

EPA/635/R-10/006C www.epa.gov/iris

Toxicological Review of Benzo[a]pyrene

(CASRN 50-32-8)

In Support of Summary Information on the Integrated Risk Information System (IRIS)

Supplemental Information

June 2012

NOTICE

This document is an **Interagency Science Consultation draft**. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications.

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is a preliminary draft for review purposes only. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement of recommendation for use.

CONTENTS

APPENDIX A.	OTHER AGENCY AND INTERNATIONAL ASSESSMENTS	A-1
APPENDIX B.	INFORMATION IN SUPPORT OF HAZARD IDENTIFICATION AND DOSE- REPONSE ANALYSIS	B-3
	TOXICOKINETICS	B-3
	HUMAN STUDIES	B-16
	ANIMAL BIOASSAYS	B-36
	OTHER PERTINENT TOXICITY INFORMATION	B-88
APPENDIX C.	DOSE-RESPONSE MODELING FOR THE DERIVATION OF REFERENCE VALUES FOR EFFECTS OTHER THAN CANCER AND THE DERIVATION OF CANCER RISK ESTIMATES	C-1
	DOSE-RESPONSE MODELING FOR DERVIATION OF RFD	C-1
	INHALATION DOSIMETRY MODELING FOR RFC DERIVATION	C-23
	DOSE-RESPONSE MODELING FOR CANCER RISK VALUES	C-26
	DOSE-RESPONSE MODELING FOR THE INHALATION UNIT RISK	C-58
	DOSE-RESPONSE MODELING FOR THE DERMAL SLOPE FACTOR	C-65
	ALTERNATIVE APPROACHES FOR CROSS-SPECIES SCALING OF THE DERMAL SLOPE FACTOR	C-97
APPENDIX D.	SUMMARY OF EXTERNAL PEER REVIEW AND PUBLIC COMMENTS AND EPA'S DISPOSITION	D-1
REFERENCES F	OR APPENDICES	1

TABLES AND FIGURES

Table A-1. Health assessments and regulatory limits by other national and international agencies A-1
Figure B-1. Metabolic pathways for benzo[a]pyreneB-8
Figure B-2. The stereospecific activation of benzo[a]pyrene
Table B-1. Exposure to benzo[a]pyrene and mortality from cardiovascular diseases in a European
cohort of asphalt paving workers
Table B-2. Exposure to benzo[a]pyrene and mortality from cardiovascular diseases in a Canadian
cohort of male aluminum smelter workers
Table B-3. Exposure-related effects in Chinese coke oven workers or warehouse controls exposed
to benzo[a]pyrene in the workplaceB-25
Table B-4. Exposure-related effects in Chinese coke oven workers or warehouse controls exposed
to benzo[a]pyrene in the workplace, stratified by urinary metabolite levels
Table B-5. Background information on Chinese coke oven workers or warehouse controls exposed
to benzo[a]pyrene in the workplaceB-27
Table B-6. Exposure-related effects in male Wistar rats exposed to benzo[a]pyrene by gayage 5
days/week for 5 weeks
Table B-7. Exposure-related effects in Wistar rats exposed to benzo[a]pyrene by gayage 5
days/week for 5 weeks
Table B-8. Means ± SD ^a for liver and thymus weights in Wistar rats exposed to benzo[a]pyrene by
gavage 5 davs/week for 90 davs
Table B-9. Incidences of exposure-related neoplasms in Wistar rats treated by gavage with
benzo[a]pvrene. 5 days/week. for 104 weeks
Table B-10. Incidences of alimentary tract tumors in Sprague-Dawley rats chronically exposed to
benzo[a]pvrene in the diet or by gavage in caffeine solution
Table B-11. Incidence of nonneoplastic and neoplastic lesions in female B6C3F ₁ mice fed
benzo[a]pyrene in the diet for up to 2 years
Table B-12. Other oral exposure cancer bioassays in mice
Table B-13. Incidence of respiratory and upper digestive tract tumors in male hamsters treated for
life with benzo[a]pyrene by inhalationB-56
Table B-14. Number of animals with pharvnx and larvnx tumors in male hamsters exposed by
inhalation to benzo[a]pyrene for lifeB-57
Table B-15. Skin tumor incidence and time of appearance in male C57L mice dermally exposed to
benzo[a]pvrene for up to 103 weeks
Table B-16. Skin tumor incidence and time of appearance in male SWR. C3HeB. and A/He mice
dermally exposed to benzo[a]pyrene for life or until a skin tumor was detected
Table B-17. Tumor incidence in female Swiss mice dermally exposed to benzo[a]pyrene for up to
93 weeks
Table B-18. Skin tumor incidence in female NMRI and Swiss mice dermally exposed to
benzo[a]pvreneB-62
Table B-19. Skin tumor incidence in female NMRI mice dermally exposed to benzo[a]pyrene B-62
Table B-20. Skin tumor incidence in female NMRI mice dermally exposed to benzo[a]pyrene B-63
Table B-21. Skin tumor incidence and time of appearance in female CFLP mice dermally exposed to
benzo[a]pyrene for 104 weeks
Table B-22. Skin tumor incidence in female NMRI mice dermally exposed to benzolalpyrene for life
Table B-23. Skin tumor incidence in male C3H/HeJ mice dermally exposed to benzo[a]pyrene for

This document is a draft for review purposes only and does not constitute Agency policy.

iv DRAFT—DO NOT CITE OR QUOTE

24 months
Table B-24. Mortality and cervical histopathology incidences in female ICR mice exposed to
benzo[a]pyrene via gavage for 14 weeksB-70
Table B-25. Means ± SD for ovary weight in female Sprague-Dawley ratsB-72
Table B-26. Reproductive effects in male and female CD-1 F1 mice exposed in utero to
benzo[a]pyreneB-74
Table B-27. Effect of prenatal exposure to benzo[a]pyrene on indices of reproductive performance
in F1 female NMRI miceB-76
Table B-28. Exposure-related effects in Long Evans Hooded rats exposed to benzo[a]pyrene by
gavage daily <i>in utero</i> from GD14 – GD17B-80
Table B-29. Exposure-related effects in Swiss Albino OF1 mice exposed as pups to benzo[a]pyrene
in breast milk from dams treated by gavage daily from PND1 – PND14B-82
Table B-30. Pregnancy outcomes in female F344 rats treated with benzo[a]pyrene on GDs 11–21
by inhalationB-84
Table B-31. In vitro genotoxicity studies of benzo[a]pyrene in non-mammalian cells B-88
Table B-32. In vitro genotoxicity studies of benzo[a]pyrene in mammalian cells B-89
Table B-33. In vivo genotoxicity studies of benzo[a]pyrene B-1
Table C-1. Means ± SD ^a for thymus weight in male Wistar rats exposed to benzo[a]pyrene by
gavage 5 days/week for 90 days
Table C-2. Model predictions for decreased thymus weight in male Wistar rats—90 days
Figure C-1. Fit of linear model (nonconstant variance) to data on decreased thymus weight in male
Wistar rats—90 days
Table C-3. Means ± SD ^a for thymus weight in female wistar rats exposed to benzo[a]pyrene by
gavage 5 days/week for 90 days
Table C-4. Model predictions for decreased thymus weight in female wistar rats—90 days
Figure C-2. Fit of linear model (constant variance) to data on decreased thymus weight in female
Wistal Tals—90 days
Table C-5. Medal predictions for degraged every weight in female Sprague Dawley rats
Figure C-3. Fit of linear /nolynomial (1°) model to data on decreased overy weight
Table C-7 Means + SDs for Escape Latency and Time Spent in Target Ouadrant
Table C-8. Model predictions for increase in Morris water maze test for escape latency male and
female rats
Figure C-4 Fit of Hill model to data on Morris water maze test escape latency C-15
Table C-9. Model predictions for decrease in Morris water maze test for time spent in target
audrant male and female rats
Figure C-5. Fit of Exponential 4 model to data on Morris water maze time spent in target quadrant.
Table C-10. Incidence of cervical epithelial hyperplasia
Table C-11. Model predictions for increased incidence of epithelial hyperplasia in female ICR miceC-
21
Figure C-6. Human fractional deposition
Figure C-7. Rat fractional deposition
Table C-12. Tumor incidence data, with time to death with tumor; male rats exposed by gavage to
benzo[a]pyrene—Kroese et al. (2001) C-29
Table C-13. Tumor incidence data, with time to death with tumor; female rats exposed by gavage to
benzo[a]pyrene—Kroese et al. (2001)C-31
Table C-14. Tumor incidence, with time to death with tumor; female mice exposed to
benzo[a]pyrene via diet—Beland and Culp (1998)
Table C-15. Derivation of HEDs to use for BMD modeling of Wistar rat tumor incidence data from

This document is a draft for review purposes only and does not constitute Agency policy.
v DRAFT—DO NOT CITE OR QUOTE

Kroese et al. (2001)
Table C-16. Derivation of HEDs for dose-response modeling of B6C3F ₁ female mouse tumor
incidence data from Beland and Culp (1998)C-35
Table C-17. Summary of model selection and modeling results for best-fitting multistage-Weibull
models, using time-to-tumor data for rats from Kroese et al. (1981) C-36
Table C-18.Summary of human equivalent overall oral slope factors, based on male and female rat
tumor incidence C-55
Table C-19. Summary of model selection among multistage-Weibull models fit to alimentary tract
tumor data for female mice
Table C-20. Individual pathology and tumor occurrence data for male Syrian hamsters exposed to
benzo[a]pyrene via inhalation for lifetime—Thyssen et al. (1981).
Table C-21. Summary of model selection among multistage-Weibull models fit to tumor data for
male hamsters
Table C-22. Skin tumor incidence, benign or malignant in female Swiss or NMRI mice dermally
exposed to benzo[a]pyrene
Table C-23. Skin tumor incidence, benign or malignant, in C57L male mice dermally exposed to
benzo[a]pyrene
Table C-24. Skin tumor incidence, benign or malignant, in female CFLP mice dermally exposed to
benzo[a]pyrene
Table C-25. Skin tumor incidence, benign or malignant, in male C3H/HeJ mice dermally exposed to
benzo[a]pyrene
Table C-26. Summary of model selection and modeling results for best-fitting multistage models,
for multiple data sets of skin tumors in mice following dermal benzo[a]pyrene exposureC-
/1
Figure C-8. Fit of multistage model to skin tumors in C57L mice exposed dermally to
Eigure C. Q. Eit of multistage model to skin tumors in female Surice mice exposed dormally to
Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to
Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. C-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al. 1972); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-75 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. G-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. G-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. G-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1977); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. G-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. G-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. G-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-77 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. G-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. C-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-83 Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. C-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1984); graph and model output. C-83 Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1984); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. G-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-77 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. G-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. G-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. G-83 Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1984); graph and model output. G-85 Figure C-15. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1984); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. C-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-83 Figure C-15. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1984); graph and model output. C-85 Figure C-15. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al. 1983); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. C-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-12. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-83 Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-85 Figure C-15. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1983); graph and model output. C-85 Figure C-16. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1983); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. C-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-12. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-83 Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1984); graph and model output. C-85 Figure C-15. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1983); graph and model output. C-87 Figure C-16. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. C-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-83 Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-85 Figure C-15. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1983); graph and model output. C-87 Figure C-16. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-87 Figure C-16. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-87 Figure C-16. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-83 Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1984); graph and model output. C-85 Figure C-15. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-87 Figure C-17. Fit of log-logistic model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-87 Figure C-17. Fit of log-logistic model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output.
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. C-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-12. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-83 Figure C-14. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Habs et al., 1984); graph and model output. C-85 Figure C-16. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-87 Figure C-17. Fit of log-logistic model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-88 Figure C-17. Fit of nultistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-89 Figure C-17. Fit of log-logistic model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-89 Figure C-18. Fit of multistage model to skin tumors in female CFLP mice exposed der
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. C-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1977); graph and model output. C-79 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-83 Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1984); graph and model output. C-85 Figure C-15. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-87 Figure C-16. Fit of log-logistic model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-89 Figure C-17. Fit of log-logistic model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-89 Figure C-18. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-91 Figure C-18. Fit of multistage model to skin tumors in female CFLP mice exposed derm
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1977); graph and model output. C-79 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-83 Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1984); graph and model output. C-85 Figure C-15. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1983); graph and model output. C-87 Figure C-16. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-89 Figure C-17. Fit of log-logistic model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-91 Figure C-18. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-93 Figure C-16. Fit of multistage model to skin tumors in female CFLP mice exposed de
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. C-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1977); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-83 Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-85 Figure C-15. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1983); graph and model output. C-87 Figure C-17. Fit of log-logistic model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-89 Figure C-17. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-91 Figure C-18. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-93 Figure C-19. Fit of multistage model to skin tumors in female CFLP mice exposed dermal
 Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output. C-75 Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-77 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output. C-79 Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output. C-81 Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output. C-83 Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1984); graph and model output. C-85 Figure C-15. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1983); graph and model output. C-87 Figure C-16. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-89 Figure C-18. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-89 Figure C-18. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output. C-91 Figure C-18. Fit of multistage model to skin tumors in female CFLP mice exposed dermally

ABBREVIATIONS

3-MC	3-methylcholanthrene						
8-OHdG	8-hydroxydeoxyguanosine						
ADAF	age-dependent adjustment factor						
Ah	aryl hydrocarbon						
AHH	aryl hydrocarbon hydroxylase						
AhR	Ah receptor						
AIC	Akaike's Information Criterion						
AKR	aldo-keto reductase						
ALT	alanine aminotransferase						
ANOVA	analysis of variance						
ATSDR	Agency for Toxic Substances and						
	Disease Registry						
AUC	area under the curve						
BMD	benchmark dose						
BMDL	benchmark dose, 95% lower bound						
BMDS	Benchmark Dose Software						
BMR	benchmark response						
BPDE	benzo[a]pyrene-7,8-diol-9,10-epoxide						
BPQ	benzo[a]pyrene-7,8-quinone						
BrdU	bromodeoxyuridine						
BSM	benzene-soluble matter						
BUN	blood urea nitrogen						
CA	chromosomal aberration						
CASRN	Chemical Abstracts Service Registry						
	Number						
СНО	Chinese hamster ovary						
CI	confidence interval						
CNS	central nervous system						
CONSAAM	Conversational SAAM						
COX	cyclooxygenase						
СҮР	cytochrome						
CYP450	cytochrome P450						
dG-N ² -BP	DE 10β-(deoxyguanosin-N ² -yl)-						
	7β,8α,9α-trihydroxy-						
	7,8,9,10-tetrahydro-benzo[a]pyrene						
DHH	dihydrodiol dehydrogenase						
DMSO	dimethyl sulfoxide						
DNA	deoxyribonucleic acid						
DNCB	2,4-dinitrochlorobenzene						
DSF	dermal slope factor						
ED	effective dose						
EH	epoxide hydrolase						
EROD	7-ethoxyresorufin-O-deethylase						
ETS	environmental tobacco smoke						
Fe ₂ O ₃	ferrous oxide						
FOB	functional observational battery						
Ga_2O_3	gallium oxide						
GD	gestational day						
GGT	γ-glutamyl transferase						
GI	gastrointestinal						

GJIC	gap junctional intercellular
	communication
GNMT	glycine N-methyltransferase
GSH	reduced glutathione
GST	glutathione-S-transferase
HEC	human equivalent concentration
HED	human equivalent dose
HFC	high-frequency cells
HPLC	high-performance liquid
	chromatography
hprt	hypoxanthine guanine phosphoribosyl
	transferase
IFN	interferon
Ig	immunoglobulin
IHD	ischemic heart disease
IL	interleukin
i.p.	intraperitoneal
IRIS	Integrated Risk Information System
i.v.	intravenous
LC	liquid chromatography
LH	luteinizing hormone
LOAEL	lowest-observed-adverse-effect level
MLE	maximum likelihood estimate
MMAD	mass median aerodynamic diameter
MN	micronucleus
MOA	mode of action
MPO	myeloperoxidase
mRNA	messenger ribonucleic acid
MS	mass spectrometry
NF	naphthoflavone
NK	natural-killer
NMDA	N-methyl-D-aspartate
NOAEL	no-observed-adverse-effect level
NQO	NADPH:quinone oxidoreductase
NTP	National Toxicology Program
OR	odds ratio
PAH	polycyclic aromatic hydrocarbon
РВРК	physiologically based pharmacokinetic
PCNA	proliferating cell nuclear antigen
PCK	polymerase chain reaction
РНА	pnytonemaggiutinin
PH5 DMN	prostagiandin H synthase
PND	postilatal day
p.o. DOD	per us noint of donarturo
	point of departure
QSAK	quantitative structure activity
RRC	red blood cell
	reference concentration
INIC	

This document is a draft for review purposes only and does not constitute Agency policy.

RfD	reference dose
RN	reaction network
RNA	ribonucleic acid
ROS	reactive oxygen species
RR	relative risk
S.C.	subcutaneous
SAAM	Simulation, Analysis and Modeling
SAM	S-adenosylmethionine
SCC	squamous cell carcinoma
SCE	sister chromatid exchange
SD	standard deviation
SE	standard error
SEM	standard error of the mean
SIR	standardized incidence ratio
SNP	single nucleotide polymorphisms
SPF	specific pathogen-free
SRBC	sheep red blood cell
SSB	single strand break
TCDD	2,3,7,8-tetrachlorodibenzo-p-dioxin
TPA	12-0-tetradecanoylphorbol-13-acetate
TWA	time-weighted average
UCL	upper confidence limit
UDP	uridine diphosphate
UF	uncertainty factor
WBC	white blood cells
WT	wild type
WTC	World Trade Center
ХР	xeroderma pigmentosum
XPA	xeroderma pigmentosum group A

APPENDIX A. OTHER AGENCY AND INTERNATIONAL ASSESSMENTS

3 4

Table A-1. Health assessments and regulatory limits by other nationaland international agencies

Organization	Toxicity value or determination				
Non-cancer: oral value					
CalEPA (2010)	The concentration of 4 μ g/L (ADD = 1.7 x 10⁻³ mg/kg-day) for benzo[a]pyrene in water for noncarcinogenic effects was derived from a LOAEL of 5 mg/kg-day for renal toxicity from Knuckles <i>et al.</i> (2001), a UF of 3,000.				
Non-cancer: inh	alation value				
WHO (1996, 2003)	The guideline value for benzo[a]pyrene in drinking water of 0.7 μ g/L was based on a cancer slope factor of 0.46 (mg/kg-day) ⁻¹ derived from Neal and Rigdon (1967) and a lifetime excess cancer risk of 10 ⁻⁵ .				
Health Canada (1986, 2005)	The Maximum Acceptable Concentration (MAC) for benzo[a]pyrene in drinking water of 0.01 μ g/L was derived from Neal and Rigdon (1967) using a drinking water consumption rate of 1.5 L/day, body weight of 70 kg, and a lifetime cancer risk of 5 x 10 ⁻⁷ . The concentrations of 2 , 0.2 , and 0.02 μ g/L benzo[a]pyrene correspond to lifetime excess cancer risks of 10 ⁻⁴ , 10 ⁻⁵ , and 10 ⁻⁶ .				
Cancer: Oral val	ue				
CalEPA (2010)	Cancer slope factor of 2.9 (mg/kg-day) ⁻¹ derived from Culp <i>et al</i> . (1998). This includes an age sensitivity factor of 1.7.				
Cancer: Inhalati	on value				
WHO (2000, 2010)	Does not recommend specific guideline values for PAHs in air. A unit risk of 87 $(mg/m^3)^{-1}$ for benzo[a]pyrene, as an indicator a PAH mixtures, was derived from U.S. EPA's IUR from coke oven emissions. <i>The concentrations</i> 0.0012 , 1.2 x 10 ⁻⁴ , and 1.2 x 10 ⁻⁵ $\mu g/m^3$ benzo[a]pyrene correspond to lifetime excess cancer risks of 10 ⁻⁴ , 10 ⁻⁵ , and 10 ⁻⁶ .				
CalEPA (1994)	The inhalation unit risk of 1.1 (mg/m³) ⁻¹ was derived based on Thyssen et al. (1981).				
EU (2005)	Target value of 1 ng/m³ benzo[a]pyrene (averaged over one calendar year) as a marker of PAH carcinogenic risk. Does not include information for how target value was derived.				

Cancer characterization				
IARC (2010)	Carcinogenic to humans (Group 1) (based on mechanistic data)			
NTP (2011)	"reasonably anticipated to be a human carcinogen"			
CalEPA (2000)	"Sufficient reason for concern regarding the carcinogenic potential of this toxicant in humans."			
Health Canada (1986, 1988)	Probably carcinogenic to man			

1

APPENDIX B. INFORMATION IN SUPPORT OF 1 HAZARD IDENTIFICATION AND DOSE-REPONSE 2 **ANALYSIS**

TOXICOKINETICS

5 **Overview**

3

4

6 Benzo[a]pyrene is absorbed following exposure by inhalation, oral, and dermal routes. The 7 rate and extent of absorption are dependent upon the exposure medium. The presence of 8 benzo[a]pyrene in body fat, blood, liver, and kidney and the presence of benzo[a]pyrene 9 metabolites in serum and excreta demonstrate wide systemic tissue distribution. Benzo[a]pyrene 10 metabolism occurs in essentially all tissues, with high metabolic capacity in the liver and significant 11 metabolism in tissues at the portal of entry (lung, skin, and gastrointestinal [GI] tract) and in 12 reproductive tissues. Stable metabolic products identified in body tissues and excreta are very 13 diverse and include phenols, quinones, and dihydrodiols. These classes of metabolites are typically 14 isolated as glucuronide or sulfate ester conjungates in the excreta, but can also include glutathione 15 conjugates formed from quinones or intermediary epoxides. The primary route of metabolite

- 16 elimination is in the feces via biliary excretion, particularly following exposure by the inhalation
- 17 route. To a lesser degree, benzo[a]pyrene metabolites are eliminated via urine. Overall,
- 18 benzo[a]pyrene is eliminated quickly with a biological half-life of several hours.

19 Absorption

- 20 The absorption of benzo[a]pyrene has been studied in humans and laboratory animals for
- 21 inhalation, ingestion and dermal exposure. Studies of workers occupationally exposed to
- 22 benzo[a]pyrene have qualitatively demonstrated absorption via inhalation by correlating
- 23 concentrations of benzo[a]pyrene in the air and benzo[a]pyrene metabolites in the exposed
- 24 worker's urine. Occuational exposures to benzo[a]pyrene measured with personal air samplers
- 25 were correlated to urine concentrations of benzo[a]pyrene-9,10-dihydrodiol, a specific metabolite
- 26 of benzo[a]pyrene, in 24 hour aggregate urine samples by Grimmer et al., 1994. The amount of
- 27 benzo[a]pyrene extracted- from personal air monitoring devices (a surrogate for ambient PAHs) of
- 28 coke oven workers were correlated with r-7,t-8,9,c 10 tetrahydroxy-7,8,9,10-
- 29 tetrahydrobenzo[a]pyrene (trans-anti-benzo[a]pyrene-tetrol, a specific metabolite of
- 30 benzo[a]pyrene) in the worker's urine by Wu et al. (2002). In both of these studies only a very
- 31 small fraction (< 1%) of the inhaled benzo[a]pyrene was recovered from urine, consistent with
- 32 studies in animals that find urine is not a major route of elimination for benzo[a]pyrene (as
- 33 described in the excretion section below). These occupational studies cannot be used to quantify

- 1 absorption through inhalation-only exposure in humans because the persistence of
- 2 benzo[a]pyrene-contaminated particulate matter on surfaces and food may lead to exposures via
- 3 additional routes (Bostrum et al., 2002). Nevertheless, the observation of benzo[a]pyrene
- 4 metabolites in excreta of exposed humans provides qualitative evidence for benzo[a]pyrene
- 5 absorption, at least some of which is likely to occur via inhalation.
- 6 Results from studies of animals following intratracheal instillation of benzo[a]pyrene 7 provide supporting, quantitative evidence that absorption by the respiratory tract is rapid (Bevan 8 and Ulman, 1991; Gerde et al. 1993 b; Weyand and Bevan, 1986; 1987). Following intratracheal
- 9 instillation of 1 µg 3H-labeled benzo[a]pyrene/kg dissolved in triethylene glycol to Sprague-Dawley
- 10 rats, radioactivity rapidly appeared in the liver (reaching a maximum of about 21% of the
- 11 administered dose within 10 minutes). Elimination of radioactivity from the lung was biphasic,
- 12 with elimination half-times of 5 and 116 minutes (Weyand and Bevan, 1986). In bile-cannulated
- 13 rats, bile collected for 6 hours after instillation accounted for 74% of the administered radioactivity
- 14 (Weyand and Bevan, 1986). The results are consistent with rapid and extensive absorption by the
- 15 respiratory tract and rapid entry into hepatobiliary circulation following intratracheal instillation.
- 16 The respiratory tract absorption may also be affected by the vehicle, since higher amounts of
- 17 benzo[a]pyrene were excreted in bile when administered with hydrophilic triethylene glycol than
- 18 with lipophilic solvents ethyl laurate or tricaprylin (Bevan and Ulman, 1991). Particle-bound
- 19 benzo[a]pyrene deposited in the respiratory tract is absorbed and cleared more slowly than the
- 20 neat compound (Gerde et al., 2001).
- 21 Studies conducted to assess levels of benzo[a]pyrene metabolites or benzo[a]pyrene-DNA 22 adduct levels in humans exposed to benzo[a]pyrene by the oral route are not adequate to develop 23 quantitative estimates of oral bioavailability. The concentration of benzo[a]pyrene was below 24 detection limits (<0.1 μ g/person) in the feces of eight volunteers who had ingested broiled meat 25 containing approximately 8.6 µg of benzo[a]pyrene (Hecht et al., 1979). However, studies in 26 laboratory animals demonstrate benzo[a]pyrene is absorbed via ingestion. Studies of rats and pigs 27 measured the oral bioavailability of benzo[a]pyrene in the range from 10 to 40% (Ramesh et al., 28 2001b; Foth et al., 1988; Cavret et al., 2003; Hecht et al., 1979). The absorption of benzo[a]pyrene 29 may depend on the vehicle. Intestinal absorption of benzo[a]pyrene was enhanced in rats when the 30 compound was solubilized in lipophilic compounds such as triolein, soybean oil, and high-fat diets, 31 as compared with fiber- or protein-rich diets (O'Neill et al., 1991; Kawamura et al., 1988). Aqueous 32 vehicles, quercetin, chlorogenic acid, or carbon particles reduced biliary excretion of 33 benzo[a]pyrene, while lipid media such as corn oil increased it (Stavric and Klassen, 1994). The 34 addition of wheat bran to the benzo[a]pyrene containing diets increased fecal excretion of 35 benzo[a]pyrene (Mirvish et al., 1981). 36 Studies of benzo[a]pyrene metabolites or DNA adducts measured in humans exposed
- 37 dermally to benzo[a]pyrene-containing mixtures demonstrate that benzo[a]pyrene is absorbed
- 38 dermally. One study of dermal absorption in human volunteers found absorption rate constants

- 1 ranging from 0.036 to 0.135/hour over a 45 minute exposure, suggesting 20–56% of the dose
- 2 would be absorbed within 6 hours (Van Rooij et al., 1993). Dermal absorption rates varied 69%
- 3 between different anatomical sites (forehead, shoulder, volar forearm, palmar side of the hand,
- 4 groin, and ankle) and only 7% between different individual volunteers (Van Rooij et al., 1993). The
- 5 overall absorbed amount of benzo[a]pyrene in explanted viable skin samples from tissue donors
- 6 (maintained in short-term organ cultures) exposed for 24 hours ranged from 0.09 to 2.6% of the
- 7 dose (Kao et al., 1985; Wester et al., 1990). Similar amounts of penetration were measured in skin
- 8 samples from other species including marmosets, rats, and rabbits (Kao et al., 1985). Skin from
- 9 mice allowed more of the dose to penetrate (more than 10%), while that of guinea pig let only a
- 10 negligible percentage of the dose penetrate (Kao et al., 1985). The vehicle for benzo[a]pyrene
- 11 exposure is an important factor in skin penetration. Exposure of female Sprague-Dawley rats and
- 12 female rhesus monkeys topically to benzo[a]pyrene in crude oil or acetone caused approximately 4-
- 13 fold more extensive absorption than benzo[a]pyrene in soil (Wester et al., 1990; Yang et al., 1989).
- 14 The viscosity of oil product used as a vehicle also changed skin penetration with increased uptake
- 15 of benzo[a]pyrene for oils with decreased viscosity (Potter et al., 1999). Metabolism is also an
- 16 important determinant of permeation, with very low rates observed in nonviable skin (Kao et al.,
- 17 1985).

18 Distribution

19 No adequate quantitative studies of benzo[a]pyrene tissue distribution in exposed humans 20 were identified. Obana et al. (1981) observed low levels of benzo[a]pyrene in liver and fat tissues 21 from autopsy samples. However, prior exposure histories were not available for the donors. 22 Nevertheless, the identification of benzo[a]pyrene metabolites or DNA adducts in tissues and 23 excreta of PAH-exposed populations suggest that benzo[a]pyrene is widely distributed.

- 24 Distribution of benzo[a]pyrene has been studied in laboratory animals for multiple routes 25 of exposure, including inhalation, ingestion, dermal and intravenous. Exposure to benzo[a]pyrene 26 in various species (Sprague-Dawley rats, Gunn rats, guinea pigs, and hamsters) results in wide
- 27 distribution throughout the body and rapid uptake into well-perfused tissues (i.e. lung, kidney, and
- 28 liver) (Wevand and Bevan, 1987; Wevand and Bevan, 1986). Route of administration of
- 29 benzo[a]pyrene has little influence on the tissue distribution with similar results from studies of
- 30 inhalation (or intratracheal instillation), oral, i.v. and dermal exposures (Weyand and Bevan, 1987;
- 31 Weyand and Beyan, 1986; Morse and Carlson, 1985; Saunders et al., 2002; Neubert and Tapken
- 32 1988; Moir et al., 1998). Intratracheal instillation of radiolabeled benzo[a]pyrene in mice resulted
- 33 in increased radioactivity in lung-associated lymph nodes, suggesting distribution of
- 34 benzo[a]pyrene or its metabolites via the lymph (Schnizlein et al. 1987). Rats with biliary cannulas
- 35 had high excretion of benzo[a]pyrene and benzo[a]pyrene metabolites in bile. The benzo[a]pyrene
- 36 thioether and glucuronic acid-conjugated metabolites in intestines indicated enterohepatic
- 37 recirculation of benzo[a]pyrene and benzo[a]pyrene metabolites (Weyand and Bevan, 1986). The
- 38 vehicle for delivery of inhalated benzo[a]pyrene impacts the distribution with aerosolized

- 1 benzo[a]pyrene more readily absorbed directly in the respiratory tract than particle-adsorbed
- 2 benzo[a]pyrene (which is cleared by the mucociliary and then ingested) (Sun et al., 1982).
- 3 Exposure of pregnant rats and mice to benzo[a]pyrene via inhalation and ingestion showed a wide
- 4 tissue distribution of benzo[a]pyrene, consistent with other studies and demonstrated placental
- 5 transfer of benzo[a]pyrene and its metabolites (Withey et al., 1993; Neubert and Tapken 1988;
- 6 Shendrikova and Aleksandrov, 1974). The reactive metabolites of benzo[a]pyrene are also
- 7 transported in the blood and may be distributed to tissues incapable of benzo[a]pyrene
- 8 metabolism, such. Serum of benzo[a]pyrene-treated mice incubated with splenocytes or salmon
- 9 sperm DNA resulted in adduct formation, suggesting that reactive benzo[a]pyrene metabolites
- 10 were systemically distributed and available for interaction with target tissues (Ginsberg and
- 11 Atherholt, 1989).

12 Metabolism

13 The metabolic pathways of benzo[a]pyrene (Figure B-1) and variation in species, strains,

- 14 organ system, age and sex have been studied extensively with in vitro and in vivo experiments. In
- 15 addition, there have been numerous studies of exposed humans or animals with subsequent
- 16 detection of benzo[a]pyrene metabolites in tissues or excreta. For example, elevated frequency of a
- 17 detected urinary metabolite (7,8,9,10-tetrol) was observed in patients treated with coal tar
- 18 medication (Bowman et al., 1997), demonstrating extensive metabolism of benzo[a]pyrene in
- 19 humans.

20 Phase I metabolism results in a number of reactive metabolites such as epoxide 21 intermediates, dihydrodiols, phenols, quinones, and their various combinations that are likely to 22 contribute to the toxic effects of benzo[a]pyrene (e.g. dihydrodiol epoxides and quinones). The 23 Phase II metabolism of benzo[a]pyrene metabolites protects cellular macromolecules from binding 24 with reactive benzo[a]pyrene diolepoxides and radical cations. These metabolic process include 25 glutathione conjugation of diol epoxides, sulfation and glucuronidation of phenols, and reduction of 26 quinones by NADPH:quinone oxidoreductase (NQO). Numerous reviews on the metabolism of 27 benzo[a]pyrene are available (Miller and Ramos, 2001; WHO, 1998; ATSDR, 1995; Conney et al., 28 1994; Grover, 1986; Levin et al., 1982; Gelboin, 1980). Key concepts have been adapted largely 29 from these reviews and supplemented with recent findings.

30 Phase I metabolism

31 Phase I reactions of benzo[a]pyrene are catalyzed primarily by CYP450 and produce 32 metabolites including epoxides, dihydrodiols, phenols and quinones (Figure B-2). The first step of 33 Phase I metabolism is reaction of benzo[a]pyrene into epoxides, the four major forms of which are 34 the 2,3-, 4,5-, 7,8-, and 9,10-isomers (Gelboin, 1980). Once formed, these epoxides may undergo 35 three different routes of metabolism: (1) spontaneous rearrangement to phenols, (2) hydration to 36 trans-dihydrodiols catalyzed by microsomal epoxide hydrolase, or (3) the Phase II detoxification of 37 binding with glutathione (either spontaneously or catalyzed by cytosolic glutathione-S-transferases

> This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE

- 1 (IARC 1983)). The metabolism of benzo[a]pyrene to phenols occurs for 5 phenol isomers (1-, 3-, 6-,
- 2 7, and 9-OH benzo[a]pyrene) (Pelkonen et al. 1982). The hydration of benzo[a]pyrene epoxides to
- 3 trans-dihydrodiols occurs for all four major epoxide isomers (2,3-, 4,5-, 7,8-, and 9,10-). The
- 4 7,8-oxide is the focus of much of the study of benzo[a]pyrene metabolism, since it is a precursor to
- 5 the potent DNA-binding metabolite benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE). BPDE is formed
- 6 from benzo[a]pyrene 7,8-transdiol by multiple mechanisms including catalysis by CYPs (Deutsch
- 7 1979; Grover 1986), myeloperoxidase (MPO) (Mallet 1991), or prostaglandin h synthase (PHS, also
- 8 known as cyclooxygenase COX) (Marnett 1990), and lipid peroxidation (Byczkowski 1990). The
- 9 diolepoxides can react further by spontaneously hydrolyzing to tetrols (Hall and Grover 1988).

1 2

Source: Miller and Ramos (2001).

3

Figure B-1. Metabolic pathways for benzo[a]pyrene.

4 The metabolism of benzo[a]pyrene, proceeds with a high degree of stereoselectivity. Liver 5 microsomes from rats stereospecifically oxidize the 7,8-bond of benzo[a]pyrene to yield almost 6 exclusively the (+)-benzo[a]pyrene-(7,8)-oxide (see Figure B-2). Each enantiomer of the 7,8-oxide 7 is stereospecifically converted by epoxide hydrolase (EH) to a different dihydrodiol and further 8 metabolism of the (-)-benzo[a]pyrene-7,8-dihydrodiol enantiomer by rat CYP enzymes 9 preferentially yields (+)-benzo[a]pyrene-7R,8S-diol-9S,10R-epoxide [(+)-anti- benzo[a]pyrene-7,8-10 diol-9,10-epoxide (BPDE)], which is believed to be the most potent carcinogen among the four 11 stereoisomers (Figure B-2). Formation of these stereoisomers does not occur at equimolar ratios, and the ratios differ between biological systems. For example a study in rabbit livers demonstrated 12

> This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE

B-8

- 1 that purified microsomes oxidized the (-)-benzo[a]pyrene-7,8-dihydrodiol to isomeric diol epoxides
- 2 in a ratio ranging from 1.8:1 to 11:1 in favor of the (+)-anti-BPDE isomer (Deutsch et al., 1979).
- 3

4 5

Source: Grover (1986).

6 **Figure B-2.** The stereospecific activation of benzo[a]pyrene.

7 Several studies have attempted to determine which CYP isozyme is predominantly 8 responsible for the metabolism of benzo[a]pyrene. Dermal administration of [3H]-benzo[a]pyrene 9 to mice that have an Ah receptor (AhR) knock-out (AhR–/–) had significantly decreased formation 10 of (+)-anti-BPDE-DNA adducts compared to WT and 1B1-/- mice (Kleiner et al. 2004). Gavage 11 administration of benzo[a]pyrene in AhR knock-out mice found the AhR-/- mice (with lower levels 12 of CYP1A1) had higher levels of protein adducts and unmetabolized benzo[a]pyrene than the 13 AhR+/+ or +/- mice (Sagredo et al., 2006). Similarly, CYP1A1 (-/-) knock-out mice administered 14 benzo[a]pyrene in feed for 18 days had higher steady-state blood levels of benzo[a]pyrene and 15 benzo[a]pyrene–DNA adducts (Uno et al. 2006). DNA post-labeling studies of mice administered by 16 gavage demonstrated higher benzo[a]pyrene-DNA adduct levels in CYP1A1(-/-) than CYP1A1(+/+) 17 mice in liver, small intestines, spleen and bone marrow (Uno et al., 2004). These findings establish 18 important roles in benzo[a]pyrene metabolism for CYP1A1, but the relationship is not clear 19 between the CYP enzymes and biological activation or detoxification. 20 Another important factor in evaluating variability in the metabolic activation of 21 benzo[a]pyrene by CYP P450s is the effect of functional polymorphisms, which has been the subject 22 of numerous reviews (e.g., Wormhoudt et al., 1999). Recombinant CYP1A1 allelic variants

23 produced BPDE with generally lower catalytic activity and Km values than the WT allele (Schwarz

This document is a draft for review purposes only and does not constitute Agency policy.

- 1 et al., 2001). However, the formation of diol epoxides is stereospecific, with the allelic variants
- 2 producing about three times the amount of (\pm) -anti-BPDE isomers as compared to the
- 3 stereoisomers, (±)-syn-BPDE (Schwarz et al., 2001). In a study of occupational exposures to
- 4 benzo[a]pyrene, no relationship was observed between benzo[a]pyrene metabolite formation and
- 5 the CYP1A1 MspI polymorphism (Wu et al., 2002).
- 6 Another metabolic pathway of benzo[a]pyrene metabolism is the conversion of
- 7 transdihydrodiol-benzo[a]pyrene or 6-OH benzo[a]pyrene into quinones, primarily the 1,6-, 3,6-,
- 8 7,8- and 6,12- isomers. Transdihydrodiol-benzo[a]pyrene such as (+/-)-anti-BPDE can be
- 9 converted in a redox cycling reaction into benzo[a]pyrene-7,8-quinone (BPQ) catalyzed by
- 10 dihydrodiol dehydrogenase (DD). This reaction pathway produces peroxide anion radicals,
- 11 benzo[a]pyrene semiquinone radicals, hydroxyl radicals, and H2O2 which in turn can causes
- 12 extensive DNA fragmentation (Penning 1999; Flowers et al., 1996; 1997).
- 13 6-Hydroxybenzo[a]pyrene can be oxidized into 6-oxo-benzo[a]pyrene semi-quinone radical and
- 14 further metabolized into 1,6-, 3,6-, or 6,12-quinones spontaneously, or catalytically by
- 15 prostaglandin endoperoxide synthetase (Eling, et al 1983).

16 <u>Phase II metabolism</u>

- 17 The reactive products of phase I metabolism are subject to the action of several phase II
- 18 conjugation and detoxification enzyme systems that display preferential activity for specific
- 19 oxidation products of benzo[a]pyrene. These phase II reactions play a critical role in protecting
- 20 cellular macromolecules from binding with reactive benzo[a]pyrene diolepoxides, radical cations,
- 21 or ROS. Therefore, the balance between Phase I activation of benzo[a]pyrene and its metabolites
- 22 and detoxification by Phase II processes is an important determinant of toxicity.
- 23 The diol epoxides formed from benzo[a]pyrene metabolism by Phase I reactions are not 24 usually found as urinary metabolites. Rather, they are detected as adducts of nucleic acids or
- 25 proteins o further metabolized by glutathione (GSH) conjugation, glucuronidation, and sulfation.
- 26 These metabolites make up a significant portions of total metabolites in excreta or tissues For
- 27 example, the identified metabolites in bile 6 hours after a 2 μ g/kg benzo[a]pyrene dose by
- 28 intratracheal instillation to male Sprague-Dawley rats were 49% glucuronides (quinol
- 29 diglucuronides or monglucuronides), 30.4% thioether conjugates, 6.2% sulfate conjugates, and
- 30 14.4% unconjugated metabolites (Bevan and Sadler, 1992).
- 31 Conjugation of benzo[a]pyrene with GSH is catalyzed by GSTs. Numerous studies using 32 human GSTs expressed in mammalian cell lines have demonstrated the ability of GST to metabolize 33 benzo[a]pyrene diol epoxides. Isolated human GST have significant catalytic activity toward 34 benzo[a]pyrene-derived diol epoxides and (±)anti-BPDE with variation in activity across GST 35 isoforms (Dreij et al. 2002; Robertson et al. 1986; Rojas et al. 1998). Benzo[a]pyrene quinones can 36 also be conjugated with glutathione (Agarwal et al. 1991; IARC 1983). This compelling evidence for 37 a role of GSTs in the metabolism of reactive benzo[a]pyrene metabolites has triggered several 38 molecular epidemiology studies. However, recent studies on the impact of polymorphism on

1 adduct levels in PAH-exposed human populations did not show a clear relationship between the 2 Phase I (CYP1A1, EH), or Phase II (GST) enzyme polymorphisms and formation of DNA adducts 3 (Hemminki et al., 1997) or blood protein adducts (Pastorelli et al., 1998). 4 Conjugation with UDP-glucuronide catalyzed by UGT enzymes is another important 5 detoxification mechanism for oxidative benzo[a]pyrene metabolites. UGT isoforms, as well as their 6 allelic variants, are expressed and have glucuronidation activity toward benzo[a]pyrene-derived 7 phenols and diols in the aerodigestive tract (tongue, tonsil, floor of the mouth, larynx, esophagus), 8 but not lung or liver (Zheng et al., 2002; Fang and Lazarus 2004). UGT activity also shows 9 significant interindividual variability. Incubation of lymphocytes with benzo[a]pyrene resulted in 10 covalent binding to protein with a 143-fold interindividual variability and a statistically significant 11 inverse correlation between glucuronidation and protein binding (Hu and Wells, 2004). 12 Sulfotransferases can catalyze the formation of sulfates of benzo[a]pyrene metabolites. In 13 rat or mouse liver, cytosolic sulfotransferase (in the presence of 3'-phosphoadenosine 5'-14 phosphosulfate) catalyzes formation of sulfates of three benzo[a]pyrene metabolites: 15 benzo[a]pyrene-7,8,9,10-tetrahydro-7-ol, benzo[a]pyrene-7,8-dihydrodiol, and benzo[a]pyrene-16 7,8,9,10-tetrol. The benzo[a]pyrene-7,8,9,10-tetrahydro-7-ol-sulfate is able to form potentially 17 damaging DNA adducts (Surh and Tannenbaum, 1995). In human lung tissue 3-18 hydroxybenzo[a]pyrene conjugation to sulfate produces benzo[a]pyrene-3-yl-hydrogen sulfate, a 19 very lipid soluble compound that would not be readily excreted in the urine (Cohen et al. 1976). 20 Although not specific for benzo[a]pyrene, there is now considerable evidence that genetic 21 polymorphisms of the GST, UGT, and EH genes impart an added risk to humans for developing 22 cancer. Of some significance to the assessment of benzo[a]pyrene may be that smoking, in 23 combination with genetic polymorphism at several gene loci, increases the risk for bladder cancer 24 (Moore et al., 2004; Choi et al., 2003; Park et al., 2003) and lung cancer (Alexandrie et al., 2004; Lin 25 et al., 2003). Coke oven workers (who are exposed to PAHs, including benzo[a]pyrene) 26 homozygous at the P187S site of the NQO1 gene (an inhibitor of benzo[a]pyrene-quinone adducts 27 with DNA), or carrying the null variant of the GSTM1 gene, had a significantly increased risk of 28 chromosomal damage in peripheral blood lymphocytes. Meanwhile, the risk was much lower than 29 controls in subjects with a variant allele at the H113Y site of the EH gene (Leng et al., 2004).

30 <u>Tissue-specific Metabolism</u>

31 Benzo[a]pyrene metabolism has been demonstrated in vivo in laboratory animals for 32 various tissues via multiple routes including inhalation, ingestion and dermal absorption. Nasal 33 instillation or inhalation of benzo[a]pyrene in monkeys, dogs, rats and hamsters resulted in the 34 formation of dihydrodiols, phenols, quinones, and tetrols in the nasal mucus and lung (Petridou-35 Fischer et al. 1988; Weyand and Bevan 1986, 1987a, 1988; Dahl et al. 1985; Wolff et al. 1989b). In 36 rats, the fractions of metabolites in the lung at 6 hours after instillation were: 20% unmetabolised 37 benzo[a]pyrene, 16% conjugates or polyhydroxylated compounds, 10.7% 4,5-, 7,8-, and 9,10-38 dihydrodiols, 9.3% 1,6-, 3,6-, 6,12- quinone, and 6.9% 3- and 9-hydroxybenzo[a]pyrene (Weyand

1 and Bevan 1986). In hamsters, approximately 50% of the benzo[a]pyrene instilled was

2 metabolized in the nose (nasal tissues had the highest metabolic acitivity per-gram of the

3 respiratory tract tissues), and the metabolites produced were similar to other species (Dahl et al.

4 1985).

5 In vitro studies of human and laboratory cells and cell lines provide further quantitative and 6 mechanistic details of the metabolism of benzo[a]pyrene in the cells of the respiratory tract, skin, 7 liver and other tissues. Tracheobronchial tissues in culture of several species (including humans, 8 mice, rats, hamsters, and bovines) were all found to metabolize benzo[a]pyrene extensively to 9 phenols, diols, tetrols, quinones, and their conjugates (Autrup et al., 1980). The results show a high 10 degree of interindividual variability (a 33-fold difference in human bronchus, a 5-fold variation in 11 human trachea, and a 3-fold difference in bovine bronchus), but minimal variation among 12 individuals of the laboratory animal species (Autrup et al., 1980). Human bronchial epithelial and 13 lung tissue conjugated benzo[a]pyrene metabolites to glutathione and sulfates, but not with 14 glucuronide (Autrup et al. 1978; Cohen et al. 1976; Kiefer et al. 1988). The binding of 15 benzo[a]pyrene metabolites with DNA in primary human hepatocytes was associated with the 16 amount of unconjugated 7,8-dihydrodiol (Monteith et al. 1987). 17 Human and animal skin is able to metabolize benzo[a]pyrene. Human skin samples 18 maintained in short term organ culture (i.e., human epithelial tissue, samples from human hair 19 follicles, and melanocytes isolated from adult human skin) can metabolize benzo[a]pyrene into 20 dihydrodiols, phenolas, quinones and glucuronide and sulfate conjugates (Hall & Griver, 1988; Merk 21 et al., 1987; Alexandrov et al., 1990; Agarwal et al., 1991). The permeation of benzo[a]pyrene in 22 skin is linked to benzo[a]pyrene metabolism. Nonviable skin is unable to metabolize 23 benzo[a]pyrene (the permeation into nonviable skin is lower than viable skin) as measured in a 24 range of species including humans, rat, mouse, rabbit and marmoset (Kao et al., 1985). Viable

human skin samples treated with 2 μ g/cm² [¹⁴C]-benzo[a]pyrene in acetone and incubated for

26 24 hours produced the following proportions of benzo[a]pyrene metabolites; 52% water-soluble

27 compounds, 8% polar compounds, 17% diols, 1% phenols, 2.5% quinones and 18% unmetabolized

28 benzo[a]pyrene (Kao et al., 1985).

Benzo[a]pyrene is also metabolized by multiple reproductive tissues including prostate,
endometrium, cervical epithelial and styromal, and testes (Williams et al., 2000; Bao et al., 2002;

31 Melikian et al., 1999; Ramesh et al., 2003). Exposure of fetal tissues to reactive benzo[a]pyrene

32 metabolites in utero is a concern. Transport of benzo[a]pyrene and benzo[a]pyrene metabolites to

33 fetal tissues including plasma, liver, hippocampus and cerebral cortex has been demonstrated in

34 multiple studies (McCabe and Flynn, 1990; Neubert and Tapken, 1988; Shendrikova and

Aleksandrov, 1974), and benzo[a]pyrene is metabolized by human fetal esophageal cell culture

36 (Chakradeo et al. 1993).

1 Elimination

2 Benzo[a]pyrene metabolites have been detected in the urine of exposed humans, but the 3 fecal excretion has not been investigated in any detail. Studies of benzo[a]pyrene elimination in 4 animals following exposure via inhalation, ingestion and dermal routes have shown benzo[a]pyrene 5 is excreted preferentially in the feces in multiple species of laboratory animals including rat, mice, 6 hamsters, guinea pigs, monkeys and dogs (Petridou-Fischer et al., 1988; Wolff et al., 1989; Sun et al., 7 1982; Wang et al., 2003; Weyand and Bevan, 1987; Yang et al., 1989; Hecht et al., 1979; Likhachev 8 et al., 1992). The metabolites in bile are primarily benzo[a]pyrene conjugates, predominately 9 thioether conjugates of varying extent in different species (Weyand and Bevan, 1987). Six hours 10 after a single intratracheal instillation of benzo[a]pyrene (2 µg/kg) to male Sprague-Dawley rats, 11 relative metabolite levels were 31.2% diglucuronides, 30.4% thioether conjugates, 17.8% 12 monoglucuronides, 6.2% sulfate conjugates, and 14.4% unconjugated metabolites (Bevan and 13 Sadler, 1992). Rats administered benzo[a]pyrene via i.v. excrete a larger fraction in urine than via 14 inhalation or oral exposure, suggesting an important role for enterohepatic circulation of 15 benzo[a]pyrene metabolite conjugates (Moir et al., 1998; Weyand and Bevan, 1986; Hirom et al., 16 1983). The vehicle impacts the amount of benzo[a]pyrene excreted and may in part be due to the 17 elimination rate or to other factors such as the absorption rate. For [³H]-benzo[a]pyrene 18 administered to Sprague-Dawley rats in hydrophilic triethylene glycol, 70.5% of the dose was 19 excreted into bile within 6 hours. If lipophilic solvents ethyl laurate and tricaprylin were used as 20 vehicles, 58.4 and 56.2% of the dose were excreted (Bevan and Ulman, 1991). In addition to 21 benzo[a]pyrene and its metabolites, adducts of benzo[a]pyrene with nucleotides have also been 22 identified as a small fraction of the administered dose in feces and urine of animals. The level of 23 BPDE adducts with guanine detected in urine of male Wistar rats was dose-dependent. 48 hours 24 after dosing with 100 μ g/kg tritiated benzo[a]pyrene, 0.15% of the administered benzo[a]pyrene 25 dose was excreted in the urine as an adduct with guanine (Autrup and Seremet, 1986). Overall, the data in humans and laboratory animals are sufficient to describe benzo[a]pyrene elimination 26 27 qualitatively but to limited to estimate quantitative rates of elimination.

28 Physiologically based pharmacokinetic models

Several toxicokinetic or pharmacokinetic models of benzo[a]pyrene have been developed
 for rodents (rat and hamster). However, human models have only been developed via allometric
 scaling, and metabolic parameters in humans have not been calibrated against in vivo toxicokinetic
 data or in vitro experiments.
 Bevan and Weyand (1988) performed compartmental pharmacokinetic analysis of

- 34 distribution of radioactivity in male Sprague-Dawley rats, following the intratracheal instillation of
- benzo[a]pyrene to normal and bile duct-cannulated animals (Weyand and Bevan, 1987, 1986).
- 36 However, implicit simulation approaches were used, as opposed to physiologically-based

approaches. The model calculated linear rate constants among compartments, and assumed the
 kinetics of benzo[a]pyrene and its metabolites were the same

3 Roth and Vinegar (1990) reviewed the capacity of the lung to impact the disposition of 4 chemicals and used benzo[a]pyrene as a case study. A PBPK model was presented based on data 5 from Wiersma and Roth (1983a, b) and was evaluated against tissue concentration data from 6 Schlede et al. (1970). The model was structured with compartments for arterial blood, venous 7 blood, lung, liver, fat, and slowly as well as rapidly perfused tissues. Metabolism in liver and lung 8 was estimated using kinetic data from control rats and rats pretreated with 3-MC to induce 9 benzo[a]pyrene metabolism. The results of PBPK simulations showed that induction of 10 metabolizing enzymes increased the amount of benzo[a]pyrene cleared by the lungs relative to the 11 liver. An adequate fit was obtained for some compartments; however tissue-level data for 12 calibration and validation of this model were limited. 13 Moir et al. (1998) conducted a pharmacokinetic study on benzo[a]pyrene to obtain data for 14 model development. Rats were injected with varying doses of $[1^{4}C]$ -benzo[a]pyrene to 15 mg/kg 15 and blood, liver, fat, and richly perfused tissue were sampled varying time points after dosing. Moir 16 (1999) then described a model for lung, liver, fat, richly and slowly perfused tissues, and venous 17 blood, with saturable metabolism occurring in the liver. The fat and richly perfused tissues were 18 modeled as diffusion-limited, while the other tissues were flow-limited. The model predicted the 19 blood benzo[a]pyrene concentrations well, although it overestimated the 6 mg/kg results at longer

- 20 times (>100 minutes). The model also produced a poor fit to the liver data. The model simulations
- 21 were also compared to data of Schlede et al. (1970), who had injected rats with 0.056 mg/kg body
- 22 weight of benzo[a]pyrene. The model predicted blood and fat benzo[a]pyrene concentrations well,
- 23 but still poorly predicted liver benzo[a]pyrene concentrations. The model included only one
- 24 saturable metabolic pathway, and only parent chemical concentrations were used to establish the
- 25 model. No metabolites were included in the model. This model was re-calibrated by Crowell et al.
- 26 (2011) by optimizing against additional rodent data and altering partition coefficient derivation.
- However, it still did not incorporate metabolites, and some tissues continued to exhibit poor modelfits.

29 An attempt to scale the Moir et al. (1998) rodent PBPK model to humans, relevant to risk 30 assessment of oral exposures to benzo[a]pyrene, was presented by Zeilmaker et al. (1999a, b). The 31 PBPK model for benzo[a]pyrene was derived from an earlier model for TCDD in rats (Zeilmaker and 32 van Eijkeren, 1997). Most compartments were perfusion-limited, and tissues modeled included 33 blood, adipose (with diffusion limitation), slowly and richly perfused tissues, and the liver. 34 However, there was no separate compartment for the lung. The liver compartment featured the 35 AhR-dependent CYP450 induction mechanism and DNA adduct formation as a marker for 36 formation of genotoxic benzo[a]pyrene metabolites. It was assumed that DNA adduct formation 37 and the bulk benzo[a]pyrene metabolism were mediated by two different metabolic pathways. The 38 model was experimentally calibrated in rats with the data for EROD and formation of DNA adducts

1 in the liver after i.v. administration of a single dose and per os (p.o.) administration of a single or 2 repeated doses of benzo[a]pyrene (Zeilmaker et al., 1999a). 3 Zeilmaker et al. (1999b) assumed identical values for several parameters in rats and 4 humans (i.e. benzo[a]pyrene tissue partition coefficients, AhR concentration in liver, rate constant 5 for the decay of the benzo[a]pyrene-CYP450 complex, half-life of the CYP450 protein, fraction and 6 rate of GI absorption of benzo[a]pyrene, and rates of formation and repair of DNA adducts in liver). 7 The basal CYP450 activity in humans was assumed to be lower than that in rat liver. The 8 mechanism of AhR-dependent induction of CYP450 dominated the simulated benzo[a]pyrene-DNA 9 adduct formation in the liver. The results of PBPK model simulations indicated that the same dose 10 of benzo[a]pyrene administered to rats or humans might produce one order of magnitude higher 11 accumulation of DNA adducts in human liver when compared with the rat (Zeilmaker et al., 1999b). 12 Even though the model of Zeilmaker et al. (1999b) represents a major improvement in 13 predictive modeling of benzo[a]pyrene toxicokinetics, the interspecies extrapolation introduce 14 significant uncertainties. As emphasized by the authors, the conversion of benzo[a]pyrene to its 15 mutagenic and carcinogenic metabolites could not be explicitly modeled in human liver because no 16 suitable experimental data were available. According to the authors, improvement of the model 17 would require direct measurements of basal activities of CYP1A1 and CYP1A2 and formation of 18 benzo[a]pyrene-DNA adducts in human liver. Metabolic clearance of benzo[a]pyrene in the lungs 19 was also not addressed. Additionally, the toxicokinetic modeling by Zeilmaker et al. (1999b) 20 addressed only one pathway of benzo[a]pyrene metabolic activation, a single target organ (the 21 liver), and one route of administration (oral). In order to model health outcomes of exposures to 22 benzo[a]pyrene, the PBPK model needs to simulate rate of accumulation of benzo[a]pyrene-DNA 23 adducts and/or the distribution and fate of benzo[a]pyrene metabolites (e.g., BPDE) that bind to 24 DNA and other macromolecules. Alternatively, stable toxic metabolites (e.g., trans-anti-tetrol-25 benzo[a]pyrene) may be used as an internal dose surrogate. While the metabolic pattern of 26 benzo[a]pyrene has been relatively well characterized qualitatively in animals, the quantitative 27 kinetic relationships between the more complex metabolic reactions in potential target organs are 28 not yet well defined.

29

Recommendations for the use of PBPK models in toxicity value derivation

30 PBPK models for benzo[a]pyrene were evaluated to determine the capability to extrapolate 31 from rats to humans, or between oral and inhalation exposure routes. Due to significant 32 uncertainties with respect to the inter-species scaling of the metabolic parameters between rats 33 and humans, these models were not used for cross-species extrapolation. Furthermore, no 34 complete mechanistic PBPK model for the inhalation route was identified, nor was there a model 35 for humans that simulates the typical inhalation exposure to benzo[a]pyrene on poorly soluble 36 carbonaceous particles. This precluded the model's use for cross-route extrapolation to the 37 inhalation pathway.

1 **HUMAN STUDIES**

2 *Non-Cancer Endpoints*

3 Cardiovascular Endpoints

4 Burystn et al. (2005) reported the association of death from cardiovascular disease with 5 B[a]P exposure in a cohort of 12,367 male European asphalt workers (Table B-1). These workers 6 were first employed in asphalt paving between 1913 and 1999, and worked at least one season. 7 Average duration of follow-up was 17 ± 9 years (mean \pm SD), encompassing 193,889 person-years 8 of observation. Worker exposure to coal tar was estimated using industrial process and hygiene 9 information and modeling (presented in a previous report), and coal tar exposure was found to be 10 the strongest determinant of exposure to B[a]P. Benzo[a]pyrene exposure was assessed 11 quantitatively using measurement-driven mixed effects exposure models, using data collected from 12 other asphalt industry workers, and this model was constructed and validated previously. Due to 13 limited data availability, only information regarding the primary cause of death was collected, and 14 this analysis was limited to diseases of the circulatory system (ICD codes 390 – 459), specifically 15 ischemic heart disease (IHD: ICD codes 410 – 414). Diesel exhaust exposure was also assessed in 16 this cohort, but varied little among the asphalt pavers, and was not associated with risk of death 17 from cardiovascular disease. 0.25% of the cohort was lost to follow-up, and 0.38% emigrated 18 during the course of observation. Relative risks and associated 95% confidence intervals were 19 estimated using Poisson regression, and all models included exposure index for agent of interest 20 (coal tar or B[a]P), age, calendar period of exit from cohort, total duration of employment and 21 country, using the category of lowest exposure as the reference. Confounding by tobacco smoke 22 exposure was considered in relation to the strength of its association with cardiovascular disease 23 and the smoking prevalence in the population. The RR attributed to cigarette smoking in former 24 and current smokers was assumed to be 1.2 and 2, respectively, based upon literature reports. 25 From analysis of smoking incidence in a sub-cohort, the following smoking distribution was 26 proposed: in the lowest exposure group, 40% never smokers, 30% former smokers and 30% 27 current smokers; among the highest exposed, the proportion shifted to 20/30/50%, respectively. 28 Exposed subjects were stratified into quintiles based upon IHD mortality, with 83 – 86 29 deaths per exposure category, composing approximately 2/3 of the 660 cardiovascular disease-30 related deaths. Both cumulative and average exposure indices for B[a]P were positively associated 31 with IHD mortality, with a RR of approximately 1.6 in the highest exposure quintile from both 32 metrics, independent of total employment duration. Similar monotonic trends were observed for 33 all cardiovascular diseases (combined), although a dose-response relationship was evident only for 34 IHD and not hypertension or other individual heart disease categories. Similar trends were also 35 observed for coal tar exposure and IHD. Adjusting the RR to account for possible confounding by 36 smoking yields a RR of 1.39 under the assumptions mentioned above, and is still elevated (1.21) if 37 the contribution of smoking to cardiovascular disease etiology was greater than the original

- 1 assumptions. Furthermore, the RR for the high vs. low exposure quintile is 1.24 even if the
- 2 distribution of non-smokers/former smokers/current smokers shifts to 0/30/70%, using the
- 3 original assumptions of cigarette smoke casual potency.

Table B-1. Exposure to benzo[a]pyrene and mortality from cardiovascular diseases in a European cohort of asphalt paving workers

	Cumulative exposure (ng/m ³ – years)					P for		
Effect measured	0 – 189 ^ª	189 – 501	502 – 931	932 – 2012	≥2013	trend		
Diseases of the circulatory system								
Deaths	137	145	118	132	128			
RR	1.00	1.08	1.06	1.24	1.42	0.09		
95% CI		0.85-1.38	0.80-1.42	0.89-1.71	0.96-2.09			
		Ischem	ic heart disease					
Deaths	83	83	84	83	85			
RR	1.00	0.99	1.22	1.24	1.58	0.06		
95% CI		0.72-1.36	0.86-1.74	0.82-1.85	0.98-2.55			
	Average exposure (ng/m ³)					P for		
Effect measured	0 - 68 ª	68 - 105	106 – 146	147 – 272	≥273	trend		
	Diseases of the circulatory system							
Deaths	128	142	143	139	108			
RR	1.00	1.30	1.55	1.45	1.58	<0.001		
95% CI		1.01-1.67	1.18-2.05	1.09-1.93	1.16-2.15			
Ischemic heart disease								
Deaths	83	83	83	86	83			
RR	1.00	1.13	1.33	1.20	1.64	0.02		
95% CI		0.82-1.55	0.94-1.90	0.84-1.71	1.13-2.38			

^a Reference category

Source: Burstyn et al. (2005).

6

7 Friesen et al. (2010) examined the association between B[a]P exposure and deaths from 8 chronic non-malignant disease in a cohort of 6.423 male and 603 female Canadian aluminum 9 smelter workers (Table B-2). Inclusion criteria required at least 3 years of continuous employment 10 in either the smelter facility or power-generating station from 1954 – 1997, with worker history 11 collected up through 1999. This cohort was probabilistically linked to the Canadian national 12 mortality database for external comparison to the British Columbia population and calculation of 13 standardized mortality ratios, which were adjusted for age, sex and time period. Ninety-five % 14 confidence intervals were calculated for the SMRs assuming a Poisson distribution. Internal 15 comparisons were also made during the analysis of IHD mortality in male workers, calculating 16 hazard ratios (HR) for IHD with or without acute myocardial infarction (AMI) after 1969, as AMI 17 could not be differentiated from other IHD on death certificates issued previously. HRs were

1 calculated using Cox regression models, with age as a metamarker of time, also including smoking

- 2 status, time since 1^{st} employed and work location status. Smoking information for 77% of this
- 3 updated cohort was collected by questionnaire, and workers categorized as 75% ever-smokers and
- 4 25% never-smokers. Quantitative exposure to coal tar pitch volatiles were estimated by B[a]P
- 5 measurements, calculated by a job classification and time-based exposure matrix, as described in a
- 6 previous report; annual arithmetic mean values were calculated for exposures from 1977 2000,
- 7 while pre-1977 levels were backwards-extrapolated from 1977 values, incorporating major
- 8 technological changes in time periods as appropriate.
- 9 Cumulative exposure metrics were highly skewed. Cumulative B[a]P with a 5-year lag (past
 10 B[a]P exposure) and cumulative B[a]P in the most recent 5 years (recent B[a]P exposure) were only
- 11 slightly positively correlated (r = 0.10, P < 0.001). Current B[a]P exposure was highly correlated
- 12 with cumulative exposure for the most recent 5 years of exposure (r = 0.86, P < 0.001), but not with
- 13 5-year lagged cumulative exposure (r = 0.03, P < 0.001). Lagged cumulative exposure metrics (0 –
- 14 10 years) were all highly correlated with each other (r = 0.96, all P's < 0.001); lagged metrics for
- 15 cumulative exposure were used to distinguish between effects of current versus long-term
- 16 exposure.
- 17 When exposed workers were pooled and compared externally to non-exposed referents, the 18 IHD and AMI standardized mortality ratios were all \leq 1.00 for males, and the only significant 19 association in females was an SMR of 1.27 for AMI. For internal comparisons, exposed males were 20 stratified into quintiles based upon IHD mortality, with approximately 56 deaths per exposure 21 category. 5-year lagged cumulative B[a]P exposure was significantly associated with elevated risk 22 of IHD mortality, HR = 1.62 (95% CI: 1.06, 2.46) in the highest exposure quintile, while no 23 association was observed between most recent (5 years) exposure and mortality. Restricting IHD 24 events to only AMI (1969 onward) resulted in similar monotonic trends, albeit of lower statistical 25 significance. No association was observed between B[a]P exposure and non-AMI IHD. While there 26 was little difference in the exposure-response association among 0, 2 and 5-year lagged data, 10-27 year lagged data resulted in a weaker association. All risk estimates were strengthened by the 28 incorporation of work status and time-since-hire to account for the healthy worker effect, as 29 evidenced by the SMR of 0.87 (95% CI: 0.82, 0.92) for all chronic non-malignant diseases combined 30 in male exposed workers versus external referents. Using a continuous variable, the authors 31 calculated that the risk of death from IHD to be 1.002 (95% CI: 1.000, 1.005) per μ g/m³ from 32 cumulative B[a]P exposure; however, visual inspection of the categorical relationships indicated 33 that the association is nonlinear, suggesting that this value may be an underestimate. Restricting 34 the cohort to only members who died within 30 days of active employment at the worksite, cumulative B[a]P exposure was not significantly associated with IHC or AMI, although the HR for 35 36 the highest exposure group was 2.39 (95% CI: 0.95, 6.05). Exposure-response relationships were 37 similarly examined in male smelter workers for chronic obstructive pulmonary disease (COPD) and

- 1 cerebrovascular disease, but neither was significantly associated with cumulative B[a]P exposure in
- 2 either internal or external comparisons.

3

4

5

Table B-2. Exposure to benzo[a]pyrene and mortality from cardiovascular diseases in a Canadian cohort of male aluminum smelter workers

	Categorical cumulative exposure with a 5-year lag (μ g/m ³ – year)				P for	Continuous ^b		
Effect measured	0	0 - 7.79	7.79 – 24.3	24.3 - 66.7	≥66.7	trend ^a		
	All ischemic heart disease (1957 onward)							
Deaths	56	56	57	56	56		281	
P-Y ^c of follow-	33,111	37,581	34,838	31,533	13,688	0.053	150,751	
up	1	1.11	1.48	1.28	1.62		1.002	
HR	referent	0.76-1.62	1.01-2.17	0.86-1.91	1.06-2.46		1.000,	
95% CI							1.005	
		Acute myc	cardial infarct	ion (1969 on	ward)			
0 0-7.51 7.51-27.7 27.7-67.4 ≥67.4								
Deaths	35	37	37	38	37		184	
P-Y ^c of follow-	25,071	30,454	34,621	24,081	13,261	0.19	127,488	
up	1	1.14	1.21	1.36	1.46		1.001	
HR	referent	0.71, 1.82	0.75, 1.96	0.84, 2.45	0.87, 2.45		0.997,	
95% CI							1.005	

^a Two-sided test for trend using the person-year-weighted mean value for each category as a linear, continuous variable.

^b Exposure variable was entered as a continuous, linear variable in the model

^c P-Y, person-years

Source: Friesen et al. (2010).

6 **Reproductive and Developmental Endpoints**

7 Wu et al. (2010) conducted a study of benzo[a]pyrene-DNA adduct levels in relation to risk 8 of fetal death in Tianjin, China. This case-control study included women who experienced a missed 9 abortion before 14 weeks gestational age (i.e., a fetal death that remained in utero and therefore 10 required surgical intervention). Cases were matched by age and gravidity to controls (women

11 undergoing induced abortion due to an unplanned or unwanted pregnancy). The study excluded

- 12 women who smoked, women with chronic disease and pregnancy complications, and women with
- 13 occupational exposures to PAHs. Residency within Tianjin for at least 1 year was also an eligibility

14 criterion. The participation rate was high: 81/84 eligible cases participated and 81/89 eligible

- 15 controls participated. Data pertaining to demographic characteristics, reproductive history, and
- 16 factors relating to potential PAH exposure were collected using a structured interview, and samples
- 17 from the aborted tissue were obtained. In two of the four hospitals used in the study, blood
- 18 samples from the women (n = 51 cases and 51 controls) were also collected. The presence of
- 19 benzo[a]pyrene-BPDE adducts was assessed in the blood and tissue samples using HPLC. There

This document is a draft for review purposes only and does not constitute Agency policy.

B-19

DRAFT-DO NOT CITE OR OUOTE

1 was no correlation between blood and aborted tissue levels of benzo[a]pyrene adducts (r = -0.122 for the 102 blood-tissue pairs, r = -0.02 for the 51 case pairs and r = -0.21 for the 51 control pairs). 3 (The authors noted that there was little difference between women with and without blood 4 samples in terms of the interview-based measures collected or in terms of the DNA-adduct levels in 5 aborted tissue.) Benzo[a]pyrene-adduct levels were similar but slightly lower in the aborted tissue 6 of cases compared with controls (mean \pm SD 4.8 \pm 6.0 in cases and 6.0 \pm 7.4 in controls, *p* = 0.29). In 7 the blood samples, however, benzo[a]pyrene-adduct levels were higher in cases $(6.0 \pm 4.7 \text{ and } 2.7 \pm 1.0 \text{ cm})$ 8 2.2 in cases and controls, respectively, p < 0.001). In logistic regression analyses using a continuous 9 adduct measure, the OR was 1.35 (95% CI 1.11–1.64) per adduct/ 10^8 nucleotide. These results 10 were adjusted for education and household income, but were very similar to the unadjusted results. 11 Categorizing exposure at the median value resulted in an adjusted OR of 4.27 (95% CI 1.41–12.99) 12 in the high compared with low benzo[a]pyrene-adduct group. There was no relation between 13 benzo[a]pyrene-adduct levels in the aborted tissue and missed abortion in the logistic regression 14 analyses using either the continuous (adjusted OR 0.97, 95% CI 0.93–1.02) or dichotomous 15 exposure measure (adjusted OR 0.76, 95% CI 0.37–1.54). Associations between missed abortion 16 and several interview-based measures of potential PAH exposure were also seen: adjusted OR 3.07 17 (95% CI 1.31–7.16) for traffic congestion near residence, 3.52 (95% CI 1.44–8.57) for commuting 18 by walking, 3.78 (95% CI 1.11–12.87) for routinely cooked during pregnancy, and 3.21 (95% CI 19 0.98–10.48) for industrial site or stack near residence, but there was no association with other 20 types of commuting (e.g., by bike, car, or bus). 21 Perera et al. (2005a) studied 329 nonsmoking pregnant women (30 ± 5 years old) possibly 22 exposed to PAHs from fires during the 4 weeks after 09/11/2001. Maternal and umbilical cord 23 blood levels of benzo[a]pyrene (BPDE)-DNA adducts were highest in study participants who lived 24 within 1 mile of the WTC, with an inverse correlation between cord blood levels and distance from 25 the WTC. Neither cord blood adduct level nor ETS alone was positively correlated with adverse 26 birth outcomes. However, the interaction between ETS exposure and cord blood adducts was 27 significantly associated with reduced birth weight and head circumference. Among babies exposed 28 to ETS in utero, a doubling of cord blood benzo[a]pyrene-DNA adducts was associated with an 8% 29 decrease in birth weight (p = 0.03) and a 3% decrease in head circumference (p = 0.04). 30 Perera et al. (2005b) compared various exposures—ETS, nutrition, pesticides, material 31 hardship—with birth outcomes (length, head circumference, cognitive development). ETS 32 exposure and intake of PAH-rich foods by pregnant women were determined by questionnaire. 33 Levels of benzo[a]pyrene diol epoxide (BPDE)-DNA adducts were determined in umbilical cord 34 blood collected at delivery. The study population consisted of Dominican or African-American 35 nonsmoking pregnant women (n = 529; 24 ± 5 years old) free of diabetes, hypertension, HIV, and 36 drug or alcohol abuse. Benzo[a]pyrene adducts, ETS, and dietary PAHs were not significantly 37 correlated with each other. However, the interaction between benzo[a]pyrene-DNA adducts and

1 ETS exposure was significantly associated with reduced birth weights (-6.8%; p = 0.03) and 2 reduced head circumference (-2.9%; p = 0.04).

3 Tang et al. (2006) measured benzo[a]pyrene diol epoxide (BPDE)-DNA adducts in maternal 4 and umbilical cord blood obtained at delivery from a cohort of 150 nonsmoking women and their 5 newborns in China. Exposure assessment was related to the seasonal operation of a local, coal-fired 6 power plant; however, airborne PAH concentrations were not measured. Dietary PAH intake was 7 not included as a covariate because it did not significantly contribute to the final models, but ETS, 8 sex, and maternal height and weight were considered as covariates. DNA adduct levels were 9 compared to several birth outcomes and physical development parameters, such as gestational age 10 at birth; infant sex, birth weight, length, head circumference, and malformations; maternal height 11 and pregnancy weight total weight gain; complications of pregnancy and delivery; and medications 12 used during pregnancy.

- 13 High cord blood adduct levels were significantly associated with reduced infant/child 14 weight at 18 months (β = -0.048, *p* = 0.03), 24 months (β = -0.041, *p* = 0.027), and 30 months of age
- 15 $(\beta = -0.040, p = 0.049)$; decreased birth head circumference was marginally associated with DNA 16 adduct levels (β = -0.011, *p* = 0.057). Maternal adduct levels were correlated neither with cord
- 17 blood adduct levels nor with fetal and child growth. Among female infants, cord blood adduct levels 18
- were significantly associated with smaller birth head circumference (p = 0.022) and with lower 19 weight at 18 months (p = 0.014), 24 months (p = 0.012), and 30 months of age (p = 0.033), and with
- 20 decreased body length at 18 months of age (p = 0.033). Among male infants, the corresponding
- 21 associations were also inverse but were not statistically significant.

22 Considerable evidence of a deleterious effect of smoking on male and female fertility has 23 accumulated from epidemiological studies of time to pregnancy, ovulatory disorders, semen 24 quality, and spontaneous abortion (reviewed in Waylen et al., 2009; Cooper and Moley, 2008; 25 Soares and Melo, 2008). In addition, the effect of smoking, particularly during the time of the 26 perimenopausal transition, on acceleration of ovarian senescence (menopause) has also been 27 established (Midgette and Baron, 1990). More limited data are available pertaining specifically to 28 measures of benzo[a]pyrene and reproductive outcomes.

29 Neal et al. (2008, 2007) examined levels of benzo[a]pyrene and other PAHs in follicular 30 fluid and serum sample from 36 women undergoing in vitro fertilization at a clinic in Toronto, and 31 compared the successful conception rate in relation to benzo[a]pyrene levels. The women were 32 classified by smoking status, with 19 current cigarette smokers, 7 with passive or sidestream 33 smoke exposure (i.e., nonsmoker with a partner who smoked), and 10 nonsmokers exposed. An 34 early follicular phase blood sample and follicular fluid sample from the follicle at the time of ovum 35 retrieval were collected and analyzed for the presence of benzo[a]pyrene, acenapthelene, 36 phenanthrene, pyrene, and chrysene using gas chromatography/MS (detection limit 5 pg/mL). The 37 frequency of nondectable levels of serum benzo[a]pyrene was highest in the nonsmoking group

38 (60.0, 14.3, and 21.0% below detection limit in nonsmoking, sidestream smoke, and active smoking

- 1 groups, respectively). A similar pattern was seen with follicular fluid benzo[a]pyrene (30.0, 14.3,
- 2 and 10.5% below detection limit in nonsmoking, sidestream smoke, and active smoking groups,
- 3 respectively). In the analyses comparing mean values across groups, an assigned value of 0 was
- 4 used for nondetectable samples. Follicular fluid benzo[a]pyrene levels were higher in the active
- 5 smoking group (mean \pm SE, 1.32 \pm 0.68 ng/mL) than in the sidestream (0.05 \pm 0.01 ng/mL) or
- 6 nonsmoking $(0.03 \pm 0.01 \text{ ng/mL})$ groups (p = 0.04). The between-group differences in serum
- 7 benzo[a]pyrene levels were not statistically significant (0.22 \pm 0.15, 0.98 \pm 0.56, and 0.40 \pm
- 8 0.13 ng/mL in nonsmoking, sidestream smoke, and active smoking groups, respectively), and there
- 9 were no differences in relation to smoking status. Among active smokers, the number of cigarettes
- 10 smoked per day was strongly correlated with follicular fluid benzo[a]pyrene levels (r = 0.7, *p* <
- 11 0.01). Follicular fluid benzo[a]pyrene levels were significantly higher among the women who did
- 12 not conceive (1.79 ng/mL ± 0.86) compared with women who did get pregnant (mean
- 13 approximately 0.10 ng/mL, as estimated from graph) (p < 0.001), but serum levels of
- 14 benzo[a]pyrene were not associated with successful conception.
- 15A small case-control study conducted between August 2005 and February 2006 in Lucknow
- 16 city (Uttar Pradesh), India examined PAH concentrations in placental tissues (Singh et al., 2008) in
- 17 relation to risk of preterm birth. The study included 29 cases (delivery between 28 and <36 weeks
- 18 of gestation) and 31 term delivery controls. Demographic data smoking history, reproductive
- 19 history, and other information were collected by interview, and a 10 g sample of placental tissue
- 20 was collected from all participants. Concentration of specific PAHs in placental tissue was
- 21 determined using HPLC. In addition to benzo[a]pyrene, the PAHs assayed were naphthalene,
- 22 acenapththylene, phenanthrene, fluorene, anthracene, benzo(a)anthracene, fluoranthene, pyrene,
- 23 benzo(k)fluoranthene, benzo(b)fluoranthene, benzo(g,h,i)perylene, and dibenzo(a,h)anthracene.
- 24 PAH exposure in this population was from environmental sources and from cooking. The age of
- 25 study participants ranged from 20 to 35 years. There was little difference in birth weight between
- 26 cases and controls (mean 2.77 kg and 2.75 kg in the case and control groups, respectively).
- 27 Placental benzo[a]pyrene levels were lower than the levels of the other PAHs detected (mean 8.83
- 28 ppb in controls for benzo[a]pyrene compared with 25–30 ppb for anthracene,
- 29 benzo(k)fluoranthene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene, 59 ppb for
- 30 acenaphthylene, and 200–380 ppm for naphthalene, phenanthrene, fluoranthene, and pyrene;
- 31 nondetectable levels of fluorine, benzo(a)anthracene, and benzo(g,h,i)perylene were found). There
- 32 was little difference in benzo[a]pyrene levels between cases (mean ± SE 13.85 ± 7.06 ppb) and
- 33 controls (8.83 \pm 5.84 ppb), but elevated levels of fluoranthene (325.91 \pm 45.14 and 208.6 \pm 21.93
- 34 ppb in cases and controls, respectively, p < 0.05) and benzo(b)fluoranthene (61.91 ± 12.43 and
- 35 23.84 \pm 7.01 ppb in cases and controls, respectively, *p* < 0.05) were seen.
- Wu et al. (2010) conducted a study of benzo[a]pyrene-DNA adduct levels in relation to risk
 of fetal death in Tianjin, China. This case-control study included women who experienced a missed
- 38 abortion before 14 weeks gestational age (i.e., a fetal death that remained in utero and therefore

1 required surgical intervention). Cases were matched by age and gravidity to controls (women 2 undergoing induced abortion due to an unplanned or unwanted pregnancy). The study excluded 3 women who smoked, women with chronic disease and pregnancy complications, and women with 4 occupational exposures to PAHs. Residency within Tianjin for at least 1 year was also an eligibility 5 criterion. The participation rate was high: 81/84 eligible cases participated and 81/89 eligible 6 controls participated. Data pertaining to demographic characteristics, reproductive history, and 7 factors relating to potential PAH exposure were collected using a structured interview, and samples 8 from the aborted tissue were obtained. In two of the four hospitals used in the study, blood 9 samples from the women (n = 51 cases and 51 controls) were also collected. The presence of 10 benzo[a]pyrene-BPDE adducts was assessed in the blood and tissue samples using HPLC. There 11 was no correlation between blood and aborted tissue levels of benzo[a] pyrene adducts (r = -0.12 12 for the 102 blood-tissue pairs, r = -0.02 for the 51 case pairs and r = -0.21 for the 51 control pairs). 13 (The authors noted that there was little difference between women with and without blood 14 samples in terms of the interview-based measures collected or in terms of the DNA-adduct levels in 15 aborted tissue.) Benzo[a]pyrene-adduct levels were similar but slightly lower in the aborted tissue 16 of cases compared with controls (mean \pm SD 4.8 \pm 6.0 in cases and 6.0 \pm 7.4 in controls, *p* = 0.29). In 17 the blood samples, however, benzo[a]pyrene-adduct levels were higher in cases (6.0 ± 4.7 and $2.7 \pm$ 18 2.2 in cases and controls, respectively, p < 0.001). In logistic regression analyses using a continuous 19 adduct measure, the OR was 1.35 (95% CI 1.11–1.64) per adduct/10⁸ nucleotide. These results 20 were adjusted for education and household income, but were very similar to the unadjusted results. 21 Categorizing exposure at the median value resulted in an adjusted OR of 4.27 (95% CI 1.41–12.99) 22 in the high compared with low benzo[a]pyrene-adduct group. There was no relation between 23 benzo[a]pyrene-adduct levels in the aborted tissue and missed abortion in the logistic regression 24 analyses using either the continuous (adjusted OR 0.97, 95% CI 0.93–1.02) or dichotomous 25 exposure measure (adjusted OR 0.76, 95% CI 0.37-1.54). Associations between missed abortion 26 and several interview-based measures of potential PAH exposure were also seen: adjusted OR 3.07 27 (95% CI 1.31–7.16) for traffic congestion near residence, 3.52 (95% CI 1.44–8.57) for commuting 28 by walking, 3.78 (95% CI 1.11–12.87) for routinely cooked during pregnancy, and 3.21 (95% CI 29 0.98–10.48) for industrial site or stack near residence, but there was no association with other 30 types of commuting (e.g., by bike, car, or bus).

31 <u>Neurotoxicity</u>

Niu et al. (2010) studied 176 Chinese coke-oven workers with elevated B[a]P exposure and compared them against 48 referents (workers in a supply warehouse), matched by socioeconomic status, lifestyle and health. Blood levels of monoamine, amino acid and chloine neurotransmitters were measured, and the WHO Neurobehavioral Core Test Battery (NCTB) was administered to assess emotional state, learning, memory and hand-eye coordination. The authors self-designed a study questionnaire to gather information on worker education, vocational history, smoking and drinking habits, personal habits, personal and family medical history, as well as any current 1 symptoms and medications used in the pervious several weeks. Workers were excluded from the

- 2 study for any of the following criteria: reported feeling depressed at any point during the previous
- 3 6 months; had taken medicine in the previous 2 weeks which could affect nervous system function;
- 4 or if they reported undertaking vigorous exercise less than 48 hrs previously. "Smoking" was
- 5 defined as \geq 10 cigarettes/day during the past year. Similarly, "drinking" was defined as
- 6 wine/beer/spirits consumed \geq 3 times/week for the past 6 months. Workplace environmental
- 7 sampling stations were established at each of the physical work locations, including the referent's
- 8 warehouse, and dual automatic air sampling pumps collected samples at personal breathing zone
- 9 height for 6 hours/day, over 3 consecutive days. B[a]P content was determined by HPLC, and
- 10 relative exposure was compared to post-shift urine levels of a B[a]P metabolite, 1-hydroxypyrene
- 11 (1-OH-Py). Blood was collected in the morning before breakfast; monoamine (norepinephrine and
- 12 dopamine) and amino acid (Glu, Asp, Gly, and GABA) neurotransmitter levels were determined by
- 13 HPLC, acetylcholine (Ach) levels determined by hydroxyamine chromometry, and Ach esterase
- 14 (AchE) levels measured in lysed RBCs using activity kits.
- 15 B[a]P mean concentrations were 19.56 ± 13.2 , 185.96 ± 38.6 and 1623.56 ± 435.8 ng/m³ at 16 the bottom, side and top of the coke oven, respectively, all of which were higher than the mean at 17 the referents' warehouse ($10.26 \pm 7.6 \text{ ng/m}^3$). The authors did not report stratified analysis by 18 different levels of B[a]P exposure, and reported only comparisons between the referents and all 19 exposed workers combined (Table B-3), or between workers grouped by urinary B[a]P metabolite 20 1-OH-Py levels (Table B-4). There were no significant differences in age, education, smoking or 21 alcohol use between the coke oven and warehouse workers. Urinary 1-OH-Pv levels were 32% 22 higher in coke oven workers compared to the referent group, corresponding to the higher levels of 23 B[a]P detected in all coke oven workstation compared to the supply warehouse. Performance in 24 two neurobehavioral function tests, digit span and forward digit span, were significantly decreased 25 in the exposed oven workers versus control group; when stratified by urinary metabolite level, 26 scores significantly decreased with increasing 1-OH-Py levels. Of the neurotransmitters assessed, 27 norepinephrine, dopamine, Asp and GABA were significantly decreased in exposed versus control 28 workers; norepinephrine and Asp were also significantly and inversely related with 1-OH-Py levels. 29 Dopamine levels appeared to decrease with increased urinary metabolite levels, although the 30 relationship was not statistically significant. GABA levels were highly variable, and appeared to 31 increase with increasing 1-OH-Py levels, although this relationship was statistically significant. 32 Acetylcholine levels were 4-fold higher in coke oven workers compared to referents, and AchE 33 activy 30% lower; both Ach and AchE were significantly associated with urinary B[a]P metabolite 34 levels, although Ach increased and AchE activity decreased with increasing 1-OH-Py. The authors 35 reported results of correlation analysis, indicating that digit span scores correlated negatively with 36 Ach and positively with AchE (coefficients of -0.230, -0.276 and 0.120, 0.170, respectively), 37 although no indication of statistical significance was given. No other associations were reported.

1 2

Table B-3. Exposure-related effects in Chinese coke oven workers or warehouse controls exposed to benzo[a]pyrene in the workplace

	Expos	Dyalua					
Effect measured	Controls (n=48)	Exposed workers (n=176)	P value				
Background information (mean ± SD, incidence or %)							
Age (yr)	39.71 ± 7.51	37.86 ± 6.51	0.098				
Education (junior/senior)	23/25	110/66	0.068				
Smoking	77%	64%	0.093				
Drinking	27%	39%	0.140				
Urine	B[a]P metabolite (µmol/m	nol Cr; mean ± SD)					
1-ОН-Ру	2.77 ± 1.45	3.66 ± 0.67	0.000				
Neu	Neurobehavioral function tests (mean ± SD)						
Simple reaction time	413.88 ± 95.40	437.39 ± 88.44	0.109				
Digit span	17.31 ± 4.54	15.47 ± 4.08	0.006				
Forward digit span	10.65 ± 2.42	9.25 ± 2.64	0.001				
Neurotransmitter concentrations (mean ± SD)							
Norepinephrine (ng/ml)	62.54 ± 58.07	40.62 ± 29.78	0.000				
Dopamine (ng/ml)	1566.28 ± 317.64	1425.85 ± 422.66	0.029				
Asp (μg/ml)	2.13 ± 1.66	1.58 ± 0.99	0.004				
Glu (μg/ml)	11.21 ± 5.28	9.68 ± 5.72	0.074				
GABA (μg/ml)	2.52 ± 5.16	1.01 ± 2.21	0.004				
Ach (μg/ml)	172.60 ± 67.19	704.00 ± 393.86	0.000				
AchE activity (U/mg protein)	71.31 ± 46.18	50.27 ± 34.02	0.012				

Source: Niu et al. (2010).

 52.64 ± 4.60

DRAFT-DO NOT CITE OR OUOTE

0.043

Exposure Group categoried by 1-OH-Py level 0-3.09 3.09 - 3.903.90 - 5.53P value Effect measured µmol/mol Cr µmol/mol Cr µmol/mol Cr Number of subjects 33 72 36 Neurobehavioral function tests (mean ± SD) Digit span 18.24 ± 4.58 16.04 ± 4.24 15.78 ± 3.71 0.003 Forward digit span 10.85 ± 2.12 9.80 ± 2.86 0.019 9.58 ± 2.33 Backward digit span 7.20 ± 3.07 6.38 ± 2.55 6.20 ± 2.15 0.089 Right dotting 152.15 ± 35.43 167.22 ± 59.21 0.094 153.80 ± 31.55 Neurotransmitter concentrations (mean ± SD) Norepinephrine (ng/ml) 67.31 ± 67.45 36.97 ± 23.58 46.75 ± 35.88 0.002 Dopamine (ng/ml) 1614.45 ± 683.57 1482.30 ± 323.66 1405.06 ± 332.23 0.134 Asp (µg/ml) 2.29 ± 2.13 1.61 ± 0.71 1.47 ± 0.58 0.001 Glu (µg/ml) 0.070 11.56 ± 8.92 9.93 ± 4.14 9.06 ± 3.30 GABA (µg/ml) 1.42 ± 3.44 1.56 ± 3.24 0.964 1.40 ± 3.59 Ach ($\mu g/ml$) 334.66 ± 83.75 483.71 ± 57.87 665.85 ± 94.34 0.030

54.98 ± 4.23

68.17 ± 9.28

Table B-4. Exposure-related effects in Chinese coke oven workers or warehouse controls exposed to benzo[a]pyrene in the workplace, stratified by urinary metabolite levels

Source: Niu et al. (2010).

AchE activity (U/mg

4 <u>Immunotoxicity</u>

protein)

5 Zhang et al. (2012) studied 129 Chinese coke-oven workers with elevated B[a]P exposure 6 and compared them against 37 referents (workers in a supply warehouse), matched by 7 socioeconomic status, lifestyle and health. Area B[a]P levels were quantified in the various work 8 areas, and the primary endpoint was the level of early and late apoptosis in PBMCs isolated from 9 each worker sub-group the morning following an overnight fast. The authors self-designed a study 10 questionnaire to gather information on worker education, vocational history, smoking and drinking 11 habits, personal habits, personal and family medical history, as well as any current symptoms and 12 medications used in the pervious several weeks. "Smoking" was defined as ≥ 10 cigarettes/day 13 during the past year, with "smoking index" defined as cigarettes/day x years smoking. Similarly, 14 "drinking" was defined as wine/beer/spirits consumed \geq 3 times/week for the past 6 months, and 15 "drinking index" defined as grams of alcohol consumed/day x years drinking. Exposed workers 16 were categorized by physical worksite location and expected differences in B[a]P exposure: 34 oven bottom workers, 48 oven side workers, and 47 oven top workers. Workplace environmental 17 18 sampling stations were established at each of the physical work locations, including the referent's 19 warehouse, and dual automatic air sampling pumps collected samples at personal breathing zone 20 height for 6 hours/day, over 3 consecutive days. B[a]P content was determined by HPLC, and

B-26

relative exposure was compared to post-shift urine levels of a B[a]P metabolite, 1-hydroxypyrene
 (1-OH-Py). Collected and purified PBMCs were incubated with Annexin-V and PI prior to analysis
 by flow cytometry; early apoptotic cells were considered to be Annexin V+/PI-, while late apoptotic
 cells were considered Annexin V+/PI+.
 All apoptosis data was displayed graphically, and in all groupings early:late apoptotic
 PBMCs occurred at an approximate 2:1 frequency. PBMC apoptosis was similar in each of the three

7 coke oven worker groups, which were all statistically significantly higher than referents

- 8 (approximately 2-fold) for both early and late apoptosis. While self-reported smoking incidence
- 9 varied significantly among the 4 worker groups, stratification by smoking years or smoking index
- 10 did not reveal any significant association with PBMC apoptosis. Multiple linear stepwise regression
- 11 analysis suggested that urine 1-OH-Py levels and years of coke oven operation were positively
- 12 associated with increased early and late PMBC apoptosis (Table B-5), and that years of ethanol
- 13 consumption was negatively associated with only early apoptosis. These associations were tested
- 14 by stratifying workers into three groups by urinary 1-OH-Py levels or coke oven operation years,
- 15 and in both cases, the groups with the highest urinary metabolite levels or longest oven operating
- 16 experience had statistically significantly higher levels of both early and late apoptotic PBMCs, vs.
- 17 the lowest or shortest duration groups, respectively. Likewise, when sorted into groups based
- 18 upon years of ethanol consumption, the highest ethanol "years of consumption" group had
- 19 statistically significantly lower early apoptosis rates when compared to the lowest ethanol
- 20 consuming group.
- 21Table B-5. Background information on Chinese coke oven workers or22warehouse controls exposed to benzo[a]pyrene in the workplace

	Exposure Group (ng/m ³ ; mean ± SD)				
Effect measured	10.2 ± 7.6	19.5 ± 13.2	185.9 ± 38.6	1623.5 ± 435.8	P value
Number of subjects	37	34	48	47	
Background information (mean ± SD or %)					
Age (yr)	37.16 ± 6.00	39.09 ± 5.53	36.98 ± 6.40	37.34 ± 6.78	0.451
Working years (yr)	17.35 ± 7.19	18.58 ± 7.23	16.78 ± 6.90	17.26 ± 7.44	0.742
Smoking	62.2	64.7	83.3	53.2	0.017
Drinking	24.3	41.2	39.6	44.7	0.259
Urine B[a]P metabolite (μmol/mol Cr; mean ± SD)					
1-ОН-Ру	2.78 ± 1.04	3.22 ± 0.81*	3.51 ± 0.55*	3.66 ± 0.58*	0.000

* p < 0.05 significantly different from control mean Source: Zhang et al. (2012).

23

1 **Cancer-related Endpoints**

2 <u>Benzo[a]pyrene-Induced Cytogenetic Damage</u>

3 Many studies measure cytogenetic damage as biomarkers of early biological effects which 4 also reflect exposure to genotoxic chemicals. Standard cytogenetic end points include 5 chromosomal aberration (CA), sister chromatid exchange (SCE), micronucleus (MN) formation, 6 hypoxanthine guanine phosphoribosyl transferase (hprt) mutation frequency, and glycophorin A 7 mutation frequency (Gyorffy et al., 2008). These biomarkers are often incorporated in multi-8 endpoint studies with other biomarkers of exposure. Because they indicate related but different 9 endpoints, there is often a lack of correlation between the different categories of biomarkers. 10 Merlo et al. (1997) evaluated DNA adduct formation (measured by [³²P]-postlabelling) and 11 MN in WBCs of 94 traffic policemen versus 52 residents from the metropolitan area of Genoa, Italy. 12 All study subjects wore personal air samplers for 5 hours of one work shift, and levels of 13 benzo[a]pyrene and other PAHs were measured. Policemen were exposed to 4.55 ng 14 benzo[a]pyrene/m³ air, compared with urban residents who were exposed to 0.15 ng/m^3 . DNA 15 adduct levels in policemen were 35% higher than in urban residents (p = 0.007), but MN in urban 16 residents were 20% higher than in policemen (p = 0.02). Linear regressions of DNA adducts and 17 MN incidence, respectively, versus benzo[a]pyrene exposure levels did not reveal significant 18 correlations.

19 Perera and coworkers assessed DNA damage in Finnish iron foundry workers in two 20 separate studies and using three methodologies. Based on results from personal sampling and 21 stationary monitoring in both studies, three levels of benzo[a]pyrene air concentrations were 22 defined: low (<5 ng/m³ benzo[a]pyrene), medium (5–12 ng/m³), and high (>12 ng/m³) (Perera et 23 al., 1994, 1993). In the first study, involving 48 workers, several biomarkers were analyzed for 24 dose-response and interindividual variability (Perera et al., 1993). PAH-DNA adducts were 25 determined in WBCs using an immunoassay as described in Section 4.1.2.2.1 and enzyme-linked 26 immunosorbent assay with fluorescence detection. Mutations at the hprt locus were also measured 27 in WBC DNA. The latter assay is based on the fact that each cell contains only one copy of the hprt 28 gene, which is located on the X-chromosome. While male cells have only one X-chromosome, 29 female cells inactivate one of the two X-chromosomes at random. The gene is highly sensitive to 30 mutations such that in the event of a crucial mutation in the gene, enzyme activity disappears 31 completely from the cell. In addition, mutations at the glycophorin A gene locus were measured in 32 red blood cells (RBCs). The glycophorin A mutation frequency was not correlated with either 33 benzo[a]pyrene exposure or PAH-DNA adduct formation. However, both PAH-DNA adduct levels 34 and hprt mutation frequency increased with increasing benzo[a]pyrene exposure. In addition, 35 there was a highly significant correlation between incidence of hprt mutations and PAH-DNA 36 adduct levels (p = 0.004). 37 In a second study, Perera et al. (1994) surveyed 64 iron foundry workers with assessments

38 conducted in 2 successive years; 24 of the workers provided blood samples in both years. Exposure

> This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE
1 to benzo[a]pyrene, collected by personal and area sampling in the first year of the study, ranged 2 from <5 to 60 ng/m³ and was estimated to have decreased by 40% in the second year. The levels of 3 PAH-DNA adducts were roughly 50% lower in the 2nd year, presumably reflecting decreased 4 exposure. The longer-lived hprt mutations were not as strongly influenced by the decreasing 5 exposure to benzo[a]pyrene. Study subjects who did not have detectable levels of DNA adducts 6 were excluded from the study. As in the previous study, a strong correlation between DNA adduct 7 levels and incidence of hprt mutations was observed (Perera et al., 1993). 8 Kalina et al. (1998) studied several cytogenetic markers in 64 coke oven workers and 9 34 controls employed at other locations within the same plant. Airborne benzo[a]pyrene and seven 10 other carcinogenic PAHs were collected by personal air samplers, which showed ambient 11 benzo[a]pyrene concentrations ranging widely from 0.002 to 50 μ g/m³ in coke oven workers and 12 from 0.002 to 0.063 μ g/m³ in controls. CAs, SCEs, high-frequency cells (HFCs), and SCE 13 heterogeneity index were all significantly increased with benzo[a]pyrene exposure. Except for 14 increases in HFCs, no effect of smoking was observed. Consistent with studies of PAH-DNA adduct 15 formation, reduced cytogenetic response at high exposure levels produced a nonlinear dose-16 response relationship. The authors also evaluated the potential influence of polymorphisms in 17 enzymes involved in the metabolism of benzo[a]pyrene. Glutathione S-transferase M1 (GSTM-1) 18 and N-acetyl transferase-2 polymorphisms were studied and no evidence of the two gene 19 polymorphisms having any influence on the incidence of cytogenetic damage was found. 20 Motykiewicz et al. (1998) conducted a similar study of genotoxicity associated with 21 benzo[a]pyrene exposure in 67 female residents of a highly polluted industrial urban area of Upper 22 Silesia, Poland, and compared the results to those obtained from 72 female residents of another 23 urban but less polluted area in the same province of Poland. Urinary mutagenicity and 1-24 hydroxypyrene levels, PAH-DNA adducts in oral mucosa cells (detected by immunoperoxidase 25 staining), SCEs, HFCs, CAs, bleomycin sensitivity, and GSTM-1 and CYP1A1 polymorphisms in blood 26 lymphocytes were investigated. High volume air samplers and gas chromatography were used to 27 quantify ambient benzo[a]pyrene levels, which were 3.7 ng/m³ in the polluted area and 0.6 ng/m³ 28 in the control area during the summer. During winter, levels rose to 43.4 and 7.2 ng/m³ in the two 29 areas, respectively. The cytogenetic biomarkers (CA and SCE/HFC), urinary mutagenicity, and 30 urinary 1-hydroxypyrene excretion were significantly increased in females from the polluted area, 31 and differences appeared to be more pronounced during winter time. PAH-DNA adduct levels were 32 significantly increased in the study population, when compared to the controls, only in the winter 33 season. No difference in sensitivity to bleomycin-induced lymphocyte chromatid breaks was seen 34 between the two populations. As with the study by Kalina et al. (1998), genetic polymorphisms 35 assumed to affect the metabolic transformation of benzo[a]pyrene were not associated with any 36 difference in the incidence of DNA damage. 37 In a study of Thai school boys in urban (Bangkok) and rural areas, bulky (including but not

38 limited to BPDE-type) DNA adduct levels were measured in lymphocytes along with DNA SSBs,

- 1 using the comet assay, and DNA repair capacity (Tuntawiroon et al., 2007). Ambient air and
- $2 \qquad {\rm personal\ breathing\ zone\ measurements\ indicated\ that\ Bangkok\ school\ children\ experienced}$
- 3 significantly higher exposures to benzo[a]pyrene and total PAHs. A significantly higher level of
- 4 SSBs (tail length 1.93 ± 0.09 versus $1.28 \pm 0.12 \mu m$, +51%; p < 0.001) was observed in Bangkok
- 5 school children when compared with rural children, and this parameter was significantly
- 6 associated with DNA adduct levels. A significantly reduced DNA repair capacity (0.45 ± 0.01 versus
- 7 $0.26 \pm 0.01 \gamma$ -radiation-induced deletions per metaphase, -42%; p < 0.001) was also observed in the
- 8 city school children, again significantly associated with DNA adduct levels. It was not evident why
- 9 higher environmental PAH exposure would be associated with lowered DNA repair capacity.
- 10 However, because the personal breathing zone PAH levels and DNA adduct levels were not
- 11 associated with each other, it is conceivable that the city school children had a priori lower DNA
- 12 repair capacities that contributed significantly to the high adduct levels. The authors considered
- 13 genetic differences between the two study populations as a possible reason for this observation.

14 Epidemiologic Findings in Humans

15 The association between human cancer and contact with PAH-containing substances, such

- 16 as soot, coal tar, and pitch, has been widely recognized since the early 1900s (Bostrom et al., 2002).
- 17 Although numerous epidemiology studies establish an unequivocal association between PAH
- 18 exposure and human cancer, defining the causative role for benzo[a]pyrene and other specific PAHs
- 19 remains a challenge. In essentially all reported studies, either the benzo[a]pyrene exposure and/or
- 20 internal dose are not known, or the benzo[a]pyrene carcinogenic effect cannot be distinguished
- 21 from the effects of other PAH and non-PAH carcinogens. Nevertheless, three types of investigations
- 22 provide support for the involvement of benzo[a]pyrene in some human cancers: molecular
- 23 epidemiology studies; population- and hospital-based case-control studies; and occupational cohort
- 24 studies. In some cohort studies, benzo[a]pyrene exposure concentrations were measured and thus
- 25 provide a means to link exposure intensity with observed cancer rates. In case-control studies, by
- 26 their nature, benzo[a]pyrene and total PAH doses can only be estimated.

27 <u>Molecular Epidemiology and Case-Control Cancer Studies</u>

28 Defective DNA repair capacity leading to genomic instability and, ultimately, increased 29 cancer risk is well documented (Wu et al., 2007, 2005). Moreover, sensitivity to mutagen-induced 30 DNA damage is highly heritable and thus represents an important factor that determines individual 31 cancer susceptibility. Based on studies comparing monozygotic and dizygotic twins, the genetic 32 contribution to BPDE mutagenic sensitivity was estimated to be 48.0% (Wu et al., 2007). BPDE has 33 been used as an etiologically relevant mutagen in case-control studies to examine the association 34 between elevated lung and bladder cancer risk and individual sensitivity to BPDE-induced DNA 35 damage. Mutagen sensitivity is determined by quantifying chromatid breaks or DNA adducts in 36 phytohemagglutinin-stimulated peripheral blood lymphocytes as an indirect measure of DNA 37 repair capacity.

1 In a hospital-based, case-control study involving 221 lung cancer cases and 229 healthy 2 controls, DNA adducts were measured in stimulated peripheral blood lymphocytes after incubation 3 with BPDE in vitro (Li et al., 2001). Lung cancer cases showed consistent statistically significant 4 elevations in induced BPDE-DNA adducts in lymphoctes, compared with controls, regardless of 5 subgroup by age, sex, ethnicity, smoking history, weight loss, or family history of cancer. The 6 lymphocyte BPDE-induced DNA adduct levels, when grouped by quartile using the levels in controls 7 as cutoff points, were significantly dose-related with lung cancer risk (odds ratios [ORs] 1.11, 1.62, 8 and 3.23; trend test, p < 0.001). In a related hospital-based, case-control study involving 155 lung 9 cancer patients and 153 healthy controls, stimulated peripheral blood lymphocytes were exposed 10 to BPDE in vitro (Wu et al., 2005). DNA damage/repair was evaluated in lymphocytes using the 11 comet assay, and impacts on cell cycle checkpoints were measured using a fluorescence-activated 12 cell-sorting method. The lung cancer cases exhibited significantly higher levels of BPDE-induced 13 DNA damage than the controls (p < 0.001), with lung cancer risk positively associated with 14 increasing levels of lymphocyte DNA damage when grouped in quartiles (trend test, p < 0.001). In 15 addition, lung cancer patients demonstrated significantly shorter cell cycle delays in response to 16 BPDE exposure to lymphocytes, which correlated with increased DNA damage. 17 Sensitivity to BPDE-induced DNA damage in bladder cancer patients supports the results 18 observed in lung cancer cases. In a hospital-based, case-control study involving 203 bladder cancer 19 patients and 198 healthy controls, BPDE-induced DNA damage was specifically evaluated at the 20 chromosome 9p21 locus in stimulated peripheral blood lymphocytes (Gu et al., 2008). Deletions of 21 9p21, which includes critical components of cell cycle control pathways, are associated with a 22 variety of cancers. After adjusting for age, sex, ethnicity, and smoking status, individuals with high 23 BPDE-induced damage at 9p21 were significantly associated with increased bladder cancer risk 24 (OR 5.28; 95% confidence interval [CI] 3.26–8.59). Categorization of patients into tertiles for BPDE 25 sensitivity relative to controls demonstrated a dose-related association between BPDE-induced 26 9p21 damage and bladder cancer risk. Collectively, the results of molecular epidemiology studies 27 with lung and bladder cancer patients indicate that individuals with a defective ability to repair 28 BPDE-DNA adducts are at increased risk for cancer and, moreover, that specific genes linked to 29 tumorigenesis pathways may be molecular targets for benzo[a]pyrene and other carcinogens. 30 Due to the importance of the diet as a benzo[a]pyrene exposure source, several population-31 and hospital-based, case-control studies have investigated the implied association between dietary 32 intake of benzo[a]pyrene and risk for several tumor types. In a study involving 193 pancreatic 33 cancer cases and 674 controls (Anderson et al., 2005), another involving 626 pancreatic cancer 34 cases and 530 controls (Li et al., 2007), and a third involving 146 colorectal adenoma cases and 228 35 controls (Sinha et al., 2005), dietary intake of benzo[a]pyrene was estimated using food frequency 36 questionnaires. In all studies, the primary focus was on estimated intake of benzo[a]pyrene (and 37 other carcinogens) derived from cooked meat. Overall, cases when compared with controls had 38 higher intakes of benzo[a]pyrene and other food carcinogens, leading to the conclusion that

benzo[a]pyrene plays a role in the etiology of these tumors in humans. In a supportive follow-up
case-control study of colorectal adenomas, levels of leukocyte PAH-DNA adducts were significantly
higher in cases when compared with controls (p = 0.02), using a method that recognizes BPDE and
several other PAHs bound to DNA (Gunter et al., 2007).

5 <u>Cohort Cancer Studies</u>

6 Epidemiologic studies of workers in PAH-related occupations indicate increased human 7 cancer risks associated with iron and steel production, roofing, carbon black production, and 8 exposure to diesel exhaust (Bosetti et al., 2007). Exposure to benzo[a]pyrene is only one of 9 numerous contributors to the cancer risk from complex PAH-containing mixtures that occur in the 10 workplace. Although some occupational cohort studies report measured or estimated inhalation 11 exposure concentrations for benzo[a]pyrene, none report biomarkers of internal benzo[a]pyrene 12 dose in study subjects (reviewed in Bosetti et al., 2007; Armstrong et al., 2004). Several of these 13 cohort studies (summarized below) demonstrate a positive exposure-response relationship with 14 cumulative PAH exposure using benzo[a]pyrene—or a proxy such as benzene-soluble matter (BSM) 15 that can be converted to benzo[a]pyrene—as an indicator substance. These studies provide insight 16 and support for the causative role of benzo[a]pyrene in human cancer.

17

18 Cancer incidence in aluminum and electrode production plants

19 Exposure to benzo[a]pyrene and BSM in aluminum smelter workers is strongly associated 20 with bladder cancer and weakly associated with lung cancer (Boffetta et al., 1997; Tremblay et al., 21 1995; Armstrong et al., 1994; Gibbs, 1985; Theriault et al., 1984). In an analysis of pooled data from 22 nine cohorts of aluminum production workers, 688 respiratory tract cancer cases were observed 23 versus 674.1 expected (pooled RR 1.03; CI 0.96–1.11) (Bosetti et al., 2007). A total of 196 bladder 24 cancer cases were observed in eight of the cohorts, compared with 155.7 expected (pooled relative 25 risk [RR] 1.29; CI 1.12–1.49). Based on estimated airborne benzo[a]pyrene exposures from a meta-26 analysis of eight cohort studies, the predicted lung cancer RR per 100 μ g/m³-years of cumulative 27 benzo[a]pyrene exposure was 1.16 (95% CI 1.05–1.28) (Armstrong et al., 2004).

28 Spinelli et al. (2006) reported a 14-year update to a previously published historical cohort 29 study (Spinelli et al., 1991) of Canadian aluminum reduction plant workers. The results confirmed 30 and extended the findings from the earlier epidemiology study. The study surveyed a total of 6,423 31 workers with \geq 3 years of employment at an aluminum reduction plant in British Columbia, Canada, 32 between the years 1954 and 1997, and evaluated all types of cancers. The focus was on cumulative 33 exposure to coal tar pitch volatiles, measured as BSM and as benzo[a]pyrene. Benzo[a]pyrene 34 exposure categories were determined from the range of predicted exposures over time from 35 statistical exposure models. There were 662 cancer cases, of which approximately 98% had 36 confirmed diagnoses. The overall cancer mortality rate (standardized mortality ratio 0.97; CI 0.87-37 1.08) and cancer incidence rate (standardized incidence ratio [SIR] 1.00; CI 0.92–1.08) were not 38 different from that of the British Columbia general population. However, this study identified

1 significantly increased incidence rates for cancers of the bladder (SIR 1.80; CI 1.45–2.21) and the 2 stomach (SIR 1.46; CI 1.01–2.04). The lung cancer incidence rate was only slightly higher than 3 expected (SIR 1.10; CI 0.93–1.30). Significant dose-response associations with cumulative 4 benzo[a]pyrene exposure were seen for bladder cancer (p trend < 0.001), stomach cancer (p trend 5 < 0.05), lung cancer (p trend < 0.001), non-Hodgkin lymphoma (p trend < 0.001), and kidney cancer 6 (p trend < 0.01), although the overall incidence rates for the latter three cancer types were not 7 significantly elevated versus the general population. Similar cancer risk results were obtained 8 using BSM as the exposure measure; the cumulative benzo[a]pyrene and BSM exposures were 9 highly correlated (r = 0.94). 10 In several occupational cohort studies of workers in Norwegian aluminum production 11 plants, personal and stationary airborne PAH measurements were performed. 12 In a study covering 11,103 workers and 272,554 person × years of PAH exposure, cancer 13 incidence was evaluated in six Norwegian aluminum smelters (Romundstad et al., 2000a, b). 14 Reported estimates of PAH exposure concentrations reached a maximum of 3,400 µg/m³ PAH 15 (680 μg/m³ benzo[a]pyrene). The overall number of cancers observed in this study did not differ 16 significantly from control values (SIR 1.03; CI 1.0–1.1). The data from this study showed 17 significantly increased incidences for cancer of the bladder (SIR 1.3; CI 1.1–1.5) and elevated, but 18 not significant, SIRs for larynx (SIR 1.3; CI 0.8–1.9), thyroid (SIR 1.4; CI 0.7–2.5), and multiple 19 myeloma (SIR 1.4; CI 0.9–1.9). Incidence rates for bladder, lung, pancreas, and kidney cancer (the 20 latter three with SIRs close to unity) were subjected to a cumulative exposure-response analysis. 21 The incidence rate for bladder cancer showed a trend with increasing cumulative exposure and 22 with increasing lag times (up to 30 years) at the highest exposure level. The incidence of both lung 23 and bladder cancers was greatly increased in smokers. The authors reported that using local 24 county rates rather than national cancer incidence rates as controls increased the SIR for lung 25 cancer (SIR 1.4; CI 1.2–1.6) to a statistically significant level. 26 27 Cancer incidence in coke oven, coal gasification, and iron and steel foundry workers 28 An increased risk of death from lung and bladder cancer is reported in some studies 29 involving coke oven, coal gasification, and iron and steel foundry workers (Bostrom et al., 2002; 30 Boffetta et al., 1997). An especially consistent risk of lung cancer across occupations is noted when 31 cumulative exposure is taken into consideration (e.g., RR of 1.16 per 100 unity-years for aluminum 32 smelter workers, 1.17 for coke oven workers, and 1.15 for coal gasification workers). In an analysis 33 of pooled data from 10 cohorts of coke production workers, 762 lung cancer cases were observed 34 versus 512.1 expected (pooled RR 1.58; CI 1.47–1.69) (Bosetti et al., 2007). Significant variations in

- risk estimates among the studies were reported, particularly in the large cohorts (RRs of 1.1, 1.2,
- 36 2.0, and 2.6). There was no evidence for increased bladder cancer risk in the coke production
- 37 workers. Based on estimated airborne benzo[a]pyrene exposures from a meta-analysis of 10

1	cohort studies, the predicted lung cancer RR per 100 μ g/m ³ -years of cumulative benzo[a]pyrene
2	exposure was 1.17 (95% CI 1.12–1.22) (Armstrong et al., 2004).
3	A meta-analysis of data from five cohorts of gasification workers reported 251 deaths from
4	respiratory tract cancer, compared with 104.7 expected (pooled RR 2.58; 95% CI 2.28–2.92)
5	(Bosetti et al., 2007). Pooled data from three of the cohorts indicated 18 deaths from urinary tract
6	cancers, versus 6.0 expected (pooled RR 3.27; 95% CI 2.06–5.19). Based on estimated airborne
7	benzo[a]pyrene exposures from a meta-analysis of four gas worker cohort studies, the predicted
8	lung cancer RR per 100 μ g/m ³ -years of cumulative benzo[a]pyrene exposure was 1.15 (95% CI
9	1.11–1.20) (Armstrong et al., 2004).
10	Increased risks were reported in iron and steel foundry workers for cancers of the
11	respiratory tract, bladder, and kidney. In an analysis of pooled data from 10 cohorts,
12	1,004 respiratory tract cancer cases were observed versus 726.0 expected (pooled RR 1.40;
13	CI 1.31–1.49) (Bosetti et al., 2007). A total of 99 bladder cancer cases were observed in seven of the
14	cohorts, compared with 83.0 expected (pooled RR 1.29; CI 1.06–1.57). For kidney cancer, 40 cases
15	were observed compared with 31.0 expected based on four studies (pooled RR 1.30; 95% CI 0.95–
16	1.77).
17	Xu et al. (1996) conducted a nested case-control study, surveying the cancer incidence
18	among 196,993 active or retired workers from the Anshan Chinese iron and steel production
19	complex. A large number of historical benzo[a]pyrene measurements (1956–1995) were available.
20	The study included 610 cases of lung cancer and 292 cases of stomach cancer, with 959 age- and
21	gender-matched controls from the workforce. After adjusting for nonoccupational risk factors such
22	as smoking and diet, significantly elevated risks for lung cancer and stomach cancer were identified
23	for subjects employed for \ge 15 years, with ORs varying among job categories. For either type of
24	cancer, highest risks were seen among coke oven workers: lung cancer, OR = 3.4 (CI 1.4–8.5);
25	stomach cancer, OR = 5.4 (CI 1.8–16.0).
26	There were significant trends for long-term, cumulative benzo[a]pyrene exposure versus
27	lung cancer ($p = 0.004$) or stomach cancer ($p = 0.016$) incidence. For cumulative total
28	benzo[a]pyrene exposures of <0.84, 0.85–1.96, 1.97–3.2, and \geq 3.2, respectively, the ORs for lung
29	cancer were 1.1 (CI 0.8–1.7), 1.6 (CI 1.2–2.3), 1.6 (1.1–2.3), and 1.8 (CI 1.2–2.5), respectively. For
30	cumulative total benzo[a]pyrene exposures of <0.84, 0.85–1.96, 1.97–3.2, and ≥3.2, the ORs for
31	stomach cancer were 0.9 (CI 0.5–1.5), 1.7 (CI 1.1–2.6), 1.3 (0.8–2.1), and 1.7 (CI 1.1–2.7),
32	respectively. However, the investigators noted that additional workplace air contaminants were
33	measured, which might have influenced the outcome. Of these, asbestos, silica, quartz, and iron
34	oxide-containing dusts may have been confounders. For lung cancers, cumulative exposures to
35	total dust and silica dust both showed significant dose-response trends ($p = 0.001$ and 0.007,
36	respectively), while for stomach cancer, only cumulative total dust exposure showed a marginally
37	significant trend (p = 0.061). For cumulative total dust exposures of <69, 69–279, 280–882, and
38	≥883 mg/m ³ , the ORs for lung cancer were 1.4 (CI 1.2–1.9), 1.2 (CI 1.0–2.19), 1.4 (CI 1.0–2.0), and

1 1.9 (CI 1.3–2.5), respectively. For cumulative silica dust exposures of <3.7, 3.7-10.39, 10.4-27.71, 2 and $\geq 27.72 \text{ mg/m}^3$, the ORs for lung cancer were 1.7 (CI 1.2–2.4), 1.5 (CI 1.0–2.1), 1.5 (CI 1.0–2.1), 3 and 1.8 (CI 1.2–2.5), respectively. For cumulative total dust exposures of <69, 69–279, 280–882, 4 and \geq 883 mg/m³, ORs for stomach cancer were 1.3 (CI 0.8–2.1), 14 (CI 0.9–2.2), 12 (CI 0.8–1.9), and 5 1.6 (CI 1.1–2.5), respectively. 6 Exposure-response data from studies of coke oven workers in the United States have often 7 been used to derive quantitative risk estimates for PAH mixtures, and for benzo[a]pyrene as an 8 indicator substance (Bostrom et al., 2002). However, there are numerous studies of coke oven 9 worker cohorts that do not provide estimates of benzo[a]pyrene exposure. An overview of the 10 results of these and other studies can be obtained from the review of Boffetta et al. (1997). 11 12 *Cancer incidence in asphalt workers and roofers* 13 These groups encompass different types of work (asphalt paving versus roofing) and also 14 different types of historical exposure that have changed from using PAH-rich coal tar pitch to the 15 use of bitumen or asphalt, both of which are rather low in PAHs due to their source (crude oil 16 refinery) and a special purification process. Increased risks for lung cancer were reported in large 17 cohorts of asphalt workers and roofers; evidence for increased bladder cancer risk is weak 18 (Burstyn et al., 2007; Partanen and Boffetta, 1994; Chiazze et al., 1991; Hansen, 1991, 1989; 19 Hammond et al., 1976). In an analysis of pooled data from two cohorts of asphalt workers, 822 lung 20 cancer cases were observed versus 730.7 expected (pooled RR 1.14; 95% CI 1.07–1.22) (Bosetti et 21 al., 2007). In two cohorts of roofers, analysis of pooled data indicated that 138 lung cancer cases 22 were observed, compared with 91.9 expected (pooled RR 1.51; 95% CI 1.28–1.78) (Bosetti et al., 23 2007).

24

1 ANIMAL BIOASSAYS

2 Oral Bioassays

3 <u>Subchronic Studies</u>

4 De Jong et al. (1999) treated male Wistar rats (eight/dose group) with benzo[a]pyrene 5 (98.6% purity) dissolved in soybean oil by gavage 5 days/week for 35 days at doses of 0, 3, 10, 30, 6 or 90 mg/kg-day (adjusted doses: 0, 2.14, 7.14, 21.4, and 64.3 mg/kg-day). At the end of the 7 exposure period, rats were necropsied, organ weights were determined, and major organs and 8 tissues were prepared for histological examination (adrenals, brain, bone marrow, colon, caecum, 9 jejunum, heart, kidney, liver, lung, lymph nodes, esophagus, pituitary, spleen, stomach, testis, and 10 thymus). Blood was collected for examination of hematological endpoints, but there was no 11 indication that serum biochemical parameters were analyzed. Immune parameters included 12 determinations of serum immunoglobulin (Ig) levels (IgG, IgM, IgE, and IgA), relative spleen cell 13 distribution, and spontaneous cytotoxicity of spleen cell populations determined in a natural-killer 14 (NK) cell assay. 15 Body weight gain was decreased beginning at week 2 at the high dose of 90 mg/kg-day; there was no effect at lower doses (De Jong et al., 1999). Hematology revealed a dose-related 16 17 decrease in RBC count, hemoglobin, and hematocrit at ≥ 10 mg/kg-day (Table B-6). A minimal but 18 significant increase in mean cell volume and a decrease in mean cell hemoglobin concentration 19 were noted at 90 mg/kg-day, and may indicate dose-related toxicity for the RBCs and/or RBC 20 precursors in the bone marrow. A decrease in WBCs, attributed to a decrease in the number of 21 lymphocytes (approximately 50%) and eosinophils (approximately 90%), was observed at 22 90 mg/kg-day; however, there was no effect on the number of neutrophils or monocytes. A 23 decrease in the cell number in the bone marrow observed in the 90 mg/kg-day dose group was 24 consistent with the observed decrease in the RBC and WBC counts at this dose level. In the 25 90 mg/kg-day dose group, brain, heart, kidney, and lymph node weights were decreased and liver 26 weight was increased (Table B-6). Decreases in heart weight at 3 mg/kg-day and in kidney weight 27 at 3 and 30 mg/kg-day were also observed, but these changes did not show dose-dependent 28 responses. Dose-related decreases in thymus weight were statistically significant at $\geq 10 \text{ mg/kg}$ -29 day (Table B-6).

30Table B-6. Exposure-related effects in male Wistar rats exposed to31benzo[a]pyrene by gavage 5 days/week for 5 weeks

	Dose (mg/kg-d)				
Effect	0	3	10	30	90
Hematologic effects					
(mean ± SD; n = 7–8)					
WBCs (10 ⁹ /L)	14.96 ± 1.9	13.84 ± 3.0	13.69 ± 1.8 ^a	13.58 ± 2.9 ^a	8.53 ± 1.1 ^ª
RBCs (10 ⁹ /L)	8.7 ± 0.2	8.6 ± 0.2	8.3 ± 0.2	7.8 ± 0.4	7.1 ± 0.4^{a}

This document is a draft for review purposes only and does not constitute Agency policy. B-36 DRAFT—DO NOT CITE OR OUOTE

	Dose (mg/kg-d)				
Effect	0	3	10	30	90
Hemoglobin (mmol/L)	10.5 ± 0.2	10.4 ± 0.3	9.8 ± 0.2^{a}	9.5 ± 0.4 ^ª	8.6 ± 0.6 ^a
Hematocrit (L/L)	0.5 ± 0.01	0.5 ± 0.01	0.47 ± 0.01^{a}	0.46 ± 0.02^{a}	0.43 ± 0.02^{a}
Serum Ig levels					
(mean ± SD; n = 7–8)					
lgM	100 ± 13	87 ± 16	86 ± 31	67 ± 16 ^ª	81 ± 26
lgG	100 ± 40	141 ± 106	104 ± 28	106 ± 19	99 ± 29
IgA	100 ± 28	73 ± 29	78 ± 67	72 ± 22	39 ± 19ª
IgE	100 ± 65	50 ± 20	228 ± 351	145 ± 176	75 ± 55
Cellularity (mean ± SD; n = 7–8)					
Spleen (cell number × 10 ⁷)	59 ± 15	71 ± 14	59 ± 13	63 ± 10	41 ± 10^{a}
Bone marrow (G/L)	31 ± 7	36 ± 5	31 ± 8	27 ± 8	19 ± 4 ^ª
Spleen cell distribution (%)					
B cells	39± 4	36 ± 2	34 ± 3 ^ª	32 ± 4 ^ª	23 ± 4 ^ª
T cells	40 ± 9	48 ± 12	40 ± 9	36 ± 2	44 ± 6
Th cells	23 ± 7	26 ± 7	24 ± 5	22 ± 4	26 ± 4
Ts cells	24 ± 5	26 ± 6	24 ± 7	19 ± 2	27 ± 5
Body (g) and organ (mg) weights					
(means; n = 7–8)					
Body weight	305	282ª	300	293	250 ^ª
Brain	1,858	1,864	1,859	1,784	1,743 ^ª
Heart	1,030	934 ^ª	1,000	967	863ª
Kidney	1,986	1,761 ^ª	1,899	1,790 ^ª	1,626ª
Liver	10,565	9,567	11,250	11,118	12,107ª
Thymus	517 ± 47	472 ± 90	438 ± 64^{a}	388 ± 71ª	198 ± 65ª
Spleen	551	590	538	596	505
Mandibular lymph nodes	152	123	160	141	89 ^ª
Mesenteric lymph nodes	165	148	130 ^ª	158	107 ^ª
Popliteal lymph nodes	19	18	19	17	10 ^a
Thymus cortex surface area	77.9 ± 3.8	74.4 ± 2.2	79.2 ± 5.9	75.8 ± 4.0	68.9 ± 5.2^{a}
(% of total surface area of thymus;					
mean ± SD; n = 6–8)					

^aSignificantly (p < 0.05) different from control mean. For body weight and organ weight means, SDs were only reported for thymus weights.

Source: De Jong et al. (1999).

- 1
- 2 3

4

- Statistically significant reductions were also observed in the relative cortex surface area of the thymus and thymic medullar weight at 90 mg/kg-day, but there was no difference in cell proliferation between treated and control animals using the proliferating cell nuclear antigen
- 5 (PCNA) technique. Changes in the following immune parameters were noted: dose-related and
- 6 statistically significant decrease in the relative number of B cells in the spleen at 10 (13%),
- 7 30 (18%), and 90 mg/kg-day (41%); significant decreases in absolute number of cells harvested in
- 8 the spleen (31%), in the number of B cells in the spleen (61%), and NK cell activity in the spleen

2 (33%) and IgA (61%) in rats treated with 30 and 90 mg/kg-day, respectively. The decrease in the 3 spleen cell count was attributed by the study authors to the decreased B cells and suggested a 4 possible selective toxicity of benzo[a]pyrene to B cell precursors in the bone marrow. The study 5 authors considered the decrease in IgA and IgM to be due to impaired production of antibodies, 6 suggesting a role of thymus toxicity in the decreased (T-cell dependent) antibody production. In 7 addition to the effects on the thymus and spleen, histopathologic examination revealed treatment-8 related lesions only in the liver and forestomach at the two highest dose levels, but the incidence 9 data for these lesions were not reported by De Jong et al. (1999). Increased incidence for 10 forestomach basal cell hyperplasia (p < 0.05 by Fisher's exact test) was reported at 30 and 11 90 mg/kg-day, and increased incidence for oval cell hyperplasia in the liver was reported at 12 90 mg/kg-day (p < 0.01, Fisher's exact test). The results indicate that 3 mg/kg-day was a no-13 observed-adverse-effect level (NOAEL) for effects on hematological parameters (decreased RBC 14 count, hemoglobin, and hematocrit) and immune parameters (decreased thymus weight and 15 percent of B cells in the spleen) noted in Wistar rats at 10 mg/kg-day (the lowest-observed-16 adverse-effect level [LOAEL]) and above. Lesions of the liver (oval cell hyperplasia) and 17 forestomach (basal cell hyperplasia) occurred at doses \geq 30 mg/kg-day. 18 Knuckles et al. (2001) exposed male and female F344 rats (20/sex/dose group) to 19 benzo[a]pyrene (98% purity) at doses of 0, 5, 50, or 100 mg/kg-day in the diet for 90 days. Food 20 consumption and body weight were monitored, and the concentration of benzo[a]pyrene in the 21 food was adjusted every 3–4 days to maintain the target dose. The authors indicated that the actual 22 intake of benzo[a]pyrene by the rats was within 10% of the calculated intake, and the nominal 23 doses were not corrected to actual doses. Hematology and serum chemistry parameters were 24 evaluated. Urinalysis was also performed. Animals were examined for gross pathology, and 25 histopathology was performed on selected organs (stomach, liver, kidney, testes, and ovaries). 26 Statistically significant decreases in RBC counts and hematocrit level (decreases as much as 10 and 27 12%, respectively) were observed in males at doses \geq 50 mg/kg-day and in females at 100 mg/kg-28 day. A maximum 12% decrease (statistically significant) in hemoglobin level was noted in both 29 sexes at 100 mg/kg-day. Blood chemistry analysis showed a significant increase in blood urea 30 nitrogen (BUN) only in high-dose (100 mg/kg-day) males. Histopathology examination revealed an 31 apparent increase in the incidence of abnormal tubular casts in the kidney in males at 5 mg/kg-day 32 (40%), 50 mg/kg-day (80%), and 100 mg/kg-day (100%), compared to 10% in the controls. Only 33 10% of the females showed significant kidney tubular changes at the two high-dose levels 34 compared to zero animals in the female control group. The casts were described as molds of distal 35 nephron lumen and were considered by the study authors to be indicative of renal dysfunction. 36 From this study, male F344 rats appeared to be affected more severely by benzo[a]pyrene 37 treatment than the female rats. However, the statistical significance of the kidney lesions are 38 unclear. Several reporting gaps and inconsistencies regarding the reporting of kidney

(E:T ratio was $40.9 \pm 28.4\%$ that of the controls) at 90 mg/kg-day; and a decrease in serum IgM

1

Toxicological Review of benzo[a]pyrene

1 abnormalities in Knuckles et al. (2001) make interpretation of the results difficult. Results of

- $2 \qquad histopathological kidney abnormalities (characterized primarily as kidney casts) were presented$
- 3 graphically and the data were not presented numerically in this report. No indication was given in
- 4 the graph that any groups were statistically different than controls, although visual examination of
- 5 the magnitude of response and error bars appears to indicate a fourfold increase in kidney casts in
- 6 males compared to the control group (40 compared to 10%). The figure legend reported the data
- 7 as "percentage incidence of abnormal kidney tissues" and reported values as mean ± SD. However,
- 8 the text under the materials and methods section stated that Fisher's exact test was used for
- 9 histopathological data, which would involve the pairwise comparison of incidence and not means.
- 10 There are additional internal inconsistencies in the data presented. The data appeared to indicate
- 11 that incidences for males were as follows: control, 10%; 5 mg/kg-day, 40%; 50 mg/kg-day, 80%;
- 12 and 100 mg/kg-day, 100%; however, these incidences are inconsistent with the size of the study
- 13 groups, which were reported as 6–8 animals per group. The study authors were contacted, but did
- 14 not respond to EPA's request for clarification of study design and/or results. Due to issues of data
- 15 reporting, a LOAEL could not be established for the increased incidence of kidney lesions. Based on
- 16 the statistically significant hematological effects including decreases in RBC counts, hematocrit, and
- 17 BUN, the NOAEL in males was 5 mg/kg-day and the LOAEL was 50 mg/kg-day, based on in F344
- 18 rats. No exposure-related histological lesions were identified in the stomach, liver, testes, or
- 19 ovaries in this study.
- 20 In a range-finding study, Wistar (specific pathogen-free [SPF] Riv:TOX) rats (10/sex/dose 21 group) were administered benzo[a]pyrene (97.7% purity) dissolved in soybean oil by gavage at 22 dose levels of 0, 1.5, 5, 15, or 50 mg/kg body weight-day, 5 days/week for 5 weeks (Kroese et al., 23 2001). Behavior, clinical symptoms, body weight, and food and water consumption were 24 monitored. None of the animals died during the treatment period. Animals were sacrificed 25 24 hours after the last dose. Urine and blood were collected for standard urinalysis and 26 hematology and clinical chemistry evaluation. Liver enzyme induction was monitored based on 27 EROD activity in plasma. Animals were subjected to macroscopic examination, and organ weights 28 were recorded. The esophagus, stomach, duodenum, liver, kidneys, spleen, thymus, lung, and 29 mammary gland (females only) from the highest-dose and control animals were evaluated for 30 histopathology. Intermediate-dose groups were examined if abnormalities were observed in the 31 higher-dose groups. 32 A significant, but not dose-dependent, increase in food consumption in males at ≥ 1.5 mg/kg-
- day and a decrease in food consumption in females at ≥5 mg/kg-day was observed (Kroese et al.,
 2001). Water consumption was statistically significantly altered in males only: a decrease at 1.5, 5,
 and 15 mg/kg-day and an increase at 50 mg/kg-day. Organ weights of lung, spleen, kidneys,
 adrenals, and ovaries were not affected by treatment. There was a dose-related, statistically
 significant decrease in thymus weight in males at 15 and 20 mg/kg-day (decreased by 28 and 33%,
- 38 respectively) and a significant decrease in thymus weight in females at 50 mg/kg-day (decreased by

- 1 17%) (Table B-7). In both sexes, liver weight was statistically significantly increased only at
- 2 50 mg/kg-day by about 18% (Table B-7).

	Dose (mg/kg-d)				
Organ	0	1.5	5	15	50
Liver weight (g; mean ± SD)					
Males Females	6.10 ± 0.26 4.28 ± 0.11	6.19 ± 0.19 4.40 ± 0.73	6.13 ± 0.10 4.37 ± 0.11	6.30 ± 0.14 4.67 ± 0.17	$7.20 \pm 0.18^{\circ}$ $5.03 \pm 0.15^{\circ}$
Thymus weight (mg; mean ± SD) Males Females	471 ± 19 326 ± 12	434 ± 20 367 ± 23	418 ± 26 351 ± 25	342 ± 20ª 317 ± 30	317 ± 21ª 271 ± 16ª
Basal cell hyperplasia of the forestomach (incidence with slight severity)					
Males Females	1/10 0/10	1/10 1/10	4/10 1/10	3/10 3/10ª	7/10 7/10ª

3 Table B-7. Exposure-related effects in Wistar rats exposed to benzo[a]-4 pyrene by gavage 5 days/week for 5 weeks

^aSignificantly (p < 0.05) different from control mean; n = 10/sex/group.

Source: Kroese et al. (2001).

5

6 Hematological evaluation revealed only statistically nonsignificant, small, dose-related 7 decreases in hemoglobin in both sexes and RBC counts in males. Clinical chemistry analysis 8 showed a small, but statistically significant, increase in creatinine levels in males only at 1.5 mg/kg-

9 day, but this effect was not dose-dependent. A dose-dependent induction of liver microsomal EROD

10 activity was observed, with a 5-fold induction at 1.5 mg/kg-day compared to controls, reaching 36-

11 fold in males at 50 mg/kg-day; the fold induction in females at the top dose was less than in males.

12 At necropsy, significant, dose-dependent macroscopic findings were not observed.

13 Histopathology examination revealed a statistically significant increase in basal cell

14 hyperplasia in the forestomach of females at doses $\geq 15 \text{ mg/kg-day}$ (Kroese et al., 2001). The

15 induction of liver microsomal EROD was not accompanied by any adverse histopathologic findings

16 in the liver at the highest dose, 50 mg/kg-day, so the livers from intermediate-dose groups were,

17 therefore, not examined. An increased incidence of brown pigmentation of red pulp (hemosiderin)

18 in the thymus was observed in treated animals of both sexes. However, this tissue was not

19 examined in intermediate-dose groups. This range-finding, 5-week study identified a NOAEL of

5 mg/kg-day and a LOAEL of 15 mg/kg-day, based on decreased thymus weight and forestomach 20

21 hyperplasia in Wistar rats.

22 Kroese et al. (2001) exposed Wistar (Riv:TOX) rats (10/sex/dose group) to benzo[a]pyrene 23 (98.6% purity, dissolved in soybean oil) by gavage at 0, 3, 10, or 30 mg/kg body weight-day,

> This document is a draft for review purposes only and does not constitute Agency policy. B-40

1 5 days/week for 90 days. The rats were examined daily for behavior and clinical symptoms and by

- 2 palpation. Food and water consumption, body weights, morbidity, and mortality were monitored.
- 3 At the end of the exposure period, rats were subjected to macroscopic examination and organ
- 4 weights were recorded. Blood was collected for hematology and serum chemistry evaluation, and
- 5 urine was collected for urinalysis. All gross abnormalities, particularly masses and lesions
- 6 suspected of being tumors, were evaluated. The liver, stomach, esophagus, thymus, lung, spleen,
- 7 and mesenteric lymph node were examined histopathologically. In addition, cell proliferation in
- 8 forestomach epithelium was measured as the prevalence of S-phase epithelial cells displaying
- 9 bromodeoxyuridine (BrdU) incorporation.
- 10 There were no obvious effects on behavior of the animals, and no difference was observed
- 11 in survival or food consumption between exposed animals and controls (Kroese et al., 2001).
- 12 Higher water consumption and slightly lower body weights than the controls were observed in
- 13 males but not females at the high dose of 30 mg/kg-day. Hematological investigations showed only
- 14 nonsignificant, small dose-related decreases in RBC count and hemoglobin level in both sexes.
- 15 Clinical chemistry evaluation did not show any treatment-related group differences or dose-
- 16 response relationships for alanine aminotransferase (ALT), serum aspartate transaminase (AST),
- 17 lactate dehydrogenase (LDH), or creatinine, but a small dose-related decrease in *γ*-glutamyl
- 18 transferase (GGT) activity was observed in males only. Urinalysis revealed an increase in urine
- volume in males at 30 mg/kg-day, which was not dose related. At the highest dose, both sexes
- 20 showed increased levels of urinary creatinine and a dose-related increase in urinary protein.
- 21 However, no further investigation was conducted to determine the underlying mechanisms for
- 22 these changes. At necropsy, reddish to brown/gray discoloration of the mandibular lymph nodes
- 23 was consistently noted in most rats; occasional discoloration was also observed in other regional
- 24 lymph nodes (axillary). Statistically significant increases in liver weight were observed at 10 and
- 25 30 mg/kg-day in males (15 and 29%) and at 30 mg/kg-day in females (17%). A decrease in thymus
- 26 weight was seen in both sexes at 30 mg/kg-day (17 and 33% decrease in females and males,
- 27 respectively, compared with controls) (Table B-8). At 10 mg/kg-day, thymus weight in males was
- 28 decreased by 15%, but the decrease did not reach statistical significance.

1 2

Table B-8. Means ± SD^a for liver and thymus weights in Wistar ratsexposed to benzo[a]pyrene by gavage 5 days/week for 90 days

	Dose (mg/kg-d)					
Organ	0	10	30			
Liver weight (g)						
Males	7.49 ± 0.97	8.00 ± 0.85	8.62 ± 1.30^{b}	9.67 ± 1.17^{b}		
Females	5.54 ± 0.70	5.42 ± 0.76	5.76 ± 0.71	6.48 ± 0.78^{b}		
Thymus weight (mg)						
Males	380 ± 60	380 ± 110	330 ± 60	270 ± 40^{b}		
Females	320 ± 60	310 ± 50	300 ± 40	230 ± 30^{b}		

^aReported as SE, but judged to be SD (and confirmed by study authors). ^bSignificantly (*p* < 0.05) different from control mean; student t-test (unpaired, two-tailed); n = 10/sex/group.

Source: Kroese et al. (2001).

3 4 Histopathologic examination revealed what was characterized by Kroese et al. (2001) as 5 basal cell disturbance in the epithelium of the forestomach in males (p < 0.05) and females 6 (p < 0.01) at 30 mg/kg-day. The basal cell disturbance was characterized by increased number of 7 basal cells, mitotic figures, and remnants of necrotic cells; occasional early nodule development; 8 infiltration by inflammatory cells (mainly histiocytes); and capillary hyperemia, often in 9 combination with the previous changes (Kroese et al., 2001). Incidences for these lesions (also 10 described as "slight basal cell hyperplasia") in the 0, 3, 10, and 30-mg/kg-day groups were 0/10, 11 2/10, 3/10, and 7/10, respectively, in female rats and 2/10, 0/10, 6/10, and 7/10, respectively, in 12 male rats. Nodular hyperplasia was noted in one animal of each sex at 30 mg/kg-day. A significant 13 (p < 0.05) increase in proliferation of forestomach epithelial cells was detected at doses $\geq 10 \text{ mg/kg}$ -14 day by morphometric of analysis of nuclei with BrdU incorporation. The mean numbers of BrdU-15 staining nuclei per unit surface area of the underlying lamina muscularis mucosa were increased by 16 about two- and three–fourfold at 10 and 30 mg/kg-day, respectively, compared with controls. A 17 reduction of thymus weight and increase in the incidence of thymus atrophy (the report described 18 the atrophy as slight, but did not specify the full severity scale used in the pathology examination) 19 was observed in males only at 30 mg/kg-day (p < 0.01 compared with controls). Respective 20 incidences for thymus atrophy for the control through high-dose groups were 0/10, 0/10, 0/10, 21 and 3/10 for females and 0/10, 2/10, 1/10, and 6/10 for males. No significant differences were 22 observed in the lungs of control and treated animals. In the esophagus, degeneration and 23 regeneration of muscle fibers and focal inflammation of the muscular wall were judged to be a 24 result of the gavage dosing rather than of benzo[a]pyrene treatment.

1 The target organs of benzo[a]pyrene toxicity in this 90-day dietary study of Wistar rats 2 were the forestomach, thymus, and liver. The LOAEL for forestomach hyperplasia, decreased 3 thymus weight, and thymus atrophy was 30 mg/kg-day and the NOAEL was 10 mg/kg-day.

4 Chronic Studies and Cancer Bioassays

5 Kroese et al. (2001) exposed Wistar (Riv:TOX) rats (52/sex/dose group) to benzo[a]pyrene 6 (98.6% purity) in soybean oil by gavage at nominal doses of 0, 3, 10, or 30 mg/kg-day, 5 days/week, 7 for 104 weeks. Mean achieved dose levels were 0, 2.9, 9.6, and 29 mg/kg-day. Additional rats 8 (6/sex/group) were sacrificed after 4 and 5 months of exposure for analysis of DNA adduct 9 formation in blood and major organs and tissues. The rats were 6 weeks old at the start of 10 exposure. The rats were examined daily for behavior and clinical symptoms and by palpation. 11 Food and water consumption, body weights, morbidity, and mortality were monitored during the 12 study. Complete necropsy was performed on all animals that died during the course of the study. 13 were found moribund, or at terminal sacrifice (organ weight measurement was not mentioned in 14 the report by Kroese et al., 2001). The organs and tissues collected and prepared for microscopic 15 examination included: brain, pituitary, heart, thyroid, salivary glands, lungs, stomach, oesophagus, 16 duodenum, jejunum, ileum, caecum, colon, rectum, thymus, kidneys, urinary bladder, spleen, lymph 17 nodes, liver pancreas, adrenals, sciatic nerve, nasal cavity, femur, skin including mammary tissue, 18 ovaries/uterus, and testis/accessory sex glands. Some of these tissues were examined only when 19 gross abnormalities were detected. All gross abnormalities, particularly masses and lesions that 20 appeared to be tumors, were also examined. 21 At 104 weeks, survival in the control group was 65% (males) and 50% (females), whereas

22 mortality in the 30 mg/kg-day dose group was 100% after about week 70. At 80 weeks, survival 23 percentages were about 90, 85 and 75% in female rats in the 0, 3, and 10 mg/kg-day groups,

24 respectively; in males, respective survival percentages were \sim 95, 90, and 85% at 80 weeks.

25 Survival of 50% of animals occurred at 104, 104, ~90, and 60 weeks for control through high-dose

26 females; for males, the respective times associated with 65% survival were 104, 104, 104, and ~ 60

- 27 weeks. The high mortality rate in high-dose rats was attributed to liver or forestomach tumor
- 28 development, not to noncancer systemic effects. After 20 weeks, body weight was decreased

29 (compared with controls by >10%) in 30-mg/kg-day males, but not in females. This decrease was

30 accompanied by a decrease in food consumption. Body weights and food consumption were not

31 adversely affected in the other dose groups compared to controls. In males, there was a dose-

32 dependent increase in water consumption starting at week 13, but benzo[a]pyrene treatment had

33 no significant effects on water consumption in females.

34 Tumors were detected at significantly elevated incidences at several tissue sites in female 35 and male rats at doses ≥ 10 and ≥ 3 mg/kg-day, respectively (Table 4-5; Kroese et al., 2001). The 36 tissue sites with the highest incidences of tumors were the liver (hepatocellular adenoma and 37 carcinoma) and forestomach (squamous cell papilloma and carcinoma) in both sexes (Table B-9). 38 The first liver tumors were detected in week 35 in high-dose male rats. Liver tumors were

- 1 described as complex, with a considerable proportion (59/150 tumors) metastasizing to the lungs.
- 2 At the highest dose level, 95% of rats with liver tumors had malignant carcinomas (95/100; Table
- 3 B-9). Forestomach tumors were associated with the basal cell proliferation observed (without
- 4 diffuse hyperplasia) in the forestomach of rats in the preliminary range-finding and 90-day
- 5 exposure studies described previously in Section 4.2.1. At the highest dose level, 59% of rats with
- 6 forestomach tumors had malignant carcinomas (60/102; Table B-9). Other tissue sites with
- 7 distinctly elevated incidences of tumors in the 30 mg/kg-day dose group included the oral cavity
- 8 (papilloma and squamous cell carcinoma [SCC]) in both sexes, and the jejunum (adenocarcinoma),
- 9 kidney (cortical adenoma), and skin (basal cell adenoma and carcinoma) in male rats (Table B-9).
- 10 In addition, auditory canal tumors (carcinoma or squamous cell papilloma originating from pilo-
- 11 sebaceous units including the Zymbal's gland) were also detected in both sexes at 30 mg/kg-day,
- 12 but auditory canal tissue was not histologically examined in the lower dose groups and the controls
- 13 (Table B-9). Gross examination revealed auditory canal tumors only in the high-dose group.

14 Table B-9. Incidences of exposure-related neoplasms in Wistar rats treated by gavage with benzo[a]pyrene, 5 days/week, for 104 weeks 15

		Dose (mg/kg-d)			
	0	3	10	30 ª	
Site		Fema	ales ^b		
Oral cavity					
Papilloma	0/19	0/21	0/9	9/31 ^c	
SCC	1/19	0/21	0/9	9/31 ^c	
Basal cell adenoma	0/19	0/21	1/9	4/31	
Sebaceous cell carcinoma	0/19	0/21	0/9	1/31	
Oesophagus					
Sarcoma undifferentiated	0/52	0/52	2/52	0/52	
Rhabdomyosarcoma	0/52	1/52	4/52	0/52	
Fibrosarcoma	0/52	0/52	3/52	0/52	
Forestomach					
Squamous cell papilloma	1/52	3/51	20/51 [°]	25/52 ^c	
SCC	0/52	3/51	10/51 ^c	25/52 ^c	
Liver					
Hepatocellular adenoma	0/52	2/52	7/52 [°]	1/52	
Hepatocellular carcinoma	0/52	0/52	32/52 ^c	50/52 ^c	
Cholangiocarcinoma	0/52	0/52	1/52	0/52	
Anaplastic carcinoma	0/52	0/52	1/52	0/52	
Auditory canal					
Benign tumor	0/0	0/0	0/0	1/20	
Squamous cell papilloma	0/0	0/1	0/0	1/20	
Carcinoma	0/0	0/1	0/0	13/20 ^c	
		Ма	les ^b		

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE

	Dose (mg/kg-d)			
	0	3	10	30 ª
Oral cavity				
Papilloma	0/24	0/24	2/37	10/38 ^c
SCC	1/24	0/24	5/37	11/38 ^c
Basal cell adenoma	0/24	0/24	0/37	2/38
Sebaceous cell carcinoma	0/24	0/24	0/37	2/38
Forestomach				
Squamous cell papilloma	0/52	7/52 [℃]	18/52 [°]	17/52 ^c
SCC	0/52	1/52	25/52 ^c	35/52 ^c
Jejunum				
Adenocarcinoma	0/51	0/50	1/51	8/49 ^c
Liver				
Hepatocellular adenoma	0/52	3/52	15/52 [°]	4/52
Hepatocellular carcinoma	0/52	1/52	23/52 ^c	45/52 ^c
Cholangiocarcinoma	0/52	0/52	0/52	1/52
Kidney				
Cortical adenoma	0/52	0/52	7/52 ^c	8/52 ^c
Adenocarcinoma	0/52	0/52	2/52	0/52
Urothelial carcinoma	0/52	0/52	0/52	3/52
Auditory canal				
Benign	0/1	0/0	1/7	0/33
Squamous cell papilloma	0/1	0/0	0/7	4/33
Carcinoma	0/1	0/0	2/7	19/33 ^c
Sebaceous cell adenoma	0/1	0/0	0/7	1/33
Skin and mammary				
Basal cell adenoma	2/52	0/52	1/52	10/51 ^c
Basal cell carcinoma	1/52	1/52	0/52	4/51
SCC	0/52	1/52	1/52	5/51
Keratoacanthoma	1/52	0/52	1/52	4/51
Trichoepithelioma	0/52	1/52	2/52	8/51 [°]
Fibrosarcoma	0/52	3/52	5/52	0/51
Fibrous histiocytoma (malignant)	0/52	0/52	1/52	1/52

^aThis group had significantly decreased survival.

^bIncidences are for number of rats with tumors compared with number of tissues examined histologically. Auditory canal and oral cavity tissues were only examined histologically when abnormalities were observed upon macroscopic examination.

^cStatistically significant difference ($p \le 0.01$), Fisher's exact test; analysis of auditory canal tumor incidence was based on assumption of n = 52 and no tumors in the controls.

Source: Kroese et al. (2001).

1

Kroese et al. (2001) did not systematically investigate nonneoplastic lesions detected in rats
 sacrificed during the 2-year study, because the focus was to identify and quantitate tumor

1 occurrence. However, incidences were reported for nonneoplastic lesions in tissues or organs in 2 which tumors were detected (i.e., oral cavity, oesophagus, forestomach, jejunum, liver, kidney, skin, 3 mammary, and auditory canal). The reported nonneoplastic lesions associated with exposure were 4 the forestomach basal cell hyperplasia and clear cell foci of cellular alteration in the liver. 5 Incidences for forestomach basal cell hyperplasia in the control through high-dose groups were 6 1/52, 8/51, 13/51, and 2/52 for females and 2/50, 8/52, 8/52, and 0/52 in males. Incidences for 7 hepatic clear cell foci of cellular alteration were 22/52, 33/52, 4/52, and 2/52 for females and 8 8/52, 22/52, 1/52, and 1/52 for males. These results indicate that the lowest dose group, 3 mg/kg-9 day, was a LOAEL for increased incidence of forestomach hyperplasia and hepatic histological 10 changes in male and female Wistar rats exposed by gavage to benzo[a]pyrene for up to 104 weeks 11 (see Table 4-5). The lack of an increase in incidence of these nonneoplastic lesions in the 12 forestomach and liver at the intermediate and high doses (compared with controls) were 13 associated with increased incidences of forestomach and liver tumors at these dose levels. The 14 authors of this study note that non-neoplastic effects were not quantified in organs with tumors. 15 As an adjunct study to the 2-year gavage study with Wistar rats, Kroese et al. (2001) 16 sacrificed additional rats (6/sex/group) after 4 and 5 months of exposure (0, 1, 3, 10, or 30 mg/kg-17 day) for analysis of DNA adduct formation in WBCs and major organs and tissues. Additional rats 18 (6/sex/time period) were exposed to 0.1 mg/kg-day benzo[a]pyrene for 4 and 5 months for 19 analysis of DNA adduct formation. Using the [³²P]-postlabeling technique, five benzo[a]pyrene-DNA 20 adducts were identified in all of the examined tissues at 4 months (WBCs, liver, kidney, heart, lung, 21 skin, forestomach, glandular stomach, brain). Only one of these adducts (adduct 2) was identified 22 based on co-chromatography with a standard. This adduct, identified as 10β-(deoxyguanosin-N2-23 yl)-7 β ,8 α ,9 α -trihydroxy-7,8,9,10 tetrahydro-benzo[a]pyrene (dG-N²-BPDE), was the predominant 24 adduct in all organs of female rats exposed to 10 mg/kg-day, except the liver and kidney, in which 25 another adduct (unidentified adduct 4) was predominant. Levels of total adducts (number of 26 benzo[a]pyrene-DNA adducts per 10^{10} nucleotides) in examined tissues (from the single 10 mg/kg-27 day female rat) showed the following order: liver > heart > kidney > lung > skin > forestomach \approx 28 WBCs > brain. Mean values for female levels of total benzo[a]pyrene-DNA adducts (number per 29 10^{10} nucleotides) in four organs showed the same order, regardless of exposure group: liver > lung 30 > forestomach \approx WBCs; comparable data for males were not reported). Mean total benzo[a]pyrene-31 DNA adduct levels in livers increased in both sexes from about 100 adducts per 10¹⁰ nucleotides at 32 0.1 mg/kg-day to about 70,000 adducts per 10^{10} nucleotides at 30 mg/kg-day. In summary, these 33 results suggest that total benzo[a]pyrene-DNA adduct levels in tissues at 4 months were not 34 independently associated with the carcinogenic responses noted after 2 years of exposure to 35 benzo[a]pyrene. The liver showed the highest total DNA adduct levels and a carcinogenic response, 36 but total DNA adduct levels in heart, kidney, and lung (in which no carcinogenic responses were 37 detected) were higher than levels in forestomach and skin (in which carcinogenic responses were 38 detected).

1 Groups of Sprague-Dawley rats (32/sex/dose) were fed diets delivering a daily dose of 2 0.15 mg benzo[a]pyrene/kg body weight every ninth day or 5 times/week (Brune et al., 1981). 3 Other groups (32/ sex/dose) were given gavage doses of 0.15 mg benzo[a]pyrene (in aqueous 1.5% 4 caffeine solution)/kg every ninth day, every third day, or 5 times/week. The study included an 5 untreated control group (to compare with the dietary exposed groups) and a gavage vehicle control 6 group (each with 32 rats/sex). Rats were treated until moribundity or death occurred, with 7 average annual doses are reported in Table 4-6 (mg/kg-year, calculated by Brune et al. [1981]). 8 The following tissues were prepared for histopathological examination: tongue, larynx, lung, heart, 9 trachea, esophagus, stomach, small intestine, colon, rectum, spleen, liver, urinary bladder, kidney, 10 adrenal gland, and any tissues showing tumors or other gross changes. Survival was similar among 11 the groups, with the exception that the highest gavage-exposure group showed a decreased median 12 time of survival (Table B-10). Increased incidences of portal-of-entry tumors (forestomach, 13 esophagus, and larynx) were observed in all of the gavage-exposed groups and in the highest 14 dietary exposure group (Table B-10). Following dietary administration, all observed tumors were 15 papillomas. Following gavage administration, two malignant forestomach tumors were found (one 16 each in the mid- and high-dose groups) and the remaining tumors were benign. The data in Table 17 4-6 show that the carcinogenic response to benzo[a]pyrene was stronger with the gavage protocol 18 compared with dietary exposure, and that no distinct difference in response was apparent between 19 the sexes. Tumors at distant sites (mammary gland, kidney, pancreas, lung, urinary bladder, testes, 20 hematopoietic, and soft tissue) were not considered treatment-related as they were also observed 21 at similar rates in the control group (data not provided). The study report did not address 22 noncancer systemic effects.

Table B-10. Incidences of alimentary tract tumors in Sprague-Dawley rats chronically exposed to benzo[a]pyrene in the diet or by gavage in caffeine solution

Average annual dose (mg/kg-yr)	Estimated average daily dose ^ª (mg/kg-d)	Forestomach tumors ^b	Total alimentary tract tumors ^c (larynx, esophagus, forestomach)	Median survival time (wks)
	Benzo[a]pyre	ne by gavage in 1.5% caf	feine solution	
0	0	3/64 (4.7%)	6/64 (9.4%)	102
6	0.016	12/64 (18.8%) ^d	13/64 (20.3%)	112
18	0.049	26/64 (40.1%) ^e	26/64 (40.6%)	113
39	0.107	14/64 (21.9%) ^e	14/64 (21.9%)	87
		Benzo[a]pyrene in diet		
0	0	2/64 (3.1%)	3/64 (4.7%)	129
6	0.016	1/64 (1.6%)	3/64 (4.7%)	128
39	0.107	9/64 (14.1%) ^d	10/64 (15.6%)	131

This document is a draft for review purposes only and does not constitute Agency policy.

^aAverage annual dose divided by 365 days.

^bNo sex-specific forestomach tumor incidence data were reported by Brune et al. (1981). ^cSex-specific incidences for total alimentary tract tumors were reported as follows:

Gavage (control, high dose): Male: 6/32, 7/32, 15/32, 8/32

Female: 0/32, 6/32, 11/32, 6/32

Diet (control, high dose): Male: 3/32, 3/32, 8/32

Female: 0/32, 0/32, 2/32

^dSignificantly (p < 0.1) different from control using a modified χ^2 test that accounted for group differences in survival time.

^eSignificantly (p < 0.05) different from control using a modified χ^2 test that accounted for group differences in survival time.

Source: Brune et al. (1981).

1

2 In the other modern cancer bioassay with benzo[a]pyrene, female $B6C3F_1$ mice (48/dose 3 group) were administered benzo[a]pyrene (98.5% purity) at concentrations of 0 (acetone vehicle), 4 5, 25, or 100 ppm in the diet for 2 years (Beland and Culp, 1998; Culp et al., 1998). This study was 5 designed to compare the carcinogenicity of coal tar mixtures with that of benzo[a]pyrene and 6 included groups of mice fed diets containing one of several concentrations of two coal tar mixtures. 7 Benzo[a]pyrene was dissolved in acetone before mixing with the feed. Control mice received only 8 acetone-treated feed. Female mice were chosen because they have a lower background incidence of 9 lung tumors than male $B6C3F_1$ mice. Culp et al. (1998) reported that the average daily intakes of 10 benzo[a]pyrene in the 25- and 100-ppm groups were 104 and 430 μ g/day, but did not report 11 intakes for the 5-ppm group. Based on the assumption that daily benzo[a]pyrene intake at 5 ppm 12 was one-fifth of the 25-ppm intake (about 21 μ g/day), average daily doses for the three 13 benzo[a]pyrene groups are estimated at 0.7, 3.3, and 16.5 mg/kg-day. Estimated doses were 14 calculated using time-weighted average (TWA) body weights of 0.032 kg for the control, 5- and 25-15 ppm groups and 0.026 kg for the 100-ppm group (estimated from graphically presented data). 16 Food consumption, body weights, morbidity, and mortality were monitored at intervals, and lung, 17 kidneys, and liver were weighed at sacrifice. Necropsy was performed on all mice that died during 18 the experiment or survived to the end of the study period. Limited histopathologic examinations 19 (liver, lung, small intestine, stomach, tongue, esophagus) were performed on all control and high-20 dose mice and on all mice that died during the experimental period, regardless of treatment group. 21 In addition, all gross lesions found in mice of the low- and mid-dose groups were examined 22 histopathologically. 23 None of the mice administered 100 ppm benzo[a]pyrene survived to the end of the study, 24 and morbidity/mortality was 100% by week 78. Decreased survival was also observed at 25 ppm 25 with only 27% survival at 104 weeks, compared with 56 and 60%, in the 5-ppm and control groups, 26 respectively. In the mid- and high-dose group, 60% of mice were alive at about 90 and 60 weeks,

- 27 respectively. Early deaths in exposed mice were attributed to tumor formation rather than other
- 28 causes of systemic toxicity. Food consumption was not statistically different in

1 benzo[a]pyrene-exposed and control mice. Body weights of mice fed 100 ppm were similar to

- $2 \qquad {\rm those \ of \ the \ other \ treated \ and \ control \ groups \ up \ to \ week \ 46, \ and \ after \ approximately \ 52 \ weeks,}$
- 3 body weights were reduced in 100-ppm mice compared with controls. Body weights for the 5- and
- 4 25-ppm groups were similar to controls throughout the treatment period. Compared with the
- 5 control group, no differences in liver, kidney, or lung weights were evident in any of the treated
- 6 groups (other organ weights were not measured).
- 7 Papillomas and/or carcinomas of the forestomach, esophagus, tongue, and larynx at
- 8 elevated incidences occurred in groups of mice exposed to 25 or 100 ppm, but no exposure-related
- 9 tumors occurred in the liver or lung (Table B-11; Beland and Culp, 1998; Culp et al., 1998). The
- 10 forestomach was the most sensitive tissue, and demonstrated the highest tumor incidence among
- 11 the examined tissues and was the only tissue with an elevated incidence of tumors at 25 ppm
- 12 (Table B-11). In addition, most of the forestomach tumors in the exposed groups were carcinomas,
- 13 as 1, 31, and 45 mice had forestomach carcinomas in the 5-, 25-, and 100-ppm groups respectively.
- 14 Nonneoplastic lesions were also found in the forestomach at significantly (p < 0.05) elevated
- 15 incidences: hyperplasia at \geq 5 ppm and hyperkeratosis at \geq 25 ppm (Table B-11). The esophagus
- 16 was the only other examined tissue showing elevated incidence of a nonneoplastic lesion (basal cell
- 17 hyperplasia, see Table B-11). Tumors (papillomas and carcinomas) were also significantly elevated
- 18 in the esophagus and tongue at 100 ppm (Table B-11). Esophogeal carcinomas were detected in 1
- 19 mouse at 25 ppm and in 11 mice at 100 ppm. Tongue carcinomas were detected in seven 100-ppm
- 20 mice; the remaining tongue tumors were papillomas. Although incidences of tumors of the larynx
- 21 were not significantly elevated in any of the exposed groups, a significant dose-related trend was
- 22 apparent (Table B-11).

Table B-11. Incidence of nonneoplastic and neoplastic lesions in female B6C3F₁ mice fed benzo[a]pyrene in the diet for up to 2 years

	Incidence (%)			
	Benzo[a]pyrene con	centration (p	om) in diet
	0	5	25	100
	А	verage daily	/ doses (mg/k	g-d)
Tissue and lesion	0	0.7	3.3	16.5
Liver (hepatocellular adenoma)	2/48 (2)	7/48 (15)	5/47 (11)	0/45 (0)
Lung (alveolar/bronchiolar adenoma and/or carcinoma)	5/48 (10)	0/48 (0)	4/45 (9)	0/48 (0)
Forestomach (papilloma and/or carcinoma)	1/48 ^b (2)	3/47 (6)	36/46ª (78)	46/47ª (98)
Forestomach (hyperplasia)	13/48 ^b (27)	23/47 (49)	33/46ª (72)	37/47ª (79)
Forestomach (hyperkeratosis)	13/48 ^b	22/47	33/46ª	38/47ª

This document is a draft for review purposes only and does not constitute Agency policy.

B-49

	(27)	(47)	(72)	(81)
Esophagus (papilloma and/or carcinoma)	0/48 ^b	0/48	2/45	27/46ª
	(0)	(0)	(0)	(59)
Esophagus (basal cell hyperplasia)	1/48 ^b	0/48	5/45	30/46ª
	(2)	(0)	(11)	(65)
Tongue (papilloma and/or carcinoma)	0/49 ^b	0/48	2/46	23/48 ^a
	(0)	(0)	(4)	(48)
Larynx (papilloma and/or carcinoma)	0/35 ^b	0/35	3/34	5/38
	(0)	(0)	(9)	(13)

^aSignificantly different from control incidence (p < 0.05); using a modified Bonferonni procedure for multiple comparisons to the same control.

^bSignificant (p < 0.05) dose-related trend calculated for incidences of these lesions.

Sources: Beland and Culp (1998); Culp et al. (1998).

1 2

Neal and Rigdon (1967) fed benzo[a]pyrene (purity not reported) at concentrations of 0, 1,

3 10, 20, 30, 40, 45, 50, 100, and 250 ppm to male and female CFW-Swiss mice in the diet.

4 Corresponding doses (in mg/kg-day) were calculated¹ as 0, 0.2, 1.8, 3.6, 5.3, 7.1, 8, 8.9, 17.8, and

5 44.4 mg/kg-day. The age of the mice ranged from 17 to 180 days old and the treatment time was

6 from 1 to 197 days; the size of the treated groups ranged from 9 to 73. There were 289 mice

7 (number of mice/sex not stated) in the control group. No forestomach tumors were reported at 0,

8 0.2, or 1.8 mg/kg-day. The incidence of forestomach tumors at 20, 30, 40, 45, 50, 100, and 250 ppm

9 dose groups (3.6, 5.3, 7.1, 8, 8.9, 17.8, and 44.4 mg/kg-day) were 1/23, 0/37, 1/40, 4/40, 23/34,

10 19/23, and 66/73, respectively.

11 Other Oral Exposure Cancer Bioassays in Mice

12 Numerous other oral exposure cancer bioassays in mice have limitations that restrict their

13 usefulness for characterizing dose-response relationships between chronic-duration oral exposure

14 to benzo[a]pyrene and noncancer effects or cancer, but collectively, they provide strong evidence

15 that oral exposure to benzo[a]pyrene can cause portal-of-entry site tumors (see Table B-12 for

16 references).

¹Calculation: mg/kg-day = (ppm in feed × kg food/day)/kg body weight. Reference food consumption rates of 0.0062 kg/day (males) and 0.0056 kg/day (females) and reference body weights of 0.0356 kg (males) and 0.0305 kg (females) were used (U.S. EPA, 1988) and resulting doses were averaged between males and females.

Species/strain	Exposure	Results	Comments	Reference
Rat/Sprague- Dawley	Groups of Sprague- Dawley rats (32/sex/dose) were fed diets delivering a daily dose of 0.15 mg benzo[a]pyrene/kg body weight every 9 th day or 5 times/week (Brune et al., 1981). Other groups (32/ sex/dose) were given gavage doses of 0.15 mg benzo[a]pyrene (in aqueous 1.5% caffeine solution)/kg every 9 th day, every 3 rd day, or 5 times/week.	Dose larynx, esophagus, and forestomach (gavage) tumors 0 6/64 0.016 13/64 0.049 26/64 0.107 14/64 (diet) 0 3/64 0.016 3/64 0.107 10/64	Doses are annual averages. Nonstandard treatment protocol involved animals being treated for ≤5 days/week; relatively high control incidence compared to other gavage studies.	Brune et al., 1981
Mouse/HaICR	Groups of 12–20 mice (10 wks old) were fed benzo[a]pyrene in the diet (0.1, 0.3, or 1.0 mg/g diet) for 12–20 wks. Estimated doses were 14.3, 42.0, or 192 mg/kg- d.	Incidence with forestomach tumors: Low 11/20 (18 wks) Mid 13/19 (20 wks) High 12/12 (12 wks)	Less-than-lifetime exposure duration; only stomachs were examined for tumors; tumors found only in forestomach.	Wattenberg , 1972
Mouse/HalCR	Groups of nine mice (9 wks old) were fed benzo[a]pyrene in the diet (0, 0.2, or 0.3 mg/g diet) for 12 wks and sacrificed. Estimated doses were 0, 27.3, or 41 mg/kg-d.	Incidence with forestomach tumors: Control 0/9 Low 6/9 High 9/9	Less-than-lifetime exposure duration; glandular stomach, lung, and livers from control and exposed mice showed no tumors.	Triolo et al., 1977
Mouse/HalCR	20 mice (9 wks old) were given benzo[a]pyrene in the diet (0.3 mg benzo[a]pyrene/g diet) for 6 wks and sacrificed after 20 wks in the study.	8/20 exposed mice had forestomach tumors.	Less-than-lifetime exposure duration; only stomachs were examined for tumors; tumors found only in forestomach; no nonexposed controls were mentioned.	Wattenberg , 1974

Table B-12. Other oral exposure cancer bioassays in mice

1

Species/strain	Exposure	Results	Comments	Reference
Mouse/CD-1	20 female mice (9 wks old) were given 1 mg benzo[a]pyrene by gavage 2 times/wk for 4 wks and observed for 19 wks. Estimated dose was 33 mg/kg-d, using an average body weight of 0.030 kg from reported data.	Incidence with forestomach tumors: Exposed 17/20 (85%) Controls 0/24	Less-than-lifetime exposure duration; only stomach were examined for tumors; tumors found only in forestomach.	El-Bayoumy, 1985
Mouse/BALB	25 mice (8 wks old) were given 0.5 mg benzo[a]pyrene 2 times/wk for 15 wks.	5/25 mice had squamous carcinomas of the forestomach; tumors were detected 28–65 wks after treatment.	Less-than-lifetime exposure duration; the following details were not reported: inclusion of controls, methods for detecting tumors, and body weight data.	Biancifiori et al., 1967
Mouse/C3H	19 mice (about 3 mo old) were given 0.3 mL of 0.5% benzo[a]pyrene in polyethylene glycol-400 by gavage, once/d for 3 d.	By 30 wks, 7/10 mice had papillomas; no carcinomas were evident.	Less-than-lifetime exposure duration.	Berenblum and Haran, 1955
Mouse/albino	Groups of 17–18 mice were given single doses of benzo[a]pyrene and allowed to survive until terminal sacrifice at 569 d.	Incidence of mice (that survived at least to 60 d) with forestomach papillomas: Dose (µg) Incidence (Experiment 1) (Experiment 2) Control 0/17 0/18 12.5 3/17 2/18 50 0/17 1/17 200 8/17 NE	Less-than-lifetime exposure duration; GI tract examined for tumors with hand lens; body weight data not reported.	Field and Roe, 1965
Mouse/albino	Groups of about 160 female mice (70 d of age; strain unknown) were given 0 or 8 mg benzo[a]pyrene mixed in the diet over a period of 14 mo.	Gastric tumors were observed at the following incidence: Control 0/158 8 mg benzo[a]pyrene total 13/160	Close to lifetime exposure duration; daily dose levels and methods of detecting tumors were not clearly reported.	Chouroulink ov et al., 1967

This document is a draft for review purposes only and does not constitute Agency policy.B-52DRAFT—DO NOT CITE OR QUOTE

Species/strain	Exposure	Results	Comments	Reference
Mouse/CFW	Groups of mice (mixed sex) were fed benzo[a]pyrene in the diet (dissolved in benzene and mixed with diet) at 0, 1, 10, 20, 30, 40, 45, 50, 100, or 250 ppm in the diet.	ppm Exposure Forestomach tumor (d) incidence 1 110 0/25 10 110 0/24 20 110 1/23 30 110 0/37 40 110 1/40 45 110 4/40 50 152 24/34 100 110 19/23 250 118 66/73	Less-than-lifetime exposure duration; no vehicle control group; animals ranged from 3 wks to 6 mo old at the start of dosing; only alimentary tract was examined for tumors (see also Rigdon and Neal, 1969, 1967, 1966).	Neal and Rigdon, 1967
Mouse/Swiss albino	Groups of mice (9–14 wks old) were given single doses of 0 or 0.05 mg benzo[a]pyrene in polyethylene glycol-400 by gavage. Surviving mice were killed at 18 mo of age and examined for macroscopic tumors.	Forestomach tumor incidence: Dose (µg) – Carcinoma Papilloma 0 0/65 2/65 50 1/61 20/61	Less-than-lifetime duration of exposure; exposure-related tumors only found in forestomach.	Roe et al., 1970
Mouse/ICR	Groups of 20 or 24 mice (71 d old) were given 1.5 mg benzo[a]pyrene by gavage 2 times/wk for 4 wks; terminal sacrifice was at 211 d of age. Estimated dose was about 50 mg benzo[a]pyrene/kg, using an average body weight of 0.03 kg during exposure from reported data.	Incidence of mice with forestomach neoplasms Experiment 1 23/24 Experiment 2 19/20	Less-than-lifetime duration of exposure; only stomachs were examined for tumors; tumors found only in forestomach; nonexposed controls were not mentioned.	Benjamin et al., 1988

Species/strain	Exposure	Results	Comments	Reference
Mouse/white	Groups of 16–30 mice were given benzo[a]pyrene in triethylene glycol (0.001– 10 mg) wkly for 10 wks and observed until 19 mo.	Tumors in stomach antrum Dose (mg) – Carcinoma Papilloma 0.001 0/16 0.01 0/26 2/26 0.1 0/24 5/24 1.0 11/30 12/30 10 16/27 7/27	Less-than-lifetime exposure duration.	Fedorenko and Yansheva, 1967; as cited in U.S. EPA, 1991a
Mouse/A/HeJ	12 female mice (9 wks old) were given standard diet for 25 d, and 3 mg benzo[a]pyrene by gastric intubation on d 7 and 21 of the study. Mice were killed at 31 wks of age and examined for lung tumors.	12/12 exposed mice had lung tumors.	Less-than-lifetime exposure duration; only lungs examined for tumors; no nonexposed controls were mentioned.	Wattenberg , 1974
Mouse/A/J	Groups of female mice were fed benzo[a]pyrene in the diet at 0, 16, or 98 ppm for 260 d. Average intakes of benzo[a]pyrene were 0, 40.6, and 256.6 µg/mouse/d. Estimated doses were 0, 1.6, and 9.9 mg/kg-d using a chronic reference body weight value of 0.026 kg (U.S. EPA, 1988).	Incidence of mice surviving to 260 d: Lung tumors Control 4/21 16 ppm 9/25 98 ppm 14/27 Forestomach tumors Control 0/21 16 ppm 5/25 98 ppm 27/27	Close to lifetime exposure duration; A/J strain of mice particularly sensitive to chemically induced cancer; only lungs and stomachs were examined for tumors.	Weyand et al., 1995
Mouse/A/J	Groups 40 female mice (8 wks old) were given 0 or 0.25 mg benzo[a]pyrene (in 2% emulphor) by gavage 3 times/wk for 8 wks. Mice were killed at 9 mo of age and examined for lung or forestomach tumors.	Incidence for mice surviving at 9 mo of age: Lung tumors Control 11/38 Exposed 22/36 Forestomach tumors Control 0/38 Exposed 33/36	Less-than-lifetime duration of exposure; only lungs and GI tract were examined for tumors.	Robinson et al., 1987

NE = not evaluated

1 Inhalation Studies

2 Short-term and Subchronic Studies

3 Wolff et al. (1989) exposed groups of 40 male and 40 female F344/Crl rats, via nose only, to 4 7.5 mg benzo[a]pyrene/m³ for 2 hours/day, 5 days/week for 4 weeks (corresponding to a TWA of 5 0.45 mg/m^3). Rats were 10–11 weeks old at the beginning of the experiment. Benzo[a]pyrene 6 (>98% pure) aerosols were formed by heating and then condensing the vaporized benzo[a]pyrene. 7 The particle MMAD was 0.21 µm. Subgroups of these animals (six/sex/dose) were exposed for 8 4 days or 6 months after the end of the 4-week exposure to radiolabeled aluminosilicate particles. 9 Lung injury was assessed by analyzing clearance of radiolabeled aluminosilicate particles and via 10 histopathologic evaluations. Body and lung weights, measured in subgroups from 1 day to 12 11 months after the exposure did not differ between controls and treated animals. Radiolabeled 12 particle clearance did not differ between the control and treated groups, and there were no 13 significant lung lesions. This study identified a NOAEL for lung effects of 0.45 mg/m³ for a short-14 term exposure.

15 Chronic Studies and Cancer Bioassays

16 Thyssen et al. (1981) conducted an inhalation study in which male Syrian golden hamsters 17 were exposed to benzo[a]pyrene for their natural lifetime. Groups of 20–30 animals (8 weeks old)

18 were exposed by nose-only inhalation to NaCl aerosols (controls; 240 µg NaCl/m³) or

19 benzo[a]pyrene condensed onto NaCl aerosols at three nominal concentrations of 2, 10, or 50 mg

20 benzo[a]pyrene/m³ for 3–4.5 hours/day, 5 days/week for 1–41 weeks, followed by 3 hours/day,

21 7 days/week for the remainder of study (until hamsters died or became moribund). Thyssen et al.

22 (1981) reported average measured benzo[a]pyrene concentrations to be 0, 2.2, 9.5, or 46.5 mg/m³.

23 More than 99% of the particles were between 0.2 and 0.5 μ m in diameter, and over 80% had

24 diameters between 0.2 and 0.3 μ m. The particle analysis of the aerosols was not reported to 25 modern standards (MMAD and geometric SD were not reported). Each group initially consisted of

26 24 hamsters; final group sizes were larger as animals dying during the first 12 months of the study

27 were replaced.

28 Survival was similar in the control, low-dose, and mid-dose groups, but was significantly 29 decreased in the high-dose group. Average survival times in the control, low-, mid-, and high-dose

30 groups were 96.4 ± 27.6 , 95.2 ± 29.1 , 96.4 ± 27.8 , and 59.5 ± 15.2 weeks, respectively. After the 60^{th}

31 week, body weights decreased and mortality increased steeply in the highest dose group.

32 Histologic examination of organs (a complete list of organs examined histologically was not

33 reported by Thyssen et al. [1981]) revealed a dose-related increase in tumors in the upper

34 respiratory tract, including the nasal cavity, pharynx, larynx, and trachea, and in the digestive tract

35 in the mid- and high-dose groups (Table B-13). A statistical analysis was not included in the

36 Thyssen et al. (1981) report. No lung tumors were observed. Squamous cell tumors in the

37 esophagus and forestomach were also observed in the high-dose group, presumably as a

- 1 consequence of mucociliary particle clearance. Tumors were detected in other sites, but none of
- 2 these appeared to be related to exposure. The results indicated that the pharynx and larynx,
- 3 including the epiglottis, were the main cancer targets (Table B-13).

4 5

Table B-13. Incidence of respiratory and upper digestive tract tumors in male hamsters treated for life with benzo[a]pyrene by inhalation

	Reported benzo[a]pyrene concentration (mg/m ³)			
	0 ^a	2 ^b	10	50
Tumor site		Tumor in	cidence (latency in wi	دs ^د)
Nasal cavity	0	0	3/26 (116 ± 1.5)	1/25 (79)
Larynx	0	0	8/26 (107.1 ± 15.5)	13/25 (67.6 ± 12.1)
Trachea	0	0	1/26 (115)	3/25 (63.3 ± 33.3)
Lung	0	0	0	0
Pharynx	0	0	6/26 (97.2 ± 16.9)	14/25 (67.5 ± 12.2)
Esophagus	0	0	0	2/25 (70, 79)
Forestomach	0	0	1/26 (119)	1/25 (72)

^aEffective number of animals in control group: n = 27.

^bEffective number of animals in 2 mg/m³ dose group: n = 27. ^cMean ± SD.

Source: Thyssen et al. (1981).

6

7 Under contract to the U.S. EPA, Clement Associates (1990) obtained the individual animal 8 data (including individual animal pathology reports, time-to-death data, and exposure chamber 9 monitoring data) collected by Thyssen et al. (1981). Re-analysis of the original data revealed 10 several errors and omissions in the published report. The actual exposure protocol was as follows: 11 4.5 hours/day, 5 days/week on weeks 1–12; 3 hours/day, 5 days/week on weeks 13–29; 3.7 12 hours/day, 5 days/week on week 30; 3 hours/day, 5 days/week on weeks 31–41; and 3 hours/day, 13 7 days/week for the reminder of the experiment. In addition, actual exposure concentrations 14 varied widely from week to week. Because different animals were started at different times, each 15 individual animal had an exposure history somewhat different than others in the same exposure 16 group. In order to deal with this problem, Clement Associates (1990) used the original individual 17 animal data to calculate average continuous lifetime exposures for each individual hamster. Group 18 averages of individual average continuous lifetime exposure concentrations were 0, 0.25, 1.01, and 19 4.29 mg/m^3 for the control through high-exposure groups. 20 For this assessment, the individual animal pathology reports prepared by Thyssen et al. 21 (1981) and obtained by Clement Associates (1990) were examined to independently assess the 22 numbers of hamsters with tumors in the larynx, pharynx, and nose in each group. Table B-14 23 presents the number of animals with tumors in the larynx and pharynx and the numbers of animals

- 1 in each exposure group. Numbers of animals with either laryngeal or pharyngeal tumors are also
- 2 noted in Table B-14, since these two types of tumors arise in close anatomical proximity from
- 3 similar cell types. Examination of the individual animal pathology reports also showed that all of
- 4 the nasal, forestomach, esophageal, and tracheal tumors occurred in animals that also had either
- 5 laryngeal or pharyngeal tumors, except for two animals in the mid-dose group that displayed nasal
- 6 tumors (one malignant and one benign) without displaying tumors in the pharynx or larynx.

Table B-14. Number of animals with pharynx and larynx tumors in male hamsters exposed by inhalation to benzo[a]pyrene for life

Average continuous		Larynx ^b		Phary	nx ^b	Larynx or pharynx, combined ^c	
benzo[a]pyrene concentration ^a (mg/m ³)	Number of hamsters in group ^b	Malignant	All	Malignant	All	Malignant	All
Control	27	0	0	0	0	0	0
0.25	27	0	0	0	0	0	0
1.01	26	8	11	7	9	11	16
4.29	34	9	12	17	18	17	18

^aAs calculated by Clement Associates (1990) from air monitoring data collected by Thyssen and colleagues.

^bAs counted from information in Table E-1 in Appendix E, which was obtained from examination of individual animal pathology reports prepared by Thyssen and colleagues and obtained by Clement Associates.

^cAs counted from information in Table E-1 in Appendix E. Nasal, forestomach, esophageal, and tracheal tumors occurred in hamsters that also had tumors in the larynx or pharynx, except for two animals in the mid-dose group that displayed nasal tumors (one malignant and one benign) without displaying tumors in the pharynx or larynx.

- 9
- 10 Several studies have investigated the carcinogenicity of benzo[a]pyrene in hamsters
- 11 exposed by intratracheal instillation. Single-dose studies verified that benzo[a]pyrene is
- 12 tumorigenic, but do not provide data useful for characterizing dose-response relationships because
- 13 of their design (Kobayashi, 1975; Reznik-Schuller and Mohr, 1974; Henry et al., 1973; Mohr, 1971;
- 14 Saffiotti et al., 1968; Gross et al., 1965; Herrold and Dunham, 1962). One multiple-dose study,
- 15 which utilized very low doses (0.005, 0.02, and 0.04 mg, once every 2 weeks), failed to find any
- 16 tumorigenic response (Kunstler, 1983). Tumorigenic responses (mostly in the respiratory tract)
- 17 were found at higher dosage levels (0.25–2 mg benzo[a]pyrene once per week for 30–52 weeks) in
- 18 four multiple-dose studies (Feron and Kruysse, 1978; Ketkar et al., 1978; Feron et al., 1973; Saffiotti
- 19 et al., 1972). These studies identify the respiratory tract as a cancer target with exposure to
- 20 benzo[a]pyrene by intratracheal instillation and provide supporting evidence for the
- 21 carcinogenicity of benzo[a]pyrene at portal-of-entry sites.
- 22

1 Dermal studies

2 <u>Skin-Tumor Initiation-Promotion Assays</u>

3 Results from numerous studies indicate that acute dermal exposure to benzo[a]pyrene 4 induces skin tumors in mice when followed by repeated exposure to a potent tumor promoter 5 (Weyand et al., 1992; Cavalieri et al., 1991, 1981; Rice et al., 1985; El-Bayoumy et al., 1982; LaVoie 6 et al., 1982; Raveh et al., 1982; Slaga et al., 1980, 1978; Wood et al., 1980; Hoffmann et al., 1972). 7 The typical exposure protocol in these studies involved the application of a single dose of 8 benzo[a]pyrene (typically \geq 20 nmol per mouse) to dorsal skin of mice followed by repeated 9 exposure to a potent tumor promoter, such as 12-O-tetradecanoylphorbol-13-acetate (TPA). 10 Carcinogenicity Bioassays 11 Repeated application of BaP to skin (in the absence of exogenous promoters) has been

12 variously demonstrated to induce skin tumors in mice, rats, rabbits, and guinea pigs (IARC, 2010, 13 1983, 1973; WHO, 1998; ATSDR, 1995). Mice have been most extensively studied, presumably 14 because of early evidence that they may be more sensitive than other animal species, but 15 comprehensive comparison of species differences in sensitivity to lifetime dermal exposure are not 16 available. Early studies of complete dermal carcinogenicity in other species (rats, hamsters, guinea 17 pigs, and rabbits) have several limitations which make them not useful for dose-response analysis 18 (see IARC, 1973 for descriptions of studies by Nakano et al., 1937, Shubik et al., 1960; Oberling et 19 al., 1937; Schürch and Winterstein, 1935; Wynder et al., 1957). The limitations in these studies 20 include inadequate reporting of the amount of BaP applied, use of the carcinogen benzene as a 21 vehicle, and less than lifetime exposure duration.

22 This section discusses complete carcinogenicity bioassays in mice that provide the best 23 available dose-response data for skin tumors caused by repeated dermal exposure to BaP (Sivak et 24 al., 1997; Higginbotham et al., 1993; Albert et al., 1991; Habs et al., 1984, 1980; Grimmer et al., 25 1984, 1983; Schmähl et al., 1977; Schmidt et al., 1973; Roe et al., 1970; Poel, 1960, 1959). Early 26 studies of BaP complete carcinogenicity in mouse skin (Wynder and Hoffman 1959; Wynder et al, 27 1957) are not further described herein, because the investigators applied solutions of BaP at 28 varying concentrations on the skin, but did not report volumes applied. As such, applied doses in 29 these studies cannot be determined. Other complete carcinogenicity mouse skin tumor bioassays 30 with BaP are available, but these are not described further in this review, because: (1) they only 31 included one BaP dose level (e.g., Emmett et al., 1981) or only dose levels inducing 90-100% 32 incidence of mice with tumors (e.g., Wilson and Holland, 1988; Warshawsky and Barkley, 1987) and 33 thus provide no information about the shape of the dose-response relationship; (2) they used a 1-34 time/week (e.g., Nesnow et al., 1983) or 1-time every 2 weeks (e.g., Levin et al., 1977) exposure 35 protocol, which is less useful for extrapolating to daily human exposure; or (3) they used a vehicle 36 demonstrated to interact with or enhance benzo[a]pyrene carcinogenicity (Bingham and Falk, 37 1969).

- 1 Poel (1959) applied benzo[a]pyrene in toluene to shaved interscapular skin of groups of
- 2 13–56 male C57L mice at doses of 0, 0.15, 0.38, 0.75, 3.8, 19, 94, 188, 376, or 752 µg, 3 times/week
- 3 for up to 103 weeks or until the appearance of a tumor by gross examination (3 times weekly).
- 4 Some organs (not further specified) and interscapular skin in sacrificed mice were examined
- 5 histologically. With increasing dose level, the incidence of mice with skin tumors increased and the
- 6 time of tumor appearance decreased (see Table B-15). Doses >3.8 μ g were associated with 100%
- 7 mortality after increasingly shorter exposure periods, none greater than 44 weeks. Poel (1959) did
- 8 not mention the appearance of exposure-related tumors in tissues other than interscapular skin.

9 Table B-15. Skin tumor incidence and time of appearance in male C57L 10 mice dermally exposed to benzo[a]pyrene for up to 103 weeks

Dose (μg)ª	Incidence of mice with gross skin tumors	Time of first tumor appearance (wks)	Incidence of mice with epidermoid carcinoma ^b	Length of exposure period (wks)
0 (Toluene)	0/33 (0%)	-	0/33 (0%)	92
0.15	5/55 (9%)	42–44 ^c	0/55 (0%)	98
0.38	11/55 (20%)	24	2/55 (4%)	103
0.75	7/56 (13%)	36	4/56 (7%)	94
3.8	41/49 (84%)	21–25	32/49 (65%)	82
19	38/38 (100%)	11–21	37/38 (97%)	25–44 [°]
94	35/35 (100%)	8–19	35/35 (100%)	22–43
188	12/14 (86%)	9–18	10/14 (71%)	20–35
376	14/14 (100%)	4–15	12/14 (86%)	19–35
752	13/13 (100%)	5–13	13/13 (100%)	19–30

^aIndicated doses were applied to interscapular skin 3 times/week for up to 103 weeks or until time of appearance of a grossly detected skin tumor.

^bCarcinomas were histologically confirmed.

^cRanges reflect differing information in Tables 4 and 6 of Poel (1959).

Source: Poel (1959).

11

- 12 Poel (1960) applied benzo[a]pyrene in a toluene vehicle to shaved interscapular skin of 13 groups of 14–25 male SWR, C3HeB, or A/He mice 3 times/week at doses of 0, 0.15, 0.38, 0.75, 3.8, 14 19.0, 94.0, or 470 µg benzo[a]pyrene per application, until mice died or a skin tumor was observed. 15 Time ranges for tumor observations were provided, but not times of death for mice without tumors, 16 so it was not possible to evaluate differential mortality among all dose groups or the length of 17 exposure for mice without tumors. With increasing dose level, the incidence of mice with skin 18 tumors increased and the time of tumor appearance decreased (Table B-16). The lowest dose level 19 did not induce an increased incidence of mice with skin tumors in any strain, but strain differences
- 20 in susceptibility were evident at higher dose levels. SWR and C3HeB mice showed skin tumors at

B-59

- 1 doses $\geq 0.38 \ \mu g$ benzo[a]pyrene, whereas AH/e mice showed tumors at doses $\geq 19 \ \mu g$
- 2 benzo[a]pyrene (Table B-16). Except for metastases of the skin tumors to lymph nodes and lung,
- 3 Poel (1960) did not mention the appearance of exposure-related tumors in tissues other than
- 4 interscapular skin.

Table B-16. Skin tumor incidence and time of appearance in male SWR, C3HeB, and A/He mice dermally exposed to benzo[a]pyrene for life or until a skin tumor was detected

	SWR mice		C3HeB	mice	A/He mice	
Dose (µg) ^a	Tumor incidence ^b	Time of first tumor appearance (wks)	Tumor incidence ^b	Time of first tumor appearance (wks)	Tumor incidence ^b	Time of fist tumor appearance (wks)
0 (Toluene)	0/20 (0%)		0/17 (0%)	-	0/17 (0%)	-
0.15	0/25 (0%)	-	0/19 (0%)	-	0/18 (0%)	-
0.38	2/22 (9%)	55–55	3/17 (18%)	81–93	0/19 (0%)	-
0.75	15/18 (83%)	25–72	4/17 (24%)	51–93	0/17 (0%)	-
3.8	12/17 (70%)	25–51	11/18 (61%)	35–73	0/17 (0%)	-
19.0	16/16 (100%)	12–28	17/17 (100%)	13–32	21/23 (91%)	21–40
94.0	16/17 (94%)	9–17	18/18 (100%)	10–22	11/16 (69%)	14–31
470.0	14/14 (100%)	5–11	17/17 (100%)	4–19	17/17 (100%)	4–21

^aIndicated doses were applied 3 times/week for life or until a skin tumor was detected. Mice were 10– 14 weeks old at initial exposure.

^bIncidence of mice exposed \geq 10 weeks with a skin tumor.

Source: Poel (1960).

8

9 Roe et al. (1970) treated groups of 50 female Swiss mice with 0 (acetone vehicle), 0.1, 0.3, 1,

10 3, or 9 µg benzo[a]pyrene applied to the shaved dorsal skin 3 times/week for up to 93 weeks; all

11 surviving mice were killed and examined for tumors during the following 3 weeks. The dorsal skin

12 of an additional control group was shaved periodically but was not treated with the vehicle. Mice

13 were examined every 2 weeks for the development of skin tumors at the site of application.

14 Histologic examinations included: (1) all skin tumors thought to be possibly malignant; (2) lesions

15 of other tissues thought to be neoplastic; and (3) limited nonneoplastic lesions in other tissues. As

16 shown in Table B-17, markedly elevated incidences of mice with skin tumors were only found in the

17 $\,$ two highest dose groups (3 or 9 μg), compared with no skin tumors in the control groups.

18 Malignant skin tumors (defined as tumors with invasion or penetration of the panniculus carnosus

- 19 muscle) were detected in 4/41 and 31/40 mice in the 3- and 9- μ g groups, respectively, surviving to
- 20 at least 300 days. Malignant lymphomas were detected in all groups, but the numbers of cases were
- 21 not elevated compared with expected numbers after adjustment for survival differences. Lung

This document is a draft for review purposes only and does not constitute Agency policy.

- 1 tumors were likewise detected in control and exposed groups at incidences that were not
- 2 statistically different.

3
4

Table B-17. Tumor incidence in female Swiss mice dermally exposed to benzo[a]pyrene for up to 93 weeks

	Cumula tumor/	Cumulative number of mice with skin tumor/survivors					Skin tumor	Malignant lymphoma	Lung tumor
Dose (µg)ª	200 d	300 d	400 d	500 d	600 d	700 d	incidence ^b	incidence ^c	incidence ^c
No treatment	0/48	0/43	0/40	0/31	0/21	0/0	0/43 (0%)	19/44 (43%)	12/41 (29%)
Acetone	0/49	0/47	0/45	0/37	0/23	0/0	0/47 (0%)	12/47 (26%)	10/46 (22%)
0.1	0/45	1/42	1/35	1/31	1/22	1/0	1/42 (2%)	11/43 (26%)	10/40 (25%)
0.3	0/46	0/42	0/37	0/30	0/19	0/0	0/42 (0%)	10/43 (23%)	13/43 (30%)
1	0/48	0/43	0/37	1/30	1/18	1/0	1/43 (2%)	16/44 (36%)	15/43 (35%)
3	0/47	0/41	1/37	7/35	8/24	8/0	8/41 (20%)	23/42 (55%)	12/40 (30%)
9	0/46	4/40	21/32	28/21	33/8	34/0	34/46 (74%)	9/40 (23%)	5/40 (13%)

^aDoses were applied 3 times/week for up to 93 weeks to shaved dorsal skin.

^bNumerator: number of mice detected with a skin tumor. Denominator: number of mice surviving to 300 days for all groups except the highest dose group. For the highest dose group (in which skin tumors were first detected between 200 and 300 days), the number of mice surviving to 200 days was used as the denominator.

^cNumerator: number of mice detected with specified tumor. Denominator: number of mice surviving to 300 days unless a tumor was detected earlier, in which case, the number dying before 300 days without a tumor was subtracted from the number of animals reported to have been examined.

Source: Roe et al. (1970).

5

6 Schmidt et al. (1973) dermally administered benzo[a]pyrene in acetone to female NMRI
7 mice (100/group) and female Swiss mice. Benzo[a]pyrene was applied to the shaved dorsal skin

8 twice weekly with doses of 0, 0.05, 0.2, 0.8, or 2 μ g until spontaneous death occurred or until an

9 advanced carcinoma was observed. Skin carcinomas were identified by the presence of crater-

10 shaped ulcerations, infiltrative growth, and the beginning of physical wasting (i.e., cachexia).

11 Necropsy was performed for all animals, and histopathological examination of the dermal site of

- 12 application and any other tissues with gross abnormalities was conducted. Skin tumors were
- 13 observed at the two highest doses in both strains of female mice (see Table B-18), with induction

14 periods of 53.0 and 75.8 weeks for the 0.8 and 2.0 μg NMRI mice and 57.8 and 60.7 weeks for the

- 15 Swiss mice, respectively. The authors indicated that the latency period for tumor formation was
- 16 highly variable and significant differences among exposure groups could not be identified, but no
- 17 further timing information was available, including overall survival. Carcinoma was the primary
- 18 tumor type seen after lifetime application of benzo[a]pyrene to mouse skin.

	Skin tumor incidence (all		
Dose (µg) ^{a,b}	types)	Incidence of papilloma	Incidence of carcinoma
Female NMRI mice			
0 (Acetone)	0/100 (0%)	0/100 (0%)	0/100 (0%)
0.05	0/100 (0%)	0/100 (0%)	0/100 (0%)
0.2	0/100 (0%)	0/100 (0%)	0/100 (0%)
0.8	2/100 (2%)	0/100 (0%)	2/100 (2%)
2	30/100 (30%)	2/100 (2%)	28/100 (28%)
Female Swiss mice			
0 (Acetone)	0/80 (0%)	0/80 (0%)	0/80 (0%)
0.05	0/80 (0%)	0/80 (0%)	0/80 (0%)
0.2	0/80 (0%)	0/80 (0%)	0/80 (0%)
0.8	5/80 (6%)	0/80 (0%)	5/80 (6%)
2	45/80 (56%)	3/80 (4%)	42/80 (52%)

Table B-18. Skin tumor incidence in female NMRI and Swiss mice dermally exposed to benzo[a]pyrene

^aMice were exposed until natural death or until they developed a carcinoma at the site of application. ^bIndicated doses were applied 2 times/week to shaved skin of the back.

Source: Schmidt et al. (1973).

3

1

2

4 Schmähl et al. (1977) applied benzo[a]pyrene 2 times/week to the shaved dorsal skin of 5 female NMRI mice (100/group) at doses of 0, 1, 1.7, or 3 µg in 20 µL acetone. The authors reported 6 that animals were observed until natural death or until they developed a carcinoma at the site of 7 application. The effective numbers of animals at risk was about 80% of the nominal group sizes, 8 which the authors attributed to autolyis; no information was provided concerning when tumors 9 appeared in the relevant groups, how long treatment lasted in each group, or any times of death. 10 Necropsy was performed on all mice and the skin of the back, as well as any organs that exhibited 11 macroscopic changes, were examined histopathologically. The incidence of all types of skin tumors 12 was increased in a dose-related manner compared to controls (see Table B-19). Carcinoma was the 13 primary tumor type observed following chronic dermal exposure to benzo[a]pyrene, and skin 14 papillomas occurred infrequently. Dermal sarcoma was not observed.

15Table B-19. Skin tumor incidence in female NMRI mice dermally16exposed to benzo[a]pyrene

Dose (µg) ^{a,b}	Skin tumor incidence (all types)	Incidence of papilloma	Incidence of carcinoma
0	1/81 (1%)	0/81 (0%)	0/81 (0%)
1	11/77 (14%)	1/77 (1%)	10/77 (13%)

This document is a draft for review purposes only and does not constitute Agency policy. B-62 DRAFT—DO NOT CITE OR OUOTE

1.7	25/88 (28%)	0/88 (0%)	25/88 (28%)
3	45/81 (56%)	2/81 (3%)	43/81 (53%)

^aMice were exposed until natural death or until they developed a carcinoma at the site of application. ^bIndicated doses were applied 2 times/week to shaved skin of the back.

Source: Schmähl et al. (1977).

1

2 Habs et al. (1980) applied benzo[a]pyrene to the shaved interscapular skin of female NMRI 3 mice (40/group) at doses of 0, 1.7, 2.8, or 4.6 μ g in 20 μ L acetone twice weekly, from 10 weeks of 4 age until natural death or gross observation of infiltrative tumor growth. Latency of tumors, either 5 as time of first appearance or as average time of appearance of tumors, was not reported. Necropsy 6 was performed on all animals, and the dorsal skin, as well as any organs showing gross alterations 7 at autopsy, was prepared for histopathological examination. Age-standardized mortality rates, 8 using the total population of the experiment as the standard population, were used to adjust tumor 9 incidence findings in the study. Benzo[a]pyrene application was associated with a statistically 10 significant increase in the incidence of skin tumors at each dose level (see Table B-20).

11Table B-20. Skin tumor incidence in female NMRI mice dermally12exposed to benzo[a]pyrene

Dose (µg) ^{a,b}	Skin tumor incidence	Age-standardized tumor incidence ^c
0 (acetone)	0/35 (0%)	0%
1.7	8/34 (24%)	24.8%
2.8	24/35 (68%)	89.3%
4.6	22/36 (61%)	91.7%

^aMice were exposed until natural death or until they developed a carcinoma at the site of application. ^bIndicated doses were applied 2 times/week to shaved skin of the back.

^cMortality data of the total study population were used to derive the age-standardized tumor incidence.

Source: Habs et al. (1980).

13 14

Grimmer et al. (1984, 1983) applied benzo[a]pyrene (in 0.1 mL of a 1:3 solution of

15 acetone:dimethyl sulfoxide [DMSO]) to the interscapular skin of female CFLP mice (65–80/group) 2

16 times/week for 104 weeks. Doses were 0, 3.9, 7.7, and 15.4 μg in the 1983 experiment, and 0, 3.4,

17 6.7, and 13.5 μg in the 1984 experiment. Mice were observed until spontaneous death, unless an

18 advanced tumor was observed or if animals were found moribund. Survival information was not

- 19 provided; incidences reflect the number of animals placed on study. Necropsy was performed on
- 20 all mice. Histopathological examination of the skin and any other organ showing gross
- 21 abnormalities was performed. Chronic dermal exposure to benzo[a]pyrene produced a dose-
- 22 related increase in skin tumor incidence and a decrease in tumor latency (see Table B-21).

- 1 Carcinoma was the primary tumor type observed and a dose-response relationship was evident for
- 2 carcinoma formation and incidence of all types of skin tumors.

3	Table B-21. Skin tumor incidence and time of appearance in female
4	CFLP mice dermally exposed to benzo[a]pyrene for 104 weeks

Dose (µg)ª	Skin tumor incidence (all types)	Incidence of papilloma	Incidence of carcinoma	Tumor appearance in weeks		
Grimmer et al. (1983)						
0 (1:3 Solution of acetone:DMSO)	0/80 (0%)	0/80 (0%)	0/80 (0%)	_		
3.9	22/65 (34%)	7/65 (11%)	15/65 (23%)	74.6 ± 16.78 ^b		
7.7	39/64 (61%)	5/64 (8%)	34/64 (53%)	60.9 ± 13.90		
15.4	56/64 (88%)	2/64 (3%)	54/64 (84%)	44.1 ± 7.66		
Grimmer et al. (1984)						
0 (1:3 Solution of acetone:DMSO)	0/65 (0%)	0/65 (0%)	0/65 (0%)	_		
3.4	43/64 (67%)	6/64 (9%)	37/64 (58%)	61 (53–65) [°]		
6.7	53/65 (82%)	8/65 (12%)	45/65 (69%)	47 (43–50)		
13.5	57/65 (88%)	4/65 (6%)	53/65 (82%)	35 (32–36)		

^aIndicated doses were applied twice/week to shaved skin of the back. ^bMean ± SD.

^cMedian with 95% Cl.

Sources: Grimmer et al. (1984, 1983)

5

6 Habs et al. (1984) applied benzo[a]pyrene (in 0.01 mL acetone) to the shaved interscapular 7 skin of female NMRI mice at doses of 0, 2, or 4 µg, 2 times/week for life. Animals were observed 8 twice daily until spontaneous death, unless an invasive tumor was observed. All animals were 9 necropsied and histopathological examination was performed on the dorsal skin and any other 10 organ with gross abnormalities. Chronic dermal exposure to benzo[a]pyrene did not affect body 11 weight gain, but appeared to reduce survival at the highest dose with mean survival times of 691,

- 12 648, and 528 days for the 0, 2, and 4 μ g/day groups, respectively. The total length of exposure for
- 13 each group was not reported, but can be inferred from the survival data. Latency also was not
- 14 reported. Benzo[a]pyrene application resulted in a dose-related increase the incidence of total skin
- 15 tumors and skin carcinomas (see Table B-22). Hematopoietic tumors (at 6/20, 3/20, and 3/20) and
- 16 lung adenomas (at 2/20, 1/20, and 0/20) were observed in the controls and in the benzo[a]pyrene
- 17 treatment groups, but did not appear to be treatment related according to the study authors.
| | 1 |
|---|---|
| | L |
| | |
| | ~ |
| 1 |) |
| | / |

Table B-22. Skin tumor incidence in female NMRI mice dermally exposed to benzo[a]pyrene for life

Dose (µg) ^{a,b}	Skin tumor incidence (all types)	Incidence of papilloma	Incidence of carcinoma	Mean survival time, days (95% Cl)
0 (Acetone)	0/20 (0%)	0/20 (0%)	0/20 (0%)	691 (600–763)
2	9/20 (45%)	2/20 (10%)	7/20 (35%)	648 (440–729)
4	17/20 (85%)	0/20 (0%)	17/20 (85%)	528 (480–555)

^aMice were exposed until natural death or until they developed an invasive tumor at the site of application.

^bIndicated doses were applied 2 times/week to shaved interscapular skin.

Source: Habs et al. (1984).

3

4 Groups of 23–27 female Ah-receptor-responsive Swiss mice were treated on a shaved area 5 of dorsal skin with 0, 1, 4, or 8 nmol (0, 0.25, 1, or 2 μ g/treatment) benzo[a]pyrene (>99% pure) in 6 acetone 2 times weekly for 40 weeks (Higginbotham et al., 1993). Surviving animals were 7 sacrificed 8 weeks later. Complete necropsies were performed, and tissues from the treated area, 8 lung, liver, kidney, spleen, urinary bladder, ovary, and uterus were harvested for histopathologic 9 examination. Histopathologic examination was performed on tissues from the treated area, lungs, 10 liver, kidneys, spleen, urinary bladder, uterus, and ovaries, as well as any other grossly abnormal 11 tissue. Lung adenomas occurred in each group (1/27, 2/24, 1/23, 1/23), and other tumors were 12 noted in isolated mice (i.e., malignant lymphoma [spleen] in one low-dose and one mid-dose mouse; 13 malignant lymphoma with middle organ involvement in one high-dose mouse; and hemangioma 14 [liver] in one mid-dose mouse) and were not considered dose related. In addition, benzo[a]pyrene 15 showed no skin tumors under the conditions of this bioassay. 16 Sivak et al. (1997) designed a study to compare the carcinogenicity of condensed asphalt 17 fumes (including benzo[a]pyrene and other PAHs) with several doses of benzo[a]pyrene alone. For 18 the purposes of this assessment, the exposure groups exposed to PAH mixtures are not discussed. 19 Groups of 30 male C3H/HeJ mice were treated dermally twice/week to 0, 0.0001, 0.001, or 0.01% 20 (0, 0.05, 0.5, or 5 µg) benzo[a]pyrene in a 50 µL volume of cyclohexanone/acetone (1:1) for 104 21 weeks beginning at 8 weeks of age. Mice dying during the exposure period or sacrificed at the 24 22 month termination were necropsied; mice with skin tumors that persisted for 4 consecutive weeks 23 with diameters > 3 cm were sacrificed before the study termination and also necropsied. Skin 24 samples and any grossly observed lesions were subjected to histopathological examination. 25 Carcinomas and sarcomas were referred to as carcinomas, whereas papillomas, keratoacanthomas, 26 and fibromas were referred to as papillomas. The incidences of mice with skin tumors and mean 27 survival times for each group are shown in Table B-23. All high-dose mice died before the final 28 sacrifice, and 80% showed scabs and sores at the site of application. The time of first tumor 29 appearance was not reported for the tumor-inducing groups, but from a plot of the tumor incidence

- 1 in the high-dose group versus treatment days, an estimate of ~320 days (~43 weeks) is obtained
- 2 for this group. The extent of deaths prior to 1 year in each group was not provided, so that the
- 3 reported incidence may underestimate the tumor rate of animals exposed long enough to develop
- 4 tumors. However, the crude skin tumor rates show an increasing trend in incidence.

Table B-23. Skin tumor incidence in male C3H/HeJ mice dermally exposed to benzo[a]pyrene for 24 months

Dose (µg)ª	Skin tumor incidence (all types) ^b	Number of mice that died before final sacrifice	Mean survival time, days
0 cyclohexanone/acetone (1:1)	0/30 (0%)	19	607
0.05	0/30 (0%)	15	630
0.5	5/30 (20%)	15	666
5.0	27/30 (90%)	30	449

^aIndicated doses were applied twice/week to shaved dorsal skin.

^b Number of skin tumor-bearing mice. In the high-dose group, 1 papilloma and 28 carcinomas were detected. In the 0.5 μg group, 2 papillomas and 3 carcinomas were detected.

Source: Sivak et al. (1997).

7

5

6

8 To examine dose-response relationships and the time course of benzo[a]pyrene-induced 9 skin damage, DNA adduct formation, and tumor formation, groups of 43–85 female Harlan mice 10 were treated dermally with 0, 16, 32, or 64 μ g of benzo[a]pyrene in 50 μ L of acetone once per week 11 for 29 weeks (Albert et al., 1991). Interscapular skin of each mouse was clipped 3 days before the 12 first application and every 2 weeks thereafter. Additional groups of mice were treated for 9 weeks 13 with 0, 8, 16, 32, or 64 µg radiolabeled benzo[a]pyrene to determine BPDE-DNA adduct formation 14 in the epidermis at several time points (1, 2, 4, and 9 weeks). Tumor formation was monitored only 15 in the skin.

No tumors were present in vehicle-treated or untreated control mice. In exposed groups,
incidences of mice with skin tumors were not reported, but time-course data for cumulative

18 number of tumors per mouse, corrected for deaths from nontumor causes, were reported. Tumors

- 19 began appearing after 12–14 weeks of exposure for the mid- and high-dose groups and at 18 weeks
- 20 for the low-dose group. At study termination (35 weeks after start of exposure), the mean number
- of tumors per mouse was approximately one per mouse in the low- and mid-dose groups and eight
- 22 per mouse in the high-dose group; indicating that most, if not all, mice in each exposure group
- 23 developed skin tumors and that the tumorigenic response was greatest in the highest dose group.
- 24 The majority of tumors were initially benign, with an average time of 8 weeks for progression from
- 25 benign papillomas to malignant carcinomas. Epidermal damage occurred in a dose-related manner

1 (more severe in the high-dose group than in the low- and mid-dose groups) and included

- 2 statistically significant increases (compared with controls) in: [³H]-thymidine labeling and mitotic
- 3 indices; incidence of pyknotic and dark cells (signs of apoptosis); and epidermal thickness. Only a
- 4 minor expansion of the epidermal cell population was observed. In the high-dose group, indices of
- 5 epidermal damage increased to a plateau by 2 weeks of exposure. The early time course of
- 6 epidermal damage indices was not described in the low- or mid-dose groups, since data for these
- 7 endpoints were only collected at 20, 24, and 30 weeks of exposure. An increased level of BPDE-
- 8 DNA adducts, compared with controls, was apparent in all exposed groups after 4 weeks of
- 9 exposure in the following order: $64 > 32 > 16 > 8 \mu g$ /week. The time-course data indicate that
- 10 benzo[a]pyrene-induced increases in epidermal damage indices and BPDE-DNA adducts preceded
- 11 the appearance of skin tumors.

12 Reproductive and Developmental Toxicity Studies

13 <u>Oral</u>

14 In a study evaluating the combined effects of DBP and benzo[a]pyrene on the male 15 reproductive tract, Chen et al. (2011) administered benzo[a]pyrene alone in corn oil via daily 16 gavage at 5 mg/kg-day to 30 male Sprague-Dawley rats (28-30 days old); a group of 30 rats 17 received only vehicle. Body weight was measured weekly. Groups of 10 rats per group were 18 sacrificed after 4, 8, and 12 weeks of exposure. At sacrifice, blood was collected for analysis of 19 serum testosterone levels by radioimmunoassay. The testes and epidiymides were weighed, and 20 the right testis and epididymis were examined microscopically. The left epididymis was used for 21 evaluation of sperm parameters (sperm count and morphology). Oxidative stress, as measured by 22 superoxide dismutase, glutathione peroxidase, and catalase activity and malondioaldehyde levels, 23 was evaluated in the left testis of each rat. Exposure to benzo[a]pyrene did not affect body weight, 24 and no signs of toxicity were seen. Testes and epididymides weights of exposed rats were similar 25 to controls at all time points. Sperm counts and percent abnormal sperm were also similar to 26 controls at 4 and 8 weeks of exposure, but were significantly (p<0.05) different from controls after 27 12 weeks of exposure to benzo[a]pyrene (29% decrease in sperm count and 54% increase in 28 percent abnormal sperm). Serum testosterone levels were significantly increased relative to 29 controls after 4 weeks (>two-fold higher) and 8 weeks (~1.5-fold higher) of benzo[a]pyrene 30 exposure, but were comparable to controls after 12 weeks. Histopathology evaluation of the testes 31 revealed irregular and disordered arrangement of germ cells in the seminiferous tubules of treated 32 rats; the authors did not report incidence or severity of these changes. Among measures of 33 testicular oxidative stress, only catalase activity was significantly affected by benzo[a]pyrene 34 exposure, showing an increase of \sim 50% after 12 weeks of exposure. These data suggest a LOAEL of 35 5 mg/kg-day (the only dose tested) for decreased sperm count, increased percentage of abnormal 36 sperm, altered testosterone levels, and histopathology changes in the testes following 13 weeks of 37 exposure.

1 Chung et al. (2011) evaluated the effects of low-dose benzo[a]pyrene exposure on 2 spermatogenesis, and the role of altered steroidogenesis on the sperm effects. Groups of 20-25 3 male Sprague-Dawley rats (8 wks old) were given daily gavage doses of 0, 0.001, 0.01, or 0.1 4 mg/kg-dav benzo[a]pyrene in DMSO for 90 consecutive days. At the end of exposure, the animals 5 were sacrificed for removal of the pituitary, testes, and epididymides, and collection of serum and 6 testicular interstitial fluid. Subgroups of each exposure group were used for various analyses. 7 Serum levels of testosterone and LH were measured, as was testosterone concentration in the 8 interstitial fluid (ELISA assays). Body and testes weights were recorded. Sections of the testis 9 were analyzed for apoptotic germ cells using TUNEL assay. Evaluation of the epididymis included 10 histopathology as well as measurement of caput and caudal epididymal tubule diameters. In 11 addition, sperm were isolated from the cauda epididymis for analysis of sperm number and 12 motility, acrosomal integrity, and immunocytochemistry for ADAM3 (a disintegrin and 13 metallopeptidse domain 3; a sperm surface protein associated with fertilization). 14 Leydig cells were isolated from the right testis of animals from each dose group and 15 cultured with or without human chorionic gondatotropin (hCG) or dibutyl cyclic adenosine 16 monophosphate (dbcAMP) to evaluate testosterone production (Chung et al., 2011). Cultured 17 Leydig cells were also subjected to western blot and immunocytochemistry analyses to evaluate 18 changes in the expression of genes involved in steroidogenesis (StAR[steroidogenic acute 19 regulatory protein], p450scc [p450 side-chain cleavage], and 3β-HSD[3β-hydroxysteroid 20 dehydrogenase isomerase]). Finally, pituitary gland extracts were evaluated for LH protein 21 content using immunohistochemistry. Data were reported graphically and analyzed by ANOVA 22 followed by Duncan's post hoc test, using a p-value cutoff of 0.05 for significant difference. 23 At termination of exposure, body weights of treated animals were similar to controls, as 24 were absolute testes weights (Chung et al., 2011). Testosterone concentrations in both serum and 25 testicular interstitial fluid were significantly reduced at the high dose of benzo[a]pyrene (0.1 26 mg/kg-day); based on visual inspection of the data, the mean serum concentration in this group 27 was $\sim 20\%$ of the control and the mean intersitital fluid concentration was $\sim 60\%$ of the control 28 (n=9 animals/dose for these evaluations). In addition, baseline production of testosterone by 29 cultured Leydig cells was significantly decreased (\sim 50% based on data shown graphically) at 0.1 30 mg/kg-day. Both hCG- and dbcAMP-stimulated testosterone production measurements were lower 31 $(\sim 60\%$ lower than controls) in Leydig cells from rats exposed to either 0.01 or 0.1 mg/kg-day. 32 Serum LH was significantly increased at both 0.01 and 0.1 mg/kg-day (\sim 65-75% higher than 33 controls based on visual inspection of graphs); concordant increases in the intensity of LH 34 immunoreactivity were evident in pituitary extracts from exposed rats. 35 Dose-related increases in the number of apoptotic germ cells, primarily spermatogonia, 36 were demonstrated both via TUNEL assay and caspase-3 staining; the number per tubule was 37 significantly increased over control at all doses (Chung et al., 2011). Numbers of sperm were lower 38 in the treatment groups, but did not differ significantly from the control group. However, sperm

1 motility was significantly reduced in exposed groups compare with control. The authors did not

- 2 report sperm motility for all dose groups, but showed only the significant decrease in the 0.01
- 3 mg/kg-day mid-dose group (~30% lower than controls based on visual inspection of graph).
- 4 Acrosomal integrity (measured by LysoTracker staining) was diminished in sperm heads from
- 5 exposed rats; likewise, the expression of ADAM3 protein was downregulated by exposure to
- 6 benzo[a]pyrene; the authors reported a significant decrease in the 0.01 mg/kg-day group but did
- 7 not provide details of the analysis of other exposure groups. Histopathology examination of the
- 8 caput and cauda epididymides revealed dose-related decreases in both cauda and caput tubule
- 9 diameters that were statistically significantly lower than controls at all doses (~10-30% smaller
- 10 mean diameter than control based on measurements of 175 tubules collected from 5 samples in
- 11 each group; data reported graphically).
- 12 Statistically significant effects observed at the lowest dose (0.001 mg/kg-day) of
- 13 benzo[a]pyrene in this study included decreased caput and cauda epididymal tubule diameters
- 14 (~10-15% lower than controls) and increased numbers of apoptotic germ cells (~twofold higher
- 15 than controls) by TUNEL assay (Chung et al., 2011). The authors reported that "sperm motility was
- 16 significantly reduced in the benzo[a]pyrene-exposed groups in comparison to that of the control"
- 17 but provided quantitative data only for the middle dose group, which exhibited a \sim 30% decrease in
- 18 percent motile sperm. No statistically significant decrease in sperm count was reported at any
- 19 dose. The middle dose (0.01 mg/kg-day) is considered to be a LOAEL, based on reduced sperm
- 20 motility.
- 21 Gao et al. (2011) examined effects of benzo[a]pyrene exposure via on cervical cell 22 morphology. Female ICR mice (18-22 g) were exposed to doses of 0, 2.5, 5, or 10 mg/kg twice per 23 week for 14 weeks, either by oral gavage or by intraperitoneal injection (for this review, only oral 24 results are reported). After adjustment for equivalent continuous dosing (2/7 days/week), the 25 equivalent daily doses are estimated to be 0.7, 1.4, 2.9 mg/kg-day. Both vehicle (sesame oil) and 26 untreated control groups were maintained. Body weights were determined weekly. Groups of 26 27 mice per dose per exposure route were sacrificed at the end of exposure for evaluation of cervical 28 weight and histopathology. Additional groups of 10 mice were exposed for 14 weeks and used for 29 determination of lipid peroxidation (malondialdehyde and glutathione-S-transferase levels) and 30 CYP1A1 activity (EROD) in both liver and cervix, as well as creatine kinase activity, AST activity, and 31 IL-6 levels in cervix and serum.
- Mortality was observed in all exposure groups with the exception of the low dose oral exposure group; the authors did not indicate the timing or causes of death (Gao et al., 2011). There were no control deaths. Mortality incidences in the oral exposure groups (low to high dose) were 0/26 (untreated control), 0/26 (vehicle control), 0/26, 1/36, and 2/26. Benzo[a]pyrene treatment resulted in dose-dependent decreases in body weight gain. In the high dose group of both treatments, body weight began to decline after ~7 weeks of exposure. Based on visual examination of data presented graphically, mean terminal body weights in the low, mid-, and high-dose oral

- 1 exposure groups were \sim 10, 15, and 30% lower (respectively) than the vehicle control mean. The
- 2 untreated control mean body weight for the oral exposure group was similar to the vehicle control
- 3 mean body weight. Cervical weight as a function of body weight was not affected by oral
- 4 benzo[a]pyrene exposure. Microscopic examination of the cervix revealed increased incidences of
- 5 epithelial hyperplasia and inflammatory cells in the cervix of all groups of exposed mice, and
- 6 atypical hyperplasia of the cervix in mice exposed to 1.4 or 2.9 mg/kg benzo[a]pyrene. Statistical
- 7 analysis of the findings was conducted, but was poorly reported in the publication. Table B-24
- 8 shows the incidences in the oral exposure groups, along with the results of Fisher's exact tests
- 9 performed for this review.

10Table B-24. Mortality and cervical histopathology incidences in female11ICR mice exposed to benzo[a]pyrene via gavage for 14 weeks

	Dose (mg/kg-d)							
Endpoint	Untreated control	Vehicle control	0.7	1.4	2.9			
Mortality	0/26	0/26	0/26	1/26	2/26			
Cervical epithelial hyperplasia	0/26	0/26	4/26	6/25ª	7/24 ^ª			
Atypical hyperplasia of cervix	0/26	0/26	0/26	2/25	4/24 ^a			
Inflammatory cells in cervix	2/26	3/26	10/26ª	12/25ª	18/24 ^ª			

^aSignificantly different from vehicle control by Fisher's exact test performed for this review (one-sided *p* < 0.05).

Source: Gao et al. (2011).

12

13 Levels of malondialdehyde in both the cervix and liver were significantly higher than 14 controls in all dose groups of animals treated by either oral (1.5 to 2-fold higher in the cervix and 15 \sim 3-fold to 7-fold higher in the liver after oral exposure p<0.05) or intraperitoneal exposure. 16 Concomitant decreases in GST activity (\sim 15% to 50% lower than controls in the cervix and \sim 30% 17 to 60% lower in the liver after oral exposure; p<0.05) were also observed at all doses and in both 18 organs and both treatments. EROD activity was increased in the cervix (~4- to ~12-fold) and liver 19 $(\sim 12$ - to ~ 35 -fold) of all exposure groups. Measurement of CK and AST activity in the cervix and 20 serum also showed significant increases at all doses and after both exposures (\sim 1.5- to 2-fold in the 21 cervix, and $\sim 20\%$ to 50% higher than controls in the liver after oral exposure). Finally, levels of the 22 inflammatory cytokine IL-6 were significantly (p<0.05) increased in the cervix of all treated mice, 23 and were markedly increased (from more than two-fold higher than untreated or vehicle controls 24 at the low dose, to \sim six-fold higher at the high dose) in the serum of treated mice. 25 Based on the observations of decreased body weight and increased cervical epithelial 26 inflammation and hyperplasia, a LOAEL of 0.7 mg/kg-day (the lowest dose tested) is identified for

this study.

This document is a draft for review purposes only and does not constitute Agency policy.

Mohamed et al. (2010) investigated multi-generational effects in male mice following 1 2 exposure of 6-week old-C57BL/6 mice (10/group) to 0 (corn oil), 1, or 10 mg/kg-day 3 benzo[a]pyrene for 6 weeks by gavage. Following final treatment, male mice were allowed to 4 stabilize for 1 week prior to being mated with two untreated female mice to produce an 5 F1 generation. Male mice were sacrificed 1 week after mating. F1 males were also mated with 6 untreated female mice as were F2 males. The mice of the F1, F2, and F3 generations were not 7 exposed to benzo[a]pyrene. The F0, F1, F2, and F3 mice were all sacrificed at the same age 8 (14 weeks) and endpoints including testis histology, sperm count, sperm motility, and in vitro 9 sperm penetration (of hamster oocytes) were evaluated. These endpoints were analyzed 10 statistically using analysis of variance (ANOVA) and Tukey's honest significance test and results 11 were reported graphically as means \pm SD. 12 Testicular atrophy was observed in the benzo[a]pyrene treatment groups, but was not 13 statistically different than controls. Statistically significant reductions were observed in epididymal 14 sperm counts of F0 and F1 generations treated with the high or low dose of benzo[a]pyrene. For F0 15 and F1 generations, epididymal sperm counts were reduced approximately 50 and 70%, 16 respectively, in the low- and high-dose groups. Additionally, sperm motility was statistically 17 significantly decreased at the high dose in the F0 and F1 generations. Sperm parameters of the F3 18 generation were not statistically different from controls. An in vitro sperm penetration assay 19 revealed statistically significantly reduced fertilization in F0 and F1 generations of the low- and 20 high-dose groups. However, the value of this in vitro test is limited as it bypasses essential 21 components of the intact animal system (U.S. EPA, 1996). Based on decreased epididymal sperm 22 counts of F0 and F1 generations, a LOAEL of 1 mg/kg-day was established from this study (no 23 NOAEL was identified). 24 Arafa et al. (2009) exposed groups of 12 male Swiss albino rats to benzo[a]pyrene in olive 25 oil (0 or 50 mg/kg-day via gavage) for 10 consecutive days, either alone or after similar treatment 26 with 200 mg/kg-day of the flavonoid hesperidin, which has been shown to exert anti-inflammatory, 27 antioxidant, and anticarcinogenic activity. One day after the final dose, the animals were sacrificed 28 for removal of the cauda epididymides and testes. Epididymal sperm count and motility were

assessed, as was daily sperm production in the testes. The study authors also investigated the

- testicular activity of LDH, SOD, and GST, as well as GSH, malondialdehyde, and protein content. The
 testes were examined under light microscope.
- 32Relative testes weights (normalized to body weight) of benzo[a]pyrene exposed-animals33were significantly decreased compared with controls (35% lower, p < 0.05) (Arafa et al., 2009). In34addition, exposure to benzo[a]pyrene alone resulted in significantly decreased sperm count,35numbers of motile sperm, and daily sperm production (~40% decrease from control in each36parameter, p < 0.05). Effects on sperm count and production were abolished by hesperidin37pretreatment, but the number of motile sperm remained significantly depressed (compared with38the control group) in the group exposed to both benzo[a]pyrene and hesperidin. Measures of

antioxidant enzymes and lipid peroxidation showed statistically significant induction of oxidative
 stress in the testes of benzo[a]pyrene-exposed rats. With the exception of the decrease in testicular
 GSH content (which was partially mitigated), pretreatment with hesperidin eliminated the effects of
 benzo[a]pyrene on lipid peroxidation and antioxidant enzymes.

5 Xu et al. (2010) treated female Sprague-Dawley rats (6/group) to 0 (corn oil only), 5, or 10 6 mg/kg-day benzo[a]pyrene by gavage every other day for a duration of 60 days. This resulted in 7 TWA doses of 0, 2.5, and 5 mg/kg-day over the study period of 60 days. Endpoints examined 8 included ovary weight, estrous cycle, 17B-estradiol blood level, and ovarian follicle populations 9 (including primordial, primary, secondary, atretic, and corpora leutea). Animals were observed 10 daily for any clinical signs of toxicity and following sacrifice, gross pathological examinations were 11 made and any findings were recorded. All animals survived to necropsy. A difference in clinical 12 signs was not observed for the treated groups and body weights were not statistically different in 13 treated animals (although they appear to be depressed 6% at the high dose). Absolute ovary 14 weight was statistically significantly reduced in both the low- and high-dose groups (11 and 15%, 15 respectively) (see Table B-25). Animals treated with the high dose were noted to have a 16 statistically significantly prolonged duration of the estrous cycle and nonestrus phase compared to 17 controls. Animals in the high-dose group also had statistically significantly depressed levels of 18 estradiol (by approximately 25%) and decreased numbers of primordial follicles (by approximately 19 20%). This study also indicated a strong apoptotic response of ovarian granulosa cells as visualized 20 through TUNEL labeling; however, the strongest response was seen at the low dose; decreased 21 apoptosis was also observed at the high dose. Based on decreased ovary weight following a 60-day 22 oral exposure to benzo[a]pyrene, a LOAEL of 2.5 mg/kg-day was established from this study (no 23 NOAEL was identified).

24

Table B-25. Means ± SD for ovary weight in female Sprague-Dawley rats

	Dose (mg/kg-d) ^a						
	0	2.5	5				
Ovary weight (g)	0.160 ± 0.0146	0.143 ± 0.0098^{b}	0.136 ± 0.0098^{b}				
Body weight (g)	261.67 ± 12.0	249.17 ± 11.2	247.25 ± 11.2				

^aTWA doses over the 60-day study period.

^bStatistically different from controls (p < 0.05) using one-way ANOVA.

Source: Xu et al. (2010).

- 25
- 26 Zheng et al. (2010) treated male Sprague-Dawley rats to 0 (corn oil only), 1, or 5 mg/kg-day
- 27 benzo[a]pyrene by daily gavage for a duration of 30 (8/group) or 90 days (8/group). At necropsy,
- 28 the left test s of each animal was collected and weighed. Test est test oster one concentrations were
- 29 determined by radioimmunassay and results were expressed as ng/g testis and reported
- 30 graphically. Testicular testosterone was statistically significantly decreased in the high-dose group

- 1 approximately 15% following 90 days of exposure. The low-dose group also appeared to have a
- 2 similar average depression of testosterone levels; however, the change did not reach statistical
- 3 significance. Testosterone levels measured in animals sacrificed following 30 days of
- 4 benzo[a]pyrene exposure were not statistically different than controls. Based on decreased
- 5 testicular testosterone levels following a 90-day oral exposure to benzo[a]pyrene, a LOAEL of 5
- 6 mg/kg-day and a NOAEL of 1 mg/kg-day were identified.
- 7 McCallister et al. (2008) administered 0 or $300 \ \mu g/kg \ benzo[a]$ pyrene by gavage in peanut
- 8 oil to pregnant Long Evans rats (n = 5 or 6) on GDs 14–17. At this exposure level, no significant
- 9 changes were see in number of pups per litter, pup growth, or liver to body weight ratios in control
- 10 compared to benzo[a]pyrene exposed offspring. Treatment-related differences in brain to body
- 11 weight ratios were observed only on PNDs 15 and 30. Decreases in cerebrocortical mRNA
- 12 expression of the glutamatergic N-methyl-D-aspartate (NMDA) receptor subunit was significantly
- 13 reduced (50%) in treated offspring compared to controls. In addition, in utero exposed offspring
- exhibited decreased evoked cortical neuronal activity in the barrel field cortex when tested at PNDs
- 15 90-120.

16 Rigdon and Neal (1965) administered diets containing 1,000 ppm benzo[a]pyrene to 17 pregnant mice (nine/group) on GDs 10–21 or 5–21. The pups were reported as appearing 18 generally normal at birth, but cannibalism was elevated in the exposed groups. These results are in 19 contrast with an earlier study (Rigdon and Rennels, 1964) in which rats (strain not specified) were 20 fed diets containing benzo[a]pyrene at 1,000 ppm for approximately 28 days prior to mating and 21 during gestation. In the earlier study, five of eight treated females mated with untreated males 22 became pregnant, but only one delivered live young. The treated dam that delivered had two live 23 and two stillborn pups; one dead pup was grossly malformed. In the remaining treated females, 24 vaginal bleeding was observed on GDs 23 or 24. In the inverse experimental design, three of six 25 controls mated to benzo[a]pyrene-treated males became pregnant and delivered live young. 26 Visceral and skeletal examinations of the pups were not conducted. These studies were limited by 27 the small numbers of animals, minimal evaluation of the pups, lack of details on days of treatment

- 28 (food consumption, weight gain), and the occurrence of cannibalism.
- 29

<u>Reproductive effects of in utero exposure via oral route</u>

- 30 MacKenzie and Angevine (1981) conducted a two-generation reproductive and
- 31 developmental toxicity study for benzo[a]pyrene in CD-1 mice. Benzo[a]pyrene was administered
- 32 by gavage in 0.2 mL of corn oil to groups of 30 or 60 pregnant (the F0 generation) mice at doses of
- 33 0, 10, 40, or 160 mg/kg-day on GDs 7–16 only. Therefore, unlike the standard two-generation
- 34 study, F1 animals were exposed only in utero. F1 offspring were evaluated for postnatal
- 35 development and reproductive function as follows. F1 pups (four/sex when possible) were allowed
- 36 to remain with their mothers until weaning on PND 20. Crossover mating studies were then
- 37 conducted. Beginning at 7 weeks of age, each F1 male mouse (n = 20–45/group) was allowed to
- 38 mate with two untreated virgin females for 5-day periods for 25 days (for a total exposure of 10

- 1 untreated females/F1 male), after which time the males were separated from the females.
- 2 Fourteen days after separation from the males (i.e., on days 14–19 of gestation), the females were
- 3 sacrificed and the numbers of implants, fetuses, and resorptions were recorded. The F2 fetuses
- 4 were then examined for gross abnormalities. Similarly, each F1 female mouse (n = 20–55/group),
- 5 beginning at 6 weeks of age, was paired with an untreated male for a period of 6 months. Males
- 6 were replaced if the females failed to produce a litter during the first 30-day period. All F2 young
- 7 were examined for gross abnormalities on day 1 of life and their weights were recorded on day 4 of
- 8 age. This F2 group was sacrificed on day 20 postpartum, while the F1 female was left with a male
- 9 until the conclusion of the study. At 6 weeks of age, gonads of groups of 10 male and 10 female F1
- 10 mice exposed to 0, 10, or 40 mg/kg-day benzo[a]pyrene in utero were subjected to gross pathology
- 11 and histologic examinations.
- 12 No maternal toxicity was observed. The number of F0 females with viable litters at
- 13 parturition at the highest dose was statistically significantly reduced by about 35% (Table B-26),
- 14 but progeny were normal by gross observation. Parturition rates of the low- and mid-dose groups
- 15 were unaffected by treatment, and litter sizes of all treated groups were similar to the control group
- 16 throughout lactation. However, body weights of the F1 pups in the mid- and high-dose groups were
- 17 statistically significantly decreased on PND 20, by 7 and 13%, respectively, and in all treated pups
- 18 on PND 42, 6, 6, and 10% for the low, mid, and high dose, respectively (Table B-26). The number of
- 19 F1 pups surviving to PNDs 20 and 42 was significantly reduced at the high dose (p < 0.01), by 8 and
- 20 16%, respectively. When F1 males were bred to untreated females and F1 females were mated
- 21 with untreated males, a marked dose-related decrease in fertility of >30% was observed in both
- 22 sexes, starting at the lowest exposure. There were no treatment-associated gross abnormalities or
- 23 differences in body weights in the F2 offspring.

24Table B-26. Reproductive effects in male and female CD-1 F1 mice25exposed in utero to benzo[a]pyrene

	Dose (mg/kg-d) ^a					
Effect	0	10	40	160		
F0 mice with viable litters at parturition	46/60 (77%)	21/30 (70%)	44/60 (73%)	13/30 (43%) ^b		
Mean ± SEM pup weight (g) at PND 20	11.2 ± 0.1	11.6 ± 0.1	10.4 ± 0.1^{b}	9.7 ± 0.2^{b}		
Mean ± SEM pup weight (g) at PND 42	29.9 ± 0.2	28.2 ± 0.3^{b}	28.0 ± 0.2^{b}	26.8 ± 0.4^{b}		
F1 male fertility index ^c	80.4	52.0 ^b	4.7 ^b	0.0 ^b		
F1 female fertility index ^d	100.0	65.7 ^b	0.0 ^b	0.0^{b}		

^aPregnant F0 mice were administered daily doses of benzo[a]pyrene in corn oil on GDs 7–16. ^bSignificantly (p < 0.05) different from control by unspecified tests.

^cBeginning at 7 weeks of age, each F1 male mouse (20–45/group) was exposed to 10 untreated females over a period of 25 days. Index = (females pregnant/females exposed to males) × 100. ^dBeginning at 6 weeks of age, each F1 female mouse (20–55/group) was cohabitated with an untreated male for a period of 6 months.

SEM = standard error of the mean

Source: MacKenzie and Angevine (1981).

1

2 Exposure to benzo[a]pyrene caused a marked dose-related decrease in the size of the 3 gonads. In F1 males, testes weights were statistically significantly reduced. Testes from animals 4 exposed in utero to 10 and 40 mg/kg-day weighed approximately 60 and 18%, respectively, of the 5 weight of testes from the control animals (no F2 offspring were produced in the high-dose group). 6 This was confirmed by histopathologic observation of atrophic seminiferous tubules in the 7 40 mg/kg-day group that were smaller than those of controls and were empty except for a basal 8 layer of cells. The number of interstitial cells in the testes was also increased in this group. Males 9 from the 10 mg/kg-day group showed limited testicular damage; although all exhibited evidence of 10 tubular injury, each animal had some seminiferous tubules that displayed active spermatogenesis. 11 Ovarian tissue was absent or reduced in F1 females such that organ weights were not possible to 12 obtain. Examination of available tissue in these females revealed hypoplastic ovaries with few 13 follicles and corpora lutea (10 mg/kg-day) or with no evidence of folliculogenesis (40 mg/kg-day). 14 Ovarian tissue was not examined in highest-dose females. 15 The LOAEL in this study was 10 mg/kg-day, based on decreases in mean pup weight (<5%)16 at PND 42 of F1 offspring of dams treated with 10, 40, or 160 mg/kg-day benzo[a]pyrene, marked 17 decreases in the reproductive capacity (as measured by fertility index) of both male and female F1 18 offspring exposed at all three treatment levels of benzo[a]pyrene (by approximately 30% in males 19 and females), decreased litter size (by about 20%) in offspring of F1 dams, and the dramatic 20 decrease in size and alteration in anatomy of the gonads of both male and female F1 mice exposed 21 to 10 and 40 mg/kg-day benzo[a]pyrene in utero. A NOAEL was not identified. 22 In another reproductive and developmental toxicity study, benzo[a]pyrene was 23 administered by gavage in corn oil to nine female NMRI mice at a dose of 10 mg/kg-day on GDs 7-24 16; a group of nine controls received corn oil (Kristensen et al., 1995). Body weights were 25 monitored. F0 females were kept with their offspring until after weaning (21 days after delivery). 26 At 6 weeks of age, one F1 female from each litter (n = 9) was caged with an untreated male. The 27 F2 offspring were inspected for gross deformities at birth, weight and sex were recorded 2 days 28 after birth, and the pups were sacrificed. The F1 females were sacrificed after 6 months of 29 continuous breeding. The effects of benzo[a]pyrene treatment on fertility, ovary weights, follicles, 30 and corpora lutea were evaluated. F0 females showed no signs of general toxicity, and there was no

DRAFT-DO NOT CITE OR OUOTE

- 1 effect on their fertility. F1 females had statistically significantly lower median numbers of offspring,
- 2 number of litters, and litter sizes and a statistically significantly greater median number of days
- 3 between litters as compared with the controls (Table B-27). At necropsy, the F1 females from
- 4 treated F0 females had statistically significantly reduced ovary weights; histologic examination of
- 5 the ovaries revealed decreased numbers of small, medium, or large follicles and corpora lutea
- 6 (Table B-27). Only one dose group was used in this study, with decreased F1 female fertility
- 7 observed following in utero exposure at the LOAEL of 10 mg/kg-day; no NOAEL was identified.

8 Table B-27. Effect of prenatal exposure to benzo[a]pyrene on indices of 9 reproductive performance in F1 female NMRI mice

Endpoint (median with range in parentheses)	Control ^ª	Benzo[a]pyrene exposedª(10 mg/kg-d)
Number of F2 offspring	92 (26–121)	22 ^b (0–86)
Number of F2 litters	8 (3–8)	3 ^b (0–8)
F2 litter size (number of pups per litter)	11.5 (6–15)	8 ^b (3–11)
Number of d between F2 litters	20.5 (20–21)	21 ^b (20–23)
F1 ovary weight (mg)	13 (13–20)	9 ^b (7–13)
Number of small follicles	44 (1–137)	0 ^b (0–68)
Number of medium follicles	9 (5–25)	0 ^b (0–57)
Number of large follicles	14 (6–23)	0 ^b (0–19)
Number of corpora lutea	16 (6–35)	0 ^b (0–14)

^aGroups of nine female NMRI F0 mice were administered 0 or 10 mg benzo[a]pyrene/kg-day by gavage in corn oil on GDs 7–16. One F1 female from each litter was continuously bred with an untreated male for 6 months.

^bSignificantly (p < 0.05) different from control group by Wilcoxon rank sum test or Kruskall-Wallis two-tailed test.

Source: Kristensen et al. (1995).

- 10
- 11 Chen et al., (2012) treated male and female neonatal Sprague-Dawley rats (10/sex/group) 12 with benzo[a]pyrene (unspecified purity) dissolved in peanut oil by gavage daily from post-natal 13 day (PND) 5 – 11, at doses of 0.02, 0.2 or 2 mg/kg in 3 mL vehicle/kg b.w., determined individually 14 based upon daily measurements. This time period was described as representing the brain growth 15 spurt in rodents, analogous to brain developmental occurring from the third trimester to 2 years of 16 age in human infants. Breeding was performed by pairs of nine week old rats, with delivery 17 designated as PND0. Litters were culled to 8 pups/dam (4/ea male and female, when possible) and 18 randomly redistributed at PND1 among the nursing dams; dams themselves were rotated every 2-3 19 days to control for caretaking differences, and cage-side observations of maternal behavior were 20 made daily. One male and female from each litter were assigned per treatment group, and the 21 following physical maturation landmarks were assessed daily in all treatment groups until weaning 22 at PND21: incisor eruption, eye opening, development of fur, testis decent and vaginal opening.

DRAFT-DO NOT CITE OR OUOTE

1 Neonatal sensory and motor developmental tests were administered to pups during the 2 preweaning period at PNDs 12, 14, 16 and 18, and were behavioral tests administered to rats as 3 adolescents (PND 35, 36) or as adults (PND 70, 71): each rat was only tested during one 4 developmental period. All dosing was performed from 1300 – 1600 hrs, and behavioral testing was 5 during the "dark" period from 1900 – 2300 hrs, although tests were performed in a lighted 6 environment. Pups were observed individually and weighed daily, the order of testing litters was 7 randomized each day, and all observations were recored by investigators blinded to group 8 treatment. 9 Sensory and motor developmental tests including the surface righting reflex test, negative 10 geotaxis test, and cliff aversion test were performed only once, while the forelimb grip strength test 11 was assessed during three 60 second trials on PND12. Rat movements during the open-field test 12 were recorded by camera, and two blinded investigators scored movement and rearing separately 13 during a 5 min. evaluation period. Blinded investigators directly observed video monitoring of rat 14 movements during the elevated plus maze, and after a 5 min. free exploration period, recored 15 number of entries into the closed and open arms, the time spent in the open arms, and latency to 16 the first arm entry. Assessment of the Morris water maze was slightly different, in that the rats 17 were habituated to the testing pool by a 60 second swim without a platform on the day prior to 18 testing. The rats were then tested during a 60 second swim with a hidden platform present at a 19 constant position each day for four days; on the fifth day, the rats were evaluated during a 60 20 second probe swim without a platform. The number of times each animal crossed the original

- 21 platform location and the duration of time spent in the platform quadrant were recorded during
- 22 this final evaluation. One pup/sex/litter were assigned for behavioral testing to each of four tracks:
- 23 Track 1, surface righting reflex test, cliff aversion test, and open-field test (PND 12 18); Track 2,
- 24 negative geotaxis test, forelimb grip strength test, and open-field test (PND 12 20); Track 3,
- elevated plus maze, Morris water maze, and open-field test (PND 34 36); Track 4, elevated plus
- 26 maze, Morris water maze, and open-field test (PND 69 71). All results were presented in
- 27 graphical form only.

No significant effects on pup body weight were observed during the 7-day treatment period (PND 5 – 11). Three-way ANOVA (time x B[a]P treatment x sex) indicated that effects of B[a]P were not sex-dependent throughout the 71 day experiment, so both sexes were pooled together. From this pooled analysis, pups in the 2 mg/kg treatment group gained significantly less weight at both PND36 and PND71. There were no differences among treatment groups in incisor eruption, eye opening, development of fur, testis decent or vaginal opening.

For all measurements of neonatal sensory and motor development, results from both sexes were analyzed together since B[a]P was reported to have no significant interaction with sex by 3way ANOVA. No significant differences were observed in either the cliff aversion or forelimb grip strength tests. In the surface righting reflex test, latency was increased in the 0.2 mg/kg group at PND12, in the 0.02 and 2 mg/kg groups at PND14, in only the high dose 2 mg/kg group at PND16, 1 and was not significantly different in any group at PND18. At PND12 there was a dose-related

2 increase in negative geotaxis latency associated with 0.02, 2 and 2 mg/kg B[a]P, which was also

3 present in the 2 mg/kg group at PND14, but returned to control levels at PND16 and PND18. In the

4 open field test, there were no significant differences in either locomotion or rearing activity at

5 PND18 or 20. At PND34, the 2 mg/kg group exhibited significantly increased movement, but

6 increases in rearing were not significant. At PND69, increased locomotion was observed in both the

- 7 0.2 and 2 mg/kg groups, while rearing was significantly increased in only the 2 mg/kg treatment
- 8 group.

9 The elevated plus maze performance was only evaluated in adolescent and adult rats.

10 Unlike the previous tests, 3-way ANOVA revealed a statistically significant interaction between

11 neonatal B[a]P treatment and sex, so male and female performance was analyzed independently.

12 No significant differences in PND35 males were observed, and the only significant observation in

13 PND35 females was increased time spent in the open maze arms by 2 mg/kg treatment group.

14 Significantly decreased latency time to first open arm entry was observed in PND70 males and

15 females in both 0.2 and 2 mg/kg treatment groups; these groups also spent significantly more time

16 in open maze arms, along with the 0.02 mg/kg female group. PND70 2 mg/kg males, along with 0.2

17 and 2 mg/kg females, entered more frequently into open arms and less frequently into closed arms

18 than vehicle controls. In the Morris water maze, escape latency (time to reach the platform during

19 each of the four testing days) was consistently increased in the 2 mg/kg treatment group of both

20 sexes, in both adolescent and adult animals. These increases were statistically significant in both

21 males and females treated with 2 mg/kg B[a]P at both PND39 and PND74, and were also

significantly elevated in 0.2 mg/kg animals of both sexes at PND74. Likewise, performance during

23 the fifth test day, in the absence of the escape platform, was significantly adversely affected by both

24 metrics (decreased time spent in the target quadrant and decreased number of attempts to cross

25 the platform location) in 2 mg/kg rats of both sexes at both PND40 and PND75. PND75 females

26 treated with 0.2 mg/kg B[a]P also showed significant decreases in both performance metrics, while

27 PND75 0.2 mg/kg males only demonstrated significant differences in "time spent in target

28 quadrant". Swim speed was also assessed, but there were no differences among any treatment

29 group at either age evaluated.

30 Jules et al., (2009) treated pregnant Long Evans Hooded (LEH) rats with benzo[a]pyrene 31 (unspecified purity) dissolved in 0.875 mL peanut oil by gavage daily from GD14 – GD17, at doses of 32 150, 300, 600 and 1,200 μg B[a]P /kg b.w., with animals weighed daily. Cage-side observations 33 were performed until pup weaning, and litter size evaluated for each treatment group. Pups from 4 34 - 5 individual litters were analyzed for each endpoint, which was independently repeated for a total 35 of 3 replicates. Delivery was designated PND0, and pups were harvested from PND0 – 15 for B[a]P 36 metabolite identification, or for other endpoints as young adults at PND53. Systolic/diastolic blood 37 pressure and heart rate was recorded by a volume pressure recording sensor and occlusion tail-cuff

38 applied to conscious, non-anesthetized animals. Animals were preconditioned to the restraint

1 device and tail-cuff by daily acclimatization sessions during PND46 – 50, to minimize stress effects

- 2 during data collection. Cardiac function values were averaged from 15 readings each collected over
- 3 a 1 minute interval every other minute for 30 minutes on PND53. Whole blood was collected from
- 4 the heart and aorta prior to surgical resection and tissue processing. Plasma and heart tissue B[a]P
- 5 metabolite content was quantified by reverse-phase HPLC with UV and fluorescence detection,
- 6 while heart and aortic tissue was subjected to SDS-PAGE for qualitative protein analysis, and RNA
- 7 extraction. Quantitative RT-PCR was performed for levels of angiotensin II (AngII), neuronal NOS
- 8 (nNOS), endothelial NOS (eNOS) and 7,8-Dihydrobiopterin oxidoreductase (BH4/BH2
- 9 oxidoreductase). Total RNA was also used to probe a cDNA microarray, and targets with \geq 2-fold
- 10 changes in expression were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) and
- 11 Gene Ontology (GO) biological process pathway analysis.
- 12 No significant differences in litter size or pup weight gain from PND0 – 15 were reported in 13 any treatment group, and no convulsions, tremors or abnormal movements were reproducibly 14 observed. Most analytical data was reported graphically, as mean \pm SEM of three replicates of 3 – 5 15 offspring measured/group. Plasma and heart tissue total B[a]P metabolite levels were maximal at 16 PND0 (the first time point sampled) and progressively decreased from PND0 – 13. Compared to the 17 low-dose group (150 μ g/kg), plasma metabolite levels were significantly elevated in the 600 and 18 $1,200 \ \mu g/kg B[a]P$ groups through PND13, while heart metabolite levels were significantly 19 increased through PND11. Metabolites in mid-dose group, 300 µg/kg, trended between the 150 20 and 600 μ g/kg group levels from PND0 – 7, while not achieving statistically significant differences 21 in pair-wise comparisons. Three principle groups of B[a]P metabolites were identified. More than 22 70% of the total heart metabolite burden was composed of diol metabolites through PND13, while 23 the more reactive hydroxyl metabolites increased in relative composition from PND9 – 13, and the 24 dione population remained constant at $\leq 5\%$.
- 25 Cardiovascular function was evaluated in pups exposed in utero to 600 or 1,200 μ g/kg B[a]P 26 vs. controls. A dose-related and statistically significant increase in both systolic (20, 50%) and 27 diastolic pressure (30, 80%) was observed in mid and high-dose pups, respectively. Heart rate was 28 also significantly altered; a 10% increased heart rate was reported in the 600 μ g/kg B[a]P group, 29 while the average heart rate of the 1,200 μ g/kg B[a]P groups decreased 8%. Cardiac tissue eNOS protein levels fluctuated as a result of B[a]P treatment; in both the 600 and 1,200 µg/kg groups. 30 31 eNOS expression by semi-quantitative SDS-PAGE was significantly decreased at PND0 and PND5, 32 while it was significantly elevated above controls at PND10 and PND15. While eNOS expression in 33 the 600 μ g/kg B[a]P group had returned to control levels by PND53, eNOS expression was 34 significantly higher (approximately 2-fold) in the 1,200 μ g/kg group. Compared to vehicle-treated 35 controls, cardiac message levels of nNOS and eNOS were not significantly affected by B[a]P 36 treatment at PND0, and while nNOS mRNA levels were 2-fold higher at PND53 in the 600 μ g/kg 37 group, and eNOS mRNA was 3-fold higher in the 1,200 µg/kg group, consistent with the increased 38 eNOS protein levels detected at PND53. Message levels of BH4/BH2 oxidoreductase were

- 1 suppressed in both B[a]P treatment groups at PND0, and while mRNA expression remained
- 2 suppressed at PND53 in the 600 μ g/kg group, BH4/BH2 message returned to control levels in the
- 3 1,200 µg/kg group. Angiotensin II mRNA levels were 1.8-fold higher in both B[a]P groups at PND0,
- 4 and while expression increased to 5-fold more than controls at PND53 in the 600 μ g/kg group,
- 5 AngII expression remained closer to 1.5-fold greater in the high-dose group. The following
- 6 pathways were identified as being enriched by 1,200 µg/kg B[a]P treatment *in utero* using KEGG
- 7 analysis, and correcting for multiple comparisons using the false-discovery rate method: PPARy,
- 8 renin–angiotensin system (AngII, adiponectin C1Q and collagen domain, adrenergicβ3R, tachykinin
- 9 R1), hematopoietic cell lineage, CYP450 metabolism (CYP2a2, CYP7a1 and CYP2b12), retinol
- 10 metabolism, cell adhesion molecules-CAMs, primary bile acid biosynthesis and tight junctions.
- 11 12

Table B-28. Exposure-related effects in Long Evans Hooded rats exposed to benzo[a]pyrene by gavage daily in utero from GD14 - GD17

	Dose (mg/kg-d)						
Effect measured	0	0.600	1.20				
Heart rate (bmp; mean ± SEM)	504.6 ± 15.7	554.6 ± 26.2*	466.3 ± 16.9*				
Blood pressure measured by tail cuff (mmHg	Blood pressure measured by tail cuff (mmHg; mean ± SEM)						
Systolic pressure Diastolic pressure	131.6 ± 1.2 85.0 ± 4.2	151.6 ± 45* 113.0 ± 3.3*	200.4 ± 2.4* 155.6 ± 3.2*				

*Significantly (p < 0.05) different from control mean; n = 4-5/replicate, 3 replicates performed.

Source: Jules et al. (2012).

13

14 Bouayed et al., (2009) treated nursing female Swiss Albino OF1 mice (5/dose group) with 15 benzo[a]pyrene (unspecified purity) dissolved in avocado oil by gavage daily while nursing pups 16 from PND1 – 14 at 0, 2 or 20mg/kg-day in 10 mL/kg b.w., individually determined each day. Prior 17 to benzo[a]pyrene treatment, Swiss Albino litters were culled to 10 pups (5/sex when possible). 18 and nurturing females assigned to litters that were stratified randomly to achieve equivalent mean 19 pup litter body weights across the designated treatment groups. As the effects of B[a]P on maternal 20 nurturing behavior was unknown, dam behavior was visually monitored daily until weaning. 21 Furthermore, maternal nurturing performance from PND0 – 21 was assessed by two methods: a 22 nest-building test administered q.2.d., where nest quality/complexity was scored 15 minutes after 23 cotton material was supplied; and pup retrieval, in which latency to return the displaced pup to the 24 nest was measured twice and averaged, was evaluated q.d. At the indicated times 2 mice/sex/litter 25 were randomly selected, weighed, and brains resected for later mRNA expression analysis (n = 26 20/group). 27 Pup neuromotor maturation and behavior was assessed during pre-weaning by four

28 standard methods (administered between 1000 – 1300 on testing days, and in temporal order as

29 indicated): 1) righting reflex test, maximum duration 120 seconds, administered on PNDs 3, 5, 7 and 1 9; 2) *negative geotaxis test*, maximum duration 120 seconds, administered on PNDs 5, 7, 9 and 11;

2 3) *forelimb grip test*, duration until failure, administered on PNDs 9 and 11; and 4) *open field test*, 6

3 minute evaluation of locomotor activity and rearing following a 1 minute habituation period,

4 administered on PND15. Adolescent function was evaluated by three methods: *water escape pole*

5 *climbing (WESPOC) test*, administered at PND20, in which the time to find the pole, time to climb the

6 pole, and the time to reach the safety platform were reported; *elevated plus maze*, administered at

7 PND32 for 5 minutes, in which the latency time to first open arm entry, number of entries into open

8 arms, total number of entries, percent of time spent in open arms, and percent of entries into open

9 arms was determined; and *Y-maze spontaneous alternation test*, administered at PND40 for 5

10 minutes, in which the % spontaneous alternation was calculated by: [(the number of successful

11 overlapping triplets)/(total number of arm entries – 2) x 100%].

12 Benzo[a]pyrene treatment did not significantly affect the body weight of nursing mothers 13 during the 2 week treatment period. Since three-way ANOVA indicated that changes in pup weight 14 as a result of B[a]P treatment were not sex-dependent, data from male and female pups were 15 combined. B[a]P treatment of nursing mothers was associated with a 8-9% weight gain in pups 16 nursing from the 2 mg/kg group, and a 10-12% weight gain in pups from the 20 mg/kg group at 17 PND12 – 20. While not significantly different from PND26 – 40, pup weight in the 20 mg/kg group 18 was continuously higher than either the 2 mg/kg group or vehicle-treated controls. There were no 19 significant differences in pup brain weight or eve opening observed. Likewise, B[a]P treatment of 20 nursing mothers did not affect nest-building interest or quality, and while not significantly 21 impacting pup retrieval time, the retrieval latency period was observed to increase with increasing

22 treatment duration in both B[a]P groups vs. controls.

23 Behavioral test data was reported graphically, as mean \pm SEM of n = 20/group. For the pre-24 weaning neuromotor developmental tests, B[a]P treatment was found to not depend on sex, and so 25 data from male and female pups was combined. Pups nursing from mothers administered 2 or 20 26 mg/kg-day B[a]P had significantly elevated righting reflex times at PND3 – 5, which decreased to 27 control times at PND7 – 9. Only pups from the 20 mg/kg treatment group demonstrated 28 significantly increased negative geotaxis latency, which was 2-fold greater than controls at PNDs 5, 29 7 and 9, but returned to control levels at PND11. Interestingly, mice in the 20 mg/kg group had 30 increased forelimb grip strength, which was significantly greater than control mice at PND9 and 11, 31 corresponding to increased body weight in the B[a]P-treated mice vs. controls. Mice in the 2 mg/kg 32 group also performed better than controls at PND9, but were equivalent at PND11. No treatment or 33 sex-related effects were reported on locomotion or rearing activity during the open field test. Sex-34 dependency on test performance became evident during the analysis of the WESPOC test data:

35 female pups were not significantly affected using any metric, while males in the 20 mg/kg group

36 demonstrated a statistically significantly longer pole-grasping latency (3-fold), and took 13-times

37 longer to escape the pole and board the safety platform, vs. vehicle controls. While performance of

38 male pups from the 2 mg/kg group was not statistically significantly worse than vehicle controls by

- 1 pair-wise comparison, latency for both pole-grasping and escape in this treatment group
- 2 contributed to a significant trend for treatment dose and these effects. In the evaluation of the
- 3 elevated plus maze, treatment effects did not appear to depend upon sex, so both male and female
- 4 performance was analyzed together. Mice in both B[a]P treatment groups demonstrated
- 5 significantly decreased latency time to first entering an open arm (30 50%), as well as entered
- 6 open arms 2-times more frequently and spent twice as much time there vs. vehicle controls. While
- 7 mice in the 2 mg/kg treatment group entered into closed arms 20% less frequently than controls,
- 8 mice in the 20 mg/kg group were not significantly different. Likewise, mice nursing from mothers
- 9 treated with 2 mg/kg B[a]P performed 15% more spontaneous alternations in the Y-maze
- 10 spontaneous alternation test compared to controls, while mice in the high-dose group were not
- 11 significantly different. The brains of pups nursing from the 20 mg/kg group expressed
- 12 approximately 50% lower levels of 5-hydroxytryptamine (serotonin) 1A (5HT1A), and mu 1-opioid
- 13 (MOR1) mRNA, and a trend was observed in the low-dose group as well. No significant changes in
- 14 alpha-1D adrenergic (ADRA1D) or gamma-aminobutyric acid A (GABAA) mRNA levels were
- 15 detected.

16Table B-29. Exposure-related effects in Swiss Albino OF1 mice exposed17as pups to benzo[a]pyrene in breast milk from dams treated by gavage18daily from PND1 - PND14

	Dose (mg/kg-d)					
Effect measured	0	2	20			
Pup body weight (g; mean ± SEM, n = 20)						
PNDO	1.70 ± 0.02	1.73 ± 0.02	1.74 ± 0.02			
PND4	3.01 ± 0.08	3.08 ± 0.06	3.16 ± 0.04			
PND8	5.08 ± 0.1	5.26 ± 0.09	5.30 ± 0.08			
PND12	6.57 ± 0.12	7.16 ± 0.06***	7.39 ± 0.05***			
PND20	12.51 ± 0.24	13.55 ± 0.25**	13.79 ± 0.14***			
PND26	17.71 ± 0.49	18.60 ± 0.36	18.35 ± 0.34			
PND32	24.47 ± 0.55	25.59 ± 0.57	25.38 ± 0.54			
PND40	30.55 ± 0.94	30.90 ± 0.93	31.78 ± 0.97			

** *p* < 0.01, *** *p* < 0.001 significantly different from control mean

Source: Bouayed et al. (2009).

19 <u>Reproductive effects in adults and repeated oral exposure</u>

- 20 Rigdon and Neal (1965) conducted a series of experiments to assess the reproductive
- 21 effects of orally administered benzo[a]pyrene to Ah-responsive white Swiss mice. Female animals
- 22 (number not stated) were administered benzo[a]pyrene at 250, 500, or 1,000 ppm in the feed
- 23 before or during a 5-day mating period. Based on the initial body weight, the doses can be
- estimated as 32, 56, and 122 mg/kg-day, respectively. No effect on fertility was observed at any
- 25 treatment dose, even when animals were fed 1,000 ppm benzo[a]pyrene for 20 days prior to

- 1 mating, but interpretation of this finding was marred by large variability in numbers of pregnant
- 2 females and litter sizes for both treated and control mice. In separate experiments, the fertility of
- 3 five male mice/group was not affected by exposure to 1,000 ppm in food for up to 30 days prior to
- 4 mating with untreated females. Histologic examinations showed that male mice fed 500 ppm
- 5 benzo[a]pyrene for 30 days had spermatozoa present in their testes; further details were not
- 6 provided. The only treatment-related effect was a lack of weight gain related to feed unpalatability.
- 7 While this study suggests that premating exposure of male or female mice to doses up to
- 8 122 mg/kg-day for 20 days may not affect fertility, the sample sizes were too small and study
- 9 designs were too inconsistent to provide reliable NOAELs and LOAELs for
- 10 reproductive/developmental toxicity.
- 11 In an earlier study (Rigdon and Rennels, 1964), rats (strain not specified) were fed diets
- 12 containing benzo[a]pyrene at 1,000 ppm for approximately 28 days prior to mating and during
- 13 gestation. In this study, five of eight treated females mated with untreated males became pregnant,
- 14 but only one delivered live young. The treated dam that delivered had two live and two stillborn
- 15 pups; one dead pup was grossly malformed. In the remaining treated females, vaginal bleeding was
- 16 observed on GDs 23 or 24. In the inverse experimental design, three of six controls mated to
- 17 benzo[a]pyrene-treated males became pregnant and delivered live young. Visceral and skeletal
- 18 examinations of the pups were not conducted. These studies are insufficiently reported and of
- 19 insufficient design (e.g., inadequate numbers of animals for statistical analysis) to provide reliable
- 20 NOAELs or LOAELs for reproductive effects from repeated oral exposure to benzo[a]pyrene.

21 <u>Inhalation</u>

22 Reproductive toxicity and in utero exposure via inhalation

23 Archibong et al. (2002) evaluated the effect of exposure to inhaled benzo[a]pyrene on fetal 24 survival and luteal maintenance in timed-pregnant F344 rats. Prior to exposure on GD 8, 25 laparotomy was performed to determine the number of implantation sites, and confirmed pregnant rats were divided into three groups, consisting of rats that had four to six, seven to nine, or more 26 27 than nine conceptuses in utero. Rats in these groups were then assigned randomly to the treatment 28 groups or control groups to ensure a similar distribution of litter sizes. Animals (10/group) were 29 exposed to benzo[a]pyrene:carbon black aerosols at concentrations of 25, 75, or 100 μ g/m³ via 30 nose-only inhalation, 4 hours/day on GDs 11–20. Control animals were either sham-exposed to 31 carbon black or remained entirely unexposed. Results of particle size analysis of generated 32 aerosols were reported by several other reports from this laboratory (Inyang et al., 2003; Ramesh 33 et al., 2001a; Hood et al., 2000). Aerosols showed a trimodal distribution with averages of 95% 34 cumulative mass with diameters <15.85 μ m; 89% <10 μ m; 55% <2.5 μ m; and 38% <1 μ m (Invang 35 et al., 2003). Ramesh et al. (2001a) reported that the (MMAD ± geometric SD) for the 55% mass 36 fraction with diameters <2.5 μ m was 1.7 ± 0.085. Progesterone, estradiol-17 β , and prolactin 37 concentrations were determined in plasma collected on GDs 15 and 17. Fetal survival was

- 1 calculated as the total number of pups divided by the number of all implantation sites determined
- on GD 8. Individual pup weights and crown-rump length per litter per treatment were determined
 on PND 4 (PND 0 = day of parturition).
- 4 Archibong et al. (2002) reported that exposure of rats to benzo[a]pyrene caused
- 5 biologically and statistically significant ($p \le 0.05$) reductions in fetal survival compared with the
- 6 two control groups; fetal survival rates were 78.3, 38.0, and 33.8% per litter at 25, 75, and
- 7 100 μg/m³, respectively, and 96.7% with carbon black or 98.8% per litter in untreated controls (see
- 8 Table 4-24). Consequently, the number of pups per litter was also decreased in a concentration-
- 9 dependent manner. The decrease was \sim 50% at 75 µg/m³ and \sim 65% at 100 µg/m³, compared with
- 10 sham-exposed and unexposed control groups. No effects on hormone levels were observed on
- 11 GDs 15 or 17 at the low-dose. Biologically significant decreases in mean pup weights (expressed as
- 12 g per litter) of >5% were observed at doses \ge 75 µg/m³ (14 and 16% decreases at 75 and 100
- 13 $\mu g/m^3$, respectively, p < 0.05). Exposure to benzo[a]pyrene did not affect crown-rump length (see
- 14 Table B-30).

Administered concentration of benzo[a]pyrene ($\mu g/m^3$) 0 (unexposed 0 Parameter^a (carbon black) 25 control) 75 100 8.8 ± 0.5 9.0 ± 0.2 Implantation sites 8.6 ± 0.2 8.8 ± 0.1 8.8 ± 0.1 Pups per litter 8.5 ± 0.2 8.7 ± 0.2 7.4 ± 0.5^{b} 4.2 ± 0.1^{b} 3.0 ± 0.2^{b} 78.3 ± 4.1^{b} 38.0 ± 2.1^{b} 33.8 ± 1.3^{b} Survival (litter %) 96.7 ± 1.7 98.9 ± 1.1 Pup weight (g/litter) 8.8 ± 0.1 10.5 ± 0.2 9.1 ± 0.2^{b} 8.9 ± 0.1^{b} 10.6 ± 0.1 Crown-rump length 27.3 ± 0.7 27.9 ± 0.7 29.4 ± 0.6 29.3 ± 0.5 28.0 ± 0.6 (mm/litter)

15Table B-30. Pregnancy outcomes in female F344 rats treated with16benzo[a]pyrene on GDs 11-21 by inhalation

^aValues presented as means ± SEM.

^bSignificantly different from controls at p < 0.05 by one-tailed post-hoc t-testing following ANOVA.

Source: Archibong et al. (2002).

17

Benzo[a]pyrene exposure at 75 µg/m³ caused a statistically significant decrease in plasma
 progesterone, estradiol, and prolactin on GD 17; these levels were not determined in the rats
 exposed to 100 µg/m³ (Archibong et al., 2002). Plasma prolactin is an indirect measure of the
 activity of decidual luteotropin, a prolactin-like hormone whose activity is necessary for luteal

- 22 maintenance during pregnancy in rats. Control levels of prolactin increased from GD 15 to 17, but
- 23 this increase did not occur in the rats exposed to 75 $\mu g/m^3$. Although the progesterone
- 24 concentration at 75 μ g/m³ was significantly lower than in controls on GD 17, the authors thought
- 25 that the circulating levels should have been sufficient to maintain pregnancy; thus, the increased

1 loss of fetuses was thought to be caused by the lower prolactin levels rather than progesterone

 $2 \qquad deficiency. \ The \ reduced \ circulating \ levels \ of \ progesterone \ and \ estradiol-17\beta \ among$

3 benzo[a]pyrene-treated rats were thought to be a result of limited decidual luteotropic support for

4 the corpora lutea. The authors proposed the following mechanism for the effects of benzo[a]pyrene

5 on fertility: benzo[a]pyrene or its metabolites decreased prolactin and decidual luteotropin levels,

6 compromising the luteotropic support for the corpora lutea and thereby decreasing the plasma

7 levels of progesterone and estradiol-17 β . The low estradiol-17 β may decrease uterine levels of

8 progesterone receptors, thereby resulting in fetal mortality. Based on biologically and statistically

9 significant decreases in pups/litter and percent fetal survival/per litter, the LOAEL was $25 \mu g/m^3$;

10 no NOAEL was identified.

11 <u>Neurotoxicity and in utero exposure via inhalation</u>

12 To evaluate the effects of benzo[a]pyrene on the developing CNS, Wormley et al. (2004) 13 exposed timed-pregnant F344 rats (10/group) to benzo[a]pyrene:carbon black aerosols by nose-14 only inhalation on GDs 11-21 for 4 hours/day at a concentration of 100 µg/m³. Results of particle 15 size analysis of genenerated aerosols were reported by other reports from this laboratory (Ramesh 16 et al., 2001a; Hood et al., 2000). Particle size analysis of a 100-µg/m³ aerosol showed a trimodal 17 distribution with averages of 95% cumulative mass with diameters $<15.85 \mu m$; 90% $<10 \mu m$; 18 $67.5\% < 2.5 \mu m$; and $66.2\% < 1 \mu m$; the MMAD ± geometric SD for the latter fraction was 0.4 ± 0.02 19 μm (Hood et al., 2000). Dams were maintained to term and pups were weaned on PND 30. 20 Benzo[a]pyrene reduced the number of live pups to one-third of control values without affecting 21 the number of implantation sites. During PNDs 60–70, electrical stimulation and evoked field 22 potential responses were recorded via electrodes implanted into the brains of the animals. Direct 23 stimulation of perforant paths in the entorhinal region revealed a diminution in long-term 24 potentiation of population spikes across the perforant path-granular cell synapses in the dentate 25 gyrus of the hippocampus of F1 generation benzo[a]pyrene-exposed animals; responses in exposed 26 offspring were about 25% weaker than in control offspring. Additionally, NMDA receptor subunit 1 27 protein (important for synaptic functioning) was down-regulated in the hippocampus of 28 benzo[a]pyrene exposed F1 pups. The authors interpreted their results as suggesting that 29 gestational exposure to benzo[a]pyrene inhalation attenuates the capacity for long-term 30 potentiation (a cellular correlate of learning and memory) in the F1 generation. 31 In another study by this same group of investigators, Wu et al. (2003) evaluated the 32 generation of benzo[a]pyrene metabolites in F1 generation pups, as well as the developmental 33 profile for AhR and mRNA. In this study, confirmed pregnant F344 rats were exposed to 34 benzo[a]pyrene:carbon black aerosols at 25, 75, or 100 μ g/m³ via nose-only inhalation, 35 4 hours/day, for 10 days (GDs 11–21). Control animals were exposed to carbon black (sham) to 36 control for inert carrier effects or they remained untreated. Each benzo[a]pyrene concentration 37 had its own set of controls (carbon black and untreated). Two randomly selected pups were 38 sacrificed on each of PND 0, 3, 5, 10, 15, 20, and 30. Body, brain, and liver weights were recorded.

- 1 Benzo[a]pyrene metabolites were analyzed in the cerebral cortex, hippocampus, liver, and plasma.
- 2 A dose-related increase in plasma and cortex benzo[a]pyrene metabolite concentrations in pups
- 3 was observed. Dihydrodiols (4,5-; 7,8-; 9,10-) dominated the metabolite distribution profile up to
- 4 PND 15 and the hydroxy (3-OH-benzo[a]pyrene; 9-OH-benzo[a]pyrene) metabolites after PND 15
- 5 at 100 μ g/m³ (the only exposure concentration reported). Results indicated a dose-related
- 6 decrease in the ratio of the total number of pups born per litter to the total number of implantation
- 7 sites per litter. The number of resorptions at 75 and 100 μ g/m³, but not at 25 μ g/m³, was
- 8 statistically significantly increased compared with controls.

9 Adult male reproductive effects and repeated inhalation exposure

10 Inyang et al. (2003) evaluated the effect of subacute exposure to inhaled benzo[a]pyrene on 11 testicular steroidogenesis and epididymal function in rats. Male F344 rats (10/group), 13 weeks of 12 age, were exposed to benzo[a]pyrene:carbon black aerosols at 25, 75, or $100 \,\mu\text{g/m}^3$ via nose-only 13 inhalation, 4 hours/day for 10 days. Control animals were either exposed to carbon black (sham) to 14 control for exposure to the inert carrier, or they remained untreated. Each benzo[a]pyrene 15 concentration had its own set of controls (carbon black and untreated). Aerosols showed a 16 trimodal distribution with averages of 95% cumulative mass <15.85 μ m; 89% <10 μ m; 55% <2.5 17 μ m; and 38% <1 μ m (Invang et al., 2003); an earlier report from this laboratory indicated that the 18 55% mass fraction had a MMAD ± geometric SD of 1.7 ± 0.085 (Ramesh et al., 2001a). Blood 19 samples were collected at 0, 24, 48, and 72 hours after cessation of exposure to assess the effect of 20 benzo[a]pyrene on systemic concentrations of testosterone and luteinizing hormone (LH), 21 hormones that regulate testosterone synthesis. Reproductive endpoints such as testis weight and 22 motility and density of stored (epididymal) sperm were evaluated. 23 Regardless of the exposure concentration, inhaled benzo[a]pyrene did not affect testis 24 weight or the density of stored sperm compared with controls. However, inhaled benzo[a]pyrene 25 caused a concentration-dependent reduction in the progressive motility of stored sperm. 26 Progressive motility was similar at 75 and 100 μ g/m³, but these values were significantly lower ($p < 10^{-10}$ 27 (0.05) than in any other group. The reduction in sperm motility postcessation of exposure was 28 thought to be the result of benzo[a]pyrene limiting epididymal function. Benzo[a]pyrene exposure 29 to 75 μ g/m³ caused a decrease in circulating concentrations of testosterone compared with controls 30 from the time of cessation of exposure (time 0) to 48 hours posttermination of exposure (p < 0.05). 31 However, the decrease was followed by a compensatory increase in testosterone concentration at 32 72 hours postcessation of exposure. Exposure to 75 μ g/m³ caused a nonsignificant increase in 33 plasma LH concentrations at the end of exposure compared with controls, which increased further 34 and turned significant (p < 0.05) for the remaining time of the study period. The decreased plasma 35 concentration of testosterone, accompanied by an increased plasma LH level, was thought to 36 indicate that benzo[a]pyrene did not have a direct effect on LH. The authors also noted that the 37 decreased circulating testosterone may have been secondary to induction of liver CYP450 enzymes 38 by benzo[a]pyrene. The authors concluded that subacute exposure to benzo[a]pyrene contributed

B-86

- to impaired testicular endocrine function that ultimately impaired epididymal function. Based on this study, the NOAEL was $25 \mu g/m^3$ and the LOAEL was $75 \mu g/m^3$, based on a statistically
- 3 significant reduction in the progressive motility of stored sperm and impairment of testicular
- $4 \qquad function \ with \ 10 \ days \ of \ exposure \ at \ 75 \ \mu g/m^3.$

1

2

- 5 In a follow-up study with longer exposure duration, adult male F344 rats (10 per group)
- 6 were exposed to benzo[a]pyrene:carbon black aerosols at 75 μ g/m³ via nose-only inhalation,
- 4 hours/day for 60 days (Archibong et al., 2008; Ramesh et al., 2008). Rats in the control group
- 8 were subjected to the nose-only restraint, but were not exposed to the carbon black carrier. Blood
- 9 samples were collected at 0, 24, 48, and 72 hours after exposure terminated, and the animals
- 10 sacrificed for tissue analyses following the last blood sampling. Data were analyzed statistically for
- 11 benzo[a]pyrene effects on weekly body weights, total plasma testosterone and LH concentrations,
- 12 testis weights, density of stored spermatozoa, sperm morphological forms and motility,
- 13 benzo[a]pyrene metabolite concentrations and AHH activity, and morphometric assessments of
- 14 testicular histologies. Relative to controls, the results indicated 34% reduced testis weight (*p* <
- 15 0.025), reduced daily sperm production (p < 0.025) and reduced intratesticular testosterone
- 16 concentrations (p < 0.025). Plasma testosterone concentrations were reduced to about one-third of
- 17 the level in controls on the last day of exposure (day 60) and at 24, 48, and 72 hours later (p < 0.05).
- 18 However, plasma LH concentrations in benzo[a]pyrene exposed rats were elevated throughout the
- blood sampling time periods compared with controls (p < 0.05). In testis, lung, and liver, AHH
- 20 activity, and benzo[a]pyrene-7,8-dihydrodiol (precursor to the DNA-reactive BPDE) and
- 21 benzo[a]pyrene-3,6-dione metabolites were significantly (p < 0.05) elevated relative to controls.
- Progressive motility and mean density of stored spermatozoa were significantly reduced (p < 0.05).
- 23 Weekly body weight gains were not affected by benzo[a]pyrene exposure. These results indicate
- 24 that 60-day exposure of adult male rats to benzo[a]pyrene:carbon black aerosols at 75 μg/m³
- 25 produced decreased testis weight; decreased intratesticular and plasma testosterone
- 26 concentrations; and decreased sperm production, motility, and density.

1 OTHER PERTINENT TOXICITY INFORMATION

2 3

Table B-31. In vitro genotoxicity studies of benzo[a]pyrene in nonmammalian cells

	Result		
	S 9	S 9	Reference
Endpoint/test system: prokaryotic cells		1	
Forward mutation			
Salmonella typhimurium TM677	+	_	Rastetter et al., 1982
S. typhimurium TM677	+	ND	Babson et al., 1986
Reverse mutation	•		
S. typhimurium TA98, TA1538	+	ND	Ames et al., 1975
S. typhimurium TA98, TA100, TA1538	+	ND	McCann et al., 1975
S. typhimurium TA1538, TA98	+	_	Wood et al., 1976
S. typhimurium TA98, TA100, TA1537	+	—	Epler et al., 1977
S. typhimurium TA98, TA100	+	_	Obermeier and Frohberg, 1977
S. typhimurium TA98	+	_	Pitts et al., 1978
S. typhimurium TA98, TA100	+	ND	LaVoie et al., 1979
S. typhimurium TA98, TA100	+	—	Simmon, 1979a
S. typhimurium TA98	+	ND	Hermann, 1981
S. typhimurium TA98, TA100	+	ND	Alfheim and Randahl, 1984
S. typhimurium TA98, TA100, TA1538	ND	-	Glatt et al., 1985
S. typhimurium TA97, TA98, TA100	+	-	Sakai et al., 1985
S. typhimurium TA97, TA98, TA100, TA1537	+	_	Glatt et al., 1987
S. typhimurium TA97, TA98, TA100	+	ND	Marino, 1987
S. typhimurium TA98	+	-	Alzieu et al., 1987
S. typhimurium TA98, TA100	+	_	Prasanna et al., 1987
S. typhimurium TA98	+	ND	Ampy et al., 1988
S. typhimurium TA98, TA100	+	ND	Bos et al., 1988
S. typhimurium TA98	+	ND	Lee and Lin, 1988
S. typhimurium TA98	+	ND	Antignac et al., 1990
S. typhimurium TA98	-	ND	Gao et al., 1991
S. typhimurium TA98	+	ND	Balansky et al., 1994
S. typhimurium TA100	+	ND	Norpoth et al., 1984
S. typhimurium TA100	+	_	Carver et al., 1986
S. typhimurium TA100	+	ND	Pahlman and Pelkonen, 1987

	Result				
	S 9	S9	Reference		
S. typhimurium TA100	+	ND	Tang and Friedman, 1977		
S. typhimurium TA100	+	ND	Bruce and Heddle, 1979		
S. typhimurium TA100	+	ND	Phillipson and Ioannides, 1989		
S. typhimurium TA100	-	ND	Balansky et al., 1994		
S. typhimurium TA1537, TA1538	+	_	Ames et al., 1973		
S. typhimurium TA1537, TA1538	+	_	Glatt et al., 1975		
S. typhimurium TA1537	+	ND	Oesch et al., 1976		
S. typhimurium TA1538	+	ND	Egert and Greim, 1976		
S. typhimurium TA1538	+	-	Rosenkranz and Poirier, 1979		
S. typhimurium TA1535	_	_	Ames et al., 1973		
S. typhimurium TA 1535	_	_	Glatt et al., 1975		
S. typhimurium TA 1535	-	ND	McCann et al., 1975		
S. typhimurium TA1535	-	-	Epler et al., 1977		
DNA damage					
<i>E. coli</i> /pol A	+	-	Rosenkranz and Poirier, 1979		
E. coli/differential killing test	+	-	Tweats, 1981		
E. coli WP2-WP100/rec-assay	+	ND	Mamber et al., 1983		
<i>E. coli</i> /SOS chromotest Pq37	+	_	Mersch-Sundermann et al., 1992		
Endpoint/test system: nonmammalian eukaryotes					
Mitotic recombination					
S. cerevisiae D4-RDII	ND	_	Siebert et al., 1981		
S. cerevisiae D3	_	_	Simmon, 1979b		

+ = positive; - = negative; ND = not determined

Table B-32. In vitro genotoxicity studies of benzo[a]pyrene in mammalian cells

	Result		
Assay/test system	+\$9	– S9	Reference
Forward mutation			
Human AHH-1 lymphoblastoid cells	ND	+	Danheiser et al., 1989
Human lymphoblast (AHH-1) cells (hprt)	ND	+	Crespi et al., 1985
Human lymphoblastoid (AHH-1) cell line	ND	+	Chen et al., 1996

	Result		
Assay/test system	+\$9	- S9	Reference
Human fibroblast (MRC5CV1) cell line (<i>hprt</i>)	_	ND	Hanelt et al., 1997
Human lymphoblast (TK) cells	ND	+	Barfknecht et al., 1982
Human lymphoblast (TK6) cells	+	ND	Crespi et al., 1985
Human embryonic epithelial (EUE) cells	ND	+	Rocchi et al., 1980
Human HSC172 lung fibroblasts	+	-	Gupta and Goldstein, 1981
Human Q3-wp normal lung keratinocytes	+	ND	Allen-Hofmann and Rheinwald, 1984
Human SCC-13Y lung keratinocytes	ND	+	Allen-Hofmann and Rheinwald, 1984
Mouse <i>lacZ</i> transgenic Muta [™] Mouse primary hepatocytes	ND	+	Chen et al., 2010
Mouse L5178Y/HGPRT	+	_	Clive et al., 1979
Mouse lymphoma (L5178Y/TK+/-) cells	+	-	Clive et al., 1979
Mouse lymphoma (L5178Y/TK+/-) cells	+	ND	Amacher and Turner, 1980; Amacher et al., 1980
Mouse lymphoma (L5178Y/TK+/-) cells	+	-	Amacher and Paillet, 1983
Mouse lymphoma (L5178Y/TK+/-) cells	+	ND	Arce et al., 1987
Chinese hamster ovary (CHO) cells (aprt)	+	ND	Yang et al., 1999
CHO cells (5 marker loci)	+	+	Gupta and Singh, 1982
Chinese hamster V79 cells (co-cultured with irradiated HepG2 cells)	+	ND	Diamond et al., 1980
Chinese hamster V79 lung epithelial cells	+	ND	Huberman, 1976
Chinese hamster V79 lung epithelial cells	+	ND	Arce et al., 1987
Chinese hamster V79 lung epithelial cells	+	ND	O'Donovan, 1990
Rat/Fischer, embryo cells/Oua ^R	ND	+	Mishra et al., 1978
DNA damage			
DNA adducts			
Human peripheral blood lymphocytes	ND	+	Wiencke et al., 1990
Human peripheral blood lymphocytes	ND	+	Li et al., 2001
Human peripheral blood lymphocytes	ND	+	Wu et al., 2005
Human peripheral blood lymphocytes	ND	+	Gu et al., 2008
Human fibroblast (MRC5CV1) cell line	+	ND	Hanelt et al., 1997
Human hepatoma (HepG2) cell line	ND	+	Tarantini et al., 2009
Hamster tracheal cells	ND	+	Roggeband et al., 1994
Chinese hamster V79 lung epithelial cells	+	ND	Arce et al., 1987

This document is a draft for review purposes only and does not constitute Agency policy.B-90DRAFT—DO NOT CITE OR QUOTE

	Result		
Assay/test system	+\$9	- S9	Reference
Virus transformed SHE and mouse C3H10T1/2 cells	ND	+	Arce et al., 1987
Mouse lymphoma (L5178Y/TK+/-) cells	+	ND	Arce et al., 1987
Rat tracheal cells	ND	+	Roggeband et al., 1994
Unscheduled DNA synthesis			·
HeLa cells	+	ND	Martin et al., 1978
Human fibroblasts	+	ND	Agrelo and Amos, 1981
Human fibroblasts	+	-	Robinson and Mitchell, 1981
Human HepG2	ND	+	Valentin-Severin et al., 2004
Hamster primary embryo cells	ND	+	Casto et al., 1976
Hamster tracheal cells	ND	+	Roggeband et al., 1994
Rat hepatocytes	ND	+	Michalopoulos et al., 1978
Rat tracheal cells	ND	_	Roggeband et al., 1994
DNA repair			
Human mammary epithelial cells	ND	+	Leadon et al., 1988
Human skin fibroblasts	ND	+	Milo et al., 1978
Baby hamster kidney (BHK21/c13) cells	ND	+	Feldman et al., 1978
secondary mouse embryo fibroblasts (C57BL/6) and human lymphocytes	ND	+	Shinohara and Cerutti, 1977
Rat/F344 hepatocytes	ND	+	Williams et al., 1982
Cytogenetic damage CAs			
Human blood cells	ND	+	Salama et al., 2001
Human WI38 fibroblasts	+	_	Weinstein et al., 1977
Chinese hamster lung cells	+	-	Matsuoka et al., 1979
Chinese hamster V79-4 lung epithelial cells	-	-	Popescu et al., 1977
Mouse lymphoma (L5178Y/TK+/-) cells	+	ND	Arce et al., 1987
Rat Liver RL1 cells	+	ND	Dean, 1981
MN			
Human AHH-1 lymphoblastoid cells	ND	+	Crofton-Sleigh et al., 1993
Human HepG2 liver cells	ND	+	Wu et al., 2003
Human lymphoblastoid (TK) cells	ND	+	Fowler et al., 2010
Human MCL-5 lymphoblastoid cells	ND	+	Crofton-Sleigh et al., 1993
Human peripheral blood lymphocytes	+	ND	Lo Jacono et al., 1992
Chinese hamster V79 cells	ND	+	Whitwell et al., 2010

This document is a draft for review purposes only and does not constitute Agency policy. B-91 DRAFT—DO NOT CITE OR QUOTE

	Res	ult	
Assay/test system	+\$9	- S 9	Reference
Chinese hamster V79-MZ cells	ND	+	Matsuoka et al., 1999
DNA strand breaks			
Human sperm	+	+	Sipinen et al., 2010
Human peripheral blood lymphocytes	+	+	Rodriguez-Romero et al., 2012
Human fibroblast (MRC5CV1) cell line	+	ND	Hanelt et al., 1997
Human hepatoma (HepG2) cell line	ND	+	Tarantini et al., 2009
Human prostrate carcinoma (DU145) cell line	ND	+	Nwagbara, 2007
Mouse embryo fibroblast (C3H/10T1/2 CL 8) cells	ND	+	Lubet et al., 1983
Rat C18 trachea epithelial cells	ND	+	Cosma and Marchok, 1988; Cosma et al., 1988
Rat lymphocytes	ND	+	Gao et al., 1991
SCEs			
Human C-HC-4 and C-HC-20 hepatoma cells	ND	+	Abe et al., 1983a, b
Human diploid fibroblast (TIG-II) cell line	+	+	Huh et al., 1982
Human fibroblasts	ND	+	Juhl et al., 1978
Human blood cells	ND	+	Salama et al., 2001
Human peripheral blood lymphocytes	ND	+	Rudiger et al., 1976
Human peripheral blood lymphocytes	ND	+	Craig-Holmes and Shaw, 1977
Human peripheral blood lymphocytes	ND	+	Schönwald et al., 1977
Human peripheral blood lymphocytes	ND	+	Wiencke et al., 1990
Human peripheral blood lymphocytes	+	_	Tohda et al., 1980
Human peripheral blood lymphocytes	+	ND	Lo Jacono et al., 1992
Chinese hamster Don-6 cells	ND	+	Abe et al., 1983a, b
Chinese hamster V79 lung epithelial cells	+	_	Popescu et al., 1977
Chinese hamster V79 lung epithelial cells	+	ND	Mane et al., 1990
Chinese hamster V79 lung epithelial cells	+	ND	Wojciechowski et al., 1981
Chinese hamster V79 lung epithelial cells	+	ND	Arce et al., 1987
Chinese hamster V79 lung epithelial cells	ND	+	Kulka et al., 1993a
CHO cells	+	_	de Raat, 1979
CHO cells	+	_	Husgafvel-Pursiainen et al., 1986
CHO cells	ND	+	Wolff and Takehisa, 1977

This document is a draft for review purposes only and does not constitute Agency policy. B-92 DRAFT—DO NOT CITE OR QUOTE

	Result		
Assay/test system	+\$9	- S9	Reference
CHO cells	ND	+	Pal et al., 1978
Chinese hamster lung cells	ND	+	Shimizu et al., 1984
Rabbit peripheral blood lymphocytes	ND	+	Takehisa and Wolff, 1978
Rat ascites hepatoma AH66-B	ND	+	Abe et al., 1983a, b
Rat esophageal tumor R1	ND	+	Abe et al., 1983a, b
Rat hepatocyte (immortalized) cell lines (NRL cl-B, NRL cl-C, and ARL)	+	ND	Kulka et al., 1993b
Rat hepatoma (Reuber H4-II-E) cells	ND	+	Dean et al., 1983
Rat liver cell line ARL18	ND	+	Tong et al., 1981
Rat pleural mesothelial cells	ND	+	Achard et al., 1987
Aneuploidy			
Chinese hamster V79-MZ cells	ND	+	Matsuoka et al., 1998
Cell transformation			
Human BEAS-2B lung cells	ND	+	van Agen et al., 1997
Human breast epithelial (MCF-10F, MCF-7, T24) cell lines	ND	+	Calaf and Russo, 1993
Baby hamster kidney (BHK21/c13) cells	+	ND	Greb et al., 1980
Golden hamster embryo cells	+	ND	Mager et al., 1977
Syrian hamster embryo (SHE) cells	ND	+	DiPaolo et al., 1971, 1969
SHE cells	ND	+	Dunkel et al., 1981
SHE cells	ND	+	LeBoeuf et al., 1990
SHE cells/focus assay	ND	+	Casto et al., 1977
Fetal Syrian hamster lung (FSHL) cells	ND	+	Emura et al., 1987, 1980
Virus infected rat embryo RLV/RE and RAT cells; mouse embryo AKR/Me cells; Syrian hamster embryo cells	ND	+	Heidelberger et al., 1983
Virus transformed SHE and mouse C3H10T1/2 cells	ND	+	Arce et al., 1987
Mouse C3H/10T1/2 embryo fibroblasts	ND	+	Nesnow et al., 2002, 1997
Mouse embryo fibroblast (C3H/10T1/2 CL 8) cells	ND	+	Peterson et al., 1981
Mouse embryo fibroblast (C3H/10T1/2 CL 8) cells	ND	+	Lubet et al., 1983
Mouse SHE cells; BALB/c-3t3 cells; C3H/10T1/2 cells; prostate cells	ND	+	Heidelberger et al., 1983
Mouse BALB/c-3T3 cells	ND	+	Dunkel et al., 1981
Mouse BALB/c-3T3 cells	ND	+	Matthews, 1993
Mouse BALB/c-3T3 clone A31-1-1	ND	+	Little and Vetroys, 1988

This document is a draft for review purposes only and does not constitute Agency policy. B-93 DRAFT—DO NOT CITE OR QUOTE

Toxicological Review of benzo[a]pyrene

	Result		
Assay/test system	+\$9	– S9	Reference
Rat embryo cells/SA7 virus transformation	ND	+	DiPaolo and Casto, 1976
Rat/Fischer, embryo cells (leukemia virus transformed)	ND	+	Dunkel et al., 1981
Rat/Fischer, embryo cells/Oua ^R	ND	+	Mishra et al., 1978

+ = positive; - = negative; ND = not determined; SHE = Syrian hamster embryo; TK = thymidine kinase

1

Table B-33. In vivo genotoxicity studies of benzo[a]pyrene

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutation	Human, blood T lymphocytes (smokers and nonsmokers); hprt locus mutation assay	T-cells of lung cancer patients (smokers and nonsmokers from lung cancer patients and population controls with known smoking status) analyzed for hprt locus mutations.	+	Smokers and nonsmokers	Splicing mutations, base-pair substitutions, frameshift, and deletion mutations observed. Smokers and nonsmokers had GC→TA transversions (13 and 6%, respectively) and GC→AT transitions (24 and 35%, respectively) in hprt gene consistent with in vitro mutagenicity of benzo[a]pyrene	Hackman et al., 2000
Mutation, germline	Mouse, T-stock, (SEC × C57BL)F1, (C3H × 101)F1, or (C3H × C57BL)F1 for females; (101 × C3H)F1 or (C3H × 101)F1 for males; dominant-lethal mutation assay	12-wk-old males dosed with benzo[a]pyrene i.p. and mated 3.5–6.5 d posttreatment with 12-wk-old females from different stocks; sacrificed on d 12–15 after vaginal plug was observed; females kept in a 5-hr dark phase to synchronize ovulation 5 wks before the start of the experiment; fertilized eggs collected from 9 to 11 hrs after mating and first- cleavage metaphase chromosomes prepared 20 hrs after mating.	+	500 mg/kg	The percent of dominant lethal mutations were in the order of T-stock = (C3H × 101)F1 > (SEC × C57BL)F1 > (C3H × C57BL)F1	Generoso et al., 1979

1

2

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutation, germline	Mouse, male stocks: (101 × C3H)F1; female stocks (A): (101 × C3H)F1, (B): (C3H × 101)F1, (C): (C3H × C57BL)F1, (D):(SEC × C57BL)F1, (E):T-stock females; dominant lethal mutations	In dominant lethal assay, 12-wk-old males dosed i.p. with benzo[a]pyrene and mated with 10–12-wk-old (#1) stock A females; or (#2) stock B females on the day of dosing; or with (#3a) with stocks B, C, and D females 3.5–7.5 d postdosing, or with (#3b) with stocks B, C, D, and E females 3.5– 6.5 d postdosing. Control group mated at time corresponding to 1.5–4.5 d posttreatment in the test groups.	+	500 mg/kg	Dominant lethal effects were observed in early to middle (4.5–5.5 and 6.5–7.5 d posttreatment, respectively) spermatozoa and in preleptotene spermatocytes (32.5–33.5 and 34.5–35.5 d post-treatment).	Generoso et al., 1982
Mutation, germline	Mouse, male stocks: (101 × C3H)F1; female stocks (A): (101 × C3H)F1, (B): (C3H × 101)F1, (C): (C3H × C57BL)F1, (D): (SEC × C57BL)F1, (E): T-stock females; heritable translocations	For heritable translocation assay, males were mated with stocks B and D females 3.5–7.7 d post-benzo[a]pyrene treatment and male progeny screened for translocation heterozygosity.	_	500 mg/kg	No significant differences were observed between treated and control progeny.	Generoso et al., 1982
Mutations and BPDE- DNA adducts, germline	Mouse, C57BL/6, <i>cll</i> transgenic (Big Blue®)	Benzo[a]pyrene administered i.p. in corn oil on d 0, 1, and 2; sacrificed at d 4, 16, 30, 44, or 119. Caput and cauda epididymal spermatozoa analyzed for <i>cll</i> mutation frequency, and DNA adducts analyzed in testis by LC- MS/MS SRM with ¹⁵ N-deoxyguanosine labeling.	+	50 mg/kg	Exposed spermatocytes acquired persistent BPDE-DNA adducts; exposed spermatogonia gave rise to spermatocytes with mutations consistent with a benzo[a]pyrene spectrum (GC>TA transversions).	Olsen et al., 2010

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutations and BPDE- DNA adducts, germline	Mouse, C57BL/6 males, wild type and Xpc ^{-/-} with pUR288 <i>lacZ</i> reporter gene	Benzo[a]pyrene given via gavage in sunflower oil 3 times/wk for 1, 4, or 6 wks (Xpc ^{-/-}) or 6 wks (Wt). Spleen, testis, and sperm cells analyzed for <i>lacZ</i> mutation frequency, and DNA adducts analyzed in testis by ³² P- postlabeling.	+	13 mg/kg	Statistically significant increases in lacZ mutation frequencies in Xpc-/- spleen at 4 and 6 wks (dose dependent) and in Wt spleen and sperm at 6 wks; DNA adducts were statistically significant in testis in all exposed groups.	Verhofstad et al., 2011
Mutations and BPDE- DNA adducts	Mouse, C57BL/6 <i>lacZ</i> transgenic	Mice dosed with single i.p. injection of benzo[a]pyrene in DMSO; sacrificed 1, 3, 5, 7, 14, 21, and 28 d posttreatment; spleen, lung, liver, kidney, and brain collected, DNA isolated and analyzed for mutations in <i>lacZ</i> reporter gene in <i>E. coli</i> and adducts by [³² P]- postlabeling assay.	+	50 mg/kg	BPDE-dG adduct levels peaked between 5 and 7 days posttreatment, followed by gradual decline; rate of removal highest in lung, liver, and spleen and lowest in kidney and brain; mutant frequencies peaked between 7 and 14 days in lung, spleen, liver, and kidney; brain was not significant at any time point.	Boerrigter, 1999
Mutation	Mouse, C57BL female × T-strain male; somatic mutation assay	Mice mated for a 5-d period; 10.25 d post-appearance of vaginal plug, females injected i.p. with benzo[a]pyrene or vehicle; offspring (pups) scored for survival, morphology, and presence of white near-midline ventral spots and recessive spots.	+	100 or 500 mg/kg	Induced coat color mosaics represent genetic changes (e.g., point mutations) in somatic cells. White near- midline ventral spots and recessive spots represent melanocyte cell killing and mutagenicity, respectively. Benzo[a]pyrene caused high incidence of recessive spots but did not correlate with white near-midline ventral spots.	Russell, 1977

This document is a draft for review purposes only and does not constitute Agency policy.B-3DRAFT—DO NOT CITE OR QUOTE

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutation	Mouse, <i>lacZ</i> transgenic (Muta [™] Mouse)	Benzo[a]pyrene given via gavage in olive oil daily for 28 consecutive d; sacrificed 3 d after last dosing; 4 organs analyzed for <i>lacZ</i> mutation frequency.	+	25, 50, and 75 mg/kg-day	Highest <i>lacZ</i> mutation frequency observed in small intestine, followed by bone marrow, glandular stomach, and liver	Lemieux et al., 2011
Mutation	Mouse, <i>lacZ</i> transgenic (Muta [™] Mouse)	Benzo[a]pyrene given orally in corn oil for 5 consecutive d; sacrificed 14 d after last dosing; 11 organs analyzed for <i>lacZ</i> mutation frequency.	+	125 mg/kg-day	Highest mutation frequency observed in colon followed by ileum > forestomach > bone marrow = spleen > glandular stomach > liver = lung > kidney = heart	Hakura et al., 1998
Mutation	Mouse, C57BL/6J Dlb-1 congenic; Dlb-1 locus assay	Animals dosed: (1) i.p. with vehicle or benzo[a]pyrene two, four, or six doses at 96-hr intervals; or (2) single dose of benzo[a]pyrene given i.p. or p.o. alone or 96 hrs following a single i.p. dosing with 10 μg/kg TCDD.	+	40 mg/kg	Benzo[a]pyrene caused a dose- dependent increase in mutant frequency; i.p. route showed higher mutant frequency than p.o. route; induction of mutations were associated with Ah-responsiveness.	Brooks et al., 1999
Mutation	Mouse, C57BL/6 (<i>lacZ</i> negative and <i>XPA</i> ^{+/+} and <i>XPA</i> ^{-/-}); hprt mutations in T lymphocytes	Gavage in corn oil 3 times/wk for 0, 1, 5, 9, or 13 wks; sacrificed 7 wks after last treatment.	+	13 mg/kg	Mutation sensitivity: XPA ^{-/-} > XPA ^{+/+} .	Bol et al., 1998
Mutation	Mouse, Cockayne syndrome-deficient (<i>Csb^{-/-}</i>); heterozygous (<i>Csb^{+/-}</i>) and WT controls (<i>Csb^{+/+}</i>); hprt mutation frequency assay	<i>Csb^{-/-}/lacZ^{+/-}</i> and <i>Csb^{+/-}/lacZ^{+/-}</i> mice were dosed i.p. with benzo[a]pyrene 3 times/wk for 5, 9, or 13 wks; for hprt mutation frequency analysis mice were sacrificed 3 wks after last treatment; splenocytes collected; for <i>lacZ</i> mutation frequency analysis, mice were sacrificed 3 d after last treatment and liver, lung, and spleen collected.	+	13 mg/kg	<i>lacZ</i> mutation frequency detected in all tissues but no differences between WT and <i>Csb^{-/-}</i> mice; hprt mutations significantly higher in <i>Csb^{-/-}</i> mice than control mice. BPDE- dGuo adducts in hprt gene are preferentially removed in WT mice than <i>Csb^{-/-}</i> mice.	Wijnhoven et al., 2000

This document is a draft for review purposes only and does not constitute Agency policy.B-4DRAFT—DO NOT CITE OR QUOTE

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutation	Mouse, B6C3F ₁ , forestomach H- <i>ras</i> , K- <i>ras</i> , and <i>p53</i> mutations	Benzo[a]pyrene given in feed in a 2-yr chronic feeding study.	+	5, 25, or 100 ppm	68% K- <i>ras</i> (codons 12,13), 10% H- <i>ras</i> (codon 13), 10% <i>p53</i> mutations; all G→T transversions	Culp et al., 2000
Mutation	Mouse, <i>lacZ/galE</i> (Muta [™] Mouse); skin painting study	Mice topically treated with a single dose or in five divided doses daily; sacrificed 7 or 21 d after the single or final treatment; DNA from skin, liver, and lung analyzed for mutations.	+ ^{Sk} or _ ^{Li,Lu}	1.25 or 2.5 mg/kg (25 or 50 μg/mouse)	Skin showed significant dose- and time-dependent increase in mutation frequency; liver and lung showed no mutations; mutation frequency for single- or multiple-dose regimens was similar.	Dean et al., 1998
Mutation	Mouse, T-strain	Benzo[a]pyrene given to pregnant mice by gavage in 0.5 mL corn oil on GDs 5–10.	+	10 mg/mouse (5 × 2 mg)		Davidson and Dawson, 1976
Mutation	Mouse, 129/Ola (WT); hprt mutations in splenic T lymphocytes	Single i.p. injection followed by sacrifice 7 wks posttreatment.	+	0, 50, 100, 200, or 400 mg/kg	Dose-dependent increase in hprt mutation frequency.	Bol et al., 1998
Mutation	Mouse, A/J, male	Single i.p. injection followed by sacrifice 28 days posttreatment.	+	0, 0.05, 0.5, 5, or 50 mg/kg	Dose-dependent increase in lung tissue K- <i>ras</i> codon 12 G→T mutation frequency.	Meng et al., 2010
Mutation	Mouse, CD-1; skin papillomas (Ha- <i>ras</i> mutations)	Female mice were initiated topically with a single dose of benzo[a]pyrene and 1 wk after initiation promoted twice weekly with 5 nmol TPA for 14 wks. One month after stopping TPA application, papillomas were collected and DNA from 10 individual papillomas were analyzed for Ha- <i>ras</i> mutations by PCR and direct sequencing.	+	600 nmol/mouse	About 90% of papillomas contained Ha- <i>ras</i> mutations, all of them being transversions at codons 12 (20% GGA→GTA), 13 (50% GGC→GTC), and 61 (20% CAA→CTA).	Colapietro et al., 1993

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutation	Rat, Wistar	Single dose by gavage; urine and feces collected 0–24, 24–48, and 48–72 hrs posttreatment; urine and extracts of feces tested in <i>S. typhimurium</i> TA100 strain with or without S9 mix and β-glucuronidase.	+	0, 1, 5, 10, or 100 mg/kg	Fecal extracts and urine showed mutagenicity ≥1 and 10 mg/kg body weight benzo[a]pyrene, respectively. Highest mutagenic activity observed for 0–24 hrs posttreatment for feces and 24–48 hrs posttreatment for urine with β-glucuronidase ± S9 mix.	Willems et al., 1991
BPDE- DNA adducts	Human, WBCs	96 people occupationally or medically exposed to PAH mixtures (psoriatic patients, coke oven workers, chimney sweeps, and aluminum anode plant workers); adducts measured by HPLC/fluorescence analysis.	+		Percentages of subjects with adduct levels > the 95 th percentile control value were 47% (7/15), 21% (4/19) and 3% (1/34) in coke oven workers, chimney sweeps, and controls, respectively.	Pavanello et al., 1999
BPDE- DNA adducts	Human, WBCs	67 highly exposed coke oven workers were tested for genetic factors that can modulate individual responses to carcinogenic PAHs; adducts measured by HPLC/fluorescence analysis.	+		Levels of BPDE-DNA adducts were significantly associated with workplace PAH exposure (as correlated with urinary excretion of 1-pyrenol), lack of GSTM1 activity, and low NER capacity.	Pavanello et al., 2005
Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
----------	----------------------	--	---------	------	----------------------------------	--------------
BPDE-	Human, peripheral	585 Caucasian municipal workers (52%	+		Forty-two percent of the	Pavanello
DNA	lymphocytes	males, 20–62 years old) from			participants had elevated anti-	et al., 2006
adducts		northeast Italy environmentally			BPDE-DNA adduct levels,	
		exposed to PAH mixtures were			defined as >0.5 adducts/108	
		screened for adducts measured by			nucleotides (mean, 1.28 ± 2.80	
		HPLC/fluorescence analysis.			adducts/108 nucleotides).	
					Comparison of adduct levels	
					with questionnaire responses	
					indicated that smoking,	
					frequent consumption of PAH-	
					rich meals (>52 versus <52	
					times/year), and long time	
					periods spent outdoors (>4	
					versus <4 hours/day) were risk	
					factors as all increased BPDE-	
					DNA adduct levels significantly.	
BPDE-	Human, maternal and	Maternal and umbilical cord blood	+		BPDE-DNA adduct levels in	Perera et
DNA	umbilical cord blood	obtained following normal delivery			cord and maternal blood were	al., 2005a
adducts		from 329 nonsmoking pregnant			highest in study participants	
		women exposed to emissions from			who lived within 1 mile of the	
		fires during the 4 weeks following the			WTC, with inverse correlation	
		collapse of the World Trade Center			between cord blood levels and	
		(WTC) building in New York City on			distance from WTC.	

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
BPDE- DNA adducts	Human, WBCs	Workers were exposed for 6–8 hrs/d for at least 4–6 mo before blood collection; leukocyte DNA isolated and digested, and benzo[a]pyrene tetrols analyzed by HPLC with fluorescent detection. Low, medium, and high exposure groups correspond to <0.15, 0.15–4, and >4 mg/m ³ of benzo[a]pyrene, respectively.	+	<0.15, 0.15– 4, or >4 μg/m ³ of benzo[a]pyren e	PAH exposure, CYP1A1 status and smoking significantly affected DNA adduct levels, i.e., CYP1A1(*1/*2 or *2A/*2a) > CYP1A1*1/*1; occupational > environmental exposure; smokers > nonsmokers; adducts increased with dose and duration of smoking.	Rojas et al., 2000
BPDE- DNA adducts	Human, WBCs	Coke oven workers were exposed to PAHs and benzo[a]pyrene-WBC DNA analyzed by HPLC-fluorescence detection for BPDE-DNA adducts.	±	0.14 μg/m ³	Median detectable BPDE-DNA adducts in workers vs. controls not significant due to low number of subjects (9 workers, 26 controls); 4/9 workers had adducts substantially higher than all controls. No significant difference between smokers and nonsmokers; no correlation with air benzo[a]pyrene levels and adduct levels.	Mensing et al., 2005
BPDE- DNA adducts	Mouse, <i>lacZ</i> transgenic (Muta [™] Mouse)	Benzo[a]pyrene given via gavage in olive oil daily for 28 consecutive d; sacrificed 3 d after last dosing; 4 organs analyzed for DNA adducts using ³² P-postlabeling with nuclease P1 digestion enrichment.	+	25, 50, and 75 mg/kg-day	Highest adduct levels observed in liver, followed by glandular stomach, small intestine, and bone marrow	Lemieux et al., 2011
BPDE- DNA adducts	Mouse, (Ahr ^{+/+} , Ahr ^{+/-} , Ahr ^{-/-})	Gavage; sacrificed 24 hrs posttreatment.	+	100 mg/kg	No induction of CYP in <i>Ahr^{-/-},</i> but all alleles positive for adduct formation.	Sagredo et al., 2006

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
BPDE- DNA adducts	Mouse, C57BL/6J <i>Cyp1a1</i> (+/-) and <i>Cyp1a1</i> (-/-)	Single i.p. injection; sacrificed 24 hrs posttreatment; liver DNA analyzed by [³² P]-postlabeling assay.	+	500 mg/kg	BPDE-DNA adduct levels fourfold higher in <i>Cyp1a1</i> (-/-) mice than <i>Cyp1a1</i> (+/-) mice.	Uno et al., 2001
BPDE- DNA adducts	Mouse, B6C3F ₁	Benzo[a]pyrene fed in diet for 4 wks (100 ppm) or for 1, 2, 8, 16, and 32 wks (5 ppm); sacrificed and liver, lungs, forestomach, and small intestine collected; DNA analyzed by [³² P]- postlabeling assay.	+	5 ppm (32 wks) and 100 ppm (4 wks)	Linear dose-response in 4-wk study; the 5 ppm groups showed a plateau after 4 wks of feeding.	Culp et al., 2000
BPDE- DNA adducts	Mouse, BALB/c	Single i.p. injection; sacrificed 12 hrs postinjection; liver and forestomach collected; DNA binding of [³ H]- benzo[a]pyrene analyzed by scintillation counting.	+	140 μCi/100 g body weight	Liver DNA had threefold higher binding of benzo[a]pyrene than that of forestomach.	Gangar et al., 2006
BPDE- DNA adducts	Mouse, BALB/cAnN (BALB), CBA/JN (CBA); [³² P]-postlabeling assay	Animals dosed i.p. with or without 24 hr pretreatment with TCDD.	+	50 and 200 mg/kg	Adduct levels similar in both strains dosed with benzo[a]pyrene alone. TCDD pretreatment had a greater suppressive effect on adduct formation in BALB relative to CBA mice at low dose but resulted in no significant difference in adduct levels at high dose.	Wu et al., 2008
BPDE- DNA adducts	Mouse, BALB/c, skin	Four doses of benzo[a]pyrene topically applied to the shaved backs of animals at 0, 6, 30, and 54 hrs; sacrificed 1 day after last treatment; DNA analyzed by [³² P]-postlabeling assay.	+	4 × 1.2 μmol/ animal	Five adducts spots detected.	Reddy et al., 1984

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
BPDE- DNA adducts	Mouse, Swiss, epidermal and dermal skin	Single topical application on shaved backs; sacrificed 1, 3, and 7 d posttreatment; epidermal and dermal cells separated; DNA isolated, digested with DNAsel, and estimated DNA binding; adducts separated by HPLC.	+	250 nmol in 150 μL acetone	Both cells positive for benzo[a]pyrene adducts; epidermis > dermis; adducts persisted up to 7 d with a gradual decline in levels.	Oueslati et al., 1992
BPDE- DNA adducts	Rat, CD, peripheral blood lymphocytes, lungs, and liver	Single i.p. injection; sacrificed 3 d posttreatment; DNA analyzed by Nuclease P1-endhanced [³² P]- postlabeling assay.	+	2.5 mg/animal	BPDE-dG as major adducts and several minor adducts detected in all tissues.	Ross et al., 1991
BPDE- DNA adducts	Rat, Sprague-Dawley, liver	Single i.p. injection followed by sacrifice at 4 hrs posttreatment; liver DNA isolated and analyzed by [³² P]-postlabeling assay.	+	100 mg/kg	Two adduct spots detected.	Reddy et al., 1984
BPDE- DNA adducts	Rat, Lewis, lung and liver	Animals received a single oral dose of benzo[a]pyrene in tricaprylin; sacrificed 1, 2, 4, 11, and 21 d postdosing; analyzed liver and lung DNA for BP-DNA adducts by [³² P]- postlabeling assay and urine for 8-oxodG adducts by HPLC- electrochemical detection.	+	10 mg/kg	BPDE-dG levels peaked 2 d after exposure in both tissues, higher in lungs than liver at all time points, decline faster in liver than lung; Increased 8- oxodG levels in urine and decreased levels in liver and lung.	Briedé et al., 2004
BPDE- DNA adducts	Rat, F344; [³² P]-postlabeling assay	Benzo[a]pyrene given in the diet for 30, 60, or 90 d; animals sacrificed and liver and lung isolated and DNA extracted and analyzed for adducts.	+	0, 5, 50, or 100 mg/kg	Adduct levels linear at low and intermediate doses, nonlinear at high dose.	Ramesh and Knuckels, 2006

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
BPDE- DNA adducts	Rat, Wistar; liver and peripheral blood lymphocyte adducts	Single dose by gavage; sacrificed 24 hrs post-dosing; peripheral blood lymphocytes and liver DNA analyzed by [³² P]-postlabeling for BP-DNA adducts.	+	0, 10, or 100 mg/kg	At 100 mg/kg dose, total adduct levels in peripheral blood lymphocytes were twofold higher than the levels in liver; adduct profiles differed between peripheral blood lymphocytes and liver.	Willems et al., 1991
CAs	Mouse, C57 (high AHH inducible) and DBA (low AHH inducible) strains; 11-d-old embryos; adult bone marrows	Study used four matings (female × male): C57 × C57; DBA × DBA; C57 × DBA; and DBA × C57; pregnant mice treated orally on GD 11 with benzo[a]pyrene; sacrificed 15 hrs posttreatment; material liver, bone marrow and placenta and embryos collected; male mice dosed similarly and bone marrows collected; individual embryo cell suspensions and bone marrow preparations scored for CAs. Tissue AHH activity measured.	+	150 mg/kg	Levels of CAs: hybrid embryos > homozygous DBA embryos > homozygous C57 embryos; tissue AHH activity: C57 mothers and their embryos > DBA females and their homozygous embryos. No quantitative correlation between BP-induced CAs and AHH inducibility. No differences in bone marrow mitotic index of males of different strains between control and treatment groups.	Adler et al., 1989
CAs	Mouse, 1C3F1 hybrid (101/E1 × C31 × E1)F1; CAs in bone marrow	Single dose by gavage; sacrificed 30 hrs of post-dosing; bone marrow from femur isolated and analyzed for CAs.	+	63 mg/kg	Significant increase in CAs in benzo[a]pyrene-treated animals compared to controls.	Adler and Ingwersen, 1989
CAs	Rat, Wistar; peripheral blood lymphocytes	Single dose by gavage; sacrificed 6, 24, and 48 hrs posttreatment; blood from abdominal aorta collected, whole blood cultures set up, CAs scored in 100 first-division peripheral blood lymphocytes per animal.	-	0, 10, 100, or 200 mg/kg	No difference between control and treatment groups at any dose or at any sampling time observed.	Willems et al., 1991

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
CAs	Hamster; bone marrow	Single, i.p. injection of benzo[a]pyrene dissolved in tricapryline; animals sacrificed 24 hrs post-exposure.	+	25, 50, or 100 mg/kg	Benzo[a]pyrene induced CAs at 50 mg/kg body weight only, with negative responses at the low and high dose.	Bayer, 1978
MN	Mouse, <i>lacZ</i> transgenic (Muta [™] Mouse)	Benzo[a]pyrene given via gavage in olive oil daily for 28 consecutive d; blood samples were collected 48 h after last dose; % of PCEs and NCEs reported.	+	25, 50, and 75 mg/kg-day	Statistically significant, dose- dependent increases in % PCEs and NCEs at all doses.	Lemieux et al., 2011
MN	Mouse, B6C3F ₁ (hybrid)	i.p. injection; several doses given to calculate LD ₅₀ .	+	232 mg/kg (LD _{50/7}); 259 mg/kg (LD _{50/4})	Study conducted to determine the toxicity of benzo[a]pyrene (LD_{50}) .	Salamone et al., 1981
MN	Mouse, CD-1 and BDF1; bone marrow	Dosed orally once, twice, or thrice at 24-hr intervals; sacrificed 24 hrs after last treatment.	+	250, 500, 1,000, or 2,000 mg/kg	Significant increase at all doses; no dose-response; double dosing at 500 mg/kg dose gave best response.	Shimada et al., 1990
MN	Mouse, CD-1 and BDF1, peripheral blood reticulocytes	Given single i.p injection; tail blood collected at 24-hr intervals from 0 to 72 hrs.	+	62.5, 125, 250, or 500 mg/kg	Maximum response seen at 48 hrs posttreatment.	Shimada et al., 1992
MN	Mouse, ICR [Hsd: (ICR)Br]	Benzo[a]pyrene was heated in olive oil and given orally as a single dose; males, females and pregnant mothers used; pregnant mice dosed on GDs 16– 17 and sacrificed on GDs 17–18; micronuclei evaluated in adult bone marrow and fetal liver.	+	150 mg/kg	All groups significantly higher than controls for MN; fetal liver more sensitive than any other group.	Harper et al., 1989
MN	Mouse, Swiss albino; bone marrow	Given orally in corn oil; sacrificed 24 hrs post-exposure.	+	75 mg/kg		Koratkar et al., 1993

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
MN	Mouse, Swiss; bone marrow polychromatic erythrocytes	Given by gavage and sacrificed 36 hrs posttreatment.	+	75 mg/kg		Rao and Nandan, 1990
MN	Mouse, CD-1 and MS/Ae strains	i.p. and p.o. administration.	+	62.5, 125, 250, or 500 mg/kg	Good dose response by both routes, strains; i.p. better than p.o.; MS/Ae strain more sensitive than CD-1 strain.	Awogi and Sato, 1989
MN	Mouse, BDF1, bone marrow	Male and female mice aged 12–15 wks given single i.p. injection of benzo[a]pyrene or corn oil; sacrificed 24, 48, and 72 hrs posttreatment; bone marrow smears prepared, stained with May-Grunwald-Giemsa technique and scored for MN polychromatic erythrocytes.	+	0, 25, 50, or 60 mg/kg	Positive at all doses, time points and sexes tested. Dose- dependent increase in MN observed in both sexes; males responded better than females; highest positive response observed at 72 hrs postinjection.	Balansky et al., 1994
MN	Mouse, HRA/Skh hairless, keratinocytes	Single topical application.	+	0.5, 5, 50, 100, or 500 mg/mous e		He and Baker, 1991
MN	Mouse, HOS:HR-1, hairless; skin micronuclei	Topical application once daily for 3 d; sacrificed 24 hrs after last treatment.	+	0.4, 1, 2, or 4 mg		Nishikawa et al., 2005
MN	Mouse, HR-1 hairless, skin (benzo[a]pyrene with slight radiation)		+		Exposure to sunlight simulator to evaluate photogenotoxicity and chemical exposure.	Hara et al., 2007
MN	Rat, Sprague-Dawley, peripheral blood reticulocytes	Given single i.p injection; tail blood collected at 24-hr intervals from 0 to 96 hrs.	+	62.5, 125, 250, 500, or 1,000 mg/kg	Maximum response seen at 72 hrs posttreatment.	Shimada et al., 1992
MN	Rat, Sprague-Dawley, pulmonary alveolar macrophages	Intratracheal instillation, once/day for 3 d.	+	25 mg/kg		De Flora et al., 1991

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
MN	Rat, Sprague-Dawley, bone marrow cells	Intratracheal instillation, once/day for 3 d.	-	25 mg/kg		De Flora et al., 1991
MN	Hamster; bone marrow	Single, i.p. injection of benzo[a]pyrene dissolved in tricaprylin; animals sacrificed 30 hours post-exposure.	_	100, 300, or 500 mg/kg		Bayer <i>,</i> 1978
MN	Fish (carp, rainbow trout, clams); blood and hemolymph		+	0.05, 0.25, 0.5, or1 ppm		Kim and Hyun, 2006
DNA strand breaks	Rat, Sprague-Dawley; comet assay	Instilled intratracheally with: (1) single dose of benzo[a]pyrene in aqueous suspension; sacrificed at 3, 24, and 48 hrs posttreatment; alveolar macrophages, lung cells, and lymphocytes, hepatocytes collected or (2) dose-response study and sacrificed at 24 hrs posttreatment; lungs collected; controls received normal saline instillation; all cells analyzed by comet assay.	+	Experiment #1: 3 mg of benzo[a]pyren e; Experiment #2: dose- response study with 0.75, 1.5, or 3 mg benzo[a]pyren e	All time points showed significant increase in SSBs (Experiment #1); a dose- response in SSBs was observed (Experiment #2).	Garry et al., 2003a, b
DNA strand breaks	Aquatic organisms: carp (Cyprinus carpio), rainbow trout (Oncorhynchus mykiss), and clams (Spisula sachalinensis); Comet assay	All organisms acclimatized in tanks for 2 d, water changed every 24 hrs; exposed to benzo[a]pyrene in DMSO in a tank; one-third volume of tank contents changed every 12 hrs; organisms sacrificed at 24, 48, 72, and 96 hrs posttreatment; cell suspensions prepared from liver (carp and trout) or digestive gland (clam) for comet assay.	+	0.05, 0.25, 0.5, and 1 ppm	Significant dose-response for strand breaks observed; carp and trout liver showed highest response at 48 hrs and clam digestive gland showed time- dependent increase at highest concentration.	Kim and Hyun, 2006
DNA strand breaks	Rat, Brown Norway	UDS determined after 5 and 18 hrs of a single intragastric dosing.	-	62.5 mg/kg	Negative at both time points.	Mullaart et al., 1989

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
UDS	Rat, F344	Single i.p. injection of benzo[a]pyrene or DMSO; sacrificed at 2 or 12 hrs post-exposure; liver isolated, hepatocyte cultures were set up and incubated with 10 mCi/mL [³ H]- thymidine for 4 hrs; washed and autoradiography performed.	_	100 mg/kg	Benzo[a]pyrene was negative at both time points.	Mirsalis et al., 1982
UDS	Mouse, HOS:HR-1 hairless; skin	Single topical application on two spots on the backs after stripping stratum corneum with adhesive tape to enhance penetration; sacrificed 24 hr posttreatment, skin isolated [³ H]thymidine; cultured; epidermal UDS measured.	+	0, 0.25, 0.5, and 1% (w/v) in acetone	UDS index showed a dose- dependent increase up to 0.5% benzo[a]pyrene dose and then plateaued.	Mori et al., 1999
UDS	Rat, Brown Norway; liver	Single intragastric injection; sacrificed at 5 and 18 hrs post-injection.	-	62.5 mg/kg	Benzo[a]pyrene was negative at both time points.	Mullaart et al., 1989
UDS	Mouse, (C3Hf × 101)F1 hybrid, germ cells	i.p. injection of benzo[a]pyrene; [³ H]-thymidine injection later.	-	0.3 mL	Concentration not specified.	Sega, 1979
UDS	Mouse, early spermatid	i.p. injection.	-	250–500 mg/kg	Reviewed by Sotomayor and Sega (2000).	Sega, 1982
SCEs	Hamster; SCEs in bone marrow	8–12-wk-old animals dosed with two i.p. injections of benzo[a]pyrene given 24 hrs apart; animals sacrificed 24 hrs after last treatment, bone marrow from femur isolated and metaphases analyzed.	+	450 mg/kg	Significant increase in metaphase SCEs in benzo[a]pyrene-treated animals compared to vehicle- treated controls.	Roszinsky- Kocher et al., 1979

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
SCEs	Hamster	Animals implanted s.c. with BrdU tablet; 2 hrs later given phorone (125 or 250 mg/kg) i.p.; another 2 hrs later dosed i.p. with benzo[a]pyrene; 24 hrs post-BrdU dosing, animals injected with colchicine 10 mg/kg body weight, sacrificed 2 hrs later; bone marrow from femur prepared for SCE assay.	+	50 or 100 mg/kg	SCEs increased with low dose of phorone significantly.	Bayer et al., 1981
SCEs	Hamster; fetal liver	i.p. injection to pregnant animals on GDs 11, 13, or 15; fetal liver SCEs were analyzed.	+	50 and 125 mg/kg	Produced doubling of SCE frequency.	Pereira et al., 1982
SCEs	Hamster; bone marrow	NA	+	2.5, 25, 40, 50, 75, or 100 mg/kg	Frequency of SCEs increased ≥40 mg/kg body weight	Bayer, 1978
SCEs	Mouse, DBA/2 and C57BL/6, bone marrow cells	Two intragastric injections given; mice implanted with BrdU tablets, sacrificed on d 5, SCEs estimated.	+	10 or 100 mg/kg	SCEs and BP-DNA adducts in the order of C57BI/6 (AHH- inducible) < DBA/2 (AHH- noninducible).	Wielgosz et al., 1991
SCEs	Mouse, DBA/2 and C57BL/6, splenic lymphocytes	Two intragastric injections given; mice killed on 5th day and cells cultured for 48 hrs with BrdU.	+	10 or 100 mg/kg	SCEs and BP-DNA adducts in the order of C57BI/6 (AHH- inducible) < DBA/2 (AHH- noninducible).	Wielgosz et al., 1991
SCEs	Rat, Wistar; peripheral blood lymphocytes	Single dose by gavage; sacrificed 6, 24, and 48 hrs posttreatment; blood from abdominal aorta collected, whole blood cultures set up, SCEs scored in 50 second-division metaphases in peripheral blood lymphocytes per animal.	+	0, 10, 100, or 200 mg/kg	Linear dose-response at any sampling time; however, significant at the highest dose only; no interaction between dose and sampling time.	Willems et al., 1991

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutation	<i>Drosophila melanogaster,</i> sex- linked recessive lethal test	<i>Basc</i> males exposed to benzo[a]pyrene were mated with virgin females of Berlin K or <i>mei-9</i> ^{L1} strains.	±	10 mM	Data inconclusive due to low fertility rates of <i>mei-9</i> ¹¹ females.	Vogel et al., 1983
Mutation	<i>D. melanogaster,</i> sex- linked recessive lethal test	Adult Berlin males treated orally with benzo[a]pyrene.	+	5 or 7.5 mM	Low mutagenic activity.	Vogel et al., 1983
Mutation	<i>D. melanogaster,</i> Berlin-K and Oregon-K strains; sex-linked recessive lethal test	Benzo[a]pyrene dissolved in special fat and injected into the abdomen of flies.	_	2 or 5 mM	Negative at both doses.	Zijlstra and Vogel, 1984
Mutation	<i>D. melanogaster</i> , sex- linked recessive lethal test	Male Berlin K larvae treated with benzo[a]pyrene for 9–11 d.	+	0.1–4 mM	Threefold enhancement in lethals in treated versus controls.	Vogel et al., 1983
Mutation	D. melanogaster, Canton-S (WT) males, FM6 (homozygous for an X chromosome) females; sex-linked recessive lethal test	Adult male flies were fed on filters soaked in benzo[a]pyrene for 48 or 72 hrs; treated and control males mated with FM6 females, males transferred to new groups of females at intervals of 3, 2, 2, and 3 d; four broods obtained; a group of 100 daughters of each male were mated again; scored for percent lethal.	-	250 or 500 ppm	Authors report incomplete dissolution of benzo[a]pyrene in DMSO as a possible cause of negative result.	Valencia and Houtchens, 1981
Mutation	<i>D. melanogaster;</i> somatic mutation, eye color mosaicism	Fifty females and 20 females were mated in a culture bottle for 48 hrs allowing females to oviposit; adults then discarded and the eggs allowed to hatch; larvae fed on benzo[a]pyrene deposited on food surface and the emerging adult males scored for mosaic eye sectors.	+	1, 2, or 3 mM	Benzo[a]pyrene was effective as a mutagen; no dose- response observed.	Fahmy and Fahmy, 1980

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Cell trans- formation	Hamster, LVG:LAK strain (virus free); transplacental host- mediated assay	Pregnant animals dosed i.p. with benzo[a]pyrene on GD 10; sacrificed on GD 13, fetal cell cultures prepared, 10 × 10 ⁶ cells/plate; 5 d post-culture trypsinized; subcultured every 4–6 d thereafter and scored for plating efficiency and transformation.	+	3 mg/100 g body weight		Quarles et al., 1979

CSB = Cockayne syndrome; FM6 = First Multiple No. 6 is an X chromosome with a complex of inversions (to suppress cross-over) and visible markers such as yellow body and white and narrow eyes; Li = liver; Lu = lung; Sk = skin; UDS = unscheduled DNA synthesis; XPA = xeroderma pigmentosum group A

1 Tumor Promotion and Progression

2 <u>Cytotoxicity and inflammatory response</u>

3 The cytotoxicity of benzo[a]pyrene metabolites may contribute to tumor promotion via 4 inflammatory responses leading to cell proliferation (Burdick et al., 2003). Benzo[a]pyrene is 5 metabolized to o-quinones, which are cytotoxic, and can generate ROS (Bolton et al., 2000; Penning, 6 1999). Benzo[a]pyrene o-quinones reduce the viability and survival of rat and human hepatoma 7 cells (Flowers-Geary et al., 1996, 1993). Cytotoxicity was also induced by benzo[a]pyrene and 8 BPDE in a human prostate carcinoma cell line (Nwagbara et al., 2007). Inflammatory responses to 9 cytotoxicity may contribute to the tumor promotion process. For example, benzo[a]pyrene 10 quinones (1,6-, 3,6-, and 6,12-benzo[a]pyrene-quinone) generated ROS and increased cell 11 proliferation by enhancing the epidermal growth factor receptor pathway in cultured breast 12 epithelial cells (Burdick et al., 2003). 13 Several studies have demonstrated that exposure to benzo[a]pyrene increases the 14 production of inflammatory cytokines, which may contribute to cancer progression. Garçon et al. 15 (2001a, b) exposed Sprague-Dawley rats by inhalation to benzo[a]pyrene with or without ferrous 16 oxide (Fe₂O₃) particles. They found that benzo[a]pyrene alone or in combination with Fe₂O₃ 17 particles elicited mRNA and protein synthesis of the inflammatory cytokine, IL-1. Tamaki et al. 18 (2004) also demonstrated a benzo[a]pyrene-induced increase in IL-1 expression in a human 19 fibroblast-like synoviocyte cell line (MH7A). Benzo[a]pyrene increases the expression of the mRNA 20 for CCL1, an inflammatory chemokine, in human macrophages (N'Diave et al., 2006). The 21 benzo[a]pyrene-induced increase in CCL1 mRNA was inhibited by the potent AhR antagonist, 22 3'-methoxy-4'-nitroflavone.

23 <u>AhR-mediated effects</u>

24 The promotional effects of benzo[a]pyrene may also be related to AhR affinity and the 25 upregulation of genes related to biotransformation (i.e., induction of CYP1A1), growth, and 26 differentiation (Bostrom et al., 2002). Figure B-3 illustrates the function of the AhR and depicts the 27 genes regulated by this receptor as belonging to two major functional groups (i.e., induction of 28 metabolism or regulation cell differentiation and proliferation). PAHs bind to the cytosolic AhR in 29 complex with heat shock protein 90 (Hsp90). The ligand-bound receptor is then transported to 30 nucleus in complex with the Ah receptor nuclear translocator. The AhR complex interacts with the 31 Ah responsive elements of the DNA to increase the transcription of proteins associated with 32 induction of metabolism and regulation of cell differentiation and proliferation.

- 1
- 2 AHRE_{DNA} = Ah-responsive elements of DNA; ARNT = Ah receptor nuclear translocator; Hsp90 = heat
- 3 shock protein 90
- 4 Source: Okey et al. (1994).
- 5

6 Figure B-3. Interaction of PAHs with the AhR.

7

8 Binding to the AhR induces enzymes that increase the formation of reactive metabolites, 9 resulting in DNA binding and, eventually, tumor initiation. In addition, with persistent exposure,

- 10 the ligand-activated AhR triggers epithelial hyperplasia, which provides the second step leading
- 11 from tumor initiation to promotion and progression (Nebert et al., 1993). Ma and Lu (2007)
- 12 reviewed several studies of benzo[a]pyrene toxicity and tumorigenicity in mouse strains with high
- 13 and low affinity AhRs. Disparities were observed in the tumor pattern and toxicity of
- 14 Ah-responsive (+/+ and +/-) and Ah-nonresponsive (-/-) mice. Ah-responsive mice were more
- 15 susceptible to toxicity and tumorigenicity in proximal target tissues such as the liver, lung, and skin.
- 16 For example, Shimizu et al. (2000) reported that AhR knock-out mice (-/-), treated with
- 17 benzo[a]pyrene by s.c. injection or dermal painting, did not develop skin cancers at the treatment
- 18 site, while AhR-responsive (+/+) or heterozygous (+/-) mice developed tumors within 18–25 weeks
- 19 after treatment. Benzo[a]pyrene treatment increased CYP1A1 expression in the skin and liver of
- 20 AhR-positive mice (+/- or +/+), but CYP1A1 expression was not altered by benzo[a]pyrene

Toxicological Review of benzo[a]pyrene

1 treatment in AhR knock-out mice (-/-). Talaska et al. (2006) also showed that benzo[a]pyrene

- 2 adduct levels in skin were reduced by 50% in CYP1A2 knock-out mice and by 90% in AhR knock-
- 3 out mice compared with WT C57Bl6/J mice following a single dermal application of 33 mg/kg
- 4 benzo[a]pyrene for 24 hours. Ma and Lu (2007) further noted that Ah-nonresponsive mice were at
- 5 greater risk of toxicity and tumorigenicity in remote organs, distant from the site of exposure (i.e.,
- 6 bone marrow). As an example, Uno et al. (2006) showed that benzo[a]pyrene (125 mg/kg-day, p.o.
- 7 for 18 days) caused marked wasting, immunosuppression, and bone marrow hypocellularity in
- 8 CYP1A1 knock-out mice, but not in WT mice.
- 9 Some studies have demonstrated the formation of DNA adducts in the liver of AhR knock-
- 10 out mice following i.p. or oral exposure to benzo[a]pyrene (Sagredo et al., 2006; Uno et al., 2006;
- 11 Kondraganti et al., 2003). These findings suggest that there may be alternative (i.e., non-AhR
- 12 mediated) mechanisms of benzo[a]pyrene activation in the mouse liver. Sagredo et al. (2006)
- 13 studied the relationship between the AhR genotype and CYP metabolism in different organs of the
- 14 mouse. AhR^{+/+}, ^{+/-}, and ^{-/-} mice were treated once with 100 mg/kg benzo[a]pyrene by gavage.
- 15 CYP1A1, CYP1B1, and AhR expression was evaluated in the lung, liver, spleen, kidney, heart, and
- 16 blood, via real-time or reverse transcriptase polymerase chain reaction, 24 hours after treatment.
- 17 CYP1A1 RNA was increased in the lung and liver and CYP1B1 RNA was increased in the lung
- 18 following benzo[a]pyrene treatment in AhR^{+/+} and ^{+/-} mice (generally higher in heterozygotes).
- 19 Benzo[a]pyrene treatment did not induce CYP1A1 or CYP1B1 enzymes in AhR-/- mice. The
- 20 expression of CYP1A1 RNA, as standardized to β -actin expression, was generally about 40 times
- 21 that of CYP1B1. The concentration of benzo[a]pyrene metabolites and the levels of DNA and
- 22 protein adducts were increased in mice lacking the AhR, suggesting that there may be an
- 23 AhR-independent pathway for benzo[a]pyrene metabolism and activation. The high levels of
- 24 benzo[a]pyrene DNA adducts in organs other than the liver of AhR-/- mice may be the result of slow
- 25 detoxification of benzo[a]pyrene in the liver, allowing high concentrations of the parent compound
- 26 to reach distant tissues.
- 27 Uno et al. (2006) also demonstrated a paradoxical increase in liver DNA adducts in AhR
- 28 knock-out mice following oral exposure to benzo[a]pyrene. WT C57BL/6 mice and several knock-
- 29 out mouse strains (CYP1A2-/- and CYP1B1-/- single knock-out, CYP1A1/1B1-/- and CYP1A2/1B1-/-
- 30 double knock-out) were studied. Benzo[a]pyrene was administered in the feed at 1.25, 12.5, or 125
- 31 mg/kg for 18 days (this dose is well tolerated by WT C57BL/6 mice for 1 year, but lethal within 30
- 32 days to the CYP1A1^{-/-} mice). Steady-state blood levels of benzo[a]pyrene, reached within 5 days of
- 33 treatment, were ~25 times higher in CYP1A1-/- and ~75 times higher in CYP1A1/1B1-/- than in WT
- 34 mice, while clearance was similar to WT mice in the other knock-out mouse strains. DNA adduct
- 35 levels, measured by [³²P]-postlabeling in liver, spleen, and bone marrow, were highest in the
- 36 CYP1A1^{-/-} mice at the two higher doses, and in the CYP1A1/1B1^{-/-} mice at the mid dose only.
- 37 Adduct patterns, as revealed by 2-dimensional chromatography, differed substantially between
- 38 organs in the various knock-out types.

1 Dertinger et al. (2001, 2000) demonstrated that AhR signaling may play a role in 2 cytogenetic damage caused by benzo[a]pyrene. The in vivo formation of MN in peripheral blood 3 reticulocytes of C57Bl/6J mice induced by a single i.p. injection of benzo[a]pyrene (150 mg/kg) was 4 eliminated by prior treatment with the potent AhR antagonist 3'-methoxy-4'-nitroflavone. This 5 antagonist also protected AhR null allele mice from benzo[a]pyrene-induced increases in MN 6 formation, suggesting that 3'-methoxy-4'-nitroflavone may also act through a mechanism 7 independent of the AhR (Dertinger et al., 2000). 8 Several in vitro studies have suggested that the AhR plays a role in the disruption of cell 9 cycle control, possibly leading to cell proliferation and tumor promotion following exposure to 10 benzo[a]pyrene (Andrysik et al., 2007; Chung et al., 2007; Chen et al., 2003). Chung et al. (2007) 11 showed that benzo[a]pyrene-induced cytotoxicity and apoptosis in mouse hepatoma (Hepa1c1c7) 12 cells occurred through a p53 and caspase-dependent process requiring the AhR. An accumulation 13 of cells in the S-phase of the cell cycle (i.e., DNA synthesis and replication) was also observed, 14 suggesting that this process may be related to cell proliferation. Chen et al. (2003) also 15 demonstrated the importance of the AhR in benzo[a]pyrene-7,8-dihydrodiol- and BPDE-induced 16 apoptosis in human HepG2 cells. Both the dihydrodiol and BPDE affected Bcl2 (a member of a 17 family of apoptosis suppressors) and activated caspase and p38 mitogen-activated protein (MAP) 18 kinases, both enzymes that promote apoptosis. When the experiments were conducted in a cell line 19 that does not contain Ah receptor nuclear translocator (see Figure 4-1), the dihydrodiol was not 20 able to initiate apoptotic event sequences, indicating that activation to BPDE by CYP1A1 was 21 required. BPDE did not induce apoptosis-related events in a p38-defective cell line, illustrating the 22 importance of MAP kinases in this process. In rat liver epithelial cells (WB-F344 cells), in vitro 23 exposure to benzo[a]pyrene resulted in apoptosis, a decrease in cell number, an increase in the 24 percentage of cells in S-phase (comparable to a proliferating population of WB-F334 cells), and 25 increased expression of cell cycle proteins (e.g., cyclin A) (Andrysik et al., 2007). Benzo[a]pyrene-26 induced apoptosis was attenuated in cells transfected with a dominant-negative mutation of the 27 AhR.

28 Inhibition of gap junctional intercellular communication (GJIC)

29 Gap junctions are channels between cells that allow substances of a molecular weight up to 30 roughly 1 kDa to pass from one cell to the other. This process of metabolic cooperation is crucial 31 for differentiation, proliferation, apoptosis, and cell death and consequently for the two epigenetic 32 steps of tumor formation, promotion, and progression. Chronic exposure to many toxicants results 33 in down-regulation of gap junctions. For tumor promoters, such as TPA or TCDD, inhibition of 34 intercellular communication is correlated with their promoting potency (Sharovskaya et al., 2006; 35 Yamasaki, 1990). 36 Blaha et al. (2002) surveyed the potency of 35 PAHs, including benzo[a]pyrene, to inhibit

GJIC. The scrape loading/dye transfer assay was employed using a rat liver epithelial cell line that
 was incubated in vitro for 15, 30, or 60 minutes with 50 μM benzo[a]pyrene. After incubation, cells

- 1 were washed, and then a line was scraped through the cells with a surgical blade. Cells were
- 2 exposed to the fluorescent dye lucifer yellow for 4 minutes and then fixed with formalin. Spread of
- 3 the dye from the scrape line into cells remote from the scrape was estimated under a fluorescence
- 4 microscope. Benzo[a]pyrene reduced spread of the dye after 30 minutes of exposure
- 5 (approximately 50% of control). Recovery of GJIC was observed 60 minutes after exposure.
- 6 Sharovskaya et al. (2006) studied the effects of carcinogenic and noncarcinogenic PAHs on
- 7 GJIC in HepG2 cells. Individual carcinogenic PAHs inhibited GJIC in a temporary fashion (70–100%
- 8 within 24 hours), but removal of the PAH from culture reversed the effect. Noncarcinogenic PAHs
- 9 had very little effect on GJIC. Benzo[a]pyrene at 20 μM inhibited GJIC completely within 24 hours,
- 10 while its noncarcinogenic homolog, benzo[e]pyrene, produced <20% inhibition. The effect was not
- 11 AhR-dependent, because benzo[a]pyrene inhibited GJIC in HepG2 cells to the same extent as in
- 12 hepatoma G27 cells, which express neither CYP1A1 nor AhR. The authors concluded that the
- 13 effects of benzo[a]pyrene and benzo[e]pyrene on GJIC were direct (i.e., not caused by metabolites).

APPENDIX C. DOSE-RESPONSE MODELING FOR 1 THE DERIVATION OF REFERENCE VALUES FOR 2 **EFFECTS OTHER THAN CANCER AND THE** 3 **DERIVATION OF CANCER RISK ESTIMATES** 4

5 This appendix provides technical detail on dose-response evaluation and determination of 6 points of departure (POD) for relevant toxicological endpoints. Except where other software is 7 noted, all endpoints were modeled using the U.S. EPA's Benchmark Dose Software (BMDS; U.S. EPA, 8 2012; version 2.0 or later). The preambles for the cancer and non-cancer parts below describe the 9 common practices used in evaluating the model fit and selecting the appropriate model for 10 determining the POD, as outlined in the draft *Benchmark Dose Technical Guidance Document* (U.S. 11 EPA, 2000).

12 **DOSE-RESPONSE MODELING FOR DERVIATION OF RFD**

13 **Evaluation of Model Fit**

14 For each dichotomous endpoint, BMDS dichotomous models were fitted to the data using 15 the maximum likelihood method. Each model was tested for goodness-of-fit using a chi-square 16 goodness-of-fit test ($\chi^2 p$ -value < 0.10 indicates lack of fit). Other factors were also used to assess 17 model fit, such as scaled residuals, visual fit, and adequacy of fit in the low-dose region and in the 18 vicinity of the BMR.

19 For each continuous endpoint, BMDS continuous models were fitted to the data using the 20 maximum likelihood method. Model fit was assessed by a series of tests as follows. For each model, 21 first the homogeneity of the variances was tested using a likelihood ratio test (BMDS Test 2). If Test 22 2 was not rejected ($\chi^2 p$ -value ≥ 0.10), the model was fitted to the data assuming constant variance. 23 If Test 2 was rejected ($\chi^2 p$ -value < 0.10), the variance was modeled as a power function of the 24 mean, and the variance model was tested for adequacy of fit using a likelihood ratio test (BMDS 25 Test 3). For fitting models using either constant variance or modeled variance, models for the mean 26 response were tested for adequacy of fit using a likelihood ratio test (BMDS Test 4, with $\chi^2 p$ -value < 27 0.10 indicating inadequate fit). Other factors were also used to assess the model fit, such as scaled 28 residuals, visual fit, and adequacy of fit in the low-dose region and in the vicinity of the BMR.

29 Model Selection

30 For each endpoint, the BMDL estimate (95% lower confidence limit on the BMD, as

31 estimated by the profile likelihood method) and AIC value were used to select a best-fit model from

32 among the models exhibiting adequate fit. If the BMDL estimates were "sufficiently close," that is,

> This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE

- 1 differed by at most threefold, the model selected was the one that yielded the lowest AIC value. If
- 2 the BMDL estimates were not sufficiently close, the lowest BMDL was selected as the POD.
- 3 <u>Decreased thymus weight, males (Kroese et al., 2001)</u>
- 4 5

Table C-1. Means ± SD^a for thymus weight in male Wistar rats exposed to benzo[a]pyrene by gavage 5 days/week for 90 days

	Dose (mg/kg-d)				
Organ	0	3	10	30	
Thymus weight					
(mg), males	380 ± 60	380 ± 110	330 ± 60	270 ± 40^{b}	

^aReported as SE, but judged to be SD (and confirmed by study authors).

^bSignificantly (*p* < 0.05) different from control mean; student t-test (unpaired, two-tailed); n = 10/sex/group.

6 Table C-2. Model predictions for decreased thymus weight in male 7 Wistar rats—90 days

Model	Variance <i>p</i> -value ^a	Goodness-of- fit <i>p</i> -value	AIC	BMD _{1SD} (mg/kg-d)	BMDL _{1SD} (mg/kg-d)
Constant variance					
Linear	0.01	0.74	384.84	12.97	8.97
Nonconstant variance					
Hill ^c		Insufficient	degrees of f	reedom	
Linear, Polynomial (2- degree), Power ^c	0.30	0.23	380.71	16.40	11.30

Linear Model with 0.95 Confidence Level

Figure C-1. Fit of linear model (nonconstant variance) to data on decreased thymus weight in male Wistar rats—90 days.

BMDs and BMDLs indicated are associated with a change of 1 SD from the control, and are in units of mg/kg-day.

```
_____
      _____
                                                       _____
         Polynomial Model. (Version: 2.13; Date: 04/08/2008)
         Input Data File:
C:\USEPA\IRIS\benzo[a]pyrene\RfD\Kroese2001\90day\thymusweight\male\durationadjusted\2Linkrolin.(
d)
         Gnuplot Plotting File:
C:\USEPA\IRIS\benzo[a]pyrene\RfD\Kroese2001\90day\thymusweight\male\durationadjusted\2Linkrolin.p
lt
_____
BMDS Model Run
  The form of the response function is:
  Y[dose] = beta 0 + beta 1*dose + beta 2*dose^2 + ...
  Dependent variable = mean
  Independent variable = dose
  The polynomial coefficients are restricted to be negative
  The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
  Total number of dose groups = 4
```

This document is a draft for review purposes only and does not constitute Agency policy.

1

2

DRAFT-DO NOT CITE OR QUOTE

```
Total number of records with missing values = 0
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
```

Default Initial	Parameter Values
lalpha =	8.56121
rho =	0
beta 0 =	380.763
beta 1 =	-5.3285

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	beta_0	beta_1
lalpha	1	-1	0.048	-0.061
rho	-1	1	-0.048	0.061
beta_0	0.048	-0.048	1	-0.84
beta_1	-0.061	0.061	-0.84	1

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-18.8293	9.75429	-37.9473	0.288754
rho	4.66515	1.67581	1.38062	7.94967
beta O	378.954	16.5291	346.558	411.351
beta 1	-5.14219	1.00497	-7.11189	-3.17249

Table of Data and Estimated Values of Interest

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
0	10	380	379	60	84.3	0.0392
2.1	10	380	368	110	78.8	0.475
7.1	10	330	342	60	66.6	-0.591
21.4	10	270	269	40	37.9	0.0908

Model Descriptions for likelihoods calculated

```
Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
```

```
Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2
```

```
Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))
Model A3 uses any fixed variance parameters that
were specified by the user
```

Model R: Yi = Mu + e(i) Var{e(i)} = Sigma^2

Likelihoods of Interest

DRAFT-DO NOT CITE OR QUOTE

Model AIC -189.116991 5 388.233982 A1 A2 -183.673279 8 383.346558 6 -184.883626 381.767253 A3 fitted -186.353541 4 380.707081 2 396.706723 R -196.353362 Explanation of Tests Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.) Tests of Interest -2*log(Likelihood Ratio) Test df Test p-value 25.3602 0.0002928 Test 1 6 3 10.8874 Test 2 0.01235 Test 3 2.42069 2 0.2981 2.93983 2 0.2299 Test 4 The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data Benchmark Dose Computation Specified effect = 1 Risk Type = Estimated standard deviations from the control mean Confidence level = 0.95 16.4008 BMD = BMDL = 11.2965

1 Decreased thymus weight, females (Kroese et al., 2001)

Table C-3. Means ± SD^a for thymus weight in female Wistar rats exposed to benzo[a]pyrene by gavage 5 days/week for 90 days

	Dose (mg/kg-d)				
Organ	0	3	10	30	
Thymus weight					
(mg) - Females	320 ± 60	310 ± 50	300 ± 40	230 ± 30^{b}	

^aReported as SE, but judged to be SD (and confirmed by study authors).

^bSignificantly (*p* < 0.05) different from control mean; student t-test (unpaired, two-tailed); n = 10/sex/group.

4 5

Table C-4. Model predictions for decreased thymus weight in female Wistar rats—90 days

Model (constant variance)	Variance <i>p</i> -value ^a	Mean <i>p</i> -value ^a	AIC	BMD _{1SD} (mg/kg-d)	BMDL _{1SD} (mg/kg-d)
Hill ^b			NA		
Linear ^c	0.17	0.81	349.12	10.52	7.64
Polynomial (2-degree) ^{c,d}	0.17	0.77	350.80	13.29	7.77
Power ^b			NA		

^aValues <0.10 fail to meet conventional goodness-of-fit criteria.

^bPower restricted to ≥ 1 .

^cCoefficients restricted to be negative.

^dLowest degree polynomial with an adequate fit is reported.

BMD/BMC = maximum likelihood estimate (MLE) of the dose/concentration associated with the selected BMR; NA = not applicable; model failed to generate

Linear Model with 0.95 Confidence Level

16:27 10/15 2009

BMDs and BMDLs indicated are associated with a change of 1 SD from the control, and are in units of mg/kg-day.

Figure C-2. Fit of linear model (constant variance) to data on decreased thymus weight in female Wistar rats—90 days.

```
Polynomial Model. (Version: 2.13; Date: 04/08/2008)
        Input Data File:
C:\USEPA\IRIS\benzo[a]pyrene\RfD\Kroese2001\90day\thymusweight\female\durationadjusted\2Linkrolin
.(d)
        Gnuplot Plotting File:
C:\USEPA\IRIS\benzo[a]pyrene\RfD\Kroese2001\90day\thymusweight\female\durationadjusted\2Linkrolin
.plt
                                               Thu Oct 15 16:27:44 2009
BMDS Model Run
   The form of the response function is:
  Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...
  Dependent variable = mean
  Independent variable = dose
  rho is set to 0
  The polynomial coefficients are restricted to be negative
```

This document is a draft for review purposes only and does not constitute Agency policy.

C-7

DRAFT-DO NOT CITE OR QUOTE

```
A constant variance model is fit
  Total number of dose groups = 4
  Total number of records with missing values = 0
  Maximum number of iterations = 250
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
                 Default Initial Parameter Values
                        alpha = 1
rho = 0
                           rho =
                                                Specified
                        beta_0 = 322.144
beta_1 = -4.2018
          Asymptotic Correlation Matrix of Parameter Estimates
           ( *** The model parameter(s) -rho
                have been estimated at a boundary point, or have been specified by the user,
                and do not appear in the correlation matrix )
                            beta O
                 alpha
                                         beta 1
    alpha
                   1
                          2.4e-008 -2.3e-008
   beta_0 2.4e-008
                             1
                                         -0.68
   beta 1 -2.3e-008
                             -0.68
                                              1
                                Parameter Estimates
                                                       95.0% Wald Confidence Interval
                     Estimate

        Std. Err.
        Lower Conf. Limit
        Upper Conf. Limit

        437.134
        1098.16
        2811.69

        9.48287
        303.558
        340.73

      Variable
                                                             2811.69
303.558
        alpha
                       322.144
        beta O
                                                           -5.84334
        beta 1
                        -4.2018
                                       0.837537
                                                                               -2.56026
    Table of Data and Estimated Values of Interest
          N Obs Mean
                             Est Mean Obs Std Dev Est Std Dev Scaled Res.
Dose
          ____ ____
_____
                            _____
                                       ----- ----- ------
0 10 320
2.1 10 310
7.1 10 300
21.4 10 230
                           32260313502924023230
                                                        44.2
                                                                    -0.153
                                                      44.2
                                                                    -0.237
                                                        44.2
                                                                      0.55
                                                        44.2
                                                                     -0.159
Model Descriptions for likelihoods calculated
                Yij = Mu(i) + e(ij)
Model A1:
          Var{e(ij)} = Sigma^2
            Yij = Mu(i) + e(ij)
Model A2:
          Var{e(ij)} = Sigma(i)^2
Model A3:
                Yij = Mu(i) + e(ij)
          Var{e(ij)} = Sigma^2
    Model A3 uses any fixed variance parameters that
    were specified by the user
Model R:
             Yi = Mu + e(i)
           Var{e(i)} = Sigma^2
```

123456789012345

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR OUOTE

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-171.357252	5	352.714504
A2	-168.857234	8	353.714467
A3	-171.357252	5	352.714504
fitted	-171.562118	3	349.124237
R	-181.324151	2	366.648303

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	24.9338	6	0.0003512
Test 2	5.00004	3	0.1718
Test 3	5.00004	3	0.1718
Test 4	0.409733	2	0.8148

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data $% \left(\frac{1}{2} \right) = 0$

Benchmark Dose Computation

Specified effect = 1 Risk Type = Estimated standard deviations from the control mean Confidence level = 0.95 BMD = 10.5228 BMDL = 7.64037

1 <u>Decreased ovary weight—female rats, 60 days (Xu et al., 2010)</u>

2

Table C-5. Means ± SDs for ovary weight in female Sprague-Dawley rats

	Dose (mg/kg-d) ^a			
Organ	0	2.5	5	
Ovary weight (mg)	0.160 ± 0.0146	0.143 ± 0.0098 ^b	0.136 ± 0.0098 ^b	

^aTWA doses over the 60-day study period.

^bStatistically different (p < 0.05) from controls using one-way ANOVA.

Table C-6. Model predictions for decreased ovary weight in female Sprague-Dawley rats

Model	Goodness-of-fit <i>p</i> -value	AIC	BMD _{1SD} (mg/kg-d)	BMDL _{1SD} (mg/kg-d)
Power	NA			
Linear, Polynomial (1°)	0.39	-138.67	2.27	1.49

NA = not applicable; model failed to generate

Linear Model with 0.95 Confidence Level

```
16:03 12/14 2010
```

Figure C-3. Fit of linear/polynomial (1°) model to data on decreased ovary weight.

```
_____
                  _____
       Polynomial Model. (Version: 2.16; Date: 05/26/2010)
       Input Data File:
C:/USEPA/BMDS212/Data/benzo[a]pyrene/Bap AbsOvaryWeight/Xu2010 AbsOvaryWeight Linear 1SD.(d)
       Gnuplot Plotting File:
C:/USEPA/BMDS212/Data/benzo[a]pyrene/Bap AbsOvaryWeight/Xu2010 AbsOvaryWeight Linear 1SD.plt
                                           Tue Dec 14 13:51:32 2010
_____
   The form of the response function is:
  Y[dose] = beta 0 + beta 1*dose + beta 2*dose^2 + ...
  Dependent variable = Mean
  Independent variable = Dose
  rho is set to 0
  Signs of the polynomial coefficients are not restricted
  A constant variance model is fit
  Total number of dose groups = 3
  Total number of records with missing values = 0
  Maximum number of iterations = 250
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
```

This document is a draft for review purposes only and does not constitute Agency policy.

C-11

DRAFT-DO NOT CITE OR QUOTE

1

```
Default Initial Parameter Values
                                              alpha = 0.000136
                                                rho =
                                                                      0
                                                                                        Specified
                                            beta_0 = 0.158333
beta_1 = -0.0048
                                            beta 1 =
                                                                   -0.0048
                   Asymptotic Correlation Matrix of Parameter Estimates
                   ( *** The model parameter(s) -rho
                              have been estimated at a boundary point, or have been specified by the user,
                              and do not appear in the correlation matrix )
                               alpha
                                                  beta_0
                                                                          beta 1
                                   1
                                                   4e-010 -4.5e-010
       alpha
                     4e-010
                                                    1
      beta O
                                                                        -0.77
                    -4.5e-010 -0.77
                                                                                  1
      beta 1
                                                            Parameter Estimates
                                                                                                     95.0% Wald Confidence Interval

        Std. Err.
        Lower Conf. Limit
        opper Conf. Limit
        o
           Variable
                                        Estimate
                                                                     Std. Err. Lower Conf. Limit Upper Conf. Limit
                                 0.000118889
               alpha
                                    0.158333
               beta O
               beta_1
                                           -0.0048
        Table of Data and Estimated Values of Interest
 Dose
                   Ν
                             Obs Mean
                                                     Est Mean Obs Std Dev Est Std Dev Scaled Res.
                            -----
                   ___
_____
                                                     _____
                                                                         -----
                                                                                                                          _____
                                          0.1580.01470.01090.1460.00980.01090.1340.00980.0109
            6
6
                             0.16
                                                                                                                              0.374
     0
                          0.143
                                                                                                                            -0.749
   2.5
                6
    5
                           0.136
                                                                                                                        0.374
 Model Descriptions for likelihoods calculated
 Model A1: Yij = Mu(i) + e(ij)
                  Var{e(ij)} = Sigma^2
                             Yij = Mu(i) + e(ij)
 Model A2:
                  Var{e(ij)} = Sigma(i)^2
 Model A3:
                             Yij = Mu(i) + e(ij)
                  Var{e(ij)} = Sigma^2
        Model A3 uses any fixed variance parameters that
        were specified by the user
 Model R:
                               Yi = Mu + e(i)
                    Var{e(i)} = Sigma^2
                                        Likelihoods of Interest
                                         Log(likelihood)
                                                                          # Param's
                                                                                                 AIC
                     Model
                                          72.766595 4 -137.533190
                     A1
                                              73.468565
                                                                                   6
                                                                                             -134.937129
                      A2
                      A3
                                              72.766595
                                                                                    4
                                                                                             -137.533190
                                                                                    3
                                              72.335891
                                                                                             -138.671782
               fitted
```

123456789012345

This document is a draft for review purposes only and does not constitute Agency policy.

R 67.008505 2 -130.017010 Explanation of Tests Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.) Tests of Interest Test -2*log(Likelihood Ratio) Test df p-value 12.9201 4 0.01167 Test 1 1.40394 0.4956 Test 2 2 Test 3 1.40394 2 0.4956 Test 4 0.861408 1 0.3533 The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data Benchmark Dose Computation Specified effect = 1 = Estimated standard deviations from the control mean Risk Type Confidence level = 0.95 BMD = 2.27159

> BMDL = 1.49968

49

1 <u>Morris water maze results—male and female Sprague-Dawley rats, Chen et al. (2012)</u>

Data from Morris water maze was presented graphically in Chen et al., 2012, but dose group means and standard deviations were provided upon request by the study authors which enabled modeling of this endpoint. In addition, the data for male and female rats were combined for doseresponse analysis because there was no substantive difference between males and females for each dose group (supported by statistical testing using two-way ANOVA, and allowing for interactions), and because there was no rationale or information available suggesting there would be sexmediated differences for these neurologic tests.

9 Table C-7. Means ± SDs for Escape Latency and Time Spent in Target 10 Quadrant

	Dose (mg/kg-d)				
Test	0	0.02	0.2	2.0	
Escape latency (sec)	9.89 ± 5.76	12.5 ± 5.10	19.1 ± 5.85	33.5 ± 9.93	
Time spent in target quadrant (sec)	33.6 ± 8.92	31.9 ± 8.63	16.6 ± 5.74	11.1 ± 5.12	

11 12

Table C-8. Model predictions for increase in Morris water maze test for escape latency, male and female rats

Model ^ª	Goodness-of-fit <i>p</i> -value	AIC	BMD _{1SD} (mg/kg-d)	BMDL _{1SD} (mg/kg-d)
Hill ^b	0.515	386.3	0.106	0.061
Exponential 4, 5	0.466	386.4	0.115	0.071
Polynomial (2°)	0.423	386.6	0.123	0.083
Linear, Power	0.002	396.7	0.543	0.421
Exponential 2, 3	<0.001	400.3	0.815	0.687

^a Includes modeling of heterogeneous variances (BMDS Test 3, p = 0.313).

^b Power parameter *n* was estimated to be 1 (boundary of parameter space).

Figure C-4. Fit of Hill model to data on Morris water maze test escape latency.

```
_____
        Hill Model. (Version: 2.16; Date: 04/06/2011)
        Input Data File: C:\Documents and Settings\jfox\My Documents\ CURRENTWORK\ CAST
plus\BaP\BMDS\hil_Chen.FM.latency_Hil-ModelVariance-BMR1Std-Restrict.(d)
        Gnuplot Plotting File: C:\Documents and Settings\jfox\My Documents\_CURRENTWORK\_CAST
plus\BaP\BMDS\hil_Chen.FM.latency_Hil-ModelVariance-BMR1Std-Restrict.plt
                                               Tue Apr 24 14:41:26 2012
 _____
BMDS Model Run
  The form of the response function is:
  Y[dose] = intercept + v*dose^n/(k^n + dose^n)
  Dependent variable = Mean
  Independent variable = Dose
  Power parameter restricted to be greater than 1
  The variance is to be modeled as Var(i) = exp(lalpha + rho * ln(mean(i)))
  Total number of dose groups = 4
  Total number of records with missing values = 0
  Maximum number of iterations = 250
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
                Default Initial Parameter Values
                      lalpha =
                                   3.87128
                         rho =
                                         0
                    intercept =
                                     9.888
                           v =
                                   23.6385
                           n =
                                  0.187055
                           k =
                                   3.47082
```

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -n
 have been estimated at a boundary point, or have been specified by the user,
 and do not appear in the correlation matrix)

	lalpha	rho	intercept	v	k
lalpha	1	-0.99	-0.27	0.062	-0.11
rho	-0.99	1	0.24	-0.063	0.12
intercept	-0.27	0.24	1	0.017	0.47
v	0.062	-0.063	0.017	1	0.73
k	-0.11	0.12	0.47	0.73	1

Parameter Estimates

			95.0% Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
lalpha	0.88775	0.974841	-1.0229	2.7984	
rho	0.998033	0.338845	0.33391	1.66216	
intercept	10.6545	0.914127	8.86283	12.4461	
V	28.7081	3.94381	20.9783	36.4378	
n	1	NA			
k	0.494812	0.213359	0.0766351	0.912988	

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
0	20	9.89	10.7	5.76	5.08	-0.675
0.02	20	12.5	11.8	5.1	5.33	0.641
0.2	20	19.1	18.9	5.85	6.76	0.0952
2	20	33.5	33.7	9.93	9.01	-0.0706

Model Descriptions for likelihoods calculated

```
Model A1: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma^2
```

```
Model A2: Yij = Mu(i) + e(ij)
Var{e(ij)} = Sigma(i)^2
```

```
Model A3: Yij = Mu(i) + e(ij)
Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))
Model A3 uses any fixed variance parameters that
were specified by the user
```

Model R: Yi = Mu + e(i) Var{e(i)} = Sigma^2

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-192.799518	5	395.599036

This document is a draft for review purposes only and does not constitute Agency policy.

C-16

w pur

A2	-186.795503		8	389.591006
A3	-187.957975		6	387.915949
Iltted R	-188.169983 -234 549118		5	386.339965 473 098237
	234.349110		2	
	-levetion of me			
EX	planation of Te	SLS		
Test 1: Do response (A2 vs. R)	s and/or varian	ces differ	among	Dose levels?
Test 2: Are Varianc	es Homogeneous?	(Al vs A2	2)	- 0.
Test 4: Does the Mo	es adequately m del for the Mea	odeled? (A n Fit? (A?	A2 VS. R vs. f	A3) itted)
(Note: When rho=0 t	he results of T	est 3 and	Test 2	will be the same.)
	Tests of Intere	st		
Test -2*log(Lik	elihood Ratio)	Test df		p-value
Test 1	95.5072	6	<	.0001
Test 2	12.008	3	0.0	07356
Test 3	2.32494	2	0	.3127
l'est 4	0.424016	Ţ	0	.5149
The p-value for Test difference between re It seems appropriate	l is less than sponse and/or v to model the da	.05. Ther ariances a ta	re appe among t	ars to be a he dose levels
The p-value for Test model appears to be a	2 is less than ppropriate	.1. A nor	n-homog	eneous variance
The p-value for Test to be appropriate he	3 is greater th re	an .1. Th	ne mode	led variance appears
The p-value for Test to adequately describ	4 is greater th e the data	an .1. Th	ne mode	l chosen seems
Benchmark Dos	e Computation			
Specified effect =	1			
Risk Type =	Estimated sta	ndard devi	lations	from the control mean
Confidence level =	0.95			
BMD =	0 106284			

0.0609511

BMDL =

Table C-9. Model predictions for decrease in Morris water maze test for time spent in target quadrant, male and female rats

Model ^a	Goodness-of-fit <i>p</i> -value	AIC	BMD _{1SD} (mg/kg-d)	BMDL _{1SD} (mg/kg-d)
Exponential 4	0.576	395.4	0.065	0.043
Exponential 5	NA ^b	397.1	0.084	0.044
Hill	NA ^b	397.1	0.071	0.038
Linear, Power, Polynomial (1°, 2°, 3°)	<0.001	433.1	1.23	0.98

^a Includes modeling of heterogenous variances (BMDS Test 3, p = 0.919).

^bNA: insufficient degrees of freedom to evaluate chi-square.

1 2

4 14:35 04/24 2012

Figure C-5. Fit of Exponential 4 model to data on Morris water maze time spent in target quadrant.

```
_____
     Exponential Model. (Version: 1.7; Date: 12/10/2009)
      Input Data File: C:\Documents and Settings\...\exp_Chen.FM.target_Exp-ModelVariance-
BMR1Std-Down.(d)
_____
BMDS Model Run
The form of the response function by Model:
   Model 2: Y[dose] = a * exp{sign * b * dose}
            Y[dose] = a * exp{sign * (b * dose)^d}
   Model 3:
           Model 4:
   Model 5:
  Note: Y[dose] is the median response for exposure = dose;
      sign = +1 for increasing trend in data;
```

This document is a draft for review purposes only and does not constitute Agency policy.

```
sign = -1 for decreasing trend.
Model 2 is nested within Models 3 and 4.
Model 3 is nested within Model 5.
Model 4 is nested within Model 5.
Dependent variable = Mean
Independent variable = Dose
Data are assumed to be distributed: normally
Variance Model: exp(lnalpha +rho *ln(Y[dose]))
The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
Total number of dose groups = 4
Total number of records with missing values = 0
Maximum number of iterations = 250
```

```
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
```

MLE solution provided: Exact

Initial Parameter Values

Variable	Model 4
lnalpha	0.666712
rho	1.04799
a	35.3094
b	1.97191
С	0.300675
d	1

Parameter Estimates

Variable	Model 4
lnalpha	0.601192
rho	1.05452
a	34.3199
b	7.26795
С	0.325841
d	1

NC = No Convergence

Table of Stats From Input Data

Dose	Ν	Obs Mean	Obs Std Dev
0	20	33.63	8.924
0.02	20	31.94	8.633
0.2	20	16.56	5.744
2	20	11.15	5.117

Estimated Values of Interest

Dose	Est Mean	Est Std	Scaled Residual
0	34.32	8.713	-0.3551
0.02	31.19	8.285	0.4069
0.2	16.59	5.939	-0.02044
2	11.18	4.824	-0.03277

Other models for which likelihoods are calculated: Model A1: Yij = Mu(i) + e(ij) Var{e(ij)} = Sigma^2

DRAFT-DO NOT CITE OR QUOTE
```
Model A2:
                Yij = Mu(i) + e(ij)
            Var\{e(ij)\} = Sigma(i)^2
                 Yij = Mu(i) + e(ij)
  Model A3:
             Var{e(ij)} = exp(lalpha + log(mean(i)) * rho)
  Model R:
                    Yij = Mu + e(i)
            Var{e(ij)} = Sigma^2
                               Likelihoods of Interest
                    Model
                               Log(likelihood) DF AIC
                   _____

        -197.0118
        5
        404.0235

        -192.448
        8
        400.896

        -192.5331
        6
        397.0662

        -238.8696
        2
        481.7393

        -192.6894
        5
        395.3787

                      Α1
                       A2
                      A3
                                                      2
5
                                                              481.7393
395.3787
                        R
                                -192.6894
                        4
Additive constant for all log-likelihoods = -73.52. This constant added to the
above values gives the log-likelihood including the term that does not
depend on the model parameters.
                                 Explanation of Tests
Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 6a: Does Model 4 fit the data? (A3 vs 4)
                           Tests of Interest
                 -2*log(Likelihood Ratio) D. F.
 Test
                                                                p-value
                                                               _____
_____
                 -----
                                                   ____
 Test 1
                                    92.84
                                                   6
                                                               < 0.0001
 Test 2
                                    9.127
                                                      3
                                                                    0.02764
                                                                     0.9185
                                   0.1701
 Test 3
                                                    2
 Test 6a
                                   0.3126
                                                      1
                                                                      0.5761
 The p-value for Test 1 is less than .05. There appears to be a
  difference between response and/or variances among the dose
  levels, it seems appropriate to model the data.
  The p-value for Test 2 is less than .1. A non-homogeneous
  variance model appears to be appropriate.
  The p-value for Test 3 is greater than .1. The modeled
  variance appears to be appropriate here.
  The p-value for Test 6a is greater than .1. Model 4 seems
  to adequately describe the data.
Benchmark Dose Computations:
  Specified Effect = 1.000000
          Risk Type = Estimated standard deviations from control
  Confidence Level = 0.950000
                BMD = 0.0650194
               BMDL = 0.0432761
```

This document is a draft for review purposes only and does not constitute Agency policy. C-20 DRAFT—DO NOT CITE OR QUOTE

1 <u>Cervical epithelial hyperplasia – female ICR mice (Gao et al., 2011)</u>

Table C-10. Incidence of cervical epithelial hyperplasia

Observation	Dose (mg/kg-day) ^a					
	0	0.71	1.4	2.9		
Cervical epithelial hyperplasia	0/26	4/26	6/25	7/24		

3 ^a doses converted to mg/kg-day after adjustment for equivalent continuous dosing (2/7

4 days/week)

```
5
6
```

2

Table C-11. Model predictions for increased incidence of epithelial hyperplasia in female ICR mice

Model ^a	Goodness-of-fit <i>p</i> -value	AIC	BMD _{1SD} (mg/kg-d)	BMDL _{1SD} (mg/kg-d)
Gamma	0.6874	82.2821	0.659	0.452
Logistic	0.1422	88.4607	1.422	1.052
Log-logistic	0.8360	81.7004	0.578	0.369
Probit	0.1544	88.1151	1.326	0.979
Log-Probit	0.0775	88.2004	1.012	0.686
Multistage	0.6874	82.2821	0.659	0.452

Logistic Model. (Version: 2.13; Date: 10/28/2009) Input Data File: C:\Users\hclynch\Documents_Active Projects_FA498 IRIS\xBaP\IASC Aug 2011\bmd modeling\lnl_gao 2011 inflamm cells_Opt.(d) Gnuplot Plotting File: C:\Users\hclynch\Documents_Active Projects_FA498 IRIS\xBaP\IASC Aug 2011\bmd modeling\lnl_gao 2011 inflamm cells_Opt.plt

BMDS_Model_Run

The form of the probability function is:

P[response] = background+(1-background)/[1+EXP(-intercept-slope*Log(dose))]

Dependent variable = Col3 Independent variable = Col1 Slope parameter is restricted as slope >= 1

Total number of observations = 4 Total number of records with missing values = 0 Maximum number of iterations = 250 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

User has chosen the log transformed model

```
Default Initial Parameter Values
background = 0
intercept = -1.60901
slope = 1
```

A	symptotic C	orrelation Matr	rix of Paramet	er Estimat	es	
(*** The mo have b and do	del parameter(s een estimated a not appear in	 backgrour boundary the correlati 	d -slop point, or on matrix	pe have been specif)	fied by the user,
	intercept					
intercept	1					
		Param	neter Estimate	s		
				95.0)% Wald Confidend	ce Interval
Varia	ble	Estimate	Std. Err. *	Lower C	Conf. Limit Upp *	er Conf. Limit
interc	ept	-1.6502	*		*	*
sl	ope	1	*		*	*
* - Indicate	s that this	value is not c	calculated.			
		Analysis of De	eviance Table			
Model	Log(l	ikelihood) # F	Param's Devia	nce Test	d.f. P-value	
Fitted mo	del	-39.8502	1 0.84	7034	3 0.838	32
Reduced mo	del	-45.7739	1 12.	6945	3 0.00534	16
A	IC:	81.7004				
		Good	lness of Fit			
Dose	Est. Prob	Expected	Observed	Size	Scaled Residual	
0.0000	0.0000	0.000 3.119	4.000	26 26	0.000	
1.4000	0.2119	5.297	6.000	25	0.344	
2.9000	0.3577	8.584	7.000	24	-0.675	
Chi^2 = 0.8	6 d.f.	= 3 P-v	value = 0.8360	I		
Benchmark	Dose Compu	tation				
Specified ef	fect =	0.1				
Risk Type	=	Extra risk				
Confidence l	evel =	0.95				
	BMD =	0.578668				
1	BMDL =	0.368701				

1 INHALATION DOSIMETRY MODELING FOR RFC DERIVATION

FRC Volume: 3300.00 ml Head Volume: 50.00 ml Breathing Route: nasal Breathing Parameters: Tidal Volume: 860.00 ml Breathing Frequency: 16.00 1/min Inspiratory Fraction: 0.50 Pause Fraction: 0.00 Particle Properties: Diameter: MMAD: 1.70 µm GSD: 1.00 Concentration: 4.20 µg/m/3

3

4

2

Figure C-6. Human fractional deposition.

```
5
     Species = humanlimited
6
7
     FRC = 3300.0
     Head volume = 50.0
8
     Density = 1.0
9
     Number of particles calculated = single
10
     Diameter = 1.70000000000000 µm MMAD
11
     Inhalability =
                       yes
12
     GSD = 1.0
13
     Breathing interval: One single breath
14
     Concentration = 4.2
15
     Breathing Frequency = 16.0
16
     Tidal Volume = 860.0
17
     Inspiratory Fraction = 0.5
18
     Pause Fraction = 0.0
19
     Breathing Route = nasal
20
21
     Region: Entire Lung
22
23
     Region: Entire Lung
     Region
                 Deposition Fraction
24
     ___
```


7

5

6

8

Figure C-7. Rat fractional deposition.

```
9
     Species = rat
10
     FRC = 4.0
11
     Head volume = 0.42
12
     Density = 1.0
13
     Number of particles calculated = single
14
     Diameter = 1.70000000000002 µm MMAD
15
     Inhalability =
                      yes
16
     GSD = 1.0
17
     Breathing interval: One single breath
18
     Concentration = 4.2
19
     Breathing Frequency = 102.0
20
     Tidal Volume = 1.8
21
22
     Inspiratory Fraction = 0.5
     Pause Fraction = 0.0
23
     Breathing Route = nasal
24
```

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Concentration: 4.20 µg/m⁴3

This document is a draft for review purposes only and does not constitute Agency policy. C-25

DRAFT—DO NOT CITE OR QUOTE

1 2 3 4 5 6 7 8 Region: Entire Lung Region: Entire Lung Region Deposition Fraction ___ ___ Head 0.072 тв 0.041 P 0.068 Total 0.181 9

1 **DOSE-RESPONSE MODELING FOR CANCER RISK VALUES**

2 The EPA Guidelines for Carcinogen Risk Assessment (U.S. EPA, 2005a) recommend that the 3 method used to characterize and quantify cancer risk from a chemical is determined by what is 4 known about the mode of action of the carcinogen and the shape of the cancer dose-response curve. 5 No biologically based models for BaP carcinogenicity following oral, inhalation, or dermal exposure 6 were identified.

7 Methods for the Oral Slope Factor and Inhalation Unit Risk

8 Due to the occurrence of multiple tumor types, earlier occurrence with increasing exposure, 9 and early termination of the high-dose group in each of the oral and inhalation carcinogenicity 10 studies (see Appendix B for study details), methods that can reflect the influence of competing risks 11 and intercurrent mortality on site-specific tumor incidence rates are preferred. EPA has generally 12 used a model that incorporates the time at which death-with-tumor occurred as well as the dose; 13 the multistage-Weibull model is multistage in dose and Weibull in time, and has the form:

14 15

16

$$P(d, t) = 1 - exp[-(q_0 + q_1d + q_2d^2 + ... + q_kd^k) \times (t \pm t_0)^c],$$

17 where P(d, t) represents the lifetime risk (probability) of cancer at dose d (i.e., human equivalent 18 exposure in this case) and age t (in bioassay weeks); parameters $q_i \ge 0$, for i = 0, 1, ..., k; t is the time 19 at which the tumor was observed; and c is a parameter which characterizes the change in response 20 with age. The parameter t_0 represents the time between when a potentially fatal tumor becomes 21 observable and when it causes death, and is generally set to 0 either when all tumors are 22 considered incidental or because of a lack of data to estimate the time reliably. The dose-response 23 analyses were conducted using the computer software program MultiStage-Weibull (U.S. EPA, 24 2010), which is based on Weibull models drawn from Krewski et al. (1983). Parameters were 25 estimated using the method of maximum likelihood. From specific model fits using stages up to n-1, 26 where n is the number of dose groups, the model fit with the lowest AIC was selected. 27 Two general characteristics of the observed tumor types were considered prior to

28 modeling; allowance for different, although unidentified modes of action, and allowance for relative 29 severity of tumor types. First, etiologically different tumor types were not combined across sites 30 prior to modeling (that is, overall counts of tumor-bearing animals were not tabulated) in order to 31 allow for the possibility that different tumor types could have different dose-response relationships 32 due to different underlying mechanisms or factors, such as latency. Consequently, all of the tumor 33 types were also modeled separately. 34 Additionally, the multistage-Weibull model can address relative severity of tumor types by

35 distinguishing between tumors as being either fatal or incidental to the death of an animal in order 36 to adjust partially for competing risks. In contrast to fatal tumors, incidental tumors are those

37 tumors thought not to have caused the death of an animal. Cause-of-death information for most

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE

1 early animal deaths was provided by the investigators of both of the bioassays. In the rat study, 2 tumors of the forestomach or liver were the principal cause of death for most animals dving or 3 sacrificed (due to moribundity) before the end of the study, while tumors of the forestomach were 4 the most common cause of early deaths in the mouse study. 5 PODs for estimating low-dose risk were identified at doses at the lower end of the observed 6 data, generally corresponding to 10% extra risk, where extra risk is defined as [P(d) - P(0)]/[1 - P(0)]/[17 P(0)]. The lifetime oral cancer slope factor for humans is defined as the slope of the line from the 8 lower 95% bound on the exposure at the POD to the control response (slope factor = $0.1/BMDL_{10}$). 9 This slope, a 95% upper confidence limit (UCL) represents a plausible upper bound on the true risk. 10 Although the time-to-tumor modeling helps account for competing risks associated with 11 decreased survival times and other tumors, considering the tumor sites individually still does not 12 convey the total amount of risk potentially arising from the sensitivity of multiple sites—that is, the 13 risk of developing any combination of the increased tumor types, not just the risk of developing all 14 simultaneously. One approach suggested in the Guidelines for Carcinogen Risk Assessment (U.S. EPA, 15 2005a) would be to estimate cancer risk from tumor-bearing animals. EPA traditionally used this 16 approach until the National Resource Council (NRC) document Science and Judgment (NRC, 1994) 17 made a case that this approach would tend to underestimate overall risk when tumor types occur in 18 a statistically independent manner. In addition, application of one model to a composite data set 19 does not accommodate biologically relevant information that may vary across sites or may only be 20 available for a subset of sites. For instance, the time courses of the multiple tumor types evaluated 21 varied, as is suggested by the variation in estimates of *c*, from 1.5 (e.g., male rat skin or mammary 22 gland basal cell tumors), indicating relatively little effect of age on tumor incidence, to 3.7 (e.g., male 23 mouse alimentary tract tumors), indicating a more rapidly increasing response with increasing age 24 (in addition to exposure level). The result of fitting a model with parameters that can reflect 25 underlying mechanisms, such as z in the multistage-Weibull model, would be difficult to interpret 26 with composite data (i.e., counts of tumor-bearing animals). A simpler model, such as the 27 multistage model, could be used for the composite data but relevant biological information would 28 then be ignored. 29 Following the recommendations of the NRC (1994) regarding combining risk estimates, 30 statistical methods that can accommodate the underlying distribution of slope factors are optimal,

such as through maximum likelihood estimation or through bootstrapping or Bayesian analysis.
However, these methods have not yet been extended to models such as the multistage-Weibull

33 model. A method involving the assumption that the variability in the slope factors could be

34 characterized by a normal distribution is detailed below (U.S. EPA, 2010). Using the results in

35 female rats to illustrate, the overall risk estimate involved the following steps:

36 37

38

(1) It was assumed that the tumor groupings modeled above were statistically independent that is, that the occurrence of a liver tumor was not dependent upon whether there was a

1	forestomach tumor. This assumption cannot currently be verified, and if not correct, could
2	lead to an overestimate of risk from summing across tumor sites. However, NRC (1994)
3	argued that a general assumption of statistical independence of tumor-type occurrences
4	within animals was not likely to introduce substantial error in assessing carcinogenic
5	potency from rodent bioassay data.
6	
7	(2) The models previously fitted to estimate the BMDs and BMDLs were used to extrapolate to a
8	lower level of risk (R), in order to reach the region of each estimated dose-response
9	function where the slope was reasonably constant and upper bound estimation was still
10	numerically stable. For these data, a 10^{-3} risk was generally the lowest risk necessary. The
11	oral slope factor for each site was then estimated by $R/BMDL_R$, as for the estimates for each
12	tumor site above.
13	
14	(3) The maximum likelihood estimates (MLE) of unit potency (that is, risk per unit of exposure)
15	estimated by R/BMD_R , were summed across the alimentary tract, liver, and
16	jejunum/duodenum in female rats.
17	
18	(4) An estimate of the 95% (one-sided) upper bound on the summed oral slope factor was
19	calculated by assuming a normal distribution for the individual risk estimates, and deriving
20	the variance of the risk estimate for each tumor site from its 95% UCL according to the
21	formula:
22	
23	95% UCL = MLE + 1.645 × SD,
24	rearranged to:
25	s.d. = (UCL – MLE) / 1.645,
26	
27	where 1.645 is the t-statistic corresponding to a one-sided 95% CI and >120 degrees of freedom,
28	and the SD is the square root of the variance of the MLE. The variances (variance = SD ²) for each
29	site-specific estimate were summed across tumor sites to obtain the variance of the sum of the
30	MLEs. The 95% UCL on the sum of MLEs was calculated from the expression above for the UCL,
31	using the variance of the sum of the MLE to obtain the relevant SD (SD = variance ^{$1/2$}).
32	The results of this analysis are provided in Table C-17.

Table C-12. Tumor incidence data, with time to death with tumor; male rats exposed by gavage to benzo[a]pyrene—Kroese et al. (2001)

				Numbers of animals with						
			Oral cav	ity or			Duodenum	Skin or man	nmary gland	Kidney
			forestor	nach			or jejunum	Basal cell	Squamous	urothelial
Dose	Week of	Total	tumo	rs	Liver t	umors	tumors	tumors	cell tumors	carcinoma
(mg/kg-d)	death	examined	Incidental ^a	Fatal ^a	Incidental	Fatal	Incidental	Incidental	Incidental	Incidental
0	44	1	0	0	0	0	0	1	0	0
	80	1	0	0	0	0	0	0	0	0
	82	1	0	0	0	0	0	0	0	0
	84	1	0	0	0	0	0	0	0	0
	89	1	0	0	0	0	0	0	0	0
	90	3	0	0	0	0	0	0	0	0
	91	1	0	0	0	0	0	0	0	0
	92	1	0	0	0	0	0	0	0	0
	93	1	0	0	0	0	0	0	0	0
	94	1	0	0	0	0	0	0	0	0
	95	2	0	0	0	0	0	0	0	0
	96	2	0	0	0	0	0	0	0	0
	97	1	0	0	0	0	0	0	0	0
	98	1	0	0	0	0	0	0	0	0
	100	3	0	0	0	0	0	1	0	0
	104	1	0	0	0	0	0	0	0	0
	105	1	0	0	0	0	0	0	0	0
	108	7	0	0	0	0	0	0	0	0
	109	22	0	0	0	0	0	0	0	0
3	29	1	0	0	0	0	0	0	0	0
	40	1	1	0	0	0	0	0	0	0
	74	1	0	0	0	0	0	0	0	0
	76	1	0	0	0	0	0	0	0	0
	79	1	0	0	0	0	0	0	0	0
	82	1	0	0	0	0	0	0	0	0
	92	2	0	0	0	0	0	0	0	0
	93	1	0	0	0	0	0	0	0	0
	94	1	0	0	0	0	U	0	0	0
	95	2	0	0	0	0	0	0	0	0
	98	1	0	0	0	U	U	0	0	0
	107	10	4	U	1	U	0	0	0	U
	108	15	2	0	3	U	U C	1	1	0
	109	14	1	0	0	0	0	0	0	0

			Numbers of animals with							
			Oral cavi	Oral cavity or Duodenum Skin or mammary gland			Kidney			
			foreston	nach			or jejunum	Basal cell	Squamous	urothelial
Dose	Week of	Total	tumo	rs	Liver t	umors	tumors	tumors	cell tumors	carcinoma
(mg/kg-d)	death	examined	Incidental ^a	Fatal ^a	Incidental	Fatal	Incidental	Incidental	Incidental	Incidental
10	39	1	0	0	0	0	0	0	0	0
	47	2	0	0	0	0	0	0	0	0
	63	1	1	0	0	0	0	0	0	0
	68	2	2	0	0	0	0	0	0	0
	69 77	1	1	0	0	0	0	0	0	0
	20 20	1	0	0	1	0	0	0	0	0
	80	1	1	0	0	0	1	0	0	0
	84	1	1	0	0	1	0	0	0	0
	86	1	0	0	1	0	0	0	0	0
	90	1	1	0	0	0	0	0	0	0
	95	3	3	0	2	0	0	0	0	0
	97	1	1	0	0	1	0	0	0	0
	100	1	1	0	1	0	0	0	0	0
	102	1	1	0	1	0	0	0	0	0
	103	1	1	0	1	0	0	0	0	0
	104	3	3	0	3	0	0	0	0	0
	107	12	12	0	11	0	0	0	1	0
	108	11	11	0	11	0	0	1	0	0
	109	6	5	0	3	0	0	0	0	0
30	32 25	1	1	0	0	0	0	0	0	0
	35	1	1	0	1	0	0	0	0	0
	57	1	0	1	1	0	0	0	0	0
	45	2	2	0	2	0	0	0	0	0
	47	1	1	0	1	0	0	0	0	0
	48	1	1	0	1	0	0	0	0	0
	49	1	1	0	1	0	0	0	0	0
	50	1	1	0	1	0	0	0	0	0
	51	1	1	0	1	0	1	0	0	0
	52	4	3	1	3	1	0	1	1	0
	53	1	1	0	1	0	0	1	0	0
	56	2	1	1	1	1	0	0	0	0
	58	2	2	0	2	0	0	1	0	0
	59	2	2	0	2	0	0	0	0	0
	61	2	1 2	1	1	1	1	0	0	0
	62	5	5	0	0	2 4	3	0	0	0
	63	5	5	0	4	1	1	2	1	2
	64	2	2	0	1	1	0	0	0	1
	65	3	2	1	1	2	0	3	2	0
	66	1	1	0	0	1	0	0	0	0
	67	3	1	2	2	1	1	1	1	0
	68	1	1	0	1	0	0	0	0	0
	70	2	2	0	1	1	1	1	0	0
	71	1	1	0	1	0	0	1	1	0
	73	1	0	1	1	0	0	1	0	0
	76	1	1	0	0	1	0	1	0	0

^a"Incidental" denotes presence of tumors not known to have caused death of particular animals. "Fatal" denotes incidence of tumors reported by the study investigators to have caused death of particular animals.

Table C-13. Tumor incidence data, with time to death with tumor; female rats exposed by gavage to benzo[a]pyrene—Kroese et al. (2001)

One (m/k-4)Oraliant/ (mFormationDuodemum (m064161IndientalFatalIndiental1064100000751000000106440000001064400000010870000001087000000109301000001087000000109301000001097000000109710000010971000001091010000001191100000012911000000139140000001401000000015911000000160110000001706200000 <t< th=""><th></th><th></th><th></th><th colspan="4">Numbers of animals with</th><th></th></t<>				Numbers of animals with				
magemath exampeindumindumindumigunumigunumigunum(m/k, defdetindentalFatalindentalFatalindentalindentalindind0000000ind10000000ind10000000ind10000000ind70000000ind70000000ind70000000ind70000000ind70000000ind70000000ind71000000ind10000000ind10000000ind10000000ind10000000ind10000000ind10000000ind1000				Oral cavity or forestomach			Duodenum or	
(mg/kg.d)dedincidental*Fatal*Incidental*Patal*Incidental*0641000001691000000751000000106400000010640000001087000000108700000010870000001087000000109700000011000000012100000013810000014100000015100000016100000017100000018100000019100000019100000019100000019<	Dose	Week of	Total	tum	ors	Liver tu	mors	jejunum tumors
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(mg/kg-d)	death	examined	Incidental ^a	Fatal ^a	Incidental	Fatal	Incidental
69 1 0 0 0 0 0 0 104 1 0 0 0 0 0 106 4 0 0 0 0 0 107 7 0 0 0 0 0 108 7 0 0 0 0 0 3 8 1 0 0 0 0 0 660 1 0 0 0 0 0 0 660 1 0 0 0 0 0 0 76 1 0 0 0 0 0 0 83 2 0 0 0 0 0 0 84 1 0 0 0 0 0 0 94 1 0 0 0 0 0 0 95 1	0	64	1	0	0	0	0	0
75 1 0 0 0 0 0 0 106 4 0 0 0 0 0 0 106 4 0 0 0 0 0 0 107 7 0 0 0 0 0 0 108 7 0 0 0 0 0 0 3 8 1 0 0 0 0 0 52 1 0 0 0 0 0 0 66 1 0 0 0 0 0 0 75 1 0 0 0 0 0 0 76 1 0 0 0 0 0 0 86 1 0 0 0 0 0 0 93 2 0 0 0		69	1	0	0	0	0	0
104 1 0 0 0 0 0 0 106 4 0 0 0 0 0 0 107 7 0 0 0 0 0 0 108 30 1 0 0 0 0 0 3 8 1 0 0 0 0 0 0 52 1 0 0 0 0 0 0 60 1 0 0 0 0 0 0 76 1 0 0 0 0 0 0 85 1 0 0 0 0 0 0 86 1 0 0 0 0 0 0 97 1 1 0 0 0 0 0 107 6 2 0 0 0 </td <td></td> <td>75</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>		75	1	0	0	0	0	0
106 4 0 0 0 0 0 0 107 7 0 0 0 0 0 0 108 7 0 0 0 0 0 0 3 8 1 0 0 0 0 0 52 1 0 0 0 0 0 0 65 1 0 0 0 0 0 0 65 1 0 0 0 0 0 0 77 1 0 0 0 0 0 0 83 2 0 0 0 0 0 0 84 1 0 0 0 0 0 0 93 2 0 0 0 0 0 0 94 1 0 0 0 0 0		104	1	0	0	0	0	0
107 7 0 0 0 0 0 0 108 7 0 0 0 0 0 0 3 8 1 0 0 0 0 0 0 52 1 0 0 0 0 0 0 60 1 0 0 0 0 0 0 61 1 0 0 0 0 0 0 76 1 0 0 0 0 0 0 83 2 0 0 0 0 0 0 84 1 0 0 0 0 0 0 93 2 0 0 0 0 0 0 94 1 0 0 0 0 0 0 108 9 2 0 0 0		106	4	0	0	0	0	0
108 7 0 0 0 0 0 0 3 8 1 0 0 0 0 0 0 5 47 1 0 0 0 0 0 0 52 1 0 0 0 0 0 0 66 1 0 0 0 0 0 0 77 1 0 0 0 0 0 0 85 1 0 0 0 0 0 0 93 2 0 0 0 0 0 0 93 2 0 0 0 0 0 0 107 6 2 0 0 0 0 0 110 0 0 0 0 0 0 0 110 0 0 0 0		107	7	0	0	0	0	0
10930100003810000052100000601000006510000076100000771000008320000085100000861000008810000094100000941000001076201000108920000010921100000108920000010921000000109100000011042100000111000000011200100001130010000114100100 <td></td> <td>108</td> <td>7</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>		108	7	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		109	30	1	0	0	0	0
47 1 0 0 0 0 0 0 52 1 0 0 0 0 0 0 60 1 0 0 0 0 0 0 65 1 0 0 0 0 0 0 76 1 0 0 0 0 0 0 83 2 0 0 0 0 0 0 85 1 0 0 0 0 0 0 86 1 0 0 0 0 0 0 93 2 0 0 0 0 0 0 107 6 2 0 1 0 0 0 0 107 6 2 0 1 0 0 0 0 107 6 2 0 0	3	8	1	0	0	0	0	0
52 1 0 0 0 0 0 0 60 1 0 0 0 0 0 0 76 1 0 0 0 0 0 0 76 1 0 0 0 0 0 0 83 2 0 0 0 0 0 0 85 1 0 0 0 0 0 0 93 2 0 0 0 0 0 0 94 1 0 0 0 0 0 0 107 6 2 0 0 0 0 0 108 9 2 0 0 0 0 0 108 9 2 0 0 0 0 0 109 21 1 0 0 0 0 </td <td></td> <td>47</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>		47	1	0	0	0	0	0
60 1 0 0 0 0 0 0 65 1 0 0 0 0 0 0 76 1 0 0 0 0 0 0 83 2 0 0 0 0 0 0 85 1 0 0 0 0 0 0 86 1 0 0 0 0 0 0 93 2 0 0 0 0 0 0 94 1 0 0 0 0 0 0 107 6 2 0 1 0 0 0 0 108 9 2 0 0 0 0 0 0 108 9 2 0 0 0 0 0 0 108 1 0 0		52	1	0	0	0	0	0
66 1 0 0 0 0 0 0 76 1 0 0 0 0 0 0 83 2 0 0 0 0 0 0 83 1 0 0 0 0 0 0 86 1 0 0 0 0 0 0 98 2 0 0 0 0 0 0 97 1 1 0 0 0 0 0 107 6 2 0 0 0 0 0 108 9 2 0 0 0 0 0 108 9 2 0 0 0 0 0 108 9 2 0 0 0 0 0 108 0 0 0 0 0 0		60	1	0	0	0	0	0
76 1 0 0 0 0 0 0 77 1 0 0 0 0 0 0 83 2 0 0 0 0 0 0 85 1 0 0 0 0 0 0 86 1 0 0 0 0 0 0 93 2 0 0 0 0 0 0 97 1 1 0 0 0 0 0 107 6 2 0 1 0 0 0 108 9 21 1 0 0 0 0 108 9 21 1 0 0 0 0 144 1 0 0 0 0 0 0 55 1 0 0 1 0 0		65	1	0	0	0	0	0
77 1 0 0 0 0 0 0 83 2 0 0 0 0 0 0 85 1 0 0 0 0 0 0 86 1 0 0 0 0 0 0 93 2 0 0 0 0 0 0 94 1 0 0 0 0 0 0 107 6 2 0 0 0 0 0 108 9 2 0 0 0 0 0 143 1 0 0 0 0 0 0 44 1 0 0 0 0 0 0 55 1 0 0 1 0 0 0 76 2 0 0 1 0 0		76	1	0	0	0	0	0
83 2 0 0 0 0 0 0 85 1 0 0 0 0 0 0 86 1 0 0 0 0 0 0 93 2 0 0 0 0 0 0 94 1 0 0 0 0 0 0 97 1 1 0 0 0 0 0 109 21 1 0 0 0 0 0 109 21 1 0 0 0 0 0 43 1 0 0 0 0 0 0 44 1 0 0 0 0 0 0 55 1 0 0 1 0 0 0 55 1 0 0 1 0 0		77	1	0	0	0	0	0
85 1 0 0 0 0 0 0 86 1 0 0 0 0 0 0 93 2 0 0 0 0 0 0 94 1 0 0 0 0 0 0 97 1 1 0 0 0 0 0 107 6 2 0 1 0 0 0 109 21 1 0 0 0 0 0 109 21 1 0 0 0 0 0 109 21 1 0 0 0 0 0 109 21 1 0 0 0 0 0 109 21 1 0 0 0 0 0 11 0 0 0 0 0 0 <td></td> <td>83</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>		83	2	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		85	1	0	0	0	0	0
88 1 0 0 0 0 0 0 93 2 0 0 0 0 0 0 94 1 0 0 0 0 0 0 97 1 1 0 0 0 0 0 108 9 2 0 1 0 0 0 109 21 1 0 0 0 0 0 143 1 0 0 0 0 0 0 44 1 0 0 0 0 0 0 45 1 0 0 0 0 0 0 55 1 0 0 1 0 0 0 76 2 0 0 1 0 0 0 75 1 0 0 1 0 0		86	1	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		88	1	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		93	2	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		94	1	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		97	1	1	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		107	6	2	0	1	0	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		108	9	2	0	0	0	0
10 42 1 0 0 0 0 0 0 43 1 0 0 0 0 0 0 44 1 0 0 0 0 0 0 45 1 0 0 0 0 0 0 48 1 0 0 1 0 0 0 55 1 0 0 1 0 0 59 1 0 0 1 0 0 76 2 0 0 1 0 0 77 2 0 0 1 0 0 80 1 1 0 1 0 0 81 1 1 0 1 0 0 82 1 1 0 1 0 0 85 2 1 0		109	21	1	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	42	1	0	0	0	0	0
4410000000 45 1000000 48 1000000 55 100100 59 100100 75 100100 76 200100 77 200100 80 110100 81 110100 82 110100 83 100100 86 110010 87 100100 88 210110 91 100010 91 100000 96 100000 99 330110		43	1	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		44	1	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		45	1	0	0	0	0	0
55100100 59 100000 75 100100 76 200100 77 200000 80 110100 81 110010 82 110100 83 100100 85 210110 86 110010 87 100100 89 110010 91 100000 96 100110 99 330110		48	1	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		55	1	0	0	1	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		59	1	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		75	1	0	0	1	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		76	2	0	0	1	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		77	2	0	0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		80	1	1	0	1	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		81	1	1	0	0	1	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		82	1	1	0	1	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		83	1	0	0	1	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		85	2	1	0	1	1	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		86	1	1	0	0	1	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		87	1	0	0	1	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		88	2	1	0	1	1	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		89	1	1	0	0	1	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		91	1	0	0	0	1	0
96 1 0 0 0 0 0 98 2 2 0 1 1 0 99 3 3 0 1 2 0		95	1	U	U	U	U	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		96	1	0	U	U	0	U
		98	2	2	U	1		U
		99 102	3 1	3 1	0	1	2 1	0

This document is a draft for review purposes only and does not constitute Agency policy. C-31 DRAFT—DO NOT CITE OR QUOTE

			Numbers of animals with						
Dose	Week of	Total	Oral cavity or tum	forestomach ors	Liver tu	mors	Duodenum or jejunum tumors		
(mg/kg-d)	death	examined	Incidental ^a	Fatal ^a	Incidental	Fatal	Incidental		
	104	1	1	0	1	0	0		
	105	2	1	0	1	1	0		
	106	1	1	0	0	1	0		
	107	5	5	0	5	0	0		
	108	7	7	0	7	0	0		
	109	4	2	0	2	0	0		
30	26	1	0	0	0	0	0		
	44	4	4	0	3	1	0		
	47	3	3	0	2	1	0		
	48	1	1	0	0	1	0		
	54	1	0	0	1	0	0		
	55	3	3	0	1	2	0		
	56	2	2	0	0	2	0		
	57	2	2	0	2	0	0		
	58	4	3	1	0	4	0		
	59	2	1	1	0	2	0		
	60	1	0	1	1	0	0		
	61	2	2	0	0	2	0		
	62	2	2	0	1	1	0		
	63	3	3	0	0	3	0		
	64	5	5	0	0	5	3		
	66	3	3	0	0	3	0		
	67	2	1	1	0	2	0		
	68	1	1	0	0	1	0		
	69	4	3	1	1	3	1		
	71	4	3	1	1	3	0		
	72	2	1	1	0	2	0		

^a"Incidental" denotes presence of tumors not known to have caused death of particular animals. "Fatal" denotes incidence of tumors indicated by the study investigators to have caused death of particular animals.

Table C-14. Tumor incidence, with time to death with tumor; female mice exposed to benzo[a]pyrene via diet—Beland and Culp (1998)

Dose group			Number of animals with alimentary tract squamous cell	
(ppm in diet)	Week of death	Total examined	Fatal ^a	Incidental
0	31	1	0	0
	74	1	0	0
	89	2	0	0
	91	1	0	0
	93	2	0	0
	94	2	0	0
	97	2	0	0
	98	2	0	0
	99	1	0	0
	100	2	0	0
	101	2	0	0
	104	1	0	0
	105	29	0	1
5	25	1	0	0
	55	1	0	0
	83	1	0	0
	86	1	0	0
	87	2	0	0
	88	2	0	0
	90	1	0	0
	94	1	0	0
	95	2	0	0
	96	1	0	0
	97	2	0	0
	98	2	0	0
	101	2	0	0
	102	2	0	0
	105	2/	0	3
25	44	1	1	0
	47	1	0	0
	64 70	1	0	0
	70	1	1	0
	77	1	1	0
	00 91	1	0	0
	84	1	1	1
	85	1	1	1
	86	1	1	0
	88	1	1	0
	89	1	0	0
	90	4	4	0
	93	3	2	1
	94	2	2	0
	96	3	0	2
	97	1	1	0
	98	1	1	0
	99	2	1	1
	100	1	1	0
	101	1	0	0
	102	2	2	0
	104	1	1	0
	105	13	0	10

This document is a draft for review purposes only and does not constitute Agency policy. C-33 DRAFT—DO NOT CITE OR QUOTE

Toxicological Review of benzo[a]pyrene

Dose group			Number of animals with alimen	tary tract squamous cell tumors
(ppm in diet)	Week of death	Total examined	Fatal ^a	Incidental
100	39	1	1	0
	40	1	1	0
	42	1	1	0
	47	2	2	0
	49	1	0	0
	50	1	1	0
	53	1	0	0
	55	3	3	0
	56	1	1	0
	57	1	1	0
	58	1	1	0
	59	3	3	0
	60	1	1	0
	61	3	3	0
	62	5	5	0
	63	4	4	0
	64	3	3	0
	65	2	2	0
	66	3	3	0
	68	1	1	0
	69	2	2	0
	70	2	2	0
	71	1	1	0
	72	1	1	0
	73	1	1	0
	74	1	1	0
	79	1	1	0

^a "Incidental" denotes presence of tumors not known to have caused death of particular animals. "Fatal" denotes incidence of tumors indicated by the study investigators to have caused death of particular animals.

1 2

Table C-15. Derivation of HEDs to use for BMD modeling of Wistar rat tumor incidence data from Kroese et al. (2001)

Benzo[a]pyrene dose (mg/kg-d)	TWA body weight (kg)	Interspecies scaling factor ^a	HED ^b (mg/kg-d)
	Male	·	
3	0.349	0.27	0.54
10	0.349	0.27	1.81
30	0.288	0.25	5.17
	Female		
3	0.222	0.24	0.49
10	0.222	0.24	1.62
30	0.222	0.24	4.85

^aScaling factors were calculated using U.S. EPA (1988) reference body weights for humans (70 kg), and the TWA body weights for each dose group: rat-to-human = (TWA body weight/70)^{0.25} = scaling factor. ^bHED = administered dose × scaling factor.

Table C-16. Derivation of HEDs for dose-response modeling of B6C3F₁ female mouse tumor incidence data from Beland and Culp (1998)

Benzo[a]pyrene dose in diet (ppm)	Intake (µg/d)	TWA body weight average (kg)	Administered dosea (mg/kg-d)	Scaling factorb	HEDc (mg/kg-d)
5	21	0.032	0.7	0.15	0.10
25	104	0.032	3.3	0.15	0.48
100	430	0.027	16.5	0.14	2.32

^aAdministered doses in mg/kg-day were calculated from dietary concentrations of benzo[a]pyrene using the TWA body weight and reported food intakes for mice.

^bScaling factors were calculated using U.S. EPA (1988) reference body weights for humans (70 kg), and the TWA body weights for each dose group: mouse-to-human = (TWA body weight/70)^{0.25} = scaling factor. ^cHED = administered dose × scaling factor.

3

1

2

Table C-17. Summary of model selection and modeling results for bestfitting multistage-Weibull models, using time-to-tumor data for rats from Kroese et al. (1981)

1 2

	Endpoints	Model stages	AIC	BMD ₁₀	BMDL ₁₀ – BMDU ₁₀	Model selection rationale
Male rats	Oral cavity and	1	577.8	0.104		
	forestomach:	2	407.6	0.678		
	squamous cell tumors	3	229.0	0.453	0.281 – 0.612	Lowest AIC, best fit to low dose data
	Hepatocellular tumors	1	367.3	0.181		
		2	301.5	0.472		
		3	289.1	0.651	0.449 –0.772	Lowest AIC, best fit to low dose data
	Duodenum and	1	69.6	2.64		
	jejunum tumors	2	65.9	3.04		
		3	66.9	3.03	2.38 – 3.87	Best fit to data
	Kidney: uroethelial	1	31.9	9.16		
	carcinoma	2	31.7	5.71		
		3	32.8	4.65	2.50 – 9.01	Best fit to data
	Skin and mammary	1	110.6	1.88		
	gland: basal cell	2	105.1	2.58		
	tumors	3	104.7	2.86	2.35 – 3.62	Lowest AIC, best fit to low dose data
	Skin and mammary	1	63.5	3.36	1.77 – 4.42	Lowest AIC, best fit to low dose data
	gland: squamous cell	2	64.3	2.75		
	tumors	3	65.3	2.64		
Female rats	Oral cavity and	1	277.1	0.245		
	forestomach:	2	211.6	0.428		
	squamous cell tumors	3	201.0	0.539	0.328 – 0.717	Lowest AIC, best fit to low dose data
	Hepatocellular tumors	1	595.5	0.146		
		2	774.9	0.370		
		3	468.3	0.575	0.507 – 0.630	Lowest AIC, best fit to low dose data
	Duodenum and	1	37.9	6.00		
	jejunum tumors	2	37.0	4.33		
		3	37.8	3.43	1.95 – 5.70	Best fit to low dose data

Male Rat (Kroese et al., 2001): Squamous Cell Papilloma or Carcinoma in Oral Cavity or Forestomach

```
_____
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: OralForstKroeseM3.(d)
 _____
  The form of the probability function is:
  P[response] = 1-EXP\{-(t - t 0)^c *
               (beta_0+beta_1*dose^1+beta_2*dose^2+beta_3*dose^3) }
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
Total number of parameters in model = 6
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
                Default Initial Parameter Values
                                    3.6
                      С
                           =
                      t 0
                            =
                                   39.1111
                      beta_0 =
                                        0
                      beta 1 = 8.8911e-009
                      beta 2 = 1.60475e-031
                      beta 3 = 1.95818e-008
         Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -beta 0
                                             -beta 2
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
                           t_0
                                     beta_1
               С
                                                  beta 3
                           -0.53
                   1
                                       -0.93
                                                   -0.99
   С
                -0.53
                               1
                                        0.47
                                                    0.57
   t 0
   beta 1
                -0.93
                            0.47
                                          1
                                                    0.9
   beta 3
                -0.99
                             0.57
                                         0.9
                                                       1
                             Parameter Estimates
                                                  95.0% Wald Confidence Interval
      Variable
                    Estimate
                                   Std. Err.
                                               Lower Conf. Limit Upper Conf. Limit
                                   0.447309
                     3.74559
                                                        2.86888
                                                                           4.6223
       С
        t 0
                      41.4581
                                    2.14975
                                                        37.2447
                                                                          45.6716
                       0
        beta O
                                         NA
                                                   -1.6697e-008
                  4.37816e-009
                                 1.07528e-008
        beta 1
                                                                    2.54533e-008
        beta 2
                           0
                                          NA
                  1.01904e-008
                                1.94164e-008
                                                  -2.78651e-008
        beta 3
                                                                      4.82458e-008
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
              Log(likelihood)
                               # Param
                                                 AIC
                                           229.024
  Fitted Model
                    -108.512
                                  6
```

Data Summary CONTEXT

This document is a draft for review purposes only and does not constitute Agency policy.

C-37

DRAFT-DO NOT CITE OR QUOTE

С Total Expected Response F Ι U DOSE 0 52 0 0.00 0 0 52 8 0 52 6.77 0.54 44 0 1.8 7 0 45 0 52 41.69 5.2 0 9 43 0 52 49.97 44 Minimum observation time for F tumor context = Benchmark Dose Computation Risk Response = Incidental Risk Type Extra Confidence level = 0.9 Time = 104 Specified 0.001 0.1 0.01 0.00636659 effect = 0.453471 0.0633681 0.00285563 BMD = 0.0286649 0.281044 BMDL = > 0.612462 0.248377 0.0509326

BMDU =

0

0 0

0.6

0.4

0.2 0.0

0

20

40

60

Time

80

Probability

Incidental Risk: OralForstKroeseM3

19 20

points show nonparam. est. for Incidental (unfilled) and Fatal (filled) Dose = 0.00 Dose = 0.54 Probability Time Time Dose = 1.81 Dose = 5.17

0 00 00

100

Male Rat (Kroese et al., 2001): Hepatocellular Adenoma or Carcinoma

```
_____
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: LiverKroeseM3.(d)
   _____
  The form of the probability function is:
  P[response] = 1-EXP\{-(t - t 0)^c *
                (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
 Total number of parameters in model = 6
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
 Parameter Convergence has been set to: 1.49012e-008
                 Default Initial Parameter Values
                       c = 3.6
t 0 = 34.6667
                       t_0 = 34.6667
beta_0 = 0
                       beta_1 = 2.73535e-009
                       beta 2 = 8.116e-028
                       beta 3 = 1.43532e-008
          Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -beta_0 -beta_2
                have been estimated at a boundary point, or have been specified by the user,
                and do not appear in the correlation matrix )
                С
                           t_0
                                       beta_1 beta_3
                            -0.84
                                        -0.88
                   1
   С
                                                       -1
   t_0
                -0.84
                             1
                                          0.71
                                                      0.86
   beta 1
                -0.88
                            0.71
                                          1
                                                     0.86
   beta 3
                 -1
                            0.86
                                          0.86
                                                       1
                              Parameter Estimates
                                                    95.0% Wald Confidence Interval

        Std. Err.
        Lower Conf. Limit
        Upper Conf. Limit

        0.629257
        2.26249
        4.72914

        5
        51401
        51402

      Variable
                     Estimate
                                                          2.26249
                       3.49582
        С
                                     5.65421
        t 0
                      40.2211
                                                          29.1391
                                                                             51.3032
        beta_0
                   0 NA
4.43906e-009 1.76051e-008
                                                    -3.00664e-008 3.89445e-008
        beta 1
        beta_2
                           0
                                          NA
                 2.35065e-008 6.47999e-008
                                                    -1.03499e-007 1.50512e-007
        beta 3
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
              289.088
                                                  ATC
                                6
  Fitted Model
                 -138.544
```

Data Summary

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

CONTEXT С Total Expected Response F Ι U DOSE 0 52 0 0.00 0 0 52 0.54 48 0 4 0 52 3.38 1.8 14 2 36 0 52 36.81 0 5.2 3 17 32 52 49.55 Minimum observation time for F tumor context = 52 Benchmark Dose Computation = Incidental Risk Response Risk Type = Extra Confidence level = 0.9 Time = 104 0.001 Specified 0.1 0.01 0.0199908 effect = 0.173556 0.6507 0.00530386 BMD = 0.44868 0.0530469 BMDL = \geq 0.772467 0.352684 0.159927 BMDU =

19

Incidental Risk: Hepatocellular_Kroese_M3

points show nonparam. est. for Incidental (unfilled) and Fatal (filled)

Dose = 0.00

Dose = 0.54

This document is a draft for review purposes only and does not constitute Agency policy. C-40 DRAFT—DO NOT CITE OR QUOTE

Male Rat (Kroese et al., 2001): Duodenum or Jejunum Adenocarcinoma

```
Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
       Input Data File: DuoJejKroeseM3.(d)
_____
  The form of the probability function is:
  P[response] = 1-EXP\{-(t - t 0)^c *
              (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
Total number of parameters in model = 6
Total number of specified parameters = 1
Degree of polynomial = 3
  User specifies the following parameters:
        t 0
             = 0
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
                Default Initial Parameter Values
                     c = 1.63636
t 0 = 0
                                           Specified
                     beta_0 = 4.31119e-027
                      beta_1 = 2.96347e-025
                      beta_2 =
                                0
                      beta 3 = 1.76198e-006
         Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -t_0 -beta_0 -beta_1 -beta_2
               have been estimated at a boundary point, or have been specified by the user,
               С
                         beta 3
   С
                   1
                              -1
   beta 3
                  -1
                              1
                             Parameter Estimates
                                                 95.0% Wald Confidence Interval
                                             95.0% Wald Confidence Interval
Lower Conf. Limit Upper Conf. Limit
                                  Std. Err.
      Variable
                    Estimate
                     1.77722
                                  2.03042
                                                     -2.20233
                                                                        5.75677
       С
                   0
                                     NA
       beta O
       beta 1
                                         NA
       beta 2
                                        NA
                               8.29355e-006
       beta_3
                 9.82635e-007
                                                 -1.52724e-005
                                                                  1.72377e-005
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
             Log(likelihood) # Param
-28.4387 5
                                              AIC
                                            66.8773
  Fitted Model
                 Data Summary
                    CONTEXT
                   F
             С
                               U Total Expected Response
                         Т
```

This document is a draft for review purposes only and does not constitute Agency policy. C-41 DRAFT—DO NOT CITE OR QUOTE

1234567890112345	DOSE 0 0.54 1.8 5.2 Benchmark Risk Respons Risk Type Specified ef Confidence I Time	52 52 51 43 & Dose Con se = = = ffect = .evel = =	0 0 0 mputatic Incic	0 0 1 9 dental Extra 0.1 0.9 104	0 0 0	52 52 52 52	0.00	D 3 4 5
15	Specified (effect = BMD = BMDL = BMDU =	0.1 3.0329 2.3778 3.8718	91 32 33	0.0 1.3 0.4 1.7	01 38578 418285 76166		0.001 0.642252 0.0420835 0.811476

16

Dose = 5.17

17 18

Male Rat (Kroese et al., 2001): Skin or Mammary Gland Basal Cell Tumors

```
_____
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: SKinMamBasalKroeseM3.(d)
_____
  The form of the probability function is:
  P[response] = 1-EXP\{-(t - t_0)^c *
               (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3) }
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
 Total number of observations = 208
Total number of records with missing values = 0
 Total number of parameters in model = 6
 Total number of specified parameters = 1
 Degree of polynomial = 3
  User specifies the following parameters:
        t 0
              =
                        0
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
                Default Initial Parameter Values
                      c = 1.38462
t 0 = 0
                       t 0
                                            Specified
                      beta 0 = 3.84298e-005
                      beta_1 = 1.06194e-028
                      beta 2 =
                                        0
                      beta_3 = 6.84718e-006
          Asymptotic Correlation Matrix of Parameter Estimates
          (*** The model parameter(s) -t_0 -beta_1 -beta_2
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
               С
                          beta_0 beta_3
                    1
                               -1
                                          -1
   С
                                         0.99
   beta_0
                   -1
                               1
   beta 3
                   -1
                             0.99
                                           1
                              Parameter Estimates
                                                   95.0% Wald Confidence Interval
      Variable
                     Estimate
                                   Std. Err.
                                                Lower Conf. Limit Upper Conf. Limit
                      1.47227
                                     1.76686
                                                        -1.9907
                                                                           4.93525
        С
        beta_0
                  2.54786e-005
                                  0.000211261
                                                   -0.000388585
                                                                      0.000439542
                          0
                                  NA
        beta 1
        beta 2
                           0
                                          NA
                                   3.49e-005
                                                   -6.35866e-005
        beta 3
                  4.81611e-006
                                                                      7.32188e-005
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
```

Log(likelihood) # Param

This document is a draft for review purposes only and does not constitute Agency policy.

AIC

C-43

DRAFT—DO NOT CITE OR QUOTE

Toxicological Review of benzo[a]pyrene

Fitted Model		-47	47.3623		5	104.725	
		Data Si	ummary				
	~						-
DOGE	C	E.	T	U	Total	Expected	Response
DOSE		â	<u> </u>	~			
0	50	0	2	0	52	1.18	
0.54	51	0	1	0	52	1.22	
1.8	51	0	1	0	52	2.32	
5.2	39	0	13	0	52	12.54	
Benchmar Risk Respon Risk Type Confidence Time	k Dose Con se = = level = =	mputat: Inc:	ion idental Extra 0.9 104				
Specified	effect = BMD = BMDL = BMDU =	0.1 2.862 2.351 3.622	276 18 258	0 1 0 1	.01 .30804 .415897 .69571	0. 0. 0. 0.	001 606222 0424277 761447

 $\begin{array}{c}12345678910\\11213145167189201\end{array}$

Incidental Risk: Skin_Mam_Basal_Kroese_M3

Dose = 0.54

This document is a draft for review purposes only and does not constitute Agency policy.C-44DRAFT—DO NOT CITE OR QUOTE

```
Male Rat (Kroese et al., 2001): Skin or Mammary Gland Squamous Cell Tumors
             Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
       Input Data File: SKinMamSCCKroeseM3.(d)
 _____
  The form of the probability function is:
  P[response] = 1-EXP\{-(t - t 0)^c *
              (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
Total number of parameters in model = 6
Total number of specified parameters = 1
Degree of polynomial = 3
  User specifies the following parameters:
        t 0
             = 0
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
               Default Initial Parameter Values
                     с =
                                      3
                     t 0
                           =
                                      0
                                          Specified
                                     0
                     beta 0 =
                     beta_1 = 1.25256e-008
                     beta 2 = 1.25627e-030
                     beta 3 = 3.34696e-009
         Asymptotic Correlation Matrix of Parameter Estimates
                                                     -beta 2
         ( *** The model parameter(s) -t_0 -beta_0
              have been estimated at a boundary point, or have been specified by the user,
              С
                         beta 1
                                    beta 3
                 1
                          -0.99
                                       -1
   С
             -0.99
   beta_1
beta_3
                J.99
-1
                              1
                                       0.99
                          0.99
   beta 3
                                         1
                            Parameter Estimates
                                                95.0% Wald Confidence Interval
      Variable
                   Estimate
                                  Std. Err.
                                             Lower Conf. Limit Upper Conf. Limit
                                2.591
                  2.96213
0
                                                     -2.11613
                                                                       8.04039
       С
       beta O
                                      NA
                                                -3.51447e-007
                 1.50104e-008 1.86972e-007
0 NA
       beta_1
                                                                 3.81468e-007
       beta 2
                              4.15374e-008
       beta 3
                  3.9084e-009
                                                -7.75033e-008
                                                                  8.53201e-008
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
            Log(likelihood) # Param Aic
' -27.652 5 65.304
  Fitted Model -27.652
                 Data Summary
```

CONTEXT

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

Incidental Risk: OralForstKroeseM3

points show nonparam, est, for Incidental (unfilled) and Fatal (filled)

This document is a draft for review purposes only and does not constitute Agency policy. C-46 DRAFT—DO NOT CITE OR QUOTE

Male Rat (Kroese et al., 2001): Kidney Urothelial Carcinomas

```
Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
         Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: KidneyUrothelialCarKroeseM3.(d)
_____
  The form of the probability function is:
   P[response] = 1-EXP\{-(t - t 0)^c *
                (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
Total number of parameters in model = 6
Total number of specified parameters = 1
Degree of polynomial = 3
  User specifies the following parameters:
         t 0
              =
                           0
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
 Parameter Convergence has been set to: 1.49012e-008
                 Default Initial Parameter Values
                        c = 1.63636
t 0 = 0
                                                Specified
                        beta_0 = 3.78734e-027
                        beta_1 = 1.59278e-027
beta_2 = 2.718e-024
                        beta 3 = 4.96063e - 007
          Asymptotic Correlation Matrix of Parameter Estimates
           ( *** The model parameter(s) -t_0 -beta_0 -beta_1 -beta_2
                have been estimated at a boundary point, or have been specified by the user,
                and do not appear in the correlation matrix ) % \left( {{\left( {{{\left( {{{\left( {{{\left( {{{c}}} \right)}} \right.} \right.}} \right)}} \right)} \right)
                С
                            beta 3
    С
                     1
                                 -1
    beta 3
                    -1
                                  1
                                Parameter Estimates
                                                       95.0% Wald Confidence Interval
                                                  95.0% Wald Confidence Interval
Lower Conf. Limit Upper Conf. Limit
                                      Std. Err.
      Variable
                      Estimate
        С
                        1.74897
                                      3.79403
                                                           -5.68719
                                                                                 9.18512
                     0
                                         NA
        beta O
        beta 1
                                              NA
                            0
        beta 2
                                             NA
                                   4.90313e-006
                   3.11107e-007
                                                       -9.29885e-006
                                                                          9.92107e-006
        beta 3
\ensuremath{\mathsf{NA}} - Indicates that this parameter has hit a
    bound implied by some inequality constraint
    and thus has no standard error.
              Log(likelihood) # Param AIC
1 -11.3978 5 32.7956
  Fitted Model -11.3978
                   Data Summary
                        CONTEXT
```

2345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234

1

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

Toxicological Review of benzo[a]pyrene

$\frac{1}{2}$	DOSE	С	F	I	U	Total	Expected	Response
345678	0 0.54 1.8 5.2	52 52 52 49	0 0 0	0 0 3	0 0 0	52 52 52 52	0.00 0.01 0.29 2.71	
9 10 11 12 13 14 15	Benchmar Risk Respon Risk Type Confidence Time	k Dose Co se = = level = =	mputatio Incio	on dental Extra 0.9 104				
	S	pecified effect = BMD = BMDL =	0. 4.6488 2.4997 9.	1 36 72 01023	0 2 0 3	.01 .12413 .734665 .49311	0. 0.	0.001 984449 0748097 1.61892
		BMDU =						

16

Dose = 5.17

100

This document is a draft for review purposes only and does not constitute Agency policy. C-48 DRAFT—DO NOT CITE OR QUOTE Female Rat (Kroese et al., 2001): Oral Cavity or Forestomach, Squamous Cell Papilloma or Carcinoma

```
_____
     Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
     Solutions are obtained using donlp2-intv, (c) by P. Spellucci
     Input Data File: OralForstKroeseF3.(d)
   _____
  The form of the probability function is:
  P[response] = 1-EXP\{-(t - t 0)^c *
               (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
 Total number of parameters in model = 6
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
                Default Initial Parameter Values
                       c = 3.6
t 0 = 45.1111
                       t 0
                       beta 0 = 1.11645e-009
                       beta_1 = 4.85388e-009
                       beta_2 = 0
                       beta 3 = 1.95655e-008
          Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -beta 2
                have been estimated at a boundary point, or have been specified by the user,
                and do not appear in the correlation matrix )
                С
                           t 0
                                      beta O
                                                  beta 1
                                                               beta 3
   С
                    1
                            -0.79
                                         -0.92
                                                     -0.93
                                                                    -1
   t 0
                -0.79
                               1
                                         0.73
                                                     0.72
                                                                   0.8
                -0.92
                            0.73
                                          1
                                                     0.79
   beta O
                                                                 0.92
                -0.93
                            0.72
                                        0.79
                                                      1
                                                                  0.91
   beta 1
                 -1
                             0.8
                                          0.92
                                                      0.91
                                                                     1
   beta 3
                              Parameter Estimates
                                                    95.0% Wald Confidence Interval
                 Estimate Std. Err.

3.52871 0.701117

46.553 5.93306

1.53589e-009 5.40523e-009

2.9647e-008
                                   Std. Err. Lower Conf. Limit Upper Conf. Limit
0.701117 2 15454 4 00287
      Variable
                                                 2.15454
34.9244
-9.05817e-009 1.21
-5.05369e-008 6.5
       С
                                                                            4.90287
        t 0
                                                                             58.1816
                                                                      1.21299e-008
        beta O
                                 2.9647e-008
        beta_1
                                                                       6.5677e-008
                  7.57004e-009
        beta 2
                   0
                                    NA
                 2.53126e-008 7.66404e-008
                                                     -1.249e-007
        beta 3
                                                                       1.75525e-007
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
              Log(likelihood)
                                # Param
                                                  AIC
                              6
  Fitted Model -94.5119
                                               201.024
```

	I	Data Su CON	ummary ITEXT					
	С	F	I	U	Total	Expect	ed	Response
DOSE						-		-
0	51	0	1	0	52	1.1	L4	
0.49	46	0	6	0	52	4.9	90	
1.6	22	0	30	0	52	31.8	31	
4.6	2	7	43	0	52	49.4	13	
Minimum Benchmar Risk Respons Risk Type Confidence I Time	observati Dose Cor se = = .evel = =	lon tim nputati Inci	ne for F .on .dental Extra 0.9 104	tum	lor cont	ext =		58
Specified (effect = BMD = BMDL = BMDU =	0.1 0.538 0.328 0.717	801 135 127	(().098128).034510 ()09	0.01 3 4 0.325	0.0	001 0100797 00344714 > 0806373

Incidental Risk: OralForstKroeseF3

points show nonparam. est. for Incidental (unfilled) and Fatal (filled)

Dose = 0.00

Time

18

Female Rat (Kroese et al., 2001): Hepatocellular Adenoma or Carcinoma _____ Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009) Solutions are obtained using donlp2-intv, (c) by P. Spellucci Input Data File: LiverKroeseF3.(d) Fri Apr 16 09:08:03 2010 _____ Timer to Tumor Model, Liver Hepatocellular Tumors, Kroese et al, Female The form of the probability function is: $P[response] = 1-EXP\{-(t - t 0)^c *$ (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3)} The parameter betas are restricted to be positive Dependent variable = CONTEXT Independent variables = DOSE, TIME Total number of observations = 208 Total number of records with missing values = 0Total number of parameters in model = 6 Total number of specified parameters = 0 Degree of polynomial = 3Maximum number of iterations = 64 Relative Function Convergence has been set to: 2.22045e-016 Parameter Convergence has been set to: 1.49012e-008 Default Initial Parameter Values c = 3.6t 0 = 31.7778 t_0 t_0 = 31.7778 beta_0 = 0 $beta_1 = 4.9104e-031$ beta 2 = 5.45766e - 030beta 3 = 3.44704e-008Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -beta_0 -beta_1 -beta_2 have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) С t_0 beta 3 1 -0.9 С -1 0.92 t_0 -0.9 1 beta_3 -1 0.92 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit 0.549208 3.11076 С 2.03434 4.18719 t 0 5.21028 38.6965 28.4846 48.9085 0 beta O NA 0 NA beta_1 beta 2 0 NA beta 3 2.94354e-007 7.19418e-007 -1.11568e-006 1.70439e-006 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Log(likelihood) # Param AIC Fitted Model -228.17 6 468.34

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

Toxicological Review of benzo[a]pyrene

Data Summary CONTEXT С F Ι U Total Expected Response DOSE 52 0 0 0.00 0 0 52 51 3.02 0.49 0 1 0 52 12 27 52 38.36 1.6 13 0 1 38 13 52 51.36 4.6 0 Minimum observation time for F tumor context = 44 Benchmark Dose Computation Risk Response = Incidental Risk Type = Extra Confidence level = 0.9 Time = 104 Specified effect = 0.1 0.01 0.001 BMD = 0.575127 0.262783 0.12179 BMDL = 0.506633 0.134213 0.0152934 BMDU = 0.629806 0.287232 0.133064

21

Incidental Risk: Hepatocellular_Kroese_F3

points show nonparam. est. for Incidental (unfilled) and Fatal (filled)

Probability

 ∞

o.

0.4

0.0

0

20

40

Dose = 0.00

Dose = 0.49

Time

60

80

100

This document is a draft for review purposes only and does not constitute Agency policy. C-52 DRAFT—DO NOT CITE OR QUOTE

Female Rat (Kroese et al., 2001): Duodenum or Jejunum Adenocarcinoma

```
_____
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: DuoJejKroeseF3.(d)
_____
  The form of the probability function is:
  P[response] = 1-EXP\{-(t - t 0)^c *
              (beta_0+beta_1*dose^1+beta_2*dose^2+beta_3*dose^3) }
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
Total number of parameters in model = 6
Total number of specified parameters = 1
Degree of polynomial = 3
  User specifies the following parameters:
        t 0 =
                      0
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
               Default Initial Parameter Values
                          = 2.25
= 0
                     С
                      t 0
                                           Specified
                     beta_0 =
                                       0
                     beta 1 =
                                       0
                     beta_2 =
                                       0
                     beta 3 = 7.289e-008
         Asymptotic Correlation Matrix of Parameter Estimates
         (*** The model parameter(s) -t 0 -beta 0 -beta 1 -beta 2
              have been estimated at a boundary point, or have been specified by the user,
              and do not appear in the correlation matrix \ensuremath{)}
              С
                         beta 3
   С
                  1
                             -1
   beta 3
                  -1
                              1
                            Parameter Estimates
                                                95.0% Wald Confidence Interval
      Variable
                    Estimate
                                  Std. Err.
                                              Lower Conf. Limit Upper Conf. Limit
                                   3.58729
                     2.32531
                                                     -4.70565
                                                                        9.35626
       С
                      0
       beta O
                                       NA
       beta_1
                          0
                                         NA
       beta 2
                           0
                                         NA
                 5.32209e-008
                               7.98487e-007
                                                 -1.51178e-006
       beta 3
                                                                  1.61823e-006
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
             AIC
                                         37.7569
                -13.8784
  Fitted Model
                                5
                 Data Summary
                    CONTEXT
                   F I
                               U Total Expected Response
             С
   DOSE
```

This document is a draft for review purposes only and does not constitute Agency policy. C-53

DRAFT-DO NOT CITE OR QUOTE

1 2 3 4 5 6	0 0.49 1.6 4.6	52 52 52 48	0 0 0	0 0 4	0 0 0	52 52 52 52	0.00 0.01 0.44 3.57	
7 8 9 10 11 12	Benchmar Risk Respons Risk Type Confidence J Time	a Dose Con se = = .evel = =	mputati Inci	on dental Extra 0.9 104				
	Specified (effect = BMD = BMDL = BMDU =	0.1 3.4312 1.9474 5.7010	29 45 08	0. 1. 0. 2.	01 56781 560867 61447	0 0 0 1	.001 .726615 .0584891 .21046

13

Incidental Risk: DuoJej_Kroese_F3

Dose = 4.58

This document is a draft for review purposes only and does not constitute Agency policy.C-54DRAFT—DO NOT CITE OR QUOTE

1 2

Table C-18. Summary of human equivalent overall oral slope factors, based on male and female rat tumor incidence

				Risk va	lue ^ª at			Properties
Data set	Tumor site	BMD ₀₀₁	BMDL ₀₀₁	BMD ₀₀₁	BMDL ₀₀₁	SD	SD ²	of total variance
Males	Oral cavity/forestomach	6.37×10^{-3}	2.86×10^{-3}	1.57×10^{-1}	3.50×10^{-1}	1.17×10^{-1}	1.38×10^{-2}	0.64
	Liver	2.00×10^{-2}	5.30×10^{-3}	5.00×10^{-2}	1.89×10^{-1}	8.42×10^{-2}	7.09×10^{-3}	0.33
	Duodenum/jejunum	6.42×10^{-1}	4.21×10^{-2}	1.56×10^{-3}	2.38×10^{-2}	1.35×10^{-2}	1.82×10^{-4}	0.01
	Skin/mammary gland: basal cell	6.06×10^{-1}	4.24×10^{-2}	1.65×10^{-3}	2.36×10^{-2}	1.33 × 10 ⁻²	1.78 × 10 ⁻⁴	0.01
	Skin/mammary gland: squam. cell	7.06 × 10 ⁻²	2.11×10^{-2}	1.42×10^{-2}	4.75×10^{-2}	2.03 × 10 ⁻²	4.10 × 10 ⁻⁴	0.02
	Kidney	9.84×10^{-1}	7.48×10^{-2}	1.02×10^{-3}	1.34×10^{-2}	7.51×10^{-3}	5.64×10^{-5}	0.00
	9	s at BMD ₀₀₁ :	2.25×10^{-1}		Sum, SD ² :	2.17×10^{-2}		
						Overall SD ^b :	1.47×10^{-1}	
	l	Jpper bound o	n sum of risk	estimates ^c :	4.68×10^{-1}			
Females	Oral cavity/forestomach	3.45×10^{-3}	1.01×10^{-2}	2.90×10^{-1}	9.92×10^{-2}	1.16×10^{-1}	1.35×10^{-2}	0.91
	Liver	1.53×10^{-2}	1.22×10^{-1}	6.54×10^{-2}	8.21×10^{-3}	3.48×10^{-2}	1.21×10^{-3}	0.08
	Duodenum/jejunum	5.85×10^{-2}	7.27×10^{-1}	1.71×10^{-2}	1.38×10^{-3}	9.56×10^{-3}	9.13 × 10 ⁻⁵	0.01
	5	Sum, risk value	s at BMD ₀₀₁ :	1.09×10^{-1}		Sum, SD ² :	1.48×10^{-2}	
						Overall SD:	1.22×10^{-1}	
	l	Jpper bound o	n sum of risk	estimates ^c :	3.09E-01			

^aRisk value = $0.001/BMDL_{001}$. ^bOverall SD = (sum, SD²)^{0.5}.

^cUpper bound on the overall risk estimate = sum of BMD_{001} risk values + 1.645 × overall SD.

Source of data: Kroese et al. (2001).

3 4

Table C-19. Summary of model selection among multistage-Weibull models fit to alimentary tract tumor data for female mice

Model stages	AIC	BMD ₁₀	BMDL ₁₀ – BMDU ₁₀	Model selection rationale
1 2 3	688.5 629.2 624.5	0.104 0.102 0.127	0.071 –0.179	Lowest AIC, best fit to low dose data

5 6 7

Source of data: Beland and Culp (1998)
```
Female Mice (Beland and Culp, 1998): Alimentary Tract Squamous Cell Tumors
            _____
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: C:\msw10-09\benzo[a]pyrene FemaleSquamF3i.(d)
_____
  The form of the probability function is:
  P[response] = 1-EXP\{-(t - t 0)^c *
               (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = Class
  Independent variables = Dose, time
Total number of observations = 191
Total number of records with missing values = 0
Total number of parameters in model = 6
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
                User Inputs Initial Parameter Values
                           = 2
                       С
                       t 0 =
                                         15
                       beta 0 =
                                   1.6e-014
                       beta_1 = 0
beta_2 = 5.5e-012
                       beta_3 = 4.4e-012
          Asymptotic Correlation Matrix of Parameter Estimates
               c t_0 beta_0 beta_1
                                                               beta_2
                                                                            beta 3
                            -0.78
                    1
                                        -0.97
                                                     -0.42
                                                                 -0.99
                                                                              -0.99
   С
                -0.78
                               1
                                         0.76
                                                     0.39
                                                                 0.74
                                                                               0.84
   t 0
                -0.97
                            0.76
                                                     0.33
                                                                 0.97
   beta O
                                           1
                                                                               0.96
   beta 1
                -0.42
                             0.39
                                          0.33
                                                       1
                                                                   0.31
                                                                               0.46
                -0.99
                            0.74
                                        0.97
                                                     0.31
                                                                    1
                                                                               0.97
   beta 2
   beta 3
                -0.99 0.84 0.96
                                                     0.46
                                                                 0.97
                                                                                 1
                              Parameter Estimates
                                                    95.0% Wald Confidence Interval
      Variable
                     Estimate
                                     Std. Err. Lower Conf. Limit Upper Conf. Limit
                                  1.33874
                   6.92317
13.9429
                                                         4.299299.547054.2088123.677
        c
t_0
                                       4.96646

        -2.64636e-015
        3.14019e-015

        -2.55825e-014
        2.55825e-014

        -6.76723e-013
        7.93813e-013

        -1.00388e-012
        1.19919e-012

        beta O
                  2.46916e-016 1.47619e-015
                  0 1.30525e-014
5.85452e-014 3.75144e-013
9.76542e-014 5.62017e-013
        beta_1
        beta 2
        beta 3
                 Log(likelihood)
                                                 AIC
                                              624.53
  Fitted Model
                  Data Summary
                      Class
                    F I
                                U Total Expected Response
              С
   Dose
```

DRAFT—DO NOT CITE OR QUOTE

0	0 0.1 .48 2.3	47 45 8 1	0 23 46	:	1 3 15 0	0 0 1 1	48 48 47 48	0.93 3.21 30.82 41.91	
Mi	nimum	obser	vation	time	for 1	7 tumor	cont	ext =	39
Ben Risk R Risk T Specif Confid	chmark espons ype ied ef ence l	Dose e fect evel	Compu = = = =	tatio Incide	n ental Extra 0.1 0.9				
Time			=		104				
		BMD BMDL BMDU	=	0.12	26983 06103 79419				

Incidental Risk: BaP_FemaleSquamF3i

Dose = 2.32

21 22 nchmark Dose Computation Response = Incidental Type = Extra fied effect = 0.1 dence level = 0.9 = 104 BMD = 0.126983 BMDL = 0.0706103 BMDU = 0.179419 Inciden points show nonpara Dose = 0.00

DOSE-RESPONSE MODELING FOR THE INHALATION UNIT RISK 1

2 As with the tumor data used for the oral slope factor (see Dose Response-modeling for the

3 Oral Slope Factor Section), there was earlier occurrence of tumors with increasing exposure, and

- 4 early termination of the high-dose group (Thyssen et al., 1981; see Appendix B for study details).
- 5 The computer software program MSW (U.S. EPA, 2010) was used as described in the analysis of the
- 6 oral carcinogenicity data.
- 7 Thyssen et al. (1981) did not determine cause of death for any of the animals. Bounding
- 8 estimates for the Thyssen et al. (1981) data were developed by treating the tumors alternately as
- 9 either all incidental or all fatal. In either case, therefore, an estimate of t₀ (the time between a

10 tumor first becoming observable and causing death) could not be estimated. The data analyzed are

- 11 summarized in Table C-20, the results are summarized in Table C-21, and the modeling details
- 12 follow.

13 14

Table C-20. Individual pathology and tumor occurrence data for male Syrian hamsters exposed to benzo[a]pyrene via inhalation for lifetime-

Thyssen et al. (1981). 15

Nominal exposure			Рар	oillomas, Polyp	os, Papillary po	lyps, Squamo	us cell carcinon	nas
concentration	Time on study	Number examined	Larvnx	Pharynx	Trachea	Fsophagus	Forestomach	Nasal cavity
(17	1		0 ^a	0		0	0
0	1/	1	0	0	0	0	0	0
	59 4E	1	0	0	0	0	0	0
	43 70	1	0	0	0	0	0	0
	83	1	0	0	0	0	0	0
	85 85	1	0	0 ^a	0	0	0	0
	86	1	0	0	0	0	0	0
	88	2	0	0	0	0	0	0
	89	2	0	0	0	0	0	0
	90	1	0	0	0	0	0	0
	101	1	0	0	0	0	0	0
	102	1	0	0	0	0	0	0
	103	- 1	0	0	0	0	0	0
	106	1	0	0	0	0	0	0
	108	1	0	0	0	0	0	0
	109	1	0	0	0	0	0	0
	112	1	0	0	0	0	0	0
	115	1	0	0	0	0	0	0
	116	1	0	0 ^a	0	0	0	0
	122	1	0	0	0	0	0	0
	123	1	0	0	0	0	0	0
	124	1	0 ^a	0	0	0	0	0
	125	1	0	0	0	0	0	0
	127	1	0	0 ^a	0	0	0	0
	132	1	0	0	0	0	0	0
2	14	1	0 ^a	0 ^a	0	0	0	0
	35	1	0	0	0	0	0	0
	53	1	0	0	0	0	0	0
	59	1	0	0	0	0	0	0
	71	1	0	0	0	0	0	0
	78	1	0	0	0	0	0	0
	80	1	0	0	0	0	0	0

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Nominal			Papillomas, Polyps, Papillary polyps, Squamous cell carcinomas							
concentration (mg/m ³)	Time on study	Number examined	Larynx	Pharynx	Trachea	Esophagus	Forestomach	Nasal cavity		
	85	1	0	0	0	0	0	0		
	87	1	0	0	0	0	0	0		
	88	1	0	0	0	0	0	0		
	93	1	0	0	0	0	0	0		
	98	1	0	0°	0	0	0	0		
	99	1	0	0	0	0	0	0		
	102	1	0	0	0	0	0	0		
	103	1	0	0	0	0	0	0		
	108	1	0	0	0	0	0	0		
	112	1	0	0	0	0	0	0		
	113	1	0	0	0	0	0	0		
	114	1	0	0	0	0	0	0		
	116	1	0	0	0	0	0	0		
	117	1	0	0	0	0	0	0		
	120	1	0	0	0	0	0	0		
	122	2	0 ^a	0 ^a	0	0	0	0		
	133	2	0	0	0	0	0	0		
10	31	1	0	0	0	0	0	0		
	32	1	0	0	0	0	0	0		
	52	1	0	0	0	0	0	0		
	67	1	0	0	0	0	0	0		
	73	1	0	0	0	0	0	0		
	76	2	0	2	0	0	0	0		
	80	1	1	0	0	0	0	0		
	85	1	0	0	0	0	0	0		
	94	1	1	0	0	0	0	0		
	100	1	0	0	0	0	0	0		
	102	1	1	1	0	0	0	0		
	105	1	0	1	0	0	0	0 ^c		
	113	1	0	1	0	0	0	0		
	114	- 1	1	1	0	0	0	0		
	115	1	1	0 ^a	1	0	0	1		
	116	1	0	0	1	0	0	1		
	117	1	1	0	0	0	0	0		
	118	4	3	1 ^b	0	0	1	1		
	122	1	1	0	0	0	0	0		
	124	1	1	1	0	0	0	0		
	125	1	0	0	0	0	0	1		
50	20	1	0 ^ª	0 ^a	0 ^a	0	0	0		
	21	1	0 ~	0 0	0 0	0	0	0		
	25	2	0~	0~	0~	0	0	0		
	29	1	U ⁻	U ⁻	U ⁻	0	0	U		
	30	1	U O ^a	U O ^a	U O ^a	0	0	U		
	34 26	1	U O ^a	U O ^a		0	0	U		
	27	۲ ۲	0 N ^a	na O	0 0 ^a	0	0	0		
	37 70	1 2	1 ^a	1 ^a	1 ^a	0	0	0		
	40 <u>4</u> 1	ے 1	- -			0	0	0		
	41	1 1	0	0	0	0	0	0		
	47	1	1	1	n n	0	0	0 0		
	48	1	0	1	õ	0	Ő	õ		
	51	-	0	0 [°]	0	0	0	0		
	56	1	1	1	0	0	0	0		
	57	1	0	1	0	0	0	0		

This document is a draft for review purposes only and does not constitute Agency policy.C-59DRAFT—DO NOT CITE OR QUOTE

Nominal exposure			Papillomas, Polyps, Papillary polyps, Squamous cell carcinomas								
concentration (mg/m ³)	Time on study	Number examined	Larynx	Pharynx	Trachea	Esophagus	Forestomach	Nasal cavity			
	60	1	0	1	0	0	0	0			
	63	1	0	0	0	0	0	0			
	64	1	0	1	0	0	1	0			
	66	1	1	1	0	0	0	0			
	68	1	0	1	0	0	0	0			
	70	1	1	1	0	1	0	0			
	71	1	1	1	1	0	0	0			
	72	1	1	1	0	0	0	0			
	73	2	2	2	0	0	0	0			
	79	4	3	4	1	1	0	1			

^aTissue was not examined for one animal of total examined.

^bTissue was not examined for two animals of total examined.

^cAn adenocarcinoma was observed in this tissue, but not included in the dose-response analysis because it was of a different cell type than the other tumors listed. It was judged to be an isolated finding not clearly associated with exposure.

1 2

3

4 5

67890123456789012345678901 1123456789012345678901

Table C-21. Summary of model selection among multistage-Weibullmodels fit to tumor data for male hamsters

	Model				
Tumor context	stages	AIC	BMD ₁₀	BMDL ₁₀	Model selection rationale
All tumors considered incidental to	1	58.0	0.090	0.064	
cause of death	2	47.9	0.285	0.198	Lowest AIC, best fit to data
					(BMDU ₁₀ = 0.350)
All tumors considered to be cause	1	327.3	0.136	0.104	
of death	2	302.9	0.421	0.343	
	3	299.0	0.648	0.461	Lowest AIC; best fit to data
					(BMDU1 ₀ = 0.719)

Data source: Thyssen et al. (1981)

Output for squamous cell neoplasia following inhalation exposure to BaP: all tumors considered incidental to cause of death

_____ Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009) Solutions are obtained using donlp2-intv, (c) by P. Spellucci Input Data File: C:\msw\benzo[a]pyrene-Thyssen inc2st.(d) _____ The form of the probability function is: $P[response] = 1-EXP\{-(t - t_0)^c *$ (beta 0+beta 1*dose^1+beta 2*dose^2) } The parameter betas are restricted to be positive Dependent variable = Class Independent variables = Conc, Time Total number of observations = 96 Total number of records with missing values = 0Total number of parameters in model = 5 Total number of specified parameters = 1 Degree of polynomial = 2User specifies the following parameters: t 0 = 0

DRAFT-DO NOT CITE OR QUOTE

Maximum number of iterations = 32 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values c = 3.6t 0 = 0 t 0 Specified beta 0 = 1.18657e-031 $beta_1 = 1.49e-030$ beta 2 = 6.10362e-008Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -t 0 -beta 0 -beta 1 have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) С beta_2 1 -1 С -1 beta 2 1 Parameter Estimates 95.0% Wald Confidence Interval Lower Conf. Limit Upper Conf. Limit Estimate Std. Err. Variable С 4.21938 0.840997 2.57105 5.8677 0 beta 0 NA beta_1 NA 4.00402e-009 1.495e-008 -2.52974e-008 3.33054e-008 beta 2 NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. AIC -19.967 47.9339 Fitted Model 4 Data Summary Class С F I U Total Expected Response Conc 0 0 23 0 0 24 18 0 26 0 23 23 0 24 0 8 0 0 0.00 0.25 1.92 16.04 1 4.3 5 0 18.22 Benchmark Dose Computation Risk Response = Incidental Risk Type = Extra Extra Risk Type Specified effect = 0.1 Confidence level = 0.9 104 Time = 0.284958 BMD = BMDL = 0.197807 BMDU = 0.350247

Incidental Risk: BaP-Thyssen_inc2st

Output for respiratory tract tumors: all tumors considered to be cause of death

```
_____
       Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: C:\msw\benzo[a]pyrene-Thyssen allfatal noU 3st.(d)
_____
  The form of the probability function is:
  P[response] = 1-EXP\{-(t - t 0)^{c} *
               (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = Class
  Independent variables = Conc, Time
Total number of observations = 96
Total number of records with missing values = 0
Total number of parameters in model = 6
Total number of specified parameters = 1
Degree of polynomial = 3
  User specifies the following parameters:
        t 0
              =
                        0
Maximum number of iterations = 32
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
                Default Initial Parameter Values
                     c = 4.5
t_0 = 0
                                           Specified
                      beta 0 =
                                        0
                      beta 1 = 1.37501e-010
                      beta 2 = 2.84027e-010
                      beta_3 = 1.44668e - 0.37
         Asymptotic Correlation Matrix of Parameter Estimates
          (*** The model parameter(s) -t 0 -beta 0 -beta 1 -beta 2
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
                         beta 3
               С
   С
                  1
                              -1
   beta 3
                  -1
                               1
                             Parameter Estimates
                                                 95.0% Wald Confidence Interval
                                Std. Err. Lower Conf. Limit Upper Conf. Limit
      Variable
                   Estimate
                                  0.896607
                    8.95016
                                                                         10.7075
       С
                                                       7.19284
                   0
0
0
                                    NA
        beta O
        beta_1
                                         NA
        beta 2
                                         NA
                 3.43452e-019
                              1.39727e-018 -2.39515e-018 3.08205e-018
        beta 3
NA - Indicates that this parameter has hit a
    bound implied by some inequality constraint
    and thus has no standard error.
              Log(likelihood) # Param AIC
-144.522 5 299.043
  Fitted Model
                  Data Summary
```

2

1

DRAFT—DO NOT CITE OR QUOTE

This document is a draft for review purposes only and does not constitute Agency policy.

		Cl	ass				
	С	F	I	U	Total		
Conc							
0	23	0	0	0	23		
0.25	24	0	0	0	24		
1	8	18	0	0	26		
4.3	5	18	0	0	23		
Minimum	observat	tion ti	me for 1	F tumo	r context	=	40
Benchmarl	k Dose Co	omputat	ion				
Risk Respons	se =		Fatal				
Risk Type	=		Extra				
Specified et	ffect =		0.1				
Confidence 1	level =		0.9				
Time	=		104				
	BMD =	C	.647659				
	BMDL =	C	.461415				
	BMDU =	C	.719325				

Fatal Risk: BaP-Thyssen_allfatal_noU_3st

Dose = 4.29

This document is a draft for review purposes only and does not constitute Agency policy.C-64DRAFT—DO NOT CITE OR QUOTE

1 **DOSE-RESPONSE MODELING FOR THE DERMAL SLOPE FACTOR**

2 Modeling methods:

3 For each endpoint, multistage models (BMDS; U.S. EPA, 2012; v 2.1) were fitted to the data 4 using the maximum likelihood method. Each model was tested for goodness-of-fit using a chi-5 square goodness-of-fit test ($\chi^2 p$ -value < 0.05 indicates lack of fit). Other factors were used to 6 assess model fit, such as scaled residuals, visual fit, and adequacy of fit in the low-dose region and in 7 the vicinity of the BMR. The BMDL estimate (95% lower confidence limit on the BMD, as estimated 8 by the profile likelihood method) and AIC value were used to select a best-fit model from among the 9 models exhibiting adequate fit. The data modeled are summarized in Tables C-22 through C-25. 10 The modeling results are summarized in Table C-26. The modeling details are provided with 11 Figures C-8 through C-19.

12 Data adjustments prior to modeling:

13 Roe et al. (1970) applied benzo[a]pyrene dermally for 93 weeks or until natural death; with 14 the exception of the highest dose group, each group still had approximately 20 animals at 86 weeks 15 (see Table C-22). The tumors were first observed in the lowest and highest dose groups during the 16 interval of weeks 29–43. Mice that died before week 29 were likely not at risk of tumor 17 development. However, because tumor incidence and mortality were reported in 100-day 18 intervals, mice that had not been on study long enough to develop tumors were not easily 19 identifiable. Incidence denominators reflect the number of animals alive at week 29, and may thus 20 tend to lead to underestimates of tumor risk if the number of animals at risk has been 21 overestimated.

22 Schmidt et al. (1973) did not report survival information; instead, the authors provided 23 incidences based on the numbers of mice initially included in each dose group at the start of the 24 study. Overall latency was reported for the two high-dose groups in each series, but these data only 25 describe the survival of mice with tumors (animals were removed from study when a tumor 26 appeared). It is not clear how long exposures lasted overall in each dose group, or whether some 27 mice may have died on study from other causes before tumors appeared. While it is possible that 28 no mice died during the study, all of the other studies considered here demonstrate mortality. 29 However, the data were modeled as reported, recognizing the possibility of underestimating risk 30 associated with incidences reported and lack of duration of exposure. (See Table C-22.) 31 Schmähl et al. (1977) reported that reduced numbers of animals at risk (77–88 mice per 32 dose group compared with the initial group sizes of 100) resulted from varying rates of autolysis.

33 No other survival or latency information was provided, so all exposures were assumed to have

- 34 lasted for 104 weeks and were modeled as reported. Given the results of the other studies, it seems 35 possible that the numbers at risk in each group may be overestimated, which could lead to an
- 36 underestimate of lifetime risk. (See Table C-22.)
- 37 Habs et al. (1980) reported age-standardized skin tumor incidence rates, indicating earlier 38 mortality in the two highest dose groups (2.8 and 4.6 μ g/application). These rates were used to 39 estimate the number at risk in the dose-response modeling, by dividing the number of mice with

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

1 tumors by the age-standardized rates. Exposure lasted longer than 104 weeks in the two lower 2 exposure groups, at about 120 and 112 weeks, and until about 88 weeks in the highest exposure 3 group. Incidence in the two lower exposure groups may be higher than if the exposure had lasted 4 just 104 weeks. There was mortality in the first 52 weeks of exposure, about 10-15% in the three 5 exposure groups, but because there was no information concerning when tumors first appeared, it 6 is not possible to determine how much the early mortality may have impacted the number of mice 7 at risk in each group. (See Table C-22.)

8 Habs et al. (1984) reported mean survival times (with 95% CIs) for each dose group. The 9 CIs supported the judgment that the control and lower dose groups were treated for 104 weeks. 10 The higher dose group (4 μ g/application) was probably treated for <104 weeks, because the upper 11 95% confidence limit for the mean survival was approximately 79 weeks. However, since it was 12 not possible to estimate a more realistic duration for this group, an estimate of 104 weeks was 13 used. (See Table C-22.)

14 The studies by Poel (1960, 1959) were conducted in male mice and used toluene as the 15 vehicle. In addition to a control group, the 1959 study included nine dose groups of one mouse 16 strain (C57L) and the 1960 study included seven dose groups of three other mouse strains. Both 17 studies demonstrated high mortality and tumor incidence at higher exposure levels. All C57L mice 18 in dose groups with $>3.8 \,\mu$ g/application died by week 44 of the study (Poel, 1959). Therefore, 19 these five dose groups were omitted prior to dose-response modeling because of the relatively 20 large uncertainty in extrapolating cancer risk as a result of lifetime exposure. Four dose groups in 21 addition to control remained. Among these groups, mice survived and were exposed until weeks 22 83–103. According to the lifespan ranges provided, at least one mouse in each dose group died 23 before the first appearance of tumor, but insufficient information was available to determine how 24 many; consequently, the incidence denominators were not adjusted. The dose-response data are 25 summarized in Table C-23.

26 For the Poel (1960) studies, all tumors in the highest three dose groups for each of the three 27 mouse strains had occurred by week 40. While these observations support concern for cancer risk, 28 as noted above such results are relatively uncertain for estimating lifetime cancer risk. In addition, 29 there was no information indicating duration of exposure for the mice without tumors; although 30 exposure was for lifetime, it might have been as short as for the mice with tumors. Overall, these 31 datasets did not provide sufficient information to estimate the extent of exposure associated with 32 the observed tumor incidence. Consequently, the experiments reported by Poel (1960) were not 33 used for dose-response modeling.

34 Grimmer et al. (1984, 1983), studied female CFLP mice, using acetone:DMSO (1:3) as the 35 vehicle. Mean or median latency times were reported (as well as measures of variability), but no 36 information concerning overall length of exposure or survival was included in the results. The total 37 of tumor-bearing mice and the reported percentages of mice with any skin tumors was reported 38 and varied, at most, one animal from the number of animals initially placed on study. The 39 decreasing latency and variability and increasing tumor incidence with increasing benzo[a]pyrene 40 exposure suggests that exposure probably did not last for 104 weeks in at least the high-dose 41 group, but the available information did not provide duration of exposure. The data reported were

C-66

- 1 modeled under the assumption that at least some animals in each group were treated and survived
- 2 until week 104. (See Table C-24.)
- 3 Sivak et al. (1997), exposed male C3H/HeJ mice dermally to benzo[a]pyrene in
- 4 cyclohexanone/acetone (1:1) for 24 months, and reported mean survival times for each group. All
- 5 high-dose mice died before the final sacrifice. From the information provided, it is apparent that
- 6 the animals in the control and lower two dose groups survived until study termination at week 104.
- 7 The study authors did not report how long treatment in the highest dose group lasted, but
- 8 estimation of the figure from the publication suggest that exposure duration was 74 weeks. (See
- 9 Table C-25).

а.	
_	

2 3

Table C-22. Skin tumor incidence, benign or malignant in female Swiss or NMRI mice dermally exposed to benzo[a]pyrene

			Average	First		Lifetime	
			daily	appearance	Length of	average	Skin tumor
	Mouse		dose	of tumor	exposure	daily dose	incidence (all
Study	strain	Dose (µg)	(µg/d)	(wks)	(wks)	(µg/d)	types)
Roe et al.,	Swiss	0 (acetone)	0	-	93	0.00	0/49 (0%)
1970 ^{a,b}		0.1	0.04	29–43	93	0.03	1/45 (2%)
		0.3	0.13	_	93	0.09	0/46 (0%)
		1	0.43	57–71	93	0.31	1/48 (2%)
		3	1.29	43–57	93	0.92	8/47 (20%)
		9	3.86	29–43	93	2.76	34/46 (74%)
Schmidt et	NMRI	0 (acetone)	0	-	104 ^d	0	0/100 (0%)
al., 1973 ^c		0.05	0.01	_	104	0.01	0/100 (0%)
		0.2	0.06	-	104	0.06	0/100 (0%)
		0.8	0.23	53 ^e	104	0.23	2/100 (2%)
		2	0.57	76 ^e	104	0.57	30/100 (30%)
	Swiss	0 (acetone)	0	-	104	0	0/80 (0%)
		0.05	0.01	-	104	0.01	0/80 (0%)
		0.2	0.06	_	104	0.06	0/80 (0%)
		0.8	0.23	58 ^e	104	0.23	5/80 (6%)
		2	0.57	61 ^e	104	0.57	45/80 (56%)
Schmähl et	NMRI	0 (acetone)	0	-	104	0	1/81 (1%)
al., 1977 ^c		1	0.29	NR	104	0.29	11/77 (14%)
		1.7	0.49	NR	104	0.49	25/88 (28%)
		3	0.86	NR	104	0.86	45/81 (56%)
Habs et al.,	NMRI	0 (acetone)	0	-	128	0	0/35 (0%)
1980 ^{c,†}		1.7	0.49	NR	120	0.49	8/34 (24.8%)
		2.6	0.74	NR	112	0.74	24/27 (89.3%)
		4.6	1.31	NR	88	0.80	22/24 91.7%)
Habs et al.,	NMRI	0 (acetone)	0	-	104	0	0/20 (0%)
1984 [°]		2	0.57	NR	104	0.57	9/20 (45%)
		4	1.14	NR	104	1.14	17/20 (85%)

^aDoses were applied 3 times/week for up to 93 weeks to shaved dorsal skin.

^bNumerator: number of mice detected with a skin tumor. Tumors were thought to be malignant based on invasion or penetration of the panniculus carnosus muscle. Denominator: number of mice surviving to 29 weeks (200 days).

^cDoses were applied 2 times/week to shaved skin of the back. Mice were exposed until natural death or until they developed a carcinoma at the site of application. Schmidt et al. (1973): At 0.23 µg/d, all tumors were malignant in both strains; at 0.57 μg/d, tumors were predominately malignant: 28/30 for NMRI and 42/45 for Swiss. Schmähl et al., (1977): malignant/total tumors were 10/11, 25/25, and 43/45 for the 1-, 1.7-, and 3-µg/d groups. Habs et al. (1984): malignant/total tumors were 7/9 and 17/11 for the 2- and $4-\mu g/d$ groups.

^dExposure periods not reported were assumed to be 104 weeks; indicated in italics.

^eCentral tendency estimates; range or other variability measure not reported.

^fThe percentages were reported by the authors as age-standardized incidences of animals with local tumors, derived using mortality data from the entire study population. The incidences reflect reported counts of tumorbearing animals and denominators estimated from the reported age-standardized rates. The authors did not report the percentages of local tumors which were carcinomas or papillomas. NR = not reported

> This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Table C-23. Skin tumor incidence, benign or malignant, in C57L male mice dermally exposed to benzo[a]pyrene

Study	Mouse strain	Dose (µg) ^a	Average daily dose (µg/d)	First appearance of tumor (wks)	Length of exposure (wks)	Lifetime average daily dose ^b	Skin tumor incidence (all types) ^c
Poel, 1959	C57L	0 (toluene)	0	_	92	0.00	0/33 (0%)
		0.15	0.06	42	98	0.05	5/55 (9%)
		0.38	0.16	24	103	0.16	11/55 (20%)
		0.75	0.32	36	94	0.24	7/56 (13%)
		3.8	1.63	21–25	82	0.80	41/49 (84%)

^aDoses were applied to interscapular skin 3 times/week for up to 103 weeks or until time of appearance of a grossly detected skin tumor. See Table B-15 for data of five highest dose groups (19–752 μ g) in which all mice died by week 44. These groups were not considered for dose-response modeling.

^bSee Section 2.5.2. of Toxicological Reivew for discussion of extrapolation to lifetime average daily doses. ^cTumors were histologically confirmed as epidermoid carcinomas.

3 4

1 2

Table C-24. Skin tumor incidence, benign or malignant, in female CFLPmice dermally exposed to benzo[a]pyrene

Study	Dose (µg) ^a	Average daily dose (μg/d)	Mean or median time of tumor appearance (wks)	Length of exposure (wks) ^d	Lifetime average daily dose (μg/d)	Skin tumor incidence (all types) ^e
Grimmer et al., 1983	0 (1:3 acetone:DMSO) 3.9 7.7 15.4	0 1.1 2.2 4.4	— 74.6 ± 16.8 ^b 60.9 ± 13.9 44.1 ± 7.7	104 104 104 104	0 1.1 2.2 4.4	0/80 (0%) 22/65 (34%) 39/64 (61%) 56/64 (88%)
Grimmer et al., 1984	0 (1:3 acetone:DMSO) 3.4 6.7 13.5	0 0.97 1.9 3.9	— 61 (53–65) [°] 47 (43–50) 35 (32–36)	104 104 104 104	0 0.97 1.9 3.9	0/80 (0%) 43/64 (67%) 53/65 (82%) 57/65 (88%)

^aIndicated doses were applied twice/week to shaved skin of the back for up to 104 weeks.

^bMean ± SD.

^cMedian and 95% confidence limit.

^dAssumed exposure period is indicated in italics.

^eIncidence denominators were calculated from reported tumor-bearing animals and reported percentages. Grimmer et al. (1983): malignant/total tumors were 15/22, 34/39, and 54/56 for the low- through high-dose groups. Grimmer et al. (1984): malignant /total tumors were 37/43, 45/53, and 53/57 for the low- through high-dose groups.

5

Table C-25. Skin tumor incidence, benign or malignant, in male C3H/HeJ mice dermally exposed to benzo[a]pyrene

Dose (µg)ª	Average daily dose (μg/d)	First appearance of tumor (wks)	Length of exposure (wks) ^b	Lifetime average daily dose (μg/d)	Skin tumor incidence (all types)c
0 (1:1 cyclohexanone/acetone)	0	_	104	0.0	0/30 (0%)
0.05	0.01	-	104	0.01	0/30 (0%)
0.5	0.14	NR	104	0.14	5/30 (17%)
5.0	1.4	~43	74	0.51	27/30 (90%)

^aIndicated doses were applied twice/week to shaved dorsal skin.

^bAssumed exposure period is indicated in italics.

^cNumber of skin tumor-bearing mice. In the high-dose group, 1 papilloma and 28 carcinomas were detected. In the 0.5 μ g group, 2 papillomas and 3 carcinomas were detected.

NR = not reported

Source: Sivak et al. (1997).

3

1

2

Table C-26. Summary of model selection and modeling results for bestfitting multistage models, for multiple data sets of skin tumors in mice following dermal benzo[a]pyrene exposure

		Goodne	ss-of-fit	BMD ₁₀			Figure
Data set	Model	<i>p</i> -value	AIC	(µg/d)	(µg/d)	Basis for Model Selection ^a	number
Poel, 1959	Multistage 1°	0.011	191.5	0.070	0.057		
male C57L	Multistage 2°	0.027	188.6	0.134	0.078		
	Multistage 3°	0.053	186.9	0.127	0.078	No significant improvement in model fit	C-9
	Multistage 4°	0.068	186.2	0.123	0.077	with higher stage	
Roe et al., 1970	Multistage 1°	0.110	131.1	0.318	0.249		
female Swiss	Multistage 2°	0.485	123.6	0.748	0.480	No significant improvement in model fit	C-10
	Multistage 3°	0.485	123.6	0.748	0.480	with higher stages	
Schmidt et al., 1973	Multistage 1°	0.008	162.7	0.256	0.194		
female NMRI	Multistage 2°	0.609	147.4	0.329	0.287	No significant improvement in model fit	C-11
	Multistage 3°	0.999	143.9	0.381	0.326	with higher stages	
Schmidt et al., 1973	Multistage 1°	<0.01	178.0	0.116	0.093		
female Swiss	Multistage 2°	0.514	153.3	0.216	0.192		
	Multistage 3°	0.983	151.3	0.282	0.223	No significant improvement in model fit	C-12
	Multistage 4°	0.983	151.3	0.282	0.223	with higher stage	
Schmähl et al., 1977	Multistage 1°	0.136	298.4	0.140	0.117		
female NMRI	Multistage 2°	0.939	296.3	0.233	0.149	No significant improvement in model fit	C-13
	Multistage 3°	0.939	296.3	0.233	0.143	with higher stage	
Habs et al., 1980	Multistage 1°	0.0	96.5	0.063	0.050		
female NMRI	Multistage 2	0.009	84.4	0.198	0.143		
	Multistage 3°	0.207	76.7	0.294	0.215	Only model with adequate fit	C-14
Habs et al., 1984	Multistage 1°	0.577	48.4	0.078	0.056	No significant improvement in model fit	C-15
female NMRI	Multistage 2°	1.000	47.6	0.171	0.060	with higher stage	
Grimmer et al., 1983	Multistage 1°	0.850	219.9	0.245	0.208	No significant improvement in model fit	C-16
female CFLP	Multistage 2°	0.972	221.1	0.292	0.213	with higher stages	
	Multistage 3°	0.972	221.1	0.292	0.213		
Grimmer et al., 1984 ^b	Multistage 1°	0.003	205.3	0.132	0.113	(Higher stages did not provide better fit)	C-17
female CFLP	LogLogistic	0.919	195.8	1.07	0.479	Lowest AIC among adequately fitting	C-18
	Dichotomous-Hill	1.000	197.7	0.902	0.533	models.	
	LogProbit	0.047	200.2	1.33	1.11		
	Gamma, Weibull	0.003	205.3	0.132	0.113	(Same as Multistage 1°)	
	Logistic	0.0	250.5	2.03	1.76		
	Probit	0.0	255.4	2.29	2.03		
	Multistage 1°, high	0.499	—	1.21	1.01		C-19
	dose dropped						
Sivak et al., 1997	Multistage 1°	0.059	57.8	0.036	0.026		
male CeH/HeJ	Multistage 2°	0.998	48.6	0.109	0.058	No significant improvement in model fit	C-20
	Multistage 3°	0.998	48.6	0.109	0.052	with higher stage	

^a Adequate fit: goodness-of-fit p>0.05, scaled residuals <2.0, good fit near BMR, lack of extreme curvature not reflected in the observed data. ^b The POD for Grimmer et al. (1984), using a BMR of 70% (near response at the lowest dose), was based on the LogLogistic model. For comparison purposes, the multistage model was it fit to the Grimmer et al. (1984) data with the highest dose dropped (AIC not provided because it is not comparable to fits of the full dataset).

4

This document is a draft for review purposes only and does not constitute Agency policy.C-71DRAFT—DO NOT CITE OR QUOTE

Multistage Cancer Model with 0.95 Confidence Level 1 Multistage Cancer Linear extrapolation 0.8 06 Fraction Affected 0.4 0.2 0 BMD вмг 0 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.4 dose

Figure C-8. Fit of multistage model to skin tumors in C57L mice exposed dermally to benzo[a]pyrene (Poel, 1959); graph and model output.

```
_______
       Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
       Input Data File:
C:\Usepa\BMDS21\Data\msc benzo[a]pyrene Poel 1959 MultiCanc3 0.1.(d)
       Gnuplot Plotting File:
C:\Usepa\BMDS21\Data\msc_benzo[a]pyrene_Poel_1959_MultiCanc3_0.1.plt
 _____
  The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
               -beta1*dose^1-beta2*dose^2-beta3*dose^3)]
  The parameter betas are restricted to be positive
  Dependent variable = NumAff
  Independent variable = LADD
Total number of observations = 5
Total number of records with missing values = 0
Total number of parameters in model = 4
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
```

Default Initial Parameter Values

This document is a draft for review purposes only and does not constitute Agency policy. C-72 DRAFT—DO NOT CITE OR QUOTE

This document is a draft for review purposes only and does not constitute Agency policy.

2 Confidence level = 0.95
3 BMD = 0.126567
4 BMDL = 0.0777875
6 BMDU = 0.272961
7 BMDU = 0.272961
7 Taken together, (0.0777875, 0.272961) is a 90 % two-sided confidence
10 interval for the BMD
11 Multistage Cancer Slope Factor = 1.28555
13

Multistage Cancer Model with 0.95 Confidence Level

1 2 3 4 567890123456789012345678901234567

Figure C-9. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970); graph and model output.

```
_____
        Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
        Input Data File: C:\Usepa\BMDS21\Data\msc benzo[a]pyrene Roe 1970 Setting.(d)
        Gnuplot Plotting File: C:\Usepa\BMDS21\Data\msc benzo[a]pyrene Roe 1970 Setting.plt
 _____
BMDS Model Run
The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
              -beta1*dose^1-beta2*dose^2-beta3*dose^3-beta4*dose^4-beta5*dose^5)]
  The parameter betas are restricted to be positive
  Dependent variable = tumors
  Independent variable = LADD
Total number of observations = 6
Total number of records with missing values = 0
Total number of parameters in model = 6
Total number of specified parameters = 0
Degree of polynomial = 5
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
               Default Initial Parameter Values
                  Background =
                                       0
```

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

Beta(1)	=	0.0962491
Beta(2)	=	0.141689
Beta(3)	=	0
Beta(4)	=	0
Beta(5)	=	0

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Beta(3) -Beta(4) -Beta(5)
have been estimated at a boundary point, or have been specified by the user,
and do not appear in the correlation matrix)

	Background	Beta(1)	Beta(2)
Background	1	-0.57	0.45
Beta(1)	-0.57	1	-0.94
Beta(2)	0.45	-0.94	1

Parameter Estimates

			95.0% Wald Conf	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
Background	0.00584893	*	*	*
Beta(1)	0.0379152	*	*	*
Beta(2)	0.166839	*	*	*
Beta(3)	0	*	*	*
Beta(4)	0	*	*	*
Beta(5)	0	*	*	*

* - Indicates that this value is not calculated.

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-56.1835	6			
Fitted model	-57.5694	3	2.77176	3	0.4282
Reduced model	-118.948	1	125.529	5	<.0001

AIC: 121.139

Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
0.0000	0.0058	0.275	0.000	47	-0.526
0.0300	0.0071	0.321	1.000	45	1.204
0.0900	0.0106	0.444	0.000	42	-0.670
0.3100	0.0331	1.423	1.000	43	-0.361
0.9200	0.1664	6.821	8.000	41	0.494
2.7600	0.7488	34.444	34.000	46	-0.151

Chi^2 = 2.57 d.f. = 3 P-value = 0.4626

Benchmark Dose Computation

Specified effect = 0.1
Risk Type = Extra risk
Confidence level = 0.95
BMD = 0.689131
BMDL = 0.393806
BMDU = 0.952365
Taken together, (0.393806, 0.952365) is a 90 % two-sided confidence
interval for the BMD

Multistage Cancer Slope Factor = 0.253932

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

C-76

Multistage Cancer Model with 0.95 Confidence Level

Figure C-10. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output.

```
_____
                     _____
        Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
        Input Data File:
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Schmidt1973femaleNMRI\2MulSchMS .(d)
        Gnuplot Plotting File:
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Schmidt1973femaleNMRI\2MulSchMS .plt
 _____
                     _____
BMDS Model Run
     ~~~~~~~
  The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
               -beta1*dose^1-beta2*dose^2)]
  The parameter betas are restricted to be positive
  Dependent variable = incidence
  Independent variable = dose
Total number of observations = 5
Total number of records with missing values = 0
 Total number of parameters in model = 3
Total number of specified parameters = 0
Degree of polynomial = 2
Maximum number of iterations = 250
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
* * * *
    We are sorry but Relative Function and Parameter Convergence
                                                                 * * * *
****
     are currently unavailable in this model. Please keep checking
                                                                * * * *
```

This document is a draft for review purposes only and does not constitute Agency policy.

Fraction Affected

DRAFT-DO NOT CITE OR QUOTE

```
**** the web sight for model updates which will eventually
**** incorporate these convergence criterion. Default values used. ****
                Default Initial Parameter Values
                   Background =
                                  0
                      Beta(1) =
                                          0
                      Beta(2) =
                                    1.11271
          Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -Background
                                                   -Beta(1)
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
              Beta(2)
  Beta(2)
              1
                              Parameter Estimates
                                                    95.0% Wald Confidence Interval
      Variable
                      Estimate
                                     Std. Err.
                                                Lower Conf. Limit Upper Conf. Limit
    Background
                      0
                                      *
       Beta(1)
                            0
       Beta(2)
                      0.970648
                                         *
                                                         *
                                                                           *
* - Indicates that this value is not calculated.
                     Analysis of Deviance Table
                Log(likelihood) # Param's Deviance Test d.f. P-value
     Model
    Full model
                                  5
                    -70.8903
                                           3.58562 4
  Fitted model
                     -72.6831
                                     1
                                                                  0.465
                                                      4
                                             96.054
 Reduced model
                     -118.917
                                     1
                                                                <.0001
                     147.366
         ATC:
                              Goodness of Fit
                                                           Scaled
    Dose Est._Prob. Expected Observed Size
                                                          Residual
  _____

        0.0000
        0.0000
        0.000
        100

        0.0100
        0.0001
        0.010
        0.000
        100

                                                           0.000
                                                          -0.099
   0.0600
           0.0035
                          0.349 0.000
                                                 100
                                                          -0.592
          0.0501
0.2705
                           5.005 2.000
27.048 30.000
                                                100
100
   0.2300
                                                          -1.378
0.665
   0.5700
                         27.048
Chi^2 = 2.70 d.f. = 4 P-value = 0.6091
  Benchmark Dose Computation
Specified effect =
                          0.1
Risk Type
            =
                     Extra risk
Confidence level =
                           0.95
                      0.329464
           BMD =
           BMDL =
                      0.286624
           BMDU =
                       0.384046
Taken together, (0.286624, 0.384046) is a 90 % two-sided confidence
interval for the BMD
Multistage Cancer Slope Factor = 0.348889
```

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123

74

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

Figure C-11. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973); graph and model output.

```
Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
                Input Data File:
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Schmidt1973swissmice\3MulSchMS .(d)
                Gnuplot Plotting File:
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Schmidt1973swissmice\3MulSchMS .plt
        BMDS Model Run
                       The form of the probability function is:
          P[response] = background + (1-background) * [1-EXP(
                       -beta1*dose^1-beta2*dose^2-beta3*dose^3)]
          The parameter betas are restricted to be positive
          Dependent variable = incidence
          Independent variable = dose
        Total number of observations = 5
        Total number of records with missing values = 0
        Total number of parameters in model = 4
        Total number of specified parameters = 0
        Degree of polynomial = 3
        Maximum number of iterations = 250
        Relative Function Convergence has been set to: 2.22045e-016
        Parameter Convergence has been set to: 1.49012e-008
       **** We are sorry but Relative Function and Parameter Convergence
                                                                           * * * *
```

**** are currently unavailable in this model. Please keep checking **** **** the web sight for model updates which will eventually * * * * **** incorporate these convergence criterion. Default values used. **** Default Initial Parameter Values Background = 0 Beta(1) =0 0.338951 3.8728 Beta(2) = Beta(3) = 3.8728 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -Background -Beta(1) have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) Beta(2) Beta(3) 1 Beta(2) -0.99 -0.99 Beta(3) 1 Parameter Estimates 95.0% Wald Confidence Interval Estimate Std. Err. Lower Conf. Limit Upper Conf. Variable Limit 0 * * Background * * * Beta(1) 0 0.108125 * * * Beta(2) Beta(3) 4.31441 * * - Indicates that this value is not calculated. Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model -73.5285 5 Full model Fitted model -73.6628 2 0.268637 3 4 0.9658 1 <.0001 Reduced model -150.708 154.359 151.326 AIC: Goodness of Fit Scaled Dose Est._Prob. Expected Observed Size Residual -----_____
 80
 0.000

 80
 -0.035

 80
 -0.325

 80
 0.230

 80
 -0.059
 0.0000 0.0000 0.000 0.000 0.001 0.000 0.106 0.000 4.524 5.000 45.260 45.000 0.0000 0.0100 0.0600 0.0013 0.2300 0.0566 0.5700 0.5657 Chi^2 = 0.16 d.f. = 3 P-value = 0.9833 Benchmark Dose Computation Specified effect = 0.1 = Risk Type Extra risk Confidence level = 0.95 BMD = 0.282007 BMDI. = 0.223401 BMDU = 0.309888 Taken together, (0.223401, 0.309888) is a 90 % two-sided confidence interval for the BMD 0.447626 Multistage Cancer Slope Factor =

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

Figure C-12. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977); graph and model output.

```
_____
               Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
               Input Data File:
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Schmahl1977femaleNMRI\2MulschMS .(d)
              Gnuplot Plotting File:
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Schmahl1977femaleNMRI\2MulschMS .plt
                      _____
                                   _____
       BMDS Model Run
                     The form of the probability function is:
         P[response] = background + (1-background) * [1-EXP(
                      -beta1*dose^1-beta2*dose^2)]
         The parameter betas are restricted to be positive
         Dependent variable = incidence
         Independent variable = dose
       Total number of observations = 4
       Total number of records with missing values = 0
       Total number of parameters in model = 3
       Total number of specified parameters = 0
       Degree of polynomial = 2
       Maximum number of iterations = 250
       Relative Function Convergence has been set to: 2.22045e-016
       Parameter Convergence has been set to: 1.49012e-008
```

This document is a draft for review purposes only and does not constitute Agency policy. C-81 DRAFT—DO NOT CITE OR QUOTE

**** **** We are sorry but Relative Function and Parameter Convergence **** are currently unavailable in this model. Please keep checking * * * * **** the web sight for model updates which will eventually * * * * **** incorporate these convergence criterion. Default values used. * * * *

Default Initial	Parameter Values
Background =	0.0115034
Beta(1) =	0.284955
Beta(2) =	0.750235

Asymptotic Correlation Matrix of Parameter Estimates

	Background	Beta(1)	Beta(2)
Background	1	-0.67	0.47
Beta(1)	-0.67	1	-0.94
Beta(2)	0.47	-0.94	1

Parameter Estimates

				95.0% Wald Conf:	idence Interval
	Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf.
Limit					
	Background	0.0123066	*	*	*
	Beta(1)	0.274413	*	*	*
	Beta(2)	0.764244	*	*	*

* - Indicates that this value is not calculated.

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-145.127	4			
Fitted model	-145.13	3	0.00579898	1	0.9393
Reduced model	-184.158	1	78.0608	3	<.0001
AIC:	296.261				

		Good	dness of Fit	5	
Dose	EstProb.	Expected	Observed	Size	Scaled Residual
0.0000 0.2900 0.4900	0.0123 0.1446 0.2813	0.997 11.137 24.756	1.000 11.000 25.000	81 77 88	0.003 -0.045 0.058
0.8600	0.5567	45.096	45.000	81	-0.022

P-value = 0.9393

 $Chi^{2} = 0.01$ d.f. = 1

Benchmark Dose Computation

Specified effect = 0.1 Risk Type = Extra risk Confidence level = 0.95 0.232893 BMD = 0.148895 BMDL = BMDU = 0.320396 Taken together, (0.148895, 0.320396) is a 90 % two-sided confidence interval for the BMD

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

1

2 3

4

567890123456789012345678901234567890123456789012

Figure C-13. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980); graph and model output.

```
_____
       Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
       Input Data File: M:\_BMDS\msc_BAP_HABS1980_MultiCanc3_0.1.(d)
       Gnuplot Plotting File: M:\ BMDS\msc BAP HABS1980 MultiCanc3 0.1.plt
      _____
BMDS Model Run
                      The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
              -beta1*dose^1-beta2*dose^2-beta3*dose^3)]
  The parameter betas are restricted to be positive
  Dependent variable = NumAff
  Independent variable = LADD
Total number of observations = 4
Total number of records with missing values = 0
Total number of parameters in model = 4
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
               Default Initial Parameter Values
                 Background =
                                      0
                    Beta(1) =
                                      0
                    Beta(2) =
                                4.23649
```

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

```
Beta(3) =
                                         0
         Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -Background -Beta(1)
                                                            -Beta(2)
               have been estimated at a boundary point, or have been specified by the
user,
               and do not appear in the correlation matrix )
              Beta(3)
  Beta(3)
              1
                              Parameter Estimates
                                                   95.0% Wald Confidence Interval
      Variable
                     Estimate
                                   Std. Err. Lower Conf. Limit Upper Conf.
Limit
                           0
                                        *
    Background
                                                        *
                                                                         *
                                                       *
       Beta(1)
                           0
                                        *
                                                                         *
                                        *
                                                        *
       Beta(2)
                           0
                                        +
       Beta(3)
                       4.1289
* - Indicates that this value is not calculated.
                     Analysis of Deviance Table
               Log(likelihood) # Param's Deviance Test d.f. P-value
      Model
    Full model
                 -34.8527
                                   4
                    -37.3373
                                           4.96903
                                                                0.1741
  Fitted model
                                                      3
                                    1
                                          95.4478 3
                                                               <.0001
 Reduced model
                    -82.5767
                                   1
                    76.6745
         AIC:
                              Goodness of Fit
                                                          Scaled
                                               Size
           Est. Prob. Expected Observed
    Dose
                                                         Residual
   _____
   0.00000.00000.000350.0000.49000.384813.0828.00034-1.7910.74000.812321.93324.000271.0190.80000.879221.10222.000240.563
Chi^2 = 4.56 d.f. = 3 P-value = 0.2067
  Benchmark Dose Computation
Specified effect =
                          0.1
Risk Type
            =
                    Extra risk
Confidence level =
                          0.95
                     0.294407
           BMD =
           BMDL =
                      0.215151
           BMDU =
                     0.320955
Taken together, (0.215151, 0.320955) is a 90 % two-sided confidence
interval for the BMD
Multistage Cancer Slope Factor = 0.46479
```


Multistage Cancer Model with 0.95 Confidence Level

Figure C-14. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1984); graph and model output.

```
_____
       Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
       Input Data File: C:\Usepa\BMDS21\mscDax_Setting.(d)
       Gnuplot Plotting File: C:\Usepa\BMDS21\mscDax Setting.plt
      _____
BMDS Model Run
 The form of the probability function is:
 P[response] = background + (1-background) * [1-EXP(
              -beta1*dose^1)]
 The parameter betas are restricted to be positive
 Dependent variable = tumors
 Independent variable = LADD
Total number of observations = 3
Total number of records with missing values = 0
Total number of parameters in model = 2
Total number of specified parameters = 0
Degree of polynomial = 1
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
```

This document is a draft for review purposes only and does not constitute Agency policy. C-85 DRAFT—DO NOT CITE OR QUOTE

```
Default Initial Parameter Values
                 Background =
                                    0
                   Beta(1) =
                               1.66414
         Asymptotic Correlation Matrix of Parameter Estimates
         have been estimated at a boundary point, or have been specified by the user,
             and do not appear in the correlation matrix )
            Beta(1)
         1
  Beta(1)
                           Parameter Estimates
                                             95.0% Wald Confidence Interval
     Variable
                   Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit
   Background
                    0
                                 *
                                                 *
                                                                 *
                                   *
                                                  *
                                                                  *
      Beta(1)
                    1.35264
* - Indicates that this value is not calculated.
                   Analysis of Deviance Table
             Log(likelihood) # Param's Deviance Test d.f. P-value
     Model
   Full model -22.217 3
                                ĩ
                                              2 0.565
2 <.0001
  Fitted model
                  -22.7878
                                       1.14175
                                                         0.565
                               1
                                      37.6739
 Reduced model
                  -41.0539
                  47.5757
        AIC:
                           Goodness of Fit
                                                     Scaled
                                                Residual
   Dose Est. Prob. Expected Observed Size
 _____
  0.00000.00000.0000.000200.0000.57000.537510.7499.00020-0.7841.14000.786015.72117.000200.697
Chi^2 = 1.10 d.f. = 2 P-value = 0.5765
  Benchmark Dose Computation
Specified effect =
                       0.1
Risk Type
          =
                  Extra risk
Confidence level =
                       0.95
          BMD =
                   0.0778926
         BMDL =
                  0.0558466
         BMDU =
                   0.111853
Taken together, (0.0558466, 0.111853) is a 90 % two-sided confidence
interval for the BMD
Multistage Cancer Slope Factor = 1.79062
```

This document is a draft for review purposes only and does not constitute Agency policy. C-86 DRAFT—DO NOT CITE OR QUOTE

Multistage Cancer Model with 0.95 Confidence Level

Figure C-15. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1983); graph and model output.

```
Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
        Input Data File:
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Grimmer1983CFLPmice\1MulGriMS .(d)
        Gnuplot Plotting File:
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Grimmer1983CFLPmice\1MulGriMS .plt
BMDS Model Run
   The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
              -beta1*dose^1)]
  The parameter betas are restricted to be positive
  Dependent variable = incidence
  Independent variable = dose
Total number of observations = 4
Total number of records with missing values = 0
Total number of parameters in model = 2
Total number of specified parameters = 0
Degree of polynomial = 1
Maximum number of iterations = 250
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
```

This document is a draft for review purposes only and does not constitute Agency policy. C-87 DRAFT—DO NOT CITE OR QUOTE

```
**** We are sorry but Relative Function and Parameter Convergence ****
**** are currently unavailable in this model. Please keep checking ****
**** the web sight for model updates which will eventually
                                                                          * * * *
**** incorporate these convergence criterion. Default values used. ****
                   Default Initial Parameter Values
                      Background = 0
Beta(1) = 0.478645
           Asymptotic Correlation Matrix of Parameter Estimates
            ( *** The model parameter(s) -Background
                 have been estimated at a boundary point, or have been specified by the user,
                  and do not appear in the correlation matrix )
                Beta(1)
   Beta(1) 1
                                  Parameter Estimates
                                                           95.0% Wald Confidence Interval
                         Estimate
      Variable
                                         Std. Err. Lower Conf. Limit Upper Conf. Limit
     Background
                          0
                                          *
                                                                *
                                              *
                         0.430366
       Beta(1)
* - Indicates that this value is not calculated.
                        Analysis of Deviance Table
      Model
                 Log(likelihood) # Param's Deviance Test d.f. P-value
    Full model -108.532 4
                                                0.823537 3 0.843
155.805 3 <.0001
  Fitted model
                        -108.943
                                          1
                                                                          0.8438
                                        1
                       -186.434
 Reduced model
          AIC: 219.887
                                   Goodness of Fit
                                                                    Scaled
                                                      Size
    Dose
             Est._Prob. Expected Observed
                                                                  Residual
  _____

        0.0000
        0.0000
        0.000
        0.000
        80
        -0.000

        1.1100
        0.3798
        24.687
        22.000
        65
        -0.687

        2.2000
        0.6120
        39.169
        39.000
        64
        -0.043

        4.4000
        0.8495
        54.366
        56.000
        64
        0.571

                  d.f. = 3
                                   P-value = 0.8496
Chi^{2} = 0.80
  Benchmark Dose Computation
                             0.1
Specified effect =
Risk Type =
                       Extra risk
                             0.95
Confidence level =
            BMD =
                        0.244816
            BMDL =
                         0.208269
            BMDU =
                         0.289606
Taken together, (0.208269, 0.289606) is a 90 % two-sided confidence
interval for the BMD
Multistage Cancer Slope Factor = 0.480148
```

1234567890123456789012345678901233456789012345

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

Multistage Cancer Model with 0.95 Confidence Level Multistage Cancer 1 Linear extrapolation 0.8 0.6 Fraction Affected 0.4 0.2 0 DI BMC 0 0.5 1.5 2 2.5 3 3.5 1 4 dose

Figure C-16. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output.

```
Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
        Input Data File:
C:\Usepa\BMDS21\Data\msc benzo[a]pyrene Grimmer1984 MultiCanc1 0.1.(d)
        Gnuplot Plotting File:
C:\Usepa\BMDS21\Data\msc_benzo[a]pyrene_Grimmer1984_MultiCanc1 0.1.plt
                                                  Wed Apr 27 17:11:28 2011
 [add notes here]
                                The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
                -beta1*dose^1)]
  The parameter betas are restricted to be positive
  Dependent variable = NumAff
  Independent variable = LADD
Total number of observations = 4
Total number of records with missing values = 0
Total number of parameters in model = 2
Total number of specified parameters = 0
Degree of polynomial = 1
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
                 Default Initial Parameter Values
                   Background = 0.311241
                      Beta(1) =
                                    0.502556
```

This document is a draft for review purposes only and does not constitute Agency policy. C-89 DRAFT—DO NOT CITE OR QUOTE

Asym (**	ptotic Correla * The model pa	tion Matri: rameter(s)	x of Paramet -Backgrour	ter Estimates	5	
user.	have been es	timated at	a boundary	point, or ha	ave been spec:	ified by the
,	and do not a	ppear in th	ne correlati	ion matrix)		
	Beta(1)					
Beta(1)	1					
		Paramet	ter Estimate	es		
Variable Limit	e Estin	ate	Std. Err.	95.0% Lower Cor	Wald Confiden nf. Limit Up	nce Interval pper Conf.
Background Beta(1)	0.796	0 546	* *	*		*
* - Indicates t	hat this value	is not ca	lculated.			
	Analy	sis of Dev	iance Table			
Model	Log(likelik	.ood) # Pa:	ram's Devia	ance Test d.	.f. P-value	
Fitted model	-101.6	43	1 1	11.61 3	0.008	846
Reduced model	-1/5.2	37	1 158	3./9/ 3	<.000	Ul
AIC:	205.2	87				
		Goodne	ess of Fit	5	Caslad	
Dose E	stProb. E	xpected	Observed	Size	Residual	
0.0000	0.0000	0.000	0.000	65 64	0.000	
1.9100	0.7816	50.804	53.000	65	0.659	
$Chi^2 = 14.36$	d f = 3	P-va	0.000 = 0.002	5	-3.034	
011 2 14.00	u J	r va.	Iuc 0.0023			
Benchmark Do	se Computatior					
Specified effec	et =	0.1				
Risk Type	= Extra	risk				
Confidence leve	1 =	0.95				
BM	ID = 0.13	2272				
BMD	DL = 0.11	3427				
BMD	O.15	4848				
Taken together, interval for th	(0.113427, 0. e BMD	154848) is	a 90 %	two-sided co	onfidence	
Multistage Canc	er Slope Facto	r = 0	.881621			

Figure C-17. Fit of log-logistic model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984); graph and model output.

```
_____
        Logistic Model. (Version: 2.12; Date: 05/16/2008)
        Input Data File:
C:\Usepa\BMDS21\Data\lnl benzo[a]pyrene Grimmer1984 Grimmer1984 0.70u.(d)
        Gnuplot Plotting File:
C:\Usepa\BMDS21\Data\lnl_benzo[a]pyrene_Grimmer1984_Grimmer1984_0.70u.plt
_____
BMDS Model Run
  The form of the probability function is:
  P[response] = background+(1-background)/[1+EXP(-intercept-slope*Log(dose))]
  Dependent variable = NumAff
  Independent variable = LADD
  Slope parameter is not restricted
  Total number of observations = 4
  Total number of records with missing values = 0
  Maximum number of iterations = 250
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
  User has chosen the log transformed model
               Default Initial Parameter Values
                  background =
                                       0
                                 0.799142
                   intercept =
                      slope =
                                 0.894129
```

This document is a draft for review purposes only and does not constitute Agency policy. C-91 DRAFT—DO NOT CITE OR QUOTE
Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) intercept slope 1 -0.68 intercept 1 slope -0.68 Parameter Estimates 95.0% Wald Confidence Interval Variable Std. Err. Estimate Lower Conf. Limit Upper 0 Conf. Limit background * * * intercept 0.783559 0.922655 + + slope * - Indicates that this value is not calculated. Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model -95.8385 Full model 4 -95.9236 0.17031 Fitted model 2 2 0.9184 158.797 3 <.0001 Reduced model -175.237 1 AIC: 195.847 Goodness of Fit Scaled Dose Est._Prob. Expected Observed Size Residual _____
 0.0000
 0.0000
 0.000
 0.000
 65
 0.000

 0.9700
 0.6804
 43.543
 43.000
 64
 -0.146

 1.9100
 0.7991
 51.941
 53.000
 65
 0.328

 3.9000
 0.8849
 57.516
 57.000
 65
 -0.200
 0.000 04 -0.146 65 0.328 65 -^ 51.941 53.000 57.516 57.000 3.9000 0.8849 Chi^2 = 0.17 d.f. = 2 P-value = 0.9190 Benchmark Dose Computation 0.7 Specified effect = Risk Type = Extra risk Confidence level = 0.95 1.07152 BMD = BMDL = 0.478669

Figure C-18. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984), highest dose dropped; graph and model output.

```
Multistage Cancer Model. (Version: 1.9; Date: 05/26/2010)
         Input Data File: C:/Usepa/_BaP/msc_BaP_Grimmer1984_drophidose_MultiCanc1_0.7.(d)
         Gnuplot Plotting File:
C:/Usepa/_BaP/msc_BaP_Grimmer1984_drophidose_MultiCanc1_0.7.plt
 [add notes here]
    The form of the probability function is:
  P[response] = background + (1-background)*[1-EXP(
                 -beta1*dose^1)]
  The parameter betas are restricted to be positive
  Dependent variable = NumAff
  Independent variable = LADD
Total number of observations = 3
Total number of records with missing values = 0
Total number of parameters in model = 2
Total number of specified parameters = 0
Degree of polynomial = 1
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
                 Default Initial Parameter Values
                    Background =
                                    0.0806622
                       Beta(1) =
                                      0.88595
```

This document is a draft for review purposes only and does not constitute Agency policy. C-93 DRAFT—DO NOT CITE OR QUOTE

```
( *** The model parameter(s) -Background
                have been estimated at a boundary point, or have been specified by the
user.
                and do not appear in the correlation matrix )
               Beta(1)
  Beta(1)
                     1
                                Parameter Estimates
                                                       95.0% Wald Confidence Interval
                       Estimate
                                      Std. Err.
                                                  Lower Conf. Limit Upper Conf.
      Variable
Limit
    Background
                              0
                                          *
       Beta(1)
                       0.997117
                                          *
                                                           *
                                                                             *
* - Indicates that this value is not calculated.
                       Analysis of Deviance Table
                 Log(likelihood) # Param's Deviance Test d.f. P-value
      Model
    Full model
                      -71.5928
                                      3
  Fitted model
                      -72.2756
                                      1
                                              1.36568
                                                                    0.5052
                                                          2
 Reduced model
                      -134.46
                                      1
                                              125.735
                                                          2
                                                                    <.0001
          AIC:
                       146.551
                                Goodness of Fit
                                                              Scaled
    Dose
            Est._Prob.
                          Expected
                                      Observed
                                                   Size
                                                             Residual
        ____
                       _____
                                                 _____
             0.0000
   0.0000
                            0.000
                                    0.000
                                                    65
                                                             0.000
   0.9700
              0.6199
                           39.671
                                     43.000
                                                     64
                                                              0.857
                           55.322
                                     53.000
                                                             -0.809
   1.9100
              0.8511
                                                    65
Chi^{2} = 1.39
                  d.f. = 2
                               P-value = 0.4992
  Benchmark Dose Computation
                            0.7
Specified effect =
                       Extra risk
Risk Type
            =
Confidence level =
                           0.95
            BMD =
                         1.20745
           BMDL =
                         1.00734
           BMDU =
                         1.45789
Taken together, (1.00734, 1.45789) is a 90 % two-sided confidence
interval for the BMD
Multistage Cancer Slope Factor =
                                      0.6949
```


Figure C-19. Fit of multistage model to skin tumors in male CeH/HeJ mice exposed dermally to benzo[a]pyrene (Sivak et al., 1997); graph and model output.

```
_____
       Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
       Input Data File: C:\Usepa\BMDS21\Data\msc_benzo[a]pyrene_Sivak1993 MultiCanc2 0.1.(d)
       Gnuplot Plotting File:
C:\Usepa\BMDS21\Data\msc_benzo[a]pyrene_Sivak1993_MultiCanc2_0.1.plt
   _____
                 _____
 [add notes here]
   The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
              -beta1*dose^1-beta2*dose^2)]
  The parameter betas are restricted to be positive
  Dependent variable = NumAff
  Independent variable = LADD
Total number of observations = 4
Total number of records with missing values = 0
Total number of parameters in model = 3
Total number of specified parameters = 0
Degree of polynomial = 2
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
               Default Initial Parameter Values
                 Background =
                                      0
                               0.0936505
                    Beta(1) =
```

This document is a draft for review purposes only and does not constitute Agency policy. C-95 DRAFT—DO NOT CITE OR QUOTE

```
Beta(2) = 8.67239
            Asymptotic Correlation Matrix of Parameter Estimates
            ( *** The model parameter(s) -Background
                                                            -Beta(1)
                  have been estimated at a boundary point, or have been specified by the user,
                  and do not appear in the correlation matrix )
                 Beta(2)
   Beta(2)
                1
                                    Parameter Estimates
                                                             95.0% Wald Confidence Interval
                         Estimate
       Variable
                                           Std. Err.
                                                       Lower Conf. Limit Upper Conf. Limit
                                            *
                          0
     Background
                                                *
                                                                   *
                                                                                        *
       Beta(1)
                                 0
        Beta(2)
                            8.9375
                                                +
                                                                   +
                                                                                        +
* - Indicates that this value is not calculated.
                          Analysis of Deviance Table
       Model
                  Log(likelihood) # Param's Deviance Test d.f. P-value
                      -23.2693 4
-23.3009 1
     Full model
                                                              3
3
  Fitted model
                                                                             0.9959
                                                  0.0631003
  Reduced model
                        -69.5898
                                           1
                                                   92.641
                                                                             <.0001
         AIC:
                         48.6018
                                    Goodness of Fit
                                                                      Scaled
    Dose Est._Prob. Expected Observed Size
                                                                    Residual
  _____

        0.0000
        0.0000
        0.000
        0.000
        30
        0.000

        0.0100
        0.0009
        0.027
        0.000
        30
        -0.164

        0.1400
        0.1607
        4.821
        5.000
        30
        0.089

        0.5100
        0.9022
        27.065
        27.000
        30
        -0.040

                   d.f. = 3 P-value = 0.9982
 Chi^{2} = 0.04
  Benchmark Dose Computation
Specified effect =
                               0.1
Risk Type =
                         Extra risk
Confidence level =
                              0.95
                         0.108575
             BMD =
             BMDL =
                         0.058484
             BMDU =
                           0.129641
Taken together, (0.058484, 0.129641) is a 90 % two-sided confidence
interval for the BMD
Multistage Cancer Slope Factor = 1.70987
```

ALTERNATIVE APPROACHES FOR CROSS-SPECIES SCALING OF THE DERMAL SLOPE FACTOR

3 Several publications which develop a dermal slope factor for benzo[a]pyrene are available 4 in the peer reviewed literature (Knafla et al., 2010; 2006; Hussain et al., 1998; LaGoy and Quirk 5 1994; Sullivan et al., 1991). With the exception of the 2010 Knafla et al. publication, none of these 6 approaches applied quantitative adjustments to account for interspecies differences, though the 7 proposed slope factors were developed to account for human risk. Knafla et al. (2010) qualitatively 8 discuss processes which could affect the extrapolation between mice and humans including skin 9 metabolic activity adduct formation, stratum corneum thickness, epidermal thickness, etc. 10 Ultimately, the authors apply an adjustment based on the increased epidermal thickness of human 11 skin on the arms and hands compared to mouse interscapular epidermal thickness. They 12 hypothesize that the carcinogenic potential of benzo[a]pyrene may be related to the thickness of 13 the epidermal layer. 14 Because there is no established methodology for cross-species extrapolation of dermal 15 toxicity, several alternative approaches were evaluated. Each approach begins with the POD of 16 0.066 µg/day that was based on a 10% extra risk for skin tumors in male mice. Based on the 17 assumptions of each approach, a dermal slope factor for humans is calculated. The discussion of 18 these approaches uses the following abbreviations: 19 20 DSF = dermal slope factor 21 POD_M = point of departure (for 10% extra risk) from mouse bioassay, in µg/day 22 BW_M = mouse body weight = 0.035 kg (assumed) 23 BW_{H} = human body weight = 70 kg (assumed) 24 SA_{H} = total human surface area = 19,000 cm² (assumed) 25 SA_M = total mouse surface area = 100 cm² (assumed) 26 27 Approach 1. No interspecies adjustment to daily applied dose (POD) in mouse model 28 Under this approach, a given mass of benzo[a]pyrene, applied daily, would pose the same 29 risk in an animal or in humans, regardless of whether it is applied to a small surface area or to a 30 larger surface area at a proportionately lower concentration. 31 32 $DSF = 0.1 / POD_M$ 33 34 DSF= $0.1/0.068 \,\mu g/day = 1.5 \,(\mu g/day)^{-1}$ 35 36 Assumptions: The same mass of benzo[a]pyrene, applied daily, would have same potency in 37 mice as in human skin regardless of treatment area. 38

39 Approach 2. Cross-species adjustment based on whole body surface-area scaling

1 Under this approach, animals and humans are assumed to have equal lifetime cancer risk 2 with equal average whole body exposures in loading units ($\mu g/cm^2$ -day). As long as doses are low 3 enough that risk is proportional to the mass of applied compound, the daily dermal dose of 4 benzo[a]pyrene can be normalized over the total surface area. 5 6 POD $(\mu g/cm^2 - day) = POD_{M/SA} (\mu g/cm^2 - day) = POD_M (\mu g/day) / SA_M (cm^2)$ 7 8 $POD = (0.068 \,\mu g/day) / 100 \, cm^2$ 9 $= 0.00068 \,\mu g/cm^2 - day$ 10 11 DSF = $0.1/(0.00068 \,\mu\text{g/cm}^2\text{-day}) \approx 147 \,(\mu\text{g/cm}^2\text{-day})^{-1}$ 12 13 *Assumptions*: Mouse and human slope factors are equipotent if total dermal dose is 14 averaged over equal fractions of the entire surface area. Tumor potency of benzo[a]pyrene is 15 assumed to be related to overall dose and not dose per unit area. For example, a human exposed to 16 $0.01 \,\mu g/day$ on 10 cm² would be assumed to have the same potential to form a skin tumor as 17 someone treated with 0.01 μ g/day over 19,000 cm² (assumed human surface area). 18 19 Approach 3. Cross-species adjustment based on body weight 20 Under this approach, a given mass of benzo[a]pyrene is normalized relative to the body 21 weight of the animal or human. This approach has been used for oral doses for noncancer effects. 22 23 $POD_M / BW_M = 0.068 \mu g / 0.035 kg - day = 1.9 \mu g / kg - day$ 24 25 DSF = 0.1/1.9 µg/kg-day = 0.051 (µg/kg-day)⁻¹ 26 27 Assumptions: The potency of point of contact skin tumors is related to bodyweight and 28 humans and mice would have an equal likelihood of developing skin tumors based on a dermal dose 29 per kg basis. 30 31 *Issues*: Skin cancer following benzo[a]pyrene exposure is a local effect and not likely 32 dependent on body weight. 33 34 Approach 4. Cross-species adjustment based on allometric scaling using body weight to the 35 3/4 power 36 Under this approach, rodents and humans exposed to the same daily dose of a carcinogen, 37 adjusted for BW^{3/4}, would be expected to have equal lifetime risks of cancer. That is, a lifetime dose 38 expressed as µg/kg^{3/4}-day would lead to an equal risk in rodents and humans. This scaling reflects 39 the empirically observed phenomena of more rapid distribution, metabolism, and clearance in 40 smaller animals. The metabolism of benzo[a]pyrene to reactive intermediates is a critical step in 41 the carcinogenicity of benzo[a]pyrene, and this metabolism occurs in the skin.

DRAFT-DO NOT CITE OR QUOTE

1	
2	POD (μ g/day) = POD _M (μ g/day) × (BW _H / BW _M) ^{3/4}
3	
4	POD (μ g/day) = 0.068 μ g/day × (70 kg / 0.035 kg) ^{3/4}
5	$= 20.3 \mu g/day$
6	
7	DSF = $0.1/(20.3 \mu\text{g/day}) \approx 0.0049 (\mu\text{g/day})^{-1}$
8	
9	Assumptions: Risk at low doses of benzo[a]pyrene is dependent on absolute dermal dose
10	and not dose per unit of skin, meaning a higher exposure concentration of benzo[a]pyrene
11	contacting a smaller area of exposed skin could carry the same risk of skin tumors as a lower
12	exposure concentration of benzo[a]pyrene that contacts a larger area of skin.
13	
14	Issues: It is unclear if scaling of doses based on bodyweight ratios will correspond to
15	differences in metabolic processes in the skin of mice and humans.
16	
17	Synthesis of the alternative approaches to cross-species scaling
18	A comparison of the above approaches is provided in Table C-27 below. The lifetime risk
19	from a nominal human dermal exposure to benzo[a]pyrene over a 5% area of exposed skin
20	(approximately 950 cm ²), estimated at 1 x 10 $^{-4}$ µg/day*, is calculated for each of the approaches in
21	order to judge whether the method yields risk estimates that are unrealistically high.
22	
23	Other potential interspecies adjustments
24	The above discussion presents several mathematical approaches that result from varying
25	assumptions about what is the relevant dose metric for determining equivalence across species.
26	Biological information (that is not presently comprehensive or detailed enough to develop robust
27	models) that could be used in future biologically based models for cross-species extrapolation
28	include:
29	a. Quantitative information on interspecies differences in partitioning from exposure medium
30	to the skin and absorption through the skin
31	b. Thickness of the stratum corneum between anatomical sites and between species
32	c. Thickness of epidermal layer
33	d. Skin permeability
34	e. Metabolic activity of skin
35	f. Formation of DNA adducts in skin

Table C-27. Alternative approaches to cross-species scaling

1

Approach	Assumptions	Dose metric	DSF	Risk at nominal exposure (0.0001 µg/day)*
1. Mass-per- day scaling	Equal mass per day (μ g /d), if applied to <u>equal areas</u> of skin (cm ²), will affect similar numbers of cells across species. Cancer risk is proportional to the area (cm ²) exposed if the loading rate (μ g /cm ² -d) is the same. This approach assumes that risk is proportional to dose expressed as mass per day. This approach implies that any combination of loading rate (μ g /cm ² -day) and skin area exposed (cm ²) that have the same product when multiplied, will result in the same risk.	μg/day	1.3 per μg/day	1 x 10 ⁻⁴
2. Surface- area scaling	Equal mass per day (μ g /d), if applied to <u>equal fractions</u> of total skin surface (cm ²) will have similar cancer risks. That is, lifetime exposure normalized over the whole body [e.g., 5%-of-the-body lifetime exposure] at the same loading rate (μ g /cm ² -d) gives similar cancer risks across species. This approach assumes that risk is proportional to dose expressed as mass per area per day. This approach implies that risk does not increase with area exposed as long as dose per area remains constant.	µg/cm²-day	128 per µg/cm ² -day	7 x 10 ⁻⁷
3. Body- weight scaling	The skin is an organ with thickness and volume; benzo[a]pyrene is distributed within this volume of skin. Cancer risk is proportional to the concentration of benzo[a]pyrene in the exposed volume of skin. Equal mass per day (μ g /d), if distributed within equal fractions of total body skin will have similar cancer risks. That is, whole-body lifetime exposure [e.g., 5%-of-the-body lifetime exposure] at the same loading rate (μ g /cm ² -d) gives similar cancer risks across species. This approach assumes that risk is proportional to dose expressed as mass per kg body weight per day. This approach implies that any combination of dose (μ g /day) and body weight (kg) that have the same result when divided, will result in the same risk.	µg/kg-day	0.045 per μg/kg-day	6 x 10 ⁻⁸
4. Allometric scaling (BW ^{3/4})	Same as for body-weight scaling, except that benzo[a]pyrene distribution and <u>metabolism</u> takes place within this volume of skin. Allometric scaling is generally regarded as describing the relative rate of toxicokinetic processes across species. This approach also is used by EPA to scale oral exposures.	µg/day	0.0043 per μg /day	4 x 10 ⁻⁷

* Nominal exposure calculated as a geometric mean of average daily doses (µg/day) calculated from a range of benzo[a]pyre ppb) reported from non-contaminated rural/agricultural soils (ATSDR, 1995) and a range of standard exposure assumptions. 3

APPENDIX D. SUMMARY OF EXTERNAL PEER REVIEW AND PUBLIC COMMENTS AND EPA'S DISPOSITION

- 4
- 5

REFERENCES FOR APPENDICES 2

1

3	Multiple references published in the same year by the same author(s) have been assigned a letter
4	(e.g., 1986a, 1986b) based on order of appearance in the text of the document. Those same letters
5	have been retained for the appendices.
6	have been retained for the appendices.
0	
/ Q	Achard, S; Perderiset, M; Jaurand, MC. (1987) Sister chromatid exchanges in rat pleural mesothelial cells
9	treated with crocidonte, attapuigite, or benzo 5-4 pyrene. Br J ind Med 44:201-205.
10	Adler, ID; Ingwersen, I. (1989) Evaluation of chromosomal aberrations in bone marrow of 1C3F1 mice. Mutat
11	Res 224(3):343-345.
12	
13	Adler, ID; Kliesch, U; Kiefer, F. (1989) Clastogenic effects of benzo[a]pyrene in postimplantation embryos with
14 15	different genetic background. Teratog Carcinog Mutagen 9(6):383–392.
16	Agarwal R: Medrano FF: Khan III: et al. (1991) Metabolism of henzo[a]nyrene by human melanocytes in
17	culture. Carcinogenesis 12(10):1963–1966.
18	
19	Agrelo, C; Amos, H. (1981) DNA repair in human fibroblasts. In: De Serres, FJ.Ashby, J eds.: Elsevier/North-
20	Holland, 528–532.
21	Albert DE, Miller ML Cody, T. et al. (1001) Penzelal pyrane induced skin damage and tymer promotion in
$\frac{22}{23}$	the mouse Carcinogenesis 12(7):1273–1280
24	
25	Alexandrie, AK; Nyberg, F; Warholm, M; et al. (2004) Influence of CYP1A1, GSTM1, GSTT1, and NQO1
26	genotypes and cumulative smoking dose on lung cancer risk in a Swedish population. Cancer Epidemiol
27	Biomarkers Prev 13(6):908–914.
28	Alexandrey, K. Poize, M. Coldborg, M. et al. (1990) A new consitive fluoremetric access for the metabolism of
30	(+)-7 8-dihydroxy-7 8-dihydrohenzo[a]nyrene hy human hair follicles. Carcinogenesis 11:2157–2161
31	
32	Alfheim, I; Ramdahl, T. (1984) Contribution of wood combustion to indoor air pollution as measured by
33	mutagenicity in Salmonella and polycyclic aromatic hydrocarbon concentration. Environ Mutagen 6(2):121–
34	130.
33 36	Alzieu P. Cassand P. Colin, C. et al. (1987) Effect of vitamins A. C. and glutathione on the mutagenicity of
37	benzo[a]pyrene mediated by S9 from vitamin A-deficient rats. Mutat Res 192(4):227–231.
38	
39	Ames, BN; Durston, WE; Yamasaki, E; et al. (1973) Carcinogens are mutagens: a simple test system combining
40	liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70(8):2281–2285.
41	Amore DN McCours I Venerally E (1075) Matheda for data the course and mathematical states
42 43	Ames, BN; McLann, J; Yamasaki, E. (1975) Methods for detecting carcinogens and mutagens with the Salmonella (mammalian-microsome mutagenicity test. Mutat Res 31(6):347–364.
44	Samonena/manimanan-merosome mutagementy test. Mutat Kes 51(0).547-504.
45	Amacher, DE; Paillet, SC. (1983) The activation of procarcinogens to mutagens by cultured rat hepatocytes in
46	the L5178Y/TK mutation assay. Mutat Res 113:77-88.
47	

- 1 Amacher, DE; Paillet, SC; Turner, GN; et al. (1980) Point mutations at the thymidine kinase locus in L5178Y 2 3 mouse lymphoma cells. II. Test validation and interpretation. Mutat Res 72:447-474.
 - Amacher, DE; Turner, GN. (1980) Promutagen activation by rodent-liver postmitochondrial fractions in the L5178Y/TK cell mutation assay. Mutat Res 74:485-501.
 - Ampy, FR; Saxena, S; Verma, K. (1988) Mutagenicity of benzo(a)pyrene in uninduced tissues from BALB/c mice and Sprague-Dawley rats as an index of possible health risks using the Salmonella mutagenicity assay. Cytobios 56(225):81-87.
- 11 Andrysik, Z; Vondracek, J; Machala, M; et al. (2007) The aryl hydrocarbon receptor-dependent deregulation of 12 cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells. Mutat Res 615(1-13 2):87-97. 14
- 15 Antignac, E; Koch, B; Grolier, P; et al. (1990) Prochloraz as potent inhibitor of benzo[a]pyrene metabolism 16 and mutagenic activity in rat liver fractions. Toxicol Lett. 54(2–3):309–315. 17
- 18 Arce, GT; Allen, JW; Doerr, CL; et al. (1987) Relationships between benzo(a)pyrene-DNA adduct levels and 19 genotoxic effects in mammalian cells. Cancer Res 47(13):3388–3395. 20
- 21 Archibong, AE; Inyang, F; Ramesh, A; et al. (2002) Alteration of pregnancy related hormones and fetal 22 survival in F-344 rats exposed by inhalation to benzo(a)pyrene. Reprod Toxicol 16(6):801–808. 23
- 24 Archibong, AE; Ramesh, A; Niaz, MS; et al. (2008) Effects of benzo(a)pyrene on intra-testicular function in F-25 344 rats. Int J Environ Res Public Health 5(1):32–40. 26
- 27 ATSDR (Agency for Toxic Substances and Disease Registry). (1995) Toxicological profile for polycyclic 28 aromatic hydrocarbons. Atlanta, GA: Agency for Toxic Substances and Disease Registry. 29
- 30 Autrup, H; Seremet, T. (1986) Excretion of benzo[a]pyrene-Gua adduct in the urine of benzo[a]pyrene-treated 31 rats. Chem Biol Interact 60(2):217-226. 32
- 33 Autrup, H; Harris, CC; Stoner, GD; et al. (1978) Metabolism of [3H]benzo[a]pyrene by cultured human 34 bronchus and cultured human pulmonary alveolar macrophages. Lab Invest 38(3):217–224. 35
- 36 Autrup, H; Wefald, FC; Jeffrey, AM; et al. (1980) Metabolism of benzo[a]pyrene by cultured tracheobronchial 37 tissues from mice, rats, hamsters, bovines and humans. Int J Cancer 25(2):293–300. 38
- 39 Awogi, T; Sato, T. (1989) Micronucleus test with benzo[a]pyrene using a single peroral administration and 40 intraperitoneal injection in males of the MS/Ae and CD-1 mouse strains. Mutat Res 223(4):353–356. 41
- 42 Babson, JR; Russo-Rodriguez, SE; Rastetter, WH; et al. (1986) In vitro DNA-binding of microsomally-activated 43 fluoranthene: evidence that the major product is a fluoranthene N2-deoxyguanosine adduct. Carcinogenesis 44 7:859-865. 45
- 46 Balansky, R; Mircheva, Z; Blagoeva, P. (1994) Modulation of the mutagenic activity of cigarette smoke, 47 cigarette smoke condensate and benzo[a]pyrene in vitro and in vivo. Mutagenesis 9:107-112.
- 48

4 5 6

7 8

9

- 49 Bao, H; Vepakomma, M; Sarkar, MA. (2002) Benzo(a)pyrene exposure induces CYP1A1 activity and 50 expression in human endometrial cells. J Steroid Biochem Mol Biol 81(1):37-45. 51
- 52 Barfknecht, TR; Hites, RA; Cavaliers, EL; et al. (1982) Human cell mutagenicity of polycyclic aromatic
- 53 hydrocarbon components of diesel emissions. Dev Toxicol Environ Sci 10:277-294. 54

1 Bayer, R. (1978) In vivo induction of sister chromatid exchanges by three polyaromatic hydrocarbons. 2 3 Carcinogenesis 3:423–428.

Beland, F; Culp, S. (1998) Chronic bioassay of two composite samples from selected manufactured gas plant waste sites. Jefferson, AK: Research, NCfT; Technical Report 6722.02 (unpublished).

Benjamin, H; Storkson, J; Tallas, PG; et al. (1988) Reduction of benzo[a]pyrene-induced forestomach neoplasms in mice given nitrite and dietary soy sauce. Food Chem Toxicol 26(8):671–678.

4 5 6

7 8

9

10 Berenblum, I; Haran, N. (1955) The influence of croton oil and of polyethylene glycol-400 on carcinogenesis 11 in the forestomach of the mouse. Cancer Res 15(8):510–516. 12

13 Bevan, DR; Sadler, VM. (1992) Quinol diglucuronides are predominant conjugated metabolites found in bile of 14 rats following intratracheal instillation of benzo[a]pyrene. Carcinogenesis 13(3):403–407. 15

16 Bevan, DR; Ulman, MR. (1991) Examination of factors that may influence disposition of benzo[a]pyrene in 17 vivo: vehicles and asbestos. Cancer Lett 57(2):173-179. 18

19 Bevan, DR; Weyand, EH. (1988) Compartmental analysis of the disposition of benzo[a]pyrene in rats. 20 Carcinogenesis 9(11):2027-2032. 21

22 Biancifiori, C; Caschera, F; Giornelli-Santulli, F; et al. (1967) The action of oestrone and four chemical 23 carcinogens in intact and ovariectomized BALB/c/Cb/Se mice. Br J Cancer 21:452–459. 24

25 Bingham, E: Falk, HL. (1969) Environmental carcinogens. The modifying effect of cocarcinogens on the 26 threshold response. Arch Environ Health 19(6):779-783. 27

28 Blaha, L; Kapplova, P; Vondracek, J; et al. (2002) Inhibition of gap-junctional intercellular communication by 29 environmentally occurring polycyclic aromatic hydrocarbons. Toxicol Sci 65(1):43–51. 30

31 Boerrigter, ME. (1999) Treatment of lacZ plasmid-based transgenic mice with benzo[a]pyrene: measurement 32 of DNA adduct levels, mutant frequencies, and mutant spectra. Environ Mol Mutagen 34(2-3):140–147. 33

34 Bol, SA; van Steeg, H; Jansen, JG; et al. (1998) Elevated frequencies of benzo(a)pyrene-induced HPRT 35 mutations in internal tissue of XPA-deficient mice. Cancer Res 58(13):2850–2856. 36

37 Bos, RP; Theuws, JL; Jongeneelen, FJ; et al. (1988) Mutagenicity of bi-, tri- and tetra-cyclic aromatic 38 hydrocarbons in the "taped-plate assay" and in the conventional salmonella mutagenicity assay. Mutat Res 39 204:203-206. 40

41 Bouayed, J; Desor, F; Rammal, H; et al. (2009) Effects of lactational exposure to benzo[alpha]pyrene 42 (B[alpha]P) on postnatal neurodevelopment, neuronal receptor gene expression and behaviour in mice. 43 Toxicology 259(3):97–106. 44

45 Bowman, ED; Rothman, N; Hackl, C; et al. (1997) Interindividual variation in the levels of certain urinary 46 polycyclic aromatic hydrocarbon metabolites following medicinal exposure to coal tar ointment. Biomarkers 47 2:321-327. 48

49 Briedé, JJ; Godschalk, RW; Emans, MT; et al. (2004) In vitro and in vivo studies on oxygen free radical and 50 DNA adduct formation in rat lung and liver during benzo[a]pyrene metabolism. Free Radic Res 38(9):995– 51 1002. 52

53 Brooks, RA; Gooderham, NJ; Edwards, RJ; et al. (1999) The mutagenicity of benzo[a]pyrene in mouse small 54 intestine. Carcinogenesis 20(1):109-114. 55

1 Bruce, WR; Heddle, JA. (1979) The mutagenic activity of 61 agents as determined by the micronucleus, 2 3 Salmonella, and sperm abnormality assays. Can J Genet Cytol 21(3):319–334.

4 5 6

7 8

9

10 11

12

13

Brune, H; Deutsch-Wenzel, RP; Habs, M; et al. (1981) Investigation of the tumorigenic response to benzo(a)pyrene in aqueous caffeine solution applied orally to Sprague-Dawley rats. [Cancer Res Clin Oncol 102(2):153-157.

Burstyn, I; Kromhout, H; Partanen, T; et al. (2005) Polycyclic aromatic hydrocarbons and fatal ischemic heart disease. Epidemiology 16(6):744-750.

Byczkowski, IZ: Kulkarni, AP, (1990) Lipid peroxidation-coupled co-oxygenation of benzo(a) pyrene and benzo(a)pyrene-7,8-dihydrodiol in human term placental microsomes. Placenta 11(1):17–26.

14 Calaf, G; Russo, J. (1993) Transformation of human breast epithelial cells by chemical carcinogens. 15 Carcinogenesis 14:483-492. 16

17 Carver, JH; Machado, ML; MacGregor, JA. (1986) Application of modified Salmonella/microsome prescreen to 18 petroleum-derived complex mixtures and polynuclear aromatic hydrocarbons (PAH). Mutat Res 174(4):247-19 253. 20

21 Casto, BC; Pieczynski, WJ; Janosko, N; et al. (1976) Significance of treatment interval and DNA repair in the 22 enhancement of viral transformation by chemical carcinogens and mutagens. Chem Biol Interact 13(2):105-23 125. 24

25 Casto, BC; Janosko, N; DiPaolo, JA. (1977) Development of a focus assay model for transformation of hamster cells in vitro by chemical carcinogens. Cancer Res 37:3508-3515. 26 27

28 Cavalieri, E; Rogan, E; Toth, B; et al. (1981) Carcinogenicity of the environmental pollutants cyclopenteno-29 [cd]pyrene and cyclopentano[cd]pyrene in mouse skin. Carcinogenesis 2(4):277–281. 30

31 Cavalieri, EL; Higginbotham, S; RamaKrishna, NV; et al. (1991) Comparative dose-response tumorigenicity 32 studies of dibenzo[alpha,l]pyrene versus 7,12-dimethylbenz[alpha]anthracene, benzo[alpha]pyrene and two 33 dibenzo[alpha,l]pyrene dihydrodiols in mouse skin and rat mammary gland. Carcinogenesis 12(10):1939– 34 1944. 35

36 Cavret, S; Laurent, C; Feidt, C; et al. (2003) Intestinal absorption of 14C from 14C-phenanthrene, 37 14C-benzo[a]pyrene and 14C-tetrachlorodibenzo-para-dioxin: approaches with the Caco-2 cell line and with 38 portal absorption measurements in growing pigs. Reprod Nutr Dev 43(2):145–154. 39

40 Chen, C; Tang, Y; Jiang, X; et al. (2012) Early postnatal benzo(a)pyrene exposure in Sprague-Dawley rats 41 causes persistent neurobehavioral impairments that emerge postnatally and continue into adolescence and 42 adulthood. Toxicol Sci. Jan;125(1):248-61. 43

44 Chen, X; An, H; Ao, L; et al. (2011) The combined toxicity of dibutyl phthalate and benzo(a)pyrene on the 45 reproductive system of male Sprague Dawley rats in vivo. J Hazard Mater 15 (Feb);186(1):835-41. 46

47 Chen, L: Devanesan, PD: Higginbotham, S: et al. (1996) Expanded analysis of benzo[a]pyrene-DNA adducts 48 formed in vitro and in mouse skin: their significance in tumor initiation. Chem Res Toxicol 9(5):897–903. 49

50 Chen, S; Nguyen, N; Tamura, K; et al. (2003) The role of the Ah receptor and p38 in benzo[a]pyrene-51 7,8-dihydrodiol and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced apoptosis. J Biol Chem 52 278(21):19526-19533.

53 54 Choi, JY; Lee, KM; Cho, SH; et al. (2003) CYP2E1 and NQ01 genotypes, smoking and bladder cancer. 55 Pharmacogenetics 13(6):349-355.

1 2 3 Chouroulinkov, I; Gentil, A; Guerin, M. (1967) Study of the carcinogenic activity of 9,10-dimethylbenzanthracene and of 3,4-benzopyrene given orally. Bull Cancer 54(1):67–78. 4 5 6 7 8

Chung, [Y; Kim, Y]; Kim, [Y; et al. (2011) Benzo[a]pyrene reduces testosterone production in rat Leydig cells via a direct disturbance of testicular steroidogenic machinery. Environ Health Perspect.119(11):1569-74.

Chung, JY; Kim, JY; Kim, WR; et al. (2007) Abundance of aryl hydrocarbon receptor potentiates benzo[a]pyrene-induced apoptosis in Hepa1c1c7 cells via CYP1A1 activation. Toxicology 235(1–2):62–72.

11 Clement Associates. (1990) Development of a dose-response model for inhaled B[a]P. Fairfax, VA: Clement 12 Associates. 13

14 Clive, D; Johnson, KO; Spector, JF; et al. (1979) Validation and characterization of the L5178Y/TK+/- mouse 15 lymphoma mutagen assay system. Mutat Res 59(1):61–108. 16

17 Colapietro, AM; Goodell, AL; Smart, RC. (1993) Characterization of benzo[a]pyrene-initiated mouse skin 18 papillomas for Ha-ras mutations and protein kinase C levels. Carcinogenesis 14:2289-2295. 19

20 Cohen, GM; Haws, SM; Moore, BP; et al. (1976) Benzo(a)pyrene-3-yl hydrogen sulphate, a major ethyl acetate-21 extractable metabolite of benzo(a)pyrene in human, hamster and rat lung cultures. Biochem Pharmacol 22 25(23):2561-2570. 23

- 24 Conney, AH; Chang, RL; Jerina, DM; et al. (1994) Studies on the metabolism of benzo[a]pyrene and dose-25 dependent differences in the mutagenic profile of its ultimate carcinogenic metabolite. Drug Metab Rev 26 26(1-2):125-163. 27
- 28 Cooper, AR; Moley, KH. (2008) Maternal tobacco use and its preimplantation effects on fertility: more reasons 29 to stop smoking. Semin Reprod Med 26:204–212. 30
- 31 Cosma, GN; Marchok, AC. (1988) Benzo[a]pyrene- and formaldehyde-induced DNA damage and repair in rat 32 tracheal epithelial cells. Toxicology 51(2-3):309-320. 33
- 34 Cosma, GN; Jamasbi, R; Marchok, AC. (1988) Growth inhibition and DNA damage induced by benzo[a]pyrene 35 and formaldehyde in primary cultures of rat tracheal epithelial cells. Mutat Res 201(1):161–168. 36
- 37 Craig-Holmes, AP; Shaw, MW. (1977) Effects of six carcinogens on SCE frequency and cell kinetics in cultured 38 human lymphocytes. Mutat Res 46:375-384. 39
- 40 Crespi, CL; Altman, JD; Marletta, MA. (1985) Xenobiotic metabolism and mutation in a human lymphoblastoid 41 cell line. Chem Biol Interact 53:257-271. 42

43 Crofton-Sleigh, C; Doherty, A; Ellard, S; et al. (1993) Micronucleus assays using cytochalasin-blocked MCL-5 44 cells, a proprietary human cell line expressing five human cytochromes P-450 and microsomal epoxide 45 hydrolase. Mutagenesis 8(4):363-372. 46

- 47 Crowell, SR: Amin, SG: Anderson, KA: et al. (2011) Preliminary physiologically based pharmacokinetic models 48 for benzo[a]pyrene and dibenzo[def,p]chrysene in rodents. Toxicol Appl Pharmacol. Dec 15;257(3):365-76. 49
- 50 Culp, SJ; Gaylor, DW; Sheldon, WG; et al. (1998) A comparison of the tumors induced by coal tar and 51 benzo[a]pyrene in a 2-year bioassay. Carcinogenesis 19(1):117–124. 52
- 53 Culp, SJ; Warbritton, AR; Smith, BA; et al. (2000) DNA adduct measurements, cell proliferation and tumor
- 54 mutation induction in relation to tumor formation in B6C3F1 mice fed coal tar or benzo[a]pyrene.
- 55 Carcinogenesis 21(7):1433-1440.

9

2345678 Dahl, AR; Coslett, DS; Bond, JA; et al. (1985) Metabolism of benzo[a]pyrene on the nasal mucosa of Syrian hamsters: comparison to metabolism by other extrahepatic tissues and possible role of nasally produced metabolites in carcinogenesis. | Natl Cancer Inst 75(1):135–139.

1

9

10

11

Danheiser, SL; Liber, HL; Thilly, WG. (1989) Long-term, low-dose benzo[a]pyrene-induced mutation in human lymphoblasts competent in xenobiotic metabolism. Mutat Res 210(1):143–147.

Davidson, GE; Dawson, GW. (1976) Chemically induced presumed somatic mutations in the mouse. Mutat Res 38(2):151-154.

12 Dean, BJ. (1981) Activity of 27 coded compounds in the RL1 chromosome assay. Evaluation of short-term 13 tests for carcinogens: Report of the international collaborative program. Prog Mutat Res 1:570–579. 14

15 Dean, JH; Luster, MI; Boorman, GA; et al. (1983) Selective immunosuppression resulting from exposure to the 16 carcinogenic congener of benzopyrene in B6C3F1 mice. Clin Exp Immunol 52(1):199–206. 17

18 Dean, SW; Coates, A; Brooks, TM; et al. (1998) Benzo[a]pyrene site of contact mutagenicity in skin of Muta 19 mouse. Mutagenesis 13(5):515-518. 20

21 De Flora, S; D'Agostini, F; Izzotti, A; et al. (1991) Prevention by N-acetylcysteine of benzo[a]pyrene 22 clastogenicity and DNA adducts in rats. Mutat Res 250(1-2):87-93. 23

24 De Jong, WH; Kroese, ED; Vos, JG; et al. (1999) Detection of immunotoxicity of benzo[a]pyrene in a subacute 25 toxicity study after oral exposure in rats. Toxicol Sci 50:214–220. 26

27 de Raat, WK. (1979) Comparison of the induction by cigarette smoke condensates of sister-chromatid 28 exchanges in Chinese hamster cells and of mutations in Salmonella typhimurium. Mutat Res 66(3):253–259. 29

30 Dertinger, SD; Lantum, HB; Silverstone, AE; et al. (2000) Effect of 3'-methoxy-4'-nitroflavone on 31 benzo[a]pyrene toxicity. Aryl hydrocarbon receptor-dependent and -independent mechanisms. Biochem 32 Pharmacol 60(2):189–196. 33

34 Dertinger, SD; Nazarenko, DA; Silverstone, AE; et al. (2001) Aryl hydrocarbon receptor signaling plays a 35 significant role in mediating benzo[a]pyrene- and cigarette smoke condensate-induced cytogenetic damage in 36 vivo. Carcinogenesis 22(1):171–177.

37 38 Deutsch, J; Vatsis, KP; Coon, MJ; et al. (1979) Catalytic activity and stereoselectivity of purified forms of rabbit 39 liver microsomal cytochrome P-450 in the oxygenation of the (-) and (+) enantiomers of trans-7,8-dihydroxy-40 7.8-dihydrobenzo[alpha]pyrene. Mol Pharmacol 16(3):1011–1018. 41

42 Diamond, L; Kruszewski, F; Aden, DP; et al. (1980) Metabolic activation of benzo[a]pyrene by a human 43 hepatoma cell line. Carcinogenesis 1(10):871–875. 44

45 DiPaolo, JA; Donovan, P; Nelson, R. (1969) Quantitative studies of in vitro transformation by chemical 46 carcinogens. J Natl Cancer Inst 42(5):867-874. 47

48 DiPaolo, JA; Donovan, PJ; Nelson, RL. (1971) X-irradiation enhancement of transformation by benzo(a)pyrene 49 in hamster embryo cells. Proc Natl Acad Sci USA 68:1734-1737. 50

51 Dreij, K; Sundberg, K; Johansson, AS; et al. (2002) Catalytic activities of human alpha class glutathione 52 transferases toward carcinogenic dibenzo[a,l]pyrene diol epoxides. Chem Res Toxicol 15(6):825–831. 53

1 Dunkel, VC; Pienta, RJ; Sivak, A; et al. (1981) Comparative neoplastic transformation responses of Balb/3T3 2 3 cells, Syrian hamster embryo cells, and Rauscher murine leukemia virus-infected Fischer 344 rat embryo cells to chemical compounds. J Natl Cancer Inst 67:1303-1312. 4 5 6 7 8

Egert, G; Greim, H. (1976) Formation of mutagenic N-nitroso compounds from the pesticides prometryne, dodine and carbaryl in the presence of nitrite at pH 1. Mutat Res 37(2–3):179–186.

El-Bayoumy, K. (1985) Effects of organoselenium compounds on induction of mouse forestomach tumors by benzo(a)pvrene. Cancer Res 45:3631–3635.

11 El-Bavoumy, K: Hecht, SS: Hoffmann, D. (1982) Comparative tumor initiating activity on mouse skin of 12 6-nitrobenzo[a]pyrene, 6-nitrochrysene, 3-nitroperylene, 1-nitropyrene and their parent hydrocarbons. 13 Cancer Lett 16(3):333-337. 14

9

10

15 Emmett, EA; Bingham, EM; Barkley, W. (1981) A carcinogenic bioassay of certain roofing materials. Am J Ind 16 Med 2(1):59-64. 17

18 Emura, M; Richter-Reichhelm, HB; Schneider, P; et al. (1980) Sensitivity of Syrian golden hamster fetal lung 19 cells to benzo[a]pyrene and other polycyclic hydrocarbons in vitro. Toxicology 17(2):149–155. 20

21 Emura, M; Mohr, U; Riebe, M; et al. (1987) Predisposition of cloned fetal hamster lung epithelial cells to 22 transformation by a precarcinogen, benzo(a)pyrene, using growth hormone supplementation and collagen 23 gel substratum. Cancer Res 47(4):1155-1160. 24

25 Epler, JL; Winton, W; Ho, T; et al. (1977) Comparative mutagenesis of quinolines. Mutat Res 39(3-4):285-26 296. 27

28 Fahmy, MJ; Fahmy, OG. (1980) Altered control of gene activity in the soma by carcinogens. Mutat Res 72:165-29 172. 30

31 Fang, JL; Lazarus, P. (2004) Correlation between the UDP-glucuronosyltransferase (UGT1A1) TATAA box 32 polymorphism and carcinogen detoxification phenotype: significantly decreased glucuronidating activity 33 against benzo(a)pyrene-7,8-dihydrodiol(-) in liver microsomes from subjects with the UGT1A128 variant. 34 Cancer Epidemiol Biomarkers Prev 13(1):102–109. 35

36 Fedorenko, Z; Yansheva, N. (1967) Experimental reproduction of tumors of the antral part of the stomach in 37 mice by administration of various dose of 3,4-benzpyrene. Hyg Sanit 32(5):168–173. 38

39 Feldman, G; Remsen, J; Shinohara, K; et al. (1978) Excisability and persistence of benzo(a)pyrene DNA 40 adducts in epithelioid human lung cells. Nature 274(5673):796-798. 41

42 Feron, VJ; Kruysse, A. (1978) Effects of exposure to furfural vapour in hamsters simultaneously treated with 43 benzo[alpha] pyrene or diethylnitrosamine. Toxicology 11(2):127–144. 44

45 Feron, VJ; de Jong, D; Emmelot, P. (1973) Letter: Dose-response correlation for the induction of respiratory-46 tract tumours in Syrian golden hamsters by intratracheal instillations of benzo(a)pyrene. Eur J Cancer 47 9(5):387-390. 48

49 Field, E; Roe, F. (1965) Tumor promotion in the forestomach epithelium of mice by oral administration of 50 citrus oils. J Natl Cancer Inst 35(5):775–784.

51 52 Flowers, L; Bleczinski, WF; Burczynski, ME; et al. (1996) Disposition and biological activity of

53 benzo[a]pyrene-7,8-dione. A genotoxic metabolite generated by dihydrodiol dehydrogenase. Biochemistry 54 35(42):13664-13672. 55

1 Flowers, L; Ohnishi, ST; Penning, TM. (1997) DNA strand scission by polycyclic aromatic hydrocarbon 2 3 o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiguinone anion radicals. Biochemistry 36(28):8640-8648. 4 5 6 Flowers-Geary, L; Harvey, RG; Penning, TM. (1993) Cytotoxicity of polycyclic aromatic hydrocarbon oquinones in rat and human hepatoma cells. Chem Res Toxicol 6(3):252-260. 7 8 Flowers-Geary, L; Bleczinki, W; Harvey, RG; et al. (1996) Cytotoxicity and mutagenicity of polycyclic aromatic 9 hydrocarbon ortho-quinones produced by dihydrodiol dehydrogenase. Chem Biol Interact 99(1-3):55–72. 10 11 Foth. H: Kahl, R; Kahl, GF. (1988) Pharmacokinetics of low doses of benzo[a]pyrene in the rat. Food Chem 12 Toxicol 26(1):45-51. 13 14 Fowler, P; Whitwell, J; Jeffrey, L; et al. (2010) Cadmium chloride, benzo[a]pyrene and cyclophosphamide 15 tested in the in vitro mammalian cell micronucleus test (MNvit) in the human lymphoblastoid cell line TK6 at 16 Covance laboratories, Harrogate UK in support of OECD draft Test Guideline 487. Mutat Res 702(2):171–174. 17 18 Friesen, MC; Demers, PA; Spinelli, II; et al. (2010) Chronic and acute effects of coal tar pitch exposure and 19 cardiopulmonary mortality among aluminum smelter workers. Am [Epidemiol 172(7):790–799. 20 21 Gangar, SC; Sandhir, R; Rai, DV; et al. (2006) Preventive effects of Azadirachta indica on benzo(a)pyrene-DNA 22 adduct formation in murine forestomach and hepatic tissues. Phytother Res 20:889–895. 23 24 Gao, M; Li, Y; Sun, Y; et al. (2011) Benzo[a]pyrene exposure increases toxic biomarkers and morphological 25 disorders in mouse cervix. Basic Clin Pharmacol Toxicol. 109(5):398-406. 26 27 Gao, N; Aidoo, A; Heflich, RH. (1991) Analysis of rat lymphocyte activation of benzo[a]pyrene, 28 2-acetylaminofluorene, and several of their metabolites to mutagenic and DNA-damaging species in vitro. 29 Teratog Carcinog Mutagen 11(2):65–76. 30 31 Garçon, G; Gosset, P; Garry, S; et al. (2001a) Pulmonary induction of proinflammatory mediators following the 32 rat exposure to benzo(a)pyrene-coated onto Fe2O3 particles. Toxicol Lett 121(2):107–117. 33 34 Garcon, G; Zerimech, F; Hannothiaux, M; et al. (2001b) Antioxidant defense disruption by polycyclic aromatic 35 hydrocarbons-coated onto Fe(2)O(3) particles in human lung cells (A549). Toxicology 166(3):129–137. 36 37 Garry, S; Nesslany, F; Aliouat, E; et al. (2003a) Assessment of genotoxic effect of benzo[a]pyrene in 38 endotracheally treated rat using the comet assay. Mutat Res 534:33-43. 39 40 Garry, S: Nesslany, F; Aliouat, E; et al. (2003b) Hematite (Fe(2)0(3)) enhances benzo[a]pyrene genotoxicity in 41 endotracheally treated rat, as determined by Comet Assay. Mutat Res 538:19-29. 42 43 Gelboin, HV. (1980) Benzo[alpha]pyrene metabolism, activation and carcinogenesis: role and regulation of 44 mixed-function oxidases and related enzymes. Physiol Rev 60(4):1107-1166. 45 46 Generoso, WM; Cain, KT; Krishna, M; et al. (1979) Genetic lesions induced by chemicals in spermatozoa and 47 spermatids of mice are repaired in the egg. Proc Natl Acad Sci USA 76(1):435–437. 48 49 Generoso, WM; Cain, KT; Hellwig, CS; et al. (1982) Lack of association between induction of dominant-lethal 50 mutations and induction of heritable translocations with benzo[a]pyrene in postmeiotic germ cells of male 51 mice. Mutat Res 94(1):155-163. 52 53 Gerde, P; Muggenburg, BA; Sabourin, PJ; et al. (1993b) Disposition of polycyclic aromatic hydrocarbons in the 54 respiratory tract of the beagle dog. II. The conducting airways. Toxicol Appl Pharmacol 121(2):319–327. 55

1 Gerde, P; Muggenburg, BA; Lundborg, M; et al. (2001) The rapid alveolar absorption of diesel soot-adsorbed 2 3 benzo[a]pyrene: bioavailability, metabolism and dosimetry of an inhaled particle-borne carcinogen. Carcinogenesis 22(5):741-749. 4 5 6

Ginsberg, GL; Atherholt, TB. (1989) Transport of DNA-adducting metabolites in mouse serum following benzo[a]pyrene administration. Carcinogenesis 10(4):673-679.

Glatt, HR; Oesch, F; Frigerio, A; et al. (1975) Epoxides metabolically produced from some known carcinogens and from some clinically used drugs. I. Differences in mutagenicity. Int J Cancer 16(5):787–797.

11 Glatt, H: Bucker, M: Platt, KL: et al. (1985) Host-mediated mutagenicity experiments with benzo[a]pyrene and 12 two of its metabolites. Mutat Res 156(3):163-169. 13

14 Glatt, H; Seidel, A; Ribeiro, O; et al. (1987) Metabolic activation to a mutagen of 3-hydroxy-trans-7,8-15 dihydroxy-7,8-dihydrobenzo[a]pyrene, a secondary metabolite of benzo[a]pyrene. Carcinogenesis 16 8(11):1621-1627. 17

18 Greb, W; Strobel, R; Rohrborn, G. (1980) Transformation of BHK 21/CL 13 cells by various polycyclic 19 aromatic hydrocarbons using the method of Styles. Toxicol Lett 7(2):143–148. 20

21 Grimmer, G; Brune, H; Deutsch-Wenzel, R; et al. (1983) On the contribution of polycyclic aromatic 22 hydrocarbons to the carcinogenic impact of automobile exhaust condensate evaluated by local application 23 onto mouse skin. Cancer Lett 21(1):105–113. 24

25 Grimmer, G; Brune, H; Deutsch-Wenzel, R; et al. (1984) Contribution of polycyclic aromatic hydrocarbons to 26 the carcinogenic impact of gasoline engine exhaust condensate evaluated by implantation into the lungs of 27 rats. | Natl Cancer Inst 72(3):733-739. 28

Grimmer, G; Dettbam, G; Naujack, K; et al. (1994) Relationship between inhaled PAH and urinary excretion of 30 phenanthrene, pyrene and benzo(a)pyrene metabolites in coke plant workers. Polycyclic Aromat Compd 5:269-277.

33 Gross, P; Tolker, E; Babyak, MA; et al. (1965) Experimental lung cancer in hamsters. Repetitive intratracheal 34 applications of two carcinogenic hydrocarbons. Arch Environ Health 11:59–65. 35

36 Grover, PL. (1986) Pathways involved in the metabolism and activation of polycyclic hydrocarbons. 37 Xenobiotica 16(10-11):915-931. 38

39 Gupta, RS; Goldstein, S. (1981) Mutagen testing in the human fibroblast diphtheria toxin resistance (HF Dipr) 40 system. Evaluation of short-term tests for carcinogens: report of the international collaborative programs. 41 Prog Mutat Res 1:614–625. 42

43 Habs, M; Schmahl, D; Misfeld, J. (1980) Local carcinogenicity of some environmentally relevant polycyclic 44 aromatic hydrocarbons after lifelong topical application to mouse skin. Arch Geschwulstforsch 50(3):266-45 274. 46

47 Habs, M: Jahn, SA: Schmahl, D. (1984) Carcinogenic activity of condensate from coloquint seeds (*Citrullus* 48 colocynthis) after chronic epicutaneous administration to mice. J Cancer Res Clin Oncol 108(1):154–156. 49

50 Hackman, P; Hou, SM; Nyberg, F; et al. (2000) Mutational spectra at the hypoxanthine-guanine

51 phosphoribosyltransferase (HPRT) locus in T-lymphocytes of nonsmoking and smoking lung cancer patients.

52 Mutat Res 468(1):45-61.

53

7 8

9

10

29

31

Hakura, A; Tsutsui, Y; Sonoda, J; et al. (1998) Comparison between in vivo mutagenicity and carcinogenicity in multiple organs by benzo[a]pyrene in the lacZ transgenic mouse (Muta Mouse). Mutat Res 398(1–2):123–130.

Hall, M; Grover, PL. (1988) Stereoselective aspects of the metabolic activation of benzo[a]pyrene by human skin in vitro. Chem Biol Interact 64(3):281–296.

Hanelt, S; Helbig, R; Hartmann, A; et al. (1997) A comparative investigation of DNA adducts, DNA strand breaks and gene mutations induced by benzo[a]pyrene and (+/-)-anti-benzo[a]pyrene-7,8-diol 9,10-oxide in cultured human cells. Mutat Res 390:179–188.

Hara, T; Nishikawa, T; Sui, H; et al. (2007) In vivo photochemical skin micronucleus test using a sunlight simulator: detection of 8-methoxypsoralen and benzo[a]pyrene in hairless mice. Mutat Res 631:1–8.

Harper, BL; Ramanujam, VM; Legator, MS. (1989) Micronucleus formation by benzene, cyclophosphamide, benzo(a)pyrene, and benzidine in male, female, pregnant female, and fetal mice. Teratog Carcinog Mutagen 9(4):239–252.

He, SL; Baker, R. (1991) Micronuclei in mouse skin cells following in vivo exposure to benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, chrysene, pyrene and urethane. Environ Mol Mutagen 17(3):163–168.

Hecht, SS; Grabowski, W; Groth, K. (1979) Analysis of faeces for benzo[a]pyrene after consumption of charcoal-broiled beef by rats and humans. Food Cosmet Toxicol 17(3):223–227.

Heidelberger, C; Freeman, AE; Pienta, RJ; et al. (1983) Cell transformation by chemical agents--a review and analysis of the literature. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res 114(3):283–385.

Hemminki, K; Dickey, C; Karlsson, S; et al. (1997) Aromatic DNA adducts in foundry workers in relation to exposure, life style and CYP1A1 and glutathione transferase M1 genotype. Carcinogenesis 18(2):345–350.

Henry, MC; Port, CD; Bates, RR; et al. (1973) Respiratory tract tumors in hamsters induced by
 benzo(a)pyrene. Cancer Res 33(7):1585–1592.

Hermann, M. (1981) Synergistic effects of individual polycyclic aromatic hydrocarbons on the mutagenicity of their mixtures. Mutat Res 90(4):399–409.

Herrold, KM; Dunham, LJ. (1962) Induction of carcinoma and papilloma of the Syrian hamster by intratracheal instillation of benzo[a]-pyrene. J Natl Cancer Inst 28:467–491.

Higginbotham, S; RamaKrishna, NV; Johansson, SL; et al. (1993) Tumor-initiating activity and carcinogenicity
of dibenzo[a,l]pyrene versus 7,12-dimethylbenz[a]anthracene and benzo[a]pyrene at low doses in mouse
skin. Carcinogenesis 14(5):875–878.

Hirom, PC; Chipman, JK; Millburn, P; et al. (1983) Enterohepatic circulation of the aromatic hydrocarbons
benzo[a]pyrene and naphthalene. In: Extrahepatic drug metabolism and chemical carcinogenesis.
Amsterdam: Elsvier Science Publishers; pp. 275–281.

Hoffmann, D; Rathkamp, G; Nesnow, S; et al. (1972) Fluoranthenes: quantitative determination in cigarette
 smoke, formation by pyrolysis, and tumor-initiating activity. J Natl Cancer Inst 49(4):1165–1175.

Hood, DB; Nayyar, T; Ramesh, A; et al. (2000) Modulation in the developmental expression profile of Sp1 subsequent to transplacental exposure of fetal rats to desorbed benzo[a]pyrene following maternal

54 inhalation. Inhal Toxicol 12(6):511–535.

2 3 determinant of in vitro benzo[a]pyrene covalent binding and cytotoxicity. Toxicol Sci 78(1):32–40. 4 5 6 Huberman, E; Sachs, L; Yang, SK; et al. (1976) Identification of mutagenic metabolites of benzo(a)pyrene in mammalian cells. Proc Natl Acad Sci U S A 73:607-611. 7 8 Huh, N; Nemoto, N; Utakoji, T. (1982) Metabolic activation of benzo[a]pyrene, aflatoxin B1, and dimethylnitrosamine by a human hepatoma cell line. Mutat Res 94:339-348. 9 10 Husgafvel-Pursiainen, K; Sorsa, M; Moller, M; et al. (1986) Genotoxicity and polynuclear aromatic 11 hydrocarbon analysis of environmental tobacco smoke samples from restaurants. Mutagenesis 1(4):287– 12 292. 13 14 IARC (International Agency for Research on Cancer). (1973) IARC monographs on the evaluation of 15 carcinogenic risks to humans. Vol. 3. Certain polycyclic aromatic hydrocarbons and heterocyclic compounds. 16 Lyon, France: International Agency for Research on Cancer 17 18 IARC (International Agency for Research on Cancer). (1983) IARC monographs on the evaluation of 19 carcinogenic risks to humans. Vol. 32. Polynuclear aromatic hydrocarbons, Part 1, chemical environmental 20 and experimental data. Lyon, France: International Agency for Research on Cancer. 21 22 IARC (International Agency for Research on Cancer). (2010) IARC monographs on the evaluation of 23 carcinogenic risks to humans. Vol. 92. Some non-heterocyclic aromatic hydrocarbons and some related 24 exposures: Lyon, France. International Agency for Research on Cancer. 25 26 IARC (International Agency for Research on Cancer). (2012) IARC monographs on the evaluation of 27 carcinogenic risk to humans. Vol. 100F. A review of human carcinogens: chemical agents and related 28 occupations: Lyon, France. International Agency for Research on Cancer. 29 30 Inyang, F; Ramesh, A; Kopsombut, P; et al. (2003) Disruption of testicular steroidogenesis and epididymal 31 function by inhaled benzo(a)pyrene. Reprod Toxicol 17(5):527-537. 32 33 Juhl, HJ; Schurer, CC; Bartram, CR; et al. (1978) Retinoids induce sister-chromatid exchanges in human diploid 34 fibroblasts. Mutat Res 58(2-3):317-320. 35 36 Jules, GE; Pratap, S; Ramesh, A; et al. (2011) In utero exposure to benzo(a) pyrene predisposes offspring to 37 cardiovascular dysfunction in later-life. Toxicology 16;295(1-3):56-67. 38 39 Kao, J; Patterson, FK; Hall, J. (1985) Skin penetration and metabolism of topically applied chemicals in six 40 mammalian species, including man: an in vitro study with benzo[a]pyrene and testosterone. Toxicol Appl 41 Pharmacol 81(3 Pt 1):502-516. 42 43 Kawamura, Y; Kamata, E; Ogawa, Y; et al. (1988) The effect of various foods on the intestinal absorption of 44 benzo-a-pyrene in rats. J Food Hyg Soc Jpn 29(1):21–25. 45 46 Ketkar, M; Reznik, G; Schneider, P; et al. (1978) Investigations on the carcinogenic burden by air pollution in 47 man. Intratracheal instillation studies with benzo(a)pyrene in boyine serum albumin in Syrian hamsters. 48 Cancer Lett 4(4):235–239. 49 50 Kiefer, F; Cumpelik, O; Wiebel, FJ. (1988) Metabolism and cytotoxicity of benzo(a)pyrene in the human lung 51 tumour cell line NCI-H322. Xenobiotica 18(6):747-755. 52 53 Kim, IY; Hyun, CK. (2006) Comparative evaluation of the alkaline comet assay with the micronucleus test for 54 genotoxicity monitoring using aquatic organisms. Ecotoxicol Environ Saf 64:288-297.

Hu, Z; Wells, PG. (2004) Human interindividual variation in lymphocyte UDP-glucuronosyltransferases as a

55

Kleiner, HE; Vulimiri, SV; Hatten, WB; et al. (2004) Role of cytochrome p4501 family members in the metabolic activation of polycyclic aromatic hydrocarbons in mouse epidermis. Chem Res Toxicol 17(12):1667-1674.

Knuckles, ME; Inyang, F; Ramesh, A. (2001) Acute and subchronic oral toxicities of benzo[a]pyrene in F-344 rats. Toxicol Sci 61(2):382-388.

Kobayashi, N. (1975) Production of respiratory tract tumors in hamsters by benzo(a)pyrene. Gann 66(3):311-315.

11 Kondraganti, SR; Fernandez-Salguero, P; Gonzalez, FJ; et al. (2003) Polycyclic aromatic hydrocarbon-12 inducible DNA adducts: evidence by 32P-postlabeling and use of knockout mice for Ah receptor-independent 13 mechanisms of metabolic activation in vivo. Int | Cancer 103(1):5-11. 14

15 Koratkar, R; Das, UN; Sagar, PS; et al. (1993) Prostacyclin is a potent anti-mutagen. Prostaglandins Leukot 16 Essent Fatty Acids 48(2):175-184. 17

18 Kristensen, P; Eilertsen, E; Einarsdottir, E; et al. (1995) Fertility in mice after prenatal exposure to 19 benzo[a]pyrene and inorganic lead. Environ Health Perspect 103(6):588–590. 20

21 Kroese, ED; Muller, JJA; Mohn, GR; et al. (2001) Tumorigenic effects in Wistar rats orally administered 22 benzo(a)pyrene for two years: Implications for human cancer risks associated with oral exposure to 23 polycyclic aromatic hydrocarbons. Bilthoven, Netherlands: RIVM 658603. 24

25 Kulka, U: Doehmer, I: Glatt, HR: et al. (1993a) Cytogenetic effects of promutagens in genetically engineered 26 V79 Chinese hamster cells expressing cytochromes P450. Eur J Pharmacol 228:299-304. 27

28 Kulka, U; Paul, D; Bauchinger, M. (1993b) Development of short-term mutagenicity test systems in vitro: 29 metabolic activation of indirectly acting mutagens by three immortal rat hepatocyte lines. Mutagenesis 8:193-30 197. 31

32 Kunstler, K. (1983) Failure to induce tumors by intratracheal instillation of automobile exhaust condensate 33 and fractions thereof in Syrian golden hamsters. Cancer Lett 18(1):105–108. 34

35 LaVoie, E; Bedenko, V; Hirota, N; et al., eds. 1979. A comparison of the mutagenicity, tumor-initiating activity 36 and complete carcinogenicity of polynuclear aromatic hydrocarbons. Edited by Jones, PW.Leber, P, 37 Polynuclear Aromatic Hydrocarbons. Ann Arbor, MI: Ann Arbor Science Publishers, Inc. 38

39 LaVoie, EJ; Amin, S; Hecht, SS; et al. (1982) Tumour initiating activity of dihydrodiols of benzo[b]fluoranthene, 40 benzo[i]fluoranthene, and benzo[k]fluoranthene. Carcinogenesis 3(1):49-52.

42 Leadon, SA; Stampfer, MR; Bartley, J. (1988) Production of oxidative DNA damage during the metabolic 43 activation of benzo[a]pyrene in human mammary epithelial cells correlates with cell killing. Proc Natl Acad 44 Sci USA 85:4365-4368. 45

46 LeBoeuf, RA; Kerckaert, GA; Aardema, MJ; et al. (1996) The pH 6.7 Syrian hamster embryo cell transformation 47 assay for assessing the carcinogenic potential of chemicals. Mutat Res 356(1):85–127.

48

41

1

2 3

9

10

49 Lee, H; Lin, JY. (1988) Antimutagenic activity of extracts from anticancer drugs in Chinese medicine. Mutat 50 Res 204:229-234. 51

52 Leng, SG; Zheng, YX; Pan, ZF; et al. (2004) [A study on the inherited susceptibility of chromosomal damage in

53 peripheral blood lymphocytes among coke oven workers]. Zhonghua Yu Fang Yi Xue Za Zhi 38(2):94–98. 54

1 Levin, W; Wood, AW; Wislocki, PG; et al. (1977) Carcinogenicity of benzo-ring derivatives of benzo(a)pyrene 2 3 on mouse skin. Cancer Res 37(9):3356-3361.

Levin, W; Wood, A; Chang, R; et al. (1982) Oxidative metabolism of polycyclic aromatic hydrocarbons to ultimate carcinogens. Drug Metab Rev 13(4):555-580.

Liao, KH. (2004) Reaction network model for the prediction of mammalian metabolism of benzo(a)pyrene. Unpublished Ph.D. Dissertation, Colorado State University, Fort Collins, CO, Fall 2004.

10 Likhachev, AJ; Beniashvili, DS; Bykov, VJ; et al. (1992) Relevance of quantitation of benzo(a)pyrene 11 metabolites in animal excretes to evaluate individual human cancer risk. Prog Clin Biol Res 374:435–452. 12

13 Lin, P; Hsueh, YM; Ko, JL; et al. (2003) Analysis of NQ01, GSTP1, and MnSOD genetic polymorphisms on lung 14 cancer risk in Taiwan. Lung Cancer 40(2):123–129. 15

16 Lo Jacono, F; Stecca, C; Duverger, M. (1992) Mutagenic activation of benzo[a]pyrene by human red blood cells. 17 Mutat Res 268:21-26. 18

19 Lubet, RA; Kiss, E; Gallagher, MM; et al. (1983) Induction of neoplastic transformation and DNA single-strand 20 breaks in C3H/10T1/2 clone 8 cells by polycyclic hydrocarbons and alkylating agents. I Natl Cancer Inst 21 71(5):991-997. 22

23 Ma, Q; Lu, AY. (2007) CYP1A induction and human risk assessment: an evolving tale of in vitro and in vivo 24 studies. Drug Metab Dispos 35(7):1009-1016. 25

26 MacKenzie, KM; Angevine, DM. (1981) Infertility in mice exposed in utero to benzo(a)pyrene. Biol Reprod 27 24(1):183-191. 28

Mager, R; Huberman, E; Yang, SK; et al. (1977) Transformation of normal hamster cells by benzo(a)pyrene diol-epoxide. Int.J Cancer 19(6):814-817.

31 32 Mallet, WG; Mosebrook, DR; Trush, MA. (1991) Activation of (+-)-trans-7,8-dihydroxy-33 7,8-dihydrobenzo[a]pyrene to diolepoxides by human polymorphonuclear leukocytes or myeloperoxidase. 34 Carcinogenesis 12(3):521–524.

35 36 Mamber, SW; Bryson, V; Katz, SE. (1983) The Escherichia coli WP2/WP100 rec assay for detection of 37 potential chemical carcinogens. Mutat Res 119:135-144. 38

39 Mane, SS; Purnell, DM; Hsu, IC. (1990) Genotoxic effects of five polycyclic aromatic hydrocarbons in human 40 and rat mammary epithelial cells. Environ Mol Mutagen 15(2):78-82. 41

42 Marnett, LJ. (1990) Prostaglandin synthase-mediated metabolism of carcinogens and a potential role for 43 peroxyl radicals as reactive intermediates. Environ Health Perspect 88:5–12. 44

45 Martin, CN; McDermid, AC; Garner, RC. (1978) Testing of known carcinogens and noncarcinogens for their 46 ability to induce unscheduled DNA synthesis in HeLa cells. Cancer Res 38(8):2621-2627. 47

48 Matsuoka, A; Hayashi, M; Ishidate, M, Jr. (1979) Chromosomal aberration tests on 29 chemicals combined 49 with S9 mix in vitro. Mutat Res 66(3):277-290. 50

51 Matsuoka, A; Matsuura, K; Sakamoto, H; et al. (1998) Spindle disturbances induced by benzo[a]pyrene and

52 7,12-dimethylbenz[a]anthracene in a Chinese hamster cell line (V79-MZ) and the stability of the numerical

53 chromosome aberrations that follow. Mutat Res 419(1-3):1-12.

54

9

29

- 1 Matsuoka, A; Matsuura, K; Sakamoto, H; et al. (1999) A proposal for a simple way to distinguish aneugens 2 3 from clastogens in the in vitro micronucleus test. Mutagenesis 14(4):385–389.
 - McCabe, DP; Flynn, EI. (1990) Deposition of low dose benzo(a)pyrene into fetal tissue: influence of protein binding. Teratology 41(1):85-95.

4 5 6 McCallister MM; Maguire M; Ramesh A; et al. (2008) Prenatal exposure to benzo(a)pyrene impairs later-life cortical neuronal function. Neurotoxicology 29(5):846-854. 9

7 8

10 McCann, J; Spingarn, NE; Kobori, J; et al. (1975) Detection of carcinogens as mutagens: bacterial tester strains 11 with R factor plasmids. Proc Natl Acad Sci USA 72(3):979–983. 12

13 Melikian, AA; Sun, P; Prokopczyk, B; et al. (1999) Identification of benzo[a]pyrene metabolites in cervical 14 mucus and DNA adducts in cervical tissues in humans by gas chromatography-mass spectrometry. Cancer 15 Lett 146(2):127-134. 16

17 Meng, F; Knapp, GW; Green, T; et al. (2010) K-Ras mutant fraction in A/J mouse lung increases as a function of 18 benzo[a]pyrene dose. Environ Mol Mutagen. 51(2):146–155. 19

20 Mensing, T; Marczynski, B; Engelhardt, B; et al. (2005) DNA adduct formation of benzo[a]pyrene in white 21 blood cells of workers exposed to polycyclic aromatic hydrocarbons. Int J Hyg Environ Health 208:173–178. 22

- 23 Merk, HF; Mukhtar, H; Kaufmann, I; et al. (1987) Human hair follicle benzo[a]pyrene and benzo[a]pyrene 7,8-24 diol metabolism: effect of exposure to a coal tar-containing shampoo. J Invest Dermatol 88(1):71–76. 25
- 26 Mersch-Sundermann, V; Mochayedi, S; Kevekordes, S. (1992) Genotoxicity of polycyclic aromatic 27 hydrocarbons in Escherichia coli PQ37. Mutat Res 278:1-9. 28
- 29 Michalopoulos, G; Sattler, GL; O'Connor, L; et al. (1978) Unscheduled DNA synthesis induced by 30 procarcinogens in suspensions and primary cultures of hepatocytes on collagen membranes. Cancer Res 31 38:1866-1871. 32
- 33 Midgette, AS; Baron, JA. (1990) Cigarette smoking and the risk of natural menopause. Epidemiology 1:474– 34 479. 35
- 36 Miller, KP; Ramos, KS. (2001) Impact of cellular metabolism on the biological effects of benzo[a]pyrene and 37 related hydrocarbons. Drug Metab Rev 33(1):1-35. 38

39 Milo, GE; Blakeslee, J; Yohn, DS; et al. (1978) Biochemical activation of aryl hydrocarbon hydroxylase activity, 40 cellular distribution of polynuclear hydrocarbon metabolites, and DNA damage by polynuclear hydrocarbon 41 products in human cells in vitro. Cancer Res 38(6):1638-1644. 42

- 43 Mirsalis, JC; Tyson, CK; Butterworth, BE. (1982) Detection of genotoxic carcinogens in the in vivo-in vitro 44 hepatocyte DNA repair assay. Environ Mutagen 4(5):553-562. 45
- 46 Mirvish, SS; Ghadirian, P; Wallcave, L; et al. (1981) Effect of diet on fecal excretion and gastrointestinal tract 47 distribution of unmetabolized benzo(a) pyrene and 3- methylcholanthrene when these compounds are 48 administered orally to hamsters. Cancer Res 41(6):2289–2293. 49
- 50 Mishra, NK; Wilson, CM; Pant, KJ; et al. (1978) Simultaneous determination of cellular mutagenesis and 51 transformation by chemical carcinogens in Fischer rat embryo cells. J Toxicol Environ Health 4:79-91. 52

53 Mohamed, ESA; Song, WH; Oh, SA; et al. (2010) The transgenerational impact of benzo(a)pyrene on murine 54 male fertility. Hum Reprod 25(10):2427-2433. 55

Mohr, U. (1971) Diethylnitrosamine-induced carcinogenesis. Diaplacental effect. Fortschr Med 89(6):251-253. (German)

1

2 3

4

5 6

7 8

9

10 11 Moir, D. (1999) Physiological modeling of benzo(a)pyrene pharmacokinetics in the rat. In: Salem, H; Katz, SA; eds. Toxicity assessment alternatives: methods, issues, opportunities. Totowa, NJ: Humana Press Inc., pp. 79– 95.

Moir, D; Viau, A; Chu, I; et al. (1998) Pharmacokinetics of benzo[a]pyrene in the rat. J Toxicol Environ Health A 53(7):507-530.

- Monteith, DK; Novotny, A; Michalopoulos, G; et al. (1987) Metabolism of benzo[a]pyrene in primary cultures 12 of human hepatocytes: dose-response over a four-log range. Carcinogenesis 8(7):983–988. 13
- 14 Moore, LE; Wiencke, JK; Bates, MN; et al. (2004) Investigation of genetic polymorphisms and smoking in a 15 bladder cancer case-control study in Argentina. Cancer Lett 211(2):199-207. 16
- 17 Mori, M; Kobayashi, H; Sugiyama, C; et al. (1999) Induction of unscheduled DNA synthesis in hairless mouse 18 epidermis by skin carcinogens. J Toxicol Sci 24(3):217-226. 19
- 20 Morse, MA; Carlson, GP. (1985) Distribution and macromolecular binding of benzo[a]pyrene in SENCAR and 21 BALB/c mice following topical and oral administration. J Toxicol Environ Health 16(2):263–276. 22
- 23 Mullaart, E; Buytenhek, M; Brouwer, A; et al. (1989) Genotoxic effects of intragastrically administered 24 benzo[a]pyrene in rat liver and intestinal cells. Carcinogenesis 10(2):393–395. 25
- 26 National Toxicology Program (NTP). (2011) Report on carcinogens, Twelfth Edition. U.S. Department of 27 Health and Human Services. 28
- 29 N'Diaye, M; Le, FE; Lagadic-Gossmann, D; et al. (2006) Aryl hydrocarbon receptor- and calcium-dependent 30 induction of the chemokine CCL1 by the environmental contaminant benzo[a]pyrene. [Biol Chem 31 281(29):19906-19915. 32
- 33 Neal, J; Rigdon, H. (1967) Gastric tumors in mice fed benzo[a]pyrene: a quantitative study. Tex Rep Biol Med 34 25(4):553-557. 35
- 36 Neal, MS; Zhu, J; Holloway, AC; et al. (2007) Follicle growth is inhibited by benzo-[a]-pyrene, at 37 concentrations representative of human exposure, in an isolated rat follicle culture assay. Hum Reprod 38 22:961-967. 39
- 40 Neal, MS; Zhu, J; Foster, WG. (2008) Quantification of benzo[a]pyrene and other PAHs in the serum and 41 follicular fluid of smokers versus non-smokers. Reprod Toxicol 25(1):100-106. 42
- 43 Nebert, DW; Puga, A; Vasiliou, V. (1993) Role of the Ah receptor and the dioxin-inducible [Ah] gene battery in 44 toxicity, cancer, and signal transduction. Ann N Y Acad Sci 685:624–640. 45
- 46 Nesnow, S; Triplett, LL; Slaga, TJ. (1983) Mouse skin tumor initiation-promotion and complete carcinogenesis 47 bioassays: mechanisms and biological activities of emission samples. Environ Health Perspect 47:255–268. 48
- 49 Nesnow, S; Davis, C; Nelson, G; et al. (1997) Comparison of the morphological transforming activities of 50 dibenzo[a,l]pyrene and benzo[a]pyrene in C3H10T1/2CL8 cells and characterization of the
- 51 dibenzo[a,l]pyrene-DNA adducts. Carcinogenesis 18(10):1973–1978. 52
- 53 Nesnow, S; Davis, C; Nelson, GB; et al. (2002) Comparison of the genotoxic activities of the K-region
- 54 dihydrodiol of benzo[a]pyrene with benzo[a]pyrene in mammalian cells: morphological cell transformation;
- 55 DNA damage; and stable covalent DNA adducts. Mutat Res 521(1-2):91-102.

Neubert, D; Tapken, S. (1988) Transfer of benzo(a)pyrene into mouse embryos and fetuses. Arch Toxicol 62(2–3):236–239.

Nishikawa, T; Nakamura, T; Fukushima, A; et al. (2005) Further evaluation of the skin micronucleus test: results obtained using 10 polycyclic aromatic hydrocarbons. Mutat Res 588(1):58–63.

Norpoth, K; Kemena, A; Jacob, J; et al. (1984) The influence of 18 environmentally relevant polycyclic aromatic hydrocarbons and Clophen A50, as liver monooxygenase inducers, on the mutagenic activity of benz[a]anthracene in the Ames test. Carcinogenesis 5(6):747–752.

Nwagbara, O; Darling-Reed, SF; Tucker, A; et al. (2007) Induction of cell death, DNA strand breaks, and cell cycle arrest in DU145 human prostate carcinoma cell line by benzo[a]pyrene and benzo[a]pyrene-7,8-diol-9,10-epoxide. Int J Environ Res Public Health 4(1):10–14.

Obana, H; Hori, S; Kashimoto, T; et al. (1981) Polycyclic aromatic hydrocarbons in human fat and liver. Bull Environ Contam Toxicol 27(1):23–27.

Obermeier, J; Frohberg, H. (1977) Mutagenicity studies with praziquantel, a new anthelmintic drug: tissue ,host, and urine-mediated mutagenicity assays. Arch Toxicol 38(3):149–161.

O'Donovan, MR. (1990) Mutation assays of ethyl methanesulphonate, benzidine and benzo[a]pyrene using
 Chinese hamster V79 cells. Mutagenesis 5 Suppl:9–13.

Oesch, F; Bentley, P; Glatt, HR. (1976) Prevention of benzo(a)pyrene-induced mutagenicity by homogeneous
 epoxide hydratase. Int J Cancer 18(4):448–452.

Okey, AB; Riddick, DS; Harper, PA. (1994) Molecular biology of the aromatic hydrocarbon (dioxin) receptor.
 Trends Pharmacol Sci 15(7):226–232.

O'Neill, IK; Goldberg, MT; el Ghissassi, F; et al. (1991) Dietary fibre, fat and beef modulation of colonic nuclear
 aberrations and microcapsule-trapped gastrointestinal metabolites of benzo[a]pyrene-treated C57/B6 mice
 consuming human diets. Carcinogenesis 12(2):175–180.

Oueslati, R; Alexandrov, K; Chouikha, M; et al. (1992) Formation and persistence of DNA adducts in epidermal
 and dermal mouse skin exposed to benzo(a)pyrene in vivo. In Vivo 6(2):231–235.

Pahlman, R; Pelkonen, O. (1987) Mutagenicity studies of different polycyclic aromatic hydrocarbons: the
 significance of enzymatic factors and molecular structure. Carcinogenesis 8(6):773–778.

Park, SJ; Zhao, H; Spitz, MR; et al. (2003) An association between NQ01 genetic polymorphism and risk of
bladder cancer. Mutat Res 536(1-2):131-137.

Pastorelli, R; Guanci, M; Cerri, A; et al. (1998) Impact of inherited polymorphisms in glutathione S-transferase
M1, microsomal epoxide hydrolase, cytochrome P450 enzymes on DNA, and blood protein adducts of
benzo(a)pyrene-diolepoxide. Cancer Epidemiol Biomarkers Prev 7(8):703–709.

Penning, TM; Burczynski, ME; Hung, CF; et al. (1999) Dihydrodiol dehydrogenases and polycyclic aromatic
hydrocarbon activation: generation of reactive and redox active o-quinones. Chem Res Toxicol 12(1):1–18.

Pereira, MA; McMillan, L; Kaur, P; et al. (1982) Effect of benzo[a]pyrene on sister-chromatid exchange in fetal
hamster liver exposed in utero. Mutat Res 105:343–347.

1 Perera, FP; Tang, D; Rauh, V; et al. (2005a) Relationships among polycyclic aromatic hydrocarbon-DNA 2 3 adducts, proximity to the World Trade Center, and effects on fetal growth. Environ Health Perspect 113(8):1062-1067.

Perera, FP; Rauh, V; Whyatt, RM; et al. (2005b) A summary of recent findings on birth outcomes and developmental effects of prenatal ETS, PAH, and pesticide exposures. Neurotoxicology 26(4):573–587.

Peterson, AR; Landolph, JR; Peterson, H; et al. (1981) Oncogenic transformation and mutation of C3H/10T 1/2 clone 8 mouse embryo fibroblasts by alkylating agents. Cancer Res 41:3095-3099.

Petridou-Fischer, I: Whaley, SL: Dahl, AR, (1988) In vivo metabolism of nasally instilled benzo[a]pyrene in dogs and monkeys. Toxicology 48(1):31-40.

Phillipson, CE; Ioannides, C. (1989) Metabolic activation of polycyclic aromatic hydrocarbons to mutagens in the Ames test by various animal species including man. Mutat Res 211:147-151.

Pitts, JN, Jr.; Van Cauwenberghe, KA; Grosjean, D; et al. (1978) Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives. Science 202(4367):515–519.

Poel, WE. (1959) Effect of carcinogenic dosage and duration of exposure on skin-tumor induction in mice. I Natl Cancer Inst 22(1):19-43.

Poel, WE. (1960) Skin as a test site for the bioassay of carcinogens and carcinogen precursors. J Natl Cancer Inst Monogr 10:611–631.

Popescu, NC; Turnbull, D; DiPaolo, JA. (1977) Sister chromatid exchange and chromosome aberration analysis with the use of several carcinogens and noncarcinogens. [Natl Cancer Inst 59(1):289–293.

Potter, D; Booth, ED; Brandt, HC; et al. (1999) Studies on the dermal and systemic bioavailability of polycyclic aromatic compounds in high viscosity oil products. Arch Toxicol 73(3):129–140.

32 Ouarles, JM: Sega, MW; Schenley, CK; et al. (1979) Transformation of hamster fetal cells by nitrosated 33 pesticides in a transplacental assay. Cancer Res 39(11):4525–4533.

35 Ramesh, A; Knuckles, ME. (2006) Dose-dependent benzo(a)pyrene [B(a)P]-DNA adduct levels and persistence 36 in F-344 rats following subchronic dietary exposure to B(a)P. Cancer Lett 240:268–278.

38 Ramesh, A; Greenwood, M; Inyang, F; et al. (2001a) Toxicokinetics of inhaled benzo[a]pyrene: plasma and 39 lung bioavailability. Inhal Toxicol 13(6):533-555.

41 Ramesh, A; Inyang, F; Hood, DB; et al. (2001b) Metabolism, bioavailability, and toxicokinetics of 42 benzo(alpha)pyrene in F-344 rats following oral administration. Exp Toxicol Pathol 53(4):275-290.

44 Ramesh, A; Greenwood, M; Inyang, F; et al. (2003) Aryl hydrocarbon hydroxylase (AHH) and benzo(a)pyrene 45 (BaP) metabolite in F-344 rats subchronically exposed to inhaled BaP. Toxicologist 72(S-1):325.

47 Ramesh, A: Invang, F: Lunstra, DD: et al. (2008) Alteration of fertility endpoints in adult male F-344 rats by 48 subchronic exposure to inhaled benzo(a)pyrene. Exp Toxicol Pathol 60(4-5):269-280.

50 Rao, KP; Nandan, BD. (1990) Modification of benzo(a)pyrene induced chromosomal damage in mouse bone 51 marrow by vitamin A. Bull Environ Contam Toxicol 45(6):829-832. 52

53 Rastetter, WH; B., NJR; Russo-Rodriguez, S; et al. (1982) Fluoranthene: Synthesis and mutagenicity of four 54 diol epoxides. J Org Chem 47:4873-4878. 55

1 Raveh, D; Slaga, TJ; Huberman, E. (1982) Cell-mediated mutagenesis and tumor-initiating activity of the 2 3 ubiquitous polycyclic hydrocarbon, cyclopenta[c,d]pyrene. Carcinogenesis 3(7):763–766. 4 5 6 Reddy, MV; Gupta, RC; Randerath, E; et al. (1984) 32P-postlabeling test for covalent DNA binding of chemicals in vivo: application to a variety of aromatic carcinogens and methylating agents. Carcinogenesis 5:231–243. 7 8 Reznik-Schuller, H; Mohr, U. (1974) Investigations on the carcinogenic burden by air pollution in man. IX. Early pathological alterations of the bronchial epithelium in Syrian golden hamsters after intratracheal 9 instillation of benzo (a) pyrene, 1, Morphological studies from semi-thin sections. Zentralbl Bakteriol [Orig B] 10 159(5-6):493-502. 11 12 Rice, JE; Makowski, GS; Hosted, TJ, Jr.; et al. (1985) Methylene-bridged bay region chrysene and phenanthrene 13 derivatives and their keto-analogs: mutagenicity in Salmonella typhimurium and tumor-initiating activity on 14 mouse skin. Cancer Lett 27(2):199-206. 15 16 Rigdon, RH; Neal, J. (1965) Effects of feeding benzo(a)pyrene on fertility, embryos, and young mice. [Natl 17 Cancer Inst 34:297-305. 18 19 Rigdon, RH; Neal, J. (1966) Gastric carcinomas and pulmonary adenomas in mice fed benzo (a) pyrene. Tex 20 Rep Biol Med 24(2):195–207. 21 22 Rigdon, RH; Neal, J. (1969) Relationship of leukemia to lung and stomach tumors in mice fed benzo (a) 23 pyrene. Proc Soc Exp Biol Med 130(1):146-148. 24 25 Rigdon, RH; Rennels, EG. (1964) Effect of feeding benzpyrene on reproduction in the rat. Experientia 26 20(4):224-226. 27 28 Robertson, IG; Guthenberg, C; Mannervik, B; et al. (1986) Differences in stereoselectivity and catalytic 29 efficiency of three human glutathione transferases in the conjugation of glutathione with 7 beta,8 alpha-30 dihydroxy-9 alpha,10 alpha-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene. Cancer Res 46(5):2220–2224. 31 32 Robinson, DE; Mitchell, AD. (1981) Unscheduled DNA synthesis response of human fibroblasts, WI-38 cells, to 33 20 coded chemicals. Evaluation of Short-Term Tests for Carcinogens. Report of the International 34 Collaborative Program. In: de Serres, FI.Ashby, J eds. Progress in Mutation Research, Amsterdam: Elsevier, 35 517-527. 36 37 Robinson, M; Laurie, RD; Bull, RJ; et al. (1987) Carcinogenic effects in A/J mice of particulate of a coal tar paint 38 used in potable water systems. Cancer Lett 34(1):49–54. 39 40 Rocchi, P; Ferreri, AM; Borgia, R; et al. (1980) Polycyclic hydrocarbons induction of diphtheria toxin-resistant 41 mutants in human cells. Carcinogenesis 1(9):765–767. 42 43 Roe, FJ; Peto, R; Kearns, F; et al. (1970) The mechanism of carcinogenesis by the neutral fraction of cigarette 44 smoke condensate. Br J Cancer 24(4):788-806. 45 46 Roggeband, R; Wolterbeek, AP; van den Berg, PT; et al. (1994) DNA adducts in hamster and rat tracheas 47 exposed to benzo(a)pyrene in vitro. Toxicol Lett 72:105-111. 48 49 Rojas, M; Alexandrov, K; Cascorbi, I; et al. (1998) High benzo[a]pyrene diol-epoxide DNA adduct levels in lung 50 and blood cells from individuals with combined CYP1A1 MspI/Msp-GSTM10/0 genotypes. Pharmacogenetics 51 8(2):109-118. 52 53 Rojas, M; Cascorbi, I; Alexandrov, K; et al. (2000) Modulation of benzo[a]pyrene diolepoxide-DNA adduct 54 levels in human white blood cells by CYP1A1, GSTM1 and GSTT1 polymorphism. Carcinogenesis 21(1):35-55 41.

Rosenkranz, HS; Poirier, LA. (1979) Evaluation of the mutagenicity and DNA-modifying activity of carcinogens and noncarcinogens in microbial systems. J Natl Cancer Inst 62:873-892.

Ross, J; Nelson, G; Erexson, G; et al. (1991) DNA adducts in rat lung, liver and peripheral blood lymphocytes produced by i.p. administration of benzo[a]pyrene metabolites and derivatives. Carcinogenesis 12(10):1953– 1955.

Roszinsky-Kocher, G; Basler, A; Rohrborn, G. (1979) Mutagenicity of polycyclic hydrocarbons. V. Induction of sister-chromatid exchanges in vivo. Mutat Res 66(1):65–67.

12 Roth, RA; Vinegar, A. (1990) Action by the lungs on circulating xenobiotic agents, with a case study of 13 physiologically based pharmacokinetic modeling of benzo(a)pyrene disposition. Pharmacol Ther 48(2):143-14 155. 15

16 Rudiger, HW; Kohl, F; Mangels, W; et al. (1976) Benzpyrene induces sister chromatid exchanges in cultured 17 human lymphocytes. Nature 262(5566):290-292. 18

19 Russell, LB. (1977) Validation of the in vivo somatic mutation method in the mouse as a prescreen for 20 germinal point mutations. Arch Toxicol 38(1-2):75-85. 21

22 Saffiotti, U; Cefis, F; Kolb, LH. (1968) A method for the experimental induction of bronchogenic carcinoma. 23 Cancer Res 28(1):104-124. 24

25 Saffiotti, U: Montesano, R: Sellakumar, AR: et al. (1972) Respiratory tract carcinogenesis induced in hamsters 26 by different dose levels of benzo-(a)pyrene and ferric oxide. J Natl Cancer Inst 49(4):1199–1204. 27

28 Sagredo, C; Ovrebo, S; Haugen, A; et al. (2006) Quantitative analysis of benzo[a]pyrene biotransformation and 29 adduct formation in Ahr knockout mice. Toxicol Lett 167(3):173-182. 30

31 Sakai, M; Yoshida, D; Mizusaki, S. (1985) Mutagenicity of polycyclic aromatic hydrocarbons and quinones on 32 Salmonella typhimurium TA97. Mutat Res 156:61-67. 33

34 Salama, SA; Sierra-Torres, CH; Oh, HY; et al. (2001) Variant metabolizing gene alleles determine the 35 genotoxicity of benzo[a]pyrene. Environ Mol Mutagen 37:17-26. 36

37 Salamone, MF. (1981) Toxicity of 41 carcinogens and noncarcinogenic analogs. Evaluation of short-term tests 38 for carcinogens: Report of the international collaborative program. Prog Mutat Res 1:682-685. 39

40 Santodonato, J; Howard, P; Basu, D. (1981) Health and ecological assessment of polynuclear aromatic 41 hydrocarbons. J Environ Pathol Toxicol 5(1):1-364. 42

43 Saunders, CR; Ramesh, A; Shickley, DC. (2002) Modulation of neurotoxic behavior of F-344 rats by temporal 44 disposition of benzo[a]pyrene. Toxicol Lett 129:33–45. 45

46 Schlede, E; Kuntzman, R; Haber, S; et al. (1970) Effect of enzyme induction on the metabolism and tissue 47 distribution of benzo(alpha)pyrene. Cancer Res 30(12):2893–2897. 48

49 Schmähl, D; Schmidt, KG; Habs, M. (1977) Syncarcinogenic action of polycyclic hydrocarbons in automobile 50 exhaust gas condensates. IARC Sci Publ (16):53-59.

- 51 52 Schmidt, KG; Schmael, D; Misfield, J. (1973) Investigations on the carcinogenic burden in man. VI.
- 53 Experimental investigation to determine a dose-response relationship and to estimate a threshold dose of 54 benzo[a]pyrene in the skin of two different mouse strains. Zbl Bakt Hyg I Abs B 158:62–68.

55

1 2 3

9

10

1 Schnizlein, CT; Munson, AE; Rhoades, RA. (1987) Immunomodulation of local and systemic immunity after 2 3 subchronic pulmonary exposure of mice to benzo(a)pyrene. Int | Immunopharmacol 9(1):99–106. 4 5 6 Schönwald, AD; Bartram, CR; Rudiger, HW. (1977) Benzpyrene-induced sister chromatid exchanges in lymphocytes of patients with lung cancer. Hum Genet 36:261-264. 7 8 Schwarz, D; Kisselev, P; Cascorbi, I; et al. (2001) Differential metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1 variants. Carcinogenesis 22(3):453–459. 9 10 Sega, GA. (1979) Unscheduled DNA synthesis (DNA repair) in the germ cells of male mice--its role in the study 11 of mammalian mutagenesis. Genetics 92:s49-s58. 12 13 Sega, GA. (1982) DNA repair in spermatocytes and spermatids of the mouse. Oak Ridge, TN: Oak Ridge 14 National Lab. 15 16 Sharovskaya, J; Kobliakova, I; Solomatina, N; et al. (2006) Effect of some carcinogenic and non-carcinogenic polycyclic aromatic hydrocarbons on gap junction intercellular communication in hepatoma cell cultures. Eur 17 18 J Cell Biol 85(5):387–397. 19 20 Shendrikova, A; Aleksandrov, VA. (1974) Comparative penetration of polycyclic hydrocarbons through the rat 21 placenta into the fetus. Bull Exp Biol Med 77:169–171. 22 23 Shimada, H; Satake, S; Itoh, S; et al. (1990) Multiple-dosing effects of benzo[a]pyrene in the mouse bone 24 marrow micronucleus text. Mutat Res 234(3-4):179-181. 25 26 Shimada, H; Suzuki, H; Itoh, S; et al. (1992) The micronucleus test of benzo[a]pyrene with mouse and rat 27 peripheral blood reticulocytes. Mutat Res 278(2-3):165-168. 28 29 Shimizu, Y; Nakatsuru, Y; Ichinose, M; et al. (2000) Benzo[a]pyrene carcinogenicity is lost in mice lacking the 30 aryl hydrocarbon receptor. Proc Natl Acad Sci USA 97(2):779-782. 31 32 Shimizu, RW; Sun, JD; Li, AP; et al. (1984) The use of sister-chromatid exchange in Chinese hamster primary 33 lung cell cultures to measure genotoxicity. Mutat Res 130(5):333-42. 34 35 Shinohara, K; Cerutti, PA. (1977) Excision repair of benzo[a]pyrene-deoxyguanosine adducts in baby hamster 36 kidney 21/C13 cells and in secondary mouse embryo fibroblasts C57BL/6J. Proc Natl Acad Sci USA 74:979-37 983. 38 39 Siebert, D; Marquardt, H; Friesel, H; et al. (1981) Polycyclic aromatic hydrocarbons and possible metabolites: 40 convertogenic activity in yeast and tumor initiating activity in mouse skin. | Cancer Res Clin Oncol 102:127-41 139. 42 43 Simmon, VF. (1979a) In vitro mutagenicity assays of chemical carcinogens and related compounds with 44 *Salmonella typhimurium*. J Natl Cancer Inst 62(4):893–899. 45 46 Simmon, VF. (1979b) In vitro assays for recombinogenic activity of chemical carcinogens and related 47 compounds with *Saccharomyces cerevisiae* D3. I Natl Cancer Inst 62(4):901–909. 48 49 Singh, VK; Singh, J; Anand, M; et al. (2008) Comparison of polycyclic aromatic hydrocarbon levels in placental 50 tissues of Indian women with full- and preterm deliveries. Int J Hyg Environ Health 211:639–647. 51 52 Sivak, A; Niemeier, R; Lynch, D; et al. (1997) Skin carcinogenicity of condensed asphalt roofing fumes and 53 their fractions following dermal application to mice. Cancer Lett 117(1):113–123. 54

1 Slaga, TJ; Huberman, E; Selkirk, JK; et al. (1978) Carcinogenicity and mutagenicity of benz(a)anthracene diols 2 3 and diol-epoxides. Cancer Res 38(6):1699-1704.

4 Slaga, TJ; Iver, RP; Lyga, W; et al. (1980) Comparison of the skin tumor-initiating activities of dihydrodiols. 5 6 diol-epoxides, and methylated derivatives of various polycyclic aromatic hydrocarbons. In: Bjorseth, A; Dennis, AJ; eds. Polynuclear aromatic hydrocarbons: chemistry and biological effects. Columbus, OH: Battelle 7 8 Press, pp. 753–769.

- 9 Soares, SR; Melo, MA. (2008) Cigarette smoking and reproductive function. Curr Opin Obstet Gynecol 10 20:281-291.
- 12 Sotomayor, RE; Sega, GA. (2000) Unscheduled DNA synthesis assay in mammalian spermatogenic cells: An 13 update. Environmental and Molecular Mutagenesis 36(4):255-265. 14
- 15 Stavric, B; Klassen, R. (1994) Dietary effects on the uptake of benzo[a]pyrene. Food Chem Toxicol 32(8):727– 16 734. 17
- 18 Sun, JD; Wolff, RK; Kanapilly, GM. (1982) Deposition, retention, and biological fate of inhaled benzo(a)pyrene 19 adsorbed onto ultrafine particles and as a pure aerosol. Toxicol Appl Pharmacol 65(2):231–244. 20
- 21 Surh, YJ; Tannenbaum, SR. (1995) Sulfotransferase-mediated activation of 7,8,9,10-tetrahydro-7-ol, 22 7,8-dihydrodiol, and 7,8,9,10-tetraol derivatives of benzo[a]pyrene. Chem Res Toxicol 8(5):693–698. 23
- 24 Swartz, WJ; Mattison, DR. (1985) Benzo(a)pyrene inhibits ovulation in C57BL/6N mice. Anat Rec 212:268– 25 276. 26
- 27 Takehisa, S; Wolff, S. (1978) Sister-chromatid exchanges induced in rabbit lymphocytes by 2-aminofluorene 28 and 2-acetylaminofluorene after in vitro and in vivo metabolic activation. Mutat Res 58(2-3):321-329. 29
- 30 Talaska, G; Ginsburg, D; LaDow, K; et al. (2006) Impact of Cyp1a2 or Ahr gene knockout in mice: implications 31 for biomonitoring studies. Toxicol Lett 162(2-3):246-249. 32
- 33 Tamaki, A; Hayashi, H; Nakajima, H; et al. (2004) Polycyclic aromatic hydrocarbon increases mRNA level for 34 interleukin 1 beta in human fibroblast-like synoviocyte line via aryl hydrocarbon receptor. Biol Pharm Bull 35 27(3):407-410. 36
- 37 Tang, T; Friedman, MA. (1977) Carcinogen activation by human liver enzymes in the Ames mutagenicity test. 38 Mutat Res 46(6):387-394. 39
- 40 Tang, D; Li, TY; Liu, II; et al. (2006) PAH-DNA adducts in cord blood and fetal and child development in a 41 Chinese cohort. Environ Health Perspect 114(8):1297–1300. 42
- 43 Tarantini, A; Maitre, A; Lefebvre, E; et al. (2009) Relative contribution of DNA strand breaks and DNA adducts 44 to the genotoxicity of benzo[a]pyrene as a pure compound and in complex mixtures. Mutat Res 671:67–75. 45
- 46 Thyssen, J; Althoff, J; Kimmerle, G; et al. (1981) Inhalation studies with benzo[a]pyrene in Syrian golden 47 hamsters. I Natl Cancer Inst 66(3):575–577. 48
- 49 Tohda, H; Horaguchi, K; Takahashi, K; et al. (1980) Epstein-Barr virus-transformed human lymphoblastoid 50 cells for study of sister chromatid exchange and their evaluation as a test system. Cancer Res 40(12):4775– 51 4780. 52
- 53 Tong, C; Brat, SV; Williams, GM. (1981) Sister-chromatid exchange induction by polycyclic aromatic 54 hydrocarbons in an intact cell system of adult rat-liver epithelial cells. Mutat Res 91:467-473.
- 55

Triolo, AJ; Aponte, GE; Herr, DL. (1977) Induction of aryl hydrocarbon hydroxylase and forestomach tumors
 by benzo(a)pyrene. Cancer Res 37:3018–3021.

Tweats, DJ. (1981) Activity of 42 Coded Compounds in a Differential Killing Test using Escherichia coli Strains WP2, WP67 (uvrA polA), and CM871 (uvrA lexA recA). In: de Serres, FJ.Ashby, J eds. Evaluation of Short-Term Tests for Carcinogens, New York: Elsevier/North-Holland, 199-209.

4 5 6

7
8 Uno, S; Dalton, TP; Shertzer, HG; et al. (2001) Benzo[a]pyrene-induced toxicity: paradoxical protection in
9 Cyp1a1(-/-) knockout mice having increased hepatic benzo[a]pyrene-DNA adduct levels. Biochem Biophys
10 Res Commun 289:1049–1056.

Uno, S; Dalton, TP; Dragin, N; et al. (2006) Oral benzo[a]pyrene in Cyp1 knockout mouse lines: CYP1A1
important in detoxication, CYP1B1 metabolism required for immune damage independent of total-body
burden and clearance rate. Mol Pharmacol 69(4):1103–1114.

U.S. EPA (Environmental Protection Agency). (1988) Recommendations for and documentation of biological
values for use in risk assessment. Prepared by the Environmental Criteria and Assessment Office, Office of
Health and Environmental Assessment, Cincinnati, OH for the Office of Solid Waste and Emergency Response,
Washington, DC; EPA 600/6-87/008. Available online at http://www.epa.gov/iris/backgrd.html (accessed
April 20, 2010).

U.S. EPA (Environmental Protection Agency). (1991a) Dose-response analysis of ingested benzo(a)pyrene
 (CAS no 50-32-8). Cincinnati, OH: U.S. Environmental Protection Agency. EPA600R92045.

U.S. EPA (Environmental Protection Agency). (1996) Guidelines for reproductive toxicity risk assessment.
Federal Register 61(212):56274–56322. Available online at http://www.epa.gov/iris/backgrd.html
(accessed April 20, 2010).

U.S. EPA (U.S. Environmental Protection Agency). (2010) Revised Draft: Multistage Weibull time-to-tumor
model in EPA's Benchmark Dose Software (BMDS): Methodology Description. Washington, DC: U.S.
Environmental Protection Agency.

Valencia, R; Houtchens, K. (1981) Mutagenic activity of 10 coded compounds in the drosophila sex-linked
 recessive lethal test. Evaluation of short-term tests for carcinogens: report of the international collaborative
 program: Report of the International Collaborative Program. Prog Mutat Res 1:651–659.

- Valentin-Severin, I; Thybaud, V; Le Bon, AM; et al. (2004) The autoradiographic test for unscheduled DNA
 synthesis: a sensitive assay for the detection of DNA repair in the HepG2 cell line. Mutat Res 559(1-2):211217.
- Van Agen, B; Maas, LM; Zwingmann, IH; et al. (1997) B[a]P-DNA adduct formation and induction of human
 epithelial lung cell transformation. Environ Mol Mutagen 30(3):287–292.

Van Rooij, JG; Bodelier-Bade, MM; Jongeneelen, FJ. (1993) Estimation of individual dermal and respiratory
uptake of polycyclic aromatic hydrocarbons in 12 coke oven workers. Br J Ind Med 50(7):623–632.

Vogel, EW; Zijlstra, JA; Blijleven, WG. (1983) Mutagenic activity of selected aromatic amines and polycyclic
hydrocarbons in Drosophila melanogaster. Mutat Res 107(1):53–77.

Wang, JJ; Frazer, DG; Law, B; et al. (2003) Identification and quantification of urinary benzo[a]pyrene and its
metabolites from asphalt fume exposed mice by microflow LC coupled to hybrid quadrupole time-of-flight
mass spectrometry. Analyst 128(7):864–870.

Warshawsky, D; Barkley, W. (1987) Comparative carcinogenic potencies of 7H-dibenzo[c,g]carbazole,
 dibenz[a,j]acridine and benzo[a]pyrene in mouse skin. Cancer Lett 37(3):337–344.

2 3 Wattenberg, LW. (1972) Inhibition of carcinogenic and toxic effects of polycyclic hydrocarbons by phenolic anti-oxidants and ethoxyquin. J Natl Cancer Inst 48(5):1425–1430. 4 5 6 7 8 Wattenberg, LW. (1974) Inhibition of carcinogenic and toxic effects of polycyclic hydrocarbons by several sulfur-containing compounds. J Natl Cancer Inst 52(5):1583–1587. Waylen, AL; Metwally, M; Jones, GL; et al. (2009) Effects of cigarette smoking upon clinical outcomes of 9 assisted reproduction: a meta-analysis. Hum Reprod 15:31–44. 10 11 Weinstein, D: Katz, ML: Kazmer, S. (1977) Chromosomal effects of carcinogens and non-carcinogens on WI-38 12 after short term exposures with and without metabolic activation. Mutat Res 46(4):297–304. 13 14 Wester, RC; Maibach, HI; Bucks, DA; et al. (1990) Percutaneous absorption of [14C]DDT and 15 [14C]benzo[a]pyrene from soil. Fundam Appl Toxicol 15(3):510–516. 16 17 Weyand, EH; Bevan, DR. (1986) Benzo(a)pyrene disposition and metabolism in rats following intratracheal 18 instillation. Cancer Res 46(11):5655-5661. 19 20 Weyand, EH; Beyan, DR. (1987) Species differences in disposition of benzo[a]pyrene. Drug Metab Dispos 21 15(4):442-448. 22 23 Weyand, EH; LaVoie, EJ. (1988) Comparison of PAH DNA adduct formation and tumor initiating activity in 24 newborn mice. Proc Am Assoc Cancer Res 29(10):98. 25 26 Weyand, EH; He, ZM; Ghodrati, F; et al. (1992) Effect of fluorine substitution on benzo[j]fluoranthene 27 genotoxicity. Chem Biol Interact 84(1):37–53. 28 29 Weyand, EH; Chen, YC; Wu, Y; et al. (1995) Differences in the tumorigenic activity of a pure hydrocarbon and 30 a complex mixture following ingestion: benzo[a]pyrene vs manufactured gas plant residue. Chem Res Toxicol 31 8(7):949-954. 32 33 Whitwell, J; Fowler, P; Allars, S; et al. (2010) 5-Fluorouracil, colchicine, benzo[a]pyrene and cytosine 34 arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster V79 cells at 35 Covance Laboratories, Harrogate, UK in support of OECD draft Test Guideline 487. Mutat Res 702(2):230-36 236. 37 38 WHO (World Health Organization). (1998) Environmental health criteria. Vol. 202. Selected non-heterocyclic 39 polycyclic aromatic hydrocarbons. International Programme on Chemical Safety, Geneva, Switzerland. 40 41 Wielgosz, SM; Brauze, D; Pawlak, AL. (1991) Ah locus-associated differences in induction of sister-chromatid 42 exchanges and in DNA adducts by benzo[a]pyrene in mice. Mutat Res 246(1):129–137. 43 44 Wiersma, DA; Roth, RA. (1983a) Total body clearance of circulating benzo(a)pyrene in conscious rats: effect 45 of pretreatment with 3-methylcholanthrene and the role of liver and lung. J Pharmacol Exp Ther 226(3):661– 46 667. 47 48 Wiersma, DA; Roth, RA. (1983b) The prediction of benzo[a]pyrene clearance by rat liver and lung from 49 enzyme kinetic data. Mol Pharmacol 24(2):300-308. 50 51 Wijnhoven, SW; Kool, HJ; van Oostrom, CT; et al. (2000) The relationship between benzo[a]pyrene-induced 52 mutagenesis and carcinogenesis in repair-deficient Cockayne syndrome group B mice. Cancer Res 53 60(20):5681-5687. 54

1 Willems, MI; Roggeband, R; Baan, RA; et al. (1991) Monitoring the exposure of rats to benzo[a]pyrene by the 2 3 4 5 6 determination of mutagenic activity in excreta, chromosome aberrations and sister chromatid exchanges in peripheral blood cells, and DNA adducts in peripheral blood lymphocytes and liver. Mutagenesis 6(2):151-158.

Williams, GM; Laspia, MF; Dunkel, VC. (1982) Reliability of the hepatocyte primary culture/DNA repair test in testing of coded carcinogens and noncarcinogens. Mutat Res 97:359-370.

7 8 9 Williams, JA; Martin, FL; Muir, GH; et al. (2000) Metabolic activation of carcinogens and expression of various 10 cvtochromes P450 in human prostate tissue. Carcinogenesis 21(9):1683–1689. 11

12 Wilson, JS; Holland, LM. (1988) Periodic response difference in mouse epidermis chronically exposed to 13 crude-oils or BaP: males vs. females. Toxicology 50(1):83-94. 14

15 Withey, JR; Shedden, J; Law, FC; et al. (1993) Distribution of benzo[a]pyrene in pregnant rats following 16 inhalation exposure and a comparison with similar data obtained with pyrene. [Appl Toxicol 13(3):193–202. 17

18 Wojciechowski, JP; Kaur, P; Sabharwal, PS. (1981) Comparison of metabolic systems required to activate pro-19 mutagens/carcinogens in vitro for sister-chromatid exchange studies. Mutat Res 88(1):89–97. 20

21 Wolff, S; Takehisa, S. (1977) Induction of sister chromatid exchanges in mammalian cells by low 22 concentrations of mutagenic carcinogens that require metabolic activation as well as those that do not. Dev 23 Toxicol Environ Sci 2:193-200. 24

25 Wolff, RK: Griffith, WC: Henderson, RF: et al. (1989) Effects of repeated inhalation exposures to 1-26 nitropyrene, benzo[a]pyrene, Ga2O3 particles, and SO2 alone and in combinations on particle clearance, 27 bronchoalveolar lavage fluid composition, and histopathology. [Toxicol Environ Health 27(1):123–138. 28

29 Wood, AW; Levin, W; Lu, AY; et al. (1976) Metabolism of benzo(a)pyrene and benzo (a)pyrene derivatives to 30 mutagenic products by highly purified hepatic microsomal enzymes. J Biol Chem 251(16):4882-4890. 31

32 Wood, AW; Levin, W; Chang, RL; et al. (1980) Mutagenicity and tumor-initiating activity of 33 cyclopenta(c,d)pyrene and structurally related compounds. Cancer Res 40(3):642–649. 34

35 Wormhoudt, LW; Commandeur, JN; Vermeulen, NP. (1999) Genetic polymorphisms of human N-36 acetyltransferase, cytochrome P450, glutathione-S-transferase, and epoxide hydrolase enzymes: relevance to 37 xenobiotic metabolism and toxicity. Crit Rev Toxicol 29(1):59-124. 38

39 Wormley, DD; Chirwa, S; Nayyar, T; et al. (2004) Inhaled benzo(a)pyrene impairs long-term potentiation in 40 the F1 generation rat dentate gyrus. Cell Mol Biol 50(6):715–721. 41

42 Wu, MT; Simpson, CD; Christiani, DC; et al. (2002) Relationship of exposure to coke-oven emissions and 43 urinary metabolites of benzo(a)pyrene and pyrene in coke-oven workers. Cancer Epidemiol Biomarkers Prev 44 11(3):311-314. 45

46 Wu, J; Ramesh, A; Nayyar, T; et al. (2003) Assessment of metabolites and AhR and CYP1A1 mRNA expression 47 subsequent to prenatal exposure to inhaled benzo(a)pyrene. Int J Dev Neurosci 21(6):333–346. 48

49 Wu, Q; Suzuki, JS; Zaha, H; et al. (2008) Differences in gene expression and benzo[a]pyrene-induced DNA 50 adduct formation in the liver of three strains of female mice with identical AhRb2 genotype treated with 51 2,3,7,8-tetrachlorodibenzo-p-dioxin and/or benzo[a]pyrene. J Appl Toxicol 28:724–733. 52

53 Wu, J; Hou, H; Ritz, B; et al. (2010) Exposure to polycyclic aromatic hydrocarbons and missed abortion in 54 early pregnancy in a Chinese population. Sci Total Environ 408:2312–2318. 55

- Wynder, EL; Hoffmann, D. (1959) A study of tobacco carcinogenesis. VII. The role of higher polycyclic
 hydrocarbons. Cancer 12:1079–1086.
 - Wynder, EL; Fritz, L; Furth, N. (1957) Effect of concentration of benzopyrene in skin carcinogenesis. J Natl Cancer Inst 19(3):361–370.

Xu, C; Chen, JA; Qiu, Z; et al. (2010) Ovotoxicity and PPAR-mediated aromatase downregulation in female Sprague-Dawley rats following combined oral exposure to benzo[a]pyrene and di-(2-ethylhexyl) phthalate. Toxicol Lett 199(3):323-332.

- Yamasaki, H. (1990) Gap junction intercellular communication and carcinogenesis. Carcinogenesis 11(7):1051–1058.
- Yang, JJ; Roy, TA; Krueger, AJ; et al. (1989) In vitro and in vivo percutaneous absorption of benzo[a]pyrene
 from petroleum crude-fortified soil in the rat. Bull Environ Contam Toxicol 43(2):207–214.
- Yang, H; Mazur-Melnyk, M; de Boer, JG; et al. (1999) A comparison of mutational specificity of mutations
 induced by S9-activated B[a]P and benzo[a]pyrene-7,8-diol-9,10-epoxide at the endogenous APRT gene in
 CHO cells. Mutat Res 423:23–32.
- Zeilmaker, MJ; van Eijkeren, JCH. (1997) Modeling Ah-receptor dependent P450 induction I. Cellular model
 definition and its corporation in a PBPK model of 2,3,7,8-TCDD. RIVM Report 604138 001. National Institute
 of Public Health and the Environment, B, The Netherlands.
- Zeilmaker, MJ; van Eijkeren, JCH; Kroese, ED. (1999a) PBPK simulated DNA adduct formation: relevance for
 the risk assessment of benzo(a)pyrene. Bilthoven, The Netherlands.
- Zeilmaker, MJ; van Eijkeren, JCH; Olling, M. (1999b) A PBPK-model for B(a)P in the rat relating dose and liver
 DNA-adduct level. Bilthoven, The Netherlands.
- Zhang, HM; Nie, JS; Li, X; et al. (2012) Characteristic analysis of peripheral blood mononuclear cell apoptosis
 in coke oven workers. J Occup Health 54(1):44-50.
- 33 Zheng, Z; Fang, JL; Lazarus, P. (2002) Glucuronidation: an important mechanism for detoxification of
- 34 benzo[a]pyrene metabolites in aerodigestive tract tissues. Drug Metab Dispos 30(4):397–403.
- Zheng, SJ; Tian, HJ; Cao, J; et al. (2010) Exposure to di(n-butyl)phthalate and benzo(a)pyrene alters IL-1beta
 secretion and subset expression of testicular macrophages, resulting in decreased testosterone production in
 rats. Toxicol Appl Pharmacol 248(1):28–37.
- 40 Zijlstra, JA; Vogel, EW. (1984) Mutagenicity of 7,12-dimethylbenz[a]anthracene and some other aromatic
- 41 mutagens in *Drosophila melanogaster*. Mutat Res 125(2):243–261.

4 5 6

7 8

9

10 11

12