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Disclaimer 

This document is an external review draft. This information is distributed solely for the purpose of 
pre-dissemination peer review under applicable information quality guidelines. It has not been 
formally disseminated by EPA. It does not represent and should not be construed to represent any 
Agency determination or policy. It is being circulated for review of its technical accuracy and 
science policy implications. Mention of trade names or commercial products does not constitute 
endorsement or recommendation for use. 
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Executive Summary 

The Next Generation (NexGen) of Risk Assessment program was initiated in 2010 as a multiyear, 1 
multi-organization effort to consider new molecular, computational, and systems biology 2 
approaches for use in risk assessments. The goal is to enable faster, less expensive, and more robust 3 
assessments for chemicals and other stressors that might adversely affect public health and the 4 
environment. Although this report is focused on human disease, the approaches described here are 5 
equally applicable to environmental risks. Specific aims of this initial phase of the NexGen program 6 
are to (1) demonstrate proof-of-concept that the data and methods from recent advances in biology 7 
can better inform risk assessment; (2) identify which of the information resources and practices are 8 
most useful for particular purposes (value of information); (3) articulate decision considerations 9 
for use of new types of data and methods to inform risk assessment; and (4) identify important data 10 
gaps.  11 

To achieve the above, prototypes or case studies were designed to (1) implement the 12 
recommendations from workshops and experts on approaches to identifying and evaluating the 13 
available data in molecular, computational, and systems biology for use in risk assessment; 14 
(2) provide risk assessors, risk managers, and the general public with clear examples 15 
demonstrating how new data and advanced methods might support specific types of risk 16 
assessments; and (3) elicit interest, discussion, and participation from stakeholders to further 17 
improve risk assessments.  18 

The assessment prototypes are broadly categorized into three groups based on the assessment’s 19 
“fitness for intended use” given the decision context. Primary drivers of the decision context are the 20 
number of chemicals that must be addressed and the confidence needed in the scientific data to 21 
support a specific type of decision. The three categories or tiers have been defined as follows: 22 
Tier 3—major scope decision-making (considerable data indicating high hazard or widespread 23 
exposures); Tier 2—limited decision-making (limited exposure potential or limited hazard 24 
potential or data); and Tier 1—prioritization and screening (very little or no traditional data for 25 
chemicals known to be in commerce). Although the prototypes were designed for illustrative 26 
purposes to address these three types of decision context, the supporting data and methods can be 27 
deployed across all categories as available and as needed, and are arrayed as a continuum of 28 
approaches. Ideally, multiple data streams are brought to bear on consideration of potential risks. 29 

The prototypes illustrate types of data and methods that are likely to be used in the near future, but 30 
are not intended to be exhaustive reviews. The primary intent of the first set of chemicals (Tier 3 31 
prototypes) is to verify if and how new data types and approaches could be used to inform risk 32 
assessment by comparison to robust traditional “known” risk, thus verifying new approaches. The 33 
intent of the Tier 2 prototypes is to (1) explore new types of computational analyses and short-34 
duration in vivo bioassays that are relatively uncommon in risk assessment but appear very 35 
promising for the near future; and (2) develop an assessment approach well suited to limited scope 36 
risk management decisions. In this case, limited generally means regional to local exposure 37 
potential, or limited hazard potential, or limited data to conduct more detailed assessments. The 38 
Tier 2 efforts fall between Tier 3 and Tier 1 in terms of resources required and amount of 39 
uncertainty in the assessment results. The Tier 1 prototypes explore entirely high-throughput 40 
approaches that could be applied to thousands or tens of thousands of chemicals, are the least 41 
resource intensive, and are likely to have the greatest uncertainty.  42 
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The following eight chemicals or chemical classes and their associated effects were chosen for 1 
prototype development: 2 

• Tier 3:  3 
o Benzene and leukemia (molecular epidemiology),  4 
o Ozone and lung inflammation and injury (molecular clinical studies), and 5 
o Benzo[a]pyrene (B[a]P)/polycyclic aromatic hydrocarbons (PAHs) and liver cancer 6 

(molecular clinical studies meta-analyses and in vivo rodent bioassay). 7 
• Tier 2: 8 

o Chemicals associated with diabetes and obesity (“big data” knowledge mining),  9 
o Chemicals associated with thyroid hormone disruption (short duration in vivo 10 

exposure bioassays-alternative species), and 11 
o Chemicals associated with cancer (short duration in vivo exposure bioassays-12 

mammalian). 13 
• Tier 1:  14 

o Chemicals associated with cancer and noncancer disorders especially 15 
developmental (QSAR) and 16 

o Chemicals associated with thyroid hormone disruption (high throughput in vitro 17 
assays). 18 

Highlighted methods include molecular clinical and epidemiologic studies, in vivo molecular 19 
nonhuman studies, high-content in vivo assays (mammalian and nonmammalian species), 20 
bioinformatics, data mining, high-throughput in vitro screening assays, and quantitative structure 21 
activity modeling. NexGen methods and results were compared to robust traditional data set 22 
results.  23 

Both bottom-up and top-down perspectives were used to evaluate the available data. The top-down 24 
approach focuses on higher system-level indicators of disease resulting from environmental 25 
exposures to known chemicals based on data from human clinical and epidemiologic studies. The 26 
bottom-up approach focuses on information describing chemically induced alterations in molecular 27 
and cellular components, as well as their network interactions. These data support the capability to 28 
develop risk assessments for chemicals with little or no traditional data. Additionally, these data 29 
can further inform assessments based on traditional data. 30 

Data and insights from both bottom-up and top-down approaches are integrated to inform 31 
understanding of potential health risks associated with chemical exposures. The following 32 
summarizes lessons learned from development of the prototypes, as well as challenges for 33 
incorporating novel data streams to inform risk assessment: 34 

• Advances in genomics, epigenomics, transcriptomics, metabolomics, and cell and systems 35 
biology, together with advanced analytical methods in biostatistics, bioinformatics, and 36 
computational biology, have the potential to increase dramatically understanding of the 37 
molecular basis of disease and environmental factors that alter disease risks. 38 

• Of particular importance are the many new tools that facilitate testing and evaluation, on an 39 
unprecedented scale, of chemicals with limited or no traditional data. ToxCastTM and 40 
Toxicology in the 21st Century (Tox21) Programs provide examples.  41 



 

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT – Do Not Cite or Quote. 
September 2013 xii   

• New approaches can be used to identify biological patterns or signatures that are associated 1 
with specific diseases, thus facilitating grouping and evaluating chemicals based on the 2 
mechanistic underpinnings of specific diseases. The Comparative Toxicogenomic Database 3 
provides a partial example. 4 

• These signatures are best developed and understood as they relate to apical outcomes using 5 
systems biology. Conceptualization of these relationships among early molecular events, 6 
intermediate events, and apical outcomes are often termed mode of action or “adverse 7 
outcome pathways.”1  8 

• Signatures appear exposure-dose dependent (i.e., the magnitude of response changes with 9 
changes in exposure-dose) and hence, might be used to prioritize chemicals based on relative 10 
potencies, to serve as biomarkers of exposure and effect, and to inform quantitative risk 11 
assessment. Biological processes also are often time-dependent, which can complicate 12 
interpretation. 13 

• The links between molecular perturbations and disease outcomes are influenced by a number 14 
of variables, that is, metabolism, cell type, genomic variants, cell and tissue interactions, and 15 
species. Thus, some test systems might better predict the potency of a chemical to disrupt 16 
normal biology than predict the specific adverse outcome resulting from that disruption.  17 

• Historically, many controversial risk assessment issues lack data for substantive progress in 18 
understanding. NexGen approaches can provide new data types to improve the 19 
characterization of human variability and susceptibility, cross-species relevance, and low 20 
exposure-dose-response relationships via understanding mechanistic commonalities and 21 
differences. These issues are discussed in this report. 22 

The prototype results presented in this report demonstrate proof-of-concept for an integrated 23 
approach to risk assessment based on molecular, computational, and systems biology. In addition, 24 
they explore which types of information appear most valuable for specific purposes and articulate 25 
some decision considerations for use of data. Based on lessons learned from this effort, near-term 26 
and longer term implications for risk assessment are also discussed. 27 

Further advances in methods and knowledge undoubtedly will occur over the near term. Logistical 28 
and methodological challenges in interpreting and using newer data and methods in risk 29 
assessment, however, remain significant. Hence, incorporating new information into risk 30 
assessment will remain an ongoing opportunity. 31 

  

                                                             
1An adverse outcome pathway has been defined as the mechanistic or predictive relationship between initial 
chemical-biological interactions (i.e., molecular initiating event[s]; [MIE]) and subsequent perturbations to 
cellular functions sufficient to elicit disruptions at higher levels of organization, culminating in an adverse 
phenotypic outcome in an individual and population relevant to risk assessment (e.g., disease progression or 
organ dysfunction in humans) (Ankley, G. T. et al. 2010). Although commonly used, the term is something of a 
misnomer; pathways are not intrinsically adverse or nonadverse but rather pathways when perturbed in 
specific ways can lead to adverse outcomes. The same can be said of the commonly use term “toxicity” 
pathways. 
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1. Introduction 

In recent years, public concern has grown 1 
about the number of chemicals in the 2 
environment and the ability to assess the 3 
risk to human health from potential 4 
exposures. Efforts by government agencies, 5 
including the U.S. Environmental 6 
Protection Agency (EPA), to protect public 7 
health from unreasonable chemical 8 
exposure have been hindered by 9 
limitations in current chemical testing 10 
methods and data. The European 11 
Commission has underscored this concern 12 
with recent initiatives to identify the many 13 
thousands of largely untested chemicals in 14 
use today and to increase the available 15 
toxicity information on those chemicals relative to the amount of chemical used and the potential 16 
for exposure in the environment (ECHA 2013a). As a result, significant efforts are underway 17 
throughout the world to redesign toxicity testing and understand how advances in biology, 18 
biotechnology, and computational science during the past two decades can be used in risk 19 
assessment. Specific goals are to increase dramatically our ability to test and assess chemicals more 20 
rapidly, understand disease processes and relationships to environmental factors, and facilitate the 21 
process from data acquisition to data analysis.  22 

The technologies that have emerged from the sequencing of the human genome have ushered in a 23 
new era in biology (Collins, FS 2010) that supports the above goals. Advances in genomics, 24 
epigenomics, transcriptomics, metabolomics, proteomics, and cell and systems biology,2 together 25 
with advanced analytical methods in biostatistics, bioinformatics, and computational biology, have 26 
dramatically increased our understanding of the molecular basis of disease—what causes disease 27 
and what exacerbates and ameliorates our risk of disease. Molecular signatures and other 28 
biomarkers are helping identify and define disease states and responses, and thousands of 29 
variations in previously unknown human health risk factors are being identified.  30 

Researchers are generating massive amounts of biological data from the new “omics” technologies. 31 
Approximately 1.8 zettabytes (1021) of new data are generated every year, roughly doubling the 32 
world’s information resource every 2 years (Dearry 2013). More than 50,000 “genomics” papers 33 
are published each year (NCBI 2013). Large, publicly available data sets now support analyses of 34 
environmental health data on an unprecedented scale, driving further discovery of new knowledge 35 
(Dearry 2013, Abecasis et al. 2012, ENCODE Project Consortium 2012, Mechanic et al. 2012, Wang, I 36 
et al. 2012, Collins, MA 2009, Thomas, RS et al. 2009, Ramasamy et al. 2008). Concomitantly, 37 
powerful data mining, statistical, and bioinformatics methods have been developed to identify, 38 
                                                             
 2Systems biology is defined as a “scientific approach that combines the principles of engineering, 
mathematics, physics, and computer science with extensive experimental data to develop a quantitative as 
well as a deep conceptual understanding of biological phenomena, permitting prediction and accurate 
simulation of complex (emergent) biological behaviors” (Wanjek 2013). See Wanjek’s (2013) Web article 
Systems as Biology as Defined by NIH for more discussion of systems biology. 

Box 1. Next Generation Risk Assessment (NexGen) 

This report describes the NexGen program, a multiyear, multi-
organization effort to develop and evaluate new molecular, 
computational, and systems biology informed approaches to 
risk assessment. The goal of this effort is to advance risk 
assessment by facilitating faster, less expensive, and more 
robust assessments of public health risks by EPA’s Office of 
Research and Development. The specific aims of the program 
are to: 

• demonstrate proof of concept that recent advances in 
biology can better inform risk assessment; 

• understand what information is most useful for particular 
purposes (value of information); 

• articulate decision rules for use of new types of data and 
methods to inform risk assessment; and  

• identify important data gaps. 

Box 1. Next Generation Risk Assessment (NexGen) 

This report describes the NexGen program, a multiyear, multi-
organization effort to develop and evaluate new molecular, 
computational, and systems biology informed approaches to 
risk assessment. The goal of this effort is to advance risk 
assessment by facilitating faster, less expensive, and more 
robust assessments of public health risks by EPA’s Office of 
Research and Development. The specific aims of the program 
are to: 

• demonstrate proof of concept that recent advances in 
biology can better inform risk assessment; 

• understand what information is most useful for particular 
purposes (value of information); 

• articulate decision considerations for use of new types of 
data and methods to inform risk assessment; and  

• identify important data gaps. 
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prioritize, and classify biomarkers with high discriminatory ability (Fang et al. 2012), and to store 1 
and manage the information in database libraries, including the Gene Expression Omnibus (GEO) 2 
(NCBI 2012a), the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa Laboratories 3 
2013), the Comparative Toxicogenomic Database (CTD) (NIEHS 2013), and the Epigenomics 4 
Database (Chadwick 2012, NCBI 2009). As integration across differing types of data and levels of 5 
biological organization occurs (Birney 2012, ENCODE Project Consortium 2012), the degrees to 6 
which environmental risk assessment will be transformed and our understanding of disease at the 7 
individual and population level will be advanced are anticipated to be significant (Bhattacharya et 8 
al. 2011, Chiu et al. 2010). 9 

Scientific discovery is now moving away from the traditional approach of individual scientists’ 10 
conducting experiments in their laboratories to pooling of data into publicly available databases 11 
and broad collaborative participation in problem solving (Dearry 2013, Friend 2013, Derry et al. 12 
2012). The magnitude of changes was highlighted in 13 
remarks by Frances Collins (Director of National 14 
Institutes of Health [NIH]) who stated that within the 15 
near future, most people in the United States will have a 16 
genome scan in their medical records as a tool for 17 
diagnosis, prognosis, and treatment of disease (Collins, 18 
FS 2010).  19 

The impact of recent scientific advances on our ability 20 
to conduct risk assessments and protect public health 21 
cannot be overestimated. Particularly relevant to 22 
environmental risk assessment is that new data types 23 
and methods will result in much more rapid evaluation 24 
of chemicals, increase identification of causal 25 
mechanisms of disease, and provide a more profound 26 
understanding of the interrelated roles of genetics, 27 
epigenetics, and environmental factors. Experiments 28 
already can be conducted much more rapidly and 29 
efficiently using robotics and in vitro assays to measure 30 
molecular functions. Two examples are (1) Toxicology 31 
in the 21st Century (Tox21) testing of 10,000 chemicals 32 
within 3 years using approximately 150 assays (Figure 33 
1) (Tice et al. 2013), and (2) the study of gene- and environment-wide associations with disease in 34 
tens of thousands of humans with multiple diseases—both unimaginable feats 15 years ago (Friend 35 
2013, Mechanic et al. 2012). With the burgeoning amounts of data produced by high-volume testing 36 
and discovery, an effort in the European Union called “Safety Evaluation Ultimately Replacing 37 
Animal Testing,” SEURAT-1 (http://www.seurat-1.eu/) has begun to develop a conceptual 38 
framework that can be used as a basis to combine information derived from predictive tools to 39 
support a safety assessment process. The overarching SEURAT-1 research strategy is to adopt a 40 

 

Figure 1. Toxicology in the 21st Century (Tox21) 
robot conducts bioassays on 10,000 chemicals. 
A robot arm (foreground) retrieves assay plates 
from incubators and places them at compound 
transfer stations or hands them off to another 
robot arm (background) that services liquid 
dispensers or plate readers. Photo by Maggie 
Bartlett (NHGRI 2012). 

http://www.seurat-1.eu/
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toxicological mode-of-action3 approach to describe how any substance might adversely affect 1 
human health, and to use this knowledge to develop complementary theoretical, computational, 2 
and experimental (in vitro) models. 3 

In collaboration with its partners (see Acknowledgments), EPA initiated the NexGen program in 4 
2010 to evaluate the use of these recent advances in biological and computational sciences for risk 5 
assessment (Text Box 1). We initially conducted workshops and solicited expert opinion to develop 6 
a framework and suggestions for prototype assessments that address the needs of the public and 7 
the risk assessment community. Federal, state, and other partners participated in the workshops 8 
and continue to provide advice, data, and review for NexGen reports. Text Box 2 lists related, 9 
ongoing legislation and government research activities in Europe and the United States. 10 

                                                             
3“Mode-of-action” is one term used to reference a mechanistic understanding of the impact of a chemical on 
human health. Other terms include “disease signature” and “network perturbations” from epidemiology for 
example, while toxicologists might reference the same concept using the terms “toxicity pathway,” “mode-of-
action,” or “adverse outcome pathway.” In general, this report uses the term “mechanism of action,” in 
accordance with the National Research Council (NRC) report, Science and Decisions: Advancing Risk 
Assessment (2009); however, the exact term used in a specific section of this report is based on the references 
used and the context of the discussion.  
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Box 2. Current Legislation and Governmental Research Activities in Europe and the United States 

EUROPEAN LEGISLATION AND ACTIVITIES  

In response to environmental concerns, a desire for increased assessment efficiencies, and a desire to reduce reliance on 
in vivo animal testing, the European Union (EU) enacted an expansive new program called Registration, Evaluation, 
Authorisation and Restriction of Chemicals (REACH) in June 2007. This legislation places greater responsibility on 
industry to test and manage the risks posed by their chemicals. Under REACH, companies must develop detailed 
technical dossiers and chemical safety reports and submit them to the European Chemicals Agency (ECHA). 
Approximately 12,000 chemicals have been registered for consideration with ECHA. Many more chemicals are 
anticipated in the near future. Additionally, the 7th Amendment to the EU Cosmetics Directive prohibits putting animal-
tested cosmetics on the market in Europe after 2013. Although current alternative methods more closely resemble 
traditional methods, the EU has invested 50M Euros in a research program to further next-generation methods (OECD 
2012). Current ECHA guidance is available on the use of quantitative structure-activity relationships (QSARs), in vitro 
assays, and read-across (also known as near-analog structure-activity relationships) to support assessments.  

REACH and the 7th amendment will significantly impact nearly all multinational companies and are important drivers for 
the development and use of new molecular-based methodologies. Europe’s chemical trade accounts for about 40% of 
the global market, involving 27 countries and almost half a billion people.  

The Joint Research Centre (JRC) is the scientific and technical arm of the European Commission. It provides scientific 
advice and technical support to EU policies. The JRC has seven scientific institutes (featuring laboratories and research 
facilities) located at five sites: Belgium, Germany, Italy, the Netherlands, and Spain. The JRC’s Institute for Health and 
Consumer Protection’s main research relevant to NexGen includes integrated risk and benefit assessments of chemical 
substances; fit-for-purpose analytical tools to help ensure the safety of food and consumer products; and optimization 
and validation of methods that reduce the reliance on animal tests in the safety assessment of chemicals.  

U.S. ACTIVITIES 

Several documents have guided the NexGen effort, including the Strategic Plan for the Future of Toxicity Testing and Risk 
Assessment at the U.S. Environmental Protection Agency (EPA 2009a), the Toxicology in the 21st Century (Tox21) 
strategy, and the National Institutes of Health Strategic Plan (NIEHS 2012c). Ongoing research activities of several federal 
agencies that have informed and continue to inform the NexGen effort are described below. 

The Centers for Disease Control and Prevention (CDC) has several groups involved in systems biology and 
computational environmental health and occupational research. The National Center for Environmental Health (NCEH) 
and Agency for Toxic Substances and Disease Registry (ATSDR) scientists in the Computational Toxicology Laboratory 
have applied several new approaches for improving chemical risk assessments. They have mined the National Health 
and Nutrition Examination Survey (NHANES) data set to obtain high-quality analytical and human health information, 
which is representative of the general U.S. population, and used computer modeling to identify sensitive populations for 
health outcomes at environmental exposure levels. A second project involved use of NHANES public health genomics 
data to identify allelic differences in ALA dehydratase for susceptibility to lead-induced hypertension. Another 
concerned the development and application of QSAR, physiologically based pharmacokinetic (PBPK), and molecular 
docking approaches. These studies involved both data mining of the published scientific literature and collaborative 
laboratory studies with scientists at the Food and Drug Administration (FDA).  

The National Institute for Occupational Safety and Health (NIOSH) is investigating susceptibility gene variants that 
contribute to the development and severity of occupational diseases using high-density and high-throughput (HT) 
genotyping platforms. Understanding the genetic contribution to the development, progression, and outcomes of 
complex occupational diseases will help improve the accuracy of risk assessment and improve safe exposure levels for 
genetically susceptible groups in the workforce.  

The FDA National Center for Toxicological Research (NCTR) is conducting translational research to develop a 
scientifically sound basis for regulatory decisions and reduce risks associated with FDA-regulated products. NCTR 
research evaluates biological effects of potentially toxic chemicals, defines the complex mechanisms that govern their 
toxicity, identifies the critical biological events in the expression of toxicity, discovers biomarkers, and develops new 
scientific tools and methods to improve assessment of human exposure, susceptibility, and risk. Examples of tools 
created by NCTR include ArrayTrack™, Decision Forest, Endocrine Disruptor Knowledge Base (EDKB), Gene Ontology for 
Functional Analysis (GOFFA), and SNPTrack. Efforts include the MicroArray Quality Control (MAQC) consortia. 
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Box 2. Current Legislation and Governmental Research Activities in Europe and the United States (Continued) 

U.S. ACTIVITIES (CONTINUED) 

The National Institutes of Health (NIH) National Center for Advancing Translational Sciences (NCATS) conducts 
research to resolve scientific and technical challenges that might cause barriers to the efficient development of new 
treatments and tests to improve human health. The National Chemical Genomics Center (NCGC) at the National Center 
for Advancing Translational Sciences applies high-throughput screening (HTS) assay guidance, informatics, and chemistry 
resources for NCAT’s Re-engineering Translational Sciences research projects. Specifically, NCGC research programs 
include assay development and HTS, and participation in Tox21. NCGC Assay Biology Teams are researching optimization 
of biochemical, cellular, and model organism-based assays submitted by the biomedical research community for HT 
small molecule screening. The results of these screens (probes) can be used to further examine protein and cell 
functions and biological processes relevant to physiology and disease (NIH 2012). 

The National Human Genome Research Institute (NHGRI) was established by NIH in 1989 to implement the 
International Human Genome Project to map the human genome. NHGRI has developed programs for a variety of 
research projects including Encyclopedia of DNA Elements (ENCODE), Gene Expression Omnibus (GEO), and collaborative 
projects, including the Comparative Toxicogenomic Database (CTD), HapMap, and Gene. Through the application of 
these tools, NHGRI hopes to gain a greater understanding of human genetic disease, and develop better methods for the 
detection, prevention, and treatment of genetic disorders.  

The National Institute of Environmental Health Science (NIEHS) and the National Toxicology Program (NTP) have 
played an integral role in the development and application of HTS data. Current research is focused on developing and 
validating Tox21 approaches to improve hazard identification, characterization, and risk assessment (Birnbaum 2012, 
Serafimova et al. 2007). The NTP HTS program has three specific goals: (1) prioritizing substances for in-depth 
toxicological evaluation, (2) identifying mechanisms of action for further investigation (e.g., disease-associated 
pathways), and (3) developing predictive models for in vivo biological response (i.e., predictive toxicology). NTP is 
developing innovative and flexible approaches to data integration, both across research programs and across different 
data types (e.g., HT, mechanistic, animal studies) (Bucher et al. 2011). These efforts seek to integrate results from new 
techniques with traditional toxicology data to provide a public health context. 

The Engineer Research and Development Center (ERDC), the research organization of the U.S. Army Corps of 
Engineers, conducts research and development in support of warfighters, military installations, and civil works projects 
involving water resources and environmental missions. The ERDC Toxicogenomics research cluster focuses on using 
genomics to develop tools to rapidly assess toxicity of military chemicals in a wide range of animals, identifying gene 
biomarkers of exposure, understanding the mechanisms by which military chemicals cause toxicity, and extrapolating 
toxicity effects across multiple species. Capabilities of the team include advanced instrumentation to characterize 
impacts of chemicals on gene expression with high-density gene arrays, DNA sequencing, and real-time polymerase 
chain reaction (RT-PCR) assays. ERDC Toxicogenomic projects include development of rapid assays to assess whole 
genome impacts of munitions-related compounds, including gene arrays with short exposure screening in daphnia, rat 
cells, rat livers, and fish; comparison of genomic and behavioral responses of fathead minnows and zebrafish to chemical 
exposures; conservation of response to nitroaromatics across species; and support for a toxicogenomic assessment 
framework to integrate predictive toxicology of munitions-related compounds. 

Several EPA Office of Research and Development laboratories and centers have been involved in NexGen. EPA’s 
National Center for Environmental Assessment (NCEA) has assumed a leadership and coordination role for the NexGen 
effort. The National Center for Computational Toxicology (NCCT) is the largest component of EPA’s Computational 
Toxicology Research Program. The Center coordinates computational toxicology research on chemical screening and 
prioritization, informatics, and systems modeling. NCCT research includes the (1) use of informatics, HTS technologies, 
and systems biology to develop accurate and flexible computational tools that can screen the thousands of chemicals for 
potential toxicity; and (2) application of mathematical and advanced computer models to help assess chemical hazards 
and risks. EPA’s National Center for Environmental Research (NCER) supports extramural computational toxicology 
research. The National Health and Environmental Effects Research Laboratory (NHEERL) conducts toxicological, clinical, 
and epidemiological research to improve the process of human health risk assessments, including development of 
biological assays and toxicological assessment methods, predictive pharmacokinetic/pharmacodynamic models, and 
advanced extrapolation methods. 
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The initial NexGen prototypes were designed to provide concrete examples that illustrate the 1 
potential for various new methods and data to be used for specific risk assessments within a 2 
decision context4 and to foster further discussion in the risk assessment and risk management 3 
communities to promote continual improvement.  4 

This report presents and discusses the results of this effort, and is organized as follows:  5 

• Section 2: Preparation for Prototype Development – describes the preliminary work and 6 
workshops conducted to characterize the decision context and conceptual framework and to 7 
identify the stakeholders and key issues so that the prototypes provide examples relevant to 8 
the needs of the risk assessment community.  9 

• Section 3: The Prototypes – provides detailed examples of the use of various advanced 10 
methods and data in each of the three tiers, starting with chemicals for Tier 3 “Major Scope 11 
Assessments,” which are data-rich chemicals, proceeding to Tier 2 and Tier 1 chemicals that 12 
have increasingly limited or no in vivo data sufficient to conduct a traditional (e.g., IRIS) risk 13 
assessment.  14 

• Section 4: Advanced Approaches to Recurring Issues in Risk Assessment – describes how 15 
advanced methods are being used to address recurring and challenging issues, including 16 
characterizing variability in deriving toxicity values and assessing potential hazards from 17 
exposure to mixtures. 18 

• Section 5: Lessons Learnedfrom Developing the Protypes – describes lessons learned in 19 
developing the Tier 1, 2, and 3 prototype examples.  20 

• Section 6: Conclusions– outlines the major challenges and future direction for the NexGen 21 
program.  22 

• Appendix A lists technical papers supporting this report. 23 

• Appendix B provides a glossary. 24 

2. Preparation for Prototype Development  

2.1. Consideration of Decision Context 

One of the first tasks undertaken in planning the NexGen effort was consideration of the various 25 
environmental situations of concern to EPA’s Program Offices—in other words, the decision context 26 
[termed in Cote et al. (2012) and the National Research Council (NRC 2009) and National Academy 27 
of Science (NAS 2007) reports]. Decision context defines what environmental management decision 28 
is being made and why, as well as its relationship to other decisions previously made or anticipated. 29 
EPA Program Offices are generally organized around specific pieces of environmental legislation, 30 
such as the Clean Air Act and the Clean Water Act, and are responsible for administering those laws. 31 
Each major piece of legislation brings different responsibilities and nuances to problems faced by 32 
risk managers. In Figure 2, the decision context is represented in three categories for ease of 33 
description. The characteristics that define the three decision context categories and examples of 34 
specific problems faced by the Program Offices are shown. This figure elaborates on the decision 35 

                                                             
4See Section 2.1 for a definition of “decision context” and a discussion of its use. 
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context figure in the report, Science and Decisions: Advancing Risk Assessment, and is the result of 1 
discussions with EPA Program Offices (EPA 2011b). 2 

 
Three factors integral to the decision context for risk managers are the potential exposure, the 3 
number of chemicals that should be considered, and the weight of scientific evidence for supporting 4 
decision-making. Both legislative language and the history of specific regulatory programs 5 
influence the numbers of chemicals considered and the uncertainty in supporting data that can be 6 
tolerated. Tier 3 decision context focuses on nationally relevant chemicals with widespread 7 
exposures and established hazards and for which major regulatory evaluations are likely in 8 
progress. An example would include the International Agency for Research on Cancer (IARC) 9 
benzene assessment (2012) where molecular mechanistic information was used to support the 10 
causal link between benzene and hematopoietic cancers, particularly when the epidemiology data 11 
were somewhat limited. Tier 2 focuses on chemicals for which exposure or hazard appears limited 12 
or available data for detailed assessment are limited. An example includes evaluation of biological 13 
activity and cumulative risk potential of conazole fungicides (EPA 2011e) and potential endocrine 14 
disruptors (EPA 2011c), both of which are based on molecular biology data in combination with 15 
traditional data. Tier 1 decision context focuses on the tens of thousands of chemicals present in 16 

 
Figure 2. Description of decision context categories provided by EPA Program Offices. These decision context 
categories reflect the range of environmental problems to be addressed, from the need to screen many untested 
chemicals in the environment to national regulations for high profile chemicals. The flow from decision context 
through risk assessment to decision-making and the related roles of testing and research are also noted. 
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commerce in significant amounts, but for which we have little knowledge of exposure levels or 1 
potential health effects. An example is the high-throughput (HT)-based evaluations of Deep Water 2 
Horizon Gulf oil spill dispersants (Judson et al. 2010). 3 

2.2. A Framework 

A second task that preceded finalizing plans for the NexGen prototypes was the development of a 4 
guiding framework. The framework draws together several important elements of earlier risk 5 
assessment frameworks and articulates guiding principles for risk assessment development 6 
informed by new data types and methods. A draft version of this framework was presented and 7 
discussed in October 2010 at a meeting with scientific experts (EPA 2010) and in February 2011 at 8 
a public meeting with stakeholders (EPA 2011a). The framework is described in a report by 9 
Krewski et al. (2013).  10 

The NexGen framework is built on three cornerstones (as illustrated in Figure 3): (1) new risk 11 
assessment methodologies to better inform risk management decision-making; (2) new data types 12 
from advances in biology and toxicology on understanding perturbations of biological pathways; 13 
and (3) a population health perspective that recognizes that most adverse health outcomes involve 14 
multiple determinants. The NexGen framework integrates these three cornerstones into a 15 
framework for risk science that progresses in three phases: (1) Objectives, (2) Risk Assessment, 16 
and (3) Risk Management. Phase 1 (Objectives) focuses on problem formulation and scoping, taking 17 
into account the decision context and the range of available or admissible risk management 18 
decision-making options. Phase 2 (Risk Assessment) seeks to identify disease or outcome pathways 19 
using new toxicity testing tools and technologies and attempts to improve the characterization of 20 
risks and uncertainties using advanced risk assessment methodologies. Phase 3 (Risk Management) 21 
involves the development of evidence-based population health risk management strategies of a 22 
regulatory, economic, advisory, community, or technological nature, based on sound principles of 23 
risk management decision-making. Implementation of the NexGen framework is exemplified with a 24 
series of case-study prototypes, illustrating how aspects of the framework have been put into 25 
practice. 26 

NRC provided a blueprint for pathway-based toxicity testing in its 2007 report, Toxicity Testing in 27 
the 21st Century: A Vision and a Strategy (NRC 2007). Guidance on some of the new risk assessment 28 
methods is provided by the 2009 report, Science and Decisions, Advancing Risk Assessment 29 
[NRC (2009)]. The integration of a population health approach was drawn from the McLaughlin 30 
Centre’s integrated risk management and population health framework. Key elements of risk 31 
science and population health are combined to offer a multidisciplinary approach to the assessment 32 
and management of health risk issues (Krewski et al. 2007). 33 
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Figure 3. The Next Generation Framework for Risk Science. This framework is divided into three phases: 
(1) Objectives: Problem Formulation and Scoping takes into consideration Risk Context,5 Decision-Making Options, 
and Value-of-Information; (2) Risk Assessment involves three sub-categories: (A) Health Determinants and 
Interactions, (B) New Scientific Tools and Technologies, and (C) New Risk Assessment Methodologies; and (3) Risk 
Management involves two categories: (A) Risk-Based Decision-Making that involves Risk Management Principles, 
Economic Analysis, Socio-Political Consideration, and Risk Perception, and (B) Risk Management Interventions with 
five possible categories: Regulatory, Economic, Advisory, Community, and Technical (Krewski et al. 2013). 

 

                                                             
5The term decision context is used elsewhere in this report. 
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2.3. Science Community and Stakeholder Engagement 

Outreach to the science community and stakeholder groups was part of the NexGen strategy from 1 
its inception. This document in its final form is viewed as an interim step to implementation of new 2 
advances in risk assessment and is intended to promote further discussion with stakeholders 3 
toward continual improvement of risk assessments and prototypes informed by new data types and 4 
methods. 5 

Given the technical complexity of the research, stakeholder engagement is a particular challenge 6 
and will necessitate ongoing outreach and discussion throughout the process. Our initial efforts are 7 
described below. 8 

2.3.1. Expert Workshop 

EPA convened a 3-day expert workshop on November 1–3, 2010, in Research Triangle Park, North 9 
Carolina, to discuss the draft framework, early draft prototypes, research, and other project 10 
elements. The workshop sought individual input, rather than consensus, in meeting its discussion 11 
goals. Days 1 and 2 of the workshop focused on deliberative drafts of data-rich prototype health 12 
assessments. The goals were to (1) refine health assessment case studies of data-rich chemicals 13 
informed by molecular biology (i.e., “prototypes”); (2) enhance “reverse engineering” from 14 
molecular system biology data, to “known” public health risk estimates based on in vivo human and 15 
animal bioassay data to demonstrate proof of concept, elucidate value of information, and 16 
characterize decision considerations; and (3) summarize options for expanded future work and 17 
research needs.  18 

Day 3 focused on approaches applicable to assessing the potential risks posed by chemicals with 19 
limited or no traditional data. The goals were to (1) identify and discuss a wider variety of new data 20 
types, methods, and knowledge to help characterize data-limited chemicals; (2) consider how this 21 
information might augment, extend, or replace traditional data in health assessment; and 22 
(3) summarize options for expanded future work and research needs. Approximately 40 federal 23 
and nonfederal experts and 80 and partner organization staff members attended the workshop. A 24 
workshop report with the agenda and list of participants is available (EPA 2010). 25 

In 2012, both the Science Advisory Board (SAB) and the Board of Scientific Counselors (BOSC) 26 
reviewed aspects of the NexGen program as part of their evaluations of EPA’s computational 27 
toxicology research (SAB 2013, BOSC 2010). Both the SAB and BOSC commended the exceptional 28 
efforts of the Computational Toxicology Research Program to advance hazard/risk assessment and 29 
provided recommendations for the continued success of the program. The reviews emphasized 30 
further research on chemical exposure pathways resulting from human activity patterns (e.g., 31 
ExpoCast); engagement of the scientific community and stakeholders to foster future partnerships 32 
and promote information exchange; broader outreach for dissemination of scientific findings; 33 
gathering of user-feedback from the general public; improvements in data access through enhanced 34 
website navigation; and development of guidelines for data usage. 35 
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2.3.2. Stakeholder Involvement 

Stakeholder Public Dialogue Conference 

To engage stakeholders in the early stages of the NexGen program, EPA sponsored a public dialogue 1 
conference, “Advancing the Next Generation of Risk Assessment,” on February 15 and 16, 2011, in 2 
Washington, DC. This conference presented stakeholders with an opportunity to learn about the 3 
NexGen program, and to provide their thoughts on the challenges the project faces and its path 4 
forward. Approximately 160 participants, representing 11 stakeholder groups (Figure 4), attended 5 
the conference. The conference report includes the agenda, list of participants, and 6 
recommendations of the group (EPA 2011a). In addition to this conference, “one-on-one” 7 
interviews (described below) were conducted with leaders of public-interest groups and the 8 
business community.  9 

Public Interest Group 
Perspectives 

After the work shop, follow-up 10 
informal one-on-one interviews 11 
were conducted in mid-2010 12 
with several Washington, 13 
DC-based representatives of 14 
national environmental, public 15 
health, and animal welfare 16 
public-interest organizations. 17 
Ronald White, a faculty member 18 
at Johns Hopkins Bloomberg 19 
School of Public Health, 20 
conducted these interviews and 21 
informational meetings as a 22 
component of his research on 23 
public engagement regarding 24 
emerging risk assessment 25 
methods. He also developed a 26 
web-based assessment in late 2010 to ascertain, from nongovernmental public-interest 27 
organizations, their knowledge and interest in emerging scientific approaches for 28 
chemical/pollutant risk assessment. Of the 24 organizations contacted, 8 (33%) responded to the 29 
assessment. 30 

A key question raised in these interviews and web-based assessment was how relevant the NexGen 31 
program is to near-term EPA pollutant/chemical risk assessment procedures and control policies. 32 
The public-interest stakeholders interviewed and those who responded to the online assessment 33 
questions generally supported the concept of integrating the results from emerging biological 34 
science and analytic techniques into EPA’s approach to conducting chemical health-based risk 35 
assessment. Significant concerns emerged, however, regarding the following: 36 

 

Figure 4. Categories of stakeholders that attended the February 2011 
NexGen public dialogue conference (EPA 2011a). 
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• The potential for overstating the utility of NexGen approaches.  1 
• How NexGen prototypes will address key risk assessment methodological issues, such as low-2 

dose exposure assessment, population variability in response, and additivity to background 3 
exposures and disease processes.  4 

• The transparency of the NexGen assessment development process and opportunities for 5 
early, meaningful engagement by public-interest organizations, and the application of NexGen 6 
approaches in risk management. 7 

Business Community Perspectives 

Industry or business perspectives on NexGen approaches also were of interest. Dr. Gerald Poje, 8 
(Environmental Health Consultant, Former Board Member of the U.S. Chemical Safety and Hazard 9 
Investigation Board) had follow-up discussions with nine individuals representing the high-10 
production volume and smaller specialty chemical manufacturing industries, the pharmaceutical 11 
industry, the retail sector, and the energy sector. The participants were generally optimistic about 12 
potential advances in risk assessment and identified two potential advantages: (1) better prioritize 13 
the needs for more expensive and longer duration whole-animal testing, and (2) save time and 14 
money while rationalizing decisions in a tier-based manner using HT and other Tier 1 and Tier 2 15 
tests. They also suggested that the success of NexGen effort depends on EPA’s ability to prove the 16 
value of the newer, tiered approach within EPA’s emerging risk assessment model, the level of 17 
EPA’s investment in the long-term iterative NexGen research effort, and the timely and effective 18 
communication of the evidence to support science-based risk assessment.  19 

Some in the business community expressed concern over whether EPA could match the 20 
pharmaceutical industry’s growing infrastructure (needed to support and sustain a NexGen-like 21 
effort) such as EPA’s ability to unite sufficient numbers of expert biologists, chemists, and 22 
bioinformatics to guide the program to a successful conclusion. The technical complexity of the 23 
NexGen program might also hinder its impact on current risk assessment, risk management, and 24 
business development practices, given the many unknowns that remain. Cultural challenges in 25 
winning over a larger community, who will welcome the use of more recent advances in risk 26 
assessment methods; however, was thought to be surmountable if EPA could be effective at 27 
capacity building and communicating how new data types and approaches could be used for risk 28 
assessment.  29 

2.4. Recurring Issues in Risk Assessment  

The fourth task that preceded the actual prototype development was identification of problematic 30 
issues that might be substantively informed by new methods and data. The issues included problem 31 
formation, adversity classifications and weight of evidence, dose-response modeling (especially at 32 
the low-dose end), variability in human response (due to a variety of factors), interspecies 33 
extrapolation, mixtures risk assessment, and characterization of uncertainty. These issues are 34 
explored in the prototypes to the extent feasible, and some are discussed in more detail in papers 35 
on human variability (Zeise et al. 2012), early-life exposure and later-life disease risks (Boekelheide 36 
et al. 2012), and multifactorial interactions of environment and genes (Patel et al. 2012a, Patel et al. 37 
2012b, Zhuo et al. 2012, Shen et al. 2011, Smith, MT et al. 2011).  38 
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3. The Prototypes 

EPA’s Office of Research and Development, in conjunction with other federal, state, academic, 1 
public, and private partners (see Acknowledgments), developed prototype assessments to provide 2 
concrete illustrations of how new and emerging information could inform risk assessment. The 3 
prototypes used a variety of study types, methods, data, and risk assessment approaches, and are 4 
intended to (1) engender movement in the field of risk assessment from strategy to practical 5 
application of new approaches, and (2) foster discussion and refinement of approaches in the risk 6 
assessment and risk management communities, as 7 
well as with the public. 8 

The results presented in this report demonstrate 9 
proof of concept, provide insight on what types of 10 
information are valuable for specific purposes, and 11 
provide examples of the decision considerations for 12 
reasonable, consistent, and coherent use of the new 13 
types of information for specific applications. The 14 
prototypes also illustrate many of the challenges. 15 
Text Box 3 lists selection criteria used in choosing 16 
prototypes. Figure 5 broadly categorizes the types of 17 
methods aligned to decision context and evaluated 18 
in the prototypes. As noted earlier, the number of 19 
chemicals that need to be evaluated and the level of 20 
confidence required for decision-making are key 21 
components of designing fit-for-purpose 22 
assessments. The integration of knowledge from a 23 
wide variety of methods is likely to be most 24 
informative to risk assessment. Lessons learned 25 
from each prototype and group of similar prototypes will be noted as they arise and, then 26 
integrated and summarized in Section 5 “Lessons Learned from Developing the Prototypes.” 27 

Throughout this report, characterizing systems biology is greatly emphasized. Systems biology is a 28 
critical field in modern biology aimed at understanding the larger picture by integration across 29 
multiple levels of biology—for example, from the gene to the molecular intermediate phenotypes 30 
(e.g., gene expression), to alterations in molecular pathways and networks, and the propagation of 31 
effects from cells to tissues to organs and the whole body. Systems biology also can encompass 32 
subpopulation and population dynamics. Thoroughly understanding modern biology is difficult 33 
without understanding systems biology. Two basic approaches are used to develop systems 34 
understanding: bottom up and top down. The bottom-up approach focuses on altered molecular 35 
and cellular components, and seeks to understand how the altered components fit together. This 36 
approach is addressed most extensively in Tiers 1 and 2. The top-down approach focuses on larger 37 
scale network interactions and disease indicators based on human clinical and epidemiologic data, 38 
and associations between disease states and environmental factors (Friend 2013). This approach is 39 
addressed most extensively in Tiers 3 and 2. Both the bottom-up and top-down approaches can be 40 
informative, and are best used when integrated to support development of a comprehensive model. 41 

Box 3. Selection Criteria for Prototypes 

• Decision context applicability (i.e., methods 
applicable to various types of risk management 
situations) 

• Data availability (i.e., both NexGen and 
traditional data existed to allow for validation of 
new approaches) 

• Illustration of a variety of methods 
• Methods 
 Data quality 
 Multiple, high-quality studies 
 Consistent, coherent, and biologically 

plausible data 
• Active collaborations with investigators to 

benefit from their knowledge, modify 
experiments, and conduct additional analyses as 
needed 

• Cross-organizational collaborations fostered  
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Figure 5. Shown are the types of methods used to generate data for the prototypes and characteristics of each 
method. Note that all methods can be used in each decision context as available. 

 

3.1. Tier 3: Major Scope Assessments 

Tier 3 prototypes focused on chemicals with robust traditional data sets, known public health 1 
outcomes, and high-confidence risk estimates. The purpose of studying these already well-2 
characterized chemicals was to better understand how new data types and methods can be most 3 
effectively used in risk assessment situations where traditional data are absent or limited. In other 4 
words, by “reverse engineering” from known public health risks to new types of data, it was 5 
thought that potential advances in risk assessment using new types of data could be verified. 6 
Molecular epidemiology, molecular clinical, and molecular in vivo animal data were evaluated in the 7 
context of traditional information (Table 1). The Tier 3 prototypes aimed to: (1) demonstrate proof 8 
of concept that new data and methods can help identify hazards and inform exposure-dose-9 
response relationships; (2) better characterize what information is most valuable for specific risk 10 
assessment purposes; and (3) articulate decision considerations for identifying, analyzing, and 11 
interpreting data, particularly for use in assessment of data-poor chemicals. Secondarily, this effort 12 
explored how new data types can augment robust traditional data sets, and brings new insights to 13 
the interpretation of traditional data.  14 

Increasing weight of evidence and resources to complete
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Table 1. Tier 3 Prototypes Approach, Including Weight of Evidence, Pros, and Cons 

Tier 3: Major Scope Assessments 
Environmentally-relevant In Vivo Exposure Studies 

with Molecular Characterization 

Approaches: 

Focuses on human data from molecular epidemiology and molecular clinical studies. 
Includes molecularly augmented, traditional in vivo animal bioassays. 
Experimentally measures dose-dependent, chemically-induced alterations in biologic 
functions linked to traditional intermediate events and disease outcomes. 
Evaluates environmentally-relevant exposures.  
Characterizes sensitive subpopulations. 
Helps characterize impacts of various environmental factors. 

Weight of evidence: Determined by the quality and quantity of data, but can range from suggestive to known. 

Pros: 

Characterizes human population-associated or causal mechanisms.  
Can inform low-dose, species-to-species and inter-individual variability, and uncertainty 
with data. 
Allows extrapolation of molecular patterns to predict outcomes for less well studied 
chemicals. 

Cons: 
Are not faster or less expensive than traditional bioassays. 
Need to control for experimental variability. 

 

The Tier 3 prototypes are benzene (and leukemia); ozone (and inflammation and lung injury); and 1 
benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH) (and liver cancer). The 2 
prototypes focused on human data, both molecular epidemiology and molecular clinical data. 3 
Human environmental exposures for the benzene and ozone prototypes were very well 4 
characterized using a urinary biomarker and 18O2 dosimetry, respectively. For B[a]P, we evaluated 5 
human environmental exposures and liver cancer omics data; this evaluation was qualitatively 6 
successful, but exposures were relatively poorly characterized for quantitative exposure-response 7 
assessment. Hence, experimental rodent data were evaluated in addition to the human data.  8 

Overall, the prototypes evaluated the use of toxicogenomics to better characterize risks, including 9 
DNA transcription (transcriptomics), protein expression (proteomics), and genome-wide analyses 10 
of susceptibility genes (genomics analyses of human gene variants). Some limited discussion of 11 
epigenetic modification (epigenomics) in human populations is also included. Bioinformatics 12 
analyses were used to evaluate toxicogenomic profiles in the context of traditional knowledge of 13 
phenotypic endpoints. Each prototype: 14 

• Describes a systems biology model suitable for informing hazard identification; 15 
• Characterizes molecular biomarkers of exposure and effects suitable for characterizing 16 

exposure-response at environmental concentrations; 17 
• Illustrates how multiple pathway alterations induced by environmental factors can lead to 18 

and modify risks, and notes how this information might be used to characterize data-limited 19 
chemicals and cumulative risks; and 20 
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• Identifies some gene variants that influence human susceptibility and alter risks for selected 1 
subpopulations, and notes how this information could be used to characterize population 2 
variability. 3 

The results presented here are not intended to be a comprehensive review of all available data that 4 
might be used in a risk assessment, but rather provide examples of evaluation of new data types 5 
and to illustrate potential uses in risk assessment. In addition, toxicogenomics data must be 6 
interpreted carefully in this context (see Text Box 4). 7 
 

Box 4. A Word of Caution in Interpreting Toxicogenomic Results 

Technical variability in toxicogenomic results can be a substantial source of data misinterpretation. Rigorous study 
design and statistical techniques increase confidence in observed associations, and increase the power to detect 
associations, between exposure and gene expressions particularly at low exposure levels. More generally, without 
such considerations, variability may obscure actual outcomes or lead to specious associations. Studies without 
rigorous design, data collection, and analyses are less likely to be considered appropriate for use in risk 
assessment. 

 

One caveat is that the studies used in the Tier 3 prototypes were chosen mainly because they had 8 
some of the most robust, concomitantly collected, traditional and new data types available. These 9 
data sets demonstrate partially what can be done with new data types; however, similar data are 10 
not likely to be available for many chemicals. This exercise clearly revealed that care must be given 11 
to the selection of studies for new types of risk assessment, as many are insufficient for the 12 
applications discussed below. The B[a]P prototype, in particular, highlights some of the challenges 13 
encountered. Additionally, the fields of molecular, computational, and systems biology are in their 14 
infancy in terms of application to human health risk assessment. Although results presented here 15 
are promising, robust understanding and full implementation of new methods in general practice, 16 
might take years, subject to the resources available for data generation and evaluation.  17 

Implications for risk assessment identified by the Tier 3 prototypes are discussed at the end of this 18 
section and integrated with other lessons learned in Section 5, “Lessons Learned from Developing 19 
the Prototypes.” It should be reiterated that the primary intention of the Tier 3 prototypes is to 20 
“ground truth” approaches that could be used in more data-limited situations. 21 

3.1.1. Benzene-Induced Leukemia  

Benzene is among the 20 most widely used chemicals in the United States and is among the most 22 
common environmental contaminants. A component of crude oil and gasoline, benzene is also used 23 
as an intermediate in the manufacture of resins, dyes, chemical solvents, waxes, paints, glues, 24 
plastics, and synthetic rubbers. The major sources of benzene exposure are anthropogenic and 25 
include fixed industrial sources, fuel evaporation from gasoline filling stations, and automobile 26 
exhaust. Benzene has been measured in outdoor air at various locations in the United States at 27 
concentrations ranging from 0.02 ppb (0.06 μg/m3) in a rural area to 112 ppb (356 μg/m3) in an 28 
urban area (IARC 2012). Personal monitoring of benzene exposure in Detroit, Michigan, reported a 29 
mean of 1.72 ppb (5.5 µg/m3) (George et al. 2011). The maximum contaminant level (MCL) in 30 
drinking water is 5.0 µg/L or 5 ppb  (EPA 2012b). The OSHA permissible exposure limit (PEL) for 31 
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benzene workers in the United States is 1 ppm 1 
(https://www.osha.gov/dts/chemicalsampling/data/CH_220100.html). 2 

Benzene is a known human carcinogen (IARC 2012, ATSDR 2007, EPA 2000, NIOSH 1992). 3 
Epidemiologic studies have shown that benzene exposure leads to an increased risk of acute 4 
myeloid leukemia (AML), myelodysplastic syndrome (MDS), hematotoxicity (toxicity to the blood), 5 
and other blood disorders (IARC 2012, Schnatter et al. 2012, EPA 2000, Goldstein 1988). AML is 6 
characterized by uncontrolled proliferation of clonal neoplastic cells and accumulation in the bone 7 
marrow, with an impaired differentiation program. AML accounts for about 30% of all adult 8 
leukemias and is the most common cause of leukemia death (Howlader et al. 2013). Studies also 9 
indicate that benzene might cause lymphoma and childhood leukemia (Smith, MT et al. 2011). 10 

The extensive molecular epidemiologic and molecular clinical data sets available for both benzene 11 
and leukemia are ideal to explore how new data types might be used to inform risk assessments. 12 
The work described here focuses on studies where traditional and molecular data were collected 13 
simultaneously using a variety of omic methods, including genome-wide analyses of susceptibility 14 
genes (using genomic methods), protein expression (proteomics), and epigenetic modification 15 
(epigenomics) (McHale et al., 2012). The studies also were conducted over a range of 16 
environmental exposure levels (<0.1 ppm to ≤ 10 ppm). The information was developed primarily 17 
by Martyn Smith and colleagues (University of California, Berkeley). Systems biology of benzene-18 
induced leukemia is summarized in McHale et al. (2011) and Smith et al. (2011).  19 

Systems Biology of Benzene-Induced Disease  

Although benzene is among the most well-studied environmental chemicals, understanding the 20 
molecular mechanisms underlying hematopoietic cancer is somewhat recent (see Text Box 5 for a 21 
brief description). In 2009, McHale et al. (2012) identified exposure-dependent alterations in genes 22 
and pathways (in peripheral blood mononuclear cells using transcriptomics), and hematotoxicity 23 
associated with benzene exposure 24 
(>10 ppm) in occupationally 25 
exposed Chinese workers. McHale 26 
et al. (2011) extended these 27 
findings to lower exposure levels 28 
(<1 ppm to ≤ 10 ppm). (The 29 
current U.S. occupational 30 
standard is 1 ppm.) In subsequent 31 
work, Thomas et al. demonstrated 32 
changes in gene expression at 33 
current U.S. urban levels in 34 
Chinese workers exposed to levels 35 
<0.1 ppm. The exposure-response 36 
models used in these analyses 37 
were not selected a priori, but 38 
rather driven by the best fit of the 39 
data. Results are consistent with 40 
supralinear exposure-responses, 41 
which have also been reported in 42 
traditional epidemiology studies (Lan et al. 2004).  43 

Box 5. Molecular Mechanism of Acute Myeloid Leukemia (AML) 

The probable mechanism by which benzene induces leukemia involves 
the “targeting of critical genes and pathways” (McHale et al. 2012). 
Benzene has the potential to induce abnormalities in the genes, 
chromosomes, or epigenetic mechanisms of hematopoietic stem cells 
(HSC). It can also disrupt its normal cell cycle, leading to apoptosis, 
increased cell proliferation, and altered differentiation of the HSCs. 
Benzene causes these effects and ultimately leukemia through oxidative 
stress, dysregulating proteins that control normal functioning of HSCs, 
and reducing the ability of the body to detect and destroy cancerous 
cells (McHale et al. 2012). 

For AML specifically, two events that are important for leukemic 
transformation have been identified. The first event is uncontrolled cell 
growth, which is mediated by upregulation of cell survival genes. The 
second event is alteration of transcription factors that control the HSC 
differentiation. That is, the transcription factor proteins can be mutated 
or can target certain genes in a way that interferes with the appropriate 
differentiation of HSCs (Kanehisa Laboratories 2013, Wang, I et al. 
2012). 

https://www.osha.gov/dts/chemicalsampling/data/CH_220100.html
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The systems biology of benzene-induced early effects have been articulated by McHale et al. (2012) 1 
and others (Smith, MT et al. 2011, Zhang, L et al. 2010). Benzene-induced leukemia is thought to be 2 
initiated when metabolites of benzene target genes or pathways that are critical to hematopoiesis 3 
in hematopoietic stem cells. Interactions among various cell types within the bone marrow and 4 
among various tissues also play a role in leukemia (e.g., immunosurveillance). The underlying 5 
mechanisms of benzene-induced leukemia, shown in Figure 6, center on exposure-dependent 6 
pathway alterations comprising 147 significantly altered genes (cross validated on two microarray 7 
test platforms [Illumina and Affymetrix]). The gene expression profile changes with dose, with 8 
some genes (and related biological processes) being expressed at all levels, while others are 9 
expressed only at higher concentrations. Of the 147 genes, the expression of 16 genes was 10 
significantly altered at all exposure levels. These 16 signature genes are involved in immune 11 
response, inflammatory response, cell adhesion, cell matrix adhesion, and blood coagulation, and 12 
are most strongly associated with AML disease pathways (McHale et al., 2011). This set of 16 genes 13 
forms a biomarker for exposure (and associated leukemia) for future work, particularly in 14 
augmenting traditional epidemiology studies and enabling new types of molecular epidemiology 15 
studies at lower concentrations. As will be discussed later in this section, understanding of the 16 
systems biology and molecular initiating events (MIEs) in leukemia can also potentially enable 17 
screening of relatively unstudied chemicals for similar signature events. Clinical studies of 18 
chemotherapeutic agents, which alter gene expression in these same pathways and are used in the 19 
treatment of leukemia add evidence to the causal relationships between specific gene/pathway 20 
alterations and leukemia (Hatzimichael and Crook 2013). 21 

In addition to leukemia, a lymphoma disease signature is evident with benzene exposure (McHale 22 
et al. 2012, McHale et al. 2011, Smith, MT et al. 2011). The traditional epidemiology data on 23 
lymphoma are not conclusive. Characterization of a benzene-induced molecular mechanism for 24 
lymphoma adds considerably to the weight of evidence for benzene-induced lymphoma, 25 
highlighting the use of molecular mechanism or mode-of-action information to strengthen weight-26 
of-evidence determinations (IARC 2012). 27 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094412/table/t4-ehp-119-628/
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Figure 6. Multiple modes of action (MOAs) of benzene-induced leukemogenesis. Potential key events, modifying 
factors, and toxicological effects are depicted in the legend. Stem cells can be either HSCs (hematopoietic stem 
cells) or LSCs (leukemic stem cells) (Smith, MT et al. 2011), reproduced with permission from Elsevier. 

 

De Novo and Other Chemical Leukemogen-Induced Disease 

Interestingly, molecular mechanisms for benzene-induced leukemia appear similar to de novo 1 
(without an obvious cause) AML and AML induced by other environmental agents (e.g., alkylating 2 
agents, topoisomerase II inhibitors) (IARC 2012, McHale et al. 2012, Pedersen-Bjergaard et al. 3 
2008). Figure 7a6 shows a network of genes and pathways involved in de novo and chemically 4 
induced leukemia [Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa Laboratories 5 
2013)]. The circles in the figure indicate some of the specific genes and pathways affected by 6 
leukemogenic agents and environmental modifiers (Kanehisa Laboratories 2013, IARC 2012, 7 
McHale et al. 2011, Pedersen-Bjergaard et al. 2008). Additional evidence for the causal role for 8 
these genes and pathways in AML is provided by the study of human genetic variants associated 9 
with altered risks and chemotherapeutics that reverse adverse alterations in some of these same 10 

                                                             
6The basic AML network figure used in Figures 7a and 7b is from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (Kanehisa Laboratories 2013)). The added circles are the work of the report authors. 
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genes and pathways (discussed below). Although mechanistically similar, different agents can 1 
display specific characteristics; including origins in cells at different stages of hematopoiesis, 2 
distinct cytogenetic subtypes, and different latencies (Irons et al. 2013, McHale et al. 2012). 3 
Figure 7a highlights how a disease network can be modified at different points but still lead to a 4 
common disease outcome. These mechanistic commonalities and differences among de novo and 5 
chemically-induced health effects can be used to characterize chemicals with limited data, which 6 
have nevertheless been shown to induce mutations, chromosome changes, or specific changes in 7 
gene expression. Data-limited chemicals would be of elevated concern if they are shown to alter 8 
pathways similar to that observed in de novo disease or with well-studied leukemogens. For 9 
example, see the work in Thomas R et al. (2012) where the authors used existing information on 10 
gene and protein targets of 29 known leukemia-causing chemicals and 11 carcinogens that are not 11 
known to cause leukemia, the authors were able to develop a classification scheme that could 12 
distinguish a random leukemia-causing/nonleukemia-causing carcinogen pair with a 76% 13 
probability. Provided later in this section (in the ozone and B[a]P prototypes) is similar evidence 14 
for the importance of networks when considering chemical-related diseases, similarities of 15 
chemical-related and de novo diseases, and the role of mechanisms in improved understanding of 16 
cumulative risks. 17 

Cumulative Risks from Environmental Factors  

Evidence suggests that, in addition to environmental exposures, genetic variations and lifestyle 18 
factors such as smoking, obesity, diet, and alcohol use are risk factors for leukemia (Smith, MT et al. 19 
2011, Pedersen-Bjergaard et al. 2008, Belson et al. 2007, Ilhan et al. 2006). Environmental 20 
exposures of the developing organism could also be a risk factor for disease later in life, given the 21 
potential of benzene and other environmental agents to alter epigenetics, the sensitivity of the 22 
developing organism to epigenomic changes, and the association of environmental exposures and 23 
childhood leukemias (Boekelheide et al. 2012). Figure 7a shows how multiple environmental 24 
factors can alter several molecular events in a manner that alters risks, and how mechanistic 25 
knowledge might be used to identify or exclude chemicals based on common mechanisms and 26 
impacts on cumulative risks.  27 

Individuals exposed to known environmental and lifestyle risk factors are estimated to account for 28 
approximately 20% of acute leukemia incidences, indicating that host genetic susceptibility might 29 
be instrumental in the development of leukemia (Smith, MT et al. 2011). By identifying mechanistic 30 
commonalities, or the lack thereof, among chemicals, new omic approaches can provide tools for 31 
characterizing roles that intrinsic and extrinsic risk factors might play in individual and 32 
subpopulation risks. Below we discuss genetic variation more specifically and provide an example 33 
of altered subpopulation risks based on genetic variations.7 34 

Genetic Variation and Susceptibility in the Human Population 

Genetic susceptibility for developing AML, and how it relates to chemical risks, has been studied by 35 
several investigators (Zhuo et al. 2012, North et al. 2011, Shen et al. 2011, Smith, MT et al. 2011, 36 
Garte et al. 2008). Several genetic variations in individual genes appear to increase risks for 37 

                                                             
7Human genetic variation is the genetic differences among subpopulations. Multiple variants of any given 
gene might occur in the population. These differing DNA codings determine distinct traits or polymorphisms 
that can influence risks. 
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developing AML, while at least one decreases risks. Sillé et al. (2012) reported 12 independent risk 1 
loci (specific regions within the genome, which can be a single base, as in this case, or an entire 2 
gene) with the potential to alter gene expression. A significant number of variants (single 3 
nucleotide polymorphisms [SNPs] or single nucleotide variations) related to a tumor suppressor 4 
gene, signaling pathways, or residing in putative regulatory elements,8 have been linked to various 5 
types of multiple hematological cancers. Figure 7b highlights genes that vary in the human 6 
population and are associated with altered leukemia risks (Hatzimichael and Crook 2013, Kanehisa 7 
Laboratories 2013). Figure 8 provides an example of differential risks resulting from one human 8 
variant.9 The overall data indicated a significant variation in risk (42%) relative to the CYP1A1 9 
genotype (Zhuo et al. 2012). The shift in odds ratio is also shown in Figure 8. 10 

When one considers that many genes are associated with benzene-induced leukemia, the potential 11 
for variation in subpopulation risks via individual genes, combinations of genes, and gene variants 12 
becomes apparent. Other risk factors (e.g., lifestyle) would add to the human variability in response. 13 
As discussed in Section 4, NexGen approaches exist that can facilitate characterization of human 14 
variability as never before. 15 

                                                             
8Putative regulatory elements are areas of the gene that do not code for proteins but rather regulate DNA 
transcription into proteins. 
9SNP leads to a base substitution of isoleucine with valine at codon 462 in exon7 (Ile462Val or CYP1A1*2C 
polymorphism, rs1048943). Thus, the exon7 restriction site polymorphism results in three genotypes: a 
predominant homozygous Ile/Ile, the heterozygote Ile/Val, and a rare homozygous Val/Val. 
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Figure 7a. The Kyoto Encyclopedia of Genes and Genomes (KEGG) diagram (http://www.genome.jp/kegg-bin/show_pathway?hsa05221) illustrates some of the 
currently understood molecular pathways involved in acute myeloid leukemia (AML). Altered oncogenes and tumor suppressor genes are noted in red type 
(Kanehisa Laboratories 2013). The circles (added by authors) note specific genes and pathways that are modified by benzene, other chemical leukemogens, and 
other risk factors. While intended to be illustrative rather than comprehensive, it can be seen how single or combinations of environmental factors could 
modify risks for leukemia, and how such knowledge could be used to evaluated joint effects of environmental factors (IARC 2012, McHale et al. 2012, Smith, MT 
et al. 2011, Pdersen-Bjergaard et al. 2008). 

Alterations by Leukemia Risk Factors
• Blue = benzne
• Red = alkylating agents
• Purple = topoisomerases II inhibitors 
• Yellow = diet
• Green = stress

Red text indicates genetic alterations
Oncogenes: c-KIT, FLT3, N- or K-Ras, 
AML1-ETO, PML-RARα, PLZF-RARα
Tumor suppressors: AML1, C/EBPα, PU.1

http://www.genome.jp/kegg-bin/show_pathway?hsa05221
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Figure 7b. This figure shows the same acute myeloid leukemia (AML) KEGG diagram (Kanehisa Laboratories 2013) as shown in Figure 7a, with circles added by 
authors. In this version, circled are the locations of naturally occurring human genomic variants that increase the risk of AML (Hatzimichael and Crook 2013, Sille 
et al. 2012). Characterizing genomic variant subpopulations and associated risks can help us to better describe human variability and susceptibility for specific 
diseases. 
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In Vitro Evaluation of Toxicogenomic Signatures 

As has been previously noted, the primary function of the Tier 3 prototypes is to inform how we 1 
evaluate data-limited chemicals. Hence, a comparison of in vivo and in vitro benzene results is 2 
discussed here. Godderis et al. (2012) conducted an in vitro study in TK6 cells to detect gene 3 
signatures and biological pathway perturbations, using global gene expression analysis, resulting 4 
from exposure to 15 genotoxic carcinogens, including benzene and its metabolites. The goal was to 5 
determine if well-characterized chemicals could be used to characterize data-limited chemicals by 6 
comparing gene signatures. Although pathways altered by exposure to benzene and its metabolites 7 
were in general agreement with previous in vivo studies, the authors pointed out that several 8 
factors can complicate comparison of in vivo and in vitro data, for example, metabolism and cell 9 
types. The authors concluded that use of toxicogenomic signatures hold great promise for 10 
evaluation of data-limited chemicals. They noted that for the carcinogens in the study, some in vitro 11 
processes mapped against known or likely carcinogenic processes, but determining discriminatory 12 
mechanisms based on in vitro data alone was difficult. This observation suggests that the approach 13 
of developing putative mechanisms of action based on data-rich meta-analyses of human disease 14 

 
Figure 8. Meta-analysis for the association of acute leukemia risk with CYP1A1. Ile462Val polymorphism is shown 
(OR = odds ratio). The overall risk was 42% greater (95% CI = 1.11–1.98) for Val/Val+Val/Ile versus Ile/Ile (Zhuo et 
al. 2012). Reproduced with permission from PLoS One. 
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and mapping in vitro data against these models might prove more successful than attempting to 1 
understand mechanisms of action based on in vitro data alone. 2 

Risk Assessment Implications from the Benzene Prototype 

The benzene prototype demonstrated how molecular biology data, particularly mechanistic 3 
signatures, can be used in hazard identification and exposure-dose-response assessment.  4 

Hazard Identification – Specifically, genes and pathways altered by benzene exposures are 5 
strongly associated with a network of pathways associated with known (AML) and likely 6 
(lymphoma) outcomes. Additional evidence for a causal relationship between alterations in specific 7 
genes and pathways and increased leukemia risk is provided by observed similarities in pathway 8 
disruptions: (1) caused by other chemical leukemogens, (2) observed in leukemia of unknown 9 
origins, and (3) reversed by certain leukemia chemotherapeutic agents. Hence, observations from 10 
both molecular epidemiology and molecular clinical studies provide evidence that molecular 11 
signatures can predict specific diseases with some confidence. These data suggest that well-defined 12 
pathway and network disruptions strongly associated with a specific disease could be used to 13 
screen chemicals with limited molecular data for their potential to increase risks for the specified 14 
disease by causing similar mechanistic disruptions. Anchoring of the molecular patterns to apical 15 
outcomes, considerable systems biology knowledge, and high-quality data; however, appear 16 
necessary to define the disease signature against which data-limited chemicals could be compared.  17 

Exposure-Dose-Response Assessment – A specific exposure-dose-dependent gene signature for 18 
leukemia was observed at all environmental exposure concentrations measured (<0.1 to >10 ppm); 19 
the magnitude of signature expression varied in a dose-dependent manner. This signature is a 20 
biomarker of both exposure and effect. Such signatures or biomarkers can extend the exposure 21 
range of traditional epidemiologic studies to lower exposures and reduce measurement error. This 22 
type of data can measure low-dose-response relationships and, potentially, mitigate a source of 23 
substantial controversy in chemical risk assessment, that is, low-dose extrapolation. In the future, 24 
one can envision routine replacement of low-dose extrapolation with measurements of molecular 25 
signatures. The established dose-response for specific gene signatures could be used to estimate 26 
the potency or relative potency for data-limited chemicals. In particular, ranking of chemicals is 27 
feasible when using similar protocols such as those characteristic of Toxicology in the 21st Century 28 
(Tox21) or ToxCastTM.  29 

The exposure-response models used in this prototype were not specified in advance, but the choice 30 
relied on the best fit from among multiple models. Hence, the model was “agnostic” on the issues of 31 
threshold/no threshold and the shape of the low-exposure-response relationship. Such an approach 32 
would mitigate another source of controversy in risk assessment, that of model choice. 33 

Cumulative Risk Assessments – Understanding of a common mechanism of action for multiple 34 
environmental factors can allow for improved cumulative risk assessments. It should be noted that 35 
overly simplified descriptions of mode of action (MOA) or adverse outcome pathways (AOPs) could 36 
miss interactions among the environmental factors as shown in Figure 7a. 37 

Variability and Susceptibility in Human Response – An example of risk characterization 38 
associated with different genetic variations is provided. With additional research and data evolving 39 
from personalized medicine, the understanding of population variation and distribution of 40 
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responses in the human population could be improved. These data also could help improve 1 
estimates of the size of sensitive subpopulations. 2 

3.1.2. Ozone-induced Lung Inflammation and Injury  

Use of Ozone as a Model Pollutant 

Hundreds of controlled human exposure studies have described biological changes in volunteers 3 
exposed acutely (usually for 2–6 hours) to concentrations of ozone ranging from 0.06 to 0.4 ppm 4 
(EPA 2011d).10 These studies show that exposure to ozone results in decrements in several indices 5 
of lung function, increases in markers of pulmonary inflammation, and alterations in host defenses 6 
against inhaled pathogens and lung injury. This database represents the single largest human 7 
database of any pollutant EPA has studied. As a consequence and because the mechanisms are well 8 
understood, the database provides an ideal opportunity to demonstrate proof of concept for use of 9 
molecular biology data to inform assessment of human risks, to develop decision considerations for 10 
use of such data, and to explore the value of various types of information.  11 

The underpinning of an AOP-based paradigm in risk assessment methodology is the concept of 12 
studying biological pathways. The perturbation of a biological pathway initiates a set of key events 13 
that cause an adverse outcome associated with an environmental stressor. If such pathway 14 
responses are known and represented by a set of quantitative in vitro assays, the results of these 15 
assays can be used to build quantitative biological activity relationships. Coupling these results with 16 
appropriate physiologically based pharmacokinetic (PBPK) modeling and exposure estimates for 17 
estimating tissue doses can be useful for hazard identification and dose-response assessment. For 18 
in vitro pathway information to be used in risk assessment, the quantitative relationship between 19 
perturbation of a pathway following in vitro exposure 20 
and downstream endpoints (i.e., pathophysiological 21 
changes at the tissue or organism level following in vivo 22 
exposure of animals or preferably humans) must be 23 
established. This framework is not likely to be possible, 24 
however, as sufficient in vivo data are lacking for most of 25 
the toxicants that EPA is responsible for regulating 26 
(Crump et al. 2010). Therefore, using model systems in 27 
which both in vitro and in vivo data are available is 28 
necessary to validate how well pathway information 29 
from the former can predict human responses to 30 
toxicants. Ozone provides such a model system for lung 31 
inflammation and injury (see Text Box 6 for a 32 
description of inflammation). This model can be used 33 
for less well-studied chemicals to identify and 34 
characterize their potential to induce lung inflammation 35 
and injury. Figure 9 outlines physiological and cellular pathways by which ozone causes 36 
pathophysiological changes in humans via the lung response. This prototype focuses on pathways 37 
that lead to inflammation, which are shown in the open boxes. Several human studies characterize 38 
inflammation at multiple ozone concentrations during and after exposure, providing a rich data set 39 
                                                             
10The current ozone standard calls for limitation of the fourth highest daily maximal 8-hour ozone 
concentration in a year to 0.075 ppm, based on a 3-year average. 

Box 6. Inflammation 
Inflammation is the immune system’s response 
to damage to cells and organs by pathogens, 
chemicals, or physical insult. Initially, 
inflammation involves changes in local blood 
flow and accumulation of various 
inflammatory cells (e.g., neutrophils, 
lymphocytes) at the site of injury. Pathogens 
and cell debris caused by the inflammatory 
response are then removed as tissues begin to 
repair. If the delicate balance between 
inflammation and resolution of the events 
leading to the inflammation is dysregulated, or 
tissue insult continues, inflammation can lead 
to disease pathology (Wang, I et al. 2012, 
Medzhitov 2008). 
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of human in vivo responses. Additional pathways based on neurological responses to ozone 1 
exposure that are not captured in this figure also might be possible. 2 

 

Figure 9. Framework diagram of ozone key events and modes of action (MOAs) related to lung injury occurring 
in vivo.  

 

Challenges with Using an AOP Approach for Risk Assessment 

Using model systems based on in vitro pathway information to predict human in vivo responses to 3 
toxicants for risk assessment purposes presents certain challenges. A major hurdle relates to 4 
extrapolation from in vitro to in vivo effects. Many in vitro approaches use animal cells or 5 
transformed cell lines derived from humans, which might not accurately reflect cell interactions or 6 
events in the pathway for human in vivo effects. For example, a parent toxicant might be biologically 7 
transformed into a more active form by cells that are not represented in the in vitro system (e.g., 8 
liver cells) before interacting with the target cells represented in the assay. In the lungs, epithelial 9 
cells that line the human airways are the first and primary targets of inhaled toxicants and are 10 
believed to be the cells that initiate lung inflammation. Studies have shown that pathways in the 11 
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cultured in vitro cells that have been activated by air pollutants are also altered in these same cells 1 
following in vivo exposure to the same pollutant (Selgrade et al. 1995). This ability to show 2 
concordance between in vitro and in vivo exposures thus is a major advantage of the modeled lung 3 
system discussed here.  4 

A second challenge associated with in vitro approaches is ensuring that the dose of toxicant 5 
delivered to cultured cells is similar to that which these cells would encounter following an in vivo 6 
exposure. Frequently, cultured cells are exposed to toxicant levels that are orders of magnitude 7 
greater than they would be in vivo. There is no assurance that the same biological pathways are 8 
adversely affected in both situations. Ozone, however, can be prepared using the heavy oxygen 9 
isotope (18O2), which can be separated from 16O2 and quantified by mass spectroscopy. When ozone 10 
attacks a target tissue, the 18O2 tag is bound to that tissue. This approach has been used to 11 
normalize the dose of ozone delivered to rats and humans (Hatch et al. 1994) and to support 12 
estimates that target tissue doses in rats exposed to 2.0 ppm ozone are comparable to target tissue 13 
doses in humans exposed to 0.4 ppm ozone. This same approach can be used to normalize the dose 14 
of ozone delivered to cultured cells and humans. 15 

Ozone is one of the few pollutants for which an extensive animal and human health effects database 16 
is available. Coupled with in vitro pathway data, this prototype pollutant can be used to illustrate 17 
both how a biologically based dose-response modeling approach can be used to provide this 18 
framework and how a systems biology model and genomics data can be used for risk assessment. 19 

AOP Studies  

In Vivo Studies – Young, healthy volunteers were exposed to filtered air and a relevant 20 
concentration of ozone (0.30 ppm) previously shown to induce a measurable inflammatory 21 
response. Bronchoscopy was used to obtain cells and lung fluid at 1 and 24 hours after exposure. To 22 
ensure that pathophysiological effects observed in this study were comparable to those reported in 23 
earlier studies, downstream biomarkers of inflammation such as the influx of neutrophils were 24 
measured (Devlin et al. 2012), as were markers of cell injury (lactate dehydrogenase) and leakage 25 
of plasma components across the damaged epithelial cell barrier (albumin) into the lung airways. 26 
Bronchial airway epithelial cells were obtained by brush scraping, and the microarray technology 27 
was used to define pathways affected by in vivo ozone exposure. In addition, quantitative 28 
proteomics was used to correlate changes in messenger ribonucleic acid (mRNA) measured by 29 
microarray with changes in their protein counterparts (see Figure 9, event 3). 30 

In Vitro Studies – A subset of airway epithelial cells was collected from volunteers following 31 
exposure to filtered air and cultured at an air-liquid interface. These cells were exposed to 32 
concentrations of ozone that had been shown (from the results of 18O3 experiments) to be 33 
comparable to the dose of ozone encountered by airway epithelial cells following a specified in vivo 34 
exposure. This approach allows comparison of an in vitro and in vivo response of cells from the 35 
same person for comparable exposures. Similar to the in vivo studies, microarray and proteomics 36 
were used to identify and define pathways affected by ozone in these cells.  37 

Signaling Pathways – Upstream signaling events shown in Figure 9, event 2 (e.g., transcription 38 
factor activation, MAP kinase pathways, production of reactive oxygen species [ROS]) was assessed 39 
to determine the MOA by which ozone activates downstream batteries of pro-inflammatory genes. 40 
Pathways that are altered by exposure of cultured airway epithelial cells to ozone can be compared 41 
with those altered in airway epithelial cells of the same person exposed in vivo to ozone. A 42 
comparison can be made to determine the accuracy of the in vitro system in mimicking events 43 
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following exposure in the in vivo system and to assess differences in the variability of the response. 1 
Figure 10 illustrates potential upstream signaling pathways that could be induced by ozone and 2 
lead to activation of downstream batteries of pro-inflammatory genes.  3 

 

Figure 10. Potential pathways by which ozone causes production of pro-inflammatory mediators in 
epithelial cells. 

 

Microarray technology was used to determine which of these pathways is most likely to be altered 4 
by ozone exposure. The two most highly scoring molecular networks following exposure of 5 
cultured airway epithelial cells to ozone in vitro are presented in Figure 11. The networks involve 6 
modulation of genes in NF-κB and extracellular signal-regulated kinase signaling pathways. The 7 
gene list input to the Ingenuity Pathway Analysis was generated by combining all genes found to be 8 
differentially expressed immediately following a 2-hour exposure of bronchial epithelial cells to 9 
0.25, 0.50, 0.75, and 1.0 ppm ozone or clean air. Exposure-dose was normalized using 18O3 10 
dosimetry from in vitro and in vivo human studies. Networks are displayed with representative 11 
symbols for the protein products of the mRNA transcripts. Red represents putative upregulated 12 
transcripts induced by ozone, and green represents putative downregulated transcripts in response 13 
to ozone. Additional molecules from the Ingenuity Knowledge Base, which were not present in the 14 
differentially expressed gene (DEG) list, are uncolored in the networks. The same putative 15 
networks were also identified in epithelial cells removed from human airways 1 hour after in vivo 16 
exposure to ozone.  17 
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Figure 11. Molecular pathway analysis by Ingenuity Pathway Analysis. 
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Primary Molecular Events  

Many pollutants induce intracellular oxidative stress, which can affect signaling pathways and 1 
ultimately lead to activation of batteries of pro-inflammatory genes. One pathway by which this 2 
might occur (Figure 12) is activated in cultured human airway epithelial cells exposed to 3 
particulate air pollution. Ozone is an inherently 4 
potent oxidant and is known to cause oxidative 5 
damage to lipids, proteins, and nucleic acids. 6 
Until recently, whether ozone also induced 7 
intracellular ROS was unknown. Figure 13 8 
shows that ozone can induce a rapid dose- and 9 
time-dependent increase in cytosolic 10 
intracellular glutathione redox potential, a 11 
measure of ROS (Gibbs-Flournoy et al. 2013). 12 
Whether the ROS produced following ozone 13 
exposure actually activates downstream 14 
signaling pathways via the mechanism shown in 15 
Figure 12 is unknown.  16 

System Biology Modeling 

Quantitative systems biology models are 17 
translational, and their development is data 18 
driven, with model structure and dynamics 19 
parameterized using data on (1) basic biology, 20 
(2) how the biology is perturbed by toxicants, 21 
and (3) how and when adaptive and adverse responses develop. Sufficiently well-developed and 22 
well-validated models can be used to predict dose-response and time course behaviors for the 23 
perturbations, adaptive responses, and apical health effects, but the accuracy of these predictions 24 
depends on the extent and quality of the data used as inputs and on the technical quality of the 25 
model itself. Time-course and dose-response pathway data from in vitro exposure studies can be 26 
paired with pathway data from in vivo exposure studies and assembled into a nodes-and-edges 27 
graph encompassing mechanisms of action relevant to ozone toxicity, focusing on pathways most 28 
relevant to lung inflammation. This pairing and assembly will provide a framework for modeling 29 
ozone toxicity pathways to downstream pathophysiological changes (see Figure 9, event 3). At the 30 
intracellular level, upstream signaling pathways (e.g., NF-κB) that have been shown to mediate 31 
ozone-induced changes in gene expression will be represented, connecting the oxidative products 32 
of ozone formed in the cell to time-dependent changes in protein activity and RNA expression. For 33 
example, the canonical NF-κB signaling pathway shown in Figure 9 plays a role in ozone-induced 34 
inflammation. Finally, data on ROS production resulting from ozone exposure (see Figure 9, event 35 
1) will be represented in the model, both as an input to ozone’s perturbation of the molecular-level 36 
components and as drivers of downstream signaling pathways. 37 

 

Figure 12. Role of reactive oxygen species (ROS) in 
mediating pollutant-induced inflammation.  
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Susceptibility 

Not all individuals are equally 1 
responsive to toxicants; some are 2 
much more responsive because of 3 
age, gender, disease, lifestyle (e.g., 4 
obesity), or genetic/epigenetic 5 
factors. For example, the range of 6 
response in lung function 7 
decrements to ozone in young 8 
healthy individuals (McDonnell et al. 9 
2012) is 10-fold. Individuals exposed 10 
to ozone a second time, many 11 
months later, retain their hierarchy 12 
on the response curve, implying that 13 
a long lasting factor, perhaps genetic 14 
or epigenetic, plays a role in ozone 15 
responsiveness. Asthmatics are 16 
known to have an enhanced 17 
inflammatory response to ozone 18 
(Bosson et al. 2003, Peden et al. 19 
1997), as do individuals carrying the 20 
GSTM1 null allele (Kim et al. 2011). 21 
Understanding the MOA by which a 22 

person is more responsive to a pollutant should be a component of a systems biology approach to 23 
toxicity testing. Airway epithelial cells can be obtained from more-responsive and less-responsive 24 
individuals, and the pathways altered by ozone can be compared for both groups. Recently, 25 
cultured lung epithelial cells obtained from individuals carrying the GSTM1 null allele have been 26 
shown to be more responsive to air pollutants than cells obtained from individuals carrying the 27 
wild-type GSTM1 allele (Wu et al. 2011). Airway epithelial cells obtained from asthmatics appear to 28 
retain an asthma phenotype in culture and are more responsive to pollutants than cells obtained 29 
from nonasthmatics (Duncan et al. 2012). Readily obtaining bronchial airway cells can be difficult, 30 
so knowing that the response of cultured nasal epithelial cells to toxicants has recently been shown 31 
to be similar to that of bronchial cells (McDougall et al. 2008) can be instructive. These nasal cells 32 
can be readily and noninvasively obtained from most individuals, including children.  33 

Involvement of the Inflammatory Network in Multiple Diseases 

Chronic inflammation is implicated in the etiology of several diseases, including atherosclerosis, 34 
heart disease, obesity, diabetes, arthritis, cancer, and lung diseases (asthma, emphysema, 35 
pulmonary fibrosis). Both common and disease-specific inflammatory molecular patterns have 36 
been reported to underlie these diseases (Wang, I et al. 2012). Why a particular disease is 37 
expressed in an individual or subpopulation as the result of inflammation is likely the result of the 38 
site of injury, co-activation of other networks, genetic variation, or environmental factors. Such 39 
complicating factors therefore highlight several issues that might arise when using molecular 40 
patterns to predict disease risks: (1) observation of an inflammatory disease signature for a 41 
chemical that has not been well studied would raise concerns for inflammatory disease risks; (2) 42 
the specific inflammatory disease in question likely would be difficult to predict with a limited 43 

 

Figure 13. Exposure to ozone induces a rapid increase in 
intracellular reactive oxygen species (ROS). Addition of 0.1 mM H2O2 
at the end of the ozone exposure produced a maximal response, 
which was fully reversible with the addition of 10 mM dithiothreitol 
(DTT), a strong reducing agent (Gibbs-Flournoy et al. 2013). 
Reproduced with permission from Environmental Health 
Perspectives. 
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systems biology context; (3) a network might be involved in multiple diseases; and (4) the specific 1 
disease expressed could involve multiple interactive pathways and networks.  2 

Specifically, many air pollutants appear to induce cardiopulmonary inflammation, which likely 3 
plays a role in risks for asthma, emphysema, and pulmonary fibrosis. Molecular biology is likely to 4 
be a useful tool in sorting out the relative contributions of various air pollutant exposures to 5 
cardiopulmonary disease via inflammatory mechanisms. 6 

Risk Assessment Implications Based on the Ozone Prototype 

Hazard Identification – The pathway information, coupled with data about ozone-induced changes 7 
in upstream transcription factors, signaling pathways, and generation of ROS, can lead to the 8 
development of molecularly based dose-response system models that are predictive of downstream 9 
in vivo pathophysiological changes. These data suggest that ozone activates the NF-κB and ERK 10 
pathways, both known to modulate inflammation, in vitro and in vivo. This suggests that the in vitro 11 
airway epithelial cell model used here might be amenable to predicting in vivo inflammation. An 12 
HTS assay based on this cell model might be able to provide rapid hazard identification in the 13 
future.  14 

Exposure-Dose-Response Assessment – We did not perform an analysis of transcriptional changes 15 
across a range of doses. 16 

Cumulative Risk Assessment – This in vitro model could be used to make comparisons of the 17 
transcriptional response upstream of the inflammation process using complex mixtures of air 18 
pollutants. The comparison, however, might require specialized equipment and monitoring to 19 
ensure the mixture and dose of pollutants are proper and well controlled.  20 

Variability and Susceptibility in Human Response – In the future, this and other similar models 21 
might identify pathways and mechanisms by which susceptible human populations respond to 22 
inhaled toxicants. Just as this in vitro model was derived from several young, healthy volunteers, 23 
performing a larger study of variability and susceptibility would be possible by recruiting and 24 
including specific populations. Such a study also would facilitate the creation of HTS assays for 25 
rapidly studying susceptible populations and variability in response.  26 

3.1.3. Benzo[a]pyrene (a Polycyclic Aromatic Hydrocarbon), and Cancer 

PAHs are produced from combustion or pyrolysis of carbon-containing material, exist in the 27 
environment almost exclusively as complex mixtures, are a major component of urban air pollution, 28 
and are a drinking water contaminant. Several PAH-containing complex mixtures are known to be 29 
carcinogenic in humans (e.g., coke oven emissions, diesel exhaust, and tobacco smoke). Many 30 
individual PAHs and PAH-containing mixtures have been tested in traditional bioassays; many, but 31 
not all, appear carcinogenic. Additionally, those that are carcinogenic vary in terms of potency. 32 
Given the universe of PAHs and potential PAH-containing mixtures, testing them all is not feasible. 33 
Hence, an alternative approach using molecular biology was explored in this prototype. See Text 34 
Box 7 for some challenges related to this prototype.  35 

This effort focused on one PAH—B[a]P)—and liver cancer. Repeated B[a]P exposure has been 36 
associated with increased incidences of total tumors and of tumors at the site of exposure (dietary, 37 
gavage, inhalation, intratracheal instillation, and dermal and subcutaneous, in studies of numerous 38 
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strains and species of rodents and 1 
several nonhuman primates). 2 
Distant site tumors also have 3 
been observed after B[a]P 4 
administration by various routes, 5 
and B[a]P is frequently used as a 6 
positive control in 7 
carcinogenicity bioassays.  8 

Systems Biology Model  

EPA (2013), Burgoon (2011), 9 
have proposed a cellular systems 10 
model and pathways based on a 11 
systematic meta-analysis of 12 
transcriptomics data for B[a]P-13 
mediated liver cancer (Figure 14 14 
and Table 2). The core of the 15 
model is focused on induction of 16 
DNA adducts, mediation of p53 (a 17 
tumor suppressor gene) signaling, alterations of translesion synthesis,11 and regulation of the G1/S-18 
phase transition and the cell cycle. Based on this model, the DNA adducts are believed to be formed 19 
by reactive B[a]P metabolites through cytochrome P450 (CYP) enzyme induction, secondary to 20 
B[a]P activation of the aryl hydrocarbon receptor (AhR). Others have shown AhR-independent DNA 21 
adduct formation, raising questions about other non-CYP1A1- and CYP1A2-mediated B[a]P 22 
metabolism and adduct formation (Sagredo et al. 2006, Kondraganti et al. 2003). 23 

The systematic meta-analysis started with a search for published, peer-reviewed transcriptomics 24 
data sets using B[a]P as the test substance. The Gene Expression Omnibus (GEO) and ArrayExpress 25 
databases were searched for microarray transcriptomic studies using the search terms in Table 3. 26 
The search focused on GEO and ArrayExpress as these databases store submitted data as raw data. 27 
The raw data are critical for performing meta-analyses, especially when different analysis methods 28 
might be used. 29 

                                                             
11Translesion synthesis is a mechanism that the cell uses to continue DNA replication/synthesis in the 
presence of a DNA lesion (e.g., DNA adduct). 

Box 7. Challenges Encountered With This Prototype 

This prototype originally focused on identifying whether human 
transcriptomics data from PAH mixtures found in cigarette smoke could be 
associated with lung cancer. This prototype was envisioned as a real-world 
example of how data mining of existing data could be informatively 
performed. Unlike the other Tier 3 Prototypes, which were designed to have 
the best combination of data available, however, this prototype 
encountered numerous data access and experimental design challenges 
that we expect to be seen when applying these methods in the future. 
These challenges included: 

• An inability to easily obtain the raw data required for re-analysis 
of the transcriptomics data. 

• Lack of clear descriptions of the study design or analysis method. 
• Different microarray platforms being used. 
• Different analysis methods being employed within the same 

platform. 
• Lack of a quantitative exposure estimate (especially common with 

human studies that lack a controlled exposure). 

Together, these challenges make performing a quantitative meta-analysis 
difficult. For new types of data to be useful, improvements to data 
collection and concomitant exposure analyses are needed. 
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Figure 14. Consensus Outcome Pathway. This consensus pathway was synthesized by combining multiple pathway 
diagrams identified through analysis of the two data sets using GeneGo Metacore. The nodes (proteins or 
outcomes) are connected by lines. The green lines represent activation, while the red lines represent inhibition or 
repression. The thick red arrows near proteins represent increases in gene expression. 

The search resulted in the identification of 26 peer-reviewed publications with 40 gene expression 1 
data sets. The adult mouse liver was chosen as the focus system based on the number of studies 2 
available across the species and tissues where B[a]P was used. Only 2 of the 26 publications 3 
focused on in vivo transcriptomic studies of the liver in the mouse. Study GSE24907 is a dose-4 
response study where five male Muta mice (a LacZ transgenic mouse line) per group were gavaged 5 
with an olive oil vehicle and 25, 50, or 75 mg/kg B[a]P. Study GSE18789 is a time-course study 6 
where 27- to 30-day-old B6C3F1 mice were gavaged with 150 mg/kg B[a]P for 3 days and 7 
sacrificed at 4 or 24 hours after the final dose. 8 



 

This document is a draft for review purposes only and does not constitute Agency policy. Do not cite or quote. 
September 2013 36  

Table 2. Altered Genes/Functions and Their Relationship to Cancer (in this Model) 

Altered Gene or 
Function 

Relationship to Cancer in this Model 

AhR/ARNT Complex AhR regulated expression of several CYPs, including CYP1A1 and CYP1A2  

CYPs  
(e.g., CYP1A1, CYP1A2) 

Upregulation leads to production of oxidative radicals and B[a]P metabolites 

NRF2 Regulates the expression of oxidative stress-protective genes 

Ubiquitin Protein that tags other proteins for destruction 

CUL3 Regulates the inhibition of NRF2 signaling with ubiquitin 

p53 Stops cell cycle by preventing G1/S phase transition; activated by DNA damage 

MDM2 Regulates p53 through negative feedback mechanism with ubiquitin 

Cdkn1a/p21 
Upregulated by p53 activation; inhibits Cyclin D activation and prevents G1/S phase 
transition 

Cyclin D Activates G1/S phase transition, works with CDK4 

CDK4 Activates G1/S phase transition, works with Cyclin D 

G1/S Phase Transition Starts cell cycle progression by allowing for DNA synthesis 

Translesion Synthesis 
DNA damage tolerance mechanism; allows DNA replication fork to progress beyond DNA 
damage sites 

DNA Adduct A piece of DNA covalently bound to a chemical that can modify expression of DNA 

 

The Systematic Omics 1 
Analysis Review (SOAR) 2 
Tool was used to 3 
document and facilitate 4 
the evaluation of both 5 
studies (McConnell and 6 
Bell 2013). SOAR 7 
consists of 35 objective 8 
questions that help 9 
users determine if a 10 
study contains data of 11 
sufficient quality for use 12 
in a risk assessment 13 
context. SOAR was 14 
developed by toxicology 15 
and toxicogenomics 16 
experts, and based, in 17 
large part, on existing 18 

and published data standards such as the Minimum Information About a Microarray Experiment 19 
(MIAME) standard. Both studies (GSE24907 and GSE18789) met the SOAR screening threshold. 20 
Following a more in-depth scientific review, both studies were found to be of sufficient quality for 21 
use. 22 

Table 3. Search Terms and the Number of Studies Retrieved from 
the Gene Expression Omnibus (GEO) and Array Express Microarray 
Repositories 

Search Term 
Number of Microarray 

Studies Retrieved 

Coal tar 2 

Polycyclic aromatic hydrocarbons or PAHs 13 

Diesel 11 

Smoke (NOT cigarette smoke) 16 

Benzo[a]pyrene or B[a]P 53 

Fuel oil 1 

Cigarette smoke 63 

Tobacco smoke 16 
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That DEG lists reported in the peer-reviewed literature are not reproducible across similar studies 1 
is well established (Shi et al. 2008, Chuang et al. 2007, Ein-Dor et al. 2005, Lossos et al. 2004, 2 
Fortunel et al. 2003). In one published example, three different studies aimed at identifying 3 
“stemness” genes12 each yielded 230, 283, and 385 active genes, yet the overlap between them was 4 
only 1 gene (Fortunel et al. 2003). Therefore, a pathway-based meta-analysis approach was used, 5 
whereby fold change-based ranking, or more formal meta-analyses relying on raw data, along with 6 
a standardized analysis approach are considered to be more reproducible than published DEGs 7 
(Ramasamy et al. 2008, Shi et al. 2008, Chuang et al. 2007).  8 

Both studies were reanalyzed independently at the feature level13 using the same pre-processing, 9 
normalization, and analysis methods. GeneGo Metacore was used to identify pathways representing 10 
a large number of genes from both data sets. 11 

The consensus systems model (Figure 14) was synthesized based on the results from GeneGo 12 
Metacore. The model conceptually describes the events that might occur when B[a]P enters the cell. 13 
Briefly, B[a]P binds to AhR, leading to upregulation of xenobiotic metabolizing enzymes and Nrf2, 14 
which might lead to additional B[a]P metabolism to epoxides and increased oxidative stress. 15 
B[a]P-mediated genotoxicity, evidenced by DNA adducts, will occur and will activate p53. Although 16 
Nrf2 is upregulated transcriptionally, p53 is expected to interfere with Nrf2 signaling, ensuring a 17 
pro-oxidant environment, which might perpetuate further DNA adduct formation. Upregulation of 18 
p21 (Cdkn1a) and MDM2 are most likely a result of p53. Upregulation of ubiquitin, while in the 19 
presence of p53-mediated MDM2 upregulation, is expected to destabilize p53. Destabilization of 20 
p53, in the presence of PCNA, is expected to allow translesion synthesis, which will allow mutations 21 
and adducts to perpetuate through DNA synthesis. Upregulation of Cyclin D could be sufficient to 22 
overcome p21 inhibitory competition, especially as p53 levels decrease, allowing for G1/S phase 23 
transition to occur. Thus, G1/S phase transition, combined with translesion synthesis, is expected to 24 
lead to propagation of mutations and DNA adducts into daughter cells. This loop might continue 25 
into a feed-forward situation until p53 signaling can be reinitiated. 26 

                                                             
12“Stemness” genes are those genes that are hypothesized to confer stem cell characteristics. 
13A common misconception about microarrays is that they measure gene expression at the level of a gene. In 
reality, microarrays measure only a portion of a gene, typically anywhere from 20 to 100 nucleotide bases. 
This portion of the gene that is actually measured is called a “feature.” Typically, only one feature exists per 
gene on a microarray. Some genes are represented more than once on a microarray, however, complicating 
downstream analyses (e.g., deciding how much a gene is expressed when the two features representing 
different parts of the same gene yield different numbers). Features could also be believed to map to a specific 
gene at one time, and the feature is later discovered to map to a completely different gene (this happens more 
frequently with lesser known or studied genes and lesser known or studied organisms where the genome 
might not be available). Thus, the gene associated with a feature can change over time, and most analysts will 
re-map their feature sequences against the genome periodically to ensure they have the latest annotation. 
This might result in reproducibility issues when comparing to studies performed at different times. Generally, 
when interpreting gene expression, analysts prefer to operate at the feature level for all analyses. 



 

This document is a draft for review purposes only and does not constitute Agency policy. Do not cite or quote. 
September 2013 38  

Using the gene expression changes and activating DNA adduct formation, the Boolean Network 1 
systems model (Figure 15-17)14 predicts that cell cycle progression will be activated with 2 
translesion synthesis15 (Figure 18). These data and the systems model support the notion that the 3 
high doses and acute durations used in the two mouse liver studies might initiate liver tumor 4 
progression through a genotoxic MOA, and promotion might occur through a cellular proliferation 5 
MOA. Due to the lack of data, speculating whether this system could be activated at low doses in the 6 
mouse is not possible. Due to genetic and epigenetic variability and potential species differences, 7 
these types of effects might occur at lower doses in humans than in mice.  8 

The proposed model, however, provides a testable hypothesis for effects at lower doses, with other 9 
species, and other PAHs. For instance, transcriptomic studies with PAH mixtures, or other PAHs 10 
individually, can be analyzed to see if they might also impinge on this pathway. Further, the gene 11 
expression data from these other studies can be placed into this model, and an analysis can be 12 
performed to see how the cell might react, compared to B[a]P. This will give an indication of 13 
doses/exposures that could lead to DNA damage, activation of translesion synthesis, and G1/S-14 
phase transition.  15 

Human Susceptibility and Population Variability 

Variations in human genetics will alter the susceptibility and population variability with respect to 16 
the tumorigenesis or carcinogenesis outcomes. For instance, SNPs are known to occur in p53, which 17 
might impact its ability to stop G1/S phase transition. In addition, the p53 gene has been shown to 18 
be mutated in many cancers (Vogelstein et al. 2000). A data mining approach can be taken to 19 
identify other relevant SNPs for the genes or proteins in the systems model. 20 

                                                             
14In a Boolean Network model, the system is represented as a series of connected nodes. Each node 
represents a gene/protein, and a connection represents some type of action/inhibition relationship. The 
connections are directed. For instance, p21 inhibits Cdk4, so the arrow originates at p21 and terminates at 
Cdk4. Some of the relationships are not as direct. For instance, Cyclin D interacts with Cdk4 to activate G1/S 
phase transition; however, in the model, this is best represented as a positive interaction between Cyclin D 
and Cdk4 given the relationship between Cdk4, Cyclin D, and p21. Each node has a state, either on (1) or off 
(0). Based on the state and the relationship to the other nodes, the Boolean Network can cycle through a 
series of states. To test the predicted outcomes (i.e., can the model sustain cell cycle progression and 
translesion synthesis once initiated?), this model was further simplified into just the DNA adduct/cellular 
proliferation part, and represented as a Boolean Network systems model. Specifically, we are looking for 
stable states or attractors—cycles of states that recur and self-perpetuate. States that lead to attractors are 
called the basin. The Boolean Network in Figure 15 has a single state attractor defined in Figure 16. This state 
can be defined as a cell cycle progression state with translesion synthesis turned on. If the cell were to enter 
this system state, it would be expected to self-perpetuate until a stimulus shuts it down. Important to note is 
that the systems model does not predict that all cells will enter this state or that this state is the default. 
Rather, the model is simply stating that if this state were entered, the cell would remain in this state until a 
stimulus occurs that forces it out. Such stimuli might include changes in gene expression, alterations of 
metabolic states, or a change in overall energy level. The Boolean Network model predicts that, with DNA 
adducts alone, the cell will enter into a five-state attractor (Figure 17). In this cycle, the cell is not predicted to 
enter into G1/S phase transition—which is expected because p53 should effectively shut down that pathway. 
Translesion synthesis is predicted to occur in this attractor cycle. 
15Translesion synthesis is a mechanism for DNA damage tolerance that allows the DNA replication machinery 
to move beyond a DNA lesion or abasic site (i.e., a site that lacks a DNA base).  
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Figure 15. Liver Carcinogenesis Systems Model. The nodes represent proteins, and the lines are directional 
connections meaning activation or inhibition (activation and inhibition are not treated differently in the 
graphical depiction of the model). For instance, the arrow from PCNA to translesion synthesis means that PCNA 
activates translesion synthesis. The two major outcomes in this model are translesion synthesis and G1/S 
phase transition. The major external input is DNA adduct formation. DNA adducts cause structural damage to 
the DNA, which could become or lead to mutations and ultimately tumorigenesis and cancer. 
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Figure 16. Default State, Single State Attractor. The systems model falls into a default state, single state attractor 
system. This is the same as the network represented in Figure 15. The names have been replaced by numbers, 
which are noted in the figure legend. Red nodes are those that are activated. Blue nodes are inactivated. The 
system here has not been perturbed by external forces. Of particular interest is that the “default” state for the 
system is one where the cell is actively proliferating and undergoing translesion synthesis. 
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Figure 17. DNA Adduct Attractor System. When the systems model is perturbed through an external stimulus 
(DNA adduct formation), it transitions from the default stable starting state and moves to a new attractor 
(depicted in the inset). Once the system moves out of the basin for the default state attractor, it cannot return to 
that state without another significant stimulus. This multistability (the fact that a system can have multiple stable 
attractor states) is a characteristic of complex systems. Starting at the upper left of the inset, PCNA is activated, 
DNA adducts are activated, and p53 is activated. This leads to translesion synthesis and activation of p21, MDM2, 
and ubiquitin. Although Cyclin D gets activated, there is no activation of G1/S phase transition. The system then 
transitions to a state where translesion synthesis is primed and ready to go. If G1/S phase transition were to 
occur, p53 is activated, along with DNA adduct formation, MDM2, and ubiquitin. The next system state has 
continued p21 activation, loss of p53 activity presumably through ubiquitin and MDM2 activation in the prior 
system state, and DNA adduct formation. The system then transitions to only DNA adduct formation and 
ubiquitin activation, followed by restarting of the cycle. 
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Figure 18. Gene Expression Data Attractor System. This four-system attractor is based on the gene expression data 
observed in both studies. This attractor system is notable as it shows DNA adduct formation, translesion synthesis, 
and G1/S phase transition occurring in all system states. This model predicts that DNA adducts and potential 
mutations are being passed forward to daughter cells through translesion synthesis as the cell cycle progresses at 
these doses and times in the mouse liver. This suggests that B[a]P at these doses and experimental time-points 
post exposure in the mouse liver could be an initiator and promoter of tumorigenesis. This adverse outcome 
pathway (AOP) might ultimately result in carcinogenesis.  

 

Risk Assessment Implications Based on the B[a]P Prototype 

Hazard Identification – These data suggest that B[a]P activates known human disease pathways 1 
associated with genotoxicity and tumor promotion/cell cycle progression. Similar pathway-based 2 
meta-analyses can be performed on transcriptomic data for other chemicals to screen for 3 
genotoxicity and tumor promotion, prior to the observation of tumors. For instance, using this 4 
specific Boolean systems model would inform risk assessors of the likelihood that other PAHs and 5 
PAH mixtures share a similar AOP. This type of chemical screening would need to be further 6 
validated with known or likely carcinogens and compared against chemicals that are believed not 7 
to be carcinogens (to establish performance of the screening method).  8 

Disease-focused system models could be developed for a larger set of complex human diseases to 9 
expand the utility of this approach in the future. The pathway-based, diseased-focused, Boolean 10 
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systems model approach could be expanded to include emerging data streams, including 1 
metabolomics and proteomics, to create overall improvements in mechanistic understanding and 2 
hazard identification screens. 3 

The genes in these Boolean systems models can be considered as those that might be tested 4 
together in a battery of assays to be used in Tox21 screening. HTS assay batteries based on these 5 
models can be implemented easily using current multiplex quantitative PCR assay systems. 6 

Exposure-Dose-Response Assessment – Analyzing changes in the systems model and potential 7 
differences in adverse outcome across a range of doses was precluded due to the lack of sufficient 8 
dose-response data. The Boolean systems models approach used here, however, would allow for 9 
the prediction of adverse outcomes across a range of doses. In the B[a]P example, we examined the 10 
impacts of different scenarios. This same approach would be used to analyze different doses. 11 

Cumulative Risk Assessment – Boolean systems models can be used to compare and integrate 12 
pathway-based results from multiple chemicals and nonchemical stressors. This approach would 13 
enable prediction of hazards from exposure to mixtures or cumulative stressors.  14 

Variability and Susceptibility in Human Response – Human susceptibility can be modeled by 15 
using data from genome-wide association studies (GWAS), knock-out studies, or knock-down 16 
studies. In this instance, modeling the impacts on the adverse outcome predicted by the Boolean 17 
systems model is possible. For instance, the impacts of a gene knock-out generally can be modeled 18 
in the Boolean systems model as a constant inactivation of the protein.  19 

Population variability would be modeled using a Monte Carlo simulation to estimate the risk of 20 
adverse outcomes across different genetic profiles. This would be accomplished by using the same 21 
types of models as in the human susceptibility context. The population variability scenario can be 22 
considered as creating a population of susceptibility Boolean systems models, where each model 23 
has a chance of being included in the overall analysis equal to its occurrence in the human 24 
population (or equal to its occurrence in a hypothesized human population if performing a what-if 25 
type of scenario). For instance, if 15% of the population is expected to have a loss of function 26 
polymorphism, the Monte Carlo model should have a 15% chance of choosing that type of Boolean 27 
systems model on each random draw from the population.  28 

3.1.4.  Risk Assessment Implications across the Tier 3 Prototypes 

Looking across the Tier 3 prototypes: 29 

• Benzene, ozone, and B[a]P displayed human molecular signatures that are strongly associated 30 
with specific human disorders and diseases.  31 

• This type of molecular mechanistic understanding can be used to screen and predict an 32 
association between a chemical and a disease, or to augment the existing weight of evidence 33 
for an association between a chemical and a disease.  34 

• With sufficient systems biology understanding and data, disease signatures also could be used 35 
to screen chemicals with no or limited traditional data for specific disease hazards.  36 
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• Meta-analyses that integrate pathway-based data across multiple studies yield the greatest 1 
evidence that associate chemical exposure to a disease, and are generally the most 2 
appropriate method for using transcriptomics data in a risk assessment. A pathway analysis 3 
from a single study will yield more evidence to associate a chemical exposure to a disease, 4 
and assuming the study design is adequate, might be appropriate for a risk assessment. An 5 
analysis built on a set of DEG lists is not reproducible or adequate for risk assessment 6 
purposes.  7 

• Dynamic disease-based systems models will facilitate the understanding and prediction of 8 
chemical-disease associations in the near future. These models provide a nonbiased view of 9 
the underlying biology, and can facilitate making pathway-based predictions of adverse 10 
outcomes and disease when the interconnections within the pathway become complicated 11 
(e.g., the B[a]P case study). 12 

• On an individual level, molecular signatures involve dynamic relationships among adaptive 13 
and nonadaptive processes that will require additional research to understand fully. At the 14 
population level, environmental factors can be thought of as shifting the population or 15 
subpopulation distributions toward (e.g., certain chemical exposures) or away from increased 16 
levels of risk (e.g., beneficial nutrients). 17 

• In vitro responses appear to have commonalities with in vivo responses but also are affected 18 
by a number of variables, such as test system, metabolism, cell type, tissue type, time course 19 
of events (ozone data only), individual characteristics (intrinsic and extrinsic), and species.16 20 
These complexities make the identification of a specific disease hazard from in vitro only data 21 
difficult. Systems biology understanding, derived from in vivo data, increases confidence in 22 
the interpretation of in vitro data. 23 

• For in vitro data, identifying hazards that occur at the organ or organismal level might be 24 
difficult. Thus, in vitro studies might be more appropriate for assessing the relative potencies 25 
of chemicals to alter biological processes (vs. induce disease) or to predict hazards that occur 26 
or are initiated at the tissue level (e.g., generalized inflammatory response). This is 27 
particularly true if relative potency is evaluated within a given protocol. 28 

• Future research merging GWAS data and personalized medicine into organized data can help 29 
better characterize both intrinsic and extrinsic factors that contribute to human variability 30 
and susceptibility. 31 

• The networks associated with a disease can apparently be disrupted in multiple places, all 32 
leading to altered risks of the specific disease. This is shown by mechanistic commonalities 33 
among diseases of unknown origins, other chemicals associated with the disease, and 34 
chemotherapeutics that can reverse or block components of the disease processes. This type 35 
of information can be a useful tool in characterizing cumulative risks. Overly narrow 36 
descriptions of mechanisms can miss interactions among environmental factors. 37 

                                                             
16Although not evaluated here, lifestage is also an important variable (Boekelheide et al. 2012). 
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• When searching for candidate Tier 3 prototypes, one important observation was that, even 1 
among the most well studied chemicals, very few chemicals had the type and quality of data 2 
needed for exploring the use of new data types in risk assessment. There are needs for 3 
systematic review criteria for new data types, adherence to standards of experimental and 4 
statistical practices in data generation and analyses, and thoughtful consideration of 5 
variability and uncertainty to improve the utility of new data types for risk assessment.  6 

3.2. Tier 2: Limited Scope Assessments 

The intent of the Tier 2 prototypes is to (1) explore new types of computational analyses and 7 
short-duration in vivo bioassay that are currently relatively uncommon in risk assessment but hold 8 
great promise for the near future; and (2) develop an assessment approach well suited to limited 9 
scope risk management decisions. In this case, “limited” generally means regional to local exposure 10 
potential, or limited hazard potential, or limited data to conduct more detailed assessments. Tier 2 11 
efforts fall between Tier 3 and Tier 1 in terms of resources required and amount of uncertainty in 12 
the assessment results. The number of chemicals possibly identified in Tier 1 meriting further 13 
testing could overwhelm traditional or Tier 3 type evaluation, thus the need for an intermediate 14 
testing and assessment strategy as provided by Tier 2 (Thomas, RS et al. 2013a).  15 

The hallmark of Tier 2 data in the NexGen program is integration across biological systems—16 
molecule-to-cell(s)-to-tissue(s) and, in some systems, to-outcome(s)—to inform associations 17 
among environmental exposures, causal mechanisms, and outcomes, but generally using 18 
evaluations over relatively short time periods (hours to weeks). Tier 2 considers all information 19 
available from Tier 1 approaches, such as quantitative structure-activity relationship (QSAR) and 20 
HTS, along with other data derived from more complicated test systems that use intact tissues or 21 
organisms to provide a higher level of confidence in the assessment (Table 4). Limited scope 22 
assessment could include combining HTS with limited traditional data. Tier 2 data are commonly 23 
referred to as high-content data. 24 
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Table 4. Summary of Tier 2 NexGen Approaches, Including Weight of Evidence, Pros, and Cons 

Tier 2: Limited Scope Assessments 
Categories of Approaches Considered 

 Data Mining of 
Existing Databases 

Alternative Species 
In Vivo Assays 

Mammalian Short-duration 
In Vivo Assays 

Approach: Discovers or identifies 
associations among 
environmental exposures, 
omic patterns, and human 
disease.  
Often uses meta-analyses of 
large existing data sets.  
Suggests potential adverse 
outcomes based on existing 
knowledge of other chemical-
induced molecular event and 
disease relationships. 

Experimentally measure dose-
dependent, chemically-
induced alterations in 
biological functions in intact 
organisms using a range of 
specific and sensitive assays. 
Measures adverse outcomes 
that range from omics to 
phenotypic outcomes and 
population effects.  

Experimentally measure dose-
dependent, chemically-
induced alterations in 
biological functions in intact 
animals using a range of 
specific and sensitive assays.  
Measures molecular or cellular 
changes; infers potential 
adverse outcomes based on 
existing knowledge of other 
chemical pathway or disease 
relationships.  

Weight of 
evidence: 

Determined by the quality and 
amount of underlying evidence 
(ranges from suggestive to 
likely) or is known with 
substantial complementary 
experimental data. 

Determined by the quality and 
quantity of data, but generally 
suggestive to likely. Cross-
species issues need 
consideration. 

Determined by the quality and 
amount of underlying 
evidence, ranges from 
suggestive to likely when 
anchored to pathway and 
traditional data and some 
understanding of temporal 
progression.  

Pros: Significantly faster and less 
expensive than traditional 
bioassays.  
Can use combined data sets 
that include tens of thousands 
of humans. 

Significantly faster and less 
expensive than traditional 
bioassays.  
Can evaluate complex 
outcome birth defects and 
neurobehavioral outcomes. 

Significantly faster and less 
expensive than traditional 
bioassays.  
Includes tissue and organism 
integration, including 
metabolism. 

Includes tissue, organism, and life span-level integration, 
including metabolism 

Cons: Relationships generally 
associative; might be causal in 
certain circumstances 
(depending on data quality 
and amount of underlying 
evidence).  
Data on effects of early life 
exposures and effects 
generally lacking. 

Species-to-species 
extrapolation is an issue as is 
the potential for parent 
compound not to be 
metabolized to toxicants that 
are active in humans.  
Omics information can be 
derived from organs, tissues, 
and multiple cell types versus 
only human-based target cells.  
Data on effects of early life 
exposures and effects 
generally lacking; an exception 
is the embryonic fish models. 

Measure events early in 
disease initiation process; 
early events could be 
reversible; links to apical 
outcome can be an issue. 
Omic information is often 
derived from multiple cell 
types versus only target cells.  
Data on effects of early life 
exposures and effects 
generally lacking. 
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Two general approaches to Tier 2 data are discussed here: 1 

• High-content knowledge mining (i.e., computer-driven surveys of the literature and large 2 
existing data libraries17) to retrieve data and conduct meta-analyses of existing systems 3 
biology data to construct mechanism-of-action models and establish associations between 4 
environmental exposure and disease. The diabetes/obesity prototype is provided as an 5 
example. 6 

• Short-term in vivo or in situ exposures of intact organisms to enable incorporation of the 7 
intact metabolism in the toxicity evaluation and produce measures of biological change over a 8 
short time frame (i.e., ranging from hours to a few months) that are thought to be relevant to 9 
longer term outcomes. Two examples are provided using alternative and mammalian species. 10 
Considerable work is ongoing at various U.S. Federal Government agencies and elsewhere to 11 
refine assays where animals are exposed to chemicals in vivo for periods ranging from hours 12 
to a few months.  13 

Implications for risk assessment identified by the Tier 2 prototypes are discussed at the end of this 14 
section and integrated with other lessons learned in Section 5 “Lessons Learned from Developing 15 
the Prototypes.” 16 

3.2.1. Knowledge Mining – Diabetes/Obesity  

Knowledge mining18 is explored in this prototype as a means to characterize the associative and 17 
potentially causal relationships among disease and exposures to environmental factors and 18 
intrinsic sources of human variability. The knowledge mining approach capitalizes on huge new 19 
databases that are being supplemented with each publication in the field of omics (>50,000 per 20 
year). These databases are generally oriented toward the omics of human disease but also include 21 
omics information on other species, as well as surveys and clinical assays measuring human 22 
exposure and health outcomes. The specific, related diseases explored here are diabetes and 23 
obesity and relationships to multiple environmental factors. Diabetes results from environmental 24 
and genetic factors and risk varies considerably in the population (Patel et al. 2013). Four 25 
interrelated efforts focusing on diabetes/obesity are reported here: (1) Comparison of Knowledge 26 
Mining Results and Expert Opinion; (2) Environment-wide Association Studies (EWAS); (3) Itemset 27 
Associations between Prediabetes/Diabetes and Chemical Exposures; and (4) Characterizing 28 
Human Susceptibility and Population Variability.  29 

Comparison of Knowledge Mining Results and Expert Opinion 

Thayer et al. (2012) reported on a recent National Toxicology Program (NTP) workshop that 30 
examined the possible causal relationships between environmental exposures and diabetes or 31 
obesity. At the workshop, results from an extensive information survey were evaluated by experts 32 

                                                             
17For example, the National Library of Medicine’s Gene Expression Omnibus (GEO): a public functional 
genomics data repository supporting MIAME-compliant data submissions. Array- and sequence-based data 
are accepted. Tools are provided to help users query and download experiments and curated gene expression 
profiles. 
18Knowledge mining is the computerized extraction of useful, often previously unknown, information from 
large databases or data sets using sophisticated data search capabilities and statistical algorithms to discover 
patterns and correlations and then interpret this new information in the context of systems biology to create 
new knowledge. 
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on the strength of the associations identified. The effort integrated both traditional and new types 1 
of data, including approximately 870 findings from more than 200 human studies; and the most 2 
useful and relevant endpoints in experimental animals and in vitro assays (e.g., ToxCastTM and 3 
Tox21). The environmental factors identified and discussed at the workshop included maternal 4 
smoking and nicotine, arsenic, persistent organic pollutants, organotins, phthalates, bisphenol A 5 
(BPA), and pesticides. Overall, the workshop results suggest that associations can be made between 6 
environmental factors and type 2 diabetes or obesity, but causality was more difficult to assign 7 
(Table 5).  8 

Table 5. Summary of Literature Review Findings and Expert Judgments Concerning Causal 
Relationships 

Chemical/ 
Environmental 
Factor 

Outcome 
Association/ 
Causality 

Conclusions from  
Breakout Group 

Maternal smoking 
and nicotine 

Childhood 
obesity 

Association, likely 
causal 

Likely causal supported by epidemiology data and 
animal studies (Behl et al. 2013). 

Arsenic Diabetes Association 

Sufficient support for an association between arsenic 
and diabetes in populations with relatively high 
exposure levels (≥ 150 µg arsenic/L in drinking water) 
(Maull et al. 2012). 

Organochlorine 
persistent organic 
pollutants  

Diabetes Association 
Sufficient for a positive association of some 
organochlorine persistent organic pollutants with 
type 2 diabetes (Taylor et al. 2013). 

Organotins Obesity 
Suggestive of an 
association in animal 
and in vitro models 

Current data from human studies of exposure to 
organotins are nonexistent regarding an association 
with diabetes or obesity. Recent animal and 
mechanistic studies report stimulatory effects of 
tributyl tin on adipocyte differentiation (in vitro and 
in vivo) and an increased amount of fat tissue (i.e., 
larger epididymal fat pads) in adult animals exposed 
to TBT during fetal life. Although the organotin 
“obesogen” literature is relatively new, with few 
studies, the quality of the existing experimental 
studies was considered high by the breakout group 
(Thayer et al. 2012).  

Bisphenol A (BPA) Diabetes 
Suggestive of an 
association 

Overall, this breakout group concluded that the 
existing data, primarily based on animal and in vitro 
studies, are suggestive of an effect of BPA on glucose 
homeostasis, insulin release, cellular signaling in 
pancreatic β cells, and adipogenesis (Thayer et al. 
2012). 

Phthalates 
Diabetes or 
obesity 

Insufficient data to 
assess 

Current data from human studies of exposure to 
phthalates provide insufficient evidence of an 
association with diabetes or obesity (Thayer et al. 
2012). 
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Environment-Wide Association Studies19 

Diabetes varies in the population due to both genetic and environmental factors but understanding 1 
these interactions has been difficult. Using an Environment-wide Association Study approach, Patel 2 
et al. (2012b) investigated the problem of many possible contributing factors by integrating 3 
genomic and toxicological data to obtain a candidate list of interacting genes, genetic variants, and 4 
environmental factors associated with type 2 diabetes. The method involved three steps. First, 5 
genetic and environmental data were summarized from VARIMED (VARiants Informing MEDicine; a 6 
genetic association database) and the National Health and Nutrition Examination Survey (NHANES, 7 
an environmental exposure and effects database). VARIMED contains data on 11,977 gene variants, 8 
9,752 genes, and 2,053 individuals; NHANES includes 261 genotyped loci, 266 environmental 9 
factors measured in blood and urine, and clinical measures for the same individuals. They identified 10 
several environmental factors that positively or negatively affected risks for type 2 diabetes, 11 
including nutrients and persistent organic pollutants. They reported 18 human genetic variations 12 
(SNPs) and 5 serum-based environmental factors that interacted in association with type 2 13 
diabetes. Thus Patel et al. (2013, 2012b) successfully identified association linking diabetes, genes, 14 
gene variants, and environmental factors.  15 

This approach demonstrates a knowledge mining method that can be applied broadly to any 16 
number of common diseases to identify possible interactions between genetic and environmental 17 
factors and risks of disease. In Genetic Variability in Molecular Response to Chemical Exposure, Patel 18 
and Cullen (2012) review what has been learned to date with these types of efforts and discuss a 19 
more comprehensive representation of chemical exposures as the “envirome” and how we might 20 
use it to examine the interplay of genetics and the environment.  21 

Itemset Associations between Prediabetes/Diabetes and Chemical Exposures 

We followed up efforts by Thayer et al. (2012) and Patel et al. (2013, 2012b), using two 22 
independent frequent itemset mining analyses of the NHANES data. Frequent itemset mining is a 23 
data mining approach commonly used in business intelligence to derive marketing and pricing 24 
strategies or to identify credit risks. For example, grocery stores use frequent itemset mining to 25 
uncover products that are typically purchased together to determine pricing strategies (e.g., a 26 
grocer does not want to place items commonly purchased together on sale at the same time and 27 
might raise the price of an item commonly purchased with a sale item). Similarly, this technique can 28 
be used with the NHANES data to uncover a chemical or group of chemicals that tend to be 29 
associated with specific diseases.  30 

We focused our analyses on the 2003–2004 NHANES cohort and evaluated associations between 31 
diabetes and individual chemicals. We also focused on the 2009–2010 NHANES cohort and 32 
evaluated associations among diabetes and a more complex lists of chemicals.20 Both analyses 33 
focused on metals.  34 

                                                             
19This section is adapted largely from Patel et al. (2012b) and (2013) with the assistance of Dr. Patel. 
20Both analyses use the Apriori algorithm (Borgelt 2013) to generate “rules” where X ≥ Y is read “X is 
associated with outcome Y.” Our first study constrained the rule to read “prediabetes/diabetes is associated 
with chemical Y,” or prediabetes/diabetes ≥ chemical Y. Our second study constrained Apriori to return 
prediabetes/diabetes as the outcome. 
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Prediabetes/Diabetes and Individual Chemical Exposures – These results suggest that type 2 1 
prediabetes/diabetes is most often associated with lead and cadmium (blood or urine), with a 2 
suggestive association with arsenicals. Type 2 prediabetes/diabetes is not associated with cesium 3 
and uranium. Table 6 lists the resulting rules21 showing the association or lack of association 4 
between diabetes and all of the metals monitored in NHANES.  5 

When interpreting lift,22 support,23 and confidence,24 we believe lift is the most informative to start 6 
with, followed by the other measures. If a rule has a lift value close to 1, the rule has little predictive 7 
value, regardless of the support and confidence. Once an analyst has identified models that are 8 
significantly different from random (lifts > 1), the analyst will typically then examine the support 9 
and confidence.  10 

Support provides an indication of the percentage of people surveyed by the NHANES program that 11 
have both type 2 prediabetes/diabetes (the antecedent) and high blood lead, for instance (11% in 12 
this case). The support indicates what proportion of the population might be expected to have type 13 
2 prediabetes/diabetes and high blood lead, assuming the NHANES sample is a truly representative 14 
sample of the U.S. population (in this case 11%).  15 

The confidence tells the analyst how strong the rule is. In other words, confidence tells the analyst 16 
the percentage of people with type 2 prediabetes/diabetes (the antecedent) that have high blood 17 
lead, for instance (34% in this case). This is equivalent to the prevalence of Type 2 18 
prediabetes/diabetes in individuals that have a high level of the particular metal, and is a potential 19 
indicator of risk. 20 

                                                             
21Ruleset is a collection of one or more rules used, in this case, to predict association between diabetes and 
chemical exposures (Oracle 2013a). 
22Lift is a measure of how much better prediction results are using a model than could be obtained by chance 
(Oracle 2013b). A lift of 1 means the rule is no better at predicting the outcome than random chance. Thus, 
knowing that someone in this NHANES cohort is defined as prediabetic or diabetic provides a 1.44 times 
better chance to predict that the person has high blood lead, compared to random. The lift close to 1 provides 
no better indication of a person’s urine uranium or cesium concentration compared to random guessing 
knowing that they are prediabetic or diabetic. 
23Support is the percentage of subjects in the entire data set/database that have both the 
antecedent/condition and the predicted outcome. This can also be thought of as the number of subjects in the 
entire data set/database where the rule is true. 
24 Confidence is the percentage of the people who meet the antecedent/condition criteria that also meet the 
outcome criteria. For instance, 34% of the people in this NHANES cohort defined as being either prediabetic 
or diabetic also have high blood lead. 
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Table 6. Apriori Rule Associations between Type 2 Prediabetes/Diabetes and Chemical 
Exposures. 

Antecedent/Condition Predicted Outcome Lift Support Confidence Conclusion 

Type 2 Prediabetes/Diabetes High blood lead 1.44 0.11 0.34 Association 

Type 2 Prediabetes/Diabetes High urine cadmium 1.43 0.13 0.43 Association 

Type 2 Prediabetes/Diabetes High blood cadmium 1.26 0.09 0.30 Association 

Type 2 Prediabetes/Diabetes High urine arsenobetaine 1.25 0.10 0.33 Association 

Type 2 Prediabetes/Diabetes High urine lead 1.20 0.09 0.28 Association 

Type 2 Prediabetes/Diabetes High urine total arsenic 1.18 0.09 0.31 Association 

Type 2 Prediabetes/Diabetes High blood total mercury 1.12 0.09 0.30 Association 

Type 2 Prediabetes/Diabetes High urine cesium 1.03 0.08 0.25 No association 

Type 2 Prediabetes/Diabetes High urine uranium 1.01 0.07 0.24 No association 

 

Prediabetes/Diabetes and Multiple Chemical Exposures – Table 7 lists the results showing 1 
associations between multiple chemicals and prediabetes/diabetes. The rule with the highest lift 2 
(1.46 times better than random) is where NHANES subjects had high urine cadmium, high blood 3 
lead, and high total urine arsenic. This rule is present in 11% of the 2009–2010 NHANES cohort, 4 
suggesting it might be true for 11% of the U.S. population at the time of study, assuming NHANES is 5 
a good random sample. Of all the subjects who had high urine cadmium, high blood lead, and high 6 
total urine arsenic, 59% also were either prediabetic or diabetic. Not surprisingly, the rule with the 7 
next highest lift is the same as the first, except these subjects also had high urine lead levels. This 8 
rule had a support of 10% and a confidence of 58%. Overall, this analysis supports strong 9 
associations between cadmium, lead, and total urine arsenic and type 2 prediabetes/diabetes due 10 
to their frequent occurrence in the top ranked rules. Cesium and cobalt occurred less frequently 11 
and would be expected to be less strongly associated. 12 

Synthesis of Frequent Itemset Mining Results – Lead and cadmium exposure are highly likely to 13 
be associated with type 2 prediabetes/diabetes. High lead levels occurred in 9 of 10 and cadmium 14 
in 8 of 10 of the top-ranked rules in Burgoon’s data set. Further evidence is provided by the results 15 
where blood lead, blood cadmium, and urine cadmium were the highest rated outcomes based on 16 
lift. Confirmatory evidence exists that these metals also might be elevated in other diabetic 17 
populations (Afridi et al. 2008). Low-dose mixtures of lead, cadmium, and arsenic might induce 18 
oxidative stress (Fowler et al. 2004), and evidence suggests that cadmium might induce 19 
hyperglycemia in rats (Bell, RR et al. 1990).  20 
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Table 7. Apriori Rule Associations between Type 2 Prediabetes/Diabetes and Exposure to 
Multiple Chemicals 

Antecedent/Condition Predicted Outcome Lift Support Confidence Conclusion 

High urine cadmium 
High blood lead 
High total urine arsenic 

Type 2 Prediabetes/Diabetes 1.46 0.11 0.59 Association 

High urine cadmium 
High urine lead 
High blood lead 
High total urine arsenic 

Type 2 Prediabetes/Diabetes 1.44 0.10 0.58 Association 

High urine cadmium 
Low urine cobalt 

Type 2 Prediabetes/Diabetes 1.40 0.11 0.56 Association 

High urine cadmium 
High blood lead 

Type 2 Prediabetes/Diabetes 1.38 0.17 0.56 Association 

High urine cadmium 
High urine lead 
High blood lead 

Type 2 Prediabetes/Diabetes 1.38 0.15 0.56 Association 

High urine cadmium 
High urine cesium 
High blood lead 

Type 2 Prediabetes/Diabetes 1.38 0.11 0.56 Association 

High urine cadmium 
High blood cadmium 
High blood lead 

Type 2 Prediabetes/Diabetes 1.37 0.13 0.55 Association 

High urine lead 
High blood lead 
High total urine arsenic 

Type 2 Prediabetes/Diabetes 1.37 0.12 0.55 Association 

High urine cesium 
High blood lead 
High total urine arsenic 

Type 2 Prediabetes/Diabetes 1.37 0.10 0.55 Association 

High urine cadmium 
High urine lead 
High blood cadmium 
High blood lead 

Type 2 Prediabetes/Diabetes 1.37 0.11 0.55 Association 

 

Taking these results together, uranium and cesium are not likely to be associated with type 2 1 
prediabetes/diabetes. Whether mercury is likely to be associated with type 2 prediabetes/diabetes 2 
remains unclear.  3 

Extrapolating these results to the U.S. population suggests that a large proportion (>50%) of the 4 
population with elevated lead, cadmium, and arsenic levels might have type 2 5 
prediabetes/diabetes. Although these data are not sufficient to demonstrate causality, they do 6 
suggest that mixtures of these metals are associated with type 2 prediabetes/diabetes. Possible 7 
explanations include (1) the mixture of these chemicals might cause type 2 prediabetes/diabetes; 8 
(2) prediabetic/diabetic phenotypes might alter the absorption, distribution, metabolism, and 9 
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excretion of these metals; or (3) only one of these chemicals might be associated with type 2 1 
prediabetes/diabetes, while the absorption, distribution, metabolism, and excretion properties of 2 
the other chemicals are impacted by the first. Evidence exists that the three metals work together to 3 
induce oxidative stress, and cadmium itself might induce hyperglycemia in rats. These results 4 
suggest that further studies should be conducted to ascertain potential causality. 5 

Further, these results demonstrate that Frequent Itemset Mining yields fruitful results and 6 
hypotheses that can be used to identify associations between chemical body burdens and potential 7 
disease endpoints. The results also illustrate ways that data mining methods developed for other 8 
fields can be implemented to identify predictive biomarkers of exposure and health outcomes.  9 

Example: Characterizing Human Susceptibility and Population Variability  

Risk managers can begin to identify populations with genetic susceptibility to Type 2 10 
prediabetes/diabetes in their communities by combining the frequent itemset mining results above 11 
with data mining of human genetic variability data, health outcomes, and an understanding of 12 
disease processes and chemical MOAs. Combining this information with census demographic data, 13 
geographic information systems, and exposure models will further drive the possibilities of 14 
pinpointing specific geographic susceptible populations. In this prototype, we identify a potentially 15 
susceptible population to Type 2 prediabetes/diabetes by combining the cadmium-disease 16 
association, known gene-disease associations, and knowledge of risk allele frequencies in human 17 
ethnic groups. 18 

Recently, a combination of EWAS and GWAS was performed that examined potential interactions 19 
between SNPs (i.e., a mutation of a single nucleotide within the DNA of a gene sequence), 20 
environmental chemical levels in blood and urine, and health outcomes—specifically type 2 21 
diabetes—using data from NHANES (Patel et al. 2013). Although support for genotype and chemical 22 
interactions was limited, interesting interactions were noted between the nonsynonymous coding 23 
SNP rs13266634 in the SLC30A8 gene and cis- and trans-beta-carotene and gamma-tocopherol.  24 

The SNP rs13266634 has been noted as being associated with type 2 diabetes previously (Rung et 25 
al. 2009, Takeuchi et al. 2009, Timpson et al. 2009, Pare et al. 2008, Diabetes Genetics Initiative of 26 
Broad Institute of Harvard et al. 2007, Scott et al. 2007, Sladek et al. 2007, Steinthorsdottir et al. 27 
2007, Zeggini et al. 2007). SLC30A8 is a zinc transporter found in the pancreatic beta-cell secretory 28 
vesicles. Zinc has been associated with insulin biosynthesis (Emdin et al. 1980), and chronic 29 
decreased zinc intake has been associated with an increased risk of diabetes (Miao et al. 2013). The 30 
risk allele in rs13266634 is C (Sladek et al. 2007), while the minor allele is T (NCBI 2012b). 31 

Risk managers might find the genotype and allele frequency data in dbSNP to be helpful in 32 
understanding population variance and to help identify susceptible populations. For instance, from 33 
a random sample of 100 individuals of Mexican descent in Los Angeles, 66% were homozygous for 34 
the risk allele, 30% were heterozygous, and 4% were homozygous for the nonrisk allele (NCBI 35 
2012b). If we assume the sampling is representative of the entire population of Mexican-descended 36 
residents of Los Angeles, then approximately 66% of these individuals might be at an increased risk 37 
of developing diabetes, independent of their body mass index (OMIM 2012). Heterozygous 38 
individuals (30% of the population) might also carry some risk and might be more affected by their 39 
zinc intake (i.e., increased zinc intake might be protective). Likewise, the heterozygous individuals 40 
might be more sensitive to other metals, chemicals, or dietary factors that might compete with zinc 41 
for absorption, or they might be more sensitive to chemicals that could interfere with zinc 42 
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metabolism, transport, and insulin biosynthesis. Given the high rate of zinc deficiency in Mexican 1 
children that is not correlated with socioeconomic status, finding zinc deficiency in children of 2 
Mexican descent living in Los Angeles might not be surprising, especially if diet plays a significant 3 
role in the deficiency (Morales-Ruan Mdel et al. 2012).  4 

Cadmium exposure will be of concern to individuals who are homozygous or heterozygous for the 5 
risk allele. Cadmium has been shown to compete with zinc transporters and might lead to beta-cell 6 
dysfunction, lack of insulin production, and ultimately hyperglycemia (El Muayed et al. 2012). 7 
Individuals with the rs13266634 risk allele could be more sensitive to cadmium exposures than the 8 
rest of the population.  9 

Through database mining and an understanding of the allele disease pathway and a chemical’s 10 
adverse outcome pathway, we can identify potentially susceptible populations more easily. This 11 
example could be extended by examining cadmium exposure data for the Los Angeles area and 12 
using a geographic information systems approach with census data to identify potentially 13 
susceptible individuals, based on the allele probabilities. This type of predictive modeling could 14 
help advance more targeted community-level responses in the future. 15 

3.2.2. Short-Term In Vivo Models – Alternative Species 

Alternative species (i.e., nonmammalian species) provide in vivo models for identifying hazards, 16 
integrating dose-response effects, and understanding pathways and apical effects useful for 17 
assessing chemical risks to humans and to other species. The shorter life spans of alternative 18 
species enable the evaluation of toxicity over the full life span of the intact organism, facilitating 19 
study of the entire etiology of disease from the MIE to apical outcomes, including more complex 20 
phenomena such as birth defects or neurobehavioral impairment. 21 

Alternative species studies are playing a progressively more integral role in chemical testing, 22 
hazard identification, and dose-response assessment for both human and nonhuman species (ECHA 23 
2013b, Perkins et al. 2013, EPA 2012d, EC 2011, Schug et al. 2011, OECD 2004). Both the European 24 
Chemicals Agency (ECHA) and EPA use alternative species tests as part of required tests for 25 
endocrine disruptors (EPA 2012e, 2009a). Alternative species studies can be used for prioritization 26 
and screening or as the basis for Tier 2 type assessments.25  27 

Tier 2 Prototype: Using Alternative Species to Identify Thyroid Hormone Disruption 

Endocrine disruptors are chemicals that interfere with the body’s endocrine system and produce 28 
adverse effects in both humans and wildlife. In a state-of-the-science review, the World Health 29 
Organization (WHO) concluded that thyroid disruption-associated neurobehavioral disorders are 30 

                                                             
25The types of alternative or nonmammalian species can vary widely. Considerable work in toxicology has 
been done with fish, but work in very simple organisms such as yeast also provides insight into cellular 
regulation at multiple levels that control core biological processes and enable cells to respond to genetic and 
environmental changes (Yeung et al. 2011). Zhu et al. developed a network reconstruction approach that 
simultaneously integrates different types of data, and constructs a probabilistic causal network representing 
complex cell regulation: endogenous metabolite concentration, RNA expression, DNA variation, DNA–protein 
binding, protein–metabolite interaction, and protein–protein interaction data. Causal regulators of the 
resulting network were identified and provide insight into the mechanisms by which variations in network 
interactions affect gene expression and metabolite concentrations (Zhu et al. 2012). 
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occurring in children, and the incidence of these disorders has increased in recent decades (WHO 1 
2012). Normal thyroid function is essential for normal brain development, particularly during 2 
pregnancy and after birth. Additionally, thyroid hormones are crucial to inner ear and bone 3 
development, and bone remodeling and physiological functions such as metabolism (De Coster and 4 
van Larebeke 2012). Internationally agreed-upon and validated test methods for identification of 5 
endocrine disruptors capture a limited range of the known endocrine disrupting effects (Miller, MD 6 
et al. 2009). In its state-of-the-science review, WHO advised that existing testing protocols do not 7 
characterize completely all essential functions and that adverse effects “are being overlooked” 8 
(WHO 2012). Identifying environmental factors that might disrupt normal thyroid function and 9 
impact public environmental health is needed, given the key role that thyroid hormone plays for 10 
normal development and physiologic functions in all vertebrates (Woodruff and Sutton 2011, 11 
Miller, MD et al. 2009).  12 

In regulating development, the role of the thyroid hormone is of particular toxicological interest 13 
because thyroid hormone-dependent post-embryonic development is a common feature of 14 
vertebrate ontogeny (Paris and Laudet 2008). This period of development is typically characterized 15 
by transient elevations of thyroid hormone that elicit species-specific physiological and 16 
morphogenetic responses with lasting developmental consequences. Transitions from tadpoles to 17 
juvenile frogs and body plan reorganization in flatfish are two nonmammalian examples of thyroid 18 
hormone-controlled events. Human and vertebrate post-embryonic neurodevelopment is thyroid 19 
hormone-dependent and deviations from normal thyroid hormone concentrations at critical times 20 
are associated with a variety of neurological defects and deficits (Zoeller et al. 2002). The timing (or 21 
window) of exposure is critical as the impact of thyroid hormones changes as the brain develops 22 
(Zoeller and Rovet 2004). Thyroid hormone regulation is generally essential for normal 23 
development in vertebrates, thereby establishing the basis for cross-species extrapolation of 24 
developmental risks. Several methods using alternative species have been proposed to measure 25 
these outcomes for thyroid pathways (Makris et al. 2011, Nichols et al. 2011). 26 

A key factor in thyroid hormone-related risk assessment is the ability to examine hormone 27 
disruption and the resultant developmental disruption at higher levels of tissue organization. 28 
Results from omics technologies and other thyroid hormone toxicity assessments, such as EPA’s 29 
ToxCastTM chemical screening efforts (EPA 2008), can be linked to adverse outcome data from 30 
alternative species studies. Two examples are:  31 

1. The construction of regulatory networks using time series data in genotyped populations 32 
and integration of multiple data types (i.e., endogenous metabolite concentrations, RNA 33 
expression, DNA variation, DNA-protein binding).  34 

2. If a chemical is identified as a potential developmental disruptor in HTS, more information 35 
on in vivo effects might be required to establish dose-response relationships, windows of 36 
susceptibility, potential impacts of maternal exposure on progeny, and existence of subtle 37 
impacts on behavior, learning, and memory.  38 

Systems and Pathway Models 

As discussed throughout this document, understanding of systems biology and the events leading to 39 
an adverse effect are central features for the use of molecular biology data in risk assessment. 40 
Pathway analyses are useful to inform extrapolation across species and to aid in characterizing the 41 
variability within populations through identifying and describing both MIEs and key biological 42 
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events leading to adverse outcomes. They can also help identify how human-focused screening data 1 
can inform ecological risk assessment. Although making quantitative predictions of disease risks 2 
based on today’s system biology or adverse outcome models is often very difficult, pathway 3 
assessments are critical to advancing dose-response assessment. 4 

Figure 19 illustrates an example for thyroid hormone disruption. Disruption of the thyroid 5 
pathways can occur by thyroid peroxidase inhibition, iodine uptake (sodium iodide symporter) 6 
inhibition, enhanced phase II metabolism (glucuronosyltransferases or sulfotransferases) via 7 
alterations in specific genes (CAR/PRX [constitutive androstane receptor/prename x receptor]) or 8 
receptors (AhR), enhanced cellular transport, deiodinase inhibition, and interference with thyroid 9 
receptor function. In humans, this leads to birth defects, decreased IQ, and metabolic disorders. In 10 
rats, increased TSH leads to thyroid hyperplasia and cancer. 11 

 

Figure 19. Major pathways involved in thyroid disruption with example toxicants and alternative models applicable 
to both human and ecological hazard assessment (Perkins et al. 2013). Reproduced with permission from 
Environmental Health Perspectives.26 

 

                                                             
26 The thick black outlined box indicates the critical event of serum level concentrations of thyroid hormones. 
Pathway 1: rat pathway leading to tumors via thyroid hyperplasia. Pathway 2: principle pathway of concern 
affecting humans. Abbreviations: IQ, intelligence quotient; 4-MC, 4-methylbenzylidene camphor; OMC, octyl 
methoxycinnamate; T3, triiodothyronine; T4, thyroxine; TR, thyroid receptor. aQuantification of plasma TSH 
levels in Xenopus tropicalis. bDirect quantification of intrafollicular concentrations of T4 in zebrafish 
embryos. cDetection of developmental defects with X. laevismetamorphosis assay. dDetection of 
developmental defects using zebrafish embryos. eReporter gene (eGFP) detection of TR activity. 
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Informing Dose-Response Assessment 

Understanding causal mechanisms and their relationships to adverse outcomes provides insights 1 
into both hazard identification and dose-response assessment. Although quantitatively predicting 2 
human disease risks based on knowledge of causal mechanisms is currently difficult, several 3 
approaches using alternative species data provide information on the potency of chemicals that 4 
cause effects: biomarkers of exposure and effect, relative potency to induce adverse effects, and 5 
understanding of the complexities of dose-response relationships. 6 

Biomarkers of Exposure and Effects 

Key events in the perturbed pathway can be represented with biomarkers of exposure and effect. In 7 
situations where considerable systems biology information links the event to outcomes, a 8 
biomarker might provide a measure of hazard for risk assessment. In the thyroid disruption 9 
example, upstream events converge on serum levels of the thyroid hormones, triiodothyronine (T3) 10 
and thyroxine (T4), and downstream events occur in peripheral tissues where a significant degree 11 
of species-specific effects are seen (Figure 20). As a result, serum T4 levels can be used as a 12 
biomarker of thyroid function across species. In the laboratory, researchers use T4 and thyroid 13 
stimulating hormone levels in fish and frogs to assess the thyroid disrupting potential of chemicals 14 
(Tietge et al. 2013, Thienpont et al. 2011). To assess human exposures, the Centers for Disease 15 
Control and Prevention (CDC) has used decreased serum levels of T4 (noted as key event in Figure 16 
20) and increased levels of TSH measured in the U.S. population to infer increased potential risks 17 
for thyroid dysfunction-related disorders at low levels of perchlorate exposures (Lau et al. 2013, 18 
Blount et al. 2007). 19 
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A
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Figure 20. Dose-response relationships. Within species, significant advances are being made in quantitative 
systems biology modeling (Eisenberg et al. 2008). Panel A: Overall feedback control system model of thyroid 
hormone regulation with three source organ blocks (hypothalamus [HYP], anterior pituitary [ANT PIT], and thyroid 
glands [THYROID]); three sink blocks—for TRH, TSH, and T3 and T4 distribution; and elimination (elimination = 
metabolism and excretion) (D&E). TRH = thyrotropin-releasing hormone; TSH = thyroid-stimulating hormone; T3 = 
triiodothyronine; T4 = thyroxine; SR = secretion rate; p = plasma or portal plasma for TRH-related components; DA 
= dopamine; SRIH = somatastatin. Panel B: Feedback control system (FBCS) model validation study results. 
Predicted normal circadian TSH versus independent TSH data (not used in fitting the FBCS model) (triangles and 
diamonds represent data from Sarapura et al. (2002), circles represent data from Samuels et al. (1994). Also shown 
(squares) are the mean TSH data from the larger database used to fit the FBCS model of Blakesley et al. (2004). 
Reproduced with permission from Mary Ann Liebert, Inc.  

 

Relative Potency 

Identification of pathways and assays impacted by chemicals of known toxicity can be useful in 1 
initial prioritization of many compounds. These can be identified through development of 2 
predictive models built on relationships between in vitro ToxCastTM assay results and in vivo effects 3 
caused by known developmental toxicants (Sipes et al. 2011). A chemical’s potency can be further 4 
refined using focused in vivo tests with alternative species to provide informative dose-response 5 
data and exposure window relationships. Alternative species provide easily manipulated model 6 
systems that can detect effects caused by mechanisms not assessed by in vitro HTS. For example, 7 
zebrafish were used as a screening model to assess the 309 EPA ToxCastTM Phase I chemicals for 8 
developmental toxicity to both humans and ecological species. In fish embryos or larvae, 191 (62%) 9 
chemicals were toxic (death or malformations) to the developing zebrafish. Both toxicity incidence 10 
and potency were correlated with chemical class and hydrophobicity. As an integrated model of the 11 
developing vertebrate, the zebrafish embryo screen provides information relative to overt and 12 
organismal toxicity. In 12 classes of chemicals, 100% of the chemicals induced developmental 13 
toxicity, 4 classes of which induced developmental toxicity with an average concentration at 50% of 14 
the maximum level (AC50)27 below 4 µM. Translating such results directly into a dose-response for 15 
human risks is difficult, but results of Padilla et al. (2012) show that alternative species can be used 16 

                                                             
27 In high-throughput screening (HTS) assay, AC50 is the concentration at which an assay is inhibited or 
activated by 50% when compared to control values. This value is useful in comparing assay results. 
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to build relative rankings of chemicals based on their potency to cause adverse effect. Such rankings 1 
can be used for ranking and prioritizing chemicals or classes of chemicals for additional evaluation.  2 

Dose-Response Relationships 

Chemical dose-response relationships characterized in one alternative species might be 3 
extrapolated to other species or to humans, using a pathway-based approach (Perkins et al. 2013). 4 
Because many biological functions and disease pathways are conserved across species, similarity of 5 
genes encoding those pathways can support direct comparisons of pathway or genomic effects 6 
between species. Where pathways are highly conserved between species, this information can be 7 
used to extrapolate dose-response relationships in alternative species to analogous relationships in 8 
mammals. For example, pathways in the hypothalamus-pituitary-gonad axis are highly conserved 9 
among vertebrates, which been used to show that chemical effects in fathead minnows are 10 
predictive of endocrine disrupting effects in rats (Ankley, G. T. and Gray 2013).  11 

Pathway effects defined through gene expression changes can be used to define a benchmark dose 12 
or sensitivity of an animal to a chemical (Thomas, RS et al. 2011). Benchmark concentrations 13 
derived from aqueous exposures of alternative species can be translated to oral equivalents in 14 
other species, such as humans, by applying a dose scaling factor composed of a simple reverse 15 
toxicokinetics approach to estimate the blood dose and amount of metabolism in the target species 16 
(Wetmore et al. 2012). Using this approach, chemical concentration effects can be translated from 17 
alternative species to mammalian species. See Figure 20 for an example of how systems biology can 18 
inform dose-response extrapolation within species. 19 

However, this type of an approach has added uncertainty, and may generally increase uncertainty 20 
to an unacceptable level, which precludes the calculation of a reference value, including a 21 
provisional value. There is uncertainty with respect to defining a benchmark dose based on gene 22 
expression changes and with respect to the pathway context and interpretation. For instance, 23 
changes in gene expression do not directly translate into changes in protein expression or activity. 24 
In addition, it is well known that signaling and metabolic pathways within the cell are intersecting 25 
and inter-related. There is uncertainty with respect to the dose-response changes at particular key 26 
events and how downstream key events may be altered by other intervening pathways. Thus, 27 
calculating a benchmark dose for a pathway itself is fraught with challenges and additional 28 
uncertainty that current reference value approaches do not take into account. In all likelihood, 29 
accounting for these additional sources of uncertainty may require new uncertainty factors to be 30 
developed, and increases the likelihood that an unacceptable level of uncertainty may be 31 
encountered.  32 

Thus, it is more likely that, until better, less uncertain methods and techniques are developed and 33 
used, pathway-based effects based on gene expression are more suitable for screening level 34 
decisions and less suitable for reference value derivation. 35 

Species to Species Extrapolation  

For most species, qualitative predictions are likely to be tenable based on hypothalamus-pituitary-36 
thyroid (HPT) dependent pathways, that is, iodine uptake. Altered iodine uptake hinders 37 
development, but the most sensitive outcome indicator might be different. In rats, thyroid hormone 38 
disruption can lead to thyroid tumor development (Hurley 1998), while in frogs, metamorphosis is 39 
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disrupted (Degitz et al. 2005). Quantitative predictions might not be feasible for many species due 1 
to limited data on downstream endpoints and key events (Perkins et al. 2013) . 2 

Normal thyroid hormone-dependent post-embryonic development requires coordinated spatial-3 
temporal control of thyroid hormone activity. Such activity is regulated not only through the 4 
classical features of the HPT axis, but also through peripheral mechanisms external to the 5 
hypothalamus, pituitary, and thyroid tissues, such as differential regulation of deiodinase activity, 6 
hepatic metabolism and excretion of thyroid hormones, thyroid hormone receptor regulation, and 7 
transmembrane thyroid hormone transport. Of these major controlling processes, the mechanisms 8 
of the central HPT axis are considered to be generally conserved across vertebrate species and 9 
useful for comparative efforts; however, those of the peripheral tissues are typically more divergent 10 
and must be used with care in cross-species analysis.  11 

Population Variability 

Understanding the variation of an individual relative to population variation can be key to 12 
identifying an adverse effect on a population. Polymorphisms affecting drug responses can vary 13 
widely in populations. In humans, 20–25% of prescription drugs are metabolized in the liver by 14 
cytochrome P450 CYP2D6 where variants confer widely different rates of drug metabolism, such 15 
that some people might respond with an onset of toxicity while others fail to experience efficacy 16 
(Ingelman-Sundberg 2005). Variants causing unanticipated results can comprise a significant 17 
portion of a population and that distribution can vary widely across populations (Sistonen et al. 18 
2007, Ingelman-Sundberg 2005, Andersen et al. 2002, Wooding et al. 2002). Understanding the 19 
variation in adverse responses across a diverse testing population helps reduce the uncertainty of 20 
extrapolating laboratory data to real populations. Differential response to chemicals is an important 21 
consideration in ecological risk assessment where not only potentially sensitive subpopulations 22 
might exist, but also sensitive species. 23 

Approaches have been developed to incorporate population diversity into toxicity testing through 24 
the use of large collections of different genetic lines of mice or cell cultures derived from them 25 
(O'Shea et al. 2011, Rusyn et al. 2010, Harrill et al. 2009). Alternative species could be especially 26 
useful for incorporating population variability into toxicity testing. The diversity in laboratory lines 27 
and outbred populations of fish can be high, especially if populations are collected from different 28 
areas impacted by pollutants (Williams and Oleksiak 2011, Guryev et al. 2006). Divergent lines of 29 
zebrafish can be used to examine variation in responses to chemicals in addition to determining 30 
possible genetic factors influencing adverse effects. Using this approach, Waits and Nebert (2011) 31 
crossed zebrafish lines displaying different levels of sensitivity to developmental cardiotoxicity 32 
caused by 3,3',4,4',5-pentachlorobiphenyl. The crosses were used in genome-wide quantitative trait 33 
loci mapping to identify several genes in addition to the AhR that contribute to the gene-gene and 34 
gene-environment interactions that drive developmental toxicity of dioxins and dioxin-like 35 
chemicals. 36 

Although genetic diversity can be incorporated into testing using a panel of genetically inbred lines, 37 
unexpected results can occur. In a study comparing the responses of 19 inbred to 20 outbred 38 
zebrafish lines, Brown et al. (2011) found that effects of the endocrine disrupting chemical 39 
clotrimazole were dramatically different. Clotrimazole acts by inhibiting P450 activities involved in 40 
steroidogenesis production in fish. In inbred fish lines, 11-ketotestosterone production via 41 
steroidogenesis was significantly inhibited. In contrast, outbred lines responded with Leydig cell 42 
proliferation in testes and normal plasma concentrations of 11-ketotestosterone indicating that the 43 
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outbred lines could compensate for inhibition by clotrimazole. Here, inbreeding had a strong 1 
impact on the diversity and type of response to the endocrine disruptor. Ultimately, the 2 
combination of in vivo and in vitro data should enable development of a weight-of-evidence case as 3 
to the toxicity caused by the chemical and whether potential human health effects are likely. 4 

Cumulative Risks 

As has been described elsewhere in this document, correct identification of causal perturbations 5 
that lead to adverse outcomes will enable determination of which environmental factors are likely 6 
to contribute to the cumulative risk for specific outcomes and which are not. Additionally, testing of 7 
combinations of chemicals can perhaps be conducted most efficiently in alternative species. For 8 
example, alterations in neurosensory functions and intrafollicular thyroxine content of zebrafish 9 
exposed to potential disruptors have proven to be useful tools for evaluating multiple chemicals 10 
(Raldua et al. 2012, Thienpont et al. 2011, Froehlicher et al. 2009), as has the zebrafish 11 
developmental assay (Padilla et al. 2012). 12 

3.2.3. Short-Term In Vivo Models – Mammalian Species 

The use of new short-term in vivo exposure mammalian bioassays to support Tier 2 assessments 13 
are described here. The prototype is drawn from research described in papers by Thomas R.S. et al. 14 
(2011)and discussed further in Thomas R.S. et al (2013a, 2013b). The goal of this research was to 15 
describe what would be required for the application of short-term in vivo transcriptomic assays in 16 
predicting chemical toxicity. 17 

Hazard Identification 

Short-term in vivo transcriptomic assays provide the metabolic capability and systems-level 18 
integration of whole animal studies with a more rapid assessment of response to chemical 19 
treatment based on molecular-level data. As more data from short-term in vivo transcriptomic 20 
studies become publicly available, as study designs become standardized, and as gene expression 21 
patterns and network perturbations are identified, the ability to predict chemical toxicity 22 
comparable to longer term assays is expected to 23 
increase. See Text Box 8 for more about the 24 
transcriptome. 25 

For hazard identification, a host of previous studies 26 
has demonstrated that transcriptomic signatures 27 
from short-term in vivo studies can be used to predict 28 
both subchronic and chronic toxic responses. A 29 
transcriptomic “signature” is typically defined as a 30 
subset of genes for which the qualitative or 31 
quantitative expression pattern can be used to predict 32 
an in vivo adverse response with a defined accuracy.  33 

To develop a broad-based repertoire of gene expression signatures for hazard prediction, several 34 
factors should be considered. First, the number of endpoints included should be sufficient to allow a 35 
comprehensive prediction of toxicological hazard. Previous studies that have used gene expression 36 
microarray analysis following short-term exposures of chemicals have been limited in the breadth 37 
of endpoints examined. These endpoints include the prediction of rat liver tumors (Fielden et al. 38 

Box 8. What is the Transcriptome? 

Ribonucleic acid (RNA) is the functional outcome 
of deoxyribonucleic acid (DNA) transcription by 
transcription factors. Researchers can study the 
transcriptome—the set of all RNA molecules in a 
given cell—and determine gene expression 
patterns, or signatures. Specifically, short-term 
transcriptomic assays in mammalian and 
alternative species enable observations of the 
effects of chemical exposure across multiple 
tissues. 
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2011, Uehara et al. 2011, Auerbach et al. 2010, Ellinger-Ziegelbauer et al. 2008, Fielden et al. 2008, 1 
Fielden et al. 2007, Nie et al. 2006), mouse lung tumors (Thomas, RS et al. 2009), and rat renal 2 
tubular toxicity (Fielden et al. 2005). One strategy that could be employed would be the selection of 3 
a battery of tissues, which would include those most frequently positive in rodent cancer bioassays 4 
(i.e., liver, lung, mammary gland, stomach, vascular system, kidney, hematopoietic system, and 5 
urinary bladder) and tissues commonly affected by noncancer disease. In a previous analysis, these 6 
eight tissues cover 92 and 82% of all mouse and rat carcinogens, respectively (Gold et al. 2001). 7 
Additional tissues also would need to be added for developmental and reproductive effects, which 8 
could include the developing fetus and gonadal tissue.  9 

Second, the number of positive and negative chemicals for each endpoint in the studies would need 10 
to be sufficient, and the chemical diversity must match the diversity in the chemicals that will 11 
ultimately be predicted. For complex toxicological responses such as tumor formation, a previous 12 
study estimated that at least 25 chemicals were necessary (Thomas, RS et al. 2009). Third, selection 13 
of the time point to perform the gene expression analysis is also a consideration. The time point 14 
selection is a balance between cost (i.e., the shorter the time point, the less expensive the study) 15 
and a more stable gene expression signature. Among the previous efforts, certain studies relied on 16 
much shorter time points (e.g., 5 days), but tended to increase the dose beyond that which would be 17 
tolerated in a chronic bioassay (Fielden et al. 2007). Other studies used the same doses as those in 18 
the chronic bioassay, but used exposures longer than 5 days (Thomas, RS et al. 2009). In one study 19 
that examined the effect of exposure duration, the overall conclusion was that increasing exposure 20 
duration increased the predictive performance of the gene expression signatures for genotoxicants 21 
(Auerbach et al. 2010). 22 

Exposure/Dose-Response Assessment  

As described by Thomas R.S. et al. (2013b, 2012, 2011, 2007), short-term in vivo transcriptomic 23 
assays have also been applied to dose-response assessment. In a NexGen collaborative effort 24 
between EPA and the Hamner Institute, female B6C3F1 mice were exposed to multiple 25 
concentrations of five chemicals that were positive for lung or liver tumor formation in a two-year 26 
rodent cancer bioassay (Thomas, RS et al. 2012, Thomas, RS et al. 2011). Histological and organ 27 
weight changes were evaluated and gene expression microarray analysis was performed on the 28 
liver or lung tissues. The histological changes, organ weight changes, and tumor incidences in 29 
traditional bioassays were analyzed using standard dose-response modeling methods to identify 30 
noncancer and cancer points-of-departure. The dose-related changes in gene expression were also 31 
analyzed using a modification of EPA’s benchmark dose (BMD) approach (EPA 1995). The gene 32 
expression changes were grouped based on both biological processes and canonical signaling 33 
pathways. A comparison of the transcriptional BMD values with those for the traditional noncancer 34 
and cancer apical endpoints showed a high degree of correlation for specific biological processes 35 
(Thomas, RS et al. 2011) and signaling pathways (Thomas, RS et al. 2012). In addition, 36 
transcriptional changes in the most sensitive pathway were also highly correlated with the apical 37 
responses (see Figure 21). Further studies have also demonstrated the stability of the correlation 38 
between transcriptional changes and apical responses across different exposure periods (5 days to 39 
13 weeks) (Thomas, RS et al. 2013b). Understanding of the effect of exposure duration on outcomes 40 
is a key issue in the design and use of new types of bioassays.  41 
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Figure 21. Scatter plot of the relationship between (A) benchmark dose (BMD) and (B) benchmark dose lower limit 
(BMDL) values for the cancer and noncancer apical endpoints and the transcriptional BMD and BMDL values for 
the most sensitive GO category. For each chemical and tissue, the BMD and BMDL values for tumor incidence and 
the lowest noncancer BMD and BMDL values were plotted. For MECL in the lung, no noncancer BMD or BMDL 
values were plotted because of the absence of histological changes (Thomas, RS et al. 2011). Reproduced with 
permission from Oxford Journals.  

 

With the advent of quantitative high-throughput screening (qHTS), the potential to screen 1 
thousands of chemicals for biological activity presents as many challenges as promises. If qHTS can 2 
decrease the number of chemicals of interest by 90% (a 10% hit rate across chemicals and assays), 3 
this would still overwhelm the throughput of the traditional toxicity testing paradigm. Clearly, a 4 
multi-tiered approach to prioritization can lead to more effective applications of animal toxicity 5 
testing. As part of this tiered approach, short-term in vivo transcriptomic assays provide a tool that 6 
incorporates both metabolism and systems-level integration in response to chemical treatment. See 7 
also a description of cost savings in Text Box 9. The development of predictive gene expression 8 
signatures and dose-response studies would provide a relatively efficient and cost-effective method 9 
for both identifying chemicals of concern and estimating a point-of-departure for adverse 10 
responses. This information would help support large-scale prioritization and regulatory efforts in 11 
the United States and Europe. The gene expression data combined with other data types (e.g., 12 
toxicity data from similar chemicals, PK data) could provide sufficient information to replace the 13 
present chronic toxicity and carcinogenicity studies. It should be noted that expression changes can 14 
vary depending on dose, time, species, tissue life stage, and individual genetic profile; thus, 15 
increasing the complexity of identifying causal relationships between exposure, specific signatures, 16 
and outcomes.  17 
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Box 9. Short-Duration In Vivo Models Potential Cost Savings 

We concluded that, assuming no overlap among chemicals across the battery of 10 tissues tested, a proof of 
concept for predicting hazard using short-term in vivo transcriptomic mammalian assays could be developed using 
approximately 250 chemicals at a single dose across 10 tissues. Additionally, they calculated that the costs 
associated with the proof of concept would be approximately $90,000 per chemical for a 28-day exposure for a 
total cost of $22.5 million. In comparison, each chronic exposure assay costs approximately $1.5 million resulting 
in a total of approximately $375 million. 

Costs for similar efforts using alternative animals (fathead minnows, zebrafish, invertebrates) would be 
approximately $10,000 per chemical for definitive reproductive assays. Short-term, pathway-based benchmark 
dose (BMD) assays would be $10,000 per chemical for invertebrate or fish embryo assays and $48,000 per 
chemical for 21-day fish reproductive assays (5 tissues) or $2.5 million and $12 million for 250 chemicals.  
 

 

3.3. Tier 1: Screening and Prioritization 

This section summarizes new approaches that are available to develop data for screening and 1 
prioritizing large numbers of chemicals (i.e., greater than tens of thousands of chemicals) for more 2 
focused testing. The increasing maturity of these new approaches has led EPA and other 3 
organizations to plan on using these Tier 1 data to prioritize and screen chemicals for immediate 4 
regulatory decision, for further testing in Tiers 2 and 3, or in some cases, to add to the weight of 5 
evidence in Tier 2 and 3 assessments, especially with respect to identifying pathway or molecular 6 
signatures associated with chemical-induced disease.  7 

Tier 1 risk assessments are based on in vitro assays (including use of human cells), statistical and 8 
systems models that focus on molecular molecular targets, QSAR models, and pathways considered 9 
relevant to adverse effects or clinical disease. One scientific rationale for using in vitro assays is that 10 
they probe key events or MIEs that can lead to adverse outcomes. Assay endpoints are designed to 11 
represent MIEs and predict subsequent adverse outcomes based on previous studies, both in vitro 12 
and in vivo. The analyses provide the anchoring information critical to characterizing relevance of a 13 
“hit” in an in vitro assay. Documenting the linkage from assay endpoint to MIE to potential for 14 
adversity is thus key to evaluating the relevance of each assay that might be used as part of a Tier 1 15 
risk assessment. The evidence for this linkage can come from statistical modeling using in vivo and 16 
in vitro data on the same chemicals, or from detailed biological modeling (e.g., virtual tissue (VT) 17 
models or other types of systems biology models). 18 

The modeling techniques used in Tier 1 (e.g., QSAR and HTS methods) are designed to assess 19 
hundreds to thousands of chemicals in parallel (see Figure 23). In addition to using high-20 
throughput (HT) assays to generate hazard information, moderate- to HT toxicokinetics approaches 21 
(here called reverse toxicokinetics or RTK (Rotroff et al. 2010)) are also developed and applied. 22 
New approaches can now estimate doses that can activate particular relevant pathways in humans, 23 
using data from in vitro assays (Wetmore et al. 2012). Bayesian-based exposure models can also be 24 
used to generate exposure estimates for chemicals based on production volume and use patterns 25 
(Wambaugh and Shah 2010). 26 

The data generated from the Tier 1 assays can be used to prioritize chemicals for further study or 27 
can simply augment the weight of evidence for chemicals that are already being considered in Tiers 28 
2 or 3. For prioritization, from a large set of chemicals for which HTS data are available, one might 29 
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identify the subset that is likely to interact with known relevant pathways, or which demonstrate 1 
pathway disruptions similar to known diseases. Doses at which pathways may be activated or 2 
perturbed may be estimated. These estimates may be combined with exposure, occurrence, and 3 
other information to select chemicals which may advance into Tiers 2 or 3. Tier 1 data might also 4 
directly augment Tiers 2 and 3 weight-of-evidence determinations helping to identify or further 5 
characterize pathways alterations associated with disease for sensitive endpoints observed in 6 
higher level in vivo testing, providing good examples of the integration of the bottom-up and top-7 
down perspectives advocated in the NexGen framework strategy. In vitro and modeling data can 8 
also be used to guide a next round of in vivo data generation.  9 

Table 8 provides a brief description and critical review of the tools, methods, and models that could 10 
be used in Tier 1. 11 
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Table 8. Summary of Tier 1 NexGen Approaches, Including Weight of Evidence, Pros, and Cons 

Tier 1: Screening and Prioritization 
Categories of Approaches Considered 

 New QSAR Models Validated High-Throughput 
In Vitro Assays 

Approach: Uses structural characteristics and 
experimental data from chemical 
analogues to predict modes of action, 
metabolism, hazard, and fate and 
potency for data-poor chemicals.  

Experimentally measures dose-
dependent, chemically-induced 
alterations in biological functions using a 
range of specific and sensitive in vitro 
assays. Infer potential adverse outcomes 
based on existing knowledge of other 
chemical and potential importance of 
selected biological processes. 

Weight of 
evidence: 

Determined by quality and amount of 
existing data, but generally suggestive. 

Determined by supporting traditional 
data and systems biology knowledge, but 
generally suggestive to likely. 

Pros: Data are readily and inexpensively 
available for all chemicals. If the basis 
for the QSAR model(s) matches the 
physical chemistry of the evaluated 
chemicals, the model(s) generally 
predicted potency within a factor of 
100. Harmonized international 
approaches are available. 

Rapid, inexpensive, multiple bioassay 
options are available. False negatives and 
positives for ToxCastTM evaluated assays 
are low (when testing directly acting 
chemicals, not toxic metabolites). 

Cons: If models do not match the physical 
chemistry of evaluated chemicals, 
results are unreliable. Models do not 
predict active metabolites. 

Assay coverage of all important biological 
processes currently incomplete resulting 
in false negatives for chemicals that 
perturbed those processes. Similarly, 
disorders related to interactions among 
cell types or tissues cannot be evaluated, 
that is, reproductive/developmental 
effects. Limited ability to test for active 
metabolites or volatiles. False negative 
rates are of concern. Links to disease 
outcomes are variable. 
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3.3.1. QSAR and High-Throughput Virtual Molecular Docking (HTVMD)  

(Q)SAR28 models are regression or pattern recognition models that are used in risk assessment to 1 
classify or predict the potency of chemicals for toxicological activity, exposure potential, and the 2 
like as a function of one or more chemical descriptors. The descriptors are generally the inherent 3 
physiochemical properties of the chemical such as atomic composition, structure, substructures, 4 
hydrophobicity, surface area charge, and molecular volume. QSAR models require only the inherent 5 
properties of the 2-D or 3-D chemical structure as input parameters, and are thus considerably less 6 
costly and faster than hazard animal test results. With a variety of QSAR models to choose from 7 
(Hansen et al. 2011), and each model having a set of assumptions and a chemical domain of 8 
applicability, interpreting QSAR results for use in hazard and dose-response assessment requires 9 
expertise.  10 

QSAR models have been most commonly used in classification of chemicals with unknown hazard 11 
or exposure potential by comparing the “query” chemical’s inherent properties with similar 12 
properties for a set of chemicals that have known toxicological or exposure potential called the 13 
“training set” (Venkatapathy and Wang 2013, EPA 2012c, Goldsmith et al. 2012, OECD 2012, Wang, 14 
N et al. 2012b, EC 2010). SAR models provide a qualitative identification of specific hazards (e.g., 15 
suspected carcinogens, mutagens, and reprotoxicants). The commercially available TOPKAT model 16 
(TOPKAT, 2013) provides quantitative estimates that can be used to rank chemicals for potency 17 
(Venkatapathy and Wang 2013, Venkatapathy et al. 2004). In the European Community, QSAR 18 
results are used to prioritize chemicals for additional toxicity testing. 19 

At EPA, (Q)SAR models are being used to screen, rank, and categorize chemicals for level of concern 20 
in a variety of EPA programs, including Superfund mitigation; the Office of Chemical Safety and 21 
Pollution Prevention (OCSPP) High Production Volume Challenge Program and Pre-Manufacture 22 
Notice review process; the OCSPP/Office of Water Endocrine Disruptors Screening Program (Weiss 23 
et al. 2012); and the Office of Water Candidate Contaminant List. The QSAR models used by EPA 24 
include the Sustainable Futures Initiative suite of models, the Organization of Economic Co-25 
operation and Development (OECD) QSAR toolbox models (OECD 2012, 2004), High-throughput 26 
Virtual Molecular Docking (HTVMD) (Rabinowitz et al. 2008), MetaCore (Teschendorff and 27 
Widschwendter 2012, van Leeuwen et al. 2011), and the TOPKAT model (Rakyan et al. 2011, 28 
Venkatapathy et al. 2004).  29 

HTVMD models use a ligand-based chemoinformatics strategy to predict relationships between 30 
various attributes of ligands and their binding to known targets. These models are increasingly 31 
being used in risk assessment and can screen thousands of chemicals for the potential affinity of 32 
their 3D structures to bind to active protein binding sites. HTVMD models have been used in the 33 
pharmaceutical industry for many years to identify candidate drugs. These models can also be used 34 
to estimate the likelihood that a chemical of toxicological interest would bind to a target protein, for 35 
example, the potential affinity as a direct agonist of the estrogen receptor.  36 

                                                             
28The parentheses around the “Q” in (Q)SAR indicate that the term refers to both qualitative predictive tools, 
i.e., structure-activity relationships (SARs) and quantitative predictive methods, i.e., quantitative structure-
activity relationships (QSARs). Although the term (Q)SAR is often used to refer to predictive models, 
especially computer-based models, (Q)SAR actually includes a wide variety of computerized and 
noncomputerized tools and approaches (Hansen et al. 2011).  
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Recent advances in high-performance computing support simultaneous runs of QSAR and HTVMD 1 
models, dramatically decreasing the time to discovery. The U.S. Army Medical Research and 2 
Materiel Command, for example, has recently published their version of a Docking-based Virtual 3 
Screening pipeline that facilitates the usage of the AutoDock molecular docking software on 4 
high-performance computing systems (Jiang et al. 2008). 5 

The OECD provides a free downloadable QSAR software package, the QSAR Toolbox, that is 6 
intended for use by governments, the chemical industry, and other stakeholders to assess potential 7 
chemical human and ecological toxicities for data-poor chemicals (OECD 2012). The QSAR Toolbox 8 
estimates the potential toxicity of a compound of interest based on the available information (e.g., 9 
mechanism, MOA, or toxicological effects) for structurally similar analogs, and uses read-across or 10 
trend analysis to construct categories of chemicals for screening purposes even if only a few of the 11 
members in the category have available test data. The popularity of the read-across method is 12 
driven by its relative simplicity and the availability of the QSAR Toolbox online. OECD has also 13 
developed guidance on the validation of QSAR models when used for regulatory purposes (OECD 14 
2004). Assessments informed by new data types and methods will incorporate the results from 15 
data sources that can be automated (e.g., QSAR and molecular docking models, and HTS data), with 16 
the more traditional data (when available) to advance the speed and accuracy of chemical screening 17 
and to support the weight-of-evidence approach to toxicity prediction (Golbraikh et al. 2012, Lock 18 
et al. 2012, Rusyn et al. 2012, Wignall et al. 2012, Sedykh et al. 2011). Use of the above models and 19 
approaches will advance the ranking of chemicals currently being produced, as well as support the 20 
design of new products and chemical processes that increasingly minimize harm to health and the 21 
environment. 22 

3.3.2. High-Throughput and High-Content Assays 

HTS and high-content screening (HCS) assays are major tools used for early evaluation of chemicals 23 
and their ability to perturb molecular pathways (Judson et al. 2013, Sipes et al. 2013, Tice et al. 24 
2013, Kavlock et al. 2012, Judson et al. 2011). Much of the HTS/HCS (for the remainder of this 25 
section use of the term HTS includes both HTS and HCS) methodology was developed to aid the 26 
pharmaceutical and biotechnology industries in the drug discovery process where one has a drug 27 
target of interest (e.g., a receptor or enzyme) and a need to screen up to millions of candidate 28 
compounds for leads (Mayr and Bojanic 2009, Bleicher et al. 2003). The technology has been used 29 
more broadly in approaches often called chemical genetics (or sometimes chemical biology) where 30 
small molecule screening is used to identify probes for biological signaling networks and cellular 31 
phenotypes (Schreiber 2003). These assays became of interest in toxicology because many targets 32 
of pharmaceutical and chemical biology interest could also be postulated to be involved in disease 33 
processes driven by unintentional exposures to environmental chemicals (Houck and Kavlock 34 
2008). Generating a large data matrix of toxic chemicals and HTS assays against critical proteins 35 
and cellular phenotypic effects provides toxicologists an opportunity to discover novel MOAs that 36 
have long eluded the field.  37 

The underlying technologies for HTS assays are well known, so a detailed discussion is not 38 
presented here. Instead, the discussion focuses on a broad description of the types of assays and 39 
some of the key issues to be considered when designing in vitro Tier 1 approaches. HTS assays are 40 
broadly divided into two types: cell-free/biochemical or cell-based. Cell-free assays typically test 41 
for the direct interaction of a test chemical with a specific protein such as a receptor or enzyme. 42 
Measures of interaction include binding or inhibition of enzyme activity. In cell-based assays, a 43 
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cellular readout can be molecular-based (e.g., changes in gene or protein expression) or phenotypic 1 
(cytotoxicity, changes in cell morphology). In a cell-based assay, the selection of the cell system is 2 
critical. Assays have been developed using a variety of primary cell types from various organs and 3 
species, immortalized cell lines, and stem cell types (Dick et al. 2010). The choices reflect the 4 
strengths and weaknesses of the different approaches. For example, immortalized cell lines 5 
generally produce very reproducible screening results over long periods of time due to the 6 
continuous growth and stability of the cell lines; however, this occurs at the cost of having 7 
significant differences from the in vivo physiology of the cell type from which the line was derived. 8 
The converse holds true for most primary cells, that is, better representation of true physiology but 9 
more challenging to work with in producing consistent, reproducible screening results. Co-culture 10 
systems combine different cells in an attempt to mimic in vivo systems requiring complex cell-cell 11 
signaling networks (Berg et al. 2010). Certain whole organisms, including Caenorhabditis elegans 12 
and zebrafish embryos, can also be used in HTS assays (Smith, MV et al. 2009, Parng et al. 2002).  13 

3.3.3. Toxicokinetics 

HTS assays provide toxicologists with an efficient and cost-effective tool to broadly screen 14 
chemicals for potential proximal biochemical and cellular interactions. As previously mentioned, 15 
the HTS assays are run in concentration-response format. The potency of each chemical in each 16 
assay can be summarized using AC50 or LEC (lowest effective concentration) values, depending on 17 
the type of dose-response data collected. The potency values among the in vitro assays, along with 18 
other chemical information, have been proposed for use in hazard identification (Martin et al. 2011, 19 
Sipes et al. 2011) and prioritization of chemicals for further testing (Reif et al. 2010). The 20 
relationship between the in vitro concentration of the chemical in the well to the concentration of 21 
the chemical in the blood or target tissue (in vivo), however, can be complex and dependent on 22 
variables that are not captured in the HTS assays. These variables include bioavailability, clearance, 23 
and protein binding (Wetmore et al. 2012).  24 

In vitro to in vivo extrapolation (IVIVE) is a process that uses data generated within in vitro assays 25 
to estimate in vivo drug or chemical fate. In the past, IVIVE has been predominantly developed and 26 
applied in the pharmaceutical industry to estimate therapeutic blood concentrations for specific 27 
candidate drugs, and to identify potential drug-drug interactions (Chen, Y et al. 2012, Shaffer et al. 28 
2012, Gibson and Rostami-Hodjegan 2007). Due to both legislative mandates and public pressure 29 
for increased toxicity testing, IVIVE is increasingly being used to predict the in vivo PK behavior of 30 
environmental and industrial chemicals (Basketter et al. 2012).  31 

A combination of IVIVE and reverse dosimetry can be used to estimate the daily human oral dose 32 
(called the oral equivalent dose) necessary to produce steady-state in vivo blood concentrations 33 
(CSS) that are considered equivalent (with respect to chemical concentration at potential targets) to 34 
the dose delivered in vitro at the AC50 or LEC values, and can be used for those values across the 35 
more than 600 in vitro assays (Wetmore et al. 2012, Rotroff et al. 2010).  36 

3.3.4. High-Throughput Exposure Estimation: ExpoCast Prioritizations 

The use of HT assays to characterize biological activity in vitro enables prioritization of potential 37 
environmental hazards once the results of in vitro assays have been anchored to, and found to be 38 
predictive of, in vivo effects. Without capabilities for HT assessment of potential for exposure, 39 
prioritization (with respect to potential risk) cannot be completed, as most chemicals have little or 40 
no exposure data (Wetmore et al. 2012, Arnot et al. 2010b, Arnot et al. 2010a, Cohen Hubal et al. 41 
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2010, Rotroff et al. 2010, Hubal 2009, Sheldon and Cohen Hubal 2009, Rosenbaum et al. 2008, 1 
Arnot and Mackay 2007, NRC 2006). Currently, few, if any, inexpensive in vitro assays are widely 2 
available to characterize those properties of chemicals relevant to exposure. Furthermore, the 3 
studies for assessing both the presence of environmental chemicals in the immediate vicinity of 4 
individuals (exposure potential) and any known biomarkers of actual exposure are expensive, labor 5 
intensive, and, with the notable exception of CDC’s NHANES, typically difficult to extrapolate to the 6 
general population (Rudel et al. 2008, Angerer et al. 2006, Eskenazi et al. 2003). For these reasons, 7 
exposure prioritization must be drawn from mathematical models which, when parameterized by 8 
chemical-specific properties, provide a structured, consistent way to approach large numbers of 9 
unknown chemicals. 10 

Physicochemical properties (e.g., water solubility, preference for binding in lipids) inherent to a 11 
given compound have been used to predict potential bioaccumulation, and even toxicity, within 12 
ecological species to make HT prioritizations of potential chemical exposure (Gangwal et al. 2012, 13 
Reuschenbach et al. 2008, Walker et al. 2002, Walker and Carlsen 2002). Beyond inherency, 14 
environmental fate and transport models have been developed to account for the accumulation of 15 
compounds in various environmental media (i.e., air, soil, water) and the degradation rates of those 16 
compounds in those media. These fate and transport models enable predictions of human exposure 17 
based on assumptions of human interaction with environmental media and derivation of food from 18 
the environment (Arnot et al. 2010b, Arnot et al. 2010a, Rosenbaum et al. 2008, Arnot and Mackay 19 
2007). Parameterized using chemical structure and production volumes alone, these models can be 20 
used to make HT exposure prioritizations (Arnot and Mackay 2007).  21 

EPA is developing the ExpoCast exposure model prioritization framework, which is flexible and 22 
expandable to incorporate new HT exposure models as they become available. Currently the 23 
framework relies on two quantitative fate and transport models amenable to HT operation: USEtox 24 
(Rosenbaum et al. 2008) and RAIDAR (Arnot and Mackay 2007). These models have been 25 
empirically assessed for their ability to predict exposures inferred from the NHANES data set. 26 
These “ground truth” biomonitoring data are used to calibrate the model predictions and estimate 27 
de facto uncertainty of the predictions for 41 chemicals where intake per unit emission, total 28 
production volume or volume applied, and actual exposures inferred from biomonitoring data were 29 
available. The calibration and uncertainty are then extrapolated to ~1,600 chemicals to make rank 30 
order predictions on a per unit emission basis, as well as a rank order prediction for ~600 31 
chemicals adjusted using production volume (Wambaugh and Shah 2010).  32 

NexGen efforts to incorporate exposure prioritization information could proceed along three fronts. 33 
First, efforts to evaluate the utility of the predictions must be undertaken to determine if the 34 
chemicals of highest priority are indeed present in the environment. Next, new models must be 35 
developed to address aspects of exposure currently underrepresented by fate and transport 36 
models—namely exposure from personal contact sources (i.e., consumer use). Finally, using the full 37 
uncertainty range of the absolute exposure predictions (mg/kg body weight/day), risk potentials 38 
could be calculated for risk-based prioritization.  39 

3.3.5. Virtual Tissue (VT) Modeling 

VT models provide an experimental and theoretical framework for the systematic and integrative 40 
analysis of complex multicellular systems. These models capture the flow of molecular information 41 
across cellular and biological networks, and process this information computationally into higher 42 
order responses that ideally simulate a potential adverse outcome(s). Responses to perturbation 43 
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depend on network topology, system state dynamics, and collective cellular behavior. A unique 1 
aspect is that these simulations are enabled from individual cellular behaviors in a multicellular 2 
field that can result in emergent properties, which are behaviors that arise from interactions of 3 
parts at the next level of a system (e.g., functions, phenotypes) that are not apparent from 4 
knowledge about the behavior of the parts alone.  5 

The field of VT models is in the early stages of development but will become more prominent as the 6 
state of science develops. Jack et al. (2011) and Knudsen et al. (2010) provide examples of VT utility 7 
and the state of science. VT models are practical solutions for translating between biological data 8 
and individual and population-level health outcomes. They combine data and knowledge into 9 
computer models that predict behavior of a complex system, leading to adverse outcomes in 10 
hepatic toxicity, developmental toxicity, reproductive toxicity, cardiopulmonary toxicity, and more 11 
(EPA 2009b). 12 

Virtual models are also briefly discussed in Section 4.4 as one of the new approaches that can 13 
address recurring issues in risk assessment, in this case, dose-response characterization. 14 

3.3.6. Example: Thyroid Pathway Disrupting Chemicals and High-Throughput Systems 

For EPA to base regulatory decisions on data from mechanistic-based evaluations, several issues 15 
must be addressed. EPA will need to develop criteria and approaches for translating data across the 16 
various types of testing and to identify the types of data and information to support the use of these 17 
data in a regulatory context. To this end, EPA’s NexGen Thyroid Disrupting Chemical Workgroup 18 
(EPA 2012a) conducted a thyroid prototype case study that reviewed existing ToxCastTM assays and 19 
provided recommendations for how the data could be used to predict thyroid disruption-induced 20 
developmental neurotoxicity.  21 

A major reason the workgroup selected the thyroid hormone system as its prototype is that the 22 
underlying biology of thyroid hormone homeostasis is well established, thus enabling the 23 
elucidation of the pathway(s) for thyroid hormone disruption (Zoeller and Crofton 2005). The 24 
workgroup identified three issues that should be addressed to use HT assays to predict which 25 
environmental chemicals would likely cause developmental neurotoxicity via disruption of thyroid 26 
hormone homeostasis. These issues are Assay Identification and Refinement; Algorithm 27 
Development for Toxicity and Hazard Prediction; and Standards Development for Assay Conduct, 28 
Data Analysis, and Data Reporting for Risk Assessment Needs. The following is a brief summary of 29 
the case study. 30 

Assay Identification and Refinement 

As a first step, the workgroup identified the HT assays in the ToxCastTM database that assess 31 
endpoints known to be relevant to disruption of thyroid function. The workgroup found that 32 
ToxCastTM contains multiple assays relevant to assessing the potential for a chemical to disrupt 33 
thyroid hormone homeostasis. Coverage of the effects of concern, however, is quite variable. 34 
Although five of the identified assays evaluate endpoints that directly affect the thyroid hormone 35 
pathway (e.g., thyroid hormone receptor binding and TRH receptor binding), the rest evaluate 36 
endpoints not specific to the thyroid hormone pathway. For example, of the 90 assays identified as 37 
thyroid-relevant, 85 are related to hepatic stimulation, metabolism, and clearance of thyroid 38 
hormones. Alteration of these pathways influences thyroid hormone homeostasis indirectly, and 39 
neurodevelopmental effects tied to thyroid disruption by this mechanism are thus secondary effects 40 
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of a chemical (inadequate hormone availability due to increased elimination). These secondary 1 
effects are in contrast to a primary effect, whereby a chemical interferes directly with the function 2 
of the thyroid gland itself or interacts at the site of thyroid hormone receptor in the brain of a 3 
developing organism.  4 

Adequately assessing the potential of an environmental chemical to disrupt thyroid hormone 5 
homeostasis requires that appropriate endpoints be identified and assays be developed and 6 
incorporated into testing schemes. This process will involve identifying the specific endpoints in 7 
the pathways that need to be tested, additional assays that could be available but which are not 8 
currently part of ToxCastTM, and additional assays that need to be developed. A recent workshop 9 
review by Murk et al. (2013) provides a state-of-the-science assessment of important MIEs for 10 
thyroid disruptors, potential and currently used assays for these MIEs, and recommendations for 11 
research priorities. 12 

Algorithm Development for Toxicity and Hazard Prediction 

The workgroup’s second recommendation was to develop algorithms or decision logic flows that 13 
balance the potential adversity of the outcome with the uncertainty of the available data. Should 14 
assays evaluating endpoints directly affecting the thyroid-related brain changes be weighted more 15 
heavily in algorithms than those measuring upstream hepatic enzyme induction? How will 16 
algorithms incorporate the fact that multiple chemicals might interact with the same key event, and 17 
one chemical might interact with various MIEs, and thus lead to multiple adverse outcomes? 18 
Biological plausibility should be the driver in algorithm development.  19 

Another aspect to consider is the methods used to incorporate assay results into analyses. Clearly, 20 
incorporating many sets of dose-response information into combinatorial analysis requires some 21 
simplification of assay results. Many current HT assay results are simplified via classification as 22 
either a positive or negative (“hit” or “no hit”), or are assigned a summary statistic such as an IC50 23 
(the concentration producing a 50% inhibition of response) or lowest effective dose. Obviously, 24 
binary decisions such as hit/no hit determinations depend on the criteria chosen to define a hit. 25 
These criteria could be derived from statistical significance, biological significance, or an arbitrary, 26 
nominal level of change. Depending on the data set, the basis for the classification criteria might be 27 
difficult to determine, and might not be consistent across assays. Similarly, summary statistics 28 
depend on the model used to generate them or on the specific value chosen (such as IC50 versus 29 
IC10). Relative potency ranks also might vary depending on the shape of the dose-response curve, 30 
such that within a given set of chemicals, Chemical A could have the lowest IC50 while Chemical B 31 
had the lowest IC10 value. Lack of such information will lead to greater uncertainty in its use.  32 

Assay Conduct, Data Analysis, and Data Reporting for Risk Assessment Needs 

Understanding the characteristics of the individual assays that will serve as the basis of these 33 
predictions is critical when using HTS data. Individual assay characteristics are key regardless of 34 
the ways in which the data are ultimately used, which might span the spectrum from combinatorial 35 
use in predictive algorithms, test batteries for hazard identification and prioritization, to 36 
supporting data for individual chemical risk assessments. Although these uses are potentially 37 
diverse, several common assay characteristics will be needed. Some of the specific types of 38 
information needs might vary depending on the type of risk assessment to be performed. 39 
Minimally, the data reporting should include sufficient information to document assay conduct and 40 
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reliability, the rationale for selection of exposure levels, data analysis techniques, and underlying 1 
assumptions regarding assay analysis, conduct, or conclusions. 2 

Some advantages of the ToxCastTM data sets are the (1) availability of dose-response information 3 
for all assays, (2) availability of assay method details, and (3) availability of the source code for all 4 
computational models used in the data analyses. Reliable dose-response information is critical for 5 
these types of assays to be useful in risk assessments. Dose-response information is fundamental to 6 
understanding the many aspects of chemical toxicity, as it provides a means to evaluate the potency 7 
of the chemical and whether a threshold exists. 8 

In conclusion, the current case study was complicated by the multitude of target sites at which the 9 
thyroid axis can be disrupted (Murk et al. 2013, Crofton and Zoeller 2005); the secondary, indirect 10 
nature of the insult produced; and the complexity of the endpoint of concern—neurodevelopment. 11 
By conducting this case study, however, the workgroup could identify not only the nodes in the 12 
thyroid toxicity pathway that still need coverage, but also the algorithm development and assay 13 
conduct issues that should be addressed if HTS assays are to be used in risk assessments. 14 

4. Advanced Approaches to Recurring Issues in Risk Assessment 

In addition to informing chemical specific assessments as discussed above, new data types and 15 
advanced approaches also can inform important, recurrent, cross-cutting risk assessment issues. 16 
These issues are often sources of controversy due to limited data specific to the issue. A number of 17 
these issues are discussed below: variability in human response (e.g., genetic variability, early life 18 
exposures; exposure to mixtures and nonchemical stressors); inter-species differences; and 19 
characterization of low-level chemical exposures likely to be encountered in the environment. This 20 
section discussed how new data types and approaches can inform these difficult issues, thus 21 
improving our understanding of public health risks. 22 

4.1. Human Variability 

Human response to environmental chemicals is influenced by both intrinsic (e.g., genetics, life 23 
stage) and extrinsic (e.g., chemical exposure, stress, nutrition) factors. New methods to examine 24 
gene-gene, gene-environment, and epigenome-gene-environment interactions are available (Patel 25 
et al. 2013, Lvovs et al. 2012, Meissner 2012, Patel et al. 2012a, Patel et al. 2012b, Baker 2010, 26 
Thomas D 2010, Cordell 2009). Zeise et al. (2012) explored how these factors can influence each of 27 
the series of biological and physiological steps (known as the source-to-outcome continuum) that 28 
ultimately manifests in variability with respect to adverse health outcomes (see Figure 22). The 29 
Zeise et al. (2012) review was informed by a National Research Council (NRC) workshop, 30 
“Biological Factors that Underlie Individual Susceptibility to Environmental Stressors and Their 31 
Implications for Decision-Making.” The authors considered current and emerging data streams that 32 
are providing new types of information and models relevant for assessing interindividual 33 
variability. 34 

Currently, human variability is usually accounted for by including an uncertainty factor of 1, 3, or 35 
10 in the calculation of a reference dose for noncancer health effects. Variability is not explicitly 36 
accounted for in cancer health assessment with the exception of the incorporation of an age-specific 37 
adjustment factor of ≤ 10 for childhood exposures to genotoxic carcinogens. In a few cases, data on 38 
sensitive populations (e.g., asthmatics and those sensitive to air pollutants) might be specifically 39 
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incorporated into risk assessments. Figure 23 from Zeise et al. (2012) illustrates how different 1 
types of variability can influence dose-response relationships. 2 

Several strategies have been developed to characterize variability in pharmacokinetics (PKs): (1) 3 
for data-rich chemicals (such as pharmaceuticals), a “population PK” approach is used to measure 4 
variability and discover the determinants; (2) “predictive PK” uses mechanistic models, assigns 5 
a priori distributions to specific parameters that can be measured experimentally, and uses Monte 6 
Carlo simulations to propagate distributions from model parameters to model predictions; and (3) 7 
reproduced “Bayesian PBPK” employs a synthesis of the two previous approaches (EPA 2008). 8 

 

Figure 22. Framework illustration of how susceptibility arises from variability. Multiple types of biological variability 
intersect with the source-to-outcome continuum, either by modifying how changes to source/media 
concentrations propagate through to health outcomes, or by modifying the baseline conditions along the 
continuum. The aggregate result of these modifications is variability in how a risk management decision affects 
individual health outcomes. The parameters and initial conditions along the source-to-outcome continuum serve 
as indicators of differential susceptibility, some of which are more or less influential to the overall outcome (see 
Figure 25) (Zeise et al. 2012). Reproduced with permission from Environmental Health Perspectives. 
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4.1.1. Genomic Variability 

An estimated 20%–50% of phenotypic variation is captured when all single nucleotide 1 
polymorphisms (SNPs) are considered simultaneously for several complex diseases and traits. The 2 
proportion of total variation explained by individual genome-wide-significant variants has reached 3 
10%–20% for a number of diseases (Visscher et al. 2013). Environmental factors are thought to 4 
contribute the remaining variability. The interaction between genetic and environmental factors is 5 
a key concern in the description of public health risks. 6 

 

Figure 23. Effects of variability in pharmacokinetics (PK) (A), pharmacodynamics (PD) (B), 
background/exposures (C), and endogenous concentrations (D). In (A) and (B), individuals differ in PK or 
PD parameters. In (C) and (D), individuals have different initial baseline conditions (e.g., exposure to 
sources outside of the risk management decisions context; endogenously produced compounds) (Zeise et 
al. 2012). Reproduced with permission from Environmental Health Perspectives. 

 

Several approaches to generating and evaluating genomic data are now emerging that can provide 7 
new insights into human variability (both PK and pharmacodynamic [PD]) including (1) in silico 8 
modeling approaches in which variability in parameter values is simulated, and differences among 9 
subpopulations explored (Shah et al. submitted, Knudsen et al. 2011, Knudsen and DeWoskin 2011, 10 
Shah and Wambaugh 2010); (2) high-throughput (HT) in vitro data generation using cells lines with 11 
different genetic backgrounds (Abdo et al. 2012, Lock et al. 2012, O'Shea et al. 2011); (3) in vivo 12 
studies in genetically diverse strains of rodents to identify genetic determinants of susceptibility 13 
(Harrill et al. 2012, NIEHS 2012a); (4) comprehensive scanning of gene coding regions in panels of 14 
diverse individuals to examine the relationships between environmental exposures, interindividual 15 
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sequence variation in human genes, and population disease risks (Mortensen and Euling 2013, 1 
NIEHS 2012b); (5) genome-wide association studies (GWAS) to uncover genomic loci that might 2 
contribute to human risk of disease (NHGRI 2013, Abecasis et al. 2012, Bush and Moore 2012); and 3 
(6) association studies that correlate measures of phenotypic differences among diverse 4 
populations with expression patterns for groupings of genes based on co-expression (Friend 2013, 5 
Patel et al. 2013, Patel et al. 2012a, Weiss et al. 2012). New understanding of the contribution of 6 
epigenomics to disease is rapidly advancing with evaluation of changes such as differential 7 
methylation of DNA (Teschendorff and Widschwendter 2012, Hansen et al. 2011, Rakyan et al. 8 
2011). Risk assessments of the future will begin to incorporate these types of data as they become 9 
available. 10 

Panel a) in Figure 24 illustrates one example of how new types of genetic variation data can be used 11 
in risk assessment, in this case, how a population concentration-response curve can be estimated 12 
for cycloheximide based on HT in vitro data using cell lines with different genetic backgrounds. The 13 
approach reported by Lock et al. 2012 is being used in Tox21 Phase II, (in collaboration with Rusyn 14 
and colleagues at the University of North Carolina) to expand the study of interindividual 15 
differential sensitivity to evaluate approximately 1,100 different human lymphoblastoid cell lines, 16 
with densely sequenced genomes representing 9 races of humankind, to 180 toxicants. Data will be 17 
collected on more chemicals in the future. The numbers of chemicals evaluated in the future in this 18 
manner will expand. The large number of human cell lines used allows for an analysis of genetic 19 
determinants associated with differential cytotoxicity in vitro. This approach will provide 20 
significant new insights into human variability in response and can better inform current and 21 
future risk assessments. Other examples of human variability data are discussed in the benzene 22 
prototype and in Text Box 10 using GWAS data.29 23 

                                                             
29One caveat: The differential risks conferred by human genetic variability are complex and might not be 
captured by analyses of small-scale gene variability alone. Hundreds to thousands of genes are likely to be 
involved in any disease, and multiple variations in genetic makeup might confer similar increased or 
decreased risk for the same disease. The occurrence of disease also could be influenced by emergent system 
properties that require analysis not only of how gene variations affect cellular components, but how effects 
on critical network interactions propagate up through higher levels of the biological system (Torkamani et al. 
2008). Consequently, although incorporation of new types of data can better characterize human variability, 
the characterizations are likely to be incomplete. 
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Figure 24. Panel a: A population concentration-response was modeled using in vitro 
quantitative high-throughput screening (qHTS) data using cycloheximide data 
(cytotoxicity assay) as an example. Logistic dose-response modeling was performed for 
each individual to the values shown in gray, providing individual 10% effect 
concentration values (EC10). The EC10 values obtained by performing the modeling on 
average assay values for each concentration (see frequency distribution) are shown in 
the inset. Panel b: A heat map of clustered FDRs (q values, see color bar) for 
associations of the data from caspase-3/7 assay with publicly available RNA-Seq 
expression data on a subset of cell lines. A sample subcluster is shown (Lock et al. 
2012). Reproduced with permission from Oxford Journals. 
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4.1.2. Early-Life Exposures 

Early-life chemical exposures can invoke molecular effects that appear to result in increased 1 
susceptibility to disease or other morbidity later in life, often via epigenetic modifications 2 
(Boekelheide et al. 2012). Evidence from both humans and animals helped establish the influence of 3 
early-life exposure on later-life outcomes. For example, human observational data and animal 4 
studies report that arsenic exposure during prenatal and early postnatal life increase the risk of 5 
cancer, respiratory, and cardiovascular diseases, and neurobehavioral disorders, as supported by 6 
human observational data and animal models (Cronican et al. 2013, Boekelheide et al. 2012, Tokar 7 
et al. 2012, NRC 2011, Tokar et al. 2011). Later-in-life outcomes can be influenced by time of 8 
exposure, species’ predisposition to a particular disease, an individual’s genetic predilection to 9 
disease, or gender. Improved ability to predict disease risk associated with in utero or early 10 
postnatal exposures results from advances in identifying the targeted genomic region of 11 
chemicals/chemical mixtures, epigenetic alteration of gene expression, and the causal links 12 
between early-life chemical exposure and later-life outcomes (Boekelheide et al. 2012, NRC 2011). 13 

Epigenetic biomarkers for early-life exposures (e.g., placental epigenetic biomarkers, plasma 14 
biomarkers) have the potential for use as early indicators of adverse health effects later in life. 15 
Development and interpretation of epigenomic biomarkers is in the early stages of development 16 
(Hansen et al. 2011, Rakyan et al. 2011); however, as understanding of the underlying epigenetic 17 
mechanisms (e.g., DNA methylation, histone modification, microRNA) advances, more will be 18 
known about the relationship between biomarkers of early-life exposure and later-life disease risk. 19 
A good example is the work that associated early-life exposure to arsenic and DNA 20 
hypomethylation with the development of arsenic-induced skin lesions (Boekelheide et al. 2012). 21 
The roles of environmental factors that positively and negatively influence health outcomes require 22 
study. 23 
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4.1.3. Mixtures and Nonchemical Stressors 

Cumulative risk is a function of the exposure to the combined threats from all intrinsic and extrinsic 1 
stressors (e.g., chemical exposure, pharmaceutical use, underlying susceptibility, socioeconomic 2 
status, work-life stress) and factors that improve health (e.g., good diet, exercise). The assessment 3 
of cumulative risk remains a challenging area for human health risk assessment. Only a few studies 4 
have examined the potential impact of exposure to environmental chemical mixtures, or to 5 
mixtures and nonchemical stressors; and innumerable combinations of chemical mixtures and 6 
nonchemical stressors occur in the environment. Conventional methods for risk assessment have 7 
made little progress in scaling this particularly mountainous cumulative risk challenge. New 8 
methodologies in systems biology, computational models, and data mining provide promise by 9 
taking a more comprehensive disease-oriented approach to identification and management of 10 
cumulative risk for chemical classes or structures. HTS and omics assay data can be combined with 11 

Box 10. Combining Genetics and Bioinformatics to Improve Estimates of Variability in Human Response 
 

Variability in human response to chemical exposures is partly due to genetic influences. The National Center for 
Biotechnology Information at the National Institutes of Health National Library of Medicine has a vast array of 
databases devoted to human variability, especially genotype-to-phenotype associations. These resources include dbSNP 
(database of single nucleotide polymorphisms and estimates of their occurrence within the population), dbGaP 
(database of Genotypes and Phenotypes), GTEx database (Genotype-Tissue Expression), OMIM (Online Mendelian 
Inheritance in Man), and PheGenI (Phenotype-Genotype Integrator; aggregates information from many of the 
aforementioned resources). 

In this example, genome-wide association study (GWAS) data were reviewed to examine the relationship between 
genotype and white blood cell count in benzene-exposed and non-benzene-exposed workers in China. This work has 
been used, in part, to describe a possible mode of action for benzene hematotoxicity. Lan et al. (2009) identified single 
nucleotide polymorphisms (SNPs) associated with four DNA repair and genomic maintenance genes that could be 
involved in carcinogenesis. These SNPs confer significant odds ratios from 1.4 to 5.7 of having a white blood cell count < 
4000 cells/µL blood. This observation demonstrates a quantitative increased risk of hematotoxicity in people with any 
of these SNPs. Hematotoxicity is highly correlated with leukemia resulting from benzene exposure. Hence, these SNPs 
also might confer susceptibility to leukemia.  

PheGenI provides links to dbSNP to view genetic diversity of SNPs within reported populations. For instance, 
rs12951053’s A/C genotype is reported to occur in 51.1 % of Chinese and 31.1% of Japanese; and among Europeans and 
those of European decent, the A/C genotype occurs in approximately 9–17 % of the population (NCBI 2012a).  

Overall, the minor allele (C), has a relatively low penetration within the global population at just 18.7% ± 2.2% (mean ± 
standard error of the mean), and an average heterozygosity of 30.0% ± 24.5 % (average ± standard error of the mean).  

Using the global minor allele rate of 18.7% ± 2.2 %, we can construct a probability function and model that any given 
member of the population has the minor allele A for rs12951053 SNP. Using this probability function, we can estimate 
the number of people who might have a white blood cell count < 4,000, thus the potential for hematotoxicity, as well as 
the model uncertainty. This gives us a quantitative estimate of human health hazard.  

In addition, this approach can help with environmental justice issues. For instance, by using census demographic data 
and the SNP occurrence data for people descended from specific groups, creating probabilistic models that might more 
accurately reflect the SNP pool of a population, and thus, human variability, is possible. With respect to at-risk 
populations, regulatory agencies could use this type of information to inform their site-specific risk assessments, such as 
a Superfund Site Risk Assessment in the United States. 



 

This document is a draft for review purposes only and does not constitute Agency policy. Do not cite or quote. 
September 2013 80  

bioinformatics data mining and computational cellular signaling simulations to predict possible 1 
disease outcomes (for screening-level assessments) that, combined with higher level systems data, 2 
can identify common patterns of significant pathway or network alterations associated with disease 3 
(for more quantitative risk assessments). As our molecular understanding of how nonchemical 4 
stressors modulate disease continues to evolve, we will also be able to leverage data from systems 5 
biology and network analyses to obtain a better understanding of potential cumulative chemical 6 
and nonchemical stressor interactions in biological systems and the resulting health impacts. 7 
Because epigenomic networks are more easily modulated by environmental factors than the 8 
genome, epigenomics should be considered an area of focus for identifying mechanisms that 9 
mediate cumulative risks imposed by exposures to environmental factors (Cortessis et al. 2012, 10 
Koturbash et al. 2011, Bollati and Baccarelli 2010). 11 

4.2. Inter-Species Extrapolation 

The traditional use of animal models in hazard identification and characterization of dose-response 12 
employs chemical testing in mammalian species, and application of an interspecies (animal-to-13 
human) uncertainty factor (≤ 10) or body-weight conversion factor to derive an EPA reference 14 
value. Increased understanding of the toxicological or biological pathways and their similarity (or 15 
lack thereof) among species will improve the extrapolation of chemical effects across species, and 16 
the related challenge of selecting model organisms for testing, in contrast to solely comparing apical 17 
responses. As knowledge increases on the extent of pathway conservation among species, 18 
alternative test species, including nonmammalian vertebrates (adult and embryonic zebrafish) and 19 
invertebrate models, will be of greater use in chemical risk assessment. Regulatory toxicology as a 20 
whole will move toward increasing reliance on predictive approaches to assessing chemical risk, 21 
with a greater emphasis placed on understanding chemical perturbation(s) of conserved biological 22 
pathways at key junctures, including molecular initiating events (MIEs) (e.g., activation or 23 
inactivation of specific receptors, enzymes, or transport proteins). 24 

Data from alternative mammalian species and in vitro models are valuable for both ecological and 25 
human health risk assessment when used in a pathway-based framework (Ankley, G. T. et al. 2010). 26 
The extrapolation between species can occur at different levels of biological organization, such as 27 
the MIE, the pathway, and the organ or individual levels. Based on the similarity of pathway-based 28 
values to standard toxicological values, this appears to be a useful approach for extrapolating 29 
hazard values across species, especially if a known pathway is involved. 30 

That gene sequences are conserved—even between distantly related species—is well known and 31 
conservation across species is indicative of an essential function. DNA sequence similarity can, but 32 
does not always, reflect a functionally conserved role for the genes in question. Investigations of 33 
gene function homology can be approached through interspecies comparisons of various 34 
components that affect the phenotype in question. The implicated genes, their sequence variation, 35 
and the relevant signaling pathways and tissues (cells, organs, circuits) are all informative. Thus, 36 
new approaches to understanding the underlying molecular mechanism can improve our cross- 37 
species extrapolation (e.g., see Chen et al. (2007), Jubeaux et al. (2012), and Reaume and 38 
Sokolowski (2011)). 39 
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4.3. Low Dose-Response Modeling 

Empirical dose-response models (e.g., benchmark dose [BMD] models) are widely used in 1 
environmental health risk assessment for screening and categorization of toxic substances; 2 
determination of toxic potency; determination of a point of departure (POD) for low-dose 3 
extrapolation; determination of human exposure guidelines; estimation of risk under specific 4 
exposure circumstances; and interpretation of human data. Models that are based on a robust 5 
understanding of biological processes, in contrast, are not common. Dose-response models could 6 
incorporate data from in vitro studies, human or test animal in vivo studies, or human epidemiology 7 
studies. For public and ecosystem health risk assessment, characterizing population-level 8 
responses is the goal.  9 

Many risk assessments require models that can extrapolate beyond the data set used in developing 10 
the model to derive the toxicity values of interest. Such models are called biologically based models. 11 
To date, the main biologically based models used in risk assessment are physiologically based 12 
toxicokinetic (PBTK) models that simulate the toxicokinetic behavior of a chemical (i.e., the internal 13 
disposition of the chemical in the body following a given dosing regimen). Only a few examples of 14 
physiologically based toxicodynamic (PBTD) models are available to characterize the “response” 15 
side of the dose-response curve. Well-developed and adequately tested PBTK models are currently 16 
used in risk assessment to simulate the toxicokinetics of a chemical or chemicals across dosing 17 
regimens (duration, amounts, delivery rate, routes) and species, or from in vitro regimens to in vivo 18 
doses (IVIVE). 19 

The establishment of human exposure guidelines for environmental agents involves determining a 20 
POD on the dose-response curve, such as a particular response level on a BMD model estimate of 21 
the dose-response, corresponding to a specified increase in risk usually in the 5% to 10% range, or 22 
signal-to-noise-crossover dose introduced by Sand et al. (2011). This POD is then further reduced 23 
by adjustment factors to derive a level of exposure that is considered to be protective of human 24 
health and the environment. The National Research Council (2009) suggests an integrated 25 
approach to the establishment of human exposure guidelines using adjustment factors applied to 26 
the POD, where the magnitude of the factor depends on the “expected” behavior of the exposure-27 
response curve at low levels of exposure. The NRC also examined the influence of background 28 
exposures and background disease rates on the shape of the exposure-response curve at low levels 29 
of exposure.  30 

Characterizing the expected response at low exposure levels (i.e., those that the public is most likely 31 
to encounter) is another of the great challenges to previous methods used in risk assessment, 32 
specifically the use of relatively high-dose in vivo animal assays as the source of data for apical 33 
endpoints because the spectrum of adverse effects might be quite different at lower doses. The NRC 34 
(2007) recommended developing new approaches and models to generate the data needed for 35 
characterizing dose-response curves and to improve estimates especially at doses applicable to 36 
likely human exposures. Examples of some new approaches to dose-response modeling are 37 
described in Burgoon and Zacharewski (2008), Parham et al. (2009), and Zhang et al. (2010). The 38 
application of sensitive HTS assays for pathway perturbations that directly measure biological 39 
effects at environmental exposure levels are described in Rotroff et al. (2010) and Wetmore et al. 40 
(2012). The reduced cost of HTS assays relative to mammalian toxicity tests might also permit the 41 
use of a much broader range of exposure levels, leading to a more detailed description of dose-42 



 

This document is a draft for review purposes only and does not constitute Agency policy. Do not cite or quote. 
September 2013 82  

response relationships throughout the exposure range of interest. Figure 25 summarizes the 1 
automated dose-response modeling approach proposed by Burgoon and Zacharewski (2008). 2 

A new class of biologically based models called “virtual models” is also being developed to simulate 3 
normal biology and to predict how chemical perturbations might lead to adverse effects (i.e., to 4 
predict a chemical’s toxicodynamics) based on knowledge of potential mechanisms. Examples of 5 
virtual models being developed at various levels of biological organization or function include 6 
(1) the Physiome Project (Physiome Project 2013), a major resource and model repository of 7 
hundreds of physiology models (Hunter et al. 2002); (2) the European Virtual Physiological Human 8 
(VPH) project (Hunter et al. 2010); (3) HumMod, a whole-body integrated human physiology model 9 
(Hester et al. 2011); (4) Virtual Cell (V-Cell), a spatially realistic quantitative model of intracellular 10 
dynamics (Moraru et al. 2008); (5) EPA’s Virtual EmbryoTM (v-Embryo) project, a suite of models 11 
that simulate normal development leading to the formation of blood vessels, limb-buds, 12 
reproductive systems, and eye and neural differentiation (Knudsen et al. 2011, Knudsen and 13 
DeWoskin 2011); (6) EPA’s Virtual LiverTM (v-Liver) model that simulates the dynamic interactions 14 
in the liver used to translate in vitro endpoints into predictions of low-dose chronic in vivo effects in 15 
humans (Shah and Wambaugh 2010); and (7) the Virtual Liver Network (German Federal Ministry 16 
for Education and Research 2013), a German initiative to develop a dynamic model of human liver 17 
physiology, morphology, and function integrating quantitative data from all levels of organization 18 
(Holzhutter et al. 2012). 19 

http://physiomeproject.org/
http://www.virtual-liver.de/wordpress/en
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Figure 25. Overview of automated dose-response modeling from Burgoon and Zacharewski (2008). Step 1—Dose-
response data from a large-scale study are loaded. Step 2—The application feeds dose-response data for one 
feature into the algorithm. Examples of feature data include mRNA, protein, or metabolite levels and enzyme or 
binding activities at each dose within a study. Step 3—The application initializes the particle swarm optimization 
(PSO) algorithm by randomizing model parameters and assigning cliques. Step 4—The PSO identifies the closest 
model in each clique at the end of an iteration, and moves the members of each clique toward that model. 
Step 5—This iterative process ends once a best-fit model has been identified, or when all of the iterations have 
been used. Steps 3 through 5 are repeated for each model class for the same feature, thus generating best-fit 
models for the exponential, Gaussian, quadratic, linear, and sigmoidal classes. Step 6—The best exponential, 
Gaussian, quadratic, sigmoidal, and linear models are compared with the best overall model using a weighted vote 
method. The model with the smallest Euclidean distance compared with the dose-response data receives the most 
votes. Step 7—The application uses the best overall model to calculate EDn and point of departure (POD) values, 
used to rank and prioritize putative biomarkers or chemical activities. Step 8—Model-based clusters can provide 
additional mechanistic insight by integrating potency and POD data with functional annotation and phenotypic 
anchoring. For example, EDn and POD data might generate model-based clusters for lipid metabolism and 
transport gene expression that could be associated with the occurrence of hepatic vacuolization and lipid 
accumulation. Step 9—Through complementary comparative studies using toxic and nontoxic congeners in 
responsive and nonresponsive species across time, data could emerge that differentiate biomarkers of exposure 
from toxicity-related responses that can support mechanistically based quantitative risk assessments. Reproduced 
with permission from Oxford Journals. 
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5. Lessons Learned from Developing the Prototypes 

The NexGen prototypes presented in this report illustrate new data types and approaches applied 1 
to risk assessments for various decision contexts and provide concrete examples for discussion of 2 
new approaches in the risk assessment community. The prototypes show how large amounts of 3 
data can be synthesized in useful ways, and how the data can increase our understanding of the 4 
potential risk posed by chemical exposures, including hazard identification, and dose-response 5 
assessment. In addition, the outcomes of the prototype assessments have implications for current 6 
challenges in risk assessment, such as evaluating human variability and susceptibility, mixtures, 7 
and low-dose responses characterization. Overall, these new data types and approaches appear 8 
promising in terms of improved risk assessment and decision support. These new approaches are 9 
faster and less expensive than traditional approaches provide new insights. Each prototype 10 
considered hazard identification, exposure-dose-response, and mechanisms of action or adverse 11 
outcome pathways. 12 

5.1. New Methods 

Thousands of chemicals to which humans are exposed have inadequate data for predicting their 13 
potential for toxicological effects. Dramatic technological advances in molecular and systems 14 
biology, computational toxicology, and bioinformatics, however, have provided researchers and 15 
regulators with powerful new public health tools (NRC 2007, 2006). “High-throughput screening 16 
techniques are now routinely used in conjunction with computational methods and information 17 
technology to probe how chemicals interact with biological systems, both in vitro and in vivo. 18 
Progress is being made in recognizing the patterns of response in genes and pathways induced by 19 
certain chemicals or chemical classes that might be predictive of adverse health outcomes in 20 
humans. However, as with any new technology, both the reliability and the relevance of the 21 
approach need to be demonstrated in the context of current knowledge and practice” (Tice et al. 22 
2013).  23 

In general, two basic approaches are being taken to advance our understanding of the causes and 24 
modifiers of human disease risks: top-down and bottom-up (Friend 2013). In general, the top-down 25 
approach focuses on developing large-scale network models of disease by sifting through the 26 
substantial body of new human molecular clinical and epidemiologic data (e.g., >50,000 omics 27 
papers per year; zettabytes (1021) of new data), looking for patterns associated with various disease 28 
states and environmental or genetic risk factors. In general, the bottom-up approach focuses on 29 
using in vitro high- and medium-throughput bioassays to understand alteration in molecular and 30 
cellular processes caused by chemical exposures. The top-down approach provides the human 31 
population biology context, while the bottom-up approach provides experimental support for 32 
associations identified in the top-down approach. The approaches are mutually supportive and, 33 
when integrated, provide a powerful means to advance risk assessment. The various prototypes 34 
presented in this document sought to illustrate both approaches. Due to the greater current 35 
availability of genomic data, the prototypes were heavily biased toward use of gene expression and 36 
transcriptomic data (i.e., gene expression levels and factors influencing transcription into proteins). 37 
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The results from large and essential areas of research, including epigenomics, are rapidly adding to 1 
our knowledge and will be incorporated in more detail in future efforts. 30 2 

The three sets or tiers of prototypes were intended to explore different aspects of decision context. 3 
The primary intent of the first set of chemicals (Tier 3 prototypes) was to verify if and how new 4 
data and approaches could be used to inform risk assessment by comparison to robust traditional 5 
assessments where risks are generally considered “known.” In essence, we attempted to reverse 6 
engineer from known answers to verify new approaches, explore value information, and begin to 7 
characterize decision rules that could be reasonably applied to chemicals with limited or no 8 
traditional data. Secondarily, the Tier 3 prototypes explored how new types of data could expand 9 
our understanding of well-studied chemicals. The intent of the Tier 2 prototypes was to explore 10 
new types of computational analyses and short-duration in vivo bioassays that are intermediate in 11 
terms of required resources and confidence in the data between Tiers 3 and 1, and are suitable for 12 
evaluating hundreds to thousands of chemicals. These approaches are relatively uncommon in risk 13 
assessment to date but hold much promise. The intent of the Tier 1 prototypes was to explore 14 
entirely HT approaches that could be applied to tens of thousands of chemicals, might have the 15 
greatest uncertainties, but are the least resource intensive to use.  16 

The following eight chemicals or chemical classes and their associated effects were chosen for 17 
prototype development: 18 

• Tier 3:  19 
o Benzene and leukemia (molecular epidemiology),  20 
o Ozone and lung inflammation and injury (molecular clinical studies), and 21 
o Benzo[a]pyrene (B[a]P, a polycyclic aromatic hydrocarbon (PAH) and liver cancer 22 

(molecular clinical studies meta-analyses and in vivo rodent bioassay). 23 

                                                             
30In terms of top-down approaches, molecular, computational, and systems biology data have 
grown phenomenally in recent years, and have informed mechanisms of disease and factors that 
alter risks of disease. These data are generally stored in large databases such as ENCODE, Gene 
Expression Omnibus (GEO), and the Comparative Toxicogenomic Database (CTD) and are publicly 
available for further analyses. Analyses and meta-analyses of these data are providing new insights 
into environmental public health risks. Bioinformatics (computer-assisted approaches) are 
necessary to use these new data effectively due to the size of the relevant databases. The polycyclic 
aromatic hydrocarbon (PAH) and diabetes prototypes, in particular, illustrate bioinformatic 
“knowledge mining” to understand environmentally related disease. 

In terms of bottom-up approaches, many new high- and medium-throughput methods have been 
and are being developed that facilitate testing and evaluation of chemicals on an unprecedented 
scale. In particular, the in vitro evaluations of chemicals with limited or no traditional data are being 
enabled. ToxCastTM and Toxicology in the 21st Century (Tox21) provide examples (see Section 3.3). 
Tox21 will test ~10,000 chemicals in a few years. New in vivo short-duration (hours to weeks) 
exposure paradigms also are emerging that provide new types of data to be used in health 
assessments. These paradigms use both nonmammalian (see Section 3.2.2) and mammalian species 
(see Section 3.2.3). 

 

http://www.genome.gov/10005107
http://www.ncbi.nlm.nih.gov/geo/info/overview.html
http://www.ncbi.nlm.nih.gov/geo/info/overview.html
http://ctdbase.org/;jsessionid=B11F1596563389216751BBA597A1A171
http://www.epa.gov/ncct/toxcast/
http://ntp.niehs.nih.gov/?objectid=05F80E15-F1F6-975E-77DDEDBDF3B941CD
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• Tier 2: 1 
o Chemicals associated with diabetes and obesity (“big data” knowledge mining),  2 
o Chemicals associated with thyroid hormone disruption (short-duration in vivo 3 

exposure bioassays − alternative species), and 4 
o Chemicals associated with cancer (short-duration in vivo exposure bioassays – 5 

mammalian). 6 
• Tier 1:  7 

o Chemicals associated with cancer and noncancer disorders, especially 8 
developmental (QSAR) and 9 

o Chemicals associated with thyroid hormone disruption (high-throughput in vitro 10 
assays). 11 

Table 9 provides more information on methods explored in each prototype (Krewski et al. 2013). 12 

5.2. 5.2. Implications for Risk Assessment Derived from Prototypes 

Based on the prototypes provided here and the work of others, new molecular, computational, and 13 
systems biology tools likely can better inform risk assessment. Substantial caution in interpretation 14 
and use of new information is warranted, however, in large part because our understanding of the 15 
science is still evolving, and appropriate data are still scarce. We propose initially to use new 16 
methods discussed in this document to: (1) generate hypotheses; (2) screen and rank chemicals for 17 
additional research and assessment; and (3) augment understanding of traditional data. Areas of 18 
particular promise include improved understanding of relative potency of chemicals to disrupt 19 
biologic processes, hazard identification, and mechanisms of disease and disorders; human 20 
variability and susceptibility; human relevancy of animal models; and low-dose-response 21 
relationships. These future risk assessments ideally would rely on the integration of a variety of 22 
new types of data and traditional data, as available. Additional discussion of the lessons learned 23 
from the prototypes follows. 24 

Systems biology context is key to understanding these new data types and the relationship among 25 
various types of data. Network-level understanding is typically more informative than pathway-26 
level understanding, which is usually more informative than individual genes. In general, 27 
information on individual genes, in the absence of systems biology-level of understanding, is likely 28 
to be inadequate for risk assessment purposes. Information that links molecular events to apical 29 
outcomes need not be chemical specific, but can be derived from mechanistic information on 30 
disease or from related chemicals. As with any risk assessment, the studies used should be well 31 
designed, conducted, and reported; systematic review criteria are necessary in study selection. 32 
Characterization of multisource variability is a substantial challenge with new data types because of 33 
the sheer amount of data being analyzed and, thus, must be carefully considered. Also, traditional 34 
weight-of-evidence criteria continue to be useful in considering new data types, for example, data 35 
from multiple, similar studies are preferred (Krauth et al. 2013). That environment-induced 36 
changes in biology are dynamic in nature also should be noted, and these dynamic changes are not 37 
well understood. 38 



 

This document is a draft for review purposes only and does not constitute Agency policy. Do not cite or quote. 
September 2013 87  

Highlights of the prototypes include: 1 

• The effects of human chemical exposures at environmental levels on molecular events were 2 
linked to intermediate biological events and apical adverse outcomes using molecular 3 
epidemiology, molecular clinical, and environment-wide association studies (e.g., evaluation 4 
of NHANES) (EPA 2013, Patel et al. 2013, Devlin 2012, McHale et al. 2012, Patel et al. 2012a, 5 
Thayer et al. 2012, Burgoon 2011, McHale et al. 2011, Smith, MT et al. 2011). Chemicals 6 
evaluated included benzene, ozone, B[a]P (a PAH), metals, and persistent organic pollutants. 7 

• The B[a]P and diabetes prototypes illustrated the use of “big data” knowledge mining to 8 
identify associations between environmental chemical exposures and disease (Patel et al. 9 
2013, Patel et al. 2012a, Burgoon 2011). The chemicals of concern for diabetes identified 10 
using knowledge mining also were identified in a review of traditional literature by experts 11 
(Thayer et al. 2012). This powerful, relatively new technique has not been used extensively in 12 
environmental risk assessment, although it is commonly used in other areas of biology. 13 
Knowledge mining is particularly useful in developing a broad understanding of potential 14 
mechanisms of action, factors that may cause or modify disease risks, and human variability 15 
and susceptibility.  16 

• Short-duration exposures coupled with new molecular and computational approaches appear 17 
to provide additional insights into potential environmental risks. Use of both alternative 18 
species and mammalian species in these new experimental models is explored. These models 19 
are faster and less expensive than the molecular epidemiology and molecular clinical studies 20 
noted above. Furthermore, unlike the QSAR and high-throughput (HT) models noted below, 21 
these models address intact metabolism and cell, and tissue interactions and can be used to 22 
study more complex outcomes such as developmental and neurobehavioral outcomes. In the 23 
case of alternative species, these models can detect effects over the entire lifespan of the 24 
organism and to population dynamics. These models have been used successfully to describe 25 
mechanisms, explore complex mechanistic behaviors, describe hazards, and evaluate 26 
chemical potency. Confidence in the data also generally lies between Tier 3 and Tier 2 27 
approaches (Perkins et al. (2013), Thomas RS et al. (2013a), and Padilla et al. (2012).28 
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Table 9. Prototype Use of New Scientific Tools and Techniques (Krewski et al. 2013) 

Scientific Tools 
Used in Specific Prototypes 

Tier 1: Screening and Prioritization Tier 2: Limited Scope Assessments 
Tier 3: Major Scope 

Assessments 

Cancer & 
Hydrocarbon 

Mixtures (QSAR) 

Endocrine Disruptors 
& 

Deep Water Horizon 
Oil Spill Dispersants 
(In Vitro Bioassays) 

Diabetes & Multiple 
Stressors 

(Knowledge Mining) 

Cancer & 
Reproductive/ 
Developmental 
Hazards (Short- 
Duration In Vivo 

Exposure Bioassays) 

Lung Injury  
& Ozone 

(Molecular Clinical) 

Leukemia 
& Benzene 
(Molecular 

Epidemiology)  

Hazard Identification and Dose-Response Estimation Methods 

Quantitative structure-activity 
relationships  ■ ■  ■   

High-throughput in vitro assays   ■ ■ ■ ■ ■ 

High-content omic assays    ■ ■ ■ 

Molecular and genetic 
population-based studies     ■ ■ 

Biomarkers of effect   ■  ■ ■ 

Pathway/network analyses ■ ■ ■ ■ ■ ■ 

Dosimetry and Exposure Assessment Methods  

In-vitro-to-in-vivo extrapolation  ■ ■  ■   

Pharmacokinetic models and 
dosimetry  ■  ■ ■ ■ 

Biomarkers of exposure   ■  ■ ■ 

Cross-cutting Disciplines  

Bioinformatics/ 
computational biology ■ ■ ■ ■ ■ ■ 

Functional genomics    ■ ■ ■ ■ 

Systems biology   ■ ■ ■ ■ 
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• QSAR models (Venkatapathy and Wang 2013, Goldsmith et al. 2012, 2012a, Wang, N et al. 1 
2012b) and HT in vitro bioassays are being used to rapidly evaluate a wide array of chemicals 2 
(Judson et al. 2013, 2011, Sipes et al. 2013, Tice et al. 2013, Kavlock et al. 2012, Rusyn et al. 3 
2012). “These tools can probe chemical–biological interactions at fundamental levels, 4 
focusing on the molecular and cellular pathways that are targets of chemical disruption” 5 
(Kavlock et al. 2012). Thousands of chemicals are currently being evaluated, particularly in 6 
the ToxCast and Tox21 programs. Both estimates of potency and insights into potential 7 
hazards are being generated. Additionally, tools exist to relate in vitro concentration to 8 
potential human exposure levels (reverse dosimetry) (Wetmore et al. 2013, Wetmore et al. 9 
2012, Rotroff et al. 2010, Hubal 2009). Although directly correlating in vitro findings to risks 10 
of human disease is difficult, these QSAR and HT methods provide powerful new tools for 11 
screening and ranking large numbers of chemicals for further evaluation and assessment, as 12 
well as exploring underlying mechanisms of toxicity, and evaluating human variability in 13 
response to chemical exposures (Lock et al. 2012). 14 

Thomas RS et al. (2013a) propose a framework for incorporating these new technologies into 15 
toxicity testing and risk assessment in an integrated fashion. The first steps proposed are to use 16 
in vitro assays to separate chemicals based on their relative selectivity in interacting with biological 17 
targets and to identify the concentration at which these interactions occur. Dosimetry modeling 18 
converts in vitro concentrations into external dose for calculation of the point-of-departure (POD) 19 
and comparisons to human exposure estimates to yield a margin of exposure (MOE). The second 20 
step involves short-term in vivo studies, expanded pharmacokinetic evaluations, and refined human 21 
exposure estimates, thus increasing confidence in the evaluation. The third step represents the 22 
traditional animal studies currently used to assess chemical risks. A significant percentage of 23 
chemicals evaluated in the first two tiers could be eliminated from further testing based on their 24 
MOE. Additionally, at each step, information might be suitable for supporting some types of Agency 25 
decision-making. The framework provides a risk-based and animal-sparing approach for evaluating 26 
chemicals using technological advances to increase efficiency. 27 

In addition to informing hazard identification and dose-response, new data types and methods have 28 
the potential to inform recurrent, challenging risk assessment issues. 29 

Experimental Low Dose Data vs. Low Dose Extrapolation – Dose-dependent molecular changes 30 
associated with adverse outcomes can be observed at environmental concentrations. Thus, these 31 
new approaches can provide experimental data to help characterize dose-response relationships at 32 
concentrations where responses, to date, have often been only inferred. Both assay methods and 33 
statistical analyses must demonstrate sufficient sensitivity to be considered informative. Observed 34 
molecular changes include changes in both magnitude and character, reflecting underlying 35 
alterations in biology with increasing dose and time. Biological processes that are consistently 36 
observed across the exposure range of interest are likely to be the most useful as biomarkers of 37 
exposure and effect. Elucidating the meaning of these dynamic changes in terms of risk will be 38 
challenging. 39 

Variability and Susceptibility – New data and methods can enhance our ability to understand 40 
variability in response and the identification of potentially susceptible populations. Human cells 41 
from various individuals (e.g., 1000 Genome Project) evaluated in in vitro high-throughput models 42 
provide an avenue for understanding responses across subsets of the human population (Lock et al. 43 
2012). Data mining and bioinformatics analyses will facilitate the identification of susceptible 44 



 

This document is a draft for review purposes only and does not constitute Agency policy. Do not cite or quote. 
September 2013 90  

populations and underlying sources of variability by combing existing molecular epidemiology and 1 
clinical databases. In all, this work can provide quantitative data, which to date have been generally 2 
lacking, to support more accurate estimates of human variability and identification of susceptible 3 
populations. 4 

Evaluation of the Effects of Multiple Stressors – The ability to map mechanism of disease and 5 
adverse outcome pathways disrupted by various environmental agents gives us new tools for 6 
understanding the interactions of multiple environmental stressors, including chemical mixtures 7 
and lifestyle factors. 8 

Certain caveats that apply generally to use of new data types in risk assessment deserve mention. 9 

• Cell type, tissue, individual, subpopulation, species, and test system can alter how specific 10 
omics are expressed as traditional intermediate and apical outcomes, even when the 11 
molecular signature is the same. This is likely due, at least in part, to epigenomic differences 12 
and genomic plasticity. This issue should be considered, as feasible, in data interpretation.  13 

• The metabolism of many chemicals often plays an important role in toxicity. That most HT 14 
test systems are not metabolically competent is important to consider. Various approaches to 15 
the issue of in vitro metabolism are being evaluated; however, this currently remains a 16 
complicating factor in most in vitro testing. 17 

• Molecular profiles appear time-dependent, that is, they evolve over time with continued 18 
exposure and post-exposure. This can confound prediction of outcomes or disease outcomes 19 
based on “snapshots” in time of biological events. Fortunately, however, at least some 20 
signatures appear to stabilize over time and can serve as reliable indicators of chronic 21 
outcomes.  22 

• Currently, studying multiple molecular processes (i.e., genomics, transcriptomics, proteomics, 23 
and epigenomics) in a single study is relatively rare, primarily due to expense. This lack of 24 
biological integration limits our understanding.  25 

• Due primarily to experimental design and reporting issues (see B[a]P [a PAH] prototype), 26 
adequate data from the open literature to support risk assessment activities currently are 27 
available for few chemicals. This underscores the importance of high-quality research and 28 
testing programs like ToxCastTM and Tox21 and systematic review of data.  29 

• Data reproducibility and false negative rates may remain a potential limitation of high 30 
throughput screening and high content assays (e.g., toxicogenomics). The false negative rate 31 
(i.e., calling a chemical non-toxic when it is) tends to decrease as an increasing number of 32 
independent replicates are used. Successful screening programs need low false negative rates, 33 
while balancing their efficiencies (i.e., cost, time, throughput). 34 

The challenge is to use what we know today wisely, with the understanding that biological 35 
knowledge is evolving very rapidly, and likewise, risk assessment also will need to evolve. 36 

5.3. Summary  

Throughout this report, examples are provided that illustrate how new types of data might be used 37 
to improve risk assessment. Table 10 summarizes (1) various decision context examples common 38 
at EPA; (2) a “toolbox” of various NexGen methodologies that could provide data to support each 39 
decision context; (3) types of “fit for purpose” toxicity values that might be derived from new data 40 
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types or traditional data; and (4) assessment products in which molecularly or computationally 1 
informed toxicity values could be used. Although all approaches can be used in any type of 2 
assessment, any one of the health data approaches listed in Tiers 1 and 2 could provide a minimum 3 
data set. In this scheme, Tier 1 is primarily QSAR or HT data-driven. Tier 2 is high-content or 4 
traditional data-driven (in addition to Tier 1 data, if available). Tier 3 will continue to be traditional 5 
data driven but could be augmented by molecular, computational, and systems biology data if the 6 
data are available, of sufficient quality, and substantively useful.  7 

Table 10. Problem Formulation Table 

 

Integration of information from multiple data types is preferred, but all types of data shown for any 8 
tier might not be available or of sufficient quality for inclusion in an assessment. Systematic review 9 
criteria are being established and are discussed in section 3.1.3 (McConnell and Bell 2013). 10 
Stakeholder input and external peer review will be solicited for new approaches to risk assessment.  11 

Systems biology understanding is a fundamental aspect of the weight-of-evidence evaluation. As 12 
one progresses from Tier 1 to Tier 3 assessments, the weight of evidence increases; however, the 13 
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resources to generate the assessments also increases. For example, in Tier 1, toxicity values can be 1 
generated solely from extant QSAR data, a process that can be fully automated to be very quick and 2 
cost-efficient for a large number of chemicals. Wignall et al. (2013)(SOT poster abstract; manuscript 3 
in progress) describe an approach to generate toxicity values for chemicals with limited 4 
experimental data using a combination of QSAR, regression, and hybrid modeling (Rusyn et al. 5 
2012), and incorporating Organization of Economic Co-operation and Development (OECD) 6 
principles for model building and external cross-validation. Tier 2 type assessments, ideally, enable 7 
the use of more types of data to inform our understanding of data-limited chemicals. For Tier 2, EPA 8 
is beginning to develop high-content toxicity values on a trial basis. High-content toxicity values can 9 
be developed using bioinformatic approaches based on data that can be machine read and, hence, 10 
readily mined and analyzed. Additional data integration and hand curation might be needed to use 11 
available data resources, such as high-throughput screening (HTS)/high-content screening (HCS) 12 
assays, alternative species testing, and study data compiled the European Union’s Registration, 13 
Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation. Tier 3 assessments will 14 
continue to be driven by traditional data, but new data types could provide new insights into 15 
difficult issues such as low dose-response, human variability and susceptibility, and the effects of 16 
multiple environmental stressors. These various "fit for purpose” assessment types can be used to 17 
develop hypotheses, screen chemicals, mechanistically fingerprint toxicants, set priorities, and 18 
inform hazards, relative potencies, and risks. 19 

6. Conclusions 

6.1. Challenges 

Novel data streams and approaches are rapidly emerging that present opportunities for informing 20 
and supporting human health risk assessment, but challenges remain. Four key challenges are the 21 
need for (1) the ability to predict metabolism of test compounds, (2) improved understanding of 22 
the biology from a systems perspective; (3) evaluated methods to measure key aspects of biological 23 
space across multiple levels of organization; and (4) the knowledge infrastructure to ensure 24 
availability of relevant data. Future directions include filling these scientific gaps and continuing to 25 
build the framework for incorporating new information fit-for-purpose into assessments to support 26 
a range of decisions to promote health, protect the environment, and manage risks.  27 

Arguably, the greatest challenge is posed by the need to consider and evaluate complex interactions 28 
of chemical and biological systems to predict potential for health risks. Systems biology provides an 29 
approach for investigating emergent properties in complex chemical-biological systems by probing 30 
how changes in one part affect the others, and the behavior of the whole. New data types are 31 
providing required information to develop these predictive models.  32 

There is an imbalance, however, in the sophistication of methods available and the resolution of 33 
data being developed to evaluate impacts of chemical perturbations and to discover mechanistic 34 
commonalities. Large amounts of network or high-throughput screening/high-content data can be 35 
collected to measure effects at the molecular level. Substantial information is also available on 36 
disease outcomes, yet only very sparse data are being generated on intermediate events. A similar 37 
lack of exposure information commensurate with hazard data is also evident. Even given the rich 38 
data coming from implementation of the high-throughput (HT) toxicity testing schemes, gaps in 39 
coverage for key endpoints occur, and thus, developing and incorporating assays are needed to fill 40 
gaps in the biology required to assess potential for the full range of adverse outcomes required by 41 
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risk assessors. This discrepancy in available data across levels of biological organization should 1 
narrow over time, as methods continue to advance and as more metabolomics data for biomarkers 2 
of effects and exposure are made available. This will lead to development of models that predict 3 
disease outcomes with greater certainty from initiating events in individuals and populations 4 
relative to exposures likely to be experienced in the real environment.  5 

6.2.  Next Steps 

Future plans for facilitating use of new data types and tools to support the full range of risk-based 6 
assessments and decisions include addressing needs for validated testing schemes and clearly 7 
articulating decision considerations for incorporating results of these analyses. In addition, further 8 
prototypes or case examples for incorporating HT toxicity data and other novel data types to inform 9 
risk assessment are required to demonstrate the added value of these advanced tools and to 10 
identify further the most significant scientific gaps. 11 

Validation of HT toxicity testing schemes will be necessary if the data developed using these 12 
methods are to be used to inform risk-based decisions and to support efficient chemical risk 13 
assessments. The key to moving the wealth of information being generated through research efforts 14 
such as ToxCastTM and Toxicology in the 21st Century (Tox21) is to develop a framework for 15 
validating HT toxicity testing schemes to support specific chemical evaluation objectives. 16 
Traditional “validation” schemes designed to evaluate conventional assay and testing structures do 17 
not adequately address this gap and would take years to implement. As the technology for 18 
providing rapid, efficient, robust hazard and effects data continues to advance, the validation 19 
process for evaluating these new methods is also expected to undergo a transformation to provide 20 
fit-for-purpose confidence in results. Future incorporation of new types information to improve the 21 
scientific basis and efficiency of risk assessment requires clear articulation of decision 22 
considerations for using new types of data and methods. Some of these decision considerations 23 
might have standard principles supported by a broad range of risk managers and stakeholders, 24 
while others will need to be fit-for-purpose. Early consideration of these decision considerations 25 
has been initiated and plans are in place to develop criteria for systematic review of new types of 26 
data, disease signatures, adequate weight of evidence for use in risk assessment, and new 27 
approaches for risk assessment.  28 

Demonstrating approaches for incorporating new molecular biology data and evaluating advanced 29 
methods might be facilitated by additional case examples and prototypes. Conducting a variety of 30 
case studies focused on using the HT toxicity data from ToxCastTM and Tox21, in combination with 31 
other chemical-specific information to improve efficiency of risk-based decisions where little 32 
traditional toxicity data are available, will be important for assessing the value added of these new 33 
data types.  34 

Examples also will be identified where molecular biology data can be considered for Tier 3 35 
assessments to augment traditional assessment methodologies. These will provide opportunities to 36 
solicit public comment and peer review. 37 

Opportunities also exist for using new data types to guide development of NexGen approaches by 38 
considering prototypes for how this information could support some of the most challenging 39 
questions faced by risk managers. Population-level risks could be considered using both traditional 40 
and molecular biology data, with an additional emphasis on epigenomics and influences of broadly 41 
defined environmental factors. Additional insights for risk managers can be found in Crawford-42 
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Brown (2013). Application of new methods might better inform our understanding of the combined 1 
effects of multiple stressors, such as multiple chemical exposures, diet, stress, and pre-existing 2 
disease. In recognition of the tremendous potential for these new methods and data types to 3 
support risk assessment, the EPA Office of Research and Development will continue to elaborate the 4 
NexGen framework, and begin to develop toxicity values informed by new biology for specific risk 5 
assessment purposes.  6 

• EPA’s Office of Research and Development will work with EPA’s Program Offices using Tier 1 7 
screening and prioritization approaches to queue up new assessments. Results from this work 8 
will be used to feed back into the testing paradigm for its refinement. 9 

• Toxicity values informed by new types of knowledge will be developed in each tier to address 10 
needs from screening chemicals for future testing to assessment for potency or category of 11 
adverse effect. 12 

• Levels of confidence in those values will be characterized depending on the types and quality 13 
of the supporting data. 14 

EPA’s Office of Research and Development will expand stakeholder discussion and the community 15 
of practice with regard to the use of new data types and methods in risk assessment, and the peer 16 
review of new methods. New assessments will receive public comment and peer review. 17 

Finally, EPA’s Office of Research and Development will continue working with other national and 18 
international agencies involved in assessment, testing, and research to coordinate and harmonize 19 
activities, and improve data collection, analyses, curation, sharing, and warehousing. 20 
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Associations in Type 2 Diabetes Mellitus by Chirag Patel, Rong Chen, Keiichi Kodama, John Ioannidis, 
and Atul Butte (2013) 

Data-Driven Integration of Epidemiological and Toxicological Data to Select Candidate Interacting 
Genes and Environmental Factors in Association with Disease by Chirag Patel, Rong Chen, and Atul 
Butte (2012a)  

Genetic Variability in Molecular Responses to Chemical Exposure by Chirag Patel and Mark Cullen 
(2012)  
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Role of Environmental Chemicals in Diabetes and Obesity: An NTP Workshop Review by Kristina 
Thayer, Jerrold Heindel, John Bucher, and Michael Gallo (2012) 

Current Perspectives on the Use of Alternative Species in Human Health and Ecological Hazard 
Assessments by Edward Perkins, Gerald Ankley, Kevin Crofton, Natàlia Garcia-Reyero, Carlie LaLone, 
Mark Johnson, Joseph Tietge, and Daniel Villeneuve (2013) 

Propiconazole Inhibits Steroidogenesis and Reproduction in the Fathead Minnow (Pimephales 
promelas) by Sarah Skolness, Chad Blanksma, Jenna Cavallin, Jessica Churchill, Elizabeth Durhan, 
Kathleen Jensen, Rodney Johnson, Michael Kahl, Elizabeth Makynen, Daniel Villeneuve, and Gerald 
Ankley (2013) 

Zebrafish Developmental Screening of the ToxCast™ Phase I Chemical Library by Stephanie Padilla, 
Daniel Corum, Beth Padnos, Deborah Hunter, Andrew Beam, Keith Houck, Nisha Sipes, Nicole 
Kleinstreuer, Thomas Knudsen, David Dix, and David Reif (2012) 

A Systems Toxicology Approach to Elucidate the Mechanisms Involved in RDX Species-Specific 
Sensitivity by Christopher Warner, Kurt Gust, Jacob Stanley, Tanwir Habib, Mitchell Wilbanks, Natàlia 
Garcia-Reyero, and Edward Perkins (2012) 
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Development of a Paradigm for the Next Generation of Chemical Risk Assessment: Short-term In Vivo 
Models for Tier 2 Assessments by Michael DeVito, Russell Thomas, and Jason Lambert (in 
preparation) 

Incorporating New Technologies into Toxicity Testing and Risk Assessment: Moving from 21st Century 
Vision to a Data-Driven Framework by Russell Thomas, Martin Philbert Scott Auerbach, Barbara 
Wetmore, Michael Devito, Ila Cote, Craig Rowlands, Maurice Whelan, Sean Hays, Melvin Andersen, 
Bette Meek, Lawrence Reiter, Jason Lambert, Harvey Clewell III, Martin Stephens, Jay Zhao, Scott 
Wesselkamper, Lynn Flowers, Edward Carney, Timothy Pastoora, Dan Petersen, Carole Yauk, and 
Andy Nong (2013a) 

Temporal Concordance Between Apical and Transcriptional Points of Departure for Chemical Risk 
Assessment by Russell Thomas, Scott Wesselkamper, Nina Wang, Jay Zhao, Dan Peterson, Jason 
Lambert, Ila Cote, Yang Longlong, Eric Healy, Michael Black, Harvey Clewell, Bruce Allen, and Melvin 
Andersen (2013b) 

Integrating Pathway-Based Transcriptomic Data into Quantitative Chemical Risk Assessment: A Five 
Chemical Case Study by Russell Thomas, Harvey Clewell III, Bruce Allen, Longlong Yang, Eric Healy, 
and Melvin Andersen (2012) 

Application of Transcriptional Benchmark Dose Values in Quantitative Cancer and Noncancer Risk 
Assessment by Russell Thomas, Harvey Clewell III, Bruce Allen, Scott Wesselkamper, Nina Ching 
Wang, Jason Lambert, Janet Hess-Wilson, Jay Zhao, and Melvin Andersen (2011) 

http://www.ncbi.nlm.nih.gov/pubmed/23334806
http://www.ncbi.nlm.nih.gov/pubmed/23334806
http://www.ncbi.nlm.nih.gov/pubmed/22689751
http://www.ncbi.nlm.nih.gov/pubmed/22689751
http://www.ncbi.nlm.nih.gov/pubmed/22945578
http://www.ncbi.nlm.nih.gov/pubmed/22296744
http://www.ncbi.nlm.nih.gov/pubmed?term=Thayer%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=22296744
http://www.ncbi.nlm.nih.gov/pubmed?term=Thayer%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=22296744
http://www.ncbi.nlm.nih.gov/pubmed/23771518
http://www.ncbi.nlm.nih.gov/pubmed/23771518
http://www.ncbi.nlm.nih.gov/pubmed/23339182
http://www.ncbi.nlm.nih.gov/pubmed/23339182
http://www.ncbi.nlm.nih.gov/pubmed/22182468
http://www.ncbi.nlm.nih.gov/pubmed/22697906
http://www.ncbi.nlm.nih.gov/pubmed/22697906
http://toxsci.oxfordjournals.org/content/early/2013/08/17/toxsci.kft178.abstract
http://toxsci.oxfordjournals.org/content/early/2013/08/17/toxsci.kft178.abstract
http://www.ncbi.nlm.nih.gov/pubmed/23596260
http://www.ncbi.nlm.nih.gov/pubmed/23596260
http://www.ncbi.nlm.nih.gov/pubmed/22305970
http://www.ncbi.nlm.nih.gov/pubmed/22305970
http://www.ncbi.nlm.nih.gov/pubmed/21097997
http://www.ncbi.nlm.nih.gov/pubmed/21097997
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Predictive QSAR Modeling: Methods and Applications in Drug Discovery and Chemical Risk 
Assessment by Alexander Golbraikh, Xiang Simon Wang, Hao Zhu, and Alexander Tropsha (2012) 

Developmental Toxicity Prediction by Raghuraman Venkatapathy and Nina Wang (2013) 

Predictive Modeling of Chemical Hazard by Integrating Numerical Descriptors of Chemical Structures 
and Short-term Toxicity Assay Data  by Ivan Rusyn, Alexander Sedykh, Yen Low, KZ Guyton, and 
Alexander Tropsha (2012) 

An In Silico Approach for Evaluating a Fraction-Based, Risk Assessment Method for Total Petroleum 
Hydrocarbon Mixtures by Nina Ching Wang, Glenn Rice, Linda Teuschler, Joan Colman, and Raymond 
Yang (2012b) 

Application of Computational Toxicological Approaches in Human Health Risk Assessment I. A Tiered 
Surrogate Approach by Nina Ching Yi Wang, Jay Zhao, Scott Wesselkamper, Jason Lambert, Dan 
Petersen, and Janet Hess-Wilson (2012a) 

Development of Quantitative Structure-Activity Relationship (QSAR) Models to Predict the 
Carcinogenic Potency of Chemicals. II. Using Oral Slope Factor as a Measure of Carcinogenic Potency 
by Nina Ching Yi Wang, Raghuraman Venkatapathy, Robert Mark Bruce, and Chandrika Moudgal 
(2011) 
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Perspectives on Validation of High-Throughput Assays Supporting 21st Century Toxicity Testing by 
Richard Judson, Robert Kavlock, Matthew Martin, David Reif, Keith Houck, Thomas Knudsen, Ann 
Richard, Raymond Tice, Maurice Whelan, Menghang Xia, Ruili Huang, Christopher Austin, George 
Daston, Thomas Hartung, John Fowle III, William Wooge, Weida Tong, and David Dix (2013) 

Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk 
Assessment by Richard Judson, Robert Kavlock, Woodrow Setzer, Elaine Cohen Hubal, Matthew 
Martin, Thomas Knudsen, Keith Houck, Russell Thomas, Barbara Wetmore, and David Dix (2011) 
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Addressing Human Variability in Next Generation Health Assessments of Environmental Chemicals by 
Lauren Zeise, Frederic Bois, Weihsueh Chiu, Dale Hattis, Ivan Rusyn, and Kathryn Guyton (2012) 

Quantitative High-Throughput Screening for Chemical Toxicity in a Population-Based In Vitro Model 
by Eric Lock, Nour Abdo, Ruili Huang, Menghang Xia, Oksana Kosyk, Shannon O’Shea, Yi-Hui Zhou, 
Alexander Sedykh, Alexander Tropsha, Christopher Austin, Raymond Tice, Fred Wright, and Ivan 
Rusyn (2012) 

Predicting Later-Life Outcomes of Early-Life Exposures by Kim Boekelheide, Bruce Blumberg, Robert 
Chapin, Ila Cote, Joseph Graziano, Amanda Janesick, Robert Lane, Karen Lillycrop, Leslie Myatt, 
Christopher States, Kristina Thayer, Michael Waalkes, and John Rogers (2012) 

In Vitro Screening for Population Variability in Chemical Toxicity by Shannon O’Shea, John Schwarz, 
Oksana Kosyk, Pamela Ross, Min Jin Ha, Fred Wright, and Ivan Rusyn (2011) 

Improving Cumulative Risk Assessment Through Systems and Network Biology Driven Data Mining by 
Timothy Zacharewski, Ila Cote, Linda Teuschler, and Lyle Burgoon (submitted) 

The Role of Advanced Biological Methods and Data in Regulatory Rationality by Douglas Crawford-
Brown (2013) 

Incorporating New Technologies into Toxicity Testing and Risk Assessment: Moving from 21st Century 
Vision to a Data-Driven Framework T by Russell S. Thomas, Martin Philbert, Scott Auerbach, Barbara 
Wetmore, Michael Devito, Ila Cote, et al. (2013) 

 
Note: EPA also thanks Christine Sofge, Paul Schulte, and Ainsley Weston for sharing their 
pre-publication draft manuscript. 

http://www.ncbi.nlm.nih.gov/pubmed/23086848
http://www.ncbi.nlm.nih.gov/pubmed/22387746
http://www.ncbi.nlm.nih.gov/pubmed/22387746
http://www.ncbi.nlm.nih.gov/pubmed/22496687
http://www.ncbi.nlm.nih.gov/pubmed/22496687
http://www.ncbi.nlm.nih.gov/pubmed/22369873
http://www.ncbi.nlm.nih.gov/pubmed/22369873
http://www.ncbi.nlm.nih.gov/pubmed/20951756
http://www.ncbi.nlm.nih.gov/pubmed/20951756
http://www.ncbi.nlm.nih.gov/pubmed/23338806
http://www.ncbi.nlm.nih.gov/pubmed?term=Judson%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23338806
http://www.ncbi.nlm.nih.gov/pubmed?term=Judson%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23338806
http://www.ncbi.nlm.nih.gov/pubmed?term=Judson%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23338806
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http://www.ncbi.nlm.nih.gov/pubmed/21384849
http://www.ncbi.nlm.nih.gov/pubmed/23086705
http://www.ncbi.nlm.nih.gov/pubmed/?term=Quantitative+High-Throughput+Screening+for+Chemical+Toxicity+in+a+Population-Based+In+Vitro+Model
http://www.ncbi.nlm.nih.gov/pubmed/22672778
http://www.ncbi.nlm.nih.gov/pubmed/20952501
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=28638
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Appendix B.  Glossary 

Glossary Term Description 

adverse outcome pathway 
(AOP) 

An adverse outcome pathway is the mechanistic or predictive relationship 
between an initial chemical-biological interaction (i.e., molecular initiating 
event[s]) and subsequent perturbation to cellular functions sufficient to elicit 
disruptions at higher levels of organization, culminating in an adverse 
phenotypic outcome in an individual and population relevant to risk assessment 
(i.e., disease progression or organ dysfunction in humans). 

 Ankley GT; Bennett RS; Erickson RJ; Hoff DJ; Hornung MW; Johnson RD; Mount 
DR; Nichols JW; Russom CL; Schmieder PK; Serrrano JA; Tietge JE; Villeneuve DL. 
(2010). Adverse outcome pathways: A conceptual framework to support 
ecotoxicology research and risk assessment. Environmental Toxicology and 
Chemistry 29 (3): 730-741. 
http://service004.hpc.ncsu.edu/toxicology/websites/journalclub/linked_files/Fal
l10/Environ%20Toxicol%20Chem%202010%20Ankley.pdf. 

ArrayTrack™ Publicly available toxicogenomics software for DNA microarrays. It contains 
three integrated components: (1) a database (MicroarrayDB) that stores 
microarray data and associated toxicological information; (2) tools (TOOL) for 
data visualization and analysis; and (3) libraries (LIB) that provide curated 
functional data from public databases for data interpretation. Using 
ArrayTrack™, an analysis method can be selected from TOOL and applied to 
selected microarray data stored in the MicroarrayDB. Analysis results can be 
linked directly to pathways, gene ontology, and other functional information 
stored in LIB. 

 Food and Drug Administration (FDA). (2012). ArrayTrack™ FAQs. Available online 
at 
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Arraytrack/ucm1350
70.htm (accessed September 27, 2012). 

assay 1. The process of quantitative or qualitative analysis of a component of a 
sample; or 
2. Results of a quantitative or qualitative analysis of a component of a sample. 

 National Library of Medicine. (2012). IUPAC Glossary of Terms Used in 
Toxicology, 2nd Ed. Available online at 
http://sis.nlm.nih.gov/enviro/iupacglossary/frontmatter.html (accessed 
September 27, 2012). 

Bayesian Network  A graph-based model of joint multivariate probability distributions that captures 
properties of conditional independence between variables. 

 Friedman N; Linial M; Nachman I; Pe’er D. (2000). Using Bayesian networks to 
analyze expression data. Journal of Computational Biology 7 (3-4): 601-620. 

http://service004.hpc.ncsu.edu/toxicology/websites/journalclub/linked_files/Fall10/Environ%20Toxicol%20Chem%202010%20Ankley.pdf
http://service004.hpc.ncsu.edu/toxicology/websites/journalclub/linked_files/Fall10/Environ%20Toxicol%20Chem%202010%20Ankley.pdf
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Arraytrack/ucm135070.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Arraytrack/ucm135070.htm
http://sis.nlm.nih.gov/enviro/iupacglossary/frontmatter.html
http://www.ncbi.nlm.nih.gov/pubmed/11108481
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Glossary Term Description 

Bayesian Network 
reconstruction 

The process of integrating Bayesian Network data using a software program to 
generate gene causal networks predictive of complex phenotypes. 

 Wang I.; Zhang B; Yang X; Stepaniants S; Zhang C; Meng Q; Peters M; He Y; Ni C; 
Slipetz D; Crackower MA; Houshyar H; Tan CM; Asante-Appiah E; O'Neill G; Luo 
MJ; Theiringer R; Yuan J; Chiu C; Lum PY; Lamb J; Boie Y; Wilkinson HA; Schadt E; 
Dai H; Roberts C. (2012). Systems analysis of eleven rodent disease models 
reveals an inflammatome signature and key drivers. Molecular Systems Biology 8 
594. 

bioinformatics A field of biology in which complex multivariable data from high-throughput 
screening and genomic assays are interpreted in relation to target identification 
and effects of sustained perturbations on organs and tissues to make biological 
discoveries or predictions. This field encompasses all computational methods 
and theories applicable to molecular biology and areas of computer-based 
techniques for solving biological problems, including manipulation of models and 
data sets.  

 National Center for Biotechnology Information (NCBI). (2012). Bioinformatics. 
Available online at http://www.ncbi.nlm.nih.gov/mesh?term=bioinformatics 
(accessed September 27, 2012). 

biological assay (bioassay)  A method of measuring the effects of a biologically active substance using an 
intermediate in vivo or in vitro tissue or cell model under controlled conditions. 
It includes virulence studies in animal fetuses in utero, mouse convulsion 
bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, 
calculation of potentiating effects of a hormonal factor in an isolated strip of 
contracting stomach muscle, etc. 

 National Center for Biotechnology Information (NCBI). (2012). Biological Assay. 
Available online at http://www.ncbi.nlm.nih.gov/mesh?term=bioassay (accessed 
September 27, 2012). 

biological pathway altering 
dose (BPAD) 

The provisional acceptable exposure level at the low end of the distribution of 
the external dose required to perturb a biological pathway, accounting for 
uncertainty and variability. 

 Judson RS; Kavlock RJ; Setzer RW; Hubal EA; Martin MT; Knudsen TB; Houck KA; 
Thomas RS; Wetmore BA; Dix DJ. (2011). Estimating toxicity-related biological 
pathway altering doses for high-throughput chemical risk assessment. Chem Res 
Toxicol 24 (4): 451-462. http://dx.doi.org/10.1021/tx100428e  

biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme 
concentrations, specific hormone concentrations, a specific gene phenotype 
distribution in a population, presence of biological substances) that serve as 
indices for health- and physiology-related assessments, such as disease risk, 
psychiatric disorders, environmental exposure and its effects, disease diagnosis, 
metabolic processes, substance abuse, pregnancy, cell line development, 
epidemiologic studies. 

 National Center for Biotechnology Information (NCBI). (2012). Biological 
Markers. Available online at 
http://www.ncbi.nlm.nih.gov/mesh?term=biological%20markers (accessed 
September 27, 2012). 

http://www.ncbi.nlm.nih.gov/mesh?term=bioinformatics
https://workspace.icfi.com/etr/ncea/NexGen/Report/August%202013%20Review/National%20Center%20for%20Biotechnology%20Information%20(NCBI).%20(2012).%20Biological%20Assay.%20Available%20online%20at%20http:/www.ncbi.nlm.nih.gov/mesh?term=bioassay
https://workspace.icfi.com/etr/ncea/NexGen/Report/August%202013%20Review/National%20Center%20for%20Biotechnology%20Information%20(NCBI).%20(2012).%20Biological%20Assay.%20Available%20online%20at%20http:/www.ncbi.nlm.nih.gov/mesh?term=bioassay
http://dx.doi.org/10.1021/tx100428e
http://www.ncbi.nlm.nih.gov/mesh?term=biological%20markers
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Glossary Term Description 

cell biology The study of the structure, behavior, growth, reproduction, and pathology of 
cells; and the function and chemistry of cellular components. 

 National Center for Biotechnology Information (NCBI). (2012). Cell Biology 
Available online at http://www.ncbi.nlm.nih.gov/mesh?term=cell%20biology 
(accessed September 27, 2012). 

Chemical Effects in Biological 
Systems (CEBS) database  

An NIH/NIEHS publicly available toxicogenomic database that houses data of 
interest to environmental health scientists. CEBS has received depositions of 
data from academic, industrial, and governmental laboratories. CEBS is designed 
to display data in the context of biology and study design, and to permit data 
integration across studies for novel meta-analysis. 

 National Institute for Environmental Health Sciences (NIEHS). (2012). Chemical 
Effects in Biological Systems (CEBS). Available online at 
http://www.niehs.nih.gov/research/resources/databases/cebs/index.cfm 
(accessed September 27, 2012). 

Comparative Toxicogenomic 
Database (CTD)™  

A publicly available toxicogenomic database on the National Library of 
Medicine's (NLM) Toxicology Data Network (TOXNET®). The CTD™ elucidates 
molecular mechanisms by which environmental chemicals affect human disease. 
It contains manually curated data describing cross-species chemical-
gene/protein interactions and chemical- and gene-disease relationships. The 
results provide insight into the molecular mechanisms underlying variable 
susceptibility and environmentally influenced diseases. These data also will 
provide insights into complex chemical-gene and protein interaction networks. 

 National Library of Medicine (NLM). (2012). Fact Sheet. Comparative 
Toxicogenomics Database (CTD)™. Available online at 
http://www.nlm.nih.gov/pubs/factsheets/ctdfs.html (accessed September 27, 
2012). 

computational models Computerized predictive tools. Sometimes referred to as “in silico” models. 

 U.S. Environmental Protection Agency (EPA). (2012). Glossary of Terms: Methods 
of Toxicity Testing and Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html (accessed April 
2, 2013). 

http://www.ncbi.nlm.nih.gov/mesh?term=cell%20biology
http://www.niehs.nih.gov/research/resources/databases/cebs/index.cfm
http://www.nlm.nih.gov/pubs/factsheets/ctdfs.html
http://www.epa.gov/opp00001/science/comptox-glossary.html
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Glossary Term Description 

decision context Decision context seeks to understand and describe what management decisions 
are being made, why these decisions are made, and the relationship of these 
decisions to previous and anticipated decisions. For example, decision context 
tries to answer some of the following questions: Are risks being ranked; if so, 
why? How will risk information be used in future decisions? Is a change in policy 
or management under consideration; and if so, what is driving the change and 
what are the underlying policy objectives? What is the general scope of 
alternatives under consideration and why? 
Decision context defines the roles and responsibilities of the ultimate decision 
maker, stakeholders, and key technical experts in relation to the decision 
process. Decision context also identifies the constraints within which a decision 
must be made and outputs that will result from the decision.  

 Structured Decision Making (SDM). (2008). Steps in the Decision Process: 
Introduction. Available online at 
http://www.structureddecisionmaking.org/DecisionContext.htm (accessed 
March 19, 2013).  

DNA microarray A grid of nucleic acid molecules of known sequence linked to a solid substrate, 
which can be probed with a sample containing either messenger RNA or 
complementary DNA from a cell or tissue to reveal changes in gene expression 
relative to a control sample. Microarray technology, also known as “DNA gene 
chip” technology, enables the expression of many thousands of genes to be 
assessed in a single experiment. DNA microarrays exploit the ability of 
complementary strands of nucleic acids to base-pair with each other and bind. 
For example, ATATGCGC will bind to its complement (TATACGCG) with a certain 
affinity. DNA copies (cDNAs) are melted, or denatured, to single strands, which 
then can be used to bind to, or hybridize with, fluorescently labeled nucleic acid 
samples from cancerous or normal cells. After washing away the unbound 
molecules, bound fluorescent nucleic acid samples can be identified by laser 
microscopy. Fluorescent dots indicate expressed genes, and differences in 
microarray patterns between normal and cancerous cells can be quickly 
identified. 

 National Library of Medicine. (2012). IUPAC Glossary of Terms Used in 
Toxicology, 2nd Ed. Available online at 
http://sis.nlm.nih.gov/enviro/iupacglossary/frontmatter.html (accessed 
September 28, 2012). 

Enzyme-Linked 
Immunosorbent Assay 
(ELISA) 

An immunoassay utilizing an antibody labeled with an enzyme marker such as 
horseradish peroxidase. Although either the enzyme or the antibody is bound to 
an immunosorbent substrate, they both retain their biologic activity; the change 
in enzyme activity as a result of the enzyme-antibody-antigen reaction is 
proportional to the concentration of the antigen and can be measured 
spectrophotometrically or with the naked eye. Many variations of the method 
have been developed. 

 National Center for Biotechnology Information (NCBI). (2012). Enzyme-Linked 
Immunosorbent Assay. Available online at 
http://www.ncbi.nlm.nih.gov/mesh?term=elisa (accessed September 27, 2012). 

http://www.structureddecisionmaking.org/DecisionContext.htm
http://sis.nlm.nih.gov/enviro/iupacglossary/glossaryc.html#cdna
http://sis.nlm.nih.gov/enviro/iupacglossary/glossaryg.html#gene
http://sis.nlm.nih.gov/enviro/iupacglossary/glossaryg.html#gene
http://sis.nlm.nih.gov/enviro/iupacglossary/frontmatter.html
http://www.ncbi.nlm.nih.gov/mesh?term=elisa
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Glossary Term Description 

epigenetics An emerging field of science that studies heritable changes caused by the 
activation and deactivation of genes with no change in the underlying DNA 
sequence of the organism. The word is Greek in origin and literally means over 
and above (epi) the genome. 

 National Human Genome Research Institute (NHGRI). (2012). Talking Glossary of 
Genetic Terms. Available online at 
http://www.genome.gov/glossary/index.cfm?id=528&textonly=true (accessed 
September 27, 2012). 

functional genomics The study of dynamic cellular processes such as gene transcription, translation, 
and gene product interactions that define an organism. 

 The National Institutes of Health (NIH). (2009). Genomics and Advanced 
Technologies. Available online at 
http://www.niaid.nih.gov/topics/pathogengenomics/Pages/definitions.aspx 
(accessed September 28, 2012). 

gene-environment 
interaction 

The combined effects of genotypes and environmental factors on phenotypic 
characteristics. 

National Center for Biotechnology Information (NCBI). (2012). Gene-
Environment Interaction. Available online at 
http://www.ncbi.nlm.nih.gov/mesh?term=gene%20environment%20interaction 
(accessed September 28, 2012). 

gene expression The phenotypic manifestation of a gene or genes by the processes of genetic 
transcription and genetic translation. 

National Center for Biotechnology Information (NCBI). (2012). Gene Expression. 
Available online at http://www.ncbi.nlm.nih.gov/mesh/68015870 (accessed 
September 28, 2012). 

Gene Expression Omnibus 
(GEO) 

A public repository that archives and freely distributes microarray, next-
generation sequencing, and other forms of high-throughput functional genomic 
data submitted by the scientific community. In addition to data storage, a 
collection of Web-based interfaces and applications is available to help users 
query and download the studies and gene expression patterns stored in GEO. 

 National Center for Biotechnology Information (NCBI). (2012). Gene Expression 
Omnibus. Frequently Asked Questions. Available online at 
http://www.ncbi.nlm.nih.gov/geo/info/faq.html (accessed September 27, 2012). 

http://www.genome.gov/glossary/index.cfm?id=528&textonly=true
http://www.niaid.nih.gov/topics/pathogengenomics/Pages/definitions.aspx
http://www.ncbi.nlm.nih.gov/mesh?term=gene%20environment%20interaction
http://www.ncbi.nlm.nih.gov/mesh/68015870
http://www.ncbi.nlm.nih.gov/geo/info/faq.html
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Glossary Term Description 

Gene Ontology (GO) 
database 

A product of the Gene Ontology (GO) project. The GO project provides 
structured, controlled vocabularies and classifications that cover several 
domains of molecular and cellular biology and are freely available for community 
use in the annotation of genes, gene products, and sequences. Many model 
organism databases and genome annotation groups use the GO database and 
contribute their annotation sets to the GO resource. The GO database integrates 
the vocabularies and contributed annotations and provides full access to this 
information in several formats. Members of the GO Consortium continuously 
work collectively, involving outside experts as needed, to expand and update the 
GO vocabularies. The GO Web resource also provides access to extensive 
documentation about the GO project and links to applications that use GO data 
for functional analyses. 

 Gene Ontology Consortium. (2004). The Gene Ontology (GO) database and 
informatics resource. Nucleic Acids Research 32: Database issue D258-261. 

genetics The branch of science concerned with the means and consequences of 
transmission and generation of the components of biological inheritance. Used 
for mechanisms of heredity and the genetics of organisms, for the genetic basis 
of normal and pathologic states, and for the genetic aspects of endogenous 
chemicals. It includes biochemical and molecular influence on genetic material. 

 National Center for Biotechnology Information (NCBI). (2012). Genetics. 
Available online at http://www.ncbi.nlm.nih.gov/mesh?term=genetics (accessed 
September 27, 2012). 

genome-wide association 
study (GWAS) 

An approach used in genetics research to associate specific genetic variations 
with particular diseases. The method involves scanning the genomes from many 
different people and looking for genetic markers that can be used to predict the 
presence of a disease. Once such genetic markers are identified, they can be 
used to understand how genes contribute to the disease and develop better 
prevention and treatment strategies. 

 National Institutes of Health (NIH). (2012). Talking Glossary of Genetic Terms: 
Genome-wide Association Studies (GWAS). National Human Genome Research 
Institute. Available online at 
http://www.genome.gov/glossary/index.cfm?id=91&textonly=true (accessed 
September 27, 2012). 

green chemistry The design of chemical products and processes to reduce or eliminate the use 
and generation of hazardous substances. Green Chemistry framework includes 
three main principles: (1) to incorporate sustainable designs across all stages of 
the chemical lifecycle, (2) to reduce the hazard of chemical products and 
processes by design, and (3) to work as a cohesive set of design criteria. Twelve 
design criteria have been developed to fulfill these three principles (prevention, 
atom economy, less hazardous chemical synthesis, designing safer chemicals, 
safer solvents and auxiliaries, design for energy efficiency, use of renewable 
feedstocks, reduce derivatives, catalysis, design for degradation, real-time 
analysis for pollution prevention, and inherently safer chemistry for accident 
prevention). 

 Anastas, P, Eghbali, N. (2010). Green chemistry: Principles and practice. Chem 
Soc Rev 39 (1): 301-312. 

http://www.ncbi.nlm.nih.gov/mesh?term=genetics
http://www.genome.gov/glossary/index.cfm?id=91&textonly=true
http://www.genome.gov/glossary/index.cfm?id=91&textonly=true
http://www.genome.gov/glossary/index.cfm?id=91&textonly=true
http://www.genome.gov/glossary/index.cfm?id=91&textonly=true
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high-throughput screening 
(HTS) 

A rapid method of measuring the effect of an agent in a biological or chemical 
assay. The assay usually involves some form of automation or a way to conduct 
multiple assays at the same time using sample arrays. 

 National Center for Biotechnology Information (NCBI). (2012). High-Throughput 
Screening Assays. Available online at 
http://www.ncbi.nlm.nih.gov/mesh?term=high%20throughput%20screening%2
0method (accessed September 27, 2012). 

in silico Referring to or describing data generated and analyzed using computer 
modeling and information technology. 

 National Library of Medicine. (2012). IUPAC Glossary of Terms Used in 
Toxicology, 2nd Ed. Available online at 
http://sis.nlm.nih.gov/enviro/iupacglossary/frontmatter.html (accessed 
September 27, 2012). 

IVIV extrapolation (IVIVE) A method that uses determinations of protein binding, liver/kidney clearance, 
and oral uptake to estimate ranges of oral human exposures leading to 
tissue/plasma concentrations similar to in vitro point-of-departure 
concentrations. 

 Krewski D; Westphal M; Paoli G; Croteau M; Al-Zoughool M; Andersen M; Chiu 
W; Cote I. (in preparation). A framework for the next generation of risk science.  

knowledgebases Provide an alternative approach for storing and searching the complete 
networks of highly interconnected information produced by linking bioassays 
and pathways. Developed decades ago to codify human knowledge so that they 
could be used to efficiently support decisions, knowledgebases are finding 
practical applications in meaningfully organizing vast amounts of linked 
biological data using ontologies. 

Kyoto Encyclopedia of Genes 
and Genomes (KEGG) 

A database resource that integrates genomic, chemical, and systemic functional 
information. In particular, gene catalogs from completely sequenced genomes 
are linked to higher level systemic functions of the cell, the organism, and the 
ecosystem. KEGG is a reference knowledgebase for integration and 
interpretation of large-scale data sets generated by genome sequencing and 
other high-throughput experimental technologies. 

 Kanehisa Laboratories. (2012). KEGG: Kyoto encyclopedia of genes and genomes. 
Available online at http://www.genome.jp/kegg/ (accessed February 22, 2013). 

lift Lift is a measure of how much better prediction results are using a model than 
could be obtained by chance. For example, say 2% of customers who receive a 
catalog in the mail make a purchase, and when a model is used to select catalog 
recipients, 10% make a purchase. The lift for the model would be 10/2 or 5. 

 Oracle. (2013). Glossary: "Lift". Available online at 
http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/glossary.htm 
(accessed March 20, 2013). 

http://www.ncbi.nlm.nih.gov/mesh?term=high%20throughput%20screening%20method
http://www.ncbi.nlm.nih.gov/mesh?term=high%20throughput%20screening%20method
http://sis.nlm.nih.gov/enviro/iupacglossary/frontmatter.html
http://www.genome.jp/kegg/
http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/glossary.htm
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Meta Data Viewer A publicly available graphical display software program that can be used to 
graph animal and human data. Meta Data Viewer can display up to 15 text 
columns and to graph 1–5 numerical values. Users can sort, group, and filter 
data and examine patterns of findings across studies. Users can use the program 
and any associated National Toxicology Program (NTP) data files for their own 
purposes, including for use in publications. 

 National Toxicology Program (NTP). (2012). Meta Data Viewer. Available online 
at http://ntp.niehs.nih.gov/?objectid=1DF7D40E-A957-9727-
733C9B89E243634B (accessed September 27, 2012). 

microarray analysis The simultaneous analysis, on a microchip, of multiple samples or targets 
arranged in an array format. 

 National Center for Biotechnology Information (NCBI). (2012). Microarray 
Analysis. Available online at 
http://www.ncbi.nlm.nih.gov/mesh/?term=microarray%20analysis (accessed 
September 27, 2012). 

microarray technology A developing technology used to study the expression of many genes at once. It 
involves placing thousands of gene sequences in known locations on a glass slide 
called a gene chip. A sample containing DNA or RNA is placed in contact with the 
gene chip. Complementary base pairing between the sample and the gene 
sequences on the chip produces light that is measured. Areas on the chip 
producing light identify genes that are expressed in the sample. 

 National Human Genome Research Institute (NHGRI). (2012). Talking Glossary of 
Genetic Terms. Available online at 
http://www.genome.gov/glossary/index.cfm?id=125&textonly=true (accessed 
September 27, 2012). 

mode of action The key steps in the toxic response after chemical interaction at the target site 
that is responsible for the physiological outcome or pathology of the chemical; 
how chemicals perturb normal biological function. 

 U.S. Environmental Protection Agency (EPA). (2012). Glossary of Terms: Methods 
of Toxicity Testing and Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html (accessed April 
2, 2013). 

mode-of-action-based 
in vitro toxicity pathway 
assays 

Fit-for-purpose assays using human cells to assess biological pathway 
perturbations based on specific or generic modes of action. The suite of these 
assays would form the test battery for safety assessment. 

 Krewski D; Westphal M; Paoli G; Croteau M; Al-Zoughool M; Andersen M; 
Chiu W; Cote I. (in preparation). A framework for the next generation of risk 
science.  

http://ntp.niehs.nih.gov/?objectid=1DF7D40E-A957-9727-733C9B89E243634B
http://ntp.niehs.nih.gov/?objectid=1DF7D40E-A957-9727-733C9B89E243634B
http://www.ncbi.nlm.nih.gov/mesh/?term=microarray%20analysis
http://www.genome.gov/glossary/index.cfm?id=125&textonly=true
http://www.genome.gov/glossary/index.cfm?id=125&textonly=true
http://www.genome.gov/glossary/index.cfm?id=125&textonly=true
http://www.epa.gov/opp00001/science/comptox-glossary.html
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molecular epidemiology Referring to the application of molecular biology to answer epidemiological 
questions. The examination of patterns of changes in DNA to implicate particular 
carcinogens and the use of molecular markers to predict which individuals are at 
highest risk for a disease are common examples. Molecular epidemiology 
incorporates molecular markers of exposure and biological change into 
population-based studies; integrates knowledge of the human genome into 
epidemiological studies to understand genetic susceptibility and gene-
environment interaction in disease causation. 

 National Center for Biotechnology Information (NCBI). (2012). Molecular 
Epidemiology. Available online at 
http://www.ncbi.nlm.nih.gov/mesh?term=molecular%20epidemiology 
(accessed September 27, 2012); Krewski D; Westphal M; Paoli G; Croteau M; 
Al-Zoughool M; Andersen M; Chiu W; Cote I. (in preparation). A framework for 
the next generation of risk science.  

omics Refers to a broad field of study in biology, ending in the suffix ''-omics'' such as 
genomics, proteomics, transcriptomics. 

 U.S. Environmental Protection Agency (EPA). (2012). Glossary of Terms: Methods 
of Toxicity Testing and Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html (accessed April 
2, 2013). 

ontology Defines types of data (e.g., chemicals, genes, assays, interactions, pathways, 
cells, species) and their interrelationships (chemicals “activate” proteins; assays 
“measure” changes in proteins; genes are “part of” pathways, etc.). 

phenotype An individual's observable traits, such as height, eye color, and blood type. The 
genetic contribution to the phenotype is called the genotype. Some traits are 
largely determined by the genotype, while other traits are largely determined by 
environmental factors. 

 National Human Genome Research Institute (NHGRI). (2012). Talking Glossary of 
Genetic Terms. Available online at 
http://www.genome.gov/glossary/index.cfm?id=152&textonly=true (accessed 
September 27, 2012). 

polymerase chain reaction 
(PCR) 

A method for amplifying a DNA base sequence using a heat-stable polymerase 
and two 20-base primers, one complementary to the (+) strand at one end of the 
sequence to be amplified and one complementary to the (-) strand at the other 
end. Because the newly synthesized DNA strands can subsequently serve as 
additional templates for the same primer sequences, successive rounds of 
primer annealing, strand elongation, and dissociation produce rapid and highly 
specific amplification of the desired sequence. PCR also can be used to detect 
the existence of the defined sequence in a DNA sample. 

 Department of Energy (DOE). (2010). Human Genome Project Information: 
Genome Glossary. Available online at 
http://www.ornl.gov/sci/techresources/Human_Genome/glossary/glossary_p.sh
tml (accessed September 27, 2012). 

http://www.ncbi.nlm.nih.gov/mesh?term=molecular%20epidemiology
http://www.epa.gov/opp00001/science/comptox-glossary.html
http://www.genome.gov/glossary/index.cfm?id=152&textonly=true
http://www.ornl.gov/sci/techresources/Human_Genome/glossary/glossary_p.shtml
http://www.ornl.gov/sci/techresources/Human_Genome/glossary/glossary_p.shtml
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principal components 
analysis (PCA) 

A mathematical procedure that transforms several possibly correlated variables 
into a smaller number of uncorrelated variables called principal components. 

 National Center for Biotechnology Information (NCBI). (2012). Principal 
Components Analysis. Available online at 
http://www.ncbi.nlm.nih.gov/mesh?term=principal%20component%20analysis 
(accessed September 27, 2012). 

probe Single-stranded DNA or RNA molecules of specific base sequence, labeled either 
radioactively or immunologically, that are used to detect the complementary 
base sequence by hybridization. 

 Department of Energy (DOE). (2010). Human Genome Project Information: 
Genome Glossary. Available online at 
http://www.ornl.gov/sci/techresources/Human_Genome/glossary/glossary_p.sh
tml (accessed September 27, 2012). 

proteomics The study of the function of all expressed proteins. 

 U.S. Environmental Protection Agency (EPA). (2012). Glossary of Terms: Methods 
of Toxicity Testing and Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html (accessed April 
2, 2013). 

quantitative structure 
activity relationship (QSAR) 

A mathematical relationship between a quantifiable aspect of chemical structure 
and a chemical property or reactivity or a well-defined biological activity, such as 
toxicity. Using a sample set of chemicals, a relationship is established between 
one or many physical-chemical properties a chemical possesses due to its 
structure and a chemical property or biological activity of concern. This 
mathematical expression is then used to predict the chemical property or 
biological response expected from other chemicals with similar structures. It is 
based on the presumption that similar molecules or chemical structures have 
similar properties or biological activities or toxicity potential. 

 U.S. Environmental Protection Agency (EPA). (2012). Glossary of Terms: Methods 
of Toxicity Testing and Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html (accessed April 
2, 2013). 

QSAR Toolbox A software application intended for use by government, the chemical industry, 
and other stakeholders in filling gaps in (eco)toxicity data needed for assessing 
the hazards of chemicals. The Toolbox incorporates information and tools from 
various sources into a logical workflow. Crucial to this workflow is grouping 
chemicals into chemical categories. The seminal features of the Toolbox are 
identification of relevant structural characteristics and the potential mechanism 
or mode of action of a target chemical, identification of other chemicals that 
have the same structural characteristics or mechanism/mode of action (or both), 
and use of existing experimental data to fill the data gap(s). 

 QSAR Toolbox. (2012). About: What does the QSAR Toolbox do? Available online 
at http://www.qsartoolbox.org/ (accessed September 28, 2012). 

http://www.ncbi.nlm.nih.gov/mesh?term=principal%20component%20analysis
http://www.ornl.gov/sci/techresources/Human_Genome/glossary/glossary_p.shtml
http://www.ornl.gov/sci/techresources/Human_Genome/glossary/glossary_p.shtml
http://www.epa.gov/opp00001/science/comptox-glossary.html
http://www.epa.gov/opp00001/science/comptox-glossary.html
http://www.oecd.org/document/6/0,3343,en_2649_34379_43087494_1_1_1_1,00.html
http://www.oecd.org/document/6/0,3343,en_2649_34379_43087494_1_1_1_1,00.html
http://www.qsartoolbox.org/
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reverse toxicokinetics (RTK) Also known as reverse dosimetry, refers to the use of a pharmacokinetic model 
to estimate external dose (exposure) from a known internal concentration. The 
method uses a one-compartment model and makes default assumptions such as 
chemicals are eliminated wholly through metabolism and renal excretion; renal 
excretion is a function of the glomerular filtration rate and the fraction of 
unbound chemical in the blood (i.e., no active transport); and oral absorption is 
100%. Using these assumptions, the plasma concentration of the chemical at 
steady state per unit dose then can be estimated. The two experimental 
chemical-specific parameters required to generate an estimate are the rate of 
disappearance of parent via hepatic metabolism (intrinsic clearance) and 
fraction bound (or conversely unbound) to plasma proteins. Both parameters 
can be measured experimentally in a relatively high-throughput manner. 

 Judson RS; Kavlock RJ; Setzer RW; Hubal EA; Martin MT; Knudsen TB; Houck KA; 
Thomas RS; Wetmore BA; Dix DJ. (2011). Estimating toxicity-related biological 
pathway altering doses for high-throughput chemical risk assessment. Chem Res 
Toxicol Chem Res Toxicol 24 (4): 451-462. http://dx.doi.org/10.1021/tx100428e  

rule A rule describes an association between elements on the left-hand side of the 
rule and items on the right-hand side of the rule. For instance, the rule [diapers, 
cola] => [milk] in a supermarket database might mean that when customers 
bought diapers and cola, they also purchased milk. 

ruleset A ruleset is a collection of one or more rules that can be associated with a realm 
authorization, factor assignment, command rule, or secure application role. The 
ruleset will be “true” or “false” based on evaluation of each rule in the ruleset 
and the evaluation type for the ruleset, which can be “all true” or “any true.” 

 Oracle. (2013). 5 Configuring Rule Sets. Available online at 
http://docs.oracle.com/cd/B28359_01/server.111/b31222/cfrulset.htm#DVAD
M70150 (accessed March 20, 2013). 

SNPs Refers to single nucleotide polymorphisms, which are single nucleotide 
variations in a genetic sequence that occur at appreciable frequency in the 
population. 

 National Center for Biotechnology Information (NCBI). (2012). SNPs. Available 
online at http://www.ncbi.nlm.nih.gov/mesh?term=SNPS (accessed September 
28, 2012). 

stem cell biology A branch of biology that studies and develops stem cells, which are cells with the 
ability to divide for indefinite periods in culture and to give rise to specialized 
cells. 

 The National Institutes of Health (NIH). (2009). Stem Cell Basics. Available online 
at http://irp.nih.gov/catalyst/v19i6/systems-biology-as-defined-by-nih (accessed 
September 28, 2012). 

http://dx.doi.org/10.1021/tx100428e
http://docs.oracle.com/cd/B28359_01/server.111/b31222/cfrulset.htm#DVADM70150
http://docs.oracle.com/cd/B28359_01/server.111/b31222/cfrulset.htm#DVADM70150
http://www.ncbi.nlm.nih.gov/mesh?term=SNPS
http://irp.nih.gov/catalyst/v19i6/systems-biology-as-defined-by-nih
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systems biology A scientific approach that combines the principles of engineering, mathematics, 
physics, and computer science with extensive experimental data to develop a 
quantitative as well as a deep conceptual understanding of biological 
phenomena, permitting prediction and accurate simulation of complex 
(emergent) biological behaviors. 

 Wanjek, C. (2011). Systems biology as defined by NIH. The NIH Catalyst 19 (6): 
November-December. http://irp.nih.gov/catalyst/v19i6/systems-biology-as-
defined-by-nih. 

TOM (topological overlap 
matrix) heat map 

A graphical representation in which the rows and columns represent genes in a 
symmetric manner; the color intensity represents the interaction strength 
between genes. 

 Wang I.; Zhang B; Yang X; Stepaniants S; Zhang C; Meng Q; Peters M; He Y; Ni C; 
Slipetz D; Crackower MA; Houshyar H; Tan CM; Asante-Appiah E; O'Neill G; Luo 
MJ; Theiringer R; Yuan J; Chiu C; Lum PY; Lamb J; Boie Y; Wilkinson HA; Schadt E; 
Dai H; Roberts C. (2012). Systems analysis of eleven rodent disease models 
reveals an inflammatome signature and key drivers. Molecular Systems Biology 8 
594. 

toxicity pathways The 2007 NRC report on Toxicity Testing in the 21st Century envisioned that new 
technologies will help us better understand how chemicals perturb normal 
biological function, and thus identify toxicity pathways. Potential toxic effects of 
chemicals would be predicted based on in vitro bioactivity profiles derived from 
a chemical’s effects on cellular molecules and processes. The interpretation of 
chemically induced perturbations in toxicity pathways depends on linking in vitro 
effects with adverse outcomes in vivo, and on computer modeling that 
extrapolates to predicted responses in whole tissues, organisms, and 
populations based on realistic human or environmental exposures. 

 U.S. Environmental Protection Agency (EPA). (2012). Glossary of Terms: Methods 
of Toxicity Testing and Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html (accessed April 
2, 2013). 

toxicogenomics Study of the roles that genes play in the biological responses to environmental 
toxicants and stressors by the collection, interpretation, and storage of 
information about gene and protein activity. 

 U.S. Environmental Protection Agency (EPA). (2012). Glossary of Terms: Methods 
of Toxicity Testing and Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html (accessed April 
2, 2013). 

transcription The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of 
DNA from an RNA template is called reverse transcription. 

National Center for Biotechnology Information (NCBI). (2012). Transcription. 
Available online at http://www.ncbi.nlm.nih.gov/mesh/68014158 (accessed 
September 27, 2012). 

http://irp.nih.gov/catalyst/v19i6/systems-biology-as-defined-by-nih
http://irp.nih.gov/catalyst/v19i6/systems-biology-as-defined-by-nih
http://www.epa.gov/opp00001/science/comptox-glossary.html
http://www.epa.gov/opp00001/science/comptox-glossary.html
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transcriptome The pattern of gene expression, at the level of genetic transcription, in a specific 
organism or under specific circumstances in specific cells. 

 National Center for Biotechnology Information (NCBI). (2012). Transcriptome. 
Available online at http://www.ncbi.nlm.nih.gov/mesh/68059467 (accessed 
September 27, 2012). 

transcriptomics The study of gene expression at the RNA level. 

 U.S. Environmental Protection Agency (EPA). (2012). Glossary of Terms: Methods 
of Toxicity Testing and Risk Assessment. Available online at 
http://www.epa.gov/opp00001/science/comptox-glossary.html (accessed April 
2, 2013). 

transgenic Produced from a genetically manipulated egg or embryo; containing genes from 
another species. 

 National Center for Biotechnology Information (NCBI). (2012). Transgenic. 
Available online at http://www.ncbi.nlm.nih.gov/mesh/?term=transgenic 
(accessed September 27, 2012). 

translation The process of translating the sequence of a messenger RNA (mRNA) molecule 
to a sequence of amino acids during protein synthesis. The genetic code 
describes the relationship between the sequence of base pairs in a gene and the 
corresponding amino acid sequence that it encodes. In the cell cytoplasm, the 
ribosome reads the sequence of the mRNA in groups of three bases to assemble 
the protein. 

 National Human Genome Research Institute (NHGRI). 2012. Talking Glossary of 
Genetic Terms. Available online at 
http://www.genome.gov/glossary/index.cfm?id=200&textonly=true (accessed 
September 28, 2012). 

translesion synthesis A mechanism for DNA damage tolerance that allows the DNA replication 
machinery to move beyond a DNA lesion or abasic site (i.e., a site that lacks a 
DNA base). 

Virtual Tissue (v-Tissues™) 
Models  

In silico cross-scale models of cellular organization and emergent functions used 
to better understand disease progression. Tissues are the clinically relevant level 
for diagnosing and treating the transition from normal to adverse states in 
chemical-induced toxicities leading to cancer, immune dysfunction, 
developmental defects, and more. Currently, in vivo rodent experiments are 
used to evaluate tissue-level effects of altered molecular and cellular function; 
however, the extrapolation of animal models to humans is often uncertain. 
v-Tissues™ aim to simulate key molecular and cellular processes computationally 
in the context of normal tissue biology to: (1) help understand complex 
physiological relationships, and (2) predict adverse effects due to chemicals. As 
the number of chemicals in consumer products, the workplace, and the 
environment continues to rise, v-Tissues™ offers the promise of a more efficient, 
effective, and humane approach for evaluating their impact on human health. 

 U.S. Environmental Protection Agency (EPA), Computational Toxicology Research 
Program. What are Virtual Tissues? (2012). Available online at 
http://www.epa.gov/ncct/virtual_tissues/what.html (accessed September 27, 
2012). 

 

http://www.ncbi.nlm.nih.gov/mesh?term=QSAR
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