

Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide

APPENDICES

(CASRN 75-21-8)

In Support of Summary Information on the Integrated Risk Information System (IRIS)

July 2013

NOTICE

This document is a **Revised External Peer Review draft.** This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications.

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is a preliminary draft for review purposes only. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

LIST OF TABLES	5	vi
LIST OF FIGURE	S	ix
LIST OF ABBRE	VIATIONS	xi
APPENDIX A. CF	RITICAL REVIEW OF EPIDEMIOLOGIC EVIDENCE	A-1
	GROUND	
A.2. INDIV	IDUAL STUDIES	A-2
A.2.1.	Hogstedt (1988), Hogstedt et al. (1986)	A-2
A.2.2.	Gardner et al. (1989)	
A.2.3.	Kiesselbach et al. (1990)	A-6
A.2.4.	Greenberg et al. (1990)	A-7
A.2.5.	Steenland et al. (1991)	A-9
A.2.6.	Teta et al. (1993)	A-11
A.2.7.	Benson and Teta (1993)	A-13
A.2.8.	Stayner et al. (1993)	A-14
A.2.9.	Wong and Trent (1993)	A-16
A.2.10.	Bisanti et al. (1993)	A-17
A.2.11.	Hagmar et al. (1995) and Hagmar et al. (1991)	A-18
A.2.12.	Norman et al. (1995)	A-20
A.2.13.	Swaen et al. (1996)	A-21
A.2.14.		
A.2.15.	Steenland et al. (2004)	A-23
A.2.16.	Steenland et al. (2003)	A-25
A.2.17.	Kardos et al. (2003)	A-26
A.2.18.		
A.2.19.		
	Swaen et al. (2009)	
A.3. SUMM	ARY	A-35
A.4. CONCL	LUSIONS	A-54
APPENDIX B. RE	FERENCES FOR FIGURE 3-3	B-1
APPENDIX C GE	ENOTOXICITY AND MUTAGENICITY OF ETHYLENE OXIDE	C-1
	DDUCTS	
C.1.1.	Detection of EtO Adducts in In Vitro and In Vivo Systems	
C.1.2.	In Vitro DNA Binding Studies	
C.1.2.	In Vivo Studies—Animal Experiments	
C.1.4.	In Vivo Studies—Human Subjects	
C.1.5.	DNA Adducts—Summary	
C.1.6.	EtO-Hemoglobin Adducts	
	MUTATIONS	
C.2.1.	Bacterial Systems	
	-	

CONTENTS

CONTENTS (continued)

	C.2.2.	Mammalian Systems	C-12
	C.2.3.	Gene Mutations—Summary	
C.3.	CHROM	IOSOMAL ABERRATIONS	C-20
		NUCLEUS FORMATION	
C.5.	SISTER	CHROMATID EXCHANGES (SCEs)	C-24
C.6.	OTHER	ENDPOINTS (GENETIC POLYMORPHISM, SUSCEPTIBILITY)	C-27
		ENOUS PRODUCTION OF ETHYLENE AND EtO	
C.8.	CONCL	USIONS	C-33
		ANALYSES AND INTERPRETATION OF ETHYLENE OXIDE	
EXP	OSURE-	RESPONSE DATA	D-1
D.1.	BREAS	T CANCER INCIDENCE BASED ON THE DATA WITH	
		VIEWS	
		T CANCER MORTALITY	D-29
D.3.	LYMPH	OID CANCER MORTALITY (SUBSET OF ALL	
		TOPOIETIC CANCERS COMBINED) (N = 18,235)	D- 41
D.4.	HEMAT	OPOIETIC CANCER MORTALITY (ALL HEMATOPOIETIC	
	CANCE	RS COMBINED)	D-52
D.5.	SUMMA	ARY TABLE OF EC ₀₁ S FOR DIFFERENT OUTCOMES, USING 2-	
		SPLINE MODELS	D-63
D.6.	SENSIT	IVITY OF 2-PIECE SPLINE CURVES TO PLACEMENT OF	
	KNOT		D-64
D.7.	POSSIB	LE INFLUENCE OF THE HEALTHY WORKER SURVIVOR	
	EFFECT	Γ	D-65
D.8.	POSSIB	LE INFLUENCE OF EXPOSURE MIS-MEASUREMENT	D-66
D.9.	REFERE	ENCES	D-68
APPEND	X E. LIF	E-TABLE ANALYSIS	E-1
APPEND	X F. EOU	UATIONS USED FOR WEIGHTED LINEAR REGRESSION	F-1
		DEL PARAMETERS IN THE ANALYSIS OF ANIMAL TUMOR	
		DEL FARAMETERS IN THE ANALISIS OF ANIMAL FUMOR	G 1
INC	IDENCE.		U-1
		MMARY OF 2007 EXTERNAL PEER REVIEW AND PUBLIC	
		AND DISPOSITION	Ц 1
CON	INILINI S	AND DISPOSITION	11-1
	דיז ד ד	Γ OF REFERENCES ADDED AFTER THE 2006 EXTERNAL	
		AFT	T 1
KĽ V			1-1

CONTENTS (continued)

APPENDIX J. SUMMARY OF MAJOR NEW STUDIES SINCE THE LITERATURE	
CUTOFF DATE	J-1
J.1. SYSTEMATIC LITERATURE SEARCH	J-1
J.2. REVIEWS OF MAJOR NEW STUDIES PUBLISHED SINCE THE	
LITERATURE CUTOFF DATE	J-4
J.2.1. Kiran et al. (2010)	J-4
J.2.2. Mikoczy et al. (2011)	J-6
J.3. REFERENCES	J-12
APPENDIX K. DOCUMENTATION OF IMPLEMENTATIONS OF THE 2011	
NATIONAL RESEARCH COUNCIL RECOMMENDATIONS	K-1
REFERENCES	R -1

LIST OF TABLES

A-1.	Estimated 8-hour time-weighted average ethylene oxide exposure, Plant 3	A-3
A-2.	Cox regression results for hematopoietic cancer mortality (15-year lag) in males	A-24
A-3.	Cox regression results for lymphoid cell line tumors (15-year lag) in males	A-24
A-4.	Exposure assessment matrix from Swaen et al. (2009)—8-hour TWA exposures in ppm	A-29
A-5.	Epidemiological studies of ethylene oxide and human cancer	A-36
C-1.	Levels of endogenous (background) N7-HEG adducts in unexposed human and experimental rodent tissues	C-30
D-1a.	Distribution of cases in Cox regression for breast cancer morbidity analysis after using a 15-year lag	D-6
D-1b.	Categorical analysis of breast cancer incidence by deciles (log RR model)	D-7
D-1c.	Fit of 2-piece log-linear model to breast cancer incidence data, Cox regression	D-14
D-1d.	Fit of log-linear model to breast cancer incidence data, Cox regression (RR = $e^{(\beta \times exposure)}$)	D-15
D-1e.	Fit of the square root transformation log RR model to breast cancer incidence data, Cox regression (RR = $e^{(\beta \times \text{sqrt(exposure)})}$)	D-16
D-1f.	Fit of the log transform model to breast cancer incidence data, Cox regression $(RR = e^{(\beta \times ln(exposure))})$	D-17
D-1g.	Change in –2 log likelihood for log RR models for breast cancer incidence, with addition of exposure term(s)	D-18
D-1h.	Model fit statistics for linear RR models, breast cancer incidence	D-20
D-1i.	Model coefficients for linear RR models, breast cancer incidence	D-21
D-1j.	Supplemental Results: Parameter estimates for exposure variables for categorical (decile) linear RR model (RR = $1 + \beta$), breast cancer incidence	D-22
D-2a.	Distribution of cases in Cox regression analysis of breast cancer mortality after using a 20-year lag	D-30
D-2b.	Categorical output breast cancer mortality, 20-year lag (log RR model)	D-35

LIST OF TABLES (continued)

D-2c.	2-piece log-linear spline, breast cancer mortality, 20-year lag, knot at 700 ppm- days) -36
D-2d.	Log-linear model, breast cancer mortality, 20-year lag) -37
D-2e.	Log transform log RR model, breast cancer mortality, 20-year lag D) -38
D-2f.	2-piece log-linear spline model, breast cancer mortality, 20-year lag, knot at 13,000 ppm-days)-39
D-2g.	Model results for breast cancer mortality, linear RR models D) -40
D-3a.	Exposure categories and case distribution for lymphoid cancer mortality D) -42
D-3b.	Lymphoid cancer mortality results by sex) -43
D-3c.	Categorical results for lymphoid cancer mortality (log RR model), men and women combined) -46
D-3d.	Results of 2-piece log-linear spline model for lymphoid cancer mortality, men and women combined, knot at 100 ppm-days) -47
D-3e.	Results of the log transform log RR model for lymphoid cancer mortality, both sexes combined) -48
D-3f.	Results of the log-linear model for lymphoid cancer mortality, both sexes combined) -48
D-3g.	Results of 2-piece log-linear spline model for lymphoid cancer mortality, men and women combined, knot at 1600 ppm-days) -49
D-3h.	Supplemental Results: Model fit statistics and coefficients for linear RR models, lymphoid cancer mortality	50
D-4a.	Exposure categories and case distribution for hematopoietic cancer mortalityD)- 53
D-4b.	All hematopoietic cancer mortality categorical results by sex (log RR model) D) -54
D-4c.	Categorical results for all hematopoietic cancer mortality (log RR model), men and women combined, cumulative exposure with a 15-year lagD) -57
D-4d.	Results of 2-piece log-linear spline model for all hematopoietic cancer mortality, men and women combined, cumulative exposure with a 15-year lag) -58

LIST OF TABLES (continued)

D-4e.	Results of log-transform log RR model for all hematopoietic cancer mortality, men and women combined, cumulative exposure with a 15-year lag	D-59
D-4f.	Results of log-linear model for all hematopoietic cancer morality, men and women combined, cumulative exposure with a 15-year lag	D-60
D-4g.	Supplemental Results: Model fit statistics and coefficients for linear RR models, hematopoietic cancer mortality	D-61
D-5a.	Summary of EC_{01} results (in ppm) in current analysis and previous EPA risk assessment.	D-64
D-6a.	Exposure-response coefficients and $EC_{01}s$ based on selection of different knots, using 2-piece log-linear models	D-65
E-1.	Extra risk calculation for environmental exposure to 0.0114 ppm (the LEC ₀₁ for lymphoid cancer incidence) using the weighted linear regression model based on the categorical cumulative exposure results of Steenland et al. (2004), reanalyzed by Steenland for both sexes combined with a 15-year lag, as described in Section 4.1.1.	E-2
G-1.	Analysis of grouped data, NTP mice study (NTP, 1987); multistage model parameters	G-1
G-2.	Analysis of grouped data, Lynch et al. (1984a); Lynch et al. (1984c) study of male F344 rats; multistage model parameters	G-2
G-3.	Analysis of grouped data, Garman et al. (1985) and Snellings et al. (1984) reports on F344 rats; multistage model parameters	G-2
G-4.	Time-to-tumor analysis of individual animal data, NTP mice study (NTP, 1987); multistage-Weibull model parameters	G-3
J-1.	Disposition of 56 new references identified as potentially relevant	J-2
J-2.	New epidemiological studies of ethylene oxide and human cancer	J-9
K-1.	The EPA's implementation of the National Research Council's recommendations in the ethylene oxide (EtO) carcinogenicity assessment	K-2
K-2.	National Research Council recommendations that the EPA is implementing in the long term	K-8

LIST OF FIGURES

D-1a.	Likelihoods vs knots, 2-piece linear log RR model for breast cancer morbidity D-9
D-1b.	Breast cancer incidence. Plot of the dose-response relationship for continuous exposure generated using a 2-piece log-linear spline overlaid with a plot using restricted cubic (log RR) splinesD-10
D-1c.	Breast cancer incidence. Plot of a log-linear dose-response relationship overlaid with a dose-response relationship generated using restricted cubic log RR model with continuous exposure
D-1d.	Breast cancer incidence. Comparison of log-linear curve (log RR = $\beta \times$ cumexp) with all the data and the log-linear curve (higher slope) after excluding those in the top 5% of exposure (>27,500 ppm-days)D-11
D-1e.	Breast cancer incidence. Plot of a logarithmic transformation log RR dose- response model (log RR = $\beta \times \log(\text{cumexp})$) overlaid with a dose-response relationship generated using categorical log RR analyses (deciles) D-12
D-1f.	Breast cancer incidence. Plot of a square-root transformation log RR dose– response model overlaid with a dose-response relationship generated using categorical log RR analyses (deciles)
D-1g.	Breast cancer incidence exposure-response curves, linear RR models (units are ppm-days, 15-year lag)
D-1h.	Knot location for Figure D-1g above, 2-piece linear spline model, breast cancer incidence (units are ppm-days, 15-year lag)
D-2a.	Likelihoods vs knots for the 2-piece log-linear model, breast cancer morality D-31
D-2b.	Likelihoods vs knots for the 2-piece log-linear model, breast cancer moralityD-32
D-2c.	Plot of the dose-response relationship of continuous exposure (lagged 20 years) for breast cancer mortality, with the 2-piece linear spline, the categorical, and the linear log RR models
D-2d.	Plot of the dose-response relationship of continuous exposure (lagged 20 years) for breast cancer mortality, generated using a logarithmic transformation log RR model
D-2e.	Linear RR models for breast cancer mortalityD-40
D-3a.	Likelihoods vs knots for 2-piece log-linear model, lymphoid cancer mortality D-45

LIST OF FIGURES (continued)

D-3b.	Plot of the exposure and lymphoid cancer mortality rate ratios generated using a 2-piece log-linear spline model overlaid with other log RR curves and categorical log RR model points.	D-45
D A		
D-3c.	Linear RR models for lymphoid cancer	D-50
D-4a.	Likelihood vs knots for 2-piece log-linear model, all hematopoietic cancerl	D-55
D-4b.	Plot of exposure and rate ratios for all hematopoietic cancer generated using a 2-	
	piece log-linear spline model and log transform, linear, and categorical log RR models.	D-56
D-4c.	Linear RR models for hematopoietic cancer mortality	D-61
H-1.	Induction of <i>hprt</i> mutations by EtO with data from ethylene (using estimated EtO	
	equivalents) shown	H-16
H- 2.	Induction of recessive lethal mutations by EtO in Drosophila (wild-type)	H-17

LIST OF ABBREVIATIONS

ADAF	age-dependent adjustment factor
AIC	Akaike information criterion
AIDS	acquired immune deficiency syndrome
AML	acute myeloid leukemia
AUC	areas under the curve
BEIR	Committee on the Biological Effects of Ionizing Radiation
CI	confidence interval
DSB	double-strand breaks
EC	effective concentration
EOIC	Ethylene Oxide Industry Council
EPA	U.S. Environmental Protection Agency
EtO	ethylene oxide
FRG	Federal Republic of Germany
GST	glutathione S-transferase
HAP	hazardous air pollutants
N7-HEG	N7-(2-hydroxyethyl)guanine
IARC	International Agency for Research on Cancer
ICD	International Classification of Diseases
IRIS	Integrated Risk Information System
LEC	lower confidence limit
MLE	maximum likelihood estimate
NCEA	National Center for Environmental Assessment
NHL	non-Hodgkin lymphoma
NIOSH	National Institute for Occupational Safety and Health
NTP	National Toxicology Program
O ⁶ -HEG	O ⁶ -hydroxyethylguanine
OBS	observed number
OR	odds ratios
PBPK	physiologically based pharmacokinetic
POD	point of departure
RR	relative rate, i.e., rate ratio
SCE	sister chromatid exchanges
SE	standard error
SEER	Surveillance, Epidemiology, and End Results
SIR	standardized incidence ratio
SMR	standard mortality ratios
TWA	time-weighted average
UCC	Union Carbide Corporation
UCL	upper confidence limit
WHO	World Health Organization

APPENDIX A. CRITICAL REVIEW OF EPIDEMIOLOGIC EVIDENCE

3 [EDITORIAL NOTE: Please note that in this assessment document the responses to the 2007 external peer review and public comments can be found in Appendix H.]

5

1

2

6 A.1. BACKGROUND

7 On the basis of studies indicating that EtO was a strong mutagen and that exposure to 8 EtO produced increased chromosomal aberrations in human lymphocytes (Ehrenberg and 9 Gustafsson, 1970; Ehrenberg and Hallstrom, 1967; Rapoport, 1948), Hogstedt and colleagues 10 studied three small, independent cohorts of workers from Sweden. Reports on two of these 11 cohorts (Hogstedt et al., 1984; Hogstedt et al., 1979b; Hogstedt et al., 1979a) were reviewed in 12 the earlier health assessment document (U.S. EPA, 1985). These two small cohorts plus a third 13 group of EtO-exposed workers from a third independent plant in Sweden were then combined 14 and studied as one cohort (Hogstedt, 1988; Hogstedt et al., 1986). A review of this reconstituted 15 cohort study and subsequent independent studies is presented in Section A.2.

Shortly after the third Hogstedt study was completed, another independent study of
EtO-exposed employees was completed (Gardner et al., 1989) on a cohort of workers from four
companies and eight hospitals in Great Britain, and it was followed by a third independent study
on a cohort of exposed workers in eight chemical plants from the Federal Republic of Germany
(Kiesselbach et al., 1990). A follow-up study of the Gardner et al. (1989) cohort was recently
conducted by Coggon et al. (2004).

22 Greenberg et al. (1990) was the first in a series of studies of workers exposed to EtO at 23 two chemical manufacturing facilities in the Kanawha Valley (South Charleston, WV). The 24 workers at these two facilities were studied later by Teta et al. (1993), Benson and Teta (1993), 25 Teta et al. (1999), and Swaen et al. (2009) and became the basis for several important 26 quantitative risk assessment analyses (Valdez-Flores et al., 2010; EOIC, 2001; Teta et al., 1999). 27 Another independent study of EtO-exposed workers in 14 sterilizing plants from across 28 the United States was completed by the National Institute for Occupational Safety and Health 29 (NIOSH) (Stayner et al., 1993; Steenland et al., 1991). The Stayner et al. (1993) paper presents 30 the exposure-response analysis performed by the NIOSH investigators. These same workers 31 were studied again from a different perspective by Wong and Trent (1993). The NIOSH 32 investigators recently completed a follow-up of the mortality study Steenland et al. (2004) and a 33 breast cancer incidence study based in the same cohort (Steenland et al., 2003). The results of 34 the Steenland et al. (2004) and Steenland et al. (2003) analyses are the basis for the quantitative

This document is a draft for review purposes only and does not constitute Agency policy.

assessment in this document, for reasons explained in the review and summary sections of this
 appendix.

Several additional studies of lesser importance have been done on EtO-exposed cohorts
of workers in Sweden (Hagmar et al., 1995; Hagmar et al., 1991), Italy (Bisanti et al., 1993),
Belgium (Swaen et al., 1996) and western New York State (Norman et al., 1995), and other parts
of the United States (Olsen et al., 1997). These studies are discussed in the following review, but
they provide limited information to the overall discussion of whether EtO induces cancer in
humans.
The more important studies, which are discussed in detail in the summary, are those at

9 The more important studies, which are discussed in detail in the summary, are those at 10 two facilities in the Kanawha Valley in West Virginia (Valdez-Flores et al., 2010; Swaen et al., 11 2009; Teta et al., 1999; Benson and Teta, 1993; Teta et al., 1993; Greenberg et al., 1990) and at 12 14 sterilizing plants around the country (Steenland et al., 2004; Steenland et al., 2003; Stayner et 13 al., 1993; Steenland et al., 1991). These studies have sufficient follow-up to analyze latent 14 effects, and the cohorts appear to be large enough to test for small differences. In addition, 15 exposure estimates were derived for both cohorts, and attempts were made to assess 16 dose-response relationships.

17

18 A.2. INDIVIDUAL STUDIES

19 A.2.1. Hogstedt (1988), Hogstedt et al. (1986)

20 Hogstedt et al. (1986) combined workers from several cohorts for a total of 733 workers, 21 including 378 workers from two separate and independent occupational cohort mortality studies 22 by Hogstedt et al. (1979b) and Hogstedt et al. (1979a) and 355 employees from a third EtO 23 production plant who had not been previously examined. The combined cohort was followed 24 until the end of 1982. The first cohort comprised employees from a small technical factory in 25 Sweden where hospital equipment was sterilized with EtO. The second was from a production 26 facility where EtO was produced by the chlorohydrin method from 1940 to 1963. The third was 27 from a production facility where EtO was made by the direct oxidation method from 1963 to 28 1982.

In the update of the 1986 occupational mortality report (Hogstedt, 1988), the cohort inexplicably was reduced to 709 employees (539 men; 170 women). Follow-up for mortality was extended to the end of 1985. The author reported that 33 deaths from cancer had occurred, whereas only 20 were expected in the combined cohort. The excesses that are significant are due mainly to an increased risk of stomach cancer at one plant and an excess of blood and lymphatic malignancies at all three. Seven deaths from leukemia occurred, whereas only 0.8 were expected (standard mortality ratio [SMR] = 9.2). Ten deaths due to stomach cancer occurred versus only

This document is a draft for review purposes only and does not constitute Agency policy.

1.8 expected (SMR = 5.46). The results tend to agree with those from clastogenic and short-term
 tests on EtO (Ehrenberg and Gustafsson, 1970). The authors believe that the large number of
 positive cytogenetic studies demonstrating increased numbers of chromosomal aberrations and

- 4 sister chromatid exchanges at low-level exposure to EtO indicate that the lymphatic and
- 5 hematopoietic systems are particularly sensitive to the genotoxic effects of EtO. They concluded
- 6 that the induction of malignancies even at low-level and intermittent exposures to EtO should be
- 7 "seriously considered by industry and regulating authorities."
- 8 The average air EtO concentrations in the three plants were as follows: In Plant 1 9 (Hogstedt et al., 1979a) in 1977, levels ranged from 2 to 70 ppm in the storage hall. The average 10 8-hour time-weighted average (TWA) concentration in the breathing zone of the employees was 11 calculated as 20 ppm \pm 10 ppm. Measured concentrations were 150 ppm on the floor outside of 12 the sterilized boxes and 1,500 ppm inside.

In Plant 2 (Hogstedt et al., 1979b), EtO was produced through the chlorohydrin process.
Between 1941 and 1947, levels probably averaged about 14 ppm, with occasional exposures up
to 715 ppm. Between 1948 and 1963, levels were in the range of 6 ppm to 28 ppm. After 1963,
when production of EtO came to an end, levels ranged from less than 1 ppm to as much as

17 6 ppm.

18 In Plant 3 (Hogstedt et al., 1986), the 355 employees were divided into subgroups.

19 Subgroup A had almost pure exposure to EtO. Subgroup B had principal exposure to EtO but

20 also exposure to propylene oxide, amines, sodium nitrate, formaldehyde, and 1,2-butene oxide.

21 Workers in the remaining subgroup C were maintenance and technical service personnel, who

had multiple exposures, including EtO. Concentration levels in Plant 3 are shown in Table A-1.

23 24 25

26 27

Table A-1. Estimated 8-hour time-weighted average ethylene oxideexposure, Plant 3

Group	1963–1976	1977–1982
A (<i>n</i> = 128)	5–8 ppm	1–2 ppm
B (<i>n</i> = 69)	3 ppm	1 ppm
C (<i>n</i> = 158)	1–3 ppm	0.4–1.6 ppm

28 29

Source: Hogstedt et al. (1986).

30 31

32

In the earlier studies (Hogstedt et al., 1979b) and (Hogstedt et al., 1979a) of two of the

33 plants that contributed workers to this cohort, the authors allude to the fact that there was

34 exposure to benzene, ethylene dichloride, ethylene chlorohydrin, ethylene, and small amounts of *This document is a draft for review purposes only and does not constitute Agency policy.*

1 bis-(2-chloroethyl) ether, as well as other chemicals in the respective plants. Although 2 170 women were present in the workforce, no gender differences in risk were analyzed 3 separately by the investigators. Of 16 patients with tumors in the two exposed cohorts, there 4 were three cases of leukemia (0.2 expected), six cases of alimentary tract cancer, and four cases 5 of urogenital cancer. Of the 11 cancer cases in the full-time exposed cohort, 5.9 were expected 6 (p < 0.05). This study was criticized by Divine and Amanollahi (1986) for several reasons. 7 First, they believed that the study's strongest evidence in support of a carcinogenic claim for EtO 8 was only a "single case of leukemia" in subgroup C of Plant 3, where the workers had multiple 9 chemical exposures; however, there were no cases in subgroups A or B of Plant 3. Hogstedt et 10 al. (1986) countered that the expectation of leukemia in these two subgroups were 0.04 and 0.02, 11 respectively, and that the appearance of a case could only happen if EtO had "outstanding 12 carcinogenic properties at low levels." Divine and Amanollahi also pointed out that a study 13 (Morgan et al., 1981) of a cohort similar to that of Plant 3 found no leukemia cases or evidence 14 of excessive mortality. Hogstedt et al. (1986) replied that Morgan et al. (1981) stated in their 15 paper that the statistical power of their study to detect an increased risk of leukemia was not 16 strong.

17 Divine and Amanollahi (1986) also stated that the exposures to EtO were higher in 18 Plants 1 and 2 than in Plant 3; therefore, combinations would "normally preclude comparisons 19 between the plants for similar causes of adverse health." This potential problem could be 20 resolved by structuring exposure gradients to analyze risk. Furthermore, they noted Plant 1 was 21 a nonproduction facility involved in sterilization of equipment. Plant 2 used the chlorohydrin 22 process for making EtO, and Plant 3 used the direct oxygenation process. Although these 23 conditions are obviously different, they "are grouped together as analogous." This criticism 24 would, in most instances, be valid only because the methods for producing EtO differ and there 25 were differing exposures to multiple chemicals.

26 However, these concerns are not supported by the evidence. In all three plants the 27 leukemia risk was elevated, even if only slightly in Plant 3. This suggests that there may have 28 been a common exposure, possibly to EtO, endemic to all three plants that was responsible for 29 the measured excesses. Noteworthy is the elevated risk of leukemia seen in Plant 1 (3 observed 30 vs. 0.14 expected), where the exposures were almost exclusively to EtO in the sterilization of 31 equipment. The argument that Plant 1 leukemias form a "chance cluster," as Shore et al. (1993) 32 claim, and as such should be excluded from any analysis does not preclude the possibility that 33 these cases are in reality the result of exposure to EtO. Hogstedt (1988) argues that earlier 34 remarks by Ehrenberg and Gustafsson (1970) that EtO "constituted a potential cancer hazard" on 35 the basis of a considerable amount of evidence other than epidemiologic should have served as a

This document is a draft for review purposes only and does not constitute Agency policy.

warning that the increased risk seen in Plant 1 was not necessarily a "chance cluster," and
because the chlorohydrin process was not in use in Plant 1, it cannot be due to exposure to a
chemical in the chlorohydrin process.

4

5 A.2.2. Gardner et al. (1989)

6 Gardner et al. (1989) completed a cohort study of 2,876 men and women who had 7 potential exposure to EtO. The cohort was identified from employment records at four 8 companies that had produced or used EtO since the 1950s and from eight hospitals that have had 9 EtO clinical sterilizing units since the 1960s, and it was followed to December 31, 1987. All but 10 1 of the 1,012 women and 394 of the men in the cohort worked at one of the hospitals. The 11 remaining woman and 1,470 men made up the portion of the cohort from the four companies. 12 By the end of the follow-up, 226 members (8% of the total cohort) had died versus 13 258.8 expected. Eighty-five cancer deaths were observed versus 76.64 expected. 14 No clear excess risk of leukemia (3 observed vs. 2.09 expected), stomach cancer 15 (5 observed vs. 5.95 expected), or breast cancer (4 observed vs. 5.91 expected) was present as of

16 the cutoff date. "Slight excesses" of deaths due to esophageal cancer (5 observed vs.

17 2.2 expected), lung cancer (29 observed vs. 24.55 expected), bladder cancer (4 observed vs.

18 2.04 expected), and non-Hodgkin lymphoma (NHL) (4 observed vs. 1.63 expected) were noted,

19 although an adjustment made to reflect local "variations in mortality" reduced the overall cancer

20 excess from 8 to only 3. According to the authors' published tabulations, all three leukemias

21 identified in this study fell into the longest latent category (20 years or longer), where only

0.35 were expected. All three were in the chemical plants. This finding initially would seem to
 be consistent with experimental animal evidence demonstrating excess risks of hematopoietic

cancer in animals exposed to EtO. But the authors note that since other known leukemogens

25 were present in the workplace, the excess could have been due to a confounding effect.

26 The hospitals began using EtO during or after 1962, whereas all of the chemical 27 companies had handled EtO from or before 1960. In the hospitals there was occasional exposure 28 to formaldehyde and carbon tetrachloride but few other confounding agents. On the other hand, 29 the chemical workers were exposed to a wide range of compounds including chlorohydrin, 30 propylene oxide, styrene, and benzene. The earliest industrial hygiene surveys in 1977 indicated 31 that the TWA average exposures were less than 5 ppm in almost all jobs and less than 1 ppm in 32 many. No industrial hygiene data were available for any of the facilities prior to 1977, although 33 it is stated that peaks of exposure up to several hundred ppm occurred as a result of operating 34 difficulties in the chemical plants and during loading and unloading of sterilizers in the hospitals. 35 An odor threshold of 700 ppm was reported by both manufacturers and hospitals, according to

This document is a draft for review purposes only and does not constitute Agency policy.

1 the authors. The authors assumed that past exposures were somewhat higher without knowing

2 precisely what they were. An attempt was made to classify exposures into a finite number of

3 subjectively derived categories (definite, possible, continual, intermittent, and unknown). This

4 exercise produced no discernable trends in risk of exposure to EtO. However, the exposure

5 status classification scheme was so vague as to be useless for determining risk by gradient of

6 exposure to EtO.

7 It is of interest that all three of the leukemia deaths entailed exposure to EtO, with very 8 little or no exposure to benzene, according to the authors. The findings are not inconsistent with 9 those of Hogstedt (1988) and Hogstedt et al. (1986). The possibility of a confounding effect 10 other than benzene in these chemical workers cannot entirely be ruled out. Other cancers were 11 slightly in excess, but overall there was little increased mortality from cancer in this cohort. It is 12 possible that if very low levels of exposure to EtO had prevailed throughout the history of these 13 hospitals and plants, the periods of observation necessary to observe an effect may not have been 14 long enough.

15 16 A follow-up study of this cohort conducted by Coggon et al. (2004) is discussed below.

17 A.2.3. Kiesselbach et al. (1990)

18 Kiesselbach et al. (1990) carried out an occupational cohort mortality study of 2,658 men 19 from eight chemical plants in the Federal Republic of Germany (FRG) that were involved in the 20 production of EtO. The method of production is not stated. At least some of the plants that were 21 part of an earlier study by Thiess et al. (1981) were included. Each subject had to have been 22 exposed to EtO for at least 1 year sometime between 1928 and 1981 before person-years at risk 23 could start to accumulate. Most exposures occurred after 1950. By December 31, 1982, the 24 closing date of the study, 268 men had died (about 10% of the total cohort), 68 from malignant 25 neoplasms. The overall SMR for all causes was 0.87, and for total cancer the SMR was 0.97, 26 based on FRG rates. The authors reported that this deficit in total mortality indicates a 27 healthy-worker effect.

The only remarkable findings here are slightly increased risks of death from stomach cancer (14 observed vs. 10.15 expected, SMR = 1.4), cancer of the esophagus (3 observed vs. 1.5 expected, SMR = 2), and cancer of the lung (23 observed vs. 19.86 expected, SMR = 1.2). Although the authors claimed that they looked at latency, only stomach cancer and total mortality has a latency analysis included. This was accomplished by not counting the first 10 years of follow-up in the parameter "years since first exposure." This study is limited by the lack of further latency analyses at other cancer sites. The risk of stomach cancer shows only a

slight nonsignificant trend upward with increasing latency. Only two leukemias were recorded
 versus 2.35 expected.

3 This is a largely unremarkable study, with few findings of any significance. No actual 4 exposure estimates are available. The categories of exposure that the authors constructed are 5 "weak," "medium," and "strong." It is not known whether any of these categories is based on 6 actual measurements. No explanation of how they were derived is provided except that the 7 authors claim that the information is available on 67.2% of the members of the cohort. If the 8 information was based on job categories, it should be kept in mind that exposures in jobs that 9 were classified the same from one plant to the next may have produced entirely different 10 exposures to EtO. The tabular data regarding these exposure categories shows that only 2.4% of 11 all members of the cohort were considered "strongly" exposed to EtO. Although 71.6% were 12 classified as "weak," the remaining 26% were considered as having "medium" exposure to EtO. 13 This is largely a study in progress, and further follow-up will be needed before any 14 definite trends or conclusions can be drawn. The authors reported that only a median 15.5 years 15 of follow-up had passed by the end of the cutoff date, whereas the median length of exposure 16 was 9.6 years. Before any conclusions can be made from this study several additional years of

17 follow-up would be needed with better characterization of exposure.

18

19 A.2.4. Greenberg et al. (1990)

20 Greenberg et al. (1990) retrospectively studied the mortality experience of 2,174 men 21 who were assigned to operations that used or produced EtO in either of two Union Carbide 22 Corporation (UCC) chemical plants in West Virginia. In 1970 and 1971, EtO production at the 23 two plants was phased out, but EtO was still used in the plants for the production of other 24 chemicals. SMRs were calculated in comparison with the general U.S. population and the 25 regional population. Results based on regional population death rates were found to be similar to 26 those based on the U.S. general population. Follow-up began either on January 1, 1940, if 27 exposure to EtO began sooner, or on the date when exposure began, if it occurred after January 28 1, 1940. Follow-up ended on December 31, 1978. Note that this cohort is thus a mixture of a 29 prevalent cohort and an incident cohort, and the prevalent part of the cohort may be especially 30 vulnerable to bias from the healthy worker survivor effect. The healthy worker survivor effect 31 might have occurred if workers who were employed before 1940 and who were of greater 32 susceptibility preferentially developed a disease of interest prior to 1940 and were no longer 33 employed when cohort enumeration began. It appears that the chemical facilities began 34 operating in 1925, so the maximum latency for the development of a disease of interest between 35 the time of first exposure and cohort enumeration was 15 years; however, these early (pre-1940)

This document is a draft for review purposes only and does not constitute Agency policy.

7/2013

A-7

DRAFT-DO NOT CITE OR QUOTE

1 hires would also have had the highest EtO exposures (Swaen et al., 2009) and may thus have had 2 short latency periods as well. The healthy worker survivor effect bias can also dampen 3 exposure-response relationships (Applebaum et al., 2007). According to Greenberg et al. (1990), 4 slightly over 10% of the cohort was comprised of prevalent hires (223 of 2,174). This is not a 5 large proportion, but, as noted above, these early hires would also have had the highest exposures 6 (Swaen et al., 2009). It is unknown how many workers employed before 1940 were no longer 7 employed when cohort enumeration began. Two years of pre-1940 exposure were reportedly 8 taken into account when categorizing the cohort into groups with ≥ 2 years exposure in the 9 different potential exposure categories (see below); however, it is unclear how pre-1940 years of

- exposure were treated in other analyses, e.g., the analyses based on duration of exposure
 (although presumably they were taken into account for those analyses as well).
- 12Total deaths equaled 297 versus 375.9 expected (SMR = 0.79, p < 0.05). Only 60 total13cancer deaths were observed versus 74.6 expected (SMR = 0.81). These deficits in mortality
- 14 suggest a manifestation of the healthy-worker effect. In spite of this, nonsignificant elevated
- 15 risks of cancer of the liver, unspecified and primary, (3 observed vs. 1.8 expected, SMR = 1.7),
- pancreas (7 observed vs. 4.1 expected, SMR = 1.7), and leukemia and aleukemia (7 observed vs.
 3.0 expected, SMR = 2.3) were noted.
- 18 The authors also reported that in 1976, 3 years prior to the end of follow-up, an industrial 19 hygiene survey found that 8-hour TWA EtO levels averaged less than 1 ppm, although levels as 20 high as 66 ppm 8-hour TWA had been observed. In maintenance workers, levels averaged 21 between 1 and 5 ppm 8-hour TWA. Because of the lack of information about exposures before 22 1976 (e.g., when EtO was in production), the authors developed a qualitative exposure 23 categorization scheme with three categories of exposure (low, intermediate, and high) on the 24 basis of the potential for exposure in each department. The number of workers in each exposure 25 category was not reported; however, it appears from Teta et al. (1993) (see below) that only 26 425 workers were assigned to EtO production departments, which were apparently the only 27 departments with high potential exposure. No significant findings of a dose-response 28 relationship were discernable.
- Except for two cases of leukemia, all the victims of pancreatic cancer and leukemia began their work—and hence exposure to EtO—many years prior to their deaths. The leukemia and pancreatic cancer deaths were concentrated in the chlorohydrin production department. Four of the seven leukemia victims had been assigned to the chlorohydrin department; only 0.8 deaths (SMR = 5.0) would have been expected in this department of only 278 workers. Six pancreatic cancer victims were assigned to the chlorohydrin department, whereas only 0.98 deaths would have been expected to occur (SMR = 6.1). All seven leukemia victims, including the four in the

This document is a draft for review purposes only and does not constitute Agency policy.

1 chlorohydrin department, were listed by the authors as having only low potential exposure to

2 EtO. In contrast, among workers ever assigned to a department in the high exposure category,

3 no leukemia deaths and only one pancreatic cancer death occurred.

The authors hypothesized that the excesses in leukemia and pancreatic cancers were associated with production of ethylene chlorohydrin or propylene chlorohydrin or both in the chlorohydrin department. Some later follow-up studies (described below) were done of the cohort excluding the chlorohydrin production workers (Teta et al., 1993) and of the chlorohydrin production workers alone (Benson and Teta, 1993) to further examine this hypothesis.

9

10 A.2.5. Steenland et al. (1991)

11 In an industry-wide analysis by NIOSH, Steenland et al. (1991) studied EtO exposure in 12 18,254 workers (55% female) identified from personnel files of 14 plants that had used EtO for 13 sterilization of medical equipment, treating spices, or testing sterilizers. Each of the 14 plants 14 (from 75 facilities surveyed) that were considered eligible for inclusion in the study had at least 15 400 person-years at risk prior to 1978. Within each eligible facility, at least 3 months of 16 exposure to EtO qualified an employee for inclusion in the cohort. Employees, including all 17 salaried workers, who were "judged never to have been exposed to EtO" on the basis of 18 industrial hygiene surveys were excluded. Follow-up ended December 31, 1987. The cohort 19 averaged 16 years of latency. Approximately 86% achieved the 9-year latent point, but only 8% 20 reached the 20-year latency category. The average year of first exposure was 1970, and the 21 average length of exposure was 4.9 years. The workers' average age at entry was not provided, 22 nor was an age breakdown. Nearly 55% of the cohort were women.

23 Some 1,137 workers (6.4%) were found to be deceased at the end of the study period, 24 upon which the underlying cause of death was determined for all but 450. If a member was 25 determined to be alive as of January 1, 1979, but not after and no death record was found in the 26 National Death Index through December 31, 1987, then that member was assumed to be alive for 27 the purposes of the life-table analysis and person-years were accumulated until the cutoff date. 28 Altogether, 4.5% of the cohort fell into this category. This procedure would tend to increase the 29 expected deaths and, as a consequence, potentially bias the risk ratio downward if a sizable 30 number of deaths to such persons during this period remained undiscovered to the researchers.

In the total cohort no significantly increased risks of death from any site-specific cancer were noted. Analyses by job categories and by duration of exposure indicated no excess risks of cancer when compared with the rate in the general population. However, there was an increased trend in the risk of hematopoietic cancers, all sites, with increasing lengths of time since first exposure. After 20 years latency, the SMR was 1.76, based on 13 cases. The test for trend was

This document is a draft for review purposes only and does not constitute Agency policy.

significant at p = 0.03. For men (45%), without regard for latency, the SMR for hematopoietic cancer was a significant 1.55 (p < 0.05), based on 27 cases. Among men with long latency (greater than 20 years) and the longest duration of exposure (greater than 7 years) the SMR for

4 hematopoietic cancers was 2.63, based on 7 deaths (p < 0.05).

5 The authors pointed out that the SMR for leukemia among men was 3.45, based on 5 deaths (p < 0.05), for deaths in the latter period of 1985 to 1987. For kidney cancer, the SMR 6 7 was 3.27, based on six deaths (p < 0.05), after 20 years latency. The authors also reported on a 8 significant excess risk (p < 0.05) of lymphosarcoma-reticulosarcoma in men (SMR = 2.6), based 9 on seven deaths. Women had a lower nonsignificant rate. The risk of breast cancer was also 10 nonsignificant (SMR = 0.85 based on 42 cases). The authors hypothesized that men were more 11 heavily exposed to EtO than were women because "men have historically predominated in jobs with higher levels of exposure." However, the lack of an association between EtO exposure and 12 13 lymphohematopoietic cancer in females was also observed in the exposure-response analyses of 14 this cohort, including in the highest exposure category, performed by Stayner et al. (1993) and 15 discussed below.

Industrial hygiene surveys indicated that sterilizer operators were exposed to an average personal 8-hour TWA EtO level of 4.3 ppm, whereas all other workers averaged only 2 ppm, based on 8-hour samples during the period 1976 to 1985. These latter employees primarily worked in production and maintenance, in the warehouse, and in the laboratory. This was during a time when engineering controls were being installed to reduce worker's exposure to EtO; earlier exposures may have been somewhat higher. The authors reported that no evidence of confounding exposure to other occupational carcinogens was documented.
The authors concluded that there was a trend toward an increased risk of death from

The authors concluded that there was a trend toward an increased risk of death from hematopoietic cancer with increasing lengths of time since the first exposure to EtO. This trend might have been enhanced if the authors had added additional potential deaths identified from the 820 (4.5%) "untraceable" members of the cohort from 1979 to 1987. The authors felt that their results were not conclusive for the relatively rare cancers of a priori interest, based on the limited number of cases and the short follow-up. The cohort averaged 16 years of latency and 86% had at least 9 years but only 8% reached the 20-year latent category.

Exposure-response analyses were conducted by Stayner et al. (1993) and are discussed below. More recently, a follow-up mortality study (Steenland et al., 2004) and a breast cancer incidence study (Steenland et al., 2003) of this cohort were conducted; these are also discussed below.

34

1 A.2.6. Teta et al. (1993)

2 In a follow-up analysis of the cohort of 2,174 male UCC workers studied by Greenberg et 3 al. (1990), Teta and her colleagues excluded the 278 workers in the chlorohydrin unit in which 4 Greenberg and colleagues found a high risk of leukemia and pancreatic cancer, thereby removing 5 the potential confounding of the chlorohydrin production process. The 1,896 men in the 6 remaining cohort were followed for an additional 10 years, through all of 1988. (Among the 7 278 men who were excluded because they had worked in the chlorohydrin unit, 49 had also been 8 assigned to EtO production departments, which were considered high potential ETO exposure 9 departments, according to Greenberg et al. (1990). Data were reportedly examined with and 10 without the inclusion of these 49 workers with overlapping assignments; however, the results of 11 these analyses are not fully presented). According to Benson and Teta (1993), 112 of the 12 278 excluded workers were employed before 1940, reducing the prevalent part of the remaining 13 cohort to 111 of 1,896 workers, or just under 6%. (It is unclear how pre-1940 years of exposure 14 were treated in the analyses based on duration of exposure, although presumably they were taken 15 into account.) The update did not include additional work histories for the study subjects. Teta 16 et al. (1993) note that duration of assignment to an EtO production unit was not affected by the 17 update because EtO was no longer in production at the two plants; however, assignment to 18 EtO-using departments might have been affected, and according to Greenberg et al. (1990), some 19 of these departments had medium EtO exposure potential.

Teta et al. (1993) reported that the average duration of exposure was more than 5 years and the average follow-up was 27 years. Furthermore, at least 10 years had elapsed since first exposure for all the workers. The reanalysis demonstrated no increased risk of overall cancer, or of leukemia, NHL, or cancers of the brain, pancreas, or stomach. The SMR for total deaths, based on comparison with mortality from the general population, was 0.79 (p < 0.01;

25 observed = 431). The SMR for total cancer was 0.86 (observed = 110). No site-specific cancers

26 were significantly elevated. Although the authors concluded that this study did not indicate any

27 significant trends of increasing site-specific cancer risk with increasing duration of potential

28 exposure to EtO, there appeared to be a nonsignificant increasing trend for leukemia and

aleukemia (p = 0.28, based on five cases) as well as stomach cancer (p = 0.13; eight cases).

According to Greenberg et al. (1990), 8-hour TWA EtO levels averaged less than 1 ppm, based on the 1976 monitoring (after EtO production at the plants had ceased), although levels as high as 66 ppm 8-hour TWA were reported. Teta et al. (1993) estimated that in the 1960s, exposure in the units producing EtO by direct oxidation ranged from 3 to 20 ppm 8-hour TWA, with peaks of several hundred ppm. These estimates were based on an industrial hygiene survey conducted at another UCC facility in Texas that used the same direct oxidation process as the

1 two plants in West Virginia from which the UCC EtO cohort was taken. Ethylene oxide was

- 2 also produced via the chlorohydrin process in a closed building during the years 1925 to 1957.
- 3 Levels of exposure to EtO would have been higher than in the direct oxidation production
- 4 process because of start-up difficulties, fewer engineering controls, less complex equipment, and
- 5 the enclosed building. Employee nausea, dizziness, and vomiting were documented in the
- 6 medical department in 1949. These acute effects occur in humans at exposures of several
- 7 hundred ppm, according to the authors.

8 During the time periods under investigation, the estimated exposure ranges for 9 departments using or producing EtO were >14 ppm from 1925 to 1939; 14 ppm from 1940 to 10 1956; 5–10 ppm from 1957 to 1973; and <1 ppm from 1974 to 1988, with frequent peaks of 11 several hundred ppm in the earliest period and some peaks of similar intensity in the 1940s to 12 mid-1950s. In the absence of monitoring data prior to 1976, these estimates cannot be 13 confirmed. Furthermore, workers were eliminated from the analysis if they had worked in the 14 chlorohydrin unit because of the assumption that the increased risks of leukemia and pancreatic 15 cancer were possibly due to exposure to something in the chlorohydrin process, as conjectured 16 by Greenberg et al. (1990). However, even when the potential confounding influence of the 17 chlorohydrin process is removed, there remains the suggestion of a trend of an increasing risk of 18 leukemia and aleukemia with increasing duration of exposure to EtO in the remaining cohort 19 members (p = 0.28, based on 5 cases).

The authors indicated that their findings do not confirm the findings in experimental animal studies and are not consistent with the earliest results reported among EtO workers. They also noted that they did not observe any significant trend of increasing risks of stomach cancer (n = 8), leukemia (n = 5) or cancers of the pancreas or brain and nervous system with increasing duration of exposure. No lagged exposure or latency analyses were conducted in this study.

- In a later analysis, Teta et al. (1999) fitted Poisson regression dose-response models to the UCC data (Teta et al., 1993) and to the NIOSH data (Steenland et al., 1991). They reported that latency and lagging of dose did not appreciably affect the fitted models. Because Teta et al. (1999) did not present risk ratios for the categories used to model the dose-response relationships, the only comparison that could be made between the UCC and NIOSH data is based on the fitted models. These models are almost identical for leukemia, but, for the lymphoid category, the risk according to the fitted model for the UCC data decreased as a
- 32 function of dose, whereas the risk for the modeled NIOSH data increased as a function of dose.
- 33 However, the models are based on small numbers of cases (16 [5 UCC, 11 NIOSH] for
- 34 leukemia; 22 [3 UCC, 19 NIOSH] for lymphoid cancers), and no statistics are provided to assess
- 35 model goodness of fit or to compare across models. This analysis is superseded by the more

- recent analysis by the same authors (Valdez-Flores et al., 2010) of the results of more recent
 follow-up studies of these two cohorts [see discussion of the Swaen et al. (2009) study below].
- 3

4 A.2.7. Benson and Teta (1993)

5 In a companion mortality study (Benson and Teta, 1993), the remaining 278 employees 6 who were identified by Greenberg et al. (1990) as having worked at some time in the 7 chlorohydrin unit and who were not included in the cohort of Teta et al. (1993) were followed to 8 the end of 1988. Note that the prevalent part (i.e., those workers first employed before the cohort 9 enumeration date of 1 January 1940) of this reduced cohort is 112 of the 278 workers, or 40%, 10 and, therefore, the potential for bias from a healthy worker survivor effect, as discussed for the 11 Greenberg et al. (1990) study above (see Section A.2.4), may be more pronounced in this study 12 of the chlorohydrin unit workers. It is unknown how many chlorohydrin unit workers employed 13 before 1940 were no longer employed when cohort enumeration began.

Altogether, 40 cancer deaths occurred versus 30.8 expected (SMR = 1.3) in the subcohort of chlorohydrin workers. In Greenberg et al. (1990), significant elevated risks of pancreatic cancer and leukemia and aleukemia occurred in only those workers assigned to the chlorohydrin

17 process. Benson and Teta (1993) noted a significantly increased risk of pancreatic cancer

18 (SMR = 4.9, eight observed deaths, p < 0.05) in the same group and a significantly increased risk

19 of cancer in the enlarged category of lymphohematopoietic cancer (SMR = 2.9, eight observed

20 deaths, p < 0.05), which included leukemia and aleukemia, after an additional 10 years of

21 follow-up.

22 The authors concluded that these cancers were likely work-related and some exposure in 23 the chlorohydrin unit, possibly to the chemical ethylene dichloride, was probably the cause. 24 They pointed out that Greenberg et al. (1990) found that the chlorohydrin unit was likely to be a 25 low-EtO exposure area in the West Virginia plants. The other possibility was bis-chloroethyl 26 ether, which the authors pointed out is rated by the International Agency for Research on Cancer 27 (IARC) as a group 3 ("not classifiable as to its carcinogenicity to humans") chemical. 28 Circumstantial evidence seems to support the authors' contention that ethylene dichloride is the 29 cause: IARC designated ethylene dichloride as a group 2B chemical ("possibly carcinogenic to 30

humans"), exposure was likely heavier throughout the history of the facility, and plant medical
 records documented many accidental overexposures occurring to the pancreatic cancer victims

32 prior to diagnosis. However, this conclusion is disputed by Olsen et al. (1997) whose analysis is

- 33 discussed later.
- 34
- 35

1 A.2.8. Stayner et al. (1993)

2 Stayner et al. (1993) provide an exposure-response analysis for the cohort study of EtO 3 workers described by Steenland et al. (1991). Nothing was modified concerning the follow-up, 4 cohort size, vital status, or cutoff date of the study. The exposure assessment and verification 5 procedures were presented in Greife et al. (1988) and Hornung et al. (1994). In brief, a 6 regression model was developed, allowing the estimation of exposure levels for time periods, 7 facilities, and operations for which industrial hygiene data were unavailable. The data for the 8 model consisted of 2,700 individual time-weighted exposure values for workers' personal 9 breathing zones, acquired from 18 facilities between 1976 and 1985. These data were divided 10 into two sets, one for developing the regression model and the second (from six randomly 11 selected plants) for testing it. Job titles were grouped into eight categories with similar potential 12 for EtO exposure, and arithmetic mean exposure levels by facility, year, and exposure category 13 were calculated from the data used for model development. The arithmetic means were 14 logarithmically transformed, and weighted linear regression models were fitted. Seven out of 15 23 independent variables tested for inclusion in the model were found to be significant predictors 16 $(p \le 0.10)$ of EtO exposure and were included in the final model. This model predicted 85% of 17 the variation in average EtO exposure levels in the test data. The model was also evaluated 18 against estimates for the test data derived by a panel of 11 industrial hygienists familiar with EtO 19 levels in the sterilization industry and provided with the values for the independent variables 20 used in the model corresponding to the arithmetic means from the test data. The overall mean of 21 the modeled estimates was not highly biased nor biased in one direction when compared to the 22 overall mean exposure estimates of the individual industrial hygiene experts. Using the test data 23 as the standard, the model estimates showed less bias (average difference) than 9 of the 24 11 industrial hygienists and more precision (standard deviation of the differences) than all 11. 25 Similarly, the model outperformed the panel in terms of both bias and precision when the panel 26 results were averaged.

27 Average exposure levels, including early historical exposure levels, for the exposure 28 categories in the study plants were estimated using this industrial hygiene-based regression 29 model. Then, the cumulative exposure for each worker was estimated by calculating the product 30 of the average exposure in each job the worker held by the time spent in that job and then 31 summing these over all the jobs held by that worker. This value became the cumulative 32 exposure index for that employee and reflected the working lifetime total exposure to EtO. 33 Stayner et al. (1993) generated SMRs based on standard life-table analysis. The three 34 categories of cumulative exposure were less than 1,200 ppm-days, 1,200 to 8,500 ppm-days, and 35 greater than 8,500 ppm-days. Additionally, the Cox proportional hazards model was used to

This document is a draft for review purposes only and does not constitute Agency policy.

7/2013

1 model the exposure-response relationship between EtO and various cancer types, using

2 cumulative exposure as a continuous variable.

3 Stayner and colleagues noted a marginally significant increase in the risk of 4 hematopoietic cancers, with an increase in cumulative exposure by both the life-table analysis as 5 well as the Cox model, although the magnitude of the increased risk was not substantial. At the 6 highest level—greater than 8,500 ppm-days of exposure—the SMR was a nonsignificant 1.24, 7 based on 13 cases. However, 12 of these cases were in males, whereas only 6.12 were expected. 8 Thus, in this highest exposure category, a statistically significant (p < 0.05) SMR of 1.96 in 9 males was produced. This dichotomy produced a deficit in females (1 observed vs. 4.5 expected, 10 p < 0.05).

11 The Cox analysis produced a significantly positive trend with respect to lymphoid cell 12 tumors (combination of lymphocytic leukemia and NHL) when EtO exposures were lagged 13 5 years. The authors stated that these data provide some support for the hypothesis that exposure 14 to EtO increases the risk of mortality from lymphatic and hematopoietic neoplasms. They 15 pointed out, however, that their data do not provide evidence for a positive association between 16 exposure to EtO and cancer of the stomach, brain, pancreas, or kidney or leukemia as a group. 17 Breast cancer was not analyzed in this report.

18 This cohort was not updated with vital status information on the "untraceables" (4.5%), 19 and cause of death information was not provided on deaths with unknown causes; thus, it lacks a 20 complete follow-up and, therefore, the risk estimates may be understated. Another potential 21 limiting factor is the information regarding industrial hygiene measurements of EtO that were 22 completed in the plants. According to the authors, the median length of exposure to EtO of the 23 cohort was 2.2 years and the median exposure was 3.2 ppm. It may be unreasonable to expect 24 any findings of increased significant risks because follow-up was too short to allow the 25 accumulation of mortality experience (average follow-up = 16 years; only 8% of cohort had 26 >20 years follow-up).

The authors also remind us that there is a lack of evidence for an exposure-response relationship among females or for a sex-specific carcinogenic effect of EtO in either laboratory animals or humans. In fact, the mortality rate from hematopoietic cancers among the women in this cohort was lower than that of the general U.S. population. Therefore the contrast seen here is unusual.

The positive findings are somewhat affected by the presence in the cohort of one heavily exposed case (although the authors saw no reason to exclude it from the analysis), and there is a lack of definite evidence for an effect on leukemia as a group. Despite these limitations, the

This document is a draft for review purposes only and does not constitute Agency policy.

authors believe that their data provide support for the hypothesis that exposure to EtO increases
 the risk of mortality from hematopoietic neoplasms.

3

4 A.2.9. Wong and Trent (1993)

5 This study is a reanalysis of the same cohort that was studied by Stayner et al. (1993) and 6 Steenland et al. (1991), with some differences. The cohort was incremented without explanation 7 by 474 to a total of 18,728 employees and followed one more year, to the end of December 1988. 8 This change in the cohort resulted in the addition of 176 observed deaths and 392.2 expected 9 deaths. The finding of more than twice as many expected deaths as observed deaths is baffling. 10 A reduced total mortality of this magnitude suggests that many deaths may have been 11 overlooked. This resulted in a further reduction of the overall SMR to a significant deficit of 12 0.73. Sixty additional cancer deaths were added versus 65.9 expected, for an SMR = 0.9, based 13 on 403 total cancer deaths observed versus 446.2 expected.

14 The authors reported no significant increase in mortality at the cancer sites found to be of 15 most interest in previous studies, that is, stomach, leukemia, pancreas, brain, and breast. They 16 also reported the lack of a dose-response relationship and correlation with duration of 17 employment or latency. They did report a statistically significant increased risk of NHL among 18 men (SMR = 2.47; observed = 16, expected = 6.47; p < 0.05) that was not dose-related and a 19 nonsignificant deficit of NHL among women (SMR = 0.32; observed = 2, expected = 6.27). The 20 authors concluded that the increase in men was not related to exposure to EtO but could in fact 21 have been related to the presence of acquired immune deficiency syndrome (AIDS) in the male 22 population. When this explanation was offered in a letter to the editor (Wong, 1991) regarding 23 the excess of NHL reported in Steenland et al. (1991), it was dismissed by Steenland and Stayner 24 (1993) as pure speculation. Steenland and Stayner (1993) responded that most of the NHL 25 deaths occurred prior to the AIDS epidemic, which began in the early 1980s. They also 26 indicated that there was no reason to suspect that these working populations would be at a higher 27 risk for AIDS than was the general population, the comparison group. 28 Wong and Trent (1993) also reported a slightly increased risk of cancer in other 29 lymphatic tissue (14 observed vs. 11.39 expected). In men, the risk was nonsignificantly higher 30 (11 observed vs. 5.78 expected). Forty-three lymphopoietic cancers were observed versus 31 42 expected. In men, the risk was higher (32 observed vs. 22.22 expected). Fourteen leukemia 32 deaths were noted versus 16.2 expected. The authors did not derive individual exposure 33 estimates for exposure-response analysis, such as in Stayner et al. (1993). Rather, they used

34 duration of employment as a surrogate for exposure.

1 This study has many of the same limitations as the Stayner et al. (1993) study. The 2 authors assumed that those individuals with an unknown vital status as of the cutoff date were 3 alive for the purposes of the analysis, and they were unable to obtain cause-of-death information 4 on 5% of the known deaths.

5 The differences between this cohort study and that of Stayner et al. (1993) are in the methods of analysis. Stayner et al. (1993) used the 9th revision of the International Classification 6 of Diseases (ICD) to develop their site-specific cancer categories for comparison with expected 7 8 cancer mortality, whereas Wong and Trent (1993) used the 8th revision. This could account for 9 some of the differences in the observed numbers of site-specific cancers, because minor 10 differences in the coding of underlying cause of death could lead to a shifting of some unique 11 causes from one site-specific category to another. Furthermore, Wong and Trent (1993) did not 12 analyze separately the category "lymphoid" neoplasms, which includes lymphocytic leukemia 13 and NHL, whereas Stayner et al. (1993) did. Stayner et al. (1993) further developed cumulative 14 exposure information using exposure estimates, whereas Wong and Trent (1993) used length of 15 employment as their surrogate for exposure but did not code detailed employment histories.

Because Wong and Trent (1993) made no effort to quantify the exposures, as was the case in Stayner et al. (1993), this study is less useful in determining a exposure-response relationship. Furthermore, the assumption that a member of the cohort should be considered alive if a death indication could not be found will potentially tend to bias risk ratios downward if, in fact, a large portion of this group is deceased. In this study all untraceable persons were considered alive at the end of the follow-up; therefore, the impact of the additional person-years of risk cannot be gauged.

23

24 A.2.10. Bisanti et al. (1993)

25 These authors reported on a cohort mortality study of 1,971 male chemical workers 26 licensed to handle EtO by the Italian government, whom they followed retrospectively from 27 1940 to 1984. Altogether, 76 deaths had occurred in this group by the end of the study period, 28 whereas 98.8 were expected. Of those, 43 were due to cancer versus 33 expected. The cause of 29 one death remained unknown, and 16 workers were lost to follow-up. A group of 30 637 individuals from this cohort was licensed to handle only EtO; the remaining 1,334 had 31 licenses valid for handling other toxic gases as well. Date of licensing for handling EtO became 32 the initiating point of exposure to EtO, although it is likely that some of these workers had been 33 exposed previously to EtO. The regional population of Lombardia was used as the reference 34 group from which comparison death rates were obtained.

This document is a draft for review purposes only and does not constitute Agency policy.

1 Although there were excess risks from almost all cancers, one of the greatest SMRs was 2 in the category known as "all hematopoietic cancers," where 6 observed deaths occurred when 3 only 2.4 were expected (SMR = 2.5). In the subgroup "lymphosarcoma, reticulosarcoma" there 4 were 4 observed deaths whereas only 0.6 were expected (SMR = 6.7, p < 0.05); the remaining 5 2 were leukemias. The authors note that five hematopoietic cancers occurred in the subgroup of 6 workers who were licensed to handle only EtO but no other chemicals versus only 7 0.7 hematopoietic cancers expected (SMR = 7.1, p < 0.05). These deaths occurred within 8 10 years from date of licensing (latent period), which is consistent with the shorter latent period 9 anticipated for this kind of cancer. According to the authors, all workers began their 10 employment in this industry when the levels of EtO were high, although no actual measurements 11 were available. The fact that this subgroup of workers was licensed only for handling EtO 12 reduces the likelihood of a confounding chemical influence.

The authors concluded that the excess risk of cancer of the lymphatic and hematopoietic tissues in these particular EtO cohort members support the suggested hypothesis of a higher risk of cancer found in earlier studies, but they added that the lack of exposure information on the other industrial chemicals in the group that had a license for handling other toxic chemicals made their findings inconclusive.

This study was of a healthy young cohort, and most person-years were contributed in the latter years of observation. Many years of follow-up may be necessary in order to fully verify any trend of excess risks for the site-specific cancers of interest and to measure latent effects. Furthermore, the unusual deficit of total deaths versus expected contrasted with an excess of cancer deaths versus expected raises a question about the potential for selection bias when the members of this cohort were chosen for inclusion. Also, one of the study's major limitations is the lack of exposure data.

25

26 **A.2.11. Hagmar et al. (1995) and Hagmar et al. (1991)**

27 Cancer incidence was studied in a cohort of 2,170 EtO-exposed workers from two plants 28 in Sweden that produced disposable medical equipment. To fit the definition for inclusion, the 29 subjects, 1,309 women and 861 men, had to have been employed for a minimum of 12 months 30 and some part of that employment had to have been during the period 1970–1985 in the case of 31 one plant and 1965–1985 in the case of the other. The risk ratios were not dichotomized by 32 gender. No records of anyone who left employment or died before January 1, 1972 in one plant 33 and January 1, 1975 in the other were included. Expected incidence rates were generated from 34 the Southern Swedish Regional Tumor Registries.

This document is a draft for review purposes only and does not constitute Agency policy.

1 Because of a short follow-up period and the relative young age of the cohort, little 2 morbidity had occurred by the end of the cutoff date of December 31, 1990. Altogether, 3 40 cancers occurred, compared with 46.3 expected. After 10 years latency, 22 cases of cancers 4 were diagnosed versus 22.6 expected. However, 6 lymphohematopoietic cancers were observed 5 versus 3.37 expected, and when latency is considered, this figure falls to 3 versus 1.51 expected. 6 The authors pointed out that for leukemia the standard incidence ratio (SIR) is a nonsignificant 7 7.14, based on 2 cases in 930 subjects having at least 0.14 ppm-years of cumulative exposure to 8 EtO and a minimum of 10 years latency. The authors believed that the results provided some 9 minor evidence to support an association between exposure to EtO and an increased risk of 10 leukemia. However, for breast cancer, no increase in the risk was apparent for the total cohort 11 (SIR = 0.46, OBS = 5). Even in the 10-years or more latency period, the risk was less than 12 expected (SIR = 0.36, OBS = 2).

13 The authors made a reasonably good attempt to determine exposure levels during the 14 periods of employment in both plants for six job categories. Sterilizers in the years 1970–1972 15 were exposed to an average 40 ppm in both plants. These levels gradually dropped to 0.75 ppm 16 by 1985–1986. Packers and developmental engineers were the next highest exposed employees, 17 with levels in 1970–1972 of 20 to 35 ppm and by 1985–1986 of less than 0.2 ppm. During the 18 period 1964–1966 in the older plant, EtO levels averaged 75 ppm in sterilizers and 50 ppm in 19 packers. Peak exposures were estimated to have ranged from 500 to 1,000 ppm during the 20 unloading of autoclaves up to 1973. The levels gradually dropped to less than 0.2 ppm in both 21 plants by 1985–1986 in all job categories (developmental engineers, laboratory technicians, 22 repair men, store workers, controllers, foremen, and others) except sterilizers.

These exposure estimates were verified by measurement of hydroxy ethyl adducts to N-terminal valine in hemoglobin in a sample of subjects from both plants. The adduct levels reflect the average exposure during the few months prior to the measurement of EtO. The results of this comparison were close except for sterilizers, whose air monitoring measurements were 2 to 3 times higher.

The authors pointed out two limitations in their study: a minority of subjects had a high exposure to EtO, and the follow-up (median 11.8 years) resulted in relatively few person-years at risk and was insufficient to assess the influence of a biologically relevant induction latency period. Although this study has good exposure information and the authors used this information to develop an exposure index per employee, they did not evaluate dose-response relationships that might have been present, nor did they follow the cohort long enough to evaluate morbidity. The strength of this study is the development of the cumulative exposure index as well as the

This document is a draft for review purposes only and does not constitute Agency policy.

- absence of any potential confounding produced by the chlorohydrin process, which was a
 problem in workers who produced and manufactured EtO in other similar studies.
- 3

4 A.2.12. Norman et al. (1995)

5 These authors conducted a mortality/incidence study in a cohort of 1,132 workers, mainly 6 women (82%), who were exposed to EtO at some time during the period July 1, 1974, through 7 September 30, 1980. Follow-up was until December 31, 1987. Ethylene oxide was used at the 8 study plant to sterilize medical equipment and supplies that were assembled and packaged there. 9 This plant was selected for the study because in an earlier small study at this plant (Stolley et al., 10 1984) there was an indication that in a sample of workers the average number of sister chromatid 11 exchanges was elevated over that of a control group selected from the nearby community. 12 Cancer morbidity was measured by comparing cancers occurring in this cohort with those 13 predicted from the National Cancer Institute's Surveillance, Epidemiology, and End Results 14 (SEER) Program for the period 1981–1985 and with average annual cancer incidence rates for 15 western New York for 1979–1984. Observed cancers were compared to expected cancers using 16 this method. 17 Only 28 cancer diagnoses were reported in the cohort; 12 were for breast cancers. Breast

cancer was the only cancer site in this study where the risk was significantly elevated, based on the SEER rates (SIR = 2.55, p < 0.05). No significant excesses were seen at other cancer sites of interest: leukemia (1 observed, 0.54 expected), brain (0 observed, 0.49 expected), pancreas (2 observed, 0.51 expected) and stomach (0 observed, 0.42 expected). The authors offered no

22 explanation except chance as to why the risk of breast cancer was elevated in these workers.

In 1980, three 2-hour samples from the plant provided 8-hour TWA exposures to
 sterilizer operators that ranged from 50 to 200 ppm. Corrective action reduced the levels to 5 to
 20 ppm.

This study has little power to detect any significant risk of cancer at other sites because morbidity was small, chiefly as a consequence of the short follow-up period. The mean number of years from the beginning of follow-up to the end of the study was 11.4 years. In fact, the authors stated that breast cancer was the only cancer site for which there was adequate power to detect an increased relative risk. Additional weaknesses in this study include no historic exposure information and too short a period of employment in some cases (<1 month) to result in breast cancer. The authors maintained that their study was inconclusive.

1 A.2.13. Swaen et al. (1996)

A significant cluster of 10 Hodgkin lymphoma cases in the active white male workforce of an unidentified large chemical manufacturing plant in Belgium led to a nested case-control study by Swaen et al. (1996) to determine which, if any, chemical agents within the plant may have led to the increase. By comparison with regional cancer incidence rates, the SIR for this disease was 4.97 (95% CI = 2.38–9.15) over a 23-year period, from 1966 to 1992. This suggested that an occupational exposure may have produced the significant excess risk of Hodgkin lymphoma seen in these workers.

9 The investigators randomly selected 200 individuals from a computerized sampling frame 10 of all men ever employed at the facility. From this list of 200, workers who were actively 11 employed at the time of diagnosis of each case were chosen as controls. No age matching was 12 done because the authors stated that age-specific incidence rates for Hodgkin lymphoma in the 13 United States were relatively flat for men between ages 18 and 65. The investigators felt that a 14 control could serve for more than one case.

15 Verification of the 10 cases revealed that 1 case was, in reality, a large-cell anaplastic 16 lymphoma. Two others could not be confirmed as Hodgkin lymphoma due to the lack of tissue. 17 The remaining seven were confirmed as Hodgkin lymphoma. In the ensuing case-control 18 analysis, significant odds ratios (ORs) for Hodgkin lymphoma were observed for five chemicals, 19 ammonia (6 cases, OR = 5.6), benzene (5 cases, OR = 11), EtO (3 cases, OR = 8.5), NaOH 20 (5 cases, OR = 8) and oleum (3 cases, OR = 6.9), based on the number of cases and controls 21 known to be exposed to the chemicals in question. This does not mean they were exposed only 22 to the chemical in question.

23 The availability of exposure information made it possible to calculate cumulative 24 exposure to the cases and controls of two chemicals, benzene and EtO. The cumulative exposure 25 for benzene-exposed cases was 397.4 ppm-months versus an expected 99.7 ppm-months for the 26 matched controls. The authors stated that one heavily exposed case was chiefly responsible for 27 the high cumulative total for all the benzene-exposed cases; however, it was not statistically 28 significant. Only a few studies have suggested that exposure to benzene could possibly be 29 related to an increase in the risk of Hodgkin lymphoma. The cumulative total exposure to EtO 30 for the cases was 500.2 ppm-months versus 60.2 for the matched controls, which was statistically 31 significant, the significance being due to one extreme case.

This study is limited because the authors enumerated only cases among active employees of the workforce; therefore, the distinct possibility exists that they could have missed potential cases in the inactive workers. It is possible that latent Hodgkin lymphoma cases could have been identified in the controls after the controls left active employment. However, given that there

This document is a draft for review purposes only and does not constitute Agency policy.

were many different possible exposures to the chemicals produced in the workplaces of these
 employees, it is not likely that EtO or benzene could be considered solely responsible for the
 excess risk of Hodgkin lymphoma in this working group.

4

5 A.2.14. Olsen et al. (1997)

6 Olsen et al. (1997) studied 1,361 male employees of four plants in Texas, Michigan, and 7 Louisiana who were employed a minimum of 1 month sometime during the period 1940 through 8 1992 in the ethylene chlorohydrin and propylene chlorohydrin process areas. These areas were 9 located within the EtO and propylene oxide production plants. Some 300 deaths had occurred by 10 December 31, 1992.

11 Plant A in Texas produced EtO beginning in 1941 and ceased production in 1967. 12 Bis-chloroethyl ether, a byproduct of EtO continued to be produced at this plant until 1973. The 13 plant was demolished in 1974. Plant B, which was nearby, manufactured EtO from 1951 to 1971 14 and then again from 1975 until 1980. This plant continues to produce propylene oxide. The 15 Louisiana plant produced EtO and propylene oxide through the propylene chlorohydrin process 16 from 1959 until 1970, when it was converted to propylene oxide production. The Michigan plant 17 produced ethylene chlorohydrin and subsequently EtO beginning in 1936 and continuing into the 18 1950s. This plant produced propylene chlorohydrin and propylene oxide up to 1974. 19 The authors suggested that exposure to EtO was possible at the plants studied in this 20 report but that exposure was unlikely in the 278 chlorohydrin unit workers who were excluded 21 from the cohort studied by Teta et al. (1993). Unfortunately, no actual airborne measurements

were reported by Olsen et al. (1997), and thus only length of employment could be used as a
surrogate for exposure.

24 The SMR for all causes was 0.89 (300 observed). For total cancer the SMR was 0.94 25 (75 observed, 79.7 expected). There were 10 lymphohematopoietic cancers versus 7.7 expected 26 (SMR = 1.3). No significantly increased risks of any examined site-specific cancer (pancreatic, 27 lymphopoietic, hematopoietic, and leukemia) were noted even after a 25-year induction latency 28 period, although the SMR increased to 1.44 for lymphopoietic and hematopoietic cancer. When 29 only the ethylene chlorohydrin process was examined after 25 years latency, the SMR increased 30 to 1.94, based on six observed deaths. The data to support the latter observation by the authors 31 were not presented in tabular form.

The authors concluded that there was a weak, nonsignificant, positive association with duration of employment for lymphopoietic and hematopoietic cancer with Poisson regression modeling. They stated that the results of their study provide some assurance that their cohort has not experienced a significant increased risk for pancreatic cancer and lymphopoietic and

1 hematopoietic cancer in ethylene chlorohydrin and propylene chlorohydrin workers. They 2 believed that this study contradicted the conclusions of Benson and Teta (1993) that ethylene 3 dichloride, perhaps in combination with chlorinated hydrocarbons, appeared to be the causal 4 agent in the increased risk of pancreatic cancer and hematopoietic cancer seen in their study. 5 They pointed out that ethylene dichloride is readily metabolized and rapidly eliminated from the 6 body after gavage or inhalation administration; therefore, they questioned whether experimental 7 gavage studies (NCI, 1978) are appropriate for studying the effects of ethylene dichloride in 8 humans. One study (Maltoni et al., 1980) found no evidence of tumor production in rats and 9 mice chronically exposed to ethylene dichloride vapor concentrations up to 150 ppm for 7 hours 10 a day. Also, because this chemical is a precursor in the production of vinyl chloride monomer, 11 the authors wondered why an increase in these two site-specific cancers had not shown up in 12 studies of vinyl chloride workers. However, they believe that an additional 5 to 10 years of 13 follow-up of this cohort would be necessary to confirm the lack of risk for the two types of 14 cancer described above. 15 Another major weakness of this study is the lack of any actual airborne measurements of 16 EtO and the chlorohydrin chemicals. 17 18 A.2.15. Steenland et al. (2004) 19 In an update of the earlier mortality studies of the same NIOSH cohort of workers 20 exposed to EtO described by Steenland et al. (1991) and Stayner et al. (1993), an additional 21 11 years of follow-up were added. This increased the number of deceased to 2,852. Work 22 history data were originally gathered in the mid-1980s. Approximately 25% of the cohort 23 continued working into the 1990s. Work histories on these individuals were extended to the last 24 date employed. It was assumed that these employees continued in the job they last held in the 25 1980s. Little difference was noted when cumulative exposure was calculated with and without 26 the extended work histories, chiefly because the exposure levels after the mid-1980s were very 27 low (see Section A.2.8 for a discussion of the NIOSH exposure assessment). Again, no excess 28 risk of hematopoietic cancer was noted based on external rates. However, as in the earlier paper, 29 exposure-response analyses reported positive trends for hematopoietic cancers limited to males 30 (p = 0.02 for the log of cumulative exposure with a 15-year lag) using internal comparisons and

31 Cox regression analysis.¹ (See Table A-2 for the categorical exposure results.)

¹Valdez-Flores et al. (2010) suggest that Steenland et al. (2004) incorrectly used one degree of freedom in their evaluation of statistical significance and that a second degree of freedom should have been included for estimating the lag. However, Steenland et al. (2004) did not estimate the lag using the likelihood; rather, lagged exposure was treated as an alternate exposure metric.

- The excess of these tumors was chiefly lymphoid (NHL, myeloma, lymphocytic
 leukemia) (see Table A-3), as in the earlier paper. A positive trend was also observed for
 Hodgkin lymphoma in males, although this was based on small numbers.
- 4
- 5
- 6
- 7
- 8

Table A-2. Cox regression results for hematopoietic cancer mortality
(15-year lag) in males

Cumulative exposure (ppm-days)	Odds ratio (95% CI)
0	1
>0–1,199	1.23 (0.32–4.73)
1,200–3,679	2.52 (0.69–9.22)
3,680–13,499	3.13 (0.95–10.37)
13,500+	3.42 (1.09–10.73)

Source: Steenland et al. (2004)

11 12

9 10

12 13 14

15

Table A-3. Cox regression results for lymphoid cell line tumors (15-year lag)in males

Cumulative exposure (ppm-days)	Odds ratio (95% CI)
0	1
>0-1,199	0.9 (0.16–5.24)
1,200–3,679	2.89 (0.65–12.86)
3,680–13,499	2.74 (0.65–11.55)
13,500+	3.76 (1.03–13.64)

16 17

Source: Steenland et al. (2004).

- 18
- 19

The hematopoietic cancer trends were somewhat weaker in this analysis than were those reported in the earlier studies of the same cohort. This is not unexpected because most of the cohort was not exposed after the mid-1980s, and the workers who were exposed in more recent years were exposed to much lower levels because EtO levels decreased substantially in the early 1980s. No association was found in females, although average exposures were only twice as high in males (37.8 ppm-years) as in females (18.2 ppm-years), and there was enough variability

This document is a draft for review purposes only and does not constitute Agency policy.

1 in female exposure estimates to expect to be able to see a similar trend if it existed. In later

- 2 analyses conducted by Dr. Steenland and presented in Appendix D, the difference between the
- 3 male and female results was found not to be statistically significant, and the same pattern of
- 4 lymphohematopoietic cancer results observed for males by Steenland et al. (2004) was observed
- 5 for the males and females combined (i.e., statistically significant positive trends for both
- 6 hematopoietic and lymphoid cancers using log cumulative exposure and a 15-year lag).
- 7 This study also reports a significant excess risk of breast cancer in the highest 8 cumulative-exposure quartile, with a 20-year lag (SMR = 2.07, 95% CI 1.1–3.54, n = 13) in 9 female employees. The results using internal Cox regression analyses with a 20-year lag time 10 produced an OR = 3.13 (95% CI 1.42–6.92) in the highest cumulative-exposure quartile. The 11 log of cumulative exposure with a 20-year lag was found to be the best model (p = 0.01) for the 12 analyses of breast cancer. As for hematopoietic cancer in males, cumulative exposure 13 untransformed showed a weaker trend (p = 0.16). A breast cancer incidence study of this cohort
- 14 is discussed in Steenland et al. (2003).
- 15

16 A.2.16. Steenland et al. (2003)

17 In a companion study on breast cancer incidence in women employees of the same cohort discussed in Steenland et al. (2004), the authors elaborated on the breast cancer findings in a 18 19 subgroup of 7,576 women from the cohort (76% of the original cohort). They had to be 20 employed at least 1 year and exposed while employed in commercial sterilization facilities. The 21 average length of exposure was 10.7 years. Breast cancer incidence analyses were based on 22 319 cases identified via interview, death certificates, and cancer registries in the full cohort, 23 including 20 in situ carcinomas. Interviews on 5,139 women (68% of the study cohort) were 24 obtained (next-of-kin interviews were sought for the 18% of the cohort who were deceased); 25 22% could not be located. Using external referent rates (SEER), the SIR was 0.87 for the entire 26 cohort based on a 15-year lag time. When in situ cases were excluded, the overall SIR increased 27 to 0.94. In the top quintile of cumulative exposure, with a 15-year lag time, the SIR was 1.27 28 (95% CI 0.94-1.69, n = 48). A significant positive linear trend of increasing risk with increasing 29 cumulative exposure was noted (p = 0.002) with a 15-year lag time. Breast cancer incidence was 30 believed to be underascertained owing to incomplete response and a lack of coverage by regional 31 cancer registries (68% were contacted directly and 50% worked in areas with cancer registries). 32 An internal nested case-control analysis, which is less subject to concerns about 33 underascertainment, produced a significant positive exposure-response with the log of 34 cumulative exposure and a 15-year lag time (p = 0.05). The top quintile was significant with an

35 OR of 1.74 (CI 1.16–2.65) based on all 319 cases (the entire cohort).

1 The authors also conducted separate analyses using the subcohort with interviews, for 2 which there was complete case ascertainment and additional information on potential 3 confounders. In the subcohort with interview data, the odds ratio for the top quintile equaled 4 1.87 (CI 1.12–3.1), based on 233 cases in the 5,139 women and controlled for with respect to 5 parity and breast cancer in a first-degree relative. Information on other risk factors was also 6 collected—e.g., body mass index, SES, diet, age at menopause, age at menarche, breast cancer in 7 a first-degree relative, and parity—but only parity and breast cancer in a first-degree relative 8 were significant in the model. Continuous cumulative exposure, as well as the log cumulative 9 exposure, lagged 15 years, produced *p*-values for the regression coefficient of 0.02 and 0.03, 10 respectively, for the Cox regression model, taking into account age, race, year of birth, parity, 11 and breast cancer in a first-degree relative.

12 The authors concluded that their data suggest that exposure to EtO is associated with 13 breast cancer, but because of inconsistencies in exposure-response trends and possible biases due 14 to nonresponse and incomplete cancer ascertainment, the case for breast cancer is not conclusive. 15 However, monotonically increasing trends in categorical exposure-response relationships are not 16 always the norm owing to lack of precision in the estimates of exposure. Furthermore, positive 17 trends were observed in both the full cohort and the subcohort with interviews, lessening 18 concerns about nonresponse bias and case underascertainment.

19

20 A.2.17. Kardos et al. (2003)

21 These authors reported on a study completed earlier by Muller and Bertok (1995) of 22 cancer among 299 female workers who were employed from 1976 to 1993 in a pediatric ward at 23 the county hospital in Eger, Hungary, where gas sterilizers were used. Their observation period 24 for cancer was begun in 1987 on the assumption that cancer deaths before 1987 were not due to 25 EtO, based on a paper by Lucas and Teta (1996). Information about the Muller and Bertok 26 (1995) study is unavailable because the paper is in Hungarian and no translated copy is available. 27 Kardos and his colleagues evaluated mortality among these women and found a statistically significant excess of total cancer deaths (n = 11) in the period from 1987 to 1999 when compared 28 29 with expected deaths generated from three different comparison populations (Hungary, n = 4.38; 30 Heves County, n = 4.03; and city of Eger, n = 4.28). The SMRs are all significant at the 31 p < 0.01 level. Site-specific rates were not calculated. Among the 11 deaths were 3 breast 32 cancer deaths and 1 lymphoid leukemia death. The authors claim that their results confirm 33 "predictions of an increased cancer risk for the Eger hospital staff." They suggest an etiological 34 role for EtO in the excess risk. The observation of 3 breast cancer deaths, with at most 4.4 (with

This document is a draft for review purposes only and does not constitute Agency policy.

1 Hungarian national rates as the referent) total cancer deaths expected, is indicative of an 2 increased risk of breast cancer².

3

4 A.2.18. Tompa et al. (1999)

5 The authors reported a cluster of eight breast cancer cases and eight other malignant 6 tumor cases that developed over a period of 12 years in 98 nurses who worked in a hospital in 7 the city of Eger, Hungary, and were exposed to EtO. These nurses were exposed for 5 to 8 15 years in a unit using gas sterilizer equipment. The authors report that EtO concentrations were in the neighborhood of 5 to 150 mg/m^3 . The authors state that the high breast cancer 9 10 incidence in the hospital in Eger indicates a combined effect of exposure to EtO and naturally 11 occurring radioactive tap water, possibly due to the presence of radon. This case report study is 12 discussed further in the genotoxicity section.

13

14 A.2.19. Coggon et al. (2004)

15 Descriptive information about this cohort is available from the earlier study (Gardner et 16 al., 1989). In this update, the 1,864 men and 1,012 women described in the (Gardner et al., 17 1989) study were followed to December 31, 2000. This added 13 more years of follow-up 18 resulting in 565 observed deaths versus 607.6 expected. For total cancer, the observed number 19 of deaths equaled 188 versus 184.2 expected. For NHL, 7 deaths were observed versus 20 4.8 expected. For leukemia, 5 deaths were observed versus 4.6 expected. All 5 leukemia deaths 21 fell into the subset with definite or continual exposure to EtO, where only 2.6 were expected. In 22 fact, the total number of deaths classified to the lymphohematopoietic cancer category was 17 23 with 12.9 expected. This increased risk was not significant. When definite exposure was 24 established, the authors found that the risk of lymphatic and hematopoietic cancer was increased 25 with 9 observed deaths versus 4.9 expected. Deaths from leukemia were also increased in 26 chemical workers with 4 leukemia deaths versus 1.7 expected. No increase was seen in the risk 27 of hematopoietic cancer in the hospital sterilizing unit workers, who are mostly female. Another 28 finding of little significance was that of cancer of the breast. Only 11 deaths were recorded in 29 this cohort up to the cutoff date versus 13.1 expected. Since there were no female workers in the

²Hungarian age-standardized female cancer mortality rates reported by the International Agency for Research on Cancer (http://eu-cancer.iarc.fr/country-348-hungary.html,en) suggest that the ratio of breast cancer deaths to total cancer deaths in Hungarian females is about 0.16 (28.0/100,000 breast cancer mortality rate versus 180.0/100,000 total cancer mortality rate). Although a comparison of this general population ratio with the ratio of 0.68 for breast cancer to total cancer mortality in the Kardos et al. (2003) study is necessarily crude because the general population ratio is not based on the age-standardized rates that would correspond to the age distribution of the person-time of the women in the study, which are unknown, the large difference between the ratios (0.68 for the study versus 0.16 for the general population) indicates an increased risk of breast cancer in the study.

This document is a draft for review purposes only and does not constitute Agency policy.

chemical industry, the results on breast cancer reflect only work in hospital sterilizing units. The
 researchers concluded that the risk of cancer must be low at the levels sustained by workers in
 Great Britain over the last 10 or 20 years.

4

5 A.2.20. Swaen et al. (2009)

6 Swaen et al. (2009) redefined and updated the cohort of 1,896 male UCC workers studied 7 by Teta et al. (1993), which was itself a follow-up of the 2,174 UCC workers originally studied 8 by Greenberg et al. (1990), excluding the 278 chlorohydrin unit workers because of potential 9 confounding. (However, confounding by chlorohydrin production has not been established, and 10 49 of those excluded workers were also employed in EtO production and thus had high potential 11 EtO exposures.) Specifically, Swaen et al. (2009) extended the cohort enumeration period from 12 the end of 1978 to the end of 1988 (workers hired after 1988 were not added to the cohort 13 because they were considered to have no appreciable EtO exposure), identifying 167 additional 14 workers, and conducted mortality follow-up of the resulting cohort of 2,063 male workers 15 through 2003. Work histories were also extended through 1988; exposures after 1988 were 16 considered negligible compared to earlier exposure levels. Swaen et al. (2009) used an exposure 17 assessment reportedly based on the qualitative categorizations of potential for EtO exposure in 18 the different departments developed by Greenberg et al. (1990) and time-period exposure 19 estimates from Teta et al. (1993). The exposure assessment matrix for the exposure estimates of 20 Swaen et al. (2009) is presented in Table A-4 below. Cumulative exposures for the individual 21 workers were estimated by multiplying the time (in months) a worker was assigned to a 22 department by the estimated exposure level for the department and summing across the 23 assignments.

24 The exposure assessment used in this study was relatively crude, based on just a small 25 number of department-specific and time-period-specific categories, and with exposure estimates 26 for only a few of the categories derived from actual measurements. For the 1974–1988 time 27 period, based on measurements from environmental monitoring conducted in the (West Virginia) 28 plants since 1976, exposure estimates of 1 ppm and 0.3 ppm were chosen for the high- and 29 low-exposure-potential departments, respectively, and the average of 0.65 ppm was taken for the 30 medium-exposure-potential departments. For the 1957–1973 time period, exposure estimates 31 were based on measurements from an air-sampling survey of three EtO direct-oxidation 32 production units in a UCC plant in Texas in the early 1960s (during this 1957–1973 time period, 33 direct oxidation was the only method used for EtO production at the West Virginia plants as 34 well). The majority of the 8-hour TWA results in these units were between 3 and 20 ppm, with 35 levels between 5 and 10 ppm for operators. Because the West Virginia plants and equipment

This document is a draft for review purposes only and does not constitute Agency policy.

7/2013

1 were much older than for the Texas facility, the high end of the range of values for operators

2 (10 ppm) was selected as the exposure estimate for the high-exposure-potential departments, and

3 the low end of the range (5 ppm) was selected for the low-exposure-potential departments (even

4 though these were not EtO production departments). The average of 7.5 ppm was taken for the

5 medium-exposure-potential departments.

- 6
- 7
- 8

9

1	0

Table A-4. Exposure assessment matrix from Swaen et al. (2009)—8-hour
TWA exposures in ppm

	Exposure potential category					
Time period	Low (most EtO user departments)	Medium (some EtO user departments)	High (EtO production departments)			
1925–1939	17	28	70			
1940–1956	7	14	21			
1957–1973	5	7.5	10			
1974–1988	0.3	0.65	1			

11

12 Source: Swaen et al. (2009).

13 14

15 For the 1940–1956 time period, exposure estimates were derived from "rough" estimates 16 of exposure reported by Hogstedt et al. (1986) for a chlorohydrin-based EtO production unit in 17 an enclosed building, as was the West Virginia chlorohydrin-based EtO production. Hogstedt et 18 al. (1986) reportedly suggested EtO exposures were probably below 14 ppm from 1941 to 1947, 19 although much higher levels occasionally occurred, and levels from the 1950s to 1963 averaged 20 5 to 25 ppm. Thus, based on these values, 14 ppm was selected as the exposure estimate for the 21 medium-exposure-potential departments and values 50% higher (21 ppm) and 50% lower 22 (7 ppm) were assigned to the high- and low-exposure-potential departments, respectively. For 23 the 1925–1939 time period, it was assumed that exposures in this earlier, start-up period would 24 have been higher than those in the subsequent 1940–1956 time period, so the 14 ppm estimate 25 from the medium-exposure-potential departments in the 1940–1956 time period was used as the 26 exposure estimate for the low-exposure-potential departments for the 1925–1939 time period. 27 Then, the same ratio of 1:2 between the low- and medium-exposure-potential departments from 28 the 1940–1956 time period was used to obtain an estimate of 28 ppm for the medium-exposure-29 potential departments for the 1925–1939 time period. A factor of 5 (half an order of magnitude)

This document is a draft for review purposes only and does not constitute Agency policy.

1 was used between the low- and high-exposure-potential departments to obtain a highly uncertain

2 exposure estimate of 70 ppm for the high-exposure-potential departments. Swaen et al. (2009)

3 suggest that despite the high exposure estimates for the 1925–1939 time period, the contribution

4 of this time period to cumulative exposure estimates is limited because only 98 workers (4.8% of

5 the cohort) had employment histories before 1940. It appears, then, that pre-1940 employment

6 histories may have been missing for 13 of the workers, because excluding the 112 pre-1940

7 chlorohydrin production workers (Benson and Teta, 1993) from the original 223 pre-1940

8 workers (Greenberg et al., 1990) leaves 111 pre-1940 workers in the cohort.

9 At the end of the 2003 follow-up, 1,048 of the 2,063 workers had died and 23 were lost to 10 follow-up. In comparison with general population U.S. mortality rates, the all-cause mortality

11 SMR was 0.85 (95% CI = 0.80, 0.90) and the cancer SMR was 0.95 (95% CI = 0.84, 1.06).

12 None of the SMRs for specific cancer types showed any statistically significant increases. In

13 analyses stratified by hire date [pre- (inclusive) or post-1956], the SMR for leukemia was

14 elevated but not statistically significant (1.51; 95% CI 0.69, 2.87) in the early-hire group, based

15 on nine deaths. In analyses stratified by duration of employment, no trends were apparent for

16 any of the lymphohematopoietic cancers, although in the 9+ years of employment subgroup, the

17 SMR for NHL was nonsignificantly increased (1.49; 95% CI 0.48, 3.48), based on 5 deaths. In

18 SMR analyses stratified by cumulative exposure, no trends were apparent for any of the

19 lymphohematopoietic cancers and there were no notable elevations for the highest cumulative

20 exposure category. Note that only 27 lymphohematopoietic cancer deaths (including

21 12 leukemias and 11 NHLs) were observed in the cohort.

22 Internal Cox proportional hazards modeling was also done for some disease categories 23 (all-cause mortality, leukemia mortality, and lymphoid cancer [NHL, lymphocytic leukemia, and 24 myeloma] mortality [17 deaths]), using cumulative exposure as the exposure metric. Year of 25 birth and year of hire were included as covariates in the Cox regression model. Year of hire was 26 reportedly included to adjust for potential cohort effects; however, it is unclear whether or not 27 this covariate was a statistically significant factor in the regression. Furthermore, because age at 28 hire is often correlated with exposure, including it in the regression model could overadjust and 29 attenuate the observed exposure-related effects. These internal analyses showed no evidence of 30 an exposure-response relationship, although, again, these analyses rely on small numbers of 31 cases and a crude exposure assessment, where there is a high potential for exposure 32 misclassification.

Swaen et al. (2009) note that one of the strengths of their study is the long average
follow-up time of the workers. These authors further note that, because the UCC cohort is a
much older population (50% deceased) than the NIOSH cohort (Steenland et al., 2004), the

1 number of expected deaths is less than 3 times larger for the NIOSH cohort even though the 2 sample size is almost 9 times larger. However, the long follow-up and aged cohort might be a 3 limitation, as well. Because the follow-up is extended well beyond the time period of 4 nonnegligible exposures (pre-1989) for workers still employed and, especially, beyond the 5 highest exposures (e.g., pre-1940 or pre-1956), the follow-up is likely observing workers at the 6 high tail end of the distribution of latency times for EtO-associated lymphohematopoietic 7 cancers. In other words, workers that were at risk of developing lymphohematopoietic cancer as 8 a result of their EtO exposures would likely have developed the disease earlier. Meanwhile, 9 having an older cohort means that the background rates of lymphohematopoietic cancers are 10 higher, and thus, relative risks may be attenuated. Such attenuation was observed even in the 11 younger NIOSH cohort between the 1987 follow-up (Steenland et al., 1991) and the 1998 12 follow-up (Steenland et al., 2004), when the follow-up was extended well beyond the period of 13 significant EtO exposures (exposure levels were considered very low by the mid-1980s). 14 Swaen et al. (2009) also note that their estimate of the average cumulative exposure for 15 the UCC cohort was more than twice the average cumulative exposure estimate for the NIOSH 16 cohort. However, there are substantial uncertainties in the exposure assessment, especially for 17 the early years when the highest exposures occurred. And despite the reported strengths of the 18 Swaen et al. (2009) study in terms of follow-up, cohort age, and high exposures, a limitation of 19 the study is the small cohort size. Based on data presented by Greenberg et al. (1990) and 20 Benson and Teta (1993), it appears that fewer than 900 workers were hired before 1956 (1,104 of 21 the original cohort were hired before 1960 and 233 of those were then excluded because they 22 worked in the chlorohydrin unit) and would have been potentially exposed to the higher pre-1956 23 exposures levels. In the full cohort of 2,063 men, only 27 lymphohematopoietic (17 lymphoid) 24 cancers were observed.

25 In alternate analyses of the UCC data, Valdez-Flores et al. (2010) fitted Cox proportional 26 hazards models and conducted categorical exposure-response analyses using a larger set of 27 cancer endpoints. These investigators also performed the same analyses using the data from the 28 last follow-up of the NIOSH cohort (Steenland et al., 2004) and from the two cohorts combined, 29 analyzing the sexes both separately and together. Valdez-Flores et al. (2010) reported that they 30 found no evidence of exposure-response relationships for cumulative exposure with either the 31 Cox model or categorical analyses for all of the cohort/endpoint data sets examined (endpoints 32 included all lymphohematopoietic cancers, lymphoid cancers, and female breast cancer, the latter 33 in the NIOSH cohort only). These investigators suggest that a review of the data from the 34 NIOSH and UCC studies supports combining them, but it should be recognized that the exposure 35 assessment conducted for the UCC cohort is much cruder, especially for the highest exposures,

This document is a draft for review purposes only and does not constitute Agency policy.

(see above) than the NIOSH exposure assessment (which was based on a validated regression
 model; see A.2.8 above); thus, the results of exposure-response analyses of the combined cohort
 data are considered to have greater uncertainty than those from analyses of the NIOSH cohort

4 alone, despite the additional cases contributed by the UCC cohort (e.g., the UCC cohort

5 contributes 17 cases of lymphoid cancer to the 53 from the NIOSH cohort; however, as discussed

6 above, it should also be noted that some of these UCC cases are occurring in older workers, with

7 longer postexposure follow-up, and thus, may reflect background disease more than

8 exposure-related disease).

9 Notable differences between the Steenland et al. (2004) and the Valdez-Flores et al.

10 (2010) analyses exist. A major difference is that Valdez-Flores et al. (2010) used only

11 cumulative exposure in the Cox regression model, so they considered only a sublinear

12 exposure-response relationship, whereas Steenland et al. (2004) also used log cumulative

13 exposure, which provides a supralinear exposure-response relationship model structure [e.g., see

14 Figure 4-1, illustrating the difference between the cumulative exposure and log cumulative

15 exposure Cox regression models [RR = $e^{\beta \times exposure}$] for the lymphoid cancers from Steenland et al.

16 (2004)]. Valdez-Flores et al. (2010) objected to the log cumulative exposure model for a number

17 of reasons, the primary one being that the use of log cumulative exposure forces the

18 exposure-response relationship to be supralinear regardless of the observed data. This is correct

19 but no different from the use of cumulative exposure imposing a *sublinear* exposure-response

20 relationship. Moreover, Steenland et al. (2004) used log cumulative exposure specifically when

21 the cumulative exposure Cox regression model did not yield a statistically significant fit to the

22 exposure-response data and the categorical analyses suggested increases in risk that were more

23 consistent with an underlying supralinear exposure-response relationship. With log cumulative

24 exposure, Steenland et al. (2004) observed statistically significant fits to the exposure-response

25 data for all lymphohematopoietic cancers in males, lymphoid cancers in males, and breast cancer

26 in females, none of which yielded statistically significant fits with the cumulative exposure

27 (sublinear exposure-response) model, supporting the apparent supralinearity of the data.³

Another key difference between the Steenland et al. (2004) and the Valdez-Flores et al.

29 (2010) analyses is that Valdez-Flores et al. (2010) present results only for unlagged analyses.

30 Valdez-Flores et al. (2010) state that their Cox regression results with different lag times were

31 similar to the unlagged results. Because the Valdez-Flores et al. (2010) categorical results are

32 for unlagged analyses, however, their referent groups are different from those used by Steenland

³This pattern of findings from the NIOSH cohort data for males (i.e., statistically significant fits with log cumulative exposure but not with cumulative exposure) was replicated for both the all lymphohematopoietic cancers and the lymphoid cancers when the NIOSH data on males and females were combined (see Appendix D).

This document is a draft for review purposes only and does not constitute Agency policy.

1 et al. (2004). Valdez-Flores et al. (2010) used the lowest exposure quintile (providing there were 2 sufficient data) as the referent group, whereas Steenland et al. (2004) used the no-exposure 3 (lagged-out) group as the referent. Because the NIOSH cohort data have an underlying 4 supralinear exposure-response relationship, the increased risk in the lowest exposure group is 5 already notably elevated and using the lowest exposure quintile as a referent group would 6 attenuate the relative risk. Nonetheless, Valdez-Flores et al. (2010) observed statistically 7 significant increases in response rates in the highest exposure quintile relative to the lowest 8 exposure quintile for lymphohematopoietic and lymphoid cancers in males in the NIOSH cohort, 9 consistent with the categorical results of Steenland et al. (2004), as well as a statistically 10 significant increase in the highest exposure quintile for lymphoid cancers in males and females combined in the NIOSH cohort, consistent with the results in Appendix D.⁴ 11

12 Although Valdez-Flores et al. (2010) found no statistically significant exposure-response 13 relationships for any of the cohort/endpoint data sets that they analyzed using the cumulative 14 exposure Cox regression model, these investigators derived risk estimates from the positive 15 relationships for the purposes of comparing those estimates with EPA's 2006 draft risk estimates 16 (U.S. EPA, 2006a). Valdez-Flores et al. (2010) report that their estimate of the exposure level associated with 10^{-6} risk of lymphohematopoietic cancer based on the male NIOSH cohort data 17 18 is 1,500 times larger than EPA's 2006 draft estimate (their exposure level estimate based on the 19 NIOSH and UCC male and female data combined was a further 3 times higher). Most of the 20 difference in magnitude between the Valdez-Flores et al. (2010) and the EPA 2006 draft 21 estimates is attributable to the difference in the models used. The Valdez-Flores et al. (2010) 22 estimate is based on the sublinear Cox regression model, which EPA rejected as not providing a 23 good representation of the low-exposure data (EPA's 2006 draft risk estimate is based on a linear 24 model). In addition, Valdez-Flores et al. (2010) used maximum likelihood estimates, while EPA 25 uses upper bounds on risk (or lower bounds on exposure). Valdez-Flores et al. (2010) also modeled down to 10^{-6} risk, whereas EPA modeled to 10^{-2} risk and used the LEC₀₁ as a point of 26 departure (POD) for linear low-dose extrapolation. Valdez-Flores et al. (2010) suggest that 27 PODs should be within the range of observed exposures, and they chose a 10^{-6} risk level because 28 29 the corresponding exposure level was in the range of the observed occupational exposures 30 (converted to equivalent environmental exposures). The intention of EPA's 2005 Guidelines for 31 Carcinogen Risk Assessment (U.S. EPA, 2005a), however, is for the POD to be (or more 32 specifically, to correspond to a response level) at the low end of the observable range of 33 responses (i.e., a response level that might reasonably be observed to have statistical significance

⁴In Dr. Steenland's analyses of the NIOSH cohort data for both sexes combined, presented in Appendix D, the categorical results for all lymphohematopoietic cancers were also statistically significantly increased. *This document is a draft for review purposes only and does not constitute Agency policy.*

with respect to background responses). The underlying assumption in this approach is that one
can have relative confidence in an exposure-response model in the observable range, but there is
less confidence in any empirical exposure-response model for much lower exposures. The
estimates also differ because Valdez-Flores et al. (2010) truncated their life-table analysis at
70 years, while EPA uses a cutoff of 85 years.

6 A further reason for differences between the risk estimates of Valdez-Flores et al. (2010) 7 and EPA's 2006 draft result is that Valdez-Flores et al. (2010) estimated mortality risks, while 8 EPA estimates incidence risks. In a separate publication, Sielken and Valdez-Flores (2009) 9 disagree with the assumption of similar exposure-response relationships for 10 lymphohematopoietic cancer incidence and mortality used by EPA in deriving incidence 11 estimates and assert that the methods used by EPA in calculating these estimates were 12 inappropriate. Sielken and Valdez-Flores (2009) suggest that, except at high exposure levels, the 13 exposure-response data on all lymphohematopoietic cancers in males in the NIOSH cohort are 14 consistent with decreases in survival time as an explanation for the apparent increases in 15 mortality. For two of the four exposure groups, however, the best-fitting survival times were 16 0 years, which seems improbable. Moreover, Sielken and Valdez-Flores (2009) have not 17 established that the excess mortality is due to decreased survival time; the data are also 18 consistent with increased mortality resulting from increased incidence. Furthermore, the rodent 19 bioassays show that EtO is a complete carcinogen (see Section 3.2), and the mechanistic data 20 demonstrate that EtO is mutagenic (see Section 3.3.3), with sufficient evidence for a mutagenic 21 mode of action (see Section 3.4). Thus, EtO can be expected to act as an initiator in 22 carcinogenesis, and, consequently, be capable of inducing exposure-related increases in 23 incidence. As for the methods used by EPA in calculating the incidence estimates, EPA used 24 adjustments to the life-table analysis where warranted (U.S. EPA, 2006a). EPA did not adjust 25 the all-cause mortality rates in the lymphohematopoietic cancer analyses, because "the 26 lymphohematopoietic cancer incidence rates are small when compared with the all-cause 27 mortality rates" (U.S. EPA, 2006a; Section 4.1.1.3) and, thus, the impact of taking into account 28 lymphohematopoietic cancer incidence when calculating interval "survival" is negligible, as 29 confirmed by Sielken and Valdez-Flores' own calculations, presented in their Table 2 where the 30 "multiplier" = 1 (Sielken and Valdez-Flores, 2009). On the other hand, for the breast cancer 31 incidence analyses, where incidence rates are higher, EPA adjusted the all-cause mortality rates 32 to take into account breast cancer incidence, effectively redefining interval "survival" (and thus 33 the resulting population at risk) as surviving the interval without developing an incident case of 34 breast cancer (U.S. EPA, 2006a; Section 4.1.2.3). Therefore, the concerns raised by Sielken and

This document is a draft for review purposes only and does not constitute Agency policy.

Valdez-Flores (2009) about using life-table analyses to derive incidence estimates do not apply
 to EPA's calculations.

3 Finally, the risk estimates of Valdez-Flores et al. (2010) and EPA's 2006 draft also differ 4 because Valdez-Flores et al. (2010), based on analyses in a separate publication by Sielken and 5 Valdez Flores (2009), misinterpreted the application of the age-dependent adjustment factors 6 (ADAFs) such that, even though they purported to apply the factors, this application had no 7 impact on the risk estimate. The ADAFs are default adjustment factors intended to be applied 8 directly to the unit risk estimates (i.e., risk per unit constant exposure, or "slope factors") in 9 conjunction with age-specific exposure level estimates (U.S. EPA, 2005b). For the purposes of 10 applying the ADAFs, the unit risk estimate is parsed, as a proportion of an assumed 70-year 11 lifespan, across age groups with different adjustment factors and/or exposure levels. The 12 ADAFs were not designed to be applied in life-table analyses, as was done by Sielken and 13 Valdez Flores (2009). In addition, the use of the 15-year lag in exposure in the life-table 14 analyses does not mean that there is no risk from exposures before age 15 years, as intimated by 15 Sielken and Valdez Flores (2009). Indeed, those exposures do not increase risk for cancer 16 occurring before 15 years of age; however, they do contribute to lifetime risk. The assumption 17 of increased early-life susceptibility that underlies the application of the ADAFs is that early-life 18 exposure increases the *lifetime* risk of cancer, not just the risk of cancer in early life, so it is 19 inappropriate to apply the ADAFs only to the age-specific hazard rates, as was done by Sielken 20 and Valdez Flores (2009). One might conceivably incorporate the ADAFs into the lifetable 21 analysis by weighting the age-specific exposures before they are aggregated into the cumulative exposure, but such an integrated approach does not allow for the risks associated with less-than-22 23 lifetime exposure scenarios to be calculated without redoing the lifetable analysis each time.

24

25 **A.3. SUMMARY**

26 The initial human studies by Hogstedt and colleagues [Hogstedt (1988); Hogstedt et al. 27 (1986); Hogstedt et al. (1979b); Hogstedt et al. (1979a)], in which positive findings of leukemia 28 and blood-related cancers suggested a causal effect, have been followed by studies that either do 29 not indicate any increased risks of cancer or else suggest a dose-related increased risk of cancer 30 at certain sites. These are chiefly cancers of the lymphohematopoietic system and include 31 leukemia, lymphosarcoma, reticulosarcoma, and NHL. More recently, an association with breast 32 cancer has also been suggested. However, the overall epidemiological evidence is not 33 conclusive because of inadequacies and limitations in the epidemiological database. The main 34 effects and limitations in the epidemiological studies of EtO are presented in Table A-5.

This document is a draft for review purposes only and does not constitute Agency policy.

7/2013

Table A-5.	. Epidemiological studies of ethylene oxide and human cancer
------------	--

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Sterilizers, production workers, Sweden Hogstedt (1988);	709 (539 men, 170 women)	sterilizer room Plant 2: mean = 14 ppm in early years, less than 6 ppm	33 cancer deaths vs. 20expected7 leukemia deaths vs. 0.8expected (ICD-8 204-207)	Benzene, methyl formate, bis-(2-chloroethyl) ether, ethylene, ethylene chlorohydrin, ethylene dichloride, ethylene glycol, propylene oxide, amines, butylene	No personal exposure information from which to estimate dose No latency analysis
Hogstedt et al. (1986)		later Plant 3: less than 8 ppm in early years, less than 2 ppm later	9 lymphohematopoietic cancer deaths vs. 2.0 expected (ICD-8 200-208) 10 stomach cancer deaths vs. 1.8 expected	oxide, formaldehyde, propylene, sodium	Mixed exposure to other chemicals
Sterilizing workers in 8 hospitals and users in 4 companies, Great Britain Gardner et al. (1989)	2,876 (1,864 men, 1,012 women)	In early years, odor threshold of 700 ppm noted; in later years, 5 ppm or less was noted	 3 leukemia deaths vs. 2.1 expected (ICD NS) 3 leukemia deaths vs. 0.35 expected (after 20+ years latency) 4 NHL deaths vs. 1.6 expected 5 esophageal cancer deaths vs. 2.2 expected 4 bladder cancer deaths vs. 2.04 expected 29 lung cancer deaths vs. 24.6 expected 	Aliphatic and aromatic alcohols, amines, anionic surfactants, asbestos, butadiene, benzene, cadmium oxide, dimethylmine, ethylene, ethylene chlorohydrin, ethylene glycol, formaldehyde, heavy fuel oils, methanol, methylene chloride, propylene, propylene oxide, styrene, tars, white spirit, carbon tetrachloride	Insufficient follow-up Exposure classification scheme vague, making it difficult to develop dose- response gradient No exposure measurements prior to 1977, so individual exposure estimates were not made Mixed exposure to several other chemicals

7/2013

This document is a draft for review purposes only and does not constitute Agency policy. A-36 DRAFT-DO NOT CITE OR QUOTE

Table A-5.	Epidemiological	studies of ethylene	oxide and human	cancer (continued)
------------	-----------------	---------------------	-----------------	--------------------

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Coggon et al. (2004) Update of Gardner et al. (1989)	Same cohort followed additional 13 years	Ibid.	 5 leukemia deaths vs. 4.6 expected (ICD-9 204-208) 5 leukemia deaths vs. 2.6 expected (definite or continual exposure) 7 NHL vs. 4.8 expected (ICD-9 200+202) 17 lymphohematopoietic cancers vs. 12.9 expected (ICD-9 200-208) 11 breast cancers vs. 13.1 expected 	Ibid.	Ibid. and, in addition, no latency evaluation

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Production workers (methods unspecified) from 8 chemical plants in West Germany Kiesselbach et al. (1990)	,	No exposure information available	 2 leukemia deaths vs. 2.35 expected (ICD-9 204-208) 5 lymphohematopoietic cancers vs. 5 expected (ICD-9 200-208) 14 stomach cancer deaths vs. 10.1 expected 3 esophageal cancer deaths vs. 1.5 expected 23 lung cancer deaths vs. 19.9 expected 	Beta-naphthylamine, 4-amino- diphenyl, benzene, ethylene chlorohydrin, possibly alkylene oxide (ethylene oxide/propylene oxide), based on inclusion of plants that were part of a cohort study by Thiess et al. (1981).	Insufficient follow-up; few expected deaths in cancer sites of significance with which to analyze mortality Production methods not stated; information vague on what these plants do Latency analysis given only for total cancer and stomach cancer mortality Although categories of exposure are given, they are nonquantitative and are not based on actual measurements No actual measurement data are given; dose- response analysis is not possible

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Production workers	2,174 men	Exposure prior to 1976 not	7 leukemia and aleukemia	Acetaldehyde, acetonitrile, acrolein,	Low exposure levels:
and users at 2		known	deaths vs. 3 expected;	aldehydes, aliphatic and aromatic	average 8-hr TWA
chemical plants in			SMR = 2.3 (ICD NS)	alcohols, alkanolamines, allyl	exposure levels to EtO
West Virginia		1976 survey: average 8-hr		chloride, amines, butadiene,	less than 1 ppm (from a
		TWA exposure levels less	2 NHL vs. 2.4 expected	benzene, bis-(chloroethyl) ether,	1976 survey)
Greenberg et al.		than 1 ppm; 1–5 ppm 8-hr		ethylene dichloride, diethyl	
(1990)		TWA for maintenance	9 lymphohematopoietic	sulphate, dioxane, epichlorhydrin,	No actual measurements
		workers	cancers vs. 7.5 expected	ethylene, ethylene chlorohydrin,	of exposure to EtO for
				formaldehyde, glycol ethers,	these plants exist prior to
			3 liver cancer deaths vs. 1.8	methylene chloride, propylene	1976
			expected; $SMR = 1.7$	chlorohydrin, styrene, toluidine	
					Exposure occurred to
			7 pancreatic cancer deaths		many other chemicals,
			vs. 4.1 expected; $SMR = 1.7$		some of which may be
					carcinogenic
			Suggestion of increasing		
			risk of stomach cancer and		Lack of quantitative
			leukemia/aleukemia with		estimates of individual
			cumulative duration of		exposure levels
			potential exposure		

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Same cohort as Greenberg et al. (1990) minus all chlorohydrin- exposed employees, followed an additional 10 years Teta et al. (1993)	1,896 men	Estimated exposure prior to 1956: 14+ ppm; after 1956: less than 10 ppm Prior to 1976, estimates were based on measurements taken at similar facilities	 5 leukemia and aleukemia deaths vs. 4.7 expected (ICD NS) 2 lymphosarcoma and reticulosarcoma vs. 2.03 expected 7 lymphohematopoietic cancers vs. 11.8 expected Trend of increasing risk of leukemia and aleukemia death with increasing duration of exposure 	Same (except for chemicals specific to the chlorohydrin process)	Same
Only the chlorohydrin- exposed employees from Greenberg et al. (1990) cohort, followed an additional 10 years Benson and Teta (1993)	278 men	Reported to be low exposure to EtO in the chlorohydrin process	8 lymphohematopoietic cancer deaths vs. 2.72 expected ($p < 0.05$) (ICD NS); SMR = 2.9 4 leukemia and aleukemia deaths vs. 1.14 expected 1 lymphosarcoma and reticulosarcoma vs. 0.50 expected 8 pancreatic cancer deaths vs. 1.63 expected ($p < 0.05$)	Same	Same, and, in addition, very small cohort

Table A-5.	Epidemiological	l studies of ethylen	e oxide and human	cancer (continued)
------------	-----------------	----------------------	-------------------	--------------------

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Same cohort as for Teta et al. (1993) followed an additional 15 years plus cohort enumeration extended to end of 1988 (an additional 10 years), adding 167 workers Swaen et al. (2009)	2,063 men	Individual exposure estimates derived from an exposure matrix based on potential EtO exposure categorizations developed by Greenberg et al. (1990) and time-period exposure estimates developed by Teta et al. (1993), which relied on measurements taken at other facilities and rough estimates for the time periods before 1974.	 11 leukemia deaths vs. 11.8 expected (ICD NS) 9 leukemia deaths in workers hired before 1956; SMR = 1.51 12 NHL vs. 11.5 expected 27 lymphohematopoietic cancers vs. 30.4 expected No statistically significant increases were observed for any cancer types No statistically significant trends were observed for lymphoid or leukemia cancer categories examined using Cox proportional hazards modeling 	Same	Same Crude exposure assessment, especially for the early time periods Small cohort; thus, small numbers of specific cancers even though long follow-up time

7/2013

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Sterilizers of medical equipment and spices; and manufacturers and testers of medical sterilization equipment, in 14 plants in the United	cal equipment pices; and (45% male, facturers and s of medical zation ment, in 14	(45% male, 55% female)ppm for sterilizer operators, 5 ppm for remaindercancer d expected13 leuke deaths vi sterilizers, 2 ppm for remainder13 leuke deaths vi 8 lympho	 36 lymphohematopoietic cancer deaths vs. 33.8 expected (ICD NS) 13 leukemia and aleukemia deaths vs. 13.5 expected 8 lymphosarcoma and 	No identified exposures to other chemicals	Potential bias due to lack of follow-up on "untraceable" members (4.5%) of the cohort Short duration of exposure and low median exposure levels
States Steenland et al. (1991); Stayner et al. (1993)		Individual cumulative exposure estimates calculated for workers in 13 of the 14 facilities	reticulosarcoma deaths vs. 5.3 expected After 20+ years latency, SMR = 1.76 for lymphohematopoietic cancer; significant trend		Individual exposures were estimated prior to 1976 before first industrial hygiene survey was completed
			with increasing latency ($p < 0.03$) Significantly increasing lymphohematopoietic		Short follow-up for most members of the cohort; only 8% had attained 20 years latency
			cancer and "lymphoid" cancer (ICD-9 200, 202, 204) risks with cumulative exposure (Cox regression model)		Little mortality (6.4%) had occurred in this large group of employees No exposure-response relationship among female

7/2013

 This document is a draft for review purposes only and does not constitute Agency policy.

 A-42
 DRAFT—DO NOT CITE OR QUOTE

Table A-5. Epidemiological studies of ethylene oxide a	and human cancer (continued)
--	------------------------------

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Same cohort as Steenland et al. (1991) and Stayner et al. (1993) plus 474 additional members, followed 1 more yr Wong and Trent (1993)	18,728 (45% male, 55% female)	Same as Steenland et al. (1991) and Stayner et al. (1993)	 43 lymphohematopoietic cancer deaths observed vs. 42 expected (ICD-8 200-209) 18 NHL deaths vs. 12.7 expected (ICD-8 200+202) 14 leukemia and aleukemia deaths vs. 16.2 expected (ICD-8 204-207) 	No identifiable exposures to other chemicals	All of the limitations of Steenland et al. (1991) apply here Although this group is the same as Steenland et al. (1991), an additional unexplained 474 employees were added It is questionable that one additional yr of follow-up added 392.2 expected deaths but only 176 observed deaths No effort was made to develop exposure- response data such as in
					Stayner et al. (1993) on the basis of individual cumulative exposure data but only on duration of employment

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Steenland et al. (2004) Update of Steenland et al. (1991) and Stayner et al. (1993)	18,254 (45% male, 55% female)	Same as Steenland et al. (1991), with extension of worker histories based on job held at end of initial exposure assessment for those still employed at end of 1991 study (25% of cohort)	79 lymphohematopoietic cancer deaths (ICD-9 200- 208): SMR =1.00 31 NHL deaths (ICD-9 200+202): SMR = 1.00 29 leukemia deaths (ICD-9 204-208); SMR = 0.99 In males, in internal Cox regression analyses, $OR = 3.42 \ (p < 0.05)$ in highest cumulative exposure group, with 15-yr lag, for lymphohematopoietic cancer; significant regression coefficient for continuous log cumulative exposure ($p = 0.02$) Similar results for "lymphoid" cancers (ICD-9 200, 202, 203, 204) in males For females, in internal Cox regression analyses, $OR = 3.13 \ (p < 0.05)$ for breast cancer mortality in highest cumulative exposure group, with 20-yr lag; significant regression coefficient for continuous log cumulative exposure ($p = 0.01$)		Potential bias due to lack of follow-up on "untraceable" members (4.5% of the cohort) Individual exposures were estimated prior to 1976 before first industrial hygiene survey was completed No increase in lymphohematopoietic cancer risk with increase in exposure in women

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Women employees from Steenland et al. (2004) employed in commercial sterilization facilities for at least 1 yr Steenland et al. (2003)	7,576 women	Same as in Steenland et al. (2004) Minimum of 1 yr	SIR = 0.87 319 cases of breast cancer SIR = 0.94 20 in situ cases excluded A positive trend in SIRs with 15-yr lag time for cumulative exposure (p = 0.002) In internal nested case- control analysis, a positive exposure-response with log of cumulative exposure with 15-yr lag; top quintile had OR = 1.74, $p < 0.05$ Similar results in subcohort of 5,139 women with interviews (233 cases)	Same as in Steenland et al. (2004), Stayner et al. (1993)	Interviews were available for only 68% of the women; thus, there is underascertainment of cancer cases in full cohort. Also, there are potential nonresponse biases in the subcohort with interviews. Exposure-response trends not strictly monotonically increasing

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Chemical workers licensed to handle EtO and other toxic chemicals, Italy Bisanti et al. (1993)	1,971 men	Levels were said to be high at beginning of employment; no actual measurements were available 637 workers were licensed only to handle EtO and no other toxic chemicals	 43 total cancer deaths vs. 33 expected 6 lymphohematopoietic cancer deaths vs. 2.4 expected (ICD-9 200-208) 4 lymphosarcoma and reticulosarcoma deaths vs. 0.6 expected (ICD-9 200) 2 leukemia deaths vs. 1.0 expected (ICD-9 204-208) 5 lymphohematopoietic cancer deaths vs. 0.7 expected in group licensed to handle only EtO 	Toxic gases, dimethyl sulphate, methylene chloride, carbon disulphide, phosgene, chlorine, alkalic cyanides, sulfur dioxide, anhydrous ammonia, hydrocyanic acid	Lack of exposure data Insufficient follow-up for this young cohort Potential selection bias Possible earlier exposure than date of licensing would indicate

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Two plants that produced disposable medical equipment, Sweden Hagmar et al. (1995); Hagmar et al. (1991)	2,170 (861 men, 1,309 women)	1964–1966, 75 ppm in sterilizers, 50 ppm in packers 1970–1972, 40 ppm in sterilizers, 20–35 ppm in packers and engineers By 1985, levels had dropped to 0.2 ppm in all categories except sterilizers and to 0.75 ppm in sterilizers	6 lymphohematopoietic cancer cases vs. 3.37 expected (ICD-7 200-209) 2 NHL cases vs. 1.25 expected (ICD-7 200+202) 2 leukemia cases vs. 0.82 expected (ICD-7 204-205) Among subjects with at least 0.14 ppm-years of cumulative exposure and 10 years latency, the SIR for leukemia was 7.14, based on two cases 5 breast cancer cases vs. 10.8 expected	Fluorochlorocarbons, methyl formate (1:1 mixture with EtO)	Short follow-up period; authors recommend another 10 years of follow-up Youthful cohort—few cases and fewer deaths; unable to determine significance or relationships in categories Only a minority of subjects had high exposure to EtO
Sterilizers of medical equipment and supplies that were assembled at this plant, New York Norman et al. (1995)	1,132 (204 men, 928 women)	In 1980, levels were 50–200 ppm (8-hr TWA); corrective action reduced levels to less than 20 ppm	Only 28 cancers were diagnosed 1 leukemia case vs. 0.54 expected 12 breast cancer cases vs. 4.6 to 7.0 expected $(p \le 0.05)$ 2 pancreatic cancer cases vs. 0.51 expected	No other chemical exposures cited	Little power to detect any significant risk chiefly because a short follow-up period produced few cancer cases Lack of exposure data Insufficient latency analysis

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Nested case-control study; cases and controls from a large chemical production plant, Belgium Swaen et al. (1996)	10 cases of Hodgkin lymphoma (7 cases confirmed) and 200 controls; all male	Cumulative exposure to EtO in cases was 500.2 ppm-months vs. 60.2 ppm- months in controls	3 cases indicated exposure to EtO, producing an OR = $8.5 (p < 0.05)$	Fertilizers, materials for synthetic fiber production, PVC, polystyrene, benzene, methane, acetone, ammonia, ammonium, sulfate, aniline, caprolactam, ethylene, Nah., oleum	This was a hypothesis- generating study; the authors were not looking for EtO exposure alone but for other chemical exposures as well to explain the excess risk Only one disease— Hodgkin lymphoma—was analyzed
Four EtO production plants in 3 states utilizing the chlorohydrin process (both ethylene and propylene) Olsen et al. (1997)	1,361 men	No actual measurements were taken	10 lymphohematopoietic cancer deaths vs. 7.7 expected (ICD-8 200-209) After 25-yr latency, SMR = 1.44, based on 6 deaths 2 leukemia and aleukemia deaths vs. 3.0 expected (ICD-8 204-207) No increase in pancreatic cancer (1 observed vs. 4.0 expected)	Bis-chloroethyl ether, propylene oxide, ethylene chlorohydrin, propylene chlorohydrin, ethylene dichloride, chlorohydrin chemicals	No actual airborne measurements of EtO or other chemicals such as ethylene dichloride were reported; only length of employment was used as a surrogate An additional 5 to 10 years of follow-up is needed to confirm the presence or lack of risk of pancreatic cancer and lymphopoietic and hematopoietic cancers

7/2013

Table A-5. Epidemiological studies of ethylene oxide	and human cancer (continued)
--	------------------------------

Population/ Industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
Female workers from pediatric clinic of hospital in Eger, Hungary Kardos et al. (2003)	299 female employees	EtO sterilizing units with unknown elevated concentrations	 11 cancer deaths observed compared with 4.38, 4.03, or 4.28 expected (<i>p</i> < 0.01), based on comparison populations of Hungary, Heves County, and city of Eger, respectively 1 lymphoid leukemia death 3 breast cancer deaths 	No identifiable exposures to other chemicals	Underlying cause of death provided on all 11 cases but no expected deaths available by cause Possible exposure to natural radium, which is common in the region

ICD NS: ICD codes not specified.

7/2013

1 Exposure information, where available, indicates that levels of EtO probably were not 2 high in these study cohorts. If a causal relationship exists between exposure to EtO and cancer, 3 the reported EtO levels may have been too low to produce a significant finding. Exposures in the 4 earlier years (prior to 1970) in most of the companies, hospitals, and other facilities where EtO 5 was made or used are believed to have been in the range of 20 ppm, with excursions many times 6 higher, although few actual measurements are available during this period. (One exception is the 7 environmental study by Joyner (1964), who sampled airborne levels of EtO from 1960 to 1962 in 8 a Texas City facility owned by Union Carbide.)

9 Almost all actual measurements of EtO were taken in the 1970s and 1980s at most plants 10 and facilities in the United States and Europe, and levels have generally fallen to 5 ppm and 11 below. Some plants may have never sustained high levels of airborne EtO. Assuming that there 12 is a true risk of cancer associated with exposure to EtO, then the risk is not evident at the levels 13 that existed in these plants except under certain conditions, possibly due to a lack of sensitivity in 14 the available studies to detect associated cancers at low exposures.

15 The best evidence of an exposure-response relationship for lymphohematopoietic cancers 16 comes from the large, diverse NIOSH study of sterilizer workers [Steenland et al. (2004); 17 Steenland et al. (1991); Stayner et al. (1993)]. This study estimated cumulative exposure (i.e., 18 total lifetime occupational exposure to EtO) in every member of the cohort. The investigators 19 estimated exposures from the best available data on airborne levels of EtO throughout the history 20 of the plants and used a regression model to estimate exposures for jobs/time periods where no 21 measurements were available. This regression model predicted 85% of the variation in average 22 EtO exposure levels. An added advantage to this study, besides its diversity, size, and 23 comprehensive exposure assessment, is the absence of other known confounding exposures in 24 the plants, especially benzene.

25 In the recent follow-up of the NIOSH cohort, as in the earlier study, Steenland et al. 26 (2004) observed no overall excess of hematopoietic cancers (ICD-9 codes 200-208). In internal analyses, however, they found a significant positive trend (p = 0.02) for hematopoietic cancers 27 28 for males only, using log cumulative exposure and a 15-year lag, based on 37 male cases. In the 29 Cox regression analysis using categorical cumulative exposure and a 15-year lag, a positive trend 30 was observed and the OR in the highest exposure quartile was statistically significant 31 (OR = 3.42; 95% CI 1.09-10.73). Similar results were obtained for the "lymphoid" category 32 (lymphocytic leukemia, NHL, and myeloma). No evidence of a relationship between EtO 33 exposure and hematopoietic cancers in females in this cohort was observed. In later analyses 34 conducted by Dr. Steenland and presented in Appendix D, the difference between the male and 35 female results was found not to be statistically significant, and the same pattern of

This document is a draft for review purposes only and does not constitute Agency policy.

1 lymphohematopoietic cancer results observed for males by Steenland et al. (2004) was observed

2 for the males and females combined (i.e., statistically significant positive trends for both

3 hematopoietic [n = 74] and lymphoid [n = 53] cancers using log cumulative exposure and a

4 15-year lag, as well as statistically significant ORs in the highest exposure quartile for both

5 hematopoietic and lymphoid cancers).

6 In the analysis by Swaen et al. (2009) of male UCC workers, the authors discussed the

7 development of the exposure assessment matrix used in combination with worker histories to

8 estimate cumulative exposures for each worker in West Virginia UCC cohort. The exposure

9 matrix was based on the qualitative categorization of potential EtO exposure in the different

10 departments developed by Greenberg et al. (1990) and the time-period exposure estimates from

11 Teta et al. (1993). Eight-hour TWA concentrations (ppm) were estimated over four time periods

12 (1925–1939, 1940–1956, 1957–1973, and 1974–1978) at the two facilities for three

13 exposure-potential categories (high, medium, and low exposure departments). Average

14 exposures in the latter time period (1974–1978) were based on industrial hygiene monitoring

15 conducted at the locations where the study subjects worked. Estimates for the earlier time

16 periods were inferred from data on airborne exposure levels in "similar" manufacturing

17 operations during the time periods of interest. The estimates for the 1957–1973 time period were

18 inferred from measurements reported for the EtO production facility at Texas City studied by

19 Joyner (1964), and the estimates for the 1940–1956 time period were inferred from "rough"

20 estimates of exposure reported for the Swedish company described by Hogstedt et al. (1979a).

21 Exposures for the 1925–1939 time period were assumed to be greater than for the later time

22 periods, but the exposure estimates for this period are largely guesses.

This relatively crude exposure assessment formed the basis of the UCC

24 exposure-response analyses of the UCC study described in Swaen et al. (2009). Swaen et al.

25 (2009) conducted SMR analyses for the UCC workers stratified into those hired before and after

26 December 31, 1956; for three subgroups of employment duration; and for three subgroups of

27 cumulative exposure. These investigators also conducted Cox proportional hazards modeling for

28 leukemia mortality and lymphoid malignancy mortality. No statistically significant excesses in

29 cancer risk or positive trends were reported. Despite the long follow-up of the UCC cohort, its

30 usefulness is limited by its small size (e.g., a total of 27 lymphohematopoietic cancer deaths were31 observed).

Valdez-Flores et al. (2010) used the same exposure assessment to conduct further
exposure-response modeling of the UCC data. These authors used the Cox proportional hazards
model to model various cancer endpoints, using the UCC data, the NIOSH data (Steenland et al.,
2004), or the combined data from both cohorts. Using cumulative exposure as a continuous

This document is a draft for review purposes only and does not constitute Agency policy.

23

1 variable, no statistically significant positive trends were observed from any of the analyses.

2 Unlike Steenland et al. (2004), Valdez-Flores et al. (2010) rejected the log cumulative exposure

3 model. Using cumulative exposure as a categorical variable, statistically significant increased

4 risks in the highest exposure quintile were reported for all lymphohematopoietic cancers and for

5 lymphoid cancers in the NIOSH male workers, consistent with results reported by Steenland et

6 al. (2004). Statistically significant increased risks in the highest exposure quintile were also

7 reported for NHL in the NIOSH male workers and for lymphoid cancers and NHL in both sexes

8 combined in the NIOSH cohort.

9 The many different analyses of the UCC data are weakened by the reliance on the crude 10 exposure assessment. The NIOSH investigators, on the other hand, based their exposure 11 estimates on a comprehensive, validated regression model. Furthermore, the NIOSH cohort was 12 a much larger, more diversified group of workers who were exposed to fewer potential 13 confounders.

One other study that provides cumulative exposure estimates is the incidence study by Hagmar and colleagues [Hagmar et al. (1995); Hagmar et al. (1991)]. The short follow-up period and relative youthfulness of the cohort produced little morbidity by the end of the study, although some support for an excess risk of leukemia and lymphohematopoietic cancer had appeared.

In a separate analysis of the NIOSH cohort by Wong and Trent (1993), duration of exposure to EtO was used as a surrogate for exposure. These authors did not find any positive exposure-response relationships. They did observe an elevated significant risk of "NHL" in males (SMR = 2.47, p < 0.05), based on 16 deaths, which was not dose related or time related. However, a deficit in females remained.

Increases in the risk of hematopoietic cancers are also suggested in several other studies (Coggon et al., 2004; Olsen et al., 1997; Swaen et al., 1996; Norman et al., 1995; Bisanti et al., 1993; Gardner et al., 1989). However, in all these studies the deaths were few and the risk ratios were mostly nonsignificant except at higher estimated exposures or after long observation periods. The findings were not robust and there were potentially confounding influences, such as exposure to benzene and/or chlorohydrin derivatives.

In those plants with no detectable risks (Norman et al., 1995; Kiesselbach et al., 1990), the cohorts were generally relatively youthful or had not been followed for a sufficient number of years to observe any effects from exposure to EtO. In the study by Olsen et al. (1997), although a slight increase in the risk of cancer of the lymphopoietic and hematopoietic system was evident, the authors stated that their study provided some assurance that working in the chlorohydrin process had not produced significantly increased risks for pancreatic cancer or

This document is a draft for review purposes only and does not constitute Agency policy.

lymphopoietic or hematopoietic cancer, thus contradicting the findings of Benson and Teta
 (1993). This study lacks any measurement of airborne exposure to any of the chemicals
 mentioned and the authors indicated that an additional 5 to 10 years of follow-up would be

4 needed to confirm the lack of a risk for the cancers described in their study.

5 Although the strongest evidence of a cancer risk is with cancer of the hematopoietic 6 system, there are indications that the risk of stomach cancer may have been elevated in some 7 studies (Teta et al., 1993; Kiesselbach et al., 1990; Hogstedt et al., 1986; Hogstedt et al., 1979b); 8 however, it attained significance only in the study by Hogstedt et al. (1979b), with 9 observed 9 versus 1.27 expected. It was reported by Shore et al. (1993) that this excess may have been due 10 to the fact that early workers at this plant "tasted" the chemical reaction product to assess the 11 result of the EtO synthesis. This reaction mix would have also contained ethylene dichloride, a 12 suspected carcinogen, and other chemicals. This increased risk of stomach cancer was not 13 supported by analyses of intensity or duration of exposure in the remaining studies, except that 14 Benson and Teta (1993) suggested that exposure to this chemical increased the risk of pancreatic 15 cancer and perhaps hematopoietic cancer but not stomach cancer.

16 A significant risk of pancreatic cancer first reported by Morgan et al. (1981) was also 17 reported by Greenberg et al. (1990) in his cohort of chemical workers, but only in those workers 18 assigned to the ethylene chlorohydrin production process, where the authors reported that 19 exposure to EtO was low. Benson and Teta (1993) attributed the increase in pancreatic cancer 20 seen in Greenberg et al. (1990) to exposure to ethylene dichloride in the chlorohydrin process. 21 However, Olsen et al. (1997) refuted this finding in their study. The pancreatic cancers from the 22 study by Morgan et al. (1981) also occurred in workers in a chlorohydrin process of EtO 23 production. The possibility that exposure to a byproduct chemical such as ethylene dichloride 24 may have produced the elevated risks of pancreatic cancer seen in these workers cannot be ruled 25 out.

26 In addition to the cancer risks described above, some recent evidence indicates that 27 exposure to EtO may increase the risk of breast cancer. The study by Norman et al. (1995) of 28 women who sterilized medical equipment observed a significant twofold elevated risk of breast 29 cancer, based on 12 cases. A study by Tompa et al. (1999) reported on a cluster of breast cancers 30 occurring in Hungarian hospital workers exposed to EtO. In another Hungarian study of female 31 hospital workers by Kardos et al. (2003), 3 breast cancers were noted out of 11 deaths reported 32 by the authors. Although expected breast cancer deaths were not reported, the total expected 33 deaths calculated was just slightly more than 4, making this a significant finding for cancer in 34 this small cohort.

This document is a draft for review purposes only and does not constitute Agency policy.

1 The most compelling evidence on breast cancer comes from the NIOSH cohort. In the 2 recent update of this cohort, no overall excess of breast cancer mortality was observed in the 3 female workers; however, a statistically significant SMR of 2.07 was observed in the highest 4 cumulative exposure quartile, with a 20-year lag. In internal Cox regression analyses, a positive 5 exposure-response (p = 0.01) was observed for log cumulative exposure with a 20-year lag, 6 based on 103 cases. Similar evidence of an excess risk of breast cancer was reported in a breast 7 cancer incidence study of a subgroup of 7,576 female workers from the NIOSH cohort who were 8 exposed for 1 year or longer (Steenland et al., 2003). A significant (p = 0.002) linear trend in 9 SIR was observed across cumulative exposure quintiles, with a 15-year lag. In internal Cox 10 regression analyses, there was a significant regression coefficient with log cumulative exposure 11 and a 15-year lag, based on 319 cases. Using categorical cumulative exposure, the OR of 1.74 12 was statistically significant in the highest exposure quintile. In a subcohort of 5,139 women with 13 interviews, similar results were obtained based on 233 cases, and the models for this subcohort 14 were also able to take information on other potential risk factors for breast cancer into account. 15 Additionally, the coefficient for continuous cumulative exposure was also significant (p = 0.02), with a 15-year lag. 16

17 Several other studies with female employees in the defined cohorts reported no increased 18 risks of breast cancer due to exposure to EtO (Coggon et al., 2004; Hagmar et al., 1995; Hagmar 19 et al., 1991; Hogstedt et al., 1986). However, these studies have much lower statistical power 20 than the NIOSH studies, as evidenced by the much lower numbers of breast cancer cases that 21 they report. The largest number of cases in any of these other studies is 11 cases in the Coggon 22 et al. (2004) study. Furthermore, none of these other studies conducted internal (or external) 23 exposure-response analyses, which are the analyses that provided the strongest evidence in the 24 NIOSH studies.

25

26 A.4. CONCLUSIONS

27 Experimental evidence demonstrates that exposure to EtO in rodents produces 28 lymphohematopoietic cancers; therefore, an increase in the risk of lymphohematopoietic cancer 29 in humans should not be unexpected. An increase in mammary gland carcinomas was also 30 observed in mice. Although several human studies have indicated the possibility of a 31 carcinogenic effect from exposure to EtO, especially for lymphohematopoietic cancers, the total 32 weight of the epidemiologic evidence is not sufficient to support a causative determination. The 33 causality factors of temporality, coherence, and biological plausibility are satisfied. There is also 34 evidence of consistency and specificity in the elevated risk of lymphohematopoietic cancer as a 35 single entity in the human studies. The earlier significant risk of leukemia seen in the Hogstedt

This document is a draft for review purposes only and does not constitute Agency policy.

studies was supported in some studies and not in others. In fact, not all human studies of EtO have suggested an elevated risk of cancer and in those that do, the marginally elevated risks vary from one site to another within the lymphohematopoietic system. When combined under the rubric "lymphohematopoietic cancers," this loosely defined combination of blood malignancies produces a slightly elevated risk of cancer in some studies but not in all. There is evidence of a biological gradient in the significant dose-response relationship seen in the large, high-quality Steenland et al. (2004) study.

8 The best evidence of a carcinogenic effect produced by exposure to EtO is found in the 9 NIOSH cohort of workers exposed to EtO in 14 sterilizer plants around the country (Steenland et 10 al., 2004; Stayner et al., 1993; Steenland et al., 1991). A positive trend in the risk of 11 lymphohematopoietic and "lymphoid" neoplasms with increasing log cumulative exposure to 12 EtO with a 15-year lag is evident. But there are some limitations to concluding that this is a 13 causal relationship at this time. For example, there was a lack of dose-response relationship in 14 females, although, as presented in Appendix D, later calculations show that the difference in response between females and males is not statistically significant and that significant increases 15 16 are also observed with both sexes combined.

An elevated risk of lymphohematopoietic cancers from exposure to EtO is also apparent in several other studies. In some of these studies, confounding exposure to other chemicals produced in the chlorohydrin process concurrent with EtO may have been partially responsible for the excess risks. In other studies, where the chlorohydrin process was not present, there are no known confounding influences that would produce a positive risk of lymphohematopoietic cancer. Overall, the evidence on lymphohematopoietic cancers in humans is considered to be strong but not sufficient to support a causal association.

24 There is also evidence that exposure to EtO increases the risk of breast cancer, based 25 chiefly on the NIOSH studies [Steenland et al. (2004); Steenland et al. (2003)] discussed earlier, 26 with some corroborating support from the Norman et al. (1995) and Kardos et al. (2003) studies 27 of breast cancer in women exposed to EtO. The risk of breast cancer was analyzed in a few other 28 studies (Coggon et al., 2004; Hagmar et al., 1991; Hogstedt, 1988; Hogstedt et al., 1986), and no 29 increase in the risk of breast cancer was found. However, these studies had far fewer cases to 30 analyze, did not have individual exposure estimates, and relied on external comparisons. The 31 NIOSH studies [Steenland et al. (2004); Steenland et al. (2003)], on the other hand, used the 32 largest cohort of women potentially exposed to EtO and clearly show significantly increased 33 risks of breast cancer incidence and mortality, based on internal exposure-response analyses. 34 The authors suggest that the case is not conclusive of a causal association "due to inconsistencies 35 in exposure-response trends and possible biases due to nonresponse and an incomplete cancer

This document is a draft for review purposes only and does not constitute Agency policy.

- 1 ascertainment." While these are not decisive limitations—exposure-response relationships are
- 2 often not strictly monotonically increasing across finely dissected exposure categories, and the
- 3 consistency of results between the full cohort (less nonresponse bias) and the subcohort with
- 4 interviews (full case ascertainment) alleviates some of the concerns about those potential
- 5 biases—the evidence for a causal association between breast cancer and EtO exposure is less
- 6 than conclusive at this time.

1	
2	

APPENDIX B. REFERENCES FOR FIGURE 3-3

3	The references in this list correspond to the additional data that were added to Figure 3-3
4	since the IARC (1994b) genetic toxicity profile was published. See the Figure 3-3 legend for
5	details.
6	
7 8 9	de Serres, FJ; Brockman, HE. (1995) Ethylene oxide: induction of specific-locus mutations in the ad-3 region of heterokaryon 12 of <i>Neurospora crassa</i> and implications for genetic risk assessment of human exposure in the workplace. Mutat Res 328:31–47.
10 11	Hengstler, JG; Fuchs, J; Gebhard, S; et al. (1994) Glycolaldehyde causes DNA-protein crosslinks: a new aspect of ethylene oxide genotoxicity. Mutat Res 304(2):229–234.
12 13 14	Major, J; Jakab, MG; Tompa, A. (1996) Genotoxicological investigation of hospital nurses occupationally exposed to ethylene-oxide: I. chromosome aberrations, sister-chromatid exchanges, cell cycle kinetics, and UV-induced DNA synthesis in peripheral blood lymphocytes. Environ Mol Mutagen 27:84–92.
15 16	Major, J; Jakab, MG; Tompa, A. (1999) The frequency of induced premature centromere division in human populations occupationally exposed to genotoxic chemicals. Mutat Res 445(2):241–249.
17 18	Nygren, J; Cedervall, B; Eriksson, S; et al. (1994) Induction of DNA strand breaks by ethylene oxide in human diploid fibroblasts. Environ Mol Mutagen 24(3):161–167.
19 20	Oesch, F; Hengstler, JG; Arand, M; et al. (1995) Detection of primary DNA damage: applicability to biomonitoring of genotoxic occupational exposure and in clinical therapy. Pharmacogenetics 5 Spec No:S118–S122.
21 22	Ribeiro, LR; Salvadori, DM; Rios, AC; et al. (1994) Biological monitoring of workers occupationally exposed to ethylene oxide. Mutat Res 313:81–87.
23 24	Sisk, SC; Pluta, LJ; Meyer, KG; et al. (1997) Assessment of the in vivo mutagenicity of ethylene oxide in the tissues of B6C3F1 lacI transgenic mice following inhalation exposure. Mutat Res 391(3):153–164.
25 26	Swenberg, JA; Ham, A; Koc, H; et al. (2000) DNA adducts: effects of low exposure to ethylene oxide, vinyl chloride and butadiene. DNA Repair 464:77–86.
27 28	Tates, AD; vanDam, FJ; Natarajan, AT; et al. (1999) Measurement of HPRT mutations in splenic lymphocytes and haemoglobin adducts in erythrocytes of Lewis rats exposed to ethylene oxide. DNA Repair 431(2):397–415.
29 30 31	van Sittert, NJ; Boogaard, PJ; Natarajan, AT; et al. (2000) Formation of DNA adducts and induction of mutagenic effects in rats following 4 weeks inhalation exposure to ethylene oxide as a basis for cancer risk assessment. Mutat Res – Fundam Mol Mech Mutagen 447:27–48.
32 33	Vogel, EW; Nivard, MJ. (1997) The response of germ cells to ethylene oxide, propylene oxide, propylene imine and methyl methanesulfonate is a matter of cell stage-related DNA repair. Environ Mol Mutagen 29(2):124–135.
34 35	Vogel, EW; Nivard, MJ. (1998) Genotoxic effects of inhaled ethylene oxide, propylene oxide and butylene oxide on germ cells: sensitivity of genetic endpoints in relation to dose and repair status. Mutat Res 405(2):259–271.
36 37	Walker, VE; Sisk, SC; Upton, PB; et al. (1997) In vivo mutagenicity of ethylene oxide at the hprt locus in T-lymphocytes of B6C3F1 lacI transgenic mice following inhalation exposure. Mutat Res 392(3):211–222.

- 1 Walker, VE; Wu, KY; Upton, PB; et al. (2000) Biomarkers of exposure and effect as indicators of potential
- 2 carcinogenic risk arising from in vivo metabolism of ethylene to ethylene oxide. Carcinogenesis 21(9):1661–1669.

1 2

APPENDIX C. GENOTOXICITY AND MUTAGENICITY OF ETHYLENE OXIDE

3 A summary of the available genotoxicity and mutagenicity data for ethylene oxide (EtO) 4 is presented in Chapter 3 (see Section 3.3.3). This appendix provides further details on the 5 available genotoxicity and mutagenicity data and on some of the studies that are briefly 6 mentioned in Chapter 3. The genotoxic potential of EtO is a key component of the assessment of its carcinogenicity. The relationship between genotoxicity/mutagenicity and carcinogenicity is 7 8 based on the observations that genetic alterations are observed in almost all cancers and that 9 many of these alterations have been shown to play an important role in carcinogenesis. Exposure 10 to EtO has been found to result in a number of genotoxic effects in laboratory animal studies and 11 in studies of humans exposed in occupational settings. In particular, EtO has been shown to alter 12 or damage genetic material in such a manner that the genetic alterations are transmissible during 13 cell division. Evidence of genotoxicity/mutagenicity provides strong mechanistic support for 14 potential carcinogenicity in humans (Waters et al., 1999). 15 Since the first report of EtO's role in inducing sex-linked recessive lethals in Drosophila 16 (Rapoport, 1948), numerous papers have been published on the mutagenicity of EtO in 17 biological systems, spanning a whole range of assay systems, from bacteriophage to higher 18 plants and animals (see Figure 3-3 in Chapter 3). EtO, being a mono-functional alkylating agent, 19 is DNA-reactive, capable of forming DNA adducts and inducing mutations at both the 20 chromosome and gene levels under appropriate conditions, as evidenced in numerous in vitro 21 and in vivo studies (reviewed in IARC, 2008; Kolman et al., 2002; Thier and Bolt, 2000; 22 Natarajan et al., 1995; Vogel and Natarajan, 1995; Dellarco et al., 1990; Kolman et al., 1986). In 23 prokaryotes (bacteria) and lower eukaryotes (yeasts and fungi), EtO induces DNA damage and 24 gene mutations and conversions. In mammalian cells, EtO induces DNA adducts, unscheduled 25 DNA synthesis, gene mutations, sister chromatid exchanges (SCEs), micronuclei, and 26 chromosomal aberrations (IARC, 2008; Thier and Bolt, 2000; Natarajan et al., 1995; Preston et 27 al., 1995; Dellarco et al., 1990; Walker et al., 1990; Ehrenberg and Hussain, 1981). The results 28 of in vivo studies on the genotoxicity of EtO following ingestion, inhalation or injection have 29 also been consistently positive (IARC, 2008, 1994b). Furthermore, in vivo exposure to 30 EtO-induced gene mutations in the *Hprt* locus in mouse and rat splenic T-lymphocytes and SCEs 31 in lymphocytes from rabbits, rats, and monkeys, in bone marrow cells from mice and rats, and in 32 rat spleen. Increases in the frequency of gene mutation in the lung (LacI locus) (Recio et al., 33 2004; Sisk et al., 1997) and in the Hprt locus in T-lymphocytes (Walker et al., 1997) in 34 transgenic mice exposed to EtO via inhalation have been observed at concentrations similar to

This document is a draft for review purposes only and does not constitute Agency policy.

C-1

1 those in carcinogenesis bioassays (NTP, 1987). EtO has also induced heritable mutations or

- 2 effects in germ cells in rodents (Generoso et al., 1990; Lewis et al., 1986). In addition,
- 3 significant increases in the frequency of SCEs and chromosomal aberrations in peripheral blood
- 4 lymphocytes have been consistently reported in workers exposed to concentrations of EtO of
- 5 greater than 5 ppm (TWA) (IARC, 2008, and references therein). Thus, there is consistent
- 6 evidence that EtO interacts with the genome from both in vitro studies and in vivo studies of
- 7 laboratory animals and occupationally exposed humans. Based on these observations, exposure
- 8 to EtO is considered to cause cancer through a mutagenic mode of action (see Chapter 3,
- 9 Section 3.4).

10 The following sections provide further details on different genotoxicity test results11 regarding the mutagenic potential of EtO.

12

13 C.1. DNA ADDUCTS

14 Covalent binding of a chemical (direct-acting) or its electrophilic intermediates or 15 metabolites (indirect-acting chemicals following metabolic activation) with the nucleophilic sites 16 in DNA results in the formation of "DNA adducts," which represent the biologically effective 17 dose of the chemical agent in question. Alkylating agents, such as EtO, are direct-acting 18 chemical agents which can transfer alkyl groups (e.g., ethyl groups) to nucleophilic sites in 19 DNA, alkylating the nucleotide bases. Alkylating agents are classified as S_N 1-type or S_N 2-type 20 depending on the substitution nucleophilicity (S_N) . The S_N 1-type chemicals follow first-order 21 kinetics (e.g., ethylnitrosourea [ENU] and methylnitrosourea or [MNU]), while the S_N2-type 22 agents exhibit an intermediate transition state (e.g., EtO and methyl methanesulfonate [MMS]). 23 EtO is a direct-acting $S_N 2$ (substitution-nucleophilic-bimolecular)-type alkylating agent that 24 forms adducts with cellular macromolecules such as proteins (e.g., hemoglobin) and DNA. The 25 reactivity of an alkylating agent can be estimated by its Swain Scott substrate constant (s-value), 26 which ranges from 0 to 1 (Warwick, 1963). Alkylating agents such as EtO and MMS, which 27 have high "s" values (0.96 and >0.83, respectively), target the nucleophilic centers of ring nitrogens (e.g., N7 of guanine and N3 of adenine) in DNA, while agents such as ENU with a low 28 "s" values (0.26) target the less nucleophilic centers such as O^6 of guanine. EtO has a high 29 30 substrate constant favoring efficient alkylation at N7 of guanine (Beranek, 1990; Golberg, 1986; 31 Warwick, 1963). Due to the high nucleophilicity and steric availability of the N7 of guanine, EtO predominantly forms the N7-hydroxyethylguanine (N7-HEG) adduct, although minor 32 adducts such as those forming at O⁶ of guanine, N¹, N³, and N⁶ of adenine, and N³ of cytosine, 33

34 uracil and thymine are found in some instances (Segerbäck, 1994).

This document is a draft for review purposes only and does not constitute Agency policy.

C-2

1 Several methods have been developed since 1988 to detect EtO-induced DNA adducts in 2 vitro and in vivo. However, sensitivity and specificity of these methods have been the main 3 concern. These methods include immunochemical assays, fluorescence techniques, high 4 pressure liquid chromatography (HPLC), gas chromatography/mass spectrometry (GC/MS), 5 ³²P-postlabeling and electrochemical detection, with varying sensitivities for detection of 6 EtO-DNA adducts (Marsden et al., 2009; Huang et al., 2008; Tompkins et al., 2008; Marsden et 7 al., 2007; Bolt et al., 1997; Leclercq et al., 1997; Kumar et al., 1995; Saha et al., 1995; van Delft 8 et al., 1994; van Delft et al., 1993; Uziel et al., 1992; Bolt et al., 1988). In the following 9 paragraphs, a brief summary of available methods is provided to aid in the discussion of the 10 DNA adduct data.

11 van Delft et al. (1993) developed monoclonal antibodies against the imidazole ring of 12 N7-alkyldeoxyguanosine, with the limits of detection being 5–10, 1–2, and 20 adducts per 13 10⁶ nucleotides, respectively, when used in the direct and competitive enzyme-linked 14 immunosorbant assay and in immunofluorescence microscopy. Later the same authors 15 developed an immunoslot-blot assay with increased sensitivity that detected 0.34 N7-HEG adducts per 10⁶ nucleotides (van Delft et al., 1994). Kumar et al. (1995) developed a 16 ³²P-postlabeling method using thin-layer chromatography (TLC) and HPLC, which detected 17 18 0.1–1.0 fmol 7-alkylguanine adducts in rats exposed to different alkenes. Despite occasional 19 inefficient labeling and poor recovery of adduct due to depurination, this method has potential 20 for use in measuring human exposure to alkenes or their corresponding epoxides as well as the 21 endogenously formed 7-alkylguanine adducts.

22 Bolt et al. (1997) developed a HPLC method involving derivatization with phenylglyoxal 23 and fluorescence detection, using 7-methylguanine as an internal standard, for measuring the 24 physiological background of the N7-HEG adduct in DNA isolated from human blood. Using 25 this method, the authors were able to detect N7-HEG levels in five individuals ranging between 26 2.1 and 5.8 pmol/mg DNA (mean 3.2). Furthermore, Leclercq et al. (1997) developed a method 27 based on DNA neutral thermal hydrolysis, adduct micro-concentration, and HPLC coupled to single-ion monitoring electrospray mass spectrometry which has a detection limit of 1 fmol 28 (10^{-10} M) , allowing the detection of 3 adducts/ 10^8 normal nucleotides. Using this method, 29 30 Leclercq et al. (1997) detected a dose-response relationship for N7-HEG after exposing calf 31 thymus DNA and blood samples to various doses of EtO. Marsden et al. (2007) used a highly 32 sensitive LC-MS/MS assay with selected reaction monitoring that offers a limit of detection of 33 0.1 fmol of N7-HEG to establish background levels of N7-HEG (1.1–3.5 adducts/10⁸ 34 nucleotides) in tissues of rats. Huang et al. (2008) developed an isotope-dilution online solid-35 phase extraction and liquid chromatography coupled with tandem mass spectrometry method

This document is a draft for review purposes only and does not constitute Agency policy.

C-3

1 with reportedly excellent accuracy, sensitivity, and specificity to analyze N7-HEG in urine

- 2 samples of nonsmokers. This method also demonstrated high-throughput capacity for detecting
- 3 EtO-DNA adducts and may be particularly useful for future molecular epidemiology studies of
- 4 individuals with low-dose EtO exposure. Tompkins et al. (2008) used a high-performance liquid
- 5 chromatography/electrospray ionization tandem mass spectrometry and reported ~8 N7-HEG
- 6 adducts/ 10^8 nucleotides in the livers of control rats. This method was also capable of detecting
- 7 the less prevalent but potentially more biologically significant N1-hydroxyethyl-2'-
- 8 deoxyadenosine (N1-HEA), O⁶-hydroxyethyl-2'-deoxyguanosine (O⁶-HEG), N6-hydroxyethyl-
- 9 2'-deoxyadenosine (N6-HEA) and N3-hydroxyethyl-2'-deoxyuridine (N3-HEU) adducts.
- 10 However, these minor adducts were below the level of detection in control rat tissue DNA.
- 11 Overall, the sensitivity of EtO adduct detection depends on the method used for analysis.
- 12 Hence, use of appropriate methods is important when analyzing for these adducts and will be
- 13 highlighted in the following discussion.
- 14

15 C.1.1. Detection of EtO Adducts in In Vitro and In Vivo Systems

Numerous studies have been conducted to investigate the formation of DNA adducts
following EtO exposure, in a wide range of experimental models, including cell-free systems,
bacteria, fungi, *Drosophila* and experimental animals, as well as in exposed human subjects.
The following discussion is a review of the available studies of exposure to EtO and DNA adduct
formation in in vitro systems, laboratory animals, and humans (Boysen et al., 2009; Pauwels and
Veulemans, 1998; Bolt et al., 1988; Van Sittert and de Jong, 1985).

22

23 C.1.2. In Vitro DNA Binding Studies

24 The capacity of EtO to bind to DNA and form DNA adducts has been documented in a few in vitro studies. Segerbäck (1990) showed that ¹⁴C-labeled EtO reacted in vitro with calf 25 26 thymus DNA to produce N7-HEG adduct as the predominant adduct, with relatively low amounts of O⁶-HEG and N3-(2-hydroxyethyl)adenine (N3-HEA) adducts. The levels of 27 N3-HEA and O^6 -HEG are 4.4% and 0.5%, respectively, of the N7-HEG levels. Thus, the ratio 28 of N7-HEG, N3-HEA and O⁶-HEG produced in vitro was 200:8.8:1, respectively. In the same 29 30 study, the in vitro reaction products of radiolabeled N-(2-hydroxyethyl)-N-nitrosourea (HOEtNU) with calf thymus DNA exhibited a higher relative amount of O⁶-HEG, which was 31 63% of the N7-HEG formed. The difference in reactivity towards the N7 and O⁶ positions in 32 33 guanine by these two alkylating agents was explained by the difference in their "s" values. EtO, 34 with an s-value of 0.9, has a greater relative preference for reacting with N rather than O atoms 35 than does HOEtNU, with an *s*-values of 0.2.

- In another study, Li et al. (1992) observed that EtO in aqueous solution incubated with
 calf thymus DNA in vitro for 10 hours produced several 2-hydroxyethyl (HE) DNA adducts
 whose relative yields (nmol/mg DNA) were in the descending order: N7-HEG (330) > N3-HEA
- 4 (39) > N1-HEA (28), N6-HEA (6.2) > N3-HE-Cyt (3.1) > N3-HE-dThd (2.0) > N3-HEU (0.8).
- 5 This in vitro study did not detect the O^6 -HEG adduct.
- Recently, Tompkins et al. (2009) treated pSP189 shuttle vector plasmid to a range of EtO
 concentrations in water and reported that, of the five 2-hydroxyethyl DNA adducts measurable
- 8 using their LC-MS/MS analytical method, only the N7-HEG adduct was detectable at EtO
- 9 concentrations up to $2,000 \,\mu \text{M.}^5$ At the 10 mM concentration, the level of N7-HEG adducts was
- 10 about 19 times higher than that of N1-HEA adducts and about 1,000 times higher than that of
- 11 O⁶-HEG adducts. At 30 mM, N3-HEU adducts were detectable, but this adduct was not
- 12 quantifiable due to the lack of a suitable internal standard. Detection of the N3-HEU adduct
- 13 implies that the N3-HEC adduct is also formed, as the former is the hydrolytic deamination
- 14 product of the latter Tompkins et al. (2009). No results for the N^6 -HEA adduct were reported.
- 15 (N3-HEA, N3-HEC, and N3-HET adducts are not measurable by their method.)
- 16

17 C.1.3. In Vivo Studies—Animal Experiments

18 Several studies evaluated N7-HEG levels following one or a range of doses with repeated

- exposures of EtO given by inhalation or intraperitoneal injection in laboratory animals.
 Segerback (1983) showed that in male CBA mice exposed by inhalation to ¹⁴C-labeled EtO
- 20 Segerback (1983) showed that in male CBA lince exposed by inharation to C-labeled Eto 21 N7-HEG adducts are formed in spleen, testes and liver with half-lives of 24, 20, and 12 hours,
- 22 respectively.
- 23 Walker et al. (1990) conducted a time-course study to investigate the formation and
- 24 persistence of N7-HEG adducts in various tissues such as brain, kidney, liver, spleen, lung and
- kidney of male Fischer 344 rats exposed to one high dose of 300 ppm EtO by inhalation for
- 26 4 consecutive weeks (6 hours/day, 5 days/week) and sacrificed 1–10 days after the end of
- 27 exposure. The N7-HEG adduct was detectable in both target (brain, spleen and WBCs) and
- 28 nontarget (kidney, liver, lung, and testis) tissues with maximum levels (1.5 times control levels)
- 29 seen in brain compared to other tissues 1 day after exposure. The similarities in N7-HEG levels
- 30 in various tissues are possibly due to efficient pulmonary uptake of EtO and rapid distribution by
- 31 the circulatory system. The N7-HEG adduct levels increased linearly for 3–5 days followed by a
- 32 slow removal from DNA with an apparent half-life of 7 days, suggesting that the adduct was

⁵The minor adducts may have been present at levels below the limits of detection, which were as follows: 0.001/10⁶ nucleotides for N7-HEG and N1-HEA; 0.016/10⁶ nucleotides for O⁶-HEG; and 0.082/10⁶ nucleotides for N3-HEU (Tompkins et al., 2009).

This document is a draft for review purposes only and does not constitute Agency policy.

1 probably removed by spontaneous depurination. The calculated in vivo half-life for N7-HEG 2 formed by EtO confirms the persistence of this adduct and is consistent with another study in rats 3 exposed to another alkylating agent, N-nitrosomethyl-(2-hydroxyethyl)amine (Koepke et al., 4 1988). Walker et al. (1990) suggested that the similarity in N7-HEG formation in the target as 5 well as nontarget tissues could also be due to factors such as cell replication, location of the 6 adducts in the genome, and tissue susceptibility genes, which might be critical determinants 7 quantitatively affecting tissue-specific and/or dose-response relationships. 8 Using fluorescence-coupled HPLC, Walker et al. (1992a) measured N7-HEG levels in 9 DNA of target and nontarget tissues from male $B6C3F_1$ mice and F344 rats exposed to 0, 3, 10, 10 33, 100, or 300 (rats only) ppm EtO by inhalation for 4 weeks (6 hours/day, 5 days/week). 11 Another group of mice was exposed to 100 ppm EtO for 1, 3, 7, 14, or 28 days (5 days/week). 12 The authors reported linear dose-response relationships for N7-HEG in rat tissues following EtO 13 exposures between 10 and 100 ppm, with the slope increasing for exposures above 100 ppm. In 14 mice, only exposures to 100 ppm EtO resulted in significant increase in N7-HEG levels. Walker 15 et al. (1992a) observed N7-HEG adduct levels of 2-6 pmols/mg DNA in control mice and rats, 16 while in mice exposed to 100 ppm EtO, N7-HEG levels ranged from 17.5 ± 3.0 (testis) to 17 32.9 ± 1.9 (lung) pmol/mg DNA after 4 weeks of exposure. Rats and mice concurrently exposed 18 to 100 ppm EtO for 4 weeks showed two- to threefold lower N7-HEG levels in all tissues of 19 mice compared to rats, suggesting species differences in the susceptibility to EtO-induced 20 genotoxicity. The half-life of N7-HEG in mouse kidney DNA was 6.9 days, and in rat brain and 21 lung it was 5.4–5.8 days. The half-lives of N7-HEG adducts in DNA from other tissues of 22 mouse and rat were 1.0–2.3 days and 2.9–4.8 days, respectively. The authors suggested that the 23 slow linear removal of N7-HEG adducts from the DNA was mainly due to chemical 24 depurination, while the rapid removal was due to loss by depurination and DNA repair. Rats exposed to 300 ppm EtO showed O^6 -HEG adducts at a steady-state concentration of ~1 pmol/mg 25 26 DNA. Based on the results from rats and mice, the authors suggested that DNA repair was 27 saturated at the concentration of EtO used in the time-course studies and that repeated exposures 28 to lower concentrations of EtO should lead to species- and tissue-specific differences in the 29 levels of N7-HEG (Walker et al., 1992a). 30 Wu et al. (1999a) analyzed DNA from liver, brain, lung and spleen of B6C3F₁ mice and 31 F344 rats for N7-HEG adducts after exposure to EtO (0, 3, 10, 33, or 100 ppm) for 4 weeks

- 32 (6 h/day, 5 days/week). The authors observed tissue- and species-specific dose-response
- 33 relationships of N7-HEG adducts in the EtO-exposed animals. Mice showed linear
- 34 dose-response relationships for N7-HEG adducts in liver, brain and spleen at exposures between
- 35 3 and 100 ppm, and sublinear responses in lung between 33 and 100 ppm EtO exposure. Rats

1 showed linear increases in adduct levels in liver and spleen DNA between 3 and 100 ppm EtO, 2 and sublinear responses in the brain and lung between 33 and 100 ppm EtO exposure. Overall, 3 rats and mice exposed to 3 ppm EtO showed 5.3- to 12.5- and 1.3- to 2.5-fold higher N7-HEG 4 adducts, respectively, compared to the corresponding unexposed control animals. Thus, results 5 from this study suggest species differences, with rats being more susceptible to adduct formation 6 than mice, at lower levels of EtO exposure. This study also showed a clear difference in 7 N7-HEG levels between unexposed and exposed mice at these lower exposure levels, unlike the 8 study of Walker et al. (1992a) discussed above, which is possibly due to the use of a highly 9 sensitive gas chromatography high-resolution mass spectrometry (GCHRS) assay in the Wu et 10 al. (1999a) study.

11 van Sittert et al. (2000) exposed Lewis rats to 50, 100 and 200 ppm EtO by inhalation 12 (4 weeks, 5 days/week, 6 h/day) and measured N7-HEG adducts 5, 21, 35 and 49 days after 13 cessation of exposure. The authors used mass spectrometry following neutral thermal hydrolysis 14 of DNA to release the N7-HEG adducts, which clearly show a difference between control and 15 EtO-exposed rats. The mean levels of liver N7-HEG immediately after cessation of exposure to 50, 100, and 200 ppm were estimated by extrapolation to be 310, 558, and 16 1,202 adducts/ 10^8 nucleotides, respectively, while the mean level in control rats was 17 2.6 adducts/10⁸ nucleotides. By 49 days postexposure, N7-HEG adducts had returned to near 18 19 background levels. The N7-HEG levels in liver DNA showed a linear response between 0 and 20 200 ppm EtO, suggesting that detoxification and DNA repair processes were not saturated up to 21 the highest exposure level tested. The authors observed statistically significant linear 22 relationships between mean N7-HEG levels at "day 0" postexposure and (1) Hprt mutant 23 frequencies at expression times of 21/22 and 49/50 days postexposure, (2) SCEs at 5 days 24 postexposure, or (3) high-frequency cells measured 5 days postexposure. The authors also 25 observed that SCEs and high-frequency cells continued to be present at 21-days postexposure 26 and significantly correlated with N7-HEG adducts at that time. However, induction of 27 micronuclei, chromosome breaks or translocations did not show a dose-response relationship. 28 Nivard et al. (2003) showed that in male *Drosophila* flies EtO exposure (2–1,000 ppm) 29 by inhalation for 24 hours induced a linear dose-response relationship for N7-HEG adduct formation (0.15 to 105.4 adducts/ 10^6 nucleotides) over the entire dose range, as detected by 30 ³²P-postlabeling assay. The N7-HEG adducts were undetectable in controls (i.e., below the 31 32 detection limit of 1 adduct/ 10^8 nucleotides). 33 A study by Rusyn et al. (2005) tested the hypothesis that EtO exposure results in an

accumulation of apurinic/apyrimidinic (AP) sites in DNA and induces changes in expression of
 genes involved in DNA base excision repair (BER). The authors exposed male F344 rats by

This document is a draft for review purposes only and does not constitute Agency policy.

1 inhalation to 100 ppm EtO or ethylene (40 or 3,000 ppm) for 1, 3, or 20 days (6 h/day, 2 5 days/week) and sacrificed them 2, 6, 24, or 72 hours after a single-day exposure. Brain and 3 spleen were considered as target sites for EtO-induced carcinogenesis, and liver as a nontarget 4 organ. Rusyn et al. (2005) observed a time-dependent increase in N7-HEG in brain, spleen 5 (target organs) and liver (nontarget organ) and in N-(2-hydroxyethyl)valine (HEVal) adducts in 6 hemoglobin. However, they could not detect any increase in AP sites in control or EtO-exposed 7 rats for any given duration or dose of exposure. Rats exposed to EtO for 1 day showed a 8 threefold to sevenfold decrease in expression of the DNA repair enzyme 3-methyladenine-DNA 9 glycosylase in the brain and spleen, while rats exposed to EtO for 20 days showed increased 10 expression of hepatic 8-oxoguanine DNA glycosylase, 3-methyladenine-DNA glycosylase, AP 11 endonuclease, polymerase beta, and alkylguanine methyltransferase by 20–100%. Levels of 12 brain AP endonuclease and polymerase beta were increased by <20% only in rats exposed to 13 3,000 ppm ethylene for 20 days. Results from this study suggest that EtO-induced DNA damage 14 is repaired without accumulation of AP sites or involvement of the BER pathway in target 15 organs. The authors conclude that accumulation of AP sites is not likely a primary mechanism for mutagenicity and carcinogenicity of EtO, and further suggest that minor DNA adducts such 16 as O⁶-HEG or N1-HEA are likely to be involved in mutagenicity. In fact, in a previous study 17 from the same group (Walker et al., 1992a), steady-state concentrations of O⁶-HEG were 18 19 reported after 4 weeks of exposure with 300 ppm EtO, a finding which warrants further 20 investigation. 21 Marsden et al. (2007) have shown that intraperitoneal administration of a single or three

daily doses of EtO (0.01–1.0 mg/kg) induced dose-related increases in N7-HEG adduct levels in
male F344 rats, except at the lowest dose (0.01 mg/kg), where N7-HEG levels were similar to
endogenous levels detected in control animals. Further, they observed that N7-HEG adducts did
not accumulate in rats given three daily doses of EtO.

26 Recently, using a dual-isotope approach combining HPLC-accelerated mass spectrometry with LC-MS/MS analysis, Marsden et al. (2009) observed linear dose-response relationships for 27 (¹⁴C)N7-HEG adducts (0.002 to 4 adducts/10⁸ nucleotides) in spleen, liver and stomach DNA of 28 F344 rats after exposure to low, occupationally relevant concentrations of (¹⁴C)EtO (0, 0.0001, 29 30 0.0005, 0.001, 0.005, 0.01, 0.05, and 0.1 mg/kg daily for 3 consecutive days, with the rats killed 31 4 h after the last exposure). These results suggest that by using a highly sensitive assay, it is 32 possible to measure the N7-HEG adducts resulting from low EtO exposures above the 33 background adduct levels.

Otteneder and Lutz (1999) reviewed the quantitative relationship between DNA adduct
 levels and tumor incidence in rodents that received repeated administration of EtO. The authors

This document is a draft for review purposes only and does not constitute Agency policy.

1 observed a correlation with tumor incidence when the DNA adduct levels measured at a given 2 dose were normalized to the TD_{50} dose (the dose which results in 50% tumor incidence in a 3 two-year study). The calculated adduct level in mice associated with the hepatocellular TD_{50} 4 was 812 N7-HEG adducts/10⁸ normal nucleotides.

5

6 C.1.4. In Vivo Studies—Human Subjects

A few studies have examined the effect of EtO exposure on humans, particularly in
occupational settings, and these have been comprehensively reviewed by Kolman et al. (2002).
In that review, the authors examined the use of hemoglobin and DNA adducts as biomarkers of
EtO exposure and the roles of genetic polymorphisms and confounding factors. Kolman et al.
(2002) also described the genotoxic effects of EtO in mammalian cells and summarized the
genotoxic and carcinogenic effects of EtO in humans. Some of the relevant studies in humans
are briefly discussed below.

An immunoslot blot assay was used to analyze N7-HEG levels in white blood cell DNA from individuals exposed to EtO (2–5 ppm) and from controls van Delft et al. (1994). The authors reported 0.1 and 0.065 N7-HEG adducts/ 10^6 nucleotides, respectively, in EtO-exposed individuals (n = 42) and controls (n = 29) by this method. However, these differences were not statistically significant.

19 In a study involving 58 sterilizer operators exposed to low and high levels of EtO (\leq 32 20 and >32 ppm-hour, respectively) and 6 nonexposed controls from different hospitals, Yong et al. 21 (2007) examined N7-HEG adducts in granulocyte DNA. During the four-month study, the 22 cumulative exposure to EtO (ppm-hour) was estimated before the blood sample collection. After 23 adjusting for cigarette smoking and other potential confounders, the mean N7-HEG adduct levels 24 in the nonexposed, low-, and high-exposure groups were 3.8, 16.3, and 25 20.3 adducts/ 10^7 nucleotides, respectively, with considerable interindividual variation (range: 1.6-241.3 adducts/ 10^7 nucleotides). However, these differences in mean adduct level were not 26 27 statistically significant. The large variability across workers may reflect differences in their 28 recent exposure patterns because granulocytes have a lifespan of less than a day. Also, the study 29 did not find a significant correlation between the levels of N7-HEG adducts and HEVal adducts. 30 Mayer et al. (1991) observed an apparent suppression of DNA repair capacity in

31 EtO-exposed individuals as measured by the DNA repair index, i.e., the ratio of unscheduled

- 32 DNA synthesis and N-acetoxy-2-acetylaminofluorene (NA-AAF)-DNA binding, (p < 0.01). In
- this study, 34 sterilization unit workers of a large university hospital and 23 controls working in
- 34 the university library were used. Overall, this study demonstrates significant correlations

This document is a draft for review purposes only and does not constitute Agency policy.

- between EtO-induced hemoglobin adduct levels and SCEs and the number of high frequency
 cells, at low levels of EtO exposure (≤1 ppm), independent of smoking history.
 - 3

4 C.1.5. DNA Adducts—Summary

5 In summary, EtO predominantly forms N7-HEG adducts. Minor adducts are O⁶-HEG adducts and reaction products with N1, N3 and N^6 of adenine and with N3 of cytosine, uracil and 6 7 thymine in vitro. However, the minor adducts are not observed to the same extent in vivo, which 8 may reflect a limitation in the sensitivity of the adduct assays available to date. Repeated 9 inhalation exposure of EtO induces N7-HEG adducts in both target organs (brain, spleen, and 10 white blood cells) and nontarget organs (kidney, liver, and lung) in rodents, with an apparent 11 half-life of 3–6 days in rats and 1–3 days in mice (Walker et al., 1992a). The dose-response 12 relationship of N7-HEG and EtO exposure is influenced by the analytical method used, which 13 also affects the background (endogenous) levels of adducts observed in unexposed rodents. Steady-state levels of O^6 -HEG adducts (1 pmol/mg DNA) are detected in rats exposed by 14 inhalation to high doses of EtO (300 ppm) which are ~250-300 times lower than the N7-HEG 15 16 levels (Walker et al., 1992a). Although N7-HEG adducts are likely to be removed by 17 depurination forming apurinic/apyrimidinic (AP) sites, Rusyn et al. (2005) showed that DNA 18 damage induced by exposure to EtO is repaired without accumulation of AP sites and without 19 affecting base excision repair (BER) in target organs of Fischer rats. There are only two studies 20 available on EtO-induced DNA adducts in human populations. Although higher levels of 21 N7-HEG DNA adducts were observed in human white blood cells (van Delft et al., 1994) and 22 granulocytes (Yong et al., 2007) of exposed cases compared to controls, these differences were 23 not statistically significant, possibly due to high interindividual variability.

24

25 C.1.6. EtO-Hemoglobin Adducts

26 Several studies have shown that EtO-induced hemoglobin adducts (e.g., HEVal) are good 27 biomarkers of exposure for this compound in human studies and that predicted hemoglobin 28 adduct levels resulting from exposure to ethylene or EtO are in agreement with measured values 29 (Boogaard, 2002; Yong et al., 2001; Fennell et al., 2000; Tates et al., 1999; Walker et al., 1992a; 30 Britton et al., 1991). Csanady et al. (2000) found a good agreement between the predicted and 31 measured hemoglobin adduct levels in humans. However, in rodents, hemoglobin adducts were 32 under-predicted by a factor of 2 to 3, while DNA adduct levels were comparable, suggesting 33 inconsistencies between the two biomarkers. Walker et al. (1993) also observed that the 34 relationships between HEVal and N7-HEG concentrations varied with length of exposure, 35 interval since exposure, species, and tissue, which may be due to differences in formation,

This document is a draft for review purposes only and does not constitute Agency policy.

persistence, repair, and chemical depurination of the DNA adduct. Thus, Walker et al. (1993)
 suggested that HEVal adducts do not provide accurate prediction of DNA adducts in specific
 tissues of humans under actual exposure conditions. In summary, HEVal adducts do not appear

- 4 to be predictable markers for DNA adducts.
- 5

6 C.2. GENE MUTATIONS

7 EtO has consistently yielded positive results, at both the gene and chromosome levels, in 8 a broad range of in vitro and in vivo mutational assays, including those performed in bacteria, 9 fungi, yeast, insects, plants, *Drosophila* and rodents, in both repair-deficient and proficient 10 organisms, and in mammalian cell cultures, including cells from humans (reviewed inIARC, 11 2008; Kolman et al., 2002; Thier and Bolt, 2000; Natarajan et al., 1995; Vogel and Natarajan, 12 1995; IARC, 1994b; Dellarco et al., 1990). The results of in vivo studies on the mutagenicity of 13 EtO have also been consistently positive following ingestion, inhalation, or injection (e.g., Tates 14 et al., 1999). Increases in the frequency of gene mutations in the lung (LacI locus) (Sisk et al., 15 1997), in T-lymphocytes (*Hprt* locus) (Walker et al., 1997), and bone marrow and testes in 16 B6C3F₁ LacI transgenic mice (Recio et al., 2004) have been observed in mice exposed to EtO 17 via inhalation at concentrations similar to those used in the carcinogenesis bioassays (NTP, 18 1987), clearly documenting that EtO is a DNA-reactive mutagenic agent. Furthermore, 19 occupational studies provide evidence for the genotoxic potential of EtO.

20

21 C.2.1. Bacterial Systems

22 Studies have been conducted to investigate the ability of EtO to induce gene mutations in 23 bacterial systems. Victorin and Stahlberg (1988) treated Salmonella typhimurium strain TA100 24 with EtO at concentrations of 1–200 ppm for 6 hours and demonstrated that EtO was mutagenic 25 in this system. In another study, Agurell et al. (1991) compared EtO and propylene oxide (two 26 alkylating agents) for genotoxic effectiveness in various test systems. The abilities of the two 27 compounds to induce point mutations in S. typhimurium strains TA 100 and TA1535 were 28 approximately equal. EtO induced a dose-dependent increase in the number of revertants in both 29 tester strains. No toxic effects were observed under the conditions tested.

In contrast, Agurell et al. (1991) found EtO to be 5–10 times more effective than
 propylene oxide with respect to gene conversion and reverse mutation in the *Saccharomyces cerevisiae* D7 and *S. cerevisiae* RS112 strains. The greater effectiveness of EtO over propylene
 oxide in inducing these types of mutations was probably due to the difference in these
 compounds' abilities to cause strand breaks via alkylation of DNA-phosphate groups.

1 Mutagenicity studies of EtO have also been conducted using different *Escherichia coli* 2 strains. Kolman (1985) investigated the influence of the *uvrB* and *umuC* genes on the induction 3 of LacI-mutants and nonsense mutants by EtO in the LacI gene of E. coli and found that uvrB 4 gene mutation was associated with higher mutation frequencies whereas *umuC* mutation did not 5 significantly affect the induction of *LacI* mutations. Thus, mutations induced by EtO were 6 enhanced by a lack of excision repair but not influenced by changes in error-prone repair. In 7 another study by the same group of authors (Kolman and Näslund, 1987), the mutagenicity of 8 EtO in E. coli B strains with different repair capacities was investigated. Deficiencies in 9 excision repair (*uvrA*, *polA*) led to considerable increases in mutation frequency compared to the 10 wild-type strain and strains deficient in error-prone repair (*recA*, *lexA*). 11 The induction of specific-locus mutations in the *adenine-3 (ad-3)* region of a 12 two-component heterokaryon (H-12) of Neurospora crassa by EtO was studied by de Serres and 13 Brockman (1995). The objective of this study was to compare EtO's mutational spectrum for 14 induced specific-locus mutations with those of other chemical mutagens. Conidial suspensions 15 were treated with five different concentrations of EtO (0.1-0.35%) for 3 hours. The results from 16 these experiments showed (1) the dose-response curve for EtO-induced specific-locus mutations in the *ad-3* region was linear, with an estimated slope of 1.49 ± 0.07 , and (2) the maximum 17 forward-mutation frequency was between 10 and 100 ad-3 mutations per 10⁶ survivors. The 18 19 overall data demonstrate that EtO-induced *ad-3* mutations were the result of a high percentage 20 (96.9%) of gene/point mutations at the *ad-3A* and *ad-3B* loci. 21

22 C.2.2. Mammalian Systems

EtO has yielded positive results in virtually all in vitro mammalian cell culture systems tested, including human cells (IARC, 2008; Kolman et al., 2002; Thier and Bolt, 2000; Preston, Natarajan et al., 1995; Vogel and Natarajan, 1995; IARC, 1994b; Dellarco et al., 1990). Only select in vitro studies of human cells will be reviewed here. For reviews of other in vitro studies using mammalian cell cultures, see the aforementioned references.

28

29 C.2.2.1. In Vitro Studies

Single base pair deletion and base substitution (both transitions and transversions)
mutations were observed in the *HPRT* gene in human diploid fibroblasts exposed to EtO
(Bastlová et al., 1993). Sequence analysis revealed that EtO induces many different kinds of *HPRT* mutations—several mutants had large *HPRT* gene deletions, a few mutants showed
deletion of the entire *HPRT* gene, and other mutants had a truncated *HPRT* gene; overall, as
many as 50% were large deletions. In another study by the same group of authors (Lambert et

This document is a draft for review purposes only and does not constitute Agency policy.

7/2013

1 al., 1994), comparisons of the *HPRT* mutations in human diploid fibroblasts were made for three

- 2 urban air pollutants (acetaldehyde, benzo[a]pyrene, and EtO). Large genomic deletions in the
- 3 *HPRT* gene were observed for acetaldehyde and EtO, whereas benzo[a]pyrene induced point
- 4 mutations. The authors concluded that the *HPRT* locus could be a useful target for the study of
- 5 chemical-specific mutational events (Lambert et al., 1994).
- 6 The effect of EtO as a pretreatment or posttreatment to ionizing radiation was studied by
- 7 Kolman and Chovanec (2000). Human diploid VH-10 fibroblasts were either preexposed to
- 8 gamma rays (0.66 Gy/minute or 10 Gy/minute) and then treated with EtO (2.5 mMh) or
- 9 pretreated with EtO and then exposed to gamma rays. Cell killing/cytotoxicity, DNA
- 10 double-strand breakage, and mutagenicity were studied in both types of exposures. The results
- 11 of the study indicate that preexposure of the cells to gamma radiation (1 Gy) followed by
- 12 treatment with EtO (2.5 mMh) led to an additive interaction, irrespective of the dose rate. On the
- 13 other hand, pretreatment with EtO followed by gamma ray exposure resulted in an antagonistic
- 14 effect, which was most pronounced in the high-dose group (10 Gy/minute). In this group, the
- 15 mutant frequency was half that of the sum of the mutant frequencies after the individual
- 16 treatments. The authors suggest that one possible explanation for the difference in the results is
- 17 that DNA damage induced by preexposure to gamma radiation persisted into the EtO treatment
- 18 phase, and EtO might also prohibit DNA repair enzymes from operating, thus both treatments
- 19 contributed to the mutant frequency. However, when cells were exposed to gamma radiation
- 20 following EtO treatment, the cells may have been able to repair, at least in part, the promutagenic
- 21 lesions induced by the gamma rays.
- Tompkins et al. (2009) investigated the mutagenicity of EtO-derived DNA adducts in a 22 23 supF forward mutation assay. Aliquots of pSP189 plasmid containing the supF gene were 24 exposed to various concentrations of EtO in water to induce the formation of DNA adducts. The 25 plasmids were then transfected into human embryonic adenovirus-transformed kidney (Ad293) 26 cells and allowed to replicate to propagate any mutations. Replicated plasmids were isolated and 27 used to treat E. Coli indicator bacteria under conditions in which only bacteria containing the 28 plasmid can grow; nonmutant colonies appear dark blue and mutant colonies appear white or 29 pale blue. Two studies were conducted: Study 1, in which the plasmid was incubated with EtO 30 concentrations ranging from 10–2,000 µM at 22°C for 4 hours, and Study 2, in which the 31 plasmid was treated under "refined" conditions optimised to produce more of the minor 32 2-hydroxyethyl adducts, which involved incubation of the plasmid with EtO concentrations 33 ranging from 10–100 mM at 37°C for 24 hours. For Study 1, Tompkins et al. (2009) reported 34 that N7-HEG was the only detectable adduct of the five they measured (before transfection; see 35 Section C.1.2 above) and there was no clear exposure-response relationship for the relative
 - This document is a draft for review purposes only and does not constitute Agency policy.

mutation frequency. In Study 2, N1-HEA and O⁶-HEG adducts were also quantifiable, but at 1 2 lower levels than the N7-HEG adduct, and there was an apparent exposure-response relationship 3 for the relative mutation frequency for plasmids exposed to the 10 and 30 mM EtO 4 concentrations. Plasmids exposed to higher concentrations of EtO failed to produce any E. Coli 5 colonies; this was attributed to excessive strand breaks in the plasmid DNA at those 6 concentrations. For the DNA damage induced by EtO-derived adducts, this limitation in the assay imposes a short response range for the relative mutation frequency for the mutations 7 8 measured by the assay—the relative mutation frequency was 5.34 for plasmids exposed to 9 30 mM and no E. Coli colonies were produced with plasmids exposed to the next highest EtO 10 concentration of 50 mM, due to excessive DNA strand breaks.

11 Tompkins et al. (2009) concluded that EtO is a relatively weak mutagen and that their 12 results suggest that a certain level of total DNA adducts or of specific promutagenic adducts 13 must be achieved before mutations become detectable above background levels. However, 14 several issues pertaining to the study raise concerns about the interpretation of the results. For 15 example, two solvent controls were used in the study-Solvent Control 1 was prepared in "a 16 separate fume hood to totally exclude any possibility of [EtO] contamination" and Solvent 17 Control 2 was prepared "alongside the [EtO] reactions." Solvent Control 1 was used as the 18 referent group for the relative mutation frequency determinations. In two replicates, Solvent 19 Control 2 had a relative mutation frequency of 3.0 and 2.6 compared to Solvent Control 1. If this 20 difference reflects a real difference between the two different solvent control preparations, it 21 raises the possibility that cross-contamination may have been a problem and, if any 22 cross-contamination also occurred across the different EtO concentrations, this could have 23 dampened any exposure-response relationship. In addition, if the "refined conditions" for 24 plasmid treatment used to produce more of the minor (more directly promutagenic) adducts in 25 Study 2, which included incubation at a temperature more comparable to mammalian body 26 temperatures, had also been used for Study 1, a different adduct profile, and different relative 27 mutation frequencies, might have resulted. The authors themselves acknowledged that "[in] 28 order to categorically determine whether a threshold exists for [EtO] in this system, a more 29 detailed examination of the dose-response relationship using the optimised reaction protocol and 30 including more concentrations around the mutagenic range is needed" (Tompkins et al., 2009). 31 Moreover, there is uncertainty about the generalizability of mutagenicity results from this in vitro 32 experimental system to the mutagenicity and genotoxicity induced by EtO exposure in vivo; for 33 example, human embryonic adenovirus-transformed kidney cells were used for plasmid 34 replication and mutation production, but embryonic kidneys are not a known target for EtO 35 carcinogenesis.

This document is a draft for review purposes only and does not constitute Agency policy.

1 C.2.2.2. In Vivo Studies—Experimental Animals

2 The results of in vivo studies on the mutagenicity of EtO following ingestion, inhalation, 3 or injection have also been consistently positive (e.g., Tates et al., 1999). For example, increases 4 in the frequency of gene mutations in T-lymphocytes (*Hprt* locus) (Walker et al., 1997) and in 5 bone marrow and testes (LacI locus) (Recio et al., 2004) have been observed in transgenic mice 6 exposed to EtO via inhalation at concentrations similar to those in carcinogenesis bioassays with 7 this species (NTP, 1987). At somewhat higher concentrations than those used in the 8 carcinogenesis bioassays (200 ppm, but for only 4 weeks), increases in the frequency of gene 9 mutations have also been observed in the lung of transgenic mice (*Lacl* locus) (Sisk et al., 1997) and in T-lymphocytes of rats (Hprt locus) (van Sittert et al., 2000; Tates et al., 1999). These and 10 11 other key in vivo studies are discussed in more detail below.

12 An approach for determining mutational spectra in exon 3 of the Hprt gene in splenic 13 T-lymphocytes of B6C3F₁ mice was developed by Walker and Skopek (1993). Mice (12 days 14 old) were given 2, 6, or 9 single intraperitoneal (i.p.) injections of 100 mg/kg EtO every other 15 day or 30, 60, 90, or 120 mg/kg of EtO for 5 consecutive days to achieve different cumulative 16 doses. In mice exposed every other day, cumulative doses of 200, 600, and 900 mg/kg produced average mutant frequencies of 15×10^{-6} , 45×10^{-6} , and 73×10^{-6} , respectively, 8 weeks after 17 dosing began. However, in mice exposed daily, cumulative doses of 150, 300, 450, and 18 600 mg/kg yielded average mutant frequencies of 4×10^{-6} , 8×10^{-6} , 11×10^{-6} , and 16×10^{-6} , 19 20 weeks after initiation of dosing. Hprt mutants obtained from mice exposed to 600 or 20 21 900 mg/kg EtO were isolated and analyzed for mutations, specifically in exon 3. DNA 22 sequencing showed base-pair substitutions, transitions, and transversions. The results suggested 23 both modified guanine and adenine bases being involved in EtO-induced mutagenesis. 24 The same group of authors (Walker et al., 1997) studied the in vivo mutagenicity of EtO 25 at the *Hprt* locus of T-lymphocytes following inhalation exposure of male B6C3F₁ LacI 26 transgenic mice. Big Blue mice at 6-8 and 8-10 weeks of age were exposed to 0, 50, 100, or 27 200 ppm EtO for 4 weeks (6 h/day, 5 days/week). T-cells were isolated from the thymus and 28 spleen and cultured in the presence of concanavalin A, IL-2, and 6-thioguanine. Mice were 29 sacrificed at 2 hours, 2 weeks, and 8 weeks after exposure to 200 ppm EtO to determine a time 30 course for the expression of *Hprt*-negative lymphocytes in the thymus. The results of this study 31 showed that following 2 hours of exposure, the *Hprt* mutant frequency in the thymic 32 lymphocytes of the exposed mice was increased and reached an average maximum mutant frequency of $7.5 \pm 0.9 \times 10^{-6}$ at 2 weeks postexposure when compared to $2.3 \pm 0.8 \times 10^{-6}$ in the 33 thymic lymphocytes of control mice. Dose-related increases in *Hprt* mutant frequency were 34 35 found in thymic lymphocytes from mice exposed to 100 and 200 ppm EtO. Furthermore, a

This document is a draft for review purposes only and does not constitute Agency policy.

7/2013

DRAFT-DO NOT CITE OR QUOTE

greater mutagenic efficiency (mutations per unit dose) was found at higher concentrations than at
 lower concentrations of EtO in splenic T-cells. The average induced mutant frequencies in
 splenic T-cells were 1.6, 4.6, and 11.9 × 10⁻⁶ following exposures to 50, 100, or 200 ppm EtO,
 respectively. For the analysis of the *LacI* mutations, lymphocytes (both B- and T-cells) were

5 isolated from the spleen in the same animals. Two of three EtO-exposed mice at the 200 ppm

6 exposure level demonstrated an elevated *LacI* mutant frequency. The authors suggest that these

7 elevations were probably due to the in vivo replication of preexisting mutants and not to the

8 induction of new mutations associated with EtO exposure. The results of this study indicate that
9 repeated inhalation exposures to high concentrations of EtO produce dose-related increases in
10 mutations at the *Hprt* locus of T-lymphocytes in male *LacI* transgenic mice.

11 LacI mutant frequencies as a result of exposure to EtO were further investigated by Sisk 12 et al. (1997). Male transgenic LacI B6C3F₁ mice (n = 15) were exposed to 0, 50, 100, or 13 200 ppm EtO for 4 weeks (6 hours/day, 5 days/week) and were sacrificed at 0, 2, or 8 weeks 14 after the last EtO exposure. To determine the *LacI* mutant frequency, the *LacI* transgene was 15 recovered from several tissues, including lung, spleen, germ cells and bone marrow, selected 16 because they were the target sites for tumor formation (particularly lung tumors and lymphomas) 17 in chronic bioassays or germ cells. The results of this study indicate that the LacI mutant 18 frequency in lung was significantly increased at 8 weeks postexposure to 200 ppm EtO. In 19 contrast, no significant increase in the *LacI* mutant frequencies was observed in the spleen, bone 20 marrow or germ cells at either 2 or 8 weeks following exposure. These results suggest that a 21 4-week inhalation exposure to EtO is mutagenic in lung but not in other tissues examined under 22 similar conditions. The authors predict that the lack of mutagenic response in other tissues 23 examined is probably because of large deletions that were either not detected or recovered in the 24 current lambda-based shuttle vector systems. Based on the above study, the authors also suggest 25 that the primary mechanism of EtO-induced mutagenicity in vivo is likely through the induction 26 of deletions.

27 Tates et al. (1999) exposed rats to EtO via three routes: a single i.p. injection 28 (10-80 mg/kg), ingestion of drinking water (4 weeks at concentrations of 2, 5, and 10 mM), or 29 inhalation (50, 100, or 200 ppm for 4 weeks, 5 days/week, 6 hours/day). The goal of this study 30 was to measure the induction of *Hprt* mutations in splenic lymphocytes using a cloning assay. 31 Mutagenic effects of EtO following EtO administration via the three routes were compared in the 32 *Hprt* assay based on blood doses, which were determined from HEVal adduct levels in 33 hemoglobin. Exposure to EtO via both injection and ingestion of drinking water led to a 34 statistically significant dose-dependent induction of mutations (up to 2.3- and 2.5-fold increases 35 in mutant frequency compared to background, respectively). Exposure via inhalation also caused

1 a statistically significant increase in mutant frequency, although to a lesser extent (up to 1.4-fold 2 over background). Plotting of the mutagenicity data for the three exposure routes against blood 3 doses as a common denominator indicated that, at equal blood doses, the order of increased 4 mutant frequency was i.p. injection > ingestion (drinking water) > inhalation. In the injection 5 experiments, there was evidence for a saturation of detoxification processes at the highest doses, 6 although such effects were not seen following subchronic administration. Taken together, the 7 mutagenicity data from this study provide consistent results, showing that exposure to EtO gives 8 rise to a linear dose-dependent increase in mutant frequency.

9 In a study by Recio et al. (2004), male Big Blue (*LacI* transgenic) B6C3F₁ mice were 10 exposed to 0, 25, 50, 100, or 200 ppm EtO (6 hours per day, 5 days per week) for 12, 24, and 48 weeks. An unambiguous mutagenic response in the bone marrow was observed only after 11 48 weeks, with dose-related LacI mutant frequencies of 7.3×10^{-5} , 11.3×10^{-5} , 9.3×10^{-5} , 12 14.1×10^{-5} , and 30.3×10^{-5} . The mutagenic response in bone marrow is consistent with a linear 13 14 exposure-response relationship, contrary to the assertion by Recio et al. (2004) which appears to 15 be based on a misleading plotting scale. Mutant frequencies from testes (seminiferous tubules) were significantly greater than in controls at 25, 50, and 100 ppm (48-week exposure). No 16 17 difference between the control and treated groups was observed in the *LacI* mutant frequency 18 after 48 weeks of 200 ppm EtO exposure. The authors suggest that this was probably due to 19 testicular toxicity. Furthermore, a mutation spectrum analysis of induced mutations in bone 20 marrow indicated a decrease in mutations at G:C base pairs and an increase at A:T base pairs, 21 exclusively in A:T to T:A transversions; however, the mutation spectrum from testes was similar 22 to that of the untreated animals. The difference in mutation spectrum between the two tissues 23 was probably due to differences in the repair of the DNA adducts formed. 24

Mutations in oncogenes (*Kras, Hras*) and in the *p53* tumor suppressor gene have been 25 studied in tumor tissues of several types from $B6C3F_1$ mice exposed to EtO. Hong et al. (2007) 26 obtained tumor tissues from lung, harderian gland and uterus from a 2-year study (NTP, 1987) in 27 which male and female mice were exposed to 0, 50, or 100 ppm EtO by inhalation 6 hours/day, 28 5 days/week and from control mice from other NTP 2-year bioassays. The authors analyzed the 29 tissues for Kras mutations in codons 12, 13, and 61. A high frequency of Kras mutations 30 (23/23 examined, 100%) was observed in EtO-induced lung neoplasms compared to spontaneous 31 lung neoplasms (27/108, 25%). EtO-induced lung neoplasms predominantly exhibited 32 GGT-GTT mutations in codon 12 (21/23), a transversion that was rare in spontaneous lung 33 tumors (1/108). A similar spectrum of Kras mutations was detected in EtO-induced lung 34 neoplasms regardless of histological subtype (adenomas or carcinomas) or dose group. In the 35 case of Harderian gland neoplasms, a high frequency (18/21, 86%) of Kras mutations was

This document is a draft for review purposes only and does not constitute Agency policy.

1 detected in EtO-induced neoplasms compared to spontaneous tumors (2/27, 7%). The

- 2 predominant mutations in EtO-induced harderian gland neoplasms consisted of GGC to CGC
- 3 transversions at codon 13 and GGT to TGT transversions at codon 12, neither of which was
- 4 observed in the spontaneous tumors. When the six EtO-induced uterine neoplasms were
- 5 examined (there were no uterine tumors in the controls), the predominant mutation was a GGC to
- 6 GGT transition in codon 13 (5/6, 83%). Based on the above results, the authors propose that the
- 7 prominent targeting of guanine bases in the lung and harderian gland neoplasms suggests that the
- 8 formation of N7-HEG adducts by EtO plays a role in the induction of these tumors. The authors
- 9 further propose that EtO can specifically target the *Kras* gene in multiple types of tissues and that
- 10 this is a critical component of EtO-induced tumorigenesis and is of potential relevance to
- 11 humans.
- 12 In an earlier study by the same group of authors (Houle et al., 2006), mammary
- 13 carcinoma tissues from the same NTP study of mice exposed to EtO (0, 50, or 100 ppm)
- 14 mentioned above were examined for p53 protein expression and for *p53* (exons 5-8) and *Hras*
- 15 (codon 61) mutations. The authors supplemented the number of spontaneous mammary
- 16 carcinomas with tissues from female control mice in other NTP studies. P53 protein expression
- 17 was detected in 67% (8/12) of the EtO-induced mammary carcinomas and 42% (8/19) of the
- 18 spontaneous tumors; however, expression levels were about 6-times higher in the EtO-induced
- 19 than in the spontaneous tumors. *P53* mutations were observed in 67% (8/12) of the EtO-induced
- 20 mammary carcinomas and 42% (8/19) of the spontaneous tumors. Hras mutations were detected
- 21 in 33% (4/12) of the EtO-induced mammary carcinomas and 26% (5/19) of the spontaneous
- tumors of the samples. While the mutation levels for these two genes were not substantially
- 23 elevated in the EtO-induced mammary carcinomas compared to the spontaneous tumors, a shift
- 24 in the mutational spectrum was observed, with EtO-induced *Hras* mutations exhibiting a
- 25 preference for A-to-G and A-to-T transversions while spontaneous *Hras* mutations exhibited a
- 26 preference for C-to-A transversions and EtO-induced *p53* mutations exhibiting a base preference
- 27 for guanine while spontaneous *p53* mutations exhibited a preference for cytosine. In addition,
- 28 concurrent *Hras* and *p53* mutations were more common in the EtO-induced tumors than in the
- 29 spontaneous tumors. Based on the results of the above two studies, it is suggested that the purine
- 30 bases serve as primary targets for mutations induced by EtO, while mutations of these genes
- 31 involving cytosine appears to be a more common spontaneous event.
- In vivo exposure to EtO also induced heritable mutations or effects in germ cells in rodents (IARC, 1994b). EtO induces dominant lethal effects in mice and rats and heritable translocations in mice (Generoso et al., 1990; Lewis et al., 1986). Generoso et al. (1988);
- 35 Generoso et al. (1986) have reported that short bursts of EtO at high concentrations, such as

1 those that may occur in the workplace, may present a greater risk to germ cell damage than

2 cumulative, long-term exposure to lower levels.

3 Dominant-lethal mutations were investigated by Generoso et al. (1986) by conducting 4 two studies (dose response and dose rate) in mice exposed to different doses of EtO. 5 Dominant-lethal responses were assessed based on matings involving sperm exposed as late 6 spermatids and early spermatozoa, since these are the stages most sensitive to EtO exposure. In 7 the dose-response study, male mice were exposed by inhalation to 300 ppm, 400 ppm, or 8 500 ppm EtO, 6 hours per day, for 4 consecutive days. A dose-related increase in 9 dominant-lethal mutations was observed. In the dose-rate study, mice were given a total 10 exposure of 1,800 ppm \times hours per day, also for 4 consecutive days, delivered either as 300 ppm 11 in 6 hours, 600 ppm in 3 hours, or 1,200 ppm in 1.5 hours. Dominant-lethal responses increased 12 with increasing concentration level, indicating a dose-rate effect for the production of 13 dominant-lethal mutations.

14

15 C.2.2.3. in Vivo Studies—Humans

16 In humans, workers occupationally exposed to EtO have been studied using different 17 physical and biological measures (Tates et al., 1991). Blood samples from 9 hospital workers 18 and 15 factory workers engaged in sterilization of medical equipment with EtO and from 19 matched controls were collected. Average exposure levels during 4 months (the lifespan of 20 erythrocytes) prior to blood sampling were estimated from levels of HEVal adducts in 21 hemoglobin. The adduct levels were significantly increased in hospital workers and factory 22 workers and corresponded to a 40-hour time-weighted average of 0.025 ppm in hospital workers 23 and 5 ppm in factory workers. Exposures were usually received in bursts, with EtO 24 concentrations in air ranging from 22 to 72 ppm in hospital workers and 14 to 400 ppm in factory 25 workers. All blood samples were analyzed for HPRT mutant frequencies, chromosomal 26 aberrations, micronuclei and SCEs. Mutant frequencies were significantly increased in factory 27 workers but not in hospital workers. The chromosomal aberration and SCE results are discussed 28 in the respective sections below.

The same authors (Tates et al., 1995) conducted another study of workers in an EtO production facility. *HPRT* mutations were measured in three exposed groups and one unexposed group (seven workers per group). Contrary to the earlier study, no significant differences in mutant frequencies were observed between the groups; however, the authors stated that about 50 subjects per group would have been needed to detect a 50% increase.

Major et al. (2001) measured *HPRT* mutations in female nurses employed in hospitals in
 Eger and Budapest, Hungary. This study was conducted to examine a possible causal

This document is a draft for review purposes only and does not constitute Agency policy.

relationship between EtO exposure and a cluster of cancers (mostly breast) in nurses exposed to
 EtO in the Eger hospital. Controls were female hospital workers in the respective cities. The
 mean peak levels of EtO were 5 mg/m³ (2.7 ppm) in Budapest and 10 mg/m³ (5.4 ppm) in Eger.
 HPRT variant frequencies in both controls and EtO-exposed workers in the Eger hospital were

5 higher than either group in the Budapest hospital, but there was no significant increase among

- 6 the EtO-exposed workers in either hospital when compared with the respective controls.
- 7 8

C.2.3. Gene Mutations—Summary

9 In summary, there is sufficient evidence for mutagenicity of EtO in various organisms 10 (prokaryotes, eukaryotes, in vitro and in vivo in rodents and in vitro in human cells) tested in a 11 variety of mutational assays. In addition, increases in mutations in specific oncogenes and tumor 12 suppressor genes in EtO-induced mouse tumors have been reported. Dominant-lethal mutations 13 have also been observed in several in vivo studies. Although data in humans are limited, there is 14 some evidence of increased frequencies of mutations from occupational studies.

15

16 C.3. CHROMOSOMAL ABERRATIONS

17 The induction and persistence of EtO-induced chromosomal alterations have been studied 18 both in in vitro and in vivo systems in rodent and monkey models (Lorenti Garcia et al., 2001; 19 Farooqi et al., 1993; Lynch et al., 1984b; Kligerman et al., 1983). In addition, several studies 20 examined the association of chromosomal aberrations and EtO exposure in humans (WHO, 21 2003; Lerda and Rizzi, 1992; Galloway et al., 1986; Clare et al., 1985; Sarto et al., 1984a; 22 Stolley et al., 1984; Pero et al., 1981; Thiess et al., 1981). Chromosomal aberrations have been 23 linked to an increased risk of cancer in several large prospective studies (e.g., Boffetta et al., 24 2007; Rossner et al., 2005; Hagmar et al., 2004; Liou et al., 1999). This section discusses key 25 studies on EtO and chromosomal aberrations. 26 Lorenti Garcia et al. (2001) studied the effect of EtO on the formation of chromosomal 27 aberrations in rat bone-marrow cells and splenocytes following in vivo exposure. Rats were 28 exposed to EtO either chronically by inhalation (50–200 ppm, 4 weeks, 5 days/week, 29 6 hours/day) or acutely by i.p. injection at dose levels of 50–100 ppm. Frequencies of both 30 spontaneous and EtO-induced chromosomal aberrations (and other endpoints, such as 31 micronucleus formation and SCEs, which are discussed in Sections 3.3.2.4 and 3.3.2.5) were 32 determined in the splenocytes and bone-marrow cells following in vivo mitogen stimulation. No

- 33 significant increase in chromosomal aberrations was observed from the chronic or acute
- 34 exposures. In another study, by Kligerman et al. (1983), no increase in chromosomal

This document is a draft for review purposes only and does not constitute Agency policy.

7/2013

1 aberrations was observed in peripheral blood lymphocytes from rats exposed to EtO by 2 inhalation at concentrations of either 50, 150, or 450 ppm, for 6 hours per day, for 1 and 3 days. 3 A recent study by Donner et al. (2010) in mice, however, showed clear, statistically 4 significant increases in chromosomal aberrations with longer durations of exposure (≥ 12 weeks). 5 Male B6C3F₁ mice were exposed by inhalation to 0, 25, 50, 100, or 200 ppm EtO, 5 days/week, 6 6 hours/day, for 6, 12, 24, or 48 weeks. The frequency of total chromosomal aberrations in 7 peripheral blood lymphocytes was statistically significantly increased after 12 weeks exposure to 8 100 or 200 ppm EtO. By 48 weeks, statistically significant increases were observed for all the 9 exposure groups. In addition, reciprocal translocation frequencies were statistically significantly 10 increased in spermatocytes for all the exposure groups at 48 weeks. Ribeiro et al. (1987) 11 similarly observed chromosomal aberrations in mouse bone marrow cells and spermatocytes 12 following 1-day and 2-week inhalation exposures to higher levels of EtO. Male Swiss Webster 13 mice were exposed to 0, 200, 400, or 600 ppm EtO for 6 hours in 1 day or to 0, 200, or 400 ppm 14 EtO for 6 hours/day, 5 days/week, for 2 weeks. Statistically significant increases in 15 chromosomal aberrations were observed in bone marrow cells and in spermatocytes following a 16 1-day exposure of 400 or 600 ppm EtO or a 2-week exposure of 200 or 400 ppm EtO. 17 Chromosomal aberrations in bone marrow cells were also reported in a study of acute EtO 18 exposure in mice (Farooqi et al., 1993). Female Swiss albino mice were administered single 19 doses of EtO in the range of 30–150 mg/kg by i.p. injection. A dose-related increase in 20 chromosomal aberrations in the bone marrow cells was observed. 21 Chromosomal aberrations induced by long-term exposures to inhaled EtO were also 22 investigated in the peripheral lymphocytes of cynomolgus monkeys (Lynch et al., 1984b). 23 Groups of 12 adult male monkeys were exposed at 0, 50, or 100 ppm EtO (7 hours/day, 24 5 days/week) for 2 years. Exposure to EtO at 100 ppm resulted in statistically significant 25 increases in chromosome-type aberrations in monkey lymphocytes, and exposure at both 50 and 26 100 ppm resulted in statistically significant increases in chromatid-type aberrations and in 27 chromosome- and chromatid-type aberrations in combination. No differences in the number of 28 gaps were found. 29 Increases in chromosomal aberrations in peripheral blood lymphocytes have been 30 consistently reported in studies of workers exposed to high occupational concentrations of EtO 31 (>5 ppm, TWA). Effects observed at lower concentrations have been mixed (WHO, 2003). 32 Chromosomal aberrations that have been detected in the peripheral blood lymphocytes of 33 workers include breaks, gaps, and exchanges and supernumerary chromosomes (Lerda and Rizzi,

34 1992; Galloway et al., 1986; Clare et al., 1985; Sarto et al., 1984a; Pero et al., 1981; Thiess et al.,

C-21

35 1981).

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

1 Clare et al. (1985) conducted chromosomal analyses of lymphocytes from 33 workers 2 employed in the manufacture of EtO. A slightly higher frequency of chromatid aberrations was 3 observed in workers exposed to EtO than in controls. Further, a positive correlation between 4 length of employment in the EtO-exposed group and the number of aberrations was observed. In 5 another study, Galloway et al. (1986) analyzed chromosomal aberration frequencies in 6 61 employees potentially exposed to EtO. Three work sites (I, II and III) with different historical 7 ambient levels of EtO were chosen for the study. Blood samples were drawn over a 24-month 8 period and aberrations were analyzed in 100 cells per sample after culture for 48–51 hours. At 9 work sites I and II, no consistent differences in aberration frequencies were found. However, at 10 work site III, aberration frequencies in potentially exposed individuals were significantly increased when compared with controls. A previous study by the same group (Stolley et al., 11 12 1984) showed an association between SCE frequency and EtO exposure. When the aberrations 13 were compared with the levels of SCEs, the authors found a weak overall association. In 14 addition, Lerda and Rizzi (1992) showed a significant increase in chromosomal aberration 15 frequencies in EtO-exposed individuals when compared with controls. Major et al. (1996) 16 studied hospital nurses exposed to low doses and high doses of EtO to identify changes in 17 structural and numerical chromosomal aberrations. Chromosomal aberrations were found to be 18 significantly elevated in both the low-dose and the high-dose exposure groups. Deletions and, to 19 a lesser extent, chromatid exchanges and dicentrics were detected in the low-dose exposure 20 group; however, in the high-dose group, in addition to the increased number of deletions, the 21 frequencies of dicentrics and rings showed a significant excess when compared with controls. 22 The authors suggest that a natural radioactivity from local tap water may have been a 23 confounding factor.

24 A study by Sarto et al. (1984a) showed significant increases in chromosomal aberrations 25 after exposure to EtO. Chromosomal aberrations were detected in the peripheral lymphocytes of 26 41 workers exposed to EtO in the sterilizing units of eight hospitals in the Venice region 27 compared to 41 age- and smoking-matched controls. In another study of 28 EtO-exposed 28 sterilizer workers and 20 unexposed controls, Högstedt et al. (1983) reported a statistically 29 significant increase in total chromosomal aberrations and gaps, but not breaks, in the peripheral 30 blood lymphocytes of the exposed workers, adjusted for age, smoking, drug intake, and exposure 31 to ionizing radiation; no significant increases in chromosomal aberrations were observed in bone 32 marrow cells. Tates et al. (1991) reported a significant increase in chromosomal aberrations in 33 hospital workers and in factory workers (details of this study are provided in the section on gene 34 mutations above). Tompa et al. (2006) reported statistically significant increases in 35 chromosomal aberrations and SCEs in 66 Hungarian hospital nurses exposed to sterilizing gases

This document is a draft for review purposes only and does not constitute Agency policy.

1 in uncontrolled environments compared to 94 nonexposed controls; however, it is difficult to sort

2 out any effects of EtO exposure from possible effects from smoking or exposure to ionizing

3 radiation or to formaldehyde or other possible sterilizing gases in this study.

In summary, the above data clearly indicate that EtO is genotoxic and can cause a variety
of chromosomal aberrations, including breaks, gaps and exchanges (reviewed in detail in
Preston, 1999). Chromosomal aberrations have been observed in both in vitro and in vivo
studies in rodent models and mammalian cells. Increases in chromosomal aberrations in
peripheral blood lymphocytes have been consistently reported in studies of workers exposed to
EtO.

- 10
- 11 C.4. MICRONUCLEUS FORMATION

12 Micronucleus formation also demonstrates the genotoxic effects of a chemical. When 13 appropriate methods are used to identify the origin of the micronucleus (kinetochore-positive or 14 kinetochore-negative), this assay can provide information about a chemical's mechanism of 15 action (e.g., if a chemical causes direct DNA damage resulting from strand breaks [clastogen] or 16 indirect numerical changes [aneugen] resulting from spindle disruption). An association between 17 increased micronucleus frequency and cancer risk has been reported in at least one large 18 prospective study (Bonassi et al., 2007). Several in vitro and in vivo studies in both laboratory 19 animals (Lorenti Garcia et al., 2001; Jenssen and Ramel, 1980; Appelgren et al., 1978) and 20 humans (Ribeiro et al., 1994; Schulte et al., 1992; Mayer et al., 1991; Tates et al., 1991; Sarto et 21 al., 1990; Högstedt et al., 1983) have been conducted to explore the induction of micronuclei as a 22 result of exposure to EtO.

23 Lorenti Garcia et al. (2001) studied the effect of EtO on the formation of micronuclei in 24 rat bone marrow cells and splenocytes following in vivo exposure. Rats were exposed to EtO 25 either subchronically by inhalation (50-200 ppm, 5 days/week, 6 hours/day, for 4 weeks) or 26 acutely by i.p. injection at dose levels of 50 or 100 mg/kg. Spontaneous and induced frequencies 27 of micronuclei were determined in the bone marrow cells (only for acute EtO exposure) and 28 splenocytes following in vitro mitogen stimulation. Following chronic exposure, no significant 29 increase in micronuclei was observed in rat splenocytes. Following acute exposure, micronuclei 30 increased significantly in rat bone marrow cells as well as splenocytes.

In the Högstedt et al. (1983) study of 28 EtO-exposed sterilizer workers and unexposed controls discussed in Section C.3, a statistically significant increase in micronuclei was observed in bone marrow cells (erythroblasts and polychromatic erythrocytes), but not in lymphocytes, in the exposed workers, adjusted for age, smoking, drug intake, and exposure to ionizing radiation.

1 The frequency of micronuclei in peripheral blood cells was increased in workers exposed

- 2 to relatively high $(3.7-60.4 \text{ mg/m}^3)$ levels of EtO (Ribeiro et al., 1994; Tates et al., 1991).
- 3 Schulte et al. (1992) did not observe increased micronuclei in the lymphocytes of hospital
- 4 workers with low levels of EtO exposure (up to 2.5 mg/m^3 8-hour TWAs). Sarto et al. (1990)
- 5 studied micronucleus formation in human exfoliated cells of buccal and nasal cavities to monitor
- 6 the genotoxic risk in a group of workers (n = 9) chronically exposed to EtO (concentrations
- 7 lower than 0.38 ppm as time-weighted average). The mean frequencies of micronucleated
- 8 buccal cells were similar to control values. The frequency of nasal micronucleated cells was
- 9 higher than in controls (0.77 vs. 0.44); however, the difference was not statistically significant.
- 10 In another group of three subjects that were acutely exposed (concentration not provided) to EtO,
- 11 buccal cavity and nasal mucosa samples were taken 3, 9, or 16 days after acute exposure. The
- 12 frequencies of micronucleated buccal cells did not change, while the frequencies of
- 13 micronucleated nasal cells significantly increased.
- 14 Peripheral blood cells of 34 EtO-exposed workers at a sterilization plant and

15 23 unexposed controls were assessed for different biological markers, such as EtO-hemoglobin 16 adducts, SCEs, micronuclei, chromosomal aberrations, DNA single-strand breaks and an index 17 of DNA repair (Mayer et al., 1991). Neither chromosomal aberrations nor micronuclei differed 18 significantly by exposure status, whether or not adjusted for smoking status.

- In summary, increases in the frequency of micronuclei have been observed in in vivo animal studies. The frequency of micronuclei in peripheral blood cells was also increased in workers exposed to relatively high (3.7–60.4 mg/m³) levels of EtO (Ribeiro et al., 1994; Tates et al., 1991). However, in the majority of human studies involving exposures at lower levels, no effects on the frequency of micronuclei were observed. Apparent inconsistencies in the data could reflect the influence of peak exposures, differences in exposure measurement errors, duration of exposure and/or smoking status.
- 26

27 C.5. SISTER CHROMATID EXCHANGES (SCES)

There is a significant body of evidence for the induction of SCEs as a result of exposure to EtO. Studies have been conducted both in laboratory animals (Lorenti Garcia et al., 2001; Ong et al., 1993; Kelsey et al., 1988; Lynch et al., 1984b; Kligerman et al., 1983; Yager and Benz, 1982) and in humans (Agurell et al., 1991; Galloway et al., 1986; Laurent et al., 1984; Sarto et al., 1984a, b; Stolley et al., 1984; Yager et al., 1983; Garry et al., 1979). In particular, several occupational exposure studies have yielded positive results when EtO-exposed workers were studied. The following is a summary of both the animal and human studies.

1 Inhalation studies with rats have shown that exposures to EtO at 50 ppm or more for 2 3 days result in an increase in SCEs in peripheral blood lymphocytes (Kligerman et al., 1983). 3 Increased incidences of SCEs in the peripheral blood lymphocytes of monkeys exposed to EtO at 4 500 or 100 ppm were also reported by Lynch et al. (1984b). A follow-up study in these same 5 monkeys by Kelsey et al. (1988) indicated that the high SCE counts persisted for 6 years after 6 exposure.

7 Lorenti Garcia et al. (2001) studied the effect of EtO on the persistence of SCEs in rat 8 bone marrow cells and splenocytes following in vivo exposure. Rats were exposed to EtO either 9 chronically by inhalation (50–200 ppm, 5 days/week, 6 h/day, for 4 weeks) or acutely by i.p. 10 injection at dose levels of 50 or 100 mg/kg. Frequencies of SCEs were determined in the bone 11 marrow cells and splenocytes after in vitro mitogen stimulation. Following chronic exposure, 12 cytogenetic analyses were carried out at days 5 and 21 in the splenocytes. In these experiments, 13 EtO was effective in inducing SCEs, and marked increases in cells with high frequency SCEs 14 were observed which persisted until day 21 postexposure. Following acute exposure, SCEs were 15 increased significantly in rat bone marrow cells as well as splenocytes.

16 New Zealand white male rabbits (n = 4) were exposed in inhalation chambers to 0, 10, 17 50, and 250 ppm EtO for 6 hours a day, 5 days a week, for 12 weeks (Yager and Benz, 1982). 18 Peripheral blood samples were drawn in three regimes (before the start of exposure, at intervals 19 during exposure, and up to 15 weeks after the end of exposure) to measure SCE rates. No 20 change in SCE rates was observed from exposure to 10 ppm; however, an increase was seen after 21 exposure to 50 and 250 ppm. Above-baseline levels were observed even after 15 weeks 22 postexposure, although the levels were not as high as during exposure. These results indicate 23 that inhalation exposure to the EtO results in a dose-related increase in SCEs.

24 The ability of long-term exposures to inhaled EtO to induce SCEs in peripheral 25 lymphocytes of monkeys was investigated by Lynch et al. (1984b). Groups of 12 adult male 26 cynomolgus monkeys were exposed at 0, 50, or 100 ppm EtO (7 hours/day, 5 days/week) for 27 2 years. Statistically significant increases in SCE rates were observed in monkey lymphocytes in 28 both exposure groups. Both exposure groups had increased numbers of SCEs/metaphase as

29 compared to controls, and these numbers increased in a dose-dependent manner.

30 In an in vitro study of human cells, peripheral lymphocyte cultures were exposed to 31 methyl bromide, EtO, and propylene oxide, as well as diesel exhaust (Tucker et al., 1986). SCE 32 frequency was measured, and the frequency more than doubled in the cultures treated with EtO. 33 Agurell et al. (1991) also studied the effect of EtO on SCEs in human peripheral blood 34 lymphocytes in vitro. An increase in SCE frequency was observed as a result of exposure 35

(0–20 mMh) to EtO. Similarly, Hallier et al. (1993) observed that the frequency of SCEs in

This document is a draft for review purposes only and does not constitute Agency policy.

1 human peripheral blood lymphocytes exposed in vitro to EtO was higher in cells isolated from

2 individuals expressing low levels of glutathione S-transferase T1 than in cells from subjects

3 expressing higher levels of this enzyme.

Several studies of EtO-exposed workers have also reported an increased incidence of
SCEs in peripheral lymphocytes (e.g., Schulte et al., 1992; Galloway et al., 1986; Sarto et al.,
1984a, b; Yager et al., 1983; Garry et al., 1979), although the Högstedt et al. (1983) study
discussed in Sections C.3 and C.4 did not report significant increases in SCEs in the lymphocytes
of the exposed workers.

9 Garry et al. (1979) analyzed SCEs in lymphocytes cultured from EtO-exposed individuals 10 as well as comparable controls. Significant increases in SCEs were observed at 3 weeks and at 11 8 weeks following exposure. Although this study does not describe the exact exposure estimates, 12 EtO was recognized as a mutagenic or genotoxic agent. Laurent et al. (1984) studied SCE 13 frequency in workers exposed to high levels of EtO in a hospital sterilization service. Blood 14 samples were obtained retrospectively from a group of 25 subjects exposed to high levels of EtO 15 for a period of 2 years. A significant increase in SCEs was observed in the exposed group when 16 compared with the control group. The authors concluded that the effect of exposure to EtO was 17 sufficient to produce a cumulative and, in some cases, a persistent genetic change.

Peripheral blood lymphocytes of nurses exposed to low and high concentrations of EtO
were studied by Major et al. (1996). SCEs were slightly elevated in the low-exposure group but
were significantly increased in the high-exposure group. Similarly, several studies by Sarto et al.
(1991); Sarto et al. (1990); Sarto et al. (1987); Sarto et al. (1984a, b) showed significant
increases in SCEs.

23 Tates et al. (1991) studied workers occupationally exposed to EtO using different 24 physical and biological measures. Blood samples from 9 hospital workers and 15 factory 25 workers engaged in sterilization of medical equipment with EtO and from matched controls were 26 collected. Exposures were usually received in bursts, with EtO concentrations in air ranging 27 from 22 to 72 ppm in hospital workers and 14 to 400 ppm in factory workers. The mean 28 frequency of SCEs was significantly elevated by 20% in hospital workers and by almost 100% in 29 factory workers. In contrast, no significant increase in SCEs was observed in lymphocytes of 30 workers who were accidentally exposed to high concentrations of EtO or of workers with low 31 exposure concentrations (Tates et al., 1995). 32 Schulte et al. (1992) observed a statistically significant increase in SCEs in 43 workers

exposed to EtO in U.S. hospitals compared to 8 unexposed hospital workers. The frequency of
 SCEs was also significantly associated with cumulative EtO exposure in a regression analysis
 that controlled for various potential confounding factors, including smoking. A similar

1 relationship was not observed in 22 Mexican hospital workers. Schulte et al. (1992)

2 hypothesized that the difference may have been due to longer shipping times of the Mexican

3 specimens for the cytogenetic assays.

In summary, significant increases in the frequency of SCEs were observed in rats and in monkeys both by inhalation and i.p. injection. In humans, multiple occupational studies have reported positive responses, with significant increases in frequency of SCEs in peripheral blood lymphocytes having been observed among individuals exposed to higher levels of EtO. In some studies, increases in the frequency of SCEs have been observed to persist after exposure has ceased. The results of studies of individual workers exposed to very low levels (<0.9 mg/m³) of EtO have been mixed.

11

12

2 C.6. OTHER ENDPOINTS (GENETIC POLYMORPHISM, SUSCEPTIBILITY)

13 Dose-dependent effects of polymorphisms in the genes for epoxide hydrolase (EPHX1), 14 different subfamilies of glutathione-S-transferase (GSTM1, GSTP1, GSTT1) and various DNA 15 repair enzymes (hOGG1, XRCC1, XRCC3) on EtO-induced genotoxicity were evaluated by 16 Godderis et al. (2006). Peripheral blood mononuclear cells from 20 individuals were exposed to 17 3 doses of EtO (0.45, 0.67, 0.9 mM), and genotoxicity was evaluated by measuring comet tail 18 length and micronucleus frequencies in binucleated cells (MNBC). A dose-dependent increase 19 in tail length (indicating DNA strand breaks) was observed in exposed individuals compared to 20 controls. No change in MNBC was observed. None of the epoxide hydrolase or glutathione-S-21 transferase polymorphisms had a significant influence on the tail length or MNBC results for any 22 EtO dose. Further analysis revealed a significant contribution of the *hOGG1* (involved in base 23 excision repair) and XRCC3 (involved in repair of cross-links and chromosomal double-strand 24 breaks) genotypes to the interindividual variability of EtO-induced increases in tail length. 25 Homozygous $hOGGI^{326}$ wild-type cells showed significantly lower effects of EtO on tail length compared to the heterozygous cells. Also, significantly higher tail lengths were found in 26 EtO-exposed cells carrying at least one variant *XRCC3²⁴¹* Met allele. For the latter effect, there 27 was a significant interaction between the $XRCC3^{241}$ polymorphism and dose, signifying a greater 28 29 impact of the polymorphism on DNA damage at higher doses. 30 In contrast to the findings of no significant effect of glutathione-S-transferase 31 polymorphisms on DNA breaks and micronuclei production by Godderis et al. (2006), Hallier et 32 al. (1993) observed that the frequency of SCEs in human peripheral blood lymphocytes exposed 33 in vitro to EtO was higher in cells isolated from individuals expressing low levels of GSTT1 than

34 in cells from subjects expressing higher levels of this enzyme. Similarly, Yong et al. (2001)

This document is a draft for review purposes only and does not constitute Agency policy.

measured approximately twofold greater EtO-hemoglobin adduct levels in occupationally
 exposed persons with a *GSTT1*-null genotype than in those with positive genotypes.

3 In a study involving small numbers (n = 4-12 per group) of nonsmoking males and

4 females exposed to EtO through the sterilization of medical equipment, Fuchs et al. (1994)

5 reported 1.5-, 2.2-, and 1.5-fold increases in DNA single-strand breaks in peripheral blood

6 mononuclear cells obtained from individuals exposed to EtO concentrations of $0.1-0.49 \text{ mg/m}^3$,

7 $0.5-2.0 \text{ mg/m}^3$, and >2 mg/m³, respectively. Fuchs et al. (1994) further noted that these

8 nonsmokers could be divided into two distinct susceptibility groups, with 67% of the subjects

9 exhibiting approximately fivefold higher levels of DNA single-strand breaks in response to EtO

10 exposure than the remaining subjects, and that the bimodal nature of the differential

11 susceptibility suggested that the susceptibility was attributable to an unidentified polymorphism.

12 Primary and secondary cultures of lymphoblasts, breast epithelial cells, peripheral blood

13 lymphocytes, keratinocytes and cervical epithelial cells were exposed to 0–100 mM EtO, and

14 DNA damage was measured using the comet assay (Adám et al., 2005). A dose-dependent

15 increase in DNA damage was observed in all cell types without notable cytotoxicity. Breast

16 epithelial cells (26% increase in tail length) were more sensitive than keratinocytes (5% increase)

17 and cervical epithelial cells (5% increase) but less sensitive than lymphoblasts (51% increase)

18 and peripheral lymphocytes (71% increase) at the same dose of 20 mM.

19

20

0 C.7. ENDOGENOUS PRODUCTION OF ETHYLENE AND ETO

21 Ethylene, a biological precursor of EtO, is ubiquitous in the environment as an air 22 pollutant and is produced in plants, animals and humans (Abeles and Heggestad, 1973). 23 Ethylene is generated in vivo endogenously during normal physiological processes such as (1) 24 oxidation of methionine, (2) oxidation of hemoglobin, (3) lipid peroxidation, and (4) metabolism 25 of intestinal bacteria (reviewed by Thier and Bolt, 2000; IARC, 1994a). Recently, Marsden et al. 26 (2009) proposed that oxidative stress can induce the endogenous formation of ethylene, which 27 can in turn be metabolized to EtO. Endogenous production of ethylene has been documented in 28 laboratory animals and in humans (Filser et al., 1992; Shen et al., 1989; Ehrenberg et al., 1977; 29 Chandra and Spencer, 1963).

Shen et al. (1989) reported an endogenous production rate of 2.8 and 41 nmol/h ethylene
in Sprague-Dawley rats and humans, respectively, with similar thermodynamic partition
coefficients between the two species. Filser et al. (1992) reported a low degree of endogenous
production of ethylene (32 ±12 nmol/h) in healthy volunteers based on exhalation data. The
authors indicated that the endogenous levels of ethylene would account for ~66% of the
background level of EtO-hemoglobin adducts (HEVal), while the remaining one-third (15 ppb) is

1 contributed by exogenous environmental ethylene exposure. Although the percentage of 2 endogenous ethylene converted to EtO is not known, Törnqvist et al. (1989) have shown that in 3 fruit-store workers exposed to 0.3 ppm ethylene, only 3% is metabolized to EtO. Thus, the 4 amount of endogenous ethylene converted to EtO would be minimal. Furthermore, with 5 inadequate laboratory animal and human evidence available for ethylene as a carcinogen (IARC, 6 1994a), exogenous ethylene exposure may not produce enough EtO to contribute significantly to 7 carcinogenicity under standard bioassay conditions (Walker et al., 2000). 8 Ethylene formed from endogenous sources is converted to EtO by cytochrome 9 P450-mediated metabolism (Törnqvist, 1996; IARC, 1994a). EtO formed from the endogenous 10 conversion of ethylene leads to 2-hydroxyethylation of DNA and forms N7-HEG adducts 11 contributing to the background levels of this adduct in unexposed humans and rodents. As 12 shown in Table C-1, improvements in analytical methodology have led to the detection and 13 quantification of background N7-HEG adducts in DNA of unexposed experimental animals and 14 humans (Marsden et al., 2009; Swenberg et al., 2008; Tompkins et al., 2008; Marsden et al., 15 2007; Swenberg et al., 2000; van Sittert et al., 2000; Walker et al., 2000; Eide et al., 1999; 16 Farmer and Shuker, 1999; Wu et al., 1999b; Wu et al., 1999a; Zhao et al., 1999; Bolt et al., 1997; 17 Zhao et al., 1997; Kumar et al., 1995; van Delft et al., 1994; Farmer et al., 1993; van Delft et al., 18 1993; Leutbecher et al., 1992; Walker et al., 1992b; Cushnir et al., 1991; Föst et al., 1989). 19 However, there is a wide variation in the levels of adducts detected in rodents and humans which 20 appears to depend on the type of the analytical method used. Even with the most advanced techniques (Tompkins et al., 2008), minor DNA adducts such as O⁶-HEG and N3-HEA were 21 below the level of detection. Also, some researchers consistently demonstrated higher 22 23 background levels of DNA adducts (Wu et al., 1999a; Walker et al., 1992b). However, the 24 higher background levels in some of these studies are possibly due to the methodology used, 25 which may have caused an artifactual increase in the adduct levels. 26

DRAFT-DO NOT CITE OR QUOTE

Table C-1. Levels of endogenous (background) N7-HEG adducts in unexposed human and experimental rodent tissues

Species	Tissue	Detection method	Adduct levels reported	Adducts/10 ⁷ nucleotides*	Reference
Human	Lymphocytes	GC/MS	8.5 pmol/mg DNA	28.05	(Föst et al., 1989)
Human	WBC	Immuno-slotblot	$0.34 \text{ adducts}/10^6 \text{ nucleotides}$	3.4	(van Delft et al., 1994)
Human	Blood	HPLC-fluorescence	3.2 pmol/mg DNA	10.56	(Bolt et al., 1997)
Human	Lymphocytes	GC/MS	2–19 adducts per 10 ⁷ nucleotides	2.0–19	(Wu et al., 1999b)
Human	WBC	³² P/TLC/HPLC	$0.6 \text{ adducts}/10^7 \text{ nucleotides}$	0.6	(Zhao et al., 1999)
Human	WBC	³² P/TLC/HPLC	2.9 adducts/ 10^7 nucleotides	2.9	(Zhao et al., 1999)
Human	Lung	³² P/TLC/HPLC	4.0 adducts/ 10^7 nucleotides	4	(Zhao et al., 1999)
Rat	Lymphocytes	GC/MS	5.6 pmol/mg DNA	18.48	(Föst et al., 1989)
Mice/Rats	Control tissues	HPLC-fluorescence	2–6 pmol/mg DNA	8.58	(Walker et al., 1992b)
Rat	Liver, kidney, spleen	³² P/GC/MS	0.4 to 1.1 adducts/ 10^7 nucleotides	0.4–1.1	(Eide et al., 1999)
Mice/Rats	Spleen	GC/EC/NCI-HRMS	0.2 to 0.3 pmol/mmol guanine		(Wu et al., 1999a)
Rat	Control tissues	³² P/TLC/HPLC	0.6 to 0.9 adducts/ 10^7 nucleotides	0.6–0.9	(Zhao et al., 1999)
Rat	Liver	GC/MS	2.6 adducts/ 10^8 nucleotides	0.26	(van Sittert et al., 2000)
Rat	Control tissues	LC-MS/MS	1.1–3.5 adducts/ 10^8 nucleotides	0.11–0.35	(Marsden et al., 2007)
Rat	Liver	HPLC/ESI TMS	8 adducts/10 ⁸ normal nucleotides	0.8	(Tompkins et al., 2008)
Rat	Spleen	HPLC/LC-MS/MS	$0.08 \text{ adducts}/10^{10} \text{ nucleotides}$	0.00008	(Marsden et al., 2009)

7/2013

This document is a draft for review purposes only and does not constitute Agency policy. C-30 DRAFT-DO NOT CITE OR QUOTE

Table C-1. Levels of endogenous (background) N7-HEG adducts in unexposed human and experimental rodent tissues (continued)

*Adduct levels are normalized using the formula: 1 pmol adducts/mg DNA = 3.3 adducts/10⁷ normal nucleotides. GC/MS, gas chromatography mass spectrometry; HPLC, high performance liquid chromatography; ³²P, ³²P-postlabeling assay; TLC, thin-layer chromatography; LC-MS, liquid chromatography mass spectrometry; ESI TMS, electrospray ionization tandem mass spectrometry; GC/EC/NCI-HRMS, gas

chromatography/electron capture/negative chemical ionization high-resolution mass spectrometry.

1 Using sensitive detection techniques and an approach designed to separately quantify 2 both endogenous N7-HEG adducts and "exogenous" N7-HEG adducts induced by EtO treatment 3 in F344 rats, Marsden et al. (2009) recently reported increases in exogenous adducts in DNA of 4 spleen and liver consistent with a linear dose-response relationship (p < 0.05), down to the 5 lowest dose administered (0.0001 mg/kg injected i.p. daily for 3 days). Note that the whole 6 range of doses studied by Marsden et al. (2009) lies well below the dose corresponding to the 7 lowest LOAEL from an EtO cancer bioassay. For example, an approximate calculation indicates 8 that the low exposure level of 10 ppm for 6 hours/day used in the Snellings et al. (1984) bioassay 9 of F344 rats is equivalent to a daily dose of about 1.7 mg/kg, which is over 10 times higher than the largest daily dose of 0.1 mg/kg used by Marsden et al. (2009).⁶ 10

In summary, endogenous ethylene and EtO production, which contribute to background 11 12 N7-HEG DNA adducts indicative of DNA damage, have been observed in unexposed rodents 13 and humans. Although a constant reduction in DNA damage in vivo is carried out by DNA 14 repair and DNA replicative synthesis, a certain steady-state background level of adducts is 15 measurable at all times. The quantitative relationships between the background DNA damage 16 and the spontaneous rates of mutation and cancer are not well established. Experimental 17 evidence is needed that can unequivocally measure artifact-free levels of background DNA damage, including effects other than adducts, clearly establish mutagenic potency of such 18 19 background lesions, and demonstrate the organ- and cell type-specific requirements for the 20 primary DNA damage to be expressed as heritable genetic changes (Gupta and Lutz, 1999). 21 Some investigators have posited that the high and variable background levels of 22 endogenous EtO-induced DNA damage in the body may overwhelm any contribution from 23 exogenous EtO exposure (Marsden et al., 2009; SAB, 2007). It is true that the existence of these 24 high and variable background levels may make it hard to observe statistically significant 25 increases in risk from low levels of exogenous exposure. However, there is clear evidence of carcinogenic hazard from the rodent bioassays and strong evidence from human studies (see 26 27 Chapter 3, Section 3.5), and the genotoxicity/mutagenicity of EtO (Section 3.4) supports low-28 dose linear extrapolation of risk estimates from those studies (U.S. EPA, 2005a). In fact, as 29 discussed above, Marsden et al. (2009) reported increases in exogenous adducts in DNA of 30 spleen and liver consistent with a linear dose-response relationship (p < 0.05), down to the

⁶This calculation uses the mean alveolar ventilation rate for rats of 52.9 mL/minute/100 g reported by Brown et al. (1998). Changing the units, this rate is equivalent to approximately 0.032 m³/hour/kg. For a 6-hour exposure, this results in an alveolar inhalation of 0.19 m³/kg. 10 ppm EtO is equivalent to 18.3 mg/m³, so a 6-hour exposure equates to about 3.48 mg/kg. IARC (2008) reports that measurements from Johanson and Filser (1992) indicate that only 50% of alveolar ventilation is available to be absorbed into the bloodstream, so the 6-hour exposure to 10 ppm EtO would approximate an absorbed daily dose of 1.7 mg/kg.

This document is a draft for review purposes only and does not constitute Agency policy.

1 lowest dose administered (0.0001 mg/kg injected i.p. daily for 3 days, which is a very low dose

- 2 compared to the LOAELs in the carcinogenicity bioassays). Furthermore, while the
- 3 contributions to cancer risk from low exogenous EtO exposures may be relatively small
- 4 compared to those from endogenous EtO exposure, low levels of exogenous EtO may
- 5 nonetheless be responsible for levels of risk (above background risk) that exceed *de minimis* risk
- 6 (e.g., $>10^{-6}$). This is not inconsistent with the much higher levels of background cancer risk, to
- 7 which endogenous EtO may contribute, for the two cancer types observed in the human
- 8 studies—lymphoid cancers have a background lifetime incidence risk on the order of 3%,
- 9 whereas the background lifetime incidence risk for breast cancer is on the order of 15%.
- 10

11 C.8. CONCLUSIONS

12 The overall available data from in vitro studies, laboratory animal studies, and human 13 studies indicate that EtO is both a mutagen and a genotoxicant. In addition, increases in 14 mutations in specific oncogenes and tumor suppressor genes in EtO-induced mouse tumors have 15 been reported. Stable translocations seen in human leukemias may arise from similar DNA 16 adducts that produce chromosome breaks, micronuclei, SCEs, and even gene mutations observed 17 in peripheral lymphocytes. Dominant lethal mutations, heritable translocations, chromosomal 18 aberrations, DNA damage, and adduct formation in rodent sperm cells have been observed in a 19 number of studies involving the exposure of rats and mice to EtO. Based upon the likely role for 20 DNA alkylation in the production of the genotoxic effects in germ cells in laboratory animals 21 exposed to EtO, as well as the lack of qualitative differences in the metabolism of EtO between 22 humans and laboratory animals, EtO can also be considered a likely human germ cell mutagen 23 (WHO, 2003). There is consistent evidence that EtO interacts with the genome of cells within 24 the circulatory system in occupationally exposed humans and overwhelming evidence of 25 carcinogenicity and genotoxicity in laboratory animals. Based on these considerations, there is a 26 strong weight of evidence suggesting that EtO would be carcinogenic to humans (see Chapter 3, 27 Section 3.4).

APPENDIX D. REANALYSES AND INTERPRETATION OF ETHYLENE OXIDE EXPOSURE-RESPONSE DATA

4 Kyle Steenland

5 May 27, 2010

6

1

2

3

7 (EDITORIAL NOTE: This Appendix contains the report submitted by Dr. Steenland 8 summarizing the results of analyses that he conducted under contract to U.S. EPA. The 9 terminology originally used by Dr. Steenland to designate the different exposure-response 10 model forms has been changed to be consistent with the terminology used in EPA's Ethylene 11 Oxide Carcinogenicity Assessment. Models that are linear in log RR and which were 12 previously referred to as "linear" models have been renamed "log-linear" models (except 13 where it is stated that they are log RR models), and models of the form RR = $1 + \beta \times$ 14 exposure, which were previously referred to as "excess relative risk" (ERR) models have 15 been renamed "linear" models. In addition, section headings, figures, and tables have been 16 renumbered for the table of contents. Finally, some supplemental results received from Dr. 17 Steenland after the original completion of this Appendix have been inserted in the relevant 18 sections.) 19 20 This report contains the results of reanalyses of the National Institute for Occupational Safety 21 and Health cohort of workers exposed to ethylene oxide conducted for the U.S. 22 Environmental Protection Agency. The report begins with an overview of the modeling 23 strategy used, followed by the results of reanalyses of the breast cancer incidence, breast 24 cancer mortality, lymphoid cancer mortality, and, finally, hematopoietic cancer mortality 25 databases. Various models were used for these reanalyses, as discussed in this report. The 26 report concludes with the results of some sensitivity analyses and discussions of the possible 27 influences of the healthy worker survivor effect and exposure mismeasurement. 28 29 Introduction. Modeling strategy for ethylene oxide (ETO) risk assessment 30 31 The modeling strategy adopted here for ETO risk assessment relies principally on the usual 32 epidemiologic models in which the log of the rate ratio (RR) is some function of exposure, in 33 this case cumulative exposure with a lag to reflect a length of time which is likely necessary 34 before an exposure can result in (observable or fatal) cancer. We have relied primarily on

35 Cox regression as a flexible method of modeling the log RR; however we have also included *This document is a draft for review purposes only and does not constitute Agency policy.*

7/2013

D-1

DRAFT-DO NOT CITE OR QUOTE

1 some linear relative risk models. Cumulative exposure is typically the exposure metric of

- 2 interest in predicting chronic disease.
- 3

4 For breast cancer incidence, we have relied principally on 2-piece linear models, in which log 5 RR (in the log-linear model) or RR (in the linear model) is a function of two lines which join 6 smoothly at a single point of inflection. Two-piece linear models may also be thought of as 7 linear splines with one knot, or point of inflection. They have been described as part of a 8 general description of exposure-response modeling by Steenland and Deddens (2004) and 9 have been used previously in risk assessment (e.g., see the risk assessment for dioxin by 10 Steenland et al., 2001). The 2-piece log-linear model has the form log RR = $\beta_0 + \beta_1 \times$ 11 cumexp + $\beta_2 \times$ (max(0,cumexp-knot)), where cumexp is cumulative exposure, the last term 12 equals either 0 or cumexp-knot, whichever is greater, and the knot is the point of inflection or 13 point of change of slope for the 2 linear pieces. The slope of the last term is $\beta_1 + \beta_2$ for 14 cumulative exposure values above the knot. 15 16 Log RR models are not linear when the log RR function is transformed via exponentiation 17 back to a nonlogarithmic function, but they are nearly so in the low dose region of interest. 18 The splines are linear using the linear RR model. 19 20 "Plateau-like" exposure-response curves, in which the exposure-response curve begins 21 steeply but is attenuated at higher exposure, have been seen for many occupational 22 carcinogens. This may occur for a variety of reasons, including depletion of susceptible 23 subpopulations, mismeasurement at high exposure resulting in attenuation, and the healthy 24 worker survivor effect (Stayner et al., 1993). Attenuation of the exposure-response 25 relationship occurs for the breast cancer and (lympho) hematopoietic endpoints of interest for 26 ETO. For these endpoints, a simple linear model (often considered the default model), where 27 the log RR (for the log-linear model) or the RR increases linearly with cumulative exposure, 28 does not fit the data well, based on simple visual inspection of the categorical data. 29 30 Frequently, such plateau-like curves may be modeled by using the log of cumulative 31 exposure rather than cumulative exposure itself, but this has the disadvantage that the curve 32 is usually highly supra-linear at low doses. Two-piece linear spline models are particularly 33 useful in modeling exposure-response relationships in which the log RR or RR increases

34 initially with increasing exposure but then tends to increase less or plateau at high exposures.

1 The 2-piece linear models avoid this supra-linearity in the low-dose region (Steenland and

- 2 Deddens, 2004).
- 3

4 The shape of the 2-piece linear spline model, in particular the slope of the curve in the low-5 dose region, depends on the choice of the point of inflection where the two linear pieces are 6 joined. Here we have chosen the point of inflection based on the best model likelihood, 7 trying a range of points of inflection (knots) across the range of exposure starting from 0 and 8 incrementing by 100 ppm-days (or 1000 ppm-days) intervals. The model likelihood often 9 does not change much across these different points of inflection, but it does change some and 10 we have chosen the point of inflection resulting in the best model likelihood. The model 11 likelihood used to find the best fit in all models used in this analysis is the usual partial 12 likelihood (Langholz and Richardson, 2010), as used with the Cox models, which maximizes 13 the probability, across all the cases, that a case fails (the numerator) relative to its case-14 control risk set (which includes the case) (the denominator) and has the form 15 $L(\beta) = \varphi_{\text{case}} (Z;\beta) / \Sigma_{\text{i cases and controls}} \varphi_{\text{i}} (Z_{\text{i}};\beta),$ 16 17 18 where $\varphi(Z;\beta)$ is some function of a vector of covariates Z and the parameters of interest β . 19 For example, for the linear RR model with only cumulative exposure in the model, 20 $\varphi(Z;\beta) = 1 + z\beta$, where z is cumulative exposure and β is the exposure-response coefficient of interest. For the log RR model, $\varphi(Z;\beta) = e^{(z\beta)}$. 21 22 23 While the 2-piece models work well for ETO breast cancer incidence, they do not for 24 hematopoietic cancer (and to a lesser extent for breast cancer mortality) because the best 25 knots are at very low doses and the resulting slopes for the first piece of the 2-piece model 26 are very steep, resulting in the same problem which occurs using log transform models (i.e., where the exposure metric is the log of cumulative exposure). Risk for hematopoietic cancer 27 28 in fact increases quite steeply with very low exposure versus no exposure, and then plateaus 29 at higher exposures. This may be partly a result of the relatively small numbers of 30 hematopoietic cancers and the overall instability of the results. In this case, EPA's original 31 approach of a weighted regression through categorical RRs is a reasonable alternative to both 32 the log transform and 2-piece models. 33

This document is a draft for review purposes only and does not constitute Agency policy.

D-3

D.1. BREAST CANCER INCIDENCE BASED ON THE DATA WITH INTERVIEWS a. Distribution of exposure among ETO-exposed women in breast cancer incidence cohort with interviews (n = 5139)

4

5 The estimated daily exposure to ETO across different jobs and time periods ranged from 6 0.05 ppm to 77 ppm. Exposure intensities from this broad range were multiplied by the 7 length of time in different jobs to get estimates of cumulative exposure. The duration of 8 exposure had a mean of 10.8 years (std dev 9.1), and a median of 7.4 years. The range was 9 from 1.00 to 50.3 years. The 25th percentile was 2.8 years and the 75th percentile was 10 17.6 years. Multiplying exposure intensity and exposure duration results in a wide range of 11 cumulative exposures.

12

13 Cumulative exposure at the end of follow-up, with no lag, had a mean of 13,524 ppm-days

14 (37.0 ppm-years), with a standard deviation of 13,254 ppm-days. These data are highly

skewed, with a range from 5 to 253,848 ppm-days. The 25th percentile is 926 ppm-days,

16 while the 75th is 10,206 ppm-days. Log transformation of these data results in an

17 approximately normal distribution of the data.

18

19 As a caveat, it should be remembered that cumulative exposure at the end of follow-up may 20 be misleading, as it is not relevant to standard analyses, all of which treat cumulative 21 exposure as a time-dependent variable which must be assessed at specific points in time. For 22 example, standard life-table analyses calculate cumulative exposure at different times during 23 follow-up for each person. Subsequently, both person-time and disease events are put into 24 categories of cumulative exposure. A given person may pass through many such categories, 25 contributing person-time to each. Poisson regression, analogous to life-table analyses (and 26 often based directly on output from life table programs), similarly relies on person-time (and 27 disease occurrence) categorized by cumulative exposure. Both these types of analyses are 28 inherently categorical.

29

In the analyses presented here, we have used Cox regression in which age is the time variable. The basic approach is to compare each case to a set of 100 randomly chosen controls, whose exposure is evaluated at the same age at which the case fails (gets disease or dies of disease). Using 100 controls generally would be expected to give the same result as the full risk set and shortens analysis time (Steenland and Deddens, 1997). Hence, again cumulative exposure is time dependent. For the case who fails at an early age, the

- 1 cumulative exposure of the case and many of his or her controls at that same age may be low.
- 2 For the case who fails late in life, the cumulative exposure of the case and his or her controls
- 3 will be higher. When cumulative exposure is lagged so that no exposure is counted until
- 4 after a lag period (e.g., 15 years) is fulfilled, many cases and their respective controls will be
- 5 "lagged out" (i.e., will have no cumulative exposure, if the case fails at an early age). Note
- 6 Note that Cox regression uses individual data, and there is no inherent categorization typical
- 7 of life table analyses and Poisson regression, although categorical analyses can still be done
- 8 in Cox regression and are often useful.
- 9
- For these reasons, it is difficult to describe the cumulative exposure distribution of all
 subjects in the Cox regression. Controls may appear more than once matched to different
- 12 cases, and their cumulative exposure will differ each time depending on the age of the case.
- 13 However, cases only appear once in the data and their exposure distribution can be easily
- 14 presented. In our situation, we have used Cox regression with a 15-year lag to analyze breast
- 15 cancer incidence. The exposure distribution of the cases, by deciles above the lagged out
- 16 category, is shown below. Creating deciles such that cases are equally distributed is a good a
- 17 priori way of creating categories in which rate ratios will have approximate equal variance, a
- 18 desirable feature. The lagged out cases are women who got incident breast cancer within
- 19 15 years of first exposure.
- 20
- 21
- 22

Table D-1a. Distribution of cases in Cox regression for breast cancermorbidity analysis after using a 15-year lag

Cumulative exposure, 15-year lag	Mean cumulative exposure (ppm-days)	Number of incident breast cancer cases
0 (Lagged out)		62
>0–355 ppm-days	157	17
356–842 ppm-days	580	16
843–1361 ppm-days	1097	17
1362–2187 ppm-days	1725	17
2188–3772 ppm-days	2899	17
3773–5522 ppm-days	4546	18
5523–7891 ppm-days	6554	16
7892–14483 ppm-days	14384	17
14484–25112 ppm-days	18859	17
>25112 ppm-days	48807	18

⁴ 5

b.1. Results of Cox regression analysis of breast cancer incidence using a variety of (log 7 RR) models

8

9 Analyses used a case-control approach, with 100 controls per case, as in Steenland et al.

10 (2003). Age was the time variable in proportional hazards (Cox) regression. For breast

11 cancer incidence, family history of breast cancer, date of birth (quartiles), and parity were

12 included in models along with exposure variables. For our exposure variable, we used

13 cumulative exposure lagged 15 years, which was found in prior analyses to provide the best

14 fit to the data (Steenland et al., 2003).

15

16 Using log RR models, we used a categorical model, a linear model, a 2-piece linear model, a

17 log transform model, a cubic spline model, and a square-root transform model. We also ran a

18 number of analogous models using linear RR models.

- 19
- 20 The categorical analysis (log RR model) used deciles, as indicated in Table D-1b. Deciles
- 21 were used instead of the original quintiles from the publication (Steenland et al., 2003)
- 22 because the relatively large sample size enabled more extensive categorization. Results of
- 23 the categorical decile analysis are in Table D-1b below.

Table D-1b. Categorical analysis of breast cancer incidence by deciles (log **RR model**)

4 Analysis of Maximum Likelihood Estimates 5 Parameter Standard Haza 7 Variable Estimate Error Chi-Square Pr > ChiSq Rat 9 CAT1 -0.09015 0.29318 0.0945 0.7585 0.9 10 CAT2 -0.08363 0.30341 0.0760 0.7828 0.9 11 CAT3 0.18536 0.29757 0.3880 0.5333 1.2 12 CAT4 0.12606 0.29995 0.1766 0.6743 1.1 13 CAT5 0.07900 0.29968 0.0695 0.7921 1.0 14 CAT6 0.37651 0.29675 1.6097 0.2045 1.4 15 CAT7 0.38177 0.31168 1.5003 0.2206 1.4 16 CAT8 0.25179 0.30640 0.6753 0.4112 1.2 17 CAT9 0.57845 0.31120 3.4551 0.0631 1.7 18 CAT10 0.80396 0.30766 6.8284 0.0090 2.2 <th></th>				
9CAT1 -0.09015 0.29318 0.0945 0.7585 0.9 10CAT2 -0.08363 0.30341 0.0760 0.7828 0.9 11CAT3 0.18536 0.29757 0.3880 0.5333 1.2 12CAT4 0.12606 0.29995 0.1766 0.6743 1.1 13CAT5 0.07900 0.29968 0.0695 0.7921 1.0 14CAT6 0.37651 0.29675 1.6097 0.2045 1.4 15CAT7 0.38177 0.31168 1.5003 0.2206 1.4 16CAT8 0.25179 0.30640 0.6753 0.4112 1.2 17CAT9 0.57845 0.31120 3.4551 0.0631 1.7 18CAT10 0.80396 0.30766 6.8284 0.0090 2.2 20 -2 LOG L1936.910, df=15 (10 exposure terms, 5 covariate212223We then fit a cubic spline (restricted at the ends to be linear) which presents a description24the data similar to the categorical analyses but using a smooth curve. The exposure metric				
9CAT1 -0.09015 0.29318 0.0945 0.7585 0.9 10CAT2 -0.08363 0.30341 0.0760 0.7828 0.9 11CAT3 0.18536 0.29757 0.3880 0.5333 1.2 12CAT4 0.12606 0.29995 0.1766 0.6743 1.1 13CAT5 0.07900 0.29968 0.0695 0.7921 1.0 14CAT6 0.37651 0.29675 1.6097 0.2045 1.4 15CAT7 0.38177 0.31168 1.5003 0.2206 1.4 16CAT8 0.25179 0.30640 0.6753 0.4112 1.2 17CAT9 0.57845 0.31120 3.4551 0.0631 1.7 18CAT10 0.80396 0.30766 6.8284 0.0090 2.2 20 -2 LOG L1936.910, df=15 (10 exposure terms, 5 covariate212223We then fit a cubic spline (restricted at the ends to be linear) which presents a description24the data similar to the categorical analyses but using a smooth curve. The exposure metric	rd			
9CAT1 -0.09015 0.29318 0.0945 0.7585 0.9 10CAT2 -0.08363 0.30341 0.0760 0.7828 0.9 11CAT3 0.18536 0.29757 0.3880 0.5333 1.2 12CAT4 0.12606 0.29995 0.1766 0.6743 1.1 13CAT5 0.07900 0.29968 0.0695 0.7921 1.0 14CAT6 0.37651 0.29675 1.6097 0.2045 1.4 15CAT7 0.38177 0.31168 1.5003 0.2206 1.4 16CAT8 0.25179 0.30640 0.6753 0.4112 1.2 17CAT9 0.57845 0.31120 3.4551 0.0631 1.7 18CAT10 0.80396 0.30766 6.8284 0.0090 2.2 20 -2 LOG L1936.910, df=15 (10 exposure terms, 5 covariate212223We then fit a cubic spline (restricted at the ends to be linear) which presents a description24the data similar to the categorical analyses but using a smooth curve. The exposure metric				
9CAT1 -0.09015 0.29318 0.0945 0.7585 0.9 10CAT2 -0.08363 0.30341 0.0760 0.7828 0.9 11CAT3 0.18536 0.29757 0.3880 0.5333 1.2 12CAT4 0.12606 0.29995 0.1766 0.6743 1.1 13CAT5 0.07900 0.29968 0.0695 0.7921 1.0 14CAT6 0.37651 0.29675 1.6097 0.2045 1.4 15CAT7 0.38177 0.31168 1.5003 0.2206 1.4 16CAT8 0.25179 0.30640 0.6753 0.4112 1.2 17CAT9 0.57845 0.31120 3.4551 0.0631 1.7 18CAT10 0.80396 0.30766 6.8284 0.0090 2.2 20 -2 LOG L1936.910, df=15 (10 exposure terms, 5 covariate212223We then fit a cubic spline (restricted at the ends to be linear) which presents a description24the data similar to the categorical analyses but using a smooth curve. The exposure metric				
11 CAT3 0.18536 0.29757 0.3880 0.5333 1.2 12 CAT4 0.12606 0.29995 0.1766 0.6743 1.1 13 CAT5 0.07900 0.29968 0.0695 0.7921 1.0 14 CAT6 0.37651 0.29675 1.6097 0.2045 1.4 15 CAT7 0.38177 0.31168 1.5003 0.2206 1.4 16 CAT8 0.25179 0.30640 0.6753 0.4112 1.2 17 CAT9 0.57845 0.31120 3.4551 0.0631 1.7 18 CAT10 0.80396 0.30766 6.8284 0.0090 2.2 19 -2 LOG L 1936.910, df=15 (10 exposure terms, 5 covariate 21 22 23 We then fit a cubic spline (restricted at the ends to be linear) which presents a description 24 the data similar to the categorical analyses but using a smooth curve. The exposure metric	14			
12 CAT4 0.12606 0.29995 0.1766 0.6743 1.1 13 CAT5 0.07900 0.29968 0.0695 0.7921 1.0 14 CAT6 0.37651 0.29675 1.6097 0.2045 1.4 15 CAT7 0.38177 0.31168 1.5003 0.2206 1.4 16 CAT8 0.25179 0.30640 0.6753 0.4112 1.2 17 CAT9 0.57845 0.31120 3.4551 0.0631 1.7 18 CAT10 0.80396 0.30766 6.8284 0.0090 2.2 19 -2 LOG L 1936.910, df=15 (10 exposure terms, 5 covariate 21 22 23 We then fit a cubic spline (restricted at the ends to be linear) which presents a description 24 the data similar to the categorical analyses but using a smooth curve. The exposure metric	20			
13 CAT5 0.07900 0.29968 0.0695 0.7921 1.0 14 CAT6 0.37651 0.29675 1.6097 0.2045 1.4 15 CAT7 0.38177 0.31168 1.5003 0.2206 1.4 16 CAT8 0.25179 0.30640 0.6753 0.4112 1.2 17 CAT9 0.57845 0.31120 3.4551 0.0631 1.7 18 CAT10 0.80396 0.30766 6.8284 0.0090 2.2 19 -2 LOG L 1936.910, df=15 (10 exposure terms, 5 covariate 21 22 23 We then fit a cubic spline (restricted at the ends to be linear) which presents a description 24 the data similar to the categorical analyses but using a smooth curve. The exposure metric	04			
14 CAT6 0.37651 0.29675 1.6097 0.2045 1.4 15 CAT7 0.38177 0.31168 1.5003 0.2206 1.4 16 CAT8 0.25179 0.30640 0.6753 0.4112 1.2 17 CAT9 0.57845 0.31120 3.4551 0.0631 1.7 18 CAT10 0.80396 0.30766 6.8284 0.0090 2.2 19 -2 LOG L 1936.910, df=15 (10 exposure terms, 5 covariate 21 22 23 We then fit a cubic spline (restricted at the ends to be linear) which presents a description 24 the data similar to the categorical analyses but using a smooth curve. The exposure metric				
15 CAT7 0.38177 0.31168 1.5003 0.2206 1.4 16 CAT8 0.25179 0.30640 0.6753 0.4112 1.2 17 CAT9 0.57845 0.31120 3.4551 0.0631 1.7 18 CAT10 0.80396 0.30766 6.8284 0.0090 2.2 19 -2 LOG L 1936.910, df=15 (10 exposure terms, 5 covariate 21 22 23 We then fit a cubic spline (restricted at the ends to be linear) which presents a description 24 the data similar to the categorical analyses but using a smooth curve. The exposure metric				
16 CAT8 0.25179 0.30640 0.6753 0.4112 1.2 17 CAT9 0.57845 0.31120 3.4551 0.0631 1.7 18 CAT10 0.80396 0.30766 6.8284 0.0090 2.2 19 -2 LOG L 1936.910, df=15 (10 exposure terms, 5 covariate 21 22 23 We then fit a cubic spline (restricted at the ends to be linear) which presents a description 24 the data similar to the categorical analyses but using a smooth curve. The exposure metric				
17 CAT9 0.57845 0.31120 3.4551 0.0631 1.7 18 CAT10 0.80396 0.30766 6.8284 0.0090 2.2 19 -2 LOG L 1936.910, df=15 (10 exposure terms, 5 covariate 21 22 23 We then fit a cubic spline (restricted at the ends to be linear) which presents a description 24 the data similar to the categorical analyses but using a smooth curve. The exposure metric				
18 19CAT100.803960.307666.82840.00902.220 20 21-2 LOG L1936.910, df=15 (10 exposure terms, 5 covariate21 2223We then fit a cubic spline (restricted at the ends to be linear) which presents a description24the data similar to the categorical analyses but using a smooth curve. The exposure metric				
 19 20 -2 LOG L 1936.910, df=15 (10 exposure terms, 5 covariate 21 22 23 We then fit a cubic spline (restricted at the ends to be linear) which presents a description 24 the data similar to the categorical analyses but using a smooth curve. The exposure metric 				
 20 -2 LOG L 1936.910, df=15 (10 exposure terms, 5 covariate 21 22 23 We then fit a cubic spline (restricted at the ends to be linear) which presents a description 24 the data similar to the categorical analyses but using a smooth curve. The exposure metric 	34			
 21 22 23 We then fit a cubic spline (restricted at the ends to be linear) which presents a description 24 the data similar to the categorical analyses but using a smooth curve. The exposure metric 	g)			
 We then fit a cubic spline (restricted at the ends to be linear) which presents a description the data similar to the categorical analyses but using a smooth curve. The exposure metric 	57			
 We then fit a cubic spline (restricted at the ends to be linear) which presents a description the data similar to the categorical analyses but using a smooth curve. The exposure metric 				
the data similar to the categorical analyses but using a smooth curve. The exposure metric	of			
25 was cumulative exposure with a 15-year lag, which was found in earlier analyses to be the				
26 optimal lag (Steenland et al., 2003). Five knots for the cubic spline were chosen using eve	ery			
other midpoint from the categorical analysis (598, 1774, 4647, 11187, and 37668 ppm-day	/s).			
28				
29 We then ran a 2-piece linear (log RR) model. The knot, or inflection point, was chosen to	be			
30 the one where the model likelihood was highest, which was at 5,800 ppm-days. To choose	е			
this knot we looked at possible inflection points over the range 100 to 15,000 ppm-days by				
32 100 ppm-day increments. Figure D-1a shows the -2 log likelihood graphed against the				
33 knots. In this figure the lower peak corresponds to the highest likelihood. ⁷				
34				
Figures D-1b and D-1c show the results of the 2-piece linear, the categorical, the linear, ar	ıd			

the cubic spline (log RR) models. In these figures the categorical points are the mid-points 36

37 of the categories in Table D-1a, with final category assigned the final cut point plus 50%.

1 2

⁷Editorial note: $-2 \times$ (natural) log likelihood is reported because the difference in this value for any two models is the value of the test statistic commonly used to compare model fit (likelihood ratio test). Under certain assumptions, the probability distribution for this statistic is approximately chi-squared with degrees of freedom equal to the difference in degrees of freedom between the two (nested) models.

This document is a draft for review purposes only and does not constitute Agency policy.

1 It appears that the two-piece log-linear curve in Figure D-1b approximates the shape of the

2 exposure-response seen in the decile and cubic spline (log RR) analyses, better than the log-

- 3 linear curve in Figure D-1c.
- 4

5 The log-linear curve appears to have a low slope versus the other models, suggesting possible 6 influential observations in the upper tail of exposure. To further explore this, we excluded 7 from the analysis increasing amounts of the upper tail of the data using the log-linear model, 8 i.e., via excluding the upper 1%, 2.5%, 5%, 10%, 15%, 20%, and 27% of exposure, based 9 on the exposure distribution of the cases (the last amount, 27%, corresponds to excluding 10 subjects with cumulative exposure above 6000 ppm-days, which was close to the knot in the 11 2-piece log-linear model [5800 ppm-days]). The ratios of the slope (coefficient) for the 12 linear term (log RR model) with these exclusions vs. the slope for the linear term (log RR 13 model) with no exclusions were 1.5, 2.3, 3.2, 3.2, 2.5, 3.1, 6.1, 9.2, respectively. As 14 expected, the slope increases markedly as the data are restricted to the lower range of 15 exposure. For example, a modified log-linear curve after excluding the upper 5% of the data 16 is seen in Figure D-1d, along with the full log-linear curve from Figure D-1c. Nonetheless, 17 even the log-linear curve from these truncated data has a markedly lower slope in the low-18 exposure region than the 2-piece log-linear (or spline) curves. For example, inspection 19 shows that the RR for 6000 ppm-days is about 1.2 for the log-linear curve from the truncated 20 data and 1.6 from the 2-piece log-linear model. Use of the log-linear curve based on 21 truncated data has the disadvantage of having to choose rather arbitrarily where to truncate 22 the data. This disadvantage is avoided by using the 2-piece log-linear model. 23 24 A 2-piece log-linear model, then, is preferred for estimating risk parsimoniously in the low-25 exposure region. For comparison purposes, we also show the model using the logarithm of

26 exposure (Figure D-1e), which we have not used for risk assessment because it is supralinear

in the low-dose region.

28

29 We also fit a square-root transformation (square root of cumulative exposure, 15-year lag)

30 log RR model, which is shown in Figure D-1f. This model also fit the breast cancer

31 morbidity well (it did not fit the other outcomes well and is not shown for them), and can be

- 32 used for risk assessment, but with the disadvantage that it is not linear or approximately
- 33 linear in the low-dose region. For this reason, we prefer the 2-piece log-linear curve, with is
- 34 approximately linear in the low-dose region (and strictly linear in the linear RR models
- 35 discussed below). Excess lifetime risk does not vary greatly between all these models (see

- 1 below), with the exception of the log RR model with a linear term for cumulative exposure,
- 2 which is below other excess risk estimates.
- 3
- 4

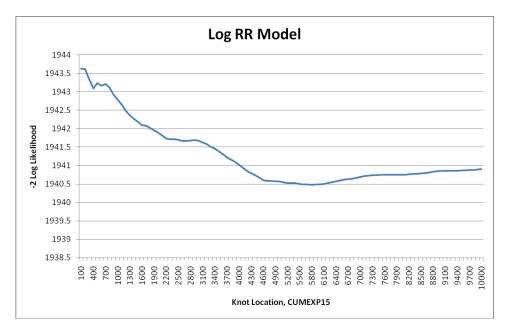


Figure D-1a. Likelihoods vs knots, 2-piece linear log RR model for breast cancer morbidity.

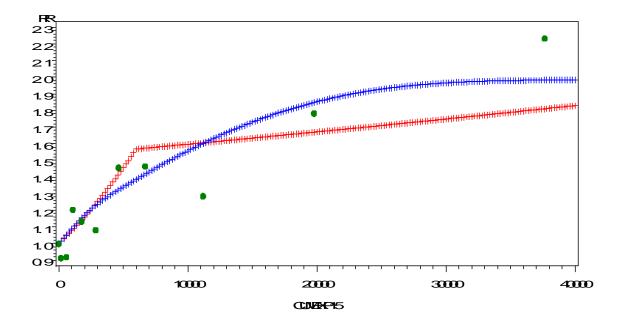


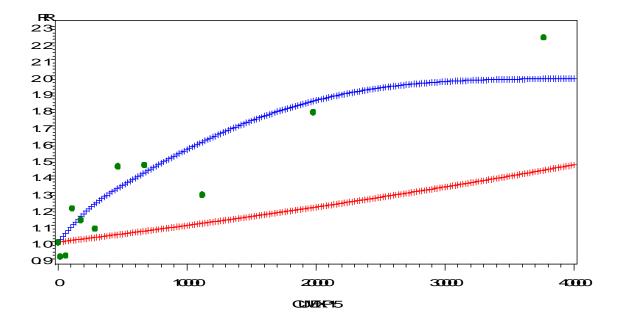
Figure D-1b. Breast cancer incidence. Plot of the dose-response relationship

a plot using restricted cubic (log RR) splines. Dots that represent the effect of

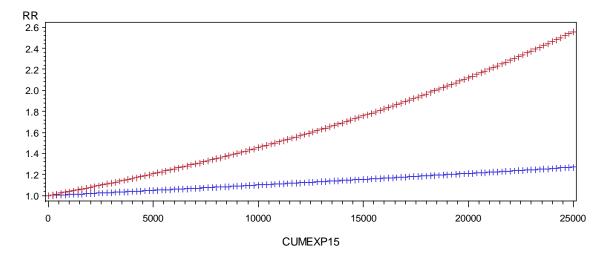
plot. Deciles formed by allocating cases approximately equally in ten groups,

above lagged-out cases, see Table D-1a above. Y-axis is rate ratio, X-axis is

cumulative exposure lagged 15 years, in ppm-days.


for continuous exposure generated using a 2-piece log-linear spline overlaid with

exposure grouped in deciles (log RR categorical model) are also presented in the


1 2 3 4 5 6 7 8 9

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

Figure D-1c. Breast cancer incidence. Plot of a log-linear dose-response relationship overlaid with a dose-response relationship generated using restricted cubic log RR model with continuous exposure. Dots that represent the effect of exposure grouped in deciles (log RR categorical model) are also presented in the plot. Deciles formed by allocating cases approximately equally in ten groups, above lagged-out cases.

Comparing log linear models, model with higher slope omits highest 5% of exposure

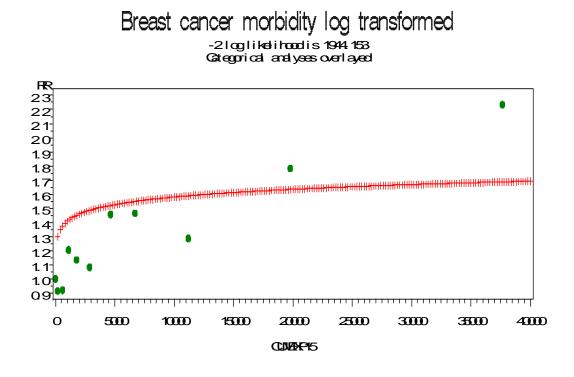
1011Figure D-1d. Breast cancer incidence. Comparison of log-linear curve (log12RR = $\beta \times$ cumexp) with all the data and the log-linear curve (higher slope) after13excluding those in the top 5% of exposure (>27,500 ppm-days).
This document is a draft for review purposes only and does not constitute Agency policy.

1 2

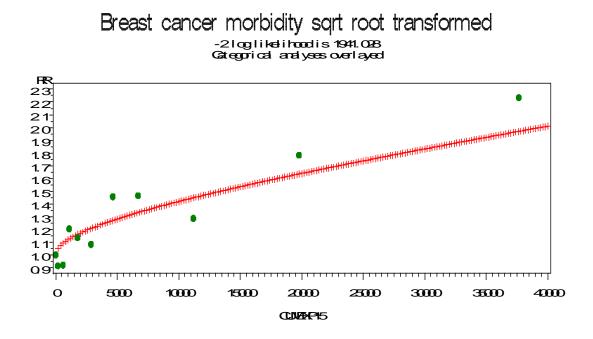
3

4

5


6

7


8 9

D-11

DRAFT—DO NOT CITE OR QUOTE

Figure D-1e. Breast cancer incidence. Plot of a logarithmic transformation log RR dose-response model (log RR = $\beta \times \log(\text{cumexp})$) overlaid with a dose-response relationship generated using categorical log RR analyses (deciles). Deciles formed by allocating cases approximately equally in ten groups, above lagged-out cases.

2 3 4 5 6 7 8 9

1

Figure D-1f. Breast cancer incidence. Plot of a square-root transformation log RR dose–response model overlaid with a dose-response relationship generated using categorical log RR analyses (deciles). Deciles formed by allocating cases approximately equally in ten groups, above lagged-out cases.

8 Tables D-1c, D-1d, D-1e, and D-1f below present the model fit statistics for the 2-piece log-9 linear, the log-linear, the square root log RR model, and the log transform log RR model seen 10 above. Table D-1g summarizes the goodness-of-fit data with regard to the exposure term. 11 Table D-1g shows that the addition of exposure terms to the various models results in similar 12 model fits. The exposure terms in the 2-piece log-linear improve model fit marginally better 13 than those in the other models except the square root log RR model, with which the 2-piece 14 log-linear model is tied. If one adds a degree of freedom to the chi-square test for the 2-piece 15 log-linear model, on the assumption that the choice of the knot is equivalent to estimating 16 another parameter, the *p*-value increases to 0.04, in the same range as the log-linear and log-17 transform log RR models. Our argument here, however, is not that the 2-piece log-linear 18 model fits the data dramatically better than other models in purely statistical terms. Rather 19 we believe that the fit conforms to the categorical and cubic spline models well in the lowexposure region of interest, and that the nearly linear exposure-response relationship in that 20 21 region (strictly linear with the linear RR model) is a reason to prefer the 2-piece log-linear 22 model to the other models. In particular, among the parametric models, the log transform 23 and square root log RR models are supralinear in the low-exposure region.

This document is a draft for review purposes only and does not constitute Agency policy.

D-13

1 The effects of these departures from linearity in the low-exposure region can be seen in the 2 risk assessment results for the EC_{01} (estimate of effective concentration resulting in 1% extra 3 risk) in the next sections (c, d, and e). In these sections we use some of the results from the 4 exposure-response models to calculate $EC_{01}s$. We restrict these calculations to models which 5 appear most reasonable based on our results above, namely the 2-piece log-linear model, the 6 square root transform log RR model, and the cubic spline log RR model. While we do not 7 recommend the use of the cubic spline model for risk assessment due to its complexity, the 8 EC_{01} based on the cubic spline model provides a good comparison to other parametric 9 models.

Table D-1c. Fit of 2-piece log-linear model to breast cancer incidence data,Cox regression⁸

Criterion	Without Covariates	With Covariates
-2 LOG L AIC	1967.813 1967.813	1940.485 1954.485
SBC	1967.813	1978.612

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	27.3281	7	0.0003
Score	29.0949	7	0.0001
Wald	28.4426	7	0.0002

Analysis of Maximum Likelihood Estimates

Variable	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Haza Rati
LIN_0 (β1)	0.0000770	0.0000317	5.4642	0.0194	1.00
LIN_1	-0.0000724	0.0000334	4.1818	0.0409	1.00
DOB1	0.08770	0.21805	0.1618	0.6875	1.09
DOB2	0.41958	0.24430	2.9496	0.0859	1.52
DOB3	0.55168	0.29096	3.5950	0.0580	1.73
PARITY1	-0.23398	0.18793	1.5502	0.2131	0.79
FREL_BR_CAN1	0.47341	0.17934	6.9686	0.0083	1.60

Covariance lin0 and lin1 -1×10^{-9}

10 11

12

13

⁸For environmental exposures, only exposures below the knot are of interest. Below the knot, $RR = e^{(\beta 1 * exposure)}$. *This document is a draft for review purposes only and does not constitute Agency policy.*

Table D-1d. Fit of log-linear model to breast cancer incidence data, Cox regression (RR = $e^{(\beta \times exposure)}$)

	Without	With
Criterion	Covariates	Covariates
-2 LOG L	1967.813	1944.675
AIC	1967.813	1956.675
SBC	1967.813	1977.356

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	23.1374	6	0.0008
Score	25.8389	6	0.0002
Wald	25.3594	6	0.0003

Analysis of Maximum Likelihood Estimates

Variable	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
CUMEXP15 (β) DOB1 DOD2	9.54826E-6 0.13558	4.09902E-6 0.21676	5.4261 0.3912	0.0198 0.5316	1.000
DOB2	0.53147	0.23741	5.0116	0.0252	1.701
DOB3	0.74477	0.27425	7.3748	0.0066	2.106
PARITY1	-0.23394	0.18882	1.5351	0.2154	0.791
FREL_BR_CAN1	0.46449	0.17928	6.7126	0.0096	1.591

Table D-1e. Fit of the square root transformation log RR model to breast cancer incidence data, Cox regression (RR = $e^{(\beta \times sqrt(exposure))})$)

Model Fit Statistics

Criterion	Without Covariates	With Covariates
-2 LOG L AIC	1967.813 1967.813	1941.028 1953.028
SBC	1967.813	1973.708

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	26.7851	6	0.0002
Score	28.9446	б	<.0001
Wald	28.5277	6	<.0001

Analysis of Maximum Likelihood Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	Chi-Square	Pr > ChiSq
dob1	1	0.09778	0.21756	0.2020	0.6531
dob2	1	0.43872	0.24177	3.2929	0.0696
dob3	1	0.58623	0.28404	4.2596	0.0390
sqrtcumexp15	(β) 1	0.00349	0.00118	8.7489	0.0031
PARITY1	1	-0.22539	0.18787	1.4393	0.2302
FREL_BR_CAN1	1	0.46937	0.17922	6.8589	0.0088

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

Model Fit Statistics

Criterion	Without Covariates	With Covariates
-2 LOG L	1967.813	1944.176
AIC	1967.813	1956.176
SBC	1967.813	1976.856

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	23.6371	6	0.0006
Score	24.0044	б	0.0005
Wald	23.5651	6	0.0006

Analysis of Maximum Likelihood Estimates

5 5 7	Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
8	dob1	1	0.08605	0.21943	0.1538	0.6949	1.090
9	dob2	1	0.38780	0.25363	2.3378	0.1263	1.474
)	dob3	1	0.47303	0.31528	2.2509	0.1335	1.605
1	LCUMEXP15 (β)	1	0.04949	0.02288	4.6787	0.0305	1.051
2	PARITY1	1	-0.25908	0.18638	1.9322	0.1645	0.772
3	FREL_BR_CAN1	1	0.47620	0.17923	7.0595	0.0079	1.610

1

35

Table D-1g. Change in $-2 \log$ likelihood for log RR models for breast cancer incidence, with addition of exposure term(s)^a

Log RR model	Change (chi square)	d.f.	<i>p</i> -value
Log transform	4.8	1	0.03
Linear	4.2	1	0.04
Categorical	12.0	10	0.29
Cubic spline	8.8	4	0.07
2-piece linear	8.4	2	0.01
Square root	7.7	1	0.006

4 5

> 6 7

1

2

3

^aAll models had 3 variables for date of birth, 1 for family history, and 1 for parity.

8 **b.2.** Linear relative risk models for breast cancer incidence

9

10 We also ran linear relative risk models for breast cancer incidence, using the techniques

11 described recently by Langholz and Richardson (2010) to use SAS to fit these models, using

12 the same data as used for the log RR models. The form of these linear RR models is

13 RR = $1 + \beta x$, where x can be cumulative dose, the log of cumulative dose, a 2-piece linear

14 function of cumulative dose, etc.

15

16 Figure D-1g below shows the different curves with the linear RR model, using cumulative

17 exposure lagged 15 years as the exposure metric. The categorical points in Figure D-1g

18 come from the published categorical results for the log RR model (Steenland et al., 2003).

19 The midpoints for the 5 categories (above the lagged out referent, at 0 exposure) are the

20 medians of cumulative exposure (lagged 15 years), which were 253, 1193, 3241, 7741, and

21 26,597 ppm-days.

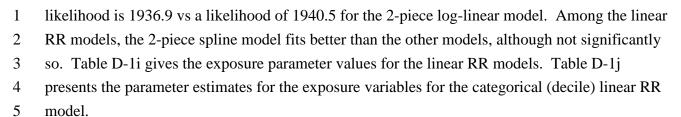
22

23 Figure D-1h shows the likelihood profile for different possible knots for the 2-piece linear

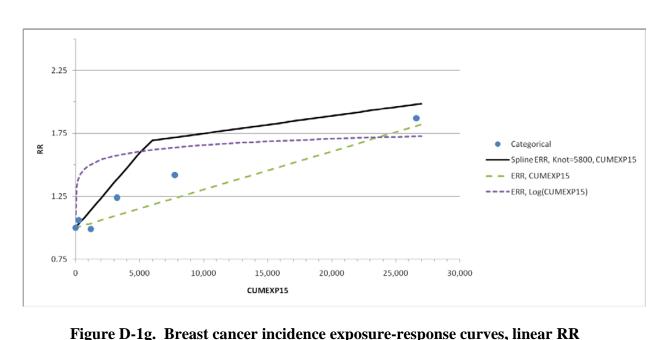
spline, with the search conducted by using increments of 100 ppm-days. For the 2-piece

25 linear spline model the best knot was 5800 ppm-days, as was the case for the 2-piece log-

- linear model.
- 27

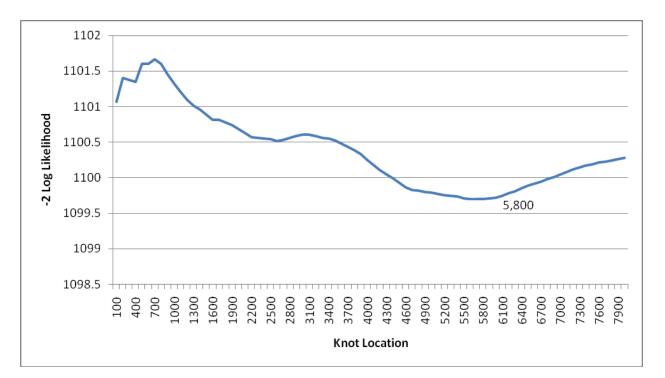

Table D-1h shows the model fit statistics for the linear RR models. These models tend to fit

slightly better than their log RR counterparts, although generally the improvement in the chi


30 square does not attain significance at the 0.05 level. For the 2-piece linear model, the model

This document is a draft for review purposes only and does not constitute Agency policy.

D-18


- *.*
- 6 7

models (units are ppm-days, 15-year lag).

8 9 10

10 11

8

Figure D-1h. Knot location for Figure D-1g above, 2-piece linear spline model, breast cancer incidence (units are ppm-days, 15-year lag).

Table D-1h. Model fit statistics for linear RR models, breast cancer incidence^a

Linear RR Model	d.f. (full model) ^b	–2 Log likelihood (full model)	–2 LL (model without exposure)	-2 LL (model without any covariates)	<i>p-</i> value (full model)	<i>p</i> -value (for addition of exposure terms) ^c
CUMEXP15	6	1940.260	1949.06	1967.813	< 0.0001	0.0030
Log(CUMEXP15)	6	1942.267	1949.06	1967.813	0.0003	0.0096
Spline, knot = 5,800, CUMEXP15	7	1936.935	1949.06	1967.813	< 0.0001	0.0023

9

10 ^aFor the linear RR models, all covariates were included linearly (i.e., additively). Including the nonexposure

11 covariates in the model multiplicatively instead did not improve model fit (e.g., for the 2-piece spline model,

12 inclusion of the non-exposure covariates multiplicatively instead of additively gave a -2 LL of 1940.4 (vs. 1936.9

13 for additive inclusion).

14 ^bDegrees of freedom for full model.

15 ^cBased on change in likelihood for breast cancer incidence linear RR models with addition of exposure term(s) to

16 model with date of birth, parity, and breast cancer in first degree relative. Degrees of freedom for addition of

17 exposure terms is (degrees of freedom for the full model -5).

- 18
- 19

Table D-1i. Model coefficients for linear RR models, breast cancer inc	idence
--	--------

Linear RR Model	Parameter(s)	SE	Profile likelihood 95% (one- sided) upper and lower bounds ^c
CUMEXP15	B = 0.000030402	SE = 0.000017549	$\begin{array}{l} UB = 0.0000745 \\ LB = 0.00000975 \end{array}$
Log(CUMEXP15)	B = 0.071322	SE = 0.039227	
Spline, knot = 5,800, CUMEXP15 ^{a, b}	$B1 = 0.000119, \\ B2 = -0.000105$	SE1 = 0.000067727, SE2 = 0.000070478	$UB1 = 0.000309 \\ LB1 = 0.000032$

^aCovariance of 2 pieces of linear spline, -4.64×10^{-9} .

^bFor estimating risks from occupational exposures (Section 4.7 of the Carcinogenicity Assessment Document), both pieces of the 2-piece linear spline model were used. For the maximum likelihood estimate, for exposures below the knot, $RR = 1 + (B1 \times exp)$; for exposures above the knot, $RR = 1 + (B1 \times exp + B2 \times (exp - knot))$. For the 95% upper confidence limit, for exposures below the knot, $RR = 1 + ((\beta1 + 1.645 \times SE1) \times exp)$; for exposures above the knot, $RR = 1 + (\beta1 \times exp + \beta2 \times (exp - knot)) + 1.645 \times sqrt(exp^2 \times var1 + (exp-knot)^2 \times var2 + 2 \times exp \times (exp-knot) \times covar)$), where exp = cumulative exposure, var = variance, covar = covariance.

¹¹ ^cEditorial note: As discussed in footnotes i and j of Table 4-7 in Section 4.1.2.3 of this assessment, confidence ¹² intervals were determined using the Wald approach. Confidence intervals for linear RR models, however, in

13 contrast to those for the log-linear RR models, may not be symmetrical. EPA also evaluated application of a

profile likelihood approach (Langholz and Richardson, 2010), which allows for asymmetric CIs, for selected linear
 RR models, for comparison with the Wald approach. 95% (one-sided) upper and lower bounds on the parameter

16 estimate (regression coefficient) derived using the profile likelihood method are presented here. For the continuous linear model (CUMEXP15), the profile likelihood upper bound is about 29% higher than the upper bound obtained

18 using the Wald approach. For the low-exposure segment of the linear spline model, the profile likelihood upper

bound is about 34% higher than the upper bound obtained using the Wald approach. Calculating the profile likelihood bounds for the second spline segment parameter estimate is computationally difficult and was not

20 likelihood bounds for the s21 pursued here.

22

Table D-1j. Supplemental Results: Parameter estimates for exposure variables for categorical (decile) linear RR model (RR = $1 + \beta$), breast cancer incidence

N	Parameter	Estimate	Approx Std Err	t Value	Approx Pr > t	Gradient Objective Function
1	beta1a	0.039745	0.340310	0.116792	0.907133	2.4264E-10
2	beta1b	0.133788	0.371450	0.360177	0.719065	6.847537E-11
3	beta1c	0.304056	0.438525	0.693361	0.488824	1.119129E-10
4	beta1d	0.166744	0.402813	0.413950	0.679319	3.011577E-10
5	beta1e	-0.071617	0.347348	-0.206182	0.836842	7.617004E-11
6	beta1f	0.749956	0.583672	1.284893	0.200200	9.568004E-11
7	beta1g	0.919113	0.643333	1.428674	0.154536	7.337724E-11
8	beta1h	0.487590	0.505453	0.964660	0.335789	5.850301E-11
9	beta1i	0.985298	0.753167	1.308206	0.192187	1.207377E-10
10	beta1j	1.575028	0.960886	1.639141	0.102633	1.341514E-10

Value of Objective Function (log likelihood) = -966.9720784

24 c. Risk assessment for breast cancer incidence using the 2-piece log-linear spline

We used the 95% upper bound of the coefficient for the 1st piece of the 2-piece log-linear 26 27 model from Table D-1c, which is $0.0000770 + 1.64 \times 0.0000317$ or 0.0001290, to calculate 28 the LEC $_{01}$ via the life-table analysis of excess risk used by EPA in Appendix C of their risk 29 assessment. Here we used the same data on background breast cancer incidence and 30 background all-cause mortality as used by EPA in their 2006 calculations. The rate ratio then, as a function of exposure, is $RR = e^{(0.0001290 \times cumexp15)}$. Note that the 2-piece log-linear 31 model is linear for the log RR. Once this is exponentiated, it is no longer strictly linear, but 32 33 is still approximately so, as can be seen in Figure D-1a. 34 Use of the function $RR = e^{(0.0001290 \times cumexp15)}$ in the life-table analysis results in an excess risk 35 36 of 0.01 when the daily exposure is 0.0090 ppm, which is the LEC_{01} . This is slightly lower 37 than the previous LEC_{01} of 0.0110 ppm in EPA's 2006 draft risk assessment (U.S. EPA, 38 2006a, Table 14). 39 40 Similar calculations were done for the EC_{01} , which resulted in a value of 0.0152 ppm.

41

1

2

3 45678901112134156177189201

22 23

25

1 d. Risk assessment for breast cancer incidence using the square root transformation log

- 2 **RR model**
- 3 Use of the 95% upper bound of the relative risk function, ie, $RR = e^{((0.000349 + .00118 \times 1.64) \times square}$ 4 ^{root(cumexp15))}, in the life-table analysis results in an excess risk of 0.01 when the daily exposure 5 is 0.00225 ppm, which is the LEC₀₁. This is about 5 times lower than the previous LEC₀₁ of 6 7 0.0110 ppm in EPA's 2006 draft risk assessment (U.S. EPA, 2006a, Table 14). The EC_{01} is 8 0.0060 ppm, which is about four times lower than the EPA's 2006 EC_{01} . The reason these 9 estimates are much lower than the EPA's is that the square root curve, as can be seen in 10 Figure D-1d, rises very sharply (is supralinear) in the low-dose region. In this sense, it shares 11 the disadvantage of the log transform model, and we recommend against using it as a basis 12 for risk assessment for that reason. 13 14 e. Risk assessment for breast cancer incidence using the cubic spline curve log RR 15 model 16 17 Risk assessment using the spline curve is more difficult due to the semi-parametric 18 complicated nature of the restricted cubic spline function. The cubic spline function for the 19 breast cancer incidence rate ratio is 20 21 RR=exp((ns_0*cumexp15) + ns_1*(((cumexp15-598)**3)*(cumexp15>= 598) -22 ((37668-598) /(37668-11187)) *(((cumexp15-11187)**3) *(cumexp15>= 11187)) + 23 ((11187 -598)/(37668 - 11187)) *(((cumexp15-37668)**3) *(cumexp15>= 37668)) 24) + ns 2*(((cumexp15-1774)**3)*(cumexp15>= 1774) - ((37668-1774) /(37668-25 11187)) *(((cumexp15-11187)**3) *(cumexp15>= 11187)) + ((11187 -1774) /(37668 26 - 11187))*(((cumexp15-37668))**3) *(cumexp15>= 37668))) + ns_3*(((cumexp15-27 4647)**3)*(cumexp15>= 4647) - ((37668-4647) /(37668-11187)) *(((cumexp15-28 11187)**3) *(cumexp15>= 11187)) + ((11187 -4647)/(37668 - 11187)) 29 *(((cumexp15-37668)**3) *(cumexp15>= 37668)))). 30 31 The coefficients ns_0, ns_1, ns_2, and ns_3 used in this function are 0.00008294999811, -32 0.0000000000310 0.000000000425, and -0.0000000000114, respectively. The 33 expression "cumexp15>=" is a logical statement whereby the term is 0 when "cumexp" is less
- 34 than the specified value.
- 35
- 36 Here we calculate only the EC_{01} (without the LEC_{01}) for comparison with the corresponding
- 37 EC_{01} from the 2-piece log-linear model. The point is to show that the cubic spline log RR model

This document is a draft for review purposes only and does not constitute Agency policy.

D-23

- 1 and the 2-piece log-linear spline give similar answers, not to use the cubic spline for risk
- 2 assessment, given its relatively complicated formula above. Calculation of the LEC₀₁ is also
- 3 particularly complicated because to do it correctly one must use not only the standard error for
- 4 four coefficients but also their covariances.
- 5
- 6 For breast cancer incidence, the EC_{01} using the cubic spline log RR model is 0.0138 ppm, similar 7 to the value of 0.0152 ppm using the 2-piece log-linear model.
- 8

15 16

17

18

9 f. Risk assessment for breast cancer incidence using the 2-piece linear spline model

10 11 Use of the function $RR = 1 + (0.000119 + 1.64 \times 0.000067) \times cumexp15$ in the life-table

12 analysis results in an excess risk of 0.01 when the daily exposure is 0.0052 ppm, which is the

- 13 LEC $_{01}$, which is about half of the value of 0.0110 ppm from the 2-piece log-linear spline
- 14 model. The corresponding EC_{01} is 0.0100 ppm.

g. Supplemental results: results for cumulative exposure and log cumulative exposure Cox regression models with different lag times (no lag, 5 years, 10 years, 15 years, and 20 years)

(i) cumulative exposure model, no lag

Criterion	Without Covariates	With Covariates
- 2 LOG L	1967.813	1946.492
AIC	1967.813	1958.492
SBC	1967.813	1979.172

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr ≻ ChiSq
Likelihood Ratio	21.3211	6	0.0016
Score	22.2448	6	0.0011
Wald	22.0301	6	0.0012

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
dob1	1	0.17056	0.21590	0.6241	0.4295	1.186
dob2	1	0.59054	0.23671	6.2242	0.0126	1.805
dob3	1	0.83494	0.27295	9.3573	0.0022	2.305
CUMEXP	1	5.93879E-6	3.52892E-6	2.8321	0.0924	1.000
PARITY1	1	- 0.25022	0.18784	1.7746	0.1828	0.779
FREL_BR_CAN1	1	0.47120	0.17920	6.9144	0.0086	1.602

(ii) cumulative exposure model, 5-year lag

	Without	With
Criterion	Covariates	Covariates
- 2 LOG L	1967.813	1945.875
AIC	1967.813	1957.875
SBC	1967.813	1978.555

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	21.9381	6	0.0012
Score	23.1833	6	0.0007
Wald	22.9563	6	0.0008

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
dob1	1	0.16362	0.21604	0.5736	0.4488	1.178
dob2	1	0.57250	0.23698	5.8363	0.0157	1.773
dob3	1	0.80642	0.27311	8.7184	0.0032	2.240
CUMEXP5	1	6.8565E-6	3.59626E-6	3.6350	0.0566	1.000
PARITY1	1	- 0.24489	0.18810	1.6951	0.1929	0.783
FREL_BR_CAN1	1	0.47063	0.17919	6.8981	0.0086	1.601

(iii) cumulative exposure model, 10-year lag

	Without	With
Criterion	Covariates	Covariates
- 2 LOG L	1967.813	1945.521
AIC	1967.813	1957.521
SBC	1967.813	1978.201

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr ≻ ChiSq
Likelihood Ratio	22.2922	6	0.0011
Score	23.9807	6	0.0005
Wald	23.6876	6	0.0006

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
dob1	1	0.15185	0.21633	0.4927	0.4827	1.164
dob2	1	0.55144	0.23733	5.3986	0.0202	1.736
dob3	1	0.77339	0.27377	7.9805	0.0047	2.167
CUMEXP10	1	7.75726E-6	3.80799E-6	4.1498	0.0416	1.000
PARITY1	1	- 0.24110	0.18839	1.6379	0.2006	0.786
FREL_BR_CAN1	1	0.46864	0.17921	6.8385	0.0089	1.598

D-25

	Without	With
Criterion	Covariates	Covariates
- 2 LOG L	1967.813	1944.675
AIC	1967.813	1956.675
SBC	1967.813	1977.356

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr ≻ ChiSq
Likelihood Ratio	23.1374	6	0.0008
Score	25.8389	6	0.0002
Wald	25.3594	6	0.0003

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
dob1	1	0.13558	0.21676	0.3912	0.5316	1.145
dob2	1	0.53147	0.23741	5.0116	0.0252	1.701
dob3	1	0.74477	0.27425	7.3748	0.0066	2.106
CUMEXP15	1	9.54826E-6	4.09902E-6	5.4261	0.0198	1.000
PARITY1	1	- 0.23394	0.18882	1.5351	0.2154	0.791
FREL_BR_CAN1	1	0.46449	0.17928	6.7126	0.0096	1.591

(v) cumulative exposure model, 20-year lag

Criterion	Without Covariates	With Covariates
- 2 LOG L	1967.813	1946.040
AIC	1967.813	1958.040
SBC	1967.813	1978.720

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr ≻ ChiSq
Likelihood Ratio	21.7730	6	0.0013
Score	24.0576	6	0.0005
Wald	23.5506	6	0.0006

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
dob1	1	0.13721	0.21682	0.4005	0.5268	1.147
dob2	1	0.53985	0.23711	5.1839	0.0228	1.716
dob3	1	0.76037	0.27371	7.7177	0.0055	2.139
CUMEXP20	1	0.0000101	5.27041E-6	3.6890	0.0548	1.000
PARITY1	1	- 0.23887	0.18905	1.5966	0.2064	0.788
FREL_BR_CAN1	1	0.46310	0.17935	6.6673	0.0098	1.589

This document is a draft for review purposes only and does not constitute Agency policy.

(vi)log cumulative exposure model, no lag

	Without	With
Criterion	Covariates	Covariates
- 2 LOG L	1967.813	1943.662
AIC	1967.813	1955.662
SBC	1967.813	1976.343

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr ≻ ChiSq
Likelihood Ratio	24.1508	6	0.0005
Score	24.4372	6	0.0004
Wald	24.1563	6	0.0005

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
dob1	1	0.17618	0.21596	0.6655	0.4146	1.193
dob2	1	0.59516	0.23703	6.3045	0.0120	1.813
dob3	1	0.83783	0.27359	9.3780	0.0022	2.311
lcumexp	1	0.09294	0.04097	5.1458	0.0233	1.097
PARITY1	1	- 0.25682	0.18640	1.8984	0.1683	0.774
FREL_BR_CAN1	1	0.47417	0.17923	6.9991	0.0082	1.607

(vii) log cumulative exposure model, 5-year lag

Criterion	Without Covariates	With Covariates
- 2 LOG L	1967.813	1946.843
AIC	1967.813	1958.843
SBC	1967.813	1979.523

Testing Global Null Hypothesis: BETA=0

	Sq		Test
Likelihood Ratio 20.9703 6 0.0019 Score 21.0320 6 0.0018 Wald 20.7379 6 0.0020	18	e	Score

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
dob1	1	0.15082	0.21658	0.4850	0.4862	1.163
dob2	1	0.53156	0.24038	4.8900	0.0270	1.702
dob3	1	0.72413	0.28191	6.5981	0.0102	2.063
LCUMEXP5	1	0.04458	0.03135	2.0222	0.1550	1.046
PARITY1	1	- 0.26745	0.18630	2.0608	0.1511	0.765
FREL_BR_CAN1	1	0.47497	0.17922	7.0241	0.0080	1.608

This document is a draft for review purposes only and does not constitute Agency policy.

D-27

(viii) log cumulative exposure model, 10-year lag

	Without	With
Criterion	Covariates	Covariates
- 2 LOG L	1967.813	1944.040
AIC	1967.813	1956.040
SBC	1967.813	1976.721

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr ≻ ChiSq
Likelihood Ratio	23.7728	6	0.0006
Score	23.5846	6	0.0006
Wald	23.1565	6	0.0007

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
dob1	1	0.11282	0.21798	0.2679	0.6048	1.119
dob2	1	0.43207	0.24800	3.0352	0.0815	1.540
dob3	1	0.53777	0.30203	3.1702	0.0750	1.712
LCUMEXP10	1	0.05654	0.02594	4.7498	0.0293	1.058
PARITY1	1	- 0.26063	0.18629	1.9573	0.1618	0.771
FREL_BR_CAN1	1	0.47636	0.17921	7.0653	0.0079	1.610

(ix) log cumulative exposure model, 15-year lag

Criterion	Without Covariates	With Covariates
- 2 LOG L	1967.813	1944.176
AIC	1967.813	1956.176
SBC	1967.813	1976.856

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr ≻ ChiSq
Likelihood Ratio	23.6371	6	0.0006
Score	24.0044	6	0.0005
Wald	23.5651	6	0.0006

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
dob1	1	0.08605	0.21943	0.1538	0.6949	1.090
dob2	1	0.38780	0.25363	2.3378	0.1263	1.474
dob3	1	0.47303	0.31528	2.2509	0.1335	1.605
LCUMEXP15	1	0.04949	0.02288	4.6787	0.0305	1.051
PARITY1	1	- 0.25908	0.18638	1.9322	0.1645	0.772
FREL_BR_CAN1	1	0.47620	0.17923	7.0595	0.0079	1.610

This document is a draft for review purposes only and does not constitute Agency policy.

D-28

		Criterion	Without Covariates	With Covariates		
		- 2 LOG L AIC SBC	1967.813 1967.813 1967.813	1947.020 1959.020 1979.700		
				thesis: BETA=0		
	Test	C C	Chi-Square		> ChiSq	
	Likeli	hood Ratio	20.7930	6	0.0020	
	Score		21.5306	6	0.0015	
	Wald		21.1847	6	0.0017	
		Analysis of	Maximum Likeli	ihood Estimates		
		Parameter	Standard			Hazard
Variable	DF	Estimate	Error	Chi-Square	Pr ≻ ChiSq	Ratio
dob1	1	0.10961	0.22008	0.2481	0.6184	1.116
dob2	1	0.46136	0.25203	3.3509	0.0672	1.586
dob3	1	0.61353	0.30969	3.9248	0.0476	1.847
LCUMEXP20	1	0.02970	0.02151	1.9068	0.1673	1.030
PARITY1	1	- 0.26623	0.18642	2.0397	0.1532	0.766

0.17925

0.0087

1.601

6.8927

34 D.2. BREAST CANCER MORTALITY

1

36 a. Exposure distribution among women and breast cancer deaths in the cohort

0.47060

37 mortality study (*n* = 9544)

FREL_BR_CAN1

38

32 33

35

123456789011234567890112345678901123456789012222222222222331

39 In the Cox regression analyses of Steenland et al. (2004), the data on breast cancer mortality

40 was found to be fit best using cumulative exposure with a 20-year lag. Below is the

41 distribution of the 102 breast cancer deaths used in the analysis. The cut points are those

42 used in the published data (Steenland et al., 2004).

43

Table D-2a. Distribution of cases in Cox regression analysis of breast cancermortality after using a 20-year lag

Cumulative exposure, 20-year lag ^a	Number of breast cancer deaths
0 (Lagged out)	42
>0–646 ppm-days	17
647–2779 ppm-days	16
2780–12321 ppm-days	15
>12321 ppm-days	12

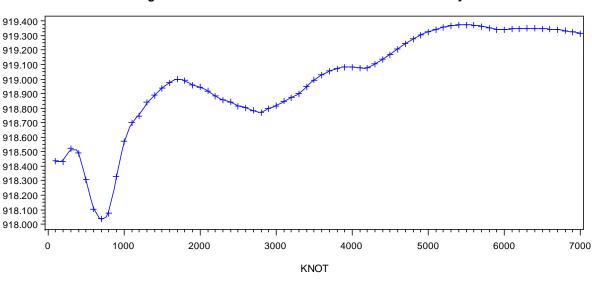
^aMean exposures for females with a 20-year lag for the categorical exposure quartiles were 276; 1,453; 5,869; and 26,391 ppm × days. Median values were 250; 1,340; 5,300; and 26,676 ppm × days. These values are for the risk sets but should provide a good approximation to the full cohort values.

- 11 Regarding the women in the cohort as a whole, cumulative exposure at the end of follow-up,
- 12 with no lag, had a mean of 8.2 ppm-years, with a standard deviation of 38.2. This
- 13 distribution was highly skewed; the median was 4.6 ppm-years.
- 14

b. Results of Cox regression analysis of breast cancer mortality using a variety of log RR models

- 17
- 18 Analyses used a case-control approach, with 100 controls per case, as in Steenland et al.
- 19 (2004). Age was the time variable in proportional hazards (Cox) regression. For breast
- 20 cancer mortality, only exposure variables were included in models. Cases and controls were
- 21 matched on sex (all female), date of birth, and race.
- 22

23 Using log RR models, we used a categorical model, a linear model, a 2-piece linear model, a


24 log transform model, and a cubic spline model. We also ran a number of analogous models

- 25 using linear RR models (Section D-2.c below).
- 26
- 27 The categorical log RR model for breast cancer mortality was run using the originally
- 28 published cut points to form four categories above the lagged-out group, as shown in
- 29 Table D-2a. To graph the categorical points, each category was assigned the mid-point of the
- 30 category as its exposure level, except for the last one which was assigned 50% more than the
- 31 last cut point 12,322 ppm-days.

This document is a draft for review purposes only and does not constitute Agency policy.

4

- 1 For the 2-piece log-linear model, the single knot was chosen at 700 ppm-days based on a
- 2 comparison of likelihoods assessed every 100 ppm-days from 0 to 7,000 (Figure D-2a). We
- 3 also explored knots beyond 7,000 ppm-days by looking at increments of 1,000 ppm-days
- 4 from 0 to 25,000 (Figure D-2a shows the results for knots up to 15,000 ppm-days). None of
- 5 these outperformed the knot at 700 ppm-days, although Figure D-2a' suggests a local
- 6 maximum likelihood near 13,000 ppm-days.
- 7
- 8

-2 log likelihood for different knots for breast cancer mortality

9 10 Figure D-2a. Likelihoods vs knots for the 2-piece log-linear model, breast 11 cancer morality.

12

13
14 In Figure D-2b below, we show the categorical and 2-piece log-linear spline models, as well

- 14 In Figure D-2b below, we show the categorical and 2-piece log-linear spline models, as well
- as the log-linear model and the log-linear model after cutting out the top 5% of exposedsubjects.
- 17

-2 log likelihood for different knots for breast cancer mortality

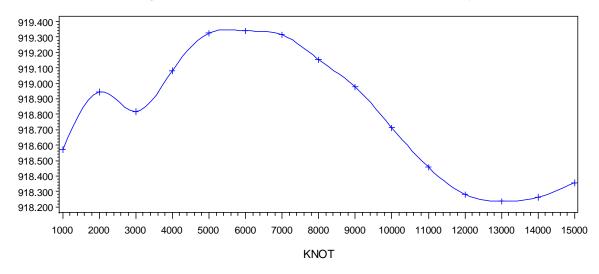


Figure D-2b. Likelihoods vs knots for the 2-piece log-linear model, breast cancer morality.

5 6 The log-linear model was clearly highly sensitive to exclusion of the most highly exposed. 7 As a sensitivity analysis, we excluded 1%, 2.5%, 5%, and 10% of the upper tail of exposure. 8 The 5% cutoff was at 15,000 ppm-days, while the 10% cutoff was at 13,000 ppm-days. The 9 slope of the linear exposure-response relationship increased by 1.2, 1.6, 5.9, and 4.5 times, 10 respectively, with the exclusion of progressively more data. It would appear that the upper 5% of the exposure range most affects the linear slope, and it is responsible for the 11 12 attenuation seen in the exposure-response at high exposures. 13 14 The 2-piece log-linear spline model in Figure D-2b fits reasonably well but appears to 15 underestimate the categorical RRs at higher exposures. This may be due to the influence of 16 the top 5% of the exposed, which appear to have a strong attenuating influence on the slope 17 (see below). 18 19 For comparison purposes, we also show the logarithmic transformation log RR model in 20 Figure D-2c (which we have not used for risk assessment because it is supralinear in the low 21 dose region). 22 23 24 This document is a draft for review purposes only and does not constitute Agency policy.

D-32

DRAFT-DO NOT CITE OR QUOTE

7/2013

1 2

3

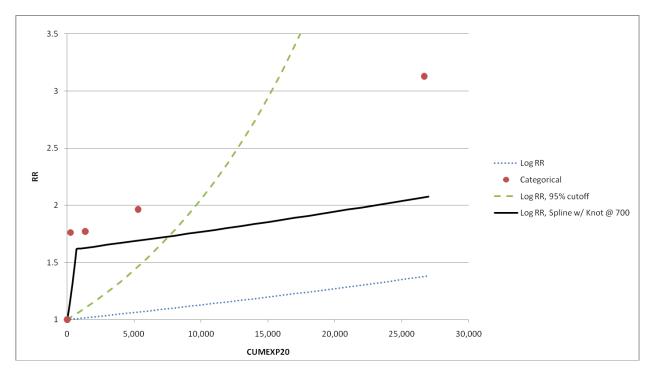
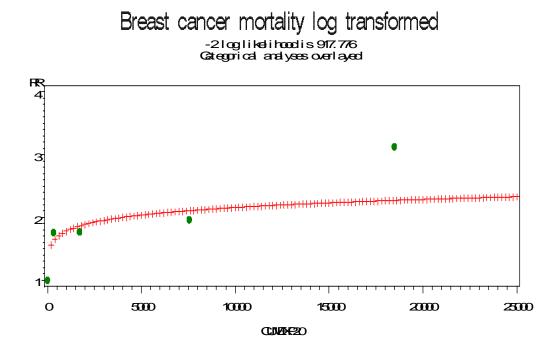



Figure D-2c. Plot of the dose-response relationship of continuous exposure (lagged 20 years) for breast cancer mortality, with the 2-piece linear spline, the categorical, and the linear log RR models (labeled "log RR"). Also shown is the log-linear curve (log RR = $\beta \times$ cumexp20) after cutting out the top 5% of exposure subjects ('log RR 95% cutoff').

Figure D-2d. Plot of the dose-response relationship of continuous exposure (lagged 20 years) for breast cancer mortality, generated using a logarithmic transformation log RR model. Dots that represent the effect of exposure grouped in categories are also presented in the plot.

8 Outputs from the categorical, 2-piece linear spline, and linear log RR models are given

9 below. The 2-piece log-linear model performed similarly to the log-linear model, but

10 appeared to fit the categorical log RR model points and the cubic spline log RR model much

11 better. The log-linear spline model is at the border of statistical significance (p = 0.07). In

12 any case, models with relatively sparse data may not achieve conventional statistical

13 significance (at the 0.05 level) but still provide a good fit to the data, judged by conformity

14 with categorical and cubic spline analysis, and may still be useful for risk assessment.

15

1 2

3

4

5

6 7

1 2	Tab mo		b. Categorical	output bre	ast cancer mor	tality, 20-year la	ag (log RR
3 4		ž		Model	l Fit Statist:	ics	
5 6 7 8 9			Crite	erion	Without Covariates	With Covariates	
8 9 10 11 12			-2 LC AIC SBC	DG L	923.433 923.433 923.433	915.509 923.509 934.009	
13 14 15 16			Test	Testing (Global Null Hy Chi-Square	ypothesis: BET	TA=0 c > ChiSq
17 18 19 20 21			Likelihood H Score Wald	Ratio	7.9244 8.5160 8.3993	4 4 4	0.0944 0.0744 0.0780
22 23 24				Analysis	of Maximum L	ikelihood Est	imates
25 26 27	Variable	DF	Parameter Estimate	Standard Error	l Chi-Square	Pr > ChiSq	Hazard Ratio
28 29 30 31 32 33	CUM201 CUM202 CUM203 CUM204	1 1 1 1	0.56653 0.57236 0.67537 1.14110	0.33920 0.35505 0.37632 0.40446	2.7894 2.5987 3.2207 7.9598	0.0949 0.1070 0.0727 0.0048	1.762 1.772 1.965 3.130

1			near spline, breas	st cancer mortal	ity, 20-year lag,	
2 3 4 5	knot at 70	0 ppm-days				
3						
4						
6		Model Fit	t Statistics			
6 7 8 9 10						
8			Without	With		
9		Criterion	Covariates	Covariates		
11		-2 LOG L	923.433	918.037		
12		AIC	923.433	922.037		
13		SBC	923.433	927.287		
14						
15						
16		Testing Glo	bal Null Hypotl	nesis: BETA=0		
17						
18	Test		Chi-Square	DF Pr	> ChiSq	
19						
20	Likeli	hood Ratio	5.3967	2	0.0673	
21	Score		6.0153	2	0.0494	
22	Wald		5.8857	2	0.0527	
23						
24						
25	P	nalysis of Ma	ximum Likeliho	od Estimates		
26						
27		Parameter	Standard			Hazard
28	Parameter	Estimate	Error	Chi-Square	Pr > ChiSq	Ratio
29						
30	LIN_0	0.0006877	0.0004171	2.7178	0.0992	1.001
31	LIN_1	-0.0006782	0.0004188	2.6229	0.1053	0.999
32						
33	*covariance lin	10 and lin1 -1	$.75 \times 10^{-7}$			
34						
35						
20						

Model Fit Statistics

Criterion	Without Covariates	With Covariates
-2 LOG L	923.433	920.647
AIC	923.433	922.647
SBC	923.433	925.272

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	2.7865	1	0.0951
Score	3.7383	1	0.0532
Wald	3.6046	1	0.0576

Analysis of Maximum Likelihood Estimates

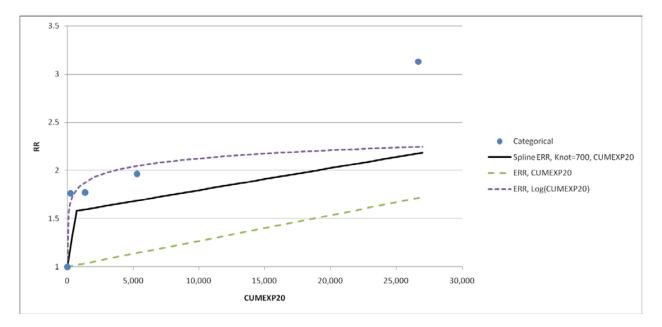
Variable	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
CUMEXP20	0.0000122	6.40812E-6	3.6046	0.0576	1.000

This document is a draft for review purposes only and does not constitute Agency policy.

1 2	Table lag	e D-2e.	Log transform	log RR mode	el, breast ca	ncer mortali	t y, 20- y	year
3 4 5				Model Fit	Statistic	CS		
5 6 7			Criteri		Vithout Ariates	Wit: Covariate		
2 3 4 5 6 7 8 9 10			-2 LOG AIC	ç	923.433 923.433	917.74 919.74	3	
11 12 13			SBC	ç	923.433	922.36	3	
14 15 16		т	Testing 'est		l Hypothes Square	sis: BETA=0 DF P	r > Cł	nisa
17 18			ikelihood Rati		5.6908	1 1)171
19 20 21			Score Wald		5.7676 5.7688	1 1)163)163
22 23 24								
25 26 27			Analysis	of Maximum	n Likelihoo	od Estimate	5	
28 29 30	Parameter	DF	Parameter Estimate	Standard Error	Chi-Squa:	re Pr > C	hiSq	Hazard Ratio
31 32	lcum20	1	0.08376	0.03487	5.7688	0.016	3	1.087

	Мс	del Fit Statis	stics		
	Criterion	Without Covariates	W: Covariat	ith tes	
	-2 LOG L AIC SBC	923.433 923.433 923.433	922.2	237	
	-				
Test		Chi-Square	DF	Pr > ChiSq	
	lihood Ratio	Chi-Square 5.1963	DF 2	Pr > ChiSq 0.0744	
		-		-	
Like		5.1963	2	0.0744	
Like	2	5.1963 5.9044	2 2 2	0.0744 0.0522 0.0555	
Like	2	5.1963 5.9044 5.7813	2 2 num Likelihoo	0.0744 0.0522 0.0555	
Like Score Wald	e Ana Parameter	5.1963 5.9044 5.7813 Alysis of Maxim Standard Error	2 2 2 num Likelihoo Chi-Square	0.0744 0.0522 0.0555 od Estimates	Hazaro Ratio 1.000

32 c. Linear relative risk models for breast cancer mortality


33

30 31

1

34 Finally, we also ran linear RR models for these data, as shown in Figure D-2d below 35 (denoted "ERR" models), which also includes the RRs from the log RR categorical model as 36 shown in other graphs. Again, the linear curve, highly influenced by the upper 5% tail of 37 exposure, underestimates the categorical points, while the log transform and 2-piece spline 38 capture better the initial increase in risk followed by an attenuation. Parameter estimates for 39 these models can be found in Table D-2g.

40

Table D-2g. Model results for breast cancer mortality, linear RR models^b

Linear RR Model	Parameter(s)	SE	–2 Log Likelihood
CUMEXP20	B = 0.000026779	0.000021537	920.122
Log(CUMEXP20)	B = 0.122090	SE = 0.061659	917.841
Spline, knot = 700, CUMEXP20 ^a	B1 = 0.000830, B2 = - 0.000807	SE1 = 0.000614, SE2 = 0.000619	918.058

7 8

1 2

3 4 5

6

^aCovariance 2 pieces of spline, -3.80×10^{-7} .

^bEditorial note: As discussed in footnotes i and j of Table 4-7 in Section 4.1.2.3, Confidence intervals were
determined using the Wald approach. Confidence intervals for linear RR models, however, in contrast to
those for the log-linear RR models, may not be symmetrical. For breast cancer incidence, EPA also
evaluated application of a profile likelihood approach for the linear RR models (Langholz and Richardson,
2010), which allows for asymmetric CIs, for comparison with the Wald approach. The unit risk estimate for
breast cancer mortality presented in this assessment does not rely on any of the linear RR models, thus

15 revised CIs calculated using the profile likelihood method are not shown here.

16

1 **d.** Risk assessment for breast cancer mortality using the 2-piece log-linear spline model 2

3 We next used the 95% upper bound of the coefficient for the 1st piece of the 2-piece log-4 linear model from Table D-2c, which is $0.0006877 + 1.64 \times 0.0004171$, to calculate the 5 LEC_{01} via the life-table analysis of excess risk used by EPA in Appendix C of their 2006 6 draft risk assessment. Here we used the same data on background breast cancer mortality 7 and background all cause mortality as used by EPA in their 2006 calculations. The rate ratio, then, as a function of exposure, is $RR = e^{(0.00137 \times cumexp20)}$. Note that the 2-piece log-linear 8 9 model is linear for the log of the rate ratio. Once this is exponentiated, it is no longer strictly 10 linear, but is still approximately so, as can be seen in Figure D-2b. 11 12 Use of this function in the life-table analysis results in an excess risk of 0.01 when the daily 13 exposure is 0.0048 ppm, which is the LEC_{01} . This is substantially lower than the previous 14 LEC₀₁ of 0.0195 ppm in EPA's 2006 draft risk assessment (U.S. EPA, 2006a, Table 12). 15 16 Similar calculations were done to derive the EC_{01} which was 0.0095 ppm. 17 18 e. Risk assessment for breast cancer mortality using the 2-piece linear spline model. 19 20 The slope of the first segment of the 2-piece linear model was 21% higher than the slope of the corresponding 2-piece log-linear spline (knot at 700 ppm-days). The slope coefficient 21 22 was 0.0008300, with a std. err. of 0.000614. The resulting EC_{01} and LEC_{01} were 0.0080 and 23 0.0037 ppm, respectively. 24 25 **D.3. LYMPHOID CANCER MORTALITY (SUBSET OF ALL HEMATOPOIETIC** 26 CANCERS COMBINED) (N = 18,235). 27 28 a. Exposure distribution in cohort and among lymphoid cases in the cohort mortality 29 study 30 31 The estimated daily exposure to ETO across different jobs and time periods ranged from 32 0.05 to 77 ppm. Exposure intensities from this broad range were multiplied by the length of 33 time in different jobs to get estimates of cumulative exposure. The duration of exposure for 34 the full cohort at the end of follow-up had a mean of 8.7 years and a standard deviation of 35 9.3 years. Cumulative exposure at the end of follow-up, with no lag, had a mean of 27 ppm-

- 1 years and a median of 6 ppm-years, indicating that these data are highly skewed. Log
- 2 transformation of these data results in an approximately normal distribution of the data.
- 3
- 4 As noted in Section D.1.a, cumulative exposure at the end of follow-up may be misleading,
- 5 as it is not relevant to standard analyses, all of which treat cumulative exposure as a time-
- 6 dependent variable which must be assessed at specific points in time. See Section D.1.a for
- 7 more discussion.
- 8
- 9 In modeling lymphoid cancer, a subset of all (lympho)hematopoietic cancer, we used a 15-
- 10 year lag for cumulative exposure as in the prior publication (Steenland et al., 2004), and we
- 11 also used the same cut points as in the publication. Lymphoid cancer consists of nonHodgkin
- 12 lymphoma, lymphocytic leukemia, and myeloma (ICD-9 200, 202, 203, 204). The
- 13 distribution of cases for lymphoid cancer mortality is seen below.
- 14
- 15 16

Table D-3a. Exposure categories and case distribution for lymphoid cancermortality

17 18

Cumulative exposure, 15-year lag ^a	Male lymphoid cancer deaths	Female lymphoid cancer deaths	Total lymphoid cancer deaths
0 (Lagged out)	6	3	9
>0-1200 ppm-days	2	8	10
1201–3680 ppm-days	4	7	11
3681–13,500 ppm-days	5	5	10
>13,500 ppm-days	10	3	13

19 20 21

^aThe means of the categories were 0, 446, 2,143, 7,335, and 39,927 ppm-days, respectively. The medians were 374, 1,985, 6,755, and 26,373 ppm-days, respectively. These values are for the full cohort.

22 23

b. Results of Cox regression analysis of lymphoid cancer mortality using categorical, 2 piece linear, log transform, and linear log RR models

- 26
- 27 While the published results in Steenland et al. (2004) focused on males (Table 7 in Steenland
- et al., 2004), in fact males and females do not differ greatly in categorical results using a 15-
- 29 year lag. A formal chunk test for four interaction terms between exposure and gender is not
- 30 close to significance (p = 0.58), although such tests are not very powerful in the face of
- 31 sparse data such as these. Table D-3b below shows the categorical odds ratio results for men

1 and women separately and combined. In the analyses presented here, males and female are

- 2 combined.
- 3
- 4
- 5
- 6

Table D-3b. Lymphoid cancer mortality results by sex

Cumulative exposure, 15-year lag	Odds ratios (95% CI) males	Odds ratios (95% CI) females	Odds ratios (95% CI) combined
0 (Lagged out)	1.00	1.00	1.00
>0-1200 ppm-days	0.91 (0.16-5.23)	2.25 (0.41-12.45)	1.75 (0.59–5.25)
1,201-3,680 ppm-days	2.89 (0.65–12.86)	3.26 (0.56-18.98)	3.15 (1.04–9.49)
3,681–13,500 ppm-days	2.71 (0.65–11.55)	2.16 (0.34–13.59)	2.44 (0.80-7.50)
>13,500 ppm-days	3.76 (1.03–13.64)	1.83 (0.25–13.40)	3.00 (1.02-8.45)

7 8

9 Analyses used a case-control approach, with 100 controls per case, as in Steenland et al.

10 (2004). Age was the time variable in proportional hazards (Cox) regression. For lymphoid

11 cancer mortality, only exposure variables were included in the model. Cases and controls

12 were within risk sets matched on age, gender, and race.

13

14 Using log RR models, we used a categorical model, a linear model, a 2-piece linear model,

and a log transform model. We also ran a number of analogous models using linear RR

16 models (Section D-3.c below).

17

18 The categorical log RR model for lymphoid cancer mortality was run using the originally

19 published cut points to form four categories above the lagged-out group, as shown in Table

20 D-3b. To graph the categorical points, each category was assigned the mid-point of the

21 category as its exposure level, except for the last one which was assigned 50% more than the

- 22 last cut point.
- 23

For the 2-piece log-linear model, the single knot was chosen at 100 ppm-days based on a

comparison of likelihoods assessed every 100 ppm-day from 100 to 15,000. The best

26 likelihood was at 100 ppm-days. Figure D-3a below shows the likelihood vs the knots.

27 Figure D-3a also suggests a local maximum likelihood near 1600 ppm-days. Figure D-3b

28 shows the log RR models.

29

1 Model results for the categorical and 2-piece linear log RR models are shown in Tables D-3c

2 and D-3d. Tables D-3e and D-3f give the results for the log transform model and linear log

3 RR models; the latter does not fit the data well. Table D-3g shows the model results for the

4 2-piece log-linear spine model with the knot at the local maximum likelihood of 1600 ppm-

- 5 days.
- 6

7 Figure D-3b shows the graphical results for the categorical, 2-piece linear, and log transform

8 log RR models. There is a very steep increase in risk at very low exposures. The knot for

9 the 2-piece log-linear curve is a low 100 ppm-days. The steep slope at low exposures may be

10 unrealistic as a basis for risk assessment, dependent as it is on relatively sparse data in the

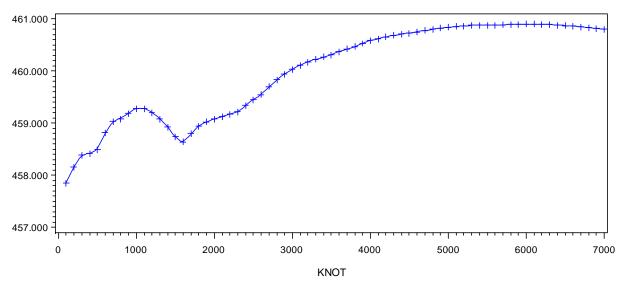
11 low-exposure region (e.g., only 19 cases in the non-exposed lagged-out referent group and

12 the lowest cumulative exposure group, up to 1200 ppm-days, combined).

13

14 We further explored the sensitivity of the log-linear model to high exposures, by excluding

15 progressively more of the upper tail of exposure. We excluded 5%, 10%, 20%, 30%, 40%,


16 and 55% of the upper tail of exposure. The 55% cutoff was at 2,000 ppm-days. The slope of

17 the log-linear exposure-response model increased by 0.4, 1.7, 7.9, 5.6, 26.7, and 113.7 times,

18 respectively, with the exclusion of progressively more data. It is clear that the curve changes


19 substantially once the top 20% of the exposure range is truncated.

20

-2 log likelihood for different knots for lymphoid cancer mortality

Figure D-3a. Likelihoods vs knots for 2-piece log-linear model, lymphoid cancer mortality.

6 7 8 9 10

Figure D-3b. Plot of the exposure and lymphoid cancer mortality rate ratios generated using a 2-piece log-linear spline model overlaid with other log RR curves and categorical log RR model points.

This document is a draft for review purposes only and does not constitute Agency policy.

Table D-3c.Categorical results for lymphoid cancer mortality (log RRmodel), men and women combined

Model Fit Statistics

Criterion	Without Covariates	With Covariates
-2 LOG L	463.912	458.069
AIC	463.912	466.069
SBC	463.912	473.950

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio Score	5.8435 5.7397	4	$0.2111 \\ 0.2195$
Wald	5.6220	4	0.2292
Walu	5.0220	4	0.2292

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
CUM151	1	0.56036	0.55981	1.0020	0.3168	1.75
CUM152	1	1.14581	0.56351	4.1344	0.0420	3.15
CUM153	1	0.89001	0.57391	2.4049	0.1210	2.44
CUM154	1	1.09998	0.55112	3.9837	0.0459	3.00

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

1	Table D	-3d. Results	of 2-piece log	g-linear spline m	nodel for lymp	phoid canc	er
2	mortalit	y, men and	women combi	ined, knot at 100) ppm-days		
3		•					
4							
2 3 4 5							
6 7 8 9			Мос	del Fit Statis	tics		
7							
8				Without	W	ith	
9			Criterion	Covariates	Covaria	ces	
10							
11			-2 LOG L	463.912	457.8	347	
12			AIC	463.912	461.8	347	
13			SBC	463.912	465.	787	
14							
15							
16							
17							
18		1	Testing Glob	oal Null Hypot	hesis: BETA:	= 0	
19							
20		Test		Chi-Square	DF	Pr > Chi	Sq
21							
22		Likeliho	od Ratio	6.0658	2	0.04	
23		Score		5.9648	2	0.05	
24		Wald		5.8246	2	0.05	44
25							
26							
27 28		Analysi	s of Maximum	n Likelihood E	stimates		
28 29		Paramete	r Stand	lard			Hazard
30	Parameter	Estimat		ror Chi-Sq	uare Dr	> ChiSq	Ratio
31	Tarameter	ESCIMAL			uure Pr	- CIIIDA	Nacio
31 32	LIN_0	0.0101	0 0.00)493 4.19	97 0	.0404	1.010
33	LIN_1	-0.0101)493 4.19		.0405	0.990
34		0.0101	0.00				0.000
35							
26							

Table D-3e. Results of the log transform log RR model for lymphoid cancer mortality, both sexes combined

	0 /		Model Fi	t Statisti.	.cs		
		Crite	erion Cov	Without variates	Covari	With ates	
		-2 LC	DG L	463.912 463.912		8.426	
		AIC SBC		463.912		0.426 2.396	
		Testi	ing Global Nu	ill Hypothe	esis: BEI	-A=0	
		Test	Chi-	Square	DF	Pr > ChiSq	
		Likelihood Ra	atio	5.4868	1	0.0192	
		Score		5.3479	1	0.0207	
		Wald		5.2936	1	0.0214	
		Analysis of	Maximum Lik	elihood Es	stimates		
		Parameter	Standard				Hazard
Parameter	DF	Estimate	Error	Chi-Squ	lare P	Pr > ChiSq	Ratio
lcum15	1	0.11184	0.04861	5.29	36	0.0214	1.118
both s	SCAUS (combined	Model Fi	t Statisti.	.cs		
		Crite	erion Cov	Without ariates		With ates	
		-2 LC	DG L	463.912	462	2.413	
		AIC SBC		463.912 463.912		4.413 5.383	
		Testi	ing Global Nu	ill Hypothe	esis: BET	"A=0	
		Test	Chi-	Square	DF	Pr > ChiSq	
		Likelihood Ra	atio	1.4998	1	0.2207	
		Score		2.0403	1	0.1532	
		Wald		1.9959	1	0.1577	
		Analysis of	Maximum Lik	elihood Es	stimates		
Parameter	DF	Parameter Estimate	Standard Error	Chi-Squ	lare P	Pr > ChiSq	Hazard Ratio
CUMEXP15	1	4.73679E-6	3.35285E-6	1.99	59	0.1577	1.000
Tł	iis docu	ment is a draft for re	eview purposes c	only and does	not constit	ute Agency policy	
7/2012			D 49	תח		O NOT CITE	

1

7/2013

D-48

DRAFT-DO NOT CITE OR QUOTE

Table D-3g. Results of 2-piece log-linear spline model for lymphoid cancermortality, men and women combined, knot at 1600 ppm-days

Model Fit Statistics

Criterion	Without Covariates	With Covariates
-2 LOG L AIC	463.912 463.912	458.640 462.640
SBC	463.912	466.581

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr ≻ ChiSq
Likelihood Ratio	5.2722	2	0.0716
Score	5.2666	2	0.0718
Wald	5.1436	2	0.0764

Analysis of Maximum Likelihood Estimates

Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
LIN_0	1	0.0004893	0.0002554	3.6713	0.0554	1.000
LIN_1	1	-0.0004864	0.0002563	3.6014	0.0577	1.000

35 c. Results for linear relative risk models

36

33 34

1

Table D-3h shows the model fit statistics and coefficients for the linear RR models

38 (Supplemental Results). Results for linear RR models are seen in Figure D-3c (denoted as

39 "ERR" models). They are quite similar to the log RR results in Figure D-2b. Again there is

40 a very steep rise in the exposure-response curve at very low exposures. The knot for the 2-

41 piece linear curve is again at 100 ppm-days.

- 42
- 43

Table D-3h. Supplemental Results: Model fit statistics and coefficients for linear RR models, lymphoid cancer mortality

Linear RR Model	-2 Log likelihood (full model)	AIC	<i>p</i> -value ^a	Parameter(s)	SE ^d
CUMEXP15	461.62	463.62	0.13	B = 0.00001226	SE = 0.00001214
Log(CUMEXP15)	458.54	460.54	0.02	B = 0.2083	SE = 0.1434
Spline, knot = 100, CUMEXP15 ^{b,c}	457.48	461.48	0.04	$\begin{array}{l} B1 = 0.010090 \\ B2 = -0.010086 \end{array}$	$\begin{array}{l} SE1 = 0.004458 \\ SE2 = 0.004458 \end{array}$

^aFrom likelihood ratio test.

^bCovariance of 2 pieces of linear spline: -2.52×10^{-5} .

^cFor the maximum likelihood estimate, for exposures below the knot, $RR = 1 + (B1 \times exp)$; for exposures above the knot, $RR = 1 + (B1 \times exp + B2 \times (exp - knot))$. For the 95% upper confidence limit, for exposures below the knot, $RR = 1 + ((\beta 1 + 1.645 \times SE1) \times exp)$; for exposures above the knot, $RR = 1 + (\beta 1 \times exp + \beta 2 \times (exp-knot) + 1.645 \times sqrt(exp^2 \times var1 + (exp-knot)^2 \times var2 + 2 \times exp \times (exp-knot) \times covar)$, where exp = cumulative exposure, var = variance, covar = covariance.

^dEditorial note: Confidence intervals for linear RR models, in contrast to those for the log-linear RR models, may not be symmetrical. EPA did not apply the profile likelihood approach (Langholz and Richardson, 2010), which allows for asymmetric CIs, to develop CIs for this model because the model was not used further in the assessment.

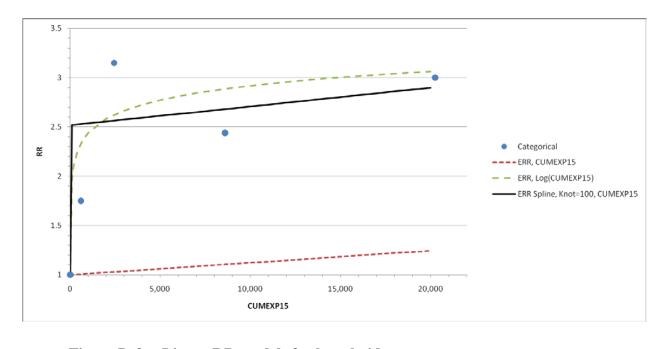


Figure D-3c. Linear RR models for lymphoid cancer.

This document is a draft for review purposes only and does not constitute Agency policy.

d. Risk assessment for all lymphoid cancer mortality using the 2-piece log-linear spline model

3

4 We consider that none of the parametric models (either log RR or linear RR) generated for 5 the lymphoid cancer data (and the same is true for all hematopoietic cancer) are suitable for 6 EPA risk assessment because of the overly steep exposure-response relationship in the low-7 dose range for the 2-piece models and log transform models (highly influenced by the sparse 8 number of deaths in the low-exposure region), and the overly shallow exposure-response 9 relationship for the linear and log-linear models, which are influenced highly by the upper 10 tail of exposures. A reasonable alternative approach is a weighted regression through the 11 categorical points (excluding the highest exposure group), an approach adopted originally by 12 EPA. 13 14 Nonetheless, we have used the 2-piece log-linear model to calculate the LEC₀₁ and the EC₀₁, 15 by way of illustrating the effect of the very steep exposure-response curve in the low-dose 16 region. 17 18 We used the 95% upper bound of the coefficient for the 1st piece of the 2-piece log-linear 19 model from Table D-3d, which is $0.01010 + 1.64 \times 0.00493$, to calculate the LEC₀₁ via the 20 life-table analysis of excess risk used by EPA in Appendix C of their 2006 draft risk 21 assessment. Here we used the same data on lymphoid cancer mortality and background all-22 cause mortality as used by EPA in their 2006 calculations. The predicted rate ratio, then, as a function of exposure, is $RR = e^{((0.01010 + 1.64 \times 0.00493) \times cumexp15)}$. Use of this RR model in the 23 24 life-table analysis results in an excess risk of 0.01 when the daily exposure (15-year lag) is 25 0.0006 ppm, which is the LEC₀₁. This is much lower than the previous LEC₀₁ of 0.0165 ppm 26 for lymphoid cancer mortality in EPA's 2006 draft risk assessment (U.S. EPA, 2006a, Table 27 9). 28 29 A similar calculation was done for the EC_{01} , which resulted in a value of 0.0012 ppm. 30 31

345678900 11213456789011213415678901222345678								
5 6			Criterion	Without Covariates	Wit Covaria			
7			-2 LOG L	463.912				
9			AIC	463.912	464.	014		
10 11			SBC	463.912	465.	984		
12			Tosting Cla	bal Null Hypo	thosis, PETA	-0		
14			-					
15 16		Test		Chi-Square	DF	Pr > ChiSq		
17			lihood Ratio	1.8987	1	0.1682		
19		Scor Wald		1.8589 1.8530	1 1	0.1728 0.1734		
$\frac{20}{21}$								
$\bar{2}\bar{2}$			Analysis of	Maximum Likel	ihood Estima	tes		
$\frac{25}{24}$			Parameter	Standard			Hazard	
$\frac{25}{26}$	Parameter	DF	Estimate	Error	Chi-Square	Pr ≻ ChiSq	Ratio	
$\bar{2}\bar{7}_{28}$	lcumexp	1	0.10230	0.07515	1.8530	0.1734	1.108	
20 29								
30								
31	D.4. HEMATOPO	DIETI	C CANCER	MORTALI	TY (ALL	нематоро	DIETIC CANC	ERS
32	COMBINEI				× ×			
33								
34	a. Exposure distri	ibutio	ı in cohort g	nd among a	ll (lymnho	hematonoieti	c cases in the	
35	cohort mortality s			nu annong a	n (rympno)	mematopoleti	e cases in the	
	conort mortanty s	tuay						
36								
37	In modeling hemate	opoieti	c cancer, we	used a 15-ye	ar lag for c	umulative exp	osure, as in the	
38	prior publication (S	teenla	nd et al., 2004	4), and we al	so used the	e same cut poin	nts as in that	
39	publication. The di	istribut	tion of cases f	for hematopo	vietic cance	r mortality is s	seen below.	
40								

1 2 3

Cumulative exposure, 15 year lag	Male hematopoietic cancer deaths	Female hematopoietic cancer deaths	Total hematopoietic cancer deaths
0 (Lagged out)	9	4	13
>0–1200 ppm-days	4	13	17
1201–3680 ppm-days	5	10	15
3681–13,500 ppm-days	8	7	15
>13,500 ppm-days	11	3	14

Table D-4a. Exposure categories and case distribution for hematopoietic cancer mortality

4 5 6

^aMean exposures for both sexes combined with a 15-year lag for the categorical exposure quartiles were 446; 2,143; 7,335; and 39,927 ppm × days. Median values were 374; 1,985; 6,755; and 26,373 ppm × days. These values are for the full cohort.

7 8 9

10 b. Results of Cox regression analysis of hematopoietic cancer mortality using

11 categorical, 2-piece linear, linear and log transform log RR models

12

13 While the published results of these data in Steenland et al. (2004) focused on males (Table 8

14 in Steenland et al., 2004), in fact males and females do not differ greatly in categorical results

15 using a 15-year lag. A formal chunk test for four interaction terms between exposure and

16 gender is not close to significance (chi square 4.5, 4 df; p = 0.34), although such tests are not

17 very powerful in the face of sparse data such as these. Table D-4b below shows the

18 categorical odds ratio results for men and women separately and combined. Males and

19 females were combined in all analyses for hematopoietic cancer here.

20

This document is a draft for review purposes only and does not constitute Agency policy.

Cumulative exposure, 15 year lag	Odds ratio (95% CI) males	Odds ratio (95% CI) females	Odds ratio (95% CI) combined
0 (Lagged out)	1.00	1.00	1.00
>0–1200 ppm-days	1.23 (0.32–4.74)	3.76 (1.01–17.23)	2.33 (0.93–5.86)
1201–3680 ppm-days	2.53 (0.69–9.27)	4.93 (1.01-23.99)	3.46 (1.33-8.95)
3681–13,500 ppm-days	3.14 (0.95–10.37)	3.31,(0.64–17.16)	3.02 (1.16–7.89)
>13,500 ppm-days	3.42 (1.09–10.73)	2.11 (0.33–13.74)	2.96 (1.12–7.81)

Table D-4b. All hematopoietic cancer mortality categorical results by sex (log RR model)

6 Analyses used a case-control approach, with 100 controls per case, as in Steenland et al.

7 (2004). Age was the time variable in proportional hazards (Cox) regression. For lymphoid

8 cancer mortality, only exposure variables were included in the model. Cases and controls

9 were matched within risk sets on age, gender, and race.

10

11 Using log RR models, we used a categorical model, a linear model, a 2-piece linear model,

and a log transform model. We also ran a number of analogous models using linear RR
models (Section D-4.c below).

14

15 The categorical log RR model for hematopoietic cancer mortality was run using the originally

16 published cut points to form four categories above the lagged-out group, as shown in Table D-

17 4b. To graph the categorical points, each category was assigned the mid-point of the category as

18 its exposure level, except for the last one which was assigned 50% more than the last cut point.

19

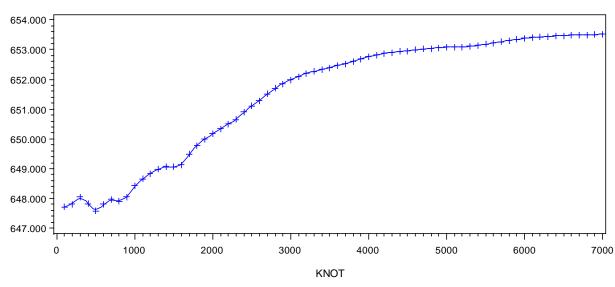
20 For the 2-piece log-linear model, the single knot was chosen based on a comparison of

21 likelihoods assessed every 100 ppm-days from 0 to 7,000 ppm-days. The best likelihood was

22 at 500 ppm-days (Figure D-4a). In Figure D-4b below we show the categorical, 2-piece

23 linear spline and log transform log RR model results.

24


25 Model results for the categorical and 2-piece linear log RR models are shown in Tables D-4c

- and D-4d, and the results of the log transform and linear log RR models in Table D-4e and
- 27 Table D-4f. Again the linear model appears to substantially underestimate the exposure-
- 28 response relationship and does not provide a good model fit.

This document is a draft for review purposes only and does not constitute Agency policy.

⁴ 5

- 1 We further explored the sensitivity of the log-linear model to high exposures by excluding
- 2 progressively more of the upper tail of exposure. We excluded 5%, 10%, 20%, 30%, 40%,
- 3 and 53% of the upper tail of exposure. The 53% cutoff was at 2,000 ppm-days. The slope of
- 4 the log-linear exposure-response model increased by 0.8, 1.0, 9.3, 28.6, 58.2, and 191.4
- 5 times, respectively, with the exclusion of progressively more data. It appears the curve is flat
- 6 in the top 20% of exposure.
- 7
- 8

-2 log likelihood for different knots for all hematopoetic cancer mortality

- 9 10
- 11 12
- 12 13
- 14

Figure D-4a. Likelihood vs knots for 2-piece log-linear model, all hematopoietic cancer.

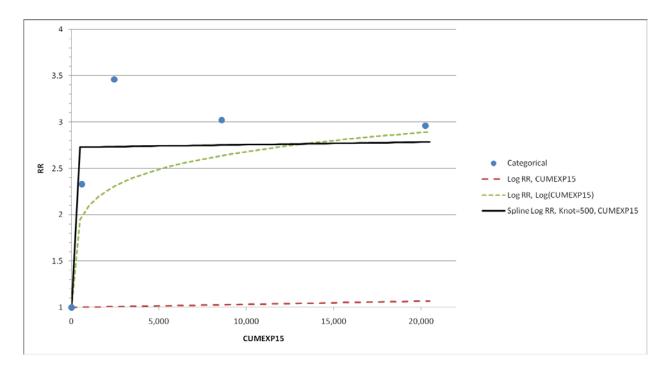


Figure D-4b. Plot of exposure and rate ratios for all hematopoietic cancer generated using a 2-piece log-linear spline model and log transform, linear, and categorical log RR models.

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

Table D-4c. Categorical results for all hematopoietic cancer mortality (log RR model), men and women combined, cumulative exposure with a 15-year lag

Model Fit Statistics

Criterion	Without Covariates	With Covariates
-2 LOG L	655.643	647.806
AIC	655.643	655.806
SBC	655.643	665.022

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	7.8371	4	0.0977
Score	7.3994	4	0.1162
Wald	7.2354	4	0.1240

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
CUM151	1	0.84746	0.46956	3.2573	0.0711	2.33
CUM152	1	1.23989	0.48571	6.5166	0.0107	3.46
CUM153	1	1.10664	0.48943	5.1126	0.0238	3.02
CUM154	1	1.08360	0.49603	4.7723	0.0289	2.96

This document is a draft for review purposes only and does not constitute Agency policy.

 $\begin{array}{c} 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32 \end{array}$

Table D-4d. Results of 2-piece log-linear spline model for all hematopoietic cancer mortality, men and women combined, cumulative exposure with a 15-year lag

Model Fit Statistics

Criterion	Without Covariates	With Covariates
-2 LOG L	655.643	647.581
AIC	655.643	651.581
SBC	655.643	656.189

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	8.0615	2	0.0178
Score	7.5092	2	0.0234
Wald	7.3467	2	0.0254

Analysis of Maximum Likelihood Estimates

Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio
spl1	1	0.00201	0.0007731	6.7457	0.0094	1.002
spl2	1	-0.00201	0.0007738	6.7249	0.0095	0.998

 $\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 21 \\ 223 \\ 24 \\ 26 \\ 27 \\ 29 \\ 31 \\ 23 \\ 34 \\ \end{array}$

1

1	Tal	ole D-4e.	Results of I	log-transfo	rm log R	R model f	for all i	hematopoietic	
2								xposure with a	15-
3	yea	r lag	-					-	
4 5	-								
5				Мос	del Fit	Statistics	3		
6									
7					Wi	thout		With	
8			C	riterion	Covar	iates	Covar	iates	
9									
10			-	2 LOG L	65	5.643	648	8.825	
11			A	IC	65	5.643	650	0.825	
12			S	BC	65	5.643	653	3.129	
13									
14									
15			Т	esting Glob	bal Null	Hypothes	is: BET	ГА=0	
16									
17			Test		Chi-Sq	uare	DF	Pr > ChiSq	
18									
19			Likelihoo	d Ratio	б.	8177	1	0.0090	
20			Score		б.	6260	1	0.0100	
21			Wald		б.	5593	1	0.0104	
22									
23									
24			Analysi	s of Maximu	um Likel	ihood Est:	imates		
25									
26			Paramete	r Star	ndard				Hazard
27	Parameter	DF	Estimat	e I	Error	Chi-Squar	re I	Pr > ChiSq	Ratio
28									
29	lcum15	1	0.10706	0.04	4180	6.5593	3	0.0104	1.113
30									
31									
32									

 Table D-4f. Results of log-linear model for all hematopoietic cancer

 morality, men and women combined, cumulative exposure with a 15-year lag

			Мос	del Fit St	atistics			
			Criterion	Witł Covaria		With ovariates		
			-2 LOG L AIC SBC	655.	643 643 643	654.922 656.922 659.226		
			Testing Glo	oal Null H	Iypothesis:	BETA=0		
		Test		Chi-Squa	are I	OF Pr	> ChiSq	
		Likeliho Score Wald	ood Ratio	0.72 0.87 0.87	783	1 1 1	0.3957 0.3487 0.3499	
		Analys	sis of Maxim	um Likelił	nood Estima	ates		
Parameter	DF	Paramete Estimat			ni-Square	Pr > Ch	ıiSq	Hazard Ratio
CUMEXP15	1	3.26052E-	-6 3.48788	8E-6	0.8739	0.3	3499	1.000

1

2

31 c. Results for linear relative risk models for hematopoietic cancer mortality

32

For completeness, we also present the results of the linear RR models below (Table D-4g and Figure D-4c; linear RR models are denoted "ERR" models in the figure). They look much like their counterparts for the log RR models. Again, the high slope of the exposure-response relationship in the low-dose region for the 2-piece linear and log transform curves, and the low overall slope of the linear curve, call into question the use of these models for risk assessment.

39

Table D-4g. Supplemental Results: Model fit statistics and coefficients for linear RR models, hematopoietic cancer mortality

Linear RR Model	-2 Log likelihood (full model)	AIC	<i>p</i> -value ^a	Parameter(s)	SE ^d
CUMEXP15	654.64	656.64	0.32	B = 0.000006257	SE = 0.000008187
Log(CUMEXP15)	648.13	650.13	0.006	B = 0.2322	SE = 0.1437
Spline, knot = 100, CUMEXP15 ^{b,c}	646.95	650.95	0.01	$\begin{array}{l} B1 = 0.003673 \\ B2 = -0.003668 \end{array}$	$\begin{array}{l} SE1 = 0.002345 \\ SE2 = 0.002345 \end{array}$

^aFrom likelihood ratio test.

^bCovariance of 2 pieces of linear spline: -5.70×10^{-6} .

^cFor the maximum likelihood estimate, for exposures below the knot, $RR = 1 + (B1 \times exp)$; for exposures above the knot, $RR = 1 + (B1 \times exp + B2 \times (exp - knot))$. For the 95% upper confidence limit, for exposures below the knot, $RR = 1 + ((\beta 1 + 1.645 \times SE1) \times exp)$; for exposures above the knot, $RR = 1 + (\beta 1 \times exp + \beta 2 \times (exp-knot) + 1.645 \times sqrt(exp^2 \times var1 + (exp-knot)^2 \times var2 + 2 \times exp \times (exp-knot) \times covar)$), where exp = cumulative exposure, var = variance, covar = covariance.

^dEditorial note: Confidence intervals for linear RR models, in contrast to those for the log-linear RR models, may not be symmetrical. EPA did not apply the profile likelihood approach (Langholz and Richardson, 2010), which allows for asymmetric CIs, to develop CIs for this model because the model was not used further in the assessment.

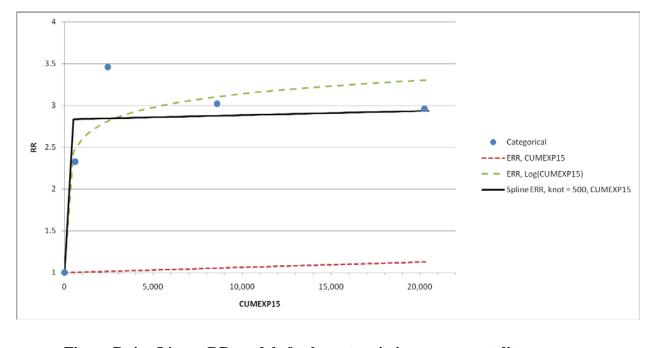


Figure D-4c. Linear RR models for hematopoietic cancer mortality.

D-61

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

d. Risk assessment for all hematopoietic cancer mortality using the 2-piece log-linear spline model

3

4 As was the case for lymphoid cancer (which is a subset of the hematopoietic cancers), we 5 consider that none of the parametric models (either log RR or ERR) generated for the 6 hematopoietic cancer data are suitable for EPA risk assessment because of the overly steep 7 exposure-response relationship in the low-dose range for the 2-piece models and the log 8 transform models (highly influenced by the sparse number of deaths in the low-exposure 9 region), and the overly shallow exposure-response relationship for the linear models, which 10 are influenced highly by the upper tail of exposures. A reasonable alternative approach is a 11 weighted regression through the categorical points (excluding the highest exposure group), 12 an approach adopted originally by EPA. 13 14 Nonetheless, we have used the 2-piece log-linear model to calculate the LEC₀₁ and the EC₀₁, 15 by way of illustrating the effect of the very steep exposure-response curve in the low-dose 16 region. 17 18 We used the 95% upper bound of the coefficient for the 1st piece of the 2-piece log-linear 19 model from Table D-4d, which is $0.00201 + 1.64 \times 0.000773$, or 0.003277, to calculate the 20 predicted LEC_{01} via the life-table analysis of excess risk used by EPA in Appendix C of their 21 2006 draft risk assessment. Again, here we used the data on hematopoietic cancer mortality 22 and background all-cause mortality as used in EPA's 2006 calculations. The predicted RR, then, as a function of exposure, is $RR = e^{(0.003277 \times cumexp15)}$ (up to the knot of 500 ppm-days). 23 24 25 This results in an excess risk of 0.01 when the daily exposure (15-year lag) is 0.0032 ppm, 26 which is the LEC₀₁. This is notably lower than the previous LEC₀₁ of 0.0109 ppm for 27 hematopoietic cancer mortality in EPA's 2006 draft risk assessment (U.S. EPA, 2006a, 28 Table 7). 29 30 Similar calculations were done for the EC_{01} , which resulted in a value of 0.0043 ppm. 31

This document is a draft for review purposes only and does not constitute Agency policy.

D-62 D

D.5. SUMMARY TABLE OF EC₀₁S FOR DIFFERENT OUTCOMES, USING 2-PIECE SPLINE MODELS

3

4 Table D-5 below provides a summary of the current findings for EC_{01} and the prior EPA 5 findings for EC_{01} .

6

7 In general, findings are similar. As described above, the EC_{01} values based on the 2-piece spline models were obtained by multiplying the background cancer rate by e^(beta × cumexp) for 8 9 log RR models or by $(1 + beta \times cumexp)$ for linear RR models, where the beta coefficient 10 was for the first piece of the 2-piece linear models, and cumexp was determined such that a 11 daily exposure would result in an excess risk of 1% above background, with risk calculated 12 through age 85 years (BIER methodology, spreadsheet obtained from EPA). In the case of breast cancer incidence, following EPA's methods in the risk assessment, the life-table 13 14 values for all-cause mortality (within each 5-year age interval) were adjusted to account for 15 incident cases being withdrawn from the pool at risk entering the next age interval, by adding 16 the breast cancer incidence rate to the all-cause mortality rate and then subtracting breast 17 cancer mortality rate so that fatal breast cancer cases are not "counted" twice in this 18 adjustment. 19 20 As noted above, we believe the 2-piece spline models (either log RR or linear RR versions

are reasonable bases for risk assessment for the breast cancer incidence and mortality data.

They also result in EC_{01} values that are lower than but in the ballpark of the previous EPA estimates using weighted regression for categorical points, excluding the highest exposure

24 quintile. However, this is not the case for the hematopoietic/lymphoid cancer data.

Table D-5a. Summary of EC_{01} results (in ppm) in current analysis and previous EPA risk assessment

	U.S. EPA (2006a) EC ₀₁ ^a	Steenland ^a LEC ₀₁ 2-piece spline	Steenland EC ₀₁ 2-piece spline
Breast cancer incidence ^b (log RR model, 15-year lag)	0.0238	0.009	0.0152
Breast cancer incidence (linear RR model, 15-year lag) ^b		0.0052	0.0100
Breast cancer mortality (log RR model, 20-year lag)	0.0387	0.0048	0.0096
Breast cancer mortality (linear RR model, 20-year lag)		0.0037	0.0080
Hematopoietic cancer mortality (log RR model, 15-yr lag) ^c	0.0238	0.0032	0.0043 ^d
lymphoid cancer mortality (log RR model, 15-yr lag) ^c	0.0427	0.0006	0.0012 ^e

⁴ 5 6 7 8 9

^aEPA uses regression through categorical points (U.S. EPA, 2006a), Steenland uses 2-piece spline models.

^bBreast cancer incidence for the subgroup with interviews, see Steenland et al. (2004).

^cFor hematopoietic and lymphoid cancer, EPA EC₀₁ calculated for males only, Steenland includes both men and women.

^dUsing at knot at 500 ppm-days. 2-piece linear RR model results similar but not presented.

¹⁰ ^eUsing knot at 100 ppm-days. 2-piece linear RR model results similar but not presented.

11 12

13 D.6. SENSITIVITY OF 2-PIECE SPLINE CURVES TO PLACEMENT OF KNOT

14

15 By way of sensitivity analysis, we ran 2-piece log-linear models for all breast cancer incidence

16 with knots chosen at 5000, 5800 (optimal) and 7000 ppm-days, and for hematopoietic cancer

17 mortality for knots of 500 (optimal) and 1000. Results show the relatively large sensitivity to the

18 knot placement in the EC_{01} .

Table D-6a. Exposure-response coefficients and $EC_{01}s$ based on selection of different knots, using 2-piece log-linear models

	Coefficient first piece	–2 log-likelihood ^b	EC ₀₁
Breast cancer incidence knot at 5000 ppm-days	0.0000860	1940.6	0.0133
Breast cancer incidence knot at 5800 ppm-days ^a	0.0000770	1940.5	0.0151
Breast cancer incidence knot at 7000 ppm-days	0.0000653	1940.7	0.0176
Hematopoietic cancer mortality knot at 500 ppm-days	0.00201	647.6	0.0043
Hematopoietic cancer mortality knot at 1000 ppm-days	0.00089	648.4	0.0098

4 5 6

7

8 9

1

2

3

^aKnot used in analysis.

^bLower numbers equal better fit, linear RR model likelihoods not comparable to log RR likelihoods and are not shown here.

10 D.7. POSSIBLE INFLUENCE OF THE HEALTHY WORKER SURVIVOR EFFECT

11

12 The healthy worker survivor effect is the effect of healthy workers remaining in the 13 workforce as sick workers leave, independently of any damaging effects of exposure. It is a 14 selection bias via which healthier workers remain in the workforce. It tends to create a 15 downward bias in exposure-response coefficients when the exposure metric is cumulative 16 exposure, which is by definition correlated with duration of exposure and almost always with duration of employment Steenland et al. (1996). Given a true effect of exposure on disease 17 18 incidence or mortality in the case of ethylene oxide, it is possible that the health worker 19 survivor effect has caused some negative bias in observed exposure-response coefficients. 20 However, there are no standard methods to correct for this bias, because leaving work is both 21 a confounder and an intermediate variable on a pathway between exposure and disease. 22 Therefore, standard analyses would need to adjust for employment status as a confounder, 23 but should not adjust for it because it is an intermediate variable. Robins et al. (1992) has 24 proposed some solutions using G-estimation to address this problem, but to date these 25 solutions are not commonly used and can be difficult to implement. The degree to which the 26 health worker survivor effect confounds measured exposure-response trends is not known, 27 but it is likely that lagging exposure, as has been done here, diminishes such confounding 28 (Arrighi and Hertz-Picciotto, 1994) 29

This document is a draft for review purposes only and does not constitute Agency policy.

D-65

- 1 D.8. POSSIBLE INFLUENCE OF EXPOSURE MIS-MEASUREMENT
- 2

3 Exposure estimation in the ETO studies considered here is subject to errors in measurement. 4 The method for exposure estimation used here involved assigned estimated average 5 exposures in a given job, at a given time period in a given plant, to each worker in that job. 6 Estimated average exposures were taken from observed measurements in a given job, or 7 estimated likely average exposures in that job derived from a regression model based on 8 observed measurements (Hornung et al., 1994). Errors in measurement in this type of 9 situation are typically errors of the Berkson type, rather than classical errors (Armstrong, 10 1998, 1990). In Berkson errors, the model for errors is 11 12 $Exposure_{true} = exposure_{observed} + error,$ 13 14 and the error is independent of the observed exposure. The classical error model is 15 16 $Exposure_{observed} = exposure_{true} + error,$ 17 18 and the error is independent of the true exposure. Assuming the errors are unbiased, i.e., 19 their expected value is 0, in the classical error model it is well known that measurement error 20 will bias exposure-response coefficients towards the null in regression analyses. However, in 21 the Berkson error model, exposure-response coefficients will be unbiased in linear regression 22 models, although their variance may be increased. In log-linear regression models, such as 23 used here, Berkson error in some instances may result in biased exposure-response estimates 24 (Deddens and Hornung, 1994; Prentice, 1982). This may occur when the variance of the 25 errors increases with the true exposure level, which is often the case in occupational studies, 26 when the disease is relatively rare (also typical), and when the true exposure is distributed 27 log-normally (again typical of occupational exposures). In this situation, (Steenland et al., 28 2000) have shown that exposure-response coefficients using cumulative exposure can be 29 biased either upward or downward. The direction and degree of bias depends on the degree 30 of increase in the variance of exposure error as exposure level increases and on the variance 31 of duration of exposure. When the standard deviation of duration of exposure is less than or 32 equal to its mean, as is the case in the ETO cohort studied here, simulations have shown that 33 the exposure-response coefficients are approximately unbiased (Steenland et al., 2000). An 34 added complication not considered in the simulations conducted by (Steenland et al., 2000) is 35 the possible correlation between measurement error and outcome. If this correlation is

This document is a draft for review purposes only and does not constitute Agency policy.

D-66

- 1 strong, which may occur when there is a strong exposure-response relationship, it is
- 2 important to take it into account. Estimating the effect of exposure measurement in the
- 3 presence of this correlation can be done using Bayesian models and special software
- 4 (WINBUGS), but the calculations are complex and require a good deal of time.
- 5

6 Hornung et al. (1994) provide an estimate of the log-normal distribution of measured

- 7 exposure based on personal samples, as well as the likely distribution of error in assigning
- 8 the job-specific means to estimate individual exposures. Assignment of such job-specific
- 9 means was shown to involve some bias as well as random error. This provides a rich source
- 10 of information with which one could simulate the effect of measurement error on exposure-
- 11 response coefficients. Based on the exposure estimates used in the study, and some
- 12 assumptions about the error of such measurement in terms of bias and random error, as well
- 13 as the assumption of a Berkson error model, one could simulate what the true job-specific
- 14 exposure means were likely to have been, and then in turn simulate likely true personal
- 15 exposure distributions. Using the latter in exposure-response analysis, one could estimate the
- 16 true exposure-response coefficient. However, such analyses are rather involved and beyond
- 17 the scope of the current task.
- 18

1 **D.9. REFERENCES**

- 2
- 3 Armstrong, B. (1990) The effects of measurement errors on relative risk regressions. Am J Epidemiol 4 132:1176-1184.
- 5 Armstrong, B. (1998) Effect of measurement error on epidemiological studies of environmental and occupational 6 exposures [Review]. Occup Environ Med 55(10):651-656.
- 7 Arrighi, HM; Hertz-Piccioto, I. (1994) The evolving concept of the healthy worker effect. Epidemiology 8 5(2):189-196.
- 9 Deddens, J; Hornung, R. (1994) Quantitative examples of continuous exposure measurement errors that bias risk
- 10 estimates away from the null. In: CM Smith; DC Christiani; KT Kelsey; (Eds.) Chemical risk assessment of 11 occupational health: current applications, limitations, and future prospects (pp.77-85). Westport, CT: Auburn 12
- House.
- 13 Hornung, RW; Greife, AL; Stayner, LT; et al. (1994) Statistical model for prediction of retrospective exposure to 14 ethylene oxide in an occupational mortality study. Am J Ind Med 25(6):825-836.
- 15 Langholz, B; Richardson, DB. (2010) Fitting general relative risk models for survival time and matched case-control 16 analysis. Am J Epidemiol 171:377-383.
- 17 Prentice, RL. (1982) Covariate measurement errors and parameter estimation in a failure time regression model. 18 Biometrika 69(2):331–341.
- 19 Robins, J; Blevins, D; Ritter, G; et al. (1992) G-estimation of the effect of prophylaxis therapy for Pneumoocystis 20 carinii pneumonia on the survival of AIDS patients. Epidemiology 3:319-335.
- 21 Stayner, L; Steenland, K; Dosemeci, M; et al. (2003) Attenuation of exposure-response curves in occupational 22 cohort studies at high exposure levels. Scand J Work Environ Health 29:317-324.
- 23 Steenland, K; Deddens, J. (1997) Increased precision using counter-matching in nested case-control studies. 24 Epidemiology 8(3):238-242.
- 25 Steenland, K; Deddens, J. (2004) A practical guide to dose-response analyses and risk assessment in occupational 26 epidemiology [Review]. Epidemiol 15:63-70.
- 27 Steenland, K; Deddens, J; Piacitelli, L. (2001) Risk assessment for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCCD) 28 based on an epidemiologic study. Am J Epidemiol 154:451-458.
- 29 Steenland, K; Deddens, J; Salvan, A; et al. (1996) Negative bias in exposure-response trends in occupational studies: 30 modeling the healthy worker effect. Am J Epi 143(2):202-210.
- 31 Steenland, K; Deddens, J; Zhao, S. (2000) Biases in estimating the effect of cumulative exposure in log-linear 32 models when estimated exposure levels are assigned. Scan J Work Environ Health 26:37-43.
- 33 Steenland, K; Stavner, L; Deddens, J. (2004) Mortality analyses in a cohort of 18,235 ethylene oxide-exposed 34 workers: follow up extended from 1987 to 1998. Occup Environ Med 61:2-7.
- 35 Steenland, K; Whelan, E; Deddens, J; et al. (2003) Ethylene oxide and breast cancer incidence in a cohort study of 36 7576 women (United States). Cancer Causes Control 14: 531-539.
- 37 U.S. EPA (Environmental Protection Agency). (2006a). Evaluation of the carcinogenicity of ethylene oxide:
- 38 external review draft [EPA Report]. (EPA/635/R-06/003). National Center for Environmental Assessment, 39 Washington, DC.

1	APPENDIX E.						
2	LIFE-TABLE ANALYSIS						
3	A spreadsheet illustrating the extra risk calculation for the derivation of the LEC_{01} for						

4 lymphoid cancer incidence is presented in Table E-1.

Table E-1. Extra risk calculation^a for environmental exposure to 0.0114 ppm (the LEC₀₁ for lymphoid cancer incidence)^b using the weighted linear regression model based on the categorical cumulative exposure results of Steenland et al. (2004), reanalyzed by Steenland for both sexes combined (see Appendix D of this assessment), with a 15-year lag, as described in Section 4.1.1

Γ	Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М	Ν	0	Р
	Interval number (i)	Age interval	All cause mortality (×10 ⁵ /yr)	lymphoid cancer incidence (×10 ⁵ /yr)	All cause hazard rate (h*)	Prob of surviving interval (q)	Prob of surviving up to interval (S)	lymphoid cancer hazard rate (h)	Cond prob of lymphoid cancer incidence in interval (R0)	Exp duration mid interval (xtime)	Cum exp mid interval (xdose)	Exposed lymphoid cancer hazard rate (hx)	Exposed all cause hazard rate (h*x)	Exposed prob of surviving interval (qx)	Exposed prob of surviving up to interval (Sx)	Exposed cond prob of lymphoid cancer in interval (Rx)
	1	<1	685.2	1.9	0.0069	0.9932	1.0000	0.0000	0.00002	0	0.00	0.00002	0.0069	0.9932	1.0000	0.00002
	2	1–4	29.9	8.1	0.0012	0.9988	0.9932	0.0003	0.00032	0	0.00	0.00032	0.0012	0.9988	0.9932	0.00032
	3	5–9	14.7	4.2	0.0007	0.9993	0.9920	0.0002	0.00021	0	0.00	0.00021	0.0007	0.9993	0.9920	0.00021
	4	10–14	18.7	3.2	0.0009	0.9991	0.9913	0.0002	0.00016	0	0.00	0.00016	0.0009	0.9991	0.9913	0.00016
	5	15–19	66.1	3.5	0.0033	0.9967	0.9903	0.0002	0.00017	2.5	31.64	0.00018	0.0033	0.9967	0.9903	0.00018
	6	20-24	94	3.2	0.0047	0.9953	0.9871	0.0002	0.00016	7.5	94.92	0.00017	0.0047	0.9953	0.9871	0.00017
	7	25–29	96	4.1	0.0048	0.9952	0.9824	0.0002	0.00020	12.5	158.20	0.00022	0.0048	0.9952	0.9824	0.00022
	8	30–34	107.9	6.0	0.0054	0.9946	0.9777	0.0003	0.00029	17.5	221.49	0.00034	0.0054	0.9946	0.9777	0.00033
	9	35–39	151.7	9.0	0.0076	0.9924	0.9725	0.0005	0.00044	22.5	284.77	0.00052	0.0077	0.9924	0.9724	0.00050
	10	40-44	231.7	13.2	0.0116	0.9885	0.9651	0.0007	0.00063	27.5	348.05	0.00079	0.0117	0.9884	0.9650	0.00075
	11	45–49	352.3	20.9	0.0176	0.9825	0.9540	0.0010	0.00099	32.5	411.33	0.00128	0.0179	0.9823	0.9538	0.00121
Ē	12	50-54	511.7	32.5	0.0256	0.9747	0.9373	0.0016	0.00150	37.5	474.61	0.00205	0.0260	0.9743	0.9369	0.00190
	13	55–59	734.8	49.2	0.0367	0.9639	0.9137	0.0025	0.00221	42.5	537.90	0.00319	0.0375	0.9632	0.9128	0.00286
	14	60–64	1140.1	70.1	0.0570	0.9446	0.8807	0.0035	0.00300	47.5	601.18	0.00467	0.0582	0.9435	0.8793	0.00399
	15	65–69	1727.4	101.1	0.0864	0.9173	0.8319	0.0051	0.00403	52.5	664.46	0.00691	0.0882	0.9156	0.8296	0.00549
	16	70–74	2676.4	128.7	0.1338	0.8747	0.7631	0.0064	0.00460	57.5	727.74	0.00902	0.1364	0.8725	0.7595	0.00640

7/2013

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

E-2

Table E-1. Extra risk calculation ^a for environmental exposure to 0.0114 ppm (the LEC ₀₁ for lymphoid cancer
incidence) ^b using the weighted linear regression model based on the categorical cumulative exposure results of
Steenland et al. (2004), reanalyzed by Steenland for both sexes combined (see Appendix D of this assessment), with
a 15-year lag, as described in Section 4.1.1 (continued)

Α	В	С	D	Е	F	G	Н	Ι	J	К	L	Μ	Ν	0	Р
Interval number (i)	Age interval	All cause mortality (×10 ⁵ /yr)	incidence	All cause hazard rate (h*)	Prob of surviving interval (q)	Prob of surviving up to interval (S)		Cond prob of lymphoid cancer incidence in interval (R0)	Exp duration mid interval (xtime)	Cum exp mid interval (xdose)	cancer	Exposed all cause hazard rate (h*x)	Exposed prob of surviving interval (qx)	Exposed prob of surviving up to interval (Sx)	Exposed cond prob of lymphoid cancer in interval (Rx)
17	75–59	4193.2	163.0	0.2097	0.8109	0.6675	0.0082	0.00491	62.5	791.02	0.01171	0.2132	0.8080	0.6627	0.00699
18	80-84	6717.2	179.8	0.3359	0.7147	0.5412	0.0090	0.00413	67.5	854.31	0.01323	0.3401	0.7117	0.5354	0.00601
			•			•	Ro =	0.02797					•	Rx =	0.03769

Column A: interval index number (i).

Column B: 5-yr age interval (except <1 and 1-4) up to age 85.

Column C: all-cause mortality rate for interval i ($\times 10^{5}/yr$) (2004 data from NCHS).

Column D: lymphoid cancer incidence rate for interval i ($\times 10^{5}$ /yr) (2000–2004 SEER data).^c

Column E: all-cause hazard rate for interval i (h^*_i) (= all-cause mortality rate × number of years in age interval).^d

Column F: probability of surviving interval i (without being diagnosed with lymphoid cancer) $(q_i) = \exp(-h_{i,i})$. This column is intended to represent the probability of surviving the interval without a diagnosis of lymphoid cancer; however, because lymphoid cancer incidence rates are negligible compared to all-cause mortality rates, no adjustment was made to the population at risk to account for the probability of a lymphoid cancer diagnosis. For breast cancer incidence, on the other hand, the age-specific "mortality" rates (representing the rates at which the population at risk is decreased in each interval) were adjusted to include the age-specific breast cancer incidence rates and to exclude the age-specific breast cancer mortality rates, this latter adjustment so that the probability of death from lymphoid cancer is not counted twice, i.e., both as an incident case and as a component of the all-cause mortality.

Column G: probability of surviving up to interval i (without having been diagnosed with lymphoid cancer) (S₁) (S₁ = 1; S_i = $S_{i-1} \times q_{i-1}$, for i > 1).

Column H: lymphoid cancer incidence hazard rate for interval i (h_i) (= lymphoid cancer incidence rate × number of years in interval).

Column I: conditional probability of being diagnosed with lymphoid cancer in interval i $[= (h_i/h_{i}^*) \times S_i \times (1-q_i)]$, i.e., conditional upon surviving up to interval i (without having been diagnosed with lymphoid cancer) (Ro, the background lifetime probability of being diagnosed with lymphoid cancer = the sum of the conditional probabilities across the intervals).

Table E-1. Extra risk calculation^a for environmental exposure to 0.0114 ppm (the LEC₀₁ for lymphoid cancer incidence)^b using the weighted linear regression model based on the categorical cumulative exposure results of Steenland et al. (2004), reanalyzed by Steenland for both sexes combined (see Appendix D of this assessment), with a 15-year lag, as described in Section 4.1.1 (continued)

Column J: exposure duration at midinterval (taking into account 15-yr lag) (xtime).

Column K: cumulative exposure midinterval (xdose) (= exposure level (i.e., 0.0114 ppm) × $365/240 \times 20/10 \times \text{xtime} \times 365$) [$365/240 \times 20/10 \times 20/10 \times 10^{-10}$ converts continuous environmental exposures to corresponding occupational exposures; xtime × 365 converts exposure duration in vers to exposure duration in days).

Column L: lymphoid cancer incidence hazard rate in exposed people for interval i (hx_i) (= $h_i \times (1 + \beta \times xdose)$, where $\beta = 0.0002472 + (1.645 \times xdose)$

0.0001854) = 0.0005522) (0.0002472 per ppm × day is the regression coefficient obtained from the weighted linear regression model of the categorical results [see Section 4.1.1.2]). To estimate the LEC₀₁, i.e., the 95% lower bound on the continuous exposure giving an extra risk of 1%, the 95% upper bound on the regression coefficient is used, i.e., MLE + 1.645 × SE].

Column M: all-cause hazard rate in exposed people for interval i $(h^*x_i) = h^*_i + (hx_i - h_i)$.

Column N: probability of surviving interval i (without being diagnosed with lymphoid cancer) for exposed people $(qx_i) [= exp(-h*x_i)]$.

Column O: probability of surviving up to interval i (without having been diagnosed with lymphoid cancer) for exposed people (Sx_i) ($Sx_1 = 1$; $Sx_i = Sx_{i-1} \times qx_{i-1}$, for i > 1).

Column P: conditional probability of being diagnosed with lymphoid cancer in interval i for exposed people $[= (hx_i/h^*x_i) \times Sx_i \times (1-qx_i)]$ (Rx, the lifetime probability of being diagnosed with lymphoid cancer for exposed people = the sum of the conditional probabilities across the intervals).

^aUsing the methodology of BEIR (1988).

^bThe estimated 95% lower bound on the continuous exposure level that gives a 1% extra lifetime risk of lymphoid cancer incidence.

^cBackground cancer incidence rates are used to estimate extra risks for cancer incidence under the assumption that the exposure-response relationship for cancer incidence is the same as that for cancer mortality (see Section 4.1.1.3).

^dFor the cancer incidence calculation, the all-cause hazard rate for interval i should technically be the rate of either dying of any cause or being diagnosed with the specific cancer during the interval, i.e., (the all-cause mortality rate for the interval + the cancer-specific incidence rate for the interval—the cancer-specific mortality rate for the interval [so that a cancer case isn't counted twice, i.e., upon diagnosis and upon death]) × number of years in interval. For the lymphoid cancer incidence calculations, this adjustment was ignored because the lymphoid cancer incidence rates are small when compared with the all-cause mortality rates. For the breast cancer incidence calculations, on the other hand, this adjustment was made in the all-cause hazard rate (see Section 4.1.2.3).

MLE = maximum likelihood estimate, SE = standard error.

This document

APPENDIX F. EQUATIONS USED FOR WEIGHTED LINEAR REGRESSION

3 (Source: Rothman (1986, p. 343–344)) 4 5 6 linear model: RR = 1 + bX7 8 where RR = rate ratio, X = exposure, and b = slope 9 10 *b* can be estimated from the following equation: 11 $\hat{b} = \frac{\sum_{j=2}^{n} w_{j} x_{j} R \hat{R}_{j} - \sum_{j=2}^{n} w_{j} x_{j}}{\sum_{j=1}^{n} w_{j} x_{j}^{2}}$ 12 (F-1) 13 14 where *j* specifies the exposure category level and the reference category (j = 1) is ignored. 15

16 the standard error of the slope can be estimated as follows:

17

1

2

18 $SE(\hat{b}) \approx \sqrt{\frac{1}{\sum_{j=2}^{n} w_j x_j^2}}$ (F-2)

19

20 the weights, w_j , are estimated from the confidence intervals (as the inverse of the variance): 21

22
$$Var(R\hat{R}_{j}) \approx R\hat{R}_{j}^{2} Var[\ln(R\hat{R}_{j})] \approx R\hat{R}_{j}^{2} \times \left[\frac{\ln(\overline{RR}_{j}) - \ln(\underline{RR}_{j})}{2 \times 1.96}\right]^{2}$$
(F-3)

23

where \overline{RR}_{j} is the 95% upper bound on the RR_{j} estimate (for the jth exposure category) and \underline{RR}_{j} is the 95% lower bound on the RR_{j} estimate.

APPENDIX G.

MODEL PARAMETERS IN THE ANALYSIS OF ANIMAL TUMOR INCIDENCE

Table G-1. Analysis of grouped data, NTP mice study (NTP, 1987);^a

3

1 2

4

5

Tumor	Multistage ^b polynomial degree	qo	q_1^{c} (mg/m ³) ⁻¹	$q_2 \ (mg/m^3)^{-2}$	q ₃ (mg/m ³) ⁻²	p value (chi-square goodness of fit)
Males						
Lung adenomas plus carcinomas	1	2.52×10^{-1}	1.52×10^{-2}			0.92
Females						
Lung adenomas plus carcinomas	2	3.87×10^{-2}	0.0	$4.80 imes 10^{-4}$		0.39
Malignant lymphoma	3	1.74×10^{-1}	0.0	0.0	1.13×10^{-5}	0.18
Uterine carcinoma	2	0.0	0.0	9.80×10^{-5}		0.90
Mammary carcinoma	1 ^d	2.27×10^{-2}	1.09×10^{-2}			_

^aThe exposure concentrations were at 0, 50 ppm, and 100 ppm. These were adjusted to continuous exposure.

^bP(d) $\Rightarrow 1 - \exp[-(q_0 + q_1d + q_2d^2 + ... + q_kd^k)]$, where d is inhaled ethylene oxide exposure concentration. ^cEven though q_1 is zero in some cases, the upper bound of q_1 is nonzero.

multistage model parameters

10 ^dThe 100-ppm dose was deleted; the fit was perfect with only two points to fit.

Table G-2. Analysis of grouped data, Lynch et al. (1984a); Lynch et al.(1984c) study of male F344 rats;^a multistage model parameters

Tumor	Multistage ^b polynomial degree	qo	$q_1 \ (mg/m^3)^{-1}$	<i>p</i> -value (chi-square goodness of fit)
Splenic mononuclear cell leukemia	1 ^c	$3.12 imes 10^{-1}$	$1.48 imes 10^{-2}$	_
Testicular peritoneal mesothelioma	1	3.54×10^{-2}	6.30 × ⁻³	0.34
Brain mixed-cell glioma	1	0	1.72×10^{-4}	0.96

^aThe exposure concentrations were at 0, 50 ppm, and 100 ppm. These were adjusted to continuous exposure.

^bP(d) $\ni 1 - \exp[-(q_0 + q_1d + q_2d^2 + ... + q_kd^k)]$, where d is inhaled ethylene oxide exposure concentration.

^cThe 100-ppm dose was deleted; the fit was perfect with only two points to fit.

Table G-3. Analysis of grouped data, Garman et al. (1985) and Snellings etal. (1984) reports on F344 rats;^a multistage model parameters

Tumor	Multistage ^b polynomial degree	qo	$q_1 \ (mg/m^3)^{-1}$	<i>p</i> -value (chi-square goodness of fit)
Males				
Splenic mononuclear cell leukemia	1	$1.63 imes 10^{-1}$	$8.56\times10^{\text{-3}}$	0.34
Testicular peritoneal mesothelioma	1	$2.38\times10^{\text{-2}}$	$4.74 imes 10^{-3}$	0.68
Primary brain tumors	1	$5.88 imes 10^{-3}$	$2.92 imes 10^{-3}$	0.46
Females				
Splenic mononuclear cell leukemia	1	$1.08 imes 10^{-1}$	$2.37\times10^{\text{-}2}$	0.75
Primary brain tumors	1	$5.94 imes 10^{-3}$	1.65×10^{-3}	0.80

^aThe exposure concentrations were at 0, 10 ppm, 33 ppm, and 100 ppm. These were adjusted to continuous

15 exposure.

 ${}^{b}P(d) \ni 1 - exp[-(q_0 + q_1d + q_2d^2 + ... + q_kd^k)]$, where d is inhaled ethylene oxide exposure concentration.

Table G-4. Time-to-tumor analysis of individual animal data, NTP mice study (NTP, 1987);^a multistage-Weibull model^b parameters

Tumor	Multistage polynomial degree	qo	$\begin{array}{c} q_1 \\ (mg/m^3)^{-1} \end{array}$	Z
Males				
Lung adenomas plus carcinomas	1	3.44×10^{-1}	2.03×10^{-2}	5.39
Females	•			
Lung adenomas plus carcinomas	1	5.35×10^{-2}	1.76×10^{-2}	7.27
Malignant lymphoma	1	1.91×10^{-1}	$8.80 imes 10^{-3}$	1.00
Uterine carcinoma	1	0.0	3.81×10^{-3}	3.93
Mammary carcinoma	1	$3.78 imes 10^{-2}$	5.10×10^{-3}	1.00

^aThe exposure concentrations were at 0, 50 ppm, and 100 ppm. These were adjusted to continuous exposure.

^bP(d, t) = $1 - \exp[-(q_0 + q_1 d + q_2 d^2 + ... + q_k d^k)*(t - t_0)^z]$, where d is inhaled ethylene oxide exposure concentration.

The length of the study was 104 weeks. The times t and t₀ as expressed in the above formula are scaled so that the

length of the study is 1.0. Then, q_0 is dimensionless, and the coefficients q_k are expressed in units of $(mg/m^3)^{-k}$.

APPENDIX H. SUMMARY OF 2007 EXTERNAL PEER REVIEW AND PUBLIC COMMENTS AND DISPOSITION

4	A draft of this assessment document entitled Evaluation of the Carcinogenicity of
5	<i>Ethylene Oxide</i> (dated August 2006) (U.S. EPA, 2006a) was available for public comment and
6	underwent a formal external peer review in accordance with EPA guidance on peer review (U.S.
7	EPA, 2006b) At the request of EPA's Office of Research and Development, the EPA Science
8	Advisory Board (SAB) convened a panel of 15 experts external to the Agency to review the
9	ethylene oxide (EtO) assessment document. An external peer review meeting was held in
10	January 2007, and a Final Peer Review Report was released in December 2007 (SAB, 2007).
11	The purpose of this assessment was to review and characterize the available data on the
12	carcinogenicity of EtO and to estimate the lifetime unit cancer risk from inhalation exposure.
13	The SAB panel was asked to comment primarily on three main issues including carcinogenic
14	hazard, cancer risk estimation, and uncertainty associated with the hazard characterization and
15	quantitative risk estimation. The SAB panel was charged with answering a number of specific
16	questions that addressed key scientific issues relevant to the assessment. A summary of
17	significant comments made by the panel in response to the charge questions and EPA's response
18	to these comments arranged by charge question are provided below.
19	In addition, a number of comments from the public were received during the public
20	comment period. A summary of the public comments and EPA's responses are also included in
21	a separate section of this appendix.
22	
23	SAB Panel Comments:
24	The statement of the issues as contained in the Agency's charge to the SAB panel are
25	listed below in italics followed by (1) the Panel's summary comments quoted directly from the
26	Executive Summary of the Panel's report (SAB, 2007) and (2) the Agency's response to the
27	comments.
28	
29	Issue 1: Carcinogenic Hazard (Section 3 and Appendix A of the EPA Draft Assessment)
30	Do the available data and discussion in the draft document support the hazard conclusion that
31	EtO is carcinogenic to humans based on the weight-of-evidence descriptors in EPA's
32	2005 Guidelines for Carcinogen Risk Assessment? In your response, please include
33	consideration of the following:
34	
35	
	This document is a draft for review purposes only and does not constitute Agency policy.

7/2013

1 1. a. EPA concluded that the epidemiological evidence on EtO carcinogenicity was strong, but

2 less than completely conclusive. Does the draft document provide sufficient description of the

- 3 studies, balanced treatment of positive and negative results, and a rigorous and transparent
- 4 analysis of the data used to assess the carcinogenic hazard of ethylene oxide (EtO) to
- 5 humans? Please comment on the EPA's characterization of the body of epidemiological data
- 6 reviewed. Considerations include: a) the consistency of the findings, including the
- 7 significance of differences in results using different exposure metrics, b) the utility of the
- 8 internal (based on exposure category) versus external (e.g., SMR and SIR) comparisons of
- 9 cancer rates, c) the magnitude of the risks, and d) the strength of the epidemiological evidence.
- 10

11 **SAB Panel Comment:** A majority of the Panel agreed with the conclusion in the draft document 12 that the available evidence supports a descriptor of "Carcinogenic to Humans" although some 13 Panel members concluded that the descriptor "Likely to be Carcinogenic to Humans" was more 14 appropriate. There was consensus that the epidemiological data regarding ethylene oxide 15 carcinogenicity were not in and of themselves sufficient to provide convincing evidence of a 16 causal association between human exposure and cancer. Differing views as to the appropriate 17 descriptor for ethylene oxide were based on differences of opinion as to whether criteria 18 necessary for designation as "Carcinogenic to Humans" in the absence of conclusive evidence 19 from epidemiologic studies were met. The majority of Panel members thought that the 20 combined weight of the epidemiological, experimental animal, and mutagenicity evidence was 21 sufficient to conclude that EtO is carcinogenic to humans. 22 The Panel concluded that the assessment would be improved by: (1) a better introduction 23 to the hazard characterization section, including a brief description of the information that will be 24 presented; (2) a clear articulation of the criteria by which epidemiologic studies were judged as 25 to strengths and weaknesses; (3) addition of a more inclusive summary figure and/or table at the

beginning of section 3.0; and (4) inclusion of material now provided in Appendix A of the draft
assessment to within the main body of that assessment.

28 The Panel agreed with the EPA in their reliance on "internal" estimates of cancer rates 29 rather than "external" comparisons (SMR, SIR) due to well recognized limitations to the latter 30 method of analysis. The Draft Assessment characterizes the magnitude of the unit risk estimate 31 associated with EtO as "weak". This finding is substantiated by the epidemiologic evidence 32 where a relatively small number of excess cancers are found above background even among 33 highly exposed individuals. However, the magnitude of risk suggested by the unit risk estimate 34 is somewhat at odds with this concept. Subsequent recommendations in our report try to address 35 this apparent inconsistency.

1 **<u>EPA Response:</u>** EPA is retaining the conclusion that the combined weight of the

- 2 epidemiological, experimental animal, and mutagenicity evidence is sufficient to conclude that
- 3 EtO is carcinogenic to humans, which was supported by the majority of the Panel. Some Panel
- 4 members were of the opinion that the descriptor "Likely to be Carcinogenic to Humans" was
- 5 more appropriate, as they found the epidemiological evidence to be weak and the data
- 6 insufficient to conclude that key precursor events were observed in humans (SAB, 2007, p.10).
- 7 EPA and the majority of the SAB Panel disagree that the epidemiological evidence is weak.
- 8 EPA has strengthened the summary review of these data in the human evidence section (Section
- 9 3.1) and in the hazard characterization section (Section 3.5.1). In addition, the assessment
- 10 specifically addresses the precursor data for rodents and humans, and while the databases for
- 11 humans and rodents contain different types of studies, EPA did not find any inconsistency and
- 12 concluded that the data support a finding of a mutagenic mode of action (relevant to humans), a
- 13 finding with which the SAB concurred. EPA has expanded the discussion of these data,
- 14 specifically in Sections 3.3.3.2, 3.3.3.3, and 3.4.1.
- 15 In response to the Panel recommendations, EPA has added an introduction at the 16 beginning of Chapter 3 that provides a brief description of the information presented in the 17 Chapter and has provided a clearer explanation of the criteria used to evaluate the strengths and 18 weaknesses of epidemiological studies (at the beginning of Section 3.1). With respect to the 19 recommendation to put material from Appendix A into the main body of the document, EPA has 20 added two shorter summary tables of the lymphohematopoietic cancer (Table 3-1) and breast 21 cancer (Table 3-2) findings in the various epidemiology studies to Section 3.1.1. EPA has also 22 added a cross-reference to summary Table A-5 in Appendix A at the beginning of Section 3.1. 23 The main body of the document provides a summary of the findings of all the epidemiological 24 studies, referencing Appendix A for further details. EPA considered the recommendation to 25 move more of the material in Appendix A of the draft assessment into the main body of the 26 document, but judged that the in-depth level of detail in Appendix A was not appropriate for the 27 main body of the document.
- 28 EPA notes that the Panel agreed with EPA's use of "internal" estimates rather than
 29 "external" comparisons.
- The Draft Assessment did not refer to or characterize the magnitude of the unit risk associated with EtO exposure as "weak." Rather, it was with respect to the Hill considerations for causality (Hill, 1965) in the weight-of-evidence analysis for hazard characterization (Section 3.5.1) that the Draft Assessment noted that there was little strength in the association, as reflected by the modest magnitude of the (relative) risk estimates from the epidemiology studies. The exposure-response models used to develop the unit risk estimates are derived from the NIOSH
 - This document is a draft for review purposes only and does not constitute Agency policy.

1 data and are thus consistent with the results of the NIOSH epidemiology study, as can be seen in 2 the figures depicting RR versus exposure for the various exposure-response models. The unit 3 risk estimates are derived from these exposure-response models and are thus similarly consistent 4 with the results of the NIOSH study, as long as they are used in the low-exposure range, as 5 intended. Because the exposure-response relationships for the cancers of interest in the NIOSH 6 study are generally supralinear, the unit risk estimates will overpredict the NIOSH results if 7 applied to exposure levels that correspond to the region of the exposure-response relationships 8 where the responses plateau.

9

10 1.b. Are there additional key published studies or publicly available scientific reports that are 11 missing from the draft document and that might be useful for the discussion of the 12 carcinogenic hazard of EtO?

13

14 **SAB Panel Comment:** The Panel agreed that the discussion of endogenous metabolic 15 production of ethylene oxide and the formation of background adducts should be expanded. The 16 Panel believed that the description of studies of DNA adduct formation resulting from EtO 17 exposure appears incomplete and superficial. This discussion should be expanded—both in 18 terms of the number of studies cited and the depth of the discussion. Since ethylene is 19 metabolized to EtO, some members recommended the inclusion of the ethylene body of literature 20 for consideration. Most members were hesitant about adding them to the document, but if added, 21 they cautioned that a discussion of the caveats associated with their interpretation relative to 22 ethylene oxide should be included. 23 24 **EPA Response:** The discussion of endogenous metabolic production of EtO and its significance

and contribution to the formation of background adducts in rodents and humans has been

26 expanded (Sections 3.3.2 and 3.3.3.1 and Section C.7 of Appendix C). The discussion of DNA

adduct formation resulting from EtO exposure has also been expanded to add depth and breadth

28 (Section 3.3.3.1 and Section C.1 of Appendix C). Section C.1 of Appendix C includes

29 discussion of general DNA adduct formation, sensitivity of the methods used to detect DNA

30 adducts, and DNA adduct studies, both in vitro and in vivo, that have been conducted in animals

31 and humans. A discussion of the endogenous production of ethylene during normal

- 32 physiological processes and its metabolism to EtO under certain conditions has been added
- 33 (Section C.7 of Appendix C). It should be noted that the endogenous production of EtO due to
- 34 the metabolism of endogenous ethylene will be present in all test animals or subjects (including
- controls) and hence this factor is considered inherently in the analysis of effects of EtO exposure.

This document is a draft for review purposes only and does not constitute Agency policy.

H-4

1 EPA agrees with the majority of the Panel that data on (exogenous) ethylene should not 2 be included in the assessment. One caveat provided on page 12 of the SAB report is that the 3 ethylene bioassays administered ethylene concentrations with such low EtO equivalents that they 4 would appear "to be below the limit of detection for a tumor response over the spontaneous 5 background in the F344 rat." Thus, the ethylene data would not be very informative for the EtO 6 assessment, for which there are already adequate EtO bioassays. 7 8 1.c. Do the available data and discussion in the draft document support the mode-of-action 9 conclusions? 10 11 **SAB Panel Comment:** The Panel agreed with the Draft Assessment conclusion of a mutagenic 12 mode of action. However, an expanded discussion of the formation of DNA adducts and 13 mutagenicity is warranted.

14

EPA Response: EPA has expanded the discussion of DNA adduct formation (Section 3.3.3.1
 and Section C.1 of Appendix C) and mutagenicity (Section 3.3.3 and Sections C.2–C.5 of
 Appendix C) in the revised assessment document.

18

19 1.d. Does the hazard characterization discussion for EtO provide a scientifically balanced and

sound description that synthesizes the human, laboratory animal, and supporting (e.g., in vitua) without for human arcsin accuric harmed?

21 vitro) evidence for human carcinogenic hazard?

22

SAB Panel Comment: While some members of the Panel found the hazard characterization section of the Draft Assessment to be satisfactory, a majority expressed concerns that this section did not achieve the necessary level of rigor and balance. An issue in this characterization, particularly in the face of epidemiological data that are not strongly conclusive, is whether the presumed precursor events leading to cancer in animals, such as mutations and/or chromosomal aberrations, are observed in humans. This issue needs to be addressed in greater detail.

30 <u>EPA Response:</u> The genotoxicity (Section 3.3.3 and Appendix C), mode of action (Section
 3.4.1), and hazard characterization (Section 3.5.1) sections have been revised to provide a more
 32 complete and balanced discussion of EtO-induced precursor events in animals and humans. As
 33 addressed in the EPA response under charge question 1.a above, while the databases for humans
 34 and rodents contain different types of studies, EPA did not find an inconsistency in EtO-induced
 35 precursor events (Sections 3.3.2, 3.3.3, 3.4.1, and 3.5.1).

- 1
- 2 Issue 2: Risk Estimation (Section 4 and Appendices C and D of the EPA Draft Assessment)
- 3 Do the available data and discussion in the draft document support the approaches taken by
- 4 EPA in its derivation of cancer risk estimates for EtO? In your response, please include
- 5 consideration of the following:
- 6
- 7 2.a. EPA concluded that the epidemiological evidence alone was strong but less than
- 8 completely conclusive (although EPA characterized the total evidence—from human,
- 9 laboratory animal, and in vitro studies—as supporting a conclusion that EtO is "carcinogenic
- 10 to humans"). Is the use of epidemiological data, in particular the Steenland et al. (2004);
- 11 Steenland et al. (2003) data set, the most appropriate for estimating the magnitude of the
- 12 carcinogenic risk to humans from environmental EtO exposures? Are the scientific
- 13 justifications for using this data set transparently described? Is the basis for selecting the
- 14 Steenland et al. data over other available data (e.g., the Union Carbide data) for quantifying
- 15 risk adequately described?
- 16

17 **SAB Panel Comment:** The Panel concurred that the NIOSH cohort is the best single 18 epidemiological data set with which to study the relationship of cancer mortality to the full range 19 of occupational exposures to EtO. That said, the Panel encouraged the EPA to broadly consider 20 all of the epidemiological data in developing its final Assessment. In particular, the Panel 21 encourages the EPA to explore uses for the Greenberg et al. (1990) data including leukemia and pancreatic cancer mortality and EtO exposures for 2,174 Union Carbide workers from its two 22 23 Kanawha Valley, West Virginia facilities. (Also described in Teta et al., 1999; Teta et al., 1993). 24 The Panel encouraged the EPA to investigate potential instability that may result from 25 interaction between the chosen time metric for the dose response model and the treatment of time 26 in the estimated exposure (i.e., log cumulative exposure with 15 year lag) that is the independent 27 variable in that dose-response model. 28

- EPA Response: EPA has revised the assessment to include an expanded discussion of study
 selection, including a summary table of important considerations, in Section 4.1, as well as
 expanded discussions of the exposure assessments for the Union Carbide (Appendix A, Section
 A.2.20) and NIOSH (Appendix A, Section A.2.8) studies.
- In regard to the possible use of other epidemiologic data, the assessment document
 includes a detailed discussion of the studies of workers at the Union Carbide facilities in West
 Virginia. The Greenberg et al. (1990) data are quite limited in terms of the number of cancers
 - This document is a draft for review purposes only and does not constitute Agency policy.

1 observed. Teta et al. (1993) extended the follow-up of the Union Carbide cohort for an 2 additional 10 years and excluded the 278 chlorohydrin unit workers, in which a significant three-3 fold excess of lymphohematopoietic cancer was observed (8 vs. 2.7 expected, SMR 2.94, see 4 Benson and Teta, 1993), on the grounds that the chlorohydrin unit workers were exposed to other 5 potential carcinogens and likely had low exposures to EtO. Teta et al. (1993) studied the 6 remaining 1,896 EtO production workers who did not work in the chlorohydrin unit. This cohort 7 is about a tenth of the size of the NIOSH cohort. This cohort did not show an excess of 8 lymphohematopoietic cancer (7 observed vs. 11.8 expected) but the cohort continues to be 9 limited by small numbers (e.g., fewer than 6 expected deaths for non-Hodgkin lymphoma 10 [NHL], although the exact number is not given). Furthermore, the Union Carbide study has a 11 less extensive exposure assessment than the NIOSH study. In part, the deficiency is inherent in a 12 chemical production setting, where it is difficult to find workers with relatively uniform work 13 histories that involve relatively constant exposure to EtO. As such, the exposure assessment 14 used in the Union Carbide study was relatively crude, based on just a small number of 15 department-specific and time-period-specific categories, and with exposure estimates for only a 16 few of the categories derived from actual measurements (see Section A.2.20 of Appendix A for 17 the details). This is in contrast to sterilization plants, where the NIOSH study was done, where 18 workers can be grouped into relatively common jobs/work zones, facilitating assignment of 19 exposure. Furthermore, extensive sampling data (2,350 measurements from 1975 to 1986, 20 reduced to 205 annual job-specific means, representing 80% of the data; another 20% were not 21 included but used as a validation sample) were used in the NIOSH study to estimate exposure in 22 different jobs and years. Such sampling data were not used in estimating exposures in the Union 23 Carbide cohort. Finally, the NIOSH regression model for estimating EtO exposure included data 24 not only on job/work zone, but also on variables such as size of sterilizer, type of product, 25 freshness of product, and exhaust systems for sterilizers. This regression model explained 85% 26 of the variance in the EtO validation data set. As a result, the exposure estimates in the NIOSH 27 study are likely to be more accurate. Because of the lack of comparability in the exposure 28 estimates across the two studies, it is not possible to group together the NIOSH cohort and the 29 Union Carbide cohort for a rigorous combined quantitative exposure-response analysis. 30 Teta et al. (1993) do not include any exposure-response analyses, but a later paper (Teta 31 et al., 1999) does. Teta et al. (1999) divide exposure into high, medium, and low intensity of 32 exposure and four time periods (1925–1939, 1940–1956, 1957–1973, and 1974–1988). The 33 paper does not give the exposure level assigned to each of the resulting 12 cells, nor any 34 justification for the chosen exposure levels. No published data describing how these estimates 35 were derived could be found.

This document is a draft for review purposes only and does not constitute Agency policy.

H-7

1 Teta et al. (1999) also do not provide the number of observed leukemia deaths, but 2 models leukemia as a function of exposure using three categories of cumulative exposure and a 3 variety of models using continuous exposure. Assuming, as indicated, that the data are the same 4 as the 1988 follow-up reported by Teta et al. (1993), there are only five observed leukemia 5 deaths which suggests that the extensive modeling of the data that was done is highly uncertain. 6 The published (through 2006) Union Carbide data and analyses were not sufficient for 7 dose-response assessment of lymphohematopoietic cancer due to small numbers and the inherent 8 problem posed by the general assignment of exposure levels to subjects, adequate details of 9 which were not provided.

10 Since the peer review, follow-up of the Union Carbide cohort, without the chlorohydrin 11 production workers, has now been extended through 2003, and analyses of the data have been 12 published by Swaen et al. (2009) and Valdez-Flores et al. (2010). Swaen et al. (2009) used an 13 exposure assessment based on the qualitative categorizations of potential EtO exposure in the 14 different departments developed by Greenberg et al. (1990) and time-period exposure estimates 15 from Teta et al. (1993). These are the same generalized exposure estimates described above 16 based on a small number of department-specific and time-period-specific categories, and with 17 exposure estimates for only a few of the categories derived from actual measurements (additional 18 detailed discussion is provided in Section A.2.20 of Appendix A of the final assessment 19 document). At the end of the 2003 follow-up, only 27 lymphohematopoietic cancer deaths 20 (including 12 leukemias and 11 NHLs) were observed in the cohort. Thus, even after extended 21 follow-up, the number of cases is small compared to the NIOSH study, which had 74 22 lymphohematopoietic cancer deaths, 53 from lymphoid cancers. More importantly, as discussed 23 above, the exposure assessment is much more rudimentary than that used for the NIOSH cohort. 24 The lack of comparability in the exposure estimates precludes a rigorous combined exposure-25 response analysis of data from the two cohorts. 26 EPA requested that Professor Kyle Steenland, the principal investigator of the NIOSH 27 study, respond to the following excerpt from this comment from the SAB Panel: 28 29 "The Panel encouraged the EPA to investigate potential instability that may result from 30 interaction between the chosen time metric for the dose response model and the treatment of 31 time in the estimated exposure (e.g. log cumulative exposure with 15 year lag) that is the 32 independent variable in that dose-response model."

33

2

3 "This comment is difficult to understand, but appears to be a concern that the 15-year lag in the 4 exposure metric, which discounts the most recent exposure, may cause an over-reliance in the 5 exposure-response analysis on exposures which were estimated prior to 1979, which possibly are 6 less accurate. The reason they may be less accurate is because the NIOSH exposure model 7 assumed that the effect of calendar year was constant before 1979. There are a couple of 8 comments to be made here. First, it is certain the much higher exposures took place before the 9 early 1980s when engineering controls were implemented, and that these exposures are likely to 10 compose the majority of the metric "cumulative exposure." Second, such early exposures would 11 often, but not always, also be more biologically relevant than later exposures, given that there is 12 likely to be some latency period before a given exposure causes a cancer (the best fitting lag was 13 15 years in the analysis), and cancers occurred during the period 1980–2004, so that later lower 14 exposures were often discounted by the lag. But were such early exposures estimated 15 appreciably worse than later exposures by the NIOSH regression model? The NIOSH regression 16 model was based on seven variables, one of which had 8 levels (job), one of which had 5 levels 17 (product types), and one of which was time or year. All these variables were statistically 18 significant at the p < 0.05 level except one (aeration), which had a p value of 0.10. Given that 19 engineering controls were included in the model, the effect of calendar year was thought to 20 reflect improved work practices which got better year by year as employees and managers 21 became more conscious of the dangers of exposure. The effect of year only began in 1979, and 22 was not apparent in the period 1975–1978 when there much less concern about the dangers of 23 EtO. It would seem logical that prior to 1975 (when there were no sampling data to include in 24 the model), work practices also would have changed little year to year, given that worker and 25 management concern about the dangers of EtO was minimal or nonexistent. Furthermore, data 26 for the other variables in the model were available for years before 1979, and hence were able to 27 play a role in prediction of EtO prior to 1979, independent of the year effect, which was constant 28 prior to 1979. Hence, the model would be expected to perform reasonably well in the period 29 before sampling data were available, i.e., prior to 1975, regardless of the assumption that 30 calendar year had no effect independent of the other variables in the model." 31

32 "In summary, there is obviously more uncertainty about the estimation of exposures prior to

33 1975 when there were no sampling data. This uncertainty is of some concern in the sense that

34 the majority of cumulative exposure metric for most workers is probably contributed by earlier,

35 higher exposures. The use of a 15-year lag does not, however, necessarily increase this

uncertainty, given that exposure in the lagged out period for most workers would be appreciably
 lower than exposure before the lag came into effect. Furthermore, while the validity of the
 NIOSH estimates before 1975 cannot be tested against sampling data, the NIOSH model would
 be expected to permit reasonable estimation of exposure prior to 1975 based on other variables in
 the model (job, type of product, size of sterilizer, exhaust of sterilizer, etc)."

6

7 "What if exposures prior to 1975 were estimated poorly? This raises the general question of 8 measurement error, which is more likely to have occurred in years before sampling data existed. 9 Measurement error is a complicated issue and its effects cannot be easily predicted. It does not 10 seem likely that the use of the 15-year lag, however, would appreciably increase whatever 11 measurement error occurred for early years of exposure before 1975. While it is possible that the EPA should formally evaluate the likely effect of measurement error, this is a large task which 12 13 would take considerable amount of time and would necessarily depend on a large number of 14 assumptions about the error in the period before sampling data existed (as I have argued, it is 15 also largely independent of the use of a 15-year lag)."

16

17 2.b. Assuming that Steenland et al. (2004); Steenland et al. (2003) is the most appropriate data set, is the use of a linear regression model fit to Steenland et al.'s categorical results for 18 19 all lymphohematopoietic cancer in males in only the lower exposure groups scientifically and 20 statistically appropriate for estimating potential human risk at the lower end of the observable 21 range? Is the use of the grouping of all lymphohematopoietic cancer for the purpose of 22 estimating risk appropriate? Are there other appropriate analytical approaches that should be 23 considered for estimating potential risk in the lower end of the observable range? Is EPA's 24 choice of a preferred model adequately supported and justified? In particular, has EPA 25 adequately explained its reasons for not using a quadratic model approach such as that of 26 Kirman et al. (2004)? What recommendations would you make regarding low-dose 27 extrapolation below the observed range? 28

SAB Panel Comment: The Panel identified several important shortcomings in the linear regression modeling approach used to establish the point of departure for low dose extrapolation of cancer risk due to EtO. The Panel was unanimous in its recommendation that the EPA develop its risk models based on direct analysis of the individual exposure and cancer outcome data for the NIOSH cohort rather than the approach based on published grouped data that is presently used. The suggested analysis will require EPA to acquire or otherwise access

individual data and develop appropriate methods of analysis. The panel recommends that the
 Agency allocate the appropriate resources to conduct this analysis.

The Panel was divided on whether low dose extrapolation of risk due to environmental EtO exposure levels should be linear (following Cancer Guideline defaults for carcinogenic agents operating via a mutagenic mode of action) or whether plausible biological mechanisms argued for a nonlinear form for the low dose response relationship. With appropriate discussion of the statistical and biological uncertainties, several Panel members strongly advocated that both linear and nonlinear calculations be considered in the final EtO Risk Assessment.

9 In conjunction with its recommendation to use the individual NIOSH cohort data to 10 model the relationship of cancer risk to exposures in the occupational range, the Panel 11 recommended that the Agency explore the use of the full NIOSH data set to estimate the cancer 12 slope coefficients that will in turn be used to extrapolate risk below the established point of 13 departure. The use of different data to estimate different dose response curves should be avoided 14 unless there is both strong biologic and statistical justification for doing so. The Panel believed 15 this justification was not made in the Agency's draft assessment.

Although the analysis based on total lymphohematopoietic (LH) cancers might have
value as part of a complete risk assessment, the rationale for this aggregate grouping needs to be
better justified. The Panel recommends that data be analyzed by subtype of LH cancers (e.g.
lymphoid, myeloid) and strong consideration be given to these more biologically justified
groupings as primary disease endpoints.

21 The Panel was divided in its views concerning the appropriateness of estimating the 22 population unit risk for LH cancer based only on the NIOSH data for males. Several Panel 23 members pointed out that a standard approach in cancer epidemiology and risk analysis begins 24 by conducting separate dose-response analyses on males and females and combining the data 25 only if the results are similar. Conducting separate analyses for males and females is also the 26 standard practice when analyzing data from animal carcinogenicity bioassays. A second 27 approach to dealing with the possibility of gender differences in response is to include gender as 28 a fixed effect in the statistical modeling of the data and determine whether gender or its 29 interaction with other predictors (e.g., gender \times exposure) are significant explanatory variables. 30 If so, the combined model with the estimated gender effects could be used directly or separate, 31 gender-specific dose response analysis would be performed. If not, the gender effects could be 32 dropped and the model re-estimated for the combined male and female data. In addition, the 33 Agency should test whether the male/female differences are mitigated by use of alternate disease 34 endpoints discussed in the previous paragraph.

35

<u>EPA Response</u>: The above comment from the Panel addresses a variety of issues and EPA's
 responses to some of these issues are comparatively detailed; thus, EPA has subdivided its
 response into separately titled subsections to make it easier to read.

4

EPA Response on the modeling of the individual-level data: In response to the SAB
comments, EPA conducted considerable additional analysis using the individual-level
(continuous) exposure and cancer outcome data for the NIOSH cohort. These analyses are
described in Section 4.1.1.2 for lymphoid cancer modeling and Section 4.1.2.3 for breast cancer
incidence modeling. These Sections also include summary tables of the key models examined
(Table 4-4) and the factors considered in model selection (Table 4-12). More details on the
various models and the model results are provided in Appendix D.

12 The underlying problem that makes the EtO datasets from the NIOSH cohort difficult to 13 model (for the purposes of environmental risk assessment) is that the exposure-response

relationships, particularly for lymphoid cancer and breast cancer mortality, are supralinear, i.e.,

15 the responses rise relatively steeply at low exposures and then attenuate or "plateau."

16 Supralinear exposure-response relationships are inherently difficult to model for the purposes of

17 environmental risk assessment, i.e., to estimate risk at low exposures, because the standard

18 single-parameter exposure-response models tend to exaggerate the low-exposure slope in order

19 to simultaneously fit the plateauing at higher exposures. One approach attempted by EPA, in

20 consultation with Dr. Steenland, to address this difficulty was to use two-piece spline models,

21 allowing for the lower exposure and higher exposure data to be fit with different spline segments.

For the breast cancer incidence data, EPA was able to develop several continuous models that provided reasonable fits to the individual-level exposure data across the entire range of the data, consistent with the SAB recommendations. The best-fitting of these models, the two-piece linear spline model, now forms the basis for EPA's unit risk estimate for breast cancer incidence (Section 4.1.2.3).

For lymphoid cancer, however, despite the extensive modeling efforts, the various alternative continuous models investigated, including the two-piece spline models, proved problematic, as explained in detail in the text (Section 4.1.1.2). In particular, the adequately fitting models predicted extremely steep slopes in the low-dose region. In consideration of these results, EPA has retained the approach used in the Draft Assessment and has based the risk estimates for lymphoid cancer on a linear regression using the categorical data, excluding the highest exposure group.

While EPA understood and appreciated the SAB's recommendation and did much work to
 model the individual-level data for lymphoid cancer, it should be noted that modeling of grouped

1 data is also an important and well-recognized statistical methodology and its use is consistent with 2 EPA guidance, policy, and past practice. For example, EPA's 2005 Guidelines for Carcinogen Risk 3 Assessment specifically recognize the use of linear modeling of grouped epidemiological data ("For 4 epidemiologic studies, including those with grouped data, analysis by linear models in the range of 5 observation is generally appropriate unless the fit is poor.", p. 3–11). In addition, EPA's approach 6 of using a weighted linear regression through the categorical relative risk estimates follows 7 established statistical procedures (van Wijngaarden and Hertz-Picciotto, 2004; Rothman, 1986). 8 With regard to modeling without the high-dose category, the lymphoid cancer data show 9 a rise and then plateauing of response such that an overall linear relationship is not an 10 appropriate description of the exposure-response relationship across the entire exposure range, in 11 particular in the low-exposure region of interest for the derivation of low-exposure risk 12 estimates. Restricting the linear regression to the lower categorical exposure groups provides a 13 better representation of the exposure-response relationship in that lower exposure region. EPA's 14 Benchmark Dose Technical Guidance (U.S. EPA, 2012) recognizes analyses omitting high-dose 15 data points, when these data are not compatible with the development of suitable descriptive 16 statistical analyses, as a viable analytical approach. 17 The breast cancer mortality data displayed similar extreme supralinearity, and the two-18 piece spline model yielded an unrealistically steep low-dose slope estimate; thus, EPA again

used a linear regression of the categorical data, excluding the highest exposure group (Section
4.1.2.2). The breast cancer mortality data, however, are not critical to the assessment because
the breast cancer incidence data set is preferred (Section 4.1.2.3).

22 23

EPA Response on the use of a nonlinear approach to low-exposure extrapolation:

EPA has given careful consideration to the range of perspectives provided in the SAB report on
the issue of low-dose extrapolation, including the viewpoint expressed by several Panel members
who advocated that both linear and nonlinear calculations be considered in the EtO assessment.
It is EPA's judgment, as detailed below, that the inclusion of a nonlinear approach is not
warranted.

As discussed in Chapter 3 of the assessment, EtO is a DNA-reactive, mutagenic, multisite carcinogen in humans and laboratory animal species; as such, it has the hallmarks of a compound for which low-dose linear extrapolation is strongly supported. EPA's *Guidelines for Carcinogen Risk Assessment* (U.S. EPA, 2005a) specifically note the use of low-dose linear extrapolation for "agents that are DNA-reactive and have direct mutagenic activity." By comparison, the *Guidelines* recommend that, "A nonlinear approach should be selected when there are sufficient data to ascertain the mode of action and conclude that it is not linear at low

doses and the agent does not demonstrate mutagenic or other activity consistent with linearity at
low doses." EPA's analysis indicates that EtO does not meet any of those conditions. For EtO,
there is sufficient weight of evidence to support a mutagenic/genotoxic MOA, without evidence
of additional or alternative MOAs being operative (Section 3.4.1).

5 EPA specifically considered a proposed 2-hit MOA hypothesized to support a (nonlinear) 6 quadratic model for lymphohematopoietic cancer (leukemia specifically) and concluded that the 7 evidence for this MOA was inadequate, as discussed in detail in Section 3.4 of the assessment. 8 Appendix A of the SAB report also provides more general evidence for why a 2-hit process does 9 not imply a quadratic exposure-response relationship for leukemia at low exposures.

10 With regard to the particular comments of the SAB members advocating presentation of a 11 nonlinear approach, the reasons for using such an approach presented in Appendix C of the SAB 12 report were largely that (1) DNA adducts may show a nonlinear response when identical adducts 13 are formed endogenously and (2) mutations do not have linear relationships with exposure but 14 exhibit an "inflection point." However, recent data from Marsden et al. (2009) support a linear 15 exposure-response relationship for EtO exposure and DNA adducts (p < 0.05) and demonstrate 16 increases of DNA adducts from exogenous EtO exposure above those from endogenous EtO for 17 very low exposures to exogenous EtO, as discussed in detail in the assessment (Section 3.3.3.1 18 and 4.5), providing direct evidence against the first reason proposed in support of a nonlinear 19 approach in Appendix C of the SAB report. In support of the second reason, Appendix C of the 20 SAB report presents two EtO-specific mutation datasets; however, EPA's analysis of these 21 datasets, summarized below, finds that they are in fact consistent with low-dose linearity. In 22 summary, EPA's review of studies addressing dose-response patterns for adduct formation and 23 mutagenesis by EtO finds these data to be supportive of the inferences made in the EtO 24 assessment (and more broadly in EPA's Guidelines for Carcinogen Risk Assessment) regarding 25 the plausibility of linear, nonthreshold, low-dose dose-response relationships for the biological 26 effects of EtO, which is mutagenic and directly damages DNA. 27 EPA further notes that the supralinear exposure-response relationships from the NIOSH 28 data at low occupational exposures argue against the existence of a "threshold," practical or 29 otherwise, at exposure levels anywhere near the POD. Also, the rodent bioassays do not suggest 30 an absence of increased cancer risk at their lowest exposure levels. 31 32 Analysis of the EtO mutagenicity datasets presented in Appendix C of the SAB Report: 33 34 Appendix C in the SAB report provides slides (numbers 25 and 26) showing dose-

35 response data for *hprt* mutations in mice exposed to either EtO or to ethylene. For ethylene, a

This document is a draft for review purposes only and does not constitute Agency policy.

H-14

1 model estimate of an EtO-equivalent concentration was used to represent metabolism of ethylene

2 to EtO. In both cases, mutations at the *hprt* locus of T-cells isolated from spleens of Big Blue

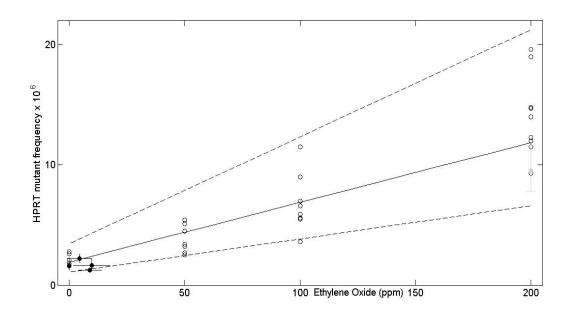
3 mice were quantified. The EtO study results are from Walker et al. (1997), and it appears that

4 the ethylene results are derived from experiments presented in Walker et al. (2000). In the latter

5 case, there are some differences in the estimated EtO equivalents and the *hprt* mutation

6 frequencies between the values given in the slide and those reported by Walker et al. (2000). We

7 performed statistical analyses using the data presented in slide 26 of Appendix C.


8 To examine these data, we first analyzed the EtO dataset (Walker et al., 1997) using 9 maximum likelihood estimation (MLE). We then looked at the consistency of the ethylene 10 dataset (Walker et al., 2000) with the EtO dataset. The EtO data were fit with a linear model 11 utilizing a log-normal distribution of the individual animal response measurements due to the 12 low mutant frequency that causes skewness of the data. As shown in Figure H-1, this model 13 provided an adequate fit to the EtO data (open circles represent individual animal data for the 14 EtO exposures; model goodness-of-fit p = 0.09; variance fit assuming homogeneous variance in 15 log scale, p = 0.64). The MLE of the model is plotted (geometric mean [solid line] as an 16 estimation of the median response along with the lower and upper 2.5 percentiles of the model 17 [dashed lines]). The second, ethylene-derived, dataset is plotted on the same graph (closed 18 circles). The predicted EtO-equivalents from the ethylene dataset fall well below the lowest dose 19 level used in the EtO experiment, a range in which the EtO-based model would predict only a 20 small response (i.e., no more than a 25% increase in mutation rate above background, a level that 21 cannot be expected to be detectable given the variability in the EtO experimental data; see Figure 22 H-1). The fact that the ethylene results did not show measureable increases in *hprt* mutations is 23 consistent with the modeled EtO results.

24 Note, however, that all medians of the ethylene-derived data are at or below the EtO-25 based model and one of the points is below the lower 2.5 percentile of the model, indicating that 26 this point is unlikely to be consistent with the same model. To further investigate the 27 compatibility of the data from the two experiments, we analyzed the combined dataset by 28 including a term that represents the source of the data (the EtO vs. ethylene experiments) into the 29 modeling (as above). This experimental variable was significant (p < 0.05), indicating that there 30 is a systematic difference in response between the EtO and ethylene-derived data. As a further 31 check, we refit the data using an exponential model that provided a MLE fit with a degree of 32 upward curvature (but still having low-dose linear behavior). Using a categorical experimental 33 variable within this experiment also indicated a systematic dependence of results on data source 34 (EtO vs. ethylene), indicating that this finding was not dependent on the choice of a straight-line 35 dose-response model. As an additional sensitivity analysis, we reran the modeling using the

1 values of EtO equivalents from ethylene exposure and *hprt* results directly from Walker et al.

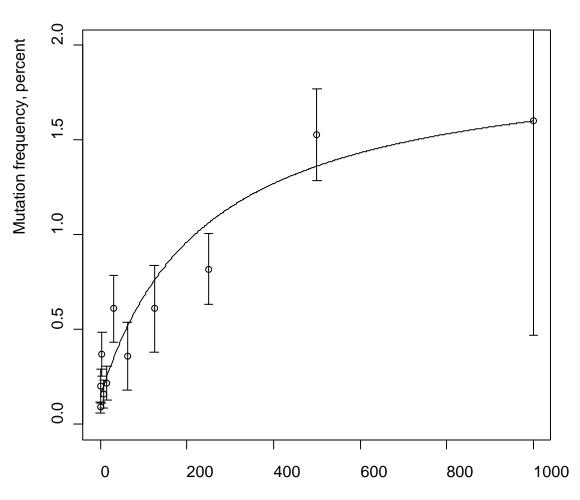
2 (2000) (rather than the values shown in the SAB Appendix C slide); the modeling results were

- 3 essentially unchanged. Accordingly, we conclude that it is not appropriate to combine the
- 4 ethylene data with EtO data in evaluating dose-response relationships for the *hprt* mutations.
- 5

Figure H-1. Induction of *hprt* **mutations by EtO (open circles and modeled fit) with data from ethylene (using estimated EtO equivalents) shown (solid circles).** Source: SAB (2007) Appendix C (slides 25 and 26); original experiments of Walker et al. (1997).

10 11

6 7


8 9

12 13 Slide 27 of the SAB report presents data from Nivard et al. (2003) on the frequency of 14 recessive lethal (RL) mutations in Drosophila exposed to EtO (full data set presented in Vogel 15 and Nivard, 1998). Plotting of mutation rate versus EtO concentration for wild-type Drosophila 16 on non-log-transformed axes shows a downward curving (supralinear) relationship indicating 17 greater potency of EtO (per unit exposure) at low exposures as compared with high exposures 18 (Figure H-2). These data are adequately fit by a Michaelis-Menten-type relationship (downward 19 curving, linear at low dose); the fit is somewhat improved with a fractional power Hill model, 20 which would indicate even steeper low-dose response. 21 In conclusion, our review of the EtO mutagenicity data presented in Appendix C of the 22 SAB report finds that these data do not show a disproportionate fall-off of mutagenic effects at 23

low doses of EtO; that is, they do not indicate a low-dose nonlinear or threshold-type dose-

response pattern. Thus, our review finds these data to be supportive of the inferences made in
 the assessment (and more broadly in EPA's 2005 *Guidelines for Carcinogen Risk Assessment*)
 regarding the plausibility of linear, nonthreshold, low-dose dose-response relationships for the
 carcinogenic effects of EtO, which is mutagenic and directly damages DNA.

5 6

Ethylene oxide concentration, ppm Data: Nivard (2003) / Vogel and Nivard (1998). Model: Michaelis Menten

	Data: Nivard (2003) / Vogel and Nivard (1998). Model: Michaelis Menten
7	
8	Figure H-2. Induction of recessive lethal mutations by EtO in Drosophila
9	(wild-type). Standard deviations are calculated as the square root of the number
10	of mutations, assuming a Poisson distribution, and plotted as \pm (SD \times percent
11	mutation frequency).
12	
13	EPA response on using different data to estimate different dose-response curves:

14 With respect to using different data to estimate different dose-response curves, that Panel

- comment pertains only to the occupational exposure scenarios. This is addressed in EPA's
 response to the SAB comment on charge question 2.d below.
- 3

EPA response on lymphohematopoietic cancer groupings: As recommend by the
Panel, the primary risk estimates are now based on the lymphoid cancers (Section 4.1.1.2).
Analysis based on total lymphohematopoietic cancers is also included for completeness and
comparison purposes.

8 9

EPA response on the use of only the male data for lymphohematopoietic cancers:

10 Analyses by Dr. Steenland determined that there was not a statistically significant difference

between the lymphohematopoietic cancer results for males and females. Thus, in the revised

12 assessment, unit risk estimates based on lymphohematopoietic cancer in males only are not used.

- 13 Unit risk estimates are now based on lymphoid cancers for males and females combined and
- 14 breast cancer in females.
- 15

The following additional comments on page 31 of the SAB Panel report under "2.b.
Methods of Analysis," "7. Statistical issues," are quoted verbatim below followed by EPA's
responses:

19

20 SAB Panel Comment:

21 7. Statistical issues

22 Pages 29–49 of the draft Evaluation outline the EPA's proposed approach to estimation of the 23 Inhalation Unit Risk for EtO. In addition to the general issues of estimation and model-based 24 extrapolation described above, there are a number of statistical assumptions and methods used in 25 this approach that deserve mention. Conditional on the cancer slope factor results from the 26 weighted least squares regression analysis, the life table (BEIR IV) approach to the determination of the LEC01 is programmed correctly. The life table methodology that is the 27 28 basis for the BEIR IV algorithm is designed to estimate excess mortality and is not readily 29 adapted to modeling excess risk for events (incidence) that do not censor observation on the 30 individual in population under study. The methodology for substituting the mortality slope to an 31 excess risk computation for HL cancer incidence requires the assumption of a proportional rate 32 of incidence/mortality across the cancer types that are included in the grouped analysis. This is 33 generally not a viable assumption. The Panel therefore discourages the use of the BEIR IV 34 algorithm for extrapolation of the cancer mortality algorithm to estimation of excess cancer

35 incidence.

Several Panel members commented on the use of the upper confidence limit for the
 estimated slope coefficient as the basis for estimating an LEC01. The Panel encourages the EPA
 to present unit risk estimates based on the range of EC01 values corresponding to the lower 95%
 confidence limit, the point estimate, and the upper 95% confidence limit for the estimated cancer
 slope coefficients from the final dose-response models.

6

7 **<u>EPA Response</u>** on using the BEIR approach to estimate incidence risks: In this assessment 8 EPA is developing estimates of the risk of cancer incidence, not mortality, as the cancers 9 associated with EtO exposure (lymphohematopoietic, in particular lymphoid, and breast cancers) 10 have substantial survival rates. The breast cancer incidence estimates are not at issue here 11 because they are based on incidence data. Regarding the lymphoid cancers, the SAB provided 12 the relevant comment that mathematically the BEIR formula would apply to the case where there 13 is a proportional rate of incidence/mortality across the cancer types that are included in the 14 grouped analysis. EPA considered this in its application of the BEIR formula. The fact that the 15 ratios of incidence to mortality are not strictly proportional contributes some uncertainty to the 16 incidence estimates for the grouping of lymphoid cancers, but not a large amount. Uncertainties 17 in using the life-table analysis approach to seek to develop reasonable estimates for incidence 18 risk, including those noted by the SAB, are acknowledged in the assessment, and the impact of 19 nonproportionality between cancer types is one of the uncertainties discussed (Section 4.1.1.3). 20 As illustrated in the assessment, these uncertainties do not have a major impact on the final risk 21 estimates. The incidence unit risk estimate is about 120% higher than (i.e., 2.2 times) the 22 mortality-based estimate, which is consistent with the relatively high survival rates for lymphoid 23 cancers. Potential concern that the incidence estimates might be overestimated would come 24 primarily from the inclusion of multiple myeloma, because that subtype has the lowest 25 incidence:mortality ratios (and, thus, if that subtype were driving the increased mortality 26 observed for the lymphoid cancer grouping, then including the incidence rates for the other 27 subtypes, which have higher incidence:mortality ratios, might inflate the incidence estimates). 28 Multiple myelomas, however, constitute only 25% of the lymphoid cancer cases, and there is no 29 evidence that multiple myeloma is driving the EtO-induced excess in lymphoid cancer mortality 30 (25% is below the proportion of multiple myeloma deaths one would expect in the cohort based 31 on age-adjusted background mortality rates of multiple myeloma, NHL, and chronic lymphocytic 32 leukemia, and these 3 subtypes have the same pattern of mortality rates increasing as a function 33 of age mostly above age 50, so the comparison with lifetime background rates is reasonable). 34 Thus, using the total lymphoid cancer incidence rates is not expected to result in an

overestimation of the incidence risk estimates; if anything, the incidence risks would likely be
 diluted with the inclusion of the multiple myeloma rates.

3 EPA decided that the Panel's suggestion to not use the BEIR approach for development 4 of cancer incidence estimates for lymphohematopoietic cancer would not allow EPA to develop 5 the desired cancer incidence risk estimates. One possible alternative approach involving a crude 6 survival adjustment to the mortality-based estimates would yield results with greater uncertainty 7 than use of the BEIR approach. No alternative approaches were identified by the SAB. In the 8 absence of an appropriate alternative approach to estimate risks of cancer incidence, EPA has 9 retained the application of the BEIR approach, which it judges to provide a reasonable estimate 10 of incidence risks. EPA recognizes the uncertainties and assumptions outlined by the Panel and 11 has expanded the discussion of these in the carcinogenicity assessment (Section 4.1.1.3). 12 However, EPA notes that deriving mortality estimates as the sole cancer risk estimates for 13 lymphohematopoietic cancer would substantially underestimate cancer risk. In addition, EPA 14 presents the mortality-based estimates as well for comparison, and as discussed above, the 15 lymphoid cancer incidence unit risk estimate is about 120% higher than (i.e., 2.2 times) the 16 mortality-based estimate, which is considered reasonable, given the high survival rates for 17 lymphoid cancers.

18

19 **EPA Response on the use of upper and lower confidence limits:** In the EtO assessment, EPA 20 presents 95% (one-sided) lower bounds and central estimates of the $EC_{01}s$ as well as standard 21 errors for the regression coefficients used in the modeling, which provide information about the 22 variability in the modeled slope estimate. EPA's Guidelines for Carcinogen Risk Assessment 23 also recommend the calculation of a 95% upper bound on the central estimate (in this case the 24 EC_{01}) related to the POD "to the extent practicable" (U.S. EPA, 2005a, p. 1–14), and such a 25 value has been added for the selected breast cancer incidence model (Section 4.1.2.3, Table 4-7, 26 footnote i, based on the profile likelihood confidence limits for the regression coefficient). 27 However, for the linear regression model used as the basis for the lymphoid cancer unit risk 28 estimate, it was not practicable to calculate such a value, as it was undefined. Although there 29 were models for lymphoid cancer from which upper bounds could have been calculated, the 30 linear regression model was selected as the basis for the POD for the expressed purpose of 31 obtaining a realistic slope estimate for the low-exposure region (Section 4.1.1.2) and not for 32 providing a realistic upper bound estimate for the EC_{01} . 33 EPA considered the SAB Panel comment encouraging the EPA "to present unit risk

estimates based on the range of EC_{01} values corresponding to the lower 95% confidence limit, the point estimate, and the upper 95% confidence limit." However, as a consequence of the

1 2-step approach used by EPA to generate cancer potency estimates from a POD rather than 2 directly from the statistical model used to estimate the POD, potency estimates below the 3 response level corresponding to the POD are no longer associated with the statistical model. 4 While linear extrapolation from a POD that is the 95% (one-sided) lower bound on the central 5 estimate of the exposure concentration associated with the selected (benchmark) response level 6 (e.g., the LEC₀₁) might be generally expected to yield a reasonable upper bound on cancer risk 7 for that data set (though not strictly a statistical "95%" upper bound), estimates involving a linear 8 extrapolation from the *upper* bound on that central estimate are not generally meaningful and 9 could be misleading if they are mistaken for lower bounds on potency, as the actual exposure-10 response relationship may exhibit some sublinearity below the response level corresponding to 11 the POD. Thus, it has not been EPA practice to develop such potency estimates, and EPA did 12 not undertake to develop any for this assessment. 13 14 2.c. Is the incorporation of age-dependent adjustment factors in the lifetime cancer unit risk 15 estimate, in accordance with EPA's Supplemental Guidance (U.S. EPA, 2005b), appropriate 16 and transparently described?

17

SAB Panel Comment: In accordance with EPA guidance, the Draft Assessment applied an Age Dependent Adjustment Factor (ADAF) to adjust the unit risk for early life exposure. While the majority of the Panel felt that the application of a default value by the Agency was appropriate due to lack of data, the description in the Draft Assessment was not adequate, particularly for those not familiar with the EPA's Supplemental Guidance.

23

24 <u>EPA Response:</u> EPA has added a new subsection (Section 4.4) detailing the application of the
 25 ADAFs.

26

27 2.d. Is the use of different models for estimation of potential carcinogenic risk to humans

28 from the higher exposure levels more typical of occupational exposures (versus the lower

29 exposure levels typical of environmental exposures) appropriate and transparently described

30 *in Section 4.5?*

31

32 <u>SAB Panel Comment:</u> While the method was transparently described, most of the Panel did not
 33 agree with the estimation based on two different models for two different parts of the dose
 34 response curve (see response to 2b). The use of different data to estimate different dose response

models curves should be avoided unless there is both strong biological and statistical justification
 for doing so. The Panel believed this justification was not made in the Agency's draft report.

3

4 **EPA Response:** For the breast cancer incidence risk estimates, a single model, the 2-piece linear 5 model is now recommended for the occupational exposure scenarios. The 2-piece linear model 6 is a unitary model comprised of two linear pieces or segments with different slopes that are joined at a point referred to as a "knot." The 2-piece linear model has the flexibility to represent 7 8 situations, such as with EtO, where the relationship between exposure level and response 9 changes over the range of exposure. For lymphoid cancer risk estimates, two models are 10 presented for the lower-exposure exposure scenarios, but just one of the models is recommended 11 for the higher-exposure exposure scenarios; users have the option of using a single model across 12 the range of exposure scenarios or of transitioning across models, depending on the exposure 13 scenarios of interest, and some guidance on choice of approach is provided in Section 4.7 of the 14 revised assessment. As discussed in the assessment, the log-cumulative exposure model, which 15 provides a good fit to the data in the plateau and is suitable for exposure scenarios with 16 cumulative exposures in that region, is not appropriate for the low-exposure region (i.e., below 17 the range of the occupational scenarios presented in this assessment) because such a steep 18 increase in slope is considered to be biologically implausible and the good statistical global fit of 19 the model should not be over-interpreted to infer that the model provides a meaningful fit to the 20 low-exposure region. Likewise, the linear regression used to model the lower-dose exposure 21 groups is not intended to reflect the exposure-response relationship in the higher-exposure 22 region. Hence, for lymphoid cancer, the use of both models may be required to cover a range of 23 occupational exposure scenarios. Table 4-19 of the assessment shows how results from the two 24 models compare over a range of exposure scenarios for which either model might be used. 25

26 **2.e.** Are the methodologies used to estimate the carcinogenic risk based on rodent data

27 appropriate and transparently described? Is the use of "ppm equivalence" adequate for

28 interspecies scaling of EtO exposures from the rodent data to humans?

29

30 <u>SAB Panel Comment:</u> The ppm equivalence method is a reasonable approach for interspecies
 31 scaling of EtO exposures from rodent data to humans. If the use of animal data becomes more
 32 important (i.e., the principal basis for the ethylene oxide unit risk value), more sophisticated
 33 approaches such as PBPK modeling should be considered.

34

1	<u>EPA Response</u> : EPA notes the Panel's support for the use of the ppm equivalence method. As
2	the unit risk value is based on human data, the use of more sophisticated models is not necessary.
3	
4	Issue 3: Uncertainty (Sections 3 and 4 of the EPA Draft Assessment)
5	EPA's Risk Characterization Handbook requires that assessments address in a transparent
6	manner a number of important factors. Please comment on how well this assessment clearly
7	describes, characterizes and communicates the following:
8	a. The assessment approach employed;
9	b. The use of assumptions and their impact on the assessment;
10	c. The use of extrapolations and their impact on the assessment;
11	d. Plausible alternatives and the choices made among those alternatives;
12	e. The impact of one choice versus another on the assessment;
13	f. Significant data gaps and their implications for the assessment;
14	g. The scientific conclusions identified separately from default assumptions and policy calls;
15	h. The major risk conclusions and the assessor's confidence and uncertainties in them; and
16	i. The relative strength of each risk assessment component and its impact on the overall
17	assessment.

18

19 **<u>SAB Panel Comment:</u>** The Panel's report contained specific responses to charge questions 1

and 2. The report did not contain specific responses to question 3 and instead contained thefollowing statements regarding question 3:

22

23 "The Panel has responded to Charge Questions 1 and 2 and has tried to incorporate their
24 comments regarding Charge Question 3 within those responses. A separate response for
25 Charge Question 3 was not deemed necessary since issues of uncertainty were addressed
26 in the responses to charge questions 1 and 2."

27

The following are detailed comments on the regression modeling used in the draft ethylene
oxide assessment quoted from the SAB Ethylene Oxide Panel report and the EPA response:

- 30
- 31 SAB Panel Comment:
 - 2. Linear regression model for categorical data
- 32 33

The Panel identified several important shortcomings in the linear regression modeling
approach used to establish the point of departure for low dose extrapolation of cancer risk due to

1 EtO. Based on its review of the methods and results presented at the January 17,18, 2007 2 meeting, the Panel was unanimous in its recommendation that the EPA develop its risk models 3 based on direct analysis of the individual exposure and cancer outcome data for the NIOSH 4 cohort. The Panel understands that these data are available to EPA analysts upon request to the 5 CDC/NIOSH. The Panel recognizes the burden that a reanalysis of the individual data places on 6 the EPA ORD staff but given the important implications of the risk assessment, this burden is 7 well justified to achieve the best scientific and statistical treatment of all the available 8 epidemiological data.

9 The following paragraphs present the statistical basis for the Panel's assessment of the 10 linear regression model approach and the use of categorized exposure and outcome data.

The approach described in the Draft Assessment uses a model based on categories
defined by cumulative exposure ranges for male subjects in the NIOSH cohort. Steenland et al.

13 identified several models that provide a significant (p < 0.05) fit to the exposure data; however,

14 the EPA has elected to use model-based relative rate parameter estimates for categories of 15

15 year lagged, cumulative exposure. In Steenland et al. (2004) this model was not one that

16 provided a significant fit to the NIOSH data (p = 0.15 for the likelihood ratio test of $\beta = [\beta 1, \beta 2, \beta 2]$

17 β 3, β 4] = 0). The use of the weighted least squares regression fit of a linear regression line

18 through the three data points defined by the estimated rate ratios and mean cumulative exposures

19 for the first three exposure categories of the Steenland et al. 15 year lag, cumulative exposure

20 category model is not a robust application of this technique. The Panel identified four

21 weaknesses in the approach.

a) Model-based dependent variable: The dependent variables are model-based estimates of rate ratios for exposure categories. The rate ratio values used in the weighted least squares regression are derived from a cumulative exposure model (15 year lag) in which the estimated regression parameters in the proportional hazards regression model are not significantly different from 0 at $\alpha = 0.05$ (p = 0.15). In Steenland et al. (2004), the only individually based (proportional hazards) model that fits the data for males in the NIOSH cohort is a model for log of individual exposure through t-15 years.

b) Grouped data regression: The weighted least squares fit applies estimates of variance
for the individual rate ratios under that assumption that these inverse weighting corrections

31 correctly adjust for heteroscedasticity of residuals in the underlying regression model.

32 Historically, models for grouped proportions applied adjustments of this type but it is by no

33 means a preferred technique when the underlying individual data are available. The "ecological

34 regression" model per Rothman (Rothman and Greenland, 1998) is subject to bias due to within

35 group heterogeneity of predictors and unmeasured confounders. The heterogeneity in the

1	grouped model involves the range of exposures within the collapsed categories. The unmeasured
2	confounders include variables (other than gender) that affect the potency of exposure or may
3	have produced gross misclassification based on the original exposure model estimation for the
4	individual (Hornung et al., 1994).
5	c) The model fitting does not conform exactly to the Rothman (1986) procedure: The
6	1998 (Second edition) of Rothman (Rothman and Greenland, 1998) describes the technique for
7	estimating this risk from grouped data in Chapter 23. In that updated version of the original
8	monograph the model that is fitted is:
9	
10	$Expected(Rate / Exposure) = \hat{B}_0 + \hat{B}_1 * Mean(Exposure)$
11	
12	The objective is to estimate the rate ratio (for exposure 0=no, 1=yes, or equivalently for a one
13	unit increase in the exposure metric). That estimator is then:
14	
15	$rr = 1 + \hat{B}_1 / \hat{B}_0$
16	
17	The model estimated by the EPA method is:
18	
19	$Expected(rr / Exposure) = \hat{B}_1^* * Mean(Exposure)$
20	
21	In the former, the variance in the estimation of the rate ratio is a function of the variance of the
22	estimated slope and the variance in the estimated baseline hazard, represented by the estimated
23	intercept. This variance is present in the estimation of the baseline hazard in the Steenland et al.
24	(2004) estimation of the rate ratios but is not present in the EPA adaptation to the linear rate ratio
25	model. The EPA approach permits no intercept (>0) for the background exposure or any
26	allowance for an effect of true non-zero exposures in the internal control group (exposures less
27	than 15 years).
28	
29	In general, the use of categorical exposure ranges is not the optimal strategy for using
30	epidemiologic data. When continuous data are categorized and then used in dose response
31	modeling, it amounts to starting with a full range of exposures, collapsing that range into
32	somewhat arbitrary boundaries and then deriving a continuous dose response model for an even
33	larger range of exposures.
34	
35	Categorizing continuous variables results in a host of issues:
	This document is a draft for review purposes only and does not constitute Agency policy.
	7/2013H-25DRAFT—DO NOT CITE OR QUOTE

- Assumption that the risk within the category boundaries is constant.
- It is not known whether a given categorization is representative of the data since there are many
- 3 ways of categorizing.
- Loss of power and precision by spending degrees of freedom on each category.
- 5 Misclassification at category boundaries (this can be minimized by choosing cutpoints
- 6 where relatively few observations are present).
- 7 Categorizations can be manipulated to show the desired results.
- 8

9 The Panel acknowledged that techniques such as the linear regression method described 10 by Rothman and Greenland (1998) or Poisson regression may be the most appropriate techniques 11 when only grouped or categorized data are available for estimating the dose/response model. 12 However, the original NIOSH cohort data are available at the individual level and this permits 13 the use of models such as the Cox regression models employed by Steenland et al. (2004) that 14 utilize the full information in the individual observations. If categories of exposure (as opposed 15 to individual exposure estimates) must be used, the crude rates should be computed for a large 16 number of equally spaced exposure ranges and the Rothman and Greenland (1998) model fitted 17 to these multiple points.

18

19 **EPA Response:** EPA agrees that it may be preferable to develop risk models on the basis of 20 direct analysis of individual exposure and cancer outcome data. In fact, the Draft Assessment 21 document included the presentation of models based on fitting Cox regression models to 22 individual exposure-outcome data for EtO. These models provided reasonable fits to the data, as 23 described by Steenland et al. (2004) and in the Draft Assessment document. However, it was the 24 judgment of EPA that these models represented exposure-response relationships that were 25 excessively sensitive to changes in exposure level in the low-dose region and thus were not 26 biologically realistic. That is, in the low-dose region, these models would yield extremely large 27 changes in response for small changes in dose level. Accordingly, the judgment was that these 28 models would not be suitable as the basis for low-dose unit risk values. This is what led EPA to 29 use the regression methodology with the published grouped data. The grouped data regression 30 methodology is considered to be a valid procedure for analysis of such data, and, as mentioned 31 above with respect to charge question 2.b, EPA's 2005 Guidelines for Carcinogen Risk Assessment 32 specifically recognize the use of linear modeling of grouped epidemiological data (U.S. EPA, 33 2005a); therefore, EPA has retained its use for some endpoints in the final assessment and 34 implemented it as described by Rothman (1986) (also described in van Wijngaarden and Hertz-

35 Picciotto, 2004).

1 EPA followed the Panel's recommendation and performed additional analyses of the 2 individual data in collaboration with Professor Steenland. The work performed by Professor 3 Steenland is described in Appendix D of the final assessment. Working with Professor 4 Steenland, alternative models based on direct analysis of all individual data using (1) linear 5 relative risk models (Langholz and Richardson, 2010) and (2) two-piece linear and log-linear 6 spline models (e.g., Rothman et al., 2008) were developed and evaluated. In the final 7 assessment, linear low-dose risk estimates based on the two-piece linear spline model (using the 8 Langholz-Richardson linear relative risk approach) were used for breast cancer incidence risk 9 estimates. Additional responses to specific comments follow:

10 a) Model-based dependent variable: The rate ratios for the exposure categories were not 11 statistically significant, likely due to loss of power and the use of a cumulative Cox regression 12 model within the categories that was not statistically significant across the full exposure range, as 13 noted in the comment. Although the cumulative Cox regression model was not a good fit across 14 the full range of exposures, the RR estimates based on bounded cumulative exposure ranges can 15 still reflect the overall supralinear exposure-response relationship across the categories while 16 representing a different subrelationship within the categories. It is doubtful that categorical 17 results based on log cumulative exposure would have been better because, while a log 18 cumulative exposure Cox regression model provided a statistically significant fit and made it 19 possible to represent the supralinearity (e.g. the plateauing at high exposures) across the range of 20 the data, one would not expect the exposure-response relationship within each discrete category 21 to be supralinear. For example, for lymphoid cancer, the exposure-response relationship in the 22 first exposure category is in the steeply increasing part of the overall exposure-response 23 relationship and is not expected to have its own plateau (Figure 4-1). EPA used the cumulative 24 exposure categorical results because they should provide adequate estimates of the RRs for the 25 limited exposure ranges reflected in each category, particularly the three lowest quartiles (the 26 highest exposure quartiles were excluded from the linear regression models), and this was the 27 approach taken to obtain the categorical results that were reported in the peer-reviewed, 28 published paper of Steenland et al. (2004).

b) Grouped data regression: These comments correctly identify assumptions inherent in
the method. The assumptions do not, however, preclude the use of the Rothman model in the
context of the EtO cancer risk estimation. EPA disagrees with the suggestion that unmeasured
confounders may have produced gross misclassification and somehow impaired the exposure
model estimation for individuals. The estimation performed by NIOSH to estimate individual
worker exposure (Hornung et al., 1994) was extensive and detailed. The resulting model used to

This document is a draft for review purposes only and does not constitute Agency policy.

H-27

1 estimate worker exposure accounted for 85% of the variation in average EtO exposure (see 2 Section 4.1 and Section A.2.8 of Appendix A). EPA agrees with the Panel that the exposure 3 analysis of Hornung et al. (1994) is an example of an "exemplary quantitative analysis of likely 4 errors in exposure estimates." In response to the Panel's suggestion that the Hornung analysis 5 represents an "invaluable opportunity" for further analysis of the impact of possible errors in 6 exposure estimation, EPA investigated the possible use of the "errors in variables" approach 7 (page 27 of the Panel report). Professor Steenland visited the NIOSH offices in Cincinnati in 8 order to review the data and assess whether it would support an "errors in variables" analysis. 9 Unfortunately, the electronic data files used in the exposure analysis were no longer available, so 10 that analysis based on the "errors in variables" approach was not possible.

11 c) EPA reviewed the statistical procedure for modeling categorical data using the 12 methodology in Rothman (1986). This review confirmed that the Rothman procedure was 13 followed closely. The equations used, which are the same as those in Rothman (1986, pp. 14 341–344), are described in Appendix F. The equations are also provided in van Wijngaarden 15 and Hertz-Picciotto (2004). The Rothman (1986) procedure, which is appropriate for case-16 control data such as the NIOSH data, is based on estimating the effect at each response level 17 relative to the reference or baseline level. Thus, the effect estimates are relative rates (odds 18 ratios), not absolute rates as used in the approach of Rothman and Greenland (1998) cited by the 19 SAB. The rate ratio in the referent group (i.e., those with cumulative exposure = 0) is 1.0, by 20 definition, hence, there is no intercept term in the model. As described by Rothman (1986, page 21 345), variability in the reference category is necessarily entrained in estimates of the slope. As 22 Rothman points out, this can result in loss of estimation efficiency but nevertheless yields a valid 23 estimate of trend. Thus, while it is true, as the comment states, that this procedure may not be 24 optimal in a theoretical sense, it can provide a useful mechanism for estimating linear trend. The 25 Panel acknowledges that a linear regression may be the most appropriate approach when only 26 grouped data are available. EPA agrees but would add that when the objective is low-dose risk 27 estimation, the approach may yield the most useful results from a pragmatic perspective. The 28 availability of individual data does not preclude the use of the Rothman grouped data regression 29 methodology. 30 In the case of the EtO data, it was possible to derive theoretically correct models via 31 direct analysis of the individual data. In the case of the breast cancer incidence data, this

approach yielded a model that provided a suitable basis for risk estimation. For the other

approach yielded a model that provided a suitable basis for fisk estimation. For the otherendpoints (breast cancer mortality, lymphoid cancer mortality), however, the models derived

34 using all individual data were not suitable for risk estimation because of excessive sensitivity in

35 the low-dose range. The large sensitivity of the models to small changes in low-dose values

This document is a draft for review purposes only and does not constitute Agency policy.

7/2013

DRAFT—DO NOT CITE OR QUOTE

1	results in unstable low-dose risk estimates lacking in biological plausibility and, thus, the
2	Rothman procedure was used.
3	
4	Responses to SAB Panel 'bullet' comments:
5	
6	• Assumption that the risk within the category boundaries is constant.
7	
8	EPA Response: EPA is not assuming that within-category risk is constant. Instead, the
9	assumption is that observed risk within a category may be averaged over a category even though
10	there may be a trend within the category. This is a conventional approach in epidemiological
11	analyses in which categorical analysis is used.
12	
13	• It is not known whether a given categorization is representative of the data since there are many
14	ways of categorizing.
15	
16	EPA Response: The data groupings used in the EPA analyses were based on sound statistical
17	principles and standard epidemiological practice and were subject to peer review through the
18	publications of Steenland et al. (2004); Steenland et al. (2003). The categories were generally
19	quartiles based on the distribution of cumulative exposures for the cases of the cancer of interest,
20	resulting in essentially the same number of cancer cases per quartile, a typical approach in
21	epidemiological studies.
22	
23	• Loss of power and precision by spending degrees of freedom on each category.
24	
25	EPA Response: There is some loss of power and precision in categorization. This can result in a
26	failure to find a statistically significant effect when in fact there is a meaningful effect in the
27	data.
28	
29	• Misclassification at category boundaries (this can be minimized by choosing cut points where
30	relatively few observations are present)
31	
32	EPA Response: Misclassification can occur at category boundaries; however, this is expected to
33	have a small impact on overall results. Moreover, the likely consequences of misclassification
34	across boundaries are that if an RR is overestimated in one category, the RR in an adjacent

category will be underestimated. Using a linear regression model across the categories may
 serve to smooth out some of this misclassification, if there is any.

3

• Categorizations can be manipulated to show the desired results.

4 5

6 <u>EPA Response:</u> This may be possible, but no manipulation of the EtO data was performed to
7 show "desired results." The data categories used in the EPA analyses were established a priori in
8 the Steenland et al. publications. The Panel's recommendation to use "a large number of equally
9 spaced exposure ranges" was not deemed feasible for lymphoid cancer because of the relatively
10 small number of deaths.

11

12 **PUBLIC COMMENTS:**

13

A number of public comments were received that addressed a range of technical issues related to the inhalation carcinogenicity of EtO. A number of comments were also received that are generally directed at what are referred to as "Risk Management" issues and, as such, are not addressed here. In the following, summaries of comments on technical risk assessment issues submitted by the public are provided followed by EPA's responses (note that some duplicate comments were omitted).

20

21 **Comment 1.0: The Draft Cancer Assessment Fails to Meet the Rigorous Standard of** 22 Quality Required Under the Information Quality Act and Cancer Guidelines. The Draft 23 Cancer Assessment is "influential information" as set forth under the Information Quality Act 24 (IQA) and therefore is subject to a rigorous standard of quality. EPA guidance and the 25 Guidelines for Carcinogen Risk Assessment (Cancer Guidelines) require a rigorous standard of 26 quality, which necessitates ensuring that the Draft Cancer Assessment uses scientifically 27 defensible analytical and statistical methods and has a higher degree of transparency than 28 information considered noninfluential, particularly regarding the application of uncertainty 29 factors in EPA's dose-response assessment and risk characterization. The Draft Cancer 30 Assessment demonstrably fails to meet either the standard set forth under the IQA or the Cancer 31 Guidelines. EPA must, therefore, substantially revise the assessment before the final EtO 32 Integrated Risk Information System (IRIS) Risk Assessment (IRIS Assessment) is publicly 33 disseminated or relied upon for any regulatory purposes. 34

EPA RESPONSE: Comments received from the SAB and from the public have been addressed and the EtO carcinogenicity assessment has been revised. It is EPA's position that as a result of the extensive development, review, reanalysis and revision, the final assessment follows EPA's 2005 *Guidelines for Carcinogen Risk Assessment*, uses scientifically defensible analytical and statistical methods, and meets a high standard of transparency. As such, the final assessment is consistent with Information Quality Guidelines.

8 <u>Comment 2.0</u>: EPA failed to use all available epidemiologic data, including the Union Carbide
9 Corporation (UCC) data and all the National Institute of Occupational Safety and Health
10 (NIOSH) data that were available at the time EPA conducted its assessment.

11

12 **EPA RESPONSE:** The assessment describes and considers all relevant epidemiological data 13 available at the time the assessment was conducted, including all the NIOSH data and the UCC 14 data. The Union Carbide data and the publications that this public commentator referred to were 15 evaluated and included in the assessment. EPA also reviewed articles describing additional 16 follow-up and analysis of the Union Carbide data that have been published after the Panel's 17 report was finalized. Ultimately, EPA came to the conclusion that the shortcomings inherent in 18 the Union Carbide data, particularly the crude assignment of exposure levels to subjects in the 19 UCC cohort, are fundamental, and, as a consequence, the data are not suitable for credible 20 quantitative analysis of the carcinogenic risk due to exposure to EtO. In the NIOSH data, 21 exposure estimates were based on a very large number of exposure measurements and a 22 sophisticated modeling approach (Hornung et al., 1994) which took into account job category 23 and other factors such as product type, exhaust controls, age of product, cubic feet of sterilizer, 24 and degree of aeration. Hence, prediction and assignment of exposure levels for different 25 workers in the NIOSH study would be expected to be much better than the crude assignment 26 methods used in the Union Carbide study. Although the recent follow-up of the UCC cohort has 27 now been reported, there still remains a rather small number of cancers (27 lymphohematopoietic 28 cancers, vs. 79 in the NIOSH cohort, 12 vs. 31 NHLs). Consequently, for example, there was a 29 50% excess of NHL in the 9+ years of employment category in the Union Carbide study (Swaen 30 et al., 2009), but it was based on only five cases and was thus not statistically significant. Also, 31 the UCC cohort is restricted to men, making impossible an analysis of breast cancer, which was 32 seen to have a significant increase among those with high EtO exposures in the NIOSH cohort. 33 In sum, the Union Carbide and NIOSH cohorts are not comparable on a number of levels, and 34 the NIOSH cohort remains superior as a basis for risk assessment analyses. In the NIOSH 35 cohort, exposure-response analyses are likely to involve much less misclassification of exposure

This document is a draft for review purposes only and does not constitute Agency policy.

7/2013

DRAFT—DO NOT CITE OR QUOTE

and are based on greater numbers, and thus would be expected to be more reliable. Analyses of
the important breast cancer endpoint are only possible with the NIOSH cohort. See also EPA's
response to comments on charge question 2.a above.

4

5 <u>Comment 3.0:</u> EPA inappropriately based its evaluation on summaries of statistics available in 6 various publications, rather than the primary source data, review of which and reliance upon are 7 essential to conduct valid dose-response modeling. EPA should have based its calculations on 8 readily available NIOSH data for individual subjects from the cohort mortality study.

9

10 **EPA RESPONSE:** The statistics used in draft assessment were obtained from published journal articles describing the analysis of the NIOSH data. They are summary and categorical statistics 11 12 that are commonly used in epidemiological research. The methodology for using such 13 categorical data to perform dose-response analysis is well established in the epidemiological 14 literature and is described in Rothman (1986, pp. 343–344) and van Wijngaarden and Hertz-15 Picciotto (2004). The categorical and summary statistics used by EPA are constructed from the 16 individual data in the NIOSH study. It is possible to perform analyses and construct models via 17 direct analysis of the individual data and in some cases this is a preferable approach. In fact, the 18 draft EPA assessment presented the results of such analyses in the form of the Cox regression 19 models that were based on direct analysis of the individual data with exposure as a continuous 20 variable. These models provided reasonable fits to the data. However, it was the judgment of 21 EPA that these models generated estimates of risk in the low-dose region that were excessively 22 sensitive to changes in exposure level and therefore would not be suitable as the basis for low-23 dose unit risk values. This is what led EPA to use the regression methodology with the 24 published grouped data. EPA, in consultation with Professor Steenland, did perform analyses to 25 fit additional models to the continuous NIOSH data. The work performed by Professor 26 Steenland is described in Appendix D of the final assessment. Working with Professor 27 Steenland, EPA developed and evaluated sets of models using the individual data, including (1) 28 linear relative risk models (Langholz and Richardson, 2010) and (2) two-piece linear and log-29 linear spline models (e.g., Rothman et al., 2008). In the final assessment, linear low-dose 30 estimates based on the two-piece spline model and using the Langholz-Richardson linear 31 approach were used for breast cancer incidence risk estimates. See also EPA's response to 32 comments on charge question 2.b above.

33

34 <u>Comment 4.0:</u> EPA Statistical Analysis of the Data Is Flawed and Other Incorrect

35 **Procedures Grossly Overestimate Risk.** Key flaws include:

<u>Comment 4.1:</u> EPA's risk assessments are invalid, based on linear regressions on odds ratios
 (ORs), rather than on individual subject data;

3

4 **<u>EPA RESPONSE</u>**: The odds ratios referred to are summary statistics. Regression on

5 categorical or summary statistics such as odds ratios is a valid statistical approach. See the
6 response to comment 1.2 and response to the SAB Panel comment on this issue (charge question)

- 7 2.b above).
- 8

9 <u>**Comment 4.2:**</u> EPA fails to include all available epidemiologic data;

10

EPA RESPONSE: This comment refers to the Union Carbide data. See response to Comment
 2.0 and response to the SAB Panel comment on this issue (charge question 2.b above).

<u>Comment 4.3:</u> EPA's rationale and methodology for exclusion of the highest exposure group
 is inappropriate;

16

17 **EPA RESPONSE:** EPA did not use the data from the highest exposure group in estimating the 18 unit risk because it was evident that the relationship between exposure and response changed 19 over the range of exposure. The general pattern in the data indicated a steep increase in response 20 in the low exposure range with a leveling or plateau in the high exposure range. Inclusion of the 21 data from the highest exposure levels in either a Cox regression model or a linear regression 22 yielded overall estimated relationships that were not suitable for risk assessment. Although the 23 Cox regression models with log cumulative exposure provided adequate fits to the data, 24 estimates of risk in the low-dose region were overly sensitive to changes in dose level and thus 25 not biologically realistic. In order to obtain a suitable result for risk estimation at low exposures, 26 in the draft assessment, EPA used a linear regression model and excluded the highest exposure 27 group. For the final assessment, EPA investigated the use of two-piece linear models that 28 modeled the data as a combination of two linear relationships or segments, one that increased 29 steeply in the lower dose region joined with a second that increased at a lower rate in the higher 30 dose region. This approach has the advantage of including all the (individual) data and 31 incorporating into the overall model the change in the relationship over the observed range of 32 exposure. EPA's Benchmark Dose Technical Guidance (U.S. EPA, 2012) recognizes analyses 33 omitting high-dose data points, when these data are not compatible with the development of 34 suitable descriptive statistical analyses, as a viable analytical approach.

35

- 1 <u>**Comment 4.4:**</u> EPA's use of the heterogeneous broad category of distinct diseases of
- 2 lymphohematopoietic (LH) cancers as the response increases sample size at the expense of
- 3 validity and, thereby, reduces the ability to identify a valid positive dose-response relationship.
- 4
- 5 <u>EPA RESPONSE:</u> EPA uses the narrower category of lymphoid cancer data for the primary risk
 6 estimates in the final assessment.
- 7

8 **Comment 5.0:** Certain Policy Decisions EPA Implements in the Draft Cancer Assessment 9 Are Scientifically Unsupported, Overly Conservative, Inappropriate and Have Not Been 10 **Reviewed by a Science Advisory Board.** EPA made several policy decisions that compounded greatly the inherent conservatism in the risk estimates. These include, among others: (1) EPA's 11 12 reliance on the lower bound of the point of departure, rather than the best estimate when using 13 human data; (2) use of background incidence rates with mortality-based relative rates, thereby 14 relying on unsupported assumptions that bias results; (3) EPA's assumption of an 85-year 15 lifetime of continuous exposure and cumulative risk, rather than the more traditional 70-year 16 lifetime; and (4) the application of adjustment factors for early-life exposures. 17

18 **EPA RESPONSE:** The EtO assessment has been reviewed by the SAB and EPA has responded 19 to their comments and revised the assessment. With regard to: (1), use of the lower bound on the 20 point of departure is consistent with EPA's 2005 Guidelines for Carcinogen Risk Assessment 21 (U.S. EPA, 2005a); (2), background incidence rates were used with mortality-based relative rates 22 because EPA's objective is to estimate incidence risk not mortality risk (see also EPA's response 23 to this issue under the further statistical issues subsection at the end of charge question 2.b 24 above); (3), EPA did not assume an 85-year lifetime, rather exposures were considered up to age 25 85 (i.e., actual age-specific mortality and disease rates to age 85 were used in a life-table 26 analysis; because most individuals die before age 85 years, the overall average lifespan from the analysis is about 75 years); (4), EPA's application of adjustment factors for early life exposures 27 28 in the EtO assessment was in accordance with the recommendations in EPA's Supplemental 29 *Guidelines* and the scientific data supporting the *Supplemental Guidelines* (U.S. EPA, 2005b). 30 The application of these adjustment factors was endorsed by the SAB. 31 32 **Comment 6.0:** EPA Improperly Relies Entirely on Males in Its Assessment of 33 Lymphohematopoietic (LH) Cancer Mortality. To be scientifically defensible, EPA's LH 34 cancer risk characterization must include both males and females, consistent with a "weight-of-

35 evidence" approach that relies on *all* relevant information. In the NIOSH retrospective study,

- 1 increased risks of LH cancer were observed in males but not females, even though the NIOSH
- 2 cohort was large and diverse, and consisted of more women than men. EPA's exclusive reliance
- 3 on male data is scientifically unsound without a mechanistic justification for treating males and
- 4 females differently with respect to LH, which the analysis lacks.
- 5
- 6 <u>EPA RESPONSE:</u> In the final assessment, the lymphohematopoietic cancer unit risk estimates
 7 are based on data for both sexes.
- 8

9 <u>Comment 7.0:</u> EPA's Draft Risk Estimates for Occupational Exposure Levels Rely on 10 Invalid and/or Inappropriate Models. The models used to estimate risks from occupational 11 exposure are flawed because they generate supralinear results, regardless of the observed data. 12 These estimates also suffer from the same invalid methodology used in the environmental risk 13 estimates. EPA must employ a dose-response model that would generate results consistent with 14 the observed data.

EPA RESPONSE: It is the underlying data that indicate a supralinear exposure-response
 relationship, particularly for lymphohematopoietic cancer and breast cancer mortality, as
 suggested by the categorical results as well as by the poorer fits of the Cox regression models
 with untransformed cumulative exposure data.

20

21 Comment 8.0: EtO is Considered by Many to be a Weak Mutagen and EPA Should 22 Consider This in Proposing a Unit Risk Factor. A chemical's mutagenic potency is 23 necessarily related to its carcinogenic potency. If genotoxicity is considered the means by which 24 a chemical induces cancer, it follows that it will not induce cancer under conditions where it does 25 not induce mutations, at either the chromosome or gene level, thus providing a mechanistic basis 26 for estimating carcinogenicity. EtO has been shown only to be a weak mutagen; therefore, it 27 should not be automatically considered a human carcinogen and certainly not a potent 28 carcinogen. In addition, no treatment-related tumors were observed in rats exposed to EtO, even 29 at the 100 ppm concentration level, at the 18 month sacrifice, and the most sensitive tumor type 30 (i.e., splenic mononuclear cell leukemia) did not significantly increase in the exposed rats until 31 23 months, almost the end of their lifetime of exposures (Snellings et al., 1984). EPA's analysis 32 should have reconciled these findings with its estimation of EtO's carcinogenic potency, but the 33 analysis does not do so.

34

1 **EPA RESPONSE:** EPA does not consider the mutagenicity and carcinogenicity findings to be 2 in conflict with the potency estimates. EtO is a relatively weak mutagen when compared to 3 strong mutagens such as cancer chemotherapeutic agents and diepoxides but not necessarily 4 when compared to other environmental mutagens. And EtO is clearly carcinogenic in mice and 5 rats. The inhalation unit risk estimate based on human data is notably larger than that based on 6 rodent data (about 23 times larger), and the reasons for this discrepancy are unknown; however, 7 such species differences are not unusual. 8 It is not surprising that that there was no statistically significant increase in tumors at 18 9 months in the Snellings et al. (1984) study. Because of the latency for cancer development, 10 tumors generally occur later in life. Furthermore, only 20 animals per sex per dose group were 11 killed at 18 months (and tissues from the animals in the low- and mid-dose group only got 12 microscopically examined in the presence of a gross lesion), so there is low power to detect an 13 effect. 14 15 Comment 9.0: EPA's Risk Estimates Do Not Pass Simple Reality Checks. 16 17 **Comment 9.1:** The results of the Draft Cancer Assessment (resulting in negligible risk only at 18 levels less than a part per trillion), are not reasonable when compared with the results generated 19 for other substances that are considered potent mutagens and/or potent carcinogens, and do not 20 comport with the results of other assessments EPA has undertaken. 21 22 **EPA RESPONSE**: The procedures used in this assessment comport with those used in other 23 assessments EPA has undertaken. Differences in relative potency across chemicals based on 24 exposure levels may reflect differences in absorption, distribution, metabolism, excretion, or 25 pharmacodynamics of the chemicals. 26 27 Comment 9.2: The Draft Cancer Assessment grossly over predicts the observed number of 28 cancer mortalities in the study upon which it is based by more than 60-fold. 29 30 **EPA RESPONSE:** The unit risk estimates are derived from, and are consistent with, the results 31 of the NIOSH epidemiology study, as long as they are used in the low-exposure range, as 32 intended. Because the exposure-response relationships for the cancers of interest in the NIOSH 33 study are generally supralinear, the unit risk estimates will overpredict the NIOSH results if 34 applied to the region of the exposure-response relationships where the responses plateau. The 35 potency estimates derived in the assessment are constructed for use with low dose levels

consistent with environmental exposure and are not appropriate for use with exposures in
occupational settings, as stated explicitly in the document. Occupational exposure scenarios are
addressed in Section 4.7 of the assessment document. Extra risks associated with occupational
exposures are in the "plateau" region of the exposure-response relationships and thus increase
proportionately less than risks in the low-dose region.

Comment 9.3: EPA's *de minimis* value from the Draft Cancer Assessment is 2 to 3 orders of
 magnitude below the endogenous level of EtO that is produced naturally in humans.

9

EPA RESPONSE: EPA's risk estimates are for risk above background. The issue of
 endogenous levels is addressed in the final assessment. See Section 4.5 for a discussion of the
 specific issue raised in this comment.

13

Comment 9.4: EPA's draft unit risk values for EtO are unreasonably large, given the evidence of carcinogenicity in a large body of epidemiology studies that is not conclusive, the weak mutagenicity data, and the lack of cancer response in rodents until very late in life. EPA must make the best use of all of the epidemiology, toxicology and genotoxicity data for EtO that provide valid information on the relationship between exposure and cancer response to improve the reasonableness of the unit risk values for EtO.

20

21 **EPA RESPONSE:** EPA believes that it has made the best use of the available information in 22 revising the assessment. EPA's evaluation of the weight of evidence concludes that the 23 epidemiological evidence is strong (Section 3.5.1). In addition, the unequivocal evidence of 24 rodent carcinogenicity and the supporting mechanistic evidence add sufficient weight for the 25 characterization of "carcinogenic to humans" (Section 3.5.1), which is beyond what is needed to 26 support the derivation of quantitative risk estimates. This is thoroughly presented in the 27 assessment and was supported by the SAB review. The unit risk estimates are derived from, and 28 are consistent with, the results of the large, high-quality NIOSH epidemiology study. See also 29 the response to Comment 8.0 above.

30

31 <u>Comment 10.0:</u> The Draft Cancer Assessment Does Not Use the Best Available Science as 32 Required under the Information Quality Act and Cancer Guidelines.

33

34 **<u>Comment 10.1:</u>** EPA based its evaluation on summaries of statistics available in various

35 publications. These data, however, are not sufficient to conduct valid dose-response modeling.

1 EPA should have based its calculations on readily available National Institute of Occupational 2 Safety and Health (NIOSH) data for individual subjects from the cohort mortality study.

3

4

5

EPA RESPONSE: See response to Comment 3.0.

- 6 **<u>Comment 10.2</u>** EPA did not use all available epidemiologic data, including the Union Carbide 7 Corporation (UCC) data and all NIOSH data that were available at the time EPA conducted its 8 assessment. In particular, the Greenberg et al. (1990) UCC study reported the consistency of the 9 death certificate diagnosis with a pathology review of medical records for leukemia cases, a 10 validation not conducted for cases in the NIOSH study.
- 11

13

14

- 12 **EPA RESPONSE:** EPA considered all the available epidemiological data, including NIOSH data and the Union Carbide data and the publications that the ACC Panel referred to in its comments. See response to Comment 2.0 for more details on why the UCC data were not used for the derivation of quantitative risk estimates.
- 15 16

17 **Comment 11.0: EPA Should Recognize That EtO Is Both a Weak Mutagen and Weak** 18 Animal Carcinogen.

- 19
- 20 **EPA RESPONSE:** The full text of this comment was essentially the same as Comment 8.0 and 21 is addressed in EPA's response to that comment above.
- 22
- 23 **Comment 11.1:** Among 26 alkylating agents studies by (Vogel and Nivard, 1998), EtO 24 showed the second lowest carcinogenic potency.
- 25

26 EPA RESPONSE: The (Vogel and Nivard, 1998) study is not relevant to EPA's assessment of 27 the carcinogenicity of EtO. Most of the substances considered by (Vogel and Nivard, 1998) are 28 chemotherapeutic chemicals that are, by design, intended to be strong alkylating agents.

- 29
- 30 **Comment 11.2:** Previous assessments of EtO inhalation time to tumor in rats showed that the 31 increased risks observed at higher experimental doses did not extend to the lowest experimental
- 32 dose. To comply with the Cancer Guidelines, EPA should include these and other relevant
- 33 animal data in a weight-of-evidence characterization of EtO.
- 34

1	EPA RESPONSE: The carcinogenicity data reviewed in Section 3.2 reveal that, of 13 exposure-
2	response relationships for the tumor types associated with EtO exposure from the 3 rodent
3	bioassays, all but one show an increased incidence at the lowest exposure level, though not all
4	the increases are statistically significant at that level.
5	
6	<u>Comment 12.0:</u> EPA's Risk Estimates Do Not Pass Simple Reality Checks.
7	
8	<u>Comment 12.1:</u> [This was the same as Comment 9.1 above.]
9	
10	<u>Comment 12.2:</u> The results of the Draft Cancer Assessment are at odds with EPA's conclusion
11	that EtO is a potent (<i>de minimis</i> level < 1 ppt) human carcinogen and EtO's potency seen in
12	animal studies.
13	
14	EPA RESPONSE: The risk estimates based on the rodent data are over an order of magnitude
15	lower than (~1/23) the estimate based on the human data, for unknown reasons, but species
16	differences are not unusual and human data are generally preferred over rodent data for
17	quantitative risk estimates because the uncertainties due to interspecies extrapolation are
18	avoided.
19	
20	<u>Comment 12.3</u> EPA's draft unit risk values for EtO are not applicable to the general public.
21	The Draft Cancer Assessment grossly over predicts the observed number of LH cancer
22	mortalities in the study upon which it is based by more than 60-fold. Further, EPA's de minimis
23	value is about 50 times lower than the lowest ambient concentration found at remote coastal
24	locations. Based upon PBPK simulations, endogenous concentrations of EtO in humans are

- approximately 400-1700 times greater than EPA's proposed *de minimis* value of 0.00036 parts
 per billion.
- 27

EPA RESPONSE: The unit risk estimates are derived from, and are consistent with, the results of the NIOSH epidemiology study, as long as they are used in the low-exposure range, as intended; see response to Comment 9.2 above. Endogenous and ambient concentrations of EtO could be contributing to background rates of lymphohematopoietic cancer and breast cancer incidences, which are appreciable. The EPA values are not implausible upper bound estimates.

APPENDIX I.

1 2 LIST OF REFERENCES ADDED AFTER THE 2006 EXTERNAL REVIEW DRAFT

3 Note: These references were added to the Carcinogenicity Assessment in response to the 2007 4 peer reviewers' and public comments, and for completeness. The added references have not 5 changed the overall qualitative or quantitative conclusions. These references are also included in 6 the reference list at the end of the main body of the assessment or the reference list at the end of 7 this appendix volume; see those reference lists for the HERO links. 8 9 10 Abeles, FB; Heggestad, HE. (1973) Ethylene: an urban air pollutant. J Air Waste Manag Assoc 23:517–521. 11 Ádám, B; Bárdos, H; Adány R. (2005) Increased genotoxic susceptibility of breast epithelial cells to ethylene oxide. 12 Mutat Res 585(1-2):120-126. 13 Agurell, E; Cederberg, H; Ehrenberg, L; et al. (1991) Genotoxic effects of ethylene oxide and propylene oxide: a 14 comparative study. Mutat Res 250(1-2):229-237. 15 Applebaum, KM; Malloy, EJ; Eisen, EA. (2007) Reducing healthy worker survivor bias by restricting date of hire in 16 a cohort of Vermont granite workers. Occup Environ Med 64:681-687. 17 Applegren, LE; Eneroth, G; Grant, C; et al. (1978) Testing of ethylene oxide for mutagenicity using the 18 micronucleus test in mice and rats. Act Pharmacol Toxicol 43:69-71. 19 Arias, E. (2007). United States life tables, 2004. Atlanta, GA: Centers of Disease Control and Prevention; National 20 Center for Health Statistics. http://www.cdc.gov/nchs/data/nvsr/nvsr56/nvsr56 09.pdf 21 Bastlová, T; Andersson, B; Lambert, B; et al. (1993) Molecular analysis of ethylene oxide-induced mutations at the 22 HPRT locus in human diploid fibroblasts. Mutat Res 287:283-292. 23 Boffetta, P; van der Hel, O; Norppa, H; et al. (2007) Chromosomal aberrations and cancer risk: results of a cohort 24 study from Central Europe. Am J Epidemiol 165:36-43. 25 Bolt, HM; Leutbecher, M; Golka, K. (1997) A note on the physiological background of the ethylene oxide adduct 26 7-(2-hydroxyethyl) guanine in DNA from human blood [Letter]. Arch Toxicol 71(11):719–721. 27 Bolt, HM; Peter, H; Föst, U. (1988) Analysis of macromolecular ethylene oxide adducts [Review]. Int Arch Occup 28 Environ Health 60:141-144. 29 Bonassi, S; Znaor, A; Ceppi, M; et al. (2007) An increased micronucleus frequency in peripheral blood lymphocytes 30 predicts the risk of cancer in humans [Review]. Carcinogenesis 28:625-631. 31 Boogaard, PJ. (2002) Use of haemoglobin adducts in exposure monitoring and risk assessment. J Chromatogr B 32 Analyt Technol Biomed Life Sci 778(1-2):309-322. 33 Boysen, G; Pachkowski, BF; Nakamura, J; et al. (2009) The formation and biological significance of N7-guanine 34 adducts [Review]. Mutat Res 678:76-94. 35 Britton, DW; Törnqvist, M; van Sittert, NJ; et al. (1991) Immunochemical and GC/MS analysis of protein adducts: 36 dosimetry studies with ethylene oxide [Review]. Prog Clin Biol Res 372:99-106. 37 Chandra, GR; Spencer, M. (1963) A micro apparatus for absorption of ethylene and its use in determination of 38 ethylene in exhaled gases from human subjects. Biochim Biophys Acta 69:423-425. This document is a draft for review purposes only and does not constitute Agency policy. 7/2013 I-1 DRAFT-DO NOT CITE OR QUOTE

- 1 Christiansen, DH; Andersen, MK; Desta, F; et al. (2005) Mutations of genes in the receptor tyrosine kinase
- 2 (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia.
 3 Leukemia 19:2232-2240.
- 4 Christiansen, DH; Andersen, MK; Pedersen-Bjergaard, J. (2001) Mutations with loss of heterozygosity of *p53* are
- 5 common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and
- 6 significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol
- 7 19:1405–1413.
- 8 Cushnir, JR; Lamb, JH; Parry, A; et al. (1991) Tandem mass spectrometric approaches for determining exposure to
 9 alkylating agents. IARC Sci Publ 105:107–12.
- 10 de Serres, FJ; Brockman, HE. (1995) Ethylene oxide: induction of specific-locus mutations in the ad-3 region of
- heterokaryon 12 of *Neurospora crassa* and implications for genetic risk assessment of human exposure in the
- 12 workplace. Mutat Res 328:31–47.
- Donner, EM; Wong, BA; James, RA; et al. (2010) Reciprocal translocations in somatic and germ cells of mice
 chronically exposed by inhalation to ethylene oxide: implications for risk assessment. Mutagenesis 25:49–55.
- Ehrenberg, L; Osterman-Golkar, S; Segerbäck, D; et al. (1977) Evaluation of genetic risks of alkylating agents. III.
 alkylation of haemoglobin after metabolic conversion of ethene to ethene oxide in vivo. Mutat Res 45(2):175–184.
- Eide, I; Zhao, C; Kumar, R; et al. (1999) Comparison of (32)P-postlabeling and high-resolution GC/MS in
 quantifying N7-(2-Hydroxyethyl)guanine adducts. Chem Res Toxicol 12(10):979–984.
- Farmer, PB; Bailey, E; Naylor, S; et al. (1993) Identification of endogenous electrophiles by means of mass
 spectrometric determination of protein and DNA adducts [Review]. Environ Health Perspect 99:19–24.
- 21 Farmer, PB; Shuker, DE. (1999) What is the significance of increases in background levels of carcinogen-derived
- 22 protein and DNA adducts? Some considerations for incremental risk assessment [Review]. Mutat Res
- 23 424(1-2):275-286.
- Farooqi, Z; Törnqvist, M; Ehrenberg, L; et al. (1993) Genotoxic effects of ethylene oxide and propylene oxide in
 mouse bone marrow cells. Mutat Res 288(2):223–228.
- 26 Fennell, TR; MacNeela, JP; Morris, RW; et al. (2000) Hemoglobin adducts from acrylonitrile and ethylene oxide in
- cigarette smokers: effects of glutathione S-transferase T1-null and M1-null genotypes. Cancer Epidemiol
 Biomarkers Prev 9(7):705-712.
- 29 Föst, U; Marczynski, B; Kasemann, R; et al. (1989) Determination of 7-(2-hydroxyethyl)guanine with gas
- chromatography/mass spectrometry as a parameter for genotoxicity of ethylene oxide. Arch Toxicol Suppl
 13:250-253.
- Fost, U; Hallier, E; Ottenwalder, H; et al. (1991) Distribution of ethylene oxide in human blood and its implications
 for biomonitoring. Hum Exp Toxicol 10:25–31.
- Fuchs, J; Wullenweber, U; Hengstler, JG; et al. (1994) Genotoxic risk for humans due to workplace exposure to ethylene oxide: remarkable individual differences in susceptibility. Arch Toxicol 68(6):343–348.
- Generoso, WM; Cain, KT; Hughes, LA; et al. (1986) Ethylene oxide dose and dose-rate effects in the mouse
 dominant-lethal test. Environ Mol Mutagen 8(1):1–7.
- Generoso, WM; Rutledge, JC; Cain, KT; et al. (1988) Mutagen-induced fetal anomalies and death following
 treatment of females within hours after mating. DNA Repair 199:175–181.
- 40 Generoso, WM; Cain, KT; Cornett, CV; et al. (1990) Concentration-response curves for ethylene-oxide-induced 41 heritable translocations and dominant lethal mutations. Environ Mol Mutagen 16(2):126–131.

7/2013

I-2

- 1 Godderis, L; Aka, P; Matecuca, R; et al. (2006) Dose-dependent influence of genetic polymorphisms on DNA
- 2 damage induced by styrene oxide, ethylene oxide and gamma-radiation. Toxicology 219(1-3):220-229.
- Golberg, L. (1986) Chemical and physical properties. In Hazard assessment of ethylene oxide. Boca Raton, FL:
 CRC Press.
- Gupta, RC; Lutz, WK. (1999) Background DNA damage for endogenous and unavoidable exogenous carcinogens: a
 basis for spontaneous cancer incidence? DNA Repair 424(1-2):1-8.
- 7 Hallier, E; Langhof, T; Dannappel, D; et al. (1993) Polymorphism of glutathione conjugation of methyl bromide,
- 8 ethylene oxide and dichloromethane in human blood: influence on the induction of sister chromatid exchanges
- 9 (SCE) in lymphocytes. Arch Toxicol 67(3):173–178.
- Harris, NL: Jaffe, ES; Diebold, J; et al. (1999) World Health Organization classification of neoplastic diseases of the
 hematopoietic and lymphoid tissues report of the Clinical Advisory Committee—Airlee House, Virginia, November
- 12 1997. J Clin Oncol 17:3835–3849.
- 13 Haufroid, V; Merz, B; Hofmann, A; et al. (2007) Exposure to ethylene oxide in hospitals: biological monitoring and
- influence of glutathione S-transferase and epoxide hydrolase polymorphisms. Cancer Epidemiol Biomarkers Prev
 16(4):796-802.
- 16 Hong, HH; Houle, CD; Ton, TV; et al. (2007) K-ras mutations in lung tumors and tumors from other organs are
- consistent with a common mechanism of ethylene oxide tumorigenesis in the B6C3F1 mouse. Toxicol Pathol35:81–85.
- 19 Horner, MJ; Ries, LAG; Krapcho, M; Neyman, N; Aminou, R; Howlader, N; Altekruse, SF; Feuer, EJ; Huang, L;
- 20 Mariotto, A; Miller, BA; Lewis, DR; Eisner, MP; Stinchcomb, DG; Edwards, BK. (2009). SEER cancer statistics
- 21 review, 1975-2006. Bethesda, MD: National Cancer Institute. <u>http://seer.cancer.gov/csr/1975_2006/</u>
- Houle, CD; Ton, TV; Clayton, N; et al. (2006) Frequent p53 and H-ras mutations in benzene- and ethylene oxide induced mammary gland carcinomas from B6C3F1 mice. Toxicol Pathol 34(6):752–762.
- Huang, CC; Shih, WC; Wu, CF; et al. (2008) Rapid and sensitive on-line liquid chromatographic/tandem mass
 spectrometric determination of an ethylene oxide-DNA adduct, N7-(2-hydroxyethyl)guanine, in urine of
- 26 nonsmokers. Rapid Commun Mass Spectrom 22(5):706–710.
- 27 IARC (International Agency for Research on Cancer). (1994a) Some industrial chemicals. Ethylene. In: IARC
- 28 monographs on the evaluation of carcinogenic risks to humans and their supplements. Vol. 60. Some industrial 29 chemicals. Lyon, France: World Health Organization; pp 45–71.
- 30 IARC (International Agency for Research on Cancer). (2008) Ethylene oxide. In: IARC monographs on the
- 31 evaluation of carcinogenic risks to humans. Vol. 97. 1,3-Butadiene, ethylene oxide, and vinyl halides (vinyl fluoride,
- 32 vinyl chloride and vinyl bromide). Lyon, France: World Health Organization; pp. 185–311.
- 33 Ingvarsson, S. (1999) Molecular genetics of breast cancer progression [Review]. Semin Cancer Biol 9(4):277–288.
- Jenssen, D; Ramel, C. (1980) The micronucleus test as part of a short-term mutagenicity test program for the prediction of carcinogenicity evaluated by 143 agents tested. Mutat Res 75(2):191–202.
- Kelsey, KT; Wiencke, JK; Eisen, EA; et al. (1988) Persistently elevated sister chromatid exchanges in ethylene oxide-exposed primates: the role of a subpopulation of high frequency cells. Cancer Res 48(17):5045–5050.
- Kligerman, AD; Erexon, GL; Phelps, ME; et al. (1983) Sister-chromatid exchange induction in peripheral blood
 lymphocytes of rats exposed to ethylene oxide by inhalation. Mutat Res Lett 120:37–44.

- 1 Koepke, SR; Kroeger-Koepke, MB; Bosan, W; et al. (1988) Alkylation of DNA in rats by
- N-nitrosomethyl-(2-hydroxyethyl)amine: dose response and persistence of the alkylated lesions in vivo. Cancer Res
 48(6):1537-1542.
- Kolman, A. (1985) Effect of deficiency in excision repair and umuC function on the mutagenicity with ethylene
 oxide in the lacI gene of E. coli. Mutat Res 146(1):43–46.
- Kolman, A; Chovanec, M. (2000) Combined effects of gamma-radiation and ethylene oxide in human diploid
 fibroblasts. Mutagenesis 15(2):99–104.
- Kolman, A; Näslund, M. (1987) Mutagenicity testing of ethylene oxide in Escherichia coli strains with different
 repair capacities. Environ Mol Mutagen 10(3):311–315.
- Kolman, A; Näslund, M; Calleman, CJ. (1986) Genotoxic effects of ethylene oxide and their relevance to human
 cancer [Review]. Carcinogenesis 7(8):1245–1250.
- 12 Kolman, A; Chovanec, M; Osterman-Golkar, S. (2002) Genotoxic effects of ethylene oxide, propylene oxide and 13 epichlorohydrin in humans: update review (1990–2001) [Review]. DNA Repair 512(2–3):173–194.
- Kumar, R; Staffas, J; Försti, A; et al. (1995) 32P-postlabelling method for the detection of 7-alkylguanine adducts
 formed by the reaction of different 1,2-alkyl epoxides with DNA. Carcinogenesis 16(3):483–489.
- 16 Lambert, B; Andersson, B; Bastlova, T; et al. (1994) Mutations induced in the hypoxanthine phosphoribosyl

17 transferase gene by three urban air pollutants: acetaldehyde, benzo(a)pyrene diolepoxide, and ethylene oxide.

- 18 Environ Health Perspect Suppl 120:135–138.
- Langholz, B; Richardson, DB. (2010) Fitting general relative risk models for survival time and matched case-control
 analysis. Am J Epidemiol 171:377–383.
- 21 Leclercq, L; Laurent, C; De Pauw, E. (1997) High-performance liquid chromatography/electrospray mass
- spectrometry for the analysis of modified bases in DNA: 7-(2-hydroxyethyl)guanine, the major ethylene oxide-DNA
 adduct. Anal Chem 69(10):1952–1955.
- Leutbecher, M; Langhof, T; Peter, H; et al. (1992) Ethylene oxide: metabolism in human blood and its implication
 to biological monitoring. Arch Toxicol Suppl 15:289.
- Lewis, SE; Barnett, LB; Felton, C; et al. (1986) Dominant visible and electrophoretically expressed mutations
 induced in male mice exposed to ethylene oxide by inhalation. Environ Mol Mutagen 8(6):867–872.
- Li, F; Segal, A; Solomon, JJ. (1992) In vitro reaction of ethylene oxide with DNA and characterization of DNA
 adducts. Chem Biol Interact 83(1):35–54.
- Liou, SH; Lung, JC; Chen, YH; et al. (1999) Increased chromosome-type chromosome aberration frequencies as
 biomarkers of cancer risk in a blackfoot endemic area. Cancer Res 59(7):1481–1484.
- 32 Lorenti Garcia, C; Darroudi, F; Tates, AD; et al. (2001) Induction and persistence of micronuclei, sister-chromatid
- 33 exchanges and chromosomal aberrations in splenocytes and bone-marrow cells of rats exposed to ethylene oxide.
- 34 Mutat Res Genet Toxicol Environm Mutagen 492(1–2):59–67.
- Lynch, DW; Lewis, TR; Moorman, WJ; et al. (1984b) Sister-chromatid exchanges and chromosome aberrations in
- 36 lymphocytes from monkeys exposed to ethylene oxide and propylene oxide by inhalation. Toxicol Appl Pharmacol
- 37 76:85–95.
- 38 Marsden, DA; Jones, DJ; Britton, RG; et al. (2009) Dose-response relationships for N7-(2-hydroxyethyl)guanine
- induced by low-dose (14C)ethylene oxide: evidence for a novel mechanism of endogenous adduct formation.
- 40 Cancer Res 69(7):3052–3059.

- 1 Marsden, DA; Jones, DJ; Lamb, JH; et al. (2007) Determination of endogenous and exogenously derived
- 2 N7-(2-hydroxyethyl)guanine adducts in ethylene oxide-treated rats. Chem Res Toxicol. 20(2):290–299.
- 3 Miniño, AM; Arias, E; Kochanek, KD; Murphy, SL; Smith, BL. (2002). Deaths: Final Data for 2000. Hyattsville,
- 4 MD: National Center for Health Statistics. <u>http://www.cdc.gov/nchs/data/nvsr/nvsr50/nvsr50_15.pdf</u>
- Nivard, MJ; Czene, K; Segerbäck, D; et al. (2003) Mutagenic activity of ethylene oxide and propylene oxide under
 XPG proficient and deficient conditions in relation to N-7-(2-hydroxyalkyl)guanine levels in Drosophila. Mutat Res
 529(1-2):95-107.
- 8 Ong, T; Bi, HK; Xing, S; et al. (1993) Induction of sister chromatid exchange in spleen and bone marrow cells of 9 rats exposed by inhalation to different dose rates of ethylene oxide. Environ Mol Mutagen 22(3):147–151.
- Otteneder, M; Lutz, WK. (1999) Correlation of DNA adduct levels with tumor incidence: carcinogenic potency of
 DNA adducts [Review]. DNA Repair 424(1-2):237-247.
- 12 Pauwels, W; Veulemans, H. (1998) Comparison of ethylene, propylene and styrene 7,8-oxide in vitro adduct
- 13 formation on N-terminal value in human haemoglobin and on N-7-guanine in human DNA. Mutat Res 418:21–33.
- 14 Pedersen-Bjergaard, J; Christiansen, DH; Desta, F; et al. (2006) Alternative genetic pathways and cooperating
- 15 genetic abnormalities in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia [Review].
- 16 Leukemia 20:1943–1949.
- Pero, RW; Widegren, B; Hogstedt, B; et al. 1981. In vivo and in vitro ethylene oxide exposure of human
 lymphocytes assessed by chemical stimulation of unscheduled DNA synthesis. DNA Repair 83(2):271–289.
- Ribeiro, LR; Rabello-Gay, MN; Salvadori, DMF; et al. (1987) Cytogenetic effects of inhaled ethylene oxide in
 somatic and germ cells of mice. Arch Toxicol 59:332–335.
- 21 Ries, LAG; Melbert, D; Krapcho, M; Mariotto, A; Miller, BA; Feuer, EJ; Clegg, L; Horner, MJ; Howlader, N;
- 22 Eisner, MP. (2007). SEER (Surveillance Epidemiology and End Results) cancer statistics review, 19752004.
- 23 National Cancer Institute, U.S. Department of Health, Education, and Welfare, National Institutes of Health.
- 24 http://seer.cancer.gov/csr/1975_2004
- Rossner, P; Boffetta, P; Ceppi, M; et al. (2005) Chromosomal aberrations in lymphocytes of healthy subjects and
 risk of cancer. Environ Health Perspect 113(5):517–520.
- 27 Rusyn, I; Asakura, S; Li, Y; et al. (2005) Effects of ethylene oxide and ethylene inhalation on DNA adducts,
- apurinic/apyrimidinic sites and expression of base excision DNA repair genes in rat brain, spleen, and liver. DNA
 Repair 4:1099–1110.
- 30 SAB (U.S. EPA Science Advisory Board). (2007) Review of Office of Research and Development (ORD) draft
- assessment entitled, "Evaluation of the carcinogenicity of ethylene oxide". Science Advisory Board, Washington,
 DC. EPA-SAB-08-004; Available online at
- http://yosemite.epa.gov/sab/sabproduct.nsf/368203f97a15308a852574ba005bbd01/5D661BC118B527A3852573
 B80068C97B/\$File/EPA-SAB-08-004-unsigned.pdf.
- Saha, M; Abushamaa, A; Giese, RW. (1995) General method for determining ethylene oxide and related N7-guanine
 DNA adducts by gas chromatography-electron capture mass spectrometry. J Chromatogr A 712(2):345–354.
- Sarto, F; Cominato, I; Pinton, AM; et al. (1984b). Workers exposed to ethylene oxide have increased incidence of
 sister chromatid exchange. IARC Sci Publ 59:413–419.
- 39 Segerbäck, D. (1983). Alkylation of DNA and hemoglobin in the mouse following exposure to ethene and ethene
- 40 oxide. Chem Biol Interact 45(2):139–151.

- 1 Segerbäck, D. (1990) Reaction products in hemoglobin and DNA after in vitro treatment with ethylene oxide and N-
- 2 (2-hydroxyethyl)-N-nitrosourea. Carcinogenesis 11(2):307–312.
- Segerbäck, D. (1994) DNA alkylation by ethylene oxide and some mono-substituted epoxides [Review]. IARC Sci
 Publ 125:37–47.
- Shen, J; Kessler, W; Denk, B; et al. (1989) Metabolism and endogenous production of ethylene in rat and man.
 Arch Toxicol Suppl 13:237–239.
- Sielken, RL; Valdez-Flores, C. (2009a) Life-table calculations of excess risk for incidence versus mortality: ethylene
 oxide case study. Regul Toxicol Pharmacol 55:82–89.
- Sielken, RL; Valdez-Flores, C. (2009b) Calculating excess risk with age-dependent adjustment factors and
 cumulative doses: ethylene oxide case study. Regul Toxicol Pharmacol 55:76–81.
- Steenland, K; Deddens, J. (2004) A practical guide to dose-response analyses and risk assessment in occupational
 epidemiology [Review]. Epidemiol 15:63–70.
- Swaen, GM; Burns, C; Teta, JM; et al. (2009) Mortality study update of ethylene oxide workers in chemical
 manufacturing: a 15 year update. J Occup Environ Med 51:714–723.
- Swenberg, JA; Fryar-Tita, E; Jeong, YC; et al. (2008) Biomarkers in toxicology and risk assessment: informing
 critical dose-response relationships. Chem Res Toxicol 21:253–265.
- Swenberg, JA; Ham, A; Koc, H; et al. (2000) DNA adducts: effects of low exposure to ethylene oxide, vinyl
 chloride and butadiene. DNA Repair 464:77–86.
- Thiess, AM; Schwegler, H; Fleig, I; et al. (1981) Mutagenicity study of workers exposed to alkylene oxides
 (ethylene oxide/propylene oxide) and derivatives. J Occup Med 23(5):343–347.
- Tompa, A; Jakab, M; Biro, A; et al (2006) Chemical safety and health conditions among Hungarian hospital nurses.
 Ann NY Acad Sci 1076:635–648.
- 23 Tompkins, EM; Jones, DJ; Lamb, JH; et al. (2008). Simultaneous detection of five different 2-hydroxyethyl-DNA
- adducts formed by ethylene oxide exposure, using a high-performance liquid chromatography/electrospray
 ionisation tandem mass spectrometry assay. Rapid Commun Mass Spectrom 22: 19–28.
- Tompkins, EM; McLuckie, KI; Jones, DJ; et al. (2009) Mutagenicity of DNA adducts derived for ethylene oxide exposure in the pSP189 shuttle vector replicated in human Ad293 cells. Mutat Res 678:129–137.
- U.S. EPA (Environmental Protection Agency). (2006) Evaluation of the carcinogenicity of ethylene oxide: external
 review draft. (EPA/635/R-06/003). Office of Research and Development, Washington, DC.
- 30 U.S. EPA (Environmental Protection Agency). (2012) Benchmark dose technical guidance. (EPA/100/R-12/001).
- 31 Risk Assessment Forum, Washington, DC. . Available online at
- $32 http://www.epa.gov/raf/publications/pdfs/benchmark_dose_guidance.pdf.$
- Uziel, M; Munro, NB; Katz, DS; et al. (1992) DNA adduct formation by 12 chemicals with populations potentially
 suitable for molecular epidemiological studies [Review]. Mutat Res 277:35–90.
- Valdez-Flores, C; Sielken, RL; Teta, MJ. (2010) Quantitative cancer risk assessment based on NIOSH and UCC
 epidemiological data for workers exposed to ethylene oxide. Regul Toxicol Pharmacol 56(3):312–320.
- 37 van Delft, JH; van Winden, MJ; van den Ende, AM; et al. (1993) Determining N7-alkylguanine adducts by
- 38 immunochemical methods and HPLC with electrochemical detection: applications in animal studies and in
- 39 monitoring human exposure to alkylating agents. Environ Health Perspect 99:25–32.

- 1 van Delft, JH; van Winden, MJ; Luiten-Schuite, A; et al. (1994) Comparison of various immunochemical assays for
- 2 the detection of ethylene oxide-DNA adducts with monoclonal antibodies against imidazole ring-opened
- 3 N7-(2-hydroxyethyl) guanosine: application in a biological monitoring study. Carcinogenesis 15(9):1867–1873.
- 4 van Sittert, NJ; de Jong, G. (1985) Biomonitoring of exposure to potential mutagens and carcinogens in industrial
 5 populations. Food Chem Toxicol 23:23–31.
- van Wijingaarden, E; Hertz-Picciotto, I. (2004) A simple approach to performing quantitative cancer risk assessment
 using published results from occupational epidemiology studies. Sci Total Environ 332(1-3):81-87.
- 8 Victorin, K; Ståhlberg, M. (1988) A method for studying the mutagenicity of some gaseous compounds in
 9 Salmonella typhimurium. Environ Mol Mutagen 11(1):65–77.
- 10 Vogel, EW; Barbin, A; Nivard, MJM; Stack, HF; Waters, MD; Lohman, PHM. (1998). Heritable and cancer risks of
- 11 exposures to anticancer drugs: inter-species comparisons of covalent deoxyribonucleic acid-binding agents. Mutat
- 12 Res 400: 509–540.
- Vogel, EW; Natarajan, AT. (1995) DNA damage and repair in somatic and germ cells in vivo [Review]. Mutat Res
 330(1-2):183-208.
- Walker, VE; Fennell, TR; Upton, PB; et al. (1993) Molecular dosimetry of DNA and hemoglobin adducts in miceand rats exposed to ethylene oxide. Environ Health Perspect 99:11–17.
- Walker, VE; Wu, KY; Upton, PB; et al. (2000) Biomarkers of exposure and effect as indicators of potential
 carcinogenic risk arising from in vivo metabolism of ethylene to ethylene oxide. Carcinogenesis 21(9):1661–1669.
- 19 Warwick, GP. (1963) The mechanism of action of alkylating agents [Review]. Cancer Res 23:1315–1333.
- Waters, MD; Stack, HF; Jackson, MA. (1999) Genetic toxicology data in the evaluation of potential human
 environmental carcinogens [Review]. Mutat Res 437(1):21–49.
- Wu, KY; Ranasinghe, A; Upton, PB; et al. (1999a) Molecular dosimetry of endogenous and ethylene oxide-induced
 N7-(2-hydroxyethyl) guanine formation in tissues of rodents. Carcinogenesis 20(9):1787–1792.
- 24 Wu, KY; Scheller, N; Ranasinghe, A; et al. (1999b) A gas chromatography/electron capture/negative chemical
- 25 ionization high-resolution mass spectrometry method for analysis of endogenous and exogenous
- N7-(2-hydroxyethyl)guanine in rodents and its potential for human biological monitoring. Chem Res Toxicol
 12(8):722-729.
- Yager, JW; Benz, RD. (1982) Sister chromatid exchanges induced in rabbit lymphocytes by ethylene oxide after
 inhalation exposure. Environ Mutagen 4(2):121–134.
- Yong, LC; Schulte, PA; Kao, CY; et al. (2007) DNA adducts in granulocytes of hospital workers exposed to
 ethylene oxide. Am J Ind Med 50(4):293–302.
- Zhao, C; Tyndyk, M; Eide, I; et al. (1999) Endogenous and background DNA adducts by methylating and
 2-hydroxyethylating agents. Mutat Res 424(1-2):117–125.
- 34 Zharlyganova, D; Harada, H; Harada, Y; et al. (2008) High frequency of AML1/RUNX1 point mutations in
- radiation-associated myelodysplastic syndrome around Semipalatinsk nuclear test site. J Radiat Res (Tokyo)
 49(5):549-555.
- 37

1 APPENDIX J. 2 SUMMARY OF MAJOR NEW STUDIES SINCE THE LITERATURE CUTOFF DATE

3 The cutoff date for literature inclusion into this carcinogenicity assessment was 30 June 4 2010. A systematic literature search was conducted for the time frame from January 2006 to 5 May 2013 to ensure that no major studies were missed from the time of the first external review 6 draft in 2006 until the cutoff date and to determine if any significant new studies had been 7 published since the cutoff date that might alter the findings of the assessment. No studies were 8 identified that would impact the assessment's major conclusions. Nonetheless, two new studies 9 of high pertinence to the assessment have been published since the cutoff date for literature 10 inclusion, and these studies are reviewed briefly in this Appendix for transparency and completeness. The Appendix first provides a description of the systematic literature search that 11 12 was conducted to identify relevant new studies and then provides the reviews of the two major 13 new studies.

14

15 J.1. SYSTEMATIC LITERATURE SEARCH

A systematic literature search was conducted in May 2013, covering the time frame from January 2006 to May 2013. The search was conducted using the LitSearch tool in EPA's HERO database, and the following three literature databases were searched: PubMed, Web of Science, and ToxNet. The search terms involved Ethylene Oxide AND (carcinogenicity OR cancer OR mutagenicity OR mutation OR genotoxicity).

The search identified 372 references, of which 56 were determined to be potentially relevant⁹. The disposition of the 56 potentially relevant references is summarized in Table J-1. In brief, for the purposes of this carcinogenicity assessment, 26 references that were primarily discussions of methods studies or exposure studies¹⁰ or were reviews or other secondary source material were not generally considered further. The remaining 30 references were given further consideration to see if they represented major new studies. No new studies were identified that

⁹In this first part of the screening, any references of potential relevance to the carcinogenicity assessment of ethylene oxide were identified. References that pertained to other things and that were inadvertently captured in the literature search were excluded. For example, in an alphabetical listing of the 372 references by first author, the first reference is: Agarwal, A., Unfer, R. and Mallapragada, S. K. (2007), Investigation of in vitro biocompatibility of novel pentablock copolymers for gene delivery. J. Biomed. Mater. Res., 81A: 24–39. This reference discusses some copolymers of various chemicals, including poly(ethylene oxide), synthesized as vectors for gene delivery and tested in some cancer cell lines; this reference was not relevant to the assessment and was excluded from further consideration.

¹⁰This refers to general exposure studies; exposure studies related to any of the epidemiological studies of EtO would be considered further.

- 1 would impact the assessment's major conclusions. Two references were identified as highly
- 2 pertinent studies, and these are reviewed briefly in Section J.2 of this Appendix.
- 3 4 5 6

Table J-1.	Disposition of 56 new references identified as potentially relevant
------------	---

Category	References ^a	Disposition
Exposure studies	Davis et al. (2006) Lin et al. (2007) Tateo and Bononi (2006)	Not considered further.
Methods studies	Ahn and Shin (2006) Tretyakova et al. (2012) Wu et al. (2011)	Not considered further.
Reviews or other secondary source material	Brown et al. (2012) Butterworth and Chapman (2007) Chan et al. (2006) Farmer and Singh (2008) Hoenerhoff et al. (2009) Jarabek et al. (2009) Keshava et al. (2006a) Keshava et al. (2006b) (Manservigi et al., 2010) McCarthy et al. (2009) Mosavi-Jarrahi et al. (2009) Okada et al. (2012) Smith-Bindman (2012) Snedeker (2006) Steinhausen et al. (2011) Won (2010) WHO, 2008 (same as IARC, 2008)	Not considered further.
	IARC (2008)	Already cited in the assessment.
Cancer studies	Kiran et al. (2010) Mikoczy et al. (2011)	Reviewed in Section J.2.
	Swaen et al. (2009)	Already cited in the assessment.
	van Balen et al. (2006)	Not considered further. Primarily a study of risks to farmers. EtO left out of analysis because too few study subjects were exposed to it. Subjects were part of the EPILYMPH study analyzed by Kiran et al. (2010) (see Section J.2.1).
	Fondelli et al. (2007)	Not considered further. No EtO-specific results.
	Kim et al. (2011)	Not considered further. Case report study of 7 cases of malignant lymphohematopoietic disorders found in 2 semiconductor plants. Various carcinogens suspected of causing lymphohematopoietic cancers were investigated; EtO not found in cases' processes.

J-2

Category	References ^a	Disposition
Genotoxicity/ Mutagenicity studies	Donner et al. (2010) Godderis et al. (2006) Hong et al. (2007) Houle et al. (2006) Marsden et al. (2007) Marsden et al. (2009) Tompkins et al. (2008) Yong et al. (2007)	Already cited in the assessment.
	Tompa et al. (2006) Tompkins et al. (2009)	Citations added to the assessment.
	Huang et al. (2011)	Not considered a major new study. Largely an exposure study; examined use of urinary N7-HEG as a biomarker of EtO exposure in EtO-exposed workers and smokers in Taiwan.
	Lindberg et al. (2010)	Not considered further. This study examined utility of a micronucleus assay for detecting genotoxic damage in mouse alveolar Type II and Clara cells—EtO was used as a test agent but at a high concentration (>3 times higher than the highest exposure concentration used in the mouse cancer bioassay).
	Mazon et al. (2009) Mazon et al. (2010)	Not considered further. Focused on a specific repair gene product in E. Coli.
	Parsons et al. (2012) Tompkins et al. (2006)	Not considered further. Published abstracts, not full papers.
Other	Sielken and Valdez-Flores (2009) Sielken and Valdez Flores (2009) Swenberg et al. (2008) Valdez-Flores et al. (2010)	Already cited in the assessment.
	Haufroid et al. (2007)	Citation added.
	Kensler et al. (2012)	Not relevant; focused on chemoprevention.
	Steenland et al. (2011)	Not considered further. Peer-reviewed publication of analyses already in the assessment.
	Valdez-Flores et al. (2011)	Not considered further. Quantitative risk assessment for occupational exposures—issues pertaining to the Valdez-Flores et al. risk assessment approach are already addressed in the assessment in discussions of the 2010 paper by the same authors (Valdez-Flores et al., 2010).
	Swenberg et al. (2011)	Not considered further. Largely a review; focused on implications of endogenous adducts for risk assessment—this issue is already addressed in the assessment (e.g., in the responses to SAB comments in Appendix H).

Table J-1. Disposition of 56 new references identified as potentially relevant (continued)

Table J-1. Disposition of 56 new references identified as potentially relevant(continued)

EtO: ethylene oxide.

N7-HEG: N7-(2-hydroxyethyl)guanine.

^aFull citations for references cited elsewhere in the assessment are provided in the Reference section of the assessment; full citations for references appearing only in this appendix are provided in Section J.3 of the appendix.

J.2. REVIEWS OF MAJOR NEW STUDIES PUBLISHED SINCE THE LITERATURE CUTOFF DATE

13 As discussed in Section J.1, a systematic literature search was conducted in part to 14 determine whether any significant new studies had been published since 30 June 2010, the cutoff 15 date for literature inclusion into this assessment. No new studies were identified that would 16 impact the assessment's major conclusions. Nonetheless, two studies of high pertinence to the 17 assessment have been published since the cutoff date for literature inclusion. The two studies are 18 epidemiology studies of occupational exposure to ethylene oxide (EtO). These studies are 19 reviewed briefly here for transparency and completeness, and key features of the studies are 20 summarized in Table J-2.

21

1

2

9 10

22 J.2.1. Kiran et al. (2010)

23 Kiran et al. (2010) investigated occupational exposure to EtO in a population-based case-24 control study of lymphoma in six European countries (the "EPILYMPH study"). Cases 25 (n = 2,347) were consecutive adult patients with a first diagnosis of lymphoma, classified under the 2001 WHO lymphoma classification system, in 1998–2004 at 22 centers in the six countries. 26 27 Controls from Germany and Italy were randomly selected from the general population, matched 28 on sex, 5-year age group, and residence area. Controls from the Czech Republic, France, 29 Ireland, and Spain were matched hospital controls with diagnoses other than cancer, infectious 30 diseases, and immunodeficient diseases (total controls = 2,463). Participation rates were 88% in 31 cases, 81% in hospital controls, and 52% in population controls. All study subjects were 32 interviewed in person using the same structured questionnaire, which included questions on 33 sociodemographic factors, lifestyle, health history, and complete work history (including all 34 full-time jobs held for ≥ 1 year). For each job, information was collected on type of industry, 35 tasks performed, machines used, and exposure to 35 specific agents (or groups of agents) of 36 interest, including EtO. Supplemental questionnaire modules for specific occupations were used 37 to get additional details on jobs and exposures of interest.

This document is a draft for review purposes only and does not constitute Agency policy.

J-4

1 Exposure was evaluated in each center by specially trained industrial hygienists who 2 reviewed all the questionnaires and assessed frequency and intensity of exposure to each agent 3 on a 4-point scale (unexposed and low, medium and high exposures) as well as confidence in the 4 assessment (low, medium, or high). Most of the exposed cases and controls were classified with 5 medium or high confidence, although a greater proportion of cases than controls were thus 6 classified (23/31 versus 15/27). Because of the low prevalence (1.2%) of EtO exposure in the 7 study, the medium and high categories of exposure frequency and intensity were combined in the 8 statistical analyses. A cumulative exposure score for EtO was also developed for each study 9 subject, integrating duration, frequency, and intensity of exposure; these scores were then 10 categorized as above or below the median score among exposed subjects.

11 Risk was assessed for all lymphoma, B-cell lymphoma (which represented 80% of all the 12 lymphoma cases), and the most common subtypes of B-cell lymphoma. The OR was calculated 13 using unconditional logistic regression, adjusting for age, sex, and center. Including education, 14 farm work, and exposure to solvents in the model, reportedly did not change the risk estimates 15 (results not shown). Linear trends for the exposure metrics were calculated using the Wald test 16 for trend.

17 Because of the low prevalence of EtO exposure in the study (1.2%), the number of 18 exposed cases and controls was limited (31 and 27, respectively), so the study power was not 19 large, especially for analyses of lymphoma subtypes. Results for all lymphoma for ever exposed 20 and for the highest exposure category for each of the different exposure metrics are presented in 21 Table J-2. Increased risks were observed for ever exposed and for the highest exposure category for each of the exposure metrics, and the OR for medium or high frequency of exposure was 22 23 statistically significant (4.3; 95% CI 1.4, 13.0). However, none of the trend tests was statistically 24 significant. The overall association appeared to be stronger using hospital controls; however, 25 when considering only subjects whose EtO exposures were assessed with medium or high 26 confidence, the increased ORs were similar using either hospital or population controls. Results 27 were similar when only B-cell lymphoma, which represented the majority of all lymphomas, was 28 evaluated. The strongest associations were observed for chronic lymphocytic leukemia, and 29 *p*-values for trend were ≤ 0.051 for all the exposure metrics for that lymphoma subtype. The 30 investigators note that while random variation related to the low prevalence might account for 31 some positive results, their combined probability test (Fischer method) indicated that the chance 32 probability of an upward trend in chronic lymphocytic leukemia across the four metrics assumed 33 to be independent (confidence, frequency, intensity, and duration) was 0.003. 34 In conclusion, this study adds further support to the weight-of-evidence finding obtained

35 in Chapter 3 of strong, but less than conclusive, evidence of a causal association between EtO

This document is a draft for review purposes only and does not constitute Agency policy.

J-5

exposure and lymphohematopoietic cancers in humans. Because only categorical exposures
 were assessed, no quantitative risk estimates can be derived from this study.

3

4 J.2.2. Mikoczy et al. (2011)

5 This study is an update of the Hagmar et al. (1991) and Hagmar et al. (1995) studies 6 discussed in Section 3.1 of the assessment and in Section A.2.11 of Appendix A. The first 7 update (Hagmar et al., 1995) had a median follow-up time of only 11.8 years; this update extends 8 the follow-up period through 2006, providing an additional 16 years of follow-up. The cohort consists of 2,171 (1,309 females and 862 males¹¹), employed for at least 1 year prior to 1986, at 9 10 two Swedish facilities that sterilized medical equipment using EtO (Plant A sterilization 11 operations ran from 1970 to 1994; Plant B sterilization operations ran from 1964 to 2002). Vital 12 status and emigration data at the end of follow-up were obtained from the Swedish population 13 registry; cause of death for 1972–2006 was obtained from Statistics Sweden; and malignant 14 tumor data for 1972–2006 were obtained from the Swedish Cancer Registry. At the end of 15 follow-up, the mean age of the cohort was 56 years and the cohort had contributed 16 58,305 person-years of risk; 171 cohort members had died (7.9%) and 126 (5.8%) had emigrated 17 and were of unknown vital status. Mean duration of employment in the cohort was 6.3 years. 18 In the original study (Hagmar et al., 1991), individual cumulative exposure estimates 19 were derived based on job-exposure matrices for each plant and exposure level estimates 20 determined up to 1986. While exposure levels were high in the early years of the operations 21 (e.g., peak levels of 75 ppm in 1964 in Plant B and exposure levels up to 40 ppm in 1970 in 22 Plant A), 8-hour TWA levels had decreased to below 1 ppm by 1985 (See Hagmar et al., 1991, 23 and Section A.2.11 of Appendix A for more details on the original exposure assessment). For 24 this update, worker histories for the 1,303 workers who were still employed at the two plants at 25 the end of the original study (1986) were extended up until the cessation of sterilization 26 operations in the plants, and exposure estimates for the follow-up period were determined from 27 yearly statutory industrial hygiene measurements of EtO from 1986 on. Because of the low 28 exposure levels after 1985, the impact of updating the cumulative exposure estimates was low (the largest impact was reportedly on the 90th percentile, which changed from 1.17 to 1.29 ppm 29 30 \times years). The mean and median cumulative exposures for the 2,020 cohort members for whom 31 job titles were available were 2.92 ppm \times years and 0.13 ppm \times years, respectively. 32 Standardized mortality and incidence ratios (SMRs and SIRs) were obtained by 33 comparing the number of deaths or incident cases observed to the number expected based on

¹¹Without explanation, there is one additional male in the update; the 1991 and 1995 papers both reported 2,170 workers, including 861 males, in the cohort (Hagmar et al., 1995; 1991).

This document is a draft for review purposes only and does not constitute Agency policy.

1 cause-, calendar year-, sex-, and 5-year age group-specific rates in the Swedish population 2 (external referents). For cancer incidence (but not mortality), internal analyses were also 3 conducted using Poisson regression analyses, adjusted for age group and calendar period, with 4 no induction (latency) period. In the internal analyses, incidence rate ratios were calculated by 5 comparing the incidence rates for the two highest cumulative exposure quartiles with that for the 6 50% of workers with cumulative exposures below the median of 0.13 ppm \times years (internal 7 referents). Internal analyses are generally preferred over external analyses because the referents 8 are from the same cohort as the exposed subjects, potentially reducing confounding as well as the 9 healthy worker effect, which can mask an increase in risk; however, in this study, some of the 10 advantages of internal analyses may be mitigated by the absence of an unexposed referent group, 11 which could itself dampen relative risk estimates.

12 Results for cancer mortality and incidence for the cancer types of interest (i.e.,

13 lymphohematopoietic cancers and female breast cancer) are summarized in Table J-2. For

14 lymphohematopoietic cancers, nonsignificant increases in SMRs and SIRs were reported. For

15 the incidence data, the internal analysis shows no exposure-related association for

16 lymphohematopoietic cancers, although this analysis is relatively uninformative for these

17 cancers, given the small number of cases (five cases in each of the two highest exposure quartiles

18 and seven cases in the referent group of workers with cumulative exposures below the median),

19 the generally low estimated cumulative exposures, and the absence of an unexposed referent

20 group. It should also be noted that data were not reported or analyzed for the subgrouping of

21 "lymphoid" cancers.

For breast cancer mortality (results not shown), a "slight but nonsignificant decrease" in the SMR was reported. With a 15-year induction period included, the SMR for breast cancer was reportedly "somewhat increased." For workers with cumulative exposures above the median, with a 15-year induction period, a "higher than expected" SMR, which was not statistically significant, was reported.

For breast cancer incidence (41 incident cases), SIRs were nonsignificantly decreased, both with and without a 15-year induction period. Internal analyses resulted in statistically significant increases in the incidence rate ratios for the two highest cumulative exposure quartiles as compared to the 50% of workers with cumulative exposures below the median (see Table J-2), despite having a low-exposed rather than an unexposed referent group.

In conclusion, the nonsignificant increases in SMRs and SIRs for lymphohematopoietic cancers reported in this study are consistent with an increase in lymphohematopoietic cancer risk but, overall, the study is underpowered for the analysis of lymphohematopoietic cancers and contributes little to the weight of evidence for these cancers. For breast cancer incidence,

1 however, the statistically significant exposure-related increases in breast cancer incidence in 2 internal analyses add support to the weight-of-evidence finding obtained in Chapter 3 of strong, 3 but less than conclusive, evidence of a causal association between EtO exposure and female 4 breast cancer in humans. The cumulative exposure estimates for this study were very low 5 compared to those in other studies. For example, in the Swaen et al. (2009) study of the UCC 6 cohort of male EtO production workers, the average cumulative exposure was 67.16 ppm 7 \times years. In the more comparable NIOSH cohort of sterilization workers, cumulative exposures at 8 the end of follow-up for the full cohort, which included workers with <1 year of employment, 9 had a mean of 27 ppm \times years and median of 6 ppm \times years (see Appendix D, Section D.1), and 10 in particular, the mean cumulative exposure at the end of follow-up in the breast cancer 11 incidence study cohort, which only included workers with ≥ 1 year of employment, was 37.0 ppm 12 \times years. Yet, the breast cancer incidence RRs for the categorical exposure groups reported in 13 Steenland et al. (2003) for the NIOSH breast cancer incidence study were lower than those 14 observed in the Mikoczy et al. (2011) study. 15 Thus, if unit risk estimates were derived based on the Mikoczy et al. (2011) study, they 16 would be higher than the estimates calculated from the NIOSH study. However, no such 17 estimates were derived based on the Mikoczy et al. (2011) study because, in comparison to the 18 NIOSH study, the Mikoczy et al. (2011) study had limitations that would have made the

19 estimates more uncertain than those based on the NIOSH study. In particular, there was greater

20 uncertainty about the exposure estimates [e.g., measurement data were available only from 1973

21 for one plant and 1975 for the other; for earlier exposures, estimates were constructed taking into

- 22 account information on changes in production methods and environmental controls, subjective
- 23 memories, and time trends (Hagmar et al., 1991), but this is a less sophisticated approach than
- that of the NIOSH exposure assessment, which used a detailed, validated regression model];
- 25 there were many fewer breast cancer cases (41 incident cases vs. 319 cases in NIOSH's full
- 26 incidence study cohort and 233 in the subcohort with interviews); and there was no information
- 27 on potential breast cancer risk factors, as was available for the NIOSH subcohort.
- 28

Thi	Population/ industry	Number of subjects	Extent of exposure to ethylene oxide	Health outco	omes	Other chemicals to which subjects were potentially exposed	Limitations
ocument is a draft for review pu	Population-based case-control study involving 22 centers in 6 European countries (Czech Republic, France, Germany, Italy, Ireland, Spain) [EPILYMPH study] Kiran et al. (2010)	2,347 cases (1,314 male, 1,033 female); 2,463 controls (1,321 male, 1,142 female), matched on sex, age group, and residence area	1.2% of study population defined as ever-exposed (31 cases, 27 controls)	All lymphoma (# cases/# controls) Unexposed (2,316/2,436) [referent category] Ever exposed (31/27) Confidence in exposure cl low (8/12) med or high (23/15) <i>p</i> -trend = 0.242 Exposure frequency (no. v 1-5% (16/23) >5% (15/4) <i>p</i> -trend = 0.107 Exposure intensity (ppm) ≤ 0.5 (15/19) >0.5 (16/8) <i>p</i> -trend = 0.197 Duration (years) ≤ 10 (18/16) >10 (13/11) <i>p</i> -trend = 0.441 Cumulative exposure scor \leq median (13/16) >median (18/11) <i>p</i> -trend = 0.246	1.3 (0.7, 2.1) assification 0.8 (0.3, 1.9) 1.6 (0.8, 3.1) working hr) 0.8 (0.4, 1.4) 4.3 (1.4, 13.0) 0.9 (0.4, 1.7) 2.2 (0.9, 5.1) 1.2 (0.6, 2.4) 1.3 (0.6, 3.0)	Would vary by individual participant since not industry- based study; however, inclusion of farm work and occupational exposure to solvents in the regression model did not affect the risk estimates	Low exposure prevalence in study population, so small numbers of exposed cases and controls Lymphoma subtype analyses, in particular, limited by small numbers Participation rate only 52% in population controls, but the positive association was observed across centers with different control types

7/2013

Population/ industryNumber of subjectsExtent of exposure to ethylene oxideHealth outcomes	Other chemicals to which subjects were potentially exposedLimitations
Two plants that produced disposable medical equipment, Sweden2,171 (862 men, 1,309 women)Exposure levels were up to 75 ppm in 1964 in Plant B and up to 40 ppm in 1970 in Plant A.Lymphohematopoietic cancers.Mikoczy et al. (2011)Mikoczy et al. (2011)By 1985, levels had dropped to below 1 ppm.Mortality (results not show) with a 15-yr induction period, t increases were lowered; with a induction period and restriction with cumulative exposure estin titles were available, the median was 0.13 ppm × years; the 75 th percentile was 0.22 ppm × years; and the 90 th percentile was 1.29 ppm × years.Nonsignificant increases of deal leukemia and lymphoma were i with a 15-yr induction period, t increases were lowered; with a induction period and restriction with cumulative exposure estin the median; nonsignificant incr leukemia deaths were reported16 years2.21 ppm × years; and the 90 th percentile was 1.29 ppm × years.Incidence: Cancer (ICD-7) [cases] SIR (6 All lymphohematopoietic (200-209) [18] 1.25 (0 NHL (200+202) [9] 1.44 (0 Leukemia (204-205) [5] 1.40 (0	Fluorochlorocarbons, methyl formate (1:1 mixture with EtO)Still a youthful cohort (mean age 56 years), with small numbers of events for the study of the incidence and mortality of specific cancer types— 203 total cancer cases (9.4%) and 171 total deaths (7.9%)25% CI) 0.74, 1.98) 0.66, 2.73) 0.45, 3.26)Estimated cumulative exposure to those in the lower 50% of

7/2013

Population/ industry	Number of subjects	Extent of exposure to ethylene oxide	Health outcomes	Other chemicals to which subjects were potentially exposed	Limitations
			(continued from previous page)		
			Female breast cancer:		
			mortality (results not shown):		
			Slight but nonsignificant decrease in the SMR was reported. With a 15-yr induction period included, the SMR for breast cancer was "somewhat increased." For workers with cumulative exposures above the median, with a 15-yr induction period, a "higher than expected" SMR, which was not statistically significant, was reported.		
			<i>Incidence:</i> 41 female breast cancer cases vs. 50.9 expected (ICD-7 170); SIR = 0.81 (95% CI = 0.58, 1.09)		
			Internal analysis: Cum exp gpIIR (95% CI) $ppm \times yrs [cases]$ IIR (95% CI) $0-0.13 [10]$ 1.00 $0.14-0.21 [14]$ 2.76 (1.20, 6.33) $\geq 0.22 [17]$ 3.55 (1.58, 7.93)		

1 J.3. REFERENCES

- 2 Full citations for references cited elsewhere in the assessment are provided in the
- 3 Reference section of the assessment; full citations for references appearing only in this appendix

4 are provided below.

- 5
- 6 Ahn, H; Shin, H. (2006) Determination of ethylene oxide-hemoglobin adduct by silylation and gas chromatography-7 electron impact-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 843(2): 202–208.
- Brown, T; Rushton, L; the British Occupational Cancer Burden Study Group. (2012) Occupational cancer in Britain
 Haematopoietic malignancies: leukaemia, multiple myeloma, non-Hodgkins lymphoma. Br J Cancer 107: S41–S48.
- Butterworth, BE; Chapman, JR. (2007) Exposure of hematopoietic stem cells to ethylene oxide during processing
 represents a potential carcinogenic risk for transplant recipients. Regul Toxicol Pharmacol 49(3): 149–153.
- Chan, C; Shie, R; Chang, T. (2006) Workers' exposures and potential health risks to air toxics in a petrochemical
 complex assessed by improved methodology. Int Arch Occup Environ Health 79(2): 135–142.
- Davis, FG; Erdal, S; Williams, L; Bigner, D. (2006) Work exposures to animal neurocarcinogens. Int J Occup
 Environ Health 12(1): 16–23.
- 16 Farmer, PB; Singh, R. (2008) Use of DNA adducts to identify human health risk from exposure to hazardous
- environmental pollutants: the increasing role of mass spectrometry in assessing biologically effective doses of
 genotoxic carcinogens [Review]. Mutat Res 659(1-2): 68–76.
- 19 Fondelli, MC; Costantini, AS; Ercolanelli, M; et al. (2007) Exposure to carcinogens and mortality in a cohort of
- restoration workers of water-damaged library materials following the River Arno flooding in Florence, 4 November
 1966. Med Lav 98(5): 422–431.
- Grosse, Y; Baan, R; Straif, K; et al. (2007) Carcinogenicity of 1,3-butadiene, ethylene oxide, vinyl chloride, vinyl
 fluoride, and vinyl bromide. Lancet Oncol 8(8): 679–680.
- Hoenerhoff, MJ; Hong, HH; Ton, TV; et al. (2009) A review of the molecular mechanisms of chemically induced
 neoplasia in rat and mouse models in National Toxicology Program bioassays and their relevance to human cancer
 [Review]. Toxicol Pathol 37(7): 835–848.
- Huang, CC; Wu, CF; Shih, WC; et al. (2011) Comparative analysis of urinary N7-(2-hydroxyethyl)guanine for
 ethylene oxide- and non-exposed workers. Toxicol Lett 202(3): 237–243.
- Jarabek, AM; Pottenger, LH; Andrews, LS; et al. (2009) Creating context for the use of DNA adduct data in cancer
 risk assessment: I. Data organization [Review]. Crit Rev Toxicol 39(8): 659–678.
- 31 Kensler, TW; Ng, D; Carmella, SG; et al. (2012) Modulation of the metabolism of airborne pollutants by
- glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis 33(1):
 101-107.
- Keshava, N; Jinot, J; Sonawane, B. (2006a) An evaluation of mutagenic mode of action for carcinogenicity:
 ethylene oxide. Environ Mol Mutagen 47(6): 442 [abstract].
- Keshava, N; Woodall, GM; Rice, S; et al. (2006b) An evaluation of the mutagenic mode of action for four
 environmental carcinogens. Toxicol Sci 90(1–S).
- Kim, EA; Lee, HE; Ryu, HW; et al. (2011) Cases series of malignant lymphohematopoietic disorder in korean
 semiconductor industry. Saf Health Work 2(2): 122–134.

- Kiran, S; Cocco, P; Mannetje, A; et al. (2010) Occupational exposure to ethylene oxide and risk of lymphoma.
 Epidemiology 21(6):905–910.
- Lin, JS; Chuang, KT; Huang, MS; Wei, KM. (2007) Emission of ethylene oxide during frying of foods in soybean
 oil. Food Chem Toxicol 45(4): 568–574.
- Lindberg, HK; Falck, GC; Catalán, J; et al. (2010) Micronucleus assay for mouse alveolar Type II and Clara cells.
 Environ Mol Mutagen 51(2): 164–172.
- Manservigi, M; Tibaldi, E; Soffritti, M. (2010) Toxic and carcinogenic effects of ethylene and its ethylene oxyde
 metabolite. Eur J Oncol 15(1): 5–23.
- 9 Mazon, G; Philippin, G; Cadet, J; et al. (2009) The alkyltransferase-like ybaZ gene product enhances nucleotide 10 excision repair of O(6)-alkylguanine adducts in E. coli. DNA Repair 8(6): 697–703.
- Mazon, G; Philippin, G; Cadet, J; et al. (2010) Alkyltransferase-like protein (eATL) prevents mismatch repair mediated toxicity induced by O6-alkylguanine adducts in Escherichia coli. PNAS 107(42): 18050–18055.
- 13 McCarthy, MC; O'Brien, TE; Charrier, JG; Hafner, HR. (2009) Characterization of the chronic risk and hazard of
- hazardous air pollutants in the United States using ambient monitoring data. Environ Health Perspect 117(5):
 790–796.
- Mikoczy, Z; Tinnerberg, H; Björk, J; Albin, M. (2011) Cancer incidence and mortality in Swedish sterilant workers
 exposed to ethylene oxide: updated cohort study findings 1972–2006. Int J Environ Res Public Health
- 18 8(6):2009–2019.
- Mosavi-Jarrahi, AM; Mohagheghi, MA; Kalaghchi, B; et al. (2009) Estimating the incidence of leukemia
 attributable to occupational exposure in Iran. Asian Pac J Cancer Prev 10(1): 67–70.
- Okada, Y; Nakagoshi, A; Tsurukawa, M; et al. (2012) Environmental risk assessment and concentration trend of
 atmospheric volatile organic compounds in Hyogo Prefecture, Japan. Environ Sci Pollut Res Int 19(1): 201–213.
- Parsons, BL; Manjanatha, MG; Myers, MB; et al. (2012) Induction of cII and K-Ras mutation in lung DNA of Big
 Blue mice exposed to ethylene oxide by inhalation. Environ Mol Mutagen 53: S62 [abstract].
- Smith-Bindman, R. (2012) Environmental causes of breast cancer and radiation from medical imaging: findings
 from the Institute of Medicine report. Arch Intern Med 172(13): 1023–1027.
- Snedeker, SM. (2006) Chemical exposures in the workplace: effect on breast cancer risk among women [Review].
 AAOHN 54(6): 270–279.
- Steenland, K; Seals, R; Klein, M; et al. (2011) Risk estimation with epidemiologic data when response attenuates at
 high-exposure levels. Environ Health Perspect 119(6): 831–837.
- 31 Steinhausen, M; Van Gelder, R; Gabriel, S. (2012) Work-related exposure to carcinogenic, mutagenic and
- reprotoxic substances in Germany Part 2: Substances with exposure-risk relationships according to BekGS 910.
 Gefahrstoffe Reinhaltung der Luft (Air Quality Control) 72(9): 347–358.
- Swenberg, JA; Lu, K; Moeller, BC; et al. (2011) Endogenous versus exogenous DNA adducts: their role in
 carcinogenesis, epidemiology, and risk assessment [Review]. Toxicol Sci 120 Suppl 1: S130–S145.
- Tateo, F; Bononi, M. (2006) Determination of ethylene chlorohydrin as marker of spices fumigation with ethylene
 oxide. J Food Compos Anal 19(1): 83–87.
- Tompkins, EM; Jones, DJL; McLuckie, KIE; et al. (2006) Weak mutagenicity of DNA adducts derived from
 ethylene oxide exposure. Mutagenesis 21(4): 292 [abstract].

- Tretyakova, N; Goggin, M; Sangaraju, D; Janis, G. (2012) Quantitation of DNA adducts by stable Isotope dilution
 mass spectrometry. Chem Res Toxicol 25(10): 2007–2035.
- Valdez-Flores, C; Sielken, RL; Teta, MJ. (2011) Quantitative cancer risk assessment for ethylene oxide inhalation in
 occupational settings. Arch Toxicol 85(10): 1189–1193.
- van Balen, E; Font, R; Cavalle, N; et al. (2006) Exposure to non-arsenic pesticides is associated with lymphoma
 among farmers in Spain. Occup Environ Med 63(10): 663–668.
- Weiderpass, E; Meo, M; Vainio, H. (2011) Risk factors for breast cancer, including occupational exposures. Saf
 Health Work 2(1): 1–8.
- Won, JU. (2010) Health effects of chemicals used in hospitals among healthcare workers. J Korean Med Assoc
 53(6): 474-482.
- 11 Wu, KY; Chiang, SY; Shih, WC; et al. (2011) The application of mass spectrometry in molecular dosimetry:
- 12 ethylene oxide as an example. Mass Spectrom Rev 30(5):733-756.
- 13

APPENDIX K. DOCUMENTATION OF IMPLEMENTATIONS OF THE 2011 NATIONAL RESEARCH COUNCIL RECOMMENDATIONS

4	Background: On December 23, 2011, The Consolidated Appropriations Act, 2012, was
5	signed into law. ¹² The report language included direction to EPA for the Integrated Risk
6	Information System (IRIS) Program related to recommendations provided by the National
7	Research Council (NRC) in its review of EPA's draft IRIS assessment of formaldehyde. ¹³ The
8	report language included the following:
9	
10	
11	The Agency shall incorporate, as appropriate, based on chemical-specific data sets
12	and biological effects, the recommendations of Chapter 7 of the National
13 14	Research Council's Review of the Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde into the IRIS processFor draft assessments
14	released in fiscal year 2012, the Agency shall include documentation describing
16	how the Chapter 7 recommendations of the National Academy of Sciences (NAS)
17	have been implemented or addressed, including an explanation for why certain
18	recommendations were not incorporated.
19	
20 21	The NRC's recommendations, provided in Chapter 7 of the review report, offered
21	
	suggestions to EPA for improving the development of IRIS assessments. Consistent with the
23	direction provided by Congress, documentation of how the recommendations from Chapter 7 of
24	the NRC report have been implemented in this assessment is provided in the tables below.
25	Where necessary, the documentation includes an explanation for why certain recommendations
26	were not incorporated.
27	The IRIS Program's implementation of the NRC recommendations is following a phased
28	approach that is consistent with the NRC's "Roadmap for Revision" as described in Chapter 7 of
29	the formaldehyde review report. The NRC stated that, "the committee recognizes that the
30	changes suggested would involve a multiyear process and extensive effort by the staff at the
31	National Center for Environmental Assessment and input and review by the EPA Science
32	Advisory Board and others."
33	The IRIS ethylene oxide carcinogenicity assessment is in Phase 1 of implementation,
34	which focuses on a subset of the short-term recommendations, such as editing and streamlining

¹²Pub. L. No. 112–74, Consolidated Appropriations Act, 2012.

1 2

3

¹³National Research Council, (2011). Review of the Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde.

This document is a draft for review purposes only and does not constitute Agency policy.

1 documents, increasing transparency and clarity, and using more tables, figures, and appendices to

- 2 present information and data in assessments. Phase 1 also focuses on assessments near the end
- 3 of the development process and close to final posting. Chemical assessments in Phase 2 of the
- 4 implementation will address all of the short-term recommendations from Table K-1. Chemical
- 5 assessments in Phase 3 of implementation will incorporate the longer-term recommendations
- 6 made by the NRC as outlined below in Table K-2. On May 16, 2012, EPA announced¹⁴ that as a
- 7 part of a review of the IRIS Program's assessment development process, the NRC will also
- 8 review current methods for weight-of-evidence analyses and recommend approaches for
- 9 weighing scientific evidence for chemical hazard identification. This effort is included in
- 10 Phase 3 of EPA's implementation plan.
- 11
- 12
- 13

14 15

Table K-1. The EPA's implementation of the National Research Council'srecommendations in the ethylene oxide (EtO) carcinogenicity assessment

NRC recommendations that the EPA is implementing in the short term	Implementation in the EtO carcinogenicity assessment
General recommendations for completing the IRIS for all IRIS assessments (p. 152)	formaldehyde assessment that the EPA will adopt
1. To enhance the clarity of the document, the draft IRIS assessment needs rigorous editing to reduce the volume of text substantially and address redundancies and inconsistencies. Long descriptions of particular studies should be replaced with informative evidence tables. When study details are appropriate, they could be provided in appendices.	Partially Implemented. EtO is a post-peer review, Phase 1 chemical; as such, implementation has focused on a subset of the short-term recommendations, such as editing and streamlining, increasing transparency and clarity, and using more tables, figures, and appendices to present information and data. For example, the main body of the EtO Assessment contains only abbreviated study summaries and study summary tables. The longer descriptions of the epidemiology studies and the genotoxicity studies are contained in appendices (Appendices A and C, respectively), along with a detailed summary table of the epidemiology studies in Appendix A. The main text of the hazard identification chapter (see Chapter 3) is comparatively streamlined.

16

¹⁴EPA Announces NAS' Review of IRIS Assessment Development Process (www.epa.gov/iris). This document is a draft for review purposes only and does not constitute Agency policy.

Table K-1. The EPA's implementation of the National Research Council's
recommendations in the ethylene oxide (EtO) carcinogenicity assessment
(continued)

NRC recommendations that the EPA is implementing in the short term	Implementation in the EtO carcinogenicity assessment
2. Chapter 1 needs to be expanded to describe more fully the methods of the assessment, including a description of search strategies used to identify studies with the exclusion and inclusion criteria articulated and a better description of the outcomes of the searches and clear descriptions of the weight-of-evidence approaches used for the various noncancer outcomes. The committee emphasizes that it is not recommending the addition of long descriptions of the EPA guidelines to the introduction, but rather clear concise statements of criteria used to exclude, include, and advance studies for derivation of the reference concentrations (RfCs) and unit risk estimates.	Partially Implemented. The EPA's literature search strategy is described briefly in Chapter 2 of the EtO Assessment. To update the Assessment, a systematic literature search was done covering the time span from 2006 (the year of the 1 st external review draft) to May 2013; this search is described in detail in Appendix J. In addition, the text has been expanded to include more description of the considerations made in evaluating the epidemiology studies (p. 3-1) and in selecting the study that formed the basis for the quantitative cancer risk estimates (p. 4-1–4-3).
3. Standardized evidence tables for all health outcomes need to be developed. If there were appropriates tables, long text descriptions of studies could be moved to an appendix or deleted.	Partially Implemented. This assessment was largely finalized before the release of the NRC recommendations; thus, the tables herein may not be consistent with current standardizations. However, the EtO Assessment contains a detailed summary table of the epidemiology studies in Appendix A (see Table A-5) along with the longer text study descriptions. Less detailed tables of the results are presented in the main text (see Tables 3-1 and 3-2).
4. All critical studies need to be thoroughly evaluated with standardized approaches that are clearly formulated and based on the type of research: for example, observational epidemiologic or animal bioassays. The findings of the reviews might be presented in tables to ensure transparency.	Partially Implemented. All critical studies were thoroughly evaluated in Chapter 3 and Appendix A. As discussed above, the text has been expanded to include more description of the considerations made in evaluating the epidemiology studies (see p. 3-1), and the epidemiology studies are summarized in a detailed table in Appendix A (see Table A-5). Standardized approaches for evaluating studies are under development as part of Phases 2 and 3.

Table K-1. The EPA's implementation of the National Research Council's
recommendations in the ethylene oxide (EtO) carcinogenicity assessment
(continued)

NRC recommendations that the EPA is implementing in the short term	Implementation in the EtO carcinogenicity assessment
5. The rationales for the selection of the studies that are advanced for consideration in calculating the RfCs and unit risks need to be expanded. All candidate RfCs should be evaluated together with the aid of graphic displays that incorporate selected information on attributes relevant to the database.	Implemented. As discussed above, the text has been expanded to include more description of the considerations made in selecting the study that formed the basis for the quantitative cancer risk estimates (see p. 4-1-4-3). The selection considerations are also summarized in a table (see Table 4-1). The EtO Assessment is a carcinogenicity assessment; thus, no RfCs or reference doses (RfDs) are derived.
6. Strengthened, more integrative and more transparent discussions of weight of evidence are needed. The discussions would benefit from more rigorous and systematic coverage of the various determinants of weight of evidence, such as consistency.	Implemented. The weight-of-evidence discussion in the EtO Assessment has been substantially enhanced (see Section 3.5.1), and two tables have been added addressing consistency in the epidemiology study results (see Table 3-1 for lymphohematopoietic cancer and Table 3-2 for breast cancer).
General Guidance for the Overall Process (see p. 1	64)
7. Elaborate an overall, documented, and quality-controlled process for IRIS assessments.	Partially Implemented. A team approach was used for the development of the EtO Assessment to help ensure that the necessary disciplinary expertise was
8. Ensure standardization of review and evaluation approaches among contributors and teams of contributors; for example, include standard approaches for reviews of various types of studies to ensure uniformity.	available for assessment development and review. Because EtO is a post-peer review, phase one chemical, the EtO team did not have access to the "overall, documented, and quality-controlled process" that is now being developed in response to the NRC recommendations.
9. Assess disciplinary structure of teams needed to conduct the assessments.	ine rice recommendations.
Evidence Identification: Literature Collection and	Collation Phase (see p. 164)
10. Select outcomes on the basis of available evidence and understanding of mode of action.	Implemented. The EtO Assessment has detailed discussions of genotoxicity (see Section 3.3.3 and Appendix C) and mode of action (see Section 3.4), and EPA concludes that the weight of evidence supports a mutagenic mode of action for EtO carcinogenicity. The cancer outcomes selected are consistent with that mode-of-action finding as well as the available hazard evidence.

Table K-1. The EPA's implementation of the National Research Council's
recommendations in the ethylene oxide (EtO) carcinogenicity assessment
(continued)

NRC recommendations that the EPA is implementing in the short term	Implementation in the EtO carcinogenicity assessment
11. Establish standard protocols for evidence identification.	Partially Implemented. This is being implemented by the IRIS program as part of Phase 2. The EPA's literature search strategy is described briefly in Chapter 2 of the EtO Assessment. More details of the original search are no longer available for this Assessment, which was largely finalized before the release of the NRC recommendations. To update the Assessment, a systematic literature search was done covering the time span from 2006 (the year of the 1 st external review draft) to May 2013; this search is described in detail in Appendix J.
12. Develop a template for description of the search approach.	This is being implemented by the IRIS program as part of Phase 2.
 Use a database, such as the Health and Environmental Research Online (HERO) database, to capture study information and relevant quantitative data. 	Implemented. HERO links were incorporated for all citations.
Evidence Evaluation: Hazard Identification and	Dose-Response Modeling (see p. 165)
14. Standardize the presentation of reviewed studies in tabular or graphic form to capture the key dimensions of study characteristics, weight of evidence, and utility as a basis for deriving reference values and unit risks.	Partially Implemented. This Assessment was largely finalized before the release of the NRC recommendations; thus, the tables herein may not be consistent with current standardizations. The EtO Assessment does include a detailed summary table of key characteristics of the epidemiology studies (see Table A-5 of Appendix A) and a table summarizing the considerations made in selecting the study that formed the basis for the quantitative cancer risk estimates (see Table 4-1).
15. Develop templates for evidence tables, forest plots, or other displays.	This is being implemented by the IRIS program as part of Phase 2.
16. Establish protocols for review of major types of studies, such as epidemiologic and bioassay.	Partially Implemented. This is being implemented by the IRIS program as part of Phase 2. The study review process was not revised for this assessment because EtO is a Phase 1 chemical. However, this assessment was developed using standard protocols for evidence evaluation that are provided in existing EPA guidance.

Table K-1. The EPA's implementation of the National Research Council's recommendations in the ethylene oxide (EtO) carcinogenicity assessment (continued)

NRC recommendations that the EPA is implementing in the short term	Implementation in the EtO carcinogenicity assessment
Selection of Studies for Derivation of Reference Va	lues and Unit Risks (see p. 165)
 17. Establish clear guidelines for study selection. a. Balance strengths and weaknesses. b. Weigh human vs. experimental evidence. c. Determine whether combining estimates among studies is warranted. 	Partially Implemented. As discussed above, the text has been expanded to include more description of the considerations made in selecting the study that formed the basis for the quantitative cancer risk estimates (see p. 4-1–4-3). The selection considerations are also summarized in a table (see Table 4-1). Consideration was given to combining data from the Union Carbide Cohort (UCC) and NIOSH cohort studies, and discussion is provided for why the UCC data were ultimately not used (see Section 4.1). The EtO Assessment is a carcinogenicity assessment; thus, no RfCs or RfDs are derived.
Calculation of Reference Values and Unit Risks (se	ee pp. 165–166)
18. Describe and justify assumptions and models used. This step includes review of dosimetry models and the implications of the models for uncertainty factors; determination of appropriate points of departure (such as benchmark dose, no-observed-adverse-effect level, and lowest observed-adverse-effect level), and assessment of the analyses that underlie the points of departure.	Implemented. The EtO Assessment has a detailed discussion of model selection for the epidemiological data sets (see Section 4.1) and the laboratory animal data sets (see Section 4.2), including a discussion of cross-species scaling (see Section 4.2.2). The EtO Assessment is a carcinogenicity assessment; thus, no reference values are derived.
19. Provide explanation of the risk-estimation modeling processes (for example, a statistical or biologic model fit to the data) that are used to develop a unit risk estimate.	Implemented. The EtO Assessment has a detailed discussion of model selection for the epidemiological data sets (see Section 4.1) and the laboratory animal data sets (see Section 4.2).

Table K-1. The EPA's implementation of the National Research Council'srecommendations in the ethylene oxide (EtO) carcinogenicity assessment(continued)

NRC recommendations that the EPA is implementing in the short term	Implementation in the EtO carcinogenicity assessment
20. Provide adequate documentation for conclusions and estimation of reference values and unit risks. As noted by the committee throughout the present report, sufficient support for conclusions in the formaldehyde draft IRIS assessment is often lacking. Given that the development of specific IRIS assessments and their conclusions are of interest to many stakeholders, it is important that they provide sufficient references and supporting documentation for their conclusions. Detailed appendixes, which might be made available only electronically, should be provided, when appropriate.	Implemented. The EtO Assessment includes, as an appendix (see Appendix D), more detailed fit statistics and modeling results for the epidemiological cancer data sets. Appendix G provides results of the laboratory animal tumor modeling. The EtO Assessment is a carcinogenicity assessment; thus, no reference values are derived.

Table K-2. National Research Council recommendations that the EPA is generallyimplementing in the long term

2 3

1

NRC recommendations that the EPA is implementing in the long term	Implementation in the EtO Carcinogenicity Assessment
 Weight-of-Evidence Evaluation: Synthesis of Evidence for Hazard Identification (see p. 165) 1. Review use of existing weight-of-evidence guidelines. 2. Standardize approach to using weight-of-evidence guidelines. 3. Conduct agency workshops on approaches to implementing weight-of-evidence guidelines. 4. Develop uniform language to describe strength of evidence on noncancer effects. 5. Expand and harmonize the approach for characterizing uncertainty and variability. 6. To the extent possible, unify consideration of outcomes around common modes of action rather than considering multiple outcomes separately. 	As indicated above, Phase 3 of EPA's implementation plan will incorporate the longer-term recommendations made by the NRC. On May 16, 2012, EPA announced that as a part of a review of the IRIS Program's assessment development process, the NRC will also review current methods for weight-of- evidence analyses and recommend approaches for weighing scientific evidence for chemical hazard identification. In addition, EPA will hold a workshop on August 26, 2013, on issues related to weight of evidence to inform future assessments.
 Calculation of Reference Values and Unit Risks (see pp. 165–166) 7. Assess the sensitivity of derived estimates to model assumptions and end points selected. This step should include appropriate tabular and graphic displays to illustrate the range of the estimates and the effect of uncertainty factors on the estimates. 	Implemented. The EtO Assessment is a carcinogenicity assessment; thus, no reference values are derived. Chapter 4 presents derivations of unit risk estimates for multiple data sets, species, and models. Many of these derivations are summarized in tables and figures; for example, for the breast cancer incidence subcohort, Figure 4-5 depicts the range of relative risk estimates for different exposure-response models considered and Table 4-13 summarizes unit risk estimates derived from different models.

4

REFERENCES

This reference list includes all the references cited in the document except for Appendix B, which is a reference list pertaining to Figure 3–3, and Appendix J, which includes some more recent references. References added after the 2007 external peer review are also listed separately in Appendix I. References identified in a May 2013 literature search but appearing after the 30 June 2010 cutoff date for literature inclusion into this carcinogenicity assessment are cited and discussed in Appendix J.

Abeles, FB; Heggestad, HE. (1973). Ethylene: An urban air pollutant. J Air Waste Manag Assoc 23: 517-521. http://dx.doi.org/10.1080/00022470.1973.10469798

Adám, B; Bárdos, H; Adány, R. (2005). Increased genotoxic susceptibility of breast epithelial cells to ethylene oxide. Mutat Res 585: 120-126. <u>http://dx.doi.org/10.1016/j.mrgentox.2005.04.009</u>

Agurell, E; Cederberg, H; Ehrenberg, L; Lindahl-Kiessling, K; Rannug, U; Törnqvist, M. (1991). Genotoxic effects of ethylene oxide and propylene oxide: a comparative study. Mutat Res 250: 229-237.

<u>Ahn, HS; Shin, HS.</u> (2006). Determination of ethylene oxide-hemoglobin adduct by silylation and gas chromatography-electron impact-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 843: 202-208. <u>http://dx.doi.org/10.1016/j.jchromb.2006.06.003</u>

<u>Appelgren, LE; Eneroth, G; Grant, C; Lanstrom, LE; Tenghagen, K.</u> (1978). Testing of ethylene oxide for mutagenicity using the micronucleus test in mice and rats. Acta Pharmacol Toxicol 43: 69-71. <u>http://dx.doi.org/10.1111/j.1600-0773.1978.tb02235.x</u>

<u>Applebaum, KM; Malloy, EJ; Eisen, EA.</u> (2007). Reducing healthy worker survivor bias by restricting date of hire in a cohort study of Vermont granite workers. Occup Environ Med 64: 681-687. <u>http://dx.doi.org/10.1136/oem.2006.031369</u>

Armstrong, B. (1990). The effects of measurement errors on relative risk regressions. Am J Epidemiol 132: 1176-1184.

<u>Armstrong, B.</u> (1998). Effect of measurement error on epidemiological studies of environmental and occupational exposures [Review]. Occup Environ Med 55: 651-656. <u>http://dx.doi.org/10.1136/oem.55.10.651</u>

<u>Arrighi, HM; Hertz-Picciotto, I.</u> (1994). The evolving concept of the healthy worker survivor effect [Review]. Epidemiology 5: 189-196.

Bastlová, T; Andersson, B; Lambert, B; Kolman, A. (1993). Molecular analysis of ethylene oxide-induced mutations at the HPRT locus in human diploid fibroblasts. Mutat Res 287: 283-292.

<u>BEIR</u> (Committee on the Biological Effects of Ionizing Radiation). (1988). Health risks of radon and other internally deposited alpha-emitters. Washington, DC: National Academy Press.

Benson, LO; Teta, MJ. (1993). Mortality due to pancreatic and lymphopoietic cancers in chlorohydrin production workers. Br J Ind Med 50: 710-716. <u>http://dx.doi.org/10.1136/oem.50.8.710</u>

Beranek, DT. (1990). Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents [Review]. Mutat Res 231: 11-30.

Bisanti, L; Maggini, M; Raschetti, R; Alegiani, SS; Ippolito, FM; Caffari, B; Segnan, N; Ponti, A. (1993). Cancer mortality in ethylene oxide workers. Br J Ind Med 50: 317-324.

Boffetta, P; van der Hel, O; Norppa, H; Fabianova, E; Fucic, A; Gundy, S; Lazutka, J; Cebulska-Wasilewska, A; Puskailerova, D; Znaor, A; Kelecsenyi, Z; Kurtinaitis, J; Rachtan, J; Forni, A; Vermeulen, R; Bonassi, S. (2007). Chromosomal aberrations and cancer risk: results of a cohort study from Central Europe. Am J Epidemiol 165: 36-43. <u>http://dx.doi.org/10.1093/aje/kwj367</u>

Bolt, HM; Leutbecher, M; Golka, K. (1997). A note on the physiological background of the ethylene oxide adduct 7-(2-hydroxyethyl) guanine in DNA from human blood [Letter]. Arch Toxicol 71: 719-721. http://dx.doi.org/10.1007/s002040050451

Bolt, HM; Peter, H; Föst, U. (1988). Analysis of macromolecular ethylene oxide adducts [Review]. Int Arch Occup Environ Health 60: 141-144.

Bonassi, S; Znaor, A; Ceppi, M; Lando, C; Chang, WP; Holland, N; Kirsch-Volders, M; Zeiger, E; Ban, S; Barale, R; Bigatti, MP; Bolognesi, C; Cebulska-Wasilewska, A; Fabianova, E; Fucic, A; Hagmar, L; Joksic, G; Martelli, A; Migliore, L; Mirkova, E; Scarfi, MR; Zijno, A; Norppa, H; Fenech, M. (2007). An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28: 625-631. http://dx.doi.org/10.1093/carcin/bgl177

Boogaard, PJ. (2002). Use of haemoglobin adducts in exposure monitoring and risk assessment [Review]. J Chromatogr B Analyt Technol Biomed Life Sci 778: 309-322. <u>http://dx.doi.org/10.1016/S0378-4347(01)00445-5</u>

Boysen, G; Pachkowski, BF; Nakamura, J; Swenberg, JA. (2009). The formation and biological significance of N7guanine adducts [Review]. Mutat Res 678: 76-94. <u>http://dx.doi.org/10.1016/j.mrgentox.2009.05.006</u>

Britton, DW; Törnqvist, M; van Sittert, NJ; Watson, WP; Wraith, MJ; Wright, AS. (1991). Immunochemical and GC/MS analysis of protein adducts: dosimetry studies with ethylene oxide [Review]. Prog Clin Biol Res 372: 99-106.

Brown, CD; Bahman, A; Turner, MJ; Fennell, TR. (1998). Ethylene oxide dosimetry in the mouse. Toxicol Appl Pharmacol 148: 215-222. <u>http://dx.doi.org/10.1006/taap.1997.8349</u>

Brown, T; Rushton, L; Group, tBOCBS. (2012). Occupational cancer in Britain Haematopoietic malignancies: leukaemia, multiple myeloma, non-Hodgkins lymphoma. Br J Cancer 107: S41-S48. http://dx.doi.org/10.1038/bjc.2012.117

<u>Butterworth, BE; Chapman, JR.</u> (2007). Exposure of hematopoietic stem cells to ethylene oxide during processing represents a potential carcinogenic risk for transplant recipients. Regul Toxicol Pharmacol 49: 149-153. <u>http://dx.doi.org/10.1016/j.yrtph.2007.07.004</u>

<u>Chan, C: Shie, R: Chang, T.</u> (2006). Workers' exposures and potential health risks to air toxics in a petrochemical complex assessed by improved methodology. Int Arch Occup Environ Health 79: 135-142. <u>http://dx.doi.org/10.1007/s00420-005-0028-9</u>

<u>Chandra, GR; Spencer, M.</u> (1963). A micro apparatus for absorption of ethylene and its use in determination of ethylene in exhaled gases from human subjects. Biochim Biophys Acta 69: 423-425.

<u>Clare, MG; Dean, BJ; De Jong, G; Van Sittert, NJ.</u> (1985). Chromosome analysis of lymphocytes from workers at an ethylene oxide plant. DNA Repair 156: 109-116.

Coggon, D; Harris, EC; Poole, J; Palmer, KT. (2004). Mortality of workers exposed to ethylene oxide: extended follow up of a British cohort. Occup Environ Med 61: 358-362.

<u>Csanady, GA; Denk, B; Putz, C; Kreuzer, PE; Kessler, W; Baur, C; Gargas, ML; Filser, JG.</u> (2000). A physiological toxicokinetic model for exogenous and endogenous ethylene and ethylene oxide in rat, mouse, and human: formation of 2-hydroxyethyl adducts with hemoglobin and DNA. Toxicol Appl Pharmacol 165: 1-26. http://dx.doi.org/10.1006/taap.2000.8918

Cushnir, JR; Lamb, JH; Parry, A; Farmer, PB. (1991). Tandem mass spectrometric approaches for determining exposure to alkylating agents. In IK O'Neill; J Chen; H Bartsch (Eds.), Relevance to human cancer of N-nitroso compounds, tobacco, and mycotoxins (pp. 107-112). Lyon, France: International Agency for Research on Cancer.

Davis, FG; Erdal, S; Williams, L; Bigner, D. (2006). Work exposures to animal neurocarcinogens. Int J Occup Environ Health 12: 16-23.

<u>de Serres, FJ: Brockman, HE.</u> (1995). Ethylene oxide: induction of specific-locus mutations in the ad-3 region of heterokaryon 12 of Neurospora crassa and implications for genetic risk assessment of human exposure in the workplace. Mutat Res 328: 31-47.

<u>Deddens, JA; Hornung, R.</u> (1994). Quantitative examples of continuous exposure measurement errors that bias risk estimates away from the null. In CM Smith; DC Christiani; KT Kelsey (Eds.), Chemical risk assessment of occupational health: current applications, limitations, and future prospects (pp. 77-85). Westport, CT: Auburn House.

Dellarco, VL; Generoso, WM; Sega, GA; Fowle, JR, III; Jacobson-Kram, D. (1990). Review of the mutagenicity of ethylene oxide [Review]. Environ Mol Mutagen 16: 85-103.

Divine, BJ; Amanollahi, KS. (1986). Ethylene oxide and cancer [Letter]. JAMA 256: 1726-1727.

Donner, EM; Wong, BA; James, RA; Preston, RJ. (2010). Reciprocal translocations in somatic and germ cells of mice chronically exposed by inhalation to ethylene oxide: implications for risk assessment. Mutagenesis 25: 49-55. http://dx.doi.org/10.1093/mutage/gep042

<u>Ehrenberg, L; Gustafsson, Å.</u> (1970). Chemical mutagens: Their uses and hazards in medicine and technology [A report of February 1959 to the National Board of Health]. Lund, Sweden: Ehrenberg, L; Gustafsson, Å.

Ehrenberg, L; Hallstrom, T. (1967). Haematologic studies on persons occupationally exposed to ethylene oxide. In Radiosterilization of medical products (pp. 327-334). (SM 92/26; STI/PUB/157). Vienna: International Atomic Energy Agency. <u>http://www-pub.iaea.org/books/IAEABooks/2114/Radiosterilization-of-Medical-Products-Budapest-5-9-June-1967</u>

Ehrenberg, L; Hussain, S. (1981). Genetic toxicity of some important epoxides [Review]. DNA Repair 86: 1-113.

<u>Ehrenberg, L; Osterman-Golkar, S; Segerbäck, D; Svensson, K; Calleman, CJ.</u> (1977). Evaluation of genetic risks of alkylating agents. III. Alkylation of haemoglobin after metabolic conversion of ethene to ethene oxide in vivo. Mutat Res 45: 175-184.

<u>Eide, I; Zhao, C; Kumar, R; Hemminki, K; Wu, K; Swenberg, JA.</u> (1999). Comparison of (32)P-postlabeling and high-resolution GC/MS in quantifying N7-(2-Hydroxyethyl)guanine adducts. Chem Res Toxicol 12: 979-984.

<u>EOIC</u> (Ethylene Oxide Industry Council). (2001). Toxicological review of ethylene oxide in support of summary information on the integrated risk information system. Arlington, VA.

Farmer, PB; Bailey, E; Naylor, S; Anderson, D; Brooks, A; Cushnir, J; Lamb, JH; Sepai, O; Tang, YS. (1993). Identification of endogenous electrophiles by means of mass spectrometric determination of protein and DNA adducts [Review]. Environ Health Perspect 99: 19-24.

Farmer, PB; Shuker, DE. (1999). What is the significance of increases in background levels of carcinogen-derived protein and DNA adducts? Some considerations for incremental risk assessment [Review]. Mutat Res 424: 275-286.

<u>Farmer, PB; Singh, R.</u> (2008). Use of DNA adducts to identify human health risk from exposure to hazardous environmental pollutants: the increasing role of mass spectrometry in assessing biologically effective doses of genotoxic carcinogens [Review]. Mutat Res 659: 68-76. <u>http://dx.doi.org/10.1016/j.mrrev.2008.03.006</u>

Farooqi, Z; Törnqvist, M; Ehrenberg, L; Natarajan, AT. (1993). Genotoxic effects of ethylene oxide and propylene oxide in mouse bone marrow cells. Mutat Res 288: 223-228.

<u>Fennell, TR; MacNeela, JP; Morris, RW; Watson, M; Thompson, CL; Bell, DA.</u> (2000). Hemoglobin adducts from acrylonitrile and ethylene oxide in cigarette smokers: effects of glutathione S-transferase T1-null and M1-null genotypes. Cancer Epidemiol Biomarkers Prev 9: 705-712.

<u>Filser, JG; Denk, B; Tornqvist, M; Kessler, W; Ehrenberg, L.</u> (1992). Pharmacokinetics of ethylene in man: body burden with ethylene oxide and hydroxyethylation of hemoglobin due to endogenous and environmental ethylene. Arch Toxicol 66: 157-163.

<u>Fondelli, MC; Costantini, AS; Ercolanelli, M; Pizzo, AM; Maltoni, SA; Quinn, MM.</u> (2007). Exposure to carcinogens and mortality in a cohort of restoration workers of water-damaged library materials following the River Arno flooding in Florence, 4 November 1966. Med Lav 98: 422-431.

<u>Föst, U: Marczynski, B; Kasemann, R; Peter, H.</u> (1989). Determination of 7-(2-hydroxyethyl)guanine with gas chromatography/mass spectrometry as a parameter for genotoxicity of ethylene oxide. Arch Toxicol Suppl 13: 250-253.

<u>Fuchs, J; Wullenweber, U; Hengstler, JG; Bienfait, HG; Hiltl, G; Oesch, F.</u> (1994). Genotoxic risk for humans due to work place exposure to ethylene oxide: remarkable individual differences in susceptibility. Arch Toxicol 68: 343-348.

<u>Galloway, SM; Berry, PK; Nichols, WW; Wolman, SR; Soper, KA; Stolley, PD; Archer, P.</u> (1986). Chromosome aberrations in individuals occupationally exposed to ethylene oxide, and in a large control population. Mutat Res Genet Toxicol 170: 55-74. <u>http://dx.doi.org/10.1016/0165-1218(86)90082-0</u>

Gardner, MJ; Coggon, D; Pannett, B; Harris, EC. (1989). Workers exposed to ethylene oxide: a follow up study. Occup Environ Med 46: 860-665.

Garman, RH; Snellings, WM; Maronpot, RR. (1985). Brain tumors in F344 rats associated with chronic inhalation exposure to ethylene oxide. Neurotoxicology 6: 117-137.

<u>Garry, VF; Hozier, J; Jacobs, D; Wade, RL; Gray, DG.</u> (1979). Ethylene oxide: evidence of human chromosomal effects. Environ Mutagen 1: 375-382. <u>http://dx.doi.org/10.1002/em.2860010410</u>

<u>Generoso, WM; Cain, KT; Cornett, CV; Cacheiro, NLA; Hughes, LA.</u> (1990). Concentration-response curves for ethylene-oxide-induced heritable translocations and dominant lethal mutations. Environ Mol Mutagen 16: 126-131.

<u>Generoso, WM; Cain, KT; Hughes, LA; Sega, GA; Braden, PW; Gosslee, DG; Shelby, MD.</u> (1986). Ethylene oxide dose and dose-rate effects in the mouse dominant-lethal test. Environ Mol Mutagen 8: 1-7.

<u>Generoso, WM; Rutledge, JC; Cain, KT; Hughes, LA; Downing, DJ.</u> (1988). Mutagen-induced fetal anomalies and death following treatment of females within hours after mating. DNA Repair 199: 175-181. http://dx.doi.org/10.1016/0165-1161(88)90245-2

<u>Godderis, L; Aka, P; Matecuca, R; Kirsch-Volders, M; Lison, D; Veulemans, H.</u> (2006). Dose-dependent influence of genetic polymorphisms on DNA damage induced by styrene oxide, ethylene oxide and gamma-radiation. Toxicology 219: 220-229. <u>http://dx.doi.org/10.1016/j.tox.2005.11.021</u>

<u>Golberg, L.</u> (1986). Chemical and physical properties. In Hazard assessment of ethylene oxide. Boca Raton, FL: CRC Press.

<u>Greenberg, HL; Ott, MG; Shore, RE.</u> (1990). Men assigned to ethylene oxide production or other ethylene oxide related chemical manufacturing: A mortality study. Br J Ind Med 47: 221-230. http://dx.doi.org/10.1136/oem.47.4.221

<u>Greife, AL; Hornung, RW; Stayner, LG; Steenland, KN.</u> (1988). Development of a model for use in estimating exposure to ethylene oxide in a retrospective cohort mortality study. Scand J Work Environ Health 1: 29-30.

<u>Grosse, Y; Baan, R; Straif, K; Secretan, B; El Ghissassi, F; Bouvard, V; Altieri, A; Cogliano, V.</u> (2007). Carcinogenicity of 1,3-butadiene, ethylene oxide, vinyl chloride, vinyl fluoride, and vinyl bromide. Lancet Oncol 8: 679-680. <u>http://dx.doi.org/10.1016/S1470-2045(07)70235-8</u>

<u>Gupta, RC; Lutz, WK.</u> (1999). Background DNA damage for endogenous and unavoidable exogenous carcinogens: a basis for spontaneous cancer incidence? DNA Repair 424: 1-8.

Hagmar, L; Mikoczy, Z; Welinder, H. (1995). Cancer incidence in Swedish sterilant workers exposed to ethylene oxide. Occup Environ Med 52: 154-156. <u>http://dx.doi.org/10.1136/oem.52.3.154</u>

<u>Hagmar, L; Stromberg, U; Bonassi, S; Hansteen, IL; Knudsen, LE; Lindholm, C; Norppa, H.</u> (2004). Impact of types of lymphocyte chromosomal aberrations on human cancer risk: results from Nordic and Italian cohorts. Cancer Res 64: 2258-2263. <u>http://dx.doi.org/10.1158/0008-5472.CAN-03-3360</u>

Hagmar, L; Welinder, H; Lindén, K; Attewell, R; Osterman-Golkar, S; Törnqvist, M. (1991). An epidemiological study of cancer risk among workers exposed to ethylene oxide using hemoglobin adducts to validate environmental exposure assessments. Int Arch Occup Environ Health 63: 271-277.

Hallier, E; Langhof, T; Dannappel, D; Leutbecher, M; Schroder, K; Goergens, HW; Muller, A; Bolt, HM. (1993). Polymorphism of glutathione conjugation of methyl bromide, ethylene oxide and dichloromethane in human blood: Influence on the induction of sister chromatid exchanges (SCE) in lymphocytes. Arch Toxicol 67: 173-178.

<u>Haufroid, V; Merz, B; Hofmann, A; Tschopp, A; Lison, D; Hotz, P.</u> (2007). Exposure to ethylene oxide in hospitals: biological monitoring and influence of glutathione S-transferase and epoxide hydrolase polymorphisms. Cancer Epidemiol Biomarkers Prev 16: 796-802. <u>http://dx.doi.org/10.1158/1055-9965.EPI-06-0915</u>

Hengstler, JG; Fuchs, J; Gebhard, S; Oesch, F. (1994). Glycolaldehyde causes DNA-protein crosslinks: a new aspect of ethylene oxide genotoxicity. Mutat Res 304: 229-234.

Hill, AB. (1965). The environment and disease: Association or causation? Proc R Soc Med 58: 295-300.

<u>Hoenerhoff, MJ; Hong, HH; Ton, TV; Lahousse, SA; Sills, RC.</u> (2009). A review of the molecular mechanisms of chemically induced neoplasia in rat and mouse models in National Toxicology Program bioassays and their relevance to human cancer [Review]. Toxicol Pathol 37: 835-848. <u>http://dx.doi.org/10.1177/0192623309351726</u>

<u>Högstedt, B; Gullberg, B; Hedner, K; Kolnig, AM; Mitelman, F; Skerfving, S; Widegren, B.</u> (1983). Chromosome aberrations and micronuclei in bone marrow cells and peripheral blood lymphocytes in humans exposed to ethylene oxide. Hereditas 98: 105-113.

<u>Hogstedt, C.</u> (1988). Epidemiologic studies on ethylene oxide and cancer: An updating. In Methods for detecting DNA damaging agents in humans: Applications in cancer epidemiology and prevention. Lyon, France: International Agency for Research on Cancer.

<u>Hogstedt, C; Aringer, L; Gustavsson, A.</u> (1984). Etylenoxid och cancer - litteraturoversikt och uppfoljning av tva epidemiologiska studier [Ethylene oxide and cancer - a literature review and follow-up of two epidemiological studies] [Review]. Arbete och Hälsa 41: 49.

Hogstedt, C; Aringer, L; Gustavsson, A. (1986). Epidemiologic support for ethylene oxide as a cancer-causing agent. JAMA 255: 1575-1578.

Hogstedt, C; Malmqvist, N; Wadman, B. (1979a). Leukemia in workers exposed to ethylene oxide. JAMA 241: 1132-1133. <u>http://dx.doi.org/10.1001/jama.1979.03290370036024</u>

<u>Hogstedt, C; Rohlen, O; Berndtsson, BS; Axelson, O; Ehrenberg, L.</u> (1979b). A cohort study of mortality and cancer incidence in ethylene oxide production workers. Occup Environ Med 36: 276-280. http://dx.doi.org/10.1136/oem.36.4.276

<u>Hong, HH; Houle, CD; Ton, TV; Sills, RC.</u> (2007). K-ras mutations in lung tumors and tumors from other organs are consistent with a common mechanism of ethylene oxide tumorigenesis in the B6C3F1 mouse. Toxicol Pathol 35: 81-85. <u>http://dx.doi.org/10.1080/01926230601063839</u>

Hornung, RW; Greife, AL; Stayner, LT; Steenland, NK; Herrick, RF; Elliott, LJ; Ringenburg, VL; Morawetz, J. (1994). Statistical model for prediction of retrospective exposure to ethylene oxide in an occupational mortality study. Am J Ind Med 25: 825-836.

<u>Houle, CD; Ton, TV; Clayton, N; Huff, J; Hong, HH; Sills, RC.</u> (2006). Frequent p53 and H-ras mutations in benzene- and ethylene oxide-induced mammary gland carcinomas from B6C3F1 mice. Toxicol Pathol 34: 752-762. http://dx.doi.org/10.1080/01926230600935912

<u>Huang, CC; Shih, WC; Wu, CF; Chen, MF; Chen, YL; Lin, YH; Wu, KY.</u> (2008). Rapid and sensitive on-line liquid chromatographic/tandem mass spectrometric determination of an ethylene oxide-DNA adduct, N7-(2-hydroxyethyl)guanine, in urine of nonsmokers. Rapid Commun Mass Spectrom 22: 706-710. http://dx.doi.org/10.1002/rcm.3414

<u>Huang, CC; Wu, CF; Shih, WC; Chen, MF; Chen, CY; Chien, YC; Liou, SH; Chiang, SY; Wu, KY.</u> (2011). Comparative analysis of urinary N7-(2-hydroxyethyl)guanine for ethylene oxide- and non-exposed workers. Toxicol Lett 202: 237-243. <u>http://dx.doi.org/10.1016/j.toxlet.2011.02.009</u>

<u>IARC</u> (International Agency for Research on Cancer). (1994a). Ethylene. In IARC monographs on the evaluation of carcinogenic risks to humans Some industrial chemicals (pp. 45-71). Lyon, France. <u>http://monographs.iarc.fr/ENG/Monographs/vol60/volume60.pdf</u>

<u>IARC</u> (International Agency for Research on Cancer). (1994b). Ethylene oxide. In IARC monographs on the evaluation of carcinogenic risks to humans Some industrial chemicals (pp. 73-159). Lyon, France. <u>http://monographs.iarc.fr/ENG/Monographs/vol60/volume60.pdf</u>

<u>IARC</u> (International Agency for Research on Cancer). (2008). 1,3-butadiene, ethylene oxide and vinyl halides (vinyl fluoride, vinyl chloride and vinyl bromide). In IARC monographs on the evaluation of carcinogenic risks to humans (pp. 3-471). Lyon, France. <u>http://monographs.iarc.fr/ENG/Monographs/vol97/mono97.pdf</u>

Jarabek, AM; Pottenger, LH; Andrews, LS; Casciano, D; Embry, MR; Kim, JH; Preston, RJ; Reddy, MV; Schoeny, R; Shuker, D; Skare, J; Swenberg, J; Williams, GM; Zeiger, E. (2009). Creating context for the use of DNA adduct data in cancer risk assessment: I. Data organization [Review]. Crit Rev Toxicol 39: 659-678. http://dx.doi.org/10.1080/10408440903164155

Jenssen, D; Ramel, C. (1980). The micronucleus test as part of a short-term mutagenicity test program for the predicition of carcinogenicity evaluated by 143 agents tested. Mutat Res 75: 191-202. http://dx.doi.org/10.1016/0165-1110(80)90014-7

Joyner, RE. (1964). Chronic toxicity of ethylene oxide. Arch Environ Occup Health 8: 700-710.

Kardos, L; Széles, G; Gombköto, G; Szeremi, M; Tompa, A; Adány, R. (2003). Cancer deaths among hospital staff potentially exposed to ethylene oxide: an epidemiological analysis. Environ Mol Mutagen 42: 59-60. http://dx.doi.org/10.1002/em.10167

<u>Kelsey, KT; Wiencke, JK; Eisen, EA; Lynch, DW; Lewis, TR; Little, JB.</u> (1988). Persistently elevated sister chromatid exchanges in ethylene oxide-exposed primates: The role of a subpopulation of high frequency cells. Cancer Res 48: 5045-5050.

Kensler, TW; Ng, D; Carmella, SG; Chen, M; Jacobson, LP; Muñoz, A; Egner, PA; Chen, JG; Qian, GS; Chen, TY; Fahey, JW; Talalay, P; Groopman, JD; Yuan, JM; Hecht, SS. (2012). Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis 33: 101-107. <u>http://dx.doi.org/10.1093/carcin/bgr229</u>

Keshava, N; Jinot, J; Sonawane, B. (2006a). An evaluation of mutagenic mode of action for carcinogenicity: Ethylene oxide. Environ Mol Mutagen 47: 442-442.

Keshava, N; Woodall, GM; Rice, S; Sonawane, B; Cote, I. (2006b). An evaluation of the mutagenic mode of action for four environmental carcinogens [Abstract]. Toxicol Sci 90: 334-335.

Kiesselbach, N; Ulm, K; Lange, HJ; Korallus, U. (1990). A multicentre mortality study of workers exposed to ethylene oxide. Br J Ind Med 47: 182-188.

Kim, EA; Lee, HE; Ryu, HW; Park, SH; Kang, SK. (2011). Cases series of malignant lymphohematopoietic disorder in Korean semiconductor industry. Saf Health Work 2: 122-134. <u>http://dx.doi.org/10.5491/SHAW.2011.2.2.122</u>

Kiran, S; Cocco, P; Mannetje, A; Satta, G; D'Andrea, I; Becker, N; de Sanjosé, S; Foretova, L; Staines, A; Kleefeld, S; Maynadié, M; Nieters, A; Brennan, P; Boffetta, P. (2010). Occupational exposure to ethylene oxide and risk of lymphoma. Epidemiology 21: 905-910. <u>http://dx.doi.org/10.1097/EDE.0b013e3181f4cc0f</u>

<u>Kirman, CR; Sweeney, LM; Teta, MJ; Sielken, RL; Valdez-Flores, C; Albertini, RJ; Gargas, ML.</u> (2004). Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide. Risk Anal 24: 1165-1183. <u>http://dx.doi.org/10.1111/j.0272-4332.2004.00517.x</u>

<u>Kligerman, AD; Erexson, GL; Phelps, ME; Wilmer, JL.</u> (1983). Sister-chromatid exchange induction in peripheral blood lymphocytes of rats exposed to ethylene oxide by inhalation. Mutat Res Lett 120: 37-44. http://dx.doi.org/10.1016/0165-7992(83)90071-4

Koepke, SR; Kroeger-Koepke, MB; Bosan, W; Thomas, BJ; Alvord, WG; Michejda, CJ. (1988). Alkylation of DNA in rats by N-nitrosomethyl-(2-hydroxyethyl)amine: dose response and persistence of the alkylated lesions in vivo. Cancer Res 48: 1537-1542.

Kolman, A. (1985). Effect of deficiency in excision repair and umuC function on the mutagenicity with ethylene oxide in the lacI gene of E. coli. Mutat Res 146: 43-46.

Kolman, A; Chovanec, M. (2000). Combined effects of gamma-radiation and ethylene oxide in human diploid fibroblasts. Mutagenesis 15: 99-104. <u>http://dx.doi.org/10.1093/mutage/15.2.99</u>

Kolman, A; Chovanec, M; Osterman-Golkar, S. (2002). Genotoxic effects of ethylene oxide, propylene oxide and epichlorohydrin in humans: update review (1990-2001) [Review]. DNA Repair 512: 173-194.

Kolman, A; Näslund, M. (1987). Mutagenicity testing of ethylene oxide in Escherichia coli strains with different repair capacities. Environ Mol Mutagen 10: 311-315.

Kolman, A; Näslund, M; Calleman, CJ. (1986). Genotoxic effects of ethylene oxide and their relevance to human cancer [Review]. Carcinogenesis 7: 1245-1250.

Kumar, R; Staffas, J; Försti, A; Hemminki, K. (1995). 32P-postlabelling method for the detection of 7-alkylguanine adducts formed by the reaction of different 1,2-alkyl epoxides with DNA. Carcinogenesis 16: 483-489.

Lambert, B; Andersson, B; Bastlova, T; Hou, SM; Hellgren, D; Kolman, A. (1994). Mutations induced in the hypoxanthine phosphoribosyl transferase gene by three urban air pollutants: Acetaldehyde, benzo[a]pyrene diolepoxide, and ethylene oxide. Environ Health Perspect Suppl 102: 135-138.

Langholz, B; Richardson, DB. (2010). Fitting general relative risk models for survival time and matched casecontrol analysis. Am J Epidemiol 171: 377-383. <u>http://dx.doi.org/10.1093/aje/kwp403</u>

Laurent, C; Frederic, J; Léonard, AY. (1984). Sister chromatid exchange frequency in workers exposed to high levels of ethylene oxide, in a hospital sterilization service. Int Arch Occup Environ Health 54: 33-43.

Leclercq, L; Laurent, C; De Pauw, E. (1997). High-performance liquid chromatography/electrospray mass spectrometry for the analysis of modified bases in DNA: 7-(2-hydroxyethyl)guanine, the major ethylene oxide-DNA adduct. Anal Chem 69: 1952-1955.

Lerda, D; Rizzi, R. (1992). Cytogenetic study of persons occupationally exposed to ethylene oxide. Mutat Res 281: 31-37.

Leutbecher, M; Langhof, T; Peter, H; Fost, U. (1992). Ethylene oxide: metabolism in human blood and its implication to biological monitoring. Arch Toxicol 15: 289.

Lewis, SE; Barnett, LB; Felton, C; Johnson, FM; Skow, LC; Cacheiro, N; Shelby, MD. (1986). Dominant visible and electrophoretically expressed mutations induced in male mice exposed to ethylene oxide by inhalation. Environ Mol Mutagen 8: 867-872.

Li, F; Segal, A; Solomon, JJ. (1992). In vitro reaction of ethylene oxide with DNA and characterization of DNA adducts. Chem Biol Interact 83: 35-54.

Lin, JS; Chuang, KT; Huang, MS; Wei, KM. (2007). Emission of ethylene oxide during frying of foods in soybean oil. Food Chem Toxicol 45: 568-574. <u>http://dx.doi.org/10.1016/j.fct.2006.10.002</u>

Lindberg, HK; Falck, GC; Catalán, J; Santonen, T; Norppa, H. (2010). Micronucleus assay for mouse alveolar Type II and Clara cells. Environ Mol Mutagen 51: 164-172. <u>http://dx.doi.org/10.1002/em.20520</u>

Liou, SH; Lung, JC; Chen, YH; Yang, T; Hsieh, LL; Chen, CJ; Wu, TN. (1999). Increased chromosome-type chromosome aberration frequencies as biomarkers of cancer risk in a blackfoot endemic area. Cancer Res 59: 1481-1484.

Lorenti Garcia, C; Darroudi, F; Tates, AD; Natarajan, AT. (2001). Induction and persistence of micronuclei, sisterchromatid exchanges and chromosomal aberrations in splenocytes and bone-marrow cells of rats exposed to ethylene oxide. Mutat Res Genet Toxicol Environ Mutagen 492: 59-67. <u>http://dx.doi.org/10.1016/S1383-5718(01)00149-8</u>

Lucas, LJ; Teta, MJ. (1996). Breast cancer and ethylene oxide exposure [Letter]. Int J Epidemiol 25: 685-686.

Lynch, DW; Lewis, TR; Moorman, WJ; Burg, JR; Groth, DH; Khan, A; Ackerman, LJ; Cockrell, BY. (1984a). Carcinogenic and toxicologic effects of inhaled ethylene oxide and propylene oxide in F344 rats. Toxicol Appl Pharmacol 76: 69-84.

Lynch, DW; Lewis, TR; Moorman, WJ; Burg, JR; Gulati, DK; Kaur, P; Sabharwal, PS. (1984b). Sister-chromatid exchanges and chromosome aberrations in lymphocytes from monkeys exposed to ethylene oxide and propylene oxide by inhalation. Toxicol Appl Pharmacol 76: 85-95.

Lynch, DW; Lewis, TR; Moorman, WJ; Burg, JR; Lal, JB; Setzer, JV; Groth, DH; Gulati, DK; Zavos, PM; Sabharwal, PS; Ackerman, LJ; Cockrell, BY; Sprinz, H. (1984c). Effects on monkeys and rats of long-term inhalation exposure to ethylene oxide: Major findings of the NIOSH study. In Inhospital ethylene oxide sterilization: Current issues in ethylene oxide toxicity and occupational exposure (pp. 7-10). (AAMI Technology Assessment Report No. 8-84). Arlington, VA: Association for the Advancement of Medical Instrumentation.

<u>Major, J; Jakab, MG; Tompa, A.</u> (1996). Genotoxicological investigation of hospital nurses occupationally exposed to ethylene-oxide: I Chromosome aberrations, sister-chromatid exchanges, cell cycle kinetics, and UV-induced DNA synthesis in peripheral blood lymphocytes. Environ Mol Mutagen 27: 84-92. <u>http://dx.doi.org/10.1002/(SICI)1098-2280(1996)27:2<84::AID-EM2>3.0.CO;2-E</u>

<u>Major, J; Jakab, MG; Tompa, A.</u> (1999). The frequency of induced premature centromere division in human populations occupationally exposed to genotoxic chemicals. Mutat Res Genet Toxicol Environ Mutagen 445: 241-249. <u>http://dx.doi.org/10.1016/S1383-5718(99)00129-1</u>

Major, J; Jakab, MG; Tompa, A. (2001). Genotoxicological investigation of hospital nurses occupationally exposed to ethylene oxide. II. HPRT mutation frequencies. Central Eur J Occup Env Med 7: 195-208.

<u>Maltoni, C: Valgimigli, L: Scarnato, C.</u> (1980). Long-term carcinogenic bioassays on ethylene dichloride administered by inhalation to rats and mice. In B Ames; P Infante; R Reitz (Eds.), Ethylene dichloride: A potential health risk? (pp. 3-29). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

Manservigi, M; Tibaldi, E; Soffritti, M. (2010). Toxic and carcinogenic effects of ethylene and its ethylene oxyde metabolite. Eur J Oncol 15: 5-23.

Marsden, DA; Jones, DJ; Britton, RG; Ognibene, T; Ubick, E; Johnson, GE; Farmer, PB; Brown, K. (2009). Doseresponse relationships for N7-(2-hydroxyethyl)guanine induced by low-dose [14C]ethylene oxide: evidence for a novel mechanism of endogenous adduct formation. Cancer Res 69: 3052-3059. <u>http://dx.doi.org/10.1158/0008-5472.CAN-08-4233</u>

<u>Marsden, DA; Jones, DJ; Lamb, JH; Tompkins, EM; Farmer, PB; Brown, K.</u> (2007). Determination of endogenous and exogenously derived N7-(2-hydroxyethyl)guanine adducts in ethylene oxide-treated rats. Chem Res Toxicol 20: 290-299. <u>http://dx.doi.org/10.1021/tx600264t</u>

Mayer, J; Warburton, D; Jeffrey, AM; Pero, R; Walles, S; Andrews, L; Toor, M; Latriano, L; Wazneh, L; Tang, D; <u>Tsai, WY; Kuroda, M; Perera, F.</u> (1991). Biologic markers in ethylene oxide exposed workers and controls. Mutat Res 248: 163-176. <u>http://dx.doi.org/10.1016/0027-5107(91)90098-9</u>

Mazon, G; Philippin, G; Cadet, J; Gasparutto, D; Fuchs, RP. (2009). The alkyltransferase-like ybaZ gene product enhances nucleotide excision repair of O(6)-alkylguanine adducts in E. coli. DNA Repair 8: 697-703. http://dx.doi.org/10.1016/j.dnarep.2009.01.022

Mazon, G; Philippin, G; Cadet, J; Gasparutto, D; Modesti, M; Fuchs, RP. (2010). Alkyltransferase-like protein (eATL) prevents mismatch repair-mediated toxicity induced by O6-alkylguanine adducts in Escherichia coli. PNAS 107: 18050-18055. <u>http://dx.doi.org/10.1073/pnas.1008635107</u>

<u>McCarthy, MC; O'Brien, TE; Charrier, JG; Hafner, HR.</u> (2009). Characterization of the chronic risk and hazard of hazardous air pollutants in the United States using ambient monitoring data. Environ Health Perspect 117: 790-796. <u>http://dx.doi.org/10.1289/ehp.11861</u>

<u>Mikoczy, Z; Tinnerberg, H; Björk, J; Albin, M.</u> (2011). Cancer incidence and mortality in Swedish sterilant workers exposed to ethylene oxide: updated cohort study findings 1972-2006. Int J Environ Res Public Health 8: 2009-2019. http://dx.doi.org/10.3390/ijerph8062009</u>

Morgan, RW; Claxton, KW; Divine, BJ; Kaplan, SD; Harris, VB. (1981). Mortality among ethylene oxide workers. J Occup Environ Med 23: 767-770.

Mosavi-Jarrahi, A; Mohagheghi, MA; Kalaghchi, B; Mousavi-Jarrahi, Y; Kolahi, AA; Noori, MK. (2009). Estimating the incidence of leukemia attributable to occupational exposure in Iran. Asian Pac J Cancer Prev 10: 67-70.

Muller, E; Bertok, A. (1995). Tumor cases in the personnel of Eger hospital: Hygienic conditions and consequences. Kórház- és orvostechnika 33: 17-22.

Natarajan, AT; Preston, RJ; Dellarco, V; Ehrenberg, L; Generoso, W; Lewis, S; Tates, AD. (1995). Ethylene oxide: evaluation of genotoxicity data and an exploratory assessment of genetic risk [Review]. DNA Repair 330: 55-70.

<u>NCI</u> (National Cancer Institute). (1978). Bioassay of 1,2-dichloroethane for possible carcinogenicity. (CAS No. 107-06-2 & NCI-CG-TR-55). Bethesda MD: National Institute of Health.

<u>Nivard, MJ; Czene, K; Segerbäck, D; Vogel, EW.</u> (2003). Mutagenic activity of ethylene oxide and propylene oxide under XPG proficient and deficient conditions in relation to N-7-(2-hydroxyalkyl)guanine levels in Drosophila. Mutat Res 529: 95-107.

Norman, SA; Berlin, JA; Soper, KA; Middendorf, BF; Stolley, PD. (1995). Cancer incidence in a group of workers potentially exposed to ethylene oxide. Int J Epidemiol 24: 276-284.

<u>NRC</u> (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/13142.html</u>

<u>NTP</u> (National Toxicology Program). (1987). Toxicology and carcinogenesis studies of ethylene oxide (CAS no 75-21-8) in B6C3F1 mice (inhalation studies).

Nygren, J; Cedervall, B; Eriksson, S; Dusinská, M; Kolman, A. (1994). Induction of DNA strand breaks by ethylene oxide in human diploid fibroblasts. Environ Mol Mutagen 24: 161-167.

<u>Oesch, F; Hengstler, JG; Arand, M; Fuchs, J.</u> (1995). Detection of primary DNA damage: applicability to biomonitoring of genotoxic occupational exposure and in clinical therapy. Pharmacogenetics 5 Spec No: S118-S122.

<u>Okada, Y; Nakagoshi, A; Tsurukawa, M; Matsumura, C; Eiho, J; Nakano, T.</u> (2012). Environmental risk assessment and concentration trend of atmospheric volatile organic compounds in Hyogo Prefecture, Japan. Environ Sci Pollut Res Int 19: 201-213. <u>http://dx.doi.org/10.1007/s11356-011-0550-0</u>

<u>Olsen, GW; Lacy, SE; Bodner, KM; Chau, M; Arceneaux, TG; Cartmill, JB; Ramlow, JM; Boswell, JM.</u> (1997). Mortality from pancreatic and lymphopoietic cancer among workers in ethylene and propylene chlorohydrin production. Occup Environ Med 54: 592-598. <u>http://dx.doi.org/10.1136/oem.54.8.592</u>

<u>Ong, T; Bi, HK; Xing, S; Stewart, J; Moorman, W.</u> (1993). Induction of sister chromatid exchange in spleen and bone marrow cells of rats exposed by inhalation to different dose rates of ethylene oxide. Environ Mol Mutagen 22: 147-151.

Otteneder, M; Lutz, WK. (1999). Correlation of DNA adduct levels with tumor incidence: carcinogenic potency of DNA adducts [Review]. DNA Repair 424: 237-247.

Parsons, BL; Manjanatha, MG; Myers, MB; McKim, KL; Wang, Y; Gollapudi, BB; Moore, N; Haber, LT; Moore, MM. (2012). Induction of cII and K-Ras mutation in lung DNA of Big Blue mice exposed to ethylene oxide by inhalation. Environ Mol Mutagen 53: S62-S62.

Pauwels, W; Veulemans, H. (1998). Comparison of ethylene, propylene and styrene 7,8-oxide in vitro adduct formation on N-terminal valine in human haemoglobin and on N-7-guanine in human DNA. Mutat Res 418: 21-33.

Pero, RW; Widegren, B; Hogstedt, B; Mitelman, F. (1981). In vivo and in vitro ethylene oxide exposure of human lymphocytes assessed by chemical stimulation of unscheduled DNA synthesis. DNA Repair 83: 271-289.

<u>Prentice, RL.</u> (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69: 331-342. <u>http://dx.doi.org/10.1093/biomet/69.2.331</u>

<u>Preston, RJ.</u> (1999). Cytogenetic effects of ethylene oxide, with an emphasis on population monitoring [Review]. Crit Rev Toxicol 29: 263-282. <u>http://dx.doi.org/10.1080/10408449991349212</u>

Preston, RJ; Fennell, TR; Leber, AP; Sielken, RL; Swenberg, JA. (1995). Reconsideration of the genetic risk assessment for ethylene oxide exposures. Environ Mol Mutagen 26: 189-202.

Rapoport, IA. (1948). The effect of ethylene oxide, glycide and glycol on genetic mutations. Dokl Biochem Biophys 60: 469-472.

<u>Recio, L; Donner, M; Abernethy, D; Pluta, L; Steen, AM; Wong, BA; James, A; Preston, RJ.</u> (2004). In vivo mutagenicity and mutation spectrum in the bone marrow and testes of B6C3F1 lacI transgenic mice following inhalation exposure to ethylene oxide. Mutagenesis 19: 215-222.

<u>Ribeiro, LR; Rabello-Gay, MN; Salvadori, DM; Pereira, CA; Beçak, W.</u> (1987). Cytogenetic effects of inhaled ethylene oxide in somatic and germ cells of mice. Arch Toxicol 59: 332-335.

<u>Ribeiro, LR; Salvadori, DM; Rios, AC; Costa, SL; Tates, AD; Törnqvist, M; Natarajan, AT.</u> (1994). Biological monitoring of workers occupationally exposed to ethylene oxide. Mutat Res 313: 81-87.

Robins, JM; Blevins, D; Ritter, G; Wulfsohn, M. (1992). G-estimation of the effect of prophylaxis therapy for Pneumocystis carinii pneumonia on the survival of AIDS patients. Epidemiology 3: 319-336.

Rossner, P; Boffetta, P; Ceppi, M; Bonassi, S; Smerhovsky, Z; Landa, K; Juzova, D; Sram, RJ. (2005). Chromosomal aberrations in lymphocytes of healthy subjects and risk of cancer. Environ Health Perspect 113: 517-520. <u>http://dx.doi.org/10.1289/ehp.6925</u>

Rothman, K; Greenland, S; Lash, T. (2008). Modern epidemiology. Philadelphia, PA: Lippincott Williams & Wilkins.

Rothman, KJ. (1986). Modern epidemiology. Boston, MA: Little Brown & Co.

Rothman, KJ; Greenland, S. (1998). Modern epidemiology (2nd ed.). Philadelphia, PA: Lippincott, Williams, & Wilkins.

<u>Rusyn, I; Asakura, S; Li, Y; Kosyk, O; Koc, H; Nakamura, J; Upton, PB; Swenberg, JA.</u> (2005). Effects of ethylene oxide and ethylene inhalation on DNA adducts, apurinic/apyrimidinic sites and expression of base excision DNA repair genes in rat brain, spleen, and liver. DNA Repair 4: 1099-1110. http://dx.doi.org/10.1016/j.dnarep.2005.05.009

<u>SAB</u> (Science Advisory Board). (2007). Review of Office of Research and Development (ORD) draft assessment entitled "Evaluation of the carcinogenicity of ethylene oxide". Washington, DC: Science Advisory Board, U.S. Environmental Protection Agency.

 $\label{eq:http://yosemite.epa.gov/sab/sabproduct.nsf/368203f97a15308a852574ba005bbd01/5D661BC118B527A3852573B8} \\ 0068C97B/\$File/EPA-SAB-08-004-unsigned.pdf$

Saha, M; Abushamaa, A; Giese, RW. (1995). General method for determining ethylene oxide and related N7guanine DNA adducts by gas chromatography-electron capture mass spectrometry. J Chromatogr A 712: 345-354.

Sarto, F; Clonfero, E; Bartolucci, GB; Franceschi, C; Chiricolo, M; Levis, AG. (1987). Sister chromatid exchanges and DNA repair capability in sanitary workers exposed to ethylene oxide: Evaluation of the dose-effect relationship. Am J Ind Med 12: 625-637. <u>http://dx.doi.org/10.1002/ajim.4700120515</u>

Sarto, F; Cominato, I; Pinton, AM; Brovedani, PG; Faccioli, CM; Bianchi, V; Levis, AG. (1984a). Cytogenetic damage in workers exposed to ethylene oxide. Mutat Res 138: 185-195.

Sarto, F; Cominato, I; Pinton, AM; Brovedani, PG; Faccioli, CM; Bianchi, V; Levis, AG. (1984b). Workers exposed to ethylene oxide have increased incidence of sister chromatid exchange. IARC Sci Publ413-419.

<u>Sarto, F; Tomanin, R; Giacomelli, L; Iannini, G; Cupiraggi, AR.</u> (1990). The micronucleus assay in human exfoliated cells of the nose and mouth: application to occupational exposures to chromic acid and ethylene oxide. Mutat Res 244: 345-351.

Sarto, F; Törnqvist, MA; Tomanin, R; Bartolucci, GB; Osterman-Golkar, SM; Ehrenberg, L. (1991). Studies of biological and chemical monitoring of low-level exposure to ethylene oxide. Scand J Work Environ Health 17: 60-64.

Schulte, PA; Boeniger, M; Walker, JT; Schober, SE; Pereira, MA; Gulati, DK; Wojciechowski, JP; Garza, A; Froelich, R; Strauss, G. (1992). Biologic markers in hospital workers exposed to low levels of ethylene oxide. Mutat Res 278: 237-251.

Segerback, D. (1983). Alkylation of DNA and hemoglobin in the mouse following exposure to ethene and ethene oxide. Chem Biol Interact 45: 139-151.

<u>Segerbäck, D.</u> (1990). Reaction products in hemoglobin and DNA after in vitro treatment with ethylene oxide and N-(2-hydroxyethyl)-N-nitrosourea. Carcinogenesis 11: 307-312.

Segerbäck, D. (1994). DNA alkylation by ethylene oxide and some mono-substituted epoxides [Review]. IARC Sci Publ37-47.

Shen, J; Kessler, W; Denk, B; Filser, JG. (1989). Metabolism and endogenous production of ethylene in rat and man. Arch Toxicol Suppl 13: 237-239.

Shore, RE; Gardner, MJ; Pannett, B. (1993). Ethylene oxide: an assessment of the epidemiological evidence on carcinogenicity. Occup Environ Med 50: 971-997.

Sielken, RL; Valdez-Flores, C. (2009). Life-table calculations of excess risk for incidence versus mortality: ethylene oxide case study. Regul Toxicol Pharmacol 55: 82-89. <u>http://dx.doi.org/10.1016/j.yrtph.2009.06.003</u>

<u>Sielken, RL; Valdez Flores, C.</u> (2009). Calculating excess risk with age-dependent adjustment factors and cumulative doses: Ethylene oxide case study. Regul Toxicol Pharmacol 55: 76-81. http://dx.doi.org/10.1016/j.yrtph.2009.06.004

Sisk, SC; Pluta, LJ; Meyer, KG; Wong, BC; Recio, L. (1997). Assessment of the in vivo mutagenicity of ethylene oxide in the tissues of B6C3F1 lacI transgenic mice following inhalation exposure. Mutat Res 391: 153-164.

<u>Smith-Bindman, R.</u> (2012). Environmental causes of breast cancer and radiation from medical imaging: findings from the Institute of Medicine report. Arch Intern Med 172: 1023-1027. http://dx.doi.org/10.1001/archinternmed.2012.2329

Snedeker, SM. (2006). Chemical exposures in the workplace: effect on breast cancer risk among women [Review]. AAOHN J 54: 270-279; quiz 280-271.

<u>Snellings, WM; Weil, CS; Maronpot, RR.</u> (1984). A two-year inhalation study of the carcinogenic potential of ethylene oxide in Fischer 344 rats. Toxicol Appl Pharmacol 75: 105-117.

Stayner, L; Steenland, K; Greife, A; Hornung, R; Hayes, RB; Nowlin, S; Morawetz, J; Ringenburg, V; Elliot, L; Halperin, W. (1993). Exposure-response analysis of cancer mortality in a cohort of workers exposed to ethylene oxide. Am J Epidemiol 138: 787-798.

Steenland, K; Deddens, J; Piacitelli, L. (2001). Risk assessment for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) based on an epidemiologic study. Am J Epidemiol 154: 451-458.

Steenland, K; Deddens, J; Salvan, A; Stayner, L. (1996). Negative bias in exposure-response trends in occupational studies: modeling the healthy workers survivor effect. Am J Epidemiol 143: 202-210.

<u>Steenland, K; Deddens, J; Zhao, S.</u> (2000). Biases in estimating the effect of cumulative exposure in log-linear models when estimated exposure levels are assigned. Scand J Work Environ Health 26: 37-43.

Steenland, K; Deddens, JA. (1997). Increased precision using countermatching in nested case-control studies. Epidemiology 8: 238-242.

<u>Steenland, K; Deddens, JA.</u> (2004). A practical guide to dose-response analyses and risk assessment in occupational epidemiology [Review]. Epidemiology 15: 63-70. <u>http://dx.doi.org/10.1097/01.ede.0000100287.45004.e7</u>

Steenland, K; Seals, R; Klein, M; Jinot, J; Kahn, HD. (2011). Risk estimation with epidemiologic data when response attenuates at high-exposure levels. Environ Health Perspect 119: 831-837. http://dx.doi.org/10.1289/ehp.1002521

Steenland, K; Stayner, L. (1993). An epidemiological study of workers potentially exposed to ethylene oxide [letter] [Letter]. Br J Ind Med 50: 1125.

Steenland, K; Stayner, L; Deddens, J. (2004). Mortality analyses in a cohort of 18 235 ethylene oxide exposed workers: follow up extended from 1987 to 1998. Occup Environ Med 61: 2-7.

Steenland, K; Stayner, L; Greife, A; Halperin, W; Hayes, R; Hornung, R; Nowlin, S. (1991). Mortality among workers exposed to ethylene oxide. N Engl J Med 324: 1402-1407. http://dx.doi.org/10.1056/NEJM199105163242004

Steenland, K; Whelan, E; Deddens, J; Stayner, L; Ward, E. (2003). Ethylene oxide and breast cancer incidence in a cohort study of 7576 women (United States). Cancer Causes Control 14: 531-539.

<u>Steinhausen, M; Van Gelder, R; Gabriel, S.</u> (2012). Arbeitsbedingte expositionen gegenüber krebserzeugenden, erbgutverändernden oder fortpflanzungsgefährdenden substanzen in Deutschland teil 2: Stoffe mit ERB nach BekGS 910. Gefahrst Reinhalt Luft 72: 347-358.

Stolley, PD; Soper, KA; Galloway, SM; Nichols, WW; Norman, SA; Wolman, SR. (1984). Sister-chromatid exchanges in association with occupational exposure to ethylene oxide. Mutat Res 129: 89-102. http://dx.doi.org/10.1016/0027-5107(84)90127-1

Swaen, GM; Burns, C; Teta, JM; Bodner, K; Keenan, D; Bodnar, CM. (2009). Mortality study update of ethylene oxide workers in chemical manufacturing: a 15 year update. J Occup Environ Med 51: 714-723. http://dx.doi.org/10.1097/JOM.0b013e3181a2ca20

Swaen, GM; Slangen, JM; Ott, MG; Kusters, E; Van Den Langenbergh, G; Arends, JW; Zober, A. (1996). Investigation of a cluster of ten cases of Hodgkin's disease in an occupational setting. Int Arch Occup Environ Health 68: 224-228.

Swenberg, JA; Fryar-Tita, E; Jeong, YC; Boysen, G; Starr, T; Walker, VE; Albertini, RJ. (2008). Biomarkers in toxicology and risk assessment: Informing critical dose-response relationships [Review]. Chem Res Toxicol 21: 253-265. <u>http://dx.doi.org/10.1021/tx700408t</u>

Swenberg, JA; Ham, A; Koc, H; Morinello, E; Ranasinghe, A; Tretyakova; Upton, PB; Wu, K. (2000). DNA adducts: effects of low exposure to ethylene oxide, vinyl chloride and butadiene. DNA Repair 464: 77-86. http://dx.doi.org/10.1016/S1383-5718(99)00168-0

Swenberg, JA; Lu, K; Moeller, BC; Gao, L; Upton, PB; Nakamura, J; Starr, TB. (2011). Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment [Review]. Toxicol Sci 120 Suppl 1: S130-S145. <u>http://dx.doi.org/10.1093/toxsci/kfq371</u>

Tateo, F; Bononi, M. (2006). Determination of ethylene chlorohydrin as marker of spices fumigation with ethylene oxide. J Food Compos Anal 19: 83-87. <u>http://dx.doi.org/10.1016/j.jfca.2004.12.003</u>

<u>Tates, AD; Boogaard, PJ; Darroudi, F; Natarajan, AT; Caubo, ME; Van Sittert, NJ.</u> (1995). Biological effect monitoring in industrial workers following incidental exposure to high concentrations of ethylene oxide. DNA Repair 329: 63-77.

This document is a draft for review purposes only and does not constitute Agency policy.

7/2013

Tates, AD; Grummt, T; Törnqvist, M; Farmer, PB; van Dam, FJ; van Mossel, H; Schoemaker, HM; Osterman-Golkar, S; Uebel, C; Tang, YS; Zwinderman, AH; Natarajan, AT; Ehrenberg, L. (1991). Biological and chemical monitoring of occupational exposure to ethylene oxide. Mutat Res 250: 483-497. <u>http://dx.doi.org/10.1016/0027-5107(91)90205-3</u>

Tates, AD; Van Dam, FJ; Natarajan, AT; Van Teylingen, CMM; De Zwart, FA; Zwinderman, AH; Van Sittert, NJ; Nilsen, A; Nilsen, OG; Zahlsen, K; Magnusson, AL; Tornqvist, M. (1999). Measurement of HPRT mutations in splenic lymphocytes and haemoglobin adducts in erythrocytes of Lewis rats exposed to ethylene oxide. DNA Repair 431: 397-415.

Teta, MJ; Benson, LO; Vitale, JN. (1993). Mortality study of ethylene oxide workers in chemical manufacturing: a 10 year update. Br J Ind Med 50: 704-709.

Teta, MJ; Sielken, RL; Valdez-Flores, C. (1999). Ethylene oxide cancer risk assessment based on epidemiological data: application of revised regulatory guidelines. Risk Anal 19: 1135-1155.

<u>Thier, R; Bolt, HM.</u> (2000). Carcinogenicity and genotoxicity of ethylene oxide: new aspects and recent advances [Review]. Crit Rev Toxicol 30: 595-608. <u>http://dx.doi.org/10.1080/10408440008951121</u>

Thiess, AM; Schwegler, H; Fleig, I; Stocker, WG. (1981). Mutagenicity study of workers exposed to alkylene oxide (ethylene oxide/propylene oxide) and derivatives. J Occup Environ Med 23: 343-347.

Tompa, A; Jakab, M; Biró, A; Magyar, B; Fodor, Z; Klupp, T; Major, J. (2006). Chemical safety and health conditions among Hungarian hospital nurses. Ann N Y Acad Sci 1076: 635-648. http://dx.doi.org/10.1196/annals.1371.054

Tompa, A; Major, J; Jakab, MG. (1999). Is breast cancer cluster influenced by environmental and occupational factors among hospital nurses in Hungary. Pathol Oncol Res 5: 117-121.

Tompkins, EM; Jones, DJL; Lamb, JH; Marsden, DA; Farmer, PB; Brown, K. (2008). Simultaneous detection of five different 2-hydroxyethyl-DNA adducts formed by ethylene oxide exposure, using a high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry assay. Rapid Commun Mass Spectrom 22: 19-28. http://dx.doi.org/10.1002/rcm.3328

Tompkins, EM; Jones, DJL; McLuckie, KIE; Farmer, PB; Brown, K. (2006). Weak mutagenicity of DNA adducts derived from ethylene oxide exposure. Mutagenesis 21: 292-292.

Tompkins, EM; McLuckie, KI; Jones, DJ; Farmer, PB; Brown, K. (2009). Mutagenicity of DNA adducts derived from ethylene oxide exposure in the pSP189 shuttle vector replicated in human Ad293 cells. Mutat Res 678: 129-137. http://dx.doi.org/10.1016/j.mrgentox.2009.05.011

Törnqvist, M. (1996). Ethylene oxide as a biological reactive intermediate of endogenous origin [Review]. Adv Exp Med Biol 387: 275-283.

Törnqvist, MA; Almberg, JG; Bergmark, EN; Nilsson, S; Osterman-Golkar, SM. (1989). Ethylene oxide doses in ethene-exposed fruit store workers. Scand J Work Environ Health 15: 436-438.

<u>Tretyakova, N; Goggin, M; Sangaraju, D; Janis, G.</u> (2012). Quantitation of DNA Adducts by Stable Isotope Dilution Mass Spectrometry. Chem Res Toxicol 25: 2007-2035. <u>http://dx.doi.org/10.1021/tx3002548</u>

Tucker, JD; Xu, J; Stewart, J; Baciu, PC; Ong, TM. (1986). Detection of sister chromatid exchanges induced by volatile genotoxicants. Teratog Carcinog Mutagen 6: 15-21. <u>http://dx.doi.org/10.1002/tcm.1770060103</u>

<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (1985). Performance evaluation of the Sciex TAGAR 600 mobile laboratory for ambient air monitoring Summary report [EPA Report].

<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2005a). Guidelines for carcinogen risk assessment [EPA Report]. (EPA/630/P-03/001F). Washington, DC: Risk Assessment Forum. <u>http://www.epa.gov/cancerguidelines/</u>

<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2005b). Supplemental guidance for assessing susceptibility from early-life exposure to carcinogens. (EPA/630/R-03/003F). Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum. <u>http://www.epa.gov/raf/publications/pdfs/childrens_supplement_final.pdf</u>.

<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2006a). Evaluation of the carcinogenicity of ethylene oxide: external review draft [EPA Report]. (EPA/635/R-06/003). Washington, DC: National Center for Environmental Assessment, Office of Research and Development. <u>http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=157664</u>

<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2006b). Science policy council peer review handbook 3rd edition [EPA Report]. (100B06002). Science Policy Council. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=157664

<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2012). Benchmark dose technical guidance. (EPA/100/R-12/001). Washington, DC: Risk Assessment Forum. http://www.epa.gov/raf/publications/pdfs/benchmark_dose_guidance.pdf

<u>Uziel, M; Munro, NB; Katz, DS; Vo-Dinh, T; Zeighami, EA; Waters, MD; Griffith, JD.</u> (1992). DNA adduct formation by 12 chemicals with populations potentially suitable for molecular epidemiological studies [Review]. Mutat Res 277: 35-90. <u>http://dx.doi.org/10.1016/0165-1110(92)90025-5</u>

<u>Valdez-Flores, C; Sielken, RL; Teta, MJ.</u> (2010). Quantitative cancer risk assessment based on NIOSH and UCC epidemiological data for workers exposed to ethylene oxide. Regul Toxicol Pharmacol 56: 312-320. http://dx.doi.org/10.1016/j.yrtph.2009.10.001

<u>Valdez-Flores, C; Sielken, RL; Teta, MJ.</u> (2011). Quantitative cancer risk assessment for ethylene oxide inhalation in occupational settings. Arch Toxicol 85: 1189-1193. <u>http://dx.doi.org/10.1007/s00204-011-0669-2</u>

van Balen, E; Font, R; Cavallé, N; Font, L; Garcia-Villanueva, M; Benavente, Y; Brennan, P; de Sanjose, S. (2006). Exposure to non-arsenic pesticides is associated with lymphoma among farmers in Spain. Occup Environ Med 63: 663-668. <u>http://dx.doi.org/10.1136/oem.2005.024026</u>

van Delft, JH; van Winden, MJ; Luiten-Schuite, A; Ribeiro, LR; Baan, RA. (1994). Comparison of various immunochemical assays for the detection of ethylene oxide-DNA adducts with monoclonal antibodies against imidazole ring-opened N7-(2-hydroxyethyl)guanosine: application in a biological monitoring study. Carcinogenesis 15: 1867-1873.

van Delft, JH; van Winden, MJ; van den Ende, AM; Baan, RA. (1993). Determining N7-alkylguanine adducts by immunochemical methods and HPLC with electrochemical detection: applications in animal studies and in monitoring human exposure to alkylating agents. Environ Health Perspect 99: 25-32.

van Sittert, NJ; Boogaard, PJ; Natarajan, AT; Tates, AD; Ehrenberg, LG; Törnqvist, MA. (2000). Formation of DNA adducts and induction of mutagenic effects in rats following 4 weeks inhalation exposure to ethylene oxide as a basis for cancer risk assessment. Mutat Res-Fundam Mol Mech Mutagen 447: 27-48. http://dx.doi.org/10.1016/S0027-5107(99)00208-0

Van Sittert, NJ; de Jong, G. (1985). Biomonitoring of exposure to potential mutagens and carcinogens in industrial populations. Food Chem Toxicol 23: 23-31.

van Wijngaarden, E; Hertz-Picciotto, I. (2004). A simple approach to performing quantitative cancer risk assessment using published results from occupational epidemiology studies. Sci Total Environ 332: 81-87. http://dx.doi.org/10.1016/j.scitotenv.2004.04.005

<u>Victorin, K; Stahlberg, M.</u> (1988). A method for studying the mutagenicity of some gaseous compounds in Salmonella typhimurium. Environ Mol Mutagen 11: 65-77.

This document is a draft for review purposes only and does not constitute Agency policy.

7/2013

R-15

DRAFT—DO NOT CITE OR QUOTE

Vogel, EW; Natarajan, AT. (1995). DNA damage and repair in somatic and germ cells in vivo [Review]. Mutat Res 330: 183-208.

<u>Vogel, EW; Nivard, MJ.</u> (1997). The response of germ cells to ethylene oxide, propylene oxide, propylene imine and methyl methanesulfonate is a matter of cell stage-related DNA repair. Environ Mol Mutagen 29: 124-135.

<u>Vogel, EW; Nivard, MJ.</u> (1998). Genotoxic effects of inhaled ethylene oxide, propylene oxide and butylene oxide on germ cells: sensitivity of genetic endpoints in relation to dose and repair status. Mutat Res 405: 259-271.

Walker, VE; Fennell, TR; Boucheron, JA; Fedtke, N; Ciroussel, F; Swenberg, JA. (1990). Macromolecular adducts of ethylene oxide: a literature review and a time-course study on the formation of 7-(2-hydroxyethyl)guanine following exposures of rats by inhalation [Review]. DNA Repair 233: 151-164.

Walker, VE; Fennell, TR; Upton, PB; MacNeela, JP; Swenberg, JA. (1993). Molecular dosimetry of DNA and hemoglobin adducts in mice and rats exposed to ethylene oxide. Environ Health Perspect 99: 11-17.

<u>Walker, VE; Fennell, TR; Upton, PB; Skopek, TR; Prevost, V; Shuker, DEG; Swenberg, JA.</u> (1992a). Molecular dosimetry of ethylene oxide: formation and persistence of 7-(2-hydroxyethyl)guanine in DNA following repeated exposures of rats and mice. Cancer Res 52: 4328-4334.

Walker, VE; MacNeela, JP; Swenberg, JA; Turner, MJ, Jr; Fennell, TR. (1992b). Molecular dosimetry of ethylene oxide: formation and persistence of N-(2-hydroxyethyl)valine in hemoglobin following repeated exposures of rats and mice. Cancer Res 52: 4320-4327.

Walker, VE; Sisk, SC; Upton, PB; Wong, BA; Recio, L. (1997). In vivo mutagenicity of ethylene oxide at the hprt locus in T-lymphocytes of B6C3F1 lacI transgenic mice following inhalation exposure. Mutat Res 392: 211-222.

Walker, VE; Skopek, TR. (1993). A mouse model for the study of in vivo mutational spectra: sequence specificity of ethylene oxide at the hprt locus. Mutat Res 288: 151-162. <u>http://dx.doi.org/10.1016/0027-5107(93)90216-3</u>

Walker, VE; Wu, KY; Upton, PB; Ranasinghe, A; Scheller, N; Cho, MH; Vergnes, JS; Skopek, TR; Swenberg, JA. (2000). Biomarkers of exposure and effect as indicators of potential carcinogenic risk arising from in vivo metabolism of ethylene to ethylene oxide. Carcinogenesis 21: 1661-1669.

Warwick, GP. (1963). The mechanism of action of alkylating agents [Review]. Cancer Res 23: 1315-1333.

Waters, MD; Stack, HF; Jackson, MA. (1999). Genetic toxicology data in the evaluation of potential human environmental carcinogens [Review]. Mutat Res 437: 21-49. <u>http://dx.doi.org/10.1016/S1383-5742(99)00037-X</u>

Weiderpass, E; Meo, M; Vainio, H. (2011). Risk factors for breast cancer, including occupational exposures. Saf Health Work 2: 1-8. <u>http://dx.doi.org/10.5491/SHAW.2011.2.1.1</u>

<u>WHO</u> (World Health Organization). (2003). Concise International Chemical Assessment Document: Ethylene oxide. Geneva: International Programme on Chemical Safety (IPCS). <u>http://www.inchem.org/documents/cicad5/4.htm</u>

Won, JU, k. (2010). Health Effects of Chemicals used in hospitals among Healthcare Workers. J Korean Am Med Assoc 53: 474-482. <u>http://dx.doi.org/10.5124/jkma.2010.53.6.474</u>

Wong, O. (1991). Mortality among workers exposed to ethylene oxide [Letter]. N Engl J Med 325: 1254. http://dx.doi.org/10.1056/NEJM199110243251716

Wong, O; Trent, LS. (1993). An epidemiological study of workers potentially exposed to ethylene oxide. Occup Environ Med 50: 308-316.

<u>Wu, KY; Chiang, SY; Shih, WC; Huang, CC; Chen, MF; Swenberg, JA.</u> (2011). The application of mass spectrometry in molecular dosimetry: Ethylene oxide as an example. Mass Spectrom Rev 30: 733-756. <u>http://dx.doi.org/10.1002/mas.20299</u>

<u>Wu, KY; Ranasinghe, A; Upton, PB; Walker, V.</u> (1999a). Molecular dosimetry of endogenous and ethylene oxideinduced N7-(2-hydroxyethyl) guanine formation in tissues of rodents. Carcinogenesis 20: 1787-1792.

<u>Wu, KY; Scheller, N; Ranasinghe, A; Yen, TY; Sangaiah, R; Giese, R; Swenberg, JA.</u> (1999b). A gas chromatography/electron capture/negative chemical ionization high-resolution mass spectrometry method for analysis of endogenous and exogenous N 7-(2-hydroxyethyl) guanine in rodents and its potential for human biological monitoring. Chem Res Toxicol 12: 722-729. <u>http://dx.doi.org/10.1021/tx990059n</u>

Yager, JW; Benz, RD. (1982). Sister chromatid exchanges induced in rabbit lymphocytes by ethylene oxide after inhalation exposure. Environ Mutagen 4: 121-134.

<u>Yager, JW; Hines, CJ; Spear, RC.</u> (1983). Exposure to ethylene oxide at work increases sister chromatid exchanges in human peripheral lymphocytes. Science 219: 1221-1223. <u>http://dx.doi.org/10.1126/science.6828851</u>

Yong, LC: Schulte, PA; Kao, CY; Giese, RW; Boeniger, MF; Strauss, GH; Petersen, MR; Wiencke, JK. (2007). DNA adducts in granulocytes of hospital workers exposed to ethylene oxide. Am J Ind Med 50: 293-302. http://dx.doi.org/10.1002/ajim.20443

Yong, LC: Schulte, PA: Wiencke, JK: Boeniger, MF: Connally, LB: Walker, JT: Whelan, EA: Ward, EM. (2001). Hemoglobin adducts and sister chromatid exchanges in hospital workers exposed to ethylene oxide: effects of glutathione S-transferase T1 and M1 genotypes. Cancer Epidemiol Biomarkers Prev 10: 539-550.

Zhao, C; Kumar, R; Zahlsen, K; Sundmark, HB; Hemminki, K; Eide, I. (1997). Persistence of 7-(2-hydroxyethyl)guanine-DNA adducts in rats exposed to ethene by inhalation. Biomarkers 2: 355-359.

Zhao, C; Tyndyk, M; Eide, I; Hemminki, K. (1999). Endogenous and background DNA adducts by methylating and 2-hydroxyethylating agents. Mutat Res 424: 117-125.