progression of skin neoplasms. Prog Clin Biol Res 298:3–15.

Bryant, MF; Kwanyuen, P; Atwater, AL; et al. (1991) Cytogenetic effects of benzo-b-fluoranthene in Sprague-Dawley rat peripheral blood lymphocytes after in vivo exposure (Abstract 33). Environ Mol Mutag 17 (suppl 19):13.

Bu-Abbas, A; Ioannides, C; Walker, R. (1994) Evaluation of the antimutagenic potential of anthracene: in vitro and ex vivo studies. Mutat Res 309:101–107.

Budunova, IV; Mittleman, LA; Safaev, RD; et al. (1993) The carcinogen benzo[e]pyrene is metabolized by DM15 cells without an uncoupling effect on their gap junctions. Cell Biol Toxicol 9:131–140.

Carmichael, PL; Platt, KL; She, MN; et al. (1993) Evidence for the involvement of a bis-diol-epoxide in the metabolic activation of dibenz[a,h]anthracene to DNA-binding species in mouse skin. Cancer Res 53:944–948.

Cary, PD; Turner, CH; Cooper, CS; et al. (1980) Metabolic activation of benz[a]anthracene in hamster embryo cells: the structure of a guanosine-anti-BA-8,9-diol 10,11-oxide adduct. Carcinogenesis 1:505–512.

Casale, GP; Higginbotham, S; Johansson, SL; et al. (1997) Inflammatory response of mouse skin exposed to the very potent carcinogen dibenzo[a,l]pyrene: a model for tumor promotion. Fundam Appl Toxicol 36:71–78.

Casto, BC. (1973) Enhancement of adenovirus transformation by treatment of hamsters with ultraviolet irradiation, DNA base analogs, and dibenz(a,h]anthracene. Cancer Res 33:402–407.

Chakravarti, D; Mailander, P; Franzen, J; et al. (1998) Detection of dibenzo[a,l]pyrene-induced H-ras codon 61 mutant genes in preneoplastic Sencar mouse skin using a new PCR-RFLP method. Oncogene 16:3203–3210.

Chakravarti, D; Mailander, PC; Cavalieri, EL; et al. (2000) Evidence that error-prone DNA repair converts dibenzo[a,l]pyrene-induced depurinating lesions into mutations: formation, clonal proliferation and regression of initiated cells carrying H-ras oncogene mutations in early preneoplasia. Mutat Res 456:17–32.

Chaloupka, K; Santostefano, M; Goldfarb, IS; et al. (1994) Aryl hydrocarbon (Ah) receptor-independent induction of Cyp1a2 gene expression by acenaphthylene and related compounds in B6C3F1 mice. Carcinogenesis 15:2835–2840.

Chiarelli, MP; Chang, HF; Olsen, KW; et al. (2003) Structural differentiation of diastereomeric benzo[ghi]fluoranthene adducts of deoxyadenosine by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and postsource decay. Chem Res Toxicol 16:1236–1241.

Chroust, K; Jowett, T; Farid-Wajidi, MF; et al. (2001) Activation or detoxification of mutagenic and carcinogenic compounds in transgenic Drosophila expressing human glutathione S-transferase. Mutat Res 498:169–179.

Cizmas, L; Zhou, GD; Safe, SH; et al. (2004) Comparative in vitro and in vivo genotoxicities of 7H-benzo[c]fluorene, manufactured gas plant residue (MGP), and MGP fractions. Environ Mol Mutagen 43:159–168.

Clayson, DB; Iverson, F; Nera, EA; et al. (1990) The significance of induced forestomach tumors. Annu Rev Pharmacol Toxicol 30:441–463.

Collin, G; H"ke, H. (1985) Anthracene. In: Elvers, B; Hawkins, S; Schulz, G, eds. Ullmann's encyclopedia of industrial chemistry, 5th ed., Volume A2: Weinheim, Verlagsgesellschaft; pp. 343–345.

Collins, JF; Brown, JP; Alexeeff, GV; et al. (1998) Potency equivalency factors for some polycyclic aromatic hydrocarbon derivatives. Regul Toxicol Pharmacol 28:45–54. (Abstract)

Coombs, MM; Bhatt, TS, eds. (1987) [chapters 6 & 7] In: Cyclopenta[a]phenanthrenes. Polycyclic aromatic compounds structurally related to steroids; pp. 132–210.

Coombs, MM; Dixon, C; Kissonerghis, AM; et al. (1976) Evaluation of the mutagenicity of compounds of known carcinogenicity, belonging to the benz[a]anthracene, chrysene, and cyclopenta [a]phenanthrene series, using Ames' test. Cancer Res 36:4525–4529.

Dai, Q. (1980) Researches on chemical carcinogens and mechanism of chemical carcinogenesis. DI-region theory: A quantitative molecular orbital model of carcinogenic activity for polycyclic aromatic hydrocarbons. Sci Sin 23:453–470.

Danz, M; Hartmann, A; Blaszyk, H. (1998) Mitogenic short-term effects on hepatocytes and adrenocortical cells: phenobarbital and reserpine compared to carcinogenic and non-carcinogenic fluorene derivatives. Exp Toxicol Pathol 50:416–424.

Devanesan, P; Ariese, F; Jankowiak, R; et al. (1999) A novel method for the isolation and identification of stable DNA adducts formed by dibenzo[a,l]pyrene and dibenzo[a,l]pyrene 11,12-dihydrodiol 13,14-epoxides in vitro. Chem Res Toxicol 12:796–801.

DeVito, MJ; Maier, WE; Diliberto, JJ; et al. (1993) Comparative ability of various PCBs, PCDFs, and TCDD to induce cytochrome P450 1A1 and 1A2 activity following 4 weeks of treatment. Fundam Appl Toxicol 20:125–130.

Diamond, L; Cherian, K; Harvey, RG; et al. (1984) Mutagenic activity of methyl- and fluoro-substituted derivatives of polycyclic aromatic hydrocarbons in a human hepatoma (HepG2) cell-mediated assay. Mutat Res 136:65–72.

Dipple, A; Pigott, MA; Agarwal, SK; et al. (1987) Optically active benzo[c]phenanthrene diol epoxides bind extensively to adenine in DNA. Nature 327:535–536.

Dong, S; Fu, PP; Shirsat, RN; et al. (2002) UVA light-induced DNA cleavage by isomeric methylbenz[a]anthracenes. Chem Res Toxicol 15:400–407.

Einolf, HJ; Amin, S; Yagi, H; et al. (1996) Benzo[c]phenanthrene is activated to DNA-binding diol epoxides in the human mammary carcinoma cell line MCF-7 but only limited activation occurs in mouse skin. Carcinogenesis 17:2237–2244.

Einolf, HJ; Story, WT; Marcus, CB; et al. (1997) Role of cytochrome P450 enzyme induction in the metabolic activation of benzo[c]phenanthrene in human cell lines and mouse epidermis. Chem Res Toxicol 10:609–617.

Ensell, MX; Hubbs, A; Zhou, G; et al. (1999) Neoplastic potential of rat tracheal epithelial cell lines induced by 1-nitropyrene and dibenzo[a,i]pyrene. Mutat Res 444:193–199.

Ensell, MX; Whong, WZ; Heng, ZC; et al. (1998) In vitro and in vivo transformation in rat tracheal epithelial cells exposed to diesel emission particles and related compounds. Mutat Res 412:283–291.

Fahmy, OG; Fahmy, MJ. (1973) Oxidative activation of benz(a)anthrazene and methylated derivatives in mutagenesis and carcinogenesis. Cancer Res 33:2354–2361.

Fuchs, J; Mlcoch, J; Platt, KL; et al. (1993) Characterization of highly polar bis-dihydrodiol epoxide--DNA adducts formed after metabolic activation of dibenz[a,h]anthracene. Carcinogenesis 14:863–867.

Gatehouse, D. (1980) Mutagenicity of 1,2 ring-fused acenaphthenes against S. typhimurium TA1537 and TA1538: structure-activity relationship. Mutat Res 78:121–135.

Giles, AS; Seidel, A; Phillips, DH. (1995) In vitro reaction with DNA of the fjord-region diol epoxides of benzo[g]chrysene and benzo[c]phenanthrene as studied by 32P-postlabeling. Chem Res Toxicol 8:591–599.

Giles, AS; Seidel, A; Phillips, DH. (1996) Covalent DNA adducts formed in mouse epidermis by benzo[g]chrysene. Carcinogenesis 17:1331–1336.

Glatt, H; Seidel, A; Bochnitschek, W; et al. (1986) Mutagenic and cell-transforming activities of triol-epoxides as compared to other chrysene metabolites. Cancer Res 46:4556–4565.

Glatt, H; Abu-Shqara, E; Harvey, RG; et al. (1994) Mutagenicity of K-region oxides and imines of chrysene, benzo[c]phenanthrene and benzo[g]chrysene in Salmonella typhimurium. Mutat Res 308:135–141.

Gold, A; Nesnow, S; Moore, M; et al. (1980) Mutagenesis and morphological transformation of mammalian cells by a non-bay-region polycyclic cyclopenta[cd]pyrene and its 3,4-oxide. Cancer Res 40:4482–4484.

Gorelick, NJ; Wogan, GN. (1989) Fluoranthene-DNA adducts: identification and quantification by an HPLC-32P-postlabeling method. Carcinogenesis 10:1567–1577.

Gorelick, NJ; Hutchins, DA; Tannenbaum, SR; et al. (1989) Formation of DNA and hemoglobin adducts of fluoranthene after single and multiple exposures. Carcinogenesis 10:1579–1587.

Goshman, LM; Heidelberger, C. (1967) Binding of tritium-labeled polycyclic hydrocarbons to DNA of mouse skin. Cancer Res 27:1678–1688.

Hall, M; Parker, DK; Hewer, AJ; et al. (1988) Further metabolism of diol-epoxides of chrysene and dibenz[a,c]anthracene to DNA binding species as evidenced by 32P-postlabeling analysis. Carcinogenesis 9:865–868.

Harvey, RG. (1996) Mechanisms of carcinogenesis of polycyclic aromatic compounds. Polycyclic Aromat Compd 9:1–23.

Herner, HA; Trosko, JE; Masten, SJ. (2001) The epigenetic toxicity of pyrene and related ozonation byproducts containing an aldehyde functional group. Environ Sci Technol 35:3576–3583.

Hermann, M. (1981) Synergistic effects of individual polycyclic aromatic hydrocarbons on the mutagenicity of their mixtures. Mutat Res 90:399–409.

Hewer, A; Cooper, CS; Ribeiro, O; et al. (1981) The metabolic and activation of dibenz[a,c]anthracene. Carcinogenesis 2:1345–1352.

Holme, JA; Bjorge, C; Soderlund, EJ; et al. (1993) Genotoxic effects of cyclopenta-fused polycyclic aromatic hydrocarbons in isolated rat hepatocytes and rabbit lung cells. Carcinogenesis 14:1125–1131.

Huberman, E; Kuroki, T; Marquardt, H; et al. (1972) Transformation of hamster embryo cells by epoxides and other derivatives of polycyclic hydrocarbons. Cancer Res 32:1391–1396.

Hughes, NC; Phillips, DH. (1993) 32P-postlabeling analysis of the covalent binding of benzo[ghi]perylene to DNA in vivo and in vitro. Carcinogenesis 14:127–133.

Ishidate, M; Odashima, S. (1977) Chromosome tests with 134 compounds on Chinese hamster cells in *vitro*: A screening for chemical carcinogens. Mutat Res 48:337–354.

Isu, Y; Nagashima, U; Aoyama, T; et al. (1996) Development of neural network simulator for structure--activity correlation of molecules (NECO). Prediction of endo/exo substitution of norbornane derivatives and of carcinogenic activity of PAHs from 13C-NMR shifts. J Chem Inf Comput Sci 36:286–293.

Jankowiak, R; Ariese, F; Hewer, A; et al. (1998) Structure, conformations, and repair of DNA adducts from dibenzo[a,l]pyrene: 32P-postlabeling and fluorescence studies. Chem Res Toxicol 11:674–685.

Jerina, DM; Lehr, RE. (1977) The bay-region theory: A quantum mechanical approach to aromatic hydrocarboninduced carcinogenicity. pp. 709–720.

Jerina, DM; Yagi, H; Lehr, RE; et al. (1978) The bay-region theory of carcinogenesis by polycyclic aromatic hydrocarbons. pp. 173–188.

Juhasz, AL; Stanley, GA; Britz, ML. (2000) Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett Appl Microbiol 30:396–401.

Kemena, A; Norpoth, KH; Jacob, J. (1988) Differential induction of the monooxygenase isoenzymes in mouse liver microsomes by polycyclic aromatic hydrocarbons. In: Cooke, M; Dennis, AJ, eds. Polynuclear aromatic hydrocarbons: A decade of progress. Columbus, OH: Battelle Press; pp. 449–460.

Keohavong, P; Melacrinos, A; Shukla, R. (1995) In vitro mutational spectrum of cyclopenta[cd]pyrene in the human HPRT gene. Carcinogenesis 16:855–860.

King, LC; Adams, L; Allison, J; et al. (1999) A quantitative comparison of dibenzo[a,l]pyrene-DNA adduct formation by recombinant human cytochrome P450 microsomes. Mol Carcinog 26:74–82.

Knaap, AGAC; Goze, C; Simons, JWIM (1981) Mutagenic activity of seven coded samples in V79 Chinese hamster cells. In: De Serres, FJ; Ashby, J, eds. Evaluation of short-term tests for carcinogens. Report of the international collaborative programme. New York: Elsevier/North Holland; pp. 608–613 (Progress in Mutation Research, Volume 1).

Kumar, S; Kole, PL; Sikka, HC. (1990) Mutagenicity of dibenz[a,c]anthracene and its derivatives in Salmonella typhimurium TA100. Mutat Res 242:337–343.

Laryea, A; Cosman, M; Lin, JM; et al. (1995) Direct synthesis and characterization of site-specific adenosyl adducts derived from the binding of a 3,4-dihydroxy-1,2-epoxybenzo[c]phenanthrene stereoisomer to an 11-mer oligodeoxyribonucleotide. Chem Res Toxicol 8:444–454.

Lasley, J; Curti, S; Ross, J; et al. (1991) Morphological cell transformation and DNA adduction by benz(j]aceanthrylene and its presumptive reaction metabolites in C3H10T1/2CL8 cells. Adv Exp Med Biol 283:759–762.

LaVoie, EJ; Hecht, SS; Amin, S; et al. (1980) Identification of mutagenic dihydrodiols as metabolites of benzo[j]fluoranthene and benzo[k]fluoranthene. Cancer Res 40:4528–4532.

LaVoie, EJ; Tulley, L; Bedenko, V; et al. (1981) Mutagenicity of methylated fluorenes and benzofluorenes. Mutat Res 91:167–176.

LaVoie, EJ; Hecht, SS; Bedenko, V; et al. (1982) Identification of the mutagenic metabolites of fluoranthene, 2-methylfluoranthene, and 3-methylfluoranthene. Carcinogenesis 3:841–846.

Lecoq, S; Perin, F; Plessis, MJ; et al. (1989) Comparison of the in vitro metabolisms and mutagenicities of dibenz[a,c]anthracene, dibenz[a,h]anthracene and dibenz[a,j]anthracene: influence of norharman. Carcinogenesis 10:461–469.

Lecoq, S; Ni She, M; Grover, PL; et al. (1991a) The in vitro metabolic activation of dibenz[a,h]anthracene, catalyzed by rat liver microsomes and examined by 32P-postlabeling. Cancer Lett 57:261–269.

Lecoq, S; She, MN; Hewer, A; et al. (1991b) The metabolic activation of dibenz[a,h]anthracene in mouse skin examined by 32P-postlabeling: minor contribution of the 3,4-diol 1,2-oxides to DNA binding. Carcinogenesis 12:1079–1083.

Lecoq, S; Pfau, W; Grover, PL; et al. (1992) HPLC separation of 32P-postlabelled DNA adducts formed from dibenz[a,h]anthracene in skin. Chem Biol Interact 85:173–185.

Levin, W; Wood, A; Chang, R; et al. (1982) Oxidative metabolism of polycyclic aromatic hydrocarbons to ultimate carcinogens. Drug Metab Rev 13:555–580.

Lewtas, J. (1985) Development of a comparative potency method for cancer risk assessment of complex mixtures using short-term in vivo and in vitro bioassays. Toxicol Ind Health 1:193–203.

Lewtas, J. (1988) Genotoxicity of complex mixtures: strategies for the identification and comparative assessment of airborne mutagens and carcinogens from combustion sources. Fundam Appl Toxicol 10:571–589.

Li, KM; Todorovic, R; Rogan, EG; et al. (1995) Identification and quantitation of dibenzo[a,l]pyrene--DNA adducts formed by rat liver microsomes in vitro: preponderance of depurinating adducts. Biochemistry 34:8043–8049.

Li, KM; Byun, J; Gross, ML; et al. (1999) Synthesis and structure determination of the adducts formed by electrochemical oxidation of Dibenzo[a,l]pyrene in the presence of adenine. Chem Res Toxicol 12:749–757.

Lloyd, DR; Hanawalt, PC. (2002) p53 controls global nucleotide excision repair of low levels of structurally diverse benzo[g]chrysene-DNA adducts in human fibroblasts. Cancer Res 62:5288–5294.

Luch, A; Coffing, SL; Tang, YM; et al. (1998) Stable expression of human cytochrome P450 1B1 in V79 Chinese hamster cells and metabolically catalyzed DNA adduct formation of dibenzo[a,l]pyrene. Chem Res Toxicol 11:686–695.

Luch, A; Kishiyama, S; Seidel, A; et al. (1999) The K-region trans-8,9-diol does not significantly contribute as an intermediate in the metabolic activation of dibenzo[a,l]pyrene to DNA-binding metabolites by human cytochrome P450 1A1 or 1B1. Cancer Res 59:4603–4609.

Luch, A; Kudla, K; Seidel, A; et al. (1999) The level of DNA modification by (+)-syn-(11S,12R,13S,14R)- and (-)-anti-(11R,12S,13S,14R)-dihydrodiol epoxides of dibenzo[a,l]pyrene determined the effect on the proteins p53 and p21WAF1 in the human mammary carcinoma cell line MCF-7. Carcinogenesis 20:859–865.

Lupp, A; Tralls, M; Fuchs, U; et al. (1999) Transplantation of fetal liver tissue suspension into the spleens of adult syngenic rats: effects of various mitogens and cytotoxins on cytochrome P450 (P450) isoforms expression and on P450 mediated monooxygenase functions. Exp Toxicol Pathol 51:375–388.

Malaveille, C; Hautefeuille, A; Bartsch, H; et al. (1980) Liver microsome-mediated mutagenicity of dihydrodiols derived from dibenz(a,c]anthracene in S. typhimurium TA 100. Carcinogenesis 1:287–289.

Malaveille, C; Hautefeuille, A; Perin-Roussel, O; et al. (1984) Possible involvement of a vicinal, non-bay-region dihydrodiol-epoxide in the activation of dibenzo[a,e]fluoranthene into bacterial mutagens. Carcinogenesis 5:1263–1266.

Marquardt, H; Heidelberger, C. (1972) Influence of 'feeder cells' and inducers and inhibitors of microsomal mixedfunction oxidases on hydrocarbon-induced malignant transformation of cells derived from C3H mouse prostate. Cancer Res 32:721–725.

Marquardt, H; Kuroki, T; Huberman, E; et al. (1972) Malignant transformation of cells derived from mouse prostate by epoxides and other derivatives of polycyclic hydrocarbons. Cancer Res 32:716–720.

Marrocchi, A; Minuti, L; Morozzi, G; et al. (1996) Synthesis and mutagenicity of some cyclopenta[c]phenanthrenes and indeno[c]phenanthrenes. Carcinogenesis 17:2009–2012.

Marsch, GA; Jankowiak, R; Small, GJ; et al. (1992) Evidence of involvement of multiple sites of metabolism in the in vivo covalent binding of dibenzo[a,h]pyrene to DNA. Chem Res Toxicol 5:765–772.

Marshall, MV; He, ZM; Weyand, EH; et al. (1993) Mutagenic activity of the 4,5- and 9,10-dihydrodiols of benzo[j]fluoranthene and their syn- and anti-dihydrodiol epoxides in Salmonella typhimurium. Environ Mol Mutagen 22:34–45.

Matijasevic, Z; Zeiger, E. (1985) Mutagenicity of pyrene in Salmonella. Mutat Res 142:149-152.

Matsuoka, A; Sofuni, T; Miyata, N; et al. (1991) Clastogenicity of 1-nitropyrene, dinitropyrenes, fluorene and mononitrofluorenes in cultured Chinese hamster cells. Mutat Res 259:103–110.

Meek, ME; Chan, PKL; Bartlett, S. (1994) Polycyclic aromatic hydrocarbons: evaluation of risks to health from environmental exposures in Canada. Environ Carcinog Ecotoxicol Rev C 12:443–452.

Melendez-Colon, VJ; Smith, CA; Seidel, A; et al. (1997) Formation of stable adducts and absence of depurinating DNA adducts in cells and DNA treated with the potent carcinogen dibenzo[a,l]pyrene or its diol epoxides. Proc Natl Acad Sci U S A 94:13542–13547.

Melendez-Colon, VJ; Luch, A; Seidel, A; et al. (1999) Comparison of cytochrome P450- and peroxidase-dependent metabolic activation of the potent carcinogen dibenzo[a,l]pyrene in human cell lines: formation of stable DNA adducts and absence of a detectable increase in apurinic sites. Cancer Res 59:1412–1416.

Mlcoch, J; Fuchs, J; Oesch, F; et al. (1993) Characterization of DNA adducts at the bay region of dibenz[a,h]anthracene formed in vitro. Carcinogenesis 14:469–473.

Mori, Y; Goto, S; Onodera, S; et al. (1993) Changes in mutagenic properties and chemical fate of benz[a]anthracene in chlorine-treated water with and without bromide ion. Chemosphere 27(11):2155–2162.

Moyer, SR; Jurs, PC. (1990) An SRA study of the mutagenicity of PAH compounds in Salmonella typhimurium. In: Mendelsohn, ML; Albertini, J, eds. Progress in clinical and biological research: Vol. 340. Mutation and the environment: Part B. Metabolism, testing methods, and chromosomes. New York, NY: Wiley-Liss; pp. 1–10.

Nair, RV; Gill, RD; Nettikumara, AN; et al. (1991) Characterization of covalently modified deoxyribonucleosides formed from dibenz[a,j]anthracene in primary cultures of mouse keratinocytes. Chem Res Toxicol 4:115–122.

Nesnow, S; Leavitt, S; Easterling, R; et al. (1984) Mutagenicity of cyclopenta-fused isomers of benz[a]anthracene in bacterial and rodent cells and identification of the major rat liver microsomal metabolites. Cancer Res 44:4993–5003.

Nesnow, S; Lasley, J; Curti, S; et al. (1991) Morphological transformation and DNA adduct formation by benz[j]aceanthrylene and its metabolites in C3H10T1/2CL8 cells: evidence for both cyclopenta-ring and bay-region metabolic activation pathways. Cancer Res 51:6163–6169.

Nesnow, S; Davis, C; Padgett, W; et al. (1998) Metabolic activation of racemic and enantiomeric trans-8, 9-dihydroxy-8,9-dihydrodibenzo[a,1]pyrene (dibenzo[def,p]chrysene) to dibenzo[a,1]pyrene-bis-dihydrodiols by induced rat liver microsomes and a recombinant human P450 1A1 system: the role of the K-region-derived metabolic intermediates in the formation of dibenzo[a,1]pyrene-DNA adducts. Chem Res Toxicol 11:1596–1607.

Newcomb, KO; Sangaiah, R; Gold, A; et al. (1993) Activation and metabolism of benz[j]aceanthrylene-9,10-dihydrodiol, the precursor to bay-region metabolism of the genotoxic cyclopenta-PAH benz[j]aceanthrylene. Mutat Res 287:181–190.

Oesch, F; Bücker, M; Glatt, HR. (1981) Activation of phenanthrene to mutagenic metabolites and evidence for at least two different activation pathways. Mutat Res 81:1–10.

Oshiro, Y; Balwierz, PS. (1982) Morphological transformation of C3H/10T1/2 CL8 cells by procarcinogens. Environ Mutagen 4:105–108.

Otero-Lobato, MJ; Jenneskens, LW; Seinen, W. (2004) Bacterial mutagenicity of the three isomeric dicyclopentafused pyrenes: the effects of dicyclopenta topology. Mutat Res 559:105–119. Pal, K. (1981) The induction of sister-chromatid exchanges in Chinese hamster ovary cells by K-region epoxides and some dihydrodiols derived from benz[a]anthracene, dibenz [a,c]anthracene and dibenz [a,h]anthracene. Mutat Res 84:389–398.

Palitti, F; Cozzi, R; Fiore, M; et al. (1986) An in vitro and in vivo study on mutagenic activity of fluoranthene: comparison between cytogenetic studies and HPLC analysis. Mutat Res 174:125–130.

Perin-Roussel, O; Saguem, S; Ekert, B; et al. (1983) Binding to DNA of bay region and pseudo bay region diolepoxides of dibenzo[a,e]fluoranthene and comparison with adducts obtained with dibenzo[a,e]fluoranthene or its dihydrodiols in the presence of microsomes. Carcinogenesis 4:27–32.

Perin-Roussel, O; Croisy, A; Ekert, B; et al. (1984a) The metabolic activation of dibenzo[a,e]fluoranthene in vitro. Evidence that its bay-region and pseudo-bay-region diol-epoxides react preferentially with guanosine. Cancer Lett 22:289–298.

Perin-Roussel, O; Ekert, B; Barat, N; et al. (1984b) DNA-protein crosslinks induced by exposure of cultured mouse fibroblasts to dibenzo[a,e]fluoranthene and its bay- and pseudo-bay region dihydrodiols. Carcinogenesis 5:379–383.

Perin-Roussel, O; Barat, N; Zajdela, F. (1985) Formation and removal of dibenzo[a,e]fluoranthene-DNA adducts in mouse embryo fibroblasts. Carcinogenesis 6:1791–1796.

Perin-Roussel, O; Barat, N; Zajdela, F. (1988) Non-random distribution of dibenzo[a,e]fluoranthene-induced DNA adducts in DNA loops in mouse fibroblast nuclei. Carcinogenesis 9:1383–1388.

Perin-Roussel, O; Perin, F; Zajdela, F. (1990) 32P-post-labeling analysis of DNA adducts in mouse embryo fibroblasts treated with dibenzo[a,e]fluoranthene and its major metabolites. Carcinogenesis 11:301–306.

Peter, S; Palme, GE; R"hrborn, G. (1979) Mutagenicity of polycyclic hydrocarbons. III. Monitoring genetic hazards of benz[a]anthracene. Acta Morphol Acad Sci Hung 27:199–204.

Pfau, W; Hughes, NC; Grover, PL; et al. (1992) HPLC separation of 32P-postlabelled benzo[b]fluoranthene-DNA adducts. Cancer Lett 65:159–167.

Pfau, W; Lecoq, S; Hughes, NC; et al. (1993) Separation of 32P-labelled nucleoside 3',5'-bisphosphate adducts by HPLC. IARC Sci Publ pp. 233–242.

Phillips, DH. (1997) Detection of DNA modifications by the 32P-postlabeling assay. Mutat Res 378:1–12.

Platt, KL; Bucker, M; Golan, M; et al. (1982) The mutagenicity of dibenz(a,h]anthracene activated by phenobarbital-inducible mouse-liver mono-oxygenase is potentiated by the presence of hydrophilic residues at the K-region of the molecule. Mutat Res 96:1–13.

Platt, KL; Schollmeier, M; Frank, H; et al. (1990) Stereoselective metabolism of dibenz(a,h]anthracene to transdihydrodiols and their activation to bacterial mutagens. Environ Health Perspect 88:37–41.

Polcaro, C; Nicoletti, I; Ossicini, L; et al. (1988) Chromatographic and cytogenetic analysis of in vivo metabolites of fluoranthene. J Chromatogr 448:127–133.

Pruess-Schwartz, D; Baird, WM; Yagi, H; et al. (1987) Stereochemical specificity in the metabolic activation of benzo[c]phenanthrene to metabolites that covalently bind to DNA in rodent embryo cell cultures. Cancer Res 47:4032–4037.

Purchase, IFH; Longstaff, E; Ashby, J; et al. (1976) Evaluation of six short term tests for detecting organic chemical carcinogens and recommendations for their use. Nature 264:624–627.

Ralston, SL; Lau, HH; Seidel, A; et al. (1994) The potent carcinogen dibenzo[a,l]pyrene is metabolically activated to fjord-region 11,12-diol 13,14-epoxides in human mammary carcinoma MCF-7 cell cultures. Cancer Res 54:887–890.

Ralston, SL; Seidel, A; Luch, A; et al. (1995) Stereoselective activation of dibenzo[a,l]pyrene to (-)-anti (11R,12S,13S,14R)- and (+)-syn(11S,12R,13S,14R)-11,12-diol-13,14-epoxides which bind extensively to deoxyadenosine residues of DNA in the human mammary carcinoma cell line MCF-7. Carcinogenesis 16:2899–2907.

Ralston, SL; Coffing, SL; Seidel, A; et al. (1997) Stereoselective activation of dibenzo[a,l]pyrene and its trans-11,12-dihydrodiol to fjord region 11,12-diol 13,14-epoxides in a human mammary carcinoma MCF-7 cell-mediated V79 cell mutation assay. Chem Res Toxicol 10:687–693.

RamaKrishna, NV; Padmavathi, NS; Cavalieri, EL; et al. (1993) Synthesis and structure determination of the adducts formed by electrochemical oxidation of the potent carcinogen dibenzo[a,I]pyrene in the presence of nucleosides. Chem Res Toxicol 6:554–560.

Rastetter, WH; Nachbar, RB; Russo-Rodriguez, S; et al. (1982) Fluoranthene: Synthesis and mutagenicity of fluor diol epoxides. J Org Chem 47:4873–4878.

Reznikoff, CA; Bertram, JS; Brankow, DW; et al. (1973) Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to postconfluence inhibition of cell division. Cancer Res 33:3239–3249.

Rice, JE; Coleman, DT; Hosted, TJ Jr; et al. (1985) Identification of mutagenic metabolites of indeno[1,2,3-cd]pyrene formed in vitro with rat liver enzymes. Cancer Res 45:5421–5425.

Rice, JE; Geddie, NG; Defloria, MC; et al. (1988) Structural requirements favoring mutagenic activity among methylated pyrenes in S. typhimurium. In: Cooke, M; Dennis, AJ, eds. Polynuclear aromatic hydrocarbons: A decade of progress. Columbus, OH: Battelle Press; pp. 773–785.

Ridler, P.; Jennings, B. (1984) The binding of polycyclic aromatic hydrocarbon diol-epoxides to DNA. Cancer Lett 22:95–98.

Ross, JA; Nelson, GB; Holden, KL; et al. (1992) DNA adducts and induction of sister chromatid exchanges in the rat following benzo[b]fluoranthene administration. Carcinogenesis 13:1731–1734.

Rugen, PJ; Stern, CD; Lamm, SH. (1989) Comparative carcinogenicity of the PAHs as a basis for acceptable exposure levels (AELs) in drinking water. Regul Toxicol Pharmacol 9:273–283.

Safe, S. (1990) Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol 21:51–88.

Saffiotti, U. (1969) Experimental respiratory tract carcinogenesis. Prog Exp Tumor Res 11:302-333.

Sangaiah, R; Gold, A; Newcomb, KO; et al. (1991) Synthesis and biological activity of bay-region metabolites of a cyclopenta-fused polycyclic aromatic hydrocarbon: benz[j]aceanthrylene. J Med Chem 34:546–549.

Schneider, K; Roller, M; Kalberlah, F; et al. (2002) Cancer risk assessment for oral exposure to PAH mixtures. J Appl Toxicol 22:73–83.

Slaga, TJ; Gleason, GL; Mills, C; et al. (1980) Comparison of the tumour-initiating activities of dihydrodiols and diol-epoxides of various polycyclic aromatic hydrocarbons. Cancer Res 40:1981–1984.

Snell, KC; Stewart, HL. (1962) Pulmonary adenomatosis induced in DBA/2 mice by oral administration of dibenz(a,h]anthracene. J Natl Cancer Inst 28:1043–1049.

Snell, KC; Stewart, HL. (1963) Induction of pulmonary adenomatoses in DBA/2 mice by the oral administration of dibenz[a,h]anthracene. Acta Un Int Cancer 19:692–694.

Stanton, MF; Miller, E; Wrench, C; et al. (1972) Experimental induction of epidermoid carcinoma in the lungs of rats by cigarette smoke condensate. J Nat1 Cancer Inst 49:867–877.

Stocker, KJ; Howard, WR; Statham, J; et al. (1996) Assessment of the potential in vivo genotoxicity of fluoranthene. Mutagenesis 11:493–496.

Upham, BL; Weis, LM; Rummel, AM; et al. (1996) The effects of anthracene and methylated anthracenes on gap junctional intercellular communication in rat liver epithelial cells. Fundam Appl Toxicol 34:260–264.

U.S. EPA (1989) Health and environmental effects profile for benzo[g,h,i]perylene. Cincinnati, OH: Environmental Protection Agency, Environmental Criteria and Assessment Office. Contract Number EPA-600-X-87-395.

Wang, JS; Busby, WF; Wogan, GN. (1995) Tissue distribution of DNA adducts in pre-weanling BLU:Ha mice treated with a tumorigenic dose of fluoranthene. Cancer Lett 92:9–19.

Wang, JS; Busby, WF Jr; Wogan, GN. (1995) Formation and persistence of DNA adducts in organs of CD-1 mice treated with a tumorigenic dose of fluoranthene. Carcinogenesis 16:2609–2616.

Weis, LM; Rummel, AM; Masten, SJ; et al. (1998) Bay or baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of Gap junctional intercellular communication. Environ Health Perspect 106:17–22.

Wester, PW; Kroes, R. (1988) Forestomach carcinogens: pathology and relevance to man. Toxicol Pathol 16:165–171.

Weyand, EH; Rice, JE; Hussain, N; et al. (1987a) Detection of DNA adducts of tumorigenic nonalternant polycyclic aromatic hydrocarbons by 32P-postlabeling. Proc Am Assoc Cancer Res 28:102.

Weyand, EH; Rice, JE; LaVoie, EJ. (1987b) 32P-postlabeling analysis of DNA adducts from non-alternant PAH using thin-layer and high performance liquid chromatography. Cancer Lett 37:257–266.

Weyand, EH; Geddie, N; Rice, JE; et al. (1988) Metabolism and mutagenic activity of benzo[k]fluoranthene and 3-, 8- and 9-fluorobenzo[k]fluoranthene. Carcinogenesis 9:1277–1281.

Weyand, EH; Bryla, P; Wu, Y; et al. (1993) Detection of the major DNA adducts of benzo[j]fluoranthene in mouse skin: nonclassical dihydrodiol epoxides. Chem Res Toxicol 6:117–124.

Whong, WZ; Stewart, JD; Cutler, D; et al. (1992) Comparative study of DNA adduct formation and cytogenic effects of two constituents in coke oven emissions with an in vivo rat lung cell system. Environ Mol Mutag 19(Suppl 20):70.

Whong, WZ.; Stewart, JD; Cutler, D; et al. (1994) Induction of in vivo DNA adducts by 4 industrial by-products in the rat-lung-cell system. Mutat Res 312:165–172.

Wigley, CB; Newbold, RF; Amos, J; et al. (1979) Cell-mediated mutagenesis in cultured Chinese hamster cells by polycyclic hydrocarbons: mutagenicity and DNA reaction related to carcinogenicity in a series of compounds. Int J Cancer 23, 691–696.

Willett, KL; Randerath, K; Zhou, GD; et al. (1998) Inhibition of CYP1A1-dependent activity by the polynuclear aromatic hydrocarbon (PAH) fluoranthene. Biochem Pharmacol 55:831–839.

Williams, GM. (1977) Detection of chemical carcinogens by unscheduled DNA synthesis in rat liver primary cell cultures. Cancer Res 37:1845–1851.

Wood, AW; Levin, W; Ryan, D; et al. (1977) High mutagenicity of metabolically activated chrysene 1,2-dihydrodiol: Evidence for bay region activation of chrysene. Biochem Biophys Res Commun 78:847–854.

Wood, AW Levin, W; Thomas, PE; et al. (1978) Metabolic activation of dibenz[a,h]anthracene and its dihydrodiols to bacterial mutagens. Cancer Res 38:1967–1973.

Wood, AW; Chang, RL; Huang, MT; et al. (1980a) Mutagenicity of benzo[e]pyrene and triphenylene tetrahydroepoxides and diol-epoxides in bacterial and mammalian cells. Cancer Res 40:1985–1989.

Wood, AW; Chang, RL; Levin, W; et al. (1980b) Mutagenicity of the dihydrodiols and bay-region diol-epoxides of benzo[c]phenanthrene in bacterial and mammalian cells. Cancer Res 40:2876–2883.

Wood, AW; Chang, RL; Levin, W; et al. (1981) Mutagenicity of the bay-region diol-epoxides and other benzo-ring derivatives of dibenzo[a,h]pyrene and dibenzo[a,i]pyrene. Cancer Res 41:2589–2597.

Wood, AW; Chang, RL; Levin, W; et al. (1983) Mutagenicity of the enantiomers of the diastereomeric bay-region benz[a]anthracene 3,4-diol-1,2-epoxides in bacterial and mammalian cells. Cancer Res 43:5821–5825.

Wu, J; Zhu, BB; Yu, J; et al. (2003) In vitro and in vivo modulations of benzo[c]phenanthrene-DNA adducts by DNA mismatch repair system. Nucleic Acids Res 31:6428–6434.

Yamaguchi, K; Near, R.; Shneider, A; et al. (1996) Fluoranthene-induced apoptosis in murine T cell hybridomas is independent of the aromatic hydrocarbon receptor. Toxicol Appl Pharmacol 139:144–152.

Zhong, BZ; Gu, ZW; Stewart, J; et al. (1995) Micronucleus formation induced by three polycyclic aromatic hydrocarbons in rat bone marrow and spleen erythrocytes following intratracheal instillation. Mutat Res 326:147–153.

APPENDIX C. DOSE-RESPONSE DATA FOR POTENCY CALCULATIONS

1 2 3

										Number		Results of authors'		Cochran-	
		~ -					Dose	_	Number of	of	% tumor-	statistical	Fisher's	Armitage	
Record	Reference	Study type	Species	Tumor type	ран	Sev	of PAH	Dose units	animals with tumors	animals in group	bearing	analysis (n-value)	exact n-value	trend test	Comments
number	Kelefence	type	Species	type	IAI	ыл	Comple	ete carcinog	enicity studies	mgroup	ammais	(p-value)	<i>p</i> -value	<i>p</i> -value	Comments
600	Habs et al	Complete	Mice	Sum of	Acetone	F	0	ng/animal	0	35	0%				
000	1980	Complete	inice	Papilloma, carcinoma, sarcoma	rectone	1	Ū	pg/ummu	0	55	070				
					DMSO	F	0	pg/animal	0	36	0%				
					BaP	F	1.7	pg/animal	8	34	24%		1.92×10^{-3}		
					BaP	F	2.8	pg/animal	24	35	69%		$1.67\times 10^{\text{-}11}$		
					BaP	F	4.6	pg/animal	22	36	61%		$2.1 imes 10^{-9}$	2.15×10^{-9}	
					BbF	F	3.4	pg/animal	2	38	5%		$2.6 imes 10^{-1}$		
					BbF	F	5.6	pg/animal	5	34	15%		$2.3 imes 10^{-2}$		
					BbF	F	9.2	pg/animal	20	37	54%		$3.7 imes 10^{-8}$	1.33×10^{-9}	
					BjF	F	3.4	pg/animal	1	38	3%		5.1×10^{-1}		
					BjF	F	5.6	pg/animal	1	35	3%		$4.9 imes 10^{-1}$		
					BjF	F	9.2	pg/animal	2	38	5%		$2.6 imes 10^{-1}$	$1.77 imes 10^{-1}$	
					BkF	F	3.4	pg/animal	1	39	3%		$5.2 imes 10^{-1}$		
					BkF	F	5.6	pg/animal	0	38	0%				
					BkF	F	9.2	pg/animal	0	38	0%				
					CPcdP	F	1.7	pg/animal	0	34	0%				
					CPcdP	F	6.5	pg/animal	0	35	0%				
					CPcdP	F	27.2	pg/animal	3	38	8%		$1.3 imes 10^{-1}$	$6.36\times10^{\text{-2}}$	
					IP	F	3.4	pg/animal	1	36	3%		5×10^{-1}		
					IP	F	5.6	pg/animal	0	37	0%				
					IP	F	9.2	pg/animal	0	37	0%				
					СО	F	5.6	pg/animal	1	39	3%		0.52		
					СО	F	15	pg/animal	2	40	5%		0.27	1.83×10^{-1}	
13640	Cavalieri et al., 1983	Complete	Mice	Papilloma, adenoma, carcinoma	Acetone	F	0	nmol	0	29	0%				
					BaP	F	2.2	nmol	2	30	7%		0.25		
					BaP	F	6.6	nmol	2	28	7%		0.24		

							Dose		Number of	Number	% tumor-	Results of authors' statistical	Fisher's	Cochran-	
Record		Study		Tumor			of	Dose	animals	animals	bearing	analysis	exact	trend test	
number	Reference	type	Species	type	РАН	Sex	PAH	units	with tumors	in group	animals	(p-value)	<i>p</i> -value	<i>p</i> -value	Comments
					BaP	F	20	nmol	17	30	57%		4.32×10^{-7}	2.96×10^{1}	
					CPcdP	F	22.2	nmol	2	29	7%		0.25		
					CPcdP	F	66.6	nmol	2	29	7%		0.25		
					CPcdP	F	200	nmol	24	29	83%		$9.25\times10^{\text{-}12}$	1.39×10^{16}	
620	Hoffmann and Wynder 1966	Complete	Mice	Papillomas	Dioxane	F	0	%	0	20	0%				
					BaP	F	0.05	%	17	20	85%		$1.28\times 10^{\text{-8}}$		
					BaP	F	0.1	%	19	20	95%		1.5×10^{-10}	$8.7 imes 10^{-10}$	
					DBaeP	F	0.05	%	16	30	53%		3.31×10^{-5}		
					DBaeP	F	0.1	%	9	17	53%		$1.95 imes 10^{-4}$	5.69×10^{4}	
					DBahP	F	0.05	%	16	17	94%		1.32×10^{-9}		
					DBahP	F	0.1	%	15	18	83%		$5.27 imes 10^{-8}$	$1.29\times10^{\text{-7}}$	
					DBaiP	F	0.05	%	16	19	84%		2.58×10^{-9}		
					DBaiP	F	0.1	%	16	19	84%		$2.58\times10^{\text{-9}}$	$9.81\times10^{\text{-8}}$	
					DBaeF	F	0.05	%	17	19	89%		3.35×10^{-9}		
					DBaeF	F	0.1	%	18	19	95%		3.05×10^{10}	$1.13\times10^{\text{-9}}$	
17660	Cavalieri et al., 1977	Complete	Mice	Papilloma, kerato- acanthoma, carcinoma	Acetone	F	0	µmol/ap- plication	0	29	0%				
					BaP	F	0.396	µmol/ap- plication	30	38	79%		4.9×10^{-12}		
					DBahP	F	0.396	µmol/ap- plication	35	39	90%		2.98×10^{-15}		
					AA	F	0.396	µmol/ap- plication	18	38	47%		3.59 × 10 ⁻⁶		
					BaA	F	0.396	µmol/ap- plication	1	39	3%		0.66		

Record	Deferre	Study	Guardian	Tumor	DAT	G	Dose of	Dose	Number of animals	Number of animals	% tumor- bearing	Results of authors' statistical analysis	Fisher's exact	Cochran- Armitage trend test	Guarda
number	Kelerence	type	Species	type	ГАП	Sex	ГАП	Initiation s	tudies	m group	ammais	(p-value)	<i>p</i> -value	<i>p</i> -value	Comments
630	LaVoie et al., 1982	Initiation	Mice	Primarily squamous cell Papilloma	Acetone/TP A	F	0	µg/mouse	0	20	0%				
					BaP	F	30	µg/mouse	17	20	85%		$1.28 imes 10^{-8}$		
					BbF	F	10	µg/mouse	9	20	45%		$6.14 imes 10^{-4}$		
					BbF	F	30	µg/mouse	12	20	60%		2.25×10^{-5}		
					BbF	F	100	µg/mouse	16	20	80%		7.7×10^{-8}	$1.46\times10^{\text{-5}}$	
					BjF	F	30	µg/mouse	6	20	30%		0.01		
					BjF	F	100	µg/mouse	11	20	55%		$7.27\times10^{\text{-5}}$		
					BjF	F	1,000	µg/mouse	19	20	95%		1.52×10^{10}	$4.67\times 10^{\text{-8}}$	
					BkF	F	30	µg/mouse	1	20	5%		0.01		
					BkF	F	100	µg/mouse	5	20	25%		0.02		
					BkF	F	1,000	µg/mouse	15	20	75%		$3.85 imes 10^{-7}$	$4.51\times 10^{\text{-9}}$	
18570	Hecht et al., 1974	Initiation	Mice	Unspeci- fied	Acetone	F	0	mg/	0	20	0%				No. surviving not reported for controls; initial group size used here
					BaP	F	0.05	mg/	6	20	30%		0.01		
					СН	F	1	mg/	11	19	58%		$4.51\times10^{\text{-5}}$		
24800	Nesnow et al., 1984	Initiation	Mice	Papilloma	Acetone	М	0	nmol	0	20	0%				Data at 30 wks
					Acetone	F	0	nmol	1	19	5%				
					BaP	М	200	nmol	13	18	67%	< 0.005			
					BaP	F	200	nmol	10	19	53%	< 0.005			
					BlAC	Μ	50	nmol	12	20	60%	< 0.005			
					BlAC	Μ	100	nmol	16	17	94%	< 0.005			
					BIAC	М	250	nmol	21	21	100%	< 0.005			
					BlAC	М	500	nmol	16	16	100%	< 0.005			
					BIAC	М	1,000	nmol	19	20	95%	< 0.005			

										Number		Results of authors'		Cochran-	
Decord		Study		Tumor			Dose	Doco	Number of	of	% tumor-	statistical	Fisher's	Armitage	
number	Reference	type	Species	type	РАН	Sex	PAH	units	with tumors	in group	animals	(<i>p</i> -value)	<i>p</i> -value	<i>p</i> -value	Comments
					BIAC	F	50	nmol	13	20	65%	< 0.005			
					BlAC	F	100	nmol	18	19	95%	< 0.005			
					BlAC	F	250	nmol	19	21	91%	< 0.005			
					BlAC	F	500	nmol	20	21	95%	< 0.005			
					BlAC	F	1,000	nmol	20	20	100%	< 0.005			
					BeAC	Μ	50	nmol	4	20	20%				
					BeAC	Μ	100	nmol	4	20	20%				
					BeAC	М	250	nmol	12	20	60%	< 0.005			
					BeAC	Μ	500	nmol	15	20	75%	< 0.005			
					BeAC	Μ	1,000	nmol	16	18	89%	< 0.005			
					BeAC	F	50	nmol	4	20	20%				
					BeAC	F	100	nmol	7	19	37%	< 0.005			
					BeAC	F	250	nmol	10	19	53%	< 0.005			
					BeAC	F	500	nmol	8	18	44%	< 0.005			
					BeAC	F	1,000	nmol	18	20	90%	< 0.005			
21420	Slaga et al., 1980	Initiation	Mouse	Papilloma	Control	F	0	nmoles	2	30	6%				Different controls used for each chemical except DBacA and BeP
					Control	F	0	µmoles	3	30	10%				
					Control	F	0	µmoles	3	30	10%				
					Control	F	0	nmoles	2	29	6%				
					Control POOLED	F	0	nmoles	10	119	8%				
					BaP	F	200	nmoles	20	30	67%		$1.41\times10^{\text{-}6}$		
					BeP	F	2,000	nmoles	5	29	17%		0.33		
					СН	F	2,000	nmoles	21	29	73%		8.38×10^{-7}		
					DBacA	F	2,000	nmoles	8	28	27%		0.07		
					DBahA	F	100	nmoles	15	29	50%		3.52×10^{-6}		

										Number		Results of authors'		Cochran-	
D 1		G(1		T			Dose	D	Number of	of	% tumor-	statistical	Fisher's	Armitage	
Record	Reference	Study type	Species	Tumor type	РАН	Sex	OI PAH	Dose units	animals with tumors	animals in group	bearing	analysis (<i>n</i> -value)	exact <i>n</i> -value	trend test <i>n</i> -value	Comments
15640	Raveh et al., 1982	Initiation	Mice	Papilloma	Control	F	0	μg	3	29	10%	(p (arac)	p (ulue	P value	
					BaP	F	10	μg	17	29	58%		1.11×10^{-4}		
					BaP	F	25	μg	21	28	76%		5.96×10^{-7}		
					BaP	F	50	μg	24	28	87%		5.43×10^{-9}		
					BaP	F	100	μg	27	27	100%		5.50×10^{-13}		
					BaP	F	200	μg	26	26	100%		1.03×10^{-12}	$2.78 imes 10^{-10}$	
					CPcdP	F	10	μg	3	30	11%		0.65		
					CPcdP	F	100	μg	11	29	39%		0.01		
					CPcdP	F	200	μg	16	28	57%		1.90×10^{-4}	$2.75 imes 10^{-6}$	
620	Hoffmann and Wynder 1966	Initiation	Mice	Papillomas	Croton oil control	F	0	mg/mouse	2	30	7%				
					BaP	F	0.25	mg/mouse	24	30	80%		$3.80\times10^{\text{-9}}$		
					DBaeF	F	0.25	mg/mouse	18	30	60%		$9.40\times10^{\text{-6}}$		
					DBaeP	F	0.25	mg/mouse	10	27	37%		0.006		
					DBelP	F	0.25	mg/mouse	0	29	0%		0.25		
					DBahP	F	0.25	mg/mouse	21	29	72%		$1.30 imes 10^{-7}$		
					DBaiP	F	0.25	mg/mouse	12	30	40%		0.002		
					AA	F	0.25	mg/mouse	2	29	7%		0.68		
					BghiP	F	0.25	mg/mouse	2	27	7%		0.65		
					N23eP	F	0.25	mg/mouse	9	30	30%		0.02		
					IP	F	0.25	mg/mouse	5	30	17%		0.21		
13650	Cavalieri et al., 1981b	Initiation	Mice	Papilloma	Acetone/ TPA	F	0	μmol	3	29	10%				
					BaP	F	0.2	μmol	12	30	40%		0.009		
					CPcdP	F	0.2	μmol	1	30	3%		0.29		
					CPcdP	F	0.6	μmol	9	29	31%		0.05		
					CPcdP	F	1.8	μmol	6	29	21%		0.24	0.14	
					ACEP	F	0.2	μmol	0	30	0%		0.11		
					ACEP	F	0.6	μmol	1	30	3%		0.29		

Record number	Reference	Study type	Species	Tumor type	РАН	Sex	Dose of PAH	Dose units	Number of animals with tumors	Number of animals in group	% tumor- bearing animals	Results of authors' statistical analysis (p-value)	Fisher's exact <i>p</i> -value	Cochran- Armitage trend test <i>p</i> -value	Comments
					ACEP	F	1.8	µmol	4	30	13%		0.52	0.18	
15700	Rice et al., 1988	Initiation	Mice	Unspeci- fied	Acetone	F	0	µmol	1	20	5%				
					BaP	F	0.1	µmol	17	19	89%	< 0.005			
					СН	F	0.15	µmol	5	20	25%	< 0.05			
					СН	F	0.5	µmol	18	20	90%	< 0.005			
					СН	F	1.5	µmol	19	20	95%	< 0.005		6.39×10^{-9}	
					CPdefC (4,5-MC)	F	0.15	µmol	13	20	65%	< 0.005			
					CPdefC (4,5-MC)	F	0.5	µmol	19	19	100%	< 0.005			
					CPdefC (4,5-MC)	F	1.5	µmol	19	19	100%	< 0.005		1.90×10^{-7}	
					BbcAC (1,12- MBA)	F	0.5	µmol	15	20	75%	< 0.005			
					BbcAC (1,12- MBA)	F	2	μmol	18	20	90%	< 0.005			
					BbcAC (1,12- MBA)	F	4	μmol	18	20	90%	< 0.005		3.03 × 10 ⁻⁶	

1 2

Table C-2. Dermal bioassays: dose-response information for tumor multiplicity

										Number		Results of	Results of SRC		
									Number of	of	%	authors'	statistical	Mean	
Record									animals	animals	Tumor-	statistical	analysis	number	
numbe		Study		Tumor			Dose of		with	in	bearing	analysis	Fisher's	tumors/	
r	Reference	type	Species	type	PAH	Sex	PAH	Dose units	tumors	group	animals	(p-value)	exact <i>p</i> -value	animal	Comments
							0	Complete car	cinogenicity			1	I		
13640	Cavalieri et al., 1983	Complete	Mice	Papilloma, adenoma,	Acetone	F	0	nmol	0	29	0%			0	Number tumors per animal at risk
				curemonia	BaP	F	2.2	nmol	2	30	7%		>0.05	0.07	calculated
					BaP	F	6.6	nmol	2	28	7%		>0.05	0.07	
					BaP	F	20	nmol	17	30	57%		<0.001	1.5	
					CPcdP	F	220	nmol	2	29	7%		>0.05	0.07	
					CPcdP	F	66.6	nmol	2	29	7%		>0.05	0.07	
					CPcdP	F	200	nmol	24	29	83%		<0.001	2 45	
13650	Cavalieri et al., 1981b	Complete	Mice	Primarily squamous cell carcinoma	Acetone	US	0	µmol/ application	0	30	0%		(0.001	0	Number tumors per animal at risk calculated
					BaP	US	0.2	µmol/ application	30	30	100%		< 0.001	1.5	
					CPcdP	US	0.2	µmol /applicatio n	17	30	57%		< 0.001	0.8	
					CPcdP	US	0.6	µmol/ application	11	30	37%		< 0.001	0.5	
					CPcdP	US	1.8	µmol/ application	7	30	23%		0.0053	0.4	
					ACEP	US	0.2	µmol/ application	0	30	0%		>0.05	0	
					ACEP	US	0.6	µmol/ application	1	30	3%		>0.05	0.03	
					ACEP	US	1.8	µmol/ application	1	30	3%		>0.05	0.03	
								Initia	tion				•		•
630	LaVoie et al., 1982	Initiation	Mice	Primarily squamous cell papilloma	Acetone/ TPA	F	0	µg/mouse	0	20	0%			0	
					BaP	F	30	µg/mouse	17	20	85%		< 0.001	4.9	
					BbF	F	10	µg/mouse	9	20	45%		< 0.001	0.9	
					BbF	F	30	µg/mouse	12	20	60%		< 0.001	2.3	

										Number		Results of	Results of SRC		
D 1									Number of	of	%	authors'	statistical	Mean	
Record		Study		Tumor			Doco of		animals	animals	Tumor-	statistical	analysis Fichor's	number	
r	Reference	tvne	Species	tvne	ран	Sev	PAH	Dose units	tumors	groun	animals	anarysis (n.value)	risher s exact <i>n</i> -value	animal	Comments
-	Reference	type	Species	type	BhF	F	100	ug/mouse	16	20	80%	(p value)	<0.001	7 1	Comments
					BiF	F	30	ug/mouse	6	20	30%		0.01	0.6	
					BjF	F	100	µg/mouse	11	20	55%		< 0.001	1.9	
					BjF	F	1,000	µg/mouse	19	20	95%		< 0.001	7.2	
					BkF	F	30	μg/mouse	1	20	5%		>0.05	0.1	
					BkF	F	100	µg/mouse	5	20	25%		0.02	0.4	
					BkF	F	1,000	µg/mouse	15	20	75%		< 0.001	2.8	
18570	Hecht et al., 1974	Initiation	Mice	Unspecifie	Acetone	F	0	mg/animal	0	20	0%			0	Number surviving
				d											not reported for
															controls; initial
															group size used
															tumors per animal
															at risk calculated
					BaP	F	0.05	mø/animal	6	20	30%		0.01	0.5	at H5K curculated
					CH	F	1	mg/animal	11	19	61%		< 0.001	1	
						-								-	
21420	Slaga et al., 1980	Initiation	Mouse	Papilloma	Control	F	0	nmol	2	29	6%			0.1	Different controls
															chemical except
					a 1	-				20	1001				DBacA and BeP
					Control	F	0	nmol	3	30	10%			0.2	
					Control	F	0	nmol	3	30	10%			0.1	
					Control	Г Г	0	nmol	2	29	0%			0.12	
						г	0	mmor	10	119	8%			0.15	
					D										
					BaP	F	200	nmol	20	30	67%		< 0.001	2.2	
					BeP	F	2,000	nmol	5	29	17%		>0.05	0.2	
					СН	F	2,000	nmol	21	29	73%		< 0.001	1.6	
					DBacA	F	2,000	nmol	8	28	27%		>0.05	0.5	
					DBahA	F	100	nmol	15	29	50%		< 0.001	1.4	
15640	Raveh et al., 1982	Initiation	Mice	Papilloma	Control	F	0	μg	3	29	10%			0.2	
					BaP	F	10	μg	17	29	58%		< 0.001	1.3	
					BaP	F	25	μg	21	28	76%		< 0.001	3.8	
					BaP	F	50	μg	24	28	87%		< 0.001	6.2	
					BaP	F	100	μg	27	27	100%		< 0.001	8.8	

Table C-2. Dermal bioassays: dose-response information for tumor multiplicity

Record		St. J		T			D		Number of animals	Number of animals	% Tumor-	Results of authors' statistical	Results of SRC statistical analysis	Mean number	
r	Reference	Study	Species	Tumor type	ран	Sev	Dose of PAH	Dose units	tumors	IN groun	animals	(<i>n</i> -value)	Fisher's exact <i>n</i> -value	animal	Comments
-	Kelerence	type	opecies	type	BaP	F	200		26	26	100%	(p value)	<0.001	9	Comments
					CPcdP	F	10	ug	3	30	11%		>0.05	0.1	
					CPcdP	F	100	ug	11	29	39%		0.01	0.4	
					CPcdP	F	200	ug	16	28	57%		< 0.001	0.9	
13650	Cavalieri et al., 1981	Initiation	Mice	Papilloma	Acetone/ TPA	F	0	μmol	3	29	10%			0.14	
					BaP	F	0.2	μmol	12	30	40%		0.009	1.2	
					CPcdP	F	0.2	μmol	1	30	3%		>0.05	0.03	
					CPcdP	F	0.6	µmol	9	29	31%		0.05	0.31	
					CPcdP	F	1.8	μmol	6	29	21%		>0.05	0.31	
					ACEP	F	0.2	μmol	0	30	0%		>0.05	0	
					ACEP	F	0.6	µmol	1	30	3%		>0.05	0.03	
					ACEP	F	1.8	µmol	4	30	13%		>0.05	0.13	
21410	Slaga et al., 1978	Initiation	Mice	Papillomas	Acetone/ TPA	F	0	μmol	2	29	6%			0.1	
					BaP	F	0.2	μmol	27	29	92%		< 0.001	5.3	
					BaA	F	2	µmol	17	30	57%		< 0.001	1.2	
16310	Weyand et al., 1992	Initiation	Mice	Unspecifie d	Acetone	US	0	μmol	1	21	5%			0.05	
					BaP	US	0.01	μmol	24	24	100%	< 0.01		4.08	
					BjF	US	0.3	μmol	11	20	55%	< 0.01		1.75	
					BjF	US	1	μmol	21	24	88%	< 0.01		4.08	
					BjF	US	2	μmol	24	24	100%	< 0.01		7.17	
10200	El-Bayoumy et al., 1982	Initiation	Mice	Primarily squamous cell papilloma	Acetone	F	0	mg/mouse	1	20	5%			0.1	
					BaP	F	0.05	mg/mouse	18	20	90%	< 0.01		7.1	
					CH	F	1	mg/mouse	20	20	100%	< 0.01		7.7	
					Pery	F	1	mg/mouse	1	20	5%			0.1	
					Pyr	F	1	mg/mouse	4	20	20%			0.2	
24300	Rice et al., 1985	Initiation	Mice	Unspecifie d	Acetone	F	0	mg/mouse	2	25	8%		-0.001	0.12	Mean number of tumors/ animal digitally estimated from Figure 2 and rounded to even number tumors
1	1	1	1		ваг	F	0.3	mg/mouse	24	25	96%		<0.001	8.04	1

Table C-2. Dermal bioassays: dose-response information for tumor multiplicity
									Number of	Number	0/	Results of	Results of SRC	Moon	
Record									animals	or animals	70 Tumor-	statistical	analysis	number	
numbe		Study		Tumor			Dose of		with	in	bearing	analysis	Fisher's	tumors/	
r	Reference	type	Species	type	PAH	Sex	PAH	Dose units	tumors	group	animals	(p-value)	exact <i>p</i> -value	animal	Comments
					CH	F	1	mg/mouse	23	25	92%		< 0.001	5	
					CPdefC	F	1	mg/mouse	24	24	100%		< 0.001	5.63	Number reported in
13660	Cavalieri et al., 1991	Initiation	Mice	Primarily papilloma	Acetone	F	0	nmol	0	24	0%			0	16 Wk experiment
					BaP	F	33.3	nmol	10	23	43%		< 0.001	0.65	
					BaP	F	100	nmol	17	24	71%		< 0.001	2.75	
					BaP	F	300	nmol	21	23	91%		< 0.001	5.22	
					DBalP	F	33.3	nmol	23	24	96%		< 0.001	6.75	
					DBalP	F	100	nmol	22	24	92%		< 0.001	7.92	
					DBalP	F	300	nmol	24	24	100%		< 0.001	8.5	
13660	Cavalieri et al., 1991	Initiation	Mice	Primarily papilloma	Acetone	F	0	nmol	0	24	0%			0	27 Wk experiment
					BaP	F	4	nmol	1	24	4%		>0.05	0.04	
					BaP	F	20	nmol	10	24	42%		< 0.001	0.75	
					BaP	F	100	nmol	22	24	92%		< 0.001	3.42	
					DBalP	F	4	nmol	22	24	92%		< 0.001	6.96	
					DBalP	F	20	nmol	20	24	83%		< 0.001	5.29	
					DBalP	F	100	nmol	20	24	83%		< 0.001	3.29	
16440	Wood et al., 1980	Initiation	Mice	Papillomas	Acetone	F	0	μmol	3	30	10%			0.1	Number tumors per animal at risk calculated
					BaP	F	0.1	umol	20	30	68%	< 0.05		2	
					BaP	F	0.4	µmol	22	30	73%	< 0.05		4.6	
					Pyr	F	0.1	µmol	4	30	14%	>0.05		0.14	
					Pyr	F	0.4	μmol	3	30	10%	>0.05		0.1	
					CPcdP	F	0.1	μmol	3	30	10%	>0.05		0.1	
					CPcdP	F	0.4	μmol	6	30	21%	>0.05		0.29	
18680	Hoffmann et al., 1972	Initiation	Mice	Papillomas	Acetone	F	0	mg	1	30	3%			0.03	
					BaP	F	0.05	mg	19	29	66%		< 0.001	2.3	
					FA	F	1	mg	1	29	3%		>0.05	0.03	
24800	Nesnow et al., 1984	Initiation	Mice	Papillomas	Acetone	М	0	nmol	0	20	0%			0	
					Acetone	F	0	nmol	1	19	5%			0.05	
					BaP	М	200	nmol	12	18	67%		< 0.001	1.4	
					BaP	F	200	nmol	10	19	53%		0.0015	1.5	
					BeAC	М	50	nmol	4	20	20%		>0.05	0.25	

Table C-2. Dermal bioassays: dose-response information for tumor multiplicity

Record numbe		Study		Tumor			Dose of		Number of animals with	Number of animals in	% Tumor- bearing	Results of authors' statistical analysis	Results of SRC statistical analysis Fisher's	Mean number tumors/	
r	Reference	type	Species	type	PAH	Sex	PAH	Dose units	tumors	group	animals	(p-value)	exact <i>p</i> -value	animal	Comments
					BeAC	F	50	nmol	4	20	20%		>0.05	0.25	
					BeAC	М	100	nmol	4	20	20%		>0.05	0.4	
					BeAC	F	100	nmol	7	19	37%		0.02	0.53	
					BeAC	М	250	nmol	12	20	60%		< 0.001	1.3	
					BeAC	F	250	nmol	10	19	53%		< 0.001	1.1	
					BeAC	Μ	500	nmol	15	20	75%		< 0.001	1.9	
					BeAC	F	500	nmol	8	18	44%		0.007	1.2	
					BeAC	М	1,000	nmol	16	18	89%		< 0.001	3.1	
					BeAC	F	1,000	nmol	18	20	90%		< 0.001	2.2	
					BlAC	М	50	nmol	12	20	60%		< 0.001	1.4	
					BlAC	F	50	nmol	13	20	65%		< 0.001	1.1	
					BlAC	М	100	nmol	16	17	94%		< 0.001	2.3	
					BIAC	F	100	nmol	18	19	95%		< 0.001	3.1	
					BlAC	М	250	nmol	21	21	100%		< 0.001	8.4	
					BlAC	F	250	nmol	19	21	91%		< 0.001	4.7	
					BlAC	Μ	500	nmol	16	16	100%		< 0.001	10.8	
					BIAC	F	500	nmol	20	21	95%		< 0.001	6.6	
					BlAC	Μ	1,000	nmol	19	20	95%		< 0.001	8.7	
					BlAC	F	1,000	nmol	20	20	100%		< 0.001	10.8	

Table C-2. Dermal bioassays: dose-response information for tumor multiplicity

1 2

										uals rrs	als	ear- ls		SRC Sta Anal	tistical ysis	
Record number	Reference	Species	Expo- sure route	Target organ	Tumor type	РАН	Sex	Dose	Dose units	No. of anim with tumo	No. of anim in group	% Tumor b ing anima	Results of authors' statistical analysis (p-value)	Fisher's Exact <i>p</i> -value	Cochran- Armitage trend test <i>p</i> -value	Comments
17560	Busby et al., 1989	Mice	Intra- periton- eal	Lung	Adenoma + adeno- carcinoma	DMSO	М	0	μg (total)	13	91	0.14				Stats reported for combined M and F only for each dose and treatment compared to control not individual sexes.
				Lung	Adenoma + adeno- carcinoma	DMSO	F	0	µg (total)	7	101	0.07				
				Lung	Adenoma + adeno- carcinoma	BaP	М	59.5	µg (total)	13	28	0.46		7.2×10^{-4}		
				Lung	Adenoma + adeno- carcinoma	BaP	F	59.5	μg (total)	19	27	0.70		3.96 × 10 ⁻¹¹		
				Lung	Adenoma + adeno- carcinoma	Pyr	М	86.1	µg (total)	4	23	0.17		4.60×10^{-1}		
				Lung	Adenoma + adeno- carcinoma	Pyr	F	86.1	µg (total)	1	28	0.04		4.50×10^{-1}		
				Lung	Adenoma + adeno- carcinoma	Pyr	М	1,750	µg (total)	2	27	0.07		2.80×10^{-1}	3.13 × 10 ⁻¹	
				Lung	Adenoma + adeno- carcinoma	Pyr	F	1,750	µg (total)	3	26	0.12		3.30×10^{-1}	3.50×10^{-1}	
				Lung	Adenoma + adeno- carcinoma	FA	М	257.6	μg (total)	5	23	0.22		2.80×10^{-4}		
				Lung	Adenoma + adeno- carcinoma	FA	F	257.6	µg (total)	9	29	0.31		1.65×10^{-3}		

										nals ors	als 0	ear- ds		SRC Sta Anal	tistical ysis	
Record number	Reference	Species	Expo- sure route	Target organ	Tumor type Adenoma +	PAH CH	Sex M	Dose 6.3	Dose units μg	No. of anin with tumo	No. of anin in group	0.00 % Tumor b ing anima	Results of authors' statistical analysis (p-value)	Fisher's Exact p-value 2.80×10^{-1}	Cochran- Armitage trend test <i>p</i> -value	Comments
				U	adeno- carcinoma				(total)							
				Lung	Adenoma + adeno- carcinoma	СН	F	6.3	μg (total)	3	29	0.10		3.90×10^{-1}		
				Lung	Adenoma + adeno- carcinoma	СН	М	210	µg (total)	3	20	0.15		$5.85 imes 10^{-1}$	8.03 × 10 ⁻¹	
				Lung	Adenoma + adeno- carcinoma	СН	F	210	µg (total)	0	29	0.00		$1.60 imes 10^{-1}$	1.28 × 10 ⁻¹	
640	LaVoie et al., 1987	Mice	Intra- periton- eal	Lung	Adenoma	DMSO	М	0	µmol/ mouse	0	17	0				
				Lung	Adenoma	DMSO	F	0	µmol/ mouse	0	18	0				
				Lung	Adenoma	BaP	М	1.1	µmol/ mouse	14	17	0.82	< 0.005			
				Lung	Adenoma	BaP	F	1.1	µmol/ mouse	9	14	0.64				
				Lung	Adenoma	BbF	М	0.5	µmol/ mouse	2	15	0.13	>0.05			
				Lung	Adenoma	BbF	F	0.5	µmol/ mouse	3	17	0.18	>0.05			
				Lung	Adenoma	BjF	М	1.1	µmol/ mouse	11	21	0.52	< 0.005			
				Lung	Adenoma	BjF	F	1.1	µmol/ mouse	4	18	0.22	<0.05			
				Lung	Adenoma	BkF	М	2.1	µmol/ mouse	1	16	0.06	>0.05			
				Lung	Adenoma	BkF	F	2.1	µmol/ mouse	3	18	0.17	>0.05			

										nals ors	nals 0	ear- ds		SRC Sta Anal	tistical ysis	
Record number	Reference	Species	Expo- sure route	Target organ	Tumor type	РАН	Sex	Dose	Dose units	No. of anin with tumo	No. of anin in group	% Tumor b ing anima	Results of authors' statistical analysis (p-value)	Fisher's Exact <i>p</i> -value	Cochran- Armitage trend test <i>p</i> -value	Comments
				Lung	Adenoma	IP	М	2.1	µmol/ mouse	1	11	0.09				
				Lung	Adenoma	IP	F	2.1	µmol/ mouse	0	9	0				
				Liver	Adenoma + hepatoma	DMSO	М	0	µmol/ mouse	1	17	0.06				Adenoma and hepatoma also reported separately. None of animals surviving 35 wks
				Liver	Adenoma + hepatoma	DMSO	F	0	µmol/ mouse	0	18	0				
				Liver	Adenoma + hepatoma	BaP	М	1.1	µmol/ mouse	13	17	0.76	< 0.005			
				Liver	Adenoma + hepatoma	BaP	F	1.1	µmol/ mouse	0	14	0				
				Liver	Adenoma + hepatoma	BbF	М	0.5	µmol/ mouse	8	15	0.53	< 0.005			
				Liver	Adenoma + hepatoma	BbF	F	0.5	µmol/ mouse	0	17	0				
				Liver	Adenoma + hepatoma	BjF	М	1.1	µmol/ mouse	11	21	0.52	< 0.005			
				Liver	Adenoma + hepatoma	BjF	F	1.1	µmol/ mouse	0	18	0				
				Liver	Adenoma + hepatoma	BkF	М	2.1	µmol/ mouse	3	16	0.19	>0.05			
				Liver	Adenoma + hepatoma	BkF	F	2.1	µmol/ mouse	0	18	0				
				Liver	Adenoma + hepatoma	IP	М	2.1	µmol/ mouse	0	11	0				
				Liver	Adenoma + hepatoma	IP	F	2.1	µmol/ mouse	0	9	0				
				Liver or lung	Adenoma + hepatoma	DMSO	М	0	µmol/ mouse	1	17	0.06				

										uals rs	als	ear- Is		SRC Sta Anal	tistical ysis	
Record number	Reference	Species	Expo- sure route	Target organ	Tumor type	РАН	Sex	Dose	Dose units	No. of anim with tumo	No. of anim in group	% Tumor b ing anima	Results of authors' statistical analysis (p-value)	Fisher's Exact <i>p</i> -value	Cochran- Armitage trend test <i>p</i> -value	Comments
				Liver or lung	Adenoma + hepatoma	DMSO	F	0	µmol/ mouse	0	18	0				
				Liver or lung	Adenoma + hepatoma	BaP	М	1.1	µmol/ mouse	13	17	0.76				
				Liver or lung	Adenoma + hepatoma	BaP	F	1.1	µmol/ mouse	9	14	0.64				
				Liver or lung	Adenoma + hepatoma	BbF	М	0.5	µmol/ mouse	8	15	0.53				
				Liver or lung	Adenoma + hepatoma	BbF	F	0.5	µmol/ mouse	3	17	0.18				
				Liver or lung	Adenoma + hepatoma	BjF	М	1.1	µmol/ mouse	17	21	0.81				
				Liver or lung	Adenoma + hepatoma	BjF	F	1.1	µmol/ mouse	4	18	0.22				
				Liver or lung	Adenoma + hepatoma	BkF	М	2.1	µmol/ mouse	3	16	0.19				
				Liver or lung	Adenoma + hepatoma	BkF	F	2.1	µmol/ mouse	3	18	0.17				
				Liver or lung	Adenoma + hepatoma	IP	М	2.1	µmol/ mouse	1	11	0.09				
				Liver or lung	Adenoma + hepatoma	IP	F	2.1	µmol/ mouse	0	9	0				
7510	LaVoie et al., 1994	mice	intraper itoneal	Lung	Total	DMSO	М	0	µmol/ mouse	5	29	0.17				Surv to 1 yr
				Lung	Total	DMSO	F	0	µmol/ mouse	4	34	0.12				
				Lung	Total	BaP	М	1.1	µmol/ mouse	24	32	0.75	<0.001			
				Lung	Total	BaP	F	1.1	µmol/ mouse	17	20	0.85	< 0.001			
				Lung	Total	FA	М	3.46	µmol/ mouse	12	28	0.43	< 0.05			

										nals rs	als	ear- lls		SRC Sta Anal	atistical lysis	
Record number	Reference	Species	Expo- sure route	Target organ	Tumor type	РАН	Sex	Dose	Dose units	No. of anin with tumo	No. of anim in group	% Tumor b ing anima	Results of authors' statistical analysis (p-value)	Fisher's Exact <i>p</i> -value	Cochran- Armitage trend test <i>p</i> -value	Comments
				Lung	Total	FA	F	3.46	µmol/ mouse	11	31	0.35	<0.05			
				Lung	Total	FA	М	17.3	µmol/ mouse	11	17	0.65	< 0.005		2.84×10^{-3}	
				Lung	Total	FA	F	17.3	µmol/ mouse	25	29	0.86	<0.001		2.18×10^{-9}	
				Liver	Foci + adenoma + carcinoma	DMSO	М	0	µmol/ mouse	5	29	0.17				Foci, adenomas, carcinomas also reported separately
				Liver	Foci + adenoma + carcinoma	DMSO	F	0	µmol/ mouse	2	34	0.06				
				Liver	Foci + adenoma + carcinoma	BaP	М	1.1	µmol/ mouse	27	32	0.84	<0.001			
				Liver	Foci + adenoma + carcinoma	BaP	F	1.1	µmol/ mouse	2	20	0.10	>0.05			
				Liver	Foci + adenoma + carcinoma	FA	М	3.46	µmol/ mouse	18	28	0.64	<0.001			
				Liver	Foci + adenoma + carcinoma	FA	F	3.46	µmol/ mouse	0	31	0				
				Liver	Foci + adenoma + carcinoma	FA	М	17.3	µmol/ mouse	17	17	1.00	<0.001		5.10×10^{-7}	
				Liver	Foci + adenoma + carcinoma	FA	F	17.3	µmol/ mouse	2	29	0.07			5.47 × 10 ⁻¹	
22510	Wislocki et al., 1986	Mice	Intra- peri- toneal	Liver	Adenoma + carcinoma	DMSO	М	0	nmol	2	28	0.07				Animals surviving thru weaning

										nals ors	als 0	ear- lls		SRC Sta Anal	ntistical lysis	
Record number	Reference	Species	Expo- sure route	Target organ	Tumor type	РАН	Sex	Dose	Dose units	No. of anin with tumo	No. of anin in group	% Tumor b ing anima	Results of authors' statistical analysis (p-value)	Fisher's Exact <i>p</i> -value	Cochran- Armitage trend test <i>p</i> -value	Comments
				Liver	Adenoma + carcinoma	DMSO	F	0	nmol	0	31	0				0
				Liver	Adenoma + carcinoma	DMSO	М	0	nmol	5	45	0.11				This group started 10 wks after other groups
				Liver	Adenoma + carcinoma	DMSO	F	0	nmol	0	34	0				This group started 10 wks after other groups
				Liver	Adenoma + carcinoma	DMSO POOL- ED	М	0	nmol	7	73	0.09				
				Liver	Adenoma + carcinoma	DMSO POOL- ED	F	0	nmol	0	65	0				
				Liver	Adenoma + carcinoma	BaP	М	560	nmol	18	37	0.49	< 0.05			
				Liver	Adenoma + carcinoma	BaP	F	560	nmol	0	27	0				
				Liver	Adenoma + carcinoma	СН	М	700	nmol	10	35	0.29	<0.05			This group started 10 wks after other groups
				Liver	Adenoma + carcinoma	СН	F	700	nmol	0	33	0				This group started 10 wks after other groups
				Liver	Adenoma + carcinoma	СН	М	2,800	nmol	14	34	0.41	< 0.05		6 × 10 ⁻³	
				Liver	Adenoma + carcinoma	СН	F	2,800	nmol	0	24	0			1	
				Liver	Adenoma + carcinoma	BaA	М	2,800	nmol	31	39	0.79	<0.05			
				Liver	Adenoma + carcinoma	BaA	F	2,800	nmol	0	32	0				

										nals rs	als (ear- lls		SRC Sta Anal	tistical ysis	
Record number	Reference	Species	Expo- sure route	Target organ	Tumor type	РАН	Sex	Dose	Dose units	No. of anin with tumo	No. of anin in group	% Tumor b ing anima	Results of authors' statistical analysis (p-value)	Fisher's Exact <i>p</i> -value	Cochran- Armitage trend test <i>p</i> -value	Comments
				Lung	Adenoma + carcinoma	DMSO	М	0	nmol	1	28	0.04				
				Lung	Adenoma + carcinoma	DMSO	F	0	nmol	0	31	0				
				Lung	Adenoma + carcinoma	DMSO	М	0	nmol	4	45	0.09				This group started 10 wks after other groups
				Lung	Adenoma + carcinoma	DMSO	F	0	nmol	2	34	0.06				This group started 10 wks after other groups
				Lung	Adenoma + carcinoma	DMSO pooled	М	0	nmol	5	73	0.07				
				Lung	Adenoma + carcinoma	DMSO pooled	F	0	nmol	2	65	0.03				
				Lung	Adenoma + carcinoma	BaP	М	560	nmol	13	37	0.35	<0.05			
				Lung	Adenoma + carcinoma	BaP	F	560	nmol	13	27	0.48	<0.05			
				Lung	Adenoma + carcinoma	СН	М	700	nmol	6	35	0.17				This group started 10 wks after other groups
				Lung	Adenoma + carcinoma	СН	F	700	nmol	2	33	0.06				This group started 10 wks after other groups
				Lung	Adenoma + carcinoma	СН	М	2,800	nmol	7	34	0.21	< 0.05		1.1 × 10 ⁻¹	
				Lung	Adenoma + carcinoma	СН	F	2,800	nmol	1	24	0.04			5.6×10^{-1}	
				Lung	Adenoma + carcinoma	BaA	М	2,800	nmol	6	39	0.15				
				Lung	Adenoma + carcinoma	BaA	F	2,800	nmol	6	32	0.19	<0.05			

										uals rs	ials ,	ear- ls		SRC Sta Anal	ntistical ysis	
Record number	Reference	Species	Expo- sure route	Target organ	Tumor type	РАН	Sex	Dose	Dose units	No. of anim with tumo	No. of anim in group	% Tumor b ing anima	Results of authors' statistical analysis (p-value)	Fisher's Exact <i>p</i> -value	Cochran- Armitage trend test <i>p</i> -value	Comments
				Lymph- atic system	Lymphoma	DMSO	М	0	nmol	1	28	0.04				
				Lymph- atic system	Lymphoma	DMSO	F	0	nmol	1	31	0.03				
				Lymph- atic system	Lymphoma	DMSO	М	0	nmol	0	45	0				This group started 10 wks after other groups
				Lymph- atic system	Lymphoma	DMSO	F	0	nmol	0	34	0				This group started 10 wks after other groups
				Lymph- atic system	Lymphoma	BaP	М	560	nmol	2	37	0.05				
				Lymph- atic system	Lymphoma	BaP	F	560	nmol	4	27	0.15				
				Lymph- atic system	Lymphoma	СН	М	700	nmol	3	35	0.09	<0.05			This group started 10 wks after other groups
				Lymph- atic system	Lymphoma	СН	F	700	nmol	1	33	0.03				This group started 10 wks after other groups
				Lymph- atic system	Lymphoma	СН	М	2,800	nmol	0	34	0			2.2×10^{-1}	
				Lymph- atic system	Lymphoma	СН	F	2,800	nmol	0	24	0			3.9 × 10 ⁻¹	
				Lymph- atic system	Adenoma + carcinoma	BaA	М	2,800	nmol	1	39	0.03				

										ials rs	als (ear- ls		SRC Sta Anal	tistical ysis	
Record number	Reference	Species	Expo- sure route	Target organ	Tumor type	РАН	Sex	Dose	Dose units	No. of anim with tumo	No. of anim in group	% Tumor b ing anima	Results of authors' statistical analysis (p-value)	Fisher's Exact <i>p</i> -value	Cochran- Armitage trend test <i>p</i> -value	Comments
				Lymph- atic system	Adenoma + carcinoma	BaA	F	2,800	nmol	3	32	0.09				

1 2

Results of SRC **Results of** Results of statistical SRC Number % authors' analysis Mean statistical of animals Number Tumorstatistical (Fisher's number Std analysis Target with of animals analysis deviation Record Exposure bearing exact tumors/ (t-test number Reference Species route organ Tumor type PAH Sex Dose Dose units tumors in group animals (p-value) p-value) animal of mean p-value) Comments 17560 Busby et al., 1989 μg (total) 0.14 0.15 0.38 Mice Intra-Lung Adenoma+ DMSO Μ 0 13 91 Stats peritoneal adenoreported for combined M carcinoma and F Lung Adenoma+ DMSO F 0 μg (total) 7 101 0.07 0.08 0.30 adenocarcinoma 59.5 13 28 < 0.001 0.71 1.01 < 0.001 Lung Adenoma+ BaP Μ μg (total) 0.46 adenocarcinoma Lung Adenoma+ BaP F 59.5 μg (total) 19 27 0.70 < 0.0011.19 1.09 < 0.001adenocarcinoma М 86.1 4 23 0.17 >0.05 0.17 0.38 >0.05 Lung Adenoma+ Pyr μg (total) adenocarcinoma 86.1 μg (total) 28 0.04 >0.05 0.04 0.21 >0.05 Lung Adenoma+ Pyr F 1 adenocarcinoma Lung Adenoma+ Pyr Μ 1,750 μg (total) 2 27 0.07 >0.05 0.07 0.26 >0.05 adenocarcinoma 1,750 µg (total) 0.12 0.12 3 26 >0.05 0.31 >0.05 Lung Adenoma+ Pyr F adenocarcinoma 23 0.22 0.22 Lung Adenoma+ FA Μ 257.6 µg (total) 5 >0.05 0.43 >0.05 adenocarcinoma 257.6 µg (total) FA 9 29 0.31 0.00165 0.41 0.70 < 0.0001 Lung Adenoma+ adenocarcin oma Lung Adenoma+ CH Μ 6.3 μg (total) 2 27 0.07 >0.05 0.07 0.26 >0.05 adenocarcinoma 3 29 0.10 >0.05 0.32 6.3 0.1 >0.05 Lung CH μg (total) Adenoma+ adenocarcinoma Lung Adenoma+ CH Μ 210 μg (total) 3 20 0.15 >0.05 0.15 0.36 >0.05 adenocarcinoma 210 µg (total) 29 0 0.00 >0.05 0.00 >0.05 Lung Adenoma+ CH F 0 adenocarcinoma 7510 LaVoie et al., 1994 Mice intra-Lung Total DMSO Μ 0 µmol/mouse 5 29 0.17 0.17 Survived to peritoneal l yr Lung Total DMSO 0 umol/mouse 4 34 0.12 0.15 F Lung Total BaP Μ 1.1 umol/mouse 24 32 0.75 < 0.001 4.3 20 Total BaP F 1.1 µmol/mouse 17 0.85 < 0.001 3.55 Lung Μ 3.46 28 0.43 < 0.05 Total FA µmol/mouse 12 0.64 Lung

Table C-4. Intraperitoneal bioassays: dose-response information for tumor multiplicity

										Number		0/2	Results of	Results of SRC statistical	Maan		Results of SRC	
										of animals	Number	Tumor-	statistical	(Fisher's	number	Std	analysis	
Record			Exposure	Target			~		- ·	with	of animals	bearing	analysis	exact	tumors/	deviation	(t-test	~ .
number	Reference	Species	route	organ	Tumor type	РАН	Sex	Dose	Dose units	tumors	in group	animals	(p-value)	<i>p</i> -value)	animal	of mean	<i>p</i> -value)	Comments
		+	+	Lung	Total	FA	Г	3.40	umol/mouse	11	17	0.55	<0.05	-	0.35			
	-	+		Lung	Total	FA	F	17.3	umol/mouse	25	29	0.05	< 0.003		2.45			
	1	-	+	Liver	Foci +	DMSO	M	0	umol/mouse	5	29	0.17	<0.001		0.41			
					adenoma + carcinoma													
				Liver	Foci + adenoma + carcinoma	DMSO	F	0	µmol/mouse	2	34	0.06			0.06			Tumor count appears to be error in publication
				Liver	Foci + adenoma + carcinoma	BaP	М	1.1	µmol/mouse	27	32	0.84	< 0.001		4.53			
				Liver	Foci + adenoma + carcinoma	BaP	F	1.1	µmol/mouse	2	20	0.10	>0.05		0.3			
				Liver	Foci + adenoma + carcinoma	FA	М	3.46	µmol/mouse	18	28	0.64	<0.001		1.86			
				Liver	Foci + adenoma + carcinoma	FA	F	3.46	µmol/mouse	0	31	0			0			
				Liver	Foci + adenoma + carcinoma	FA	М	17.3	µmol/mouse	17	17	1.00	<0.001		7.53			
				Liver	Foci + adenoma + carcinoma	FA	F	17.3	µmol/mouse	2	29	0.07			0.07			
22510	Wislocki et al., 1986	Mice	intra- peritoneal	Liver	Adenoma + carcinoma	DMSO	М	0	nmol	2	28	0.07			0.07			Animals surviving thru weaning
				Liver	Adenoma + carcinoma	DMSO	F	0	nmol	0	31	0			0			
				Liver	Adenoma + carcinoma	DMSO	М	0	nmol	5	45	0.11			0.11			This group started 10 wks after other groups
				Liver	Adenoma + carcinoma	DMSO	F	0	nmol	0	34	0			0			This group started 10 wks after other groups
				Liver	Adenoma + carcinoma	DMSO POOLE D	М	0	nmol	7	73	0.09			0.096			
				Liver	Adenoma + carcinoma	DMSO POOLE D	F	0	nmol	0	65	0			0			

Table C-4. Intraperitoneal bioassays: dose-response information for tumor multiplicity

Record			Exposure	Target				_		Number of animals with	Number of animals	% Tumor- bearing	Results of authors' statistical analysis	Results of SRC statistical analysis (Fisher's exact	Mean number tumors/	Std deviation	Results of SRC statistical analysis (t-test	
number	Reference	Species	route	organ Liver	Adenoma +	PAH BaD	M Sex	560	Dose units	18	in group	animals	(<i>p</i> -value)	<i>p</i> -value)	animal	of mean	<i>p</i> -value)	Comments
				LIVEI	carcinoma	Dai	191	500	minor	10	57	0.49	<0.05		1.40			
				Liver	Adenoma +	BaP	F	560	nmol	0	27	0	>0.05		0			
					carcinoma													
				Liver	Adenoma +	Pyr	М	200	nmol	0	29	0	>0.05		0			
				Liver	Adapama	Dur	Б	200	nmol	0	21	0	>0.05		0	1	<u> </u>	
				LIVEI	carcinoma	1 91	1	200	minor	0	51	0	/0.05		0			
				Liver	Adenoma +	Pyr	М	700	nmol	3	25	0.12	>0.05		0.12			This group
					carcinoma	-												started
																		10 wks after
				Liver	A denoma +	Dur	F	700	nmol	0	40	0	>0.05		0		<u> </u>	other groups
				LIVEI	carcinoma	1 91	1	700	minor	0	49	0	20.05		0			started
																		10 wks after
																	L	other groups
				Liver	Adenoma +	Pyr	М	2,800	nmol	3	14	0.21	>0.05		0.21			
				Liver	Adenoma ⊥	Pyr	F	2 800	nmol	0	18	0	>0.05		0		<u> </u>	
				LIVEI	carcinoma	1 91	1	2,000	million	0	10	0	20.05		0			
				Liver	Adenoma +	CH	М	700	nmol	10	35	0.29	< 0.05		0.86		<u> </u>	This group
					carcinoma													started 10 wks after other groups
				Liver	Adenoma + carcinoma	СН	F	700	nmol	0	33	0	>0.05		0			This group started 10 wks after other groups
				Liver	Adenoma + carcinoma	СН	М	2,800	nmol	14	34	0.41	< 0.05		1.03			
				Liver	Adenoma +	СН	F	2,800	nmol	0	24	0	>0.05		0			
				Liver	carcinoma	DoA	м	2 800	nmol	21	20	0.70	<0.05		2.28		<u> </u>	
				Livei	carcinoma	DaA	IVI	2,800	minor	51	39	0.79	<0.05		2.38			
				Liver	Adenoma +	BaA	F	2,800	nmol	0	32	0	>0.05		0			
					carcinoma										_			
13610	Busby et al., 1984	mice	intra-	Lung	Adenoma +	DMSO	М	0	mg (total)	1	27	0.04			0.04	0.21		
			peritoneal	Lung	Adenoma +	DMSO	F	0	mg (total)	4	28	0.14			0.14	0.37	<u> </u>	
				Lung	carcinoma	DNISO	1	0	ing (total)	7	20	0.14			0.14	0.57		
				Lung	Adenoma +	BaP	М	0.28	mg (total)	24	25	0.96		< 0.001	4.32	3.5	< 0.001	
				Ū	carcinoma				0, ,									
				Lung	Adenoma +	BaP	F	0.28	mg (total)	25	27	0.93		< 0.001	3.7	3.10	< 0.001	
				Lung	carcinoma	DoD	м	1.4	ma (total)	16	20	0.00		<0.001	10.15	12.0	<0.001	No model fit
				Lung	carcinoma	Dar	101	1.4	ing (total)	10	20	0.80		<0.001	10.15	15.0	<0.001	no model fit
				Lung	Adenoma +	BaP	F	1.4	mg (total)	21	24	0.88		< 0.001	4.25	4.70	< 0.001	No model fit
				-	carcinoma													
				Lung	Adenoma +	FA	М	0.7	mg (total)	7	31	0.23		0.0412	0.29	0.84	>0.05	
	1				carcinoma	I												

Table C-4. Intraperitoneal bioassays: dose-response information for tumor multiplicity

Record			Exposure	Target						Number of animals with	Number of animals	% Tumor- bearing	Results of authors' statistical analysis	Results of SRC statistical analysis (Fisher's exact	Mean number tumors/	Std deviation	Results of SRC statistical analysis (t-test	
number	Reference	Species	route	organ	Tumor type	PAH	Sex	Dose	Dose units	tumors	in group	animals	(p-value)	p-value)	animal	of mean	p-value)	Comments
				Lung	Adenoma +	FA	F	0.7	mg (total)	3	20	0.15		>0.05	0.15	0.49	>0.05	
				Lung	A denoma	ΕΛ	м	3.5	mg (total)	20	27	0.74		<0.001	1.52	1.66	<0.001	Nonconstant
				Lung	carcinoma	1'A	101	5.5	ing (total)	20	21	0.74		<0.001	1.52	1.00	<0.001	variance
				Lung	Adenoma + carcinoma	FA	F	3.5	mg (total)	8	21	0.38		>0.05	0.52	0.82	0.0343	NS incidence; nonconstant variance
24590	Nesnow et al., 1998b	mice	intra- peritoneal	Lung	NS	Control	М	0	mg/kg	6	20	0.30			0.53	0.72		Pooled controls from data provided by Nesnow.
-				Lung	NS	BaP	М	5	mg/kg	6	20	0.30		>0.05	0.45	0.80	>0.05	
				Lung	NS	BaP	M	10	mg/kg	7	17	0.41		>0.05	0.53	0.78	>0.05	
				Lung	NS	BaP D-D	M	50	mg/kg	19	19	1.00		< 0.001	4.37	2.74	<0.001	
				Lung	INS NS	BaP	M	200	mg/kg	24	24	1.00		<0.0018	32.06	4.28	<0.001	
				Lung	NS	BbF	M	10	mg/kg	24 Q	18	0.50		<0.001	0.67	0.75	<0.001	
				Lung	NS	BbF	M	50	mg/kg	16	20	0.80		>0.05	2.00	1.82	0.0022	NS incidence
				Lung	NS	BbF	М	100	mg/kg	20	20	1.00		< 0.001	5.30	3.21	< 0.001	
				Lung	NS	BbF	М	200	mg/kg	19	19	1.00		< 0.001	6.95	3.52	< 0.001	
				Lung	NS	CPcdP	М	10	mg/kg	8	20	0.40		>0.05	0.55	0.80	>0.05	
				Lung	NS	CPcdP	М	50	mg/kg	20	20	1.00		< 0.001	4.75	2.12	< 0.001	
				Lung	NS	CPcdP	M	100	mg/kg	19	19	1.00		<0.001	32.21	15.15	<0.001	
				Lung	NS NS	DBahA	M	1.25	mg/kg mg/kg	19	19	0.67		<0.001	97.68	28.68	<0.001 0.0229	NS
				Lung	NS	DBahA	м	2.5	ma/ka	18	10	0.95		0.0053	3.05	1.90	<0.001	incidence
				Lung	NS	DBahA	M	2.3	mg/Kg mg/kg	20	20	1.00		<0.0033	13.05	5.99	<0.001	
				Lung	NS	DBahA	M	10	mg/kg	19	19	1.00		< 0.001	32.16	10.78	< 0.001	
24590	Nesnow et al., 1998b	mice	intra- peritoneal	Lung	NS	Control	М	0	mg/kg	15	30	0.50			0.67	0.80		
				Lung	NS	DBalP	М	0.3	mg/kg	13	33	0.39		>0.05	0.42	0.56	>0.05	
				Lung	NS	DBalP	М	1.5	mg/kg	33	34	0.97		< 0.001	4.32	2.86	< 0.001	
-				Lung	NS	DBalP	М	3	mg/kg	35	35	1.00		< 0.001	7.49	3.79	< 0.001	
				Lung	NS	DBalP	М	6	mg/kg	30	30	1.00		< 0.001	16.10	7.26	< 0.001	
11190	Mass et al., 1993	mice	intra- peritoneal	Lung	NS	Control	US	0	mg/kg	19	34	0.56			0.85	0.9		
ļ					NS	BaP	US	20	mg/kg	10	16	0.63		>0.05	1	1	>0.05	
<u> </u>					NS	BaP	US	50	mg/kg	15	16	0.94		0.0065	3.9	2.9	<0.001	
					INS NC	BaP		100	mg/kg	14	14	1.00		0.0017	5.9	3.3	<0.001	
<u> </u>					NS	BIAC	115	50	mg/kg	12	12	1.00		0.0030	140.6	21.5	<0.001	
					NS	BIAC	US	100	mg/Kg	13	13	1.00		0.0023	97.6	21.5	<0.001	
						DINC	00	100	1116/ Kg	17	17	1.00		0.0017	71.0	20.2	~0.001	

Table C-4. Intraperitoneal bioassays: dose-response information for tumor multiplicity

1

2

								Number			SRC statis	stical analysis	
Record number	Reference	Species	Target organ	Tumor type	РАН	Dose	Dose units	of animals with tumors	Number of animals in group	% Tumor- bearing animals	Fisher's exact <i>p</i> -value	Cochran- Armitage trend test <i>p</i> -value	Comments
17940	Deutsch-Wenzel et al., 1983	Rat	Lung	Epidermoid carcinoma	Untreated control	0	mg	0	35	0.00			
					Vehicle control	0	mg	0	35	0.00			
					BaP	0.1	mg	4	35	0.11	$5.70 imes 10^{-2}$		
					BaP	0.3	mg	21	35	0.60	$6.02 imes 10^{-9}$		
					BaP	1	mg	33	35	0.94	5.93×10^{18}	$1.57 imes 10^{-17}$	
					BbF	0.1	mg	0	35	0.00			
					BbF	0.3	mg	1	35	0.03	5×10^{-1}		
					BbF	1	mg	9	35	0.26	1×10^{-3}	5.12×10^{-7}	
					BeP	0.2	mg	0	35	0.00			
					BeP	1	mg	0	30	0.00			
					BeP	5	mg	1	35	0.03	5×10^{-1}	9.49×10^{-2}	
					BjF	0.2	mg	1	35	0.03	5×10^{-1}		
					BjF	1	mg	3	35	0.09	$1.2 imes 10^{-1}$		
					BjF	5	mg	18	35	0.51	$1.96 imes 10^{-7}$	$1.28 imes 10^{-11}$	
					BkF	0.16	mg	0	35	0.00			
					BkF	0.83	mg	3	31	0.10	1×10^{-1}		
					BkF	4.15	mg	12	27	0.44	$8.05\times10^{\text{-6}}$	1.03×10^{-9}	
					IP	0.16	mg	3	35	0.09	$1.20 imes 10^{-1}$		
					IP	0.83	mg	8	35	0.23	2×10^{-3}		
					IP	4.15	mg	21	35	0.60	$6.02 imes 10^{-9}$	$2.09\times10^{\text{-}10}$	
					AA	0.16	mg	1	35	0.03	$5 imes 10^{-1}$		
					AA	0.83	mg	19	35	0.54	$6.4 imes 10^{-8}$	1.13×10^{10}	
					BghiP	0.16	mg	0	35	0.00			
					BghiP	0.83	mg	1	35	0.03	1.2×10^{-1}		
					BghiP	4.15	mg	4	34	0.12	5.4×10^{-2}	2.47×10^{-3}	
			Lung	Pleomorphic sarcoma	Untreated control	0	mg	0	35	0.00			
					Vehicle control	0	mg	0	35	0.00			

Table C-5. Lung implantation bioassays: dose response information for incidence data

								Number			SRC statistical analysis		
Record number	Reference	Species	Target organ	Tumor type	РАН	Dose	Dose units	of animals with tumors	Number of animals in group	% Tumor- bearing animals	Fisher's exact <i>p</i> -value	Cochran- Armitage trend test <i>p</i> -value	Comments
			0		BaP	0.1	mg	6	35	0.17	1.2×10^{-2}	1	
					BaP	0.3	mg	2	35	0.06	2.5×10^{-1}		
					BaP	1	mg	0	35	0.00		1.36×10^{-1}	
					BbF	0.1	mg	1	35	0.03	1.2×10^{-1}		
					BbF	0.3	mg	2	35	0.06	$2.5 imes 10^{-1}$		
					BbF	1	mg	4	35	0.11	$6. \times 10^{-2}$	7.55×10^{-3}	
					BeP	0.2	mg	0	35	0.00			
					BeP	1	mg	1	30	0.03			
					BeP	5	mg	0	35	0.00			
					BjF	0.2	mg	0	35	0.00			
					BjF	1	mg	0	35	0.00			
					BjF	5	mg	0	35	0.00			
					BkF	0.16	mg	0	35	0.00			
					BkF	0.83	mg	0	31	0.00			
					BkF	4.15	mg	0	27	0.00			
					IP	0.16	mg	1	35	0.03	1.2×10^{-1}		
					IP	0.83	mg	0	35	0.00			
					IP	4.15	mg	0	35	0.00			
					AA	0.16	mg	0	35	0.00			
					AA	0.83	mg	0	35	0.00			
					BghiP	0.16	mg	0	35	0.00			
					BghiP	0.83	mg	0	35	0.00			
					BghiP	4.15	mg	0	34	0.00			
			Lung	Carcinoma+ sarcoma	Untreated control	0	mg	0	35	0.00			
					Vehicle control	0	mg	0	35	0.00			
					BaP	0.1	mg	10	35	0.29	4.63×10^{-4}		
					BaP	0.3	mg	23	35	0.66	4.7×10^{-10}		
					BaP	1	mg	33	35	0.94	$5.9 imes 10^{-19}$	3.66×10^{-9}	

Table C-5. Lung implantation bioassays: dose response information for incidence data

								Number			SRC stati	stical analysis	
Record number	Reference	Species	Target organ	Tumor type	РАН	Dose	Dose units	of animals with tumors	Number of animals in group	% Tumor- bearing animals	Fisher's exact <i>p</i> -value	Cochran- Armitage trend test <i>p</i> -value	Comments
					BbF	0.1	mg	1	35	0.03	1.2×10^{-1}	I I I I I I I I I I I I I I I I I I I	
					BbF	0.3	mg	3	35	0.09	1.2×10^{-1}		
					BbF	1	mg	13	35	0.37	3.1×10^{-5}	$9.63 imes 10^{-8}$	
					BeP	0.2	mg	0	35	0.00			
					BeP	1	mg	1	30	0.03			
					BeP	5	mg	1	35	0.03	1.2×10^{-1}	3.23×10^{-1}	
					BjF	0.2	mg	1	35	0.03	1.2×10^{-1}		
					BjF	1	mg	3	35	0.09	1.20×10^{-1}		
					BjF	5	mg	18	35	0.51	1.96×10^{-7}	1.28×10^{-11}	
					BkF	0.16	mg	0	35	0.00			
					BkF	0.83	mg	3	31	0.10	1×10^{-1}		
					BkF	4.15	mg	12	27	0.44	$8.05 imes 10^{-4}$	1.03×10^{-9}	
					IP	0.16	mg	4	35	0.11	6×10^{-2}		
					IP	0.83	mg	8	35	0.23	2×10^{-3}		
					IP	4.15	mg	21	35	0.60	$6.02 imes 10^{-9}$	$7.56 imes 10^{-10}$	
					AA	0.16	mg	1	35	0.03			
					AA	0.83	mg	19	35	0.54	$6.4 imes 10^{-8}$	1.13×10^{-10}	
					BghiP	0.16	mg	0	35	0.00			
					BghiP	0.83	mg	1	35	0.03			
					BghiP	4.15	mg	4	34	0.12	5.4×10^{-2}	2.47×10^{-3}	
22000	Wenzel-Hartung et al., 1990	Rat	Lung	Carcinoma	Untreated control	0	mg/ animal	0	35	0.00			ED10, relative potencies reported
					Vehicle control	0	mg/ animal	0	35	0.00			
					BaP	0.03	mg/ animal	3	35	0.09	1.2×10^{-1}		
					BaP	0.1	mg/ animal	11	35	0.31	1.93×10^{-4}		
					BaP	0.3	mg/ animal	27	35	0.77	$1.29E \times 10^{-12}$	$8.85 imes 10^{-15}$	

Table C-5. Lung implantation bioassays: dose response information for incidence data

								Number			SRC stati	stical analysis	
Record number	Reference	Species	Target organ	Tumor type	РАН	Dose	Dose units	of animals with tumors	Number of animals in group	% Tumor- bearing animals	Fisher's exact p-value	Cochran- Armitage trend test <i>p</i> -value	Comments
		-			РН	1	mg/ animal	0	35	0.00	-		
					РН	3	mg/ animal	0	35	0.00			
					РН	10	mg/ animal	1	35	0.03	5×10^{-1}	1	
					СН	1	mg/ animal	5	35	0.14	2.7×10^{-2}		
					СН	3	mg/ animal	10	35	0.29	4.63×10^{-4}	7.96×10^{-4}	
					DBahA	0.1	mg/ animal	20	35	0.57	2.01×10^{-8}		

Table C-5. Lung implantation bioassays: dose response information for incidence data

1

Record	5.0	Data			
number	Reference	source	Data points	Basis for RPF approach	Comments
17030	Andrews et al., 1978	Figure 1	Dose (µg) and # of revertant colonies for DBacA, DBajA, DBahA, AA, BghiP, BeP, BaP	Point estimate	TA100 with Ar S9
23830	Baker et al., 1980	Table 2	Use data for guinea pig-MC S9 only (column D); dose in µg/plate and # of revertant colonies; BaP, DBaiP, BaA, DBacA, DBahA	Point estimate Table 2	TA100 with guinea pig-MC S9; Table 1 data not used, different S9 mix used for each of three experiments
23660	Bartsch et al., 1980	Appendix table	Use data for BaA and BaP; dose in µmol/plate and mutagenic activity in revertants/µmol.	Point estimate.	TA100 rat MC S9
17380	Bos et al., 1988	Table 1	Use TA100 strain only; dose (µg/plate) and # of revertant colonies/plate for PH, Pyr, BaP	Derive point estimate for BaP (use PH control as background); continuous model PH and Pyr using the BaP response as the BMR	TA100 with rat Ar S9
17590	Carver et al., 1986	Figure 1	Use curves for BaP, BaA, BghiF, and Pery; use 400 μ L S9 per plate (last data point on x-axis); each curve is different dose in μ g/plate, use hamster data; revertants per plate is y- axis	Point estimate; use highest dose in hamster, except for perylene (use 10 µg/plate); this is maximal response in hamsters	TA100 with hamster Ar S9; multi-dose data but not SD was reported
17630	Cavalieri et al., 1981a	Figure 1	DR curves for BaP, CPcdP (CPEP in fig.), and ACEP (CPAP in fig.); dose as μ M, response as mutant fraction x 105	Model as quantal data (mutant fraction reported)	TM677 with Ar S9
9620	Chang et al., 2002	Figure 7	DR curves for BghiF, BcPH, and BaP; dose (µg/plate) and revertants/plate	Point estimate; use 5 µg/plate dose for BghiF and BaP; use 10 µg/plate for BcPH	TA100 with rat Ar S9; SD not available from graph (reported for some data points, but not all)
24030	De Flora et al., 1984	Table 2	Table provides potency estimates as revertants/nmol for BaA, Pery, BaP and BeP	Calculate the RPF ratio using the potency estimates provided	Determine strain used to calculate potencies; rat Ar S9
18050	Eisenstadt and Gold, 1978	Figure 2B	Use TA100 data for BaP and CPcdP (open circles); dose is 1 μ g for CPcdP and 2 μ g for BaP (legend); use the same S9 concentration (20 μ L/plate)	Point estimate; single point data (20 µL S9/plate)	TA100 with rat Ar S9; μL S9 that maximizes the BaP response does not produce maximal response for CPcdP
18180	Florin et al., 1980	Table III	Use TA100 data for BaA, CH, and BaP, use TA98 data for Pery, CO, and BaP; dose is indicated as optimal dose (µmoles/plate) and # revertants/plate	Point estimate; please note that reported response includes subtraction of spontaneous revertants (control); need to use formula for added risk; make sure to flag in comments	Note that data for both TA100 and TA98 strains were used; BaP results were provided for each; rat MC S9

Table C-6. In vitro bacterial mutagenicity: data use

Record number	Reference	Data source	Data points	Basis for RPF approach	Comments
24080	Gibson et al., 1978	Table 1 (BaP) Table 3 (PAHs)	Use data for TA98; in Table 1 use Expt. No.1 for BaP; in Table 3 use data for DBahA, Tphen, BaA, BghiP, CH, FE, Pyr; dose as µg/plate, response as increase in revertants	Point estimate; use the dose associated with the max- imum response (if reported as a range, do not use); controls were reported as negative (no mutagenic or toxic response)	TA98 with non- enzymatic induction (gamma irradiation); multi-dose data but not SD was reported
14080	Gold and Eisenstadt, 1980	Table 2	Use data for 3-MC induction at 50 µL S9/plate; dose is 4 nmol for BaP and CPcdP, results as revertants/plate	Point estimate	TA100 using 50 µL of rat MC S9; important to note that maximal response for CPcdP occurred at much lower dose of S9 (5 µL/plate)
18650	Hermann, 1981	Table 1	Table provides potency estimates as revertants/nmol for BbA, BaA, CH, FA, Tphen, BeP, DBacA, DBahA, BbF, Pery, DBalP, DBaiP, AA, CO; potency of BaP in legend as 100 revertants/nmol	Calculate the RPF ratio using the potency estimates provided	TA98 with rat Ar S9; potency estimates were calculated from the linear portion of the DR curve
10670	Johnsen et al., 1997	Figure 2	Use data for PCB microsomes for BaP, BjAC, BIAC; dose as µg/plate, response as revertants	Model to derive EDsd1; need to extract SDs from graph; control response is 113 ± 9 revertants per plate (see legend); add control response to each response for modeling (it was subtracted prior to graphing)	TA98 with PCB microsomes
19000	Kaden et al., 1979	Table 1	RPFs calculated for AN, ANL, Pyr, BbFE, CPcdP, BaA, CH, Tphen, FA, BeP, Pery, BghiP, AA, DBacA, DBahA, DBbeF	NA	TM677 with Ar S9 and PB S9
24680	Lafleur et al., 1993	Figures 3 and 4	Use DR curves for BaP, BghiF, CPcdP, CPhiACEA (CPAA), ACEA (AA), CPhiAPA (CPAP), APA (AP); dose as μ g/mL, response as mutant fraction (×10 ⁵)	Model as quantal data (mutant fraction reported)	Forward mutation to 8-azaguanine resistance in TM677 with rat AR S9
19320	LaVoie et al., 1979	Table VI	Use data for TA98 for BaP, BeP, and Pery; 10 µg dose and response as revertants/plate	Point estimate; use 20 µg for BaP; 10 µg for BeP; and 20 µg for Pery	TA98 with rat Ar S9; for BeP and Pery the maximal response was in TA100
23650	McCann et al., 1975	Table 1	Table provides potency estimates as revertants/nmol for DBaiP, BaP, BeP, DBacA, DBahA, CH, BaA	Calculate the RPF ratio using the potency estimates provided	Multiple strains, rat Ar S9

C-31

Table C-6. In vitro bacterial mutagenicity: data use

Record number	Reference	Data source	Data points	Basis for RPF approach	Comments
20220	Pahlman and Pelkonen, 1987	Table 1	Use data for rat-MC induced (last column); potency estimates are provided as revertants/nmol for BaA, CH, Tphen, DBacA, DBahA	Calculate the RPF ratio using the potency estimates provided	TA100 with rat MC S9
20450	Phillipson and Ioannides, 1989	Figures 2 and 3	Use the curve for hamster S9 (open triangles); data for BaP, DBaiP, BaA, and DBahA, dose as µg/plate, revertants/plate	Point estimate; use 10 µg/plate for BaP, DBahA; 20 µg/plate BaA, DBaiP	TA100 with hamster S9; multi-dose data but not SD was reported
21000	Sakai et al., 1985	Table 3	Use data for TA97 +S9 for FE, AC, PH, FA, Ch, Pyr, BaP, BeP, Pery, BghiP, CO; dose µg, response as revertants per plate	Point estimate; use 10 µg for AC, PH, FA, BaP, BeP; use 5 µg for FE; use 20 µg for CH, Pyr, BghiP; use 4 µg for Pery; use 100 µg for CO	TA97 with rat Ar S9; multi-dose data but not SD was reported
11860	Sangaiah et al., 1983	Figure 2	Use data for BjAC and BaP; dose as µg/plate, response as revertants/plate	Point estimate; use 10 µg/plate for BjAC; use 6 µg/plate for BaP	TA98 with rat Ar S9; multi-dose data but not SD was reported
21360	Simmon, 1979a	Table 1	Use data for TA100 for BaA, BaP, BeP; dose as µg, response as revertants/plate after subtracting background	Point estimate	TA100 with rat Ar S9
21640	Teranishi et al., 1975	Table I and Figure 3	Use data for TA1538 for DBaiP and BaP; use data in Figure 3 for TA 1538, PB and DBahA-induced S9 (open circles) for DBaeP	Point estimate	TA1538 with rat PB S9 for DBaiP; TA1538 with PB and DBahA S9 for DBaeP
16180	Utesch et al., 1987	Figures 2 and 3	Use data for homogenized hepatocytes (open circles) for BaA and BaP; dose as µg/plate, response as revertants/plates	Point estimate; use 12.5 µg/plate for BaP; use 25 µg/plate for BaA	TA100 with homo- genized hepatocytes from Ar treated rats; multi-dose data but not SD was reported
16440	Wood et al., 1980	Chart 3A	Use DR curves for BaP and CPcdP; dose as nmol, response as revertants/plate	Point estimate; use 15 nmol for BaP and CPcdP	TA98 with purified microsomal P450; multi-dose data but not SD was reported

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
17030	Andrews et al., 1978	TA100	ArS9	Control	0	μg	150	Revertant colonies						
				BaP	250	μg	1,681	Revertant colonies						
				DBacA	10	μg	2,957	Revertant colonies						
				DBajA	10	μg	843	Revertant colonies						
				DBahA	25	μg	617	Revertant colonies						
				AA	250	μg	1,796	Revertant colonies						
				BghiP	100	μg	793	Revertant colonies						
				BeP	1,000	μg	643	Revertant colonies						
23830	Baker et al., 1980	TA100	Guinea pig- MC	Control	0	µg/plate	134	Revertant colonies				18		
				BaP	2.5	µg/plate	1,278	Revertant colonies	10			97		
				DBaiP	5	µg/plate	737	Revertant colonies	10			73		
				BaA	10	µg/plate	947	Revertant colonies	10			47		
				DBacA	2.5	µg/plate	1,738	Revertant colonies	10			88		
				DBahA	5	µg/plate	1,331	Revertant colonies	10			98		
23660	Bartsch et al., 1980	TA100	Rat MC S9	BaP	0.027	µmol/plate	29,000	Revertants/ plate						Control response subtracted.
				BaA	0.067	µmol/plate	6,000	Revertants/ plate						Control response subtracted.
17380	Bos et al., 1988	TA100	Rat ArS9	BaP	7.5	µg/plate	824	Revertants/ plate	3	Replic- ates		21	12	
				Control	0	µg/plate	85	Revertants/ plate	3	Replic- ates		12	7	

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				PH	1	µg/plate	108	Revertants/ plate	3	Replic- ates		10	6	
				PH	5	µg/plate	167	Revertants/ plate	3	Replic- ates		5	3	
				PH	25	µg/plate	240	Revertants/ plate	3	Replic- ates		10	6	
				Control	0	µg/plate	86	Revertants/ plate	3	Replic- ates		7	4	
				Pyr	1	µg/plate	93	Revertants/ plate	3	Replic- ates		9	5	
				Pyr	5	µg/plate	164	Revertants/ plate	3	Replic- ates		23	13	
				Pyr	25	µg/plate	279	Revertants/ plate	3	Replic- ates		10	6	
17590	Carver et al., 1986	TA100	Hamster ArS9	Control	0	µg/plate	140	Revertants/ plate						Control curves difficult to digitize; control value estimated from BaP graph and used for all.
				BaP	1	µg/plate	141	Revertants/ plate						Continuous data, no SD
				BaP	10	µg/plate	482	Revertants/ plate						
				BaP	50	µg/plate	1,035	Revertants/ plate						
				BaA	15	µg/plate	346	Revertants/ plate						
				BaA	40	µg/plate	892	Revertants/ plate						
				BaA	50	µg/plate	1,263	Revertants/ plate						
				BghiF	10	µg/plate	333	Revertants/ plate						
				BghiF	25	µg/plate	727	Revertants/ plate						

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				BghiF	50	µg/plate	985	Revertants/ plate						
				Perylene	5	µg/plate	195	Revertants/ plate						
				Perylene	10	µg/plate	993	Revertants/ plate						
				Perylene	15	µg/plate	922	Revertants/ plate						
17630	Cavalieri et al., 1981a	TM677	Ar S9	Control	0	μΜ	5	Mutants	1×10^{5}	Surviv- ors	0.000050			Control value estimated
				BaP	10	μΜ	15	Mutants	1×10^{5}	Surviv- ors	0.000150			
				BaP	20	μΜ	26	Mutants	1×10^{5}	Surviv- ors	0.000256			
				BaP	40	μΜ	84	Mutants	1×10^{5}	Surviv- ors	0.000839			
				BaP	60	μΜ	131	Mutants	1×10^{5}	Surviv- ors	0.001308			
				CPcdP	20	μΜ	34	Mutants	1×10^{5}	Surviv- ors	0.000337			
				CPcdP	40	μΜ	133	Mutants	1×10^{5}	Surviv- ors	0.001330			
				ACEP	10	μМ	11	Mutants	1×10^{5}	Surviv- ors	0.000110			
				ACEP	40	μМ	25	Mutants	1×10^5	Surviv- ors	0.000248			
				ACEP	120	μМ	55	Mutants	1×10^5	Surviv- ors	0.000551			
9620	Chang et al., 2002	TA100	Rat ArS9	Control	0	µg/plate	326	Revertants/ plate						SD not consistently plotted; extracted only point estimate data
				BaP	5	µg/plate	2,543	Revertants/ plate						
				BghiF	5	µg/plate	1,630	Revertants/ plate						

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				BcPH	10	µg/plate	1,043	Revertants/ plate						
24030	De Flora et al., 1984	Rat AR S9		BaP			185	Revertants/ nmol (potency)						
				BaA			12	Revertants/ nmol (potency)						
				Pery			21	Revertants/ nmol (potency)						
				BeP			1.6	Revertants/ nmol (potency)						
18050	Eisenstadt and Gold, 1978	TA100	Rat ArS9	BaP	2	μg	1,705	Revertants/ plate						Background subtracted from data reported
				CPcdP	1	μg	134	Revertants/ plate						
18180	Florin et al., 1980	TA100	Rat MC S9	BaP	0.0030	µmol/plate	255	Revertants/ plate						Background subtracted from data reported
		TA100		BaA	0.10	µmol/plate	326	Revertants/ plate						Only peak response reported
		TA100		СН	0.0050	µmol/plate	196	Revertants/ plate						
		TA98		BaP	0.0030	µmol/plate	235	Revertants/ plate						
		TA98		Pery	0.025	µmol/plate	91	Revertants/ plate						
		TA98		СО	0.070	µmol/plate	82	Revertants/ plate						
24080	Gibson et al., 1978	TA98	60 Co gamma radiation, for 7 d (2.5x10 ⁷ rad)	Control	0	µg/plate	0	Increase in revertants						Continuous data, no SD

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				BaP	10	µg/plate	1.5	Increase in revertants						
				BaP	20	µg/plate	3	Increase in revertants						
				BaP	50	µg/plate	10	Increase in revertants						
				BaP	100	µg/plate	15	Increase in revertants						
				BaP	200	µg/plate	21	Increase in revertants						
				BaP	300	µg/plate	35	Increase in revertants						
				BaA	150	µg/plate	1.8	Increase in revertants						
				BaA	250	µg/plate	6.4	Increase in revertants						
				BghiP	400	µg/plate	4.2	Increase in revertants						
				СН	500	µg/plate	6.1	Increase in revertants						
				СН	1,000	µg/plate	6.7	Increase in revertants						
				FE	200	µg/plate	1.1	Increase in revertants						
				FE	360	µg/plate	2.2	Increase in revertants						
				Pyr	160	µg/plate	28	Increase in revertants						
14080	Gold and Eisenstadt, 1980	TA100	50ul rat MC S9	BaP	4	nmol	1,103	Revertants/ plate						Background subtracted from data reported
				CPcdP	4	nmol	281	Revertants/ plate						
18650	Hermann, 1981	TA98	Rat Ar S9	BaP			100	Revertants/ nmol (potency)						

Record number	Reference	Cell type	РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
			BbA			8	Revertants/ nmol (potency)						
			BaA			4	Revertants/ nmol (potency)						
			СН			2	Revertants/ nmol (potency)						
			FA			3	Revertants/ nmol (potency)						
			Tphen			13	Revertants/ nmol (potency)						
			BeP			15	Revertants/ nmol (potency)						
			DBacA			42	Revertants/ nmol (potency)						
			DBahA			8	Revertants/ nmol (potency)						
			BbF			15	Revertants/ nmol (potency)						
			Pery			31	Revertants/ nmol (potency)						
			DBalP			21	Revertants/ nmol (potency)						
			DBaiP			38	Revertants/ nmol (potency)						
			AA			62	Revertants/ nmol (potency)						

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				СО			60	Revertants/ nmol (potency)						
10670	Johnsen et al., 1997	TA98	PCB micro- somes	Control	0	µg/plate	113	Revertants/ plate	3			8.54		Control response added back to each response for modeling
				BaP	10	µg/plate	128	Revertants/ plate	3			3.66		
				BaP	20	µg/plate	123	Revertants/ plate	3			13.41		
				BjAC	10	µg/plate	192	Revertants/ plate	3			10.98		
				BjAC	20	µg/plate	213	Revertants/ plate	3			9.76		
				BIAC	10	µg/plate	204	Revertants/ plate	3			13.41		
				BIAC	20	µg/plate	207	Revertants/ plate	3			43.90		
19000	Kaden et al., 1979	TM677	ArS9 and PB S9	BaP			1	RPF						Mutagenic activity relative to that of the 80 µmol BaP- positive control performed simultaneously with test compound.
				AN	NA		0.010	RPF						
				ANL	NA		0.070	RPF						
				Pyr	NA		0.070	RPF						
				BbFE	NA		0.080	RPF						
				CPcdP	NA		1.5	RPF						
				BaA	NA		0.14	RPF						
				СН	NA		0.20	RPF						
				Tphen	NA		0.070	KPF						
<u> </u>				FA BeP	NA NA		0.11	RPF						

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				Pery	NA		6	RPF						
				BghiP	NA		0.080	RPF						
				AA	NA		0.080	RPF						
				DBacA	NA		0.77	RPF						
				DBahA	NA		0.080	RPF						
				DBbeF	NA		0.88	RPF						
24680	Lafleur et al., 1993	TM677	Rat AR S9	BaP	0	µg/mL	7	Mutants	100,000	Surviv- ors	0.000070			
				BaP	0.5	µg/mL	8	Mutants	100,000	Surviv- ors	0.000080			
				BaP	1	µg/mL	10	Mutants	100,000	Surviv- ors	0.000101			
				BaP	2	µg/mL	18	Mutants	100,000	Surviv- ors	0.000175			
				BaP	4	µg/mL	22	Mutants	100,000	Surviv- ors	0.000220			
				BaP	8	µg/mL	33	Mutants	100,000	Surviv- ors	0.000327			
				BghiF	0	µg/mL	11	Mutants	100,000	Surviv- ors	0.00011			
				BghiF	1	µg/mL	10	Mutants	100,000	Surviv- ors	0.00010			
				BghiF	3	µg/mL	14	Mutants	100,000	Surviv- ors	0.00014			
				BghiF	10	µg/mL	55	Mutants	100,000	Surviv- ors	0.00055			
				CPcdP	0	µg/mL	12	Mutants	100,000	Surviv- ors	0.000120			
				CPcdP	0.5	µg/mL	15	Mutants	100,000	Surviv- ors	0.000146			
				CPcdP	1	µg/mL	13	Mutants	100,000	Surviv- ors	0.000130			
				CPcdP	2	µg/mL	17	Mutants	100,000	Surviv- ors	0.000172			
				CPcdP	4	µg/mL	27	Mutants	100,000	Surviv- ors	0.000274			

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				CPcdP	8	µg/mL	60	Mutants	100,000	Surviv- ors	0.000597			
				CPhiACE A	0	µg/mL	8	Mutants	100,000	Surviv- ors	0.000084			
				CPhiACE A	0.5	µg/mL	10	Mutants	100,000	Surviv- ors	0.000103			
				CPhiACE A	1	µg/mL	16	Mutants	100,000	Surviv- ors	0.000157			
				CPhiACE A	2	µg/mL	29	Mutants	100,000	Surviv- ors	0.000286			
				CPhiACE A	4	µg/mL	67	Mutants	100,000	Surviv- ors	0.000670			
				CPhiAPA	0	µg/mL	9	Mutants	100,000	Surviv- ors	0.000090			
				CPhiAPA	10	µg/mL	12	Mutants	100,000	Surviv- ors	0.000117			
				CPhiAPA	30	µg/mL	21	Mutants	100,000	Surviv- ors	0.000210			
				CPhiAPA	100	µg/mL	26	Mutants	100,000	Surviv- ors	0.000263			
				ACEA	0	µg/mL	9	Mutants	100,000	Surviv- ors	0.000092			
				ACEA	10	µg/mL	21	Mutants	100,000	Surviv- ors	0.000214			
				ACEA	35	µg/mL	69	Mutants	100,000	Surviv- ors	0.000686			
				APA	0	µg/mL	16	Mutants	100,000	Surviv- ors	0.000160			
				APA	10	µg/mL	37	Mutants	100,000	Surviv- ors	0.000375			
				APA	30	µg/mL	42	Mutants	100,000	Surviv- ors	0.000416			
				APA	100	µg/mL	22	Mutants	100,000	Surviv- ors	0.000220			
19320	LaVoie et al., 1979	TA98	Rat Ar S9	BaP	10	μg	450	Revertants/ plate						Background subtracted from data reported

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				BaP	20	μg	480	Revertants/ plate						
				BeP	10	μg	20	Revertants/ plate						
				BeP	20	μg	20	Revertants/ plate						
				Pery	20	μg	70	Revertants/ plate						
23650	McCann et al., 1975	Multiple strains	Rat Ar S9	BaP	NA		121	Revertants/ nmol (potency)						Paper states that comparison of potency estimates should be done with caution (non- linear dose- response) see table footnotes
				DBaiP	NA		20	Revertants/ nmol (potency)						
				BeP	NA		0.6	Revertants/ nmol (potency)						
				DBacA	NA		175	Revertants/ nmol (potency)						
				DBahA	NA		11	Revertants/ nmol (potency)						
				СН	NA		38	Revertants/ nmol (potency)						
				BaA	NA		11	Revertants/ nmol (potency)						
20220	Pahlman and Pelkonen, 1987	TA100	Rat MC S9	BaP	NA		272	Revertants/ nmol (potency)						

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				BaA	NA		10.4	Revertants/ nmol (potency)						
				СН	NA		9.7	Revertants/ nmol (potency)						
				Tphen	NA		4	Revertants/ nmol (potency)						
				DBacA	NA		35	Revertants/ nmol (potency)						
				DBahA	NA		4.4	Revertants/ nmol (potency)						
20450	Phillipson and Ioannides, 1989	TA100	Hamster S9	BaP	0	µg/plate	0.000	Revertants/ plate						
				BaP	5	µg/plate	68.833	Revertants/ plate						
				BaP	10	µg/plate	118.948	Revertants/ plate						
				BaP	15	µg/plate	99.744	Revertants/ plate						
				BaP	20	µg/plate	96.101	Revertants/ plate						
				BaA	0	µg/plate	0.000	Revertants/ plate						
				BaA	20	µg/plate	109.877	Revertants/ plate						
				BaA	40	µg/plate	115.248	Revertants/ plate						
				BaA	60	µg/plate	114.430	Revertants/ plate						
				BaA	100	µg/plate	98.846	Revertants/ plate						
				DBaiP	0	µg/plate	0.000	Revertants/ plate						

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				DBaiP	20	µg/plate	64.638	Revertants/ plate						
				DBaiP	40	µg/plate	75.747	Revertants/ plate						
				DBaiP	60	µg/plate	80.394	Revertants/ plate						
				DBaiP	100	µg/plate	63.880	Revertants/ plate						
				DBahA	0	µg/plate	0.000	Revertants/ plate						
				DBahA	10	µg/plate	50.899	Revertants/ plate						
				DBahA	20	µg/plate	56.886	Revertants/ plate						
				DBahA	30	µg/plate	52.419	Revertants/ plate						
				DBahA	50	µg/plate	34.980	Revertants/ plate						
21000	Sakai et al., 1985	TA97	Rat Ar S9	Control	0	μg	177	Revertants/ plate						
				BaP	1	μg	1,208	Revertants/ plate						
				BaP	5	μg	1,432	Revertants/ plate						
				BaP	10	μg	1,742	Revertants/ plate						
				Control	0	μg	189	Revertants/ plate						
				FE	5	μg	254	Revertants/ plate						
				FE	10	μg	240	Revertants/ plate						
				FE	50	μg	240	Revertants/ plate						
				FE	250	μg	232	Revertants/ plate						

Record number	Reference	Cell type	РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
			Control	0	μg	189	Revertants/ plate						
			AC	5	μg	360	Revertants/ plate						
			AC	10	μg	509	Revertants/ plate						
			AC	50	μg	293	Revertants/ plate						
			AC	250	μg	279	Revertants/ plate						
			Control	0	μg	189	Revertants/ plate						
			РН	5	μg	454	Revertants/ plate						
			РН	10	μg	534	Revertants/ plate						
			РН	50	μg	321	Revertants/ plate						
			РН	250	μg	Т	Revertants/ plate						
			Control	0	μg	177	Revertants/ plate						
			FA	5	μg	652	Revertants/ plate						
			FA	10	μg	1,012	Revertants/ plate						
			FA	50	μg	1,042	Revertants/ plate						
			FA	250	μg	518	Revertants/ plate						
			Control	0	μg	177	Revertants/ plate						
			СН	5	μg	640	Revertants/ plate						
			СН	10	μg	815	Revertants/ plate						

Record number	Reference	Cell type	РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments	
			СН	20	μg	888	Revertants/ plate							
			СН	50	μg	723	Revertants/ plate							
			Control	0	μg	177	Revertants/ plate							
			Pyr	2	μg	929	Revertants/ plate							
			Pyr	4	μg	1,582	Revertants/ plate							
			Pyr	6	μg	2,057	Revertants/ plate							
			Pyr	10	μg	2,577	Revertants/ plate							
			Pyr	20	μg	2,832	Revertants/ plate							
			Pyr	50	μg	2,296	Revertants/ plate							
			Control	0	μg	177	Revertants/ plate							
			BeP	5	μg	944	Revertants/ plate							
			BeP	10	μg	1,100	Revertants/ plate							
			BeP	50	μg	606	Revertants/ plate							
			BeP	250	μg	640	Revertants/ plate							
			Control	0	μg	177	Revertants/ plate							
			Pery	1	μg	1,516	Revertants/ plate							
			Pery	2	μg	2,236	Revertants/ plate							
			Pery	4	μg	2,784	Revertants/ plate							
Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
---------------	--------------------------	-----------	-----------	---------	------	------------	----------	----------------------	---	-------	-----------------	------------	--------------	----------
				Pery	10	μg	2,550	Revertants/ plate						
				Pery	50	μg	1,808	Revertants/ plate						
				Control	0	μg	177	Revertants/ plate						
				BghiP	10	μg	896	Revertants/ plate						
				BghiP	20	μg	991	Revertants/ plate						
				BghiP	50	μg	896	Revertants/ plate						
				BghiP	250	μg	612	Revertants/ plate						
				Control	0	μg	177	Revertants/ plate						
				СО	5	μg	362	Revertants/ plate						
				СО	10	μg	400	Revertants/ plate						
				СО	50	μg	405	Revertants/ plate						
				СО	100	μg	490	Revertants/ plate						
				СО	200	μg	479	Revertants/ plate						
11860	Sangaiah et al., 1983	TA98	Rat Ar S9	Control	0	µg/plate	35.43	Revertants/ plate						
				BaP	2	µg/plate	177.37	Revertants/ plate						
				BaP	3	µg/plate	266.02	Revertants/ plate						
				BaP	6	µg/plate	419.68	Revertants/ plate						
				BaP	10	µg/plate	312.76	Revertants/ plate						

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				BaP	30	µg/plate	358.41	Revertants/ plate						
				BaP	50	µg/plate	350.92	Revertants/ plate						
				BaP	100	µg/plate	323.12	Revertants/ plate						
				Control	0	µg/plate	53.15	Revertants/ plate						
				BjAC	2	µg/plate	124.15	Revertants/ plate						
				BjAC	3	µg/plate	331.10	Revertants/ plate						
				BjAC	6	µg/plate	674.11	Revertants/ plate						
				BjAC	10	µg/plate	993.21	Revertants/ plate						
				BjAC	30	µg/plate	1,027.06	Revertants/ plate						
				BjAC	50	µg/plate	883.45	Revertants/ plate						
				BjAC	100	µg/plate	1,021.36	Revertants/ plate						
21360	Simmon, 1979a	TA100	Rat Ar S9	BaP	5	μg	1,141	Revertants/ plate						Background subtracted from data reported
				BaA	50	μg	280	Revertants/ plate						
				BeP	50	μg	57	Revertants/ plate						
21640	Teranishi et al., 1975	TA1538	Rat PB S9	Control	0	µg/plate	38	Revertant colonies/ plate						
				BaP	50	µg/plate	77	Revertant colonies/ plate						

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				DBaiP	50	µg/plate	102	Revertant colonies/ plate						
		TA1538	Rat PB and DBahA S9	Control	0	µg/plate	25	Revertant colonies/ plate						
				BaP	50	µg/plate	279	Revertant colonies/ plate						
				DBaeP	50	µg/plate	88	Revertant colonies/ plate						
16180	Utesch et al., 1987	TA100	With homogen- ized hepatocytes from Ar treated rats	Control	0	µg/plate	159	Revertants/ plates						
				BaP	6.3	µg/plate	998	Revertants/ plate						
				BaP	12.5	µg/plate	1,079	Revertants/ plate						
				BaP	25	µg/plate	1,178	Revertants/ plate						
				BaP	50	µg/plate	1,141	Revertants/ plate						
				BaP	100	µg/plate	1,114	Revertants/ plate						
				Control	0	µg/plate	199	Revertants/ plate						
				BaA	6.3	µg/plate	861	Revertants/ plate						
				BaA	12.5	µg/plate	2,583	Revertants/ plate						
				BaA	25	µg/plate	3,546	Revertants/ plate						
				BaA	50	µg/plate	3,786	Revertants/ plate						

Record number	Reference	Cell type		РАН	Dose	Dose units	Response	Response units	n	Units	% resp- onse	Std dev	Std error	Comments
				BaA	100	µg/plate	3,406	Revertants/ plate						
16440	Wood et al., 1980	TA98	Purified microsomal P450	Control	0	nmol	0	Revertants/ plate						Background subtracted from data reported
				BaP	3.75	nmol	45	Revertants/ plate						
				BaP	7.5	nmol	63	Revertants/ plate						
				BaP	15	nmol	99	Revertants/ plate						
				BaP	30	nmol	103	Revertants/ plate						
				Control	0	nmol	0	Revertants/ plate						
				CPcdP	3.75	nmol	303	Revertants/ plate						
				CPcdP	7.5	nmol	491	Revertants/ plate						
				CPcdP	15	nmol	685	Revertants/ plate						
				CPcdP	30	nmol	776	Revertants/ plate						

Table C-8. In vitro mammalian mutagenicity: data use

Record		Data		Basis for RPF	
number	Reference	source	Data points	approach	Comments
16920	Amacher and Paillet, 1982	Figure 1	Use lines for BaP (open circles) and BaA (closed triangles; dose is μ g/mL and response is mutation frequency (MF)/10 ⁶ survivors	Model; quantal data	Thymidine kinase assay (resist- ance to trifluorothymidine) in mouse lymphoma cells (L5178Y) with Syrian golden hamster S9 mix or cocultivated hamster hepatocytes
16940	Amacher and Turner, 1980	Figure 3	Use bars for SM2 S9 activation for BaP and BaA; dose is 1.25×10^{-5} M for BaP and 3.22×10^{-5} M for BaP; response is IMF/10 ⁴ survivors	Point estimate	Thymidine kinase assay (resistance to trifluorothymi- dine) in mouse lymphoma cells (L5178Y) with mouse S9 mix
16910	Amacher et al., 1980	Table 3	Use DR data for BaA and BaP; dose as concentration (M), response as mutants per 10 ⁴ survivors	Model; quantal data	Thymidine kinase assay (resistance to trifluorothymi- dine) in mouse lymphoma cells (L5178Y) with mouse S9 mix
17140	Barfknecht et al., 1982	Figure 2 (BaP, FA); Figure 4 (BaA, CH, Tphen); Figure 6 (CPcdP)	Dose is μM and mutant fraction ×10 ⁶	Model; quantal data	Thymidine kinase assay (resistance to trifluorothymi- dine) in human lymphoblast cells with rat Ar S9 mix
14250	Hass et al., 1982	Table 1	DR data for DBaiP, DBahP, and BaP; dose is μ g/mL; use response data for TG mutants only (mutants/10 ⁶ cells); control value is 4 ± 1 mutants/10 ⁶ cells	Model; quantal data	Hypoxanthine-guanine phos- phoribosyl transferase assay (resistance to 6-thioguanine) in V79 Chinese hamster cells with rat MC S9
18740	Huberman and Sachs, 1976	Table 2	Use data for BaP, DBacA, DBahA; 8-azaguanine resistance only; use 1µg/mL dose for all (*), response as mutants per 10 ⁵ survivors	Point estimate	Hypoxanthine-guanine phos- phoribosyl transferase assay (resistance to 8-azaguanine) in V79 Chinese hamster cells with hamster embryo cells
18990	Jotz and Mitchell, 1981	Table 2	Use data for BaP and Pyr with metabolic activation; subtract negative control, dose as $\mu g/mL$, response as MF $\times 10^{-6}$	Point estimate	Thymidine kinase assay (resistance to trifluorothymi- dine) in mouse lymphoma cells (L5178Y) with rat Ar S9
24720	Kligerman et al., 1986	Figure 1	Use DR dat for BaP and BIAC; dose as μ g/mL, response as mutant frequency/10 ⁶ survivors; average data from two experiments	Model; quantal data	Thymidine kinase assay (resistance to trifluorothymi- dine) in mouse lymphoma cells (L5178Y) with rat Ar S9
19180	Krahn and Heidelberger, 1977	Table II	Use data for BaP, DBahA, DBacA, and BaA; cell survival @40% control (column 3), controls are 100% survival group (column 1); use 3-MC S9 data only; dose as nmol/mL, response as 6-TG/10 ⁵ cells	Point estimate	Hypoxanthine-guanine phosphoribosyl transferase assay (resistance to 6-thio- guanine) in V79 Chinese hamster cells with hamster embryo cells

Record number	Reference	Data source	Data points	Basis for RPF approach	Comments
24680	Lafleur et al., 1993	Figures 5 and 6	Use DR curves for BaP, CPcdP (CPP), CPhiACEA (CPAA), ACEA (AA); dose as µg/mL, response as mutant fraction (ppm)	Model as quantal data (mutant fraction reported)	Thymidine kinase assay (resist- ance to trifluorothymidine) in MCL-3 cells (human B- lymphoblastoid cells)
7550	Li and Lin, 1996	Text	Mutant frequency of controls 2×10^{-5} ; 10 ng/mL BaP = 5 × 10^{-5} ; BaA = 5.6 × 10^{-5}	Point estimate	Hypoxanthine-guanine phos- phoribosyl transferase assay (resistance to 6-thioguanine) in HS1 HeLa cells (human epithelial cells)
11450	Nesnow et al., 1984	Chart 9	Use data for BaP, BIAC, BeAC, and BjAC; dose as µg/mL, response as 6TG-resistant mutants/ 10 ⁶ survivors	Model; quantal data	Hypoxanthine-guanine phos- phoribosyl transferase assay (resistance to 6-thioguanine) in V79 Chinese hamster cells with rat AR S9
15630	Raveh and Huberman, 1983	Table 1	Use data for CPcdP and BaP, with PMA only; dose in μ g/mL, response in mutants/10 ⁵ cells	Model; quantal data	Hypoxanthine-guanine phosphoribosyl transferase assay (resistance to 6-thio- guanine) in V79 Chinese hamster cells with hamster embryo cells
15640	Raveh et al., 1982	Figure 4	Use DR data for CPcdP and BaP (ouabain resistance only); dose in μ g/mL, response in mutants/10 ⁶ cells	Model; quantal data	Hypoxanthine-guanine phos- phoribosyl transferase assay (resistance to ouabain) in V79 Chinese hamster cells with hamster embryo cells
21410	Slaga et al., 1978	Table 3	Use DR data for BaA and BaP; dose as µM, response as ouabain resistant mutants/10 ⁴ survivors	Model; quantal data	Hypoxanthine-guanine phos- phoribosyl transferase assay (resistance to ouabain) in V79 Chinese hamster cells with hamster embryo cells
16190	Vaca et al., 1992	Figure 5	DR data for FA and BaP; dose as µM, response as 6-Tg resistant cells/100,000	Model; quantal data	Hypoxanthine-guanine phosphoribosyl transferase assay (resistance to 6-thio- guanine) in UV-sensitive CHO cells with rat Ar S9
21900	Wangenheim and Bolcsfoldi, 1988	Table 1	Use +S9 DR data for Pyr, BaP, and FE; dose as mol/L, response as mutation frequency	Model; quantal data	Thymidine kinase assay (resistance to trifluoro- thymidine) in mouse lymph- oma cells (L5178Y) with rat Ar S9
24670	Durant et al., 1999	Table 1	Use DR data for BaPery, BbPery, DBaeF, DBafF, DBahP, DBaiP, DBelP, N23aP, N23eP; positive control is reported as 1,000 ng/mL BaP (reported separately for each PAH)	Model; quantal data	Thymidine kinase assay (resistance to trifluoro- thymidine) in human h1Alv2 cells

Table C-8. In vitro mammalian mutagenicity: data use

Record number	Reference	РАН	Dose	Dose units	Mutants	In number	Units	% response	Comments
16920	Amacher and Paillet, 1982	Control	0	µg/mL	39	1×10^{6}	Survivors	0.000039	
		BaP	2.5	µg/mL	119	1×10^{6}	Survivors	0.00012	
		BaP	5	µg/mL	170	1×10^{6}	Survivors	0.00017	
		BaP	7.5	µg/mL	196	1×10^{6}	Survivors	0.00020	
		BaP	10	µg/mL	267	1×10^{6}	Survivors	0.00027	
		Control	0	µg/mL	20	1×10^{6}	Survivors	0.000020	
		BaA	2.5	µg/mL	65	1×10^{6}	Survivors	0.000065	
		BaA	5	µg/mL	62	1×10^{6}	Survivors	0.000062	
		BaA	10	µg/mL	88	1×10^{6}	Survivors	0.000088	
		BaA	15	µg/mL	89	1×10^{6}	Survivors	0.000089	
16940	Amacher and Turner, 1980	Control	0	М	0.4	1×10^4	Survivors	0.000040	Control w/o S9 treatment
		BaP	1.25×10^{-5}	М	2.85	1×10^4	Survivors	0.000285	
		BaA	3.22×10^{-5}	М	3.12	1×10^4	Survivors	0.000312	
16910	Amacher et al., 1980	Control	0	М	0.680	1×10^4	Survivors	0.000068	
		BaP	$5.30 imes 10^{-6}$	М	1.360	1×10^4	Survivors	0.000136	
		BaP	$7.00 imes 10^{-6}$	М	1.790	1×10^4	Survivors	0.000179	
		BaP	9.40×10^{-6}	М	1.470	1×10^4	Survivors	0.000147	
		BaP	$1.25 imes 10^{-5}$	М	1.870	1×10^4	Survivors	0.000187	
		BaP	$1.67 imes 10^{-5}$	М	2.600	1×10^4	Survivors	0.000260	
		BaP	2.23×10^{-5}	М	2.490	1×10^4	Survivors	0.000249	
		BaP	$2.97\times10^{\text{-5}}$	М	2.650	$1 imes 10^4$	Survivors	0.000265	
		BaP	$3.96\times10^{\text{-5}}$	М	3.970	1×10^4	Survivors	0.000397	
		Control	0	М	0.770	$1 imes 10^4$	Survivors	0.000077	
		BaA	$1.36\times10^{\text{-5}}$	М	0.810	$1 imes 10^4$	Survivors	0.000081	
		BaA	$1.81 imes 10^{-5}$	М	0.840	1×10^4	Survivors	0.000084	
		BaA	2.42×10^{-5}	М	1.000	1×10^4	Survivors	0.000100	
		BaA	3.22×10^{-5}	М	1.230	1×10^4	Survivors	0.000123	
		BaA	4.30×10^{-5}	М	1.470	1×10^4	Survivors	0.000147	
		BaA	5.47×10^{-5}	М	NS	1×10^4	Survivors		NS = no survivors
		BaA	$7.65 imes 10^{-5}$	М	NS	$1 imes 10^4$	Survivors		

Record number	Reference	РАН	Dose	Dose units	Mutants	In number	Units	% response	Comments
		BaA	1.02×10^{-4}	М	NS	1×10^4	Survivors		
17140	Barfknecht et al., 1982	Control	0	μΜ	0	1×10^{6}	Survivors	0.000000	
		BaP	10	μΜ	51	1×10^{6}	Survivors	0.000051	
		BaP	20	μΜ	120	1×10^{6}	Survivors	0.000120	
		BaP	30	μΜ	155	1×10^{6}	Survivors	0.000155	
		Control	0	μΜ	0	1×10^{6}	Survivors	0.000000	
		FA	10	μΜ	27	1×10^{6}	Survivors	0.000027	
		FA	20	μΜ	50	1×10^{6}	Survivors	0.000050	
		FA	40	μΜ	62	1×10^{6}	Survivors	0.000062	
		Control	0	μΜ	0	1×10^{6}	Survivors	0.000000	
		BaA	20	μΜ	12	1×10^{6}	Survivors	0.000012	
		BaA	50	μΜ	29	1×10^{6}	Survivors	0.000029	
		BaA	100	μΜ	34	1×10^{6}	Survivors	0.000034	
		BaA	150	μΜ	64	1×10^{6}	Survivors	0.000064	
		Control	0	μΜ	0	1×10^{6}	Survivors	0.000000	
		СН	20	μΜ	17	1×10^{6}	Survivors	0.000017	
		СН	50	μΜ	26	1×10^{6}	Survivors	0.000026	
		СН	100	μΜ	30	1×10^{6}	Survivors	0.000030	
		Control	0	μΜ	0	1×10^{6}	Survivors	0.000000	
		Tphen	50	μΜ	10	1×10^{6}	Survivors	0.000010	
		Tphen	100	μΜ	20	1×10^{6}	Survivors	0.000020	
		Tphen	200	μΜ	35	1×10^{6}	Survivors	0.000035	
		Control	0	μΜ	3	1×10^{6}	Survivors	0.000003	
		CPcdP	23	μΜ	11	1×10^{6}	Survivors	0.000011	
		CPcdP	47	μΜ	24	1×10^{6}	Survivors	0.000024	
		CPcdP	88	μΜ	27	1×10^{6}	Survivors	0.000027	
24670	Durant et al., 1999	BaP	1,000	ng/mL	170	1×10^{6}	Survivors	0.00017	
		BaP	1,000	ng/mL	170	1×10^{6}	Survivors	0.00017	
		BaP	1,000	ng/mL	200	1×10^{6}	Survivors	0.00020	
		BaP	1,000	ng/mL	200	1×10^{6}	Survivors	0.00020	
		BaP	1,000	ng/mL	160	1×10^{6}	Survivors	0.00016	

Record	Reference	РАН	Dose	Dose units	Mutants	In number	Units	% response	Comments
number		BaP	1.000	ng/mL	170	1×10^6	Survivors	0.00017	
		BaP	1,000	ng/mL	190	1×10^{6}	Survivors	0.00019	
		BaP	1,000	ng/mL	200	1×10^{6}	Survivors	0.00020	
		BaP	1,000	ng/mL	210	1×10^{6}	Survivors	0.00021	
		Averaged BaP	1,000	ng/mL	186	1×10^{6}	Survivors	0.00019	
		Averaged controls	0	ng/mL	20	1×10^{6}	Survivors	0.00002	
		Control	0	ng/mL	18	$1 imes 10^6$	Survivors	0.000018	
		BaPery	0.1	ng/mL	21	1×10^{6}	Survivors	0.000021	
		BaPery	0.3	ng/mL	23	1×10^{6}	Survivors	0.000023	
		BaPery	1	ng/mL	28	$1 imes 10^6$	Survivors	0.000028	
		BaPery	3	ng/mL	50	1×10^{6}	Survivors	0.000050	
		BaPery	10	ng/mL	82	1×10^{6}	Survivors	0.000082	
		BaPery	100	ng/mL	200	$1 imes 10^6$	Survivors	0.00020	
		Control	0	ng/mL	18	$1 imes 10^6$	Survivors	0.000018	
		BbPery	1	ng/mL	19	1×10^{6}	Survivors	0.000019	
		BbPery	3	ng/mL	22	$1 imes 10^6$	Survivors	0.000022	
		BbPery	10	ng/mL	32	1×10^{6}	Survivors	0.000032	
		BbPery	100	ng/mL	54	1×10^{6}	Survivors	0.000054	
		Control	0	ng/mL	21	$1 imes 10^6$	Survivors	0.000021	
		DBaeF	1	ng/mL	29	$1 imes 10^6$	Survivors	0.000029	
		DBaeF	10	ng/mL	72	1×10^{6}	Survivors	0.000072	
		DBaeF	100	ng/mL	190	$1 imes 10^6$	Survivors	0.00019	
		DBaeF	1,000	ng/mL	np	1×10^{6}	Survivors		Not plated due to excessive toxicity
		Control	0	ng/mL	21	1×10^{6}	Survivors	0.000021	
		DBafF	1	ng/mL	21	1×10^{6}	Survivors	0.000021	
		DBafF	10	ng/mL	37	1×10^{6}	Survivors	0.000037	
		DBafF	100	ng/mL	81	1×10^{6}	Survivors	0.000081	
		DBafF	1,000	ng/mL	190	1×10^{6}	Survivors	0.00019	
		Control	0	ng/mL	19	1×10^{6}	Survivors	0.000019	
		DBahP	0.1	ng/mL	24	1×10^{6}	Survivors	0.000024	

Record number	Reference	РАН	Dose	Dose units	Mutants	In number	Units	% response	Comments
		DBahP	1	ng/mL	24	1×10^{6}	Survivors	0.000024	
		DBahP	10	ng/mL	46	1×10^{6}	Survivors	0.000046	
		DBahP	100	ng/mL	80	1×10^{6}	Survivors	0.000080	
		Control	0	ng/mL	20	1×10^{6}	Survivors	0.000020	
		DBaiP	0.3	ng/mL	20	1×10^{6}	Survivors	0.000020	
		DBaiP	1	ng/mL	35	1×10^{6}	Survivors	0.000035	
		DBaiP	10	ng/mL	88	1×10^{6}	Survivors	0.000088	
		DBaiP	100	ng/mL	150	1×10^{6}	Survivors	0.00015	
		Control	0	ng/mL	21	1×10^{6}	Survivors	0.000021	
		DBelP	10	ng/mL	28	1×10^{6}	Survivors	0.000028	
		DBelP	100	ng/mL	34	1×10^{6}	Survivors	0.000034	
		DBelP	1,000	ng/mL	55	1×10^{6}	Survivors	0.000055	
		Control	0	ng/mL	21	1×10^{6}	Survivors	0.000021	
		N23aP	0.1	ng/mL	23	1×10^{6}	Survivors	0.000023	
		N23aP	1	ng/mL	44	1×10^{6}	Survivors	0.000044	
		N23aP	10	ng/mL	84	$1 imes 10^6$	Survivors	0.000084	
		N23aP	100	ng/mL	94	1×10^{6}	Survivors	0.000094	
		N23aP	1,000	ng/mL	73	1×10^{6}	Survivors	0.000073	
		Control	0	ng/mL	19	1×10^{6}	Survivors	0.000019	
		N23eP	1	ng/mL	20	$1 imes 10^6$	Survivors	0.000020	
		N23eP	10	ng/mL	41	1×10^{6}	Survivors	0.000041	
		N23eP	100	ng/mL	74	1×10^{6}	Survivors	0.000074	
		N23eP	1,000	ng/mL	98	1×10^{6}	Survivors	0.00010	
14250	Hass et al., 1982	Control	0	µg/mL	4	1×10^{6}	CFC	0.0000040	
		BaP	0.30	µg/mL	267	1×10^{6}	CFC	0.00027	
		BaP	1.00	µg/mL	293	1×10^{6}	CFC	0.00029	
		DBaiP	0.03	µg/mL	124	1×10^{6}	CFC	0.00012	
		DBaiP	0.10	µg/mL	289	1×10^{6}	CFC	0.00029	
		DBaiP	0.30	µg/mL	1211	1×10^{6}	CFC	0.00121	
		DBahP	0.03	µg/mL	110	1×10^{6}	CFC	0.00011	
		DBahP	0.10	µg/mL	264	1×10^{6}	CFC	0.00026	
		DBahP	0.30	µg/mL	668	1×10^{6}	CFC	0.00067	

Record number	Reference	РАН	Dose	Dose units	Mutants	In number	Units	% response	Comments
18740	Huberman and Sachs, 1976	Control	0	µg/mL	6	1×10^{5}	Survivors	0.000060	
		BaP	1	µg/mL	425	1×10^5	Survivors	0.00425	
		DBacA	1	µg/mL	22	1×10^5	Survivors	0.00022	
		DBahA	1	µg/mL	17	1×10^5	Survivors	0.00017	
18990	Jotz and Mitchell, 1981	Control	0	µg/mL	80	1×10^{6}	Survivors	0.000080	
		BaP	4.5	µg/mL	224	1×10^{6}	Survivors	0.00022	With metabolic activation
		Control	0	µg/mL	116	$1 imes 10^{6}$	Survivors	0.00012	
		Pyr	10.6	µg/mL	150	1×10^{6}	Survivors	0.00015	With metabolic activation
24720	Kligerman et al., 1986	Control	0	nmol/mL	92	1×10^{6}	Survivors	0.00009	Avg. of 2 experiments
		BaP	2.0	nmol/mL	258	1×10^{6}	Survivors	0.00026	
		BaP	3.0	nmol/mL	417	1×10^{6}	Survivors	0.00042	
		BaP	4.0	nmol/mL	557	1×10^{6}	Survivors	0.00056	
		Control	0	nmol/mL	90	1×10^{6}	Survivors	0.00009	
		BlAC	0.5	nmol/mL	93	1×10^{6}	Survivors	0.00009	
		BlAC	2.5	nmol/mL	197	1×10^{6}	Survivors	0.00020	
		BlAC	5.0	nmol/mL	374	1×10^{6}	Survivors	0.00037	
19180	Krahn and Heidelberger, 1977	Control	0	nmol/mL	1.7	1×10^5	Survivors	0.000017	
		BaP	15.9	nmol/mL	14	1×10^5	Survivors	0.000136	3-MC S9; 40% survival
		Control	0	nmol/mL	1.5	1×10^5	Survivors	0.000015	
		BaA	46.5	nmol/mL	6.5	1×10^5	Survivors	0.000065	3-MC S9; 40% survival
24680	Lafleur et al., 1993	Control	0	µg/mL	1.2	1×10^{6}	Survivors	0.0000012	
		BaP	0.02	µg/mL	4.8	1×10^{6}	Survivors	0.0000048	
		BaP	0.06	µg/mL	24	$1 imes 10^6$	Survivors	0.000024	
		BaP	0.2	µg/mL	25	$1 imes 10^6$	Survivors	0.000025	
		BaP	1	µg/mL	39	1×10^{6}	Survivors	0.000039	
		BaP	5	µg/mL	56	1×10^{6}	Survivors	0.000056	
		Control	0	µg/mL	1.8	1×10^{6}	Survivors	0.0000018	
		ACEA	1	µg/mL	6.0	1×10^{6}	Survivors	0.0000060	

Record number	Reference	РАН	Dose	Dose units	Mutants	In number	Units	% response	Comments
		ACEA	3	ug/mL	15	1×10^{6}	Survivors	0.000015	
		ACEA	8	µg/mL	21	1×10^{6}	Survivors	0.000021	
		Control	0	µg/mL	2.5	1×10^{6}	Survivors	0.0000025	
		CPcdP	0.03	µg/mL	4.2	1×10^{6}	Survivors	0.0000042	
		CPcdP	0.06	µg/mL	4.9	1×10^{6}	Survivors	0.0000049	
		CPcdP	0.2	µg/mL	5.9	1×10^{6}	Survivors	0.0000059	
		CPcdP	0.6	µg/mL	10	1×10^{6}	Survivors	0.000010	
		CPcdP	2	µg/mL	17	1×10^{6}	Survivors	0.000017	
		Control	0	µg/mL	2.8	1×10^{6}	Survivors	0.0000028	
		CPhiACEA	0.1	µg/mL	12	1×10^{6}	Survivors	0.000012	
		CPhiACEA	0.3	µg/mL	25	1×10^{6}	Survivors	0.000025	
		CPhiACEA	0.8	µg/mL	31	1×10^{6}	Survivors	0.000031	
7550	Li and Lin, 1996	Control	0	ng/mL	2	1×10^5	Survivors	0.000020	
		BaP	10	ng/mL	5	1×10^5	Survivors	0.000050	
		BaA	10	ng/mL	5.6	1×10^5	Survivors	0.000056	
11450	Nesnow et al., 1984	Control	0	µg/mL	16	$1 imes 10^6$	Survivors	0.000016	
		BaP	0.5	µg/mL	10	1×10^{6}	Survivors	0.000010	
		BaP	1.0	µg/mL	46	1×10^{6}	Survivors	0.000046	
		BaP	2.5	µg/mL	72	1×10^{6}	Survivors	0.000072	
		BaP	5.0	µg/mL	206	1×10^{6}	Survivors	0.000206	
		BaP	10.0	µg/mL	215	1×10^{6}	Survivors	0.000215	
		BaP	20.0	µg/mL	293	1×10^{6}	Survivors	0.000293	
		BeAC	1.0	µg/mL	17	1×10^{6}	Survivors	0.000017	
		BeAC	2.5	µg/mL	53	1×10^{6}	Survivors	0.000053	
		BeAC	5.0	µg/mL	435	1×10^{6}	Survivors	0.000435	
		BeAC	10.0	µg/mL	235	1×10^{6}	Survivors	0.000235	
		BeAC	20.0	µg/mL	349	1×10^{6}	Survivors	0.000349	
		BjAC	1.0	µg/mL	24	1×10^{6}	Survivors	0.000024	
		BjAC	2.5	µg/mL	94	1×10^{6}	Survivors	0.000094	
		BjAC	5.0	µg/mL	268	1×10^{6}	Survivors	0.000268	
		BjAC	10.0	µg/mL	225	1×10^{6}	Survivors	0.000225	
		BjAC	20.0	µg/mL	215	1×10^{6}	Survivors	0.000215	

Record number	Reference	РАН	Dose	Dose units	Mutants	In number	Units	% response	Comments
		BlAC	1.0	µg/mL	31	1×10^{6}	Survivors	0.000031	
		BlAC	2.5	µg/mL	454	1×10^{6}	Survivors	0.000454	
		BlAC	5.0	µg/mL	320	1×10^{6}	Survivors	0.000320	
		BlAC	10.0	µg/mL	704	1×10^{6}	Survivors	0.000704	
		BlAC	20.0	µg/mL	769	1×10^{6}	Survivors	0.000769	
15630	Raveh and Huberman, 1983	Control	0	µg/mL	3	1×10^5	Survivors	0.000030	
		BaP	0.3	µg/mL	25	1×10^5	Survivors	0.00025	
		BaP	1	µg/mL	103	1×10^5	Survivors	0.0010	
		CPcdP	0.3	µg/mL	9	1×10^5	Survivors	0.000090	
		CPcdP	1	µg/mL	20	1×10^5	Survivors	0.00020	
15640	Raveh et al., 1982	BaP	0	µg/mL	7	1×10^{6}	CFC	0.0000070	
		BaP	0.3	µg/mL	20	1×10^{6}	CFC	0.000020	
		BaP	1	µg/mL	74	1×10^{6}	CFC	0.000074	
		BaP	3	µg/mL	74	1×10^{6}	CFC	0.000074	
		CPcdP	0	µg/mL	1	1×10^{6}	CFC	0.0000010	
		CPcdP	0.3	µg/mL	5	1×10^{6}	CFC	0.0000047	
		CPcdP	1	µg/mL	10	$1 imes 10^6$	CFC	0.000010	
		CPcdP	3	µg/mL	28	1×10^{6}	CFC	0.000028	
21410	Slaga et al., 1978	Control	0	μΜ	0.7	1×10^4	Survivors	0.000070	
		BaA	4.4	μΜ	0.9	$1 imes 10^4$	Survivors	0.000090	
		BaA	44.0	μΜ	2.1	1×10^4	Survivors	0.00021	
		BaP	0.4	μΜ	11.0	1×10^4	Survivors	0.0011	
		BaP	1.3	μΜ	25.0	1×10^4	Survivors	0.0025	
		BaP	4.0	μΜ	99.0	$1 imes 10^4$	Survivors	0.0099	
16190	Vaca et al., 1992	BaP	0	μΜ	3	1×10^5	Survivors	0.000032	
		BaP	2	μΜ	10	1×10^5	Survivors	0.000102	
		BaP	4	μΜ	23	1×10^5	Survivors	0.000229	
		BaP	10	μΜ	31	1×10^5	Survivors	0.000306	
		FA	0	μM	10	1×10^5	Survivors	0.000105	
		FA	5	μΜ	20	1×10^5	Survivors	0.000203	
		FA	7.5	μM	27	1×10^5	Survivors	0.000274	

Record number	Reference	РАН	Dose	Dose units	Mutants	In number	Units	% response	Comments
			10	μM	32	1×10^5	Survivors	0.000318	
21900	Wangenheim and Bolcsfoldi, 1988	Control	0	mol/L	61	1×10^{6}	Survivors	0.000061	
		Control	0	mol/L	62	1×10^{6}	Survivors	0.000062	Used average of controls
		Average	0	mol/L	62	1×10^{6}	Survivors	0.000062	
		BaP	0.000001	mol/L	65	1×10^{6}	Survivors	0.000065	
		BaP	0.000005	mol/L	243	1×10^{6}	Survivors	0.000243	
		BaP	0.000010	mol/L	858	1×10^{6}	Survivors	0.00086	
		Control	0	mol/L	68	1×10^{6}	Survivors	0.00007	
		FE	0.0000195	mol/L	92	1×10^{6}	Survivors	0.00009	
		FE	0.0000389	mol/L	91	1×10^{6}	Survivors	0.00009	
		FE	0.0000681	mol/L	114	1×10^{6}	Survivors	0.00011	
		FE	0.000122	mol/L	154	1×10^{6}	Survivors	0.00015	
		FE	0.000170	mol/L	147	1×10^{6}	Survivors	0.00015	
		Control	0	mol/L	125	$1 imes 10^6$	Survivors	0.00013	
		Control	0	mol/L	106	1×10^{6}	Survivors	0.00011	
		Average	0	mol/L	116	1×10^{6}	Survivors	0.00012	
		Pyr	0.0000101	mol/L	162	1×10^{6}	Survivors	0.00016	
		Pyr	0.0000151	mol/L	228	1×10^{6}	Survivors	0.00023	
		Pyr	0.0000202	mol/L	345	1×10^{6}	Survivors	0.00035	
		Pyr	0.0000252	mol/L	418	1×10^{6}	Survivors	0.00042	
		Pyr	0.0000302	mol/L	650	1×10^{6}	Survivors	0.00065	

Record number	Reference	Page	Table number	Figure number	PAHs	Data to be extracted	Basis for RPF	Comment	Notes:
17610	Casto, 1979	54	I and IV		BaP, DBahA	TF in number foci per 10^5 surviving cells and dose (μ g/mL)	Ratio of slopes	Data on enhancement of viral transformation not used; no straightforward way to model dose- response	Model as incidence data using multistage
17970	DiPaolo et al., 1969	871	3		BaP, DBahA, BaA, BeP, DBacA	Total transformants, total no. colonies, and dose ($\mu g/mL$)	Point estimate		Do not use % transformants; appears to be error for DBahA
18020	Dunkel et al., 1981					Use data as reported in 23720 Pienta 1977; report under that record			
18080	Emura et al., 1980	153, 154	I and II		BaP, BbF, BaA, IP	T, number of transformed colonies/1,000 survivals in 10 dishes and dose (µg/mL)	Ratio of slopes		Model as incidence data using multistage
14130	Greb et al., 1980	147	1		BaP, CH, BaA, BbF, DBahA, BeP	Relative transformation rate (potency) in %/mmol	Ratio of slopes		Relative transformation potency at LC50. Slope already calculated.
14640	Krolewski et al., 1986	1,648	1		BaP, CPcdP	Transformation frequency per viable cell $\times 10^{-3}$; single dose (5 µM)	Point estimate		Use only BaP and CPcdP alone (not with IVA/AIA)
14700	Laaksonen et al., 1983	62	4		BaP, BaA	Transformation frequency (no. foci/ 10^5 surviving cells) and dose (μ M)	Ratio of slopes		Inverse dose response relationship poss. due to cytotoxicity. Use peak.
14850	Lubet et al., 1983	992	1		BaP, BeP	DwT-III/td (dishes with Type III foci/ total dishes) and dose (µg/mL)	Ratio of slopes		Control data in caption (no transformants). Model as incidence data.
24710	Mohapatra et al., 1987	327	1		BaP, BeAC, BjAC, BlAC	Number of dishes scored and percent of dishes with Type II or Type III foci and dose (µg/mL)	Ratio of slope to BaP point estimate	Use BaP incidence as BMR	Convert percent into number of dishes and model as incidence data.
24700	Nesnow et al., 1990	224	1		BaP, BIAC	Anchorage independent colonies/50,000 cells and dose (μg/mL)	Ratio of slopes		Continuous data, no SD for controls; use peak.
7980	Nesnow et al., 1997	1,975	Ι		BaP, DBalP	Type II and III foci/dish (mean and SD) and dose (µM)	Ratio of slopes		Model as continuous data
7990	Nesnow et al., 1994	2,227	I		BaP, DBahA	Type II and III Foci/dish and dose. Use 1 µg/mL dose for DBahA and mean foci/dish (in parentheses). Single dose for BaP	Point estimate		

Table C-10. In vitro malignant/morphological cell transformation: data use

Record number	Reference	Page	Table number	Figure number	PAHs	Data to be extracted	Basis for RPF	Comment	Notes:
8000	Nesnow et al., 1993a	28	Ι		DBkmnoAPH	Peak of Type II and III foci/dish. Use 5 μ g/mL dose for DBkmnoAPH and 3 μ g/mL dose for BaP. Average number foci/dish across the two experiments	Point estimate		Peak transformation for each compound. DBkmnoAPH reported in paper as CP(3,4)B[a]P
23720	Pienta et al., 1977	648	IV		BaP, BaA, DBahA	Transformed colonies/surviving colonies and dose (µg/mL, in row across)	Ratio of slopes		Model as incidence data using multistage

Table C-10. In vitro malignant/morphological cell transformation: data use

						Transfo	ormation n	ieasure				
Record				Dose		Standard	Standard					
number	Reference	PAH	Dose	units	Mean	deviation	error	Units	n	units	% Response	Notes
17610	Casto, 1979	Control	0	µg/mL	0			Foci	100,000	Surviving cells	0	
		BaP	0.62	µg/mL	8			Foci	100,000	Surviving cells	0.00008	
		BaP	1.25	µg/mL	10			Foci	100,000	Surviving cells	0.0001	
		DBahA	1.2	µg/mL	0.5			Foci	100,000	Surviving cells	0.000005	
		DBahA	2.5	µg/mL	1			Foci	100,000	Surviving cells	0.00001	
17970	DiPaolo et al., 1969	Control	0	µg/mL	0			Transformants	354	No. surviving	0	
		BaP	10	µg/mL	8			Transformants	138	No. surviving	0.058	
		DBahA	10	µg/mL	11			Transformants	354	No. surviving	0.031	
		BaA	10	µg/mL	2			Transformants	190	No. surviving	0.011	
		BeP	10	µg/mL	1			Transformants	172	No. surviving	0.0058	
		DBacA	10	µg/mL	2			Transformants	181	No. surviving	0.011	
18080	Emura et al., 1980	Control	0	µg/mL	0			Transformed colonies	1,000	Survivals	0	
	Expt 1	BaP	0.01	µg/mL	0			Transformed colonies	1,000	Survivals	0	
		BaP	0.05	µg/mL	1.1			Transformed colonies	1,000	Survivals	0.0011	
		BaP	0.1	µg/mL	2.9			Transformed colonies	1,000	Survivals	0.0029	
		BaP	0.25	µg/mL	5.3			Transformed colonies	1,000	Survivals	0.0053	
		BaP	0.5	µg/mL	6.8			Transformed colonies	1,000	Survivals	0.0068	
		BbF	0.025	µg/mL	0			Transformed colonies	1,000	Survivals	0	
		BbF	0.1	µg/mL	0.4			Transformed colonies	1,000	Survivals	0.00040	
		BbF	0.25	µg/mL	0.3			Transformed colonies	1,000	Survivals	0.00030	
		BbF	0.5	µg/mL	0.6			Transformed colonies	1,000	Survivals	0.00060	
		BbF	1	µg/mL	1.2			Transformed colonies	1,000	Survivals	0.0012	

					Transformation measure							
Record			-	Dose		Standard	Standard					
number	Reference	РАН	Dose	units	Mean	deviation	error	Units	n	units	% Response	Notes
		BaA	0.025	µg/mL	0			Transformed colonies	1,000	Survivals	0	
		BaA	0.1	µg/mL	0.3			Transformed colonies	1,000	Survivals	0.00030	
		BaA	0.25	µg/mL	0.3			Transformed colonies	1,000	Survivals	0.00030	
		BaA	0.5	µg/mL	0.6			Transformed colonies	1,000	Survivals	0.00060	
		BaA	1	µg/mL	1			Transformed colonies	1,000	Survivals	0.0010	
	Expt 2	Control	0	µg/mL	0			Transformed colonies	1,000	Survivals	0	
		BaP	0.01	µg/mL	0.4			Transformed colonies	1,000	Survivals	0.00040	
		BaP	0.05	µg/mL	1			Transformed colonies	1,000	Survivals	0.0010	
		BaP	0.1	µg/mL	2.9			Transformed colonies	1,000	Survivals	0.0029	
		BaP	0.25	µg/mL	4.6			Transformed colonies	1,000	Survivals	0.0046	
		BaP	0.5	µg/mL	7.8			Transformed colonies	1,000	Survivals	0.0078	
		IP	0.025	µg/mL	0			Transformed colonies	1,000	Survivals	0	
		IP	0.1	µg/mL	0.3			Transformed colonies	1,000	Survivals	0.00030	
		IP	0.25	µg/mL	0.3			Transformed colonies	1,000	Survivals	0.00030	
		IP	0.5	µg/mL	0.7			Transformed colonies	1,000	Survivals	0.00070	
		IP	1	µg/mL	1			Transformed colonies	1,000	Survivals	0.0010	
14130	Greb et al., 1980	BaP	NA		277			%/mmol				
		СН	NA		37			%/mmol				
		BaA	NA		13.9			%/mmol				

 Table C-11. In vitro malignant/morphological cell transformation: dose response data

						Transfo	ormation n	ieasure				
Record	Reference	ран	Dose	Dose	Mean	Standard deviation	Standard error	Units	n	units	% Response	Notes
number	Reference	BbF	NA	units	11.5	ucviation		%/mmol		units	70 Response	110105
		DBahA	NA		0.3			%/mmol				
		BeP	NA		3.1			%/mmol				
14640	Krolewski et al., 1986	Control	0	μМ	0			Transformation frequency	1,000	Viable cells	0	
		BaP	5	μΜ	5.5	0.7		Transformation frequency	1,000	Viable cells	0.0055	
		CPcdP	5	μМ	1.7	0.3		Transformation frequency	1,000	Viable cells	0.0017	
14700	Laaksonen et al., 1983	Control	0	μΜ	0			Foci	1×10^5	Surviving cells	0	
		BaP	5	μМ	0.8			Foci	1×10^5	Surviving cells	0.0000080	Inverse dose response relationship poss. due to cytotoxicity. Use peak.
		BaP	10	μM	0.9			Foci	1×10^5	Surviving cells	0.0000090	
		BaP	20	μM	0.3			Foci	1×10^5	Surviving cells	0.0000030	
		BaP	40	μΜ	0.4			Foci	1×10^5	Surviving cells	0.0000040	
		Control	0		0			Foci	1×10^5	Surviving cells	0	
		BaA	11	μΜ	1.8			Foci	1×10^5	Surviving cells	0.000018	Inverse dose response relationship poss. due to cytotoxicity. Use peak.
		BaA	22	μM	1.5			Foci	1×10^5	Surviving cells	0.000015	
		BaA	44	μM	1.1			Foci	1×10^5	Surviving cells	0.000011	
		BaA	88	μM	0.8			Foci	1×10^5	Surviving cells	0.0000080	
14850	Lubet et al., 1983	Control	0	µg/mL	0			Dishes with Type III foci		Total dishes	0	
		BaP	1	µg/mL	1			Dishes with Type III foci	15	Total dishes	0.067	
		BaP	3	µg/mL	4			Dishes with Type III foci	15	Total dishes	0.267	
		BaP	10	µg/mL	5			Dishes with Type III foci	15	Total dishes	0.333	
		BeP	10	µg/mL	0			Dishes with Type III foci	15	Total dishes	0	

					Transformation measure							
Record	Df	DAT	D	Dose		Standard	Standard	T T •4		.,	0/ D	
number	Reference	PAH	Dose	units	Mean	deviation	error	Units	n	units	% Response	Notes
		BeP	30	µg/mL	1			Dishes with Type III foci	15	Total dishes	0.067	
		BeP	100	µg/mL	7			Dishes with Type III foci	15	Total dishes	0.467	
24710	Mohapatra et al., 1987	Control	0	µg/mL	0			Dishes with Type II or III foci	48	Dishes scored	0	
		BaP	1	µg/mL	44			Dishes with Type II or III foci	48	Dishes scored	0.92	
		BjAC	0.01	µg/mL	2			Dishes with Type II or III foci	48	Dishes scored	0.04	
		BjAC	0.05	µg/mL	5			Dishes with Type II or III foci	48	Dishes scored	0.1	
		BjAC	0.5	µg/mL	34			Dishes with Type II or III foci	48	Dishes scored	0.71	
		BjAC	1	µg/mL	45			Dishes with Type II or III foci	48	Dishes scored	0.94	
		BjAC	2	µg/mL	48			Dishes with Type II or III foci	48	Dishes scored	1	
		Control	0	µg/mL	0			Dishes with Type II or III foci	60	Dishes scored	0	
		BaP	1	µg/mL	50			Dishes with Type II or III foci	60	Dishes scored	0.83	
		BlAC	0.5	µg/mL	8			Dishes with Type II or III foci	60	Dishes scored	0.13	
		BIAC	1	µg/mL	14			Dishes with Type II or III foci	60	Dishes scored	0.26	
		BIAC	2.5	µg/mL	31			Dishes with Type II or III foci	60	Dishes scored	0.52	
		BIAC	5	µg/mL	42			Dishes with Type II or III foci	60	Dishes scored	0.7	
		BIAC	10	µg/mL	51			Dishes with Type II or III foci	60	Dishes scored	0.85	
		Control	0	µg/mL	0			Dishes with Type II or III foci	36	Dishes scored	0	
		BaP	1	µg/mL	31			Dishes with Type II or III foci	36	Dishes scored	0.86	

 Table C-11. In vitro malignant/morphological cell transformation: dose response data

					Transformation measure							
Record	Deferreres	DAII	Dam	Dose	Maan	Standard	Standard	TI			0/ Damana	Natas
number	Kelerence	BeAC	0.5	μg/mL	4	deviation	error	Dishes with	36	Dishes scored	0.11	Inotes
		BeAC	1	µg/mL	6			Dishes with Type II or III foci	36	Dishes scored	0.17	
		BeAC	2.5	µg/mL	13			Dishes with Type II or III foci	36	Dishes scored	0.36	
		BeAC	5	µg/mL	15			Dishes with Type II or III foci	36	Dishes scored	0.42	
		BeAC	10	µg/mL	21			Dishes with Type II or III foci	36	Dishes scored	0.58	
24700	Nesnow et al., 1990	Acetone	0	µg/mL	25			Anchorage independent colonies/50,000 cells				
		BaP	0.1	µg/mL	43	14.7		Anchorage independent colonies/50,000 cells				
		BaP	0.5	µg/mL	42	20.7		Anchorage independent colonies/50,000 cells				
		BaP	2.5	µg/mL	39	19.5		Anchorage independent colonies/50,000 cells				
		BaP	10	µg/mL	72	23.1		Anchorage independent colonies/50,000 cells				
		Acetone	0	µg/mL	30			Anchorage independent colonies/50,000 cells				
		BIAC	0.1	µg/mL	74	5.2		Anchorage independent colonies/50,000 cells				

 Table C-11. In vitro malignant/morphological cell transformation: dose response data

					Transformation measure							
Record number	Reference	РАН	Dose	Dose units	Mean	Standard deviation	Standard error	Units	n	units	% Response	Notes
		BIAC	0.5	μg/mL	68	14.4	01101	Anchorage independent colonies/50,000 cells				
		BIAC	2.5	µg/mL	123	15.6		Anchorage independent colonies/50,000 cells				
		BIAC	10	µg/mL	150	16.8		Anchorage independent colonies/50,000 cells				
7980	Nesnow et al., 1997	Control	0	μΜ	0	0		Type II and III foci/dish				
		BaP	0.4	μΜ	0.44	0.24		Type II and III foci/dish				
		BaP	1.2	μΜ	1.25	0.15		Type II and III foci/dish				
		BaP	4	μΜ	2.54	0.56		Type II and III foci/dish				
		DBalP	0.003	μΜ	0.14	0.35		Type II and III foci/dish				
		DBalP	0.1	μΜ	1	0.24		Type II and III foci/dish				
		DBalP	0.33	μM	1.74	0.78		Type II and III foci/dish				
7990	Nesnow et al., 1994	Control	0	µg/mL	0.06	0.10		Type II and III foci/dish				
		BaP	1	µg/mL	1	0.43		Type II and III foci/dish				
		DBahA	0.25	µg/mL	0.23	0.21		Type II and III foci/dish				
		DBahA	0.5	µg/mL	0.25	0.33		Type II and III foci/dish				
		DBahA	1	µg/mL	0.43	0.11		Type II and III foci/dish				

					Transformation measure		neasure					
Record number	Reference	РАН	Dose	Dose units	Mean	Standard deviation	Standard error	Units	n	units	% Response	Notes
		DBahA	2.5	µg/mL	0.29	0.085		Type II and III foci/dish				
8000	Nesnow et al., 1993a	Control	0	µg/mL	0			Type II and III foci/dish				
		BaP	0.3	µg/mL	0.48			Type II and III foci/dish				
		BaP	1	µg/mL	0.665			Type II and III foci/dish				
		BaP	3	µg/mL	1.4			Type II and III foci/dish				
		Control	0	µg/mL	0			Type II and III foci/dish				
		DBkmnoA PH	0.5	µg/mL	0.23			Type II and III foci/dish				
		DBkmnoA PH	1	µg/mL	0.52			Type II and III foci/dish				
		DBkmnoA PH	2.5	µg/mL	0.605			Type II and III foci/dish				
		DBkmnoA PH	5	µg/mL	1.085			Type II and III foci/dish				
23720	Pienta et al., 1977	Control	0	µg/mL	0			Transformed colonies	504	Surviving colonies	0	BaP and BaA data also reported in 18020 Dunkel 1981
		BaP	1	µg/mL	1			Transformed colonies	393	Surviving colonies	0.0025	
		BaP	5	µg/mL	2			Transformed colonies	406	Surviving colonies	0.0049	
		BaP	10	µg/mL	3			Transformed colonies	434	Surviving colonies	0.0069	
		BaP	20	µg/mL	5			Transformed colonies	410	Surviving colonies	0.0122	
		BaP	40	µg/mL	4			Transformed colonies	427	Surviving colonies	0.0094	
		Control	0	µg/mL	0			Transformed colonies	229	Surviving colonies	0	

 Table C-11. In vitro malignant/morphological cell transformation: dose response data

					Transformation measure							
Record number	Reference	РАН	Dose	Dose units	Mean	Standard deviation	Standard error	Units	n	units	% Response	Notes
		BaA	0.1	µg/mL	1			Transformed colonies	225	Surviving colonies	0.0044	
		BaA	0.5	µg/mL	2			Transformed colonies	252	Surviving colonies	0.0079	
		BaA	1	µg/mL	2			Transformed colonies	193	Surviving colonies	0.0104	
		BaA	5	µg/mL	1			Transformed colonies	312	Surviving colonies	0.0032	
		BaA	10	µg/mL	7			Transformed colonies	250	Surviving colonies	0.028	
		Control	0	µg/mL	0			Transformed colonies	229	Surviving colonies	0	
		DBahA	0.1	µg/mL	0			Transformed colonies	219	Surviving colonies	0	
		DBahA	0.5	µg/mL	4			Transformed colonies	233	Surviving colonies	0.0172	
		DBahA	1	µg/mL	4			Transformed colonies	217	Surviving colonies	0.0184	
		DBahA	5	µg/mL	5			Transformed colonies	270	Surviving colonies	0.0185	
		DBahA	10	µg/mL	0			Transformed colonies	232	Surviving colonies	0	

Record number	Reference	Page	Table number	Figure number	PAHs	Data to be extracted	Basis for RPF	Comment	Notes:
16890	Allen and Coombs, 1980	245	1		BaP, BaA	µmol com- pound/mol DNA P	Point estimate	Adducts in nuclear and mitochondrial DNA	Calculate separate RPFs for nuclear and mitochon- drial DNA
6300	Binkova et al., 2000	62		3	BaP, DBalP	Adducts at each dose level	Ratio of slopes	Slope of adduct vs. dose curve	May need to drop high dose data for adequate fit
9510	Bryla and Weyand, 1992	39	1		BaP, BaA, DBacA	Adducts at each dose level	Ratio of slopes	Slope of adduct vs. dose curve under light conditions (max response for all compounds)	
22800	Grover and Sims, 1968	160	1		BaP, DBahA, DBacA, BaA, Pyr, PH	Reaction with DNA	Point estimate		
10660	Johnsen et al., 1998	80		2	BjAC, BlAC, BaP	Total adduct levels in human lymphocytes and HL-60 cells	Point estimate	Total adducts formed in human lymphocytes or HL-60 cells	Calc RPFs separately by cell type
10670	Johnsen et al., 1997	196	Π		BjAC, BlAC, BaP	DNA adduct levels in PCB-treated rat lung cells	Point estimate	Adducts in PCB-treated rat lung Clara and Type 2 cells	Calc RPFs separately by cell type
7870	Melendez- Colon et al., 2000	13		2	BaP, DBalP	Stable DNA adducts at each dose level	Ratio of slopes	Slope of adduct vs. dose curve at two doses	
21200	Segerback and Vodicka, 1993	2,465		3	Pyr, BghiP, FA, DBahA, BbF, BaP, BaA, CH	Total adduct levels	Point estimate	Total adduct level in optimized nuclease P1 adduct enrichment procedure	

Table C-12. In vitro DNA adducts: data use

					DNA Adducts		ucts			
Record number	Reference	РАН	Dose	Dose units	Mean	Standard deviation	Adduct units	n	Units	Notes
16890	Allen and Coombs, 1980	BaP	0.235	µg/mL	7.5	1.9	µmol/mol DNA P			Nuclear DNA
		BaA	0.644	µg/mL	0.44	0.11	µmol/mol DNA P			Nuclear DNA
		BaP	0.235	µg/mL	413	164	µmol/mol DNA P			Mitochondrial DNA
		BaA	0.644	µg/mL	104	40.2	µmol/mol DNA P			Mitochondrial DNA
6300	Binkova et al., 2000	BaP	0.010	μΜ	1.8	1.16	Adducts	1×10^8	Nucleotides	
			0.10	μM	18	7.18	Adducts	1×10^8	Nucleotides	
			0.40	μM	95	39.4	Adducts	1×10^8	Nucleotides	
			1.0	μM	258	115	Adducts	1×10^8	Nucleotides	
			4.0	μM	205	81.9	Adducts	1×10^8	Nucleotides	
			10	μM	69	21.9	Adducts	1×10^8	Nucleotides	
			40	μM	37	10.8	Adducts	1×10^8	Nucleotides	
		DBalP	0.010	μM	179	55.3	Adducts	1×10^8	Nucleotides	
			0.020	μM	534	52.6	Adducts	1×10^8	Nucleotides	
			0.040	μM	1,304	375	Adducts	1×10^8	Nucleotides	
			0.080	μM	1,696	644	Adducts	1×10^8	Nucleotides	
			0.10	μM	2,317	774	Adducts	1×10^8	Nucleotides	
			0.40	μM	1,971	729	Adducts	1×10^8	Nucleotides	
			1.0	μΜ	632	170	Adducts	1×10^8	Nucleotides	
9510	Bryla and Weyand, 1992	BaP	0.12	nmol	0.17		Adducts	1×10^{7}	Nucleotides	Light conditions; max for BaP and others
		BaP	12	nmol	1.37		Adducts	1×10^7	Nucleotides	
		BaP	120	nmol	2.21		Adducts	1×10^7	Nucleotides	
		BaP	600	nmol	5.45		Adducts	1×10^7	Nucleotides	
		BaA	0.12	nmol	0.15		Adducts	1×10^7	Nucleotides	
		BaA	12	nmol	0.09		Adducts	1×10^7	Nucleotides	
		BaA	120	nmol	0.8		Adducts	1×10^7	Nucleotides	

Table C-13. In vitro DNA adducts: dose response data

					DNA Adducts					
Record number	Reference	РАН	Dose	Dose units	Mean	Standard deviation	Adduct units	n	Units	Notes
		BaA	600	nmol	0.95		Adducts	1×10^7	Nucleotides	
		DBacA	0.12	nmol	0		Adducts	1×10^7	Nucleotides	
		DBacA	12	nmol	0.06		Adducts	1×10^7	Nucleotides	
		DBacA	120	nmol	0.57		Adducts	1×10^7	Nucleotides	
		DBacA	600	nmol	1.76		Adducts	1×10^7	Nucleotides	
22800	Grover and Sims, 1968	BaP	5	μg	1.41		µmol/g-atom of DNA P			
		DBahA	5	μg	0.44		µmol/g-atom of DNA P			
		DBacA	5	μg	0.56		µmol/g-atom of DNA P			
		BaA	5	μg	0.7		µmol/g-atom of DNA P			
		Pyr	5	μg	0.31		µmol/g-atom of DNA P			
		PH	5	μg	0.05		µmol/g-atom of DNA P			
10670	Johnsen et al., 1997	BaP	30	µg/mL	0.05		fmol adducts/µg DNA			Clara cells
		BjAC	30	µg/mL	0.15		fmol adducts/µg DNA			Clara cells
		BIAC	30	µg/mL	0.24		fmol adducts/µg DNA			Clara cells
		BaP	30	µg/mL	0.02		fmol adducts/µg DNA			Type 2 cells
		BjAC	30	µg/mL	0.06		fmol adducts/µg DNA			Type 2 cells
		BIAC	30	µg/mL	0.03		fmol adducts/µg DNA			Type 2 cells
10660	Johnsen et al., 1998	BaP	30	µg/mL	0.333	0.093	fmol adducts/µg DNA	3		Human lymphocytes
		BjAC	30	µg/mL	0.110	0.026	fmol adducts/µg DNA	3		Human lymphocytes
		BIAC	30	µg/mL	1.089	0.595	fmol adducts/µg DNA	3		Human Lymphocytes

Table C-13. In vitro DNA adducts: dose response data

					DNA Adducts		ıcts			
Record number	Reference	РАН	Dose	Dose units	Mean	Standard deviation	Adduct units	n	Units	Notes
		BaP	30	µg/mL	0.239	0.172	fmol adducts/µg DNA	3		HL-60 Cells
		BjAC	30	µg/mL	0.149	0.146	fmol adducts/µg DNA	3		HL-60 Cells
		BIAC	30	µg/mL	0.942	0.344	fmol adducts/µg DNA	3		HL-60 Cells
7870	Melendez- Colon et al., 2000	BaP	1	μm	18	8.07	Stable adducts	$1 imes 10^{6}$	Nucleotides	
		BaP	2	μm	34	6.46	Stable adducts	1×10^{6}	Nucleotides	
		DBalP	1	μm	254	4.30	Stable adducts	1×10^{6}	Nucleotides	
		DBalP	2	μm	348	17.20	Stable adducts	$1 imes 10^{6}$	Nucleotides	
21200	Segerback and Vodicka, 1993	BaP	100	mM	15		µmol adducts per mol dNp			
		Pyr	100	mM	0.14		µmol adducts per mol dNp			
		BghiP	100	mM	0.50		µmol adducts per mol dNp			
		FA	100	mM	1.5		µmol adducts per mol dNp			
		DBahA	100	mM	2.8		µmol adducts per mol dNp			
		BbF	100	mM	3.7		µmol adducts per mol dNp			
		BaA	100	mM	30		µmol adducts per mol dNp			
		СН	100	mM	50		µmol adducts per mol dNp			

Table C-13. In vitro DNA adducts: dose response data

Table C-14. In vitro DNA damage: data use

Record number	Reference	Page	Table number	Figure number	PAHs	Data to be extracted	Basis for RPF	Comment	Notes:
16840	Agrelo and Amos, 1981	531	2		BaP, Pyr	Hydroxyurea inhibited ³ H Thymidine incorporation into cells (dpm) and dose (μ g/mL). Use 10 μ g/mL dose for BaP and 100 μ g/mL dose for pyrene.	Point estimate		
23790	Ichinotsubo et al., 1977	56	Table II		BaP, DBaiP, DBahA	Use column designated JC5519 +S9 for BaP, DBaiP, and DBahA; dose as μ g/well and response as diameter of zone of inhibition (mm). The control is wild type strain AB1157	Point estimate	<i>E. coli</i> Rec BC, S9 identification unknown	
10660	Johnsen et al., 1998	82		4	BaP, BjAC, BIAC	DNA damage (NAAC, $10^{-3}h^{-1}$), std dev and dose (μ g/mL) for both human lymphocytes and HL-60 cells. Use 24 h + 1 h AraC/HU data (crosshatched bars)	Ratio of slopes (human lympho- cytes); point esti- mates (HL-60 cells)		Model as continuous data.
19740	Martin et al., 1978	2,624	1		BaP, BeP, BaA, DBacA, DBahA	Maximum dpm/µg DNA above background and dose (M). Dose is in column marked "M".	Point estimate	Background already subtracted	
19830	Mersch- Sundermann et al., 1992	3-6	2		BaP, AA, BaA, BbF, BghiF, BjF, BbFE, BghiP, BeP, CH, DBacA, DBahA, DBalP, DBahP, DBaiP, FA, IP, PH, Tphen	SOS induction potential (SOSIP) for assay (+S9) for each compound (already incorporates dose)	Ratio of SOSIPs	SOSIP reported in text as slope of steepest portion of the induction factor (IF) dose-response curve.	No modeling necessary; slopes reported in text.
20810	Robinson and Mitchell, 1981	520	1		BaP, Pyr	Maximum ³ H-TDR incorporation and dose (test concentration in μ g/mL in parentheses after maximum) for rows with metabolic activation (+). Use compound- specific background ³ H -TDR incorporation in same row.	Point estimate		
20940	Rossman et al., 1991	354	2		BaP, AC, DBacA, DBahA, PH	Max enhancement of prophage induction over background and dose (amount at max, in μ g/well) for those rows with S9 (+ rows).	Point estimate	Background already addressed	
21730	Tong et al., 1981b	480	Ι		BaP, BaA	DNA repair grains/nucleus, std dev, and dose (M). Four doses BaA, three doses BaP and DMSO control.	Ratio of slopes		Model as continuous data.

Table C-15. In vitro DNA damage: dose response data

Record				Dose			DNA D	amage		
number	Reference	PAH	Dose	units	Endpoint	Mean	SD	Units	n	Notes
16840	Agrelo and Amos, 1981	Control	0	µg/mL	Unscheduled DNA synthesis	177		dpm		HU inhibited
		BaP	0.001	µg/mL	Unscheduled DNA synthesis	195		dpm		HU inhibited
		BaP	0.01	µg/mL	Unscheduled DNA synthesis	126		dpm		HU inhibited
		BaP	0.1	µg/mL	Unscheduled DNA synthesis	262		dpm		HU inhibited
		BaP	1	µg/mL	Unscheduled DNA synthesis	818		dpm		HU inhibited
		BaP	10	µg/mL	Unscheduled DNA synthesis	2,270		dpm		HU inhibited
		BaP	100	µg/mL	Unscheduled DNA synthesis	819		dpm		HU inhibited
		BaP	1,000	µg/mL	Unscheduled DNA synthesis	373		dpm		HU inhibited
		Control	0	µg/mL	Unscheduled DNA synthesis	1,168		dpm		HU inhibited
		Pyr	0.032	µg/mL	Unscheduled DNA synthesis	1,293		dpm		HU inhibited
		Pyr	0.16	µg/mL	Unscheduled DNA synthesis	1,192		dpm		HU inhibited
		Pyr	0.8	µg/mL	Unscheduled DNA synthesis	1,367		dpm		HU inhibited
		Pyr	4	µg/mL	Unscheduled DNA synthesis	1,510		dpm		HU inhibited
		Pyr	20	µg/mL	Unscheduled DNA synthesis	1,694		dpm		HU inhibited
		Pyr	100	µg/mL	Unscheduled DNA synthesis	1,716		dpm		HU inhibited
23790	Ichinotsubo et al., 1977	Control	0		DNA damage	0		Diameter of zone of inhibition mm		
		BaP	70	µg/well	DNA damage	6		Diameter of zone of inhibition mm		
		Control	0		DNA damage	0		Diameter of zone of inhibition mm		
		DBaiP	600	µg/well	DNA damage	10		Diameter of zone of inhibition mm		
		Control	0		DNA damage	0		Diameter of zone of inhibition mm		
		DBahA	25	µg/well	DNA damage	10		Diameter of zone of inhibition mm		
10660	Johnsen et al., 1998	DMSO	0	µg/mL	DNA damage	4.4	1.3	NAAC, $10^{-3} h^{-1}$	3	Human lymphocytes with AraC/HU

Table C-15.	In vitro	DNA	damage:	dose	response	data
-------------	----------	-----	---------	------	----------	------

Record				Dose		DNA Damage				
number	Reference	РАН	Dose	units	Endpoint	Mean	SD	Units	n	Notes
		BaP	3	µg/mL	DNA damage	12	3.2	NAAC, 10 ⁻³ h ⁻⁶	3	Human lymphocytes with AraC/HU. No continuous linear model fit
			30	µg/mL	DNA damage	15	2.7	NAAC, 10 ⁻³ h ⁻⁷	3	Human lymphocytes with AraC/HU
		BjAC	3	µg/mL	DNA damage	6.0	2.1	NAAC, $10^{-3} h^{-2}$	3	Human lymphocytes with AraC/HU
			30	µg/mL	DNA damage	9.4	3.4	NAAC, 10 ⁻³ h ⁻³	3	Human lymphocytes with AraC/HU
		BIAC	3	µg/mL	DNA damage	8.2	3.2	NAAC, 10 ⁻³ h ⁻⁴	3	Human lymphocytes with AraC/HU. No continuous linear model fit
			30	µg/mL	DNA damage	9.3	2.1	NAAC, 10 ⁻³ h ⁻⁵	3	Human lymphocytes with AraC/HU
		DMSO	0	µg/mL	DNA damage	7.8	3.1	NAAC, 10 ⁻³ h ⁻⁵	3	HL-60 cells with AraC/HU
		BaP	30	µg/mL	DNA damage	13.2	9.5	NAAC, $10^{-3} h^{-5}$	3	HL-60 cells with AraC/HU
		BjAC	30	µg/mL	DNA damage	9.6	3.0	NAAC, 10 ⁻³ h ⁻⁵	3	HL-60 cells with AraC/HU
		BIAC	30	µg/mL	DNA damage	11.6	5.5	NAAC, $10^{-3} h^{-5}$	3	HL-60 cells with AraC/HU
19740	Martin et al., 1978	BaP	1×10^{-5}	М	Unscheduled DNA synthesis	210		Max dpm∕µg DNA		Increase above background
		BeP	1 × 10 ⁻⁶	М	Unscheduled DNA synthesis	256		Max dpm∕µg DNA		Increase above background
		BaA	1 × 10 ⁻⁷	М	Unscheduled DNA synthesis	59		Max dpm/µg DNA		Increase above background
		DBacA	1 × 10 ⁻⁵	М	Unscheduled DNA synthesis	97		Max dpm/µg DNA		Increase above background
		DBahA	1×10^{-5}	М	Unscheduled DNA synthesis	96		Max dpm/µg DNA		Increase above background
19830	Mersch- Sundermann et al., 1992	BaP	NA		SOS induction potential	0.605	NA			Steepest slope of induction factor dose-response curve; + S9
		AA	NA		SOS induction potential	0.142	NA			Steepest slope of induction factor dose-response curve; + S9

Record				Dose		DNA Damage		amage		
number	Reference	РАН	Dose	units	Endpoint	Mean	SD	Units	n	Notes
		BaA	NA		SOS induction potential	0.1	NA			Steepest slope of induction factor dose-response curve; + S9
		BbF	NA		SOS induction potential	0.045	NA			Steepest slope of induction factor dose-response curve; + S9
		BghiF	NA		SOS induction potential	0.34	NA			Steepest slope of induction factor dose-response curve; + S9
		BjF	NA		SOS induction potential	0.254	NA			Steepest slope of induction factor dose-response curve; + S9
		BbFE	NA		SOS induction potential	0.024	NA			Steepest slope of induction factor dose-response curve; + S9
		BghiP	NA		SOS induction potential	0.033	NA			Steepest slope of induction factor dose-response curve; + S9
		BeP	NA		SOS induction potential	0.032	NA			Steepest slope of induction factor dose-response curve; + S9
		СН	NA		SOS induction potential	0.221	NA			Steepest slope of induction factor dose-response curve; + S9
		DBacA	NA		SOS induction potential	0.104	NA			Steepest slope of induction factor dose-response curve; + S9
		DBahA	NA		SOS induction potential	0.039	NA			Steepest slope of induction factor dose-response curve; + S9
		DBalP	NA		SOS induction potential	2.1	NA			Steepest slope of induction factor dose-response curve; + S9
		DBahP	NA		SOS induction potential	0.117	NA			Steepest slope of induction factor dose-response curve; + S9
		DBaiP	NA		SOS induction potential	0.174	NA			Steepest slope of induction factor dose-response curve; + S9
		FA	NA		SOS induction potential	0.412	NA			Steepest slope of induction factor dose-response curve; + S9
		IP	NA		SOS induction potential	0.036	NA			Steepest slope of induction factor dose-response curve; + S9
		РН	NA		SOS induction potential	0.053	NA			Steepest slope of induction factor dose-response curve; + S9

 Table C-15. In vitro DNA damage: dose response data

Record				Dose			DNA D	amage		
number	Reference	РАН	Dose	units	Endpoint	Mean	SD	Units	n	Notes
		Tphen	NA		SOS induction potential	0.26	NA			Steepest slope of induction factor dose-response curve; + S9
20810	Robinson and Mitchell, 1981	Control	0	µg/mL	Unscheduled DNA synthesis	53	4	³ H-TdR incorporation		Max 3H-TdR incorporation
		BaP	10	µg/mL	Unscheduled DNA synthesis	142	7	³ H-TdR incorporation		Max 3H-TdR incorporation
		Control	0	µg/mL	Unscheduled DNA synthesis	52	2	³ H-TdR incorporation		Max 3H-TdR incorporation
		Pyr	7.2	µg/mL	Unscheduled DNA synthesis	115	9	³ H-TdR incorporation		Max 3H-TdR incorporation
20940	Rossman et al., 1991	BaP	12.5	µg/mL	DNA damage	10.4		Lambda pro- phage induction		Max enhancement over background
		AC	12.5	µg/mL	DNA damage	4.8		Lambda pro- phage induction		Max enhancement over background
		DBacA	1.44	µg/mL	DNA damage	8		Lambda pro- phage induction		Max enhancement over background
		DBahA	2	µg/mL	DNA damage	4		Lambda pro- phage induction		Max enhancement over background
		PH	25	µg/mL	DNA damage	4.5		Lambda pro- phage induction		Max enhancement over background
21730	Tong et al., 1981b	Control	0	М	Unscheduled DNA synthesis	0.1	0.1	Grains/nucleus		
		BaP	1×10^{-4}	М	Unscheduled DNA synthesis	45.1	3.7	Grains/nucleus		
		BaP	5×10^{-4}	М	Unscheduled DNA synthesis	47.7	3.7	Grains/nucleus		
		BaP	1×10^{-3}	М	Unscheduled DNA synthesis	65.6	17.8	Grains/nucleus		
		BaA	5×10^{-5}	М	Unscheduled DNA synthesis	0.6		Grains/nucleus		
		BaA	1×10^{-4}	М	Unscheduled DNA synthesis	14.8	2.6	Grains/nucleus		
		BaA	5×10^{-4}	М	Unscheduled DNA synthesis	17.2	6	Grains/nucleus		
		BaA	1×10^{-3}	М	Unscheduled DNA synthesis	Toxic		Grains/nucleus		

Table C-15. In vitro DNA damage: dose response data

Record number	Reference	Page	Table number	PAHs	Data to be used	Basis for RPF	Comment
14620	Kochhar, 1982	846	Not numbered	BaP, BaA	% cells with aberrations and dose (µg/mL)	Ratio of slopes	Model as incidence data.
14640	Krolewski et al., 1986	1,648	II	BaP, CPcdP	Mean no. SCE/ chromosome, std dev, and dose (µM)	Ratio of slopes	Use first column of data; not data with AIA or IVA. Model as continuous data.
19690	Mane et al., 1990	81	III	BaP, BaA	SCE frequencies/for V79 cell + rat MEC and dose	Point estimates	Use SCE data for V79 + rat MEC only.
21710	Tong et al., 1981a	469	1	BaP, BaA	SCE/cell, std dev, and dose	Point estimates	Continuous data, no n provided in study.

Table C-16. In vitro clastogenicity: data use

Table C-17. J	In vitro	clastogenicity:	dose response	data
---------------	----------	-----------------	---------------	------

						Clastogenicity			
Record number	Reference	РАН	Dose	Dose units	n	Mean	Standard deviation	Units	Notes
14620	Kochhar, 1982	Control	0	µg/mL	100	0.06		Fraction cells with aberrations	
		BaP	0.6	µg/mL	100	0.23		Fraction cells with aberrations	
		BaP	1.25	µg/mL	100	0.32		Fraction cells with aberrations	
		BaP	2.5	µg/mL	100	0.45		Fraction cells with aberrations	
		BaP	5	µg/mL	100	0.56		Fraction cells with aberrations	
		BaA	0.6	µg/mL	100	0.17		Fraction cells with aberrations	
		BaA	1.25	µg/mL	100	0.23		Fraction cells with aberrations	
		BaA	2.5	µg/mL	100	0.3		Fraction cells with aberrations	
		BaA	5	µg/mL	100	0.38		Fraction cells with aberrations	
14640	Krolewski et al., 1986	Control	0	μΜ	30	0.147	0.059	SCE/	
		BaP	1	μM	30	0.874	0.275	SCE/	
		BaP	5	μM	30	0.932	0.266	SCE/	
		CPcdP	1	μM	30	0.348	0.119	SCE/	
		CPcdP	5	μM	30	0.432	0.15	SCE/	
19690	Mane et al., 1990	Control	0	µg/mL		0.3	1	SCE frequency/	For V79 cell + rat MEC
		BaP	1	µg/mL		3	1	SCE frequency/	For V79 cell + rat MEC
		BaA	1	µg/mL		0.7	0.5	SCE frequency/	For V79 cell + rat MEC
21710	Tong et al., 1981a	Control	0	М		11.15	3.81	SCE/cell	
		BaP	1×10^{-6}	М		16.15	3.83	SCE/cell	
		BaP	1×10^{-5}	М		59.75	16.96	SCE/cell	
		BaP	1×10^{-4}	М		103.3	22.75	SCE/cell	
		Control	0	М		15.75	5.18	SCE/cell	
		BaA	1×10^{-5}	М		21.2	9.59	SCE/cell	
		BaA	1×10^{-4}	М		29.15	9.93	SCE/cell	
		BaA	1×10^{-3}	М		26.2	6.96	SCE/cell	

Table C-18. In vivo DNA adducts: data use

Record number	Reference	Page	Table number	Figure number	PAHs	Data to be extracted	Basis for RPF	Comment	Notes				
6210	Arif et al., 1997	36		4	DBalP and BaP	Mean adduct levels for heart, pancreas, bladder, liver	Point estimate	Mean adduct levels summed across mammary epithelial, lung, heart, pancreas, bladder, liver					
17630	Cavalieri et al., 1981a	491	3		CPcdP, ACEP (reported in paper as CPAP), BaP	Done	Point estimate	DNA-bound PAH in mouse skin after 4 hr or 24 hr treatment	Calculate separate RPFs for 4 hr and 24 hr treatment				
18810	Hughes and Phillips, 1990	1,61 4		3	DBalP, DBaeP, DBahP, DBaiP, BaP	AUC for skin and lung through 84 d	Point estimate	Sum of AUCs for skin and lung 0–84 d					
11190	Mass et al., 1993	188	1		BjAC, BaP	Done	Ratio of Slopes	AUC (adduct-time curve) vs. dose for lung adducts 24–72 hr					
8010	Nesnow et al., 1993b	39		1 and 2	BbF, BaP	AUC for lung, liver, and PBL through 56 d	Point estimate	Sum of AUCs for lung, liver, and lymphocytes 0–56 d					
24590/ 20920	Nesnow et al., 1998b; Ross et al., 1995	402	2		BaP, BbF, DBahA, CPcdP, DBalP	Done	Ratio of Slopes	Slope of TIDAL/dose (slope reported in 24590 based on data from 20920). DBalP data reported in separate study w/o BaP concurrent					
22810	Phillips et al., 1979	205	Ι		DBahA, DBacA, BaP	Done	Point estimate	Peak binding in mouse skin. BaA dropped; not clear if reported level is peak.					
24790	Kligerman et al., 2002	846	1		BaA, BaP, BbF, CH	Done	Point estimate	Adducts in mouse or rat PBLs at single time point after either intraperitoneal or gavage administration	Calculate separate RPFs for intraperitoneal and gavage, rat and mouse				
								DNA adducts Standard Standard				Slope of	
---------------	----------------------------	---------	---------	------	-------------------------	------------------	------	-------------------------------	--------------------	-------------------	--	-----------------	----------
Record number	Reference	РАН	Species	Dose	Dose units	Organ	Time	Mean	Standard deviation	Standard error	Adduct units	AUC vs. dose	Comments
6210	Arif et al., 1997	Control	Rat	0	µmol/mam- mary gland	Liver		0			Adducts/10 ⁹ nucleotides		
		BaP	Rat	0.25	µmol/mam- mary gland	Mammary gland		300	45		Adducts/10 ⁹ nucleotides		
		BaP	Rat	0.25	µmol/mam- mary gland	Lung		11	1.3		Adducts/10 ⁹ nucleotides		
		BaP	Rat	0.25	µmol/mam- mary gland	Heart		9.5			Adducts/10 ⁹ nucleotides		
		BaP	Rat	0.25	µmol/mam- mary gland	Pancreas		0			Adducts/10 ⁹ nucleotides		
		BaP	Rat	0.25	µmol/mam- mary gland	Bladder		0			Adducts/10 ⁹ nucleotides		
		BaP	Rat	0.25	µmol/mam- mary gland	Liver		4.5			Adducts/10 ⁹ nucleotides		
						Sum		324.74					
		DBalP	Rat	0.25	µmol/mam- mary gland	Mammary gland		1,878	378		Adducts/10 ⁹ nucleotides		
		DBalP	Rat	0.25	µmol/mam- mary gland	Lung		85	24		Adducts/10 ⁹ nucleotides		
		DBalP	Rat	0.25	µmol/mam- mary gland	Heart		64			Adducts/10 ⁹ nucleotides		
		DBalP	Rat	0.25	µmol/mam- mary gland	Pancreas		32			Adducts/10 ⁹ nucleotides		
		DBalP	Rat	0.25	µmol/mam- mary gland	Bladder		69			Adducts/10 ⁹ nucleotides		
		DBalP	Rat	0.25	µmol/mam- mary gland	Liver		116			Adducts/10 ⁹ nucleotides		
						Sum		2,244.63					
17630	Cavalieri et al., 1981a	BaP		0.2	µmol/mouse	Skin	4 hr	16.3		1	µmol adduct/mol DNA		
		CPcdP		0.2	µmol/mouse	Skin	4 hr	2.3		0.2	µmol adduct/mol DNA		
		ACEP		0.2	µmol/mouse	Skin	4 hr	2.2		0.1	µmol adduct/mol DNA		

									DNA adducts Standard Standard			Slope of	
Record			~ .	_	_				Standard	Standard		AUC vs.	~
number	Reference	РАН	Species	Dose	Dose units	Organ	Time	Mean	deviation	error	Adduct units	dose	Comments
		BaP		0.2	µmol/mouse	Skin	24 hr	6.7		1.6	µmol adduct/mol DNA		
		CPcdP		0.2	µmol/mouse	Skin	24 hr	8.8		1	µmol adduct/mol DNA		
		ACEP		0.2	µmol/mouse	Skin	24 hr	0.30		0.1	µmol adduct/mol DNA		
18810	Hughes and Phillips, 1990	BaP		1	μmol	Skin	1 d	7.8			fmol adducts/µg DNA		Only peak extracted; interrupted scale precluded digitizing
		BaP		1	µmol	Lung	2 d	1.2			fmol adducts/µg DNA		
		BaP		1	µmol	Sum skin and lung		9.0			fmol adducts/µg DNA		
		DBaeP		1	μmol	Skin	2 d	0.50			fmol adducts/µg DNA		
		DBaeP		1	μmol	Lung	7 d	Cannot determine			fmol adducts/µg DNA		
		DBaeP		1	μmol	Sum skin and lung		Cannot determine			fmol adducts/µg DNA		
		DBahP		1	μmol	Skin	2 d	3.1			fmol adducts/µg DNA		
		DBahP		1	μmol	Lung	2 d	0.14			fmol adducts/µg DNA		
		DBahP		1	µmol	Sum skin and lung		3.2			fmol adducts/µg DNA		
		DBaiP		1	μmol	Skin	2 d	0.75			fmol adducts/µg DNA		
		DBaiP		1	μmol	Lung	2 d	0.10			fmol adducts/µg DNA		
		DBaiP		1	μmol	Sum skin and lung		0.85			fmol adducts/µg DNA		
		DBalP		1	μmol	Skin	1 d	62			fmol adducts/µg DNA		
		DBalP		1	μmol	Lung	2 d	2.3			fmol adducts/µg DNA		

									DNA	adducts		Slope of	
Record	Defe	DATI	G	D	Descrite	0	— •	Maria	Standard	Standard		AUC vs.	G
number	Reference	PAH	Species	Dose	Dose units	Organ	Time	Mean	deviation	error	Adduct units	dose	Comments
		DBalP		1	µmol	Sum skin and lung		65			fmol adducts/µg DNA		
11190	Mass et al., 1993	BaP		20	mg/kg bw	Lung	24 hr	116	53		amol adducts/µg DNA		AUC calculated using trapezoid rule
		BaP		20	mg/kg bw	Lung	48 hr	122	25		amol adducts/µg DNA		
		BaP		20	mg/kg bw	Lung	72 hr	181	101		amol adducts/µg DNA		
		BaP		50	mg/kg bw	Lung	24 hr	120	20		amol adducts/µg DNA		
		BaP		50	mg/kg bw	Lung	48 hr	201	170		amol adducts/µg DNA		
		BaP		50	mg/kg bw	Lung	72 hr	432	274		amol adducts/µg DNA		
		BaP		100	mg/kg bw	Lung	24 hr	427	140		amol adducts/µg DNA		
		BaP		100	mg/kg bw	Lung	48 hr	407	197		amol adducts/µg DNA		
		BaP		100	mg/kg bw	Lung	72 hr	2,004	314		amol adducts/µg DNA		
		BaP		20	mg/kg bw	Lung	AUC	7,884				469.73	
		BaP		50	mg/kg bw	Lung	AUC	12,888					
		BaP		100	mg/kg bw	Lung	AUC	44,064					
		BjAC		20	mg/kg bw	Lung	24 hr	63	34		amol adducts/µg DNA		AUC calculated using trapezoid rule
		BjAC		20	mg/kg bw	Lung	48 hr	97	101		amol adducts/µg DNA		
		BjAC		20	mg/kg bw	Lung	72 hr	255	392		amol adducts/µg DNA		
		BjAC		50	mg/kg bw	Lung	24 hr	116	121		amol adducts/µg DNA		
		BjAC		50	mg/kg bw	Lung	48 hr	402	237		amol adducts/µg DNA		
		BjAC		50	mg/kg bw	Lung	72 hr	1,954	1,921		amol adducts/µg DNA		

									DNA	adducts		Slope of	
Record number	Reference	РАН	Species	Dose	Dose units	Organ	Time	Mean	Standard deviation	Standard error	Adduct units	AUC vs. dose	Comments
		BjAC		100	mg/kg bw	Lung	24 hr	180	133		amol adducts/µg DNA		
		BjAC		100	mg/kg bw	Lung	48 hr	532	559		amol adducts/µg DNA		
		BjAC		100	mg/kg bw	Lung	72 hr	2,439	2,242		amol adducts/µg DNA		
		BjAC		20	mg/kg bw	Lung	AUC	6,900				464.25	
		BjAC		50	mg/kg bw	Lung	AUC	35,880					
		BjAC		100	mg/kg bw	Lung	AUC	46,356					
8010	Nesnow et al., 1993b	BaP		100	mg/kg	Lung	d 1	453					AUC calculated using trapezoid rule
		BaP		100	mg/kg	Lung	d 3	1,001					
		BaP		100	mg/kg	Lung	d 7	574					
		BaP		100	mg/kg	Lung	d 14	386					
		BaP		100	mg/kg	Lung	d 28	381					
		BaP		100	mg/kg	Lung	d 56	143					
		BaP		100	mg/kg	Lung	AUC	20,892					
		BaP		100	mg/kg	Liver	d 1	398					
		BaP		100	mg/kg	Liver	d 3	1,317					
		BaP		100	mg/kg	Liver	d 7	931					
		BaP		100	mg/kg	Liver	d 14	537					
		BaP		100	mg/kg	Liver	d 28	394					
		BaP		100	mg/kg	Liver	d 56	116					
		BaP		100	mg/kg	Liver	AUC	25,207					
		BaP		100	mg/kg	PBL	d 1	158					
		BaP		100	mg/kg	PBL	d 3	273					
		BaP		100	mg/kg	PBL	d 7	162					
		BaP		100	mg/kg	PBL	d 14	187					
		BaP		100	mg/kg	PBL	d 28	72					
		BaP		100	mg/kg	PBL	d 56	41					
		BaP		100	mg/kg	PBL	AUC	5,985					

									DNA	A adducts		Slope of	
Record number	Reference	РАН	Species	Dose	Dose units	Organ	Time	Mean	Standard deviation	Standard error	Adduct units	AUC vs. dose	Comments
		BaP		100	mg/kg	Sum of AUCs		52,084					
		BbF		100	mg/kg	Lung	d 1	21					AUC calculated using trapezoid rule
		BbF		100	mg/kg	Lung	d 3	184					
		BbF		100	mg/kg	Lung	d 5	233					
		BbF		100	mg/kg	Lung	d 7	211					
		BbF		100	mg/kg	Lung	d 14	229					
		BbF		100	mg/kg	Lung	d 28	145					
		BbF		100	mg/kg	Lung	d 56	106					
		BbF		100	mg/kg	Lung	AUC	8,763					
		BbF		100	mg/kg	Liver	d 1	12					
		BbF		100	mg/kg	Liver	d 3	35					
		BbF		100	mg/kg	Liver	d 5	51					
		BbF		100	mg/kg	Liver	d 7	61					
		BbF		100	mg/kg	Liver	d 14	21					
		BbF		100	mg/kg	Liver	d 28	15					
		BbF		100	mg/kg	Liver	d 56	12					
		BbF		100	mg/kg	Liver	AUC	1,173					
		BbF		100	mg/kg	PBL	d 1	12					
		BbF		100	mg/kg	PBL	d 3	29					
		BbF		100	mg/kg	PBL	d 5	59					
		BbF		100	mg/kg	PBL	d 7	57					
		BbF		100	mg/kg	PBL	d 14	40					
		BbF		100	mg/kg	PBL	d 28	15					
		BbF		100	mg/kg	PBL	d 56	13					
		BbF		100	mg/kg	PBL	AUC	1,378					
		BbF		100	mg/kg	Sum of AUCs		11,314					
24590/ 20920	Nesnow et al., 1998b; Ross, 1995	BaP		NA		Lung	>21 d			3.9		113	Slope of dose vs. TIDAL value (in fmol- d/µg DNA)

								DNA adducts Standard Standard				Slope of	
Record	D (DAH	a .	D	.				Standard	Standard		AUC vs.	
number	Reference	PAH	Species	Dose	Dose units	Organ	Time	Mean	deviation	error	Adduct units	dose	Comments
		BbF		NA		Lung	>21 d			5		37.5	Slope of dose vs. TIDAL value (in fmol- d/µg DNA)
		CPcdP		NA		Lung	>21 d			3.69		148	Slope of dose vs. TIDAL value (in fmol- d/µg DNA)
		DBahA		NA		Lung	>21 d			19.1		219	Slope of dose vs. TIDAL value (in fmol- d/µg DNA)
		DBalP		NA		Lung	>21 d			267		1,390	Slope of dose vs. TIDAL value (in fmol- d/µg DNA)
22810	Phillips et al., 1979	BaP		1	µmol/mouse	Skin	19 hr	27			pmol adducts/mg DNA		peak
		DBacA		1	µmol/mouse	Skin	24 hr	10			pmol adducts/mg DNA		peak
		DBahA		1	µmol/mouse	Skin	72 hr	15			pmol adducts/mg DNA		peak
24790	Kligerman et al., 2002	BaP	Mice	100	mg/kg	PBL	d 7	4,186	273		amol adducts/µg DNA		Intraperitoneal
		BaA	Mice	100	mg/kg	PBL	d 7	93	8		amol adducts/µg DNA		Intraperitoneal
		BbF	Mice	100	mg/kg	PBL	d 7	516	7		amol adducts/µg DNA		Intraperitoneal
		СН	Mice	100	mg/kg	PBL	d 7	81	11		amol adducts/µg DNA		Intraperitoneal
		Control	Mice	0	mg/kg	PBL	d 7	0			amol adducts/µg DNA		Intraperitoneal
		BaP	Mice	100	mg/kg	PBL	d 7	143	17		amol adducts/µg DNA		Gavage
		BaA	Mice	100	mg/kg	PBL	d 7	32	2		amol adducts/µg DNA		Gavage
		BbF	Mice	100	mg/kg	PBL	d 7	39	4		amol adducts/µg DNA		Gavage
		СН	Mice	100	mg/kg	PBL	d 7	37	1		amol adducts/µg DNA		Gavage

									DNA	adducts		Slope of	
Record	Deference	DAII	Species	Daga	Dece unite	Oncon	Time	Meen	Standard	Standard	Adduct units	AUC vs.	Commonto
number	Reference	РАН	Species	Dose	Dose units	Organ	Time	Mean	deviation	error	Adduct units	aose	Comments
		Control	Mice	0	mg/kg	PBL	d 7	0			amol adducts/µg DNA		Gavage
		BaP	Rat	100	mg/kg	PBL	d 7	755	56		amol adducts/µg DNA		Intraperitoneal
		BaA	Rat	100	mg/kg	PBL	d 7	38	3		amol adducts/µg DNA		Intraperitoneal
		BbF	Rat	100	mg/kg	PBL	d 7	63	1		amol adducts/µg DNA		Intraperitoneal
		СН	Rat	100	mg/kg	PBL	d 7	24	2		amol adducts/µg DNA		Intraperitoneal
		Control	Rat	0	mg/kg	PBL	d 7	0			amol adducts/µg DNA		Intraperitoneal
		BaP	Rat	100	mg/kg	PBL	d 7	177	30		amol adducts/µg DNA		Gavage
		BaA	Rat	100	mg/kg	PBL	d 7	20	2		amol adducts/µg DNA		Gavage
		BbF	Rat	100	mg/kg	PBL	d 7	17	1		amol adducts/µg DNA		Gavage
		СН	Rat	100	mg/kg	PBL	d 7	10	4		amol adducts/µg DNA		Gavage
		Control	Rat	0	mg/kg	PBL	d 7	0			amol adducts/µg DNA		Gavage

Record number	Reference	Page	Table number	Figure number	PAHs	Data to be extracted	Basis for RPF	Comment
24740	Allen et al., 1999	8	I and III		BaP, DBalP	Total micronuleated poly- chromatic erythrocytes (MN- PCE)/PCEs and dose (mg/kg). Extract data for bone marrow and peripheral blood for both A/J mice (Table 1) and p53+/+ (wild type) mice (Table III)	Point estimate	Incidence data. Single dose BaP.
14270	He and Baker, 1991	166	1		BaP, CH	MN cells/1,000 binucleated and dose (µg/mouse)	Ratio of slopes	Incidence data
17190	Bayer, 1978	426	3		BaP, PH	SCE/cells and dose (mg/kg)	Point estimate	Continuous data. Only one dose PH significant. BaP given as 3,4-BaP.
20950	Roszinsky- Kocher et al., 1979	66	1		BaP, DBah A, CH, PH, BeP, BbF, BaA	SCEs/metaphase and dose (mg/kg)	Point estimate	
24720	Kligerman et al., 1986	129	3		BaP, BIAC	SCEs/metaphase and dose (mg/kg)	Point estimate	Continuous data, no SD for control; use lowest dose approaching peak
24790	Kligerman et al., 2002	846	1		BaP, BaA, BbF, CH	SCEs/metaphase, intraperitoneal, for BaP, BaA, BbF, and CH. SCEs/, gavage, for BaP and BaA (use 17.91 value for BaP). Also use MNbn/1,000 bn, gavage, for BaP and BbF. Dose in mg/kg.	Point estimates	Separate RPFs for SCEs and micronuclei, oral and intraperitoneal

Table C-20. In vivo clastogenicity: data use

			Route of				Cla						
Record			admini-				Standard			%		<i>p</i> <	
number	Reference	PAH	stration	Dose	Dose units	Mean	deviation	Units	n	Response	Units	0.05	Notes
24740	Allen et al., 1999	Tri- caprylin	Intra- peritoneal	0	mg/kg	2.6		MN-PCEs	1,000	0.0026	PCEs		A/J mice, bone marrow
		BaP	Intra- peritoneal	200	mg/kg	11.2		MN-PCEs	1,000	0.0112	PCEs	х	
		DBalP	Intra- peritoneal	0.3	mg/kg	2		MN-PCEs	1,000	0.0020	PCEs		
		DBalP	Intra- peritoneal	1.5	mg/kg	3.9		MN-PCEs	1,000	0.0039	PCEs	х	
		DBalP	Intra- peritoneal	3	mg/kg	3.4		MN-PCEs	1,000	0.0034	PCEs		
		DBalP	Intra- peritoneal	6	mg/kg	3.8		MN-PCEs	1,000	0.0038	PCEs		
		Tri- caprylin	Intra- peritoneal	0	mg/kg	2.8		MN-PCEs	1,000	0.0028	PCEs		A/J mice, peripheral blood
		BaP	Intra- peritoneal	200	mg/kg	9.5		MN-PCEs	1,000	0.0095	PCEs	X	
		DBalP	Intra- peritoneal	0.3	mg/kg	2.8		MN-PCEs	1,000	0.0028	PCEs		
		DBalP	Intra- peritoneal	1.5	mg/kg	2.9		MN-PCEs	1,000	0.0029	PCEs		
		DBalP	Intra- peritoneal	3	mg/kg	4		MN-PCEs	1,000	0.0040	PCEs		
		DBalP	Intra- peritoneal	6	mg/kg	4.3		MN-PCEs	1,000	0.0043	PCEs	x	
		Tri- caprylin	Intra- peritoneal	0	mg/kg	3.2		MN-PCEs	1,000	0.0032	PCEs		p53 +/+ wt mice, bone marrow
		BaP	Intra- peritoneal	200	mg/kg	5.1		MN-PCEs	1,000	0.0051	PCEs	x	
		DBalP	Intra- peritoneal	9	mg/kg	4.3		MN-PCEs	1,000	0.0043	PCEs		
		DBalP	Intra- peritoneal	12	mg/kg	7.4		MN-PCEs	1,000	0.0074	PCEs	X	
		DBalP	Intra- peritoneal	18	mg/kg	6.1		MN-PCEs	1,000	0.0061	PCEs	X	

			Route of				Cla						
Record			admini-				Standard			%		<i>p</i> <	
number	Reference	PAH	stration	Dose	Dose units	Mean	deviation	Units	n	Response	Units	0.05	Notes
		Tri- caprylin	Intra- peritoneal	0	mg/kg	3.5		MN-PCEs	1,000	0.0035	PCEs		p53 +/+ wt mice, peri- pheral blood
		BaP	Intra- peritoneal	200	mg/kg	5.7		MN-PCEs	1,000	0.0057	PCEs	х	
		DBalP	Intra- peritoneal	9	mg/kg	3.1		MN-PCEs	1,000	0.0031	PCEs		
		DBalP	Intra- peritoneal	12	mg/kg	3.1		MN-PCEs	1,000	0.0031	PCEs		
		DBalP	Intra- peritoneal	18	mg/kg	4.6		MN-PCEs	1,000	0.0046	PCEs		
14270	He and Baker, 1991	Control	Dermal	0	µg/mouse	13.3	2.8	MN cells	1,000	0.013	Binucleated		
		BaP	Dermal	0.5	µg/mouse	50.5	11.5	MN cells	1,000	0.051	Binucleated	х	
		BaP	Dermal	5	µg/mouse	66.8	4.1	MN cells	1,000	0.067	Binucleated	х	
		BaP	Dermal	50	µg/mouse	76	2.8	MN cells	1,000	0.076	Binucleated	х	
		BaP	Dermal	100	µg/mouse	64.3	5.4	MN cells	1,000	0.064	Binucleated	х	
		BaP	Dermal	500	µg/mouse	55.8	13	MN cells	1,000	0.056	Binucleated	х	
		Control	Dermal	0	µg/mouse	12.8	2.2	MN cells	1,000	0.013	Binucleated		
		СН	Dermal	50	µg/mouse	43.3	2.2	MN cells	1,000	0.043	Binucleated	х	
		СН	Dermal	100	µg/mouse	56	4.9	MN cells	1,000	0.056	Binucleated	х	
		СН	Dermal	500	µg/mouse	62	8.6	MN cells	1,000	0.062	Binucleated	х	
		СН	Dermal	1,000	µg/mouse	47.3	3.8	MN cells	1,000	0.047	Binucleated	Х	
17190	Bayer, 1978	pooled controls	Intra- peritoneal	0	mg/kg	3.2	0.07	SCE/cells					
		BaP	Intra- peritoneal	2.5	mg/kg	3.4	0.8	SCE/cells					
		BaP	Intra- peritoneal	25	mg/kg	3.5	0.2	SCE/cells					
		BaP	Intra- peritoneal	40	mg/kg	3.9	0.2	SCE/cells				х	
		BaP	Intra- peritoneal	50	mg/kg	6.4	0.2	SCE/cells				x	
		BaP	Intra- peritoneal	75	mg/kg	6.4	0.3	SCE/cells				x	

			Route of				Cl						
Record	Doforonco	ран	admini-	Doso	Doso units	Moon	Standard	Unite	n	% Bosponso	Unite	<i>p</i> < 0.05	Notos
number	Kelerence	BaP	Intra-	100	mg/kg	7.4	0.2	SCE/cells	ш	Kesponse	Units	x	Notes
			peritoneal		88								
		РН	Intra- peritoneal	25	mg/kg	3.5	0.2	SCE/cells					Only one dose significant
		РН	Intra- peritoneal	50	mg/kg	3.4	0.2	SCE/cells					
		PH	Intra- peritoneal	75	mg/kg	3.5	0.2	SCE/cells					
		PH	Intra- peritoneal	100	mg/kg	4.1	0.2	SCE/cells				x	
20950	Roszinsky-Kocher et al., 1979	Control	Intra- peritoneal	0	mg/kg	3.9	0.9	SCEs/metap hase					
		BaP	Intra- peritoneal	900	mg/kg	10.6	1.6	SCEs/metap hase				X	
		DBahA	Intra- peritoneal	900	mg/kg	4.9	0.7	SCEs/				X	
		СН	Intra- peritoneal	900	mg/kg	5.1	1	SCEs/				X	
		PH	Intra- peritoneal	900	mg/kg	5.5	0.7	SCEs/				х	
		BeP	Intra- peritoneal	900	mg/kg	5.5	0.7	SCEs/				X	
		BbF	Intra- peritoneal	900	mg/kg	5.6	0.5	SCEs/				х	
		BaA	Intra- peritoneal	900	mg/kg	6.1	0.4	SCEs/				x	
24720	Kligerman et al., 1986	Control	Gavage	0	mg/kg	11.9		SCEs/metap hase					
		BaP	Gavage	63	mg/kg	19.4	0.0	SCEs/metap hase					
		BaP	Gavage	252	mg/kg	21.5	1.4	SCEs/metap hase					
		BaP	Gavage	504	mg/kg	21.7	1.4	SCEs/metap hase					

			Route of				Cla	astogenicity					
Record number	Reference	РАН	admini- stration	Dose	Dose units	Mean	Standard deviation	Units	n	% Response	Units	<i>p</i> < 0.05	Notes
		Control	Gavage	0	mg/kg	11.0		SCEs/metap hase					
		BIAC	Gavage	32	mg/kg	16.5	3.6	SCEs/metap hase					
		BIAC	Gavage	63	mg/kg	20.5	1.6	SCEs/metap hase					
		BIAC	Gavage	126	mg/kg	27.8	2.6	SCEs/metap hase					
24790	Kligerman et al., 2002	Control	Intra- peritoneal	0	mg/kg	8.79	1.26	SCEs/					
		BaP	Intra- peritoneal	100	mg/kg	21.21	2.93	SCEs/				х	
		BaA	Intra- peritoneal	100	mg/kg	14.8	3.16	SCEs/				х	
		BbF	Intra- peritoneal	100	mg/kg	22.25	1.45	SCEs/				х	
		СН	Intra- peritoneal	100	mg/kg	11.96	1.8	SCEs/				х	
		Control	Gavage	0	mg/kg	11.12	1.5	SCEs/					
		BaP	Gavage	100	mg/kg	17.91	1.49	SCEs/				х	
		BaA	Gavage	100	mg/kg	13.38	1.53	SCEs/				х	
		Control	Gavage	0	mg/kg	6.6	0.9	MN bn	1,000	0.007	Binucleated		
		BaP	Gavage	100	mg/kg	9.1	1.8	MN bn	1,000	0.009	Binucleated	х	
		BbF	Gavage	100	mg/kg	8.3	0.9	MN bn	1,000	0.008	Binucleated	x	

1 2

APPENDIX D. BENCHMARK DOSE MODELING OUTPUTS

3 D.1. DERMAL BIOASSAYS

```
4
    Cav 1983 bap dermal.out.txt
5
     _____
6
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
7
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
8
    RPS\MODELING\UNSAVED1.(d)
9
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
10
    DOCUMENTS\PAH RPS\MODELING\UNSAVED1.plt
11
                                         Tue Jul 05 10:10:03 2005
12
    13
14
    BMDS MODEL RUN
15
    16
      The form of the probability function is:
17
18
19
      P[response] = background + (1-background)*[1-EXP(
20
    -beta1*dose^1-beta2*dose^2)]
21
22
      The parameter betas are restricted to be positive
23
24
25
      Dependent variable = COLUMN2
26
      Independent variable = COLUMN1
27
28
     Total number of observations = 4
29
    Total number of records with missing values = 0
30
    Total number of parameters in model = 3
31
    Total number of specified parameters = 0
32
     Degree of polynomial = 2
33
34
35
    Maximum number of iterations = 250
36
    Relative Function Convergence has been set to: 1e-008
37
     Parameter Convergence has been set to: 1e-008
38
39
40
41
                    Default Initial Parameter Values
42
                       Background = 0.0155298
43
                         Beta(1) =
                                            0
44
                         Beta(2) = 0.00204447
45
46
47
              Asymptotic Correlation Matrix of Parameter Estimates
48
49
              ( *** The model parameter(s) -Background
50
                   have been estimated at a boundary point, or have been
51
    specified by the user,
52
                   and do not appear in the correlation matrix )
53
54
                  Beta(1)
                            Beta(2)
55
56
                               -0.96
      Beta(1)
                       1
57
58
      Beta(2)
                   -0.96
                                   1
```

$\frac{1}{2}$						
3			Daramator E	atimatoa		
4 5			Parameter E	Stillates		
6	Variable		Estimate	Std	. Err.	
8	Background Beta(1)		0.0126577	0.04	NA 50858	
9	Beta(2)		0.00134916	0.0024	45743	
10	NA Indiantoa t	-bat thia	paramatar ha	a hit a hound		
12	implied by	some ine	quality const	raint and thus	5	
13	has no star	ndard err	or.			
14 15						
16						
17			Analysis of D	eviance Table		
18 19	Model	Log(li	kelihood) De	viance Test I	DF P-V	alue
20	Full model	>0(35.0798			
21	Fitted model	-	36.0272	1.89478	2	0.3878
22	Reduced model		-55.002	39.9044	2	<.0001
24	AIC:		76.0543			
25 26						
27		Goo	dness of Fi	t		
28 29	Dose Es	stProb.	Expected	Observed	Size	Chi^2 Res.
30 31	i: 1					
32	0.0000	0.000	0.000	0	29	0.000
33 34	i: 2	0228	1 014	2	20	1 007
35	i: 3	.0550	1.014	2	30	1.007
36	6.6000 (0.1326	3.714	2	28	-0.532
37 38	1:4).5474	16.423	17	30	0.078
39						
40	Chi-square =	1.95	DF = 2	P-value	= 0.3772	
41						
43 44	Benchmark Dos	se Comput	ation			
45 46	Specified effect	5 =	0.1			
47 48	Risk Type	=	Extra risk			
49 50	Confidence level	L =	0.95			
51	BMI) =	5.31398			
52 53	BMDI	. =	2.86439			

```
1
    CAVALIERI1983BAP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\SETS\CAVALIERI1983BAP.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\SETS\CAVALIERI1983BAP.plt
8
                                          Thu Jun 02 11:12:07 2005
9
     10
11
     BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = incidenceBaP
23
       Independent variable = doseBaP
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.062817
40
                          Beta(1) =
                                     0.0817095
41
                          Beta(2) =
                                             0
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
                                                       -Beta(2)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
52
53
       Beta(1)
                        1
54
55
56
57
                            Parameter Estimates
58
59
                                               Std. Err.
          Variable
                           Estimate
60
        Background
                                   0
                                                 NA
```

D-3

1	Beta(1)		0.0898383	0.01	.86734	
2	Beta(2)		0		NA	
4	NA - Indicates t	hat this	parameter ha	as hit a bound	1	
5	implied by	some ineg	uality const	raint and thu	- IS	
6	has no star	idard erro	r.			
7						
8						
9						
10		A	nalysis of I	Deviance Table	2	
11						
12	Model	Log(lik	elihood) De	eviance Test	DF P-V	value
13	Full model	-4	1.1202			
14	Fitted model	-4	4.3027	6.36496	3	0.09514
15	Reduced model	-7	6.9419	71.6434	3	<.0001
10	3.7.0.	0	0 6054			
1/ 19	ALC:	9	0.6054			
10						
20		Good	ness of Fi	i+		
21		0000				
22	Dose Es	stProb.	Expected	Observed	Size	Chi^2 Res.
23						
24	i: 1					
25	0.0000 0	0.0000	0.000	0	29	0.000
26	1:2	1900	F 200	0	2.0	
21	2.2000 U	0.1/93	5.380	Z	30	-0.766
20 29	1· 3 6 6000 0	4473	12 524	17	28	0 647
30	i: 4		12.921	± /	20	0.017
31	20.0000 0	.8342	25.025	24	30	-0.247
32	Chi course -	E 70	DE - 2		- 0 1052	
34	CIII-Square -	5.75	DF = 3	P-Value	= 0.1255	
35						
36	Benchmark Dos	se Computa	tion			
37		1 1 1				
38	Specified effect	; =	0.1			
39						
40	Risk Type	= E	xtra risk			
41						
42	Confidence level	. =	0.95			
43						
44	BMI) =	1.17278			
45 46	T-1 # # T- T	_	0 000000			
40 47	BMDL	_ =	0.902296			
4/						

```
1
    CAVALIERI1983CPcdP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\SETS\CAVALIERI1983BAP.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\SETS\CAVALIERI1983BAP.plt
8
                                          Thu Jun 02 11:16:02 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = incidenceCPcdP
23
       Independent variable = doseCPcdP
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background =
                                            0
40
                         Beta(1) =
                                             0
                         Beta(2) = 4.42193e-005
41
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
                              Beta(2)
52
53
      Beta(1)
                        1
                              -0.93
54
55
      Beta(2) -0.93
                                   1
56
57
58
59
                           Parameter Estimates
60
```

1 Variable Estimate Std. Err. 2 Background 0 NA 0.00477908 0.000525849 3 Beta(1) 4 Beta(2) 3.60995e-005 2.68444e-005 5 6 NA - Indicates that this parameter has hit a bound 7 implied by some inequality constraint and thus 8 has no standard error. 9 10 11 12 Analysis of Deviance Table 13 Model Log(likelihood) Deviance Test DF P-value 14 15 Full model -27.8865 4.38685 2 72.4452 3 16 Fitted model -30.0799 0.1115 17 Reduced model -64.1091 <.0001 18 19 AIC: 64.1598 20 21 22 Goodness of Fit 23 24 Dose Est._Prob. Expected Observed Size Chi^2 Res. 25 _____ 26 i: 1 27 0.0000 0.0000 0.000 0 29 0.000 28 i: 2 29 22.2000 0.0290 0.842 2 29 1.416 30 i: 3 2 31 5.141 66.6000 0.1773 29 -0.743 i: 4 32 200.0000 0.7876 29 33 22.840 24 0.239 34 P-value = 0.1194 35 Chi-square = 4.25 DF = 236 37 38 Benchmark Dose Computation 39 40 Specified effect = 0.1 41 42 Risk Type = Extra risk 43 44 Confidence level = 0.95 45 46 BMD = 47.2296 47 48 BMDL = 30.0553 49 50

```
1
    HABS1980BAP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\SETS\HABS1980BAP.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\SETS\HABS1980BAP.plt
8
                                          Thu May 26 14:32:01 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = incidenceBaP
23
       Independent variable = doseBaP
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 1
27
     Total number of parameters in model = 3
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background =
                                             0
40
                          Beta(1) =
                                             0
41
                          Beta(2) =
                                      0.151094
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
                                                      -Beta(1)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(2)
52
53
       Beta(2)
                        1
54
55
56
57
                           Parameter Estimates
58
59
                                              Std. Err.
          Variable
                           Estimate
60
        Background
                                   0
                                                 NA
```

D-7

1	Beta(1	1)	0	0.0	NA			
2	Beta(2	2)	0.127547	0.0	314898			
3 4	NA - Indicates	s that thi	s parameter h	as hit a boun	d			
5	implied by some inequality constraint and thus							
6	has no st	andard er	ror.					
7								
8								
9								
10			Analysis of 2	Deviance Tabl	е			
11								
12	Model	Log(l	ikelihood) D	eviance Test	DF P-V	alue		
13	Full mode	el	-40.3373	1 22640	0	0 5106		
14	Fitted mode	5T - 1	-41.0055	1.3364/	2	0.5126		
15	Reduced mode	ΞT	-64.1931	4/./118	Ζ	<.0001		
10	λ Τ (۰.	84 011					
18	AIC	_ •	01.011					
19								
20		Go	odness of F	it				
21								
22	Dose	EstProb	. Expected	Observed	Size	Chi^2 Res.		
23								
24 25	1. 1	0 0000	0 000	0	35	0 000		
26	i: 2	0.0000	0.000	0	55	0.000		
27	1.7000	0.3083	10.482	8	34	-0.342		
28	i: 3							
29	2.8000	0.6321	22.124	24	35	0.231		
30								
31	Chi-square =	1.2	8 DF = 2	P-valu	e = 0.5267			
32								
33								
54 25	Benchmark l	Jose Compu	tation					
36	Specified off	eat =	0 1					
37	preciried erre		0.1					
38	Risk Type	=	Extra risk					
39								
40	Confidence lev	vel =	0.95					
41								
42	I	BMD =	0.908873					
43								
44	BN	MDL =	0.484748					
45								

```
1
    HABS1980BBF.OUT.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\HABS1980BBF.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\HABS1980BBF.plt
8
                                          Wed May 25 13:00:07 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = incidenceBbF
23
       Independent variable = doseBbF
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background =
                                            0
40
                         Beta(1) =
                                             0
41
                         Beta(2) = 0.00945627
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
                                                      -Beta(1)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(2)
52
53
      Beta(2)
                        1
54
55
56
57
                           Parameter Estimates
58
59
                                              Std. Err.
          Variable
                           Estimate
60
        Background
                                   0
                                                 NA
```

D-9

1	Beta(1)		0	N	A	
2	Beta(2)	C	.00748156	0.0023	3324	
3						
4	NA - Indicates	that this r	arameter has	s hit a bound		
5	implied by	some inequ	ality constr	aint and thus		
6	had no star	ndard error		aine ana enab		
7			•			
0						
0						
9						
10		Ar	alysis of De	eviance Table		
11						
12	Model	Log(like	elihood) Dev	viance Test D	F P-V	alue
13	Full model	-47	.5575			
14	Fitted model	-48	.6255	2.13602	3	0.5447
15	Reduced model	-69	.4912	43.8674	3	<.0001
16					-	
17	ATC:	c	9 251			
18	ALC.		· · · · · · ·			
10						
19						
20		Goodr	less of Fit			
21						
22	Dose E	stProb.	Expected	Observed	Sıze	Chi^2 Res.
23						
24	i: 1					
25	0.0000	0.0000	0.000	0	35	0.000
26	i: 2					
27	3.4000	0.0829	3.148	2	38	-0.398
28	i: 3					
29	5.6000	0.2091	7.110	5	34	-0.375
30	i: 4					
31	9.2000	0.4691	17.358	20	37	0.287
32						
33	Chi-square -	2 01	DF = 3		= 0 5711	
3/	CIII BYUALE -	2.01	<u> </u>	I VALUE	- 0.0/11	
25						
26	Donahmania Da		ion			
27	Benchmark Do	se computat	. 1011			
31			0.5			
38	Specified effect	t =	0.1			
39						
40	Risk Type	= Ex	tra risk			
41						
42	Confidence leve	1 =	0.95			
43						
44	BM	D =	3.75269			
45						
46	BMD	L =	2.91511			
47	2.12					
48						

```
1
    hoff 1966 dermal bap for dbaep.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\UNSAVED1.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\UNSAVED1.plt
8
                                          Tue Jul 05 10:20:14 2005
9
     10
11
     BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 3
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 2
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 1
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.124609
40
                          Beta(1) =
                                       29.9573
41
42
43
              Asymptotic Correlation Matrix of Parameter Estimates
44
45
              ( *** The model parameter(s) -Background
46
                   have been estimated at a boundary point, or have been
47
    specified by the user,
48
                   and do not appear in the correlation matrix )
49
50
                  Beta(1)
51
52
      Beta(1)
                        1
53
54
55
56
                           Parameter Estimates
57
58
          Variable
                                               Std. Err.
                           Estimate
59
                                  0
        Background
                                                 NA
                             34.3074
                                               7.98663
60
           Beta(1)
```

```
D-11
```

1 2 3 4 5 6	NA - Indica implie has no	tes that t d by some standard	his paramete inequality c error.	r has hit a onstraint a	bound nd thus		
7			Maalvaia	of Doviance	Table		
9			Anarysis		iubic		
10	Mode	l Log	(likelihood)	Deviance	Test DF	P-v-	alue
11	Full m	odel		0 00700			0 0 0 1 0
12	Fitted m	odel	-12.5/35	0.29/92	18 Z		0.8616
13	Reduced iii	oder	-40.3807	55.912	-4 2		<.0001
15		AIC:	27.1469				
16							
17							
18			Goodness of	Fit			
19 20	Dose	EstPr	ob. Expec	ted Obse	erved	Size	Chi^2 Res.
21	 i: 1						
23	0.0000	0.0000	0.0	00	0	20	-1.000
24	i: 2						
25	0.0500	0.8201	16.4	02 1	.7	20	0.203
26	i: 3						
27	0.1000	0.9676	19.3	53 1	.9	20	-0.563
28 29	Chi-square	= 0	.32 DF =	1 P	-value =	0.5717	
30							
31 22	Donghaon	L Dogo Com	nutation				
32 33	Benchmar	k Dose Coll	putation				
34	Specified e	ffect =	0.73				
35	5F						
36	Risk Type	=	Extra ris	k			
37							
38	Confidence	level =	0.95				
39 40		BMD =	0.0381647				
41							
42		BMDL =	0.026721				

43

```
1
    HOFFMANWYNDER966DBAIP.OUT.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\HOFFMANWYNDER966DBAIP.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\HOFFMANWYNDER966DBAIP.plt
8
                                          Wed May 25 15:24:49 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = incidenceDBaiP
23
       Independent variable = doseDBaiP
24
25
     Total number of observations = 3
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 2
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 1
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.264818
40
                          Beta(1) =
                                      18.4583
41
42
43
              Asymptotic Correlation Matrix of Parameter Estimates
44
45
              ( *** The model parameter(s) -Background
46
                   have been estimated at a boundary point, or have been
47
    specified by the user,
48
                   and do not appear in the correlation matrix )
49
50
                  Beta(1)
51
52
      Beta(1)
                        1
53
54
55
56
                           Parameter Estimates
57
58
                                              Std. Err.
          Variable
                           Estimate
59
                                  0
        Background
                                                NA
                             25.3832
                                               5.83589
60
           Beta(1)
```

```
D-13
```

1 2 3 4	NA - Indicates that implied by som has no standar	this para ne inequali rd error.	meter has ty constr	hit a bound aint and thus		
5						
6						
8		بر ا حملا	aid of Do	viango Tablo		
9		Allaly	SIS OI DE	viance labie		
10	Model I	.og(likelih	lood) Dev	riance Test DI	F P-va	alue
11	Full model	-16.57	42			
12	Fitted model	-18.0	19	2.88957	2	0.2358
13	Reduced model	-39.89	16	46.6349	2	<.0001
14 15	ATC :	20 02	70			
16	AIC.	30.03	19			
17						
18		Goodness	of Fit			
19						
20	Dose Est	Prob. E	xpected	Observed	Size	Chi^2 Res.
21						
23		000	0.000	0	20	0.000
24	i: 2		0.000	C C	20	
25	0.0500 0.71	.89	13.660	16	19	0.610
26	i: 3					
27	0.1000 0.92	210	17.499	16	19	-1.084
28 29	Chi-square -	3 05	ר <u>א</u> ת – 2		- 0 2174	
30	Chi square -	5.05	DP = Z	r value -	- 0.21/4	
31						
32	Benchmark Dose C	omputation	L			
33						
34	Specified effect =		0.1			
35 36	Pick Type -	Fytra	rick			
37	ктри туре –	EACIO	. TTOV			
38	Confidence level =		0.95			
39						
40	BMD =	0.0041	5079			
41		0 0000	0 7 7 1			
42 43	ב בעואפ	0.0029	0434			

```
1
    HOFFMANWYNDER1966BAP.OUT.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\HOFFMANWYNDER1966BAP.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\HOFFMANWYNDER1966BAP.plt
8
                                          Wed May 25 15:13:08 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = incidenceBaP
23
       Independent variable = doseBaP
24
25
     Total number of observations = 3
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 2
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 1
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.124609
40
                          Beta(1) =
                                       29.9573
41
42
43
              Asymptotic Correlation Matrix of Parameter Estimates
44
45
              ( *** The model parameter(s) -Background
46
                   have been estimated at a boundary point, or have been
47
    specified by the user,
48
                   and do not appear in the correlation matrix )
49
50
                  Beta(1)
51
52
      Beta(1)
                        1
53
54
55
56
                           Parameter Estimates
57
58
          Variable
                                              Std. Err.
                           Estimate
59
                                  0
        Background
                                                NA
                             34.3074
                                               7.98663
60
           Beta(1)
```

```
D-15
```

1 2 3 4 5	NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.							
6								
7								
8 9			Analysis of D	eviance Table				
10	Model	Log(li	kelihood) De	viance Test	DF P-v	value		
11	Full mode		12.4245					
12	Fitted mode		12.5735	0.297928	2	0.8616		
13 14	Reduced mode		40.380/	55.9124	2	<.0001		
15	AIC	:	27.1469					
16								
17		Geo	ducan of Di	L				
18 19		GOO	aness of Fi	L				
20 21	Dose	EstProb.	Expected	Observed	Size	Chi^2 Res.		
21	i: 1							
23	0.0000	0.0000	0.000	0	20	-1.000		
24	i: 2	0 0 0 0 1	16 400	1 0	2.0	0 000		
23 26	0.0500 i: 3	0.8201	10.402	17	20	0.203		
27	0.1000	0.9676	19.353	19	20	-0.563		
28 29	Chi-square =	0.32	DF = 1	P-value	= 0.5717			
30	oni biquare	0.01	21 1	1 (01200	0.0/2/			
31								
32	Benchmark D	ose Comput	ation					
33 34	Specified effe	ct =	0 1					
35	Specified effe		0.1					
36	Risk Type	=	Extra risk					
37 38	Confidence lev	el =	0.95					
39								
40	В	MD = 0	.00307107					
41 42	ъм	. – . T	00215021					
+2	DIV	<u>– пл</u>						

43

```
1
    HOFFMANWYNDER1966DBAEF.OUT.txt
2
    3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\SETS\HOFFMANWYNDER1996DBAEP.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\SETS\HOFFMANWYNDER1996DBAEP.plt
8
                                          Thu Jun 02 11:25:43 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = incidenceDBaeF
23
       Independent variable = doseDBaeF
24
25
     Total number of observations = 3
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 2
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 1
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.22871
40
                          Beta(1) =
                                       29.4444
41
42
43
              Asymptotic Correlation Matrix of Parameter Estimates
44
45
              ( *** The model parameter(s) -Background
46
                   have been estimated at a boundary point, or have been
47
    specified by the user,
48
                   and do not appear in the correlation matrix )
49
50
                  Beta(1)
51
52
      Beta(1)
                        1
53
54
55
56
                           Parameter Estimates
57
58
                                              Std. Err.
          Variable
                           Estimate
59
                                  0
        Background
                                                NA
                             37.3037
                                               9.04943
60
           Beta(1)
```

```
D-17
```

1 2 3	NA - Indicates implied b	that they some i	is parameter nequality con	has hit a bour straint and th	nd nus	
4	has no st	andard e	error.			
5						
6						
7						
8			Analysis of	Deviance Tab.	le	
9		- /				-
10	Model	Log(likelinood)	Deviance Test	E DF P-	value
11	Full mode	: 	-10.3111	0 004104	2	0 6205
12	Filled mode	1	-10./582	0.894194	2	0.0395
13	Reduced mode	· 1	-38.9521	57.2822	2	<.0001
14	A T C		22 E162			
15	AIC	•	23.5103			
10						
17		C	loodnogg of	₽ ;+		
10		G	ooulless of	ГIU		
19 20	Dogo	Fat Dro	b Exporto	d Observed	Sizo	ChiA2 Rog
20	D05e	LSCFIC	D. Expecte		5126	
21	i: 1					
23	0 0000	0 0000	0 000	0	20	0 000
23	i: 2	0.0000	0.000	0	20	0.000
25	0.0500	0.8451	16.058	17	19	0.379
26	i: 3					
27	0.1000	0.9760	18.544	18	19	-1.224
28						
29	Chi-square =	1.	02 DF = 2	P-valı	ue = 0.5995	
30	-					
31						
32	Benchmark D	ose Comp	outation			
33		-				
34	Specified effe	ct =	0.1			
35	-					
36	Risk Type	=	Extra risk			
37						
38	Confidence lev	el =	0.95			
39						
40	В	MD =	0.0028244			
41						
42	BM	IDL =	0.00193834			
43						

```
1
    HOFFMANWYNDER1996DBAEP.OUT.txt
2
    3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\BMDS\HOFF_WYND_DBAEP_COMPLETE.(d)
5
           Gnuplot Plotting File: C:\BMDS\HOFF_WYND_DBAEP_COMPLETE.plt
6
                                          Wed Jul 27 16:17:30 2005
7
     _____
8
9
     BMDS MODEL RUN
10
    11
12
       The form of the probability function is:
13
14
       P[response] = background + (1-background)*[1-EXP(
15
    -beta1*dose^1)]
16
17
       The parameter betas are restricted to be positive
18
19
20
      Dependent variable = COLUMN2
21
       Independent variable = COLUMN1
22
23
     Total number of observations = 3
24
     Total number of records with missing values = 0
25
     Total number of parameters in model = 2
26
     Total number of specified parameters = 0
27
     Degree of polynomial = 1
28
29
30
     Maximum number of iterations = 250
31
     Relative Function Convergence has been set to: 1e-008
     Parameter Convergence has been set to: 1e-008
32
33
34
35
36
                    Default Initial Parameter Values
37
                       Background =
                                     0.120514
38
                          Beta(1) =
                                       7.53772
39
40
41
              Asymptotic Correlation Matrix of Parameter Estimates
42
43
              ( *** The model parameter(s) -Background
44
                   have been estimated at a boundary point, or have been
45
    specified by the user,
46
                   and do not appear in the correlation matrix )
47
48
                  Beta(1)
49
50
      Beta(1)
                        1
51
52
53
54
                            Parameter Estimates
55
56
          Variable
                                               Std. Err.
                           Estimate
57
        Background
                                   0
                                                 NA
58
                             11.2084
           Beta(1)
                                                3.21468
59
60
    NA - Indicates that this parameter has hit a bound
```

1	implied 1	by some i	nequality cor	nstraint an	nd thus			
2	nas no s	tandard e	rror.					
4								
5								
6			Analysis of	E Deviance	Table			
7			-					
8	Model	Log(likelihood)	Deviance	Test DF	P-v	value	
9	Full mode	el	-32.4818					
10	Fitted mod	el	-33.903	2.8425	1 2		0.2414	
11	Reduced mod	el	-44.2604	23.5572	2 2		<.0001	
12	3 T.	a.	CO 00C1					
13	AL	C:	69.8061					
14								
16		G	oodness of	Fit				
17		-						
18	Dose	EstPro	b. Expecte	ed Obser	rved	Size	Chi^2 Res.	
19								
20	i: 1							
21	0.0000	0.0000	0.000) (0	20	0.000	
22	i: 2		10.07		-		0 105	
23	0.0500	0.4290	12.87	L 10	6	30	0.426	
24 25	1:3	0 6740	11 /5	2	٥	17	-0 658	
25 26	0.1000	0.0/40	11.400		9	± /	-0.058	
27	Chi-square =	2.	95 DF = 2	2 р.	-value =	0.2288		
28	0							
29								
30	Benchmark 1	Dose Comp	utation					
31								
32	Specified eff	ect =	0.1					
33								
34	Rısk Type	=	Extra risk					
33 36	Confidence les		0 05					
37	contraence le	vet -	0.95					
38	1	BMD =	0.00940018					
39								
40	Bl	MDL =	0.00681373					
41								

```
1
    LAVOIE1982BbF.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\LAVOIE1982.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\LAVOIE1982.plt
8
                                          Wed May 25 16:18:48 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = incidenceBbF
23
       Independent variable = doseBbF
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.253748
40
                          Beta(1) =
                                     0.0139485
41
                          Beta(2) =
                                             0
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
                                                      -Beta(2)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
52
53
      Beta(1)
                        1
54
55
56
57
                           Parameter Estimates
58
59
                                              Std. Err.
          Variable
                           Estimate
60
        Background
                                   0
                                                 NA
```

1	Beta(1) Beta(2)	0.0256902	0.0062	4424	
3	Deta(2)	0	IN	A	
4	NA - Indicates that	t this parameter h	as hit a bound		
5	implied by som	me inequality cons	traint and thus		
6 7	has no standa:	rd error.			
8					
9					
10		Analysis of	Deviance Table		
11					
12	Model 1	Log(likelihood) D	eviance Test D	F P-v	value
13 14	Full model Fitted model	-3/.2311 -41 3599	8 25761	3	0 04098
14	Reduced model	-55 2266	35 991	3	< 0001
16		55.2200	55.771	5	
17	AIC:	84.7197			
18					
19					
20 21		Goodness of F	lt		
22	Dose Est.	_Prob. Expected	Observed	Size	Chi^2 Res.
25 24	i: 1				
25	0.0000 0.0	0.000	0	20	0.000
26	i: 2				
27	10.0000 0.23	266 4.531	9	20	1.275
28	i: 3		10	2.0	0 050
29 30	30.0000 0.5.	3/3 10./46	12	20	0.252
31	100.0000 0.92	234 18.468	16	20	-1.744
32					
33	Chi-square =	10.32 DF = 3	P-value	= 0.0160	
34 35					
36	Benchmark Dose (Computation			
37		<u>-</u>			
38 39	Specified effect =	0.85			
40	Risk Type =	Extra risk			
41	4 L				
42	Confidence level =	0.95			
43					
44 45	BMD =	73.8461			
+5 46	BMDI, =	55,1641			
47					

```
1
    LAVOIE1982BjF.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\SETS\LAVOIE1982.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\SETS\LAVOIE1982.plt
8
                                          Thu May 26 15:18:06 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = incidenceBjF
23
       Independent variable = doseBjF
24
25
     Total number of observations = 3
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 2
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 1
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.0505665
40
                          Beta(1) =
                                    0.00768856
41
42
43
              Asymptotic Correlation Matrix of Parameter Estimates
44
45
              ( *** The model parameter(s) -Background
46
                   have been estimated at a boundary point, or have been
47
    specified by the user,
48
                   and do not appear in the correlation matrix )
49
50
                  Beta(1)
51
52
      Beta(1)
                        1
53
54
55
56
                           Parameter Estimates
57
58
          Variable
                                             Std. Err.
                           Estimate
59
        Background
                                   0
                                                 NA
                           0.00907208
                                            0.00330195
60
           Beta(1)
```

D-23

1 2 3 4 5 6	NA - Indica implied has no	tes that th: d by some in standard en	is parameter h nequality cons rror.	as hit a bound traint and thu	s	
7 8			Analysis of	Deviance Table		
9						
10	Mode	l Log(:	likelihood) D	eviance Test	DF P-v	value
11	Full mo	odel	-25.9801	0 574706	2	0 7500
12	Reduced m	odel	-20.2075	19 5688	2	< 0.7502
14	neudeed in	Juci	55.7011	19.5000		
15	i	AIC:	54.5349			
16						
17						
18		Go	odness of F	it		
20 21	Dose	EstProl	D. Expected	Observed	Size	Chi^2 Res.
22	i: 1					
23	0.0000	0.0000	0.000	0	20	0.000
24	i: 2					
25	30.0000	0.2383	4.765	б	20	0.340
26	i: 3	0 5064	11 000	1 1	0.0	0 1 0 0
27	100.0000	0.5964	11.927		20	-0.193
28 29	Chi-square	= 0.6	50 DF = 2	P-value	= 0.7414	
30 31						
32	Benchmarl	k Dose Compi	atation			
33						
34	Specified e	ffect =	0.85			
35						
36 37	Rısk Type	=	Extra risk			
38	Confidence	level =	0 95			
39	communet .		0.25			
40		BMD =	209.116			
41 42		BMDL =	142.347			

43
```
1
    LAVOIE1982BkF.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\LAVOIE1982.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\LAVOIE1982.plt
8
                                          Wed May 25 16:21:19 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = incidenceBkF
23
       Independent variable = doseBkF
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.0504814
                          Beta(1) =
40
                                    0.00134342
41
                          Beta(2) =
                                             0
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
                                                      -Beta(2)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
52
53
      Beta(1)
                        1
54
55
56
57
                           Parameter Estimates
58
59
                                              Std. Err.
          Variable
                           Estimate
60
        Background
                                   0
                                                 NA
```

1	Beta	(1)	0.00163117	0.0005	03161	
2	Beta	(2)	0		NA	
4	NA - Indicate	es that th	is parameter h	as hit a bound	1	
5	implied	by some i	neguality cons	traint and thu	ເຮ	
6	has no a	standard e	rror.			
7						
8						
9						
10			Analysis of 1	Deviance Table	2	
11	Madal	T a cr (ouioneo Most	DE D-]
12	MODEL Full mod	LOG(_26 4637	eviance lest	DF P=V	Jaiue
13	Fitted mod	del	-20.4037	1 69146	3	0 6388
15	Reduced mod	del	-46.0525	39.1775	3	<.0001
16			10.0525	57.1775	5	
17	A	IC:	56.6189			
18						
19						
20		G	oodness of F	it		
21	Deres		b			
22 23	Dose	ESUPro.	o. Expected	Observed	Size	Chi z Res.
23 24	i: 1					
25	0.0000	0.0000	0.000	0	20	0.000
26	i: 2					
27	30.0000	0.0478	0.955	1	20	0.049
28	i: 3					
29	100.0000	0.1505	3.010	5	20	0.778
30	i: 4	0 0040	16 006	1 5	0.0	0 245
31 32	1000.0000	0.8043	16.086	15	20	-0.345
32 33	Chi-square :	= 1	93 DF = 3	D-value	= 0.5881	
34	CHI BQUUIC			i vaiue	0.5001	
35						
36	Benchmark	Dose Comp	utation			
37						
38	Specified ef:	fect =	0.85			
39						
40 41	Risk Type	=	Extra risk			
41 12	Confidence 1		0 05			
+∠ 43	CONTIDENCE 10	EVET =	0.95			
44		BMD =	1163.04			
45						
46]	BMDL =	802.998			
47						
48						

```
1
    RAVEH1982CPCDP.OUT.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\RAVEH1982CPCDP.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\RAVEH1982CPCDP.plt
8
                                         Wed May 25 16:10:56 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
      P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = incidenceBaP
23
      Independent variable = doseBaP
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
    Total number of parameters in model = 3
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 2
30
31
32
    Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                      Background = 0.086614
                         Beta(1) = 0.00379482
40
41
                         Beta(2) =
                                            0
42
43
44
             Asymptotic Correlation Matrix of Parameter Estimates
45
46
               Background
                            Beta(1)
                                       Beta(2)
47
48
    Background
                       1
                               -0.51
                                           0.37
49
50
      Beta(1)
                  -0.51
                                  1
                                         -0.96
51
52
      Beta(2)
                   0.37
                               -0.96
                                              1
53
54
55
56
                           Parameter Estimates
57
58
         Variable
                           Estimate
                                            Std. Err.
59
        Background
                           0.0898028
                                            0.134663
                                           0.00547992
60
           Beta(1)
                           0.0034393
```

1 2 3	Beta(2)		1.91358e-006	5 2.86	5516e-005	
4 5			Analysis of	Deviance Ta	able	
6 7	Model	Log(likelihood)	Deviance Te	est DF	P-value
8	Full mod	del	-57.7672		-	0. 6440
9	Fitted mod	del	-57.8738	0.213129	1	0.6443
10	Reduced mod	del	-69.2679	23.0015	3	<.0001
11 12 13	A	IC:	121.748			
13						
15		G	oodness of	Fit		
10 17 18	Dose	EstPro	b. Expecte	d Observe	ed Size	Chi^2 Res.
19	i: 1					
20 21	0.0000 i: 2	0.0898	2.604	4 3	29	0.167
22	10.0000	0.1207	3.622	2 3	30	-0.195
23	i: 3	0 2660	10 (11	1 1	2.0	0 050
24 25	i: 4	0.3009	10.641	. 11	29	0.053
26 27	200.0000	0.5762	16.134	16	28	-0.020
28 29	Chi-square :	= 0.	21 DF = 1	P-va	alue = 0.64	72
30						
31 32	Benchmark	Dose Comp	outation			
33 34	Specified ef:	fect =	0.1			
35 36	Risk Type	=	Extra risk			
37 38	Confidence le	evel =	0.95			
39 40		BMD =	30.1292			
41 42	I	BMDL =	19.4197			

```
1
    RAVEH_1982BaP.OUT.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\RAVEH_1982.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\RAVEH_1982.plt
8
                                         Wed May 25 16:06:59 2005
9
     10
11
    BMDS MODEL RUN
    12
13
14
      The form of the probability function is:
15
16
      P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2-beta3*dose^3-beta4*dose^4)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = incidenceBaP
23
      Independent variable = doseBaP
24
25
     Total number of observations = 6
     Total number of records with missing values = 0
26
27
     Total number of parameters in model = 5
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 4
30
31
32
    Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
     Parameter Convergence has been set to: 1e-008
34
35
36
37
                    Default Initial Parameter Values
38
39
                      Background =
                                            0
40
                         Beta(1) = 6.01899e+017
41
                         Beta(2) =
                                            0
42
                         Beta(3) =
                                            0
43
                         Beta(4) =
                                            0
44
45
46
             Asymptotic Correlation Matrix of Parameter Estimates
47
48
              ( *** The model parameter(s) -Beta(2)
                                                  -Beta(3)
49
                   have been estimated at a boundary point, or have been
50
    specified by the user,
51
                   and do not appear in the correlation matrix )
52
53
               Background
                             Beta(1) Beta(4)
54
55
    Background
                               -0.66
                                           0.27
                       1
56
57
      Beta(1)
                   -0.66
                                  1
                                         -0.52
58
59
                   0.27
                               -0.52
      Beta(4)
                                              1
60
```

1						
3			Parameter E	stimates		
4 5	Varial	ole	Estimate	Std	. Err.	
6	Backgrou	und	0.132052	0.1	68781	
7	Beta	(1)	0.0479561	0.01	33452 NA	
9	Beta	(3)	0		NA	
10	Beta	(4)	4.58924e-009	3.25141	e-008	
11 12	NA - Indicate	es that the	is parameter ha	s hit a bound		
13	implied	by some in	nequality const	raint and thu	S	
14 15	has no s	standard ei	rror.			
16						
17						
18 19			Analysis of D	eviance Table		
20	Model	Log(likelihood) De	viance Test	DF P-v	value
21	Full mod	del	-56.5419	3 66814	3	0 2996
23	Reduced mod	del	-101.065	89.0461	5	<.0001
24			100 750			
23 26	A.		122./52			
27		~				
28 29		Go	odness of Fi	t		
30	Dose	EstProl	D. Expected	Observed	Size	Chi^2 Res.
32	i: 1					
33 34	0.0000	0.1321	3.830	3	29	-0.250
34 35	10.0000	0.4627	13.419	17	29	0.497
36 37	i: 3 25.0000	0.7388	20.685	21	28	0.058
38	i: 4					
39 40	50.0000 i: 5	0.9233	25.853	24	28	-0.935
41	100.0000	0.9955	26.878	27	27	1.005
42 43	i: 6 200.0000	1.0000	26.000	26	26	1.000
44 45	Chi-gauaro -	- 20	26 שת 2		- 0 2771	
46	CIII Square -	- 5.0	JU 14 - 5	rvaiue	- 0.2771	
47 48 49	Benchmark	Dose Compu	utation			
50 51	Specified eff	fect =	0.1			
52 53	Risk Type	=	Extra risk			
55 55	Confidence le	evel =	0.95			
56 57		BMD =	2.19702			
57 58	I	BMDL =	1.66278			
59 60						

```
1
    RICE1988INITIATIONBbcAC.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
5
    STUDIES\RICE1988INITIATION.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\DERMAL
7
    STUDIES\RICE1988INITIATION.plt
8
                                          Thu May 26 12:50:09 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = incidenceBbcAC
23
       Independent variable = doseBbcAC
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.515248
40
                         Beta(1) =
                                      0.484044
41
                         Beta(2) =
                                            0
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Beta(2)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
               Background
                              Beta(1)
52
53
    Background
                        1
                               -0.68
54
55
      Beta(1) -0.68
                                   1
56
57
58
59
                           Parameter Estimates
60
```

1	Variable	Estimate	Std.	Err.	
2	Background	0.110219	0.24	13438	
3	Beta(1)	1.01652	0.31	L9132	
4	Beta(2)	0	I	JA	
5					
6	NA - Indicates that	this parameter ha	as hit a bound		
7	implied by some	e inequality const	raint and thus	3	
8	has no standard	lerror.			
9					
10					
10					
12		Apolygia of T	Vorriando Tablo		
12		ANALYSIS OL L	eviance labie		
13	Madal	r (likelike d) De	unionas most T		- 1
14	MODEL LO	Dg(IIKEIINOOd) De	eviance lest l		raiue
15	Full model	-28.2203	11 0004	0	0.000400
10	Fitted model	-34.2145	11.9884	2	0.002493
17	Reduced model	-51.7957	47.1508	3	<.0001
18					
19	AIC:	72.4291			
20					
21					
22		Goodness of Fi	.t		
23					
24	Dose Est1	Prob. Expected	Observed	Size	Chi^2 Res.
25					
26	i: 1				
27	0.0000 0.110	2.204	1	20	-0.614
28	i: 2				
29	0.5000 0.464	48 9.295	15	20	1.147
30	i: 3				
31	2.0000 0.883	35 17.670	18	20	0.160
32	i: 4				
33	4.0000 0.984	17 19.695	18	20	-5.641
34					
35	Chi-square =	L6.90 DF = 2	P-value	= 0.0002	
36	··				
37					
38	Benchmark Dose Co	omputation			
39	Denominariti Dobe et				
40	Specified effect =	0 89			
41	Specifica cricee =	0.02			
11 12	Pick Type -	Extra rick			
±∠ ∕13	KIBY INDE -	EACLA LIDA			
45 11	Confidence level -	0 05			
44 15	contraence tevet =	0.95			
4J 16		7 1 7 1 1			
40	BMD =	∠.⊥/⊥4			
4/		1 54040			
48	BMDL =	1.54343			
49					

```
1
    Rice 1988CH.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\BMDS\UNSAVED1.(d)
5
           Gnuplot Plotting File: C:\BMDS\UNSAVED1.plt
6
                                          Thu May 26 12:43:53 2005
7
     _____
8
9
    BMDS MODEL RUN
10
    11
12
      The form of the probability function is:
13
14
       P[response] = background + (1-background)*[1-EXP(
    -beta1*dose^1-beta2*dose^2)]
15
16
17
       The parameter betas are restricted to be positive
18
19
20
      Dependent variable = incidenceCH
21
       Independent variable = doseCH
22
23
     Total number of observations = 4
     Total number of records with missing values = 0
24
25
     Total number of parameters in model = 3
26
     Total number of specified parameters = 0
27
     Degree of polynomial = 2
28
29
30
    Maximum number of iterations = 250
31
     Relative Function Convergence has been set to: 1e-008
32
     Parameter Convergence has been set to: 1e-008
33
34
35
36
                    Default Initial Parameter Values
37
                       Background = 0.305186
38
                          Beta(1) =
                                      1.94458
39
                         Beta(2) =
                                             0
40
41
42
              Asymptotic Correlation Matrix of Parameter Estimates
43
44
              ( *** The model parameter(s) -Beta(2)
45
                   have been estimated at a boundary point, or have been
46
    specified by the user,
47
                   and do not appear in the correlation matrix \ensuremath{)}
48
49
                Background
                              Beta(1)
50
51
    Background
                        1
                               -0.51
52
53
      Beta(1) -0.51
                                    1
54
55
56
57
                           Parameter Estimates
58
59
                                              Std. Err.
          Variable
                           Estimate
60
        Background
                           0.0435025
                                              0.182669
```

1	Beta(1)		2.7068	0.7).74964						
2	Beta(2)		0	N	A						
3 1	NA - Indiantos th	at this para	motor ba	a hit a hound							
5	implied by s	ome inequali	ty consti	raint and thus							
6	has no stand	ard error.		taine and enab							
7											
8											
9											
10		Analy	rsis of De	eviance Table							
11											
12	Model	Log(likelih	lood) Dev	viance Test D	F P-v	ralue					
13	Full model	-25.6	89	4 00050	-	0.0055					
14	Fitted model	-28.13	43	4.89062	2	0.0867					
15	Reduced model	-55.22	66	59.0752	3	<.0001					
10	λ T.C.	60.26	86								
18	AIC.	00.20	80								
19											
20		Goodness	of Fit	t							
21											
22	Dose Est	Prob. E	xpected	Observed	Size	Chi^2 Res.					
23											
24	i: 1			_							
25	0.0000 0.	0435	0.870	1	20	0.156					
20	1: 2	2627	7 254	F	20	0 100					
21	0.1500 0.	3027	1.254	5	20	-0.400					
20	0 5000 0	7529	15 058	18	20	0 791					
30	i: 4	7525	19:090	10	20	0.791					
31	1.5000 0.	9835	19.670	19	20	-2.065					
32											
33	Chi-square =	4.83	DF = 2	P-value :	= 0.0894						
34											
35											
36	Benchmark Dose	Computation	L								
3/			0 00								
38 20	Specified effect	=	0.89								
39 40	Pick Type	- Evtra	rick								
40	KIBK TÀÞE	- EXULO	. IISK								
42	Confidence level	=	0.95								
43											
44	BMD	= 0.81	5455								
45											
46	BMDL	= 0.58	4044								
47											

```
1
    RICE_CPDEFC.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\RICE_DERMAL_CPDEFC.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\RICE_DERMAL_CPDEFC.plt
8
                                          Thu Jun 30 20:30:27 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
      P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
      Independent variable = COLUMN1
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background =
                                            1
40
                         Beta(1) = 6.76726e+019
41
                         Beta(2) =
                                            0
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Beta(1)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
               Background
                              Beta(2)
52
53
    Background
                       1
                              -0.52
54
55
      Beta(2) -0.52
                                   1
56
57
58
59
                           Parameter Estimates
60
```

Vari	lable	Estimate	Std	. Err.	
Backgr	round	0.0499932	0.2	17763	
Bet	:a(1)	0		NA	
Bet	ca(2)	44.3918	19	.5918	
NA - Indica	tes that thi	s parameter has	s hit a bound		
implie	ed by some in	neguality constr	caint and thu	s	
has no	standard er	ror.			
		Applyzaia of D	orriando Tablo		
		ANALYSIS OL DE	eviance labie		
Mode	el Log(]	likelihood) Dev	viance Test	DF P-	value
Full n Fitted m	nodel	-16.9192	10547543	2	0 9997
Reduced m	nodel	-49.6481	65.4577	3	<.0001
		19.0101	00.10,7	5	
	AIC:	37.839			
	0.0		_		
	GC	odness of Fit			
Dose	EstProb	D. Expected	Observed	Size	Chi^2 Res.
i: 1					
0.0000	0.0500	1.000	1	20	0.000
i: 2					
0.1500	0.6501	13.002	13	20	-0.000
1:3	1 0000	19 000	19	19	1 000
i: 4	1.0000	19.000	19	19	1.000
1.5000	1.0000	19.000	19	19	0.000
Chi-square	e = 0.0	00 DF = 2	P-value	= 0.9999	
Donahman	le Dogo Com-	tation			
Benchmar	.k Dose Compi	ILALION			
Specified e	effect =	0.88			
-					
Risk Type	=	Extra risk			
Confidence	lovol -	0.05			
Contraende	TEAET =	0.95			
	BMD =	0.218546			
	BMDL =	0.172781			

```
1
    NESNOW_1984_DERMAL_BLAC_MALE.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\_PAH
5
    RPS\MODELING\NESNOW_1984_DERMAL_BLAC_MALE.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\_PAH RPS\MODELING\NESNOW_1984_DERMAL_BLAC_MALE.plt
8
                                          Thu Feb 08 09:10:48 2007
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
       The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 3
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 2
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 1
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background =
                                             0
40
                          Beta(1) =
                                    0.0283321
41
42
              Asymptotic Correlation Matrix of Parameter Estimates
43
44
45
              ( *** The model parameter(s) -Background
46
                   have been estimated at a boundary point, or have been
47
    specified by the user,
48
                   and do not appear in the correlation matrix )
49
50
                  Beta(1)
51
52
      Beta(1)
                        1
53
54
55
56
                           Parameter Estimates
57
58
          Variable
                                             Std. Err.
                           Estimate
59
                                  0
        Background
                                                 NA
                           0.0219722
                                            0.00534523
60
           Beta(1)
```

1						
2	NA - Indicates	that this r	arameter has	hit a bound		
3	implied by	some inequ	ality constr	aint and thu	g	
4	has no sta	ndard error		arne ana ena		
5			•			
6						
7						
8		7 m	alvaia of Do	winnen Table		
0		AI.	LAIYSIS OI DE	Viance lable		
7 10	Madal		liberd) Der	ianaa maati		
10	Model	LOG(IIKE	LINOOD) Dev	lance lest	DF P-V	alue
11	Full model	-17	.2034	045504	2	0 6000
12	Filled model	-17	./362 0	.945584	2	0.0233
13	Reduced model	-39	.5006	44.4/44	Z	<.0001
14		25	4805			
15	AIC:	37	.4725			
16						
17		_				
18		Goodr	less of Fit			
19						
20	Dose E	stProb.	Expected	Observed	Size	Chi^2 Res.
21						
22	i: 1					
23	0.0000	0.0000	0.000	0	20	0.000
24	i: 2					
25	50.0000	0.6667	13.333	12	20	-0.300
26	i: 3					
27	100.0000	0.8889	15.111	16	17	0.529
28						
29	Chi-square =	0.87	DF = 2	P-value	= 0.6471	
30						
31						
32	Benchmark Do	se Computat	ion			
33						
34	Specified effec	t =	0.67			
35						
36	Risk Type	= Ex	tra risk			
37						
38	Confidence leve	1 =	0.95			
39						
40	BM	ID =	50.4574			
41						
42	BMD	L =	35.8134			
43						

44

```
1
    NESNOW_1984_DERMAL_BLAC_FEMALE.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\_PAH
5
    RPS\MODELING\NESNOW_1984_DERMAL_BLAC_FEMALE.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\_PAH RPS\MODELING\NESNOW_1984_DERMAL_BLAC_FEMALE.plt
8
                                         Thu Feb 08 09:13:51 2007
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
      P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
      Independent variable = COLUMN1
24
25
    Total number of observations = 3
     Total number of records with missing values = 0
26
27
    Total number of parameters in model = 2
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 1
30
31
32
    Maximum number of iterations = 250
33
    Relative Function Convergence has been set to: 1e-008
    Parameter Convergence has been set to: 1e-008
34
35
36
37
                    Default Initial Parameter Values
38
39
                      Background =
                                            0
40
                         Beta(1) =
                                    0.0289037
41
42
43
             Asymptotic Correlation Matrix of Parameter Estimates
44
45
               Background
                             Beta(1)
46
47
    Background
                       1
                               -0.49
48
49
      Beta(1)
                   -0.49
                                   1
50
51
52
53
                           Parameter Estimates
54
                                            Std. Err.
55
          Variable
                          Estimate
56
        Background
                           0.05051
                                             0.21268
57
                           0.0234714
          Beta(1)
                                           0.00648098
58
59
60
```

1	Analysis of Deviance Table								
2 3	Mode	1	Log(like	lihood) I	Deviance	Test DF	P-v.	alue	
4	Full m	Full model -20.		.7842	.7842				
5	Fitted m	Fitted model -21		.1281	0.68783	2 1		0.4069	
6	Reduced m	odel	-39	.8916	38.214	8 2		<.0001	
7									
8		AIC:	46	.2563					
9									
10									
11			Goodn	ess of 1	Fit				
12									
13	Dose	Est.	_Prob.	Expected	d Obse	rved	Size	Chi^2 Res.	
14									
15	1: 1	0 0		0 0 0 0		1	1.0	0 044	
10	0.0000	0.0	505	0.960		T	19	0.044	
18	1· 2 50 0000	0 7	064	1/ 127	1	2	20	_0 272	
10	i: 3	0.7	004	11.12/	<u>т</u>	5	20	0.272	
20	100.0000	0.9	092	17.275	1	8	19	0.462	
21									
22	Chi-square	=	0.64	DF = 1	P	-value =	0.4224		
23									
24									
25	Benchmar	k Dose	Computat	ion					
26									
27	Specified e	ffect =	:	0.51					
28			_						
29	Risk Type	=	EX EX	tra risk					
30 21	Q E J	1 1		0.05					
31	Confidence	ievei =	:	0.95					
33		BMD =	:	30.3924					
34									
35		BMDL =	:	21.4681					
36									

```
1
    NESNOW_1984_DERMAL_BEAC_MALE.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\_PAH
5
    RPS\MODELING\NESNOW_1984_DERMAL_BEAC_MALE.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\_PAH RPS\MODELING\NESNOW_1984_DERMAL_BEAC_MALE.plt
8
                                          Fri Feb 09 10:09:40 2007
9
     _____
10
11
     BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2-beta3*dose^3-beta4*dose^4)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 6
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 5
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 4
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                     Default Initial Parameter Values
39
                       Background = 0.121669
40
                          Beta(1) =
                                     0.00219353
41
                          Beta(2) =
                                             0
42
                          Beta(3) =
                                             0
43
                          Beta(4) =
                                             0
44
45
46
              Asymptotic Correlation Matrix of Parameter Estimates
47
48
              ( *** The model parameter(s) -Background
                                                       -Beta(2) -Beta(3)
49
    -Beta(4)
50
                   have been estimated at a boundary point, or have been
51
    specified by the user,
52
                    and do not appear in the correlation matrix )
53
54
                   Beta(1)
55
56
       Beta(1)
                        1
57
58
59
60
                            Parameter Estimates
```

$\frac{1}{2}$	Varia	hle	Fetimate	6+2	Frr	
3	Backgro	und	0	bea	NA	
4	Beta	(1)	0.00282301	0.000	56435	
5	Beta	(2)	0		NΔ	
6	Pota	(2)	0		NTA	
0	Dela	.(3)	0			
/	Beta	.(4)	0		NA	
8						
9	NA - Indicat	es that the	is parameter ha	as hit a bound		
10	implied	by some in	nequality const	raint and thu	S	
11	has no	standard en	rror.			
12						
13						
13						
14						
15			Analysis of I	Deviance Table		
16						
17	Model	Log(likelihood) De	eviance Test	DF P-v	value
18	Full mo	del	-51.002			
19	Fitted mo	del	-52 1858	2 36767	5	0 7963
20	Podyand ma	dol	_20 7022	50 /025	5	- 0001
20	keaucea mo	uer	-00./033	JY.4025	C	<.0001
21						
22	A	IC:	106.372			
23						
24						
25		G	odness of Fi	t		
26						
20	Dogo	Fat Drol	- Evroated	Observed	Ci ro	ChiA2 Dog
27	DOSE	ESCPIO	J. Expected	Observed	SIZE	CIII Z RES.
28						
29	i: 1					
30	0.0000	0.0000	0.000	0	20	0.000
31	i: 2					
32	50.0000	0.1316	2.633	4	20	0.598
33	i: 3					
34	100 0000	0 2460	4 919	Δ	20	-0 248
25	4. 4	0.2400	4.919	Т	20	-0.240
33	1:4		10 105			
36	250.0000	0.5063	10.125	12	20	0.375
37	i: 5					
38	500.0000	0.7562	15.124	15	20	-0.034
39	i: 6					
40	1000.0000	0.9406	16.930	16	18	-0.925
41					_•	
12	Chi-gauara	- 24	51 DE - 5	D-urlun	- 0 7504	
+2 42	CIII-Square	- 2.0	Dr = 5	<i>P</i> -value	- 0./594	
43						
44						
45	Benchmark	Dose Compu	utation			
46						
47	Specified ef	fect =	0.67			
48	-					
49	Risk Type	=	Extra risk			
50	TIPC		DIGLO LIDI			
51	Confidence 1					
51	conridence 1	ever =	0.95			
52						
53		BMD =	392.724			
54						
55		BMDL =	305.587			
56						

```
1
    NESNOW_1984_DERMAL_BEAC_FEMALE.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\_PAH
5
    RPS\MODELING\NESNOW_1984_DERMAL_BEAC_FEMALE.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\_PAH RPS\MODELING\NESNOW_1984_DERMAL_BEAC_FEMALE.plt
8
                                          Fri Feb 09 10:12:31 2007
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.0667811
40
                          Beta(1) =
                                     0.00288357
41
                          Beta(2) =
                                             0
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
                                                       -Beta(2)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
52
53
      Beta(1)
                        1
54
55
56
57
                            Parameter Estimates
58
59
                                               Std. Err.
          Variable
                           Estimate
60
        Background
                                   0
                                                 NA
```

1 2	Beta(1) Beta(2)		0.00366005 (6417 A	
3	2004(2)		0		-	
4	NA - Indicates th	at this para	meter has	hit a bound		
5	implied by s	ome inequali	ty constra	aint and thus		
7	nas no stano	ard error.				
8						
9						
10		Analy	sis of Dev	viance Table		
11						
12	Model	Log(likelih	ood) Devi	lance Test D	F P-V	alue
13	Full model	-35.65	56	005154	2	0.0000
14	Fitted model	-36.1U	32 U. 94 1	.8951/4	3 2 0	0.8266
15	Reduced model	-45.11		10.9255	5 0	.0002833
17	AIC:	74.20	64			
18						
19						
20		Goodness	of Fit			
21			_			
22	Dose Est	Prob. E	xpected	Observed	Size	Chi^2 Res.
23 24						
25		0000	0 000	0	19	0 000
26	i: 2			Ū		
27	50.0000 0.	1672	3.345	4	20	0.235
28	i: 3					
29	100.0000 0.	3065	5.824	7	19	0.291
30	i: 4		11 200	1.0	1.0	0 205
32	250.0000 0.	2995	11.390	TO	19	-0.305
33	Chi-square =	0 92	DF = 3	P-value	= 0 8205	
34	fire slaves				0.0200	
35						
36	Benchmark Dose	Computation				
37						
38	Specified effect	=	0.51			
39 40	Pick Two	- Evtvo	rick			
41	KIBY INDC	- EALLA	TTON			
42	Confidence level	=	0.95			
43						
44	BMD	= 194	.902			
45						
46	BMDL	= 137	.872			
47						

1 D.2. INTRAPERITONEAL BIOASSAYS

```
2
    lavoie 1994 female lung FA.txt
3
     4
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
5
           Input Data File: C:\BMDS\UNSAVED1.(d)
6
           Gnuplot Plotting File: C:\BMDS\UNSAVED1.plt
7
                                        Thu Jun 30 15:55:31 2005
8
     _____
9
10
    BMDS MODEL RUN
11
    12
13
      The form of the probability function is:
14
15
      P[response] = background + (1-background)*[1-EXP(
16
    -beta1*dose^1)]
17
18
      The parameter betas are restricted to be positive
19
20
21
      Dependent variable = COLUMN2
22
      Independent variable = COLUMN1
23
24
    Total number of observations = 3
25
    Total number of records with missing values = 0
26
    Total number of parameters in model = 2
27
    Total number of specified parameters = 0
28
    Degree of polynomial = 1
29
30
31
    Maximum number of iterations = 250
32
    Relative Function Convergence has been set to: 1e-008
33
     Parameter Convergence has been set to: 1e-008
34
35
36
37
                   Default Initial Parameter Values
38
                      Background = 0.0929049
39
                         Beta(1) =
                                    0.108473
40
41
42
             Asymptotic Correlation Matrix of Parameter Estimates
43
44
               Background
                             Beta(1)
45
46
    Background
                               -0.48
                       1
47
48
      Beta(1)
                   -0.48
                                  1
49
50
51
52
                          Parameter Estimates
53
54
                          Estimate
          Variable
                                            Std. Err.
55
        Background
                          0.112497
                                            0.137421
56
          Beta(1)
                           0.103015
                                           0.0291539
57
58
59
```

1	Analysis of Deviance Table								
2 3	Model	L	Log(like	lihood)	Deviance	Test I)F P-v	alue	
4	Full mo	odel	-44	.1118					
5	Fitted mo	odel	-44	.1689	0.11432	22	1	0.7353	
6	Reduced mo	odel	-64	.1094	39.995	52	2	<.0001	
7									
8	P	AIC:	92	2.3379					
9									
10									
11			Goodr	less of	Fit				
12									
13	Dose	Est.	_Prob.	Expecte	ed Obse	erved	Size	Chi^2 Res.	
14									
15	1: 1	0 1	100	2 0 21	-	٨	2.4		
10	0.0000	0.1	125	3.82	5	4	34	0.052	
17	1· 2 2 4600	0 5	796	11 72	7 1	1	21	0 1 0 1	
10	3.4000	0.2	5780	11.75	1	. 1	21	-0.101	
20	17.3000	0.8	3507	24.66	9 2	25	29	0.090	
21									
22	Chi-square	=	0.11	DF = 2	1 F	-value	= 0.7366		
23									
24									
25	Benchmark	. Dose	Computat	ion					
26									
27	Specified ef	fect =	=	0.83					
28									
29	Risk Type	=	= Ex	tra risk					
30									
31	Confidence 1	level =	-	0.95					
32 22			_	17 201					
33 34		BMD =	-	I/.201					
34 35		DMDT -	_	12 2186					
36		- עעייט	-	12.2100					
50									

```
1
   LAVOIEETAL1994LIVERmale.OUT.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD
5
    ANALYSIS\BIOASSAY\INTRAPERITONEAL\SETS\LAVOIEETAL1994LIVER.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD
7
    ANALYSIS\BIOASSAY\INTRAPERITONEAL\SETS\LAVOIEETAL1994LIVER.plt
8
                                         Wed Jun 01 09:15:04 2005
9
     10
11
    BMDS MODEL RUN
    12
13
14
      The form of the probability function is:
15
16
      P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = response
23
      Independent variable = dose
24
25
    Total number of observations = 3
     Total number of records with missing values = 0
26
27
    Total number of parameters in model = 2
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 1
30
31
32
    Maximum number of iterations = 250
33
    Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                      Background =
                                            0
40
                         Beta(1) = 6.19323e+018
41
42
43
             Asymptotic Correlation Matrix of Parameter Estimates
44
45
               Background
                             Beta(1)
46
47
    Background
                       1
                               -0.47
48
49
      Beta(1)
                   -0.47
                                   1
50
51
52
53
                           Parameter Estimates
54
55
          Variable
                          Estimate
                                            Std. Err.
56
        Background
                          0.168707
                                             0.160946
57
          Beta(1)
                           0.259821
                                           0.0902001
58
59
60
```

1	Analysis of Deviance Table								
2 3	Mode	1 :	Log(like	lihood) 1	Deviance	Test DF	P-va	alue	
4	Full mo	Full model -3		L.5803					
5	Fitted mo	Fitted model -3		.7622	0.36380	3 1		0.5464	
6	Reduced mo	odel	-51	.0494	38.938	2 2		<.0001	
7									
8	I	AIC:	67	.5244					
9									
10									
11			Goodn	ess of 1	Fit				
12									
13	Dose	Est.	_Prob.	Expected	d Obse	rved	Size	Chi^2 Res.	
14									
15	1: 1	0 1	C 0 7	4 000		F	2.0	0.000	
10	0.0000	0.1	587	4.892		5	29	0.026	
1/	1· 2 2 4600	0 6	517	10 507	1	0	20	0 0 9 4	
10	3.4000	0.0	517	10.527	T	0	20	-0.004	
20	17.3000	0.9	907	16.842	1	7	17	1.009	
21									
22	Chi-square	=	0.21	DF = 1	P	-value =	0.6496		
23									
24									
25	Benchmar	c Dose (Computat	ion					
26									
27	Specified ef	ffect =		0.81					
28									
29	Risk Type	=	Ex	tra risk					
30									
31	Confidence I	level =		0.95					
32									
33		BMD =		6.39183					
34									
35		BMDL =	·	4.18834					
36									

```
1
    LAVOIEETAL1994LUNGmale.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD
5
    ANALYSIS\BIOASSAY\INTRAPERITONEAL\SETS\LAVOIEETAL1994LUNG.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD
7
    ANALYSIS\BIOASSAY\INTRAPERITONEAL\SETS\LAVOIEETAL1994LUNG.plt
8
                                         Wed Jun 01 09:49:11 2005
9
     10
11
    BMDS MODEL RUN
    12
13
14
      The form of the probability function is:
15
16
      P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = responsemale
23
      Independent variable = dosemale
24
25
     Total number of observations = 3
     Total number of records with missing values = 0
26
27
    Total number of parameters in model = 2
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 1
30
31
32
    Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                      Background = 0.24757
40
                         Beta(1) =
                                    0.0451334
41
42
43
             Asymptotic Correlation Matrix of Parameter Estimates
44
45
               Background
                             Beta(1)
46
47
    Background
                       1
                               -0.57
48
49
      Beta(1)
                   -0.57
                                   1
50
51
52
53
                           Parameter Estimates
54
55
          Variable
                           Estimate
                                            Std. Err.
56
        Background
                           0.209483
                                             0.142769
57
                           0.0559823
                                           0.0297979
          Beta(1)
58
59
60
```

1	Analysis of Deviance Table							
2 3	Model Log(lik			elihood) Deviance Tes		Test DF	DF P-value	
4	Full m	odel	-43.	4897				
5	Fitted m	odel	-44.	1071	1.2347	6 1		0.2665
6	Reduced m	odel	-49.	0816	11.183	7 2		0.003728
7								
8		AIC:	92.	2143				
9								
10								
11			Goodne	ss of F	it			
12								
13	Dose	Est	Prob.	Expected	Obse:	rved	Size	Chi^2 Res.
14								
15	1. 1	0 20	35	6 075	1	5	29	-0 224
17	i: 2	0.20		0.075		5	27	0.221
18	3.4600	0.34	37	9.763	1	2	28	0.352
19	i: 3	0.01					20	0.001
20	17.3000	0.69	99	11.898	1	1	17	-0.251
21								
22	Chi-square	=	1.25	DF = 1	P	-value =	0.2629	
23								
24								
25	Benchmark Dose Computation							
26								
27	Specified e	ffect =		0.7				
28								
29	Risk Type	=	Ext	ra risk				
30								
31 32	Confidence	level =		0.95				
33		BMD =	2	1.5063				
34			-					
35		BMDL =	1	2.5156				
36								

```
1
    WISLOCKI_CHRYSENE_MALE_LIVER.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\BMDS\WISLOCKI_CHRYSENE_MALE_LIVER.(d)
5
           Gnuplot Plotting File: C:\BMDS\WISLOCKI_CHRYSENE_MALE_LIVER.plt
6
                                          Wed Jun 15 13:20:42 2005
7
     _____
8
9
    BMDS MODEL RUN
10
    11
12
      The form of the probability function is:
13
14
      P[response] = background + (1-background)*[1-EXP(
15
    -beta1*dose^1)]
16
17
      The parameter betas are restricted to be positive
18
19
20
      Dependent variable = COLUMN2
21
      Independent variable = COLUMN1
22
23
     Total number of observations = 3
24
     Total number of records with missing values = 0
25
     Total number of parameters in model = 2
26
     Total number of specified parameters = 0
27
     Degree of polynomial = 1
28
29
30
    Maximum number of iterations = 250
31
    Relative Function Convergence has been set to: 1e-008
32
     Parameter Convergence has been set to: 1e-008
33
34
35
36
                    Default Initial Parameter Values
37
                       Background =
                                    0.147839
38
                         Beta(1) = 0.000139419
39
40
41
              Asymptotic Correlation Matrix of Parameter Estimates
42
43
               Background
                              Beta(1)
44
45
    Background
                        1
                               -0.57
46
47
      Beta(1)
                    -0.57
                                   1
48
49
50
51
                           Parameter Estimates
52
53
                                              Std. Err.
          Variable
                           Estimate
54
        Background
                            0.109703
                                              0.10278
55
           Beta(1)
                         0.000173669
                                         9.88799e-005
56
57
58
59
                         Analysis of Deviance Table
60
```

1	Model	Log(like	lihood)	Deviance	Test DF	' P-	value		
2	Full model	-67	.0392						
3	Fitted model -67		.7628	1.44719			0.229		
4	Reduced model	-7	-74.516		6 2		0.0005661		
5									
6	AIC:	13	9.526						
7									
8									
9		Goodr	less of	Fit					
10									
11	Dose Es	tProb.	Expect	ed Obse	rved	Size	Chi^2 Res.		
12									
13	i: 1								
14	0.0000 0	.1097	8.00	8	7	73	-0.141		
15	i: 2								
16	700.0000 0.2116		7.40	7 1	0	35	0.444		
17	i: 3								
18	2800.0000 0	.4525	15.38	7 1	4	34	-0.165		
19					_				
20	Chi-square =	1.52	1.52 DF = 1		P-value =		0.2172		
21									
22									
23	Benchmark Dose Computation								
24			0 4 4						
25	Specified effect	=	0.44						
20	Dial mars	Π-							
27	RISK Type	= E>	tra risk						
20	Confidence level	_	0 0 5						
29	confidence level	_	0.95						
31	חאם		3338 63						
32	DML	_	5550.05						
33	TUMA	. =	2098 51						
34	BINDL	. –	2070.51						
57									

```
1
    WISLOCKI_CHRYSENE_MALE_LUNG.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\BMDS\WISLOCKI_CHRYSENE_MALE_LUNG.(d)
5
           Gnuplot Plotting File: C:\BMDS\WISLOCKI_CHRYSENE_MALE_LUNG.plt
6
                                          Wed Jun 15 13:21:42 2005
7
     _____
8
9
    BMDS MODEL RUN
10
    11
12
       The form of the probability function is:
13
14
       P[response] = background + (1-background)*[1-EXP(
15
    -beta1*dose^1)]
16
17
       The parameter betas are restricted to be positive
18
19
20
      Dependent variable = COLUMN2
21
       Independent variable = COLUMN1
22
23
     Total number of observations = 3
24
     Total number of records with missing values = 0
25
     Total number of parameters in model = 2
26
     Total number of specified parameters = 0
27
     Degree of polynomial = 1
28
29
30
    Maximum number of iterations = 250
31
    Relative Function Convergence has been set to: 1e-008
32
     Parameter Convergence has been set to: 1e-008
33
34
35
36
                    Default Initial Parameter Values
37
                       Background =
                                     0.101102
38
                         Beta(1) = 4.85056e-005
39
40
41
              Asymptotic Correlation Matrix of Parameter Estimates
42
43
               Background
                              Beta(1)
44
45
    Background
                        1
                                -0.6
46
47
      Beta(1)
                     -0.6
                                   1
48
49
50
51
                           Parameter Estimates
52
53
                                              Std. Err.
          Variable
                           Estimate
54
        Background
                           0.0806675
                                              0.103469
55
           Beta(1)
                         6.36834e-005
                                           8.767e-005
56
57
58
59
                         Analysis of Deviance Table
60
```

1	Model	Log(l	ikelihood)	Deviance	Test DF	P-v	alue		
2	Full mod	el	-51.5522						
3	Fitted mod	el	-52.0709	1.0374	7 1		0.3084		
4	Reduced model -		-53.9858	4.8673	5 2	2 0.08771			
5									
6	AI	C:	108.142						
7									
8									
9		Go	odness of	Fit					
10									
11	Dose	EstProb	. Expect	ed Obse	rved	Size	Chi^2 Res.		
12									
13	i: 1								
14	0.0000	0.0807	5.88	9	5	73	-0.164		
15	i: 2								
16	700.0000	0.1207	4.22	б	6	35	0.477		
17	i: 3								
18	2800.0000	0.2308	7.84	8	7	34	-0.140		
19									
20	Chi-square =	1.1	.1 DF =	1 P	-value =	0.2917			
21									
22									
23	Benchmark Dose Computation								
24									
25	Specified eff	ect =	0.3						
26									
27	Risk Type	=	Extra risk						
28									
29	Confidence le	vel =	0.95						
30									
31		BMD =	5600.76						
32									
33	B	MDL =	2691.64						
34									

```
1
    Busby 1984 i.p. multiplicity
2
    FA male
3
   Linear
4
   Nonconstant variance
5
    BMR = lowest statistically significant response in BaP treated animals (after
6
    control subtracted)
7
8
    _____
9
           Polynomial Model. (Version: 2.12; Date: 02/20/2007)
10
           Input Data File: C:\BMDS\UNSAVED1.(d)
           Gnuplot Plotting File: C:\BMDS\UNSAVED1.plt
11
                                         Mon May 11 21:08:40 2009
12
13
     _____
14
15
    BMDS MODEL RUN
16
    17
18
      The form of the response function is:
19
20
      Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...
21
22
23
      Dependent variable = MEAN
24
      Independent variable = COLUMN1
25
      The polynomial coefficients are restricted to be positive
26
      The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
27
28
      Total number of dose groups = 3
29
      Total number of records with missing values = 0
30
      Maximum number of iterations = 250
31
      Relative Function Convergence has been set to: 1e-008
32
      Parameter Convergence has been set to: 1e-008
33
34
35
                    Default Initial Parameter Values
36
37
                          lalpha = 0.136152
38
                            rho =
                                           0
39
                          beta_0 = 0.0180952
40
                          beta_1 =
                                    0.427551
41
42
43
             Asymptotic Correlation Matrix of Parameter Estimates
44
                                rho
45
                   lalpha
                                         beta O
                                                    beta 1
46
47
       lalpha
                       1
                               0.65
                                         0.015
                                                    0.00041
48
49
          rho
                   0.65
                                 1
                                          0.22
                                                    -0.061
50
51
       beta_0
                  0.015
                              0.22
                                            1
                                                     -0.24
52
53
       beta_1 0.00041 -0.061
                                          -0.24
                                                         1
54
55
56
57
                                 Parameter Estimates
58
59
                                                      95.0% Wald
60
    Confidence Interval
```

1 Variable Estimate Std. Err. Lower Conf. Limit 2 Upper Conf. Limit 3 lalpha 0.634298 0.204652 0.233188 4 1.03541 5 0.0876305 rho 0.923372 0.751619 6 1.09512 7 beta_0 0.0170376 0.0434041 -0.0680328 8 0.102108 9 0.257796 beta 1 0.426604 0.0861283 10 0.595413 11 12 13 14 Table of Data and Estimated Values of Interest 15 16 N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Dose 17 Res. _____ 18 ____ ___ _____ ___ _____ 19 20 0270.040.0170.210.210.7310.290.3160.840.8063.5271.521.511.661.66 21 0.57 -0.177 22 0.0308 23 24 25 26 27 Model Descriptions for likelihoods calculated 28 29 Model A1: Yij = Mu(i) + e(ij) 30 Var{e(ij)} = Sigma^2 31 32 33 Model A2: Yij = Mu(i) + e(ij) 34 $Var{e(ij)} = Sigma(i)^2$ 35 36 Yij = Mu(i) + e(ij)Model A3: 37 $Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))$ 38 Model A3 uses any fixed variance parameters that 39 were specified by the user 40 Model R: Yi = Mu + e(i)41 42 $Var{e(i)} = Sigma^2$ 43 44 45 Likelihoods of Interest 46 47 Model AIC -46.7593514101.518703-7.114400626.228800-7.317284524.634569-7.329046422.658093-59.9845692123.969139 A1 48 49 A2 50 A3 51 fitted 52 R 53 54 55 Explanation of Tests 56 57 Test 1: Do responses and/or variances differ among Dose levels? 58 (A2 vs. R) 59 Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) 60

1 Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) 2 (Note: When rho=0 the results of Test 3 and Test 2 will be the same.) 3 4 Tests of Interest 5 6 Test -2*log(Likelihood Ratio) Test df p-value 7 8 Test 1 105.74 4 <.0001 9 Test 2 79.2899 2 <.0001 10 Test 3 0.405769 0.5241 1 Test 4 0.0235238 1 0.8781 11 12 The p-value for Test 1 is less than .05. There appears to be a 13 14 difference between response and/or variances among the dose levels 15 It seems appropriate to model the data 16 17 The p-value for Test 2 is less than .1. A non-homogeneous variance 18 model appears to be appropriate 19 20 The p-value for Test 3 is greater than .1. The modeled variance appears 21 to be appropriate here 22 23 The p-value for Test 4 is greater than .1. The model chosen seems 24 to adequately describe the data 25 26 27 Benchmark Dose Computation 28 29 Specified effect = 4.28 30 31 Risk Type = Point risk 32 33 Confidence level = 0.95 34 35 BMD = 9.99278 36 37 38 7.55762 BMDL =

39

```
1
    Busby 1984 i.p. multiplicity
2
    FA female
3
   Linear
4
   Nonconstant variance
5
    BMR = lowest statistically significant response in BaP treated animals (after
6
    control subtracted)
7
8
    _____
9
           Polynomial Model. (Version: 2.12; Date: 02/20/2007)
10
           Input Data File: C:\BMDS\UNSAVED1.(d)
           Gnuplot Plotting File: C:\BMDS\UNSAVED1.plt
11
                                        Mon May 11 21:14:08 2009
12
13
     _____
14
15
    BMDS MODEL RUN
16
    17
18
      The form of the response function is:
19
20
      Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...
21
22
23
      Dependent variable = MEAN
24
      Independent variable = COLUMN1
25
      The polynomial coefficients are restricted to be positive
26
      The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
27
28
      Total number of dose groups = 3
29
      Total number of records with missing values = 0
30
      Maximum number of iterations = 250
31
      Relative Function Convergence has been set to: 1e-008
32
      Parameter Convergence has been set to: 1e-008
33
34
35
                   Default Initial Parameter Values
36
37
                          lalpha = -1.11206
38
                            rho =
                                           0
39
                         beta_0 =
                                   0.108571
40
                         beta_1 =
                                    0.115306
41
42
43
             Asymptotic Correlation Matrix of Parameter Estimates
44
45
                  lalpha
                               rho
                                        beta O
                                                    beta 1
46
47
       lalpha
                       1
                               0.94
                                         0.036
                                                    -0.047
48
49
          rho
                   0.94
                                 1
                                          0.04
                                                    -0.052
50
51
       beta_0
                  0.036
                              0.04
                                            1
                                                    -0.46
52
53
       beta_1
                  -0.047 -0.052
                                          -0.46
                                                         1
54
55
56
57
                                 Parameter Estimates
58
59
                                                     95.0% Wald
60
    Confidence Interval
```

1 Variable Estimate Std. Err. Lower Conf. Limit 2 Upper Conf. Limit 3 lalpha 0.353344 0.480274 -0.587974 4 1.29466 5 1.1315 0.292904 rho 0.557421 6 1.70558 7 beta_0 0.123135 0.0618608 0.00189039 8 0.24438 9 0.106469 0.0535364 0.00153987 beta 1 10 0.211399 11 12 13 14 Table of Data and Estimated Values of Interest 15 16 N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Dose 17 Res. _____ 18 _____ ___ _____ ___ _____ 19 20 0280.140.1230.370.3650.7200.150.1980.490.4773.5210.520.4960.820.802 21 0.245 22 -0.447 0.138 23 24 25 26 27 Model Descriptions for likelihoods calculated 28 29 Model A1: Yij = Mu(i) + e(ij) 30 Var{e(ij)} = Sigma^2 31 32 33 Model A2: Yij = Mu(i) + e(ij) 34 $Var{e(ij)} = Sigma(i)^2$ 35 36 Model A3: Yij = Mu(i) + e(ij)37 $Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))$ 38 Model A3 uses any fixed variance parameters that 39 were specified by the user 40 Model R: Yi = Mu + e(i)41 Var{e(i)} = Sigma^2 42 43 44 45 Likelihoods of Interest 46 47 Model A1 48 49 A2 50 A3 51 fitted 52 R 53 54 55 Explanation of Tests 56 57 Test 1: Do responses and/or variances differ among Dose levels? 58 (A2 vs. R) 59 Test 2: Are Variances Homogeneous? (A1 vs A2) 60 Test 3: Are variances adequately modeled? (A2 vs. A3)

1 Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) 2 (Note: When rho=0 the results of Test 3 and Test 2 will be the same.) 3 4 Tests of Interest 5 6 Test -2*log(Likelihood Ratio) Test df p-value 7 8 Test 1 22.0862 4 0.0001927 9 Test 2 15.8167 2 0.0003677 10 Test 3 1 0.23601 0.6271 Test 4 0.0441012 0.8337 11 1 12 The p-value for Test 1 is less than .05. There appears to be a 13 14 difference between response and/or variances among the dose levels 15 It seems appropriate to model the data 16 The p-value for Test 2 is less than .1. A non-homogeneous variance 17 18 model appears to be appropriate 19 20 The p-value for Test 3 is greater than .1. The modeled variance appears 21 to be appropriate here 22 23 The p-value for Test 4 is greater than .1. The model chosen seems 24 to adequately describe the data 25 26 27 Benchmark Dose Computation 28 29 Specified effect = 3.56 30 31 = Risk Type Point risk 32 33 Confidence level = 0.95 34 35 BMD = 32.2804 36 37 38 18.094 BMDL =

39
```
1
   Nesnow 1998b i.p. multiplicity
2
    BbF
3
   Drop 2 high doses
4
   Linear
5
   Nonconstant variance
6
    BMR = lowest statistically significant response in BaP treated animals (after
7
    control subtracted)
8
9
    10
           Polynomial Model. (Version: 2.12; Date: 02/20/2007)
           Input Data File: C:\BMDS\UNSAVED1.(d)
11
12
           Gnuplot Plotting File: C:\BMDS\UNSAVED1.plt
13
                                        Mon May 11 20:47:24 2009
    _____
14
15
16
    BMDS MODEL RUN
17
    18
19
      The form of the response function is:
20
21
      Y[dose] = beta_0 + beta_1*dose + beta_2*dose*2 + ...
22
23
24
      Dependent variable = MEAN
25
      Independent variable = COLUMN1
26
      The polynomial coefficients are restricted to be positive
27
      The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
28
29
      Total number of dose groups = 3
30
      Total number of records with missing values = 0
31
      Maximum number of iterations = 250
32
      Relative Function Convergence has been set to: 1e-008
33
      Parameter Convergence has been set to: 1e-008
34
35
36
37
                   Default Initial Parameter Values
38
                          lalpha = 0.21205
39
                            rho =
                                     0
                                   0.453571
40
                         beta_0 =
41
                         beta_1 =
                                   0.0305714
42
43
44
             Asymptotic Correlation Matrix of Parameter Estimates
45
46
                  lalpha
                                        beta_0
                                                    beta 1
                               rho
47
48
       lalpha
                      1
                              0.38
                                         0.032
                                                    -0.058
49
50
          rho
                   0.38
                                 1
                                        -0.032
                                                    -0.017
51
52
       beta_0
                  0.032
                           -0.032
                                            1
                                                    -0.39
53
54
       beta 1
                  -0.058
                             -0.017 -0.39
                                                         1
55
56
57
58
                                Parameter Estimates
59
```

1 95.0% Wald 2 Confidence Interval 3 Variable Estimate Std. Err. Lower Conf. Limit 4 Upper Conf. Limit 5 0.158349 0.173664 lalpha -0.182027 6 0.498724 7 rho 1.42233 0.285984 0.861815 8 1.98285 9 0.516257 0.316353 beta O 0.101994 10 0.71616 beta_1 0.0272062 0.00781084 0.0118972 11 12 0.0425152 13 14 15 16 Table of Data and Estimated Values of Interest 17 Est Mean Obs Std Dev Est Std Dev Scaled 18 N Obs Mean Dose 19 Res. 20 _____ ___ _____ _____ _____ _____ 21 22 0400.5250.5160.720.67610180.670.7880.750.914502021.881.821.69 23 0.0818 10 18 50 20 24 -0.549 25 0.326 26 27 28 29 Model Descriptions for likelihoods calculated 30 31 Model A1: Yij = Mu(i) + e(ij) 32 33 Var{e(ij)} = Sigma^2 34 Model A2: Yij = Mu(i) + e(ij) 35 36 $Var{e(ij)} = Sigma(i)^2$ 37 38 Model A3: Yij = Mu(i) + e(ij)39 Var{e(ij)} = exp(lalpha + rho*ln(Mu(i))) 40 Model A3 uses any fixed variance parameters that were specified by the user 41 42 Model R: Yi = Mu + e(i)43 44 Var{e(i)} = Sigma^2 45 46 47 Likelihoods of Interest Log(likelihood) # Param's AIC -45.740331 4 99.480662 6 74.249150 48 49 Model 50 A1 51 A2 5 4 2 52 A3 -31.233847 72.467694 53 fitted -32.276084 72.552168 54 R -56.886387 117.772774 55 56 57 Explanation of Tests 58 59 Test 1: Do responses and/or variances differ among Dose levels? 60 (A2 vs. R)

1 Test 2: Are Variances Homogeneous? (A1 vs A2) 2 Test 3: Are variances adequately modeled? (A2 vs. A3) 3 Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.) 4 5 6 Tests of Interest 7 8 -2*log(Likelihood Ratio) Test df Test p-value 9 10 51.5236 4 Test 1 <.0001 Test 2 2 11 29.2315 <.0001 Test 3 12 0.218544 0.6402 1 13 Test 4 2.08447 1 0.1488 14 15 The p-value for Test 1 is less than .05. There appears to be a 16 difference between response and/or variances among the dose levels 17 It seems appropriate to model the data 18 19 The p-value for Test 2 is less than .1. A non-homogeneous variance 20 model appears to be appropriate 21 22 The p-value for Test 3 is greater than .1. The modeled variance appears 23 to be appropriate here 24 25 The p-value for Test 4 is greater than .1. The model chosen seems 26 to adequately describe the data 27 28 29 Benchmark Dose Computation 30 31 Specified effect = 3.85 32 33 Risk Type = Point risk 34 35 Confidence level = 0.95 36 37 BMD = 122.536 38 39 40 84.4572 BMDL =

```
1
   Nesnow 1998b i.p. multiplicity
2
   DBahA
3
   Drop 2 high doses
4
   Linear
5
   Nonconstant variance
6
    BMR = lowest statistically significant response in BaP treated animals (after
7
    control subtracted)
8
9
    _____
10
          Polynomial Model. (Version: 2.12; Date: 02/20/2007)
          Input Data File: C:\BMDS\UNSAVED1.(d)
11
12
          Gnuplot Plotting File: C:\BMDS\UNSAVED1.plt
13
                                        Mon May 11 20:55:01 2009
    _____
14
15
16
    BMDS MODEL RUN
17
    18
19
      The form of the response function is:
20
21
      Y[dose] = beta_0 + beta_1*dose + beta_2*dose*2 + ...
22
23
24
      Dependent variable = MEAN
25
      Independent variable = COLUMN1
26
      The polynomial coefficients are restricted to be positive
27
      The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
28
29
      Total number of dose groups = 3
30
      Total number of records with missing values = 0
31
      Maximum number of iterations = 250
32
      Relative Function Convergence has been set to: 1e-008
33
      Parameter Convergence has been set to: 1e-008
34
35
36
37
                   Default Initial Parameter Values
38
                         lalpha = 0.495312
39
                           rho =
                                    0
                         beta_0 = 0.409167
40
41
                         beta_1 =
                                        1.01
42
43
44
             Asymptotic Correlation Matrix of Parameter Estimates
45
46
                  lalpha
                                        beta_0
                                                   beta 1
                               rho
47
48
       lalpha
                      1
                            -0.039
                                        -0.0077
                                                    0.0076
49
50
         rho
                 -0.039
                                 1
                                        0.042
                                                    -0.057
51
52
       beta_0
                -0.0077
                             0.042
                                            1
                                                    -0.37
53
54
       beta 1 0.0076
                        -0.057 -0.37
                                                        1
55
56
57
58
                                Parameter Estimates
59
```

1 95.0% Wald 2 Confidence Interval 3 Variable Estimate Std. Err. Lower Conf. Limit 4 Upper Conf. Limit 5 0.090155 0.16129 lalpha -0.225967 6 0.406277 7 rho 1.13256 0.215446 0.710291 8 1.55482 9 0.509019 0.289977 beta O 0.111758 10 0.728061 11 beta_1 0.936099 0.156639 0.629093 12 1.24311 13 14 15 16 Table of Data and Estimated Values of Interest 17 18 N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Dose 19 Res. 20 ____ ___ _____ _____ _____ _____ 21 22 0400.5250.5090.720.7141.25181.441.681.461.42.5193.052.851.91.89 23 0.142 -0.723 0.462 24 25 0.462 26 27 28 29 Model Descriptions for likelihoods calculated 30 31 Model A1: Yij = Mu(i) + e(ij) 32 33 Var{e(ij)} = Sigma^2 34 Model A2: Yij = Mu(i) + e(ij) 35 36 $Var{e(ij)} = Sigma(i)^2$ 37 38 Model A3: Yij = Mu(i) + e(ij)39 Var{e(ij)} = exp(lalpha + rho*ln(Mu(i))) 40 Model A3 uses any fixed variance parameters that were specified by the user 41 42 Model R: Yi = Mu + e(i)43 44 Var{e(i)} = Sigma^2 45 46 47 Likelihoods of Interest 48 49 Model AIC 50 A1 -56.039525 4 120.079049 6 5 4 2 97.664993 51 A2 -42.832497 52 A3 -43.013192 96.026383 94.447689 53 fitted -43.223844 54 R -75.955323 155.910645 55 56 57 Explanation of Tests 58 59 Test 1: Do responses and/or variances differ among Dose levels? 60 (A2 vs. R)

1 Test 2: Are Variances Homogeneous? (A1 vs A2) 2 Test 3: Are variances adequately modeled? (A2 vs. A3) 3 Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.) 4 5 6 Tests of Interest 7 8 -2*log(Likelihood Ratio) Test df Test p-value 9 10 66.2457 4 Test 1 <.0001 Test 2 26.4141 2 11 <.0001 Test 3 12 0.36139 0.5477 1 13 Test 4 0.421305 1 0.5163 14 15 The p-value for Test 1 is less than .05. There appears to be a 16 difference between response and/or variances among the dose levels 17 It seems appropriate to model the data 18 19 The p-value for Test 2 is less than .1. A non-homogeneous variance 20 model appears to be appropriate 21 22 The p-value for Test 3 is greater than .1. The modeled variance appears 23 to be appropriate here 24 25 The p-value for Test 4 is greater than .1. The model chosen seems 26 to adequately describe the data 27 28 29 Benchmark Dose Computation 30 31 Specified effect = 3.85 32 33 Risk Type = Point risk 34 35 Confidence level = 0.95 36 37 BMD = 3.56905 38 39 40 2.82758 BMDL = 41 42 43

D-66

DRAFT – DO NOT CITE OR QUOTE

1 D.3. LUNG IMPLANTATION BIOASSAYS

```
2
    DEUTSCH-WENZEL1983AA.OUT.txt
3
     _____
4
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
5
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER ROUTE\DEUTSCH-
6
    WENZEL1983.(d)
7
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER
8
    ROUTE\DEUTSCH-WENZEL1983.plt
9
                                          Fri May 27 10:51:53 2005
10
     ______
11
12
    BMDS MODEL RUN
13
    14
15
      The form of the probability function is:
16
17
       P[response] = background + (1-background)*[1-EXP(
18
    -beta1*dose^1)]
19
20
       The parameter betas are restricted to be positive
21
22
23
      Dependent variable = incidenceAA
24
       Independent variable = doseAA
25
26
     Total number of observations = 3
27
     Total number of records with missing values = 0
28
     Total number of parameters in model = 2
29
     Total number of specified parameters = 0
30
     Degree of polynomial = 1
31
32
33
    Maximum number of iterations = 250
34
    Relative Function Convergence has been set to: 1e-008
35
     Parameter Convergence has been set to: 1e-008
36
37
38
39
                    Default Initial Parameter Values
40
                       Background =
                                            0
41
                                     0.996523
                         Beta(1) =
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
52
53
      Beta(1)
                        1
54
55
56
57
                           Parameter Estimates
58
59
          Variable
                           Estimate
                                              Std. Err.
```

1 2	Background Beta(1	d)	0 0.773841	0.2	NA 60605	
3						
4 5 6 7	NA - Indicates implied by has no sta	that this y some ineq andard erro	parameter has uality const: r.	s hit a bound raint and thu:	5	
8 9						
10		A	nalysis of De	eviance Table		
11 12 13	Model	Log(lik	elihood) De	viance Test 1	DF P-va	alue
13	Fitted mode	1 -2 1 -3	0.8245	4.30422	2	0.1162
15	Reduced mode	1 -5	1.1258	44.907	2	<.0001
16 17 18 19 20	AIC	: 6	3.6489	_		
20 21		Good	ness of Fi			
22	Dose 1	EstProb.	Expected	Observed	Size	Chi^2 Res.
23 24 25 26	i: 1 0.0000	0.0000	0.000	0	35	0.000
20 27 28	0.1600	0.1165	4.076	1	35	-0.854
20 29 30	0.8300	0.4739	16.587	19	35	0.277
31 32	Chi-square =	3.29	DF = 2	P-value	= 0.1926	
33 34 35	Benchmark Do	ose Computa	tion			
36 37	Specified effe	ct =	0.1			
38 39	Risk Type	= E	xtra risk			
40 41	Confidence leve	el =	0.95			
42 43	BI	MD =	0.136153			
44 45	BMI	DL = 0	.0956191			

```
1
    DEUTSCH-WENZEL1983BaP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER ROUTE\DEUTSCH-
5
    WENZEL1983.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER
7
    ROUTE\DEUTSCH-WENZEL1983.plt
8
                                          Fri May 27 10:42:10 2005
9
     10
11
     BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = incidenceBaP
23
       Independent variable = doseBaP
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.0757681
40
                          Beta(1) =
                                      2.82425
41
                          Beta(2) =
                                             0
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
                                                       -Beta(2)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
52
53
       Beta(1)
                        1
54
55
56
57
                            Parameter Estimates
58
59
                                               Std. Err.
          Variable
                           Estimate
60
        Background
                                   0
                                                 NA
```

1	Beta(1)		3.25323	0.5	593548	
2	Beta(2)		0		NA	
4	NA - Indicates t	hat this	parameter h	as hit a bound	1	
5	implied by	some inec	mality cons	traint and thu	- IS	
6	has no star	ndard erro	or.			
7						
8						
9						
10		I	nalysis of 1	Deviance Table	2	
11						
12	Model	Log(lik	celihood) D	eviance Test	DF P-v	value
13	Full model	-5	51.1075		_	
14	Fitted model	-5	51.3412	0.467435	3	0.926
15	Reduced model	-9	6.8119	91.4088	3	<.0001
10	ATC :	1	04 692			
18	AIC·	L	.04.002			
10						
20		Good	ness of F	i+		
21		0000				
22	Dose Es	stProb.	Expected	Observed	Size	Chi^2 Res.
23						
24	i: 1					
25	0.0000 (0.000	0.000	0	35	0.000
26	1:2		0 500	1.0	25	0 0 4 0
27	0.1000 ().2///	9.720	ΤŪ	35	0.040
20	T· 3	6222	01 011	22	25	0 145
30	i: 4	0232	21.011	23	55	0.145
31	1.0000 (.9614	33.647	33	35	-0.498
32						
33	Chi-square =	0.51	DF = 3	P-value	e = 0.9177	
34						
33 26	Dere abmersle De	a Comercha	+			
30 37	Benchmark Dos	se computa				
38	Specified effect	- <u>-</u>	0 1			
39	Specified effect		0.1			
40	Risk Type	= F	xtra risk			
41		-				
42	Confidence level	_ =	0.95			
43						
44	BMI) = (0.0323864			
45						
46	BMDI	_ = C	0.0255063			
47						

```
1
    DEUTSCH-WENZEL1983BbF.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER ROUTE\DEUTSCH-
5
    WENZEL1983.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER
7
    ROUTE\DEUTSCH-WENZEL1983.plt
8
                                          Fri May 27 10:46:47 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = incidenceBbF
23
       Independent variable = doseBbF
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.00149382
40
                          Beta(1) =
                                      0.226374
41
                         Beta(2) =
                                      0.236366
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
                              Beta(2)
52
53
                              -0.97
      Beta(1)
                        1
54
55
      Beta(2) -0.97
                                   1
56
57
58
59
                           Parameter Estimates
60
```

1 Variable Estimate Std. Err. 0 2 Background NA 0.781411 3 Beta(1) 0.24518 4 Beta(2) 0.217701 0.830304 5 6 NA - Indicates that this parameter has hit a bound 7 implied by some inequality constraint and thus 8 has no standard error. 9 10 11 12 Analysis of Deviance Table 13 Model Log(likelihood) Deviance Test DF P-value 14 15 Full model -37.8686 0.0112712 2 27.796 3 16 Fitted model -37.8743 0.9944 17 Reduced model -51.7666 <.0001 18 19 AIC: 79.7485 20 21 22 Goodness of Fit 23 24 Dose Est._Prob. Expected Observed Size Chi^2 Res. 25 _____ 26 i: 1 27 0.0000 0.0000 0.000 0 35 0.000 i: 2 28 29 0.1000 0.0263 0.922 1 35 0.087 30 i: 3 3 35 -0.040 0.3000 0.0889 31 3.113 32 i: 4 1.0000 0.3705 35 33 12.969 13 0.004 34 P-value = 0.9943 35 Chi-square = 0.01 DF = 2 36 37 38 Benchmark Dose Computation 39 40 Specified effect = 0.1 41 42 Risk Type = Extra risk 43 44 Confidence level = 0.95 45 BMD = 0.33191 46 47 48 BMDL = 0.184961 49

```
1
    DEUTSCH-WENZEL1983BghiP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER ROUTE\DEUTSCH-
5
    WENZEL1983.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER
7
    ROUTE\DEUTSCH-WENZEL1983.plt
8
                                          Fri May 27 10:49:54 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = incidenceBghiP
23
       Independent variable = doseBghiP
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background =
                                            0
40
                         Beta(1) =
                                     0.0304801
41
                         Beta(2) =
                                            0
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
                              Beta(2)
52
53
      Beta(1)
                        1
                              -0.98
54
55
      Beta(2) -0.98
                                   1
56
57
58
59
                           Parameter Estimates
60
```

1	Variable	Estimate	Std.	Err.	
2	Background	0	NA	7	
3	Beta(1)	0.0277423	0.232	2348	
4	Beta(2)	0.000645059	0.0574	4865	
5					
6	NA - Indicates that	this parameter ha	s hit a bound		
7	implied by some	e inequality const	raint and thus		
8	has no standard	l error.			
9					
0					
1					
2		Analysis of D	eviance Table		
3					
4	Model Lo	og(likelihood) De	viance Test D	F P-V	alue
5	Full model	-16 8561		v	aruc
6	Fitted model	_17 033	0 353756	2	0 8379
7	Peduged model	_21 5242	0.333730	2	0.0375
2 Q	Keduced model	-21.5542	9.55014		0.02491
0	210.				
9	AIC.	30.0059			
) 1					
l n					
2		Goodness of Fi	.t		
3				- 1	
4	Dose EstI	Prob. Expected	Observed	Size	Chi^2 Res.
5					
5	1: 1		0	<u> </u>	
/	0.0000 0.000	0.000	0	35	0.000
3	i: 2				
)	0.1600 0.004	4 0.156	0	35	-1.004
	i: 3				
	0.8300 0.023	32 0.812	1	35	0.237
	i: 4				
	4.1500 0.118	4.032	4	34	-0.009
1					
,	Chi-square =	0.20 DF = 2	P-value =	= 0.9043	
5					
7					
3	Benchmark Dose Co	mputation			
9		T			
)	Specified effect =	0.1			
1	SPECIFICA CLICCO	0.1			
2	Rick Type -	Extra rick			
2	KISK Type =	Excla 115K			
5 1	Confidence level -	0 95			
+ 5	confidence rever -	0.95			
5 6	- DMD -	2 51117			
0 7	BMD =	2.2111/			
/ 0		1 00000			
0	BMDL =	1.02550			
9					

```
1
    DEUTSCH-WENZEL1983BjF.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER ROUTE\DEUTSCH-
5
    WENZEL1983.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER
7
    ROUTE\DEUTSCH-WENZEL1983.plt
8
                                          Fri May 27 10:47:32 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = incidenceBjF
23
       Independent variable = doseBjF
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 2
30
31
32
    Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.00616121
40
                         Beta(1) =
                                     0.0709095
41
                         Beta(2) =
                                     0.0144537
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
                              Beta(2)
52
53
      Beta(1)
                        1
                              -0.98
54
55
      Beta(2) -0.98
                                   1
56
57
58
59
                           Parameter Estimates
60
```

1	Variable	Estimat	e St	td. Err.	
2	Background		0	NA	
3	Beta(1)	0.09291	44 0	.226076	
4	Beta(2)	0.01012	78 0.0	0466964	
5					
6	NA - Indicates that	at this paramete	r has hit a bour	nd	
7	implied by so	ome inequality c	onstraint and th	hus	
8	has no standa	ard error.			
9					
10					
11					
12		Analysis	of Deviance Tab	le	
13		111017010		10	
14	Model	Log(likelihood)	Deviance Test	t DF P-va	
15	Full model	_39_0246	Deviance rep		iiuc
16	Fitted model	-39 1336	0 218103	2	0 8967
17	Peduged model	-60 8862	12 7222	2	~ 0001
10	Reduced model	-00.0002	73.7233	5	<.0001
10	770.	00 0670			
19	ALC:	82.20/3			
20					
21		~ 1 .			
22		Goodness of	Fit		
23		_ , _			m1 1 0 -
24	Dose Est	Prob. Expec	ted Observed	Sıze	Chi^2 Res.
25					
26	1: 1			0.5	
27	0.0000 0.0	0000 0.0	00 0	35	0.000
28	i: 2				
29	0.2000 0.0	0188 0.6	58 1	35	0.529
30	i: 3				
31	1.0000 0.0	0979 3.4	27 3	35	-0.138
32	i: 4				
33	5.0000 0.1	5122 17.9	26 18	35	0.009
34					
35	Chi-square =	0.24 DF =	2 P-valu	ue = 0.8868	
36					
37					
38	Benchmark Dose	Computation			
39					
40	Specified effect :	= 0.1			
41					
42	Risk Type :	= Extra ris	k		
43					
44	Confidence level :	= 0.95			
45					
46	BMD :	= 1.02045			
47					
48	BMDL :	= 0.580958			
49					

```
1
    DEUTSCH-WENZEL1983BkF.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER ROUTE\DEUTSCH-
5
    WENZEL1983.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER
7
    ROUTE\DEUTSCH-WENZEL1983.plt
8
                                         Fri May 27 10:48:11 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
      P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = incidenceBkF
23
      Independent variable = doseBkF
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background =
                                            0
40
                         Beta(1) =
                                     0.126747
41
                                   0.00410997
                         Beta(2) =
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
                             Beta(2)
52
53
                              -0.97
      Beta(1)
                       1
54
55
      Beta(2) -0.97
                                   1
56
57
58
59
                           Parameter Estimates
60
```

1	Variable	Estimate	Std	. Err.		
2	Background	0	1	A		
3	Beta(1)	0.0842968	0.25	51118		
4	Beta(2)	0.0142917	0.063	32842		
5						
6	NA - Indicates that the	nis parameter ha	s hit a bound			
7	implied by some	inequality const	raint and thus	5		
8	has no standard e	error.				
9						
0						
1						
2		Analysis of D	eviance Table			
3						
4	Model Log	(likelihood) De	viance Test I	DF P-1	value	
5	Full model	-28.404				
6	Fitted model	-28.9719	1.1357	2	0.5667	
17	Reduced model	-46.2443	35.6806	3	<.0001	
8						
9	AIC:	61.9437				
20						
21						
22	C	Goodness of Fi	t			
23						
24	Dose EstPro	b. Expected	Observed	Size	Chi^2 Res.	
25						
20	T· T	0 000	0	2 5	0 000	
27	1.2	0.000	0	55	0.000	
0	1. 2	0 100	0	25	1 014	
<i>.</i> 9	i. 2	0.402	0	3.5	-1.014	
1	1.3	2 2 7 8	2	21	0 283	
2	i. 1	2.570	2	31	0.205	
2	1 1 5 0 0 1 1 9 0	10 100	10	27	0 010	
24	4.1500 0.4490	12.122		27	-0.010	
5	Chi-square - 0	ר קר 67 - 20	D-value	= 0 7165		
6	CIII Square - U	Dr - Z	F-varue	- 0.7105		
7						
8	Benchmark Dose Com	outation				
9	Denemilary Dobe Com	Jucacion				
0	Specified effect =	0 1				
.1	Specifica cricet -	0.1				
12	Risk Type =	Extra risk				
13	KTOK TYPE -	BACLU LIDU				
14	Confidence level =	0 95				
15		0.25				
16	RMD =	1.05954				
17		1.00/01				
18	BMDL =	0.557079				
19						

```
1
    DEUTSCH-WENZEL1983IP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER ROUTE\DEUTSCH-
5
    WENZEL1983.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER
7
    ROUTE\DEUTSCH-WENZEL1983.plt
8
                                          Fri May 27 10:49:04 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
      P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = incidenceIP
23
      Independent variable = doseIP
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.0539703
40
                         Beta(1) =
                                     0.20919
41
                         Beta(2) =
                                            0
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Beta(2)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
               Background
                              Beta(1)
52
53
    Background
                        1
                               -0.55
54
55
      Beta(1) -0.55
                                   1
56
57
58
59
                           Parameter Estimates
60
```

1	Variab	le	Estimate	Std	. Err.		
2	Backgrou	nd	0.0224449	0.1	13638		
3	Beta(1)	0.241452	0.07	97033		
4	Beta(2)	0	:	NA		
5							
6	NA - Indicate	s that th	is parameter ha	as hit a bound			
7	implied	by some i	nequality const	raint and thu	S		
8	has no s	tandard e	rror.				
9							
0							
1							
2			Analygig of I	Deviance Table			
3			Analysis of I				
1	Model	I og (likeliheed) De	viando Toat	ד-ת שת		
5	mouer Eull mod	с]		eviance lest.		Value	
	Full mod	el	-54.0079	$2 \Gamma 1 C C$	2	0 1700	
	Filled mod	e1 -]	-50.5002	3.5100	2	0.1/23	
1/	Reduced mod	el	-/6.4525	43.2893	3	<.0001	
8		-					
19	AI	C:	117.132				
20							
21							
22		G	oodness of Fi	it			
23							
24	Dose	EstPro	b. Expected	Observed	Size	Chi^2 Res.	
25							
26	i: 1						
27	0.0000	0.0224	0.786	0	35	-1.023	
28	i: 2						
29	0.1600	0.0595	2.082	4	35	0.979	
30	i: 3						
31	0.8300	0.2000	6.999	8	35	0.179	
32	i: 4						
3	4.1500	0.6411	22.439	21	35	-0.179	
34							
35	Chi-square =	3	12 DF = 2	P-value	= 0.2104		
36	oni bydare	5.		1 Value	0.2101		
,0 87							
28	Ponchmark	Dogo Comp	utation				
20	Benchimark .	Dose comp	utation				
,,, 10	Sportfied off	oat -	0 1				
FU 1 1	spectited ell	ect =	0.1				
+1							
+2	кізк Туре	=	Extra risk				
13		-					
14	Contidence le	vel =	0.95				
15							
16		BMD =	0.436361				
17							
18	B	MDL =	0.309504				
19							

```
1
    WENZEL-HARTUNG1990BaP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER ROUTE\WENZEL-
5
    HARTUNG1990.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER
7
    ROUTE\WENZEL-HARTUNG1990.plt
8
                                          Fri May 27 10:58:05 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = responseBaP
23
       Independent variable = doseBaP
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background =
                                            0
40
                         Beta(1) =
                                       3.21631
41
                                       5.7325
                         Beta(2) =
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
                              Beta(2)
52
53
      Beta(1)
                        1
                              -0.93
54
55
      Beta(2) -0.93
                                   1
56
57
58
59
                           Parameter Estimates
60
```

1	Variable	Estimate	Std.	Err.	
2	Background	0	N	IA	
3	Beta(1)	3.01149	2.7	9594	
4	Beta(2)	6.44644	10.	7674	
5					
6	NA - Indicates that t	his parameter ha	s hit a bound		
7	implied by some	inequality const	raint and thus	1	
8	has no standard	error.			
9					
10					
11					
12		Analysis of D	eviance Table		
13					
14	Model Log	(likelihood) De	viance Test D)F D-V	alue
15	Full model	_50 8389	Vidilee lebe b		aruc
15	Full model		0264626	2	0 9869
17	Peduged model	-81 6566	67 6355	2	~ 0001
10	Reduced model	-04.0500	07.0355	3	<.0001
10	3.7.0.				
19	AIC.	105./04			
20					
21		a 1 c ='			
22		Goodness of Fi	t		
23			-1 -		r1 4 0 -
24	Dose EstPr	ob. Expected	Observed	Sıze	Chi^2 Res.
25					
26	1: 1		<u> </u>		
27	0.0000 0.0000	0.000	0	35	0.000
28	i: 2				
29	0.0300 0.0917	3.208	3	35	-0.072
30	i: 3				
31	0.1000 0.3062	10.718	11	35	0.038
32	i: 4				
33	0.3000 0.7732	27.062	27	35	-0.010
34					
35	Chi-square = 0	.03 DF = 2	P-value	= 0.9870	
36					
37					
38	Benchmark Dose Com	putation			
39					
40	Specified effect =	0.1			
41	_				
42	Risk Type =	Extra risk			
43	<u> </u>				
44	Confidence level =	0.95			
45					
46	BMD =	0.0326976			
47	2.2				
48	RMDI. =	0.0198862			
49		0.0100002			

```
1
    WENZEL-HARTUNG1990BaPforDBahA.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER
5
    ROUTE\SETS\WENZEL-HARTUNG1990.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER
7
    ROUTE\SETS\WENZEL-HARTUNG1990.plt
8
                                          Thu Jun 02 09:02:58 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
      P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = responseBaP
23
      Independent variable = doseBaP
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background =
                                            0
40
                         Beta(1) =
                                       3.21631
41
                                       5.7325
                         Beta(2) =
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
                              Beta(2)
52
53
      Beta(1)
                        1
                               -0.93
54
55
      Beta(2) -0.93
                                   1
56
57
58
59
                           Parameter Estimates
60
```

1	Variable	Estimate	Std.	Err.		
2	Background	0	1	JA		
3	Beta(1)	3.01149	2.7	79594		
4	Beta(2)	6.44644	10.	7674		
5						
6 7	NA - Indicates that th implied by some i	is parameter has nequality constr	s hit a bound raint and thus	3		
8	has no standard e	rror.				
9						
10						
11						
12		Analysis of De	eviance Table			
13						
14	Model Log(likelihood) Der	viance Test I	י=ם או	value	
15	Full model	_50 \$380	viance lest i		value	
15	Full model		0264626	2	0 0060	
10	Ficted model		0204020	2	0.9809	
1/	Reduced model	-84.0500	07.0355	3	<.0001	
18						
19	AIC:	105.704				
20						
21						
22	G	oodness of Fit	5			
23						
24	Dose EstPro	b. Expected	Observed	Size	Chi^2 Res.	
25						
26	i: 1					
27	0.0000 0.0000	0.000	0	35	0.000	
28	i: 2					
29	0.0300 0.0917	3.208	3	35	-0.072	
30	i: 3					
31	0.1000 0.3062	10.718	11	35	0.038	
32	i: 4					
33	0 3000 0 7732	27 062	27	35	-0 010	
37	0.3000 0.7752	27.002	27	55	0.010	
25	Chi_{-} gauge $-$ 0	02 ס - מ	D_valuo	- 0 9870		
36	chi-square - 0.	DF = Z	P-value	- 0.9070		
50 27						
)/)						
38	Benchmark Dose Comp	utation				
39 40		0 55				
40	specifiea effect =	0.57				
41						
42	Risk Type =	Extra risk				
43						
44	Confidence level =	0.95				
45						
46	BMD =	0.197095				
47						
48	BMDL =	0.157781				
49						

```
1
    WENZEL-HARTUNG1990CH.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER ROUTE\WENZEL-
5
    HARTUNG1990.(d)
6
           Gnuplot Plotting File: C:\PAH\BMD ANALYSIS\BIOASSAY\OTHER
7
    ROUTE\WENZEL-HARTUNG1990.plt
8
                                          Fri May 27 10:58:53 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = responseCH
23
       Independent variable = doseCH
24
25
     Total number of observations = 3
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 2
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 1
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.0178361
40
                          Beta(1) =
                                     0.109158
41
42
43
              Asymptotic Correlation Matrix of Parameter Estimates
44
45
              ( *** The model parameter(s) -Background
46
                   have been estimated at a boundary point, or have been
47
    specified by the user,
48
                   and do not appear in the correlation matrix )
49
50
                  Beta(1)
51
52
      Beta(1)
                        1
53
54
55
56
                           Parameter Estimates
57
58
                                              Std. Err.
          Variable
                           Estimate
59
                                  0
        Background
                                                 NA
                            0.123432
                                              0.0647008
60
           Beta(1)
```

D-85

DRAFT – DO NOT CITE OR QUOTE

1 2 3 4 5 6 7	NA - Indicates implied b has no st	that thi by some in andard er	s parameter h equality cons ror.	has hit a bound straint and thu	1 15	
8			Analysis of	Deviance Table	2	
9 10	Model	Log(l	ikelihood) I	Deviance Test	DF P-1	value
11 12	Full mode Fitted mode	:1	-35.2935	0.323044	2	0.8508
13	Reduced mode	1	-43.0622	15.5374	2	0.0004228
14 15	7 1 0	•	72 0101			
15 16	AIC	•	72.9101			
17						
18		Go	odness of H	Tit		
20 21	Dose	EstProb	. Expected	d Observed	Size	Chi^2 Res.
21 22	i: 1					
23	0.0000	0.0000	0.000	0	35	0.000
24 25	i: 2 1 0000	0 1161	4 064	5	35	0 261
26	i: 3	0.1101	1.001	5	55	0.201
27	3.0000	0.3095	10.831	10	35	-0.111
28 29 30	Chi-square =	0.3	4 DF = 2	P-value	e = 0.8453	
31						
32 33	Benchmark D	ose Compu	tation			
34 35	Specified effe	ct =	0.1			
36 37	Risk Type	=	Extra risk			
38 39	Confidence lev	el =	0.95			
40 41	В	MD =	0.853595			
42 43	ВМ	IDL =	0.57298			
44						

1 D.4. BACTERIAL MUTAGENICITY

```
2
    Hass 1981 bact mut bap.out.txt
3
     4
           Polynomial Model. Revision: 2.2 Date: 9/12/2002
5
           Input Data File: C:\BMDS\UNSAVED1.(d)
6
           Gnuplot Plotting File: C:\BMDS\UNSAVED1.plt
7
                                        Wed Jul 06 11:29:07 2005
8
     ______
9
10
    BMDS MODEL RUN
11
    12
13
      The form of the response function is:
14
15
      Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...
16
17
18
      Dependent variable = MEAN
19
      Independent variable = COLUMN1
20
      rho is set to 0
21
      Signs of the polynomial coefficients are not restricted
22
      A constant variance model is fit
23
24
      Total number of dose groups = 4
25
      Total number of records with missing values = 0
26
      Maximum number of iterations = 250
27
      Relative Function Convergence has been set to: 1e-008
28
      Parameter Convergence has been set to: 1e-008
29
30
31
32
                   Default Initial Parameter Values
33
                          alpha = 194.5
34
                            rho =
                                          0
                                              Specified
                                      121.8
35
                         beta 0 =
36
                         beta 1 =
                                    297.029
37
38
39
40
                                Parameter Estimates
41
42
                                                     95.0% Wald
43
    Confidence Interval
44
                                      Std. Err.
                                                  Lower Conf. Limit
          Variable
                        Estimate
45
    Upper Conf. Limit
46
            alpha
                          132.71
                                        54.1784
                                                          26.5217
47
    238.897
48
                                                          111.702
           beta_0
                         121.8
                                        5.15188
49
    131.898
50
                        297.029
                                        8.99387
                                                          279.401
           beta_1
51
    314.656
52
53
54
             Asymptotic Correlation Matrix of Parameter Estimates
55
56
                   alpha
                            beta O
                                        beta 1
                           -1.4e-009
                                      -1.1e-008
57
        alpha
                   1
                               1
58
       beta O
                -1.4e-009
                                          -0.76
59
       beta 1
                -1.1e-008
                              -0.76
                                             1
```

D-87

2 3 Table of Data and Estimated Values of Interest 4 5 Ν Dose Obs Mean Obs Std Dev Est Mean Est Std Dev Chi^2 6 Res. 7 _ _ _ _____ _____ _____ _____ _____ 8 9
 0
 3
 124

 0.25
 3
 194

 0.5
 3
 269

 1
 3
 420
 122 196 11.5 10 8 0.331 8 16 11.5 -0.309 11 11.5 13 270 12 -0.198 11.5 419 13 17 0.176 14 15 16 17 Model Descriptions for likelihoods calculated 18 19 20 Model A1: Yij = Mu(i) + e(ij)21 Var{e(ij)} = Sigma^2 22 Model A2: 23 Yij = Mu(i) + e(ij)Var{e(ij)} = Sigma(i)^2 24 25 Model R: Yi = Mu + e(i)26 27 Var{e(i)} = Sigma^2 28 29 30 Likelihoods of Interest 31 Log(likelihood) DF AIC 32 Model 80.379605 84.635576 -35.189802 5 33 A1 -34.317788 8 -35.328976 2 -62.974684 2 34 A2 35 fitted 74.657952 2 129.949369 36 R 37 38 Test 1: Does response and/or variances differ among dose 39 levels 40 (A2 vs. R) 41 Test 2: Are Variances Homogeneous (A1 vs A2) 42 Test 3: Does the Model for the Mean Fit (Al vs. fitted) 43 44 Tests of Interest 45 Test -2*log(Likelihood Ratio) Test df 46 p-value 47 Test 1 6 3 48 57.3138 <.0001 49 Test 2 1.74403 0.6272 2 50 Test 3 0.278348 0.8701 51 52 The p-value for Test 1 is less than .05. There appears 53 to be a 54 difference between response and/or variances among the 55 dose levels. 56 It seems appropriate to model the data 57 58 The p-value for Test 2 is greater than .05. A 59 homogeneous variance 60 model appears to be appropriate here

```
1
2
3
    The p-value for Test 3 is greater than .05. The model
4
5
    chosen appears
    to adequately describe the data
6
7
8
9
     Benchmark Dose Computation
10
    Specified effect =
                                    1
11
12
    Risk Type
               = Estimated standard deviations from the control mean
13
14
15
    Confidence level =
                                0.95
16
                           0.038784
17
                 BMD =
18
19
20
                           0.0286028
                BMDL =
21
22
```

1 HASS_1981_BACT_MUT_BEP.OUT.txt 2 3 Polynomial Model. Revision: 2.2 Date: 9/12/2002 4 Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH 5 RPS\MODELING\HASS_1981_BACT_MUT_BEP.(d) 6 Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY 7 DOCUMENTS\PAH RPS\MODELING\HASS_1981_BACT_MUT_BEP.plt 8 Wed Jul 06 13:42:38 2005 9 10 11 BMDS MODEL RUN 12 13 14 The form of the response function is: 15 16 $Y[dose] = beta 0 + beta 1*dose + beta 2*dose^2 + ...$ 17 18 19 Dependent variable = MEAN 20 Independent variable = COLUMN1 21 rho is set to O 22 Signs of the polynomial coefficients are not restricted 23 A constant variance model is fit 24 25 Total number of dose groups = 426 Total number of records with missing values = 0 27 Maximum number of iterations = 250 28 Relative Function Convergence has been set to: 1e-008 29 Parameter Convergence has been set to: 1e-008 30 31 32 33 Default Initial Parameter Values 34 alpha = 117.5 35 rho = Specified 0 36 beta_0 = 120.75 37 beta 1 = 77.5 38 39 40 41 Parameter Estimates 42 43 95.0% Wald 44 Confidence Interval 45 Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit 46 47 98.6458 40.272 19.7142 alpha 48 177.577 49 beta_0 120.75 4.19706 112.524 50 128.976 51 beta_1 77.5 7.66275 62.4813 52 92.5187 53 54 55 Asymptotic Correlation Matrix of Parameter Estimates 56 57 alpha beta_0 beta_1 58 alpha -8e-012 1.1e-011 1 59 1 -0.73 beta_0 -8e-012 60 -0.73 beta_1 1.1e-011 1

2 3 Table of Data and Estimated Values of Interest 4 5 N Obs Mean Obs Std Dev Est Mean Dose Est Std Dev Chi^2 6 Res. 7 _ _ _ _____ _____ _____ _____ _____ 8 9 0 3 0.2 3 0.4 3 1 3 124 129 156 198 10 9.93 8 121 0.567 136 9.93 11 6 -1.26 9.93 9 0.741 152 12 9.93 -0.0436 198 17 13 14 15 16 17 Model Descriptions for likelihoods calculated 18 19 20 Model A1: Yij = Mu(i) + e(ij)21 Var{e(ij)} = Sigma^2 22 Model A2: 23 Yij = Mu(i) + e(ij)Var{e(ij)} = Sigma(i)^2 24 25 Model R: Yi = Mu + e(i) 26 27 Var{e(i)} = Sigma^2 28 29 30 Likelihoods of Interest 31 Log(likelihood) DF AIC 32 Model 74.331679 76.544252 71.098432 -32.165839 5 33 A1 -30.272126 8 -33.549216 2 -47.594288 2 34 A2 35 2 fitted 36 99.188576 R 37 38 Test 1: Does response and/or variances differ among dose 39 levels 40 (A2 vs. R) 41 Test 2: Are Variances Homogeneous (A1 vs A2) 42 Test 3: Does the Model for the Mean Fit (Al vs. fitted) 43 44 Tests of Interest 45 Test -2*log(Likelihood Ratio) Test df 46 p-value 47 б З 48 Test 1 34.6443 <.0001 49 Test 2 3.78743 0.2854 2 50 Test 3 2.76675 0.2507 51 52 The p-value for Test 1 is less than .05. There appears 53 to be a 54 difference between response and/or variances among the 55 dose levels. 56 It seems appropriate to model the data 57 58 The p-value for Test 2 is greater than .05. A 59 homogeneous variance 60 model appears to be appropriate here

```
1
2
3
    The p-value for Test 3 is greater than .05. The model
4
5
    chosen appears
    to adequately describe the data
6
7
8
9
     Benchmark Dose Computation
10
    Specified effect =
                                   1
11
12
    Risk Type = Estimated standard deviations from the control mean
13
14
15
    Confidence level =
                                0.95
16
                           0.128156
17
                 BMD =
18
19
20
                BMDL = 0.0923937
21
22
```

1 JOHNSEN_1997_BAC_MUT_BAP.OUT.txt 2 _____ 3 Polynomial Model. Revision: 2.2 Date: 9/12/2002 4 Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH 5 RPS\MODELING\JOHNSEN_1997_BAC_MUT_BAP.(d) 6 Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY 7 DOCUMENTS\PAH RPS\MODELING\JOHNSEN_1997_BAC_MUT_BAP.plt 8 Fri Jul 08 09:02:29 2005 9 10 11 BMDS MODEL RUN 12 13 14 The form of the response function is: 15 16 $Y[dose] = beta 0 + beta 1*dose + beta 2*dose^2 + ...$ 17 18 19 Dependent variable = MEAN 20 Independent variable = COLUMN1 rho is set to O 21 22 Signs of the polynomial coefficients are not restricted 23 A constant variance model is fit 24 25 Total number of dose groups = 326 Total number of records with missing values = 0 27 Maximum number of iterations = 250 28 Relative Function Convergence has been set to: 1e-008 29 Parameter Convergence has been set to: 1e-008 30 31 32 33 Default Initial Parameter Values 34 alpha = 70.2768 35 rho = Specified 0 beta_0 = 36 115.5 37 beta 1 = 0.65 38 39 40 41 Parameter Estimates 42 43 95.0% Wald 44 Confidence Interval 45 Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit 46 47 59.3512 27.9784 4.51449 alpha 48 114.188 49 beta_0 115.5 4.06035 107.542 50 123.458 51 beta_1 0.65 0.314513 0.0335651 52 1.26643 53 54 55 Asymptotic Correlation Matrix of Parameter Estimates 56 57 alpha beta_0 beta_1 58 alpha -7.9e-010 -3.4e-012 1 59 -7.9e-010 1 -0.77 beta_0 beta_1 -0.7760 -3.4e-012 1

2 3 Table of Data and Estimated Values of Interest 4 5 Ν Dose Obs Mean Obs Std Dev Est Mean Est Std Dev Chi^2 6 Res. 7 ____ _ _ _ _____ _____ _____ _____ _____ 8 9 0 3 10 3 20 3 1139.681274.841269.68 115 122 128 10 7.7 -0.562 7.7 7.7 1.12 11 -0.562 12 13 14 15 16 Model Descriptions for likelihoods calculated 17 18 Model A1: Yij = Mu(i) + e(ij) 19 20 Var{e(ij)} = Sigma^2 21 Model A2: Yij = Mu(i) + e(ij) 22 23 $Var{e(ij)} = Sigma(i)^2$ 24 Model R: 25 Yi = Mu + e(i)26 Var{e(i)} = Sigma^2 27 28 29 Likelihoods of Interest 30 Log(likelihood) DF 31 Model AIC

 -21.811395
 4
 51.622790

 -21.026523
 6
 54.053045

 -22.875626
 2
 49.751251

 -24.653317
 2
 53.306634

 -21.811395 4 32 A1 33 A2 34 fitted 35 R 36 37 Test 1: Does response and/or variances differ among dose 38 levels 39 (A2 vs. R) Test 2: Are Variances Homogeneous (A1 vs A2) 40 Test 3: Does the Model for the Mean Fit (Al vs. fitted) 41 42 43 Tests of Interest 44 p-value 45 Test -2*log(Likelihood Ratio) Test df 46 4 2 47 Test 1 7.25359 0.0266 48 Test 2 1.56974 0.4562 1 49 Test 3 2.12846 0.1446 50 51 The p-value for Test 1 is less than .05. There appears 52 to be a 53 difference between response and/or variances among the 54 dose levels. 55 It seems appropriate to model the data 56 57 The p-value for Test 2 is greater than .05. A 58 homogeneous variance 59 model appears to be appropriate here 60

```
1
2
3
    The p-value for Test 3 is greater than .05. The model
    chosen appears
4
5
    to adequately describe the data
6
7
8
    Benchmark Dose Computation
9
    Specified effect =
                                 1
10
11
    Risk Type = Estimated standard deviations from the control mean
12
13
14
    Confidence level = 0.95
15
16
                BMD = 11.8523
17
18
19
               BMDL = 6.27094
20
21
22
23
```

1 D.5. MAMMALIAN MUTAGENICITY

```
2
    BARF_MUT_BAA.OUT.txt
3
     4
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
5
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
6
    RPS\MODELING\BARF_MUT_BAA.(d)
7
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
8
    DOCUMENTS\PAH RPS\MODELING\BARF MUT BAA.plt
9
                                          Thu Jun 30 12:46:38 2005
10
     ______
11
12
    BMDS MODEL RUN
13
    14
15
      The form of the probability function is:
16
17
       P[response] = background + (1-background)*[1-EXP(
18
    -beta1*dose^1-beta2*dose^2-beta3*dose^3)]
19
20
       The parameter betas are restricted to be positive
21
22
23
      Dependent variable = COLUMN2
24
       Independent variable = COLUMN1
25
26
     Total number of observations = 5
     Total number of records with missing values = 0
27
28
     Total number of parameters in model = 4
     Total number of specified parameters = 0
29
30
     Degree of polynomial = 3
31
32
33
    Maximum number of iterations = 250
34
     Relative Function Convergence has been set to: 1e-008
35
     Parameter Convergence has been set to: 1e-008
36
37
38
39
                    Default Initial Parameter Values
40
                       Background = 3.89426e-006
41
                          Beta(1) = 3.46216e-007
42
                          Beta(2) =
                                             0
43
                          Beta(3) = 1.93939e-012
44
    **** WARNING: Completion code = -2. Optimum not found. Trying new starting
45
    pont****
46
47
48
49
              Asymptotic Correlation Matrix of Parameter Estimates
50
51
              ( *** The model parameter(s) -Background
                                                      -Beta(2)
                                                                  -Beta(3)
52
                   have been estimated at a boundary point, or have been
53
    specified by the user,
54
                   and do not appear in the correlation matrix )
55
56
                  Beta(1)
57
58
      Beta(1)
                        1
59
```
1 2 3 Parameter Estimates 4 5 Std. Err. Variable Estimate 6 Background 0 NA 7 Beta(1) 4.34385e-007 5.43792e-006 8 Beta(2) 0 NA 9 0 Beta(3) NA 10 11 NA - Indicates that this parameter has hit a bound 12 implied by some inequality constraint and thus 13 has no standard error. 14 15 16 17 Analysis of Deviance Table 18 19 Model Log(likelihood) Deviance Test DF P-value 20 Full model -1545.82 5.57201 4 102.713 4 21 Fitted model -1548.6 0.2335 22 -1597.17 Reduced model <.0001 23 AIC: 24 3099.21 25 26 27 Goodness of Fit 28 29 Observed Size Chi^2 Res. Dose Est._Prob. Expected 30 _____ _____ 31 i: 1 0.000 32 0.0000 0.0000 0 1000000 0.000 33 i: 2 12 34 20.0000 0.0000 8.688 1000000 0.381 35 i: 3 36 50.0000 0.0000 21.719 29 1000000 0.335 37 i: 4 38 100.0000 0.0000 43.438 34 1000000 -0.217 39 i: 5 150.0000 0.0001 65.156 64 1000000 -0.018 40 41 42 Chi-square = 5.77 DF = 4 P-value = 0.2166 43 44 45 Benchmark Dose Computation 46 47 Specified effect = 1e-005 48 49 Risk Type = Extra risk 50 51 Confidence level = 0.95 52 53 BMD = 23.0212 54 55 **** WARNING: Completion code = -2. Optimum not found. Trying new starting 56 point**** 57 58 **** WARNING 0: Completion code = -2 trying new start**** 59 60 **** WARNING 1: Completion code = -2 trying new start****

1										
2	* * * *	WARNING	2:	Completion	code	= -2	trying	new	start****	
4	* * * *	WARNING	3:	Completion	code	= -2	trying	new	start****	
6 7	* * * *	WARNING	4:	Completion	code	= -2	trying	new	start****	
8 9	* * * *	WARNING	5:	Completion	code	= -2	trying	new	start****	
10 11	* * * *	WARNING	6:	Completion	code	= -2	trying	new	start****	
11 12 13	* * * *	WARNING	7 :	Completion	code	= -2	trying	new	start****	
13 14 15	* * * *	WARNING	8:	Completion	code	= -2	trying	new	start****	
15 16 17	* * * *	WARNING	9:	Completion	code	= -2	trying	new	start****	
19	****	WADNING	• •	molotion a	odo -	C	Ontimur	n not	- found Truing now starting	
10		WARNING	· ((Jue -	-2.	Opermu		tound. Ifying new starting	
19	poin									
20 21 22	* * * *	WARNING	0:	Completion	code	= -2	trying	new	start****	
22 23 24	* * * *	WARNING	1:	Completion	code	= -3	trying	new	start****	
25 26	* * * *	WARNING	2:	Completion	code	= -3	trying	new	start****	
20 27 28	* * * *	WARNING	3:	Completion	code	= -3	trying	new	start****	
20 29 30	* * * *	WARNING	4:	Completion	code	= -3	trying	new	start****	
31 32	* * * *	WARNING	5:	Completion	code	= -3	trying	new	start****	
33 34	* * * *	WARNING	6:	Completion	code	= -2	trying	new	start****	
35 36	* * * *	WARNING	7:	Completion	code	= -3	trying	new	start****	
37 38	* * * *	WARNING	8:	Completion	code	= -3	trying	new	start****	
39 40 41	* * * *	WARNING	9:	Completion	code	= -3	trying	new	start****	
12	Marn	ing: com	mple+	ion code st	-;11,	norat.	1.70			
43	BMDL	did not	con	verge for BN	MR = (0.000	010			
44										
45 46	Prog	ram execu	utior	n is stopped	f					

```
1
    BARF_MUT_BAP.OUT.txt
2
    3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\BARF_MUT_BAP.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\BARF_MUT_BAP.plt
8
                                          Thu Jun 30 12:40:17 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 1.39884e-006
40
                          Beta(1) = 5.34042e-006
41
                          Beta(2) =
                                             0
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
                                                       -Beta(2)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
52
53
      Beta(1)
                        1
54
55
56
57
                           Parameter Estimates
58
59
                                              Std. Err.
          Variable
                           Estimate
60
        Background
                                   0
                                                 NA
```

1 Beta(1) 5.43367e-006 2.68102e-005 2 Beta(2) 0 NA 3 4 NA - Indicates that this parameter has hit a bound 5 implied by some inequality constraint and thus 6 has no standard error. 7 8 9 10 Analysis of Deviance Table 11 Log(likelihood) Deviance Test DF P-value 12 Model Full model 13 -3273.08 1.75092 3 14 Fitted model -3273.96 0.6257 244.327 3 15 Reduced model -3395.25 <.0001 16 17 AIC: 6549.92 18 19 20 Goodness of Fit 21 22 Dose Est._Prob. Expected Observed Size Chi^2 Res. 23 _____ 24 i: 1 25 0.0000 0.0000 0.000 0 1000000 0.000 26 i: 2 10.0000 0.0001 54.335 27 51 1000000 -0.061 28 i: 3 120 1000000 0.104 29 20.0000 0.0001 108.668 30 i: 4 31 30.0000 0.0002 162.997 155 1000000 -0.049 32 33 Chi-square = 1.78 DF = 3P-value = 0.6195 34 35 36 Benchmark Dose Computation 37 38 Specified effect = 1e-005 39 40 Risk Type = Extra risk 41 42 Confidence level = 0.95 43 44 BMD = 1.84039 45 46 **** WARNING: Completion code = -3. Optimum not found. Trying new starting 47 point**** 48 49 **** WARNING 0: Completion code = -3 trying new start**** 50 51 **** WARNING 1: Completion code = -3 trying new start**** 52 53 **** WARNING 2: Completion code = -3 trying new start**** 54 55 **** WARNING 3: Completion code = -3 trying new start**** 56 57 **** WARNING 4: Completion code = -3 trying new start*** 58 59 **** WARNING 5: Completion code = -3 trying new start*** 60

```
1
    **** WARNING 6: Completion code = -3 trying new start****
2
3
    **** WARNING 7: Completion code = -3 trying new start****
4
5
    **** WARNING 8: Completion code = -3 trying new start****
6
7
    **** WARNING 9: Completion code = -3 trying new start****
8
9
    **** WARNING: Completion code = -3. Optimum not found. Trying new starting
10
    point****
11
12
    **** WARNING 0: Completion code = -1 trying new start****
13
14
    **** WARNING 1: Completion code = -1 trying new start****
15
16
    **** WARNING 2: Completion code = -1 trying new start****
17
                BMDL = 1.68248
18
19
```

```
1
    BARF_MUT_CH.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\BARF_MUT_CH.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\BARF_MUT_CH.plt
8
                                          Thu Jun 30 12:48:57 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 3
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 2
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 1
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 2.60526e-006
40
                          Beta(1) = 5.02638e-007
41
42
43
              Asymptotic Correlation Matrix of Parameter Estimates
44
45
              ( *** The model parameter(s) -Background
46
                   have been estimated at a boundary point, or have been
47
    specified by the user,
48
                   and do not appear in the correlation matrix )
49
50
                  Beta(1)
51
52
      Beta(1)
                        1
53
54
55
56
                           Parameter Estimates
57
58
          Variable
                                               Std. Err.
                           Estimate
59
                                   0
        Background
                                                 NA
                         6.14293e-007
                                          1.93539e-005
60
           Beta(1)
```

```
D-102
```

1 2 NA - Indicates that this parameter has hit a bound 3 implied by some inequality constraint and thus 4 has no standard error. 5 6 7 8 Analysis of Deviance Table 9 10 Model Log(likelihood) Deviance Test DF P-value Full model -504.191 11 Fitted model -505.38 2.37752 2 0.3046 12 13 Reduced model -522.575 36.7681 2 <.0001 14 15 AIC: 1012.76 16 17 18 Goodness of Fit 19 20 Dose Est._Prob. Expected Observed Size Chi^2 Res. 21 _____ 22 i: 1 23 0 0.0000 0.0000 0.000 1000000 0.000 24 i: 2 25 20.0000 0.0000 12.286 17 1000000 0.384 26 i: 3 27 50.0000 0.0000 30.714 26 1000000 -0.15328 29 P-value = 0.2819 DF = 2Chi-square = 2.53 30 31 32 Benchmark Dose Computation 33 34 Specified effect = 1e-005 35 36 Risk Type = Extra risk 37 38 Confidence level = 0.95 39 40 BMD = 16.279 41 42 **** WARNING: Completion code = -1. Optimum not found. Trying new starting 43 point**** 44 45 **** WARNING 0: Completion code = -1 trying new start**** 46 47 **** WARNING 1: Completion code = -1 trying new start**** 48 49 **** WARNING 2: Completion code = -1 trying new start**** 50 51 **** WARNING 3: Completion code = -1 trying new start**** 52 53 **** WARNING 4: Completion code = -1 trying new start**** 54 55 **** WARNING 5: Completion code = -1 trying new start**** 56 57 **** WARNING 6: Completion code = -1 trying new start*** 58 59 **** WARNING 7: Completion code = -1 trying new start**** 60

1 **** WARNING 8: Completion code = -1 trying new start**** 2 3 **** WARNING 9: Completion code = -1 trying new start**** 4 5 **** WARNING: Completion code = -1. Optimum not found. Trying new starting 6 point**** 7 8 **** WARNING 0: Completion code = -3 trying new start**** 9 10 Completion code = -3 trying new start**** **** WARNING 1: 11 12 **** WARNING 2: Completion code = -3 trying new start**** 13 14 Completion code = -3 trying new start**** **** WARNING 3: 15 16 **** WARNING 4: Completion code = -3 trying new start**** 17 18 **** WARNING 5: Completion code = -3 trying new start**** 19 **** WARNING 6: 20 Completion code = -3 trying new start**** 21 22 **** WARNING 7: Completion code = -3 trying new start**** 23 **** WARNING 8: Completion code = -3 trying new start**** 24 25 **** WARNING 9: 26 Completion code = -3 trying new start**** 27 28 29 Warning: completion code still negative 30 BMDL did not converge for BMR = 0.000010 31 32 Program execution is stopped 33

```
1
    BARF_MUT_FA.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\BARF_MUT_FA.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\BARF_MUT_FA.plt
8
                                          Thu Jun 30 12:43:11 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 3
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 2
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 1
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 6.6658e-007
40
                          Beta(1) = 2.50006e-006
41
42
43
              Asymptotic Correlation Matrix of Parameter Estimates
44
45
              ( *** The model parameter(s) -Background
46
                   have been estimated at a boundary point, or have been
47
    specified by the user,
48
                   and do not appear in the correlation matrix )
49
50
                  Beta(1)
51
52
      Beta(1)
                        1
53
54
55
56
                           Parameter Estimates
57
58
          Variable
                                               Std. Err.
                           Estimate
59
                                   0
        Background
                                                 NA
                         2.56672e-006
                                          4.49565e-005
60
           Beta(1)
```

D-105

DRAFT – DO NOT CITE OR QUOTE

1 2 NA - Indicates that this parameter has hit a bound 3 implied by some inequality constraint and thus 4 has no standard error. 5 6 7 8 Analysis of Deviance Table 9 10 Model Log(likelihood) Deviance Test DF P-value Full model -856.204 11 2 12 Fitted model -856.255 0.103 0.9498 69.419 2 13 Reduced model -890.913 <.0001 14 15 AIC: 1714.51 16 17 18 Goodness of Fit 19 20 Dose Est._Prob. Expected Observed Size Chi^2 Res. 21 _____ 22 i: 1 23 0.0000 0.0000 0.000 0 1000000 0.000 i: 2 24 25 10.0000 0.0000 25.667 27 1000000 0.052 26 i: 3 27 20.0000 0.0001 51.333 50 1000000 -0.026 28 29 Chi-square = 0.10 DF = 2 P-value = 0.9494 30 31 32 Benchmark Dose Computation 33 34 Specified effect = 1e-005 35 36 Risk Type = Extra risk 37 38 Confidence level = 0.95 39 40 BMD = 3.89604 41 42 **** WARNING: Completion code = -1. Optimum not found. Trying new starting 43 point**** 44 45 **** WARNING 0: Completion code = -1 trying new start**** 46 47 **** WARNING 1: Completion code = -5 trying new start**** 48 49 BMDL = 0 50 51

```
1
    BARF_MUT_TPHEN.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\BARF_MUT_TPHEN.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\BARF_MUT_TPHEN.plt
8
                                          Thu Jun 30 12:52:56 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 9.99937e-007
40
                          Beta(1) = 1.74289e-007
41
                          Beta(2) =
                                             0
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
                                                       -Beta(2)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
52
53
      Beta(1)
                        1
54
55
56
57
                            Parameter Estimates
58
59
                                               Std. Err.
          Variable
                           Estimate
60
        Background
                                   0
                                                 NA
```

1 Beta(1) 1.85717e-007 4.42148e-006 2 Beta(2) 0 NA 3 4 NA - Indicates that this parameter has hit a bound 5 implied by some inequality constraint and thus 6 has no standard error. 7 8 9 10 Analysis of Deviance Table 11 Model Log(likelihood) Deviance Test DF P-value 12 -755.63 13 Full model 0.2868 3 14 Fitted model -755.773 0.9625 52.3039 3 15 Reduced model -781.782 <.0001 16 17 AIC: 1513.55 18 19 20 Goodness of Fit 21 22 Dose Est._Prob. Expected Observed Size Chi^2 Res. 23 _____ _____ 24 i: 1 25 0.0000 0.0000 0.000 0 1000000 0.000 26 i: 2 27 50.0000 0.0000 9.286 10 1000000 0.077 28 i: 3 20 100000 0.077 29 100.0000 0.0000 18.572 30 i: 4 35 1000000 31 200.0000 0.0000 37.143 -0.058 32 33 Chi-square = 0.29 DF = 3P-value = 0.962234 35 36 Benchmark Dose Computation 37 38 Specified effect = 1e-005 39 40 Risk Type = Extra risk 41 42 Confidence level = 0.95 43 44 BMD = 53.8457 45 46 **** WARNING: Completion code = -2. Optimum not found. Trying new starting 47 point**** 48 49 **** WARNING 0: Completion code = -2 trying new start**** 50 51 **** WARNING 1: Completion code = -2 trying new start**** 52 53 **** WARNING 2: Completion code = -2 trying new start**** 54 55 **** WARNING 3: Completion code = -2 trying new start**** 56 57 **** WARNING 4: Completion code = -2 trying new start*** 58 59 **** WARNING 5: Completion code = -2 trying new start*** 60

1 2	* * * *	WARNING	6:	Completion	code	= -2	trying	new	start**	* *		
- 3 4	* * * *	WARNING	7 :	Completion	code	= -2	trying	new	start**	* *		
5	****	WARNING	8:	Completion	code	= -2	trying	new	start**	* *		
7 8	* * * *	WARNING	9:	Completion	code	= -2	trying	new	start**	* *		
9	****	WARNING	Co	mpletion co	ode =	-2.	Optimur	n not	found.	Trying	new sta	rting
10	point	-***										
11 12 13	* * * *	WARNING	0:	Completion	code	= -2	trying	new	start**	* *		
13 14 15	* * * *	WARNING	1:	Completion	code	= -5	trying	new	start**	* *		
16 17	* * * *	WARNING	2:	Completion	code	= -2	trying	new	start**	* *		
18 19	* * * *	WARNING	3:	Completion	code	= -2	trying	new	start**	* *		
20 21	* * * *	WARNING	4:	Completion	code	= -2	trying	new	start**	* *		
22 22 23	* * * *	WARNING	5:	Completion	code	= -2	trying	new	start**	* *		
23 24 25	* * * *	WARNING	6:	Completion	code	= -2	trying	new	start**	* *		
26 27	* * * *	WARNING	7:	Completion	code	= -5	trying	new	start**	* *		
28 29	* * * *	WARNING	8:	Completion	code	= -2	trying	new	start**	* *		
30 31 32	****	WARNING	9:	Completion	code	= -5	trying	new	start**	* *		
33	Warn	ing: com	nplet	ion code st	ill ı	negati	ive					
34	BMDL	did not	conv	verge for BN	/IR = (0.000	010					
35												
36 37	Prog	ram execu	utior	n is stopped	1							

```
1
    RAVEH_HUB_MUT_BAP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\RAVEH_HUB_MUT_BAP.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\RAVEH_HUB_MUT_BAP.plt
8
                                           Wed Jun 29 12:15:41 2005
9
     10
11
     BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 3
     Total number of records with missing values = 0
26
27
     Total number of parameters in model = 2
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 1
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                     Default Initial Parameter Values
39
                       Background =
                                             0
40
                          Beta(1) =
                                    0.00102082
41
    **** WARNING: Completion code = -2. Optimum not found. Trying new starting
42
    pont****
43
44
    **** WARNING 0: Completion code = -2 trying new start***
45
46
    **** WARNING 1: Completion code = -2 trying new start****
47
48
    **** WARNING 2: Completion code = -2 trying new start****
49
50
    **** WARNING 3: Completion code = -2 trying new start****
51
52
    **** WARNING 4: Completion code = -2 trying new start****
53
54
    **** WARNING 5: Completion code = -2 trying new start****
55
56
    **** WARNING 6: Completion code = -2 trying new start****
57
58
    **** WARNING 7: Completion code = -2 trying new start****
59
    **** WARNING 8: Completion code = -2 trying new start****
60
```

```
1
2
    **** WARNING 9: Completion code = -2 trying new start****
3
4
    **** WARNING: Completion code = -2. Optimum not found. Trying new starting
5
    point****
6
7
    **** WARNING 0: Completion code = -2 trying new start****
8
9
   **** WARNING 1: Completion code = -2 trying new start***
10
    **** WARNING 2: Completion code = -2 trying new start****
11
12
13
    **** WARNING 3: Completion code = -2 trying new start****
14
15
16
17
             Asymptotic Correlation Matrix of Parameter Estimates
18
19
               Background Beta(1)
20
21
                   1
   Background
                            -0.71
22
23
      Beta(1) -0.71
                                1
24
25
26
27
                         Parameter Estimates
28
29
         Variable
                         Estimate
                                          Std. Err.
                       2.6399e-005
30
       Background
                                         0.00257721
31
          Beta(1)
                       0.000947187
                                         0.00419869
32
33
34
35
                        Analysis of Deviance Table
36
37
         Model
                  Log(likelihood) Deviance Test DF P-value
38
        Full model
                       -1077.99
                       -1078.81 1.63811 1
-1144.43 132.88 2
39
                                                        0.2006
      Fitted model
40
     Reduced model
                       -1144.43
                                                        <.0001
41
42
            AIC:
                       2161.62
43
44
45
                     Goodness of Fit
46
47
       Dose Est._Prob. Expected Observed Size Chi^2 Res.
48
     _____
49
   i: 1
50
      0.0000 0.0000
                            2.640
                                      3 100000
                                                         0.136
51
   i: 2
52
      0.3000 0.0003 31.051
                                   25 100000 -0.195
53
   i: 3
54
       1.0000 0.0010 97.311 103 100000 0.059
55
56
    Chi-square = 1.56 DF = 1 P-value = 0.2115
57
58
59
      Benchmark Dose Computation
60
```

1	Specified effect =	0.0001
2		
3 4	Risk Type =	Extra risk
5	Confidence level =	0.95
6		
7	BMD =	0.105581
8		0 0008465
10	- 1000 -	0.0900405

1 RAVEH_HUB_MUT_cpcdp.OUT.txt 2 _____ 3 Quantal Linear Model \$Revision: 2.2 \$ \$Date: 2000/03/17 22:27:16 \$ 4 Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH 5 RPS\MODELING\RAVEH_HUB_MUT_BAP.(d) 6 Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY 7 DOCUMENTS\PAH RPS\MODELING\RAVEH_HUB_MUT_BAP.plt 8 Wed Jun 29 12:09:01 2005 9 10 11 BMDS MODEL RUN 12 13 14 The form of the probability function is: 15 16 P[response] = background + (1-background)*[1-EXP(-slope*dose)] 17 18 19 Dependent variable = COLUMN2 20 Independent variable = COLUMN1 21 22 Total number of observations = 3 23 Total number of records with missing values = 0 24 Maximum number of iterations = 250 25 Relative Function Convergence has been set to: 1e-008 26 Parameter Convergence has been set to: 1e-008 27 28 29 30 Default Initial (and Specified) Parameter Values 31 Background = 3.49997e-00532 Slope = 0.00017001933 Power = 1 Specified 34 35 36 Asymptotic Correlation Matrix of Parameter Estimates 37 38 (*** The model parameter(s) -Power 39 have been estimated at a boundary point, or have been 40 specified by the user, 41 and do not appear in the correlation matrix) 42 43 Background Slope 44 45 Background 1 -0.51 46 47 -0.51 Slope 1 48 49 50 51 Parameter Estimates 52 53 Variable Std. Err. Estimate 54 Background 3.16959e-005 1.69176e-005 55 Slope 0.000173022 4.78826e-005 56 57 58 59 Analysis of Deviance Table 60

1	Model	el Log(likelihood)) Dev	viance	Test	DF	P-val	ue	
2	Full mc	odel	-317.426							
3	Fitted mc	odel	-317.46		0.	0.0679084		1	0.7944	
4	Reduced mc	odel	-3	24.664		14.476	6	2	0.0	007185
5										
6	A	AIC:	6	38.919						
7										
8			a 1		c					
10			Good	ness of	c Fit					
10										Qualad
11	Dogo	Fat	Drob	Evro	atod	Obao	ruod		Ci zo	Bogidual
12	Dose	ESU.		вхрес			irveu		5126	Residual
14	0.000	0.	0000		3.170		3		100000	-0.09526
15	0 3000	0	0001		3 360		9		100000	0 2214
16	1,0000	0.	0002	20	0.470		20		100000	-0.1038
17	1.0000		0002	_			20		200000	0,1000
18	Chi-square	=	0.07	DF :	= 1	P	-valu	e =	0.7930	
19	-									
20										
21	Benchmark	. Dose	Computa	tion						
22										
23	Specified ef	fect =		0.000	1					
24										
25	Risk Type	=	E	xtra ri	sk					
26										
27	Confidence l	evel =		0.9	5					
28										
29		BMD =		0.577993	1					
30										
31		BMDL =	0	.390507						
32										
33										

1 RAVEH_MUT_bap.OUT.txt 2 _____ 3 Quantal Linear Model \$Revision: 2.2 \$ \$Date: 2000/03/17 22:27:16 \$ 4 Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH 5 RPS\MODELING\RAVEH_MUT_CPCDP.(d) 6 Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY 7 DOCUMENTS\PAH RPS\MODELING\RAVEH_MUT_CPCDP.plt 8 Wed Jun 29 12:33:35 2005 9 10 11 BMDS MODEL RUN 12 13 14 The form of the probability function is: 15 16 P[response] = background + (1-background)*[1-EXP(-slope*dose)] 17 18 19 Dependent variable = COLUMN2 20 Independent variable = COLUMN1 21 22 Total number of observations = 3 23 Total number of records with missing values = 0 24 Maximum number of iterations = 250 25 Relative Function Convergence has been set to: 1e-008 26 Parameter Convergence has been set to: 1e-008 27 28 29 30 Default Initial (and Specified) Parameter Values 31 Background = 7.49999e-00632 Slope = 6.70027e - 00533 Power = 1 Specified 34 35 36 Asymptotic Correlation Matrix of Parameter Estimates 37 38 (*** The model parameter(s) -Power 39 have been estimated at a boundary point, or have been 40 specified by the user, 41 and do not appear in the correlation matrix) 42 43 Background Slope 44 45 Background 1 -0.38 46 47 -0.38 Slope 1 48 49 50 51 Parameter Estimates 52 53 Variable Std. Err. Estimate 54 Background 6.11766e-006 2.23574e-006 55 Slope 6.35766e-005 8.04156e-006 56 57 58 59 Analysis of Deviance Table 60

1	Mod	el	Log(li	kelihoo	od)	Dev	iance	Test	DF	P-val	ue
2	Full	model	-1104.33		3						
3	Fitted	Fitted model -1105.09			9	1.53413 1				0.2155	
4	Reduced	model		-1141.2	2		73.741	5	2	<	.0001
5											
6		AIC:		2214.19	9						
7											
8											
9			Goo	dness	of	Fit					
10											
11						_		_			Scaled
12	Dose	Est	Prob.	Exp	pecte	ed	Obse	rved		Size	Residual
13										1000000	
14	0.0000				0.1			20		1000000	0.356/
15	0.3000		0.0000		25.1	190		20		1000000	-1.034
10	1.0000	Ĺ	0.0001		69.6	92		/4		1000000	0.5161
17	Chi-cour		1 46	וח	r – 1	1	л	_112	、 _	0 2264	
10	CIII-5quar	e –	1.40	ום	. – .	L	P	-varue	_	0.2204	
20											
20	Benchma	rk Dose	Comput	ation							
22	Denemia	IN DODC	compact	acron							
23	Specified	effect	=	1e-(005						
24											
25	Risk Type		=	Extra i	risk						
26											
27	Confidence	level	=	0	.95						
28											
29		BMD	=	0.1572	291						
30											
31		BMDL	=	0.1293	31						
32											
33											

1 RAVEH_MUT_CPCDP.OUT.txt 2 _____ 3 Quantal Linear Model \$Revision: 2.2 \$ \$Date: 2000/03/17 22:27:16 \$ 4 Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH 5 RPS\MODELING\RAVEH_MUT_CPCDP.(d) 6 Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY 7 DOCUMENTS\PAH RPS\MODELING\RAVEH_MUT_CPCDP.plt 8 Wed Jun 29 12:31:46 2005 9 10 11 BMDS MODEL RUN 12 13 14 The form of the probability function is: 15 16 P[response] = background + (1-background)*[1-EXP(-slope*dose)] 17 18 19 Dependent variable = COLUMN2 20 Independent variable = COLUMN1 21 22 Total number of observations = 4 23 Total number of records with missing values = 0 24 Maximum number of iterations = 250 25 Relative Function Convergence has been set to: 1e-008 26 Parameter Convergence has been set to: 1e-008 27 28 29 30 Default Initial (and Specified) Parameter Values Background = 1.5e-006 31 32 Slope = 9.00013e-00633 Power = 1 Specified 34 35 36 Asymptotic Correlation Matrix of Parameter Estimates 37 38 (*** The model parameter(s) -Power 39 have been estimated at a boundary point, or have been 40 specified by the user, 41 and do not appear in the correlation matrix) 42 43 Background Slope 44 45 Background 1 -0.4346 47 Slope -0.43 1 48 49 50 51 Parameter Estimates 52 53 Variable Std. Err. Estimate 54 Background 1.26496e-006 1.07098e-006 55 Slope 9.05599e-006 1.68076e-006 56 57 58 59 Analysis of Deviance Table 60

1	Model		Log(like	lihood)	Dev	lance	Test	DF	P-val	ue
2	Full mod	ull model -527.507								
3	Fitted model -52		527.666		0.317201		2		0.8533	
4	Reduced model -5		-54	6.375		37.735	2	3	<	.0001
5										
6	A	IC:	10	59.33						
7										
8										
9			Goodr	less of	Fit					
10										
11										Scaled
12	Dose	Est.	_Prob.	Expect	ed	Obse	rved		Size	Residual
13				·						
14	0.0000	0.	0000	1.	265		1		1000000	-0.2356
15	0.3000	0.	0000	3.	982		5		1000000	0.5103
16	1.0000	0.	0000	10.	321		10		1000000	-0.09989
17	3.0000	0.	0000	28.	433		28		1000000	-0.08112
18					_		_			
19	Chi-square =	=	0.33	DF =	2	P	-value	5 =	0.8469	
20										
21	_ , ,	_								
22	Benchmark	Dose (Computat	lon						
23				1 005						
24	Specified eff	tect =		1e-005						
23	Dial marsa		D -							
20	RISK Type	=	EX	tra risk						
21	Confidence la	1		0 05						
20	Contraence re	ever =		0.95						
29				1 10425						
30		= עויום		1.10423						
32	т		Ω	835597						
32	I	– בועניוכ	0.	16000						
3/										
J 4										

```
1
    SLAGA_MUT_BAA.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\SLAGA_MUT_BAA.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\SLAGA_MUT_BAA.plt
8
                                           Thu Jul 07 15:25:30 2005
9
     ______
10
11
     BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 3
     Total number of records with missing values = 0
26
27
     Total number of parameters in model = 2
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 1
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                     Default Initial Parameter Values
39
                       Background = 7.29666e-005
40
                          Beta(1) = 3.12233e-006
41
    **** WARNING: Completion code = 7. Optimum not found. Trying new starting
42
    pont****
43
44
    **** WARNING 0: Completion code = 7 trying new start***
45
46
    **** WARNING 1: Completion code = -2 trying new start****
47
48
    **** WARNING 2: Completion code = -2 trying new start****
49
50
    **** WARNING 3: Completion code = -2 trying new start****
51
52
    **** WARNING 4: Completion code = 7 trying new start****
53
54
    **** WARNING 5: Completion code = -2 trying new start****
55
56
    **** WARNING 6: Completion code = -2 trying new start****
57
58
    **** WARNING 7: Completion code = -2 trying new start****
59
    **** WARNING 8: Completion code = -2 trying new start****
60
```

1 2 **** WARNING 9: Completion code = 7 trying new start**** 3 4 **** WARNING: Completion code = -2. Optimum not found. Trying new starting 5 point**** 6 7 **** WARNING 0: Completion code = -2 trying new start**** 8 9 10 11 Asymptotic Correlation Matrix of Parameter Estimates 12 13 Background Beta(1) 14 15 1 -0.63 Background 16 17 Beta(1) -0.63 1 18 19 20 21 Parameter Estimates 22 23 Variable Estimate Std. Err.
 variable
 Estimate
 Std. Err

 Background
 7.26607e-005
 0.0023585

 Beta(1)
 3.14129e-006
 9.25599e-005
 24 25 26 27 28 29 Analysis of Deviance Table 30 Model 31 Log(likelihood) Deviance Test DF P-value Full model -365.644 32 -365.656 0.0243422 1 -370.021 8.75326 2 33 Fitted model 0.876 0.01257 34 Reduced model 35 36 AIC: 735.312 37 38 39 Goodness of Fit 40 Dose Est._Prob. Expected Observed Size Chi^2 Res. 41 42 _____ 43 i: 1 7 44 0.0000 0.0001 7.266 100000 -0.037 45 i: 2 8.648 9 4.4000 0.0001 100000 0.041 46 47 i: 3 48 44.0000 0.0002 21.086 21 100000 -0.004 49 50 Chi-square = 0.02 DF = 1 P-value = 0.8758 51 52 53 Benchmark Dose Computation 54 55 Specified effect = 0.0001 56 57 Risk Type = Extra risk 58 59 Confidence level = 0.95 60

1	BMD =	31.8356
2		
3	BMDL =	19.0163
4		

```
1
    SLAGA_MUT_BAP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\SLAGA_MUT_BAP.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\SLAGA_MUT_BAP.plt
8
                                          Wed Jun 29 13:01:31 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.000214668
40
                          Beta(1) =
                                   0.00154564
41
                         Beta(2) = 0.00022152
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
                              Beta(2)
52
53
      Beta(1)
                        1
                              -0.98
54
55
      Beta(2) -0.98
                                   1
56
57
58
59
                           Parameter Estimates
60
```

1 Variable Estimate Std. Err. 0 2 Background NA 0.00207246 0.0109511 3 Beta(1) 4 Beta(2) 9.74689e-005 0.00286413 5 6 NA - Indicates that this parameter has hit a bound 7 implied by some inequality constraint and thus 8 has no standard error. 9 10 Warning: Likelihood for the fitted model larger than the Likelihood for the full model. 11 Error in computing chi-square; returning 2 12 13 14 15 Analysis of Deviance Table 16 Model Log(likelihood) Deviance Test DF 17 P-value 18 Full model -823.498 Fitted model -816.691-13.614522-907.084167.1723<.0001</td> 19 2 Reduced model 20 21 22 AIC: 1637.38 23 24 25 Goodness of Fit 26 27 Dose Est._Prob. Expected Observed Size Chi^2 Res. 28 _____ 29 i: 1 1 30 0.0000 0.0000 0.000 100007000000.000 31 i: 2 0.4000 8.442 11 10000 0.303 32 0.0008 33 i: 3 1.3000 0.0029 34 28.548 25 10000 -0.125 35 i: 4 4.0000 0.0098 99 10000 36 98.010 0.010 37 38 Chi-square = 1.23 DF = 2 P-value = 0.5412 39 40 41 Benchmark Dose Computation 42 Specified effect = 0.0001 43 44 45 Risk Type = Extra risk 46 47 Confidence level = 0.95 48 49 BMD = 0.0481451 50 51 BMDL = 0.0370516 52 53

1 D.6. MALIGNANT TRANSFORMATION

```
2
    CASTO_MT_BAP.OUT.txt
3
     4
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
5
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
6
    RPS\MODELING\CASTO_MT_BAP.(d)
7
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
8
    DOCUMENTS\PAH RPS\MODELING\CASTO_MT_BAP.plt
9
                                          Thu Jun 23 13:30:59 2005
10
     ______
11
12
    BMDS MODEL RUN
13
    14
15
      The form of the probability function is:
16
17
       P[response] = background + (1-background)*[1-EXP(
18
    -beta1*dose^1)]
19
20
       The parameter betas are restricted to be positive
21
22
23
      Dependent variable = COLUMN2
24
       Independent variable = COLUMN1
25
26
     Total number of observations = 3
27
     Total number of records with missing values = 0
28
     Total number of parameters in model = 2
29
     Total number of specified parameters = 0
30
     Degree of polynomial = 1
31
32
33
    Maximum number of iterations = 250
     Relative Function Convergence has been set to: 1e-008
34
35
     Parameter Convergence has been set to: 1e-008
36
37
38
39
                    Default Initial Parameter Values
40
                       Background = 1.02144e-005
41
                         Beta(1) = 7.98743e-005
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
52
53
      Beta(1)
                        1
54
55
56
57
                           Parameter Estimates
58
59
          Variable
                           Estimate
                                              Std. Err.
```

1 Background 0 NA 2 Beta(1) 9.62612e-005 0.00234809 3 4 NA - Indicates that this parameter has hit a bound 5 implied by some inequality constraint and thus 6 has no standard error. 7 8 9 10 Analysis of Deviance Table 11 12 Log(likelihood) Deviance Test DF P-value Model 13 Full model -185.57 -186.065 0.988828 14 Fitted model 2 0.6099 15 Reduced model -192.98 14.82 2 0.0006052 16 17 AIC: 374.13 18 19 20 Goodness of Fit 21 22 Dose Est._Prob. Expected Observed Size Chi^2 Res. 23 _____ 24 i: 1 25 0.0000 0.000 0 100000 0.000 0.0000 26 i: 2 27 0.0001 5.968 0.6200 8 100000 0.340 28 i: 3 29 1.2500 0.0001 12.032 10 100000 -0.169 30 31 Chi-square = 1.04 DF = 2P-value = 0.596032 33 34 Benchmark Dose Computation 35 36 Specified effect = 1e-005 37 38 Risk Type = Extra risk 39 40 Confidence level = 0.95 41 42 BMD = 0.103885 43 44 **** WARNING: Completion code = -5. Optimum not found. Trying new starting point**** 45 46 47 **** WARNING 0: Completion code = -5 trying new start**** 48 49 **** WARNING 1: Completion code = -5 trying new start**** 50 51 **** WARNING 2: Completion code = -5 trying new start**** 52 53 **** WARNING 3: Completion code = -5 trying new start**** 54 55 **** WARNING 4: Completion code = -5 trying new start**** 56 57 **** WARNING 5: Completion code = -5 trying new start*** 58 59 **** WARNING 6: Completion code = -5 trying new start*** 60

```
1 **** WARNING 7: Completion code = -5 trying new start****
2
3 **** WARNING 8: Completion code = -5 trying new start****
4
5 **** WARNING 9: Completion code = -5 trying new start****
6
7 **** WARNING: Completion code = -5. Optimum not found. Trying new starting
8 point****
9
10 BMDL = 0.0721753
11
```

```
1
    CASTO_MT_DBAHA.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\CASTO_MT_DBAHA.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\CASTO_MT_DBAHA.plt
8
                                           Thu Jun 23 13:32:00 2005
9
     10
11
     BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 3
     Total number of records with missing values = 0
26
27
     Total number of parameters in model = 2
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 1
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                     Default Initial Parameter Values
39
                       Background = 6.92924e-008
40
                          Beta(1) = 3.99789e-006
41
    **** WARNING: Completion code = -2. Optimum not found. Trying new starting
42
    pont****
43
44
    **** WARNING 0: Completion code = -2 trying new start***
45
46
    **** WARNING 1: Completion code = -2 trying new start****
47
48
    **** WARNING 2: Completion code = -2 trying new start****
49
50
    **** WARNING 3: Completion code = -2 trying new start****
51
52
    **** WARNING 4: Completion code = -2 trying new start****
53
54
    **** WARNING 5: Completion code = -2 trying new start****
55
56
    **** WARNING 6: Completion code = -2 trying new start****
57
58
    **** WARNING 7: Completion code = -2 trying new start****
59
    **** WARNING 8: Completion code = -2 trying new start****
60
```

1 2 **** WARNING 9: Completion code = -2 trying new start*** 3 4 **** WARNING: Completion code = -2. Optimum not found. Trying new starting 5 point**** 6 7 8 9 Asymptotic Correlation Matrix of Parameter Estimates 10 11 (*** The model parameter(s) -Background 12 have been estimated at a boundary point, or have been 13 specified by the user, 14 and do not appear in the correlation matrix) 15 16 Beta(1) 17 18 Beta(1) 1 19 20 21 22 Parameter Estimates 23 24 Variable Std. Err. Estimate 25 Background 0 NA 26 Beta(1) 4.05407e-006 0.000361631 27 28 NA - Indicates that this parameter has hit a bound 29 implied by some inequality constraint and thus 30 has no standard error. 31 32 33 34 Analysis of Deviance Table 35 36 Model Log(likelihood) Deviance Test DF P-value 37 Full model -191.16 0.00552866 2 0.9972 13.863 2 0.0009765 38 Fitted model -191.162 39 -198.091 Reduced model 40 41 384.325 AIC: 42 43 44 Goodness of Fit 45 Dose Est._Prob. Expected Observed Size Chi^2 Res. 46 47 _____ 48 i: 1 0 49 0.0000 0.0000 0.000 1000000 0.000 50 i: 2 51 1.2000 0.0000 4.865 5 1000000 0.028 52 i: 3 53 2.5000 0.0000 10.135 10 1000000 -0.013 54 Chi-square = 0.01 DF = 2 P-value = 0.9972 55 56 57 58 Benchmark Dose Computation 59 60 Specified effect = 1e-005

1 2 3 Risk Type = Extra risk 4 Confidence level = 0.95 5 6 BMD = 2.46667 7 8 **** WARNING: Completion code = -5. Optimum not found. Trying new starting 9 point**** 10 **** WARNING 0: Completion code = -1 trying new start**** 11 12 13 **** WARNING 1: Completion code = -1 trying new start**** 14 15 **** WARNING 2: Completion code = -1 trying new start**** 16 17 **** WARNING 3: Completion code = -1 trying new start**** 18 19 **** WARNING 4: Completion code = -1 trying new start**** 20 21 **** WARNING 5: Completion code = -1 trying new start**** 22 23 **** WARNING 6: Completion code = -1 trying new start**** 24 25 **** WARNING 7: Completion code = -1 trying new start**** 26 27 **** WARNING 8: Completion code = -1 trying new start**** 28 29 **** WARNING 9: Completion code = -1 trying new start*** 30 31 **** WARNING: Completion code = -1. Optimum not found. Trying new starting 32 point**** 33 1.65901 34 BMDL = 35

```
1
    EMURA_MT_Baa.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\EMURA_MT_BBF.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\EMURA_MT_BBF.plt
8
                                          Thu Jun 23 15:46:49 2005
9
     10
11
     BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2-beta3*dose^3-beta4*dose^4)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 6
     Total number of records with missing values = 0
26
27
     Total number of parameters in model = 5
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 4
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 6.24839e-005
40
                          Beta(1) = 0.000973789
41
                          Beta(2) =
                                             0
42
                          Beta(3) =
                                             0
43
                          Beta(4) =
                                             0
44
45
46
              Asymptotic Correlation Matrix of Parameter Estimates
47
48
              ( *** The model parameter(s) -Background
                                                       -Beta(2) -Beta(3)
49
    -Beta(4)
50
                   have been estimated at a boundary point, or have been
51
    specified by the user,
52
                   and do not appear in the correlation matrix )
53
54
                   Beta(1)
55
56
      Beta(1)
                        1
57
58
59
60
                            Parameter Estimates
```

1 2 Variable Estimate Std. Err. 3 Background 0 NA 4 Beta(1) 0.00117377 0.0091424 5 Beta(2) 0 NA 6 Beta(3) 0 NA 7 Beta(4) 0 NA 8 9 NA - Indicates that this parameter has hit a bound 10 implied by some inequality constraint and thus 11 has no standard error. 12 13 14 Analysis of Deviance Table 15 16 Model 17 Log(likelihood) Deviance Test DF P-value 18 Full model -184.252 2.83903 5 23.575 5 19 Fitted model -185.671 0.7248 -196.039 0.000262 20 Reduced model 21 22 373.342 AIC: 23 24 25 Goodness of Fit 26 27 Dose Est._Prob. Expected Observed Size Chi^2 Res. 28 _____ 29 i: 1 30 0.0000 0.0000 0.000 0 10000 0.000 31 i: 2 10000 32 0.0250 0 0.0000 0.293 -1.000 33 i: 3 3 34 0.1000 0.0001 1.174 10000 1.556 35 i: 4 3 36 0.2500 0.0003 2.934 10000 0.023 37 i: 5 38 0.5000 0.0006 5.867 6 10000 0.023 39 i: 6 1.0000 0.0012 11.731 10 10000 -0.148 40 41 42 Chi-square = 3.40 DF = 5 P-value = 0.6392 43 44 45 Benchmark Dose Computation 46 47 Specified effect = 0.001 48 49 Risk Type = Extra risk 50 51 Confidence level = 0.95 52 53 BMD = 0.85238 BMDL = 54 0.611981 55 EMURA_MT_BBF.OUT.txt 56 57 Multistage Model. \$Revision: 2.1 \$ \$Date: 2000/08/21 03:38:21 \$ 58 Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH 59 $RPS \setminus MODELING \setminus EMURA_MT_BBF.(d)$

1 Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY 2 DOCUMENTS\PAH RPS\MODELING\EMURA_MT_BBF.plt 3 Thu Jun 23 15:37:20 2005 4 _____ 5 6 BMDS MODEL RUN 7 8 9 The form of the probability function is: 10 11 P[response] = background + (1-background)*[1-EXP(12 -beta1*dose^1-beta2*dose^2-beta3*dose^3-beta4*dose^4)] 13 14 The parameter betas are restricted to be positive 15 16 17 Dependent variable = COLUMN2 18 Independent variable = COLUMN1 19 20 Total number of observations = 6 21 Total number of records with missing values = 022 Total number of parameters in model = 5 23 Total number of specified parameters = 0 24 Degree of polynomial = 425 26 27 Maximum number of iterations = 250 28 Relative Function Convergence has been set to: 1e-008 29 Parameter Convergence has been set to: 1e-008 30 31 32 33 Default Initial Parameter Values 34 Background = 6.48647e-00535 Beta(1) = 0.0011170636 Beta(2) =0 37 Beta(3) = 1.51794e-00538 Beta(4) =0 39 40 41 Asymptotic Correlation Matrix of Parameter Estimates 42 43 (*** The model parameter(s) -Background -Beta(2) -Beta(3) 44 -Beta(4) 45 have been estimated at a boundary point, or have been 46 specified by the user, 47 and do not appear in the correlation matrix) 48 49 Beta(1) 50 51 Beta(1) 1 52 53 54 55 Parameter Estimates 56 57 Variable Estimate Std. Err. 58 Background 0 NA 59 0.00133391 0.00909075 Beta(1) 60 Beta(2) 0 NA
1	Beta()	3)	0		NA	
3	Bela(*	±)	0		NA	
4 5 6 7	NA - Indicates implied b has no st	s that this by some ine candard err	parameter has equality const cor.	s hit a bound raint and thu	l 15	
7 8 9						
10			Analysis of De	eviance Table	9	
11 12 13	Model	Log(li	.kelihood) De	viance Test	DF P-	value
13 14	Fitted mode	el -	-208.019	4.36272	5	0.4985
15	Reduced mode	el -	219.575	27.4752	5	<.0001
16 17	אדע	л.	110 020			
18	AIC	_·	410.030			
19						
20		Goo	odness of Fi	t		
21 22 23	Dose	EstProb.	Expected	Observed	Size	Chi^2 Res.
24	i: 1					
25 26	0.0000	0.0000	0.000	0	10000	0.000
20 27 28	0.0250	0.0000	0.333	0	10000	-1.000
29 30	0.1000 i: 4	0.0001	1.334	4	10000	1.999
31 32	0.2500 i: 5	0.0003	3.334	3	10000	-0.100
33 34	0.5000 i: 6	0.0007	6.667	б	10000	-0.100
35	1.0000	0.0013	13.330	12	10000	-0.100
30 37 38	Chi-square =	5.90) DF = 5	P-value	e = 0.3164	
39 40 41	Benchmark I	Dose Comput	ation			
42 43	Specified effe	ect =	0.001			
44 45	Risk Type	=	Extra risk			
46 47	Confidence lev	vel =	0.95			
48 49 50	I Bl	BMD = MDL =	0.750052 0.54909			
50						

```
1
    EMURA_MT_I_BAP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\EMURA_MT_I_BAP.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\EMURA_MT_I_BAP.plt
8
                                          Thu Jun 23 15:28:17 2005
9
     10
11
     BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2-beta3*dose^3)]
18
19
       The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 5
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 4
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 3
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 6.51885e-005
40
                          Beta(1) =
                                      0.021934
41
                          Beta(2) =
                                             0
42
                                             0
                          Beta(3) =
43
44
45
              Asymptotic Correlation Matrix of Parameter Estimates
46
47
              ( *** The model parameter(s) -Background
                                                       -Beta(2)
                                                                 -Beta(3)
48
                   have been estimated at a boundary point, or have been
49
    specified by the user,
50
                   and do not appear in the correlation matrix )
51
52
                  Beta(1)
53
54
      Beta(1)
                        1
55
56
57
58
                            Parameter Estimates
59
60
          Variable
                            Estimate
                                               Std. Err.
```

1	Background	b	0		NA	
2	Beta(1)	0.0227293	0.03	369378	
3	Beta(2)	0		NA	
4	Beta(3)	0		NA	
5						
6	NA - Indicates	that this	parameter has	hit a bound	1	
7	implied by	y some ineq	uality constr	aint and thu	IS	
8	has no sta	andard errc	er.			
9						
10						
11						
12		A	nalysis of De	viance Table	2	
13						
14	Model	Log(lik	elihood) Dev	iance Test	DF P-	value
15	Full mode	1 -6	14.919			
16	Fitted mode	1 -6	18.123	6.40862	4	0.1706
17	Reduced mode	l -6	77.621	125.404	4	<.0001
18						
19	AIC	: 1	238.25			
20						
21						
22		Good	ness of Fit			
23						
24	Dose 1	EstProb.	Expected	Observed	Size	Chi^2 Res.
25						
26	i: 1					
27	0.0000	0.0000	0.000	0	10000	0.000
28	i: 2					
29	0.0100	0.0002	2.273	0	10000	-1.000
30	i: 3					
31	0.0500	0.0011	11.358	11	10000	-0.032
32	i: 4					
33	0.1000	0.0023	22.703	29	10000	0.278
34	i: 5					
35	0.2500	0.0057	56.662	53	10000	-0.065
36		4 65	/			
3/	Chi-square =	4.27	DF = 4	P-value	e = 0.3703	
38 20						
39 40	Deve alternation D					
40	Benchmark Do	ose Computa	tion			
41	Omenifi-1 - EC	~ -	0 0 0 1			
42 42	specified effec	3L =	0.001			
43 44	Dick Trme		wtwo wiels			
44 15	ктак туре	= <u>H</u>	ALLA LISK			
45 46	Confidence law	-1 -				
+0 17	CONTINENCE TEVE	=	0.95			
+/ /8	ורז	л – П	0440192			
40 /0	Ы	– U	.0110102			
1 2 50	DMI	DT. =	0 037201			
51	DMI	— <u> </u>	0.03/291			
<i></i>						

```
1
    EMURA_MT_II_BAP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\EMURA_MT_II_BAP.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\EMURA_MT_II_BAP.plt
8
                                          Thu Jun 23 15:54:16 2005
9
     10
11
     BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2-beta3*dose^3)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 5
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 4
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 3
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.0002687
40
                          Beta(1) =
                                      0.0184676
41
                          Beta(2) =
                                             0
42
                                             0
                          Beta(3) =
43
44
45
              Asymptotic Correlation Matrix of Parameter Estimates
46
47
              ( *** The model parameter(s) -Background
                                                       -Beta(2)
                                                                 -Beta(3)
48
                   have been estimated at a boundary point, or have been
49
    specified by the user,
50
                   and do not appear in the correlation matrix )
51
52
                   Beta(1)
53
54
       Beta(1)
                        1
55
56
57
58
                            Parameter Estimates
59
60
          Variable
                            Estimate
                                               Std. Err.
```

1	Backgrou	nd	0		NA	
2	Beta(1)	0.021747	0.0	381969	
3	Beta(2)	0		NA	
4	Beta(3)	0		NA	
5						
6	NA - Indicate	s that thi	s parameter ha	s hit a boun	d	
7	implied	by some in	equality const	raint and th	us	
8	has no s	tandard er	ror.			
9						
10						
11						
12			Analysis of D	eviance Tabl	e	
13			-			
14	Model	Loq(l	ikelihood) De	viance Test	DF P-	-value
15	Full mod	el	-606.226			
16	Fitted mod	el	-608.64	4.82649	4	0.3056
17	Reduced mod	el	-652 392	92 3321	4	< 0001
18	noutrood mod	01	002.072	210011	-	
19	ΔT	C:	1219 28			
20		0	1019.00			
21						
22		Go	odness of Fi	÷		
23		60		0		
22	Doge	Est Proh	Expected	Observed	Size	Chi^2 Res
25						
26	i: 1					
27	0.0000	0.0000	0.000	0	10000	0.000
28	i: 2					
29	0.0100	0.0002	2.174	4	10000	0.840
30	i: 3					
31	0.0500	0.0011	10.868	10	10000	-0.080
32	i: 4					
33	0.1000	0.0022	21.723	29	10000	0.336
34	i: 5					
35	0.2500	0.0054	54.220	46	10000	-0.152
36						
37	Chi-square =	5.3	0 DF = 4	P-valu	e = 0.2582	1
38	-					
39						
40	Benchmark	Dose Compu	tation			
41		-				
42	Specified eff	ect =	0.001			
43						
44	Risk Type	=	Extra risk			
45						
46	Confidence le	vel =	0.95			
47						
48		BMD =	0.0460064			
49						
50	B	MDL =	0.0388361			
51						

```
1
    EMURA_MT_IP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\EMURA_MT_IP.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\EMURA_MT_IP.plt
8
                                          Thu Jun 23 15:50:44 2005
9
     _____
10
11
     BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2-beta3*dose^3-beta4*dose^4)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 6
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 5
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 4
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 7.12074e-005
40
                          Beta(1) =
                                   0.00099924
41
                          Beta(2) =
                                             0
42
                          Beta(3) =
                                             0
43
                          Beta(4) =
                                             0
44
45
46
              Asymptotic Correlation Matrix of Parameter Estimates
47
48
              ( *** The model parameter(s) -Background
                                                       -Beta(2) -Beta(3)
49
    -Beta(4)
50
                   have been estimated at a boundary point, or have been
51
    specified by the user,
52
                    and do not appear in the correlation matrix )
53
54
                   Beta(1)
55
56
      Beta(1)
                        1
57
58
59
60
                            Parameter Estimates
```

1	Manadal	b] o	Detimete		- d Trans	
2	Backgrou	und	Estimate 0	51	NA EFF.	
4	Beta	(1)	0.00122714	0.00	0918598	
5	Beta	(2)	0		NA	
6	Beta	(3)	0		NA	
7	Beta	(4)	0		NA	
8	2004	(-)	Ū			
9	NA - Indicate	es that th	is parameter h	as hit a bour	nd	
10	implied	by some in	nequality cons	straint and th	nus	
11	has no s	standard e	rror.			
12						
13						
14						
15			Analysis of	Deviance Tabl	le	
16			1			
17	Model	Log()	likelihood) I	eviance Test	DF P-	value
18	Full mod	del	-191.591			
19	Fitted mod	del	-193.089	2.99724	5	0.7004
20	Reduced mod	del	-203.928	24.6739	5	0.0001611
21						
22	A	IC:	388.178			
23						
24						
25		Ge	oodness of F	'it		
26						
27	Dose	EstProl	o. Expected	l Observed	Size	Chi^2 Res.
28						
29	i: 1					
30	0.0000	0.0000	0.000	0	10000	0.000
31	1:2					
32	0.0250	0.0000	0.307	0	10000	-1.000
33	1: 3		1 005	2	1	
34	0.1000	0.0001	1.227	3	10000	1.445
35	1:4					
36	0.2500	0.0003	3.067	3	10000	-0.022
3/	1:5		c 101	_	1	0 1 1 1
38	0.5000	0.0006	6.134	1	10000	0.141
39 40	1: 6	0 0010	10 004	1.0	10000	0 105
40	1.0000	0.0012	12.204	10	10000	-0.185
41	Chi gauara	_ 2	11 DE - 5		10 - 0 6260	
42 //3	CIII-Square .	- 5.	DF = 5	P-Valu	1e = 0.0303	
44						
45	Benchmark	Dose Comp	itation			
46	Demeniaria	Dobe comp	acación			
47	Specified ef	fect =	0.001			
48	SPECIFICA CL.		0.001			
49	Risk Type	=	Extra risk			
50	<u>4</u> ± -					
51	Confidence le	evel =	0.95			
52						
53		BMD =	0.815309			
54]	BMDL =	0.589412			
55						

```
1
   LUBET_MT_BAP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\LUBET_MT_BAP.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\LUBET_MT_BAP.plt
8
                                          Thu Jun 23 16:11:06 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 2
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.0617408
40
                          Beta(1) =
                                     0.0378355
41
                          Beta(2) =
                                             0
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
                                                      -Beta(2)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(1)
52
53
      Beta(1)
                        1
54
55
56
57
                           Parameter Estimates
58
59
                                              Std. Err.
          Variable
                           Estimate
60
        Background
                                   0
                                                 NA
```

```
D-140 DRAFT – DO NOT CITE OR QUOTE
```

1	Beta(1)	0.056828	0.03	0.0340172			
23	Bela(2)	0		NA			
4	NA - Indicate	s that th	is parameter ha	as hit a bound	1			
5	implied	by some i	nequality const	traint and thu	lS			
6	has no s	tandard e	rror.					
7								
8								
9								
10			Analysis of I	Deviance Table	2			
11	Madal	Ter	lilalihaad) D]		
12	MODEL Full mod	LOG (-21 9204	eviance lest	DF P=\	Jaiue		
13	Full mod		-21.9204	1 84243	З	0 6057		
15	Reduced mod		-27 0337	10 2266	3	0.01674		
16	neudoca moa		27.0337	10.2200	5	0.010/1		
17	AI	C:	47.6832					
18								
19								
20		G	oodness of Fi	it				
21	_				- 1			
22	Dose	EstPro	b. Expected	Observed	Sıze	Chi^2 Res.		
25 24	 i · 1							
25	0 0000	0 0000	0 000	0	15	0 000		
26	i: 2	0.0000	0.000	0	10	0.000		
27	1.0000	0.0552	0.829	1	15	0.219		
28	i: 3							
29	3.0000	0.1567	2.351	4	15	0.832		
30	i: 4							
31	10.0000	0.4335	6.503	5	15	-0.408		
32		0		D 1				
33 34	Chi-square =	۷.	DZ DF = 3	P-value	e = 0.56/9			
35								
36	Benchmark	Dose Comp	utation					
37		L L L L						
38	Specified eff	ect =	0.1					
39								
40	Risk Type	=	Extra risk					
41								
42	Confidence le	vel =	0.95					
43		DMD	1 05400					
44 45		RWD =	1.85403					
43 46	ס	MDT	1 14367					
47	D	- 101	I.IIJ0/					
• •								

```
1
   LUBET_MT_BeP.OUT.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\LUBET_MT_BAP.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\LUBET_MT_BAP.plt
8
                                          Thu Jun 23 16:14:09 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
      Independent variable = COLUMN1
24
25
     Total number of observations = 4
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 3
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 2
30
31
32
    Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background =
                                            0
                         Beta(1) = 0.000632445
40
41
                         Beta(2) = 5.70088e-005
42
43
44
              Asymptotic Correlation Matrix of Parameter Estimates
45
46
              ( *** The model parameter(s) -Background
                                                      -Beta(1)
47
                   have been estimated at a boundary point, or have been
48
    specified by the user,
49
                   and do not appear in the correlation matrix )
50
51
                  Beta(2)
52
53
      Beta(2)
                        1
54
55
56
57
                           Parameter Estimates
58
59
                                              Std. Err.
          Variable
                           Estimate
60
        Background
                                  0
                                                 NA
```

D-142 DRAFT – DO NOT CITE OR QUOTE

1 Beta(1) 0 NA 2 Beta(2) 6.35618e-005 3.53139e-005 3 4 NA - Indicates that this parameter has hit a bound 5 implied by some inequality constraint and thus 6 has no standard error. 7 8 9 10 Analysis of Deviance Table 11 Model Log(likelihood) Deviance Test DF P-value 12 Full model -14.0378 13 0.224517 3 0.9735 19.0453 3 0.0002676 Fitted model -14.1501 14 15 Reduced model -23.5605 16 17 AIC: 30.3001 18 19 20 Goodness of Fit 21 22 Dose Est._Prob. Expected Observed Size Chi^2 Res. 23 _____ i: 1 24 25 0.0000 0.0000 0.000 0 15 0.000 i: 2 26 27 10.0000 0.0063 0.095 0 15 -1.006 28 i: 3 29 30.0000 0.0556 0.834 1 15 0.211 30 i: 4 31 100.0000 0.4704 7.056 7 15 -0.015 32 33 Chi-square = 0.13 DF = 3 P-value = 0.9878 34 35 36 Benchmark Dose Computation 37 38 Specified effect = 0.1 39 40 Risk Type = Extra risk 41 42 Confidence level = 0.95 43 44 BMD = 40.7137 45 18.2541 46 BMDL = 47

```
1
    MOHAPATRA_MT_BJAC.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\_PAH
5
    RPS\MODELING\MOHAPATRA_MT_BJAC.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\_PAH RPS\MODELING\MOHAPATRA_MT_BJAC.plt
8
                                          Thu Feb 08 10:11:06 2007
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
      P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2-beta3*dose^3-beta4*dose^4)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
      Independent variable = COLUMN1
24
25
     Total number of observations = 6
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 5
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 4
30
31
    Maximum number of iterations = 250
32
33
     Relative Function Convergence has been set to: 1e-008
     Parameter Convergence has been set to: 1e-008
34
35
36
37
                    Default Initial Parameter Values
38
39
                       Background =
                                            0
40
                         Beta(1) =
                                            0
                         Beta(2) =
41
                                            0
42
                         Beta(3) =
                                            0
43
                         Beta(4) = 6.31048e+018
44
45
46
              Asymptotic Correlation Matrix of Parameter Estimates
47
48
              ( *** The model parameter(s) -Background
                                                     -Beta(2)
                                                               -Beta(3)
49
                   have been estimated at a boundary point, or have been
50
    specified by the user,
                   and do not appear in the correlation matrix )
51
52
53
                  Beta(1)
                              Beta(4)
54
55
      Beta(1)
                        1 -0.73
56
57
      Beta(4) -0.73
                                   1
58
59
60
```

1			Parameter Es	stimates				
2	Variah		Fatimate	S+4	Frr			
4	Backgrou	nd	LSCIMACE 0	Scu.	JA			
5	Beta(1)	2.44509	0.56	58863			
6	Beta(2)	0	1	JA			
7	Beta(3)	0	NA				
8	Beta(4)	0.332129	0.77	78407			
9								
10	NA - Indicate	s that thi	s parameter has	s hit a bound				
11	implied	by some in	equality constr	caint and thus	5			
12	has no s	tandard er	ror.					
13								
14								
15			Analyzia of De	wiance Table				
17			Analysis of De	eviance labre				
18	Model	Loq(l	ikelihood) Dev	viance Test I	DF P-V	value		
19	Full mod	lel	-64.5493					
20	Fitted mod	el	-64.8387 (0.578751	4	0.9654		
21	Reduced mod	el	-198.931	268.764	5	<.0001		
22								
23	AI	C:	133.677					
24								
25		G -		_				
20		GO	odness of Fit					
28	Dose	Est Prob	Expected	Observed	Size	Chi^2 Res		
29								
30	i: 1							
31	0.0000	0.0000	0.000	0	48	0.000		
32	i: 2							
33	0.0100	0.0242	1.159	2	48	0.743		
34	1: 3	0 11 5 1		F	10	0 107		
33 36	0.0500 i· 1	0.1151	5.524	S	48	-0.107		
37		0 7116	34 155	34	48	-0 016		
38	i: 5	0.7110	51.155	51	10	0.010		
39	1.0000	0.9378	45.014	45	48	-0.005		
40	i: 6							
41	2.0000	1.0000	47.998	48	48	1.000		
42								
43	Chi-square =	0.6	8 $DF = 4$	P-value	= 0.9532			
44								
45	D l l-	D						
40 47	Benchmark	Dose Compu	Lation					
+/ 48	Specified off	ect =	0 92					
49	Specified eff		0.92					
50	Risk Type	=	Extra risk					
51								
52	Confidence le	vel =	0.95					
53								
54		BMD =	0.930952					
55	_	MDT	0 966006					
50 57	В	MDL =	0.766826					
51								

```
1
    MOHAPATRA_MT_BLAC.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\_PAH
5
    RPS\MODELING\MOHAPATRA_MT_BLAC.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\_PAH RPS\MODELING\MOHAPATRA_MT_BLAC.plt
8
                                          Thu Feb 08 10:13:14 2007
9
     _____
10
11
     BMDS MODEL RUN
12
    13
14
       The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2-beta3*dose^3-beta4*dose^4)]
18
19
       The parameter betas are restricted to be positive
20
21
22
       Dependent variable = COLUMN2
23
       Independent variable = COLUMN1
24
25
     Total number of observations = 6
26
     Total number of records with missing values = 0
27
     Total number of parameters in model = 5
28
     Total number of specified parameters = 0
29
     Degree of polynomial = 4
30
31
32
     Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
34
     Parameter Convergence has been set to: 1e-008
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.0997842
40
                          Beta(1) =
                                     0.189801
                          Beta(2) =
41
                                             0
42
                          Beta(3) =
                                             0
43
                          Beta(4) =
                                             0
44
45
46
              Asymptotic Correlation Matrix of Parameter Estimates
47
48
              ( *** The model parameter(s) -Background
                                                       -Beta(2) -Beta(3)
49
    -Beta(4)
50
                   have been estimated at a boundary point, or have been
51
    specified by the user,
52
                    and do not appear in the correlation matrix )
53
54
                   Beta(1)
55
56
      Beta(1)
                        1
57
58
59
60
                            Parameter Estimates
```

1	Variable	Ectimato	C+d	Frr	
3	Background		Stu.	JA	
4	Beta(1)	0.237265	0.027	/8061	
5	Beta(2)	0	Ň	IA	
6	Beta(3)	0	N	IA	
7	Beta(4)	0	N	IA	
8					
9	NA - Indicates that	this parameter ha	as hit a bound		
10	implied by some	e inequality const	raint and thus	3	
11	has no standar	d error.			
12					
13					
14					
15		Analysis of I	Deviance Table		
16					
17	Model L	og(likelihood) De	eviance Test D	DF P-V	value
18	Full model	-159.727			
19	Fitted model	-161.509	3.56545	5	0.6135
20	Reduced model	-243.072	166.691	5	<.0001
21					
22	AIC:	325.019			
23					
24					
25		Goodness of Fi	lt		
26					
27	Dose Est	Prob. Expected	Observed	Size	Chi^2 Res.
28					
29	i: 1				
30	0.0000 0.00	0.000	0	60	0.000
31	i: 2				
32	0.5000 0.11	6.712	8	60	0.216
33	i: 3				
34	1.0000 0.21	12 12.673	14	60	0.133
35	i: 4				
36	2.5000 0.44	74 26.845	31	60	0.280
37	i: 5				
38	5.0000 0.69	47 41.679	42	60	0.025
39	i: 6				
40	10.0000 0.90	68 54.406	51	60	-0.671
41					
42	Chi-square =	3.91 DF = 5	P-value	= 0.5620	
43					
44					
45	Benchmark Dose C	omputation			
46					
47	Specified effect =	0.83			
48					
49	Risk Type =	Extra risk			
50					
51	Confidence level =	0.95			
52					
53	BMD =	7.46828			
54					
55	BMDL =	6.45083			
56					

```
1
    MOHAPATRA_MT_BEAC.txt
2
    _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\_PAH
5
    RPS\MODELING\MOHAPATRA_MT_BEAC.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\ PAH RPS\MODELING\MOHAPATRA MT BEAC.plt
8
                                         Fri Feb 09 10:49:12 2007
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
      P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2-beta3*dose^3-beta4*dose^4)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
      Independent variable = COLUMN1
24
25
     Total number of observations = 6
     Total number of records with missing values = 0
26
27
     Total number of parameters in model = 5
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 4
30
31
32
    Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
     Parameter Convergence has been set to: 1e-008
34
35
36
37
38
                    Default Initial Parameter Values
39
                      Background = 0.0946116
40
                         Beta(1) =
                                    0.082434
41
                         Beta(2) =
                                            0
42
                                            0
                         Beta(3) =
43
                         Beta(4) =
                                            0
44
45
46
              Asymptotic Correlation Matrix of Parameter Estimates
47
48
              (*** The model parameter(s) -Beta(2) -Beta(3) -Beta(4)
49
                   have been estimated at a boundary point, or have been
50
    specified by the user,
51
                   and do not appear in the correlation matrix )
52
53
               Background
                              Beta(1)
54
55
    Background
                       1 -0.68
56
57
      Beta(1) -0.68
                                   1
58
59
60
```

1			Parameter I	Estimates				
2		-		a .				
3	Variab	ole	Estimate	Sto	d. Err.			
4	Backgrou		0.0246825	0.1	0.100013			
5	Beta(1) 2)	0.109348	0.0	0.0321778			
07	Beta(∠) 2)	0		NA			
/ Q	Beta(3)	0					
9	Beta (- T)	0		MA			
10	NA - Indicate	s that th	s parameter ha	as hit a bound	h			
11	implied	by some in	neguality const	traint and the	us			
12	has no s	tandard ei	ror.					
13								
14								
15								
16			Analysis of I	Deviance Table	е			
17								
18	Model	Log(]	Likelihood) De	eviance Test	DF P-v	ralue		
19	Full mod	lel	-101.226					
20	Fitted mod	lel	-104.24	6.02698	4	0.1971		
21	Reduced mod	lel	-126.655	50.8576	5	<.0001		
22								
23	AI	C:	212.479					
24								
25		9		• .				
20		GC	ooness of Fi	lt				
21	Doco	Fat Drok	Exported	Observed	Giro	ChiA2 Roc		
20		ESCPION	. Expected		5126	Z Res.		
30	i: 1							
31	0.0000	0.0247	0.889	0	36	-1.025		
32	i: 2							
33	0.5000	0.0766	2.757	4	36	0.488		
34	i: 3							
35	1.0000	0.1257	4.525	б	36	0.373		
36	i: 4							
37	2.5000	0.2580	9.287	13	36	0.539		
38	i: 5							
39	5.0000	0.4355	15.676	15	36	-0.076		
40	1: 6	0 6800	04.000	01	26	0 400		
41	10.0000	0.6732	24.236	21	36	-0.409		
42 42	Chi gruppo -	. E /			0.2449			
+5 44	cur-square =	5.4	DF = 4	P-value	= - 0.2448			
44								
46	Benchmark	Dose Comp	itation					
47	2 chi official h	_ 220 00mpt						
48	Specified eff	ect =	0.86					
49	_							
50	Risk Type	=	Extra risk					
51								
52	Confidence le	evel =	0.95					
53								
54		BMD =	17.9803					
33 56	_		10 5064					
50 57	E	змрт =	12./064					
51								

```
1
    PIENTA_MT_BAA.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\PIENTA_MT_BAA.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\PIENTA_MT_BAA.plt
8
                                          Tue Jul 05 13:52:46 2005
9
     _____
10
11
    BMDS MODEL RUN
    12
13
14
      The form of the probability function is:
15
16
       P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2-beta3*dose^3-beta4*dose^4)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
      Independent variable = COLUMN1
24
25
     Total number of observations = 6
     Total number of records with missing values = 0
26
27
     Total number of parameters in model = 5
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 4
30
31
32
    Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
     Parameter Convergence has been set to: 1e-008
34
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.00472474
40
                         Beta(1) =
                                            0
41
                         Beta(2) =
                                            0
42
                         Beta(3) = 2.31177e-005
43
                         Beta(4) =
                                            0
44
45
46
              Asymptotic Correlation Matrix of Parameter Estimates
47
48
              (*** The model parameter(s) -Beta(1) -Beta(2) -Beta(3)
49
                   have been estimated at a boundary point, or have been
50
    specified by the user,
51
                   and do not appear in the correlation matrix )
52
53
               Background
                              Beta(4)
54
55
    Background
                             -0.43
                       1
56
57
      Beta(4) -0.43
                                   1
58
59
60
```

1 Parameter Estimates 2 3 Variable Estimate Std. Err. 4 Background 0.00480466 0.0290234 5 Beta(1) 0 NA 6 Beta(2) 0 NA 7 Beta(3) 0 NA 8 Beta(4) 2.25394e-006 6.9765e-006 9 10 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus 11 has no standard error. 12 13 14 15 16 Analysis of Deviance Table 17 Model 18 Log(likelihood) Deviance Test DF P-value 19 Full model -67.8785 Fitted model -69.94914.141154-74.32712.89715 20 0.3872 21 Reduced model 0.02436 22 23 AIC: 143.898 24 25 26 Goodness of Fit 27 28 Dose Est._Prob. Expected Observed Size Chi^2 Res. 29 _____ 30 i: 1 31 0.0000 0.0048 1.100 0 229 -1.005 32 i: 2 1.081 33 0.1000 0.0048 1 225 -0.075 34 i: 3 35 0.5000 0.0048 2 252 1.211 0.655 36 i: 4 37 1.0000 0.0048 0.928 2 193 1.161 i: 5 38 5.0000 0.0062 1.936 39 1 312 -0.487 i: 6 40 10.0000 0.0270 6.746 41 7 250 0.039 42 Chi-square = 3.34 DF = 4 P-value = 0.5028 43 44 45 46 Benchmark Dose Computation 47 48 Specified effect = 0.01 49 50 Risk Type = Extra risk 51 52 Confidence level = 0.95 53 54 BMD = 8.17165 55 56 **** WARNING: Completion code = -2. Optimum not found. Trying new starting 57 point**** 58 59 BMDL = 4.47767 60

```
1
    PIENTA_MT_BAP.OUT.txt
2
     _____
3
           Multistage Model. $Revision: 2.1 $ $Date: 2000/08/21 03:38:21 $
4
           Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH
5
    RPS\MODELING\PIENTA_MT_BAP.(d)
6
           Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY
7
    DOCUMENTS\PAH RPS\MODELING\PIENTA_MT_BAP.plt
8
                                         Mon Jun 27 16:28:28 2005
9
     10
11
    BMDS MODEL RUN
12
    13
14
      The form of the probability function is:
15
16
      P[response] = background + (1-background)*[1-EXP(
17
    -beta1*dose^1-beta2*dose^2-beta3*dose^3-beta4*dose^4)]
18
19
      The parameter betas are restricted to be positive
20
21
22
      Dependent variable = COLUMN2
23
      Independent variable = COLUMN1
24
25
     Total number of observations = 5
     Total number of records with missing values = 0
26
27
     Total number of parameters in model = 5
28
    Total number of specified parameters = 0
29
    Degree of polynomial = 4
30
31
32
    Maximum number of iterations = 250
33
     Relative Function Convergence has been set to: 1e-008
     Parameter Convergence has been set to: 1e-008
34
35
36
37
38
                    Default Initial Parameter Values
39
                       Background = 0.00129459
                                   0.00056154
40
                         Beta(1) =
41
                         Beta(2) =
                                            0
42
                         Beta(3) =
                                            0
43
                         Beta(4) =
                                            0
44
45
46
              Asymptotic Correlation Matrix of Parameter Estimates
47
48
              ( *** The model parameter(s) -Beta(2) -Beta(3) -Beta(4)
49
                   have been estimated at a boundary point, or have been
50
    specified by the user,
51
                   and do not appear in the correlation matrix )
52
53
               Background
                              Beta(1)
54
55
    Background
                       1 -0.72
56
57
      Beta(1) -0.72
                                   1
58
59
60
```

1 Parameter Estimates 2 3 Variable Estimate Std. Err. 0.0310484 4 Background 0.000529694 5 0.000662444 0.00321227 Beta(1) 6 Beta(2) 0 NA 7 Beta(3) 0 NA 8 Beta(4) 0 NA 9 10 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus 11 has no standard error. 12 13 14 15 16 Analysis of Deviance Table 17 Model 18 Log(likelihood) Deviance Test DF P-value 19 Full model -64.5099 -65.0987 -65.0987 1.17762 3 -68.985 8.95024 4 20 Fitted model 0.7584 21 Reduced model 0.06236 22 23 AIC: 134.197 24 25 26 Goodness of Fit 27 28 Dose Est._Prob. Expected Observed Size Chi^2 Res. 29 _____ 30 i: 1 31 0.0000 0.0005 0.267 0 504 -1.001 32 i: 2 33 1.0000 0.0012 0.468 1 393 1.137 34 i: 3 35 5.0000 0.0038 2 406 1.557 0.286 36 i: 4 3.094 3 37 10.0000 0.0071 434 -0.031 38 i: 5 20.0000 0.0137 5.611 5 410 -0.110 39 40 41 Chi-square = 1.07 DF = 3 P-value = 0.7847 42 43 44 Benchmark Dose Computation 45 46 Specified effect = 0.01 47 48 Risk Type = Extra risk 49 50 Confidence level = 0.95 51 52 BMD = 15.1716 53 54 BMDL = 8.76437 55 PIENTA_MT_DBAHA.OUT.txt 56 _____ 57 Multistage Model. \$Revision: 2.1 \$ \$Date: 2000/08/21 03:38:21 \$ 58 Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH 59 RPS\MODELING\PIENTA_MT_DBAHA.(d)

1 Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY 2 DOCUMENTS\PAH RPS\MODELING\PIENTA_MT_DBAHA.plt 3 Mon Jun 27 16:35:08 2005 4 _____ 5 6 BMDS MODEL RUN 7 8 9 The form of the probability function is: 10 11 P[response] = background + (1-background)*[1-EXP(12 -beta1*dose^1-beta2*dose^2)] 13 The parameter betas are restricted to be positive 14 15 16 17 Dependent variable = COLUMN2 Independent variable = COLUMN1 18 19 20 Total number of observations = 4 21 Total number of records with missing values = 022 Total number of parameters in model = 3 23 Total number of specified parameters = 0 24 Degree of polynomial = 225 26 27 Maximum number of iterations = 250 28 Relative Function Convergence has been set to: 1e-008 29 Parameter Convergence has been set to: 1e-008 30 31 32 33 Default Initial Parameter Values Background = 0.000660992 34 35 Beta(1) = 0.02079836 Beta(2) =Ο 37 38 39 Asymptotic Correlation Matrix of Parameter Estimates 40 41 (*** The model parameter(s) -Background -Beta(2) 42 have been estimated at a boundary point, or have been 43 specified by the user, 44 and do not appear in the correlation matrix) 45 46 Beta(1) 47 48 Beta(1) 1 49 50 51 52 Parameter Estimates 53 54 Variable Std. Err. Estimate 55 Background 0 NA 56 0.0227021 Beta(1) 0.0618036 57 Beta(2) 0 NA 58 59 NA - Indicates that this parameter has hit a bound 60 implied by some inequality constraint and thus

1 has no standard error. 2 3 4 5 Analysis of Deviance Table 6 7 Model Log(likelihood) Deviance Test DF P-value Full model -40.1618 8 -41.05511.7866530.6178-45.730111.136730.01101 9 Fitted model 10 Reduced model 11 12 AIC: 84.1102 13 14 15 Goodness of Fit 16 Dose Est._Prob. Expected Observed Size Chi^2 Res. 17 _____ 18 19 i: 1 20 0.0000 0.0000 0.000 0 229 0.000 21 i: 2 0.1000 0.0023 0.497 22 0 219 -1.002 23 i: 3 0.5000 0.0113 2.630 4 233 0.527 24 25 i: 4 1.0000 0.0224 4.871 26 4 217 -0.183 27 28 Chi-square = 1.38 DF = 3 P-value = 0.7105 29 30 31 Benchmark Dose Computation 32 33 Specified effect = 0.01 34 35 Risk Type = Extra risk 36 Confidence level = 37 0.95 38 39 BMD = 0.442705 40 41 BMDL = 0.260515 42 43 44

1 D.7. IN VITRO DNA DAMAGE

2 JOHNSEN_DNA_DAM_BJAC.OUT.txt 3 4 Polynomial Model. Revision: 2.2 Date: 9/12/2002 5 Input Data File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY DOCUMENTS\PAH 6 RPS\MODELING\JOHNSEN_DNA_DAM_BAP.(d) 7 Gnuplot Plotting File: C:\DOCUMENTS AND SETTINGS\HCLYNCH\MY 8 DOCUMENTS\PAH RPS\MODELING\JOHNSEN_DNA_DAM_BAP.plt 9 Mon Jul 04 21:51:27 2005 10 ______ 11 12 BMDS MODEL RUN 13 14 15 The form of the response function is: 16 17 Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... 18 19 20 Dependent variable = MEAN 21 Independent variable = COLUMN1 22 rho is set to 0 23 Signs of the polynomial coefficients are not restricted 24 A constant variance model is fit 25 26 Total number of dose groups = 327 Total number of records with missing values = 0 28 Maximum number of iterations = 250 29 Relative Function Convergence has been set to: 1e-008 30 Parameter Convergence has been set to: 1e-008 31 32 33 34 Default Initial Parameter Values 35 alpha = 5.88667 36 rho = Specified 0 37 beta_0 = 4.94396 0.150549 38 beta 1 = 39 40 41 42 Parameter Estimates 43 44 95.0% Wald 45 Confidence Interval 46 Variable Std. Err. Lower Conf. Limit Estimate Upper Conf. Limit 47 48 1.95447 alpha 4.14606 0.315366 49 7.97675 50 0.875754 beta_0 4.94396 3.22751 51 6.6604 52 beta_1 0.150549 0.0503107 0.0519422 53 0.249157 54 55 56 Asymptotic Correlation Matrix of Parameter Estimates 57 58 alpha beta O beta 1 59 alpha 1 7.6e-015 1.7e-015

1 -0.63 1 beta_0 7.6e-015 -0.63 1.7e-015 2 beta_1 1 3 4 5 Table of Data and Estimated Values of Interest 6 7 N Obs Mean Obs Std Dev Est Mean Est Std Dev Chi^2 Dose 8 Res. 9 ___ _____ _____ _____ _____ ____ _____ 10 11 0 3 3 3 4.942.045.42.049.462.04 1.3 2.1 3.4 1.3 -0.463 0.514 -0.0514 4.4 12 13 б 30 3 9.4 14 15 16 17 Model Descriptions for likelihoods calculated 18 19 20 Model A1: Yij = Mu(i) + e(ij) 21 22 Var{e(ij)} = Sigma^2 23 Model A2: Yij = Mu(i) + e(ij) 24 25 Var{e(ij)} = Sigma(i)^2 26 27 Model R: Yi = Mu + e(i)28 Var{e(i)} = Sigma^2 29 30 31 Likelihoods of Interest 32 --Stirkellhood)DFAIC-10.652512429.305023-9.359638630.719276-10.899709225.799418-14.037484232.074067 Model 33 Log(likelihood) DF 34 A1 35 A2 36 fitted 37 R 38 39 Test 1: Does response and/or variances differ among dose 40 levels 41 (A2 vs. R) 42 Test 2: Are Variances Homogeneous (A1 vs A2) 43 Test 3: Does the Model for the Mean Fit (A1 vs. fitted) 44 45 Tests of Interest 46 47 Test -2*log(Likelihood Ratio) Test df p-value 48 4 49 Test 1 9.35569 0.009299 50 Test 2 2.58575 2 0.2745 51 Test 3 0.494395 1 0.482 52 53 The p-value for Test 1 is less than .05. There appears 54 to be a 55 difference between response and/or variances among the 56 dose levels. 57 It seems appropriate to model the data 58 59 The p-value for Test 2 is greater than .05. A 60 homogeneous variance

```
1
    model appears to be appropriate here
2
3
4
    The p-value for Test 3 is greater than .05. The model
5
    chosen appears
6
7
    to adequately describe the data
8
9
10
    Benchmark Dose Computation
11
    Specified effect =
                               7.6
12
13
    Risk Type = Point risk
14
15
    Confidence level =
                             0.95
16
                         17.6423
17
               BMD =
18
19
20
               BMDL = 9.58925
21
```

APPENDIX E. CALCULATION OF RPFs

2 3

					Relative potency calculation								
Record	D	Tumor	C.	DAU	DMD	D) (D	Point estimate extra risk	Point estimate	Dentition	Converted	Converted dose	DDE	Guarante
no.	Reference	type(s)	Sex	РАН	BMR	<u>BMD</u>	response	dose	Dose units	dose	units	KPF	Comments
600	Habs et al	Sum of	F	BaP	0.1	0.91	e carcinogen	icity studies	ng/animal			1	High dose dropped
000	1980	Papilloma, carcinoma, sarcoma	1	Dai	0.1	0.91			pg/anniar			1	ingii dose diopped
			F	BbF	0.1	3.8			pg/animal			0.24	
13640	Cavalieri et al., 1983	Papilloma, adenoma, carcinoma	F	BaP	0.1	5.3			nmol	0.001	mg	1	
			F	CPcdP	0.1	47			nmol	0.011	mg	0.13	
620	Hoffmann and Wynder, 1966	Papillomas	F	BaP	0.1	0.0031			%			1	
			F	DBaeP	0.1	0.0094			%			0.33	Toxicity resulted in significant mortality unrelated to tumor induction.
			F	DBaiP	0.1	0.0042			%			0.74	
			F	DBaeF	0.1	0.0028			%			1.1	
17660	Cavalieri et al., 1977	Papilloma, kerato- acanthoma, carcinoma	F	BaP			0.79	0.396				1	
			F	AA			0.47	0.396	µmol/ application	0.109	mg/ application	0.55	
	T	1	1	n	-		Initiation stu	dies					
630	LaVoie et al., 1982	Primarily squamous cell papilloma	F	BaP			0.85	30	µg/animal			1	
			F	BbF			0.8	100	µg/animal			0.28	No model fit. Point estimate using incidence/ dose point closest to BaP incidence.
			F	BjF	0.85	209			µg/animal			0.14	High dose dropped
			F	BkF	0.85	1,163			µg/animal			0.03	
18570	Hecht et al., 1974	Unspecified	F	BaP			0.3	0.05	mg/animal			1	

Table E-1. Dermal bioassays: RPF calculations for incidence data

					Relative potency calculation								
Record	Reference	Tumor type(s)	Sex	РАН	BMR	BMD	Point estimate extra risk response	Point estimate dose	Dose units	Converted	Converted dose units	RPF	Comments
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	F	СН			0.58	1	mg/animal			0.10	
21420	Slaga et al., 1980	Papilloma	F	BaP			0.64	200	nmol	0.050	mg	1	
			F	СН			0.71	2,000	nmol	0.457	mg	0.12	Not clear if BaP administered simultaneously. Control groups pooled for analysis.
			F	DBahA			0.45	100	nmol	0.028	mg	1.27	
15640	Raveh et al., 1982	Papilloma	F	BaP	0.1	2.2			μg			1	
			F	CPcdP	0.1	30			μg			0.07	
620	Hoffmann and Wynder, 1966	Papillomas	F	BaP			0.79	0.25	mg/animal			1	
			F	DBaeF			0.57	0.25	mg/animal			0.73	
			F	DBaeP			0.33	0.25	mg/animal			0.41	
			F	DBahP			0.7	0.25	mg/animal			0.90	
			F	DBaiP			0.36	0.25	mg/animal			0.45	
			F	N23eP			0.25	0.25	mg/animal			0.32	
13650	Cavalieri et al., 1981b	Papillomas	F	BaP			0.33	0.2	μmol	0.050	mg	1	
			F	CPcdP			0.23	0.6	μmol	0.136	mg	0.26	Mid dose borderline significant, high dose not, trend not; no model fit; RPF uses mid dose for point estimate.
15700	Rice et al., 1988	Unspecified	F	BaP			0.89	0.1	µmol	0.025	mg	1	
			F	СН			0.89	0.5	μmol	0.114	mg	0.22	No model fit. Point estimate using point closest to BaP incidence.
			F	CPdefC	0.88	0.22			μmol	0.053	mg	0.48	
			F	BbcAC			0.89	2	μmol	0.481	mg	0.05	No model fit. Point estimate using point closest to BaP incidence.
24800	Nesnow et al., 1984	Papilloma	М	BaP			0.67	200	nmol	0.050	mg	1	

Table E-1. Dermal bioassays: RPF calculations for incidence data

			1		1			_					
									Relative pot	ency calcula	tion		
							Point	D • /			a		
							estimate	Point			Converted		
Record		Tumor					extra risk	estimate		Converted	dose		
no.	Reference	type(s)	Sex	PAH	BMR	BMD	response	dose	Dose units	dose	units	RPF	Comments
			М	BeAC	0.67	393			nmol	0.099	mg	0.51	Three high doses dropped
													due to plateau
			М	BlAC	0.67	50			nmol	0.013	mg	4.00	Three high doses dropped
											-		due to plateau
			F	BaP			0.51	200	nmol	0.050	mg	1	
			F	BeAC	0.51	195			nmol	0.049	mg	1.03	Two high doses dropped to
													achieve model fit
			F	BlAC	0.51	30			nmol	0.008	mg	6.67	

Table E-1. Dermal bioassays: RPF calculations for incidence data

Table E-2. Dermal bioassays: RPF calculations for multiplicity data

					Relative potency calculation							
					Point							
					estimate	Point	-	~				
D 1	D.C		G	DAT	extra risk	estimate	Dose	Converted	Converted	DDE		
Record no.	Reference	Tumor type(s)	Sex	PAH	response	dose	units	dose	dose units	KPF	Comments	
12640	Constitution of all	D:11	Б		Com	plete carcino	genicity s	tudies		1	V/	
13040	1983	adenoma,	Г	БаР	1.5	20	nmoi	0.0050	mg	1	variance not reported	
-		curentoniu	F	CPcdP	2.5	200	nmol	0.045	mg	0.18	Variance not reported	
13650	Cavalieri et al., 1981b	Primarily squamous cell	US	BaP	1.5	0.2	µmol	0.050	mg	1		
		carcinonia	US	CDadD	0.80	0.2	umal	0.045	ma	0.50	Variance not reported	
			05	Crear	0.80	0.2 Initiation	studies	0.045	mg	0.39	variance not reported	
630	LaVoie et al	Primarily	F	BaP	49	30	IIO			1		
000	1982	squamous cell papilloma	-	5 m	112	50	۳۵			1		
			F	BbF	7.1	100	μg			0.43	Variance not reported	
			F	BjF	7.2	1,000	μg			0.044	Variance not reported	
			F	BkF	2.8	1,000	μg			0.017	Variance not reported	
18570	Hecht et al., 1974	Unspecified	F	BaP	0.5	0.05	mg			1		
			F	СН	1.0	1	mg			0.10		
21420	Slaga et al., 1980	Papilloma	F	BaP	2.1	200	nmol	0.050	mg	1		
			F	СН	1.5	2,000	nmol	0.46	mg	0.078		
			F	DBahA	1.3	100	nmol	0.028	mg	1.1		
15640	Raveh et al., 1982	Papilloma	F	BaP	1.1	10	μg			1	Variance not reported	
			F	CPcdP	0.7	200	μg			0.032	Variance not reported	
13650	Cavalieri et al., 1981	Papillomas	F	BaP	1.1	0.2	μmol	0.050	mg	1		
			F	CPcdP	0.17	0.6	μmol	0.14	mg	0.060	Variance not reported	
21410	Slaga et al., 1978	Papillomas	F	BaP	5.2	0.2	μmol	0.050	mg	1		
			F	BaA	1.1	2	μmol	0.46	mg	0.023		
16310	Weyand et al., 1992	Unspecified	US	BaP	4.0	0.01	μmol	0.0025	mg	1		
			US	BjF	4.0	1	μmol	0.252	mg	0.010	Variance not reported	
10200	El-Bayoumy et al., 1982	Primarily squamous cell papilloma	F	BaP	7.0	0.05	mg			1		

								Relati	ve potency calc	ulation	
Record no.	Reference	Tumor type(s)	Sex	РАН	Point estimate extra risk response	Point estimate dose	Dose	Converted dose	Converted dose units	RPF	Comments
			F	СН	7.6	1	mg			0.054	
24300	Rice et al., 1985	Unspecified	F	BaP	7.9	0.3	mg			1	
			F	СН	4.9	1	mg			0.18	
			F	CPdefC	5.5	1	mg			0.21	
13660	Cavalieri et al., 1991	Primarily papilloma	F	BaP Expt I	5.2	300	nmol	0.0757	mg	1	16 Wk experiment; variance not reported
			F	DBalP Expt I	6.8	33.3	nmol	0.010	mg	9.7	
13660	Cavalieri et al., 1991	Primarily papilloma	F	BaP Expt II	3.4	100	nmol	0.0252	mg	1	27 Wk experiment; variance not reported
			F	DBalP Expt II	7.0	4	nmol	0.0012	mg	42	
24800	Nesnow et al., 1984	Papillomas	М	BaP	1.4	200	nmol	0.050	mg	1	Variance not reported
			М	BeAC	1.3	250	nmol	0.063	mg	0.74	Variance not reported
			Μ	BlAC	1.4	50	nmol	0.013	mg	4.0	Variance not reported
			F	BaP	1.5	200	nmol	0.050	mg	1	Variance not reported
			F	BeAC	1.1	250	nmol	0.063	mg	0.58	Variance not reported
			F	BlAC	1.1	50	nmol	0.013	mg	2.9	Variance not reported

Table E-2. Dermal bioassays: RPF calculations for multiplicity data

Table E-3. Intraperitoneal bioassays: RPF calculations for incidence data

						Relative potency calculation								
Record no.	Reference	Target organ	Tumor type(s)	Sex	РАН	BMR	BMD	Point estimate extra risk response	Point esti- mate dose	Dose units	Converted dose	Converted dose units	RPF	Comments
17560	Busby et al., 1989	Lung	Adenoma, adenocar- cinoma	F	BaP			0.68	59.5	μg			1	
					FA			0.26	257.6	μg			0.09	
640	LaVoie et al., 1987	Lung	Adenoma	М	BaP			0.82	1.1	µmol/ mouse	0.28	mg/ mouse	1	
					BjF			0.52	1.1	µmol/ mouse	0.28	mg/ mouse	0.64	Do not use: use liver or lung RPF below
				F	BaP			0.64	1.1	µmol/ mouse	0.28	mg/ mouse	1	
					BjF			0.22	1.1	umol/ mouse	0.28	mg/ mouse	0.35	Do not use: use liver or lung RPF below
		Liver	Adenoma, hepatoma	М	BaP			0.75	1.1	µmol/ mouse	0.28	mg/ mouse	1	
					BbF			0.5	0.5	µmol/ mouse	0.13	mg/ mouse	1.50	Do not use: use liver or lung RPF below
					BjF			0.49	1.1	µmol/ mouse	0.28	mg/ mouse	0.66	Do not use: use liver or lung RPF below
		Liver or lung	Adenoma, hepatoma	М	BaP			0.75	1.1	µmol/ mouse	0.28	mg/ mouse	1	
					BbF			0.51	0.5	µmol/ mouse	0.13	mg/ mouse	1.50	
					BjF			0.8	1.1	µmol/ mouse	0.28	mg/ mouse	1.10	
				F	BaP			0.64	1.1	µmol/ mouse	0.28	mg/ mouse	1	
					BjF			0.22	1.1	µmol/ mouse	0.28	mg/ mouse	0.35	
7510	LaVoie et al., 1994	Lung	Total	М	BaP			0.7	1.1	µmol/ mouse	0.28	mg/ mouse	1	
					FA	0.7	22			µmol/ mouse	4.45	mg/ mouse	0.06	Do not use: male liver RPF is higher

						Relative potency calculation								
Record no.	Reference	Target organ	Tumor type(s)	Sex	РАН	BMR	BMD	Point estimate extra risk response	Point esti- mate dose	Dose units	Converted dose	Converted dose units	RPF	Comments
				F	BaP			0.83	1.1	µmol/	0.28	mg/	1	
										mouse		mouse		
					FA	0.83	17			µmol/	3.44	mg/	0.08	
										mouse		mouse		
		Liver	Foci, aden- oma, carcinoma	М	BaP			0.81	1.1	μmol	0.28	mg/ mouse	1	
					FA	0.81	6.4			μmol	1.29	mg/ mouse	0.21	
22510	Wislocki et al., 1986	Liver	Adenoma, carcinoma	М	BaP			0.44	560	nmol	0.14	mg	1	
					СН	0.44	3,339			nmol	0.76	mg	0.19	Using pooled controls
					BaA			0.77	2,800	nmol	0.64	mg	0.39	
		Lung	Unspecified	М	BaP			0.3	560	nmol	0.14	mg	1	
					СН	0.3	5,601			nmol	1.28	mg	0.11	Do not use: male liver RPF is higher. Using pooled controls
				F	BaP			0.46	560	nmol	0.14	mg	1	
					BaA			0.16	2,800	nmol	0.64	mg	0.08	

Table E-3. Intraperitoneal bioassays: RPF calculations for incidence data

Table E-4. Intraperitoneal bioassays: RPF calculations for multiplicity data

	RPF Calculation													
Record no.	Reference	Target organ(s)	Tumor type(s)	Sex	РАН	BMR	BMD	Point estimate extra risk response	Point estimate dose	Dose units	Converted dose	Converted dose units	RPF	Comments
17560	Busby et al.,	Lung	Adenoma,	F	BaP			1.11	59.5	μg			1	
	1989		adenocarcinoma					0.00					0.0.40	
7510		T			FA			0.33	257.6	μg	0.00		0.069	
7510	LaVoie et al., 1994	Lung	Total	М	BaP			4.13	1.1	μmol	0.28	mg	1	
					FA			0.95	17.30	μmol	3.50	mg	0.018	Do not use: male liver RPF is higher
				F	BaP			3.40	1.1	μmol	0.28	mg	1	
					FA			2.30	17.30	μmol	3.50	mg	0.054	
		Liver	Foci, adenoma, carcinoma	М	BaP			4.12	1.1	μmol	0.28	mg	1	
					FA			1.45	3.46	μmol	0.700	mg	0.14	
22510	Wislocki et al., 1986	Liver	Adenoma, carcinoma	М	BaP			1.36	560	nmol	0.141	mg	1	
	,				СН			0.93	2,800	nmol	0.639	mg	0.15	Using pooled controls
					BaA			2.28	2,800	nmol	0.639	mg	0.37	
13610	Busby et al., 1984	Lung	Adenoma, carcinoma	М	BaP			4.28	0.28	mg			1	No model fit
					FA	4.28	9.99			mg			0.028	
				F	BaP			3.56	0.28	mg			1	No model fit
					FA	3.56	32.28			mg			0.0086	
24590	Nesnow et al., 1998b	Lung	NS	М	BaP			3.85	50	mg/kg			1	No model fit
					BbF	3.85	123			mg/kg			0.41	BMR = BaP response
					CPcdP			4.15	50	mg/kg			1.1	No model fit
					DBahA	3.85	3.57			mg/kg			14	BMR = BaP response
					DBalP			3.66	1.5	mg/kg			32	No model fit
11190	Mass et al., 1993	Lung	NS	US	BaP			5.05	100	mg/kg			1	No model fit
					BjAC			59.45	20	mg/kg			59	No model fit

2

					Relative potency calculation						
							Point estimate	Point estimate			
Record no.	Reference	Target organ(s)	Tumor type(s)	PAH	BMR	BMD	response	dose	Dose units	RPF	Comments
17940	Deutsch-Wenzel et al., 1983	Lung	Sum carcinoma + sarcoma	BaP	0.1	0.032			mg	1	
				AA	0.1	0.14			mg	0.24	
				BbF	0.1	0.33			mg	0.10	
				BghiP	0.1	3.5			mg	0.0092	
				BjF	0.1	1.0			mg	0.032	
				BkF	0.1	1.1			mg	0.031	
				IP	0.1	0.44			mg	0.074	
22000	Wenzel-Hartung et al., 1990	Lung	Carcinoma	BaP	0.1	0.033			mg/ animal	1	
				СН	0.1	0.85			mg/ animal	0.038	
				BaP	0.57	0.20			mg/ animal	1	
				DBahA			0.57	0.1	mg/ animal	2.0	Single dose

Table E-5. Lung implantation bioassays: RPF calculations (incidence data)
Table E-6. In vivo DNA adducts: RPF calculations

								Relative 1	potency calculation			
Record no.	Reference	Target organ(s)/route	РАН	AUC	AUC vs. dose	Point estimate extra risk response	Point estimate dose	Dose units	Converted dose	Converted dose units	RPF	Comments
6210	Arif et al., 1997	Sum of adducts in mammary gland, lung, heart, pancreas, bladder, liver	BaP			325	0.25	µmol/ mammary gland	0.063	mg/ mammary gland	1	
			DBalP			2,245	0.25	µmol/ mammary gland	0.076	mg/mammary gland	5.8	
17630	Cavalieri et al., 1981a	Skin 4-hr	BaP			16	0.2	µmol/animal	0.050	mg/animal	1	Higher of 2 values measured at 4 hrs
			ACEP			2.2	0.2	µmol/animal	0.046	mg/animal	0.15	Higher of 2 values measured at 4 hrs
			CPcdP			8.8	0.2	µmol/animal	0.045	mg/animal	0.61	Higher of 2 values measured at 24 hrs
18810	Hughes and Phillips, 1990	Sum of skin and lung	BaP			9	1	µmol	0.25	mg	1	RPFs based on peaks; digitizing not possible. Peaks reached at different times postdosing.
			DBaeP			cannot determine	1	μmol			NA	
			DBahP			3.2	1	μmol	0.30	mg	0.30	
			DBaiP			0.85	1	μmol	0.30	mg	0.079	
			DBalP			65	1	μmol	0.30	mg	6.0	
11190	Mass et al., 1993	Lung	BaP		470			mg/kg			1	
			BjAC		464			mg/kg			0.99	Ratio of slopes of AUC vs. dose. BjAC plot shows curvature
8010	Nesnow et al., 1993b	Total of lung, liver, and peripheral blood lymphocytes	BaP	52,084			100	mg/kg			1	
			BbF	11,314			100	mg/kg			0.22	Ratio of (sum of AUCs)/dose

Table E-6. In vivo DNA adducts: RPF calculations

				Relative potency calculation								
Record no.	Reference	Target organ(s)/route	РАН	AUC	AUC vs. dose	Point estimate extra risk response	Point estimate dose	Dose units	Converted dose	Converted dose units	RPF	Comments
24590	Nesnow et	Lung	BaP		113	P		mg/kg			1	Ratio of slopes of
	al., 1998b							6 6				AUC vs. dose as reported by authors
			BbF		38			mg/kg			0.33	
			CPcdP		148			mg/kg			1.3	
			DBahA		219			mg/kg			1.9	
			DBalP		1,390			mg/kg			12	
22810	Phillips et al., 1979	Skin	BaP			27	1		0.25	mg/animal	1	Ratio of peak levels. Peaks reached at different times
			DBacA			10	1	µmol/animal	0.28	mg/animal	0.34	
			DBahA			15	1	µmol/animal	0.28	mg/animal	0.50	
24790	Kligerman et al., 2002	Mouse peripheral blood lymphocytes/ intraperitoneal	BaP			4,186	100	mg/kg			1	Ratio of single measure on d 7 postdosing
			BaA			93	100	mg/kg			0.022	
			BbF			516	100	mg/kg			0.12	
			СН			81	100	mg/kg			0.019	
		Mouse peripheral blood lymphocytes/ gavage	BaP			143	100	mg/kg			1	
			BaA			32	100	mg/kg			0.22	
			BbF			39	100	mg/kg			0.27	
			СН			37	100	mg/kg			0.26	
		Rat peripheral blood lymphocytes/ intraperitoneal	BaP			755	100	mg/kg			1	
			BaA			38	100	mg/kg			0.05	
			BbF			63	100	mg/kg			0.083	
			СН			24	100	mg/kg			0.032	
		Rat peripheral blood lymphocytes/ gavage	BaP			177	100	mg/kg			1	
			BaA			20	100	mg/kg			0.11	
			BbF			17	100	mg/kg			0.1	
			СН			10	100	mg/kg			0.056	

Table E-7. In vivo clastogenicity or sister chromatid exchange: RPF calculation

						R			elative poter	ncy calcula	ation	
								Point				
								estimate				
Record	De	D (Data type: quantal	DAT		DIAD	extra risk	Point esti-	Dose	DDE	C (
no.	Reference	Route	Endpoint	or continuous	PAH	BMK	BMD	response	mate dose	units	<u>RPF</u>	Comments
24740	Allen et al.,	Intraperitoneal	Micronucleated	Q	BaP			0.0086	200	mg/kg	1	
	1999		polychromatic									
			marrow (A/I mouse)									
			marrow (A/J mouse)		DBalP			0.0013	15	mo/ko	20	Model won't predict
					DDall			0.0015	1.5	iiig/ Kg	20	BaP BMR, RPF based
												on peak
		Intraperitoneal	Micronucleated	Q	BaP			0.0067	200	mg/kg	1	· · · ·
		1	polychromatic							00		
			erythrocytes in									
			peripheral blood									
			(A/J mouse)									
					DBalP			0.0015	6	mg/kg	7.5	Model won't predict
												BaP BMR. RPF based
		T			D D			0.0010	200			on peak
		Intraperitoneal	Micronucleated	Q	BaP			0.0019	200	mg/kg	1	
			polychromatic									
			marrow (p53 wt									
			mouse)									
			mouse)		DBalP			0.0042	12	mg/kg	37	Model won't predict
					DDuii			0.000.2			67	BaP BMR. RPF based
												on peak
		Intraperitoneal	Micronucleated	Q	BaP			0.0022	200	mg/kg	1	
		_	polychromatic									
			erythrocytes in									
			peripheral blood									
			(p53 wt mouse)									
					DBalP			0.0011	18	mg/kg	5.6	BMD doesn't reflect
												selected BMR. RPF
												based on peak.
14270	He and Baker,	Dermal	micronuclei	Q	BaP			0.064	50	µg/anim	1	No model fit. RPF
	1991									al		based on peak.
					СН			0.05	500	µg/anim	0.078	No model fit. RPF
				1	1		1			al		based on peak.

					Relative potency calculation							
Record				Data type: quantal				Point estimate extra risk	Point esti-	Dose		
no.	Reference	Route	Endpoint	or continuous	PAH	BMR	BMD	response	mate dose	units	RPF	Comments
17190	Bayer, 1978	Intraperitoneal	Sister chromatid exchanges	С	BaP			4.2	100	mg/kg	1	No model fit. RPF based on peak.
					PH			0.9	100	mg/kg	0.21	No model fit. RPF based on peak.
20950	Roszinsky- Kocher et al., 1979	Intraperitoneal	Sister chromatid exchanges	С	BaP			6.7	900	mg/kg	1	
					DBahA			1	900	mg/kg	0.15	
					CH			1.2	900	mg/kg	0.18	
					PH			1.6	900	mg/kg	0.24	
					BeP			1.6	900	mg/kg	0.24	
					BbF			1.7	900	mg/kg	0.25	
					BaA			2.2	900	mg/kg	0.33	
24720	Kligerman et al., 1986	Gavage	Sister chromatid exchanges	С	BaP			8	63	mg/kg	1	No SD for control
					BIAC			16	126	mg/kg	1.1	No SD for control; RPF based on lowest dose approaching peak
24790	Kligerman et al., 2002	Intraperitoneal	Sister chromatid exchanges	С	BaP			12.42	100	mg/kg	1	
					BaA			6.01	100	mg/kg	0.48	
					BbF			13.46	100	mg/kg	1.1	
					CH			3.17	100	mg/kg	0.26	
		Gavage	Sister chromatid exchanges	С	BaP			6.79	100	mg/kg	1	
					BaA			2.26	100	mg/kg	0.33	
		Gavage	Micronuclei	Q	BaP			0.0025	100	mg/kg	1	
					BbF			0.0017	100	mg/kg	0.68	

Table E-7. In vivo clastogenicity or sister chromatid exchange: RPF calculation

				Relative potency calculation									
Record	Deferrer	DATI	Data type: quantal or	DMD	BMD	Clana	Point estimate extra risk	Point esti-	Derreite	Converted	Converted dose	DDE	Commente
no.	Andrews	PAH DoD	continuous	BMK	BMD	Slope	response	mate dose	Dose units	dose	units		Comments
17050	al., 1978	Dar	L				1,551	230	μg			1	
		DBacA	С				2,807	10	μg			46	
		DBajA	С				693	10	μg			11	
		DBahA	С				467	25	μg			3	
		AA	С				1,645	250	μg			1.1	
		BghiP	С				642	100	μg			1	
		BeP	С				492	1,000	μg			0.08	
23830	Baker et al., 1980	BaP	С				1,144	2.5	µg/plate			1	
		DBaiP	С				603	5	µg/plate			0.26	
		BaA	С				813	10	µg/plate			0.18	
		DBacA	С				1,604	2.5	µg/plate			1.4	
		DBahA	С				1,197	5	µg/plate			0.52	
23660	Bartsch et al., 1980	BaP	С				29,000	0.027	µmol/plate	0.007	mg/plate	1	
		BaA	С				6,000	0.067	µmol/plate	0.015	mg/plate	0.092	
17380	Bos et al., 1988	BaP	С				739	7.5	μg/plate			1	RPF based on peak response. BaP response well above range for other data sets; model fit required dropping high doses but not appropriate given BMR target.
		PH	С				155	25	µg/plate			0.063	
		Pyr	С				193	25	µg/plate			0.078	
17590	Carver et al., 1986	BaP	С				895	50	µg/plate			1	Continuous data, no SD; RPF based on peak or lowest dose approaching peak
		BaA	С				1,123	50	µg/plate			1.3	
		BghiF	С				845	50	µg/plate			0.94	
		Pery	С				853	10	µg/plate			4.8	
17630	Cavalieri et al., 1981a	BaP	Q				0.00126	60	μM	15.1	mg/L	1	RPF based on peak; no model fit
		CPcdP	Q				0.0013	40	μΜ	9.1	mg/L	1.7	RPF based on peak; no model fit

			Relative potency calculation										
Record no.	Reference	РАН	Data type: quantal or continuous	BMR	BMD	Slope	Point estimate extra risk response	Point esti- mate dose	Dose units	Converted dose	Converted dose units	RPF	Comments
		ACEP	Q				0.0005	120	μМ	27.4	mg/L	0.22	RPF based on peak; BMD doesn't coincide with selected BMR.
9620	Chang et al., 2002	BaP	С				2,217	5	μg/plate			1	Continuous data, no SD; RPF based on peak or lowest dose approaching peak
		BghiF	С				1,304	5	µg/plate			0.59	
		BcPH	С				717	10	µg/plate			0.16	
24030	De Flora et al., 1984	BaP	NA			185			revertants/nmol	733,196	revertants/mg	1	RPFs based on potency estimates as reported by authors
		BaA	NA			12			revertants/nmol	52,565	revertants/mg	0.072	
		BeP				1.6			revertants/nmol	6,341	revertants/mg	0.009	
		Pery	NA			21			revertants/nmol	83,229	revertants/mg	0.11	
18050	Eisenstadt and Gold, 1978	BaP	С				1,705	2	μg			1	Uses S9 level with max BaP response; CPcdP max at much lower S9
		CPcdP	С				134	1	μg			0.16	
18180	Florin et al., 1980	BaP	С				255	0.003	µmol/plate	0.001	mg/plate	1	TA100
		BaA	С				326	0.1	µmol/plate	0.023	mg/plate	0.042	
		СН	С				196	0.005	µmol/plate	0.001	mg/plate	0.51	
		BaP	С				235	0.003	µmol/plate	0.001	mg/plate	1	TA 98
		CO	С				82	0.07	µmol/plate	0.021	mg/plate	0.013	
		Pery	С				91	0.025	µmol/plate	0.006	mg/plate	0.046	
24080	Gibson et al., 1978	BaP	С				35	300	µg/plate			1	Continuous data, no SD; RPF based on peak or lowest dose approaching peak. Metabolic activation by gamma radiation.
		BaA	С		1		6.4	250	µg/plate			0.22	
		BghiP	С				4.2	400	µg/plate			0.090	
		CH	С				6.1	500	µg/plate			0.1	Lowest dose approaching peak
		FE	С				2.2	360	ug/plate			0.052	
	1		-	I	1				110 F	1	1		1

				Relative potency calculation									
Record no.	Reference	РАН	Data type: quantal or continuous	BMR	BMD	Slope	Point estimate extra risk response	Point esti- mate dose	Dose units	Converted dose	Converted dose units	RPF	Comments
		Pyr	С				28	160	µg/plate			1.5	
14080	Gold and Eisenstadt, 1980	BaP	С				1,103	4	nmol	0.001	mg	1	
		CPcdP	С				281	4	nmol	0.001	mg	0.28	
18650	Hermann, 1981	BaP	NA			100			revertants/nmol	396,322	revertants/mg	1	RPFs based on potency estimates as reported by authors
		AA	NA			62			revertants/nmol	224,394	revertants/mg	0.57	
		BaA	NA			4			revertants/nmol	17,522	revertants/mg	0.044	
		BbA	NA			8			revertants/nmol	35,043	revertants/mg	0.088	
		BbF	NA			15			revertants/nmol	59,448	revertants/mg	0.15	
		BeP	NA			15			revertants/nmol	59,449	revertants/mg	0.15	
		СН	NA			2			revertants/nmol	8,761	revertants/mg	0.022	
		CO	NA			60			revertants/nmol	199,761	revertants/mg	0.50	
		DBacA	NA			42			revertants/nmol	150,888	revertants/mg	0.38	
		DBahA	NA			8			revertants/nmol	28,743	revertants/mg	0.073	
		DBaiP	NA			38			revertants/nmol	125,661	revertants/mg	0.32	
		DBalP	NA			21			revertants/nmol	69,451	revertants/mg	0.18	
		FA	NA			3			revertants/nmol	14,832	revertants/mg	0.037	
		Pery	NA			31			revertants/nmol	122,862	revertants/mg	0.31	
		Tphen	NA			13			revertants/nmol	56,944	revertants/mg	0.14	
10670	Johnsen et al., 1997	BaP	С				128	10	µg/plate			1	
		BjAC	С				192	10	µg/plate			1.5	RPF based on peak; no model fit
		BIAC	С				204	10	μg/plate			1.6	RPF based on peak; no model fit
19000	Kaden et al., 1979	BaP	NA									1	RPFs as reported by authors
		AA	NA									0.08	
		AN	NA									0.01	
		ANL	NA									0.07	
		BaA	NA									0.14	
		BbFE	NA									0.08	
		BeP	NA									0.11	
		BghiP	NA									0.08	
		СН	NA									0.2	

				Relative potency calculation									
Record	Deferrer	БАЦ	Data type: quantal or	DMD	BMD	Clana	Point estimate extra risk	Point esti-	Derevite	Converted	Converted dose	DDE	Commente
no.	Reference	CDodD	NA	BNIK	BMD	Slope	response	mate dose	Dose units	dose	units	1 5	Comments
		DRagA	INA NA									1.3	
		DDacA	INA NA									0.77	
		DBallA	NA NA									0.08	
		EA	NA									0.88	
		Perv	NA									6	
		Pyr	NA									0.07	
		Tphen	NA									0.07	
24680	Lafleur et al., 1993	BaP	Q				0.00026	8	µg/mL			1	RPF based on peak; BMD doesn't coincide with selected BMR.
		BghiF	Q				0.00044	10	µg/mL			1.4	
		CPcdP	Q				0.00048	8	µg/mL			1.9	
		CPhiACEA	. Q				0.00059	4	μg/mL			4.6	
		CPhiAPA	Q				0.00017	100	µg/mL			0.05	
		ACEA	Q				0.00059	35	µg/mL			0.53	
		APA	Q				0.00026	30	µg/mL			0.27	
19320	LaVoie et al., 1979	ВаР	С				480	20	μg			1	Continuous data, no SD; RPF based on peak or lowest dose approaching peak
		BeP	С				20	10	μg			0.08	
		Pery	С				70	20	μg			0.15	
23650	McCann et al., 1975	BaP	NA			121			revertants/nmol	479,550	revertants/mg	1	RPFs based on potency estimates as reported by authors; authors caution that dose-response nonlinear
		BaA	NA			11			revertants/nmol	48,184	revertants/mg	0.10	
		BeP	NA			0.6			revertants/nmol	2,378	revertants/mg	0.005	
		СН	NA			38			revertants/nmol	166,455	revertants/mg	0.35	
		DBacA	NA			175			revertants/nmol	628,698	revertants/mg	1.3	
		DBahA	NA			11			revertants/nmol	39,521	revertants/mg	0.082	
		DBaiP	NA			20			revertants/nmol	66,138	revertants/mg	0.14	
20220	Pahlman and Pelkonen, 1987	BaP	NA			272			revertants/mg	1,077,996	revertants/mg	1	RPFs based on potency estimates as reported by authors
		ваА	NA			10			revertants/mg	43,804	revertants/mg	0.041	

				Relative potency calculation									
Record	Deferment	DAIL	Data type: quantal or	DMD		<u>Cl</u> assa	Point estimate extra risk	Point esti-	D	Converted	Converted dose	DDE	Guarante
no.	Reference	PAH	Continuous	BMK	BMD	Slope	response	mate dose	Dose units	dose		KPF	Comments
		DDaaA	NA NA			9.7			revertants/mg	42,490	revertants/mg	0.039	
		DDacA	INA NA			33			revertants/mg	123,740	revertants/mg	0.12	
		DBanA	NA NA			4			revertants/mg	14,371	revertants/mg	0.015	
20450	D1:111:	I pnen	NA			4	110	10	revertants/mg	17,521	revertants/mg	0.010	Na CD, DDE, haard an
20430	and Ioannides, 1989	Dar	C				119	10	µg/plate			1	peak or lowest dose approaching peak
		BaA	С				110	20	µg/plate			0.46	
		DBaiP	С				65	20	µg/plate			0.27	
		DBahA	С				51	10	µg/plate			0.43	
21000	Sakai et al., 1985	BaP	С				1,565	10	μg			1	No SD; RPFs based on peak or lowest dose approaching peak
		FE	С				65	5	μg			0.083	
		AC	С				320	10	μg			0.2	
		PH	С				345	10	μg			0.22	
		FA	С				835	10	μg			0.53	
		СН	С				638	10	μg			0.41	
		Pyr	С				2,400	10	μg			1.5	
		BeP	С				923	10	μg			0.59	
		Pery	С				2,607	4	μg			4.2	
		BghiP	С				814	20	μg			0.26	
		CO	С				223	10	μg			0.14	
11860	Sangaiah et al., 1983	BaP	С				384	6	µg/plate			1	No SD; RPFs based on peak or lowest dose approaching peak
		BjAC	С				940	10	µg/plate			1.4	
21360	Simmon, 1979a	BaP	С				1,141	5	μg			1	
		BaA	С				280	50	μg			0.025	
		BeP	С				57	50	μg			0.005	
21640	Teranishi et al., 1975	BaP	С				39	50	µg/plate			1	
		DBaiP	С				64	50	µg/plate			1.6	
		BaP					254	50	µg/plate			1	
		DBaeP					63	50	µg/plate			0.25	

					Relative potency calculation								
							Point						
			Data type:				estimate						
Record			quantal or				extra risk	Point esti-		Converted	Converted dose		
no.	Reference	PAH	continuous	BMR	BMD	Slope	response	mate dose	Dose units	dose	units	RPF	Comments
16180	Utesch et	BaP	С				839	6	µg/plate			1	No SD; RPF based on
	al., 1987												peak or lowest dose
													approaching peak
		BaA	С				3,347	25	µg/plate			1	
16440	Wood et al.,	BaP	С				99	15	µg/plate			1	No SD; RPF based on
	1980												peak or lowest dose
													approaching peak
		CPcdP	С				685	15	µg/plate			6.9	

Table E-9. In vitro mammalian mutagenicity: RPF calculations

			Relative potency calculation									
Record	Reference	РАН	BMR	BMD	Point estimate extra risk response	Point estimate dose	Dose units	Converted dose	Converted dose units	RPF	Comments	
16920	Amacher and Paillet 1982	BaP			0.00023	10	µg/mL	uose		1	No model fit. RPF based	
		BaA			0.000068	10	µg/mL			0.3	No model fit. RPF based on peak	
16940	Amacher and Turner, 1980	BaP			0.00025	1.25×10^{-5}	М	3.15	mg/L	1	Control w/o S9 treatment	
		BaA			0.00027	3.22×10^{-5}	М	7.35	mg/L	0.46		
16910	Amacher et al., 1980	BaP			0.00033	3.96×10^{-5}	М	9.99	mg/L	1	No model fit. RPF based on peak	
		BaA			0.00007	4.3×10^{-5}	М	9.82	mg/L	0.22	BMD doesn't coincide with selected BMR; RPF based on peak	
17140	Barfknecht et al., 1982	BaP	0.00001	1.8			μΜ	0.45	mg/L	1		
		BaA	0.00001	23			μM	5.25	mg/L	0.09		
		СН	0.00001	16			μM	3.65	mg/L	0.12		
		CPcdP			0.0000083	23	μМ	5.20	mg/L	0.07	BMD doesn't coincide with selected BMR; RPF based on response closest to BMR of 0.00001	
		FA	0.00001	3.9			μM	0.79	mg/L	0.58		
		Tphen	0.00001	54			μM	12.33	mg/L	0.04		
24670	Durant et al., 1999	BaP			0.00017	1,000	ng/mL			1	RPF based on peak response. Single dose BaP response at upper end or above data range for most other data sets; model fit required dropping high doses but not appropriate given BMR target at BaP response level	
		BaPery			0.00018	100	ng/mL			11		
		BbPery			0.000036	100	ng/mL			2.2		
		DBaeF			0.00017	100	ng/mL			10		
		DBafF			0.00017	1,000	ng/mL			1		
		DBahP			0.000061	100	ng/mL			3.7		

							Relative poter	ncy calculation			
Record	Defermen	DAII	DMD	BMD	Point estimate extra risk	Point	Demonite	Converted	Converted dose	DDE	Commente
no.	Reference		BMK	BMD	response	estimate dose	Dose units	dose	units	7 0	Comments
		DBalP			0.00013	100	ng/mL			/.0	
-		N23aD			0.000034	1,000	ng/mL			0.21	
		N23eP			0.000073	1,000	ng/mL			0.48	
14250	Hass et al., 1982	BaP			0.00026	0.3	μg/mL			1	No model fit. Response at low dose (approaching peak)
		DBaiP			0.0012	0.3	µg/mL			4.6	No model fit. RPF based on peak
		DBahP			0.00066	0.3	µg/mL			2.5	No model fit. RPF based on peak
18740	Huberman and Sachs, 1976	BaP			0.0042	1	µg/mL			1	
		DBacA			0.00016	1	µg/mL			0.04	
		DBahA			0.00011	1	µg/mL			0.03	
18990	Jotz and Mitchell, 1981	BaP			0.00014	4.5	µg/mL			1	With metabolic activation
		Pyr			0.000034	11	µg/mL			0.1	With metabolic activation
24720	Kligerman et al., 1986	BaP			0.00047	4	nmol/mL	0.001	mg/mL	1	No model fit. RPF based on peak
		BIAC			0.00028	5	nmol/mL	0.0013	mg/mL	0.48	No model fit. RPF based on peak
19180	Krahn and Heidelberger, 1977	BaP			0.00012	15.9	nmol/mL	0.004	mg/mL	1	3-MC S9; 40% survival
		BaA			0.00005	46.5	nmol/mL	0.011	mg/mL	0.16	3-MC S9; 40% survival
24680	Lafleur et al., 1993	BaP			0.000024	0.2	µg/mL			1	No model fit.
		ACEA			0.000013	3	µg/mL			0.037	No model fit.
		CPcdP			0.000015	2	µg/mL			0.061	No model fit.
		CPhiACEA			0.000022	0.3	µg/mL			0.62	No model fit.
7550	Li and Lin, 1996	BaP			0.00003	10	ng/mL			1	
		BaA			0.000036	10	ng/mL			1.2	
11450	Nesnow et al., 1984	BaP			0.00019	5	µg/mL			1	

Table E-9. In vitro mammalian mutagenicity: RPF calculations

			Relative potency calculation								
Record no.	Reference	РАН	BMR	BMD	Point estimate extra risk response	Point estimate dose	Dose units	Converted dose	Converted dose units	RPF	Comments
		BeAC			0.00042	5	µg/mL			2.2	No model fit; RPF based on lowest dose approaching peak
		BjAC			0.00025	5	µg/mL			1.3	No model fit; RPF based on lowest dose approaching peak
		BIAC			0.00044	2.5	µg/mL			4.6	No model fit; RPF based on lowest dose approaching peak
15630	Raveh and Huberman, 1983	BaP	0.0001	0.11			µg/mL			1	
		CPcdP	0.0001	0.58			µg/mL			0.18	Uses QL; MS didn't converge
15640	Raveh et al., 1982	BaP	0.00001	0.16			µg/mL			1	Uses QL, hi dose dropped; MS didn't fit
		CPcdP	0.00001	1.1			µg/mL			0.14	Uses QL; MS didn't converge
21410	Slaga et al., 1978	BaP	0.0001	0.048			μM	0.012	mg/L	1	
		BaA	0.0001	32			μM	7.3	mg/L	0.0016 58	
16190	Vaca et al., 1992	BaP			0.00027	10	μΜ	2.5	mg/L	1	BMD doesn't coincide with selected BMR; RPF based on peak
		FA			0.00021	10	μΜ	2.02	mg/L	0.97	BMD doesn't coincide with selected BMR; RPF based on peak
21900	Wangenheim and Bolcsfoldi, 1988	BaP			0.0008	0.00001	mol/L	2.5	mg/L	1	BMD doesn't coincide with selected BMR; RPF based on peak
		FE			0.000086	0.00012	mol/L	19.9	mg/L	0.014	BMD doesn't coincide with selected BMR; RPF based on peak
		Pyr			0.00053	0.00003	mol/L	6.1	mg/L	0.28	BMD doesn't coincide with selected BMR; RPF based on peak

Table E-9. In vitro mammalian mutagenicity: RPF calculations

Table E-10. In vitro morphological/malignant transformation: RPF calculation

				Relative potency calculation Boint Slope of									
Record			Data type: quantal or			Point estimate extra risk	Point estimat	Slope of dose response	Dose		Converted dose		
no.	Reference	РАН	continuous	BMR	BMD	response	e dose	curve	units	Converted dose	units	RPF	Comments
17610	Casto, 1979	BaP	Q	0.00001	0.1				µg/mL			1	
	, , , , , , , , , , , , , , , , , , ,	DBahA	Q	0.00001	2.5				μg/mL			0.042	
17970	DiPaolo et al., 1969	BaP	Q			0.058	10		µg/mL			1	
		DBahA	Q			0.031	10		µg/mL			0.54	
		BaA	Q			0.011	10		µg/mL			0.18	
		BeP	Q			0.0058	10		µg/mL			0.1	
		DBacA	Q			0.011	10		µg/mL			0.19	
18080	Emura et al., 1980	BaP Expt I	Q	0.001	0.044				µg/mL			1	
		BbF	Q	0.001	0.75				µg/mL			0.059	
		BaA	Q	0.001	0.85				µg/mL			0.052	
		BaP Expt II	Q	0.001	0.046				µg/mL			1	
		IP	Q	0.001	0.82				µg/mL			0.056	
14130	Greb et al., 1980	BaP	NA					277	%/mmol	1.10	%/mg	1	Relative transformation potencies reported. RPFs are ratio of potencies.
		BaA	NA					13.9	%/mmol	0.061	%/mg	0.055	
		BbF	NA					11.5	%/mmol	0.046	%/mg	0.042	
		BeP	NA					3.1	%/mmol	0.012	%/mg	0.011	
		СН	NA					37	%/mmol	0.16	%/mg	0.15	
		DBahA	NA					0.3	%/mmol	0.001	%/mg	0.000982	
14640	Krolewski et al., 1986	BaP	Q			0.0055	5		μМ	1.3	mg/L	1	
		CPcdP	Q			0.0017	5		μΜ	1.1	mg/L	0.34	
14700	Laaksonen et al., 1983	BaP	Q			0.000009	10		μM	2.5	mg/L	1	RPF based on peak. Inverse dose-response relationship possibly due to
		1	1	<u> </u>	<u> </u>	L	1	L	L	1	l		cytotoxicity.

			Relative potency calculation Point Slope of										
						Point		Slope of					
			Data type:			estimate	Point	dose					
Record			quantal or			extra risk	estimat	response	Dose		Converted dose		
no.	Reference	PAH	continuous	BMR	BMD	response	e dose	curve	units	Converted dose	units	RPF	Comments
		BaA	Q			0.000018	11		μМ	2.5	mg/L	2.0	RPF based on
													peak. Inverse
													dose-response
													relationship
													possibly due to
			-										cytotoxicity.
14850	Lubet et al.,	BaP	Q	0.1	1.9				µg/mL			1	
	1983		-										
24710		BeP	Q	0.1	41	0.02			µg/mL			0.046	
24710	Mohapatra	BaP				0.92	1		µg/mL			1	
	et al., 1987	DIAC		0.02	0.02							1.1	
		BJAC D-D	Q	0.92	0.93	0.92	1		µg/mL			1.1	
		DIAC	0	0.92	75	0.85	1		µg/mL			0.12	
		DIAC DoD	Q	0.85	1.5	0.86	1		µg/mL			0.15	
			0	0.86	19	0.80	1		μg/IIIL ug/mI			0.056	
24700	Nespow et	B ₀ D	Q C	0.00	10	47	10		μg/IIIL ug/mI			0.050	
24700	al 1990	Dai	C			47	10		μg/IIIL			1	
	ui., 1990	BIAC	С			120	10		ug/mL			2.5	Based on peak
		2	C			120	10		Pr.B. 1112			2.10	response: no SD
													for control
7980	Nesnow et	BaP	С			2.5	4		μM	1.01	mg/L	1	
	al., 1997								•		C		
		DBalP	С			1.7	0.33		μМ	0.10	mg/L	6.9	Based on peak
													response; no SD
													for control
7990	Nesnow et	BaP	С			0.94	1		µg/mL			1	
	al., 1994		-										
		DBahA	С			0.37	1		µg/mL			0.39	Based on peak
													response; no
													continuous lineer model fit
8000	Nespow et	B ₀ D	C			1.4	3		ug/mI			1	imear model in
8000	al 1993a	Dai	C			1.4	5		μg/IIIL			1	
	un, 1990u	DBkmnoAPH	С			11	5		ug/mL			0.47	Based on peak
		2 2 Killion II II							ro,			0.17	response: no SD
													for control
23720	Pienta et al.,	BaP	Q	0.01	15		1		µg/mL			1	High dose
	1977												dropped

Table E-10. In vitro morphological/malignant transformation: RPF calculation

Table E-10.	In vitro mor	phological/mali	gnant transformation:	RPF calculation
			0	

								Rela	ntive pote	ncy calculation			
						Point		Slope of					
			Data type:			estimate	Point	dose					
Record			quantal or			extra risk	estimat	response	Dose		Converted dose		
no.	Reference	PAH	continuous	BMR	BMD	response	e dose	curve	units	Converted dose	units	RPF	Comments
		BaA	Q	0.01	8.2				µg/mL			1.9	Caution:
													changing slope
													in region of
													BMR
		DBahA	Q	0.01	0.4				µg/mL			34	Two highest
													doses dropped

DRAFT – DO NOT CITE OR QUOTE

Table E-11. In vitro DNA adducts: RPF calculations^a

						Relative p	otency calculati	on	
Decendence	Deferrers	DAII	Point estimate extra risk	Point estimate	Desservite	Converted	Converted dose	DDE	Commente
Kecord no.		PAH	response	dose	Dose units	dose	units		Comments
16890	Allen and Coombs, 1980	BaP	7.5	0.24	μg/mL			1	Nuclear DNA
		BaA	0.44	0.64	μg/mL			0.021	
		BaP	413	0.24	μg/mL			1	Mitochondrial DNA
(200	D: 1 (1 2000	BaA	104	0.64	μg/mL	0.25	/T	0.092	
6300	Binkova et al., 2000	BaP	258	<u> </u>	μM	0.25	mg/L	1	
0510	D 1 1002		2,317	0.1	μΜ	0.03	mg/L	/5	T 1 4 14
9510	Bryla and Weyand, 1992	BaP	5.5	600	nmol	0.15	mg	1	Light conditions
		BaA	1	600	nmol	0.14	mg	0.20	
22800	Carrier and Sime 1069	DBacA	1.8	600	nmol	0.17	mg	0.30	
22800	Grover and Sinis, 1968	DBahA	1.4	5	μg			1	
		DDallA	0.44	5	μg			0.51	
		DDacA	0.36	5	μg			0.40	
		Dur	0.7	5	μg		-	0.30	
			0.51	5	μg		-	0.22	
10670	Johnson et al. 1007	Pn BaD	0.05	30	μg ug/mI			0.040	Clara cells
10070	Johnsen et al., 1997		0.03	30	μg/IIIL ug/mI			1	
		BIAC	0.15	30	μg/IIIL μg/mI			18	
		BaP	0.24	30	μg/IIIL μg/mI			4.0	Type 2 cells
		BiAC	0.02	30	μg/mL			3	Type 2 cents
		BIAC	0.00	30	μg/mL ug/mI			15	
10660	Johnsen et al. 1998	BaP	0.03	30	μg/mL μg/mI			1.5	Human lymphocytes
10000		BiAC	0.11	30	μg/mL			0.33	Truman Tymphocyces
		BIAC	11	30	ug/mL			33	
		BaP	0.24	30	ug/mL			1	HI -60 cells
		BiAC	0.15	30	μg/mL			0.62	
		BIAC	0.94	30	ug/mL			3.9	
7870	Melendez-Colon et al., 2000	BaP	34	2.	μM	0.50	mg/L	1	
		DBalP	348	2	uM	0.60	mg/L	8.5	
21200	Segerback and Vodicka, 1993	BaP	15	100	mM	25.232	mg/L	1	
		BaA	30	100	mM	22.829	mg/L	2.2	
		BbF	3.7	100	mM	25.232	mg/L	0.25	
		BghiP	0.5	100	mM	27,634	mg/L	0.03	
		СЙ	50	100	mM	22,829	mg/L	3.7	
		DBahA	2.8	100	mM	27,833	mg/L	0.17	

Table E-11. In vitro DNA adducts: RPF calculations^a

						Relative p	otency calculatio	n				
			Point	Point								
			estimate	Point			Converted					
			extra risk	estimate		Converted	dose					
Record no.	Reference	PAH	response	dose	Dose units	dose	units	RPF	Comments			
		FA	1.5	100	mM	20,226	mg/L	0.12				
		Pyr	0.14	100	mM	20,226	mg/L	0.012				

^aAll RPFs are point estimates based on peak response as adequate model fit was not achieved for any multi-dose dataset.

No control data were available for any of these studies.

1

Table E-12. In vitro DNA damage: RPF calculations

]	Relative pote	ency calculat	tion		
Record					Point estimate extra risk	Point estimate	Slope of dose response		Converted	Converted dose		
no.	Reference	PAH	BMR	BMD	response	dose	curve	Dose units	dose	units	RPF	Comments
16840	Agrelo and Amos, 1981	BaP			2,093	10		µg/mL			1	Control responses for BaP and Pyr differ by 10x.
		Pyr			548	100		µg/mL			0.026	RPF based on peak; continuous data without SD
23790	Ichinotsubo et al., 1977	BaP			6	70		µg/well			1	
		DBaiP			10	600		µg/well			0.19	
		DBahA			10	25		µg/well			4.7	
10660	Johnsen et al., 1998	BaP			7.9	3		µg/mL			1	Human lymphocytes. No model fit. Lowest response point estimate
		BjAC	7.6	18				µg/mL			0.16	Human lymphocytes. BMR is BaP point estimate response
		BIAC			4.9	30		µg/mL			0.062	Human lymphocytes. No model fit. Response point estimate closest to BaP response.
		BaP			5.4	30		μg/mL			1	HL-60 cells
		BjAC			1.8	30		μg/mL			0.33	HL-60 cells
		BIAC			3.8	30		μg/mL			0.7	HL-60 cells
19740	Martin et al., 1978	BaP			210	1×10^{-5}		M	2.5	mg/L	1	Increase over background
		BaA			59	1×10^{-7}		М	0.023	mg/L	31	
		BeP			256	1×10^{-6}		М	0.25	mg/L	12	
		DBacA			97	1×10^{-5}		М	2.8	mg/L	0.42	
		DBahA			96	1×10^{-5}		М	2.8	mg/L	0.41	
19830	Mersch- Sunderman n et al., 1992	BaP					0.61	µg/assay			1	SOSIP - slope of SOS induction dose- response curve as reported
		AA					0.14	µg/assay			0.23	
		BaA					0.1	µg/assay			0.17	
		BbF					0.045	µg/assay			0.074	
		BghiF					0.34	µg/assay			0.56	
		BjF					0.25	µg/assay			0.42	
		BbFE					0.024	µg/assay			0.04	
		BghiP					0.033	µg/assay			0.055	
		BeP					0.032	µg/assay			0.053	
		СН					0.22	µg/assay			0.37	
		DBacA					0.10	µg/assay			0.17	

]	Relative pot	ency calculat	tion		
Record no.	Reference	РАН	BMR	BMD	Point estimate extra risk response	Point estimate dose	Slope of dose response curve	Dose units	Converted dose	Converted dose units	RPF	Comments
		DBahA					0.039	µg/assay			0.064	
-		DBalP					2.1	µg/assay			3.5	
		DBahP					0.12	µg/assay			0.19	
		DBaiP					0.17	µg/assay			0.29	
		FA					0.41	µg/assay			0.68	
		IP					0.036	µg/assay			0.06	
		PH					0.053	µg/assay			0.088	
		Tphen					0.26	µg/assay			0.43	
20810	Robinson and Mitchell, 1981	BaP			89	10		μg/mL			1	
		Pyr			63	7.2		µg/mL			0.98	
20940	Rossman et al., 1991	BaP			10.4	12.5		µg/mL			1	Enhancement over background
		AC			4.8	12.5		µg/mL			0.46	
		DBacA			8	1.44		µg/mL			6.7	
		DBahA			4	2		µg/mL			2.4	
		PH			4.5	25		µg/mL			0.22	
21730	Tong et al., 1981b	BaP			65.5	0.001		М	252	mg/L	1	
		BaA			17.1	0.0005		M	114	mg/L	0.58	Based on peak response; no model fit

Table E-12. In vitro DNA damage: RPF calculations

Table E-13. In vitro clastogenicity or sister chromatid exchange: RPF calculations

	D 0			Data type: quantal or			Point estimate extra risk	Point estimate	Dose	Converted	Converted dose	DDE	
Record no. 14620	Reference Kochhar, 1982	PAH BaP	Aberrations	Q	BMR	BMD	0.53	dose 5	units µg/mL	dose	units	1	Comments BMD doesn't reflect selected BMR. RPF based on paak
		BaA					0.34	5	µg/mL			0.64	BMD doesn't reflect selected BMR. RPF based on peak.
14640	Krolewski et al., 1986	BaP	Sister chromatid exchanges	С			0.79	5	μМ	1.3	mg/L	1	<u> </u>
		CPcdP					0.29	5	μМ	1.1	mg/L	0.41	No model fit. RPF based on peak response
19690	Mane et al., 1990	BaP	Sister chromatid exchanges	С			2.7	1	µg/mL			1	
		BaA					0.4	1	µg/mL			0.15	
21710	Tong et al., 1981a	BaP	Sister chromatid exchanges	С			92	1×10^{-4}	М	25.2	mg/L	1	
		BaA					13	1×10^{-4}	M	22.8	mg/L	0.16	No n provided. RPF based on peak response

2 3 4

APPENDIX F. EXAMPLE CALCULATION OF RPF DETECTION LIMIT

2 3

1

Table F-1. Example data for calculation of RPF detection limit

Group	Dose	Number with tumors	Number in group	Incidence	Extra risk response ^a
Actual responses					
Control	0	2	30	0.067	NA
Anthanthrene	0.25	2	29	0.069	NA
Benzo[a]pyrene	0.25	24	30	0.800	0.786
Theoretical statistical	ly significa	nt response ^b			
Anthanthrene	0.25	8	29	0.276	0.224

^aCalculated as described below in Step 1. ^bCalculated as described below in Step 2.

Source: Hoffmann and Wynder (1966).

4

5 Step 1. Estimate the number of tumor-bearing animals that would represent a statistically-

6 significant response (one-sided $p \le 0.05$ using Fisher's exact test) in the number of animals

7 exposed to anthanthrene (29) given the observed control response (2/30). In this case,

8 8/29 tumor-bearing animals (incidence of 0.276) would represent a statistically significant
9 response to anthanthrene.

10

Step 2. Calculate the extra risk response associated with the theoretical statistically significant incidence for anthanthrene and the observed benzo[a]pyrene incidence as follows:

13 14 15

16

18

19 20 Extra risk response = $\frac{P(d) - P(0)}{[1-P(0)]}$

17 For the theoretical statistically significant response to anthanthrene,

Extra risk response = (0.276 - 0.067)/(1 - 0.067) = 0.224

Step 3. Calculate the RPF detection limit as the ratio of the slopes associated with extra risk
 response and the actual doses of anthanthrene and benzo[a]pyrene as follows:

24	RPF Detection Limit = (<u>Theoretical anthanthrene extra risk response/dose anthanthrene</u>)
25	(benzo[a]pyrene extra risk response/dose benzo[a]pyrene)
26	

RPF Detection Limit = (0.224/0.25)/(0.786/0.25) = 0.28

APPENDIX G: EVALUATION OF ALTERNATIVES FOR RANKING RPFs

1 2 3

For many of the PAHs evaluated in this report, a number of datasets were available for 4 use in calculating RPFs. The resulting RPFs are derived from tumor bioassays using different 5 exposure routes, species, sexes, or tumor endpoints (incidence or multiplicity) and/or from a 6 variety of different cancer-related endpoint assays. In addition to using different types of data, 7 the various RPFs reflect studies of varying quality (different numbers of animals, follow-up time, 8 single or multiple dose groups, response levels low or high on the dose-response curve, etc.). In 9 order to derive a single final RPF for each individual PAH, the various results from different 10 11 datasets must either be ranked/prioritized and/or combined. This appendix details the options that were considered for ranking RPFs. 12

A series of options were considered for prioritizing RPFs for the purpose of selecting a single RPF for each PAH or exposure route. An a priori decision was made to consider tumor bioassay data to be preferable to cancer-related endpoint data because the tumor bioassay data are in whole animals and address the endpoint of interest for RPFs (tumorigenicity). Thus, options for ordering or combining tumor bioassays and for cancer-related endpoint data were considered separately; Section G.1 below discusses options considered for use of tumor bioassay RPFs and Section G.2 discusses options considered for use of cancer-related endpoint RPFs.

20 21

G.1. OPTIONS FOR RANKING TUMOR BIOASSAY RPFS

Approaches considered for ordering tumor bioassay were: (1) ranking by exposure route, (2) ranking by target organ, and (3) preference for modeled data over point estimates.

24 *Ranking by exposure route*. One option for ranking RPFs derived from tumor bioassay 25 data would be to order the datasets by exposure routes that are considered most relevant to environmental exposure routes (oral, dermal, and inhalation). RPFs for many PAHs were 26 calculated from dermal tumor bioassays. While dermal exposure to PAHs in the environment 27 does occur, there is currently no dermal slope factor for benzo[a]pyrene on the IRIS database. If 28 29 a dermal slope factor is derived for benzo[a]pyrene, then the RPFs derived from dermal tumor bioassays would be more suitable than those from other exposure routes for use in calculating 30 cancer risk from dermal exposure to other PAHs. The available database for PAHs did not 31 include any oral or inhalation studies that were suitable for RPF calculation; thus, route-to-route 32 extrapolation is necessary to derive RPFs applicable to oral or inhalation exposures. 33

Some earlier RPF approaches, primarily in the course of assessing risks from inhalation
 exposure to PAHs, have proposed hierarchies of bioassay types based on route of administration.
 Collins et al. (1998) proposed a hierarchy for PAH cancer potencies or PEFs for use in assessing
 air contaminants. The hierarchy for inhalation potencies or PEFs proposed by Collins et al.
 (1998) ordered the exposure routes as follows: intratracheal or intrapulmonary

39 administration>oral administration>skin-painting studies> subcutaneous or intraperitoneal

administration. However, Collins et al. (1998) did not provide any empirical data supporting the 1 2 ordering of these exposure routes, other than the intuitive preference for intratracheal or intrapulmonary administration as a surrogate for inhalation. In another review of data available 3 for relative potency assessment for PAHs as air contaminants, Pufulete et al. (2004) suggested 4 that intratracheal instillation of low doses of PAHs might be an appropriate surrogate exposure 5 model for assessing relative potency of inhalation exposure. The basis for this suggestion was 6 7 the authors' observation that clearance of PAHs administered in solution via intratracheal instillation exhibited a biphasic pattern similar to that observed after inhalation exposure to 8 benzo[a]pyrene bound to particulates. However, the authors acknowledged that the high 9 concentrations of PAHs used in intratracheal and intrapulmonary instillation studies may lead to 10 major differences in pharmacokinetics compared with inhalation exposure (Pufulete et al., 2004). 11 Further, the authors expressed this suggestion as a path for future research, rather than as a 12 means of examining available data on PAHs; no intratracheal instillation studies were identified 13 in the search for studies from which to calculate RPFs for PAHs. Pufulete et al. (2004) did not 14 15 provide any specific information on the relevance of intrapulmonary administration (a route used 16 in several of the bioassays used to calculate RPFs) to inhalation exposure. To assess exposure-route differences in RPFs calculated in this review, a table comparing 17 the average RPF for each PAH across exposure routes was prepared (Table G-1). The average 18 values include RPFs calculated with both incidence and multiplicity data; each RPF is treated as 19 20 an independent measure of relative potency in calculating the averages. Dermal studies are 21 shown collectively as well as separated by study type (complete carcinogenesis or initiation only). Likewise, intraperitoneal studies are shown grouped as well as separated by target organ 22

23 (lung and liver). In general, the table shows that RPFs calculated from lung implantation and

24 dermal studies are similar, while RPFs calculated from intraperitoneal studies tend to be higher

25 for most compounds. Among PAHs with RPF s derived from intraperitoneal and dermal data,

5/7 showed higher RPF values from intraperitoneal data, compared with dermal data

27 (benz[a]anthracene, benzo[b]fluoranthene, benzo[j]fluoranthene, cyclopenta[c,d]pyrene,

dibenz[a,h]anthracene; Table G-1). However, intraperitoneal RPFs for chrysene (CH) and

dibenzo[a,l]pyrene (DBalP) are similar to dermal RPFs for these compounds.

- 30
- 31

		Dermal		Dermal omplete	i	Dermal	Dé	Intra- Pritoneal	Intra- peritoneal, target organ =		Intra- peritoneal, target organ = liver		Lung	
РАН	N	Average	N	Average	N	Average	N	Average	Ν	Average	Ν	Average	N	Average
AA	1	0.5	1	0.5	-	-	_	_	_	-	_	-	1	0.2
AC	_	_	_	_	-	_	_	_	_	_	_	_	_	_
BaA	1	0.02	_	-	1	0.02	3	0.3 ^a	1	0.08	2	0.4	-	_
BbcAC (1,12-MBA)	1	0.05	_	_	1	0.05	_	_	_	_	_	_		_
BbF	3	0.3	1	0.2	2	0.4	3 ^b	1 ^c	1	0.4	1	2	1	0.1
BeAC	4	0.7	-	_	4	0.7	-	_	-	_	_	_	-	_
BghiP	-	_	-	_		-	-	_	-	_	_	_	1	0.009
BjAC	-	_	-	_		-	1	60 ^d	1	60	_	_	-	_
BjF	3	0.06	-	-	3	0.06	5 ^b	0.6 ^a	2	0.5	1	0.7	1	0.03
BkF	2	0.02	-	-	2	0.02	-	-	-	-		-	1	0.03
BlAC	4	4	-	Ι	4	4	-	_	-	_	-		Ι	_
СН	7	0.1	-	-	7	0.1	3	0.1 ^a	1	0.1	2	0.2	1	0.04
CPcdP	7	0.2	3	0.3	4	0.1	1	1 ^d	1	1	_	Ι		_
CPdefC	2	0.3	_	Ι	2	0.3	-	_	-	_	-	Ι	1	_
DBacA	I	Ι	_	Ι	1	Ι	-	_	-	_	-	Ι	1	_
DBaeF	2	0.9	1	1	1	0.7	-	-	_	_	_	Ι		_
DBaeP	2	0.4	1	0.3	1	0.4	-	_	-	_	-	Ι	1	_
DBahA	2	1	_	Ι	2	1	1	10 ^d	1	10	-	Ι	1	2
DBahP	1	0.9	—	_	1	0.9	-	-	-	-	_	-	—	_
DBaiP	2	0.6	1	0.7	1	0.5	-	-	-	-	_	-	—	_
DBalP	2	30	—	-	2	30	1	30 ^d	1	30	—	-	—	-
FA	_	-	-	_	_	_	10	0.08 ^a	8	0.05	2	0.2	_	-
IP	_	-	_	_	_	-	_	_	_	-	_	_	1	0.07
N23eP	1	0.3	-	_	1	0.3	-	_	_	-	—	_	_	_
PH	_	-	-	_	_	_	-	_	_	-	_	_	_	-
Pyr	_	—	-	_	-	_	-	—	_	-	—	—	_	-

Table G-1. Average RPF value by exposure route

^aNewborn mouse model.

^bNumber of intraperitoneal RPFs includes those calculated for combined lung and liver incidence; these are not included in number of RPFs with lung or liver tumors.

^cIncludes both newborn mouse and adult A/J mouse models.

^dAdult A/J mouse model.

2 3

1

4 mouse assays (footnoted "a" in the table) might be that the newborn mouse is more sensitive to

5 the carcinogenic action of PAHs than an adolescent or adult mouse. Likewise, the adult A/J

6 mouse is considered to be particularly sensitive to PAH lung tumorigenicity (Nesnow et al.,

One possible explanation for the higher intraperitoneal RPFs calculated from newborn

1995), which may result in higher RPFs with this model (in Table G-1, the intraperitoneal RPFs 1 2 based on the A/J mouse model are footnoted "d"). There is little information to evaluate whether the newborn mouse is more or less sensitive than the adult A/J mouse model. Only one 3 compound, benzo[b]fluoranthene (BbF), had RPFs calculated from both newborn mouse and 4 adult A/J mouse models; the newborn mouse RPF was 2, while the A/J mouse RPF was 0.4. In 5 summary, it is not clear whether the intraperitoneal RPFs are higher than dermal or lung 6 7 implantation RPFs due to route-specific differences or animal model differences in susceptibility. 8 Ranking by target tissue. An alternative approach to ranking tumor bioassay RPFs would be to prefer target tissue-specific RPFs (for example, to prefer RPFs derived from lung tumor 9 data for inhalation RPFs). An analysis was conducted to assess whether RPFs calculated from 10 lung tumor potency in intraperitoneal studies (both newborn mouse and adult A/J mouse models) 11 were consistent with RPFs from lung implantation studies. Table G-1 shows RPFs calculated for 12 lung tumors (separate from liver tumors also observed in some intraperitoneal studies) after 13 intraperitoneal administration. Only four compounds (BbF, BjF, CH, and DBahA) had RPFs for 14 15 both intraperitoneal and lung implantation studies; for each of these, the intraperitoneal lung tumor RPF exceeded the lung implantation RPF. No information assessing the concordance 16 between lung tumor potency after intraperitoneal administration and inhalation cancer potency 17 was identified in the literature. 18 19 *Ranking by use of BMD.* A third approach considered for ranking of tumor bioassay data was to prefer data amenable to BMD modeling (of either quantal or continuous data, depending 20

was to preter data amenable to BMD modeling (of either quantal or continuous data, depending
on whether incidence or multiplicity was modeled) over an analysis of data based on point
estimates. Table G-2 compares the average of RPFs for all bioassays with RPFs calculated using
BMD modeling, and RPFs calculated using a point estimate approach.

	All bioassays		Multidose bioassays			BMD model	Point estimate		
	Ν	Average RPF	Ν	Average RPF	Ν	Average RPF	Ν	Average RPF	
AA	2	0.4	1	0.2	1	0.2	1	0.5	
AC	_	_	-	_	_	_	_	_	
BaA	4	0.2	-	_	_	_	4	0.2	
BbcAC	1	0.05	1	0.05	_	_	1	0.05	
BbF	7	0.6	5	0.3	3	0.2	4	0.9	
BeAC	4	0.7	4	0.7	2	0.8	2	0.7	
BghiP	1	0.009	1	0.009	1	0.009	-	_	
BjAC	1	60	1	60		_	1	60	
BjF	9	0.4	4	0.06	2	0.09	7	0.5	
BkF	3	0.02	3	0.02	2	0.03	1	0.02	
BlAC	4	4	4	4	2	5	2	3	
СН	11	0.1	5	0.1	3	0.1	8	0.1	
CPcdP	8	0.3	8	0.3	2	0.1	6	0.4	
CPdefC	2	0.3	-	_	1	0.5	1	0.2	
DBacA	_	-	-	_		_	-	_	
DBaeF	2	0.9	1	1.1	1	1	1	0.7	
DBaeP	2	0.4	1	0.3	1	0.3	1	0.4	
DBahA	4	4	1	10	1	10	3	1	
DBahP	1	0.9	-	_	_	_	1	0.9	
DBaiP	2	0.6	1	0.7	1	0.7	1	0.5	
DBalP	3	30	3	30	_	_	3	30	
FA	10	0.08	8	0.08	5	0.08	5	0.07	
IP	1	0.07	1	0.07	1	0.07	_	_	
N23eP	1	0.3	-	_	_	_	1	0.3	
PH	_	_	-	_	_	_	_	_	
Pyr	_	_	-	_	_	_	_	_	

Table G-2. Comparisons among average tumor bioassay-based RPF values by data availability or calculation method

1

While this ranking could be justified based on a general preference for multidose data and 2 modeling to identify a point of departure, there are important limitations to this approach. First, 3 RPFs based on BMD modeling may still use a point of departure high on the dose-response 4 curve, if a single benzo[a]pyrene dose with an elevated response level (BMR)⁵ was used to 5 calculate the RPF. In some cases, an RPF based on a point estimate approach from a point of 6 departure lower on the dose-response curve may be a better predictor of relative potency at 7 environmental exposure levels. Second, unless RPFs based on BMD modeling are available for 8 9 all of the relevant exposure routes (dermal initiation and complete carcinogenicity, lung implantation, and intraperitoneal), there may be differences between the RPFs calculated from 10 BMD modeling and those calculated using a point estimate approach that are unrelated to study 11 quality (i.e., route, species, sex differences). Thus, ranking RPFs based on a preference for 12 modeled data over point estimate data would neglect other sources of variability in the estimates 13 (exposure route, species, sex, target organ, dosing intervals, etc.) 14

⁵The BMR selected for multidose PAH data for studies with a single BaP dose was the response level observed in the BaP dose group.

In summary, the analysis of options for ranking bioassay RPFs did not suggest a clear basis for selecting among the available data types. As a consequence, none of the available data types was considered preferable to any other; all bioassay RPFs were considered equally relevant.

5

6 G.2. RANKING NON-BIOASSAY DATA

Two approaches to ranking non-bioassay study types were evaluated: a theoretical
approach and an empirical approach.

Theoretical ranking of cancer-related endpoint data. To identify whether a theoretical 9 basis for ranking was available, a limited literature search was conducted in PubMed to identify 10 publications that addressed the relationship between various genotoxicity endpoints and 11 carcinogenicity. The search was intended to identify recent papers that described a quantitative 12 correlation between particular cancer-related endpoints and cancer potency. Several papers (e.g., 13 Matthews et al., 2006a, b) analyzed the concordance between genotoxicity tests and 14 15 carcinogenicity (i.e., whether positive genotoxicity findings predicted positive carcinogenicity 16 findings) but did not assess whether potency measured in genotoxicity studies correlated with cancer potency. Three publications (Sanner and Dybing, 2005; Ross et al., 1995; Travis et al., 17 1990) provided quantitative associations between cancer potency and genotoxic potency. There 18 19 were no publications that related relative cancer potency to relative genotoxic potency for any 20 classes of compounds; this would be the most relevant comparison for use in ranking. 21 Ross et al. (1995) provided evidence that DNA adduct formation expressed as TIDAL values was correlated with the numbers of lung adenomas in adult A/J mice treated with PAHs 22 by intraperitoneal injection (TIDAL values were also strongly correlated with dose). The 23 correlations were demonstrated for five PAHs: benzo[a]pyrene, benzo[b]fluoranthene, 24 dibenz[a,h]anthracene, 5-methylcholanthrene, and CPP. This paper demonstrates a quantitative 25 26 relationship between TIDAL values and tumorigenicity in the compound class of interest

27 (PAHs).

Examining data from 42 substances, Sanner and Dybing (2005) showed a linear 28 relationship (slope = 1.05 ± 0.12 , r² = 0.67) between the lowest effective dose (LED) producing 29 30 genotoxicity in vivo after oral or inhalation exposure and the chronic daily dose estimated to 31 result in a 25% increase (over controls) in tumor formation (TD₂₅). Genotoxicity endpoints included in the analysis were micronuclei, sister chromatid exchanges, chromosomal aberrations, 32 DNA adducts, DNA strand breaks, and the comet assay for DNA breaks. The chemical 33 compounds included in the analysis included a large variety of compounds (VOCs, chlorinated 34 35 compounds, dioxin, etc.); only one PAH (naphthalene) was included in the database. Analyzing specific endpoints separately, the authors reported the correlations shown in Table G-3. 36 37

G-6 DRAFT – DO NOT CITE OR QUOTE

Endpoint	Number of observations (compounds)	Slope	Correlation coefficient (r ²)
Chromosomal aberrations	4	1.29 ± 0.25^a	0.93
DNA breaks	9	1.02 ± 0.17^a	0.84
DNA adduct	11	1.44 ± 0.36^a	0.64
Micronucleus	8	0.63 ± 0.21^{a}	0.61
Sister chromatid exchange	2	0.98	_

Table G-3. Correlation between LED and TD₂₅ by endpoint

^aSlope significantly different from zero.

Source: Sanner and Dybing (2005).

1 2

The slopes and correlation coefficients shown in Table G-3 suggest that LEDs for

3 chromosomal aberrations and DNA breaks are reasonably good predictors of cancer TD₂₅, and

4 that DNA adducts and micronuclei are also correlated with potency.

5 Travis et al. (1990) examined correlations between cancer potency estimates and

6 mutagenicity or toxicity data from the Registry of Toxic Effects of Chemical Substances

7 (RTECS). Using data from 146 compounds, the authors demonstrated correlations between

8 tumor potency and mutagenicity or toxic potency. Correlations between toxicity and

9 carcinogenicity were not considered here, as they are not pertinent to the ranking of genotoxicity

10 data for RPF selection. Correlations between mutagenicity and cancer potency are shown in

11 Table G-4.

12

Table G-4. Correlation between tumor potency (log $1/TD_{50}$) and mutagenic potency

Endpoint	Number of observations (compounds)	Correlation coefficient (r ²)	Standard error
Ames test	82	0.37	0.93
All mutation tests	112	0.69	0.90
All mutation tests: lung carcinogens ^a	17	0.61	0.74
All mutation tests: liver carcinogens ^a	40	0.43	0.94

^aDue to the magnitude of the tumor potency for tetrachlorodibenzo-p-dioxin (TCDD), it had a strong influence on the correlation; the authors conducted analyses without dioxin, and these are the results shown here.

Source: Travis et al. (1990).

13

14 The available published studies did not suggest a clear basis for ordering RPFs calculated

15 from data on different cancer-related endpoints. Based on the information provided in the three

16 published analyses relating cancer potency with genotoxic potency, one may conclude that

17 TIDAL values, in vivo measures of clastogenicity, DNA adducts, and DNA damage, and in vitro

measures of mutagenicity are correlated with some measure of cancer potency. While it could be 1 2 argued that a stronger basis for the correlation exists for TIDAL values (based on Ross et al., 1995), since the data for this endpoint were collected for the compound class of interest (PAHs), 3 there is no information to determine whether TIDAL values are better predictors of cancer 4 potency in PAHs than the other available endpoints, because other endpoints were not examined 5 for PAHs as a class. In addition, the measures of cancer and genotoxicity potency used in the 6 7 three papers were different, making comparisons among the three difficult. Based only on the analysis conducted by Sanner and Dybing (2005), one might use the slopes and/or correlations 8 (Table 3) to rank in vivo genotoxicity endpoints, but it is not clear where TIDAL values would 9 fit, as these were not analyzed separately. TIDAL values could be categorized with other DNA 10 adduct measures assessed by Sanner and Dybing (2005); however, Ross et al. (1995) 11 12 demonstrated that adduct levels measured at a single time point were uncertain predictors of

13 potency compared with TIDAL values.

Empirical ranking of cancer-related endpoint data. In view of the fact that no published 14 15 studies comparing relative genotoxic potency to relative cancer potency were available, and that the present work created a large database of RPFs for multiple endpoints, an empirical approach 16 to assigning ranks was also explored. The database of PAH RPFs was analyzed to determine 17 whether any individual cancer-related endpoint was more closely correlated with RPFs based on 18 19 tumor bioassay data. The premise behind this analysis is that RPFs based on bioassay data represent the best available information, and that the genotoxicity endpoints that best predict 20 21 bioassay RPFs should be preferred over those that show little relationship to tumor bioassay RPFs. The semiquantitative analysis was, of necessity, restricted to those PAHs for which at 22 least one RPF based on bioassay data was available. 23

For each of the 22 PAHs with nonzero RPFs based on bioassay data, the average bioassay 24 RPF was compared with the average RPF for several endpoints that the literature review 25 26 suggested could be correlated with cancer potency (in vivo DNA adducts, in vivo micronuclei and sister chromatid exchanges together, and in vitro mutagenicity). TIDAL values were not 27 analyzed separately from other measures of DNA adducts because there were only four PAHs 28 with both TIDAL and bioassay RPFs; similarly, micronuclei and sister chromatid exchange 29 endpoints were grouped to increase the number of observations in the regression. In addition to 30 analyzing these endpoints, an analysis of several endpoints grouped across class (e.g., all in vivo 31 non-bioassay endpoints, all in vitro endpoints, and all non-bioassay endpoints) was performed. 32 Linear regression was performed on the log-transformed average RPF values to assess the 33 predictive power of each endpoint or grouping, and to assess whether there was a quantitative 34 35 basis for ordering them. Table G-5 shows the results of regression analyses assessing how well the average RPFs 36

37 for several endpoints correlated with average bioassay RPFs. The table shows that neither in

vivo clastogenicity RPFs (micronuclei and sister chromatid exchanges) nor in vitro mutagenicity

- 1 RPFs were significantly correlated with bioassay RPFs for the dataset examined here. Among
- those showing a significant (p < 0.05) linear relationship, in vivo DNA adducts provided the best
- 3 correlation ($r^2 = 0.64$), followed by all in vivo non-bioassay endpoints ($r^2 = 0.54$), all non-
- 4 bioassay endpoints ($r^2 = 0.43$), and all in vitro non-bioassay endpoints ($r^2 = 0.39$). Although in
- 5 vivo DNA adducts provided the strongest correlation, the slope for this regression was 1.25,
- 6 indicating that RPFs for in vivo DNA adducts systematically underpredicted bioassay RPFs.
- 7 Figure G-1 demonstrates this underprediction; as the figure shows, most of the average RPF
- 8 values are to the left of the 1:1 correspondence line. The slopes for both in vivo non-bioassays
- 9 and all non-bioassays are much closer to 1.0. Plots showing the average RPF comparisons for all
- in vivo non-bioassays, all non-bioassays, and all in vitro non-bioassays are shown in Figures G-2
- 11 through G-4. These plots suggest that in vivo non-bioassay RPFs tend to underpredict bioassay
- 12 RPFs, while all in vitro non-bioassays tend toward overprediction.
- 13

Table G-5. Results of simple linear regression of log-transformed averagegenotoxicity RPF vs. log average tumor bioassay RPF

Genotoxicity endpoint	\mathbf{R}^2	Slope	<i>p</i> -Value	n
All in vivo DNA adducts	0.64	1.24	< 0.01	9
All in vivo non-bioassays	0.54	1.05	0.016	10
All non-bioassay endpoints (in vitro and in vivo)	0.43	1.03	< 0.01	19
All in vitro non-bioassays	0.39	0.91	< 0.01	19
All in vivo micronuclei and sister chromatid exchanges		0.83	>0.05 (NS)	6
All in vitro mutagenicity	0.047	0.39	>0.05 (NS)	17

Figure G-1. Average bioassay RPF vs. average in vivo DNA adduct RPF.

3 4

Figure G-2. Average bioassay RPF vs. average in vivo nonbioassay RPF.

Figure G-3. Average bioassay RPF vs. average nonbioassay RPF.

4 5

7

Figure G-4. Average bioassay RPF vs. average in vitro non-bioassay RPF.

Based on the results of the linear regression analyses comparing PAH RPFs calculated for genotoxicity endpoints and RPFs calculated for bioassays (Table G-5), an argument could be

- 1 made for the following ranking: (1) bioassays, (2) in vivo non-bioassays, and (3) in vitro non-
- 2 bioassays. However, the improvement in correlation that is achieved with subdividing all non-
- 3 bioassays into in vivo and in vitro endpoints is small (r^2 improves from 0.43 for all nonbioassays
- 4 to 0.54 for in vivo non-bioassays), and the plot for in vivo nonbioassay shows that this grouping
- 5 exhibits a slight tendency to underpredict bioassay RPFs.
- In summary, as with the findings for tumor bioassay data, the analysis of options for ranking cancer-related endpoint RPFs did not suggest any clear theoretical or empirical basis for prioritizing the available data for the purpose of selecting RPFs. Thus, for PAHs without any tumor bioassay RPFs but with adequate information to suggest potential carcinogenicity, the cancer-related endpoint data were combined to calculate a final RPF as described in Section 7.
- 12