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Environmental epidemiologic studies are often hierarchical in nature if they estimate individuals’ personal ex­
posures using ambient metrics. Local samples are indirect surrogate measures of true local pollutant concentra­
tions which estimate true personal exposures. These ambient metrics include classical-type nondifferential 
measurement error. The authors simulated subjects’ true exposures and their corresponding surrogate exposures 
as the mean of local samples and assessed the amount of bias attributable to classical and Berkson measurement 
error on odds ratios, assuming that the logit of risk depends on true individual-level exposure. The authors 
calibrated surrogate exposures using scalar transformation functions based on observed within- and between-
locality variances and compared regression-calibrated results with naive results using surrogate exposures. The 
authors further assessed the performance of regression calibration in the presence of Berkson-type error. Follow­
ing calibration, bias due to classical-type measurement error, resulting in as much as 50% attenuation in naive 
regression estimates, was eliminated. Berkson-type error appeared to attenuate logistic regression results less 
than 1%. This regression calibration method reduces effects of classical measurement error that are typical of 
epidemiologic studies using multiple local surrogate exposures as indirect surrogate exposures for unobserved 
individual exposures. Berkson-type error did not alter the performance of regression calibration. This regression 
calibration method does not require a supplemental validation study to compute an attenuation factor. 

bias (epidemiology); environmental exposure; epidemiologic methods; measurement error; misclassification; 
regression analysis; surrogate marker; water pollution 

Abbreviations: DBPs, disinfection by-products; HAA5, 5 haloacetic acids. 

Accurate exposure assessment is a major challenge for 
environmental epidemiologic studies that lack individual-
level exposure assessment metrics. For example, many stud­
ies of waterborne contaminants use the mean concentration 
of a limited number of spatially distributed water quality 
samples as an indirect surrogate for the unobserved true 
local mean exposure. The mean of these multiple local sam­
ples serves as an estimate of individuals’ contemporaneous 
personal exposures within that locale. Using local area data 
to assign individual-level exposures results in measurement 
errors that can lead to imprecise effect estimates that are 
conservatively biased towards the null (1–4). 

Differential exposure measurement error that is associ­
ated with the outcome can cause bias in an effect estimate 

towards or away from the null, while nondifferential expo­
sure error typically results in bias towards the null (5). 
Nondifferential measurement error in a continuous expo­
sure can be of the classical or Berkson type and typically 
arises in environmental and occupational settings as a mix­
ture of the 2 forms (6). Classical error occurs when true 
exposures are measured with additive error (7) and the 
average of many replicate measurements, conditional on 
the true value, equals the true exposure (8). This error is 
statistically independent of the true exposure that is being 
measured and attenuates true linear effects of exposure, 
resulting in effect estimates in epidemiologic studies that 
are biased towards the null (6, 8, 9). Such errors occur 
when the mean values of multiple local air and water 
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pollutant samples are used to estimate the true underlying 
mean exposures (10–21). 

Berkson measurement error is independent of the surro­
gate measure of exposure (9, 22), and is present when the 
average of individuals’ true exposures, conditional on the 
assigned measurement, equals the assigned measurement. 
Berkson measurement error can arise from the use of local 
area mean exposures to represent the individual exposures of 
people in that area—even when the estimated area mean is 
equal to the true underlying mean (i.e., no classical error). 
Examples of random variability in personal behavior that 
may produce Berkson-type error in personal exposure esti­
mates include the volume of water consumed per day; the 
percentage of water consumed at or away from home; the 
percentage of boiled, filtered, or bottled water consumed; and 
the effectiveness of water filtration at removing waterborne 
contaminants. Nonrandom sources of variability in personal 
exposure can occur if the error is associated with the true 
underlying mean exposure (e.g., if behaviors are modified on 
the basis of water quality perception). In some analytic con­
texts such as Poisson regression, Berkson error does not bias 
effect estimates but rather increases the standard errors of 
effect estimates (6). However, many epidemiologic studies 
use logistic regression, and studies suggest that Berkson error 
can produce bias towards the null in logistic regression anal­
yses (23–25). 

Regression calibration is a statistical method for adjusting 
point and confidence interval estimates of effects obtained 
from regression models for bias due to exposure measure­
ment error (26). This method typically uses validation data 
sets of the measured surrogate exposure compared with 
more accurate exposure measurements to estimate the mag­
nitude of any bias derived from using the surrogate exposure 
metric. The original naive epidemiologic effect estimate 
based on the surrogate is then scaled or transformed by 
inverting the estimated attenuation factor, and confidence 
intervals are adjusted to reflect variability in the estimated 
attenuation factor. Regression calibration methods have 
been developed and widely used in nutritional epidemio­
logic studies (26–33). Regression calibration methods for 
estimating attenuation factors have been used in air pollu­
tion studies with external (34–36) and contemporaneously 
collected (37, 38) validation data sets. 

Measurement error is a significant concern in disinfection 
by-product (DBP) studies of the effects of water quality and 
may explain some inconsistent findings. Only 2 of 13 studies 
examining the impact of DBPs on smalls-for-gestational­
age birth collected data on individual water use (10–18, 
39–42). In previous DBP studies, investigators have evalu­
ated potential bias from spatial variability resulting from 
using local average concentrations to estimate individual-
level exposures (2, 3), while others have examined potential 
exposure misclassification resulting from interindividual 
variability in water-use patterns (1, 4, 43, 44). These inves­
tigators have not attempted to correct for bias attributable to 
exposure measurement error in epidemiologic studies of 
waterborne contaminants. 

We investigated the quantitative nature of bias from non-
differential measurement error of the classical and Berkson 
types as they may occur in epidemiologic studies of DBPs. 

Unlike many regression calibration methods currently em­
ployed in epidemiologic analyses, our proposed method does 
not require the use of a validation data set and is amenable to 
implementation using only routinely collected data. 

MATERIALS AND METHODS 

We simulated data to represent exposure to haloacetic 
acids, a type of nonvolatile DBP, specifically the metric 
called HAA5, which is the sum of concentrations of 
mono-, di-, and trichloroacetic acids and mono- and dibro­
moacetic acids. The HAA5 exposures were intended to rep­
resent exposures from public drinking water in 100 fictional 
localities within a single distribution system. The frame­
work for the data simulations assumed considerable vari­
ability in HAA5 concentrations within and between 
localities, as has been described in other DBP studies (14– 
16). Simulated values of true underlying locality-specific 
mean HAA5 levels were based on observed distributions 
of haloacetic acid samples collected across several drinking-
water distribution systems in Massachusetts during 1997– 
1998 (14) (mean ¼ 35 lg/L; standard deviation, 25). 

Since these data were approximately lognormally distrib­
uted, we used a corresponding normal distribution with 
a mean concentration of 3.35 lg/L and a standard deviation 
of 0.642 lg/L to represent the log-transformed HAA5 con­
centrations in our simulated distribution system. We con­
strained our simulations such that the overall variance of 
water samples within the system as a whole remained con­
stant, while the ratio of within- to between-locality vari­
ances changed. The true but unobservable mean ln(HAA5) 
concentrations in each of 100 localities were randomly se­
lected from a specific distribution. Each locality’s mean 
concentration of HAA5 was randomly assigned from the 
system-wide distribution, with mean 3.35 lg/L and variance 
equal to the simulated between-locality variance on the log 
scale (rB 

2). The between-locality variance was a function 
of the system-wide variance (0.4123 lg/L) and the spec­
ified ratio of within-locality variance (rW 

2) to between-
locality variance, such that rB 

2 ¼ [0.4123/(1 þ q)], where 
q ¼ rW 

2 /rB 
2. Each locality’s simulated variance was al­

lowed to vary around the assigned variance; the distribution 
of the difference between the assigned level for locality j and 
the true mean level (rW 

2) was assumed to follow a 
0-mean normal distribution with variance rWj 

2. 
Figure 1 shows how 3 localities’ means and variances 

might be represented. The wide distribution reflects the true 
underlying water distribution system ln(HAA5) concentra­
tions alongside narrower distributions reflecting 3 localities’ 
randomly assigned true underlying means (A, B, and C) 
from the system-wide distribution with their randomly as­
signed within-locality variances, such that the specified ratio 
of within-locality variance to between-locality variance was 
maintained. We used each locality’s true mean ln(HAA5) 
concentration (e.g., A, B, and C from Figure 1) and its 
variance to generate 4 random ln(HAA5) samples for each 
locality. Each of the 100 simulated subjects per locality was 
independently assigned a personal ln(HAA5) concentration 
that was randomly chosen on the basis of the true mean of 
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A B C 

Concentration of HAA5, µg/L 

Figure 1. Simulated system-wide and locality-specific distributions 
of concentrations of 5 haloacetic acids (HAA5). HAA5 is the sum of 
concentrations of mono-, di-, and trichloroacetic acids and mono- and 
dibromoacetic acids. The largest line represents the simulated 
system-wide distribution. The 3 smaller lines represent HAA5 distri­
butions for 3 different theoretical localities (towns A, B, and C). 

ln(HAA5) concentrations in the individual’s locality and 
additional random Berkson variability representing personal 
water-usage patterns. The Berkson error was either zero, 
once, or twice the system-wide variability (i.e., geometric 
standard deviation of 0.642 lg/L). 

Figure 2 shows the true underlying distribution of 
ln(HAA5) concentrations in 1 locality with the true mean 
and sample mean based on 4 random samples (thicker gray 
density function). ‘‘A’’ denotes the true assigned mean of 

a A  

Concentration of HAA5, µg/L 

Figure 2. Underlying distribution of local concentrations of 5 halo-
acetic acids (HAA5), with superimposed sample values for 1 locality. 
HAA5 is the sum of concentrations of mono-, di-, and trichloroacetic 
acids and mono- and dibromoacetic acids. The taller and thicker den­
sity function shows the true underlying distribution of ln(HAA5) con­
centrations in that locality. The shorter and thinner density function 
shows the true maternal exposures with Berkson error. a: Observed 
sample mean of 4 random HAA5 samples. A: True assigned mean of 
the hypothetical HAA5 distribution. The large circles represent 4 ran­
domly selected HAA5 samples; the small circles represent the true 
assigned exposure for 100 subjects. 

this distribution, while ‘‘a’’ denotes the average of 4 
ln(HAA5) samples (large circles) randomly selected from 
this distribution and represents the observed sample mean, 
which served as the surrogate measurement for each indi­
vidual’s true exposure. The difference between ‘‘A’’ and 
‘‘a’’ shows the classical measurement error. Figure 2 also 
shows the 100 randomly sampled values from around 1 
locality’s mean, representing the 100 subjects’ true 
ln(HAA5) exposures (thinner black density function). The 
small circles show each of 100 subjects’ true exposures. 
Differences between each small circle and ‘‘A’’ reflect the 
Berkson measurement error. 

The health outcome event was assumed to be binary and 
a logistic function of the natural logarithm of true maternal 
exposure, the baseline risk of an adverse effect, and the 
magnitude of simulated effects. The baseline probability 
of each simulated subject’s experiencing an adverse birth 
outcome was 5% in the absence of exposure, and we simu­
lated an arbitrary odds ratio of 2.00 per ln(20 lg/L) of true 
maternal HAA5 exposure. Logistic regression analyses 
were conducted using PROC LOGISTIC in SAS, version 
9.1 (SAS Institute Inc., Cary, North Carolina). We simulated 
system-wide variability equivalent to ½, 1, and 2 times the 
variability reported across 17 towns in Massachusetts (14). 
We simulated different ratios of within-locality variance to 
between-locality variance ranging from 1:4 to 4:1. 

Classical error variance in the mean of several replicate 
samples is equal to the within-locality exposure variance 
divided by the within-locality sample size that was used to 
develop the surrogate measure (24). In order to correct for 
this classical measurement error in our naive simulation re­
sults, we calibrated the observed local mean exposure met­
rics using estimates of within- and between-locality 
variance which were obtained using PROC VARCOMP 
(with type ¼ REML). We propose using the following for­
mula (adapted from Reeves et al. (24)) to calibrate the sur­
rogate exposure metric (i.e., mean of the log-transformed 
local area samples), such that the effect of exposure esti­
mated through logistic regression analysis of these trans­
formed data will not be biased by classical exposure 
measurement error: 

XCalibrated ¼ �XSample 3 T̂; 

where �XSample ¼ local sample mean; 
/( 2 )r̂2 2 Within-townT̂ ¼ r̂ r̂ þ ;Between-town Between-town nSamples 

and XCalibrated ¼ the transformed surrogate exposure metric: 
We simulated 1,000 iterations of each combination of 

classical and Berkson error patterns. We present mean lo­
gistic regression coefficients (b), which represent log odds 
ratios, and their standard errors as estimates of the effect of 
HAA5 on adverse birth outcomes under various simulated 
scenarios. We present the ratio of observed and calibrated 
effect estimates to the true effect (i.e., odds ratio ¼ 2.00; b ¼ 
0.693), as well as coverage proportions for both observed 
and calibrated results. Coverage proportions are the propor­
tion of estimated 2-sided 95% confidence intervals that in­
clude the true effect of exposure. 
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Table 1. Regression Calibration Results With Classical Measurement Error and No Berkson Error in a Simulated Water Distribution System With 
System-Wide Log-Scale Sample Variance of 0.412 lg/La 

Naive Calibrated 

VarðW Þ 
VarðBÞ 

b 
Mean 
b̂Obs 

c 

Mean 
Model-based 
Varðb̂Obs Þd 

Empirical 
Variance 
b̂Obs 

e 

Coverage, 
% 

Mean 
b̂Obs 

Mean 
Model-based 
Varðb̂Obs Þ 

Empirical 
Variance 

b̂Obs 

Coverage, 
% 

0 0.694 0.0042 0.0039 96.2 0.694 0.0042 0.0039 96.2 

0.25 0.653 0.0049 0.0051 90.8 0.695 0.0056 0.0058 94.8 

0.33 0.641 0.0052 0.0054 89.0 0.695 0.0061 0.0064 94.2 

0.50 0.616 0.0056 0.0060 80.9 0.696 0.0072 0.0078 93.9 

0.67 0.594 0.0060 0.0066 74.4 0.697 0.0083 0.0096 93.0 

1.00 0.554 0.0067 0.0077 59.4 0.698 0.0108 0.0133 91.0 

1.50 0.503 0.0077 0.0090 39.5 0.702 0.0153 0.0204 90.7 

2.00 0.461 0.0084 0.0100 28.7 0.706 0.0207 0.0297 89.8 

3.00 0.395 0.0097 0.0116 16.3 0.723 0.0367 0.0748 89.6 

4.00 0.347 0.0106 0.0127 9.4 0.734 0.0821 0.1900 88.6 

Abbreviation: HAA5, 5 haloacetic acids (sum of concentrations of mono-, di-, and trichloroacetic acids and mono- and dibromoacetic acids). 
a Results are based on 1,000 simulations using a true odds ratio of 2.0, represented as a true logistic regression b coefficient of 0.693 per 

ln(20-lg/L) change in HAA5. 
b VarðW Þ: within-locality variance; VarðBÞ: between-locality variance. 
c Mean of 1,000 estimated b coefficients.
 
d Mean of 1,000 estimated variances of b coefficients.
 
e Variance of 1,000 estimated b coefficients.
 

RESULTS 

The results shown in Table 1 reflect the effects of classical 
measurement error, with Berkson error set to zero, that we 
observed in our simulations, based on a system-wide sample 
arithmetic mean of 35 lg/L and a standard deviation of 25 
lg/L, which were converted to the log scale. These data, 
based on 1,000 simulated iterations, show the mean esti­
mated b coefficient (log of the odds ratio), the mean of 
the model-based estimated variances, the empirical variance 
of the estimated b’s, and coverage proportions for several 
different ratios of variances within and between individual 
local sampling areas (i.e., localities or towns) that comprise 
the distribution system. In the absence of within-locality 
variability, the ratio of within-locality variance to between-
locality variance is zero and the sample mean equals the true 
locality mean. 

All of the tables show that in the absence of classical 
measurement error, the estimated b’s are unbiased and the 
model-based variances approximate the empirical vari­
ances. When the ratio of within-locality variance to 
between-locality variance was 0.25, bias toward the null 
attributable to classical exposure measurement error was 
6%, with the mean model-based variance of the estimated 
b’s being overestimated by 18% as compared with the mean 
model-based variance in the absence of classical measure­
ment error shown in the first row of Table 1 and a coverage 
proportion of 91%. When the ratio of within-locality vari­
ance to between-locality variance was 1.00, bias toward the 
null was 20%, with the mean model-based variance being 
overestimated by 60% and a coverage probability of 59%. 
When the ratio of within-locality variance to between-local­
ity variance was 4.00, bias toward the null was 50%, with 
the mean model-based variance being inflated 2.5-fold and 

a coverage probability of 9%. As expected (8), the biased 
results were equal to the product of the true effect and the 
square of the correlation between the subject’s true exposure 
and the assigned surrogate exposure (also known as the co­
efficient of reliability) and were independent of the magni­
tude of the true effect (results not shown). 

Table 1 also shows the results of regression calibration 
analyses using observed sample data transformed by the 
function of the estimated within- and between-locality vari­
ances using our formula adapted from Reeves et al. (24). In 
these results, when the ratio of within- to between-locality 
variance was 0.25, there was no apparent bias in the esti­
mated b’s and the associated coverage probability was 
95%; however, the mean model-based variance was inflated 
by 34% as compared with the mean model-based variance in 
the absence of measurement error shown in the first row of 
Table 1. When the ratio of within- to between-locality vari­
ance was 1.00, the calibrated results showed a slight over­
estimation of 1% relative to the true effect, with an associated 
coverage probability of 91% with a 2.6-fold inflated mean 
model-based variance. When the ratio of within- to between-
locality variance was 4.00, the calibrated results overesti­
mated the true effect by 6% and had a coverage probability 
of 89% with a 20-fold inflated mean model-based variance. 

We also examined how these findings depended on the 
relative magnitude of homoscedastic system-wide sample 
variance. The results shown in Table 2 reflect the effects of 
classical measurement error, again with Berkson error set to 
zero, based on a system-wide sample variance one-half of 
that which was simulated in Table 1, while the results in 
Table 3 reflect a system-wide variance double that in Table 
1. Compared with the naive coverage estimates of 91%, 59%, 
and 9% (Table 1) for ratios of within- to between-locality 
variance of 0.25, 1.00, and 4.00, respectively, Table 2 shows 
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Table 2. Regression Calibration Results With Classical Measurement Error and No Berkson Error in a Simulated Water Distribution System With 
System-Wide Log-Scale Sample Variance of 0.206 lg/La 

Naive Calibrated 

VarðW Þ 
VarðBÞ 

b 
Mean 
b̂Obs 

c 

Mean 
Model-based 
Varðb̂Obs Þd 

Empirical 
Variance 
b̂Obs 

e 

Coverage, 
% 

Mean 
b̂Obs 

Mean 
Model-based 
Varðb̂Obs Þ 

Empirical 
Variance 

b̂Obs 

Coverage, 
% 

0 0.693 0.0084 0.0081 95.0 0.693 0.0084 0.0081 95.0 

0.25 0.652 0.0099 0.0100 92.7 0.694 0.0113 0.0114 94.6 

0.33 0.640 0.0104 0.0105 92.2 0.694 0.0123 0.0125 94.4 

0.50 0.615 0.0113 0.0117 88.3 0.695 0.0145 0.0151 95.0 

0.67 0.593 0.0121 0.0127 85.0 0.696 0.0168 0.0180 94.4 

1.00 0.554 0.0135 0.0147 77.3 0.698 0.0219 0.0245 93.6 

1.50 0.504 0.0154 0.0172 66.5 0.703 0.0308 0.0367 92.7 

2.00 0.462 0.0170 0.0190 56.5 0.707 0.0416 0.0516 92.3 

3.00 0.397 0.0194 0.0221 42.9 0.725 0.0737 0.1124 91.4 

4.00 0.348 0.0213 0.0240 33.4 0.730 0.1661 0.2820 91.1 

Abbreviation: HAA5, 5 haloacetic acids (sum of concentrations of mono-, di-, and trichloroacetic acids and mono- and dibromoacetic acids). 
a Results are based on 1,000 simulations using a true odds ratio of 2.0, represented as a true logistic regression b coefficient of 0.693 per 

ln(20-lg/L) change in HAA5. 
b VarðW Þ: within-locality variance; VarðBÞ: between-locality variance. 
c Mean of 1,000 estimated b coefficients. 
d Mean of 1,000 estimated variances of b coefficients. 
e Variance of 1,000 estimated b coefficients. 

larger coverage estimates of 93%, 77%, and 33%, while The results of adding different magnitudes of Berkson 
Table 3 shows smaller coverage estimates of 84%, 32%, measurement error to the classical error simulation results 
and 1%. The calibrated coverage estimates were less sensi- based on the sample variance of 0.4123 lg/L (from Table 1) 
tive to large changes in the system-wide sample variance. are presented in Table 4 and Table 5. Table 4 shows results 
The naive and calibrated model-based variances varied in from adding Berkson error to represent interindividual var­
inverse proportion to the relative multiplicative change in iability in factors such as volume of water consumed 
system-wide variability (Tables 1–3). per day; percentage of water consumed at or away from 

Table 3. Regression Calibration Results With Classical Measurement Error and No Berkson Error in a Simulated Water Distribution System With 
System-Wide Log-Scale Sample Variance of 0.908 lg/La 

Naive Calibrated 

VarðW Þ 
VarðBÞ 

b 
Mean 
b̂Obs 

c 

Mean 
Model-based 
Varðb̂Obs Þd 

Empirical 
Variance 
b̂Obs 

e 

Coverage, 
% 

Mean 
b̂Obs 

Mean 
Model-based 
Varðb̂Obs Þ 

Empirical 
Variance 

b̂Obs 

Coverage, 
% 

0 0.694 0.0021 0.0020 95.4 0.694 0.0021 0.0020 95.4 

0.25 0.652 0.0024 0.0027 84.4 0.694 0.0028 0.0031 93.4 

0.33 0.639 0.0025 0.0029 79.4 0.694 0.0030 0.0035 93.4 

0.50 0.615 0.0028 0.0032 65.5 0.694 0.0035 0.0043 92.4 

0.67 0.592 0.0030 0.0036 52.1 0.695 0.0041 0.0053 91.0 

1.00 0.553 0.0033 0.0042 32.3 0.697 0.0054 0.0076 89.6 

1.50 0.502 0.0038 0.0051 16.3 0.701 0.0075 0.0124 87.8 

2.00 0.461 0.0042 0.0056 8.2 0.707 0.0102 0.0187 86.6 

3.00 0.395 0.0048 0.0066 3.0 0.722 0.0181 0.0570 85.0 

4.00 0.345 0.0052 0.0071 1.0 0.735 0.0405 0.1757 84.4 

Abbreviation: HAA5, 5 haloacetic acids (sum of concentrations of mono-, di-, and trichloroacetic acids and mono- and dibromoacetic acids). 
a Results are based on 1,000 simulations using a true odds ratio of 2.0, represented as a true logistic regression b coefficient of 0.693 per 

ln(20-lg/L) change in HAA5. 
b VarðW Þ: within-locality variance; VarðBÞ: between-locality variance. 
c Mean of 1,000 estimated b coefficients. 
d Mean of 1,000 estimated variances of b coefficients. 
e Variance of 1,000 estimated b coefficients. 
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Table 4. Regression Calibration Results With Classical Measurement Error and Berkson Error Equal to the System-Wide Sample Variance in 
a Simulated Water Distribution System With System-Wide Log-Scale Sample Variance of 0.412 lg/La 

Naive Calibrated 

VarðW Þ 
VarðBÞ 

b 
Mean 
b̂Obs 

c 

Mean 
Model-based 
Varðb̂ObsÞd 

Empirical 
Variance 
b̂Obs 

e 

Coverage, 
% 

Mean 
b̂Obs 

Mean 
Model-based 
Varðb̂ObsÞ 

Empirical 
Variance 

b̂Obs 

Coverage, 
% 

0 0.689 0.0041 0.0037 95.5 0.689 0.0041 0.0037 95.5 

0.25 0.648 0.0048 0.0049 89.3 0.6896 0.0054 0.0056 94.9 

0.33 0.636 0.0052 0.0050 86.4 0.6902 0.0063 0.0059 94.1 

0.50 0.612 0.0054 0.0059 78.6 0.6908 0.0070 0.0077 93.4 

0.67 0.589 0.0058 0.0065 71.7 0.6915 0.0081 0.0093 93.3 

1.00 0.550 0.0065 0.0075 57.1 0.6937 0.0105 0.0130 92.1 

1.50 0.500 0.0074 0.0088 38.5 0.6977 0.0148 0.0201 90.9 

2.00 0.458 0.0082 0.0099 27.2 0.7017 0.0201 0.0300 90.0 

3.00 0.393 0.0094 0.0114 14.8 0.7183 0.0356 0.0810 89.2 

4.00 0.344 0.0103 0.0124 8.4 0.7272 0.0797 0.1897 89.1 

Abbreviation: HAA5, 5 haloacetic acids (sum of concentrations of mono-, di-, and trichloroacetic acids and mono- and dibromoacetic acids). 
a Results are based on 1,000 simulations using a true odds ratio of 2.0, represented as a true logistic regression b coefficient of 0.693 per 

ln(20-lg/L) change in HAA5. 
b VarðW Þ: within-locality variance; VarðBÞ: between-locality variance. 
c Mean of 1,000 estimated b coefficients.
 
d Mean of 1,000 estimated variances of b coefficients.
 
e Variance of 1,000 estimated b coefficients.
 

home; percentage of boiled, filtered, or bottled water con­
sumed; and effectiveness of water filtration equal to system-
wide sample variance. When combined with classical 
measurement error, Berkson error consistently decreases 
both the naive and calibrated effect estimates and their cov­
erage proportions by less than 1%. Table 5 shows the results 
of adding Berkson error equal to twice the system-wide 
sample variance on the log scale. The introduction of more 
Berkson error attenuated both the naive and calibrated effect 
estimates by approximately 4%. Tables 4 and 5 also show 
that additional Berkson error does not influence the model-
based variances by more than the same 1%–4%. 

Tables 1–5 show the mean of the 1,000 model-based var­
iances as well as the empirical variances of the estimated b 
coefficients. The mean model-based variances from the na­
ive analyses were smaller than the empirical variances, and 
the differences increased with additional classical measure­
ment error. The same pattern of differences was observed 
for the calibrated results. However, when the ratio of the 
within-locality variance to the between-locality variance in 
exposure was smaller (:0.5), the mean model-based vari­
ances were within 10% of the empirical variances. 

DISCUSSION 

Many environmental epidemiologic studies estimate in­
dividuals’ personal exposures using local area samples, 
which are considered indirect surrogate measures of true 
local pollutant concentrations. This results in classical non-
differential measurement error, which is known to usually 
bias regression results toward the null. Although the mag­
nitude of bias is often unknown, most investigators simply 
state that had there been no measurement error the estimated 

effect estimate would have been larger. In only 1 of 57 
studies published in 3 prominent epidemiology journals 
over a 1-year period did the researchers quantify the likely 
impact of exposure measurement error on results, while only 
29% qualitatively described the possible effects (45). The 
impact of exposure measurement error in epidemiologic 
studies appears to be ignored in practice. 

We have shown that bias that results from classical mea­
surement error can be reduced using variance parameters 
directly estimable from observed data when there are a fixed 
number of multiple exposure measurements within multiple 
local areas (e.g., homes, neighborhoods, or towns). This 
assumes that the available monitoring data adequately cap­
tured the true within-area variance. Observed within- and 
between-area variances can be used to compute study-
specific transformations of surrogate exposure measures that 
yield the true effect of exposure, akin to regression calibra­
tion using an external validation sample. We have also 
shown, in Tables 4 and 5, how bias that results from Berkson 
measurement error, while not directly estimable from the 
observed data, behaves in combination with classical error. 

Nondifferential measurement error, including classical 
and Berkson error, can result in misclassification of expo­
sures and outcomes in epidemiologic studies. These simu­
lations show that regression calibration techniques can be 
used to reduce the bias from classical error. On the basis of 
these results, we have shown that classical measurement 
error attenuates effect estimates considerably, while Berk­
son measurement error attenuation is minimal under the 
specified conditions used in the simulations. These data 
suggest that random interindividual variability in water in­
take habits with respect to the true local exposures and 
within a range typical of personal variability in DBP 
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Table 5. Regression Calibration Results With Classical Measurement Error and Berkson Error Equal to Twice the System-Wide Sample 
Variance in a Simulated Water Distribution System With System-Wide Log-Scale Sample Variance of 0.412 lg/La 

Naive Calibrated 

VarðW Þ 
VarðBÞ 

b 
Mean 
b̂Obs 

c 

Mean 
Model-based 
Varðb̂Obs Þd 

Empirical 
Variance 
b̂Obs 

e 

Coverage, 
% 

Mean 
b̂Obs 

Mean 
Model-based 
Varðb̂Obs Þ 

Empirical 
Variance 

b̂Obs 

Coverage, 
% 

0 0.669 0.0035 0.0038 92.7 0.669 0.0035 0.0038 92.7 

0.25 0.629 0.0044 0.0045 82.3 0.669 0.0050 0.0051 92.8 

0.33 0.617 0.0046 0.0048 79.0 0.670 0.0054 0.0057 93.1 

0.50 0.593 0.0050 0.0053 70.8 0.670 0.0064 0.0071 93.0 

0.67 0.571 0.0054 0.0059 61.3 0.670 0.0075 0.0086 92.1 

1.00 0.533 0.0060 0.0067 44.8 0.672 0.0097 0.0118 91.6 

1.50 0.485 0.0068 0.0078 29.5 0.676 0.0136 0.0181 90.8 

2.00 0.443 0.0075 0.0086 19.5 0.680 0.0184 0.0266 90.5 

3.00 0.380 0.0086 0.0098 9.6 0.696 0.0327 0.0353 89.5 

4.00 0.332 0.0094 0.0108 5.4 0.704 0.073 0.1787 88.0 

Abbreviation: HAA5, 5 haloacetic acids (sum of concentrations of mono-, di-, and trichloroacetic acids and mono- and dibromoacetic acids). 
a Results are based on 1,000 simulations using a true odds ratio of 2.0, represented as a true logistic regression b coefficient of 0.693 per 

ln(20-lg/L) change in HAA5. 
b VarðW Þ: within-locality variance; VarðBÞ: between-locality variance. 
c Mean of 1,000 estimated b coefficients.
 
d Mean of 1,000 estimated variances of b coefficients.
 
e Variance of 1,000 estimated b coefficients.
 

exposures may not result in much bias. Therefore, boiling, 
filtering, and consumption volumes are unlikely to have any 
noticeable impact on the observed effect estimates unless 
they produce systematic error that is related to the true un­
derlying locality mean concentration. For example, subjects 
who perceive that their water quality is poor may consume 
only bottled water, which generally has low levels of chlo­
rination by-products. Since these subjects would be truly 
unexposed to DBPs via ingestion but classified as exposed 
on the basis of the locality-level distribution system data, 
this could skew any measurement error and cause bias. The 
results presented here assume that the mean error is zero and 
the behavior of this method of regression calibration may 
change under alternative conditions. The potential impact of 
this kind of measurement error is much more difficult to 
predict and correct for in epidemiologic studies. 

We examined variation in personal exposure up to 2 times 
as high as the variability in haloacetic acid concentrations 
across localities on the log scale. The maximum simulated 
untransformed maternal HAA5 exposure concentrations 
were 270 lg/L and 73,130 lg/L when the Berkson errors 
were equal to and twice the size of the variability in the 
system-wide distribution, respectively. This extremely large 
range of simulated maternal exposures should capture the 
exposure experience of individuals in the outer tails of most 
distributions. Our data suggest that investigators in DBP 
studies that do not have personal exposure measurements 
can still accurately assess putative effects, as long as there is 
no systematic exposure measurement error. 

We based our baseline simulations on a generally homo­
scedastic system-wide sample geometric standard devia­
tion of 0.642 lg/L to illustrate the effects of classical 
measurement error. This was based on the combined var­

iance of several water distribution systems in Massachu­
setts but is also consistent with previous DBP studies 
(4, 46–48). Our simulations suggest that the absolute mag­
nitude of system-wide variance does not determine the 
magnitude of bias for exposures based on group-level sur­
rogate data. Rather, it is the ratio of within- to between-
locality variances that predicts the bias. However, higher or 
lower system-wide variability does affect coverage propor­
tions, with lower variability being associated with more 
accurate coverage. Most public water distribution systems 
typically have much less within-system variability relative 
to variability between localities. Some epidemiologic stud­
ies have targeted water systems with low spatial variability, 
including those utilizing certain types of disinfection such 
as chloramination to reduce DBP formation (15, 49). In 
contrast, larger studies examining many different water 
systems have greater between-system variability due to 
variable disinfection practices and drinking water sources 
(i.e., groundwater, surface water, or mixed supplies). The 
potential for calibration of measurement error reinforces 
the need to adequately characterize within- and between-
locality variability. Increasing the number of samples per 
locality to 10 (instead of 4) generally improved the perfor­
mance of the calibration method—especially when the ra­
tio of within-locality variance to between-locality variance 
was high. We compared the results in Table 1 (no Berkson 
error, 4 samples per locality) for different scenarios. 
Results were substantially unchanged when the ratio of 
within- to between-locality variance was small (results 
not shown). However, in scenarios where the within-
locality variance was 4 times larger than the between-
locality variance, a larger sample size per locality yielded 
substantial improvement in the performance of our 
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regression calibration method. Compared with the results 
shown in Table 1 for a within:between-locality ratio of 4, 
the calibrated results based on more samples per locality 
were less biased (mean b̂Obs: 0.703 vs. 0.734) and had im­
proved coverage (92.5% vs. 88.6%). 

One artifact of this analysis occurred when the ratio of 
within- to between-locality variability was very high; the 
calibrated results showed a tendency to inflate the estimated 
effect of exposure. This resulted from estimated within- and 
between-locality variances from PROC VARCOMP in SAS, 
version 9.1, that were slightly different than was specified in 
the simulation design. The variance estimates tended to 
overestimate the true within-locality variance while slightly 
underestimating the between-locality variance. This led to 
an underestimate of the transformation scalar of the surro­
gate exposure, which had the impact of slightly overestimat­
ing the associated risk measures. Supplemental simulations 
that used the true variances rather than those estimated from 
the observed data did not produce higher calibrated effect 
estimates at higher ratios of within- to between-locality er­
ror (data not shown). Alternative computational procedures 
that more accurately estimate the within- and between-
locality variances would diminish this trend and might cor­
respondingly improve the coverage proportions of the cali­
brated results. However, the relevant range of this important 
ratio is at the lower end of our simulations—typically less 
than unity for DBPs such as trihalomethanes (48). Within 
this range, our method provides calibrated results that are 
nearly unbiased. 

Risk assessment seeks to characterize the true, underlying 
effect of exposures that may be biased or otherwise ob­
scured by various uncertainties; therefore, it is critical that 
investigators make use of all possible tools that aid estima­
tion of this risk. We have presented a method with the po­
tential to reduce bias due to classical and Berkson 
measurement error. This method should allow for hierarchi­
cally designed investigations of environmental exposures 
based on local area means of several samples to be cali­
brated for this bias, thereby providing effect estimates that 
are less biased and less uncertain. Comparing the results 
without Berkson error (Table 1) to those with Berkson error 
(Tables 4 and 5), we have shown that unmeasured Berkson 
measurement error induces only a small bias in the direction 
of the null. 

The central strength of our regression calibration method 
of correcting for attenuation of effect estimates due to clas­
sical exposure measurement error is that it does not require 
the use of a supplemental validation study. This method can 
be implemented using routinely collected local surrogate 
exposure data. Since our method depends on estimating 
the within- and between-locality variability in a water dis­
tribution system, it is likely to be more effective when there 
are more exposure measures within each locality. While this 
method may be most useful in primary data analyses to 
show the extent of the magnitude of bias from measurement 
error, previously published results may be amenable to cal­
ibration if estimates of the within- and between-locality 
variances are available. This seems particularly relevant 
for epidemiologic studies of DBPs, since only 2 studies 
examining the impact of DBPs on fetal growth have incor­

porated data on individual water use (10–18, 39–42). Since 
the true magnitude of associations may have been under­
estimated in these studies, assessing this potential bias and 
other sources of uncertainty is essential to estimating any 
causal effect of exposure. 
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