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MULTISTAGE WEIBULL TIME-TO-TUMOR MODEL 
IN EPA’S BENCHMARK DOSE SOFTWARE (BMDS) 

METHODOLOGY DESCRIPTION 

1.0 INTRODUCTION

In cancer risk assessments, the multistage Weibull model [Krewski et. al., 1983] is often used to 

model the probability of a specified tumor response in a test subject exposed to a toxin when 

some time-related measurement is available on the subject (e.g., time since toxin exposure; 

subject‟s age) along with the reported dosage rate of toxin. Here, the term "tumor" refers to a 

specific type of tumor occurring in a particular tissue or organ of a select sex (and strain of 

animal, for bioassay data).  The multistage Weibull model is a natural extension of the multistage 

model. It is derived from a model of carcinogenesis where tumor onset results from some fixed 

number of sequential genetic mutations, with the assumption that the hazard rate for each 

mutation (i.e., “stage”) is homogeneous over time but is dose dependent.  The model is generally 

applicable for non- to moderately fatal cancer types under conditions of low dose exposure, and 

has been proposed for use with data from both controlled animal experiments [e.g., OSHA 1992] 

and observational studies of humans [e.g., NRC, 1999]. 

The U.S. Environmental Protection Agency (EPA) has utilized the commercially-available 

software TOXRISK
1 

to fit the multistage Weibull model to data generated from (animal) time-

to-tumor experiments [e.g., USEPA, 2001, 2002].  However, that software is no longer 

commercially sold or supported.  Also, EPA would like to have model parameter estimates 

reported with standard errors or confidence intervals, and would like to estimate benchmark 

doses for a wide range of user-specified and additional risks.  It is also important to EPA to have 

a fully documented and tested software utility that calculates confidence intervals using the 

profile likelihood method (without resorting to linear approximation) and that reports the 

likelihood profile. Therefore, EPA has pursued the development of a multistage Weibull time-

to-tumor modeling capability within its Benchmark Dose Software (BMDS), a tool for risk 

assessors to estimate a benchmark dose associated with a pre-determined benchmark response by 

fitting one of several statistical models to dose-response data.  The development of a module for 

incorporating the multistage Weibull model within BMDS also provided EPA with an 

opportunity to examine and resolve statistical and computational issues associated with the 

application of this model. This report documents the methodology which has been utilized in 

implementing a multistage Weibull time-to-tumor model within BMDS. 

Toxicological Risk Assessment Program (1995). Developed by K. Crump, R. Howe, C. Van Landingham and W. Fuller, 

Clement International Corporation, Ruston, LA under contract to Electric Power Research Institute, Palo Alto, CA 
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2.0 MODEL DEFINITION 

A time-to-tumor model describes the probability of a test subject exhibiting a specific tumor-

related response by time t when the subject is exposed to a toxin at dosage rate d. The tumor-

related response takes one of two forms: 

 Death of the subject, with death resulting from a tumor (“death from tumor”) 

 Onset of a tumor (i.e., the subject develops a tumor of a pathologically detectable size), 

generally observable only upon examination following death.  

The k-stage time-to-tumor Weibull model for fatal tumors (for some positive integer k) 

characterizes the probability of death from tumor.  Under this model, the probability of death 

from tumor occurring prior to some specified observation time t upon exposure to a toxin at dose 

level d is given by the function 
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where model parameters satisfy the restrictions c ≥ 1, t0 > 0, and βi ≥ 0 (i = 0, 1, ..., k).  The 

shape parameter c determines how the risk of death from tumor increases over time.  The 

location (or induction time) parameter t0 is interpreted as the elapsed time that occurs between 

the onset of a fatal tumor and death from tumor.  The polynomial coefficient scale parameters β0, 

β1, …, βk, determine the curvature of the dose-response curve.  Assumptions that are implicit to 

this model are: 

 Death from tumor cannot occur prior to time t = t0. 

 The elapsed time from tumor onset to death from tumor (t0) is constant across subjects. 

 Test subjects are tumor free at time t = 0, and exposure to toxin does not occur prior to t = 0. 

In its current implementation within BMDS, up to a six-stage model (i.e., k = 6) can be fitted.  

Furthermore, the model can be used to estimate statistics that are related to the probability of 

achieving either death from tumor (e.g., benchmark dose for fatal risk) or tumor onset (e.g., 

benchmark dose for incidental risk) over time.  Section 4.0 provides more information on 

estimating benchmark dose. 

The k-stage time-to-tumor Weibull model for non-fatal tumors characterizes the probability of 

tumor onset.  Under this model, the probability of observing tumor onset in a test subject prior to 

some specified observation time t upon exposure to a toxin at dose level d is given by the 

function 
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where model parameters c and βi have the same constraints as above.  Note that this function is 

equivalent to the time-to-death distribution function for fatal tumors with the location parameter 
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omitted. The shape parameter c determines how the risk of tumor onset increases over time, and 

scale parameters β0, β1, …, βk, determine the curvature of the dose-response curve. Assumptions 

that are implicit to this model are: 

 Any occurrence of death among test subjects is not attributable to the tumor type that is being 

modeled. 

 Test subjects are tumor free at time t = 0, and exposure to toxin does not occur prior to t = 0. 

2.1. Tumor Contexts 

In survival/sacrifice studies collecting time-to-tumor data, the test subject is classified within one 

of the following four outcome categories or tumor contexts [Peto et al., 1980]: 

! Censored response (C). The subject is removed from the study at time t because it has 

died or was scheduled to be sacrificed, and upon examination, no tumors of the type 

being modeled are detected. 

! Death from fatal tumor (F). The subject dies at time t, a tumor is detected when the 

subject is examined, and death is attributed to this tumor. This context is obviously not 

applicable for non-fatal tumors. 

! Incidental tumor (I). The subject is removed from the study at time t because it has died 

or was scheduled to be sacrificed, and upon examination, a tumor is detected. Death is 

not attributed to this tumor; otherwise, the subject would be classified as tumor context F. 

! Unknown response observed (U ). The subject is removed from the study at time t 

because it has died (from a cause assumed to be unrelated to the tumor type being 

modeled) or was scheduled to be sacrificed, but during examination, the presence or 

absence of the tumor type being modeled cannot be determined (e.g., due to 

decomposition, or inconclusive necropsy). 

Within each of these tumor contexts, the likelihood associated with the k-stage Weibull is as 

follows: 

C: For fatal tumors, the subject is alive up to time t, but no tumor is detected up to this time.  

Therefore, death from tumor can not occur before time t + t0: 


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For non-fatal tumors, the subject is alive up to time t, but tumor onset has not occurred up 

to this time: 
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F: For fatal tumors, death from tumor occurs at observation time t: 


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For non-fatal tumors, the likelihood is not defined because death from tumor cannot 

occur. 

I: For fatal tumors, the subject is alive up to time t, but a tumor is detected at this time.  

Therefore, death from tumor is predicted to occur between time t and t + t0: 
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For non-fatal tumors, the subject is alive up to time t, but a tumor is detected at this time 

(i.e., tumor onset occurred before time t): 
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U: For fatal tumors, even though it cannot be determined when or if the animal died due to 

tumor, it is assumed that any such death would not have occurred up to time t: 


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For non-fatal tumors, the likelihood is not defined because the time of tumor onset cannot 

be determined. Thus, test subjects having data with context U are not considered when 

modeling time-to-tumor data associated with non-fatal tumors. 

2.2. Log-Likelihood Function 

Assume that test subjects are placed within one of D > k dosage groups, and let dj denote the 

dosage rate assigned to the j
th 

dosage group (j = 1, ..., D). Furthermore, within each dosage 

group, assume that the subjects are grouped further according to observation time and tumor 

context.  For test subject group s within dosage group j, let tjs denote the observation time, rjs 

denote the tumor context, and njs denote the number of subjects in the group. Then the log-

likelihood for fatal tumors is written as follows: 
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Because C and I are the only tumor contexts associated with non-fatal tumors, the log-likelihood 

for non-fatal tumors corresponds to the following: 
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Values of t0, c, β0, β1,..., βk that maximize the log-likelihood function are the maximum likelihood 

estimates (MLEs) of the model parameters. 

2.3. Reparameterization of the Multistage Weibull Model 

Within BMDS, the maximum likelihood (ML) estimation algorithm used for the k-stage Weibull 

model is a modification of the ML estimation algorithm for the 3-parameter Weibull distribution 

[Hirose, 1996].  Both algorithms use a reparametrization of the Weibull to improve 

computational stability.  In the ML algorithm for the k-stage Weibull model, the 

reparametrization is: 

γ = 1 / c 

μ = t0 + c 

bi = βi×c
c 

for i = 0, 1,..., k 

These new parameters are substituted in the k-stage Weibull model for c, t0, and βi, respectively, 

for both the fatal and non-fatal tumor model forms.  For fatal tumors, the probability of death 

from tumor by time t upon exposure to the toxin at dosage rate d is 
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For non-fatal tumors, the probability of tumor onset by time t upon exposure to the toxin at 

dosage rate d is 
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The new parameters satisfy the following constraints:  0 < γ ≤ 1, γ
-1 

< μ, and bi ≥ 0 (i = 0, 1, ..., 

k). The reparametrized model takes the form of the Generalized Extreme Value (GEV) 
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distribution [von Mises, 1936] and is therefore called the k-stage GEV model. Although the 

results were limited to ML estimation for uncensored data, a similar GEV reparametrization of 

the 3-parameter Weibull model has been shown to improve numerical stability for ML 

estimation, especially when the shape parameter c is large (i.e., when the data are negatively 

skewed) [Hirose, 1996]. 

Note that the reparametrization from k-stage Weibull to k-stage GEV parameters allows Weibull 

parameter MLEs to be expressed as simple analytic functions of GEV parameter MLEs.  

However, impact of the reparameterization on the estimation procedure is non-trivial, because 

the conversion from k-stage Weibull parameters to k-stage GEV parameters is not one-to-one 

(i.e., each of the k-stage GEV parameters is not a function of individual k-stage Weibull 

parameters).  In particular, while BMDS allows the user to fix the values of any of the model 

parameters, fixing parameters in the k-stage Weibull model creates complex constraints on the k-

stage GEV model parameters.  Details on the effects of fixing k-stage Weibull parameters on the 

k-stage GEV parameter constraints are provided in Appendix A. 

For fatal tumors, the log-likelihood associated with the k-stage GEV model (“k-stage GEV log-

likelihood”) is expressed as follows: 

=   
  






D

j Cr

k

i

i

jijsjs

js

dbtn
1 0

/1][ 

 
 







 









Fr

k

i

i

jijs

k

i

i

jijsjs

js

dbtdbtn
0

1

0

/1 ln)](1ln[)1()](1[  

  
 





 































Ir

k

i

i

jijsjs

k

i

i

jijsjs

js

dbttdbtn 1)](1[][expln][
0

/1/1

0

/1  






  

 



Ur

k

i

i

jijsjs

js

dbtn
0

/1)](1[ 

where [x]+ denotes the maximum of x and zero (i.e., [x]+ equals x when x > 0 and equals zero 

otherwise).  For non-fatal tumors, the log-likelihood is determined by modifying the above 

equation as follows: 

1. Set the parameter constraint μ = γ
-1 

(equivalent to setting t0 = 0 in the k-stage Weibull 

model), 

2. Remove the second and last terms corresponding to tumor contexts F (which can occur 

only for fatal tumors) and U (which represent missing values for non-fatal tumors), and 

3. Replace the third term (corresponding to tumor context I) by 
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3.0 ALGORITHM FOR MAXIMUM LIKELIHOOD ESTIMATION 

This section describes the algorithm for MLE in terms of the log-likelihood for the fatal tumor 

model. For the non-fatal tumor model, a similar algorithm is used which features the same log-

likelihood with minor modifications, as described at the end of Section 2.3. Specific details of 

the algorithm for the fatal tumor model are provided in Appendix A.  A general description of 

the algorithm is provided below. 

3.1. Starting Values 

Unlike other modules in BMDS, the multistage Weibull module only allows for either all starting 

values to be specified by the user, or all values to be specified automatically (i.e., no mixing of 

user-specified and automatic starting values is permitted).  User-specified starting values are 

converted from multistage Weibull to multistage GEV parameter space.  Otherwise, the module 

generates starting values automatically by specifying a search grid over the bounded free 

multistage GEV parameters (γ and/or μ), and optimizing the objective function, i.e., the log-

likelihood, over the remaining free parameters. 

The search grid method for finding automatic starting values takes advantage of the multistage 

Weibull to multistage GEV reparametrization.  In addition to gaining numerical stability, the 

reparameterization bounds the support of the likelihood for an additional model parameter.  This 

allows a finite search grid to be defined over two parameters, thereby simplifying the search 

problem.  In the k-stage Weibull model, the support of the likelihood for location parameter t0 is 

bounded between 0 and tmin = min(tjs | rjs = F), or the earliest observation time for which the 

study coordinator observes a death from tumor. However, the support for the shape parameter c 

is not bounded from above.  In the k-stage GEV model, the support of the likelihood for both 

parameters γ and μ are bounded from above and below. 

The algorithm specifies a search grid over both γ and μ, with the grid centered at the midpoints of 

the search space.  The k-stage GEV log-likelihood function is maximized with values of γ and μ 

fixed at each grid point.  The concavity properties of the log-likelihood function over bi (i = 0, 1, 

..., k), proven in Appendix D, ensure the convergence of the optimizations to a global maximum 

under the fixed constraints.  Finally, the grid point(s) associated with the largest maximum log-

likelihood value(s) under the fixed constraints is (are) selected to provide the starting values for 

maximizing the unconstrained k-stage GEV log-likelihood function. 

3.2. Estimation of Multistage GEV Model Parameters 

After the starting values are determined, the multistage GEV log-likelihood function is 

maximized by twice executing the donlp2 optimization (see Section 6.0).  This two-step process 

allows the internal scaling in the optimization to be updated between the two optimization runs.  

In addition, any parameters that are very close to a parameter boundary after the first 

optimization run can be fixed at the boundary value for the second run.  In cases where multiple 
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sets of automatic starting values are provided to the estimation procedure, only the set with the 

largest log-likelihood after the first optimization run proceeds to the second run.  Thereby, the 

second optimization produces refined values of the parameter MLEs efficiently. 

3.3. Estimating the Multistage Weibull Parameter Correlation Matrix and Standard 
Errors 

BMDS modules use a standard asymptotic method, the inverse of (−2 ) log-likelihood Hessian 

matrix at the model parameter MLEs, to estimate the correlation matrix and standard errors of 

the parameter MLEs.  For the multistage Weibull module, the Hessian of the multistage Weibull 

log-likelihood has been coded analytically to minimize numerical errors.  (In other BMDS 

modules, the Hessian matrix is approximated using a finite difference approximation.)  

Subsequently, as with other BMDS modules, the matrix inversion function in the BMDS „Assist‟ 

library is used to invert the matrix.  As with other BMDS modules, the multistage Weibull 

module excludes fixed parameters or parameter estimates with values on the parameter boundary 

from the correlation and standard error calculations.  The analytic second order derivatives of the 

multistage Weibull log-likelihood are shown in Appendix C. 

4.0 BENCHMARK DOSE (BMD) ESTIMATION 

The benchmark dose (BMD) is expressed as a function of the model parameters and the 

benchmark response (BMR), where the functional form is determined based upon whether the 

BMR is interpreted as a measure of additional risk or extra risk. 

Added (i.e., Additional) Risk: 

For fatal tumors, the benchmark fatal added risk is defined as 

BMR = F(t, BMD) − F(t, 0) 



=  








 




k

i

i

i BMDbtbt
0

/1

0

/1 )()](1[exp)](1[exp  

=   
















 




k

i

i

i BMDbtbt
1

/1

0

/1 )()](1[exp1)](1[exp  

The benchmark dose for fatal added risk is therefore the (positive) root BMD of the 

following polynomial equation: 

  0
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(Note that BMD cannot be estimated if BMR ≥ [1 − F(t, 0)].) 
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For both fatal and non-fatal tumors, the equivalent equations for incidental risk are 

determined by substituting μ = γ
-1 

(which is equivalent to setting t0 = 0 in the Weibull 

model).  Thus, the benchmark dose for incidental added risk is the (positive) root BMD 

of the following polynomial equation: 

  0

/1/1

1

][exp1ln)()( btBMRtBMDb
k

i

i

i

  


Extra (i.e., Relative) Risk: 

For fatal tumors, the benchmark fatal extra risk is defined as 

BMR = [F(t, BMD) − F(t, 0)] / [1 − F(t, 0)] 

= 

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The benchmark dose for fatal extra risk is therefore the (positive) root BMD of the 

following polynomial equation: 

]1ln[)](1[)( /1
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 

As with added risk, the equivalent equations for incidental risk, relevant for both fatal and 

non-fatal tumors, are obtained by substituting μ = γ
-1 

(which is equivalent to setting t0 = 0 

in the Weibull model).  Thus, the benchmark dose for incidental extra risk is the 

(positive) root BMD of the following polynomial equation: 

]1ln[)()( /1

1

BMRtBMDb
k

i

i

i 




In each case, for a given value of BMR and t, the maximum likelihood estimate of BMD is 

calculated by first substituting the model parameters in the polynomial equation by their 

maximum likelihood estimates.  Starting at 0, the polynomial is evaluated by incrementally 

increasing the value of BMD by a step-size of the maximum dose (dD) until the polynomial 

changes sign from negative to positive.  The interval where the sign change occurs contains the 

root. Subsequently, the numerical root of the polynomial is calculated using the algorithm in the 

BMDS library that searches for the root of a function inside an interval. 

5.0 PROFILE LIKELIHOOD CONFIDENCE INTERVAL

The profile log-likelihood function lp(θ) for a parameter Θ (e.g., extra risk BMD) is defined as 

the maximum value of the log-likelihood when Θ is constrained to a fixed value θ, i.e., 
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where l is the log-likelihood, and the maximization is taken over the free mode

is the maximum of 

l parameters 

within the specified constraints.  Note that if ̂ is the MLE of Θ, then )ˆ(pl

the log-likelihood with no fixed constraints, i.e., . 

Strictly speaking, the profile likelihood method calculates more general confidence sets, rather 

than confidence intervals, because the confidence region is defined as those values of the 

parameter where the profile log-likelihood function is “close” to the maximum.  More precisely, 

for 0 < α < 1, the 100(1 − α)% profile likelihood confidence region is defined as 

where ̂ is the MLE of Θ, and 2

, p is the p 
th 

percentile of the 
2 distribution with υ degrees of 

freedom (i.e., if X is a random variable distributed as a 
2 with υ degrees of freedom, then 

P(X < 2

, p ) = p). 

Unless the profile log-likelihood function satisfies some regularity condition, such as concavity, 

the confidence region is generally not a single interval.  For a single parameter (i.e., ), a 

two-sided interval that contains the profile likelihood confidence set is 

 }2/)ˆ()(|{sup},2/)ˆ()(|{inf 2

1,1

2

1,1     llll pp

This interval is defined as the profile likelihood 100(1- α)% confidence interval for Θ. The 

interval is likely to be overly conservative, because it can include regions outside the confidence 

set. 

5.1. Algorithm for Estimating Profile Likelihood Confidence Intervals 

Both BMD and slope cannot easily be expressed as one of the parameters in the multistage GEV 

model. Therefore, the profile log-likelihood for the parameter is also difficult to calculate.  For 

other models with this problem, the BMDS calculates the BMD profile log-likelihood by using 

the SQP method to maximize the log-likelihood with the defining polynomial equation for the 

parameter as a fixed constraint. Therefore, the same approach is used to evaluate the profile log-

likelihood for the k-stage GEV model.  For fatal risk, the constraints in the profile log-likelihood 

for the k-stage GEV model are 

BMD for Added (i.e., Additional) Risk: 

   0)](1[exp1ln)](1[),...,,,,,( 0
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BMD for Extra (i.e., Relative) Risk: 

0]1ln[)](1[),...,,,,,( /1

1

10  



 BMRtbbbbd
k

i

i

ik



where is the constrained parameter. (For incidental risk, set μ = γ
-1 

in the above constraint 

equations.) The profile likelihood function is alternatively expressed as 

The profile likelihood confidence interval is estimated by an adaptive search grid algorithm and a 

binary root search over the constrained parameter . Basically, the algorithm finds locations 

at which the profile log-likelihood function lp(θ) crosses the cut-off value of 

where ̂ is the MLE of Θ, and 2

, p
2is the pth percentile of the distribution with υ degrees of 

freedom. 

To find the lower bound of the profile likelihood confidence interval, the adaptive search grid 

takes decreasing steps in Θ, starting at the MLE ̂ . An attempt is made to calculate the profile 

log-likelihood function at each step, using the values of the optimized free parameters in the 

previous step as starting values.  The step size is reduced if the constrained optimization fails.  At 

any step, if the profile log-likelihood function dips from above to below the cut-off, the results of 

the current and previous steps (including the parameter value and optimized free parameters) are 

stored.  The adaptive search grid terminates when the constrained parameter reaches the lower 

bound of the parameter space (the step size reaches its allowable minimum), or when the value 

of the profile log-likelihood function dips below the cut-off by more than a multiple (currently 

set at 4) of . Subsequently, a root search algorithm takes the last stored pair of grid 

points and searches the grid interval for the location where the profile-log likelihood function 

crosses the cut-off.  The result of the root search is the lower bound of the confidence interval. 

An equivalent methodology is used to find the upper bound of the confidence interval. Specific 

details of the algorithm are provided in Appendix B. 

6.0 OPTIMIZATION FEATURES 

Like some other modules in BMDS, the multistage Weibull time-to-tumor module carries out 

optimizations with donlp2, written by Peter Spellucci.
2 

Donlp2 implements a sequential 

quadratic programming method to optimize twice differentiable functions over domains with 

non-linear constraints.  However, the multistage Weibull time-to-tumor module uses the most 

recent ANSI C port of the routine,
3 

for consistency in the programming language throughout the 

2 
Copyright by P. Spellucci (note that donlp2 is restricted to non-commercial use by the copyright) 

3 
Version 28/11/2001, obtained from http://plato.la.asu.edu/donlp2.html. Donlp2 is no longer available at this web 

site. Donlp2 must be obtained by requesting it from P. Spellucci at spellucci@mathematik.tu-darmstadt.de 
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module.  The port also has the advantage of being implemented with dynamic memory, leading 

to potential improvements in computational efficiency.  Some minor modifications were carried 

out within the donlp2 C code in order to resolve any naming conflicts with the BMDS „Assist‟ 

library functions, and to simplify the return of optimization results. 

6.1. Analytic Gradients 

The SQP method implemented in donlp2 requires the gradient values of the objective function 

and all non-linear constraint functions. Note that donlp2 itself does not require the analytic 

gradient functions to be coded, because the routine includes a user option that automatically 

calculates and implements various finite difference approximations.  For optimization in the 

BMDS multistage Weibull module, however, all required gradient functions were coded 

analytically in order to improve computational efficiency and accuracy.  The first order 

derivatives of the GEV log-likelihood are shown in Appendix C.  The analytic gradients for the 

non-linear constraints are simple to calculate and are not included in this document. 

6.2. Optimization Parameter Settings 

The default parameter settings for the donlp2 optimization are used in the BMDS multistage 

Weibull module.  The convergence criteria specified in the batch file format have not been 

implemented. 

6.3. Internal Scaling 

The free parameters in the multistage GEV model are scaled internally in order to improve the 

stability of the donlp2 optimization.  All scaling factors include a common factor, currently set at 

2
-4 

. 

If the parameter γ is free (i.e., if the parameter c in the multistage Weibull model is free), then the 

scaling factor for γ also includes the inverse γ gradient of the multistage GEV log-likelihood at 

the starting values.  Adjustments are made to ensure that the scaling factor is small enough for 

the first few steps in the optimization to stay within parameter bounds and, if automatic starting 

values are used, within search grid interval bounds. 

If the parameter μ is free, then the scaling factor for μ depends on the multistage Weibull model 

parameter t0. The scaling factor for μ includes the inverse μ gradient of the multistage GEV log-

likelihood at the starting values, with adjustments for parameter bounds and, if applicable, search 

grid interval bounds. 

The scaling factors for free bi parameters are the scaling factor for γ divided by the bi gradient of 

the multistage GEV log-likelihood at the starting values.  Adjustments are made to ensure that 

the scaling factor is small enough (i.e., less than 2
-20 

multiplied by a dose normalization factor 
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(dD)
-i
, where dD is the largest dose level in the dataset), due to the highly sensitive nature of the bi 

parameters, especially for large i. 

When calculating the profile log-likelihood function during the adaptive grid search for 

confidence intervals, examples with test data have shown that an additional scaling factor is 

required for the defining function in the constrained optimization. The profile log-likelihood 

function lp(θ) can specified alternatively with a scaling factor S (> 0) as 

Currently, the scaling factor is set using an adaptive algorithm, which restricts S to stay between 
-8 48 

a minimum value of 2 and a maximum value of 2 . At each search grid location, the adaptive 

scaling factor algorithm attempts to evaluate the profile log-likelihood function by repeatedly 

halving the scale factor until the constrained optimization converges successfully, or the scaling 

factor reaches the minimum value of 2
-8 

. If the optimization fails to converge before the scaling 

factor reaches the minimum, then the evaluation of the profile log-likelihood at the particular 

grid location is considered to have failed.  (Subsequently, the adaptive grid search algorithm 

either reduces the step size or terminates the search.) 

The adaptive scaling factor algorithm is implemented inside the adaptive search grid algorithm 

as follows: 

1. At the first grid point, the initial value of the scaling factor is set at the maximum (i.e, 

2
48

) and immediately implements the adaptive scaling factor algorithm. 

2. Otherwise, if the profile log-likelihood was successfully evaluated at the previous grid 

point, then the adaptive search algorithm first tries using the scaling factor value which 

converged successfully at the previous grid point.  If that fails, then the initial value of the 

scaling factor is set to be the smaller of 

a. (The previously successful scaling factor value) × 2
4
, or 

b. 2
48 

(i.e., the largest allowable scaling factor value), 

and the adaptive scaling factor algorithm is implemented. 

3. Otherwise, if the profile log-likelihood was not successfully evaluated at the previous 

grid point, then the initial value of the scaling factor is set to the initial value at the 

previous grid point, and the adaptive scaling factor algorithm is implemented. 
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7.0 MODELING ISSUES 

7.1. Censoring and Estimability 

Other than for the fatal tumor context (F), the removal of a subject from the study for 

examination due to death or scheduled sacrifice causes the data to be censored at the time of 

removal. For the type of data available from the usual cancer bioassays, all time-of-onset 

observations are censored, because onset can only be determined post-mortem by necropsy. In 

some cases, subjects are sacrificed only at the end of the study, unless they succumb to interim 

deaths (e.g., due to other cancers, toxicity, „natural‟ mortality). Other studies may feature serial 

sacrifices.  

The likelihood specification for each tumor context in Section 2.1 implicitly assumes that the 

censoring mechanism is conditionally independent from the tumor response (i.e., death for fatal 

tumors, or onset for non-fatal tumors) given the dose. The sacrifice schedule is controllable and 

can therefore be designed without violating the conditional independence assumption.  

Occurrence of interim death, however, cannot be controlled, and the conditional independence 

assumption could be violated if there is a significant factor (other than dose) that affects both 

tumor response and interim death. Unfortunately, the conditional independence assumption 

cannot be assessed effectively with the data or supplemental information that are usually 

available from time-to-tumor studies. Thus, the appropriateness of these assumptions should be 

examined carefully on biological grounds. 

The level of censoring in the data affects whether some, or even any, of the parameters in the k-

stage Weibull model can be estimated.  One particular case where model parameters cannot be 

estimated for either the fatal or non-fatal tumor model is when neither fatal (F) nor incidental 

(I) tumor contexts are observed (i.e., no tumors are observed in any of the test subjects).  

Intuitively, the data in this case do not provide sufficient information to assess features of the 

model, because all the observations are right-censored (i.e., have not yet occurred).  

Mathematically in this situation, the MLEs of β0, β1, ..., βk all equal zero, leading to a degenerate 

model. 

In the case where no fatal (F) but some incidental (I) tumor contexts are observed for a 

tumor treated as if it would eventually lead to fatality, the MLE for t0 in the fatal tumor 

model is not uniquely defined.  Since no fatal (F) tumor contexts are observed, the MLE of t0 is 

any value greater than max(tjs | rjs {I, U}), or the largest observation time for which the study 

coordinator observes incidental or unobserved tumor contexts. It is therefore questionable 

whether the outcome of fitting the model for fatal tumors is useful or meaningful in the absence 

of any fatal (F) observations.  The non-fatal tumor model is, however, still viable in this case. 

Other cases with estimability problems may also exist, such as when tumor contexts are highly 

confounded with dosage (d) or time (t). Model diagnostics may help in identifying potential 

problems with estimability. Users are strongly advised to exercise caution when interpreting 

the results from those cases. 


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7.2. Asymptotic Normality 

Deriving useful statistical properties of the multistage Weibull model is complicated by the 

dependence of traditional theorems on the asymptotic normality of parameter MLEs.  (The 

censoring stemming from the tumor contexts also adds to the theoretical complexity.) 

Unfortunately, the multistage Weibull model fails to satisfy standard regularity conditions for 

asymptotic normality of MLEs [LeCam, 1970] in various realistic situations. Those situations 

include cases where: 

a. The location (or induction time) parameter t0 is estimated from the data in the fatal 

tumor model.  The standard regularity condition for asymptotic normality of the 

MLEs is not satisfied because the support of the likelihood over t0 depends on the 

observed data. 

b. In addition to estimating the parameter t0 as in the previous case, the shape parameter 

c lies in the interval 1 ≤ c ≤ 2, and the data contain observations with a fatal (F) tumor 

context.  This condition is considered “irregular” [Hirose, 1996] because the Fisher 

information matrix for the F tumor context is infinite [Smith, 1985]. 

c. Any of the model parameters fall on the boundary of the parameter space in both the 

fatal and non-fatal model. Self and Liang (1987) provide general theoretical proof of 

non-normality in the asymptotic distribution of MLEs when a parameter is on the 

boundary.  Based on this work, and using simulation studies, EPA is currently 

undertaking a research effort to investigate the impact of parameters on the boundary 

for many of the models implemented in BMDS [e.g., Sinha et. al., 2007]. 

The following calculations, in particular, are affected by the cases where asymptotic normality of 

the MLEs is not proven: 

 Correlation matrix and standard error estimates of the parameters. With lack of 

asymptotic normality, using the inverse Hessian of (−2  ) log-likelihood to estimate 

an asymptotic correlation matrix and standard errors of the model parameters may 

produce unreliable results.  In particular, Wald confidence intervals for the 

parameters may be inaccurate. 

 Profile likelihood confidence intervals of BMD. The asymptotic 
2 property of 

likelihood ratio tests depends on the asymptotic normality of the MLEs. Therefore, 

the profile likelihood confidence intervals that are calculated using quantiles of the 
2 distribution may be inaccurate. 
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7.3. Profile Likelihood Confidence Bounds 

In addition to the questions of asymptotic normality described in Section 7.2, the calculation of 

profile likelihood confidence intervals has some numerical issues.  In particular, the following 

two features of the profile log-likelihood function present numerical challenges: 

a. The lack of an analytically defined domain for the profile log-likelihood function. 

The profile likelihood function is defined as the constrained optimum of the log-

likelihood, where the constraint is on the parameter of interest.  Therefore, the 

boundary values of the domain (assuming it is an interval) cannot always be 

calculated analytically. 

b. The lack of unimodality in the profile log-likelihood function. The profile log-

likelihood function may not always be unimodal. In that case, the boundaries for the 

confidence interval may not be the nearest location above and below the parameter 

MLE where the profile log-likelihood crosses the threshold. 

The lack of unimodality in the log-likelihood forces the requirement that the search algorithm 

search the entire domain in order to find the farthest values above and below the parameter MLE 

where the profile log-likelihood function crosses the threshold. Currently, the search region for 

finding a profile likelihood confidence interval attempts to cover the domain, at least for the 

domain boundaries known to be finite. However, this introduces instability in the code, because 

the program may fail to execute successfully if the search algorithm tries to evaluate the log-

likelihood function outside its numerical domain. 

7.4. Interpretation and Estimation of t0 

The multistage Weibull model for fatal tumors includes a parameter t0 that represents the time 

between tumor onset and death from tumor.  The assumption that the value of this parameter is 

fixed across all test subjects yields substantial simplification.  However, in reality, the behavior 

and time course for tumor development is generally more complex than assumed.  In particular, 

the model assumes the following: 

 The time between tumor onset and death from tumor is the same across all subjects. 

As currently specified, the multistage Weibull model does not allow for subjects to 

exhibit deaths from tumor at varying time intervals after tumor onset. 

 The onset of a fatal tumor inevitably leads to death from tumor. The model is 

implicitly assuming that tumor onset is absolutely fatal.  

Estimating t0 may also present a problem because most time-to-tumor experiments are 

survival/sacrifice, where surviving test subjects are terminated according to some pre-determined 

sacrifice schedule.  Termination can occur prematurely before death from tumor would occur, 

leading to censored results over time. Unless a sufficient number of responses categorized as 
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fatal (F) are observed, the data may not contain enough information to obtain a reasonably 

accurate estimate of t0. 

A possible solution to this problem may be to fix t0 at some biologically justifiable value 

between 0 and tmin (the minimum observation time for F tumor contexts).  Note, however, that 

the fatal tumor model can become problematic when t0 is fixed at 0. (In fact, the multistage 

Weibull model software within BMDS assumes that when the user fixes t0 = 0, the non-fatal 

tumor is being requested.)  The problem occurs when the data contain any observations 

categorized as incidental (I) tumor context, because its likelihood component F(t + t0, d) – F(t, d) 

would always be 0.   In terms of biological interpretation, setting t0= 0 would imply that death 

from tumor occurs instantaneously at time of tumor onset.  Even if such an unlikely form of 

cancer was possible, the concept of an incidental (I) tumor would become meaningless. In any 

subject where tumor onset is detected, death from tumor should have occurred immediately, 

which would result in a fatal (F) tumor context.  Therefore, the parameter t0 should not be fixed 

at 0 for the fatal tumor model, especially in the presence of incidental (I) tumor contexts. 
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Appendix A 

Algorithm for Multistage GEV Parameter 
Maximum Likelihood Estimation

Initially, restrictions placed on multistage GEV parameters are determined from restrictions on 

the multistage Weibull parameters.  Freeing or fixing the value of Weibull shape parameter c has 

the biggest impact on the restrictions on the GEV parameters, because all GEV parameters are 

functions of c. The effect that fixing multistage Weibull parameters has on the multistage GEV 

parameter constraints is as follows: 

Multistage Weibull 

parameter constraints 

Multistage GEV 

parameter constraints 

Single parameter Multi-parameter, 

non-linear 

c free 

0 < γ ≤ 1 

t0 free 1 < μ 0 < μ − γ 
-1 

t0 fixed
4 

1 + t0 < μ μ − γ 
-1 

= t0 

βi free 0 ≤ bi 

βi fixed
5 

0 ≤ bi γ
1/γ

bi = βi 

c fixed 

γ = 1 / c 

t0 free c < μ 

t0 fixed μ = t0 + c 

βi free 0 ≤ bi 

βi fixed bi = c 
c
βi 

Unless specified otherwise, all optimizations for the multistage GEV parameter MLEs will be 

carried out using the above GEV parameter constraints. 

For fixed k, the algorithm for numerical maximization of the k-stage GEV log-likelihood 

involves multiple steps.  The following describes the steps when all parameters in the k-stage 

GEV model are free: 

1. To create a search grid over the open unit interval (0, 1), specify a sequence of γ 

parameter values 

4 
These inequality constraints are not necessary in the implementation because parameter μ drops out of the GEV 

likelihood when t0 is fixed.
5 

For the multistage Weibull constraint βi = 0, only the single multistage GEV parameter constraint bi = 0 is required.
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Nn
n

where n  {−N, −N + 1, ..., N −1, N}.  For each n, also specify a sequence of μ 

parameter values 

2

)1/(1
][],[ min

1 
  Mm

tnnm 

where m  {−M, −M + 1, ..., M −1, M}, in order to create a search grid over the 

open interval (γ 
-1

[n], tmin + γ
-1

[n]), where 

Use [m, n] as labels for the M×N grid points. 

2. Maximize the k-stage GEV log-likelihood with fixed constraints γ = γ[0] and μ = 

μ[0, 0].  The k
th 

order polynomial scale parameter (Pk) GEV log-likelihood is the 

k-stage GEV log-likelihood with parameters γ and μ fixed.  The Pk GEV log-

likelihood is (non-strictly) concave, according to Theorem 1 in Appendix D, so 

the optimization will theoretically converge to a global maximum under the fixed 

constraints.  The starting values for this optimization are determined by the 

following procedure: 

a. Maximize the GEV log-likelihood for each dosage group j = 1, 2, 

..., D. That is, separately maximize each term inside the 

summation over j in the log-likelihood, with fixed constraints γ = 

γ[0], μ = μ[0,0], and bi = 0, i = 1, 2, ..., k, and b0 free.  The scale 

parameter (P0) GEV log-likelihood is the k-stage GEV log-

likelihood with parameters γ and μ fixed, and bi = 0 for i = 1, 2, ..., 

k. 

For dosage groups j where no incidental (I) or fatal (F) tumor 

contexts are observed, set y j = 0.  Otherwise, set 

where ][ˆ
0 jb is the global maximum of the P0 GEV log-likelihood 

for dosage group j. Note that according to Theorem 2 in Appendix 

D, the P0 GEV log-likelihood is a strictly concave function for b0 

> 0; hence, an incrementally small (positive) starting value for b0 

should be sufficient to ensure convergence of the optimization. 

b. Regress the P0 GEV parameter estimates onto a k
th 

degree 

polynomial of the dosage rates using least-squares.  The “data” for 

this regression consists of pairs {(yj, dj); j = 1, 2, …, D} and the 

regression model is of the form 





k

i

i

idby
0
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Defining the response vector and the design 

matrix {X[j, i] = dj
i 
; j = 1, 2, ..., D, and i = 0, 1, ..., k}, the starting 

values for optimization of the Pk GEV log-likelihood at [0, 0] is 

therefore 

3. Maximize the Pk GEV log-likelihood for m = 0, with fixed constraints γ = γ[n] 

and μ = μ[0, n].  Carry out the optimizations in sequence order n = 1, 2,..., N, 

followed by n = −1,  −2, ..., −N. If the Pk GEV log-likelihood attains a value of

],0[̂ nl at maximum ],0[ˆ nbi , i = 0, 1, ..., k, then the starting values for the 

optimization at grid points [0, n] are

γ[n] 1/γ[n − 1] 
(γ[n]) × (γ[n − 1]) × , i = 0, 1, ..., k for n > 0, and 

γ[n] 1/γ[n + 1] 
(γ[n]) × (γ[n + 1]) × , i = 0, 1, ..., k for n < 0 

4. Maximize the Pk GEV log-likelihood for m ≠ 0, with fixed constraints γ = γ[n] 

and μ = μ[m, n].  For each n, carry out the optimizations in sequence order m = 1, 

2, ..., M, followed by m = −1,  −2, ..., −M. If the Pk GEV log-likelihood attains a 

value of ],[̂ nml at maximum ],[ˆ nmbi , i = 0, 1, ..., k, then the starting values for the 

optimization at grid points [m, n] are 

, i = 0, 1, ..., k for m > 0, and 

, i = 0, 1, ..., k for m < 0. 

5. Select grid point(s) [m, n] that attain(s) the largest value of the Pk GEV log-

likelihood.  Maximize the k-stage GEV log likelihood, with the selected gridpoint 

values as starting values in the first run of the optimization.  Carry out a second 

run of the optimization to refine the maximization.  (If multiple sets of starting 

values are used, only carry out a second run with the set that attains the largest 

value of the k-stage GEV log-likelihood after the first run.) 

Only minor modifications to the above steps are required to account for fixed model parameters 

(and lower stage models). 
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Appendix B

Algorithm for Estimation of
Profile Likelihood Confidence Interval

To evaluate the profile log-likelihood function )(pl for a parameter  , the SQP method is 

used to maximize the k-stage GEV log-likelihood, with the defining polynomial equation for θ as 

a constraint in the optimization: 

BMD for Fatal Added Risk 

   0)](1[exp1ln)](1[ 0

/1/1

1




btBMRtb
k

i

i

i

 

BMD for Fatal Extra Risk 

0]1ln[)](1[ /1

1




BMRtb
k

i

i

i



(For incidental added and extra risk, set μ = γ
-1 

in the above equations.) 

Before describing the algorithm, the following definitions and labels are required: 

 Label the parameter search interval as (θinf, θsup), where the algorithm will search 

values between θinf and θsup for the profile likelihood confidence interval
6
: 

BMD Added Risk 

(θinf, θsup) = (0, 1). 

BMD Extra Risk 

(θinf, θsup) = , where integer m > 2 is selected by the user. 

 Label the free parameters in the multistage GEV model as  , so that the elements 

of  represents a subset of the parameters {γ, μ, b0, b1, …, bk}. 

 For any integer value n and positive integer value N, define the following

sequence:

Note that , the MLE of θ. Label the minimum and maximum 

allowable values of N, which determines the maximum and minimum allowable 

stepsizes, as Nmin and Nmax, respectively.   In the current setting, Nmin = 2 and Nmax 

= 22. 

6 
The domains of profile log-likelihood functions are not necessarily well defined. The intervals given here are selected to 

ensure a fairly complete search of the entire domain for the bounds. 

DRAFT – do not cite or quote 22 September 30, 2010 



 

        

 ],[ˆ Nn   

],0[ˆ N  

 

 

    

2/)ˆ(ˆ 2

1,1   l  

    

   

})(ˆ|{   l  

 

    

  

 

    

 ],0[ˆ N  

 

 ]),1[( Nl p      

 ]),1[( Nl p   ],0[ˆ N   

  

   

    

 

 

  

 

     

 

    

],1[ˆ Nn    

  

 ]),[( Nnl p    

 

]),[(ˆ Nnl   

 

    ]),[(ˆ Nnl   ])),1([(ˆ Nnl   

 

]},[ˆ],,[{}ˆ,{ minmin NnNn    

 

]}),1([ˆ],,1[{}ˆ,{ maxmax NnNn    

 Define as the optimized values of the free parameters when the profile

log-likelihood is evaluated at θ[n, N].  Note that are the MLEs of the free

parameters.

 The cut-off value Ψ is defined as 

where 2

, p is the pth percentile of the 
2 distribution with υ degrees of freedom.  

Note that the 100(1 − α)%  profile likelihood confidence region is defined as 

Then the profile likelihood 100(1 − α)% confidence interval bounds for the k-stage Weibull time-

to-tumor model are calculated using the following algorithm: 

1. To determine an appropriate initial step size, start with N = Nmin, attempt to

calculate the profile log-likelihood at θ[−1, N], using the MLEs as 

starting values.  Increment N by 1 up to Nmax, until the constrained optimization 

for converges.  Continue incrementing N by 1 up to Nmax, until the

constrained optimization for calculating , using as starting 

values, also converges.  Label the final value of N as Ninit. If convergence of the 

constrained optimization cannot be achieved at both θ[−1, N] and θ[1, N] before 

reaching the minimum stepsize (i.e., Ninit = Nmax), then abort the algorithm and 

return an error message. 

2. To calculate the lower profile likelihood confidence bound: 

a. Start by initalizing n = 2, and N = Ninit. 

b. Attempt to calculate the profile log-likelihood at θ[−n, N], using 

as starting values.  Halve the stepsize (i.e., increase N 

by 1 up to Nmax), and let n = 2n − 1, until the constrained 

optimization for calculating converges. 

If the constrained optimization for converges, then 

A. If , and (i.e., 

the profile log-likelihood crosses the cut-off value), 

then set 

and 

. 
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B. If N ≤ Nmax, and θ[−n, N] > θinf, then increment n by 

1, and redo step b.  Otherwise, proceed to step c. 

Otherwise proceed to step c. 

c. If the last calculated value of the profile log-likelihood (i.e., 

constrained optimization converged is less than the cut-off value 

Ψ), then carry out a root search of the function in the 

interval (θmin, θmax). The root is the lower confidence bound. 

(Note:  Because BMDS uses a binary search algorithm, the profile 

log-likelihood is calculated at the midpoints of an interval by using 

the mean of the optimized free parameters at the endpoints as 

starting values in the constrained optimization.  For example, to 

calculate in the first step of the binary search, 

use as the starting values in the constrained 

optimization.) 

Otherwise, the lower confidence bound is less than the final value 

of θ[−n, N] at which the profile log-likelihood was calculated (i.e., 

the constrained optimization converged). 

3. To calculate the upper profile likelihood confidence bound, carry out steps similar 

to the lower profile likelihood confidence bound in step 2, except that the root 

search is carried out for values of θ[n, N] < θsup, rather than θ[-n, N] > θinf. 
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Appendix C 

Derivatives for Log-Likelihood Functions 

C.1 First-Order Derivatives of the Multistage GEV Log-likelihood 
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C.2 Second-Order Derivatives of the Multistage Weibull Log-likelihood 
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Appendix D

Concavity Theorems

Theorem 1. The GEV log-likelihood function with μ and γ fixed in the domain is a (non-

strictly) concave function of b0, b1,..., bk. 

Proof: The proof uses the following well-known (directional-derivative) theorem for convexity 

(concavity): 

Let f : be a twice-differentiable function over the convex domain . Then f is 

convex (concave) iff 
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1/γ 1/γ
where hjs = (γtjs) − (1 + γ[tjs − μ]) . ■ 
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Theorem 2. The GEV log-likelihood with μ and γ fixed (with γ
-1 

< μ) and bi = 0 for i =1, 2, ..., k 

is a strictly concave function for b0 > 0 if fatal (F) or incidental (I) tumor contexts are observed. 

Proof: 
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for b0 > 0, where hjs = (γtjs) − (1 + γ[tjs − μ]) > 0, for γ < μ. ■ 
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Appendix E

Algorithm for Calculating Predicted Response Counts

The probability of response under the Fatal tumor model is given by 
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and the probability of response under the Incidental tumor model is given by 
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Predicted response counts at any given dose for Fatal/Incidental tumor models, are calculated by 

the following equation: 

     ki

n

i

i cdtPtdNd  ,,,,,,Pred 10

1




In this equation, N(d, ti) specifies the total number of observations at a given dose d and time ti, 

and is given by 

where, NF (d, ti), NI (d, ti), and NC (d, ti) are the number of Fatal, Incidental, and Censored 

response tumor contexts at dose d, and time ti respectively.  Animals classified as having an 

unknown outcome (context “U”) are not counted. 

The probability of tumor response, P(ti,d,c,β0,…βk), is given by either PF(t,d) or PI(t,d), 

depending on tumor model specified by the user (Fatal/Incidental) within the input (*.d) file.  

Note that ),( dtPI is the cumulative probability of tumor “onset” up to time t and therefore 

includes both animals for which the tumor caused death (classified as “F”) and animals with 

tumors observed incidental to another cause of death (classified as “I”), i.e., all animals having 

the tumor. 
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Example calculation 

Input data for Fatal tumor model 

DOSE CLASS TIMEN
6 C 23 1
6 C 66 4
6 I 66 6
6 F 74 1

Number of tumor contexts at dose = 6 is calculated as follows, 

N(d = 6, t = 23) = 1
N(d = 6, t = 66) = 10 (6+4)
N(d = 6, t = 74) = 1

Predicted Response at dose = 6 is give by 

Pr (d = 6) = N (d = 6, t = 23) * P (Fatal | d = 6, t = 23) + 
N (d = 6, t = 66) * P (Fatal | d = 6, t = 66) + 

N (d = 6, t = 74) * P (Fatal | d = 6, t = 74) 
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