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GLOSSARY OF TERMS 
 
Akaike Information Criteria (AIC) - The deviance (-2 times the log of the maximized value of the 
likelihood function) + 2 times the number of parameters in the model.  
 
Categorical regression - A model expressing the probabilities of different response categories as 
functions of explanatory variables.   
 
Cluster sample - A data set comprised of subsamples of data from common sources.  For 
example, a data set may contain several data records per laboratory from several different 
laboratories.  The subgroup of data records from each individual laboratory would represent a 
cluster sample. 
 
Cumulative odds regression - Ordinal regression model for directly modeling the probabilities of 
exceeding different severity levels. 
 
Deviance - The minimized value of twice the negative logarithm of the likelihood function.   
 
Extra risk concentration (ERC) - See Section 4.2. 
 
ERC settings - Three numbers: ERC percentile, ERC severity level, and ERC percentile for  
confidence intervals (see Sections 5.1, and 8). 
 
Filtering - Exclusion of selected data records from the analysis.  This capability “filters out” 
selected data without altering the data input file. 
 
Generalized estimating equation - An equation depending on the data and the parameter values, 
such that solving for the parameter values yields consistent estimates.   
 
Hierarchical models - An ordered series of models, such that each model is a special case of the 
next one in the series.   
 
Inf - Infinite value 
 
Interval censored data - Data for which the response is known only to lie in an interval of values.   
 
Likelihood function - For categorical response data, a model for the joint probability of the 
observed data values, expressed as a function of the model parameters.   
 
Link function - A function applied to the categorical response probability to transform the 
categorical regression model to linear units.   
 
Meta-analysis - The analysis of data from multiple studies to determine overall trends and 
increase power.   
 
Na - Not available 
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NaN - Not a number 
 
Ordinal data - Data reported as ordered categories.  The order is meaningful, but the numerical 
difference between ordered categories is not.   
 
Parallelism - The coefficients of concentration and time in the exposure-response model (i.e., the 
probability function) do not change with severity level (parallelism applies to Model 1, the 
cumulative odds model, but not to Model 2, the unrestricted cumulative model). 
 
Probability function - The function of the explanatory variables that gives the probability of 
exceeding a given severity level.  
 
Proportional odds regression - Ordinal regression in which the log-odds of exceeding different 
severity levels are parallel across severity categories.  It is a special case of cumulative odds 
regression with the logistic link function. 
 
Stratification - To create subsets of data by allowing the model parameters to vary by subset.  
Covariate information such as species, sex, and target organ may be used as a basis for creating 
the sub sets
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1. INTRODUCTION  
 CatReg is a computer program developed to support toxicologists and health scientists in 

the conduct of exposure-response analyses, most often for controlled animal experiments.  

“Exposure” has two components: exposure level, indicated by a concentration or dose of the 

agent of interest, and exposure duration, when it varies within the data.  “Response” refers to 

occurrence of a detrimental health effect of a user-defined level of severity. More specifically, 

effects observed in toxicological studies are assigned to ordinal severity categories and 

associated with the exposure conditions (e.g., concentration and duration) under which the 

effects occurred. “Ordinal” here means that the categories have a natural ordering in terms of 

severity or strength of response, but the spacing between ordinal scores is not subject to direct 

interpretation.   

 For example, response might have four levels of severity coded as: 0 = “no adverse 

effect”, 1 = “mild adverse effect”, 2 = “moderate/severe effect”, 3 = “lethal effect”.  An ordinal 

response of 2 is higher than a response of 1, but the difference is not necessarily the same as the 

difference between 3 and 2.  The simplest case is dichotomous response data, with just two 

severity levels, such as: 0 = “no adverse effect”, 1 = “adverse effect”. If data are reported on a 

continuous scale, such as mean and standard error of respiratory rate depression, the user can 

distribute the total number of experimental subjects over the severity levels using a method 

discussed in Section 3.2.3 and Appendix A.   

 CatReg provides two basic models, with variations to be explained, to relate the 

probabilities of the different severity categories to exposure level and exposure duration, taking 

user-defined covariates into account (e.g., species, gender, target organ, etc.).  The parameters in 

the models are an intercept term and coefficients of concentration and duration, either of which 

may be log-transformed (to the base 10, denoted as “log,” “log10,” or “log10”).  Model 1, the 

cumulative odds model, allows the intercept term to vary with severity level, but not the 

coefficients of concentration and duration. Model 2, the unrestricted cumulative model, allows 

any of the parameters to vary with severity level. The probability that a specified severity level 

or worse will occur increases as concentration or duration increases.  The user can choose for 

either Model 1 or Model 2 to conform to the logistic, normal, or Gumbel cumulative probability 

distribution (see Section 4.1 and Appendix B).  There is a function (called the link function) in 

each case that transforms the probability for each severity level to a linear function of the 
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unknown parameters, the format of a linear statistical model.  The link functions are the logit, 

probit, and cloglog (complementary log-log) functions for the logistic, normal, and Gumbel 

cumulative probability distributions, respectively. The parameter estimates and their statistical 

characteristics, including standard errors and significance levels, are routinely output by CatReg, 

along with an analysis of deviance table to assess model fit and a table of estimates of extra risk 

concentrations (concentrations at which extra risk is a user-specified value) for 1, 4, 8, and 24 

hour exposure durations.    

 CatReg was developed for, but is not limited to, meta-analysis of toxicology data.  Meta-

analysis refers to the analysis of data or results from multiple studies simultaneously.  Meta-

analysis becomes valuable when individual experiments are too narrow to address broad 

concerns.  For example, in acute inhalation risk assessment, it is important to investigate the 

combined effects of concentration and duration of exposure, but few published experiments vary 

both the concentration and the duration of exposure (Guth et al., 1997).  By combining 

information from multiple studies, the contribution of both concentration and duration to toxicity 

can be estimated.  Moreover, the combined analysis allows the analyst to investigate variation 

among experiments, an important benchmark for the level of model uncertainty.  

 Different exposure-response experiments may consider the same or different 

toxicological endpoints, and toxicological judgment is required to determine if, and when, two 

different endpoints, or gradations of the same endpoint, are of comparable severity.  A relatively 

simple example is analysis of mortality studies, with two severity levels: 0 = “not lethal”, 1 = 

“lethal”.  The same endpoint is used for all studies and no intermediate degrees of health 

gradation are addressed.  A little more complicated example might involve a single health effect, 

or mode of action, but with more than one severity level corresponding to manifestations of 

progressive “stages” of development.   

 Where studies address dissimilar endpoints that may be the consequence of different 

modes of action, particular care needs to be exercised to decide if comparable severity levels can 

be assigned across studies.  It may not be reasonable to include all studies in the same analysis.  

For example, two toxicology experiments might report stages of anesthesia while another reports 

suppression of the shock-avoidance response.  It might be the case that a toxicologist can 

confidently assign endpoints of the first two studies to comparable severity levels, but not be able 

to include the third study.  In that case, one analysis could address the first two studies and a 
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second analysis the third study, since the studies cannot all be put on a “toxicologically 

equivalent” severity scale for analysis together.  

 A critical feature of CatReg is the capability to support data analysis needed for 

exposure-response modeling, that includes assessing and comparing how well models fit the 

data, testing for differences across studies and the significance of covariates within single or 

pooled studies, detecting outliers, etc.  The program has a wide range of options to facilitate 

sensitivity analysis and produces numerous plots in addition to test results.  In general, CatReg 

should be viewed as a statistical tool for developing an exposure-response curve and addressing 

related questions.  A thorough analysis may require numerous executions of CatReg, ideally 

guided by both toxicological and statistical considerations.  

 The U.S. Environmental Protection Agency’s (EPA’s) National Center for Environmental 

Assessment encourages the broad application of this software.  In this document, however, EPA 

has chosen to focus on the application of the software to the assessment of adverse effects 

associated with acute inhalation exposure.  The description of data input files for the software 

reflect this application.  The user is free to modify the input fields to support other applications.  

Appendix B provides additional technical description of the statistical methods used by the 

program. CatReg is designed to work with R, and the user must have access to this software to 

execute the CatReg program (http://cran.r-project.org/ ).  Although familiarity with R may assist 

the user, an understanding of the R programming language is not required.   

 In the following text, Courier New font is used in most places for words that appear 

on the screen. For example, to plot confidence intervals for extra risk after estimation of the 

exposure-response curve, at the prompt (usually >) the user would input confplot(),that 

may include options within the parentheses.  

 

2. INSTALLING CatReg 
 R is required to run CatReg.  These instructions apply to Windows 98/2000/XP operating 

systems.  To obtain and install the source code for CatReg, follow the steps below. 

(1). Download the latest version of R, from the URL:http://cran.r-project.org/ 

(2). Create a sub-directory (folder) named “CatReg” under r221, make it look  

used.) like:C:\Program Files\R\r221\CatReg.(Note: “r221” corresponds to the current R version 

number. This subdirectory name will change according to the version of R being used.)  

http://cran.r-project.org/
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(3).  Download and save the attached five R source code files - catreg.R, ecdata.R, Util.R, 

Winplot.R, and Winstall.R to the “CatReg” folder.   

  

(4). Set the working directory in R to “CatReg”. To do this, open R and enter the command: 

 setwd(“C:\\Program Files\\R\\r221\\CatReg”) 

 At the R command prompt, type getwd() to verify that the right working directory is set. 

(5). Select “File” from the main menu, and then “Source R code...”  Go to the “CatReg” 

subdirectory, and double click “Winstall.R”.  This will automatically source all the five CatReg 

source files. 

(6). In R command prompt, type in “catreg()”, and the CatReg program should be  running. 

 

 Steps 4 -6 above must be performed each time CatReg is run in R. If you are a frequent 

CatReg user, you can add the following three R commends to the “.Rprofile” file in the “etc” 

subdirectory (e.g., using wordpad). By doing this, CatReg can be run without performing steps 

4 -5. 
 setwd("C:/Program Files/R/r221/CatReg") 

 source ("C:/Program Files/R/r221/CatReg/Winstall.R") 

 load ("C:/Program Files/R/r221/CatReg/.RData") 

 

3. CREATING INPUT RECORDS 
3.1. Data Types 

 When the source document for an experiment does not report the outcome for individual 

subjects, or otherwise report the incidence of different health effects, the data may not be suitable 

for CatReg.  For example, a report of “mild” pathology for a treatment group might mean that a 

few or many in the group manifested that response or that the “mild” response was the most 

common, with both lesser and more severe effects also present in the group.  In either case, there 

is not sufficient information to divide a treatment group into incidence of severity categories.   

 It is sometimes reasonable to represent a health outcome measured on a continuous scale 

as categorical data.  Continuous data from acute studies, such as enzyme activities, tidal volume, 

respiratory rate, blood pressure, etc., often are reported as a mean value, with a measure of 

dispersion, such as the standard error or standard deviation, for each treatment group.  To convert 

these data to severity levels for CatReg, each severity level needs to be equated to an interval of 
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values on the continuous scale.  For example, if the full range of responses is 0 to 100, the user 

might decide to classify outcomes 0 to 20 as “no effect”, 21 to 40 as a “mild adverse effect”, 41 

to 65 a “moderate adverse effect”, and 66 to 100 “severe effect”.  The mean for a treatment 

group falls into a single severity level, but some of the individual responses of subjects in the 

group may have been dispersed over adjacent severity levels.   

 Knowing the mean and standard deviation (or standard error that can be converted to a 

standard deviation by multiplying by the square root of the size of the treatment group) and 

assuming a distribution for the continuous data (e.g., normal), an estimate can be made of the 

incidence at each severity level (see Appendix A for details).  The estimated incidence figures 

need not be whole numbers, but must still sum to the total group size. Incidence estimation is not 

possible if the mean is reported without a measure of dispersion. 

 

3.2. The Data Input File 

 The same category system of severity levels must be used for all data in an input file. 

Considerable toxicological judgment may be required for classification of various health effects 

into severity levels and for achieving comparability across experiments.  When that can not be 

done for all the studies of interest, it may be necessary to group the studies into more than one 

input file.  Classification judgments must be made systematically according to documented 

criteria.   

 The minimum number of severity levels is two (severity levels coded as 0 and 1, 

corresponding to absence or presence of an effect) and the maximum number is four.  Suggested 

severity categories for a three-category classification are “no adverse effect”, “adverse effect”, 

and “lethal effect”, coded as severity levels 0, 1, 2, respectively.  A four-category scheme might 

be “no adverse effect”, “mild adverse effect”, “moderate/severe effect”, and “lethal effect”, 

coded as 0, 1, 2, 3, respectively. 

 In some toxicology studies, it may not be possible to score all response data completely.  

Consider a four-category scoring system in which 0 = “no observable effect,” 1 = “mild effect,” 

2 = “moderate effect,” and 3 = “severe effect.”  Published data from an animal mortality study 

may not include nonlethal outcomes; therefore, the response score for an animal that survives is 

uncertain, or “censored.”  That score is known to be less than 3, but it is not known whether the 

score should be 0, 1, or 2.  Such an observation is said to be “interval censored.”  Another 
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situation where the response score may be interval censored is in combining data from 

experiments with different endpoints.  For some endpoints, it may not be clear from the 

toxicology whether a specific response should be considered “mild” or “moderate.”  An interval 

censored analysis simply could report that the response is either 1 or 2, but the specific score is 

not known. 

 The ability to include partial information about the ordinal scores is one of the important 

features of CatReg.  CatReg incorporates this type of partial information in an interval-censored 

analysis.  In general, interval censoring occurs if the response is known only to lie in an interval 

of potential values.  Such intervals are specified in CatReg by supplying the lower and upper 

limits of the known range for each observation. Suggested codes to indicate species and sex in an 

input file are provided in Table 3-1. 

 

TABLE 3-1.  RECOMMENDED CODES FOR SPECIES AND SEX 
Species Code Sex Code 
Human  HU Female F 
Rat  RT Male M 
Mouse  MU Both sexes B 
Rabbit  RB   
Guinea pig  GP   

 

 

 Each column of the user input file is referred to as a data field, with the first record (row) 

being variable names and all subsequent rows containing data for the variables. CatReg requires 

information for four- six data fields, depending on the data.  The names of these data fields and 

the corresponding default variable names that CatReg looks for in the user input file are shown in 

Table 3-2.  For example, “conc” refers to a data field for exposure concentration and CatReg 

looks for the variable name “mg/m3” to identify that field, unless the variable name has been 

changed from the default (see Section 10.1). The default variable name for “conc” might be 

changed, for example, if the concentration used in experiments is different from milligrams per 

cubic meter.  

 Using the default variable names in Table 3-2 as an example, the user input file must 

include data in each record (beyond the first that contains variable names) for variables 

“mg/m3”, “Nsub”, “Incid”, and “SevLo”.  Data are also required for the variable “Hours” unless 
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all exposure duration times are equal, in which case it can be omitted (CatReg uses 1 as the 

default value in that case).  The variable SevHi is required if the severity level for one or more 

records is entered as a range, but not otherwise.  For example, if the severity level for a record is  

 

TABLE 3-2.  DATA FIELDS THAT MAY BE REQUIRED 
Data Field Variable 

Name 
Description 

Conc mg/m3 Exposure concentration.  Use of the human equivalent 
concentration is recommended.  Always required. 

Time Hours Exposure duration in hours.  Required unless all 
durations are equal.  (Default value = 1.) 

Nsub Nsub Number of subjects in a treatment group. Always 
required. 

Incid Incid Incidence of severity level (or severity range) for the 
record. Always required. 

Loscore SevLo Lowest severity level for the record. Always required. 
Hiscore SevHi Highest severity level for the record. Required if 

response spans more than one severity level. 
 

 

a range such as level 1 to level 2, then SevLo is entered as 1 and SevHi is entered as 2.  Data 

records for which SevLo ≠ SevHi are referred as censored data.  If only one severity level 

applies, e.g. level 1, then SevLo = SevHi = 1. 

 A separate record is entered for each severity level (or range of severity levels in the case 

of censored data) observed in a treatment group. For example, if the user determines three 

severity classifications for health effects, denoted as 0, 1, and 2, then the outcome for a treatment 

group is represented as an incidence for each severity level that is observed.   To illustrate, a 

treatment group of size 10 might result in 3 subjects being classified at severity level 0, 4 at 

severity level 1, and 3 at severity level 2, which would require three consecutive records 

(consecutive rows of data) in the input file.  The records for the treatment group must not only be 

consecutive but their incidence (values of Incid) must sum to the treatment group size (Nsub).   

 A severity level with no observations need not be entered as a separate record.  For 

example, if a treatment group of size 10 had 6 subjects classified at severity level 0 and 4 at 
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severity level 1, then only two records would be required to enter the data. The value of Nsub 

would be 10 in both records; the value of Incid would be 6 in one record and 4 in the other. 

 The user’s input file, with data separated by commas, must be housed in the “Start in” 

directory for R.  Microsoft Excel spreadsheets can be used to construct a data file, but the file 

must be saved as a comma-delimited file with a “csv” extension, rather than as an Excel file with 

an “xls” extension.  Because CatReg assumes that data are separated by commas rather than by 

blank spaces, spaces are interpreted as characters and should be avoided unless intended to be 

part of the data.  For instance, “, MU,” is distinct from “,MU,”.  Because R is also case-sensitive, 

“mU,” is different from “Mu,”.   

 Variables in addition to those in Table 3-2 may be added to the input file at the user’s 

discretion, either for use in execution of CatReg or to facilitate organizing and keeping track of 

the data. The user can refer to them in the same manner as variables in the required fields when 

using CatReg options.  For example, one might want to add “strain” as a variable to distinguish 

between two strains of mice and have CatReg test whether their exposure-response curves are 

significantly different in some respect, or add “Ref.id” to record the source of the data, even if it 

is not used during the execution of CatReg.  

 Three varied examples of input files follow, described as experimental results for 

hypothethical chemicals named chemx, chemy, and chemz. The data were generated by 

simulation, except the data for what is being called chemy that were constructed from a few 

experiments on exposure of rodents to hydrogen sulfide. The input file for chemx is an example 

of four experiments, one each on the four combinations of species (RT and MU) and target 

organs (C and L).  The input file for chemy has a more complicated structure and illustrates how 

a toxicologist might determine the severity levels. The input file for chemz is an illustration of 

converting a continuous response to severity categories for use in CatReg. 

 

3.2.1. Input File: chemx.csv. 

Table 3-3 displays the first part of the input file for chemx.csv.  Four experiments were 

conducted under identical exposure conditions, each consisting of 10 observations at each 

combination of four concentrations (mg/m3) and four duration (Hours), for a total of 64 

treatment groups.  The concentrations are 1259, 1585, 2000, and 2512 mg/m3; the durations are 

1.25, 1.6, 2.0, and 2.5 hours.  There are three severity levels: no adverse effect (SevLo = 0), mild 

adverse effect (SevLo = 1), moderate/severe effect (SevLo = 2).  Two experiments are on mice 
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(Species = MU) and two are on rats (Species = RT), with one of the two experiments on each 

species reporting effects on the central nervous system (Target = C) and the other reporting 

effects on the liver (Target = L).  “Exp” denotes an experiment number, “Group” the treatment 

group within the experiment, “Nsub” the number of subjects in the treatment group, and “Incid” 

the incidence in the treatment group of the severity level (SevLo) shown in the record (row 

of data).   

TABLE 3-3. PART OF THE INPUT FILE CHEMX.CSV. 
Exp. Group Species Target mg/m3 Hours SevLo Nsub Incid 
1 1 MU C 1259 1.25 0 10 10 
1 2 MU C 1259 1.6 0 10 9 
1 2 MU C 1259 1.6 1 10 1 
1 3 MU C 1259 2 0 10 4 
1 3 MU C 1259 2 1 10 6 
1 4 MU C 1259 2.5 0 10 1 
1 4 MU C 1259 2.5 1 10 9 
1 5 MU C 1585 1.25 0 10 7 
1 5 MU C 1585 1.25 1 10 3 
1 6 MU C 1585 1.6 0 10 3 
1 6 MU C 1585 1.6 1 10 7 
1 7 MU C 1585 2 0 10 1 
1 7 MU C 1585 2 1 10 7 
1 7 MU C 1585 2 2 10 2 
1 8 MU C 1585 2.5 1 10 4 
1 8 MU C 1585 2.5 2 10 6 
1 9 MU C 2000 1.25 0 10 7 
1 9 MU C 2000 1.25 1 10 3 
1 10 MU C 2000 1.6 0 10 2 
1 10 MU C 2000 1.6 1 10 5 
1 10 MU C 2000 1.6 2 10 3 
1 11 MU C 2000 2 1 10 6 
1 11 MU C 2000 2 2 10 4 
1 12 MU C 2000 2.5 1 10 4 
1 12 MU C 2000 2.5 2 10 6 
1 13 MU C 2512 1.25 1 10 9 
1 13 MU C 2512 1.25 2 10 1 
1 14 MU C 2512 1.6 1 10 5 
1 14 MU C 2512 1.6 2 10 5 
1 15 MU C 2512 2 1 10 2 
1 15 MU C 2512 2 2 10 8 
1 16 MU C 2512 2.5 2 10 10 
2 1 RT C 1259 1.25 0 10 10 
2 2 RT C 1259 1.6 0 10 9 
2 2 RT C 1259 1.6 1 10 1 
2 3 RT C 1259 2 0 10 9 
2 3 RT C 1259 2 1 10 1 
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The variable names mg/m3, SevLo, Nsub, and Incid are required and an error message is 

printed if any of them is missing. In this example, the exposure durations vary so the variable 

Hours is included. SevHi would have been included as a variable if the severity level had been 

censored for one or more records (spanned more than one severity level). For example, to make 

the 10 subjects in the first record (row of data) classified as severity level 0-1, the variable SevHi 

would be added to the input file and the first record would remain unchanged except for 

SevHi = 1.  In that case, subsequent records that are not censored would be given the same value 

for SevLo and SevHi.  For example, the second record indicates that 9 subjects were classified at 

severity level 0.  If SevHi were included as a variable, then SevHi would be set to 9 for that 

record, making SevLo = SevHi = 9.  

It may be noted that variables Exp., Group, Species, and Target are names created by the 

user.  Species and Target were included in this case to be able to distinguish between species and 

target organ in the data analysis, but other names could be used in their place.  Exp. and Group 

were added by the user to facilitate record keeping.  The variable Group is not required by 

CatReg but records for the same treatment group must be together in the input file, all with the 

common value of Nsub and values of Incid that sum to Nsub.  Adding a variable such as Group 

provides a convenient check of the data for the user.  CatReg determines treatment groups by 

reading records until the values of Incid sum to Nsub, then starting over with the next record.    

 

3.2.2. Input File: chemy.csv. 

 Table 3-4 is part of a larger input file that was constructed for exposure of rodents to 

hydrogen sulfide.  Only part of the available experimental data are used here for illustration, so it 

is referred to as “chemy” instead of hydrogen sulfide.  It illustrates a more elaborate coding 

system and some other features not included in the preceding example, e.g. censoring, and 

provides a realistic example for discussion of toxicological judgment in severity classification.   

The available studies varied on the organ sites and endpoints examined and a four-category 

system of severity levels was implemented: no adverse effect (0), mild adverse effect (1), 

moderate/severe effect (2), and lethal effect (3).  Again, CatReg expects to find variables mg/m3, 

Nsub, Incid, and SevLo, at a minimum, and Hours as well, if exposure duration varies, and 

SevHi if there are any censored data.  Also (again) notice that a separate record is required for 
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each different severity (or range of severity in the case of censored data) in a treatment group, 

and that Incid sums to Nsub for records in the same treatment group.  

 “Ref.id” (reference identification) is a number assigned by the user to the source of the 

information in the record.  In the example, Ref.id = 20938 is the source of the material used to 

construct the first 10 data records shown.  “Exp.” identifies experiments within each Ref.id, 

numbered sequentially from 1; “Group” numbers treatment groups within each experiment (i.e., 

subjects alike with respect to all methods and materials variables); and “Nsub” is the number of 

subjects in each group. A separate record (row) is entered for each severity level (or range of 
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TABLE 3-4. PART OF INPUT FILE CHEMY.CSV 

Marker Ref.id Exp Group Species Sex mg/m3 Hours Target Endpoint Nsub Incid BestNum SevLo SevHi Censored

1 20938 1 1 RT B 330 6 Resp Lethality 26 26 1 0 2 y 

2 20938 1 2 RT B 390 6 Resp Lethality 26 20 2 1 2 y 

3 20938 1 2 RT B 390 6 Resp Lethality 26 6 3 3 3 n 

4 20938 1 3 RT B 460 6 Resp Lethality 26 23 3 3 3 n 

5 20938 1 3 RT B 460 6 Resp Lethality 26 3 2 2 2 n 

6 20938 2 1 MU B 360 6 Resp Lethality 26 23 2 1 2 y 

7 20938 2 1 MU B 360 6 Resp Lethality 26 3 3 3 3 n 

8 20938 2 2 MU B 420 6 Resp Lethality 26 13 3 3 3 n 

9 20938 2 2 MU B 420 6 Resp Lethality 26 13 2 1 2 y 

10 20938 2 3 MU B 500 6 Resp Lethality 26 26 3 3 3 n 

11 61831 1 1 RT M 14 4 Resp N lavage 12 12 0 0 0 n 

12 61831 1 2 RT M 278 4 Resp N lavage 12 12 1 0 1 y 

13 61831 1 3 RT M 556 4 Resp N lavage 12 12 2 1 2 y 

Notes: 
Marker - Record number. 
Ref. id - Source identifier. 
Exp - Experiment number within a source. 
Group - Treatment group number (within an 
experiment). 
Species - Species. 
Sex - Sex. 
mg/m3 - Exposure concentration. 
Hours - Exposure duration. 
 

 
Target - Target organ. 
Endpoint - Toxic endpoint. 
Nsub - Number of subjects in treatment group. 
Incid - Number of animals responding. 
BestNum - Analyst’s best estimate of severity category for censored data; same as SevLo and 
SevHi for noncensored data. 
SevLo - Lowest applicable severity level. 
SevHi - Highest applicable severity level. 
Censored - Severity level reported as a range if “y”. 
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severity levels) in a treatment group.  “Marker” just numbers the data records.  The severity 

levels are entered under “SevLo”, the lowest possible severity level for the record, and “SevHi”, 

the highest severity level for the record.  

 When SevLo ≠ SevHi, “y” is entered under “Censored”; “n” when SevLo = SevHi.  In 

the example (Table 3-4), the variable Censored has been added by the user to readily distinguish 

between records with a single severity level and those with a range of severity levels; it is not 

required by CatReg.  The variable BestNum also has been added by the user to indicate the most 

likely severity level when SevLo ≠ SevHi; otherwise, the common value for SevLo and SevHi is 

entered for BestNum. To use the scores in the BestNum column, the default variable names 

SevLo and SevHi must both be changed to BestNum, as described in Section 10.1.  

 The first reference (Ref.id = 20938) reported two experiments, one with mice (Species = 

MU) and one with rats (Species = RT), with both sexes in both experiments (Sex = B).  There is 

a user-defined variable coded to indicate the target organ (e.g., Target = Resp) and the primary 

endpoint (Endpoint = Lethality), both of which were the same for both experiments.  The first 

group (Group = 1) under the first experiment (Exp = 1) is for rats (Species = RT) of both sexes 

(Sex = B) exposed at a concentration of 330 mg/m3 (mg/m3 = 330) for 6 h (Hours = 6).  There 

were 26 rats at risk (Nsub = 26).  The user-defined severity classification was the same for all 26:  

severity level 0 to 2 (SevLo = 0, SevHi = 2), with severity level 1 the best guess for a single 

severity level (BestNum = 1).  Because the results variables were the same for all 26 subjects, 

only one record is needed to record the data for the whole treatment group. 

 The sixth and seventh records (Markers 6 and 7) are for the first treatment group (Group 

= 1) of the second experiment (Exp = 2) in Ref.id = 20938.  Mice (Species = MU) of both sexes 

(Sex = B) were exposed to 360 mg/m3 (mg/m3 = 360) for 6 h (Hours = 6).  Two records are 

required because there are two distinct severity classifications:  one for 23 subjects (Incid = 23) 

with severity level 1 to 2 (SevLo = 1, SevHi = 2) and severity level 2 the best guess (BestNum = 

2) and the other with three subjects at severity level 3 (SevLo = 3, SevHi = 3) and BestNum = 3.  

Six records in the example have different values for SevLo and SevHi, as indicated by 

Censored = y.   

In Ref.id = 20938 of Table 3-4, the effect severity for concentrations at which no subjects 

died were censored 0 to 2 (e.g., Marker 1) for no adverse effects to severe adverse effects, 

because the effects were unknown.  Survivors from groups in which some subjects died (e.g., 

Marker 2) were assumed to have suffered adverse effects and were censored 1 to 2 because the 
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effects could have been mild to severe.  Survivors from groups in which most of the subjects 

died (e.g., Marker 5) were assumed to have suffered severe effects.  For the 360-, 390-, 420-, and 

460-mg/m3 H2S exposures, there is one record for the number of subjects exhibiting lethal 

effects, and another for the number of subjects exhibiting nonlethal effects.  Only one record was 

made for exposure to 330 mg/m3, because all subjects were assumed to exhibit effects of severity 

0 to 2, and one record was made for exposure to 500 mg/m3, because all subjects died 

(severity 3). 

 Ref.id = 61831 of the example illustrates a case where health effects are described for 

each treatment group, for which the severity levels can be decided, but incidence of the severity 

levels is unknown.  These data are not suitable for CatReg because correct values for Incid are 

unknown.  Nevertheless, one might want to test the sensitivity of the results of CatReg to 

different assumptions regarding the incidence values and it provides a useful example for 

discussion of deciding severity levels.  It is included here primarily as an example of deciding 

severity levels from toxicological data.  The data are from a study by Lopez et al. (1987), in 

which groups of 12 rats were exposed to 0, 14, 278, and 556 mg/m3 H2S for 4 h. Incid = 12 is 

used in the example for illustration, which is equivalent to assuming that all 12 rats in each 

treatment group have the same severity classification shown for the group as a whole.   

 Data from the Lopez et al. study were assigned to severity levels as follows.  Groups of 

four rats were killed at 1, 20, and 44 h after 4-h exposure for the examination of biochemical 

indicators of injury and inflammatory response in the respiratory tract.  Nasal lavage fluid was 

examined for lactate dehydrogenase (LDH), alkaline phosphatase (ALP), protein, and number of 

nucleated cells.  Bronchoalveolar lavage (BAL) fluid was examined for activities of LDH, ALP, 

and (-glutamyl transpeptidase.  All measurements were reported as means, plus or minus 

standard deviations.  No changes in any parameters were noted among rats exposed to 14 mg/m3 

H2S.  The only parameter significantly different from controls in nasal lavage fluid at all post-

exposure time periods was increased cellularity, which was significant at the 556-mg/m3 

exposure.  In BAL fluid, LDH activity was elevated at 44 h post-exposure, and ALP activity was 

significantly decreased at 20 and 44 h after the 278-mg/m3 exposure.  At all post-exposure 

durations for the 556-mg/m3 exposure, protein concentration and LDH activity were elevated, 

but ALP was decreased. 

 Because a number of biochemical and cellular parameters were measured at several post-

exposure periods, significant changes were considered to be adverse only if the changes were 
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still significant at the last post-exposure measurement.  In other words, reversible changes were 

classified as no-observed-adverse effects.  Table 3-5 shows how these effects were categorized 

using the four-category severity scheme.  Because no changes were noted after exposure to 

14mg/m3 H2S, effects were coded 0 for no adverse effect.  Effects at the 278-mg/m3 H2S 

exposure were estimated to range from severity 0 to 1 (no adverse effect to mild adverse effect) 

because significant changes in two biochemical parameters were observed.  The adversity of 

those changes was uncertain but assumed to be less than severe.  Effects caused by exposure to 

556 mg/m3 H2S were estimated to range from severity 1 to 2 (mild to severe adverse effect) 

because of changes in the activities of several enzymes and nasal cytopathology.  No deaths 

occurred during this study, so category 3 (lethality) was not used.   

 

Table 3-5.  EXAMPLE OF SEVERITY CATEGORIZATION FOR  
NONLETHAL EFFECTS 

Exposure 
Concentration 
(mg/m3 H2S) 

Statistically Significant Effects 
Reported 

Severity 
Score Censored 

14 None 0 No 
2748 ↑LDH, ↓ALP 0-1 Yes 
556 ↑Protein, ↑LDH, ↓ALP, ↑cellularity, 

nasal cytopathology 
1-2 Yes 

 

 

3.2.3. Input File: chemz.csv 

An artificial example of how continuous data might be coded is displayed in Table 3-6.  

It is assumed that the standard error was included along with the mean for each treatment group.  

In this case, the incidence of each severity in a group was estimated from the mean and standard 

error, which produces fractional subjects. The method to estimate incidence at each severity from 

group means and a measure of variability is described in Appendix A. 

 Male rats in treatment groups of 10 each were exposed to a toxicant at various 

concentrations and durations.  Adverse effects occurred in the respiratory tract, with severity 

indicated by lung weight.  For illustration, a four-category severity classification is used, with 

lung weight 0 to 20 classified as “no effect”, 21 to 40 as “mild adverse effect”, 41 to 65 as 

“moderate adverse effect”, and 66 to 100 as “severe effect”.  The mean for a treatment group   
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TABLE 3-6.  PART OF  INPUT FILE CHEMZ.CSV 
Marker Ref.id Exp Group Species Sex mg/m3 Hours Target Endpoint Nsub Incid BestNum SevLo SevHi Censored 

1 1 1 1 RT M 330 2 Resp Lung wt 10 1 0 0 0 n 
2 1 1 2 RT M 360 2 Resp Lung wt 10 1 1 1 1 n 
3 1 1 3 RT M 390 2 Resp Lung wt 10 1 1 1 2 y 
4 1 1 4 RT M 410 2 Resp Lung wt 10 1 2 2 2 n 
5 1 1 5 RT M 460 2 Resp Lung wt 10 1 2 2 2 n 
6 1 2 1 RT M 460 1 Resp Lung wt 10 1 1 1 1 n 
7 1 2 2 RT M 510 1 Resp Lung wt 10 1 1 1 1 n 
8 1 2 3 RT M 560 1 Resp Lung wt 10 1 2 2 2 n 
9 1 2 4 RT M 610 1 Resp Lung wt 10 1 2 2 2 n 

10 1 3 1 RT M 560 0.5 Resp Lung wt 10 1 1 1 1 n 
11 1 3 2 RT M 610 0.5 Resp Lung wt 10 1 1 1 2 y 
12 1 3 3 RT M 660 0.5 Resp Lung wt 10 1 2 2 2 n 
13 1 3 4 RT M 710 0.5 Resp Lung wt 10 1 2 2 2 n 
14 2 1 1 RT M 330 2 Resp Lung wt 10 7.1 0 0 0 n 
15 2 1 1 RT M 330 2 Resp Lung wt 10 2.9 0 1 1 n 
16 2 1 2 RT M 360 2 Resp Lung wt 10 2.9 1 0 0 n 
17 2 1 2 RT M 360 2 Resp Lung wt 10 7.1 1 1 1 n 
18 2 1 3 RT M 390 2 Resp Lung wt 10 4.9 1 1 1 n 
19 2 1 3 RT M 390 2 Resp Lung wt 10 5.1 1 2 2 n 
20 2 1 4 RT M 410 2 Resp Lung wt 10 1.2 1 1 1 n 
21 2 1 4 RT M 410 2 Resp Lung wt 10 8.8 2 2 2 n 
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TABLE 3-6 (CONT’D).  PART OF  INPUT FILE CHEMZ.CSV 
Marker Ref.id Exp Group Species Sex mg/m3 Hours Target Endpoint Nsub Incid BestNum SevLo SevHi Censored 

22 2 1 5 RT M 460 2 Resp Lung wt 10 1.5 1 1 1 n 

23 2 1 5 RT M 460 2 Resp Lung wt 10 7.2 2 2 2 n 

24 2 2 1 RT M 460 1 Resp Lung wt 10 2.9 1 0 0 n 

25 2 2 1 RT M 460 1 Resp Lung wt 10 7.1 1 1 1 n 

26 2 2 2 RT M 510 1 Resp Lung wt 10 1.3 0 0 0 n 

27 2 2 2 RT M 510 1 Resp Lung wt 10 7.9 1 1 1 n 

28 2 2 2 RT M 510 1 Resp Lung wt 10 0.7 2 2 2 n 

29 2 2 3 RT M 560 1 Resp Lung wt 10 3.5 1 1 1 n 

30 2 2 3 RT M 560 1 Resp Lung wt 10 6.5 2 2 2 n 

31 2 2 4 RT M 610 1 Resp Lung wt 10 1.6 1 1 1 n 

32 2 2 4 RT M 610 1 Tesp Lung wt 10 8.1 2 2 2 n 

33 2 3 1 RT M 560 0.5 Resp Lung wt 10 9.4 1 1 1 n 

34 2 3 2 RT M 610 0.5 Resp Lung wt 10 4.9 1 1 1 n 

35 2 3 2 RT M 610 0.5 Resp Lung wt 10 5.0 2 2 2 n 

36 2 3 3 RT M 660 0.5 Resp Lung wt 10 3.6 1 1 1 n 

37 2 3 3 RT M 660 0.5 Resp Lung wt 10 6.5 2 2 2 n 

38 2 3 4 RT M 710 0.5 Resp Lung wt 10 1.6 1 1 1 n 

39 2 3 4 RT M 710 0.5 Resp Lung wt 10 8.1 2 2 2 N 
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Model 2    

Model 1 

 

 CatReg provides a choice of two models, Model 1 (the cumulative odds model) described 

by Eq. 4-1a and Model 2 (the unrestricted cumulative model) described by Eq. 4-1b, with 

variations on both as described below. CatReg refers to any model of the form of Model 1 as a 

cumulative odds model because the model is expressed in terms of the cumulative probabilities, 

or odds, for Y ≥ s.  Note that Model 1 is a special case of Model 2 wherein parameters β1s and  β2s 

do not depend on s (which denotes severity level, as discussed below).  A primary use of fitting 

Model 2 is to test whether the simpler Model 1 is adequate.  Model 2, although more general 

than Model 1, has the undesirable feature that the regression lines for different severity levels 

may cross.  Often the crossing is well outside the range of values of interest, so the model can be 

used to make empirical risk estimates.  The user has the option to add an additional parameter, 

γ, which represents a hypothetical background concentration, in some circumstances (see 

Section 5.4).  For s = 1,2,…,S,  

 Let Y denote a dependent variable that represents the severity or intensity of the response.  

Assume Y is an ordinal score taking one of the values (0,1,...,S).  A score of 0 corresponds to the 

lowest severity (e.g., no adverse effect), and a score of S corresponds to the highest severity 

(e.g., lethal, in a toxicological context).  Categorical regression is a method for modeling the 

probability distribution of Y as a function of the explanatory variables, concentration (C) and 

duration (T).  It employs a generalized linear model (McCullagh and Nelder, 1989) for the 

dependence of the probabilities of different severity categories on the explanatory variables.   

4.1. Exposure-response Models 

4. TECHNICAL BACKGROUND: MODELS AND EXTRA RISK 
 

falls into a single severity level, but some of the individual responses of subjects in the group 

may have been dispersed over adjacent severity levels. 

 

( ) ( ) ( )[ ]TfCfHTCsY s 2211,Pr ∗+∗+=≥ ββα

( ) [ ( ) ( )]TfCfHTCsY sss 2211,Pr ∗+∗+=≥ ββα

    Eq. 4-1a 

    Eq. 4-1b 



 

The left-hand side is read as follows:  the probability that a response of severity level s or 

greater occurs, given that concentration is C and time is T (time refers to exposure duration). No 

expression for s = 0 is included because this is the minimal category, and Y is always greater than 

or equal to 0 (i.e., Pr(Y ≥ 0|C,T) = 1).   The right-hand side is described as follows:  

• H is a probability function taking values between 0 and 1, for which the user has three 

choices:  (1) logistic, (2) normal, and (3) Gumbel (described further in Appendix B).  

• The parameter αs is the intercept for severity level s, s = 2,...,S (to be called the intercept or 

severity parameters). The severity parameters are ordered as α1 $ α2 $…$αS.  This 

constraint is a consequence of the requirement that the probability of exceeding a lower 

score is larger than the probability of exceeding a higher score for any fixed levels of C 

and T.   

• In Model 1, the parameter β1 determines the dependence of the response on concentration 

(C), whereas β2 determines the dependence on time (T). In Model 2, the parameters are also 

indexed by s because they may change values with severity level s.    

•  Current choices for f1 and f2  are “untransformed “ and “base-10 logarithm “.  Other 

transformations of C and T may be obtained by transforming the input data. 

• Parameters are αs, β1s (to be called the coefficient of concentration), β2s (to be called the 

coefficient of time or duration), for severity levels s running from 1 to S.  All parameters 

may be stratified on variables, as discussed under “Stratifying” in Section 5.2. 

 The normal and logistic distributions are symmetric, each having median equal to zero.  

The Gumbel distribution is skewed, with a lower tail similar to that of the logistic distribution 

and a lighter upper tail.  Figure 4-1 displays these three probability distributions.  To compare the 

shapes effectively, the distributions have been rescaled to have medians = 0 and equal 25th 

percentiles (labeled as “EC25” on the horizontal axis).  The scaled logistic and normal 

distributions are very close for much of the range and differ substantively only in the extreme 

tails.  The Gumbel distribution is skewed, with a heavier tail on the left and a lighter tail on the 

right.   

 For each of the three choices of the probability function H there is an inverse function of 

H, called the link function, that transforms it to a simple linear function in concentration and 

duration.  CatReg requests the name of the link function instead of the name of the probability 

function.  The corresponding link functions (in parentheses) are:  logistic (logit), normal (probit),  
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Figure 4-1. Normal, logistic, and Gumbel probability functions shifted and scaled to have 

equal medians and 25th percentiles. 
 

 

and Gumbel (cloglog).  There is further discussion of linking in Section 5.2 and Appendix B, that 

includes an example of how link functions may be derived from a basic assumption that the 

ordinal severity score corresponds to exceeding an underlying toxic response threshold.   

 

4.2. Extra Risk Concentration (ERC) 

 Extra risk at concentration C=c and time T=t, at severity level s, is defined as  

 

),0Pr(1
),0Pr(),Pr(

tTCsY
tTCsYtTcCsY

==≥−

==≥−==≥
    Eq. 4-2 

 

For q between 1 and 100, inclusive, ERCq, at time T = t, is the concentration c for which 

equation (4-2) equals q/100.  For example, ERC10 at T = 2 (exposure duration of 2 hours) for 

severity level 1 is the value of c that satisfies  
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    Eq. 4-3 

 

In words, ERC10 at T = 2 for severity level s is the exposure concentration at which the 

probability is 0.10 of an adverse effect of level s or higher due to exposure of two hours, i.e., 

given the adverse effect would not have occurred from other causes (“background causes”) 

during that time.   

 

5. RUNNING CatReg 
 This section will describe how to run CatReg after an input data file has been constructed, 

following discussion of some background material on the options for exposure-response curves 

available to the user.  

  

5.1. The Order of CatReg-User Interactions 

 It is assumed that an input file has been constructed in the format described in Section 3 

and saved in the “Start in” directory for R, the same location of the CatReg script files, 

as described in Section 2.  After launching R, open the commands window via the window menu 

on the toolbar, and enter catreg() at the R prompt (usually “>“) followed by  <CR>  (press 

the “enter” key).   User interactions with CatReg will be described for a simple example of data 

from a single experiment. Input file chemx.csv is used with data from three of the four 

experiments filtered (i.e., ignored but not removed from the input file), leaving the single 

experiment on rats (RT) with response on the central nervous system (C).  What appears on the 

monitor during execution of CatReg for this example is displayed in Table 5-1.  Underscored 

section headings in boldface, e.g., ###(1)Begin setup ###,  have been added to facilitate 

explanation. Otherwise, boldface indicates user input from the keyboard.     

 The first section of Table 5-1, starting at ###(1)Begin setup ### , consists of 

user queries to tell CatReg what options to use for an exposure-response curve.  Setup options, 

discussed in the next section, refer to filtering, clustering, stratifying, choosing the scales for 

concentration and duration; choosing the exposure-response function (presented as a choice of 

the associated link function); specifying whether the exposure-response function should be 

formulated for the cumulative odds model or the unrestricted odds model (listed as a choice of 
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TABLE 5-1.  MONITOR DISPLAY DURING EXECUTION OF  CATREG RUN. INPUT 
FILE: CHEMX.CSV. FILTERED DATA: SPECIES =MU, TARGET = L. MODEL 2. 

LOGIT. SCALES: LOG10. 
ASSUMED ZERO BACKGROUND RISK. 

 
> catreg() 
 
CatReg - R Beta Version 1.1 (12/07/05) 
 
Name of data file? chemx.csv 
Read 1179 items 
 
### (1)Begin setup ### 
 
 Variables:  
 Exp. Group Species Target mg/m3 Hours SevLo Nsub Incid GpSize  
 
 Filter the data on which variables? (none):  
1: Species 
2: Target 
3:  
Read 2 items 
 
 Categories of Species:  
 MU RT  
 
 Categories to exclude? (none):  
1: MU 
2:  
Read 1 item 
 
 Categories of Target:  
 C L  
 
 Categories to exclude? (none):  
1: L 
2:  
Read 1 item 
 
 Variables:  
 Exp. Group Species Target mg/m3 Hours SevLo Nsub Incid GpSize  
 
 Define clusters using which variable(s)? (none):  
1:  
Read 0 items 
 
 Variables:  
 Exp. Group Species Target mg/m3 Hours SevLo Nsub Incid GpSize  
 
 Stratify intercepts on which variables? (none):  
1:  
Read 0 items 
 
 Variables:  
 Exp. Group Species Target mg/m3 Hours SevLo Nsub Incid GpSize  
 
 Stratify concentration (mg/m3) on which variables? (none):  
1:  
Read 0 items 
 
 Variables:  



 

 Exp. Group Species Target mg/m3 Hours SevLo Nsub Incid GpSize  
 
 Stratify time (Hours) on which variables? (none):  
1:  
Read 0 items 
 
Log or linear scale for mg/m3?  
Choices:  
 
1: mg/m3 
2: log10(mg/m3) 
 
Selection: 2 
 
Log or linear scale for Hours?  
Choices:  
 
1: Hours 
2: log10(Hours) 
 
Selection: 2 
 
Link function?  
 
1: logit 
2: probit 
3: cloglog 
 
Selection: 1 
 
Model?  
 
1: cumulative odds model 
2: unrestricted cumulative model 
 
Selection: 2 
 
Assume zero background risk  
(i.e. response cannot occur at zero concentration)? (y): y 
 
Name of the output? ( chemx ):  
 
>>>> Output file is chemx.out  
 
Stratification complete... 
 
Continue? (y):  
 
### (2)Begin fitting exposure-response curve ### 
 
Optimizing... 
  
Computing estimated covariance matrix... 
 
### (3)Display and output summary results ### 
 
Printout covariance matrix? (n): y 
 
...The covariance matrix printed out in output file 
 
Input file   : chemx.csv  
Filtered data: Species Target : MU  L   
Model        : unrestricted cumulative model  
Link         : logit  
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Clustering   : none 
Message      :  
Iterations   : 43 27  
Deviance     : 167.6454  
Residual DF  : 26  
AIC          : 179.6454  
 
Scale: 
     Concentration: log10( mg/m3 )  
     Duration     : log10( Hours )  
 
Stratification: 
     No Stratification on Intercept, Concentration and Duration.     
 
Coefficients: 
                Estimate Std. Error   Z-Test=0    p-value 
SEV1           -76.52406  12.431120  -6.155846      1e-05 
SEV2          -104.22063  20.225024  -5.153054      1e-05 
LG10CONC:SEV1   22.80200   3.719204   6.130882      1e-05 
LG10TIME:SEV1   14.49540   3.002936   4.827075      1e-05 
LG10CONC:SEV2   29.30517   5.806197   5.047222      1e-05 
LG10TIME:SEV2   21.09271   4.453506   4.736202      1e-05 
 
Writing summary data to file: chemx.out  
 
### (4)Output analysis of deviance table ### 
 
Stratification complete... 
 
### (5)Calculate and output extra risk ### 
 
Optimizing... 
 
Calculating extra risk concentrations...  
 
Percentile for ERC? (default=10):  
 
Severity level for ERC? (default = 1):  
 
Percentile for 1-sided upper and lower confidence intervals? (default=95):  
 
ERC data computed... 
 
Write ERC data to text files? (n):y 
 
Writing ERC data to ascii files... 
 
Done - see chemx.out for file names. 
 
### (6)Issue commands ### 
 
>>>> Type `prplot(time=x)' or `prplot(conc=x)' to 
>>>> graph probability with time or conc fixed at x. 
>>>> 
>>>> Type `catplot()' to display the ERC line and 
>>>> the confidence lines for a particular stratum. 
>>>> 
>>>> Type `stratplot()' to display the ERC lines 
>>>> for all strata. 
>>>> 
>>>> Type `confplot(10)' to display ERC confidence 
>>>> intervals for duration=10. 
>>>> 
>>>> Type 'dataplot()' to plot points on duration-versus-concentration 
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>>>> axes without a response probability curve. 
>>>> 
>>>> Type 'devplot()' to provide a diagnostic plot of generalized deviance 
>>>> residuals versus observation number, concentration, or duration. 
>>>> 
>>>> To remove previous plots type `rmplots()'. 
>>>> 
>>>> To change percentile or severity type `ecdata()'. 
 
Warning message: 
NAs introduced by coercion 

 

 

models); whether to assume background risk is zero (an option when log-transform concentration 

has been selected) and there is no stratification; and naming the output file. In many of the 

CatReg queries, a default option, implemented by <CR> is given in parentheses.  Otherwise, the 

user responds with a number from the selection of options presented, or with the name of a 

variable, which will be clear from the nature of the query.   

 To assist the user, when a variable name is needed CatReg prints the names of all 

variables.  The user must respond with the variable name as shown, including the same use of 

lowercase and uppercase letters, as CatReg is case-sensitive.  CatReg does not require the full 

name but just enough for it to be distinguished from the other variables.  For “Species,” only the 

“S” would be required if there is no other variable that begins with “S,” but if “Sex” and “Sev” 

are also variables, then “Sp” would be required to uniquely identify “Species”.  For all queries 

for which multiple responses are possible, entries can be listed all on one line separated by a 

space, or entries can be typed on separate lines.  <CR> on a line with no other user input moves 

the program on to the next query.  Entries that are redundant or are unmatched name fragments 

will provoke an error message, and the query will be repeated.  To abort the analysis at any step, 

enter “CTRL-C” for version 3.1 of R or “ESC” for higher versions. 

 The options and the user responses, shown in boldface in Table 5-1, are described as 

follows.  The user keyed in Species and then Target as variables on which to filter 

(ignore) the data. CatReg then asked which categories of Species to exclude, to which the user 

keyed in MU to tell CatReg to ignore all records on the input file where Species = MU (i.e., 

where the value of the variable “Species” is “MU”).  Similarly, CatReg was told to ignore all 

records in which Target =L.  This left only the data records with Species = RT and Target = C.  

The user responses to the remaining queries were either the default or the number of the selection 

shown in boldface.  The meaning of the options will be discussed subsequently.   
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 For this example, Table 5-1 indicates that there was no clustering, no stratification of any 

of the parameters (intercept, coefficient of concentration (mg/m3), or coefficient of time 

(Hours)), concentration and time were both log-transformed, the logit link and unrestricted 

cumulative model were selected.  The user elected to assume zero background risk (i.e., zero 

probability of severity level 1 or above when concentration is zero), an option that appears when 

concentration is log-transformed and there is no stratification; otherwise a parameter γ (gamma) 

would have been added to the model as a hyptothetical background concentration (see discussion 

of scaling in Section 5.2).  The user chose the default name for the output file, “chemx”, the 

name of the input file without the file type “csv”; the file type of the output file is “out”.     

 CatReg then fit an exposure-response curve to the data by maximum likelihood and 

displayed the messages shown in the second section of Table 5-1 at ###(2)Begin fitting 

exposure-response curve ###.   At the section beginning with ###(3)Display 

and output summary results ### , CatReg queried the user on whether to include 

the covariance matrix of the parameter estimates in the output file, wrote the output file, and 

displayed a summary portion of the output file on the monitor referred to as the CatReg summary 

(because the command catreg.summary()will also display it on the monitor; see Section 

9.3 ).  The CatReg summary is from the line Input file :..  through the table of coefficient 

estimates.  The table of coefficient estimates in the summary portion lists the parameters in the 

exposure-response curve, and the estimate, standard error, and significance level of each for a 

hypothesis that the parameter is zero.  The correspondence between the parameters listed under 

Coefficients in Table 5-1 and those in Equation 4-1b are:  SEV1 (α1), SEV2 (α2), 

LG10CONC:SEV1 (β11), LG10CONC:SEV2 (β12), LG10TIME:SEV1 (β21), LG10TIME:SEV2 

(β22). 

 At ###(4)Output analysis of deviance table ###  in Table 5-1, CatReg 

calculated an analysis of deviance table and wrote it to the output file. The section starting with 

###(5)Calculate and output extra risk ### queried the user on options for the 

calculation of extra risk  (ERC percentile, ERC severity level, and ERC percentile for confidence 

intervals, referred to collectively as the ERC settings) and whether to write the results to text 

files. The default responses were chosen in the example of Table 5-1 (ERC percentile = 10, ERC 

severity level = 1, ERC percentile for confidence interval percentile = 95).  CatReg then 

calculated concentrations that will give extra risk of 0.10 for 20 exposure durations, equally 
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spaced and including the shortest and longest duration in the input file, applicable to severity 

level 1 with 95% one-sided upper and lower confidence intervals, and wrote them to a text file.    

The file was given the same name as the output file with the number “1” appended, i.e., 

“chemx1”.  If there had been stratification, a separate text file would have been written for each 

stratum and the names would have been “chemx1”, “chemx2”, … depending on the number of 

strata. Additionally, the ERC estimates and confidence intervals for exposure durations of 1, 4, 8, 

and 24 hours were automatically calculated and written to the output file.  

 The final section of Table 5-1, starting with ###(6)Issue commands ###, enters 

the phase where the user determines what CatReg does by issuing commands.  Commands have 

the following general objectives:  testing hypotheses about exposure-response parameters, testing 

whether Model 2 can be reduced to Model 1, making graphs (the plotting options), and providing 

utility operations.  The instructions for several commands were displayed on the screen, but no 

commands were executed.   

 The output file from the example shown in Table 5-1 (chemx, file type “out”) is 

displayed in Table 5-2 and the ERC data that were written to a text file (chemx1, file type “txt”) 

are shown in Table 5-3.  Table 5-2 provides summary information such as the name of the input 

file, the setup options used, the table of coefficient estimates, an analysis of deviance table, and 

extra risk concentrations (ERCs) with upper and lower confidence bounds at exposure durations 

of 1, 4, 8, and 24  hours.  Table 5-3 displays the ERC data written to a text file as requested by 

the user.  It gives the ERC estimates, with confidence intervals, at the ERC percentile (10), 

severity level (1), and percentile for confidence intervals (95) that were set during the execution 

of CatReg (all are default values, in the section ###  (5) Calculate and output extra 

risk ### of Table 5-1). 

 

5.2. Setup Options—Discussion 

 Filtering.  This option allows selected records to be removed (filtered) from the analysis, 

without removing them from the input file.  It is used to fit the exposure-response curve to a 

subset of the data. One reason to filter data is to investigate how the fit changes when certain 

observations are excluded.  For instance, a particular study may be suspect, and it may be 

desirable to compare the parameter estimates with and without the suspect study. 
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TABLE 5-2. OUTPUT FILE FROM EXAMPLE IN TABLE 5-1. 
CatReg - R Beta Version 1.1 (12/07/05) 
 
Source data file: chemx.csv  
 
Type of analysis: Censored  
 
Input file   : chemx.csv  
Filtered data: Species Target : MU  L   
Model        : unrestricted cumulative model  
Link         : logit  
Clustering   : none 
Message      :  
Iterations   : 43 27  
Deviance     : 167.6454  
Residual DF  : 26  
AIC          : 179.6454  
 
Scale: 
     Concentration: log10( mg/m3 )  
     Duration     : log10( Hours )  
 
Stratification: 
     No Stratification on Intercept, Concentration and Duration.     
 
Coefficients: 
                Estimate Std. Error   Z-Test=0    p-value 
SEV1           -76.52406  12.431120  -6.155846      1e-05 
SEV2          -104.22063  20.225024  -5.153054      1e-05 
LG10CONC:SEV1   22.80200   3.719204   6.130882      1e-05 
LG10TIME:SEV1   14.49540   3.002936   4.827075      1e-05 
LG10CONC:SEV2   29.30517   5.806197   5.047222      1e-05 
LG10TIME:SEV2   21.09271   4.453506   4.736202      1e-05 
 
Variance: 
                    SEV1         SEV2 LG10CONC:SEV1 LG10TIME:SEV1 
LG10CONC:SEV2 
SEV1          154.532745    1.3920254  -46.17931915   -25.7208267    -
0.5190940 
SEV2            1.392025  409.0516115   -0.41877765     0.7452832  -
117.2769304 
LG10CONC:SEV1 -46.179319   -0.4187777   13.83248124     7.3309140     
0.1584383 
LG10TIME:SEV1 -25.720827    0.7452832    7.33091403     9.0176263    -
0.2213634 
LG10CONC:SEV2  -0.519094 -117.2769304    0.15843830    -0.2213634    
33.7119235 
LG10TIME:SEV2   0.099212  -62.0189016   -0.05647271     0.1892932    
16.8711046 
              LG10TIME:SEV2 
SEV1             0.09921199 
SEV2           -62.01890157 
LG10CONC:SEV1   -0.05647271 
LG10TIME:SEV1    0.18929315 
LG10CONC:SEV2   16.87110465 
LG10TIME:SEV2   19.83371985 
 
Analysis of Deviance Statistics: 
 
Generalized R-squared: 0.509  
 
         DF Deviance Mean.Dev Gen.F pvalue 
Model     4 173.5442   43.386 6.729  7e-04 
Residual 26 167.6454    6.448              



 

Total    30 341.1896                       
 
#########################################################################  
Note: About  50.9 % of the variation in the response is accounted  
for by the explanatory variables in the current model fit.  
 
The p-value of the model fit is <= 0.05. This is generally considered   
significant, indicating that the current model fit is acceptable.  
#########################################################################  
 
 
 
***************************** ERC summary *****************************  
  
  
< ERC10 at specific time point(s) >  
 : One-sided 95% Lower bound and One-sided 95% Upper bound   
 
* Risk Type : extra risk  
  
*  ERC10 at SEV1  
             ERC10 Lower Bound of ERC10 Upper Bound of ERC10 
 1 Hours 1818.2862            1626.4862            2032.7038 
 4 Hours  753.2313             637.7297             889.6519 
 8 Hours  484.7987             368.6566             637.5304 
24 Hours  241.1305             153.4754             378.8483 
 
  
These One-sided 95% Lower bound and One-sided 95% Upper bound   
Confidence Intervals are equivalent to  
the lower bound and upper bound of Two-sided 90% Confidence Intervals  
 
 ***********************************************************************   
 
File: chemx1.txt   Stratum: SEV1 

 

 

 If filtering is not desired, respond with <CR> to go to the next option.  To filter data, the 

user first keys in the variable(s) from the list of variables CatReg displays on the screen.  When a 

variable is chosen for filtering, the program responds with all the values for that variable in the 

entire data file.  The user selects the values of the variable to filter. It may be noted that this 

option is also useful for scanning a particular field to see what values have been observed.  

Unexpected values may indicate a problem with the input data file (e.g., errors in data entry). 

 Clustering.  An input file may consist of subsamples of data from common sources that 

causes them to be more similar to each other than to observations from another source.  For 

example, suppose there are reports from three different “identical” experiments conducted at  

three different laboratories.  The data from each laboratory may be considered a cluster because 

of the following four reasons.  (1) There are likely some differences among laboratories in the 

way subjects were fed, their animal suppliers, the age of the subjects, the conditions under which 
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TABLE 5-3.  TEXT FILE OF ERC ESTIMATES FROM EXAMPLE IN TABLE 5-1. 
Time ERC10  sd  LB95  UB95 
1.25 1577.81 84.42  1444.89 1722.97 
1.3 1541.64 79.75  1415.89 1678.57 
1.34 1506.3 75.57  1387  1635.87 
1.39 1471.77 71.87  1358.18 1594.86 
1.45 1438.03 68.65  1329.43 1555.5 
1.5 1405.06 65.91  1300.72 1517.78 
1.56 1372.85 63.65  1272.05 1481.64 
1.61 1341.38 61.84  1243.42 1447.06 
1.67 1310.63 60.46  1214.86 1413.96 
1.74 1280.58 59.49  1186.37 1382.28 
1.8 1251.23 58.89  1158.01 1351.95 
1.87 1222.54 58.63  1129.82 1322.88 
1.94 1194.52 58.65  1101.84 1294.99 
2.01 1167.13 58.93  1074.12 1268.2 
2.08 1140.38 59.41  1046.72 1242.41 
2.16 1114.23 60.07  1019.68 1217.56 
2.24 1088.69 60.87  993.03 1193.56 
2.32 1063.73 61.78  966.82 1170.36 
2.41 1039.35 62.76  41.08  1147.88 
2.5 1015.52 63.8  915.82 1126.08 
 
  
 ** Stratum :SEV1 
 
 ** Risk Type :extra risk 
 
 ** Above UB95 and LB95: 
    These one-sided 95% lower bound and one-sided 95% upper bound  
confidence intervals are equivalent to the lower bound and upper bound of 
two-sided 90% confidence intervals. 

 

 

the subjects have been taken off the study, the protocol for histopathology (or just different 

histopathologists), etc.  (2) The differences can be viewed as random effects by thinking of the 

specific laboratories as a random sample among a population of laboratories.  (3) The magnitude 

of the differences among the specific laboratories may vary.  (4) The laboratories are reasonably 

homogeneous (i.e., there is not one or more of them that is unreliable or consistently different in 

some way from the others). 

 As a second example, suppose that an experiment is conducted wherein pregnant female 

rats are exposed to a toxic substance.  Each rat gives birth to a litter and the pups are examined 

for specific health effects.  Each litter could be considered a cluster sample Clustering is 

necessary whenever there is reason to suspect that batches of data are correlated (i.e., when the 

design of the study involves cluster sampling).  The cluster variable should identify each batch of 

correlated data uniquely.  Cluster labels might be text identifiers, identification numbers, 

combinations of variables, etc.  The only requirements are that observations from the same 



 

cluster have the same cluster label, and those from different clusters have different cluster labels.  

CatReg queries for the names of variables to use in clustering the data.  If no cluster variables are 

specified, the program treats all data as being independent. 

 CatReg assumes that responses from the same cluster are correlated, whereas 

observations from different clusters are independent.  It adjusts for the cluster sampling effect 

using the method of generalized estimating equations (GEE).  The cluster adjustment affects 

standard errors, confidence limits and hypothesis tests (p-values), but it does not affect parameter 

estimates or the deviance (a statistic used to measure the fit of exposure-response curve to the 

data).  For technical background on GEE, see Simpson et al. (1996b) and Diggle et al. (1994).  It 

also may be noted that cluster sampling invalidates the large sample F distribution of the 

generalized F-statistic.  However, it is common practice to compute F as a rough guideline (see 

Venables and Ripley, 1994, p. 187).  In any case, the R2 statistic gives an idea of how much 

variation in the response is accounted for by the explanatory variables (see Section 7 for 

information on how F and R2 are computed).  Ignoring clusters of observations typically leads to 

underestimation of variability in estimates and confidence bounds that are inappropriately 

narrow. 

 Stratifying.  Stratification is a way of allowing one or more of the regression parameters 

(intercept, coefficient for concentration (“mg/m3”), and coefficient of time (“Hours”) to change 

when a specified variable changes value.  For example, instead of assuming a common intercept 

parameter for three different species, stratification of intercept on the variable Species adds two 

more intercept parameters so there is one for each species.  Stratification of the intercept on three 

species defines three subgroups (strata) of data, one for each species.  The same parameter can be 

stratified on more than one variable.  For example, the intercept might be stratified on both 

Species and Target.  If there are two target organs for each of three species, then there are six 

strata, each corresponding to a distinct combination of species and target.  CatReg will provide 

six intercept estimates, one for each species-target combination.  To stratify the intercept on 

Species and Target, enter those two variable names in response to CatReg's query on whether to 

stratify the intercept (enter both on the same line, separated by a space, or on separate lines).  In 

the same way, CatReg queries for variables on which to stratify the coefficients of concentration 

and time. 
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 Stratification is often conducted to test if the value of a regression parameter (e.g., the 

intercept) is the same for two or more values of a variable (e.g., Species).  The user typically 

wants to produce an exposure-response curve that is suitably “accurate” by taking account of 

different parameter values that may occur between species, endpoints, etc., but that achieves that 

objective as simply as possible (i.e., with the minimal number of parameters).  Stratification can 

be a way of implementing toxicological considerations, as the following example illustrates.  

 Suppose the data contain mortality results from experiments using rats and mice.  The 

basic explanatory variables are atmospheric toxicant concentration and duration of exposure.  

The response score equals 0 for surviving animals and 1 for animals that died.  In this case, the 

maximum severity score is S = 1.  Assuming C and T enter the model logarithmically, the basic 

model has the form 

L[Pr(Y = 1|C,T)]  =  α1 + β1* log10 (C) + β2* log10 (T), 
 

where L is the link function (the inverse function of H in Eq. 4-1a - see Appendix B).  

Logarithmic scaling is typical when the explanatory variables range over two or more factors of 

10.  Because of different rates of respiration and metabolism among rats and mice, it may be 

reasonable to assume the internal dose for rats should be rescaled compared to that of mice.  One 

possibility is to assume that a concentration of C for rats is equivalent to a concentration of kC 

for mice, where k is common to all mice in the study.  Then, for the mice,  

 
L[Pr(Y = 1|C,T)]    =  α1 + β1* log10 (kC) + β2* log10 (T). 

= [α1 + β1* log10 (k)] + β1* log10 (C) + β2* log10 (T). 
 

This shows that the mice, in effect, have a different intercept than do the rats, namely α1
MU = 

α1
RT + β1* log10(k), where MU and RT refer to mouse and rat parameters, respectively.  By 

stratifying the intercept parameter, the data are allowed to determine the estimate of the 

conversion factor k.  Whether k is significant would be determined by testing α1
MU = α1

RT. 

 Scaling.  If the logarithmic option is chosen for concentration (mg/m3) and there is no 

stratification, the user is asked Assume zero background risk (i.e., response 

cannot occur at zero concentrations)?(y).  If the default (y) is entered, then 

the implied probability of an adverse response at zero concentration is zero and observations at 

zero concentration are uninformative (treated the same as if they were filtered out).  If the 

response is “n” then CatReg adds a hypothetical background concentration to the administered 
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concentrations, denoted as the parameter γ (gamma) that is estimated by maximum likelihood 

and displayed in the summary table of parameter estimates.  For example, an experimental 

concentration of 50 mg/m3 is treated as an observation at concentration (50 + γ) mg/m3, where  γ 

is estimated from the data simultaneously with the other model parameters (see Section 5.4).    

If the logarithmic option is chosen for time (Hours), the implied probability of an adverse 

response at zero time is zero and observations at zero time are uninformative (treated the same as 

if they were filtered out).   

 Linking.  A link function is a function applied to the exposure-response curve to 

transform it to a simple linear relationship in concentration and duration.  By also transforming 

the observed responses, the link function reduces the mathematical complexity of estimating the 

parameters.  The parameter estimates then are substituted into the (untransformed) exposure-

response curve.  There is a unique link function for each of the three choices of exposure-

response curves provided by CatReg (i.e., to the three different formulations for the function H in 

Eq. 4-1a,b).  CatReg simply asks the user to select one of those link functions:  logit, probit, or 

cloglog (equivalent to selecting the logistic, normal, or Gumbel probability function for H, 

respectively).  The link function may be derived from a basic assumption that the ordinal severity 

score corresponds to exceeding an underlying toxic response threshold. See Appendix B for an 

example and further discussion. 

 A comparison of how well the different link functions fit the data may be assessed using 

the AIC (Akaike Information Criteria, Akaike (1974)).  A link with a smaller AIC provides a 

closer fit to the data.  The AIC for different link functions may be compared only if there are no 

changes in the data or in use of the data filtering and stratification options.  Otherwise the 

differences in AIC may result from the changes.   

 Model.  There are two choices of models, Model 1 (cumulative odds model) and Model 2 

(unrestricted cumulative model), as described in Section 4.1.  A conditional odds model and 

unrestricted conditional model are not currently provided.  Equation (4-1b) describes the 

unrestricted cumulative model. The cumulative odds model is the same except that the 

parameters β1s and  β2s, the coefficients of concentration (or log concentration) and time (or log 

time), respectively, do not depend on s, the severity level, i.e., Model 1 is a simplification of 

Model 2 in which only the intercept term can vary across severity levels, not the coefficients of 

concentration or time (a restriction called parallelism).  In other words, the cumulative odds 
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model (Model 1) states that the probability that a severity level “s” or higher will occur at a given 

concentration (C) and time (T) is given by the exposure-response curve (logistic, normal, or 

Gumbel, determined by the choice of link function), and that the intercept parameters may differ 

by severity level (i.e., a different intercept for each severity level), but the coefficients for C and 

T do not differ by severity.   

 The restriction of parallelism implies that the exposure- response curves for different 

severity levels will not cross.  Crossing would indicate a contradiction (e.g., that the probability 

of severity 1 or greater is less than the probability of severity 2 or greater) for some values of C 

and T.  The unrestricted cumulative model (Model 2) differs by estimating separate coefficients 

for C and T at each severity level.  Using this option, it is possible that the severity curves might 

cross, but often the values for C and T at which there would be a contradiction are well outside 

the range of values of interest, so the model can be used to make empirical risk estimates.  

 The user has an option to fit Model 2 and then test the hypothesis of parallelism by using 

the function parallel.test()(see Section 6.1) or fitting both Models 1 and 2 and then 

selecting the outcome with the lower AIC value.  Model 2 requires more data than Model 1 to 

converge on a solution because more parameters are estimated, and Model 2 will have a lower 

deviance because the larger number of parameters will produce a better fit to the data. Model 2, 

however, requires more parameters.  The AIC takes both into consideration. Having more 

parameters in the model decreases the first part of the AIC (-2 times the log of the minimized 

value of likelihood function) but at the cost of increasing the second part of the AIC (+ 2 times 

the number of parameters in the model).   

 Worst Case.  CatReg provides an option to do a worst-case analysis that only appears on 

the screen when there is at least one record in the input file that contains censored data: Worst-

case analysis of interval-censored responses? (n).In a worst case 

analysis, censored responses are treated as occurring at their highest possible (worst) severities.  

Although the graphical presentation of censored points will not change in a worst-case analysis, 

higher estimates of risk will be produced than those for the corresponding censored analysis.  

Comparison of risk estimates from the two methods provides an indication of the sensitivity of 

the results to the severity scoring.  When the worst case option is selected, the output file 

contains the line: Type of analysis: Worst-case. When the worst-case option is not 

selected, the output line is: Type of analysis: Censored. 
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5.3. Setup options—Examples 

 As discussed in Section 5.1, Table 5-1 shows the screen display for an example using 

input file chemx.csv, with data for Species = MU and Target = L filtered (i.e., excluded), leaving 

only data from the single experiment where Species = RT and Target = C.  The output file is 

shown in Table 5-2 and the ERC estimates that were written to a text file are in Table 5-3. Model 

2 was fit to the data, so there are separate intercept parameters for severity levels 1 and 2, the 

same as if Model 1 were used to fit the data, but also separate concentration coefficients and time 

coefficients for each severity level. In the table of parameter estimates, SEV1 and SEV2 

correspond to the parameters α1 and α2 of Eq. 4-1b, LG10CONC:SEV1 and LG10CONC:SEV2 

correspond to β11 and β12, and LG10TIME:SEV1 and LG10TIME:SEV2 correspond to β21 and 

β22.  The logit model was used. The probit link would decrease the AIC slightly, from 179.6 to 

178.6, and the cloglog link would increase it to 180.5.  For this example, there is only a small 

difference in the three model choices using the AIC as a statistical measure for comparison.   

 For illustration, we continued with the logit link and modified the setup options to select 

Model 1, the cumulative odds model.  Only the intercept parameter was stratified on severity,  

leaving just four parameters in the model, SEV1, SEV2, LG10CONC, and LG10TIME, 

corresponding to parameters α1, α2, β1, β2, respectively. The AIC dropped to 177.3, favoring 

Model 1, the simpler model, over Model 2, although the difference is not very large.   

 We then considered input file chemx.csv without filtering the data.  There are data for 

two species (RT and MU) and two target organs (L and C), and the intercept, concentration, and 

duration, all three, were stratified on both species and target. Selecting Model 2 produced an 

error message, 

 Error: Sev1 < Sev2! Estimates of severity parameters do not 

satisfy constraint on order of parameters. Incorrectly ordered 

severity estimates is evidence of too many severity levels in 

the data. This run will terminate.  

 The error message indicates that the exposure-response curves for the two severity levels 

cross, at least for the reference stratum which is MU:C. That suggests combining severity levels 

1 and 2, but it is not clear whether that should apply to all target-species combinations.  To 

address that question, CatReg was run separately for the subsets of data for each target-species 
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combinations (MU:C, MU:L, RT:C, RT;L) and the same message occurred in all but the data for 

RT:C.  For RT:C, a test of the hypothesis SEV1 = SEV2 was not significant (p = 0.24, using the 

CatReg function partest(),discussed in Section 6.1).  Thus, it would be reasonable in this 

example, from the statistical perspective, to join severity level 2 with severity level 1, 

eliminating severity level 2 (see discussion of join()in Section 10.4).  For illustration, 

however, we retained severity level 2 and repeated the same CatReg run except with Model 1 

(cumulative odds model).  Model 1 reduces the number of parameters to be estimated but at the 

expense of the assumption of parallelism (i.e., that the coefficients of concentration and duration 

do not vary by severity level).  Fitting the data to Model 1 produced an AIC value of 756.0 for a 

model with 13 parameters.  The output file, displayed as Table 5-4, will be discussed.  

 In terms of Equation 4-1a, Model 1 with two severity levels but without stratification 

would have the following parameters: intercept terms (α1, α2 for severity levels 1 and 2), a 

concentration coefficient (β1), and a time coefficient (β2).  With stratification of the intercept, 

concentration coefficient, and time coefficient, all on both species and target, at severity level 1 

there would be four estimates for each parameter, one for each  species/target combination 

(species MU and RT with targets L and C) as in Table 5-4.  The parameter estimates in Table 5-4 

are interpreted as follows, for severity level 1.  The stratum MU:C (mice/central nervous system) 

is the reference group.  No intercept parameter is estimated for this group. Its intercepts are given 

by SEV1 for severity level 1 and SEV2 for severity level 2. The MU:C:INTERCEPT row is 

merely to identify the reference group for the intercept parameter.  “NA” under the headings for 

Z-test and p-value means “not applicable” or “not available.”  Other intercept parameters are 

increments relative to the reference parameter. 

 The intercept term for MU:C, at severity level 1 (SEV1), can be written as SEV1 + 

MU:C:INTERCEPT, estimated as -61.56 + 0.  Similarly, the intercept term for MU:L is SEV1 + 

MU:L:INTERCEPT, estimated as 61.56 - 2.34, etc.  The intercept terms and their estimates at 

severity level 2 are obtained the same way except with SEV2 replacing SEV1. The Z-test for 

MU:L:INTERCEPT is a test of the null hypothesis that MU:L:INTERCEPT is zero.  Since  

TABLE 5-4.  OUTPUT FILE FROM CATREG. INPUT FILE: CHEMX.CSV. MODEL 1. 
LOGIT. SCALES: LOG10. STRATIFICATION: INTERCEPT, CONCENTRATION, 
DURATION, ALL ON SPECIES AND TARGET. ASSUMED ZERO BACKGROUND 

RISK. 
CatReg - R Beta Version 1.1 (12/07/05) 
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Source data file: chemx.csv  
 
Type of analysis: Censored  
 
Input file   : chemx.csv  
Filtered data: none 
Model        : cumulative odds model  
Link         : logit  
Clustering   : none 
Message      :  
Iterations   : 49 28  
Deviance     : 729.9682  
Residual DF  : 115  
AIC          : 755.9682  
 
Scale: 
     Concentration: log10( mg/m3 )  
     Duration     : log10( Hours )  
 
Stratification: 
     Intercept    : Species Target  
     Concentration: Species Target  
     Duration     : Species Target  
 
Coefficients: 
                  Estimate Std. Error   Z-Test=0    p-value 
SEV1           -61.5577058   6.729186 -9.1478681    0.00001 
SEV2           -65.7115174   6.837497 -9.6104632    0.00001 
MU:C:INTERCEPT   0.0000000   0.000000         NA         NA 
MU:L:INTERCEPT  -2.3399958   9.126294 -0.2564015    0.79764 
RT:C:INTERCEPT -18.5307081   9.278765 -1.9971093    0.04581 
RT:L:INTERCEPT  -0.6519446   8.939393 -0.0729294    0.94186 
MU:C:LG10CONC   18.2050464   2.017313  9.0244020    0.00001 
MU:L:LG10CONC   19.2629512   2.182794  8.8249068    0.00001 
RT:C:LG10CONC   23.7779909   2.293245 10.3687104    0.00001 
RT:L:LG10CONC   18.5222850   2.099372  8.8227750    0.00001 
MU:C:LG10TIME   17.9322449   2.018420  8.8842976    0.00001 
MU:L:LG10TIME   19.8904023   2.183654  9.1087686    0.00001 
RT:C:LG10TIME   16.0546314   2.062325  7.7847228    0.00001 
RT:L:LG10TIME   19.5678918   2.120738  9.2269266    0.00001 
 
Analysis of Deviance Statistics: 
 
Generalized R-squared: 0.472  
 
          DF  Deviance Mean.Dev Gen.F pvalue 
Model     11  653.6035   59.418 9.361      0 
Residual 115  729.9682    6.348              
Total    126 1383.5717                       
 
#########################################################################  
Note: About  47.2 % of the variation in the response is accounted  
for by the explanatory variables in the current model fit.  
The p-value of the model fit is <= 0.05. This is generally considered   
significant, indicating that the current model fit is acceptable.  
#########################################################################  
 
 
***************************** ERC summary *****************************  
  
 
< ERC10 at specific time point(s) >  
 : One-sided 95% Lower bound and One-sided 95% Upper bound   
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* Risk Type : extra risk  
  
*  ERC10 at SEV1:MU:C  
             ERC10 Lower Bound of ERC10 Upper Bound of ERC10 
 1 Hours 1822.4717            1642.4437            2022.2325 
 4 Hours  465.1817             370.6169             583.8753 
 8 Hours  235.0193             164.4600             335.8511 
24 Hours   79.6401              45.1044             140.6193 
 
  
*  ERC10 at SEV1:MU:L  
             ERC10 Lower Bound of ERC10 Upper Bound of ERC10 
 1 Hours 1596.1165            1440.8915            1768.0637 
 4 Hours  381.4115             299.0930             486.3861 
 8 Hours  186.4482             128.8548             269.7839 
24 Hours   59.9647              33.7120             106.6613 
 
  
*  ERC10 at SEV1:RT:C  
             ERC10 Lower Bound of ERC10 Upper Bound of ERC10 
 1 Hours 1886.9845            1730.8095            2057.2515 
 4 Hours  740.0554             646.4460             847.2199 
 8 Hours  463.4599             371.5325             578.1326 
24 Hours  220.7320             153.5434             317.3214 
 
  
*  ERC10 at SEV1:RT:L  
             ERC10 Lower Bound of ERC10 Upper Bound of ERC10 
 1 Hours 1737.8489            1567.8826            1926.2405 
 4 Hours  401.7584             313.4229             514.9905 
 8 Hours  193.1708             131.6381             283.4662 
24 Hours   60.5182              33.0944             110.6668 
 
 
These One-sided 95% Lower bound and One-sided 95% Upper bound   
Confidence Intervals are equivalent to  
the lower bound and upper bound of Two-sided 90% Confidence Intervals  
 
 ***********************************************************************   
 

 

MU:L:INTERCEPT is the incremental difference from SEV1, which is the intercept for MU:C, 

the hypothesis tested by the Z-test is that the intercepts for liver and central nervous system are 

equal in mice.  Similarly, the Z-test for RT:C:INTERCEPT is a test of the null hypothesis that 

the intercepts for rats and mice is the same for the central nervous system.  Other hypotheses can 

be tested using the command partest(), discussed in Section 6.1.  

 For both severity levels 1 and 2, the estimates of the concentration coefficients and the 

time coefficients for each combination of species and target can be read directly from the table.  

For example, MU:C:LG10CONC refers to the coefficient of concentration (β1) for mice and the 

central nervous system; MU:C:LG10TIME refers to the coefficient of time (β2) for mice and 

the central nervous system, for both severity levels 1 and 2, etc.  The Z-tests for coefficients of  
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concentration and time are tests of the null hypothesis that the parameter is zero, e.g., the Z-test 

for MU:L:LG10CONC tests the hypothesis that the coefficient of concentration for a liver effect 

in mice is zero, i.e., that the substance tested has no adverse effect in the range of concentrations 

tested. In general, the CatReg convention for stratification of parameters is: 

1. The stratification of the intercept parameter assigns a reference category, so that other 

intercept parameters are increments relative to this category. 

2. The stratification of the concentration and time parameters results in separate parameters 

 for each stratum. 

 Choosing linear scales for concentration and time instead of logarithmic scales increased 

the AIC for the example to 764, so we continued to use the log scales.  When only the intercept 

was stratified on species and target, the AIC remained about the same (755) so we continued 

with the simpler model, i.e., stratifying only the intercept on species and target.  The output file 

is displayed in Table 5-5. We might now ask if stratification on the intercept can be reduced 

further. Stratification of intercept on species or target alone, however, caused a large increase in 

AIC (to 817.5 and 769.2, respectively), so no further simplification was achieved. 

 

5.4. Nonzero Background Response 

 As noted previously when C (concentration) is log-transformed, the probability of an 

adverse effect of level 1 or higher, expressed in Eq. 4-1a,b, approaches zero as concentration 

approaches zero.  If there is a positive probability of an adverse effect even when concentration 

is zero, i.e., so-called background response not attributable to exposure, then the user can modify 

the probability function in Eq. 4-1a,b.  When the user chooses the log scale for concentration, an 

option appears on the screen: Assume zero background risk (i.e., response 

cannot occur at zero concentration)?(y).  The exposure-response curve in 
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TABLE 5-5.  OUTPUT FILE FROM CATREG. INPUT FILE:CHEMX.CSV. MODEL 1. 
LOGIT. SCALES: LOG10. STRATIFICATION: INTERCEPT ON SPECIES AND 

TARGET. ASSUMED ZERO BACKGROUND RISK. 
CatReg - R Beta Version 1.1 (12/07/05) 
 
Source data file: chemx.csv  
 
Type of analysis: Censored  
 
Input file   : chemx.csv  
Filtered data: none 
Model        : cumulative odds model  
Link         : logit  
Clustering   : none 
Message      :  
Iterations   : 41 14  
Deviance     : 741.0266  
Residual DF  : 121  
AIC          : 755.0266  
 
Scale: 
     Concentration: log10( mg/m3 )  
     Duration     : log10( Hours )  
 
Stratification: 
     Intercept    : Species Target  
     Concentration:  
     Duration     :  
 
Coefficients: 
                  Estimate Std. Error   Z-Test=0    p-value 
SEV1           -66.2375249  4.2947663 -15.422847    0.00001 
SEV2           -70.3128027  4.4629521 -15.754774    0.00001 
MU:C:INTERCEPT   0.0000000  0.0000000         NA         NA 
MU:L:INTERCEPT   1.5443003  0.2803179   5.509103    0.00001 
RT:C:INTERCEPT  -0.8580588  0.2701988  -3.175658    0.00149 
RT:L:INTERCEPT   0.7735915  0.2703681   2.861253    0.00422 
LG10CONC        19.6220725  1.2858838  15.259600    0.00001 
LG10TIME        18.0738765  1.2265874  14.735091    0.00001 
 
Variance: 
                     SEV1       SEV2 MU:L:INTERCEPT RT:C:INTERCEPT 
SEV1           18.4450174 19.1496806    -0.32566226     0.13047885 
SEV2           19.1496806 19.9179410    -0.34292950     0.14029845 
MU:L:INTERCEPT -0.3256623 -0.3429295     0.07857815     0.03192034 
RT:C:INTERCEPT  0.1304789  0.1402984     0.03192034     0.07300738 
RT:L:INTERCEPT -0.1730734 -0.1814300     0.03822081     0.03365877 
LG10CONC       -5.5095904 -5.7215951     0.08581225    -0.04903025 
LG10TIME       -3.4384286 -3.6292401     0.08062509    -0.04554744 
               RT:L:INTERCEPT    LG10CONC    LG10TIME 
SEV1              -0.17307335 -5.50959042 -3.43842860 
SEV2              -0.18143003 -5.72159505 -3.62924010 
MU:L:INTERCEPT     0.03822081  0.08581225  0.08062509 
RT:C:INTERCEPT     0.03365877 -0.04903025 -0.04554744 
RT:L:INTERCEPT     0.07309891  0.04053521  0.04091319 
LG10CONC           0.04053521  1.65349721  0.97163480 
LG10TIME           0.04091319  0.97163480  1.50451662 
 
Analysis of Deviance Statistics: 
 
Generalized R-squared: 0.464  
 
          DF  Deviance Mean.Dev  Gen.F pvalue 



 

Model      5  642.5451  128.509 20.984      0 
Residual 121  741.0266    6.124               
Total    126 1383.5717                        
 
#########################################################################  
Note: About  46.4 % of the variation in the response is accounted  
for by the explanatory variables in the current model fit.  
 
The p-value of the model fit is <= 0.05. This is generally considered   
significant, indicating that the current model fit is acceptable.  
#########################################################################  
 
 
***************************** ERC summary *****************************  
  
 
< ERC10 at specific time point(s) >  
 : One-sided 95% Lower bound and One-sided 95% Upper bound   
 
* Risk Type : extra risk  
  
*  ERC10 at SEV1:MU:C  
             ERC10 Lower Bound of ERC10 Upper Bound of ERC10 
 1 Hours 1835.2147            1729.5769            1947.3045 
 4 Hours  511.8349             460.2481             569.2037 
 8 Hours  270.3033             229.7032             318.0794 
24 Hours   98.2597              75.9918             127.0528 
 
  
*  ERC10 at SEV1:MU:L  
             ERC10 Lower Bound of ERC10 Upper Bound of ERC10 
 1 Hours 1531.0334            1442.0397            1625.5193 
 4 Hours  426.9998             380.3650             479.3523 
 8 Hours  225.5014             189.8653             267.8260 
24 Hours   81.9734              62.8295             106.9505 
 
  
*  ERC10 at SEV1:RT:C  
             ERC10 Lower Bound of ERC10 Upper Bound of ERC10 
 1 Hours 2029.6265            1911.0637            2155.5451 
 4 Hours  566.0556             511.4375             626.5066 
 8 Hours  298.9376             255.2595             350.0897 
24 Hours  108.6687              84.4407             139.8483 
 
  
*  ERC10 at SEV1:RT:L  
             ERC10 Lower Bound of ERC10 Upper Bound of ERC10 
 1 Hours 1675.9548            1579.5678            1778.2236 
 4 Hours  467.4179             418.1326             522.5124 
 8 Hours  246.8464             208.6956             291.9714 
24 Hours   89.7327              69.0508             116.6092 
 
  
 
These One-sided 95% lower bound and one-sided 95% upper bound   
confidence intervals are equivalent to the lower bound and upper bound of 
two-sided 90% confidence intervals  
 
 ***********************************************************************   
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Eq. 4-1a,b is modified by adding a hypothetical background concentration level, γ (gamma), to 

the administered concentration C given in the input file (as variable mg/m3).  The parameter γ is 

estimated by maximum likelihood simultaneously with the other parameters and the result is 

added to the summary table of parameter estimates. If the user responds with “y” to assume zero 

background risk, then the data records where concentration is zero are non-informative and 

CatReg ignores them (i.e., effectively filters those data).  That reduces the total degrees of 

freedom compared to a response of “n” which uses the data where concentration is zero. 

 Table 5-6 lists an input file that was generated by simulation using log- transformed C 

and  hypothetical background concentration γ = 20 mg/m3.  Evidence of non-zero background 

risk is apparent in the occurrence of both severity levels 1 and 2 when mg/m3 = 0. The other 

parameter values used for simulation are α1 = -7.5, α2 = -9.5, β11 = 2.5, β12 = 2.0, β21 = 2.0, β22 = 

1.8. The data were simulated for the unrestricted cumulative model (Model 2) with the logit link, 

and log-transformed T (exposure duration). Responding “n” to the option to assume zero 

background risk during execution informs CatReg to add the parameter γ.  The output file is 

displayed in Table 5-7.  The evidence of background risk is not significant in this data set.  The 

estimate of gamma is 16.0 with standard error 28.1, which is not significantly different from 

zero. 

 This example suggests that one might need a substantial background effect for it to be 

significant, at least for small sample sizes.  The current example consists of treatment groups of 

size 10 each at 16 exposures (concentrations of 0, 80, 180, and 480; durations of 20, 100, 200, 

and 500 hours).  To examine the effect of sample size further, the same example was repeated 

but with treatment group sizes of 50, 100, and 5,000.  The estimate, standard error, and 

significance level of gamma, for sample sizes of 50, 100, and 5,000, respectively, were: (31.9, 

20.7, 0.12), (12.6, 7.7, 0.10) and (21.5, 1.6, and <10-5 ).  For this example, estimates of gamma 

appear to become statistically significant and to converge to the neighborhood of the correct 

value, 20, very slowly. When 1000 datasets were simulated with treatment groups of size 10, the 

median estimate of gamma was 19.7 (20.0 was the value of gamma used for simulation), but the 

standard error of the estimates was high (69.3).  
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TABLE 5-6.  INPUT FILE 
BACKGD10.CSV. 

mg/m3 Hours SevLo Nsub Incid 
0 20 0 10 8 
0 20 1 10 2 
0 20 2 10 0 
0 100 0 10 6 
0 100 1 10 4 
0 100 2 10 0 
0 200 0 10 5 
0 200 1 10 4 
0 200 2 10 1 
0 500 0 10 3 
0 500 1 10 7 
0 500 2 10 0 

80 20 0 10 4 
80 20 1 10 6 
80 20 2 10 0 
80 100 0 10 2 
80 100 1 10 8 
80 100 2 10 0 
80 200 0 10 1 
80 200 1 10 8 
80 200 2 10 1 
80 500 0 10 0 
80 500 1 10 4 
80 500 2 10 6 

180 20 0 10 3 
180 20 1 10 6 
180 20 2 10 1 
180 100 0 10 3 
180 100 1 10 7 
180 100 2 10 0 
180 200 0 10 0 
180 200 1 10 5 
180 200 2 10 5 
180 500 0 10 1 
180 500 1 10 4 
180 500 2 10 5 
480 20 0 10 0 
480 20 1 10 8 
480 20 2 10 2 
480 100 0 10 1 
480 100 1 10 8 
480 100 2 10 1 
480 200 0 10 0 
480 200 1 10 2 
480 200 2 10 8 
480 500 0 10 0 
480 500 1 10 2 
480 500 2 10 8 



 

TABLE 5-7.  CATREG SUMMARY FROM OUTPUT FILE OF CATREG. INPUT FILE: 
BACKGD10.CSV. MODEL 2. LOGIT. SCALES: LOG10. ESTIMATED BACKGROUND 

RISK. 
Input file   : backgd10.csv  
Filtered data: none 
Model        : unrestricted cumulative model  
Link         : logit  
Clustering   : none 
Message      :  
Iterations   : 26 10  
Deviance     : 239.8087  
Residual DF  : 25  
AIC          : 253.8087  
 
Scale: 
     Concentration: log10( mg/m3 )  
     Duration     : log10( Hours )  
 
Stratification: 
     No Stratification on Intercept, Concentration and Duration.     
 
Coefficients: 
                Estimate Std. Error   Z-Test=0    p-value 
SEV1           -6.279480  3.5472283 -1.7702497    0.07669 
SEV2          -13.394898 33.7617732 -0.3967475    0.69155 
LG10CONC:SEV1   2.305462  1.4596636  1.5794473    0.11423 
LG10TIME:SEV1   1.567190  0.4607761  3.4011975    0.00067 
LG10CONC:SEV2   2.747634  0.6149344  4.4681741    0.00001 
LG10TIME:SEV2   2.777898  0.6190206  4.4875700    0.00001 
Gamma          15.956845 28.1522306  0.5668057    0.57085 

 

 

 The smallest positive value of concentration in an input file is used as a practical 

boundary on gamma.  If the estimate of gamma is set to the boundary value, a message appears 

in the output: Warning: Gamma hit its maximum bound!!!.  The estimate shown 

for gamma, and the other parameters in the summary table of estimates, are not maximum 

likelihood in that case, and the user is advised to consider the setup option that assumes the 

background risk is zero.   

 

5.5. Data Requirements and Error Messages 

 Certain minimal data requirements need to be satisfied in order to estimate the categorical 

regression model.  There needs to be at least one response in each severity category.  If some 

categories are completely absent, then categories will need to be combined (see discussion of the 

“join” function, Section 10.4).  If both concentration and duration effects are to be modeled, then 

both C and T need to be varying in the data.  If T is constant, then a reduced model is fit so that T 

is dropped from the model.  There are additional technical limitations on the complexity of the 

 48



 

model relative to the data.  The most obvious is that the model cannot include more parameters 

than the number of independent observations.  Less obvious problems sometimes occur if certain 

variables are redundant.  These problems are revealed by R error messages indicating that there 

are redundant variables in the model.  This means that at least one variable in the model can be 

expressed in terms of the others.  Reducing the number of stratification variables usually will 

solve the problem.  Sometimes, R will return a “failure to converge” message.  This is an 

indication that there are too many variables in the model, and that the model needs to be 

simplified.  This problem relates to the number of variables needed to completely isolate the 

different severity categories.  The solution is to remove one or more variables from the model. 

 Unless the user is familiar with the R programming language and its use in the CatReg 

manuscript files, the error messages offered by CatReg are rather indecipherable.  Although it is 

beyond the scope of this manual to educate the user in the R programming language and syntax, 

some common error messages and proposed solutions will be offered.  The format for this 

discussion will follow the order of CatReg inquiries shown in Table 5-1 and address the error 

messages that may occur as the analysis progresses.  In this section, the error messages are 

printed in this font (Courier New) for easy recognition. 

 After the initial catreg() command,  Error in file(file, "r") : unable 

to open connection. In addition: Warning message: cannot open 

file `catreg.R' indicates that the CatReg script files have not been installed properly.  

Check to make sure that the script files have been installed in the directory designated in what R 

refers to as the “Start in” directory. You can type in getwd() to verify this. 

 After the user enters the name of the input file, Error in count.fields 

(infile, sep = ",") : cannot open the connection. In addition: 

Warning message: cannot open file `testcase.csv'  for reading 

means that the data file cannot be found.  Check to make sure the name of the data file has been 

accurately typed and that the data file is contained in the “Start in” directory.  If an error message  

such as Error in askfordata(infile): >>>> Records 2, 6, 10, 12, 15, 

18, 19, 21, 22, 24, 38, 39, 51, 53, 55, 61, 63, 67 have missing 

or extra fields! appears, the format of the data file is wrong.  Check to make sure the 

appropriate column headings are used (see Section 3.2) and that all data, including column 

headings, are separated by commas. If a required field of data is missing, an error message is 
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produced to that effect, e.g., Error in askfordata(infile) : Required input 

variable SevLo was not found. 

 If the value of “Incid” for the records in a treatment group (also called a “data entry”) do 

not sum to the common value of “Nsub” in those records, then an error message occurs giving 

the approximate record number of the error, e.g. 

Error detected in input, on or near line 4. 

Total incidence for a data entry does not equal number of 

subjects. CatReg will close (disregard the following line). The 

data input file needs to be corrected. 

 In proceeding with CatReg’s inquiries for the various setup options, a mistyped response 

will invoke Enter an item from the menu, or 0 to exit.  Simply type the 

correct response after CatReg repeats the query. 

 If an error is made in typing the response to Worst-case analysis of 

interval-censored responses (n)? CatReg proceeds under the assumption that the 

default response, “n” (for no), has been entered.  Thus, it accepts “y” as yes and anything else as 

“no”. 

 Sometimes “NaN” (not a number) is given for some of the model deviance iterations.   It 

is printed when CatReg is searching for the solutions to the parameter estimates in early 

iterations of the program.  CatReg tries to compute the deviances for those solutions and finds 

they are undefined (NaN).  Once a solution is determined for runs like this, the following 

warning message may appear: NAs produced in: log(likes)(Na means “not 

available”). 

 As described in the preceding section, the message Warning: Gamma hit its 

maximum bound!!! may occur when the parameter γ (gamma) is being estimated. The 

smallest positive value of concentration in an input file is used as a practical boundary on 

gamma.  The estimate shown for gamma, and the other parameters in the summary table of 

estimates, are not maximum likelihood in that case, and the user is advised to consider the setup 

option that assumes the background risk is zero. 

 An error message occurs if a coefficient of concentration or time is negative, e.g., 

Error: TIME is negative! Estimates of coefficient parameters do 

not satisfy non-negativity constraint on the parameters. A 
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negative estimate is evidence of no effect.  This run will 

terminate. The user needs to modify the run. The data may be indicating there is no effect or 

there may just be too many parameters in the model.   

 Similarly, the estimates of severity intercepts may violate the order constraint, resulting 

in a message such as  Sev 1 < Sev 2! Estimates of severity parameters do not 

satisfy constraint on order of parameters. Incorrectly ordered 

severity estimates is evidence of too many severity levels in 

the data. This run will terminate. The user needs to modify the run, such as 

combining severity levels with the join function (see Section 10.4).   

 Most error messages at this point in a CatReg run result from an attempt to calculate too 

many parameters with too little data.  This may generate error and /or warning messages from 

the optimization routine (used to find maximum likelihood estimates), such as: Error in 

optim(transcoefs, fn = hfdeviance, gr = hfdeviance.grad, method 

= "BFGS",: initial value in vmmin is not finite 

In addition: Warning messages:  

1: Algorithm did not converge in: (if (is.empty.model(mt)) 

glm.fit.null else glm.fit)(x = X, y = Y,   

2: fitted probabilities numerically 0 or 1 occurred in: (if 

(is.empty.model(mt)) glm.fit.null else glm.fit)(x = X, y = Y,   

3: NaNs produced in: log(x), 

or an error message that the covariance matrix of estimates is singular: Error in 

solve.default(Hessian):system is computationally singular: 

reciprocal condition number = …  

 In general, when errors occur during the calculation of parameter estimates, the user 

should change the link function if the cloglog link function was used or simplify the model and 

run it again.  The model can be simplified by reducing or omitting stratification of parameters.  If   

Model 2 (unrestricted cumulative model) is in use, the user can consider switching to Model 1 

(cumulative odds model).  Additionally, one can try different options for the scale of the 

explanatory variables concentration and duration.  Dumped means that the CatReg analysis has 

been terminated because a solution could not be computed. 
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 If an error is made in typing the response to Write ERC data to text files 

(n)?, CatReg proceeds under the assumption that the default response, “n”, has been entered .  

Thus, it accepts “y” as yes and anything else as “no”. 

 

6. TESTING HYPOTHESES 
6.1. Tests on Parameters 

 As discussed briefly in Section 5.1 the table of coefficient estimates shown on the screen 

and in the output file, illustrated in Tables 5-1, 5-2, 5-4 and 5-5, includes a simple test of the 

hypothesis that a parameter is zero, for each parameter in the table. Dividing the estimated 

coefficient by the standard error provides a Z statistic for the corresponding parameter.  This 

statistic provides a one-degree-of-freedom test of the null hypothesis that the parameter equals 

zero. Under the null hypothesis, the Z statistic has an approximate standard normal distribution. 

The larger the sample, the better the approximation is. The p-value in the table gives the 

significance level of the test. A parameter that is not significantly different from zero may be 

considered a candidate for removal and simplification of the exposure-response curve.  The p-

values apply to individual parameters considered singly, however, and further testing using the 

function partest is needed to test the joint hypothesis that more than one parameter is zero, 

that two or more parameters are equal, or a combination of the two.   

 In response to the instruction partest(), CatReg lists all the parameters and requests 

the user to enter the parameters to test for removal, then lists the parameters again and asks the 

user to enter a group of parameters to test for equality (the default is none in both cases). The 

idea is to express the hypothesis to be tested as a set of constraints on the model coefficients.  A 

test is then conducted of the hypothesis, or joint hypotheses if more than one was entered. The 

test is a (generalized Wald-type) chi-square test of the null hypothesis that all of the specified 

constraints hold. The distribution of the test statistic is derived from the sampling distribution of 

the estimated model coefficients, and it takes into account any cluster sampling, as described in 

Section 5.2.   

 As an example, one might like to test for a gender difference, or whether there are 

interspecies differences in the exposure-response.  For such a test, the null hypothesis is that the 

specified parameters are equal.  A p-value less than 0.05 is usually taken as evidence that the 

hypothesis should be rejected (i.e., the specified parameters are not equal).  The parameters to be 
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tested as equal must, of course, be included in the exposure-response curve; this is accomplished 

by stratifying.  For example, to test that there is no difference between species in the coefficients 

of concentration, the user would stratify the concentration parameter on species.  When 

partest queries which coefficients to test for equality, the parameters to be tested (if any) are 

entered from the list of parameters provided by CatReg.  To test for no difference between 

species in the coefficients of concentration, the user would enter the coefficient for each species. 

Some care needs to be used when tests involve the intercept parameters because of the way they 

are represented as increments relative to a reference (discussed below).  

 As an example, consider the previous example where Table 5-1 displays what appears on 

the monitor and Table 5-2 contains the output file. The data are filtered so there is only one 

species (RT) and one target (C) and Model 2 (unrestricted cumulative odds) is fit to the data.  In 

Section 5.3 the same data were fit to Model 1 (cumulative odds), which differs by having single 

parameters for the coefficient of concentration and the coefficient of time instead of separate 

parameters for each severity level (referred to previously as “parallelism”).  The AIC value 

indicated that the simpler model (Model 1) was adequate.   

 Another approach would have been to use partest to include a test of the joint 

hypothesis that β11 =  β12 and β21 =  β22 (in terms of the parameters of Eq. 4-1b) using 

partest.  In terms of the coefficient names in Tables 5-1 and 5-2, the hypothesis is that 

LG10CONC:SEV1 = LG10CONC:SEV2 and LG10TIME:SEV1 = LG10TIME:SEV2. Table 5-8 

shows how the example of Table 5-1 would be continued to test the hypothesis using partest 

(the user-input is in boldface).  A p-value less than 0.05 (or another user-specified level of 

significance) is evidence that the data do not conform to the assumption of parallelism.  This 

particular application of partest, i.e., to test whether Model 2 can be reduced to Model 1, has 

its own CatReg function.  Partest was used for illustration but in practice the result can be 

obtained more simply by just entering the instruction parallel.test()after fitting the data 

to Model 2 (unrestricted cumulative model).   

In conducting tests, it is necessary to be aware of which estimates are incremental 

changes from others, as in the case of some intercept parameters, and which are “stand alone”, as 

this can affect how a test is constructed. For illustration, consider the output file in Table 5-5.  

The intercept is stratified on both species and target. MU:C:INTERCEPT is the reference, i.e., 

SEV1 and SEV2 apply to the central nervous system of mice. The remaining intercept terms are 
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TABLE 5-8. MONITOR DISPLAY OF ADDING COMMAND PARTEST()AT THE END 
OF EXAMPLE IN TABLE 5-1. 

> partest() 
 
 Parameters:  
 SEV1 SEV2 LG10CONC:SEV1 LG10TIME:SEV1 LG10CONC:SEV2 LG10TIME:SEV2  
 
 Enter parameters to test for removal (none):  
1:  
Read 0 items 
 
 Parameters:  
 SEV1 SEV2 LG10CONC:SEV1 LG10TIME:SEV1 LG10CONC:SEV2 LG10TIME:SEV2  
 
 Enter group of parameters to test for equality (none):  
1: LG10CONC:SEV1 
2: LG10CONC:SEV2 
3:  
Read 2 items 
 
 Parameters:  
 SEV1 SEV2 LG10TIME:SEV1 LG10TIME:SEV2  
 
 Enter another group to test for equality (none):  
1: LG10TIME:SEV1 
2: LG10TIME:SEV2 
3:  
Read 2 items 
 
 Parameters:  
 SEV1 SEV2  
 
 Enter another group to test for equality (none):  
1:  
Read 0 items 
 
Hypothesis Test Results 
----------------------- 
 
Coefficients tested for removal:  None 
 
Coefficients tested for equality:   
 
   Group 1 :   LG10CONC:SEV1 LG10CONC:SEV2  
 
   Group 2 :   LG10TIME:SEV1 LG10TIME:SEV2  
 
Test statistics: 
 
   Chisquare     df    p-value 
    1.555015      2    0.45955 
 
#######################################################################  
The P Value of the equality test is > 0.05. This is generally considered not 
significant, indicating that the tested parameters are equal to each other. 
There is no need to keep all of them in the model.  
####################################################################### 



 

incremental differences from the reference.  To test whether there is no target effect on the 

intercept term, in executing partest, MU:L:INTERCEPT would be a parameter for removal 

and RT:C:INTERCEPT and RT:L:INTERCEPT would be a group to test for equality (to be 

tested jointly, in the same call to partest).  If MU:C:INTERCEPT and MU:L:INTERCEPT 

were entered as a group to test for equality, a message would be returned that there is no match 

for MU:C:INTERCEPT.  

 

7. ASSESSING MODEL FIT 
 This section focuses on the fit of the exposure-response curve rather than on its 

parameters.  In linear regression analysis, it is common practice to consider the proportion of 

variation accounted for by the model, the so-called R2 statistic, as a measure of the model's 

explanatory power.  This statistic, which ranges in value between 0 and 1, is the ratio of the 

model and total sums of squares.  These sums of squares, along with degrees of freedom, F-tests, 

and so on usually are reported in the form of an analysis of variance table.  Standard texts such as 

Weisberg (1985) describe the use and interpretation of these statistics. 

 CatReg provides generalized analysis of variance and R2 statistics for assessing the 

explanatory capacity of the exposure-response curve. These are derived from deviance statistics 

for hierarchical models.  Following McCullagh and Nelder (1989) and Venables and Ripley 

(1994), this type of analysis is called the analysis of deviance.  The analysis of deviance statistics 

and R2 statistic are in a table in the output file. The command deviance.fit()will also 

cause them to be calculated and written to the output file.  

 After running CatReg, the fitted curve is available for further analysis.  As an example of 

the analysis of deviance, consider the output file in Table 5-5.  The summary output in the table, 

which shows the coefficient estimates, indicates that seven parameters have been estimated.  

There are 64 treatment groups (2 species x 2 targets x 4 concentrations x 4 durations), so total 

degrees of freedom (df) is 64 x (3 severity levels - 1) = 128 (unadjusted for SEV1 and SEV2). 

The estimates of the SEV1 and SEV2 intercepts provide no information about how well the 

curve fits the data, so it is customary to adjust the total degrees of freedom for them in the 

analysis of deviance table, leaving 128 - 2 = 126 degrees of freedom.  The model has 5 

parameters, aside from SEV1 and SEV2, which are MU:L:INTERCEPT, RT:C:INTERCEPT, 
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RT:L:INTERCEPT, LG10C0NC, AND LG10TIME.  This leaves 126 – 5 = 121 degrees of 

freedom for the residual deviance.   

 The analysis of deviance table for the example shown in Table 5-5 partitions the total 

deviance into the sum of two components, the “model” deviance and the “residual” deviance.  

The total deviance is the deviance when the only parameters in the exposure-response curve (or 

“model” in the terminology being used here to show the comparison with the analysis of 

variance) are the intercepts, SEV1 and SEV2.  This is referred to as the null model because it 

contains no explanatory variables.  The residual deviance is simply the deviance of the fitted 

model, which includes the 5 parameters, aside from SEV1 and SEV2, i.e., MU:L:INTERCEPT, 

RT:C:INTERCEPT, RT:L:INTERCEPT, LG10C0NC, and  LG10TIME, as explanatory 

variables.  The model deviance is that part of the total deviance that is explained by the model 

(the proportion is the generalized R2).  In this example, 46.4% of the total deviance is explained 

by the model. R2 is a general measure of the proportion of the variation in the response that is 

accounted for by the explanatory variables. 

 The mean deviance entries, labeled as “Mean.Dev,” are computed as deviance divided by 

degrees of freedom.  An approximate F-test of the model is obtained as the ratio of model to 

residual mean deviations.  This is an approximate F-statistic in large samples under the ordinal 

regression model with independent responses.  This statistic tests the null hypothesis that all 

explanatory variables can be dropped from the model.  The same hypothesis may be tested using 

partest.  The two results will be similar if the responses are independent, and the residual degrees 

of freedom are reasonably large, say larger than 15. 

 Generally, the F-test will reject the null hypothesis unless the sample size is very small or 

the model fits poorly.  It merely verifies that there is some relationship between the response and 

the explanatory variables.  The generalized R2 statistic often will be of more direct interest as a 

measure of the explanatory value of the variables in the model. 

 Cluster sampling invalidates the large sample F distribution of the generalized F-statistic. 

However, it is common practice to compute F as a rough guideline; see Venables and Ripley 

(1994, p. 187).  In any case, the R2 statistic gives an idea of how much variation in the response 

is accounted for by the explanatory variables. 
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8. MAKING PLOTS 

8.1. The Plots and Options 
 CatReg includes seven functions for making plots after an exposure-response curve has 

been fit to the data (commands to create plots are input at ###(6)Issue Commands ### in 

Table 5-1).  The seven plots are listed with brief descriptions in Table 8-1.  

 

TABLE 8-1. PLOT FUNCTIONS AVAILABLE IN CATREG. 
catplot() Concentration on y-axis, duration on x-axis. Plot of ERC line with confidence 
interval for a single severity level and stratum, and response data for all severity levels.  
  
stratplot()Concentration on y-axis, duration on x-axis. Plot of ERC lines and response data 
for all strata for a single severity level.  
 
confplot() Strata for a single severity level displayed on y-axis, concentration on x-axis. Plot 
of  ERC with confidence interval for the unstratified model, and for individual strata of the 
model, for a single exposure duration. 
 
prplot() Probability of exceeding a specified severity level on y-axis, concentration or 
duration on x-axis.  Plots the probability curve as a function of concentration, keeping duration 
fixed, or as a function of duration with concentration fixed. 
 
dataplot()Concentration on y-axis, duration on x-axis.  Plots response data for all severity 
levels combined by stratum.  
 
allsevsplot() Concentration on y-axis, duration on x-axis. Plots ERC lines and response 
data for all  severity levels for a single stratum. 
 
devplot() Generalized deviance residuals on y-axis and data observation number, 
log-concentration, or log-duration on x-axis.  
 

 

 Several options available for use with various plots are listed in Table 8-2.  An option is 

implemented by inserting it as an argument in the parentheses at the end of the name of the plot 

function.  replace=T applies to all plot commands. It sends the new plot to the currently 

active graphics window instead of generating a new one and overwrites the previous graph.  

For example, the command catplot(replace=T) would plot in the currently active 

window and replace the previous graph.  cl=   applies to catplot and confplot. It is 

used to change the two-sided confidence limit used in a plot from the 90% default (cl=0.9).   
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TABLE 8-2. PLOT OPTIONS. 
Option catplot stratplot confplot prplot dataplot allsevsplot devplot 

replace=T X X X X X X X 
cl= X  X     
log="x" 
log=”y” 
log=”xy” 
log=” “ 

X 
X 
X 
X 

X 
X 
X 
X 

X 
 
 
 X 

X 
X 
X 
X 

X 
X 
X 
X  

Xlim= X X X X X X  
Ylim= X X  X X X  
jitter=T X X  X X X  
title= X X X X X X  
time=    X    
conc=    X    
prcurve=F    X    

 

 

For example, the command  catplot(cl=0.95)would produce a 95% two-sided confidence 

interval instead of the default 90%.  log=”y”, log=”x”, log=”xy”, and log= “” 

mean use a log scale (base 10) on the y-axis only, the x-axis only, both axes, neither axis, 

respectively. The defaults are log=”y” for catplot, stratplot, dataplot, and 

allsevsplot, log=”x” for prplot, and log = “”for confplot. xlim= and 

ylim= are used to set the ranges of x-axis and y-axis, respectively, which are determined from 

the data by default. They take the form xlim=c(lo,hi) and ylim=c(lo, hi), where lo 

is the lower limit, and hi is the upper limit, e.g., catplot(ylim=c(.1,100000)) specifies 

that the concentration axis (y-axis) runs from 0.1 to 100,000. jitter=T adds small random 

offsets to coincident observations.  Although the amount added is bounded, the randomness of 

the offset causes each jitter of the data to produce a slightly different plot.  Jittering is useful to 

get a sense of data density in cases where observations pile on top of one another.  title= 

allows the user to create the title of a plot in place of the default. For example, 

catplot(title = “My own title”).  time = and conc = set the duration or 

concentration level to be used in prplot, e.g., prplot(time = 2)or prplot(conc = 

1000).   prcurve = F suppreses the curve from being included in the prplot, e.g., 

prplot(time = 2, prcurve=F).  

 Several plotting commands produce a pop-up menu requesting whether a legend is 

desired.  If “yes” is selected, use the mouse to position the upper left corner of the legend on the 

graph and then left-click the mouse. A graph may be saved, copied, or printed in two ways.  First 
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either left-click on the graph or left-click on “Windows” and select the graph from the menu. The 

user can then either right-click the mouse on the graph to produce a menu, or left-click on “File” 

in the R commands.  Either way will allow the graph to be saved as a Metafile or Postscript; the 

latter way (using the “File” menu) provides four additional file types (PDF, Png, Bmp, and 

Jpeg). On exiting R, the user also is offered the choice of saving all graphs. 

 As discussed in Section 5.1, after fitting an exposure-response curve to the data, CatReg 

calculates extra risk concentrations for an ERC percentile, severity level, and (one-sided) 

confidence interval percentile determined by the user.  Using Table 5-1 as an example, this 

occurs in the section at ###(5)Calculate and output extra risk ###. 

Specifically, the queries for the ERC settings are: 

 

Percentile for ERC? (default=10):  

Severity level for ERC? (default = 1):  

Percentile for 1-sided upper and lower confidence intervals? 

(default=95):  

 

The user either accepts the default values shown in parentheses or inputs different values to use.  

The ERC settings remain current until they are subsequently changed by execution of the 

function ecdata.   

 The function ecdata is described in Section 9.1.  Briefly, the user enters the command 

ecdata()and then responds to the same queries as above (the last query, whether to write ERC 

data to files is not shown).  For example (user input is in boldface),  

 

>ecdata() 
Percentile for ERC? (default=10):5   

Severity level for ERC? (default = 1):2  

Percentile for 1-sided upper and lower confidence intervals? 

(default=95):85  

 

would change the current ERC settings to 5, 2, 85.  The plotting functions that require a severity 

level and/or percentile for the ERC use the values in the current ERC settings.  The two functions 
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that plot confidence intervals for the ERC, however, namely catplot and confplot, do not 

use the current setting for percentile of confidence intervals.  They both use a default level of 

95% for one-sided upper and lower confidence intervals (equivalently, 90% two-sided intervals).  

In both cases, the default can be overridden by use of the cl=  option discussed above. If the 

current ERC settings need to be changed for the sake of making a plot, just execute ecdata 

prior to making the plot.  

 The various plots are described and illustrated by example in the next section.  All of the 

examples were produced from commands after running CatReg on the input file chemx.csv, with 

the setup options as indicated in the output file in Table 5-5.  The default options for the ERC 

settings (10, 1, 95, for the ERC percentile, ERC severity level, and ERC percentile for one-sided 

confidence intervals, respectively) were used.  They were the current ERC settings when the 

plots were made.  Pop-up menus give the user a choice of strata, for the ERC severity level used, 

and the option to include a legend, as appropriate to the specific plot and whether there is 

stratification.   

 

8.2. Concentrations and Durations for Designated ERC and Severity (catplot) 

 The command catplot()plots the response data and graphs the ERC with confidence 

interval, for a single severity level and stratum.  Exposure concentration is on the y-axis and 

exposure duration on the x-axis. The current ERC settings are used for ERC percentile and 

severity level.  The confidence interval percentile is 90% (two-sided) but may be overridden by 

the cl =  option.  The stratum to use and whether to include a legend are determined from pop-

up menus.  By default, concentration and duration are graphed on a log-linear scale. This type of 

graph is useful for showing how extra risk changes with concentration or duration.  Be aware 

that the weighting of individual points is not shown. The number of points in each severity 

category will be displayed in the R command window, along with the number of hidden points.  

Each call to catplot generates a new graphics window.  Thus, repeated use of catplot 

allows comparison of results across strata.  The options available for use with catplot are in 

Table 8-2. 

 Figure 8-1 was produced with the instruction catplot(jitter=T). The stratum for 

the ERC line was selected from a pop-up menu giving four choices: SEV1:MU:C, SEV1:MU:L, 

SEV1:RT:C, SEV1:RT:L (the choices were determined from the summary table of estimates in  
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Figure 8-1.  Illustration of plot function catplot. 

 

 

the output file in Table 5-5).  The choice to include a legend was selected from a second menu.  

The x-y locations of symbols on the graph indicate the exposure concentrations and durations of 

observations on mice with the central nervous system as the target organ.  The symbol itself 

indicates the severity category, as shown in the legend.  The lines on the graph are the estimated 

ERC10 (solid line) and upper and lower 95% one-sided confidence bounds (dashed lines) 

(equivalently, two sided 90% confidence bounds).  Slicing the graph vertically at a specific 

duration gives the confidence interval that confplot would graph for that duration.  As 

expected, longer durations require lower concentrations to achieve the estimated 10% level of 

extra risk.  

 

8.3 Concentrations and Durations for Designated Probability and Severity 
of Strata (stratplot) 

 The command stratplot() plots the response data  by stratum for all severity levels 

and graphs the ERC (without confidence interval) by stratum for a single severity level.  
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Exposure concentration is on the y-axis and exposure duration on the x-axis.  The current ERC 

settings are used (for the ERC percentile and ERC severity level).  Response to a pop-up menu 

determines whether to include a legend.  By default, concentration and duration are graphed on a 

log-linear scale. Be aware that the weighting of individual points is not shown. The number of 

points in each severity category will be displayed in the R command window, along with the 

number of hidden points. The options available for use with stratplot are listed in Table 8-2. 

This graph provides comparison of the ERC curves for different strata by plotting them on the 

same graph.  Figure 8-2 was produced by entering the command stratplot(jitter=T).  

 

8.4. Extra Risk Concentration at Desired Duration (confplot) 

 The command confplot(time= )displays the ERC with confidence interval for the 

unstratified model and for individual strata of the stratified model, for a single severity level at 

the exposure duration set in the argument  time= ,e.g., confplot(time=1.5) for 1.5 

hours exposure.  The time argument is required unless duration is not included in the data as an 

explanatory variable.  The current ERC settings are used for the ERC percentile and severity 

level.  The confidence interval percentile is 90% (two-sided) but may be overridden by using the 

cl= option.  This graph is useful for comparing ERC estimates and confidence intervals among 

strata, and comparing individual strata with the unstratified model.   

 Figure 8-3 was produced from the command  confplot(time=2). Concentration is on 

the x-axis.  The central dot for each stratum is the estimated ERC10 for severity level 1.  The 

vertical solid line is the estimated ERC10 for the unstratified exposure-response curve, and the 

vertical dashed lines are the associated confidence intervals (90% for two-sided bounds, 

determined from the ERC settings since the option cl =  is not used here). To display the 

confidence interval for another duration, repeat the confplot command with the option 

time= reset to the new duration.  Execute ecdata to change the ERC percentile or the 

severity level and the option cl = to modify the percentile of the confidence intervals. 

 

8.5. Probability Versus One Explanatory Variable (prplot) 

 The command  prplot() displays the probability curve (i.e., the exposure-response 

curve) as a function of concentration, keeping duration fixed, or as a function of duration with  
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Figure 8-2.  Illustration of plot function stratplot. 

 

 

concentration fixed. If either of these variables is constant in the data, then prplot graphs the 

probability against the nonconstant variable.  If both concentration and duration vary in the data 

dataset, then the user needs to tell prplot which variable to hold constant.  This is done by 

specifying either time= or conc=  as an argument. For example, to plot the response 

probability versus duration at a fixed concentration, use prplot(conc= ), such as 

prplot(conc = 2000).  To plot the response probability versus concentration at a fixed 

duration, use prplot(time=  ), e.g., prplot(time = 2).   

The severity level is determined by the current ERC settings.  The choice of stratum and 

whether to include a legend are determined by response to pop-up menus.  The R command 

window will show the number of data points at the required duration or concentration, and the 

graph will show the probability of exceeding a particular severity level, for a specified stratum 

(when there is stratification) versus either concentration or time.  The available options are listed  
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Figure 8-3.  Illustration of plot function confplot. 
 

 

in Table 8-2.  Note that the option  prcurve=F suppresses the probability curve, leaving just 

the data points in the plot.  The function prplot is useful to help assess whether the fitted 

probability curve is consistent with the data, and for representing the risk over a range of 

exposure levels.   

 Figure 8-4 was produced with the command prplot(time=1.25).  The curve in 

Figure 8-4 plots the probability of the occurrence of a severity level 1 response or greater for the 

liver target organ in mice (species MU) as a function of concentration, with duration fixed at 

1.25 h.  The value used for time need not be an exposure time in the data set.  When that occurs, 

the probability curve is displayed but there are no data to display.   

 In these graphs, the vertical location of a symbol represents whether the response at a 

particular concentration was equal to or greater than the severity of interest (adverse, severity 1, 

for Figure 8-4).  No effect responses are plotted at Pr = 0.  Adverse effects and severe effects are 

both plotted at Pr = 1.  There are no censored observations.  If the input file had contained some 

observations censored as [0,1], they would have been graphed as “×”  at Y = 0.5 on the severity  
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Figure 8-4. Illustration of plot function prplot. 

 

 

≥1 graph, and as “×”  at Y = 0 on the severity ≥2 graph.  This is because, in the first case, it is not 

known whether the censored observation meets the severity threshold (i.e., whether severity ≥ 1), 

whereas in the second case the severity is known to be less than 2.  

 

8.6. Data Plotted by Stratum (dataplot)  

  The command dataplot() plots the response data for all severity levels by stratum, 

without a response probability curve, as shown in Figure 8-5.  Exposure concentration is on the 

y-axis and exposure duration on the x-axis.  Notice that Figure 8-5 is very similar to Figure 8-2, 

except that Figure 8-5 does not show the ERC10 lines.  After asking whether a legend is desired, 

the command window shows the number of points in each stratum, the total number of points for 

the analysis, and the number of hidden points. 
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Figure 8-5.  Illustration of plot function dataplot. 

 

 
8.7. Data and ERC Lines for Single Stratum, all Severity Levels (allsevsplot) 

 The command allsevsplot() plots the response data and ERC lines for a single 

stratum at all severity levels.  The stratum is selected by the user from a pop-up menu. A second 

pop-up menu provides an option to include a legend. The points and ERC lines are distinguished 

by severity level.  Figure 8-6 was produced with the command allsevsplot(jitter=T), 

then choosing stratum MU:C and electing to include a legend.  This plot is useful for comparing 

the ERC across severity levels. 
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Figure 8-6.  Illustration of plot function allsevsplot. 

 

8.8. Contribution to Deviance for Individual Datum (devplot) 

 How well are individual observations explained by the exposure-response curve?  In 

linear regression, residual plots help to address that question, that is, plots of the differences 

between observed and predicted responses.  Here the response is binary or ordinal, so there is a 

scaling problem in defining a “ residual.”  Various possibilities exist.  CatReg uses the individual 

components of the deviance statistic to measure how well individual observations are explained 

by the exposure-response curve.  Using deviance residuals is common practice in generalized 

linear modeling (see Venables and Ripley [1994, p. 188-189]).  For interval-censored ordinal 

data, other types of residuals are undefined, whereas the deviance residuals are defined in the 

usual way.  The observations that contribute to any lack of fit of the exposure-response curve can 

be identified by examination of the individual contributions to the deviance. 

 The command devplot() produces a diagnostic plot of generalized deviance residuals 

versus observation number (excluding filtered data), concentration (or log-concentration), or 

duration (or log-duration), depending on the user selection from a pop-up menu.  If the model is 

stratified, the points are labeled by strata.  A pop-up menu makes inclusion of a legend an option. 
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Generally, plotting deviances versus observation number (Obs.Number) is a good choice.  

It provides a representation of the relative effectiveness of the model in fitting the different 

observations or strata.  Devplot does not require jittering because each observation is 

represented uniquely under the Obs.Number option.  The fit is suspect if one or a few 

observations have much larger deviance residuals than the remaining observations because the fit 

may be unduly influenced by these observations.  If one stratum has large deviances, the model 

may be inadequate for this stratum.  Rerunning the model without this stratum would allow one 

to determine whether the results for the other groups are heavily influenced by the poorly fit 

subset. 

 Plots of deviance versus concentration (or log-concentration) or time (or log-time) are 

useful in studying the adequacy of the functional form of the regression relationship.  Trends in 

the deviances would suggest a problem with the functional form.  One should be aware that 

differences in the density of the data at different concentrations or durations will affect the 

perception.  Regions of the plot with more data will tend to have more spread in the deviances 

because of random variation, even if the model is adequate for the data.  Figure 8-7 was 

produced by entering devplot()and then selecting  Obs.Number from the pop-up menu.  

 Figure 8-8 is an example of devplot for a different input file.  The input and output 

files are not shown, but the same targets (C for central nervous system and L for liver) apply, and 

HU (human) is added as a species in addition to MU (mice) and RT (rats).  Intercepts were 

stratified on “Species” and “Target”. The notable feature of the figure is that the liver data for 

mice are relatively poorly described by the curve (i.e., residual deviances are relatively high) in 

comparison to most of the other data.  These data may or may not be influential on the fitted 

exposure-response curve. To examine whether they are, the curve could be refit after filtering out 

liver data for mice. 

  

8.9. Delete All Plots (rmplots) 

 The rmplots() command is particularly useful for keeping the number of graphics 

windows under control when fitting several CatReg models in one R session. It removes all 

graphics windows created since the beginning of the R session or since the last call to rmplots. 

Enter the command rmplots() to close all currently active graphics windows without exiting 

 68



 

R. It has no effect on the command window or on subsequent use of the graphical display 

functions. 

 

8.10. Printing Graphics 

 There are several ways to print a graph: (1) right-click on the graph and left-click on 

“Print”, or (2) either left-click on the graph or left-click on “Windows” and then left-click the 

appropriate choice from the Windows menu, then left-click on “File”, and left-click on “Print”.  
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Figure 8-7. Illustration of plot function devplot - Example 1. 
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Figure 8-8. Illustration of plot function devplot - Example 2 

9.  OTHER CatReg FUNCTIONS 
9.1. Change Probability and Severity Category (ecdata) 

 As discussed in Section 5.1, CatReg calculates extra risk concentrations once the model 

estimation step is complete (at location ### (5) Calculate and output extra risk 

### in Table 5-1).  It queries the user for ERC settings (ERC percentile, ERC severity level, and 

percentile for one-sided upper and lower confidence intervals) to be used in ERC calculations 

and asks the user whether to write the ERC results to text files.  Using the command 

ecdata()(at location ###(6)Issue Commands ### in Table 5-1)  just repeats those 

queries so that the user can change the ERC settings for subsequent use in making plots or to 

repeat calculations of  ERC estimates at a different ERC percentile, severity level, or confidence 

interval percentile.   

 If the user responds with “y” to the query  Write ERC data to text 

files?(n), then a separate text file is created for each stratum with the same name as the 

output file requested by the user in the current run of  CatReg (e.g., chemx) except with the file 

names appended  numerically, i.e., with 1, 2, …, depending on how many strata there are (e.g., 
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chemx1, chemx2, …).  Note that existing files with those names will be over-written.  For each 

stratum, ecdata makes the ERC calculations for 20 exposure durations (times), equally-spaced 

over the range of exposure durations in the input file, including both the smallest and largest 

times.  The results are stored in the R object ECline and the instruction >ECline will display 

the results on the screen for each stratum.  The graphical functions catplot and stratplot 

access ECline.   

 An example of the use of ecdata()with chemx.csv, for output file as shown in 

Table 5-5, follows (user input is in boldface).  

 

> ecdata() 

Percentile for ERC? (default=10): 5 

Severity level for ERC? (default = 1): 2 

Percentile for 1-sided upper and lower confidence intervals? 

(default=95): 90 

ERC data computed... 

Write ERC data to text files? (n):y 

Writing ERC data to ascii files... 

Done - see chemx.out for file names. 

 

The ERC5 values were written to four text files (chemx1, chemx2, chemx3, and chemx4) 

corresponding to the four strata in the analysis.  The output file chemx1 is displayed Table 9-1. 

 

9.2. Extra Risk Concentration for Desired Durations (ec3table) 

 To obtain extra risk concentration estimates for user-specified durations without reading 

them from a graph, use ec3table(duration = time), with time expressed in hours (even 

if the log-transform has been used for time in the run of CatReg), e.g., ec3table(duration 

= 2).  More than one exposure duration can be entered by using the format 

ec3table(duration = c(time1, time2, time3,etc.)), where time1, time2, 

…. , are the times of interest, e.g., ec3table(duration = c(1.5,2.0,2.5)). 

Any number of durations can be requested.   A table of the ERC values and confidence intervals 

for the exposure durations requested is produced and displayed on the screen, by stratum, for a 
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specified severity level.  To direct the table of values to the output file instead of to the screen , 

include the argument printout = T. The ERC percentile, the percentile for the one-sided 

upper and lower confidence bounds, and the severity level are taken from the current ERC 

settings. 

 For example, during the run of CatReg that produced the output in Table 5-5, the ERC 

percentile was 10, the severity level was 1, and the confidence percentile was 95 (apparent from 

the ERC summary at the end of Table 5-5).  To obtain the numerical estimates of the ERC10 at 

the observed durations, for severity level 1, with 95% one-sided confidence limits, we would use 

the instruction ec3table(duration = c(1.25,1.6, 2, 2.5)). To reset the ERC 

percentile, severity level, or confidence limit percentile, without executing CatReg again, 

execute the ecdata function prior to executing ec3table.  The following example changes 

the ERC percentile to 5 (user input is in boldface):  
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TABLE 9-1. FILE CHEMX1 OF ERC5 VALUES FOR STRATUM SEV2:MU:C 
PRODUCED BY COMMAND ECDATA(). 

Time ERC5  sd  LB90  UB90 

1.25 2208.16 74.35  2114.91 2305.53 

1.3 2135.2 70  2047.35 2226.81 

1.34 2064.64 66.05  1981.7 2151.05 

1.39 1996.41 62.5  1917.9 2078.14 

1.45 1930.44 59.32  1855.9 2007.98 

1.5 1866.65 56.5  1795.63 1940.49 

1.56 1804.97 54.03  1737.04 1875.55 

1.61 1745.32 51.87  1680.09 1813.09 

1.67 1687.65 50.02  1624.75 1752.99 

1.74 1631.88 48.45  1570.96 1695.17 

1.8 1577.96 47.13  1518.7 1639.52 

1.87 1525.81 46.04  1467.94 1585.97 

1.94 1475.39 45.15  418.66 1534.4 

2.01 1426.64 44.44  1370.82 1484.74 

2.08 1379.5 43.88  1324.4 1436.89 

2.16 1333.91 43.45  1279.38 1390.77 

2.24 1289.83 43.12  1235.74 1346.3 

2.32 1247.21 42.89  1193.44 1303.4 

2.41 1206  42.72  1152.47 1262.01 

2.5 1166.15 42.61  1112.8 1222.05 

 ** Stratum :SEV2:MU:C 

 ** Risk Type :extra risk 

 ** Above UB90 and LB90: 

    These one-sided 90% lower bound and one-sided 90% upper bound confidence 

intervals are equivalent to the lower bound and upper bound of two-sided 80% 

confidence intervals. 

 

 
> ecdata() 

Percentile for ERC? (default=10): 5 

Severity level for ERC? (default = 1): 1 

Percentile for 1-sided upper and lower confidence intervals? 

(default=95): 95 

ERC data computed... 

Write ERC data to text files? (n): 

 



 

The command ec3table(duration = c(1.25,1.6, 2, 2.5))will then produce the 

calculation and screen display of ERC5 estimates, with 95% confidence bounds, for severity 

level 1, as displayed in Table 9-2. 

 

TABLE 9-2.  MONITOR DISPLAY OF ERC5 ESTIMATES PRODUCED BY 
COMMAND EC3TABLE(DURATION = C(1.25,1.6, 2, 2.5)). 

< ERC5 at specific time point(s) >  
 : One-sided 95% Lower bound and One-sided 95% Upper bound   
 
* Risk Type : extra risk  
  
*  ERC5 at SEV1:MU:C  
                ERC5 Lower Bound of ERC5 Upper Bound of ERC5 
1.25 Hours 1368.8089           1292.5118           1449.6099 
1.60 Hours 1090.4150           1027.7983           1156.8464 
2.00 Hours  887.8264            830.1670            949.4905 
2.50 Hours  722.8769            667.7075            782.6046 
 
  
*  ERC5 at SEV1:MU:L  
                ERC5 Lower Bound of ERC5 Upper Bound of ERC5 
1.25 Hours 1141.9330           1073.5657           1214.6542 
1.60 Hours  909.6820            851.4345            971.9143 
2.00 Hours  740.6719            686.7422            798.8367 
2.50 Hours  603.0622            551.9808            658.8708 
 
  
*  ERC5 at SEV1:RT:C  
                ERC5 Lower Bound of ERC5 Upper Bound of ERC5 
1.25 Hours 1513.8125           1431.1282           1601.2739 
1.60 Hours 1205.9271           1139.9345           1275.7402 
2.00 Hours  981.8775            921.6875           1045.9982 
2.50 Hours  799.4542            741.7205            861.6817 
 
*  ERC5 at SEV1:RT:L  
                ERC5 Lower Bound of ERC5 Upper Bound of ERC5 
1.25 Hours 1250.0238           1177.8598           1326.6091 
1.60 Hours  995.7888            935.1591           1060.3494 
2.00 Hours  810.7809            754.6849            871.0465 
2.50 Hours  660.1456            606.7391            718.2531 
 
These one-sided 95% lower bound and one-sided 95% upper bound   
confidence intervals are equivalent to the lower bound and upper bound of 
two-sided 90% confidence intervals 

 

 

 

9.3. Summary for Most Recent Analysis (catreg.summary) 

 Entering catreg.summary()provides summary information that is displayed on the 

screen. Included are the input file name, information on the setup options, and results for the 

fitted exposure-response curve, such as parameter estimates, standard errors, and Z-statistics for 
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testing individual parameters for removal from the model.  This is the same data summary 

displayed on the screen after optimization is complete (in the section beginning with 

###(3)Display and output summary results ###  in Table 5-1) and in the 

output file.  The example in Table 9-3 applies to running CatReg using input file chemx.csv, 

with output file displayed in Table 5-5.  

 

TABLE 9-3.  MONITOR DISPLAY OF CATREG SUMMARY PORTION OF AN 
OUTPUT FILE PRODUCED BY  COMMAND CATREG.SUMMARY(). 

Input file   : chemx.csv  
Filtered data: none 
Model        : cumulative odds model  
Link         : logit  
Clustering   : none 
Message      :  
Iterations   : 41 14  
Deviance     : 741.0266  
Residual DF  : 121  
AIC          : 755.0266  
 
Scale: 
     Concentration: log10( mg/m3 )  
     Duration     : log10( Hours )  
 
Stratification: 
     Intercept    : Species Target  
     Concentration:  
     Duration     :  
 
Coefficients: 
          Estimate   Std. Error  Z-Test=0     p-value 
SEV1       
       -66.2375249   4.2947663  -15.422847     0.00001 
SEV2  
       -70.3128027   4.4629521  -5.754774     0.00001 
MU:C:INTERCEPT 
  0.0000000    0.0000000         NA          NA 
MU:L:INTERCEPT 
  1.5443003    0.2803179   5.509103     0.00001 
RT:C:INTERCEPT 
  -0.8580588   0.2701988   -3.175658     0.00149 
RT:L:INTERCEPT     
  0.7735915    0.2703681   2.861253     0.00422 
LG10CONC 
         19.6220725   1.2858838   15.259600     0.00001 
LG10TIME 
         18.0738765   1.2265874   14.735091     0.00001 

 
 
9.4. Information on Designated Attributes (attributes(fits)) 

 To access components of the fitted model that are not shown in the CatReg summary or 

text files, enter attributes(fits) to see what components are available; a list will be 

displayed. 
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> attributes(fits)  

$names: 

 [1] "deviance"  "df.residual" "message"  "coefficients"  

     "gradient"  "hessian"     "sand.var"     

 [8] "itr.num"   "f.evals"     "g.evals"  "scale"       

     "link"      "model"       "xnames"       

[15] "xnames.gp" "nsevcat"     "ref.cell"   

 To see a particular component, type the object name fits, and the component name 

joined by “$”.  For example, 

 
> fits$deviance  

[1] 435.8275 

reveals that 435.8275 is the deviance for the model.  

 
10.  UTILITIES 
 CatReg includes a number of utility functions for such objectives as renaming required 

input variables, viewing input data, converting data files to comma-separated files, combining 

severity categories, recoding variables, and recoding missing values.  

 

10.1. Renaming Required Input Variables 

 CatReg requires certain variables in order to perform an analysis.  The default names for 

these fields are contained in an R object named required.  Often the variable names in a data 

set are different from the default names.  To display the current default variable names, enter 

required at the R prompt.  The current names are then shown for the six types of required 

variables, as shown below. 

 
> required  

 conc     time    loscore  hiscore   incid  nsub 

"mg/m3"  "Hours"  "SevLo"  "SevHi"   "Incid" "Nsub" 

Note that the variable names are displayed in quotes, whereas the names of the data fields are 

aligned above them.  If the data set variable names are different from these, use the CatReg 

function rename to replace the default names with the variable names in the data set. 
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 One application for renaming variables is to make a comparison of results using censored 

data to those using the best judgment scores (i.e., BestNum).  This type of sensitivity analysis 

can be a useful indication of the impact of uncertain severity scores on the outcome.  To use 

BestNum, the default names SevLo and SevHi must be changed to BestNum.  CatReg will 

no longer see the data entries as censored and will use the severity category in the BestNum 

column for both SevLo and SevHi. This can be accomplished with the following commands. 

 
> rename(required)->required  

**** Change required variable names **** 

 Current required variables:  

 mg/m3 Hours SevLo SevHi Incid Nsub 

 Rename which variables? (none):  

1: SevLo SevHi 

3:  

 Current names:  

 SevLo SevHi  

 Enter new names:  

1: BestNum BestNum 

  
And to confirm the change: 
> required  

 conc     time    loscore     hiscore   incid    nsub 

"mg/m3"  "Hours" "Bestnum"   "Bestnum"  "Incid"  "Nsub" 

 

 To avoid an ambiguity error (having two variables named “BestNum”) when changing 

the variables back to SevLo and SevHi, use the following commands.   

 
> required["loscore"]<-"SevLo"  

> required["hiscore"]<-"SevHi"  
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The composite symbol “->” is the R assignment symbol.  It is composed of the “-” and “>” 

symbols.  Assignments may be forwards as in the example, or backwards as “<-”.  The object 

required was replaced by a modified version of itself, entering the new variable names in 

response to the query.  The change can be verified by displaying the required variable names 

again: 

 
> required  

 conc     time    loscore  hiscore   incid  nsub 

"mg/m3"  "Hours"  "SevLo"  "SevHi"   "Incid" "Nsub" 

 

The data fields conc, loscore, incid, and nsub are required to be in the input data 

set.  The remaining two fields are set to the following default values if they are not found in the 

input data: time=1, hiscore=loscore. To reset the names of the required variables to 

the CatReg default names, omit the argument of the rename function:  > rename() -> 

required . 

 

10.2. Viewing Input Data 

 To view the contents of a comma-separated data file during an R session, use the CatReg 

view utility.  Briefly, the function called view(infile="filename")will scan the named 

file, display the first record (usually a list of variable names), and ask which variables to display.  

The default is to display all variables.  A subset of data records may be specified using the row=  

option (see the example below). 

 
> view(infile="chemx.csv", row=1:5)  

Read 1179 items 

 Variables:  

 Exp. Group Species Target mg/m3 Hours SevLo Nsub Incid  

 View which variables? (all):  

1:  

Read 0 items 

     Exp. Group Species Target mg/m3  Hours  SevLo Nsub Incid 
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[1,] "1"  "1"   "MU"    "C"    "1259" "1.25" "0"   "10" "10"  

[2,] "1"  "2"   "MU"    "C"    "1259" "1.6"  "0"   "10" "9"   

[3,] "1"  "2"   "MU"    "C"    "1259" "1.6"  "1"   "10" "1"   

[4,] "1"  "3"   "MU"    "C"    "1259" "2"    "0"   "10" "4"   

[5,] "1"  "3"   "MU"    "C"    "1259" "2"    "1"   "10" "6" 

 

If the row= option is omitted, then all records will be displayed.  To load the data into an R 

matrix use the R assignment -> , e.g., view(infile="chemx.csv") -> chemx, which 

loads the sample data, chemx.csv, into an R matrix named chemx.   The data are stored as a 

character matrix.  Before applying any R statistical functions to the data, it is necessary to 

convert quantitative variables from characters to numeric values.  A facile way to do this is to 

convert to an R data frame, as in the following example:  data.frame(chemx) -> 

chemx. This replaces the character matrix chemx with a data frame of the same name.  Typing 

chemx at the R prompt will display the contents of this new data frame.  A data frame is a 

matrix of data whose columns may be either character strings or numeric values.  Many R 

functions operate on data frames. 

 

10.3. Converting Data Files to Comma-Separated Files 

 CatReg requires the input data to be comma-separated.  If the input data file is created 

using Excel, it can be saved as a csv file. If the input data file uses a different separator between 

fields, then the CatReg functions view and ascii can be used to convert it to the comma-

separated format.  The view function can be used to read data from an external text file into an 

R data matrix.  The ascii function then writes the contents of the data matrix to an external 

text (ascii) file.  Both functions allow the user to specify the field separator using the option 

sep="character string".  Therefore, to convert a tab-separated file to a comma-separated file, 

proceed as in the following example.  

 
> view(infile="data.tab", sep="\t") -> data   

 Variables:  

 mg/m3 SevLo  

 View which variables? (all):  
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1:  

> ascii(data, outfile="data.csv", sep=",")  

 

The first command reads the external, tab-separated file into an R matrix named data.  The 

second command above writes the contents of data to an external comma-separated file called 

data.csv.  This file will then be available for viewing using the view function or for analysis 

using catreg.  The symbol “\t” represents the tab character.  If fields are separated by a single 

space instead of by a tab character, specify sep=" " in the view function.  The use of these 

functions is unnecessary if the input file is already comma delimited (i.e., uses a comma-

separated format).   

  

10.4. Combining Severity Categories 

 Sometimes it is necessary to combine severity categories.  For example, if some 

categories contain insufficient data, then adjacent severity categories may be combined to form 

broader categories.  In some cases, the catreg or partest results may suggest that two or 

more of the severity parameters are not significantly different. 

 In these situations, the join function can be used to combine categories.  This is a 

query-based function that allows specification of the lower and upper endpoints of an interval of 

categories to combine.  The method for combining SevLo categories 1 and 2 for the data set 

sim.csv and writing the result to a new file sim2.csv is shown below. 

 
> join(infile="sim.csv", outfile="sim2.csv")  

Current observed categories are 0, 1, 2  

Enter lower and upper scores for combined category 

Lower:1  

Upper:2  

>>>> Output file is sim2.csv  

 

If the infile and outfile names are the same, join displays a warning and quits.  This 

prevents the data loss that would occur if the original file were overwritten by the modified file. 
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10.5. Recoding Variables 

 The CatReg recode function provides a way to recode specific variables.  It works in a 

manner similar to the join function.  When the infile and outfile arguments are 

specified, recode asks for the changes (see the example below).   

 
> recode(infile="sim.csv", outfile="sim2.csv")  

**** Recode specified variables **** 

 Variables:  

 mg/m3 SevLo  

 Recode which variables? (none):  

1: SevLo  

2:  

 Values of SevLo:  

 0 1 2  

 Enter replacement values:  

1: 2 1 0  

Name of new variable? (same):  

 

In this example, the ordinal response was recoded from ascending order to descending order. 

Another use of the recode function is to recode {1,2,3, . . . ,S} as {0,1,2, . . . ,S-1}. 

 

10.6. Recoding Missing Values 

 Different systems often use different codes for missing values.  The CatReg assumption 

is that a missing value is coded as a blank value.  The CatReg missval function allows 

specification to CatReg of how missing values have been coded in the data and conversion of 

them to the form that CatReg expects.  Suppose “-9999” is the code for missing data in 

data.csv; they are converted to blanks as shown below. 

> missval(infile="data.csv", outfile="data2.csv")  

**** Recode missing values **** 

Enter the current code for missing data: -9999 
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After recoding the missing values, missval saves the modified data in the specified output 

file. 
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 A-1

APPENDIX A 
DISTRIBUTION OF CONTINUOUS RESPONSE 

 DATA OVER SEVERITY LEVELS 

 

 Response data are sometimes measured on a continuous scale, with the mean and 

standard error reported.  Section 3.2.3 contains a hypothetical example for lung weight in rats in 

which a mean and standard error were reported for each treatment group.  The lung weight data 

were distributed over the severity levels shown for “Ref.id” = 2 in Table 3-6 for analysis by 

CatReg.  The following description explains how that was done and provides an example 

calculation for reference.  A technical explanation is provided at the end of the appendix. 

 The distribution of lung weights in healthy, unexposed rats is needed, either estimated 

from control animals in the experiment or “known” from other sources.  It is assumed here that 

the distribution of lung weights is normally distributed with mean 1.0 g and standard deviation 

0.05 g.  (Note:  The normal distribution is assumed simply for illustration.  The same idea could 

be applied to other distributions).  The user then determines weight intervals for severity levels to 

be used.  For this purpose, it may be helpful to estimate first the highest weight that might be 

considered in the “normal” range for unexposed animals.  The weight 1.15 g, which is three 

standard deviations above the mean, is an upper bound on virtually all lung weights in unexposed 

animals (i.e., a weight above 1.15 g is above the normal range of lung weights).  The following 

correspondence was made between severity levels and lung weights for the example:  Sev 0 

(<1.15 g), Sev1 (1.15 to 1.50 g), and Sev2 (>1.50 g).   

 Suppose that the average lung weights and standard errors shown in Table A-1 were 

reported for treatment groups in “Ref.id” = 2, Table 3-6.  (Note: If SE is the standard error from a 

treatment group of size n, the estimate of the standard deviation is SE n .)  There is a separate 

mean  and standard error reported for each treatment group, denoted by X i , and SEi, respectively 

for index i, with i = 1,...,13.  The ith treatment group is assumed to be a sample from a normal 

distribution with unknown mean and standard deviation, denoted by μi and σi, respectively.  The 

treatment groups are rather small (ni = 10 for all i), so it was assumed that the standard deviation 

was the same for treatment groups with similar estimates of the standard 



 

TABLE A-1.  SUMMARY DATA FOR “REF.ID” = 2 IN TABLE 3-6 

Index Exp. Group mg/m3 Hours Average Lung Weight ( X ) Standard Error 

1 1 1 330 2 1.1 0.03 

2 1 2 360 2 1.2 0.025 

3 1 3 390 2 1.5 0.04 

4 1 4 410 2 1.8 0.08 

5 1 5 460 2 1.7 0.1 

6 2 1 460 1 1.2 0.025 

7 2 2 510 1 1.3 0.04 

8 2 3 560 1 1.6 0.08 

9 2 4 610 1 1.8 0.1 

10 3 1 560 0.5 1.3 0.025 

11 3 2 610 0.5 1.5 0.04 

12 3 3 660 0.5 1.6 0.08 

13 3 4 710 0.5 1.8 0.1 
 

 

deviation (i.e., SEi ni ).  The standard deviation was assumed equal for indices 1, 2, 6, and 10 

(to be called Group A), 3, 7, and 11 (Group B), 4, 8, and 12 (Group C), and 5, 9, and 13 (Group 

D) in Table A-1.  An estimate of the common standard deviation in Group A, σA, is calculated 

from SE1, SE2, SE6, and SE10 as follows (estimation of the standard deviations for the other three 

groups is similar). 

 Let σA
2 be the common variance for Group A.  The variance estimate from Sample 1 is 

S1
2 =  n1SE1

2 = 10 (0.03)2.  The estimate of σA
2, denoted by SA

2 is the sum of the estimates of σA
2 

from samples 1, 2, 6, and 10, weighted by their degrees of freedom (df) (9 for each sample).  

This gives sA
2  = 1/36 [9(10)(0.03)2 +  9(10)(0.025)2 + 9(10)(0.025)2 + 9(10)(0.025)2] = 0.00694.  

The proportion of Sample 1 with lung weights less than 1.15 g is estimated as follows.  If X is a 

new observation for Sample 1, then 

( ) ( )( ) 5.0
11

2
1 /1/ nnSXXT A +−=  

 A-2



 

has a t-distribution with nA – 4 df, where n1 is the number of observations in Sample 1 (i.e., 

n1 = 10), and nA is the number of observations in Group A (i.e., nA = 40).  Pr (X < 1.15 g) is 

estimated by Pr (T < (1.15 – 1.1)/[0.00694 (11/10)0.5] = 0.716, shown in Table A-2 under Sev0 

for “Index” = 1.  To estimate Pr (1.15 ≤ X < 1.5), first estimate Pr (X < 1.5) as above, except with 

1.15 g replaced by 1.5 g, and then subtract the estimate of Pr(X < 1.15).  Similarly, the 

relationship Pr(X ≥ 1.5 = 1 – Pr(X < 1.5) is used to estimate Pr (X ≥1.5).  The estimated 

proportions of each sample with lung weights in the intervals <1.15, 1.15 to 1.5, and ≥1.5 are 

displayed in Table A-2. 
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 TABLE A-2.  ESTIMATED PROPORTIONS IN SEVERITY LEVELS 

Group Index 
S

n
n
+ 1

 X  

115
1

. −
+

X

S
n

n
 df 

Sev0 
 

Pr (X < 1.15) 

1 5
1

. −
+
X

S
n
n

 

Sev1 
 

Pr(1.15 < X < 1.5) 

Sev2 
 

Pr(X > 1.5) 

A 1 0.0874 1.1 0.572 36 0.715 4.577 0.285 0 

A 2 0.0874 1.2 –0.572 36 0.285 3.432 0.714 0 

B 3 0.1327 1.5 –2.638 27 0.007 0 0.493 0.500 

C 4 0.2653 1.8 –2.450 27 0.011 –1.131 0.123 0.866 

D 5 0.3317 1.7 –1.1658 27 0.127 –0.603 0.149 0.724 

A 6 0.0874 1.2 –0.572 36 0.285 3.432 0.714 0.001 

B 7 0.1327 1.3 –1.130 27 0.134 1.507 0.794 0.072 

C 8 0.2653 1.6 –4.146 27 0 –0.377 0.354 0.645 

D 9 0.3317 1.8 –1.960 27 0.030 –0.904 0.157 0.813 

A 10 0.0874 1.3 –1.716 36 0.047 2.288 0.939 0.014 

B 11 0.1327 1.5 –2.638 27 0.007 0 0.493 0.5 

C 12 0.2653 1.6 –4.146 27 0 –0.377 0.354 0.645 

D 13 0.3317 1.8 –1.960 27 0.030 –0.904 0.157 0.813 

 

 



 

 

This expression shows that the link-transformed probability follows a linear model. 

 

 

where p is any number between 0 and 1.  The link function and probability function are inverse 

to each other in the sense that H[L(p)] = p and L[H(x)] = x.  Applying the link function to both 

sides of Model 1 gives  

 

 Cloglog L(p)  =  log[−log(1  −  p)], 

 Probit L(p)  =  100 pth percentile of normal (0,1), and 

 
 Logit L(p)  =  log[p / (1−p)], 

The inverse of H, which is denoted by L, is called the link function in the statistical literature. 

The link functions corresponding to the probability functions given above are 

 

 

CatReg currently supports three forms for H: 

 

               
 

 Without loss of generality, link functions will be discussed in the context of Model 1, 

described by Eq. 4-1a in Section 4.1, specifically, 

B.1 LINK FUNCTIONS 
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TECHNICAL DISCUSSION 
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Logistic H(x) = ex / (1 + ex), 
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 The use of a link function is essential here.  Without it, the linear model becomes 

unbounded, and one is led to absurd estimates of probabilities for extreme values of C and T, 

namely negative probabilities or probabilities greater than 1.  Moreover, link functions may be 

derived from a basic assumption that the ordinal severity score corresponds to exceeding an 

underlying toxic response threshold (see discussion below).  Under this approach, the ordinal 

response score is called a quantal response because it is a quantization of the underlying response 

(see, e.g., Morgan, 1992).  Any ordinal regression model of the type given in Model 1 may be 

interpreted as a quantal response model.  When β1 and β2 are constant across severity categories 

data from one severity category adds information to the modeling of another category.   

 A toxicological interpretation of the link function follows from quantal response analysis.  

In particular, let Z denote a particular measure of health for a randomly selected subject given 

exposure to concentration C for duration T.  Larger values of Z correspond to a healthier 

individual.  Suppose that the health variable Z is distributed in the population as 

 

Pr(Z ≤ x) = H ,⎟
⎠
⎞

⎜
⎝
⎛ −

σ
μx   

 

where x is a possible value for an individual’s health, µ determines the median health for the 

given level of exposure, and σ is a measure of the population variation in health.  In particular, if 

H is Gaussian, then the health levels in the population are distributed normally with mean µ and 

standard deviation σ.  The larger µ is, the healthier the population is at the given level of 

exposure. 

 To model the situation where health deteriorates with increasing exposure, suppose that  

 

µ/σ = -β1* f1 (C) - β2* f2 (T). 

 

Further, suppose that a toxic reaction of severity Y ≥ s occurs if the health measure Z is below a 

threshold σαs, where σ is specific to the health measure.  Then, under exposure (C, T), the 

probability of toxic severity of category s or higher is 

 

Pr(Y ≥ s)  =  Pr(Z ≤ σαs)  =  H[αs + β1* f1 (C) + β2* f2 (T)]. 
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This is precisely the ordinal regression model given in Model 1.  It is apparent that the link 

function is a reflection of the underlying distribution of Z, which cannot be measured directly, 

but its distribution, in particular the dependence on C and T, can be estimated indirectly from the 

toxicological response data. 

  

B.2 INTERVAL CENSORING 

 Although censored responses do not provide as much information as fully scored 

responses, they do provide some information about the model.  This information is used in the 

maximum likelihood estimation and the generalized maximum likelihood estimation described in 

Section B.3.  In fitting the model by maximum likelihood, it is necessary to compute the 

probability of the observed response as a function of the model parameters.  Table B-1 shows  

how these probabilities are computed in a three-category scoring system with interval censoring, 

using Model 1. 

 
 

TABLE B-1.  INTERVAL PROBABILITIES FOR MODEL 1 WITH THREE 
SEVERITY CATEGORIES 

Interval Probability 
(0,0) 1- H[α1 + β1* f1(C) + β2* f2 (T)] 

(0,1) 1- H[α2 + β1* f1(C) + β2* f2 (T)] 

(1,1) H[α1 + β1* f1(C) + β2 *f2 (T)] - H[α2 + β1* f1(C) + β2 *f2 (T)] 

(1,2) H[α1 + β1* f1(C) + β2* f2 (T)] 

(2,2) H[α2 + β1* f1(C) + β2 *f2 (T)] 
 
 

B.3 PARAMETER ESTIMATION 
B.3.1 MAXIMUM LIKELIHOOD ESTIMATION 

 The likelihood function is defined to be the joint probability density of the data, viewed as 

a function of the parameters.  In categorical regression, the response variables are discrete, so the 

likelihood may be interpreted as the probability that an investigation would result in the 

particular values that were observed.  This probability depends on the unknown parameters.  

Maximum likelihood estimates the unknown parameters by the values that maximize the 
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likelihood of the observed data.  It is often more convenient to work with the logarithm of the 

likelihood.  For this purpose, it is common to define the deviance function: 

 

Deviance = −2 * log(likelihood). 

 

The deviance is a nonnegative measure of model fit.  Maximizing the likelihood is 

mathematically equivalent to minimizing the deviance.  The factor 2 is included because it is the 

correct multiplier for certain likelihood-based, goodness-of-fit tests.  Smaller deviances (larger 

likelihoods) correspond to a closer fit of the model to the data.  A deviance of 0 would indicate a 

perfect fit, that is, a “saturated” model.  Generally, a deviance of zero would indicate a model 

that is too complicated.  The deviance value shown in CatReg summary statistics such as that in 

Table 5-7 is the “residual deviance” discussed in Section 7. 

 If all data are independent, the likelihood function for interval-censored ordinal 

regression has a simple form.  For i = 1,2,..., n, let Yi denote the ordinal response, and let Ci and 

Ti denote the concentration and duration of exposure for the ith experimental subject, 

respectively.  Yi may be known only to lie in an interval.  To account for this, let Li and Ui denote 

the lower and upper endpoints of the known interval for Yi, respectively.  If it is known that Yi = 

k, then Li = Ui = k.  For convenient reference, denote the probability of severity s or greater by 

 

Pi(s) =  
⎪
⎩

⎪
⎨

⎧
++

,0
)],()([

,1

2211 is TfCfH ββα

if s = 0; 

if s = 1,…,S; 

if s > S.. 

 

Then the deviance for interval-censored ordinal regression is given by 

 

Deviance = )],log[Pr(2 iiiii
N

1i TCUYL ≤≤∑− =  

 )].1()([log2 +−∑− = iiii
N

1i UPLP  

 

Parameter estimates are computed by iteratively minimizing the deviance.  CatReg uses the R 

function optim() to perform this optimization. 
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B.3.2 GENERALIZED LIKELIHOOD ESTIMATION 

 modified likelihood in which the 

Deviance = 

If the weights do not correspond to incidences, then this likelihood corre

 

t 

ple 

en the data are cluster sampled.  The likelihood for 

ct of 

es the 

t 

ssible weighting of 

 

atistics, 

 Weighted ordinal regression analysis corresponds to a

probability associated with the ith observation is raised to a positive power wi.  This results in a 

modified likelihood with a weighted deviance: 

 

)].1()([logw2 i +−∑− = iiii
N

1i UPLP  

sponds to a nonstandard 

ordinal regression model.  In this situation, it is more common to interpret the deviance as a 

generalized criterion and to assume that the usual ordinal regression model holds.  Under this

assumption, the generalized deviance still leads to consistent estimates of the parameters, but i

does not correspond to the likelihood of the data.  Instead, the estimator is defined by a 

generalized estimating equation, which provides the basis for computing valid large-sam

confidence intervals and test statistics. 

 A further modification arises wh

cluster-sampled data does not have the simple form given above.  Rather, it involves a produ

multiple integrals of conditional likelihoods.  Such likelihoods are computationally challenging 

and the results may be sensitive to the specification of the correlation structure.  An alternative 

approach is to assume the ordinal regression model holds in a population-average sense.  

Consistent estimates then may be obtained quite generally, without making extensive 

distributional assumptions about the correlation structure.  To achieve this, CatReg tak

expression derived above as a “working deviance” criterion.  Minimizing it leads to consisten

estimates under the population-average model.  The main impact on the analysis compared to a 

standard likelihood analysis is the use of generalized estimating equation methods for making 

statistical inferences.  In particular, rather than reporting the inverse information matrix as the 

estimated parameter covariance, the well-known sandwich formula is used. 

 Most applications of CatReg will involve cluster-sampled data and po

observations.  As noted above, CatReg uses the weighted independence criterion as an estimating

criterion, but computes confidence intervals and hypothesis tests without assuming the criterion 

is the likelihood.  This approach has a long history in the statistical literature.  Huber (1967) 

derived the large-sample theory of “maximum likelihood” estimators when the working 

likelihood is different from the actual likelihood of the data.  In the literature on robust st
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this type of estimator is called an “M-estimator” because it generalizes maximum likelihood.  

Liang and Zeger (1986) extended the method to the analysis of correlated data, based on a 

“working” correlation structure, without assuming the working correlation structure was co

This general approach is widely used in biometry, econometrics, and survey sampling.   

 

rrect.  

.4 CONFIDENCE LIMIT CALCULATIONS 
uations, which is well accepted in 

d 

tervals and hypothesis tests about the parameters rely on a large-sample 

ormal e 

GD = 

 

here −2 wij log[Pij(Lij) − Pij(Uij + 1)] is the contribution of the jth individual from cluster i,  

0 = 

 

here the summand  is given by  

B
 CatReg uses the method of generalized estimating eq

the literature (see Diggle et al., 1994), for the calculation of confidence limits for cluster-sample

data.  The classical likelihood ratio inferences do not apply to cluster-correlated data because the 

likelihood ratio test assumes independent responses.  The application of generalized likelihood 

ratio tests for correlated data is, however, an area of active research that may produce usable 

results in the future. 

 Confidence in

n  approximation to the joint distribution of the parameter estimates.  The main steps in th

derivation of this approximation are as follows.  First, assuming the data are cluster sampled, 

write the generalized deviance as  

 

)],1()([logw ij1 +−∑∑− == ijijijij
n
j

N
1i UPLP2 i  

w

j = 1,...,ni, i = 1,...,N.  Let Β denote the vector of all model parameters.  The GD estimate of Β 

solves a generalized estimating equation 

 

,1 ij
n
j

N
1i

i Ψ∑∑ ==  

w ijΨ

 

,
)1()(
)1()(

+−

+−
=Ψ

ijijijij

ijijijij
ijij UPLP

UdPLdP
w  

 

 B-6



 

and dPij(t) denotes the vector of derivatives of Pij(t), with respect to the components of Β, 

s evaluated at the estimated parameters.  Expanding the estimating equation in a Taylor serie

leads to a large-sample normal approximation.  The estimated parameter vector, B̂ , is 

approximately multivariate normal.  The mean of the approximating normal distr ution

the true value of Β, and the covariance matrix is given by the sandwich formula 

 

ib  equals 

Est.Cov

where J is given by 

J = 

 

nd C is a covariance estimate for the total score, given by 

C = 

,)ˆ( 11 −−= CJJB  

,1 ij
n
j

N
1i di Ψ∑∑− ==  

a

 

( )( )′Ψ∑Ψ∑∑ === ik
n
kij

n
j

N
1i

ii
11  

 

 the working likelihood were the actual likelihood of the data, then J and C would estimate the If

same matrices, and the usual inverse information, J-1, would estimate the covariance of B̂ .  

Further details are given in Simpson et al. (1996a).   

 Standard errors of individual parameter estimates are obtained as the square roots of the 

diagonal elements of the estimated covariance.  Confidence intervals and hypothesis tests derive 

from the normal approximation for B̂ .   
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