Annex A. Atmospheric Science

A.1. Ambient Air Particle Monitoring

A.1.1. Measurements and Analytical Specifications

Table A-1. Summary of integrated and continuous samplers included in the field comparison.

Abbreviation	Instrument	Manufacturer / Research Institute			
INTEGRATED P	ARTICLE OR GAS/PARTICLE INSTRUMENTS				
Dichot	Dichotomous Sampler with Virtual Impactor	Andersen Instruments (Smyrna, GA)			
AND-241 Dichot	Thermo Andersen Series 241 Dichotomous Sampler	Andersen Instruments			
AND-246 Dichot	Thermo Andersen SA-246B Dichotomous Sampler	Andersen Instruments			
AND-hIVOL10 FRM	Thermo Andersen GMW-1200 HiVol PM ₁₀ FRM Sampler	Andersen Instruments			
ARA-PCM	ARA Particle Composition Monitor	Atmospheric Research and Analysis Inc. (Plano, TX)			
CMU	CMU Speciation Sampler	Carnegie Mellon University (CMU), (Pittsburgh, PA)			
DRI-SFS	DRI Sequential Filter Sampler	Desert Research Institute (Reno, NV)			
HEADS (or HI)	Harvard EPA Annular Denuder System (or Harvard Impactor)	Harvard School of Public Health (Boston, MA)			
IMPROVE_SS ^b	IMPROVE Speciation Sampler	URG Corp. (Chapel Hill, NC)			
URG-3000N ^b	Modified IMPROVE Module C Sampler for Carbon	URG Corp.			
MASS-400 ^b	URG Mass Aerosol Speciation Sampler Model 400	URG Corp.			
MASS-450 ^b	URG Mass Aerosol Speciation Sampler Model 450	URG Corp.			
MiniVol	Battery-Powered Portable Low-Volume Sampler	Air Metrics Inc. (Eugene, OR)			
PC-BOSS	Particle Concentrator-Brigham Young University Organic Sampling System	Brigham Young University (Provo, UT)			
SAMPLING SYS	TEM				
PQ-200 FRM	BGI PQ-200 FRM Sampler	BGI Inc. (Waltham, MA)			
PQ-200 FRMA	BGI PQ-200A FRM Audit Sampler	BGI Inc.			
R&P-ACCU	R&P-Automated Cartridge Collector Unit Sampler	Rupprecht & Patashnick, Co. (Albany, NY)			
R&P-2000 FRM	R&P Partisol-2000 FRM Sampler	Rupprecht & Patashnick, Co.			
R&P-2000 FRMA	R&P Partisol-2000 FRM Audit Sampler	Rupprecht & Patashnick, Co.			
R&P-2025 Dichot ^b	R&P Partisol 2025 Dichotomous Sequential Air Sampler	Rupprecht & Patashnick, Co.			
R&P-2025 FRM	R&P Partisol-Plus Model 2025 PM _{2.5} Sequential Samplers	Rupprecht & Patashnick, Co.			
R&P-2300 ^b	R&P Partisol 2300 Chemical Speciation Sampler	Rupprecht & Patashnick, Co.			

Note: Hyperlinks to the reference citations throughout this document will take you to the NCEA HERO database (Health and Environmental Research Online) at http://epa.gov/hero. HERO is a database of scientific literature used by U.S. EPA in the process of developing science assessments such as the Integrated Science Assessments (ISA) and the Integrated Risk Information System (IRIS).

Abbreviation	Instrument	Manufacturer / Research Institute
RAAS-100 FRM	Thermo Andersen Reference Ambient Air Sampler Model 100	Andersen Instruments
FRM SAMPLER		
RAAS-200 FRM	Thermo Andersen RAAS Model 200 FRM Audit Sampler	Andersen Instruments
RAAS-300 FRM	Thermo Andersen RAAS Model 300 FRM Sampler	Andersen Instruments
RAAS-400 ^b	Thermo Andersen RAAS Model 400 Speciation Sampler	Andersen Instruments
SASSb	MetOne Spiral Ambient Speciation Sampler	Met One Instruments (Grants Pass, OR)
SCS	PM _{2.5} Sequential Cyclone Sampler	New York University (New York, NY)
URG-PCM ^b	URG Particle Composition Monitor	URG Corp. (Chapel Hill, NC)
VAPS	URG Versatile Air Pollution Sampler	URG Corp.
CONTINUOUS N	MASS INSTRUMENTS	
BAM	B-Attenuation Monitor Model 1020	Met One Instruments
nano-BAM	Met One BAM Model 1020 with 150 nm impactor	Met One Instruments
CAMM	Continuous Ambient Mass Monitor	Developed by Harvard School of Public Health, commercialized by Thermo Andersen Instruments; now withdrawn from market
RAMS	Real-Time Ambient Mass Sampler (modified Tapered Element Oscillation Microbalance with diffusion denuder and Nafion dryer)	Brigham Young University
TEOM	Tapered Element Oscillating Microbalance	Rupprecht & Patashnick, Co.
30 °C-TEOM	TEOM operated at 30 °C	Rupprecht & Patashnick, Co.
50 °C-TEOM	TEOM operated at 50 °C	Rupprecht & Patashnick, Co.
SES-TEOM	TEOM 1400a Series with Sample Equilibration System	Rupprecht & Patashnick, Co.
D-TEOM	Differential TEOM	Rupprecht & Patashnick, Co.
FDMS-TEOM	Filter Dynamics Measurement System TEOM	Rupprecht & Patashnick, Co.
ACCU-TEOM	TEOM 1400 Series with an automated cartridge collection unit	Rupprecht & Patashnick, Co.
CONTINUOUS P	PARTICLE LIGHT SCATTERING INSTRUMENTS	
Dust Trak	Dust Trak nephelometer	TSI Inc. (Shoreview, MN)
EcoTech	EcoTech Model M9003 nephelometer	EcoTech Pty Ltd., Australia (American EcoTech, Warren, RI)
NGN	NGN-2 nephelometer	Optec Inc. (Lowell, MI)
RR-M903	Radiance Research Nephelometer Model M903	Radiance Research Inc. (Seattle, WA)
CONTINUOUS E	LEMENT INSTRUMENTS	
GFAAS	Graphite Furnace Atomic Absorption Spectrometry—aerosol collection as preconcentrate slurry	University of Maryland (College Park, MD)
SEAS	Semicontinuous Elements in Aerosol Sampler	University of Maryland
CONTINUOUS N	IITRATE INSTRUMENTS	
ADI-N	Aerosol Dynamics Inc. Flash Volatilization Analyzer	Aerosol Dynamics Inc. (Berkeley, CA)
ARA-N	Atmospheric Research and Analysis NO ₃ -Analyzer	Atmospheric Research and Analysis Inc.
R&P-8400N	R&P-8400N Flash Volatilization Continuous NO ₃ - Analyzer	Rupprecht & Patashnick, Co.
CONTINUOUS S	CULFATE INSTRUMENTS	
ADI-S	Aerosol Dynamics Inc. Flash Volatilization Analyzer	Aerosol Dynamics Inc.
CASM	Continuous Ambient Sulfate Monitor (prototype of the TE-5020 by Thermo Electron [Franklin, MA])	Harvard School of Public Health
R&P-8400S	R&P-8400S Flash Volatilization Continuous SO ₄ ²⁻ Analyzer	Rupprecht & Patashnick, Co.
TE-5020	Thermo Electron Model 5020 SO ₄ ²⁻ Particulate Analyzer	Thermo Electron Corp. (Franklin, MA)

Abbreviation	Instrument	Manufacturer / Research Institute			
CONTINUOUS I	MULTI-ION INSTRUMENTS				
AIM	Ambient Ion Monitor Model 9000 (Cl¯,NO $_2$ ¯,NO $_3$ ¯,PO $_4$ ³¯, SO $_4$ 2¯, NH $_4$ ¯,Na $_7$ Mg $_2$ ¯,K $_7$ Ca $_7$ 0	URG Corp.			
Dionex-IC	Dionex Ion Chromatograph (F ⁻ , CI ⁻ , NO $_2$ ⁻ , Br ⁻ NO $_3$ ⁻ , PO $_4$ ³⁻ , SO $_4$ ²⁻ , Li ⁺ , NH $_4$ ⁺ , Na ⁺ , Mg ²⁺ , K', Ca ²⁺)	Dionex Corp.			
ECN	Energy Research Center of the Netherlands IC-based sampler (CI $^{-}$, NO $_3$ $^{-}$, SO $_4$ $^{-}$, NH $_4$ $^{+}$, Na $_7$, Mg $_7$ $^{+}$, K $_7$, Ca $_7$ $^{-}$)	Γ, Energy Research Center of the Netherlands (Petten, the Netherlands			
PILS-IC	Particle into Liquid Sampler, coupled with IC (Cl $^-$, NO $_2^-$, NO $_3^-$, PO $_4^{3-}$, SO $_4^{2-}$, NH $_4^+$, Na+,Mg $^{2+}$,K $_+^+$, Ca $^{2+}$)	Georgia Institute of Technology (Atlanta, GA)			
ТТ	Texas Tech IC-based sampler (NO ₃ ⁻ , SO ₄ ²⁻)	Texas Tech University (Lubbock, TX)			
CONTINUOUS	CARBON INSTRUMENTS				
OC and EC					
ADI-C	ADI Flash Volatilization Carbon Analyzer	Aerosol Dynamics Inc.			
RU-OGI	Rutgers University/Oregon Graduate Institute in-situ carbon analyzer (OC, EC)	Rutgers University (Camden, NJ)/Oregon Graduate Institute (Beaverton, OR)			
R&P-5400	R&P-5400 continuous ambient carbon analyzer	Rupprecht & Patashnick, Co.			
Sunset OCEC	Sunset Semi-Continuous Real-Time Carbon Aerosol Analysis Instrument	Sunset Laboratory, Inc. (Tigard, OR)			
ВС					
Aethalometer		Magee Scientific Co. (Berkeley, CA)			
AE-16	Magee AE-16 aethalometer (BC)	Magee Scientific Co.			
AE-20	Magee AE-20 dual wavelength aethalometer (BC)	Magee Scientific Co.			
AE-21	Magee AE-21 dual-wavelength aethalometer (BC)	Magee Scientific Co.			
AE-31	Magee AE-31 seven color aethalometer (BC)	Magee Scientific Co.			
DRI-PA	DRI Photoacoustic Analyzer (BC)	Droplet Measurement Technologies, Inc. (Boulder, CO)			
MAAP	Multi-Angle Absorption Photometer, Model 5012 (BC)	Thermo Scientific Corp. (Franklin, MA)			
PSAP	Particle Soot Absorption Photometer (BC)	Radiance Research Inc. (Seattle, WA)			
Other Carbon					
PAS-PAH	Photo-Ionization Monitor for PAHs (Model PAS 2000)	EcoChem Analytics (League City, TX)			
PILS-WSOC	PILS-WSOC Analyzer, combination of PILS and total organic analyzer (TOA)	Georgia Institute of Technology			
PARTICLE SIZIN	NG INSTRUMENTS FOR MASS AND CHEMICAL SPECIATION	V			
DRUM-3	Davis Rotating-Drum Uniform Size-Cut Monitor (0.1-2.5 µm in 3 stages)	University of California–Davis (Davis, CA)			
ORUM-8	Davis Rotating-Drum Uniform Size-Cut Monitor (0.09- > 5.0 μ m in 8 stages)	University of California–Davis			
ELPI	Electrical Low Pressure Impactor (0.007-10 μm in 12 stages)	Dekati (Tampere, Finland)			
_PI	Low Pressure Impactor (0.03-10 µm in 13 stages)	Aerosol Dynamics, Inc.			
MOUDI	Micro Orifice Uniform Deposit Impactor	MSP Corp. (Minneapolis, MN)			
MOUDI-100	MOUDI Model 100 (0.18-18 μm in 8 stages)	MSP Corp.			
MOUDI-110	MOUDI Model 110 (0.056-18 μm in 10 stages)	MSP Corp.			
Nano-MOUDI	Nano MOUDI (0.010-0.056 μm in 3 stages coupled to MOUDI Model 110)	MSP Corp.			
PARTICLE NUM	BER / VOLUME INSTRUMENTS				
APS	Aerodynamic Particle Sizer	TSI Inc.			
APS-3320	TSI Model 3320 (0.5-20 µm)	TSI Inc.			

Abbreviation	Instrument	Manufacturer / Research Institute				
APS-3321	TSI Model 3321 (0.5-20 µm; replaced TSI Model 3320)	TSI Inc.				
DMA	Differential Mobility Analyzer	TSI Inc.				
DMA-3081	TSI Model 3081 (0.01-1.0 μm)	TSI Inc.				
DMA-3085	TSI Model 3085 (0.002-0.15 µm)	TSI Inc.				
EEPS	Engine Exhaust Particle Sizer (EEPS 0.056-0.56 µm)	TSI Inc.				
FMPS	Fast Mobility Particle Sizer (FMPS 0.056-0.56 μm)	TSI Inc.				
GRIMM-1108	Optical Particle Counter (OPC; 0.3-20 µm)	GRIMM Technologies, Inc. (Douglasville, GA)				
SMPS	Scanning Mobility Particle Sizer	TSI Inc.				
SMPS-3936	TSI Model 3936L (0.01-1.0 μm)	TSI Inc.				
Nano-SMPS-3936	TSI Model 3936N (0.002-0.15 μm)	TSI Inc.				
SMPS + C	SMPS and Condensation Nucleus Counter (0.005-0.35 or 0.01-0.875 µm)	GRIMM Technologies, Inc.				
SMPS-custom	DMA Model 3071 and CPC Model 3010	TSI Inc.				
WPS	Wide-Range Particle Spectrometer (0.01-10.0 μm)	MSP Corp.				
SINGLE PARTIC	LE INSTRUMENTS					
AMS	Aerosol Mass Spectrometer (0.04-2 µm)	Aerodyne Research Inc. (Billerica, MA)				
ATOFMS	Aerosol Time of Flight Mass Spectrometer (0.3-2.5 μm)	TSI Inc.				
CNC, CPC	Condensation Nucleus Counters, Condensation Particle Counter	Various vendors				
DAASS	Dry-Ambient Aerosol Size Spectrometer consisting of two SMPS and One APS (0.003-10 $\mu m)$	Carnegie Mellon University				
LIBS	Laser-Induced Breakdown Spectroscopy	National Research Council, Industrial Materials Institute (Boucherville, Quebec, Canada)				
PALMS	Particle Analysis by Laser Mass Spectrometer (0.22-2.5 µm)	NOAA (Boulder, CO)				
RSMS-II	Rapid Single Particle Mass Spectrometer -II (0.035-1.1 µm)	University of Delaware (Newark, DE)				
RSMS-III	Rapid Single Particle Mass Spectrometer III (0.01-2.0 µm)	University of Delaware				
LABORATORY II	NSTRUMENTS					
DRI Model 2001	DRI Model 2001 Thermal/Optical Carbon Analyzer (OC, EC, Eight Carbon Fractions with reflectance and transmittance laser correction)	Atmoslytic, Inc. (Calabasas, CA)				
SEM	Scanning Electron Microscopy	Various vendors				

^aNow with Thermo Scientific, Franklin, MA.

^bEPA-approved speciation sampler used in the Speciation Trends Network (STN).

^cNow commercialized by Applikon Analytical, the Netherlands, and marketed under the name "MARGA" (Monitor for Aerosols and Gases in Ambient Air).

dNot available.

Table A-2. Summary of $PM_{2.5}$ and PM_{10} FRM and FEM samplers.

Manufacturer ^a	Sampler Name			FRM or FEM ^c	Designation #	FRN
BGI Inc.	PQ-100	PM ₁₀	Louvered PM ₁₀ inlet; operates at flow rate of 16.7 L/min; 24-h integrated sampler; uses a mass flow meter to adjust to equiva-	FRM	RFPS-1298-124	Vol. 63, p. 69625, 12/17/98
BGI Inc.	PQ-200	PM ₁₀	lent volumetric flow at ambient temperature and pressure.	FRM	RFPS-1298-125	Vol. 63, p. 69625, 12/17/98
BGI Inc.	PQ-200	PM _{2.5}	Identical to PM ₁₀ sampler but uses a WINS ^d impactor downstream of the PM ₁₀ inlet for PM _{2.5} fractionation at 16.7 L/min; 24-h integrated sampler.	FRM	RFPS-0498-116	Vol. 63, p. 18911, 04/16/98 Vol. 63, p. 31993,
BGI Inc.	PQ-200- VSCC or PQ-200A- VSCC	PM _{2.5}	Same as BGI PQ200 $\rm PM_{2.5}$ sampler but with BGI VSCC instead of WINS impactor; PQ200A is a portable audit sampler, similar in design to PQ-200, but more compact in nature.	FEM (II)	EQPM-0202-142	06/11/98 Vol. 67, p. 15567, 04/02/02
R&P	R&P-2000	PM ₁₀	R&P Partisol FRM Model 2000 PM_{10} sampler with louvered PM_{10} inlet; operates at flow rate of 16.7 L/min; 24-h integrated sampler; uses a mass flow meter to adjust to equivalent volumetric flow at ambient temperature and pressure; single-channel sampler.	FRM	RFPS-1298-126	Vol. 63, p. 69625, 12/17/98
R&P	R&P-2000	PM _{2.5}	R&P Partisol FRM Model 2000 PM _{2.5} sampler, identical to PM ₁₀ sampler but uses a WINS impactor downstream of the PM ₁₀ inlet	FRM	RFPS-0498-117	Vol. 63, p. 18911, 04/16/98
R&P	R&P2000A	PM _{2.5}	for PM _{2.5} fractionation at 16.7 L/min; 24-h integrated sampler; R&P2000A is a portable audit sampler.	FRM	RFPS-0499-129	Vol. 64, p. 19153, 04/19/99
R&P	R&P-2025	PM ₁₀	R&P Partisol-Plus Model 2025 PM ₁₀ sequential sampler with louvered PM ₁₀ inlet; operates at 16.7 L/min; 24-h integrated sampler; uses a mass flow meter to adjust to equivalent volumetric flow at ambient temperature and pressure; sequential sampler with a capacity of 16 filter cassettes, allowing for two weeks of unattended daily sampling; filter exchange is performed pneumatically.	FRM	RFPS-1298-127	Vol. 63, p. 69625, 12/17/98
R&P	R&P-2025	PM _{2.5}	R&P Partisol-Plus Model 2025 $PM_{2.5}$ sequential sampler, identical to R&P-2025 PM_{10} sampler but uses a WINS impactor downstream of the PM_{10} inlet for $PM_{2.5}$ fractionation at 16.7 L/min.	FRM	RFPS-0498-118	Vol. 63, p. 18911, 04/16/98
R&P	R&P2000- VSCC	PM _{2.5}	Same as R&P-2000 PM $_{2.5}$ sampler but with BGI VSCC, instead of WINS impactor for PM $_{2.5}$ separation.	FEM (II)	EQPM-0202-143	Vol. 67, p. 15567, 04/02/02
R&P	R&P2000A- VSCC	PM _{2.5}	Same as R&P-2000A $PM_{2.5}$ sampler but with BGI VSCC instead of WINS impactor for $PM_{2.5}$ separation.	FEM (II)	EQPM-0202-144	Vol. 67, p. 15567, 04/02/02
R&P	R&P-2025- VSCC	PM _{2.5}	Same as R&P-2025 PM $_{25}$ sampler but with BGI VSCC instead of WINS impactor, for PM $_{25}$ separation.	FEM (II)	EQPM-0202-145	Vol. 67, p. 15567, 04/02/02
Andersen	RAAS-100	PM ₁₀	Andersen Instruments, Inc. Model RAAS10-100 PM_{10} sampler with louvered PM_{10} inlet; operates at flow rate of 16.7 L/min; 24-h integrated sampler; volumetric flow measured by dry test meter at pump outlet modulates pump speed to maintain flow rate; single-channel.	FRM	RFPS-0699-130	Vol. 64, p. 33481, 06/23/99
Andersen	RAAS-100	PM _{2.5}	Graseby Andersen Model RAAS2.5-100 PM $_{2.5}$ sampler, similar to RAAS-100 PM $_{10}$ with a WINS impactor for PM $_{2.5}$ separation.	FRM	RFPS-0598-119	Vol 63, p. 31991, 06/11/98
Andersen	RAAS200A	PM ₁₀	Andersen Instruments, Inc. Model RAAS10-200 and RAAS2.5-	FRM	RFPS-0699-131	Vol. 64, p. 33481, 06/23/99
Andersen	RAAS-200A	PM _{2.5}	- 100 Audit Samplers, portable compact version; similar to RAAS-100.	FRM	RFPS-0299-128	Vol. 64, p. 12167, 03/11/99
Andersen	RAAS-300	PM ₁₀	Andersen Instruments, Inc. Model RAAS10-300, sequential sampler with louvered PM_{10} inlet, operates at 16.7 L/min; capacity to hold eight filter-holders for multiple day operation.	FRM	RFPS-0699-132	Vol. 64, p. 33481, 06/23/99
Andersen	RAAS-300	PM _{2.5}	Graseby Andersen Model RAAS2.5-300 PM $_{25}$ sampler, similar to RAAS-300 PM $_{10}$ sampler with a WINS impactor for PM $_{2.5}$ separation.	FRM	RFPS-0598-120	Vol. 63, p. 31991, 06/11/98

Manufacturer ^a	Sampler Name	Size Cut ^b	Description	FRM or FEM ^c	Designation #	FRN
Thermo Scientific, Inc.	CAPS	PM _{2.5}	Model 605 Computer Assisted Particle Sampler (CAPS), 24-h integrated. Not available commercially.	FRM	RFPS-1098-123	Vol. 63, p. 8036, 10/29/98
Thermo Scientific, Inc.	RAAS 100- VSCC	PM _{2.5}	Same as RAAS-100 $PM_{2.5}$ sampler but with BGI VSCC, instead of WINS impactor.	FEM (II)	EQPM-0804-153	Vol. 69, p. 47924, 08/06/04
Thermo Scientific, Inc.	RAAS 200- VSCC	PM _{2.5}	Same as RAAS-200 $\text{PM}_{2.5}$ sampler but with BGI VSCC instead of WINS impactor.	FEM (II)	EQPM-0804-154	Vol. 69, p. 47924, 08/06/04
Thermo Scientific, Inc.	RAAS 300- VSCC	PM _{2.5}	Same as RAAS-300 $\text{PM}_{2.5}$ sampler but with BGI VSCC instead of WINS impactor.	FEM (II)	EQPM-0804-155	Vol. 69, p. 47925, 08/06/04
URG Corp.	MASS-100	PM _{2.5}	Model MASS100 PM $_{2.5}$ sampler with louvered PM $_{10}$ inlet followed by WINS impactor, operates at 16.7 L/min; 24-h integrated, volumetric flow measured by dry test meter at pump outlet modulates pump speed to maintain flow rate; single channel.	FRM	RFPS-0400-135	Vol. 65, p. 26603, 05/08/00
URG Corp.	MASS-300	PM _{2.5}	Model MASS300 PM $_{2.5}$ sampler with louvered PM $_{10}$ inlet followed by WINS impactor, operates at 16.7 L/min; 24-h integrated, sequential sampler with circular tray holding six filters.	FRM	RFPS-0400-136	Vol. 65, p. 26603, 05/08/00
Tisch Environ- mental, Inc.	TE-6070 HiVol	PM ₁₀	Model TE-6070 PM $_{\!10}$ High-Volume Sampler, with TE-6001 PM $_{\!10}$ size selective inlet; 8" x 10" filter holder.	FRM	RFPS-0202-141	Vol. 67, p. 15566, 04/02/02
Met One	BAM	PM ₁₀	Models BAM 1020, GBAM 1020, BAM 1020-1, and GBAM 1020-1, with BX-802 inlet; glass-fiber filter tape with 1-h filter change frequency.	FEM	EQPM-0798-122	Vol. 63, p. 41253, 08/03/98

^a BGI Inc.: BGI Incorporated, Waltham, MA. R&P: Rupprecht & Patashnick Company, Inc., Albany, NY, now Thermo Scientific, Inc., Franklin, MA. Andersen: Graseby Andersen, later Andersen Instruments, Inc., Smyrna, GA, now Thermo Scientific, Inc., Franklin, MA. URG Corp.: URG Corporation, Chapel Hill, NC. Tisch Environmental, Inc., Cleves, OH. Met One Instruments, Inc., Grants Pass, OR

^bThe efficiency of an inlet (Watson et al., 1983, 045084) is determined by its 50% cut-point (d50, the diameter at which half of the particles penetrate through the inlet, while the other half is retained by the inlet, while the other half is retained by the inlet) and the geometric standard deviation (GSD, which is an indicator of the sharpness of the separation, and is derived by the square root of the ratio of particle diameters at penetrations of 16% and 84%, [d₁₆/d₈₄]^{0.5}).

^c FRM: Federal Reference Method; FEM: Federal Equivalent Method. Roman numeral within parenthesis indicates FEM class.

^d Particle separation in WINS is achieved by means of a single-jet round nozzle with flow directed into an impaction reservoir. The impaction surface consists of a Gelman Type A/E glass-fiber filter immersed in 1 mL of Dow Corning (Midland, MI) 704 diffusion pump oil housed in a reservoir.

Note: The geometric standard deviation (GSD, which is an indicator of the sharpness of the separation, and is derived by the square root of the ratio of particle diameters at penetrations of 16% and 84%, [d16/d84]0.5).

Table A-3. Measurement and analytical specifications for filter analysis of mass, elements, ions, and carbon.

Observable	Analytical Accuracy ^a			Interferences	Comparability	Data Completeness	
PM _{2.5} mass	± 5% ⁴	±10% ⁴	0.04 μg/m ^{3 c} to ~1 μg/m ^{3 d 5,6}	Electrostatic charges need to be neutralized before measurement; positive (e.g., OC adsorption) and negative artifacts (e.g., nitrate volatilization)	Within 20% ⁴	90 to 100% ^{h 6,7}	
Elements	± 2-5% ⁴	± 10% ⁴	XRF: 0.4-30 ng/m ³ ⁹ PIXE: 6-360 ng/m ³ ^{ds} ICP/MS: 0.004-25 ng/m ³ ¹⁰ 0.05-11.7 ng/m ³ ¹¹ AAS: 0.02-7.15 ng/m ³ ¹²	Volatile compounds may evaporate from filters due to vacuum in XRF and PIXE. Potential contamination during extraction and incomplete extraction efficiency for ICP-MS and AAS. Matrix interference and peak overlap may occur on heavily loaded samples.	10 to 30% depending on species ⁴	90 to 100% ^{h 6,7}	
Nitrate	± 6% with spiked concentrations on Teflon4 and ± 1–14% on nylon filters13	% with spiked centrations on on4 ± 5 to 10% on replicate analysis 4.13,14 co-located co-located co-located on precision 5.79%,14-16 co-located on precision 5.79%,14-16 co-located on the co-lo		Subject to volatilization from Teflon or quartz-fiber filters	Within 35% and probably greater 4	85 to 100% ^{6,7}	
Sulfate	± 5% ⁴	±6 to 10% ^{4,14,15}	% ^{4,14,15} 0.06 μg/m ^{3 e} to 0.2 μg/m ^{3 d} 1,6,13 N/A		Typically within 10%; MOUDIs ¹³ to 20% lower than speciation samplers	85 to 100%	
Ammonium	± 5% ⁴	± 10% ⁴	0.06 μg/m ^{3 e} to 0.07 μg/m ^{3 d 1,6}	Subject to volatilization from Teflon or quartz-fiber filters	Within 30% ⁴	86 to 100% ^{6,7}	
	[±] 5% for TC and	OC: ± 20%	OC: 0.1 µg/m ^{3 f} to 0.8 µg/m ³ d	Subject to adsorption (positive - artifact) and volatilization	OC: Within 20 to 50%		
OC, EC, TC	OC. No standard exists to determine EC accuracy		EC: 0.03 µg/m ^{3 d} to 0.1 µg/m ^{3 f}	(negative artifact) of organic gases to and from quartz-fiber	EC: Within 20 to 200%	86 to 100% ^{6,7}	
	,	TC: ± 10% ⁴	TC: 0.8 µg/m ^{3 d 1,6}	- filters	TC: Within 20% 4,17,22	-	
		DRI Model 2001	DRI Model 2001 Carbon Analyzer: 0.1-0.23 µg C/m ^{3 23}				
Total mass of	DRI Model 2001 Carbon Analyzer: ± 5% ²³	Carbon Analyzer: ± 10% ²³	Sunset Carbon Analyzer: 0.05- 0.22 µg C/m ^{3 26,28}	Extraction efficiency and	Within 17% ²⁶	N/A	
WSOC	TOA: ± 3-7% ^{24,25}	Sunset Carbon Analyzer: ± 3% ²⁶ TOA: ± 5-10% ²⁷	Elemental High TOC	volume reduction steps			
		TOA. £ 5-10%	TOA: 0.12 μg C/m ^{3 26}				
Elements in water soluble matter: C, H, N, and S	C: 1.5%; H: 3%; N: 3%; S: 5%	± 2% ³⁰	C: 0.3 µg/m ³ H:0.09 µg/m ³ N: 0.03 µg/m ³ S: 0.10 µg/m ³	Contamination during sample drying step	N/A	N/A	
Dissolved organic nitrogen	N/A	± 5-30% ³¹	0.001µg N/m³ while inorganic nitrogen is low; ≥ 0.071µg N/m³ while inorganic nitrogen is high³¹	Concentration of inorganic nitrogen	Good correlation between UV and persulfate oxidation methods (R ² = 0.87)	N/A	

Observable	Analytical Accuracy ^a	Precisionb	Minimum nb Detectable Limit Interfere (MDL)		Comparability	Data Completeness
Neutral polyols and polyether	GC/MS: ± 4-8% ³²	GC/MS: ${}_{\pm}$ 23% 33,34 Typically \pm 20%, ranged from \pm 10 to \pm 30% 132,35,36,37,38 HPLC/MS: \pm 5-26% 39	GC/MS: Levoglucosan: 10 ng/m³ 40 2.08 ng/m³ j 31 0.01-0.03 ng/m³ 33,41 HPLC/MS: 9-648 pg/m³ 39	GCMS: Extraction recovery interfered by sample matrix Derivatization efficiency IC/PAD: Overlapping peaks in chromatogram	IC/PAD: Good correlation (R ² = 0.97) with HPLC/MS; and (R ² = 0.89) with GC/MS Method ⁴²	N/A
Mono- and Di-carboxylic acids	N/A	GC/MS: ±5-11% on 3 replicates, ±8 % in avg ^{43,44} IC: ±10-15% ⁴⁵	GC/MS: 0.04-1.12 ng/m ^{3 46} IC: 0.01-0.12 ng/m ³	GC/MS: Extraction recovery interfered by sample matrix Derivatization efficiency IC: Overlapping peaks in chromatogram	GC/MS: Within 50% for less volatile compounds 46	N/A
Amino acids	N/A	± 9% ⁴⁸	1.65-23.6 pg/m ^{3 k 48}	Derivatization efficiency Stability of derivatives Overlapping peaks in chromatogram	N/A	N/A
Mass of humic- like substances (HULIS)	N/A	N/A	0.083 ng/m ³¹⁴⁹	Separation efficiency	N/A	N/A

a Accuracy is the ability of analytical methods to quantify the observable of a standard reference material correctly; it does not refer to measurement accuracy if no standards available.50

156762); Walson et al. (1999, 020949); Solomon and Sioutas (2006, 156995); Graney et al. (2004, 053756); Tanaka et al. (1998, 157041); Pancras et al. (2005, 098120); John et al. (1988, 045903); 14 Hering and Cass (1999, 084958); 15 Fitz et al. (1989, 077387); 16 Hering et al. (1988, 036012); 17 Solomon et al. (2003, 156994); 18 Cabada et al. (2004, 148859); 19 Fine et al. (2003, 155775); 20 Hogrefe et al. "Henng and Cass (1999, <u>184958);</u> "Fitz et al. (1989, <u>07/387);</u> "Henng et al. (1988, <u>036012);</u> "Solomon et al. (2003, <u>195944);</u> "Cabada et al. (2004, <u>148899);</u> "Fine et al. (2003, <u>155779);</u> "Hogrefe et al. (2002, <u>199160);</u> ²²Watson et al. (2005, <u>157125);</u> ²³Ho et al. (2006, <u>155652);</u> ²⁴Decesari et al. (2005, <u>144536);</u> ²⁵ Mayol-Bracero et al. (2002, <u>045010);</u> ²⁵Yang et al. (2003, <u>1561672);</u> ²⁵Xiao and Liu (2004, <u>156552);</u> ²⁵Fine et al. (2002, <u>146664);</u> ³¹Cornell and Jickells (1999, <u>156367);</u> ³²Zheng et al. (2002, <u>026100);</u> ³³Fraser et al. (2002, <u>140741);</u> ³⁴Fraser et al. (2003, <u>042231)</u> ³⁵Sohauer er al. (2000, <u>012225);</u> ³⁸Fine et al. (2004, <u>141283);</u> ³⁷Vue et al. (2004, <u>157169);</u> ³⁸Rinehart et al. (2006, <u>115184);</u> ³⁸Wan and Yu (2006, <u>157104);</u> ⁴⁹Poore (2000, <u>012839);</u> ⁴¹Fraser et al. (2003, <u>140741);</u> ⁴⁵Fraser et al. (2003, <u>140741);</u> ⁴⁶Fraser et al. (2003, <u>140741);</u> ⁴⁷Fraser et al. (2003, <u>140741);</u> ⁴⁸Fraser et al. (2003, <u>140741);</u> ⁴⁸Fraser et al. (2003, <u>140741);</u> ⁴⁸Fraser et al. (2003, <u>15184);</u> ⁵⁸Wan and Yu (2006, <u>1518418);</u> ⁵⁹Waterman et al. (2003, <u>156539);</u> ⁴⁸Fraser et al. (2003, <u>156494);</u> ⁵⁸Waterman et al. (2003, <u>156494);</u> ⁵⁸Waterman et al. (2004, <u>158639);</u> ⁵⁸Ho et al. (2004, <u>158639);</u> ⁵⁸Ho et al. (2004, <u>158639);</u> ⁵⁸Waterman et al. (2001, <u>151117);</u> ⁵⁴Falkovich and Rudich (2001, <u>156427);</u> ⁵⁶Chow et al. (2007, <u>157209);</u> ⁵⁸Miguel et al. (2004, <u>123260);</u> ⁵⁷Crimmins and Baker (2006, <u>097008);</u> ⁵⁸Ho and Yu (2004, <u>156551);</u> ⁵⁸Jeon et al. (2001, <u>166862);</u> ⁵⁸Chow et al. (2007, <u>156438);</u> ⁵⁸Chow et al. (2006, <u>198088);</u> ⁵⁸Forover et al. (2006, <u>098048);</u> ⁵⁸Chow et al. (2006, <u>148080);</u> ⁵⁸Chow et al. (2006, 138080); ⁶⁶Grover et al. (2005, <u>090044</u>); ⁶⁷Schwab et al. (2006, <u>098449</u>); ⁶⁸Hauck et al. (2004, <u>156525</u>); ⁶⁹Jaques et al. (2004, <u>155878</u>); ⁷⁶Rupprecht and Patashnick (2003, <u>157207</u>); ⁷⁷Pang et al. (2002, <u>030353</u>); ⁷²Eatough et al. (2001, <u>010303</u>); ⁷³Lee et al. (2005, <u>128139</u>); ⁷⁶Lee et al. (2005, <u>156880</u>); ⁷⁶Babich et al. (2000, <u>156239</u>); ⁷⁶Lee et al. (2005, <u>155925</u>); ⁷⁷Lee et al. (2005, <u>155925</u>); ⁷⁷Lee et al. (2004, <u>103413</u>); ⁸⁶Nuting et al. (2004, <u>103413</u>); ⁸⁶Vaughn et al. (2004, <u>103413</u>); ⁸⁶Vaughn et al. (2004, <u>103413</u>); ⁸⁶Vaughn et al. (2005, <u>157089</u>); ⁸⁷Chow et al. (2005, <u>099030</u>); ⁸⁸Weber et al. (2004, <u>103413</u>); ⁸⁶Schwab et al. (2005, <u>157089</u>); ⁸⁷Chow et al. (2005, <u>099030</u>); ⁸⁸Wheber et al. (2006, <u>15837</u>); ⁸⁹Lintingow and Chow (2002, <u>037873</u>); ⁸⁹Wehatacharia et al. (2005, <u>155988</u>); ⁸⁷Chow et al. (2005, <u>156227</u>); ⁸⁹Pant et al. (2005, <u>156227</u>); ⁸⁹Bond et al. (1999, <u>156281</u>); ¹⁰⁰Virkkula et al. (2005, <u>155027</u>); ¹⁰¹Petzold et al. (2002, <u>156863</u>); ¹⁰²Park et al. (2006, <u>988104</u>); ¹⁰³Arnott et al. (1999, <u>900505</u>); ¹⁰⁴Peters et al. (2001, <u>016825</u>); ¹⁰⁵Pitichford et al. (1997, <u>156872</u>); ¹⁰⁸Rees et al. (2004, <u>097164</u>); ¹⁰⁷Watson et al. (2005, <u>156880</u>); ¹⁰⁷Charbarahri et al. (2004, <u>157426</u>); ¹¹⁷Mathai et al. (1990, <u>156741</u>); ¹¹⁸Kidwell and Ondov (2001, <u>017092</u>); ¹¹⁴Slanier et al. (2005, <u>156348</u>); ¹⁸Ehang et al. (2002, <u>156741</u>); ¹¹⁹Subramanian et al. (2004, <u>081203</u>); ¹²⁰Chow et al. (2006, <u>15534</u>); ¹³⁸Elinch and Cary (1996, <u>002352</u>); ¹²⁴NIOSH (1998, <u>156846</u>); ¹²⁸NIOSH (1998, <u>156846</u>); ¹²⁸NIOSH (1998, <u>156846</u>); ¹³⁸Schauer et al. (2003, <u>156861</u>); ¹³⁸Chauer et al. (2003, <u>156869</u>); ¹³⁸Drewnick et al. (2004, <u>155755</u>); ¹⁴⁸Lake et al. (2005, <u>156689</u>); ¹³⁸Chauer et al. (2005, <u>156689</u>); ¹³ et al. (2006, 138080); ⁶⁶Grover et al. (2005, 090044); ⁶⁷Schwab et al. (2006, 098449); ⁶⁸Hauck et al. (2004, 156525); ⁶⁹Jaques et al. (2004, 155878); ⁷⁰Rupprecht and Patashnick (2003, 157207); ⁷¹Pang et al.

1 Chow (1995, 077012); Watson and Chow (2001, 157123); Watson et al. (1983, 045084); Fehsenfeld et al. (2004, 157360); Solomon et al. (2001, 157193); Watson et al. (2005, 157124); Mixel (2001, 157193); Watson et al. (2005, 157124); All (2001, 157193); Watson et al. (2005, 157124); All (2001, 157193); Watson et al. (2007, 157193); Watson et al. (2007, 157193); All (2007, 157193); Watson et al. (2007, 157193); All (2007, 157193); Watson et al. (2007, 157193); Watson et al. (2007, 157193); All (2007, 157

Refers to precision of co-located measurements, unless specified otherwise.

^c Based on 1 µg/filter limit of detection for 24-h samples, assuming a flow rate of 16.7 L/min

^d Based on field blanks collected with FRM samplers; μg/filter converted to μg/m³ basis assuming a flow rate of 16.7 L/min for 24-h

e Based on ½ of a 47-mm filter extracted in 15 mL deionized-distilled water (DDW) for 24-h samples, assuming a flow rate of 16.7 L/min

^f Based on 0.2 μg/cm² detection limit and 13.8 cm² deposit area for a 47-mm filter, assuming a flow rate of 16.7 L/min for 24-h

⁹ Based on 24-h samples at a flow rate of 16.7 L/min and analyzed by XRF

^h Except for samples from one FRM sampler at Atlanta Supersite, for which data recovery was 50%⁷; reason not reported.

Reported as uncertainty in literature

Based on 24-h samples at a flow rate of 16.7 L/min

k Based on 13.8 cm² deposit area for a 47-mm filter and extracted into a final volume of 200 µL, assuming a flow rate of 16.7 L/min for 24-h and molecular weight of amino acid = 150 Based on 13.8 cm² deposit area for a 47-mm filter and extracted into a final volume of 200 µL, assuming a flow rate of 16.7 L/min for 24-h

Table A-4. Measurement and analytical specifications for filter analysis of organic species.

Organic	Analytica	I Accuracy	Precision		М	DL	Interfe	erences	Comparabil
Species	TD	Solvent Extraction	TD	Solvent Extraction	TD	Solvent Extraction	TD	Solvent Extraction	ity
PAHs	± 2.8-24.1% ⁵¹ ± 4.4-29.4% ⁵²		Avg ± 3.2%, ranged from ± 0.05 to	Avg ±8%, ranged from ±3.8	0.016-0.48 ng/m ^{3 a 58}	0.83-1.66 ng/m ^{3 b 38}	Fragmentatio n of labile com-	Possible contaminants from solvents	R ² s for solvent extraction were 0.95 ⁵⁸ , 0.97 ⁵⁵ and 0.98 ⁵⁹
	13.8-26.5% ⁵³		± 11.5% ⁵⁵	to ± 15% ⁵⁶		0.033-3.85 ng/m ^{3 b 56}	pounds	and compli- cated extrac-	
	± 0.5-12.9% ⁵⁴			± 23% ⁵⁶ Avg	0.030-0.45 ng/m ^{3 a 55}	0.01-0.03 ng/m ^{3 33,34,37}		tion	0.50
	0.05-4.83% ⁵⁵			± 2.6%, ranged from ± 0.6 to		0.76-276		procedures. Loss of volatile compounds	
				± 9.5% ⁵⁷ typically		pg/m ^{3 b 57}		during the ex- traction and pretreatment	
				± 20%, ranged from ± 10 to				steps. Possible carryover	
				± 30% ^{c 32,35-37}				from injection port.	
n-Alkanes	N/A	± 4-8% ³²	Avg ± 3.2%, ranged	±23% ⁵⁶	0.081-0.86 ng/m ^{3 a 58}	0.01-0.03 ng/m ^{3 33,34,37}	Same as PAHs	Same as PAHs	R ² s for solvent extraction are
			from ± 0.05 to ± 11.5% ⁵⁵	Typically ± 20 %, from ± 10 to ± 30%c ^{32,35}	0.061-0.97 ng/m ^{3 a 55}	Ü			extraction are 0.94 ⁵⁸ , and 0.98 ^{55,59}
Hopanes	N/A	N/A	Avg _± 3.2%, ranged	± 23% ⁵⁶	ng/m ^{3 a 55}	0.83-1.66 ng/m ^{3 b 38}	Same as PAHs	Same as PAHs	R ² s for solvent extraction are
			from ± 0.05 to ± 11.5% ⁵⁵	Typically ± 20 %, from ± 10 to ± 30% c 32,35-		0.01-0.03 ng/m ^{3 33,41}	17110		0.99 ⁵⁵ and 0.998 ⁵⁹
				37		0.01 ng/m ^{3 37}			
Steranes	N/A	N/A	Avg ± 3.2%, ranged from ± 0.05 to ± 11.5% ⁵⁵	N/A	0.018-0.063 ng/m ^{3 a 55}	0.83-1.66 ng/m ^{3 b 60}	Same as PAHs	Same as PAHs	R ² s for solvent extraction are 0.97 ⁵⁵ and 0.998 ⁵⁹
Organic acids (including n-alkanoic	N/A	$\pm 4-8\%^{32}$ ± 10 to $\pm 29\%^{55}$		± 24% ⁴¹ ± 23% ⁵⁶	Mono- carboxylic acids (C8,	0.01-0.03 ng/m ^{3 33,41}	Fragmentatio n of labile	Possible contaminants from solvents	Correlation with solvent extraction
acids, n- alkenoic acids, alkane dicarboxylic				Typically ± 20 %, from ± 10	C12, and C16):		compounds. from solvents and com- Loss of polar species due to absorption procedures.	extraction method R ² = 0.731 ⁵⁹	
acids, aromatic carboxylic					3.2 ng/m ^{3 a 54}		onto the surface of the injector.	•	
acids, resin acids)							Improper stationary phase column used during TD analysis.	compounds during the ex- traction and pretreatment steps.	
							Incomplete thermal desorption of analytes	Possible carryover from injection port .	
							because of strong affinity with filter matrix.	Low derivatization efficiency .	

	Analy	tical Accuracy		Precision		MDL	Interfe	erences	
Polyols and sugars, including gua- iacol and sub- stituted guaiacols, sy- riugol and substituted syringols, anhydro- sugars		± 4-8% ³²	N/A	$\pm 23\%^{56}$ Typically ± 20 %, from ± 10 to $\pm 30\%^{6}$	N/A	Levoglucosa: 10 ng/m ³ 61 2.08 ng/m ^{3 b 38} 0.01-0.03 ng/m ^{3 33,41}	Same as organic acids	Same as organic acids	N/A

^a Assumes 2.9 cm² filter used in analysis from a deposit area of 13.8 cm², and sample collection at a flow rate of 16.7 L/min for 24-h

N/A: Not available

'Chow (1995, 077012); ²Watson and Chow (2001, 157123); ³ Watson et al. (1993, 045084); ⁴Fehsenfeld et al. (2004, 157360); ⁶Solomon et al. (2001, 157123); ⁶Watson et al. (2005, 081120); ¹³Ohmon and Sioulas (2006, 156989); ¹³Ora da L. (1998, 045093); ¹³Ora da L. (2003, 09160); ²³Ora da L. (2005, 157125); ²³Ho et al. (2006, 156552); ²⁴Decesari et al. (2005, 144536); ²⁵Mayol-Bracero et al. (2002, 045010); ²⁶Yang et al. (2003, 156724); ²⁵Miso and Liu (2004, 058801); ²⁵Niss et al. (2002, 156643); ²⁵Cornell and Jickelis (1999, 156367); ²⁵Teng et al. (2002, 26100); ²⁶Yang et al. (2002, 140741); ²⁵Fraser et al. (2003, 042231) ²⁵Schauer er al. (2000, 012225); ²⁵Fine et al. (2004, 141283); ²⁵Yu et al. (2004, 15769); ²⁶Kinehart et al. (2006, 156423); ²⁶Waterman et al. (2001, 15716); ²⁶Tran et al.

^b Assumes sample collection at a flow rate of 16.7 L/min for 24-h.

^c Reported as uncertainty in literature.

^d Assumes a final extract volume of 1 mL and sample collection at a flow rate of 16.7 L/min for 24-h.

Table A-5. Measurement and analytical specifications for continuous mass and mass surrogate instruments.

Instrument and Measurement Principle	Averaging Time	Analytical Accuracy ^a	Precisionb	MDL	Interferences	Comparability	Data Completeness
INERTIA INSTRUMENTS							
TEOM Air is drawn through a size-selective inlet onto the filter mounted on an oscillating hollow tube. The oscillation frequency changes with mass loading on the filter, which is used to calculate mass concentration by calibrating measured frequency with standards.	10 min-24 h	± 0.75%°	± 5 µg/m³ for 10-min avgc,d ± 1.5 µg/m³ for 1-h avg ^{t,d}	0.01 μg, which is 0.06 μg/m³ for 1-h avg°	Loses semi- volatile species at both 30°C and 50°C. SESTEOM, while less sensitive to relative humidity, does not completely eliminate loss of semi-volatile species	Underestimated FRM mass by 20 to 35% ⁶²⁻⁶⁴	99% 65 87 - 92% 6
FDMS TEOM. A self-referencing TEOM with a filter at 4 °C that accounts for volatile species. It is equipped with a diffusion Nafion dryer to remove particle-bound water. The Teflon (PTFE)-coated borosilicate glass-fiber filter that is maintained at 4 °C removes particles during the reference flow cycle. The flow alternates between a base and reference flow every 6 min. If a negative mass is measured during the reference flow, due to loss of volatiles from the filter, it is added to the mass made during the prior particle-laden samples to obtain total PM _{2.5} concentration.	1 h-24 h	± 0.75%°	< 10% ⁶⁵	0.01 μg, which is 0.06 μg/m³ for 1-h avg ^c	N/A	9 to 30% higher than FRM mass Within 10% of mass by D- TEOM, PC- BOSS, RAMS and BAM ^{66,67}	95-99% ^{65,68} 57-65% ⁶⁷
Differential Tapered Element Oscillating Microbalance (D-TEOM) Similar to FDMS, but an electrostatic precipitator is used in place of the glassfiber filter to remove particles during the 6 min reference flow cycle.	1 h-24 h	± 0.75%°	< 10% ^{e 65,69,70}	0.01 µg, or 0.06 µg/m³ for 1-h avg ^c	N/A	Within 10% of FDMS-TEOM	86% ⁶⁵
RAMS. A TEOM with a cyclone inlet, diffusion denuders, and Nafion dryer. Particles are collected on a "sandwich" filter (Teflon followed by carbonimpregnated glass-fiber filter) on the tapered oscillating element. The various denuders remove gas phase organic compounds, nitric acid, sulfur dioxide, nitrogen dioxide, ammonia, and ozone, which could otherwise be adsorbed by the TEOM filter.	10 min-24 h	N/A	< 10% ^{f 71}	± 1 to 2 μg/m ³ for 30-min avg ⁷²	N/A	10 to 20% higher than avg ⁷² FRM mass ^{73,74}	N/A

Instrument and Measurement Principle	Averaging Time	Analytical Accuracy ^a	Precisionb	MDL	Interferences	Comparability	Data Completeness
PRESSURE DROP INSTR	RUMENT						
Continuous Ambient Mass Monitor (CAMM) Air is drawn through a Teflon-membrane filter tape and the pressure drop across the filter is monitored continuously. The proportion of pressure drop to aerosol loading is related to the PM concentration. The filter tape advances every 30-60 min to minimize volatilization and adsorption artifacts during sampling.	1 h-24 h	N/A	28.1% for 1-h avg 15.9% for 24-h avg (~3.5 μg/m³) ⁷⁵	<5 µg/m³ for 1 h avg	Needs effective sealing for good performance; even slight leaks may result in highly variable baseline. Probably less sensitive than DTEOM or RAMS. 75,77	Varied performance: within 2% of SES-TEOM and FRM at Houston, TX, while not correlated with D-TEOM or FRM at Rubidoux, CA. 16,77	N/A
B-ATTENUATION INSTRU	JMENT						
B Attenuation Monitor (BAM) B rays electrons are passed through a quartz-fiber filter tape on which particles are collected. The loss of electrons (B attenuation) caused by the particle loading on the filter is converted to mass concentration, after subtrac- tion of blank filter attenuation.	1 h-24 h	±3 µg for 24-h avg concentrations < 100 µg/m³ and 2% for 100 to 1,000 µg/m³ ±8 µg for 1-h concentrations < 100 µg/m³ and 8% for 100 to 1000 µg/m³	± 2 μg/m ^{3 c.h}	5 μg/m³ for 1-h avg¹	Water absorption by particles may result in higher mass measure- ments; maybe important at RH >85%	Up to 30% higher than FRM mass and within 2% of FDMS TEOM ^{63,67}	93-99% 6,65,67
LIGHT-SCATTERING INS	TRUMENT						
Nephelometers (including DustTrak) A light source illuminates the sample air and the scattered light is detected at an angle (usually 90°) relative to the source. The signal is related to the concentration of the particles giving an estimate of the particle light-scattering coefficient. Zero air calibrations can be performed using particle-free air.	5 min-24 h	N/A	Nephelometers: < 5% for TSI and NGNi nephelometers 78.79 DustTrak: Greater of 0.1% or 1 µg/m³ c.h	Nephelometer: < 1.5 Mm ⁻¹ DustTrak: ± 1 µg/m ³ for 24-h avg ⁱ	Conversion factor to calculate mass concentration from bscat may vary depending on particle size, shape and composition. Light scattering by DustTrak proportional to dp 6 for dp < 0.25 µm 79	Typically good correlation with SES-TEOM and D-TEOM (R ² >0.80). Comparability depends on conversion factor used.	>80-98% for NGN2, RR-M903 and GreenTek Nephelometers 6 >80% for DustTrak ^{6 95} to 98% for GRIMM optical particle counter ⁶⁵

Instrument and	Averaging	Analytical	Precisionb	MDL	Interferences Comparability	Data
Measurement Principle	Time	Accuracy ^a				Completeness

a Accuracy is the ability of analytical methods to quantify the observable of a standard reference material correctly; does not refer to measurement accuracy, since no standards available.

N/A: Not available

Chow (1995, 077012); ²Watson and Chow (2001, 157123); ³ Watson et al. (1983, 045084); ⁴Fehsenfeld et al. (2004, 157360); ⁵Solomon et al. (2001, 157193); ⁵Watson et al. (2005, 157124); ⁷Mikel (2001, 156762); ⁵Watson et al. (1989, 09499); ⁵Solomon and Sioutas (2006, 156995); ⁵Oraney et al. (2004, 053756); ¹Tanaka et al. (1998, 157041); ¹Pancras et al. (2005, 98120); ¹Vohn et al. (1988, 045903); ¹Watson et al. (2003, 155775); ²Herring et al. (2004, 099003); ²Torewinck et al. (2003, 099160); ²Watson et al. (2005, 157125); ²Ho et al. (2005, 15525); ²Decesari et al. (2005, 144536); ²Moyo-Fracero et al. (2002, 045010); ²Wang et al. (2003, 155775); ²Tursic et al. (2006, 157063); ²Mader et al. (2004, 156724); ²Xiao and Liu (2004, 056801); ³Wisser et al. (2005, 144536); ²Morore (2000, 19839); ⁴Traser et al. (2003, 042266); ⁴Capare et al. (2000, 012339); ⁴Traser et al. (2003, 042266); ⁴Capare et al. (2004, 141283); ³Yuse et al. (2004, 157169); ³Watson et al. (2004, 156369); ⁴Capare et al. (2003, 040266); ⁴Capare et al. (2006, 156422); ⁴Yu et al. (2005, 157169); ⁴Waterman et al. (2006, 156494); ⁵Waterman et al. (2003, 165739); ⁴Traner et al. (2003, 165739); ⁴Traner et al. (2003, 165739); ⁴Traner et al. (2004, 157119); ⁵Waterman et al. (2001, 157117); ⁵Falkovich and Rudich (2001, 156422); ⁴Yu et al. (2007, 156419); ⁵Waterman et al. (2004, 102213); ⁴Capare et al. (2004, 156531); ⁵Jeon et al. (2004, 1565494); ⁵Waterman et al. (2004, 156494); ⁵Waterman e

^b Refers to precision of co-located measurements, unless specified otherwise.

^c Manufacturer-specified measurement parameter.

^d Details not available on how the precision was obtained and whether it refers to co-located precision.

^e Includes a combination of estimates: based on co-located precision and based on regression slopes.

^f Co-located precision with respect to PC-BOSS reconstructed PM_{2.5} mass.

g Using glass-fiber "sandwich" filter.

h Specified as "resolution" by the manufacturer.

Co-located precision estimate based on regression slope for NGN nephelometer (slope = 1.01, intercept = -1.64 μg/m³, R² = 0.99).

Specified as "Zero stability" by the manufacturer.

Table A-6. Measurement and analytical specifications for continuous elements.

Instrument and Measurement Principle	Averaging Time	Analytical Accuracya	Precision	MDL	Interferences	Comparability	Data Completeness
Semi-continuous Elements in Aerosol System (SEAS)	15-30 min	± 10% ^b for Mn, Fe, Ni, Cu, Zn, Se, Cd, and Sb	20-43%c ⁸⁰	Al: 440 pg Cr: 6.7 pg Mn: 9.9 pg	Spectral interferences limit the number of	N/A	N/A
Particles are collected at 30-min interval for subsequent laboratory atomic absorption analysis for elements. Aerosol collection is through condensational growth by direct steam injection. The grown particles are separated from the airstream using virtual impactor. The droplets accumulate in a slurry that is pumped to a separate sample vial for each time period.		± 20% for Cr, As, and Pb 80		Fe: 85 pg Ni: 42 pg Cu: 66 pg Zn: 43 pg As: 27 pg Se: 33 pg Cd: 3.2 pg Sb 160 pg Pb: 31 pg ⁶⁰	elements detected simultaneously		
Laser-Induced Breakdown Spectroscopy (LIBS)	A few seconds	N/A	N/A	Na: 143 fg Mg: 53 fg Al: 184 fg	N/A	N/A	N/A
Used for in-situ single particle analysis. A high-power pulsed laser is projected into particles producing high-temperature plasma. Photons emission from relaxing atoms in the excited states provides characteristics of individual elements.				Ca: 50 fg Cr: 166 fg Mn: 176 fg Cu: 15 fg ⁸			

^a Accuracy is the ability of analytical methods to quantify the observable of a standard reference material correctly; does not refer to measurement accuracy, since no standards are available.
^b Based on analysis of standard reference material (SRM) 1643d from National Institute of Standards and Technology (NIST).

^cBased on error propagation.

N/A: Not available

 $^{^{80}}$ (Kidwell and Ondov, 2004, $\underline{155898}$)^{; 81} (Lithgow et al., 2004, $\underline{126616}$).

Table A-7. Measurement and analytical specifications for continuous NO₃-.

Instrument and Measurement Principle	Averaging Time	Analytical Accuracy ^a	Precision	MDL	Interferences	Comparability	Data Completion
FLASH VOLATIZATION INSTRUME	NTS						
Aerosol Dynamics Inc. continuous nitrate analyzer (ADIN) Particle collection by humidification and impaction followed by flash volatilization and detection of the evolved gases in a chemiluminescent NO _X analyzer.	10 min	N/A	N/A	0.1 µg/m³ for 10-min avg ⁸²	N/A	Within 30% of filter and continuous NO ₃ ⁻ . See Weber et al. for details.	93% ⁷
Rupprecht and Patashnick continuous nitrate analyzer (R&P-8400N) Particle collection by impaction followed by flash volatilization and detection of the evolved gases in a chemiluminescent NO _X analyzer. A carbon honeycomb denuder, installed at the inlet to the Nafion humidifier removes nitric acid and ammonia vapor.	10 min	N/A	6.3% ₈₃ 23% ^b	0.17 to 0.3 μg/m³ for 24-h avg ^{53,84} 0.24 μg/m³ to 0.45 μg/m³ for 10-min avg	Conversion and volatilization efficiency appears to depend on ambient composition; extent of underestimation increases with higher concentrations. 84,86	20 to 45% lower than filter NO ₃ ⁻	>80->94% ^{6,20,83-}
DENUDER-DIFFERENCE INSTRUM	<i>IENT</i>						
Atmospheric Research and Analysis nitrate analyzer (ARAN) Sampled air passes through a 350°C molybdenum (Mo) mesh that converts particulate nitrate into NO. A pre-split stream with a Teflon filter installed upstream of an identical converter (i.e., particle-free air) is used as a reference. NO in both streams is quantified by chemiluminescence and their difference determines the particulate nitrate concentration. The instrument inlet contains a potassium iodide- coated denuder to remove HNO ₃ and NO ₂ .	30 s	N/A	N/A	0.5 μg/m ³ for 30-s avg ⁸²	N/A	Within 30% of filter and continuous NO ₃ ⁻ . See Weber et al. ⁸² for details.	76% ⁷
SAMPLE DISSOLUTION FOLLOWS	ED BY IC AN	IALYSIS INS	TRUMENT	rs .			
Energy Research Center of the Netherlands (ECN) IC-based ion analyzer Collects particles into water drops using a steam jet aerosol collector, via cyclone. The combined flow from collected droplets containing dissolved aerosol components and wall steam condensate is directed to an anion IC for analysis of nitrate. Interfering gases are pre-removed by a rotating wet annular denuder system.	1 h	N/A	N/A	0.1 µg/m ^{3 82}	N/A	Within 30% of filter and continuous NO ₃ ⁻ . See Weber et al. for details.	100% ⁷
Texas Tech University (TT) ion analyzer Particles in the sample stream are processed through a cyclone and a parallel plate wet denuder, then collected alternatively on one of two 2.5 cm prewashed glass fiber filters for a period of 15 min. The particles on the freshly sampled filter are automatically extracted for 6.5 min with water and analyzed for nitrate by IC.	15-30 min	N/A	N/A	0.010 μg/m ^{3 82}	N/A	Within 30% of filter and continuous NO ₃ ⁻ . See Weber et al. ⁸² for details.	97% ⁷
Particle into Liquid Sampler-Ion Chromatography (PILS-IC) Ambient particles are mixed with saturated water vapor to produce droplets collected by impaction. The resulting liquid stream is analyzed with an IC to quantify aerosol ionic components.	1 h	N/A	10%-15% ^c	0.05-0.1 µg/m³	Consistent water quality is essential for good precision.	Within 10% of nylon-filter NO ₃ ⁻ and 37% higher than R&P-8400N	65-70% ²⁰

Instrument and Measurement Principle	Averaging Time	Analytical Accuracy ^a	Precision	MDL	Interferences	Comparability	Data Completion
Dionex-IC The gas-denuded air stream enters the annular channel of a concentric nozzle, where deionized water generates a spray that entrains the particles. The flow is then drawn through a 0.5 µm pore size PTFE filter. The remaining solution is aspirated by a peristaltic pump and sent to IC for ion analysis.	1 h	N/A	14% ^{d 65}	N/A	Consistent water quality is essential for good precision.	Bias of < 10% relative to filter NO ₃ 65	N/A
Ambient Ion Monitor (AIM; Model 9000) Air is drawn through a size-selective inlet into a liquid diffusion denuder where interfering gases are removed. The stream enters a supersaturation chamber where the resulting droplets are collected through impaction. The collected particles and a fraction of the condensed water are accumulated until the particles can be injected into IC for hourly analysis.	1 h	N/A	N/A	0.1 µg/m³ for 1-h avg [®]	N/A	N/A	N/A
PARTICLE MASS SPECTROMETER	R INSTRUMI	ENT					

Aerosol Mass Spectrometer (AMS) Air stream is drawn through an aerodynamic lens and focused into a beam in a vacuum chamber. This aerosol beam is chopped by a mechanical chopper and the flight time of the particles through a particle-sizing chamber is determined by the time-resolved mass spectrometer measurement. The particle impacts onto a 600 °C heated plate where it decomposes and is analyzed by a quadruple mass spectrometer. The nitrate ion, along with other ions, is detected by the mass spectrometer.

A few N/A N/A 0.03 µg/m³ 20

Subject to interferences from fragments of other species with mass to charge ratio in the same range as fragments of nitrate. Highly refractory materials are not detected.

Within 10% of nylon-filter NO₃, and within 15% of PILS-IC and 30% of R&P8400N 20

94-98%20

^aAccuracy is the ability of analytical methods to quantify the observable of a standard reference material correctly; does not refer to measurement accuracy, since no standards are available.

N/A: Not available.

**Chow (1995, 077012); **Duston and Chow (2001, 157123); **Duston et al. (1983, 045084); **Fehsenfeld et al. (2004, 157360); **Solomon et al. (2001, 157133); **Watson et al. (2005, 15893); **Torange et al. (2004, 053736); **Tanaka et al. (1998, 157041); **Ppancras et al. (2005, 098120); **John et al. (1988, 045903); **Hering and Cass (1999, 084958); **Fitz et al. (1989, 077387); **Hering et al. (1988, 036012); **Toslomon et al. (2003, 156934); **Cabada et al. (2004, 148859); **Fitz et al. (2003, 155775); **Deresari et al. (2004, 14836); **Deresari et al. (2004, 14836); **Deresari et al. (2004, 14836); **Deresari et al. (2004, 157063); **Deresari et al. (2005, 157063); **Deresari et al. (2005, 157063); **Deresari et al. (2005, 157063); **Deresari et al. (2006, 1565167); **Tursic et al. (2006, 157063); **Deresari et al. (2004, 157063); **Deresari et al. (2005, 157063); **Deresari et al. (2006, 157063); **Deresari et al. (2007, 157063); **Deresari et al. (2007, 157063); **Deresari et al. (2007, 157063); **Deresari et al. (2004, 157063); **Deresari et al. (2005, 157063); **Deresari et al. (2006, 157063); **Deresari

b Overall uncertainty estimated by error propagation.

^c Uncertainty estimated from uncertainties in flow rates and calibrations; does not refer to co-located precision.

d Co-located precision with respect to PC-BOSS PM25 total particulate NO3 (the sum of the denuded front filter [non-volatilized NO3-] and HNO3-absorbing backup filter [volatilized NO3]).

^e Manufacturer specified measurement parameter

Table A-8. Measurement and analytical specifications for continuous SO₄²⁻.

Instrument and Measurement Principle	Averaging Time	Analytical Accuracy ^a	Precision	MDL	Interferences	Comparability	Data Completeness
FLASH VOLATILIZATION INSTRUMENTS	;						
Aerosol Dynamics, Inc. continuous sulfate analyzer (ADIS) Particle collection by impaction followed by flash volatilization and detection of the evolved gases	10 min	N/A	N/A	0.4 μg/m³	N/A	Within 15% of filter and continuous SO_4^2	100% ⁷
by a UV-fluorescence SO ₂ analyzer.						See Weber et al. 82 for details.	
Rupprecht and Patashnick continuous sulfate analyzer (R&P-8400S) Particle collection by impaction followed by flash volatilization and detection of the evolved gases by a UV-fluorescence SO ₂ analyzer. An activated carbon denuder at the inlet to the Nafion humidifier removes SO ₂ .	10 min	N/A	25% on avg < 15% at conc. >9 μg/m³ and >30% at conc. <2 μg/m³ b	0.48 μg/m³	SO ₄ ²⁻ to SO ₂ conversion and volatilization efficiency appears to depend on ambient composition ⁸⁴	10-30% lower than filter SO ₄ ²⁻ ^{20,21,84}	84- 95% ^{6,20,21,84,85}
${\it THERMAL\ REDUCTION\ INSTRUMENTS}$							
Continuous Ambient Sulfate Monitor (CASM) Sampled air passes through a Na_2CO_3 coated annular denuder to remove ambient SO_2 and is subsequently split into independent sample and filter flows. The sample flow passes through a quartz tube containing a stainless steel rod maintained at 1000 °C that reduces sulfate to SO_2 . The flow then passes through a PTFE filter and into a trace-level SO_2 fluorescence analyzer.	15 min	N/A	N/A	N/A	N/A	Up to 25% lower than filter SO ₄ ^{2—} and within 6% of R&P8400S, PILS-IC and AMS ^{20/21}	80-98% ^{20,21}
Thermo Electron Model 5020 sulfate particulate analyzer (TE-5020) The commercial version of CASM, with slight changes in the sample flow path.	15 min	N/A	< 10% ^{c 89}	0.3 µg/m³ for 24-h avg ⁸⁹ 0.5 µg/m³ for 15-min avgd	SO ₄ ²⁻ to SO ₂ conversion efficiency depends on ambient composition ⁸⁹	~20% lower than filter SO ₄ ²⁻	88-90% ⁸⁹
SAMPLE DISSOLUTION FOLLOWED BY	IC ANALYS	IS INSTRUM	IENTS				
Energy Research Center of the Netherlands (ECN) IC-based ion analyzer Entrains particles into water drops using the steam jet aerosol collector. The drops are collected using a cyclone and the combined flow from collected droplets containing dissolved aerosol components and wall steam condensate is directed to an anion IC for analysis of sulfate. Interfering gases are preremoved by a rotating wet annular denuder system.	1h	N/A	N/A	N/A	N/A	Within 15% of filter and continuous SO ₄ ²⁻ See Weber et al. 82 for details.	100%
Texas Tech University (TT) ion analyzer Particles in the sample stream, after being processed through a cyclone and a parallel plate wet denuder, are collected alternatively on one of two 2.5 cm pre-washed glass fiber filters for a period of 15 min. The particles on the freshly sampled filter are automatically extracted for 6.5 min with water and analyzed for sulfate by IC.	30 min	N/A	N/A	N/A	N/A	Within 15% of filter and continuous SO ₄ ² See Weber et al. ⁸² for details.	100% ⁷
Particle into Liquid Sampler-Ion Chromatography (PILS-IC) Ambient particles are mixed with saturated water vapor to produce droplets collected by impaction. The resulting liquid stream is analyzed with an IC to quantify aerosol ionic components.	1 h	N/A	10%-15% ^e	0.1 to 0.18 μg/m³	Consistent water quality is essential for good precision.	Within 30% of filter and other continuous SO ₄ ^{2-20,21}	65-70% ^{20,21}

Instrument and Measurement Principle	Averaging Time	Analytical Accuracy ^a	Precision	MDL	Interferences	Comparability	Data Completeness
Dionex-IC The gas-denuded air stream enters the annular channel of a concentric nozzle, where deionized water generates a spray that entrains the particles. The flow is then drawn through a 0.5-µm pore size PTFE filter. The remaining solution is aspirated by a peristaltic pump and sent to IC for ion analysis.	1h	N/A	11% ^{f 65}	N/A	Consistent water quality is essential for good precision.	Within 10% of filter SO ₄ ²⁻⁶⁵	N/A
Ambient Ion Monitor (AIM; Model 9000) Air is drawn through a size-selective inlet into a liquid diffusion denuder where interfering gases are removed. The stream enters a super saturation chamber where the resulting droplets are collected through impaction. The collected particles and a fraction of the condensed water are accumulated until the particles can be injected into IC for hourly analysis.	1h	N/A	N/A	0.1 μg/m³ for 1-h avg	N/A	N/A	N/A
PARTICLE MASS SPECTROMETER							
Aerosol Mass Spectrometer (AMS) Airstream is drawn through an aerodynamic lens and focused into a beam in a vacuum chamber. This aerosol beam is chopped by a mechanical chopper and the flight time of the particles through a particle-sizing chamber is determined by the time-resolved mass spectrometer measurement. The particle impacts onto a 600 °C heated plate where it decomposes and is analyzed by a quadruple mass spectrometer. The sulfate ion, along with other ions, is detected by the mass spectrometer.	A few seconds	N/A	N/A	N/A	Subject to interferences from fragments of other species with mass to charge ratio in the same range as fragments of sulfate. Highly refractory materials are not detected.		93-98% ^{20,21}

Averaging Analytical

N/A: Not available

"Chow (1995, 077012): "Watson and Chow (2001, 157123): "Watson et al. (1988, 045084): "Fersenfeld et al. (2004, 157360): "Solomon et al. (2001, 157193): "Watson et al. (2005, 098120): "John et al. (2005, 156925): "Graney et al. (2004, 053756): "Tanaka et al. (1998, 157041): "Pancras et al. (2005, 098120): "John et al. (2003, 156762): "Hering and Cass (1999, 084958): "Fitze et al. (1989, 077387): "Hering et al. (1988, 036012): "Solomon et al. (2003, 156994): "Cabada et al. (2004, 148859): "Mayol-Bracero et al. (2003, 155775): "Hogrefe et al. (2004, 156774): "Watson et al. (2004, 156774): "Watson et al. (2005, 157125): "Ho et al. (2006, 156552): "Decesari et al. (2005, 145458): "Mayol-Bracero et al. (2002, 045010): "Wayol-Bracero et al. (2002, 045010): "Wayol-Bracero et al. (2002, 045010): "Wayol-Bracero et al. (2004, 156774): "Sraser et al. (2003, 126223): "Schauer er al. (2000, 12225): "Fine et al. (2002, 156648): "Cornell and Jickells (1999, 156367): "Z-Ineg et al. (2002, 150741): "Fraser et al. (2003, 14223): "Schauer er al. (2000, 157104): "Fraser et al. (2004, 157169): "Fraser et al. (2003, 14223): "Schauer er al. (2000, 157162): "Emmenegger et al. (2005, 157167): "Tran et al. (2000, 01239): "Greaves et al. (1985, 156494): "Watson et al. (2004, 157167): "Greaves et al. (1985, 156494): "Watson et al. (2004, 156551): "Jeon et al. (2001, 1564717): "Salvalerman et al. (2001, 157167): "Salvalerman et al. (2001, 156472): "Chone et al. (2007, 156472): "Chone et al. (2007, 156472): "Chone et al. (2004, 156551): "Jeon et al. (2004, 156369): "Greaves et al. (2004, 156369): "Gre

Source: Chow et al. (2008, 156355)

Data

^a Accuracy is the ability of analytical methods to quantify the observable of a standard reference material correctly; does not refer to measurement accuracy, since no standards available.

^b Overall uncertainty estimated by error propagation.

^c Co-located precision estimate based on regression slope (slope = 0.95, intercept = 0.01-0.2, R²>0.98).

^d Manufacturer specified measurement parameter.

^e Uncertainty estimated from uncertainties in flow rates and calibrations; does not refer to co-located precision.

f Co-located precision with respect to PC-BOSS PM_{2.5} SO₄²⁻

Table A-9. Measurement and analytical specifications for ions other than NO₃⁻ and SO₄²⁻.

Instrument and Measurement Principle	Averaging Time	Analytical Accuracy ^a	Precision	MDL	Interferences	Comparability	Data Completeness
SAMPLE DISSOLUTION FOLLOWED	BY IC ANA	LYSIS INST	RUMENTS				
NO ₂ ⁻ by Particle into Liquid Sampler-Ion Chromatography (PILS-IC) Ambient particles are mixed with saturated water vapor to produce droplets collected by impaction. The resulting liquid stream is analyzed with an IC to quantify aerosol ionic components.	1 h	N/A	10%b ⁸⁸	0.14 μg/m ^{3 20}	Consistent water quality is essential for good precision	N/A	N/A
NH ₄ ⁺ by Particle into Liquid Sampler-Ion Chromatography (PILS-IC) Ambient particles are mixed with saturated water vapor to produce droplets collected by impaction. The resulting liquid stream is analyzed with an IC to quantify aerosol ionic components.	1 h	N/A	10% ^{b 88}	0.05 µg/m³	Consistent water quality is essential for good precision	~5% lower than all-sampler avg° at Atlanta	N/A
CI ⁻ , Na ⁺ , K ⁺ , Ca ⁺⁺ by Particle into Liquid Sampler-Ion Chromatography (PILS-IC) Ambient particles are mixed with saturated water vapor to produce droplets collected by impaction. The resulting liquid stream is analyzed with an IC to quantify aerosol ionic components.	1 h	N/A	10%b ⁸⁸	0.1 µg/m ^{3 88}	Consistent water quality is essential for good precision	N/A	N/A
CΓ, NO ₂ ⁻ , NO ₃ ⁻ , PO ₄ ³⁻ , SO ₄ ²⁻ , NH ₄ ⁺ , Na ⁺ , Mg ⁺⁺ , K ⁺ , Ca ⁺⁺ by Ambient Ion Monitor (AIM; Model 9000) Air is drawn through a size-selective inlet into a liquid diffusion denuder where interfering gases are removed. The stream enters a super saturation chamber where the resulting droplets are collected through impaction. The collected particles and a fraction of the condensed water are accumulated until the particles can be injected into IC for hourly analysis.	1 h	N/A	N/A	0.1 µg/m³ for 1-h avg ^d	N/A	N/A	N/A

^a Accuracy is the ability of analytical methods to quantify the observable of a standard reference material correctly; does not refer to measurement accuracy, since no standards are available.

Chow (1995, 077012); ²Watson and Chow (2001, 157123); ³ Watson et al. (1983, 045084); ⁴Fehsenfeld et al. (2004, 157360); ⁵Solomon et al. (2001, 157193); ⁵Watson et al. (2005, 157124); ⁷Mikel (2001, 156762); ⁸Watson et al. (1998, 920949); ⁸Solomon and Sioutas (2006, 156995); ⁸Fra et al. (1989, 077387); ⁸Hering et al. (1988, 036012); ⁸Solomon et al. (2003, 156944); ⁸Boahad et al. (2004, 148859); ⁸Fra et al. (2003, 156775); ⁸Horing et al. (1988, 036012); ⁸Solomon et al. (2003, 156944); ⁸Cabada et al. (2004, 148859); ⁹Fra et al. (2002, 045010); ⁸Wargon et al. (2003, 156775); ⁸Horing et al. (2005, 156952); ⁸Pocesañ et al. (2005, 148539); ⁸Mayol-Bracero et al. (2002, 045010); ⁸Wargon et al. (2005, 157125); ⁸Ho et al. (2006, 156652); ⁸Pocesañ et al. (2005, 14536); ⁸Mayol-Bracero et al. (2002, 045010); ⁸Wargon et al. (2003, 042231); ⁸Solomon et al. (2004, 156743); ⁸Solomon et al. (2005, 14536); ⁸Mayol-Bracero et al. (2002, 045010); ⁸Wargon et al. (2004, 156743); ⁸Wargon et al. (2006, 157663); ⁸Wargon et al. (2007, 15717); ⁸Wargon et al. (2007, 15717); ⁸Wargon et al. (2007, 156427); ⁸Wargon et al. (2007, 15717); ⁸Wargon et al. (2007, 156427); ⁸Wargon et al. (2007, 15717); ⁸Wargon et al. (2007, 156427); ⁸Wargon et al. (2007, 156427)

^b Uncertainty estimated from uncertainties in flow rates and calibrations; does not refer to co-located precision

^c All-sampler avg appears to include a combination of 10 integrated and 3 continuous samplers, although specific details are missing ⁷. Performance evaluations at sites dominated by semi-volatile ammonium nitrate are needed.

^d Manufacturer specified measurement parameter

 Table A-10.
 Measurement and analytical specifications for continuous carbon.

Instrument and Measurement Principle	Averaging Time	Analytical Accuracy ^a	Precision	MDL	Interferences	Comparability	Data Completeness
PARTICLE COLLECTION ON IMPACTOR	R FOLLOWE	D BY FLAS	H VOLATIL	IZATION IN	ISTRUMENT		
Aerosol Dynamic Inc. continuous carbon analyzer (ADI-C) Particle collection by impaction followed by flash oxidation and detection of the evolved gases by a non-dispersive infrared CO_2 analyzer. OC is estimated as twice the oxidizable carbon. EC is not quantified.	10 min	N/A	N/A	OC: 2 µg/m³ EC, TC: not applicable, since it measures only OC 90	N/A	15-22% lower OC than that by R&P-5400 and RU-OGI	83% ⁷
PARTICLE COLLECTION ON FILTER / II	MPACTOR F	OLLOWED	BY HEATIN	IG/ANALYS	SIS INSTRUMEI	VTS	
Rupprecht and Patashnick 5400 continuous ambient carbon analyzer (R&P-5400) Particles collected on an impactor, which is heated to 275 °C to 350 °C, then to 700 °C after sample collection is complete. Evolved CO_2 is measured by an infrared detector. OC is defined as the carbon measured at the lower temperature, and EC is the remaining carbon measured at the higher temperature.	1 h	N/A	N/A	OC: 0.5 µg/m³ EC: 0.5 µg/m³ TC: 0.5 µg/m³ 90	N/A	20 to 60% lower TC than filter TC by TOR or TOT. 91,92	56-60% ^{6,91}
Rutgers University-Oregon Graduate Institute (RU-OGI) in-situ thermal/optical transmittance carbon analyzer. Air is sampled through a quartz-fiber filter for 1 h and then analyzed by heating through different temperature steps to determine OC and EC. Sample flow is pre-split into two identical systems that alternate every hour between sampling and analysis mode to achieve continuous measurements.	30 min	N/A	3% ^{b,7}	OC: 0.3 μg/m³ EC: 0.5 μg/m³ TC: 0.4 μg/m³ 90	N/A	8% higher OC and 20% lower EC than R&P- 5400 ⁹⁰	86% ⁷
Sunset semi-continuous realtime carbon aerosol analysis instrument (Sunset OCEC) Particles collected on a quartz-fiber filter are subject to heating temperature ramps following the NIOSH 5040 TOT protocol and the resulting CO_2 is analyzed by nondispersive infrared (NDIR) detector to quantify OC and EC. Instrument is alternated between sampling and analytical mode.	1 h	N/A	OC: 10%° EC: 20%° TC: 10%°	OC: N/A EC: N/A TC: 0.4 µg/m ³ (1-h avg) ⁹⁵	N/A	Within 7 to 25% of filter OC and EC and within 15% for TC. Wide variation due to different-ces in temperature and analysis protocols. 92,95,96	80-89% ^{6,95}
LIGHT ABSORPTION INSTRUMENTS							
Aethalometer (AE-16, AE-21, AE-31) Attenuation of light transmitted through a quartz-fiber filter tape that continuously samples aerosol is measured and converted to a BC mass concentration using σ_{abs} of 14625/ λ (m²/g).	5 min	N/A	5 to 10% ^{d.7.97}	BC ^e : 0.1 μg/m ^{3 90}	Subject to multi- ple scattering effects by parti- cle and filter matrix resulting in absorption enhancement. Empirical cor- rections have been proposed 98 that can cor- rect for such effects.	Within ± 25% of RU-OGI, Sunset and filter EC by TOR/TOT. ⁹⁰⁻⁹²	75-90% ⁶

Instrument and Measurement Principle	Averaging Time	Analytical Accuracy ^a	Precision	MDL	Interferences	Comparability	Data Completeness
Particle Soot Absorption Photometer (PSAP) Attenuation of light transmitted through a glass-fiber filter that continuously samples aerosol is measured to quantify light absorption (b_{abs}).	1 min	N/A	6 to 8% ^{99,100}	BC ^f : 0.1 μg/m ^{3 90}	Instrument includes an empirical correction for scattering and loading effects 99 and adjustments have been proposed for the three wavelength model 100	~50% lower than AE-16, RU- OGI and R&P- 5400 EC. ⁹⁹	N/A
Multi-Angle Absorption Photometer (MAAP) Light transmittance at 0° and reflectance from a glass-fiber filter at 130° and 165° from the illumination direction are used in a radiative transfer model to estimate babs and is converted to BC using σ_{abs} of 6.6 m _z /g.	1 min	N/A	12% ^{g,101}	BC ^h : 0.05 µg/m³ (or b _{abs} = 0.33 Mm¹ for 10-min avg) 0.02 µg/m³ (or b _{abs} = 0.13 Mm¹ for 30-min avg) ¹⁰¹	The instrument is designed to minimize multiple scattering and loading effects by measuring both transmittance and reflectance and using a two-stream approximation radiative transfer model to calculate babs.	Within 18% of filter EC by IMPROVE_TOR (R ² = 0.96) and up to 40% higher than Sunset EC. ¹⁰²	N/A
DRI Photoacoustic Analyzer (DRI-PA) Light absorption by particles in air results in a heating of the surrounding air. The expansion of the heated air produces an acoustic (sound wave) signal which is detected by a microphone to determine babs, which is converted to BC using σ_{abs} = 5 m²/g for the 1047 nm instrument and σ_{abs} = 10 m2/g for the 532 nm instrument.	5s	N/A	N/A	BC ¹ : 0.04 μg/m ³ (or b _{abs} = 0.4 Mm ⁻¹ for 10-min avg) at 532 nm ¹⁰³	At 532 nm, absorbance by NO ₂ interferes with that by particles. Accounted by either removing NO ₂ from sample line using denuders or by doing a periodic background (particle-free air) subtraction.	Good correlation (R² >0.80), but more than 40% lower than aethalometer, MAAP and filter IMPROVE_TOR EC. Suggests need for a different σ _{abs} . 102	N/A
PHOTO-IONIZATION INSTRUMENTS							
Photoionization monitor for polycyclic aromatic hydrocarbons (PAS-PAH) The air stream is exposed to UV radiation, which ionizes the particle-bound PAH molecules. The charged particles are collected on a filter element and the piezoelectric current is proportional to the particle-bound PAH.	5 min	N/A	N/A	~3 ng/m ^{3 j,k}	N/A	N/A	>91% ⁶

Instrument and Measurement Principle Averaging Analytical Accuracy Precision MDL Interferences Comparability Data Completeness

N/A: Not available.

Chow (1995, 077012); ²Watson and Chow (2001, 157123); ³Watson et al. (1989, 045084); ⁴Fehsenfeld et al. (2004, 157360); ⁵Solomon et al. (2001, 157133); ⁶Watson et al. (2005, 155124); ⁷Mikel (2001, 156762); ⁸Watson et al. (1989, 920849); ⁸Solomon and Sioutas (2006, 156993); ⁸Graney et al. (2004, 953763); ⁷Manake et al. (1988, 157041); ⁸Pancras et al. (2005, 98120); ⁷John et al. (1988, 945903); ⁸Hering and Cass (1999, 984958); ⁸Fitz et al. (1989, 977387); ⁸Hering et al. (1988, 936012); ⁷Solomon et al. (2003, 156949); ⁸Cabada et al. (2004, 148859); ⁸Fita et al. (2003, 155775); ⁸Derogrefe et al. (2004, 959003); ⁸Vatson et al. (2005, 156552); ⁸Decesari et al. (2005, 145636); ⁸Mayol-Bracero et al. (2002, 95101); ⁸Sorage et al. (2002, 140741); ⁸Fraser et al. (2003, 14223); ⁸Solomon et al. (2004, 95801); ⁸Kiss et al. (2002, 156646); ³Cornell and Jickells (1999, 156367); ⁸Zheng et al. (2002, 95100); ⁸Fraser et al. (2003, 14223); ⁸Solomon et al. (2000, 115164); ⁸Watson et al. (2003, 140741); ⁸Fraser et al. (2003, 140741); ⁸Fraser et al. (2003, 14223); ⁸Solomon et al. (2000, 115164); ⁸Watson et al. (2003, 140741); ⁸Fraser et al. (2003, 142231); ⁸Solomon et al. (2000, 115164); ⁸Watson et al. (2000, 157169); ⁸Mayol-Bracero et al. (2002, 115164); ⁸Watson et al. (2003, 140741); ⁸Fraser et al. (2003, 140741); ⁸Fraser et al. (2003, 142231); ⁸Solomon et al. (2004, 142339); ⁸Fraser et al. (2003, 142231); ⁸Solomon et al. (2006, 156421); ⁸Herin et al. (2006, 156469); ⁸Cromell and Jickells (1999, 156367); ⁸Chow et al. (2005, 157169); ⁸Watson et al. (2004, 142363); ⁸Watson et al. (2003, 146694); ⁸Watson et al. (2004, 142363); ⁸Watson et al. (2005, 156393); ⁸Crower et al. (2004, 156393); ⁸Watson et al. (2004, 156393); ⁸Watson et al.

a Accuracy is the ability of analytical methods to quantify the observable of a standard reference material correctly; does not refer to measurement accuracy, since no standards are available.

b No specific details on how the precision was estimated; appears to be based on replicate analysis, may not represent overall co-located measurement precision

^c Co-located precision estimates based on variation in avg ratios of replicate analysis using laboratory instrument and regression slopes (Slopes for OC = 1.01, EC = 0.82, TC = 0.94; R² = 0.97-0.99) of co-located field measurements.

^d Estimated using co-located AE-21 and AE-31 BC measurements at Fresno, CA.97

^e While the default manufacturer recommended conversion factor (or mass absorption efficiency, σabs) is 16.6 m2/g at 880 nm, Lim et al. (2003, <u>037037</u>) assumed a value of 12.6 m²/g.

^f Assuming a σabs of 10 m²/g.

g Co-located precision estimate based on the variability of the avg ratio (0.99 \pm 0.12).

h Assuming a σabs of 6.5 m²/g.

Assuming a σabs of 10 m²/g at 532 nm and 5 m²/g at 1047 nm.

Specified by manufacturer as "lower threshold"; needs to be calibrated with site-specific PAH. Typically used as a relative measure in terms of electrical output in femtoamps.

k Manufacturer specified measurement parameter

 Table A-11.
 Summary of mass measurement comparisons.

	Site / Per	iod / Sam	oler / Configura	tion	Summary of Findings
1. Birmingham, AL (2. Denver-Adams C 3. Bakersfield, CA (ity, CO (12 1/21/97 To	/11/96 To 1/ 3/19/97)	,		Peters et al. (2001, <u>017108</u>) ¹⁰⁴ : Pitchford et al. (1997, <u>156872</u>) ¹⁰⁵ dataset
4. Denver-Welby, C 5. Phoenix, AZ (12/06)	06/96 To 12	2/21/96)	6)		Co-located precision (CV) for the RAAS2.5-100 samplers ranged from 1.5% at Bakersfield to 6.2% at Birmingham.
6. Azusa, CA (3/25/7. Research Triangl 8. Rubidoux, CA (1/9. Atlanta, GA (8/3/9	le Park (RT 6/99 To 2/2	P), NC (1/1 26/99)	7/97 To 8/14/97)		In Birmingham, CV for two co-located Harvard Impactor was 1% and for three Dichots was 6.2%. The IMPROVE samplers had greater variability, with a CV of 11.3% (Denver-Adam City) and 10.8% (Bakersfield).
Sampler	Flow Rat	e (L/Min)	Filter Type ^a	Denuder ^b	Partisol and RAAS showed the strongest pairwise comparison
RAAS2.5-100 PM _{2.5} FRM	16.7		Teflon (N/A)	None	(slope = 1.0 ± 0.06 , intercept = 0.26 ± 1.81 , and correlation = 1.0), within the EPA equivalency criteria. Strong relationships (correlation $ > 0.96$; slope = $0.9-1.12$, intercept $ < 3\sigma $) were observed for other
RAAS2.5-300 PM _{2.5} FRM	16.7		Teflon (N/A)	None	samplers in reference to the RAAS. At Denver-Welby, 6 RAAS samplers were deployed (3 with and 3
RAAS2.5-200 PM _{2.5} FRM	16.7		Teflon (N/A)	None	without temperature compensation for flow control). The units with temperature compensation had a positive bias relative to the non-temperature compensated units.
R&P Partisol 2000 PM _{2.5} FRM	16.7		Teflon (N/A)	None	Non-FRM samplers did not meet the EPA equivalency criteria, despite strong linear relationships with the FRM sampler.
R&P Partisol-plus 2025 PM _{2.5} FRM	16.7		Teflon (N/A)	None	Peters et al. (2001, <u>016925</u>) ¹⁰⁴ : RTP ⁹⁷ dataset
BGI PQ200 PM _{2.5} FRM	16.7		Teflon (N/A)	None	CV was 1.7%, 2.3%, 3.4%, 6.4% for the PQ200, Partisol 2000, RAAS2.5100, and Dichot, respectively. Dichot flows were valve controlled and set visually by the operator using rotameters.
Sierra Instruments SA-244 Dichot	16.7	Teflon (N/A)		None	Good one-to-one correspondence was observed for FRM comparisons. The FRM averages were within -1.2% to 3.2%, within
IMPROVE PM _{2.5}	22.8		Teflon (N/A)	None	the acceptable ± 10% range
Harvard PM _{2.5} Impactor	10		Teflon (N/A)	None	Peters et al. (2001, <u>016925</u>) ¹⁰⁴ : Rubidoux 99 and Atlanta 99 dataset
Airmetrics battery powered PM _{2.5}	5		Teflon (N/A)	None	In Rubidoux, the precision for PQ200 was 6.1%, higher than at RTP ⁹⁷ . In Atlanta, the grouped data from PQ200, RAAS2.5-300, and Partisol yielded a precision of 1.7%.
MiniVol			, ,		Linear regression results met the EPA equivalency criteria for all FRMs.
Atlanta Supersite, Four km NW of dow			f a hue maintenand	ee vard and several	Solomon et al. (2003, <u>156994</u>) ¹⁷
				esidential neighborhood.	PM _{2.5} mass from individual samplers was compared to all-sampler - avgs, called the filter relative reference (filter RR) value. Overall
Sampler	Flow Rate	Filter Typ	e ^a	Denuder ^b	agreements were within ± 20% of filter RR. FRM samplers were within 3.5% of filter RR.
R&P-2000 FRM	(L/Min) 16.7	Teflon (P)		None	Avg mass measured by RAAS-400, SASS and URG-PCM were
RAAS-100 FRM	16.7	Teflon (P)		None	within ± 10% of filter RR. Avg mass measured by MASS-400, R&P-2300 and R&P-2025 dichot were greater than filter RR but
RAAS-400	24	Teflon (P)		None	 within ± 20%. Avg mass measured by PC-BOSS (BYU) and ARA-PCM were lower than filter RR within ± 10%.
SASS	6.7	Teflon (P)		None	All samplers except PC-BOSS (TVA) had R ² >0.80, relative to filter
MASS-400	16.7	Teflon (P)		Na ₂ CO ₃	- RR.
R&P-2300	10	Teflon (P)		None	 While avg mass for each sampler was within 20%, daily variability was >50% of filter RR.
R&P-2025 Dichot:					Glycerol in the Na ₂ CO ₃ denuder may have contaminated the filter in
PM _{2.5}	15	Teflon (P)		None	- the MASS-400 sampler resulting in higher PM _{2.5} values.
PM ₁₀ -2.5	1.67	Polycarbo	nate	None Na ₂ CO ₃ /Citric	 PC-BOSS samplers removed particles < 0.1 μm aerodynamic diameter from PM_{2.5} measurements. Corrections were made using sulfate (SO₄²) concentrations in the major flow or immediately after
URG-PCM	16.7	Teflon (P)		Acid	the PM _{2.5} inlet, but before the flow split-up. This was insufficient to bring PC-BOSS mass close to filter RR. PC-BOSS was also
ARA-PCM	16.7	Teflon (N/	A)	Na ₂ CO ₃ /Citric acid	equipped with upstream denuders ahead of the filters, which may have enhanced loss of semi-volatile components, resulting in a lower
PC-BOSS (operated by TVA)	105	Teflon (W)		CIF	mass on the filter.

	Site / Per	riod / Sampler / Co	nfiguration		Summary of Findings			
PC-BOSS	150	Teflon (W)	CIF		Butler et al. (2003, <u>156313</u>) ⁶²			
(operated by BYU) PM ₂₅ Continuous	Flow		Descar	Other	. The sum of individual species accounted for ~78% of the RAAS-100 FRM PM $_{\rm 25}$ mass concentration.			
Sampler	Rate (L/Min)	Inlet Temperature	Dryer	Other	TEOM explained ~82 to 92% of the species sum of RAAS with $_{\rm R}^2$ = 0.86.			
TEOM	16.7	30 °C	Nafion	PM _{2.5}				
Atlanta Supersite,	GA: 11/21	/01 to 12/23/01			Lee et al. (2005, <u>128139</u>) ⁷³			
PM _{2.5} Sampler	Flow Rate (L/Min)	Filter Type ^a	Deni	uder⁵	RAMS PM _{2.5} adjusted using particle concentrator efficiency of 0.5. Good correlation between SES-TEOM and Radiance Research			
R&P-2025 FRM	16.7	Teflon (N/A)	None)	M903s (R ² = 0.80), while medium correlation was found betwee CAMM and Radiance Research M903 (R ² = 0.64) or RAMS an			
PM ₂₅ Continuous Sampler	Flow Rate (L/Min)	Inlet Temperature	Dryer	Other	Radiance Research M903 (R ² = 0.63). CAMM = (0.75 ± 0.03) SES-TEOM + (2.51 ± 0.51); R ² = 0.78; N = 196			
TEOM	16.7	30 °C	Nafion PM _{2.5}		RAMS = (0.85 ± 0.06) SES-TEOM + (5.34 ± 1.04) ; R ² = 0.52 ; N = 96			
SES-TEOM	16.7	30 °C	Nafion	PM _{2.5}	RAMS = (0.91 ± 0.07) CAMM + (5.71 ± 1.20) ; R ² = 0.43 ; N = 196			
CAMM	0.3	N/A	Nafion	PM _{2.5}	Semi-volatile material explains the difference between RAMS and			
RAMS	16.7	30 °C	Nafion	PM _{2.5} TEA & CIF denuders With particle concentrator	- SES TEOM. CAMM = (0.75 ± 0.08) R&P-2025 FRM + (2.47 ± 1.02) ; R ² = 0.76; N = 31 RAMS = (0.97 ± 0.22) R&P-2025 FRM + (2.39 ± 3.42) ; R ² = 0.64;			
Radiance Research M903	N/A	N/A	Nafion	bscat	_ N = 13 SES-TEOM = (1.07 ± 0.05) R&P-2025 FRM + (-1.34 ± 0.71); _ R ² = 0.95; N = 26			
Radiance Research M903	N/A	N/A	None	bscat	CAMM vs. FRM yielded lower slopes (0.75) with high intercepts.			
PITTSBURGH SUP		PA: 7/1/01 to 6/1/02 6	km east of dow	ntown in a	Cabada et al. (2004, <u>148859</u>) ¹⁸ : Rees et al. (2004, <u>097164</u>) ¹⁰⁶			
· ·	Flow				- MOUDI PM ₁₀ = 0.80 Dichot PM ₁₀ , R^2 = 0.85			
Sampler	Rate (L/Min)	Filter Type ^a	Deni	uder	MOUDI PM _{2.5} = 1.03 Dichot PM _{2.5} , R^2 = 0.78			
MOUDI-110	30	Teflon (P,d)	None	<u> </u>	_ MOUDI PM _{2.5} = 1.01 FRM PM _{2.5} , R ² = 0.78			
And-241 Dichot	16.7	Teflon (P	None		Dichot $PM_{2.5} = 0.97 FRM PM_{2.5} + 0.02; R^2 = 0.94$			
R&P-2000 PM _{2.5} FRM	16.7	Teflon (W)	None		Good agreement for PM _{2.5} FRM, Dichot, and MOUDI. Lower slope for PM ₁₀ suggests loss of coarse particles in the MOUDI sampler.			
PM _{2.5} Continuous Sampler	Flow Rate (L/Min)	Inlet Temperature	Dryer	Other	Ultrafine (< 100 nm) mass (PM ₀₋₁₀) measurements had high uncertainties (~30%) Ultrafine mass by MOUDI showed no correlation with ultrafine			
SES-TEOM	16.7	30 °C	Nafion	PM _{2.5}	volume (V0.10) by DAASS. Ratio of PM _{0.10} /PM _{2.5} mass ratio showed reasonable agreement with volume ratio (V0.10/V2.5, R ² = 0.55,			
DAASS	N/A	30 °C	Nafion or None		slope = 0.76). Bounce of large particles to smaller stages in MOUDI was small, since mass ratio (PM _{0.10} /PM _{2.5}) did not exceed volume ratio (V0.10/V2.5). Low correlation between ultrafine mass and			
			HOHE		volume could be due to the ultrafine mass measurement uncertainty or due to fundamental differences in the measurement methods employed by MOUDI and DAASS. Ambient conditions and characteristics of the aerosols (such as non-spherical shapes of fres particles) could also influence these estimates.			
					Rees et al. (2004, <u>097164</u>) ¹⁰⁶			
					SES-TEOM PM _{2.5} = 1.02 FRM PM _{2.5} + 0.65; R^2 = 0.95			
					Volatilization did not affect SES-TEOM performance when PM_{25} mass >20-30 $\mu g/m^3$. When ambient temperature was < -6 °C, and when mass was low, SES-TEOM was lower (up to 50%) than FRM Dichot.			

	Site / Per	riod / Sampler	/ Configuration	n	Summary of Findings
FRESNO SUPERS					Chow et al. (2006, <u>146622</u>) ⁶³
comparisons includ northeast of downto					PM _{2.5} measurements from the 11 filter samplers were within ~20% of
Sampler	Flow Rate (L/Min)	Filter Type ^a		Denuder	 each other, except for MiniVols, which were 20 to 30% lower than RAAS-300 FRM. All the FRM samplers were within ± 10% of each other.
RAAS-100 PM _{2.5} FRM	16.7	Teflon (P)		None	All the filter samplers were well correlated with each other (R ² >0.90). ^e
RAAS-300 PM _{2.5} FRM	16.7	Teflon (P)		None	DRI-SFS (with HNO ₃ denuder) and And-246 Dichot PM _{2.5} were lower (~5% and 7%, respectively, on avg) than FRM, possibly due to nitrate (NO ₃ ⁻ volatilization.
R&P-2000 PM _{2.5} FRM	16.7	Teflon (P)		None	Poor correlation (R ²) found between TEOM PM _{2.5} concentrations and RAAS-100 FRM. TEOM PM _{2.5} was lower than RAAS-100 FRM by
R&P-2025 PM _{2.5} FRM	16.7	Teflon (P)		None	22%. Heating of TEOM inlet to 50 °C resulted in loss of semi-volatile components such as ammonium nitrate (NH ₄ NO ₃) and possibly some semi-volatile organic compounds.
RAAS-400 PM _{2.5}	24	Teflon (P)		None	TEOM PM ₁₀ concentrations were 28% lower than the And-hIVOL10
SASS PM _{2.5}	6.7	Teflon (P)		None	FRM on avg, ranging from 13% in summer to 43% in winter.
And-246 Dichot					TEOM was neither equivalente nor comparablee to the FRM sampler for PM _{2.5} or PM ₁₀ .
PM _{2.5}	15	Teflon (P)		None	BAM PM _{2.5} concentrations showed high correlation (R ² >0.90) with
PM ₁₀ -2.5	1.67	Teflon (P)		None	the RAAS-100 and RAAS-300 FRM samplers, with slopes ranging from 0.92 to 0.97. BAM PM _{2.5} was typically higher than FRM (17 to
DRI-SFS PM _{2.5}	113	Teflon (P)		None	30%) except at Bakersfield, CA, where it was 21% lower, suggesting
MiniVol PM _{2.5}	5	Teflon (P)		None	— a BAM calibration difference between Bakersfield and other sites.
MOUDI-100	30	FEPb Teflon (P)	None	 BAM PM₁₀ concentrations were 26% higher than And-hIVOL PM₁₀ FRM concentration on avg (R² >0.92).
And-hIVOL PM ₁₀ FRM	1130	Teflon (P)		None	Higher BAM measurements were attributed to water absorption by hygroscopic particles. BAM PM _{2.5} and PM ₁₀ deviations were larger for concentrations < 25 µg/m ³ .
					Grover et al. (2006, <u>138080</u>) ⁶⁵
					PC-BOSS PM _{2.5} = (0.88 ± 0.04) FDMS-TEOM + (6.7 ± 4.3) ; R ² = 95; n = 29
					PC-BOSS PM _{2.5} = (1.11 \pm 0.07) D-TEOM + (7.5 \pm 6.1); R ² = 0.90; n = 29
					TEOM50C PM _{2.5} = (0.80 ± 0.01) TEOm ³ 0C + (1.1 ± 3.1) ; R ² = 0.91; n = 507
					TEOm 3 0C PM $_{2.5}$ = (0.50 ± 0.01) FDMS-TEOM -(1.7 ± 6.9); R 2 = 0.68; n = 516
					Heated GRIMM PM concentrations were lower than FDMS-TEOM and ambient temperature GRIMM, suggesting loss of semi-volatile matter.
					Data recovery was greater than 95% for all continuous instruments, except for D-TEOM, which had 86% recovery.
					Reasonable agreement was seen between FDMS-TEOM, D-TEOM, BAM, and GRIMM PM _{2.5} when semi-volatile matter was dominated by NH ₄ NO ₃ . However, the FDMS-TEOM was higher than the other instruments during high concentration periods, associated with days with a high fraction of semi-volatile organic compounds (SVOCs). Possible differences in SVOCs may have contributed to the differences between FDMS and other instruments.
Continuous Samp	ler Flov	v Rate (L/Min)	Inlet Temperature	Dryer	Other
TEOM	16.7	,	50 °C	None	PM _{2.5} and PM ₁₀
BAM	16.7	,	Ambient	None	PM _{2.5} and PM ₁₀
Sampler	Flov	v Rate (L/Min)	Filter Type ^a		Denuder ^b

CIF

December 2009 A-25

150

Teflon (W)

PC-BOSS PM_{2.5}

Site	e / Period / Sampler	/ Configuration	า		Summary of Findings
Continuous Sampler	Flow Rate (L/Min)	Inlet Temperature	Dryer	Other	
TEOM	16.7	50 °C	None	PM _{2.5}	-
TEOM	16.7	30 °C	None	PM _{2.5}	
FDMSTEOM	16.7	30 °C	Nafion	PM _{2.5}	
D-TEOM	16.7	30 °C	Nafion	PM _{2.5}	-
GRIMM1100	1.2	Ambient	None	bscat	-
GRIMM1100	1.2	80 °C heater, resulting in aerosol temperature	Heater	bscat	·
BAM	16.7	Ambient	None	PM _{2.5}	
HOUSTON SUPERSITI The Houston Supersite of a municipal airport at channel and one on the	included three sites loo the edge of a small co	cated in southeast mmunity, one adja	cent to the high	g one on the grounds nly industrial ship	Russell et al. (2004, <u>082453</u>) ⁶⁴ ; Lee et al. (2005, <u>156680</u>) ¹⁰⁸ Good correlations between 24-h SES-TEOM PM _{2.5} and R&P-2025 FRM mass.
PM _{2.5} Sampler	Flow Rate (L/Min)	Filter Type ^a		Denuder	$L = 0.93 \pm 0.03$ RAMS + (3.14 ± 0.74);
R&P-2025 FRM	16.7	Teflon (N/A)		None	R ² = 0.81
Continuous Sampler	Flow Rate (L/Min)	Inlet Temperature	Dryer	Other ^b	SES-TEOM = (0.92 ± 0.03) RAMS + (1.52 ± 0.77) ; R ² = 0.80
TEOM	16.7	50 °C	None	PM _{2.5}	SES-TEOM = (1.01 ± 0.03) CAMM + (-1.91 ± 0.79) ; R ² = 0.83
SES-TEOM	16.7	30 °C	Nafion	PM _{2.5} Aug-Sep '00	Correlation of Radiance Research M903 and SES- TEOM was good (R ² = 0.95), while that of Radiance
CAMM	0.3	Ambient	Nafion	PM _{2.5} Aug-Sep '00	Research M903 with CAMM or RAMS was poor (R ² ~ 0.4).
RAMS	16.7	30 °C	Nafion	PM _{2.5} TEA & CIF denuders; Aug- Sep '00	RAMS >SES-TEOM at high temperature and low RH (< 60%), suggesting loss of water and particulate NO_3 from SES-TEOM. CAMM = (1.02 ± 0.08) R&P-2025 + (1.62 ± 1.35) ;
Radiance Research M903	N/A	N/A	Nafion	Bscat Aug-Sep '00	$R^2 = 0.89$ $RAMS = (1.10 \pm 0.08) R&P-2025 + (0.68 \pm 1.28);$ $R^2 = 0.89$ $SES-TEOM = (1.09 \pm 0.07) R&P-2025 + (0.21 \pm 1.27);$ $R^2 = 0.94$ Integrated mass < Continuous PM _{2.5} mass. Difference possibly related to loss of SVOCs and NO ₃ from integrated sampler
LOS ANGELES SUPER The Los Angeles Super provide wide geographi "receptor" sites.	site consisted of multip	le sampling location			Jaques et al. $(2004, \frac{155878}{155837})^{69}$; Hering et al. $(2004, \frac{155837}{109})^{109}$ Dichot PM _{2.5} = 0.83 MOUDI + 1.23; R ² = 0.83
Sampler	Flow Rate (L/Min)	Filter Type ^a		Denuder ^b	- (n = 37)
R&P-2025 Dichot	. ,				 Dichot PM_{2.5} showed higher NO₃⁻ loss than MOUDI consistent with anodized aluminum surfaces serving
PM _{2.5}	15	Teflon (P)		None	 as efficient denuders that remove volatilized NO₃
PM ₁₀ -2.5	16.7	N/A		None	D-TEOM PM _{2.5} = 1.18 MOUDI – 1.28; R ² = 0.86
MOUDI-110	30	Teflon (P		None	- (n = 20)
HEADS PM _{2.5}	10	Teflon (N/A)		NaHCO ₃	 Over-estimation of D-TEOM may be due to particle losses in the MOUDI.
2.0		, ,		0	PM _{2.5} by D-TEOM during ESP-off phase (net artifac
Continuous Sampler	Flow Rate (L/Min)	Inlet Temperature	Dryer	Other	effect) tracked well with the NO ₃ concentrations. NO ₃ vaporization from the TEOM was caused by
D-TEOM	16.7	30 °C	Nafion	PM _{2.5}	the temperature of the TEOM filter (~30-50 °C) rather than the pressure drop across the filter.
Nano-BAM (BAM-1020 with d50 148 ± 10 nm inlet)	16.7	Ambient	None	~150 nm cut- point at 16.7 L/min	Vaporization from the TEOM had a time constant between 10 and 100 min depending on ambient and TEOM filter temperatures, the vapor pressure, and

Site	e / Period / Sampler	/ Configuration	1		Summary of Findings
SMPS-3936	0.3	Ambient	None	Number to mass assu- ming spherical particles of 1.6 g/cc density	the extent of vapor saturation upstream and downstream of the TEOM filter. The mass measured during 5-min periods (ESP-on and off cycle in D-TEOM) provides an estimate of the dynamic vaporization losses. Chakrabarti et al. (2004, 157426) ¹¹¹ Good agreement between MOUDI PM _{0.15} and Nano-BAM PM _{0.15} (MOUDI PM0.15 = 0.97 Nano-BAM PM _{0.15} + 0.60; R ² = 0.92; n = 24) Nano-BAM captured peak PM _{0.15} concentrations not quantified by SMPS. Potential particle
RUBIDOUX, CA; 08/15	5/01 to 09/07/01 07/01	03 to 07/31/03 R	uhidoux is locat	red in the eastern	agglomeration (with resulting high surface areas) caused SMPS to include particles in the accumulation- rather than ultrafine-mode, since mobility diameter is a function of surface area. Grover et al. (2005, 090044) ⁶⁶ (2003
section of the South Co downwind of the centra production area in SoC	ast Air Basin (SoCAB) I Los Angeles metropol	in the northwest co	orner of Riversi	de County, 78 km	measurements): D-TEOM = (0.98 ± 0.02) FDMS-TEOM +
Sampler	Flow Rate (L/Min)	Filter Type ^a		Denuder ^b	 (-0.6 ± 5.3); R²=0.85; n = 426; excludes 38 data points when FDMS-TEOM PM_{2.5} was higher than D-
PC-BOSS PM _{2.5}	150	Teflon (W)		CIF	- TEOM PM _{2.5} by ~21 μg/m ³ .
R&P-2025 PM _{2.5} FRM	16.7	Teflon (N/A)		None	- RAMS = (0.93 ± 0.02) FDMS-TEOM + (2.4 ± 8.2) ; R ² = 0.81; n = 337
Continuous Sampler	Flow Rate (L/Min)	Inlet Temperature	Dryer	Other	FDMS-TEOM = (0.96 ± 0.06) PC-BOSSconstructed mass + (-0.3 ± 3.9) ; R ² = 0.90 ; n = 33
TEOM	16.7	50 °C	None	PM _{2.5}	R&P-2025 FRM = (0.96 ± 0.06) FDMS-TEOM +
FDMS-TEOM	16.7	30 °C	Nafion	PM _{2.5}	$-(-9.3 \pm 3.9); R^2 = 0.90; n = 29$
D-TEOM	16.7	30 °C	Nafion	PM _{2.5}	 The R&P-2025 FRM PM_{2.5} was, on avg, ~32% lower than FDMSTEOM. Losses of NH₄NO₃ and organics
RAMS	16.7	30 °C	Nafion	PM _{2.5} Denuders used	can account for the difference. TEOM @ 50 °C PM _{2.5} was consistently lower than
CAMM	0.3	N/A	None	PM _{2.5}	- FDMS-TEOM, DTEOM or RAMS and was, on avg, ~50% lower than FDMS-TEOM. This difference is
Radiance Research M903	N/A	N/A	Nafion	bscat	due to loss of semi-volatile NO ₃₋ and organics from the heated TEOM.
Radiance Research M903	N/A	N/A	None	bscat	FDMS-TEOM and D-TEOM needed little attention from site operators.
					Lee et al. (2005, <u>155925</u>) ⁷⁶ (2001 measurements)
					D-TEOM $PM_{2.5}$ and Radiance Research M903s light scattering (with and without dryers) showed good correlation.
					D-TEOM = (3.69 ± 0.09) Radiance Research M903no-dryer + (2.74 ± 0.89) ; R ² = 0.84; n = 299
					D-TEOM = (3.79 ± 0.10) Radiance Research M903dryed + (4.08 ± 0.84) ; R ² = 0.83; n = 312
					Radiance Research M903no-dryer = (1.03 ± 0.01) Radiance Research M903dryed + (0.34 ± 0.05) ; $R^2 = 0.98$; n = 513; absorbed water did not affect relationship to PM _{2.5} .
					CAMM and RAMS compared poorly ($\rm R^2$ = 0 to 0.25) with D-TEOM, Radiance Research M903s and among themselves.
					RAMS correlated well with D-TEOM for $PM_{2.5}$ >30 $\mu g/m^3$ due to RAMS's efficient particle collection of larger particle sizes (historically associated with high mass loadings at this site) in the $PM_{2.5}$ size range.
					D-TEOM PM $_{2.5}$ correlated well with ADI-N sized NO $_3$ (R 2 = 0.62) and OC by Sunset OCEC (R 2 = 0.61) suggesting that D-TEOM measured PM $_{2.5}$ mass with minimum loss of SVOCs. RAMS showed R 2 of 0.20 (NO $_3$ $^-$) to 0.30 (OC), while CAMM showed no correlation.

Site	e / Period / Sampler /	Summary of Findings Grover et al. (2005, <u>090044</u>) ⁶⁶			
LINDON, UT; 01/29/03	to 02/12/03				
Sampler	Flow Rate (L/Min)	Filter Type ^a		Denuder ^b	RAMS required regular maintenance.
PC-BOSS PM _{2.5}	150	Teflon (W)		CIF	RAMS = (0.92 ± 0.03) FDMS-TEOM + (1.3 ± 3.9) ; R ² = 0.69; n = 332
CONTINUOUS SAMPLER	FLOW RATE (L/MIN)	INLET TEMPERATURE	DRYER	OTHER	PC-BOSS constructed mass = (0.89 ± 0.21) FDMS TEOM + (1.8 ± 2.8) ; R^2 = 0.66 ; n = 11
TEOM	16.7	30 °C	None	PM _{2.5}	TEOM @ 30 °C PM _{2.5} was consistently lower than FDMS-TEOM and the difference was consistent
FDMS-TEOM	16.7	30 °C	Nafion	PM _{2.5}	with concentrations SVOCs and NH ₄ NO ₃ measure
RAMS	16.7	30 °C	Nafion	PM _{2.5} Denuder used	_ by PC-BOSS.
mixed deciduous and pi	7/02/01 to 08/01/01 At v ne trees on three sides m downtown Philadelphi	and a river on the oth	r in a grassy ner. Within 0.5	field surrounded by	Lee et al. (2005, 128139) ⁷³ Radiance Research M903dryer = (0.78 ± 0.01)
Sampler	Flow Rate (L/Min)	Filter Type ^a		Denuder ^b	 Radiance Research M903no dryer + (0.30 ± 0.03); R² = 0.95
Harvard Impactor PM _{2.5}		Teflon (N/A)		N/A	Radiance Research M903s vs. CAMM, R ² = 0.78
Continuous Sampler	Flow Rate (L/Min)	Inlet Temperature	Drver	Other	Radiance Research M903s vs. RAMS, R ² = 0.63
SES-TEOM	16.7	35 °C	Nafion	PM _{2.5}	Radiance Research M903s vs. SES-TEOM,
CAMM	0.3	N/A	Nafion	PM _{2.5}	$-R^2 = 0.72$
RAMS	16.7	30 °C	Nafion	PM _{2.5} TEA & CIF denuders With particle	$-$ CAMM = (0.60 ± 0.03) SES-TEOM + (2.0 ± 0.42) ; $R^2 = 0.71$; $N = 185$ RAMS = (0.71 ± 0.04) SES-TEOM + (2.51 ± 0.59) $R^2 = 0.63$; $N = 185$
Radiance Research M903	N/A	N/A	Nafion	concentrator	RAMS = (0.93 ± 0.06) CAMM + (2.44 ± 0.68); R ² = 0.55; N = 185
Radiance Research M903	N/A	N/A	None	bscat	$PM_{2.5}$. CAMM = (0.70 ± 0.06) HI + (0.16 ± 0.96); R^2 = 0.8 N = 22 SES-TEOM = (1.0 ± 0.10) HI + (-0.68 ± 1.74); R^2 = 0.89; N = 15
BALTIMORE SUPERSI	TE, MD; 05/17/01 to 06	/11/01. Located near	a freeway an	d bus yard.	Lee et al. (2005, <u>128139</u>) ⁷³
Sampler	Flow Rate (L/Min)	Filter Type		Denuder	Radiance Research M903dryed = (0.65 ± 0.02) - Radiance Research M903no dryer + (1.80 ± 0.20)
RAAS-100 PM _{2.5} FRM	16.7	Teflon		None	R ² = 0.75, suggesting influence from particle-boun water.
Continuous Sampler	Flow Rate (L/Min)	Inlet Temperature	Dryer	Other	High correlation (R ² = 0.75) between Radiance
SES-TEOM	16.7	35 °C	Nafion	PM _{2.5}	Research M903s.
CAMM	0.3	N/A	Nafion	PM _{2.5}	Poor correlation among the continuous instrument
RAMS	16.7	30 °C	Nafion	PM _{2.5} TEA & CIF denuders; No particle	Radiance Research M903s did not follow PM _{2.5} concentrations measured by other continuous instruments.
Radiance Research M903	N/A	N/A	Nafion	bscat	- CAMM = (0.32 ± 0.07) SES-TEOM + (9.45 ± 1.61) R ² = 0.14; N = 120 - RAMS = (0.82 ± 0.10) SES-TEOM + (6.41 ± 2.09);
Radiance Research M903	N/A	N/A	None	bscat	$R^2 = 0.38$; $N = 120$ RAMS = (0.71 ± 0.12) CAMM + (11.3 ± 2.23) ; $R^2 = 0.21$; $N = 120$ CAMM = (0.80 ± 0.29) RAAS-100 FRM + (-0.83 ± 5.85) ; $R^2 = 0.60$; $N = 7$ RAMS = (1.05 ± 0.12) RAAS-100 FRM + (4.80 ± 2.60) ; $R^2 = 0.90$; $N = 11$ SES-TEOM = (0.86 ± 0.10) RAAS-100 FRM + (2.96 ± 1.99) ; $R^2 = 0.90$; $N = 10$

Site	e / Period / Sampler	Summary of Findings			
SEATTLE, WA; 01/28/0		Lee et al. (2005, <u>156680</u>) ¹⁰⁸			
SAMPLER	FLOW RATE (L/MIN)	8 km southeast of downtown. FILTER TYPE ^a DENU		DENUDER ^b	_ Radiance Research M903dryed = 0.94 ± 0.00 Radiance Research M903no dryer; R ² = 1.0.
MASS PM ₂₅	16.7	Teflon (N/A)		Na ₂ CO ₃	Correlation of Radiance Research M903 vs. SES- TEOM, R ² = 0.80, while that of Radiance Research M903 with CAMM was R ² = 0.84 and with RAMS
Continuous Sampler	Flow Rate (L/Min)	Inlet Temperature Dryer		Other	
SES-TEOM	16.7	30 °C	Nafion	PM _{2.5}	$-$ was $R^2 = 0.72$.
CAMM	0.3	Ambient	Nafion	PM _{2.5}	- CAMM = (1.07 ± 0.05) RAMS + (1.03 ± 0.55); R ² = 0.61
RAMS	16.7	30 °C	Nafion	PM _{2.5} TEA & CIF denuders	SES-TEOM = (0.95 ± 0.03) RAMS + (1.24 ± 0.38) ; R ² = 0.72
Radiance Research M903	N/A	N/A	Nafion	bscat	SES-TEOM = (0.87 ± 0.03) CAMM + (0.55 ± 0.37) ; R ² = 0.74
					SES-TEOM likely lost semi-volatile organic matter.
Radiance Research					Continuous $PM_{2.5}$ samplers were similar to filter $PM_{2.5}$ sampler. Number of samples was small (~7).
M903	N/A	N/A	None	bscat	Some SES-TEOM mass values were less than MASS filter values suggesting that loss of mass is likely for a SES-TEOM at 30°C, particularly during the cold season.
NEW YORK SUPERSIT					Schwab et al. (2006, <u>098449</u>) ⁶⁷
Urban site located at Quand within 12 km of inte by golf course, picnic ar	ernational airports. A rura	al site was located at	Pinnacle State	e Park surrounded	FDMS-TEOM had operational difficulties resulting in low data capture (65% at urban site and 57% at
Sampler	Flow Rate (L/Min)	Filter Type ^a		Denuder ^b	rural site).BAM had data captures greater than 95% at both
R&P-2025 PM _{2.5} FRM	16.7	Teflon (N/A)		None	sites.
R&P-2300 PM _{2.5}	16.7	Teflon (N/A)		None	Urban site:
Continuous Sampler	Flow Rate (L/Min)	Inlet Temperature	Dryer	Other	BAM = (1.02 ± 0.02) FDMS-TEOM + 1.72; = R ² = 0.93; n = 244
TEOM	16.7	50 °C	None	PM _{2.5}	_ FDMS-TEOM = (1.25 ± 0.02) FRM – (0.63 ± 0.26);
FDMS-TEOM	16.7	30 °C	Nafion	PM _{2.5}	$R^2 = 0.95$; n = 238
					BAM = (1.28 ± 0.03) FRM + (1.27 ± 0.38); R ² = 0.88; n = 320
					Rural site:
BAM	16.7	"smart" heater on @ RH >44%		PM _{2.5}	FDMS-TEOM = (1.09 ± 0.02) FRM – (0.004 ± 0.18) R ² = 0.95; n = 349
					PM _{2.5} FDMS-TEOM >FRM >TEOM50°C, suggesting that FRM captured a fraction, but not all, of the

Site / Period / Sampler / Configuration

Summary of Findings

Chow (1995, 077012); ²Watson and Chow (2001, 157123); ³ Watson et al. (1983, 045084); ⁴Fehsenfeld et al. (2004, 157360); ⁵Solomon et al. (2001, 157193); ⁶Watson et al. (2005, 159124); ⁷John et al. (1988, 045903); ⁸Hering and Cass (1999, 029498); ⁸Solomon and Sioutas (2006, 156995); ¹⁰Graney et al. (2004, 0593756); ¹¹Tanaka et al. (1998, 157041); ¹²Pancras et al. (2005, 098120); ¹³John et al. (1988, 045903); ¹⁴Hering and Cass (1999, 039458); ¹⁵Fitz et al. (1989, 077387); ¹⁶Hering et al. (1988, 036012); ¹³Solomon et al. (2003, 156934); ¹⁸Cabada et al. (2004, 148859); ¹⁶Mayol-Bracero et al. (2002, 045010); ²⁶Wang et al. (2003, 156552); ²⁶Decessari et al. (2005, 144536); ²⁶Mayol-Bracero et al. (2002, 045010); ²⁶Wang et al. (2004, 156724); ²⁶Valoa and Liu (2004, 058801); ³⁶Kiss et al. (2002, 156646); ³⁶Cornell and Jickells (1999, 156367); ²⁷Zheng et al. (2002, 026100); ³⁶Fraser et al. (2002, 140741); ³⁶Fraser et al. (2003, 042231) ³⁶Sohauer et al. (2000, 012225); ³⁶Friine et al. (2004, 152182); ³⁷Vine et al. (2004, 157169); ³⁸Fraherat et al. (2006, 11843); ³⁸Wan and Yu (2006, 157169); ³⁸Fraherat et al. (2003, 156539); ⁴⁸Zhang and Anastasio (2003, 157182); ⁴⁹Emmenegger et al. (2007, 156418); ⁵⁰Watson et al. (1989, 046318); ⁵⁰Greaves et al. (1985, 156494); ³⁶Waterman et al. (2004, 156525); ³⁶Waterman et al. (2004, 156525); ³⁶Waterman et al. (2001, 156632); ³⁶Waterman et al. (2007, 156632); ³⁶Waterman et al. (2001, 156632); ³⁶Waterman et al. (2004, 156829); ³⁶Waterman et al. (2004, 15622); ³⁶Waterman et al. (2004, 15622); ³⁶Waterman et al. (2004, 156323); ³⁶Cover et al. (2005, 198033); ³⁶Cover et al. (2006, 198033); ³⁶Fohore (2004, 155883); ³⁶Water et al. (2005, 156823); ³⁶Water et al. (2006, 138983); ³⁶Water et

^aFilter Manufacturer in parentheses - W: Whatman, Clifton, NJ; P: Pall-Gelman, Ann Arbor, MI; S: Schleicher & Schnell. Keene, NH; N/A: not available or not reported.

bNa₂CO₃: Sodium carbonate; NaHCO₃: Sodium bicarbonate CIF: Charcoal Impregnated Filter; FEP: Fluorinated Ethylene Propylene copolymer; TEA: Triethanolamine; TSP: Total Suspended PM. c³7 mm filter.

^d37 mm after-filter for stages smaller than 0.16 μm and 47-mm for higher stages.

Equivalence requires correlation coefficient (r) ≥ 0.97, linear regression slope 1.0 ± 0.05 and an intercept 0 ± 1 μg/m³, Comparability requires r>0.9 and linear regression slope equal 1 within 3 standard errors and intercept equal zero within 3 standard errors; Predictability requires r>0.9. 91, 112

Table A-12. Summary of element and liquid water content measurement comparisons.

SITE / PERIOD / SAMPLER

SUMMARY OF FINDINGS

College Park, MD; 11/18/1999 to 11/19/1999, 11/22/1999

Adjacent to a parking lot in the University of Maryland campus, influenced by motor vehicles, coal-fired power plants and incinerators ~21 km southwest of site and regionally transported material.

Concentrated Slurry/Graphite Furnace Atomic Absorption MDLs ranged from 3.2 picogram (pg = 10⁻¹² gram) to 440 pg. Spectrometry (GFAAS) (collectively known as Semi-Continuous Elements in Aerosol Sampler, SEAS)

Ambient air is pulled in at a flow rate of 170 L/min. Particles are grown using steam injection to about 3 to 4 µm in diameter, which are then concentrated and separated from the air stream in the form of a slurry using impactors. The slurry is collected in glass sample vials, which are subsequently analyzed by GFAAS in the laboratory.

Pittsburgh Supersite, PA; 08/26/2002 to 09/02/2002

6 km east of downtown in a park on the top of a hill.

Laser Induced Breakdown Spectroscopy (LIBS)

Ambient air was concentrated using a PM2.5 inlet and a virtual Teflon tube to the sample cell of the LIBS system. The sample cell was excited using a Nd: YAG laser. The resulting plasma was collected and focused into a spectrometer, generating spectra characteristic of different elements.

Pittsburgh Supersite, PA; 07/01/2001 to 08/31/2001, 01/01/2002 to 07/01/2002.

6 km east of downtown in a park on the top of a hill.

Dry Ambient Aerosol Size Spectrometer (DAASS)

Measures the aerosol size distribution (using nano-SMPS, SMPS and APS) alternatively, at ambient relative humidity (RH) (ambient channel) and at low RH (18 ± 6%) (dry channel). A comparison of the two size distributions provides information on the water absorption and change in size due to

Kidwell and Ondov (2001, 017092; 2004, 155898)

Overall collection efficiency (of the entire system) measured using latex particles was 40% for particles initially 0.1 to 0.5 μm in diameter, increasing with size to 68% for particles 3 μm in diameter. Major losses were in the virtual impactor major flow channel and in the

Six elements were detected simultaneously, limited by spectral interference and the minimum detectable limit (MDL). Twelve elements (Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd, Sb, and Pb) were measured.

Comparison with NIST standards showed good agreement, except for Al, Cr and Fe, due to poor atomization. The method was valid for dissolved solutions, but not for large particles

Overall avg relative standard deviation (RSD) was 20 to 43% by error propagation, mainly due to the collection and analytical efficiencies.

There were possible memory effects due to particle adhesion to impactor collection surfaces.

Lower MDLs may be possible through redesign and introduction of a wash cycle between samples. A 2.5 µm inlet might improve analytical efficiency by removing coarse particles.

Lithgow et al. (2004, 126616)

Calibration was done by sampling particle-laden streams with known metal concentrations. Good linear fits with correlation coefficients 0.97 to 0.99

Seven metals (Na, Mg, Al, Ca, Cr, Mn, and Cu) were analyzed.

impactor. The concentrated stream was transported through a The MDLs were in the order of femtograms (fg = 10⁻¹⁵ gram) per sample.

This system has the capability of identifying the components, quantifying them and also giving a particle size distribution. Mass was underestimated because of missing small particles

Stanier et al. (2004, 095955); Khlystov et al. (2005, 156635)

Measured water content ranging from less than 1 μg/m³ to 30 μg/m³, constituting < 5% to 100% of the dry aerosol mass.

Small differences between dry and ambient channels of the DAASS. Number concentrations were within 5% of each other.

Additional sources of error are associated with temperature differences between measured outdoor ambient temperature and the temperature at which the ambient measurement channel was maintained. Although the measurement system was placed in a ventilated enclosure, it was ~4 °C higher than ambient temperature during July 2001. During winter, the system was maintained at a minimum temperature of 9 °C, while the outdoor temperature dropped to -5 °C. This caused differences in RH sensed by the system in the ambient channel versus the actual outdoor RH.

RH differences cause underestimation of the particle number at sizes < 200 nm and an overestimation at sizes >200 nm. This causes the volume growth factor to be higher by 2 to 14%, with the highest bias occurring at high RH and low temperature (92% outside RH and -

The difference in temperature might also lead to evaporation of semi-volatile components such as NH $_4$ NO $_3$. For the winter period, it was estimated that, for the worst case, the volume growth factor would be underestimated by about 10% for 60-90% RH.

Insufficient purging of dry air between the dry and ambient cycles (implying the need for supplemental vacuum power during the vent stages) causes uncertainties in estimated growth factors. Correction factors were between 0.97 and 1.03.

Water content estimated by DAASS can be used to evaluate the thermodynamic models. For the Pittsburgh study, the models underestimated the water content by 37%.

Data from DAASS showed that the aerosol was wet even at ambient RH less than 30%.

Table A-13. Summary of $PM_{2.5} NO_3^-$ measurement comparisons.

	SITE / PERIOD / SAN	SUMMARY OF FINDINGS		
ATLANTA SUPERSITE maintenance yard and s neighborhood.	, GA: 8/3/99 to 9/1/99 For everal warehouse facilities	Solomon et al.(2003, 156994) ¹⁷ PM _{2.5} , NO ₃ from each sampler was compared to		
Sampler	Flow Rate (L/Min)	Filter Type ^a	Denuder ^b	the all-sampler avgs, called the filter relative reference (filter RR) value. Overall agreements
R&P-2000 FRM	16.7	Quartz (P)	None	 were within 30-35% of filter RR. Wide scatter from paired comparisons, possibly due to volatilized NO₃, differences in denuder design and filter types, and low concentrations (close to analytical uncertainty).
RAAS-400	24	Nylon (P)	MgO	
SASS	6.7	Nylon (P)	MgO	
MASS-400	16.7	Teflon (P)-Nylon (P	Na ₂ CO ₃	A small positive artifact (few tenths of µg/m³) might
MASS-450	16.7	Quartz (P)	None	be present when using Na ₂
R&P-2300	10	Nylon (P)	Na ₂ CO ₃	 CO₃ impregnated filters, due to possible collection (and subsequent oxidation) of HONO and NO₂ on
VAPS	15	Polycarbonatec (front & back-up)	Na ₂ CO ₃	carbonate-impregnated filters. In addition, glycerol in Na ₂ CO ₃ coated denuders may contaminate the filters downstream.
URG-PCM	16.7	Teflon (P)-Cellulose-fiber (W	^r Na₂CO₃	PM _{2.5} NO ₃ - R&P-2000 FRM and MOUDI-100 samplers are consistently lower than other
ARA-PCM	16.7	Teflon (N/A)-Nylon (N/A)	Na ₂ CO ₃ /Citric acid	samplers.
PC-BOSS (TVA)	105	Teflon (W)- Nylon (P)		Weber et al. (2003, 157129) ⁸² Hourly PM _{2.5} NO ₃ -were compared to all-sampler
PC-BOSS (BYU)	150	Teflon (W)- Nylon (P)	CIF	averages (continuous RR), similar to the approarused for integrated filter samplers. Overall agreements were within ± 20-30% (or ± 0.2 µg/m
PC-BOSS (BYU)	150	Quartz (P)- CIF (S)	CIF	except for ARA-N.
MOUDI-100	30	Teflon (N/A- Quartz (N/A	None	 Except for ARA-N, good correlations (R² = 0.70 to 0.90) were found during the second half of the study. The poor performance of ARA-N was probably due to an inefficient denuder (25-60% efficient) resulting in high background.
Continuous Sampler	Flow Rate (L/Min)	Denuder A	nalysis Method⁵	
ADI-N	1	Activated Carbon No	O _X Chemiluminescence	Large discrepancies between continuous and filter RR, probably due to low ambient concentrations
ARA-N	3	Potassium iodide (KI) and dual sodium No chlorite (NaClO ₂)	O _x Chemiluminescence	(study avg = 0.5 µg/m³) near the detection limit (~0.1 µg/m³, except for ARA-N, which had 0.5 µg/m³).
PILS-IC	5	Two URG annular glass denuders in series containing IC citric acid and		The ARA-N was within 13%, ADI-N, ECN and PILS-IC within 18% and TT within 26% of filter RR (all <0.2 µg/m³ difference).
		CaCO ₃		Filter samples showed more variability (Relative Standard Deviation, RSD = 22%) than continuous
ECN	16.7	Rotating annular wet denuder system	;	measurements (RSD = 13%). This is probably due to sampling artifacts in filter samples; NO ₃ - — volatilization in continuous monitors is expected to
TT	5	Wet parallel plate IC denuder	;	be minimal due to shorter averaging times and rapid stabilization in solutions.

	SITE / PERIOD / SAN	SUMMARY OF FINDINGS		
PITTSBURGH SUPERS	SITE, PA; 7/1/01 to 8/1/0	2 6km east of downtown in	a park on the top of a hill	Cabada et al. (2004, <u>148859</u>) ¹⁸ ; Takahama et al. — (2004, <u>157038</u>) ¹¹⁶
Sampler	Flow Rate (L/Min)	Filter Type ^a D	enuder ^b	— More than 70% (~0.5 μg/m³) of NO₃ mass was losi
MOUDI-110	30	Teflon (W) Teflon (W)	lone	from MOUDI samplers during summer.
CMU	16.7		gO/Citric acid	 MOUDI NO₃ = 0.27 CMU; R² = 0.40; Summer MOUDI NO₃ = 0.99 CMU; R² = 0.49; winter
R&P-2000 FRM	16.7	, , ,	one	
				Avg conversion efficiency to NO_X (tested using NH_4NO_3 solution) was 0.85 ± 0.08 . Gas analyzer efficiency was stable at 0.99 ± 0.04 .
				Corrections were made for instrument offset, software calculation error, conversion efficiency, gas analyzer efficiency, vacuum drift, and sample flow drift. The overall avg correction was 8%, ranging from -62% to 93%.
				Data Recovery >80%. Data loss was associated with vacuum pump failures and excessive flash strip breakage.
				R&P-8400N = 0.83 CMU + 0.20 μ g/m ³ ; R ² = 0.84
				Underestimation in the R&P-8400N could be due to incomplete particle collection or incomplete conversion of various forms of NO ₃ .
				Used co-located filter measurements for final calibration.
FRESNO SUPERSITE, Located 5.5 km northead	CA and other CRPAQS st of downtown in a mixe	sites; 12/2/99 to 2/3/01 d residential-commercial r	eighborhood. ¹⁰⁷	
FRESNO SUPERSITE, Located 5.5 km northeast Sampler	CA and other CRPAQS st of downtown in a mixe	sites; 12/2/99 to 2/3/01 d residential-commercial r Filter Type ^a	eighborhood. ¹⁰⁷ Denuder ^b	calibration. Chow et al. (2005, 099030) ⁸⁷ Maximum NO ₃ - volatilization was observed during summer (Jun-Aug), while the lowest volatilization
Located 5.5 km northeas	st of downtown in a mixe	d residential-commercial r		calibration. Chow et al. (2005, 099030) ⁸⁷ Maximum NO ₃ - volatilization was observed during summer (Jun-Aug), while the lowest volatilization was observed during winter (Dec-Feb). Seasonal avg volatilized NO ₃ - in particulate NO ₃
Located 5.5 km northeas Sampler	st of downtown in a mixe Flow Rate (L/Min)	d residential-commercial r Filter Type ^a	Denuder ^b	calibration. Chow et al. (2005, 099030) ⁸⁷ Maximum NO ₃ - volatilization was observed during summer (Jun-Aug), while the lowest volatilization was observed during winter (Dec-Feb). Seasonal avg volatilized NO ₃ - in particulate NO ₃ - (PNO ₃), the sum of non-volatilized and volatilized NO ₃) ranged from less than 10% during winter to
Sampler DRI-SFS	st of downtown in a mixe Flow Rate (L/Min) 113	d residential-commercial r Filter Type ^a Quartz (Pellulose	Denuder ^b Al ₂ O ₃	calibration. Chow et al. (2005, 099030) ⁸⁷ Maximum NO ₃ - volatilization was observed during summer (Jun-Aug), while the lowest volatilization was observed during winter (Dec-Feb). Seasonal avg volatilized NO ₃ - in particulate NO ₃ (PNO ₃ , the sum of non-volatilized and volatilized NO ₃) ranged from less than 10% during winter to more than 80% during summer.
Sampler DRI-SFS RAAS-400	st of downtown in a mixe Flow Rate (L/Min) 113 24	d residential-commercial r Filter Type ^a Quartz (Pellulose Quartz (P)-Nylon (P)	Denuder ^b Al ₂ O ₃ Na ₂ CO ₃	calibration. Chow et al. (2005, 099030) ⁸⁷ Maximum NO ₃ - volatilization was observed during summer (Jun-Aug), while the lowest volatilization was observed during winter (Dec-Feb). Seasonal avg volatilized NO ₃ - in particulate NO ₃ (PNO ₃), the sum of non-volatilized and volatilized NO ₃) ranged from less than 10% during winter to more than 80% during summer. Volatilized NH ₄ NO ₃ accounted for 44% of actual
Sampler DRI-SFS RAAS-400 RAAS-400	st of downtown in a mixe Flow Rate (L/Min) 113 24 24	d residential-commercial r Filter Type ^a Quartz (Pellulose Quartz (P)-Nylon (P) Quartz (P)-Quartz (P)	Denuder ^b Al ₂ O ₃ Na ₂ CO ₃ None	calibration. Chow et al. (2005, 099030) ⁸⁷ Maximum NO ₃ - volatilization was observed during summer (Jun-Aug), while the lowest volatilization was observed during winter (Dec-Feb). Seasonal avg volatilized NO ₃ - in particulate NO ₃ (PNO ₃ -, the sum of non-volatilized and volatilized NO ₃) ranged from less than 10% during winter to more than 80% during summer. Volatilized NH ₄ NO ₃ accounted for 44% of actual PM _{2.5} mass (i.e., measured mass plus volatilized NH ₄ NO ₃) in Fresno during summer.
Sampler DRI-SFS RAAS-400 RAAS-400 RAAS-100 FRM	st of downtown in a mixe Flow Rate (L/Min) 113 24 24 16.7	d residential-commercial r Filter Type ^a Quartz (Pellulose Quartz (P)-Nylon (P) Quartz (P)-Quartz (P) Quartz (P)	Denuder ^b Al ₂ O ₃ Na ₂ CO ₃ None None Analysis Method ^b NO _x Chemiluminescence	calibration. Chow et al. (2005, 099030) ⁸⁷ Maximum NO ₃ - volatilization was observed during summer (Jun-Aug), while the lowest volatilization was observed during winter (Dec-Feb). Seasonal avg volatilized NO ₃ - in particulate NO ₃ (PNO ₃), the sum of non-volatilized and volatilized NO ₃) ranged from less than 10% during winter to more than 80% during summer. Volatilized NH ₄ NO ₃ accounted for 44% of actual PM _{2.5} mass (i.e., measured mass plus volatilized
Sampler DRI-SFS RAAS-400 RAAS-400 RAAS-100 FRM Continuous Sampler	st of downtown in a mixe Flow Rate (L/Min) 113 24 24 16.7 Flow Rate (L/Min)	d residential-commercial r Filter Type ^a Quartz (Pellulose Quartz (P)-Nylon (P) Quartz (P)-Quartz (P) Quartz (P) Denuder	Denuder ^b Al ₂ O ₃ Na ₂ CO ₃ None None Analysis Method ^b NO _X	Chow et al. (2005, 099030) ⁸⁷ Maximum NO ₃ - volatilization was observed during summer (Jun-Aug), while the lowest volatilization was observed during winter (Dec-Feb). Seasonal avg volatilized NO ₃ - in particulate NO ₃ (PNO ₃ , the sum of non-volatilized and volatilized NO ₃) ranged from less than 10% during winter to more than 80% during summer. Volatilized NH ₄ NO ₃ accounted for 44% of actual PM _{2.5} mass (i.e., measured mass plus volatilized NH ₄ NO ₃) in Fresno during summer. Front-quartz non-volatilized NO ₃ - concentrations were similar for DRISFS (0.52 ± 0.26 μg/m³) and RAAS-100 FRM (0.81 ± 0.33 μg/m³) for warm months (May-Sep). With preceding denuders, the
Sampler DRI-SFS RAAS-400 RAAS-400 RAAS-100 FRM Continuous Sampler R&P-8400N	st of downtown in a mixe Flow Rate (L/Min) 113 24 24 16.7 Flow Rate (L/Min) 5	d residential-commercial r Filter Type ^a Quartz (Pellulose Quartz (P)-Nylon (P) Quartz (P)-Quartz (P) Quartz (P) Denuder Activated Carbon	Denuder ^b Al ₂ O ₃ Na ₂ CO ₃ None None Analysis Method ^b NO _x Chemiluminescence	Calibration. Chow et al. (2005, 099030) ⁸⁷ Maximum NO ₃ - volatilization was observed during summer (Jun-Aug), while the lowest volatilization was observed during winter (Dec-Feb). Seasonal avg volatilized NO ₃ - in particulate NO ₃ (PNO ₃ , the sum of non-volatilized and volatilized NO ₃) ranged from less than 10% during winter to more than 80% during summer. Volatilized NH ₄ NO ₃ accounted for 44% of actual PM _{2.5} mass (i.e., measured mass plus volatilized NH ₄ NO ₃) in Fresno during summer. Front-quartz non-volatilized NO ₃ - concentrations were similar for DRISFS (0.52 ± 0.26 μg/m³) and RAAS-100 FRM (0.81 ± 0.33 μg/m³) for warm months (May-Sep). With preceding denuders, the DRI-SFS PNO ₃ concentration (3 ± 1.9 μg/m³) was much higher than the RAAS100 FRM NO ₃ .
Sampler DRI-SFS RAAS-400 RAAS-400 RAAS-100 FRM Continuous Sampler R&P-8400N Sampler	st of downtown in a mixe Flow Rate (L/Min) 113 24 24 16.7 Flow Rate (L/Min) 5 Flow Rate (L/Min)	d residential-commercial r Filter Type ^a Quartz (Pellulose Quartz (P)-Nylon (P) Quartz (P)-Quartz (P) Quartz (P) Denuder Activated Carbon Filter Type ^a	Denuder ^b Al ₂ O ₃ Na ₂ CO ₃ None None Analysis Method ^b NO _X Chemiluminescence Denuder ^b	Chow et al. (2005, 099030) ⁸⁷ Maximum NO ₃ - volatilization was observed during summer (Jun-Aug), while the lowest volatilization was observed during winter (Dec-Feb). Seasonal avg volatilized NO ₃ - in particulate NO ₃ (PNO ₃ , the sum of non-volatilized and volatilized NO ₃) ranged from less than 10% during winter to more than 80% during summer. Volatilized NH ₄ NO ₃ accounted for 44% of actual PM _{2.5} mass (i.e., measured mass plus volatilized NH ₄ NO ₃) in Fresno during summer. Front-quartz non-volatilized NO ₃ - concentrations were similar for DRISFS (0.52 ± 0.26 µg/m³) and RAAS-100 FRM (0.81 ± 0.33 µg/m³) for warm months (May-Sep). With preceding denuders, the DRI-SFS PNO ₃ concentration (3 ± 1.9 µg/m³) was much higher than the RAAS100 FRM NO ₃ -, suggesting that the FRM sampler removed gaseous nitric acid (HNO ₃) resulting in NO ₃ -
Sampler DRI-SFS RAAS-400 RAAS-400 RAAS-100 FRM Continuous Sampler R&P-8400N Sampler PC-BOSS	st of downtown in a mixe Flow Rate (L/Min) 113 24 24 16.7 Flow Rate (L/Min) 5 Flow Rate (L/Min) 150	d residential-commercial r Filter Type ^a Quartz (Pellulose Quartz (P)-Nylon (P) Quartz (P)-Quartz (P) Quartz (P) Denuder Activated Carbon Filter Type ^a Teflon (W)- Nylon (P)	Denuder ^b Al ₂ O ₃ Na ₂ CO ₃ None None Analysis Method ^b NO _X Chemiluminescence Denuder ^b CIF	Calibration. Chow et al. (2005, 099030) ⁸⁷ Maximum NO ₃ - volatilization was observed during summer (Jun-Aug), while the lowest volatilization was observed during winter (Dec-Feb). Seasonal avg volatilized NO ₃ - in particulate NO ₃ (PNO ₃ , the sum of non-volatilized and volatilized NO ₃) ranged from less than 10% during winter to more than 80% during summer. Volatilized NH ₄ NO ₃ accounted for 44% of actual PM _{2.5} mass (i.e., measured mass plus volatilized NH ₄ NO ₃) in Fresno during summer. Front-quartz non-volatilized NO ₃ - concentrations were similar for DRISFS (0.52 ± 0.26 μg/m³) and RAAS-100 FRM (0.81 ± 0.33 μg/m³) for warm months (May-Sep). With preceding denuders, the DRI-SFS PNO ₃ concentration (3 ± 1.9 μg/m³) was much higher than the RAAS100 FRM NO ₃ -, suggesting that the FRM sampler removed

SITE / PERIOD / SAMPLER / CONFIGURATION	SUMMARY OF FINDINGS
	High correlation (R ² >0.90) between 24-h avg R&P-8400N NO ₃ and SFS filter NO ₃ concentrations, but R&P-8400N NO ₃ - was 7 to 25% lower than filter NO ₃ .
	Limited comparison (n < 15) with filter samples at Bakersfield showed that the slopes were close to unity during early morning hours, while they decreased during the afternoon hours, indicating possible loss of NO ₃ ⁻ by the R&P-8400N instrument.
	The R&P-8400N required substantial maintenance and careful operation.
	Grover et al. (2006, <u>138080</u>) ⁶⁵
	Dionex-IC NQ ₃ = (0.71 ± 0.04) PC-BOSS NO ₃ + (3.2 ± 1.1) ; R ² = 0.91 ; n = 29
	R&P-8400N = (1.10 ± 0.06) PC-BOSS NO ₃ - (0.8 ± 1.8) ; R ² = 0.93 ; n = 29
	R&P-8400N = (0.55 ± 0.01) Dionex-IC + (1.4 ± 1.8) ; R ² = 0.75 ; n = 493
	R&P-8400N measured less than Dionex-IC, particularly at high RH. R&P-8400N may suffer incomplete flash vaporization under conditions of high RH.

\$	SITE / PERIOD / SAM	SUMMARY OF FINDINGS			
BALTIMORE SUPERSIT			Harrison et al. (2004, <u>136787</u>) ⁸³		
Adjacent to a parking lot power plants and inciner			d by motor vehicles, coal-fired ansported material.	Corrections were made to R&P-8400N data for software calculation error, conversion efficiency,	
Sampler	Flow Rate (L/Min)	Filter Type ^a	Denuder ^b	gas analyzer efficiency, vacuum drift and sample	
SASS	6.7	Nylon (N/A)	MgO	- flow drift. - The relative uncertainty of R&P-8400N	
Continuous Sampler	s Sampler Flow Rate (L/Min) Denuder Analysis Method ^b		Analysis Method ^b	measurements averaged 8.7%, ranging from 6.3% – to 23%.	
R&P-8400N	5	Activated Carbon	NO _X Chemiluminescence	Data capture >95%.	
				R&P-8400N underestimated SASS filter NO_3^- by ~33%, attributed to variations in conversion efficiency, matrix effects, and impaction efficiency. This suggested a true conversion efficiency of 68% as compared to an avg conversion efficiency of R&P-8400N to NO_X (tested using potassium nitrate solution) of 0.90 \pm 0.04.	
				Large errors occurred when the concentrations were near the detection limit, when the temperature difference (between instrument and ambient) was large, and when the ambientRH wa < 40%. Ridged flash strips produced lower dissociation losses than flat strips.	
				Reliable measurements were obtained when the instrument-outdoor temperature differences were minimal and when grooved/ridged flash strips wer used. A co-located filter measurement was used for final corrections.	
NEW YORK SUPERSIT				Hogrefe et al. (2004, <u>099003</u>) ²⁰	
and within 12 km of inter	national airports. Rural s	ite located at Whiteface	an, within 2 km of freeways, mountain, 600 m above sea major cities within 20 km of	Data completeness: 86-88% for R&P-8400N, 94 - 98% for AMS, and 65-70% for PILS-IC.	
the site.	•		•	Some PILS measurements were invalidated owin	
Sampler	Flow Rate (L/Min)	Filter Type ^a	Denuder ^b	to larger aqueous flow caused by bigger tubir Larger aqueous flow and inconsistent water q	
R&P-2300	10	Nylon (N/A)	Na ₂ CO ₃	affected NO ₃ concentrations.	
Continuous Sampler	Flow Rate (L/Min)	Denuder	Analysis Method ^b	R&P-8400N NO ₃ . was lower than R&P-2300 filte – NO ₃ ⁻ . PILS-IC was within 5% of R&P-2300 filter	
R&P-8400N	5	Activated Carbon	NO _X Chemiluminescence	NO ₃₋ concentrations.	
PILS-IC	5	Na₂CO₃ and citric acid	C	At the urban site, AMS was within 10% of the filte NO_3 concentration. At the rural site, AMS had a – slope of 0.51 and R^2 of 0.46, compared with filter	
AMS	0.1	None	Mass Spectrometry	NO ₃	
NEW YORK SUPERSIT	E, NY; 10/01 to 07/05 (u	rban), 07/02 to 07/05 (ı	rural) Urban site located at a	Rattigan et al. (2006, <u>115897</u>) ⁸⁴	
school in South Bronx, N	IY in a residential area, w	<i>r</i> ithin a few kilometers a	way from major highways and Whiteface mountain, 600 m	Data capture was more than 94%.	
			ees and no major cities within	Data were adjusted for span and zero drifts, conversion efficiency, flow drift, and blanks.	
Sampler	Flow Rate (L/Min)	Filter Type ^a	Denuder ^b	R&P-8400N NO ₃ ⁻ was systematically lower than	
R&P-2300	10	Nylon (N/A)	Na ₂ CO ₃	R&P-2300 filter NO₃ over all concentration ranges _ except at <1 μg/m³.	
TEOM-ACCU	16.7	Zefluor	None	_ Urban: R&P-8400N = 0.59 R&P-2300 NO ₃ + 0.28	
Continuous Sampler	Flow Rate (L/Min)	Denuder	Analysis Method ^b	R ² = 0.88; n = 305	
R&P-8400N	5	Activated Carbon	NO _x Chemiluminescence	Rural: R&P-8400N = 0.73 R&P-2300 NO ₃ + 0.01; R^2 = 0.90; n~161; however concentrations were low with 95% of data < 1 μ g/m ³ .	
				Required weekly or biweekly maintenance by trained personnel.	
LOS ANGELES SUPER	SITE, CA; 7/13/01 to 9/1	15/01 (Rubidoux) and 9	9/15/01 to 2/10/02	Fine et al. (2003, <u>155775</u>) ¹⁹	
		r Basin (SoCAB), includ	ling urban "source" sites and	MOUDI = 0.68 HEADS ; $R^2 = 0.88$	
downwind "receptor" site		2	h	_ ADI-N Sized = 0.80 HEADS ; $R^2 = 0.79$	
Sampler	Flow Rate (L/Min)	Filter Type ^a	Denuder ^b	-	

;	SITE / PERIOD / SAM	SUMMARY OF FINDINGS		
MOUDI	30	Teflon (P)	None	ADI-N Sized = 1.12 MOUDI; R ² = 0.53
HEADS	10	Teflon (N/A) -GF GF Carbonate		 ADI-N NO₃. showed better agreement with HEAD at lower concentrations, the ADI-N deviated (biased low) from the HEADS concentrations at higher NO₃ concentrations. This deviation was
Continuous Sampler	Flow Rate (L/Min)	Denuder	Analysis Method ^b	— attributed to NO ₃ . vaporization, loss of NO ₃ associated with particles less than 0.1 µm not
ADI-N Sized	0.9	Activated Carbon	NO _X Chemiluminescence	collected by the ADI-N sampler, or loss of particles in the ADI-N inlet tubing.
				The underestimation of NO ₃ by MOUDI compared to HEADS may be due to NO ₃ volatilization from MOUDI stages, since SO ₄ ²⁻ comparisons showed MOUDI to explain 85% of HEADS SO ₄ ²⁻
				ADI-N and MOUDI showed better correlation (R² = 0.67) for the 1-2 μm size range NO $_3$ relative to other size ranges (R² < = 0.56). This is possibly due to NO $_3$ in the form of non-volatilized sodium nitrate (NaNO $_3$) than volatilized NH $_4$ NO $_3$ in the 1-2 μm size range. Single particle analysis also indicated this possibility of NaNO $_3$ in the 1-2 μm range.
				Grover et al. (2005, <u>090044</u>) ⁶⁶
				R&P-8400N = (0.65 ± 0.07) PC-BOSS + (3.3 ± 2.4) : R ² = 0.73: n = 31

RUBIDOUX, CA; 07/01/03 to 07/31/03
Located in the eastern section of SoCAB in the northwest corner of Riverside County, 78 km downwind of the central Los Angeles metropolitan area and in the middle of the remaining agricultural production area in SoCAB.

 (3.3 ± 2.4) ; R² = 0.73; n = 31

At higher concentrations (no numerical value reported), R&P-8400N NO $_3$ -was lower than PC-BOSS NO $_3$, possibly due to incomplete volatilization of NH $_4$ NO $_3$ in R&P-8400N at higher concentrations (and higher relative humidity).

At the urban site, the continuous instruments correlated well with filter NO_3 —measurements and among themselves ($R^2 \ge 0.89$). At the rural site, R^2 ranged from 0.61 to 0.83, except for the AMS versus R&P2300 comparison, with an R^2 of 0.46.

Sampler	Flow Rate (L/Min)	Filter Type ^a	Denuder ^b
PC-BOSS	150	Teflon (W)-Nylon (P)	CIF
Continuous Sampler	Flow Rate (L/Min)	Denuder	Analysis Method ^b
R&P-8400N	5	Activated Carbon	NO _x Chemiluminescence
R&P-8400N	5	Activated Carbon	NO _x Chemiluminescence
PILS-IC	5	Na₂CO₃ and Citric acid	IC
AMS	0.1	None	Mass Spectrometry

A-36 December 2009

SITE / PERIOD / SAMPLER / CONFIGURATION

SUMMARY OF FINDINGS

Chow (1995, 077012); ²Watson and Chow (2001, 157123); ³ Watson et al. (1983, 045084); ⁴Fehsenfield et al. (2004, 157360); ⁵Solomon et al. (2001, 157193); ⁵Watson et al. (2005, 157124); ⁷Mikel (2001, 156722); ⁸Watson et al. (1998, 029949); ⁸Solomon and Sioutas (2006, 156995); ⁸Fire et al. (1998, 036012); ¹Volomon et al. (2003, 156994); ⁸Folomon et al. (2003, 156994); ¹Folomon et al. (2003

Source: Chow et al. (2008, 156355)

aFilter Manufacturer in parenthesis - W: Whatman, Clifton, NJ; P: Pall-Gelman, Ann Arbor, MI; S: Schleicher & Schnell. Keene, NH; N/A: not available or not reported.

^bAl₂O₃: Aluminum oxide; GF: Na₂CO₃ impregnated Glass Fiber Filters; IC: Ion chromatography; MgO: Magnesium oxide; Na₂CO₃: Sodium carbonate; NaHCO₃: Sodium bicarbonate NO_X: Oxides of nitrogen; CIF: Charcoal Impregnated Filter; FEP: Fluorinated Ethylene Propylene copolymer; TEA: Triethanolamine; TSP: Total Suspended PM.

^cNa₂CO₃ impregnated.

d37 mm filter.

Table A-14. Summary of PM_{2.5} SO₄²⁻ measurement comparisons

	SITE/PERIOD/SAMPL	ER/ CONFIGURATION		SUMMARY OF FINDINGS		
		tenance yard and several ward	ehouse facilities,	Solomon et al. (2003, <u>156994</u>) ¹⁷ PM _{2.5} SO ₄ ²⁻ from each sampler was		
Sampler	Flow Rate (L/Min)	Filter Type ^a	Denuder ^b	compared to all-sampler averages, called the filter relative reference (filter RR) value. The		
R&P-2000 FRM	16.7	Quartz (P)	None	samplers agreed to within 10% of filter RR,		
RAAS-400	24	Teflon (P)	None	 except for the PC-BOSS (TVA) and MOUDI- 100. 		
SASS	6.7	Teflon (P)	None	While avg mass was within 10%, daily		
MASS-450	16.7	Quartz (P)	None	— variability was >50% of filter RR.		
R&P-2300	10	Quartz (P)	None	 All samplers, except for the PC-BOSS (TVA), correlated well (R² >0.90) with daily filter RR. 		
VAPS	15	Quartz (P)	XAD-4	PC-BOSS (TVA) had instrument leaks.		
URG-PCM	16.7	Teflon (P)-Cellulose-fiber (W)		The R&P-2000 FRM, on avg, agreed within 1% of filter RR.		
ARA-PCM	16.7	Teflon (N/A)	Na ₂ CO ₃ /Citric acid	MOUDI-100 was ~13% low compared to filter		
ARA-PCM	16.7	Nylon (N/A)	Na ₂ CO ₃ /Citric acid	— RR. — Weber et al. (2 <u>00</u> 3, <u>157129)⁸²; Zhang et al.</u>		
PC-BOSS (TVA)	105	Teflon (W)	CIF	— Weber et al. (2003, <u>157129</u>) ; 2nang et al. (2002, <u>157181</u>) ¹¹⁸		
PC-BOSS (TVA)	105	Quartz (P)	CIF	 Hourly PM_{2.5} SO₄²⁻ were compared to all- sampler averages (continuous RR), similar to 		
PC-BOSS (BYU)	150	Teflon (W)	CIF	 — sampler averages (continuous RR), similar to the approach used for filter samplers. Overall — agreement was within 16% or 2 μg/m³. 		
PC-BOSS (BYU)	150	Quartz (P)	CIF			
MOUDI-100	30	Teflon (N/A) Quartz (N/A)	None	 Good correlations (R² = 0.76 to 0.94) were found during the second half of the study, except for TT versus ADI. 		
Continuous Sampler	Flow Rate (L/Min)	Denuder	Analysis Method ^b	Good correlation (R ² = 0.84) was found		
ADI-S	2.7	Activated Carbon	SO ₂ , UV Fluorescence	between continuous and filter-based SO_4^2 Continuous RR = (1.15 ± 0.15), Filter RR +		
PILS-IC	5	Two URG annular glass denuders in series containing citric acid & CaCO ₃	IC	(0.41 ± 1.73) Variability among continuous SO ₄ ²⁻ instruments (RSD = 13%) was similar to that for NO ₃ instruments. Filter sample variability		
ECN	16.7	Rotating annular wet denuder system	IC	was low (RSD = 8%) indicating more uniformity among samplers.		
тт	5	Wet parallel plate denuder	IC	 The ECN and TT instruments were within 15%, PILS-IC was within 20% and ADI-S was within 26% of filter RR. 		
PITTSBURGH SUPERSI 6 km east of downtown in	TE, PA; 070/1/01 to 08/01/02 a park on the top of a hill			Cabada et al. (2004, <u>148859</u>) ¹⁸ ; Takahama et al. (2004, <u>157038</u>) ¹¹⁶		
Sampler	Flow Rate (L/Min)	Filter Type ^a	Denuder ^b	MOUDI SO_4^{2-} 0.80 CMU; R^2 = 0.95; Summer		
MOUDI-110	30	Teflon (W)	None	MOUDI SO_4^{2-} 0.97 CMU; R^2 = 0.48; winter		
CMU	16.7	Teflon (W)	MgO/Citric acid	Wittig et al. (2004, <u>103413</u>) ⁸⁵		

	SITE/PERIOD/S	SAMPLER/ CONFIGURA	ATION	SUMMARY OF FINDINGS		
R&P-2000 FRM	16.7	Teflon (W)	None	Avg conversion efficiency to SO ₂ (tested using ammonium sulfate [(NH ₄) ₂ SO ₄] solution) was 0.65 ± 0.07. Gas analyzer efficiency was stable at 0.99 ± 0.06.		
Continuous Sampler	Flow Rate (L/Min)	Denuder	Analysis Method ^b	Corrections were made for instrument offset,		
				 software calculation error, conversion efficiency, gas analyzer efficiency, vacuum drift, and sample flow drift. The overall correction was, on avg, -1% and ranged from -90% to 100% for individual samples. 		
				Data Recovery >90%. Data loss was associated with vacuum pump failures or excessive flash strip breakage.		
R&P-8400S	5	Activated Carbon	SO ₂ UV Fluorescence	R&P-8400S (SO_4^2) = 0.71 CMU + 0.42 μ g/m ³ ; R ² = 0.83		
				Underestimation is attributed to incomplete particle collection or incomplete conversion of various forms of SO ₄ ² .		
				Used co-located filter measurements for fina calibration.		
LOS ANGELES SUPERS (Claremont)	ITE, CA; 07/13/01 t	o 09/15/01 (Rubidoux) and	09/15/01 to 02/10/02	Fine et al. (2003, <u>155775</u>) ¹⁹		
	s in the South Coas	t Air Basin (SoCAB), includir	ng urban "source" sites and	MOUDI explained 85% of HEADS SO_4^{2-} (R ² = 0.89; n = 40)		
Sampler	Flow Rate (L/Min)	Filter Type ^a	Denuder ^b	_		
MOUDI	30	Teflon (P)	None	_		
HEADS	10	Teflon (N/A) GF-GF ^c	Carbonate			
within 12 km of internation clearing surrounded by de	al airports. Rural sit	e located at Whiteface mour een trees and no major cities		et al. (2004, 099003) ²⁰ Data completeness: 89-93% for R&P-8400S. 94-98% for AMS, 81-98% for CASM, and 65-70% for PILS-IC.		
Sampler	(L/Min)	Filter Type ^a	Denuder ^b	The urban site data showed good		
R&P-2300	10	Nylon (N/A)	Na₂CO₃	correlations (R ² = 0.87 to 0.94) with slopes — ranging from 0.97 to 1.01. At the rural site,		
SCS	42	Zefluor (N/A)	None	the variability was large ($R^2 = 0.73$ to 0.91) — with slopes ranging from 0.76 to 1.32. SO_4		
TEOM-ACCU	16.7	Zefluor (N/A)	None	from PILS-IC was overestimated by ~25% when compared to the AMS at the rural site.		
Continuous Sampler	Flow Rate (L/Min)	Denuder	Analysis Method ^b	Filter samples were within 5% of each other,		
R&P-8400S	5	Activated Carbon	SO ₂ UV Fluorescence	except for comparison of ACCU with R&P- 2300 at the rural site, with high correlations		
PILS-IC	5	Na ₂ CO ₃ and Citric acid	IC	$(R^2 = 0.97 \text{ to } 1.0)$. ACCU underestimated SO_4^{2-} by ~15%.		
AMS	0.1	None	Mass Spectrometry	Continuous versus 6-h SCS filter		
CASM	5	Na ₂ CO ₃ and Carbon and a Nafion dryer	SO ₂ UV Fluorescence	comparisons showed high R² (0.91 to 0.95) a the urban site. Continuous instruments consistently measured lower SO ₄ ²- concentrations compared to the SCS filter measurements (slopes 0.68 to 0.73)		
				On avg, 85% of the filter-based ${\rm SO_4}^2$ - was measured by the continuous instruments with consistent relationships. At the rural site, PILS-IC overestimated ${\rm SO_4}^2$ - concentrations (slopes 1.11 to 1.15), AMS and R&P-8400S showed slopes of 0.71-0.74 against SCS and ACCU, while it ranged from 0.53- 0.68 against R&P-2300.		
				Error estimates:		
				Sampling losses: 2-3% for AMS and PILS-IC, 5-10% for R&P-8400S and none for CASM.		
				Continuous instruments probably		

	SITE/PERIOD/S	SAMPLER/ CO	NFIGURAT	TION	SUMMARY OF FINDINGS
					25%) than filter samplers due to longer inlet lines.
					Small (< 2%) positive artifact was found in filters.
NEWYORK SUPERSITE,	NY; 10/01 to 07/05	(urban), 07/02 t	o 07/05 (rura	al)	Rattigan et al. (2006, <u>115897</u>) ⁸⁴
highways and a freight yar 600m above sea level, in a 20 km of the site. The stud	d (experiencing sign a clearing surrounde ly by Schwab et al.8	nificant truck traff d by deciduous 9 was based at	fic). Rural site and evergree a rural site lo	in a few kilometers from major e located at Whiteface mountain en trees and no major cities with cated at Pinnacle State Park	Data capture was above 85%. Data loss was primarily due to frequent flash strip failures, every 2 wk and without warning.
,,,	Flow Rate	· · · · · · · · · · · · · · · · · · ·		no major cities within 15 km.	Data were adjusted for span and zero drifts, measured conversion efficiency, flow drift,
Integrated Sampler	(L/Min)	Filter Type ⁶		Denuder ^b	and blanks.
R&P-2300	10	Nylon (N/A)) Na ₂ CO ₃		Calibrations used aqueous standards of (NH ₄) ₂ SO ₄ and oxalic acid solution in 1:4
TEOM-ACCU	16.7	Zefluor		None	ratio. Lower fractions of oxalic acid showed — lower conversion efficiencies.
					— Urban South Bronx site:
Continuous Sampler	Flow Rate (L/N	lin)	Denuder	Analysis Method ^b	R&P-8400S = 0.82 TEOM-ACCU + 1.15;
R&P-8400S	5		Activated Carbon	SO ₂ pulsed fluorescence	$R^2 = 0.84$; n = 513 R&P-8400S = 0.74 R&P-2300 + 1.14;
TE-5020	5		Na ₂ CO ₃	SO ₂ pulsed fluorescence	
(07/14/04 to 11/01/04)					Rural Whiteface mountain:
					R&P-8400S = 0.75 TEOM-ACCU + 0.22; R ² = 0.95; n = 207
					R&P-8400S = 0.78 R&P-2300 + 0.17; R ² = 0.85; n = 198
					Required weekly or biweekly maintenance by trained personnel
					Schwab et al. (2006, <u>098785</u>) ⁹⁹
					$TE-5020 = 0.78 ACCU - 0.2; R^2 = 0.94$
					Similar studies at St. Louis, MO, show slopes near unity. This suggests that the instrument is sensitive to aerosol composition.
					Low maintenance and calibration requirements for TE-5020 compared to PILS-IC and R&P-8400S.
FRESNO SUPERSITE,CA				-table advant El O	Grover et al. (2006, <u>138080</u>) ⁶⁵
Located 5.5 km northeast (L/min) Filter Typea Denuc		xea residential-c	commercial n	eighborhood. Flow Sampler	Dionex-IC SO_4^{2-} (1.03 ± 0.03) PC-BOSS SO_4 — + (0.2 ± 0.3); R ² = 0.98; n = 27
Sampler	Flow Rate (L/N	lin)	Filter Type	Denuder ^b	
PC-BOSS	150		Teflon (W)- Nylon (P)	CIF	R&P-8400S SO_4^{2-} (0.95 ± 0.05) Dionex-IC SO_4 + (0.3 ± 0.6); R^2 = 0.68; n = 195
Continuous Sampler	Flow Rate (L/N	lin)	Denuder	Analysis Method ^b	<u></u>
R&P-8400S	5		Activated Carbon	SO ₂ pulsed fluorescence	_
Dionex-IC	5		Parallel plat wet denude		

Chow (1995, 077012); ³Watson et al. (2001, 157123); ³Watson et al. (1983, 045084); ⁴Fehsenfeld et al. (2004, 157360); ⁵Solomon et al. (2001, 157193); ⁵Watson et al. (2005, 157124); ⁷Mikel (2001, 156762); ⁸Watson et al. (1999, 020949); ⁸Solomon and Sioulas (2006, 156992); ⁹Graney et al. (2004, 053769); ¹⁷Inanake et al. (1998, 157041); ⁹Panorase et al. (2003, 098120); ¹⁸John et al. (1988, 0456903); ⁹Fitze et al. (2003, 156999); ⁹Graney et al. (2004, 058091); ⁹Solomon et al. (2003, 156989); ⁹Fitze et al. (2003, 155989); ⁹Solomon et al. (2003, 155989); ⁹Fitze et al. (2004, 157169); ⁹Fitze et al. (2003, 156539); ⁹Fitze et al. (2004, 156359); ⁹Fitze et al. (2004, 156369); ⁹Fitze et al. (

Source: Chow et al. (2008, 156355)

Table A-15. Summary of PM_{2.5} carbon measurement comparisons.

	SITE/PI	ERIOD/SAMPLE	R/ CONF	IGURATIO	N	SUMMARY OF FINDINGS
ATLANTA SUPERSITI Four km NW of downto representative of a mix	ówn, within 20	ral warehouse facilities,	Solomon et al. (2003, <u>156994</u>) ¹⁷ Organic Carbon (OC);			
Sampler	Flow Rate (L/Min)	Filter Type ^a	Denude	er ^b	Analysis Method ^c	 PM_{2.5} OC from each sampler was compared to the all-sampler avg, called the relative reference (RR) value. The samplers agreed to
R&P-2000 FRM	16.7	Quartz (P)	None		NIOSH 5040-TOT	within 20 to 50% of RR. Only front filter OC is
RAAS-400	24	Quartz (P)	None		NIOSH 5040-TOT	 reported without artifact correction. Denuded samplers showed lower OC (20 to
SASS	6.7	Quartz (P)- Quartz (P)	None		NIOSH 5040-TOT	35%) than RR, while non-denuded sampler OC was higher (5 to 35%).
MASS-450	16.7	Quartz (P)	None		NIOSH 5040-TOT	Among non-denuded samplers, as filter face
R&P-2300	10	Quartz (P)- Quartz (P)	None		NIOSH 5040-TOT	velocity decreased, OC increased, with the exception of R&P-2300.
VAPS	15	Quartz (P)	XAD-4		NIOSH 5040-TOT	— OC positive artifacts ranged from 2 to 4 μg/m ³
URG-PCM	16.7	Quartz (P)- Quartz (P)	XAD-4		Front: NIOSH 5040-TOT; Backup: custom-TOTd	 EC: PM_{2.5} EC from each sampler was compared to the all-sampler avg, called the relative
ARA-PCM	16.7	Quartz (N/A)- Quartz (N/A)	CIF		IMPROVE_TOR	reference (RR) value. The samplers agreed to within 20 to 200% of RR.
PC-BOSS (TVA)	150	Quartz (P)- CIF (N/A)	CIF		Front: IMPROVE_TOR; Backup: TPV	TOT samples showed less EC than RR by 15 to 30%, while TOR samples showed more EC
PC-BOSS (BYU)	150	Quartz (P)-CIF (S)	CIF		ТРВ	 than RR by 40 to 90%. PCBOSS (BYU) >RR value by 140%. EC by TOR is ~twice EC by TOT.
MOUDI-100	30	Al Foil-Quartz (N/A) ^f	None		Custom-TOR to suit Ale	Major difference in EC is due to the carbon analysis protocol and optical monitoring
Continuous Sampler	Flow Rate (L/Min)	Denuder	ОС	EC	Comments	 correction (i.e., transmittance, reflectance). Lim et al. (2003, 037037)⁹⁰

^aFilter Manufacturer in parentheses - W: Whatman, Clifton, NJ; P: Pall-Gelman, Ann Arbor, MI; S: Schleicher & Schnell, Keene, NH; N/A; not available,

^bAl₂O₃: Aluminum oxide; IC: lon chromatography; CIF: Charcoal Impregnated Filter; FEP: Fluorinated Ethylene Propylene copolymer; MgO: Magnesium oxide; Na₂CO₃: Sodium carbonate; NaHCO₃: Sodium bicarbonate NO₃: Oxides of nitrogen; SO₂: Sulfur dioxide; TEA: Triethanolamine; TSP: Total Suspended PM; UV: Ultraviolet; XAD-4: Hydrophobic, non-polar polyaromatic resin.

^cNa₂CO₃: impregnated.

d37 mm filter.

	SITE	PERIOD/SAMPLE	R/ CONF	IGURATIO	N	SUMMARY OF FINDINGS
ADI-C	2.7	Activated Carbon	Not known	N/A	Part of SO ₄ ²⁻ instrument w/CO ₂ non-dispersive infrared (NDIR) analyzer; data corrected for avg field blank; OC = 2 oxidized OC	
RU-OGI	16.1	None	700 in He	850 in 2% O ₂	TOT; Dynamic blank for adsorption correction	R&P-5400 OC was 8% lower than the RU-OGI ($R^2 = 0.73$), while the R&P-5400 EC was 20% - higher than RU-OGI ($R^2 = 0.74$).
R&P-5400	16.7	None	275 in air	750 in air	No pyrolysis correction	OC measured by ADI-C was lower than R&P- - 5400 and RUOGI by 15% and 22%.
PSAP	1.26	None		b _{abs} @ 565 nm	10m ² /g factor	respectively.
AE-16	4	None		b _{abs} @ 880 nm	12.6 m ² /g factor	- EC from PSAP and AE-16 correlated well (R ² = 0.97). PSAP was lower by ~50%, compared with AE-16, R&P-5400 and RU-OGI.
						EC measured by AE-16 was ~12% higher than RU-OGI. Calibration factors for the light absorption instruments need to be adjusted for better correlation.
						Calibration factor might be non-linear over the range of absorbance measured.
						The mean OC from R&P-5400 and RU-OGI were within 10% of filter RR values. Mean ADI-C OC was 14% lower than filter RR OC.
						EC from continuous instruments was 2-2.5 times filter RR EC; continuous TC was also greater than filter RR TC by 17% (R&P-400) to 27% (RU-OGI).

	SITE/P	ERIOD/SAMPL	ER/ CONF	IGURATION		SUMMARY OF FINDINGS	
PITTSBURGH SUPER						Subramanian et al. (2004, <u>081203</u>) ¹¹⁹	
Six km east of downtov Sampler	wn in a park o Flow	Filter Type/Pa		Denuder	Analysis Method ^c	 Particulate OC (POC) was estimated from denuded sample (Quartz OC + CIG OC) after subtracting DYN POC. 	
CMU Custom-1	16.7	Non-denuded sample	Teflon (P/W)- Quartz (P) (QBT)	None	NIOSH 5040-TOT	Denuder efficiency (1-DYN POC/UDB POC) was 94 ± 3%. No seasonal variability or deterioration in denuder performance was observed.	
	16.7	Non-denuded sample	Quartz (P)- Quartz (P) (QBQ)	None	NIOSH 5040-TOT	Positive artifact due to denuder breakthrough was 18.3 ± 12.5% of the denuded sample	
	16.7	Denuded sample	Denuder- Quartz (P)- CIG (S)	Activated Carbon	NIOSH 5040-TOT	Negative artifact (CIGsample-CIGDYN) was, on avg, 6.3 \pm 6.2% of POC.	
		<u> </u>	Teflon (P/W)-			 Positive artifact was 34 ± 10% from QBT, and was 13 ± 5% from QBQ. QBT >>QBQ. 	
CMU Custom-2	16.7	Dynamic blank (DYN)	Denuder- Quartz (P)- CIG (S)		NIOSH 5040-TOT	QBT over-corrected the positive artifact by 20%. OC volatilization from the front Teflon filter that subsequently adsorbed on the back-	
			Teflon (P/W)-	None	NIOSH 5040-TOT	up quartz filter, resulted in an overestimati of the positive artifact.	
	` ´ Quartz		Quartz (P)- CIG (S)			Non-denuded QBQ provided a more representative estimate of the positive artifact on the non-denuded front quartz filter for 24-h samples. However, it was not suitable for 4- to 6-h samples, because the filters were not in equilibrium with the air stream.	
						Positive artifact dominated when sampling with a non-denuded quartz filter.	
						Comparison of 24-h avg non-denuded front quartz OC versus denuded POC over the yea showed an intercept of 0.53 µg/m³, indicative of a positive artifact on quartz filter samples.	
						The artifacts were higher in summer on an absolute basis; however, they showed no seasonal variation when expressed as a fraction of POC.	
ST. LOUIS SUPERSIT Three km east of St. Loresidential light comme	ouis, MO Ćity	center, also impa	02 acted by indus	strial sources, and I	ocated in a mixed	Bae et al. (2004, <u>156243</u>) ⁹³ ; Bae et al. (2004 <u>098680)</u> ⁹⁶	
Sampler	Flow Rate (Lmin)	Filter Type/Pack ^a	Denude	r ^b	Analysis Method ^c	 Denuder breakthrough was 0.17 ± 0.15 μg/m³ and constituted less than 5% of annual avg OC concentration. 	
University of		Quartz (P)	None		ACE Asia TOT	Non-denuded OC = $(1.06 \pm 0.02) \times \text{denuded}$	
University of Wisconsin Custom-1	24	Denuder-Quart (P)	^{tz} CIF		ACE Asia TOT	— OC + (0.34 ± 0.10) Equivalence of OC intercept and denuder	
		Denuder-Quart (P)	^{tz} CIF		ACE Asia TOT	breakthrough implies that the low-level artifactis caused by denuder breakthrough.	
Jniversity of Visconsin Custom-2	24	Teflon (N/A)- Denuder-Quart	z CIF		ACE Asia TOT	 Non-denuded EC = (1.04 ± 0.03) × denuded EC + (0.07 ± 0.03), indicating negligible EC artifact. 	
		(P)				Results suggested higher summertime OC	

	SITE/PER	IOD/SAMPLER	R/ CONFIGUR	ATION		SUMMARY OF FINDINGS	
Sunset OCEC	8 C	CIF	340, 500, 615, 870°C in 100% He	550, 625, 700, 775, 850, 900 °C in 2%	ACE Asia TOT; CH4 FID detector	Comparison of continuous Sunset TC and OC with 24-h filter samples showed good correlations (R²) of 0.89 and 0.90, respectively.	
				O2, 98% He		Continuous Sunset TC in $\mu g/m^3 = (0.97 \pm 0.02) \times \text{filter TC} + (0.83 \pm 0.11)$, indicating comparability with the filter measurements.	
						Continuous Sunset OC = $(0.93 \pm 0.02) \times \text{filter}$ OC + (0.94 ± 0.09)	
						Positive intercept was interpreted to be a blank correction for the continuous measurements.	
						EC comparison was poor with large scatter in data (R^2 = 0.60), probably due to low EC concentrations (avg = 0.70 μ g/m³), close to the detection limit (0.5 μ g/m³).	
FRESNO SUPERSITE Fresno Supersite was I neighborhood.						Watson and Chow (2002, 037873) ⁹¹ ; Chow et al. (2005, 156348) ¹¹⁷ ; Chow et al. (2006, 155207) ¹²⁰ ; Watson et al. (2005, 157124) ⁶ ; Park et al. (2006, 098104) ¹⁰²	
Sampler	Flow Rate (Lmin)	Filter Type/Pack ^a	Denuder ^b		Analysis Method ^c	Non-denuded RAAS-400 and RAAS-100 FRM - measured equivalent TC. DRI-SFS, RAAS-	
		Quartz (P)	None		IMPROVE_TOR	400 and RAAS-100 FRM samplers showed	
DRI-SFS	113	Teflon (P)- Quartz (P) (QBT)	None		IMPROVE_TOR	 comparability for front filter TC, OC and EC measurements. Positive OC artifact was 1.62 ± 0.58 μg/m³ 	
RAAS-400	24	(P) (QBT) Quartz (P)- Quartz (P) (QBQ)	None		IMPROVE_TOR	 (~24% of non-denuded front quartz OC) from QBT, and 1.12 ± 0.91 µg/m³ (~17% of non- denuded front quartz OC) from QBQ. QBT >>QBQ 	
RAAS-400	24	Quartz (P)- Quartz (P) (QBQ)	XAD-4 / CIF		IMPROVE_TOR	 Results from CRPAQS showed, on avg, a positive OC artifact of 34% (of the non- denuded front quartz OC) from QBT and 17.5% (of the non-denuded front quartz OC) from QBQ. 	
RAAS-100 FRM	16.7	Quartz (P)	None		IMPROVE_TOR		
Continuous Sampler	Flow Rate (L/Min)	Denuder	ос	EC	Comments	Positive artifact was higher during summer than winter.	
R&P-5400	16.7	None	275°C in air	750°C in air	No pyrolysis correction	 Negative artifact was, on avg, 0.61 ± 0.58 μg/m³ (~10% of POC) at Fresno. Over all the CRPAQS sites, it ranged from a company with the company	
				650, 750, 850,		2.3% in winter to 11% in summer, with an avg of 4.9%.	
Sunset OCEC	8.5	CIG		940°C in 2% O₂ in	Transmittance	Positive artifact is estimated to be $0.5 \ \mu g/m^3$.	
				He		No difference in denuded quartz backup OC – was found between using XAD and CIF	
MAAP	16.7	None		b _{abs} @ 670 nm	Transmittance 6.5 m ² /g factor	denuders. – Comparison of R&P-5400 TC, OC, and EC	
AE-16	6.8	None	— 250, 500,	b _{abs} @ 880 nm	_	against filter samples showed poor correlation ($R^2 < 0.55$).	
AE-21	6.8	None	650, 850°C in He	b _{abs} @ 370, 880 nm	Transmittance	TC from R&P-5400 was 40-60% higher than filter TC by TOR. None of the R&P-5400 versus TOR filter comparisons were	
AE-31	6.8	None	_	b _{abs} @ 370, 470, 520, 590, 660, 880	- 14625/λ m ² /g factor, where λ is in nm	comparable or predictable, due to several frequent instrument malfunctions during the experiment and the small data set (~35 data points).	
				and 950 nm		IMPROVE_TOR EC was consistently 20-25% higher than aethalometer BC.	
DRI-PA	3	None		b _{abs} @ 1047 nm	Absorption, 5 m ² /g factor	IMPROVE_TOR EC was comparable to MAAP BC.	
	Flow Rate	Filter	Denuder ^b		Analysis Method ^c	Comparison of light absorption (babs) from	

	SITE/PER	SUMMARY OF FINDINGS				
PC-BOSS	150 Quartz (P)-CIG CIF TPV		TPV	(880 nm) analyzers with the filter IMPROVE_TOR EC, gave a σ _{abs} of 2.3, 5.5 and 10 m ² /g, differing from the default		
Continuous Sampler	Flow Rate (L/Min)	Denuder	OC EC Comm		Comments	conversion factors of 5, 6.5, and 16.6 m ² /g used for each instrument at the specified wavelength.
R&P-5400	16.7	None	375°C in air	750°C in air	No pyrolysis	Grover et al. (2006, <u>138080</u>) ⁶⁵
			250, 500,	650, 750, 850°C in		R&P-5400 TC = (0.50 ± 0.01) Sunset TC + (3.6 ± 1.5) ; R ² = 0.73; n = 480
Sunset OCEC	8.0	CIG			NIOSH 5040_TOT	Sunset TC = (0.63 ± 0.05) PC-BOSS TC + (4.1 ± 3.2) ; R ² = 0.86 ; n = 29
Sunset OCEC	8.0 CIG	650, 850°C in He	2% O ₂ & 98% He	NDIR CO ₂ detector	R&P-5400 TC = (0.41 ± 0.02) PC-BOSS TC + (6.7 ± 1.6) ; R ² = 0.91 ; n = 29	

	SITE/PER	IOD/SAMPLER/	CONFIGU	RATION		SUMMARY OF FINDINGS
BALTIMORE SUPERS East of downtown in an				ntenance facili	ty.	Park et al. (2005, <u>156843</u>) ⁹⁵
Sampler	Flow Rate (L/Min)	Filter Type/Pack ^a	Denuder ^b		Analysis Method ^c	Data capture 93.8%
SASS	6.7	Quartz (P)- Quartz (P)	None		STN_TOT	Compared to SASS, Sunset underestimated OC and EC by 22% and ~11.5%, respectively
Continuous Sampler	Flow Rate (L/Min)	Denuder ^b	ос	EC	Comments	Higher OC in SASS was attributed to the absence of a denuder (i.e., positive artifact b gaseous adsorption) and to temperature differences between the STN TOT and
Sunset OCEC	8	Carbon	600°C, then 870°C in He	870°C in 2% O ₂ in He	TOT; CH4 FID detector; Denuder breakthrough ~ 0.5-1 µg C/m³; Used 0.5 to correct OC concentrations	Sunset_TOT carbon analysis temperature protocols. EC discrepancy was probably related to the differences in temperature protocol.
RUBIDOUX, CA; 07/13	/03 to 07/26/03					Grover et al. (2005, <u>090044</u>) ⁶⁶
Rubidoux is located in t Riverside County, 78 kr remaining agricultural p	he eastern section of the common of the common transfer of the comm	ne central Los Ange				Sunset OCEC TC = (0.90 ± 0.06) PC-BOSS (2.0 ± 2.1); R ² = 0.93; n = 21
Sampler	Flow Rate (L/Min)	Filter Type/Pack ^a	Denuder ^b		Analysis Method ^c	Sunset TC was adjusted for carbon artifacts measured by second (blank) instrument.
PC-BOSS	150	Quartz (P)-CIG (S)	CIF		TPB (CIG heated to 450 °C in N2)	-
Continuous Sampler	Flow Rate (L/Min)	Denuder ^b	ос	EC	Comments	-
Sunset OCEC	8	CIF	N/A	N/A	TOT; NDIR detector; NIOSH 5040 protocol	-
Sunset OCEC	8	CIF	N/A	Not meas- ured	TOT; has blank quartz filter before entering analyzer. Used as "blank" stream for quantifying OC artifacts; 3-step analysis only in He.	-
NEW YORK SUPERSI Urban site located at Q			et of Manha	ttan within 2 k	rm of frooways, and	Venkatachari et al. (2006, 105918)92
within 12 km of internat		vi, about 14 kiii we	or manna	ittari, within 2 r	in or neeways, and	Regression of OC from Sunset OCEC again - PM _{2.5} mass concentration yielded an interce
Integrated Sampler	Flow Rate (L/Min)	Filter Type/Pack ^a	Denuder ^b		Analysis Method ^c	of 1.14 µg/m³, which was used as a measure of the positive artifact on the Sunset data. The Sunset OC data was corrected for this artifact
R&P-2300	10	Quartz	None		STN_TOT	
						 AE-20 BC concentrations were ~86% of Sunset EC and R&P2300 filter EC concentrations.
Continuous Sampler	Flow Rate (L/Min)	Denuder ^b	oc	EC	Comments	AE-20 versus R&P-5400 showed high scatte
R&P-5400	16.7	None	340 °C in	750 °C in air	No pyrolysis correction	Sunset Optical EC = 0.58 ± 0.05 Sunset Thermal EC; $R^2 = 0.86$; n = 506
			uii			Sunset Optical EC = 0.62 ± 0.05 AE-20 BC; - $R^2 = 0.96$; n = 539
Sunset OCEC	N/A	CIF	600, 870 °C in He	870 °C at 10% O₂ in He	Transmittance	R&P-5400 TC tracked filter TC closely, but differed widely for OC and EC.
AE-20	N/A	None		b _{abs} @ 370, 880 nm	Transmittance, 14625 λ m²/g factor,	Sunset OC = (0.75 ± 0.76) R&P-2300 OC + (0.08 ± 0.36) ; R ² = 0.67; n = 16
					where λ is in nm	Sunset OC = (0.98 ± 0.11) R&P-5400 OC -
AMS	N/A	None	N/A	N/A	~ 1 µm cut-point	(0.47 ± 0.17) ; $R^2 = 0.44$; $n = 327$

SITE/PERIOD/SAMPLER/ CONFIGURATION

SUMMARY OF FINDINGS

R&P-5400 OC = (0.60 ± 0.47) R&P-2300 OC + (0.58 ± 0.82) ; R² = 0.58; n = 17

Organic matter measurements by AMS showed reasonable correlation (R^2 = 0.76) with filter (R&P-2300) OC, while being poorly correlated with continuous OC by Sunset (R^2 = 0.32) and R&P-5400 (R^2 = 0.36)

Sunset EC = (1.21 ± 0.44) R&P-2300 EC $-(0.03 \pm 0.13)$; R² = 0.94; n = 16 Sunset EC = (1.35 ± 0.12) R&P-5400 EC + (0.06 ± 0.04) ; R² = 0.61; n = 327 R&P-5400 EC = (0.49 ± 0.46) R&P-2300 EC + (0.09 ± 0.26) ; R² = 0.77; n = 15 Sunset TC = (0.86 ± 0.39) R&P-2300 TC $-(0.06 \pm 0.69)$; R² = 0.77; n = 16 Sunset TC = (1.31 ± 0.10) R&P-5400 TC $-(1.15 \pm 0.15)$; R² = 0.59; n = 327 R&P-5400 TC = (0.77 ± 0.58) R&P-2300 TC + (0.35 ± 1.37) ; R² = 0.83; n = 16

"NIOSH 5040_TOT: National Institute of Occupational Safety and Health Method 5040 Thermal Optical Transmittance Protocol. 121, 122, 123, 124, 126 OC: 250, 500, 650, 850 °C for OC1, OC2, OC3, and OC4 fractions, respectively, for 60, 60, 90 sec respectively, in 100% He atmosphere. EC: 650, 750, 850, 940 °C for EC1, EC2, EC3, and EC4 fractions, respectively, 30, 30, 30, >120 sec respectively, in 98% He and 2% O₂ atmosphere. OPT: Pyrolysis correction by transmittance. IMPROVE_TOR: Interagency Monitoring of Protected Visual Environments Thermal Optical Reflectance Protocol 126 OC fractions: 120, 250, 450, 550 °C for OC1, OC2, OC3, and OC4 fractions, respectively, until a well defined peak has evolved at each step, with a time limit of min 80 sec and max of 580 sec, in 100% He atmosphere. EC fractions: 550, 700, 800 °C for EC1, EC2, and EC3 fractions, respectively, until a well defined peak has evolved at each step, with a time limit of min 80 sec and max of 580 sec, in 2% O₂ and 98% He atmosphere. OPR: Pyrolysis correction for pyrolyzed organic carbon (OP) by reflectance. OC = OC1+OC2+OC3+OC4+OP EC = EC1+EC2+EC3-OP TC = OC+EC. IMPROVE_A TOR: 127 Note that as of May, 2007, the U.S. EPA is switching samples from the Speciation Trends Network thermal optical transmittance protocol to the IMPROVE_A protocol. OC: 140, 280, 480, 580 °C for OC1, OC2, OC3, and OC4, fractions, respectively, until a well defined peak has evolved at each step, with a time limit of 80 sec and max of 580 sec, in 100% He atmosphere. EC: 580, 740, 840 °C for EC1, EC2, and EC3 fractions, respectively, until a well defined peak has evolved at each step, with a time limit of 80 sec and max of 580 sec, in 100% He atmosphere. OPR: Pyrolysis correction for pyrolyzed organic carbon (OP) by reflectance. OPT: Pyrolysis correction by transmittance. Protocal time limit of 80 sec and max of 580 sec, in 100% He atmosphere. OPR: Pyrolysis correction for pyrolyzed organic carbon (OP) by reflectance. OPT: Pyrolysis correction by transmittance. Protocal time limit

^dCustom TOT: XAD-4 impregnated quartz, analyzed in He-only atmosphere with a maximum temperature 176 °C; EC is not measured.

^eCustom TOR to suit Al substrate; details not reported.

f37 mm filter

Chow (1995, 077012); *Watson and Chow (2001, 157123); *Watson et al. (1983, 045084); *Fehsenfeld et al. (2004, 157360); *Solomon et al. (2001, 157193); *Watson et al. (2005, 157124); *Mikel (2001, 156762); *Watson et al. (1999, 020949); *Solomon and Sioutas (2006, 156995); **Graney et al. (2004, 053756); **Tanaka et al. (1998, 157041); **Pancras et al. (2005, 098120); **John et al. (1988, 045903); **Hering and Cass (1999, 084958); **Fitz et al. (1989, 097387); **Hering et al. (1988, 036012); **Solomon et al. (2003, 156952); **Tobada et al. (2004, 148859); **Fitz et al. (2008, 098160); **Z'Matson et al. (2005, 157125); **Phorgrefe et al. (2004, 156552); **Tobada et al. (2004, 148458); **Solomon et al. (2004, 156661); **Z'Tursio et al. (2003, 098160); **Z'Matson et al. (2004, 156724); **Z'heng et al. (2004, 156661); **Z'Tursio et al. (2004, 157163); **Alayon et al. (2003, 156661); **Z'Tursio et al. (2004, 148458); **Solomon et al. (2004, 148459); **Tursio et al. (2004, 148459); **Solomon et al. (2004, 148459); **

Source: Chow et al. (2008, 156355)

^aFilter Manufacturer in parentheses - W: Whatman, Clifton, NJ; P: Pall-Gelman, Ann Arbor, MI; S: Schleicher & Schnell. Keene, NH; N/A: not available. QBT: quartz backup filter behind Teflon front filter. QBQ: quartz backup filter behind Quartz front filter.

^bAl₂O₃: Aluminum oxide; IC: Ion chromatography; CIF: Charcoal Impregnated Filter; CIG: Charcoal Impregnated Glass-Fiber Filter; FEP: Fluorinated Ethylene Propylene copolymer; MgO: Magnesium oxide; Na₂CO₃: Sodium carbonate; NaHCO₃: Sodium bicarbonate NO_X: Oxides of nitrogen; SO₂: Sulfur dioxide; TEA: Triethanolamine; TSP: Total Suspended PM; UV: Ultraviolet; XAD-4: (hydrophobic, non-polar polyaromatic resin.

Table A-16. Summary of particle mass spectrometer measurement comparisons.

ATLANTA SUPERSITE, GA: 08/03/99 to 09/01/99

Four km NW of downtown, within 200 m of a bus maintenance yard and several warehouse facilities, representative of a mixed commercial-residential neighborhood.

Spectrometer	Inlet Characteristics (Flow Rate [L/Min]; Size Inlet; Dryer Aerodynamic Diameter, μm; Particle Sizing Method)	Volatilization/ Ionization Method ^a	Hit Rates ^b	Mass Spectrometer ^c	Particle Analysis/ Classification	Other
PALMS	N/A PM _{2.5} cyclone Nafion (17 days) / None (4 days) 0.35-2.5 Light scattering	LDI, ArF 193 nm 2x10 ⁹ to 5x10 ⁹ W/cm ²	14 to 100%, overall 87%	Single TOF reflectron; lon polarity needs to be pre-selected	Peak ID/regression tree analysis	Pure sulfuric acid (H ₂ SO ₄), (NH ₄) ₂ SO ₄ , and water (H ₂ O)
ATOFMS	1 None None 0.2-2.5 Aerosol TOF	LDI, Nd: YAG 266 nm laser ~ 1x10 ⁸ W/cm ²	25-30%, occasionally as low as 5%	Dual TOF reflectron; Detects both positive and negative ions	Aerosol TOF	have relatively high ionization thresholds (i.e. difficult to ionize). Fraction of
RSMS-II	N/A None Nafion 0.015-1.3 Aerodynamic focusing; Need to pre-select sizes to be analyzed	LDI, Arf laser, 193 nm 1x10 ⁸ to 2x10 ⁸ W/cm ²	N/A	Single linear TOF; lon polarity needs to be pre-selected	Peak ID/artificial neural network	molecules ionized in the particles is on the order of 10 ⁻⁵ to 10 ⁻⁶ .
AMS	N/A PM _{2.5} cyclone None 0.05-2.5 Aerosol TOF	T~550°C/ EI	N/A	Quadrupole; Mass weighted size distributions on pre- selected positive ions only.	ID using standard EI ionization databases	Does not detect/ analyze highly refractory materials such as metals, sea salt, soot etc. Fraction of molecules ionized in the particles is on the order of 10-6 to 10-7

Middlebrook et al. (2003, <u>042932</u>)¹³¹; Wenzel et al. (2003, <u>157139</u>)¹³²; Jimenez et al. (2003, <u>156611</u>)¹³³

Particle sizing is approximate in PALMS, while ATOFMS, RSMS-II and AMS provide relatively accurate particle sizing.

Particle transmission in AMS is ~100% (i.e., it uses all particles in the sampled air) between 60 and 600 nm, while that for PALMS, ATOFMS and RSMS-II range from 10-6 for submicron particles to 2% for supermicron (>0.8 µm) particles.

AMS has fewer matrix effects (due to separate volatilization and ionization steps) compared to single-step LDI instruments.

While four major particle classifications (organic/SO₄²⁻, sodium/potassium sulfate, soot/hydrocarbon and mineral) were observed by all three laser instruments, they differed in the classification frequencies. Differences in frequencies that are detected and grouped are related to the differences in the laser ionization conditions (e.g., wavelength), particle transmission, sizing method and the way the spectra were classified.

Shorter ionization wavelengths are able to produce ions more easily than longer ones.

Low hit rates in ATOFMS corresponded to periods of high SO_4^{2-} concentrations. Low hit rates in PALMS were related to a variety of factors including high SO_4^{2-} concentrations, differing laser fluence and laser position relative to particle beam. Use of a dryer in PALMS enhanced ionization of particles that were difficult to ionize at high ambient RH.

The RSMS-II and ATOFMS were less sensitive to SO_4^{2-} and hence may have fewer organic/ SO_4^{2-} particles (i.e., underestimate SO_4^{2-} , pure sulfuric acid etc.).

The PALMS, ATOFMS and RSMS (laser based instruments) are qualitative, while the AMS can be quantitative. The relative ratio of ion intensities from the laser instruments, however, may be indicative of relative concentrations, thus giving semi-quantitative information.

Comparison of the ratio of NO_3 to SO_4 peaks with the results from the semi continuous instruments showed better correlation with the AMS (R^2 = 0.93) than PALMS (R^2 = 0.65 for non-dry particles to 0.70 for dry particles). While reasonable correlations between the PALMS and the composite semi-continuous data indicate the possibility for calibration of laser-based data for certain ions, the calibration factors may vary depending on the particle matrix, water content and laser ionization parameters, and averaging the spectra according to these factors may minimize these effects.

Comparison of AMS SO_4 with PILS SO_4 showed good correlation ($R^2 = 0.79$), and the data uniformly scattered around a 1:1 line. NO_3 comparison was poor ($R^2 = 0.49$) because of the low signal to noise ratio at low concentrations

A-48

The continuum between particle classifications indicates that the particles were not adequately represented by non-overlapping classifications.

ATLANTA SUPERSITE, GA: 08/03/99 to 09/01/99

Four km NW of downtown, within 200 m of a bus maintenance yard and several warehouse facilities, representative of a mixed commercial-residential neighborhood.

HOUSTON SUPERSITE, TX; 08/23/00 to 09/18/00

Houston Regional Monitoring Site was located < 1.0 km north of the Houston ship channel, where chemical and other industries are present. The site was located between a railway to the south and a chemical plant to the north. Major freeways were located just to the north and east of the sampling site.

Spectrometer	Inlet Characteristics (Flow Rate [L/Min]; Size Inlet; Dryer Aerodynamic Diameter, μm; Particle Sizing Method)	Volatilization/ Ionization Method ^a	Hit Rates ^b	Mass Spectrometer ^c	Particle Analysis/ Classification	Other
RSMS-II	N/A None Nafion 0.035-1.14 Aerodynamic focusing; Need to pre-select sizes to be analyzed	LDI, ArF laser, 193 nm	N/A	Single linear TOF; lon polarity needs to be pre-selected	Peak ID/artificial neural network	At each size point, aerosol was sampled in each cycle for either 10 min or until mass spectra for 30 particles per major class were collected, whichever came first.

Phares et al. (2003, 156866)134

27,000 spectra were classified using a neural network into 15 particle types

Fifteen particle type mass spectra were presented along with their size distribution, avg time of day occurrence, and wind direction dependence

Major classes were a K* dominant, Si/Silicon Oxide, Carbon, Sea Salt, Fe, Zn, Amines, Lime, Vanadium, Organic Mineral, Pb and K, Al, and a Pb salt particle type.

FRESNO SUPERSITE, CA: 11/30/00 to 2/4/01 Urban location in a residential neighborhood.

Spectrometer	Inlet Characteristics (Flow Rate [L/Min]; Size Inlet; Dryer Aerodynamic Diameter, μm; Particle Sizing Method)	Volatilization/ Ionization Method ^a	Hit Rates ^b	Mass Spectrometer ^c	Particle Analysis/ Classification	Other
ATOFMS	1 None None 0.3-2.5 Aerodynamic	LDI, ND: YAG 266 nm	N/A	Dual reflectron TOF	Peak ID/artificial neural network	ATOFMS unscaled detected particles tracked β attenuation monitor PM _{2.5} mass concentration

Qin and Prather (2008, <u>156985</u>)¹³⁵

Biomass burning particles reached a maximum at night and a minimum during the day. These particles were less than 1 μ m in diameter and accounted for more than 60% of the particles detected at night.

Another particle class characterized by high mass carbon fragments had a similar diurnal pattern. These particles were larger than 1 µm and were interpreted as biomass particles that have undergone gas to particle conversion of semi-volatile species followed by dissolution in a water droplet.

PITTSBURGH SUPERSITE, PA; 09/07/02 TO 09/22/02 FOR AMS; 09/20/01 to 09/26/02 for RSMS-III

6 km east of downtown in a park on the top of a hill

Spectrometer	Inlet Characteristics (Flow Rate [L/Min]; Size Inlet; Dryer Aerodynamic Diameter, µm; Particle Sizing Method)	Volatilization/ Ionization Method ^a	Hit Rates ^b	Mass Spectrometer ^c
	1.4 cc/s PM _{2.5} cyclone		Quadrupole;	
AMS	None 0.05-1.0 Aerosol TOF	T - 600°C/ EI	Mass weighted size distributions on pre-selected positive ions only.	Particle size-cut of ~1 μm
RSMS-III	N/A None Nafion 0.03-1.1 Aerodynamic focusing; Need to pre- select sizes to be analyzed.	LDI, ArF laser, 193 nm	Dual TOF feflectron; Detects both positive and negative ions	At each size point, aerosol was sampled in each cycle for either 10 min or until mass spectra for 30 particles per major class were collected, whichever came first

ATLANTA SUPERSITE, GA: 08/03/99 to 09/01/99

Four km NW of downtown, within 200 m of a bus maintenance yard and several warehouse facilities, representative of a mixed commercial-residential neighborhood.

Zhang et al. (2005, 157185) 136; Bein et al. (2005, 156265) 137

The AMS observed 75% of the SO_4^{2-} measured by R&P-8400S (R² = 0.69).

Collection efficiency (CE) of 0.5 used for SO_4^{2-} , NO_3 and NH_4^{+} and 0.7 for organics to correct mass concentrations for incomplete detection. Use of a constant CE irrespective of size and shape may overestimate accumulation mode (mostly, oxygenated) organics (true CE ~ 0.5) and underestimate smaller mode (primary) organics (true CE ~ 1.0).

Comparison of AMS organics (organic matter, OM) with OC measured by a continuous Sunset OCEC instrument showed good correlation ($R^2 = 0.88$) with a slope of 1.69. A 24-h avg comparison, showed a slope of 1.45. These values are in the typical range of 1.2 to 2.0 for OM/OC ratios.

AMS could be used along with the SMPS to estimate particle density. The AMS did not always agree with SMPS, probably due to non-spherical particles (irregular) such as soot from fresh traffic emissions, whose mass may be overestimated by the SMPS.

Comparison of AMS mass with the MOUDI, showed differences for aerodynamic diameters >600 nm, probably due to the AMS transmission being less than unity for particles larger than 600 nm.

For RSMS-III, 54% of the detected particles were assigned to one class (carbonaceous ammonium nitrate). This class was preferentially detected during the colder months and was detected from many different wind directions.

The next largest RSMS-III class was EC/OC/K class at 11%, and is believed to be from biomass burning.

An unidentified organic carbon RSMS-III class (3.3% of all detected particles) was seen to be highly dependent on wind direction dependence and was primarily detected during August and September of 2002. These particles likely originated from a landfill.

NEW YORK SUPERSITE; 06/30/01 to 08/05/01 (urban); 07/09/02 to 08/07/02: (rural)

Urban Site: Queens College, Queens, New York, located at the edge of a parking lot and within 1 km from expressways and highways in New York City Metropolitan area.

Rural Site: Whiteface Mountain, New York, located in a cleared area surrounded by mix of deciduous and evergreen trees, ~2 km away from the closest highway with no major cities within 20 km.

	Inlet Characteristics (Flow Rate [L/Min]; Size Inlet; Dry Aerodynamic Diameter, µm Particle Sizing Method)			Hit Rates ^b	Mass Spectrometer ^c
		0.1		Quadrupole;	_
AMS		PM _{2.5} cyclone None 0.02-2.5 Aerosol TOF	T – 700°C/ EI	Mass weighted size distributions on pre- selected positive ions only.	Data are 10-min averages

Drewnick et al. (2004, 155754)¹³⁸; Drewnick et al. (2004, 155755)¹³⁹; Hogrefe et al. (2004, 099003)²⁰

Transport losses were 1.3% on avg.

Inlet losses (at the inlet of AMS) were 1.9%, on avg, ranging from 11% for a 20 nm particle to 9% for a 2.5 µm particle, with a minimum of 0.7% for a 350 nm particle

Overall measurement uncertainty of particle diameter was ~11%.

The AMS was reliable with proper calibration, care, and maintenance. Valid 10 min averages were obtained for all components more than 93% of the time.

The mass to charge ratios (m/z) of fragments from different components may overlap (e.g., NH+, a fragment of NH₄⁺ and CH₃⁺, a fragment of organic species, have m/z = 15) resulting in an interference (called as isobaric interference) Interfering signals were not used to calculate concentrations. This loss in concentration was adjusted by applying a correction factor determined from laboratory studies.

Typical interferences were from fragments of organic species, water and oxygen.

With adjustments, the SO_4^{2-} , NO_3^{-} and ammonium concentrations measured by the AMS were consistently lower than that measured by other co-located instruments, probably due to incomplete focusing of the $(NH_4)_2SO_4$ and NH_4NO_3 particles by the aerodynamic lens.

At the urban site, AMS NO₃ was within 10% of the filter NO₃ concentration. At the rural site, it had a slope of 0.51 and R² of 0.46.

AMS SO₄ showed good agreement with R&P-8400S at both the rural and urban locations (R^2 = 0.89 to 0.92, slope = 0.99, n = 407 to 695) and was within 70 to 85% of filter SO₄²⁻ concentration.

Comparison of the total non-refractory mass measured by the AMS with the PM_{2.5} TEOM mass (operated at 50° C or with dryer) at the urban location, showed good correlation (R^2 = 0.91) with near zero intercept (0.22 μ g/m³). On avg, the AMS observed 64% of the mass measured by the TEOM.

The unexplained mass (36%) was attributed to transport losses, transmission and optical losses, and refractory components in the aerosol sample (e.g., metals, EC). The mass closure was within the estimated uncertainty of the AMS mass measurements (5-10%).

ATLANTA SUPERSITE, GA: 08/03/99 to 09/01/99

Four km NW of downtown, within 200 m of a bus maintenance yard and several warehouse facilities, representative of a mixed commercial-residential neighborhood.

BALTIMORE SUPERSITE, MD; 04/01/02 to 11/30/02

East of downtown in an urban residential area. Within 91 m of a bus maintenance facility.

Spectrometer	Inlet Characteristics (Flow Rate [L/Min]; Size Inlet; Dryer Aerodynamic Diameter, µm Particle Sizing Method)	Volatilization/ Ionization Method ^a	Hit Rates ^b	Mass Spectrometer ^c
RSMS-III	0.2-18, based on particle size chosen None Nafion 0.045-1.3 Aerodynamic focusing; Need to pre-select sizes to be analyzed	LDI, ArF laser, 193 nm	TOF with dual ion polarity	At each size set point, aerosol was sampled in each cycle for either 10 min or until mass spectra from 30 particles were collected, whichever came first.

Lake et al. (2003, 156669)¹⁴⁰, Lake et al. (2004, 088411)¹⁴¹

Utilizing both positive and negative ion detection enables detection of more species. However, detection efficiencies of negative ions decreased for smaller particles.

SO₄⁺ concentration (number or mass) was not accurately quantified.

RSMS-III was most efficient in 0.050 to 0.77 µm range.

Particle compositions could be related to specific source categaories.

aEI: Electon Impact; LDI: Laser Desorption / Ionization

bHit rate refers to the number of particles with a mass spectrum as a fraction of the number of particles detected. It does not apply to RSMS and AMS because there is no separate detection cTOF. Time for Flight

Chow (1995, 077012); ²Watson and Chow (2001, 157123); ³Watson et al. (1983, 045084); ⁴Fehsenfeld et al. (2004, 157360); ⁵Solomon et al. (2001, 157193); ⁶Watson et al. (2005, 098120); ¹³John et al. (1988, 045903); ¹⁴Hering and Cass (1999, 084958); ¹⁵Fitz et al. (1988, 077387); ¹⁶Hering et al. (1988, 036012); ¹⁷Solomon et al. (2003, 156994); ¹⁸Cabade et al. (2004, 14859); ¹⁸Fine et al. (2003, 155775); ²⁸Hogrefe et al. (2004, 099003); ²⁷Urewinck et al. (2003, 199160); ²⁸Watson et al. (2005, 157125); ²⁸Hogrefe et al. (2004, 099003); ²⁷Urewinck et al. (2003, 199160); ²⁸Watson et al. (2005, 157125); ²⁸Hogrefe et al. (2006, 156552); ²⁸Decesari et al. (2005, 144538); ³⁸Mayol-Bracero et al. (2002, 045010); ³⁸Fraser et al. (2003, 156737); ³⁸Hogrefe et al. (2004, 157163); ³⁸Mader et al. (2004, 156724); ²⁸Xiao and Liu (2004, 056801); ³⁸Kiss et al. (2002, 156646); ³⁷Cornell and Jickells (1999, 155337); ²⁸Zheng et al. (2002, 042213); ³⁸Schauer er al. (2000, 012223); ³⁸Fraser et al. (2002, 157169); ³⁸Fraser et al. (2004, 157169); ³⁸Fraser et al. (2004, 157169); ³⁸Fraser et al. (2003, 156539); ³⁸Fraser et al. (2003, 156521); ³⁸Fraser et al. (2003, 156539); ³⁸Fraser et al. (2003, 156521); ³⁸Fraser et al. (2004, 157169); ³⁸Fraser et al. (2004, 157169); ³⁸Fraser et al. (2003, 156539); ³⁸Fraser et al. (2003, 157169); ³⁸Fraser et al. (2003, 156539); ³⁸Fraser et al. (2003, 1565219); ³⁸Fraser et al. (2003, 156539); ³⁸Fraser et al. (2003, 157169); ³⁸Fraser et al. (2003, 156539); ³⁸Fraser et al. (2003, 156539); ³⁸Fraser et al. (2003, 157169); ³⁸Fraser et al. (2003, 157169); ³⁸Fraser et al. (2003, 156539); ³⁸Fraser et al. (2003, 156539);

Source: Chow et al. (2008, 156355)

Table A-17. Summary of key parameters for TD-GC/MS and pyrolysis-GC/MS.

Reference	Sample Type	TD Unit	Analytical Instrument	Total Analysis Time
TD-GC/MS WITH RESISTI	VELY HEATED EXTERNAL OVE	N		
Greaves et al. (1985, <u>156494;</u> 1987, <u>156495);</u> Veltkamp et al. (1996, <u>081594)</u>	Aerosol sample and NIST SRM 1649	A cylindrical aluminum block containing a heating cartridge connected to a thermocouple	HP 5892A GC/MS in EI mode	ambient sample: 55.5 min NIST standard: 45.5 min
Waterman et al. (2000, 157116)	NIST SRM 1640a	External oven mounted on the top of the GC/MS system	HP 5890 GC/Fisons MD 800 MS, scan range: 40-520 amu	90 min
Waterman et al. (2001, 157117)	NIST SRM 1649a	Same as above	HP 5890 GC/Fisons MD 800 MS, scan range: m/z 40 to 520	90 mins
Sidhu et al. (2001, <u>155202</u>)	Aerosol collected on glass fiber filters from combustion of alternative diesel fuel.	A stainless steel tube (0.635 cm O.D.) laced in a GC oven	Two GCs and one MS. The first GC is used as the TE unit. The second GC separates the desorbent.	Ua
Hays et al. (2003, <u>156529;</u> 2004, <u>156530);</u> Dong et al. (2004, <u>156409</u>)	Aerosol collected from residential wood combustion, residential oil furnace and fireplace appliance	A glass tube placed in an external oven (TDS2 Gerstel Inc.)	Aglient 6890 GC/5793 MSD, scan range: 50 to 500 amu	99 min
CURIE POINT TD-GC/MS				
Jeon et al. (2001, <u>016636</u>)	High-volume PM ₁₀ ambient samples collected along the U.S./Mexico border	Curie point pyrolyzer	HP 5890 GC/5792 MSD	Ua
Neususs et al. (2000, 156804)	Ambient aerosol collected during the 2nd Aerosol Characterization Experiment	Curie point pyrolyzer	Fisons Trio 1000	35 min
IN-INJECTION PORT TED	-GC/MS			
Helmig et al. (1990, <u>156536</u>)	Aerosol samples collected on glass- fiber filters at a forest site	GC injector port, with modified septum cap	Carlo Erba Mega 5160 GC/VG 250/70 SE MS, scan range: 45-400 amu	47 min
Hall et al. (1999, <u>156512</u>)	NIST SRM 1649	Micro-scale sealed vessel placed inside the injector port	HP 5890 GC/Fisons MD 800 MS, scan range: 40-500 amu	82.5 min
Blanchard and Hopper (1997) (1997, <u>156277)</u> ; Blanchard et al. (2002, <u>047598</u>)	Aerosol samples collected on quartz-and-glass filters in Ontario	A GC injection port was added with three minor components, including a small T-connector, 3-way valve, and needle valve	HP 5892A GC/5972A MS in El mode	71 min
Falkovich and Rudich (2001, 156427); Falkovich et al. (2004, 156428); Graham et al. (2004, 156490)	NIST SRM 1649a; urban aerosols collected with an 8-stage impactor in Tel-Aviv, Israel	Direct Sample Introduction (DSI) device (ChromatoProbe, Varian Co.)	Varian Saturn 3400 GC/MS	64.2 min
Ho and Yu (2004, <u>156551</u>); Yang et al. (2005, <u>102388</u>)	Ambient aerosol samples collected on Teflon-impregnated glass-fiber filters in Hong Kong and on quartz filters at Nanjing, China	Conventional GC injection port. No modification of GC injector and liner	HP 5890 GC/5791 MSD, scan range: 50-650 amu	41.5 min
TD-GC X GC-MS				
Welthagen et al. (2003, 104056); Schnelle-Kreis et al. (2005, <u>112944</u>)	Ambient samples in Augsburg, Germany	Injection port Optic III with autoloader (ATAS-GL, Veldhoven, NL)	Agilent 6890 GC/LECO Pegasus III TOF/MS with a LECO Pegasus 4D GCxGC modulator	175 min
Hamilton et al. (2004, 156516)	PM _{2.5} aerosol collected in London	Conventional GC injection port	The same as above, scan range: 20-350 amu	93.7 min
Hamilton et al. (2005, 088173)	Secondary organic aerosol formed during the photo-oxidation of toluene with OH radicals	The same as above	The same above	102.5 min

Reference	Sample Type	TD Unit	Analytical Instrument	Total Analysis Time				
IN SITU SEMI-CONTINUOUS AND CONTINUOUS TD SYSTEMS								
Williams et al. (2006, <u>156157</u>)	In situ aerosol samples collected in Berkley, CA	Collection-TE cell with conventional GC injection port	Agilent 6890 GC/5793 MSD, scan range: 29-550 amu	59 min				
PYROLYSIS TD-GC/MS								
Voorhees et al. (1991, 157101)	PM _{0.6} and PM _{>0.45} collected on quartz fiber in pristine regions of Colorado	A tube furnace directly interfaced to an GC/MS	Extrel Simulscan GC/MS, scan range: 35-450 amu	31.7 min				
Subbalakshmi et al. (2000, <u>157023</u>)	Ambient aerosol collected on glass- fiber filters in Jakarta, Indonesia	A pyroinjector	Agilent 6890 GC/5973 MS, scan range: 50-550 amu	63.5 min				
Fabbri et al. (2002, <u>156426</u>)	PM ₁₀ collected on glass-fiber filters in an industrial area of Italy	A pyrolyzer directly connected to the GC injector port through an interface heated at 250° C	Varian 3400 GC/Saturn II ion trap MS, scan range: 45-400 amu	57 min				
Blazso et al. (2003, <u>156278</u>)	${ m PM}_{2.6}$ collected on quartz-fiber filters and size-segregated aerosol sampled collected on A1 foils in Brazil	A pyrolyzer	Agilent 6890 GC/5973 MS	30.3 min				
Labban et al. (2006, <u>156665</u>)	PM ₁₀ of re-suspended soil collected on quartz-fiber filters	Curie point pyrolyzer	HP 5890 GC/5972 MS	25.5. min				

^aTotal analysis time could not be determined because of insufficient experimental details

Source: Chow et al. (2007, <u>157209</u>)

A.1.2. Networks

Table A-18. Relevant Spatial Scales for PM₁₀, PM_{2.5}, and PM_{10-2.5} Measurement

Spatial Scales	\mathbf{PM}_{10}	PM _{2.5}	PM _{10-2.5}	
Microscale (~5-100 m)	This scale would typify areas such as downtown street canyons, traffic corridors, and fence line stationary source monitoring locations where the general public could be exposed to maximum PM ₁₀ concentrations. Microscale PM sites should be located near inhabited buildings or locations where the general public can be expected to be exposed to the concentration measured. Emissions from stationary sources such as primary and secondary smelters, power plants, and other large industrial processes may, under certain plume conditions, likewise result in high ground level concentrations at the microscale. In the latter case, the microscale would represent an area impacted by the plume with dimensions extending up to approximately 100 m. Data collected at microscale sites provide information for evaluating and developing hot spot control measures.	This scale would typify areas such as downtown street canyons and traffic corridors where the general public would be exposed to maximum concentrations from mobile sources. In some circumstances, the microscale is appropriate for particulate sites; community-oriented SLAMS sites measured at the microscale level should, however, be limited to urban sites that are representative of long-term human exposure and of many such microenvironments in the area. In general, microscale PM sites should be located near inhabited buildings or locations where the general public can be expected to be exposed to the concentration measured. Emissions from stationary sources such as primary and secondary smelters, power plants, and other large industrial processes may, under certain plume conditions, likewise result in high ground level concentrations at the microscale. In the latter case, the microscale would represent an area impacted by the plume with dimensions extending up to approximately 100 m. Data collected at microscale sites provide information for evaluating and developing hot spot control measures. Unless these sites are indicative of population-oriented monitoring, they may be more appropriately classified as SPM.	exposure over areas of limited spatial extent and population exposure, and may provide information useful for evaluating and developing source-oriented control measures.	
Middle Scale (~100-500 m)	Much of the short-term public exposure to coarse fraction particles (PM_{10}) is on this scale and on the neighborhood scale. People moving through downtown areas or living near major roadways or stationary sources, may encounter particulate pollution that would be adequately characterized by measurements of this spatial scale. Middle scale PM_{10} measurements can be appropriate for the evaluation of possible short-term exposure public health effects. In many situations, monitoring sites that are representative of micro-scale or middle-scale impacts are not unique and are representative of many similar situations. This can occur along traffic corridors or other locations in a residential district. In this case, one location is representative of a neighborhood of small scale sites and is appropriate for evaluation of long-term or chronic effects. This scale also includes the characteristic concentrations for other areas with dimensions of a few hundred meters such as the parking lot and feeder streets associated with shopping centers, stadia, and office buildings. In the case of PM_{10} , unpaved or seldomly swept parking lots associated with these sources could be an important source in addition to the vehicular emissions themselves.	People moving through downtown areas, or living near major roadways, encounter particle concentrations that would be adequately characterized by this spatial scale. Thus, measurements of this type would be appropriate for the evaluation of possible short-term exposure public health effects of PM pollution. In many situations, monitoring sites that are representative of microscale or middle-scale impacts are not unique and are representative of many similar situations. This can occur along traffic corridors or other locations in a residential district. In this case, one location is representative of a number of small scale sites and is appropriate for evaluation of long-term or chronic effects. This scale also includes the characteristic concentrations for other areas with dimensions of a few hundred meters such as the parking lot and feeder streets associated with shopping centers, stadia, and office buildings.	People living or working near major roadways or industrial districts encounter particle concentrations that would be adequately characterized by this spatial scale. Thus, measurements of this type would be appropriate for the evaluation of public health effects of PM ₁₀₋₂₅ exposure. Monitors located i populated areas that are nearly adjacent to large industrial point sources of PM ₁₀₋₂₅ provide suitable locations for assessing maximum population exposure levels and identifying areas of potentially poor air quality. Similarly, monitors located in populated areas that border dense networks of heavily-traveled traffic are appropriate for assessing the impacts of resuspended road dust. This scale also includes the characteristic concentrations for other areas with dimensions of a few hundred meters such as school grounds and parks that are nearly adjacent to major roadways and industrial point sources, locations exhibiting mixed residential and commercial development, and downtown area featuring office buildings, shopping centers, and stadiums.	

Spatial PM₁₀ PM₂₅ PM_{10-2.5} Scales Neighborhood Measurements in this category represent Measurements in this category would represent Measurements in this category would Scale conditions throughout some reasonably conditions throughout some reasonably represent conditions throughout some homogeneous urban sub-region with homogeneous urban sub- region with dimensions reasonably homogeneous urban sub-region (~500 m-4 km) dimensions of a few kilometers and of of a few kilometers and of generally more regular with dimensions of a few kilometers and of generally more regular shape than the middle shape than the middle scale. Homogeneity refers generally more regular shape than the middle scale. Homogeneity refers to the PM to the PM concentrations, as well as the land use scale. Homogeneity refers to the PM concentrations, as well as the land use and and land surface characteristics. Much of the concentrations, as well as the land use and land surface characteristics. In some cases, a PM_{2.5} exposures are expected to be associated land surface characteristics. This category location carefully chosen to provide with this scale of measurement. In some cases, a includes suburban neighborhoods dominated neighborhood scale data would represent not location carefully chosen to provide neighborhood by residences that are somewhat distant from only the immediate neighborhood but also scale data would represent the immediate major roadways and industrial districts but still neighborhoods of the same type in other parts neighborhood as well as neighborhoods of the impacted by urban sources, and areas of of the city. Neighborhood scale PM10 sites same type in other parts of the city. PM25 sites of diverse land use where residences are provide information about trends and this kind provide good information about trends interspersed with commercial and industrial compliance with standards because they often and compliance with standards because they neighborhoods. In some cases, a location represent conditions in areas where people often represent conditions in areas where people carefully chosen to provide neighborhood scale commonly live and work for periods comparable to data would represent the immediate commonly live and work for extended periods. those specified in the NAAQS. In general, most neighborhood as well as neighborhoods of the Neighborhood scale data could provide valuable information for developing, testing, PM_{2.5} monitoring in urban areas should have this same type in other parts of the city. The and revising models that describe the largercomparison of data from middle scale and scale scale concentration patterns, especially those neighborhood scale sites would provide models relying on spatially smoothed emission fields for inputs. The neighborhood scale measurements could also be used for valuable information for determining the variation of PM_{10°2.5} levels across urban areas and assessing the spatial extent of elevated concentrations caused by major industrial point neighborhood comparisons within or between sources and heavily traveled roadways. Neighborhood scale sites would provide concentration data that are relevant to cities informing a large segment of the population of their exposure levels on a given day **Urban Scale** This class of measurement would be used to characterize the PM concentration over an entire (~4-50 km) metropolitan or rural area ranging in size from 4 to 50 kilometers. Such measurements would be useful for assessing trends in area-wide air quality, and hence, the effectiveness of large scale air pollution control strategies. Communityoriented PM_{2.5} sites may have this scale. Regional These measurements would characterize Scale conditions over areas with dimensions of as much as hundreds of kilometers. As noted earlier, using (~50-100s km) representative conditions for an area implies some degree of homogeneity in that area. For this reason, regional scale measurements would be most applicable to sparsely populated areas. Data characteristics of this scale would provide information about larger scale processes of PM emissions, losses and transport. PM_{2.5} transport contributes to elevated particulate concentrations and may affect multiple urban and State entities with large populations such as in the eastern United States. Development of effective pollution control strategies requires an understanding at regional geographical scales of the emission sources and atmospheric processes that are responsible for elevated PM_{2.5} levels and may also be associated with elevated O₃ and regional haze.

Table A-19. Major routine operating air monitoring networks^a

Network	Lead Agency	Number of Sites	Initiated	Measurement Parameters	Location of Information and/or Data
STATE / LOCAL / FE	DERAL I	NETWORK	S		
NCore ^b – National Core Monitoring Network	EPA	75	2008	O ₃ , NO/NO ₂ /NO ₇ , SO ₂ , CO, PM _{2.5} / _{PM10·2.5} , PM _{2.5} speciation, NH ₃ , HNO ₃ , surface meteorology ^c	http://www.epa.gov/ttN/Amtic/monstratdoc.html
SLAMS1 – State and Local Ambient Monitoring Stations	EPA	~3000	1978	O ₃ , NO _x /NO ₂ , SO ₂ , PM _{2.5} /PM ₁₀ , CO, Pb	http://www.epa.gov/air/oaqps/qa/monprog.html
STN—PM _{2.5} Speciation Trends Network	EPA	300	1999	PM _{2.5} , PM _{2.5} speciation, major lons, metals	http://www.epa.gov/ttnamti1/specgen.html
PAMS—Photochemical Assessment Monitoring Network	EPA	75	1994	O ₃ , NO _x /NO _y , CO, speciated VOCs, carbonyls, surface meteorology & Upper Air	http://www.epa.gov/air/oaqps/pams/
IMPROVE— Interagency Monitoring of Protected Visual Environments	NPS	110 plus 67 protocol sites	1988	PM _{2.5} /PM ₁₀ , major ions, metals, light extinction, scattering coefficient	http://vista.cira.colostate.edu/IMPROVE/
CASTNet – Clean Air Status and Trends Network	EPA	80+	1987	O ₃ , SO ₂ , major ions, calculated dry deposition, wet deposition, total deposition for sulfur/nitrogen, surface meteorology	http://www.epa.gov/castnet/
GPMN—Gaseous Pollutant Monitoring Network	NPS	33	1987	O ₃ , NO _x /NO/NO ₂ , SO ₂ , CO, surface meteorology, (plus enhanced monitoring of CO, NO, NO _x , NO _y , and SO ₂ plus canister samples for VOC at 3 sites)	http://www2.nature.nps.gov/air/Monitoring/network.cfm#data
POMS—Portable Ozone Monitoring Stations	NPS	14	2002	O ₃ , surface meteorology, with CASTNet-protocol filter pack (optional) sulfate, nitrate, ammonium, nitric acid, sulfur dioxide	http://www2.nature.nps.gov/air/studies/portO3.cfm
Passive Ozone Sampler Monitoring Program	NPS	43	1995	O ₃ dose (weekly)	http://www2.nature.nps.gov/air/Studies/Passives.cfm
NADP/NTN—National Atmospheric Deposition Program / National Trends Network	USGS	200+	1978	Major lons from precipitation chemistry	http://nadp.sws.uiuc.edu/
NADP/MDN—National Atmospheric Deposition Program / Mercury Deposition Network	None	90+	1996	Mercury from precipitation chemistry	http://nadp.sws.uiuc.edu/mdn/

Network	Lead Agency	Number of Sites	Initiated	Measurement Parameters	Location of Information and/or Data
AIRMoN—National Atmospheric Deposition Program /	NOAA	8	1992	Major lons from precipitation chemistry	http://nadp.sws.uiuc.edu/AIRMoN/
Atmospheric Integrated Research Monitoring Network				Note: some sites began in 1976 as part of the DOE MAP3S program; early data are archived on NADP and ARL servers.	
IADN—Integrated Atmospheric Deposition Network	EPA	20	1990	PAHs, PCBs, and organochlorine compounds are measured in air and precipitation samples	http://www.epa.gov/glnpo/monitoring/air/
NAPS—National Air Pollution Surveillance Network	Canada	152+	1969	SO ₂ , CO, O ₃ , NO, NO ₂ , NO _X , VOCs, SVOCs, PM ₁₀ , PM _{2.5} , TSP, metals	http://www.etc-cte.ec.gc.ca/NAPS/index_e.html
CAPMoN—Canadian Air and Precipitation Monitoring Network	Canada	29	2002	O ₃ , NO, NO ₂ , NO _Y , PAN, NH ₃ , PM _{2.5} , PM ₁₀ and coarse fraction mass, PM _{2.5} speciation, major ions for particles and trace gases, precipitation chemistry for major ions	http://www.msc.ec.gc.ca/capmon/index_e.cfm
Mexican Air Quality Network	Mexico	52-62	Late 1960s	O ₃ , NO _X , CO, SO ₂ , PM ₁₀ , TSP,VOC	http://www.ine.gob.mx/dgicur/calaire/indicadores.html
Mexican City Ambient Air Quality Monitoring Network	Mexico	49	Late 1960s	O ₃ , NO _x , CO, SO ₂ , PM ₁₀ , TSP,VOC	http://www.ine.gob.mx/dgicur/calaire/indicadores.html
AIR TOXICS MONIT	ORING N	ETWORKS			
NATTS—National Air Toxics Trends Stations	EPA	23	2005	VOCs, Carbonyls, PM ₁₀ metals ^d , Hg	http://www.epa.gov/ttN/Amtic/airtoxpg.html
State/Local Air Toxics Monitoring	EPA	250+	1987	VOCs, Carbonyls, PM ₁₀ metals ^d , Hg	http://www.epa.gov/ttN/Amtic/airtoxpg.html
NDAMN—National Dioxin Air Monitoring Network	EPA	34	1998-2005	CDDs, CDFs, dioxin- like PCBs	http://cfpub.epa.gov/ncea/CFM/recordisplay.cfm?deid=54811
TRIBAL MONITORIN	NG NETW	ORKS			
Tribal Monitoring ^f	EPA	120+	1995	O ₃ , NO _x /NO ₂ , SO ₂ , PM _{2.5} /PM ₁₀ , CO, Pb	http://www.epa.gov/air/tribal/airprogs.html#ambmon
INDUSTRY / RESEA	RCH NE	TWORKS			
New Source Permit Monitoring	None	variable	variable	O ₃ , NO _x /NO ₂ , SO ₂ , PM _{2.5} /PM ₁₀ , CO, Pb	Contact specific industrial facilities
HRM Network— Houston Regional Monitoring Network	None	9	1980	O ₃ , NO _X , PM _{2.5} /PM ₁₀ , CO, SO ₂ , Pb, VOCs, surface meteorology	http://hrm.radian.com/houston/how/index.htm
ARIES / SEARCH— Aerosol Research Inhalation Epidemiology Study / SouthEastern Aerosol Research and Characterization Study experiment	None	8	1992	O ₃ , NO/NO ₂ /NO ₇ , SO ₂ , CO, PM _{2.5} /PM ₁₀ , PM _{2.5} speciation, major lons, NH ₃ , HNO ₃ , scattering coefficient, surface meteorology	http://www.atmospheric-research.com/studies/SEARCH/index.html

Network	Lead Agency	Number of Sites	Initiated	Measurement Parameters	Location of Information and/or Data
SOS – SERON— Southern Oxidant Study - Southeastern Regional Oxidant Networks	EPA	~40	1990	O ₃ , NO, NO _Y , VOCs, CO, surface meteorology	http://www.ncsu.edu/sos/pubs/sos3/State_of_SOS_3.pdf
NATIONAL/GLOBAL	RADIAT	ION NETW	ORKS		
RadNet—formerly Environmental Radiation Ambient Monitoring System (ERAMS)	EPA	200+	1973	Radionuclides and radiation	http://www.epa.gov/enviro/html/erams/
SASP – Surface Air Sampling Program	DHS	41	1963	89Sr, 90Sr, naturally occurring radionuclides, 7Be, 210Pb	http://www.eml.st.dhs.gov/databases/sasp/
NEWNET– Neighborhood Environmental Watch Network	DOE	26	1993	lonizing gamma radiation, surface meteorology	http://newnet.lanl.gov/
SOLAR RADIATION	NETWO	RKS			
UV Index – EPA Sunrise Program ^g	EPA	~50 U.S. cities	2002	Calculated UV radiation index	http://www.epa.gov/sunwise/uvindex.html
UV Net – Ultraviolet Monitoring Program	EPA	21	1995/2004	Ultraviolet solar radiation (UV-B and UV-A bands), irradiance, ozone, NO ₂	http://www.epa.gov/uvnet/access.html
NEUBrew (NOAA-EPA Brewer Spectrophotometer UV and Ozone Network	NOAA	6	2005	Ultraviolet solar radiation (UV-B and UV-A bands), irradiance, ozone, SO ₂	http://www.esrl.noaa.gov/gmd/grad/neubrew/
UV-B Monitoring and Research Program	USDA	35	1992	Ultraviolet-B radiation	http://uvb.nrel.colostate.edu/UVB/index.jsf
SURFRAD – Surface Radiation Budget Network	NOAA	7	1993	Solar and infrared radiation, direct and diffuse solar radiation, photosynthetically active radiation, UVB, spectral solar, and meteorological parameters	http://www.srrb.noaa.gov/surfrad/index.html
AERONET – Aerosol RObotic NETwork	NASA co- located networks	22 + other participants	1998	Aerosol spectral optical depths, aerosol size distributions, and precipitable water	http://aeronet.gsfc.nasa.gov/index.html
MPLNET – Micro-pulse Lidar Network		8	2000	Aerosols and cloud layer heights	http://mplnet.gsfc.nasa.gov/
PRIMENet – Park Research & Intensive Monitoring of Ecosystems NETwork ⁿ	NPS	14	1997	ozone, wet and dry deposition, visibility, surface meteorology, and ultraviolet radiation	http://www.cfc.umt.edu/primenet/Assets/Announcements/99PReport.pd

a Some networks listed separately may also serve as subcomponents of other larger listed networks; as a result, some double counting of the number of individual monitors is likely.
b NCore is a network proposed to replace NAMS, as a component of SLAMS; NAMS are currently designated as national trends sites.
c surface meteorology includes wind direction and speed, temperature, precipitation, relative humidity, solar radiation (PAMS only).
d PM₁₀ metals may include arsenic, beryllium, cadmium, chromium, lead, manganese, nickel, and others.
b The number of sites indicated for tribal monitoring is actually the number of monitors, rather than sites. The number of sites with multiple monitors is probably <80.
S Unnise program estimates UV exposure levels through modeling - does not include measurements.

NEUBREW is a subset Original UV brewer network (UV Net); PRIMENET participated in UV Net program.

A.1.3. Monitor Distribution with Respect to Population Density

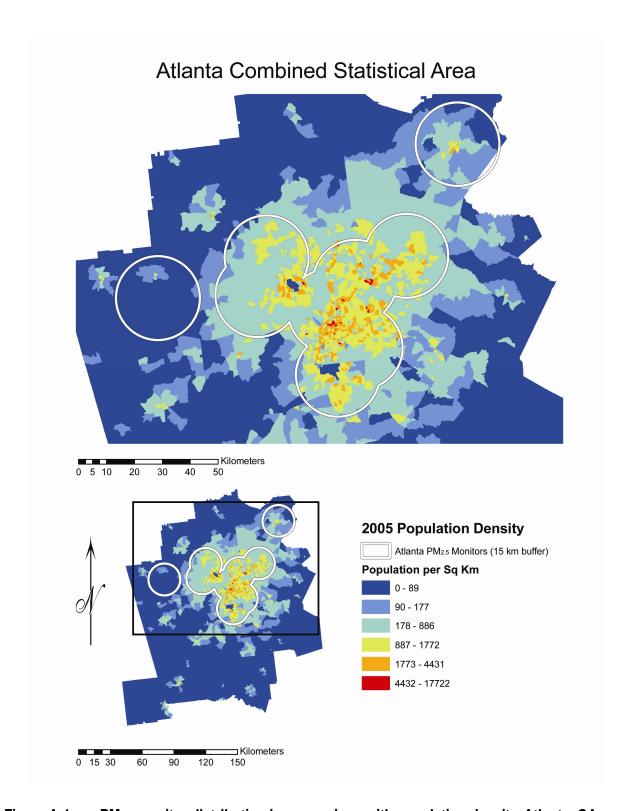


Figure A-1. PM_{2.5} monitor distribution in comparison with population density, Atlanta, GA.

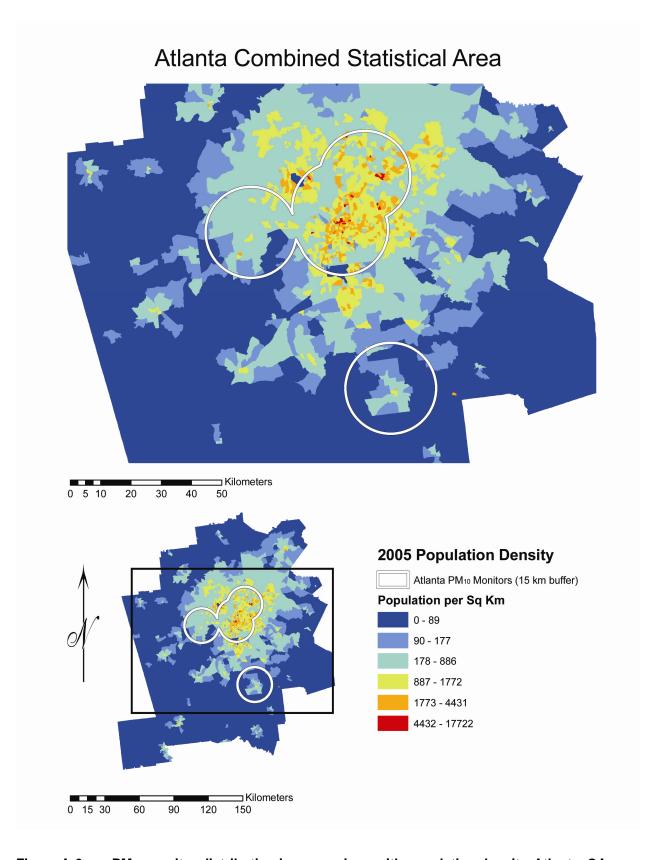


Figure A-2. PM₁₀ monitor distribution in comparison with population density, Atlanta, GA.

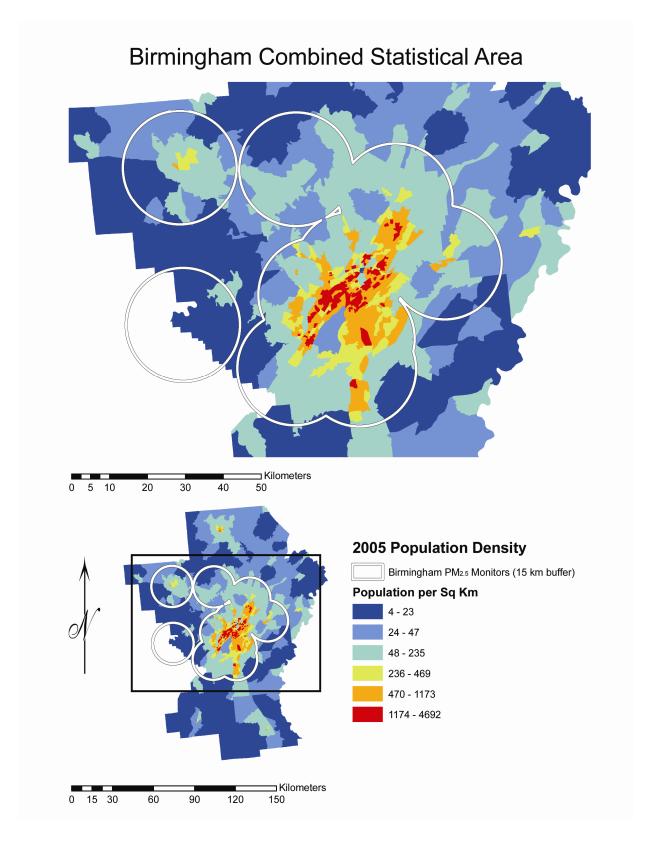


Figure A-3. PM_{2.5} monitor distribution in comparison with population density, Birmingham, AL.

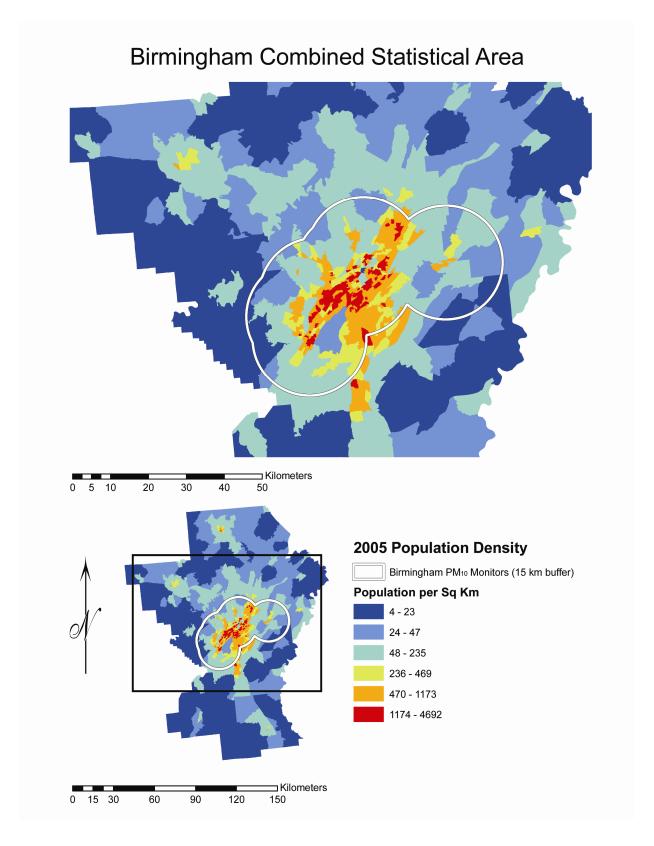


Figure A-4. PM₁₀ monitor distribution in comparison with population density, Birmingham, AL.

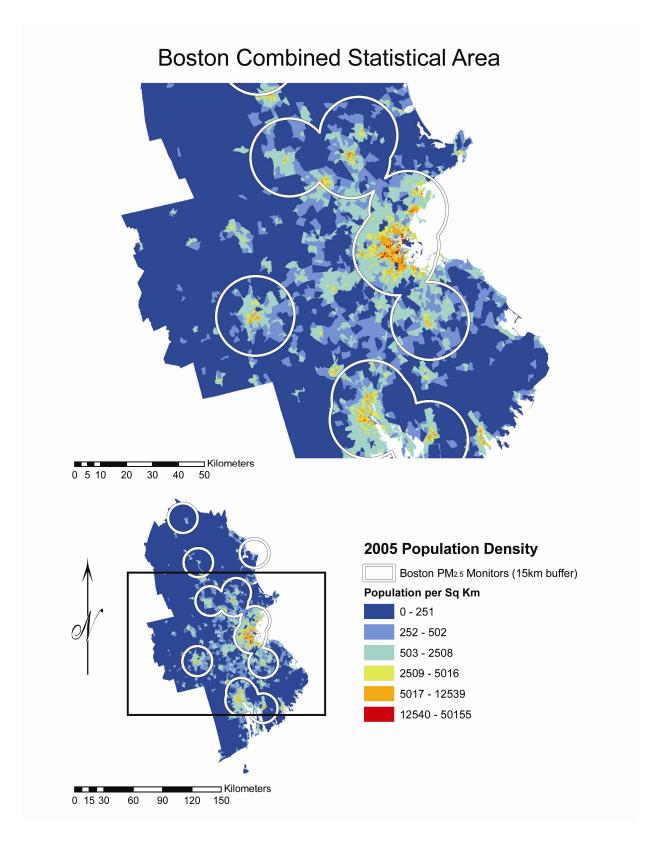


Figure A-5. PM_{2.5} monitor distribution in comparison with population density, Boston, MA.

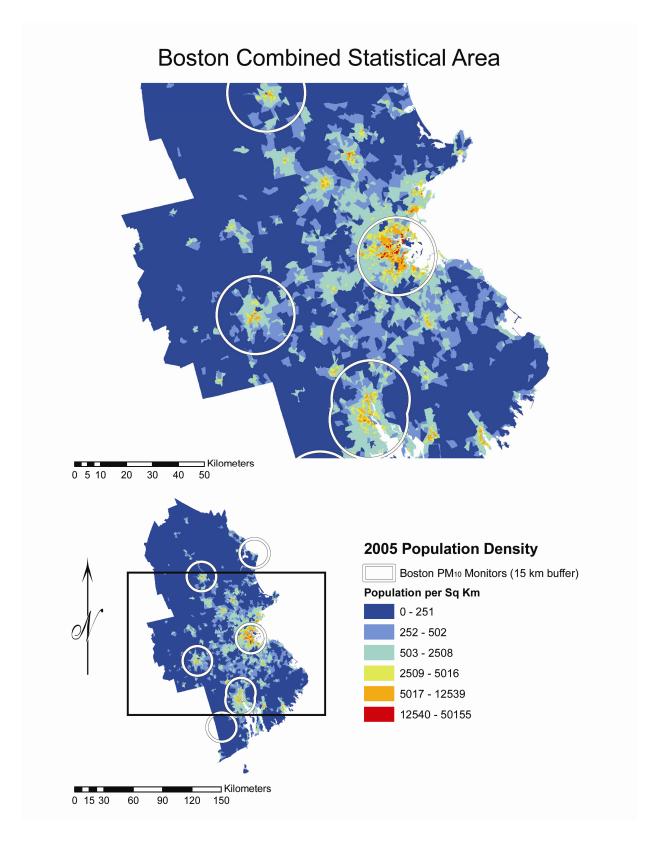


Figure A-6. PM₁₀ monitor distribution in comparison with population density, Boston, MA.

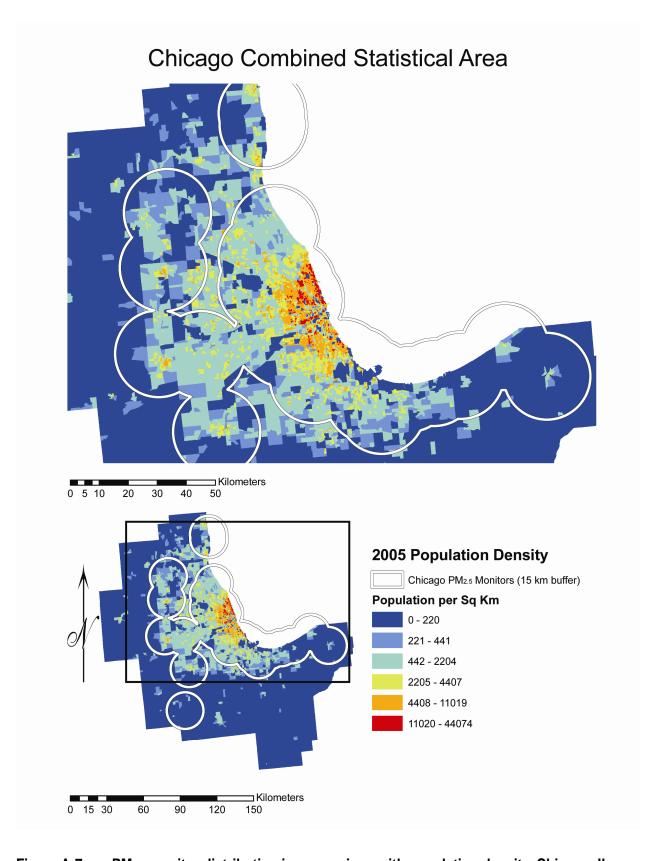


Figure A-7. PM_{2.5} monitor distribution in comparison with population density, Chicago, IL.

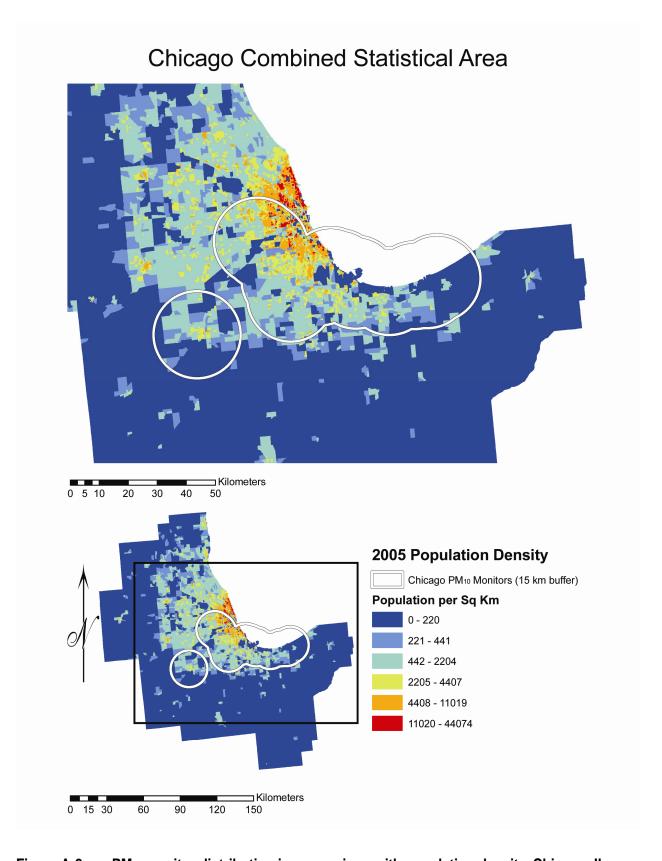


Figure A-8. PM₁₀ monitor distribution in comparison with population density, Chicago, IL.

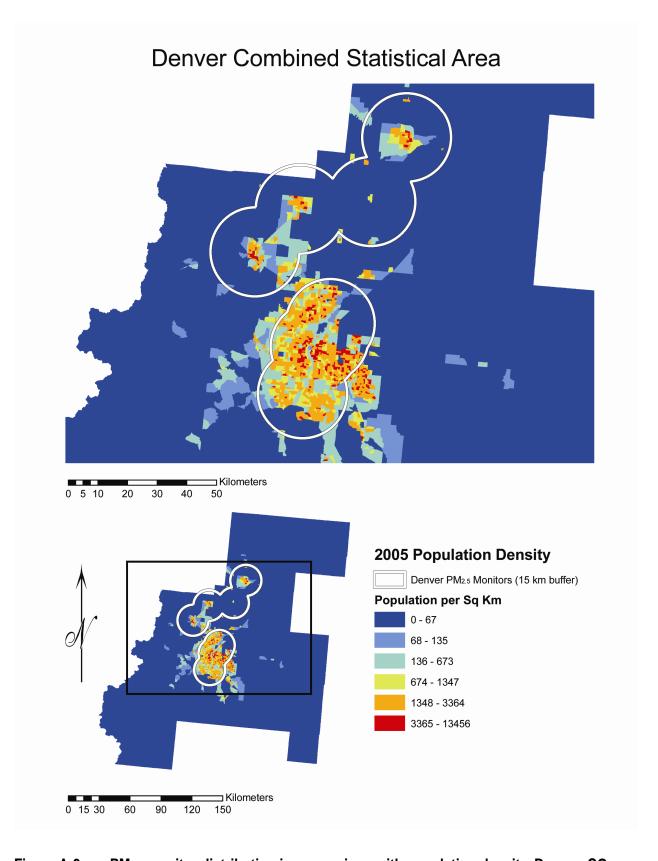


Figure A-9. PM_{2.5} monitor distribution in comparison with population density, Denver, CO.

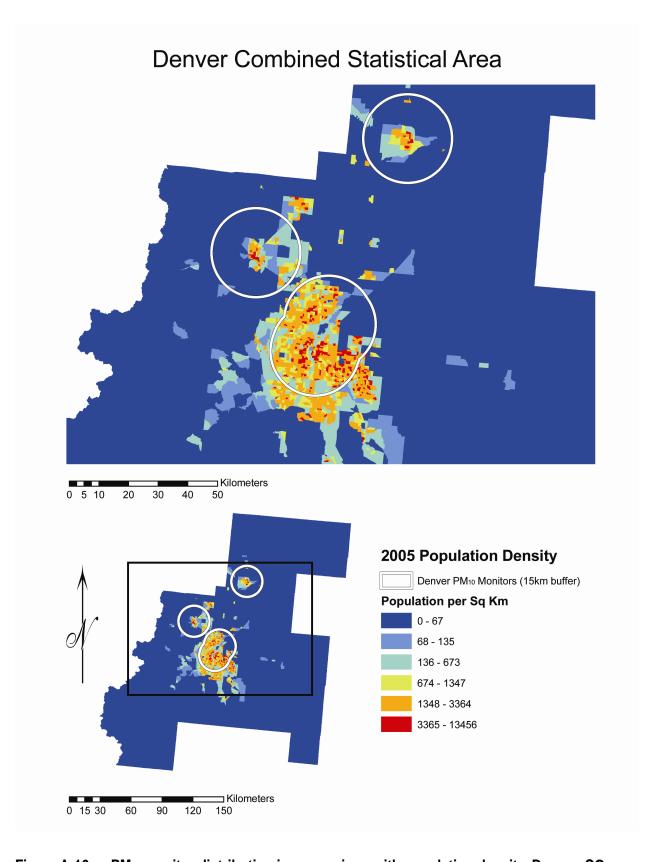


Figure A-10. PM₁₀ monitor distribution in comparison with population density, Denver, CO.

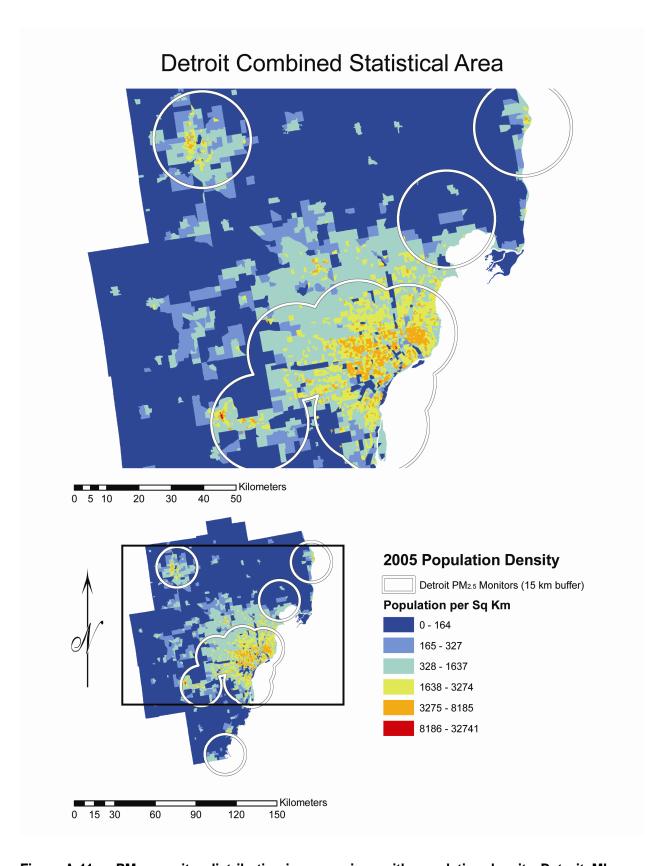


Figure A-11. PM_{2.5} monitor distribution in comparison with population density, Detroit, MI.

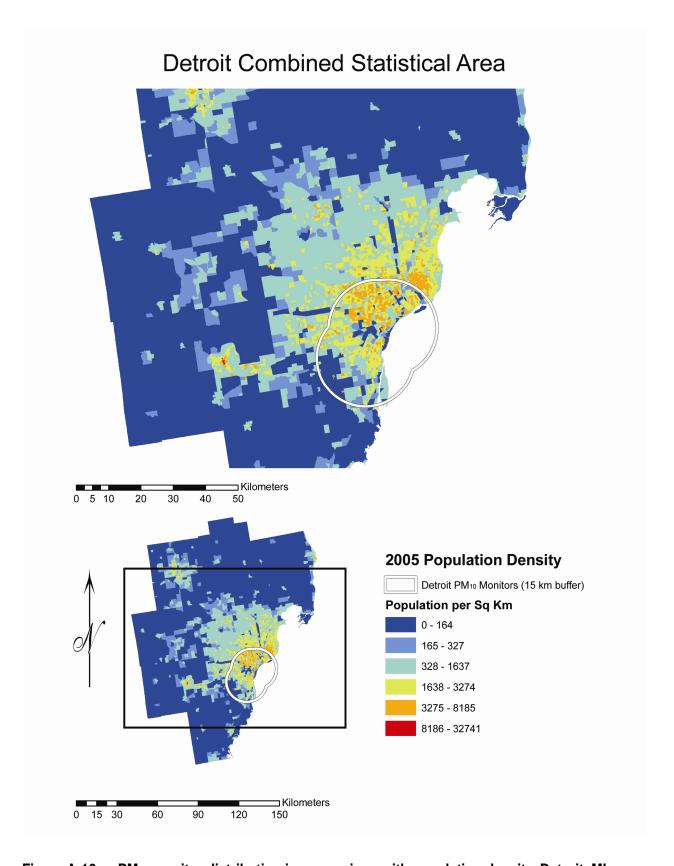


Figure A-12. PM₁₀ monitor distribution in comparison with population density, Detroit, MI.

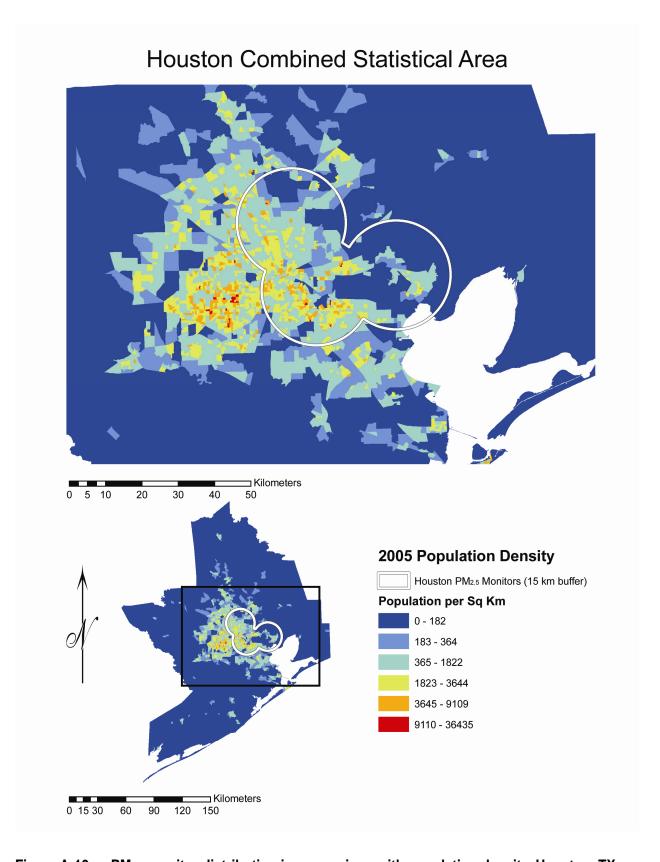


Figure A-13. PM_{2.5} monitor distribution in comparison with population density, Houston, TX.

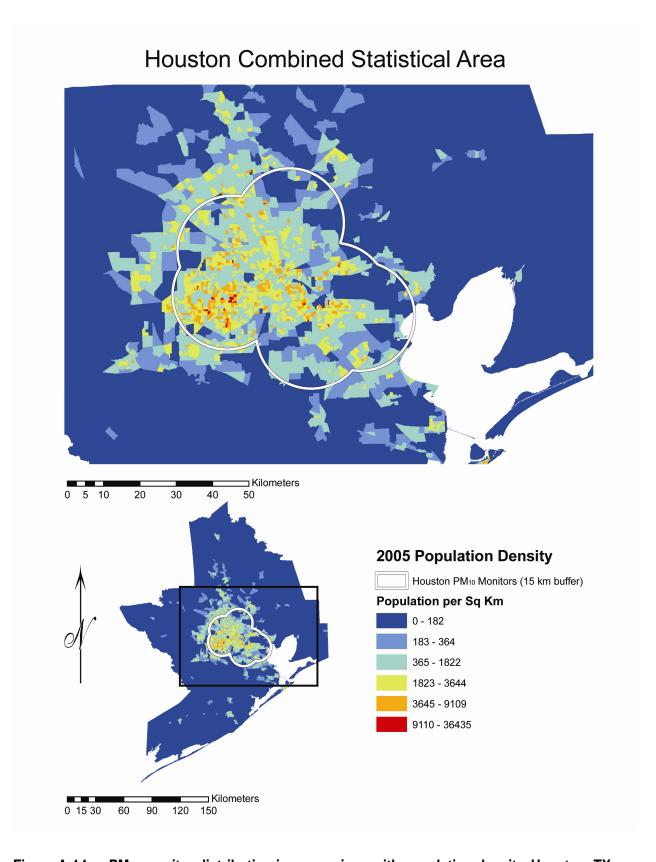


Figure A-14. PM₁₀ monitor distribution in comparison with population density, Houston, TX.

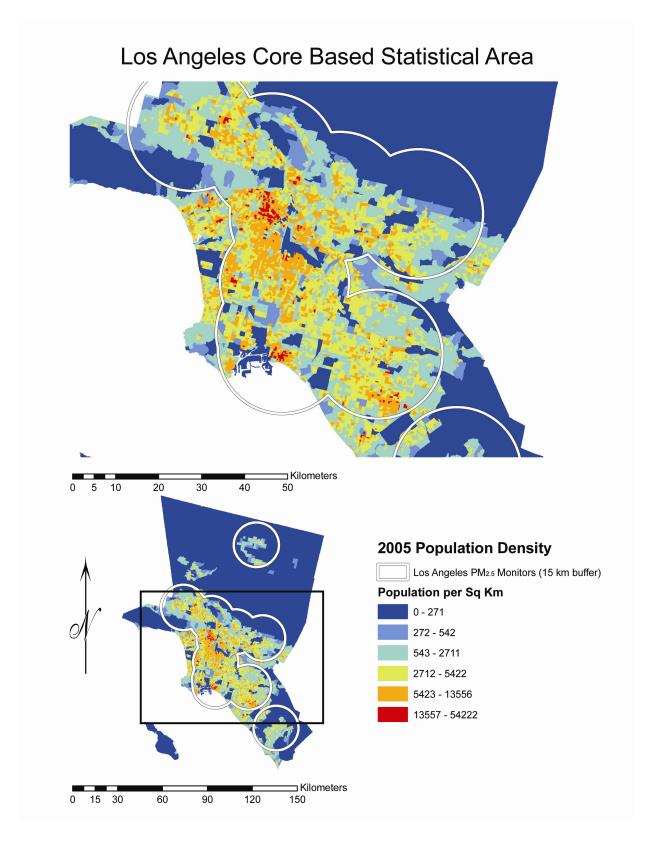


Figure A-15. PM_{2.5} monitor distribution in comparison with population density, Los Angeles, CA.

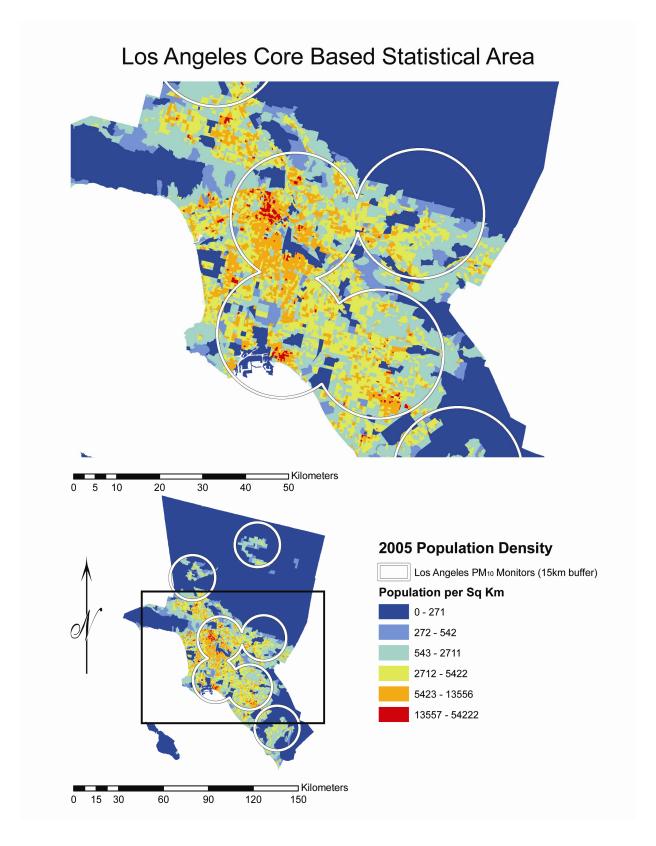


Figure A-16. PM₁₀ monitor distribution in comparison with population density, Los Angeles, CA.

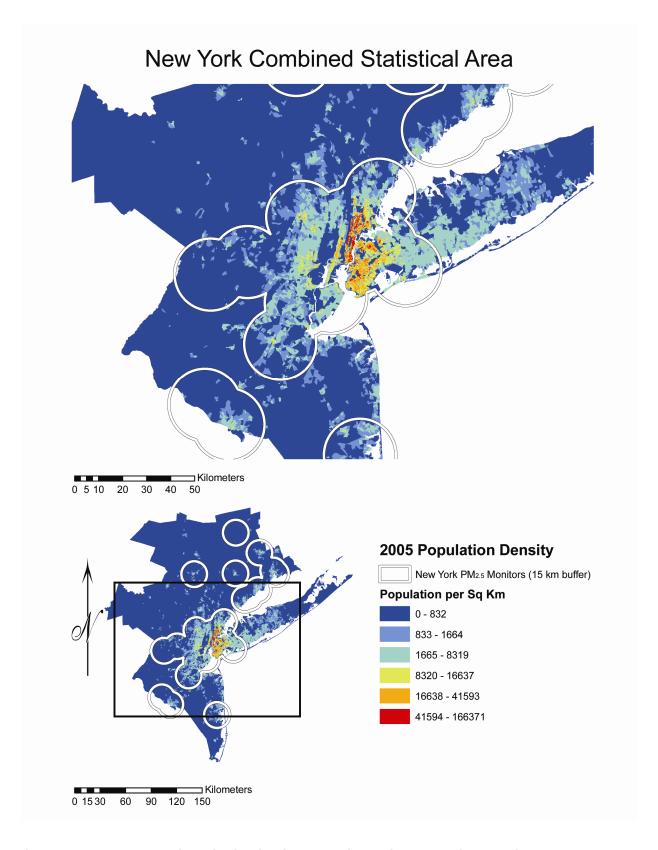


Figure A-17. PM_{2.5} monitor distribution in comparison with population density, New York, NY.

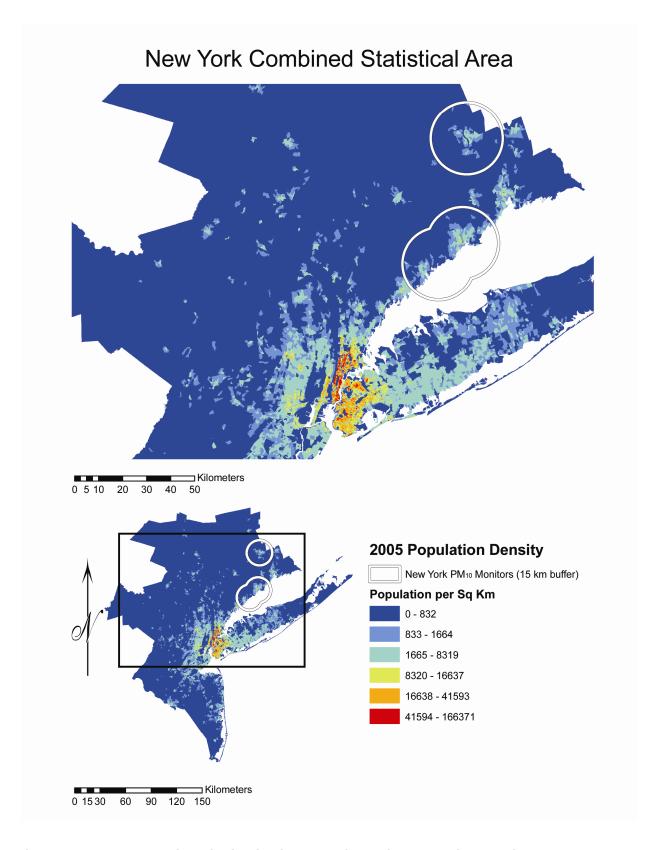


Figure A-18. PM₁₀ monitor distribution in comparison with population density, New York, NY.

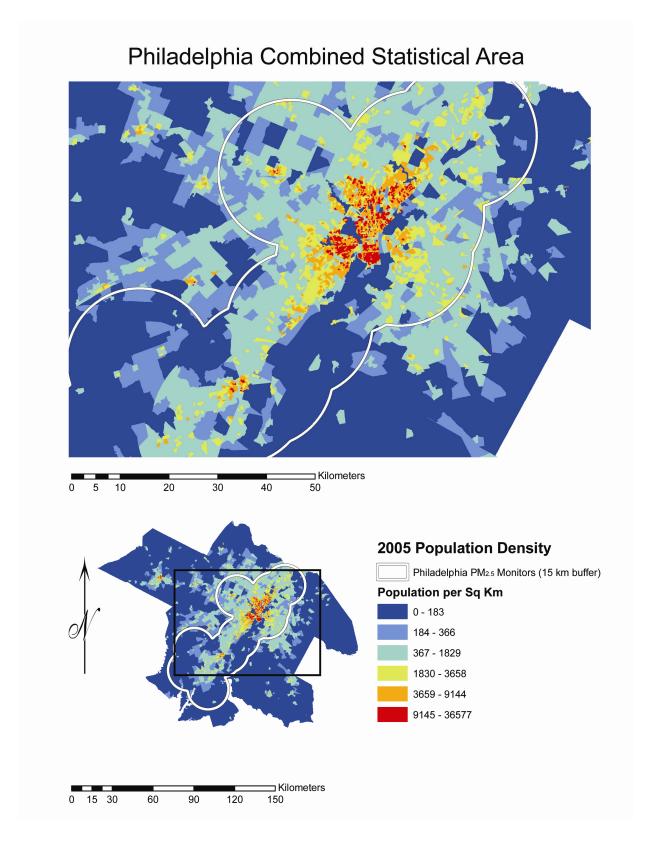


Figure A-19. PM_{2.5} monitor distribution in comparison with population density, Philadelphia, PA.

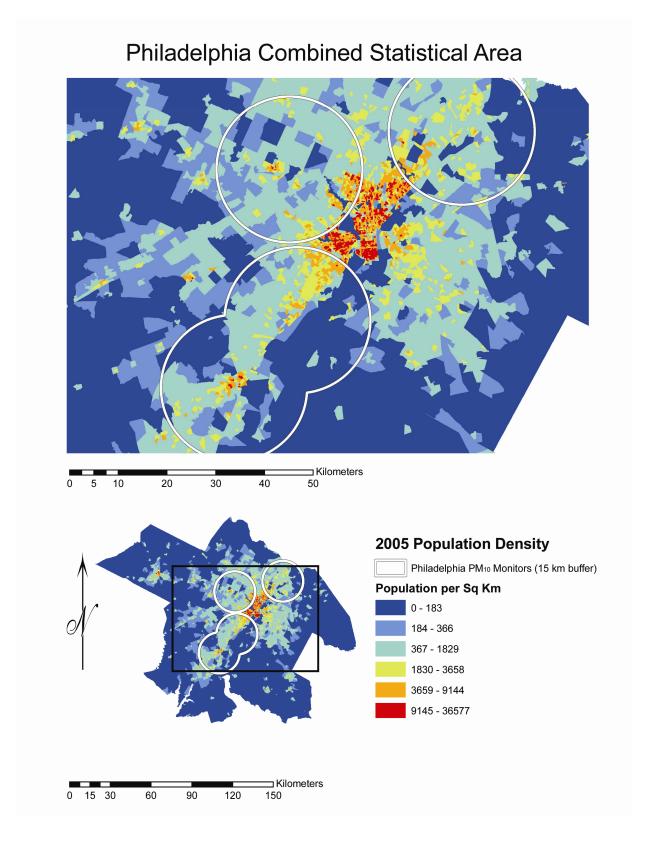


Figure A-20. PM₁₀ monitor distribution in comparison with population density, Philadelphia, PA.

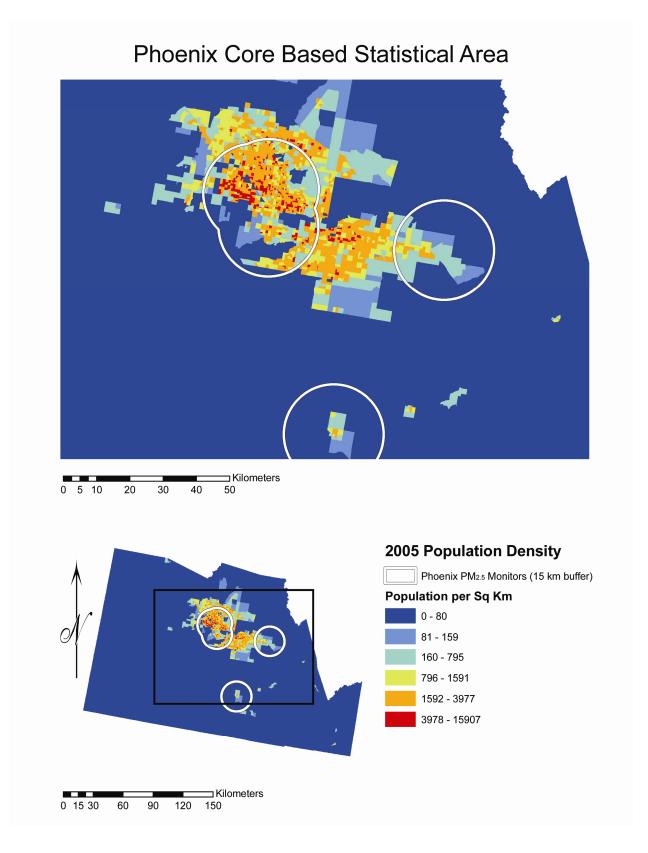


Figure A-21. PM_{2.5} monitor distribution in comparison with population density, Phoenix, AZ.

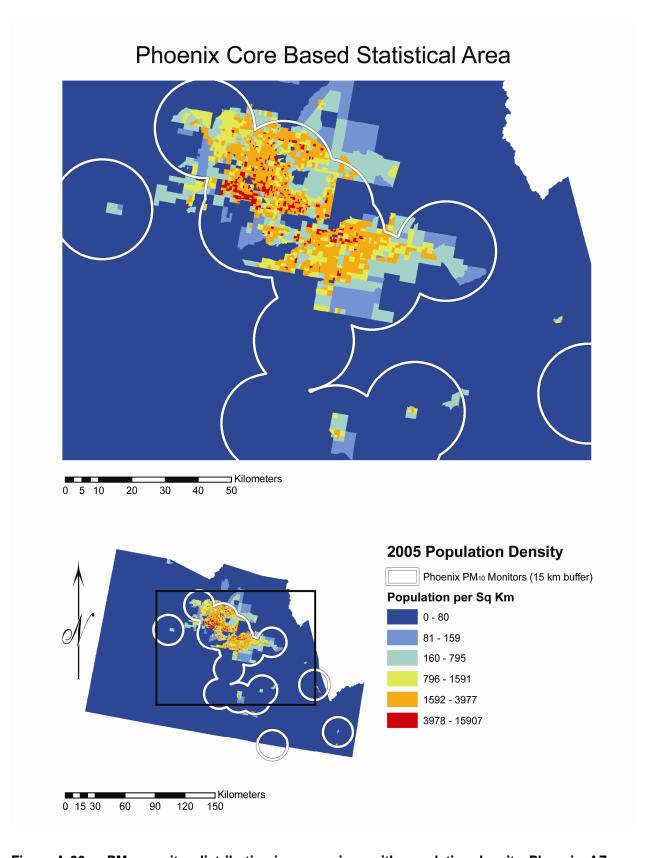


Figure A-22. PM₁₀ monitor distribution in comparison with population density, Phoenix, AZ.

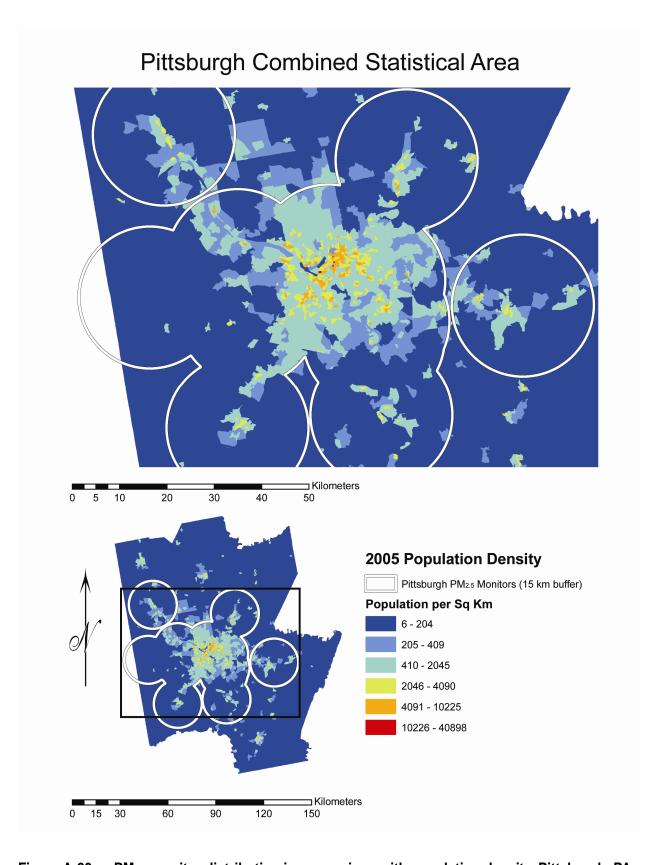


Figure A-23. PM_{2.5} monitor distribution in comparison with population density, Pittsburgh, PA.

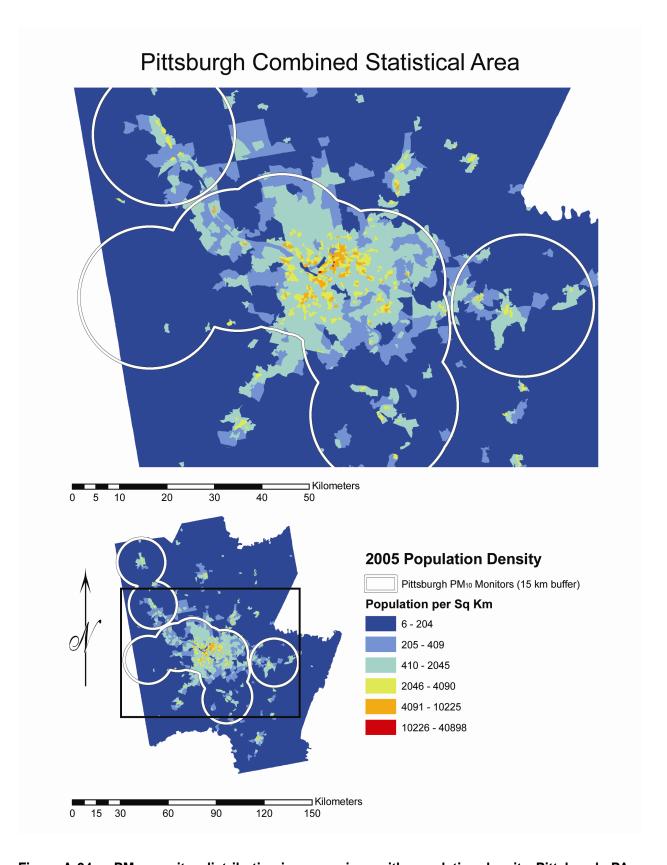


Figure A-24. PM₁₀ monitor distribution in comparison with population density, Pittsburgh, PA.

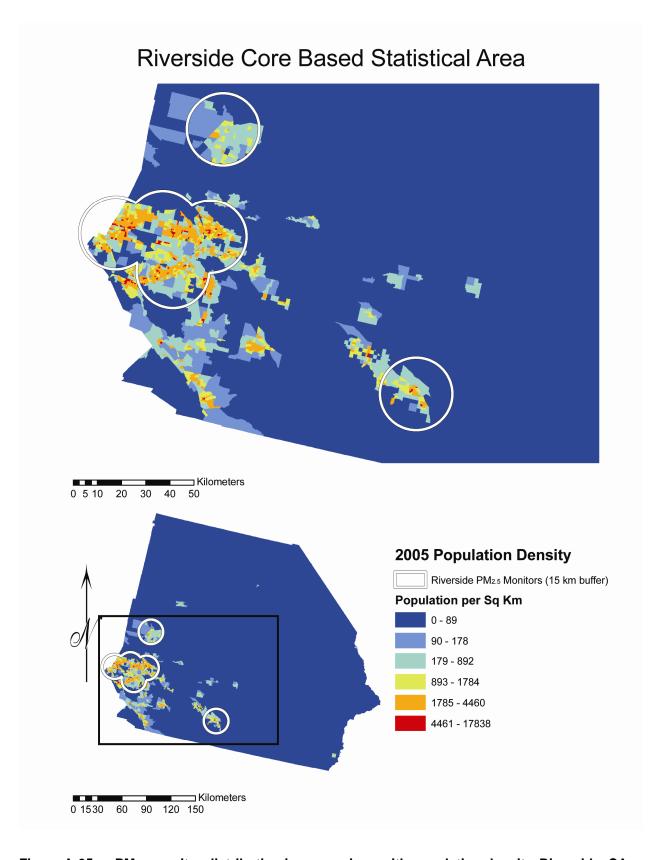


Figure A-25. PM_{2.5} monitor distribution in comparison with population density, Riverside, CA.

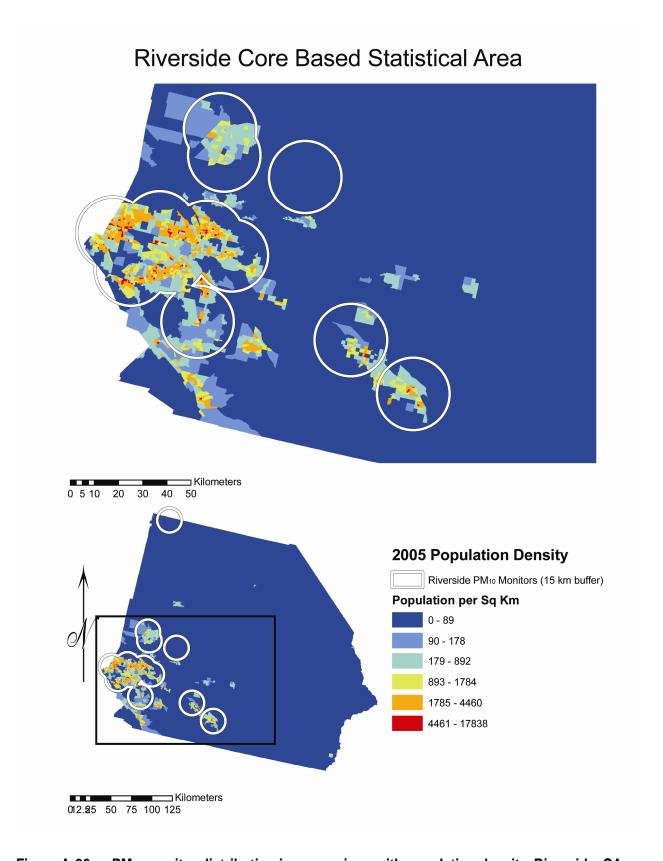


Figure A-26. PM₁₀ monitor distribution in comparison with population density, Riverside, CA.

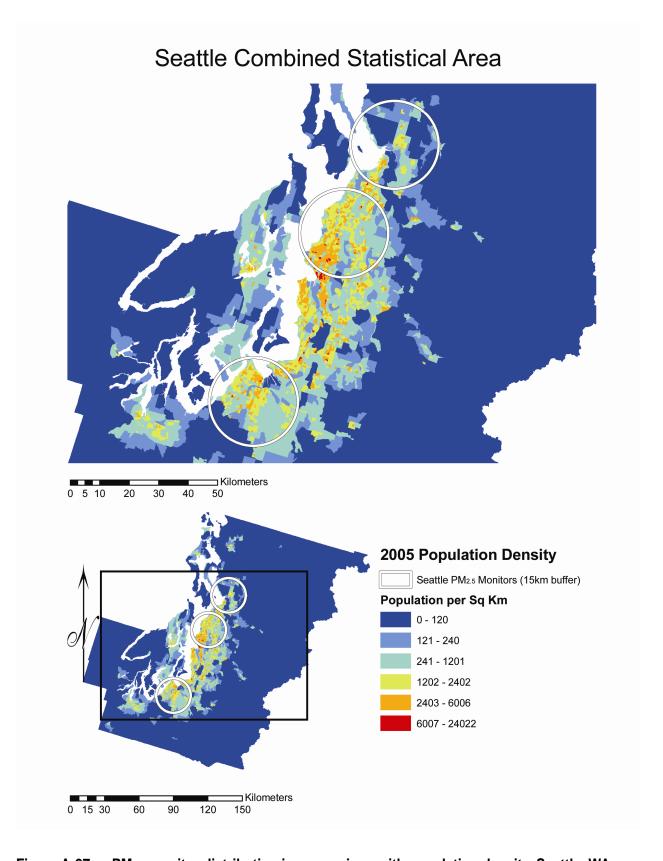


Figure A-27. PM_{2.5} monitor distribution in comparison with population density, Seattle, WA.

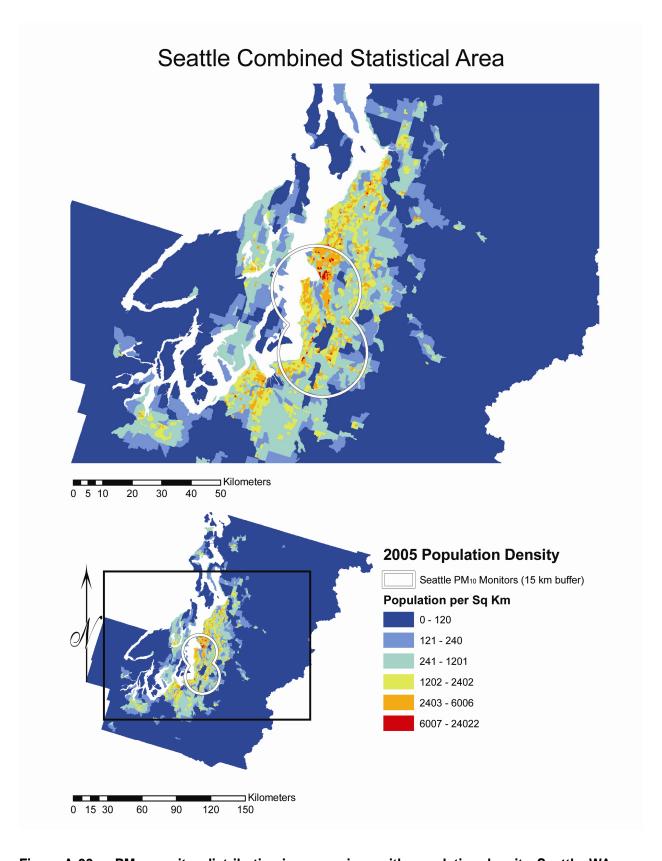


Figure A-28. PM₁₀ monitor distribution in comparison with population density, Seattle, WA.

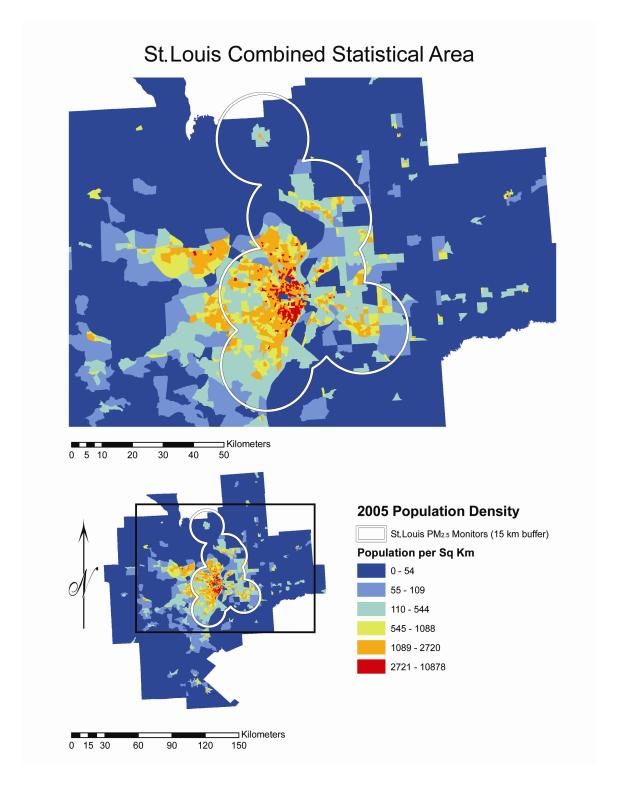


Figure A-29. PM_{2.5} monitor distribution in comparison with population density, St. Louis, MO.

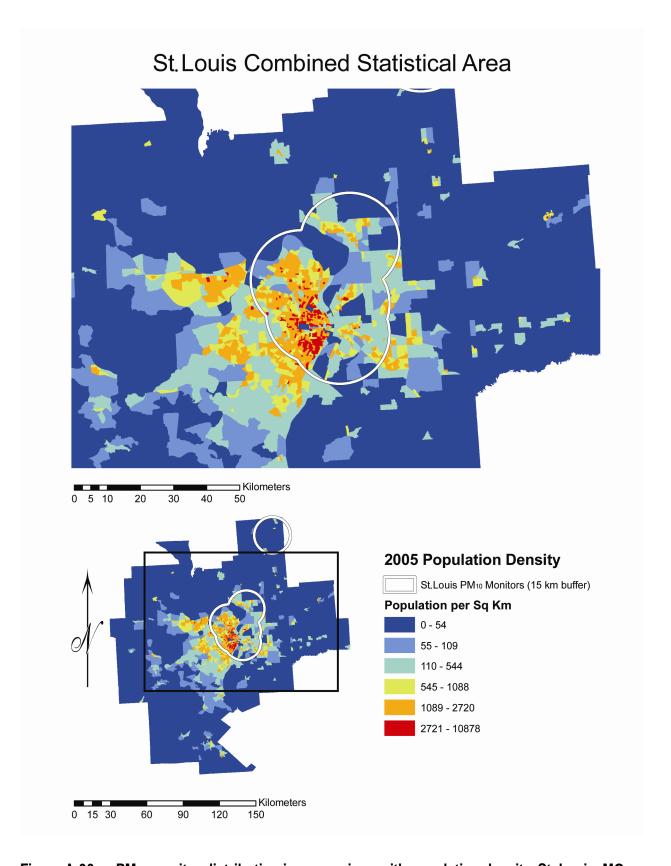


Figure A-30. PM₁₀ monitor distribution in comparison with population density, St. Louis, MO.

A.2. Ambient PM Concentration

A.2.1. Speciation Trends Network Site Data

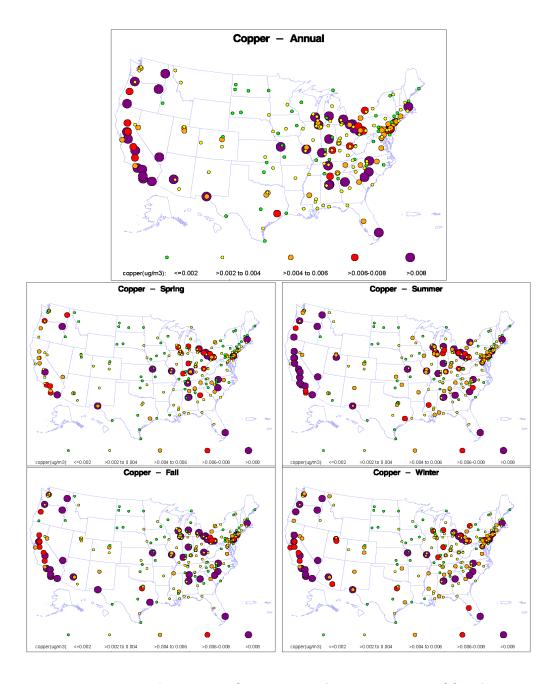


Figure A-31. Three-yr avg of 24-h PM_{2.5} Cu concentrations measured at CSN sites across the U.S., 2005-2007.

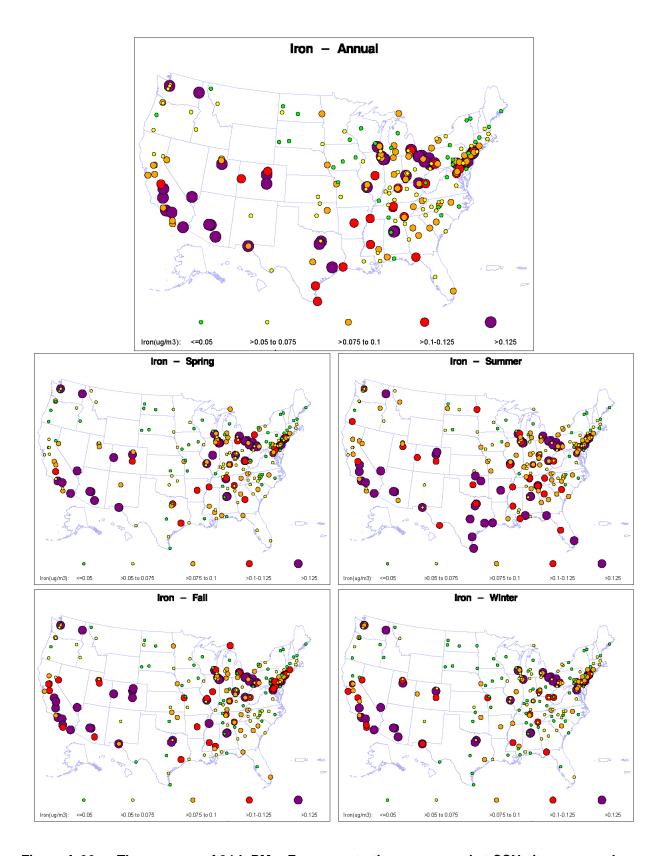


Figure A-32. Three-yr avg of 24-h $PM_{2.5}$ Fe concentrations measured at CSN sites across the U.S., 2005-2007

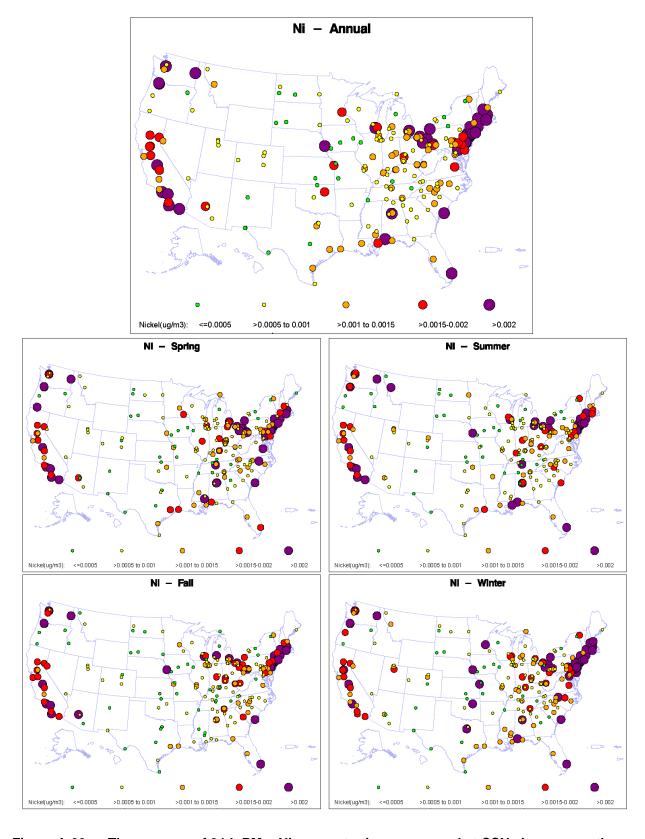


Figure A-33. Three-yr avg of 24-h $PM_{2.5}$ Ni concentrations measured at CSN sites across the U.S., 2005-2007

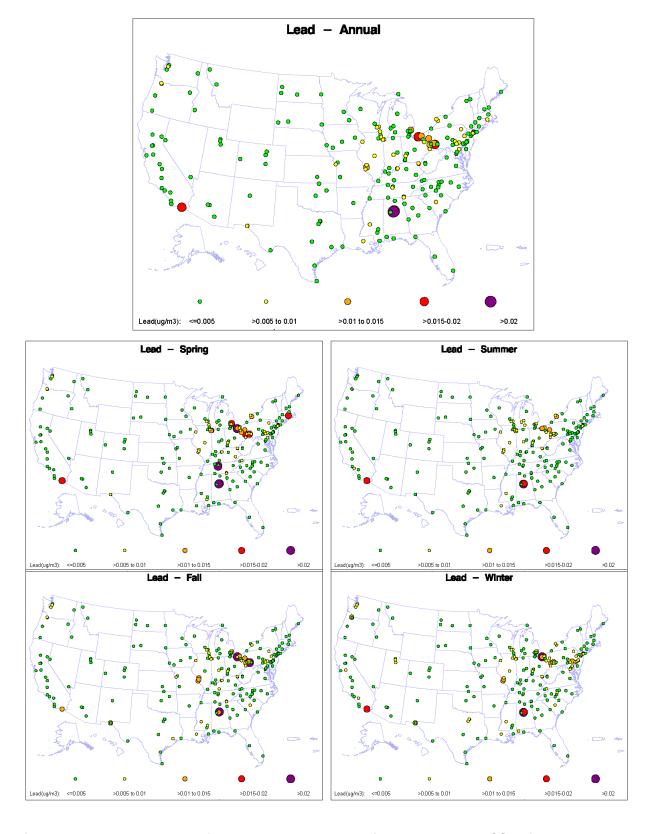


Figure A-34. Three-yr avg of 24-h $PM_{2.5}$ Pb concentrations measured at CSN sites across the U.S., 2005-2007

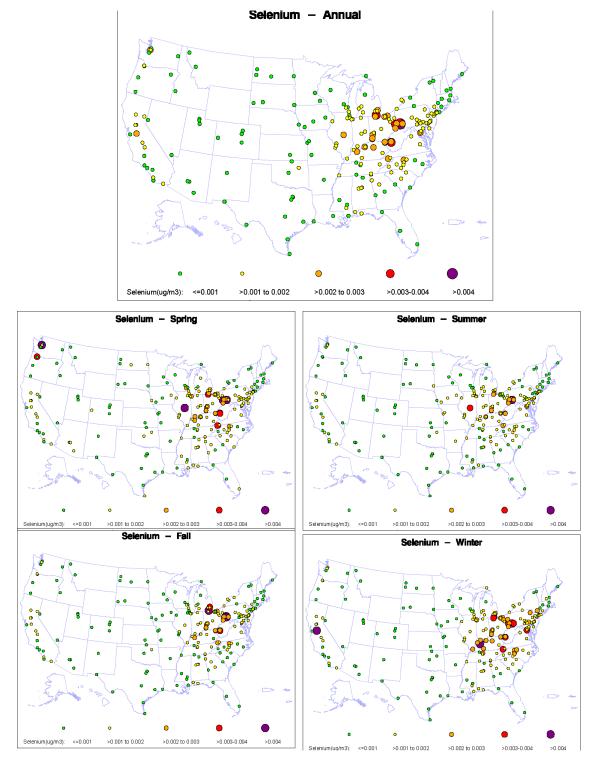


Figure A-35. Three-yr avg of 24-h $PM_{2.5}$ Se concentrations measured at CSN sites across the U.S., 2005-2007

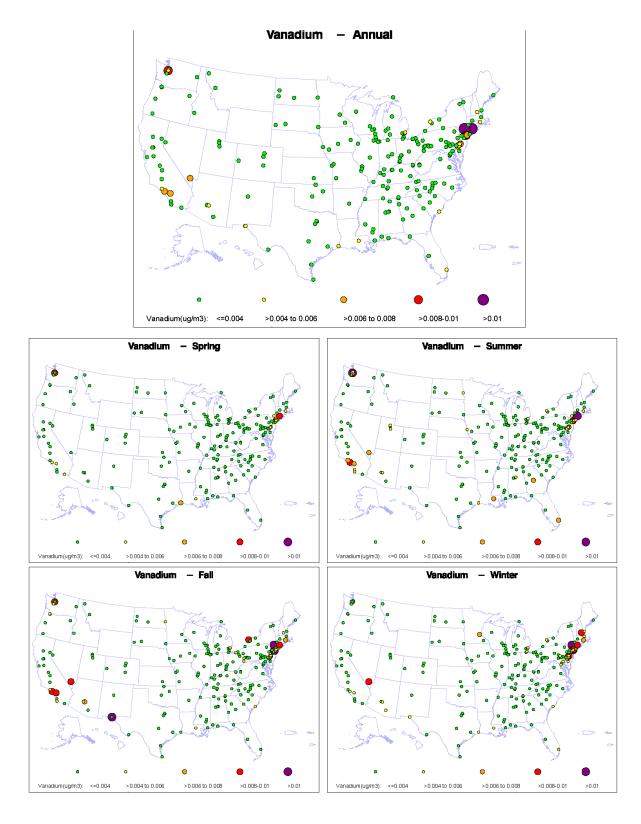


Figure A-36. Three-yr avg of 24-h PM_{2.5} V concentrations measured at CSN sites across the U.S., 2005-2007

A.2.2. Intraurban Variability

The following figures and tables exemplify the intraurban variability among PM_{2.5}, PM_{10-2.5} and PM₁₀ measurements for select CSAs/CBSAs (2005-2007) including Atlanta, Birmingham, Chicago, Denver, Detroit, Houston, New York City, Philadelphia, Phoenix, Riverside, Seattle and St. Louis. Maps are included to show monitor locations relative to major roadways. Box plots show the median and interquartile range of concentrations with whiskers extending to the 5th and 95th percentiles at each site during (1) winter (December-February); (2) spring (March-May); (3) summer (June-August); and (4) fall (September-November). Tables of inter-sampler comparison statistics and scatter plots of inter-sampler correlation vs. distance illustrate variability present in each area.

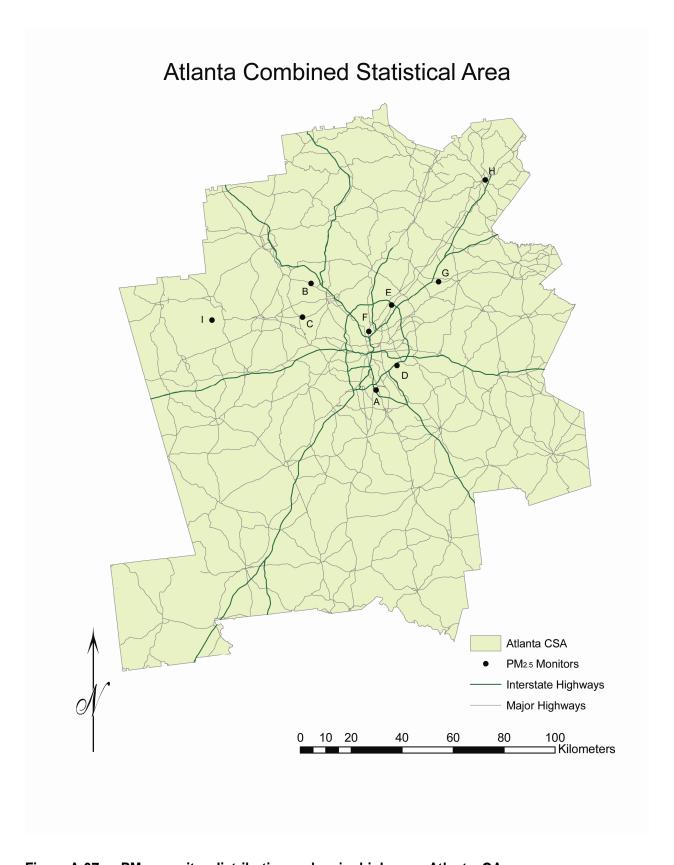


Figure A-37. PM_{2.5} monitor distribution and major highways, Atlanta, GA.

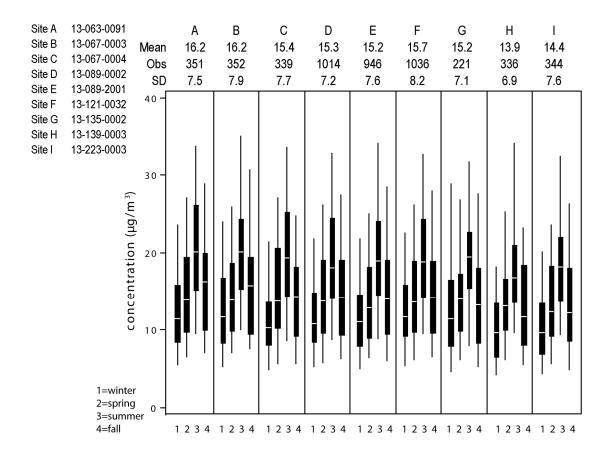


Figure A-38. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for Atlanta, GA.

Table A-20. Inter-sampler correlation statistics for each pair of $PM_{2.5}$ monitors reporting to AQS for Atlanta, GA.

	Α	В	С	D	E	F	G	Н	I
Α	1.00	0.88	0.87	0.93	0.89	0.91	0.85	0.72	0.85
	(0.0, 0.00)	(5.2, 0.11)	(6.2, 0.12)	(3.9, 0.11)	(5.3, 0.12)	(4.6, 0.11)	(6.9, 0.15)	(8.7, 0.19)	(7.2, 0.15)
	351	330	310	330	315	334	207	319	326
В		1.00	0.96	0.89	0.88	0.91	0.88	0.78	0.88
		(0.0, 0.00)	(4.1, 0.08)	(5.7, 0.12)	(4.6, 0.10)	(3.6, 0.08)	(5.6, 0.13)	(9.0, 0.17)	(6.5, 0.13)
		352	309	327	314	333	205	313	321
2			1.00	0.87	0.86	0.88	0.85	0.79	0.90
			(0.0, 0.00)	(5.2, 0.12)	(5.6, 0.11)	(4.4, 0.10)	(5.8, 0.13)	(7.9, 0.17)	(4.5, 0.11)
			339	315	304	324	193	298	303
D				1.00	0.89	0.80	0.87	0.74	0.82
				(0.0, 0.00)	(4.8, 0.12)	(3.7, 0.11)	(5.8, 0.13)	(8.3, 0.18)	(7.3, 0.15)
				1014	883	978	208	314	322
Ε					1.00	0.79	0.88	0.74	0.83
					(0.0, 0.00)	(3.8, 0.11)	(5.3, 0.12)	(7.8, 0.17)	(6.4, 0.14)
		LEGEND			946	904	208	305	309
=		R				1.00	0.88	0.70	0.84
		(P90, COD)				(0.0, 0.00)	(5.3, 0.12)	(8.5, 0.19)	(6.3, 0.14)
		N				1036	213	321	327
3							1.00	0.73	0.79
							(0.0, 0.00)	(8.8, 0.17)	(7.4, 0.15)
							221	195	198
Н								1.00	0.76
								(0.0, 0.00)	(8.7, 0.17)
								336	309
									1.00
									(0.0, 0.00)
									344

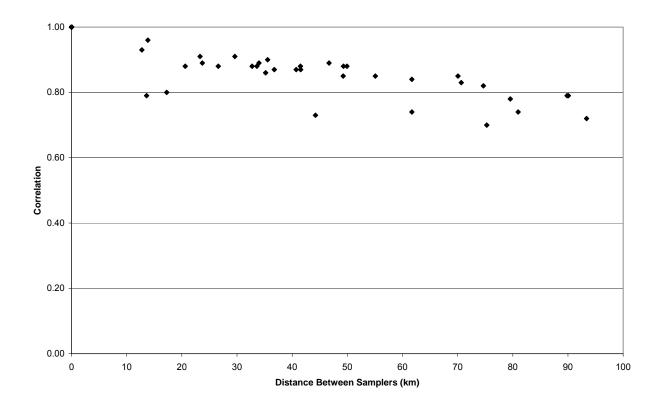


Figure A-39. PM_{2.5} inter-sampler correlations as a function of distance between monitors for Atlanta, GA.

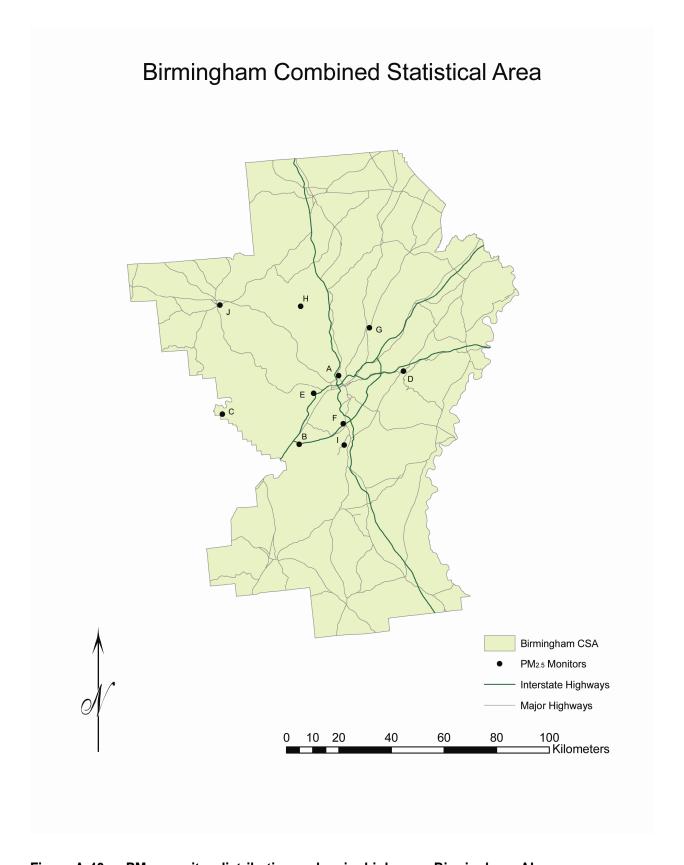


Figure A-40. PM_{2.5} monitor distribution and major highways, Birmingham, AL.

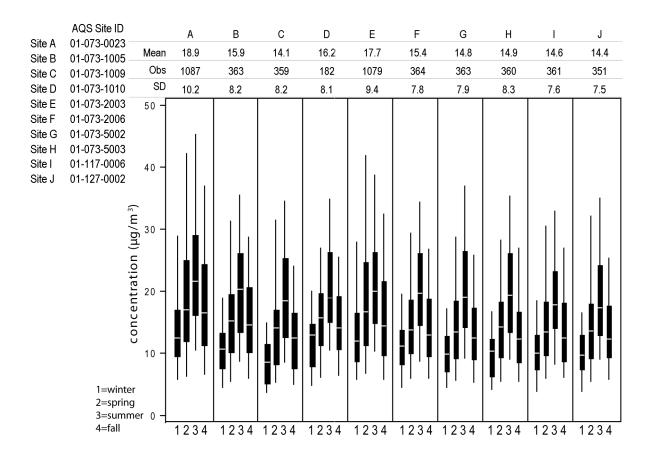


Figure A-41. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for Birmingham, AL.

Table A-21. Inter-sampler correlation statistics for each pair of $PM_{2.5}$ monitors reporting to AQS for Birmingham, AL.

	Α	В	С	D	E	F	G	Н	I	J
A	1.00	0.91	0.86	0.91	0.88	0.91	0.87	0.88	0.88	0.84
	(0.0, 0.00)	(10.4, 0.15)	(13.7, 0.21)	(9.7, 0.13)	(8.1, 0.13)	(10.8, 0.15)	(12.6, 0.18)	(11.7, 0.18)	(12.3, 0.18)	(12.5, 0.19)
	1087	360	356	182	1072	361	360	357	358	348
3		1.00	0.93	0.93	0.85	0.96	0.91	0.93	0.93	0.89
		(0.0, 0.00)	(5.3, 0.12)	(4.7, 0.09)	(8.3, 0.15)	(3.6, 0.08)	(5.4, 0.11)	(5.1, 0.11)	(4.9, 0.10)	(6.1, 0.12)
		363	356	181	359	358	360	355	358	348
С			1.00	0.93	0.81	0.93	0.91	0.94	0.90	0.90
			(0.0, 0.00)	(5.9, 0.13)	(10.1, 0.20)	(4.6, 0.12)	(4.3, 0.12)	(4.0, 0.10)	(4.9, 0.12)	(4.9, 0.11)
			359	180	355	354	355	350	353	343
)				1.00	0.88	0.96	0.95	0.95	0.93	0.89
				(0.0, 0.00)	(7.9, 0.12)	(3.6, 0.08)	(3.8, 0.09)	(4.7, 0.10)	(4.7, 0.10)	(6.1, 0.12)
				182	179	179	181	179	180	174
Ξ					1.00	0.87	0.85	0.85	0.86	0.81
					(0.0, 0.00)	(8.1, 0.15)	(8.7, 0.16)	(8.8, 0.17)	(9.2, 0.16)	(10.6, 0.18)
		LEGEND			1079	360	359	356	357	347
=		– R				1.00	0.95	0.95	0.95	0.90
		(P90, COD)				(0.0, 0.00)	(3.9, 0.09)	(4.1, 0.10)	(3.4, 0.09)	(5.6, 0.11)
		N				364	359	354	357	348
3	i						1.00	0.96	0.92	0.89
							(0.0, 0.00)	(3.3, 0.08)	(4.5, 0.10)	(4.9, 0.11)
							363	356	359	350
1								1.00	0.91	0.93
								(0.0, 0.00)	(5.0, 0.11)	(4.3, 0.09)
								360	354	344
									1.00	0.87
									(0.0, 0.00)	(5.8, 0.12)
									361	349
J										1.00
										(0.0, 0.00)
										351

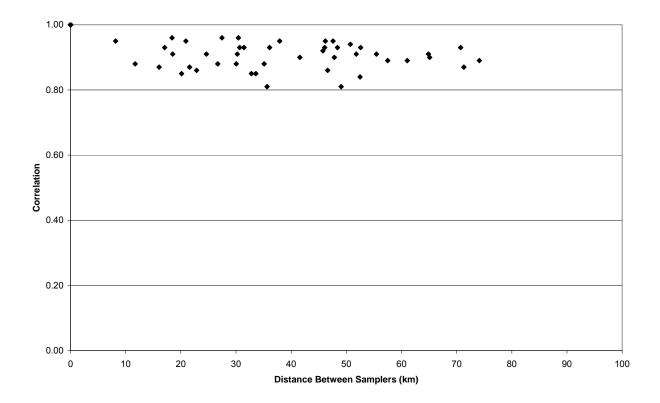


Figure A-42. PM_{2.5} inter-sampler correlations as a function of distance between monitors for Birmingham, AL.

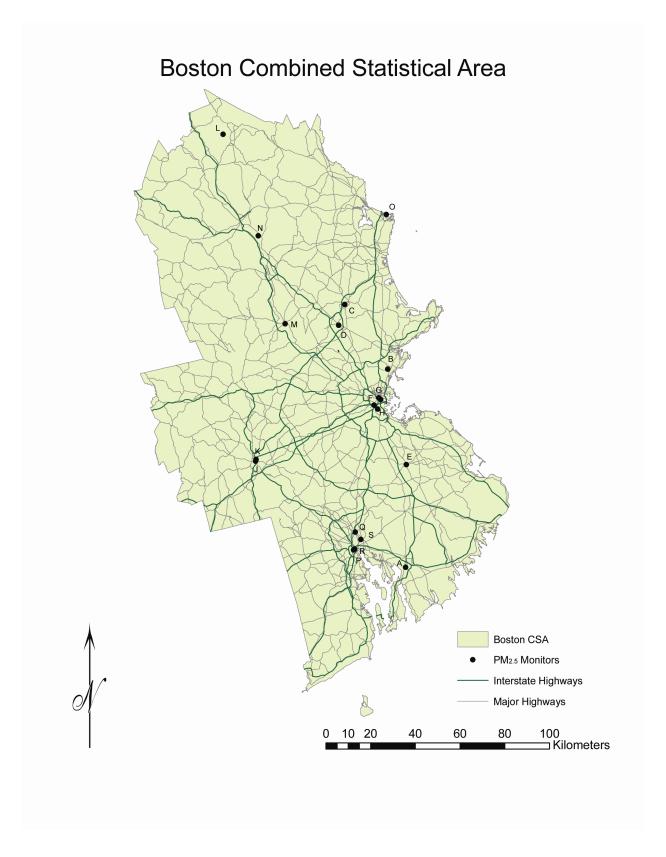


Figure A-43. PM_{2.5} monitor distribution and major highways, Boston, MA.

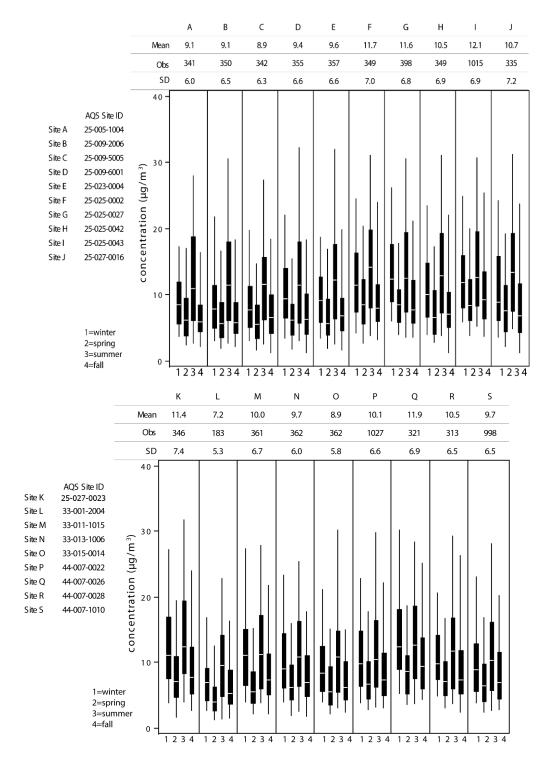


Figure A-44. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for Boston, MA.

Table A-22. Inter-sampler correlation statistics for each pair of $PM_{2.5}$ monitors reporting to AQS for Boston, MA.

	Α	В	С	D	E	F	G	Н	I	J
Α	1.00	0.80	0.77	0.71	0.84	0.79	0.78	0.79	0.79	0.77
	(0.0, 0.00)	(6.6, 0.21)		(6.9, 0.23)	(4.8, 0.19)	(8.1, 0.23)	(7.7, 0.24)	(6.8, 0.22)	(7.9, 0.25)	(7.5, 0.24)
	341	326	318	323	329	318	319	325	338	310
В		1.00	0.92	0.87	0.87	0.90	0.90	0.90	0.90	0.85
		(0.0, 0.00)		4.1, 0.18)	(4.7, 0.19)	(6.3, 0.21)	(6.2, 0.23)	(4.9, 0.19)	(7.1, 0.26)	(5.5, 0.21)
		350	328	331	339	326	323	333	343	317
С			1.00	0.90	0.85	0.90	0.89	0.90	0.88	0.86
				3.5, 0.17)	(5.3, 0.21)	(6.3, 0.23)	(6.3, 0.24)	(5.0, 0.20)	(6.8, 0.26)	(6.2, 0.21)
			342	321	331	316	318	326	336	311
D	LEGE	ND		1.00	0.80	0.88	0.88	0.86	0.86	0.87
	Pearso	on R —		0.0, 0.00)	(5.6, 0.20)	(5.8, 0.21)	(5.8, 0.22)	(4.6, 0.19)	(7.0, 0.26)	(5.8, 0.19)
	(P90, C			355	336	324	329	332	345	313
E	(i cc, c				1.00	0.90	0.90	0.89	0.87	0.87
					(0.0, 0.00)	(5.9, 0.19)	(5.8, 0.21)	(5.0, 0.19)	(6.9, 0.24)	(5.4, 0.20)
					357	330	333	340	350	322
F						1.00	0.94	0.94	0.92	0.92
						(0.0, 0.00)	(3.8, 0.14)	(3.5, 0.15)	(4.5, 0.17)	(5.4, 0.18)
_						349	324	324	339	310
G							1.00	0.94	0.94	0.89
							(0.0, 0.00)	(4.0, 0.16)	(4.3, 0.15)	(5.7, 0.20)
							398	325	338	308
Н								1.00	0.93	0.89
								(0.0, 0.00)	(4.7, 0.19)	(5.0, 0.17)
								349	342	318
1									1.00	0.86
									(0.0, 0.00)	(6.9, 0.23)
									1015	330
J										1.00
										(0.0, 0.00)
										335
Site	K		М		N	0	P	Q	R	S
						0.73	•		0.85	
A	(8.1, 0.23)	0.61 (8.3, 0.29)	0.71 (8.0, 0.23).68 J. 0.23)	(7.0, 0.22)	(5.3, 0.18)	(7.2, 0.23)	(5.6, 0.20)	0.86 (5.2, 0.18)
	320	173	324		334	331	326	292	285	306
В	0.86	0.80	0.87		0.83	0.88	0.86	0.80	0.85	0.85
	(6.6, 0.21)	(6.2, 0.23)	(5.3, 0.19			(4.7, 0.18)	(5.6, 0.19)	(7.9, 0.26)	(5.7, 0.21)	(6.0, 0.19)
	329	175	331		341	336	335	300	288	314
С	0.86	0.89	0.93).90	0.93	0.83	0.79	0.81	0.82
	(6.9, 0.21)	(4.8, 0.23)	(4.4, 0.17		, 0.19)	(3.8, 0.18)	(5.9, 0.21)	(7.8, 0.26)	(6.2, 0.23)	(6.0, 0.21)
	321	173	323		335	328	329	290	281	309
D	0.88 (6.4, 0.19)	(5.7, 0.25)	0.91 (3.5, 0.16).85 ', 0.19)	0.86 (4.2, 0.18)	(6.2, 0.20)	(7.8, 0.25)	0.79 (6.2, 0.21)	(5.8, 0.20)
	325	174	329		339	334	342	300	287	321
E	0.87	0.72	0.83		0.79	0.84	0.91	0.86	0.88	0.91
	(6.3, 0.20)	(8.3, 0.27)	(5.8, 0.17			(4.8, 0.18)	(4.5, 0.17)	(6.3, 0.22)	(4.9, 0.18)	(3.9, 0.17)
	333	179	338		347	343	343	306	295	324
F	0.91	0.78	0.90	().85	0.85	0.89	0.86	0.88	0.89
	(4.7, 0.17)	(9.6, 0.33)	(5.3, 0.18			(7.5, 0.22)	(5.2, 0.16)	(6.0, 0.16)	(4.9, 0.16)	(5.5, 0.17)
	323	168	323		334	330	336	295	281	316
G	0.90		0.90).85	0.87	0.88	0.86	0.87	0.88
		0.77				/7 A A AAA)			/F 0 0 17\	
	(5.0, 0.19)	(9.0, 0.33)	(5.3, 0.19		, 0.20)	(7.0, 0.22)	(5.5, 0.17)	(5.3, 0.17)	(5.2, 0.17)	(5.7, 0.19)
н	(5.0, 0.19) 320	(9.0, 0.33) 172	(5.3, 0.19 326	, ;	335	329	(5.5, 0.17) 383	(5.3, 0.17) 296	282	(5.7, 0.19) 356
Н	(5.0, 0.19) 320 0.90	(9.0, 0.33) 172 0.75	(5.3, 0.19 326 0.88	(335 0.83	329 0.84	(5.5, 0.17) 383 0.89	(5.3, 0.17) 296 0.86	282 0.87	(5.7, 0.19) 356 0.88
Н	(5.0, 0.19) 320 0.90 (4.4, 0.17)	(9.0, 0.33) 172 0.75 (9.4, 0.30)	(5.3, 0.19 326 0.88 (4.9, 0.18	(5.6	335 0.83 i, 0.21)	329 0.84 (6.8, 0.21)	(5.5, 0.17) 383 0.89 (4.5, 0.16)	(5.3, 0.17) 296 0.86 (6.0, 0.19)	282 0.87 (4.5, 0.16)	(5.7, 0.19) 356 0.88 (5.1, 0.17)
Н	(5.0, 0.19) 320 0.90	(9.0, 0.33) 172 0.75	(5.3, 0.19 326 0.88	(5.6) (5.6	335 0.83	329 0.84	(5.5, 0.17) 383 0.89	(5.3, 0.17) 296 0.86	282 0.87	(5.7, 0.19) 356 0.88
Н	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175	(5.3, 0.19 326 0.88 (4.9, 0.18 332	(5.6) (5.6	335 0.83 (, 0.21) 341	329 0.84 (6.8, 0.21) 336	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299	282 0.87 (4.5, 0.16) 289	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314
H	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 0.75 (10.0, 0.36)	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352	(5.6 (5.6 (7.2 (7.2	335 0.83 i, 0.21) 341 0.82 i, 0.23) 356	329 0.84 (6.8, 0.21) 336 0.83 (8.2, 0.25) 357	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936
H I J	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 0.75 (10.0, 0.36) 181 0.73	(5.3, 0.19 326 0.888 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87	(5.6) (5.6) (7.2	335 0.83 1, 0.21) 341 0.82 1, 0.23) 356 0.84	329 0.84 (6.8, 0.21) 336 0.83 (8.2, 0.25) 357 0.80	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88
I	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14)	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 0.75 (10.0, 0.36) 181 0.73 (9.2, 0.28)	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18	(0) (5.6 (0) (7.2 (1) (7.2 (1) (5.9	335 0.83 1, 0.21) 341 1.82 1, 0.23) 356 1.84 1, 0.20)	329 0.84 (6.8, 0.21) 336 0.83 (8.2, 0.25) 357 0.80 (7.5, 0.22)	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17)	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20)	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17)	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18)
I	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14) 316	(9.0, 0.33) 172 0.75 (94, 0.30) 175 0.75 (10.0, 0.36) 181 0.73 (9.2, 0.28)	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18) (5.6) (7.2) (7.2) (5.9	335 0.83 1, 0.21) 341 0.82 1, 0.23) 356 0.84 1, 0.20) 326	329 0.84 (6.8, 0.21) 336 0.83 (8.2, 0.25) 357 0.80 (7.5, 0.22) 323	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17) 321	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20) 283	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17) 272	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18) 302
I	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14) 316 1.00	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 0.75 (10.0, 0.36) 181 0.73 (9.2, 0.28) 167	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18 314	() (5.6 () (7.2 () (5.9 () (5.9	335 .83 , 0.21) 341 .82 , 0.23) .556 .84 , 0.20) .326	329 0.84 (6.8, 0.21) 336 0.83 (8.2, 0.25) 357 0.80 (7.5, 0.22) 323 0.81	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17) 321 0.89	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20) 283 0.86	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17) 272 0.87	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18) 302
I	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14) 316 1.00 (0.0, 0.00)	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 0.75 (10.0, 0.36) 181 0.73 (9.2, 0.28) 167 0.71 (10.3, 0.31)	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18 314 0.88 (6.0, 0.16	() (5.6 () (7.2 () (5.9 () (5.9 () (6.5)	335 .83 .0.21) 341 .82 .0.23) 356 .84 .0.20) 326 .85 .85 .85	329 0.84 (6.8, 0.21) 336 0.83 (8.2, 0.25) 357 0.80 (7.5, 0.22) 323 0.81 (8.2, 0.22)	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17) 321 0.89 (5.2, 0.16)	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20) 283 0.86 (5.8, 0.18)	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17) 272 0.87 (5.5, 0.16)	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18) 302 0.88 (5.5, 0.18)
H J K	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14) 316 1.00	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 0.75 (100, 0.36) 181 0.73 (9.2, 0.28) 167 0.71 (10.3, 0.31) 170	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18 314 0.88 (6.0, 0.16	(5.6) (5.6) (5.6) (5.6) (5.6) (6.5) (6.5)	3335 .83 , 0.21) 341 .82 , 0.23) 356 3,84 , 0.20) 326 .85 , 0.19) 337	329 0.84 0.8 (0.21) 336 0.83 357 0.80 (7.5, 0.22) 323 0.81 (8.2, 0.22) 332	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17) 321 0.89 (5.2, 0.16) 331	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20) 283 0.86 (5.8, 0.18) 296	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17) 272 0.87 (5.5, 0.16) 286	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18) 302 0.88 (5.5, 0.18) 313
I	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14) 316 1.00 (0.0, 0.00)	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 0.75 (10.0, 0.36) 181 0.73 (9.2, 0.28) 167 0.71 (10.3, 0.31) 170	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18 314 0.88 (6.0, 0.16 326	(5.6) (5.6) (7.2) (5.6) (6.5) (6.5) (6.5)	335	329 0.84 0.80 0.83 0.83 (8.2, 0.25) 357 0.80 (7.5, 0.22) 323 0.81 (8.2, 0.22) 332 0.90	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17) 321 0.89 (5.2, 0.16) 331 0.68	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20) 283 0.86 (5.8, 0.18) 296	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17) 272 0.87 (5.5, 0.16) 286 0.72	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18) 302 0.88 (5.5, 0.18) 313 0.69
I	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14) 316 1.00 (0.0, 0.00)	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 0.75 (10.0, 0.36) 181 0.73 (9.2, 0.28) 167 0.71 (10.3, 0.31) 170 1.00 (0.0, 0.00)	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18 314 0.88 (6.0, 0.16 326 0.89 (6.7, 0.29	(i) (5.6) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	3335 .83 ,0.21) 341 .82 ,0.23) .856 .84 ,0.20) .826 .885 ,0.19) .337 ,0.91	329 0.84 (6.8, 0.21) 336 0.83 (8.2, 0.25) 357 0.80 (7.5, 0.22) 323 0.81 (8.2, 0.22) 332 0.90 (4.8, 0.21)	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17) 321 0.89 (5.2, 0.16) 331 0.68 (10.0, 0.29)	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20) 283 0.86 (5.8, 0.18) 296 0.63 (12.1, 0.35)	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17) 272 0.87 (5.5, 0.16) 286 0.72 (9.1, 0.30)	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18) 302 0.88 (5.5, 0.18) 313 0.69 (9.8, 0.29)
I	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14) 316 1.00 (0.0, 0.00)	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 0.75 (10.0, 0.36) 181 0.73 (9.2, 0.28) 167 0.71 (10.3, 0.31) 170	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18 314 0.88 (6.0, 0.16 326	(c) (5.9) (5.9) (5.9) (5.9)	335	329 0.84 0.80 0.83 0.83 (8.2, 0.25) 357 0.80 (7.5, 0.22) 323 0.81 (8.2, 0.22) 332 0.90	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17) 321 0.89 (5.2, 0.16) 331 0.68 (10.0, 0.29)	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20) 283 0.86 (5.8, 0.18) 296 0.63 (12.1, 0.35)	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17) 272 0.87 (5.5, 0.16) 286 0.72 (9.1, 0.30) 149	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18) 302 0.88 (5.5, 0.18) 313 0.69
J K	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14) 316 1.00 (0.0, 0.00)	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 0.75 (100, 0.36) 181 0.73 (9.2, 0.28) 167 0.71 (10.3, 0.31) 170 1.00 (0.0, 0.00)	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18 314 0.88 (6.0, 0.16 326 0.89 (6.7, 0.24	(c) (5.9) (5.9) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	3335 3.83 3.00 3.83 3.00 3.81 3.82 3.00 3.82 3.00 3.83 3.00 3.84 3.00 3.85 3.86 3.87 3.91 3.91 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.0	329 0.84 0.8 0.21) 336 0.83 357 0.80 357 0.80 323 0.81 (8.2, 0.22) 332 0.90 (4.8, 0.21) 177	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17) 321 0.89 (5.2, 0.16) 331 0.68 (10.0, 0.29)	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20) 283 0.86 (5.8, 0.18) 296 0.63 (12.1, 0.35)	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17) 272 0.87 (5.5, 0.16) 286 0.72 (9.1, 0.30)	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18) 302 0.88 (5.5, 0.18) 313 0.69 (9.8, 0.29)
J K	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14) 316 1.00 (0.0, 0.00)	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 0.75 (100, 0.36) 181 0.73 (9.2, 0.28) 167 0.71 (10.3, 0.31) 170 1.00 (0.0, 0.00) 183	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18 314 0.88 (6.0, 0.16 326 0.89 (6.7, 0.24 176	(i) (5.6) (ii) (5.9) (5.	3335 .83 .0 0.21) 341 .82 .0 0.23) 356 .84 .0 0.20) .226 .85 .0 0.19) .337 .0.91 .0.23)	329 0.84 (6.8, 0.21) 336 0.83 (8.2, 0.25) 357 0.80 (7.5, 0.22) 323 0.81 (8.2, 0.22) 332 0.90 (4.8, 0.21) 177 0.90	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17) 321 0.89 (5.2, 0.16) 331 0.68 (10.0, 0.29) 181 0.83	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20) 283 0.86 (5.8, 0.18) 296 0.63 (12.1, 0.35) 153	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17) 272 0.87 (5.5, 0.16) 286 0.72 (9.1, 0.30) 149 0.82	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18) 302 0.88 (5.5, 0.18) 313 0.69 (9.8, 0.29) 164 0.84
J K	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14) 316 1.00 (0.0, 0.00)	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 (10.0, 0.36) 181 0.73 (9.2, 0.28) 167 0.71 (10.3, 0.31) 170 1.00 (0.0, 0.00) 183 LEGEND Pearson R	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18 314 0.88 (6.0, 0.16 326 0.89 (6.7, 0.24 176 1.00 (0.0, 0.00 361	(c) (5.9) (5.9) (6.5) (c) (6.9) (3.8) (3.8)	3335 .83 .0 0.21) 341 .82 .0 2.3) 356 .84 .0 2.0) 226 .85 .0 .19) 337 .91 .0 2.3) .81 .0 .20 .85 .0 .19) .84 .0 .19) .85 .87 .88 .89 .89 .89 .89 .89 .89 .89	329 0.84 (6.8, 0.21) 336 0.83 (8.2, 0.25) 357 0.80 (7.5, 0.22) 323 0.81 (8.2, 0.22) 332 0.90 (4.8, 0.21) 177 0.90 (4.6, 0.16) 336 0.90	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17) 321 0.89 (5.2, 0.16) 331 0.68 (10.0, 0.29) 181 0.83 (5.5, 0.16) 345 0.77	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20) 283 0.86 (5.8, 0.18) 296 0.63 (12.1, 0.35) 153 0.81 (7.4, 0.20) 300 0.75	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17) 272 0.87 (5.5, 0.16) 286 0.72 (9.1, 0.30) 149 0.82 (5.8, 0.17) 288 0.78	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18) 302 0.88 (5.5, 0.18) 313 0.69 (9.8, 0.29) 164 0.84 (5.1, 0.16) 326 0.78
J K	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14) 316 1.00 (0.0, 0.00)	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 (10.0, 0.36) 181 0.73 (92, 0.28) 167 0.71 (10.3, 0.31) 170 1.00 (0.0, 0.00) 183 LEGEND Pearson R (P90, COD)	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18 314 0.88 (6.0, 0.16 326 0.89 (6.7, 0.24 176 1.00 (0.0, 0.00 361	(c) (5.9) (5.9) (6.5) (6.5) (6.5) (3.8) (6.6) (6.5) (6.6) (6	335 5.83 7.021) 341 382 7.023) 356 8.84 7.023) 356 8.84 8.84 7.020) 326 8.85 7.0.19) 337 7.91 7.023) 181 7.023) 181 7.023) 181 7.023 7.033	329 0.84 (6.8, 0.21) 336 0.83 (8.2, 0.25) 357 0.80 (7.5, 0.22) 323 0.81 (8.2, 0.22) 332 0.90 (4.8, 0.21) 177 0.90 (4.6, 0.16) 336 0.90 (4.4, 0.17)	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17) 321 0.89 (5.2, 0.16) 331 0.68 (10.0, 0.29) 181 0.83 (5.5, 0.16) 345 0.77 (6.7, 0.19)	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20) 283 0.86 (5.8, 0.18) 296 0.63 (12.1, 0.35) 153 0.81 (7.4, 0.20) 300 0.75 (8.1, 0.22)	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17) 272 0.87 (5.5, 0.16) 286 0.72 (9.1, 0.30) 149 0.82 (5.8, 0.17) 288 0.72 (9.1, 0.30)	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18) 302 0.88 (5.5, 0.18) 313 0.69 (9.8, 0.29) 164 0.84 (5.1, 0.16) 326 0.78 (6.2, 0.19)
J K	(5.0, 0.19) 320 0.90 (4.4, 0.17) 327 0.87 (6.1, 0.20) 341 0.95 (3.0, 0.14) 316 1.00 (0.0, 0.00)	(9.0, 0.33) 172 0.75 (9.4, 0.30) 175 (10.0, 0.36) 181 0.73 (9.2, 0.28) 167 0.71 (10.3, 0.31) 170 1.00 (0.0, 0.00) 183 LEGEND Pearson R	(5.3, 0.19 326 0.88 (4.9, 0.18 332 0.86 (6.7, 0.22 352 0.87 (5.2, 0.18 314 0.88 (6.0, 0.16 326 0.89 (6.7, 0.24 176 1.00 (0.0, 0.00 361	(c) (5.9) (5.9) (6.5) (6.5) (6.5) (3.8) (6.6) (6.5) (6.6) (6	3335 .83 .0 0.21) 341 .82 .0 2.3) 356 .84 .0 2.0) 226 .85 .0 .19) 337 .91 .0 2.3) .81 .0 .20 .85 .0 .19) .84 .0 .19) .85 .87 .88 .89 .89 .89 .89 .89 .89 .89	329 0.84 (6.8, 0.21) 336 0.83 (8.2, 0.25) 357 0.80 (7.5, 0.22) 323 0.81 (8.2, 0.22) 332 0.90 (4.8, 0.21) 177 0.90 (4.6, 0.16) 336 0.90	(5.5, 0.17) 383 0.89 (4.5, 0.16) 335 0.88 (6.1, 0.20) 957 0.90 (5.0, 0.17) 321 0.89 (5.2, 0.16) 331 0.68 (10.0, 0.29) 181 0.83 (5.5, 0.16) 345 0.77	(5.3, 0.17) 296 0.86 (6.0, 0.19) 299 0.84 (6.0, 0.16) 314 0.86 (5.9, 0.20) 283 0.86 (5.8, 0.18) 296 0.63 (12.1, 0.35) 153 0.81 (7.4, 0.20) 300 0.75	282 0.87 (4.5, 0.16) 289 0.85 (6.0, 0.18) 306 0.87 (5.3, 0.17) 272 0.87 (5.5, 0.16) 286 0.72 (9.1, 0.30) 149 0.82 (5.8, 0.17) 288 0.78	(5.7, 0.19) 356 0.88 (5.1, 0.17) 314 0.87 (6.3, 0.21) 936 0.88 (5.2, 0.18) 302 0.88 (5.5, 0.18) 313 0.69 (9.8, 0.29) 164 0.84 (5.1, 0.16) 326 0.78

Site	K	L	М	N	0	Р	Q	R	S
						1027	307	299	943
Q							1.00	0.92	0.94
							(0.0, 0.00)	(3.1, 0.13)	(4.0, 0.16)
							321	268	290
R								1.00	0.94
								(0.0, 0.00)	(2.7, 0.12)
								313	280
S									1.00
									(0.0, 0.00)
-			•	•	•	•	•		998

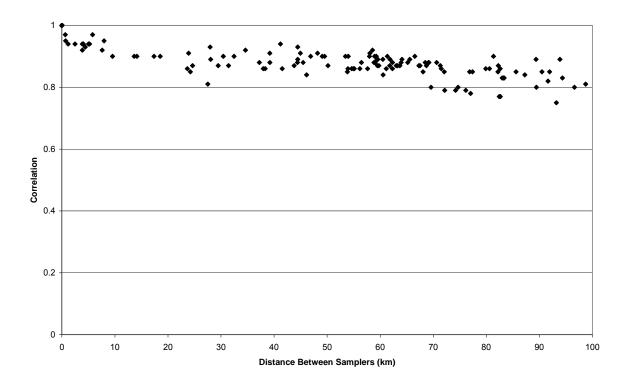


Figure A-45. PM_{2.5} inter-sampler correlations as a function of distance between monitors for Boston, MA.

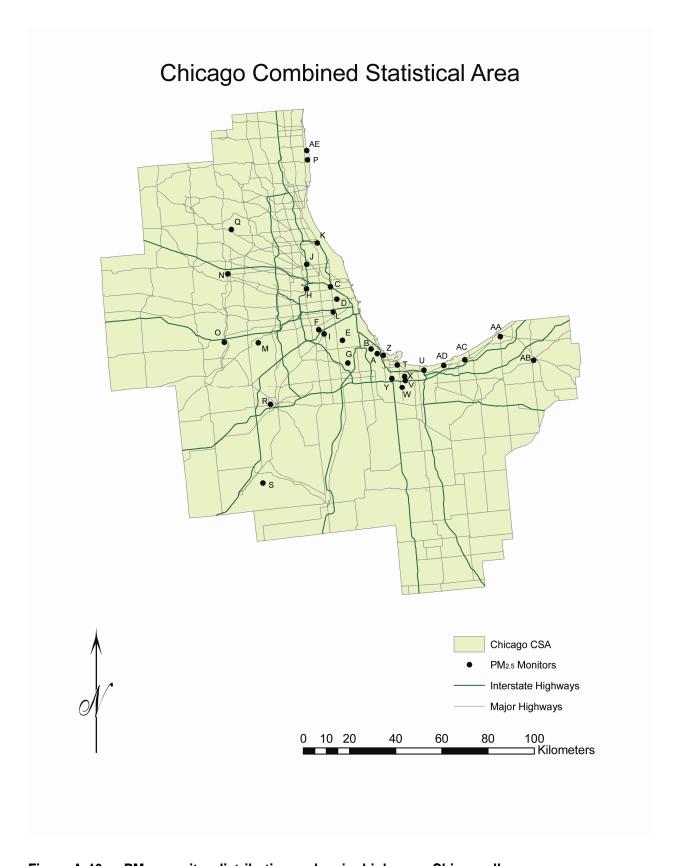
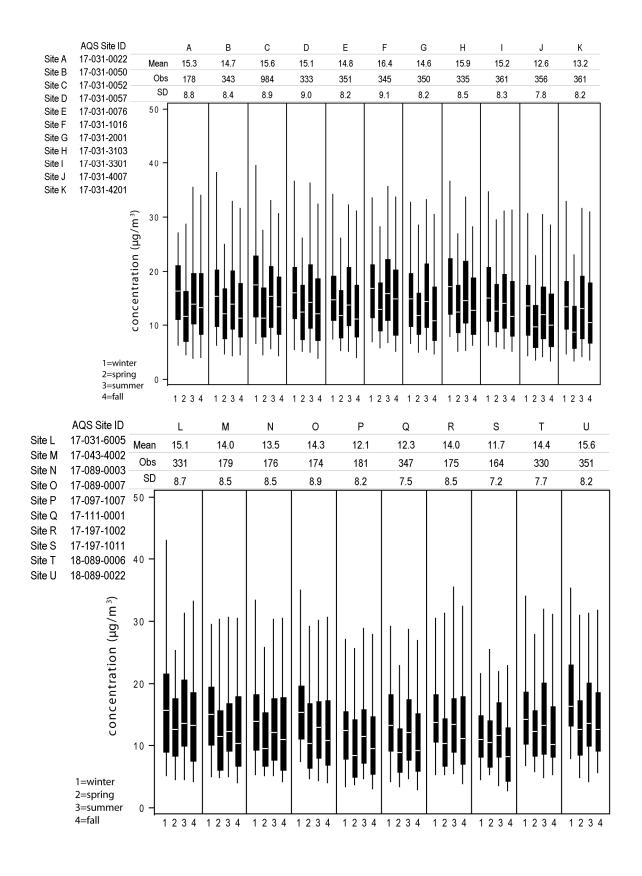



Figure A-46. PM_{2.5} monitor distribution and major highways, Chicago, IL.

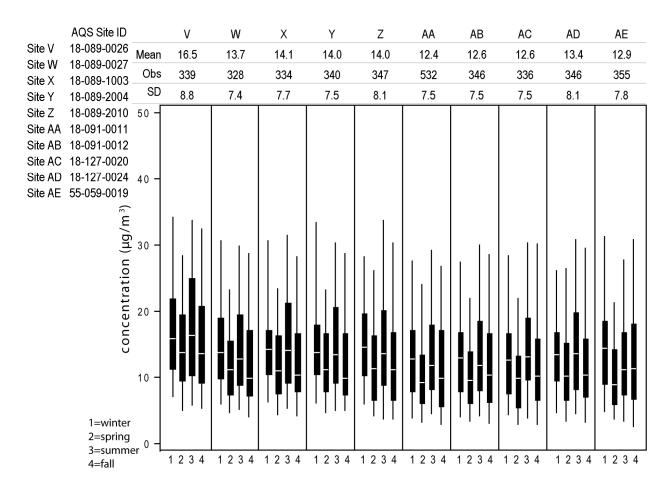


Figure A-47. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for Chicago, IL.

Table A-23. Inter-sampler correlation statistics for each pair of PM_{2.5} monitors reporting to AQS for Chicago, IL.

	Α	В	С	D	Е	F	G	Н		J	K	L	М	N	0
Α	1.00	0.98	0.93	0.94	0.97	0.95	0.97	0.94	0.96	0.91	0.95	0.95	0.91	0.92	0.89
	(0.0, 0.00)	(3.1, 0.08)	(5.5, 0.12)	(4.7, 0.11)	(3.9, 0.09)	(5.7, 0.13)	(3.9, 0.09)	(4.6, 0.12)	(4.2, 0.11)	(6.8, 0.16)	(5.8, 0.14)	(4.6, 0.12)	(5.7, 0.15)	(6.6, 0.15)	(6.0, 0.16)
	178	156	176	149	154	154	151	156	164	163	166	141	165	152	156
В		1.00	0.94	0.95	0.97	0.95	0.97	0.95	0.96	0.93	0.93	0.95	0.92	0.93	0.90
		(0.0, 0.00)	(4.6, 0.11)	(3.6, 0.10)	(3.3, 0.08)	(5.2, 0.13)	(2.7, 0.07)	(4.3, 0.11)	(3.4, 0.09)	(6.3, 0.16)	(6.5, 0.15)	(4.0, 0.10)	(5.1, 0.15)	(5.8, 0.14)	(5.2, 0.15)
		343	320	276	300	296	296	289	312	315	306	288	157	152	150
С			1.00	0.96	0.92	0.91	0.90	0.94	0.92	0.90	0.91	0.92	0.88	0.92	0.86
			(0.0, 0.00)	(4.4, 0.11)	(5.7, 0.11)	(4.8, 0.11)	(6.0, 0.12)	(4.3, 0.11)	(5.5, 0.11)	(8.8, 0.18)	(7.2, 0.17)	(4.5, 0.12)	(7.5, 0.16)	(7.9, 0.16)	(7.5, 0.17)
			984	313	325	318	324	312	336	332	337	311	178	175	173
D				1.00	0.94	0.93	0.94	0.95	0.94	0.93	0.93	0.92	0.89	0.96	0.88
				(0.0, 0.00)	(3.8, 0.10)	(4.2, 0.12)	(3.8, 0.10)	(4.1, 0.13)	(3.3, 0.10)	(6.2, 0.15)	(5.2, 0.14)	(3.6, 0.10)	(5.3, 0.14)	(5.1, 0.13)	(4.5, 0.15)
				333	286	280	283	270	299	296	289	273	151	146	145
Е					1.00	0.95	0.98	0.95	0.98	0.92	0.92	0.95	0.95	0.94	0.92
					(0.0, 0.00)	(5.0, 0.11)	(2.4, 0.06)	(4.5, 0.11)	(2.6, 0.07)	(5.8, 0.16)	(5.7, 0.15)	(4.4, 0.10)	(4.8, 0.11)	(5.0, 0.11)	(4.6, 0.13)
					351	306	304	292	320	321	313	286	159	154	152
F						1.00	0.95	0.95	0.96	0.89	0.91	0.94	0.94	0.94	0.94
						(0.0, 0.00)	(5.1, 0.12)	(4.5, 0.12)	(4.5, 0.10)	(8.5, 0.20)	(7.9, 0.19)	(5.7, 0.12)	(7.0, 0.15)	(7.9, 0.17)	(7.9, 0.16)
						345	301	294	322	323	311	285	161	157	154
G							1.00	0.95	0.97	0.90	0.91	0.94	0.95	0.95	0.95
							(0.0, 0.00)	(4.9, 0.12)	(3.0, 0.07)	(6.3, 0.15)	(5.8, 0.14)	(4.7, 0.10)	(4.2, 0.11)	(5.0, 0.12)	(4.4, 0.12)
							350	284	315	318	309	287	154	149	148
Н								1.00	0.95	0.91	0.92	0.94	0.93	0.94	0.91
								(0.0, 0.00)	(4.3, 0.11)	(7.4, 0.19)	(6.4, 0.18)	(4.4, 0.13)	(6.4, 0.16)	(7.1, 0.16)	(5.9, 0.17)
								335	311	309	302	275	164	157	156
									1.00	0.90	0.92	0.96	0.96	0.95	0.93
									(0.0, 0.00)	(6.7, 0.17)	(5.9, 0.16)	(3.9, 0.10)	(4.6, 0.12)	(5.3, 0.13)	(4.6, 0.14)
									361	341	328	304	173	169	166
J										1.00	0.92	0.90	0.91	0.94	0.89
										(0.0, 0.00)	(4.7, 0.13)	(7.0, 0.17)	(5.7, 0.14)	(4.4, 0.12)	(5.4, 0.16)
					LEGI	END				356	330	304	171	165	164
K					LEG	END					1.00	0.93	0.94	0.96	0.92
				_	(Table 18	((0.0, 0.00)	(5.9, 0.15)	(5.2, 0.13)	(4.0, 0.10)	(4.9, 0.15)
					(P90, N	COD)					361	292	173	166	167
_ <u>L</u>					N	l						1.00	0.94	0.95	0.92
												(0.0, 0.00)	(6.4, 0.13)	(5.9, 0.13)	(6.0, 0.14)
												331	147	142	142
М													1.00	0.97	0.95
													(0.0, 0.00)	(3.9, 0.09)	(2.7, 0.11)
- NI													179	160	165
N														1.00	0.95
														(0.0, 0.00)	(3.8, 0.11)
_														176	152 1.00
0															(0.0, 0.00)
															174
															1/4

No. 18									14/					A.D.	40	AD	
Column C	Δ	P 0.90	Q 0.80	R 0.01	S 0.83	0.96	U 0.83	V 0.03	N 05	N 96	Y 0.95	Z 0.98	AA 0.94	AB	AC 0.95	AD 0.94	AE 0.88
10 10 10 10 10 10 10 10																	
Record Part	_																
19	В																
Total Color Colo		159	290	153	143	292	310	300	289	292	300	309	288	308	299	305	311
The color	С																
The color of the					(' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '				. , ,								
100 79	D	0.90	0.94	0.89	0.80	0.92	0.74	0.91	0.94	0.93	0.93	0.95	0.92	0.90	0.90	0.85	0.87
To Str. St																	
Column C	E																
To		(8.3, 0.18)	(5.6, 0.16)	(4.9, 0.12)	(7.1, 0.20)	(4.1, 0.10)	(7.5, 0.17)	(5.6, 0.12)	(4.3, 0.10)	(4.4, 0.11)	(3.9, 0.09)	(3.9, 0.11)	(5.8, 0.17)	(6.9, 0.17)	(6.8, 0.18)	(6.3, 0.16)	(7.3, 0.17)
Column C																	
Color																	
C C C C C C C C C C			295	159			320	308			311	316	292				322
160 282 154 149 293 315 203 203 204 203 315 203 204 203 315 203 204 203 204 203 204	G																
R 2022 P(1, 120) (8.6, 157) (8.6, 208) (7.7, 120) (8.6, 157) (8.6, 157) (8.6, 158) (8.6, 158) (8.7, 154) (8.6, 158) (7.7, 120) (8.6, 158) (7.7, 120) (8.6, 158) (7.7, 120) (8.6, 158) (8.6,																	
165 284 188 145 287 297 297 298 298 238 298 303 281 301 280 301 307 308 308 301 307 308	Н																
1 591 692 086 087 088 088 088 088 088 088 082 081 082 081 088																	
175 314 188 154 318 338 327 318 322 238 333 308 334 323 334 339 334 337 335	\neg																
1 1 1 1 1 1 1 1 1 1																	
Color																	
K 984 033 038 088 091 078 088 091 078 088 091 078 089 091 078 089 081 078 081 082 083 088 088 089 075 088 082 081 081 081 081 081 081 081 081 081 081																	
Color Colo	1/			167													
178	K																
C C C C C C C C C C																	
151 285 144 132 285 301 290 282 286 293 299 277 299 286 294 301 80 628 638	L																
M 092 098 098 098 098 091 074 090 094 092 093 092 091 091 088 088 088 088 088 093																	
175	М	0.92				0.91	0.74		0.94								
N 032 088 034 089 032 081 092 031 032 031 033 033 031 031 038 039 030						(,-,											
Color Colo	N																
O .088		(5.4, 0.13)	(2.8, 0.08)	(4.1, 0.12)	(5.8, 0.17)	(6.2, 0.13)	(7.9, 0.20)	(8.3, 0.17)	(4.9, 0.12)	(5.6, 0.14)	(4.6, 0.13)	(4.9, 0.15)	(5.4, 0.15)	(4.9, 0.14)	(6.5, 0.17)	(5.4, 0.16)	(6.0, 0.14)
Column C	_																
166 152 157 145 155 160 161 154 158 161 152 151 161 159 162 166 169 170																	
Col., 0.00 G.Z. 0.13 Cri. 1.0.17 Cr. 2.020 G.S. 0.220 (12.0.28) (10.9.024) G.T. 0.18 Cri. 4.0.18 G.S. 0.18 Cri. 0.19 G.T. 0.15 G.S. 0.17 G.S. 0.17 G.T. 0.17 G.T. 0.13 Cri. 1.00		166	152	157	145	155	166	161	154	158	161	162	151	161	159	162	166
181 199 166 152 164 174 168 160 166 169 171 178 170 167 170 173	P																
Column C																	
S	Q		1.00												0.86		
R																	
175	R		341														
S																	
(00,000 (8.5,022) (113,028) (116,028) (67,020 (8.0,021) (72,019) (73,022) (61,021) (74,020) (78,023) (71,022) (90,022) (164	S			175													
T																	
(0,000) (5,9,015) (6,2,012) (34,010) (32,009) (29,008) (32,012) (52,017) (55,016) (54,018) (49,015) (66,018)	_				164												
330 318 307 297 302 305 315 284 312 311 313 319 319 310																	
(0.0.000) (7.6.017) (6.6.017) (6.0.015) (6.3.016) (6.4.017) (8.1.022) (8.4.022) (7.2.021) (7.0.019) (100.023) (10.0.001) (10.0.0										302			284	312		313	
V 351 327 319 322 326 336 305 334 324 333 338 338 300 310 300	U																
Name																	
Name	V							1.00	0.96	0.97	0.95	0.95	0.93	0.91	0.90	0.88	0.83
N																	
(0.0, 0.00) (2.8, 0.06) (2.5, 0.07) (3.6, 0.11) (4.5, 0.15) (4.8, 0.15) (5.4, 0.16) (3.9, 0.13) (6.9, 0.17)	W							338				0.96	0.95				
X 1.00 0.98 0.97 0.95 0.93 0.94 0.91 0.85 (0.0, 0.00) (2.3, 0.07) (3.3, 0.10) (4.6, 0.14) (4.9, 0.14) (4.9, 0.15) (5.0, 0.17) (6.8, 0.17) (7.0, 0.17									(0.0, 0.00)	(2.8, 0.06)	(2.5, 0.07)	(3.6, 0.11)	(4.5, 0.15)	(4.8, 0.15)	(5.4, 0.16)	(3.9, 0.13)	(6.9, 0.17)
(0,0,00) (2,3,0,07) (3,3,0,10) (4,6,0,14) (4,9,0,14) (4,9,0,15) (36,0,11) (6,8,0,17) (3,0,11) (1,0,0) (1,0	Y								328								
Y 334 311 318 286 319 305 316 321 Y													(4.6, 0.14)	(4.9, 0.14)			
Control Cont	.,										311	318	286	319	305	316	321
Second	<u>Y</u>																
LEGEND (0.0,000) (4.6,0.15) (5.3,0.15) (4.9,0.15) (4.1,0.14) (6.8,0.17) (4.9,0.16) (4.9,0.15) (4.1,0.14) (6.8,0.17) (4.9,0.16) (4.9,0.1													296	322			
AA R R	Z											1.00	0.95	0.93			
AA (P90, COD) N 1.00 0.98 0.97 0.89 0.88 0.97 0.89 0.88 0.97 0.89 0.88 0.97 0.89 0.88 0.97 0.89 0.86 0.97 0.89 0.86 0.97 0.89 0.86 0.97 0.89 0.86				LEG	END												
P90, COD N (0.0,00) (2.4,0.07) (2.9,0.08) (3.2,0.11) (5.9,0.17) (5.9,0.17) (7.9,0.17)	AA			-	R								1.00	0.98	0.97	0.89	0.88
AB 1.00 0.96 0.89 0.86 (0.0,000) (3.1,0.09) (3.7,0.11) (6.5,0.17)			-	(P90,	COD)				-		-	-					
Control of the cont	AB			-	N								532				
AC 1.00 0.91 0.85 (0.0,000) (2.8,0.10) (6.7,0.17) 336 320 322 (7.0,000) (7.2,0.18) (7.2,														(0.0, 0.00)	(3.1, 0.09)	(3.7, 0.11)	(6.5, 0.17)
(0,0,000 (2,8,0.10) (6,7,0.17) (7,0.	10	-						-	-	-		-	-	346			
AD 336 320 322 1.00 0.79 (0.0,0.00) (7.2,0.18)	AU																
(0.0, 0.00) (7.2, 0.18) 346 332																320	322
346 332	AD		·			·				·	· ·				· ·		
																	332
	ΑE													_			1.00

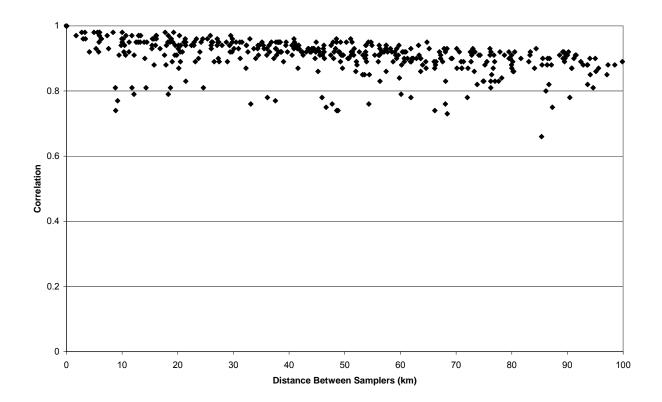


Figure A-48. PM_{2.5} inter-sampler correlations as a function of distance between monitors for Chicago, IL.

Figure A-49. PM_{2.5} monitor distribution and major highways, Denver, CO.

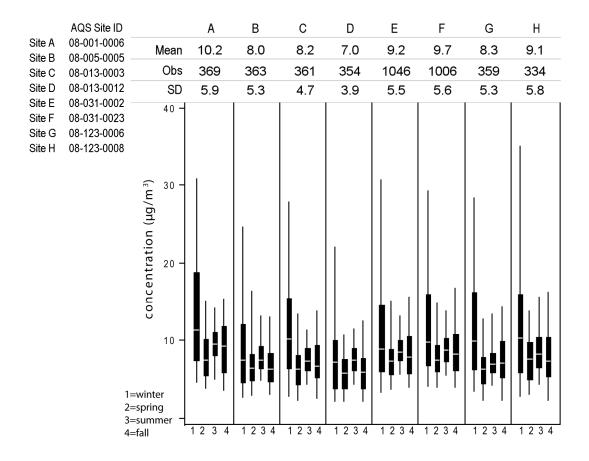


Figure A-50. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for Denver, CO.

Table A-24. Inter-sampler correlation statistics for each pair of PM_{2.5} monitors reporting to AQS for Denver, CO.

	Α	В	С	D	E	F	G	Н
Α	1.00	0.74	0.84	0.68	0.86	0.91	0.76	0.83
	(0.0, 0.00)	(6.0, 0.21)	(5.4, 0.17)	(7.9, 0.26)	(4.1, 0.14)	(3.0, 0.11)	(5.9, 0.19)	(4.6, 0.14)
	369	353	347	332	362	339	341	325
3		1.00	0.58	0.76	0.92	0.84	0.50	0.49
		(0.0, 0.00)	(5.7, 0.19)	(3.9, 0.17)	(3.2, 0.13)	(4.4, 0.17)	(7.8, 0.23)	(6.6, 0.21)
		363	344	328	356	336	337	323
)			1.00	0.74	0.71	0.75	0.83	0.88
			(0.0, 0.00)	(4.4, 0.19)	(4.5, 0.17)	(5.4, 0.18)	(3.5, 0.14)	(3.7, 0.13)
			361	326	354	336	333	320
)				1.00	0.82	0.77	0.54	0.57
				(0.0, 0.00)	(5.6, 0.21)	(6.0, 0.24)	(7.2, 0.24)	(6.4, 0.24)
				354	347	332	318	305
=					1.00	0.94	0.64	0.60
		LEGEND			(0.0, 0.00)	(2.3, 0.09)	(7.1, 0.21)	(5.6, 0.18)
		R			1046	969	353	330
:		(P90, COD)	_			1.00	0.68	0.69
		N	_			(0.0, 0.00)	(6.6, 0.21)	(5.9, 0.17)
						1006	333	317
3							1.00	0.88
							(0.0, 0.00)	(3.4, 0.13)
							359	313
Η								1.00
								(0.0, 0.00)
								334

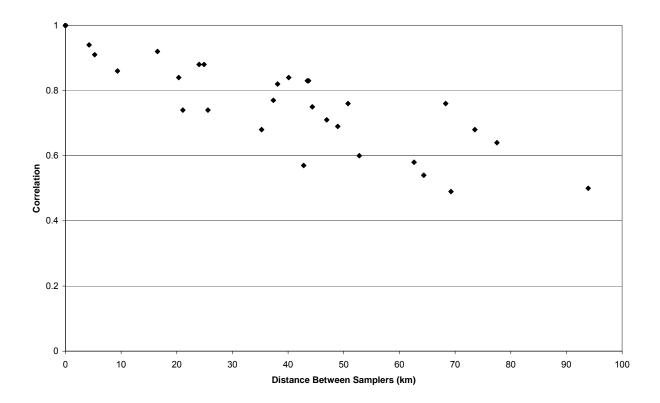


Figure A-51. $PM_{2.5}$ inter-sampler correlations as a function of distance between monitors for Denver, CO.

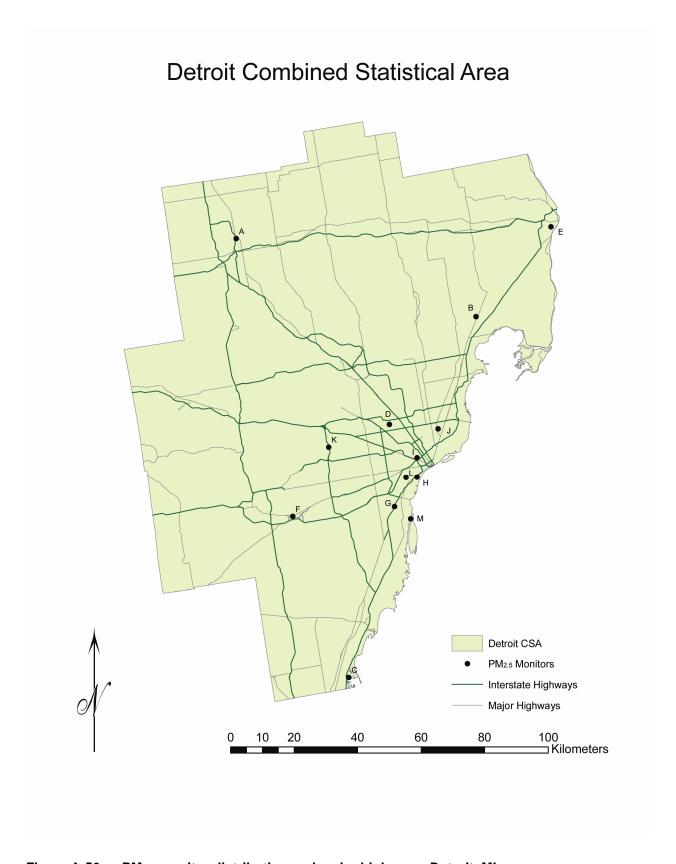


Figure A-52. PM_{2.5} monitor distribution and major highways, Detroit, MI.

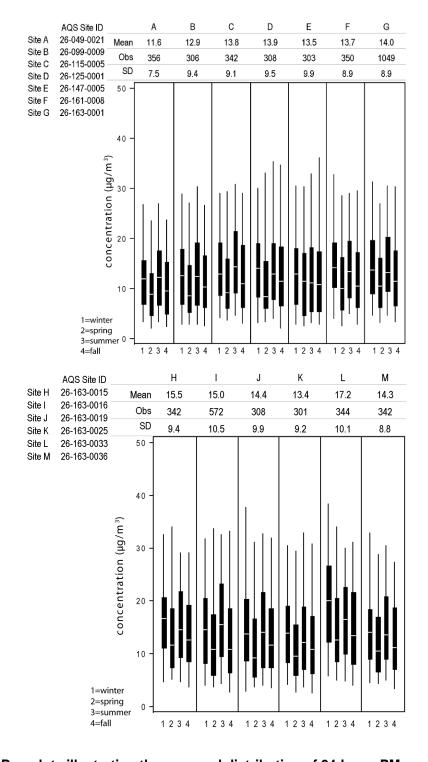


Figure A-53. Box plots illustrating the seasonal distribution of 24-h avg $PM_{2.5}$ concentrations for Detroit, MI.

Table A-25. Inter-sampler correlation statistics for each pair of PM_{2.5} monitors reporting to AQS for Detroit, MI.

	Α	В	С	D	E	F	G	Н	I	J	K	L	M
Α	1.00	0.91	0.86	0.91	0.89	0.90	0.89	0.88	0.89	0.91	0.92	0.87	0.88
	(0.0, 0.00)	(5.9, 0.17)	(7.8, 0.19)	(6.7, 0.17)	(7.6, 0.18)	(5.9, 0.18)	(8.1, 0.20)	(8.3, 0.22)	(8.0, 0.19)	(7.3, 0.17)	(5.5, 0.16)	(11.0, 0.26)	(7.8, 0.21)
	356	299	333	301	296	341	349	334	284	301	293	336	333
В		1.00	0.90	0.94	0.92	0.92	0.93	0.90	0.92	0.91	0.92	0.89	0.91
		(0.0, 0.00)	(6.8, 0.17)	(5.3, 0.14)	(5.9, 0.16)	(5.8, 0.17)	(6.2, 0.18)	(7.5, 0.21)	(5.8, 0.18)	(4.9, 0.16)	(5.4, 0.17)	(10.2, 0.24)	(6.1, 0.19)
		306	286	296	290	294	300	288	277	297	286	292	288
С			1.00	0.90	0.87	0.91	0.93	0.90	0.91	0.90	0.89	0.87	0.93
			(0.0, 0.00)	(7.0, 0.16)	(8.8, 0.20)	(5.5, 0.15)	(5.9, 0.14)	(7.2, 0.17)	(6.3, 0.16)	(6.2, 0.14)	(6.2, 0.16)	(10.4, 0.20)	(4.9, 0.13)
			342	289	284	326	335	320	273	286	279	321	319
D				1.00	0.93	0.94	0.96	0.92	0.94	0.94	0.94	0.91	0.92
				(0.0, 0.00)	(6.3, 0.15)	(4.5, 0.14)	(4.3, 0.13)	(5.8, 0.16)	(4.5, 0.12)	(3.8, 0.11)	(3.6, 0.13)	(8.2, 0.18)	(6.2, 0.15)
				308	292	296	303	291	281	297	291	290	290
Е					1.00	0.90	0.90	0.89	0.90	0.90	0.90	0.87	0.87
					(0.0, 0.00)	(7.5, 0.18)	(7.3, 0.20)	(8.2, 0.22)	(7.0, 0.19)	(6.4, 0.18)	(6.9, 0.18)	(10.7, 0.25)	(7.7, 0.21)
					303	291	297	286	276	292	284	288	288
F						1.00	0.95	0.90	0.92	0.92	0.95	0.89	0.93
						(0.0, 0.00)	(4.5, 0.13)	(6.2, 0.17)	(5.7, 0.15)	(5.2, 0.14)	(3.9, 0.12)	(9.8, 0.21)	(5.7, 0.15)
						350	343	326	280	297	288	329	326
G							1.00	0.94	0.95	0.92	0.93	0.90	0.95
							(0.0, 0.00)	(5.1, 0.14)	(4.9, 0.12)	(4.5, 0.14)	(5.6, 0.16)	(8.2, 0.18)	(4.7, 0.12)
							1049	336	549	302	295	337	335
Н								1.00	0.93	0.91	0.89	0.91	0.91
								(0.0, 0.00)	(4.8, 0.15)	(5.4, 0.15)	(6.9, 0.18)	(7.6, 0.16)	(6.1, 0.15)
								342	273	290	288	321	319
I			LEGEND						1.00	0.92	0.90	0.92	0.93
			R						(0.0, 0.00)	(4.4, 0.13)	(6.1, 0.14)	(7.9, 0.18)	(5.8, 0.14)
			(P90, COD)						572	279	271	274	274
J			N							1.00	0.91	0.90	0.91
_										(0.0, 0.00)	(5.3, 0.15)	(8.1, 0.17)	(5.6, 0.13)
										308	288	291	291
K											1.00	0.88	0.91
											(0.0, 0.00)	(9.5, 0.21)	(6.3, 0.16)
											301	281	283
L												1.00	0.91
												(0.0, 0.00)	(8.5, 0.17)
												344	322
М													1.00
													(0.0, 0.00)
													342

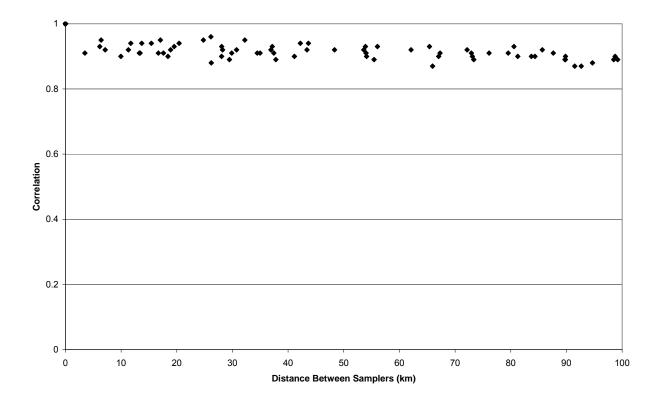


Figure A-54. PM_{2.5} inter-sampler correlations as a function of distance between monitors for Detroit, MI.

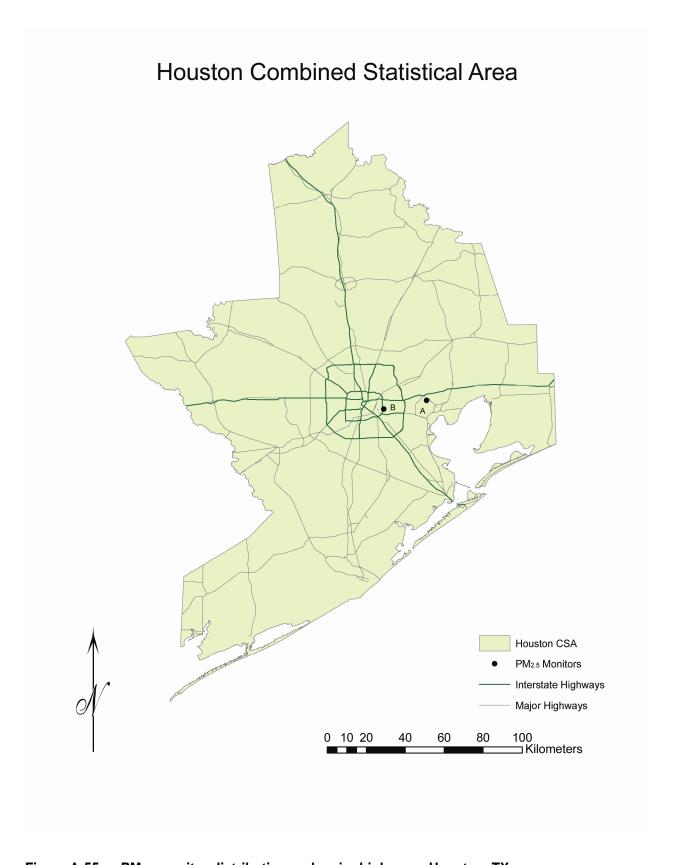


Figure A-55. PM_{2.5} monitor distribution and major highways, Houston, TX.

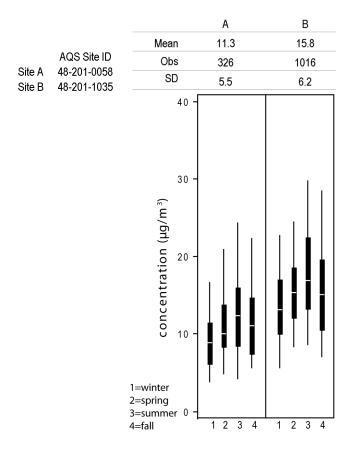


Figure A-56. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for Houston, TX.

Table A-26. Inter-sampler correlation statistics for each pair of $PM_{2.5}$ monitors reporting to AQS for Houston, TX.

	Α	В
A	1.00	0.66
	(0.0, 0.00)	(10.0, 0.24)
	326	310
В		1.00
		(0.0, 0.00)
		1016
LEGEND		
R		
(P90, COD)		
N		

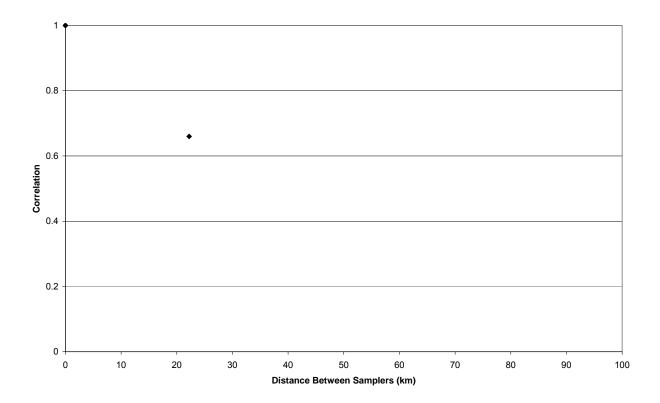


Figure A-57. PM_{2.5} inter-sampler correlations as a function of distance between monitors for Houston, TX.

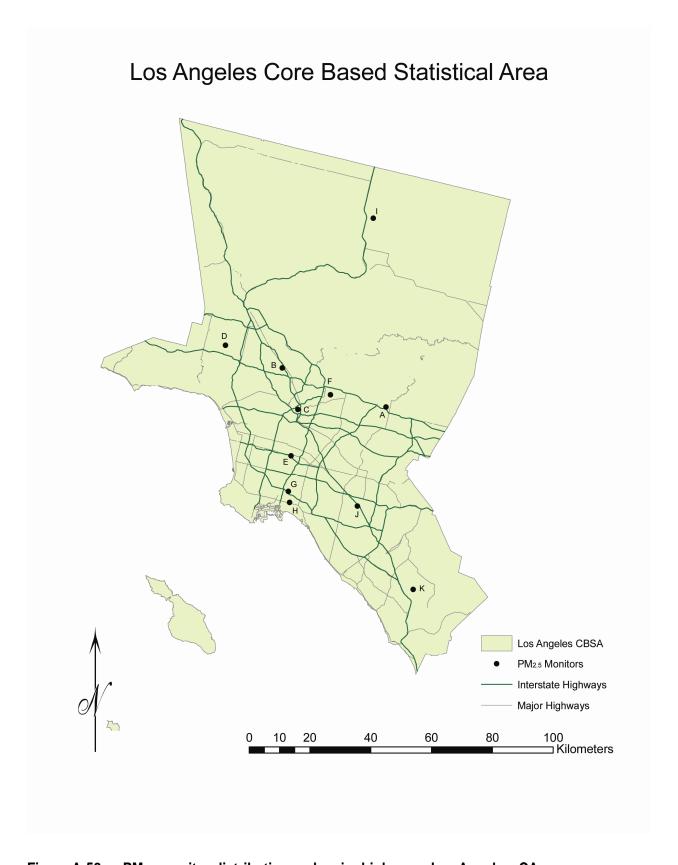


Figure A-58. PM_{2.5} monitor distribution and major highways, Los Angeles, CA.

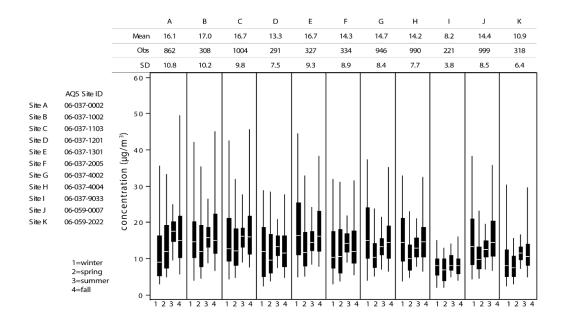


Figure A-59. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for Los Angeles, CA.

Table A-27. Inter-sampler correlation statistics for each pair of PM_{2.5} monitors reporting to AQS for Los Angeles, CA.

	Α	В	С	D	E	F	G	H		J	K
Ą	1.00	0.86	0.87	0.81	0.80	0.88	0.68	0.64	0.30	0.70	0.82
	(0.0, 0.00)	(9.0, 0.18)	(7.7, 0.16)	(9.0, 0.19)	(9.7, 0.21)	(5.8, 0.14)	(11.5, 0.22)	(12.4, 0.23)	(18.0, 0.36)	(10.5, 0.21)	(11.4, 0.23)
	862	252	803	238	262	269	761	793	179	804	259
3		1.00	0.92	0.87	0.83	0.88	0.77	0.73	0.31	0.74	0.71
		(0.0, 0.00)	(5.5, 0.11)	(9.1, 0.19)	(9.0, 0.15)	(7.6, 0.15)	(9.8, 0.17)	(11.6, 0.18)	(24.1, 0.38)	(11.9, 0.19)	(15.0, 0.27)
		308	293	250	278	279	268	282	177	292	277
,			1.00	0.80	0.89	0.92	0.84	0.79	0.29	0.82	0.78
			(0.0, 0.00)	(9.6, 0.20)	(5.8, 0.11)	(6.4, 0.13)	(9.0, 0.15)	(10.0, 0.17)	(18.6, 0.38)	(9.4, 0.16)	(13.2, 0.25)
			1004	274	315	319	880	913	213	920	305
)				1.00	0.69	0.77	0.63	0.60	0.41	0.64	0.60
				(0.0, 0.00)	(10.9, 0.23)	(7.4, 0.18)	(11.3, 0.22)	(11.1, 0.22)	(14.8, 0.31)	(9.6, 0.21)	(11.6, 0.23)
				291	263	263	256	268	164	274	261
					1.00	0.79	0.95	0.92	0.34	0.88	0.76
					(0.0, 0.00)	(9.1, 0.19)	(5.9, 0.11)	(7.6, 0.13)	(19.7, 0.39)	(8.2, 0.15)	(13.7, 0.27)
					327	301	289	301	192	307	291
						1.00	0.70	0.70	0.33	0.69	0.72
		LEGEND				(0.0, 0.00)	(10.5, 0.18)	(9.2, 0.19)	(14.8, 0.34)	(9.8, 0.19)	(9.9, 0.21)
		Pearson R				334	290	302	184	311	293
;		(P90, COD)					1.00	0.96	0.23	0.92	0.78
		, , ,					(0.0, 0.00)	(4.0, 0.09)	(17.0, 0.35)	(5.4, 0.12)	(11.0, 0.21)
		n					946	859	194	882	277
								1.00	0.26	0.91	0.78
								(0.0, 0.00)	(15.3, 0.34)	(5.9, 0.12)	(9.5, 0.21)
								990	208	914	294
									1.00	0.21	0.31
									(0.0, 0.00)	(18.3, 0.35)	(9.7, 0.28)
									221	205	180
										1.00	0.84
										(0.0, 0.00)	(9.8, 0.19)
										999	298
								•	•	•	1.00
											(0.0, 0.00)
Ξ	·			·		·		·	·	·	318

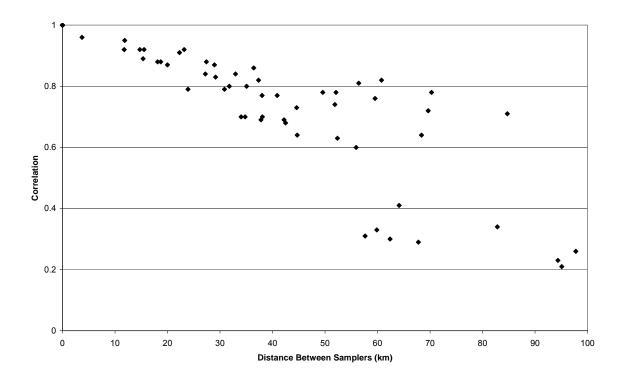


Figure A-60. PM_{2.5} inter-sampler correlations as a function of distance between monitors for Los Angeles, CA.

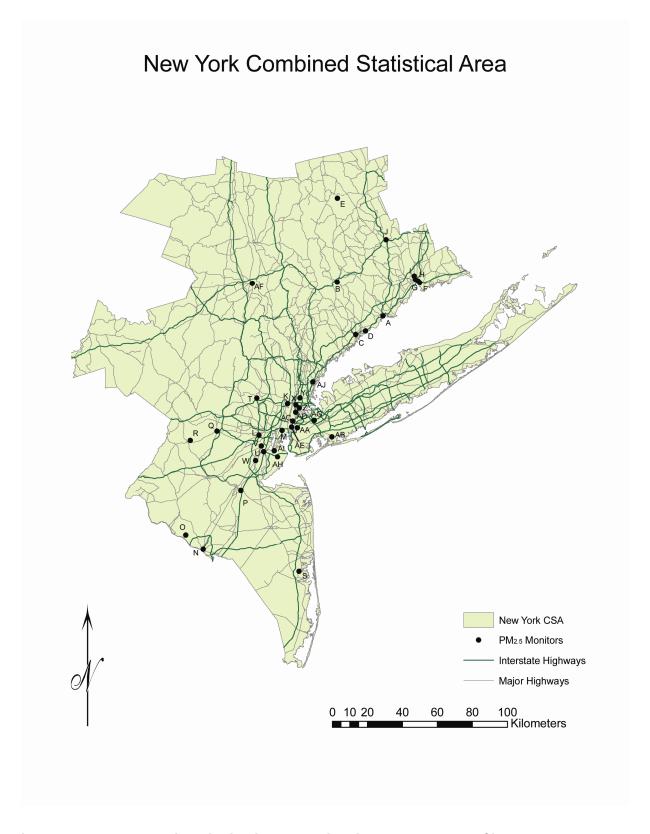


Figure A-61. PM_{2.5} monitor distribution and major highways, New York City, NY.

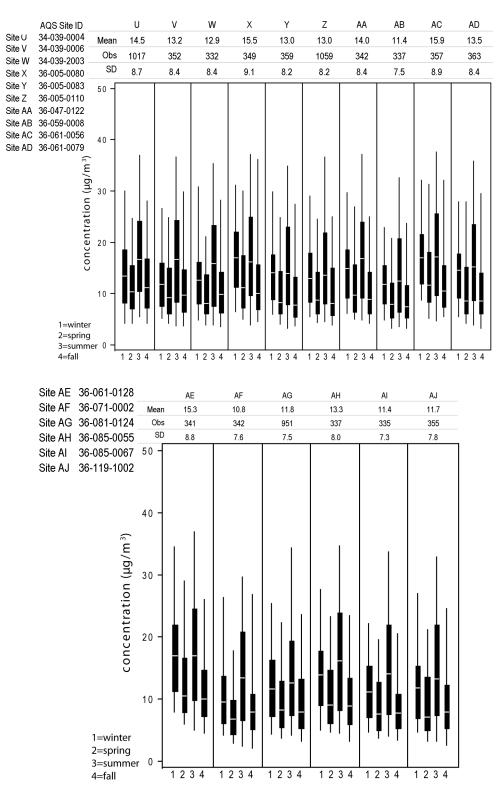


Figure A-62. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for New York, NY.

Table A-28. Inter-sampler correlation statistics for each pair of PM_{2.5} monitors reporting to AQS for New York, NY.

Site	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R
Α	1.00	0.89	0.97	0.97	0.82	0.96	0.96	0.96	0.96	0.93	0.91	0.91	0.92	0.88	0.84	0.87	0.89	0.84
	(0.0, 0.00)	(5.3, 0.15)	(3.6, 0.09)	(4.8, 0.11)	(11.8, 0.33)	(3.8, 0.11)	(4.0, 0.11)	(3.4, 0.10)	(4.6, 0.12)	(5.1, 0.12)	(5.8, 0.12)	(5.7, 0.12)	(5.5, 0.13)	(6.6, 0.16)	(9.1, 0.19)	(8.3, 0.16)	(7.6, 0.16)	(9.3, 0.21)
	349	322	316	322	325	328	321	324	326	335	329	316	331	301	296	321	318	316
В		1.00	0.93	0.91	0.78	0.91	0.92	0.91	0.91	0.92	0.83	0.84	0.85	0.82	0.79	0.82	0.82	0.78
		(0.0, 0.00)	(4.5, 0.13) 312	(5.3, 0.14)	(10.4, 0.32)	(4.7, 0.13)	(4.6, 0.13) 313	(4.6, 0.14) 313	(5.0, 0.14)	(4.5, 0.13)	(7.3, 0.17) 319	(7.1, 0.17)	(7.8, 0.19) 321	(7.2, 0.19) 291	(7.7, 0.20) 292	(7.6, 0.18)	(6.6, 0.18)	(8.4, 0.22)
		339	1.00	0.98	0.82	0.96	0.95	0.96	0.97	0.94	0.91	0.91	0.91	0.89	0.84	0.88	0.89	0.84
С			(0.0, 0.00)	(3.4, 0.08)	(10.8, 0.32)	(3.9, 0.10)	(4.1, 0.11)	(3.6, 0.10)	(4.0, 0.11)	(4.8, 0.11)	(5.7, 0.13)	(5.8, 0.14)	(6.5, 0.15)	(5.4, 0.15)	(6.9, 0.17)	(6.3, 0.14)	(6.2, 0.15)	(8.2, 0.20)
			332	314	309	310	308	307	310	319	314	299	316	287	289	307	305	297
D			002	1.00	0.85	0.96	0.96	0.94	0.96	0.92	0.90	0.89	0.91	0.88	0.87	0.89	0.90	0.86
				(0.0, 0.00)	(8.4, 0.29)	(3.4, 0.11)	(3.8, 0.11)	(5.0, 0.13)	(3.0, 0.10)	(5.5, 0.13)	(7.1, 0.15)	(6.9, 0.15)	(6.7, 0.18)	(6.3, 0.17)	(6.5, 0.16)	(6.0, 0.15)	(5.5, 0.14)	(6.6, 0.18)
				565	314	316	532	315	313	325	319	308	517	506	288	311	309	330
Е					1.00	0.82	0.82	0.79	0.83	0.81	0.80	0.77	0.76	0.76	0.79	0.78	0.87	0.87
					(0.0, 0.00)	(10.0, 0.31)	(10.7, 0.33)	(11.4, 0.33)	(8.8, 0.28)	(10.3, 0.32)	(12.5, 0.34)	(13.0, 0.34)	(13.8, 0.39)	(11.6, 0.35)	(9.1, 0.30)	(10.4, 0.32)	(7.9, 0.28)	(7.3, 0.24)
					341	321	313	317	319	330	322	305	323	294	291	316	311	305
F						1.00	0.99	0.98	0.98	0.94	0.88	0.89	0.89	0.86	0.85	0.88	0.87	0.83
						(0.0, 0.00)	(2.1, 0.07)	(2.9, 0.09)	(2.8, 0.09)	(4.7, 0.11)	(6.7, 0.14)	(6.8, 0.15)	(6.8, 0.16)	(6.4, 0.17)	(6.8, 0.18)	(6.1, 0.15)	(7.3, 0.16)	(7.5, 0.21)
						341	314	319	321	328	321	308	323	293	295	312	310	308
G							1.00	0.96	0.98	0.93	0.88	0.89	0.89	0.84	0.84	0.86	0.87	0.82
							(0.0, 0.00)	(2.9, 0.10)	(3.6, 0.11)	(5.2, 0.12)	(7.1, 0.15)	(6.7, 0.15)	(6.9, 0.16)	(6.9, 0.18)	(8.0, 0.19)	(7.6, 0.16)	(8.1, 0.17)	(8.4, 0.23)
							992	315	319	326	319	309	526	513	286	310	306	327 0.79
<u>H</u>								1.00	0.98	0.94	0.88	0.89	0.89	0.84	0.82	0.85	0.85	
								(0.0, 0.00)	(3.7, 0.10)	(3.7, 0.10)	(7.1, 0.14) 318	(7.1, 0.14)	(6.6, 0.16)	(6.7, 0.18) 292	(8.1, 0.20) 285	(7.8, 0.17)	(7.5, 0.17)	(9.2, 0.23)
								330	1.00	0.95	0.89	0.90	0.89	0.87	0.85	0.87	0.88	0.83
									(0.0, 0.00)	(4.1, 0.11)	(7.0, 0.16)	(7.0, 0.16)	(7.7, 0.20)	(6.4, 0.18)	(6.6, 0.17)	(6.5, 0.16)	(6.5, 0.15)	(7.6, 0.19)
									344	327	324	307	323	296	291	313	313	310
									011	1.00	0.87	0.87	0.87	0.84	0.79	0.82	0.84	0.79
										(0.0, 0.00)	(7.0, 0.16)	(7.2, 0.16)	(8.5, 0.17)	(6.9, 0.18)	(7.9, 0.20)	(8.1, 0.18)	(7.5, 0.17)	(9.0, 0.22)
			LEGEND							352	332	316	334	303	299	321	322	316
K			R								1.00	0.95	0.93	0.88	0.86	0.90	0.92	0.86
			(B00, COD)								(0.0, 0.00)	(3.4, 0.09)	(4.5, 0.12)	(6.4, 0.15)	(7.5, 0.17)	(5.7, 0.13)	(5.8, 0.14)	(8.7, 0.20)
			LEGEND R (P90, COD) N								345	314	330	301	296	317	319	312
L			IN									1.00	0.97	0.91	0.86	0.94	0.93	0.87
												(0.0, 0.00)	(4.1, 0.10)	(6.4, 0.14)	(8.0, 0.18)	(5.2, 0.12)	(5.9, 0.13)	(8.3, 0.20)
												334	321	289	288	309	303	301
М													1.00	0.91	0.86	0.93	0.92	0.85
													(0.0, 0.00)	(5.5, 0.14) 499	(8.4, 0.21)	(6.7, 0.15) 326	(7.5, 0.18) 318	(9.7, 0.25)
N													ววษ	1.00	0.93	0.95	0.91	0.88
IN														(0.0, 0.00)	(4.7, 0.14)	(4.1, 0.11)	(5.8, 0.15)	(7.2, 0.20)
														545	270	293	292	316
0														010	1.00	0.93	0.91	0.94
															(0.0, 0.00)	(4.3, 0.12)	(4.9, 0.14)	(4.3, 0.14)
															313	294	287	279
Р																1.00	0.94	0.91
																(0.0, 0.00)	(4.9, 0.12)	(5.5, 0.16)
																336	308	303
Q																	1.00	0.95
																	(0.0, 0.00)	(3.8, 0.13)
																	336	307
R				-													-	1.00
																		(0.0, 0.00)
																		357

	S	т	U	V	W		Y	7	AA	AB	AC	AD	۸Ε	AF	40	ΛU	Al	AJ
Α	0.75	0.89	0.90	0.90	0.88	0.92	0.94	Z 0.93	0.93	0.88	0.89	0.94	AE 0.88	0.89	AG 0.93	AH 0.90	0.89	0.96
	(10.4, 0.21)	(6.1, 0.13)	(7.1, 0.15)	(6.0, 0.13)	(7.2, 0.15)	(7.2, 0.16)	(4.0, 0.11)	(4.7, 0.12)	(5.5, 0.13)	(7.6, 0.18)	(7.3, 0.18)	(4.4, 0.11)	(7.2, 0.19)	(6.7, 0.16)	(5.1, 0.12)	(6.2, 0.15)	(7.5, 0.16)	(4.4, 0.12)
В	323 0.68	315 0.84	337 0.83	299 0.83	316 0.84	332 0.84	342 0.88	348 0.85	325 0.84	320 0.81	340 0.81	346 0.86	326 0.81	323 0.92	299 0.84	317 0.87	318 0.86	338 0.88
	(10.8, 0.23)	(5.9, 0.16)	(8.6, 0.20)	(6.5, 0.18)	(6.8, 0.18)	(9.0, 0.21)	(5.9, 0.16)	(6.8, 0.17)	(7.3, 0.18)	(7.9, 0.20)	(8.4, 0.22)	(7.0, 0.17)	(8.8, 0.23)	(5.8, 0.16)	(6.6, 0.17)	(6.8, 0.18)	(7.1, 0.18)	(5.5, 0.15)
С	314 0.76	307 0.89	328 0.88	290 0.89	305 0.89	325 0.92	334 0.95	338 0.93	317 0.92	313 0.89	331 0.88	336 0.93	315 0.88	316 0.89	292 0.93	311 0.91	309 0.89	329 0.96
	(8.5, 0.20)	(6.1, 0.14)	(7.8, 0.18)	(6.4, 0.15)	(6.0, 0.15)	(7.8, 0.18)	(4.4, 0.11)	(5.4, 0.13)	(5.6, 0.15)	(6.1, 0.16)	(7.5, 0.20)	(5.3, 0.12)	(7.4, 0.20)	(6.7, 0.15)	(4.7, 0.11)	(5.7, 0.14)	(6.0, 0.15)	(3.5, 0.10)
_	307	304	321	283	297	317	326	331	311	306	325	330	308	312	282	305	302	322
D	(7.7, 0.19)	(7.3, 0.16)	(8.1, 0.20)	(7.1, 0.17)	0.88 (6.9, 0.17)	(9.7, 0.21)	0.94 (5.6, 0.14)	(6.2, 0.15)	(7.0, 0.17)	(5.9, 0.16)	(9.6, 0.23)	(6.6, 0.15)	(9.2, 0.23)	0.90 (5.4, 0.14)	0.92 (4.8, 0.12)	0.90 (6.5, 0.16)	0.91 (5.3, 0.14)	(3.7, 0.10)
	509	306	537	326	304	324	332	548	315	313	330	336	315	313	496	308	310	328
E	(9.8, 0.32)	0.79 (11.3, 0.34)	0.74 (14.9, 0.40)	0.76 (11.7, 0.36)	0.75 (12.1, 0.36)	0.75 (15.2, 0.41)	0.80 (11.5, 0.34)	0.78 (13.1, 0.36)	0.76 (13.9, 0.38)	0.73	0.74 (15.7, 0.43)	0.79 (13.1, 0.35)	0.70 (15.0, 0.42)	(7.6, 0.26)	0.77 (11.3, 0.32)	0.75 (12.5, 0.36)	0.80 (9.4, 0.31)	(9.8, 0.29)
_	315	306	329	290	307	324	334	340	319	314	332	338	316	316	294	310	309	331
F	0.79 (7.9, 0.19)	(6.7, 0.15)	0.86 (8.5, 0.19)	0.86 (6.8, 0.16)	(6.6, 0.16)	0.89 (8.2, 0.19)	0.93 (5.0, 0.12)	0.91 (6.4, 0.14)	0.90 (6.7, 0.15)	0.90 (5.6, 0.16)	(8.4, 0.20)	0.91 (6.3, 0.14)	0.86 (8.0, 0.21)	0.89	0.93	(5.7, 0.15)	0.89 (5.3, 0.15)	(4.1, 0.12)
	316	306	329	293	309	325	335	340	320	317	334	339	319	317	290	312	310	332
G	0.77	0.87	0.87	0.86	0.88	0.89	0.92	0.90	0.90	0.88	0.86	0.91	0.85	0.88	0.90	0.89	0.88	0.93
	(8.7, 0.21) 513	(6.3, 0.15)	(7.8, 0.18) 928	(7.0, 0.16) 327	(6.3, 0.15)	(8.3, 0.17) 319	(5.4, 0.13) 329	(5.7, 0.14) 958	(7.1, 0.15) 315	(7.5, 0.17) 308	(8.1, 0.19)	(6.4, 0.14)	(8.2, 0.20)	(6.7, 0.17)	(5.2, 0.13) 856	(6.1, 0.15) 312	(6.1, 0.16)	(5.0, 0.14) 325
Н	0.74	0.86	0.86	0.87	0.87	0.90	0.92	0.89	0.90	0.88	0.87	0.91	0.86	0.88	0.90	0.88	0.86	0.93
	(9.6, 0.22) 314	(6.6, 0.15)	(8.4, 0.18) 326	(7.1, 0.16) 289	(6.9, 0.16)	(7.5, 0.17) 322	(5.2, 0.13)	(5.6, 0.14) 337	(6.4, 0.15) 315	(7.3, 0.19) 310	(7.9, 0.19) 329	(5.7, 0.13)	(7.3, 0.20)	(6.9, 0.17)	(5.6, 0.14) 290	(6.8, 0.16)	(6.4, 0.17) 308	(5.0, 0.13)
\neg	0.76	0.88	0.87	0.88	0.88	0.90	0.93	0.92	0.91	0.87	0.87	0.92	0.86	0.90	0.93	0.89	0.89	0.94
	(8.1, 0.20)	(7.1, 0.17)	(8.7, 0.21)	(7.4, 0.17)	(6.9, 0.17)	(9.4, 0.22)	(5.7, 0.15)	(6.5, 0.16)	(7.2, 0.18)	(6.2, 0.17)	(9.6, 0.24)	(6.3, 0.16)	(9.2, 0.24)	(5.5, 0.13)	(5.1, 0.14)	(6.7, 0.18)	(5.8, 0.16)	(4.1, 0.12)
J	315 0.67	308 0.84	332 0.85	293 0.86	309 0.86	326 0.88	334 0.90	343 0.88	323 0.86	313 0.81	332 0.85	338 0.89	318 0.84	319 0.90	296 0.88	310 0.87	311 0.84	330 0.91
	(11.1, 0.22)	(6.6, 0.16)	(9.0, 0.19)	(6.7, 0.16)	(6.8, 0.17)	(8.8, 0.19)	(6.1, 0.14)	(7.1, 0.16)	(7.3, 0.17)	(8.2, 0.19)	(9.0, 0.21)	(6.9, 0.15)	(8.9, 0.22)	(6.4, 0.16)	(6.4, 0.15)	(7.5, 0.16)	(7.7, 0.18)	(5.6, 0.14)
K	327 0.74	316 0.94	343 0.92	301 0.95	318 0.92	337 0.92	345 0.93	351 0.92	330 0.93	324 0.84	343 0.90	349 0.93	327 0.88	329 0.89	301 0.90	321 0.91	320 0.89	341 0.92
	(10.9, 0.21)	(3.9, 0.11)	(5.7, 0.14)	(3.4, 0.10)	(4.3, 0.12)	(6.0, 0.15)	(3.8, 0.12)	(4.2, 0.12)	(4.3, 0.12)	(8.5, 0.19)	(6.2, 0.17)	(3.8, 0.11)	(6.2, 0.18)	(7.4, 0.17)	(5.9, 0.13)	(5.0, 0.13)	(6.5, 0.15)	(4.8, 0.13)
_	320	317	336	302	317	330	339	344	324	318	338	343	321	321	294	318	314	335
_ <u>L</u>	(9.8, 0.20)	(3.9, 0.11)	0.97 (4.5, 0.12)	(2.9, 0.08)	0.95 (4.0, 0.10)	0.94 (6.3, 0.15)	0.93 (4.5, 0.12)	(4.2, 0.11)	0.95 (4.1, 0.11)	0.86 (8.1, 0.18)	(6.3, 0.17)	0.95	(5.9, 0.17)	0.89 (6.8, 0.17)	0.92 (5.4, 0.12)	0.96 (4.0, 0.11)	0.92 (6.4, 0.14)	(5.4, 0.13)
	313	303	325	292	303	314	323	333	306	305	322	327	309	306	283	305	299	319
M	(9.9, 0.22)	0.93 (5.4, 0.13)	(3.8, 0.09)	(3.5, 0.09)	0.96 (4.7, 0.11)	0.95 (4.9, 0.11)	0.95	0.96 (3.5, 0.10)	(3.4, 0.09)	(8.3, 0.20)	0.94 (4.5, 0.12)	0.96 (3.5, 0.10)	0.93 (4.5, 0.13)	0.88 (8.5, 0.21)	0.95 (5.0, 0.14)	0.96 (4.3, 0.10)	0.93	(5.7, 0.17)
	504	318	534	341	319	331	342	545	326	320	339	345	326	323	484	319	318	338
N	0.88	0.86	0.90	0.91	0.91	0.86	0.90	0.89	0.91	0.89	0.85	0.90	0.85	0.85	0.91	0.92	0.92	0.90
	(6.4, 0.17) 492	(6.5, 0.16) 287	(6.5, 0.15) 519	(5.7, 0.13) 313	(4.5, 0.13) 290	(8.2, 0.18)	(5.9, 0.14)	(5.4, 0.15) 529	(5.3, 0.14) 297	(5.6, 0.17) 289	(8.1, 0.18)	(5.3, 0.14)	(7.7, 0.18) 294	(7.5, 0.20) 292	(4.9, 0.14) 477	(4.6, 0.13) 292	(5.3, 0.14) 293	(5.4, 0.16)
0	0.87	0.82	0.86	0.87	0.88	0.84	0.87	0.86	0.88	0.89	0.82	0.88	0.81	0.84	0.88	0.89	0.92	0.88
	(5.6, 0.16) 295	(7.2, 0.18) 289	(9.9, 0.22)	(7.3, 0.18) 280	(6.4, 0.16) 284	(11.1, 0.24) 299	(6.7, 0.18)	(8.6, 0.19) 312	(8.2, 0.20) 292	(5.2, 0.15) 295	(10.3, 0.25)	(8.4, 0.18)	(10.6, 0.25) 290	(7.0, 0.18) 290	(6.1, 0.16) 269	(6.1, 0.18) 290	(4.7, 0.14) 283	(5.4, 0.16)
Р	0.86	0.89	0.92	0.94	0.95	0.88	0.90	0.89	0.92	0.89	0.87	0.91	0.87	0.87	0.91	0.94	0.95	0.91
	(6.2, 0.15)	(6.2, 0.14)	(7.4, 0.17)	(5.0, 0.12)	(4.0, 0.11)	(8.9, 0.19)	(5.9, 0.14)	(6.8, 0.15)	(6.4, 0.14)	(5.3, 0.14)	(8.9, 0.21)	(6.4, 0.14)	(8.3, 0.20)	(6.7, 0.16)	(5.5, 0.13)	(4.7, 0.12)	(3.5, 0.10)	(5.0, 0.14)
Q	312 0.79	307 0.92	325 0.91	296 0.93	305 0.92	319 0.89	329 0.90	335 0.90	312 0.90	309 0.83	327 0.90	333 0.91	313 0.87	311 0.91	285 0.89	307 0.90	306 0.91	326 0.92
	(8.1, 0.19)	(5.0, 0.14)	(8.2, 0.20)	(6.2, 0.14)	(5.4, 0.15)	(9.7, 0.22)	(6.3, 0.16)	(7.3, 0.17)	(7.3, 0.18)	(6.9, 0.19)	(9.9, 0.24)	(6.9, 0.16)	(9.5, 0.24)	(4.8, 0.14)	(6.0, 0.15)	(6.3, 0.17)	(5.3, 0.14)	(5.5, 0.13)
R	313 0.82	303 0.86	327 0.84	287 0.85	304 0.87	321 0.82	328 0.87	335 0.84	314 0.86	306 0.83	329 0.81	332 0.86	311 0.78	312 0.88	287 0.86	303 0.87	302 0.90	324 0.88
	(6.5, 0.20)	(7.6, 0.21)	(10.9, 0.26)	(8.2, 0.21)	(7.0, 0.20)	(11.6, 0.28)	(8.6, 0.21)	(10.0, 0.23)	(9.1, 0.24)	(7.0, 0.21)	(11.2, 0.30)	(9.5, 0.22)	(11.0, 0.30)	(6.2, 0.17)	(7.6, 0.20)	(7.8, 0.22)	(5.7, 0.17)	(6.3, 0.17)
S	330 1.00	296 0.69	347 0.77	291 0.75	304 0.78	314 0.72	323 0.78	355 0.79	309 0.82	301 0.88	324 0.74	327 0.78	309 0.73	308 0.69	304 0.85	298 0.82	302 0.88	320 0.79
	(0.0, 0.00)	(10.4, 0.22)	(10.5, 0.24)	(10.5, 0.21)	(9.2, 0.19)	(12.5, 0.25)	(8.6, 0.19)	(9.3, 0.21)	(9.4, 0.20)	(5.0, 0.16)	(11.6, 0.26)	(9.9, 0.20)	(11.5, 0.25)	(10.3, 0.22)	(7.2, 0.17)	(8.5, 0.18)	(5.5, 0.14)	(8.1, 0.19)
_	550	306	525	324	306	325	336	536	319	314	333	339	322	316	478	310	312	331
		1.00	(6.0, 0.15)	0.93 (4.5, 0.12)	0.93 (4.8, 0.13)	0.92 (6.7, 0.16)	0.91 (5.2, 0.14)	0.91 (4.9, 0.13)	0.90 (5.6, 0.14)	0.80 (8.4, 0.20)	(6.9, 0.18)	0.93 (4.9, 0.12)	(7.2, 0.20)	(6.3, 0.17)	(6.2, 0.14)	0.90 (5.8, 0.14)	0.86 (7.3, 0.17)	(5.9, 0.14)
		330	319	293	301	313	323	329	308	303	321	327	306	308	281	306	298	319
U			1.00	(3.9, 0.10)	(5.0, 0.12)	0.92 (5.4, 0.12)	0.91 (6.9, 0.15)	0.93 (5.2, 0.13)	0.94 (4.9, 0.12)	(9.9, 0.22)	0.91 (5.0, 0.12)	(5.2, 0.12)	0.90 (5.9, 0.14)	(9.6, 0.23)	0.90 (6.9, 0.17)	0.96 (5.8, 0.12)	(8.4, 0.18)	(7.5, 0.19)
-			1017	341	325	337	347	987	332	326	346	351	330	330	878	325	323	343
V	· · · · ·		· · · · ·	1.00	0.97	0.93	0.92	0.92	0.94	0.83	0.90	0.94	0.91	0.88	0.89	0.96	0.91	0.91
				(0.0, 0.00)	(2.8, 0.09) 288	(6.1, 0.14) 300	(5.0, 0.13)	(4.4, 0.12) 351	(4.2, 0.12) 294	(8.2, 0.19) 290	(6.6, 0.16)	(4.3, 0.11) 311	(6.1, 0.16) 294	(7.0, 0.18) 290	(5.8, 0.15) 301	(4.0, 0.10) 291	(6.4, 0.15) 287	(5.3, 0.15)
W				*	1.00	0.90	0.91	0.91	0.92	0.85	0.89	0.93	0.88	0.87	0.89	0.96	0.92	0.90
-					(0.0, 0.00)	(7.0, 0.16) 316	(5.5, 0.13) 325	(5.3, 0.13)	(4.8, 0.13) 310	(7.0, 0.18) 309	(6.8, 0.17)	(5.0, 0.12) 328	(6.9, 0.18)	(6.8, 0.18) 310	(5.1, 0.14) 281	(3.7, 0.10)	(4.9, 0.13) 303	(5.0, 0.15) 320
Χ						1.00	0.96	0.97	0.95	0.86	0.94	0.97	0.93	0.88	0.93	0.92	0.88	0.93
						(0.0, 0.00)	(5.8, 0.13) 344	(4.4, 0.11) 349	(5.0, 0.11) 328	(10.0, 0.23) 324	(3.3, 0.09)	(4.5, 0.11) 348	(4.1, 0.11) 326	(9.8, 0.24)	(6.9, 0.17) 301	(6.5, 0.14) 319	(9.2, 0.20)	(8.2, 0.19) 340
Υ						548	1.00	0.97	0.96	0.90	0.93	0.98	0.93	0.89	0.97	0.93	0.92	0.97
							(0.0, 0.00)	(3.2, 0.08)	(3.9, 0.09)	(6.5, 0.16)	(5.4, 0.15)	(2.8, 0.08)	(5.4, 0.15)	(6.5, 0.18)	(3.3, 0.09)	(4.9, 0.12)	(5.3, 0.13)	(3.5, 0.11)
Z							359	359 1.00	338 0.97	333 0.90	352 0.94	358 0.98	337 0.92	335 0.88	308 0.95	328 0.93	329 0.91	350 0.95
_								(0.0, 0.00)	(2.9, 0.09)	(7.2, 0.17)	(4.4, 0.13)	(1.8, 0.07)	(4.6, 0.14)	(7.8, 0.19)	(4.0, 0.10)	(4.7, 0.11)	(6.1, 0.14)	(4.9, 0.14)
AA								1059	342 1.00	337 0.92	357 0.94	363 0.98	341 0.93	342 0.87	919 0.97	337 0.95	335 0.94	355 0.95
				LEG	FND				(0.0, 0.00)	(7.1, 0.18)	(3.8, 0.11)	(2.9, 0.07)	(4.1, 0.11)	(8.1, 0.20)	(4.0, 0.11)	(4.3, 0.10)	(6.6, 0.15)	(5.1, 0.15)
AD		-		F	₹			-	342	317	336	341	319	319	292	313	312	335
AB				(P90,	COD)					1.00 (0.0, 0.00)	0.85 (9.2, 0.24)	0.89 (7.2, 0.17)	(9.0, 0.23)	0.79 (8.1, 0.20)	0.95	0.90 (6.1, 0.16)	(3.8, 0.12)	(5.5, 0.16)
				N	1					337	330	337	316	313	291	310	310	329
_											1.00	0.95	0.98	0.84	0.96	0.91	0.89	0.91
AC													(3 N N NR)					(74 0 22)
											(0.0, 0.00)	(4.4, 0.13) 356	(3.0, 0.08)	(10.4, 0.26) 336	(6.6, 0.18) 304	(6.6, 0.15) 326	(9.3, 0.21) 326	(7.4, 0.22) 348
AC											(0.0, 0.00)	(4.4, 0.13) 356 1.00	334 0.93	(10.4, 0.26) 336 0.89	(6.6, 0.18) 304 0.97	(6.6, 0.15) 326 0.95	(9.3, 0.21) 326 0.93	348 0.96
											(0.0, 0.00)	(4.4, 0.13) 356	334	(10.4, 0.26) 336	(6.6, 0.18) 304	(6.6, 0.15) 326	(9.3, 0.21) 326	348

	S	T	U	V	W	Χ	Υ	Z	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ
													(0.0, 0.00)	(10.0, 0.26)	(6.2, 0.18)	(5.6, 0.15)	(8.4, 0.20)	(8.0, 0.22)
					•		•				•		341	319	290	313	314	332
AF														1.00	0.86	0.87	0.87	0.91
														(0.0, 0.00)	(7.0, 0.16)	(7.1, 0.18)	(6.4, 0.16)	(5.5, 0.14)
														342	289	310	313	331
AG															1.00	0.93	0.94	0.96
															(0.0, 0.00)	(4.8, 0.12)	(4.5, 0.11)	(3.7, 0.11)
															951	289	283	304
AH																1.00	0.97	0.92
																(0.0, 0.00)	(4.1, 0.10)	(4.9, 0.15)
																337	307	327
Al																	1.00	0.92
																	(0.0, 0.00)	(4.8, 0.14)
																	335	324
AJ			-												-	-	-	1.00
			-												-	-	-	(0.0, 0.00)
																		355

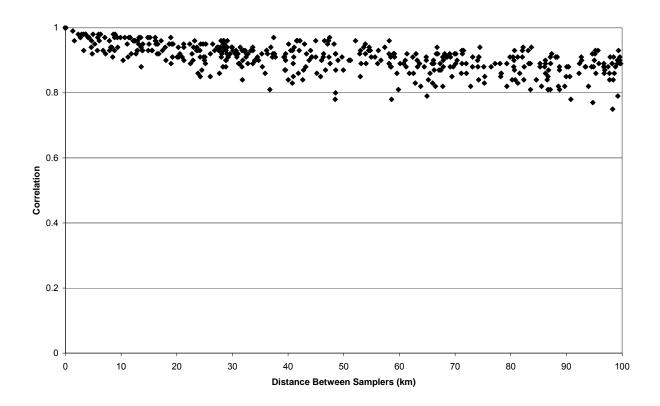


Figure A-63 PM_{2.5} inter-sampler correlations as a function of distance between monitors for New York, NY.

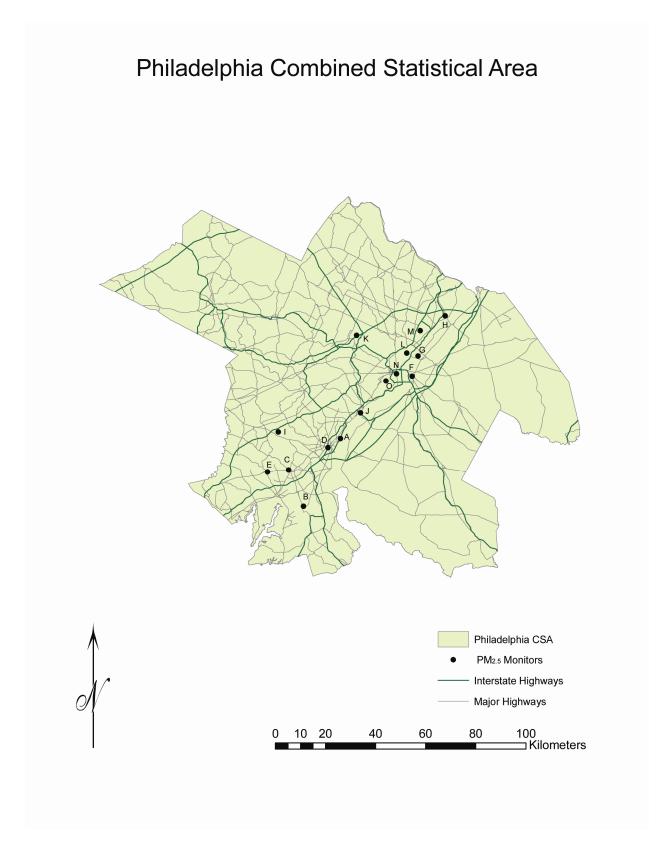


Figure A-64. PM_{2.5} monitor distribution and major highways, Philadelphia, PA.

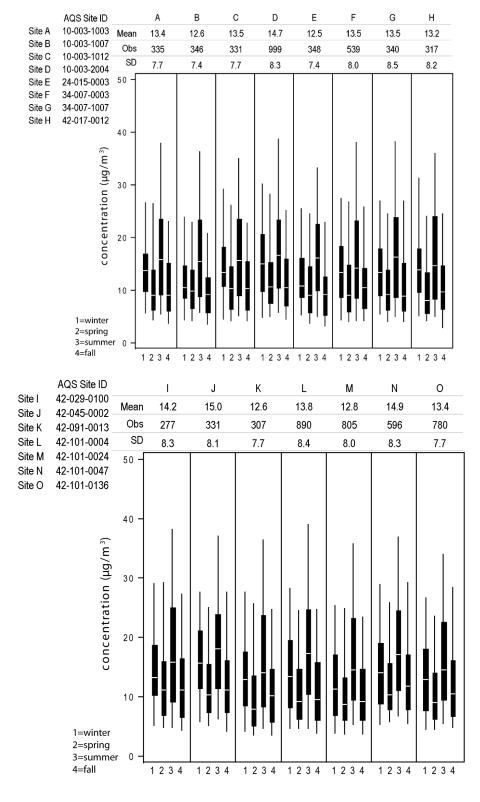


Figure A-65. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for Philadelphia, PA.

Table A-29. Inter-sampler correlation statistics for each pair of PM_{2.5} monitors reporting to AQS for Philadelphia, PA.

	Α	В	С	D	Е	F	G	Н		J	K	L	M	N	0
Α	1.00	0.94	0.96	0.98	0.92	0.96	0.93	0.89	0.95	0.92	0.86	0.96	0.96	0.95	0.97
	(0.0, 0.00)	(4.7, 0.12)	(3.1, 0.08)	(3.2, 0.08)	(4.8, 0.12)	(3.5, 0.10)	(4.2, 0.11)	(5.3, 0.13)	(4.2, 0.12)	(4.6, 0.14)	(4.7, 0.15)	(3.5, 0.08)	(3.7, 0.10)	(4.5, 0.12)	(3.2, 0.08)
	335	305	282	318	311	312	308	289	247	298	277	283	243	236	236
В		1.00	0.95	0.93	0.94	0.92	0.88	0.83	0.90	0.87	0.81	0.91	0.92	0.88	0.89
		(0.0, 0.00)	(4.3, 0.12)	(6.4, 0.15)	(3.4, 0.11)	(5.2, 0.14)	(6.0, 0.15)	(6.8, 0.17)	(6.7, 0.17)	(6.5, 0.18)	(5.9, 0.18)	(6.5, 0.14)	(5.0, 0.14)	(7.3, 0.17)	(5.9, 0.13)
		346	288	329	318	313	315	293	253	302	285	293	253	238	246
С			1.00	0.96	0.95	0.94	0.88	0.88	0.93	0.88	0.84	0.93	0.93	0.91	0.93
			(0.0, 0.00)	(4.3, 0.09)	(3.5, 0.11)	(4.7, 0.12)	(5.3, 0.14)	(6.0, 0.14)	(3.5, 0.12)	(6.6, 0.16)	(5.5, 0.17)	(5.0, 0.12)	(4.8, 0.13)	(6.0, 0.14)	(4.6, 0.11)
_			331	312	289	292	286	270	242	278	261	281	245	225	237
D				1.00	0.91	0.94	0.92	0.88	0.94	0.90	0.85	0.95	0.93	0.93	0.95
				(0.0, 0.00) 999	(6.5, 0.15)	(4.9, 0.12)	(5.0, 0.14)	(6.3, 0.15)	(4.1, 0.12)	(5.3, 0.14)	(5.8, 0.18)	(4.3, 0.11)	(5.6, 0.14)	(4.2, 0.10)	(4.5, 0.11)
_				999	325	490	317	297	257	312	287	801	732	540	704
Е					1.00 (0.0, 0.00)	0.91 (5.6, 0.14)	0.87 (6.1, 0.15)	0.83 (6.7, 0.16)	0.90 (6.6, 0.16)	0.86 (7.1, 0.19)	0.86 (5.7, 0.15)	0.88 (6.8, 0.15)	0.90 (5.3, 0.13)	0.87 (7.0, 0.18)	0.89 (5.7, 0.13)
					348	320	321	301	255	310	287	296	255	242	254
F					340	1.00	0.95	0.90	0.92	0.89	0.87	0.96	0.96	0.95	0.96
						(0.0, 0.00)	(3.4, 0.09)	(5.3, 0.13)	(5.4, 0.14)	(5.9, 0.16)	(4.4, 0.15)	(3.7, 0.10)	(3.6, 0.10)	(4.5, 0.13)	(3.4, 0.09)
						539	317	296	261	309	284	466	437	414	396
G						333	1.00	0.90	0.90	0.87	0.85	0.93	0.97	0.92	0.96
- 6							(0.0, 0.00)	(4.8, 0.14)	(5.9, 0.16)	(6.2, 0.17)	(4.7, 0.16)	(3.7, 0.09)	(3.1, 0.09)	(5.7, 0.13)	(3.5, 0.08)
							340	295	258	305	289	288	251	235	240
Н							040	1.00	0.84	0.83	0.89	0.90	0.94	0.87	0.89
<u> </u>								(0.0, 0.00)	(5.7, 0.16)	(8.0, 0.19)	(4.4, 0.13)	(5.0, 0.13)	(4.0, 0.12)	(5.9, 0.17)	(4.8, 0.13)
								317	240	288	275	273	234	215	227
$\overline{}$									1.00	0.87	0.81	0.91	0.92	0.90	0.92
			LEG	END					(0.0, 0.00)	(5.5, 0.17)	(5.7, 0.17)	(4.9, 0.14)	(5.4, 0.15)	(5.2, 0.16)	(5.1, 0.14)
			LLG	END					277	248	228	235	215	196	195
J			(D00	(1.00	0.79	0.89	0.89	0.89	0.91
			(P90, N	COD)						(0.0, 0.00)	(7.4, 0.21)	(5.8, 0.15)	(6.4, 0.17)	(5.7, 0.13)	(5.0, 0.14)
			N							331	278	282	246	237	231
K											1.00	0.87	0.95	0.84	0.86
											(0.0, 0.00)	(4.7, 0.15)	(3.7, 0.13)	(6.8, 0.20)	(4.3, 0.13)
											307	268	230	211	212
L												1.00	0.98	0.95	0.97
												(0.0, 0.00)	(3.1, 0.09)	(3.7, 0.11)	(3.4, 0.07)
												890	672	512	630
M													1.00	0.95	0.96
													(0.0, 0.00)	(4.7, 0.14)	(3.2, 0.09)
-													805	495	563
N														1.00	0.97
														(0.0, 0.00)	(3.5, 0.10)
0														596	1.00
U															(0.0, 0.00)
															780
_															100

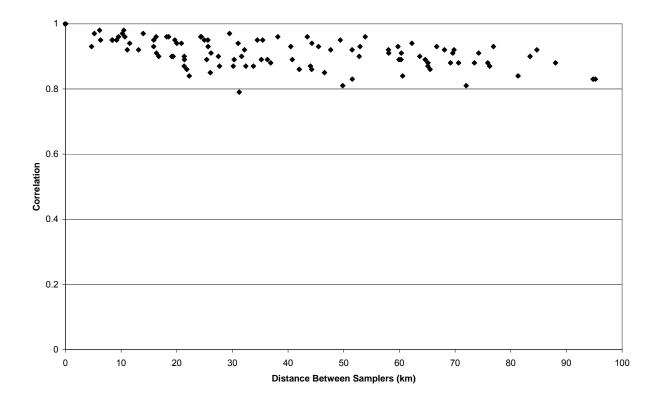


Figure A-66. PM_{2.5} inter-sampler correlations as a function of distance between monitors for Philadelphia, PA.

Figure A-67. PM_{2.5} monitor distribution and major highways, Phoenix, AZ.

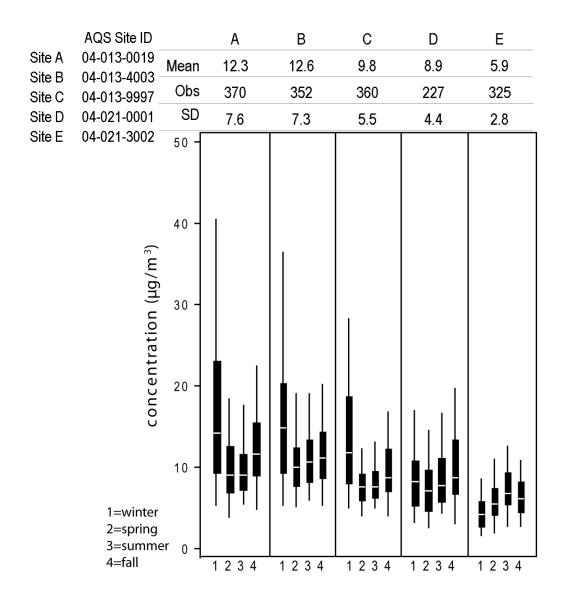


Figure A-68. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for Phoenix, AZ.

Table A-30. Inter-sampler correlation statistics for each pair of PM_{2.5} monitors reporting to AQS for Phoenix, AZ.

	Α	В	С	D	E
Α	1.00	0.87	0.92	0.50	0.12
	(0.0, 0.00)	(6.4, 0.15)	(6.5, 0.16)	(10.4, 0.25)	(14.4, 0.40)
	370	345	355	222	321
3		1.00	0.89	0.54	0.23
		(0.0, 0.00)	(6.8, 0.17)	(9.6, 0.25)	(13.2, 0.40)
		352	338	212	307
)			1.00	0.54	0.18
			(0.0, 0.00)	(7.2, 0.20)	(9.3, 0.33)
			360	216	315
)	LEGEND			1.00	0.51
	R			(0.0, 0.00)	(7.8, 0.27)
	(P90, COD)			227	200
	N				1.00
					(0.0, 0.00)
					325

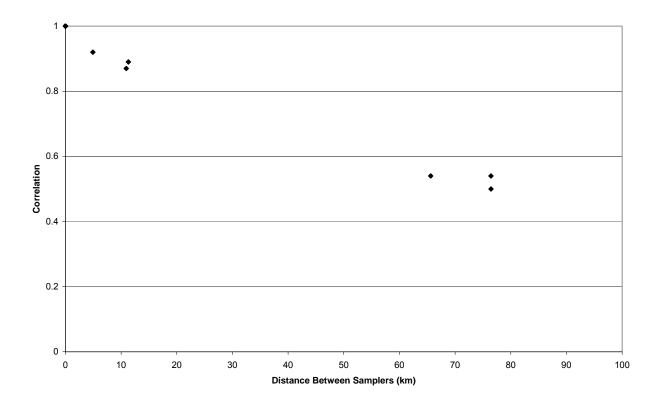


Figure A-69. PM_{2.5} inter-sampler correlations as a function of distance between monitors for Phoenix, AZ.

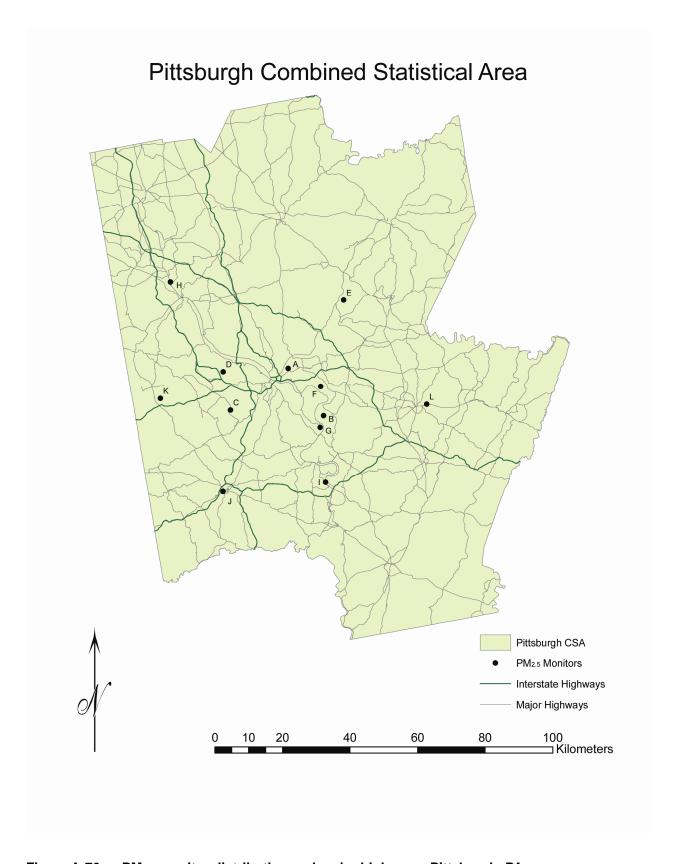


Figure A-70. PM_{2.5} monitor distribution and major highways, Pittsburgh, PA.

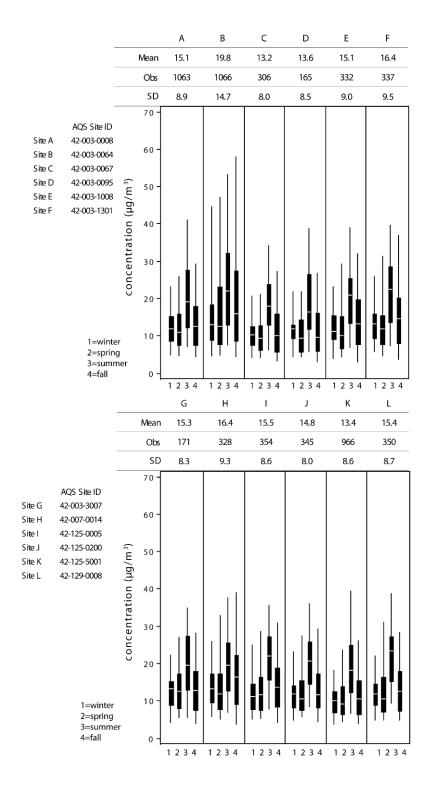


Figure A-71. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for Pitsburgh, PA.

Table A-31. Inter-sampler correlation statistics for each pair of PM_{2.5} monitors reporting to AQS for Pittsburgh, PA.

	Α	В	С	D	E	F	G	Н	I	J	K	L
Α	1.00	0.79	0.95	0.92	0.93	0.95	0.95	0.85	0.90	0.93	0.91	0.88
	(0.0, 0.00)	(15.9, 0.19)	(5.6, 0.13)	(4.7, 0.11)	(4.7, 0.11)	(4.9, 0.10)	(3.8, 0.10)	(6.4, 0.13)	(6.4, 0.13)	(5.0, 0.12)	(6.0, 0.13)	(5.6, 0.12)
	1063	1035	298	164	323	329	170	319	344	337	934	340
В		1.00	0.71	0.65	0.80	0.85	0.76	0.69	0.71	0.68	0.68	0.67
		(0.0, 0.00)	(16.9, 0.24)	(17.4, 0.25)	(14.4, 0.19)	(12.5, 0.14)	(15.7, 0.20)	(17.0, 0.19)	(15.7, 0.21)	(17.8, 0.23)	(19.3, 0.25)	(15.9, 0.21)
		1066	303	165	329	335	171	324	350	341	938	346
С			1.00	0.93	0.90	0.91	0.94	0.80	0.93	0.96	0.95	0.91
			(0.0, 0.00)	(2.8, 0.09)	(6.6, 0.16)	(8.7, 0.17)	(6.0, 0.14)	(9.4, 0.19)	(6.7, 0.15)	(4.6, 0.12)	(4.5, 0.10)	(6.5, 0.15)
			306	144	282	282	148	268	290	286	270	286
D				1.00	0.84	0.87	0.91	0.79	0.89	0.91	0.97	0.85
				(0.0, 0.00)	(6.4, 0.15)	(8.5, 0.16)	(5.8, 0.13)	(9.2, 0.17)	(5.9, 0.13)	(4.6, 0.11)	(3.1, 0.08)	(6.5, 0.15)
				165	153	161	158	156	158	155	146	157
Е					1.00	0.90	0.90	0.84	0.85	0.86	0.88	0.83
					(0.0, 0.00)	(6.4, 0.13)	(6.5, 0.13)	(6.8, 0.14)	(8.3, 0.16)	(7.7, 0.16)	(7.6, 0.15)	(7.3, 0.15)
		LEG	END		332	313	157	295	320	315	290	318
<u>_F_</u>		Pears	son R			1.00	0.91	0.82	0.88	0.88	0.89	0.86
			COD)			(0.0, 0.00)	(6.7, 0.13)	(7.4, 0.14)	(7.1, 0.15)	(7.9, 0.15)	(8.8, 0.17)	(7.0, 0.14)
_			1			337	167	302	327	319	296	322
G			'				1.00	0.78	0.94	0.93	0.90	0.91
							(0.0, 0.00)	(7.3, 0.16)	(4.0, 0.10)	(5.0, 0.11)	(6.6, 0.15)	(5.0, 0.13)
							171	159	163	159	149	161
Н								1.00	0.80	0.78	0.82	0.70
								(0.0, 0.00)	(8.4, 0.15)	(8.2, 0.17)	(9.0, 0.18)	(9.2, 0.18)
								328	317	309	288	314
									1.00	0.93	0.89	0.88
									(0.0, 0.00)	(5.0, 0.11)	(7.2, 0.16)	(6.0, 0.13)
									354	334	310	339
J										1.00	0.93	0.88
										(0.0, 0.00)	(5.5, 0.12)	(5.9, 0.13)
										345	302	331
K											1.00	0.86
											(0.0, 0.00)	(6.9, 0.15)
_											966	306
L												1.00
												(0.0, 0.00)
												350

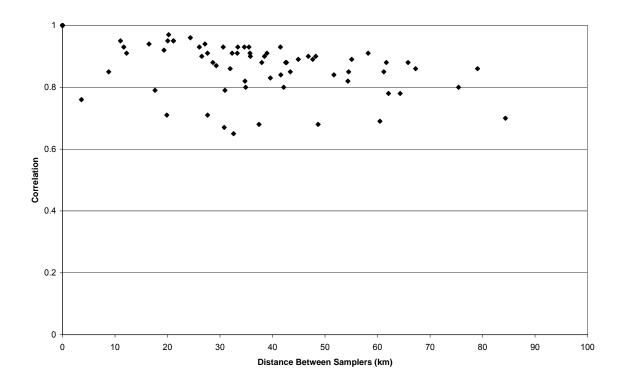


Figure A-72. PM_{2.5} inter-sampler correlations as a function of distance between monitors for Pittsburgh, PA.

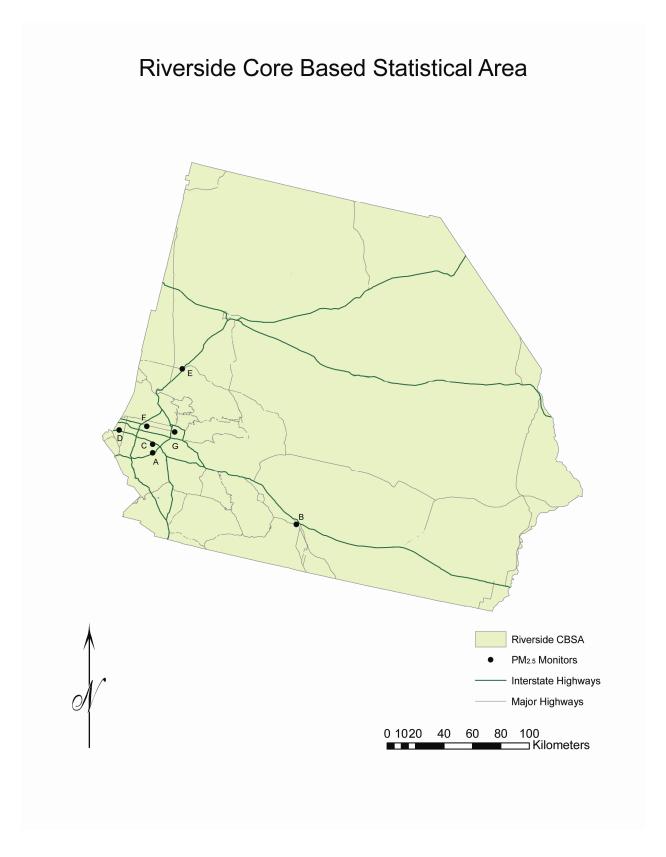


Figure A-73. PM_{2.5} monitor distribution and major highways, Riverside, CA.

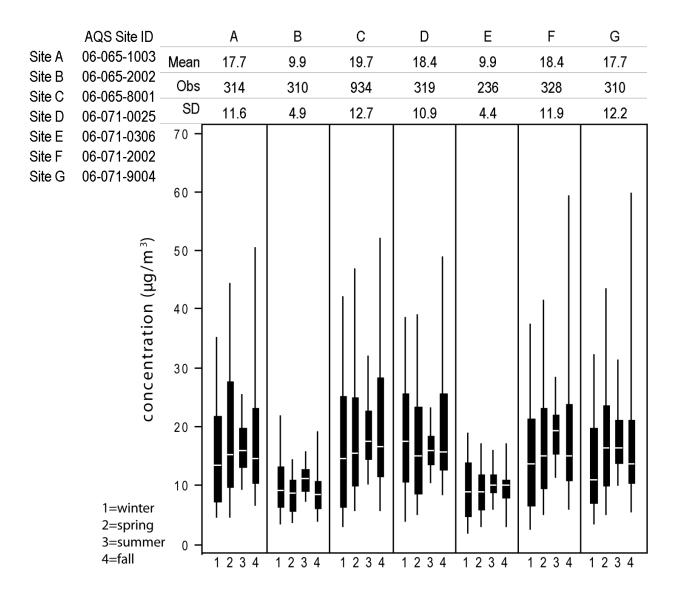


Figure A-74. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for Riverside, CA.

Table A-32. Inter-sampler correlation statistics for each pair of $PM_{2.5}$ monitors reporting to AQS for Riverside, CA.

	Α	В	С	D	E	F	G
Α	1.00	0.45	0.96	0.92	0.36	0.94	0.90
	(0.0, 0.00)	(20.6, 0.32)	(5.0, 0.10)	(7.2, 0.13)	(22.1, 0.35)	(6.0, 0.12)	(5.7, 0.13)
	314	269	297	282	191	281	273
В		1.00	0.49	0.49	0.42	0.49	0.50
		(0.0, 0.00)	(22.7, 0.35)	(20.9, 0.34)	(8.2, 0.25)	(19.7, 0.33)	(18.8, 0.31)
		310	289	270	203	285	266
С			1.00	0.91	0.37	0.92	0.91
			(0.0, 0.00)	(8.2, 0.14)	(26.6, 0.37)	(6.9, 0.12)	(7.6, 0.12)
			934	300	227	302	287
D				1.00	0.36	0.93	0.82
				(0.0, 0.00)	(20.1, 0.35)	(6.7, 0.14)	(9.6, 0.17)
		LEGEND		319	195	289	274
E		R			1.00	0.40	0.41
		(P90, COD)			(0.0, 0.00)	(21.1, 0.36)	(21.6, 0.34)
		N N			236	201	190
F						1.00	0.90
						(0.0, 0.00)	(6.7, 0.12)
						328	276
G							1.00
							(0.0, 0.00)
							310

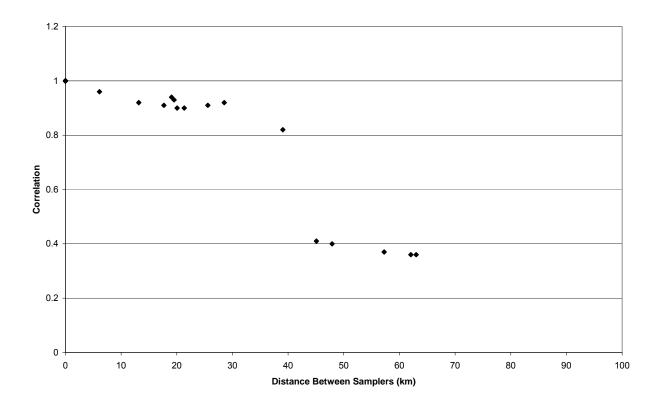


Figure A-75. PM_{2.5} inter-sampler correlations as a function of distance between monitors for Riverside CA.

Figure A-76. PM_{2.5} monitor distribution and major highways, Seattle, WA.

	AQS Site	ID		l	Ą		В			С	
Site A	53-033-00	24 _N	/lean	8	.9		10.2			9.2	
Site B	53-053-00 53-061-10		Obs	3	52		354			591	
Site C	55-061-10		SD	7	.3		10.1			7.9	
			60 -								
			50 -								
		concentration (μg/m³)	40 -						1		
		ntration	30 -								
		concer	20 -								
		1=winter 2=spring	10 -								
		3=summer 4=fall	r 0 <u>-</u>	1 2	3 4	1	2 3	4	1	2 3	4

Figure A-77. Box plots illustrating the seasonal distribution of 24-h avg PM_{2.5} concentrations for Seattle, WA.

Table A-33. Inter-sampler correlation statistics for each pair of PM_{2.5} monitors reporting to AQS for Seattle, WA.

		Α	В	С
Α		1.00	0.89	0.86
		(0.0, 0.00)	(6.3, 0.16)	(4.5, 0.14)
		352	337	331
В	LEGEND		1.00	0.80
	R		(0.0, 0.00)	(7.8, 0.20)
	(P90, COD)		354	335
С	N			1.00
				(0.0, 0.00)
				591

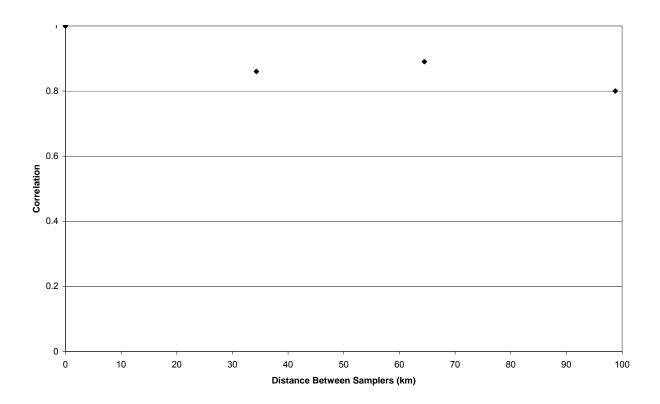


Figure A-78. PM_{2.5} inter-sampler correlations as a function of distance between monitors for Seattle, WA.

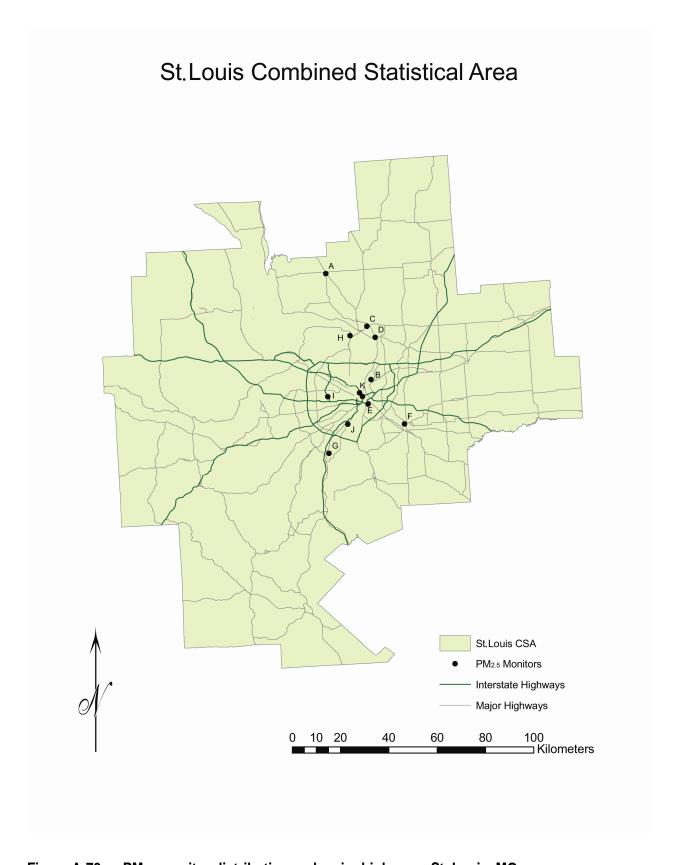


Figure A-79. PM_{2.5} monitor distribution and major highways, St. Louis, MO.

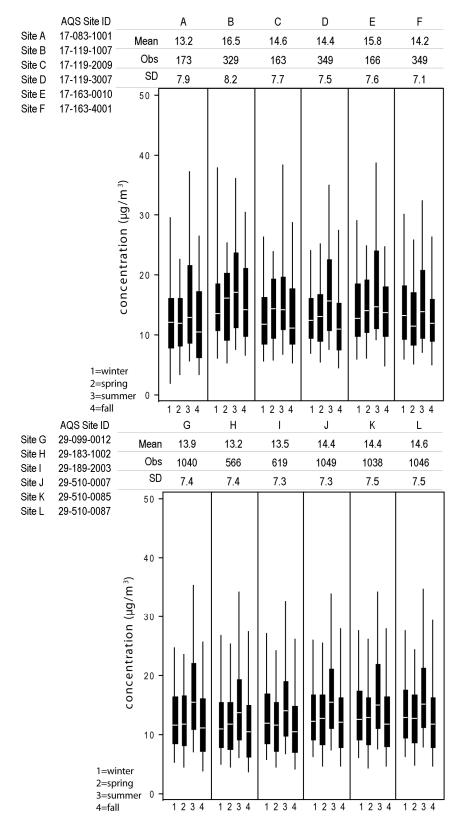


Figure A-80. Box plots illustrating the seasonal distribution of 24-h avg $PM_{2.5}$ concentrations for St. Louis, MO.

Table A-34. Inter-sampler correlation statistics for each pair of PM_{2.5} monitors reporting to AQS for St. Louis, MO.

Site	Α	В	С	D	Е	F	G	Н	ı	J	K	L
Α	1.00	0.85	0.93	0.89	0.88	0.86	0.85	0.93	0.86	0.84	0.84	0.88
	(0.0, 0.00)	(10.5, 0.23)	(4.7, 0.17)	(5.0, 0.17)	(7.3, 0.20)	(6.2, 0.18)	(4.8, 0.17)	(4.1, 0.13)	(4.4, 0.16)	(6.0, 0.18)	(5.7, 0.19)	(5.3, 0.17)
-	173	156	129	162	146	156	167	158	162	168	169	166
В		1.00	0.89	0.86	0.85	0.82	0.88	0.89	0.88	0.86	0.87	0.89
		(0.0, 0.00)	(8.6, 0.16)	(7.4, 0.16)	(7.7, 0.16)	(8.6, 0.17)	(7.8, 0.17)	(8.2, 0.18)	(7.9, 0.17)	(7.7, 0.17)	(7.5, 0.16)	(6.8, 0.14)
		329	135	301	156	306	312	305	318	316	316	315
С			1.00	0.94	0.91	0.88	0.90	0.96	0.94	0.90	0.89	0.94
			(0.0, 0.00)	(4.0, 0.11)	(6.4, 0.13)	(5.7, 0.13)	(5.5, 0.13)	(3.9, 0.11)	(5.3, 0.11)	(5.7, 0.13)	(5.6, 0.14)	(4.4, 0.11)
			163	139	124	133	158	141	144	158	160	156
D				1.00	0.89	0.84	0.89	0.94	0.92	0.89	0.88	0.92
				(0.0, 0.00)	(5.7, 0.13)	(6.0, 0.15)	(4.9, 0.12)	(4.3, 0.12)	(4.5, 0.11)	(4.7, 0.13)	(4.6, 0.12)	(3.9, 0.11)
				349	156	314	331	315	326	335	332	336
Е					1.00	0.90	0.91	0.90	0.91	0.93	0.91	0.95
					(0.0, 0.00)	(5.5, 0.12)	(6.2, 0.13)	(5.8, 0.16)	(5.3, 0.14)	(5.1, 0.13)	(4.9, 0.13)	(3.7, 0.10)
					166	152	159	153	157	160	163	160
F						1.00	0.89	0.86	0.88	0.88	0.85	0.88
						(0.0, 0.00)	(5.4, 0.12)	(6.1, 0.16)	(5.4, 0.13)	(5.3, 0.14)	(5.6, 0.14)	(5.4, 0.13)
		LEG	END			349	333	317	332	337	332	334
G		F	₹				1.00	0.93	0.94	0.96	0.93	0.94
		(P90,	COD)				(0.0, 0.00)	(4.3, 0.10)	(3.3, 0.08)	(2.9, 0.08)	(3.9, 0.10)	(3.8, 0.10)
		N	1				1040	533	586	994	987	992
Н								1.00	0.96	0.95	0.95	0.96
								(0.0, 0.00)	(3.0, 0.08)	(4.1, 0.12)	(3.8, 0.12)	(4.0, 0.11)
								566	550	552	546	544
1									1.00	0.96	0.95	0.96
									(0.0, 0.00)	(3.1, 0.09)	(3.1, 0.10)	(3.4, 0.09)
									619	605	599	598
J										1.00	0.96	0.97
										(0.0, 0.00)	(2.5, 0.09)	(2.5, 0.08)
										1049	1001	1007
K											1.00	0.97
											(0.0, 0.00)	(1.9, 0.07)
											1038	991
L												1.00
												(0.0, 0.00)
												1046

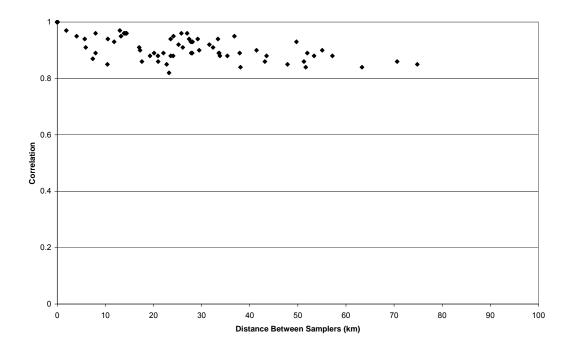


Figure A-81 PM_{2.5} inter-sampler correlations as a function of distance between monitors for St. Louis, MO.

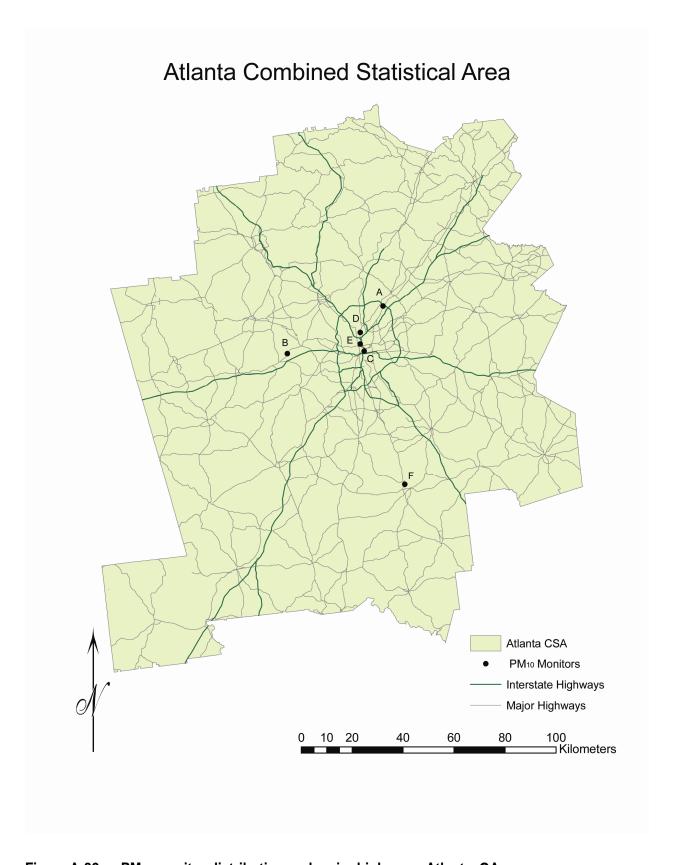


Figure A-82. PM_{10} monitor distribution and major highways, Atlanta, GA.

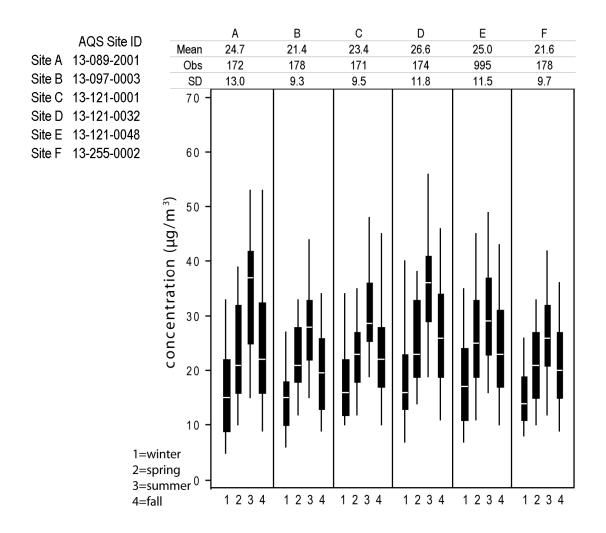


Figure A-83. Box plots illustrating the seasonal distribution of 24-h avg PM_{10} concentrations for Atlanta, GA.

Table A-35. Inter-sampler correlation statistics for each pair of PM₁₀ monitors reporting to AQS for Atlanta, GA.

Site	Α	В	С	D	E	F
A	1.00	0.69	0.74	0.78	0.70	0.59
	(0.0, 0.00)	(18.0, 0.22)	(15.0, 0.20)	(13.0, 0.20)	(16.0, 0.22)	(20.0, 0.24)
	172	169	162	165	158	164
В		1.00	0.88	0.79	0.71	0.82
		(0.0, 0.00)	(6.0, 0.12)	(14.5, 0.17)	(16.0, 0.18)	(10.0, 0.14)
		178	167	170	162	169
С			1.00	0.88	0.84	0.82
			(0.0, 0.00)	(9.0, 0.13)	(10.0, 0.13)	(9.0, 0.15)
			171	162	155	161
D	LEGEND			1.00	0.75	0.74
	R			(0.0, 0.00)	(12.0, 0.15)	(15.0, 0.20)
	(P90, COD)			174	158	166
E	N				1.00	0.67
					(0.0, 0.00)	(17.0, 0.19)
					995	163
F						1.00
						(0.0, 0.00)
						178

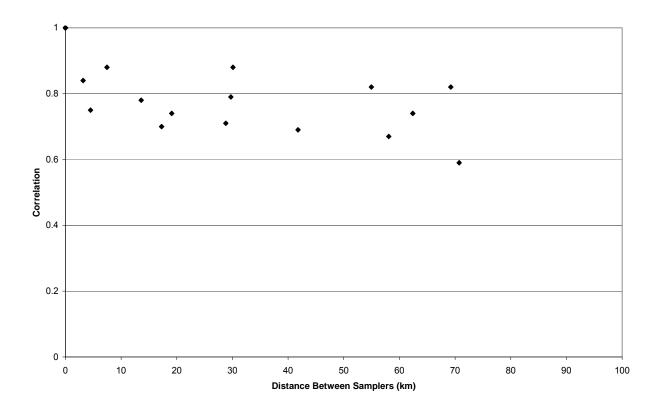


Figure A-84. PM₁₀ inter-sampler correlations as a function of distance between monitors for Atlanta, GA.

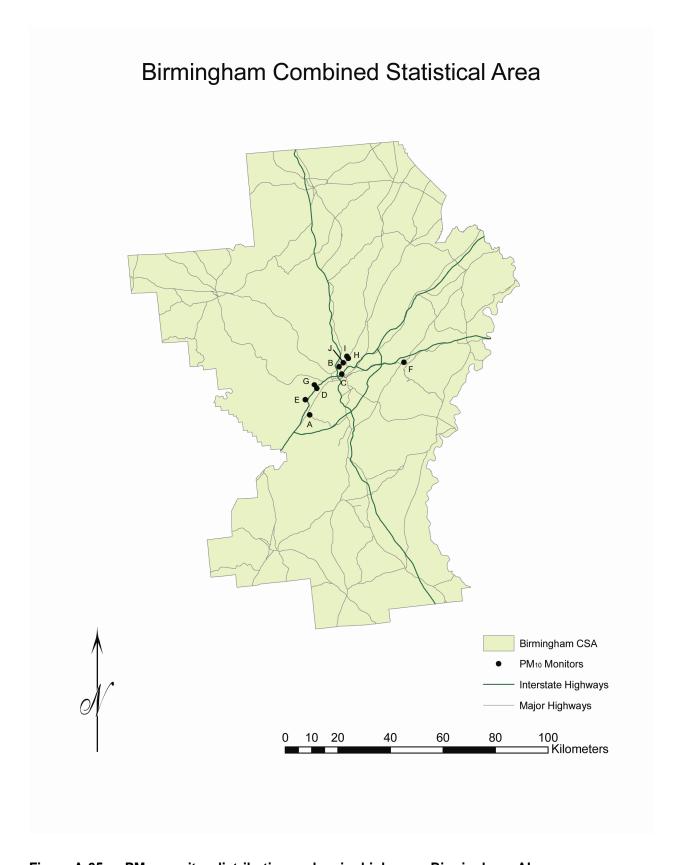


Figure A-85. PM₁₀ monitor distribution and major highways, Birmingham, AL.

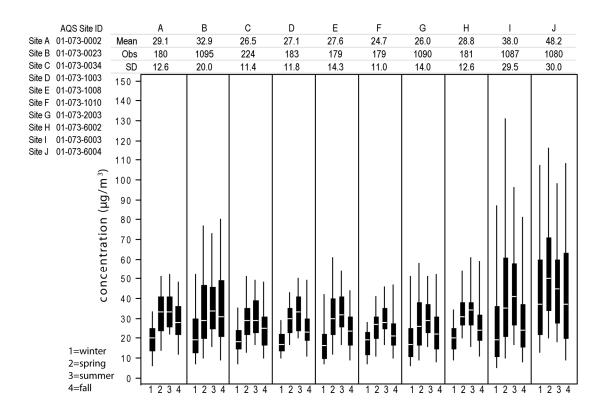


Figure A-86. Box plots illustrating the seasonal distribution of 24-h avg PM_{10} concentrations for Birmingham, AL.

Table A-36. Inter-sampler correlation statistics for each pair of PM_{10} monitors reporting to AQS for Birmingham, AL.

	Α	В	С	D	E	F	G	Н	ļ	J
Α	1.00	0.80	0.88	0.86	0.78	0.84	0.77	0.78	0.41	0.29
	(0.0, 0.00)	(23.0, 0.16)	(11.0, 0.11)	(12.0, 0.13)	(12.0, 0.14)	(13.0, 0.13)	(15.0, 0.18)	(14.0, 0.15)	(41.0, 0.30)	(68.0, 0.34)
	180	180	174	180	176	171	180	178	179	177
В		1.00	0.82	0.74	0.61	0.73	0.75	0.71	0.26	0.23
		(0.0, 0.00)	(23.0, 0.17)	(25.0, 0.21)	(26.0, 0.20)	(26.0, 0.19)	(25.0, 0.20)	(25.0, 0.22)	(51.0, 0.33)	(57.0, 0.36)
		1095	224	183	179	179	1090	181	1087	1080
С			1.00	0.84	0.66	0.78	0.74	0.80	0.33	0.41
			(0.0, 0.00)	(10.0, 0.12)	(15.0, 0.16)	(12.0, 0.14)	(14.0, 0.17)	(13.0, 0.15)	(43.0, 0.32)	(62.0, 0.34)
			224	175	171	168	224	173	222	221
D				1.00	0.67	0.79	0.76	0.84	0.45	0.41
				(0.0, 0.00)	(15.0, 0.17)	(12.0, 0.15)	(14.0, 0.17)	(11.0, 0.12)	(42.0, 0.30)	(65.5, 0.34)
				183	178	173	183	180	182	180
Ε					1.00	0.67	0.64	0.56	0.33	0.12
					(0.0, 0.00)	(16.0, 0.15)	(18.0, 0.18)	(19.0, 0.20)	(45.0, 0.32)	(71.0, 0.39)
					179	169	179	176	178	176
F						1.00	0.75	0.74	0.36	0.21
		LEGEND				(0.0, 0.00)	(14.0, 0.16)	(15.0, 0.17)	(43.0, 0.32)	(71.0, 0.38)
		R				179	179	171	178	177
G		(P90, COD)					1.00	0.76	0.59	0.15
		N					(0.0, 0.00)	(15.0, 0.19)	(43.0, 0.27)	(63.0, 0.39)
							1090	181	1083	1075
Н								1.00	0.58	0.50
								(0.0, 0.00)	(38.0, 0.27)	(59.0, 0.31)
								181	180	178
I									1.00	0.05
									(0.0, 0.00)	(72.0, 0.40)
									1087	1072
J										1.00
										(0.0, 0.00)
										1080

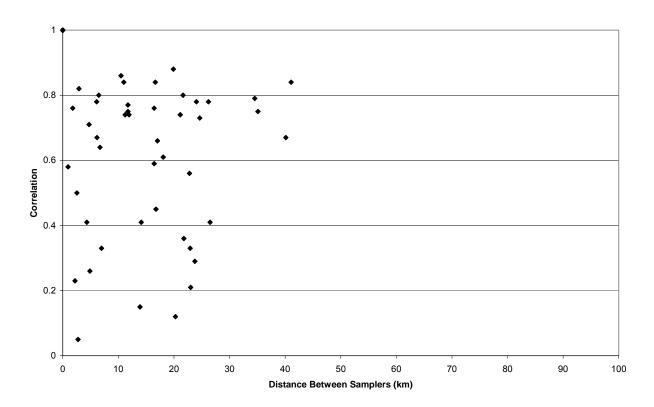


Figure A-87 PM_{10} inter-sampler correlations as a function of distance between monitors for Birmingham, AL.

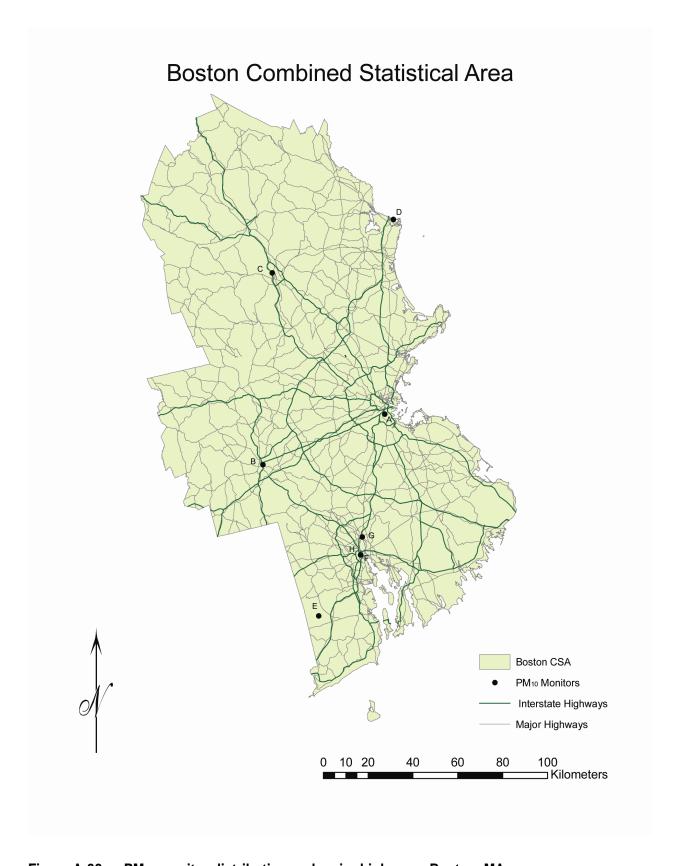


Figure A-88. PM_{10} monitor distribution and major highways, Boston, MA.



Figure A-89. Box plots illustrating the seasonal distribution of 24-h avg PM_{10} concentrations for Boston, MA.

Table A-37. Inter-sampler correlation statistics for each pair of PM₁₀ monitors reporting to AQS for Boston, MA.

Site	Α	В	С	D	Е	F	G	Н
Α	1.00	0.69	0.69	0.73	0.71	0.84	0.70	0.79
	(0.0, 0.00)	(15.0, 0.22)	(12.0, 0.20)	(10.0, 0.22)	(13.0, 0.30)	(8.0, 0.14)	(15.0, 0.20)	(10.0, 0.17)
	191	169	179	173	171	182	169	167
В		1.00	0.66	0.56	0.45	0.69	0.77	0.65
		(0.0, 0.00)	(17.0, 0.24)	(19.0, 0.28)	(24.0, 0.39)	(15.0, 0.21)	(12.0, 0.17)	(16.0, 0.20)
		174	167	161	158	169	156	154
С			1.00	0.72	0.47	0.62	0.64	0.59
			(0.0, 0.00)	(10.0, 0.22)	(17.0, 0.33)	(12.0, 0.21)	(16.0, 0.26)	(16.0, 0.24)
			182	170	168	179	166	164
D				1.00	0.63	0.68	0.59	0.69
				(0.0, 0.00)	(11.0, 0.29)	(10.0, 0.23)	(19.0, 0.30)	(13.0, 0.26)
		LEGEND		175	163	173	161	158
Е		Pearson R			1.00	0.84	0.58	0.80
		(P90, COD)			(0.0, 0.00)	(13.0, 0.29)	(22.0, 0.38)	(15.0, 0.33)
		` ' '			171	171	161	157
F		n				1.00	0.81	0.95
						(0.0, 0.00)	(11.0, 0.16)	(5.0, 0.11)
						182	169	167
G							1.00	0.79
							(0.0, 0.00)	(10.0, 0.13)
							169	154
Н								1.00
								(0.0, 0.00)
								168

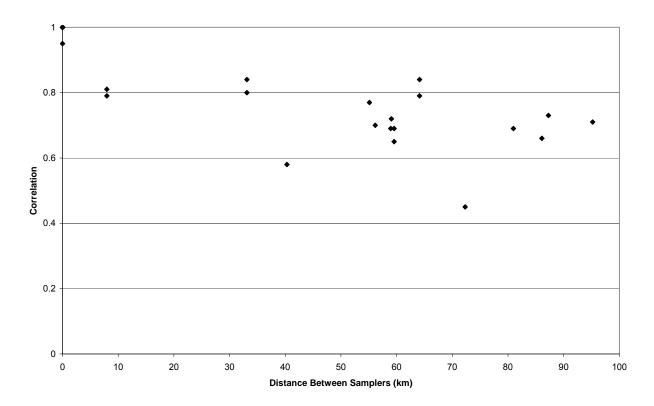


Figure A-90 $\,$ PM $_{10}$ inter-sampler correlations as a function of distance between monitors for Boston, MA.

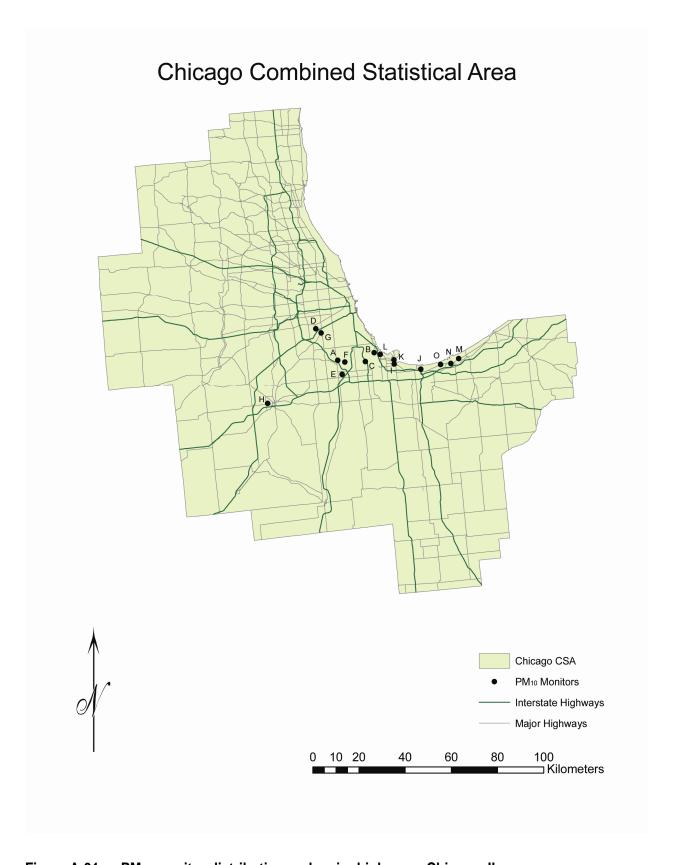


Figure A-91. PM₁₀ monitor distribution and major highways, Chicago, IL.

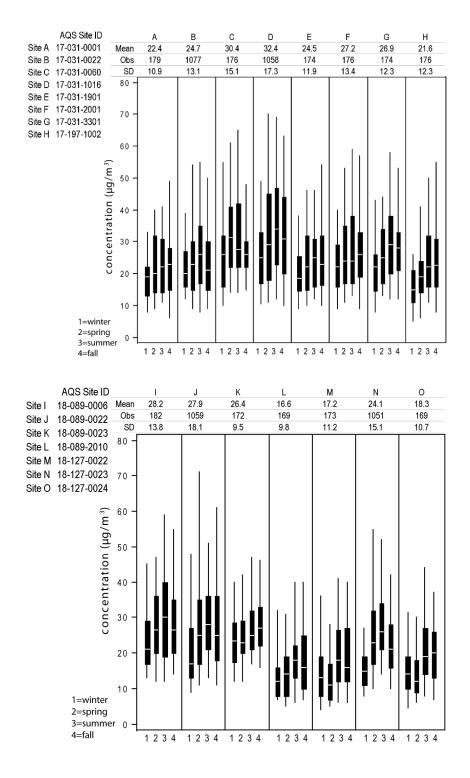


Figure A-92. Box plots illustrating the seasonal distribution of 24-h avg PM₁₀ concentrations for Chicago, IL.

Table A-38. Inter-sampler correlation statistics for each pair of PM₁₀ monitors reporting to AQS for Chicago, IL.

Site	Α	В	С	D	E	F	G	Н		J	K	L	М	N	0
Α	1.00	0.78	0.68	0.83	0.93	0.92	0.86	0.79	0.75	0.14	0.69	0.89	0.55	0.27	0.75
	(0.0, 0.00)	(15.0, 0.18)	(23.0, 0.24)	(25.0, 0.22)	(8.0, 0.10)	(11.0, 0.13)	(12.0, 0.17)	(12.0, 0.18)	(13.0, 0.18)	(22.0, 0.28)	(15.0, 0.21)	(13.0, 0.22)	(21.0, 0.30)	(16.0, 0.24)	(15.0, 0.23)
	179	176	173	174	171	173	171	167	179	173	169	166	170	171	166
В		1.00	0.66	0.74	0.76	0.84	0.79	0.74	0.68	0.36	0.73	0.81	0.66	0.33	0.77
		(0.0, 0.00)	(23.0, 0.23)	(23.0, 0.21)	(14.0, 0.17)	(12.0, 0.15)	(13.0, 0.18)	(17.0, 0.23)	(16.0, 0.19)	(22.0, 0.24)	(16.0, 0.19)	(18.0, 0.27)	(23.0, 0.31)	(19.0, 0.25)	(20.0, 0.26)
		1077	173	1040	171	173	171	173	179	1041	169	166	170	1033	166
С			1.00	0.63	0.72	0.74	0.64	0.62	0.62	0.19	0.49	0.66	0.39	0.27	0.61
			(0.0, 0.00)	(26.0, 0.23)	(21.0, 0.21)	(18.5, 0.19)	(19.0, 0.21)	(22.0, 0.27)	(23.0, 0.20)	(26.5, 0.28)	(24.0, 0.23)	(29.0, 0.37)	(33.0, 0.40)	(26.0, 0.26)	(31.0, 0.35)
			176	171	169	170	168	164	176	170	166	163	167	168	163
D				1.00	0.79	0.85	0.79	0.74	0.70	0.23	0.69	0.82	0.61	0.29	0.76
				(0.0, 0.00)	(27.0, 0.21)	(19.0, 0.17)	(23.0, 0.19)	(27.0, 0.28)	(20.0, 0.19)	(32.0, 0.29)	(24.0, 0.23)	(31.0, 0.36)	(36.0, 0.39)	(31.0, 0.29)	(31.0, 0.33)
				1058	169	171	169	171	177	1022	168	166	168	1020	164
E					1.00	0.93	0.84	0.86	0.74	0.17	0.70	0.89	0.53	0.34	0.73
					(0.0, 0.00)	(9.0, 0.10)	(13.0, 0.16)	(10.0, 0.16)	(13.0, 0.16)	(22.0, 0.26)	(15.0, 0.19)	(15.0, 0.25)	(22.0, 0.33)	(17.0, 0.22)	(18.0, 0.25)
					174	168	166	163	174	168	164	161	166	166	163
F						1.00 (0.0, 0.00)	0.84	0.86 (13.0, 0.19)	0.77 (12.0, 0.14)	0.21	0.75	0.89	0.62 (25.0, 0.34)	0.32	0.80 (20.0, 0.27)
							(12.0, 0.15)			(23.0, 0.25)	(16.0, 0.17)	(18.0, 0.28)		(20.0, 0.23)	
_						176	169 1.00	165 0.77	176 0.69	170 0.28	166 0.74	163 0.86	167 0.52	168 0.33	163 0.70
G							(0.0, 0.00)	(15.0, 0.22)	(14.0, 0.18)	(23.0, 0.26)	(14.0, 0.18)	(19.0, 0.31)	(24.0, 0.36)	(19.0, 0.24)	(22.0, 0.30)
							174	162	174	168	165	161	165	166	163
Н							1/4	1.00	0.71	0.18	0.66	0.83	0.59	0.36	0.76
								(0.0, 0.00)	(16.0, 0.23)	(27.0, 0.30)	(18.0, 0.25)	(13.0, 0.23)	(19.0, 0.29)	(17.0, 0.25)	(14.0, 0.22)
								176	170	169	161	157	161	168	157
								170	1.00	0.24	0.69	0.75	0.50	0.39	0.68
<u> </u>			LEGEND						(0.0, 0.00)	(22.0, 0.24)	(12.0, 0.15)	(20.0, 0.32)	(26.0, 0.37)	(16.0, 0.21)	(21.0, 0.30)
			LEGEND						182	176	172	169	173	174	169
			R						102	1.00	0.49	0.38	0.22	0.48	0.22
			(P90, COD)							(0.0, 0.00)	(15.0, 0.20)	(25.0, 0.34)	(28.0, 0.36)	(22.0, 0.21)	(27.0, 0.33)
			N							1059	166	163	168	1018	164
K										1000	1.00	0.80	0.54	0.49	0.65
											(0.0, 0.00)	(17.0, 0.32)	(24.0, 0.35)	(14.0, 0.19)	(21.0, 0.31)
											172	161	165	164	162
L												1.00	0.60	0.33	0.78
												(0.0, 0.00)	(15.0, 0.26)	(19.0, 0.31)	(10.0, 0.20)
												169	161	161	158
M													1.00	0.24	0.84
													(0.0, 0.00)	(21.0, 0.35)	(8.0, 0.16)
													173	165	161
N							·							1.00	0.31
							·							(0.0, 0.00)	(19.0, 0.29)
			•		•		•	•	•	•				1051	161
0															1.00
															(0.0, 0.00)
															169
		_			_		_	_	_	_		_	_	_	

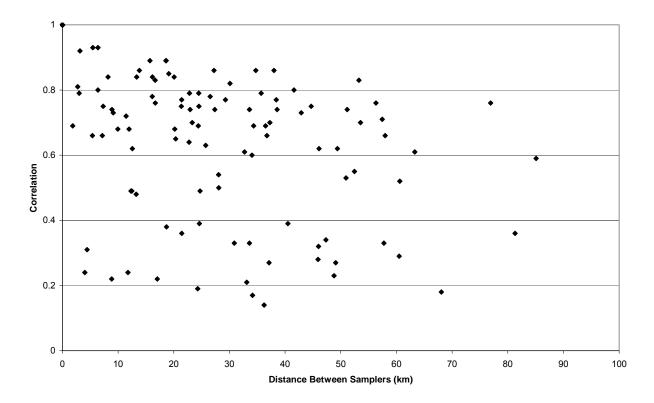


Figure A-93. PM_{10} inter-sampler correlations as a function of distance between monitors for Chicago, IL.

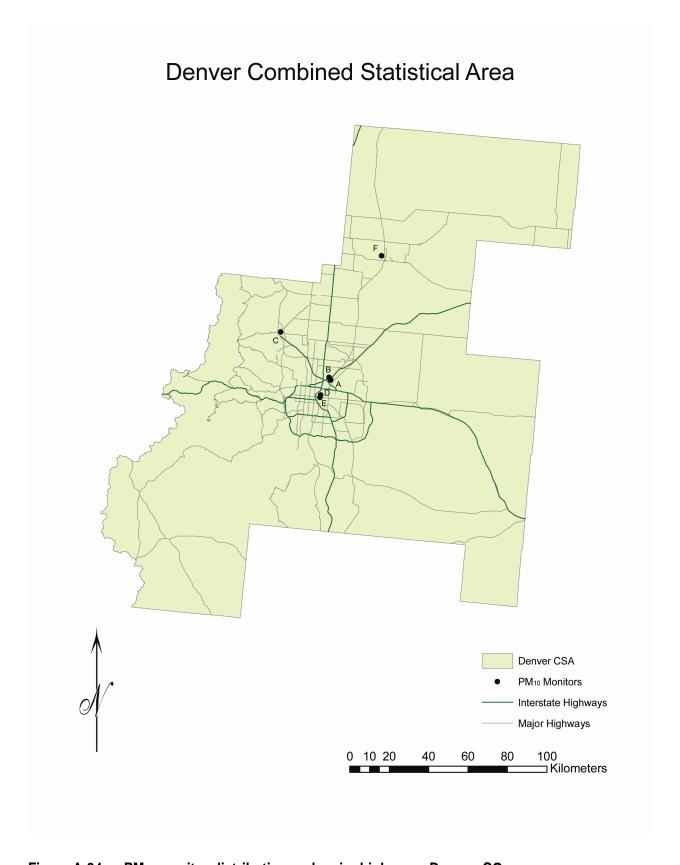


Figure A-94. PM₁₀ monitor distribution and major highways, Denver, CO.

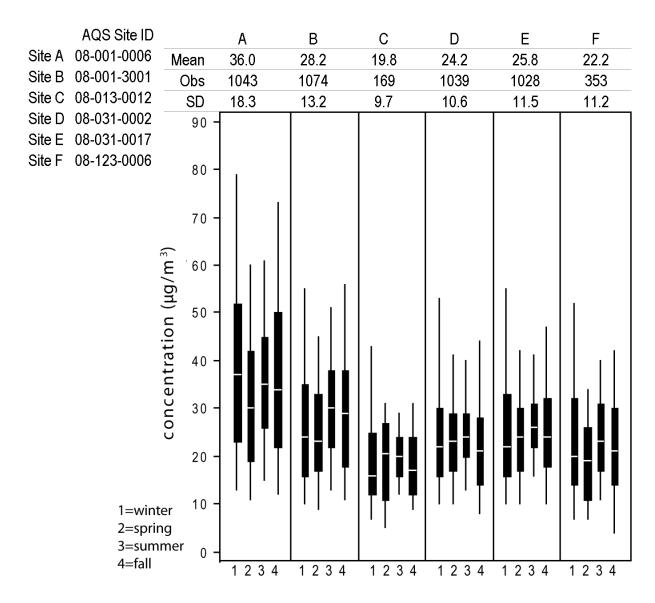


Figure A-95. Box plots illustrating the seasonal distribution of 24-h avg PM₁₀ concentrations for Denver, CO.

Table A-39. Inter-sampler correlation statistics for each pair of PM₁₀ monitors reporting to AQS for Denver, CO.

Site	Α	В	С	D	E	F
A	1.00	0.84	0.43	0.70	0.72	0.67
	(0.0, 0.00)	(20.0, 0.16)	(36.0, 0.34)	(29.0, 0.24)	(26.0, 0.21)	(27.0, 0.28)
	1043	1022	164	987	980	339
3		1.00	0.57	0.72	0.74	0.72
		(0.0, 0.00)	(28.0, 0.27)	(17.0, 0.18)	(15.0, 0.16)	(18.0, 0.22)
		1074	169	1019	1007	348
С			1.00	0.75	0.72	0.51
			(0.0, 0.00)	(17.0, 0.23)	(16.0, 0.23)	(16.0, 0.23)
	LEGEND		169	169	156	164
)	R			1.00	0.89	0.52
	(P90, COD)			(0.0, 0.00)	(9.0, 0.13)	(17.0, 0.22)
	N N			1039	976	341
					1.00	0.58
					(0.0, 0.00)	(17.0, 0.23)
					1028	330
=						1.00
						(0.0, 0.00)
						353

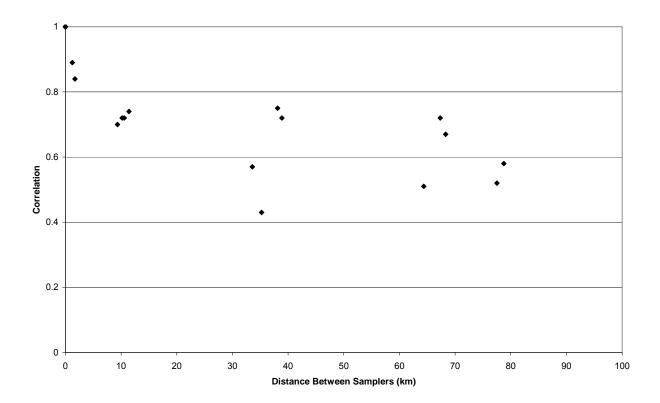


Figure A-96. PM_{10} inter-sampler correlations as a function of distance between monitors for Denver, CO.

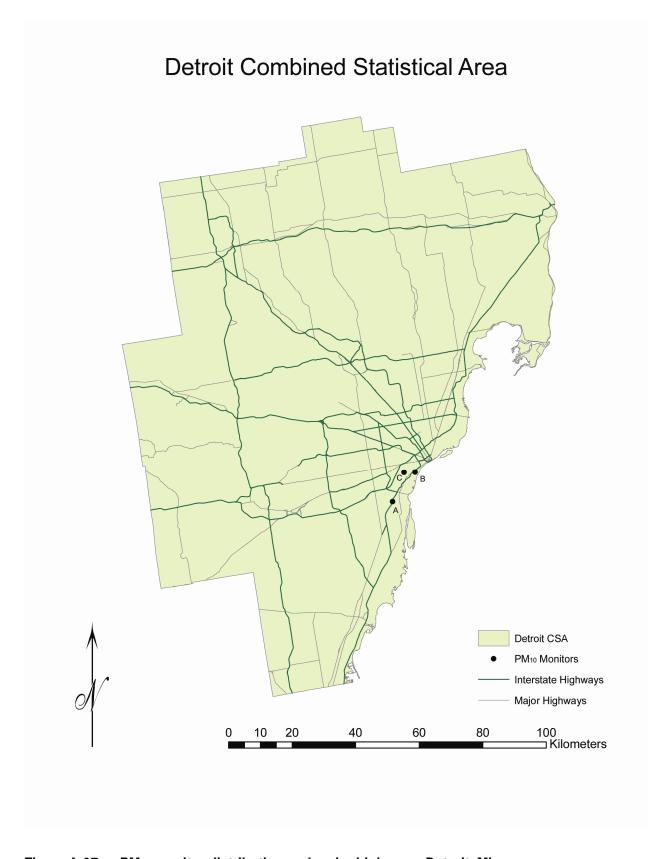


Figure A-97. PM₁₀ monitor distribution and major highways, Detroit, MI.

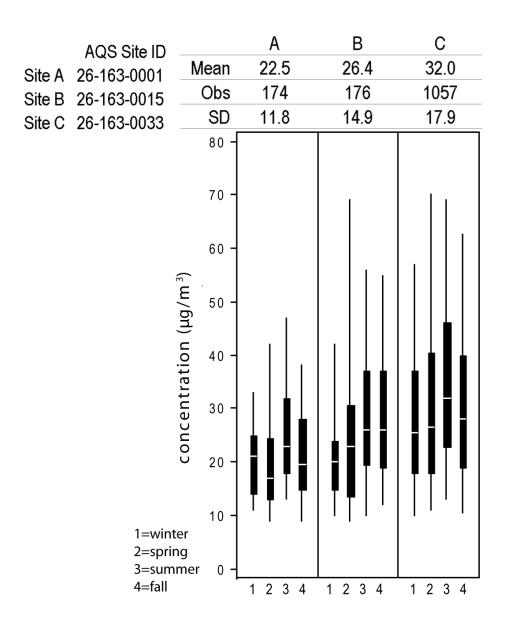


Figure A-98. Box plots illustrating the seasonal distribution of 24-h avg PM₁₀ concentrations for Detroit, MI.

Table A-40. Inter-sampler correlation statistics for each pair of PM_{10} monitors reporting to AQS for Detroit, MI.

Site	Α	В	С
Α	1.00	0.77	0.74
	(0.0, 0.00)	(14.0, 0.18)	(28.0, 0.26)
	174	169	172
В		1.00	0.79
	LEGEND	(0.0, 0.00)	(21.0, 0.21)
	R	176	174
С	(P90, COD)		1.00
	N		(0.0, 0.00)
			1057

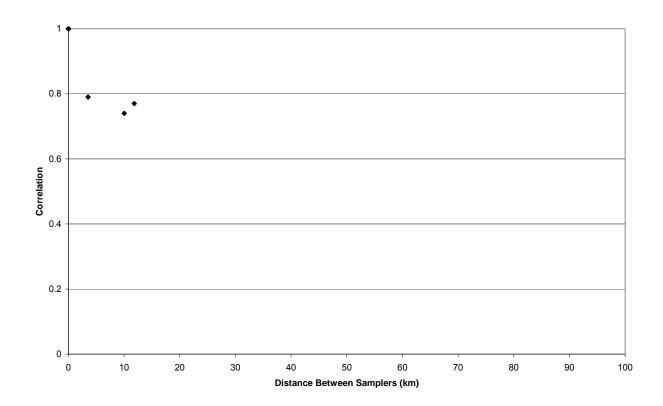


Figure A-99. PM₁₀ inter-sampler correlations as a function of distance between monitors for Detroit, MI.

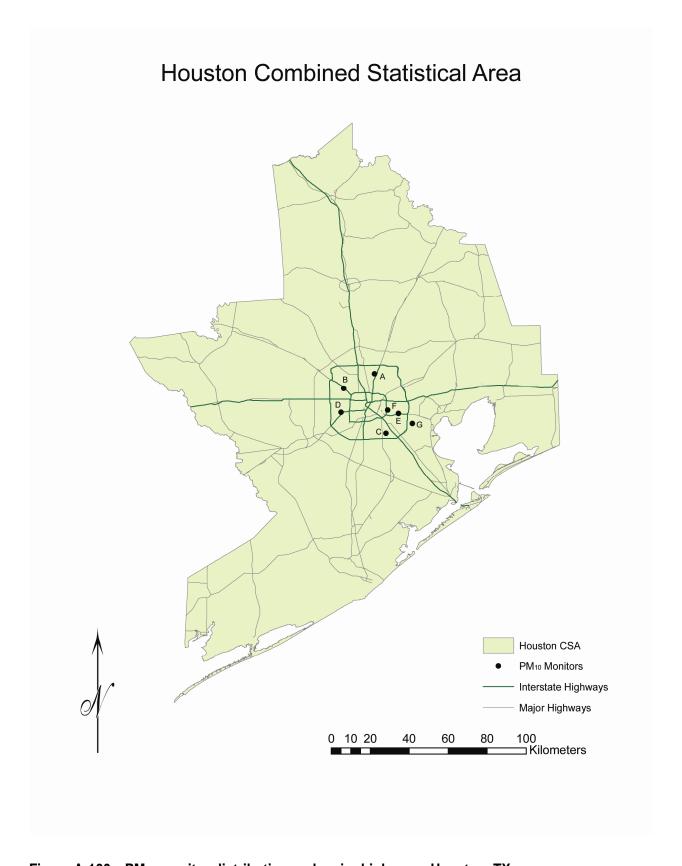


Figure A-100. PM₁₀ monitor distribution and major highways, Houston, TX.

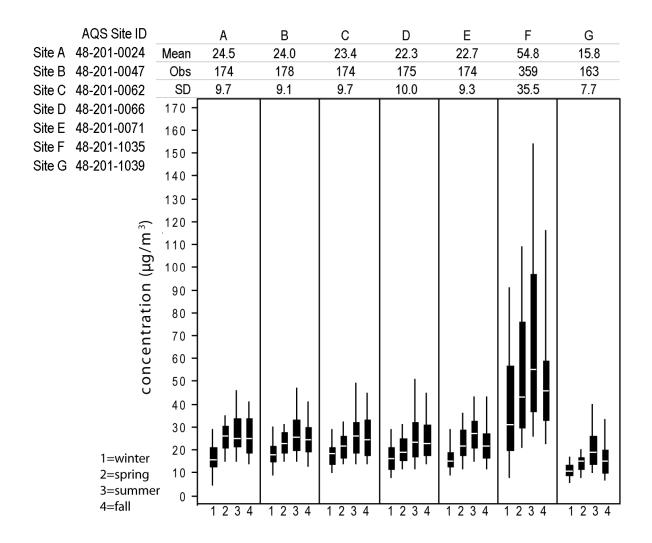


Figure A-101. Box plots illustrating the seasonal distribution of 24-h avg PM_{10} concentrations for Houston, TX.

Table A-41. Inter-sampler correlation statistics for each pair of PM₁₀ monitors reporting to AQS for Houston, TX.

SITE	Α	В	C	D	E	F	G
A	1.00	0.84	0.78	0.76	0.43	0.56	0.75
	(0.0, 0.00)	(9.0, 0.12)	(11.0, 0.16)	(12.0, 0.16)	(15.0, 0.20)	(77.0, 0.37)	(17.0, 0.28)
	174	163	158	165	167	159	156
В		1.00	0.86	0.86	0.38	0.52	0.79
		(0.0, 0.00)	(9.0, 0.11)	(9.0, 0.12)	(15.0, 0.19)	(74.0, 0.39)	(16.0, 0.26)
		178	156	160	163	158	152
С			1.00	0.83	0.41	0.38	0.85
			(0.0, 0.00)	(10.0, 0.14)	(17.0, 0.19)	(74.0, 0.40)	(14.5, 0.25)
			174	156	159	151	150
D				1.00	0.32	0.43	0.76
				(0.0, 0.00)	(18.0, 0.20)	(81.0, 0.43)	(16.0, 0.23)
				175	163	155	154
E					1.00	0.15	0.38
	LEGEND				(0.0, 0.00)	(78.0, 0.43)	(20.0, 0.28)
	_ R				174	158	157
F	(P90, COD)					1.00	0.37
	N N					(0.0, 0.00)	(92.0, 0.54)
						359	149
G							1.00
							(0.0, 0.00)
							163

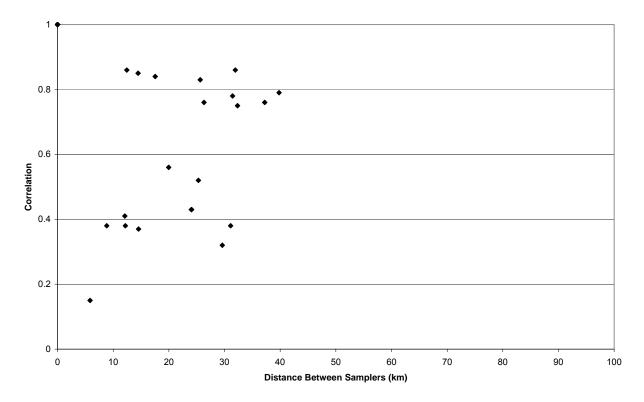


Figure A-102. PM_{10} inter-sampler correlations as a function of distance between monitors for Houston, TX.

Figure A-103. PM₁₀ monitor distribution and major highways, Los Angeles, CA.

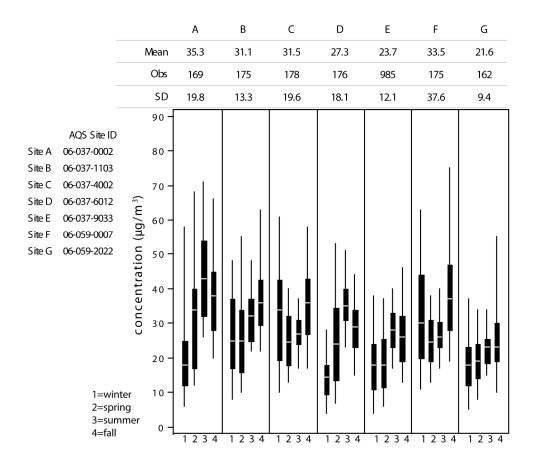


Figure A-104. Box plots illustrating the seasonal distribution of 24-h avg PM₁₀ concentrations for Los Angeles, CA.

Table A-42. Inter-sampler correlation statistics for each pair of PM₁₀ monitors reporting to AQS for Los Angeles, CA.

Site	A	В	С	D	E	F	G
Α	1.00	0.73	0.44	0.73	0.47	0.41	0.65
	(0.0, 0.00)	(17.0, 0.17)	(27.0, 0.24)	(24.0, 0.22)	(28.0, 0.26)	(29.0, 0.24)	(30.0, 0.28)
	169	153	154	157	169	155	143
В		1.00	0.61	0.57	0.52	0.42	0.73
		(0.0, 0.00)	(14.0, 0.14)	(21.0, 0.24)	(23.0, 0.23)	(15.0, 0.16)	(20.0, 0.23)
		175	159	159	173	162	149
С			1.00	0.65	0.43	0.93	0.73
	LEGEND		(0.0, 0.00)	(27.0, 0.28)	(22.0, 0.24)	(11.0, 0.11)	(21.0, 0.22)
	Pearson R		178	158	176	159	148
D	(P90,tCOD)			1.00	0.70	0.65	0.57
D				(0.0, 0.00)	(16.0, 0.20)	(26.0, 0.28)	(19.5, 0.24)
	n			176	175	161	150
E					1.00	0.29	0.38
					(0.0, 0.00)	(26.0, 0.25)	(20.0, 0.24)
					985	173	159
F						1.00	0.65
						(0.0, 0.00)	(21.5, 0.22)
			•			175	150
G	·		·			·	1.00
			•			•	(0.0, 0.00)
			•				162

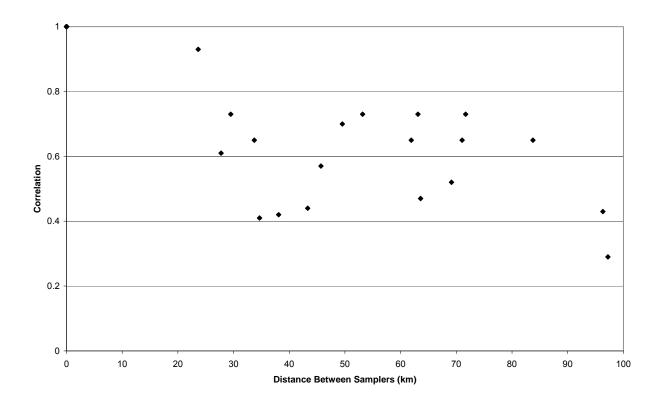


Figure A-105. PM₁₀ inter-sampler correlations as a function of distance between monitors for Los Angeles, CA.

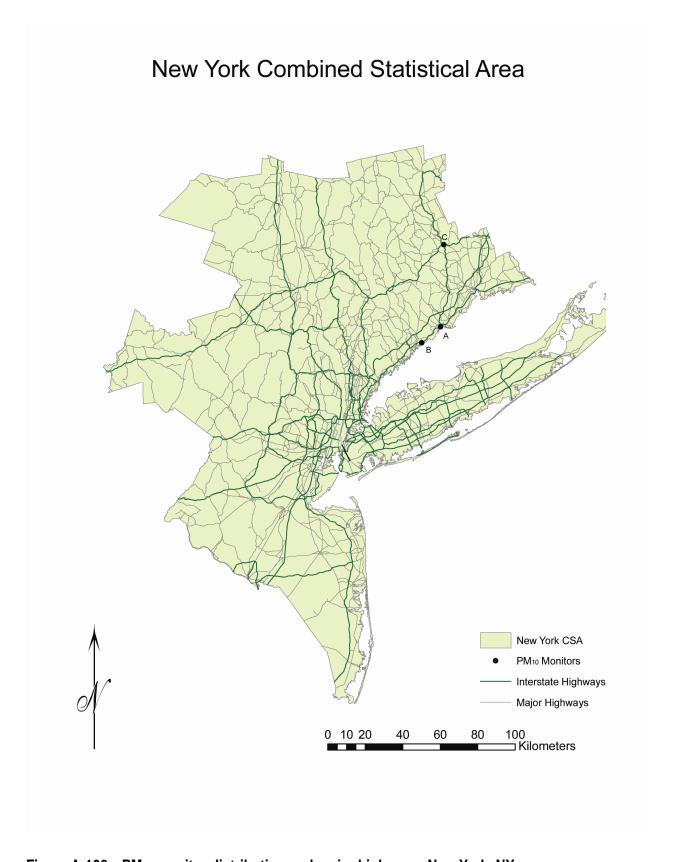


Figure A-106. PM₁₀ monitor distribution and major highways, New York, NY.

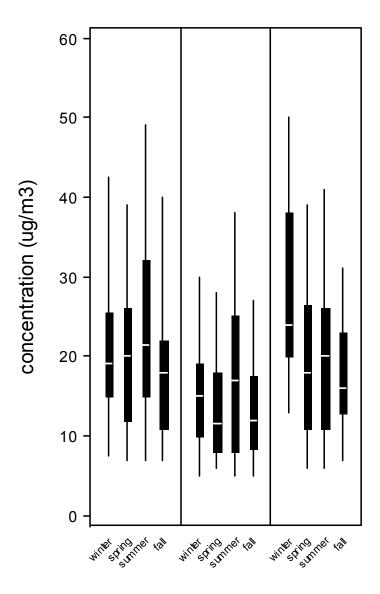


Figure A-107. Box plots illustrating the seasonal distribution of 24-h avg PM₁₀ concentrations for New York, NY.

Table A-43. Inter-sampler correlation statistics for each pair of PM_{10} monitors reporting to AQS for New York, NY.

Site	Α	В	С
Α	1.00	0.88	0.82
	(0.0, 0.00)	(11.0, 0.20)	(12.0, 0.16)
	167	156	164
В		1.00	0.74
	LEGEND	(0.0, 0.00)	(18.0, 0.25)
	R	169	166
С	(P90, COD)		1.00
	N		(0.0, 0.00)
			178

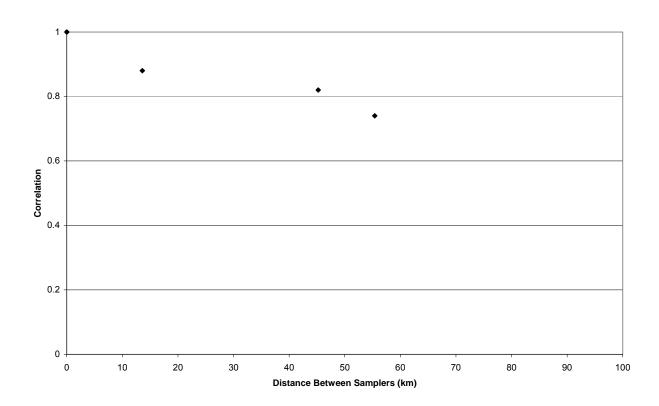


Figure A-108. PM₁₀ inter-sampler correlations as a function of distance between monitors for New York, NY.

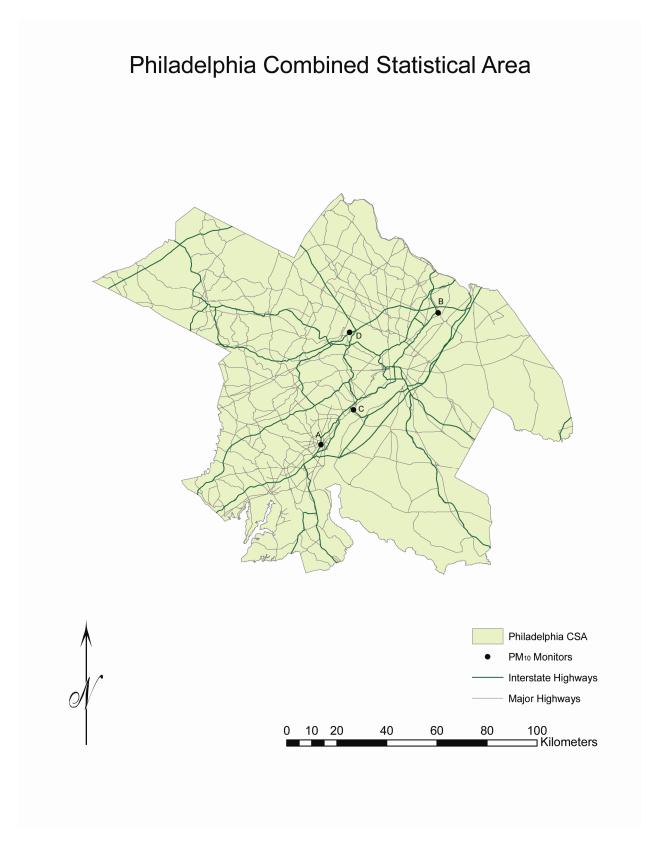


Figure A-109. PM₁₀ monitor distribution and major highways, Philadelphia, PA.

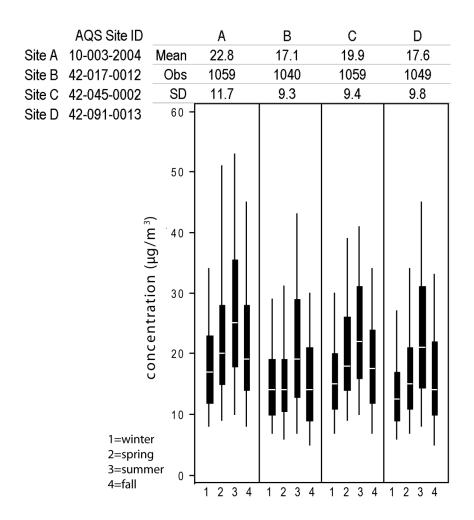


Figure A-110. Box plots illustrating the seasonal distribution of 24-h avg PM_{10} concentrations for Philadelphia, PA.

Table A-44. Inter-sampler correlation statistics for each pair of PM_{10} monitors reporting to AQS for Philadelphia, PA.

Site	Α	В	С	D
Α	1.00	0.81	0.64	0.84
	(0.0, 0.00)	(13.0, 0.21)	(14.0, 0.19)	(12.0, 0.20)
	1059	1005	1025	1013
В		1.00	0.71	0.93
		(0.0, 0.00)	(11.0, 0.20)	(6.0, 0.12)
		1040	1006	994
С			1.00	0.73
	LEGEND		(0.0, 0.00)	(11.0, 0.19)
	R		1059	1014
D	(P90, COD)			1.00
	N			(0.0, 0.00)
				1049

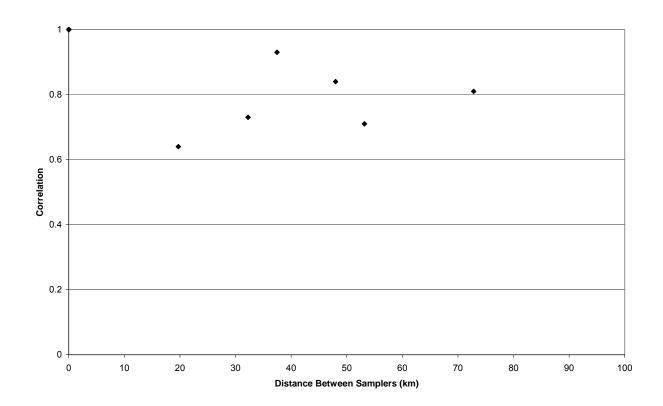
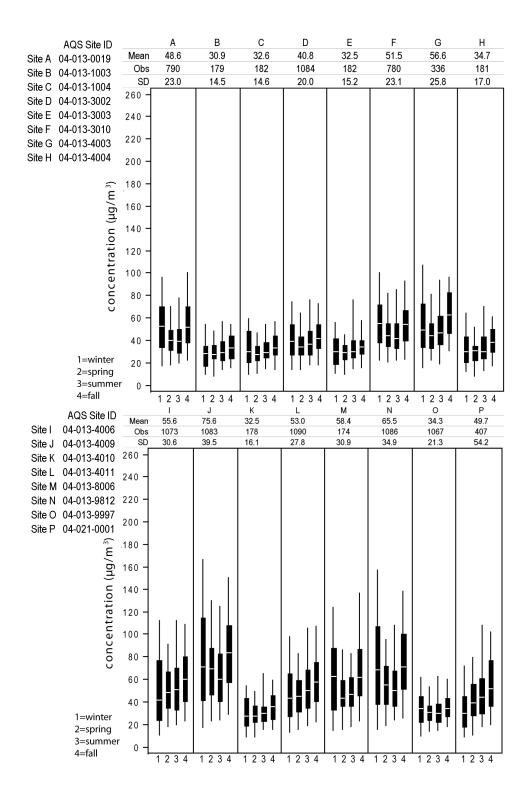



Figure A-111. PM₁₀ inter-sampler correlations as a function of distance between monitors for Philadelphia, PA.

Figure A-112. PM₁₀ monitor distribution and major highways, Phoenix, AZ.

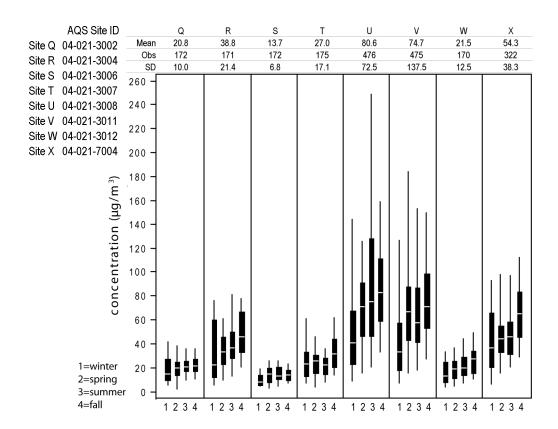


Figure A-113. Box plots illustrating the seasonal distribution of 24-h avg PM_{10} concentrations for Phoenix, AZ.

Table A-45. Inter-sampler correlation statistics for each pair of PM_{10} monitors reporting to AQS for Phoenix, AZ.

Site	Α	В	С	D	E	F	G	Н	I	J	K	L	М
Α	1.00	0.71	0.85	0.85	0.67	0.94	0.86	0.77	0.73	0.83	0.77	0.70	0.87
	(0.0, 0.00)	(38.0, 0.25)	(33.0, 0.21)	(21.0, 0.12)	(38.0, 0.23)	(14.0, 0.09)	(22.0, 0.13)	(34.0, 0.21)	(35.0, 0.18)	(59.0, 0.24)	(34.0, 0.24)	(30.0, 0.17)	(28.5, 0.16)
	790	178	181	788	181	779	335	180	772	781	177	789	170
В		1.00	0.84	0.82	0.85	0.67	0.74	0.81	0.67	0.68	0.75	0.60	0.63
		(0.0, 0.00)	(13.0, 0.12)	(23.0, 0.19)	(11.0, 0.11)	(37.0, 0.29)	(47.0, 0.30)	(13.0, 0.13)	(49.0, 0.30)	(84.0, 0.43)	(16.0, 0.15)	(51.0, 0.31)	(56.0, 0.32)
		179	179	177	179	175	179	178	175	176	175	178	164
С			1.00	0.88	0.81	0.78	0.80	0.81	0.70	0.73	0.81	0.63	0.75
			(0.0, 0.00)	(20.0, 0.16)	(12.0, 0.11)	(38.0, 0.27)	(44.0, 0.28)	(13.0, 0.13)	(48.0, 0.29)	(84.0, 0.41)	(15.0, 0.14)	(49.0, 0.29)	(55.0, 0.30)
			182	180	182	178	182	181	178	179	178	181	167
D				1.00	0.76	0.88	0.81	0.82	0.76	0.78	0.79	0.65	0.83
				(0.0, 0.00)	(23.0, 0.17)	(22.0, 0.14)	(29.0, 0.16)	(18.0, 0.17)	(39.0, 0.20)	(71.0, 0.31)	(22.0, 0.19)	(35.0, 0.20)	(42.0, 0.21)
				1084	180	778	334	179	1062	1072	176	1080	172
Е					1.00	0.64	0.68	0.74	0.66	0.59	0.67	0.51	0.61
					(0.0, 0.00)	(40.0, 0.27)	(47.0, 0.29)	(16.0, 0.14)	(48.0, 0.29)	(88.0, 0.42)	(15.0, 0.15)	(49.0, 0.30)	(58.0, 0.31)
					182	178	182	181	178	179	178	181	167
F						1.00	0.83	0.76	0.75	0.86	0.74	0.69	0.87
						(0.0, 0.00)	(22.0, 0.13)	(36.0, 0.25)	(32.0, 0.17)	(54.0, 0.21)	(41.0, 0.28)	(30.0, 0.17)	(25.0, 0.15)
						780	331	177	762	772	175	779	167
G							1.00	0.77	0.65	0.78	0.71	0.65	0.80
							(0.0, 0.00)	(44.0, 0.26)	(38.0, 0.19)	(48.0, 0.19)	(46.0, 0.30)	(36.0, 0.19)	(33.0, 0.16)
							336	181	326	333	178	335	169
Н								1.00	0.79	0.81	0.79	0.69	0.72
			LECEND					(0.0, 0.00)	(47.0, 0.26)	(79.0, 0.39)	(16.0, 0.14)	(43.0, 0.27)	(53.0, 0.29)
			LEGEND R	,				181	177	178	177	180	167
Τ			(P90, COD) N						1.00	0.79	0.76	0.69	0.68
				,					(0.0, 0.00)	(52.0, 0.22)	(48.0, 0.29)	(33.0, 0.17)	(38.0, 0.20)
									1073	1061	174	1068	171
J										1.00	0.78	0.73	0.80
										(0.0, 0.00)	(83.0, 0.42)	(57.0, 0.23)	(51.0, 0.22)
										1083	175	1078	171
K											1.00	0.72	0.68
											(0.0, 0.00)	(45.0, 0.29)	(56.0, 0.32)
											178	177	164
L												1.00	0.63
												(0.0, 0.00)	(42.0, 0.20)
												1090	173
М													1.00
													(0.0, 0.00)
													174

	N	0	P	Q	R	S	т	U	V	W	X
Α	0.87	0.68	0.47	0.53	0.68	0.40	0.69	0.50	0.27	0.56	0.65
	(39.0, 0.18)	(28.0, 0.17)	(29.0, 0.19)	(49.0, 0.42)	(34.0, 0.27)	(64.0, 0.57)	(40.0, 0.34)	(82.0, 0.31)	(49.0, 0.27)	(48.0. 0.43)	(31.0, 0.20)
	784	783	406	171	171	171	174	475	474	169	262
В	0.59	0.75	0.75	0.73	0.63	0.55	0.59	0.53	0.66	0.65	0.64
	(67.0, 0.37)	(15.0, 0.15)	(22.0, 0.17)	(23.0, 0.27)	(30.0, 0.25)	(32.0, 0.43)	(21.0, 0.24)	(94.0, 0.41)	(62.0, 0.34)	(24.0, 0.30)	(46.0, 0.29)
С	178 0.70	179 0.87	175 0.80	169 0.70	168 0.71	169 0.48	172 0.64	172 0.56	177 0.71	167 0.62	155 0.60
	(69.0, 0.35)	(11.0, 0.12)	(19.0, 0.15)	(24.0, 0.28)	(26.0, 0.24)	(36.0, 0.44)	(22.0, 0.24)	(91.0, 0.40)	(59.0, 0.32)	(28.0, 0.31)	(43.0, 0.28)
	181	182	178	172	171	172	175	175	180	170	157
D	0.78	0.86	0.73	0.63	0.68	0.49	0.65	0.66	0.45	0.58	0.70
	(57.0, 0.25)	(15.0, 0.12)	(30.0, 0.19)	(38.0, 0.38)	(27.0, 0.25)	(46.0, 0.53)	(31.0, 0.31)	(87.0, 0.34)	(59.0, 0.30)	(38.0, 0.39)	(32.0, 0.21)
Е	1075 0.60	1056 0.73	405 0.68	170 0.72	169 0.64	170 0.43	173 0.48	474 0.42	473 0.69	168 0.51	318 0.52
<u> </u>	(67.0, 0.35)	(14.0, 0.14)	(21.0, 0.17)	(21.0, 0.28)	(27.0, 0.24)	(33.0, 0.44)	(21.0, 0.25)	(93.0, 0.41)	(63.0, 0.32)	(25.0, 0.32)	(46.0, 0.28)
	181	182	178	172	171	172	175	175	180	170	157
F	0.91	0.68	0.46	0.48	0.63	0.38	0.63	0.47	0.28	0.42	0.66
	(35.0, 0.14) 774	(31.0, 0.21) 773	(30.0, 0.22) 403	(60.0, 0.46) 169	(37.0, 0.30) 167	(68.0, 0.60) 168	(45.0, 0.39) 172	(80.0, 0.31) 470	(50.0, 0.27) 469	(57.0, 0.47) 166	(34.0, 0.22) 259
G	0.77	0.57	0.47	0.55	0.65	0.46	0.62	0.49	0.44	0.57	0.64
	(35.0, 0.16)	(41.0, 0.25)	(36.5, 0.24)	(61.0, 0.47)	(41.0, 0.30)	(73.0, 0.61)	(58.0, 0.41)	(78.0, 0.28)	(45.0, 0.24)	(59.0, 0.48)	(32.0, 0.22)
	332	336	330	172	171	172	175	329	334	170	185
Н	0.70	0.75	0.82	0.63	0.74	0.55	0.62	0.60	0.76	0.64	0.76
	(66.0, 0.33) 180	(15.0, 0.14) 181	(18.0, 0.15) 177	(29.0, 0.31) 171	(24.5, 0.22) 170	(37.0, 0.46) 171	(24.0, 0.25) 174	(84.0, 0.38) 174	(58.0, 0.29) 179	(30.0, 0.33) 169	(39.0, 0.25) 156
$\overline{}$	0.76	0.61	0.52	0.57	0.71	0.51	0.58	0.59	0.37	0.51	0.80
	(42.0, 0.18)	(49.0, 0.27)	(39.0, 0.22)	(66.0, 0.47)	(41.0, 0.27)	(77.0, 0.60)	(60.0, 0.40)	(72.0, 0.27)	(46.0, 0.23)	(63.0, 0.47)	(30.0, 0.16)
	1064	1045	397	169	168	168	171	461	461	167	314
J	0.91	0.58	0.41	0.48	0.65	0.48	0.65	0.51	0.28	0.46	0.74
	(29.0, 0.12) 1074	(83.0, 0.38) 1055	(68.0, 0.31) 404	(103.0, 0.58) 169	(75.0, 0.40) 168	(115.0, 0.69) 169	(92.0, 0.51) 172	(69.0, 0.26) 473	(59.0, 0.27) 472	(101.0, 0.58) 167	(62.0, 0.27) 319
K	0.69	0.71	0.75	0.52	0.64	0.52	0.62	0.71	0.68	0.55	0.68
	(73.0, 0.36)	(16.0, 0.16)	(19.0, 0.18)	(28.0, 0.29)	(27.0, 0.23)	(34.0, 0.44)	(22.0, 0.24)	(89.0, 0.40)	(59.0, 0.33)	(28.0, 0.32)	(44.0, 0.29)
	177	178	174	168	167	168	171	171	176	166	153
_L	0.68	0.55	0.51	0.47	0.57	0.48	0.49	0.59	0.33	0.50	0.68
	(48.0, 0.20) 1081	(44.0, 0.26) 1063	(37.0, 0.22) 406	(66.0, 0.47) 171	(44.5, 0.29) 170	(71.0, 0.60) 171	(62.0, 0.40) 174	(75.0, 0.27) 475	(53.0, 0.24) 474	(67.0, 0.48) 169	(29.0, 0.18)
M	0.86	0.81	0.75	0.48	0.64	0.37	0.62	0.46	0.65	0.44	0.59
	(32.0, 0.16)	(53.0, 0.29)	(47.0, 0.30)	(74.0, 0.48)	(51.0, 0.32)	(80.0, 0.61)	(58.5, 0.41)	(62.0, 0.31)	(48.0, 0.26)	(68.0, 0.49)	(42.0, 0.24)
	173	174	165	157	158	158	160	165	168	156	145
N	1.00 (0.0, 0.00)	(66.0, 0.32)	0.41 (51.0, 0.27)	(88.0, 0.53)	0.67 (62.5, 0.35)	0.42 (98.0, 0.65)	0.63 (75.0, 0.46)	0.42 (71.0, 0.29)	0.26 (55.0, 0.27)	0.40 (88.0, 0.54)	0.60 (48.0, 0.24)
	1086	1059	403	171	170	171	174	470	469	169	319
0	1000	1.00	0.90	0.61	0.64	0.39	0.60	0.72	0.59	0.55	0.64
		(0.0, 0.00)	(35.0, 0.22)	(28.0, 0.31)	(25.0, 0.24)	(38.0, 0.47)	(22.0, 0.26)	(94.0, 0.39)	(69.0, 0.35)	(29.0, 0.33)	(44.0, 0.26)
P		1067	407 1.00	172 0.67	171 0.81	172 0.58	175 0.78	475 0.82	473 0.64	170 0.71	317 0.67
<u> </u>			(0.0, 0.00)	(32.0, 0.29)	(22.0, 0.19)	(44.0, 0.45)	(21.0, 0.21)	(80.0, 0.30)	(52.0, 0.23)	(32.0, 0.31)	(39.0, 0.24)
			407	169	170	169	172	400	404	167	197
Q				1.00	0.72	0.65	0.57	0.36	0.58	0.68	0.47
				(0.0, 0.00)	(40.0, 0.33)	(15.0, 0.28)	(23.0, 0.24)	(104.0, 0.53)	(78.0, 0.46)	(15.0, 0.22)	(62.0, 0.43)
R				172	162 1.00	163 0.66	167 0.68	165 0.53	171 0.82	161 0.68	148 0.68
-15					(0.0, 0.00)	(55.0, 0.48)	(32.0, 0.27)	(75.0, 0.35)	(47.0, 0.25)	(40.0, 0.34)	(39.0, 0.24)
					171	162	165	164	171	160	148
S						1.00	0.60	0.46	0.59	0.72	0.52
						(0.0, 0.00)	(28.0, 0.35)	(115.0, 0.65)	(86.0, 0.59)	(19.0, 0.28)	(74.0, 0.58)
т						172	167 1.00	165 0.56	171 0.66	162 0.68	149 0.61
			I FO	END			(0.0, 0.00)	(94.0, 0.47)	(71.0, 0.39)	(18.0, 0.24)	(51.5, 0.37)
				R			175	169	174	165	150
U			. (Pan	COD)				1.00	0.54	0.52	0.71
			(1 30,	N COD)				(0.0, 0.00) 476	(66.0, 0.24)	(101.0, 0.53)	(61.0, 0.25)
V								4/0	464 1.00	165 0.60	204 0.64
<u> </u>									(0.0, 0.00)	(78.0, 0.47)	(35.0, 0.20)
									475	169	206
W										1.00	0.56
										(0.0, 0.00) 170	(63.0, 0.44)
X										1/0	145 1.00
											(0.0, 0.00)
											322

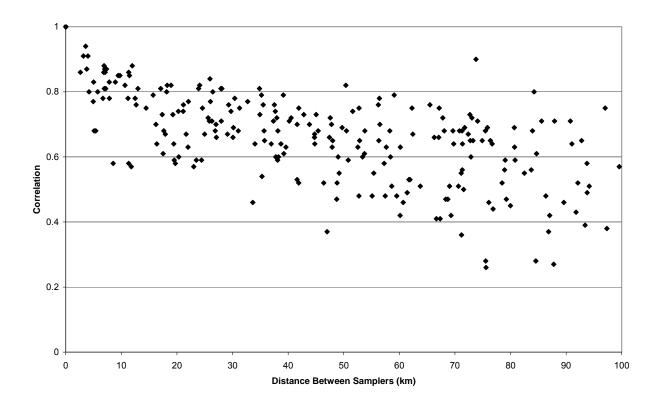


Figure A-114. PM_{10} inter-sampler correlations as a function of distance between monitors for Phoenix, AZ.

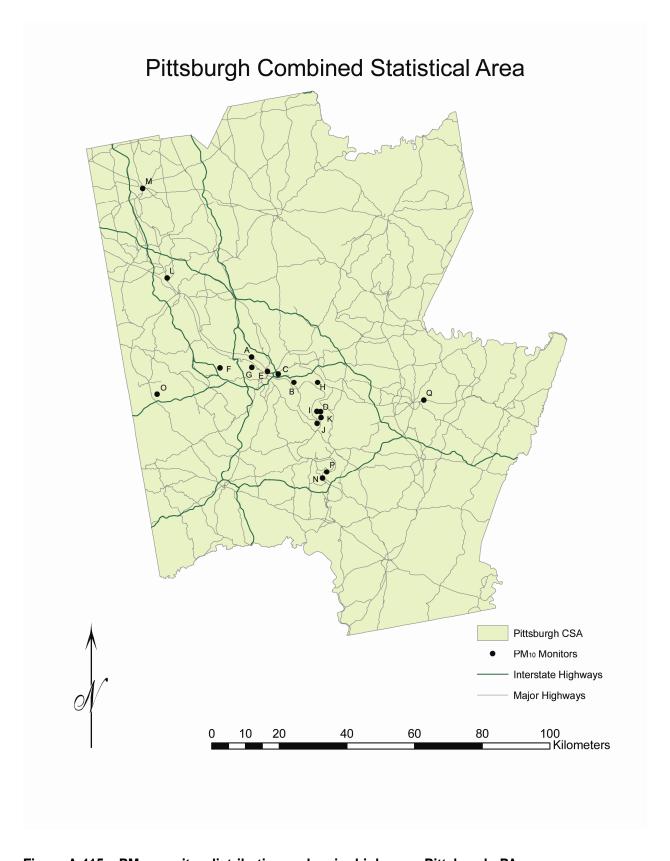


Figure A-115. PM₁₀ monitor distribution and major highways, Pittsburgh, PA.

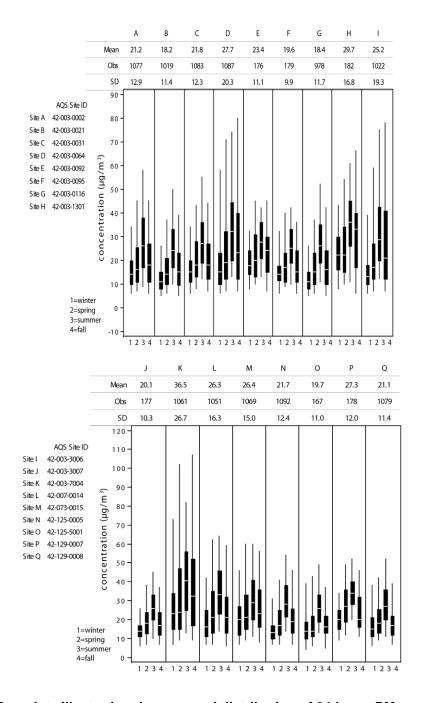


Figure A-116. Box plots illustrating the seasonal distribution of 24-h avg PM_{10} concentrations for Pittsburgh, PA.

Table A-46. Inter-sampler correlation statistics for each pair of PM_{10} monitors reporting to AQS for Pittsburgh, PA.

Site	Α	В	С	D	Е	F	G	Н	
Δ	1.00	0.93	0.93	0.80	0.92	0.89	0.93	0.79	0.86
	(0.0, 0.00)	(9.0, 0.15)	(8.0. 0.14)	(23.0, 0.21)	(8.0, 0.12)	(14.0. 0.18)	(8.0, 0.14)	(16.0, 0.17)	(18.0, 0.18)
t	1077	1002	1065	1070	175	178	960	181	1005
В		1.00	0.96	0.80	0.91	0.92	0.97	0.81	0.89
		(0.0, 0.00)	(8.0, 0.15)	(29.0, 0.24)	(11.0, 0.20)	(6.0, 0.16)	(5.0, 0.10)	(25.0, 0.29)	(22.0, 0.20)
		1019	1007	1012	163	166	911	169	954
C			1.00	0.81	0.94	0.93	0.94	0.77	0.87
			(0.0, 0.00)	(23.0, 0.20)	(6.0, 0.11)	(7.0, 0.12)	(8.0, 0.13)	(21.0, 0.22)	(19.0, 0.17)
			1083	1075	173	176	966	179	1010
D				1.00	0.72	0.66	0.76	0.83	0.88
				(0.0, 0.00)	(21.0, 0.20)	(26.0, 0.24)	(27.0, 0.24)	(14.0, 0.18)	(16.0, 0.14)
				1087	176	179	970	182	1014
E					1.00	0.90	0.90	0.78	0.77
	LEGE	-ND			(0.0, 0.00)	(10.0, 0.14)	(10.0, 0.17)	(20.0, 0.20)	(20.0, 0.19)
					176	173	154	175	166
F	Pears					1.00	0.94	0.70	0.74
F	(P90, C	COD)				(0.0, 0.00)	(7.0, 0.12)	(25.0, 0.27)	(25.0, 0.22)
	'n	,				179	157	178	168
G							1.00	0.70	0.87
							(0.0, 0.00)	(22.0, 0.28)	(20.0, 0.19)
							978	160	910
Н			·	· · · · · · · · · · · · · · · · · · ·				1.00	0.76
								(0.0, 0.00)	(17.0, 0.20)
								182	171
			·	· · · · · · · · · · · · · · · · · · ·					1.00
									(0.0, 0.00)
									1022

	J	K	L	М	N	0	Р	Q
Δ	0.84	0.76	0.88	0.85	0.86	0.77	0.78	0.86
	(14.0, 0.20)	(40.0, 0.30)	(15.0, 0.18)	(16.0, 0.19)	(11.0, 0.16)	(16.0, 0.22)	(15.0, 0.19)	(11.0, 0.15)
	176	1044	1033	1052	1074	166	177	1061
В	0.93	0.76	0.88	0.81	0.91	0.76	0.83	0.88
	(7.0, 0.16)	(43.0, 0.36)	(19.0, 0.23)	(20.0, 0.26)	(10.0, 0.16)	(12.0, 0.19)	(18.0, 0.28)	(10.0, 0.18)
	164 0.90	986 0.75	982 0.88	994 0.83	1016 0.89	157 0.78	165 0.88	1003 0.90
U	(8.0, 0.13)	(39.0, 0.30)	(14.0, 0.17)	(15.0, 0.19)	(9.0, 0.12)	(12.0, 0.18)	(13.0, 0.19)	(9.0, 0.12)
	174	1049	1039	105.0. 0. 191	1080	164	175	1067
D	0.73	0.84	0.80	0.78	0.76	0.57	0.64	0.74
U	(24.0, 0.22)	(24.0, 0.22)	(20.0, 0.18)	(20.0, 0.20)	(25.0, 0.20)	(28.0, 0.26)	(20.0, 0.25)	(26.0, 0.21)
	177	1055	1043	1061	1084	167	178	1071
F	0.86	0.65	0.83	0.80	0.84	0.77	0.84	0.85
	(10.0, 0.16)	(36.0. 0.29)	(16.0, 0.16)	(14.0, 0.17)	(12.0, 0.14)	(14.0, 0.19)	(13.0, 0.16)	(11.0. 0.15)
	171	169	169	172	176	161	172	174
F	0.90	0.57	0.82	0.75	0.86	0.83	0.84	0.86
	(7.0, 0.12)	(41.0, 0.34)	(20.0, 0.20)	(19.0, 0.22)	(11.0, 0.14)	(9.0, 0.15)	(16.0, 0.22)	(9.0, 0.14)
	174	172	172	175	179	164	175	177
G	0.92	0.73	0.87	0.78	0.89	0.81	0.84	0.86
	(7.0. 0.13)	(45.0, 0.35)	(18.0, 0.21)	(19.0, 0.24)	(9.0, 0.15)	(11.0. 0.17)	(17.0, 0.26)	(10.0, 0.16)
	156	955	938	952	975	146	157	967
Н	0.74	0.68	0.77	0.78	0.74	0.60	0.65	0.76
	(23.0, 0.26)	(26.0, 0.22)	(15.0, 0.18)	(17.0, 0.18)	(21.0, 0.22)	(27.0, 0.29)	(19.0, 0.22)	(21.5, 0.24)
	176	175	175	178	182	167	177	180
	(22.0, 0.20)	(30.0.0.25)	(16.0, 0.17)	(18.0, 0.20)	(20.0, 0.17)	(26.0, 0.24)	(21.0, 0.25)	(22.0, 0.19)
	166	992	978	998	1019	158	167	1009
	1.00	0.66	0.79	0.72	0.88	0.78	0.86	0.86
J	(0.0, 0.00)	(44.5, 0.33)	(18.0, 0.20)	(18.0, 0.22)	(8.0. 0.13)	(11.0. 0.17)	(16.0, 0.21)	(8.0. 0.15)
	177	170	170	173	177	163	173	175
K		1.00	0.74	0.75	0.70	0.47	0.58	0.68
		(0.0, 0.00)	(31.0, 0.26)	(33.0, 0.24)	(40.0, 0.30)	(44.0, 0.36)	(34.0. 0.30)	(43.0, 0.30)
		1061	1017	1035	1058	160	171	1048
L			1.00	0.87	0.85	0.70	0.74	0.80
			(0.0, 0.00)	(13.0, 0.16)	(16.0, 0.17)	(22.0, 0.24)	(17.0, 0.21)	(18.0, 0.19)
			1051	1025	1048	160	171	1035
M				1.00	0.74	0.64	0.67	0.77
				(0.0, 0.00)	(18.0, 0.21)	(19.0, 0.26)	(17.0, 0.22)	(18.0, 0.19)
		- LEG	END	1069	1067	163	174	1053
N		Poars	son R	,	1.00	0.72	0.86	0.86
					(0.0, 0.00) 1092	(13.0, 0.18) 167	178	(10.0, 0.14) 1076
0		- (P90,	COD)		1092	100	0.75	0.69
		- 1	n	-		(0.0, 0.00)	(18.0, 0.25)	(14.0, 0.19)
						167	163	165
P						107	1.00	0.84
							(0.0, 0.00)	(15.0, 0.21)
							178	176
Q								1.00
-								(0.0, 0.00)
•	•	•						1079



Figure A-117. PM₁₀ inter-sampler correlations as a function of distance between monitors for Pittsburgh, PA.

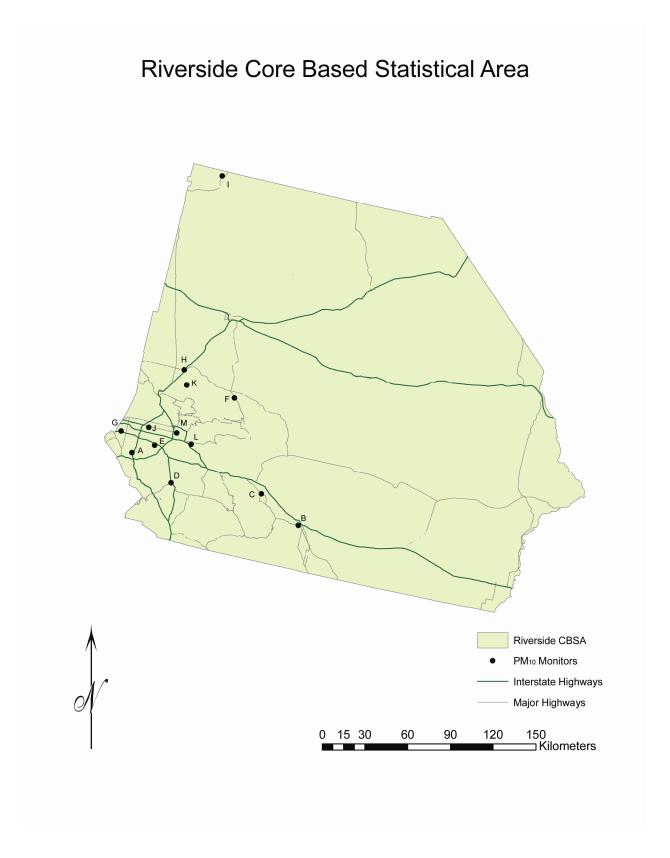


Figure A-118. PM₁₀ monitor distribution and major highways, Riverside, CA.

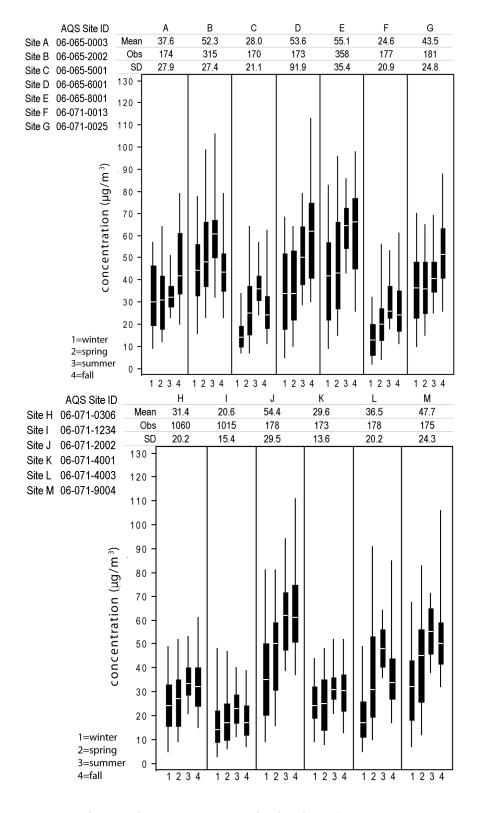


Figure A-119. Box plots illustrating the seasonal distribution of 24-h avg PM₁₀ concentrations for Riverside, CA.

Table A-47. Inter-sampler correlation statistics for each pair of PM_{10} monitors reporting to AQS for Riverside, CA.

	Α	В	С	D	E	F	G	Н	I	J	K	L	М
Α	1.00	0.09	0.15	0.90	0.94	0.25	0.94	0.24	0.12	0.83	0.27	0.46	0.78
	(0.0, 0.00)	(50.0, 0.31)	(36.0, 0.32)	(33.0, 0.19)	(37.0, 0.24)	(41.0, 0.38)	(16.0, 0.13)	(25.0, 0.22)	(40.0, 0.39)	(38.5, 0.24)	(30.0, 0.23)	(32.0, 0.25)	(33.0, 0.21)
	174	170	155	165	172	169	171	174	173	160	158	169	164
В		1.00	0.86	0.07	0.13	0.31	0.12	0.32	0.29	0.13	0.31	0.35	0.29
		(0.0, 0.00)	(48.0, 0.37)	(47.0, 0.28)	(45.0, 0.27)	(57.0, 0.47)	(49.0, 0.26)	(48.0, 0.33)	(55.0, 0.49)	(51.0, 0.25)	(49.0, 0.35)	(51.0, 0.31)	(44.0, 0.24)
		315	161	167	298	173	176	309	302	172	163	173	168
С			1.00	0.13	0.21	0.36	0.20	0.34	0.36	0.23	0.38	0.50	0.40
			(0.0, 0.00)	(49.0, 0.37)	(58.0, 0.42)	(24.0, 0.31)	(40.0, 0.35)	(27.0, 0.28)	(24.0, 0.30)	(57.5, 0.41)	(24.0, 0.27)	(30.0, 0.25)	(41.0, 0.34)
			170	151	162	156	160	170	168	150	147	159	154
D				1.00	0.93	0.19	0.83	0.11	0.05	0.73	0.13	0.38	0.69
				(0.0, 0.00)	(29.0, 0.17)	(52.0, 0.43)	(23.0, 0.17)	(38.0, 0.27)	(52.0, 0.46)	(26.0, 0.18)	(43.0, 0.30)	(40.0, 0.26)	(24.5, 0.16)
				173	169	167	168	173	172	157	155	165	160
Е					1.00	0.23	0.93	0.26	0.16	0.86	0.27	0.57	0.82
					(0.0, 0.00)	(63.0, 0.48)	(27.0, 0.17)	(46.0, 0.33)	(63.5, 0.51)	(18.0, 0.13)	(54.0, 0.36)	(40.0, 0.28)	(26.0, 0.15)
					358	174	179	351	340	175	165	175	171
F						1.00	0.27	0.73	0.32	0.35	0.43	0.44	0.48
						(0.0, 0.00)	(44.0, 0.41)	(28.0, 0.33)	(27.0, 0.32)	(57.0, 0.46)	(24.5, 0.32)	(35.0, 0.35)	(46.0, 0.43)
						177	173	177	176	162	160	170	164
G							1.00	0.27	0.20	0.90	0.35	0.58	0.85
							(0.0, 0.00)	(30.0, 0.25)	(46.5, 0.45)	(25.0, 0.16)	(34.0, 0.27)	(29.0, 0.24)	(24.0, 0.15)
							181	181	180	165	163	174	168
Н								1.00	0.26	0.47	0.48	0.40	0.44
								(0.0, 0.00)	(27.0, 0.33)	(45.0, 0.32)	(18.0, 0.18)	(29.0, 0.25)	(34.0, 0.26)
								1060	983	178	172	178	175
ī									1.00	0.20	0.45	0.38	0.35
									(0.0, 0.00)	(62.0, 0.51)	(25.0, 0.32)	(41.0, 0.39)	(48.0, 0.46)
		LEGEND							1015	177	172	177	173
J		R								1.00	0.42	0.70	0.85
		(P90, COD)								(0.0, 0.00)	(49.0, 0.35)	(37.0, 0.27)	(20.0, 0.15)
		N								178	155	163	157
K											1.00	0.49	0.48
											(0.0, 0.00)	(30.0, 0.26)	(38.0, 0.29)
											173	162	157
L												1.00	0.84
												(0.0, 0.00)	(24.0, 0.20)
												178	167
М													1.00
_													(0.0, 0.00)
													175

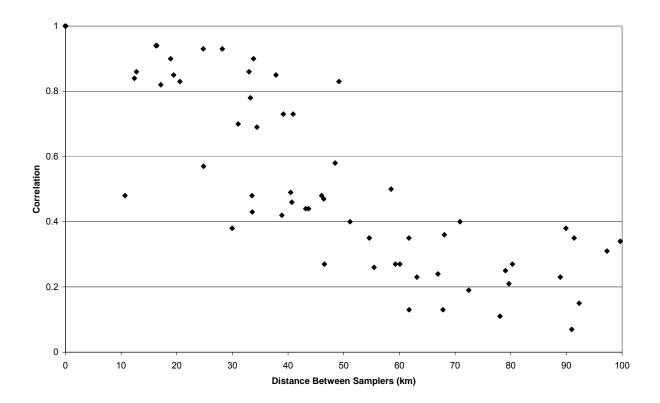


Figure A-120. PM₁₀ inter-sampler correlations as a function of distance between monitors for Riverside, CA.

Figure A-121. PM₁₀ monitor distribution and major highways, Seattle, WA.

AQS Site ID Α В 21.9 15.7 Mean Site A 53-033-0057 1059 1077 Obs Site B 53-033-2004 SD 9.9 8.6 60 50 concentration (µg/m³) 40 30 20 10 1=winter 2=spring 3=summer 4=fall 2 3 4 2 3 4 1 1

Figure A-122. Box plots illustrating the seasonal distribution of 24-h avg PM_{10} concentrations for Seattle, WA.

Table A-48. Inter-sampler correlation statistics for each pair of PM₁₀ monitors reporting to AQS for Seattle, WA.

	Α	В
Α	1.00	0.77
	(0.0, 0.00)	(14.0, 0.24)
	1059	1041
В	LEGEND	1.00
	R	(0.0, 0.00)
,	(P90, COD)	1077
	N	

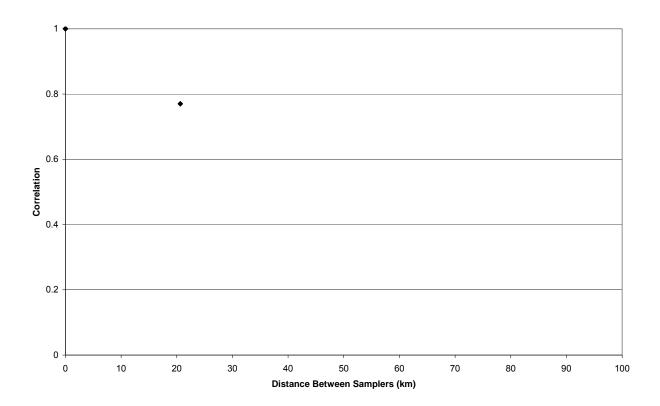


Figure A-123. PM_{10} inter-sampler correlations as a function of distance between monitors for Seattle, WA.

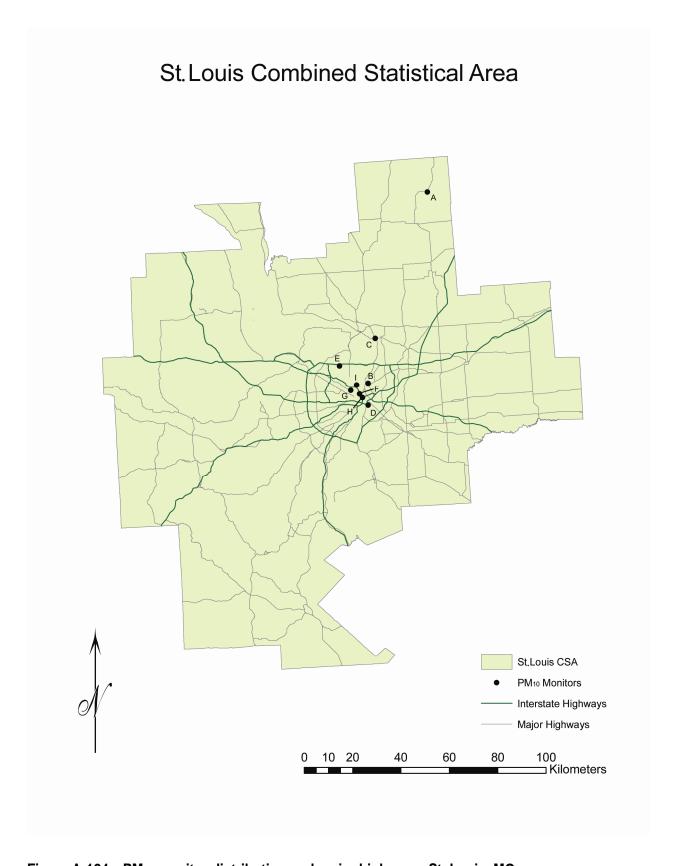


Figure A-124. PM₁₀ monitor distribution and major highways, St. Louis, MO.

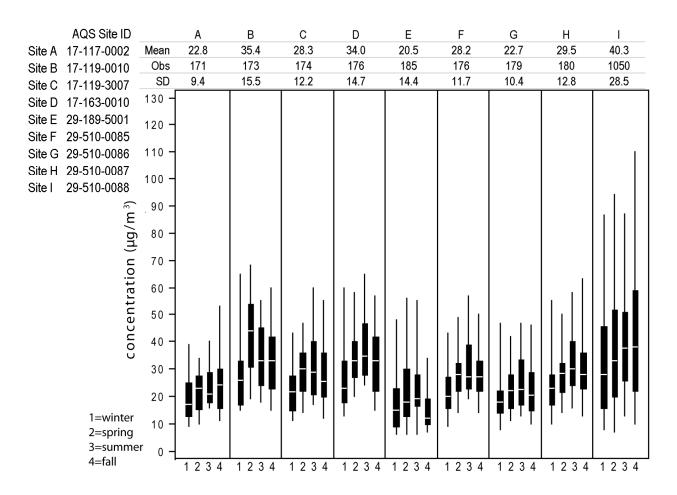


Figure A-125. Box plots illustrating the seasonal distribution of 24-h avg PM_{10} concentrations for St. Louis, MO.

Table A-49. Inter-sampler correlation statistics for each pair of PM_{10} monitors reporting to AQS for St. Louis, MO.

	Α	В	С	D	E	F	G	Н	1
Α	1.00	0.50	0.75	0.67	0.47	0.65	0.67	0.73	0.55
	(0.0, 0.00)	(30.0, 0.28)	(14.0, 0.17)	(23.0, 0.24)	(16.0, 0.29)	(16.0, 0.18)	(13.0, 0.17)	(18.0, 0.19)	(52.0, 0.33)
	171	161	158	156	158	163	166	168	164
В		1.00	0.65	0.63	0.46	0.68	0.68	0.64	0.52
		(0.0, 0.00)	(20.0, 0.21)	(20.0, 0.19)	(37.0, 0.42)	(23.0, 0.20)	(28.0, 0.28)	(22.0, 0.20)	(36.0, 0.28)
		173	161	158	160	167	169	170	166
С			1.00	0.75	0.57	0.80	0.76	0.82	0.65
			(0.0, 0.00)	(17.0, 0.17)	(23.0, 0.33)	(12.0, 0.13)	(13.0, 0.18)	(12.0, 0.13)	(41.0, 0.27)
			174	157	158	165	169	169	168
)				1.00	0.44	0.82	0.81	0.80	0.59
				(0.0, 0.00)	(30.0, 0.40)	(16.0, 0.15)	(21.0, 0.24)	(14.0, 0.15)	(36.0, 0.27)
				176	157	163	165	166	169
Ξ					1.00	0.53	0.62	0.56	0.34
					(0.0, 0.00)	(22.0, 0.34)	(17.0, 0.26)	(25.0, 0.35)	(55.0, 0.42)
					185	164	166	167	179
=						1.00	0.89	0.86	0.67
						(0.0, 0.00)	(11.0, 0.16)	(12.0, 0.11)	(41.0, 0.27)
		— ш	EGEND			176	173	174	169
3			R				1.00	0.83	0.65
		— (P9	0, COD) N				(0.0, 0.00)	(16.0, 0.19)	(47.0, 0.32)
		_	N				179	177	173
1								1.00	0.64
								(0.0, 0.00)	(41.0, 0.27)
								180	173
									1.00
									(0.0, 0.00)
									1050

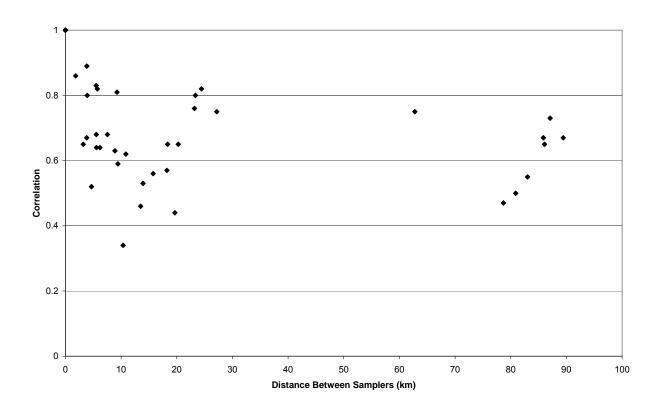


Figure A-126. PM₁₀ inter-sampler correlations as a function of distance between monitors for St. Louis, MO.

Table A-50. Correlation coefficients of hourly and daily average particle number, surface and volume concentrations in selected particle size ranges.

Size range			Hourly averages	<u> </u>		Daily avg
(nm)	All days (N = 5481)	Sundays (N = 701)	Weekdays (N = 3227)	Event days (N = 577)	No events (N = 4904)	All days (N = 263)
3-10	0.40	0.24	0.42	0.73	0.37	0.32
10-30	0.35	0.22	0.31	0.57	0.33	0.27
30-50	0.38	0.42	0.29	0.56	0.36	0.36
50-100	0.46	0.56	0.39	0.57	0.45	0.46
100-500	0.55	0.65	0.49	0.62	0.55	0.55
500-800	0.73	0.75	0.70	0.76	0.72	0.71
10-100	0.31	0.28	0.24	0.52	0.29	0.24
10-800	0.55	0.65	0.49	0.62	0.55	0.55
Total number	0.30	0.24	0.24	0.58	0.28	0.20
Total surface	0.57	0.63	0.51	0.65	0.56	0.57
Total volume	0.66	0.69	0.62	0.73	0.65	0.67

Source: Tuch et al. (2006)

A.2.3. Speciation

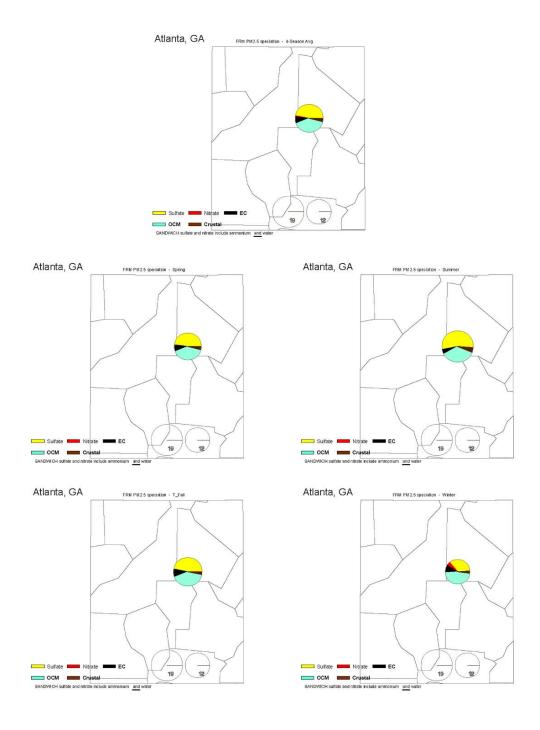


Figure A-127. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in Atlanta, GA.

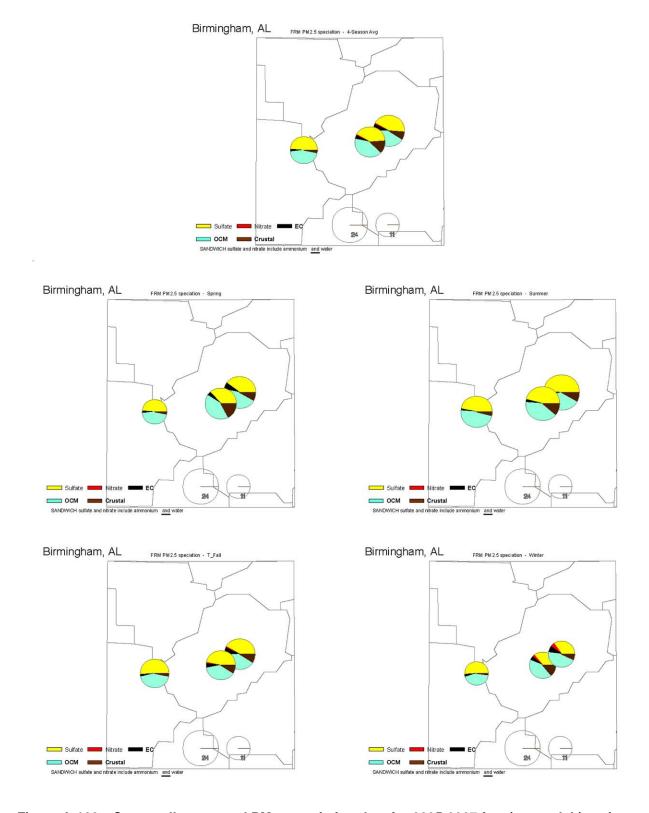


Figure A-128. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in Birmingham, AL.

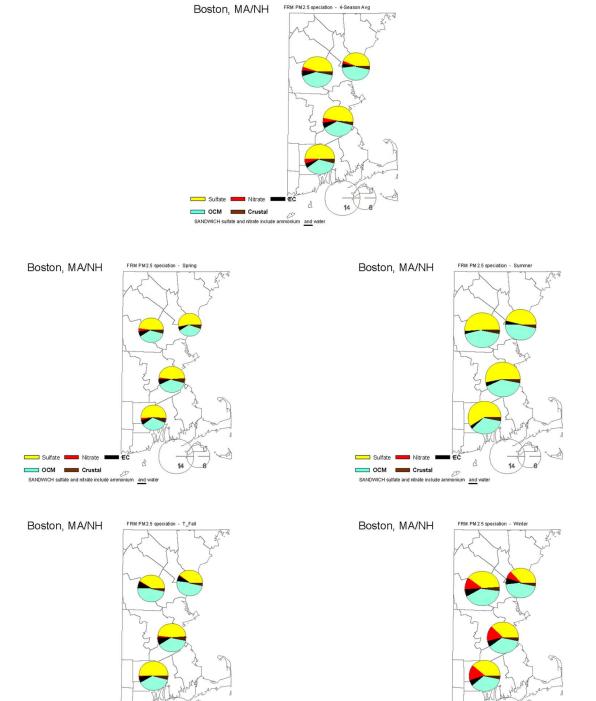
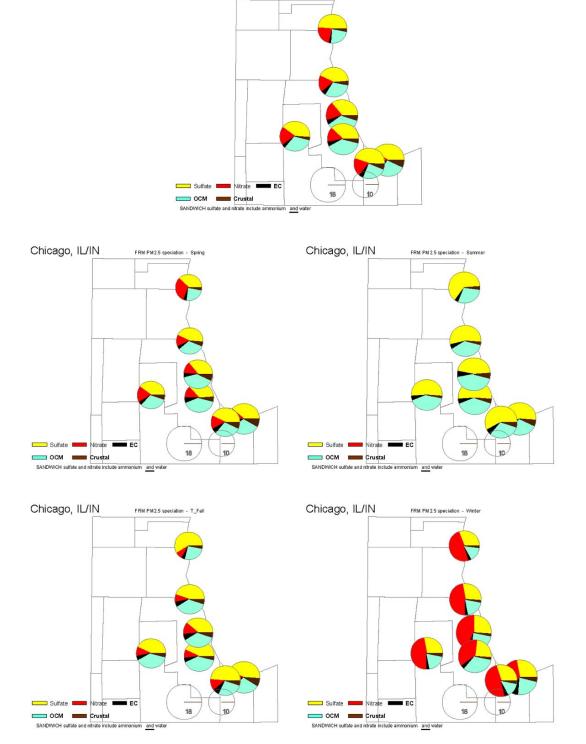



Figure A-129. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in Boston, MA.

Sulfate III Nitrate

FRM PM2.5 speciation - 4-Season Avg

Chicago, IL/IN

Figure A-130. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in Chicago, IL.

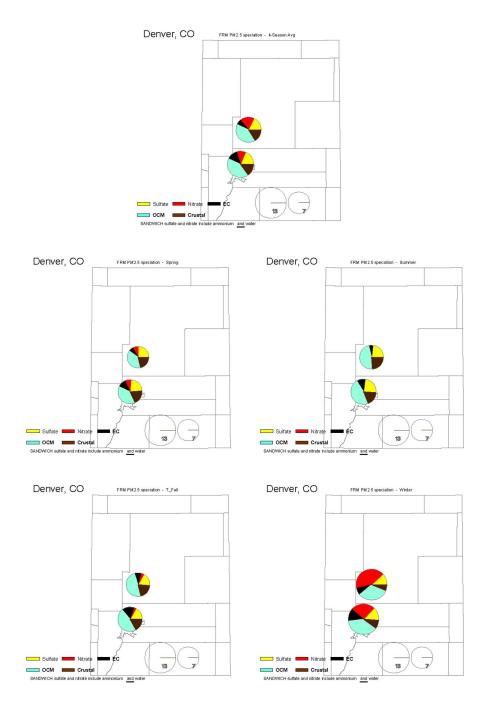


Figure A-131. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter, derived using the SANDWICH method in Denver, CO.

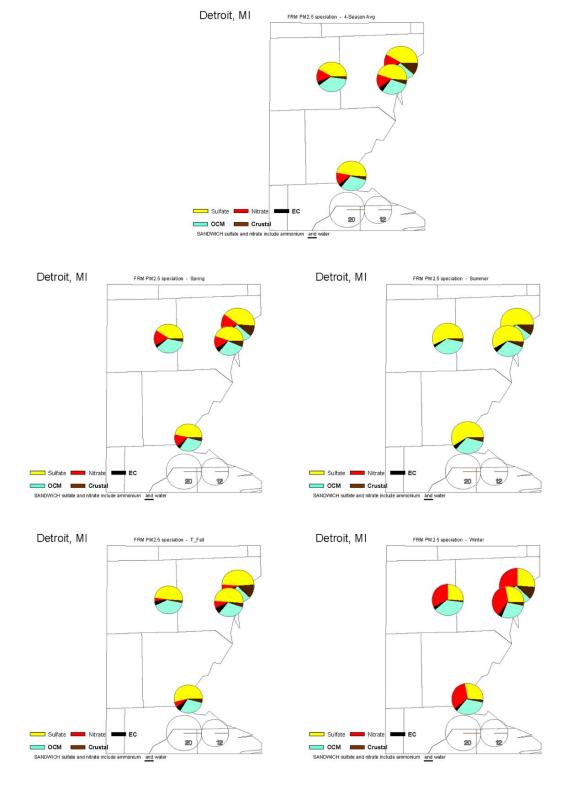


Figure A-132. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in Detroit, MI.

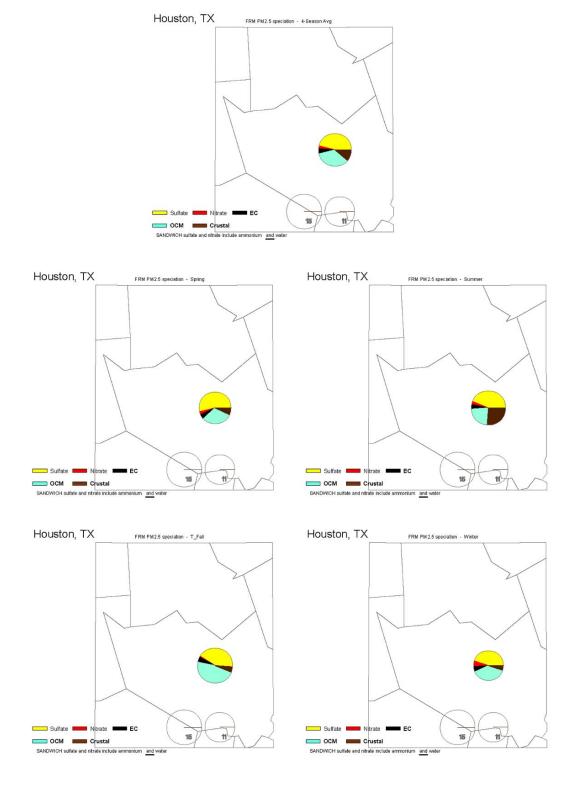


Figure A-133. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in Houston, TX.

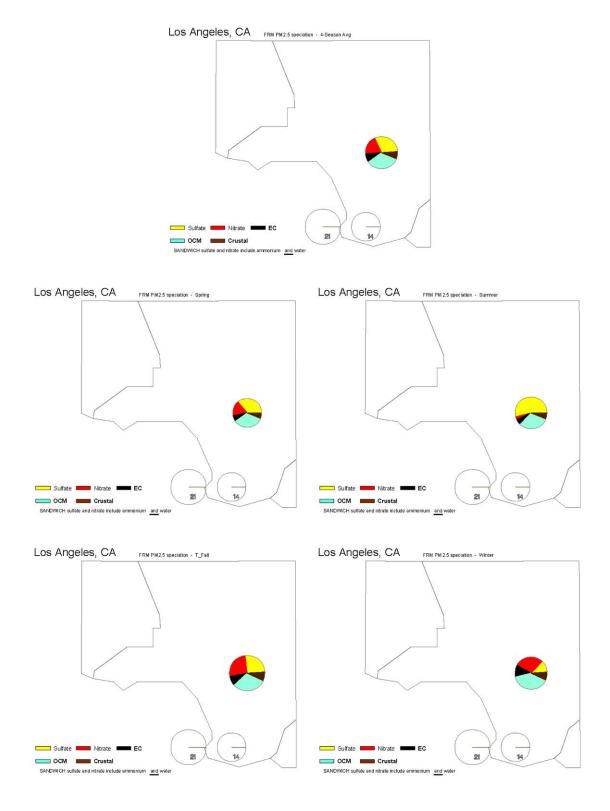
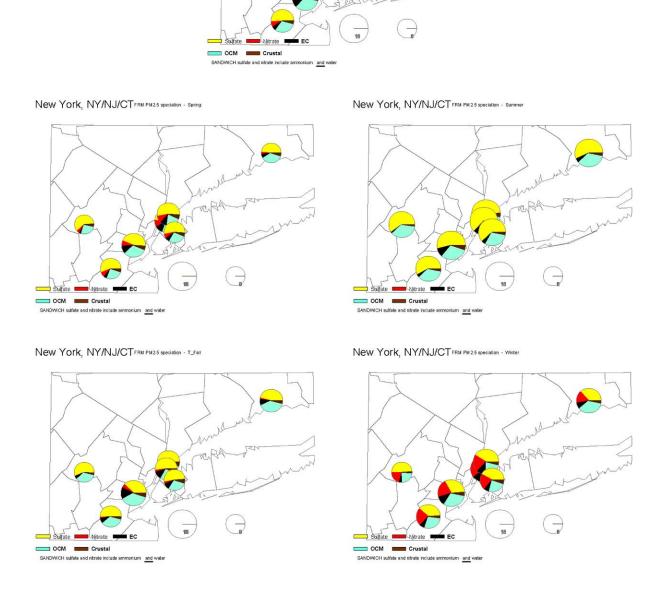
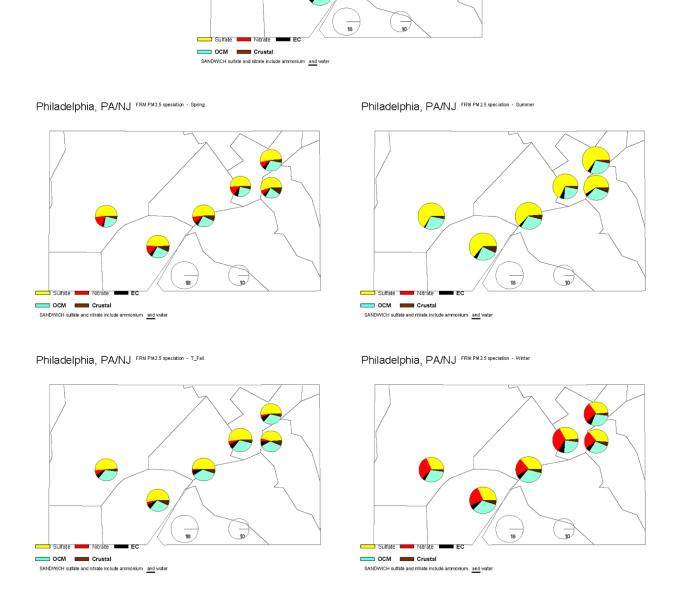


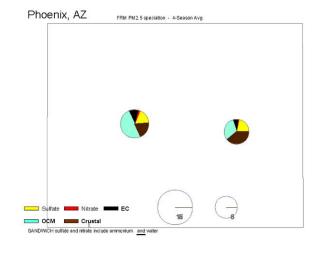
Figure A-134. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in Los Angeles, CA.




Figure A-135. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring,

c) summer, d) fall and e) winter derived using the SANDWICH method in New

New York, NY/NJ/OFM PM2.5 speciation - 4-Season Avg


December 2009 A-221

York, NY.

Philadelphia, PA/N 5RM PM2.5 speciation - 4-Season Avg

Figure A-136. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in Philadelphia, PA.

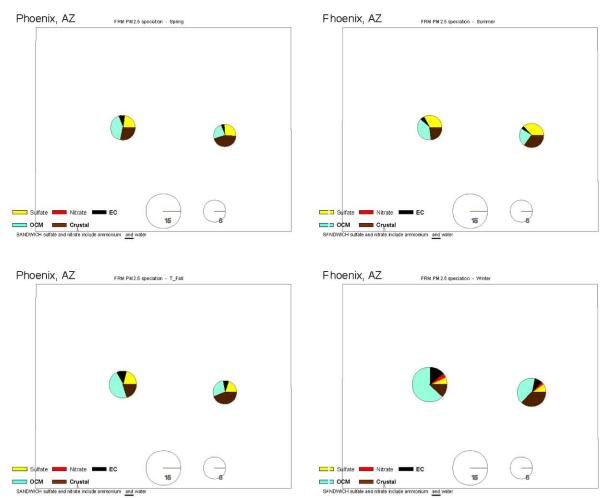
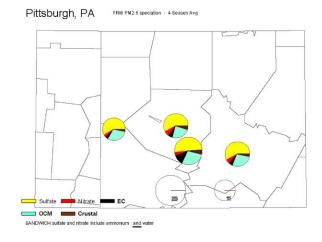



Figure A-137. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in Phoenix, AZ.

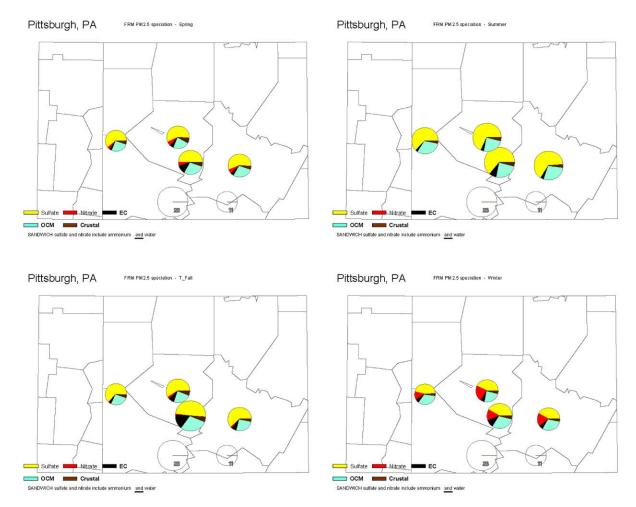
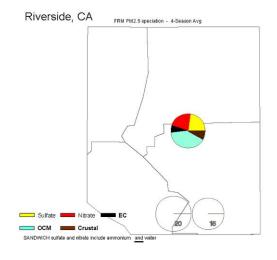



Figure A-138. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in Pittsburgh, PA.

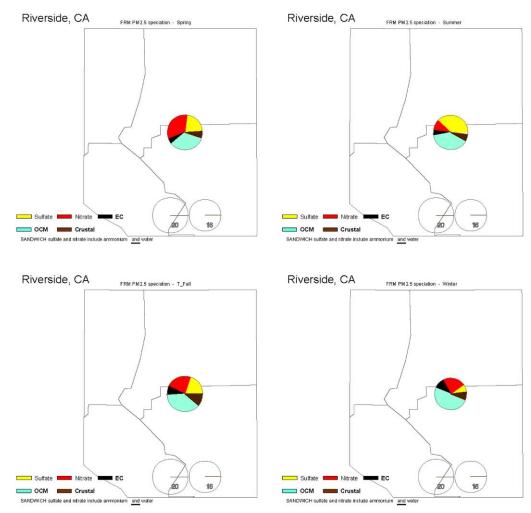


Figure A-139. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in Riverside, CA.

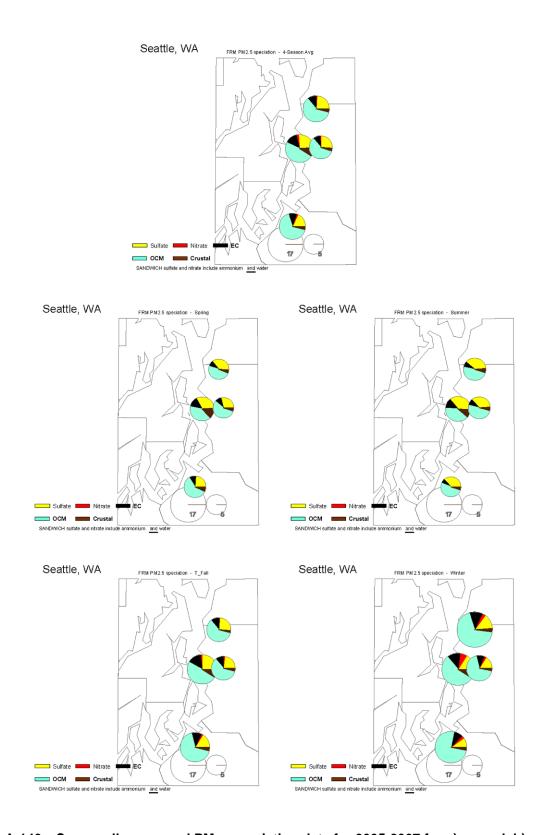
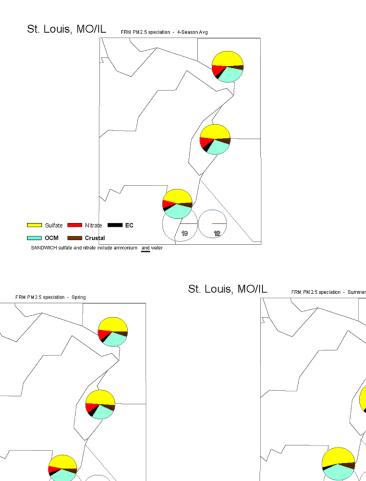
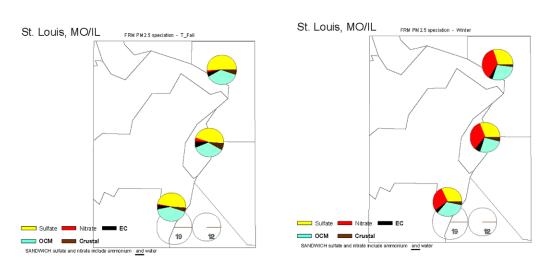




Figure A-140. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in Seattle, WA.

Crustal

SANDWICH sulfate and nitrate include ammonium and wat

Figure A-141. Seasonally averaged PM_{2.5} speciation data for 2005-2007 for a) annual, b) spring, c) summer, d) fall and e) winter derived using the SANDWICH method in St. Louis, MO.

December 2009 A-227

St. Louis, MO/IL

OCM Crustal

SANDWICH sulfate and nitrate include ammonium and water

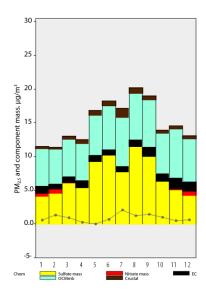


Figure A-142. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Atlanta, GA, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

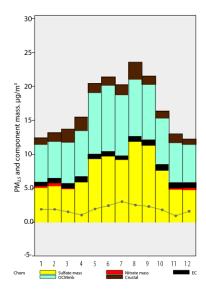


Figure A-143. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Birmingham, AL, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

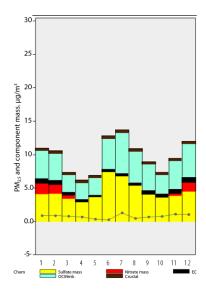


Figure A-144. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Boston, MA, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

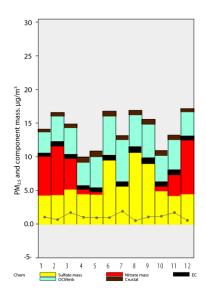


Figure A-145. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Chicago, IL, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

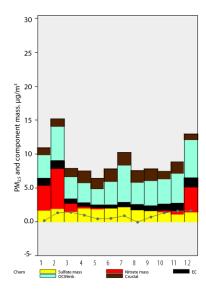


Figure A-146. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Denver, CO, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

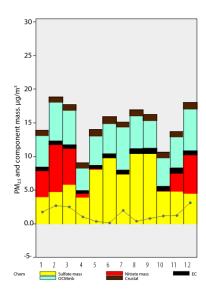


Figure A-147. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Detroit, MI, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC x 1.4.

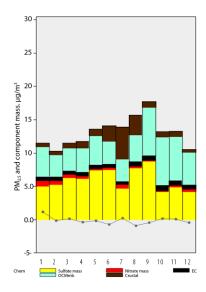


Figure A-148. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Houston, TX, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

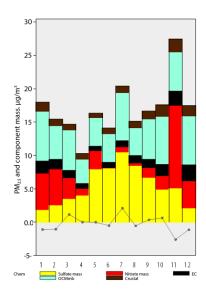


Figure A-149. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Los Angeles, CA, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

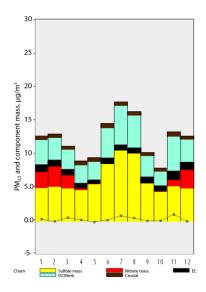


Figure A-150. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for New York, NY, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

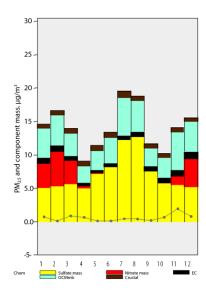


Figure A-151. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Philadelphia, PA, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

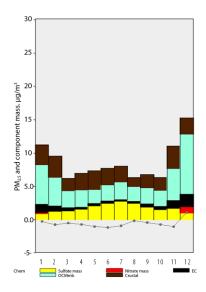


Figure A-152. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Phoenix, AZ, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

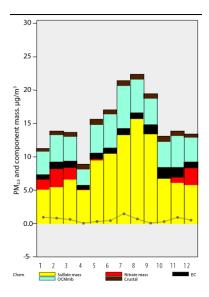


Figure A-153. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Pittsburgh, PA, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

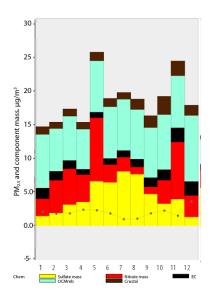


Figure A-154. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Riverside, CA, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

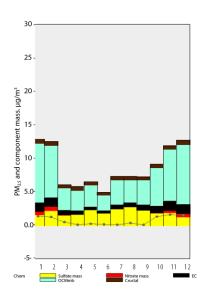


Figure A-155. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for Seattle, WA, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

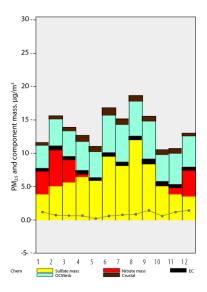


Figure A-156. Seasonal patterns in PM_{2.5} chemical composition from city-wide monthly average values for St. Louis, MO, 2005-2007. The gray line represents the difference in OCM calculated using material balance and blank corrected OC×1.4.

A.2.4. Diel Trends

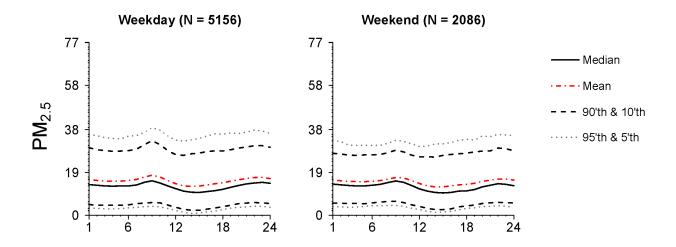


Figure A-157. Diel plots generated from all available hourly FRM-like PM_{2.5} data, stratified by weekday (left) and weekend (right), in Atlanta, GA. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

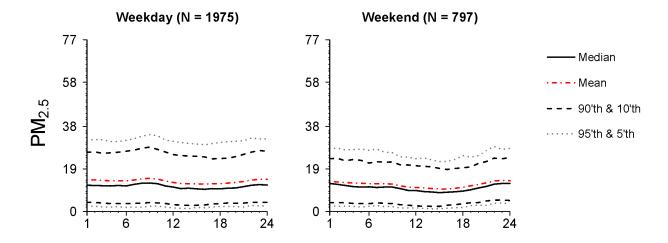


Figure A-158. Diel plots generated from all available hourly FRM-like PM_{2.5} data, stratified by weekday (left) and weekend (right), in Chicago, IL. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

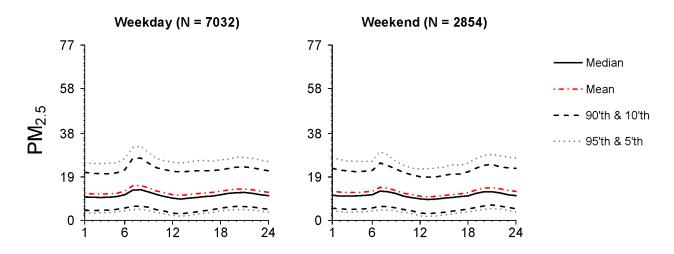


Figure A-159. Diel plots generated from all available hourly FRM-like PM_{2.5} data, stratified by weekday (left) and weekend (right), in Houston, TX. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

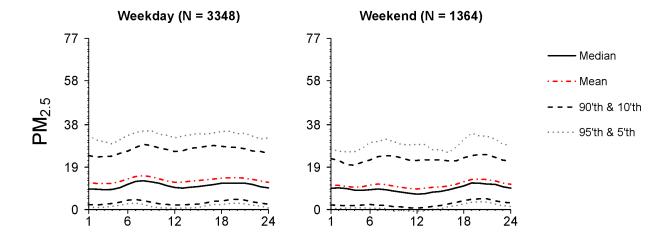


Figure A-160. Diel plots generated from all available hourly FRM-like PM_{2.5} data, stratified by weekday (left) and weekend (right), in New York, NY. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

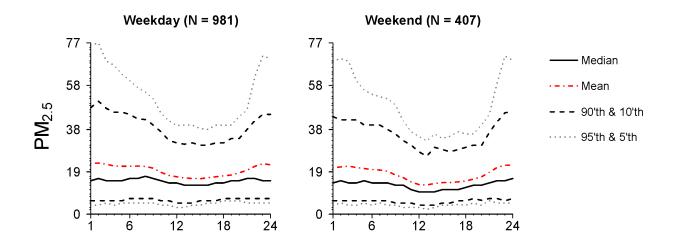


Figure A-161. Diel plots generated from all available hourly FRM-like PM_{2.5} data, stratified by weekday (left) and weekend (right), in Pittsburgh, PA. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

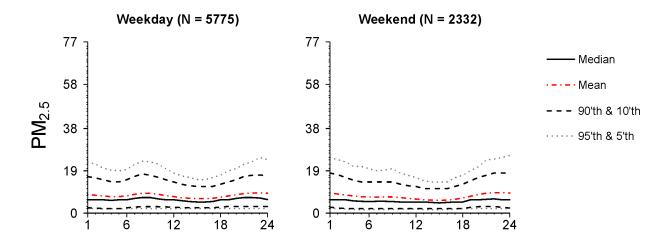


Figure A-162. Diel plots generated from all available hourly FRM-like PM_{2.5} data, stratified by weekday (left) and weekend (right), in Seattle, WA. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

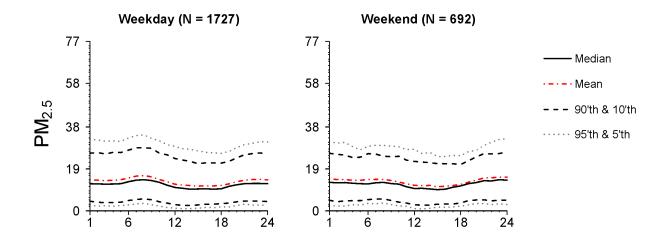


Figure A-163. Diel plots generated from all available hourly FRM-like PM_{2.5} data, stratified by weekday (left) and weekend (right), in St. Louis, MO. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

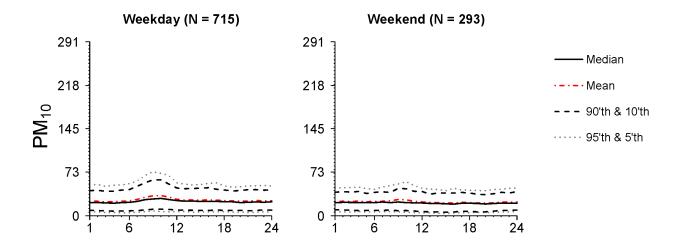


Figure A-164. Diel plot generated from all available hourly FRM/FEM PM₁₀ data, stratified by weekday (left) and weekend (right), in Atlanta, GA. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

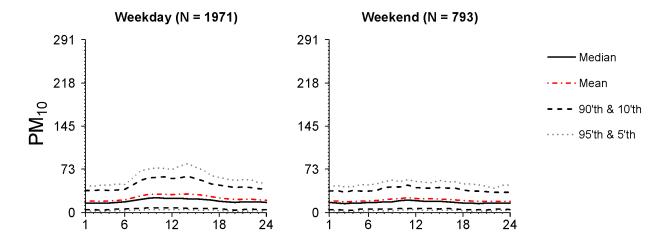


Figure A-165. Diel plot generated from all available hourly FRM/FEM PM₁₀ data, stratified by weekday (left) and weekend (right), in Chicago, IL. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

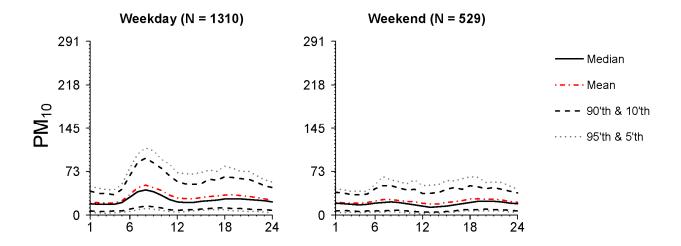


Figure A-166. Diel plot generated from all available hourly FRM/FEM PM₁₀ data, stratified by weekday (left) and weekend (right), in Denver, CO. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

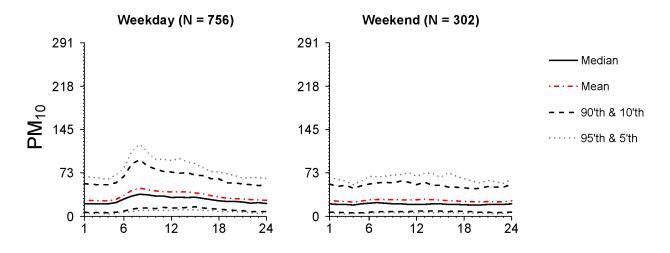


Figure A-167. Diel plot generated from all available hourly FRM/FEM PM₁₀ data, stratified by weekday (left) and weekend (right), in Detroit, MI. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

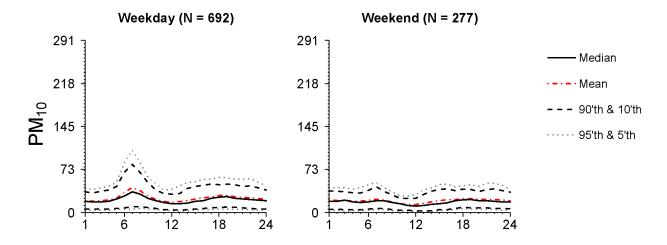


Figure A-168. Diel plot generated from all available hourly FRM/FEM PM₁₀ data, stratified by weekday (left) and weekend (right), in Los Angeles, CA. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

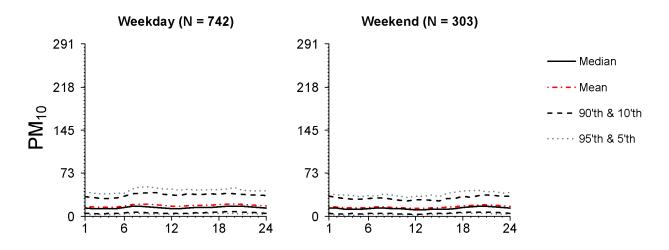


Figure A-169. Diel plot generated from all available hourly FRM/FEM PM₁₀ data, stratified by weekday (left) and weekend (right), in Philadelphia, PA. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

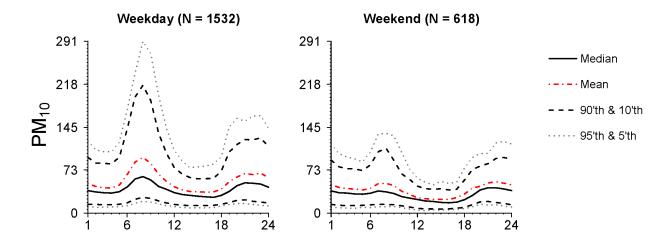


Figure A-170. Diel plot generated from all available hourly FRM/FEM PM₁₀ data, stratified by weekday (left) and weekend (right), in Phoenix, AZ. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

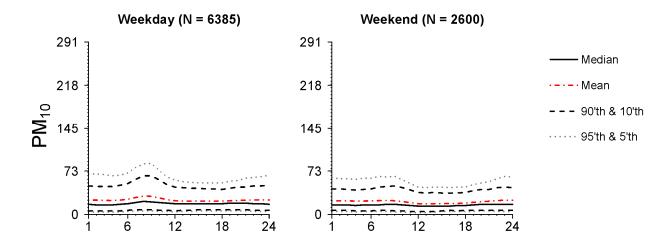


Figure A-171. Diel plot generated from all available hourly FRM/FEM PM₁₀ data, stratified by weekday (left) and weekend (right), in Pittsburgh, PA. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

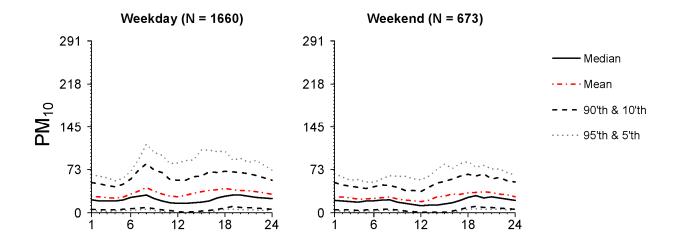


Figure A-172. Diel plot generated from all available hourly FRM/FEM PM₁₀ data, stratified by weekday (left) and weekend (right), in Riverside, CA. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

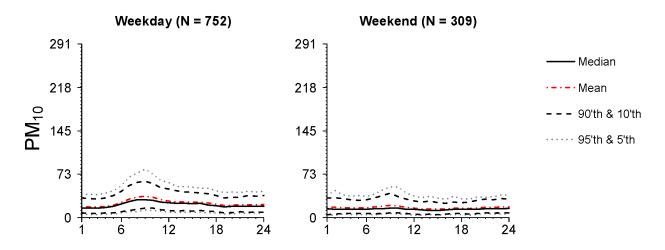


Figure A-173. Diel plot generated from all available hourly FRM/FEM PM₁₀ data, stratified by weekday (left) and weekend (right), in Seattle, WA. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

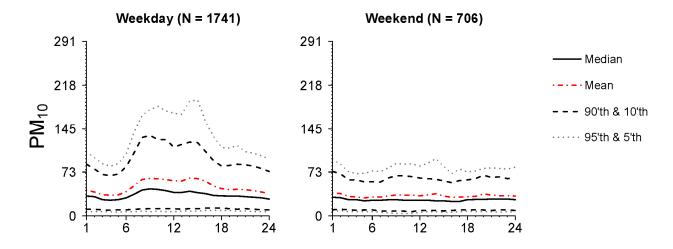


Figure A-174. Diel plot generated from all available hourly FRM/FEM PM₁₀ data, stratified by weekday (left) and weekend (right), in St. Louis, MO. Included are the number of monitor days (N) and the median, mean, 5th, 10th, 90th and 95th percentiles for each hour.

A.2.5. Copollutant Measurements

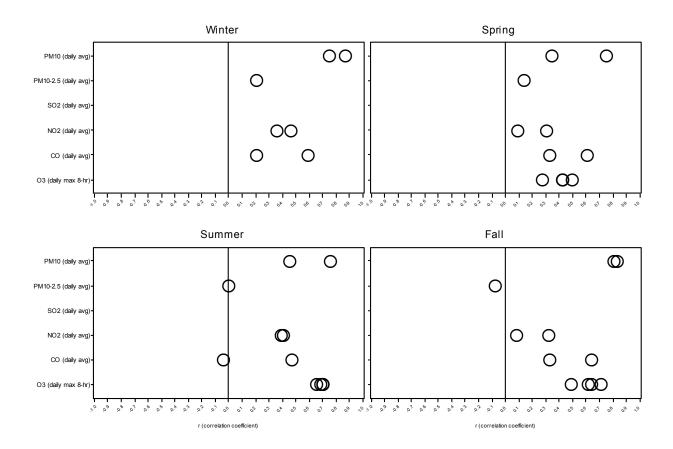


Figure A-175. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Atlanta, GA, stratified by season (2005-2007). One point is included for each available monitor pair.

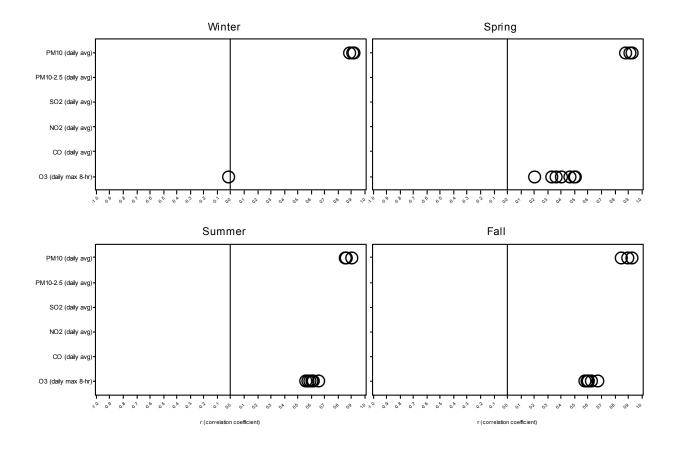


Figure A-176. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Birmingham, AL, stratified by season (2005-2007). One point is included for each available monitor pair.

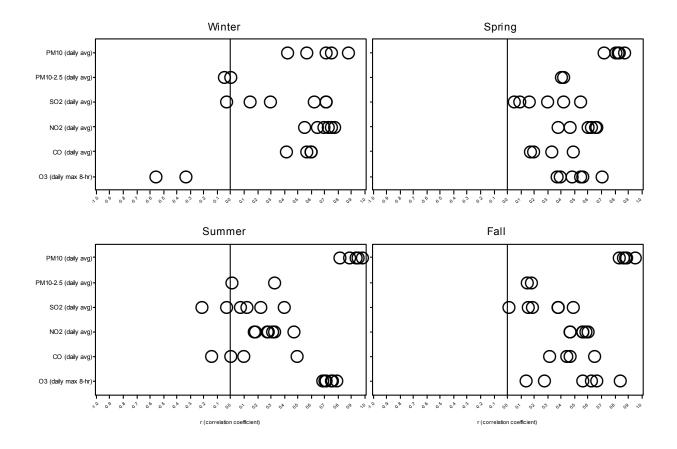


Figure A-177. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Boston, MA, stratified by season (2005-2007). One point is included for each available monitor pair.

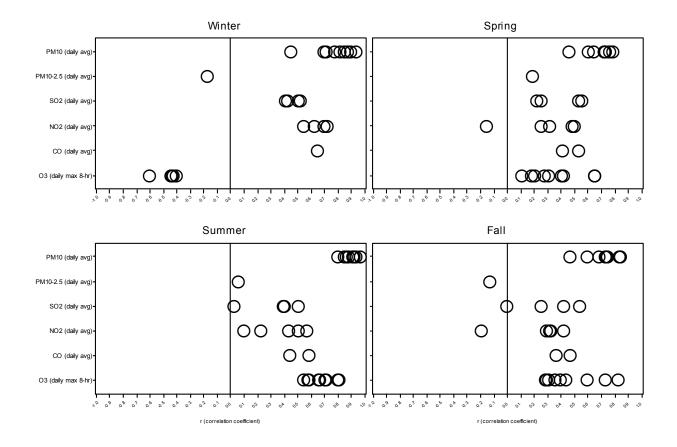


Figure A-178. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Chicago, IL, stratified by season (2005-2007). One point is included for each available monitor pair.

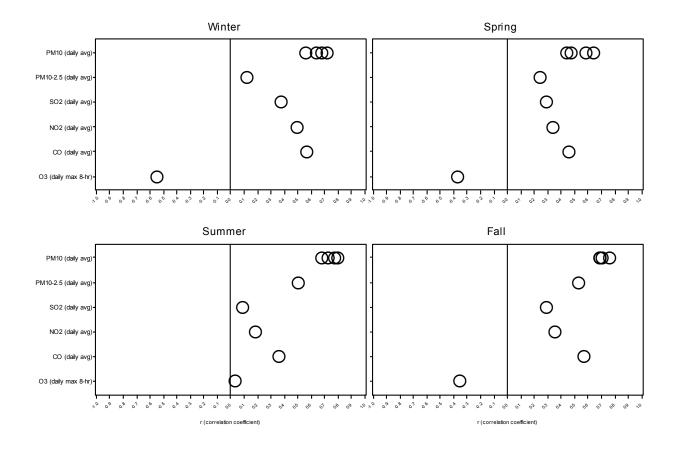


Figure A-179. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Denver, CO, stratified by season (2005-2007). One point is included for each available monitor pair.

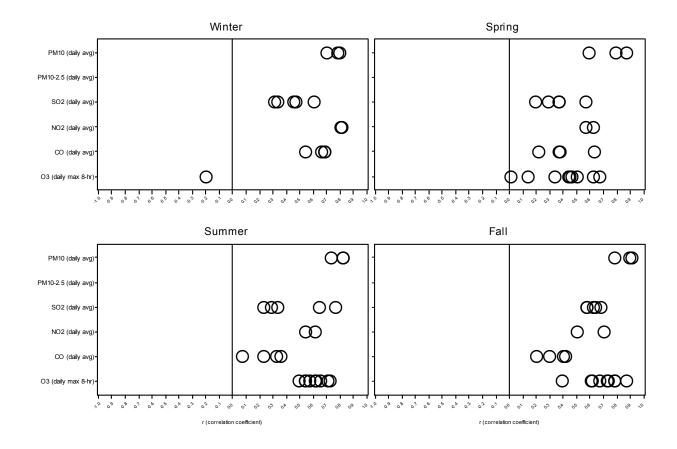


Figure A-180. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Detroit, MI, stratified by season (2005-2007). One point is included for each available monitor pair.

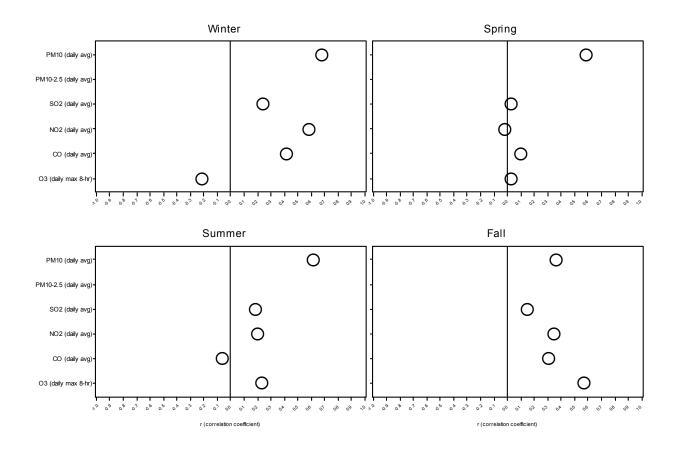


Figure A-181. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Houston, TX, stratified by season (2005-2007). One point is included for each available monitor pair.

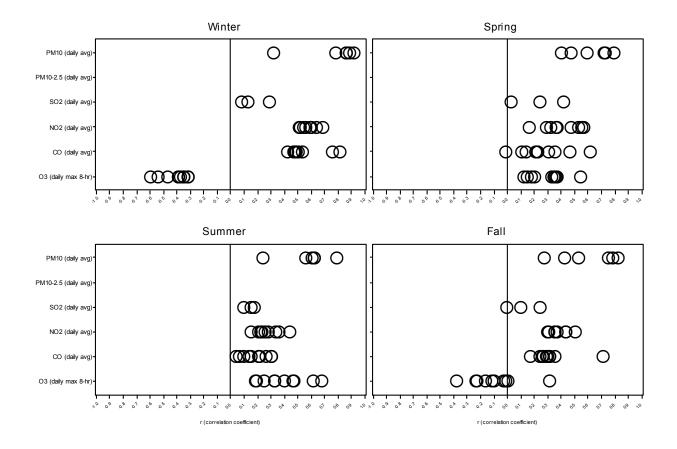


Figure A-182. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Los Angeles, CA, stratified by season (2005-2007). One point is included for each available monitor pair.

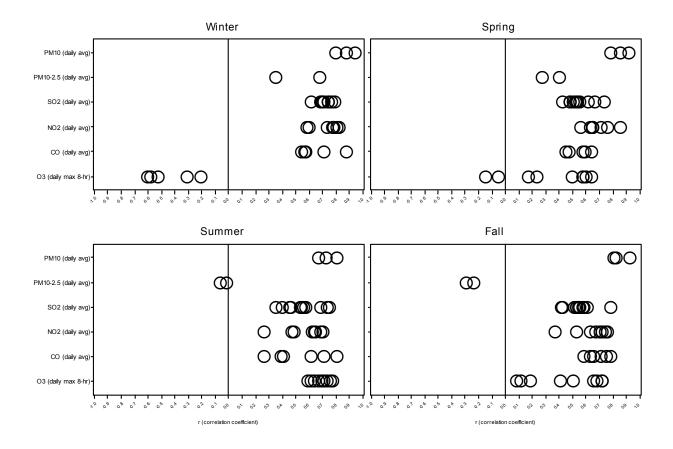


Figure A-183. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for New York, NY, stratified by season (2005-2007). One point is included for each available monitor pair.

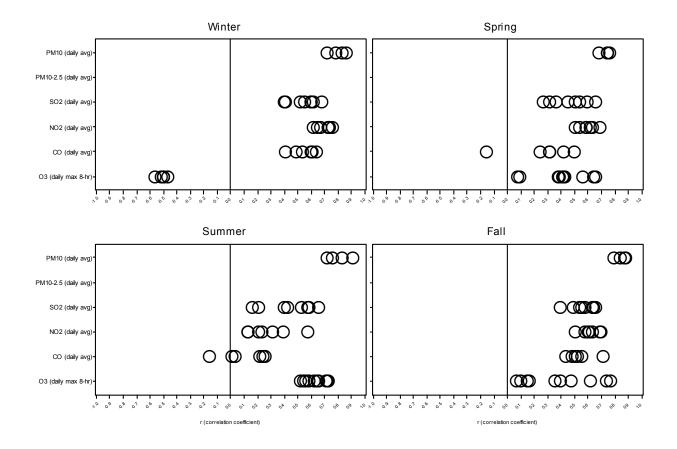


Figure A-184. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Philadelphia, PA, stratified by season (2005-2007). One point is included for each available monitor pair.

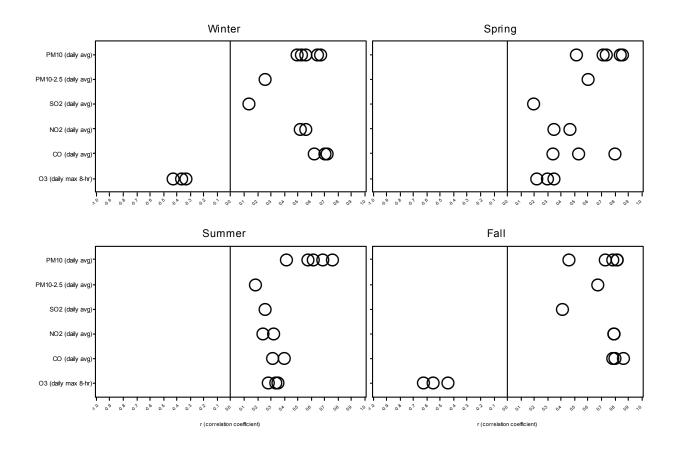


Figure A-185. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Phoenix, AZ, stratified by season (2005-2007). One point is included for each available monitor pair.

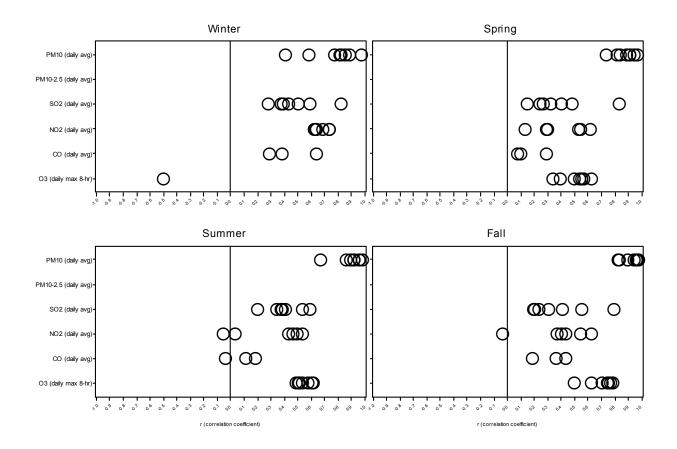


Figure A-186. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Pittsburgh, PA, stratified by season (2005-2007). One point is included for each available monitor pair.

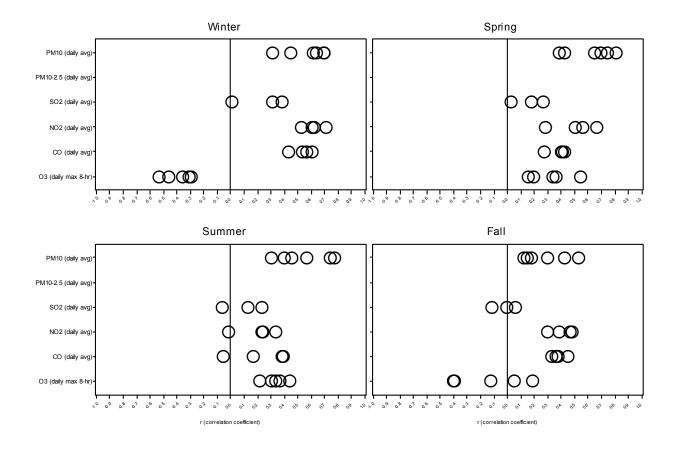


Figure A-187. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Riverside, CA, stratified by season (2005-2007). One point is included for each available monitor pair.

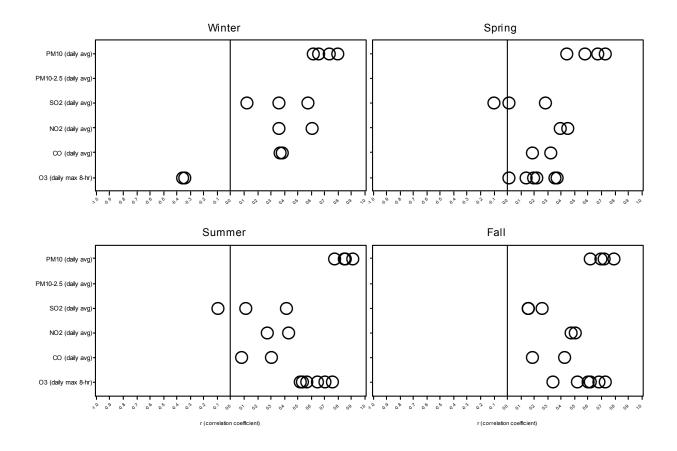


Figure A-188. Correlations between 24-h PM_{2.5} and co-located 24-h avg PM₁₀, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for St. Louis, MO, stratified by season (2005-2007). One point is included for each available monitor pair.

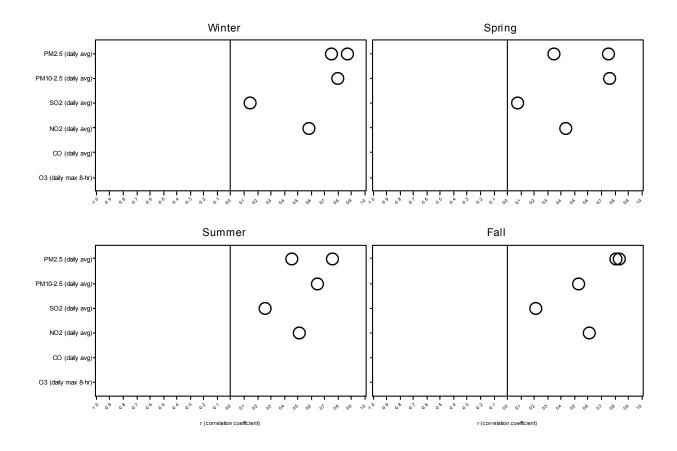


Figure A-189. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Atlanta, GA, stratified by season (2005-2007). One point is included for each available monitor pair.

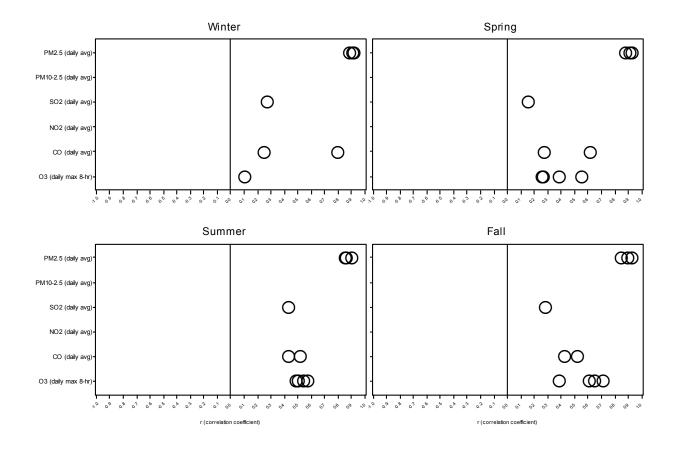


Figure A-190. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Birmingham, AL, stratified by season (2005-2007). One point is included for each available monitor pair.

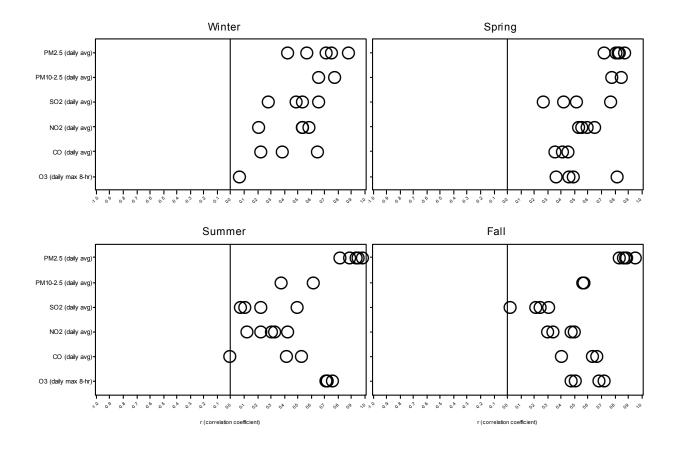


Figure A-191. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Boston, MA, stratified by season (2005-2007). One point is included for each available monitor pair.

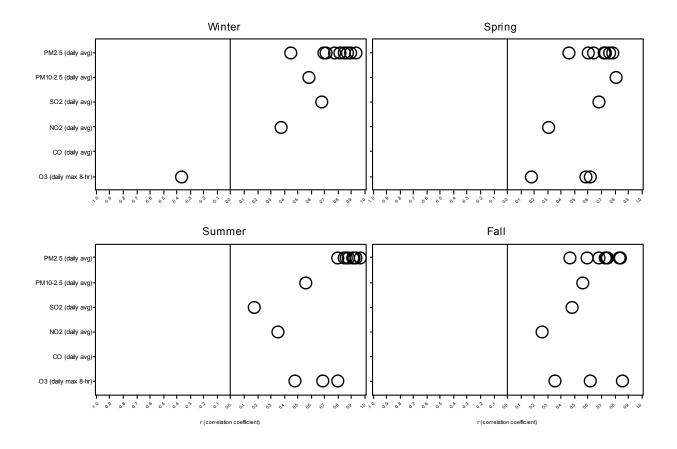


Figure A-192. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Chicago, IL, stratified by season (2005-2007). One point is included for each available monitor pair.

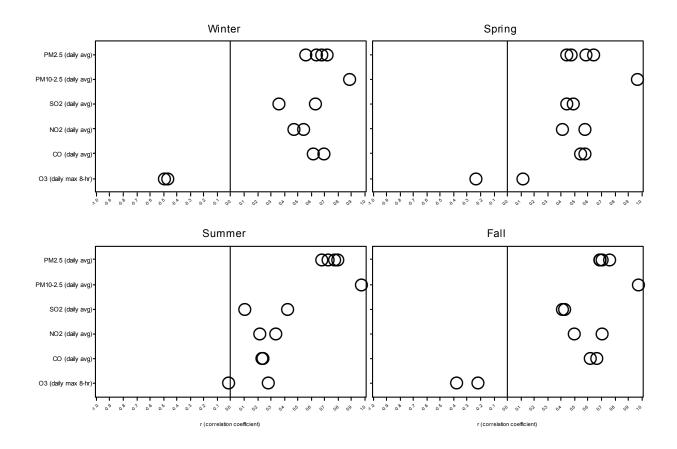


Figure A-193. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Denver, CO, stratified by season (2005-2007). One point is included for each available monitor pair.

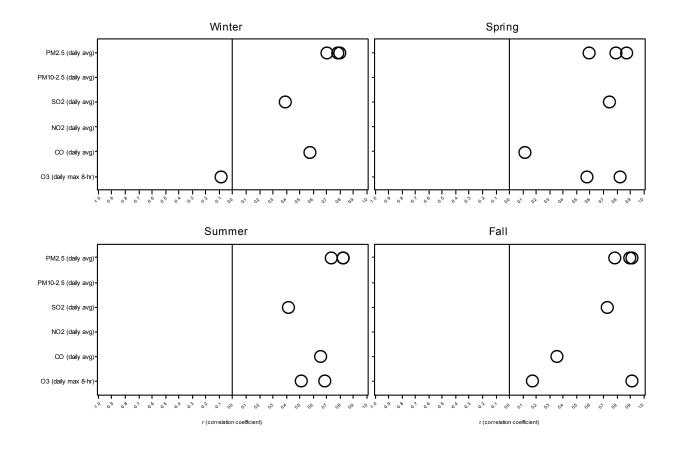


Figure A-194. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Detroit, MI, stratified by season (2005-2007). One point is included for each available monitor pair.

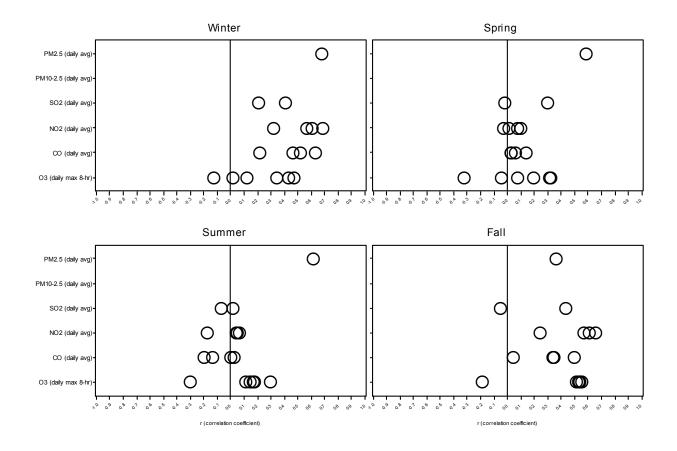


Figure A-195. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Houston, TX, stratified by season (2005-2007). One point is included for each available monitor pair.

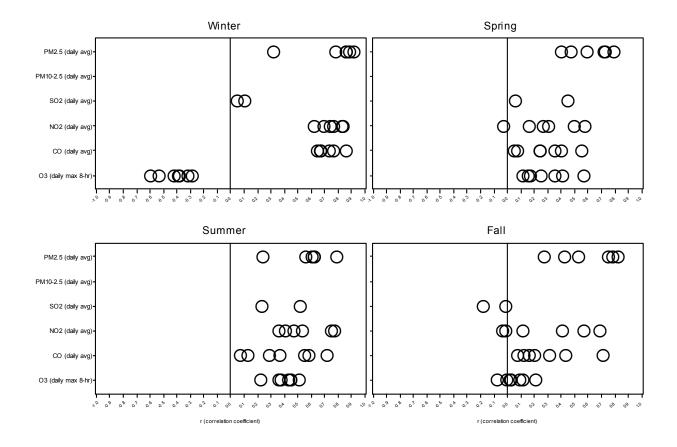


Figure A-196. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Los Angeles, CA, stratified by season (2005-2007). One point is included for each available monitor pair.

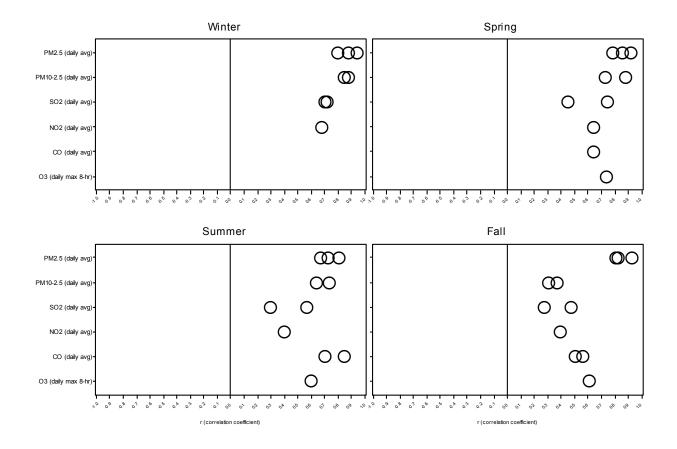


Figure A-197. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for New York, NY, stratified by season (2005-2007). One point is included for each available monitor pair.

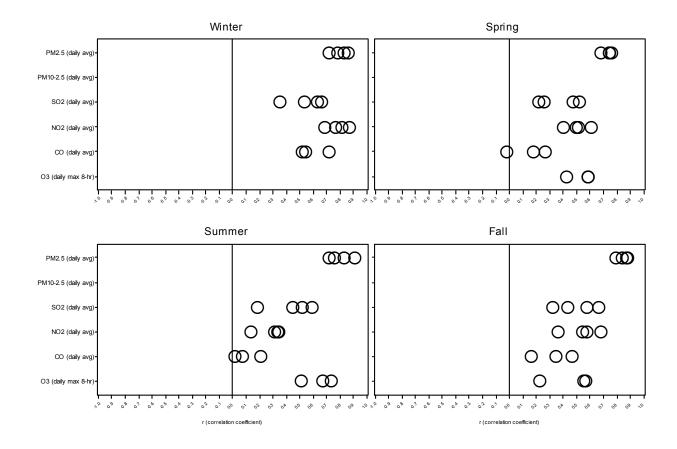


Figure A-198. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Philadelphia, PA, stratified by season (2005-2007). One point is included for each available monitor pair.

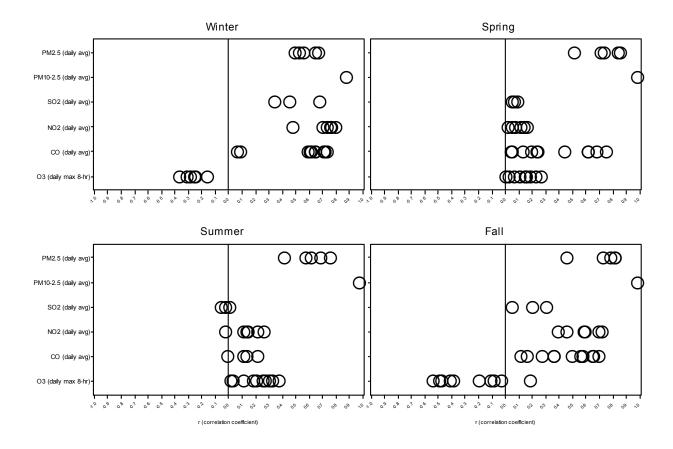


Figure A-199. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Phoenix, AZ, stratified by season (2005-2007). One point is included for each available monitor pair.

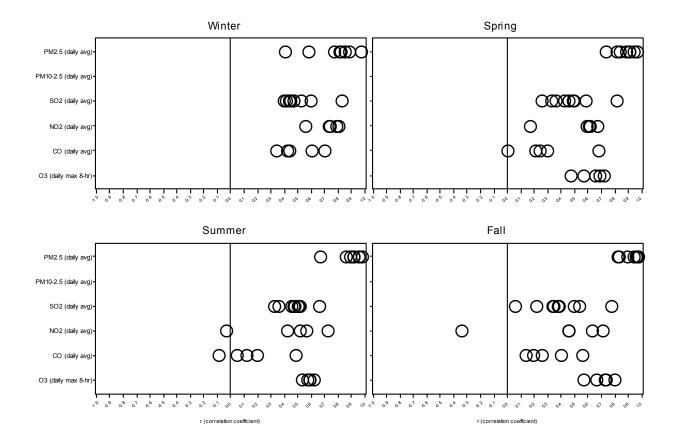


Figure A-200. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Pittsburgh, PA, stratified by season (2005-2007). One point is included for each available monitor pair.

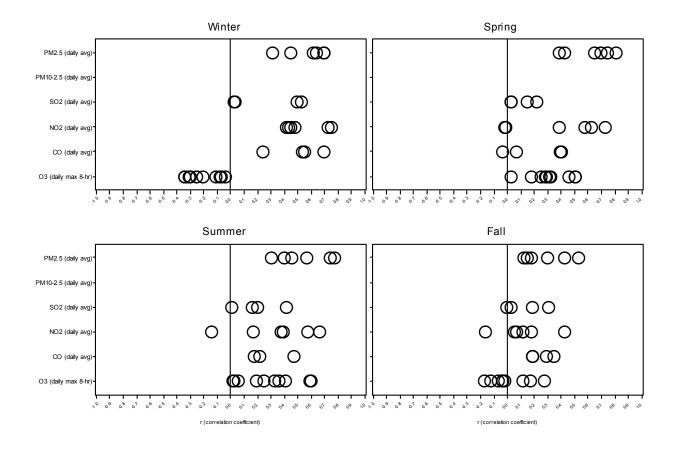


Figure A-201. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for Riverside, CA, stratified by season (2005-2007). One point is included for each available monitor pair.



Figure A-202. Correlations between 24-h PM₁₀ and co-located 24-h avg PM_{2.5}, PM_{10-2.5}, SO₂, NO₂ and CO and daily maximum 8-h avg O₃ for St. Louis, MO, stratified by season (2005-2007). One point is included for each available monitor pair.

A.3. Source Apportionment

A.3.1. Type of Receptor Models

Table A-51. Different receptor models used in the Supersite source apportionment studies: chemical mass balance.

Receptor Model Description Strengths and Weaknesses

Effective Variance CMB 42,121

(Note that all models based on eq 1 or 2 are CMB equations. The term CMB used here reflects the historical solution in which source profiles are explicitly used as model input and a single sample effective variance solution is reported.)

CMB software is currently distributed by EPA. The most recent version is the CMB 8.2, which is run in the Microsoft Windows system.

Principle

Ambient chemical concentrations are expressed as the sum of products of species abundances in source emissions and source contributions (Equations A-1 or A-2). These equations are solved for the source contribution estimates when ambient concentrations and source profiles are input. The single-sample effective variance least squares is the most commonly used solution method because it incorporates uncertainties of ambient concentrations and source profiles in the estimate of source contributions and their uncertainties. This reduced to the tracer solution when it is assumed that there is one unique species for each source. Choices of source profiles should avoid collinearity, which occurs when chemical compositions of various source emissions are not sufficiently different.

$$C_{iklmn} = \sum_{j=1}^{J} F_{ijm} T_{ijklmn} S_{iklmn}$$
 for i = 1 to

$$C_{it} = \sum_{i} F_{ij} S_{jt} + E_{it}$$

Equation A-2

Data Needs

CMB requires source profiles, which are the mass fractions of particulate or gas species in source emissions. The species and particle size fraction measured in source emissions should match those in ambient samples to be apportioned. Several sampling and analysis methods provide time-integrated speciation of $\text{PM}_{2.5}$ and volatile organic compounds (VOCs) for CMB. Source profiles are preferably obtained in the same geographical region as the ambient samples, although using source profiles from different regions is commonly practiced in the literature. The practitioner needs to decide the source profiles and species being included in the model, on the basis of the conceptual model and model performance measures.

Output

Effective variance CMB determines, if converged, source contributions to each sample in terms of PM or VOC mass. CMB also generates various model performance measures, including correlation \mathbb{R}^2 , deviation \mathbb{X}^2 , residue/ uncertainty ratio, and MPIN matrix that are useful for refining the model inputs to obtain the best and most meaningful source apportionment resolution.

Software available providing a good user interface.

Provides quantitative uncertainties on source contribution estimates based on input concentrations, measurement uncertainties, and collinearity of source profiles

Quantifies contributions from source types with single particle and organic compound measurements.

Weaknesses

Equation A-1 Completely compatible source and receptor measurements are not commonly available.

Assumes all observed mass is due to the sources selected in advance, which involves some subjectivity.

Chemically similar sources may result in collinearity without more specific chemical markers

Typically does not apportion secondary particle constituents to sources. Must be combined with profile aging model to estimate secondary PM.

Source: Watson et al. (2008, 157128)

Strengths

⁴² Hidy and Friedlander (1972, 156546)

¹²¹ Watson et al. (1997, <u>157121</u>) ¹²² (1984, <u>045693</u>)

Table A-52. Different receptor models used in the Supersites source apportionment studies: factor analysis.

Receptor Model	Description	Strengths and Weaknesses
PMF	Principle	Strengths
PMF _x (PMF ₂ and PMF ₃) software is available from Dr. Pentti Paatero at the University of Helsinki,	PMFx contains PMF ₂ and PMF ₃ . PMF ₂ solves the CMB equations (i.e., Equations A-2 and A-	Software available.
	3) using an iterative minimization algorithm. Source profiles F _{ij} and contribution S _{ij} are solved simultaneously. The non-negativity constraint is implemented in the algorithm to decrease the number of possible solutions (local minimums) in the PMF analyses, because both	Can handle missing or below-detection-limit data.
Finland. This software is a Microsoft DOS application. EPA distributes EPA PMF76 version 1.1 as a Microsoft	source profile and contribution should not contain negative values. There is rotational ambiguity in all two-way factor analyses (i.e.,F _{it} and S _{it} matrices may be rotated and still fit the data). PMF2 allows using the FPEAK parameter to control the rotation. A positive FPEAK value forces the program to search such solutions where there are many zeros and large	Weights species concentrations by their analytical precisions.
Windows application with better user interface.	values but few intermediate values in the source matrix F_{jt} . F_{key} can further bind individual elements in F_{jt} to zero On the basis of a similar algorithm, PMF3 solves a three-way problem.	Downweight outliers in the robust mode.
	PMFx and UNMIX estimate F_{ij} and S_{jt} by minimizing:	Derives source profiles from ambient measurements as
	Q or $\chi^2 = \sum_i \sum_t [E_{ij} \sigma_{ij}]^2 = \sum_i \sum_t [(C_{it} - \sum_j F_{ij} S_{ji}) / \sigma_{it}]^2$ Equation A-3	they would appear at the
	Where the weighing factor, oit, represents the magnitude of Eit, PMFx limits solutions of	Weaknesses
	Equation A-2 to non-negative F_{ij} and S_{jt} . Data Needs	Requires large (>100) ambient datasets.
	A large number of ambient samples (usually much more than the number of factors in the model) are required to produce a meaningful solution. Species commonly used in PMF are	Need to determine the number of retaining factors.
	also those in CMB. Weighting factors associated with each measurement need to be assigned before analysis. The practitioner also needs to decide the number of factors, FPEAK, and Fkey in the model.	Requires knowledge of source profiles or existing profiles to verify the representativeness
	Output $ \label{eq:pmf} \text{PMFx reports all the elements in } F_{ij} \text{ and } S_{it} \text{ matrices (PMF2)}. \text{ It also calculates model performance measures such as deviation } X^2 \text{ and standard deviation of each matrix element.} $ The practitioner needs to interpret the results linking them to source profiles and source contributions.}	of calculated factor profiles and uncertainties of factor contributions.
		Relies on many parameters/initial conditions adjustable to model input; sensitive to the preset parameters.
ME2 ¹²⁵	Principle	Strengths
ME2 code is available from	PMFx algorithm is derived from ME2. Unlike PMFx that is limited to questions in the	Software available.
Dr. Pentti Paatero at the University of Helsinki, Finland as a Microsoft DOS	form of Equation A-1 or A-2, ME2 solves all models in which the data values are fitted by sums of products of unknown (and known) factor elements. The first part of the algorithm interprets instructions from the user and generates a table that specifies the model. The	Can handle user-specified models.
application.	second part solves the model using an iterative minimization approach. Additional constraints could be programmed into the model to reduce the ambiguity in source apportionment. These constraints may include known source profiles and/or contributions (e.g., contributions are known to be zero in some cases).	Possibility to include all measured variables into the model, such as speciated concentration over different
	Data Needs	time scales, size distributions, meteorological variables, and
	Data needs are similar to those of PMFx but are more flexible. In theory, any measured or unknown variables may be included in the model as long as they satisfy linear relationships.	noise parameters. Weaknesses
	The users need to specify the model structure, the input, and the output.	Require substantial training to
	Output ME2 calculates and reports all unknown variables in the model.	access the full feature of the software and develop a model.
		Generally requires large ambient datasets.
		Need to assume linear relationships between all variables.

Relies on many parameters/initial conditions adjustable to model input; sensitive to the preset parameters.

Receptor Model	Description	Strengths and Weaknesses
UNMIX ^{29,44,126}	Principle	Strengths
UNMIX code is available from Dr. Ron Henry at the representing a measured species. UNMIX solves Equations A-2 and A-3 by using		Software available with graphical user interface.
University of Southern California as an MatLab application. A stand-alone version (UNMIX version 6) is also available from EPA.	identify "edges" defined by the data points in the space of reduced dimension (e.g., Figures 1 and 3). The number of factors is estimated by the NUMFACT algorithm in advance?, which reports the R² and signal-to-noise (S/N) ratio associated with the first N principle components (PCs) in the data matrix. The number of factors should coincide with the number of PCs with S/N ratio >2. Once the data are plotted on the reduced space, an edge is actually a hyperplan that signifies missing or small contribution from one or more factors. Therefore, UNMIX searches all the edges and uses them to calculate the vertices of the simplex, which are then converted back to source composition and contributions. Geometrical concepts of self-modeling curve resolution are used to ensure that the results obey (to within error) non-	Does not require source measurements.
		Provide graphical problem diagnostic tools (e.g., species scatter plot).
		Provide evaluation tools (e.g., R^2 , S/N ratio).
		Weaknesses
	negativity constraints on source compositions and contributions. Data Needs	Requires large (>100) ambient datasets.
	A large number of ambient samples (usually much more than the number of factors in the model) are required to achieve a meaningful solution. Species commonly used in UNMIX are also those in CMB. The measurement precision is not required. The practitioner needs to specify the number of factors on the basis of the NUMFACT results.	Need to assume or predetermine number of retained factors.
	aposity and manner of hadrone of the basis of the frontin No Frostatio.	Dooe not make explicitures of

UNMIX determines all the elements in the factor (F_{ij}) and contribution (S_{ji}) matrices. It also calculates the uncertainty associated with the factor elements and model performance measures including: (1) R^2 , (2) S/N ratio, and (3) strength.

Does not make explicit use of errors or uncertainties in ambient measurements.

Cannot use samples containing missing data in any

Limited to a maximum of 7 or 14 (UNMIX version 6) factors.

Can report multiple or no solutions.

Requires knowledge of existing source profiles to evaluate the solutions.

species.

A-275 December 2009

Output

Receptor Model	Description	Strengths and Weaknesses
PDRM ⁹⁷	Principle	Strengths
PDRM was developed under the Supersites Program and requires MatLab or equivalent software to perform the calculation.	PDRM estimates contributions from selected stationary sources for a receptor site using high time-resolution measurements and meteorological data. In PDRM, Equation A-2 is modified to: $C_{\mathbf{k}} = \sum_{i} \textit{ER}_{ij} \left(\frac{\chi}{Q} \right)_{i} + \textit{E}_{\mathbf{k}}$	Explicitly include meteorological information and stack configuration of stationary sources into the model.
	$\sum_{i} \frac{1}{i} \frac{1}{i} \frac{1}{i} $ Equation A-4	Do not require source
	where $ER_{i,j}$ is interpreted as the emission rate of species i from stationary source j and (X/Q,t is the meteorological dispersion factor averaged over the time interval t. Equation A-4 is solved for ERi,j and (X/Q,t simultaneously by a nonlinear fit minimizing the objective function, FUN:	measurements. Do not need to interpret the relations between factors and sources.
	$FUN = \sum_{i=1}^{1} \sum_{k=1}^{n} \sum_{i=1}^{n} \left[ER_{ij} \left(\frac{X}{Q} \right)^{FGFM} - C_{k} \right]^{2}$	Commercial software (e.g., MatLab) available for performing nonlinear fit.
	Equation A-5 Because the number of solutions for a product of unknowns is infinite, additional constraints	Suitable for high time- resolution measurement.
	are set up for (X/Q,t on the basis of the Gaussian plume model, thus:	Weaknesses
	$LB\left(\frac{\chi}{Q}\right)_{jt}^{\text{Met}} \leq \left(\frac{\chi}{Q}\right)_{j,t}^{\text{PCRM}} \leq UB\left(\frac{\chi}{Q}\right)_{j,t}^{\text{Met}}$	Can only handle stationary sources but not area or mobile sources.
	$\begin{split} \left(\frac{\chi}{Q}\right)_{jz}^{\text{Met}} &= \frac{1}{2\pi\sigma_y\sigma_z u} \exp\left(-\frac{1}{2}\frac{y^2}{\sigma_y^2}\right) \left\{ \exp\left[-\frac{1}{2}\left(\frac{z-h}{\sigma_z}\right)^2\right] \right. \\ &\left. + \exp\left[-\frac{1}{2}\left(\frac{z+h}{\sigma_z}\right)^2\right] \right\} \end{split}$ Equations A-6 & A-7	Need to assume that only stationary sources are considered in the model contribute significantly for a measurement at the receptor site.
	Equations A-6 and A-7 limit the solution of Equation A-5 within the lower (LB) and upper (UB) bound of those predicted by the Gaussian plume model using different parameterizations.	Do not account for uncertainty in the measurement.
	Data Needs	Meteorological data may not
	PDRM requires speciated measurements at a higher time-resolution than typical CMB or PMF applications because of the fast-changing meteorological parameters. PDRM also	be always available or accurate.
	requires data for Equation A-7: transport speed (u), lateral and vertical dispersion parameters (σ y and σ z), and stack height (h).	Gaussian plume model may not be representative of the actual atmospheric dispersion.
	Output	
	PDRM determines emission rates and contributions from each point source considered in the model at the same time resolution as the measurement.	Sensitive to the imposed constraints (UB and LB).

Receptor Model	Description	Strengths and Weaknesses
PLS ¹²⁸	Principle	Strengths
	(dependent) variables. It assumes that the predictor and response variables are controlled by independent "latent variables" less in number than either the predictor or the response variables. In recent applications. ⁹⁶ PM chemical composition and size distribution are used	Fit two types of measurements (e.g., chemistry and size) with common factors. Provide more information to identify sources.
	as predictor (X) and response (Y) variables, respectively. Equation A- 2 is modified to:	Analyze strongly collinear and noisy dataset.
	$X_{\mathbf{k}} = \sum_{\mathbf{j}} T_{\mathbf{i}\mathbf{j}} P_{\mathbf{j}\mathbf{i}} + E_{\mathbf{k}}$	Do not require source measurements.
	Equation A-8	Weaknesses
	·	Requires large (>100) ambient datasets.
	$Y_{\rm rt} = \sum_{\rm i} u_{\rm i} c_{\rm jt} + D_{\rm k}$ Equation A-9	Difficult to relate latent variables to any physical quantities.
		Do not provide quantitative source contribution estimates.
	where T and U are matrices of so-called "latent variables," and P and C are loading matrices. If X and Y are correlated to some degree, T and U would show some similarity. Equations A-8 and A-9 are solved by an iterative algorithm "NIPALS," which attempts to minimize E,D, and the difference between T and U simultaneously. If T and U end up being close enough, the X and Y variables can be explained by the same latent variables. These latent variables may then be interpreted as source or source categories.	Need to decide the number of latent variables.
		Do not explicitly make use of measurement uncertainties.
	Data Needs	Can result in no solution.
	Typical applications of PLS require both chemical speciated and size-segregated measurements. The practitioner needs to decide the number of latent variables on the basis of the correlation of resulting T and U matrices.	
	Output	
	PLS calculates latent variables, which are common factors best explaining the predictor and response variables, and the residues from fitting. Rx and Ry,	
	$R_{x} = 1 - var(E)/var(X)$	
	Equation A-10	
	$R_{y} = 1 - var(D)/var(Y)$	
	Equation A-11	

indicate the degree to which variables X and Y are explained by the latent variables.

Henry (1997, 020941) Lewis et al. (2003, 088413) Ogulei et al. (2006, 119975) Park et al. (2005, 156844) Paatero (1997, 087001) Paatero et al. (2002, 156836) Paatero (1999, 156835) Henry (2003, 156540)

Source: Watson et al. (2008, <u>157128</u>)

Table A-53. Different receptor models used in the Supersites source apportionment studies: tracerbased methods.

Receptor Model	Description	Strengths and Weaknesses
EF ^{129,130}	Principle	Strengths
The EF method may use a MLR algorithm, which is available in most statistical and spreadsheet software	A tracer (or marker) for a particular source or source category is a species	No special software needed.
	enriched heavily in the source emission against other species and other sources. Using EFs-, concentration of the ith pollutant at a receptor site at time t (i.e., Ci,t) can be expressed as:	Indicate presence or absence of particular emitters.
	$\mathcal{C}_{i,t} = \sum_{l} \frac{1}{\textit{EF}_{ipj}} \mathcal{C}_{pj,t} + \mathcal{Z}_{i,t} = \sum_{l} \left(\frac{F_{i}}{F_{pj}} \right) \mathcal{C}_{pj,t} + \mathcal{Z}_{i,t}$	Provides evidence of secondary PM formation and changes in source impacts by changes in ambient composition.
	Equation A-12	Could use a large (>100) dataset or a small (e.g., < 10) dataset.
	where the enrichment factor $EF_{i,pj}$ is the ratio of emission rate of the pollutant of interest (F_{ij}) and tracer species (F_{pj}) from source j. $C_{pj,t}$ is the concentration of	Weaknesses
	interest (F_{ij}) and tracer species (F_{pj}) from source j. $C_{pj,t}$ is the concentration of tracer species for source j at time t, and Zi,t represents contributions from all other sources (including the background level). The solution for eq 12 is situation-dependent. $EF_{i,pi}$ is usually unknown but may be estimated from source profiles,	Semiquantitative method, not specific especially when the EFs are unknown in advance.
	edges of a two-way scatter plot or the ratio of $C_{i,t}$ to $C_{\rho i,t}$ for a particular period when it is believed that a single source is dominant. In cases where $Z_{i,t}$ is a	Limited to sources with unique markers.
	constant, EF _{i,pj} may be derived from MLR. Data Needs	Tracer species must be exclusively from the sources or source categories examined.
	The minimum data needs include concentrations of all primary tracers at the receptor site. Known EFs or background levels are helpful.	Provide very limited error estimates.
	Output	More useful for source/process
	The EF method determines contributions to species i from each source considered in the model.	identification than for quantification.
NNLS 131,132	Principle	Strengths
The MatLab Optimization Toolbox provides a function "Isquonneg"	target species and tracer concentrations. Conventional MLR solutions to eq 12	Implemented by many statistical software packages.
for performing the NNLS calculation.	may lead to negative EFs due to the uncertainty in measurements or colinearity in source contributions. This is avoided in the NNLS approach since additional nonnegative constraints are built into the algorithm, i.e.:	Generate only non-negative EFs or regression coefficients.
	$EF_{i,pi} \ge 0$	Do not require source measurements.
	Equation A-13	Possible to include meteorological or other (besides chemistry) data into the model.
	Utilizing orthogonal decomposition, a NNLS problem can be reduced to the more	Weaknesses
	familiar least-distance programming and solved by a set of iterative subroutines developed and tested by Lawson and Hanson.131 In a more general sense, NNLS linearly relates a response variable to a set of independent variables with	Require a large (>100) set of ambient measurements.
	only non-negative coefficients.	Semiquantitative method, not specific.
	Data Needs When applied to EF or MLR problems, NNLS requires the concentration of target (response) and tracer (independent) species.	Do not explicitly consider measurement uncertainties.
	(response) and tracer (independent) species. Output	Tracer species must be exclusively from the sources or source
	NNLS generates non-negative regression coefficients for an EF/MLR problem and these coefficients can be related to the source contributions.	categories examined. Non-negative constraints may not be appropriate in some cases.

Receptor Model	Description	Strengths and Weaknesses
FAC	Principle	Strengths
	FAC provides a simple mean of estimating the SOA production rate using the emission inventories of primary precursor VOCs. FAC is actually a source-oriented modeling technique but it does not take into account all the atmospheric	Link SOA to primary VOC emissions so that SOA can also be treated as primary particles in the PM modeling.
	processes. FAC is defined as the fraction of SOA that would result from the reactions of a particular VOC:	Simple and inexpensive.
	$[SOA] = \sum \textit{FAC}_i \times ([VOC]_0 \times Fraction of VOC \textit{i reacted})$	Weaknesses
	Equation A-14	Ignore the influence of aerosol concentration and temperature-dependent gas-particle partitioning on SOA yield.
	where [VOC _{i]0} is the emission rate of VOC _i and [SOA] is the formation rate of SOA. Equation A-14 can be viewed as an extension of Equation -12 but concentrations are replaced with emission rates and EFs are replaced with FACs. FAC and the fraction of VOC reacted under typical ambient conditions have been developed for a large number of hydrocarbons >C ₆ ¹¹ . The most significant SOA	Limited by the accuracy of VOC emission inventory.
		Do not directly infer the contribution of each source to ambient SOA concentration.
	precursors are aromatic compounds (especially toluene, xylene, and trimethylbenzenes) and terpenes. In most applications, these FACs are used directly to estimate SOA.	Difficult to verify.
	Data Needs	
	FAC requires the VOC emission inventory in the region of interest. The knowledge of O_3 and radiation intensity is also helpful for slight modifications of the FACs.	
	Output	
	FAC method estimates the total production rate of SOA.	

Grosjean and Seinfeld (1989, <u>045643</u>)
Darns et al. (1970, <u>156379</u>)
Reimann and De Caritat (2000, <u>013269</u>)
Lawson and Hanson (1974, <u>156673</u>)
Wang and Hopke (1989, <u>157105</u>)

Source: Watson et al. (2008, <u>157128</u>)

Table A-54. Different receptor models used in the Supersites source apportionment studies: meteorology-based methods.

Receptor Model	Description	Strengths and Weaknesses
CPF ^{134,135}	Principle	Strengths
exceed a predetermined threshold criterion (e.g., upper 25th percentile of the from the source of interest). The calculation of CPF uses source contribution	CPF estimates the probability that a given source contribution from a given wind direction will exceed a predetermined threshold criterion (e.g., upper 25th percentile of the fractional contribution from the source of interest). The calculation of CPF uses source contributions (i.e., O_3 in Equation A-2) determined for the receptor site and local wind direction data matching each of the source	Infer the direction of sources or factors relative to the receptor site.
	contributions in time. These data are then segregated to several sectors according to wind direction and the desired resolution (usually 36 sectors at a 10° resolution). Data with very low wind speed (e.g., < 0.1 m/sec) are usually excluded from analysis because of the uncertain wind direction. CPF is then determined by:	Provide verification for the source identification made by factor analysis method.
	$CPF(\theta) = \frac{m_{\Delta \theta}}{}$	Easy to implement.
	$n_{\Delta \theta}$	Weaknesses
	Equation A-15	Criterion for the threshold is subjective.
	where $m\Delta\theta$ is the number of occurrences in the direction sector $\theta \to \theta + \Delta\theta$ that exceeds the specified threshold, and $n\Delta\theta$ is the total number of wind occurrences in that sector. Because wind direction is changing rapidly, high-time resolution measurements (e.g., minutes to hours) are preferred for a CPF analysis. If the calculated source contributions represent long-term averages, wind direction needs to be averaged over the same duration. In addition to source contribution, CPF can be applied directly to pollutant concentration measurements at a receptor site.	Absolute source contribution (or fractional contribution) may be influenced by other factors besides wind
	Data Needs	direction (e.g., wind
	CPF requires the time series of source contributions at a receptor site, which is usually determined by CMB or factor analysis methods using speciated measurements at the site. CPF also requires	speed, mixing height).
	wind direction and wind speed data averaged over the same time resolution as the sampling duration.	Local and near- surface wind
	Output	direction only has a limited implication for long-range transport.
	CPF reports the probability of "high" contribution from a particular source or factor occurring within each wind direction sector. The results are often presented in a wind rose plot.	
	each wind direction sector. The results are often presented in a wind rose plot.	Easy to be biased by a small number of wind occurrences in a particular sector.
		Work better for stationary sources than area or mobile sources.

Receptor Model	Description	Strengths and Weaknesses
NPR 136,137	Principle	Strengths
	NPR calculates the expected (averaged) source contribution as a function of wind direction following:	Infer the direction of sources or factors relative to the receptor site.
	$S(\theta) = rac{\displaystyle\sum_{i} extit{K} \left(rac{ heta - extit{W}_{i}}{\Delta heta} ight) imes S_{i}}{\displaystyle\sum_{i} extit{K} \left(rac{ heta - extit{W}_{i}}{\Delta heta} ight)}$	Provide verification for the source identification made by factor analysis method.
	Equation A-16	Require no assumption about the function form of
	where Wi is the wind direction for the ith sample and Si is the contribution from a specific source to that sample, determined from measurements at the receptor site. K is a weighting function called the kernel estimator. There are many possible choices for K. Henry et al. ¹³⁶ recommend either Gaussian or Epanechnikov functions. The most important decision in NPR is the choice of the	the relationship between wind direction and source contribution.
	smoothing parameter $\Delta\theta$. If $\Delta\theta$ is too large, $S(\theta)$ will be too smooth and meaningful peaks could be lost. If it is too small, $S(\theta)$ will have too many small, meaningless peaks. $\Delta\theta$ needs to be chosen	Provide uncertainty estimates.
	according to the project-specific spatial distribution of sources. NPR also estimates the confidence intervals of $S(\theta)$ based on the asymptotic normal distribution of the kernel estimates, thus:	Easy to implement.
		Weaknesses
	$\Delta S(\theta) = \frac{\sum_{i} \kappa \left(\frac{\theta - W_{i}}{\Delta \theta}\right) \times (S_{i} - S(\theta))^{2}}{\left(\sum_{i} \kappa \left(\frac{\theta - W_{i}}{\Delta \theta}\right)\right)^{2}}$	Choices for the kernel estimator and smoothing factor are subjective.
	Equation A-17	Absolute source contribution (or fractional contribution) may be influenced by other
	Data Needs	factors besides wind
	NPR requires the same data as the CPF method, including the time series of source/factor contributions (or fractional contributions) at the receptor site and local wind direction data matching the sampling duration in time.	direction (e.g., wind speed, mixing height).
	Output	Local and near- surface wind
	NPR reports the distribution of source contribution as a function of wind direction and the confidence level associated with it.	direction only has a limited implication for long-range transport.
		Easy to be biased by a small number of wind occurrences in a particular sector.
		Work better for stationary sources than area or mobile sources.

Receptor Model	Description	Strengths and Weaknesses
TSA ¹³⁸	Principle	Strengths
TSA requires the calculation of air parcel back trajectory, which is often accomplished using the HY-SPLIT model. 115,139 HY- Similar to CPF, TSA clusters the measured pollutant concentration or calculated source contribution according to the wind pattern. However, air parcel back trajectory, rather than local wind direction, is used. A back trajectory traces the air parcel backward in time from a receptor. The initial height is often between 200 and 1000 m above ground level where the wind direction could differ from the		Infer the direction of sources or factors relative to the sampling site.
SPLIT version 4.5 is available at http://www.arl.noaa.gov/-ready/hysplit4.html. surface wind direction substantively. For each sample i, TSA obtains one or more trajectories and calculates their total residence time in the jth directional sector (\tau_{i,j}, i.e., the total number of 1-h trajectory end points that fall into the sector). The pollutant concentration or source contribution in the sample, S _i , is then linearly apportioned into each directional sector according to \tau_{i,j} and averaged over all samples to produce the directional dependent pollutant concentration/source contribution for the period of interest:	Provide verification for the source identification made by factor analysis method.	
	$\overline{S}_{j} = \sum_{i} S_{i} \left(\frac{\tau_{ij}}{\sum_{j} \tau_{ij}} \right) / N$	Account for air mass transport over hundreds to thousands of kilometers and on the order of several days.
	Equation A-18	Can represent plume
	where N is the number of samples. Compared with CPF and NPR, TSA considers the entire air mass history rather than just the wind direction at the receptor.	spread from vertical wind shear at different hours of day
	Data Needs	by adjusting the initial height of back
	TSA requires the time series of pollutant concentration or source contribution at the receptor site,	trajectories.

TSA reports the avg pollutant concentration or source contribution as a function of wind direction based on back trajectory calculations.

TSA requires the time series of pollutant concentration or source contribution at the receptor site, and back trajectories initiated over the site during the sampling duration. Trajectory is usually calculated once every hour so TSA is more suitable for analyzing measurements of >1-h resolution.

Weaknesses

Need to generate and analyze the back trajectory data.

Uncertainty in back trajectory calculation increases with its length in time.

Source contribution depends on not only trajectory residence time but also

entrainment efficiency, dispersion, and deposition. Difficult to resolve the direction of more localized sources.

Receptor Model	Description	Strengths and Weaknesses
PSCF 140	Principle	Strengths
PSCF requires the calculation of air parcel back trajectory, which is often accomplished using the HY-SPLIT model. 115,139 HY-SPLIT version	Ensemble air parcel trajectory analysis refers to the statistical analysis on a group of trajectories to retrieve useful patterns regarding the spatial distribution of sources. Uncertainties associated with individual trajectory calculations largely cancel out for a sufficient number of trajectories or trajectory segments. As a popular ensemble back trajectory analysis, PSCF estimates the	Infer the location of sources or factors relative to the sampling site.
4.5 is available at http://www.arl.noaa.gov/-ready/hysplit4.html.	4.5 is available at Back trajectories are first calculated for each sample at the receptor site. To determine the PSCF study domain containing the receptor site is divided into an array of grid cells. Trajectory residence	Provide verification for the source identification made by factor analysis method
	$PSCF_{ij} = \frac{\text{Sum of "high" residence time in cell }(i, j)}{\text{Sum of all residence time in cell }(i, j)}$ Equation A-19	the order of several
	The criterion for high pollutant concentration or source contribution is critical for the PSCF calculation. The 75th or 90th percentile of the concentration or factor is often used. 113,141,142 Residence time can be represented by the number of trajectory end points in a cell.	days. Resolve the spatial distribution of source strength (qualitatively).
Data Needs	Data Needs	Weaknesses
	Similar to TSA, PSCF calculation requires the time series of pollutant concentration or source contribution at the receptor site, and back trajectories initiated over the site during the sampling	Need to generate
period. Trajectories should be calculated with 1-to 3-h segment to reduce the uncertainty from interpolation (if needed).	and analyze the back trajectory data.	

Output

PSCF reports the probability that an upwind area contributes to high pollutant concentrations or source contribution at the downwind receptor site. The results are often presented as a contour plot on the map. A high probability usually suggests potential source region.

Need to correct for the central tendency (residence time always increases toward the receptor site regardless of source contribution).

Uncertainty in back trajectory calculation increases with its length in time.

Source contribution depends on not only trajectory residence time but also entrainment efficiency, dispersion, and deposition.

Difficult to resolve the location of more localized sources.

A-283 December 2009

Receptor Model		Description	Strengths and Weaknesses
SQTBA ^{117, 143}	Principle		Strengths

using the HY-SPLIT model. 115,139 HY-SPLIT version 4.5 is available at http://www.arl.noaa.gov/ready/hysplit4.html.

SQTBA requires the calculation of air parcel back trajectory, which is often accomplished SQTBA is another type of ensemble air parcel trajectory analysis. The concept of SQTBA is to estimate the "transport field" for each trajectory ignoring the effects of chemical reactions and deposition. Back trajectories are first calculated for each sample at the receptor site, and a study domain containing the receptor site is divided into an array of grid cells. SQTBA assumes that the transition probability that an air parcel at (x',y',t'), where x' and y' are spatial coordinates and t' means time, will reach a receptor site at (x,y,t) is approximately normally distributed along the trajectory with a standard deviation that increases linearly with time upwind 144,145, thus:

$$Q(x, y, t | x', y', z') = \frac{1}{2\pi (at')^2} \exp \left[-\frac{1}{2} \left(\left(\frac{X - x'(t')}{at'} \right)^2 + \left(\frac{Y - y'(t')}{at'} \right)^2 \right) \right]$$

Equation A-20

where (X,Y) is the coordinate of the grid center, a is the dispersion speed, and x'(t') and x'(t') represent the trajectory. The probability field, Q, for a given trajectory is then integrated over the upwind period, τ , to produce a two-dimensional "natural" (nonweighted) transport field:

$$T_{k}(x, y | x', y') = \frac{\int_{-\tau}^{0} Q(x, y, t | x', y', z')}{\int_{-\tau}^{0} dt'}$$

Equation A-21

After the transport field for each trajectory is established, they are weighted by the corresponding pollutant concentration or source contribution at the receptor site and summed to yield the overall SQTBA field. 117

Data Needs

SQTBA requires the time series of pollutant concentration or source contribution at the receptor site, and back trajectories initiated over the site during the sampling period. Trajectories should be calculated with 1to 3-h segment to reduce the uncertainty from interpolation (if needed).

SQTBA put more weight on trajectories associated higher pollutant concentration or source contribution and therefore the resulting field may imply the major transport path.

Imply the location of sources or factors relative to the sampling site.

Account for air mass transport over hundreds to thousands of kilometers and on the order of several days.

Resolve the spatial distribution of source strength (qualitatively).

Weaknesses

Need to generate and analyze the back trajectory data.

Need to correct for the central tendency (residence time àlways increases toward the receptor site regardless of source contribution).

Need to estimate dispersion velocity.

Involve complicated calculations.

Physical meaning of the SQTBA field is unclear

Difficult to resolve the location of more localized sources.

A-284 December 2009

Receptor Model	Description	Strengths and Weaknesses
RTWC 146	Principle	Strengths
RTWC requires the calculation of air parcel back trajectory, which is often accomplished using the HY-SPLIT model. 115,139 HY-SPLIT version 4.5 is available at http://www.arl.noaa.gov/ready/hysplit4.html	sample at the receptor site, and a study domain containing the receptor site divided into an array of grid cells. RTWC assumes that no major pollutant sources are located along "clean" (associated with low pollutant concentrations) trajectories and that "polluted" trajectories picked up emissions along their paths. In practice, RTWC distributes pollutant concentrations at the receptor to upwind grid cells along the back trajectories according to the trajectory residence times in those cells. $\frac{\text{resident time in cell } I}{S_{ik} = S_k} \frac{\text{resident time in each cell}}{\text{average residence time in each cell}}$	Imply the location of sources or factors relative to the sampling site.
		Account for air mass transport over hundreds to thousands of kilometers and on the order of several days.
	where S_k is the pollutant concentration or source contribution determined upon the arrival of trajectory k and $S_{i,k}$ is the redistributed pollutant concentration or source contribution for cell i upwind.	Resolve the spatial distribution of source strength (qualitatively).
	RTWC is known for the problem of "tailing effect," i.e., spurious source areas can be identified when cells are crossed by a very small number of trajectories. Although some corrections were proposed147 these approaches are purely empirical.	Weaknesses
		Need to generate and analyze the back trajectory data.
		Need to correct for the central tendency and tailing effect.
		The amount of emission entrainment should not be proportional to the residence time of trajectories (so there is no linear relationship between RTWC field and source strength).
		Physical meaning of the RTWC field is unclear.
		Difficult to resolve the location of more localized sources.

Source: (Watson et al., 2008, <u>157128</u>)

^{113 (}Pekney et al., 2006, <u>086115</u>) 117 (Zhou et al., 2004, <u>157190</u>) 134 (Ashbaugh, 1983, <u>156229</u>) 135 (Ashbaugh et al., 1984, <u>045148</u>) 136 (Henry et al., 2002, <u>136097</u>) 137 (Yu et al., 2004, <u>101779</u>) 138 (Parekh and Husain, 1981, <u>156840</u>) 140 (Hopke et al., 1995, <u>156566</u>) 143 (Keeler and Samson, 1989, <u>156633</u>) 144 (Samson, 1978, <u>188974</u>) 145 (Samson, 1980, <u>073010</u>) 146 (Stohl, 1996, <u>157014</u>) 147 (Cheng et al., 1993, <u>052294</u>)

A.3.2. Source Profiles

Table A-55. Source Profiles: Part I

Element	Symbol	Motor Vehicle Exhaust - Gasoline		Coal Combustion		Highway Road Dust		Unpaved Road Dust		Refinery	
		Weight %	Uncertainty	Weight %	Uncertainty	Weight %	Uncertainty	Weight %	Uncertainty	Weight %	Uncertainty
Aluminum	Al	0.1	N/A	5.968	0.5247	5.729	0.4058	7.4822	0.9315	8.4853	2.3478
Antimony	Sb	0.01	N/A	0	0.0625	0	0.0335	0	0.1601	0	0.0285
Arsenic	As			0	0.0164	0	0.0123	0	0.0226	0	0.0045
Barium	Ва	0.01	N/A	1.3315	1.0801	0.1377	0.1027	0	0.5473	0	0.0979
Cadmium	Cd			0	0.0341	0	0.019	0	0.0881	0	0.0155
Calcium	Ca	0.42	N/A	3.4536	1.0411	2.5657	0.1388	2.163	1.0444	0.1236	0.056
Chloride ion	CI-	0.39	N/A								
Chromium	Cr	0.01	N/A	0.0176	0.0041	0.0271	0.0023	0.0312	0.0161	0.0443	0.0127
Cobalt	Со			0	0.0432	0	0.0668	0	0.0869	0	0.0218
Copper	Cu	0.02	N/A	0.0179	0.0112	0.0219	0.0101	0.0474	0.0307	0.0299	0.0082
Total carbon	TC			4.2763	4.2579	14.3927	2.3449	4.2671	3.7193	0	1.6175
Gallium	Ga			0.014	0.014	0	0.005	0	0.0233	0	0.0059
Gold	Au										
Indium	In	0	N/A	0	0.0404	0	0.022	0	0.1041	0	0.0183
Iron	Fe	1.27	N/A	2.916	0.3827	4.5713	0.2661	5.5128	2.1152	1.4708	0.2216
Lanthanum	La	0	N/A	0	0.2462	0	0.1341	0	0.6521	0	0.1146
Lead	Pb	0.08	N/A	0.068	0.0336	0.067	0.0074	0.0288	0.0284	0.0097	0.0063
Magnesium	Mg	0.14	N/A								
Manganese	Mn	0.01	N/A	0.0284	0.0139	0.087	0.009	0.1372	0.0509	0.016	0.002
Mercury	Hg	0	N/A	0	0.0154	0	0.0083	0	0.0383	0	0.0073
Molybdenum	Мо			0	0.0134	0	0.0071	0	0.0331	0.0079	0.0088
Nickel	Ni	0.01	N/A	0.0072	0.0019	0.0081	0.0015	0.0091	0.0057	0.04	0.0065
Nitrate	NO ₃	0.06	N/A	0	0.2116	0	0.094	0	0.6371	0	0.0772
Organic carbon	ОС	59.37	N/A	0	2.9263	12.7127	2.1296	4.2671	2.2637	0	1.5288
Palladium	Pd			0	0.0263	0	0.0151	0	0.0701	0	0.0127
Phosphorus	Р	0.27	N/A	0.9372	0.6322	0	0.0324	0.1603	0.044	0.0689	0.0144
Potassium	K	0.01	N/A	0.4644	0.0602	2.7161	0.3069	2.8299	0.4949	0.0825	0.0234
Rubidium	Rb			0.0053	0.0043	0.0184	0.0023	0.0184	0.0093	0	0.002
Selenium	Se			0.0406	0.0407	0	0.0024	0	0.0108	0	0.0021
Silicon	Si	1.61	N/A	9.0112	0.5675	17.596	1.4183	24.2969	4.0089	17.9733	5.1834
Silver	Ag			0	0.0312	0	0.0175	0	0.083	0	0.0151
Sodium	Na	0.01	N/A								
Strontium	Sr			0.1964	0.0686	0.0395	0.0078	0.0313	0.0112	0.0094	0.0031
Sulfate	SO ₄			10.1716	8.9405	1.1604	0.2003	0.8688	1.3788	2.3243	3.4523
Sulfur	S	0.37	N/A	2.948	2.729	0.598	0.0509	0.2808	0.3884	0.6304	0.9627

	Moto	Motor Vehicle Exhaust - Gasoline	Coal Combustion		Highway Road Dust		Unpaved Road Dust		Refinery	
Thallium	TI									
Tin	Sn		0	0.0527	0	0.0298	0	0.1464	0	0.0254
Titanium	Ti		0.4315	0.0651	0.3612	0.0313	0.5258	0.1289	0.6178	0.0711
Uranium	U									
Vanadium	V		0	0.0734	0.0288	0.0074	0	0.0646	0.0432	0.0084
Yttrium	Υ		0	0.006	0.0046	0.0012	0	0.0146	0	0.0029
Zinc	Zn	0.49 N/A	0.0797	0.0341	0.0932	0.0256	0.0502	0.021	0.0166	0.003
Zirconium	Zr		0.0247	0.0043	0.0128	0.0025	0.0219	0.0168	0.0166	0.0022
Ammonium	NH4+	0.34 N/A	0.3476	0.1352	0	0.025	0	0.1317	0.3281	0.5565
Sodium ion	Na+									
Carbonate	CO ₃									
Organic carbon II	OC2									
Organic carbon III	OC3									
Organic carbon IV	OC4									
EC I	EC1									
Chlorine atom	CI-		0.0629	0.0221	3.4403	0.5505	0.1519	0.0755	0.0186	0.0074
EC III	EC3									
EC	EC	16.44 N/A	4.2763	3.0931	1.68	0.9817	0	2.9512	0	0.5283
Bromine Atom	Br		0.0147	0.0154	0.0037	0.0011	0	0.0078	0	0.0017
Organic carbon I	OC1									
EC II	EC2									
Sulfur dioxide	SO ₂		7262.6687	7677.5681						
Potassium ion	K+		0.1109	0.0571	0.2295	0.1046	0.1263	0.0744	0.0115	0.0059

 $Source: USA \ EPA \ Speciate \ database \ \underline{http://www.epa.gov/ttnchie1/software/speciate/index.html}$

Part II

Element	Symbol	Residential Wood Burning		Oil Combustion		DE		Fly Ash		Incinerator	
			Uncertainty	Weight %	Uncertainty	Weight %	Uncertainty	Weight %	Uncertainty	Weight %	Uncertainty
Aluminum	Al	0.0034	0.0103	0	0.05	0	0.01	1.5708	0.4755	1.15	0.83
Antimony	Sb	0.0002	0.0108	0	0.01	0	0.01	0.007	0.0218	0.01	0.15
Arsenic	As	0.0003	0.0016	0.02	0	0	0	0.001	0.0023	0	0.04
Barium	Ва	0.0093	0.0369	0	0.03	0.01	0.04	0.0303	0.0655	0.14	0.55
Cadmium	Cd	0.0013	0.0058	0	0.01	0	0.01	0	0.0154	0.01	0.08
Calcium	Ca	0.0664	0.0165	0	0.04	0.01	0.01	10.1398	1.7825	2.37	0.62
Chloride ion	CI-	0.0028	0.0004					17.5498	1.5419		
Chromium	Cr	0.0003	0.0012	0.01	0.01	0	0	0.0054	0.001	0.02	0.02
Cobalt	Со	0.0005	0.0005	0.05	0.01	0	0	0.0015	0.0128	0	0.03
Copper	Cu	0.0002	0.0007	0.01	0.01	0	0	0.017	0.0013	0.08	0.1
Total carbon	TC	70.6416	7.1435	3.55	1.0855	98.94	17.859	1.4329	0.2009	55.79	27.5948
Gallium	Ga	0	0.0016	0.01	0	0	0	0.0013	0.0018	0	0.02
Gold	Au							0.0008	0.0033		
Indium	In	0.0021	0.0069	0	0.01	0	0.01	0	0.0164	0.01	0.1
Iron	Fe	0.0038	0.0017	0.68	0.1	0	0	0.8306	0.059	1.72	0.31
Lanthanum	La	0.0086	0.0431	0	0.04	0.02	0.05	0.0046	0.0868	8.43	61.15
Lead	Pb	0.0031	0.0018	0	0	0	0	0.0031	0.0031	14.56	11.69
Magnesium	Mg							0.4455	0.0465		
Manganese	Mn	0.003	0.0013	0	0	0	0	0.0426	0.0033	0.04	0.01
Mercury	Hg	0.0004	0.0027	0	0	0	0	0.0008	0.0025	27.63	47.27
Molybdenum	Мо	0	0.0024	0	0	0	0	0.0041	0.001	0.01	0.04
Nickel	Ni	0.0002	0.0005	2.36	0.23	0	0	0.0028	0.0004	0.01	0
Nitrate	NO ₃	0.2025	0.0156	0	0	0.06	0.01	0	0.2192	5.5	4.55
Organic carbon	OC	49.4961	5.481	1.71	0.56	90.8	14.79	1.4329	0.1592	37.21	18.03
Palladium	Pd	0.0006	0.0047	0	0	0	0	0	0.0126	0.02	0.07
Phosphorus	Р	0	0.0051	0	0.65	0.01	0.02	0.5808	0.2447	0.05	0.16
Potassium	K	0.6346	0.1008	0	0	0	0	24.4341	5.0076	1.28	0.86
Rubidium	Rb	0.0007	0.0007	0	0	0	0	0.0351	0.0026	0	0.02
Selenium	Se	0.0001	0.0008	0.03	0	0	0	0.0018	0.0003	0.01	0.01
Silicon	Si	0.0443	0.0167	0	0.09	0.01	0.01	4.0201	1.2886	4.42	1.82
Silver	Ag	0.0023	0.0054	0	0	0	0.01	0	0.0143	0.02	0.08
Sodium	Na							2.8137	0.2174		
Strontium	Sr	0.0006	0.0009	0	0	0	0	0.0406	0.0029	0.02	0.01
Sulfate	SO ₄ ²⁻	0.4553	0.0359	25.29	5.62	0.53	0.07	8.0717	0.6409	10.46	2.6
Sulfur	S	0.1533	0.0173	16.48	1.62	0.59	0.21	2.6349	0.1873	3.16	0.63
Thallium	TI							0.0011	0.0025		
Tin	Sn	0.0006	0.0092	0	0.01	0	0.01	0.0067	0.0198	0.04	0.14
Titanium	Ti	0.001	0.012	0.01	0.01	0	0.01	0.058	0.0093	0.11	0.17
Uranium	U							0.0021	0.0052		

			lential Wood Burning	Oil	Combustion		DE	F	ly Ash	In	cinerator
Vanadium	٧	0.0007	0.005	0.4	0.04	0	0.01	0.0038	0.011	0.01	0.07
Yttrium	Υ	0.0001	0.0011	0	0	0	0	0.0013	0.0021	0	0.02
Zinc	Zn	0.0762	0.0054	0.01	0	0.02	0.02	0.031	0.0023	0.57	0.39
Zirconium	Zr	0	0.0014	0	0	0	0	0.0039	0.0008	0	0.02
Ammonium	NH4+	0.1132	0.014	0.84	0.24	0.03	0.01	0.0234	0.022	7.41	7.81
Sodium ion	Na+			0.11	0.02	0	0.01	4.7518	0.3438	1.81	2.63
Carbonate	CO ₃			0	0.0214	0.2577	0.4463				
Organic carbon II	OC2	7.513	0.6675								
Organic carbon III	OC3	8.9627	1.4665								
Organic carbon IV	OC4	2.7683	1.1919								
EC I	EC1	20.342	2.9324								
Chlorine atom	Cl	0.2874	0.0404	0.05	0.01	0.03	0.01	27.5797	8.1193	6.35	10.46
EC III	EC3	2.2878	0.4252								
EC	EC	21.1455	4.5813	1.84	0.93	8.14	10.01	0	0.1227	18.58	20.89
Bromine Atom	Br	0.0029	0.0011	0	0	0	0	0.0441	0.0032	0.19	0.3
Organic carbon I	OC1	25.1452	4.6648								
EC II	EC2	2.9362	1.2422								
Sulfur dioxide	SO ₂										
Potassium ion	K ⁺	0.5208	0.0795	0.01	0.01	0	0.01	14.5473	1.3393	1.01	0.42

Source: U.S. EPA SPECIATE database http://www.epa.gov/ttnchie1/software/speciate/index.html

A.3.3. Receptor Model Results

Table A-56. PM_{2.5} receptor model results (µg/m³)

Sampling Site	Measured PM _{2.5} Concentration	Vegetative Burning	Road Dust, Soil	(NH ₄) ₂ SO ₄	NH ₄ NO ₃	Tailpipe	Brake Wear
Albany, NY 2000-2001	20.9	5.5	1.9	2.4	4.6	2.9	0.0
Birmingham, AL, 2000-2001	16.2	3.3	1.4	3.7	2.4	5.7	0.0
Houston, TX, 2000-2001	12.4	3.1	2.6	1.6	2.2	2.6	0.0
Long Beach, CA, 2000-2001	30.0	4.6	1.3	2.1	16.3	4.1	0.4
Las Vegas, NV, 2000-2001	2.5	1.0	2.0	0.5	0.3	1.5	0.0
El Paso, TX, 2000-2001	5.5	0.7	2.8	0.7	0.3	2.0	0.3
Westbury, NY, 2000-2001	11.5	1.7	0.7	5.2	2.2	5.3	0.0

Source: Abu-Allaban et al. (2007, <u>098575</u>)

Table A-57. PM₁₀ receptor model results (mass percent)

Sampling Site	Wood Smoke	Diesel	Gasoline Vehicles	Natural Gas Combustion	Vegetative Detritus	Tire Wear Debris
Apline, CA, 1994-1995	15.00	33.19	46.46		5.31	
Apline, CA, 1995	9.92	58.78	11.47		19.63	
Apline, CA, 1995	10.97	65.64	10.81		12.66	
Atascadero, CA, 1994-1995	44.22	22.16	26.44			6.91
Atascadero, CA, 1995	21.36	38.99	12.41		17.89	9.43
Atascadero, CA, 1995	73.45	18.11			3.14	5.31
Lake Arrowhead, CA, 1994-1995	6.86	46.55	33.92	2.73	9.85	
Lake Arrowhead, CA, 1995	4.85	65.20	7.40	4.95	17.65	
Lake Arrowhead, CA, 1995	9.91	38.90	46.70	0.79	3.66	
Lake Elsinore, CA, 1994-1995	12.72	44.01	18.61		4.21	20.42
Lake Elsinore, CA, 1995	17.13	74.72		0.26	7.81	
Lake Elsinore, CA, 1995 ²	6.84	38.48	10.85	0.21	15.55	28.01
Lancaster, CA, 1994-1995	22.49	43.14	20.56	0.45	3.73	9.78
Lancaster, CA, 1995	3.69	46.18	12.66	0.20	8.21	29.17
Lancaster, CA, 1995	34.89	37.30	7.33	0.61	7.78	11.93
Lompoc, CA, 1994-1995		18.16	49.65		5.89	26.38
Lompoc, CA, 1995	13.09	51.27	14.73		20.73	
Lompoc, CA, 1995		79.42	10.19		10.87	
Long Beach, CA, 1994-1995	10.12	43.24	16.49	0.13	3.97	26.00
Long Beach, CA, 1995	2.38	70.25	5.47	0.86	6.79	14.11
Long Beach, CA, 1995	14.32	56.80	6.15	0.72	5.34	16.61
Mira Loma, CA, 1994-1995	4.68	48.87	18.10		8.82	19.52
Mira Loma, CA, 1995	5.20	53.72	6.65		18.79	15.71
Mira Loma, CA, 1995	27.97	41.88	8.87		11.50	9.85
Riverside, CA, 1994-1995	14.14	46.67	12.03		6.83	20.31
Riverside, CA, 1995	6.20	52.15	7.93	0.16	14.54	19.06
Riverside, CA, 1995	25.28	47.65			6.91	20.17
San Dimas, CA, 1995	7.62	71.35	4.87	0.15	8.35	
San Dimas, CA, 1995	22.01	61.34	4.48	0.23	3.70	7.85
Santa Maria, CA, 1994-1995	18.66	23.99	22.03		5.58	8.15
Santa Maria, CA, 1995	12.94	52.57	11.87	0.27	9.63	12.78
Santa Maria, CA, 1995	12.24	48.13	10.79	0.47	18.04	15.05
Upland, CA, 1994-1995	20.33	46.39	14.08		4.49	14.70
Upland, CA, 1995	7.33	68.69	3.50	0.17	9.19	11.25
Upland, CA, 1995	28.10	46.52	4.90	0.33	10.30	9.81

Source: Manchester-Neesvig et al. (2003, <u>098102</u>)

A.4. Exposure Assessment

A.4.1. Exposure Assessment Study Findings

Table A-58. **Exposure Assessment Study Summaries**

Adar et al. (2007, 098635)

Study Design Cohort

Period March 2002-June 2002 Location St. Louis, Missouri

Population Senior citizens exposed to traffic-related PM

Age Groups 60 Indoor Source

Personal Method Samples of FeNO were collected between 8:00 and 9:00 a.m. on the mornings before and after each trip. In the hours surrounding these samples, group-level measurements of particle concentrations also were collected using several continuous

instruments installed on two portable carts. These carts were first positioned in a central location inside the participants' living facilities 24-h before each trip. The carts remained at the facilities until it was time for the trips, at which point they followed the participants from the health testing room, onto the bus, to the group activity, and to lunch. After the trip home aboard the bus, the carts were returned to the central location in the living facility where they remained until the conclusion of the health testing on the following morning. Continuous measurements of ambient particles and gases also were collected from a central monitoring station in East St. Louis, Illinois. Two portable carts containing continuous air pollution monitors were used to measure group-level micro-environmental exposures to traffic related pollutants, including $PM_{2.5}$, BC, and size-specific particle counts. PM_{2.5} concentrations were measured continuously using a DustTrak aerosol monitor model 8520 with a Nafion diffusion dryer. Integrated samples of PM2.5 mass also were collected using a Harvard Impactor for daily calibration of the trip and

Continuous BC concentrations were measured using a portable aethalometer with a 2.5-µm impaction inlet. Particle counts Periods were measured using a model CI500 optical particle counter with a modified flow rate of 0.1 cubic feet per minute.

Personal Size Microenvironment Size

 $PM_{2.5}$, PM_{10} Ambient Size

BC, pollen and mold also assessed Component(s)

Primary Findings PM_{2.5} exposures resulted in increased levels of FeNO in elderly adults, suggestive of increased airway inflammation. These associations were best assessed by microenvironmental exposure measurements during periods of high personal particle exposures. In pre-trip samples, both microenvironmental and ambient exposures to PM25 were positively associated with FeNO. For example, an interguartile increase of 4 µg/m³ in the daily microenvironmental PM_{2.5} concentration was associated with a 13% [95% CI: 2-24) increase in FeNO. After the trips, however, FeNO concentrations were associated predominantly with microenvironmental exposures, with significant associations for concentrations measured throughout the whole day. Associations with exposures during the trip also were strong and statistically significant with a 24% (95% CI: 15-34) increase in FeNO predicted per interquartile increase of 9 µg/m³ in PM_{2.5}. Although pre-trip findings were generally robust and the post-trip

findings were generally robust, the post-trip findings were sensitive to several influential days.

Adgate et al. (2002, 030676)

Comparison of outdoor, indoor and personal $PM_{2.5}$ in three communities. Study Design

Period April-June, June-August, September-November, 1999

Battle Creek, East St. Paul, and Phillips, Minnesota, constituting the Minneapolis-St. Paul metropolitan area. Location

Population Adults in urban areas

Age Groups Mean age 42 ± 10, range 24-64 yr

Indoor Source

Personal Method Inertial impactors (PEM) in a foam-insulated bag with shoulder strap with the inlet mounted on the front.

Personal Size $PM_{2.5}$ Microenvironment Size $\mathsf{PM}_{2.5}$ $PM_{2.5}$ Ambient Size Component(s)

Primary Findings

The relative level of concentrations report in other studies was duplicated. Outdoor < indoor < personal. On days with paired samples (n = 29), outdoor concentrations were significantly lower (mean difference $2.9 \,\mu\text{g/m}^3$, p = 0.026) than outdoor at home.

A-291 December 2009

Adgate et al. (2007, 156196)

Study Design NR

Period 1999-; April 26-June 20, June 21-August 11, September 23-November 21

Location Minneapolis-St. Paul metropolitan area

Population NR

Indoor Source Cigarette smoke, resuspension of house dust from carpets, furniture and clothes, and emissions from stoves and kerosene

heaters (Leaderer et al., 1993; Ferro et al., 2004).

Personal Method Personal monitoring was conducted for two consecutive days, and was conducted so that the two 24-h averages matched

indoor (I) and personal (P) measurements were collected in concert with outdoor (O) samples in each community. Gravimetric concentrations for P and I were collected using inertial impactor environmental monitoring inlets and air sampling pumps. To obtain I measurements, monitors were placed inside each residence in a room where the participants reported spending the most waking hours. P measurements were obtained by carrying personal pumps in small bags. O samples were collected near the approximate geographic center of each neighborhood and monitors ran from midnight to midnight for two consecutive 24-h periods, followed by a day to change filters. Gravimetric O PM_{2.5} concentrations were obtained using a federal reference

method sampler.

 $\begin{array}{cc} Personal Size & PM_{2.5} \\ Microenvironment Size & PM_{2.5} \\ Ambient Size & PM_{2.5} \end{array}$

Component(s) Ag, Al, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, La, Mg, Mn, Na, Ni, Pb, S, Sb, Sc, Ti, Tl, V, Zn

Primary Findings The relationships among P, I, and O concentrations varied across trace elements (TE). Unadjusted mixed-model results

demonstrated that O monitors are more likely to underestimate than overestimate exposure to many of the TEs that are suspected to play a role in the causation of air pollution related health effects. These data also support the conclusion that TE exposures are more likely to be underestimated in a lower income and centrally located community than in a comparatively higher income community. Within the limits of statistical power for this sample size, the adjusted models indicated clear seasonal and community related effects that should be incorporated in long-term exposure estimates for this population.

Adgate et al. (2003, 040341)

Study Design Time-series epidemiologic study

Period April-November 1999; spring: 26 April-20 June; summer: 21 June-11 August; fall: 23 September-21 November

Location Minneapolis-St. Paul, Minnesota Population Healthy non-smoking results Age Groups 24-64 yr (mean age 42 ± 10)

Indoor Source NR

Personal Method Personal and indoor gravimetric PM concentrations were collected using PM_{2.5} inertial impactor environmental monitoring inlets

and air sampling pumps. Monitors were placed inside each participant's residence in the room where he/she reported spending the majority of their waking hours to obtain I measurements. Participants also carried personal pumps in small bags to obtain P measurements. Start times for indoor and personal monitors were always within a few minutes of each other. Gravimetric O and central site PM_{2.5} concentrations were obtained using a federal reference method sampler and EPA site requirements for ambient sampling. Gravometric samples were collected near the approximate geographic center of each neighborhood, and

monitors ran from midnight to midnight for 2 consecutive 24-h periods, followed by a day to change filters.

Personal Size NR
Microenvironment Size NR
Ambient Size NR
Component(s) NR

Primary Findings PM_{2.5} concentrations were higher than I concentrations, which were higher than O concentrations. In healthy non-smoking

adults, moderate median for correlation between P and I; modest median for correlation between I and O; and minimal median correlation between P and O longitudinal were observed for PM_{2.5} measurements. A sensitivity analysis indicated that correlations did not increase if the days with exposures to environmental tobacco smoke or occupational exposures were excluded. In the sample population neither P nor I monitors provided a highly correlated estimate of exposure to O PM_{2.5} over time. These results suggest that the studies showing relatively strong longitudinal correlation coefficients between P and O PM_{2.5} for individuals sensitive to air pollution health effects do not necessarily predict exposure to PM_{2.5} in the general

population.

Allen et al. (2003, 053578)

Study Design Use of continuous light scattering data to separate indoor PM into indoor- and outdoor-generated components to enhance

knowledge of the outdoor contribution to total indoor and personal PM exposures.

Period November 1999-May 2001

Location Seattle, WA

Population Elderly people and children spending most of their time (up to 70%) indoors. The study included healthy elderly subjects, elderly

with COPD and coronary heart disease (CHD), and child subjects with asthma.

Age Groups Age n; 0-29 25; 30-59 36; >60 22; unknown 2

Indoor Source Suggested (not identified)

Personal Method NR. Indoor and outdoor sampling conducted

 $\begin{array}{cc} & \text{Personal Size} & \text{NR} \\ \text{Microenvironment Size} & \text{PM}_{2.5} \end{array}$

Ambient Size PM_{2.5} Component(s) S

Primary Findings A recursive mass balance model can be successfully used to attribute indoor PM to its outdoor and indoor components and to

estimate an avg Penetration, air exchange rate, deposition rate, and NH⁴⁺ for each residence.

Allen et al. (2007, 154226)

Period Heating seasonOctober-February; Non-heating season March-September

Location Seattle, WA
Population NR
Age Groups NR
Indoor Source NR

Personal Method Indoor and outdoor PM_{2.5} was measured using a 10-l/min single-stage Harvard Impactor (HI) with 37-mm Teflon filters. The

relationship between particle mass concentration and light scattering coefficient (bsp) was also measured on a continuous

basis indoors and outdoors using nephelometers (model 902 and 903).

 $\begin{array}{cc} \text{Personal Size} & \text{NR} \\ \text{Microenvironment Size} & \text{PM}_{2.5} \\ \text{Ambient Size} & \text{PM}_{2.5} \end{array}$

Component(s) S (measured by XRF)

Primary Findings The authors showed that RM can reliably estimate F_{inf} . Simulation results suggest that the RM F_{inf} estimates are minimally

impacted by measurement error. In addition, the average light scattering response per unit mass concentration was greater indoors than outdoors. Results show that the RM method is unable to provide satisfactory estimates of the individual components of $F_{\rm inf}$. Individual homes vary in their infiltration efficiencies, thereby contributing to exposure misclassification in epidemiologic studies that assign exposures using ambient monitoring data. This variation across homes indicates the need for home-specific estimation methods, such as RM or S, instead of techniques that give average estimates of infiltration across

homes.

Annesi-Maesano et al. (2007, 093180)

Study Design Population based

Period March 1999 to October 2000

Location Bordeaux, France; Clermont-Ferrand, France; Créteil, France; Marseille, France; Strasbourg, France; Reims, France

Population School childre Age Groups 10.4 ± 0.7 yr

Indoor Source NI

Personal Method PM_{2.5} was monitored simultaneously in both schoolyards (proximity level) and fixed-site monitoring stations (city level) using

4L/min battery operated pumps attached to polyethylene filter sampling cartridges.

Personal Size NR
Microenvironment Size NR
Ambient Size PM_{2.5}
Component(s) NR

Primary Findings Results show an increased risk for EIB and flexural dermatitis at the period of the survey, past year atopic asthma and SPT

positivity to indoor allergens in children exposed to high levels of traffic-related air pollution ($PM_{2.5}$ concentrations exceeding $10 \ \mu g/m^3$). Population based findings are also consistent with experimental data that have demonstrated that inhalation of traffic-related air pollutants either individually or in combination, can enhance the immune responses and airway response to

inhaled allergens, such as pollens or house dust mites, in atopic subjects.

Balasubramanian and Lee (2007, 156248)

Study Design Case study of 3 rooms of 1 flat on the 8th floor, and "outside the home."

Period May 12-23, 2004

Location Singapore

Population Residents of an urban area in a densely populated country.

Age Groups NR

Indoor Source Time-activity logs identified tobacco smoking, cooking, household cleaning and general resident movements.

Personal Method NR
Personal Size NR
Microenvironment Size PM_{2.5}
Ambient Size PM_{2.5}

Primary Findings I/O suggest that chemicals such as Cl, Na*, Al, Co, Cu, Fe, Mn, Ti, V, Zn, and EC were derived from the migration of outdoor

particles (I/O <1 or ~1).

Barn et al. (2008, 156252)

Study Design Measure indoor F_{inf} of PM_{2.5} from forest fires/wood smoke, effectiveness of high-efficiency particulate air (HEPA) filter air

cleaners in reducing indoor PM_{2.5}, and to analyze the home determinants of F_{inf} and air cleaner effectiveness (ACE).

Period 2004-2005 (summer 2004 and 2005, winter 2004)

Location British Columbia, Canada

Population Homes affected by either forest fire smoke or residential wood smoke

Age Groups NR Indoor Source NR

Personal Method Personal Data RAM for ambient air sampling

Personal Size Indoor home PM_{2.5}

Microenvironment Size NR

Ambient Size Outdoor home PM_{2.5}

Component(s) NF

Primary Findings Use of HEPA filter air cleaners can dramatically reduce indoor PM_{2.5} concentrations. Number of windows and season predict F_{inf}

(p < 0.001)

Baxter et al. (2007, 092726)

Study Design Part of a prospective birth cohort study performed by the Asthma Coalition for Community, Environment, and Social Stress (ACCESS)

Period 2003-2005. Non-heating season: May to October; Heating season: December to March

Location Boston (urban)

Population Lower socio-economic status (SES) households

Age Groups NR Indoor Source NR

Personal Method PM_{2.5} samples were collected with Harvard personal environmental monitors (PEM). NO concentrations were measured using

Yanagisawa passive filter badges.

Personal Size NR
Microenvironment Size PM_{2.5}
Ambient Size PM_{2.5}
Component(s) EC

Primary Findings

The authors' regression models indicated that $PM_{2.5}$ was influenced less by local traffic but had significant indoor sources, while EC was associated with local traffic and NO_2 was associated with both traffic and indoor sources. However, local traffic was found to be a larger contributor to indoor NO_2 where traffic density is high and windows are opened, whereas indoor sources are a larger contributor when traffic density is low or windows are closed. Similarly, traffic contributed up to $0.2~\mu g/m^3$ to indoor EC for homes with open windows, with an insignificant contribution for homes where windows were closed.; Comparing models based on p-values and using a Bayesian approach yielded similar results, with traffic density volume within a 50 m buffer of a home and distance from a designated truck route as important contributors to indoor levels of NO_2 and EC, respectively. However, results from the Bayesian approach also suggested a high degree of uncertainty in selecting the best model. The authors concluded that by utilizing public databases and focused questionnaire data they could identify important predictors of indoor concentrations for multiple air pollutants in a high-risk population.

Baxter et al. (2007, 092725)

Study Design Simultaneous indoor and outdoor samples taken in 43 low SES homes in heating and non-heating seasons. Homes were

selected from a prospective birth cohort study of asthma etiology (n = 25). Non-cohort homes were in similar neighborhoods

(n = 18).

Period 2003-2005

Location Boston, Massachusetts

Population Lower SES populations in urban areas

Indoor Source Home type, year built, tobacco smoke, opening windows, time spent cooking, use of candles or air freshener, cleaning activities,

air conditioner use.

 $\begin{array}{ccc} \text{Personal Method} & \text{NR} \\ \text{Personal Size} & \text{NR} \\ \text{Microenvironment Size} & \text{PM}_{2.5} \\ \text{Ambient Size} & \text{NR} \end{array}$

Component(s) EC (m-1 x 10⁻⁵); Ca (ng/m³); Fe (ng/m³); K (ng/m³); Si (ng/m³); Na (ng/m³); CI (ng/m³); Zn (ng/m³); S (ng/m³); V (ng/m³)

Copollutant(s) NO₂

Primary Findings The effect of indoor sources may be more pronounced in high-density multi-unit dwellings. Cooking times, gas stoves, occupant

density and humidifiers contributed to indoor pollutants.

BéruBé et al. (2004, 007894)

Study Design 6 homes in Wales and Cornwall were monitored four times per year, inside samples in the living areas and outside the home.

NR but < 2003 Period

Location Wales and Cornwall, UK

Population Urban, suburban, and rural homes Indoor Source ETS, pets, cleaning, traffic load

Personal Method Personal Size NR Microenvironment Size Ambient Size NR Component(s) NR

Primary Findings There are greater masses of PM₁₀ indoors, and that the composition of the indoor PM₁₀ is controlled by outdoor sources and to

a lesser extent by indoor anthropogenic activities, except in the presence of tobacco smokers. The indoor and outdoor PM₁₀ collected was characterized as being a heterogeneous mixture of particles (soot, fibers, sea salt, smelter, gypsum, pollen and

fungal spores).

Branis et al. (2005, 156290)

Study Design Human exposure assessment in a university lecture hall

Period Oct. 8, 2001-Nov. 11, 2001 Prague, Czech Republic Location Population University students

Age Groups

Indoor Source Presence of people identified as a source of coarse particles; outdoor air identified as a source of indoor fine particles (PM_{1.0}

and PM_{2.5})

Personal Method Harvard impactors (HI) with membrane Teflon filters

PM₁, PM_{2.5}, PM₁₀ Personal Size Microenvironment Size PM₁, PM_{2.5}, PM₁₀ Ambient Size PM_{10}

Component(s)

Primary Findings Presence of people is an important source of coarse particles indoors; Outdoor air may be an important source of fine indoor

particles.

Brunekreef et al. (2005, 090486)

Study Design Exposure assessment

Period Winter and spring 1998-1999 Location Amsterdam and Helsinki

Population Elderly Age Groups 50-84 yr Indoor Source NR

Personal Method Amsterdam Gillian with made to fit bags with belt with GK2.05 cyclone samplers 4L/min; Helsinki BGI with shoulder strap or

backpack with GK2.05 cyclone samplers 4 L/min.

Personal Size $\mathsf{PM}_{2.5}$ $\mathsf{PM}_{2.5}$ Microenvironment Size PM_{2,5} Ambient Size Component(s)

> Primary Findings In both cities, personal and indoor PM_{2.5} were highly correlated with outdoor concentrations.

Chillrud et al. (2004, 054799)

Study Design Repeated measures on a cohort of high school students in New York City

Summer and winter of 1999 (eight weeks each) Period Location Manhattan, Bronx, Queens, Brooklyn, NY

Population Persons traveling the subway

14-18 yr Age Groups Indoor Source No

Personal Method Sampling packs carried by subjects

Personal Size

Microenvironment Size PM_{2.5} (home indoor and home outdoor)

PM_{2.5}. Urban fixed-site and upwind fixed site operated for three consecutive 48-h periods each week. Ambient Size

Component(s) Elemental Fe, Mn, and Cr are reported in this study out of 28 elements sampled.

Primary Findings

Personal samples had significantly higher concentration of Fe. Mn. and Cr than home indoor and ambient samples. The ratios of Fe $(ng/\mu g)$ of $PM_{2.5}$ vs Mn $(pg/\mu g)$ PM_{2.5}) showed personal samples to be twice the ratio for crustal material. Similarly for the Cr/Mn ratio. The ratios and strong correlations between pairs of elements suggested steel dust as the source. Time-activity data suggested subways as a source of the elevated personal metal levels.

Conner and Williams (2004, 156364)

Study Design This is part of the EPA Baltimore PM Study of the Elderly.

Period July-August, 1998 Location Towson, Maryland Population 65+ adults Age Groups 65+ yr

Indoor Source Personal sampling devices (PEM)

 $\begin{array}{ccc} \text{Personal Method} & \text{PM}_{2.5} \\ \text{Personal Size} & \text{PM}_{2.5} \\ \text{Microenvironment Size} & \text{NR} \\ & \text{Ambient Size} & \text{NR} \end{array}$

Primary Finding(s) A greater variety of particles was observed in the personal samples compared to the fixed-location apartment samples.

Cortez-Lugo et al. (2008, 156368)

Study Design Cohort Period Feb-Nov 2000 Location Mexico City, Mexico

Population Ambulatory adults with moderate to severe COPD, active smokers excluded

Age Groups Adults

Indoor Source carpeting, aerosol sprays used, boiler use and location, animals, mold, tobacco smoking, windows closed

Personal Method Personal pumps with 37-mm Teflon filters, flow rate 4 l/min in a bag with shoulder strap. The impactor was near the breathing

zone

 $\begin{array}{ccc} Personal Size & PM_{2.5} \\ Microenvironment Size & PM_{2.5}, PM_{10} \\ Ambient Size & PM_{2.5}, PM_{10} \\ Component(s) & NR \end{array}$

 $Primary \ Findings \quad Indoor \ PM_{2.5} \ concentrations \ explained \ 40\% \ of \ the \ variability \ of \ personal \ exposure. \ The \ best \ predictors \ of \ personal \ exposure.$

were indoor contact with animals (12%), mold (27%), being present during cooking (27%), and aerosol use (17%).

Crist et al. (2008, 156372)

Study Design Indoor, outdoor, and personal monitoring

Period January 1999-August 2000

Location Ohio

Population Fourth & fifth-grade children

Age Groups 9-11 yr old Indoor Source Filter, portable pump Personal Method Filter, PM_{2.5}

 $\begin{array}{cc} \text{Personal Size} & \text{Indoor school; Filter, PM}_{25} \\ \text{Microenvironment Size} & \text{Outdoor school; Filter, PM}_{2.5} \end{array}$

Ambient Size PM_{2.5} Component(s) NR

Primary Findings Higher correlation was observed between P and I compared with the correlation between either P and ambient (A) or I and A.

Delfino et al. (2004, 056897)

Study Design Panel study with repeated measures

Period Sep-Oct 1999 or Apr-Jun 2000

Location Alpine, California
Population Children

Age Groups 9-17 yr Indoor Source No

Personal Method Personal dataRAM (pDR) carried at waist level using a fanny pack, shoulder harness, or vest.

Personal Size 0.1-10 µm

Microenvironment Size PM_{10} and $PM_{2.5}$; measured immediately outside the house and in the living room of the home.

Ambient Size PM₁₀

Copollutant(s) O₃ and NO₂ measured at central site

Primary Findings Percent predicted FEV₁ was inversely associated with personal exposure to fine particles. Also with indoor, outdoor and central

site gravimetric $PM_{2.5}$, PM_{10} , and with hourly TEOM PM_{10} .

Delfino et al. (2006, 090745)

Study Design Cohort. Measured daily expired NO (FeNO)

Period Aug-Dec 2003

Location Riverside and Whittier, California

Population Children with asthma exacerbations in previous 12 months, non-smokers, non-smoking households

Age Groups 9-18 y

Personal Method Wore a backpack during waking hours for PM25, EC and OC, NO2, temperature, and relative humidity. Exhaled air collected in

Mylar bags to analyze for NO.

Personal Size 24-h PM_{2.5}; 1-h max PM_{2.5}; 8-h max PM_{2.5}; 24-h NO₂

Microenvironment Size NR

Ambient Size 24-h PM_{2.5}; 24-h PM₁₀; 8-h max O₃; 8-h max NO₂; 24-h NO₂; 8-h max CO

Component(s) 24-h PM_{2.5} EC; 24-h PM_{2.5} OC

Primary Findings The strongest positive associations were between FeNO and 2-day average pollutant concentrations. Per IQR increases 1.1

ppb FeNO/24 μg/m³ personal PM_{2.5}; 0.7 ppb FeNO/0.6 μg/m³ personal EC; 1.6 ppb FeNO / 17 ppb personal NO₂ Ambient PM_{2.5} and personal and ambient EC were significant only when subjects were taking inhaled corticosteroids. Subjects taking both inhaled steroids and antileukotrienes had no significant associations. Distributed lag models showed personal PM_{2.5} in the

preceding 5 h was associated with FeNO.

Diapouli et al. (2007, 156397)

Study Design Exposure assessment. Sampling of schools, residence, private vehicle

Period Schools- 11/2003-02/2004 and 10/2004-12/2004.; Residence- 10/2004; Vehicle- 10/204-12/2004

Location Athens, Greece
Population Primary school children

Age Groups NR Indoor Source NR

Personal Method Handheld portable Condensation Particle Counters (TSI, Model 3007) were used for all sampling locations. Primary schools

indoor measurements were primarily conducted inside classrooms, at table height. However, at three of the schools, rooms of different uses were selected. These included a teachers' office (where smoking was permitted), a computer day lab (used by students only part of the day), and a library and gymnasium (where intense activity took place almost all day long). Outdoor measurements took place in the yard of each school. Residence samples were taken in a bedroom at breathing height and on the terrace, for indoor and outdoor samples, respectively. In-vehicle samples were taken by placing the CPC 3700 on the

passenger seat while the vehicle drove along predetermined routes.

Personal Size NR

 $\begin{array}{cc} \text{Microenvironment Size} & \text{0.01-1} \; \mu\text{m} \\ \text{Ambient Size} & \text{0.01-1} \; \mu\text{m} \end{array}$

Component(s) NR

Primary Findings The results showed that children attending primary schools in the Athens area are exposed to significant PM concentration

levels, both indoors and outdoors. Vehicular emissions seem to be a major contributor to the measured outdoor concentration levels at the studied sites. Indoor PM concentrations appeared to be influenced by both vehicular emissions and indoor sources including cleaning activities, smoking, a high number of people in relation to room volume and furniture material (i.e., carpet). UFPs concentrations diurnal variation, both outside the schools and the residence, supports the close relation of UFPs levels with traffic density. Indoor concentrations within schools exhibited variability during the school day only when there were significant changes in room occupancy. 24-h variation of indoor concentrations at the residence were well correlated with the

outdoor concentration ($R^2 = 0.89$).

Diapouli et al. (2008, 190893)

Study Design Indoor, outdoor air monitoring of PM. To determine children exposure in school environment. To evaluate relationship between indoor and outdoor levels.

Period Athens, Greece

Location Primary schools

Population NR

Indoor Source Indoor PM1, PM2.5, PM10, presence of children and activities of children in classrooms, infiltrated vehicular exhaust

Personal Method Harvard PEM, Teflon filters Dust Trak Condensation particle counter

Personal Size NR

Microenvironment Size PM₁, PM_{2.5}, PM₁₀
Ambient Size PM₁, PM_{2.5}, PM₁₀

Component(a) NO SO 2

Component(s) NO₃, SO₄

Primary Findings High levels of PM₁₀ and PM_{2.5} measured indoors and outdoors. PM₁₀ more variable spatially than PM_{2.5}. I/O ratio for PM₁₀ and PM_{2.5} close to 1 at almost all sites. Ratio of PM₁ smaller than 1 in all cases. Vehicular traffic presumed to be the main source of

 PM_{1} . Indoor $PM_{2.5}$ and PM_{10} levels dependent on the amount of activity in classroom and outdoor levels. Indoor SO_4^{2-} concentrations strongly associated with outdoor levels. Result suggests that SO_4^{2-} can be used as a proper surrogate for

indoor PM of outdoor origin.

Ebelt et al. (2005, 056907)

Study Design Personal exposure assessment related to health outcomes for a sensitive sub-population

Summer 1998 Period

Location Vancouver, British Columbia, Canada Population 16 persons who had COPD

Age Groups Mean subject age 74 yr, Range 54 to 86

Indoor Source Separated total personal exposure into "ambient" and "non-ambient" based on sulfate results and modeling.

24-h integrated filter sample Personal Method

Personal Size $PM_{2.5}$

Microenvironment Size PM_{2.5}, PM₁₀, PM_{10-2.5} Ambient Size PM_{2,5}, PM₁₀, PM_{10-2.5}

Component(s) SO4

Primary Findings Ambient exposures and (to a lesser extent) ambient concentrations were associated with health outcomes. Total and

nonambient particle exposures were not.

Farmer et al. (2003, 089017)

Study Design
Case control molecular epidemiology studies of carcinogenic environmental pollutants, particularly PAHs

Period 12 months

Location Prague, Czech Republic (2 sites): Košice, Slovak republic: Sofia, Bulgaria

Population Policeman and busdrivers usually working through busy streets in 8-10 h shifts and a control population.

Age Groups

Indoor Source

Personal Method Personal Monitoring Devices; Blood and Urine Samples; Stationary Versatile Air Pollution Samplers (VAPS)

 PM_{10} Personal Size Microenvironment Size NR

Ambient Size PM₁₀; PM_{2.5} (not reported)

Component(s) Extractable organic matter (EOM), B[a]P, c-PAHs

Primary Findings EOM per PM₁₀ was at least 2-fold higher in winter than in summer, and c-PAHs over 10-fold higher in winter than in summer.

Personal exposure to B[a]P and to total c-PAHs in Prague ca. was 2-fold higher in the exposed group compared to the control

group, in Košice ca. 3-fold higher, and in Sofia ca. 2.5-fold higher.

Ferro et al. (2004, 055387)

Case study, 1 home Study Design

Redwood City, California Period

Location NR Population NR Age Groups NR

Personal Method Co-located real-time particle counters and integrated filter samplers (Met-One Model 237B) were used to measure personal

(PEM), indoor (SIM) and outdoor (SAM) PM concentrations. The PEM was attached to a backpack frame and worn by the investigator while performing prescribed activities. The SIM was attached to a six foot step-ladder with the intake at breathing height. The SAM was located under a two-sided roofed shed in the backyard of the home with the filter samplers supported by

a metal stand and the real-time particle counters sitting on a table.

Personal Size

Microenvironment Size PM_{2.5}; PM₅

Ambient Size PM_{2.5}; PM₅ NR Component(s)

Primary Findings

The results of this study indicate that house dust resuspended from a range of human activities increases personal PM concentrations and this resuspension effect significantly contributes to the personal cloud. The results of this study also suggest that normal human activities that resuspend house dust may contribute significantly to the strong correlations found between personal exposure and indoor PM concentrations in previous studies. The PEM/SIM ratios for human activity

presented in this paper are also in the range of those reported by previous studies.

Gadkari and Pervez (2007, 156459)

Study Design Evaluation of relative source contribution estimates of various routes of personal RPM in different urban residential

environments.

Period Summer 2004 (March 15-June 15)

Location Chattisgarh, India
Population All likely. Not specified

Age Groups 21-61 yr, average age 40 ± 15 yr

Indoor Source No

Personal Method Personal respirable dust samplers (RDS) with GFF

Personal Size RPM
Microenvironment Size NR
Ambient Size RPM

Component(s) Fe, Ca, Mg, Na K, Cd, Hg, Ni, Cr, Zn, As, Pb, Mn and Li

Primary Findings Authors concluded that "(1) indoor activities and poor ventilation qualities are responsible for major portion of high level of indoor RPM, (2) majority of personal RPM is greatly correlated with residential indoor RPM, (3) time–activity diary of individuals

has much impact on relationship investigations of their personal RPM with their respective indoor and ambient-outdoor RPM levels; as reported in earlier reports and (4) residential indoors, local road-traffic and soil-borne RPMs are the dominating

routes of personal exposure compared to ambient outdoor RPM levels."

Gauvin et al. (2002, 034893)

Study Design Fine particle exposure assessment for children in French urban environments, part of VESTA study

Period March 1998-December 2000 Location Paris, Grenoble, Toulouse, France

Population Children aged 8-14 yr

Indoor Source ETS from mother, rodents at home.

Personal Method SKC pump 4 Lpm with PM_{2.5} inlet and 37 mm, 2 micron Teflon filter

 $\begin{array}{ccc} & \text{Personal Size} & \text{PM}_{2.5} \\ \text{Microenvironment Size} & \text{NR} \\ & \text{Ambient Size} & \text{PM}_{10} \\ & \text{Component(s)} & \text{NR} \end{array}$

Primary Findings The final model explains 36% of the between subjects variance in PM_{2.5} exposure, with ETS contributing more than a third to

this.

Graney et al. (2004, 053756)

Study Design The study was designed to assess the trace metal quantification abilities of several analytical methods to measure the total as

well as soluble amounts of metals with $PM_{2.5}$ collected from indoor and PM samples. (X-ray fluorescence and instrumental

neutron activation analysis)

Location Retirement facility in Towson, Maryland

Population Retirement facility with subjects who spent 94% of their time indoors

Age Groups Mean age = 84 yr

Indoor Source NR

Personal Method Measured using personal exposure monitors (MSP Inc) with nozzle to remove particles > 4 µm

 $\begin{array}{cc} \text{Personal Size} & \text{PM}_{2.5} \\ \text{Microenvironment Size} & \text{PM}_{2.5} \\ \text{Ambient Size} & \text{NR} \end{array}$

Component(s) 42 elements were analyzed for in the PM_{2.5} samples collected from personal and well as indoor samples

Primary Findings Most of the extractable components of the metals were in a water-soluble form suggesting a high potential for bioavailability of

elements from respiratory exposure to PM_{2.5}. Based on comparison of trace metals in central I site vs. P samples, resident

activities result in exposure to higher concentration of soluble trace metals.

Haverinen-Shaughnessy et al. (2007, 156526)

Study Design Cross-sectional

Period Winter, year not reported

Location Eastern Sweden

Population Elementary school teachers

Age Groups NR

Personal Method Button inhalable aerosol samplers

Personal Size Particle mass Microenvironment Size Particle mass

Ambient Size NR

Component(s) Absorbance coefficient/m x 10⁻⁵; Total fungi (spores/m³); Total bacteria (cells/m³); Viable fungi MEA (CFU/m³); Viable fungi

DG18 (CFU/m³); Viable bacteria (CFU/m³)

Primary Findings The recall period of 7 days provided the most reliable data for health effect assessment. Both personal exposure and

concentrations of pollutants at home were more frequently associated with health symptoms than work exposures.

Ho et al. (2004, 056804)

Study Design Human exposure assessment Period 25 Sept. 2002 to 8 March 2003

Location Hong Kong

Population Occupied buildings located near major roadways

Age Groups NR

Indoor Source Yes. Regression of indoor versus outdoor concentrations of OC and EC revealed an indoor source of OC not present for EC,

presumably due to such activities of cooking, smoking, and cleaning.

Personal Method Co-located mini-volume samplers (flow rate 5 L/min) and Partisol model 2000 sampler with 2.5 µm inlet. All samples on 47 mm

Whatman quartz microfiber filters, weighed on an electronic microbalance. Analyzed for OC and EC using DRI Model 2001

Thermal/Optical Carbon Analyzer.

 $\begin{array}{ccc} & \text{Personal Size} & \text{PM}_{2.5} \\ \text{Microenvironment Size} & \text{NR} \\ & \text{Ambient Size} & \text{PM}_{2.5} \end{array}$

Component(s) OC, EC, OM, TC

Primary Findings The major source of indoor EC, OC, and PM_{2.5} appears to be penetration of outdoor air, with a much greater attenuation in

mechanically ventilated buildings.

Hoek et al. (2008, 156554)

Study Design Exposure assessment, characterizing indoor/outdoor particle relationships

Period October 2002-March 2004

Location 4 European cities Amsterdam, Athens, Birmingham, Helsinki

Population Urban populations

Age Groups NR

Indoor Source Smoking, candle burning, cooking/frying

Personal Method No personal exposure assessment was conducted

Personal Size NR

Microenvironment Size PM₁₀, PM_{2.5}, PM_{10-2.5}, Ultrafine (UFP)

Ambient Size PM₁₀, PM_{2.5}, PM₁₀-2.5, UFP

Component(s) soot, sulfate

Primary Findings Correlation between 24-h average central site and indoor concentrations was lower for UFP than for PM_{2.5}, soot, or SO₄²,

probably related to greater losses during infiltration due to smaller particle size. Infiltration factors for UFP and PM_{2.5} were low.

Hopke et al. (2003, 095544)

Study Design Exposure assessment

Period 26 July to 22 August 1998 Location Retirement facility in Towson, MD

Population Elderly residents Age Groups Mean age of 84

Indoor Source Ammonium sulfate and ammonium nitrate, secondary sulfate, OC, and motor vehicle exhaust

Personal Method Inertial impactor PEM in the breathing zone of the subjects

 $\begin{array}{ccc} Personal Size & PM_{2.5} \\ Microenvironment Size & PM_{2.5} \\ Ambient Size & PM_{2.5} \\ Component(s) & SO_4^{2-} \end{array}$

Primary Findings Personal exposures were influenced by a combination of indoor and outdoor factors. Indoor factors included gypsum, personal grooming products, and an unknown indoor source. Outdoor factor included SO₄²⁻, soil, and an unknown factor. Outdoor

grooming products, and an unknown indoor source. Outdoor factor included SO_4^- , soil, and an unknown factor. Outdoor factors accounted for 63% of personal exposure, and $SO42^-$ was the largest ambient contributor to personal exposure (48%).

Jacquemin et al. (2007, 156600)

Study Design Assessment of relationship between outdoor and personal concentrations of PM_{2.5} absorbance and sulfur among post-

myocardial infarction patients January 2004-June 2004

Location Barcelona, Spain

Population Survivors of a myocardial infarction exposed to ETS

Age Groups n = 38, including 32 and 15 over age 64.

Indoor Source ETS

Period

Personal Method Personal samplers (BGI GK2.05 cyclones and battery operated BGI AFC400S pumps)

 $\begin{array}{ccc} & Personal \ Size & PM_{2.5} \\ Microenvironment \ Size & NA \\ & Ambient \ Size & PM_{2.5} \\ & Component(s) & S \end{array}$

Primary Findings Ambient measurements of light extinction and S can be used as surrogates to personal PM_{2.5} exposure, especially for those

exposed to ETS.

Janssen et al. (2005, 088692)

Study Design Panel Study

Period Amsterdam 11/2/1998-6/18/1999; Helsinki 11/1/1998-4/30/1999

Location Amsterdam, The Netherlands; Helsinki, Finland

Population Elderly Cardiovascular Patients

Age Groups 50-84 yr Indoor Source No

Personal Method Personal PM25 GK2.05; cyclones; indoor & outdoor Harvard Impactors; Reflectance EEL 43 reflectometers; Elemental

Composition Tracor Spectrace 5000 ED-XRF system

Personal Size PM_{2.5}
Microenvironment Size PM_{2.5}
Ambient Size PM_{2.5}

Component(s) Estimated EC, elemental composition of a subset of personal, indoor and outdoor samples

Primary Findings For most elements, personal and indoor; concentrations were lower than and highly correlated with outdoor concentrations. The

highest correlations (median r = 0.9) were found for sulfur and particle absorbance (EC), which both represent fine; mode particles from outdoor origin. Low correlations were observed for elements that represent the coarser part of the $PM_{2.5}$ particles

(Ca, Cu, Si, Cl).

Jedrychowski et al. (2006, 156606)

Study Design Prospective cohort
Period 11/2000-3/2003
Location Krakow, Poland

Population Non-smoking pregnant women

Age Groups Yes

Personal Method Personal Exposure Monitor Sampler (PEMS, Harvard; School of Public Health)

 $\begin{array}{ccc} & Personal \ Size & PM_{2.5} \\ Microenvironment \ Size & NR \\ & Ambient \ Size & PM_{10} \\ & Component(s) & NR \end{array}$

Primary Findings The contribution of the background ambient PM₁₀ level was a very strong determinant of the total personal exposure to PM_{2.5},

and it explained about 31% of variance between the subjects.

Johannesson et al. (2007, 156614)

Study Design Cohort

Period Spring and fall seasons of 2002 and 2003

Location Gothenburg, Sweden Population General adult population

Age Groups 23-51 yr Indoor Source NR

Personal Method

Fine particles were measured for 24 h using both personal and stationary monitoring equipment. Personal monitoring of $_{PM2.5}$ and PM_1 was carried out simultaneously with parallel measurements of $PM_{2.5}$ and PM_1 indoors in living rooms and outside the house on a balcony, porch, etc. In addition, urban background $PM_{2.5}$ levels were measured. Personal monitoring was performed in two ways. The 20 randomly selected subjects carried personal monitoring equipment for $PM_{2.5}$ only, while the 10 staff members carried two pieces of personal monitoring equipment at the same time. On the first measuring occasion, the staff members carried one $PM_{2.5}$ cyclone and one PM_1 cyclone. On the second occasion, duplicate monitors for $PM_{2.5}$ were used. For personal and residential monitoring, the BGI Personal Sampling Pump was used together with the GK2.05 cyclone for $PM_{2.5}$ sampling and the Triplex cyclone SCC1.062 for PM_1 sampling. The personal sampling pump was placed in a small

shoulder bag and the cyclone attached to the shoulder strap near the subject's breathing zone. The personal monitoring equipment was carried by the subject during awake time. During the night, it was placed in the living room. For indoor monitoring in living rooms, cyclones (PM2.5 and PM1) were placed at about 1.5 m above the floor. The same setup was used for residential outdoor monitoring. The urban background monitor was placed on top of a roof somewhat south of the city center

but not near any major highway.

Personal Size PM_{2.5}; PM₁ PM_{2.5}; PM₁ Microenvironment Size PM_{2.5}; PM₁ Ambient Size Component(s)

Primary Findings Personal exposure of PM_{2.5} correlated well with indoor levels, and the associations with residential outdoor and urban

background concentrations were also acceptable. Statistically significantly higher personal exposure compared with residential outdoor levels of PM_{2.5} was found for nonsmokers. PM₁ made up a considerable proportion (about 70–80%) of PM_{2.5}. For BS, significantly higher levels were found outdoors compared with indoors, and levels were higher outdoors during the fall than during spring. There were relatively low correlations between particle mass and BS. The urban background station provided a good estimate of the residential outdoor concentrations of both PM2.5 and BS2.5 within the city. The air mass origin affected the outdoor levels of both PM_{2.5} and BS2.5; however, no effect was seen on personal exposure or indoor levels.

Kaur et al. (2005, 086504)

Study Design Exposure assessment, evaluation of exposures between modes of transport, routes, timing

Period April 28-May 23, 2003

Location Street canyon intersection in Central London, UK Population Users of an urban street canyon intersection

Age Groups NR Indoor Source

Personal Method PM25 measured usnig high-flow gravimetric personal samplers (PM25) operating at a flow rate of 16 l/min carried in a backpack

with sampling head positioned in personal breathing zone. UFP measured using TSI P-TRAK particle counters in which

isopropyl alcohol condenses to form droplets that can be easily counted by a photodetector as they pass through a laser beam.

Personal Size PM_{2.5}, UFP (0.02-1.0um) PM_{2.5}, UFP (0.02-1.0um) Microenvironment Size

Ambient Size $PM_{2.5}$ Component(s) NR

Primary Findings Personal exposures to PM_{2.5} while walking were significantly lower then while riding in a car or taxi, likely a function of greater

distance to roadside. No significant differences in PM25 were observed between exposures on the high traffic road compared with the backroad. Personal exposure levels were lowest during midday measurements for PM25 and highest in the early evening. Personal exposures to ultrafine particles were lowest while walking and highest while riding the bus. Exposures to ultrafine particles were also significantly higher on the high traffic road and during morning measurements. Exposure to ultrafine particles were highest in the morning, likely the result of peak traffic density in the morning. Exposure assessment also revealed that the background and curbside monitoring stations were not representative of the personal exposure of individuals

to PM_{2.5} and CO at and around a street canyon intersection.

Kaur et al. (2005, 088175)

Study Design Personal exposure assessment of pedestrians walking along high-traffic urban road

Period April 19, 2004-June 11, 2004 Location Central London, UK Population Pedestrians

Age Groups Indoor Source

Personal Method PM_{2.5} gravimetric filter measurement, UFP (0.02-1 µm) P-TRAK device, reflectance reflectometer measurement of PM_{2.5} filter

Personal Size PM_{2.5}, UFP (0.02-1 μm)

Microenvironment Size

PM_{2.5}, UFP (0.02-1 µm) Ambient Size Component(s) Absorbance of PM_{2.5} filter

Primary Findings PM_{2.5} pedestrian exposure was well correlated with and above background fixed-site monitoring levels. PM pedestrian exposure

was influenced by proximity to curbside and the side of the road walked on.

Kim et al. (2005, 156640)

Study Design Panel study
Period 8/1999-11/2001
Location Toronto, Canada

Population Cardiac-compromised patients

Age Groups Mean age 64 yr

Indoor Source Gas range (68%); indoor grill (11%); outdoor barbeque (30%); Gas heating fuel (68%); Oil heating fuel (7%)

Personal Method Rupprecht and Patashnick ChemPass Personal Sampling System

 $\begin{array}{ccc} & \text{Personal Size} & \text{PM}_{2.5} \\ \text{Microenvironment Size} & \text{NR} \\ & \text{Ambient Size} & \text{PM}_{2.5} \\ & \text{Component(s)} & \text{NR} \end{array}$

Primary Findings Personal PM_{2.5} exposures were higher than outdoor ambient levels. Personal PM_{2.5} exposures levels were correlated with

ambient levels, mean r = 0.58

Koistinen et al. (2004, 156655)

Study Design Representative Population-based study

Period Oct 1996-Dec 1997 Location Helsinki, Finland

Population Non-smoking adults not exposed to environmental tobacco smoke.

Age Groups Adults 25-55 yr

Indoor Source Soil from outdoors, cooking, smoking, aerosol cleaners, sea salt, combustion sources

Personal Method Integrated 24-h filter sample

Personal Size PM_{2.5}
Microenvironment Size PM_{2.5}
Ambient Size PM_{2.5}
Component(s) BS

Primary Findings Population exposure assessment of PM_{2.5}, based on outdoor fixed-site monitoring, overestimates exposures to outdoor sources

like traffic and long-range transport and does not account for the contribution of significant indoor sources.

Kousa et al. (2001, 025270)

Study Design Population based exposure assessment

Period October 1996 to June 1998

Location Helsinki, Finland; Basel, Switzerland; Prague, Czech Republic; Athens, Greece

Population Adult urban populations

Age Groups 25-55 yr

Indoor Source Sometimes ETS

Personal Method Integrated 48-h filter sample

 $\begin{array}{ccc} Personal Size & PM_{2.5} \\ Microenvironment Size & PM_{2.5} \\ Ambient Size & PM_{2.5}, PM_{10} \\ Component(s) & NR \end{array}$

Primary Findings Throughout the study, the highest correlations were those between personal exposures and indoor concentrations, which

suggests that indoor sources were important. Correlations were generally lower between ambient concentrations and personal

exposures.

Koutrakis et al. (2005, 095800)

Study Design Panel study

Period Baltimore 6/28/98-8/22/98 (summer), 2/1/99-3/16/99 (winter); Boston 6/13/99-7/23/99 (summer), 2/1/00-3/12/00 (winter)

Location Baltimore, MD Boston, MA

Population Healthy older adults, children, adults with COPD

Age Groups Children 9-13 y/o; Seniors 65+ y/o

Indoor Source NR

Personal Method Personal exposure samples of PM_{2.5}; were collected using a specially designed multipollutant sampler (Demokritou et al. 2001).

PM_{2.5} was collected using personal environmental monitors (PEMs) and 37-mm; Teflon filters (Teflo, Gelman Sciences, Ann

Arbor MI).

Personal Size PM_{2.5}
Microenvironment Size NR
Ambient Size PM_{2.5}
Component(s) EC, SO₄²⁻

Primary Findings Ambient $PM_{2.5}$ and SO_4^{2-} are strong predictors of respective personal exposures. Ambient $PM_{2.5}$ and $PM_{2.5}$ is a strong predictor of

personal exposure to $PM_{2.5}$. Because $PM_{2.5}$ has substantial indoor sources and SO_4^{2-} does not, the investigators; concluded that personal exposure to SO_4^{2-} accurately reflects exposure to ambient $PM_{2.5}$ and therefore the ambient component of

personal exposure to PM_{2.5} as well.

Lai et al. (2004, 056811)

Study Design Personal exposure study
Period December 1998-February 2000

Location Oxford, UK Population Adults

Age Groups 25-55 yr (avg = 41)

Indoor Source Cooking, active smoking, passive smoking heating by gas heater

Personal Method Integrated 48-h filter samples

 $\begin{array}{ccc} & \text{Personal Size} & \text{PM}_{2.5} \\ \text{Microenvironment Size} & \text{PM}_{2.5} \\ & \text{Ambient Size} & \text{PM}_{2.5} \end{array}$

Component(s) Ag, Cr, Mn, Si, Al, Cu, Na, Sm, As, Fe, Ni, Sn, Ba, Ga, P, Sr, Br, Ge, Pb, Ti, Ca, Hg, Rb, Tl, Cd, I, S, Tm, Cl, K, Sb, V, Co, Mg,

Se, Zn, Zr

Primary Findings Personal exposures were influenced by both indoor and ambient sources, and indoor levels exceeded ambient levels for PM25

as well as for VOCs and eight other compounds. Correlation between personal and indoor $PM_{2.5}$ was 0.60 (p < 0.001).

Larson et al. (2004, 098145)

Study Design Time-series epidemiologic study

Period Sep 26, 2000-May 25, 2001
Location Seattle, Washington
Population "Susceptible Populations"
Age Groups Time-activity diary

Personal Method Harvard Personal Environmental Monitor

Personal Size PM_{2.5}

Microenvironment Size PM2.5 outside subject's residence, and inside residence Ambient Size PM2.5 at Central outdoor site (downtown Seattle) Light absorbing carbon (LAC) and trace elements

Primary Findings Five sources of PM_{2.5} identified vegetative burning, mobile emissions, secondary sulfate, a source rich in chlorine, and crustal-

derived material. The burning of vegetation (in homes) contributed more PM2.5 mass on average than any other sources in all

microenvironments.

Li et al. (2003, 047845)

Study Design Concurrent 10-min avg indoor and outdoor concentrations of PM₁₀ and PM_{2.5} were recorded for 2 days each in 10 homes with

swamp coolers Summer 2001

Period Location El Paso. Texas

Population Cooking, cleaning, walking

Age Groups Indoor Source

Personal Method PM_{2.5} and PM₁₀; indoor and outdoor; tapered element oscillating microbalance (TEOM) instruments. 2 days were monitored for

 $PM_{2.5}$, and 2 for PM_{10} .

NR Personal Size NR Microenvironment Size

Evaporative coolers were found to act as PM filters, creating indoor concentrations approximately 40% of outdoor PM_{10} and **Primary Findings**

35% of outdoor PM_{2.5}, regardless of cooler type.

Liu et al. (2003, 073841)

Study Design Comprehensive exposure assessment

Period 1999-2001 Location Seattle, WA

Population High-risk sub populations

Age Groups Children 6-13 yr, elderly 65-90 yr (one person was below 65, but his/her age was not specified)

Personal Method Harvard Personal Environmental Monitor for PM_{2.5} (HPEM_{2.5})

Personal Size PM_{2.5}, PM₁₀ Microenvironment Size PM_{2.5}, PM₁₀ Ambient Size PM_{2.5}, PM₁₀

Primary Findings Average personal PM_{2.5} exposure was similar to ambient PM_{2.5} concentrations but much higher than average indoor

concentrations. Personal, indoor, and outdoor PM_{2.5} and PM₁₀, as well as the ratio PM2.5/PM10, were all significantly higher

during the winter. Personal PM_{2.5} and PM₁₀ exposures were highest for the children in the study.

Lung et al. (2007, 156719)

Weekdays between Nov 1998 and Feb 1999 Period

6 communities in Taiwan, China 2 in Taipei, 2 in Taichung, and 2 in Kaohsiung. Sites are industrial, commercial, residential and Location

mixed.

18 to >70 Age Groups

Indoor Source Being in kitchen, park, major boulevard, stadium, incense burning, household work, factory, environmental tobacco smoke,

traffic, ventilation conditions

Personal Method Personal Environmental Monitor with a SKC personal pump at 2 L/min, 37 mm Teflon filters

Personal Size PM_{10} PM_{10} Microenvironment Size Ambient Size PM_{10} Component(s) None

> Primary Findings Outdoor rather than indoor levels contributed significantly to personal exposure. Important factors include time spend outdoors

and on transportation, riding a motorcycle, passing by factories, cooking or being in the kitchen, incense burning at home.

Meng et al. . (2005, 081194)

Study Design Evaluation of the use of central-site PM, rather than actual exposure, in PM epidemiology

Period Summer 1999-spring 2001

Location 3 cities: Houston (TX), Los Angeles County (CA), and Elizabeth (NJ)

Population NR Age Groups NR Indoor Source NR

Personal Method MSP monitors on the front strap of the sampling bag near the breathing zone. Pump, battery, and motion sensor were on the

hip or back.

Personal Size $PM_{2.5}$ $PM_{2.5}$ Microenvironment Size Ambient Size Component(s)

Primary Findings Use of central-site PM2.5 as an exposure surrogate underestimates the bandwidth of the distribution of exposures to PM of

ambient origin.

Meng et al. (2005, 058595)

Study Design RIOPA study matched indoor home & outdoor exposure assessment

Period May-October (hot); November-April (cool); (1999-2001) Location Los Angeles County, CA; Elizabeth, NJ; Houston, TX

Population Non-smoking homes

Indoor Source Combustion (primary); atmospheric (secondary); sulfate, organics, nitrates; mechanically (abrasion) generated.

Personal Method Filter (not specified)

Personal Size NR

 $\begin{array}{cc} \text{Microenvironment Size} & \text{Indoor home.; PM}_{2.5} \\ & \text{Ambient Size} & \text{PM}_{2.5}, \text{ outdoor home} \end{array}$

Component(s) Organic and elemental carbon; 24 elements (metals).

Primary Findings The median contribution of ambient sources to indoor PM_{2.5} using the mass balance approach was 56% for all study homes,

63% for California, 52% for New Jersey, and 33% for Texas.

Molnár et al. (2005, 156772)

Study Design Indoor/outdoor exposure assessment related to domestic wood burning

Period 10 February to 12 March 2003

Location Hagfors, Sweden
Population Adult residents of Hagfors

Age Groups NR Indoor Source NR

Personal Method Integrated filter samples with a dichotomous virtual impactor to separate PM_{10-2.5} from PM_{2.5}

 $\begin{array}{ccc} & \text{Personal Size} & \text{PM}_{2.5} \\ \text{Microenvironment Size} & \text{PM}_{10^*2.5}, \, \text{PM}_{2.5} \\ & \text{Ambient Size} & \text{PM}_{10^*2.5}, \, \text{PM}_{2.5} \end{array}$

Component(s) BS, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Br, Rb, Pb

Primary Findings Wood burning made statistically significant contributions to personal exposure to K, Ca, and Zn. Cl, Mn, Cu, Rb, Pb, and BS

were found to be potential personal exposures from wood smoke, but their association was not always statistically significant.

S had no significant association with personal exposure to wood smoke.

Molnár et al. (2006, <u>156773</u>)

Study Design Cross-sectional

Period Autumn and spring in 2002 and 2003

Location Goteborg, Sweden,

Population Persons living in urban settings

Age Groups 20 subjects 20-50 yr randomly selected from the population and 10 from departmental colleagues.

Indoor Source NR

Personal Method Integrated filter samples with cyclones for PM_{2.5} and PM₁ cut points

Personal Size PM_{2.5} and PM₁

Microenvironment Size NR Ambient Size NR

Component(s) S, Cl, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, Br, Pb

Primary Findings Personal exposure to Cl. K. Ca. Ti. Fe, and Cu in PM2.5 were significantly higher than outdoor and central site ambient

concentrations, and personal exposure to Cl, Ca, Ti, Fe, and Br were also significantly higher than indoor levels. In most

cases, indoor concentrations were not higher than outdoor concentrations.

Na and Cocker (2005, 156790)

Study Design Human exposure assessment Period Sept. 2001-January 2002

Location Mira Loma, CA

Population Residential homes and a high school

Age Groups NR

Indoor Source Indoor EC (elemental carbon) concentrations primarily of outside origin; Indoor PM2.5 significantly influenced by indoor OC

(organic carbon) sources, including indoor smoking.

Personal Method Integrated filter samples for PM_{2.5}

 $\begin{array}{ccc} \text{Personal Size} & \text{PM}_{2.5}^{\bullet} \\ \text{Microenvironment Size} & \text{NR} \\ \text{Ambient Size} & \text{PM}_{2.5} \\ \text{Component(s)} & \text{EC, OC} \\ \end{array}$

Primary Findings Indoor PM_{2.5} was significant influenced by indoor OC sources. Indoor EC sources were predominantly of outdoor origin.

Naumova et al. (2003, 089213)

Study Design RIOPA Study-PAH partitioning indoor and outdoor pollutants to evaluate the hypothesis that outdoor air pollution contributed

strongly to indoor air pollution. Period July 1999-June 2000

Location Los Angeles, CA, Houston, TX, Elizabeth, NJ

Population Houses Age Groups Indoor Source NR

Personal Method Modified MSP Samplers, 37 mm quartz filter

 $\mathsf{PM}_{2.5}$ Personal Size Microenvironment Size $PM_{2.5}$ Ambient Size $PM_{2.5}$ Component(s) OC, EC

Primary Findings Both EC and OC were associated with gas/particle partitioning of PAHs, with EC being a better predictor. High correlation

between EC and OC suggests that PAHs adsorb onto PM containing EC during combustion.

Nerriere et al. (2005, 089481)

Study Design Exposure assessment with stratified sampling of children and adults in 3 environments: high traffic emissions, local industrial

sources, and urban background.

"Hot" season May-June and "cold" season Feb-Mar. Grenoble in 2001, Paris in 2002, Rouen in 2002-2003, Strasbourg 2003. Period

Location Grenoble, Paris, Rouen, and Strasbourg, France

Population Persons living, working, or going to school in 3 urban areas one highly exposed to traffic emissions, one influenced by local

industrial sources, and a background urban environment. Industrial sources of pollution were present in each city.

Age Groups 6-13 yr and 20-71 yr. All non-smokers and not exposed to environmental tobacco smoke or industrial air pollution.

Indoor Source

Personal Method Rucksack with Harvard ChemPass

Personal Size $PM_{2.5}$, PM_{10} Microenvironment Size NR Ambient Size PM_{2.5}, PM₁₀ Copollutant(s) NO_2

Primary Findings The difference between ambient air concentrations and average total exposure is pollutant specific. PM_{2.5} and PM₁₀

concentrations underestimate population exposures across almost all cities, season, and age groups, but the opposite is true

for NO₂.

Noullett et al (2006, 155999)

Study Design Cohort

5 February to 16 March 2001 Period Prince George, British Columbia Location

Population Children Age Groups 10-12 yr Indoor Source NR

Personal Method PM_{2.5} Harvard Personal Environment Monitors (HPEM_{2.5})

Personal Size $\mathsf{PM}_{2.5}$ Microenvironment Size NR Ambient Size

Component(s)

PM_{2,5} SO₄², ABS (light absorbing carbon) Thermal inversions were associated with personal exposures as well as ambient PM2.5 concentrations and likely caused **Primary Findings**

observed spatial variability. However, ambient sampling locations were correlated in time. Similar observations were made for

SO₄² and ABS.

Rojas-Bracho et al. (2004, 054772)

Study Design Cohort study with repeated measures.
Period Winter or summer of 1996-1997

Location Boston, Massachusetts
Population COPD patients

Age Groups Adult

Indoor Source Housecleaning, cooking, transport in motor vehicles, low-effort home activities, moderate-effort home activities, activities in

public places, and resting or sleeping.

Personal Method PEM

 $\begin{array}{ccc} Personal \ Size & PM_{2.5}, PM_{10}, \ and \ PM_{10\cdot 2.5} \\ Microenvironment \ Size & PM_{2.5}, PM_{10}, \& \ _{PM10\cdot 2.5} \\ Ambient \ Size & NR. \end{array}$

Component(s) NR

Primary Findings During both seasons, personal exposures were higher than indoor or outdoor means, except during the winter when indoor

concentrations were higher than the personal or outdoor.

Rotko et al. (2002, 037240)

Study Design European multi-city air pollution study

Period Athens, Greece:26 January 1997–4 June 1998

Basel, Switzerland 3 February 1997–23 January 1998

Milan, Italy 10 March 1997–23 May 1998 Oxford, UK November 1998–7 October 1999 Prague, Czech Republic 3 June 1997–4 June 1998

Helsinki, Finland 26 September 1996-10 December 1997

Location Athens, Greece; Basel, Switzerland; Milan, Italy; Oxford, UK; Prague, Czech Republic; Helsinki, Finland

Population Adults Age Groups 25-55 yr Indoor Source NR

Personal Method Integrated 48-h PM_{2.5} filter samples

Personal Size PM_{2.5}
Microenvironment Size PM_{2.5}
Ambient Size PM_{2.5}
Copollutant(s) NO₂

Primary Findings Personal PM_{2.5} and NO₂ levels were associated with subjects' level of annoyance. Highest annoyance levels occurred while in

traffic.

Sanderson and Farant (2004, 156942)

Study Design Indoor and outdoor air monitoring of PAH. Investigate the relationship between indoor and outdoor PAH.

Period NR Location Canada

Population Residential homes in neighborhoods around aluminum smelting plant

Age Groups NR Indoor Source NR

Personal Method Indoor quartz filter sample

Personal Size PM_{2.5}
Microenvironment Size NR
Ambient Size NR

Component(s) 4-6 ring PAHs on indoor particle

Primary Findings Indoor concentration of 4-6-ring PAH were linked to outdoor industrial sources in residences without any major indoor source,

but with industrial facility as the main outdoor source. This study suggests that simultaneous measurements of indoor and outdoor concentrations of PAH >4 rings predominantly associated with fine PM could provide useful estimates of particle

infiltration efficiency.

Sarnat et al. (2006, 089166)

Study Design Outdoor-indoor pollutant infiltration, occupied residences

Period July 28, 2001-February 25, 2002

Location Los Angeles, CA

Population NR

Indoor Source Yes; cleaning, cooking, home ventilation (open windows/doors), kitchen fans, air conditioner/heating usage, number of

occupants, nearby roadways

Personal Method NR Personal Size NR

Microenvironment Size PM_{2.5}, Particle number

Ambient Size PM_{2.5}

Component(s) BC (nonvolatile component); NO₃ (volatile component)

Primary Findings Infiltration rate for $PM_{2.5}$ was intermediate, while BC was highest and NO_3 lowest. Infiltration rate varied with particle size, air

exchange rate, outdoor NO₃. $PM_{2.5}$ infiltration was lowest for volatile components. Outdoor volatile $PM_{2.5}$ components may be less representative of indoor exposure to volatile $PM_{2.5}$ of ambient origin. Outdoor nonvolatile $PM_{2.5}$ components may be more

representative of indoor exposure to nonvolatile PM_{2.5} of ambient origin.

Sarnat et al. (2006, 090489)

Study Design Personal and ambient exposure assessment

Period June 14-August 18 (summer); Sep 24-Dec 15 (fall), 2000

Location Steubenville, OH

Population Non-smoking, older adults

Age Groups NR

Personal Method Integrated filter gravimetric measurement

Personal Size PM_{2.5}
Microenvironment Size NR
Ambient Size PM_{2.5}
Component(s) SO₄²⁻; EC

Primary Findings 24-h ambient measurements are more representative of personal particle exposure than gases, and ventilation is an important

exposure modifier.

Sarnat et al. (2005, 087531)

Study Design Time-series epidemiologic study Period Summer 1999 and winter 2000

Location Boston, MA. Comparisons to a previous study in Baltimore are also made.

Population School children and seniors

Age Groups NR
Indoor Source PM_{2.5}
Personal Method NR
Personal Size PM_{2.5}
Microenvironment Size NR
Ambient Size PM_{2.5}
Component(s) SO₄,
Copollutant(s) O₃, NO₂, SO₂

Primary Findings Substantial correlations between ambient PM_{2.5} concentrations and corresponding personal exposures. Summertime gaseous

pollutant concentrations may be better surrogates of personal PM_{2.5} exposures (especially personal exposures to PM_{2.5} of

ambient origin) than they are surrogates of personal exposures to the gases themselves.

Shalat et al. (2007, 156971)

Study Design Indoor home exposure assessment; sampling technology demonstration

Period Winter heating season Location Residential home

Population Children

Age Groups Pre-toddler (6- to 12-month-old) children

Indoor Source NR

Personal Method Integrated filter and real-time nephelometer at floor height and at a height of 110 cm

Personal Size TSP, inhalable PM

Microenvironment Size NR Ambient Size NR Copollutant(s) NR

Primary Findings The study results suggest that young children are exposed to more inhalable PM and TSP because PM becomes resuspended

from the floor with motion.

Shao et al. (2007, 156973)

Study Design
Period
Location
Population
Popu

Age Groups NR Indoor Source NR

Personal Method PM₁₀ measured with integrated filter samples

 $\begin{array}{ccc} & \text{Personal Size} & \text{PM}_{10} \\ \text{Microenvironment Size} & \text{PM}_{10} \\ & \text{Ambient Size} & \text{PM}_{10} \\ & \text{Component(s)} & \text{NR} \end{array}$

Primary Findings Plasmid scission assay, coupled with the image analysis, can be used to evaluate the relationship between particle physico-

chemistry and toxicity.

Shilton et al. (2002, 049602)

Study Design Respirable particulates inside and outside of a building were collected and compared

Period 24-h sampling from 12:45 pm Mondays to Fridays between 9/19/00 to 5/01/01

Location Wolverhampton city center, University of Wolverhampton, UK

Population NR

Indoor Source Mn,Al, NO₃, CI (wind-blown dust), Cu and Zn Personal Method Active sampling using Casella sampler (filter)-

Personal Size Respirable PM
Microenvironment Size Respirable PM
Respirable PM
Respirable PM

Component(s) NO₃, metals (Zn, Cu, Mn, Al), SO₄², Cl

Primary Findings The indoor particulate concentration was driven by ambient concentration, and meteorological-induced changes in ambient PM

were detected indoors.

Strand et al. (2007, 157018)

Study Design Cohort

Period Winter of 1999-2000 and winter of 2000-2001

Location Denver, Colorado Population Asthmatic children

Indoor Source NR

Personal Method Modeling/extrapolation from fixed-site ambient monitoring (multiple methods)

Personal Size NR
Microenvironment Size NR
Ambient Size PM_{2.5}
Component(s) NR

Primary Findings Using modeled or extrapolated personal ambient PM exposure results in a deattenuation of decrements in FEV₁ associated with

PM exposure, relative to use of fixed-site ambient monitoring PM levels. Associations between FEV1 decrements and the

various estimation procedures (modeling and extrapolation) were similar to each other.

Tang et al. (2007, 091269)

Study Design Cohort Study
Period 12/2003-2/2005
Location Sin-Chung City, Taiwan
Population Asthmatic children
Age Groups 6-12 yr

Indoor Source No

Personal Method Portable particle monitor; DUSTcheck Portable Dust Monitor, model 1.108, GRIMM Labortechnik Ltd., Germany

Personal Size PM₁₀, PM_{2.5}, PM₁, PM_{10-2.5}, PM_{2.5-1}

Microenvironment Size NR

Ambient Size PM₁₀, PM_{2.5}, PM_{10-2.5-}

Component(s) NR

Primary Findings Results of linear mixed-effect model analysis suggested that personal PM data was more suitable for the assessment of change

in children's PEFR than ambient monitoring data.

Thornburg et al. (2004, 157052)

Study Design PM exposure studies

Period RTP: Summer 2000-spring 2001 Tampa: October-November 2002

Location Research Triangle Park (RTP), NC and Tampa, FL

Population Residential home occupants

Age Groups NR

Indoor Source Resuspension of PM₁₀ from a carpet and cooking Personal Method Harvard impactors and PEMs, MIE pdr1000 nepholometer

 $\begin{array}{ccc} \text{Personal Size} & \text{PM}_{2.5}, \text{PM}_{10} \\ \text{Microenvironment Size} & \text{NR} \\ \text{Ambient Size} & \text{PM}_{2.5}, \text{PM}_{10} \\ \text{Component(s)} & \text{NR} \end{array}$

Primary Findings The association of duty cycle with indoor-outdoor (I/O) ratio was confounded by the short time span of ventilation system

operation and the presence of strong indoor sources.

Toivola et al. (2002, 026571)

Study Design Random sample of teachers

Period Nov 1998-Mar 1999 and Nov-Dec 1999

Location 2 cities in eastern Finland

Age Groups Adult Indoor Source Fungi, bacteria

Population Elementary school teachers
Personal Method Button inhalable aerosol sampler

Personal Size Particle Mass; BS Microenvironment Size Particle Mass; BS

Ambient Size NR

Component(s) Total fungi, total bacteria, viable fungi, viable bacteria

Primary Findings Personal BS exposure correlated with both home and work BS exposures. BS concentrations explained best the variation of

particle mass in personal and home concentrations.

Trenga et al. (2006, 155209)

Study Design Panel study with repeated measures

Period 3 sampling periods Oct 1999-Aug 2000, Oct 2000-May 2001, Oct 2001-Feb 2002

Location Seattle, Washington

Population Adults with and without COPD and children with asthma

Age Groups adults ages 56-89 and children ages 6-13

Indoor Source NR

Personal Method Carrying personal monitor (Harvard Personal Environmental Monitor for PM_{2.5})

 $\begin{array}{cc} & \text{Personal Size} & \text{PM}_{2.5} \\ \text{Microenvironment Size} & \text{PM}_{2.5} \end{array}$

Ambient Size PM₁₀-2.5, PM_{2.5} for residential outdoor, PM_{2.5} for central site

Component(s) NR

Primary Findings FEV₁ decrements associated with 1-day lagged central site PM_{2.5} in adult subjects with COPD. Associations between PM and

lung function decrements were significant only in asthmatic children not receiving anti-inflammatory medication.

Turpin et al. (2007, 157062)

Study Design RIOPA Study 24-h integrated indoor, outdoor, and personal samples collected in 3 cites.

Period Summer 1991-spring 2001

Location Elizabeth, NJ, Houston, TX, and Los Angeles County, CA

Population 309 adults and 118 children (89-18)

Indoor Source NR

Personal Method PEM on the front strap of a harness near the breathing zone. The bag on the hip contained the pump, battery pack, and motion

sensor

Personal Size PM_{2.5}

Microenvironment Size PM_{2.5}, in the main living area (not kitchen)

Ambient Size PM_{2.5}, in the front or back yard

Component(s) 18 volatile organics, 17 carbonyl, PM_{2.5} mass and >23 PM_{2.5} species, organic carbon, elemental carbon, and PAHs

Primary Findings The best estimate of the mean contribution of outdoor to indoor PM2.5 was 73% and the outdoor contribution to personal was

26%.

Vallejo et al. (2006, 157081)

Study Design Panel study
Period 4/2002-8/2002
Location Mexico City, Mexico

Population Health young, non-smoking adults

Age Groups Mean age 27 yr

Indoor Source NR

Personal Method pDR nephelometric method

Personal Size PM_{2.5}
Microenvironment Size NR
Ambient Size NR
Component(s) NR

 $Primary \ Findings \quad The \ descriptive \ analysis \ showed \ that \ overall \ outdoor \ median \ concentration \ of \ PM_{2.5} \ was \ higher \ than \ the \ indoor \ concentration.$

In the indoor microenvironment, the highest concentrations occurred in the subway followed by the school, and the lowest was at home. The outdoor microenvironment with the highest concentrations was the public transportation (bus), while the automobile had the lowest. It was found that $PM_{2.5}$ concentration levels had a circadian-like behavior probably related to an increase in the population daily activities during the morning hours, which decrease in the evening, especially at indoor microenvironments. The Center city area was found to have the highest concentrations of $PM_{2.5}$. Multivariate analysis corroborated that $PM_{2.5}$ concentrations are mainly determined by geographical locations and hour of the day, but not by the

type of microenvironment.

van Roosbroeck et al. (2006, 090773)

Study Design Personal exposure assessment, effect of traffic-related pollutants

Period March-June 2003

Location Amsterdam, The Netherlands

Population Schoolchildren Age Groups 9-12 yr Indoor Source ETS, cooking

Personal Method Integrated filter gravimetric measurement. Light absorbance.

 $\begin{array}{ccc} \text{Personal Size} & \text{PM}_{2.5} \\ \text{Microenvironment Size} & \text{NR} \\ \text{Ambient Size} & \text{PM}_{2.5} \\ \text{Component(s)} & \text{Absorbance} \end{array}$

Primary Findings Children living near busy roads had 35% higher personal exposure to 'soot' than children living in urban background locations.

Vinzents et al. (2005, 087482)

Study Design Panel study 3/2003-6/2003
Location Copenhagen, Denmark

Population Healthy young adults
Age Groups Mean age = 25 yr

Indoor Source No

Personal Method Condensation particle counters

Personal Size UFP (10-100 nm)
Microenvironment Size UFP (10–100 nm)

Ambient Size PM₁₀

Primary Findings UFP exposure predicted oxidative DNA damage.

Wallace and Williams (2005, 057485)

Study Design Cohort Period 2000-2001

Location Raleigh, North Carolina

Population African-American persons with elevated risk from exposure to particles.

Age Groups NR Indoor Source NR

Personal Method PEM PM_{2.5} monitor Personal Size PM_{2.5}

Personal Size PM_{2.5}
Microenvironment Size Indoors PM_{2.5}

Ambient Size Outdoors near residence PM_{2.5} PM_{2.5}

Component(s) S

Primary Findings Using outdoor particles to determine the effect on health is not accurate. The infiltration factor is a good estimator for personal

exposure. Indoor and outdoor measurements of sulfur could be used in the absence of personal exposure measurement to

estimate the contribution of outdoor fine particles to personal exposures.

Wallace et al. (2006, 088211)

Study Design Time series continuous monitoring of subjects with controlled hypertension or implanted defibrillators were monitored for 7

consecutive days in 4 seasons.

Period 2000-2001

Location North Carolina

Population Health-compromised adults, non-smokers

Age Groups Adults

Indoor Source Cooking, cleaning, personal care, smoking

Personal Method Personal Size $PM_{2.5}$

Microenvironment Size PM_{2.5}; Indoor and outdoor

Ambient Size NR

Component(s)

Primary Findings Use of continuous particle measuring instruments allowed more precise identification of sources, frequency and magnitude of

short-term peaks, and more accurate calculation of individual personal clouds.

Wang et al. (2006, 157108)

Study Design Exposure assessment, identification of sources of outdoor and indoor PM and trace elements

Period Aug 4 -Sep 10, 2004 Location Guangzhou, China Population 4 hospitals Age Groups NR Indoor Source NR

No personal exposure assessment was conducted. Personal Method

Personal Size NR Microenvironment Size $PM_{10},\,PM_{2.5}$ PM₁₀, PM_{2.5} Ambient Size

Component(s) Na, Al, Ca, Fe, Mg, Mn, Ti, K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As, Se

Primary Findings High correlation between PM_{2.5} and PM₁₀ suggest that they came from similar emission sources. Outdoor infiltration could lead

to direct transportation of PM indoors. Human activities and ventilation types could also influence indoor PM. levels.

Ward et al. (2007, 157112)

Study Design Indoor air sampling to determine size fractionated concentrations of PM, OC, EC, and total carbon

Period Jan-Mar 2005 Location Libby, Montana

Population Children exposed to wood-burning stoves in elementary and middle schools

Indoor Source Burning wood in stoves for heating

Personal Method Personal Size NR

Microenvironment Size PM >2.5, 1.0-2.5, 0.5-1.0, 0.25-0.5, and < 0.25 μ m PM >2.5, 1.0-2.5, 0.5-1.0, 0.25-0.5, and < 0.25 μ m Ambient Size

> Component(s) OC and EC

Primary Findings Total measured PM mass concentrations were much higher inside the elementary schools, with particle size fraction (>2.5, 0.5-

1.0, 0.25-0.5, and < 0.25 mm) concentrations between 2 and 5 times higher when compared to the middle school. The 1.0-2.5 mm fraction had the largest difference between the two sites, with elementary school concentrations nearly 10 times higher

than the; middle school values.

Weisel et al. (2005, 157131)

Study Design Matched indoor, outdoor, and personal concentrations in proximity to pollution sources.

Period May 1999-Feb 2001

Location Elizabeth, NJ, Houston, TX, and Los Angeles County, CA

Population urban children and adults Age Groups Children and adults (6-89 yr)

Indoor Source Age of house, recent renovations (< 1 yr), type of home (single, multiple family), attached garage, carpet indoors, local pollution

sources.

Personal Method PEM on a harness with inlet near breathing zone.

Personal Size $PM_{2.5}$ Microenvironment Size $\mathsf{PM}_{2.5}$ Ambient Size $PM_{2.5}$ Component(s) NR

Primary Findings Personal PM_{2.5} was significantly higher than indoor and outdoor PM_{2.5} concentrations.

Wichmann et al. (2005, 086240)

Study Design Exposure assessment

Period November 29, 1993-March 30, 1994; October 17, 1994-December 22, 1994

Location Amsterdam, The Netherlands

Population Adults and schoolchildren living near high-traffic or low-traffic roads

Age Groups Adults (50-70 yr), schoolchildren (10-12 yr)

Indoor Source

Personal Method Personal impactor

Personal Size PM_{10} PM_{10} Microenvironment Size Ambient Size PM_{10}

> Component(s) Absorbance coefficient measurements

Primary Findings Found tentative support for using type of road as a proxy for indoor and personal exposure to traffic-related absorbance PM.

Williams et al. (2003, 053338)

Study Design Cohort study, longitudinal

Period Summer 2000, fall 2000, winter 2001, and spring 2001

Location Raleigh and Chapel Hill, North Carolina

Population Elderly persons Age Groups > 50 yr Indoor Source Occasional ETS Personal Method Integrated filter samples Personal Size PM_{2.5}

 $\label{eq:microenvironment} \mbox{Microenvironment Size} \quad \mbox{PM}_{2.5}; \mbox{ PM}_{10}; \mbox{ PM}_{10\mbox{\scriptsize $^{-}2.5$}}$ Ambient Size PM_{2.5}; PM₁₀; PM₁₀-2.5

NR Component(s)

Primary Findings When comparing cohorts, there was no statistically significant difference between PM_{2.5} exposure. Little spatial variability was

observed regarding PM_{2.5} concentrations; this was observed to a lesser extent for PM₁₀ as well.

Wilson and Brauer (2006, 088933)

Study Design Exposure assessment Period April-September 1998 Location Vancouver, Canada

Population Subjects with physician-diagnosed COPD

54-86-years-old Age Groups

Indoor Source

Personal Method Personal integrated filter gravimetric measurement; TEOM outdoor ambient

Personal Size $PM_{2.5}$ Microenvironment Size NR Ambient Size NR SO₄² Component(s)

Primary Findings It was observed that ambient PM_{2.5} exposure, estimated with the SO₄² method, accounted for 71% of measured ambient

concentration and 44% of measured total personal exposure. No correlation between nonambient exposure and ambient

concentration was observed.

Wu et al. (2006, 179950)

Study Design Panel study 9/3/2002-11/1/2002 Period Location Pullman, WA Population Asthmatic adults Age Groups 18-52 yr Indoor Source No

Personal Method Co-located Harvard Personal Environmental Monitors (HPEM2.5; Harvard School of Public Health, Boston, MA)\

Personal Size PM2.5 Microenvironment Size PM2.5 Ambient Size PM2.5

Levoglucosan (LG); Elemental Carbon (EC); Organic Carbon (OC) Component(s)

Primary Findings The authors observed significant variability between subjects for burning and nonburning episodes. The authors postulated that

activity patterns contribute to this variability and that central-site measurements of LG might not be a good surrogate for

biomass combustion smoke exposurefor this reason.

Wu et al. (2005, 086397)

Study Design Panel study
Period 1999-2000
Location Alpine, CA
Population Asthmatic children

Primary Findings Personal exposure was higher than those at fixed sites. Subjects received only 45.0% of their exposure indoors at, although they spent more than 60% of their time there. In contrast, 29.2% of their exposure was received at school where they spent

only 16.4% of their time. Thus, exposures in microenvironments with high PM levels where less time is spent can make

significant contributions to the total exposure.

Yeh and Small (2002, 040077)

Study Design Comparative assessment of AME and IES models

Period 1997 (364 days) spring March-May, summer June-August, Fall September-November, winter December-February

Location Los Angeles County, CA

Population General population; ETS and non-ETS Homes

Age Groups NR

Indoor Source Indoor Cooking, ETS, Other sources and unexplained particulates that maybe generated with engaging in various activities

 $\begin{array}{ccc} Personal \ Method & NR \\ Personal \ Size & PM_{10} \ PM_{2.5} \\ Microenvironment \ Size & NR \\ Ambient \ Size & PM_{10} \ PM_{2.5} \\ Component(s) & NR \end{array}$

Primary Findings Adjusting from outdoor concentrations to personal exposures and correcting dose-response bias produce nearly equal results.

Roughly the same premature mortalities associated with short-term exposure to both ambient PM25 and PM10 are predicted by

both models

Yip et al. (2004, 157166)

Study Design A panel study with repeated measures with personal & home monitoring for 8 2-week Periods. Children were stratified into

smoking and non-smoking households.

Period 2000-2001 Location Detroit, Michigan

Population School-age children with asthma

Age Groups 7-11 yr

Personal Method PEM in a backpack

Personal Size PM₁₀

Microenvironment Size PM₁₀; indoor at home & indoor at school

Ambient Size PM₁₀ Component(s) NR

Primary Findings Personal PM concentrations were significantly correlated with home environment (r = 0.38 to 0.70), with the strongest

relationships in home with non-smokers.

Zhao et al. (2006, 156181)

Study Design Aerosol source apportionment under four environments (personal, residential indoor, residential outdoor and ambient) to

evaluate the relationship between different environments through exposure analysis, and to demonstrate the utility of the

combined receptor model on air quality studies of various environments.

Period June 2000 to May 2001 Location Raleigh and Chapel Hill, NC

Population NR. People with respiratory ailments most likely.

Age Groups NR

Indoor Source 4 main sources to residential indoor PM Cu-factor mixed with indoor soil, secondary sulfate, Personal care and activity, ETS and

its mixture

Personal Method PEM and HI
Personal Size NR
Microenvironment Size NR

nvironment Size NF Ambient Size NF

Component(s) SO₄²⁻, OC, EC, and trace elements

Primary Findings Secondary SO₄² and vehicle emissions were significant contributors of personal PM exposure and residential indoor PM

concentrations.

Zhao et al. (2007, 156182)

Study Design Comprehensive analysis of the sources of PM₁₅ exposure on children with moderate to severe asthma in urban-poor settings.

Period Two winter periods (October 2002-March 2003 and October 2003-March 2004)

Location Elementary school for children with significant asthma, Denver, CO

Population Schoolchildren in urban-poor settings suffering from moderate to severe asthma

Age Groups 6-13 yr (60% in the range 10-13 yr, rest in the range 6-9 yr)

Indoor Source Yes, House cleaning compounds, and smoking were identified as primary internal sources.

 $\begin{array}{ccc} Personal \ Method \\ Personal \ Size \\ PM_{2.5} \\ Microenvironment \ Size \\ Ambient \ Size \\ Component(s) \end{array} \begin{array}{c} PEM \\ PM_{2.5} \\ PM_{$

Primary Findings Four external sources and three internal sources were resolved in this study. Secondary nitrate and motor vehicle were two

major outdoor PM_{2.5} sources. Cooking was the largest contributor to the personal and indoor samples. Indoor environmental

tobacco smoking also has an important impact on the composition of the personal exposure samples.

Zhu et al. (2005, 157191)

Study Design 4 apartments near the freeway were monitored at 2 times for 6 consecutive days, 24 h per day. Subjects did not enter the

bedrooms where the samplers were, no cooking, cleaning, children, or pets.

Period Oct. 2003-Dec. 2003 and Dec. 2003-Jan. 2004

Location Los Angles, CA

Population Urban Populations near major freeways.

Age Groups NR Indoor Source NR Personal Method NR

Personal Size Indoor and Outdoor ultrafine particles (6-220 nm)

Microenvironment Size NR Component(s) CO

Primary Findings The size distributions of indoor aerosols showed less variability than the adjacent outdoor aerosols. Indoor to outdoor ratios for

ultrafine particle concentrations depended strongly on particle size. I/O ratios were dependent on the indoor ventilation mechanisms applied. Size-dependent particle penetration factors and deposition rates were predicted from data by fitting a

dynamic mass balance model.

Zöllner et al. (2007, 157192)

Study Design Exposure assessment

Period Winter Period of 2005 and 2006 Location Baden-Wuerttemberg, Germany

Population School children

Age Groups NR
Personal Method NR
Personal Size NR

Microenvironment Size They only reported concentrations for PM2.5. PM ranging in size from 0.02 to >20 μ m were collected and analyzed but only

PM_{2.5} concentration were reported.

Ambient Size They only reported concentrations for PM25. PM ranging in size from 0.02 to >20 µm were collected and analyzed but only

PM_{2.5} concentration were reported.

Primary Findings The impaction of PM was strongly influenced by specific weather conditions. Time resolution of measurements in classrooms showed variation in particle concentration depending on the type of building and indoor activities. E'[Concentrations of very

showed variation in particle concentration depending on the type of building and indoor activities. E [concentrations of very small particles indoors and in ambient air measured by condensation particle counter were influenced by traffic emissions.

Table A-59. Examples of studies showing developments with UFP sampling methods since the 2004 PM AQCD.

Reference	PM Size Ranges	PM Constituents	Instruments	Study Description
Biswas et al. (2005, <u>150694</u>)			CPC (water)	Water-based CPC performance evaluation.
Feldpausch et al. (2006, 155773)	20-100 nm	Carbonaceous aerosols	DS with CPC, compared with DMA	The DS with CPC compared fairly well with the DMA for particle sizes up to 40 nm with 20-40% underestimation depending on discharge frequency settings. The DS sampling period is 3-5 s in comparison with the 1 min scanning time of the DMA.
Hering et al. (2005, <u>155838</u>)			CPC (water)	Water-based CPC performance evaluation.
Hermann et al. (2007, <u>155840</u>)	3-40 nm	Ag, NaCl	CPC (water and butanol)	Roughly 95% collection efficiency for d >5 nm for TSI models 3776 and 3786, 95% efficiency for d >20 nm for model 3775, near 90% efficiency for d>20 nm for model 3785, near 90% efficiency for d >25 nm for model 3772.
Kinsey et al. (2006, <u>130654</u>)	10 nm-5 μm	DE	TEOM, SMPS, CPC, DustTrak, E-BAM, ELPI, integrated filter samples	TEOM compared best with gravimetric filter among mass concentration analyzers, ELPI and SMPS comparable for differential number distribution but ELPI not useful for gravimetric analysis because mass is not significant at small end of distribution.
Kulmala et al. (2007, <u>097838</u>)			CPC	Changing temperature difference between saturator and condenser within CPC allowed for differences in cut-off diameters.
Kulmala et al. (2007, <u>155911</u>)	2-20 nm	Atmospheric aerosol, Ag	Battery of CPCs (water, butanol, n-butanol)	Used the battery to discriminate between water-soluble, water-insoluble, butanol-soluble, and butanol-insoluble nucleation-mode particles.
Ntziachristos and Samaras (2006, <u>116722</u>)	7 nm-1 μm	Automobile exhaust	5 instruments used simultaneously to reduce uncertainty: Teflon-coated filter downstream of constant volume sampling, ELPI with thermodenuder, CPC, SMPS, diffusion charger	Use of four reduced variables combining output from all instruments (ratio of particle number concentration from CPC and ELPI, estimated mean geometric mobility diameter from signal of diffusion charger and number concentration from CPC, ratio of signal of diffusion charger to constant volume sampler mass, ratio of constant volume sampler mass to volume collected by ELPI) resulted in identification of clear outliers and factors related to driving and fuel properties rather than measurement errors.
Olfert et al. (2008, <u>156004</u>)	30-100 nm	NaCl, ambient	FIMS (compared with SMPS)	Particle number concentrations reported by the FIMS were 8-23% higher than the SMPS using an inversion technique designed to correct for particle residence time in the FIMS, which operates at 0.1 s resolution.
Petäjä et al. (2006, <u>156021</u>)			CPC (water)	Water-based CPC performance evaluation.
Winkler et al. (2008, <u>156160</u>)	1.5-4 nm	Tungsten oxide	CPC (n-Propanol)	Authors remove excess charge on particles with ion trap to detect particles down to ~ 1 nm (by eliminating electrostatic attraction to agglomerate).

 Table A-60.
 Summary of in-vehicle studies of exposure assessment.

Reference	Study Design	Mode of Transport	Exposures	Primary Findings
Briggs et al. (2008, <u>156294</u>)	UFP (P-Trak), PM ₁₀ , PM _{2.5} , and PM ₁ (OSIRIS light scatter) were operated in a car while driving or walking on one of 48 routes in London. Trips ranged 1.5-15 min by car and were repeated up to 5 times to improve statistics. Study Period: Weekdays in May and June 2005.	Car Walking	Units: PM ₁ -PM ₁₀ (µg/m³), UFP (p cm³) Avg Car Exposure: PM ₁₀ 5.87 (3.09) PM _{2.5} 3.01 (1.10) UFP 21639 (14379) Avg Walking Exposure: PM ₁₀ 27.56 (13.16) PM _{2.5} 6.59 (3.12) PM _{3.3} 37 (3.40) UFP 30334 (17245)	In-car concentrations of PM _{2.5} , PM ₁ , and UFP correlated well with walking concentrations (R = 0.806, 0.800, 0.799 respectively). Avg walking concentrations were 1.4-4.7 times higher than average in-car concentrations. Cumulative walking exposures (not shown here) were 4.4-15.2 times higher than those in cars, likely resulting from longer transit times for walking.
Diapouli et al. (2007, <u>156397</u>)	UFP (CPC) concentrations were measured at school, residential, and invehicle environments in Athens, Greece. Study Period: school hours, Nov 2003-Feb 2004 and Oct-Dec 2004	Car	15-min median (1000p/cm ³): School indoor 13.6 School outdoor 16.6 Residence indoor 11.2 Residence outdoor 24.0 In-vehicle 78.0	In-vehicle UFP concentrations were roughly 3.5-7 times higher than school or residence concentrations. Indoor concentration diel patterns were also shown to follow outdoor levels, which suggests that indoor levels are of outdoor origin.
Fruin et al. (2008, 097183); Westerdahl et al. (2005, 086502) [Note: same data presented.]	On-road zero emissions vehicle driven on 33-mi arterial road and 75-mi freeway measured UFP (CPCs, SMPS, EAD), BC (aethalometer), NOX (chemiluminescence), PM-bound PAHs (UV-photoionization), and CO (Q-Trak). DVD analysis of traffic density and car speed. Study Period: Feb-Apr 2003 for 2- to 4-h periods.	Car	Arterial range of medians: UFP (1000p/cm³) 13-43 PM _{2.5} (μg/m³) 7.9-45 BC (μg/m³) 0.74-3.3 Freeway range of medians: UFP (1000p/cm³) 47-190 PM _{2.5} (μg/m³) 2.4-13	Measurements of freeway UFP, BC, PM-bound PAH, and NO_x concentrations were roughly one order of magnitude higher than ambient measurements. Multiple regression analysis suggests these concentrations were a function of truck density and total truck count. (Only PM measurements reported here).
Gomez-Perales et al. (2004, 054418)	PM _{2.5} (personal filter pump), CO (T15 electrochemical cell), and benzene (canister) were measured on transit routes, and PM _{2.5} filters were analyzed for mass, OC/EC, SO ₄ ²⁻ , NO ₃ -, and trace metals. Study period: 3-h morning and evening rush hour May-June 2002	Bus Minibus Metro	PM _{2.5} (µg/m³): Bus 68 Minibus71 Metro 61	Generally, $PM_{2.5}$ concentration was higher in the morning than evening rush hour, but variability was higher for minibuses than other modes of transport. Wind speed was found to be associated with $PM_{2.5}$ concentration on minibuses.

Reference	Study Design	Mode of Transport	Exposures	Primary Findings	
Gomez-Perales et al. (2007, <u>138816</u>)	PM _{2.5} (personal filter pump), CO (T15 electrochemical cell), and benzene (canister) were measured on transit routes, and PM _{2.5} filters were analyzed for mass, OC/EC, SO ₄ ²⁻ , NO ₃ -, and trace metals. Study period: 3-h morning and evening rush hour Jan-March 2003	Bus Minibus Metro	Units: $PM_{2.5}$ mass (μ g/m³), components (% of mass) Bus: $PM_{2.5}$ 20-58 (NH_4O_3 5-8 ($NH_4)_2$ SO ₄ 10-18 OC 17-39 EC 8-20 Crustal15-18 Non-crustal 2-3 Unknown 6-24	Buses and minibuses had similar concentration levels for $PM_{2.5}$ mass, and metro exposures were lower. CO and benzene concentrations were higher on minibuses than buses. OC was the largest PM constituent for all modes of transport. Measured concentrations were higher in the morning than in the evening rush hour periods. Maximum historical wind speeds (1995-2003) appeared to be inversely associated with measured concentration.	
			Minibus: $PM_{2.5}$ 25-55 (NH_4O_3 4-13 ($NH_4)_2SO_4$ 7-22 $OC22$ -37 EC 9-19 Crustal12-13 Non-crustal 3-3 Unknown 4-26		
			Metro: $PM_{2.5}$ 24-41 (NH4O ₃ 5-8 (NH4)2SO ₄ 10-21 OC 35-42 EC 9-13 Crustal10-16 Non-crustal 2-4 Unknown 5-20		
Gulliver and Briggs (2004, 053238)	PM ₁₀ , PM _{2.5} , and PM ₁ sampled (OSIRIS light-scatter devices) in a car while driving or walking on northern corridor of Northhampton UK. Study Period: 1-h interval of morning and	Car Walk	Walking concentrations, Units: μg/m³ Walk, Car, Background PM ₁₀ 38.2,43.2, 26.6 PM _{2.5} 15.1, 15.5 PM ₁ 7.1, 7.0	In-car PM ₁₀ concentrations were elevated compared with walking and background. PM _{2.5} and PM ₁ concentrations were comparable for walking and background. Periods of elevated PM _{2.5} compared with PM ₁₀ generally corresponded to times when SO ₄ ²⁻ levels were also high.	
	evening rush hour during Winter 1999-2000.				
Gulliver and Briggs (2007, 155814)	TSP, PM ₁₀ , PM _{2.5} , and PM ₁ sampled (OSIRIS light-scatter devices) in a car while driving or walking on one of 48 routes in London. Trips ranged 1.5-15	Car Walk	Mean concentrations, Units: µg/m³ Walk, Car, Background	Walking exposures larger than car and background, and car exposures were generally larger than background except for PM ₁ . Peak exposures during walking were significantly higher	
	min by car and were repeated up to 4 times to improve statistics.		TSP-PM ₁₀ 19.1 (19.8) 18.2 (18.0) 4.9 (5.1)	than peak in-car exposures.	
	Study Period: Jan-Mar 2005.		PM _{10⁻2.5} 22.1 (22.8) 15.1 (14.2) 10.0 (9.0)		
			PM _{2.5} -1 10.9 (10.4) 8.3 (8.4) 7.6 (7.1)		
			PM ₁ 4.8 (3.4) 2.9 (2.6) 4.2 (2.4)		
Rossner et al.	Measured PM _{2.5} exposure of 50 city bus	Bus	Ùnits: ng/m³	c-PAH and B[a]P exposure to bus drivers was	
(2008, <u>156927</u>)	drivers and 50 controls in Prague, Czech Republic using personal samplers (type not specified) and VOCs using passive samplers. PM _{2.5} filters analyzed for c-PAHs. Focus of study is oxidative stress		Winter 2005: Bus Control c-PAH7.1 (3.7)9.4 (5.5) B[a]P1.3 (0.7)1.8 (1.0)	significantly higher in Winter 2006, but control exposure was significantly higher in Winter 2005 for c-PAH and B[a]P and in summer 2006 for c-PAH. No significant difference in VOC exposure between bus drivers and controls was observed. Oxidative stress markers were significantly higher in bus drivers than controls for all seasons.	
	biomarkers in drivers. Study period: winter 2005, summer		Smmer 2006: Bus Control c-PAH1.8 (0.5)2.0 (0.8) B[a]P0.2 (0.1)0.3 (0.2)		
	2006, winter 2006.		Wnter 2006: Bus Control c-PAH5.4 (3.5)4.1 (1.7) B[a]P1.0 (0.5)0.8 (0.4)		

Reference	Study Design	Mode of Transport	Exposures	Primary Findings
Sabin et al. (2005, 088300)	BC (aethalometer), particle-bound PAH (UV-photoionization), and NO (luminol reaction) were measured on 3 diesel school buses, 1 diesel school bus with a particle trap, and one compressed gas bus during before- and after-school commutes. Study Period: May-June 2002.	School bus (diesel, diesel with particle trap (TO), compressed gas (CNG))	In-bus mean concentration Units: BC (µg/m³) PAH (ng/m³) Windows closed: BC PAH Ambient: 2.5,27 CNG:2.3,57 TO: 7.1,190 Diesel: 11, 290 Windows open: BC PAH Ambient: 1.9,26 CNG:1.5, 43 TO: 2.3,42 Diesel: 3.9,58	Mean concentrations on diesel buses without newer emissions control technologies were 2-4.4 times higher than background. On buses with particle traps, concentrations were 1.2-2.5 times higher than background, while concentrations on compressed gas-fueled school buses were actually lower than background.

Table A-61. Summary of personal PM exposure studies with no indoor source during 2002-2008.

Reference / Location	Personal	Micro	Ambient
SOUTHWEST			
Delfino et al. (2004, <u>056897</u>) Alpine, California	Method: pDR, Units = μg/m ³ Last 2-h PM _{2.5} 34.4 (33.7) Diurnal PM _{2.5} 55.7 (31.6) Nocturnal PM _{2.5} 22.3 (13.6) 1-h max PM _{2.5} 151.0 (120.3) 4-h max PM _{2.5} 67.6 (55.3) 8-h max PM _{2.5} 67.6 (39.0) 24-h PM _{2.5} 37.9 (19.9)	Method: HI, Units = μ g/m³ Indoor 24-h PM ₁₀ 30.3 (11.9) Indoor 24-h PM _{2.5} 12.1 (5.4) Outdoor 24-h PM ₁₀ 25.9 (10.4) Outdoor 24-h PM _{2.5} 11.0 (5.4)	Method: TEOM, Units = $\mu g/m^3$ Diurnal PM ₁₀ 35.1 (11.3) Nocturnal PM ₁₀ 23.3 (8.4) 1-h max PM ₁₀ 54.4 (13.8) 4-h max PM ₁₀ 44.5 (12.4) 8-h max PM ₁₀ 39.8 (11.2) 24-h PM ₁₀ 23.6 (9.1) 24-h PM _{2.5} 10.3 (5.6)
Delfino et al. (2006, <u>090745</u>) Riverside and Whittier, California	Method: \overrightarrow{PEM} , Units = μ g/m³ Riverside: n13 24-h $PM_{2.5}$ 32.78 (21.84) 1-h max $PM_{2.5}$ 97.94 (70.29) 8-h max $PM_{2.5}$ 47.21 (30.0) Whittier: n32 24-h $PM_{2.5}$ 36.2 (21.84) 1-h max $PM_{2.5}$ 93.63 (75.19) 8-h max $PM_{2.5}$ 51.75 (36.88)		Method: FRM, Units = μ g/m ³ Riverside: 24-h PM _{2.5} 36.63 (23.46) 24-h PM ₁₀ 70.82 (29.36) Whittier: 24-h PM _{2.5} 18.0 (12.14) 24-h PM ₁₀ 35.73 (16.6)
Turpin et al. (2007, <u>157062</u>) Los Angeles County, CA (and Elizabeth, NJ, Houston, TX)	Method: PEM, Units = μg/m ² Avg of 48-h PM _{2.5} Child 40.2 Adult 29.2	Method: HI, Units = μ g/m ³ Avg of 48-h PM _{2.5} : 16.2	Method: HI, Units = μ g/m ³ Avg of 48-h PM _{2.5} : 19.2
Wu et al. (2005, <u>157155</u>) Alpine, CA	Method: pDR, Units = μg/m³ n11 Avg of 24-h PM _{2.5} 11.4 (7.8)	Method: pDR, Units = μg/m³ n14 Avg of 24-h PM _{2.5} 5.6 (2.9)	Method: pDR, Units = μg/m³ n8 Avg of 24-h PM _{2.5} 14.0 (11.4)
		Method: HI n 14 Avg of 24-h PM _{2.5} 9.8 (2.5)	Method: HI n8 Avg of 24-h $PM_{2.5}$ 14.3 (7.8)

Reference / Location	Personal	Micro	Ambient
NORTHWEST			
Jansen et al. (2005, <u>082236</u>) Seattle, Washington, USA	NR	Method: HI, Units = μ g/m ³ Indoor home: PM ₁₀ 11.93 PM _{2.5} 7.29	Method: HI, Units = $\mu g/m^3$ PM ₁₀ 18.0 PM _{2.5} 14.0
		Outdoor home: PM ₁₀ 13.47 PM _{2.5} 10.47	
Koenig et al. (2003, <u>156653</u>) Seattle, WA	13.4 ± 3.2 μg/m³	Inside homes = 11.1 ± 4.9	Outside homes = 13.3 ± 1.4 3 Central-sites = 10.1 ± 5.7
Liu S et al. (2003, <u>073841</u>) Seattle, WA	Summary of PM concentrations (µg/m³) between October 1999 and May 2001 by study group. Group Mean ± SD Personal PM _{2.5} COPD 10.5 ± 7.2 Healthy 9.3 ± 8.4 Asthmatic 13.3 ± 8.2 CHD 10.8 ± 8.4	Summary of PM concentrations (μ g/m³) between October 1999 and May 2001 by study group. Group Mean \pm SD Indoor PM _{2.5} COPD 8.5 \pm 5.1 Healthy 7.4 \pm 4.8 Asthmatic 9.2 \pm 6.0 CHD 9.5 \pm 6.8 PM ₁₀ COPD 14.1 \pm 6.6 Healthy 12.7 \pm 7.8 Asthmatic 19.4 \pm 11.1 CHD 16.2 \pm 11.3	Summary of PM concentrations (μ g/m³) between October 1999 and May 2001 by study group. Location Pollutant Group Mean \pm SD Outdoor PM _{2.5} COPD 9.2 \pm 5.1 Healthy 9.0 \pm 4.6 Asthmatic 11.3 \pm 6.4 CHD 12.7 \pm 7.9 PM ₁₀ COPD 14.3 \pm 6.8 Healthy 14.5 \pm 7.0 Asthmatic 16.4 \pm 7.4 CHD 18.0 \pm 9.0
Mar et al. (2005, <u>087566</u>) Seattle, WA USA	Method: HI, Units = μ g/m ³ PM _{2.5} : Healthy: 9.3 (8.4) CVD: 10.8 (8.4) COPD: 10.5 (7.2)	Method: HI, Units = μg/m ³ PM _{2.5} : Healthy: 7.4 (4.8) CVD: 9.5 (6.8) COPD: 8.5 (5.1) PM ₁₀ :	Method: HI, Units = μg/m ³ PM _{2.5} : Healthy: 9.0 (4.6) CVD: 12.7 (7.9) COPD: 9.2 (5.1) PM ₁₀ :
		Healthy: 12.7 (7.8) CVD: 16.2 (11.3) COPD: 14.1 (6.6)	Healthy: 14.5 (7.0) CVD: 18.0 (9.0) COPD: 14.3 (6.8)
Trenga et al. (2006, <u>155209</u>) Seattle, Washington	Method: PEM, Units = μg/m ³ Median PM _{2.5} Child 11.3 Adult 8.5	Method: HI, Units = μg/m³ Median PM _{2.5} Child 7.5 Adult 7.6	Method: HI, Units = μ g/m³ Residential Outdoor Median PM _{2.5} Child 9.6 Adult 8.6 Residential Outdoor Median PMcoarse Child 4.7 Adult 5.0 Residential Outdoor Median PM _{2.5} central site Child 11.2 Adult 10.3
Wu et al. (2006, <u>179950</u>) Pullman, WA	During non-burning times: 13.8 (11.1) During burning episodes: 19.0 (11.8)		
SOUTHCENTRAL	· · ·		
Turpin et al. (2007, <u>157062</u>) Houston (and Elizabeth, NJ, and Los Angeles County, CA)	Houston, Units = μg/m ^{3 (48-li} avg) Child: 36.6 Adult: 37.2	Houston: 17.1	Houston: 14.7

Reference / Location	Personal	Micro	Ambient
MIDWEST			
Adgate et al. (2002, 030676) Battle Creek, East St. Paul, and Phillips,	$PM_{2.5}$, Units = $\mu g/m^3$	$PM_{2.5}$, Units = $\mu g/m^3$	$PM_{2.5}$, Units = $\mu g/m^3$
Minnesota, constituting the Minneapolis- St. Paul metropolitan area.	Battle Creek All Seasons: 118, 22.7, (25.7), 16.2 (2.2) Spring: 41, 26.3 (25.7), 19.4 (2.1) summer: 31, 28.5 (36.1), 20.3 (2.1) Fall 46, 15.5 (13.4), 11.9 (2.1)	Battle Creek All Seasons: 108, 10.6 (6.6), 9.0 (1.8) Spring: 25, 12.7 (7.7), 11.0 (1.7) summer: 36, 8.9 (3.8), 8.1 (1.5) Fall: 47, 10.9 (7.4), 8.8 (2.0)	Battle Creek All Seasons: 88 9.4 (6.2), 7.8 (1.8) Spring: 36, 10.5 (7.1), 8.5 (2.0) summer: 22, 8.7 (4.4), 7.8 (1.6) Fall: 30, 8.4 (6.2), 7.1 (1.7)
	E. St. Paul All Seasons: 107, 30.5 (38.7), 20.6 (2.3) Spring: 44, 33.9 (34.4), 23.9 (2.3) summer: 25, 20.5 (15.0), 17.2 (1.8) Fall: 38, 33.1(51.9), 19.5 (2.5)	E. St. Paul All Seasons: 97, 17.4 (20.3), 12.2 (2.2) Spring: 30, 20.7 (26.4), 13.6 (2.4) summer: 26, 15.8 (11.4), 13.7 (1.6) Fall 41 16.0 19.6 10.4 2.4 Phillips	E. St. Paul All Seasons: 95, 10.8 (6.6), 9.3 (1.8) Spring: 36, 12.0 (7.3), 10.1 (1.9) summer: 25, 8.5 (3.2), 7.8 (1.6) Fall: 34, 11.3 (7.5), 9.6 (1.8)
	Phillips All Seasons: 107, 26.5 (24.3), 20.9 (2.0) Spring: 28, 37.5 (37.6), 30.0 (1.8) summer: 40, 22.7 (15.3), 19.2 (1.7) Fall: 39, 22.7 (16.7), 17.6 (2.1)	All Seasons: 89, 14.2 (13.0), 11.3 (1.9) Spring: 15, 16.9 (14.2), 13.0 (2.1) summer: 36, 13.2 (6.4), 11.4 (1.7) Fall: 38,14.4 (16.7), 10.6 (2.0)	All Seasons: 88, 10.0 (5.8), 8.7, (1.7) Spring: 30 (12.1), 7.2 (10.5) summer: 30, 8.6 (3.8), 7.8 (1.6) Fall: 28, 9.3 (5.5), 8.1 (1.7)
Crist et al. (2008, <u>156372</u>) Ohio River Valley near Columbus	PM _{2.5} , Units = μg/m ³ Athens (rural): 17.61 (17.81) Koebel (urban): 14.59 (13.05) New Albany (suburb): 13.93 (12.25)	PM _{2.5} , Units = μg/m ³ Indoor Athens (rural): 17.20 (13.56) Koebel (urban): 14.98 (12.30) New Albany (suburb): 16.52 (13.53)	$PM_{2.5}$, Units = $\mu g/m^3$ Athens (rural): 13.66 (8.91) Koebel (urban): 13.89 (9.29) New Albany (suburb): 12.72 (8.86)
Sarnat et al. (2006, <u>089784</u>) Steubenville, OH	Mean (SD): $PM_{2.5}$, Units = $\mu g/m^3$, , , , ,	Mean (SD): $PM_{2.5}$, Units = $\mu g/m^3$
	Summer n = 169 mean (SD) = 19.9 (9.4)		Summer n = 65 mean (SD) = 20.1 (9.3)
	Fall mean (SD) = 20.1 (11.6)		Fall mean (SD) = 19.3 (12.2)
SOUTHEAST			
Wallace and Williams (2005, 057485) Raleigh, North Carolina	Units = µg/m ³ PM _{2.5} pers = 23.0 (16.4) PM _{2.5} pers/PM _{2.5} out = 1.31 (0.99)	Units = μ g/m ³ PM _{2.5} in = 19.4 (16.5) PM _{2.5} in/PM _{2.5} out = 1.08 (1.05)	Units = μg/m ³ PM _{2.5} out = 19.5 (8.6) 18.1 (8.1)
Williams et al. (2003, <u>053338</u>) SE Raleigh, North Carolina Chapel Hill, North Carolina	Pooled PM mass concentrations (μg/m³) across all subjects, residences, seasons, and cohorts	Pooled PM mass concentrations (µg/m³) across all subjects, residences, seasons, and cohorts	Pooled PM mass concentrations (µg/m³) across all subjects, residences, seasons, and cohorts
	Variable N Geo mean Mean RSD(a) Personal PM _{2.5} (b) 712 19.2 23.0 70.1 (a) Relative standard deviation of the	Variable N Geo mean Mean RSD(a) Indoor PM _{2.5} (c) 761, 15.3, 19.1, 80.1 Outdoor PM _{2.5} (c) 761, 17.5, 19.3, 43.7 Indoor PM ₁₀ (b) 761, 23.2, 27.7, 70.6	Variable N Geo mean Mean RSD(a) Ambient PM _{2.5} (c) 746, 17.3, 19.2, 44.9 Ambient PM ₁₀ (b) 752, 27.9, 31.4, 51.5 Ambient PM _{10.25} (d) 210, 8.6, 10.0, 62.3
	presented arithmetic mean. (b) measured using PEMs.	Outdoor $PM_{10}(b)$ 761, 27.5, 30.4, 46.4 Indoor $PM_{10-2.5}(d)$ 761, 6.3, 8.6, 111.8 Outdoor $PM_{10-2.5}(d)$ 761, 8.5, 11.1, 86.9	(a) Relative standard deviation of the presented arithmetic mean. (b) measured using PEMs.
		 (a) Relative standard deviation of the presented arithmetic mean. (b) measured using PEMs. (c) measured using HI samplers. (d) measured by difference in PEM PM₁₀ monitor and co-located HI PM_{2.5} mass concentrations. 	(c) measured using HI samplers. (d) measured by difference in PEM PM ₁₀ monitor and co-located HI PM _{2.5} mass concentrations.

Reference / Location	Personal	Micro	Ambient
NORTHEAST			
Koutrakis et al. (2005, <u>095800</u>) Baltimore, MD Boston, MA	$PM_{2.5}$, Units = $\mu g/m^3$:	NR	$PM_{2.5}$, Units = $\mu g/m^3$:
Daillinoie, MD Boston, MA	(Baltimore, Boston) Winter: Seniors: 15.1 (14.6), 14.1 (6.0) Children: 24.0 (21.8), 18.5 (12.8) COPD: 16.4 (12.7), NR Summer: Seniors: 22.1 (10.1), 18.8 (9.7) Children: 18.6 (8.1), 30.3 (14.2) COPD: NR, NREC: (Baltimore, Boston) Winter: Seniors: NR, 1.4 (0.9) Children: 2.8 (1.8), 1.6 (1.6) COPD: 2.0 (1.2), NR Summer: Seniors: NR, NR COPD: NR, NRSO ₄ : (Baltimore, Boston) Winter: Seniors: 1.9 (1.1), 1.9 (1.2) Children: NR, 2.3 (1.7) COPD: 1.5 (0.8), NR Summer: Seniors: 5.7 (3.5), 2.9 (1.9) Children: NR, NR		(Baltimore, Boston) Winter: All: 20.1 (9.4), 11.6 (6.8) summer: Seniors: 25.2 (11.5), 12.7 (5.4) Children: 23.2 (14.0), 17.0 (11.5) COPD: NR, NREC: (Baltimore, Boston) Winter: All: 1.2 (0.6) summer: NR, NRSO ₄ : (Baltimore, Boston) Winter: All: 4.0 (1.7), 3.1 (1.8) summer: Seniors: 10.5 (7.1), 3.1 (1.8) Children: NR, 6.5 (6.0)
Sarnat et al. (2005, <u>087531</u>)	Units = μg/m³:	NR	Units = μg/m³:
Boston, Massachusetts. Comparisons to a previous study in Baltimore are made.	Winter-Children: PM _{2.5} : 17.4-25.8 SO ₄ : 1.6-3.3		Winter: PM₂,₅: 6.5-15.5 SO₄: 1.7-4.2
	Winter-Seniors: PM _{2,5} : 10.8-16.2 SO ₄ : 1.6-2.6		Summer: PM _{2.5} : 11.9-21.4 SO ₄ : 3.6-9.0
	Summer-Children PM _{2,5} : 25.4-32.8 SO ₄ : 2.7-3.3		
Turpin et al. (2007, <u>157062</u>) Elizabeth, NJ, (and Houston, TX, and Los Angeles County, CA+	Summer-Seniors $PM_{2.6}$: 17.8-20.5 SO_4 : 2.7-3.3 48-h avg $PM_{2.5}$, Units = μ g/m ³ : Elizabeth Child: 54.0 Adult: 44.8	Elizabeth: 20.1	Elizabeth: 20.4

Table A-62. Summary of PM species exposure studies.

Reference	Particle Sizes Measured	Component	Results	Primary Findings
Adgate et al. (2007, <u>156196</u>)	Personal, Micro, and Ambient: PM _{2.5} - broken down into TE	Ag, Al, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, La, Mg, Mn, Na, Ni, Pb, S, Sb, Sc, Ti, Tl, V, Zn	Median, units: ng/m³: Outdoor, Indoor, Personal S 334.4,272.1,351.6 Ca 232.2,85.0,174.1 Al 96.3,23.3,58.6 Na 33.1, 20.6, 31.9; Fe12.6, 43.1, 78.6 Mg 10.9, 16.3, 27.5 K 3.2, 38.4, 47.5 Ti3.0, 0.8, 1.4 Zn2.7,6.5, 9.6 Cu 2.4, 1.5, 4.9 NiNA-0.1, 1.8 Pb 1.5, 2.4, 3.2 Mn 0.6, 1.5, 2.3 Sb 0.08, 0.21, 0.30 Cd 0.05, 0.12, 0.14 V 0.05, 0.12, 0.16 La 0.02, 0.05, 0.11 Cs 0.00, 0.00, 0.00 Th 0.00, 0.00, 0.00 Sc 0.00, 0.00, 0.01 Ag 0.00, 0.07, 0.08 Co NA 0.02, 0.07 Cr -0.09, 1.2, 2.6	The relationships among P, I, and O concentrations varied across TEs. Unadjusted mixed-model results demonstrated that ambient monitors are more likely to underestimate than overestimate exposure to many of the TEs that are suspected to play a role in the causation of air pollution related health effects. These data also support the conclusion that TE exposures are more likely to be underestimated in the lower income and centrally located PHI community than in the comparitively higher income BC K community. Within the limits of statistical power for this sample size, the adjusted models indicated clear seasonal and community related effects that should be incorporated in long-term exposure estimates for this population.
Brunekreef et al. (2005, 090486)	Personal, Micro & Ambient: PM2.5	NO ₃	Mean (SD), units = ng/m³: Amsterdam: Personal 1389(1965) Indoor 1348(1843) outdoor 4063(4435) Helsinki: Personal 161(202) Indoor 267(215) Outdoor 1276(1181)	In both cities, personal and indoor PM _{2.5} were lower than highly correlated with outdoor concentrations. For most elements, personal and indoor concentrations were also highly correlated with outdoor concentrations.
Brunekreef et al. (2005, 090486)	Personal, Micro, and Ambient: PM _{2.5}	SO ₄ ²⁻ , NO ₃	Mean, units = μg/m³: SO ₄ ²⁻ : P. I, O Amsterdam 4.6 4.7 5.9 Helsinki 2.7 3.0 5.0 NO ₃ : P. I, O Amsterdam 1.4 1.4 4.0 Helsinki 0.2 0.3 1.3	In both cities personal and indoor PM _{2.5} were lower than highly correlated with outdoor concentrations. For most elements, personal and indoor concentrations were also highly correlated with outdoor concentrations.
Chillrud et al. (2004, <u>054799</u>)	Personal: PM _{2.5} Micro: PM _{2.5} Home indoor and home outdoor Ambient: Urban fixed-site and upwind fixed site operated for three consecutive 48-h periods each week.	Elemental iron, manganese, and chromium are reported in this study out of 28 elements sampled.	Mean of duplicate samples: PM ₂₅ : 62 µg/m³ Fe: 26 µg/m³ Mn: 240 ng/m³ Cr: 84 ng/m³ Variability: 1-15%	Personal samples had significantly higher concentration of iron, manganese, and chromium than home indoor and ambient samples. The ratios of Fe (ng/ μg of PM _{2.5}) vs Mn (pg/ μg PM _{2.5}) showed personal samples to be twice the ratio for crustal material. Similarly for the Cr/Mn ratio. The ratios and strong correlations between pairs of elements suggested steel dust as the source. Timeactivity data suggested subways as a source of the elevated personal metal levels.

Reference	Particle Sizes Measured	Component	Results	Primary Findings
Ebelt et al. (2005, <u>056907</u>)	Personal: PM _{2.5} Micro: "ambient exposure": PM _{2.5} , PM ₁₀ , PM _{2.5-10} ; "non-ambient exposure:" PM _{2.5} Ambient: PM _{2.5} , PM ₁₀ , PM _{2.5-10}	Ambient SO ₄ ²⁻ , Ambient non-sulfate, Personal sulfate, personal ambient non-sulfate	Mean (SD), Units µg/m³ Ambient sulfate: 2.0 (1.1), Ambient non-sulfate: 9.3 (3.7), Personal sulfate: 1.5 (0.9), personal ambient non-sulfate: 6.5 (3.0)	Ambient exposures and (to a lesser extent) ambient concentrations were associated with health outcomes; total and nonambient particle exposures were not.
Farmer et al. (2003, 089017)	Personal: PM ₁₀	Benzo[a]pyrene (B[a]P)	Units: ng/m ³	Personal exposure to B[a]P
, -	Micro: NR	Carcinogenic polycyclic aromatic hydrocarbons	Exposed, controls:	and to total carcinogenic PAHs in Prague was two fold
	Ambient: PM ₁₀ Extractable organic material (EOM) B[a]P cPAHs	(cPAHs)	Prague: cPAHs = 12.04(11.10), 6.17 (3.48) B[a]P = 1.79 (1.67), 0.84 (0.60)	higher in the exposed group compared to controls, in Kosice three fold higher, and in Sofia 2.5 fold higher.
			Kosice: cPAHs = 21.72 (3.12), 6.39 (1.56) B[a]P = 2.94 (1.44), 1.07 (0.66)	
			Sofia: cPAHs = 93.84 (55.0) police, 94.74 (120.34) bus drivers, 41.65 (33.86) B[a]P = 4.31 (2.6) police, 5.4 (3.18) bus drivers, 1.96 (1.53)	
Farmer et al. (2003, <u>089017</u>)	Personal: PM ₁₀ Micro: NR Ambient: PM ₁₀ PM _{2.5} (not reported)	PM ₁₀ EOM EOM2 B[a]P c-PAHsb	Prague-SMWinter Summer EOM (μg/m³) 14.93 4.96 EOM2 (%) 23.9 13.4 B[a]P (μg/m³) 3.5 0.28 c-PAHsb (μg/m³) 24.69 2.29	Extractable organic matter (EOM) per PM ₁₀ was at least 2-fold higher in winter than in summer, and c-PAHs over 10-fold higher in winter than in summer. Personal exposure to B[a]P and to tota c-PAHs in Prague ca. was 2-fold higher in the exposed group compared to the control group, in Košice ca. 3
			Prague-LB Winter Summer EOM (µg/m³) 10.86 3.72 EOM2 (%)27.9 14.1 B[a]P (µg/m³)2.9 0.17 c-PAHsb (µg/m³) 20.36 1.32	
			Košice Winter Summer EOM (µg/m³) 15.3 1.67 EOM2 (%)26.4 6.9 B[a]P (µg/m³)1.37 0.15 c-PAHsb (µg/m³) 11.87 1.2	fold higher, and in Sofia ca. 2.5-fold higher.
			Sofia Winter Summer EOM (µg/m³) 24.6 3.95 EOM2 (%) 27.37 13.3 B[a]P (µg/m³) 4.84 0.36 c-PAHsb (µg/m³) 36.44 2.43	
Gadkari et al. (2007, <u>156459</u>)	Personal: Respirable PM (RPM)	Fe, Ca, Mg, Na K, Cd, Hg, Ni, Cr, Zn, As, Pb, Mn and Li	Source contributions varied widely among 12 sites.	Authors conclude that personal exposure to ambient RPM is
	Micro: NR		Indoor: 0-95%	related to local traffic and soil resuspension. They felt that
	Ambient: RPM		Ambient: 0-26% Road: 0-94% Soil: 0-75%	indoor activities or ventilation determined indoor levels of RPM.

Reference	Particle Sizes Measured	Component	Results	Primary Findings
Geyh et al. (2005, <u>186949</u>)	Personal: TD, PM ₁₀ , PM _{2.5} Micro: NR Ambient: TD, PM ₁₀ , PM _{2.5}	EC OC VOC also assessed	Mean (SD), units = µg/m³: Summary Statistics by Area Location October 2001: Albany and West EC 5.9 (NA) OC 36 (NA) Liberty and Greenwich EC 5.3 (59) OC 30 (56) Park Place and Greenwich EC 14.5 (5.4) OC 72 (26) Church and Dey EC 7.9 (3.3) OC 48 (15)	Comparison of recorded EC and OC values from October 2001 and April 2002 with previous studies suggests that the primary source of exposure to EC for the WTC truck drivers was emissions from their own vehicles.
			April 2002: Liberty and West EC 4.2 (2.1) OC 26 (13) Barclay and Greenwich EC 4.0 (2.6) OC 18 (14) Church and Dey EC 4.5 (1.9) OC 27 (15) Middle of the Pile EC 6.7 (1.0) OC 40 (25)	
Hanninen et al. (2004, 056812)	Personal: PM _{2.5} Micro: NR Ambient: PM _{2.5}	PM _{2.5} -bound S	IndoorOutdoor Athens5.3 (2.0)7.6 (5.1) Basel2.6 (1.6)3.3 (1.6) Helsinki 1.6 (1.3)2.2 (1.5) Prague 3.1 (1.3)4.0 (1.5)	Associated with indoor concentration: wooden building material, city, building age, floor of residence (i.e. ground, 1st, etc.), and use of stove other than electric.
Ho et al. (2004, <u>056804</u>)	Personal: PM _{2.5} Micro: NR Ambient: PM _{2.5}	OC EC OM TCA	Mean, Unit = µg/m³ Indoors: OM = 18.1; TCA = 22.9 Outdoors: OM = 20.1; TCA = 26.5	The major source of indoor EC, OC, and PM_{25} appears to be penetration of outdoor air, with a much greater attenuation in mechanically ventilated buildings.
Jacquemin et al. (2007, 192372)	Personal: PM _{2.5} Micro: NA Ambient: PM _{2.5}	S	Mean, units = μg/m³: Personal: 1.3 outdoor: 1.2	Authors suggest that "outdoor measurements of absorbance and sulphur can be used to estimate both the daily variation and levels of personal exposures also in Southern European countries, especially when exposure to ETS has been taken into account. For PM _{2.5} , indoor sources need to be carefully considered."
Jansen et al. (2005, <u>082236</u>)	Personal, Micro, and Ambient: PM _{2.5}	Estimated Elemental Carbon (Abs) Elemental composition of a subset of personal, indoor and outdoor samples	Mean (SD), units = µg/m³: Amsterdam, Helsinki P,O,P,O PM _{2.5} 14.5, 15.7, 9.4, 11.4 Abs 1.4, 1.6, 1.3, 1.9 S 912.3,1299.9,605.3,1435.7 Zn13.2, 18.3, 11.7, 18.6 Fe 57.0, 71.3, 41.6, 79.2 K 87.4,70.3, 103.1,93.9 Ca 72.9, 40.2, 68.5, 36.4 Cu 5.4, 2.5, 4.3, 1.8 Si 29.7, 13.7, 79.5, 93.9 Cl 40.8, 72.7, 9.8, 44.2	For most elements, personal and indoor concentrations were lower than and highly correlated with outdoor concentrations. The highest correlations (median r.0.9) were found for sulfur and particle absorbance (EC), which both represent fine mode particles from outdoor origin. Low correlations were observed for elements that represent the coarser part of the PM _{2.5} particles (Ca, Cu, Si, Cl).

Reference	Particle Sizes Measured	Component	Results	Primary Findings
Johannesson et al. (2007,	Personal, Micro, and	BS	BS _{2.5} Mean SD	Personal exposure of PM _{2.5}
<u>156614</u>)	Ambient: PM _{2.5} , PM ₁		Personal 0.65 0.47	correlated well with indoor levels, and the associations
			Exclusively smokers 0.62 0.47	with residential outdoor and urban background concentrations were also
			Residential indoor 0.56 0.47	acceptable. Statistically significantly higher personal
			Exclusively smokers 0.52 0.46	exposure compared with residential outdoor levels of PM _{2.5} was found for
			Residential outdoor 0.68 0.51	nonsmokers. PM ₁ made up a considerable proportion
			Exclusively smokers 0.71 0.54	(about 70–80%) of PM _{2.5} . For BS, significantly higher levels were found outdoors
			Urban background 0.63 0.37	compared with indoors, and levels were higher outdoors
			All measurements 0.68 0.40	during the fall than during spring. There were relatively
			PM₁/BS1	low correlations between particle mass and BS. The
			Personal 0.55 0.20	urban background station provided a good estimate of
			Residential indoor 0.54 0.45	the residential outdoor concentrations of both PM _{2.5}
			Exclusively smokers 0.49 0.43	and BS _{2.5} within the city. The air mass origin affected the outdoor levels of both PM _{2.5}
			Residential outdoor 0.66 0.51	and BS _{2.5} ; however, no effect was seen on personal
			Exclusively smokers 0.68	exposure or indoor levels.
Kim et al. (2005, <u>156640</u>)	Personal: PM _{2.5}	SO ₄ ²⁻ , EC, Ca ²⁺ , Mn ²⁺ , K, Na ⁺	Mean (SD), Units = μg/m ³ :	Traffic-related combustion, regional, and local crustal
	Micro: NR Ambient: PM _{2.5}		SO ₄ ²⁻ : 2.7 (3.2)	materials were found to
			Ca ²⁺ : 0.12 (0.12)	contribute 19% ± 17%, 52% ± 22%, and 10% ± 7%, respectively. Among participants that spen considerable time indoors, exposure to outdoor PM _{2.5} includes a greater relative
			Mg ²⁺ : 0.02 (0.01)	
			K: 0.07 (0.08)	
			Na ⁺ : 0.09 (0.20)	
			EC: 0.60 (0.54)	contribution from combustion sources, compared with outdoor (ambient) PM _{2.5} measurements.
Koistinen et al. (2004, 156655)	Personal, Micro, and Ambient: PM _{2.5}	Black smoke, SO_4^{2-} , NO_{3^-} , NH_4^+ , Al, Ca, Cl, Cu, K, Mg, P, S, Si, Zn	% contribution to PM _{2.5} Outdoor - Indoor - Work - Personal CoPM * 35, 28, 32, 33 Secondary** 46, 36, 37, 31 Soil 16, 27, 27, 27 Detergents 0, 6, 2, 6 Sea Salt 3, 2, 1, 2	Population exposure assessment of PM _{2.5} , based on outdoor fixed-site monitoring, overestimates exposures to outdoor sources like traffic and long-range transport and does not account for the contribution o
			* CoPM is the difference between total mass and other identified components; i.e., primary combustion particles, nonvolatile primary and secondary organic particles, and particles from tire wear, water, etc. ** Secondary particles are the sum of sulfate, nitrate, and ammonium. 4 factors were identified for each exposure type (residential indoor, residential outdoor, workplace indoor, and personal). The factors contained the elements AI, Ca, CI, Cu, K, Mg, P, S, Si, Zn, and black smoke. (insert in cell to left after consolidating PM size)	significant indoor sources.

Reference	Particle Sizes Measured	Component	Results	Primary Findings
Koutrakis et al. (2005, 095800)	Personal: PM _{2.5} Micro: NR Ambient: PM _{2.5}	Elemental Carbon (EC), SO ₄ ²	Mean (SD) data are provided for Baltimore and Boston, Units = μg/m³: EC: (Baltimore, Boston) Winter: Seniors: NR, 1.4 (0.9) Children: 2.8 (1.8), 1.6 (1.6) COPD: 2.0 (1.2), NR SO ₄ ²⁻ : (Baltimore, Boston) Winter: Seniors: 1.9 (1.1), 1.9 (1.2) Children: NR, 2.3 (1.7) COPD: 1.5 (0.8), NR	Ambient PM _{2,5} and SO ₄ ²⁻ are strong predictors of respective personal exposures. Ambient SO ₄ ²⁻ is a strong predictor of personal exposure to PM _{2,5} . Because PM _{2,5} has substantial indoor sources and SO ₄ ²⁻ does not, the investigators concluded that personal exposure to SO ₄ ²⁻ accurately reflects exposure to ambient PM _{2,5} and therefore the ambient component of personal exposure to PM _{2,5} as well.
Kulkarni and Patil (2003, 156664)	Personal: PM₅ Micro: NR Ambient: PM₅	Pb Ni Cd	Seniors: 5.7 (3.5), 2.9 (1.9) Personal samples, Units = µg/m³: Mean ± SD Type	All listed metals were detected in the ambient air where as only Lead, Cadmium, Manganese, and Potassium were detected in
	Anibient. Fivi5	Cu Cr Fe Mn	Pb Occupational $4.384 \pm 7.766 \mu g/m^3$ Residential $4.093 \pm 5.925 \mu g/m^3$ $24-h integrated 4.205 \pm 1.523 \mu g/m^3 Cd Occupational 0.201 \pm 0.158 \mu g/m^3 Residential 0.111 \pm 0.165 \mu g/m^3 24-h integrated 0.134 \pm 0.140 \mu g/m^3 Mn Occupational 1.979 \pm 7.842 \mu g/m^3 Residential 0.180 \pm 0.261 \mu g/m^3 24-h integrated 1.983 \pm 6.824 \mu g/m^3 K Occupational 3.473 \pm 4.691 \mu g/m^3 Residential 4.589 \pm 4.619 \mu g/m^3 Residential 4.589 \pm 4.619 \mu g/m^3 4.691 \mu g/m^3 Residential 4.589 \pm 4.619 \mu g/m^3 4.691 \mu g/m^3 Residential 4.589 \pm 4.619 \mu g/m^3 4.691 \mu g/m^3 Residential 4.589 \pm 4.619 \mu g/m^3 4.691 \mu g/m^3 Residential 4.589 \pm 4.619 \mu g/m^3 4.691 \mu g/m^3$	Potassium were detected in personal exposures. Mean daily exposure to lead exceeds the Indian NAAQS by a factor of 4.2. However, ambient concentration of lead conforms to this standard. There is a rising trend in the personal exposures and ambient levels of cadmium. However, they are low and do not pose any major health risk as yet. Personal exposures to toxic metals exceed the corresponding ambient levels by a large factor ranging from 6.1 to 13.2. Thus, ambient concentrations may underestimate health risk due to personal exposure of toxic metals. Outdoor exposure to toxic metals is greater than the indoor (ratios ranging from 2.3 to 1.1) except for potassium (ratio 0.77). However, there is no significant correlation between these two.

Refer	rence	Particle Sizes Measured	Component	Results	Primary Findings
Lai et al. (2004	, <u>056811</u>)	Personal, Micro, and	Ag Cr Mn Si	GM (GSD), Units: ng/m ³	Both the indoor and outdoor
		Ambient: PM _{2.5}	Al Cu Na Sm As Fe Ni Sn	P, RI, RO, WI, I/O	environments have sources that elevated the indoor
		Ba Ga P Sr Br Ge Pb Ti Ca Hg Rb TI	Al 280 (7.0), 67 (7.2), 22 (2.9), 110 (7.5), 1.4	concentrations in a different extent, in turn led to higher personal exposures to	
			Cd I Š Tm CI K Sb V Co Mg Se Zn	As 4.7 (1.6), 3.7 (1.8), 2.6 (2.7), 6 (—), 1.4	various pollutants. Geometric mean (GM) of
			Zr	Br 4.7 (2.2), 3.9 (2.0), 2.4 (2.5), 6.2 (2.5), 1.6	personal and home indoor levels of PM _{2.5} , 14 elements,
				Ca 260 (2.0), 120 (2.1), 30 (1.6), 280 (2.9), 3.3	total VOC (TVOC) and 8 individual compounds were over 20% higher than their
				Cd 23 (1.4), 19 (1.8), 7 (—), 43 (2.2), —	GM outdoor levels. Those of NO ₂ , 5 aromatic VOCs, and 5 other elements were close to
				CI 400 (3.0), 270 (3.9), 220 (5.2), 380 (3.9), 1.0	their GM outdoor levels. For PM _{2.5} and TVOC, personal exposures and residential
				Cu 120 (1.3), 88 (1.7), 2.3 (2.8), 230 (2.1), 37.1	indoor levels (in GM) were about 2 times higher among
				Fe 59 (2.3),30 (3.8),19 (3.5), 85 (2.9),1.6	the tobacco-smoke exposed group compared to the non- smoke exposed group,
				Ga 0.9 (2.1), 0.6 (2.2), 0.2 (2.2), 2.0 (3.4), 2.4	suggesting that smoking is an important determinant ofthese exposures. Determinants for
				K 250 (2.4), 180 (2.7), 93 (2.0), 130 (4.0),1.7	CO were visualised by real- time monitoring, and the authors showed that the peak
				Mg 260 (2.1), 130 (3.1),140 (2.9), 120 (2.8), 0.7	levels of personal exposure to CO were associated with
				Mn 2.1 (2.6), 1.8 (2.4),2.2 (1.5), 3.5 (3.0),0.8	smoking, cooking and transportation activities. Moderate to good
				Na 2100 (1.6) ,1800 (1.7), 1100 (3.2), 2700 (1.9), 1.6	correlations were only found between the personal exposures and residential
				Ni 11 (2.2), 8.6 (2.5), 18 (—), 23 (2.9),—	indoor levels for both $PM_{2.5}$ (r = 0: 60; p< 0: 001) and NO_2 (r = 0: 47; p = 0: 003).
				P 110 (2.1), 70 (2.2), 27 (1.8), 86 (2.4),2.5	
				Pb 26 (1.7), 19 (1.8), 9.4 (2.8), 32 (2.0), 1.9	
				S 1200 (1.9),1200 (2.0),890 (4.8), 1.2	
				Se 8.4 (1.5),6.8 (1.7),2.3 (1.8), 16 (2.2),2.8	
			Si 740 (3.4), 360 (2.9),95 (2.2), 570 (3.8), 2.6		
			Sn 35 (1.5),27 (1.8),0 (—),68 (2.6),—		
				Ti 6.2 (1.7),2.8 (2.2), 1.1 (2.0), 6.1 (3.2),2.3	-
				V 1.8 (1.5), 1.4 (1.9), 4 (—), —	
				Zn 18 (2.4),15 (2.2),13 (2.5),23 (2.4), 0.9	

Reference	Particle Sizes Measured	Component	Results	Primary Findings
Larson et al. (2004, <u>098145</u>)	Personal: PM _{2.5} Micro: PM _{2.5} outside subject's residence, and inside residence Ambient: PM _{2.5} at Central outdoor site (downtown Seattle)	Light absorbing carbon (LAC) and Al, As, Br, Ca, Cl, Cr, Cu, Fe, K, Mn, Ni, Pb, Si, S, Ti, V	Personal, RI, RO, Central Mass 10,500 10,250 12,693 11,970 AI 32, 19, 21, 31 As 1, 1, 2, 2 LAC * 1439, 1105, 1830, 1741 Br 3, 2, 3, 3 Ca 72, 46, 36, 50 Cl 248,173, 75, 78 Cr 2, 2, 1, 2 Cu 3, 4, 2, 3 Fe 63, 35, 61, 95 K 57, 54, 78, 67 Mn 2, 2, 3, 6 Ni 0, 0, 1, 1 Pb 2, 2, 5, 5 Si 109, 65, 66, 62 S 289, 289, 468, 492 Ti 4, 3, 3, 6 V 0, 1, 2, 3	Five sources of PM _{2.5} identified: vegetative burning, mobile emissions, secondary sulfate, a source rich in chlorine, and crustal-derived material. The burning of vegetation (in homes) contributed more PM _{2.5} mass on avg than any other sources in all microenvironments.
Maitre et al. (2002, <u>156726</u>)	Personal: PM ₄ Micro: NR Ambient: PM ₄	PAH, benxene-toluene- xylenes (BTX), aldehydes, BaP PAHc, formaldehyde, acetaldehyde	Median Personal Ambient Resp μg/m³ 124, 124 (mean) BaP ng/m³ 0.28,0.14 PAHc ng/m³ 1.19,1.56 PAH ng/m³ 13.14,12.26 Benzene μg/m³ 23.5, 17 Toluene μg/m³ 94.5, 52 Xylene μg/m³ 74, 39 BTX μg/m³ 192, 108 Formaldehyde μg/m³ 21,17.5 Acetaldehyde μg/m³ 17, 10.5 Aldehyde μg/m³ 38, 28	The occupational exposure of policemen does not exceed any currently applicable occupational or medical exposure limits. Individual particulate levels should preferably be monitored in Grenoble in winter to avoid underestimations.
Meng et al. (2005, <u>081194</u>)	Personal: PM _{2.5} Micro: NA Ambient: NR	EC, OC, S, Si	Mean (SD), units = ng/m³: Indoor: EC: 1165.9 (2081.0) OC: 7725.5 (9359.3) S: 902.3 (602.2) Si: 124.0 (79.0) Outdoor: EC: 1144.1 (968.1) OC: 3777.7 (2520.1) S: 1232.3 (633.2) Si: 141.1 (171.3)	Use of central-site PM _{2.5} as an exposure surrogate underestimates the bandwidth of the distribution of exposures to PM of ambient origin.

Reference	Particle Sizes Measured	Component	Results	Primary Findings
Molnár et al. (2005, <u>156772</u>)	Personal: PM _{2.5} Micro and Ambient: PM _{10~2.5} and PM _{2.5}	BS SCI KCa Mn Fe Cu Zn Br Rb Pb	Median, unit = ng/m ³ Wood burners Ref 1-sided p-value BS 0.97, 0.74, 0.053 S 880, 650, 0.500 CI 200, 160, 0.036 K 240, 140, 0.024 Ca 76, 43, 0.033 Mn 4.8, 3.5, 0.250 Fe 64, 49, 0.139 Cu 8.9, 2.4, 0.016 Zn 38, 22, 0.033	Statistically significant contributions of wood burning to personal exposure and indoor concentrations have been shown for K, Ca, and Zn. Increases of 66–80% were found for these elements, which seem to be good woodsmoke markers. In addition, Cl, Mn, Cu, Rb, Pb, and BS were found to be possible woodsmoke markers, though not always to a statistically significant degree for personal exposure and indoor concentrations. For some of these elements, subgroups of wood burners had clearly higher levels which could not be explained by the information available. Sulfur, one of the more typical elements mentioned as a wood-smoke marker, showed no relation to wood smoke in this study due to the large variations in outdoor concentrations from LDT air pollution. This was also the case for PM ₂₅ mass. Personal exposures and indoor levels correlated well among the subjects for all investigated species, and personal exposures were generally higher than indoor levels.
Molnar et al. (2006, <u>156773</u>)	Personal: PM _{2.5} and PM ₁ Micro and Ambient: NR	S CI K Ca Ti V Mn Fe Ni Cu Zn Br Pb	Urban background PM _{2.5} Mean, median, range (ng/m³) S 620, 320, 95-1900 Cl 97, 54, 25-460 K 55, 50, 32-130 Ca 21, 17, 6.6-6.2 Ti 2.1, 1.9, 1.3-3.8 V 3.4, 2.4, 1.0-13 Mn 1.6, 1.4, 0.67-3.8 Fe 36, 33, 7.1-100 Ni 1.6, 1.2, 0.33-5.7 Cu 2.1, 1.4, 0.33-11 Zn 14, 11, 2.8-38 Br 1.7, 1.4, 0.47-44.3 Pb 3.3, 2.1, 0.94-11 Personal PM _{2.5} Mean, median, range (μg/m³) S -, < 470, 270-1400 Cl 270, 170, 60-920 K 140, 96, 39-690 Ca 110, 80, 27-670 Ti 11, 9.5, 3.7-27 V 4.7, 4.0, 2.7-9.4 Mn Fe 68, 69, 23-150 Ni 4.2, 2.6, 0.89-46 Cu 10, 6.6, 1.1-81 Zn 21, 16, 6.6-70 Br 2.0, 1.3, 0.91-14 Pb 2.9, 2.6, 0.92-8.3 Personal PM₁ Mean, median, range (μg/m³) S -, < 470, 240-1200 Cl -, < 110, 54-160 K 80, 82, 50-130 Ca 32, 23, 8.4-87 Ti 6.5, 6.3, 3.7-11 V -, < 4.2, 2.8-8.9	PM _{2.5} personal exposures were significantly higher than both outdoor and urban background for the elements Cl, K, Ca, Ti, Fe, and Cu. Personal exposure was also higher t ¹ an indoor levels of Cl, Ca, Ti, Fe, and Br, but lower than outdoor Pb. Residential outdoor levels were significantly higher than the corresponding indoor levels for Br and Pb, but lower for Ti and Cu. The residential levels were also significantly higher than the urban background for most elements.

Reference	Particle Sizes Measured	Component	Results	Primary Findings
			Mn Fe 28, 25, 7.6-68 Ni 8.2, 1.2, 0.83-58 Cu 5.0, 4.4, 1.6-14 Zn 15, 14, 7.6-37 Br 1.6, 1.5, 0.83-4.4 Pb 3.6, 2.8, 1.1-11	
			Residential Outdoor PM _{2.5} Mean, median, range S 640, 460, 190-1800 CI 6.3, 140, 57-840 K 200, 78, 32-200 Ca 82, 28, 4.6-85 Ti 34, 5.2, 3.3-21 V 6.3, 3.9, 2.1-14 Mn Fe 5.5, 31, 8.8-200 Ni 45, < 1.6, 0.65-5.5 Cu 2.6, 1.3, 0.65-17 Zn 22, 15, 5.5-85 Br 2.0, >450, 0.91-51 Pb 4.6, 2.6, 0.90-20	
			Residential Outdoor PM ₁ S -, 1.3, 24-2000 Cl -, < 110, 44-170 K 76, 68, 34-170 Ca -, < 12, 5.1-78 Ti -, < 5.0, 2.2-9.5 V 5.6, 4.47, 2.2-14 Mn Fe 23, 14, 3.7-140 Ni 3.3, 1.4, 0.73-28 Cu -, < 1.1, 0.73-12 Zn 15, 14, 5.2-30 Br 1.5, 1.4, 0.78-4.3 Pb 4.1, 1.5, 1.0-17	
Na and Cocker (2005,	Personal: PM _{2.5}	EC, OC	Mean (SD), units = μg/m ³	Indoor PM _{2.5} was significant
<u>156790</u>)	Micro: NR		Residential homes: EC 2.0 (NR)	influenced by indoor OC sources. Indoor EC sources were
	Ambient: PM _{2.5}		OC 14.8 (NR)	predominantly of outdoor
			High school (EC): Weekday samples 1.1 (0.9) Weekend samples 1.0 (0.5)	origin.
			High school (OC): Weekday samples 8.8 (4.7) Weekend samples 7.4 (2.4)	
Noulett et al. (2006, <u>155999</u>)	Personal: PM _{2.5}	SO4 2- ABS (light absorbing carbon)	Measurement Mean s.d.	SO ₄ ²⁻ and light absorbing
	Micro: NR	ADS (light absorbing carbon)	Ambient _{SO4} ²⁻ 2.72* 3.11	higher personal-ambient
	Ambient: PM _{2.5}		Ambient ABS 1.4** 1.0	correlations and less variability. This indicates that SO ₄ ² and ABS were of outdoor origin, while PM _{2.5} mass was of varied indoor and outdoor origin.
			Personal SO ₄ ²⁻ 1.33* 1.47 Personal ABS 1.0** 1.7	
			* Mean SO ₄ ²⁻ values reported in μg/m³ ** Mean ABS values reported in 10-5/m ⁻¹	

Reference	Particle Sizes Measured	Component	Results	Primary Findings
Salma et al. (2007, <u>113852</u>)	Personal: PM _{10"2.0} and PM _{2.0} Micro: NA Ambient: NR	30 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ba, and Pb)	Units: ng/m³: PM _{10**20} ; PM ₂₀ Mg 296 130 Al 531 93 Si 2.09 442 S 978 828 Cl 305 104 K 318 127 Ca 2.57 413 Ti 47 25 Cr 35 15 Mn 310 148 Fe 33.5 15.5 Ni 29 8 Cu 496 190 Zn 118 50 Br 13 DL Ba 145 DL Pb 47 21 PM 83.6 33.0	The concentrations observed in the Astoria underground station were clearly lower (by several orders of magnitude) than the corresponding workplace limits.
Samat et al. (2005 RMID 9171) (2005, 087531)	Personal: PM _{2.5} Micro: N/A Ambient: PM _{2.5}	SO ₄ , O ₃ , NO ₂ , SO ₂	Correlations between personal PM $_{2.5}$ and ambient gas O_3 correlated in summer. Spearman's R \approx 0.4, Anti-correlated in winter, R \approx 0.3-0.1. NOX somewhat correlated in summer. R \approx 0.3 Winter, R \approx 0.2-0.4 SO $_2$ not well correlated in summer or winter. R \approx 0-0.1. CO somewhat correlated in summer. R \approx 0.1-0.3. Correlated in winter R \approx 0.2-0.3. No results were significant.	Substantial correlations between ambient PM _{2.5} concentrations and corresponding personal exposures. Summertime gaseous pollutant concentrations may be better surrogates of personal PM _{2.5} exposures (especially personal exposures to PM _{2.5} of ambient origin) than they are surrogates of personal exposures to the gases themselves.
Sarnat et al. (2006, <u>089784</u>)	Personal: PM _{2.5} Micro: NR Ambient: PM _{2.5}	SO ₄ ² EC	Mean (SD), units = μg/m³: Personal Ambient SO ₄ ²⁻ Summer 5.9 (4.2) 7.7 (4.8) Fall 4.4 (3.3) 6.2 (4.7) EC Summer 1.1 (0.6) 1.1 (0.5) Fall 1.2 (0.7) 1.1 (0.7)	High association between personal and ambient SO_4^{2-} and EC, especially for SO_4^{2-} for which there is no significant indoor source.
Shilton et al. (2002, <u>049602</u>)	Personal, Micro, and Ambient: Respirable PM	Respirable PM, metals (Zn, Cu, Mn, Al), $SO_4^{2^\circ}$, NO_3° , and Ci	IndoorOutdoor Zn (ng/m³) 241.1, 179.5 Cu (ng/m³) 43.3, 24.99 Mn (ng/m³) 15.6, 4.18 Al (ng/m³) 305.2, 52.90 SO4² (ng/m³) 4.72, 3.47 Cl (ng/m³) 1.08, 0.15 NO₃ (ng/m³).35, 1.08	The indoor particulate conc was driven by ambient conc; meteorological-induced changes in ambient PM were detected indoors;

Reference	Particle Sizes Measured	Component	Results	Primary Findings
Smith et al. (2006, <u>156990</u>)	Personal: PM _{2.5}	EC OC	Work Area EC, OC, EC/TC	
	Micro: PM _{2.5} Area samplers in the offices,	OC	Office 0.31 (3.72), 11.29 (1.63)	
	freight dock, or shop. Ambient: PM _{2.5}		Dock 0.53 (3.24), 5.01 (1.76), 3% (3.10)	
	Samplers were located in the yard upwind of the terminal.		Yard 0.73 (2.89), 7.77 (1.65), 9% (2.49)	
			Shop 1.54 (3.52), 10.37 (2.00), 8% (2.21)	
			Non-smokers on-site: 12% (2.13)	
			Clerk 0.09 (9.98), 15.97 (1.31)	
			Dock worker 0.76 (2.13), 13.89 (1.45),1% (10.19)	
			Mechanic 2.00 (3.82), 16.89 (1.64), 5% (1.96)	
			Hostler 0.88 (3.04), 14.89 (1.86), 10% (2.71)	
			Non-smokers off-site 5% (2.09)	
			Pickup/deliver driver 1.09 (2.46), 12.40 (1.54)	
			Long haul driver 1.12 (1.91), 19.26 (2.30),8% (2.13)	
			Smokers On-Site 7% (1.82)	
			Clerk 1.19 (1.70), 32.25 (1.70), NR	
			Dock worker 0.98 (1.93), 24.02 (1.87)	
			Mechanic 2.41 (2.27), 24.35 (1.78)	
			Hostler 1.74 (2.21), 43.92 (2.03)	
			Smokers off-site	
			Pickup & Delivery drivers 1.33 (3.84), 24.24 (2.14)	
			Long haul drivers 1.37 (2.40),32.81 (3.23)	

Reference	Particle Sizes Measured	Com	ponent	Results	Primary Findings
Sørensen et al. (2003, 157000)	Personal: PM _{2.5} Micro: NR Ambient: PM _{2.5}	BS		Units: 10 ⁻⁶ /m n Median Q25-Q75 All 177 6.8 (5.0-13.2) Autumn 42 7.1 (6.5-17.2) Winter 46 8.2 (5.1-13.3) Spring 46 12.6 (5.4-10.4) Summer 47 8.1 (3.4-9.0)	Personal PM _{2.5} exposure was found to be a predictor of 8-oxodG in lymphocyte DNA. No other associations between exposure markers and biomarkers could be distinguished. ETS was not a predictor of any biomarker in the present study. The current study suggests that exposure to PM _{2.5} at modest levels can induce oxidative DNA damage and that the association to oxidative DNA damage was confined to the personal exposure, whereas the ambient background concentrations showed no significant association. For most of the biomarkers and external exposure markers, significant differences between the seasons were found. Similarly, season was a significant predictor of SBs and PAH adducts, with avg outdoor temperature as an additional significant predictor.
Sorenson et al. (2005, 089428)	Personal: PM _{2.5} and BS Micro: PM _{2.5} and BS Ambient: Street monitoring station and roof of a campus building PM _{2.5} and BS	BS		Mean, IQR, Units = μg/m³: Personal: Cold Season: 10.2 (5.6-14.8) Warm Season: 7.1 (5.5-11.4) Micro: Cold Season Home Indoor: 6.2 (5.5-11.4) Home front door: 10.8 (7.4-16.3) Warm Season Home Indoor: 6.1 (3.7-7.6) Home front door: 8.8 (5.6-11.54) Ambient: Cold Season: Street Station: 31.6 (27.5-34.0) Urban Background: 7.7 (5.9-11.0) Warm Season: Street Station: 30.6 (24.7-36.0) Urban Background: 6.8 (4.6-8.6)	Indoor sources of PM and BS were shown to be greatly influenced by indoor sources.
Sram et al. (2007, <u>192084</u>)	Personal: PM ₁₀ , PM _{2.5} Micro: NR Ambient: PM ₁₀ , PM _{2.5}	c-PAHs, B[a]F	0	B[a]P: Exposed 1.6 ng/m³ Control 0.8 ng/m³ c-PAHs: Exposed 9.7 ng/m³ Control 5.8 ng/m³	Ambient air exposure to c- PAHs increased fluorescent in situ hybridization (FISH) cytogenetic parameters in non-smoking policemen exposed to ambient PM

Reference	Particle Sizes Measured	Component	Results	Primary Findings
Turpin et al. (2007, <u>157062</u>)	Personal: PM _{2.5} Micro: PM _{2.5} , in the main living area (not kitchen) Ambient: PM _{2.5} , in the front or heak yard	18 volatile organics, 17 carbonyl, PM _{2.5} mass and >23 PM _{2.5} species, organic carbon, elemental carbon, and PAHs	For Los Angeles Carbon (µgC/m³) EC 1.4 OC 4.1 Elements (ng/m³)	The best estimate of the mean contribution of outdoor to indoor PM _{2.5} was 73% and the outdoor contribution to personal was 26%.
	back yard		Ag 0.5 Al 24.7 As 0.5 Ba 22.9 Br 5.3 Ca 80.9 Cd 0.4 Cl 62.0 Co ND Cr 0.6 Cu 5.5 Fe 162.9 Ga 0.1 Hg 0.1 In 0.3 K 74.1 La 2.3 Mn 2.9 Mo 0.4 Ni 2.0 Pb 4.7 Pd 0.3 P 0.1 S 1022.9 Sb 2.1 Se 1.4 Si 128.9 Sn 7.9 Sr 1.8 Ti 10.4 V 5.3 Y 0.1 Zn 16.4 Zr 0.5	
Wallace and Williams (2005, 057485)	Personal: PM _{2.5}	S	Mean (SD), units = ng/m ³ :	Generally, F _{inf} provides a reliable estimate of personal
<u> </u>	Indoor Micro: PM _{2.5}		Personal: 1046 (633)	exposure. S can be used in lieu of personal exposure to PM
	Outdoor Micro: PM _{2.5}		Indoor: 1098 (652)	because it is generally derived from outdoors.
We at al. (2000, 470050)	Domanali DM	10	Outdoor: 1951 (1137)	
Wu et al. (2006, <u>179950</u>)	Personal: PM _{2.5} Micro: PM _{2.5}	LG EC	Mean personal exposure (μg/m³):	Authors "found a significant between-subject variation
	Ambient: PM _{2.5}	OC	LG: 0.018 (0.024)	between episodes and non- episodes in both the
			EC: 0.4 (0.5)	Exposure during agricultural burning estimates and
			OC: 8.5 (2.7).	subjects' activity patterns. This suggests that the LG
			Ambient: check component	measurements at the central
			During non-burning times: 0.026 (0.030)	site may not always represent individual exposures to agricultural burning smoke
				"Evidence of "Hawthorne Effect": During declared episodes (i.e. real and sham), subjects spent less time indoors at home and more time in transit or indoors away from home than during non-declared episode periods. The differences remained even when limited to weekdays only.

Reference	Particle Sizes Measured	Component	Results	Primary Findings
Zhao et al. (2007, <u>156182</u>)	Personal, Micro, and Ambient: PM _{2.5}	EC, CI, Si, NO₃	Units = µg/m³: Personal: EC: 1.64 NO₃: 0.135 Si: 0.176 Cl: 0.116 Indoor: EC: 1.819 NO₃: 0.013 Si: 0.051 Cl: 0.024 Outdoor: EC: 1.876 NO₃: 0.292 Si: 0.115 Cl: 0.013	Four external sources and three internal sources were resolved in this study. Secondary NO ₃ and motor vehicle exhaust were two major outdoor PM _{2.5} sources. Cooking was the largest contributor to the personal and indoor samples. Indoor environmental tobacco smoking also has an important impact on the composition of the personal exposure samples.

Table A-63. Summary of personal PM exposure source apportionment studies.

Reference	Study Design			Result	S		Primary Findings
		% control f	P, I, C, C)			
	Course consistence at at	External					
	Source apportionment of personal and indoor central and	Secondary					63% of personal exposure could be attributed to outdoor
	apartment and outdoor PM2.5.	SO ₄ ²⁻	46.3,	64.0,	79.0,	64.0	sources (with 46% from SO ₄ ²⁻),
Hopke et al. (2003, <u>095544</u>)	Baltimore retirement home with	Unknown Soil	13.6, 2.8,	14.5, 3.1,	17.4, 3.6,	14.5 3.1	and resuspension of indoor PM during vacuuming, cleaning, or
	10 elderly subjects.	Internal	2.0,	0.1,	0.0,	1 0	other activities contributed 36%
	July-Aug 1998.	Gypsum	0.7,	0.4,	0.0,	0.0	of personal exposure.
		Activity Personal	36.2, 0.4,	17.8,	0.0,	0.0	
		care	0.4,	0.0,	0.0,	0.0	
		PMF2: % control f	210				
	Source apportionment of	Veg burn	28.8		47.6,	56.7	1
	personal and residences and	Mobile	0.0, 3		7.5		
	central outdoor PM _{2.5} around	Fuel oil S, Mn, Fe	0.0 8.1		0.0,	6.7 0.0	Results showed that vegetative
	Seattle with 10 elderly subjects	Secondary	0.0		34.5.	20.9	burning was the largest
	and 10 asthmatic children. The	Cl-rich	9.9, 3		3.7		contributor to personal
Larson et al. (2004, 098145)	purpose of the article was to compare PMF2 and PMF3	Crustal	25.2		10.7,	4.5	exposure and that was related
,		Crustal 2	27.9),	0.0,	0.0	to outdoor combustion. Crustal
	methods.	PMF3:					exposures were related to
	Seattle	% control F	P, I, O				indoor activities.
	Sep 2000 and May 2001	Veg burn	41.0		57.4,	71.3]
	Sep 2000 and May 2001	Mobile	7.2, 4		8.2		
		Secondary Crustal	19.3 32.5		13.8, 24.,5	18.0 2.5	-
-		% control F		,	24.,0	2.5	
		Motor	<u> </u>	9.4,	17.2,	19.4]
	Source apportionment of	vehicle Soil	10.0,	3.7,	9.3,	8.5	Secondary sulfate was the
	personal and residential indoor	Secondary	3.3,	22.5,	59.3,	0.5	largest ambient source and the
	and residential outdoor and	SO ₄ ²⁻	15.9,		61.9		largest ambient contribution to personal exposure. Cooking
Zhao et al. (2006, <u>156181</u>)	central outdoor PM _{2.5} ,	Secondary NO ₃	4.4	, 4.7,	7.6,	7.8	produced the largest
	Raleigh and Chapel Hill NC with	ETS	7.0,	10.0,	0.0,	0.0	contribution to personal and
	38 subjects.	Personal	8.0,	19.1,	0.0,	0.0	indoor concentrations. Note that
	,	care and activity					sums over 100% because
	Summer 2000 and Spring 2001.	CU-factor	0.4,	1.2,	0.0,	0.0	multiple sources obscured PMF
	. •	mix with					resolution.
		indoor soil Cooking		53.6,	0.0.	0.0	-
		Cooking	52.5,	55.0,	0.0,	0.0	

Reference	Study Design	Results	Primary Findings
Meng et al. (2007, <u>194618</u>)	Source apportioned infiltration for personal and residential indoor and residential outdoor and central outdoor _{PM2.5} . Los Angeles, Houston, and Elizabeth, NJ with 100 nonsmoking residences and residents in each city.	% contrOutdoor Indoor (Outdoor Origin) Mechanically generated 2,17 Primary Combustion43,43 Secondary Formation* 55,40 *excludes nitrates	Differential infiltration of the PM _{2.5} resulted in a reduction of secondary formation products relative to outdoors.
	In each season between summer 1999 and spring 2001 (RIOPA).		
Reff et al. (2007, <u>156045</u>)	Functional group distinction for personal and residential indoor and residential outdoor and central outdoor PM _{2.5} , PM _{2.5} samples from 219 homes were used for this analysis. Los Angeles, Houston, and Elizabeth, NJ with 100 nonsmoking residences and residents in each city. In each season between summer 1999 and spring 2001 (RIOPA).	SO ₄ ²⁻ : R, O, I, P O 1.0 I 0.54-0.76 1.0 P 0.54-0.73 0.84-0.90 1.0 C = O: R, O, I, P O 1.0 I 0.12-0.61 1.0 P -0.13-0.69 0.07-0.77 1.0 CH: R, O, I, P O 1.0 I -0.08-0.35 1.0 P -0.07-0.19 0.41-0.85 1.0	The main finding was that indoor and personal levels of CH in organic carbons were found to be substantially higher than outdoors. This reduced the polarity of indoor and personal organic carbons
Zhao et al. (2007, <u>156182</u>)	Source apportionment of personal and indoor school and outdoor school PM _{2.5} . Denver with 56 asthmatic children. Oct 2002-March 2003 and Oct 2003-March 2004.	NO ₃ -	The largest personal exposure was from cooking (54.8%), but motor vehicle emissions were the largest outdoor contributor (13.3%) to personal exposure. Secondary nitrate comprised the largest outdoor source but accounted for only 9.4% of personal exposure.
Strand et al. (2006, <u>089203</u>)	Using positive matrix factorization and an extrapolation method to estimate PM _{2.5} based on SO ₄ ² -Fe components. Denver. Winter 1999-2000 and 2000-2001.	Estimation method, Mean (SD, range): PMF: 7.42 (1.93 , 3.43 - 12.89) Extrapolation Method: Using SO_4^{2-} : 6.38 (1.60 , 3.20 - 10.97) Using SO_4^{2-} and Fe: 6.50 (1.36 , 3.54 - 10 Using SO_4^{2-} and Fe, temperature adjuste (1.48 , 3.79 - 11.02) Using SO_4^{2-} (no gamma): 8.23 (2.06 , 4.5)	

1

Table A-64. Summary of PM infiltration studies.

Reference	Study Design	F _{inf}	1/0
Allen et al. (2003, <u>053578</u>)	Objective: Enhance knowledge of the	PM _{2.5} avg- 0.65 ± 0.21	Light scattering (whole peak): 0.75 ±
	outdoor contribution to total indoor and personal PM exposures.	Non-heating season- 0.79 ± 0.18	0.25
	Methods: Continuous light scattering	Heating season- 0.53 ± 0.16	Light scattering (uncensored data): 0.77 ± 0.24
	monitoring.	Open windows (mean)- 0.69	Sulfur concentration (slope): 0.65 ±
	Subjects: Elderly and children spending most of their time indoors.	Closed windows (mean)- 0.58	0.01
	Healthy individuals, elderly with COPD or CHD and children with	All days (mean)- 0.65	
	asthma. 44 residences measured for 55 10-day sessions. Seattle, WA.		
Arhami et al. (2009, <u>190096</u>)	Objective: To examine associations	PM _{2.5} : 0.38-0.57	N/A
	between size-segregated PM, their particle components, and gaseous	EC: 0.64-0.82	
	copollutants.	OC: 0.60-0.98	
	Methods: Data analyzed with linear mixed-effect models.		
	Subjects: Four different retirement communities in San Gabriel Valley, CA and Riverside, CA. 2005-2007.		
Balasubramanian et al. (2007, 156248)	Objective: PM monitoring and assessment based on analysis of chemical and physical characteristics of indoor and outdoor particles.	N/A	PM _{2.5} : 0.93-1.90 Chemical Species: CI: 0.35-0.45 NO ₂ : 2.50-4.13
	Methods: Particle number and mass concentrations measured using real-time particle counter and low-volume particulate sampler.		NO ₃ : 1.41-5.41 SO ₄ ² : 1.21-1.70 Na ⁴ : 0.43-0.74 NH ₄ ⁺ : 1.43-2.39 EC: 0.75-0.96
	Subjects: 3 residential indoor and 1 residential outdoor environments in Choa Chu Kang, Singapore. May 12-May 23, 2004.		OC: 1.04-1.92 AI: 1.04-1.92 Co: 0.86-1.32 Cr: 1.35-2.90 Cu: 0.50-0.69 Fe: 0.30-0.42 Mn: 0.23-0.42 Pb: 0.40-2.47 Zn: 0.59-0.81 Cd: 0.74-1.75 Ni: 0.71-1.32 Ti: 0.73-0.78 V: 1.01-1.05
Barn et al. (2008, 156252)	Objective: Measure infiltration factor	PM _{2.5} (mean)	Mean:
, , ,,	from PM _{2.5} from forest fires and determine effectiveness of HEPA filter.	Summer: HEPA: 0.19 ± 0.20	Summer: HEPA: 0.43
	Methods: pDR for ambient air sampling.	Unfiltered: 0.61 ± 0.27 Winter:	Unfiltered: 0.77 Winter:
	Subjects: Homes affected by forest fire or residential wood smoke. British	HEPA: 0.10 ± 0.08 Unfiltered: 0.28 ± 0.18	HEPA: 0.21 Unfiltered: 0.36
	Columbia, Canada. 38 homes sampled (valid samples: 19 winter, 13 summer).	Both: HEPA: 0.13 ± 0.14 Unfiltered: 0.42 ± 0.27	Both: HEPA: 0.25 Unfiltered: 0.47

Reference	Study Design	$oldsymbol{\mathcal{F}}_{inf}$	I/O
Baxter et al. (2007, <u>092726</u>)	Objective: To develop predictive models of residential indoor air pollutant concentrations for lower SES, urban households. Part of ACCESS cohort study of asthma etiology.	PM _{2.5} : 0.91±0.23 EC: 0.72 ± 0.49 Ca: 0.56 ± 0.30 Fe: 0.38 ± 0.26 K: 0.83 ± 0.52 Si: 0.02 ± 0.00 Na: 0.46 ± 0.43	PM _{2.5} (mean, coefficient of variation (CV)): 1.14 (0.71) EC: 0.89 (0.64) Ca: 1.16 (1.90) Fe: 0.69 (1.40) K: 1.10 (0.95) Si: 1.04 (1.31)
	Methods: Regression analysis; mass balance model; F _{inf} from slope in univariate regression analyses.	Cl: 0.40 ± 0.12 Zn: 0.85 ± 0.28 S: 0.95 ± 0.78 V: 0.60 ± 0.77	Na: 1.05`(1.84') Cl: 3.18 (3.79) Zn: 0.83 ± (1.13) S: 0.76 ± (0.32)
	Subjects: Lower SES populations. 43 homes, 23 homes monitored in both seasons, 15 in the non-heating season (May-Oct) only, 5 in heating season (Dec-Mar) only; 2003-2005.	V. 0.00 I 0.11	V: 0.76 ± (0.46)
Baxter et al. (2007, <u>092725</u>)	Objective: To predict residential indoor concentrations of traffic-	N/A	PM _{2.5} :
	related air pollutants in lower SES urban households. Part of ACCESS		Open Windows: 0.98
	cohort study of asthma etiology.		Closed Windows: 0.64
	Methods: Regression modeling, Bayesian variable selection I/O is slope from multivariate model		EC: 0.38
	Subjects: Lower statuses, urban households in Boston, MA. 43 sites among 39 households, 66 sampling sessions, nonheating (May-Oct) and heating (Dec-Mar) 2003-2005		
Brown et al. (2008, <u>190894</u>)	Objective: To examine if ambient,	N/A	PM _{2.5} :
	home outdoor, and home indoor particle concentrations can be used as proxies of corresponding personal exposure.		Winter: Median: 1.2, Range: 0.8-1.8 Summer: Median: 0.9, Range: 0.6-1.2
	Methods: Associations characterized		EC:
	using univariate mixed effects models that included a random subject term.		Winter: Median: 1.1, Range: 0.7-4.5 Summer: Median- 1.0, Range: 0.9-1.3
	Subjects: 15 participants in Boston,		SO ₄ ²⁻ :
	MA in winter (Nov. 1999-Jan. 2000) and summer (June-July 2000).		Winter: Median: 0.5, Range: 0.3-0.8 Summer: Median: 0.8, Range: 0.4-1.0
Cao et al. (2005, <u>156321</u>)	Objective: To determine relationships and distributions of indoor and outdoor PM _{2.5} , OC, and EC. To determine indoor/outdoor sources of indoor carbonaceous aerosol.	N/A	20min _{PM2.5} : Roadside: 0.7-4.0 Urban: 0.9-6.7 Rural: 0.5-1.7
	Methods: Gravimetric analysis to determine PM _{2.5} concentrations. OC and EC determined by TOR following IMPROVE protocol.		24h PM ₂₋₅ : Roadside: 0.8-1.4 Urban: 1.2-2.0 Rural: 1.0-1.8
	Subjects: 6 residences in Hong Kong (2 roadside, 2 urban, 2 rural). March 6-April 18, 2004.		OC (average and range): Roadside: 1.9 (1.1-2.3) Urban: 2.3 (1.5-4.0) Rural: 1.3 (1.2-2.2)
			EC (average and range): Roadside: 1.0 (0.9-1.1) Urban: 1.1 (0.8-1.3) Rurai: 1.1 (0.9-1.8)

Reference	Study Design	$m{F}_{inf}$	I/O
Cortez-Lugo et al. (2008, <u>156368</u>)	Objective: To determine personal PM _{2.5} and its relationship with outdoor and indoor PM _{2.5} and PM ₁₀ .	N/A	PM _{2.5} : Average: 1.2
	Methods: Linear regression model used to compare personal and indoor PM _{2.5} . I/O variation studied using analysis of variance and predictors determined by generalized estimating equation models. I/O PM _{2.5} ratio transformed into natural logarithm.		Range: 0.05-6.1
	Subjects: 38 nonsmoking long-time Mexico residents with COPD. Mexico City, Mexico. Feb-Nov 2000.		
Diapouli et al. (2008, <u>190893</u>)	Objective: To characterize the PM ₁₀ f PM _{2.5} , UFP concentrations at primary schools. To examine the relationship between indoor and outdoor concentrations.	N/A	PM ₁₀ : 0.54-2.46 PM _{2.5} - 0.67-2.77 UFP- 0.33-0.74
	Methods: Chemical analysis of collected filters. Regressions to examine correlations between indoor and outdoor concentrations.		
	Subjects: 7 primary schools with different characterizations of urbanization and traffic density in Athens, Greece. No ventilation system. Nov. 2003-Feb. 2004 and OctDec. 2004.		
Dimitroulopoulou et al. (2006, 090302)	Objective: To develop a probabilistic indoor air model (INDAIR).	N/A	No source: PM ₁₀ : 0.5-0.65; PM _{2.5} : 0.6-0.7
	Methods: INDAIR predicts frequency distributions of concentrations of up to 4 pollutants simultaneously (NO ₂ , CO, PM_{10} , PM_{25}). 3 scenarios: no source, gas cooking, smoking.		Gas cooking: PM ₁₀ : 0.6-0.9 (bedroom), 1.0-2.0 (lounge), 1.6-4.3 (kitchen); PM _{2-s} : 0.74-0.9 (bedroom), 0.9-1.6
	Subjects: 5 UK sites- Harwell (rural), Birmingham East (urban background), Bradford (urban center), Bloomsbury (urban center), Marylebone Road (roadside). Winter (October 1-March 31), summer (April 1-September 30), 1997-1999.		(lounge), 1.6-2.9 (kitchen) Smoking: PM ₁₀ : 0.7-1.1 (bedroom), 1.1-2.7 (lounge), 1.1-2.5 (kitchen); PM _{2.6} : 0.8-1.3 (bedroom), 1.3-2.8 (lounge), 1.4-2.6 (kitchen)
Fromme et al. (2008, <u>155147</u>)	Objective: To characterize the chemical and morphological properties of PM in classrooms and in corresponding outdoor air.	N/A	PM_{10} : SO_4^{-1} : 0.3, NO_3 : 0.1, $C\Gamma_2^{-1}$ 0.6, $Na^{2}\Gamma_2^{-1}$: 0.9,
	Methods: PM F _{inf} derived from sulfate Finf and a correction factor that results from division of BPM (increase of indoor PM per outdoor PM, linear relationship) by B ^{sulf} (increase of indoor sulfate per outdoor sulfate, linear relationship). If no indoor source, the sulfate F _{inf} is equal to the sulfate I/O.		NH ₄ : 0.1, Mg: 0.6, Ca ²⁺ : 1.4, EC: 0.7, OC: 1.1 PM _{2.5} : SO ₄ : 0.4, NO ₃ : 0.2, Cl: 0.5, Na ²⁺ : 0.6,
	Subjects: Primary school in northern Munich. Densely populated residential area 160m away from a very busy street. Classrooms had 21- 23 students. Sampling during teaching hours. OctNov. 2005.		Na ; ∪.6, NH₄ : 0.3, Mg: 0.5, Ca²*: 1.6

Reference	Study Design	F _{inf}	1/0
Guo et al. (2004, <u>156506</u>)1	Objective: To investigate pollutant concentrations at air-conditioned and non-air-conditioned markets. To compare indoor air quality with the Hong Kong standard.	N/A	PM ₁₀ : Non-air-conditioned: ~0.7, Air- conditioned: ~0.98
	Methods: PM ₁₀ concentrations measured by Hi-Vol sampler correlated with corresponding levels measured by Dust-Trak monitor.		
	Subjects: 3 non-air-conditioned and 2 air-conditioned markets in Hong Kong. Sept. 2001-Jan. 2002.		
Hänninen et al. (2004, <u>056812</u>)2	Objective: To assess indoor PM _{2.5} by origin and potential determinants.	PM _{2.5} (mean): Athens- 0.70 ± 0.12 Basie- 0.63 ± 0.15	PM _{2.5} : Athens: ~0.84 Basle: ~1.37
	Methods: Part of EXPOLIS study. Pump and filter with gravimetric analysis. Univariate single and stepwise-multiple regression analyses.	Basle- 0.63 ± 0.15 Helsinki- 0.59 ± 0.17 Prague- 0.61 ± 0.14 S (mean): Athens- 0.82 ± 0.14 Basle- 0.80 ± 0.19 Helsinki- 0.70 ± 0.20 Prague- 0.72 ± 0.16	Helsinki: ~1.30 Prague: ~1.33 S: Athens:~0.70
	Subjects: Residential homes in Athens, Greece; Basle, Switzerland; Helsinki, Finland; Prague, Czech Republic. Homes by city: Athens 50, Basle 50, Helsinki 189, Prague 49.		Basle: ~0.80 Helsinki: ~0.74 Prague: ~0.77
Ho et al. (2004, <u>056804</u>)3	Objective: PM _{2.5} , OC, and EC exposure assessment of occupied buildings located near major roadways under natural ventilation (NV) and mechanical ventilation (MV).	PM _{2.5} : 0.42 EC: MV: 0.42, NV: 0.76 OC: MV: 0.66, NV: 0.71	PM _{2.5} (average): 0.2-1.6 MV (average): <0.7 NV (average): 0.6-1.6 EC: Range: 0.5±0.1-1.1±0.4 OC: Range: 0.6±0.2-1.5±1.0
	Methods: Co-located mini-volume samplers and Partisol model 2000 sampler with 2.5 micron inlet. IMPROVE TOR carbon analysis.		
	Subjects: Occupants of MV (1 classroom and office) and NV (3 residences) buildings located within 10m of major roadway; Hong Kong, China. Sep. 2002-Feb. 2003.		
Hoek et al. (2008, <u>156554</u>)	Objective: Exposure assessmentof indoor/outdoor particle relationships.RUPIOH study.	Regression slope for indoor vs. central site outdoor:	N/A
	,	PM _{2.5} : 0.30-0.51	
	Methods: Sampling by condensation particle counters and Harvard	PM ₁₀ : 0.17-0.41	
	impactors. Gravimetric analysis and reflectance. Calculations performed	PM ₁₀ -2.5: 0.01-0.17	
	for 24h avg concentrations. F _{inf} estimated by linear regression	SO ₄ ²⁻ : 0.59-0.78	
	analysis.	Soot: 0.43-0.87	
	Subjects: 4 European cities (Helsinki, Finland; Athens, Greece; Amsterdam, The Netherlands: Pirmingham	Regression slope for indoor vs. residential outdoor:	
	The Netherlands; Birmingham, England). Urban populations. >35yrs.	PM _{2.5} : 0.34-0.48	
	Asthma or COPD. Non-smoking households. Work <16h/wk outside	PM ₁₀ : 0.26-0.44	
	home. 153 homes sampled Oct. 2002-Mar. 2004.	PM ₁₀ -2.5: 0.11-0.16	
		Soot: 0.63-0.84	

Reference	Study Design	F _{inf}	1/0
Hopke et al. (2003, <u>095544</u>)	Objective: To use advanced factor	NO ₃ - SO ₄ ² : 0.03	N/A
	analysis models to identify and quantify PM sources. 1998 BPMEES data.	SO ₄ ²⁻ : 0.38	
		OC: 0.77	
	Methods: PEM, outdoor and indoor sampling of unoccupied apartment in retirement facility. PMF used to derive source contributions. Multilinear Engine used to derive joint factors.	MV Exhaust: 0.32	
	Subjects: 10 non-smoking elderly subjects of mean age 84 who did not cook.Towson, MD. July 26-Aug. 22, 1998.		
Hystad et al. (2008, <u>190890</u>)	Objective: To explore the feasibility of	Seattle:	N/A
	modeling residential PM _{2.5} F _{inf} for occupied residences using data	Mean (all): 0.59 ± 0.21	
	readily available for most of North America.	Mean (detached residences): 0.60 \pm 0.20	
	Methods: F _{inf} calculated by recursive mass balance model where F _{inf} is a function of penetration efficiency, particle removal rate, and air exchange. Subjects: 46 residences in Seattle, WA 1999-2003. 38 nonsmoking residences in Victoria, British Columbia, Canada 2006. Heating (OctFeb.) and nonheating (March-Sept.).	Victoria:	
		Mean (all): 0.62 ± 0.22	
		Mean (detached residences): 0.59 ±	
		0.22	
Klinmalee et al. (2008, <u>190888</u>)	Objective: To monitor indoor and	N/A	PM _{2.5} :
	outdoor pollution in an university campus and shopping center.		University:
	Methods: PM measured by PEM and		Weekdays: 0.6, Weekends: 0.5
	quartz filters. Analyzed for mass, water soluble ions by ion		Shopping center:
	chromatography, and black carbon by a smokestain reflectometer. I/O		Weekdays: 1.5, Weekends: 2.0
	calculated for each sample pair then		BC in PM _{2.5} :
	average taken.		University: 0.9
	Subjects: University campus and shopping center in northern suburb of Bangkok, Thailand. Dec. 2005-Feb. 2006.		Shopping center: 0.67

Reference	Study Design	F_{inf}	I/O
Koistinen et al. (2004, <u>156655</u>)	Objective: To identify PM _{2.5} sources in personal exposures with principal component analysis of the elemental compositions in residential outdoor, indoor, and workplace indoor microenvironments. Part of EXPOLIS study. Methods: Principal component analysis to identify sources of microenvironmental and personal PM _{2.5} exposure. Specific mass contributions of sources calculated by source reconstruction. Subjects: Non-smoking, 25-55yrs. Helsinki, Finland. Oct. 1996-Dec. 1997.	N/A	Median seasonal: PM _{2.5} : Winter: 0.77, Spring: 1.03, Summer: 0.95, Fall: 0.92, Total: 0.92 Pb: Winter: 0.67, Spring: 0.56, Summer: 0.86, Fall: 0.69, Total: 0.67 S: Winter: 0.60, Spring: 0.63, Summer: 0.90, Fall: 0.75, Total: 0.69 Br: Winter: 0.57, Spring: 0.72, Summer: 0.98, Fall: 0.89, Total: 0.77 BS: Winter: 0.65, Spring: 0.67, Summer: 0.91, Fall: 0.88, Total: 0.79 Zn: Winter: 0.58, Spring: 0.75, Summer: 0.66, Fall: 0.75, Total: 0.68 Fe: Winter: 0.52, Spring: 0.96, Summer: 0.90, Fall: 0.95, Total: 0.83 K: Winter: 0.95, Spring: 1.05, Summer: 1.01, Fall: 1.08, Total: 1.05 Cl: Winter: 1.01, Spring: 1.24, Summer: 1.37, Fall: 1.74, Total: 1.24 Al:
			Winter: 1.19, Spring: 1.08, Summer: 1.41, Fall: 2.20, Total: 1.27
Li et al. (2003, <u>047845</u>)	Objective: To establish effects of evaporative coolers on indoor PM concentrations.	N/A	PM ₁₀ : All: 0.60
	Methods: Concurrent 10min avg indoor and outdoor concentrations recorded for 2 days.I/O determined by equation based on mass conversation principles.		Cooler On: 0.57 Cooler Off: 0.66 PM _{2.5} :
	Subjects: 10 homes with evaporative coolers. El Paso, TX. June 22-Aug. 23, 2001.		All: 0.65 Cooler On: 0.63 Cooler Off: 0.73
Lunden et al. (2008, <u>155949</u>)	Objective: To investigate the physiochemical processes that influence the transport and fate of outdoor particles to the indoor	N/A	PM _{2.5} : Oct.: 0.46 ± 0.2 , Dec.: 0.39 ± 0.2 , Jan.: 0.38 ± 0.3 , All periods: 0.41 ± 0.2 Carbon: Oct.: 0.50 ± 0.1 , Dec.: 0.46 ± 0.1 , Jan.: 0.52 ± 0.2 , All periods: 0.50 ± 0.1
	environment. Methods: I/O calculated from measurements of aerosols collected on quart filters.		0.2 OC: Oct.: 0.48 ± 0.1, Dec.: 0.44 ± 0.1, Jan.: 0.50 ± 0.2, All periods: 0.47 ± 0.2
	on quartz filters. Subjects: 3-bedroom single-story unoccupied house in Clovis, CA. 3 periods: Oct. 9-23, 2000; Dec. 1-19, 2000; Jan. 12-23, 2001.		Black carbon: Oct.: 0.60 ± 0.2, Dec.: 0.60 ± 0.2, Jan.: 0.65 ± 0.2, All periods: 0.61 ± 0.2
MacIntosh et al. (2009, <u>190887</u>)	Objective: To estimate the potential for residential air cleaning systems to mitigate exposure to fine particles of ambient origin.	N/A	PM _{2.5} (range): Natural ventilation: 0.23-0.97
	Methods: Multi-zone indoor air quality model to examine annual, 24h avg and diurnal concentrations of outdoor PM _{2.5} in residential indoor air.		Forced air – conventional filtration: 0.13-0.94 Forced air – high-efficiency electrostatic: 0.02-0.80
	Subjects: Homes in Cincinnati, Cleveland, and Columbus, OH that have natural ventilation, forced air heating and cooling with conventional in-duct filtration, or forces air heating and cooling with high-efficiency in- duct air cleaning. 2005.		

Reference	Study Design	F _{inf}	I/O
Martuzevicius et al. (2008, <u>190886</u>)	Objective: To determine the contribution of traffic-related PM to the indoor aerosols. Methods: Receptor modeling based on a PARAFAC model. Subjects: 6 houses 30-300m from a highway, with conventional windows, central HVAC, and with smoking and	N/A	Range- $PM_{2.5}$: Spring: 0.5 ± 0.2 - 2.9 ± 1.2 ; Fall: 0.7 ± 0.1 - 4.7 ± 6.9 EC: Spring: 0.3 ± 0.1 - 2.2 ± 1.7 ; Winter: 0.6 ± 0.1 - 1.3 ± 0.7 OC: Spring: 1.0 ± 0.7 - 6.9 ± 3.9 ; Winter: 1.2 ± 0.1 - 7.6 ± 10 Si:
	cooking allowed. Spring: Mar. 30-May 14, 2004. Fall: Sept. 13-Oct. 22, 2004. Cincinnati, OH.		Spring: 0.4 ± 0.1-5.1 ± 3.9; Winter: 0.5 ± 0.1-5.3 ± 4.5 S: Spring: 0.4 ± 0.1-0.7 ± 0.1; Winter: 0.5 ± 0.1-0.9 ± 0.4 Mn: Spring: 0.3 ± 0.2-0.8 ± 0.6; Winter: 0.3 ± 0.2-1.0 ± 0.2 Fe: Spring: 0.3 ± 0.0-1.3 ± 0.8; Winter: 0.4 ± 0.1-0.9 ± 0.6 Zn: Spring: 0.3 ± 0.1-0.7 ± 0.6; Winter: 0.6 ± 0.1-1.1 ± 0.8 Br: Spring: 0.3 ± 0.1-1.0 ± 0.5; Winter: 0.2 ± 0.1-0.9 ± 0.6
			Pb: Spring: 0.3 ± 0.3-0.9 ± 0.6;
Meng et al. (2005, <u>058595</u>)	Objective: Analyses of RIOPA data, which investigated relationships between indoor, outdoor, and personal exposure for several air pollutants.	PM _{2.5} - 0.46	Winter: 0.2 ± 0.2-1.9 ± 2.3 Los Angeles: PM ₂₅ : Mean: 0.84, Median: 0.90; EC: Mean: 0.93, Median: 0.92; OC: Mean: 1.32, Median: 1.31 Elizabeth: PM ₂₅ : Mean: 0.99, Median: 0.86;
	Methods: PM measured on Teflon filters collected by PEMs for 48h. The mass balance model and RCS statistical model used to estimate indoor and and personal PM concentrations.		EC: Mean: 1.0, Median: 0.85; OC: Mean: 2.4, Median: 1.8 Houston: PM _{2.5} : Mean: 1.16, Median: 1.02; EC: Mean: 1.0, Median: 0.71; OC: Mean: 2.25, Median: 2.35
	Subjects: 212 nonsmoking homes sampled. Houston, TX; Los Angeles County, CA; Elizabeth, NJ. Summer 1999-spring 2001, all 4 seasons.		
Molnár et al. (2007, <u>156774</u>)	Objective: To characterize and	PM _{2.5} (containing S or Pb): 0.4-0.9	S (median):
	compare indoor and outdoor PM _{2.5} trace element concentrations in difference microenvironments related		Both seasons: 0.61 (homes), 0.53 (schools), 0.69 (preschools);
	to children. Methods: Elemental concentrations		Winter: 0.47 (homes), 0.36 (schools), 0.63 (preschools);
	analyzed using X-ray fluorescence spectroscopy.		Spring: 0.63 (homes), 0.55 (schools), 0.90 (preschools)
	Subjects: 40 sampling sites (10 classrooms in 5 schools, 10		Pb (median):
	preschools, 20 non-smoking homes). 3 communities in Stockholm,		Both seasons: 0.70 (homes), 0.59 (schools), 0.70 (preschools);
	Sweden. Sampled once during spring and once during winter. Dec. 1, 2003-July 1, 2004.		Winter: 0.62 (homes), 0.43 (schools), 0.63 (preschools);
			Spring: 0.70 (homes), 0.64 (schools), 0.75 (preschools)

Reference	Study Design	F _{inf}	1/0
Ng et al. (2005, <u>155996</u>)	Objective: To estimate PM exposures following the September 11, 2001 attack in NYC.	N/A	Mean I/O in home simulated with INTAIR: No Source: 0.6
	Methods: Outdoor $PM_{2.5}$ interpolated and used in a deterministic microenvironmental model (INTAIR) to simulate analytically concentrations in indoor micro-environments. Linear regression equations used.		Smoking: 1.9 Cooking: 1.3 Smoking and Cooking: 2.3 I/O of micro-environments simulated by analytical and empirical methods (no indoor source): Office/Shop: 0.4
	Subjects: Lower Manhattan residents divided into representative individuals – home-maker, office/shop-worker, student/child. Estimates Sept. 14-31.		Classroom: 0.9: Transport Area: 1.9 Store: 1.2
Paschold et al. (2003, <u>156847</u>)	Objective: To identify PM sources inside homes with evaporative coolers.	N/A	PM ₁₀ : Na: 0.33, Mg: 0.43, Al: 0.50, K: 0.48,
	Methods: PM element composition analysis by ICP-MS.		Ca: 0.40, Ti: 0.52, Mn: 0.48, Fe: 0.46, Cu: 0.74, Zn: 0.52, Ba: 0.54, Pb: 0.76
	Subjects: 10 residences. El Paso, TX.		PM _{2.5} :
	Summer 2001.		Na: 0.20, Mg: 0.29, Al: 0.34, K:0.30, Ca: 0.52, Ti: 0.40, Mn: 0.35, Fe: 0.30, Cu: 0.67, Zn: 0.34, Ba: 0.47, Pb: 0.51
Polidori et al. (2007, <u>156877</u>)	Objective: To investigate the relationships of indoor and outdoor	PM _{2.5} :	Only I/O's ≤1considered
	PM _{2.5} , its components, seasonal variations, and gaseous copollutants.	July 6-Aug. 20: 0.71 ± 0.10 ; Aug. 24-Oct. 15: 0.60 ± 0.05 ; Oct. 19-Dec. 10: 0.59 ± 0.07 ; Jan. 4-Feb. 18: 0.45 ± 0.07	
	Methods: F _{inf} estimated by analysis of I/O's and a recursive model technique.	0.06 OC:	
	Subjects: 2 retirement facilities in Los Angeles, CA. July 6-Aug. 20, 2005. Aug. 24-Oct. 15, 2005. Oct. 19-Dec. 10, 2005. Jan. 4-Feb. 18, 2006.	July 6-Aug. 20: 0.86 ± 0.05 ; Aug. 24-Oct. 15: 0.77 ± 0.09 ; Oct. 19-Dec. 10: 0.82 ± 0.07 ; Jan. 4-Feb. 18: 0.64 ± 0.10	
		EC:	
		July 6-Aug. 20: 0.73 \pm 0.07; Aug. 24-Oct. 15: 0.71 \pm 0.05; Oct. 19-Dec. 10: 0.77 \pm 0.06; Jan. 4-Feb. 18: 0.64 \pm 0.10	
Ramachandran et al. (2003, <u>195017</u>)	Objective: To examine variability in measurements of 24h avg and 15min	N/A	24h avg:
	avg PM _{2.5} concentrations.		Mean: 1.7, Median: 1.3, Standard deviation: 1.6
	Methods: Linear regression of gravimetric measurements.		15min avg:
	Subjects: 3 urban residential neighborhoods in Minneaopolis-St. Paul, MN. 9-10 nonsmoking residences. Spring (April 26-June 2), summer (June 20-Aug. 10), fall (Sept. 23-Nov. 20) of 1999.		Mean: 2.7, Median: 1.2, Standard deviation: 8.7
Rojas-Bracho et al. (2004, <u>054772</u>)	Objective: To examine determinants of personal exposure to PM _{2.5} , PM ₁₀ ,	N/A	PM _{2.5} :
	PM _{2.5-10} . Methods: 2 sets of mixed models.		Winter: Mean: 1.58, Median: 2.11; Summer: Mean: 1.08, Median: 0.88
	Personal exposures modeled as dependent variables. Subject		PM ₁₀ :
	variability modeled using random effects. Explanatory variables and season modeled as fixed effects.		Winter: Mean: 2.02, Median: 3.77; Summer: Mean: 1.14, Median: 1.05 PM _{2.5-10} :
	Subjects: 18 COPD subjects in nonsmoking households. Boston, MA. Winters of 1996 and 1997, summer of 1996.		Winter: Mean: 2.65, Median: 3.59; Summer: Mean: 1.26, Median: 1.39

Reference	Study Design	F _{inf}	I/O
Sarnat et al. (2006, <u>089166</u>)	Objective: To assess the ability of	PM _{2.5} :	PM _{2.5} :
	outdoor PM _{2.5} its volatile and nonvolatile components and particle sizes to infiltrate indoors.	Median: 0.48, Interquartile range: 0.39-0.57	Overnight: 0.40-0.57, Morning: 0.43-0.74, Afternoon: 0.45-0.90, Evening: 0.42-0.82
	Methods: PM _{2,5} mass contributions	BC:	BC:
	estimated by the mean concentration ratio between each component and PM _{2.5} . Indoor and outdoor particle	Median: 0.84, Interquartile range: 0.70-0.96	Overnight: 0.70-0.97, Morning: 0.67-
	concentrations relationships examined by Spearman correlation	UFP (0.02-0.03 µm):	0.98, Afternoon: 0.77-1.04, Evening: 0.70-1.01
	coefficient. I/O concentration ratios used during overnight (nonsource)	Median: 0.50, Interquartile range: 0.39-0.60	
	period to estimate fraction of ambient particles remaining airborne indoors	UFP (0.08-0.3 μm):	
	(F _{inf}).	Median: ~0.75	
	Subjects: 17 occupied, nonsmoking Los Angeles, CA residences. July 28,	Coarse particles (5-10 µm):	
	2001-Feb. 25, 2002.	Median: <0.17	
Stranger et al. (2008, <u>190884</u>)	Objective: To assess indoor air	N/A	PM _{2.5} :
	quality by determining indoor and outdoor PM _{2.5} mass concentrations, elemental composition, and gaseous compounds.		Urban: Range: 0.3-6.9, Average: 1.3; Suburban: Range: 0.2-8.8, Average: 2.3
	Methods: PM mass concentrations		V, Ni, Zn, Pb, Br, Mn: <1
	determined gravimetrically.		Cl, Ca, Al, Si, K, Ti, Fe: >1
	Subjects: 27 primary schools in city center and suburbs of Antwerp, Belgium. Dec. 2002 and June 2003.		BS: Urban: Average: Dec 0.7 ± 0.1 , June- 1.1 ± 0.3 ; Suburban: Dec 0.8 ± 0.2 , June- 1.0 ± 0.4
Stranger et al. (2009, <u>190883</u>)	Objective: To assess indoor air quality in residences by quantifying various gaseous pollutants, and PM mass concentrations, elemental composition, and water-soluble ionic	N/A	PM ₁ : Houses 1-15: Average: 2.0, Range: 0.3-9.6; Smokers: Average: 3.9, Range: 1.2-9.7; Non-smokers: Average: 0.8, Range: 0.3-14 PM _{2.6} : Houses 1-15: Average: 1.5,
	content. Methods: PM mass concentrations gravimetrically determined. Elemental bulk analysis on filters.		Range: 0.4-5.4, Smokers average: 2.5, Smokers range: 1.2-5.4, Non- smokers average: 0.8, Non-smokers range: 0.4-1.3; Houses 16-19: Average: 2.6, Range: 0.3-3.9
	Subjects: 19 residential homes in Antwerp, Belgium that were a subset of participants in the ECRHS II study.		PM ₁₀ : Houses 1-15: Average: 1.3, Range: 0.4-4.1, Smokers average: 2.1, Smokers range: 1.1-4.1, Non- smokers average: 0.8, Non-smokers range: 0.4-1.2
			Ca, Ti, V, Cr, Mn, Fe, Ni, Zn, Pb, Si, S, Cl: <1
			K, Cu, Br, Al: >1
Turpin et al. (2007, <u>157062</u>)	Objective: To characterize and compare outdoor, indoor, personal	PM _{2.5} :	Los Angeles: PM _{2.5} : Mean: 0.84, Median: 0.90
	PM _{2.5} exposure. Identify indoor and personal PM _{2.5} sources. Estimate	RCS model: 0.46	EC: Mean: 0.93, Median: 0.92 OC: Mean: 1.32, Median: 1.31
	outdoor PM _{2.5} effect on indoor and personal PM _{2.5} . RIOPA study.	Least-Trimmed Squared Regression: Mean: 0.69, Median: 0.70, SD: 0.23	Elizabeth:
	Methods: $F_{\rm inf}$ calculated in three ways: RCS model used to obtain constant $F_{\rm inf}$. Mass balance model	Mass Balance Model: ~0.08-~0.85	PM _{2.5} : Mean: 0.99, Median: 0.86 EC: Mean: 1.0, Median: 0.85 OC: Mean: 2.4, Median: 1.8
	shows F_{inf} varying with AER. Robust regression uses major PM _{2.5} species for home-specific F_{inf} .		Houston: PM _{2.5} : Mean: 1.16, Median: 1.02 EC: Mean: 1.0, Median: 0.71 OC: Mean: 2.25, Median: 2.35
	Subjects: 309 nonsmoking adults and 118 children with no preexisting conditions. 219 homes sampled. Elizabeth NJ, Houston TX, and Los Angeles County CA.		55

Reference	Study Design	F _{inf}	1/0			
Wallace and Williams (2005, <u>057485</u>)	Objective: To estimate the contribution of outdoor PM _{2.5} to personal exposure in high-risk subpopulations.	Range: 0.35-0.87	PM _{2.5} : Mean: 1.08 ± 1.05, Median: 0.75, Range: 0.24-9.48			
	Methods: Longitudinal regressions of estimated indoor and outdoor $\mathrm{PM}_{2.5}$ for $F_{\mathrm{inf}}.$		S: Mean: 0.59 ± 0.16, Median: 0.58, Range: 0.17-1.06			
	Subjects: 29 African-Americans with hypertension and 8 with implanted cardiac defibrillators. Measured 7d/season, 4 seasons in 2000-2001. Raleigh, NC.					
Williams et al. (2003, <u>053338</u>)	Objective: To estimate ambient PM _{2.5} contributions to personal and indoor residential PM mass concentrations.	Least squares estimate of indoor filtration factors:	N/A			
	Methods: F _{inf} estimated from least squares, regression analysis, and mixed model slope.	Mean: 0.42 ± 0.38, Range: -0.55 to 1.62 Regression analysis: 0.43 ± 0.06				
	Subjects: Nonsmoking, ambulatory, ≥ 50yrs. 2 cohorts: mostly Caucasian with implanted cardiac defibrillators in Chapel, NC; 30 African-Americans with controlled hypertension in low-to-moderate SES neighborhoods in Raleigh, NC. 7d/season, 4 seasons in 2000-2001.					
Williams et al. (2008, <u>191201</u>)	Objective: To examine the spatial variability of PM _{2.5} and PM _{10"2.5} and their components to determine the suitability of conducting health outcome studies using a central site monitor in a metropolitan area having multiple source impacts.	PM _{2.5} : Range: 0.16-6.45, Mean: 0.7 \pm 0.33, Median: 0.70 (indicate indoor sulfur source when $F_{\rm inf} > 1$)	N/A			
	Methods: Gravimetric analysis of PM mass concentrations. ED-XRF analysis of PM elements.					
	Subjects: Non-smoking, ambulatory, and living in detached homes and non-smoking households. Detroit, MI.					
Wilson and Brauer (2006, <u>088933</u>)	Objective: To provide additional insight into factors affecting exposure to airborne PM and the resultant health effects.	SO ₄ ² : 0.72	N/A			
	Methods: $F_{\rm inf}$ estimated by mass balance equation.					
	Subjects: 16 nonsmoking subjects with COPD. 54-86yrs. Vancouver, British Columbia. April-Sept. 1998.					
Wu et al. (2006, <u>179950</u>)	Objective: To assess personal PM _{2.5} exposures from ambient sources and agriculture burning smoke.	Range: 0.25-0.94	N/A			
	Methods: $F_{\rm inf}$ estimated by RCS model. Application of Robust regression algorithm.					
	Subjects: 33 adult asthmatics. 18-52yrs. Pullman, WA. Sept. 3, 2002-Nov. 1, 2002.					

Reference	Study Design	F _{inf}	I/O
Yang et al. (2009, <u>190885</u>)	Objective: To characterize the	N/A	PM ₁₀ :
	concentrations of different indoor air pollutants.		Classroom: Summer: 1.98, Autumn: 2.25, Winter: 2.07, Total: 2.06
	Methods: PM ₁₀ collected on pall flex membrane filer using MiniVol portable air samplers. Arithmetic and		Laboratory: Summer: 1.33, Autumn: 1.32, Winter: 1.72, Total: 1.46
	geometric means calculated for indoor concentrations. Differences in concentrations measured by Kruskal- Wallis test.		Computer classroom: Summer- 0.77, Autumn: 1.43, Winter: 2.08, Total: 1.43
	Subjects: 55 schools in 6 metropolitan areas in Korea. Samples from a classroom, laboratory, and computer classroom. 3 seasons, July-Dec. 2004.		
Zhu et al. (2005, <u>190081</u>)	Objective: To determine penetration behavior of outdoor ultrafine particles	N/A	Highest (largest ultrafine particles-70-100nm): 0.6-0.9
	into indoor environments in areas close to freeways.		Lowest (smallest ultrafine particles- 10-20nm): 0.1-0.4
	Methods: Dynamic mass balance model.		10 Z01111J. 0.1 0.4
	Subjects: 4 2-bedroom apartments within 60m from the center of the 405 Freeway in Los Angeles, CA. Nonsmoking tenants. 2 sampling periods (non-cooking, non-cleaning): OctDec. 2003 and Dec. 2003-Jan. 2004.		

A-349 December 2009

[.] I/O estimated from Figure 8 in study.

1. I/O calculated from indoor and outdoor concentrations in Table 1 in study.

1. I/O calculated from indoor and outdoor concentrations in Table 1 in study.

1. I/O calculated I/O's.

1. I/O calculated from mean and median indoor and outdoor concentrations listed in Table 1 of study.

1. I/O's estimated from Figure 3 in study.

1. Mean and median I/O concentrations calculated from all residences in study.

1. Fint estimated from Figure 2 in study.

1. Fint presented in box plot (Figure 8), however data is difficult to deduce. No numeric values reported.

Table A-65. Summary of PM – copollutant exposure studies.

Reference	PM metric	Copollutant metric	Association between PM and copollutant						Primary findings		
Fruin et al. (2008, 097183)	In-vehicle UFP, BC, PM- bound PAH	In-vehicle NO _x , CO	presente	5 1 0.69 0.89 0.66 0.68					Measurements of freeway UFP, BC, PM-bound PAH, and NO concentrations were roughly one order of magnitude higher than ambient measurements. Multiple regression analysis suggests these concentrations were a function of truck density and total truck count.		
Schwartz et al. (2007, 090220)	Ambient and personal PM _{2.5} data from the Baltimore panel study	Ambient and personal O_3 and NO_2 data from the Baltimore panel study.	Person Persona	nal 2.5 nal 3 of origin nal 2- al O ₃	Ambier PM _{2.5} 0.0143 0.0015 0.0015	Ar A	mbient O ₃ -0.0016 -0.0037 0.0035 0.0010 0.0009	Ambin NO 0.01: 0.001: 0.000 0.000	2 115 24 06		Results suggest that ambient O ₃ exposure may be related to personal SO ₄ ² - exposure but not to personal PM _{2.5} exposure on the whole. Ambient NO ₂ exposure was associated with personal PM _{2.5} exposure, possibly because both have traffic sources.
Tolbert et al. (2007, 090316)	Ambient PM ₁₀ , PM ₁₀ -2.5, PM _{2.5} , EC, OC, TC, SO ₄ ² , water-soluble metals, oxygenated hydrocarbons	Ambient O ₃ , NO ₂ , CO, SO ₂	PM ₁₀ O ₃ NO ₂ CO CO SO ₂ PMc PM ₂ EC OC C Metals OHC SO ₄ EC OC T Metals OHC OHC Metals OHC	PM ₁₀ 1.0 0.6 0.5 0.5 0.2 0.7 0.6 0.7 0.7 0.7 0.5 EC 0.3 0.3 0.3 0.5	O ₃ 1.0 0.4 0.3 0.2 0.4 0.6 0.6 0.6 0.4 0.5 0.7 0.9 0.9 0.9 0.4	NO ₂ 1.0 0.7 0.4 0.5 0.6 0.1 0.6 0.7 0.3 0.2 TC 1.0 1.0 0.5	1.0 0.3 0.4 0.4 0.1 0.6 0.6 0.4 0.3 Metals	1.0 0.2 0.2 0.1 0.2 0.2 0.1 0.1 OHC	1.0 0.5 0.3 0.5 0.5 0.5 0.5 0.4	1.0 0.8 0.7 0.7 0.7 0.5	Low correlations were seen between SO ₂ and PM constituents. Components were used in a multipollutant model to predict emergency department visits in Atlanta. CO was found to be the most significant predictor of cardiovascular disease visits in one-, two-, and three-pollutant models, and O ₃ was the most significant predictor of respiratory disease visits in one-, two-, and three-pollutant models.
Brook et al. (2007, 091153)	Anbient PM ₁₀ , PM _{10°2.5} , PM _{2.5} , SO ₄ ²⁻ , and trace metals in 10 Canadian cities.	Ambient NO ₂ , NO	R with N NO ₂ 1.00 NO 0.67 PM _{2.5} 0.9 PM _{10-2.5} PM _{10-2.5} SO ₄ ² - 0.3 Fe 0.44 Zn 0.39 (Mn 0.51 As 0.21 Al 0.07 (- Cu0.03 Pb 0.28 (si 0.19 (t) Se 0.14 (si 0.14 c) Se 0.14 (si 0.14 c)	0 (1.00, (0.51, 54 (0.45, 0.31 (0 0 (0.23, 33 (0.10, (0.29, 0, (0.28, 0, (0.37, 0, (0.07, 0, (-0.07, 0, (-0.07, 0,	1.00) 0.77) 5, 0.71) 5, 0.71) 0, 0.4, 0.5 1, 0.70) 0, 0.48) 1.56) 1.52) 40) 1.62) 1.39) 1.18) 1.18) 1.18) 1.39) 1.39)) 50)					NO ₂ showed the strongest association with mortality, but it is unclear if this association is due to health effects of NO ₂ or health effects of copollutant PM.

Reference	PM metric	Copollutant metric	Association between PM and copollutant	Primary findings		
Ito et al. (2007, 156594)	Ambient PM _{2.5}	Ambient O ₃ , NO ₂ , SO ₂ , CO	Shown in figure format only.	Authors tested relationship between meteorological variables and copollutants to determine if multipollutant models are impacted by spatial or temporal variation or by meteorological conditions. Multicollinearity varied by pollutant and season.		
Kaur et al. (2005, 086504)	Fixed-site and personal PM _{2.5} , personal UFP	Fixed site and personal CO	Personal R: PM _{2.5} UFPCO PM _{2.5} 10.5 0.2 UFP0.5 10.7 CO 0.2 0.7 1	Fairly low correlation was observed between PM _{2.5} and CO and between PM _{2.5} and UFP, stronger correlations between UFP and CO.		
Kaur et al. (2005, 088175)	Fixed-site and personal PM _{2.5} analyzed post-sample for light absorbance (as indicator for carbonaceous aerosol), personal UFP	Fixed site and personal CO	Personal R: R PM _{2.5} Abs CO UFP PM _{2.5} 10.3 -0.1 0.0 Abs 0.3 10.2 0.7 CO -0.10.2 10.1 UFP 0.0 0.7 0.1 1	Strongest correlation observed between UFP and absorption, which is reasonable given that much absorptive carbonaceous aerosol is in the ultrafine range.		
Sørenson et al. (2005, <u>089428</u>)	Personal, indoor residential, and outdoor residential PM _{2.5} and BC	Personal, indoor residential, and outdoor residential NO ₂	Personal exposure regression coefficients to: PM ₂₈ BC NO ₂ Bedroom 0.72 0.47 0.70 Front door 0.46 0.61 0.60 Background 0.29 0.03 0.56	Personal NO ₂ concentration is more strongly influenced by background than PM _{2.5} or BC.		
Sabin et al. (2005, 087728)	BC, particle-bound PAH on a school bus.	NO ₂ on a school bus.	BC 1 0.94 0.49 PB-PAH 1 0.37 NO2 1 1 0.94 1.4 NO2 1 Note that these correlations are computed from data presented by Sabin et al. for mean concentrations when the test bus travelled behind different vehicles.	Less correlation was observed between NO ₂ and PM species. This study was aimed more at fuel choices and control technologies for children's exposures on school buses.		
Lai et al. (2004, 056811)	Microenvironmental and personal PM _{2.5} and trace elements for personal exposure (P), residential indoor (RI), residential outdoor (RO), and workplace (WI) measurements.	Microenvironmental and personal VOCs, NO ₂ , and CO.	R (PM _{2.5}) P RI RO WI TVOC 0.21 0.21 0.41 -0.32 NO ₂ -0.1 -0.02 -0.16 0.09 CO -0.07 NR NR NR	The EXPOLIS Oxford study was more focused on the indoor-outdoor exposure relationship, but the correlation results showed no important relationships between the pollutants shown.		
Gomez-Perales et al. (2004, 054418; 2007, 138816)	Microenvironmental PM _{2.5} with SO ₄ ²⁻ , NO ₃ -, EC, OC.	Microenvironmental CO.	Ratio of Conc PM _{2.5} CO Benzene Minibus/Bus 1.04 1.54 2.01 1.20 1.40 1.33 Minibus/Metro 1.70 2.02 3.20 1.43 3.03 3.10	Morning and evening measurements of PM _{2.5} were on avg higher and more variable than for benzene and CO (in order). Benzene and CO had higher and more variable concentrations for minibuses than for buses and metros, respectively, while PM _{2.5} concentrations were not substantially different for buses and minibuses.		

Reference	PM metric	Copollutant metric	As	ssociation	ant Prin	Primary findings				
Sarnat et al. (2001, 019401)	Fixed site and personal PM _{2.5} monitors.	Ambient O ₃ , NO ₂ , SO ₂ , and CO	R PM _{2.5} O ₃ NO ₂ SO ₂ CO	PM _{2.5} 1 -0.72 0.75 -0.17 0.69	O ₃ 0.67 1 -0.71 0.41 -0.67	NO ₂ 0.37 0.02 1 -0.17 0.76	SO ₂ 10.12	CO 0.15 -0.06 0.75 -0.32 1	betwee and pe sugges gas ma	association en ambient NO ₂ ersonal PM _{2.5} ests that ambient ay be a suitable ate for personal ure.

Annex A References

- Abu-Allaban M; Gillies JA; Gertler AW; Clayton R; Proffitt D (2007). Motor vehicle contributions to ambient PM10 and PM2.5 at selected urban areas in the USA. Environ Monit Assess, 132: 155-63. 098575
- Adar SD; Adamkiewicz G; Gold DR; Schwartz J; Coull BA; Suh H (2007). Ambient and microenvironmental particles and exhaled nitric oxide before and after a group bus trip. Environ Health Perspect, 115: 507-512. 098635
- Adgate JL; Mongin SJ; Pratt GC; Zhang J; Field MP; Ramachandran G; Sexton K (2007). Relationships between personal, indoor, and outdoor exposures to trace elements in PM(2.5). Sci Total Environ, 386: 21-32. 156196
- Adgate JL; Ramachandran G; Pratt GC; Waller LA; Sexton K (2002). Spatial and temporal variability in outdoor, indoor, and personal PM25 exposure. Atmos Environ, 36: 3255-3265. 030676
- Adgate JL; Ramachandran G; Pratt GC; Waller LA; Sexton K (2003). Longitudinal variability in outdoor, indoor, and personal PM25 exposure in healthy non-smoking adults. Atmos Environ, 37: 993-1002. <u>040341</u>
- Allen R; Larson T; Sheppard L; Wallace L; Liu L-JS (2003). Use of real-time light scattering data to estimate the contribution of infiltrated and indoor-generated particles to indoor air. Environ Sci Technol, 37: 3484-3492. 053578
- Allen R; Wallace L; Larson T; Sheppard L; Liu L-JS (2007). Evaluation of the recursive model approach for estimating particulate matter infiltration efficiencies using continuous light scattering data. J Expo Sci Environ Epidemiol, 17: 468-477. 154226
- Anderson TL; Ogren JA (1998). Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Sci Technol, 29: 57-69. 156213
- Annesi-Maesano I; Moreau D; Caillaud D; Lavaud F; Le Moullec Y; Taytard A; Pauli G; Charpin D (2007). Residential proximity fine particles related to allergic sensitisation and asthma in primary school children. Respir Med, 101: 1721-1729. 093180
- Arhami M; Kuhn T; Fine PM; Delfino RJ; Sioutas C (2006). Effects of Sampling Artifacts and Operating Parameters on the Performance of a Semicontinuous Particulate Elemental Carbon/Organic Carbon Monitor. Environ Sci Technol, 40: 945-954. <a href="https://doi.org/10.1007/journal.org/10.
- Arhami M; Polidori A; Delfino RJ; Tjoa T; Sioutas C (2009). Associations between personal, indoor, and residential outdoor pollutant concentrations: implications for exposure assessment to size-fractionated particulate matter. J Air Waste Manag Assoc, 59: 392-404. 190096
- Arnott WP; Hamasha K; Moosmüller H; Sheridan PJ; Ogren JA (2005). Towards Aerosol Light-Absorption Measurements with a 7-Wavelength Aethalometer: Evaluation with a Photoacoustic Instrument and 3-Wavelength Nephelometer. Aerosol Sci Technol, 39: 17-29. <u>156227</u>
- Arnott WP; Moosmuller H; Rogers CF; Jin T; Bruch R (1999). Photoacoustic spectrometer for measuring light absorption by aerosol; instrument description. Atmos Environ, 33: 2845-2852. <u>020650</u>
- Ashbaugh LL (1983). A statistical trajectory technique for determining air pollution source regions. J Air Waste Manag Assoc, 33: 1096-1098. <a href="https://doi.org/10.2016/j.edu/incommons.org/10.2
- Ashbaugh LL; Myrup LO; Flocchini RG (1984). A principal component analysis of sulfur concentrations in the western United States. Atmos Environ, 18: 783-791. 045148
- Babich P; Wang PY; Allen G; Sioutas C; Koutrakis P (2000). Development and Evaluation of a Continuous Ambient PM2.5 Mass Monitor. Aerosol Sci Technol, 32: 309-324. <u>156239</u>
- Bae M-S; Schauer JJ; DeMinter JT; Turner JR; Smith D; Cary RA (2004). Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method. Atmos Environ, 38: 2885-2893. 098680
- Bae MS; Schauer JJ; Deminter JT; Turner JR (2004). Hourly and daily patterns of particle-phase organic and elemental carbon concentrations in the urban atmosphere. J Air Waste Manag Assoc, 54: 823-833. 156243

Note: Hyperlinks to the reference citations throughout this document will take you to the NCEA HERO database (Health and Environmental Research Online) at http://epa.gov/hero. HERO is a database of scientific literature used by U.S. EPA in the process of developing science assessments such as the Integrated Science Assessments (ISA) and the Integrated Risk Information System (IRIS)

- Balasubramanian R; Lee SS (2007). Characteristics of indoor aerosols in residential homes in urban locations: a case study in Singapore. J Air Waste Manag Assoc, 57: 981-990. 156248
- Barn P; Larson T; Noullett M; Kennedy S; Copes R; Brauer M (2008). Infiltration of forest fire and residential wood smoke: an evaluation of air cleaner effectiveness. J Expo Sci Environ Epidemiol, 18: 503-511. <u>156252</u>
- Baxter LK; Clougherty JE; Laden F; Levy JI (2007). Predictors of concentrations of nitrogen dioxide, fine particulate matter, and particle constituents inside of lower socioeconomic status urban homes. J Expo Sci Environ Epidemiol, 17: 433-444. 092726
- Baxter LK; Clougherty JE; Paciorek CJ; Wright RJ; Levy JI (2007). Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data. Atmos Environ, 41: 6561-6571. 092725
- Bein KJ; Zhao Y; Wexler AS; Johnston MV (2005). Speciation of size-resolved individual ultrafine particles in Pittsburgh, Pennsylvania. J Geophys Res, 110: D07S05. 156265
- BeruBe KA; Sexton KJ; Jones TP; Moreno T; Anderson S; Richards RJ (2004). The spatial and temporal variations in PM10 mass from six UK homes. Sci Total Environ, 324: 41-53. 007894
- Birch ME (1998). Analysis of carbonaceous aerosols: interlaboratory comparison. Analyst, 123: 851-857. 024953
- Birch ME; Cary RA (1996). Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol, 25: 221-241. 026004
- Birch ME; Cary RA (1996). Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: methodology and exposure issues. Analyst, 121: 1183-1190. 002352
- Biswas S; Fine PM; Geller MD; Hering SV; Sioutas C (2005). Performance evaluation of a recently developed water-based condensation particle counter. Aerosol Sci Technol, 39: 419-427. <u>150694</u>
- Blanchard P; Brook JR; Brazil P (2002). Chemical characterization of the organic fraction of atmospheric aerosol at two sites in Ontario, Canada. J Geophys Res, 107: ICC10.1-ICC10.8. 047598
- Blanchard P; Hopper JF (1997). Concentrations and distributions of PAHs and n-alkanes in atmospheric aerosols at non-urban sites in Ontario, Canada. Presented at . <u>156277</u>
- Blazsó M; Janitsek S; Gelencsér A; Artaxo P; Graham B; Andreae MO (2003). Study of tropical organic aerosol by thermally assisted alkylation-gas chromatography mass spectrometry. J Anal Appl Pyrol, 68: 351-369. <u>156278</u>
- Bond TC; Anderson TL; Campbell D (1999). Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols. Aerosol Sci Technol, 30: 582-600. <u>156281</u>
- Branis M; Rez cov P; Domasov M (2005). The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2.5, and PM1 in a classroom. Environ Res, 99: 143-149. <u>156290</u>
- Briggs DJ; de Hoogh K; Morris C; Gulliver J (2008). Effects of travel mode on exposures to particulate air pollution. Environ Int, 34: 12-22. 156294
- Brook JR; Burnett RT; Dann TF; Cakmak S; Goldberg MS; Fan X; Wheeler AJ (2007). Further interpretation of the acute effect of nitrogen dioxide observed in Canadian time-series studies. J Expo Sci Environ Epidemiol, 17: S36-S44. 091153
- Brown K; Sarnat J; Suh H; Coull B; Spengler J; Koutrakis P (2008). Ambient site, home outdoor and home indoor particulate concentrations as proxies of personal exposures. J Environ Monit, 10: 1041-1051. 190894
- Brunekreef B; Janssen N; De Hartog J; Oldenwening M; Meliefste K; Hoek G; Lanki T; Timonen K; Vallius M; Pekkanen J; Van Grieken R (2005). Personal, indoor, and outdoor exposures to PM2.5 and its components for groups of cardiovascular patients in Amsterdam and Helsinki. Health Effects Institute. Montepelier, VT. 090486
- Butler AJ; Andrew MS; Russell AG (2003). Daily sampling Of PM2. 5 in Atlanta: Results of the first year of the Assessment of Spatial Aerosol Composition. J Geophys Res, 108: 8415. <u>156313</u>
- Cabada JC; Rees S; Takahama S; Khlystov A; Pandis SN; Davidson CI; Robinson AL (2004). Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite. Atmos Environ, 38: 3127-3141. 148859

- Cao JJ; Lee SC; Chow JC; Cheng Y; Ho KF; Fung K; Liu SX; Watson JG (2005). Indoor/outdoor relationships for PM2.5 and associated carbonaceous pollutants at residential homes in Hong Kong case study. Indoor Air, 15: 197-204. 156321
- Chakrabarti B; Singh M; Sioutas C (2004). Development of a Near-Continuous Monitor for Measurment of the Sub-150 nm PM Mass Concentration. Aerosol Sci Technol, 38: 239-252. 157426
- Cheng M-D; Hopke PK; Zeng Y (1993). A receptor-oriented methodology for determining source regions of particulate sulfate observed at Dorset, Ontario. J Geophys Res, 98: 16,839-16,849. 052294
- Chillrud SN; Epstein D; Ross JM; Sax SN; Pederson D; Spengler JD; Kinney PL (2004). Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City's subway system. Environ Sci Technol, 38: 732-737. 054799
- Chow JC (1995). Measurement methods to determine compliance with ambient air quality standards for suspended particles. J Air Waste Manag Assoc, 45: 320-382. <u>077012</u>
- Chow JC (2007). The application of thermal methods for determining chemical composition of carbonaceous aerosols: A review. J Environ Sci Health A Tox Hazard Subst Environ Eng, 42: 1521-1541. 157209
- Chow JC; Chen L-WA; Lowenthal DH; Doraiswamy P; Park K; Kohl S; Trimble DL; Watson JG (2005). California Regional PM10/PM2.5 Air Quality Study (CRPAQS) Initial data analysis of field program measurements. Desert Research Institute. Reno, NV. 156348
- Chow JC; Doraiswamy P; Watson JG; Chen LW; Ho SS; Sodeman DA (2008). Advances in integrated and continuous measurements for particle mass and chemical composition. J Air Waste Manag Assoc, 58: 141-163. <u>156355</u>
- Chow JC; Watson JG; Chen LW; Chang MC; Robinson NF; Trimble D; Kohl S (2007). The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J Air Waste Manag Assoc, 57: 1014-1023. 156354
- Chow JC; Watson JG; Doraiswamy P; Chen L-WA; Sodeman DA; Ho SSH; Tropp RJ; Kohl SD; Trimble DL; Fung KK (2006). Climate Change Characterization of black carbon and organic carbon air pollution emissions and evaluation of measurement methods, Phase I. Desert Research Institute. Reno, NV. <u>156350</u>
- Chow JC; Watson JG; Lowenthal DH; Chen LWA; Magliano KL (2006). Particulate carbon measurements in California's San Joaquin Valley. Chemosphere, 62: 337-348. <a href="https://doi.org/10.1007/j.j.gov/10.1007/j.gov/10.
- Chow JC; Watson JG; Lowenthal DH; Chen LWA; Tropp RJ; Park K; Magliano KA (2006). PM25 and PM10 Mass Measurements in California's San Joaquin Valley. Aerosol Sci Technol, 40: 796-810. 146622
- Chow JC; Watson JG; Lowenthal DH; Magliano KL (2005). Loss of PM2.5 nitrate from filter samples in central California. J Air Waste Manag Assoc, 55: 1158-1168. <u>099030</u>
- Chow JC; Watson JG; Pritchett LC; Pierson WR; Frazier CA; Purcell RG (1993). The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in US air quality studies. Atmos Environ, 27: 1185-1201. 077459
- Chung A; Chang DP; Kleeman MJ; Perry KD; Cahill TA; Dutcher D; McDougall EM; Stroud K (2001). Comparison of real-time instruments used to monitor airborne particulate matter. J Air Waste Manag Assoc, 51: 109-120. <u>156357</u>
- Conner TL; Williams RWE (2004). Identification of possible sources of particulate matter in the personal cloud using SEM/EDX. Atmos Environ, 38: 5305-5310. <u>156364</u>
- Cornell SE; Jickells TD (1999). Water-soluble organic nitrogen in atmospheric aerosol: a comparison of UV and persulfate oxidation methods. Atmos Environ, 33: 833-840. <a href="https://example.com/action/en/state-action/en
- Cortez-Lugo M; Moreno-Macias H; Holguin-Molina F; Chow JC; Watson JG; Gutierrez-Avedoy V; Mandujano F; Hernandez-Avila M; Romieu I (2008). Relationship between indoor, outdoor, and personal fine particle concentrations for individuals with COPD and predictors of indoor-outdoor ratio in Mexico city. J Expo Sci Environ Epidemiol, 18: 109-115. 156368
- Crimmins BS; Baker JE (2006). Improved GC/MS methods for measuring hourly PAH and nitro-PAH concentrations in urban particulate matter. Atmos Environ, 40: 6764-6779. https://doi.org/10.1008/nch/9744
- Crist KC; Liu B; Kim M; Deshpande SR; John K (2008). Characterization of fine particulate matter in Ohio: Indoor, outdoor, and personal exposures. Environ Res, 106: 62-71. 156372

- Dams R; Rahn KA; Robbins JA; Nifong GD; Winchester JW (1970). Multi-Element Analysis of Air Pollution Particulates by Nondestructive Neutron Activation. Presented at Proceedings of the Second International Clean Air Congress, New York. 156379
- Decesari S; Facchini MC; Fuzzi S; McFiggans GB; Coe H; Bower KN (2005). The water-soluble organic component of size-segregated aerosol, cloud water and wet depositions from Jeju Island during ACE-Asia. Atmos Environ, 39: 211-222. 144536
- Delfino RJ; Quintana PJE; Floro J; Gastanaga VM; Samimi BS; Kleinman MT; Liu L-JS; Bufalino C; Wu C-F; McLaren CE (2004). Association of FEV1 in asthmatic children with personal and microenvironmental exposure to airborne particulate matter. Environ Health Perspect, 112: 932-941. 056897
- Delfino RJ; Staimer N; Gillen D; Tjoa T; Sioutas C; Fung K; George SC; Kleinman MT (2006). Personal and ambient air pollution is associated with increased exhaled nitric oxide in children with asthma. Environ Health Perspect, 114: 1736-1743. 090745
- Diapouli E; Chaloulakou A; Mihalopoulos N; Spyrellis N (2008). Indoor and outdoor PM mass and number concentrations at schools in the Athens area. Environ Monit Assess, 136: 13-20. 190893
- Diapouli E; Chaloulakou A; Spyrellis N (2007). Levels of ultrafine particles in different microenvironments--implications to children exposure. Sci Total Environ, 388: 128-136. <u>156397</u>
- Dimitroulopoulou C; Ashmore MR; Hill MTR; Byrne MA; Kinnersley R (2006). INDAIR: a probabilistic model of indoor air pollution in UK homes. Atmos Environ, 40: 6362-6379. 090302
- Dong Y; Hays MD; Dean Smith N; Kinsey JS (2004). Inverting cascade impactor data for size-resolved characterization of fine particulate source emissions. J Aerosol Sci, 35: 1497-1512. 156409
- Drewnick F; Jayne JT; Canagaratna M; Worsnop DR; Demerjian KL (2004). Measurement of Ambient Aerosol Composition During the PMTACS-NY 2001 Using an Aerosol Mass Spectrometer. Part II: Chemically Speciated Mass Distributions. Aerosol Sci Technol, 38: 104-117. 155755
- Drewnick F; Schwab J; Jayne J; Canagaratna M; Worsnop D; Demerjian K (2004). Measurement of Ambient Aerosol Composition During the PMTACS-NY 2001 Using an Aerosol Mass Spectrometer. Part I: Mass Concentrations. Aerosol Sci Technol, 38: 92-103. 155754
- Drewnick F; Schwab JJ; Hogrefe O; Peters S; Husain L; Diamond D; Weber R; Demerjian KL (2003). Intercomparison and evaluation of four semi-continuous PM2.5 sulfate instruments. Atmos Environ, 37: 3335-3350. 099160
- Eatough DJ; Eatough NL; Obeidi F; Pang Y; Modey W; Long R (2001). Continuous determination of PM2.5 mass, including semi-volatile species. Aerosol Sci Technol, 34: 1-8. 010303
- Ebelt ST; Wilson WE; Brauer M (2005). Exposure to ambient and nonambient components of particulate matter: a comparison of health effects. Epidemiology, 16: 396-405. 056907
- Ellis EC; Novakov T (1982). Application of thermal analysis to the characterization of organic aerosol particles. Sci Total Environ, 23: 227-238. <u>156416</u>
- Emmenegger C; Reinhardt A; Hueglin C; Zenobi R; Kalberer M (2007). Evaporative light scattering: A novel detection method for the quantitative analysis of humic-like substances in aerosols. Environ Sci Technol, 41: 2473-2478.

 156418
- Engling G; Carrico CM; Kreidenweis SM; Collett JL; Day DE; Malm WC; Lincoln E; Min Hao W; Iinuma Y; Herrmann H (2006). Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmos Environ, 40: 299-311. 156422
- Fabbri D; Prati S; Vassura I (2002). Molecular characterisation of organic material in air fine particles (PM10) using conventional and reactive pyrolysis-gas chromatography-mass spectrometry. J Environ Monit, 4: 210-215. <u>156426</u>
- Falkovich AH; Rudich Y (2001). Analysis of semivolatile organic compounds in atmospheric aerosols by direct sample introduction thermal desorption GC/MS. Environ Sci Technol, 35: 2326-2333. 156427
- Falkovich AH; Schkolnik G; Ganor E; Rudich Y (2004). Adsorption of organic compounds pertinent to urban environments onto mineral dust particles. J Geophys Res, 109: D02208. <u>156428</u>

- Farmer PB; Singh R; Kaur B; Sram RJ; Binkova B; Kalina I; Popov TA; Garte S; Taioli E; Gabelova A; Cebulska-Wasilewska A (2003). Molecular epidemiology studies of carcinogenic environmental pollutants: effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage. Mutat Res, 544: 397-402. 089017
- Fehsenfeld FC; Hastie D; Chow JC; Solomon PA (2004). Particle and gas measurements. In McMurry, P. H.Shepherd, M. F. Vickery, J. S. (Ed.), Particulate Matter Science for Policy Makers: A NARSTO Assessment (pp. 159-189). Cambridge, MA: NARSTO. 157360
- Feldpausch P; Fiebig M; Fritzsche L; Petzold A (2006). Measurement of ultrafine aerosol size distributions by a combination of diffusion screen separators and condensation particle counters. J Aerosol Sci, 37: 577-597. 155773
- Ferro AR; Kopperud RJ; Hildemann LM (2004). Source strengths for indoor human activities that resuspend particulate matter. Environ Sci Technol, 38: 1759-1764. <a href="https://doi.org/10.108/j.neps.1001/j.neps
- Fine PM; Chakrabarti B; Krudysz M; Schauer JJ; Sioutas C (2004). Diurnal Variations of Individual Organic Compound Constituents of Ultrafine and Accumulation Mode Particulate Matter in the Los Angeles Basin. Environ Sci Technol, 38: 1296-1304. 141283
- Fine PM; Jaques PA; Hering SV; Sioutas C (2003). Performance Evaluation and Use of a Continuous Monitor for Measuring Size-Fractionated PM 2.5 Nitrate. Aerosol Sci Technol, 37: 342 354. <u>155775</u>
- Fitz D; Chan M; Cass G; Lawson D; Ashbaugh L (1989). A multi-component size-classifying aerosol and gas sampler for ambient air monitoring. Presented at Presented at: 82nd annual meeting of the Air & Waste Management Association; June; Anaheim, CA. Pittsburgh, PA: Air & Waste Management Association; paper no. 89-140.1. 077387
- Fraser MP; Cass GR; Simoneit BRT (2003). Air quality model evaluation data for organics 6 C3-C24 organic acids. Environ Sci Technol, 37: 446-453. 040266
- Fraser MP; Yue ZW; Buzcu B (2003). Source apportionment of fine particulate matter in Houston, TX, using organic molecular markers. Atmos Environ, 37: 2117-2123. <u>042231</u>
- Fraser MP; Yue ZW; Tropp RJ; Kohl SD; Chow JC (2002). Molecular composition of organic fine particulate matter in Houston, TX. Atmos Environ, 36: 5751-5758. 140741
- Fromme H; Diemer J; Dietrich S; Cyrys J; Heinrich J; Lang W; Kiranoglu M; Twardella D (2008). Chemical and morphological properties of particulate matter (PM10, PM25) in school classrooms and outdoor air. Atmos Environ, 42: 6597-6605. 155147
- Fruin S; Westerdahl D; Sax T; Sioutas C; Fine PM (2008). Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles. Atmos Environ, 42: 207-219. https://doi.org/10.1007/j.com/nc/219-207-219. https://doi.org/10.1007/j.com/nc/219-207-219. https://doi.org/10.1007/j.com/nc/219-207-219. https://doi.org/10.1007/j.com/nc/219-207-219. https://doi.org/10.1007/j.com/nc/219-207-219. https://doi.org/10.1007/j.com/nc/219-207-219. https://doi.org/10.1007/j.com/nc/219. https://doi.org/10.1007/j.com/nc/219. https://doi.org/10.1007/j.com/nc/219. https://doi.org/10.1007/j.com/nc/219. https://doi.org/10.1007/j.com/nc/219. <a href="https://doi.org/10.1007/j.com/nc/219-207-2
- Gadkari NM; Pervez S (2007). Source investigation of personal particulates in relation to identify major routes of exposure among urban residentials. Atmos Environ, 41: 7951-7963. <u>156459</u>
- Gauvin S; Reungoat P; Cassadou S; Dechenaux J; Momas I; Just J; Zmirou D (2002). Contribution of indoor and outdoor environments to PM2.5 personal exposure of children--VESTA study. Sci Total Environ, 297: 175-181. <u>034893</u>
- Geyh A; Chillrud S; Wiliams D; Herbstman J; Symons J; Rees K; Ross J; Kim S; Lim H; Turpin B; Breysse P (2005).

 Assessing truck driver exposure at the World Trade Center disaster site: personal and area monitoring for particulate matter and volatile organic compounds during October 2001 and April 2002. J Occup Environ Hyg, 2: 179-193.

 186949
- Gómez-Perales JE; Colvile RN; Fernández-Bremauntz AA; Gutiérrez-Avedoy V; Páramo-Figueroa VH; Blanco-Jiménez S; Bueno-López E; Bernabé-Cabanillas R; Mandujano F; Hidalgo-Navarro M; Nieuwenhuijsen MJ (2007). Bus, minibus, metro inter-comparison of commuters' exposure to air pollution in Mexico City. Atmos Environ, 41: 890-901. 138816
- Gómez-Perales JE; Colvile RN; Nieuwenhuijsen MJ; Fernández-Bremauntz A; Gutiérrez-Avedoy VJ; Páramo-Figueroa VH; Blanco-Jiménez S; Bueno-López E; Mandujano F; Bernabé-Cabanillas R (2004). Commuters' exposure to PM2.5, CO, and benzene in public transport in the metropolitan area of Mexico City. Atmos Environ, 38: 1219-1229. 054418

- Graham B; Falkovich AH; Rudich Y; Maenhaut W; Guyon P; Andreae MO (2004). Local and regional contributions to the atmospheric aerosol over Tel Aviv, Israel: a case study using elemental, ionic and organic tracers. Atmos Environ, 38: 1593-1604. 156490
- Graney JR; Landis MS; Norris GA (2004). Concentrations and solubility of metals from indoor and personal exposure PM25 samples. Atmos Environ, 38: 237-247. <u>053756</u>
- Greaves RC; Barkley RM; Sievers RE (1985). Rapid sampling and analysis of volatile constituents of airborne particulate matter. Anal Chem, 57: 2807-2815. <u>156494</u>
- Greaves RC; Barkley RM; Sievers RE; Meglen RR (1987). Covariations in the concentrations of organic compounds associated with springtime atmospheric aerosols. Atmos Environ, 21: 2549-2561. 156495
- Grosjean D; Seinfeld JH (1989). Parameterization of the formation potential of secondary organic aerosols. Atmos Environ, 23: 1733-1747. 045643
- Grover BD; Eatough NL; Eatough DJ; Chow JC; Watson JG; Ambs JL; Meyer MB; Hopke PK; Al-Horr R; Later DW; Wilson WE (2006). Measurement of Both Nonvolatile and Semi-Volatile Fractions of Fine Particulate Matter in Fresno, CA. Aerosol Sci Technol, 40: 811-826. 138080
- Grover BD; Kleinman M; Eatough NL; Eatough DJ; Hopke PK; Long RW; Wilson WE; Meyer MB; Ambs JL (2005). Measurement of total PM25 mass (nonvolatile plus semivolatile) with the Filter Dynamic Measurement System tapered element oscillating microbalance monitor. J Geophys Res, 110: D07S03. 090044
- Gulliver J; Briggs DJ (2004). Personal exposure to particulate air pollution in transport microenvironments. Atmos Environ, 38: 1-8. <u>053238</u>
- Gulliver J; Briggs DJ (2007). Journey-time exposure to particulate air pollution. Atmos Environ, 41: 7195-7207. 155814
- Guo H; Lee SC; Chan LY (2004). Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong. Sci Total Environ, 323: 87-98. <u>156506</u>
- Hall PA; Watson AFR; Garner GV; Hall K; Smith S; Waterman D; Horsfield B (1999). An investigation of micro-scale sealed vessel thermal extraction-gas chromatography-mass spectrometry (MSSV-GC-MS#) and micro-scale sealed vessel pyrolysis-gas chromatography-mass spectrometry applied to a standard reference material of an urban dust. Sci Total Environ, 235: 269-276. 156512
- Hamilton JF; Webb PJ; Lewis AC; Hopkins JR; Smith S; Davy P (2004). Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS. Atmos Chem Phys, 4: 1279–1290. <u>156516</u>
- Hamilton JF; Webb PJ; Lewis AC; Reviejo MM (2005). Quantifying small molecules in secondary organic aerosol formed during the photo-oxidation of toluene with hydroxyl radicals. Atmos Environ, 39: 7263-7275. 088173
- Hanninen OO; Lebret E; Ilacqua V; Katsouyanni K; Kunzli N; Sram RJ; Jantunen M (2004). Infiltration of ambient PM2.5 and levels of indoor generated non-ETS PM2.5 in residences of four European cities. Atmos Environ, 38: 6411-6423. 056812
- Harrison D; Shik Park S; Ondov J; Buckley T; Roul Kim S; Jayanty RKM (2004). Highly time resolved fine particle nitrate measurements at the Baltimore Supersite. Atmos Environ, 38: 5321-5332. 136787
- Hauck H; Stopper S; Puxbaum H; Kundi M; Preining O; Berner A; Gomiscek B (2004). On the equivalence of gravimetric PM data with TEOM and beta-attenuation measurements. J Aerosol Sci, 35: 1135-1149. 156525
- Haverinen-Shaughnessy U; Toivola M; Alm S; Putus T; Nevalainen A (2007). Personal and microenvironmental concentrations of particles and microbial aerosol in relation to health symptoms among teachers. J Expo Sci Environ Epidemiol, 17: 182-190. <u>156526</u>
- Hays MD; Smith ND; Dong Y (2004). Nature of unresolved complex mixture in size-distributed emissions from residential wood combustion as measured by thermal desorption-gas chromatography-mass spectrometry. J Geophys Res, 109: D16S04. <u>156530</u>
- Hays MD; Smith ND; Kinsey J; Dong Y; Kariher P (2003). Polycyclic aromatic hydrocarbon size distributions in aerosols from appliances of residential wood combustion as determined by direct thermal desorption—GC/MS. J Aerosol Sci, 34: 1061-1084. 156529
- Helmig D; Bauer A; Mueller J; Klein W (1990). Analysis of particulate organics in a forest atmosphere by thermodesorption GC/MS. Atmos Environ, 24: 179-184. <u>156536</u>

- Henning S; Weingartner E; Schwikowski M; Gaggeler HW; Gehrig R; Hinz KP; Trimborn A; Spengler B; Baltensperger U (2003). Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch (3580 m asl). J Geophys Res, 108: 4030. 156539
- Henry RC (1997). History and fundamentals of multivariate air quality receptor models. Chemometr Intell Lab Syst, 37: 37-42. 020941
- Henry RC (2003). Multivariate receptor modeling by N-dimensional edge detection. Chemometr Intell Lab Syst, 65: 179-189. <u>156540</u>
- Henry RC; Chang YS; Spiegelman CH (2002). Locating nearby sources of air pollution by nonparametric regression of atmospheric concentrations on wind direction. Atmos Environ, 36: 2237-2244. 136097
- Hering S; Cass G (1999). The magnitude of bias in the measurement of PM2.5 arising from volatilization of particulate nitrate from Teflon filters. J Air Waste Manag Assoc, 49: 725-733. <u>084958</u>
- Hering S; Fine PM; Sioutas C; Jaques PA; Ambs JL; Hogrefe O; Demerjian KL (2004). Field assessment of the dynamics of particulate nitrate vaporization using differential TEOM® and automated nitrate monitors. Atmos Environ, 38: 5183-5192. 155837
- Hering SV; Lawson DR; Allegrini I; Febo A; Perrino C; Possanzini M; Sickles JE II; Anlauf KG; Wiebe A; Appel BR; John W; Ondo J; Wall S; Braman RS; Sutton R; Cass GR; Solomon PA; Eatough DJ; Eatough NL; Ellis EC; Grosjean D; Hicks BB; Womack JD; Horrocks J; Knapp KT; Ellestad TG; Paur RJ; Mitchell WJ; Pleasant M; Peake E; MacLean A; Pierson WR; Brachaczek W; Schiff HI; Mackay GI; Spicer CW; (1988). The nitric acid shootout: field comparison of measurement methods. Atmos Environ, 22: 1519-1539. 036012
- Hering SV; Stolzenburg MR; Quant FR; Oberreit DR; Keady PB (2005). A Laminar-Flow, Water-Based Condensation Particle Counter (WCPC). Aerosol Sci Technol, 39: 659-672. 155838
- Hermann M; Wehner B; Bischof O; Han HS; Krinke T; Liu W; Zerrath A; Wiedensohler A (2007). Particle counting efficiencies of new TSI condensation particle counters. J Aerosol Sci, 38: 674-682. 155840
- Hidy GM; Friedlander SK (1972). The nature of the Los Angeles aerosol. Presented at Second International Clean Air Congress, New York. <u>156546</u>
- Ho KF; Cao JJ; Harrison RM; Lee SC (2004). Indoor/outdoor relationships of organic carbon (OC) and elemental carbon (EC) in PM2.5 in roadside environment of Hong Kong. Atmos Environ, 38: 6327-6335. 056804
- Ho KF; Chow JC; Watson JG; Fung K; Lee SC; Cao JJ; Li YS (2006). Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong. Atmos Chem Phys, 6: 4579-4600. <u>156552</u>
- Ho SSH; Yu JZ (2004). In-injection port thermal desorption and subsequent gas chromatography–mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. J Chromatogr A, 1059: 121-129. 156551
- Hoek G; de Hartog J; Meliefste K; ten Brink H; Katsouyanni K; Karakatsani A; Lianou M; Kotronarou A; Kavouras I; Pekkanen J; Vallius M; Kulmala M; Puustinen A; Thomas S; Meddings C; Ayres J; van Wijnen J; Hameri K; Kos G; Harrison R (2008). Indoor-outdoor relationships of particle number and mass in four European cities. Atmos Environ, 42: 156-169. 156554
- Hogrefe O; Schwab JJ; Drewnick F; Lala GG; Peters S; Demerjian KL; Rhoads K; Felton HD; Rattigan OV; Husain L; Dutkiewicz VA (2004). Semicontinuous PM2.5 sulfate and nitrate measurements at an urban and a rural location in New York: PMTACS-NY summer 2001 and 2002 campaigns. J Air Waste Manag Assoc, 54: 1040-1060. 099003
- Hopke PK; Li CL; Ciszek W; Landsberger S (1995). The use of bootstrapping to estimate conditional probability fields for source locations of airborne pollutants. Chemometr Intell Lab Syst, 30: 69-79. <u>156566</u>
- Hopke PK; Ramadan Z; Paatero P; Norris GA; Landis MS; Williams RW; Lewis CW (2003). Receptor modeling of ambient and personal exposure samples: 1998 Baltimore Particulate Matter Epidemiology-Exposure Study. Atmos Environ, 37: 3289-3302. 095544
- Hystad P; Setton E; Allen R; Keller P; Brauer M (2008). Modeling residential fine particulate matter infiltration for exposure assessment. J Expo Sci Environ Epidemiol, 19: 570-579. 190890
- Ito K; Thurston GD; Silverman RA (2007). Characterization of PM2.5, gaseous pollutants, and meteorological interactions in the context of time-series health effects models. J Expo Sci Environ Epidemiol, 17 Suppl 2: S45-S60. <u>156594</u>

- Jacquemin B; Cabrera L; Querol X; Bellander T; Moreno N; Peters A; Pey J; Pekkanen J; Lanki T; Sunyer J (2007). Levels of outdoor PM2.5, absorbance and sulphur as surrogates for personal exposures among post-myocardial infarction patients in Barcelona, Spain. Atmos Environ, 41: 1539-1549. <a href="https://doi.org/10.1007/j.nc/10
- Jacquemin B; Sunyer J; Forsberg B; Götschi T; Bayer-Oglesby L; Ackermann-Liebrich U; de Marco R; Heinrich J; Jarvis D; Torén K; Künzli N (2007). Annoyance due to air pollution in Europe. Int J Epidemiol, 10: 1-12. 192372
- Jansen KL; Larson TV; Koenig JQ; Mar TF; Fields C; Stewart J; Lippmann M (2005). Associations between health effects and particulate matter and black carbon in subjects with respiratory disease. Environ Health Perspect, 113: 1741-1746. 082236
- Janssen NA; Lanki T; Hoek G; Vallius M; De Hartog JJ; Van Grieken R; PekkanenJ; Brunekreef B (2005). Associations between ambient, personal, and indoor exposure to fine particulate matter constituents in Dutch and Finnish panels of cardiovascular patients. Occup Environ Med, 62: 868-877. 088692
- Jaques PA; Ambs JL; Grant WL; Sioutas C (2004). Field evaluation of the differential TEOM monitor for continuous PM 2.5 mass concentrations. Aerosol Sci Technol, 38: 49-59. 155878
- Jedrychowski WA; Perera FP; Pac A; Jacek R; Whyatt RM; Spengler JD; Dumyahn TS; Sochacka-Tatara E (2006).

 Variability of total exposure to PM2.5 related to indoor and outdoor pollution sources Krakow study in pregnant women. Sci Total Environ, 366: 47-54. 156606
- Jeon SJ; Meuzelaar HLC; Sheya SAN; Lighty JS; Jarman WM; Kasteler C; Sarofim AF; Simoneit BRT (2001). Exploratory studies of PM10 receptor and source profiling by GC/MS and principal component analysis of temporally and spatially resolved ambient samples. J Air Waste Manag Assoc, 51: 766-784. 016636
- Jimenez JL; Jayne JT; Shi Q; Kolb CE; Worsnop DR; Yourshaw I; Seinfeld JH; Flagan RC; Zhang X; Smith KA (2003).

 Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. J Geophys Res, 108: 8425. 156611
- Johannesson S; Gustafson P; Molnar P; Barregard L; Sallsten G (2007). Exposure to fine particles (PM2.5 and PM1) and black smoke in the general population: personal, indoor, and outdoor levels. J Expo Sci Environ Epidemiol, 17: 613-624. 156614
- John W; Wall SM; Ondo JL (1988). A new method for nitric acid and nitrate aerosol measurement using the dichotomous sampler. Atmos Environ, 22: 1627-1635. 045903
- Kaur S; Nieuwenhuijsen M; Colvile R (2005). Personal exposure of street canyon intersection users to PM2.5, ultrafine particle counts and carbon monoxide in central London, UK. Atmos Environ, 39: 3629-3641. 086504
- Kaur S; Nieuwenhuijsen MJ; Colvile RN (2005). Pedestrian exposure to air pollution along a major road in Central London, UK. Atmos Environ, 39: 7307-7320. 088175
- Keeler GJ; Samson PJ (1989). Spatial representativeness of trace element ratios. Environ Sci Technol, 23: 1358-1364. 156633
- Khlystov A; Stanier CO; Takahama S; Pandis SN (2005). Water content of ambient aerosol during the Pittsburgh Air Quality Study. J Geophys Res, 110: D07S10. <u>156635</u>
- Kidwell CB; Ondov JM (2001). Development and evaluation of a prototype system for collecting sub-hourly ambient aerosol for chemical analysis. Aerosol Sci Technol, 35: 596-601. 017092
- Kidwell CB; Ondov JM (2004). Elemental Analysis of Sub-Hourly Ambient Aerosol Collections. Aerosol Sci Technol, 38: 205-218. 155898
- Kim D; Sass-Kortsak A; Purdham JT; Dales RE; Brook JR (2005). Sources of personal exposure to fine particles in Toronto, Ontario, Canada. J Air Waste Manag Assoc, 55: 1134-1146. <u>156640</u>
- Kinsey JS; Mitchell WA; Squier WC; Linna K; King FG; Logan R; Dong Y; Thompson GJ; Clark NN (2006). Evaluation of methods for the determination of diesel-generated fine particulate matter: Physical characterization results. J Aerosol Sci, 37: 63-87. 130654
- Kiss G; Varga B; Galambos I; Ganszky I (2002). Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. J Geophys Res, 107: 8339. 156646
- Klinmalee A; Srimongkol K; Kim Oanh NT (2008). Indoor air pollution levels in public buildings in Thailand and exposure assessment. Environ Monit Assess, 156: 581-594. 190888

- Koenig JQ; Jansen K; Mar TF; Lumley T; Kaufman J; Trenga CA; Sullivan J; Liu LJ; Shapiro GG; Larson TV (2003). Measurement of offline exhaled nitric oxide in a study of community exposure to air pollution. Environ Health Perspect, 111: 1625-1629. 156653
- Koistinen KJ; Edwards RD; Mathys P; Ruuskanen J; Kunzli N; Jantunen MJ (2004). Sources of fine particulate matter in personal exposures and residential indoor, residential outdoor and workplace microenvironments in the Helsinki phase of the EXPOLIS study. Scand J Work Environ Health, 30 Suppl 2: 36-46. 156655
- Kousa A; Monn C; Rotko T; Alm S; Oblesby L; Jantunen MJ (2001). Personal exposures to NO2 in the EXPOLIS-study: relation to residential indoor, outdoor and workplace concentrations in Basel, Helsinki and Prague. Atmos Environ, 35: 3405-3412. 025270
- Koutrakis P; Suh HH; Sarnat JA; Brown KW; Coull BA; Schwartz J (2005). Characterization of particulate and gas exposures of sensitive subpopulations living in Baltimore and Boston. Health Effects Institute. Boston, MA. 131. http://pubs.healtheffects.org/view.php?id=91. 095800
- Kulkarni MM; Patil RS (2003). Personal exposure to toxic metals in an Indian metropolitan region. J Inst Eng, 84: 23-29. 156664
- Kulmala M; Mordas G; Petäjä T; Grönholm T; Aalto PP; Vehkamäki H; Hienola AI; Herrmann E; Sipilä M; Riipinen I (2007). The condensation particle counter battery (CPCB): A new tool to investigate the activation properties of nanoparticles. J Aerosol Sci, 38: 289-304. 155911
- Kulmala M; Riipinen I; Sipila M; Manninen HE; Petaja T; Junninen H; Maso MD; Mordas G; Mirme A; Vana M; Hirsikko A; Laakso L; Harrison RM; Hanson I; Leung C; Lehtinen KE; Kerminen VM (2007). Toward direct measurement of atmospheric nucleation. Science, 318: 89-92. 097838
- Labban R; Veranth JM; Watson JG; Chow JC (2006). Feasibility of soil dust source apportionment by the pyrolysis-gas chromatography/mass spectrometry method. J Air Waste Manag Assoc, 56: 1230-1242. 156665
- Lai HK; Kendall M; Ferrier H; Lindup I; Alm S; Hanninen O; Jantunen M; Mathys P; Colvile R; Ashmore MR; Cullinan P; Nieuwenhuijsen MJ (2004). Personal exposures and microenvironment concentrations of PM25, VOC, NO2 and CO in Oxford, UK. Atmos Environ, 38: 6399-6410. 056811
- Lake DA; Tolocka MP; Johnston MV; Wexler AS (2003). Mass Spectrometry of Individual Particles between 50 and 750 nm in Diameter at the Baltimore Supersite. Environ Sci Technol, 37: 3268-3274. 156669
- Lake DA; Tolocka MP; Johnston MV; Wexler AS (2004). The character of single particle sulfate in Baltimore. Atmos Environ, 38: 5311-5320. <u>088411</u>
- Larson T; Gould T; Simpson C; Liu LJ; Claiborn C; Lewtas J (2004). Source apportionment of indoor, outdoor, and personal PM2.5 in Seattle, Washington, using positive matrix factorization. J Air Waste Manag Assoc, 54: 1175-87. 098145
- Lawson CL; Hanson RJ (1974). Solving least squares problems. Englewood Cliffs: Prentice Hall. 156673
- Lee JH; Hopke PK; Holsen TM; Lee DW; AJaques P; Sioutas C; Ambs JL (2005). Performance evaluation of continuous PM2.5 mass concentration monitors. J Aerosol Sci, 36: 95-109. <u>155925</u>
- Lee JH; Hopke PK; Holsen TM; Polissar AV (2005). Evaluation of Continuous and Filter-Based Methods for Measuring PM 2.5 Mass Concentration. Aerosol Sci Technol, 39: 290-303. <u>156680</u>
- Lee JH; Hopke PK; Holsen TM; Polissar AV; Lee DW; Edgerton ES; Ondov JM; Allen G (2005). Measurements of fine particle mass concentrations using continuous and integrated monitors in Eastern US Cities. Aerosol Sci Technol, 39: 261-275. 128139
- Lewis CW; Norris GA; Conner TL; Henry RC (2003). Source apportionment of Phoenix PM2.5 aerosol with the Unmix Receptor model. J Air Waste Manag Assoc, 53: 325-338. <u>088413</u>
- Li W-W; Paschold H; Morales H; Chianelli J (2003). Correlations between short-term indoor and outdoor PM concentrations at residences with evaporative coolers. Atmos Environ, 37: 2691-2703. 047845
- Li YC; Yu JZ (2005). Simultaneous Determination of Mono-and Dicarboxylic Acids, o-Oxo-carboxylic Acids, Midchain Ketocarboxylic Acids, and Aldehydes in Atmospheric Aerosol Samples. Environ Sci Technol, 39: 7616-7624. 156692

- Lim H-J; Turpin BJ; Edgerton E; Hering SV; Allen G; Maring H; Solomon P (2003). Semi-continuous aerosol carbon measurements: Comparison of Atlanta supersite measurements. J Geophys Res, 108: 8419. 037037
- Lithgow GA; Robinson AL; Buckley SG (2004). Ambient measurements of metal-containing PM25 in an urban environment using laser-induced breakdown spectroscopy. Atmos Environ, 38: 3319-3328. <u>126616</u>
- Liu L-J; Box M; Kalman D; Kaufman J; Koenig J; Larson T; Lumley T; Sheppard L; Wallace L (2003). Exposure assessment of particulate matter for susceptible populations in Seattle. Environ Health Perspect, 11: 909-918.
 073841
- Lunden MM; Kirchstetter TW; Thatcher TL; Hering SV; Brown NJ (2008). Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin. Atmos Environ, 42: 5660-5671. 155949
- Lung SC; Mao IF; Liu LJ (2007). Residents' particle exposures in six different communities in Taiwan. Sci Total Environ, 377: 81-92. 156719
- MacIntosh D; Minegishi T; Kaufman M; Baker B; Allen J; Levy J; Myatt T (2009). The benefits of whole-house in-duct air cleaning in reducing exposures to fine particulate matter of outdoor origin: A modeling analysis. J Expo Sci Environ Epidemiol, TBD: TBD. 190887
- Mader BT; Yu JZ; Xu JH; Li QF; Wu WS; Flagan RC; Seinfeld JH (2004). Molecular composition of the water-soluble fraction of atmospheric carbonaceous aerosols collected during ACE-Asia. J Geophys Res, 109: D06206. <u>156724</u>
- Maitre A; Soulat JM; Masclet P; Stoklov M; Marques M; de Gaudemaris R (2002). Exposure to carcinogenic air pollutants among policemen working close to traffic in an urban area. Scand J Work Environ Health, 28: 402-410. <u>156726</u>
- Manchester-Neesvig JB; Schauer JJ; Cass GR (2003). The distribution of particle-phase organic compounds in the atmosphere and their use for source apportionment during the Southern California Children's Health Study. J Air Waste Manag Assoc, 53: 1065-79. <a href="https://doi.org/10.2016/j.gov/10
- Mar TF; Koenig JQ; Jansen K; Sullivan J; Kaufman J; Trenga CA; Siahpush SH; Liu L-JS; Neas L (2005). Fine particulate air pollution and cardiorespiratory effects in the elderly. Epidemiology, 16: 681-687. 087566
- Martuzevicius D; Grinshpun S; Lee T; Hu S; Biswas P; Reponen T; LeMasters G (2008). Traffic-related PM2. 5 aerosol in residential houses located near major highways: Indoor versus outdoor concentrations. Atmos Environ, 27: 6575-6585. 190886
- Mathai CV; Watson Jr JG; Rogers CF; Chow JC; Tombach I; Zwicker JO; Cahill T; Feeney P; Eldred R (1990).

 Intercomparison of ambient aerosol samplers used in western visibility and air quality studies. Environ Sci Technol, 24: 1090-1099. <u>156741</u>
- Mayol-Bracero OL; Guyon P; Graham B; Roberts G; Andreae MO; Decesari S; Facchini MC; Fuzzi S; Artaxo P (2002). Water-soluble organic compounds in biomass burning aerosols over Amazonia: 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J Geophys Res, 107: 8091. 045010
- Mazzoleni LR; Zielinska B; Moosmuller H (2007). Emissions of Levoglucosan, Methoxy Phenols, and Organic Acids from Prescribed Burns, Laboratory Combustion of Wildland Fuels, and Residential Wood Combustion. Environ Sci Technol, 41: 2115-2122. 098038
- Meng QY; Turpin BJ; Korn L; Weisel CP; Morandi M; Colome S; Zhang J; Stock T; Spektor D; Winer A; Zhang L; Lee JH; Giovanetti R; Cui W; Kwon J; Alimokhtari S; Shendell D; Jones J; Farrar C; Maberti S (2005). Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data. J Expo Sci Environ Epidemiol, 15: 17-28. 058595
- Meng QY; Turpin BJ; Lee JH; Polidori A; Weisel CP; Morandi M; Colome S; Zhang JF; Stock T; Winer A (2007). How does infiltration behavior modify the composition of ambient PM2.5 in indoor spaces? An analysis of RIOPA data. Environ Sci Tech, 41: 7315-7321. 194618
- Meng QY; Turpin BJ; Polidori A; Lee JH; Weisel C; Morandi M; Colome S; Stock T; Winer A; Zhang J (2005). PM2.5 of ambient origin: Estimates and exposure errors relevant to PM epidemiology. Environ Sci Technol, 39: 5105-5112. 081194
- Middlebrook AM; Murphy DM; Lee S-H; Thomson DS; Prather KA; Wenzel RJ; Liu D-Y; Phares DJ; Rhoads KP; Wexler AS; Johnston MV; Jimenez JL; Jayne JT; Worsnop DR; Yourshaw I; Seinfeld JH; Flagan RC (2003). A comparison of particle mass spectrometers during the 1999 Atlanta Supersites project. J Geophys Res, 108: 8424. 042932

- Miguel AH; Eiguren-Fernandez A; Jaques PA; Froines JR; Grant BL; Mayo PR; Sioutas C (2004). Seasonal variation of the particle size distribution of polycyclic aromatic hydrocarbons and of major aerosol species in Claremont, California. Atmos Environ, 38: 3241-3251. 123260
- Mikel DK (2001). Quality assurance final report for the Southern Oxidant Study Atlanta Supersite Field Experiment August 3 September 1, 1999. 156762
- Molnár P; Bellander T; Sallsten G; Boman J (2007). Indoor and outdoor concentrations of PM2.5 trace elements at homes, preschools and schools in Stockholm, Sweden. J Environ Monit, 9: 348-357. 156774
- Molnár P; Gustafson P; Johannesson S; Boman J; Barregard L; Sallsten G (2005). Domestic wood burning and PM sub(2.5) trace elements: Personal exposures, indoor and outdoor levels. Atmos Environ, 39: 2643-2653. 156772
- Molnár P; Johannesson S; Boman J; Barregard L; Sallsten G (2006). Personal exposures and indoor, residential outdoor, and urban background levels of fine particle trace elements in the general population. J Environ Monit, 8: 543-551. 156773
- Na K; Cocker DR (2005). Organic and elemental carbon concentrations in fine particulate matter in residences, schoolrooms, and outdoor air in Mira Loma, California. Atmos Environ, 39: 3325-3333. 156790
- Naumova YY; Offenberg JH; Eisenreich SJ; Meng QY; Polidori A; Turpin BJ; Weisel CP; Morandi MT; Colome SD; Stock TH; Winer AM; Alimokhtari S; Kwon J; Maberti S; Shendell D; Jones J; Farrar C (2003). Gas/particle distribution of polycyclic aromatic hydrocarbons in coupled outdoor/indoor atmospheres. Atmos Environ, 37: 703-719. 089213
- Nerriere E; Zmirou-Navier D; Blanchard O; Momas I; Ladner J; Le Moullec Y; Personnaz M-B; Lameloise P; Delmas V; Target A; Desqueyroux H (2005). Can we use fixed ambient air monitors to estimate population long-term exposure to air pollutants? The case of spatial variability in the Genotox ER study. Environ Res, 97: 32-42. 089481
- Neususs C; Weise D; Birmili W; Wex H; Wiedensohler A; Covert DS (2000). Size-segregated chemical, gravimetric and number distribution-derived mass closure of the aerosol in Sagres, Portugal during ACE-2. Tellus B Chem Phys Meteorol, 52: 169-184. 156804
- Ng SP; Kendall M; Dimitroulopoulou C; Grossinho A; Chen LC (2005). PM2.5 exposure assessment of the population in Lower Manhattan area of New York City after the World Trade Center disaster. Atmos Environ, 39: 1979-1992. <a href="https://doi.org/10.2006/nc.2005/10.2006/nc.2005/nc.2006/nc.2005/nc.2006/nc.2005/nc.2006/nc.2005/nc.2006/nc.2005/nc.2006/nc.2005/nc.2006/
- NIOSH (1996). NIOSH Method 5040 Issue 1 (Interim): Elemental Carbon (diesel exhaust). National Institute for Occupational Safety and Health. Cincinnati, OH.http://www.cdc.gov/niosh/docs/2003-154/method-e.html. <u>156810</u>
- NIOSH (1999). NIOSH Method 5040 Issue 3 (Interim): Elemental Carbon (diesel exhaust). National Institute for Occupational Safety and Health. Cincinnati, OH.http://www.cdc.gov/niosh/docs/2003-154/pdfs/5040.pdf. 156811
- Noullett M; Jackson PL; Brauer M (2006). Winter measurements of children's personal exposure and ambient fine particle mass, sulphate and light absorbing components in a northern community. Atmos Environ, 40: 1971-1990. 155999
- Ntziachristos L; Samaras Z (2006). Combination of aerosol instrument data into reduced variables to study the consistency of vehicle exhaust particle measurements. Atmos Environ, 40: 6032-6042. <a href="https://doi.org/10.1007/j.edu/nc/2016/10.2007/j.edu/nc/2016/j.edu
- Ogulei D; Hopke PK; Chalupa DC; Utell MJ (2006). Modeling Source Contributions to Submicron Particle Number Concentrations Measured in Rochester, New York. Aerosol Sci Technol, 41: 179-201. 119975
- Olfert JS; Kulkarni P; Wang J (2008). Measuring aerosol size distributions with the fast integrated mobility spectrometer. J Aerosol Sci, 39: 940-956. <a href="https://doi.org/10.2008/j.gov/10.2008/
- Paatero P (1997). Least squares foumulation of robust non-negative factor analysis. Chemometr Intell Lab Syst, 37: 23-35. 087001
- Paatero P (1999). The Multilinear Engine: A Table-Driven, Least Squares Program for Solving Multilinear Problems, including the n-Way Parallel Factor Analysis Model. J Comput Graph Stat, 8: 854-888. <u>156835</u>
- Paatero P; Hopke PK; Song XH; Ramadan Z (2002). Understanding and controlling rotations in factor analytic models. Chemometr Intell Lab Syst, 60: 253-264. 156836
- Pang Y; Eatough NL; Modey WK; Eatough DJ (2002). Evaluation of the RAMS continuous monitor for determination of PM2.5 mass including semi-volatile material in Philadelphia, PA. J Air Waste Manag Assoc, 52: 563-572. 030353

- Parekh PP; Husain L (1981). Trace element concentrations in summer aerosols at rural sites in New York state and their possible sources. Atmos Environ, 15: 1717-1725. 156840
- Park K; Chow JC; Watson JG; Trimble DL; Doraiswamy P; Arnott WP; Stroud KR; Bowers K; Bode R; Petzold A; Hansen AD (2006). Comparison of continuous and filter-based carbon measurements at the Fresno supersite. J Air Waste Manag Assoc, 56: 474-91. 098104
- Park SS; Harrison D; Pancras JP; Ondov JM (2005). Highly Time-Resolved Organic and Elemental Carbon Measurements at the Baltimore Supersite in 2002. J Geophys Res, 110: D07S06. <u>156843</u>
- Park SS; Pancras JP; Ondov J; Poor N (2005). A new pseudodeterministic multivariate receptor model for individual source apportionment using highly time-resolved ambient concentration measurements. J Geophys Res, 110: D07S15. 156844
- Paschold H; Maciejewska B; Li WW; Morales H; Pingitore NE (2003). Elemental analysis of airborne particulate matter and cooling water in west Texas residences. Atmos Environ, 37: 2681-2690. 156847
- Pekney NJ; Davidson CI; Bein KJ; Wexler AS; Johnston MV (2006). Identification of sources of atmospheric PM at the Pittsburgh supersite, part I: single particle analysis and filter-based positive matrix factorization. Atmos Environ, 2: 411-423. 086115
- Petäjä T; Mordas G; Manninen H; Aalto PP; Hmeri K; Kulmala M (2006). Detection efficiency of a water-based TSI condensation particle counter 3785. Aerosol Sci Technol, 40: 1090-1097. <u>156021</u>
- Peters TM; Gussman RA; Kenny LC; Vanderpool RW (2001). Evaluation of PM2.5 size selectors used in speciation samplers. Aerosol Sci Technol, 34: 422-429. 017108
- Peters TM; Norris GA; Vanderpool RW; Gemmill DB; Wiener RW; Murdoch RW; McElroy FF; Pitchford M (2001). Field performance of PM2.5 federal reference method samplers. Aerosol Sci Technol, 34: 433-443. 016925
- Peterson MR; Richards MH (2002). Thermal-optical-transmittance analysis for organic, elemental, carbonate, total carbon, and OCX2 in PM2.5 by the EPA/NIOSH method. Presented at Symposium on Air Quality Measurement Methods and Technology, Pittsburgh. 156861
- Petzold A; Kramer H; Schonlinner M (2002). Continuous Measurement of Atmospheric Black Carbon Using a Multi-angle Absorption Photometer. Environ Sci Pollut Res Int, 4: 78-82. 156863
- Phares DJ; Rhoads KP; Johnston MV; Wexler AS (2003). Size-resolved ultrafine particle composition analysis 2. Houston. J Geophys Res, 108: 8420. <u>156866</u>
- Pitchford ML; Chow JC; Watson JG; Moore CT; Campbell DE; Eldred RA; Vanderpool RW; Ouchida P; Hering SV; Frank NH (1997). Prototype PM2.5 federal reference method field studies report An EPA staff report. 156872
- Polidori A; Arhami M; Sioutas C; Delfino RJ; Allen R (2007). Indoor/outdoor relationships, trends, and carbonaceous content of fine particulate matter in retirement homes of the Los Angeles Basin. J Air Waste Manag Assoc, 57: 366-379. 156877
- Poore MW (2000). Oxalic acid in PM2.5 particulate matter in California. J Air Waste Manag Assoc, 50: 1874-1875. 012839
- Poore MW (2002). Levoglucosan in PM2.5 at the Fresno supersite. J Air Waste Manag Assoc, 52: 3-4. 051444
- Qin X; Prather KA (2006). Impact of biomass emissions on particle chemistry during the California Regional Particulate Air Quality Study. Int J Mass Spectrom, 258: 142-150. 156895
- Ramachandran G; Adgate JL; Pratt GC; Sexton K (2003). Characterizing indoor and outdoor 15 minute average PM2.5 concentrations in urban neighborhoods. Aerosol Sci Technol, 37: 33-45. 195017
- Rattigan OV; Hogrefe O; Felton HD; Schwab JJ; Roychowdhury UK; Husain L; Dutkiewicz VA; Demerjian KL (2006). Multi-year urban and rural semi-continuous PM25 sulfate and nitrate measurements in New York state: Evaluation and comparison with filter based measurements. Atmos Environ, 40: 192-205. 115897
- Rees SL; Robinson AL; Khlystov A; Stanier CO; Pandis SNSN (2004). Mass balance closure and the Federal Reference Method for PM2.5 in Pittsburgh, Pennsylvania. Atmos Environ, 38: 3305-3318. 097164
- Reff A; Weisel CP; Zhang J; Morandi M; Stock T; Colome S; Winer A; Turpin BJ; Offenberg JH (2007). A functional group characterization of organic PM2.5 exposure: Results from the RIOPA study. Atmos Environ, 41: 4585-4598.

 156045

- Reimann C; De Caritat P (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol, 34: 5084-5091. 013269
- Rinehart LR; Fujita EM; Chow JC; Magliano K; Zielinska B (2006). Spatial distribution of PM 2.5 associated organic compounds in central California. Atmos Environ, 40: 290-303. https://doi.org/10.1016/j.ncm.nih.gov/
- Rojas-Bracho L; Suh HH; Catalano PJ; Koutrakis P (2004). Personal exposures to particles and their relationships with personal activities for chronic obstructive pulmonary disease patients living in Boston. J Air Waste Manag Assoc, 54: 54:207-217. 054772
- Rossner P; Svecova V; Milcova A; Lnenickova Z; Solansky N; Sram RJ (2008). Seasonal variability of oxidative stress markers in city bus drivers Part I. Oxidative damage to DNA. Mutat Res Fund Mol Mech Mutagen, 642: 14-20. 156927
- Rotko T; Oglesby L; Kunzli N; Carrer P; Nieuwenhuijsen MJ; Jantunen M (2002). Determinants of perceived air pollution annoyance and association between annoyance scores and air pollution (PM25, NO2) concentrations in the European EXPOLIS study. Atmos Environ, 36: 4593-4602. 037240
- Rupprecht & Patashnick Company (2003). Innovative instrument for an ambient air particulate mass measurement standard. Rupprecht & Patashnick Co., Inc.. Albany, NY. Final Report 03-07. <u>157207</u>
- Russell M; Allen DT; Collins DR; Fraser MP (2004). Daily, seasonal and spatial trends in PM25 mass and composition in southeast Texas. Aerosol Sci Technol, 1: 14-26. <u>082453</u>
- Sabin LD; Kozawa K; Behrentz E; Winer AM; Fitz DR; Pankratz DV; Colome SD; Fruin SA (2005). Analysis of real-time variables affecting children's exposure to diesel-related pollutants during school bus commutes in Los Angeles. Atmos Environ, 39: 5243-5254. 087728
- Sabin LD; Lim JH; Stolzenbach KD; Schiff KC (2005). Contribution of trace metals from atmospheric deposition to stormwater runoff in a small impervious urban catchment. Water Res, 39: 3929-3937. 088300
- Salma I; Ocskay R; Chi X; Maenhaut W (2007). Sampling artefacts, concentration and chemical composition of fine water-soluble organic carbon and humic-like substances in a continental urban atmospheric environment. Atmos Environ, 41: 4106-4118. 113852
- Samson PJ (1978). Ensemble trajectory analysis of summertime sulfate concentrations in New York State. Atmos Environ, 12: 1889-1893. 188974
- Samson PJ (1980). Trajectory analysis of summertime sulfate concentrations in the northeastern United States. J Appl Meteorol, 19: 1382-1394. <a href="https://doi.org/10.2010/journal.org
- Sanderson EG; Farant JP (2004). Indoor and outdoor polycyclic aromatic hydrocarbons in residences surrounding a Soderberg aluminum smelter in Canada. Environ Sci Technol, 38: 5350-5356. <u>156942</u>
- Sarnat JA; Brown KW; Schwartz J; Coull BA; Koutrakis P (2005). Ambient gas concentrations and personal particulate matter exposures: implications for studying the health effects of particles. Epidemiology, 16: 385-395. 087531
- Sarnat JA; Schwartz J; Catalano PJ; Suh HH (2001). Gaseous pollutants in particulate matter epidemiology: Confounders or surrogates? Environ Health Perspect, 109: 1053-1061. 019401
- Sarnat SE; Coull BA; Ruiz PA; Koutrakis P; Suh HH (2006). The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA residences. J Air Waste Manag Assoc, 56: 186-196. <u>089166</u>
- Sarnat SE; Coull BA; Schwartz J; Gold DR; Suh HH (2006). Factors affecting the association between ambient concentrations and personal exposures to particles and gases. Environ Health Perspect, 114: 649-654. 089784
- Sarnat SE; Suh HH; Coull BA; Schwartz J; Stone PH; Gold DR (2006). Ambient particulate air pollution and cardiac arrhythmia in a panel of older adults in Steubenville, Ohio. Occup Environ Med, 63: 700-706. 090489
- Schauer JJ; Cass GR (2000). Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers. Environ Sci Technol, 34: 1821-1832. 012225
- Schauer JJ; Mader BT; Deminter JT; Heidemann G; Bae MS; Seinfeld JH; Flagan RC; Cary RA; Smith D; Huebert BJ; Bertram T; Howell S; Kline JT; Quinn P; Bates T; Turpin B; Lim H-J; Yu JZ; Yang H; Keywood MD (2003). ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon. Environ Sci Technol, 37: 993-1001. 037014

- Schnelle-Kreis J; Sklorz M; Peters A; Cyrys J; Zimmermann R (2005). Analysis of particle-associated semi-volatile aromatic and aliphatic hydrocarbons in urban particulate matter on a daily basis. Atmos Environ, 39: 7702-7714. 112944
- Schwab JJ; Felton HD; Rattigan OV; Demerjian KL (2006). New York State urban and rural measurements of continuous PM2.5 mass by FDMS, TEOM, and BAM: Evaluations and Comparisons with the FRM . J Air Waste Manag Assoc, 56: 372-83. 098449
- Schwab JJ; Hogrefe O; Demerjian KL; Dutkiewicz VA; Husain L; Rattigan OV; Felton HD (2006). Field and Laboratory Evaluation of the Thermo Electron 5020 Sulfate Particulate Analyzer. Aerosol Sci Technol, 40: 744 - 752. 098785
- Schwartz J; Sarnat JA; Coull BA; Wilson WE (2007). Effects of exposure measurement error on particle matter epidemiology: a simulation using data from a panel study in Baltimore, MD. J Expo Sci Environ Epidemiol, 17: S2-S10, 090220
- Shalat SL; Lioy PJ; Schmeelck K; Mainelis G (2007). Improving estimation of indoor exposure to inhalable particles for children in the first year of life. J Air Waste Manag Assoc, 57: 934-939. <u>156971</u>
- Shao L; Yang S; Li H; Li W; Jones T; Sexton K; B,ruB, K; Li J; Zhao H (2007). Associations between particle physicochemical characteristics and oxidative capacity: An indoor PM10 study in Beijing, China. Atmos Environ, 41: 5316-5326. 156973
- Shilton V; Giess P; Mitchell D; Williams C (2002). The relationships between indoor and outdoor respirable particulate matter: meteorology, chemistry and personal exposure. Indoor Built Environ, 11: 266-274. 049602
- Sidhu S; Graham J; Striebich R (2001). Semi-volatile and particulate emissions from the combustion of alternative diesel fuels. Chemosphere, 42: 681-90. <u>155202</u>
- Slama R; Darrow L; Parker J; Woodruff TJ; Strickland M; Nieuwenhuijsen M; Glinianaia S; Hoggatt KJ; Kannan S; Hurley F; Kalinka J; Sram R; Brauer M; Wilhelm M; Heinrich J; Ritz B (2008). Meeting report: atmospheric pollution and human reproduction. Environ Health Perspect, 116: 791-798. 156985
- Smith TJ; Davis ME; Reaser P; Natkin J; Hart JE; Laden F; Heff A; Garshick E (2006). Overview of particulate exposures in the US trucking industry. J Environ Monit, 8: 711-720. <u>156990</u>
- Solomon P; Baumann K; Edgerton E; Tanner R; Eatough D; Modey W; Marin H; Savoie D; Natarajan S; Meyer MB (2003). Comparison of integrated samplers for mass and composition during the 1999 Atlanta supersites project. J Geophys Res, 108: 8423. 156994
- Solomon PA; Norris G; Landis M; Tolocka M (2001). Chemical analysis methods for atmospheric aerosol components. In Baron PA; Willeke K (Ed.), Aerosol measurement: principles, techniques, and applications (pp. 261-293). New York: John Wiley & Sons Ltd. 157193
- Solomon PA; Sioutas C (2006). Continuous and semi-continuous methods for PM mass and composition. EM, x: 17-23. 156995
- Sram RJ; Beskid O; Rössnerova A; Rössner P; Lnenickova Z; Milcova A; Solansky I; Binkova B (2007). Environmental exposure to carcinogenic polycyclic aromatic hydrocarbons--the interpretation of cytogenetic analysis by FISH. Toxicol Lett, 172: 12-20. 192084
- Stanier CO; Khlystov AY; Chan WR; Mandiro M; Pandis SN (2004). A Method for the In Situ Measurement of Fine Aerosol Water Content of Ambient Aerosols: The Dry-Ambient Aerosol Size Spectrometer (DAASS). Aerosol Sci Technol, 38: 215 228. 095955
- Stohl A (1996). Trajectory statistics-A new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos Environ, 30: 579-587. 157014
- Strand M; Hopke PK; Zhao W; Vedal S; Gelfand E; Rabinovitch N (2007). A study of health effect estimates using competing methods to model personal exposures to ambient PM2.5. J Expo Sci Environ Epidemiol, 17: 549-558. 157018
- Strand M; Vedal S; Rodes C; Dutton SJ; Gelfand EW; Rabinovitch N (2006). Estimating effects of ambient PM2.5 exposure on health using PM2.5 component measurements and regression calibration. J Expo Sci Environ Epidemiol, 16: 30-38. <u>089203</u>
- Stranger M; Potgieter-Vermaak S; Van Grieken R (2008). Characterization of indoor air quality in primary schools in Antwerp, Belgium. Indoor Air, 18: 454-463. <a href="https://doi.org/10.108/j.nc/10

- Stranger M; Potgieter-Vermaak S; Van Grieken R (2009). Particulate matter and gaseous pollutants in residences in Antwerp, Belgium. Sci Total Environ, 1182-1192: 407. 190883
- Subbalakshmi Y; Patti AF; Lee GSH; Hooper MA (2000). Structural characterisation of macromolecular organic material in air particulate matter using Py-GC-MS and solid state 13 C-NMR. J Environ Monit, 2: 561-565. 157023
- Subramanian R; Khlystov AY; Cabada JC; Robinson AL (2004). Positive and negative artifacts in particulate organic carbon measurements with denuded and undenuded sampler configurations. Aerosol Sci Technol, 1: 27-48. <u>081203</u>
- Sørensen M; Daneshvar B; Hansen M; Dragsted LO; Hertel O; Knudsen L; Loft S (2003). Personal PM2.5 exposure and markers of oxidative stress in blood. Environ Health Perspect, 111: 161-166. <u>157000</u>
- Sørensen M; Loft S; Andersen HV; Raaschou-Nielsen O; Skovgaard LT; Knudsen LE; Nielsen IV; Hertel O (2005).

 Personal exposure to PM2.5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation. J Expo Sci Environ Epidemiol, 15: 413-422. <u>089428</u>
- Takahama S; Wittig AE; Vayenas DV; Davidson CI; Pandis SN (2004). Modeling the diurnal variation of nitrate during the Pittsburgh Air Quality Study. J Geophys Res, 109: D16S06. <u>157038</u>
- Tanaka S; Yasushi N; Sato N; Fukasawa T; Santosa SJ; Yamanaka K; Ootoshi T (1998). Rapid and simultaneous multielement analysis of atmospheric particulate matter using inductively coupled plasma mass spectrometry with laser ablation sample introduction. J Anal At Spectrom, 13: 135-140. 157041
- Tang C-S; Chang L-T; Lee H-C; Chan C-C (2007). Effects of personal particulate matter on peak expiratory flow rate of asthmatic children. Sci Total Environ, 382: 43-51. 091269
- Thornburg JW; Stevens CD; Williams RW; Rodes CE; Lawless PA (2004). A pilot study of the influence of residential HAC duty cycle on indoor air quality. Atmos Environ, 38: 1567-1577. 157052
- Toivola M; Alm S; Reponen T; Kolari S; Nevalainen A (2002). Personal exposures and microenvironmental concentrations of particles and bioaerosols. J Environ Monit, 4: 166-174. 026571
- Tolbert PE; Klein M; Peel JL; Sarnat SE; Sarnat JA (2007). Multipollutant modeling issues in a study of ambient air quality and emergency department visits in Atlanta. J Expo Sci Environ Epidemiol, 17: S29-S35. 090316
- Tran NK; Steinberg SM; Johnson BJ (2000). Volatile aromatic hydrocarbons and dicarboxylic acid concentrations in air at an urban site in the Southwestern US. Atmos Environ, 34: 1845-1852. 013025
- Trenga CA; Sullivan JH; Schildcrout JS; Shepherd KP; Shapiro GG; Liu LJ; Kaufman JD; Koenig JQ (2006). Effect of particulate air pollution on lung function in adult and pediatric subjects in a Seattle panel study. Chest, 129: 1614-1622. 155209
- Turpin BJ; Weisel CP; Morandi M; Colome S; Stock T; Eisenreich S; Buckley B (2007). Relationships of Indoor, Outdoor, and Personal Air (RIOPA): Part II. Analyses of concentrations of particulate matter species. <u>157062</u>
- Turšic J; Podkrajšek B; Grgic I; Ctyroky P; Berner A; Dusek U; Hitzenberger R (2006). Chemical composition and hygroscopic properties of size-segregated aerosol particles collected at the Adriatic coast of Slovenia. Chemosphere, 63: 1193-1202. 157063
- Vallejo M; Ruiz S; Hermosillo AG; Borja-Aburto VH; Cardenas M (2006). Ambient fine particles modify heart rate variability in young healthy adults. J Expo Sci Environ Epidemiol, 16: 125-130. 157081
- Van Roosbroeck S; Wichmann J; Janssen NAH; Hoek G; Van Wijnen JH; Lebret E; Brunekreef B (2006). Long-term personal exposure to traffic-related air pollution among school children, a validation study. Sci Total Environ, 368: 565-573. 090773
- Vaughn D; O'Brien T; Roberts PT; Rice J (2005). Comparison of integrated filter and semi-continuous measurements of PM2.5 nitrate, sulfate, and carbon aerosols in the Speciation Trends Network (STN). 157089
- Veltkamp PR; Hansen KJ; Barkley RM; Sievers RE (1996). Principal component analysis of summertime organic aerosols at Niwot Ridge, Colorado. J Geophys Res, 101: 19,495-19,504. 081594
- Vinzents PS; Moller P; Sorensen M; Knudsen LE; Herte LQ; Jensen FP; Schibye B; Loft S (2005). Personal exposure to ultrafine particles and oxidative DNA damage. Environ Health Perspect, 113: 1485-1490. <u>087482</u>

- Virkkula A; Ahlquist NC; Covert DS; Arnott WP; Sheridan PJ; Quinn PK; Coffman DJ (2005). Modification, Calibration and a Field Test of an Instrument for Measuring Light Absorption by Particles. Aerosol Sci Technol, 39: 68-83.

 157097
- Voorhees KJ; Schulz WD; Kunen SM; Hendricks LJ; Currie LA; Klouda G (1991). Analysis of Insoluble Carbonaceous Materials from Airborne Particles Collected in Pristine Regions of Colorado. J Anal Appl Pyrol, 18: 189–205. 157101
- Wallace L; Williams R (2005). Use of personal-indoor-outdoor sulfur concentrations to estimate the infiltration factor and outdoor exposure factor for individual homes and persons. Environ Sci Technol, 39: 1707-1714. 057485
- Wallace L; Williams R; Rea A; Croghan C (2006). Continuous weeklong measurements of personal exposures and indoor concentrations of fine particles for 37 health-impaired North Carolina residents for up to four seasons. Atmos Environ, 40: 399-414. 088211
- Wang D; Hopke PK (1989). The use of constrained least-squares to solve the chemical mass balance problem. Atmos Environ, 23: 2143-2150. <u>157105</u>
- Wang X; Fu J; Bi X; Sheng G (2006). Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China. Sci Total Environ, 366: 124-135. 157108
- Ward TJ; Noonan CW; Hooper K (2007). Results of an indoor size fractionated PM school sampling program in Libby, Montana. Environ Monit Assess, 130: 163-171. 157112
- Waterman D; Horsfield B; Leistner F; Hall K; Smith S (2000). Quantification of polycyclic aromatic hydrocarbons in the NIST Standard Reference Material (SRM1649A) urban dust using thermal Desorption GC/MS. Anal Chem, 72: 3563-3567. 157116
- Waterman D; Smith S; Green D; Horsfield B; Hall K (2001). The application of a thermal desorption GCMS technique for the organic analysis of airborne particulate matter. Adv Mass Spectrom, 14: 887-888. 157117
- Watson JG; Chen LW; Chow JC; Doraiswamy P; Lowenthal DH (2008). Source apportionment: findings from the U.S. Supersites Program. J Air Waste Manag Assoc, 58: 265-288. 157128
- Watson JG; Chow JC (2001). Ambient air sampling. In Baron PA; Willeke K (Ed.), Aerosol measurement: principles, techniques, and applications (pp. 821-844). New York: John Wiley & Sons Ltd. 157123
- Watson JG; Chow JC (2002). Comparison and evaluation of in situ and filter carbon measurements at the Fresno Supersite. J Geophys Res, 107: 8341. 037873
- Watson JG; Chow JC; Bowen JL; Lowenthal DH; Hering S; Ouchida P; Oslund W (2000). Air quality measurements from the Fresno supersite. J Air Waste Manag Assoc, 50: 1321-1334. 010354
- Watson JG; Chow JC; Chen LWA (2005). Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual Res, 5: 69–102. 157125
- Watson JG; Chow JC; Doraiswamy P; Chen LWA; Lowenthal DH; Trimble D; Park K (2005). Quality Assurance Final Report for the Fresno Supersite. 157124
- Watson JG; Chow JC; Frazier CA (1999). X-ray fluorescence analysis of ambient air samples. In Landsberger, S.; Creatchman, M. (Ed.), Elemental analysis of airborne particles (pp. 67-96). Amsterdam, The Netherlands: Gordon and Breach Science Publishers. 020949
- Watson JG; Chow JC; Moosmüller H; Green MC; Frank NH; Pitchford ML (1998). Guidance for using continuous monitors in PM2.5 monitoring networks. U.S. Environmental Protection Agency. Research Triangle Park, NC. EPA-454/R-98-012. http://www.epa.gov/ttn/amtic/pmpolgud.html. 198805
- Watson JG; Chow JC; Shah JJ; Pace TG (1983). The effect of sampling inlets on the PM-10 and PM-15 to TSP concentration ratios. J Air Waste Manag Assoc, 33: 114-119. 045084
- Watson JG; Cooper JA; Huntzicker JJ (1984). The effective variance weighting for least squares calculations applied to the mass balance receptor model. Atmos Environ, 18: 1347-1355. 045693

- Watson JG; Robinson NF; Lewis CW; Coulter CT; Chow JC; Fujita EM; Lowenthal DH; Corner TL; Henry RC; Willis RD (1997). Chemical mass balance receptor model version 8 (CMB) users manual. Washington, D.C.: U.S. Environmental Protection Agency. 157121
- Weber RJ; Orsini D; Daun Y; Lee Y-N; Kotz PJ; Brechtel F (2001). A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition. Aerosol Sci Technol, 35: 718-727. 024640
- Weber RJ; Orsini D; Duan Y; Baumann K; Kiang CS; Chameides W; Lee YN; Brechtel F; Klotz P; Jongejan P (2003).
 Intercomparison of near real time monitors of PM2. 5 nitrate and sulfate at the US Environmental Protection
 Agency Atlanta Supersite. J Geophys Res, 108: 8421. 157129
- Weisel CP; Zhang J; Turpin BJ; Morandi MT; Colome S; Stock TH; Spektor DM; Korn L; Winer AM; Kwon J; Meng QY; Zhang L; Harrington R; Liu W; Reff A; Lee JH; Alimokhtari S; Mohan K; Shendell D; Jones J; Farrar L; Maberti S; Fan T (2005). Relationships of Indoor, Outdoor, and Personal Air (RIOPA): Part I. Collection methods and descriptive analyses. Res Rep Health Eff Inst, 130: 1-107. 157131
- Welthagen W; Schnelle-Kreis J; Zimmermann R (2003). Search criteria and rules for comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry analysis of airborne particulate matter. J Chromatogr A, 1019: 233-249. 104056
- Wenzel RJ; Liu DY; Edgerton ES; Prather KA (2003). Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment: 2. Scaling procedures. J Geophys Res, 108: 8426. <u>157139</u>
- Westerdahl D; Fruin S; Sax T; Fine PM; Sioutas C (2005). Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos Environ, 39: 3597-3610. 086502
- Wichmann J; Janssen NAH; Van Der Zee S; Brunekreff B (2005). Traffic-related differences in indoor and personal absorption coefficient measurements in Amsterdam, the Netherlands. Atmos Environ, 39: 7384-7392. <u>086240</u>
- Williams B; Goldstein A; Kreisberg N; Hering S (2006). An In-Situ Instrument for Speciated Organic Composition of Atmospheric Aerosols: Thermal Desorption Aerosol GC/MS-FID (TAG). Aerosol Sci Technol, 40: 627-638. 156157
- Williams R; Rea A; Vette A; Croghan C; Whitaker D; Stevens C; McDow S; Fortmann R; Sheldon L; Wilson H; Thornburg J; Phillips M; Lawless P; Rodes C; Daughtrey H (2008). The design and field implementation of the Detroit exposure and aerosol research study. J Expo Sci Environ Epidemiol, 19: 643-659. 191201
- Williams R; Suggs J; Rea A; Sheldon L; Rodes C; Thornburg J (2003). The Research Triangle Park particulate matter panel study: modeling ambient source contribution to personal and residential PM mass concentrations. Atmos Environ, 37: 5365-5378. 053338
- Wilson WE; Brauer M (2006). Estimation of ambient and non-ambient components of particulate matter exposure from a personal monitoring panel study. J Expo Sci Environ Epidemiol, 16: 264-274. <u>088933</u>
- Winkler PM; Steiner G; Vrtala A; Vehkamaki H; Noppel M; Lehtinen KEJ; Reischl GP; Wagner PE; Kulmala M (2008). Heterogeneous Nucleation Experiments Bridging the Scale from Molecular Ion Clusters to Nanoparticles. Science, 319: 1374-1377. 156160
- Wittig AE; Takahama S; Khlystov AY; Pandis SN; Hering S; Kirby B; Davidson C (2004). Semi-continuous PM25 inorganic composition measurements during the Pittsburgh Air Quality Study. Atmos Environ, 38: 3201-3213. 103413
- Wu C-F; Delfino RJ; Floro JN; Quintana; (2005). Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers. Atmos Environ, 39: 3457-3469. 0.005/j.guintana; (2005). Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers. Atmos Environ, 39: 3457-3469. 0.005/j.guintana; (2005). Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers. Atmos Environ, 39: 3457-3469. 0.005/j.guintana; (2005). Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers.
- Wu CF; Delfino RJ; Floro JN; Samimi BS; Quintana PJ; Kleinman MT; Liu LJ (2005). Evaluation and quality control of personal nephelometers in indoor, outdoor and personal environments. J Expo Sci Environ Epidemiol, 15: 99-110. 157155
- Wu CF; Jimenez J; Claiborn C; Gould T; Simpson CD; Larson T; Liu LJS (2006). Agricultural burning smoke in Eastern Washington: Part II. Exposure assessment. Atmos Environ, 40: 5379-5392. 179950

- Xiao H-Y; Liu C-Q (2004). Chemical characteristics of water-soluble components in TSP over Guiyang, SW China, 2003. Atmos Environ, 38: 6297-6306. 056801
- Yang H; Jian ZY; Hang Ho SS; Xu J; Wu WS; Chun HW; Wang X; Wang L (2005). The chemical composition of inorganic and carbonaceous materials in PM25 in Nanjing, China. Atmos Environ, 39: 3735-3749. 102388
- Yang H; Li Q; Yu JZ (2003). Comparison of two methods for the determination of water-soluble organic carbon in atmospheric particles. Atmos Environ, 37: 865-870. 156167
- Yang W; Sohn J; Kim J; Son B; Park J (2009). Indoor air quality investigation according to age of the school buildings in Korea. J Environ Manage, 90: 348-354. 190885
- Yao X; Fang M; Chan CK; Ho KF; Lee SC (2004). Characterization of dicarboxylic acids in PM25 in Hong Kong. Atmos Environ, 38: 963-970. 102213
- Yeh S; Small MJ (2002). Incorporating exposure models in probabilistic assessment of the risks of premature mortality from particulate matter. J Expo Sci Environ Epidemiol, 12: 389-403. 040077
- Yip FY; Robins TG; Parker EA; Israel BA; Brakefield-Caldwell W; Keeler GJ; Dvonch JTE (2004). Personal exposures to particulate matter among children with asthma in Detroit, Michigan. Atmos Environ, 38: 5227-5236. 157166
- Yu KN; Cheung YP; Cheung T; Henry RC (2004). Identifying the impact of large urban airports on local air quality by nonparametric regression. Atmos Environ, 38: 4501-4507. 101779
- Yu LE; Shulman ML; Kopperud R; Hildemann LM (2005). Characterization of Organic Compounds Collected during Southeastern Aerosol and Visibility Study: Water-Soluble Organic Species. Environ Sci Technol, 39: 707-715. 157167
- Yue Z; Fraser M (2004). Characterization of Nonpolar Organic Fine Particulate Matter in Houston, Texas. Aerosol Sci Technol, 38: 60-67. <u>157169</u>
- Zhang J; Chameides WL; Weber R; Cass G; Orsini D; Edgerton E; Jongejan P; Slanina J (2002). An evaluation of the thermodynamic equilibrium assumption for fine particulate composition: Nitrate and ammonium during the 1999 Atlanta Supersite Experiment. J Geophys Res, 108: 8414. <u>157181</u>
- Zhang Q; Anastasio C (2003). Free and combined amino compounds in atmospheric fine particles (PM2. 5) and fog waters from Northern California. Atmos Environ, 37: 2247-2258. 157182
- Zhang Q; Jimenez JL; Canagaratna MR; Jayne JT; Worsnop DR (2005). Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. J Geophys Res, 110: 1-19.

 157185
- Zhao W; Hopke PK; Norris G; Williams R; Paatero P (2006). Source apportionment and analysis on ambient and personal exposure samples with a combined receptor model and an adaptive blank estimation strategy. Atmos Environ, 40: 3788-3801. 156181
- Zhao W; Rabinovitch N; Hopke PK; Gelfand EW (2007). Use of an expanded receptor model for personal exposure analysis in schoolchildren with asthma. Atmos Environ, 41: 4084-4096. 156182
- Zheng M; Cass GR; Schauer JJ; Edgerton ES (2002). Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environ Sci Technol, 36: 2361-2371. <a href="https://doi.org/10.2010/journal
- Zhou L; Hopke PK; Liu W (2004). Comparison of two trajectory based models for locating particle sources for two rural New York sites. Atmos Environ, 38: 1955-1963. 157190
- Zhu Y; Hinds WC; Krudysz M; Kuhn T; Froines J; Sioutas C (2005). Penetration of freeway ultrafine particles into indoor environments. J Aerosol Sci, 36: 303-322. 190081
- Zöllner I (2007). Concentrations of Particulate Matter in Schools in Southwest Germany. Inhal Toxicol, 19: 245-249.

Annex B. Dosimetry

B.1. Ultrafine Disposition

Table B-1. Ultrafine disposition in humans.

Reference	Study Group	Aerosol	Study Protocol	Observations
Mills et al.(2006,	Healthy nonsmokers	Carbon - 99mTc	Lung activity in the lung was measured at 0, 1, and 6 h post aerosol inhalation. $ \\$	On avg, lung activity decreased $3.2 \pm 0.7\%$ during the first h and $1.2 \pm 1.7\%$ over the next 5 h. With 95.6% of the particles in the lungs
<u>088770</u>)	(5 M, 5 F; 21-24 yr)	108 nm CMD (σg = 2.2)		at 6 h post inhalation and no accumulation of radioactivity detected over the liver or spleen, findings did not support rapid translocation from the lungs into systemic circulation.
		Technegas Generator		
Möller et al. (2008)	Healthy nonsmokers	Carbon - 99mTc	On two separate occasions, subjects inhaled 100 mL aerosol boli to target front depths of	Shallow airways boli-Total deposition in airways (shallow boli) similar between groups. Pattern of deposition was significantly more central in the health and before the property of the prop
	(n = 9; 50 ± 11 yr)	~100 nm CMD	150 and 800 mL into the lungs to target the airways and alveoli, respectively. Retention measured at 10 min, 1.5, 5.5, 24 and 48 h	in the healthy subjects which was thought due to non-uniform ventilation distribution in smokers and COPD patients as visualized by gamma-camera scans. Airway retention after 1.5 h was
	Smokers (n = 10; 51 ± 10 yr)	Technegas Generator	post inhalation. Isotope (99mTc) leaching from particles assessed via filters in saline, blood, and urine. 81mKr utilized to assess ventilation.	significantly lower in healthy subjects (89 \pm 6%) than smokers (97 \pm 3%) or COPD patients (96 \pm 6%). At 24 and 48 h, retention significantly remained higher in COPD patients (86 \pm 6% and 82 \pm 6%) than healthy subjects (75 \pm 10% and 70 \pm 9%).
	COPD patients (n = 7; 69 ± 10 yr)			Deep alveolar boli - Total deposition in alveoli (deep boli) significantly greater in smokers (64 \pm 11%) and COPD patients (62 \pm 5%) than healthy subjects (50 \pm 8%). Alveolar retention of particles similar at all times between groups. For example, at 48 h, 97 \pm 3% in healthy subject, 96 \pm 3% in smokers, and 96 \pm 2% in COPD patients. Retention at 24 and 48 correlated with isotope leaching, suggesting that the small amount of clearance primarily reflected the disassociation of 99mTc from the particles with little transport of particles from the lungs.
Wiebert et al. (2006, 156154)	Subjects having varied health status (9M, 6F; 46-74 yr) 6 healthy 5 asthmatic 4 smokers	Carbon - 99mTc 87 nm CMD (og = 1.7) Technegas Generator	Technegas system was modified to reduce leaching of 99mTc radiolabel from particles. The avg tidal volume during aerosol inhalation was 1.8 L (range 0.8-3.3). Activity in chest region measured at 0, 2, 24, 46, and 70 h after inhalation. Leaching assessed in vitro and via urine collection.	Lung function not significantly different between healthy and affected lungs. The aerosol deposition fraction was 41 \pm 10%. Lung retention was 99 \pm 3%, 99 \pm 5%, and 99 \pm 10% at 24, 46, and 70 h post inhalation. Cumulative in vitro leaching by 70 h was 2.6 \pm 0.96%. Except for radiotracer leaching from particles (1.0 \pm 0.6% of initially deposited activity in urine by 24 h), there was not significant clearance from the lungs by 70 h. Individual leaching was not correlated with individual retention.
Wiebert et al. (2006, 157146)	Healthy subjects (4M, $5F$; 56 ± 9 yr) Asthmatics (2M, $3F$; 59 ± 6 yr) Control (1M; 50 yr)	Carbon - 99mTc 34 nm CMD (σg = 1.5) Technegas Generator	Slow deep aerosol inhalations with 10 s breath hold. Mean inhalation time of 6 min. Control subject inhaled aerosol with loosely bound radiolabel. Retention scans at 10 min, 60 min, 100 min, and 24 h post inhalation. Leaching assessed in vitro and via collection of blood and urine.	Avg deposition fraction of $60\pm17\%$ which was correlated with tidal volume during aerosol inhalation (p = 0.01). Activity excreted in urine over 24-h post inhalation was 51% in the control subject (high 99mTc disassociation) and $3.6\pm0.9\%$ of deposited activity. In the blood of the control subject, activity was 30%, 31%, and 5% of the deposited activity at 20 min, 80 min, and 24-h (respectively), whereas it was only $0.9\pm0.6\%$, $1.1\pm0.4\%$, and $1.5\pm0.5\%$ the other 13 subjects at these times. Lung retention in the control subject was 30% at 1-h and 18% at 24 h. In the remainder of subjects, lung retention was approximately 100% through 24 h.

Note: Hyperlinks to the reference citations throughout this document will take you to the NCEA HERO database (Health and Environmental Research Online) at http://epa.gov/hero. HERO is a database of scientific literature used by U.S. EPA in the process of developing science assessments such as the Integrated Science Assessments (ISA) and the Integrated Risk Information System (IRIS).

Table B- 2. Ultrafine disposition in animals.

Reference	Study Group	Aerosol	Study Protocol	Observations	
Bermudez et al.(2004, 056707)	Fischer 344 rats, females (6 wk)	TiO ₂ : 1.29-1.44 μm MMAD (σg = 2.46-3.65), 21	Animals exposed 6 h/day, 5 day/wk, for 13 wk to 0.5, 2 and 10 mg/m³. Control animals exposed to filtered	${ m TiO_2}$ pulmonary retention half-times for the low-, mid-, and high-exposure groups, respectively: 63, 132, and 365 days in rats; 48, 40, and 319 days in mice; and 33, 37, and 39 days in hamsters.	
	B3C3F1 mice, females (6 wk)	nm primary particles	air. Animals sacrificed at 0, 4, 13, 26, and 56 (49 for hamsters) post-	Burden of TiO ₂ in lymph nodes increase with time postexposure in	
	Hamsters, females (6 wk)		exposure. Groups of 25 animals per species and time point.	mid- and high-dosed rats; in high-dosed mice; but was unaffected in hamsters at any time or dosage group. In high-exposure groups of mice, epithelial permeability remained elevated (~2× control groups) out to 52 wk without signs of recovery. Epithelial permeability was 3-4× control in high exposed rats through 4 wk post exposure, but approached control by 13 wk . Epithelial permeability was unaffected in all groups of hamsters.	
Chen et al. (2006,	Sprague-Dawley male rats	Polystyrene	Intratracheal instillation of particles in healthy rats or those pretreated	In healthy rats, there were no marked differences in lung retention or systemic distribution between the ultrafine and fine particles. Results	
<u>087947</u>)	(220 ± 20 g)	125l radiolabel Ultrafine: 56.4 nm	with LPS (12 h before particle instillation). Healthy rats sacrificed	for healthy animals focused on ultrafine particles which were primarily retained in lungs (72 ± 10% at 0.5-2 h; 65 ± 1% at 1 day;	
	between 0.5-2 h and at 24 or 48 h post-instillation. LPS treated rats were sacrificed 0.5-2 h post-instillation.		post-instillation. LPS treated rats were sacrificed 0.5-2 h	$62\pm5\%$ at 5 days). Initially, there was rapid particle movement into the blood (2 ± 1% at 0.2-2 h; 0.1 ± 0.1% at 5 days) and liver (3 ± 2% at 0.5-2 h; 1 ± 0.1% at 5 days). At 1 day post-instillation, about 13% of the particles where in the urine or feces. Following LPS treatment, ultrafine accessed the blood (5 vs. 2%) and liver (11 vs. 4%) to a significantly greater extent than fine particles.	
Geiser et al. (2005,	Wistar rats 20 adult males	TiO_2 (22 nm CMD, 1.7 σ g)	Rats exposed 1-h via endotracheal tube while anesthetized and	Distributions of particles among lung compartments followed the volume distribution of compartments and did not differ significantly	
087362) Also included	(250 ± 10 g)	Spark generated	ventilated at constant rate. Lungs fixed at 1 or 24-h postexposure.	between 1 and 24-h post-inhalation. On avg, $79.3\pm7.6\%$ of particles were on the luminal side of the airway surfaces, $4.6\pm2.6\%$	
in in vitro		0.11 mg/m ³		in epithelial or endothelial cells, $4.8\pm4.5\%$ in connective tissues, and $11.3\pm3.9\%$ within capillaries. Particles within cells were not	
studies		7.3 × 106 particles/cm ³		membrane-bound.	
Kapp et al. (2004,	Charles River rats	TiO_2 (22 nm CMD, 1.7 σg)	Rats exposed 1-h via endotracheal tube while anesthetized and	Of particles in tissues, 72% were aggregates of 2 or more particles; 93% of aggregates were in round or oval shape aggregates, 7%	
<u>156624</u>)	5 young adult male	Spark generated	ventilated at constant rate. Lungs fixed immediately postexposure.	were needle-like. The size distribution of particles in lung tissues (29 nm CMD, 1.7 og) was remarkably similar to the aerosol; the small discrepancy may have been due to differences sizing techniques. A	
	(250 ± 10 g)			large 350 nm aggregate was found in a type II pneumocyte, a 37 nm particle in a capillary close to the endothelial cells, and a 106 nm particle within the surface-lining layer close to the alveolar epithelium.	

Table B- 3. In vitro studies of ultrafine disposition.

Reference	Animal	Particles	Study Protocol	Observations
Edetsberger et al. (2005, 155759)	Human cervix carcinoma cells (HeLa cells)	Polystyrene spheres (0.020 μm)	Cells incubated with polystyrene particles having negative surface charges. Cell cultures were naïve or treated with Genistein or Cytochalasin B (CytB) prior to particle application. Genistein inhibits endocytotic processes, expecially caveolae internalization. CytB inhibits actin polymerization and phagocytosis.	Particles translocated into cells by first measurement (~1 min after particle application) independent of treatment group. In naïve cells, agglomerates of 88-117 nm were seen by 15-20 min and of 253-675 nm by 50-60 min after particle application. Intracellular aggregates thought to be result from particle incorporation into endosomes or similar structures. In treated cells, only a small number of agglomerates (161-308 nm) were found and only by 50-60 min. At 50-60 min, 90% and 98% of particles were in the 20-40 nm range in naïve and treated cells, respectively. Particles did not translocate into dead cells, rather they attached to outside of the cell membrane.
Geiser et al. (2005, 087362) Also included inhalation study	Porcine lung macrophages (106 cell/mLuman red blood cells (RBC; 8 × 106 cells/mL)	Fluorescent polystyrene spheres (0.078, 0.2, and 1 µm) Gold shheres (0.025 µm)	Cells cultured for 4 h with each sized polystyrene spheres. RBC were employed as a model of nonphagocytic cells. Some macrophages cultures were treated with cytochalasin D (cytD) to inhibit phagocytosis. In addition, RBC were also cultured with gold particles.	Of the non-cytD treated macrophages, $77 \pm 15\%$, $21 \pm 11\%$, and $56 \pm 30\%$ contained 0.078, 0.2, and 1 µm particles, respectively. CytD treatment of macrophages effectively blocked the phagocytosis of 1 µm particles, but did not alter the uptake of the 0.078 and 0.2 µm particles. Human RBC were found to contain 0.078 and 0.2 µm polystyrene spheres as well as the 0.025 µm gold particles, which were not membrane bound. In contrast, the RBC did not contain the larger 1 µm polystyrene spheres. Results suggest that ultrafine and fine (0.078 and 0.2 µm diameter) particles cross cellular membranes by a non-endocytic (i.e. not involving vesicle formation) mechanisms such as adhesive interactions and diffusion.
Geys et al. (2006, 155789)	Human alveolar (A549) and bronchial (Calu-3) epithelial cellsRat primary type II pneumocytes	Amine- and carboxyl-modified fluorescent polystyrene (46 nm)	Cells cultured in clear polyester transwells with 0.4 or 3 µm pores. Monolayer considered "tight" when <1% sodium fluorescein moved from apical to basolateral compartment. Particle translocation assessed in transwells with and without cells. Cells incubated with particles for 14-16 h to assess translocation from apical to basolateral compartment.	Without cells, 13.5% of carboxyl-modified particles passed through the 0.4 μ m pores (n = 7) and 67.5% through 3 μ m pores (n = 3). Movement of the amine-modified particles was 4.2% through 0.4 μ m pores (n = 7) and 52.7% through 3 μ m pores (n = 3). The integrity of the monolayer was insufficient for translocation studies using the A549 cells (0.4 and 4 μ m pore size) and rat pneumocytes (0.3 μ m pore). Using 0.4 μ m pores, there was no detectable translocation through either Calu-3 or rat pneumocyte monolayers. Using 3 μ m pores, -6% of both particle types passed through the Calu-3 monolayer, however, results were highly variable with no translocation in 2 (of 5) and 3 (of 6) trials with carboxyl- or amine-modified particles, respectively.

B.2. Olfactory Translocation

 Table B-4.
 Olfactory particle translocation.

Reference	Study Group	Aerosol	Study Protocol	Observations	
DeLorenzo (1970, <u>156391</u>)	Squirrel monkeys Young males	Silver-coated colloidal gold (50 nm)	Intranasal instillation of 1 mL particle suspension. Animals sacrificed at 0.25, 0.5, 1, and 24-h after instillation.	Rapid movement (30-60 min) into olfactory bulbs. Within 30 min of being placed on nasal mucosa, particle aggregates were seen in axoplasm of the fila olfactoria Within 1 h, particles were in olfactory glomerulus. Particles in the olfactory bulb were located preferentially in mitochondria and not free in the cytoplasm.	
	(1 kg)				
Dorman et al. (2001, 055433)	Crl: CD rats Males (6 wk old)	Soluble and insoluble Mn particle types; MMAD = 1.3-2.1 µm; GSD<2	Whole body exposure (6 h/day, 14 consecutive days) to 0, 0.03, 0.3, and 3 mg Mn/m³. Tissues analyzed in six animals per concentration exposed to soluble (MnSO ₄) or insoluble (Mn ₃ O ₄) aerosols.	Increased Mn levels in olfactory bulb observed following MnSO ₄ of ≥ 0.3 mg Mn/m³ and following Mn₃O ₄ of 3 mg Mn/m³. At 3 mg Mn/m³, Mn levels were significantly greater in olfactory bulb (1.4-fold) and striatum (2.7-fold) following soluble MnO ₄ than insoluble Mn₃O ₄ . Mn levels in the cerebellum were unaffected following all exposures.	

Reference	Study Group	Aerosol	Study Protocol	Observations
Dorman et al. (2004, 155752)	Crl: CD rats Males (6 wk old)	Soluble and insoluble Mn particle types; MMAD = 1.5-2 µm; GSD = 1.4-1.6	Whole body exposure (6 h/day, 5 days/wk, 13 wk) to MnSO ₄ at 0, 0.01, 0.1, and 0.5 mg Mn/m³. Compared to Mn phosphate (as hureaulite) exposure of 0.1 mg Mn/m³. Brain Mn levels assessed immediately following 90 days of exposure or 45 days postexposure.	Relative to air, the insoluble hureaulite was significantly increased at 90 days of exposure in the olfactory bulb, but not striatum or cerebellum. The soluble Mn phosphate showed a dose dependent increase in olfactory bulb Mn levels at 90 days. At 0.1 mg Mn/m³, Mn levels following Mn phosphate were significantly increased in the olfactory bulb and striatum relative to hureaulite and air exposures. At 45 days postexposure, relative to air, olfactory bulb Mn levels only remained increased Mn phosphate group at 0.5 mg Mn/m³.
Elder et al. (2006, 089253)	Fisher 344 rats Males (200-250 g)	Mn oxide (~30 nm equivalent sphere with 3-8 nm primary particles) Spark generated 0.5 mg/m³ 18 × 106 particles/cm³	Whole body inhalation exposure to either filtered air or Mn oxide for 12 days (6 h/day, 5 days/wk) with both nares open or Mn oxide for 2 days (6 h/day) with right nostril blocked. Intranasal instillation in left nostril of Mn oxide particles or soluble MnCl2 suspended in 30 μL saline. Analyzed Mn in the lung, liver, olfactory bulb, and other brain regions.	After 12 day exposure via both nostrils, Mn in the olfactory bulb increased 3.5-fold, whereas in the lung Mn concentrations doubled; there were also increases in the striatum, frontal cortex, and cerebellum. After the 2 days exposure with the right nostril blocked, Mn accumulated in the mainly in the left olfactory bulb (~2.4-fold increase) in to a lesser extent in the right olfactory bulb (1.2-fold increase). At 24-h post instillation, the left olfactory bulb contained similar amounts of the poorly soluble Mn oxide $(8.2\pm0.7\%)$ and soluble MnCl2 $(8.2\pm3.6\%)$ as a percent of the amount instilled.
Oberdörster et al. (2004, 055639)	Fisher 344 rats Males (14 wk; 284 ± 9 g)	13C (36 nm CMD, 1.7 σg) Spark generated	Rats (n = 12, 3 per time point) exposed to 160 µg/m³ for 6 h in whole-body chamber and sacrificed at 1, 3, 5, and 7 day postexposure. Lung, olfactory bulb, cerebrum, and cerebellum removed for 13C analysis. Tissue 13C-levels were determined by isotope ratio mass spectroscopy and background corrected for 13C levels in unexposed controls (n = 3).	of 13C in the cerebrum and cerebellum were also
Persson et al. (2003, 051846)	Sprague-Dawley male rats (150 g) Freshwater Pike female (3 kg)	65ZnCl2 dissolved in 0.1 M HCl	Rats: intransal (0.03 μ g Zn in 10 μ L) or intraperitoneally (0.03 μ g Zn in 100 μ L); autoradiography and γ spec at 1 day or 1, 3, or 6 wk postexposure. Pike: instilled (0.12 μ g Zn in 10 μ L) in right or both olfactory chambers, assayed 2 wk postexposure	Zn uptake in olfactory epithelium and transport along olfactory neurons to olfactory bulb. Zn continued into interior of olfactory bulb and in rat went into anterior olfactory cortex. Zn found bound to both cellular constituents and cytosolic components. Some Zn bound to metallothionein in olfactory mucosa and olfactory bulb.
Wang et al. (2007, 156147)	CD-1 (ICR) mice	Rutile TiO ₂ 21 and 80 nm Anatase TiO ₂ 155 nm	Twenty mice (n = 5 per group) exposed 0 or 0.01 g-TiO ₂ per mL DI. Instilled 25 μ L each day for 5 days, then inhaled 10 μ L every other day. Mice sacrificed after 1 mo.	Rutile particles were observed to be column/fiber shaped, whereas anatase was octahedral. TiO_2 particles taken up by olfactory bulb via the olfactory nerve layer, olfactory ventricle, and granular cell layer of the olfactory bulb. Fine TiO_2 showed greater entry into the olfactory bulb presumably due to aggregation of smaller rutile particles that was not seen for the fine anatase particles.
Yu et al. (2003, 156171)	Sprague-Dawley male rats, 6 wk old (218 ± 10 g)	Stainless steel welding-fume <0.5 µm	Whole body exposure 2 h/day for 1, 15, 30, or 60 days Low: $64 \pm 4 \text{ mg/m}^3 (1.6 \text{ mg/m}^3 \text{ Mn})$ High: $107 \pm 6 \text{ mg/m}^3 (3.5 \text{ mg/m}^3 \text{ Mn})$	Significant increases in cerebellum Mn at 15-30 days of exposure. Slight increases in Mn in substantia nigra, basal ganglia, temporal cortex, and frontal cortex after 60 days. Significant increase at 30 days in basal ganglia at low dose. Authors suggested that pharmacokinetics and distribution of welding fume Mn differs from pure Mn.

B.3. Clearance and Age

Table B-5. Studies of respiratory tract mucosal and macrophage clearance as a function of age.

Reference	Animal	Particles	Study Protocol	Observed Effect(s)
NASAL ANI	TRACHE	AL CLEARANCE		
Ho et al. (2001, 156549)	Human, males and females	Not applicable	Ninety subjects (47 M, 43 F; 52 ± 23 yr) between 11 and 90 yr of age were recruited to measure nasal saccharine clearance and ciliary beat frequency.	Ciliary beat frequency (n = 90; r = -0.48, p < 0.0001) and nasal mucociliary clearance time (n = 43; r = 0.64, p < 0.001) were correlated with subject age. Nasal clearance times were significantly (p < 0.001) faster in individuals under 40 yr of age (9.3 \pm 5.2 min) versus older subjects (15.4 \pm 5.0 min). Results similar between males and females.
Goodman et al. (1978, 071130)	Humans, males and females	Radiolabed Teflon disks (1 mm diameter, 0.8 mm thick)	Tracheal mucus velocity following delivery via bronchoscope to the tracheal mucosa. Ten young (2 M, 8 F; 23 \pm 3 yr) and ten elderly (2 M, 5 F; 63 \pm 5 yr) nonsmokers served as control subjects. Measurements were also made in young smokers, ex-smokers, and individuals with chronic bronchitis.	Young nonsmokers had a tracheal mucus velocity of 10.1 ± 3.5 mm/min which was significantly faster than the velocity of 5.8 ± 2.6 observed in the elderly nonsmokers.
Whaley et al. (1987, 156153)	Beagle dogs, males and females	Macroaggregated albumin99mTc labelled	Intratracheal instillation of 10- µl droplet of labelled albumin in saline. Tracheal clearance followed 25 min. Longitudinal measure measurements in 5 males and 3 females when young adults (2.8-3 yr), middle-aged (6.7-6.9 yr), and mature (9.6-9.8 yr). Additional 5 females and 3 males comprised immature group (9-10 mo) and 4 males and 4 females used as aged group (13-16 yr).	Tracheal mucus velocity significantly (p <0.05) greater in young (9.7 \pm 0.6 [SE] mm/min) and middle-aged (6.9 \pm 0.5) groups than in immature (3.6 \pm 0.4), mature (3.5 \pm 0.8), and aged (2.9 \pm 0.5) dogs.
Yeates et al. (1981, 095391)	Humans, males and females	Radioaerosols 99mTc labelled	Tracheal mucus velocities compiled for 74 healthy non-smoking subjects (60 M, 14 F; 10-65 yr, mean 30 yr) from prior studies. Forty-two (32 M, 10 F) inhaled albumin in saline droplets (6.2-6.5 µm MMAD), Yeates et al. (1975); twenty-two (21 M, 1 F) inhaled iron oxide (4.2 µm MMAD), Yeates et al. (1981b); and ten (7 M, 3 F) inhaled monodisperse iron oxide aerosol (7.5 µm MMAD), Leikauf et al. (1981). Inhalations were via a mouthpiece with an inspiratory flow of ~1 liter/sec.	
BRONCHI A	ND BRON	CHIOLES CLEARANCE		
Puchelle et al. (1979, 006863)	Human, males	7.4 µm MMAD99mTc labelled resin	Mucociliary clearance measured for 1 h post aerosol inhalation in 19 healthy non-smoking males (21-69 yr of age). Clearance measure on two occasions in 16 individuals.	Negative correlation (r = -0.472, p <0.05) between mucociliary clearance and age. Younger subjects (n = 9; 21-37 yr) had 1-h clearance of 34 ± 14% which was significantly greater than the 22 ± 8% found in the older subjects (n = 5; >54 yr). Separated by 5.4 wk (on avg), there was a good correlation between repeated clearance measurements (r = 0.65, p <0.001)
Svartengren et al. (2005, 157034)	Humans, males and females	6 μm MMAD111In labelled Teflon	Small airway clearance measured in five age groups (\leq 24 yr, n = 13; 25-29 yr, n = 8; 30-49 yr, n = 7; 50-64, n = 9; >65 yr, n = 9) of healthy subjects. Aerosol inhaled via mouthpiece at extremely slow rate of 0.05 L/s. Activity in lungs measured at 1 day, 2 days, and 1, 2, and 3 wk post-exposure. Under the presumption that most large airway clearance was complete by 24 h, retention at 24 h was normalized to 100%.	Large and small airway clearance slowed with increasing age. Clearance correlated with age at all times (r = -0.46 to -0.50, -0.55, -0.66, and -0.70 at 1 day, 2 days, 1 wk, 2 wk, and 3 wk, respectively). Based on linear regression, the clearance from 1 to 21 days post-exposure was 47% in a 20 yr-old versus 23% in an 80 yr-old. Lung function was not a significant predictor of clearance when age considered.

Reference	Animal	Particles	Study Protocol	Observed Effect(s)
Vastag et al. (1985, 157088)	Humans, males and females	Monodisperseerythrocytes99mTc labelled	Clearance measured for 1-h post-inhalation in eighty healthy (59 M, 21 F; 43 ± 17 yr) subjects who had never smoked. Smokers and ex-smokers also studied. Aerosol inhalation not described.	Clearance significantly associated with age. Based on linear regression, total mucociliary clearance at 1-h post-exposure was 46% in a 20 yr old versus 23% in an 80 yr old. Similar results for males and females.
ALVEOLAR	CLEARAI	NCE		
Muhle et al. (1990, 006853)	Fischer 344 rats	3.5 µm MMAD 85Sr labelled polystyrene latex	Control animals compared across several studies. Aerosol inhaled by short-term nose only exposure. Alveolar clearance determined by exponential fit to thoracic activity measured over 75-100 days excluding the first 15 days post-exposure.	Typical alveolar clearance half-time of 45 days in 5-mo-old rats compared to 74 days in 23-mo-old rats. Statistical significance of findings not proved.

Annex B References

- Bermudez E; Mangum JB; Wong BA; Asgharian B; Hext PM; Warheit DB; Everitt JI (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci, 77: 347-357. 056707
- Chen C-H; Xirasagar S; Lin H-C (2006). Seasonality in adult asthma admissions, air pollutant levels, and climate: a population-based study. J Asthma, 43: 287-292. 087947
- DeLorenzo AJD (1970). The olfactory neuron and the blood-braín barríer. In Taste and Smell in Vertebrates (pp. 151-175). London: Churchill Livingstone. 156391
- Dorman DC; McManus BE; Parkinson CU; Manuel CA; McElveen AM; Everitt JI (2004). Nasal Toxicity of Manganese Sulfate and Manganese Phosphate in Young Male Rats Following Subchronic (13-Week) Inhalation Exposure. Inhal Toxicol, 16: 481-488. <a href="https://doi.org/10.1001/journal.org/10
- Dorman DC; Struve MF; James RA; Marshall MW; Parkinson CU; Wong BA (2001). Influence of particle solubility on the delivery of inhaled manganese to the rat brain: manganese sulfate and manganese tetroxide pharmacokinetics following repeated (14-day) exposure. Toxicol Appl Pharmacol, 170: 79-87. 055433
- Edetsberger M; Gaubitzer E; Valic E; Waigmann E; Köhler G (2005). Detection of nanometer-sized particles in living cells using modern fluorescence fluctuation methods. Biochem Biophys Res Commun, 332: 109-116. <u>155759</u>
- Elder A; Gelein R; Silva V; Feikert T; Opanashuk L; Carter J; Potter R; Maynard A; Ito Y; Finkelstein J; Oberdorster G (2006). Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect, 114: 1172-1178. 089253
- Geiser M; Rothen-Rutishauser B; Kapp N; Schurch S; Kreyling W; Schulz H; Semmler M; Im Hof V; Heyder J; Gehr P (2005). Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect, 113: 1555-1560. 087362
- Geys J; Coenegrachts L; Vercammen J; Engelborghs Y; Nemmar A; Nemery B; Hoet PHM (2006). In vitro study of the pulmonary translocation of nanoparticles A preliminary study. Toxicol Lett, 160: 218-226. 155789
- Goodman RM; Yergin BM; Landa JF; Golinvaux MH; Sackner MA (1978). Relationship of smoking history and pulmonary function tests to tracheal mucous velocity in nonsmokers, young smokers, ex-smokers, and patients with chronic bronchitis. Am Rev Respir Dis, 117: 205-214. <a href="https://doi.org/10.2016/j.gov/10.
- Ho JC; Chan KN; Hu WH; Lam WK; Zheng L; Tipoe GL; Sun J; Leung R; Tsang KW (2001). The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia. Am J Respir Crit Care Med, 163: 983-988. 156549
- Kapp N; Kreyling W; Schulz H; Im Hof V; Gehr P; Semmler M; Geiser M (2004). Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs. Microsc Res Tech, 63: 298-305. <a href="https://doi.org/10.1007/j.ncb.2016/10.2016/10.2016/j.ncb
- Mills NL; Amin N; Robinson SD; Anand A; Davies J; Patel D; de la Fuente JM; Cassee FR; Boon NA; Macnee W; Millar AM; Donaldson K; Newby DE (2006). Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am J Respir Crit Care Med, 173: 426-431. <u>088770</u>
- Muhle H; Creutzenberg O; Bellmann B; Heinrich U; Mermelstein R (1990). Dust overloading of lungs: investigations of various materials, species differences, and irreversibility of effects. J Aerosol Med, 1: S111-S128. https://doi.org/10.2016/j.com/naterials.new/
- Oberdörster G; Sharp Z; Atudorei V; Elder A; Gelein R; Kreyling W; Cox C (2004). Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol, 16: 437-445. 055639
- Persson E; Henriksson J; Tallkvist J; Rouleau C; Tjalve H (2003). Transport and subcellular distribution of intranasally administered zinc in the olfactory system of rats and pikes. Toxicology, 191: 97-108. <u>051846</u>
- Puchelle E; Zahm J-M; Bertrand A (1979). Influence of age on bronchial mucociliary transport. Scand J Respir Dis, 60: 307-313. 006863

Note: Hyperlinks to the reference citations throughout this document will take you to the NCEA HERO database (Health and Environmental Research Online) at http://epa.gov/hero. HERO is a database of scientific literature used by U.S. EPA in the process of developing science assessments such as the Integrated Science Assessments (ISA) and the Integrated Risk Information System (IRIS).

- Svartengren M; Falk R; Philipson K (2005). Long-term clearance from small airways decreases with age. Eur Respir J, 26: 609-615. 157034
- Vastag E; Matthys H; Kohler D; Gronbeck L; Daikeler G (1985). Mucociliary clearance and airways obstruction in smokers, ex-smokers and normal subjects who never smoked. Eur J Respir Dis, 139: 93-100. <u>157088</u>
- Wang C (2007). Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation. Geophys Res Lett, 34: 5709. 156147
- Whaley SL; Muggenburg BA; Seiler FA; Wolff RK (1987). Effect of aging on tracheal mucociliary clearance in beagle dogs. J Appl Physiol, 62: 1331-1334. 156153
- Wiebert P; Sanchez-Crespo A; Falk R; Philipson K; Lundin A; Larsson S; Möller W; Kreyling W; Svartengren M (2006). No Significant Translocation of Inhaled 35-nm Carbon Particles to the Circulation in Humans. Inhal Toxicol, 18: 741-747. 156154
- Wiebert P; Sanchez-Crespo A; Seitz J; Falk R; Philipson K; Kreyling WG; Moller W; Sommerer K; Larsson S; Svartengren M (2006). Negligible clearance of ultrafine particles retained in healthy and affected human lungs. Eur Respir J, 28: 286-290. 157146
- Yeates DB; Gerrity TR; Garrard CS (1981). Particle deposition and clearance in the bronchial tree. Ann Biomed Eng, 9: 577-592. 095391
- Yu IJ; Park JD; Park ES; Song KS; Han KT; Han JH; Chung YH; Choi BS; Chung KH; Cho MH (2003). Manganese distribution in brains of Sprague-Dawley rats after 60 days of stainless steel welding-fume exposure. Neurotoxicology, 24: 777-785. 156171

Annex C. Controlled Human Exposure Studies

Table C-1. Cardiovascular effects.

Study	Pollutant	Exposure	Findings
Reference: Barregard et al. (2006, <u>091381</u>) Subjects: 13 healthy adults Gender: 6 M/7 F Age: 20-56 yr	Wood smoke Particle Size: Session 1: GMD 42 nm; Session 2: GMD 112 nm Particle Number/Count: Session 1: 180,000/cm³; Session 2: 95,000/cm³ Concentration: Session 1: median: 279 µg/m³; Session 2; median 243 µg/m³	Subjects exposed in two groups for 4 h to filtered air, followed a wk later by a 4-h exposure to wood smoke. Exposures conducted with two 25-min periods of light exercise. Other measured combustion products: Session 1: NO ₂ (0.08 ppm), CO (13 ppm), formaldehyde (114 µg/m³), acetaldehyde (75 µg/m³), benzene (30 µg/m³), 1,3-butadiene (6.3 µg/m³); Session 2: NO ₂ (0.09 ppm), CO (9.1 ppm), formaldehyde (64 µg/m³), acetaldehyde (40 µg/m³), benzene (20 µg/m³). Time to analysis: Immediately following exposure as well as 3 and 20 h post-exposure.	Statistically significant increase in plasma factor VIII 20 h post wood smoke exposure relative to filtered air. The factor VIII/von Willebrand ratio in plasma was increased with wood smoke relative to filtered air at 0, 3, and 20 h post-exposure. Wood smoke exposure increased the urinary excretion of free 8-iso-prostaglandin2 α relative to clean air 20 h post-exposure (n = 9). These findings were more pronounced in session 1 than session 2 (similar mass concentration but higher number concentration in Session 1).
Reference: Beckett et al. (2005, <u>156261</u>) Subjects: 12 healthy adults Gender: 6 M/6 F Age: 23-52 yr	Ultrafine and fine zinc oxide Particle Size: UF: <0.1 μm; Fine: 0.1-1.0 μm Particle Number/Count: UF: 4.6 × 10 ⁷ /cm ³ ; Fine: 1.9 × 10 ⁵ /cm ³ Concentration: 500 μg/m ³	Subjects exposed via mouthpiece for 2 h during rest to filtered air, ultrafine, and fine zinc oxide in a randomized crossover study design. Exposures were separated by at least 3 wk. Time to analysis: Immediately following exposure and 3, 6, 11, 23, and 24 h after exposure.	Exposure to ultrafine and fine zinc oxide did not affect HRV (time and frequency domain parameters) relative to clean air immediately following exposure, or at 3, 6, 11, and 23 h post-exposure. Exposure did not affect blood pressure through 24 h post-exposure. No effects of exposure to either fine or ultrafine zinc oxide observed on factor VII, von Willebrand factor (VWf), tissue plasminogen activator (t-PA), or fibrinogen. No effect of exposure observed on peripheral blood cell counts or levels of pro-inflammatory cytokines.
Reference: Blomberg et al. (2005, 191991) Subjects: 15 older adults (former smokers) with COPD Age: 56-72 yr	DE Concentration: 300 μg/m ³	Subjects exposed for 1 h with intermittent exercise to DE and filtered air in a randomized crossover study design. Time to analysis: 6 and 24 h post-exposure.	DE was not observed to affect blood levels of C-reactive protein, fibrinogen, D-Dimer, prothrombin factor 1-2, or von Willebrand factor activity at 6 and 24 h post-exposure.
Reference: Brauner et al. (2007, <u>091152</u>) Subjects: 29 healthy adults Gender: 20 M/9 F Age: 20-40 yr	Particle Number/Count: 6-700nm: 10,067/cm³ Concentration: PM _{2.5} : 9.7 μg/m³, PM _{10-2.5} : 12.6 μg/m³	Subjects exposed to urban traffic particles and filtered air for 24 h with and without two 90-min periods of light exercise in a randomized crossover study design. Concentrations of NO_X and NO were low and did not differ between filtered and unfiltered exposures. CO concentrations were higher with filtered air (0.35 and 0.41 ppm), while O_3 concentrations were lower with filtered air (12.08 and 4.29 ppb).	An increase in DNA strand breaks and formamidopyrimidine-DNA glycosylase sites in peripheral blood mononuclear cells were observed after 6 and 24 h of exposure to urbar particulates. The particle concentration at the 57nm mode was shown to be the major contributor to these effects.

Note: Hyperlinks to the reference citations throughout this document will take you to the NCEA HERO database (Health and Environmental Research Online) at http://epa.gov/hero. HERO is a database of scientific literature used by U.S. EPA in the process of developing science assessments such as the Integrated Science Assessments (ISA) and the Integrated Risk Information System (IRIS).

Study	Pollutant	Exposure	Findings
Reference: Brauner et al. (2008, <u>156293</u>) Subjects: 42 healthy older adults (21 couples) Age: 60-75 yr	Particle Number/Count: 10-700 nm: 10,016/cm³ Concentration: Coarse: 9.4 μg/m³; Fine: 12.6 μg/m³	Exposures consisted of two 48 h periods in the home of each subject with or without the use of a HEPA filter (randomized crossover design). HEPA filters reduced coarse concentration from 9.4 to 4.6 μ g/m³, and fine concentration from 12.6 to 4.7 μ g/m³. Concentrations of NO ₂ did not differ between the 2 sessions (20 ppb). Time to analysis: After the completion of each 48 h session.	The use of HEPA filters significantly improved microvascular function (p = 0.04) after 48 h (reactive hyperemia-peripheral arterial tonometry). Microvascular function was assessed using a scoring system representing the extent of reactive hyperemia. The reduction in PM concentration through the use of HEPA filters did not significantly affect blood pressure following the 48-h exposures. Lowering PM concentration did not significantly affect inflammatory response markers in peripheral venous blood (IL-6, TNF- α , C-reactive protein, plasma amyloid A).
Reference: Brauner et al. (2008, 191966) Subjects: 29 healthy adults Gender: 20 M, 9 F Age: M avg 27 yr, F avg 26 yr	Urban traffic particles Particle Number/Count: 11,600/cm³ Concentration: PM _{2.5} : 10.5 μg/m³; PM _{10-2.5} : 13.8 μg/m³	Subjects exposed to urban traffic particles and filtered air for 24 h with and without two 90-min periods of light exercise in a randomized crossover study design. Concentrations of NO _X and NO were low and did not differ between filtered and unfiltered exposures. CO concentrations were higher with filtered air, while O ₃ concentrations were lower with filtered air. Time to analysis: 6 and 24 h after the start of exposure.	Exposure to urban traffic particles was not observed to affect microvascular function (digital peripheral artery tone) at 6 or 24 h after the start of exposure. No difference in various blood markers of coagulation, inflammation, or protein oxidation (e.g., fibrinogen, platelet count, CRP, IL-6, TNF- α) were demonstrated between particle and filtered air exposure.
Reference: Carlsten et al. (2007, 155714) Subjects: 13 healthy adults Gender: 11 M/2 F Age: 20-42 yr	DE 2002 Cummins B-series diesel engine (6BT5.9G6, 5.9 L) operating at load Concentration: Fine PM: 100, 200 μg/m³	Subjects exposed for 2 h at rest to filtered air and each of the two DEPs concentrations in a randomized crossover study design. Exposures were separated by at least 2 wk. Other diesel emissions measured: NO_2 (10-35 ppb), CO (0.7-1.8 ppm). Time to analysis: 3, 6, and 22 h after the start of exposure.	No statistically significant changes in plasminogen activator inhibitor-1 (PAI-1), vWf, D-dimer, or platelet count observed 3, 6, or 22 h following exposure to DE relative to filtered air. Non-statistically significant increases in D-dimer, vWf, and platelet count were observed at 6 h following the start of exposure (4 h post-exposure). No diesel-induced increase in C-reactive protein observed relative to filtered air in peripheral venous blood at 1 or 20 h post-exposure.
Reference: Carlsten et al. (2008, <u>156323</u>) Subjects: 16 adults with metabolic syndrome Gender: 10 M/6 F Age: 25-48 yr	DE 2002 Cummins B-series diesel engine (6BT5.9G6, 5.9 L) Concentration: Fine PM: 100, 200 μg/m³	Subjects exposed for 2 h at rest to filtered air and each of the two DE particle concentrations in a randomized crossover study design. Exposures were separated by at least 2 wk. Other diesel emissions measured: NO ₂ (30 ppb), NO (1.69 ppm), CO (0.65 ppm). Time to analysis: 3, 7, and 22 h after the start of exposure.	At 5 h after the end of diesel exposure (fine particulate concentration 200 μ g/m³), the authors observed a significant decrease in vW in peripheral venous blood. No other changes in thrombotic markers (vWf, D-dimer, PAI-1) were observed at either concentration between 1 and 20 h post-exposure.
Reference: Danielsen et al. (2008, <u>156382</u>) Subjects: 13 healthy adults Gender: 6 M/7 F Age: 20-56 yr	Wood smoke Particle Size: Session 1: GMD 42 nm; Session 2: GMD 112 nm Particle Number/Count: Session 1: 180,000/cm³; Session 2: 95,000/cm³ Concentration: Session 1: median: 279 µg/m³; Session 2: median 243 µg/m³	Subjects exposed in two groups for 4 h to filtered air, followed a wk later by a 4-h exposure to wood smoke. Exposures conducted with two 25-min periods of light exercise. Other measured combustion products: Session 1: NO ₂ (0.08 ppm), CO (13 ppm), formaldehyde (114 µg/m³), acetaldehyde (75 µg/m³), benzene (30 µg/m³), 1,3-butadiene (6.3 µg/m³); Session 2: NO ₂ (0.09 ppm), CO (9.1 ppm), formaldehyde (64 µg/m³), acetaldehyde (40 µg/m³), benzene (20 µg/m³), 1,3-butadiene (3.9 µg/m³).	Exposure to wood smoke increased the mRNA levels of hOGG1 in PBMCs relative to filtered air 20 h after exposure. DNA strand breaks were shown to decrease in PBMCs 20 h after wood smoke exposure.
Reference: Devlin et al.	Fine CAPs (Chapel Hill, NC)	Time to analysis: 3 and 20 h post-exposure. Exposures conducted for 2 h at rest to filtered	CAPs exposure resulted in statistically
(2003, <u>087348</u>) Subjects: 10 healthy older adults Gender: 7 M/3 F Age: Avg 66.9 yr	Concentration: Mean: 40.5 μg/m³, Range: 21.2-80.3 μg/m³	air and CAPs in a randomized crossover study design. Time to analysis: Immediately following exposure and 24 h post-exposure.	significant reductions (p <0.05) in time domain (PNN50) and frequency domain (HF power) parameters relative to clean air immediately following exposure. These relative decreases were still apparent 24 h after exposure (p <0.08).

Study	Pollutant	Exposure	Findings
Reference: Fakhri et al. (2009, 191914) Subjects: 50 adults (40 healthy, 10 asthmatic) Gender: 24 M/26 F Age: 19-48 yr	Fine CAPs (Toronto) Concentration: 127 ± 62 µg/m³ with and without co-exposure to O ₃ (114 ± ppb)	Exposures conducted through a facemask which covered the subject's nose and mouth. Subjects were exposed to CAPs, O ₃ , CAPs + O ₃ and filtered air for 2 h at rest in a randomized crossover study design. Time to analysis: Every 30 min during exposure, with the final measurement made immediately prior to the end of the exposure.	Exposure to CAPs or O ₃ , alone or in combination, resulted in no significant changes in HRV or blood pressure relative to filtered air. However, a negative concentration response relationship was reported between CAPs concentration with co-exposure to O ₃ and SDNN, rMSSD, HF power and LF power (statistically significant for LF power). Diastolic blood pressure was observed to increase with exposure to CAPs + O ₃ , but not with either pollutant alone. There was no difference in response between asthmatics and healthy subjects.
Reference: Frampton et al. (2006, 088665) Subjects: 16 asthmatic adults, 40 healthy adults Gender: Asthmatics: 8 M/8 F, Healthy: 20 M/20 F Age: 18-40 yr	Particle Number/Count: 10 μg/m³: ~2.0 × 10 ⁶ /cm³; 25 μg/m³: ~7.0 × 10 ⁶ /cm³; 50 μg/m³: ~10.8 × 10 ⁶ /cm³ Concentration: 10, 25, and 50 μg/m³	Study conducted using a randomized crossover design with 2-h exposures. Asthmatics (n = 16) exposed to filtered air and 10 µg/m³. 12 healthy adults exposed to filtered air and 10 µg/m³ at rest; 12 healthy adults exposed to filtered air, 10 and 25 µg/m³ with intermittent exercise; 16 healthy adults exposed to filtered air and 50 µg/m³ with intermittent exercise. Exposures were conducted via mouthpiece. Time to analysis: Immediately following exposure as well as 3.5, 21, and 45 h post-exposure.	No effect of ultrafine particle exposure on leukocyte counts or leukocyte expression of adhesion molecules observed in healthy subjects exposed at rest to 10 µg/m³. Among healthy adults exposed to ultrafine carbon during exercise, monocyte expression of adhesion molecules CD54 and CD18 decreased relative to filtered air immediately following exposure. An ultrafine particle-induced decrease in PMN expression of CD18 was also observed 0-21 h post-exposure. Expression of CD11b on monocytes and eosinophils was reduced following exposure to ultrafine particles in exercising asthmatics 0-21 h post-exposure. A decrease in total leukocyte count was observed following ultrafine particle exposure in exercising healthy and asthmatic subjects.
Reference: Gong et al. (2004, <u>087964</u>) Subjects: 13 older adults with COPD, 6 healthy older adults Gender: COPD: 5 M/8 F, Healthy: 2 M/4 F Age: COPD: avg 68 yr, Healthy: avg 73 yr	Fine CAPs (Los Angeles) Particle Size: 85% of mass between 0.1 and 2.5 µm Concentration: Mean: 194 µg/m³, Range: 135-229 µg/m³	Exposures to CAPs and filtered air (randomized crossover) for 2 h with intermittent light exercise (four 15-min periods). Exposures were separated by at least 2 wk. Time to analysis: Immediately following exposure as well as 4 and 22 h post-exposure.	SDNN shown to decrease following CAPs exposure relative to filtered air in healthy older adults (4-22 h post-exposure). No CAPs-induced changes in HRV were observed in older adults with COPD. Ectopic heart beats were observed to increase slightly with CAPs relative to filtered air among healthy subjects, but decreased among subjects with COPD. Exposure to CAPs did not affect platelet or white blood cell count, or levels of fibrinogen, vWF, or factor VII.
Reference: Gong et al. (2004, <u>055628</u>) Subjects: 12 adult asthmatics, 4 healthy adults Gender: Asthmatics: 4 M/8 F, Healthy: 2 M/2 F Age: Asthmatics: avg 38 yr, Healthy: avg 32 yr	Coarse CAPs (Los Angeles) Particle Size: 80% of mass between 2.5 and 10 µm, 20% of mass <2.5 µm Concentration: Mean: 157 µg/m³, Range: 56-218 µg/m³	Exposures to CAPs and filtered air (randomized crossover) for 2 h with intermittent light exercise (four 15-min periods). Exposures were separated by at least 2 wk. Time to analysis: Immediately following exposure as well as 4 and 22 h post-exposure.	SDNN shown to decrease following CAPs exposure relative to filtered air in healthy adults (4-22 h post-exposure). Decrease in PNN50 also observed in healthy adults at 4 h post-exposure. No CAPs-induced decreases in HRV demonstrated in asthmatics.
Reference: Gong et al. (2008, 156483) Subjects: 14 adult asthmatics, 17 healthy adults Gender: Asthmatics: 9 M/5 F, Healthy: 5 M/12 F Age: Asthmatics: 34 ± 12 yr, Healthy: 24 ± 8 yr	Ultrafine CAPs (Los Angeles) Particle Number/Count: 145,000/cm³, Range 39,000-312,000/cm³ Concentration: Mean- 100 µg/m³, Range- 13-277 µg/m³	Subjects exposed for 2 h during intermittent exercise (15-min periods) to both CAPs and filtered air in random order. The first 7 subjects underwent whole body exposure, while the remaining subjects were exposed through a facemask. Facemask exposures had higher particle counts but lower particle mass than whole body exposures. Exposures were separated by at least 2 wk. Time to analysis: Immediately following exposure as well as 4 and 22 h post-exposure.	Relative to filtered air, exposure to ultrafine CAPs resulted in a transient decrease in LF power 4 h post-exposure. This effect of CAPs on HRV was not influenced by health status. CAPs exposure was not observed to affect any other measures of HRV, blood pressure, or blood markers of inflammation or coagulation. There were no differences in response observed between facemask and whole body exposures.

Study	Pollutant	Exposure	Findings
Reference: Graff et al. (2009, 191981) Subjects: 14 healthy adults Gender: 8 M/6 F Age: 20-34 yr	Coarse CAPs (Chapel Hill, NC) Concentration: 89 ± 49.5 µg/m³ (estimated inhaled dose ≈ 67% of measured particle mass)	Subjects exposed for 2 h with intermittent exercise (15-min periods) to coarse CAPs and filtered air in a randomized crossover design. Exposures were separated by at least 2 mos. Time to analysis: 0-1 and 20 h post-exposure.	At 20 h post-exposure, tPA was observed to decrease by 32.9% from baseline (pre-exposure) per 10 μ g/m³ increase in CAPs concentration (p = 0.01). D-dimer concentration decreased 11.3% per 10 μ g/m³, a change of marginal statistical significance (p = 0.07). No other coarse CAPs-induced changes in blood biomarkers of coagulation (e.g., VWF, factor VII, plasminogen, fibrinogen, or PAI-1) or inflammation (e.g., CRP) were observed. At 20 h post-exposure, overall HRV (SDNN) was shown to decrease by 14.4% relative to pre-exposure measurements per 10 μ g/m³ increase in CAPs concentration. No other changes in HRV were observed following exposure to coarse CAPs.
Reference: Huang et al. (2003, <u>087377</u>) Subjects: 38 healthy adults Gender: 36 M/2 F Age: Avg 26.2 ± 0.7 yr	Fine CAPs (Chapel Hill, NC) Concentration: 23.1-311.1 µg/m³	Subjects exposed to CAPs (n = 30) or filtered air (n = 8) for 2 h with intermittent exercise (subjects did not serve as their own controls). Component data of CAPs was available for 37 of the 38 subjects. Time to analysis: 18 h after exposure.	The increase in blood fibrinogen following exposure to fine CAPs reported by Ghio et al. (2000, 012140) was shown to be associated with copper, zinc, and vanadium content in the CAPs.
Reference: Larsson et al.	Traffic particles (road	Exposures were conducted for 2 h with	No change in plasma levels of fibrinogen or
(2007, <u>091375</u>)	tunnel)	intermittent exercise in a room adjacent to a busy road tunnel. Study used a randomized	PAI-1 observed 14 h post-exposure.
Subjects: 16 healthy adults	Bartiala Olas DM DM	crossover design with each subject also exposed to normal air (control). Exposures	
Gender: 10 M/6 F	Particle Size: PM _{2.5} , PM ₁₀ ; PM _{2.5} mass constituted	were separated by 3-10 wk. No exposures to filtered air were conducted. Other traffic	
Age: 19-59 yr	~36% of PM ₁₀ mass Particle Number/Count: 20-1,000 nm: 1.1 × 10 ⁵ /cm³,	emissions measured: NO (874 μg/m³), NO ₂ (230 μg/m੍³), CO (5.8 μg/m³ reported, likely	
	< 100 nm: 0.85 × 10 ⁵ /cm ³	Time to analysis: 14 h post-exposure.	
	Concentration: PM _{2.5} -46-81 μg/m³; PM ₁₀ -130-206 μg/m³		
Reference: Lucking et al. (2008, <u>191993</u>) Subjects: 20 healthy adults Gender: M	Protocol 1 (n=8): idling Deutz diesel engine (F3M2011, 2.2 L, 500 rpm)	In both protocols, exposures were conducted with intermittent exercise (15-min periods) to DE and filtered air in a randomized crossover design with exposures separated by at least one wk.	Thrombus formation was observed to increase with diesel 2 and 6 h post-exposure using an ex vivo perfusion chamber. Both platelet-neutrophil and platelet-monocyte aggregates increased relative to filtered air 2 h following
Age: 21-44 yr	using gas oil Protocol 2 (n=12): idling Volvo diesel engine (TD45, 4.5 L, 4 cylinders, 680 rpm) using Gasoil E10	Protocol 1 (n=8): Exposures conducted for 2 h. Other diesel emissions measured: NO _X were also observed to increase Exposure to diesel (only evaluar 2). Plasma concentrations of so were also observed to increase Exposure to diesel was not sho	exposure to diesel (only evaluated in Protocol 2). Plasma concentrations of soluble CD40L were also observed to increase with diesel. Exposure to diesel was not shown to affect total leukocyte, monocyte, or platelet counts.
	Particle Number/Count:	Time to analysis: 6 h post-exposure.	
	Protocol 1: 1.2 × 10 ⁶ /cm ³ ; Protocol 2: 1.26 × 10 ⁶ /cm ³	Protocol 2 (n=12): Exposures conducted for 1h. Other diesel emissions measured: NO _X	
	Concentration: Protocol 1: 348 μg/m³, Protocol 2: 330 μg/m³	(2.78 ppm), NO $_2$ (0.62 ppm), NO (2.15 ppm), CO (3.08 ppm), total hydrocarbon (1.58 μ g/m²).	
	mg····	Time to analysis: 2 and 6 h post-exposure.	
Reference: Lund et al. (2009, <u>180257</u>)	DE	Subjects exposed for 2 h with intermittent exercise (15-min periods) to DE and filtered	Exposure to diesel resulted in an increase in MMP-9 plasma concentration and activity as
Subjects: 10 healthy adults	Idling Cummins diesel engine (5.9 L) using	air in a randomized crossover study design. Other diesel emissions measured: NO _x (4.7	well as an increase in endothelin-1 plasma
Gender: 4 M/6 F	commercial No. 2 fuel	ppm), NO ₂ (0.8 ppm), CO (2.8 ppm), total	concentration at both 30 min and 24 h post- exposure.
Age: 18-40 yr	Particle Size: MMAD 0.10 μm	hydrocarbons (2.4 ppm). Time to analysis: 30 min and 24 h post-	
	Concentration: 100 μg/m ³	exposure.	

Study	Pollutant	Exposure	Findings
Reference: Lundback et al. (2009, 191967) Subjects: 12 healthy adults Gender: M Age: 21-30 yr	DE Idling Volvo diesel engine (TD45, 4.5 L, 4 cylinders, 680 rpm) using Gasoil E10 Particle Number/Count: 1.26 × 10 ⁸ /cm ³ Concentration: 330 µg/m ³	Subjects exposed for 1 h with intermittent exercise (15-min periods) to DE and filtered air in a randomized crossover study design. Exposures were separated by at least one wk. Other diesel emissions measured: NO_X (2.78 ppm), NO_2 (0.62 ppm), NO (2.15 ppm), CO (3.08 ppm), total hydrocarbon (1.58 μ g/m³). Time to analysis: 10, 20, 30, and 40 min post-exposure.	Diesel-induced increase in arterial stiffness (increases in augmentation pressure and augmentation index, as well as decrease in time to wave reflection) observed at 10 and 20 min post-exposure using radial artery pulse wave analysis. No effect of diesel observed on carotid-femoral pulse wave velocity which was assessed 40 min post-exposure, but not at earlier time points. No effect of diesel observed on blood pressure 10-30 min post-exposure.
Reference: Mills et al. (2005, 095757) Subjects: 30 healthy adults Gender: M Age: 20-38 yr	DE Idling 1991 Volvo diesel engine (TD45, 4.5 L, 4 cylinders, 680 rpm) Particle Number/Count: 1.2 × 10 ⁶ /cm ³ Concentration: 300 μg/m ³	Subjects exposed for 1 h with intermittent exercise (15-min periods) to DE and filtered air in a randomized crossover study design. Exposures were separated by two wk. Other diesel emissions measured: NO ₂ (1.6 ppm), NO (4.5 ppm), CO (7.5 ppm), total hydrocarbon (4.3 ppm), formaldehyde (0.26 µg/m³). Time to analysis: 2-4 h post-exposure for 15 subject; 6-8 h post-exposure for the other 15 subjects.	Forearm blood flow increase (induced by bradykinin, acetylcholine, and sodium nitroprusside) was attenuated by DE 2 and 6 h post-exposure. A 6 mmHg increase in diastolic blood pressure (p = 0.08) 2 h following exposure to DE was observed relative to filtered air control. Bradykinin-induced release of t-PA was attenuated by diesel exposure 6 h post-exposure. DE did not affect the release of t-PA 2 h post-exposure. No diesel-induced changes in serum IL-6 or TNF-α observed 6 h post-exposure.
Reference: Mills et al. (2007, 091206) Subjects: 20 older adults with prior myocardial infarction Gender: M Age: 60 ± 1 yr	DE Idling 1991 Volvo diesel engine (TD45, 4.5 L, 4 cylinders, 680 rpm) using low sulfur gas-oil E10 Particle Size: Median particle diameter 54 nm, Range 20-120 nm Particle Number/Count: 1.26 × 10 ⁸ /cm ³ Concentration: 300 μg/m ³	Subjects exposed for 1 h with intermittent exercise (15-min periods) to DE and filtered air in a randomized crossover study design. Exposures were separated by at least two wk. Other diesel emissions measured: NO _x (4.45 ppm), NO ₂ (1.01 ppm), NO (3.45 ppm), CO (2.9 ppm), total hydrocarbon (2.8 ppm). Time to analysis: During exposure and 6-8 h post-exposure.	A greater increase in exercise induced ST-segment depression and ischemic burden was observed during exposure to DE than clean air. No diesel-induced effects on vasomotor dysfunction observed 6 h post-exposure. Bradykinin-induced release of t-PA was attenuated by diesel exposure relative to filtered air 6 h post-exposure. Effect of diesel on t-PA release was not evaluated at earlier times post-exposure. No diesel-induced changes in blood leukocyte counts or serum C-reactive protein 6 h post-exposure.
Reference: Mills et al. (2008, 156766) Subjects: 12 adults with coronary heart disease, 12 healthy adults Gender: M Age: CHD: 59 ± 2 yr, Healthy: 54 ± 2 yr	Fine CAPs (Edinburgh, Scotland, UK) Particle Size: Mean 1.23 µm Particle Number/Count: 99,400/cm³ Concentration: 190 ± 37 µg/m³	Exposures conducted for 2 h with intermittent exercise. Subjects exposed to CAPs and filtered air using a randomized crossover design with exposures separated by at least 2 wk. Time to analysis: 2, 6-8, and 24 h post-exposure.	CAPs exposure had no significant effect on vascular function in healthy adults or adults with coronary heart disease 6-8 h post-exposure (i.e., no change in forearm blood flow as assessed using venous occlusion plethysmography). The authors attributed this lack of response to a low concentration of combustion-derived particles. Small increase in blood platelet and monocyte concentration observed following CAPs exposure. Exposure to CAPs did not affect serum CRP concentration or total leukocyte or neutrophil count.
Reference: Peretz et al. (2007, <u>156853</u>) Subjects: 5 healthy adults Gender: M Age: 20-31 yr	DE 2002 Cummins B-series diesel engine (6BT5.9G6, 5.9 L); operating at 75% of rated capacity Concentration: Fine PM 50, 100, 200 μg/m³	Subjects exposed for 2 h at rest to filtered air and each of the three DE particle concentrations in a randomized crossover study design. Exposures were separated by at least 2 wk. Other diesel emissions measured, 200 µg/m³ exposure: NO ₂ (23 ppb), NO (1.75 ppm), CO (1.58 ppm). Time to analysis: 6 and 22 h after the start of exposure.	PBMC expression of 10 genes involved in the inflammatory response were observed to be significantly affected by exposure to DE at the highest concentration tested (8 upregulated, 2 downregulated) 6 h after the start of exposure. The expression of 4 genes (1 upregulated, 3 downregulated) associated with the inflammatory response showed significant changes 22 h after diesel exposure. PBMC expression of 5 genes involved in the oxidative stress pathways showed significant changes at 6 h after the start of diesel exposure at the highest concentration tested (4 upregulated, 1 downregulated). 7 genes involved in the oxidative stress pathways showed significant changes at 22 h following exposure (4 upregulated, 3 downregulated).

C-5

Study	Pollutant	Exposure	Findings
Reference: Peretz et al. (2008, 156854) Subjects: 17 adults with metabolic syndrome, 10 healthy adults Gender: Metabolic syndrome: 11 M/6 F, Healthy: 8 M/2 F Age: Metabolic syndrome: 20-48 yr, Healthy: 20-42 yr	DE 2002 Cummins B-series diesel engine (6BT5.9G6, 5.9 L) using No. 2 undyed on-highway fuel; operating at 75% of rated capacity Particle Size: Median particle diameter 1.04 μm Concentration: Fine PM 100, 200 μg/m³	Subjects exposed for 2 h at rest to both concentrations of DE as well as filtered air in a randomized crossover design. Exposures were separated by at least 2 wk. Other diesel emissions measured, 100 µg/m³ exposure: NO ₂ (16.5 ppb), NO (0.96 ppm), CO (0.51 ppm); 200 µg/m³ exposure: NO ₂ (24.7 ppb), NO (1.54 ppm), CO (0.89 ppm). Time to analysis: Immediately following exposure (within 30 min post-exposure) and 3 h from the start of exposure.	Exposure to 200 μg/m³ elicited a statistically significant decrease in brachial artery diameter relative to filtered air immediately following exposure. A smaller decrease in brachial artery diameter was also observed following exposure to DE at 100 μg/m³. Plasma levels of endothelin-1 were observed to increase following DE exposure (200 μg/m³). The observed effects were more pronounced in healthy subjects than in subjects with metabolic syndrome. DE did not affect endothelium-dependent flow-mediated dilatation. No effect of DE on blood pressure was demonstrated immediately following exposure.
Reference: Peretz et al. (2008, 156855) Subjects: 13 adults with metabolic syndrome, 3 healthy adults Gender: Metabolic syndrome: 8 M/5 F, Healthy: 3 M/0 F Age: Metabolic syndrome: 31-48 yr, Healthy: 24-39 yr	DE 2002 Cummins B-series diesel engine (6BT5.9G6, 5.9 L) using No. 2 undyed on-highway fuel; operating at 75% of rated capacity Concentration: Fine PM 100, 200 µg/m³	Subjects exposed for 2 h at rest to both concentrations of DE as well as filtered air in a randomized crossover design. Exposures were separated by at least 2 wk, Other diesel emissions measured, 100 μ g/m³ exposure: NO ₂ (20.6 ppb), NO (0.95 ppm), CO (0.47 ppm); 200 μ g/m³ exposure: NO ₂ (28.3 ppb), NO (1.63 ppm), CO (0.74 ppm). Time to analysis: 1, 3, 6, and 22 h from the start of exposure.	Exposure to 200 μg/m³ increased HF power and decreased the LF/HF ratio 1h post-exposure; however, this effect was not consistent across subjects. No effect of DE was observed at later time points. Subjects with metabolic syndrome did not experience greater changes in HRV than healthy subjects.
Reference: Power et al. (2008, 191982) Subjects: 5 adults with mild-to-moderate allergic asthma Gender: 1 M/4 F Age: 28-51 yr	Carbon and ammonium nitrate particles Concentration: With co-exposure to 0.2ppm O ₃ : 255 µg/m³, Without co-exposure to 0.2ppm O ₃ : 313 µg/m³	Subjects exposed for 4 h with intermittent exercise (30-min periods) to filtered air, particles, and particles + O_3 in a crossover study design. Exposures were separated by at least 3 wk. Time to analysis: 3 h 40 min from the start of exposure.	Time and frequency domain HRV parameters were not affected by particle exposure relative to filtered air. However, exposure to particles with O_3 resulted in a significant decrease in SDNN as well as changes to both high and low frequency power normalized to the difference between total and very low frequency power.
Reference: Routledge et al. (2006, <u>088674</u>) Subjects: 20 older adults with coronary artery disease, 20 healthy older adults Gender: CAD: 17 M/3 F, Healthy: 10 M/10 F Age: CAD: 52-74 yr, Healthy: 56-75 yr	Particle Size: <10-300 nm; mode at 20-30 nm Concentration: Ultrafine carbon: 50 μg/m³; SO ₂ : 200 ppb	Exposures conducted (head dome system) to filtered air, ultrafine carbon, SO ₂ , and ultrafine carbon + SO ₂ for 1 h at rest using a randomized crossover study design. Time to analysis: Immediately following exposure as well as 3 and 23 h post-exposure.	No PM-induced changes in HRV observed among subjects with coronary artery disease. Among healthy subjects, small increase in HRV (RR, SDNN, rMSSD, and LF power) demonstrated immediately post-carbon exposure. Relative to filtered air control, exposure to ultrafine carbon did not significantly affect blood pressure in healthy adults or adults with coronary artery disease 0-3 h post-exposure. Exposure to ultrafine carbon, either alone or with SO ₂ , did not affect plasma levels of fibrinogen or D-dimer at 3 or 23 h post-exposure. Exposure to ultrafine carbon did not affect peripheral blood leukocyte count or C-reactive protein levels 3 or 23 h post-exposure.
Reference: Rundell and Caviston (2008, 191986) Subjects: 15 healthy college athletes Gender: M Age: Avg 19.5 yr	Gasoline emissions 2.5 hp gasoline engine running 10 s each min during exposure and in the min prior to exposure Particle Size: PM1.0 Particle Number/Count: Trial 1: 336,730 ± 149,206/cm ³ ; Trial 2: 396,200 ± 82,564/cm ³	Subjects were exposed twice to both clean air and dilute gasoline exhaust during 6-min periods of maximal exercise on a cycle ergometer. Clean air exposures occurred first and were separated by 3 days. Gasoline exhaust exposures were also separated by 3 days, with the first occurring 7 days after the second clean air exposure. Other emissions measured: CO $(6.3\pm3.4~\text{ppm})$.	There was no difference in total work done (kJ) between the clean air exposures or between the clean air exposures and the first exposure to gasoline exhaust. However, the second gasoline exhaust exposure was demonstrated to significantly decrease work accumulated over the 6min exercise period compared with either of the other exposure conditions (p < 0.01).

Study	Pollutant	Exposure	Findings
Reference: Samet et al. (2007, 156940) Subjects: Ultrafine CAPs: 20 healthy adults, Coarse CAPs: 14 healthy adults Gender: Ultrafine CAPs: 11 M/9 F, Coarse CAPs: 8 M/6 F Age: Ultrafine CAPs: 18-35 yr, Coarse CAPs: 18-35 yr	CAPs (Chapel Hill, NC) Particle Size: Ultrafine $0.049 \pm 0.009 \ \mu m$; Coarse $3.59 \pm 0.58 \ \mu m$ Concentration: Ultrafine $47.0 \pm 20.2 \ \mu g/m_3^3$; Coarse $89.0 \pm 49.5 \ \mu g/m_3^3$	Preliminary report comparing effects of controlled exposures to coarse, fine, and ultrafine CAPs among healthy adults (3 separate studies). A randomized crossover design was used in evaluating effects of coarse CAPs (n=14) and ultrafine CAPs (n=20) relative to filtered air following 2-h exposures with intermittent exercise. Results compared with previous study of controlled exposure to fine CAPs (Chapel Hill, NC) where subjects did not serve as their own controls (Ghio et al., 2000, 012140). Time to analysis: 0-20 h post-exposure.	Statistically significant decrease in SDNN observed 20 h following exposure to coarse CAPs relative to filtered air. Subjects in the high ultrafine CAPs group experienced a decrease in SDNN based on an analysis of 24 h ambulatory Holter monitoring relative to filtered air. Fine CAPs did not significantly affect HRV. Increased levels of D-dimer observed 18 h following exposure to ultrafine CAPs. No CAPs-induced changes in plasma factor VII, plasminogen, fibrinogen, PAI-1, vWf, or t-PA. No CAPs-induced changes in C-reactive protein levels were observed.
Reference: Samet et al. (2009, <u>191913</u>)	Ultrafine CAPs (Chapel Hill, NC)	Subjects exposed for 2 h with intermittent 15 periods of exercise to UF CAPs and filtered air using a randomized crossover study	UF CAPs exposure resulted in an increase in plasma concentrations of D-dimer both immediately following exposure (20.6%
Subjects: 19 healthy adults	Particle Size: < 0.16 μm	design.	increase per 10° particles/cm³) as well as 18 h
Gender: 10 M/9 F Age: 18-35 yr	Particle Number/Count: 120,662 ± 48,232 particles/cm ³	Time to analysis: Immediately following exposure and 1 and 18 h post-exposure.	post-exposure (18.2% increase per 10° particles/cm³). Plasma concentration of PAI1 also increased with UF CAPs, although this increase was not statistically significant (24%
	Concentration: 49.8 ± 20 μg/m ³		increase, p = 0.1). No UF CAPs-induced changes observed in plasma concentrations of tPA, vWF, CRP, fibrinogen, plasminogen, or Factor VII. HF and LF power were both observed to increase with UF CAPs exposure relative to filtered air at 18 h post-exposure (41.8% and 36%, respectively, per 10 ⁵ particles/cm³ increase in UF CAPs). UF CAPs expressed as mass concentration was not observed have a statistically significant effect in HF total power. UF CAPs was not observed to affect time domain measures of HRV over 24 h. The QT interval was shown to decrease both immediately following and at 18 h post exposure (not statistically significant immediately following exposure).
Reference: Shah et al. (2008, <u>156970</u>) Subjects: 16 healthy adults	Ultrafine EC Particle Number/Count: 10.8 ± 1.7 × 10 ⁶ /cm ³	Exposures conducted via mouthpiece for 2 h with intermittent exercise to filtered air and ultrafine carbon in a randomized crossover study design.	Exposure to ultrafine carbon attenuated peak forearm blood flow after ischemia relative to filtered air 3.5 h post-exposure. Venous nitrate levels were significantly lower at 21 h following
Age: 26.9 ± 6.9 yr	Concentration: 50 μg/m³	Time to analysis: Immediately following exposure as well as 3.5, 21, and 45 h post-exposure.	exposure to UF carbon compared with filtered air exposure. PM exposure was not observed to affect blood pressure relative to filtered air times 0-45 h post-exposure.
Reference: Tornqvist et al. (2007, 091279) Subjects: 15 healthy adults Gender: M Age: 18-38 yr	DE Idling 1991 Volvo diesel engine (TD45, 4.5 L, 4 cylinders, 680 rpm) Concentration: 300 μg/m³	Subjects exposed for 1h with intermittent exercise (15-min periods) to DE and filtered air in a randomized crossover study design. Exposures were separated by at least two wk. Other diesel emissions measured: NO _x (4.44 ppm), NO ₂ (0.82 ppm), NO (3.62 ppm), total hydrocarbon (2.21 ppm). Time to analysis: 24 h post-exposure.	DE was observed to significantly attenuate endothelium-dependent vasodilation 24 h post-exposure. Endothelium-independent vasodilation was not affected by diesel exposure. Exposure to DE did not affect blood pressure relative to filtered air 24 h after exposure. DE significantly increased plasma levels of IL-6 and TNF- α 24 h following exposure. Exposure to diesel resulted in an increase in total antioxidant capacity of plasma relative to filtered air 24 h post-exposure.
Reference: Urch et al. $(2004, 055629)$ Subjects: 24 healthy adults Gender: 14 M/10 F Age: 35 ± 10 yr	Fine CAPs (Toronto) Concentration: 150 μg/m³ (range 101-257 μg/m³) with 120 ppb O ₃	Exposures conducted through a facemask which covered the subject's nose and mouth. Subjects were exposed to CAPs + O ₃ and filtered air for 2 h at rest in a randomized crossover study design. Exposures were separated by at least 2 days. Time to analysis: Immediately following exposure.	CAPs + O_3 exposure resulted in a significant decrease in brachial artery diameter immediately post-exposure (Brook et al., 2002, 024987), which was demonstrated to be associated with both the organic and EC fractions of the CAPs.

Study	Pollutant	Exposure	Findings
Reference: Urch et al. (2005, <u>081080</u>) Subjects: 23 healthy adults Gender: 13 M/10 F	Fine CAPs (Toronto); Concentration: 150 µg/m³ (range 102-214 µg/m³) with 120 ppb O ₃	Exposures conducted through a facemask which covered the subject's nose and mouth. Subjects were exposed to CAPs + O ₃ and filtered air for 2 h at rest in a randomized crossover study design. Time to analysis: Every 30 min during	An increase in diastolic blood pressure of 6 mmHg was observed at the end of CAPs + O_3 exposure, which was statistically different from the change in blood pressure experienced during exposure to filtered air (1 mmHg). This effect was associated with the organic fraction
Age: 32 ± 10 yr		exposure, with the final measurement made immediately prior to the end of the exposure.	of PM _{2.5} .
Reference: Zareba et al. (2009, 190101) Subjects: 24 healthy adults Gender: 12 M/12 F Age: 18-40 yr	Ultrafine EC Particle Size: Count median diameter 25 nm Particle Number/Count: 2×10 ⁵ /cm ³ (10 μg/m ³), 7×10 ⁶ /cm ³ (25 μg/m ³) Concentration: 10 μg/m ³ ; 25 μg/m ³	Protocol 1 (n=12, 6 M/6 F): Subjects exposed to 10 μg/m³ UF carbon and filtered air for 2 h at rest in a randomized crossover design. Exposures were separated by at least 2 wk. Protocol 2 (n=12, 6 M/6 F): Subjects exposed to 10 μg/m³, 25 μg/m³, and filtered air for 2 h with intermittent exercise (15-min periods) in a restricted randomized crossover design (all subjects exposed to 10 μg/m³ before 25 μg/m³). Exposures were separated by at least 2 wk. Time to analysis (both protocols): Immediately following exposure and 3.5 and 21 h post-exposure.	Exposure to $10~\mu g/m^3$ at rest resulted in no change in HRV frequency domain parameters relative to filtered air exposure. Time domain parameters were observed to increase slightly with UF carbon exposure ($10~\mu g/m^3$ at rest), however, only the increase in rMSSD was statistically significant ($p=0.032$). Some trends toward less shortening of QT interval, increase in ST segment, and increase in variability of repolarization (variability of T wave complexity) were observed with exposure to $10~\mu g/m^3$ uF carbon were statistically significant. In Protocol 2, exposure to $10~\mu g/m^3$ UF carbon was observed to slightly increase HRV time domain parameters as was demonstrated in Protocol 1. However, this was not observed at the higher concentration ($25~\mu g/m^3$). As with exposure at rest, exposure to UF carbon during exercise was observed to affect repolarization (reduction in QT duration and increase in T-wave amplitude), although this effect was not statistically significant.

Table C-2. Respiratory effects.

Reference	Pollutant	Exposure	Findings
Reference: Alexis et al. (2006, <u>154323</u>) Subjects: 9 healthy adults Gender: 3 M/6 F Age: 18-35 yr	Coarse fraction particles (Chapel Hill, NC) Heat-treated (biologically inactive) and non-heated particles Particle Size: MMAD 5 µm Concentration: 0.65 mg per subject	Subjects were administered heat-treated PM _{10.2.5} , non-heated PM _{10.2.5} , and 0.9% saline (control) via nebulization in a randomized crossover study design. Exposures were separated by at least 1 wk. Time to analysis: 2-3 h post-inhalation.	Both heat-treated and non-heated coarse PM were observed to increase neutrophil counts in induced sputum 2-3 h post-inhalation. Biologically active PM (non-heated) induced an increase expression of macrophage TNF- α mRNA, eotaxin, and immune surface phenotypes on macrophages (mCD14, CD11b/CR3, and HLA-DR).
Reference: Barregard et al. (2008, 155675) Subjects: 13 healthy adults Gender: 6 M/7 F Age: 20-56 yr	Wood smoke Particle Size: Session 1: geometric mean diameter 42 nm, Session 2: geometric mean diameter 112 nm Particle Number/Count: Session 1: 180,000/cm³; Session 2: 95,000/cm³ Concentration: Session 1: median 279 μg/m³; Session 2: median 243 μg/m³	Subjects exposed in two groups for 4 h to filtered air, followed a wk later by a 4-h exposure to wood smoke. Exposures conducted with two 25-min periods of light exercise. Other measured combustion products: Session 1: NO ₂ (0.08 ppm), CO (13 ppm), formaldehyde (114 µg/m³), acetaldehyde (75 µg/m³), benzene (30 µg/m³), 1,3-butadiene (6.3 µg/m³); Session 2: NO ₂ (0.09 ppm), CO (9.1 ppm), formaldehyde (64 µg/m³), acetaldehyde (40 µg/m³), benzene (20 µg/m³), 1,3-butadiene (3.9 µg/m³). Time to analysis: Immediately following exposure as well as 3 and 20 h post-exposure.	Relative to filtered air, exposure to wood smoke was observed to increase levels of eNO 3 h post-exposure. Serum Clara cell protein increased 20 h after wood smoke exposure. Wood smoke was observed to increase levels of malondialdehyde in breath condensate immediately after as well as 20 h post-exposure. Effects of wood smoke on eNO and malondialdehyde levels were similar between the two sessions of wood smoke exposure. However, serum Clara cell protein was significantly increased with wood smoke in session 1 (higher particle count) but not in session 2.
Reference: Bastain et al. (2003, 098690) Subjects: 18 nonsmoking adults with positive allergy skin test to short ragweed Gender: 7 M/11 F Age: 18-38 yr	DEP Isuzu diesel engine, 4 cylinder, 4JB1 Concentration: 0.3 mg in 200 µl saline	Subjects underwent nasal provocation challenge (intranasal spray) with allergen and either DEP or placebo (saline) in a randomized crossover study design. Challenges were separated by 30 days. This protocol was then repeated 30 days after the last exposure. Time to analysis: 24 h post-exposure and 4 and 8 days after exposure.	DEP significantly increased allergic responses to short ragweed. Relative to allergen + placebo, allergen + DEP increased allergen specific IgE 4days following exposure, and increased IL-4 1 day post-exposure. The enhancement of allergic response with DEP was observed to be reproducible within subjects.
Reference: Beckett et al. (2005, 156261) Subjects: 12 healthy adults Gender: 6 M/6 F Age: 23-52 yr	Ultrafine and fine zinc oxide Particle Size: UF: <0.1 μm; Fine: 0.1-1.0 μm Particle Number/Count: UF: 4.6 × 10 ⁷ /cm ³ ; Fine: 1.9 × 10 ⁵ /cm ³ Concentration: 500 μg/m ³	Subjects exposed via mouthpiece for 2 h during rest to filtered air, ultrafine, and fine zinc oxide in a randomized crossover study design. Exposures were separated by at least 3 wk. Time to analysis: 11 and 24 h after exposure.	No changes observed in neutrophil count in induced sputum. No PM (zinc oxide)-induced changes in respiratory symptoms observed 0-24 h post-exposure.
Reference: Behndig et al. (2006, 088286) Subjects: 15 healthy adults Gender: 8 M/7 F Age: 21-27 yr Reference: Blomberg et al. (2005, 191991) Subjects: 15 older adults	DE Idling 1991 Volvo diesel engine (TD45, 4.5 L, 4 cylinders, 680 rpm) Particle Size: PM ₁₀ ; majority of PM mass made up of particles < 1 μm in diameter Concentration: 100 μg/m³ DE Concentration: 300 μg/m³	Exposures conducted for 2 h with intermittent exercise to both DE and filtered air in a randomized crossover design. Exposures were separated by at least 3 wk. Other diesel emissions measured: NO _X (1.8 ppm), NO ₂ (0.4 ppm), NO (1.3 ppm), CO (10.4 ppm), total hydrocarbons (1.3 ppm). Time to analysis: 18 h post-exposure. Subjects exposed for 1 h with intermittent exercise to DE and filtered air in a randomized crossover study design.	Exposure to DE increased neutrophil and mast cell numbers in bronchial mucosa at 18 h post-exposure. Neutrophils, IL-8, and myeloperoxidase observed to increase in bronchial lavage fluid following exposure relative to filtered air. No inflammatory response observed in the alveolar compartment. Exposure to DE increased urate and reduced glutathione bronchoalveolar lavage at 18 h post-exposure. DE was not observed to affect levels of Clara cell protein in peripheral blood at 6 and 24 h post-exposure.
(former smokers) with COPD Age: 56-72 yr		Time to analysis: 6 and 24 h post-exposure.	

Reference	Pollutant	Exposure	Findings
Reference: Bosson et al. (2007, 156286) Subjects: 16 healthy adults Gender: 7 M/9 F Age: 20-28 yr	DE Idling Volvo diesel engine Concentration: PM 300 µg/m³ followed by exposure to filtered air or 0.2 ppm O ₃	Subjects exposed to DE for 1 h followed 5 h later by a 2-h exposure to either filtered air or O ₃ (0.2 ppm) using a randomized crossover study design. All exposures were conducted with subjects engaged in intermittent exercise. Time to analysis: 18 h after second exposure (filtered air or O ₃).	The percentage of neutrophils and concentration of myeloperoxidase in induced sputum (18 h post- O_3 /air exposure) was significantly higher following diesel + O_3 than diesel + air.
Reference: Bosson et al. (2008, 196659) Subjects: 14 healthy adults Gender: 9 M/5 F Age: 21-29 yr	DE Idling 1991 Volvo diesel engine (TD45, 4.5 L, 4 cylinders) Concentration: PM 300 µg/m³ or filtered air followed by exposure to 0.2 ppm O ₃	Subjects exposed to DE or filtered air for 1h followed 5 h later by a 2-h exposure to O ₃ (0.2 ppm) using a randomized crossover study design. All exposures were conducted with subjects engaged in intermittent exercise. Other diesel emissions measured: NO ₂ (0.51 ppm), NO (1.65 ppm), total hydrocarbons (1.18 ppm). Time to analysis: 24 h after the start of the initial exposure.	Neutrophil and macrophage numbers in bronchial wash were significantly increased 16 h following O_3 exposure when preceded by exposure to diesel, compared to O_3 exposure preceded by exposure to filtered air.
Reference: Brauner et al. (2009, 190244) Subjects: 29 healthy adults Gender: 20 M, 9 F Age: M avg 27 yr, F avg 26 yr	Urban traffic particles Particle Size: PM _{2.5} , PM _{10-2.5} Particle Number/Count: 6-700 nm: 10,067/cm ³ Concentration: PM _{2.5} : 9.7 µg/m ³ , PM _{10-2.5} : 12.6 µg/m ³	Subjects exposed to urban traffic particles and filtered air for 24 h with and without two 90-min periods of light exercise in a randomized crossover study design. Concentrations of NO _X and NO were low and did not differ between filtered and unfiltered exposures. CO concentrations were higher with filtered air (0.35 and 0.41 ppm), while O ₃ concentrations were lower with filtered air (12.08 and 4.29 ppb).	Epithelial membrane integrity and blood-gas barrier permeability, assessed using pulmonary clearance of 99mTc-labeled diethylenetriamine pentaacetic acid (DTPA), was observed to increase with exercise, but was not affected by exposure to urban particles (2.5 h of exposure). Exposure to urban particles was not shown to affect plasma or urine concentration of Clara cell 16 protein at 6 and 24 h after the start of exposure. No relationship between exposure and pulmonary function was observed at 2.5 h.
Reference: Gilliland et al. (2004, 156471) Subjects: 19 adults with allergic rhinitis and positive skin test to ragweed, GSTM1 (14 null, 5 present); GSTT1 (9 null, 10 present); GSTP1 codon 105 variants (13 l/l, 6 l/V, 0 V/V)	DEP Isuzu diesel engine, 4 cylinder, 4JB1 Concentration: 0.3 mg DEP in 300 µL saline	Subjects were challenged intranasally with allergen and placebo (saline) as well as allergen plus DEP in saline in a randomized crossover design. Challenges were separated by at least 6 wk. Time to analysis: 10 min, 24 h, and 72 h post-challenge.	Subjects who were GSTM1 null or homozygous for GSTP1 I105 wild-type allele experienced significantly greater increase in nasal IgE and histamine with diesel plus allergen compared to subjects with functional GSTM1 or who were heterozygous for GSTP1 I/V(105).
Gender: 7 M/12 F Age: 20-34 yr			
Reference: Gong et al. (2004, 087964) Subjects: 13 older adults with COPD, 6 healthy older adults Gender: COPD: 5 M/8 F, Healthy: 2 M/4 F Age: COPD: avg 68 yr, Healthy: avg 73 yr	Fine CAPs (Los Angeles) Particle Size: 85% of mass between 0.1 and 2.5 µm Concentration: Mean: 194 µg/m³, Range: 135-229 µg/m³	Exposures to CAPs and filtered air (randomized crossover) for 2 h with intermittent light exercise (four 15-min periods). Exposures were separated by at least 2 wk. Time to analysis: Immediately following exposure as well as 4 and 22 h post-exposure.	No CAPs-induced respiratory symptoms observed in healthy older adults or older adults with COPD at 0, 4, or 22 h post-exposure. Exposure to CAPs did not significantly affect FVC or FEV1. CAPs exposure caused a decrease in arterial oxygen saturation immediately following exposure which was more pronounced in healthy older adults than in older adults with COPD. Exposure to CAPs was not observed to affect the levels of white blood cells, columnar epithelial cells, IL-6, or IL-8 in induced sputum.
Reference: Gong et al. (2004, 055628) Subjects: 12 adult asthmatics, 4 healthy adults Gender: Asthmatic: 4 M/8 F, Healthy: 2 M/2 F Age: Asthmatic: avg 38 yr, Healthy: avg 32 yr	Coarse CAPs (Los Angeles) Particle Size: 80% of mass between 2.5 and 10 µm, 20% of mass <2.5 µm Concentration: Mean: 157 µg/m³; Range: 56-218 µg/m³	Exposures to CAPs and filtered air (randomized crossover) for 2 h with intermittent light exercise (four 15-min periods). Exposures were separated by at least 2 wk. Time to analysis: Immediately following exposure as well as 4 and 22 h post-exposure.	No effect of CAPs exposure on spirometry or arterial oxygen saturation was observed 0, 4, or 22 h post-exposure. No respiratory symptoms reported 0-22 h post-exposure in either healthy or asthmatic adults. Sputum cell counts at 22 h post-exposure did not differ between CAPs and filtered air.

Reference	Pollutant	Exposure	Findings
Reference: Gong et al. (2005, 087921) Subjects: 18 older adults with COPD, 6 healthy older adults Gender: COPD: 9 M/9 F, Healthy: 2 M/4 F Age: COPD: avg 72 yr, Healthy: avg 68 yr	Fine CAPs (Los Angeles) Concentration: CAPs: 200 μg/m³; NO ₂ : 0.4 ppm	Each subject was exposed to CAPs, NO ₂ , CAPs + NO ₂ , and filtered air for 2 h with intermittent exercise. Exposure order was not fully counterbalanced as NO ₂ exposures were conducted after the majority of the CAPs and filtered air exposures had been completed. Exposures were separated by at least 2 wk. Time to analysis: Immediately following exposure as well as 4 and 22 h post-exposure.	Exposure to CAPs was observed to decrease maximal mid-expiratory flow and arterial oxygen saturation relative to filtered air 4-22 h post-exposure. This response was more pronounced in healthy older adults than in older adults with COPD. Concomitant exposure to NO ₂ did not enhance the response. No other respiratory responses (symptoms, spirometry, sputum cell counts) were affected by exposure to CAPs.
Reference: Gong et al. (2008, 156483) Subjects: 14 adult asthmatics, 17 healthy adults Gender: Asthmatics: 9 M/5 F, Healthy: 5 M/12 F Age: Asthmatics: 34 ± 12 yr, Healthy: 24 ± 8 yr	100 μg/m³, Range: 13-277 μg/m³	Subjects exposed for 2 h during intermittent exercise (15-min periods) to both CAPs and filtered air in random order. The first 7 subjects underwent whole body exposure, while the remaining subjects were exposed through a facemask. Facemask exposures had higher particle counts but lower particle mass than whole body exposures. Exposures were separated by at least 2 wk. Time to analysis: Immediately following exposure as well as 4 and 22 h post-exposure.	No significant differences in respiratory symptoms observed between filtered air and ultrafine CAPs exposures. Individuals exposed to higher particle counts tended to experience greater symptoms with CAPs than with filtered air. An ultrafine CAPs-induced decrease in arterial oxygen saturation (0.5%) was observed at 0, 4, and 22 h post-exposure. A decrease in FEV ₁ (2%) was also observed 22 h post-exposure relative to filtered air. Responses were not significantly different between healthy and asthmatic adults. CAPs exposure was not observed to affect total sputum cell counts or cytokine levels. There were no differences in response observed between facemask and whole body exposures.
Reference: Graff et al. (2009, 191981) Subjects: 14 healthy adults Gender: 8 M/6 F Age: 20-34 yr	Coarse CAPs (Chapel Hill, NC) Concentration: 89 ± 49.5 µg/m³ (estimated inhaled dose ≈ 67% of measured particle mass)	Subjects exposed for 2 h with intermittent exercise (15-min periods) to coarse CAPs and filtered air in a randomized crossover design. Exposures were separated by at least 2 mos. Time to analysis: 0-1 and 20 h post-exposure.	Pulmonary function (FVC, FEV ₁ , and carbon monoxide diffusing capacity) was not affected by exposure to coarse CAPs either immediately following exposure or 20 h post-exposure. A significant increase in percent PMNs (10.7% increase per 10 μ g/m³ coarse CAPs) was observed in BAL fluid 20 h post-exposure. Percent monocytes in BL fluid were slightly decreased at 20 h post-exposure (2.0% decrease per 10 μ g/m³ CAPs; p = 0.05). Total protein in BAL fluid was also observed to decrease following CAPs exposure (1.8% decrease per 10 μ g/m³ CAPs). Markers of inflammation in BAL and BL fluids including IL-6, IL-8, and PGE2 were not affected by exposure to coarse CAPs.
Reference: Huang et al. (2003, <u>087377</u>) Subjects: 38 healthy adults Gender: 36 M/2 F Age: Avg 26.2 ± 0.7 yr	Fine CAPs (Chapel Hill, NC) Concentration: 23.1-311.1 µg/m³	Subjects exposed to CAPs (n = 30) or filtered air (n = 8) for 2 h with intermittent exercise (subjects did not serve as their own controls). Component data of CAPs was available for 37 of the 38 subjects. Time to analysis: 18 h after exposure.	The increase in bronchoalveolar lavage fluid neutrophils observed by Ghio et al. (2000, 012140) following exposure to fine CAPs was shown to be associated with iron, selenium, and sulfate content of the CAPs.
Reference: Kongerud et al. (2006, 156656) Subjects: 17 asthmatic adults, 46 healthy adults Gender: Asthmatics-6 M/11 F, Healthy- 24 M/22 F Age: Asthmatics: avg 23 yr, Healthy: avg 26 yr	DEP NIST 1650, heavy duty diesel engine Concentration: Untreated and treated with 0.1 ppm O ₃ (48 h); 300 μg per nostril	DEP (with and without $\mathrm{O_3}$ pre-treatment) were intranasally instilled, using the saline vehicle as control. Subjects did not serve as their own controls (not a crossover design). Time to analysis: 4 and 96 h post-instillation.	Exposure to DEP was not observed to alter markers of inflammation in nasal lavage fluid (e.g., cell counts, IL-8, IL-6) at 4 or 96 h post-instillation.
Reference: Larsson et al. (2007, 091375) Subjects: 16 healthy adults Gender: 10 M/6 F Age: 19-59 yr	Traffic particles (road tunnel) Particle Size: $PM_{2.5}$, PM_{10} , $PM_{2.5}$ mass constituted ~36% of PM_{10} mass Particle Number/Count: 20-1,000 nm: $1.1 \times 10^5/\text{cm}^3$, < 100 nm : $0.85 \times 10^5/\text{cm}^3$ Concentration: $PM_{2.5}$ -46-81 $\mu\text{g/m}^3$; PM_{10} -130-206 $\mu\text{g/m}^3$	Exposures were conducted for 2 h with intermittent exercise in a room adjacent to a busy road tunnel. Study used a randomized crossover design with each subject also exposed to normal air (control). Exposures were separated by 3-10wks. No exposures to filtered air were conducted. Other traffic emissions measured: NO (874 µg/m³), NO₂ (230 µg/m³), CO (5.8 µg/m³ reported, likely 5.8 mg/m³). Time to analysis: 14 h post-exposure.	An increase in bronchoalveolar lavage fluid cell number, lymphocytes, and alveolar macrophages were observed 14 h after road tunnel exposure relative to control. Traffic particulate exposure was not shown to effect cytokine or adhesion molecule expression in bronchial tissues. Respiratory symptoms were reported to increase during exposure to road tunnel air relative to pre-exposure symptom ratings. Exposure to road tunnel air was not shown to affect lung function.

Reference	Pollutant	Exposure	Findings
Reference: Mudway et al. (2004, 180208) Subjects: 25 healthy adults Gender: 16 M/9 F Age: 19-42 yr	DE Idling 1991 Volvo diesel engine (TD45, 4.5 L, 4 cylinders, 680 rpm) Concentration: PM ₁₀ 100 μg/m³	Subjects exposed to DE and filtered air for 2 h with intermittent exercise (15-min periods) in a randomized crossover design. Exposures were separated by at least 3 wk. Other diesel emissions measured: NO ₂ (0.2 ppm), NO (0.6 ppm), CO (1.7 ppm), total hydrocarbons (1.4 ppm), formaldehyde (43.5 µg/m³). Time to analysis: 1 h after the start of exposure, immediately following exposure, and 6 h post-exposure.	DE caused mild throat irritation in some subjects and a significant increase in airways resistance (Raw) during or immediately following exposure. No changes in FEV ₁ or FVC were observed following exposure to diesel. Neutrophil numbers in the bronchial airways tended to increase following exposure to DE; however, this increase was highly variable between subjects and did not reach statistical significance. Exposure to DE did not affect levels of SOD or malondialdehyde in the airways. An increase in levels of ascorbate and GSH in nasal lavage fluid was observed 6 h following exposure to DE.
Reference: Pietropaoli et al. (2004, 156025) Subjects: 16 asthmatic adults, 40 healthy adults Gender: Asthmatic: 8 M/8 F, Healthy: 20 M/20 F Age: 18-40 yr	Ultrafine EC Particle Size: CMD ~25 nm Particle Number/Count: 10 μg/m³: ~2.0 × 10 ⁸ /cm³; 25 μg/m³: ~7.0 × 10 ⁹ /cm³; 50 μg/m³: ~10.8 × 10 ⁹ /cm³ Concentration: 10, 25, and 50 μg/m³	Study conducted using a randomized crossover design with 2-h exposures. Asthmatics (n = 16) exposed to filtered air and 10 µg/m³. 12 healthy adults exposed to filtered air and 10 µg/m³ at rest; 12 healthy adults exposed to filtered air, 10 and 25 µg/m³ with intermittent exercise; 16 healthy adults exposed to filtered air and 50 µg/m³ with intermittent exercise. Exposures were conducted via mouthpiece. Time to analysis: Immediately following exposure as well as 3.5, 21, and 45 h post-exposure.	No PM-induced changes in eNO or cell counts, IL-6, or IL-8 in induced sputum were observed in any of the protocols 21 h following exposure. Ultrafine carbon was not observed to increase respiratory symptoms in any of the study protocols. Healthy adults experienced an ultrafine PM-induced reduction in maximal mid-expiratory flow and CO diffusing capacity relative to filtered air 21 h following exposure.
Reference: Pourazar et al. (2005, 088305) Subjects: 15 healthy adults Gender: 11 M/4 F Age: 21-28 yr	DE Idling Volvo diesel engine Particle Number/Count: 4.3 × 10 ⁶ /cm ³ Concentration: PM ₁₀ 300 µg/m ³	Subjects exposed to DE and filtered air for 1 h with intermittent exercise (randomized crossover study design). Other diesel emissions measured: NO ₂ (1.6 ppm), NO (4.5 ppm), CO (7.5 ppm), total hydrocarbons (4.3 ppm), formaldehyde (0.26 mg/m³). Time to analysis: 6 h post-exposure.	Exposure to DE significantly increased nuclear translocation of NF-kB, AP-1, phosphorylated p38, and phosphorylated JNK in bronchial epithelium 6 h post-exposure.
Reference: Pourazar et al. (2008, 156884) Subjects: 15 healthy adults Gender: 11 M/4 F Age: 21-28 yr	DE Idling Volvo diesel engine Particle Number/Count: 4.3 × 10 ⁵ /cm ³ Concentration: PM ₁₀ 300 µg/m ³	Subjects exposed to DE and filtered air for 1 h with intermittent exercise (randomized crossover study design). Other diesel emissions measured: NO ₂ (1.6 ppm), NO (4.5 ppm), CO (7.5 ppm), total hydrocarbons (4.3 ppm), formaldehyde (0.26 mg/m³). Time to analysis: 6 h post-exposure.	Exposure to DE observed to enhance epidermal growth factor receptor (EGFR) expression in bronchial epithelium 6 h post-exposure.
Reference: Riechelmann et al. (2004, 180120) Subjects: 30 healthy adults Gender: 11 M/19 F Age: 22-32 yr	Urban dust NIST SRM 1649a Concentration: 150, 500 µg/m³	Subjects exposed to both concentrations of urban dust (nose only exposure system) as well as filtered air for 3h at rest in a randomized crossover design. Exposures were separated by at least 1 wk. Time to analysis: 30 min, 8 h, and 24 h postexposure.	An increase in nasal secretion (nasal cytology) of IL-6 and IL-8 were observed 24 h after exposure to 500 $\mu g/m^3$ urban dust.
Reference: Samet et al. (2007, 156940) Subjects: Ultrafine CAPs: 20 healthy adults, Coarse CAPs: 14 healthy adults Gender: Ultrafine CAPs: 11 M/9 F, Coarse CAPs: 8 M/6 F Age: 18-35 yr	CAPs (Chapel Hill, NC) Particle Size: Ultrafine: $0.049 \pm 0.009 \mu m$, Coarse: $3.59 \pm 0.58 \mu m$ Concentration: Ultrafine: $47.0 \pm 20.2 \mu g/m^3$, Coarse: $89.0 \pm 49.5 \mu g/m^3$	Preliminary report comparing effects of controlled exposures to coarse, fine, and ultrafine CAPs among healthy adults (3 separate studies). A randomized crossover design was used in evaluating effects of coarse CAPs (n=14) and ultrafine CAPs (n=20) relative to filtered air following of 2-h exposures with intermittent exercise. Results compared with previous study of controlled exposure to fine CAPs (Chapel Hill, NC) where subjects did not serve as their own controls (Ghio et al., 2000, 012140) Time to analysis: 0-20 h post-exposure.	As was shown with fine CAPs, exposure to coarse CAPs increased the percentage of neutrophils in bronchoalveolar lavage fluid 20 h following exposure. Unlike fine CAPs, coarse CAPs did not increase the percent of monocytes in bronchoalveolar lavage fluid. Ultrafine CAPs were not shown to affect any markers of pulmonary inflammation in bronchoalveolar lavage fluid 18 h after exposure. No CAPs-induced changes in lung function were observed.
Reference: Samet et al. (2009, 191913) Subjects: 19 healthy adults Gender: 10 M/9 F Age: 18-35 yr	Ultrafine CAPs (Chapel Hill, NC) Particle Size: < 0.16 µm Particle Number/Count: 120,662 ± 48,232 particles/cm³ Concentration: 49.8 ± 20 µg/m³	Subjects exposed for 2 h with intermittent 15 periods of exercise to UF CAPs and filtered air using a randomized crossover study design. Time to analysis: Immediately following exposure and 1 and 18 h post-exposure.	No effect of UF CAPs observed on pulmonary function immediately following exposure or 18 h post-exposure. IL-8 in BAL fluid was observed to increase with UF CAPs 18 h post-exposure. UF CAPs was not shown to alter any other inflammatory markers in BAL fluid.

Reference	Pollutant	Exposure	Findings
Reference: Schaumann et al.	Fine PM	Bronchoscopic instillation of particles collected from both areas was conducted in contralateral	Particles collected from the industrialized area
(2004, <u>087966</u>)	Collected (filter) from	lung segments for each subject.	(transition metal-rich) increased the percentage of monocytes and oxidant radical generation in
Subjects: 12 healthy adults	industrialized and non-industrialized areas in	Time to analysis: 24 h post-instillation.	bronchoalveolar lavage fluid 24 h after exposure compared with PM containing less metal.
Gender: 4 M/8 F	Germany		compared with Fivi containing less metal.
Age: Avg 27 ± 2.5 yr	Concentration: 100 μg per subject		
Reference: Stenfors et al.	DE	Subjects were exposed for 2 h with intermittent	DE was observed to increase neutrophilia and
(2004, <u>157009</u>)	Volvo diesel engine	exercise to DE and filtered air using a randomized crossover study design. Other diesel	IL-8 in bronchial lavage fluid among healthy subjects 6 h after exposure. Among asthmatic subjects, exposure to DE did not cause an
Subjects: 15 asthmatic	Concentration: PM ₁₀ 108 μg/m ³	emissions measured: NO ₂ (0.7 ppm).	
adults, 25 healthy adults		Time to analysis: 1 h after the start of exposure,	increase in inflammatory markers. No diesel- induced change in pulmonary function was
Gender: Asthmatic: 10 M/5 F, Healthy: 16 M/9 F		immediately following exposure, and 6 h post- exposure.	observed during or immediately following exposure.
Age: Asthmatic: 22-52 yr, Healthy:19-42 yr			
Reference: Tunnicliffe et al. (2003, 088744)	Aerosols of ammonium bisulfate and sulfuric acid	Subjects were exposed for 1 h at rest to ammonium bisulfate (low and high	Neither ammonium bisulfate nor aerosolized sulfuric acid were observed to affect lung function
Subjects: 12 asthmatic	Particle Size: MMD $0.3~\mu m$	concentrations), sulfuric acid (low and high concentrations) and filtered air in a randomized	or respiratory systems following exposures to 200 or 2,000 µg/m ³ among healthy or asthmatic
adults, 12 healthy adults	Concentration: 200,	crossover design. Exposures were separated by at least 2 wk and were conducted using a head	adults. Exposures to ammonium bisulfate at both concentrations resulted in a significant increase in
Gender: Asthmatics: 7 M/5 F, Healthy: 5 M/7 F	2,000 μg/m³	dome exposure system.	eNO in the asthmatic subjects.
Age: Asthmatics: avg 35.7 yr, Healthy: avg 34.5 yr		Time to analysis: Immediately following exposure as well as 5.5-6 h post-exposure.	

Table C- 3. Central nervous system effects.

Reference	Pollutant	Exposure	Findings
Reference: Cruts et al. (2008, 156374)	DE	Subjects were exposed to DE and filtered air for 1 h at rest in a randomized crossover study	Exposure to DE was observed to significantly increase the median power frequency (MPF) in
(2006, <u>130374</u>)	Idling Volvo diesel engine	design. Exposures were separated by 2-4 days.	the frontal cortex during exposure, as well as in
Subjects: 10 healthy adults	(TD45, 4.5 L, 4 cylinders, 680 rpm)		the hour following the completion of the exposure.
Gender: M	Particle Number/Count: 1.2	(4.3 ppm).	
Age: 18-39 yr	× 10 ⁶ /cm ³	Time to analysis: From onset of exposure until	
Age. 10-09 yi	Concentration: 300 µg/m ³	1 h post-exposure.	

Annex C References

- Alexis NE; Lay JC; Zeman K; Bennett WE; Peden DB; Soukup JM; Devlin RB; Becker S (2006). Biological material on inhaled coarse fraction particulate matter activates airway phagocytes in vivo in healthy volunteers. J Allergy Clin Immunol, 117: 1396-1403. <u>154323</u>
- Barregard L; Sallsten G; Andersson L; Almstrand AC; Gustafson P; Andersson M; Olin AC (2008). Experimental exposure to wood smoke: effects on airway inflammation and oxidative stress. Occup Environ Med, 65: 319-324. 155675
- Barregard L; Sallsten G; Gustafson P; Andersson L; Johansson L; Basu S; Stigendal L (2006). Experimental exposure to wood-smoke particles in health humans: effects on markers of inflammation, coagulation, and lipid peroxidation. Inhal Toxicol, 18: 845-853. 091381
- Bastain TM; Gilliland FD; Li Y-F; Saxon A; Diaz-Sanchez D (2003). Intraindividual reproducibility of nasal allergic responses to diesel exhaust particles indicates a susceptible phenotype. Clin Immunol, 109: 130-136. 098690
- Beckett WS; Chalupa DF; Pauly-Brown A; Speers DM; Stewart JC; Frampton MW; Utell MJ; Huang LS; Cox C; Zareba W; Oberdorster G (2005). Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults A human inhalation study. Am J Respir Crit Care Med, 171: 1129-1135. <u>156261</u>
- Behndig AF; Mudway IS; Brown JL; Stenfors N Helleday R Duggan ST; Wilson SJ; Boman C Cassee FR; Frew AJ; Kelly FJ; Sandstrom T Blomberg A (2006). Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans. Eur Respir J, 27: 359-365. <u>088286</u>
- Blomberg A; Tornqvist H; Desmyter L; Deneys V; Hermans C (2005). Exposure to diesel exhaust nanoparticles does not induce blood hypercoagulability in an at-risk population. J Thromb Haemost, 3: 2103-2105. 191991
- Bosson J; Barath S; Pourazar J; Behndig AF; Sandstrom T; Blomberg A; Adelroth E (2008). Diesel exhaust exposure enhances the ozone-induced airway inflammation in healthy humans. Eur Respir J, 31: 1234-40. 196659
- Bosson J; Pourazar J; Forsberg B; Adelroth E; Sandstrom T; Blomberg A (2007). Ozone enhances the airway inflammation initiated by diesel exhaust. Respir Med, 101: 1140-1146. <u>156286</u>
- Brauner EV; Forchhammer L; Moller P; Barregard L; Gunnarsen L; Afshari A; Wahlin P; Glasius M; Dragsted LO; Basu S; Raaschou-Nielsen O; Loft S (2008). Indoor particles affect vascular function in the aged: an air filtration-based intervention study. Am J Respir Crit Care Med, 177: 419-425. 156293
- Brauner EV; Forchhammer L; Moller P; Simonsen J; Glasius M; Wahlin P; Raaschou-Nielsen O; Loft S (2007). Exposure to ultrafine particles from ambient air and oxidative stress-induced DNA damage. Environ Health Perspect, 115: 1177-82. 091152
- Brauner EV; Mortensen J; Moller P; Bernard A; Vinzents P; Wahlin P; Glasius M; Loft S (2009). Effects of ambient air particulate exposure on blood-gas barrier permeability and lung function. Inhal Toxicol, 21: 38-47. 190244
- Bräuner EV; Møller P; Barregard L; Dragsted LO; Glasius M; Wåhlin P; Vinzents P; Raaschou-Nielsen O; Loft S (2008). Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals. Part Fibre Toxicol, 5: 13. 191966
- Brook RD; Brook JR; Urch B; Vincent R; Rajagopalan S; Silverman F (2002). Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation, 105: 1534-1536. <a href="https://doi.org/10.2002/00.2002-00.20
- Carlsten C; Kaufman JD; Trenga CA; Allen J; Peretz A; Sullivan JH (2008). Thrombotic markers in metabolic syndrome subjects exposed to diesel exhaust. Inhal Toxicol, 20: 917-921. <u>156323</u>
- Carlsten C; Kaufman Joel D; Peretz A; Trenga Carol A; Sheppard L; Sullivan Jeffrey H (2007). Coagulation markers in healthy human subjects exposed to diesel exhaust. Thromb Res Suppl, 120: 849-855. <u>155714</u>
- Cruts B; van Etten L; Tornqvist H; Blomberg A; Sandstrom T; Mills NL; Borm PJ (2008). Exposure to diesel exhaust induces changes in EEG in human volunteers. Part Fibre Toxicol, 5: 4. <u>156374</u>

Note: Hyperlinks to the reference citations throughout this document will take you to the NCEA HERO database (Health and Environmental Research Online) at http://epa.gov/hero. HERO is a database of scientific literature used by U.S. EPA in the process of developing science assessments such as the Integrated Science Assessments (ISA) and the Integrated Risk Information System (IRIS).

- Danielsen PH; Brauner EV; Barregard L; Sallsten G; Wallin M; Olinski R; Rozalski R; Moller P; Loft S (2008).

 Oxidatively damaged DNA and its repair after experimental exposure to wood smoke in healthy humans. Mutat Res Fund Mol Mech Mutagen, 642: 37-42. 156382
- Devlin RB; Ghio AJ; Kehrl H; Sanders G; Cascio W (2003). Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. Eur Respir J, 40: 76S-80S. <u>087348</u>
- Fakhri AA; Ilic LM; Wellenius GA; Urch B; Silverman F; Gold DR; Mittleman MA (2009). Autonomic effects of controlled fine particulate exposure in young healthy adults: Effect modification by ozone. Environ Health Perspect, 117: 1287-1292. 191914
- Frampton MW; Stewart JC; Oberdorster G; Morrow PE; Chalupa D; Pietropaoli AP; Frasier LM; Speers DM; Cox C; Huang LS; Utell MJ (2006). Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans. Environ Health Perspect, 114: 51-58. 088665
- Ghio AJ; Kim C; Devlin RB (2000). Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med, 162: 981-988. <u>012140</u>
- Gilliland FD; Li YF; Saxon A; Diaz-Sanchez D (2004). Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet, 363: 119-125. 156471
- Gong H Jr; Linn WS; Clark KW; Anderson KR; Geller MD; Sioutas C (2005). Respiratory responses to exposures with fine particulates and nitrogen dioxide in the elderly with and without COPD. Inhal Toxicol, 17: 123-132. 087921
- Gong H Jr; Linn WS; Clark KW; Anderson KR; Sioutas C; Alexis NE; Cascio WE; Devlin RB (2008). Exposures of healthy and asthmatic volunteers to concentrated ambient ultrafine particles in Los Angeles. Inhal Toxicol, 20: 533-545, 156483
- Gong H Jr; Linn WS; Terrell SL; Anderson KR; Clark KW; Sioutas C; Cascio WE; Alexis N; Devlin RB (2004). Exposures of elderly volunteers with and without chronic obstructive pulmonary disease (COPD) to concentrated ambient fine particulate pollution. Inhal Toxicol, 16: 731-744. 087964
- Gong H Jr; Linn WS; Terrell SL; Clark KW; Geller MD; Anderson KR; Cascio WE; Sioutas C (2004). Altered heart-rate variability in asthmatic and healthy volunteers exposed to concentrated ambient coarse particles. Inhal Toxicol, 16: 335-343. 055628
- Graff D; Cascio W; Rappold A; Zhou H; Huang Y; Devlin R (2009). Exposure to concentrated coarse air pollution particles causes mild cardiopulmonary effects in healthy young adults . Environ Health Perspect, 117: 1089-1094. 191981
- Huang Y-CT; Ghio AJ; Stonehuerner J; McGee J; Carter JD; Grambow SC; Devlin RB (2003). The role of soluble components in ambient fine particles-induced changes in human lungs and blood. Inhal Toxicol, 15: 327-342. 087377
- Kongerud J; Madden MC; Hazucha M; Peden D (2006). Nasal responses in asthmatic and nonasthmatic subjects following exposure to diesel exhaust particles. Inhal Toxicol, 18: 589-594. 156656
- Larsson B-M; Sehistedt M; Grunewald J; Skold CM; Lundin A; Blomberg A; Sandstrom T; Eklund A; Svartengren M (2007). Road tunnel air pollution induces bronchoalveolar inflammation in healthy subjects. Eur Respir J, 29: 699-705. 091375
- Lucking A; Lundback M; Mills N; Faratian D; Barath S; Pourazar J; Cassee F; Donaldson K; Boon N; Badimon J; Sandstorm T; Blomberg A; Newby D (2008). Diesel exhaust inhalation increases thrombus formation in man. Eur Heart J, 29: 3043-3051. 191993
- Lund AK; Lucero J; Lucas S; Madden MC; McDonald JD; Seagrave JC; Knuckles TL; Campen MJ (2009). Vehicular emissions induce vascular MMP-9 expression and activity associated with endothelin-1 mediated pathways. Arterioscler Thromb Vasc Biol, 29: 511-517. 180257
- Lundbäck M; Mills NL; Lucking A; Barath S; Donaldson K; Newby DE; Sandström T; Blomberg A (2009). Experimental exposure to diesel exhaust increases arterial stiffness in man. Part Fibre Toxicol, 6: 7. 191967
- Mills NL; Robinson SD; Fokkens PH; Leseman DL; Miller MR; Anderson D; Freney EJ; Heal MR; Donovan RJ; Blomberg A; Sandstrom T; MacNee W; Boon NA; Donaldson K; Newby DE; Cassee FR (2008). Exposure to concentrated ambient particles does not affect vascular function in patients with coronary heart disease. Environ Health Perspect, 116: 709-715. 156766

- Mills NL; Törnqvist H; Gonzalez MC; Vink E; Robinson SD; Soderberg S; Boon NA; Donaldson K; Sandstrom T; Blomberg A; Newby DE (2007). Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med, 357: 1075-1082. https://docs.py/local.org/10/2006/
- Mills NL; Tornqvist H; Robinson SD; Gonzalez M; Darnley K; MacNee W; Boon NA; Donaldson K; Blomberg A; Sandstrom T; Newby DE (2005). Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation, 112: 3930-3936. <a href="https://documents.org/10/2005/936/936-2005/936
- Mudway IS; Stenfors N; Duggan ST; Roxborough H; Zielinski H; Marklund SL; Blomberg A; Frew AJ; Sandstrom T; Kelly FJ (2004). An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Arch Biochem Biophys, 423: 200-212. 180208
- Peretz A; Kaufman JD; Trenga CA; Allen J; Carlsten C; Aulet MR; Adar SD; Sullivan JH (2008). Effects of diesel exhaust inhalation on heart rate variability in human volunteers. Environ Res, 107: 178-184. <u>156855</u>
- Peretz A; Peck EC; Bammler TK; Beyer RP; Sullivan JH; Trenga CA; Srinouanprachnah S; Farin FM; Kaufman JD (2007). Diesel exhaust inhalation and assessment of peripheral blood mononuclear cell gene transcription effects: an exploratory study of healthy human volunteers. Inhal Toxicol, 19: 1107-1119. 156853
- Peretz A; Sullivan JH; Leotta DF; Trenga CA; Sands FN; Allen J; Carlsten C; Wilkinson CW; Gill EA; Kaufman JD (2008). Diesel exhaust inhalation elicits acute vasoconstriction in vivo. Environ Health Perspect, 116: 937-942. 156854
- Pietropaoli AP; Frampton MW; Hyde RW; Morrow PE; Oberdorster G; Cox C; Speers DM; Frasier LM; Chalupa DC; Huang LS; Utell MJ (2004). Pulmonary function, diffusing capacity, and inflammation in healthy and asthmatic subjects exposed to ultrafine particles. Inhal Toxicol, 16: 59-72. 156025
- Pourazar J; Blomberg A; Kelly FJ; Davies DE; Wilson SJ; Holgate ST; Sandstrom T (2008). Diesel exhaust increases EGFR and phosphorylated C-terminal Tyr 1173 in the bronchial epithelium. Part Fibre Toxicol, 5: 8. 156884
- Pourazar J; Mudway IS; Samet JM; Helleday R; Blomberg A; Wilson SJ; Frew AJ; Kelly FJ; Sandstrom T (2005). Diesel exhaust activates redox-sensitive transcription factors and kinases in human airways. Am J Physiol, 289: L724-L730. 088305
- Power K; Balmes J; Solomon C (2008). Controlled exposure to combined particles and ozone decreases heart rate variability. J Occup Environ Med, 50: 1253-1260. 191982
- Riechelmann H; Rettinger G; Lautebach S; Schmittinger S; Deutschle T (2004). Short-term exposure to urban dust alters the mediator release of human nasal mucosa. J Occup Environ Med, 46: 316-322. 180120
- Routledge HC; Manney S; Harrison RM; Ayres JG; Townend JN (2006). Effect of inhaled sulphur dioxide and carbon particles on heart rate variability and markers of inflammation and coagulation in human subjects. Heart, 92: 220-227. 088674
- Samet JM; Graff D; Berntsen J; Ghio AJ; Huang YC; Devlin RB (2007). A comparison of studies on the effects of controlled exposure to fine, coarse and ultrafine ambient particulate matter from a single location. Inhal Toxicol, 19 Suppl 1: 29-32. 156940
- Samet JM; Rappold A; Graff D; Cascio WE; Berntsen JH; Huang YC; Herbst M; Bassett M; Montilla T; Hazucha MJ; Bromberg PA; Devlin RB (2009). Concentrated ambient ultrafine particle exposure induces cardiac changes in young healthy volunteers. Am J Respir Crit Care Med, 179: 1034-1042. 191913
- Schaumann F; Borm PJA; Herbrich A; Knoch J; Pitz M; Schins RPF; Luettig B; Hohlfeld JM; Heinrich J; Krug N (2004). Metal-rich ambient particles (particulate matter 2.5) cause airway inflammation in healthy subjects. Am J Respir Crit Care Med, 170: 898-903. <u>087966</u>
- Shah AP; Pietropaoli AP; Frasier LM; Speers DM; Chalupa DC; Delehanty JM; Huang LS; Utell MJ; Frampton MW (2008). Effect of inhaled carbon ultrafine particles on reactive hyperemia in healthy human subjects. Environ Health Perspect, 116: 375-380. 156970
- Stenfors N; Nordenhall C; Salvi SS; Mudway I; Soderberg M; Blomberg A; Helleday R; Levin JO; Holgate ST; Kelly FJ; Frew AJ; Sandstrom T (2004). Different airway inflammatory responses in asthmatic and healthy humans exposed to diesel. Eur Respir J, 23: 82-86. <a href="https://doi.org/10.1007/j.nc/10.100

- Tornqvist H; Mills NL; Gonzalez M; Miller MR; Robinson SD; Megson IL; MacNee W; Donaldson K; Soderberg S; Newby DE; Sandstrom T; Blomberg A (2007). Persistent endothelial dysfunction in humans after diesel exhaust inhalation. Am J Respir Crit Care Med, 176: 395-400. <u>091279</u>
- Tunnicliffe WS; Harrison RM; Kelly FJ; Dunster C; Ayres JG (2003). The effect of sulphurous air pollutant exposures on symptoms, lung function, exhaled nitric oxide, and nasal epithelial lining fluid antioxidant concentrations in normal and asthmatic adults. Occup Environ Med, 60: 1-7. 088744
- Urch B; Brook JR; Wasserstein D; Brook RD; Rajagopalan S; Corey P; Silverman F (2004). Relative contributions of PM2.5 chemical constituents to acute arterial vasoconstriction in humans. Inhal Toxicol, 16: 345-352. 055629
- Urch B; Silverman F; Corey P; Brook JR; Lukic KZ; Rajagopalan S; Brook RD (2005). Acute blood pressure responses in healthy adults during controlled air pollution exposures. Environ Health Perspect, 113: 1052-1055. <u>081080</u>
- Zareba W; Couderc JP; Oberdörster G; Chalupa D; Cox C; Huang LS; Peters A; Utell MJ; Frampton MW (2009). ECG parameters and exposure to carbon ultrafine particles in young healthy subjects. Inhal Toxicol, 21: 223-233. 190101

Annex D. Toxicological Studies

Table D-1. Cardiovascular effects.

Study	Pollutant	Exposure	Effects
	DE: monocylinder Diesel engine using	Route: Whole-body Inhalation	Immediate decrease in RMSSD was observed in
al. (2007, <u>097084</u>) Species: Rat	Euro 4 ELF 85A reference gasoline Particle Size: DE: 10-650 nm (85 nm	Dose/Concentration: DE: 0.5 mg/m³; Other emissions measured: non-methane hydrocarbons (7.7 ppm), NO ₂ (1.1 ppm), CO	both healthy and CHF rats PE. Immediate increase in VPBs observed in CHF rats only; which lasted 4-5 h after exposure ceased. Whereas HRV progressively returned to baseline
Gender: Male	mean mobility diameter)		
Strain: Wistar Kyoto		(4.3 ppm) Time to Analysis: Experiments started 3 mo	values within 2.5 h post-exposure (PE), the proarrhythmic effect persisted as late as 5 h PE
Age: Adult		after L coronary artery ligation. ECG started at	termination in CHF rats
Weight: 200-225g		t0 and the DE exposure at t30 min for a 3-h period; ventricular premature beats (VPBs) and RMSSD calculated every 30 min during clean room air exhaust and PE periods. Early (t210-300 min) and late (t480-540 min) PE were analyzed.	
Reference: Bagate et	LPS and EHC-93 (PM): Urban Air collected at the Health Effects Institute Ottawa, Canada	Route: IT Instillation	PM and LPS elicited a significant increase in receptor-dependent vasorelaxation of the aorta compared to saline-instilled rats.
al. (2004, <u>055638</u>) Species: Rat		Dose/Concentration: PM: 10 mg/kg; LPS- 350 EU/animal	
Gender: Male	Particle Size: EHC-93: $0.8\text{-}0.4~\mu m$ (mean) (range: <3 μm)	Time to Analysis: Sacrificed 4 or 24 h post-	
Strain: SH		instillation	
Age: 13-15 wk			
Reference: Bagate et	EHC-93 (PM), CB-V or CB-Fe, LPS	Route: Aortic Suspension Fluid	CB-V particles induced more relaxation than CB-
al. (2004, <u>055638</u>) Species: Rat	Particle Size: EHC-93: 0.8-0.4 μ m (mean) (range: <3 μ m)	Dose/Concentration: Cumulative concentrations of EHC-93, CB-V and CB-Fe	Fe particles or EHC-93 in a dose-dependent manner. PM and LPS had an acute transient effect on the receptor dependent vasorelaxation.
Gender: Male		(10, 25, 50, 75, 100 μg/mL)	PM and LPS attenuated ACh-elicited vasocontraction in denuded aortic rings (DARs).
Strain: SH		CB 1.5-2.0 nm (mean) (range <5 µm)	
Age: 13-15 wk		Time to Analysis: Immediately post-exposure of aortic rings to cumulative concentrations of EHC-93, CB-V, CB-Fe and LPS.	

Note: Hyperlinks to the reference citations throughout this document will take you to the NCEA HERO database (Health and Environmental Research Online) at http://epa.gov/hero. HERO is a database of scientific literature used by U.S. EPA in the process of developing science assessments such as the Integrated Science Assessments (ISA) and the Integrated Risk Information System (IRIS).

Study	Pollutant	Exposure	Effects
Reference: Bagate et al. (2004, 055638) Species: Rat Gender: Male Strain: Wistar Kyoto Age: 13-15 wk	EHC-93 (PM): Urban Air collected at the Health Effects Institute Ottawa, Canada. EHC-93 filtrate (PMF) Zn ²⁺ and Cu ²⁺ particles (10,000 and 845 μg PM respectively) Particle Size: PM: 4.6 μm (GSD = 3.2)	Route: In Vitro Dose/Concentration: PM Suspensions: 10-100 µg/mL; CuSO ₄ /ZnSO ₄ 1-100 µmol; Phe 2 µm; arbacol: 10 µm Time to Analysis: Measured immediately after maximum response for each cumulative dose was achieved.	PM-Induced Contraction: No effect of suspension or filtrate seen on resting tension of aorta and SMRA. PM- and Metal-Induced Vasorelaxation: Cumulative concentrations (10-100 μg/mL) of PM suspension and its water soluble components (PMF) elicited dose-dependent relaxation in aorta. Relaxation induced by particle suspension was higher than relaxation induced by free filtrate. The difference was significant at 100 μg/mL. In SMRA, vasorelaxation similar to aorta's was observed, and the activity of the particle suspension was stronger than the filtrate, with the difference being significant starting at 30 μg/mL. Both Zn²¹ and Cu² in sulfate salts (10-100 μmol) induced, relaxation in pre-contracted aortic rings, with Cu²² having a greater effect than Zn²¹ at the same concentration. Ions didn't affect ACh relaxation.
			Effect of PM on α -Adrenergic Contraction: Phenylephrine-induced dose-response contraction, starting at 1 μ M with max at 100 μ mol. Pre-treatment of SMRA did not change the phenylephrine-induced contraction.
Reference: Bagate et al. (2006, 097608) Species: Rat Gender: Male Strain: Wistar Kyoto and SH Age: 13-15 wk	EHC-93 (PM) EHC-93 (Filtrate) Cu ²⁺ and Zn ²⁺ solutions Particle Size: PM: 4.6 µm (GSD = 3.2)	Route: In Vitro Dose/Concentration: PM and PMF Suspensions: 10-100 μg/mL; CuSO ₄ or ZnSO ₄ :10-100 μmol; Phenylephrine: 2 μm; Carbacol: 10 μm Time to Analysis: Responses evaluated at maximum of each dose-response.	PM and its soluble components elicited endothelium-independent vasodilation in rat aorta rings. This response is a result of the activation of sGC since its inhibition by NS2028 practically eliminated relaxation. PM suspensions stimulated cGMP production in purified isolated sGC. Neither receptor nor their signaling pathways played a significant role in the direct relaxation by PM or metals. Vasodilation responses were significantly higher in SH than WKY control rats.
Reference: Bagate et al. (2006, 096157) Species: Rat Gender: Male Strain: SH/NHsd Age: 11-12 wk Weight: 250-350 g	EHC-93 (PM): Urban Air collected at the Health Effects Institute Ottawa, Canada. EHC-93 (Filtrate), Zinc (in PM), LPS Particle Size: PM: 4.6 µm (GSD = 3.2)	Route: IT Instillation Dose/Concentration: PM: 10 mg/kg; LPS: 350 EU/animal (0.5 mL) Time to Analysis: 4 h post-exposure	Effect of Pretreatment on Baseline Parameters of Isolated Perfused Heart: After PM exposure a slight increase of baseline coro- nary flow (CF) and heart rate (HR) was noted. In contrast, a significant decrease of left developing ventricular pressure (LDVP) was observed in SH. LPS also elicited a non-significant decrease in LVDP. Effect of Pretreatment and Ischemia on Cardiac Function: When SH rats were pretreated with PM or LPS the isolated heart had a reduced ability to recover to baseline levels after occlusion, in comparison with saline treated rats. After occlusion was released CF went back to baseline values. Saline and LPS treated rats, showed a gradual decrease in CF noted during the reperfusion period. Isolated hearts from PM- exposed SH showed a complete restoration of CF and no gradual decrease. The increase of Zn2+ elicited a rapid decrease of LDVP and HR. The impairment of cardiac function measured by LDVP and HR started immediately upon Zn2+
Reference: Bagate et al. (2006, 096157) Species: Rat Strain: H9c2 (EACC), cardiomyocyte cells	EHC-93 (PM) Filtrate: Urban Air collected at the Health Effects Institute Ottawa, Canada, ZnSO ₄ Particle Size: PM: 4.6 μm (GSD = 3.2); Carbon Particles: 44 nm	Route: In Vitro Dose/Concentration: PM: 1, 50, 100 μg/mL; ZnSO ₄ : 50 μmol Time to Analysis: 30 min incubation	infusion and remained the same during the perfusion period (no Zn2+ was present in the perfusate). Effect of EHC-93 filtrate on Ca ²⁺ Uptake in Cardiomyocytes: Both PMF and Zn ²⁺ inhibited ATP or ionophore-stimulated Ca ²⁺ influx in cardiomyocytes.

Study	Pollutant	Exposure	Effects
Reference: Bartoli et	CAPs (Boston; Harvard Ambient	Route: Permanent Tracheostomy	CAPs significantly increased SBP, DBP, mean
al. (2009, <u>156256</u>)	Particle Concentrator) Particle Size: Diameter: 0.15-2.5 µm	Dose/Concentration: Concentration range and	arterial pressure, HR and rate-pressure product. Prazosin (α-adrenergic antagonist) decreased
Species: Dog Gender: Female	Particle Size. Diameter. 0.13-2.3 pm	mean: CAPs: 94.1-1557(358.1 ± 306.7) μg/m³, BC: 1.3-32(7.5 ± 6.1) μg/m³, Particle count:	these CAPs-induced effects. CAPs mass, BC, particle number concentrations were positively
Strain: Mixed breed		3000-69300(18230 ± 13.151) particles/cm ³	and significantly associated with each of the cardiovascular parameters except for pulse
Age: 2-12 yr		Time to Analysis: Preanesthetized. Tracheostomy. 5 h exposures separated by	pressure.
Weight:		minimum 1wk. Prazosin administered in 8 of 13 dogs 30-60 min before exposure. 55 exposure	
Average: 15.7 kg, Range: 13.6-18.2 kg		days.	
Reference: Bartoli et al. (2009, <u>179904</u>)	CAPs (Boston; Harvard Ambient Particle Concentration)	Route: Permanent Tracheostomy	During coronary artery occlusion, CAPs exposure reduced myocardial blood flow and increased
Species: Dog	Particle Size: Diameter: ≤2.5 μm	Dose/Concentration: Concentration range and mean: CAPs: 94.1-1556.8 (349 ± 282.6) μg/m³,	coronary vascular resistance, SBP and DBP. CAPs effects were greater in ischemic tissue
Gender: Female		BC: 1.3-32 (7.5 ± 5.6) μg/m³, Particle number: 3000-69300 (20381 ± 13075) particles/cm³	than nonischemic. Increases in CAPs mass, particle number and BC concentrations were
Strain: Mixed breed		Time to Analysis: Tracheostomy. Minimum 3	significantly associated with decreased myocardial blood flow and increased coronary
Age: Adult		wk recovery. Acclimatized. Exposed 5 h. 2 5 min occlusions of LAD coronary artery	vascular resistance.
Weight: 14-18 kg		separated by 20 min rest. Exposure days separated by 1wk minimum.	
Reference: Campen et al. (2005, <u>083977</u>)	High Whole DE (HWDE); Low Whole DE (LWDE); High PM Filtered (HPMF); Low PM Filtered (LPMF)	Route: Whole-body Inhalation and Ex-vivo Exposures (isolated, pressurized septal coronary arteries)	Whole-body Exposure on ApoE ^{-/-} : During DE exposure, ApoE ^{-/-} mice HR consistently decreased during high concentration exposures,
Species: Mouse	Particle Size: NR	Dose/Concentration: HWDE: PM = 3.6 mg/m ³ ;	compared to the C57BL/6J strain.
Gender: Male		NO _X = 102 ppm	Coronary Vascular Effects on ApoE [∞] : DE had no significant effects on the resting myogenic
Strain: C57BL/6J and Apo E		LWDE: PM = 0.512 mg/m ³ ; NO _X = 19 ppm; PM = 0.770 mg/m ³ ; NO _X = 105 ppm	tone of isolated septal coronary arteries. Control coronary arteries showed constrictive responses
Age: 10-12 wk		LPMF: PM = 0.006 mg/m^3 ; NO _X = 26 ppm	to ET-1 and dilatory responses to SNP. DE exposed PSS vessels responses to ET-1
		Time to Analysis: Whole-body Exposures: DE or PFDE for 6 h/day for 3 days, euthanized at the end of last exposure.	enhanced compared to control. SNP-induced dilation blunted in vessels resting in diesel-exposed saline.
		Coronary Vessels Exposure: PSS bubbled with DE to expose coronary vessels to the soluble contents of DE. Analysis occurred immediately post exposure.	
	DE: generated by either of two	Route: Whole-body exposure	HR: Significantly higher in exposed animals and
al.(2003, <u>055626</u>)	Cummins (2000 model) 5.9-L ISB turbo engines fueled by Number 2 Diesel	Dose/Concentration: 0, 30, 100, 300, 1000	not concentration-dependent. More substantial results seen in male rats.
Species: Rat Gender: Male and Female	Certification Fuel. Particle Size: 0.1-0.2 μm aerodynamic diameter	µg/m³ Time to Analysis: 6 h/day for 7 days; ECG measurements taken 4 days post-exposure.	ECG: The PQ interval was significantly prolonged among exposed animals in a concentration-
Strain: SH	diamoto		dependent manner.
Age: 4 mo			
Reference: Campen et	Road dust from paved surfaces (Reno,	Route: Whole-body inhalation	ET-1: Gasoline exhaust significantly upregulated
al. (2006, <u>096879</u>)	NV)	Dose/Concentration: Road dust: 0.5 and 3.5	ET-1 in a dose-dependent manner. ET-1 increased levels in the PM filtered group and
Species: Mouse Gender: Male	Gasoline engine emissions, containing PM, NOX, CO and HC	mg/m ³ Gasoline engine emissions: 5 to 60 μg/m ³ (at	decreased in the low levels of road dust.
Strain: ApoE ^{-/-}	Particle Size: Road dust: 1.6 μm (Standard Deviation 2.0)	dilutions of 10:1, 15:1, and 90:1)	to end of exposure in all groups. No significant
Age: 10 wk	Gasoline engine emissions: Average	Mean concentrations of PM: 61 μg/m³; NO _χ : 18.8 ppm; CO: 80 ppm.	HR effects on road dust or gasoline exposure was observed. No significant effects on P-wave, PQ-interval, QRS-interval, or QT-interval were
	particle diameter of 15 nm	Time to Analysis: 6 h/days for 3 days.	observed in either treatment.
		Sacrificed 18 h post-exposure.	T-wave: Mice exposed to whole gasoline exhaust displayed significant increases in T-wave morphology from the beginning of exposures; this effect was consistent on all exposure days.
			and the second s

Study	Pollutant	Exposure	Effects
Reference: Cascio et al. (1987, <u>007583</u>)	UFPM: Ultra fine PM, EPA Chapel Hill, NC	Route: IT Instillation Dose/Concentration: 100 µg in 100 µl	UFPM exposure double the size of myocardial infarction attendant to an episode of ischemia and reperfusion while increasing post ischemic
Species: Mouse	Particle Size: <0.1 μm	Time to Analysis: 24 h post-exposure (single	oxidant stress. UFPM alters endothelium-
Gender: Male		exposure)	dependent/independent regulation of systemic vascular tone; increases platelet number, plasma
Strain: ICR			fibrinogen, and soluble P-selectin levels; reduces bleeding time.
Age: 6-10 wk			
Reference: Chang et al. (2007, 155720)	UfCB: Ultra fine carbon black Ferric sulfate Fe ₂ (SO ₄) ₃	Route: IT Instillation	Both high/low-dose UfCB decreased ANN (normal-to-normal intervals) slightly around the
Species: Rat	Nickel sulfate NiSO ₄	Dose/Concentration: UfCB: 415 and 830 μg	30th h, concurrent increases of LnSDNN. LnRMSSD returned to baseline levels after small
Gender: Male	Particle Size: UfCB	Ferric Sulfate: 105 and 210 µg	initial increases. Minor effects observed after low-
Strain: SH	Tartiolo dizor oroz	Nickel Sulfate: 263 and 526 μg	dose Fe and Ni instillation; biphasic changes occurred after high-dose instillations. Combined
Age: 60 days		Combined UfCB and ferric sulfate: 830 µg UfCB + 105 µg ferric sulfate	exposures of UfCB and either Fe or Ni resulted in HRV trends different from values estimated from individual-component effects.
		Combined UfCB with Nickel Sulfate: 830 μg UfCB + 263 μg Nickel Sulfate	maintagar component choose.
		Time to Analysis: Single dose, radiotelemetry readings recorded for 72 h post- exposure.	
Reference: Chang et al. (2007, <u>155720</u>)	CAPs: collected during a dust storm from Chung-Li, Taipei	Route: Nose-only Inhalation	A linear mixed-effects model revealed sigmoid increases in HR and a sigmoid decrease of QAI
Species: Rat	Particle Size: PM _{2.5}	Dose/Concentration: 315.55 μg/m ³	during exposure, after an initial incubation period.
Gender: Male	1 414010 01201 1 1112.5	Time to Analysis: 6 h	
Strain: SH			
Age: 10 wk			
Reference: Chang et	CAPs collected in Chung-Li, Taipei	Route: Nose-only Inhalation	During spring exposures, the maximum increase
al. (2004, <u>055637</u>) Species: Rat	(spring and summer periods) Particle Size: PM _{2.5}	Dose/Concentration: Spring exposure: 202.0 ± 68.8 μg/m ³ ; Mean number concentration: 2.30 ×	
Gender: Male	ratucie Size. i W _{2.5}	10^5 particles/cm ³ (range: $7.12 \times 10^3 - 8.26 \times 10^5$)	maximum decrease of QAI (measures cardiac contractility) noted at the same time was 1.6 ms.
Strain: SH		Summer exposure: 141.0 ± 54.9 µg/m³; Mean	Similar pattern was observed during summer exposure, however., the responses were less
Age: 60 days		number concentration: 2.78 ×10 ⁵ particles/cm ³ (range: 7.76 ×10 ³ - 8.87 × 10 ⁵)	prominent.
- G		Time to Analysis: 4 days of spring exposure and days of summer exposure for 5 h each exposure. Parameters measured throughout duration of exposures.	
Reference: Chang, et	CAPs collected in Chung-Li, Taipei	Route: Nose-only Inhalation	During the inhalation stage, crude effects of both
al. (2005, <u>097776</u>)	Particle Size: $PM_{2.5}$ (0.1-2.5 μm)	Dose/Concentration: $202.0 \pm 68.8 \mu g/m^3$	LnSDNN and LnRMSSD for exposure and control groups decreased from the baseline
Species: Rat		Time to Analysis: 5 h/days for 4 days	values. Immediately after the experiments, both LnSDNN and LNRMSSD decreased due to
Gender: Male			stresses produced by release from the exposure system, then returned to the baseline values.
Strain: SH			System, then retained to the baseline values.
Weight: 200 g Reference: Chauhan	SRM-1879 (SiO ₂) and SRM-154b	Route: Cell Culture	The decreased expression of preproET-1 in A549
	(TiO ₂) from the NIST EHC-93 from Ontario, Canada (EHCast, EHCipsol)	Dose/Concentration: 0, 1, 4, and 8 mg EHC total equivalent per 5 mL	cells suggests that epithelial cells may not be t source of higher pulmonary ET-1 spillover in the circulation measured in vivo in response to
derived from alveolar type II epithelial cells	(EHCsol, EHCinsol) Particle Size: EHC-93 median physical diameter: 0.4 μm; TiO ₂ and SiO ₂ particle size distribution: 0.3-0.6 μm	Time to Analysis: Culture medium was removed from flasks and replaced w/ 5 mL of the particle suspension media. Plates were incubated for 24 h. After 24 h cell culture supernatants were collected and analyzed.	inhaled urban particles. However, higher levels ECE-1 in A549 post-exposure to particles suggests an increased ability to process bigET-1 into mature ET-1 peptide, while increased receptor expression implies responsiveness. The increased release of II-8 and VEGF by epithelial cells in response to particles could possibly up regulate ET-1 production in the adjacent pulmonary capillary endothelial cells, with concomitant increased ET-1 spillover in the systemic circulation.

Study	Pollutant	Exposure	Effects
Reference: Chen et al.	CAPs (NYU, NY)	Route: Whole-body Inhalation	Significant decreasing patterns of HR, body
(2005, <u>087218</u>) Species: Mouse	Particle Size: PM _{2.5}	Dose/Concentration: 19.7 μg/m³ average concentration over 5 mo (daily average exposure concentration was 110 μg/m³)	temperature, and physical activity for ApoE mice, with nonsignificant changes for C57 mice. SDNN and RMSSD in the late afternoon and overnight for ApoE mice showed a gradual
Strain: C57 and ApoE ⁻		Time to Analysis: 6 h/days, 5 days/wk, for 5 mo. Parameters measured continuously throughout.	increase for the first 6 wk, a decline for about 12 more weeks, and a slight turn upward at the end of the study period. For C57 mice, there were no chronic effect changes in SDNN or RNSSD in the late afternoon, and a slight increase after 6 wk for the overnight period.
Reference: Chen and	CAPs (NYU, NY)	Route: Whole-body Inhalation	All DK mice developed extensive lesions in the
Nadziejkov(2005, 087219)(Chen and Nadziejko, 2005,	Particle Size: PM _{2.5}	Dose/Concentration: Mean exposure concentration: 110 μg/m ³	aortic sinus regions. In male DK mice, the lesion areas appeared to be enhanced by CAPs exposure. Plaque cellularity was increased, but
087219)		Time to Analysis: 6 h/days, 5 days/wk for up to	there were no CAPs-associated changes in the lipid content. ApoE ⁻ and DK mice showed
Species: Mouse		5mo. Sacrificed 3-6 days after last exposure.	prominent areas of severe atherosclerosis. Quantitative measurements showed that CAPs
Strain: C57, ApoE ^{-/-}			increased the percentage of aortic intimal surface covered by grossly discernible atherosclerotic
Age: 26-28 wk (C57), 39-41 wk (ApoE ⁻), and 18-20 wk (LDLr ⁻ [DK])			lesion.
Reference: Corey LM et al. (2006, 156366)	PM collected November - March between 1996-1999 (Seattle, WA)	Route: Nasal Instillation	After an initial increase in both HR and activity in all groups, there was delayed bradycardia with no
(2006, <u>156366</u>)(Corey et al., 2006, <u>156366</u>)	Silica (U.S. Silica Company, Berkeley	Dose/Concentration: PM: 1.5 mg/kg; Saline: 50 ul; Silica: Min-u-Sil 5 in 50 µl saline	change in activity of the animals in the PM and silica exposed groups. In addition, with PM and silica exposure, there was a decrease in HRV parameters.
Species: Mouse	Springs, WV)	•	
Gender: Male	Particle Size: PM _{2.5}		
Strain: ApoE-/-		·	
Age: 11-12 mo			
Weight: 32.84 g (avg)			
Reference: Cozzi et al.		Route: IT Instillation	Ischemia-Reperfusion: PM exposure doubled
(2006, <u>091380</u>) Species: Mouse	over 7-day periods in Oct 2002 in Chapel Hill, NC)	Dose/Concentration: 100 μg of PM in vehicle	the relative size of myocardial infarction compared with the vehicle control. No difference was
Strain: ICR	Particle Size: <150 nm	Time to Analysis: 24 h post-exposure	observed in the percentage of the vehicle at the risk of ischemia. PM exposure increased the
Age: 6-10 wk			level of oxidative stress in the myocardium after R. The density of neutrophils in the reperfused myocardium was increased by PM exposure, bit differences in the numbers of blood leukocytes, expression of adhesion molecules on circulating neutrophils, and activation state of circulating neutrophils, 24 h after PM exposure, could not locorrelated to the increase I-R injury observed.
			Isolated Aortas: Aortas isolated from PM-exposed animals exhibited a reduced endothelium-dependent relaxation response to ACh.
Reference: Dvonch JT	CAPs, Detroit, MI	Route: Whole-body Inhalation	Plasma concentrations of asymmetric
et al. (2004, <u>055741</u>) Species: Rat	Particle Size: PM _{2.5}	Dose/Concentration: Average concentration 354 μg/m ³	dimethylarginine (ADMA) were significantly elevated in rats exposed to CAPs versus filtered
Gender: Male		Time to Analysis: 8 h/days for 3 consecutive	air.
Strain: Brown Norway		days; plasma samples collected 24 h post- exposure.	

Study	Pollutant	Exposure	Effects
Reference: Elder et al. (2004, <u>055642</u>) Species: Rat Gender: Male	UFP - Ultrafine carbon particles; LPS (Sigma) Particle Size: UFP: 36 nm (median size)	Route: Whole-body inhalation; intraperitoneal injection (ip) for saline and LPS Dose/Concentration: Particles: 150 μg/m³; LPS: 2 mg/kg bw Time to Analysis: Single 6-h exposure to	BAL Fluid Cells: Neither inhaled UFP nor ip LPS cause a significant increase in BAL fluid total cells or the percentage of neutrophils in either rat strain. No significant exposure-related alteration in total protein concentration or the activities of LDH and b-glucuronidase.
Strain: Fischer 344 and SH Age: 23 mo (Fischer); 11-14 mo (SH) Weight: NR		particles. Sacrificed 24 h after ip LPS exposure.	Peripheral Blood: In both rat strains ip LPS induced significant increase in the number and percentage of circulating PMNs. When combined with inhaled UFP, PMNs decreased, significantly for F-344 rats. Plasma fibrinogen increased with ip LPS in both rat strains with the magnitude of change greater in SH rats. UFP alone decreased plasma fibrinogen in SH rats. Combined UFP and LPS response was blunted, but significantly higher than controls. Hematocrit was not altered in either rat strain by any treatment.
			TAT Complexes: With all exposure groups averaged, plasma TAT complexes in SH rats were 6.5 times higher than in F-344 rats. LPS caused an overall increase in TAT complexes for F-344 rats that was further augmented by inhaled UFP. UFP alone decreased response. In SH rats, UFP alone significant increased response and LPS decreased response.
			ROS in BAL Cells: In F-344 rats both UFP and LPS have independent and significant effects on DCFD oxidation. Effects were in opposite directions; particles decreased ROS, LPS increased ROS.
Reference: Finnerty et al. (2007, <u>156434</u>) Species: Mouse Gender: Male	Coal Fly Ash (U.S. EPA), Analysis: (PM _{2.5} samples) low unburned carbon (0.53 wt%), moderate levels of transition metals, including (in µg/g): Fe (30, 400), Mg (31, 200), Ti (6, 180),	Route: IT Instillation Dose/Concentration: PM: 200 μg; 200 μg PM+10 μg LPS; 200 μg PM+100 μg LPS Time to Analysis: 18 h after IT instillation	Plasma: TNF-α significantly increased in both PM+LPS10 and PM+LPS100 treatments. For plasma IL-6, all groups tended to rise with a significant increase in the PM+LPS100 group.
Strain: C57BL/6	Mn (907), and V (108).	Time to Analysis. To It after 11 instination	
Age: 9 wk	Particle Size: 1.8 and 2.5 µm		
Weight: 22-2 7g			
Reference: Floyd et al. (2009, <u>190350</u>)	CAPs: PM _{2.5} concentrated from Tuxedo, NY (April-Sept 2003)	Route: Whole-body Inhalation	Gene Expression: Microarry gene expression identified 395 genes downregulated and 216
Species: Mouse	Particle Size: NR	Dose/Concentration : Avg 120 μg/m³ (n=6/group)	genes upregulated in the aortic plaques. Ontologic analysis identified a list of functional
Gender: Male		Time to Analysis: 6 h/days × 5 days/wk × 5 mo	processes associated with gene expression and included: inflammation, tissue development,
Strain: ApoE-			cellular movement, cellular growth and proliferation, hematological system development
Age: 20 wk			and function, lipid metabolism, cardiovascular system function, cellular assembly and organization, and cell death.
Reference: Folkmann et al. (2007, 097344)	DEP: SRM2975 (particulate fraction of exhaust from a filtering system	Route: Intraperitoneal linjection	The expression of inducible nitric oxide synthase (iNOS) mRNA was increased in the liver 6 h post-
Species: Mouse	designed for diesel-powered forklifts). Particle Size: DEP: NR	Dose/Concentration: 0, 50, 500, 5,000 μg DEP/kg	ip injection. The level of oxidized purine bases, determined by formamidopyrimidine DNA glycosylase sites increased significantly in the liver after 24 h in mice injected w/ 50µg/kg. There
Gender: Female		Time to Analysis: 6 or 24 h post-ip injection	
Strain: Wild type and ApoE			was no indication of systemic inflammation determined as the serum concentration of nitric oxide and iNOS expression, and DNA damage
Age: 11-13 wk			was not increased in the aorta.
Weight: 21 g (avg)			

Study	Pollutant	Exposure	Effects
Reference: Furuyama et al. (2006, <u>097056</u>)	OE-DEP, OE-UFP (from Urawa, Saitama, Japan)	Route: Cell Culture	The cell monolayer exposed to 10 µg/mL OE- UFP produced a larger amount of HO-1 than
Species: Rat	OE = Organic Extracts	Dose/Concentration: 0, 5, 10, 25 μg/mL of OE-DEP or OE-UFP	cells exposed to 10 µg/mL OE-UFP. OE-DEP and
Cell Type: Heart Micro vessel Endothelial (RHMVE) Cells	· ·	Time to Analysis: Exposed for 0, 6, 12, 24, or 36 h	OE-UFP exposure reduced PAI-1 production by the cells but did not affect the production of thrombomodulin, tissue-type PA, or urokinase-type PA. Increased PAI-1 synthesis in response to treatment with 1 ng/mL TNF-α or 0.5ng/mL TGF-β1 was reduced by OE-DEP exposure. Suppression of PAI-1 production by OE-DEP exposure was mediated through oxidative stress and was independent of HO-1 activity.
Reference: Gerlofs- Nijland et al. (2009,	PM (Prague, Czech Republic; Duisburg, Germany; Barcelona, Spain)	Route: IT Instillation	Inflammation (LDH, protein, albumin), cytotoxicity (NAG, MPO, TNF-α), and fibrinogen were
190353)	(Prague and Barcelona coarse PM	Dose/Concentration: 7 mg /kg	increased by PM, and were greatest in the
Species: Rat	organic extracts)	Time to Analysis: DTPA added to some PM samples preinstillation. Instilled with PM.	coarse PM fraction. Metal-rich PM had greater inflammatory and cytotoxic effects, and increased
Gender: Male	Particle Size: Coarse: 2.5-10 μm, Fine: 0.2-2.5 μm	Necropsy 24 h post-exposure.	fibrinogen and vWF and decreased ACE. PAH content influenced greater inflammation
Strain: SH			(including neutrophils), cytotoxicity, and fibrinogen. Generally, whole PM and coarse PM
Age: 12 wk			were more potent than organic extracts and fine PM, respectively.
Weight: 200-300 g			i w, respectively.
Reference: Gerlofs- Nijland et al. (2007,	PM samples collected from: 1. MOB high traffic density	Route: IT Instillation	Hematology: Fibrinogen responses of SH rats increased significantly at the high dose of both
<u>097840</u>)	HIA high traffic density	Dose/Concentration: 3, 10 mg/kg	fractions of all PM samples, except fine PM from
Species: Rat	ROM high traffic density DOR moderate traffic density	Time to Analysis: 24 h	DOR. Location-Related Differences: Coarse PM from
Gender: Male	5 MGH low traffic density 6 LYC low traffic density		LYC lowered fibrinogen values more than PM
Strain: SH/NHsd	Particle Size: Coarse: 2.5-10 µm;		from location MOB, HIA, and MGH. Fine PM showed less differences among the various sites
Age: 13 wk	Fine: 0.1-2.5 μm		
Weight: 250-350 g			
Reference: Gerlofs- Nijland et al. (2005,	RTD: road tunnel dust (obtained from a Motorway tunnel in Hendrik-Ido-	Route: IT Instillation	Hematology: No significant changes in plasma for bigET-1 or von Willebrand factor were
<u>088652</u>)	Ambacht, Netherlands)	Dose/Concentration: 0.3, 1, 3, 10 mg/kg; EHC-93: 10 mg/kg	observed. At the highest dose, fibrinogen levels
Species: Rat	EHC-93	Time to Analysis: 4, 24, 48 h	significantly increased at 24 and 4 h for both PM types.
Gender: Male	(Ottawa, Canada)	7. Time to Analysis. 4, 24, 40 ft	
Strain: SH/NHsd	Particle Size: Coarse: 2.5-10 μm; fine: 0.1-2.5 μm		
Age: 11-12 wk			
Weight: 250-350 g			
Reference: Ghelfi et al. (2008, <u>156468</u>)		Route: CAPs: Whole-body Inhalation; CPZ: IP Injection or Aerosol	CPZ (ip or aerosol) decreased CAPs-induced chemiluminescence (CL), lipid thiobarbituric acid
Species: Rat	CPZ (Capsazepine) (Axxora LLC, San Diego, CA)	Dose/Concentration: CAPs: mean mass	reactive substances (TBARS), and edema in the heart, indicating that blocking TRP receptors,
Strain: SD	Particle Size: PM _{2.5}	concentration: 218 ± 23 μg/m³; CPZ: 10 mg/kg (ip), 500 μmol (aerosol)	systemically or locally, decreases heart CL. CAPs exposure led to significant decreases in HR and
Age: Adult		Time to Analysis: Experiment 1: CPZ ip or 20 min aerosol pretreatment immediately prior to CAPs exposure. Single CAPs exposure for 5 h. Parameters measured immediately following exposure. Experiment 2: CPZ ip pretreatment prior to CAPs exposure. Exposed to CAPs for 5 h/day	in the length of QT, RT, Pdur and Tpe intervals These changes were observed immediately up exposure, and were maintained throughout the 5-h period of CAPs inhalation. Changes in cardiac rhythm and ECG morphology were prevented by CPZ.
		for 4 mo. Parameters measured throughout duration of experiment.	

Study	Pollutant	Exposure	Effects
Reference: Gilmour et	ufCB (Printex 90 from Frankfurt,	Route: Whole-body Inhalation	Exposure to ultrafine, but not fine, CB particles
al. (2004, <u>054175</u>)	Germany)	Dose/Concentration: ufCB: 1.66 mg/m ³ ; fCB:	was also associated with significant increases in the total number of blood leukocytes. Plasma
Species: Rat Gender: Male	fCB (Huber 990 from UK)	1.40 mg/m°	fibrinogen factor VIII and vWF were unaffected by particle treatments as was plasma Trolox
Strain: Wistar	Particle Size: ufCB: 114 nm (MMAD); fCB: 268 nm (MMAD).	Time to Analysis: Single exposure for 7 h. Sacrificed and samples taken at 0, 16, and 48 h post-exposure.	equivalent antioxidant status.
Reference: Gilmour et	PM ₁₀ : (Carbon Black from Degussa	Route: Cell Culture	The culture media from MPs and 16HBE cells but
al. (2005, <u>087410</u>)	Ltd, Frankfurt, Germany)	Dose/Concentration: PM ₁₀ : 50 and 100 μg/mL	not A549 cells, exposed to PM ₁₀ had an enhanced ability to cause clotting. H ₂ O ₂ also
Species: Human	Particle Size: PM ₁₀	Time to Analysis: 6 and 20 h	increased clotting activity. Apoptosis was significantly increased in MPs exposed to PM ₁₀
Cell Types: Primary Human Monocyte Derived Macrophages (MP); Human Umbilical Vein Endothelial Cells (HUVEC); A549 cells; 16HBE			and LPS as shown by annexin V binding. TF gene expression was enhanced in MPs exposed to PM ₁₀ and HUVEC tissue factor. tPA gene and protein expression were inhibited.
Reference: Gilmour et	Zinc Sulfate	Route: IT Instillation	Zinc levels in plasma and tissue: At 1-24 h
al. (2006, <u>156472</u>)	(ZnSO ₄ in saline solution)	Dose/Concentration: 131 µg/kg (2 µmol/kg)	post-exposure, zinc plasma levels increased to nearly 20% above baseline.
Species: Rat	Particle Size: NR	Time to Analysis: 1, 4, 24, 48 h	mRNA expression: Cardiac tissues demon-
Gender: Male Strain: Wistar Kyoto			strated similar temporal increases in expressions of TF, PAI-1 and thrombomodulin mRNA,
Age: 12-14 wk			following pulmonary instillation of Zn.
Weight: 280-340 g			Cardiac histopathology: Mild and focal acute, myocardial lesions developed in a few Zn exposed rats. No changes in fibrin deposition or troponin disappearance were observed. At 24 and 48h PE to Zn, increases occurred in levels of systemic fibrinogen an the activated partial thromboplastin time.
Reference: Gong et al. (2007, <u>091155</u>)	Organic DEP extract: collected from exhaust in a 4JB1-type LD, 2.74 liter,	Route: Cell culture; In vivo validation via Whole-body inhalation	Gene-expression profiling showed that both DEP extract and ox-PAPC co-regulated a large
Species: Mouse	4-cylinder Isuzu diesel engine (provided by Masaru Sagai, Tsukuba,	Dose/Concentration: ox-PAPC: 10, 20, and 40	number of genes. Network analysis to identify co- expressed gene modules, led to the discovery of
Cell Type: Human	Japan)	μg/mL; DEP: 5, 15, and 25 μg/mL; DEP (5 μg/mL)+ox-PAPC: 10 or 20 μg/mL	three modules that were highly enriched in genes that were differentially regulated by the stimuli.
Microvascular Endothelial Cells (HMEC)	ox-PAPC: (provided by Judith Berliner, UCLA, CA)	In Vivo Validation: Ufp: 3.2 4×10 ⁵ /cm ³ ; fp: 2.7 ×10 ⁵ /cm ³	These modules were also enriched in synergistically co-regulated genes and pathwa relevant to vascular inflammation.
Strain: C57BL/6J	In vivo validation: Ultrafine (ufp) and fine (fp) particulate matter	In vivo validation: Ufp: <0.18 μm; fp: <2.5 μm	
Gender: Male	Particle Size: DEP <1 µm (diameter)	Time to Analysis: 4 h	In vivo validation: Results were validated by demonstrating that hypercholesterolemic mice
Age: 2 mo		In vivo validation: Exposed to CAPs for 5 h/day, 3 days/wk for 8 wk. Sacrificed 24 h after last CAPs exposure.	exposed to ambient últrafine particles inhibiter significant upregulation of the module genes in the liver.

Study	Pollutant	Exposure	Effects
Reference: Goto et al.	EHC-93 (Ottawa, ON,Canada)	Route: Intrabronchial Instillation	Lung Distribution of PM ₁₀ : PM-containing AMs
(2004, <u>088100</u>) Species: Rabbit	CC: Coilloidal Carbon (obtained from Hamburg, Germany)	Dose/Concentration: AMs incubated with EHC-93 or CC: 0.6 ml/kg	were distributed diffusely. PM-containing AMs were more prevalent in the PM exposed animals.
Gender: Female	Particle Size: EHC-93: PM ₁₀ ; CC: <1	EHC-93 alone: 1 mL (500 μg/ mL)	There was no AM-containing particle difference between the CC-exposed and EHC-93-exposed
Strains: New Zealand	μm	CC alone: 1mL (1% CC)	groups. Monocyte Release from Bone Marrow: EHC
White		Time to Analysis: WBC counts measured	exposure increased WBC and band cell counts from 12 h after instillation. Monocyte count was
Age: NR Weight: 2.3 kg		4-168 h after BrdU injection. Sacrificed 7days post instillation.	nort affected. Labeled monocytes peaked more quickly after DEP exposure (12 vs 16 h for control). There was no observed change in BM monocyte pool.
			Cytokine Release: EHC stimulation increased the release of GM-CSF, IL-6, IL-1 β , TNF- α , IL-8 and MCP-1. No effect on m-CSF and MIP-1 β . CC particles induced increases in IL-6 and TNF- α ; other cytokine levels did not differ from control.
			Supernatant Instillation: AM+EHC increased circulating WBC and band cell counts. Circulating monocyte counts were unaffected. AM+EHC showed a major increase in fraction and amount of monocyte released as well as faster clearance when compared to control. The BM monocyte pool was similar in all groups.
			Monocyte Transit Time Through BM: Exposure to EHC, CC only shortened the transit time of monocytes as compared to controls. AM+EHC also shortened monocyte transit time whereas AM+CC had a nonsignificant effect.
Reference: Gottipolu et al. (2009, 190360)	DE (30-kW (40hp) 4-cylinder indirect injection Deutz diesel engine) (O ₂ -	Route: Inhalation	DE dose-dependently inhibited mitochondrial aconitase activity. DE caused 377 genes to be
Species: Rat	20%, CO- 1.3-4.8 ppm, NO- <2.5-5.9 ppm, NO ₂ - <0.25-1.2ppm, SO ₂ 0.2-0.3	Dose/Concentration: Low: 507 ± 4 μg/m³; High: 2201 ± 14 μg/m³	differentially expressed within WKY rats, most of which were downregulated, but none in SH rats.
Gender: Male	ppm, OC/EC- 0.3 ± 0.03)	Time to Analysis: Exposed 4 h/days, 5	However, WKY rats had an expression pattern shift that mimicked baseline expression of SH
Strain: Wistar Kyoto, SH	Particle Size: Number Median Diameter: Low- 83 ± 2 nm, High- 88. 2 nm; Volume Median Diameter: Low- 207 ± 2 nm, High- 225 ± 2 nm	days/wk, 4 wk. Necropsied 1day post-exposure.	rats without DE. These genes regulated compensatory response, matrix metabolism, mitochondrial function, and oxidative stress
Age: 14-16 wk Weight: NR	, ,		response.
Reference: Graff et al.	Zn; V	Route: Cell Culture	Beat Rate: There were statistically significant
(2005, <u>087956</u>) Species: Rat	Particle Size: NR	Dose/Concentration: 0, 6.25, 12.5, 25, or 50 µm	reductions in spontaneous beat rate 4 and 24 h post-exposure (greater reductions were observed
Cell Type: Ventricular		Time to Analysis: Toxicity: 24 h post- exposure	with Zn). Inflammation: Exposure to Zn or V (6.25-50 µm)
Myocytes		Beat Rate: 0.5, 1, 2, 4, and 24 h PE PCR: 6 and 24 h PE	for 6 h produced significant increases in IL-6, IL- α, heat shock protein 70, and connexin 43 (Cx43).
			Impulse Conduction: 24 h post-exposure, Zn induced significant changes in the gene expression of Kv4.2 and KvQLt, α -1 subunit of L-type Ca channel, Cx43, IL-6, and IL-1 α . V produced a greater effect on Cx43 and affected only KvLQT1.
Reference: Gunnison and Chen (2005,	CAPs (Tuxedo, NY)	Route: Whole-body Inhalation	Gene Expression: In CAPs-exposed heart tissue, the expression of Limd1 and Rex3 were
087956)	Copollutants measured: O ₃ and NO ₂ .	Dose/Concentration: CAPs: 131 ± 99 μg/m ³	the most consistently affected genes among the exposed mice. Limd1 was down regulated by
Species: Mouse	Particle Size: 389 ± 2 nm	(range 13-441 μg/m³)	1.5-fold or greater from moderate baseline expression. Rex3 showed a relatively small
Gender: Male		O ₃ : 10 ppb	increase in absolute expression.
Strain: F2 generation DK (ApoE ^{-/-} , LDLr ^{-/-})		NO ₂ : 4.4 ppb Time to Analysis: 6 h/days, 5 days/wk for	
Age: 18-20 wk		approximately 4 mo. Tissue collection was performed 3-4 days after the last day of exposure.	

Study	Pollutant	Exposure	Effects
Reference: Gurgueira et al. (2002, <u>036535</u>) Species: Rat Gender: Male Strain: SD Weight: 250-300 g	CAPs; Carbon Black (CB from Fisher Scientific, Pittsburgh, PA): C (85.9 \pm 0.2%); O (13 \pm 0.2%); S (1.17 \pm 0.02%) ROFA: obtained from an oil-fired power plant (Boston, MA) Particle Size: CAPs size range: 0.1-2.5 μ m; CB and ROFA (PM _{2.5})	Route: Whole-body Inhalation Dose/Concentration: CAPs: average mass concentration: 300 ± 60 μg/m³; ROFA: 1.7 mg/m³; CB: 170 μg/m³ Time to Analysis: CAPs: 1, 3, and 5 h; ROFA: 30 min; CB: 5 h	Oxidative Stress: Rats breathing CAPs aerosols for 5 h showed significant oxidative stress, determined as in situ chemiluminescence (CL) in the lung, heart, but not in the liver. ROFA also triggered increases in oxidant levels but not particle-free air or CB. Increases in CL showed strong associations with the CAPs content of Fe, AI, Si and Ti in the heart. The oxidant stress imposed by 5 h exposure to CAPs was associated with slight, but significant increases in the lung and heart water content, with increased serum levels of lactate dehydrogenase, indicating mild damage to tissues. CAPs inhalation also led to tissues-specific increases in the activities of SOD and catalase.
Reference: Gursinsky et al. (1976, 015607) Species: Rat Cell Type: Fibroblasts isolated from adult male Wistar rats hearts	Fly ash (TAF98) Particle Size: NR	Route: In Vitro Dose/Concentration: TAF98: 0, 1, 2 3, 10, 25, 50, 100, 200 μg/mL Time to Analysis: 0, 5, 10, 30, 60, 120 min	Brief treatment of fibroblasts with fly ash triggered the immediate formation of ROS. Using phosphospecific antibodies the activation of p38 MAP kinase, p44/42 MAP kinase (ERK1/2) and p70S6 kinase. Prolonged incubation with fly ash increased the expression of collagen 1 and TGF-β1, but decreased mRNA levels of MMP9 and TNF-α. Cell proliferation was inhibited at high concentrations of fly ash. An increase in the level of advanced glycation end product modification of various cellular proteins was observed.
Reference: Hansen et al. (2007, 090703) Species: Mouse Gender: Female Strain: ApoE ^{-/-} and C57BL/6J ApoE ^{-/-/-} Age: 11-13 wk	DEP: SRM-2975 (NIST) Particle Size: DEP: 215 nm (geometric mean diameter)	Route: Intraperitoneal Injection Dose/Concentration: DEP: 0, 0.5 and 5 mg/kg; Aorta segments incubated with 0, 10 and 100 µg DEP/mL Time to Analysis: Sacrificed 1 h after ip injection.	Exposure to 0.5 mg/kg DEP caused a decrease in the endothelium-dependent Ach elicited vasorelaxation in ApoE ^{-/-} mice, whereas the response was enhanced in ApoE ^{-/-} mice. No significant changes were observed after administration of 5 mg/kg DEP. K' or phenylephrine induced constriction was not affected.
Reference: Hansen et al. (2007, 090703) Species: Mouse Gender: Female Strain: ApoE ^{-/-} and C57BL/6J ApoE ^{-/-} Use: Aorta rings used for in-vitro studies	DEP: SRM-2975 (NIST) Particle Size: DEP: 215 nm (geometric mean diameter)	Route: Cell Culture Dose/Concentration: 0, 10 and 100 μg DEP/mL Time to Analysis: Basal tone measured at 5 different points throughout experiment.	Exposure to 100 µg DEP/mL enhanced ACh-induced relaxation and attenuated phenylephrine-induced constriction. Vasodilatation induced by sodium nitroprusside was not affected by any DEP exposure.
Reference: Harder et al. (2005, 087371) Species: Rat Gender: Male Strain: Wistar Kyoto Age: 12-15 wk	Carbon UFPs ((generated by Electric Spark Generator GFG 1000; Palas, Karlsruhe, Germany) Particle Size: 37.6 ± 0.7 nm (mean)	Route: Whole-body Inhalation Dose/Concentration: 180 μg/m³ Time to Analysis: Days 1-3: baseline reading, Day 4: exposure to UFPs or filtered air for 4 or 24 h then sacrificed immediately following exposure period OR Sacrificed following 1-3 days recovery period.	Cardiovascular Performance: Mild but consistent increase in HR, which was associated with a significant decrease in HR variability during exposure (particle-induced alteration of cardiac autonomic balance, mediated by a pulmonary receptor activation). Lung Inflammation and Acute-Phase Response: BALF revealed significant but low-grade pulmonary inflammation. Effects on Blood: There was no evidence of an inflammation-mediated increase in blood coagulability; no changes in plasma fibrinogen or factor VIIa. Pulmonary and Cardiac Histopathology: Sporadic accumulation of particle-laden macrophages found in the alveolar region. No signs of cardiac inflammation or cardiomyopathy. mRNA Expression Levels: No significant changes in the lung or heart.

Study	Pollutant	Exposure	Effects
Reference: Hirano et	Organic Extracts of DEP (DEP) and	Route: Cells Culture	Cytotoxicity and Oxidative Stress: LC50
al. (2003, <u>097345</u>)	Organic Extracts of Ultra Fine Particles (UFP). (Urawa City, Saitama, Japan)	Dose/Concentration: NAC effects on viability:	values were 17 and 34 µg/mL for DEP and UFP respectively. The viability of DEP and UFP
Species: Rat Cell Types: Heart		DEP: 25 μg/ml; UFP: 50 μg/ml mRNA levels for DEP and UFP: 0,1,3,10 μg/ml	exposed cells was ameliorated by N-acetyl-L-cysteine (NAC).
Microvessel Endothelial Cells (RHMVE)	Particle Size: DEP and UFP: <2.0 μm	cell monolayer exposed to DEP and UFP: 1,10,100 µg/ml	mRNA Levels: mRNA levels increased dose- dependently with DEP and HO-1 mRNA showed the most marked response to DEP. mRNA levels
		Time to Analysis: mRNA levels measured after 6 h incubation with DEP or UFP. Other parameters measured after 24 h.	of antioxidant enzymes and heat shock protein 72 (HSP72) in DEP-exposed cells were higher than UFP exposed cells at the same concentration. The transcription levels of HO-1 and HSP72 in DEP and UFP-exposed cells were also reduced by NAC.
Reference: Hwang et	CAPs (Tuxedo, NY)	Route: Whole-body Inhalation	Long-term Analysis: Significant decreasing
al. (2005, <u>089454</u>) Species: Mouse Strain: C57 and ApoE ^{-/-}	Particle Size: 389 ± 2 nm	Dose/Concentration: CAPs Range: 5-627 μg/m³. Mean CAPs Concentration: 133μg/m³. Mean Concentrations of O ₃ and NO ₂ in CAPs: 10 and 4.4 ppb respectively.	patterns of HR, body temperature, and physical activity in ApoE ^{-/-} mice. Nonsignificant changes for C57 mice. The chronic effect changes for ApoE ^{-/-} mice were maximal in the last three wk.
·		Time to Analysis: 6 h/day, 5 days/wk for 5 mo.	Short-term Analysis: Dose-dependent relationship for HR variations in ApoE ^{-/-} mice.
			Heart Rate Fluctuation: HR fluctuations in ApoE ^{-/-} mice during the period of 3-6 h increased by 1.35 fold at the end of the exposure and during a 15 min period increases by 0.7 fold at the end of the exposure.
Reference: Inoue et al. (2006, 190142)	DEP (obtained from a 4Jb1-type light- duty, 4-cylinder, 2.74-L Isuzu diesel	Route: IT Instillation	Both DEP components exacerbated vascular permeability. The increased fibrinogen and E-
Species: Mouse	engine)	Dose/Concentration: Washed DEP: 4 mg/kg. DEP-OC: 4 mg/kg. LPS: 2.5 mg/kg. Washed	selectin levels induced by LPS. This exacerbation
Gender: Male	Washed DEP (carbonaceous nuclei of DEP after extraction) and DEP-OC	DEP+LPS and DEP-OC+LPS: respective additions of LPS to each component prior-	was more prominent with washed DEP than with DEP-OC. Washed DEP+LPS significantly
Strain: ICR	(organic chemicals in DEP extracted with CH ₂ Cl ₂); Washed DEP+LPS and	augustation and a state of the	decreased protein C and antithrombin-III and elevated circulatory levels of IL-6, KC and LPs
Age: 6- 7 wk	DEP-OC+LPS		without significance.
	Particle Size: PM _{2.5}	dose modification.	
Reference: Inoue et al. (2006, <u>097815</u>)	DEP (derived from 4 cyl, 2.74l light duty diesel engine)	Route: IT Instillation	Hematology: DEP increased plasma fibrinogen in both strains but with a greater increase in the
Species: Mouse	Particle Size: NR	Dose/Concentration: 12 mg/kg	knockout mice than the wild type.
Gender: Male	Tartoro orzor mix	Time to Analysis: 24 h	
Strains: C3H/HeJ (TLR-4 point mutant) and C3H/HeN (Control)			
Age: 6 wk			
Reference: Ito et al. (2008, <u>096823</u>)	CAPs (f-PM), Yokohama City, Japan. Particle Size: 0.1-2.5 μm	Route: Whole-body Inhalation	mRNA Expression and Cardiovascular Function: In samples of heart tissue, the mRNA
Species: Rat		Dose/Concentration: 0.6-1.5 mg/m ³	of cytochrome P450 (CYP) 1B1, heme oxygenase-1 (HO-1), and endothelin A (ETA)
Gender: Male		Time to Analysis: Three groups exposed to: (1) filtered air for 4 days, (2) filtered air for 3	receptor were up-regulated by CAPs; their levels were significantly correlated with the cumulative
Strain: Wistar Kyoto (Specific pathogenfree)		days and CAPs for 1 day or (3) CAPs for 4 days. All groups exposed for a maximum of 4.5 h/days for 4 consecutive days.	weight of CAPs in the exposure chamber. The up-regulation of ETA receptor mRNA was significantly correlated with the increase in HO-1 mRNA and weakly with the increase in MBP.
Age: 13-14 wk			matarana wealty with the molease in MDF.

Study	Pollutant	Exposure	Effects
Reference: Khandoga	UFPs: Ultra fine carbon black particles	Route: Aortic Infusion	Platelet Effects: Application of UFPs caused
A et al. (2004, <u>087928</u>) Species: Mouse	,	Dose/Concentration: 1×10 ⁷ and 5 ×10 ⁷ total particles infused	significantly enhanced platelet accumulation on endothelium of postsinusodal venules and
Gender: Female	Particle Size: 14 nm diameter (60% <100 nm)	300 m ² /g surface area	sinusoids in healthy mice. UFP-induced platelet adhesion was not preceded by platelet rolling but
Strain: C57B1/6		Time to Analysis: Single exposure, analysis	was strongly associated with fibrin deposition and an increase in vWF expression on the endothelial
Age: 5-7 wk		2 h post-exposure	surface.
			Inflammatory Effects: In contrast, inflammatory parameters such as the number of rolling/adherent leukocytes, P-selectin expression/translocation, and the number of apoptotic cells were not elevated. UFPs did not affect sinusoidal perfusion and Kupffer cell function.
Reference: Knuckles	ROFA-L: Leachate	Route: Cell Culture	ROFA-L Induced Alterations to the RCM
et al. (2007, <u>156652</u>)	Particle Size: <0.2 µm	Dose/Concentration: 3.5 μg/mL	Transcriptosome: 38 genes were suppressed and 44 genes were induced PE. Genomic
Species: Rat Gender: Female		Time to Analysis: 1 h	alterations in pathways related to IGF-1, VEGF, IL-2, PI3/AKT, CVD, and free radical scavenging
(Pregnant, purchased at GD19)			were detected. Global gene expression was altered in a manner consistent with cardiac myo- cyte electrophysiological remodeling, cellular
Strain SD			oxidative stress and apoptosis.
Age: 60-90 days			ROFA-L Induced Alterations to the RCM Transcription Factor Proteome: ROFA-L
Weight: 300 g			altered the transcription factor proteome by sup- pressing activity of 24 and activating 40 trans-
Use: RMCs were harvest from 1 day-old neonatal pups			cription factors out of 149.
Reference: Knuckles et al. (2008, <u>191987</u>)	DE (single cylinder Yanmar diesel generator burning #2 certified diesel fuel (Chevron-Phillips, Borger, TX)	Route: Whole-body Inhalation. Ex Vivo. Dose/Concentration: In vivo: 350 µg/m³; Ex	Veins: DE increased vascular reactivity to ET-1. Ex vivo exposed vessels had greater
Species: Mouse	under 100% load)	vivo: PM _{2.5} concentration 2-3 mg/m ³ flow rate 500 mL/min	vasoconstriction. L-NAME (an arginine blocker) did not promote constriction in DE-exposed rats
Gender: Male	Particle Size: PM _{2.5}	Time to Analysis: Exposed 4 h. Ex vivo assays.	but did so in controls. Arteries: DE did not significantly alter vascular reactivity. Carbonyls or alkanes alone or with DE did not alter vasoconstriction.
Strain: C57BL/6			
Age: 8-10 wk			
Weight: NR			
Reference: Kodavanti et al. (2008, <u>155907</u>)	G1: saline (control); G2: Mount Saint Helen's ash (SH); G3: whole suspen-	Route: IT Instillation	DNA Damage (left ventricular tissue): All groups except MSH caused varying degrees of
Species: Rat	sion of oil combustion PM at high concentration (PM-HD); G4: whole	Dose/Concentration: Doses (mg/kg/wk) are for 8 and 16 wk (PM-solid and soluble Zn)	damage relative to control. Total cardiac aconitase activity was inhibited in rats receiving
Gender: Male	suspension of oil combustion PM at low concentration (PM-LD); G5: saline-	respectively. G1: 0.00-0.00 and 0.00-0.00; G2: 4.60-0.00 and 2.30-0.00; G3: 4.60-66.8 and	soluble Zn. Analysis of heart tissue revealed modest changes in mRNA for genes involved in sig-
Strain: Wistar Kyoto	leachable fraction of PM high- concentration suspension; G6: zinc	2.30-33.4; G4: 2.30-33.4 and 1.15-16.7; G5: 0.00-66.8 and 0.00-33.4; G6: 0.00-66.8 and	naling, ion channels function, oxidative stress, mitochondrial fatty acid metabolism, and cell
Age: 12-14 wk	sulfate	0.00-33.4	cycle regulation in Zn, but not MSH-exposed rats.
	Particle Size: PM _{2.5}	Time to Analysis: 1 x/wk for 8 or 16 wk; analyzed 48 h after last instillation.	
Reference: Kooter et	CAP-F = fine (Site I)	Route: Nose-only Inhalation	Hematology: WBC and lymphocytes decreased
al. (2006, <u>097547</u>)	CAP-UF = fine + ultrafine (Site II) (Netherlands)	Dose/Concentration: CAP-F 399- 3613 µg/m³	with both CAP-F and CAP-UF. MPV and MPC (mean platelet volume and component)
Species: Rat	Some measured components: Ammo-	CAP-UF 269-556 μg/m ³	increased with CAP-UF.
Gender: Male Strain: SH	nium, nitrate, sulfate ions: 56 ± 16% CAP-F mass, 17 ± 6% CAP-UF mass	Time to Analysis: 6 h/days for 2 days	
Age: 12-14 wk	Particle Size: 0.15 <cap-f<2.5 0.65-0.75="" td="" μm<=""><td>consecutive, 18 h</td><td></td></cap-f<2.5>	consecutive, 18 h	
	CAP-UF<2.5 0.58-1.41 μm		

Study	Pollutant	Exposure	Effects	
Reference: Kyoso et	DE	Route: Whole-body Inhalation	All of the resting R-R intervals before exposure	
al. (2005, <u>186998</u>)	PM and NO _X exposures	Dose/Concentration: PM (mg/m ³): 0.01, 0.109,	were lower at night than during the day, but few changes were found after exposure.	
Species: Rat Gender: NR	Particle Size: NR	0.54, 1.09, 0.01 (from 1.09 concentration w/o PM)		
Strain: NR		NO _X (ppm): 0.19, 0.59, 2.60, 5.53, 5.47 (w/o PM)		
Age: 15 mo		Time to Analysis: Exposed 16 h/days (from 5pm-9am) for 7 mo		
Reference: Lei et al.	CAPs from Asian dust storm (Taiwan)	Route: Nose-only Inhalation	Hematology: PM induced a dose-dependent	
(2004, <u>087884</u>) Species: Rat	Measured Components: Si, Al, S, Ca, K, Mg, Fe, As, Ni, W, V, OC, EC, SO ₂ ,	Dose/Concentration: 315.6 μg/m³ (Low) or 684.5 μg/m³ (High)	increase in WBCs. No change was seen in RBCs. Platelet results were highly variable.	
Gender: Male	NO ₂ , nitrate, sulfate	Time to Analysis: Low: Exposed for 6 h.		
Strain: SD	Particle Size: 0.01- 2.5 μm	Sacrificed 36 h post-exposure High: Exposed for 4.5 h. Sacrificed 36 h post-		
Weight: 300-350 g		exposure Pulmonary hypertension induced 2 wk pre-		
		exposure.		
Reference: Lei et al. (2005, <u>088660</u>)	CAPs: Hsin-Chuang, Taipei	Route: IT Instillation	Effects of Diabetes: Body weight (bw) of diabetic (D) rats (397.5 g) was lower than non-	
Species: Rat	Particle Size: PM: 0.01-2.5 μm	Dose/Concentration: PM _{2,5} : 200 μg in 0.5 mL saline. Components (μg/m³): (9.8-SD 2.4)), EC	diabetic (ND) rats (483.1 g). Mean plasma glucose level was 163 mg/daysL in ND rats and	
Gender: Male		(3.6-SD 3.2), Sulfate (4.8-SD 1.2), Nitrate (6.3-SD 3.4)	448.2 mg/daysL in D rats. D rats had significant greater levels of 8-OHdG in plasma compared to	
Strain: SD		Time to Analysis: Single dose. Animals	ND rats. D rats had significantly increased levels of plasma [nitrate+nitrite]. No observable	
Weight: 200-250 g		sacrificed 24 h post instillation.	changes in TNF-α for D and ND rats.	
Use: ip STZ (60 mg/kg) dissolved in citric acid buffer administered to 8 rats to induce diabetes; ip citric acid buffer			Effects of PM Exposure ND Rats: Increase in plasma levels of 8-OHdG and plasma IL-6, TNF- α , and serum CRP. Significant reduction of plasma [nitrate+nitrite]. No significant effect on plasma ET-1.	
administered to 8 non- diabetic rats			Effects of PM Exposure STZ-D Rats: Significant elevation of plasma ET-1. Decrease in plasma [nitrate+nitrite] Plasma 8-OHdG and TNF-α significantly increased. No significant alterations in IL-6 and CRP.	
Reference: Lemos et al. (2006, <u>088594</u>)	PM ₁₀ , CO, NO ₂ , and SO ₂ from Universidade de Sao Paulo, Brazil.	Route: Whole-body Inhalation	Morphometric measurements of the ratio between the lumen and the wall (L/W) areas were performed on transverse sections of renal, pulmonary and coronary arteries. A significant	
Species: Mouse	Particle Size: PM ₁₀	Dose/Concentration: Mean (± SD) concentrations were: CO ₂ : 2.06 ± 0.08 ppm (8h		
Gender: NR		mean); NO_2 : 104.75 ± 42.62 µg/m³ (24 h mean); SO_2 : 11.07 ± 5.32 µg/m³ (24 h mean);	decrease of L/W with exposure to air pollution was detected in pulmonary and coronary arteries,	
Strain: BALB/c		PM ₁₀ : 35.52 ± 12.84 μg/m³ (24 h mean)	whereas no effects of air pollution were observed in renal vessels.	
Age: 1day (neonatal)		Time to Analysis: 24 h/days, 7 days/wk for 4 mo	intendi vesseis.	
n : 10				
Weight: 4-6 g				
Reference: Li et al. (2005, <u>088647</u>)	Urban Particles (UPs SRM 1648)	Route: PARs: In vitro organ model HPAECs: grown to 80% confluence	Effects of UPs on the constriction of isolated rat pulmonary PARs and the activation of	
Species: Rat	Major Constituents (mass fraction in %): Al (3.4), Fe (3.9), K (1.1).	Dose/Concentration: PARs and HPAECs: 1 to	extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein	
Strain: SD	Minor Constituents (mass fraction in	100 µg/mL; Losartan treatment: 0.2 µmol Captopril treatment: 100 µmol Time to Analysis: PARs were exposed to	kinases (MAPKs) in HPAECs with or without Losartan at 1-100 µg/mL induced acute	
Tissues/Cell Types:	%): Na (0.43), Pb (0.66), Zn (0.48).		vasoconstriction. UPs also produced a time- and	
Cultured HPAECs; Pulmonary Artery Rings (PARs)	Trace Constituents (ng/mg): As (115), Cd (75), Cr (403), Cu (609), Mn (786), Ni (82), Se (27), U (5.5), V (127).	increasing doses of UPs from 1 to 100 μg/mL. Maximum tension was recorded within 5 min after each UPs dose. HPAECs: exposed to UPs	dose-dependent increase in phosphorylation of ERK1/2 and p38 MAPK. Losartan pre-treatment inhibited both vasoconstriction and activation of	
,	Particle Size: NR	from 1 to 100 µg/mL for up to 2 min	ERK1/2 and p38. The water soluble fraction of UPs was sufficient for inducing ERK1/2 and p38	
			phosphorylation, which was also inhibited by Losartan. Cu (CuSO4) and V (VOSO4), induced pulmonary vasoconstriction and phosphorylation of ERK1/2 and p38, but only phosphorylation of p38 was inhibited by Losartan. UPs induced activation of ERK1/2 and p38 was attenuated by Captopril.	

Study	Pollutant	Exposure	Effects
Reference: Li et al. (2006, <u>156693</u>)	Urban Particles (UPs SRM 1648).	Route: In Vitro	Effects of UP on H ₂ 0 ₂ Release: Within minutes after UPs treatment, HPAEC increased H ₂ O ₂
Species: Rat, Rabbit, and Human	Major Constituents (mass fraction in %): Al (3.4), Fe (3.9), K (1.1).	Dose/Concentration: PARs and HPAECs: 1 to 100 µg/mL	production that could be inhibited by DPI, APO, and NaN ₃ . The water soluble fraction of UPs as well as its two transition metal components Cu
Tissues/Cell Types: Pulmonary Artery Rings	Minor Constituents (mass fraction in %): Na (0.43), Pb (0.66), Zn (0.48).	Time to Analysis: PARs: treatment given 15 min prior to exposure. Exposed to increasing doses of UPs from 1 to 100 µg/mL. Maximum	and V, also stimulated H ₂ O ₂ production. NaN ₃ inhibited H ₂ O ₂ production stimulated by Cu and
(PARs) (rat); isolated buffer-infused lungs (rabbits) and cultured HPAECs	Trace Constituents (ng/mg): As (115), Cd (76), Cr (403), Cu (609), Mg (786), Ni (82), Se (27), U (5.5), V (127). Particle Size: NR	tension was recorded within 5 min after each UPs dose. HPAECs: exposed to UPs from 1 to 100 µg/mL for 20 and 120 min.	V, whereas DPI and APO inhibited only Cu-stimu- lated H ₂ O ₂ production. Inhibitors of other H ₂ O ₂ - producing enzymes, including N-methyl-L- arginine, indomethacin, allopurinol, cimetidine, rotenone, and antimycin, had no effects.
Strain: SD Rats, New Zealand White Rabbits	Turido dize. Tito		Effects of UP-induced H ₂ 0 ₂ on MAPK Activation: DPI but not NaN ₃ attenuated UPs-
Weight: Rat: 200-350 g; Rabbit: 2.5-3.0 kg			induced pulmonary vasoconstriction and phosphorylation of ERK1/2 and p38 MAPKs. Knockdown of p47phox gene expression by small interfering RNA attenuated UPs-induced H ₂ O ₂ production and phosphorylation of ERK1/2 and p38 MAPKs.
Reference: Lippmann et al. (2005, <u>087453</u>)	(March-September 2003). Chemical Composition: regional secondary	Route: Whole-body Inhalation	Associations Between Sources and Short- term Heart Rate Changes: There were no
Species: Mouse	sulfate (SS) characterized by high S, Si, and organic C; resuspended soil	Dose/Concentration: PM _{2.5} concentrated tenfold, producing an average of 113 μg/m ³	significant associations between SS, RS, RO, and MV factors and HR in C57 mice at any of the
Strain: C57 and ApoE ⁺	(RS) characterized by high concentrations of Ca, Fe, Al, and Si; RO-fired powered emissions of the Eastern U.S. identified by the presence of V, Ni, and Se; and motor vehicle (MV) traffic and other sources. Contributors to Average Mass: SS (56.1%), RS (11.7%), RO combustion (1.4%), MV traffic and other sources (30.9%) Particle Size: PM _{2.5}	Time to Analysis: 6 h/days, 5 days/wk for 5 mo. Parameters measured daily: during exposure, the afternoon after exposure, and late at night	three intervals. There were significant associations between PM $_2$ s and the RS source factor and decreases in HR for the ApoE $^\pm$ mice during the daily CAPs exposures but no associations with the other factors. There was no residual association of HR with PM $_2$ s or the RS factor later in the afternoon or late at night. In the afternoon, there was a significant association between decreases in HR and the SS factor for the ApoE $^\pm$ mice that had not been present during exposure and did not persist into the night time period. MV traffic and others were not significantly associated with HR during any of these three time periods. For the C57 mice, there were no significant associations of HR with PM $_2$ s or any of its components during any of the three daily time periods.
			Associations Between Sources and Short- term HRV Changes: Signal noise during exposures did not permit reliable analyses of HRV changes during the hours of CAP exposure.
Reference: Lippmann et al. (2005, <u>087453</u>)	CAPs (Sterling Forest, spring-summer 2003)	Route: Inhalation	HR increased in ApoE ^{-/-} mice but not C57 mice. HRF increased over the duration of the
Species: Mouse	Particle Size: PM _{2.5}	Dose/Concentration : PM _{2.5} average concentration: 110 μg/m³, Long-term average: 19.7 μg/m³	experiment. Atherosclerotic plaque deposits and coronary artery disease lesions occurred in both
Gender: NR Strain: ApoE ^{-/-} , ApoE ^{-/-}		Time to Analysis: Exposed 6 h/days, 5	CAPs-exposed mice and controls, but invasive lesions were only present in CAPs-exposed mice. A gene affecting circadian rhythm was
LDLr ^{-/-} , C57BL/6		days/wk, 5 or 6 mo. Semicontinuous EKG recordings.	upregulated in double knockout mice. CAPs activated NF-kB. No inflammation occurred in the
Age: NR			pulmonary system.
Weight: NR Reference: Lippman M	CAPs from Tuxedo, NY. Component of	Route: Whole-body Inhalation	For the CAPs-exposed mice, on 14 days there
et al. (2006, <u>091165</u>)	interest: Ni.	Dose/Concentration: Average daily CAPs:	were Ni peaks at approximately 175 ng/m³ and usually low CAPs and V. For those days back-
Species: Mouse Gender: Male	Particle Size: PM _{2.5}	85.6 μg/ ^{m3} ; Average daily Ni: 43 ng/m ³ Time to Analysis: 6 h/day, 5 days/wk, for 6 mo	trajectory analysis identified a remote Ni point source. ECG measurements on CAPs-exposed
Strain: ApoE ^{-/-}		(July 2004-January 2005). 10-s ECG, HR, activity, and body temperature data were	and sham-exposed mice showed Ni to be significantly associated with acute changes in HR
Age: 6 wk		sampled every 5 min for the duration of the experiment.	and HRV.

Study	Pollutant	Exposure	Effects
Reference: Lund et al.	Varying dilutions of gasoline emis-	Route: Whole-body Inhalation	Inhalation exposure to gasoline engine emissions
(2007, <u>125741</u>) Species: Mouse	sions: (generated using two 1996 model 4.3L General Motors V-6 engines, fueled with conventional,	Dose/Concentration: FA: PM (2 μg/m³), NO _X (0 ppm), CO (0.1 ppm), HC (0.1 ppm);	resulted in increased aortic mRNA expression of matrix metalloproteinase-3 (MMP-3), MMP-7, and MMP-9, tissue inhibitor of MMP-2, ET-1 and HO-
Gender: Male	unleaded, non-oxygenated gasoline, equipped with stock exhaust systems).	Low (1: 90 dilution of exhaust): PM (8 µg/m³), NO _X (2 ppm), CO (9 ppm), HC (0.9 ppm);	1 in ApoE ⁺ mice; increased aortic MMP-9 protein levels were confirmed through immunochemistry.
Strain: ApoE ^{-/-} Age: 10 wk	Composition for Hi, Med, and Lo dilutions:	Mid (1: 20): PM (39 μg/m³), NO _x (12 ppm), CO	Elevated ROS were also observed in arteries from exposed animals, despite absence of plasma markers. Similar findings were also
Use: Mice were placed	PM, NO _x , CO, and Total Hydrocarbons (THC)	(50 ppm), HC (8.4 ppm); High (1: 12): PM (61 μg/m³), NO _x (19 ppm), CO	observed in the aortas ApoE ^{-/-} mice exposed to particle filtered atmosphere, implicating the
on a high fat at the beginning of the	Particle Size: NR	(80 ppm), HC (12 ppm);	gaseous components of the whole exhaust in mediating the expression of markers associated
exposure.		High-filtered (1:12): PM (2 μg/m³), NO _χ (18 ppm), CO (80 ppm), HC (12.7 ppm).	with vasculopathy.
		Time to Analysis: 6 h/day, 7 days/wk for 7 wk. Mice were sacrificed within 16 h PE. During the study period all animals concurrently exposed to the following: FA: 8 µg/m³ and 40 µg/m³; PM Whole Exhaust: 60 µg/m³; or Filtered Exhaust w/ gases matching the 60 µg/m³ concentration.	
Reference: Lund et al. (2007, <u>125741</u>)	GEE (conventional unleaded, nonoxygenated, nonreformulated	Route: Inhalation	Aorta gelatinase activity increased with GEE exposure time. MMP-2/9 activity spread
Species: Mouse	gasoline- ChevronPhillips Specialty Fuels Division)	Dose/Concentration: PM: 60 μg/m³, NO ₂ : 2 ppm, NO: 16 ppm, CO: 80 ppm, THC: 12.7 ppm	throughout the vasculature by day 7. 7 day GEE exposure significantly increased the aorta protein
Gender: Male	Particle Size: 0.150 µm (MMAD)	Time to Analysis: Mice fed high-fat diet 30	expression of MMP-9, MMP-2, TIMP-2, and plasma MMP-9. Generally, in GEE-exposed
Strain: ApoE ^{-/-}	,	days before exposure. Exposed 6 h/day, 1 or 7 days. Some groups dosed with Tempol or BQ-	mice, Tempol decreased TBARS and vascular ET-1, and BQ-123 decreased vascular ROS, ET-
Age: 10 wk		123. Killed within 18 h of last exposure.	1, MMP-9, and gelatinase activity.
Weight: NR			
Reference: McQueen et al. (2007, <u>096266</u>)	DEP: SRM 2975 (NIST)	Route: IT Instillation	Cardiovascular Response: Blood pressure and heart rate were unaffected. Average arterial O ₂
Species: Rat	Particle Size: NR	Dose/Concentration: 0.5 mL/rat of 1 mg/mL; 1-2.2 mg/kg	increased after DEP, but not when compared for each animal. CO ₂ and pH were not affected
Gender: Male		Time to Analysis: 6 h.	
Strain: Wistar Kyoto		Pre-exposure: Vagotomy (sectioning of vagus	
Weight: 228-500 g		nerve) or atropine, 1mg/kg i.p. administered 30 min prior, 2 and 4 h post.	
Reference: Medeiros et al. (2004, 096012)	CP: Carbon particles	Reference: Intranasal Instillation	Hematology: PSA and PSB decreased
Species: Mouse	PSA: ROFA (solid waste incinerator hospital Sao Paulo, Brazil)	Dose/Concentration: CP: 10 μg/mouse; 0.5mg/kg	leukocyte count (all 3 doses) and platelet count (2 high doses). No effect on hemoglobin, erythrocytes and reticulocytes was observed.
Gender: Male	PSB: electric precipitator, steel plant,	PSA: 0.1, 1 or 10 μg/mouse; 0.005, 0.05, 0.5	Fibrinogen levels increased for both PSB and
Strain: BALB/c	Brazil)	mg/kg	PSA with PSB seeing a higher increase. None of the effects were dose-dependent.
Age: 60 days	PSA/PSB Characteristics: Generally, PSB had greater component	PSB: 0.1, 1 or 10 μg/mouse; 0.005, 0.05, 0.5 mg/kg	Bone Marrow: Erythroblasts increased for PSA
Weight: 20-30 g	concentrations than P'SA: Br (100+x), Cr (3x), Fe (10+x), Mn (2x), Rb (60+x), Se (7x), Zn (4x). PMA>PMB: Ce (3x), Co (10+x), La (100x), Sb (15x), V (50x).	Time to Analysis: Single, 24 h	at all dose levels and PSB at mid and high dose levels (high variability).
	Particle Size: CP: 1.7 ± 2.5 μm (78%<2.5 μm)		
	PMA: 1.2 ± 2.2 μm(98 %<2.5 μm)		
	PMB: 1.2 ± 2.2 μm (98%<2.5 μm)		

Study	Pollutant	Exposure	Effects
Reference: Montiel-Davalos et al. (2007, 156778) Species: Human Cell Types: HUVEC (from primary human endothelial cells) and U937 (human leukemia pro-monocytic) cell cultures.	PM _{2.5} and PM ₁₀ from Mexico City Particle Size: PM _{2.5} , PM ₁₀	Route: In Vitro Dose/Concentration: HUVEC TNF-α (10 ng/mL), and a PM range of 5, 10, 20, and 40 μg/cm² concentrations. Time to Analysis: 6 or 24 h (early and late adhesion molecules respectively)	Results showed that both $PM_{2.5}$ and PM_{10} induced the adhesion of U937 cells to HUVEC, and their maximal effect was observed at 20 $\mu g/cm^2$. This adhesion was associated with an increase in the expression of all adhesion molecules evaluated for PM_{10} , and E-selectin, P-selectin, and ICAM-1 for $PM_{2.5}$. In general the maximum expression of adhesion molecules induced by $PM_{2.5}$ and PM_{10} was obtained with 20 $\mu g/cm^2$, however PM_{10} -induced expression was observed from 5 $\mu g/cm^2$. E-selectin and ICAM-1 had the strongest expression in response to particles.
Reference: Moyer et al. (2002, <u>052222</u>) Species: Mouse Gender: Male and Female Strain: B6C3F1	In phosphide (InP), Co sulfate heptahydrate ($CoSO_4 \cdot 7H_2O$), Vanadium pentoxide(V_2O_5) Gallium arsenide (GaAs), Ni oxide (NiO), Ni subsulfide (Ni ₃ S ₂), Ni sulfate hexahydrate (NiSO ₄ · 6H ₂ O), talc, and Mo trioxide (MoO ₃) Particle Size: MMAD particle size (µm): InP (1.1-1.3), $CoSO_4 \cdot 7H_2O$ (1.5-1.8), V_2O_5 : (1.0), GaAs: (1.0)	Route: Inhalation Dose/Concentration: High-Dose Concentration in Chronic Studies, Male (μ g/m³): InP: 0.3, CoSO ₄ ·7H ₂ O: 3.0, V ₂ O ₅ : 4.0, GaAs: 1.0 High-Dose Concentration in Sub-Chronic Studies, Male or Female (μ g/m³): InP: 100, CoSO ₄ ·7H ₂ O: 30, V ₂ O ₅ : 16, GaAs: 75 Time to Analysis: Phase One: Evaluation of heart, kidney and lung tissues from all control and high dose male B6C3F1 mice exposed by inhalation to 9 particulate compounds for a 2yr period. Phase Two: evaluated heart, lung, kidney and mesentery tissues of control and high dose male and female B6C3F1 mice from the 90-day studies of the 4-compounds demonstrating arteritis after a 2-yr period.	Phase One: High-dose males developed significantly increased incidences of arteritis over controls in 2 of the 9 studies (InP and CoSO $_4$ ·7H $_2$ O), while marginal increases of arteritis were detected in 2 additional studies (V_2O_5 and GaAs). In contrast, arteritis of the muscular arteries of the lung was not observed. Morphological features of arteritis in these studies included an influx of mixed inflammatory cells including neutrophils, lymphocytes, and macrophages. Partial and complete effacement of the normal vascular wall architecture, often with the extension of the inflammatory process into the periarterial connective tissue, was observed. Phase Two: Results showed that arteritis did not develop in the 90-day studies, suggesting that long-term chronic exposure to lower-dose metallic PM may be necessary to induce or exacerbate arteritis.
Reference: Mutlu et al. (2007, 121441) Species: Mouse Gender: Male Strain: 57BL/6 (IL-6*/+ and IL-6*/-) Age: 6-8 wk Weight: 20-25 g	PM ₁₀ from ambient air in Düsseldorf, Germany Particle Size: PM ₁₀	Route: IT Instillation Dose/Concentration: PM ₁₀ : 10 μg; Clodronate: 120 mg Time to Analysis: For alveolar macrophage depletion, clodronate instilled into mice lungs following endotracheal intubation 48 h prior to instillation of PM. Parameters measured 24 h post-exposure.	Mice treated with PM ₁₀ exhibited a shortened bleeding time, decreased prothrombin and partial thromboplastin times (decreased plasma clothing times), increased levels of fibrinogen, and increased activity of factors II, VIII, and X. This prothrombotic tendency was associated with increased generation of intravascular thrombin, an acceleration of arterial thrombosis, and an increase in BALF concentration of prothrombotic IL-6. IL-6. mice were protected against PM-induced intravascular thrombin formation and the acceleration of arterial thrombosis. Depletion of macrophages by the IT administration of liposomal clodronate attenuated PM-induced IL-6 production and the resultant prothrombotic tendency.
Reference: Nadziejko et al. (2002, <u>087460</u>) Species: Rat Gender: Male Strain: Wistar Kyoto Age: 16 wk	CAPs ($PM_{2.5}$) from Tuxedo, NY. (SO_2 , NO_2 O_3 and NH_3 were removed prior to exposure). H ₂ SO ₄ (fine and ultrafine) Particle Size: Ultrafine H ₂ SO ₄ 50-75 nm (MMAD)	Route: Nose-only Inhalation Dose/Concentration: CAPs: 80 and 66 μ g/m³ (avg 73); Fine H ₂ SO ₄ : 299, 280, 119, and 203 μ g/m³ (avg 225); Ultrafine H ₂ SO ₄ : 140, 565, 416, 750 μ g/m³ (avg 468) Time to Analysis: 4 h/exposure	Exposure to CAPs caused a striking decrease in respiratory rate that was apparent soon after the start of exposure and stopped when exposure to CAPs ceased. The decrease in respiratory rate was accompanied by a decrease in HR. Exposure of the same animals to fine-particlesize H ₂ SO ₄ aerosol also caused a significant decrease in respiratory rate similar to the effect of CAPs. Ultrafine H ₂ SO ₄ had the opposite effect on respiratory rate compared to CAPs.
Reference: Nadziejko et al. (2004, <u>055632</u>) Species: Rat Gender: Male Strain: F344 Age: 18 mo	PM/CAPs (Tuxedo, NY) UFC (lab generated) SO ₂ Particle Size: PM (Size Range): 0.5-2.5μm; UFC (MMAD): 30-50 nm	Route: Nose-only Inhalation Dose/Concentration: PM (μg/m³): 161-200, avg. 180; UFC (μg/m³): 500-1280, avg. 890; SO₂ (ppm): 1.2, 1.2, avg. 1.2 Time to Analysis: A total of 8 exposures were performed: 2 exposures to CAPs, 2 exposures to UFC, 4 exposures to SO₂. All three pollutants were tested w/ a crossover design so that each group alternated exposure to air and to pollutant. Exposures lasted 4 h and were performed at least 1wk apart. Parameters measured throughout duration of experiment.	Old F344 rats had many spontaneous arrhythmias. There was a significant increase in the frequency of irregular and delayed beats after exposure to CAPs. The same rats were subsequently exposed to UFC, SO ₂ or air with repeated crossover design. In these experiments there was no significant change in the frequency of any category of spontaneous arrhythmia following exposure to UFC or SO ₂ .

Study	Pollutant	Exposure	Effects
Reference: Nemmar et al. (2008, 096566) Species: Rat	DEP (SRM 2975) Particle Size: <1 μm	Route: Intravenous via the tail vein Dose/Concentration: DEP: 0.02mg or 0.1mg DEP/kg (corresponding to about 8 µg or 44 µg	Intravenous administration of DEP (0.1 mg/kg) triggered systemic inflammation characterized by an increase in monocyte an granulocyte numbers. Both doses of DEP caused a reduction
Gender: Male		DEP/rat)	of RBC numbers and hemoglobin concentration. TEM analysis of RBCs after in vitro incubation (5
Strain: Wistar Kyoto		Time to Analysis: 48 h following systemic administration of saline or DEP	μg/mL) or in vivo administration of DEP, revealed
Weight: 440 ± 14 g			the presence of ultrafine-sized aggregates of DEP within the RBC. Larger aggregates were also taken up by the RBC. The myocardial mor- phology and capillary bed were not affected by DEP exposure.
Reference: Nemmar et	DEP (SRM 2975)	Route: Tail Vein Injection	Effect of DEP on Blood Pressure: Significant
al. (2007, <u>156800</u>) Species: Rat	Particle Size: NR	Dose/Concentration: 8, 42, or 212 μg DEP/rat (150μl of 0.02, 0.1, or 0.5 mg/kg)	decrease on BP in DEP-exposed rats at doses of 0.02 mg/kg, compared with mean BP observed in controls.
Gender: Male		Time to Analysis: 24 h	Effect of DEP on HR: Doses of 0.02, 0.1, and
Strain: Wistar Kyoto			0.5 mg/kg in rats, resulted in significant reduction of HR compared to controls.
Age: 16 wk Weight: 424 ± 8 g			Effect of DEP on Tail Bleeding Time: Shortening of tail bleeding time in rats exposed to 0.02, 0.1, and 0.5 mg/kg. The shortening was significant at the dose of 0.02 and 0.5 mg/kg compared w/ controls. Platelet counts in blood did not significantly increased post-DEP administration.
			Effect of DEP on WBC and RBC Numbers: No significant effect of DEP at doses of 0.02, 0.1 and 0.5 mg/kg on the numbers of granulocytes, monocytes, or lymphocytes compared with control.
Reference: Nemmar et	DEP (SRM 1650)	Route: IT Instillation	Doses of 5-500 µg enhanced experimental
al. (2003, <u>096567</u>) Species: Hamster	Particle Size: NR	Dose/Concentration: 120 μl (5, 50, or 500 μg/animal)	arterial and venous platelet-rich thrombus formation in-vivo. Blood samples taken from hamsters 30 and 60 min after instillation of 50 µg
Gender: Male and Female		Time to Analysis: In-vivo: formation and embolization of thrombus were continuously monitored for 40 min. Ex-vivo: animals were	of DEPs yielded accelerated aperture closure (platelet activation) ex-vivo, when analyzed in the PFA-100. The direct addition of as little as 0.5 µg/mL DEPs to untreated hamster blood
Weight: 100-110 g		ITly instilled w/ DEPs (0 or 50 µg per animal), and blood was collected 5, 15, 30, and 60 min post-instillation. In-vitro: Saline or saline-containing DEPs (0.1, 0.5, 1, and 5 µg/mL) was added to venous blood from untreated hamsters, and closure time was measured in the PFA-100 after 5 min/animal.	significantly shortened closure time in vitro.
	DEP (SRM 1650); Positively Charged	Route: IT Instillation	DEP increased thrombosis without elevating
al. (2004, <u>087959</u>) Species: Hamster	Polystyrene Particles (PCPSP) Particle Size: PCPSP: 400 nm; DEP:	Dose/Concentration: DEP: 50 μg/animal, or PCPSP: 500 μg/animal	plasma vWF. The IT instillation of PCPSP equally produced histamine release and enhanced thrombosis. Histamine in plasma resulted from
Gender: Male and	NR	Time to Analysis: Pretreatment Phase:	basophil activation. IP pretreatment with Dexametasone abolished the DEP-induced
Female Weight: 100-110 g		Hamsters were pretreated w/ Dexametasone IP (5 mg/kg) or IT (0.1 or 0.5 mg/kg) or Sodium Cromoglycate given IP (40 mg/kg), 1 h before DEP or vehicle instillation. Thrombosis: In-vivo thrombogenesis assessed 24 h post-instillation of DEP or vehicle.	histamine increase in BALF and plasma and abrogated airway inflammation and thrombogenicity. The IT pretreatment with Dexametasone showed a partial but parallel inhibition of all these parameters. Pretreatmen with Sodium Cromoglycate strongly inhibited thrombogenicity, and histamine release.
Reference: Nemmar et al. (2003, 097487)	Ultrafine Particles: Unmodified	Route: IT Instillation	Unmodified and negative UFPs did not modify
,	Polystyrene Particles (UPSPs); Negatively Charged Carboxylate-Modified	Dose/Concentration: 5, 50, and 500 μg/animal in 120 μl saling	thrombosis. Positive UFPs increased thrombosis at 500 and 50 µg/animal, but not at 5 µg/animal.
Species: Hamster Gender: Male and Female	Polystyrene Particles (NCC-MPSPs); Positively-Charged Amine Modified Polystyrene Particles (PCA-MPSPs)	in 120 µl saline Time to Analysis: 1 h post-instillation	Positive 400 nm particles (500 µg/animal) did not affect thrombosis. PFA-100 analysis showed that platelets were activated by the in-vitro addition of
Weight: 100-110 g	Particle Size: UPSPs: 60 nm; NCC-MPSPs: 60 nm; PCA-MPSPs: 60 or 400 nm		positive UFPs and 400 nm particles to blood.

Study	Pollutant	Exposure	Effects
Reference: Nemmar et al. (2003, <u>087931</u>)	DEP (SRM 1650) Particle Size: NR	Route: IT Instillation	At 1, 6, and 24 h after instillation of 50 µg DEPs, the mean size of in-vivo induced and quantified
Species: Hamster	Particle Size: NR	Dose/Concentration: 50 μg/animal in 120 μl saline	venous thrombosis was increased by 480, 770, and 460%, respectively. Platelets activation in
Weight: 100-110 g		Time to Analysis: 1, 3, 6, and 24 h	blood was confirmed by a shortened closure time in the PFA-100 analyzer. In plasma, histamine was increased only at 6 and 24 h. Pre-treatment with a H1 receptor antagonist (diphenhydramine, 30 mg/kg intraperitoneally) did not affect DEP-induced thrombosis or platelet activation at 1 h; however both were markedly reduced at 6 and 24 h.
Reference: Niwa et al. (2007, <u>091309</u>)	Carbon Black	Route: IT Dispersion	IT CB Dispersion Study: Although no difference in body weight (bw) between the four groups was
Species: Mouse	Particle Size: 23-470 nm (mean size 120.7 nm)	Dose/Concentration: IT CB Dispersion Study: 1 mg per animal/wk; Acute Effect of CB	observed at baseline, and all mice experienced an increase in bw with advancing age, the mice
Gender: Male		Dispersion on Circulating CRP Study: 1mg/animal (single administration)	treated with CB tended to be smaller than those treated with vehicle (air). No significant
Strain: LDLr/KO		Time to Analysis: IT CB Dispersion Study: 1x/wk for 10 wk	differences were observed in cholesterol and TG levels among the for groups. Development of
Age,: 6 wk (n = 20) Use: IT CB dispersion;		Acute Effect of CB Dispersion on Circulating	aortic lipid-rich lesions occurred in mice under a 0.51% cholesterol diet with or without CB
10-14 wk acute effect of CB dispersion on		CRP Study: Single CB administration, blood samples collected 24 h post-administration	infusion, but not in the mice fed a 0% cholesterol diet.
circulating CRP			Acute Effect of CB Dispersion on Circulating CRP Study: Circulating levels of CRP were significantly higher in mice exposed to CB versus those exposed to air, indicating an acute inflammatory response. Although the presence of CB in pulmonary macrophage-like cells in CB treated mice under 0.51% cholesterol diet was confirmed, CB was not detected in aortas, livers, kidneys, or spleens.
Reference: Niwa et al. (2007, <u>091309</u>)	Carbon Black (CB); Water-Soluble Fullerene	Route: Cell Culture	CB alone had no significant effects on RAW264.7 cell growth. $C_{60}(OH)_{24}$ alone or CB and $C_{60}(OH)_{24}$
Species: Mouse	(C ₆₀ (OH) ₂₄); Fluoresbrite Carboxylate	Dose/Concentration: CB: 1, 10, 100 μg/mL; C ₆₀ (OH) ₂₄ : 20, 100ng/mL	together w/ Ox-LDL induced cytotoxic morphological changes, such as Ox-LDL uptake-
Cell Types: RAW264.7	Microspheres; Ox-LDL; Acetylated-LDL Particle Size: Carbon Black and	Time to Analysis: RAW264.7+CB	induced foam cell-like formation and decreased cell growth, in a dose-dependent manner.
	C ₆₀ (OH) ₂₄ : 7.1 nm (SD 2.4); Fluoresbrite Carboxylate	for 24 h, 13 days, and 50 days;	C ₆₀ (OH) ₂₄ induced LOX-1 protein expression, pro-matrix metalloprotease-9 protein secretion,
	Microspheres: 6 nm	RAW264.7+ C ₆₀ (OH) ₂₄ for 24 h or 10 days;	and tissue factor mRNA expression in lipid-laden macrophages. Although CB or C ₆₀ (OH) ₂₄ alone
		RAW264.7+ C ₆₀ (OH) ₂₄ for 8 days, then cotreated w/ Ox-LDL for an additional 48 h;	did not induce platelet aggregation, C ₆₀ (OH) ₂₄ facilitated ADP-induced platelet aggregation.
		RAW264.7+Ox-LDL for 5 days, and then co- cultured w/ C60(OH)24 for an additional 48 h;	C ₆₀ (OH) ₂₄ also acted as a competitive inhibitor of ADP receptor antagonists in ADP-mediated platelet aggregation.
		RAW264.7+ 6 nm beads: 3 days, the Ox-LDL or acetylated-LDL added for 24 h $$	
Reference: Niwa et al. (2008, <u>156812</u>)	CB from Kyoto, Japan	Route: Whole-body Inhalation	Although the presence of CB was confirmed in pulmonary macrophages, electron microscopic
Species: Rat	Particle Size: Mean size (nm) ± SD determined at 1, 8, 15, 22, and 29 day	Dose/Concentration: 15.6 ± 3.5 mg/m ³	survey did not detect CB in other tissues including, liver, spleen and aorta. CB exposure
Strain: SD	post-exposure was 118.1 ± 2.4, 119.1± 2.7, 122.2 ± 2.0, 122.4 ± 2.5 and 121.0	Time to Analysis: 6 h/day, 5 days/wk, for a total of 4 wk. BP and HR were measured by tail-	raised blood pressure levels in a exposure-time dependent manner. Levels of circulating
Age: 6 wk	± 3.6 respectively	cuff plethysmography at 1, 14, and 28 day post-exposure. Sacrificed At 1, 7, 14, 28, and 30 day post-exposure	inflammatory marker proteins, including monocyte chemo attractant protein-1, IL-6, and CRP, were higher in the CB treated groups than in control groups.
Reference: Nurkiewicz et al. (2004, 087968)	ROFA (from Everett, MA). Major metal contaminants are: Fe, Al, V, Ni, Ca, and Z. Main soluble metals are: Al, Ni, and Ca. Particle Size: 2.2 µm (ROFA mean count diameter)	Route: IT Instillation	Saline Treated Rats: A23187 dilated arterioles up to 72 ± 7% max.
Species: Rat		Dose/Concentration: ROFA group: 0.1, 0.25, 1, or 2 mg/rat. Vehicle control group: 300 µl	ROFA and TiO ₂ Exposed Rats: A23187-induced
Gender: Male		saline. Particle control group: TiO ₂ 0.25 mg/rat.	dilation was significantly attenuated.
Strain: SD		Time to Analysis: After single IT instillation of a particular dose, all rats recovered for 24 h.	Sensitivity of Arteriolar Smooth Muscle to NO: Similar in saline treated and ROFA exposed rats.
Age: 7-8 wk			Other: Significant increase in venular leukocyte- adhesion and rolling observed in ROFA exposed rats.

Study	Pollutant	Exposure	Effects
	ROFA from Everett, MA Particle Size: ROFA mean count diameter: 2.2 μm; TiO₂ mean diameter:	Route: IT Instillation	ROFA or TiO ₂ Exposure and Arteriolar
et al. (2006, <u>088611</u>) Species: Rat		Dose/Concentration: ROFA group: 0.1 or 0.25 mg/rat. Vehicle control group: 300 µl saline.	Dilation: Exposure caused a dose-dependent impairment of endothelium-dependent arteriolar
Gender: Male	1.0 µm	Particle control group: TiO ₂ 0.1 or 0.25 mg/rat.	dilation. ROFA or TiO₂ Exposure and Arteriolar
Strain: SD		Time to Analysis: After single IT instillation of a particular dose, all rats recovered for 24 h.	Constriction: Exposure did not affect microvascular constriction in response to PHE.
Age: 7-8 wk			ROFA and TiO ₂ and Leukocyte Rolling and Adhesion: Exposure significantly increased leukocyte rolling and adhesion in aired venules, and these cells were identified as PMN leukocytes.
			ROFA and TiO ₂ and MPO: MPO was found in PMN leukocytes, adhering to the systemic microvascular wall. Evidence suggests that some of this MPO had been deposited in the microvascular wall. There was also evidence of oxidative stress in the microvascular wall.
Reference: Nurkiewicz et al. (2008, 156816)	TiO ₂ (DeGussa, Sigma-Aldrich)	Route: Whole-body Inhalation	Particle accumulation within AMs, anuclear macrophages, particle-laden AMs intimately
Species: Rat	Particle Size: Fine- 1 µm, UF- 21 nm	Dose/Concentration: Concentrations: Fine- 3-16 mg/m ³ ; UF- 1.5-12 mg/m ³ ; Dose: Fine- 8, 20,	associated with the alveolar wall were all present in exposed rats. Calcium ionophore impaired
Gender: Male		36, 67, 90 µg; UF- 4, 6, 10, 19, 30 µg	arteriolar dilation in a dose-dependent manner in
Strain: SD		Time to Analysis: Acclimated 5 days. Exposed 4-12 h. Sacrificed 24 h post-exposure.	UF and fine exposed rats. UF produced greater systemic microvascular dysfunction.
Age: 6-7wk			Microvascular dysfunction was the same for three groups of rats exposed to 30 µg UF TiO ₂
Weight: NR			under different conditions.
Reference: Nurkiewicz et al. (2009, 191961)	Fine TiO ₂ (Sigma-Aldrich, St. Louis, MO) (~99% rutile)	Route: Aerosol Inhalation	Arteriolar Dilation: Nano-TiO ₂ significantly impaired endothelium-dependent arteriolar
Species: Rat	TiO ₂ nanoparticles (DeGussa-	Dose/Concentration: 1.5-16mg/m³	dilation. Equivalent levels of arteriolar dysfunction were found in fine and nano-TiO ₂ . Arteriolar
Gender: Male	Aeroxide TiO ₂ P25, Parsippany, NJ) (80% anatase, 20% rutile)	Time to Analysis: Acclimated 5 days. Exposed 240-720 min. Anesthetized 24 h post-exposure.	dilation in response to abluminal microiontophretic application of SNP was not
Strain: SD	Particle Size: Fine TiO ₂ - MMAD: 402	Intravital microscopy, NO measurement, microvascular oxidative stress measurement,	different from the controls or between the exposure groups. Arteriolar dilation was partially
Age: 7-8 wk	nm, Primary size: <5 μm, ,CMD: 710 nm; Nano-TiO ₂ - MMAD: 138 nm,	nitrotyrosine staining.	restored by radical scavenging with TEMPOL and
Weight: NR	Primary size: 21 nm, , CMD: 100 nm		catalase, NADPH oxidase with apocynin, and MPO inhibition with ABAH.
			Microcirculation: ROS increased in both groups. Nano- TiO_2 significantly increased the area of tissue containing nitrotyrosine in the lung and spinotrapezius microcirculation.
			$\mbox{NO}:$ Fine and nano-TiO $_2$ significantly and dose-dependently decreased stimulated NO production in isolated microvessels. NO production was increased by radical scavenging with TEMPOL and catalase or NADPH oxidase with apocynin, and was largest in the fine TiO $_2$ group.

Study	Pollutant	Exposure	Effects
Reference: Okayama et al. (2006, 156824) Species: Rat Cell Type: Ventricular Cardiac Myocytes from Wistar Rats, approximately 3 days old	DEP (Tsukuba, Japan) DEPE: 5g of DEP in 5 mL PBS containing 0.05% Tween 80. Others: Catalase, LDH, MPG and SOD. Particle Size: DEP mass median diameter: 0.34 μm.	Route: In Vitro Dose/ Concentration: DEPE: 0-100 μg/mL; MPG: 0-1 mM; SOD: 800 U/mL; Catalase: 500 U/mL Time to Analysis: cells were incubated for 1, 2, 4, or 8, 24 or 48 h. LDH Activity of Supernatant: 24 h post-DEPE exposure. SOD, Catalase, MPG on DEPE-induced Toxicity: SOD, catalase or MPG was added to cells w/ or w/o DEPE & incubated for 4 or 24 h. Medium then replaced w/serum-free & cells incubated for another 24 h to analysis.	Cytotoxic Effects of DEPE on Cardiac Myocytes: DEPE above 20 μg/mL damaged cardiac myocytes in a time and concentration-dependent manner in both long- and short-term exposure conditions. However damage was greater after long-term exposure. LDH activity showed a concentration-dependent increase at higher levels of exposure (greater than 20 μg/mL). Effects of ROS Scavenging Enzymes and Antioxidant on DEPE-induced Cell Damage: SOD or catalase attenuated 50 μg/mL DEPE-induced cell damage compared with DEPE-treated groups lacking antioxidant enzymes. Coincubation with SOD and catalase showed more protective effects towards DEPE-induced cell damage, although these effects were not statistically significant from cells treated with SOD only. MPG attenuated 50 μg/mL DEPE-induced cell damage in a concentration-dependent manner in both long and short-term exposure MPG showed strong protective effects against DEPE-induced cell damage. Cell viability was not affected by SOD, catalase, or MPG.
Reference: Proctor et al. (2006, <u>088480</u>) Species: Rat Gender: Male Age: 12 wk Use: Thoracic Aorta from cp/cp and +/? Male Rats cp/cp = homozygous for cp gene. Prone to obesity and insulin resistant. +/? = heterozygous for either +/cp or +/+. Lean and metabolically	ROFA from Birmingham, AL Particle Size: 1.95 ± 0.18 μm (aerodynamic diameter)	Route: Protocol 1: Used two aorta rings per each experimental treatment group (4 groups total). Protocol 2: Used four rings. Dose/Concentration: Protocol 1: exposed to 12.5 µg/mL ROFA-L (at 10 mg/mL). Protocol 2: exposed to 1.56, 3.25, 6.26, 12.5 µg/mL ROFA-L (at 10 mg/mL). Time to Analysis: Protocol 1: Cells treated with 12.5 µg/mL ROFA-L and/or 104mol/L L-NAME for 20 min Protocol 2: Parameters measured after ROFA-L only treatment Contractile response to phenylephrine (PE) was measured	ROFA-L (12.5 µg/mL) increased PE-mediated contraction in obese, but not in lean rat aortae. Effect was exacerbated by L-NAME, and it reduced ACh-mediated relaxation in obese and lean aortae. Initial exposure of aortae to ROFA-L caused a small contractile response, which was markedly greater on second exposure in the obese aortae but marginal in lean.
Reference: Radomski et al. (2005, <u>091377</u>) Species: Rat Strain: Wistar Kyoto	Carbon Nano Particles (CNPs) (purchased from SES Research, Houston, TX): Multiplewall Nanotubes (MWNT); Single wall Nanotubes (SWNT); C60 Fullerenes (C60CS); Mixed Carbon Nanoparticles (MCN) PM: (SRM1648) (NIST) Particle Size: CNPs: NR; PM: 1.4 µm average size Carbon Nano Particles (CNPs)	Route: Simultaneous single PM injection into femoral vein as FeCl ₃ injected to induce carotid thrombosis Dose/Concentration: 0.5 mL suspension of 50 μg/mL of PM in 0.9% NaCl solution. Time to Analysis: Blood flow continuously monitored for 900 s. Route: Cell Culture (2.5×10 ⁸ platelets/mL)	Vascular Thrombosis: FeCl₃ induced carotid artery thrombosis and MCN had an amplifying effect in the development of thrombosis. Infusions of MCN, SWNT, and MWNT significantly accelerated the time and rate of development of carotid artery thrombosis in rats. SRM1648 was less effective than CNPs in inducing thrombosis, while C60CS exerted no significant effect on the development of vascular thrombosis. Platelet Aggregation: All CNPs, except C60CS,
et al. (2005, 091377) Species: Human Cell Types: Platelets Use: Human platelet aggregation	Carbon Nano Particles (CMPs) (purchased from SES Research, Houston, TX): Multiplewall Nanotubes (MWNT); Singlewall Nanotubes (SWNT); C60 Fullerenes (C60CS); Mixed Carbon Nanoparticles (MCN); PM (SRM1648) Particle Size: CNPs: NR; PM: 1.4 µm average size	Dose/Concentration: CNPs: 0.2-300 μg/mL; PM: 5-300 μg/mL Time to Analysis: Prostacyclin (PGI2), S-nitroso-glutathione (GSNO), aspirin, 2-methylthio-AMP, phenanthroline, EDTA and Go6976 were pre-incubated w/ platelets for 1 min before particle addition. Particles added to platelets and platelet aggregation studied for 8min.	Platelet Aggregation: All CNP's, except CoUCS, stimulated platelet aggregation (MCN ≥ SWNT>MWNT>SRM1648). All particles resulted in upregulation of GPIIb/IIIa in platelets. In contrast, particles differentially affected the release of platelet granules, as well as the activity of thromboxane-, ADP, matrix metalloproteinase- and protein kinase C-dependent pathways of aggregation. Particle-induced aggregation was inhibited by prostacyclin and GSNO, but not by aspirin.

Study	Pollutant	Exposure	Effects
Reference: Reed et al. (2006, <u>156043</u>) Species: Rat, Mouse Gender: Male and	noncertified wood stove using a Pineridge model 27000, Heating and Energy Systems, Inc. Clackamas, OR)	Route: Whole-body Inhalation Dose/Concentration: Low: 30 μg/m³ Mid-low: 100 μg/m³	Organ Weights: Liver declined in rats of both genders at 1 wk and female rats at 6 mo. Lung volume increased and lung weight decreased in female rats at 6 mo. Spleen weight increased in female mice and rats at 1wk. Thymus weight
Strain: CDF (F344)/CrlBR (rat), SH (rat), A/J (mouse), and C57BL/6 (mouse)	Measured Components: EC, OM, NO ₃ , SO ₄ , NH ₄ , metals Particle Size: ~0.25 μm	Mid-high: 300 μg/m³ High: 1000 μg/m³ Time to Analysis: 6 h/day, 7days /wk for 1 wk or 6 mo. Immediate post-exposure analysis.	decreased in male rats at 1wk. Clinical Chemistry: Cholesterol decreased at the high dose for male rats at 1wk and 6 mo and increased at mid-low and mid-high doses for female rats at 6 mo. ALP decreased for rats of both genders at 1wk and 6 mo for mid-low, mid-high and high dose levels (14-38%). AST decreased by 24% in male rats at 1wk with high dose. No effect on females. Creatinine serum levels decreased in males at 1wk at mid-high an high dose by 13%. No effect observed at 6 mo. BUN/Cre ratio decreased in females at 1wk (25%) and both genders at 6 mo at mid-high and high dose (18-19%). Hematology: Hemoglobin and hematocrit increased in 6 mo male rats. Bilirubin increased in female rats at 1wk (21% 19% respectively). No effect observed at 6m. WBC increased in males at 1wk.
Reference: Reed et al. (2004, 055625) Species: Rat, Mouse Gender: Male and Female Strain: CDF (F344)/CrIBR (rat), A/J (mouse) Age: 12 wk	DE: generated from two 2000 model 5.9 L Cummins ISM turbo diesel engines Co-exposure to 8 gas and 8 solid exhaust components measured Particle Size: 0.10 - 0.15 μm	Route: Whole-body Inhalation Dose/Concentration: Low: 30 μg/m³ Mid-low: 100 μg/m³ Mid-high: 300 μg/m³ High: 1000 μg/m³ Time to Analysis: 6 h/day, 7 days/wk for 1wk or 6 mo. Analyzed 1 day post-exposure.	Organ Weights: Kidney weight increased after 6m for both males and female rats at the high dose. Kidney and liver weight increased for female mice at all dose levels at 6 mo. Lung weight increased at high dose at 6mo for female mice and male rats. Spleen weight decreased in male mice at the low and mid-high levels. Clinical Chemistry: There was a massive decrease in cholesterol (24%) for rats of both genders after 1 wk and a smaller decrease for male rats at 6 mo. GGT significantly increased a 6 mo for male and female rats at the mid-high and high dose. ALP increased in male rats at 1 wk by 10%. AST decreased at mid-high (15%) and high dose in female rats at 6 mo. BUN and BUN/Creatine declined (19%, 17%) in female ra at mid-high and high doses after 6 mo. BUN increased by 21% at mid-low, mid-high and high doses in male rats at 1 wk. Hematology: WBC decreased in high females after 6 mo. Factor VII (blood clotting) decreased in MH and HR males after 1 wk and male and female HR after 6 mo. Thrombin-antithrombin complex declined massively but only in males after 1 wk.
Reference: Reed et al. (2008, <u>156903</u>) Species: Rat Gender: Male, Female Strain: CDF (F344)/CrIBR, SH Age: NR Weight: NR	GEE (two 1996 General Motors 4.3-L V-6 engines; regular, unleaded, non-oxygenated, non-reformulated Chevron-Phillips gasoline, U.S. average consumption for summer 2001 and winter 2001-2002) Particle Size: 150 nm (MMAD)	Route: Whole-body Inhalation Dose/Concentration: PM: Low- 6.6 ± 3.7 μg/m³, Medium- 30.3 ± 11.8 μg/m³, High- 59.1 ± 28.3 μg/m³ Time to Analysis: 2 wk quarantine period in chamber. Exposed 6 h/day, 7 days/wk, 3 day-6 mo. SH- surgery to implant telemeter in peritoneal cavity. 4 wk recovery. ECG data obtained every 15 min beginning 3 day pre-exposure, 7 day exposure, 4 day post-exposure.	Organ Weight: At 6 mo exposure, the heart weights of male and female rats increased and male rats' seminal vesicle weight decreased. Clinical Chemistry: Serum alanine aminotransferase, aspartate aminotransferase, and phosphorus decreased in medium and high exposure females. Hematology: Hematocrit, red blood cell count, and hemoglobin dose-dependently increased to both genders at both time points. Plasma fibrinogen increased at 1wk in males. CV Effects in SH Rat: Lipid peroxides were significantly increased in males in the high exposure group. TAT complexes decreased in females in the high exposure group.

Removal of Emission PM: The removal of emission PM strongly linked PM to increased seminal vesicle weight, red blood cell counts, LDH, lipid peroxides, and methylation.

Study	Pollutant	Exposure	Effects
Reference: Rhoden et al. (2005, <u>087878</u>) Species: Rat Gender: Male Strain: SD	Urban Ambient Particles (UAPs): SRM-1649; CAPs (Boston, MA) Particle Size: NR	Route: UAPs: IT Instillation. CAPs: Inhalation Dose/Concentration: UAPs: 750 μg suspended in 300 μl saline; CAPs: 700 ± 180 μg/m³ Time to Analysis: UAPs: 30 min post-instillation. CAPs: immediately after 5 h exposure	Oxidative Stress and HR Function: UAPs instillation led to significant increases in heart oxidants. HR increased immediately after exposure and returned to basal levels over the next 30 min. SDNN was unchanged immediately after exposure, but significantly increased during the recovery phase.
Age: Adult Weight: 300 g		period Period	Role of ROS in Cardiac Response: Rats were treated with 50 mg/kg NAC 1 h prior to UAPs instillation or CAPs inhalation. NAC prevented changes in heart rate and SDNN in UAPsexposed rats.
			Role of the Autonomic Nervous System in PM-induced Oxidative Stress: Rats were given 5 mg/kg atenolol, 0.30 mg/kg glycopyrrolate, or saline immediately before CAPs exposure. Both atenolol and glycopyrrolate effectively prevented CAPS-induced cardiac oxidative stress.
Reference: Rivero et al. (2005, 088653) Species: Rat Gender: Male Strain: Wistar Kyoto	$\begin{array}{l} PM_{2.5}, \mbox{ collected from heavy traffic area} \\ \mbox{in Sao Paulo, Brazil. } PM_{2.5} \mbox{ Composition (%): S (3.05), As (0.30), Br (0.21), Cl (2.09), Co (2.65), Fe (2.67), La (5.42), Mn (0.64), Sb (0.21), Sc (3.25), Th (8.14) \\ \mbox{Particle Size: } PM_{2.5} \end{array}$	Route: IT Instillation Dose/Concentration: 100 or 500 μg of PM _{2.5} . Time to Analysis: 24 h post-instillation	Hematology: Total reticulocytes significantly increased at both PM _{2.5} doses, while hematocrit levels increased in the 500 μg group. Quantification of segmented neutrophils and fibrinogen levels showed a significant decrease, while lymphocytes counting increased with 100 μg of PM _{2.5} .
Age: 3 mo Weight: ~250 g			Pulmonary Vasculature: Significant dose-dependent decrease of intra-acinar pulmonary arteriole lumen/wall ratio was observed in both PM _{2.5} groups.
			Wet-to Dry Weight Ratio: Significant increase in heart wet-to-dry weight ratio was observed in the 500 μg group.
Reference: Rivero et al. (2005, <u>088659</u>) Species: Rat Gender: Male Strain: Wistar Kyoto Age: 3 mo	$\begin{array}{l} PM_{2.5}, \mbox{ collected from heavy traffic area} \\ \mbox{in Sao Paulo, Brazil. } PM_{2.5} \mbox{ Composition (%): S (3.05), As (0.30), Br (0.21),} \\ \mbox{Cl (2.09), Co (2.65), Fe (2.67),} \\ \mbox{La (5.42), Mn (0.64), Sb (0.21),} \\ \mbox{Sc (3.25), Th (8.14)} \\ \mbox{Particle Size: } PM_{2.5} \end{array}$	Route: IT Instillation Dose/Concentration: 50 and 100 μg of PM _{2.5} . Time to Analysis: HR and SDNN were assessed immediately before instillation, 30 and 60 min post-instillation.	HR decreased significantly with time, but no significant effect of treatment or interaction between time and treatment was observed. In contrast, there was a significant SDNN interaction between time and treatment. The SDNN decreased 60 min after instillation with $PM_{2.5}$ concentration of 50 and 100 μg .
Weight: ~250 g Reference: Seagrave et al. (2008, 191990) Species: Rat Gender: Male Strain: SD Age: 10-12 wk Weight: 250-300 g	GEE (2 1996 General Motors 4.3-L V6 gasoline engines; conventional Chevron Phillips gasoline, U.S. average composition) (CO, NO, NO ₂ , SO ₂ , THC) (PM _{2.5} composition- EC, OC, SO ₄ , NH ₄ , NO ₃) Simulated downwind coal emission atmospheres (SDCAs) (fly ash, gasphase pollutants, sulfate aerosols, NO, NO ₂ , SO ₂) Paved Road Dust (RD) (Los Angeles, CA; New York City, NY; Atlanta, GA) Particle Size: GEE: 150 nm (MMAD), RD: 2.6 ± 1.7 µm, SDCA: 0.1-1.0 µm	Route: Nose-only Inhalation Dose/Concentration: GEE: 60 μg/m³, SDCAs: 317-1072 μg/m³, RD: 306-954 μg/m³; GEE: CO-104 ppm, NO- 16.7 ppm, NO ₂ - 1.1 ppm, SO ₂ -1.0 ppm, THC- 12ppm; SDCAs: CO- <1 ppm, NO- 0.19-0.62 ppm, NO ₂ - 0.10-0.37 ppm, SO ₂ -0.07-0.24 ppm, THC- <1 ppm Time to Analysis: 6 h exposure. Cannula ligated into trachea and connected to rodent ventilator. Thorax and abdomen opened.	GEE produced CL in the lungs, heart, and liver. RD produced a significant effect in the heart at the low dose. SDCAs had no effect on CL. RD significantly increased the heart's oxidative stress, as demonstrated by the TBARS levels
Reference: Simkhovich et al. (2007, 096594) Species: Rat Gender: Female Strain: Fischer 344 × Brown Norway hybrid Age: 4, 26 mo	Ultra Fine Particles (UFPs) isolated from industrial diesel reference PM 2975 Particle Size: UFPs ≤ 0.1 µm	Route: Heart Perfusion (ex-vivo) Dose/Concentration: UFPs 12.5, 25, and 37.5 mg. Time to Analysis: Hearts perfused w/ UFPs for 30 min and analysis conducted every 10 min.	Young adult and old hearts demonstrated equal functional deterioration in response to direct infusion of UFPs. Developed pressure in young adult UFPs-treated hearts fell from 101 \pm 4 to 68 \pm 8 mmHg. In the old UFPs-treated hearts developed pressure fell by 35%. Positive dP/dt was equally affected in the young adult and old UFPs-treated hearts and was decreased by 28% in both groups.

Study	Pollutant	Exposure	Effects
	CFA: Coal Fly Ash (400 MW, Wasatch Plateau, Utah) (aerodynamic separation)	Route: Nose-only Inhalation	Hematology: Plasma protein increased at 18h. Lymphocyte and hematocrit percentage decreased at 36 h.
(2006, <u>110864</u>)		Dose/Concentration: 1400 μg/m³ PM _{2.5}	
Species: Rat Gender: Male	Particle Size: 0.4-2.5 µm	including 600 μg/m³ PM ₁ Time to Analysis: 4 h/day for 3 consecutive	
Strain: SD		days. Parameters measured 18 or 36 h post-	
Age: 8 wk		exposure.	
Weight: 260-270 g			
Reference: Stinn et al. (2005, <u>088307</u>)	DE (generated from 1.6 L VW diesel under USFTP 72)	Route: Nose-only Inhalation Dose/Concentration: 3 and 10 mg/m ³	Hematology: Erythrocytes were unaffected (12, 24, 30) except in high dose females at 24 and 30
Species: Rat Gender: Male and Female Strain: Crl: (WIU BR Age: 40 day	CO: 10, 37 ppm CO ₂ : 2170, 6540 ppm NO: 7.0, 22.8 ppm NO _x : 8.6, 28.3 ppm SO ₂ : 0.83, 3.09 ppm NH ₄ : ND Measured Major Components: NO, SO ₂ , 1-nitropyrene, Zi. 50% by DE weight is EC.	Time to Analysis: 6 h/day, 7 day/wk for 24 mo; 6 mo post-exposure	mo. Hemoglobin and hematocrit increased dose- dependently with no gender differences. Leukocytes increased in a dose- and time- dependent manner.
-	Particle Size: 0.19-0.21 µm (MMAD)		
Reference: Sun et al. (2005, <u>087952</u>) Species: Mouse Gender: Male Strain: ApoE ^{-/-} Age: 16 wk	CAPs: PM _{2.5} from Tuxedo, NY. HFCD: High Fat Chow Diet NCD: Normal Chow Diet Particle Size: PM _{2.5}	Route: Whole-body Inhalation Dose/Concentration: PM _{2.5} : 85 μg/m³; Daily concentration: 10.6 (SD 3.4) μg/m³ (mean) Average exposure over 6 mo period: 15.2 μg/m³. Time to Analysis: Study diets fed for at least 10 wk prior to exposure to PM _{2.5} or FA. Exposed for 6 h/day, 5 days/wk for 6 mo. Sacrificed 15-47 days after exposure.	Vasomotor Function: Mice fed HFCD and exposed to PM _{2.5} demonstrated an increase in the half-maximal dose for dilation to ACh with no changes in peak relaxation compared to the mice exposed to FA and fed HFCD and NCD. Atherosclerosis Burden with PM _{2.5} : In vivo MRI imaging of atherosclerosis burden in the abdominal aorta revealed significantly increased plaque burden in the mice fed HFCD compared with the mice fed NCD. Mean (SD) plaque areas in the mice exposed to PM _{2.5} and fed HFCD vs. mice exposed to FA and fed HFCD were 33 (10) vs. 27 (13) units, respectively. PM _{2.5} and Vascular Inflammation: A 2.6-fold higher inducible NOS content was apparent in the mice exposed to PM _{2.5} and fed HFCD compared with the mice exposed to FA and fed HFCD chow and a 4-fold increase in the mice exposed to PM _{2.5} and fed HFCD chow and a 4-fold increase in the mice exposed to PM _{2.5} and fed NCD compared with the mice exposed to FA and fed NCD.
Reference: Sun et al. (2008, 157033) Species: Mouse Gender: Male Strain: ApoE ^{-/-} Age: 6 wk	CAPs PM _{2.5} Collected from Sterling Forest State Park, Tuxedo NY (40 miles NW of Manhattan) Particle Size: PM _{2.5}	Route: Whole-body Inhalation Dose/Concentration: Average Concentration of: 85 μg/m³ CAPs in chamber. Average exposure over 6 mo was 15.2 μg/m³. Time to Analysis: 6 h/day, 5 day/wk for 6 mo. Mice received two different diets, high-fat chow and normal-chow.	Macrophage and Tissue Factor Expression in Aortic Segments: Tissue Factor (TF) expression was noted predominantly in the extracellular matrix surrounding macrophages, foam cell-rich areas and around smooth muscle cells. 1. High-Fat Diet: Increased TF and increased macrophage infiltration was observed in the plaques of high-fat chow mice exposed to PM compared to mice exposed to air and high fat diet. 2. Normal Diet: PM-exposed mice saw an increase in CD68 expression compared to air-exposed. However TF expression was not significantly different in PM exposed normal diet mice compared to control normal diet mice.

Study	Pollutant	Exposure	Effects
Reference: Sun et al. (2008, <u>157033</u>)	Sterling Forest State Park, Tuxedo, NY	Route: In vitro	Dose durations tested for up to 24-h did not indicate detectable effects on cell viability.
Species: Human Cell Lines: BEAS-2B; Vascular Smooth Muscle Cells (hSMCs); and Monocytes (THP- 1)	(24 h/day for 4 wk) Particle Size: Particle size ranges: 1. <0.18 μm 2. 1.8 - 2.5 μm or 3. 2.5 - 10 μm	Dose/Concentration: 10-300 μg/ml Time to Analysis: Doses were tested for durations up to 24 h.	Effect of PM on TF Expression and Activity in hSMCs: In the PM size range of 1-3 μm, significant increases in TF expression was observed at doses of 100 and 300 μm /mL. In the <0.18 μm size range, significant increase in TF expression was observed at all doses. The particles with sizes 0.18 - 1.0 μm did not induce significant change in TF expression.
			Effect of PM on TF Expression and Activity in Monocyte Cells: TF protein expression increased with <0.18 µm and the 1- 3 µm range particles. Expression was increased in the 0.18-1.0 µm particle range but it was limited compared to the other PM size ranges. In general TF expression was higher in monocytes than in hSMCs cells, but not significantly.
			Effect on TF Expression and Activity in Bronchial Epithelial Cells: 100 µg/mL of the 1-3 µm and <0.18 µm particles significantly increased TF expression.
			TF mRNA Expression: TF mRNA was increased rapidly within the first hour in response to SRM-1694a PM. The lowest dose of SRM PM ₁₀ µg/mL induced highest levels of mRNA in hSMCs, no further increase was observed at higher concentrations.
Reference: Sun et al. (2008, 157032)	PM _{2.5} or UFP	Route: Whole-body Inhalation	Mean Arterial Pressure (MAP): After All infusion, MAP was significantly higher in PM _{2.5} -
Species: Rat	Particle Size: PM _{2.5} ; UFP: <0.1 µm	Dose/Concentration: Mean PM _{2.5} concentration: 79.1 ± 7.4 μg/m ³ . Normalized	All vs. FA-All group. Aortic Vasoconstriction to PE was potentiated with exaggerated relaxation
Gender: Male		PM _{2.5} over 10wk period: 14.1 µg/m ³ .	to the Rho-kinase (ROCK) inhibitor Y-27632 and increase in ROCK-1 mRNA levels in the PM _{2.5} -
Strain: SD		Time to Analysis: 6 h/day, 5 day/wk random exposure to PM _{2.5} , UFP, or FA for a total of 10	All group. Superoxide production in the aorta was
Age: 500-650 g		wk. At the end of wk 9 exposure, rats were infused w/ 0.75 mg/kg/day of All for 7 days. PM _{2.5} , UFP, or FA, continued during All infusion period.	increased in the PM _{2.5} . All group compared to FA- All group, inhabitable by apocynin and L-NAME with coordinate upregulation of NAD(P)H oxidase subunits p22phox and p47phox and depletion of tetrahydrobipterin.
		All = angiotensin II	7
Reference: Sun et al.	PM _{2.5} or UFP	Route: Cell Culture	Exposure to UFPs and PM _{2.5} was associated with
(2008, <u>157032</u>) Species: Rat	Particle Size: $PM_{2.5}$; UFP: <0.1 μm	Dose/Concentration: UFP, PM $_{2.5}$: 10 or 50 μ g/mL; All: 100 nmol/L	an increase in ROCK activity, phosphorylation of myosin light chain, and MYPT1. Pretreatment with N-Acetylcysteine and the Rho kinase
Gender: Male		Time to Analysis: Exposed to UFP or PM _{2.5}	inhibitors (Fasudil and Y-27632) prevented MLC and MYPT-1 phosphorylation by UFPs sug-
Strain: SD		and parameters measured at 0, 1, 3, 6, and 15 min.	gesting a superoxide-mediated mechanism for PM _{2.5} and UFPs effects.
Age: 500-650 g		All = angiotensin II	
Cell Line: Primary Rat Aortic Smooth Muscle Cells (RASMCs)			

Study	Pollutant	Exposure	Effects
Reference: Sun et al.	PM (concentrated- northeastern	Route: Whole-body Inhalation. IT Instillation.	Metabolic Impairment: PM induced insulin,
(2009, <u>190487</u>)	regional background; Tuxedo Park, NY)	Dose/Concentration: Exposure chamber (mean): 72.7 μg/m³, IT: 1.6mg/kg	homeostasis model assessment indexes, elevated glucose, and abnormalities in lipid
Species: Mouse Gender: Male	Particle Size: 2.5 µm (diameter)	Time to Analysis: C57BL/6 mice, fed high-fat	profile consistent with the IR phenotype.
Strain: C57BL/6, c- fmsYFP (transgenic,		chow 10wk. Exposed in vivo 6 h/day, 5 day, 128 days. fmsYFP rendered diabetic or fed normal chow 10 wk. IT instilled with PM 2 times/wk for	Vascular Endothelium: PM decreased peak relaxation and ED50 to ACH and peak relaxation to insulin. Lower levels of NO release were seen.
yellow fluorescent protein under monocyte-specific promoter)		10 wk.	Insulin Signaling: PM reduced the phosphorylation of Akt in intact aorta. PKC- β 11 was the only PKC isoform to increase.
Age: 8, 10 wk			Adipose Inflammation, Visceral Adiposity: PM significantly increased TNF-a, IL-6, E-selectin,
Weight: NR			ICAM-1, plasminogen activator inhibitor-1, and restin. PM increased visceral and mesenteric fat mass. F4/80+ macrophages in fat tissue and adipocyte size increased. PM downregulated IL-10 and glactose-N-acetylgalactosamine-specific lectin.
			YFP Cell Adhesion and Infiltration: PM increased YFP cells in the adipose tissue, YFP cell infiltration in the mesenteric fat, and YFP cell adhesion to endothelium.
Reference: Tamagawa et al. (2008, 191988)	,	Route: Intrapharyngeal Instillation	Inflammation: PM ₁₀ induced more macrophages, AMs, positive and activated AMs,
Species: Rabbit	Particle Size:: 0.8 ± 0.4 μm (mean diameter)	Dose/Concentration: Acute- 2.6mg/kg, Chronic- 2mg/kg	and fewer tissue macrophages. NO, WBC and PMN were only significantly higher in the first two wk and II -6 in the first wk
Gender: Female		Time to Analysis: Acute animals exposed days	
Strain: New Zealand White		1, 3, 5. Chronic animals exposed 2 times/wk for 4 wk.	
Age: 12 wk Weight: Acute			significant inverse relationship between IL-6 and Ach-induced relaxation occurred at wk 1 in the acute model and wks 1 and 2 in the chronic
(average)- 2.4 ± 0.2 kg, Chronic (average)- 2.7			model.
± 0.3 kg			AMs: The chronic model had a significant correlation between IL-6 and both positive and activated AMs at wk 1. A significant inverse relationship occurred between Ach and both the volume fraction of positive and activated AMs.
Reference: Tankersley et al. (2008, <u>157043</u>)	Carbon black (CB) (Wright dust feed particle generator-BGI, Waltham, MA)	Route: Whole-body Inhalation	Hemodynamics: CB significantly elevated right atrial and ventricular pressures, pulmonary
Species: Mouse	Particle Size: 0.1-1.0 µm	Dose/Concentration: Average PM _{2.5} concentration- 401 ± 46 μg/m ³ , Average PM ₁₀	arterial pressure and vascular resistance, all of which were more pronounced in the 28 mo-old
Gender: Male		concentration- 553 ± 49 µg/m³	mice. RV contractility (specifically, the ejection fraction and maximum change in pressure over
Strain: C57BL/6, C3H/HeJ, B6C3F1		Time to Analysis: 3 h/day, 4 days	time) reduced in CB-exposed 28 mo-old mice. Heart Tissue: CB significantly declined Ca2+-
Age: 18, 28 mo			dependent NOS activity and was more pronounced in 28 mo-old mice, who also had
Weight: NR			NOS2 upregulated. CB enhanced ROS generation and NOS-uncoupling and was greatest in 28 mo-old mice. CB also increased MMP-2, MMP-9, ANP, BNP, which were greatest in 28 mo-old mice. CB also reduced PKG-1 in 28 mo-old mice.

Study	Pollutant	Exposure	Effects
Reference: Tankersley et al. (2007, 097910) Species: Mouse	Particle Size: CB: 2.4 µm (MMAD)	Route: CB: Whole-body Inhalation; Sympathetic (S) & Parasympathetic (PS) blockade: IP Injection	FA Exposure with Saline : A significantly greater 3 h average response occurred in C3 compared with B6 mice.
Gender: Male	(GSD 2.75 μm).	Dose/Concentration: CB: $159 \pm 12 \mu g/m^3$; PS (atropine): $0.5 mg/kg$; S(propanolol): $1 mg/kg$	PS Blockade: No evident strain difference between C3 and B6 was observed.
Strain: C3H/HeJ and C57BL/6J		Time to Analysis: Successive 3 h CB and FA Exposures: conducted from 9 a.m. to 1 p.m., or	S Blockade: 3 h average HR responses for C3 mice were significantly reduced compared with
Age: 10 wk		at least 3 h after dark-to-light transition (exposure period selected based on the nadir in	saline.
Weight: 22-26 g		circadian pattern in HR responses).	CB Exposure: HR responses were significantly elevated in C3 compared with B6 mice, but these
		Subgroups of both strains exposed to PS & S blockade.	HR responses were not different relative to FA exposure.
			S Blockade: HR was significantly elevated in B6 mice during CB relative to FA, but was not changed in C3 mice.
Reference: Tankersley et al. (2004, <u>094378</u>)	Carbon Black (CB) and Filtered Air (FA)	Route: Whole-body Inhalation	On day 1, HR was significantly depressed during FA in terminally senescent mice. By day 4, HR
Species: Mice	Particle Size: CB: 0.1 to 1 um.	Dose/Concentration: CB average concentration: 160 ± 22 μg/m ³	had significantly slowed due to the effects of 3 days CB exposure. The combined effects of
Strain: AKR/J		Time to Analysis: FA exposure on day 1, CB exposure 3 h/day for 3 consecutive days (days	terminal senescence and CB exposure acted to depress HR to an average (± SEM) 445 ± 40
Age: ~180 days		2-4)	bpm, ~ 80 bpm lower compared to healthy HR responses. The change in rMSSD was significantly greater on day 1 and day 4 in terminally senescent mice, compared to healthy mice. LF/HF ratio was significantly depressed in terminally senescent mice on day 1. By day 4, significant increases in LF/HF were evident in healthy mice during CB exposure. Terminally senescent mice modulated a lower HR without change in the LH/HF ratio during CB exposure.
Reference: Thomson et al. (2005, <u>087554</u>)	Urban Ambient Particles (EHC-93) from Ottawa, Canada; O₃		Both pollutants individually increased preproET-1, ET-1 and endothelial NOS mRNA levels in the lungs shortly after exposure, consistent w/ the concomitant increase in plasma of ET-1[1-21].
Species: Rat	Particle Size: Respirable Modes	Dose/Concentration: EHC-93: 0, 5, 50 mg/m ³ ;	
Gender: Male	(aerodynamic diameter): 1.3 and 3.6 µm. Non-respirable Mode	O ₃ : 0, 0.4, 0.8 ppm	Prepro-ET1 mRNA remained elevated 24 h post- exposure to particles but no after O ₃ . Both
Strain: F344	(aerodynamic diameter): 15 μm	Time to Analysis: 4 h to particles, O_3 , or combination of particles and O_3 .	pollutants transiently increased ET-B receptor mRNA expression, while O ₃ decreased ET-A
Weight: 200-250 g			receptor mRNA levels. Coexposure to particles plus O ₃ increased lung preproET-1 mRNA but not plasma ET-1[1-21], suggesting alternative processing or degradations of endothelins. This coincided w/ an increase of MMP-2 in the lungs (this enzyme cleaves bigET-1 to ET-1[1-32]).
Reference: Thomson et al. (2006, <u>097483</u>)	Urban Ambient Particles (EHC-93) from Ottawa, Canada; O ₃ Particle Size: NR	Route: Nose-only Inhalation	Circulating levels of both ET-1[1-21] and ET-3[1-21] were increased immediately after exposure to
Species: Rat		Dose/Concentration: EHC-93: 0, 50 mg/m ³ ;	PM and O ₃ . While expression of preproET-1 mRNA in the lungs increased, expression of
Gender: Male		O ₃ : 0, 0.8 ppm	preproET-3 mRNA decreased immediately after
Strain: F344		Time to Analysis: 4 h to particles, O ₃ , or combination of particles and O ₃ . Sacrificed	exposure. PreproET-2 mRNA was not detected in the lungs, and exposure to either pollutant did not affect plasma ET 2 levels. Cooxegura to O. and
Weight: 200-250 g		immediately following exposure or following 24 h recovery.	affect plasma ET-2 levels. Coexposure to O_3 and particles, while altering lung preproET-1 and preproET-3 mRNA levels in a fashion similar to O_3 alone, did not cause changes in the circulating levels of the two corresponding peptides.

Study	Pollutant	Exposure	Effects
Reference: Totlandsdal et al. (2008, 157056) Species: Rat Gender: Male Strain: WKY/NCrl and Crl: WI (Han) Age: Adult Weight: Crl/WI, 250-300 g Use: Isolation of Rat Ventricular Cardiomyocytes and Cardiofbroblasts (RVCMs and RVCFBs)	Pigment Black Printex 90 (Frankfurt, Germany); PM: SRM 1648 Particle Size: Printex 90: 12-17 nm; PM: NR	Route: Cell Culture Dose/Concentration: Printex 90: 0, 50, 100, 200 or 400 μg/mL; PM: 0, 200 μg/mL Time to Analysis: 20 h	Cardiac Cell Cultures: IL-6 release was strongly enhanced upon exposure to conditioned media, and markedly exceeded the response to direct particle exposure. IL-1, but not TNF- α , seemed necessary, but not sufficient, for this enhanced IL-6 release. The role of IL-1 was demonstrated by use the use of an IL-1 receptor antagonist that partially reduced the effect of the conditioned media, and by a stimulating effect on the cardiac cell release of IL-6 by exogenous addition of IL-1 α and IL-1 β .
Reference: Tzeng et al. (2007, 097883) Species: Rat Strain: Wistar Kyoto Cell Type: Primary Vascular Smooth Muscle Cell Culture (VSMCs): isolated from thoracic aortas from 200-250 g rats.	Motorcycle Exhaust Particulate Extract (MEPE) collected from a Yamaha motorcycle with a 50 cm³ two-stroke engine using 95% octane unleaded gasoline. Particle Size: PM ₁ , PM _{2.5} , PM ₁₀	Route: In vitro Dose/Concentration: 10-100 µg/mL Time to Analysis: 3 days	Exposure of VSMCs to MEPE (10-100 µg/mL), enhanced serum-induced VSMC proliferation. The expression of proliferating cell antinuclear antigen was also enhanced in the presence of MEPE. VSCMs treated with MEPE induced increase COX-2 mRNA, protein expression, and PGE2 production, whereas the level of COX-1 protein was unchanged. MEPE increased the production of ROS in VSMCs, in a dose-dependent manner. MEPE triggered time-dependent ERK1/2 phosphorylation in VSMCs which was attenuate by antioxidants (NAC, PDTC). The level of translocation of NF-kB-p65 in the nuclei of VSMCs was also increased during MEPE exposure. The potentiating effect of MEPE in serum-induced VSMC proliferation was abolished by COX-2 selective inhibitor NS-398, specific ERK inhibitor PD98059, and antioxidants (NAC, PTDC).
Reference: Tzeng et al. (2003, 097247) Species: Rat Strain: Wistar Kyoto Cell Type: Primary Vascular Smooth Muscle Cell Culture (VSMCs)	Motorcycle Exhaust Particulate Extract (MEPE) collected from a Yamaha motorcycle with a 50 cm³ two-stroke engine using 95% octane unleaded gasoline. Particle Size: NR	Route: In vitro Dose/Concentration: MEPE: 10 μg/mL; Nifedipine: 10 μmol; Manganese Acetate: 100 μmol; Staurosporine: 1-2 nM; Chelerythrine: 1 μm Time to Analysis: 18 h	MEPE induced a concentration-dependent enhancement of vasoconstriction elicited by phenylephrine in the organ cultures of intact and endothelium-denuded aortas for 18h. Nifedipine, manganese acetate, and staurosporine, but not chelerythrine, inhibited the enhancement of vasoconstriction by MEPE. ML-9 inhibited the enhancement of vasoconstriction by MEPE. MEPE enhanced the phosphorylation of 20k-Da in rat vascular smooth muscle cells. Nacetylcysteine significantly inhibited the enhancement of vasoconstriction by MEPE. A time-dependent increase in ROS production by MEPE was also detected in primary cultures of VSMCs.
Reference: Upadhay et al. (2008, 159345) Species: Rat Gender: Male Strain: SH Age: 6 mo Weight: NR	Ultrafine Carbon Particles (UFCP) Particle Size: Size- 31 ± 0.3 nm, MMAD- 46 nm, Surface area concentration- 0.139 m² particles/m³, Mass specific surface area- 807m²/g	Route: Whole-body Inhalation Dose/Concentration: 172 µg/m³ Time to Analysis: Acclimatized 2 day. 1 day baseline. 24 h exposure. 4 recovery. Sacrificed 1st or 3rd day of recovery.	Cardiophysiology: The mean arterial BP and HR increased but returned to baseline levels by the 4th recovery day. SDNN and HRV decreased. RMSSD and LF/HF decreased but were not significant. Pulmonary Inflammation: UFCP did not cause pulmonary inflammation. Pulmonary and Cardiac Tissue: HO-1, ET-1, ETA, ETB, TF, PAI-1 significantly increased in the lung on the 3rd recovery day. HO-1 was repressed in the heart, but the other markers had slight, nonsignificant increases. Systemic Responses: Neutrophil and lymphocyte cell differentials significantly increased on the 1st recovery day. Other blood parameters were unaffected. The plasma renin concentration increased on the first 2 recovery days. Ang I and II concentrations increased on the 1st recovery day but was not significant.

Study	Pollutant	Exposure	Effects
	Zinc Sulfate (ZnSO ₄ , aerosolized)	Route: Nose-only Inhalation	A trend toward increased BALF protein was
et al. (2008, <u>191171</u>)	Particle Size: NR	Dose/Concentration: $9.0 \pm 2.1 \mu\text{g/m}^3$, $35 \pm 8.1 \mu\text{g/m}^3$, $123.2 \pm 20.6 \mu\text{g/m}^3$	seen. Cardiac mitochondrial ferritin had a small, significant increase. Mitochondrial succinate
Species: Rat Gender: Male		μg /m³, 123.2 ± 29.6 μg /m³	dehydrogenase and glutathione peroxidase had small, significant decreases. Subchronic
		Time to Analysis: Exposed 5 h/day, 3 days/wk, 16 wk. Half of the rats used for plasma/serum	exposure to 100 µg/m³ caused expression changes of cardiac genes involved with cell
Strain: Wistar Kyoto Age: 13 wk		analysis, other half for isolation of cardiac mitochondria.	signaling events, ion channels regulation, and coagulation. No pulmonary-related effects were
Weight: NR			seen.
Reference: Wallenborn et al. (2007, 156144)	PM: precipitator unit power plant residual oil combustion	Route: IT Instillation	Oxidative Stress - Cardiac: SOD increased in the SHRSP vs WKY experiment only. Only
Species: Rat	Particle Size: PM: 3.76 µm (bulk) ±	Dose/Concentration: WKY vs SHRSP: 1.11, 3.33, 8.33 mg/kg	SHRSP at 8.33 mg/kg showed a significant increase when compared to the control.
Gender: Male	2.15	SH vs SHRSP: 3.33, 8.33 mg/kg	GPx: No action but SHRSP levels were similar to
Strain: WKY, SH, and		Time to Analysis: Single, 24 h	SHR and, in the WKY vs SHRSP experiment, SHRSP exhibited higher activity level than WKY.
stroke-prone SH (SHRSP)		Note: 4 h post-exposure study done on WKY vs	Ferritin: Equivocal results were observed. Levels
Age: 12-15 wk		SHRSP but not published.	decreased at the high dose for WKY and SHRSP but increased at medium doses for SH and SHRSP.
			ICDH: Levels increased for WKY and decreased for SHRSP.
Reference: Wellenius	CAPs	Route: Permanent Tracheostomy	CAPs increased the ST-segment elevation and
et al. (2003, <u>055691</u>)	Particle Size: $0.26 \pm 0.04 \ \mu m$	Dose/Concentration: Median: 285.7 μg/m ³ ,	remained elevated 24 h after exposure. This increase was seen in precordial leads V4 and V5.
Species: Dog		Range: 161.3-957.3 µg/m³	Multivariate regression analyses showed that the mass concentration of Si was significantly
Gender: Female		Time to Analysis: Thoracotomy and tracheostomy performed. 5-13 wk recovery.	associated with the peak ST-segment elevation and integrated ST-segment change. Univariate
Strain: Mixed mongrel		Pairs of subjects: exposed 6 h/day either 2nd or 3rd exposure time and filtered air other days. 5	regression analyses showed Pb to also be
Age: NR		min preconditioning occlusion. 20 min rest interval. 5 min experimental occlusion. Some	significantly associated with these measures. CAPs had no effect on peak heart rate during
Weight: 14-17 kg		dogs exposed 6 h/d, 4 days (consecutive), filtered air on day 4.	occlusion or the maximum occlusion-induced increase in heart rate.
Reference: Wellenius et al. (2004, 087874)	CAPs (Boston, MA); exposures during the period of 07/2000 and 01/2003.	Route: Whole-body Inhalation	CO exposure reduced the ventricular premature beat (VPB) frequency by 60.4% during the
Species: Rat	CO	Dose/Concentration: CO: 35ppm; CAPs (median concentration): 350.5 μg.m ³ ;	exposure time compared to controls. This effect was modified by both infarct type and the number
Gender: Male	Particle Size: PM _{2.5}	CAPs+CO: (CAPs median concentration): 318.2 µg/m³	of pre-exposure VPBs, and was mediated
Strain: SD		Time to Analysis: 1 h exposure to CAPs or	through changes in HR. Overall, CAPs exposure increased VPB frequency during the exposure
Age: Adult		CAPs+CO for 1 h. Exposure to pollutants was preceded and followed by 1 h exposure to FA.	period, but this did not reach statistical significance. This effect was modified by the
Weight: ~250 g		preceded and followed by 111 exposure to 17.	number of pre-exposure VPBs. In rats with a high number of pre-exposure VPB, CAPS exposure
Use: Rat Model for Acute Myocardial Infarction (AMI): Left- ventricular MI induced. Animals allowed to recover for at least 12 h after surgery.			significantly decreased VPB frequency (67.1%). Overall, neither CAPs nor CO had any effect on HR, but CAPs increased HR in specific subgroups. No significant interactions were observed between the effects of CO and CAPs.

Study	Pollutant	Exposure	Effects
Reference: Wellenius et al. (2006, <u>156152</u>)	CAPs: (Boston, MA)	Route: Whole-body Inhalation	Among rats in the CAPs group, the probability of observing supraventricular arrhythmias (SVA) de-
Species: Rat	Particle Size: PM _{2.5}	Dose/Concentration: CO: 35 ppm; CAPs (median concentration): 645.7 µg.m³;	creased from the baseline to exposure and post- exposure periods. The pattern was significantly
Gender: Male		CAPs+CO: 37.9 ppm	different than that observed for the FA group
Strain: SD		Time to Analysis: CAPs or CAPs+CO exposure for 1 h. Exposure to pollutants was	during the exposure period. In the subset with one or more SVA during the baseline period, the
Age: Adult		preceded and followed by 1 h exposure to FA.	change in SVA rate from baseline to exposure period was significantly lower in the CAPs and
Weight: ~250 g			CO groups only, when compared to the FA group. No significant effects were observed in the group
Use: Rat Model for Acute Myocardial Infarction (AMI): Left- ventricular MI induced. Animals allowed to recover for at least 12 h after surgery.			simultaneously exposed to CAPs and CO.
Reference: Wichers et al. (2004, <u>055636</u>)	HP-12 (oil-combustion derived PM obtained from inside wall of a Boston	Route: IT Instillation	Exposures to mid and high-dose HP-12 induced large decreases in HR, BP, and body
Species: Rat	power plant stack burning residual oil number 6).	Dose/Concentration: HP-12 (mg/kg): 0.00 (saline control), 0.83 (low), 3.33 (mid), 8.33	temperature. The decreases in HR and BP were most pronounced at night and did not return to
Gender: Male	Water-leachable constituents (µg/mg):	(high)	pre-instillation values until 72 h (HR) and 48 h
Strain: SH	SO4 (217.3); Zn (11.4); Ni (6.9); Fe (0.0); V (1.3); Cu (0.2); Pb (0.0)	Time to Analysis: 96 h or 192 h post-instillation.	(BP) after dosing. ECG abnormalities (rhythm disturbances, bundle branch block) were
Age : 75 day	1M HCI-leachable constituents (μg/mg): SO4 (220.6); Zn (15.5); Ni (14.8); Fe (15.6); V (32.9); Cu (1.1); Pb (1.7)		observed primarily in the high dose group.
	Particle Size: 3.76 μm (MMAD) (GSD 2.16)		
Reference: Wold et al. (2006, <u>097028</u>)	UFPs from either ambient air (UFAAs) or diesel engine exhaust (UFDGs);	Route: IV Infusion	Infusion of UFDGs caused ventricular premature beats (VPBs) in 2 out of 3 rats. Ejection fraction increased slightly in rats receiving UFAA and wa unchanged in the UFDG and saline groups.
Species: Rat	UFIDs from industrial forklift exhaust and soluble fraction UFID suspension,	Dose/Concentration: UFDG (50 μg/m)	
Gender: Female	particle free (SF-UFID)	Time to Analysis: Infused w/UFAA or UFDG. Monitored continuously for 1 h then sacrificed.	unchanged in the or bo and same groups.
Strain: SD	Particle Size: UFAAs diameter ≤ 150 nm; UFDGs diameter ≤ 100 nm	·	
Use: Left jugular vein and right carrotid artery were cannulated.	,		
Reference: Wold et al.		Route: Lagendorff Heart Perfusion	UFDGs caused a marked increase in left-
(2006, <u>097028</u>) Species: Rat	or diesel engine exhaust (UFDGs); UFIDs from industrial forklift exhaust	Dose/Concentration: UFDG (100 μg/2ml); UFID (12.5 μg/l in perfusate); SF-UFID (12.5	ventricular and end-diastolic pressure (LVEDP) after 30 min of exposure. UFIDs caused a
Gender: Female	and soluble fraction UFID suspension, particle free (SF-UFID)	μg/I)	significant decrease in left-ventricular systolic pressure (LVSP) at 30min after the start of
Strain: SD	Particle Size: UFAAs diameter ≤150 nm; UFDGs diameter ≤ 100 nm	Time to Analysis: Lagendorff 1: Treated w/UFDG. Lagendorff 2: Treated with UFID & SFUFID. Both experiments were monitored continuously for 1 h after injection.	infusion. This effect was absent when SF-UFID was studied.
Reference: Yatera et	EHC-93 from Ottawa, Canada	Route: IT Instillation	Exposure to PM ₁₀ caused progression of
al. (2008, <u>157162</u>) Species: Rabbit	Particle Size: NR	Dose/Concentration: PM ₁₀ suspension: 5 mg EHC-93 in 1 ml saline	atherosclerotic lesions in thoracic and abdominal aorta. It also decreased circulating monocytes
Gender: Female		Time to Analysis: Exposed 2 times/wk for 4	expressing high levels of CD31 and CD49 day, and increased expression of CD54 (ICAM-1) and CD406 (ICAM-1) an
Strain: WHHL		wk. Acute effects observed at 0.5, 1, 2, 4, 8, 12, and 24 h after initial instillation. Subchronic	CD106 (VCAM-1) in plaques. Exposure to PM ₁₀ increased the number of BrdU-labeled (*) mono-
Age: 42 wk		effects observed once/wk for 4 wk.	cytes into plaques and into smooth muscle underneath plaques.
Weight: 3.2 ± 0.1 kg (avg)			

Study	Pollutant	Exposure	Effects
Reference: Ying et al. (2009, 190111) Species: Mice Gender: Male Strain: ApoE ^{-/-} Age: 16 wk	CAPs:,New York City (Manhattan), NY; May-Sept 2007 Particle Size: PM ₂₅	Route: Whole-body Inhalation Dose/Concentration: 138.4 ± 83.7 μg/m³ Time to Analysis: 6 h/day, 5 day wk, 4 mo	Vascular Tone: Significant decrease in PE-induced maximum contraction of aortic rings in CAPs-exposed mice. No difference in sensitivity to PE between groups. Treatment with the soluble guanylate cyclase inhibitor ODQ restored the response to PE in CAPs aortic rings. No significant differences in relaxation induced by ACh. CAPs abolished the relaxation induced by Ca ionophore A23187. CAPs exposure slightly (but significantly) decreased maximum relaxation induced by SNP.
			Protein Expression: iNOS mRNA expression was increased in the aortas of CAPs-exposed mice. eNOS and GTPCH levels were unchanged. Distribution of inOS protein expression was limited to plaque in air-exposed mice and was found in the plaque and media for CAPs-exposed mice.
			Superoxide Production: Superoxide levels in CAPs-exposed mice were increased in the aorta compared to air-exposed mice. The addition of L-NAME significantly increased superoxide production. Extensive protein nitration in aortas of CAPs mice. NADPH subunits Rac1 and p47 phox mRNA expression was increased in aortas of mice exposed to CAPs.
			Atherosclerosis: Significant increase in plaque area of CAPs-exposed mice. Higher levels of macrophage infiltration, collagen deposition, and lipid composition of plaques from CAPs-exposed mice.
Reference: Yokota et al. (2004, 096516)	DEP (obtained from the Japan Automobile Research Institute)	Route: IT Instillation	DEP Effects on Mmyocardial Ischemia/Reperfusion-induced Arrhythmia:
Species: Rat	Particle Size: NR	Dose/Concentration: Group 1: DEP: 1 mg/0.1 ml; Group 2: DEP: 0.2 ml (10, 12.5 or 25	An increased mortality was observed in the DEP group compared to the vehicle-treated group.
Gender: Male		mg/ml); Group 3: DEP 2.5 or 5 mg/0.2 ml Time to Analysis: DEP pre-treatment 24-72 h before ischemia/reperfusion.	46% of the animals in DEP died during the first 3 min reperfusion period. The animals of other
Strain: SD Weight: 345-498.2 g			groups were intratracheally instilled with DEP a the beginning of ischemia/reperfusion experiment, or were pretreated with polyethylene glycol-conjugated SOD (1000 IU/kg, iv). In thes animals, incidences of both arrhythmia and mortality were similar to those in the animals treated with the vehicle.
			DEP Rffects on the Biochemical and Hematological Parameters: Neutrophil count was elevated by a higher dose (5 mg) of DEP at 24 h after the IT instillation, and oxygen radical production, which was induced by 12-Otetradecanoylphorbol 13-acetate, was enhanced at 72 h.
Reference: Yokota et al. (2005, <u>096003</u>)	DEP from Japan	Route: IT Instillation	At 12 and 24 h post-instillation, circulatory neutrophil counts in the 5 mg DEP group were
Species: Rat	Particle Size: NR	Dose/Concentration: DEP: 5 mg/animal	significantly elevated, and were 2.1-fold (12 h) and 2.3 fold (24 h) in vehicle treated animals. 1 mg DEP caused an increase of approximately 0.4-fold in CNC at 6 h. 12-O-
Gender: Male		Time to Analysis: Single exposure 0.5, 1, 2, 3, 6, 12, 24, 48 h.	
Strain: SD			tetradecanoylphorbol 13-acetate induced oxyradical production (ORP) in the isolated
Weight: 303-472.2 g			oxylatical production (Ory) in the stoated neutrophil was enhanced at 12 and 24 h after instillation with 5 mg DEP. In Serum, a marked elevation of CINC-1 and a slight elevation of MIP-2 were also observed, while TNF-α was not detected. GM-CSF was not detected in serum 24 h post-instillation.

Study	Pollutant	Exposure	Effects
Reference: Yokota et al. (2008, 190109)	DEP (DMSC (dichloromethane	Route: IT Instillation	Inflammation: At 5 mg/kg DEP increased the total cell and macrophage count. DEP or RPC
	soluble-component), RPC (residual particle-component))	Dose/Concentration: 5 mg/kg, 10 mg/kg	increased neutrophils at 5 and 10 mg/kg. 10
Species: Mouse Gender: Male	Particle Size: NR	Time to Analysis: DMSC and RPC extracted from DEP. Mice acclimatized 7 day	mg/kg DEP or RPC increased macrophages at 4 h and decreased at 12 h.
Strain: ddy		. DEP, DMSC, or RPC instilled. BALF and blood	Hematology: Compared to 5 mg/kg DEP, RPC increased RBC, WBC, and neutrophils. 10 mg/kg
Age: NR		obtained and G-CSF, GM-CSF, IL-6 measured 2, 4, 12, 24 h post-instillation.	RPC or DEP caused sustained increases in RB WBC, and neutrophils.
Weight: 39.6-46.0 g			Cytokines: 5 mg/kg RPC markedly increased G-CSF and IL-6. Other cytokine increases at this dose were transient. 10 mg/kg DEP increased IL-6 at 4 h, and DEP or RPC increased G-CSF and IL-6 at 12 h. DEP or RPC also increased IL-1β.
			Myocardium: Myocardial MPO activity significantly increased in 5 mg/kg RPC at 12 and 24 h. Myocardial MIP-2 increased the most in 5 mg/kg RPC, while LIX tended to be lowered by RPC.

Table D-2. Respiratory effects: in vitro studies.

Study	Pollutant	Exposure	Effects
Reference: Aam and Fonnum (2007, 155123) Species: Human, Rat Tissues/Cell Types: Human-Neutrophil Granulocytes (NG); Rat- AM	DEP: SRM 1975 Particle Size: NR	Route: Cell Culture Dose/Concentration: NG: 8.8 - 280 μg/mL AM:140, 280 μg/mL Vitamin E = 5 μM Time to Analysis: 1 h	ROS of NG: Formation of ROS in NG decreased with increased doses of DEP. Lucigenin chemiluminescence of ROS formation diminished 25% at 8.8 μg/mL DEP and luminol chemiluminescence 32% with 17.5 μg/mL DEP. DCF fluorescence required much higher doses of DEP. Controls without PMA stimulation had highly reduced lucigenin and luminol with DEP dose of 140 μg/mL while DCF increased 116%. ROS of AM: 280 μg/mL of DEP decreased ROS level by 19% with DCF. DEP with PMA-unstimulated cells increased 24% with DCF. Necrosis: NG cell death was DEP dose-dependent. At 280 μg/mL, cell death increased 5.4% as compared to control. LDH concentration increased 1.6% with 70 μg/mL DEP and 3.9% with 280 μg/mL
Reference: Agopyan et al. (2003, <u>056065</u>) Species: Human Tissues/Cell Types: BEAS-2B, NHBE, SAEC	PC: synthetic carboxylate-modified particles Particle Size: 2, 10 µm	Route: Cell Culture Dose/Concentration: PC2 = 0.83 g/mL or 3.4x10 ⁹ particles/mL PC10 = 0.8 g/mL or 3x10 ⁶ particles/mL Time to Analysis: PC2 = 12, 24, 8 h PC10 = 2, 6, 12, 24 h	after 1 h. Calcium Imaging: PC10 induced increase of Ca ²⁺ concentration in all capsaicin-sensitive cells 100%. Similar reaction observed in cells exposed to PC2. However, more than 3-PC2s were required to induce a Ca increase unlike PC10. CPZ (10um) and amiloride could fully block PC-induced response. cAMP: Post 6 h, a dose-dependent increase in cAMP was observed. Again, CPZ blocked increase by 70-90% depending on cell type: SAEC >NHBE ~ BEAS-2B. Apoptosis: PC10 and PC2 induced apoptosis time-dependently. PC2 was slower in induction than PC10. Post 48 h, 80-95% cells were apoptotic in all cell types. Noncapaisin-sensitive cells (which did not bind to particles) did not exhibit apoptosis. CPZ reduced apoptosis by 97% BEAS-2B, 96% NHBE and 98% SAEC. Amiloride did not block apoptosis. Necrosis: Induction of necrosis by PC2 and PC 10 was negligible. A slight increase from 1% to 2% was observed at 24-48 h in NHBE and SAEC. BEAS-2B showed slight decrease from 3% to 4% in same time period.

Study	Pollutant	Exposure	Effects
Reference: Agopyan et al. (2004, 156198) Species: Human, Mouse Tissues/Cell Types: Human-NHBE, SAEC; Mouse-Wildtype and TRPV1(-/-) Terminal Ganglion Neurons (TG)	ROFA MSHA: Mt St Helen Ash Particle Size: NR	Route: Cell Culture Dose/Concentration: 100 μg/mL ROFA or MSHA Time to Analysis: ROFA/MSHA in NHBE and SAEC = 2, 6, 24, 48 h ROFA/ MSHA in TG = 24 h cAMP measurements with NHBE and SAEC exposed to ROFA/MSHA = 6 h	Calcium Imaging in NHBE and SAEC: In 100% of reactive cells, ROFA/MSHA induced an increase in Ca ²⁺ . Levels remained elevated as long as PM bound to plasma membrane. Washing and disjoining PM from membrane caused Ca ²⁺ to slowly decline to baseline. CPZ (or CPZ and amiloride) reversibly inhibited PM-induced rises in Ca ²⁺ . Calcium Imaging in TRPV1(+/+) and (-/-) mice sensory neurons: All sensitive neurons in TRPV1(+/+) increased Ca ²⁺ in response to ROFA. No effect of ROFA in TRPV1(-/-). cAMP: ROFA and MSHA induced increases in Ca ²⁺ in NHBE and SAEC cells, which was completely blocked by cAMP.
			Apoptosis: ROFA or MSHA induced time-dependent apoptosis, peaking at 24 h. CPZ again inhibited this response. Neurons bound to PM (<25um) induced apoptosis in TRPV1(+/+). Cells without bound PM or bound with PM (>25 µm) showed no effect. No apoptosis occurred in the absence of Ca ²⁺ . Necrosis: Necrosis for any of the cell types was negligible.
			PKA : Inhibition of PKA resulted in 90+% apoptosis in NHBE and SAEC. Again, no apoptosis was observed in a Ca ²⁺ free environment.
Reference: Ahn et al. (2008, <u>156199</u>) Species: Human Tissues/Cell Types: A549	DEP: (6 cyl, 11L, turbo-charged, heavy- duty diesel engine, South Korea) Dex: anti-inflammatory (Sigma, St. Louis, MO) Particle Size: NR	Route: Cell Culture Dose/Concentrations: 0, 1, 5, 10, 50 and 100 µg/mL of DEP Some cells pre-treated with 10, 20, 40, 50 pg/mL of Dex. Time to Analysis: 24 h	COX-2 Expression: Cells expressed dose-dependent increases in COX-2 expression after treatment with 10-100 μg/mL of DEP. Treatment of 50 μg/mL for 24 h induced statistically significant COX-2 expression in both mRNA and protein levels. Pre-treatment with Dex significantly reduced expression of COX-2 mRNA and protein. Dex treatment induced dose-dependent suppression of DEP-induced protein levels.
			PGE2 Levels: Levels of the inflammatory mediator, PGE2, increased when were cells exposed to 50 μg/mL of DEP. Pre-treatment with 50 μg /mL Dex completely inhibited DEP-induced release of PGE2.
Reference: Ahsan (2005, 156200) Species: Human Tissues/Cell Types: Trx-1-transfected Clone of Murine L-929 cells; Control Clone (L- 929-Neo1); A549	DEP: provided by Dr. Masaru Sagai, University of Health and Welfare, Aomori, Japan Particle Size: NR	Route: Cell Culture Dose/Concentration: DEP: 50 μg/mL hTrx-1- or L-929-Neo1: 40 μg/mL Pretreatment: rhTrx-1 (10 μg/mL) or DM-rhTrx-1 (NR) Time to Analysis: Pretreatment for 1 h. Parameters measured 3 h post exposure.	ROS: DEP induced significant increases of ROS in L929-Neo1 cells. hTRx-1 cells showed no affect. RT-PCR revealed hTrx-1 mRNA expression in transfected cells but not control L929-Neo1 cells. Endogenous murine Trx-1 mRNA expression increased in control cells, but not in hTrx-1 cells. A549 cells had increased ROS levels but these levels were suppressed with rhTrx-1 pretreatment. Pre-treatment with DM-rhTrx-1 increased ROS levels more. Akt (antiapoptotic molecule): Phosphorylated Akt prevents apoptosis. DEP induced phosphorylation of Akt in control cells after 3 h and dephosphorylation after 5 h. In hTrx-1 cells, Akt remained phosphorylated after 5 h. In A549 cells, Akt phosphorylated at 3 h and slowly turned off at 12-24 h. Pre-treatment with rhTrx-1 blocked dephosphorylation. This suggests that Trx-1 preserves active form of Akt and thereby protects against cytotoxicity from DEP.

Study	Pollutant	Exposure	Effects
Reference: Alfaro- Moreno et al. (2002, 156204)	PM ₁₀ : Collected from 3 zones in Mexico City: North (industrial), Center (business) and South (residential)	Route: Cell Culture 15000 cells/cm ² except:	Cytotoxicity: Cytotoxic effect exhibited dose- dependency after 72 h in proliferating cells of J774A.1, BALB-c and RLF cell lines.
Species: Human, Mouse, Rat Strain: Human-A549; Mouse-J7 74A.1, BALB-c Tissues/Cell Types: HUVEC, Mouse Fibroblasts, Rat Lung Fibroblasts (RLF)	Particle Size: PM ₁₀	Cytotoxicity: Confluent Cultures 180,000 cells/cm². DNA Breakage: 20,000 cells/well. Cytokine Assays: 180,000 cells/cm² Dose/Concentration: Cytotoxicity: 10, 20, 40, 80, 160 µg/cm² Apoptosis: 160 µg/cm² DNA Breakage: 2.5, 5, 10, 20, 40 µg/cm² Cytokine Assays: 10, 20, 40, 80 µg/cm² E-Selectin Expression: 40 µg/cm² Time to Analysis: Cytotoxicity: 24, 48, 72 h; Apoptosis: 24 h; DNA Breakage: 72 h; Cytokine Assays: 24 h	Proliferating Cells: Northern particles induced a statistically larger effect than central or southern particles. J774A.1 was more susceptible while BALB-c was less susceptible. A549 was most resistant to decreased viability during exposure. No significant variation in viability was observed when compared to the control. Particles were not cytotoxic among confluent cell growth for any cell lines when exposed to 20-160 µg/cm². Apoptosis: Overall, particles induced low rates of cell death via apoptosis. J774A.1 depicted similar levels of apoptosis when exposed to three PM zones, ~15% apoptotic cells measured. BALB-c was not reported. Results for the A549 measured apoptotic cells were: South-4%, Central-11% and
Reference: Amakawa et al. (2003, 156211) Species: Mouse, Human Strain: Mouse-ICR Tissues/Cell Types: AMs Gender: Male Age: Mouse 6-7 wk; Human 20-24 yr	DEP (obtained from a 4JB1, Isuzu, 1500 rpm, 4cyl diesel engine) DEPE = DEP Extract (methanol) CB = Charcoal (Sigma) Particle Size: DEP- 0.4 μm, CB- 0.7 μm	Route: Cell Culture Mouse: 5×10 ⁵ cells/mL; Human: 3×10 ⁵ cells/mL Dose/Concentration: DEP = 1 or 10 µg/mL; DEPE = 1 or 10 µg/mL; CB = 1, 10, 100 µg/mL Time to Analysis: Human cells pre-treated with LPS 1 µg/mL. Murine cells pre-treated with SOD 300 IU/mL. Parameters measured 24 h post exposure.	Cells: For mice, more than 90% of the cells were macrophages and over 90% were viable. For humans, 96% of the cells were macrophages, 3% lymphocytes and 1% neutrophils; over 95% of the human cells were viable. DEP Cytotoxicity: None observed Cytokines: DEP (10 μg/mL) suppressed release of TNF-α and IL-6 for both mice and humans in a dose dependent manner. Murine cells pre-treated with LPS or IFN-y released even less TNF-α and IL-6. IL-10 was unaffected. Human macrophages pre-treated with LPS also released lower levels of TNF-α, IL-6 and IL-8. ROS: Pre-treatment of SOD on murine cells partially attenuated the suppressive effect of DEP as well as decreased the production of ROS generated by DEF (10 μg/mL). Carbon: Carbon particles did not suppress TNF-α of IL-6 release from murine AMs; however, 100 μg/mL of CB stimulated TNF-α production. Methanol: No cytotoxicity nor cytokine release effects were observed. DEPE: DEPE suppressed TNF-α and IL-6 release in a similar way as DEP.

Study	Pollutant	Exposure	Effects
Reference: Amara et al. (2007, <u>156212</u>) Species: Human	DEP = SRM 2975 CSC = cigarette smoke condensates (collected from Kentucky standard	Route: Cell Culture Dose/Concentration: DEP = 5-10 μg/cm ² CB = 10 μg/cm ²	Inflammatory Markers: LDH of A549 was unaffected at either time point with DEP or CB. LDH increased with CSC at concentrations high than 10 µg/mL at both time points. DC had no effect.
Cell Lines: A549, NCI- H292	cigarettes, 2R4F; University of Kentucky) DC = DEP + CSC CB (Degussa, Frankfurt, Germany) Particle Size: CB: 95 nm; DEP: NR	CSC = 10 µg/cm ² Time to Analysis: 6 or 24 h	Proteases: MMP-1 mRNA expression showed a dose dependent increase with DEP in A549 cells. DEP also increased MMP-1 in NCI-H292 cells. CB and CSC had no effect. MMP-1 mRNA expressions were inhibited by N-acetylcysteine antioxidant. Similar inhibition was observed with NOX4 oxidase. DC induced a similar effect to DEP. MMP-1 protein expression increased post 24 h with DEP. MMP-2, TIMP-1, TIMP-2 mRNA expression was unaffected. TGF: TGF-β mRNA expression was unaffected. ROS: DEP and DC increased ROS formation after 1 h. DEP effect was inhibited by N-acetylcysteine antioxidant pre-treatment. MAP-Kinase: DEP induced MMP-1 expression increased ERK1/2 phosphorylation after 10 min, peaking at 30 min, and returning to normal levels at 60 min. Treatment with CBPs did not increase ERK1/2 phosphorylation whereas treatment with CSC resulted in phosphorylation. Only inhibitors of ERK1/2 reduced DEP induced MMP-1 activity. P38 and JNK inhibitors had no effect.
Reference: Anseth et al. (2005, <u>088646</u>) Species: Human Cell Lines: A549; A549-p0 (lacking mitochondria)	s-ROFA: soluble portion Particle Size: 1.95 ± 018 μm	Route: Cell Culture (3X10 ⁵ cells/mL) Dose/Concentration: 100 μg/mL Time to Analysis: Experiments conducted by spreading monolayer of Infasurf (calf lung surfactant extract on PBS, PBS+ROFA or conditioned media from A549 AEC. Parameters measured after one 6-h incubation period.	Lung Surfactant Gelation: ROFA alone and A549 conditioned media alone did not significantly alter Infasurf rheology. However, conditioned media from A549 AEC at 16 h induced a significant increase in elastic storage and viscous loss moduli. Inhibiting ROS production lowered effect, indicating s-ROFA gelation mediated through ROS. ROS: ROS mediated through mitochondria as evidenced by the effect of ROFA-AEC on surfactant gelation in the presence of mitochondria ROS inhibitors as well as A549-p0 cells.
Reference: Auger et al. (2006, <u>156235</u>) Species: Human Tissue/Cell Type: Nasal Epithelial Cells	DEP: SRM1650 PM _{2.5} : obtained from a highway in Paris, France Particle Size: DEP: 400 nm (mean diameter); PM _{2.5}	Route: Cell Culture (2-3.5x10 ⁴ cells/cm ²) Dose/Concentration: 10-80 µg/cm ² Time to Analysis: Cells treated on apical side. Parameters measured 24 h following treatment.	Cytotoxicity (LDH): No cytotoxicity for DEP or PM _{2.5} (80 μg/cm²). Cytokines: In non-stimulated ALI cultures, IL-8 was the most abundantly secreted cytokine, followed by GM-CSF, TNF-α, and IL-6 in decreasing levels of production. Amphiregulin was moderately, but consistently, secreted. After treatment, both DEP and PM _{2.5} induced IL-8 and amphiregulin release in a dose-dependent manner through the basolateral surface. PM _{2.5} stimulated IL-6 and GM-CSF release through the apical surface. ICAM-1 expression: No effect from DEP or PM _{2.5} . ROS: DEP and PM _{2.5} both increased ROS production in a dose-dependent manner.

December 2009 D-34

Study	Pollutant	Exposure	Effects
Reference: Bachoual et al. (2007, <u>155667</u>)	PM ₁₀ from two Paris, France subway sites: RER and Metro	Route: Cell Culture (40,000 cells/mL)	Cell Viability: No effects from any particulate at concentrations up to 10 µg/cm² for 24 h.
Species: Mouse	CB (Frankfurt, Germany)	Dose/Concentration: All particles: 0.01, 0.1, 1, 10 μg/cm ²	Inflammatory Effect: Exposure of cells to 10
Cell Type: RAW 264.7	TiO ₂ (Calais, France)	Time to Analysis: 3, 8, 24 h	µg/cm ² of RER or Metro induced time-dependent increase in TNF-α and MIP-2 protein release. This
	DEP: SRM1650 (NIST)		effect was similar to both locations. No effect was observed at low concentrations of PM ₁₀ . No effect of
	Particle Size: CB: 95 nm; TiO ₂ :150 nm; DEP: NR		CB, TiO ₂ or DEP was observed. GM-CSF or KC production: RER and Metro PM ₁₀
	RER PM ₁₀ : 79% <0.5 μm, 20% 0.5-1 μm;		did not induce any effect at any concentration.
	Metro PM ₁₀ : 88% <0.5 μm, 11% 0.5-1 μm.		Effect on Protease mRNA Expression: Exposure of cells to 10 µg/cm ² RER or Metro PM ₁₀ did not modify mRNA expression of MMP-2 or -9 or their inhibitors TIMP-1 and -2. MMP-12 expression significantly increased after exposure to RER or Metro PM ₁₀ for 8 h.
			Effects on HO-1 Protein Expression: Exposure to $10~\mu g/cm^2$ of RER or Metro PM_{10} for 24 h induced positive cytoplasmic staining for HO-1.
Reference: Baulig et al. (2007, <u>151733</u>)	WUB: Winter Urban Background Particles (obtained from Vitry-sur- Seine, suburb of Paris, France)	Route: Cell Culture (20,000 cells/cm²) Dose/Concentration: 10 µg/cm² Time to Analysis: 18 or 24 h	EGF: All native PM _{2.5} induced similar AR secretion by bronchial epithelial cells (in decreasing order WC, WUB, SC, SUB), but this release was significantly greater than the release induced by DEP. β-cellulin increased with SC, WUB and WC. No data was available for SUB or DEP.
Species: Human Cell Line: 16-HBE14o-	SUB: summer Urban Background Particles Vitry-sur-Seine)		
	WC: Winter Curbside Particles, SRM1648 (obtained from Porte- d'Auteuil, ring road of Paris, France)		Interleukins: IL-1α increased significantly with WUB, WC,SC, DEP, DPL (in decreasing order). No data was available for SUB. Exposure to WUB
	SC: Summer Curbside Particles, SRM 1648 (Porte-d'Auteuil)		caused IL-1 β to increase to induction factor of over 2. IL-11 R α decreased significantly with SUB.
	DEP: SRM 1650a (NIST)		Cytokines: Exposure to WUB caused G-CSF to increase with an induction factor of over 2. Though
	DPL (control)		not statistically significant, TNF-R1 also increased.
	Particle Size: WUB, SUB: PM _{2.5} ; WC, SC, DEP: NR		Proteases: TIMP-2 decreased with WUB but significantly increased with SUB. Overall, SUB downregulated integrins and interleukins seen with other particles while upregulating neurotrophic factors, chemokine receptors and adhesion molecules. MMPs were not measured.
			Chemokines: CCR-3 significantly increased with SUB. GRO-γ and GRO-α increased with WC at both 18 and 24 h. DEP had no effect with GRO-α. Removal of metal from particles lowered response of GRO-α.

December 2009 D-35

Study	Pollutant	Exposure	Effects
Reference: Bayram et al. (2006, <u>088439</u>) Species: Human Cell Type: A549	DEP: (obtained from a 4JB1-type, light- duty, 4 cyl, 2.74-L Isuzu diesel engine) DEP-FCS: DEP + FCS DEP-NAC: DEP + N-acetylcystine, antioxidant	Route: Cell Culture Dose/Concentration: DEP: 0, 5, 10, 50, 100, 200 μg/mL Time to Analysis: 24, 48, 72 h	Cell Growth: With 10% FCS (as a positive control), A549 cells exhibited time dependent growth. A mixture of FCS and DEP did not affect cell growth for up to 48 h. With DEP alone, cell growth was prevented from cell number reduction due to removal of serum at 48 and 72 h. A dose of 10 µg/mL induced a maximum proliferation effect.
	DEP-A: DEP + AEOL10113, catalytic antioxidant DEP-S: DEP + SP600125, inhibitor of JNK		Cell Cycle: DEP increased the percentage of serum-starved cells in S phase at 48 h. DEP decreased the percentage in G0/1 phase and G2/M phase.
	DEP-N: DEP + SN50, inhibitor of NF-kB		Apoptosis: DEP prevented the increase in apoptotic, serum-starved cells.
	Particle Size: DEP: 0.4 μm (mean diameter)		Protein Expression: p21CIP1/WAF1 expression increased at 48 h. DEP dose-dependently decreased this expression.
			NAC: NAC alone, at 33 mM, induced an increase in cell numbers. DEP-NAC inhibited cell numbers at 48 h. DEP-NAC inhibited cell numbers in S phase; thus, cells in G0/1 phase increased. DEP-NAC induced a further decrease of cells in G2/M phase.
			AEOL10113: DEP-A caused a dose-dependent decrease in cell numbers.
			SP 600125: Alone, SP600125 increased cell numbers at 33 mM. DEP-S decreased cell numbers.
Reference: Becher et al. (2007, <u>097125</u>)	SPM = suspended PM SRM-1648 Particle Size: 6-8 µm	Route: Cell Culture (1.5×10 ⁶ cells/well AM; 6×10 ⁶ cells/well Type II)	Cytokines in Macrophages: SPM increased TNF-α and MIP-2. NADPH inhibitor DPI reduced MIP-2 response, whereas iNOS inhibitor 1400W did not
Species: Rat		Dose: 200 μ g/mL = 20 μ g/cm ²	affect either.
Strain: Crl/WKY Cell Type: AM, Alveolar Type II		Time to Analysis: 20 h	Cytokines in Type 2 Cells: SPM increased IL-6 and MIP-2 significantly. This SPM effect was inhibited by DPI, whereas1400W reduced the IL-6 response significantly.
Gender: Male Weight: 200 g			ROS in Type 2 Cells: SPM significantly increased ROS formation. DPI largely blocked this SPM effect.
			ROS in Macrophages: No significant increases were observed.
Reference: Becker et al. (2005, <u>088590</u>)	PM (Coarse, Fine, Ultrafine): Chapel Hill, NC	Route: Cell Culture (0.5-1×10 ⁵ cells/well NHBE; 2-3×10 ⁵ /mL AM)	Cytokines: All 3 fractions induced dose-dependent increases in IL-8 secretion with PM-c, PM-F, PM-UF
Species: Human	Particle Size: PM-C: PM _{2.5} ; PM-	Dose/Concentration: NH BE: 25, 50, 100,	(in order of decreasing effects). TLR-2 antibody blocked these particle induced IL-8 effects.
Gender: Male and Female	F: PM _{0.1} ; PM UF: <0.1µm	250 μg/mL of PM; AMs: 50 μg/mL of DEP or 10 ng/mL of LPS	Inhibitors of Endotoxin effects and TLR-4 activation: No effects were observed in NHBE, but
Age: 18-35 yr		Time to Analysis: 18h for NHBE; overnight for AMs	all 3 fractions repressed the IL-6 release in AMs.
Cell Types: Alveolar Macrophages, NHBE			TLR mRNA Expression: PM did not affect TLR-2 mRNA in NHBEs. PM-C and PM-F induced a slight increase in TLR-4 mRNA in NHBEs while PM-UF induced a substantial increase. PM-C increased TLR-2 mRNA in AMs and decreased TLR-4 mRNA in AMs.
			Induction of Hsp70: PM-C and PM-F induced Hsp70 in NHBE dose-dependently. Hsp70 was not induced in AM following particle stimulator.

Study	Pollutant	Exposure	Effects
Reference: Becker et al. (2005, <u>088592</u>)	PM (Coarse, Fine, Ultrafine): Chapel Hill, NC	Route: Cell Culture (3-5×10 ⁵ cells/well NHBE; 2-3×10 ⁵ cells/mL AM)	IL-8 Release in NHBE: PM-C and PM-UF induced effects. No effects from PM-F (all 4 dates).
Species: Human	ROFA	Dose/Concentration: NHBE: 11 µg/mL of PM; AM: 50 µg/mL of PM	IL-6 Release in AM: All 3 fractions induced increase with later dates having generally lower effects.
Gender: Male	Fe, Si, Cr Components	. •	
Age: 18-35 yr Cell Types: AM, NHBE	Oct 2001, Jan 2002, April 2002, July 2002	Time to Analysis: 18-24 h NHBE; 18 h AM	ROS (DCF): NHBE, at lower exposures, were observed to be more responsive to PM than AMs. AM exhibited highly variable results over time.
	Particle Size: PM-C: 2.5-10 μm; PM-F: <0.1 μm; PM-UF: <0.1 μm		ROS (DHR): NHBE cells were observed to be more responsive to PM than AMs. AM responsiveness to PM increased over 4 time periods; this was not observed in NHBE.
			Seasonal Variability: Coarse particles were more potent than F and UF regardless of the month, and the potency for PM to induce IL-6/IL-8 production varied significantly. Coarse particles induced a 5-25 fold change in IL-6 release for AMs and a 3-6 fold change in IL-8 release for NHBEs.
			Metal Correlation to IL-6/8 induction: Fe and Si were positively associated with IL-6 release in AMs incubated with the coarse fraction. Cr was positively associated with IL-8 release in NHBE cells incubated with F or UF.
Reference: Beck- Speier et al. (2005, 156262)	DEP = SRM 1650a (NIST)	Route: Cell Culture (1×10 ⁶ cells/mL AM) Dose/Concentration: All particles: 1 (EC only), 3.2, 10, 32, 100 µg/mL Time to Analysis: 60 min	Phagocytosis: All particles were phagocytosed by
	EC = Ultrafine EC (spark discharge)		CAM within 60 min.
Species: Human, Canine (Beagle)	P90 = Printex 90 (Carbon Black, Degussa)		Oxidative Potential: EC showed a very high effect. DEP, P90 and PG had no effect
Cell Types: Human AMs, Canine AM (CAM)	PG = Printex G (Carbon Black, Degussa)		Formation of Lipid Mediators: DEP, EC P90 and PG increased arachidonic acid and PGE2/TXB2 in CAM in a dose-dependent manner. Only EC increased LTB4 and 8-isoprostane.
	Particle Size: DEP: 20-40 nm; EC: 5- 10 nm; P90: 14 nm; PG: 51 nm		ROS Activation: All particles increased activity in canine macrophages with EC, P90 and PG increasing activity in a dose-dependent manner. DEP increased activity in canine macrophages. Similar results were observed human alveolar macrophages but only EC and P90 were tested.
			Particle Mass vs Particle Surface Area: PGE2/TXB2 effects were highly correlated with particle surface area.
Reference: Bitterle et al. (2006, <u>156276</u>)	C-UFP = ultrafine carbonaceous particles (obtained from a spark discharge aerosol generator GFG 1000, Palas, Karlsruhe, Germany)	Route: Cell Culture (3×10 ⁷ cells)	Cell Viability: Exposure to clean air resulted in a 93.7 ± 9.1% viability. Exposure to low, mid and high
Species: Human		Dose/Concentration: 44 ± 4 ng/cm ² ; 87 ± 23 ng/cm ² ; 230 ± 70 ng/cm ²	doses of C-UFP resulted in a 94.9 ± 9.5% viability. Thus C-UFP had no effect on cell viability.
Cell Type: A549	Particle Size: 90 nm (count median mobility diameter)	Time to Analysis: 6 h	Interleukins: Clean air controls induced a 2-3 fold increase in IL-6 and IL-8 production vs submersed control. U-CFP exposures induced a similar effect on IL-8 and IL-6 levels.
			Antioxidant enzyme HO-1: The mid dose increased transcription of HO-1 by 2.7 fold. There was no observed effect at the high dose level which indicates possible cytotoxicity.

Study	Pollutant	Exposure	Effects
Reference: Blanchet	PM _{2.5}	Route: Cell Culture (45,000 cells/cm²)	Amphiregulin Expression: DEP and PM _{2.5} both
et al. (2004, <u>087982</u>)	(Vitry-sur-Seine, Paris, France)	Dose/Concentration: All particles: 0.1, 1,	increased AR mRNA expression from 6 to 30 h, with PM _{2.5} inducing higher expression levels than DEP.
Species: Human Cell Type: 16HBE	DEP = SRM 1650a	10, 30 μg/cm² Time to Analysis: 6, 18, 24, 30 h	Both DEP and PM _{2.5} increased AR protein secretion. No observed effect for CB and TiO ₂ . PM _{2.5} induced
Cell Type. TOTIBL	CB = Carbon Black (Degussa)	Time to Analysis. 0, 10, 24, 30 ff	protein secretion dose-dependently.
	TiO ₂ (Huntsman) Particle Size: CB: 95 nm; TiO ₂ : 150 nm		Signal Pathways in AR Secretion: MAP kinase and tyrosine kinase inhibitors reduced effects of DEP and PM _{2.5} but p38MAP kinase inhibitor did not.
			Role of Oxidative Stress: N-Acetylcysteine blocked AR secretion following $\rm PM_{25}$. Antioxidant enzyme catalase had no effect.
			Cytokines: DEP induced a significantly high release of GM-CSF, higher than PM _{2.5} . EGFR antibody reduced GM-CSF release at 0.25 µg/mL dose.
Reference: Bonvallot	DEP: SRM 1650	Route: Cell Culture (3×10 ⁶ cells)	Proinflammatory Response: At 10 μg/cm², nDEP
et al. (2001, <u>156283</u>), Species: Human	OE-DEP: dichloromethane extract (2x) of DEP	Dose/Concentration: DEP, sDEP, nDEP and CB = $10 \mu g/cm^2$	induced GM-CSF release by 4.7 fold. OE-DEP increased GM-CSF by 3.7 fold. BaP and sDEP also induced increases of CN-CSF but had smaller effect.
Cell Type: 16HBE14o-	nDEP: native DEP	OE-DEP = 15 μg/mL	CB had no effect.
	sDEP: nDEP - OE-DEP	BaP = 0.25, 50 and 250 μ g/mL	NF-kB Activation: nDEP and OE-DEP induced enhanced degradation of lkB at 2-4 h and 1 h
	CB: Carbon Black FR103 (Degussa)	Time to Analysis: 24 h	respectively. NF-κB DNA binding was enhanced by OE-DEP (15 μg/mL, peak <1 h) and nDEP (10
	BaP: Benzo[a]pyrene		µg/cm², peak at 2-h with plateau till 4 h). Both OE- and nDEP enhanced NF-kB DNA binding levels
	CB: 95 nm		were higher than BaP enhanced binding levels.
	NR Particle Size: CB: 95 nm; DEP: NR		CYP1A1 mRNA: The CYP1A1 mRNA level was markedly increased in nDEP and OE-DEP treated cells in comparison with their respective controls.
			Radical Scavengers (decreased ROS in situ): Increases of GM-CSF and NF-κB DNA binding by nDEP and OE-DEP was attenuated by radical scavengers.
			MAPK Activation: Increases by nDEP and OE-DEP of GM-CSF was inhibited by Erk1/2 inhibitor but not by p38 inhibitors. Both nDEP and OE-DEP triggered Erk1/2 and p38 phosphorylation. sDEP affected p38 phosphorylation only.
Reference: Brown et al. (2007, <u>156300</u>)	PM ₁₀ (London, England) CM from PM ₁₀ -treated human	Route: Cell Culture (1×10 ⁶ cells/mL J774A.1; 5×10 ⁶ cells/mL PBMC; 5×10 ⁵ cells/well A549)	Cytokines: PM ₁₀ induced release TNF-α protein from PBMCs at 10 μg/mL for 4 h. Further inhibited by verapamil and BAPTA-AM. Calmodulin inhibitor
Species: Human, Mouse Cell Type: PBMC,	monocytes Particle Size: PM ₁₀	Dose/Concentration: PM ₁₀ : 75 μl (10 μg/mL); CM: 250 μl; tBHP: 12.5 μm (in J774); TNF: 0, 500 pg, 1 ng, 10 ng	W-7 had no effect. CM increased IL-8 from A549 cells 3 fold. Verapamil, BAPTA-AM and W-7 significantly inhibited IL-8 release induced by CM.
A549 (Human); J774A.1 (Mouse)		Time to Analysis: tBHP:1, 2, 4 h; PM: 4 h; TNF: 18 h	ICAM-1: A549 cells treated with TNF- α showed dose-dependently effect of TNF- α on ICAM-1 upregulation at 18 h. CM also induced upregulation. Verapamil, BAPTA-AM and W-7 fully inhibited CM-induced upregulation.

Study	Pollutant	Exposure	Effects
Reference: Calcabrini	PM _{2.5} (Rome, Italy)	Route: Cell Culture (5×10 ⁴ cells/well)	Particle Characterization: Components measured
et al. (2004, <u>096865</u>) Species: Human	Particle Size: PM _{2.5}	Dose/Concentration: 30, 60 μg/cm ² (aliquot of 0.1 μg/μl)	include C-rich particles, Ca sulfates, silica, silicates, Fe-rich particles, metals. Carbonaceous particles made up majority of PM.
Cell Type: A549		Time to Analysis: 5, 24, 48, 72 h	Cell Surface Changes: PM deposited on the cell surface showed dose and time-dependent increases in microvilli rearrangement and cell shape alterations without affecting apoptotic markers for up to 72 h.
			PM internalization: At 24 h with the low dose, aggregates of PM in cytoplasm or surrounded by membrane was observed. With the high dose, large particle aggregates often close to nuclear envelopes were observed.
			Cytoskeleton: At 72 h PM induced dose-dependent alterations from rearrangement/interweaving of microtubules to bundling of microtubules with some shortening/disruption.
			Cell Growth: PM decreased cell growth in a dose and time-dependent manner
			ROS: PM increased ROS at the high dose for 5 h but not at 24 h or with the low dose.
			Cytokines: PM induced TNF-α peaked at 5 h at high dose and 48 h at low dose, both ND at 72 h. PM induced IL-6 starting at 24 h thru 72 h in time and dose dependent manner.
Reference: Cao et al.	NIST-DEP: collected using a diesel	Route: Cell Culture (5×10 ⁵ cells)	Cell Viability: DEP had no effect.
(2007, <u>156322</u>) Species: Human	forklift and hot bag filter system. (NIST, Minneapolis, MN)	Dose/Concentration: NIST-DEP, C-DEP: 0,	Stat3: Both DEPs induced time-dependent
Cell Type: HAEC	C-DEP: obtained from a 30-kw (40 hp) four-cylinder Deutz BF4M1008 diesel engine (U.S. EPA)	12.5, 25, 50, 100, 200 µg/mL Time to Analysis: 1-4 h	phosphorylization of Stat3 in cytoplasm. NIST-DEP induced phosphorylization dose-dependently from 12.5 to 50 μg/mL but stayed level at 100 and 200 μg/mL. p-Stat3 induction was inhibited by antioxidant
	Organic extract fraction of particles		BHA though it was reactivated with exposure to H_2O_2 . Reaction induced by H_2O_2 was similar to that
	NIST- DEP 2%		of DEP.
	C-DEP 20 %		pStat3 Nuclear Transport: NIST-DEP induced cytoplasmic pStat3 to move from cytoplasm into
	Particle Size: NR		nucleus.
			pEGFR Dephosphorylation: After 4 h of NIST-DEP exposure, dephosphorylation was inhibited for up to 90 min.
Reference: Chang et	UfCB (Printex 90, Degussa)	Route: Cell Culture (7×10 ⁵ cells)	ROS in THP-1 and A549: UFCB increased ROS.
al. (2005, <u>097776</u>) Species: Human	Particle Size: 14 nm	Dose/Concentration: 100 μg/mL	NAC pretreatment blocked most of the UFCB- induced ROS production.
Cell Type: A540, THP-1		Time to Analysis: 4 h	VEGF in THP-1: UFCB increased VEG. NAC decreased the UFCB effects below those of the control.
			VEGF in A549: Produced similar, but less marked, results as with THP-1.

Study	Pollutant	Exposure	Effects
Reference: Chauhan et al. (2004, <u>096682</u>)	EHC-T: total EHC-93 (Env Health Ctr, Ottawa, Canada)	Route: Cell Culture (15000 cells/well)	Stimulation with LPS/IFN-y: LPS and IFN-y each induced NO release. Combination of LPS and IFN-y
Species: Mouse	EHC-I: insoluble EHC	Dose/Concentration: Particle suspensions: 20, 50, 100 µg/well	produced larger effect in all cell lines. L-NMMA, NOS inhibitor, suppressed most of the NO
Strain: BALB/c	EHC-S: soluble EHC	LPS: 0-5 µg/mL	production with 100 nmol/L.
Cell Type: RAW	SRM1648: urban particulate St. Louis	IFN-y: 0-1000 U/mL	Cellular Viability and Cytotoxicity: Exposure of cells to particulates did not result in overt cytotoxicity
264.7; J774A.1; WR19M.1	(NIST) SRM1649: urban dust/organics Washington (NIST)	Time to Analysis: Particles added to culture at 0h, LPS and IFN-y added at 2 h. Parameters measured after 22 h incubation	or excessive loss of cellular material. There was no correlation between the cytotoxicity of the particles in the surviving cells and the loss of protein mass in
	VERP: fine PM _{2.5} (Vermillion, Ohio)	period.	monolayers.
	Cristobalite: SRM 1879 (NIST)		Nitrite Production: EHC-T, EH-93-I, SRM1648 and SRM 1649 produced dose-dependent decreases.
	TiO ₂ : SRM 154b (NIST)		Cristobalite only decreased at higher doses. No effect from EHC-S, VERP or TiO ₂ .
	Particle Size: EHC-93: 0.5 µm (median diameter); Cristobalite, SRM 1648, SRM 1649, TiO ₂ ,: NR; VERP: PM _{2.5}		iNOS: EHC-I, EHC-T, Crisobalite and SRM1648 inhibited iNOS expression. $\rm TiO_2$ had no effect. EHC sol, SRM 1649 and VERP were not tested.
Reference: Chauhan	EHC-T: total EHC-93	Route: Cell Culture (150000 cells/flask)	Cellular Viability: Decreased after exposure to
et al. (2005, <u>155722</u>) Species: Human	EHC-I: insoluble EHC	Dose/Concentration: All particles: 0, 1, 4, 8 mg/5ml	EHC-T, EHC-I and cristobalite. Rate of reduction was not consistent across doses. EHC-S and TiO ₂
Cell Type: A549	EHC-S: soluble EHC	Time to Analysis: 24 h	had no effect on viability. ET-1: Release of ET-1 peptide decreased dose-
<i>,</i> ,	Cristobalite (SiO ₂): SRM-1879	•	dependently for EHC-T, -S and -I. Fractions of EHC-S and EHC-I were more potent than EHC-T. TiO ₂
	TiO ₂ : SRM-154b Particle Size: EHC-93: 0.4 μm (median physical diameter); TiO ₂ , SiO ₂ : 0.3-0.6		and Cristobalite also reduced ET-1 secretion although this was not consistent across the dose range.
	μm		Cytokines: Results showed no detectable amounts of GM-CSF, IL-1 β or TNF- α in cell culture supernatants. IL-8 increased dose-dependently with EHC-T, EHC-I and cristobalite.
			VEGF: VEGF significantly increased dose- dependently with EHC-T, EHC-S and cristobalite. EHC-S induced a significant decrease in VEGF.
			Gene Expression: mRNA levels for preproET-1 reduced at 24 h for all particle types. EHC-S induced a significant decrease in ET-1 expression at this high dose. ECE-1 mRNA expression increased with EHC-T and EHC-I. Other particles had no effect. ETaR mRNA increased with EHC-T, EHC-S, and TiO $_2$ in biphasic manner where the highest expression of mRNA was seen at the middle dose levels. EHC-S had no effect. ETbR mRNA increased with a low dose of EHC-T and decreased with a high dose of EHC-T. EHC-S, EHC-I and cristobalite induced an increase of ETbR. TiO $_2$ induced a significant decrease.
			Proteases: mRNA levels for MMP-2 reacted similarly to preproET-1. mRNA levels for TIMP-2 was significantly induced with EHC-I. EHC-T and EHC-S induced small effects.
Reference: Cheng et al. (2003, <u>156337</u>) Species: Human	DEP-h: DEP with high sulfur DEP-LS: DEP with low sulfur GEP: gasoline engine exhaust particles Primed cells pretreated with TNF-α	Route: In Vitro Cellular Exposure (Exhaust flow-through cell culture with air-cell-interface, exhaust diluted 10-15x with 8×10 ⁵ cells/mL)	IL-8: DEP-h induced a 3 fold increase in IL-8 than that of the control. DEP-LS also induced increases. Primed cell cases had higher levels (10x) than unprimed when exposed to DEP-LS. DEP-h induced increases.
Cell Type: A549	Particle Size: DEP-h: 15.9 nm; DEP-LS: 17.7 nm; GEP: 8.3 nm	Dose/Concentration: DEP (total): 1.5-3.5×10 ⁶ particles/cm ³ ; GEP (total): 1-2×10 ⁶ particles/cm ³ ; TNF-γ: 5ml (25 ng/ml)	higher levels of IL-8 than DEP-LS. This response lasted for up to 6 h. GEP induced a statistically insignificant increase of IL-8 in unprimed cells. With primed cells, GEP induced levels of IL-8 that exceeded those of DEP-h and DEP-LS. This
		Time to Analysis: 60-360 min	response lasted for 1-2 h.

Study	Pollutant	Exposure	Effects
	CB: (N339, with benzo[a]pyrene	Route: Cell Culture	HO-1 mRNA Expression: In RAW264.7, HO-1
(2003, <u>156340</u>) Species: Rat, Human	absorbed on surface. Manufactured in Cabot, Boston, MA)	Dose/Concentration:	mRNA levels increased with 2 and 4 μg/mL at 2 h. Increases continued to 8 h and declined by 24 h.
Cell Line/Type: RAW	BaP	CB: 1, 2, 4 µg/mL	BaP had no effect. BP-1,6-Q increased HO-1 mRNA after 1 h and was maintained until 8 h. In A549 and
264.7, MHS (Alveolar Macrophage Cell	Benzo [a] pyrene 1, 6-quinone: BP-1,6-	BaP: 2 μg/mL	MHS, HO-1 mRNA increased after 1 h, peaking at 8 h in A549 and 4 h in MHS.
Line), A549	Q (obtained from NCI, Kansas City, MO)	BP-1,6-Q: 1 μM	HO-1 Protein Expression: An increase of protein
	Particle Size: CB 0.1 µm (mean	Time to Analysis: 1-24 h	was observed from 4-8 h in RAW264.7.
	diameter)		AP-1: Increases in binding activity were observed in RAW 264.7 cells at 2 h.
Reference: Churg et al. (2005, 088281)	EHC93 (Ottawa Urban Air Particles)	Route: Cell Culture	Activation of NF-κB: Both particle types increased nuclear translocation of NF-κB. TiFe and EHC-93
Species: Rat	TiFe = Iron-loaded fine TiO ₂ (obtained from Aldrich Chemicals, Milwaukee,	Dose/Concentration: EHC-93, TiFe: 500 μg/cm ²	increased NF-kB 1.5 fold at 1 h. TiFe increased NF-
Strain: SD	WI) Particle Size: EHC-93: 3-4 µm	Time to Analysis: 1, 24 h. Some	кВ 3.5 fold at 2 h. EHC-93 increased NF-кВ more than 2 fold. TiO ₂ by itself did not increase NF-кВ at any exposure duration.
Weight: 250 g Cell Type: Epithelial Cells of Tracheal Explants	(MMAD); TiFe: 0.12 ± 1.4 µm (geometric mean diameter)	experiments (referred to as 2 h) explants transferred to different dish and incubated for additional hour. Pre-treated with Inhibitors/Chelators for 2 h.	Morphological changes in tracheal epithelial cells: No evidence of dust particles was observed (EHC-93 or TiO ₂) in the epithelial cell cytoplasm at 2 h. No evidence of morphologic cell damage from particles was observed.
			Colchicine: Treatment with colchicine did not prevent NF-κB activation.
			Inhibitors/Activators: Tetramethylthiourea (TMTU) (membrane-permeable active oxygen scavenger), Deferoxamine (redox-inactive metal chelator), PPS (Src inhibitor) AG1478 (epidermal growth factor receptor inhibitor) prevented NF-κB activation in both EHC93 and TiFe exposed-cells. Iron-containing citrate extract of both dusts increased NF-κB activation in both EHC93 and TiFe exposed-cells.
Reference: Courtois et al. (2008, <u>156369</u>)	PM (SRM 1648)	Route: Cell Culture	NO: Generally, Ach-induced relaxation in intrapulmonary arteries decreased, Ach-induced
Species: Rat	(63% in, 4-7%, mass fraction >1%: Si, S, Al, Fe, K, Na)	Dose/Concentration: 100, 200 µg/mL	cGMP accumulation decreased, and relaxation by
Strain: Wistar	UF carbon black (FW2, P60)	Time to Analysis: 24 h incubation	SNP or DEA-NO also decreased. UF carbon black did not affect NO responsiveness.
Cell Line: Dissected	Particle Size: SRM 1648 mean diameter 0.4 μm; ultrafine carbon black: FW2- 13 nm, P60- 21 nm		Oxidative Stress, Inflammatory: Dexamethasone prevented SRM 1648-induced impairment of the Ach relaxation response but antioxidants did not. TNF-α, MIP2, IL-8 increased. ROS was not affected.
Reference: Dagher et al., (2007, <u>097566</u>)	LC10, LC50 = PM _{2.5} (collected Jan-Sept in Dunkerque,	Route: Cell Culture (3×10 ⁶ , 1.5×10 ⁶ , 0.75×10 ⁶ cells/20mL)	p65 Protein: Phosphorylation of p65 increased in PM-exposed L132 cells in dose-dependent manner.
Species: Human Cell Type: L132	France) Particle Size: cumulative frequency: 0.5 µm: 34%; 1 µm: 64%; 1.5 µm: 79%;	Dose/Concentration: LC10: 19 μg/mL; LC50: 75 μg/mL	IκΒα Protein: Phosphorylated IκΒα protein concentrations increased in cytoplasm with both particle types at all time points.
(Normal Lung Epithelial Cells)	2 μm: 87%; 2.5 μm: 92%; 5 μm: 98%; 10 μm: 100%	Time to Analysis: 24, 48 or 72 h	p65 and p50 DNA: p65 DNA binding increased at 24 h with LC10 and LC50, at 48 h with LC10, and at 72 h with LC10 and LC50. p50 DNA binding increased at all time points with LC10 and LC50.

Study	Pollutant	Exposure	Effects
Reference: Dai et al. (2003, <u>087944</u>)	EHC-93 (Environmental Health Center, Ottawa)	Route: Cell Culture Dose/Çoncentration: ECH, DEP: 500	Hydroxyproline: EHC93 induced an almost 3 fold increase in explant hydroxyproline. DEP increased tissue hydroxyproline 2.5 fold.
Species: Rat	DEP: SRM 1650a (NIST)	μg/cm²	Procollagen: EHC-93 doubled gene expression of
Strain: SD	Particle Size: EHC-93: 3-4 μm (MMAD); DEP 1.55 ± 0.04 μm (CMD)	Time to Analysis: Exposed for 1 h. Parameters measured following a 7 day	procollagen. Procollagen gene expression could be fully inhibited by SN50, TMTU or treatment of the
Weight: 250 g Cell Type: Tracheal Explants		incubation period.	PM with DFX. Treatment of explants with p38 or ERK (inhibitors) had no effect on procollagen expression. DEP induced an increase in procollagen gene expression but this increase was completely prevented by SN50 and MAP kinase inhibitors (SB203580 and PD98059). Neither TMTU or DFX has any effect.
			TGFβ1: Treatment of explant with EHC93 approximately doubled gene expression for TGFβ1. Treatment with SN50, TMTU and fetuin (TGFβ antagonist) blocked increase. DFX, MAP kinase inhibitors (SB203580 and PD98059) had no effect. DEP roughly doubled TGFβ1 expression. SN50 and MAP kinase inhibitors (SB203580 and PD98059) fully blocked this effect. TMTU and DFX had no effect.
Reference: Doherty et	Ratios of: V: Fe; Al: Fe; Mn: Fe	Route: Cell Culture (2×10 ⁵ cells/mL)	IRP: Addition of V increased IRP activity 5 to 9 fold.
al. (2007, <u>096532</u>)	V = sodium vanadate (NaVO ₃)	Dose/Concentration: Fe = 16 µmol	Though there was no seeming dose responsivity, IRP activity remained strongly elevated over the
Species: Rat Strain: NR8383	AI = aluminum chloride hexahydrate (AICI ₃)	(equivalent to urban NYC 500 μ g PM _{2.5}); V and Mn tested in molar rations of 0.02 to 0.4 relative to Fe; Al tested in molar ratios of 0.125 to 8 relative to Fe.	range of V:Fe ratios tested. Addition of Mn only resulted in an effect at 0.1 molar ratio (two-fold), not at higher or lower ratios. Al resulted in peak
Cell Types: AMs	Mn = manganese chloride tetrahydrate (MnCl ₂)	Time to Analysis: 20 h	increases of 5 fold at molar ratios 2 while declining to 2 fold at molar ratios 4 and 8.
	Fe = ferric chloride hexahydrate (FeCl ₃)		Cytotoxicity: Al was cytotoxic at molar ratios of 4 and 8. All other Al, V, Mn ratios had no effect.
	Ratios based on PM _{2.5} measurements from NYC, LA and Seattle Particle Size: Metals from PM _{2.5} samples		Mixtures: The combination of metals tested at NYC PM ratios and V drove all the Fe transport activity. Combinations of V+Mn and V+Al increased activity more than V:Fe alone.
Reference: Doornaert,		Route: Cell Culture	Cytotoxicity: DEP was cytotoxic at 100 µg/mL at all
et al. (2003, <u>156410</u>) Species: Human	CB: (Sigma, France)	Dose/Concentration: DEP and CB: 1-100 μg/mL	time points in a time-dependent manner. ČB and DPC cytotoxicity was substantially lower but
Cell Line/Type: 16HBE140-; P-HBE	DPC: Dipalmitoyl phosphatidylcholine (positive control)	Time to Analysis: Parameters measured 24, 48, 72 h post exposure. 1-HBE Cell	significant at 72 h. Phagocytosis: 1-HBE cell levels that were in contact with DEP or CB or have phagocytized those
	0.5 um Particle Size: NR	Deadhesion Capacity: 24 h, evaluation of detachment performed every 5min for 40 min after. Cell Wound Repair Capacity: 24 h,	particles increased in a dose-dependent manner. DEP induced greater levels of cell contact and phagocytosis than CB.
		repair evaluated 3.5, 7, 24 h after.	F-actin: Only DEPs were engulfed by F-actin stained cell fragments.
			Actin CSK Stiffness: DEP (5, 20, 100 μg/mL) induced net dose-dependent decrease in cytoskeleton stiffness and a dose-dependent decrease in actin cytoskeleton stiffness. CB produced no significant decrease.
			Adhesion Molecules: DEP induced a concomitant reduction of both CD49 (α 3) and CD29 (β 1) integrin subunits and a decrease in level of CD44 (HBE cell-cell and cell-matrix adhesion molecule) at both 20 and 100 μ g/mL.
			Proteases: DEP also induced an isolated decrease in MMP-1 expression without change in tissue inhibitor of TIMP-1 or TIMP-2 at 100 μ g/mL. CB produced no change or insignificant results.
			1-HBE Cell Deadhesion Capacity: DEP exposure induced a dose-dependent amplification of cell detachment at 5 min of incubation and onward.
			Cell Wound Repair Capacity: DEP inhibited wound repair/wound closure in a dose-dependent manner.

Study	Pollutant	Exposure	Effects
Study Reference: Dostert et al. (2008, 155753) Species: Human Cell Line/Type: THP1, monocyte-derived macrophages (MM) Reference: Doyle, et al. (2004, 088404) Species: Human Cell Type: A549 from non-smoking adults	Asbestos Silica DEP CSE: cigarette smoke extract MSU: monosodium urate crystals Particle Size: NR BD: 1,3-butadiene, known carcinogen Acrolein: photochemical and NO product of BD in atmosphere Acetaldehyde: photochemical and NO product of BD in atmosphere Formaldehyde: photochemical and NO product of BD and ISO in atmosphere ISO: isoprene, 2-methyl analog of BD Methacrolein: photochemical and NO	Route: Cell Culture Dose/Concentration: Asbestos: 0.1, 0.2 mg/mL; Silica: 0.1, 0.2, 0.25, 0.5 mg/mL; DEP: 0.2, 0.25, 0.5 mg/mL; CSE: 5%, 10% in solution mg/mL; MSU: 0.1, 0.2 mg/mL Time to Analysis: 1, 3, 6 h Route: Environmental Irradiation (smog) Chambers Dose/Concentration: 50 ppb NO; 200 ppbV ISO, BD Time to Analysis: Exposed to gases for 5 h. Analysis 9 h post exposure.	IL-1β: Increased levels of IL-1β with asbestos and silica were observed in THP1 at 6 h. CSE and DEP had no effect. MM also had increased levels with asbestos, silica and MSU at high dose levels only. Caspase-1: Asbestos increased caspase-1 activity. ROS: Asbestos doses in THP1 exhibited an increase in ROS formation. Cytotoxicity: ISO+NO and BD+NO induced small increases of LDH in A549. However, ISO+NO+light and BD+NO+light increased LDH levels 4-6 fold indicating photochemical products of ISO and BD are highly cytotoxic. LDH levels of each combination were equivocal. IL-8 Protein: Methacrolein, methyl vinyl ketone and formaldehyde (products of ISO) increased IL-8 protein levels significantly. ISO+NO had no effect. BD photochemical products (acrolein, acetaldehyde and formaldehyde) also increased IL-8 protein, more than doubling the photochemical products induced
Reference: Duvall et	Methyl vinyl ketone: photochemical and NO product of ISO in atmosphere Methyl vinyl ketone: photochemical and NO product of ISO in atmosphere Particle Size: NR PM-F, -C, -UF	Route: Cell Culture (100,000 cells/cm²)	IL-8 mRNA: IL-8 mRNA expression also increased with photochemical products of ISO and BD but did not reach a statistically significant level. Particle Characterization: PM-HR, PM-SL and PM-
al. (2008, <u>097969</u>) Species: Human Cell Type: Airway Epithelial Cells	Particles collected from: Seattle, WA (PM-S); Salt Lake City, UT (PM-SL); Phoenix, AZ (PM-P); South Bronx, NY (PM-SB); Hunter College, NY (PM-Sterling Forest, NY (PM-SF)	Dose/Concentration: 5 mg/ml Time to Analysis: 1, 24 h post exposure	S contained the highest UF, F, and C concentrations PM-SB and PM-HR had similar F and C concentrations. Sulfate was highest in PM-F for all sites except in PM-SB and PM-HR. Wood combustion was highest in PM-SL, PM-S, PM-P. Soi dust was highest in PM-SL and PM-S.
	Particle Size: Coarse: >2.5 μ m; Fine: <2.5 μ m; UFP: <0.1 μ m		IL-8: PM-UF induced a greater increase in IL-8 than other types of PM except PM-P. PM-UF is associated with vanadium, lead, copper, sulfate. PM-F-HR caused the greatest increase followed by PM-SB. PM-F-SF and PM-F-P was least effective. PM-C also caused an increase in IL-8 levels and was associated with vanadium and EC.
			COX-2: PM-F-S induced the greatest increase in COX-2 expression. Other PM-F sites induced similar increases. UF PM had no effect. PM-C, associated with EC, induced increases.
			H0-1: PM-F-SF induced the greatest increase in HO-1. PM-F-SL was the least effective. UF PM had no effect. PM-C, associated with copper, barium and EC, caused an increase.
Reference: Dybdahl et al. (2004, <u>089013</u>) Species: Human Cell Type: A549	DEP: SRM 1650 (NIST) Particle Size: 90 nm (MMAD)	Route: Cell Culture (10 ⁵ cells/mL) Dose/Concentration: 0, 10, 50, 100, 500 µg/mL Time to Analysis: 2, 5, or 24 h	Cytokines: DEP induced dose-dependent increases of IL-1α, IL-6, IL-8 and TNF-α at 24 h. Cytokines increased between 4 and 18 fold at the highest DEP dose as compared to controlled cells. DEP also increased IL-6 mRNA expression levels in a dose and time-dependent manner.IL-6 mRNA levels increased 14 fold at 24 h, 8 fold at 5 h, and 2 fold at 2 h. Cell Viability: DEP exposure did not decrease cell
			viability at any dose tested.

Study	Pollutant	Exposure	Effects
Reference: Fritsch et al. (2006, <u>156452</u>)	MAFO ₂ : incinerator fly ash (collected by electrostatic precipitation in commercial		Toxicity: Viability decreased from 99% to 18% at 62.5-188 μg/cm². Lower doses had no effect.
Species: Mouse Cell Type: RAW 264.7	municipal waste incinerator facility) composition representing 12% of total mass (mg/g):	Dose/Concentration: 6.3-188 μg/cm² for Toxicity; 2.6, 6.5, 13.2 μg/cm² for Arachidonic Acid; 13.2 μg/cm² for MAPK Pathway; Other doses noted in Effect of	Arachidonic Acid : At 2.5 h, AA level increased 2 fold for 6.5 μg/cm² and 6 fold for 13.2 μg/cm². No increase was observed after 5 h.
	Fe (9.1); Pb (23.3); Zn (75.7); C (7.5) Particle Size: 165 nm (modal value)	Particles Time to Analysis: 1, 2.5, 5, 24 h	MAPKs: Cells pretreated with PD98059, an inhibito of MEK-1, inhibited AA liberation due to MAFO ₂ treatment of 13.2 µg/cm ²
			COX-2: A time-dependent increase of COX-2 protein expression was exhibited at 2.5 and 5 h.
			ROS: A dose-dependent increase in ROS formation was observed at concentrations greater than 31.3 $\mu g/cm^2$ after 3 h.
			GSH: There was an observed increase of production at 20 h. Doses greater than 60 μg/cm² reduced total glutathione.
			HO-1: There was an observed dose-dependent increase in expression at 4 h.
Reference: Fujii et al. (2002, <u>036478</u>)	PM ₁₀ : EHC-93 (Ottawa, Canada) Particle Size: PM ₁₀	Route: Cell Culture (HBEC: 2.5-3× 10 ⁶ cells/well); (AMs: 1.0×10 ⁷ total)	Viability: Over 90% of HBEC were viable after a 24 h exposure of up to 500 µg/mL of PM. AMs
Species: Human	- 4. 11. 11. 11. 11. 11. 11. 11. 11. 11.	Dose/Concentration: 100, 500 μ g/mL	incubated with and without 100 μg/mL saw no significant difference in viability.
Cell Type: HBEC (from current smokers), AMs, Co- Culture: AMs+HBEC Age: HBEC: 48-70 yr		Time to Analysis: 2, 8, 24 h	Cytokine mRNA: TNF-α, GM-CSF, IL-1β, IL-6, LIF, OSM and IL-8 mRNA expression increased in coculture with 100 μg/mL at 2 and 8 h. In AMs, TNF-α, IL-1β, IL-6 mRNA expression increased with 100 μg/mL at 2 h. IN HBECs, IL-1β and LIF increased with 100 μg/mL at 2 h. HBECs added to AMs exposed to PM ₁₀ , further increase in mRNA of IL-1β, LIF and IL-8.
			Cytokine Protein: In co-culture and AMs, significan increase in protein production of GM-CSF, IL-8, IL-1 β , IL-6 and TNF- α in dose-dependent manner. GM CSF and IL-6 production significantly higher in co-culture then AM or HBEC alone.
			Bone Marrow: Co-culture instillation of supernatants increased circulating band cell counts at 6 and 24 h with 100 μ g/mL.
Reference: Fujii et al (2001, <u>156455</u>)	PM ₁₀ :EHC93 (Ottawa, Canada)99% <3.0um	Route: Cell Culture (2.5-3×10 ⁶ cells/dish)	Phagocytosis: 18.6% of cells engulfed particles when exposed to 100 μg/mL. Over 90% remained
Species: Human	Particle Size: PM_{10} (99% < 3.0 μ m)	Dose/Concentration: 10, 100, 500 μg/mL Time to Analysis: 2, 8, 24 h	viable.
Cell Type: HBEC from current smokers		11110 to minipolo. 2, 0, 27 II	Cytokine mRNA: LIF mRNA increased dose- dependently at 2 h but declined at 8 and 24 h. GM- CSF increased dose-dependently at 8h and peaked at 24 h. IL-1α increased at 2 h, increased dose-
Age: 48-70 yr			dependently at 8 h and peaked at 24 h. M-CSF, MCP-1, IL-8 were unaffected.
			Cytokine Protein: LIF, GM-CSF, IL-1 β and IL-8 increased dose-dependently. Soluble fraction of 100 μ g/mL PM $_{10}$ did not affect cytokine production.

Study	Pollutant	Exposure	Effects	
Reference: Garcon et al. (2006, <u>096633</u>)	PM _{2.5} (collected in Dunkerque, France for 9mo, Jan-Sept)	Route: Cell Culture: 3×10 ⁶ cells/20ml (24 h); 1.5×10 ⁶ cells/20ml (48h); 0.75×10 ⁶ cells/20ml (72 h)	Cytotoxicity: PM induced dose-dependent (R ₂ = .9907) cytotoxic effect in proliferating L132 cells.	
Species: Human Cell Type: L132		Dose/Concentration: 18.84, 37.68, 56.52,	LDH: Increase at 72 h with 56.52 and 75.36 µg/mL.	
Cell Type. L102	μm (14.33%), 1.5-2.0 μm (8.69%), 2.0- 2.5 μm (4.89%), >2.5 μm (7.87%)	75.36, 150.72 µg/mL; LC10- 18.84 µg/mL; LC50- 75.36 µg/mL	Oxidative Stress: A decrease in MDF activity was	
		Time to Analysis: 24, 48 or 72 h	observed at all exposure levels at 24, 48, and 72 h (72-h <5 % of control). MDA levels showed increase concentration after 72 h, both LC10 and LC50. LC10 and LC50 saw an increase in SOD activity at 24 h; LC50 saw a decrease in activity after 48 and 72 h. 8-OHdG and PARP exhibited increases at all time points with LC10 and LC50.	
			Inflammatory Response: Increases of TNF- α concentration was exhibited at 24 h at LC50, and at 48 h and 72 h at LC10 and LC50. iNOS activity increase at all time points at LC10 and LC50.NO concentration exhibited increases at all time points after exposure to LC10 and LC50.	
Reference: Geng et al. (2005, <u>096689</u>)	BPM: Blowing PM _{2.5} ; PM collected from Wuwei City, Gansu Province, China	Route: Cell Culture Dose/Concentration: 0, 33, 100, 300 µg/mL	Cytotoxicity : Dosages greater than 150 μg/mL decreased cell viability.	
Species: Rat Strain: Wistar Kyoto	(Blowing days correspond to desert storm days) NPM: Non-blowing (normal) PM _{2.5}	Time to Analysis: 4 h	Plasma Membrane Fluidity: Dose-dependent decrease had no effect on membrane lipid hydrophilic region.	
Tissue/Cell Type: Lung macrophages	Particle Size: PM _{2.5}		Plasma Membrane Permeability: LDH enzyme activity and extracellular AP activity increased dose-dependently, indicating increased membrane permeability, but this was only statistically significant at 300 μg/mL dose. NPM may affect some parameters at 100 μg/mL. Overall, NPM induced a slightly higher increase than BPM.	
			Intracellular Ca2+: A dose-dependent increase was observed.	
			Lipid Peroxidation (TBA): An increase was observed only at 300 µg/mL.	
			Antioxidant (GSH): A decrease was observed only at 300 $\mu g/mL.$	
Reference: Geng et al. (2006, <u>097026</u>) Species: Rat	DPM: dust storm samples; PM collected from Baotou City, Inner Mongolia, China in March 2004	Route: Cell Culture Dose/Concentration: 0, 33, 100, 300 µg/mL Time to Analysis: 4 h	Cytotoxicity: MTT reduction assay revealed a significant decrease in cell viability at 150 μg/mL and 300 μg/mL. LDH enzyme activity significantly increased at 150 and 300 μg/mL.	
Strain: Wistar Kyoto Tissue/Cell Type: Lung macrophages	NPM: normal PM Particle Size: PM _{2.5}	n: Wistar Kyoto Particle Size: PM _{2.5} e/Cell Type:		GSH levels: Significant decreases were seen in cellular GSH levels and increases in TBARS levels in both groups with a 300 μ g/mL dose.
Lang macrophagos			Plasma Membrane Activity: In the plasma membrane, Na, K-ATPase were significantly inhibited. Ca ²⁺ Mg ²⁺ -ATPase were unaffected.	
			Plasma Membrane Lipid Fluidity: Results indicate that DPM could increase the surface fluidity of membrane lipid.	
			Intracellular Ca2+: A dose-dependent increase in free intracellular Ca2+ levels was observed.	
Reference: Ghio et al. (2005, <u>088272</u>) Species: Human	FAC: ferric ammonium citrate (component of ROFA) VOSO ₄ : vanadyl sulfate	Route: Cell Culture Dose/Concentration: 100 µM FAC - preexposed before metal compounds or oil	IRE DMT1: FAC increased mRNA and protein expression for -IRE DMT1. VOSO ₄ decreased mRNA and protein expression for -IRE DMT1. +IRE DMT1 unaffected by any treatment.	
Cell/Tissue Type: BEAS-2B	(component of ROFA)	fly ash 50 μM VOSO ₄ - preexposed before metal compounds or oil fly ash	Metal transport: Uptake of iron increased after pre- exposure to FAC and decreased after pre-exposure to VOSO ₄ . Pre-exposure to FAC again increase the	
	Particle Size: NR	100 μg/mL ROFA	uptake of both iron and vandium. VOSO ₄ induced opposite effect, decreasing Fe uptake.	
		Time to Analysis: 0-1 h, 4 h	ROS: Increased acetaldehyde, indicating increased oxidative stress. ROS decreased with FAC pretreatment. ROS increased with VOSO ₄ pretreatment.	

Study	Pollutant	Exposure	Effects
Reference: Gilmour et al. (2004, 057420) Species: Rat Strain: SD Cell/Tissue Type: AM	Coal Fly Ash MU = Montana Ultrafine MF = Montana Fine MC = Montana Coarse KF = West Kentucky Fine KC = West Kentucky Coarse Coal combustion using a laboratory- scale down-fired furnace rated at 50kW. Montana subbituminous coal and western Kentucky bituminous coal Particle Size: Coarse: >2.5 µm; Fine: <2.5 µm; UFP: <0.2 µm	Route: Cell Culture (2×10 ⁵ cells/mL) Dose/Concentration: 125 μg/mL or 250 μg/mL Time to Analysis: 4 or 24 h	LDH: Mid and high doses of Montana ultrafine particles showed significant increase after 4 h exposure vs control. Other particle types had no effect. After 24 h, LDH level was not statistically significant between particles tested and control. Cytokines: Treatment with Montana ultrafine particles resulted in a significant production increase of TNF-α. MIP-2 showed increases in all the fine and ultrafine treatments, with Montana ultrafine and W. Kentucky fine PM showing the highest increases. IL-6 increased with Montana ultrafine particles although there was some variability and the increases were not statistically significant.
Reference: Gilmour et al. (2005, <u>087410</u>) Species: Human Cell/Tissue Types: monocyte derived macrophages, HUVECs, A549, 16HBE	PM ₁₀ : Collected from the Marylebone and Bloomsbury monitoring sites in London, UK Particle Size: PM ₁₀	Route: Cell Culture Dose/Concentration: 50 μg/mL Time to Analysis: 4 h, 6 h, 20 h	IL-8: PM ₁₀ at 50 µg/mL induced a significant increase in IL-8mRNA and protein expression in PMM and 16HBE at 6 and 20h. A less substantial increase was also observed in A549. Procoagulant Activity: PM ₁₀ induced a significant decrease in macrophage mediated clotting time in 16HBE. Other cell types were unaffected. Annexin V Binding: At 100 µg/mL, PM ₁₀ induced a significant increase in binding macrophages at 4 and 20 h. There was no effect at 50 µg/mL. Tissue Factor mRNA Expression: Expression was increased in macrophages at 6 h only. tPA Expression: mRNA expression decreased at 6 h. Protein expression decreased at 4 h and 20 h in a dose-dependent manner. TF Expression: TF mRNA expression increased in a dose-dependent manner at 6 h in HUVECs. Protein levels also increased at 4 h but declined to basal levels by 20 h.
Reference: Gilmour et al. (2003, 096959) Species: Human Cell/Tissue Type: A549	PM ₁₀ : Collected from the Marylebone and Bloomsbury monitoring sites in London, UK TSA H ₂ O ₂ NAC Mannitol Provided by Sigma Chemical, Poole, UK or GIBCO-BRL, Paisley, UK Particle Size: PM ₁₀	Route: Cell Culture Dose/Concentration: PM ₁₀ : 100 μg/mL; TSA: 100 ng/mL; H2O ₂ : 200 μM; NAC and Mannitol: 5 mM Time to Analysis: 24 h	IL-8: PM ₁₀ , TSA and H2O ₂ treatment induced an increase of IL-8. Concomitant exposure of TSA with PM ₁₀ or H ₂ O ₂ significantly increased IL-8 release when compared to PM ₁₀ or H ₂ O ₂ alone. IL-8 mRNA expression with PM ₁₀ or H ₂ O ₂ exposure and TSA coincubation caused significant increases. Silver staining of PCR products indicated that the IL-8 gene promoter was associated with acetylated H4 following TSA, PM ₁₀ and TNF treatment. H4: PM ₁₀ exposure significantly increased acetylation levels of H4 over controls. Increased acetylated H4 was mediated by PM ₁₀ in a dose-dependent manner. Treatment with PM ₁₀ and H ₂ O ₂ increased HAT activity associated with H4 by 245% and 166% respectively. Significant increases in acetylation of H4 following treatment of cells with TSA, PM ₁₀ and H ₂ O ₂ for 24 h was observed. PM ₁₀ induced HAT activity was significantly decreased in the presence of NAC and mannitol. Nuclear presence of HDAC2 protein was significantly reduced by exposure to both HDAC inhibitor and PM ₁₀ . There was a decreasing trend in HDAC2 gene expression following TSA and PM ₁₀ treatment. NF-κB: The activation of the transcription factor NF-κB was enhanced following the inhibition of HDAC with TSA and by treatment with

Study	Pollutant	Exposure	Effects
Reference: Graff et al.	PM	Route: Cell Culture	Gene Expression: PM-UF, PM-F, and PM-C both
(2007, <u>156488</u>)	-UF: ultrafine	Dose/Concentration: 250 μg/mL	upregulated and downregulated genes in the HAECs though downregulation was far more common for all
Species: Human	-F: fine	Time to Analysis: 6 h, 24 h	the three PM fractions. PM-F affected the greatest number of transcripts, followed by the UF and C
Cell/Tissue Type: HAEC	-C: coarse		fractions.
	Particles collected from Seattle, WA (-S), Salt Lake City, UT (-SL), Phoenix, AZ (-P), South Bronx, NY (-SB), Hunter College, NY (-H), Sterling Forest, NY (-SF)		IL-8: mRNA expression increased, with PM-F-S having the greatest impact. Aluminum, strontium, manganese and potassium were highly associated with expression. Wood combustion was moderately associated.
	Particle Size: UF: <0.1 μ m; F: 0.1- 2.5 μ m; C: 2.5-10 μ m		HOX-1: mRNA expression increased, with PM-F-SF having the greatest impact. Potassium, manganese, strontium and wood combustion were highly associated with expression. Aluminum and vanadium were moderately associated.
Reference: Gualtieri et al. (2005, <u>097841</u>)	TD: Tire debris extracted in methanol, constituent of PM ₁₀	Route: Cell Culture	Cytotoxic Effect: Treated cells presented inhibitory effect on reduction of MTT which appeared to be
Species: Human	(generated by spinning a new	Dose/Concentration: 10, 50, 60, 75 µg/mL	dose and time-dependent. A statistically significant
Cell Type: A549	automotive tire against abrasive surface)	Time to Analysis: 24, 48, 72 h	reduction was observed at 48 and 72 h. Trypan blue showed a significant PM lethality as well as a dosedependent increase in mortality.
	Particle Size: 10-80 μm		DNA Damage : At 24 and 72 h, DNA damage increased dose dependently in damaged and ghost cells.
			Cell Cycle Analysis: At 24 h, TD extract-treated cells presented a significant increase in the percentage of cells in G1 phase when compared with control. This increase was associated with a decrease in the percentage of cells in S phase. At 48 and 72 h, the increase in percentage of cells in G1 was associated with a decrease in the percentage of cells in both S and G2/M phases. Cells exposed to TD extracts presented changed morphology. Modifications most obvious at 72 h. The highest dost produced increased vacuolization in cytoplasm and apoptotic nuclear images.
Reference: Hetland et	PMC = Coarse	Route: Cell Culture (1.5×10 ⁶ cells/well)	IL-6: PMC from all cities exhibited increases in IL-6 release with spring and summer roughly equal and
al. (2005, <u>087887</u>) Species: Rat	PMF = Fine	Dose/Concentration: 50, 100 μ g/mL PM	both inducing higher levels than the winter PMC. For
Gender: Male	-A = Amsterdam	Time to Analysis: 20 h	the Spring and Summer samples, PMC-L exhibited the highest IL-6 releases (440% and 460%
Strain: Crl/Wky	-L = Lodz		respectively) followed by Rome, A'dam/Oslo, and Oslo/A'dam. For the winter samples, Rome and
Cell Type: AMs	-R = Rome		Amsterdam induced higher IL-6 levels (340% and 300% respectively) than Lodz and Oslo (165% and
our type. 7 two	-O = Oslo		160%). The fine fractions did not induce any
	Coexposures PAH, Fe, Al, Zn, Cu, V		significant cytokine release. TNF-α: PMC from all cities increased TNF-α release
	Particle Size: PMC: 2.5-10 μm; PMF: 0.2-2.5 μm		with 50 µg/mL generally inducing a slightly higher increase than 100 µg/mL.
			Constituent Correlation: Levels of Fe, Al, Zn, Cu and V as well as PAH (total and fractions) showed no correlation with IL-6 release.
			Endotoxin Correlation with IL-6 release: A confirmatory test revealed no correlation.

Study	Pollutant	Exposure	Effects
Reference: Hetland et al. (2004, 097535) Species: Rat, Human Cell Type: Alveolar	AMC = Ambient Coarse AMF = Ambient Fine AMUF = Ambient Ultrafine	Route: Cell Culture (1×10 ⁶ cells/well) Dose/Concentration: 0, 100, 200, 400, 600, 800, 1000 μg/mL Time to Analysis: 20h (Type 2 cells); 40h	IL-8: All 3 AM fractions showed dose-dependent increases in A549 cells until 600 µg/mL; at that concentration, levels declined. AMC showed the most pronounced decline which correlates with decreased viability. Road PM showed a near linear
Macrophages (Rat), A549	(AM samples taken at a suburban site, without a dominating PM source, near Utrecht, Netherlands)	(A549 cells)	response until 1000 μg/mL, whereas DEP plateaued at 600 μg/mL in A549. MIP-2: AMC and AMUF had no effect on Type 2
Strain: Wky/NHsd Gender: Male Weight: 180-230 g	Road PM: PM ₁₀ , (collected in a road tunnel with predominating road abrasion due to use of studded tires in Trondheim, Norway)		cells. DEP induced increases at 200 µg/mĹ, whereas Road PM induced the strongest increase, peaking at 600 µg/mL in Type 2 cells.
•	Particle Size: AMC: 2.5-10 μm; AMUF: <0.1 μm		IL-6: AMC induced increases at 100 μg/mL in Type 2, but levels declined below normal at 200 μg/mL. AMUF induced a decline of IL-6 levels. Road PM induced significant increases in Type 2. DEP had a slight effect. AM fractions induced increases in A549 cells, peaking at 600 μg/mL with AMF. DEP and Road PM induced a dose-dependent increase.
			Cell Survival: AMC showed major effects at 200 μg/mL in Type 2. AMUF showed effects at 400 μg/mL. Road PM and DEP showed a gradual decline from 75% to 50% at 800 μg/mL in Type 2. All AM fractions induced a decrease in viability after 600 μg/mL in A549 with AMC inducing a larger decrease than AMUF and AMF; AMUF and AMF induced similar levels. Road PM and DEP had no effect on A549.
			Apoptosis: AMC elicited a marked induction of apoptosis 200 µg/mL in Type 2 cells. AMF showed a dose-dependent increase in A549. Other AM fractions showed some slight increases in both cell types. Statistical significance was reached for all particles except for Road PM.
Reference: Holder et al. (2008, <u>093322</u>) Species: Human	DEP: generated from a single cylinder diesel engine using , commercial certified #2 diesel fuel	Route: Suspension (1×10 ⁵ cells/cm ²), Air Liquid Interface (ALI, 1×10 ⁵ cells/cm ²) Dose/Concentration: Suspension: 0.13,	ALI vs Tracheal Bronchial (TB) Deposition: The TB region deposition is 1.5 nominally x ALI, but particle diameter deposited in the TB was 62 nm (geometric mean diameter) as compared to the
Cell Type: 16HBE140	Copollutants: NO _X 7 ppm, CO ₂ 0.1%	0.24, 1.88, 2.5, and 12.5 μg/cm²; ALI: 1, g/cm³ (total number of particles: 2.3×10 ⁷ particles/cm²) Time to Analysis: Exposure for 6 h. Parameters measured 20 h post-exposure. Time to Analysis: Exposure for 6 h. Parameters measured 20 h post-exposure. Inflammatory Response: Suspendecreased viability at concentrations of 1.88 μg/cm² at concentrations of 1.88 μg/cm² dependent manner. IL-8 exhibited levels of secretion between in vitrand 1.88 μg/cm². No statistically s	particle deposition in the ALI, measuring 260 nm.
r	Particle Size: Suspension: 223 nm (mean diameter); ALI: 122 nm (mean diameter)		Inflammatory Response: Suspended DEP decreased viability at concentrations of 2.5 µg/cm² or higher. IL-8 release (corrected for viability) increased at concentrations of 1.88 µg/cm² or higher in a dose-dependent manner. IL-8 exhibited intermediate levels of secretion between in vitro levels of 0.25 and 1.88 µg/cm². No statistically significant results were observed in ALI. Viability for ALI was near 100% (75% uncorrected).
Reference: Huang et al. (2003, <u>087376</u>)	PMC: PM coarse	Route: Cell Culture (5×10 ⁵ cells/mL)	Viability: None of the PM fractions affected cell viability.
Species: Human,	PMF: PM fine PMSM: PM submicron	Dose/Concentration: All PM: 50, 70, 100 μg/mL	IL-8: Only PMSM induced a significant IL-8 increase
Mouse Cell Type: BEAS-2B, RAW 264.7	Collected between September- December 2000 from 4 ambient monitoring stations in Taiwan that represented background, urban, traffic,	Time to Analysis: BEAS-2B: 8h; RAW 264.7: 16 h	in BEAS-2B. IL-8 response was associated with a combination of Mn and Cr (R_2 = 0.28). Response was also correlated with nitrate, although significance disappeared when 1 extreme nitrate value was removed.
	and industrial sites Particle Size: PMC: 2.5-10 µm; PMF:		Lipid Peroxidation: Only PMSM enhanced lipid peroxidation in BEAS-2B, correlating with both elemental and .
	1-2.5 μm; PMSM: <1 μm		TNF-α: In RAW264.7, PMSM increased TNF- α production. Polymixin pretreatment significantly reduced TNF- α levels for all 3 PMs which indicates an endotoxin role in macrophage response. TNF- α production (after polymixin pretreatment only) was associated with Cr and Fe content.

Study	Pollutant	Exposure	Effects
Reference: Hutchison et al. (2005, 097750)	PM ₁₀ : Samples collected for 7 day during closure (-C) and reopening of	Route: Suspension	Particle Characterization: Reopening of the plant showed a significant increase in the total and acid
Species: Mouse	steel plant (-R)	Dose/Concentration: 500 µl (estimated	extractable metal content of PM. Aqueous
Cell Line: J774.1A	PMT: PM total (aqueous sonicate)	concentrations of 112, 143, 156, 180, 233, 255 µg/1ml water)	extractable metal content did not change. Soluble zinc, copper and manganese also increased
Cell Lille. 3774.1A	PMS: PM soluble aqueous	Time to Analysis: 4 h	significantly post reopening. Iron was the most abundant in acid extractable metals and increased
	PMI: PM insoluble aqueous		greatly at the reopening.
	Particle Size: PM ₁₀		TNF-α: PMT-R and PMT-C induced a statistically significant increase. Treatment with chelation agent reduced effect to control levels.
Reference: Imrich et	UAP: SRM 1649 (positive control)	Route: Cell Culture (2×10 ⁵ cells/well)	TNF-α: DMTU at 20 mM reduced TNF in LPS-
al. (2007, <u>155859</u>)	TiO ₂ : Particle control	Dose/Concentration: Caps 100 µg/mL;	primed cells in control and UAP-treated groups. NAC at 20 mM reduced TNF release but this was
Species: Rat	CAPs (Boston, MA)	UAP: 50 or 100 µg/mL; LPS 250 ng/mL; NAC, DMTU: 2, 10, 20 mM; Catalase: 1, 5,	not statistically significant. Catalase significantly inhibited TNF in control and UAP-treated groups.
Gender: Female	All cells primed with LPS	10 mM; H ₂ O ₂ 0-50 μm/hr	CAPs (especially the insoluble portion) significantly increased TNF unless co-exposed with NAC, DMTU
Age: 12-14 wk Cell Type: AM	Coexposure with NAC, dimethylthiourea (DMTU), H2O ₂ or catalase	Time to Analysis: 18-20h	or catalase. All three reduced levels back to around basal levels. DMTU was particularly effective at diminishing TNF release. H_2O_2 increased TNF
	Particle Size: CAPs: \leq 2.5 µm; UAP: PM _{2.5} ; TiO ₂ : \sim 1 µm		release in CAPs-exposed cells. TiO ₂ had no increased ability to induced cytokine release when mixed with H ₂ O ₂ .
			Cell Death: Viability decreased substantially when exposed to H_2O_2 + CAPs. The soluble fraction of CAPs showed to be more effective with H_2O_2 than the insoluble portion. TiO ₂ had no significant effect.
			$\mbox{NO:}$ Some CAPs induced slight increases when mixed with $H_2O_2.$ No difference was observed between soluble and insoluble portions of CAPs.
			DFO: DFO at 0.05 mM completely inhibited oxidation induced with soluble CAPs + H_2O_2 . Insoluble CAPs + H_2O_2 was also DFO-sensitive. DFO was ineffective against the insoluble CAPs induction of TNF and MIP-2.
Reference: Ishii et al. (2004, <u>088103</u>)	EHC-93:PM ₁₀ (obtained from Environmental Health Directorate,	Route: Cell Culture (1×10 ⁷ cells) Dose/Concentration: 100 μg/mL	Cytokines: TNF-α, IL-1β, GM-CSF, IL-6, and IL-8 levels were significantly increased in A549 cells.
Species: Human Cell Type: A549 (collected from 6 lobectomy or pneumonectomy smokers), HBEC	Ottawa, Ontario, Canada) Particle Size: PM ₁₀	Time to Analysis: 3, 6, 24 h	mRNA Expression: MCP-1, ICAM-1 and IL-8 mRNA expression increased in untreated AM supernatants at 3 h. Only the MCP-1 levels were statistically significant at 3 h. Levels declined by 6 h. When A549 cells were exposed to PM $_{10}$ exposed AM, levels of RANTES, TNF- α , ICAM-1, IL-1 β , and LIF increased. Except for RANTES mRNA, these differences were less in the 6 h samples. VEGF increased as well, but this increase was not statistically significant.
			TNF-α and IL-1β-neutralizing Antibodies: IL-1β antibody alone or in combination with TNF-α significantly reduced expression of all eight mRNAs. Combinations for some mRNAs reduced expression by up to 1/2. This effect was not observed when A549 was treated with the control AM.
			Transcription Factor Binding Activity: Binding of AP-1 and Sp1 increased when A549 treated with supernatants from PM ₁₀ -exposed AM, but not from control AM.

Study	Pollutant	Exposure	Effects
Reference: Ishii et al. (2005, <u>096138</u>) Species: Human Cell Type: AMs (obtained from 10 smokers who stopped smoking 6 wk prior), HBEC	EHC-93: PM ₁₀ (obtained from Environmental Health Directorate, Ontario, Canada) Particle Size: PM ₁₀	Route: Cell Culture (HBEC: 2.5-3.0×10 ⁶ cells; AM: 1×10 ⁷ cells; co-culture of AM/HBEC: 5×10 ⁶ cells) Dose/Concentration: 100 μg/mL Time to Analysis: 2, 24 h	mRNA Expression After 2 h Exposure: AM or HBEC exhibited no effect. In contrast, co-culture increased expression of MIP-1β, GM-CSF, M-CSF, IL-6, MCP-1 and ICAM-1-mRNA.
			mRNA Expression After 24 h Exposure: AMs exhibited no effect. HBEC increased levels of GM-CSf, LIF and ICAM-1. Co-culture, on the other hand, increased expression of MIP-1 β , GM-CSF, M-CSF and ICAM-1 mRNA.
			Protein Levels: AM and HBEC both increased GMCSF, IL-6 and MIP-1 β release into the supernatant. Co-culture effect was not additive but synergistic (i.e., higher than expected). MCP-1 levels did not increase significantly. Co-culture appeared to decrease protein levels for both the control and PM values. M-CSF levels increased for co-culture only.
			Surface Expression of ICAM-1: Upon 24 h exposure to PM, HBEC exhibited an increase in expression. Expression in AMs were not affected by 2 h PM stimulation.
			ICAM-1 Inhibitors: IgG or anti-CD11b antibody was unaffected in co-culture.
Reference: Jalava et	UPM: SRM1649a (Washington, DC)	Route: Cell Culture (5×10 ⁵ cells/mL)	TNF-α: All the PM samples increased TNF-α.
al. (2005, <u>088648</u>)	DEP: SRM1650 (NIST)	Dose/Concentration: 150 μg/mL Time to Analysis: Methanol treatment of PM samples: 24 h; Exposure to ambient PM samples: 2, 4, 8, 16, or 24 h.	Cell Viability: SRM1649a exhibited the most cytotoxicity, followed by HFP-00 and EHC-93. Methanol significantly affected cytotoxicity of the EHC-93 sample only.
Species: Mouse Cell Type: RAW 264.7	EHC-93: Ottawa dust (Environmental Health Center, Ottawa, Canada)		
	HFP-00: Pooled ambient air PM _{2.5} sample from Helsinki, Finland		$ \begin{tabular}{ll} \textbf{Cytokines:} TNF-\alpha concentrations in the cell culture medium significantly increased at all time points \\ \end{tabular} $
	M-UPM: methanol extract of UPM		between 2 and 24 h. The highest increase was seen in EHC-93. IL-6 production also increased at
	Particle Size: SRM 1649a, SRM 1650, EHC-93: NR; HFP-00: PM _{2.5}		different levels with the highest increase observe EHC-93. No response was observed for IL-10.
			Cell Viability: Duration of exposures had no significant effect on any of the samples. A 2 h exposure time was sufficient to induce the typical reductions in cell viability.
Reference: Jalava et al. (2006, <u>155872</u>)	PM: Collected east of Helsinki, Finland between Aug 23 and Sept 23, 2002	Route: Cell Culture (5×10 ⁶ cells/mL) Dose/Concentration: 15, 50, 150 and 300	Particulate Mass Concentrations in HVCL Size Ranges: The largest increase of PM concentrations was observed in PM _{1-0.2} .
Species: Mouse	Divided in 12 groups (4 sizes by 3 exposure types):	μg/mL	NO: All 12 samples increased NO production when
Cell Type: RAW 264.7	-S: seasonal average	Time to Analysis: 24 h	compared to corresponding unexposed controls.
	-W: wildfire		Peaks were observed at 150 μg/mL, except in PM ₁ . 0.2·
	-M: mixed		Cytokines: All 12 samples increased TNF-α and IL-
	-B: blank		6 production. PM _{10-2.5} and PM _{2.5-1} produced a much larger response than PM _{1-0.2} and PM _{0.2} . IL-6
	Particle Size: PM _{10-2.5} ; PM _{2.5-1} ; PM _{1-0.2} ;		production for PM _{0.2} was not measured. MIP-2 production also increased with similar trends.
	PM _{0.2}		Cytotoxicity: All 12 samples induced dose-dependent decreases in cell viability. $PM_{10-2.5}$ were the least active inducers of apoptosis while $PM0.2$ showed the highest activity (4-17% of apoptotic cells).

Study	Pollutant	Exposure	Effects
Reference: Jalava et	Urban background PM	Dose/Concentration: 15, 50, 150, 300	PM Characterizations: The highest mass
al. (2007, <u>096950</u>) Species: Mouse	PM ₁₀ , PM _{2.5} , and PM0.2 collected from 6 European cities during different times		concentrations of PM ₁₀ and PM _{0.2} were measured in Athens. Prague had the highest PM _{2.5}
Cell Type: RAW 264.7	of the year from October 2002 to July 2003:	Time to Analysis: 24 h	concentrations.
/	-D: Duisburg (Fall)	,	NO: All PM fractions induced statistically significant NO production in macrophages. PM _{2.5} -P and PM _{2.5}
	-P: Prague (Winter)		AT produced significantly larger responses, though all samples at 150 and 200 µg/mL induced
	-A: Amsterdam (Winter)		statistically significant production. When compared to the other PM _{0.2} samples, -P and -HR produced
	-HR: Helsinki (spring),		significantly larger responses.
	-B: Barcelona (spring)		Cytokines: PM_{10} showed average cytokine production to be 7.8 fold and 83 fold for TNF- α , and
	-AT: Athens (summer)		4.4 fold and 530 fold for MIP-2 when compared to PM _{2.5} and PM _{0.2} respectively. PM ₁₀ induced
	Particle Size: PM_{10} : 2.5-10 μm; $PM_{2.5}$: 0.2-2.5 μm; $PM_{0.2}$: <0.2 μm		statistically significant increases in production of TNF-α, MIP-2 and IL-6. PM _{2.5} , with exception of Prague, caused significant increases in cytokines. PM _{0.2} -A and -AT showed small yet statistically significant increases in TNF-α. An increase in MIP-2 was observed with -P and -HR. IL-6 increased significantly with PM ₁₀ and slightly with PM _{2.5} . In the PM _{0.2} range, only the -A and -AT samples caused a small, statistically significant TNF- α production. MIP-2 production was only detected from the -P and -HR samples. PM _{0.2} effects on IL-6 response were negligible.
			Cytotoxicity: The average cytotoxicity of PM_{10} and $PM_{2.5}$ were roughly equal, but $PM_{0.2}$ were less cytotoxic with the exception of -P. The doseresponse trends for most of the samples were linearly declining, with PM_{10} and $PM_{2.5}$ exhibiting statistically significant declines in viability.
Reference: Jimenez et al. (2002, <u>156610</u>) Species: Human Cell Type/Line: A549,	PM ₁₀ : Collected from London and Edinburgh air particulate monitoring stations. TiO ₂ : Tioxide Europe (London, UK) and Degussa-Huls (Cheshire, UK)	Route: Cell Culture (110,625 cells/well) Dose/Concentration: PM ₁₀ , TiO ₂ , UFTiO ₂ : 100 μg/mL; TNF-α: 10 ng/mL Time to Analysis: 4 h	NF-κB and AP-1 DNA Binding: NF-κB DNA binding increased in PM ₁₀ and TNF-α exposed macrophages by 9.5 and 12 fold. NF-κB activity remained unaltered in TiO_2 and UFTiO_2 exposed macrophages.
THP-1, Mono Mac 6 (DSMZ)	UFTIO ₂ : Tion (chicking, Chr) UFTIO ₂ : Tion (chicking, Chr) und Degussa-Huls (Cheshire, UK) Particle Size: PM ₁₀ , TiO ₂ : 200 nm; UFTIO ₂ : 20 nm		IL-8: Cells treated with PM_{10} conditioned media increased transcription binding of NF-kB to IL-8 promoter sites. Increases were observed in gene expression after exposure to TNF-α and PM_{10} . TiO ₂ or UFTiO ₂ had no effect. Increases observed in IL-8 production with PM_{10} .
			IL-8 Promoter CAT Activity: PM_{10} media increased CAT expression by 65% over control. No differences observed with TiO_2 or UFTiO ₂ media.
			Neutrophil Chemotaxis: PM_{10} conditioned media induced a 2.3 fold increase compared to control.
			TNF-α and IL-1β Production: PM_{10} media increased TNF-α and IL-1β production. No increases were observed in TiO ₂ and UFTiO ₂ media.

Study	Pollutant	Exposure	Effects
Reference: Jung et al. (2006, 132421) Species: N/A Type: Surrogate Lung Fluid	Soot Particles: Generated using a co- flow, laminar, diffusion flame system CB (Degussa) PM _{2.5} : Collected using IMPROVE air pollution samplers	Route: Surrogate Lung Fluid Dose/Concentration: Soot: 0-30 mg; CB: 5-10 mg; PM _{2.5} : 50 or 100 μg/mL Time to Analysis: Parameters measured continuously over 2 h.	OH Radical Formation: Formation occurred with linear dependence on soot mass. Average response was 0.89 nmol OH produced per mg of soot. Formation also occurred with soot + hydrogen peroxide. Hydrogen peroxide alone did not form OH radicals.
	Particle Size: Soot: 185 nm; CB: 25 nm, PM _{2.5}	,	Fe: Average Fe concentration in soot particles was 305 ± 172 nM. Observed negative correlation between amount of Fe and amount of OH radical formation. DSF inhibited iron-induced increase in OH radical formation.
			Carbon Black: OH radical generation by carbon black was significantly less than soot. OH generation by CB was observed to be linearly proportional to PM mass, but CB was much less efficient at generating the OH radical.
			$\mbox{PM}_{25}\!:$ A high variability in the increase of OH radicals was observed with PM $_{25}\!:$ Pretreatment with DSF partially blocked OH radical production, but a significant level remained. This may be due to PM $_{25}\!:$ containing high levels of Fe and Cu.
Reference: Kafoury and Madden (2005, 156617) Species: Mouse	DEP: SRM 1975 (purchased from NIST, Rockville, MD) BAY11-7082, NF-κB inhibitor (coexposure)	Route: Cell Culture (3-4×10 ⁵ cells) Dose/Concentration: DEP 25, 100, or 250 μg/mL; IL-1β: 100 ng/mL Time to Analysis: DEP: 4 h pre-treated with BAY11-7082 for 1.5 h; IL-1β: 4 h	TNF-α: DEP induced a significant release of TNF-a at 100 and 250 μ g/mL dose-dependently. Exposure at 25 μ g/mL had no effect. IL-1 β containing PM samples at 100 μ g/mL also resulted in a significant release of TNF- α .
Cell Type: RAW 264.7	IL-1ß: obtained from Santa Cruz Biotechnology (Santa Cruz, CA) Particle Size: DEP: 0.3 µm (mean diameter)		NF-κB Binding Activity: Treatment of RAW 264.7 with BAY11-7082 significantly inhibited IL-1β-induced TNF-α release. Similar effects observed with DEP-induced TNF-α release.
			Apoptosis: Inhibition of NF-kB binding activity by BAY11-7082 resulted in DEP-induced apoptotic response. Without BAY11-7082, apoptosis was not induced even at the DEP dose of 250/µg/mL for 4 h. The control, U937 cells with campothecin, induced apoptosis.
Reference: Karlsson et al. (2006, <u>156625</u>) Species: Human Cell Type: A549, Monocytes (isolated from heparinized whole blood)	PM (W1: wood burning in old-type boiler; W2: wood burning in modern boiler; P: wood pellets burning in pellets burner; T1: PM ₁₀ tire debris with studded tires and ABT pavement; T2a: PM ₁₀ tire debris with studded tires and ABS pavement; T2b: PM _{2.5} tire debris with studded tires and ABS pavement; T3: PM ₁₀ tire debris with friction tires and ABS pavement; St: PM ₁₀ from busy street in Stockholm, Sweden; Su: PM ₁₀ from platform of subway station in Stockholm)	tuman A549, a (solated inized A549, a (solat	PM Characterization: Boiler emitting PM-W1 led to 4 times higher emission of particles when compared to PM-W2 and 8 times higher emissions when compared to PM-P. Total concentration and CO was substantially higher in the old-type wood boiler. Effects with Filter Fibers: No increase of DNA damage was observed compared to the water control. Filter fibers led to the induction of cytokines
			in human macrophages. Genotoxicity: All particulate samples induced DNA damage in A549 cells. PM-Su exhibited the most genotoxicity and induced 4-5 times more DNA damage than others.
	Particle Size: W: NR, T1, T2a, T3, St, Su: PM ₁₀ , T2b: PM _{2.5}		Cytokines on Glass Fiber Filters: PM-W2 induced a significant increase in IL-8. PM-St induced the highest increases of IL-6, IL-8, and TNF- α .
			Cytokines on Teflon Filters: PM-2a and PM-2b samples caused significant increases of IL-6, IL-8, and TNF- α .

Study	Pollutant	Exposure	Effects
Reference: Katterman et al. (2007, 096358) Species: Rat Cell Type/Line: RLE- 6TN (Alveolar	PM: Oils: OAAF, Oil Q, OII I II, NF2 PM: Coal Germany and Ohio Diesel particulates: ZODDA (doped with Zn), ZSDDA (doped with Zn and S): S: PMs washed in solution; F: Fresh	Route: Cell Culture (cytotoxicity: 50,000 cells/well; SEM: 25,000 cells) Dose/Concentration: Oils 0.2 mg/mL; Coals 0.7 mg/mL; Diesel 0.01 mg/mL; Al ₂ O ₃ 0.5 mg/mL; Fle ₂ O ₃ 0.7 mg/mL; SiO ₂ 0.7 mg/mL; TiO ₂ 0.7 mg/mL; Al ₂ O ₃ 0.7 m	Metabolic Activity: For oils comprised of 3/4 fresh and 1/4 leached, metabolism decreased. Coals (fresh and leached) had no effect. ZODDA-F and ZSDDA-F both induced decreases in activity. ZSDDA-L had no effect.
Epithelial Cell Line)	samples; L: Leached	mg/mL; TiO ₂ 0.7 mg/mL; ZnO 0.05 mg/mL Time to Analysis: 24 h	Cellular Morphology: PM-S had a minimal effect. PM-F induced widespread cell damage.
	Al ₂ O ₃ , Fe ₂ O ₃ , SiO ₂ , TiO ₂ , ZnO also tested Particle Size: NR	·	Constituent Differences between PM-F and PM-L: In oil samples Cu, Ti and Ca salts were removed upon washing. Fe, Al, Si remained constant.
			Grinding Effects: Coal toxicity increased upon grinding, whereas diesel PM toxicity decreased upon grinding.
			Metal Oxide Effects: Only SiO_2 , and ZnO (much higher at lower concentrations than other metal oxides) decreased metabolic activity. Fresh, washed and sonicated samples exhibited similar results. Grinding only affected TiO_2 (increase) and ZnO (decrease).
Reference: Kendall et al. (2004, <u>156634</u>)	NY, 6 background urban, 6 urban	Route: BALF interaction Dose/Concentration: 5-10 ml of 0.5 M NaCl	Saline Washing: Removed particles and decreased NH $_4$, NO $_3$, O and S relative to C1.
Species: Human	roadside. Sampling occurred 24 h/day for 12 days.	or BALF	BALF treatment (XPS): PM _{2.5} surfaces interacted strongly with BALF within hours of contact. Specific
Tissue Type: BALF (obtained by bronchoscope from 6 nonsmokers and 3 smokers)	Particle Surface Chemistry: 79-87% carbonaceous material (Ch, COO, C-(O,N)), 10-17% O (O1s), 1.5-4% N (NH ₄ $^+$, N-C, NO ₃ 2), 0.6-1% S, and 0.3-2% Si.	Time to Analysis: Filters treated with BALF for 4 h	surface components of PM _{2.5} immersed in BALF were desorbed while biomolecules from BALF we adsorbed to particles. N-C on the PM surface increased 3 fold for smokers and 4 fold for nonsmokers (range 1.4-7.4). This is most likely related to protein-like adsorption on PM. Treatme
	Only NO ₃ - higher in roadside samples. NH ₄ and NO ₃ - correlated with NO and		also induced a slight increase in COO and decreases in NH ₄ , NO ₃ , O and S.
	NO _X in air but not NO ₂ . Particle Size: PM _{2.5}		ToF-SIMS - Organics: Particle loading and surface hydrocarbons showed a linear correlation. Loss of hydrocarbons from $PM_{2.5}$ surface averaged 55% (10-75) after undergoing saline and BALF washes. In only 3/12 samples BALF removed less hydrocarbon. BALF treatment increased the amino acid and phospholipid content of the $PM_{2.5}$ surface.
			ToF-SIMS - Inorganic: Saline washing appeared to increase Al and Si but with extreme variability; this increase was not statistically significant. Both saline and BALF washing decreased NH $_4$ and Na levels to a similar extent. BALF washing did not affect Al or Si.
Reference: Kim et al. (2005, <u>088454</u>)		Route: Cell Culture	Cell Viability: At 50 μM for 20 h, no apoptosis was induced.
Species: Human Cell Type/Line: BEAS-2B	Particle Size: NA	Dose/Concentration: 15, 50, 100 μmol Time to Analysis: 1-20 h	IL-8: At 12 h, IL-8 increased in dose-dependent manner. At 15 or 50 μM, Zn^{2^+} increased protein 1.6 and 4.6 fold respectively. IL-8 mRNA expression increased dose-dependently, reaching statistical significance at 2 h and continuing until 4 h.
			EGFP (adenoviral IL-8 promoter): Levels increased 2.4 fold with 50 µM Zn ²⁺ .
			Proteases: With 50 μM Zn ²⁺ , phosphorylation of MAPKs ERK, JNK and p38 increased by 15 min and continued increasing up to 2 h. Pre-exposure of inhibitors of MEK, JNK, before Zn ²⁺ exposure caused inhibition of Zn-induced IL-8 mRNA and protein production. Inhibitor of p38 had no effect. Dephosphorylation of ERK and JNK was partially inhibited with exposure to Zn ²⁺ .

Study	Pollutant	Exposure	Effects
Reference: Kleinman et al. (2003, <u>087938</u>) Species: Rat Strain: Wistar Kyoto, F344 Age: 22-24 mo, 10 wk Cell Type/Line: AM	UF1: Utrecht 1 Fine (urban freeway) UC1: Utrecht 1 Coarse UF2: Utrecht 2 Fine (urban, freeway, light industrial) UC2: Utrecht 2 Coarse SRM 1650 SRM 1648 Particle Size: UF1: 0.2-2.5 μm; UC1: 2.5-10 μm; UF2: 0.2-2.5 μm; UC2: 2.5-10 μm	Route: Cell Culture (10 ⁵ cells/well at 10 ⁶ cells/mL) Dose/Concentration: 1.2 to 1200 ng/10 ⁶ cells Time to Analysis: 4, 18 h	Macrophage PMA-stimulated respiratory burst activity: SRM 1648 and 1650 induced dosedependent decreases approaching 0 at 50 -100 μg/10° cells. Large dose-dependent decreases from old rat AMs exposed to fine PM exposure were followed by young rat AMs exposed to fine PM. However, no age-related effects were statistically significant. Free radical production: All coarse particles depressed free radical production in a semi-dose-dependent manner, with UC2 exhibiting more potency than UC1. Both fine particles also showed dose-dependent responses but UF1 and UF2 responses were greater than the control at 3 μg/106 cells. PM Characterization: Ratios between coarse and fine PM were similar for metals tested (Al, Fe, Mn, Zn). Al was higher in coarse samples and Zn higher in fine PM, although large variability was observed. Fe and Mn results were roughly equivalent for all
Reference: Kocbach et al. (2008, 198874) Species: Human Cell Type/Line: THP-1	PMW: Wood smoke particles Collected from conventional Norwegian wood stove burning birch PMT+: Traffic-derived particles; collected from road tunnel in winter when studded tires were used PMT-: Traffic-derived particles; collected from road tunnel in summer without studded tires DEP: SRM2975 Porphyr: fine grain syenite porphyry (prepared by SINTEF, Trondheim,	Route: Cell Culture (1×10 ⁶ cells/mL) Dose/Concentration: 30-280 μg/mL Time to Analysis: 2, 5, 12 h	Particle Characterization: PMT+ contained a high mineral particle content. PMT- contained carbon aggregates, and polycyclic aromatic hydrocarbons (PAH). PMW and DEP contained carbon aggregates. PAH content of PMW was greater than DEP. Porphyr was not included in the analysis. Cytokines: PMT± induced releases of TNF-α, IL-1β, and IL-8 with 30 or 70 μg/mL. PMW similarly induced TNF-α and IL-8. DEP induced IL-1β and IL-10 were unaffected. Overall, the order of effective cytokine induction from most to least effective was PMT±, PMW, DEP, and Porphyr. mRNA expression of TNF-α, IL-1β, IL-8, and IL-10 increased with 140 μg/mL of PMT± and slightly for PMW.
	Norway) Polymyxin B Sulphate (endotoxin inhibitor) Particle Size: PMW, PMT, DEP: NR; Porphyr 8 µm (mean)		LDH: PMT ± induced small but statistically significant increases at low doses. DEP increased LDH at 280 μg/mL only. Polymyxin B Sulphate: The endotoxin inhibitor significantly inhibited LPS-induced cytokine release by 80-90% and reduced PMT± induction by 50-60%. Organic Extraction: PMT+ washed and native particles showed equivocal induction of cytokine release. PMT+ organic extract had no effect. PMT-and PMW organic extracts significantly increased TNF-α and IL-8. Washed particles induced less significant increases of IL-8. DEP organic extract had no effect.

Study	Pollutant	Exposure	Effects
Reference: Kristovich et al. (2004, 087963)	CP: carbon particle (carbonaceous negative image of zeolite)	Route: Cell Culture (4×10 ⁶ cells/well)	Cytotoxicity: CP exhibited no effects. DEP and CFE exhibited intermediate toxicities in the range of
Species: Human	CFE: C/Fe particulate (synthesized)	Dose/Concentration: CP: 5-50 μg/cm ² ; CFE: 2.5-25 μg/cm ² ; CFE+: 2.5-25 μg/cm ² ;	50-70 μg/cm ² . No toxicity was apparent when
Cell Type/Line:	CFE+: C-Fe/F-Al-Si particulate	CFA: 10-100 µg/cm ² ; DEP: 2.5-25 µg/cm ²	treated with CFA (up to 200 μg/ cm²) or synthesized C particulates.
HUVEC, HPAEC, HPMVEC, HPBMC	(synthesized)	Time to Analysis: 4, 8, or 24 h	Endothelial Activation: ICAM-1, VCAM-1, and E-selectin were activated dose-dependently by DEP,
	CFA: Coal Fly Ash (Coal-fired power plant, NOS)		CFE, and CFE+. No effects observed for CFA or CP. These effects were not the result of endotoxin
	DEP: (exhaust pipe of diesel powered truck)		release. Individual Variability: Donors (humans) showed
	CP, CFE, CFE+ approx 1 µm (resembling zeolite)		variability in responses especially for CFA. 3/9 had a medium response negated by ND responses in 6/9.
	Particle Characterization (Surface chemistry): CP = 88% C, 1% Si, 10% O, 1% N. CFE = 80% C, 2% Fe, 2% Si, 16% O. CFE+ = 20% C, 6% Al, 3% Si, 50% F, 6% O, 11% N, 4% Na. CFA = 25% C, 3% Fe, 13% Al, 17% Si, 41% O, 1 % N. DEP = 70% C, 3% Fe, 24% O, 1% N, 2% S.		
	Particle Size: CP, CFE, CFE+: approximately 1 μm (resembling zeolite); CFA: <2 μm; DEP: 150 nm		
Reference: Kubatova	PMW: Wood Smoke	Route: Cell Culture (RAW 264.7: 10 ⁶	GSH: PMW-MP and PMW-NP induced GSH
et al. (2006, <u>198835</u>) Species: Rat, Human	Collected from airtight wood stove burning hardwoods	cells/mL; BEAS-2B: 10° cells/mL) Dose/Concentration: 50, 100, 200 µg/mL	depletion substantially in a dose dependent manner starting at 50 µg/mL in both cell types. DMSO had no effect.
Cell Type/Line: RAW 264.7, BEAS-2B	-P: Polar (fraction extracted from 25-50 C)	Time to Analysis: 12 h	Cytotoxicity: PMW-MP and PMW-NP increased cytotoxicity at 200 µg/mL in RAW 264.7. BEAS-2B
	-MP: Mid Polar (fraction extracted from 100-150 C)		was unaffected. Particle Characterization: PMW-MP contained
	-NP: Nonpolar (fraction extracted from 200-300 C)		higher concentrations of oxy-PAHs, disyringyls, syringylguaiacyls and PAHs. oxy-PAHs include 9- fluorenone, 1-phenalenone, 9,10-anthraquinone and
	-C: P + MP + NP		hydroxycadalene. PAHs included phenanthrene, fluoranthene and pyrene.
	Particle Size: NR		Effects of Individual Components of PMW-MP on
			GSH: 1,8-dihydroxy-9-10anthraquinone and 9,10- phenanthraquinone depleted GSH. 9,10- anthraquione, anthrone, 1-hydroxypyrene increased GSH. Phenanthrene, 1-methylpyrene, 9-fluorenone and xanthone had no effect.
Reference: Kubatova	DEP: Obtained from diesel bus	Route: Cell Culture (10,000 cells/180 μl)	Cytotoxicity: PMW induced cytotoxicity in a dose- dependent manner. PMW-HNP induced low
et al. (2004, <u>087986</u>) Species: Monkey	PMW: Wood smoke particulates obtained from airtight wood stove	Dose/Concentration: 0, 50, 100, 150, 200, 250, 300 μg/mL	cytotoxicity, followed by PMW-C (intermediate) and PMW-MEP (highest). Levels above 25 µg/mL were
Cell Type/Line:	burning hardwood II Type/Line: Time to Analysis: Cytotox	Time to Analysis: Cytotoxicity: 24 h;	cytotoxic. DEP-HNP induced cytotoxicity but was not dose-dependent. Results similar for all 3 fractions
African green monkey kidney cells designated COS-1 (CV-1 cells with origin defective mutants of SV40), E coli PQ 37 (SOS Chromotest)	HSF: Hot pressure fractionation	Chomotest: 2 h SOS	(highly variable). All fractions with concentrations higher than 100 µg/mL were cytotoxic.
	-C: P + MP + NP -P: Polar -MP: Mid Polar -NP: Nonpolar OE: Organic Extraction -HNP: n-hexane nonpolar -MEP: methanol polar Particle Size: NR		Extraction Water Temperature Effect: PMW was cytotoxic at temperatures over 50 C. DEP was cytotoxic at temperatures higher than 200° C. At 250°, cytotoxicity between DEP and PMW was similar. At 300° C, PMW cytotoxicity declined and DEP stayed high, resulting in DEP inducing higher cytotoxicity than PMW.
			SOS Chromotest: β-Galactosidase formation increased, peaked at 200° C with DEP and declined to control at 300° C. Individual fractions showed linear dose response from 25-200 μg/mL with 150° C and 200° C extracts significantly higher.

Study	Pollutant	Exposure	Effects
(2005, <u>156682</u>) Species: Human	MEP: Motorcycle Exhaust Particles (Yamaha Cabin engine, 95 octane unleaded gasoline, 150 rpm) MEPE: MEP Particle Free	Route: Cell Culture (1×10 ⁵ cells/well) Dose/Concentration: MEP 0.02, 0.2, 0.2, 2, 20 µg/mL; MEPE 20 µg/mL Time to Analysis: 24 h	IL-8: MEP induced IL-8 at concentrations greater than 0.2 µg/mL. Levels increased 2fold at 24 h with 20 µg/mL. MEPE induced similar responses at 20 µg/mL. Induction of IL-8 mRNA expression was dose-dependent with MEP and MEPE.
7,1	Particle Size: MEP 0.5 μ m; MEPE<0.2 μ m		Cytotoxicity: Exposure to particles did not affect cytotoxicity.
			NF-κB: MEP (20 μg/l) induced time-dependent activation for 2 h and continued at same level for up to 6 h. Pretreatment of PDTC (1mM) fully inhibited MEP induction.
			MAP Kinase: MEP induced time-dependent activation up to 30 min and stayed elevated for at least 60 min.
			ROI: MEP treatment induced a time-dependent increase in ROI for up to 1 h and then continued the at same level for up to 6 h.
Reference: Lee and Kang (2002, <u>198864</u>)	MEP Yamaha 2-stroke engine using unleaded gas)	Route: Cell Culture (5×10 ⁵ cells/mL (Cytotoxicity), 3×10 ⁵ cells/mL (Apoptosis),	Cytotoxicity: Viability decreased dose and time- dependently in all cell types at 24 h.
Species: Mouse	MEPE(particle-free MEP)	2x10° cells (MMP and ROI), 1x10° cells (GSH)	Apoptosis: subG1 significantly and dosedependently increased at the 300 MEP μg/mL dose
Cell Type/Line: Peritnoeal Macrophages, RAW	Particle Size: 0.5 μm	Dose/Concentration: 5, 10, 50, 100, 300, 1000 μg/mL	in all cell types, indicating increased apoptosis. MEPE induced similar results. Inhibition was
264.7		Time to Analysis: 6, 12, 18, 24 h	successful against MEP-induced apoptosis by calcium chelators EGTA, BAPTA-AM, cyclosporin A and antioxidants NAC, GSH, catalase and SOD.
			Ca2+ : MEP and MEPE increased Ca ²⁺ at 300 μg/mL. BAPTA-AM completely inhibited induction.
			ROI: MEP increased ROI in a time-dependent manner. Calcium chelators and antioxidants substantially attenuated induction.
			GSH: MEP significantly decreased GSH.
			MMP: Mitochondria membrane potential decreased dose-dependently with MEP 100 μg/mL and 300 μg/mL. Calcium chelators and antioxidants partially inhibited reduction.
Reference: Li et al. (2002, <u>042080</u>)	VACES (Biosampler PM ₁₀ in Downey, CA -DEP concentrate in water) DEPM (DEP methanol extract)	Route: Cell Culture (2×10 ⁶ cells/well Mouse RAW 264.7 and THP-1; 0.67×10 ⁶ cells/well Murine RAW 264.7)	GSH/GSSG Ratio: DEPM induced dose-dependent decrease in GSH/GSSG ratios in both cell lines. DEP induced decreases at comparable doses to
Species: Mouse Call Line: RAW 264 7	DEPME (DEP methylene chloride	Dose/Concentration: 10-200 μg/mL	DEPM.
THP-1	extracts) JNK Activation and IL-8 Production: THP- cells- 0, 10, 25, 50, 100 µg/mL DEPM; TH 1 cells- 0, 10, 25, 50, 100 µg/mL of DEP;	JNK Activation and IL-8 Production: THP-1 cells- 0 10 25 50 100 ug/ml DEPM: THP-	HO-1 Expression: Cells exhibited dose-dependent increases in HO-1 expression.
			HO-1 Expression in Murine RAW 264.7: VACES-F consistently induced HO-1 expression over a 9m
	(hexane/methlene chloride)) DEPPO (DEPME polar (methylene	Cytotoxicity: 1, 10, 25 (THP-1 cells only), 50, 100, 200 $\mu g/mL$	period, whereas VACES-C was effective in inducing HO-1 during fall and winter. HO-1 induction positively correlated to higher OC and PAHs that
	chloride/methanol))	GHS/GSSG: 0, 10, 25, 50, 100 μg/mL	were represented in VACES-F, but also seen with a rise in PAHs in VACES-C during winter months.
	Particle Size: NR	HO-1 Expression: 0, 25, 50, 100, 200 $\mu g/mL$	MnSOD: At doses of 2.5 µg/mL, DEPM increased
		Time to Analysis: GHS/GSSG: DEPM, whole DEP (RAW 264.7 only) 8 h.	MnSOD in THP-1 cells. JNK Activation: DEPM dose-dependently
		HO-1, MnSOD Expression: RAW 264.7, THP-1 7h. RAW 264.7 cells exposed to whole DEP 16 h.	increased JNK phosphorylation but did so without a change in the JNK expression level. DEP-exposed mouse RAW264.7 cells exhibited similar increases in JNK phosphorylation but without increasing JNK
		JNK Activation, IL-8 Production: THP-1 cells 30 min, 16 h. RAW 264.7 cells 90 min.	expression. IL-8: Exposure to DEPM elicited dose-dependent
		Cytotoxicity: RAW264.7, THP-1 18 h.	increase in IL-8 levels of THP-1 cells.

Study	Pollutant	Exposure	Effects
Reference: Li et al.	DEPM (DEP methanol extract)	Route: Cell Culture (10 ⁶ cells/mL)	ROS: BEAS-2B cells demonstrated increased HE
(2002, <u>087451</u>) Species: Human	DEPME (DEP methylene chloride extracts)	Dose/Concentration: 0, 10, 25, 50, 100 μg/mL	fluorescence, indicating increased ROS formation. THP-1 cells were unaffected.
Cell Line: BEAS-2B,	DEPAL (DEPME aliphatic (hexane))	Time to Analysis: 30, 60, 120 min	GSH/GSSG Ratio: DEPM dose-dependently decreased GSH/GSSG in THP-1 and BEAS-2B
NHBE, THP-1 macrophages	DEPAR (DEPME aromatic (hexane/methlene chloride))		cells. Similar changes occurred with NHBE cells. THP-1 cells maintained a higher ratio of GSH/GSSG than BEAS-2B and NHBE cells.
	DEPPO (DEPME polar (methylene chloride/methanol))		NAC on GSH/GSSG Ratio: Exposure to DEPM in the presence of NAC did not affect the GSH/GSSG
	Particle Size: 0.05-1 µm		ratio in BEAS-2B and NHBE cells. In THP-1 cells, NAC prevented a decline in the GSH/GSSG ratio.
			MnSOD and HO-1: THP-1, BEAS-2B and NHBE cells showed constitutive MnSOD expression and dose-dependent expression of HO-1 protein and mRNA. No change occurred in the expression of β-actin.
			DEPAL, DEPAR, DEPPO, CoPP on HO-1 Expression: DEPPO was more potent than DEPAR. DEPAL lacked activity for THP-1 and BEAS-2B cells. The potency of DEPPO was sufficient to affect cellular viability and HO-1. CoPP induction of HO-1 failed in THP-1 cells, but succeeded in BEAS-2B cells. However, it did not protect against the oxidizing effects of DEPM.
			JNK: JNK activation increased in DEP-exposed THP-1 and BEAS-2B cells. JNK isoforms were observed at doses of ≥ 25 µg/mL. In BEAS-2B cells a high rate of cell death diminished this response at 100 µg/mL. NHBE also showed increased JNK phosphorylation at doses 50 - 100 µg/mL.
			NAC on JNK: NAC led to inhibition of JNK activation.
			IL-8: THP-1 cells showed dose-dependent increases of IL-8. NHBE cells showed incremental increases followed by rapid decline at 100 μg/mL attributed to apoptosis. BEAS-2B cells responded to 10 μg/mL with increased IL-8, but cellular toxicity and cell death led to a drop in IL-8 production at higher doses.
			Cytotoxicity: Comparing cytotoxicity at 25 μg/mL DEP, BEAS-2B cells had a higher rate of cell death than THP-1 cells. BEAS-2B cells showed a significant rise in cell death at doses larger than 10 μg/mL. In THP-1 cells, it took doses of 25 μg/mL or more before significant increases occurred.
			In BEAS-2B, cell death began at 2 h. In THP-1, increases in cell death prolonged for 8h or longer. NHBE cells also showed increase rates of cytotoxicity compared to macrophages. NAC in THP-1 interfered with a generation of cytotoxicity, but NAC did not have any decreasing effect on cell death in BEAS-2B or NHBE cells.

Study	Pollutant	Exposure	Effects
Reference: Lindbom	PM ₁₀ :	Route: Cell Culture (130,000 cells/cm²)	Cellular Viability: Viability was not influenced by
et al. (2007, <u>155934</u>)	-ST: Street	Dose/Concentration: 1, 10 or 100 μ g/mL	any particle types and in all cases exhibited 90% or higher viability, except for the combination of subway particles and NAC where viability dropped to 20%.
Species: Mouse	-S: Subway	Time to Analysis: 18, 24 h	
Cell Line/Type: RAW 264.7	-G: Granite	Analysis of Arachidonic Release (AA): Cells pre-incubated w/ 1 µCl tritium marked for AA	Cytokines: All particles induced TNF-α secretion in a dose-dependent fashion. PM-S was most potent at
	-Q: Quartzite	and washed exposed to 10, 50, 100 and 250	1 μg/mL. PM-G and PM-ST induced effects at 10 μg/mL. PM-Q induced increase of TNF-α at 100
	(-G and -Q generated by road simulator at Swedish National Road and Transport Research Institute)	µg/mL	μg/mL.PM-ST induced IL-6 release at 10 μg/mL. PM-G, PM-Q, PM-S induced IL-6 secretion at 100 μg/mL. DFX inhibited TNF-α in cells exposed to PM- S and PM-ST. DFX induced increase of TNF-α with
	Particle Size: PM ₁₀ ; Bimodal with peaks around 4-5 um and 7-8 um.		PM-Q. For all PM types (except PM-ST) DFX inhibited induced IL-6 secretion.
			NO: PM-ST and PM-G induced a significant release of NO, with PM-ST inducing a higher NO release than PM-G.
			NAC: NAC treatment significantly inhibited both TNF- α and IL-6 secretion with all PM particles.
			L-NAME : L-NAME caused a decrease in NO secretion at 100 μ g/mL of PM-ST. L-NAME did not have an effect on granite-induced NO secretion at 100 μ g/mL.
			$ \begin{array}{ll} \textbf{Cytokine Gene Expression:} \ TNF-\alpha \ mRNA \ showed \\ a \ trend \ to \ increase \ for \ -ST, \ but \ this \ did \ not \ reach \\ significance. \ IL-6 \ gene \ expression \ increased \ for \ PM-Q, \ PM-ST, \ PM-S \ but \ not \ for \ PM-Q. \end{array} $
			AA Release: PM-S exposure at 100 and 250 $\mu g/mL$ was the only PM to induce AA release.
			Lipid Peroxidation: All particle types induced lipid peroxidation. PM-S and PM-ST induced significantly higher lipid peroxidation as compared to PM-Q and PM-G.
			ROS: All particle types induced ROS formation. PMS and PM-ST induced significantly higher formation at 10 μ g/mL. PM-Q and PM-G induced small but significant decreases in absorption at 100 μ g/mL. Both PM-ST and PM-S had significant dose responses for all concentrations tested. No difference was observed between PM-G and PM-Q. PM-S and PM-ST pretreated with DFX had a lower ability to induce ROS formation.
			Endotoxin Content: Only PM-ST showed positive results for endotoxin content.

December 2009 D-58

Study	Pollutant	Exposure	Effects
Reference: Liu et al. (2005, <u>088304</u>) Species: Human Cell Type: HPAECs	SE: Wood Smoke Extract; generated using a stainless steel receptacle containing 100g of dry wood dust Particle Size: NA	Route: Cell Culture Dose/Concentration: 40 μg/mL Time to Analysis: 0-4 h; Mitochondrial Membrane Destabilization: 0-60 min; DNA Defragmentation: 0-6 h; Cytotoxicity: 24 h	Viability: SE exposure reduced cell viability dose-dependently. Reduction reached ~38% of control. Effect on Oxidative Stress/ Antioxidant Enzymes: SE caused an increase in ROS levels, in particular O ₂ - and H2O ₂ in a time-dependent manner. Exposure to SE for up to 4 h caused a decrease in GSH levels in a time-dependent manner. Increased expression of Cu/Zn SOD mRNA and HO-1 mRNA was observed. Catalase or GPx mRNA expression was unaffected. Upregulation of Cu/Zn SOD and HO-1 occurred in a time-dependent manner Mitochondrial Translocation/ Capsase-Independent Apoptosis/DNA fragmentation: Exposure for up to 60 min caused an increase in the percentage of annexin V-FITC-pos cells but not PI-pos cells. At 4 h, FDA-pos cells was unaffected. SE exposure caused a loss of mitochondrial membrane potential (indicated by the change in JC-1 fluorescence). Cytosolic bax levels increased after exposure for 1 or 2 h and returned to basal level at 4 h after exposure. Levels of procaspase-3 and caspase-9 were unaltered by SE exposure after 4 h. Procaspase-3 increased and caspase-9 decreased by H2O ₂ exposure. SE exposure increased levels of AIF and EndoG (exposure up to 4 h). At 6 h, increased DNA defragmentation was observed. Pretreatment with caspase inhibitors (CMK and Z-VAD-FMK) failed to suppress SE-induced apoptosis. NAC: Treatment with NAC prevented ROS increase in cells exposed to SE for 60 min. NAC addition prevented the reduction of GSH by SE. NAC decreased nuclear levels of AIF and EndoG and completely reduced DNA-fragmentation. NAC
Reference: Long et al. (2005, <u>087454</u>)	and paraformaldehyde polymers on a	Route: Cell Culture (5×10 ⁶ cells, 2 mL /well MDMs) Dose/Concentration: 5 µg/cm ²	alleviated the SE-induced reduced viability. GSH and DNA fragmentation were unaffected by NAC. ROS release: Oxidative burst form C/Fe maxes out at 20 min with no effect from C particles.
Species: Human Cell Types: Human, Peripheral blood mononuclear cells (PBMCs) differentiated into MDMs (90-95 %	zeolite template) C/Fe analysis Al 1.38 %, Si 0.33 %, Fe 0.46% Particle Size: 1 µm	Time to Analysis: 2-24 h	Cellular particulate actions: C particulates were present within lysosomes with small clumps forming after 24 h outside of lysosomes with no evidence of organelle lysis and/or agglomeration. C/Fe particulates showed similar initial effects progressing at 24-h total organelle lysis extending to the outer cell membrane.
CD14+) and T lymphocytes			T cell effects: No effects from C or C/Fe particles Medium Effect: Particle agglomeration appears to be a direct result of serum present within a cell free medium
			Hydroxyl radical formation: C/Fe particles showed an order of magnitude of higher hydroxyl formation as compared to C particles

Study	Pollutant	Exposure	Effects
Reference: Ma et al. (2004, <u>088417</u>)		Route: Cell Culture Dose/Concentration: Non-cytotoxic: 5, 10,	Viability: Below 20 µg/mL, DEP had no effect. At concentrations greater than 20 µg/mL, DEP caused apoptosis.
Species: Mouse		20 μg/mL; Cytotoxic: 0, 10, 20, 40, 80, 100, 160 μg/mL	NF-κB and AP-1: DEP stimulated NF-κB activity at
Cell Line: JB6P+ (Epidermal Cell Line)		Time to Analysis: 24, 48 h;	5 and 10 μg/mL. At 20 μg/mL, NF-κB activity decreased, but was still greater than the control.
()		NF-κB and AP-1: 12 h	DEP had no effect on AP-1 activity.
		Phosphorylation of Akt: 5- 120 min.	PI3K/Akt Signaling Pathway: DEP induced
		Effect of LY294002 on DEP: Cells pretreated with LY294002 (0 or 10 μ M) for 30 min and then exposed to DEP for 0-60 min.	phosphorylation of Akt on both Thr-308 and Ser-473. LY294002 (an inhibitor of P13K) blocked phosphorylation of Akt, p70/p85 s6 kinase and GSK 3b. LY294002 eliminated DEP-mediated phosphorylation of Akt. Inhibition of P13K by expressing p85 also blocked DEP-induced Akt phosphorylation. DEP induced phosphorylation on GSH-3B on Ser-9 without affecting tyrosine phosphorylation and enhanced phosphorylation of p70/p85 S6 kinase on Thr-389. DEP had no effect on phosphorylation of FKHR.
			SAPK/JNK Pathway: DEP slightly activated the pathway. Increased transient activation of MKK4 (a signal component of the SAPK/JNK pathway) and thus enhanced phosphorylation of SAPK/JNK. DEP promoted phosphorylation of c-Jun and ATF-2. DEP did not affect p38 MAPK or ERK phosphorylation.
			LY294002: Treatment with LY294002 (P13K inhibitor) eliminated DEP-induced NF-кB activity. A similar effect was observed with the use of another P13K inhibitor, wortmannin. TDZD-8 (GSK-3B inhibitor), D-JNKI(a JNK inhibitor), SB202190 (inhibitor for p38 MAPK) or PD98059 (inhibitor for MEK1) had little effect on DEP-mediated NF-кB activation.
Reference:	CAPs: PM _{2.5}	Route: Cell Exposure (subchronic	NF-kB: NF-kB response most notably correlated
Maciejczyk and Chen (2005, <u>087456</u>) Species: Human	Collected via cyclone inlet on side of building in Tuxedo, NY. Weekdays 9-3 March 4 to September 5, 2003	exposures); Cell Culture (NF-kB) (9×10 ⁴ cells/well) Dose/Concentration: CAPS 109 ± 178	with V and Ni - elements associated with oil combustion source category (oil combustion makes up the group that is the smallest percentage of CAP mass).
Cell Type: BEAS-2B	Mass contributions of the Regional Sulfate, Soil, Oil- Combustions and Unknown/other categories to CAPs are: Regional Sulfate- 65%, Soil- 20%, Unknown/Other- 13% and Oil Combustion- 2%.	μg/m³ (air exposure); 300 μg PM/ml (culture) Time to Analysis: 24 h	
	Composition:		
	* Regional Sulfate characterized by high concentrations of S, Si and .		
	* Soil characterized by high concentrations of Ca, Fe, Al and Si.		
	* Oil-Combustion characterized by high concentrations of V, Ni and Se.		
	Particle Size: PM _{2.5}		

Study	Pollutant	Exposure	Effects
Reference: Madden et al. (2003, <u>198877</u>)	DEP(SRM 2975)	Route: Cell Culture	Cytotoxicity: LL, HL and SRM had no effect on LDH release.
Species: Human Cell Type: NHBE	Diesel Exhaust Extracts from a High load (HL~75% engine load) or Low load (LL 0% engine load):	Dose/Concentration: 0, 10, 50, 100, 250, 500 μg/well Time to Analysis: 24 h (after 2 h of	51Cr: Incubation of cells with LL or SRM (10 to 500 μg/well) had no effect. 500 μg/well of HL induced a significant increase in 51Cr release.
7.	4 cycl, 4 stroke, model 3304	treatment, 0.5 ml of BEGM added to each well and cells incubated for an additional 22 h) .	IL-8: HL induced a 5-fold increase in IL-8 at 500 µg/well. A decrease was observed at the highest
	Particle Characterization: LL extract has greater amount of low-molecular-weight carbonyls (2-5 carbons). HL had more intermediate size carbonyls (6-9 carbons). Largest carbonyls analyzed (11-12 carbons) found in similar ratios in the two types of extract (number of carbons is indicative of differences in boiling points).	.,	dose of LL extract. SRM did not significantly alter IL-8 production. PGE2: Production of PGE2 (inflammatory/immune mediator) increased in cells treated with HL extract at 500 µg/well. LL had no effect. Stimulation with melittin caused LL extract to have inhibitory effect or PGE2 at 500 µg/well. SRM had no effect.
	Particle Size: NR		
Reference: Matsuo et al. (2003, <u>198879</u>) Species: Human Cell Type: NHBE,	DEP: prepared at National Institute for Environmental Studies (Tsukuba, Japan) RDEP: residual DEP (after sequential extraction with hexane (NOS),	Route: Cell Culture (NHBE: 5×10 ⁴ cells/cm ² ; NHPAE: 3×10 ³ cells/cm ² ; TIG-1 and TIG -7: 3×10 ³ cells/cm ² ; Apoptosis: 2×10 ⁵ cells/cm ² ; ROS/NO: 2×10 ⁴ cells/cm ² ; Cytotoxicity Modulating Agent: 3×10 ⁴ cells/cm ² ; GSH: 3×10 ⁴ cells/cm ²) Dose/Concentration: 25, 50, 100, 200, 300, 400, 500 µg/mL Time to Analysis: 1 h	Cytotoxicity in NHBE: Both DEP and RDEP exhibited dose-dependent cytotoxicity at concentrations beginning from 50 µg/mL and higher. RDEP was less cytotoxic than DEP. DEP exposure resulted in necrosis, not apoptosis.
NHPAE, TIG-1, TIG-7 (normal human lung embryonic fibroblasts)	benzene, dichloromethane, methanol, 1N ammonium hydroxide) Particle Size: 0.4 µm (MMAD)		Comparative Cytotoxicity: The order of LC50 values (50% lethal concentration) was: NHBE (118 µg/ml), NHPAE (137 µg/ml), TIG (270 µg/ml). NHBE's susceptibility was higher than the susceptibility of NHPAE and TIG cells.
			$\mbox{ROS/NO:}$ DEP induced dose-dependent increases at 25 and 50 $\mbox{\mu g/mL.}$
			Reduced Glutathione: DEP induced dose- dependent decreases. At 200 or 300 µg/mL, GSH levels decreased by 55.2 or 97.3%, respectively.
			Antioxidant Effects: Various antioxidants either decreased DEP cytotoxicity (PMC, Ebselen, EUK-8) or had no effect on DEP cytotoxicity (SOD, catalase, GSH, α -tocopherol)
			Chelating Agents: DEP became less cytotoxic when lon-chelating agents were preincubated for 24 h. No effect on DEP cytotoxicity was observed when chelating agents were administered to cells immediately after sonication.
			Endocytosis inhibitors: Decreased DEP toxicity was observed in a dose-dependent manner.
	DEP: generated from a 4JB1-type, 4 cyl Isuzu diesel engine	Route: Cell Suspensions (5×10 ⁵ cells/mL) Dose/Concentration: all me-DEP	F-Actin: Treatment with me-DEP showed a dose-dependent increase in the f-actin content of
Cell Type: Peripheral neutrophils P Gender: Male and Female	me-DEP: methanol extract of DEP (40 % of DEP by dry weight)	f-actin: 1, 5, 10 µg/mL	neutrophils and this increase was significantly higher at 5 and 10 $\mu g/mL$.
	Particle Size: 0.4 µm	CD11b: 5, 10, 30 μg/mL	CD-11b: Treatment increased CD-11b expression two-fold at 30 μg/mL.
		IL-8: 5, 10, 30 µg/mL H ₂ O ₂ : 5, 10, 30, 60 µg/mL	IL-8: Minimal response was observed after 2 h. A significant increase was observed (243%) at 24 h with 30 μ g/mL.
Age : 20-40 yrs		MMP-9, LTB-4: 5, 10, 30, 60 µg/mL Time to Analysis: f-Actin: 15 min CD11b: 2 h IL-8: 2 or 24 h	LTB-4: At 2 h, LTB4 increased to 115% and 119% with 30 and 60 µg/mL me-DEP respectively. At 24 h with 60 µg/mL me-DEP, LTB-4 increased to 153%.
			H₂O₂: Exposure to 30 and 60 µg/mL of me-DEP induced large dose-dependent increases of 563% and 1220%, respectively.
		H ₂ O ₂ : 30 min MMP-9, LTB-4: 2 or 24 h	MMP-9: A significant increase at 2 and 24 h were observed. In both exposure periods, 30 μg/mL induced larger increases than 60 μg/mL.

Study	Pollutant	Exposure	Effects
Reference: Molinelli et al. (2006, 198949) Species: Human Cell Type: NHBE, BEAS-2B	PMH: PM ₁₀ extracts in hexane PMA = PM ₁₀ extracts in acetone of residue after hexane extraction -G: Guaynabo(Urban) and -F: Fajardo (Preservation Area) Particle Size: PM ₁₀	Route: Cell Culture (3×10³ cells/well) Dose/Concentration: NHBE exposed to 0- 100 μg/mL of PM ₁₀ BEAS-2B exposed to 10,100, 250 μg/mL of PM ₁₀ Time to Analysis: 48 h	Metal analysis: Hexane extracts Cu, V, Ni all higher in winter than summer. For hexane extracts within the same season, metal concentrations were higher in the Fajardo extracts. On the other hand, the acetone extracts from Guaynabo generally had higher metal concentrations than Fajardo. Cytotoxicity NHBE: The order of most to least toxic for PM extracted with hexane is: winter-G, winter-F, summer-G, summer-F. The order of most to least toxic for PM extracted with acetone is: summer-G, summer-F, winter-g. Cytotoxicity BEAS-2: For PM extracted with hexane, the cytotoxicity order is: winter-G, winter-F, summer-G, summer-F. The order for acetone extracted PM is: summer-G, summer-F, winter-F, winter-G. Effects trend similar to metal levels (no analysis). Summer extracts showed linear doseresponse curves. Winter extracts exhibited more equivocal results, especially for Fajardo. Results suggest that NHBE cells are more sensitive than the BEAS-2B cells to PM extracts.
Reference: Moller et al. (2002, 036589) Species: Canine, Mouse Cell Type: Beagle-Dog Alveolar Macrophages (BD-AM), J774A.1	fTiO ₂ (origin NR) ufTiO ₂ (origin NR) ufP-G: carbon black (Printex-G, Degussa, Frankfurt, Germany) ufP90: carbon black (Printex90, Degussa, Frankfurt, Germany) ufEC90: EC (produced by electrical spark generator under standardized conditions with low impurities) DEP (SRM 1650) UrbD: Urban Dust (SRM 1649a) Particle Size: (in diameter) TiO ₂ : 220 nm; ufTiO ₂ : 20 nm; ufP-G: 51 nm; ufP90: 12 nm; ufEC90: 90 nm; DEP: 120 nm; UrbD: NR	Route: Cell Suspension Dose/Concentration: 10, 32, 100, 320 µg/mL Time to Analysis: 24 h	Cytoskeleton of J774A.1: At doses of 32 μg/mL or less, the particles did not significantly influence relaxation and stiffness. fTiO₂and ufP90 had no effect at any dose. ufTiO₂ at 320 μg/mL induced retarded relaxation and significant stiffening. ufEC90 induced dose-dependent retardation of relaxation and increased stiffening. DEP and UrbD induced similar results. Cytoskeleton of BD-AM: ufTiO₂ and fTiO₂ both induced some retarded relaxation and increased stiffening at 100 μg/mL dose. ufTiO₂ appears to increase stiffening in a dose-dependent manner. ufEC90 induced dose-dependent acceleration of relaxation due to the carbon content of ufEC90. DEP also induced acceleration of relaxation as well as a decrease in stiffness. Phagocytosis: At 24 h, ufTiO₂ and fTiO₂ significantly reduced phagocytic ability in J774A.1 but not in BD-AM. All carbonaceous particles induced significant impairment in J774A.1. All ultrafine carbon particles inhibited BD-AMs. Cell Proliferation: ufTiO₂ significantly inhibited proliferation compared to the control and fTiO₂ at 100 μg/mL in J774A.1. ufEC90 and ufP90 inhibited proliferation slightly with ufEC90 inducing slightly greater inhibition than ufP90. UrbD and DEP also significantly reduced proliferating. Apoptosis: All particles induced decreased viability at 100 μg/mL in both cell types. With ufTiO₂ inducing greater apoptosis than fTiO₂, ufEC90 than ufP90 and ufF90 than ufP90 than ufP90 and ufF90 than ufP90 and ufF90 than ufP90 than ufP90 and ufF90 than ufP90 and ufF90 than ufP90 and ufF90
Reference: Mutlu et al. (2006, <u>155994</u>) Species: Human, Rat Cell Type: A549	PM ₁₀ (Collected by baghouse from ambient air in Dusseldorf, Germany) Particle Size: PM ₁₀	Route: Cell Culture Dose/Concentration: 0.05, 0.5, 5. 50 μg/cm² Time to Analysis: 24 h	Na, K-ATPase Plasma Membrane Protein: PM ₁₀ induced a decrease of protein in the plasma membrane of A549 cells. Total Na,K-ATPase levels were unaffected. ROS: Pretreatment with EUK-134, superoxide dismutase and catalase mimetic, inhibited the decrease of GSH. Furthermore, it attenuated the decrease of NA,K-ATPase in A549 cells. NA, K-ATPase Activity: PM ₁₀ induced a dosedependent decrease in ouabain-sensitive liberation of 32P from AT32P in primary rat alveolar type II cells. This effect was inhibited with pretreatment with EUK-134.

Study	Pollutant	Exposure	Effects
Reference: Nam et al. (2004, 198887) Species: Human Cell Type: A549	PM _{2.5} Collected from hospital rooftop, Seoul, South Korea Particle Size: PM _{2.5}	Route: Cell Culture Dose/Concentration: 0.5, 1, 10, 25, 50 µg/cm² Time to Analysis: 6, 24 h	NF-κB/lκBα: 50 μg/cm² DEP induced IκBα degradation which peaked at 2 h and recovered after 4 h. Treatment with increasing amount of PM _{2.5} resulted in a dose-dependent decrease in IκBα. PM _{2.5} increased NF-κB in a dose-dependent manner up to 10 μg/cm². NF-κB induction peaked at 12 h. IL-8: PM _{2.5} treatment increased protein level more than 3 fold with 100 μg/cm² PM _{2.5} . mRNA levels also increased. iNOS Inhibitor: PM _{2.5} induced IL-8 elevation was completely blocked by iNOS inhibitor. iNOS inhibitor also negated PM _{2.5} induction of NF-κB activity. Antioxidants and iNOS inhibitor reduced PM-induced IκBα degradation.
Reference: Nozaki et al. (2007, <u>097862</u>) Species: Mouse Cell Line: LA-4 (Alveolar Epithelial Cells)	PM: Rooftop of 5 story building, urban, Japan PME: dichloromethane extract of PM filtered P90: Printex 90 (carbon black) (Degussa) Particle Size: PM: 0.22 µm; PME: 2.5 µm: P90: 14 nm	Route: Cell Culture (1.4×10 ⁴ cells/cm ²) Dose/Concentration: 1.1 µg/cm ² Time to Analysis: 24, 28, 72 h	Cytotoxicity: P90 had no effect. PM and PME were cytotoxic at similar levels. Protein Expression: All particles affected protein expression (no specific protein- 2D gel electrophoresis).
Reference: Obot et al. (2002, <u>042370</u>) Species: Mouse Cell Line: BALB/c Cell Type: AM		Route: Cell Culture (5×10 ⁵ cells/mL) Dose/Concentration: PM: 200 µg/mL; PM-100: 188 µg/mL; PM-500: 130 mg/l; PM-PH: 94 µg/mL; PMAC: 173 µg/mL; PMCH: 171 µg/mL; PMH2O: 188 µg/mL Fraction doses adjusted for mass loss during fraction treatment Time to Analysis: 4 h	Cytotoxicity: All 7 fractions had cytotoxic effects. PM had highest cytotoxicity. PM-500, PM-PH, PMAC less toxic than PM. Apoptosis: All 7 fractions significantly increased apoptosis. The PM fractions that induced the greatest apoptosis in descending order are: PM, PMH2O, PM-100, PM-500, PMAC, PMCH and PM-PH. PM-induced apoptosis (only PM, PM-500 and PMAC tested) was blocked by poly I or 2F8 antibody (scavenger receptors). Particle Characterization: Untreated PM and PM-100 did not have measurable amounts of transition metals on its surface. Measured components include carbon, O ₂ , N, S, Si, Ca, Al, P, CI. PM-PH mostly contained O ₂ and Si. PM-500 had increased O ₂ , Si compared to PM and measurable amounts of Na, K., Zn, Co, Pb, Fe. Included increased surface density of S, P, Al. PMCH lacked nonpolar organic compounds.
Reference: Obot et al. (2004, 095938) Species: Mouse (7-9wk), Human Cell Line: Mouse-BALB/c Cell Type: AM	PM: SRM 1648 (collected by baghouse in St. Louis, MO). PM-100: PM heated to 100° C PM-500: PM heated to 500° C PM-PH: PM acid digestion PMAC: Acetone extraction PMCH: Cyclohexane extraction PMH ₂ O: Water extraction All of the 6 extract fractions from PM1648 PM _{2.5} : Collected in Houston, TX Particle Size: PM1648: NR; PM _{2.5}	Route: Cell Culture (5×10 ⁵ cells/mL) Dose/Concentration: PM: 200 μg/mL; PM-100: 188 μg/mL; PM-500: 130 mg/l; PM-PH: 94 μg/mL; PMAC: 173 μg/mL; PMCH: 171 μg/mL; PMH2O: 188 μg/mL Fraction doses adjusted for mass loss during fraction treatment PM _{2.5} = 50, 100, 150, 200 μg/mL Time to Analysis: Mouse-4 h; Human-24 h.	Human AM Viability: Only PM, PM-100, PMAC and PMH2O decreased viability. Human AM Apoptosis: PM, PM-100 and PMH2O increased apoptosis. PM induced greater apoptosis than PM-100 and PMH2O.

Study	Pollutant	Exposure	Effects
Reference: Okeson et al. (2003, 042292) Species: Rat Cell Type: RLE-6TN	CG: Coal ash, Germany CU: Coal ash, USA 5C: PM # 5 Oil fly ash coarse	Route: Cell Culture Dose/Concentration: Coal Fly Ash 12.5, 25, 50, 125, 250 μg/mL Oil Fly Ash - 100 μg/mL	Oil PM Characterization: Generally, the fine fractions had higher metal levels than the coarse fractions except for Zn. High sulfur had a higher metal content than med sulfur. Carbon percent weight was stable across all 5 fractions.
(Type II Alveolar Epithelial Cells)	5F: PM #5 Oil fly ash fine 6MSC: PM #6 Oil med sulfur fly ash coarse 6HSC: PM # 6 Oil high sulfur fly ash	Time to Analysis: 24 h	Coal Ash Cytotoxicity: CG treatment exhibited similar cytotoxic results as CU. Cytotoxic effects were exhibited at concentrations of 12.5 μg/mL and above. Effects remained steady at concentrations above 50 μg/mL.
	coarse 6HSF: PM # 6 Oil high sulfur fly ash fine Particle Size: CG, CU: NR; 5C, 6MSC,		Oil Ash Cytotoxicity: Cytotoxic effects were induced by all. The order of PM fractions inducing the most cytotoxicity to the least is the following: 5F, 6HSF, 6HSC, 5C, 6MSC.
	6HSC: >2.5 μm; 5F, 6HSF: <2.5 μm		Correlation of Metal Content and Cytotoxicity: Fe, V showed a reasonable correlation. Zn had no correlation.
			Cell Metabolism: An inhibitory effect was observed with 100 μg/mL coal ash after 6 h. After 12 h of exposure, CU, unlike CG, does not continue to inhibit cell metabolism. Oil ash was generally less effective than coal ash. The order of PM fractions inhibiting metabolism the most to the least is the following: 5F, 6HSC, 5C, 6MSC. 6HSF not tested.
Reference: Okeson et al. (2004, <u>087961</u>) Species: Rat Cell Type: RLE-6TN	Zn, V, Fe chloride as salts (valence state not reported) Particle Size: NR	Route: Cell Culture (50000 cells/well) Dose/Concentration: 0.001, 0.01, 0.1, 1.0, 10 mM Time to Analysis: 24 h	Cytotoxicity: All metals cytotoxic at concentrations greater than 0.1 mM. V is 5 times less cytotoxic than Zn, and Fe is 7 times less cytotoxic than Zn with a EC50 of 3mM and 4mM, respectively. At 10 mM of each metal, no surviving cells were present.
(Type II Alveolar Epithelial Cells)			NCS: Incubation with NCS (5 or 10 %) decreased toxicity of Zn, especially at 0.1 mM, but had no effect on Fe or V toxicity.
			Albumin: BSA decreased Zn toxicity at equivalent concentrations but to a lesser extent than NCS.
Reference: Osornio- Vargas et al. (2003, 052417)	PM ₁₀ PM _{2.5}	neastern (lake basin dust) neavy vehicular traffic, , Mexico	PM Characterization: Elements similar in particle types with elements in PM ₁₀ more abundant. Northern particles contained more Co, Zn, Ni, Pb.
Species: Mouse Cell Line/Type: J774A.1, L929 (Mesenchymal Cells)	-N = Northern (industrial) -SE = Southeastern (lake basin dust) sites, both heavy vehicular traffic, Mexico City, Mexico		Endotoxin: All PM samples had detectable amounts of endotoxin. PM $_{2.5}$ -N had 22 EU/mg. PM $_{10}$ -N had 30 EU/mg. PM $_{2.5}$ -SE had 12 EU/mg. PM $_{10}$ -SE had 59 EU/mg.
	Particle Size: PM ₁₀ ; PM _{2.5}		Cytotoxicity (J774A.1): The two northern samples, $PM_{2.5}$ and PM_{10} , both induced similar cytotoxic effects at 40% survival. PM_{10} -SE and $PM_{2.5}$ -SE induced dose-dependent responses. In general, the northern samples had a higher cytotoxic effect than the southern samples.
			Apoptosis (J774A.1): Northern samples induced more apoptosis than did the southeastern samples. There was no difference between PM_{10} and $PM_{2.5}$ induced apoptosis.
			TNF-α and IL-6 (J774A.1): TNF-α and IL-6 induced dose-dependent increases. At 80 μ g/cm², PM_{10} -SE induced the most production of IL-6 followed by $PM_{2.5}$ -SE, PM_{10} -N , and $PM_{2.5}$ -N.
			J774A.1 Supernatant Toxicity (L929): Conditioned medium from J774A.1 pre-exposed to each PM type reduced cell viability in L929 cells. This was correlated with TNF- α level in supernatants.

Study	Pollutant	Exposure	Effects
Reference: Penn et al. (2005, <u>088257</u>)	BDS: Butadiene soot (created on-site by passing BD through a back-flash protected stainless steel two-stage	Route: Cell Culture (1-1.5×10 ⁶ cells) Dose/Concentration: 3 mg BDS	Particle Characterization: By weight, EC makes up 94% of BDS, hydrogen 2%, nitrogen and sulfur 1%, and oxygen less than 0.1%.
Species: Human Cell Type: BEAS-2B	regulator to a stainless steel Bunsen burner) -P1: <2.5 µm	Time to Analysis: 5 min-72 h	PAH Components of BDS: 13 prominent PAHs: acenaphthylene, fluorene, anthracene, cyclopentaphenanthrene, fluoranthene,
	-P2: 2.5-10 μm		acephenanthrylene, pyrene, benzofluorenes,
	-P3: >10 μm		acepyrene, chrysene, benzopyrenes, perylene, benzoperylene.
	BDS-W: solvent washed		BDS Activity: At 60-120 min, BDS was observed in
	Graphite		the cells. At 4 h, fluorescence observed in cytoplasmic vesicles and increased during the first
	Composition: <2.5 μm = 92%, 2.5-10 μm = 5%, >10 μm = 3%		24 h then plateaued for the next 72 h. BDS-W appeared in vesicles sooner than BDS.
	Particle Size: BDS-P1: <2.5 μ m; BDS-P2: 2.5-10 μ m; BDS-P3: >10 μ m		
Reference: Pozzi et al. (2005, <u>088610</u>)	PM: Collected continuously for 15 days, 8-10 m from street, Sept 1999, Rome, Italy	Route: Cell Culture (1.3×10 ⁵ cells/well) Dose/Concentration: 30 μg/mL; 14 μg/cm ²	Cytotoxicity: For 24 h, lower levels of PM-F, PM-C, and CB had no effect on cell viability. Higher levels of PM-C and CB induced a significant release of
Species: Mouse	-F = Fine particulate	120 μg/mL; 54 μg/cm ²	LDH.
Cell Type: RAW 264.7	-C = Coarse particulate	Time to Analysis: 5, 24 h	Arachidonic Acid (AA): Both fractions of PM increased AA release in a dose-dependent manner
	CB (Degussa Huber NG90)		at 5 h. CB increased a release only at the higher concentrations although, in terms of magnitude, the
	Particle Size: PM-F: $0.4\text{-}2.5~\mu\text{m}$; PM-C: $2.5\text{-}10~\mu\text{m}$; CB: $200\text{-}250~\text{nm}$		CB-induced release was much less than the ambie PM-induced release. Pretreatment with deferoxamine was not effective in decreasing AA release.
			TNF-α : TNF-α levels increased significantly for both concentrations and time periods for PM. PM-C at 24 h was significantly lower than at 5 h for both concentrations. PM-C at 30 μ g/mL induced a much greater TNF-α release than PM-F at 5 h.
			IL-6: PM-F significantly increased at 5 h for both concentrations. Elevated IL-6 levels were exhibited at both PM-C doses at 24 h. At 5 h, only the high dose elevated IL-6 levels. CB was devoid of an effect on IL-6. LPS-induced IL-6 response was similar to coarse PM at the high dose, with the response being greater at 24 h than at 5 h.
Reference: Prophete	Ambient PM _{2.5}	Route: Cell Culture (2×10 ⁵ cells/mL)	Particle Characterization: Fe and metal to F ratios
et al. (2006, <u>156888</u>) Species: Rat	NYC: 1st and 26 St, NYC	Dose/Concentration: Fe(III) 16 µmol	based on ratios observed in PM _{2.5} from LA, SEA and NYC sites. V: Fe ratios remarkably similar among
Cell Type: NR8383 AMs	LA: San Gabriel foothills, Claremont, CA	V, Mn, and Fe(III) mixtures with V or Mn in molar ratios 0.02, 0.08, 0.2 and 0.4 × Fe(III)	sites. Fe levels fixed at NYC level of 16 µm (highest). IRP: Coexposure with 3 metals increased IRP
,	SEA: 15th Ave S and S. Charleston, Seattle, WA	Al and Fe(III) mixtures with Al in molar ratios 0.37, 0.75, 2, 7.5 × Fe(III)	binding activity relative to Fe(III) alone, by up to 3.5 fold for AI (1.5-3 ratio), 2 fold for Mn (0.08-0.2 ratio)
	V, Mn, Al, Fe levels in PM	Time to Analysis: 20 h	and 7 fold for V (0.2 ratio). IRP activity dropped at higher ratios. A drop in IRP activity at higher ratios
	added metals to cells		may be result of cytotoxicity for Al, but not for V and Mn.
	V: Na ₃ VO ₄		iNOS: Al induced iNOS expression dose-
	Al: AlCl ₃ •6H ₂ O		dependently. There was no observed effect for Mn and V.
	Mn: MnCl ₂ •4 h ₂ 0		Induction of Hypoxia-inducible Factor (HIF-1α):
	Fe: FeCl ₃ •6H ₂ 0		Only V and Al induced HIF-1α.
	Particle Size: PM _{2.5}		Activation of ERK1 and -2: V and Al induced pERK1, but only V induced pERK2. Mn had no increasing effects, but data indicated a decreasing induction.

Study	Pollutant	Exposure	Effects
Reference: Ramage	PM ₁₀ : Collected in Wolverhampton, UK	Route: Cell Culture	CRP: Treatment with ufCB or PM ₁₀ produced an
and Guy (2004, <u>055640</u>)	ufCB: Ultrafine Carbon Particles	Dose/Concentration: 80 μg/mL	increase in CRP expression with similar effects noted after 6 h. PM ₁₀ induced greater increases than
Species: Human	(Origin not reported)	Time to Analysis: 0, 0.5, 3, 6, 18 h	ufCB. Both the cytoplasm and nucleus contained CRP.
Cell Type: A549	Particle Size: PM ₁₀ , ufCB: <100 nm (diameter)		$\mbox{Hsp70:} PM_{10}$ and ufCB induced increased levels at all time points with ufCB inducing greater levels than $PM_{10}.$ Hsp70 expression was observed in the cytoplasm and nucleus.
			Antioxidants of CRP and Hsp70: Coincubation of ufCB with Nacystelin and Trolox caused a small reduction in CRP and Hsp 70.
Reference: Rao et al.	DEP: SRM 2975 (NIST)	Route: Cell Culture	mRNA Expression: No change in IL-1β or iNOS
(2005, <u>095756</u>)	Particle Size: 0.5 μm	Dose/Concentration: 200 μg/mL	were observed. Data suggests that the lung fibroblasts is the main source of IL-6 and MCP-1 in
Species: Rat Strain: SD		Time to Analysis: 4 h	BAL fluid because of their comparatively high message levels. Due to the extreme variability in
			results, the cause of an increase on co-culture with AMs and/or DEPs was not assessed.
Cell Type: AMs and cultured lung fibroblasts			This did of SET of Net Hot deceased.
Reference: Reibman	UFPM: Ultrafine PM		Cytotoxicity: After treatment, cells were more than
et al. (2003, <u>156905</u>)	FPM: Fine PM	Dose/Concentration: 11 µg/cm²; 100 µg/mL	90% viable. UFPM and FPM caused no gross alterations in cell morphology or adhesion.
Species: Human	IPM: Intermediate PM	Time to Analysis: 6, 18 h	MIP3α/CCL20 mRNA (6 h): Stimulation of mRNA
Cell Type: HBEC, BEAS-2B	CPM: Coarse PM		released by HBEC upon exposure to UFPM appeared similar to that provided by TNF-α (5
	CB: Carbon black		μg/mL) and IL-1β (10 mg/mL).
	All PM collected 8th floor, 26th St and 1st Ave, New York City, NY		MIP3β/CCL20 protein in HBEC (18 h): TNF-α and IL-1β induced a dose-dependent increase in MIP3α/CCL20 protein (0-10 ng/mL), whereas II-4
	Particle Size: UFPM: <0.18 μm; FPM: 0.18 - 1.0 μm; IPM: 1.0 - 3.2 μm; CPM: >3.2 μm		and IL-13 induced MIP3a/CCL20 protein release that reached maximum levels at 1 ng/mL. No release of MIP1a/CCL3 nor RANTES/CCL-5 was observed upon stimulation with cytokines.
			Secretion of MIP3 α /CCL20 in response to PM (18 h): All PM fractions less than 2.5 μ m resulted in the release of MIP3 α /CCL20 protein in HBEC roughly equivalent amounts. CB similar in size to UF/fine PM did not result in the release of MIP3 α /CCL20, nor did LPS (0.01-1.0 μ g/mL). No release of MIP1 α /CCL3 nor RANTES/CCL 5 was observed upon stimulation by PM fractions.
			Activation of MAPK (ERK1/2 and p38): ERK1/2 and p38 was activated by TNF-α, IL-1β, IL-4 and IL-13 within 15 min and was sustained for at least 60 min. Erk1/2 and p38 inhibitors reduced MIP3α/CCL20 release in BEAS-2B cells in response to cytokines.

December 2009 D-66

Study	Pollutant	Exposure	Effects
Reference: Riley et al. (2003, 053237) Species: Rat Cell Type: RLE-6TN (Type II Alveolar Epithelial Cells)	Cu: CuCl ₂ Fe: FeCl ₂ V: VCl ₄ Ni: NiCl ₂	Route: Cell Culture Dose/Concentration: 0.01, 0.1, 1.0, 10 mM Time to Analysis: 2, 4, 24, 72 h	Cytotoxicity (SDH): All particles were cytotoxic in a dose-dependent manner. Zn and V were cytotoxic at 0.05 mM, Cu at 0.5 mM, Ni at 0.8 mM and Fe at 2 mM. For Zn, cell death (LDH) had a biphasic response: a slow logslope until approx 0.1 mM at which point it rapidly accelerated to a peak at 5 mM with a small decline at 10 mM. Most of Zn cytotoxicity was not due to apoptosis. LPS did not affect either Zn or Cu cytotoxicity.
	Particle Size: NR		Metabolism Inhibition Time Course Response (Cu and Zn only): At high (1 mM) concentrations, Zn toxicity peaked at 36-48 h followed by a 2-fold recovery by 72 h. Cu showed a faster, steady decline plateauing after 36 h. At low concentrations (0.1 mM), Cu showed a steady slow decline. At 48 h, Zn decreased faster to max activity and returned to control by 72 h.
			IL-6 Secretion: Zn and Cu both decreased IL-6 secretion. Decreases were very similar for both metals and concentrations when expressed as secretion per viable cell ratio except for Zn at 1.0 mM.
			Metal Combinations: Zn and Cu gave variable results. Zn protected against V cytotoxicity. Zn and Cu had an additive response. Zn did not affect Fe toxicity.
Reference: Riley et al. (2005, <u>096452</u>) Species: Rat, Human Cell Type: RLE-6TN,	Ni: NiCl ₂ Cu: CuCl ₂	Route: Cell Culture (5×10 ⁴ cells/well Alveolar Cells; 1.2×10 ⁵ cells/well NR8383) Dose/Concentration: AMs: 0.02, 0.05, 0.07, 0.08 mM; RLE-6TN: 0.1, 0.2, 0.6, 1.0, 6.0 mM; A549: 0.5, 0.8, 4.4, 4.8 mM Time to Analysis: 2-48 h	Relative Sensitivity of Cell Strains to Metal Chloride: NR8383 was more sensitive than RLE- 6TN and A549 except for V where NR8383 and RLE-6TN were both more sensitive than A549.
NR8383 Alveolar Macrophages, A549	V: VCl ₂ Particle Size: NR		Relative sensitivity of Cell Strains to Metal Chloride vs Sulfate: With the exception of Cr, sulfate was generally more cytotoxic than chloride (note V valence state).
			A549 Cytotoxicity Time Course: Zn cytotoxicity takes 24 h to develop whereas Cu cytotoxicity develops within 2 h. LDH release for Cu, however, develops in 24 h.
			RLE Cytotoxicity Time Course: Zn starts at 2 h and develops until 24 h. Cu develops within 2 h and continues until 24 h where it is less toxic than Zn. Both release equivalent amounts of LDH after 24 h.
			NR8383 Cytotoxicity Time Course: Both Zn and Cu exhibit time dependent toxicity beginning as early as 4 h. LDH release maximizes at 12 h and either remains steady or declines.
Reference: Ritz et al. (2007, <u>198901</u>)	DX: Extract of DEP (generated from a light duty four-cylinder diesel engine 4JB1 type Isuzu Automobile)	Route: Cell Culture Dose/Concentration: 0, 20, 50, 100 μg/mL	NQO1 (Sentinel Phase II Enzyme): Cells transfected with NQO1 reduced induction of IL-8 by DX exposure.
Species: Human Cell Type: BEAS-2B, NHBEC	Particle Size: <1 µm (diameter)	Time to Analysis: 24 h	Sulfurophane: Increased gene expression of phase II enzymes, particularly NQO1, was observed in both cell types. Gene expression in BEAS-2B was greater than that of NHBEC.
			Sulfurophane did not upregulate GSTM1 in BEAS- 2B but induced a 2-fold increase in NHBEC. Pretreatment also inhibited DX-induction of IL-8 in both cell types.
			Cytokines: DX induced significant increase of IL-8 in both cell types at concentrations of 10 μ g/mL or higher. GM-CSF and IL-8 remained unaffected in BEAS-2B. GM-CSF and IL-8 Increased in NHBECs and reached statistical significance at 25 μ g/mL.

Study	Pollutant	Exposure	Effects
Reference: Rosas Perez et al. (2007, 097967)	PM ₁₀ Collected in Mexico City, Mexico from January-June, 2002	Route: Cell Culture (1.5×10 ⁴ cells/cm ²) Dose/Concentration: 20, 40 or 80 μg/cm ²	Cytotoxicity: Responses were dose-dependent; there was no observed site interaction. Cytotoxicity seems to be a result of the following components: S/K/Ca/Ti/Mn/Fe/Zn/Pb.
Species: Mouse	North: Iztacala, manufacturing industry;	Time to Analysis: 72 h	IL-6: Only the center site at 40 μg/cm² induced an
Cell Type: J774A.1	Center: Merced, heavy traffic;		increase. Induction of higher IL-6 levels seems to be related to high values of S/K/Ca/Ti/Mn/Fe/Zn/Pb and
	South: Ciudad Universitaria, residential		endotoxins/OC/EC.
	Principal Component Analysis of Air Pollution Data:		TNF-α: Production was induced by all samples in a dose-dependent manner. Similar to IL-6, induction of higher TNF-α levels seems to be a result of high
	Group 1:S/K/Ca/Ti/Mn/Fe/Zn/Pb (43% of variance);		values of S/K/Ca/Ti/Mn/Fe/Zn/Pb and endotoxins/OC/EC.
	Group 2: Cl/Cr/Ni/Cu (16%);		p53: Only south PM had effect. Induction of p54
	Group 3: Endotoxins/OC/EC (14%).		seems to depend on high levels of Cl/Cr/Ni/Cu and low levels of S/K/Ca/Ti/Mn/Fe/Zn/Pb.
	For all 3 sites: Averages of Group 1 is statistically different among the center, north and south sites with the central site producing the highest values. Group 2 is similar among the sites and, for Group 3, the north had a lower average than the center and south sites.		
	Particle Size: PM ₁₀		
Reference: Sakamoto et al. (2007, <u>096282</u>)	PM ₁₀ : EHC-93 (Obtained from Health Canada, Canata)	Route: Cell Culture Dose/Concentration: 100, 300 and 500	Intracellular [Ca2+]: [Ca] concentration slowly increased, elevating after 10 and 30 min for 500 and
Species: Human	Particle Size: PM ₁₀	μg/mL	300 mg/mL, respectively. The response plateaued a 35 min for 500 μg/mL.
Age: 58-82 yr (Smokers) Cell Type: HBEC		Time to Analysis: Calcium responses: up to 60 min; cytokines: 6 or 24 h	Extracellular [Ca2+]: Starting at 20 min, the removal of extracellular Ca decreased the PM ₁₀ response significantly. Calcium channel blocker (10µM or 1mM) LaCl3 and (5mM) NiCl2 significantly blocked the PM-induced intracellular Ca. Lacl2 administration (1mM) inhibited the PM-induced Ca2+ response in a dose-dependent manner.
			$\label{eq:mode_of_Action:} \begin{tabular}{ll} Mode of Action: Intracellular Ca induced by ATP declined more slowly in the cells exposed by PM_{10}. This indicates that PM_{10} blocks Ca clearance via the calcium pumps. \end{tabular}$
			Cytokines: PM_{10} induced a dose-dependent increase in cytokine mRNA levels and cytokines IL-1 β , LIF, IL-8 and GM-CSF. Cytokine expression was unaffected by the reduction of extracellular Ca2+ . Preincubation with the calcium chelator reduced responses for IL-1 β and IL-8 but not LIF or GM-CSF.
Reference: Salnikow et al. (2004, <u>087469</u>)	FeSO ₄ FeCl ₃	Route: Cell Culture Dose/Concentration: 0.25 and 0.5 mM	$\mbox{\sc Cytotoxicity:}$ Both Fe had no effect. NiSO4 caused marginal cytotoxicity (75%).
Species: Human Cell Line: 1 hAEo-	NiSO ₄ Particle Size: NR	Fe exposures also contained 60 μg/mL apotransferrin Time to Analysis: 24 h	Hypoxic Stress: At 20 h, NiSO ₄ (at concentrations of 0.25 or 0.5 mM) induced NDRG-1/Cap43 protein production indicating hypoxic stress. DFX and DMOG induced a similar effect.
			$\mbox{IL-8: NiSO}_4$ induced IL-8 time-dependently for up to 48 h. At 48 h, the increase was 6+ fold.
			Coexposure (Ni + Fe) on Fe uptake: Fe(III) uptake was greater than Fe(II) uptake. NiSO $_4$ had no effect. Ni uptake was greater than Fe uptake but was decreased by coexposure to Fe. Coexposure also did not effect hypoxic stress. Coexposure with Fe did reduce Ni-induced IL-8 production.

Study	Pollutant	Exposure	Effects
Reference: Salonen et al. (2004, <u>187053</u>)	t PM ₁₀ (urban traffic) Finland Pooled as winter (W), spring I (SI), or spring II (SII) based on component/time considerations		Air quality parameters: Winter and spring I did not differ. SII much lower PM _{2.5}
Species: Mouse			Metal data equivocal as well as highly variable resuspension rates.
Cell Type: RAW 264.7	Particle Size: PM ₁₀ : 0.12-10 µm	Time to Analysis: 0, 24 h	Total PAHs: W=303; SI=233; SII=204 ng/mg
			Inflammation (IL-6, TNF-α, NO)/Cytotoxicity: A dose-dependent increase was observed for TNF-α, IL-6 and NO except for SI. The IL-6 levels, of those particles exposed to SI, decreased at 1000 μg/mL.
			TNF- α , IL-6: SI = SII>>W>control.
			NO production: W≥SI≥SII
			Cell Viability: W=SI=SII toxic at 500 and 1000 μg/mL
			Water-soluble vs Insoluble: TNF- α and IL-6 were nearly entirely the result of insoluble components of PM $_{10}$. Cytotoxicity was driven by both soluble and insoluble components.
			Metal Chelation: The addition of metal chelators did not modify IL-6, TNF- α or cytotoxicity
			LPS inhibitor: Treatment with the LPS inhibitor eliminated the IL-6 response and, perhaps, slightly reduced the TNF- α response but not cytotoxicity
			Hydroxyl radicals: A dose-dependent induction of hydroxyl radicals and induction of hydroxyl radical lesions (at 500 and 1000 μg/m³) in the calf thymus DNA were observed.
Reference: Samet et al. (2003, <u>113782</u>) Species: Human	As: NaASO ₃ V: VOSO ₄ Zn: ZnSO ₄	Route: Cell Culture Dose/Concentration: 500µM Time to Analysis: 20, 30 or 90 min	EGFR Dimerization: Zn, V or As did not induce EGFR dimerization in a cell free system i.e., no direct crosslinking. Zn did not induce dimerization in whole cells either.
Cell Type : A431 (Epidermoid Cells)	Particle Size: NR	7 20 7	Phosphorylation of EGFR: Zn induced phosphorylation at 3 sites similar to EGF. As and V had no effect.
			EGFR Kinase Inhibitor: While EGF action was blocked, Zn continued to induce phosphorylation and was independent of EGFR kinase activity.
			c-Src : Blocking of c-Src tyrosine kinase (transactivator of phosphorylation) negated all Zn-induced phosphorylation but only had a slight effect on EGF stimulated cells.
			ERK1/2 Phosphorylation: Zn increased levels of ERK1/2. Pretreatment with EFGR kinase inhibitor reduced both Zn and EGF effect. This effect was not blocked by the c-Src blocker.
Reference: Santini et al. (2004, <u>087879</u>) Species: Mouse Cell Type: RAW 264.7	DEP: Collected adjacent to moderate traffic in Rome, Italy Particle Size: PM _{2.5}	Route: Cell Culture (2.5×10 ⁵ cells/mL) Dose/Concentration: 0.01, 0.1, 1.0 μg/mL Time to Analysis: 24 h	500 MHz Results (no 1 μg/mL): DEP induced a dose-dependent increase in choline compounds, α-and βgamma- glutamine/glutamate (0.01 > 0.1 μg/mL), lactate, and CH ₂ , CH ₃ moieties of fatty acids. DEP decreased inositol and phosphoreatinine.
			700 MHz Results (no 1 μg/mL): DEP induced similar results, except α-, βgamma-glutamine were dose-dependent. Inositol showed no effect. Taurine slightly increased. Results were confirmed after eliminating biological interferences via perchloric acid.
			Growth Curves/Cell Cycle Analyses/Cell Morphology: DEP had no effect.
			Cytokines: IL-6 levels increased at 0.1 and 1 μ g/mL. TNF- α was unaffected.

Study	Pollutant	Exposure	Effects
Reference: Saxena et al. (2003, 096986) Species: Mouse Cell Type: RAW 264.7		Route: Cell Culture (2.5×10 ⁴ cells/mL) Dose/Concentration: DEP, CO 5, 10, 15, 20, 25 μg/mL IFN-y: 10 ng/mL LPS: 1 mg/mL Time to Analysis: 1-3 days	Cytotoxicity: No cytotoxic effects were observed. NO: DEP alone induced NO in a dose-dependent manner which peaked after 1 day and plateaued for days 2 and 3. IFN-y + DEP showed dose- and time-dependency. LPS + DEP showed no effect at 1 day, but dose-dependently reduced NO production on days 2 and 3. Addition of Bacillus Calmette-Guerin (BCG) eliminated the effect of DEP at 2 days but showed a dose-dependent decrease at 3 days. Effectiveness of Particulate Components: The carbonaceous core of DEP did not affect BC G-stimulated NO production. CO significantly inhibited BCG-stimulated NO production. Study indicated that the extract of aromatic hydrocarbons and resins caused an inhibitory effect in a dose-dependent manner.
Reference: Seagrave et al. (2007, 097549) Species: Human Gender: Male (3 donors) Age: 16, 23 yr Cell Type: A549	DE: Generated by DE 5500 watt generator using #2 certification oil performed under 5000w load. Emissions diluted to 3 mg/m³ total particulate matter. Particle Size: 0.14-0.5 μm	Route: Air Liquid Interface Dose/Concentration: 8.33 mL/min/well Time to Analysis: 3 h exposure; 1 or 21 h post-exposure	Particle Deposition: 140 and 500 nm microspheres demonstrated uniform deposition of approx. 10%. Transepithelial Electric Resistance: No effect of DE; rather, more effect was observed from air controls. Macromolecular permeability: DE caused an increase 1 h but returned to control at 21 h. LDH/Cytotoxicity: DE had a highly variable(donor specific) effect at 1 h and returned to control levels at 21 h Mitochondrial activity (WST): DE reduced activity at 1 h and possibly increased activity at 21 h (high donor-to-donor variability) Mucus Like Substance Excretion: There was high donor to donor variability; no overall effects were observed. Alkaline Phosphatase (AP): DE decreased at 1 h and perhaps increased at 21 h Glutathione: DE caused a large decrease at 1 h but returned to normal at 21 h. HO-1: After DE exposure, levels increased but were still lower than air exposed controls Cytokines: No differences for IL- 8 or 12, TNF-α, GM-GSF, IL-1α, or IFN-γ were observed. IL-4 and -6
Reference: Seagrave et al. (2004, <u>087470</u>) Species: Human Cell Type: A549	DPM: SRM2975 (NIST) DPM-O: DPM organic extract (acetone/DCM) CB: Carbon Black (Elftex-12, Cabot) Particle Size: CB: 37 nm; Stokes diameter 198 nm	Route: Cell Culture (1×10 ⁵ cells/well) Dose/Concentration: 0.03 -1,000 μg/cm ² Time to Analysis: 0, 18 h	Were decreased upon DE exposure. IL-8 release: DPM increased semi dose-dependently (perhaps steady based on error range) up to 1 μg/cm² after which IL-8 declined dose dependently, to zero (control = 100%) at 300 and 1000 μg/cm². LDH release was steady which indicates no cytotoxicity. DPM interaction with IL-8: DPM depletes IL-8 from solution in a dose-dependent manner (cell free). BSA preincubation reduced the slope of the dose response but not the final result. CB has no effect. DPM-O residuals act identical to DPM. Increasing NaCl concentrations reduced DPMs depletion of IL-8 Neutrophil responses: DPM and bound IL-8 together caused a marked aggregation of cells resulting in spindle shapes. DEM or IL-8 alone did not cause this aggregation although DEP did recruit neutrophils

Study	Pollutant	Exposure	Effects
Reference: Seagrave et al. (2003, 054979) Species: Human, Rat Cell Line: F344/Crl BR (mouse) Age: 11 wk (mouse) Weight: 250 g Cell Type: A549, AMs	PM filter collection Collected from diesel or gasoline powered vehicles as follows:	Route: Cell Culture (1×10 ⁵ cells/well) Dose/Concentration: 0.03-10,000 μg/cm ² Time to Analysis: 16-18 h	Cytotoxicity: LDH activity increased in A549 cells. The types of pollutants that are most toxic, in decreasing order of cytotoxicity, are the following: BG, G30, and G which are significantly different from HD, D30, D, WG which are also significantly different from DS. LDH activity also increased in rat macrophages. G, G30, and BG were the most toxic. HD and D30 were intermediately toxic and D, WG, and DS were the least toxic. In both cell types, gasoline was more cytotoxic than diesel. Cytokines: All particle types except DS increased IL-8 levels in A549 though not all increases were statistically significant. Also, many particle samples at high concentrations produced an apparent suppression of IL-8 release. Alkaline Phosphatase: G30 and G were more potent than the other particle samples in A549. WG
			and D30 induced no significant effects. For A549 cells, activity increased at low concentrations and was suppressed at higher concentrations. Macrophage Peroxide Production: In rat AMs, peroxide production was often the highest at the lowest concentrations and the lowest production caused by the highest concentrations. D30 followed this trend and induced the highest production as well as the greatest suppression. Using two different statistical methods, D30 >6 others which in turn >DS. Using the second method D30 and D >all other 6. Order of potency between two methods completely different. Authors noted that in vitro potency quite different from in vivo potency (previous paper).
Reference: Seaton. et al. (2005, 198904) Species: Human Cell Type: A549	PM _{2.5} from London PM ₁₀ from Manchester (positive control) PM from Holland Park, Hampstead and Oxford Circus stations (HP, HR and OC) Particle Size: PM _{2.5} , PM ₁₀ , Holland Park, Hampstead and Oxford Circus PM had a median diameter of 0.4 μm. 80% of the particles had a diameter less than 1 μm.	. •	Cytotoxicity: Dust from all three tunnels (Holland Park, Hampstead and Oxford Circus) were able to cause cell death (LDH). The release of LDH indicated a dose-dependent relationship. The highest dose of Holland Park PM induced the ~17% release of LDH, Hampstead triggered ~ 13% and Oxford Circus ~3% (no different than control). PM ₁₀ from Manchester caused a 7% LDH release at the highest dose. The negative control (TiO ₂) caused no response (2% release at highest dose). IL-8: All three tunnel PMs induced a dose-dependent release of IL-8. At the highest dose, all three tunnel dusts induced IL-8 stimulation more so than the control site PM _{2.5} . HP induced a 3 fold increase. Also, the highest TiO ₂ concentration caused the least IL-8 stimulation. Hydroxyl Radical Generation/ DNA Plasmid assay: The plasmid assay indicated that the tunnel dusts induce more free radical activity than the Manchester PM ₁₀ and TiO ₂ . HP nearly doubled the percentage of DNA damage with intermediate results for HR and OC. Results for PM ₁₀ , TiO ₂ and control were identical

Study	Pollutant	Exposure	Effects
Finkelstein (2005, 198905)	AE2: Aerosil 200, amorphous silica (Degussa) CI: Carbon iron particles (25% Fe)	Route: Cell Culture (5×10 ⁵ cells/well) Dose/Concentration: 18 μg/mL, 36 μg/mL, 72 μg/mL all in 1 mL /well	Luc Activity: Luciferase enzyme activity is significantly less in MLE15Luc2 cells than in MLE15Luc1 cells. For both cells, luciferase activity is time- and dose-dependent peaking at 4-8 h.
Species: Human, Mouse Cell Type/Line: A549Luc1 lung adenocarcinoma epithelial cell line	Particle Size: AE2: 12 nm surface area ~200 ± 25 m²/g; CI: ~40 nm	Time to Analysis: 24 h	Aerosil 200: AE2 induced dose- and time-dependent Luc response which peaked at 3 h and decreased thereafter in a similar way as TNF-α. Contrary to TNF-α, AE2 induced much cytotoxicity starting at 6 h.
(human), MLE15Luc1 and MLE15Luc2 (mouse)			Effect of Proteasomal Inhibitors (MG-132): Inhibitor reduced AE2 Luc activity to near control levels. Similarly, LDH-cytotoxicity was halved
All cells contain human cytokine IL-8 controlling firefly luciferase			A549 Human Cell Response: AE2 acted similarly to the MLE response. CI particles showed slightly less activity without peaks. AE2 increased cytotoxicity after 12 h, whereas CI had no effect.
			Contrary to MLE mouse, MG_132 did not affect Luc activity but PD98059 (selective noncompetitive inhibitor of the MAP pathway) and SN50 (NF-κB inhibitor) reduced AE2 and CI-induced activity.
Reference: Song et al. (2008, <u>156093</u>) Species: Rat Cell Type: RAW 264.7	DEP collected from a 4JB1-type, light- duty (2740 cc), four-cylinder diesel engine operated using standard diesel fuel at speeds of 1500 rpm under a load of 10 torque.	Route: Cell Culture (5×10 ⁵ cells seeded on a 24-well plate) Dose/Concentration: 50 µg/mL Time to Analysis: 72 h	Nitrite Production: 50 μg/mL of DEP induced production when compared to the control. Over the 72 h period, a general trend was not observed, but maximal induction of nitrite occurred at 4 h after stimulation.
/ F	Particle Size: 0.4 µm (mean diameter)		
Reference: Steerenberg et al. (2006, <u>088249</u>) Species: Rat, Human	perg et al. 88249) PMF: PM fine Dose/Concentrat	Route: Cell Culture Dose/Concentration: NR Time to Analysis: 20 h	Crustal material (metals and endotoxin but not Ti, As, Cd, Zn, V, Ni, Se) were positively associated with AM IL-6 and TNF-α and Type 2 MIP-2 and IL-6. Sea spray (Na and Cl) was also correlated with AM IL-6.
Cell Type: AM (rat), Type 2 cells (rat), A549	Poland; Amsterdam, the Netherlands; De Zilk, the Netherlands. Particle Size: PMC: 2.35-8.5 µm; PMF: 0.12-2.35 µm		
Reference: Tal et al.	100 mM Zn(II) or V(IV) stock solutions	Route: Cell Culture	Zn-mediated EGFR Phosphorylation: EGFR
(2006, <u>108588</u>)	Particle Size: NR	Dose/Concentration: 500 µmol	kinase activity was required but not EFGR ligand binding. EGFR Kinase inhibition reduced Zn
Species: Human Cell Type: HAEC		Time to Analysis: 5, 20 min	mediated EGFR activation. (authors NOTE: complete reverse of results in B82L and A431 cells). Src Kinase is not required. Zn inhibiting Src kinase was nearly total after 20 min.
			EGFR-Specific Protein Tyrase Phosphatase (PTP): Zn inhibited PTPs, similar to V(IV) resulting in a decrease of exogenous EGFR dephosphorylation
Reference: Tamaoki et al. (2004, 157040)	UFCB: Ultrafine Carbon Black - (Tokai Carbon, Japan)	Route: Cell Culture (10 ⁴ cells/well)	DNA Synthesis/ Protein Synthesis: Synthesis increased by UFCB (30.7) for up to 72 h and
Species: Human	FCB: Fine Carbon Black (Tokai Carbon, Japan)	10	flattened after 48 h. FCB had no effect. UFCB also showed a dose-dependent response beginning at 12.3 µg/cm² up to 24.5 after which the response
Cell Type: HBEC	Particle Size: UFCB: 11 ± 0.5 nm	Time to Analysis: Up to 72 h	plateaued. The addition of Cu/Zn Super oxide dismutase (SOD) or a NADPH oxidase inhibitor
	(mean diameter) FCB: 250 ± 16 nm (mean diameter)		completely inhibited the UFCB effects. Similarly, two different EGFR tyrosine kinase inhibitors, and a Me inhibitor all reduced UFCB response to control levels.
			ERK activation: UFCB caused phosphorylation of ERK beginning at 2 min, peaking at 5 min and decreasing at 10 min. ERK activation was inhibited by EGFR tyrosine kinase inhibitor Cu/Zn SOD and neutralizing body for HB-EGF but not by PDGF-R kinase inhibitor.
			HB (polyclonal heparin binding)-EGF release: UFCB induced rapid cell surface loss with recovery after 20 min and nearly full recovery at 360 min. Metalloproteinase inhibitor and Cu/Zn SOD both prevented HB-EGF release.

Study	Pollutant	Exposure	Effects
Reference: Tao and Kobzik (2002, 157044)	UAP: Urban Air Particles (SRM 1649)	Route: Cell Culture (1×10 ⁵ cells AM	Cytokines: TNF-α and MIP-2 in RLE was unaffected by any particle samples. TNF-α and MIP-
Species: Rat	TiO ₂	1.4×10 ⁵ cells RLE/RFL)	2 in AM significantly increased with 25 μg/mL UAP. TNF-α and MIP-2 in the co-culture of AM + RLE
Cell Type: RLE-6TN	SiO ₂	Dose/Concentration: 1-50 μg/mL	increased with each particle. The order of particles in decreasing order are as follows: SiO ₂ at 25µg/mL,
(Alveolar Type II Epithelial Cells), Fetal Lung Fibroblasts (RFL), AMs	ROFA Particle Size: TiO ₂ : ~1 μm; SiO ₂ : ~1 μm; ROFA: NR	Time to Analysis: 24 h	UAP at 12.5 µg/mL, ROFA at 25 µg/mL, and TiO ₂ at 50 µg/mL. Except for SiO ₂ , the blocking of effects caused by LPS absorbed on the particles did not affect the cytokine response. For SiO ₂ , the response was reduced but still above the control.
			Co-culture: Physically separating AM and RLE cells and adding PM completely negated the co-culture's response to PMs. This indicates that cell to cell contact is required for co-culture potentiation of PM effects.
			$\begin{tabular}{ll} \textbf{Inhibitors:} Various inhibitors of cell adhesion \\ molecules (heparin, β-1, 2 or 3 integrin) had no \\ effect on UAP-induced cytokine release. \\ \end{tabular}$
Reference: Veranth et al. (2007, <u>090346</u>)	Artificial particles and PMs N-Al: nano alumina Al ₂ O ₃	Route: Cell Culture (35,000 cells/cm ² BEAS; 2500 cells/cm ² NHBE; 20,000 cells/cm ²	Cell Viability: Except for Ni and V no cytotoxicity was observed at the highest concentration.
Species: Human Cell Type: BEAS-2B,	M-Al: Micro Al ₂ O ₃ N-Ce: nano CeO ₂	A549) Dose/Concentration: 0.53, 5.3 and 53 μg/cm² (= 1, 10, 100 μg/mL)	IL-6 Secretion in BEAS-2 B Cells: Nano and micro sizes of the same metal showed no differences in response (high experiment to experiment variability).
A549, NHBE	M-Ce: micro CeO_2 N-Fe: nano Fe_2O_3	Time to Analysis: 24 h	In general, the soil-derived dusts (JE, DD, MNC) were more potent than the metal and ceramic oxide
	M-Fe: micro Fe ₂ O ₃ N-Ni: nano NiO M-Ni: micro NiO N-Si: nano SiO ₂		responsive to vanadium and other soluble metals and less responsive to vanadium and other soluble metals and less responsive to LPS, but this relationship is reversed in LHC-9 media.
	M-Si: micro SiO ₂ N-Ti: nano TiO ₂ M-Ti: micro TiO ₂ KLN: kaolin		IL-8 Secretion in BEAS/LHC vs NHBE in BEGM Cells: Levels were much higher in NHBE cells than BEAS-2B cells. For BEAS-2B, the nano size Si and both sizes of Ni induced levels statistically greater
	MUS: Min-U-Sil (ground crystalline silica)		than the control. For NHBE, only Si and Ńi (for bosizes) were statistically greater than control.
	DD: desert rural soil Utah PM _{2.5}		IL-6 in NHBE: The nano and micro sized particles
	JE: Juarez, urban street PM _{2.5}		Al, Ce, Fe and nano sized Si all induced statistically significant increases. Control levels of IL-6 were
	MNC: Mancos, rural Utah PM _{2.5}		much higher in NHBE cells than in BEAS-2B cells. Secretion induced by pure oxide particles was small
	LPS: lipopolysaccharide		for both the mid and high concentration levels (5.3 and 53 µg/cm²).
	V: VOSO ₄ (soluble) (19 μg/mL)		BSA/ Bovine Serum Addition Effect: In a fixed
	Particle Size: (Surface mean diameter)		solution nano-Ni, nano-Ti and KLN all reduced the measured IL-6 by 60+ percent. Addition of BSA or
	N-Al: 6 nm (261 m²/g) M-Al: 210 nm (7.7 m²/g) N-Ce: 14 nm (71 m²/g)		bovine serum dose dependently reduced the action of the particles to near control levels.
	M-Ce: 1500 nm (0.6 m²/g) N-Fe: 5 nm (221 m²/g) M-Fe: 100 nm (12 m²/g) M-Fe: 100 nm (12 m²/g) N-Ni: 6 nm (145 m²/g) M-Ni: 16 nm (57 m²/g) N-Si: 19 nm (127 m²/g) M-Si: 440 nm (5.4 m²/g) N-Ti: 6 nm (242 m²/g) M-Ti: 410 nm (3.5 m²/g) KLN: 100 nm (24.3 m²/g) MUS: (NOS <5 μm) DD: 400 nm (6.2 m²/g) JE: (NOS <3 μm) MNC: 200 nm (13.0 m²/g)		PM Effects (without added protein) on IL-6 In Solution: Increasing metal concentration did not affect a fixed IL-6 concentration until the 100 or 316 µg/mL levels.

Study	Pollutant	Exposure	Effects
Reference: Veranth et al. (2007, <u>090346</u>) Species: Human,	S: desert dust (collected from unpaved desert road in Utah, PM _{2.5} enriched) V: vanadium soluble (prepared from	Route: Cell Culture Dose/Concentrations: Maximum concentrations:	Viability: Generally, cell viability was greater than 75% of the control post treatment. Vanadium, at the highest concentration, induced less than 50% of control viability whereas kaolin, also at the highest
mouse, rat Cell Type: A549, BEAS-2B (types E and U), RAW 264.7, Primary macrophages	VOSO ₄ , Alfa Aesar, Ward Hill, MA) C: Coal fly ash (PM _{2.5} enriched and derived from commercial power plant burning Utah bituminous coal) D: Diesel PM (tail-pipe particles collected from high emitting BSr onroad light duty truck) L: Lipopolysaccharide T: Titanium dioxide (Alfa Aesar) K: Kaolin (purchased from Capitol Ceramics, UT)	S = 100 μ g/cm ² V = 100 μ g/cm ² C = 100 μ g/cm ² D = 32 μ g/cm ² L = 1000 EU/mL T = 100 μ g/cm ² K = 100 μ g/cm ²	concentration, induced cell death. IL-6: BEAS-2B E or U in LHC-9 showed a response to S and L. BEAS-2B (U) was in LHC-9 medium with added serum (FBS). This resulted in a doubling of response coupled with at least an 8 fold increase in control levels. BEAS-2B (E) showed response for S and V but not. A549 showed response to S and K. RAW 264.7 and Rat macrophages showed responses to S(very low) and L. In general, the IL-6 responses in A549 and RAW 264.7 were similar and significantly lower than the responses in rat macrophages or BEAS-2B. Effect of Culture Media Composition (BEAS-2B):
	Particle Size: BET surface (m²/g) S: 6.2 (PM _{2.5} enriched) V: NA C: 5.4 (PM _{2.5} enriched) D: NR		Varying ratios of LHC-9 and KGM media resulted in a near 10 fold increase in control rate once LHC was 33% or more of the media. Upon Soil Dust (NOS) exposure IL-6 increased linearly with % LHC-9 in culture/exposure media. Addition of calf serum (0.1-10%) raised control IL-6 levels at least 40 fold. At a steady PM concentration, the addition of serum resulted in a log-linear increase in IL-6 release which blocked any PM effect.
	L: NA T: 3.5 (1-2 µm)		Reversibility of Media Effect: Changing media with every passage showed that media effects do not persist once media are changed.
	K: 24 (<200 mesh = 74 μm)		Culture Well Size: Going from a 6 well to 96 well plate (decreasing well size) increased IL-6 control values about ten fold, while the positive control (TNF) response increased 3 fold. Hence the sensitivity of the test (i.e., positive/control response) declined from 11 fold to 3 fold with increasing well number / decreasing well size. Because cell seeding density and the like were held constant, these changes suggest that edge effects are the cause of the IL-6 changes.
Reference: Veranth et al. (2006, <u>087479</u>) Species: Human	$PM_{2.5}$ samples from 28 samples from 8 locations in Utah, New Mexico and Texas (rural, industrial, road side, military)	Route: Cell Culture (35,000 cells/ cm²) Dose/Concentration: 10, 20, 40, 80 μg/cm² Time to Analysis: 24 h	Cell Assays: In sample soils viability declined dose dependently while IL-6 increased dose-dependently. IL-8 was highly variable (peak at 20 μg/l, dose-dependent increase or flat response.)
Cell Type: BEAS-2B	2 coal fly ash samples (a product of combustion using Utah bituminous coal and New Mexico bituminous coal) ${\rm TiO_2}$		IL-6 Assays for All Soil PMs: Soils ranged across an order of magnitude greater than LPS, coal fly ash, TiO_2 or kaolin samples. One soil even exceeded the pos V control at equal concentrations
	kaolin clay Particle Size: PM _{2.5} ; TiO ₂ : 1-2 μm		Correlation with Cell Viability: Correlation was strong for Mn (p<0.001) and weak for EC3, K, Se, and Hg (0.01 <p<0.05).< td=""></p<0.05).<>
			IL-6, 10 μg/cm ² : Correlation was medial for OC-1(OC) and P at 0.001< 0.01.
			IL-6, 80 µg/cm ² : Correlation was strong for OC3, OP (pyrolized Carbon), OC, EC1, TC and intermediate for OC2, OC4, Zn and weak for Ca2+, EC2, Si, Ca, Ca: Al.
			IL-8, 10 μg/cm ² : Correlation was weak for EU (Endotoxin), CO ₃ , Si, and Br.
			IL-8, 80 $\mu g/cm^2$: Correlation was medial for CO $_3,Sr$ and weak for K+, EC3, Mg, Si.
			IL-8 trend (corr over 10-80 range): Correlation was strong for EC, intermediate for OC4, EC1, EC2, EC3, TC, Ni and weak for OP, OC, Cr, and Sr. IL-6 and II-8 were not correlated nor were IL-6 and cell viability. Authors noted that weak correlations (0.01 <p<0.05) contained="" false="" positives.<="" td=""></p<0.05)>

Study	Pollutant	Exposure	Effects
al. (2004, <u>087480</u>)	PM _{2.5} enriched soil samples DD: desert dust, unpaved road, Utah	Route: Cell Culture (20,000/cm²) Dose/Concentration: 10, 20, 40, 80, 160	Elemental Analysis of PM: Major differences UN generally lower in major minerals but high Fe content and high EC. High Mn. Low Pb and Zn
Species: Human Cell Type: BEAS-2B	WM: West Mesa, sandy grazing site, NM R40: Range 40 gravel soil, TX UN: Uinta, sandy soil, UT Particle Size: 0.4-3 µm	μg/cm² Time to Analysis: 24 h	Cytotoxicity: UN and WM were the most cytotoxic at all dose levels, followed by R40 and DD. All particles showed a dose-dependent cytotoxic response.
			IL-6 Release: DD and R40 (up to the 160 μ g/cm²) showed dose-dependent responses and induced an 8-fold increase at the highest concentration levels. WM peaked at 40 μ g/cm² and UN induced similar responses above 10 μ g/cm².
			IL- 8 Release: DD induced a dose-dependent response. WM peaked at 10 μg/cm². Release induced by DD and WM seemed to be limited by toxicity. There was no treatment with R40.
			TNF-α: DD, WM and UN induced release was not detected at the 40 or 80 μg/cm ² concentrations.
			LPS: LPS was the primary factor in inducing IL-6 release when exposed to LPS-containing mixtures. LPS alone induced lesser responses than treatment to the environmental dust particles. TiLPS induced a less than two-fold increase in IL-6 versus the over seven-fold increase induced by soil dust positive control. LPS treatments were less cytotoxic than DD. Limited IL-6 and IL-8 responses were observed at 2000 EU/mL compared with DD at 80 μg/cm²
			Endotoxin: Inverse relationship between endotoxin content and IL-6 release was observed.
			Viability vs Physical Modification of Dust Sample (no UN): Only leaching in a variety of water based vehicles increased viability minimally (generally <25 %). Heat treatment (150-, 300, 550° F) and methanol extraction had no effect
			IL-6 Release vs Physical Modification of Dust Sample (no UN): One hour thermal treatment at 150° F had no effect on IL-6 response. All other treatments reduced IL-6 release (heat 350°, 500° and extractions).
Reference: Veronesi et al. (2002, 024599)	Ambient PM	Route: Cell Culture	Ca: Calcium increased significantly with all particles types.
Species: Human Cell Type: BEAS-2B	 St. Louis: Urban particulates Ottawa: Urban particulates -MSH: Volcanic dust from Washington 	Dose/Concentration: 50 μg/mL; 30 μg/cm ² $100\mu g/mL$; $60 \mu g/cm^2$ Time to Analysis: 4, 16 h	IL-6: At 50 and 100 μ g/mL, IL-6 increased with all particle types at 4 and 16 h. Overall, fraction -A was the most potent.
	state's Mt. St. Helen -Woodstove: Woodstove particles from	,	Surface charge: Surface charge correlated strongly with increases in both Ca ²⁺ and IL-6 levels. OFA, however, was unmeasurable due to technical
	conventional fireplace burner -CFA: Coal fly ash from western U.S. power plant		difficulties.
	-OFA: Oil fly ash from Niagara, NY		
	- A: Total Fractions		
	- B: Soluble Fractions		
	- C: Washed Fractions		
	Particle Size: PM >2.5 μ m; PM: 2-10 μ m; PM >10 μ m		

Study	Pollutant	Exposure	Effects
Reference: Vogel et	UDP: SRM 1649 (NIST)	Route: Cell Culture (2×10 ⁵ - 2×10 ⁶ cells/mL)	
al. (2005, <u>087891</u>) Species: Human	UDP-OE: DCM extract of SRM-1649, 0.45 μm filter	Dose/Concentration: DEP, UDP: 2.5, 10 or 40 $\mu g/cm^2$	plateau at 10 µg/cm². Generally, with the exception
Cell Type: U937	sUDP: stripped particles UDP	(eq to 12.5, 40, 200 µg/mL)	of COX-2, UDP effects on genes were stronger than DEP.
(ATCC) monocytes (macrophage differentiation)	DEP: SRM 2975 (NIST)	DEP-OE, UDP- OE: 10 μg/cm² (particle equivalent) Time to Analysis: 24 h	Cytotoxicity: Both DEP and UDP were cytotoxic at 40 µg/cm ²
,	DEP-OE: DCM extract of SRM-2975, 0.45 μm filter		Fractionation and mRNA Expression: For COX-2,
	sDEP: stripped particles DEP		TNF-α, IL-8 mRNA fractions were much more active than parent particles and consequently stripped
	CB95: Carbon Black (Degussa)		particles were much less active than parent particles. CB95 had no effect. The reverse effect
	Particle Size: UDP, DEP: NR; CB95: 95 nm		occurred for IL-6 and CRP mRNA expression. The particles that induced mRNA expression in decreasing order are: sUDP, UDP, UDP-OE.
			Inhibition Of mRNA Expression: CRP: pretreatment with IgG and wortmannin (Fcγ receptor binding and ingestion dependent inhibitors resp) blocked the effects of DEP, UDP and sDEP and sUDP. Luteolin (AhR inhibitor) had no effect.
			COX-2: Only luteolin inhibited COX-2 expression for DEP, DEP-OE, UDP, and UDP-OE.
			CYP1a1: Luteolin also inhibited OE-DEP and OE-DUP effects (only those two particles tested).
			Cholesterol Accumulation: DEP, UDP and UDP- OE and DEP-OE at 10 µg/cm² all increased cholesterol accumulation by at least 2 fold
Reference: Wang et al. (2003, 157106) Species: Rat Cell Type: Lung Myofibroblasts	V ₂ O ₅ : (Aldrich Chemical Co., Wisconsin) Particle Size: NR	Route: Cell Culture (1×10 ⁵ cells/100 mm dish; 3.2×10 ⁴ cells/cm ²) Dose/Concentration: 400 μm Time to Analysis: 0.5, 1, 4, 24 h	H_2O_2 Drives STAT-1 Activation: Pretreatment with NAC or catalase reduced $\text{V}_2\text{O}_5\text{-induced}$ STAT activation by more than 90% and completely abolished $\text{H}_2\text{O}_2\text{-induced}$ STAT activation. Within 5 min of V_2O_5 treatment, H_2O_2 was significantly decreased in the supernatants of cultured myofibroblasts and suppression of H_2O_2 levels continued for up to 24 h post V_2O_5 treatment. This supports the findings that myofibroblast-generated H_2O_2 is required for $\text{V}_2\text{O}_5\text{-induced}$ STAT activation.
			$\label{eq:total_continuity} \textbf{Temporal STAT-1 Activation:} \ H_2O_2 \ \text{induced rapid} \\ \text{activation within minutes whereas activation by } V_2O_5 \\ \text{occurred more slowly (beginning 8h post treatment)}.$
			p38, ERK, EGFR: p38 and EGFR are required for H_2O_2 - or V_2O_5 -induced STAT-1 activation whereas ERK is not required
Reference: Whitekus	DEP (light-duty, four-cylinder engine-	Route: Cell Culture	DEP significantly reduced the GSH:GSSG ratio. This
et al. (2002, <u>157142</u>)	4JB1 type, Isuzu Automobile, Japan; standard diesel fuel) (extracts)	Dose/Concentration: 50 μg/mL	effect was prevented by adding thiol antioxidants NAC or BUC. DEP increased lipid peroxide levels,
Species: Mouse Cell Line: RAW 264.7	Particle Size: NR	Time to Analysis: 5 h	but the addition of all antioxidants decreased these levels. DEP increased carbonyl groups. NAC, BUC, and luteolin reduced HO-1 expression.

Study	Pollutant	Exposure	Effects
Reference: Wilson et al. (2007, <u>097268</u>)	CB: Carbon Black, Printex 90 (Degussa)	Route: Cell Culture (4×10 ⁵ cells/mL at 1mL/well)	ROS Production in Cells: CB alone increased ROS. Coexposure with ZnCl ₂ did not affect ROS.
Species: Mouse Cell Type: J774	FeCl ₃ ZnCl ₂	Dose/Concentration: CB 1.9 -31 μg/mL; FeCl ₃ , ZnCl ₂ 0.01-100 μmol	ROS Production - Cell Free: CB induced a significant increase in ROS. ZnCl ₂ had no effect. Coexposure CB/Zn also had no effect.
	Particle Size: CB: 14 nm	Time to Analysis: 4 h	TNF-α Production (Fe -Zn 0.01-100 μmol): Coexposure of CB over a range of metals gave no change over CB alone for Fe. For Zn, only at the concentration of 100 μmol was there a small interaction between Zn and CB.
			Similar results were seen at metal concentrations between 20 -100 µmol. Synergism was observed between Zn and CB and no observed effect of Fe.
			Macrophage Cytoskeleton: CB resulted in black vacuoles. Co-treatment of cells with Zn and CB increased the severity of Zn effects. Fe exhibited no synergism.
			Apoptosis /Necrosis: No synergism of CB with either Fe or Zn.
			Phagocytosis: Only at 31 µmol CB and 50 µmol Zn did a synergistic effect occur; it resulted in a 4-fold reduction.
Reference: Wottrich et al. (2004, 094518) Species: Human Cell Type: A549, THP- 1, Mono Mac 6	Si60: silicasol (SiO ₂ , amorphous silica) Si100: silicasol	Route: Cell Culture (2×10 ⁴ cells/well. Co- culture: 2×10 ⁴ A549 and 2×10 ³ Macrophages) Dose/Concentration: A549 light microscopy hematite 100μg/mL (23 μg/cm ²) TEM hematite 50 μg/mL (16 μg/cm ²) Cytotoxicity 10, 50, 100 and 200 μg/mL (6.1,	Particle Uptake: Hematite agglomeration was observed in all 3 cell lines. TEM confirmed cytosol aggregates as well as single particles, which includes particles transported intracellularly to basolateral membrane of epithelial cells. Cytotoxicity: LDH increased significantly in A549. In decreasing order, Q , Fe, S60, and S100 (which exhibited levels similar to controls) all induced cytotoxicity. THP-1 cells appeared the most sensitive
		30, 61 and 121 μg/cm²) Cytokines 50 and 200 μg/mL Time to Analysis: 24 h	with Q, Fe, S60, S100, control inducing cytotoxicity in decreasing order. Mono Mac 6 cells were the least sensitive with Fe, S60, Q, S100.
			Cytokines: IL-6 and IL-8 released from A549 cells upon exposure to all particles. No response was observed in Mono Mac 6 or in THP-1 cells.
			Co-cultures: Mix of A549 with either Mono Mac 6 or THP-1 led to a large (ten fold) increase in response to particles. Ten fold increases were observed in IL-6 and IL-8 levels with the Mono Mac 6 co-culture and the THP-1 co-culture, respectively.

Study	Pollutant	Exposure	Effects
Reference: Wu et al. (2007, <u>098412</u>) Species: Human Cell Line: B82L Cell Type: B82L- par (parental fibroblasts), B82L-wt (wild type	ZnSO ₄ (Sigma) Particle Size: NR	Route: Cell Culture Dose/Concentration: Zn: 500 µmol EGF: 100 ng/mL Time to Analysis: 20 min	EGFR Mutations: EGFR-wt has a functional tyrosine kinase domain, intact Src phosphorylation (Tyr 845) and 5 tyrosine autophosphorylation sites. EGFR-c'958 lacks all 5 tyrosine autophosphorylation sites. EGFR-K721M lacks tyrosine kinase (ATP binding). EGFR-Y845F lacks Src autophosphorylation (Tyr 845) and, instead, has a receptor at Tyr 845 that is phosphorylated by nonreceptor Tyrosine kinase Src.
EGFR), B82L-K721M (kinase defective EGFR), B82L-c'958 (COOH-terminally truncated EGFR at Tyr-958)			Zn Induced Ras (MAPK signaling protein): No effect was observed in B82L-par cells. Zn had an effect in -wt, -c'958, and -K721M which confirms the need for EGFR. This indicates that neither tyrosine kinase nor autophosphorylation sites were required for Zn effects. No observed increase for Y845F indicated that EGFR tyrosine 845 (phosphorylated by c-Src) is required for Zn effects. However, it was not required for EGF effects.
			Src Kinase Requirement: Using a Src blocker drastically reduced Zn effect but not the EGF effect. Src activation occurred independent of EGFR Tyr-845.
			Zn Induced Association of EGFR with Src: Zn induced a physical association in all 4 mutants; EGF did not.
			Zn Induced Phosphorylation of EGFR at Tyr-845: Zn induced phosporylation of EGFR at Tyr-845 in B82L-wt,-c'958 and -K721M. EGF exhibited similar effects. Src blockers significantly reduced phosphorylation induced by Zn but not for EGF. Neither Zn or EGF induced phosphorylation in B82L- Y845F cells.
Reference: Wu et al. (2003, <u>199749</u>)	Zinc Ion: Zn ²⁺	Route: Cell Culture	Cytotoxicity: Exposure to 50 μmol Zn ²⁺ for 8 h did not result in significant alterations in cell viability.
Species: Human	Particle Size: NR	Dose/Concentration: 10, 25, 50 µmol	PTEN Protein Levels: 50 µmol Zn ²⁺ for 4 and 8 h
Cell Type: BEAS-2B		Time to Analysis: 0-8 h	significantly decreased levels in a dose-dependent manner. Exposure to 50 µM vanadyl sulfate (tyrosine phosphatase inhibitor) had minimal effects on PTEN. 100 ng/mL of non-specified EGF receptor ligand for 1-8 h did not exhibit any significant effects on PTEN levels.
			P13K/Akt: Zinc induced Akt activation in a dose- and time- dependent fashion. Active Akt levels were the highest at 1 h post exposure to Zn ²⁺ , corresponding with the time period when there was a minimal effect on PTEN protein level. When treated with LY294002 (inhibitor of P13K activity), Akt phosphorylation was significantly inhibited.
			PTEN mRNA Levels: Decreased PTEN mRNA expression was observed in cells exposed to 50 µmol Zn ²⁺ for 8 h whereas PTEN protein levels declined as early as 4 h.
			Proteasome-mediated PTEN Degradation: Use of MG132 (proteasome inhibitor) had no significant effect on Zn ²⁺ induced PTEN mRNA expression. Therefore mRNA expression may not play a critical role in PTEN protein reduction. Instead data suggested that 26 S proteasome played a vital role in Zn ²⁺ induced PTEN degradation. PI3K inhibitor blocked Zn-induced PTEN degradation, but failed to prevent significant Zn-induced down-regulation of PTEN mRNA.

Study	Pollutant	Exposure	Effects
Reference: Wu et al.	Zinc Ion: Zn ²⁺	Route: Cell Culture	Cell Viability: After 2 h of exposure, Zn2+ induced
(2004, <u>096949</u>)	Particle Size: NR	Dose/Concentration: 100 µmol	effects in NHBE cells at 100 and 200 µmol levels (but not 50 µmol). Continuing exposure to 100 µmol
Species: Human Cell Type: NHBE		Time to Analysis: 2 h	Zn ²⁺ for 4 and 6 h did not significantly alter cell viability. Thus, in all subsequent studies, NHBE cells
Cell Type. NHBE			were treated with 100 μmol Zn ²⁺ .
			Induced EGFR Phosphorylation: Exposure to 100µM Zn²+ for 1-4 h induced phosphorylation of EGFR in NHBE cells. EGFR kinase inhibitor PD153035 (to determine if phosphorylation of EGFR was the result of autophosphorylation of activated EGFR tyrosine kinase activity) caused Zn²+ -induced phosphorylation to subside. Zn²+ activity requires tyrosine kinase activity.
			EGFR Phosphorylation Pathway: To test whether Zn^{2+} exposure results in ligand release, which in turn can activate phosphorylation, NHBE cells were pretreated with LA1 blocking antibody. Results showed significant suppression of Zn^{2+} induced phosphorylation, therefore Zn^{2+} phosphorylation might be initiated by the release of EGFR ligands.
			HB-EGF, TGF-α, EGF: To examine the involvement of specific ligands (HB-EGF. TGF-α and EGF) in the phosphorylation pathway, cells were exposed to anti-HB-EGF, anti-TGF-α and anti-EGF. Results showed that anti-HB-EGF reduced Zn²- induced phosphorylation significantly, anti-TGF-α produced partial inhibition and anti-EGF had no inhibitory effect. Exposure with blocking antibody LA1 was tested to determine if it caused an increase in soluble HB-EGF. HB-EGF mRNA expression was also elevated in cells exposed to Zn² Previous studies indicate metalloproteinase (MMP) involvement in cleaving ligand precursors. It was found that MMP-3 inhibitor partially blocks Zn²- induced HB-EGF release. (MMP-2 and MMP-9 did not show similar inhibition patterns) Zn²- exposure increased the release of MMP-3 from HNBE cells.

December 2009 D-79

Study	Pollutant	Exposure	Effects
Reference: Wu et al.	Zinc Ion: Zn ²⁺	Route: Cell Culture	Cell Viability: Exposure to 50 μmol Zn ²⁺ for 8 h did
(2005, <u>097350</u>)	Particle Size: NR	Dose/Concentration: 50 µmol	not result in significant alterations in cell viability (assessed by LDH release).
Species: Human Cell Line: Subclone S6 Cell Type: BEAS-2B		Time to Analysis: 4 or 8 h; EGFR phosphorylation: 30, 60, 120, 240 min	P13K/Akt Signaling Pathway: To evaluate P13K's on COX-2 Zn ²⁺ induced expression, LY-294002 (a P13 inhibitor) and another unnamed P13 inhibitor were used. Exposed cells indicated suppressed levels of Zn ²⁺ induced COX-2. To determine Akt role, ad-DN-Akt (AAA) was used. Infected cells indicated over-expression of Akt and significant reduction of Zn ²⁺ induced GSK-3α/β phosphorylation, Over expression of DN-Akt(AAA) blocked Zn ²⁺ induced COX-2 expression.
			PTEN's Role in Blocking Zn2+ Induced COX-2 mRNA Expression: PTEN is an antagonist of P13/Akt pathway. Overexpression of wildtype PTEN blocked Zn²+-induced mRNA COX-2 expression, suggesting PTEN inhibits PIP3 signal transduction to Akt.
			Analysis of the Src/EGFR Signaling Pathway: Zn²¹ induced a time-dependent increase in Src and EGFR phosphorylation in cells. Blockage of Src activity via PP2 (Src inhibitor) decreased Zn²¹ induced EGFR phosphorylation. The EGFR tyrosine inhibitor completely blocked Zn²¹-induced EGFR phosphorylation. EGF (a ligand of EGFR signaling) induced COX-2 expression, suggesting that EGFR regulated Zn²¹-induced COX-2 expression.
			p-38 and EGFR Kinase Activity: Use of PD- 153035 (EGFR inhibitor) and PP2 (Src inhibitor) and SB-203580 (p38 inhibitor) all blocked Zn ²⁺ -induced Akt phosphorylation of Src., EGFR and p38. It is thought that p38 is a critical kinase in regulation of Zn ²⁺ -induced COX-2 protein expression.
Reference: Yacobi et al. (2007, <u>156166</u>)	PNP: Polystyrene nanoparticles, negatively charged (Molecular Probes, Eugene, OR)	Route: Cell Culture (1.2×10 ⁶ cells/cm ²) Dose/Concentration: PNP up to 706 μg/mL	UAPS and Rt (transmonolayer resistance): Rt declined up to 60% within 1 h at 36 μg/mL. Rt plateaued (or exhibited a very slight upgradient) for
Species: Rat	PNPA: Amidine modified PNP,	QD up to 176 µg/mL	up to 24 h (last measurement). No cytotoxicity was observed. Replacement of apical fluid with fresh
Cell Type: L2 (Lung epithelial cells)	positively charged	SWCNT up to 88 µg/ mL media after 2 h of exposure resto control values within 24 h. UAPS up to 36 µg/mL	media after 2 h of exposure restored Rt to near
	SWCNT: Single-wall carbon nanotubes (Carbon Nanotech, Houston, TX)		UAPS and Leq (short-circuit current): Peak
	QDC: Chitosan coated (CdSe/ZnS) Quantum dots, positively charged (made)	Time to Analysis: on days 4, 5 or 6 by replacing monolayer apical fluid with PM in suspension for up to 1440 min.	decline of 30% after 4 h followed by grádual recovery over 24 h. Replacing media after 2 h exposure returned leq to control values within 24 h.
	QDA: Alginate coated QD, negatively charged	Intermediate measurements at 15, 30, 60, 120, 240 and 1440 min.	UAPS and Apparent Permeability: Permeability measured via C14 mannitol and inulin showed no effect of UAPS.
	UAPS: Ultrafine Ambient particulate suspensions (VACES) (48 % OC)		QD and Rt: QD depressed Rt by nearly 55% at 4 h for positively charged and 30% for negatively
	Particle Size: PNP20: 20 nm; PNP100: 100 μm; SWCNT: 0.8-1.2 nm		charged QDs. Recovery towards control values started at 4 h and was near complete at 24 h
	(diameter); SWCNT: 100-1000 nm; QD: 30 nm; UAPS: <150 nm		SWCNT and Rt: SWCNT depressed Rt by ~ 40% at 1 h (same for 22, 44, and 88 μ g/mL). Recovery was near complete at 4 h and complete at 24 h.
			PNP and Rt: No statistically significant effects were observed.

Study	Pollutant	Exposure	Effects	
Reference: Yun et al. (2005, <u>088302</u>) Species: Human Cell Type: A549	DEP: Collected using a 6 cyl 11L, heavy duty (2001 yr) bus engine (South Korea) Particle Size: NR	Route: Cell Culture (3×10 ⁴ cells/well) Dose/Concentration: 1, 10, 100, 250, 500 and 1000 µg/mL; main testing 250 µg/mL Time to Analysis: 12 h	NF-κB Transcription Activation: DEP induced dose-dependent activity up to 250 μg/mL. After peaking at 250 μg/mL, concentrations above 250 induced dose- dependent declines. Activity peaked at 12 h for 250 μg/mL and declined to control at 24 or 48 h. The mechanism of DEP action was the degradation of IkBα which is an intracellular inhibitor of nuclear translocation of NF-κB.	
			TAK1 and NIK Required for NF-kB Activation by DEP: Dominant negative mutants of TAK1 and NIK reduced DEP induced response to basal level. TAK1 was phosphorylated after DEP exposure and was sustained for at least 90 min.	
Reference: Zhang et al. (2007, <u>156179</u>)	PM _{2.5} : Collected by baghouse from Dusseldorf, Germany	Route: Cell Culture	Apoptosis: At 100 μg/mL for 24 h, PM induced a 2.5 fold increase in apoptosis in A549.	
Species: Human, Rat Cell Type: A549, RLE- 6TN	es: Human, Rat Particle Characterization: Carbon 20%,	at Particle Characterization: Carbon 20%, Hydrogen 1.4%, Nitrogen <0.5%, Oxygen 14.1%, Sulfur 2.1%, Ash	Dose/Concentration: 100 μg/cm² Time to Analysis: 24 h	Mitochondrial Membrane Potential: A significant reduction in AEC mitochondrial membrane potential was observed.
UIN			Caspase -3 & -9: Increased activity of both enzymes in both cell types was observed. More specifically, a 2- to 2.5-fold increase of caspase -3 and -9 in A549 and an 8-fold increase of caspase-9 and 4-fold increase of caspase-3 in RLE-6TN were observed.	
			BIM: Downregulation of BIM by RNA interference inhibited PM-induced apoptosis. An inhibited decrease in mitochondrial membrane potential and activation of both caspases were observed.	
Reference: Zhang et al. (2004, <u>157183</u>) Species: Mice	DEP: SRM 1650a Particle Size: NR	Route: Cell Culture Dose/Concentration: 5 or 25 μg/mL	fra Expression: DEP induces fra-1 but not fra-2 expression. mRNA induction peaks around 180 min DEP affects fra-1 mRNA expression at the	
Cell Line/Type: C10 (alveolar Type II-like epithelial cell line)		Time to Analysis: 30-360 min	transcriptional level. ERK/JNK/p38 MAPK signaling pathways: 3 inhibitors (PD-98059, SB-202190 or SP-600125) all reduced DEP stimulated fra-1 induction to near control levels. DEP stimulated phosphorylation of the MAPKs which peaks at 60 min but stays elevated at 180 min. MMP-9 promoter activity: fra-1 upregulation may play a role in DEP induced increases in MMP-9 promoter activity as fra-1 appears to bind at the -79 TRE sequence of the MMP-9 promoter.	

Table D-3. Respiratory effects: in vivo studies.

Reference	Pollutant	Exposure	Effects
Reference:		Route: IT Instillation	BALF Cells: The greatest increase in cell numbers
Adamson et al. (2003, <u>087943</u>)	EHC-93S (soluble) EHC-93L (leached)	Dose/Concentration: 5 mg/rat; 33.3 mg/kg	was observed with EHC-93W. Activity peaked at 1 day with a return to normal levels by 7 days. EHC-93L also
Species: Rat	EHC-2KW, -S, -L	Time to Analysis: 4 h, 1 day, 3 day, 7 days, 14	induced an increase in cell numbers, more so than EHC-93S, but both particles induced statistically
Gender: Male	Measured components Zn, Mg, Pb, Fe, Cu, Al	days	significant increases. However, these increases were mostly attributable to an increase in the AM and PMN
Strain: SD	Particle Size: EHC-93W, -93S, -		populations.
Weight: 150 g	93L, -2KW, -2KS, -2KL: PM ₁₀	L, -2KW, -2KS, -2KL: PM ₁₀	BALF Inflammatory/Injury Markers: Metallo- proteinase (MMP) 2 and 9 both increased, peaking at 1 day and 4 h respectively. MMP2 activity appears related to the soluble fraction whereas MMP-9 activity appears to be related to the leachable fraction.

Reference	Pollutant	Exposure	Effects
Reference: Ahn et	DEP: Collected using a turbo-	Route: Oropharyngeal Aspiration	BALF Inflammatory/Injury Markers: Lung injury was
al. (2008, <u>156199</u>)	charged, intercooler, 6-cylinder, heavy-duty, diesel engine (model	Dose/Concentration: 1, 10, 25 mg/kg per day; Those receiving 25 mg/kg DEP also received pre-	more severe in mice exposed to 25 mg/kg of DEP than when compared to mice exposed to 1 mg/kg DEP.
Species: Mouse	year 2000	treatment of Dex (1, 5 mg/kg) 1 h prior	However, lung injury caused by exposure to 25 mg/kg DEP could be completely prevented with pre-treatment
Gender: Male	DPBS: control Particle Size: NR	final exposure	of 5mg/kg Dex. Treatment with 1 mg/kg Dex prior to exposure to 25 mg/kg DEP depicted partial reduction in
Strain: BALB/C1	r article 3126. IVIV		lung injury.
Age: 6 wk Weight: 19-24 g			BALF Cells: Treatment with DEP over a 5 day period caused an increase in total number of cells (macrophages, neutrophils and lymphocytes) when compared to control. Total Cells: Control - 5.33 ± 0.44 cells 1 mg/kg DEP - 6.26 ± 0.87 cells 10 mg/kg DEP - 14.40 ± 1.90 cells 25 mg/kg DEP - 47.20 ± 3.40 cells
			COX-2 Expression: Exposure to DEP lead to a dose-dependent increase in COX-2 levels; specifically, treatment with 25 mg/kg significantly increased COX-2 levels. This effect was completely reduced by treatment with 5mg/kg of Dex.
Reference: Ahsan et al. (2005, <u>156200</u>)	DEP: Obtained from Dr. Masaru Sagai (Amori, Japan)	Route: IT Instillation Dose/Concentration: Lung Damage: 0.1	ESR: hTrx-1 induced 0.05 mg generation of hydroxyl radicals in the lungs (mid thorax ESR spectra) compared to control.
Species: Mouse	Particle Size: NR	mg/mouse; Survival Analysis: 0.2 mg/mouse; ESR: 0.05 mg/mouse	BAL Inflammatory/Injury Markers: hTrx-1 attenuated
Gender: Male and Female		Time to Analysis: 24 h	cellular damage from 0.1mg DEP. Control mice showed massive edema with neutrophilic infiltration, hemorrhagic alveolar damage and collapsed air
Strains: hTrx-1- transgenic and C57BL/6 (control)			spaces. hTrx-1 mice showed mild/moderate edema with clear demarcation of air spaces.
Age: 8-8.5 wk			Viability: After 4, 12 and 24 h, survival was 32, 24 and 12% respectively as compared to 80, 52 and 40% for hTrx-1 mice.
Reference: Andre et al. (2006, 091376)	UFCP: Ultra Fine Carbon Particles (electric spark	Route: Whole-body Inhalation	BALF Cells: A small increase in PMN number
Species: Mouse	generator, Model GFG 1000;	Dose/Concentration: 380 μg/m ³	suggests a minor inflammatory response after 24 h exposure. Number of macrophages did not increase.
Gender: Female	Palas, Karlsruhe, Germany) Measured Component:	Time to Analysis: 4 and 24 h; 0 and 24 h post-exposure	BAL Inflammatory/Injury Markers: Total protein concentration significantly increased post 24 h
Strain: BALB/cJ	UFCP>96% EC		inhalation. Post 4 h, heat shock proteins were induced.
Age: 10-12 wk	Particle Size: 49 nm		Post 24 h, immunomodulatory proteins (osteopontin, galectin-3 and lipocalin-2) significantly increased in alveolar macrophages and septal cells. 236 (1.9%) genes was increased and 307 (2.5%) genes were decreased with upregulated genes being primarily related to the inflammatory process.
Reference:	ROFA-P: Precipitator	Route: IT Instillation	ESR: Only ROFA-P contained free radicals, primarily in ROFA-P-S.
Antonini et al. (2004, <u>097199</u>)	-S: Soluble (0.22 μm filter), Components: Fe, Al, Ni, Ca, Mg, Zn	Dose/Concentration: 1mg/100g bw in 300 μ l saline; 60 mg/kg	BALF Cells: No effects on alveolar macrophages were observed, but all ROFA-P fractions increased lung
Species: Rats Gender: Male	-I: insoluble, Components: Fe, Al, Ni, Ca, Mg, Zn, V	Time to Analysis: 24 h; Clearance Experiment: two single exposures day 0 and 3 observed at day 6, 8 and 10	neutrophils. ROFA-P-S and ROFA-P-I effects combined roughly equaled ROFA-P-T.
Strain: SD	-T: total	o, o and ro	BAL Inflammatory/Injury Markers: ROFA-AH-T and ROFA-AH-I increased LDH. ROFA-P and -AH
Weight: ~250 g	ROFA-AH: Air Heater		increased albumin for T and I fractions.
	-S: Soluble (0.22 µm filter), Components: Fe, V, Ni, AL -I: Insoluble, Components: Fe, V, Ni, AL		Pulmonary Clearance (Listeria Monocytogenes): ROFA-P-T and ROFA-P-S significantly slowed bacteria clearance from lungs. ROFA-AH and ROFA-P-I had no effect.
	-T: Total		
	Particle Size: $< 3 \mu m$ (mean diameter)		

Reference	Pollutant	Exposure	Effects
Reference Reference: Arimoto et al. (2007, 097973) Species: Mouse Strain: ICR Gender: Male Age: 6 wk Weight: 29-33 g Reference: Bachoual et al. (2007, 155667) Species: Mouse Strain: C5B17 Gender: Male Age: 7 wk Weight: 22.3 ± 073 g	Pollutant DEP (collected using a 4JB1 4-cyl, 2.74L Isuzu diesel engine) DEP-OC: organic chemical extracts LPS DL = DEP + LPS DOL = DEP-OC + LPS Particle Size: 0.4µm RER: PM ₁₀ Paris, France subway CB TiO ₂ DEP Particle Size: RER: 79% < 0.5 µm; 20%: 0.5-1 µm CB: 95 nm TiO ₂ : 150 µm DEP: NR	Route: IT Instillation Dose/Concentration: DEP or DEP-OC: 4 mg/kg; LPS: 2.5 mg/kg; DL or DOL: NR Time to Analysis: 24 h Route: IT Instillation Dose/Concentration: 5, 50, 100 μg/mouse, 0.22, 2.2, 4.5 mg/kg Time to Analysis: 8 or 24 h	Effects Cytokines: DEP-OC or DEP alone did not change levels of MIP-1α, MCP-1 or MIP-2. DL induced significant increases in MIP-1, MIP-2 and MCP-1. LPS: LPS and DOL induced increases in MCP-1 though the increase induced by DL was greater. No effect on MIP-1α or MIP-2 was observed. BALF Cells: 100 μg RER and 100 μg DEP increased total cell count and neutrophil influx after 8 h and returned to normal by 24 h. Smaller doses of RER and DEP induced no effect. CB induced no effect. BAL Inflammatory/Injury Markers: 100 μg RER increased BALF protein after 8 h. No effect was observed after 24 h nor with smaller doses of PM. RER significantly increased MMP-12 mRNA level after 8 h and HO-1 total lung mRNA content. No effects on MMP-2 or -9 or TIMP-1 or -2 expression were observed. No effects from CB or DEP were observed. Cytokines: 100 μg RER increased BAL, TNF-α and MIP-2 protein content after 8 h.
Reference: Batalha et al. (2002, 088109) Species: Rat Gender: Male Strain: SD Age: NR Weight: 200-250 g	CAPs (Harvard Ambient Particle Concentrator) Particle Size: Mean: 2.7 μm	Route: Whole-body Inhalation Dose/Concentration: Range: 73.5-733 μg/m³ Time to Analysis: CAPs exposure 5 h/day, 3 days (consecutive). SO ₂ exposure to induce CB 5 h/day, 5 days/wk, 6 wk. Killed 24 h postexposure.	Histopathology: CAPs slightly increased the wall thickness of small pulmonary arteries and edema in the adventitia and hyperplasia of the terminal bronchiole and alveolar ducts epithelium. L/W ratio: The L/W ratio decreased in CAPs-exposed rats as particle mass, Si, Pb, SO42-, EC and OC increased. Univariate analyses showed significant negative correlations between the L/W ratio and Si and SO42- in normal rats and Si and OC in CB rats. Multivariate analysis showed only Si to be significant in both groups.
Reference: Becher et al. (2007, 097125) Species: Mouse Strain: Crl/Wky (iNOS(-/-)) and C57Bl/6 Gender: Male Age: 8-14 wk Weight: 25 g	Suspended PM: SRM-1648 Particle Size: NR	Route: IT Instillation Dose/Concentration: 1.6 µg/lung; 64 mg/kg Time to Analysis: 20 h	Cytokines: In both wild and KO strains, all particles caused increases of IL-6, MIP-2 and TNF- α levels. NADPH-oxidase KO mice showed significantly lower levels of IL-6 and MIP-2 responses to SPM comparatively to wildtype. iNOS KO mice showed significantly reduced IL-6, TNF- α , MIP-2 responses to SPM comparatively to wildtype. Free Radicals: SPM induced significant increases in free radical formation in alveolar type 2 cells but could be inhibited by DPI.
Reference: Bhattacharyya et al. (2004, <u>088095</u>) Species: Mouse Strain: SD Weight: 200-250 g	Douglas Fir Wood Smoke (generated by burning wood at 400°C in crucible oven) Particle Size: NR	Route: Nose-only Inhalation Dose/Concentration: 25 g/mouse Time to Analysis: Various exposure periods (0, 5, 1 0, 15, 20 min). Parameters measured after 24 h recovery period.	Biochemical Parameters: Lipid peroxidation increased after 20 min of wood smoke inhalation as did Myeloperoxidase at 20 min. No effects were observed at other times or for total antioxidant status, reduced or oxidized glutathione. Antioxidant Enzyme Activities: No effect was observed. Histology: Dose-dependent damage progressing from loss of cilia (5 min), degeneration of mucosal epithelium, loss of mucosal epithelium to disrupted mucosal epithelium with submucosal edema and inflammation. Changes persisted for up to 4 days.

Reference	Pollutant	Exposure	Effects
Reference: Cao et al. (2007, 097491) Species: Rat Strain: SH and WKY Age: 12 wk	PM _{2.5} (Shanghai, China) Components: As, Cd, Cr, Cu, Fe, Ni, Pb, Zn, V, Ba, Se, Mg, Co, Mn Particle Size: PM _{2.5}	Route: IT Instillation Dose/Concentration: 1.6, 8.0 and 40 mg/kg Time to Analysis: Exposed 1/day for 3 days, sacrificed 24 h following last exposure	BALF Cells: PM decreased macrophages and increased neutrophils and lymphocytes in a dose-dependent manner. For the same exposed dose, WKY rats had a higher percentage than SH but a smaller percentage of neutrophils and lymphocytes. BAL Inflammatory/Injury Markers: LDH activity and TBARs increased a in dose-dependent manner. Notably, activity in SH rats was much higher than WKY at the same dose exposed for each dose level. Cytokines: PM induced pro-inflammatory cytokine release (IL-1β, TNF-α, CD44, MIP-2, TLR-4, OPN). Again, SH cytokine level was greater than WKY at all dose levels. PM induced anti-inflammatory cytokines CC16 and HO-1 in a similar manner but at much lower rate.
Reference: Carter et al. (2006, 095936) Species: Rat, Mouse, Hamster Gender: Female (all) Strain: F-344 (rat), B6C3F1 (mouse), Syrian Golden (hamster) Age: 7-10 wk	CB: Printex 90 Particle Size: primary size: 17 nm; 1.2-1.6 µm (aerosol aerodynamic diameter)	Route: Whole-body Inhalation Dose/Concentration: 1, 7, 50 mg/m³ Time to Analysis: 6 h/day for 5 days/wk for 13 wk; 1 day, 3 m, 11 m post-exposure	Superoxide: Levels rose in all species at 50 mg dose. Hamsters had no increase at 7 and 1 mg doses. Mice also increased at 7 mg. Rats significantly increased at all dose levels. Rats maintained elevation expected for the 50 mg dose at 11 mo postexposure; it declined but was still higher than control. Mice maintained elevation at 50 mg while 7 mg returned to control levels by 3 mo postexposure. H ₂ O ₂ : At 50 mg, increased levels in all species, with the highest in rat, were observed. At 7 mg, increased levels in rats and mice were initially seen but levels returned to baseline by 11 mo. Hamster levels were not significant. At 1 mg, no significant changes were observed. NO: Induced similar reactions as H ₂ O ₂ . Rat response continued through the study while mice and hamsters returned to baseline by 11 mo postexposure. Rats produced significantly higher levels at all times than other species. BALF Cells: CB induced significant increases in neutrophils at 7 and 50 mg for all species. Rats had the highest and most prolonged PMN response. Mice and hamsters had very similar reactions. Cytokines: TNF-α, MIP-2 and IL-10 increased in a dose-dependent manner in rats and mice. Hamsters increased for IL-10 only. MIP-2 levels were highest in rats. TNF-α level were similar in all three species at 50 mg, but hamsters started with a markedly higher basal level. Glutathione Peroxidase: Hamsters were the most responsive with significant increases at all levels. Rats and mice increased at 50mg and continued to increase for µto 11mo. Hamster levels declined with time but continued to be higher than control. Glutathione Reductase: Rats increased only at 50mg and remained elevated for up to 11mo. Hamsters increased at all levels at 11mo, but at 50mg, levels only increased post 1 day. Superoxide Dismutase: All species reacted in a dose-dependent manner. Rats were the least responsive. Rat SOD activity increased over time while rat and mouse activity decreased at 50mg. Data were consistent with cytokine data.

Reference	Pollutant	Exposure	Effects
Reference: Cassee et al. (2005, <u>087962</u>)	CAPs: PM _{2.5}	Route: Nose-only Inhalation	BALF Cells: Wistar exhibited increased protein, albumin, NAG and decreased ALP activity and
Species: Rat	Netherland suburban, industrial and freeway tunnel site collections	Dose/Concentration: PM 365-3720 μ g/m ³ (results from 16 different exposures 2000, 2002); O_3 : 1600 μ g/m ³ (0.8 ppm)	macrophage numbers. Wistar showed increased PMNs due to O₃, but was not significantly increased with additional CAPs exposure. SH showed no effect of
Gender: Male	Wistar rats pre-exposed to ${\sf O}_3$	Time to Analysis: 8 h O ₃ pre-exposure; 6 h CAPS	
Strain: Wistar Kyoto and SH/NHsd	SO_4 , NO_3 and NH_4 ions: $54 \pm 4\%$ suburban, $53 \pm 7\%$ industrial and $35 \pm 5\%$ freeway site conc. of	exposure; 48 h post-exposure	BAL Inflammatory/Injury Markers: No effect on AL, LDH, Glutathione, GSSG, GSH, Uric Acid was observed.
Age: 7 wk and 8-12 wk	total CAPS mass Particle Size: PM _{2.5}		Cytokines: No effect on IL-6, MIP-2 or TNF-α was observed. CAPs induced an increase in CC16 plasma of SH rats.
	(0.15 <pm<2.5 td="" μm)<=""><td></td><td>Hematology: CAPS induced an increase in RBC, HGB and HCT of Wistar rats and fibrinogen of SH rats.</td></pm<2.5>		Hematology: CAPS induced an increase in RBC, HGB and HCT of Wistar rats and fibrinogen of SH rats.
			Histology: Wistar and SH rats had no obvious lung abnormalities. Small changes include increased macrophages and cellularity of centriacinar septa of O_3 -only rats. Both O_3 -only and O_3 +CAPS showed bronchial epithelium hypertrophy and perivascular influx of PMNs.
			BrdU Labeling Index of Terminal Bronchiolar Epithelium: No CAPs effects were observed.
Reference: Chang	UFCB: Ultrafine Carbon Black -	Route: IT Instillation	BALF Cells: Neutrophil number was at control level at
et al. (2005, <u>097776</u>) Species: Mouse	Printex 90 (Degussa) Particle Size: 14 nm	Dose/Concentration: 200 μg/100 uμ/mouse Time to Analysis: Parameters measured 4, 16.	4 h, increased after 16 h, peaked at 21 h and returned to normal at 42 h. No effect was observed for the macrophage count.
Gender: Male Strain: ICR		21, 42 h post single exposure	BAL Inflammatory/Injury Markers: UfCB increased total protein with peak at 21 h. TNF- α increased at 4 h and returned to normal at 16 h.
Age: 5 wk Weight: 25-30 g			VEGF (Vascular Endothelial Growth Factor): Increased at 4 h and peaked at 16 h but remained elevated at 21 and 42 h. VEGF and total protein in BALF were correlated (R ₂ = 0.7352).
			ROS: Pretreatment with NAC (ROS inhibitor) decreased induction of BALF VEGF and total protein by UfCB but did not fully block its effect.
			Histology: Thickened alveolar walls in lungs of UfCB-treated mice 16 h post-IT was observed.
Reference: Chang et al. (2007, <u>097475</u>)	UFCB: Ultrafine Carbon Black - Printex 90 (Degussa)	Route: IT Instillation Dose/Concentration: 200 µg/mouse;	BALF Cells: Increased relative lung weight, total protein (2 fold), total cells (11 fold) and number of
Species: Mouse	Particle Size: 14 nm diameter	8 mg/kg	neutrophils were observed. BALF AM count was not affected.
Gender: Male		Time to Analysis: Pretreatment with NAC (Nacetylcysteine) ip 320 mg/kg, 2 h before UFCB IT	BAL Inflammatory/Injury Markers: Of the 33
Strain: ICR		instillation. Parameters measured 24 h post	identified proteins, the following 6 were confirmed and validated: Cp (ceruluplasmin), albumin, EGFR, LIFR
Age: 5 wk		exposure.	(leukemia inhibitory factor receptor), α2M and β-actin. All were increased following UFCB exposure. The
Weight: 25-30 g			following were also identified: 3 membrane proteins, 3 intracellular proteins, 10 protease inhibitors and 6 antioxidants. UfCB increased LIFR and EGFR in BALF. UfCB significantly reduced EGFR and LIFR in lung homegenate. UfCB did not affect EGFR protein but down-regulated LIFR in A549 cells treated with UfCB.
			Antioxidant: Pretreatment with NAC reduced the intensity of albumin and α 2M bands in BALF as well as most other proteins. Statistical analysis showed positive correlation between VEGF and albumin (R ₂ = 0.796) and VEGF and α 2M (R ₂ = 0.7331) in BAL.

Reference	Pollutant	Exposure	Effects
Reference: Cho et al. (2005, 156344) Species: Mouse Gender: Male Strains: DBA/2J, 129P3/J, C57BL/6J, BALB/CJ, A/J, C3H/HeJ, C3H/HeOuJ Age: 6-8 wk	Pollutant ROFA: Obtained from Power unit 4, Boston, MA Absent of LPS Particle Size: NR PM (Mexico City- high PM region, Vancouver- low PM region) Particle Size: Geometric mean size of individual particles in tissue: 0.040-0.067 µm; Aggregates in tissue: 0.34-0.54	•	BALF Cells: Significant genetic effects on number of macrophages and PMNs after ROFA challenge. For PMNs, DBA/2J, C57BL/6J, BALB/cJ, and 129P3/J all induced increases significantly higher than C3H/HeJ. For macrophages, only the A/J strain induced increases significantly higher than C57BL/6J. Total protein, PMNs and macrophages all increased with HeOuJ inducing increases significantly different from HeJ. BAL Inflammatory/Injury Markers: Significant genetic effect on mean total protein concentration was observed. In decreasing order, DBA/2J, 129P3/J and C57BL/6J all induced increases significantly higher than C3H/HeJ. TLR4 mRNA Expression: A significant decrease was observed in TLR4 transcript level in HeJ- ROFA exposed mice post 1.5 h. Post 6 h, TLR4 levels were greater than the control levels. OuJ expression increased beginning 1.5 h post exposure. TLR4 Protein Level: Protein level of OuJ mice significantly exceeded (~2-3 fold) HeJ mice at 1.5, 3 and 6 h. Activation of Downstream Signal Molecules: Greater activation of MYD88, TRAF6, IRAK-1, NF-KB, MAPK, and AP-1 was observed in OuJ mice than in HeJ mice before the development of ROFA- induced pulmonary injury. Cytokines: IL-1β, LT-β, IL-1α, IL-7, IL-13, IL-16 increased in both strains (OuJ and HeJ). Levels of all cytokines above were significantly higher in OuJ than in HeJ. The lungs from Mexico City residents showed increased muscle and fibrous tissue in the membranous bronchioles and respiratory bronchioles compared to the Vancouver residents. Pigmented dust, lumental distortion and carbonaceous aggregates of UFPs were present in the Mexico City lungs.
Age: 66 ± 9yr (Mexico City); 76 ± 11yr (Vancouver)	μm; Mexico City: 2.5, 10 μm	Vancouver residents >20 yr. Subjects were never- smokers, did not work in dust occupations or cook with biomass fuels.	
Weight: NR Reference: Costa et al. (2006, 088438) Species: Rat Gender: Male Strain: SD Age: 60 day	ROFA FP&L plant #6 oil, 1% sulfur Particle Size: ~1.95 μm	Route: IT Instillation, Nose-only Inhalation (IH) Dose/Concentration: IT instillation = 110 μg/rat IH = 12 mg/m³ Time to Analysis: IT instillation: single; IH: 6 h 24, 48, 96 h (histopathology 24 and 48 only)	ROFA distribution: IH and IT instillation resulted in equivocal distribution (μg/g lung tissue) in 5 different lung lobes. Airway Hyperactivity: IT instillation resulted in doubled airway hyperreactivity at 24 h which was sustained for 96 h. IH hyperreactivity did not reach statistically significant level. BALF Cells: Neutrophils peaked at 24 h and slowly declined at 48 and 96 h. BAL Inflammatory/Injury Markers: IH and IT instillation showed very similar responses (R₂ = 0.98). Time-dependent increases were observed for protein and LDH. Lung Pathology: IT instillation showed more alveolitis, bronchial inflammatory and fibrinous fluid infiltrate. IH showed relatively more congestion of small airways and alveolar hemorrhage.

Reference	Pollutant	Exposure	Effects
et al. (2008, <u>156369</u>) Species: Rat Gender: Male Strain: Wistar Kyoto Age: 12-14 wk	PM (SRM 1648; 63% inOC, 4- 7% OC, >1% mass fraction- Si, S, Al, Fe, K, Na) Carbon black (FW, P60) UF, fine TiO ₂ Particle Size: PM mean diameter: 0.4 µm; Carbon black: FW- 13 nm, P60- 21 nm; TiO ₂	Route: IT Instillation Dose/Concentration: 5 mg PM or TiO ₂ Time to Analysis: 6-72 h	Particles were present in lung parenchyma that was removed 12 and 72 h post-instillation.
Weight: NR Reference: Dick et al. (2003, 036605) Species: Mouse Gender: Female Strain: CD1 Age: 8-10 wk Weight: 20-25 g	mean diameter: 0.14 μm CO: PM Coarse FI: PM Fine FU: PM ultrafine PM collected in RTP, NC Particle Size: CO: 3.5-20 μm; FI: 1.7- 3.5 μm; FU: <1.7 μm	Route: IT Instillation Dose/Concentration: 10 μg, 50 μg, 100 μg/mouse; 0.5, 2.5, 5.0 mg/kg Time to Analysis: DMTU 500 mg/kg bw 30 min pre-exposure for some mice. Parameters measured 18 h post-exposure.	Particle Characteristics: S increased (CO-33.20 μg/mg, Fl- 49.44 μg/mg FU- 122.79 μg/mg) with decreasing particle size (mostly in the water-soluble fraction). Fe and Cu higher in coarse and fine fractions (mostly present in the insoluble). CO PM contained more nickel (in both soluble and insoluble) than Fl or FU particles. Also, endotoxin levels similar in CO and Fl; much lower in FU (0.165 EU/mg). BALF Cells: PMN increased with exposure for all 3 fractions except 100 μg Fl. BAL Inflammatory/Injury Markers: Albumin increased only at 100 μg Fl. No differences in NAG or LDH observed. Cytokines: IL-6 increased at 100 μg dose for all 3 fractions with similar responses. TNF-α increased a 100 μg dose of fine PM vs control. Effect of PM After Pre-treatment w/DMTU: Systemic administration of DMTU alone depicted a two-fold increase in total antioxidant capacity. DMTU halved neutrophil response observed with PMs alone: No fractions were increased over DMTU alone which was at least two-fold saline control. IL-6 concentrations were drastically reduced in the DMTU group for the mice exposed to coarse particles (all fractions were reduced but only coarse had a significant response). TNF-α levels were decreased
			after treatment with particles and DMTU but treatment with particles and saline (control) produced similar results.
Reference: Dybdahl et al. (2004, <u>089013</u>) Species: Mouse Gender: Female Strain: BALB/CJ or	DEP: SRM 1650 (NIST) Particle Size: DEP: NR; Control: PM 0.13 µm diameter	Route: Nose-only Inhalation Dose/Concentration: I: 20, 80 mg/m³ II: 5, 20 mg/m³ Time to Analysis: I: single exposure 90 min; II: 90 min/day for 4 days; I & II: parameters measured 1, 3, or 22 h post exposure	Cytokines: A single 90 min DEP exposure increased IL-6 gene level dose-dependently in the lung. For 80 mg/m³ DEP, significantly higher IL-6 gene level was observed, both 1 and 22 h post exposure. For 20 mg/m³ DEP, a significantly higher IL-6 level was observed at 1 h post exposure but normalized at 3 h. BALF Cells: Inhalation of DEP did not decrease wishill to 6 PALE cells. For miso exposure to 20 mg/m³
trans-genic (MutaMouse) Age: 9-10 wk		,	viability of BALF cells. For mice exposed to 20 mg/m³ DEP, at 1 h post exposure in BAL fluid there was 3 fold increase in total cell number.
Weight: ~20 g			DNA Damage: Level of 8-oxodG increased post single exposure with 80 mg/m³ inducing levels significantly higher than controls. Repeated exposures were associated with significantly higher DNA strand breaks.
Reference: Elder et al. (2004, <u>055642</u>) Species: Rat Gender: Male Strain: F344, SH Age: 23 m (Fisher), 11-14 m (SH)	UFP: argon-filled chamber with electric arc discharge (TSI, Inc., St. Paul, MN) Particle Size: 36 nm	Route: Whole-body Inhalation. Dose/Concentration: UFP: 150 μg/m³ bw; LPS: 2 mg/kg Time to Analysis: 6 h, 18 h	BALF Cells: Neither inhaled UFP nor LPS cause a significant increase in BALF total cells or percentage of neutrophils in either rat strain. No significant exposure-related alteration in total protein concentration was observed. In both rat strains LPS induced a significant increase in the amount of circulating PMNs. When combined with inhaled UFP, PMNs decreased; for F-344 rats, this decrease was significant. ROS in BALF: In F-344 rats, both UFP and LPS have
			independent and significant effects on DCFD oxidation. Effects were in opposite directions; particles decreased ROS whereas LPS increased ROS.

Reference	Pollutant	Exposure	Effects	
Reference: Elder et al. (2004, <u>087354</u>)	Freshly generated vehicle exhaust emissions from I-90 between Rochester and Buffalo,	(2004, 087354) exhaust emissions from I-90 (Influbetween Rochester and Buffalo,	Route: Whole-body Inhalation; IT Instillation (Influenza)	No departures from normal baseline cellular or biochemical values were observed, suggesting that on- road exposures were well tolerated by the rats.
Species: Rat	NY	Dose/Concentration: Vehicle exhaust: 0.95-3.13×10 ⁵ particles/cm ³	BAL Inflammatory/Injury Markers: Increase in total	
Gender: Male	Particle Size: NR	Endotoxin: 84 EU	protein concentration, LDH and B-glucuronidase activities were observed.	
Strain: F344		Influenza (IV): 10, 000 EID 50 in 250 μ l	Specific results according to groups 1-4 are as	
Age: 21 mo		Time to Analysis: 1×6 h, 3×6 h or both. Parameters measured 18 h post-exposure. 48 h prior to on-road exposures, instilled intratracheally with IV. Immediate pre-exposure of priming agent endotoxin.	Experiment 1: No endpoints revealed significant differences between groups of rats exposed to gas phase only versus the gas-phase/particle mixture.	
		EXPERIMENTS 1: LPS + PM 6 h 2: LPS + PM 6 h, 3×6 h 3: IV + PM 6 h	Experiment 2: Combination of endotoxin and particles produced greater inflammatory responses than those treated with saline and particles post 1 day. After 3 days, no statistically significant changes were noted.	
		4: IV + PM 6 h, 3×6 h	Experiment 3: Influenza virus significantly increased ROS release in BALF cells.	
			Experiment 4: Influenza virus significantly increased both percentage of PMNs in BALF and BALF cell ROS release.	
Reference: Elder et al. (2005, <u>088194</u>) Species: Rat,	HSCb: Printex-90 high surface area carbon black, Deguss-Huels (Trostberg, Germany).	Reference: Whole-body Inhalation Dose/Concentration: 0, 1, 7, 50 mg/m ³ HSCb; 50 mg/m ³ LSCb (rats only)	Body Weight: Environmental changes pre and post- exposure affected test subjects' life spans, particularly hamsters. Hamsters also experienced significant loss of body weight when exposed to high doses of HSCb.	
Mouse, Syrian Golden Hamster Gender: Female Strain: F-344, B6C3F1, FIB	LSCb: Sterling V, low surface area carbon black, Cabot (Boston, MA) Particle Size: HSCb = 14 nm, LSCb = 70 nm	Time to Analysis: 6 h/day, 5 daus/wk for 13 wk. Parameters measured 1 day, 3 mo, 11 mo post- exposure	Effects of Carbon Black: In rats, lung weight of the high dose HSCb doubled. After 11mo, analysis of all lungs showed no significant difference. Mice had the highest relative lung burdens at the end of exposure time but also cleared particles faster at high doses than rats. However, clearance slowed over the 11mo recovery period, especially in high dose mice. Hamsters showed significant elevations in lung carbon black burden for all exposures at all time points. Hamsters exposed to high dose HSCb exhibited impaired clearance.	
			BALF Cells: Presence of PMNs was limited to the mid and high dose groups. Overall maximal response was reached in mice and hamsters, but not in rats with increasing mass dose of HSCb.	
Reference: Evans et al. (2006, <u>097066</u>)	DEP: collected under dry, outdoor, ambient conditions from	Route: IT Instillation	Lung permeability: In bleomycin-treated group, obvious inflammatory status and edema within the lung	
Species: Rat	tractor exhaust pipe (1985, Japanese ISEKI 1500 cc tractor) burning Esso 2000 diesel and 20/30 mixture of Esso light engine oil.	Dose/Concentration: 1 mg/rat DEP; 1 mg/rat Cabosil	was observed. This was shown by significant increases in acellular protein and free cells.	
Gender: Male		Time to Analysis: Pretreatment with 0.5 unit of	Changes in lung: Body weight ratio, lung surface	
Strain: SD		bleomycin; IT 3 or 7 days	protein content, free cell counts, and apical surface protein of rat type I cells were only altered by	
	10% UF, 90% fine	after pre-treatment; 1wk post-IT	bleomycin treatment and not particle exposure.	
	Cabosil: amorphous silicon dioxide			
	16% UF, 84% fine			
	Particle Size: DEP: 30 nm; Cabosil: 7 nm			

Reference	Pollutant	Exposure	Effects
Reference: Finnerty et al. (2007, 156434) Species: Mouse Gender: Male Strain: C57BL/61 Age: 12 wk Weight: 24.3 ± 0.3 q	Coal Fly Ash (generated at U.S EPA National Risk Management Research Laboratory by burning Montana subbituminous coal under conditions simulating full- scale utility boiler conditions) Transition metals of Coal Fly Ash: Fe, Mg, Ti, Mn, V Particle Size: >PM _{2.5}	Route: IT Instillation Dose/Concentration: PM: 200 mg/mouse; 9.1 mg/kg PM+LPS10: 200 mg PM+10 mg LPS PM+LPS100: 200 mg PM+100 mg LPS LPS: 100 μg Time to Analysis: 18 h	BALF Cells: No significant differences in platelet concentration or white blood cell count in any groups were observed. The percentage of neutrophils increased significantly with PM+LPS100. PMN rose in PM groups and increased further with LPS treatment. Increases in PM+LPS were groups statistically significant. More leukocytes were present in the alveolar space in PM+LPS10 compared to the PM group. The most severe response was in the PM+LPS100 group.
			Cytokines: Plasma TNF- α and IL-6 significantly increased for the PM+LPS100 group. An additive effect of LPS and PM for IL-6 was observed. For saline and PM groups, pulmonary TNF- α was below detection range. A synergistic effect for TNF- α was observed. A less than additive effect for IL-6 was observed. Pulmonary TNF- α significantly increased in the PM+LPS100 group. Pulmonary IL-6 significantly increased in both PM+LPS groups.
et al. (2006, <u>096601</u>) Species: Mouse Gender: Male	DEP: collected from a 4-cylinder, 2.74 L, Isuzu diesel engine Particle Size: 0.4 µm	Route: Whole-body Inhalation Dose/Concentration: 1.0, 3.0 mg/m³ Time to Analysis: 12 h/dayfor 4 wk. Parameters measured 1 day post-exposure	BALF Cells: Treatment significantly increased BAL cells from WT mice at both dose levels. The increase of macrophages and neutrophils were dose-dependent. An increase in lymphocytes were present in WT mice with the low dose. No significant increase in cells were observed from IL-6 (-/-).
Strain: IL-6(-/-) and WT: B6J129Sv (control) Age: 5-6 wk			Cytokines: TNF-α largely increased in IL-6(-/-) mice exposed to 3 mg/m 3 compared to WT mice. IL-6 production increased in WT mice exposed to 3 mg/m 3 . CCL3 increased in both WT and IL-6(-/-) at high dose. IL-1β remained at the control level.
Reference: Gerlofs- Nijland et al. (2005, 088652) Species: Rat	RTD: road tunnel dust (obtained from a Motorway tunnel in Hendrik-Ido-Ambacht, Netherlands)	Route: IT Instillation Dose/Concentration: 0.3, 1, 3, 10 mg/kg; EHC- 93: 10 mg/kg Time to Analysis: 4, 24, 48 h	BALF Cells: PMN significantly increased in RTD (3 and 10 mg/kg dose) and EHC-93 exposed animals at 24 h and decreased by 48 h but remained statistically significant. AM numbers decreased for 3 mg/kg RTD group at 4 h.
Gender: Male Strain: SH/NHsd Age: 11-12 wk Weight: 250-350 g	EHC-93 (Ottawa, Canada) Particle Size: Coarse: 2.5- 10 μm; fine: 0.1- 2.5 μm	Time to Analysis. 4, 24, 40 ii	BAL Inflammatory/Injury Markers: Myeloperoxidase (measured at 24 h in 1, 3, 10 mg/kg RTD groups) was elevated in a dose-dependent manner. RTD induced time-dependent increases in LDH activity at 24 and 48 h, although these increases were less than EHC-93 values at the same time points. Alkaline phosphatase increased dose-dependently for RTD at 48 h. GSH decreased at 24 h to approximately the same levels in 0.3, 1, and 3 mg/kg RTD dose groups. Uric acid only decreased in 1 mg/kg RTD group at 24 h.
			Cytokines: IL-6 levels were elevated only at 10 mg/kg for RTD and EHC-93 at 4 and 24 h; it remained elevated for EHC-93 at 48 h. A dose-dependent increase in TNF- α at 4 h for RTD was observed. TNF- α levels remained elevated only for the 10 mg/kg groups at 24 h and returned to control levels by 48 h. A dose-dependent increase in MIP-2 for all RTD dose groups were observed and remained elevated through 48 h for both PM types (although values were returning to control levels).
			Pulmonary Histopathology: A dose-dependent increase in the number of inflammatory foci at 24 and 48 h for 3 and 10 mg/kg RTD groups was observed. The response was even greater for the EHC-93 exposed group at similar time points.

Reference	Pollutant	Exposure	Effects
Reference: Gerlofs- Nijland et al. (2007, 097840) Species: Rat Gender: Male	PM samples collected from: 1. MOB high traffic density 2. HIA high traffic density 3. ROM high traffic density 4. DOR moderate traffic density 5 MGH low traffic density 6 LYC low traffic density	Route: IT Instillation Dose/Concentration: 3, 10 mg/kg Time to Analysis: 24 h	BALF Cells: Pulmonary inflammation was induced in a significant and dose-dependent manner for both dose levels. Inflammation in the BALF included airway neutrophilia, increased macrophage numbers and mild lymphocytosis. Both coarse and fine PM caused dose-dependent alveolitis. Fine PM from LYC (10 mg/kg dose) also caused some bronchiolitis.
Strain: SH/NHsd Age: 13 wk Weight: 250-350 g	Particle Size: Coarse: 2.5 - 10 μm; Fine: 0.1 - 2.5 μm		BAL Inflammatory/Injury Markers: LDH was significantly increased for all doses of coarse PM and for the high dose of fine PM. BALF protein concentration was observed predominantly at the high dose of coarse PM. Location ROM had evidence of attenuated responses with fine PM. Ascorbate concentrations were reduced but were only significant for rats exposed to the highest dose of coarse PM fractions from the locations MOD, HIA, and LYC.
			Cytokines: TNF- α concentrations increased for all coarse samples with the exception of DOR and LYC. Fine PM induced similar responses for all sites. MIIP-2 concentrations increased only at certain sites for coarse but not fine PM.
			Location-related Differences: Coarse PM from MOB, HIA and MGH induced higher LDH responses than other locations. Coarse PM from HIA produced BALF protein concentrations higher than LYC and ROM. MGH induced greater amounts of BALF protein than ROM. Coarse PM from LYC lowered fibrinogen values more than PM from location MOB, HIA, and MGH. Fine PM showed less differences among the various sites.
			Particle Correlation: Fine PM exhibited significant correlation between zinc content and BALF cytotoxicity markers protein and LDH - mainly from HIA. Fine PM also exhibited positive correlations with copper and barium. Coarse PM showed positive correlation with barium and copper, mainly from MOB.
Reference: Gerlofs- Nijland et al. (2009, 190353) Species: Rat Gender: Male Strain: SH	PM (Prague, Czech Republic; Duisburg, Germany; Barcelona, Spain) (Prague and Barcelona coarse PM organic extracts) Particle Size: Coarse: 2.5-10 μm, Fine: 0.2-2.5 μm	Route: IT Instillation Dose/Concentration: 7mg/kg Time to Analysis: 24 h	Cytotoxicity (LDH, protein, albumin) and inflammation (NAG, MPO, TNF-α were increased by PM, and were greatest in the coarse PM fraction. Metal-rich PM had greater inflammatory and cytotoxic effects. PAH content influenced greater inflammation (including neutrophils), and cytotoxicity. Generally, whole PM and coarse PM were more potent than organic extracts and fine PM, respectively.
Age: 12 wk			,
Weight: 200-300 g			
Reference: Ghio et al. (2005, <u>088272</u>) Species: Rat Gender: Male	Oil Fly Ash (Southern Research Institute, Birmingham, AL) Particle Size: 1.95 ± 0.18 µm (MMAD)	Route: IT Instillation Dose/Concentration: 500 µg/rat; 2 mg/kg Time to Analysis: 24 h	BALF Cells: Homozygous Belgrade with mutation G185R had higher levels of Fe and V 24 h post-exposure. This may demonstrate a decreased ability to remove Fe and V from the lower respiratory tract than heterozygous +lb littermates. This also indicates that DMT1 is normally responsible for at least some Fe and V uptake; thus, a defective DMT1 transports less.
Strain: N8 b/b Belgrade rats and N8+ lb Belgrade controls			BAL Inflammatory/Injury Markers: Increased protein and LDH concentrations in the homozygous strain were observed when compared to control
Reference: Ghio et al. (2005, <u>088275</u>)	Ferric ammonium citrate (FAC) Vanadyl sulfate (VOSO ₄) Particle Size: NR	Route: IT Instillation Dose/Concentration: 0.5 mL 100 µm FAC/rat; 0.5	DMT1 Immunohistochemistry and Lung Injury: FAC increased and VOSO ₄ decreased -IRE DMT1 staining. Same exposures had no effect on +IRE DMT1IRE
Species: Rat Gender: Male Strain: SD		mL 10 μm VOSO ₄ /rat; 500 μg oil fly ash; 2 mg/kg Time to Analysis: Single or double exposure with 24 h rest period. Parameters measured 15, 30, 60 min, 24 h post-exposure.	DMT1 expression in macrophages, airway and alveolar epithelial cells increased with increased Fe exposure. Vanadium nearly eliminated staining except in alveolar macrophages. Increased metal clearance with preexposure to FAC. Less metal clearance with preexposure to FAC.
Age: 60 day Weight: 250-300 g			exposure to VOSO ₄ . Pre-exposure to iron diminished lung injury whereas pre-exposure to vandium increased lung injury after oil fly ash instillation. Lung injury measured by concentration of protein and LDH in BAL.

Reference	Pollutant	Exposure	Effects	
Reference: Gilmour et al. (2007, 096433) Species: Mouse Gender: Female	PM - CO, FI, UF (obtained from U.S. Seattle (S), Salt Lake City (SL), South Bronx (SB), Sterling Forest (SF)) SB: included 35% sulfate, 22%	Route: Oropharyngeal Aspiration Dose/Concentration: 25 μg or 100 μg PM; 1.25 or 5 mg/kg Time to Analysis: 18 h	BALF Cells: PMN increased with the high dose of CO samples from SB, SL, S, but not SF. No significant increases from FI were observed, though the high dose induced increased PMN. UF from SL caused a highly variable response.	
Strain: BALB/c Age: 10-12 wk Weight: 20-22 g	gasoline, diesel and brake wear. SF: 48% sulfate. SL: 34% wood combustion and 28% sulfate S: 39% wood combustion and 29% sulfate	Time to Analysis. To II	BAL Inflammatory/Injury Markers: Seattle CO fractions showed no dose-dependent effect on protein concentration. Results for other locations were distinctly higher with 100 µg dose than 25 µg and saline doses. SL CO high dose induced the most significant increase. LDH response was weakly dose-related. Only SB showed a statistically significant increase for LDH with the high dose UF.	
	Residual oil combustion and soil dust less than 5% for all sites.		Cytokines: MIP-2 was similar to PMN response. SB CO induced the most significant response. SL UF was highly variable.	
	Particle Size: CO: 2.5-10 μm; FI: ≤ 2.5 μm; UF: ≤ 0.1 μm		Particle Characteristics: LPS was higher in S (CO, FI, UF) and SL (CO, FI, UF). Zn levels were highest in SB (CO, FI, UF). Fe was higher in all CO and FI samples with SB CO inducing the highest.	
Reference: Gilmour et al. (2004, 057420) Species: Mouse Gender: Female	Coal Fly Ash MU: Montana Ultrafine MF: Montana Fine MC: Montana Coarse KF: W. Kentucky Fine KC: W. Kentucky Coarse	Route: Oropharyngeal Aspiration Dose/Concentration: 25 ug or 100 μg/mouse Time to Analysis: 18 h	BALF Cells: PMN highly increased for MU at both doses. The level was comparable to the positive control. PMN also increased with KF at high dose. Coarse particles caused no significant increase in PMN. Number of macrophages did not change, but NAG increased significantly with MU for both dose levels and with KF and MF at high dose level.	
Strain: CD1 Age: 8-10 wk Weight: 20-25 g	Particle Characteristics: Montana Sulfur 0.83%, Ash 11.72%. Trace amounts of Ba, P, Sr, V, Nb, Cd, Se, Ga, Cu. Depleted in Si, Al, Fe, Mg, Ti. Kentucky Sulfur 3.11%, Ash 8.07% Particle Size: Coarse: >2.5 μm; Fine: <2.5 μm;		BAL Inflammatory/Injury Markers: Total protein and LDH was not significantly elevated. Albumin concentration increased significantly after treatment with the fine high dose of both particle types. Cytokines: MU particles caused a significant increase in TNF-α. MIP-2 increased in all fine and ultrafine PM-instilled animals with the highest in the MU and KF at both doses. IL-6 was detectable only in the BALF of	
Reference: Gilmour et al. (2004, <u>087948</u>)	Ultrafine: <0.2 µm PM (collected from precipitator unit of an oil burning power plant	Route: IT Instillation	MU and KF with substantial variability. The IL-6 levels were not significant. BALF Cells: No increase in macrophage number was observed in either rat strain following saline or PM	
Species: Rat Gender: Male Strain: SH/NQIBR, WKY Age: 12 wk	in Boston) Measured Components of PM: S, Zn, Ni, V, Al, Cu, Pb, Fe, Ca, Na, K, Mg, Endotoxin Particle Size: NR	Dose/Concentration: 0.0, 0.83, 3.3, and 8.3 mg/kg in SH rats; 0.0 or 3.3 mg/kg in WKY and SH rats Time to Analysis: 24 h	mg/kg in SH rats; 0.0 or 3.3 mg/kg in WKY and SH rats Zn, Ni, V, Al, Cu, Pb, Fe, Ca, a, K, Mg, Endotoxin article Size: NR mg/kg in SH rats; 0.0 or 3.3 mg/kg in WKY and SH rats BAL Inflammatory/Injury M increased in a dose-related r in SH rats after exposure to 0 PM. SH rats showed greater PM exposure than WKY rats lung inflammatory response	exposure at 24 h. BAL Inflammatory/Injury Markers: LDH activity increased in a dose-related manner; this was observed in SH rats after exposure to 0.83, 3.33 and 8.3 mg/kg PM. SH rats showed greater lung permeability following PM exposure than WKY rats. SH rats showed acute lung inflammatory response after exposure to PM when compared to WKY rats.
Weight: 280-340 g			Cytokines: MIP-2 mRNA expression increased significantly in SH PM exposure group only. No significant differences in TNF-a RNA expression in either WKY, SH rats or control treatment groups were observed.	
			CD14: A significant increase in lung CD14 protein was observed only in SH rats exposed to PM.	
			TLR4 : A significant increase in TLR4 protein in SH rats exposed to PM was observed.	
			NF-кB: A significant increase in NF-кB binding protein in the nuclei of SH rats exposed to PM was observed. This effect was not observed in the control of PM-exposed WKY rats.	

Reference	Pollutant	Exposure	Effects
	ufCB: Ultrafine carbon black (Printex 90 (Degussa)	Route: Whole-body Inhalation	BALF Cells: Total number of cells increased significantly in UfCB-exposed rats at 0 and 16 h.
Species: Rat	CB: (Huber 990, HR. Haeffner	Dose/Concentration: ufCB: 1.66 mg/m ³ fCB: 1.40 mg/m ³	Recruitment of cells did not occur in response to CB exposure. PMNs increased significantly in the BALF of
Gender: Male	and Co)	Number concentrations	ufCB-exposed rats at 16 h. Leukocytes remained
Strain: Wistar Kyoto	Particle Size: ufCB: 14 nm; CB: 260 nm (primary particle	ufCB: 52380 particles/cm ³ fCB: 3800 particles/cm ³	unchanged following CB exposure but increased significantly at 0 and 48 h post exposure to ufCB.
Age : 12 wk	diameter)	Time to Analysis: Exposed for 7 h. Sacrificed 0, 16 or 48 h post-exposure.	Cytokine mRNA: A significant increase in BALF MIP-2 mRNA expression was observed at 48 h. No differences in MIP-2 mRNA levels were observed in the whole lung tissue.
Reference:	CAPs (Boston; Harvard Ambient	Route: Whole-body Inhalation	BALF Cells and Inflammatory Markers: PMNs
Godleski et al. (2002, <u>156478</u>)	Particle Concentrator)	Dose/Concentration : 73.5-733 μg/m ³	significantly increased with CAPs exposure and also in relation to CAPs mass, Br, SO ₄ ² , EC, OC and Pb. An
Species: Rat	Particle Size: 0.27 ± 2.3 μm (diameter)	Time to Analysis: Exposed 5 h/days, 3 days	overall increase in pro-inflammatory mediators and decrease in immune enhancer and evidence of
Gender: Male		(consecutive). BAL 24 h post-exposure	vascular endothelial responses occurred with CAPs exposure.
Strain: SD			exposure.
Age: NR			
Weight: 200-250 g			
Reference:	DE (30-kW (40hp) 4-cylinder	Route: Inhalation	DE increased neutrophils in a concentration-dependent
Gottipolu et al. (2009, <u>190360</u>)	indirect injection Deutz diesel engine) (O ₂ - 20%, CO- 1.3-4.8 ppm, NO- <2.5-5.9 ppm, NO ₂ -	Dose/Concentration: Low- 507 ± 4 μg/m ³ , High- 2201 ± 14 μg/m ³	manner, and GGT activity at the high dose. Particle- laden macrophages were found in DE-exposed rats.
Species: Rat	<0.25-1.2 ppm, SO ₂ - 0.2-0.3	Time to Analysis: Exposed 4 h/day, 5 days/wk, 4	
Gender: Male	ppm, OC/EC- 0.3 ± 0.03)	wk. Necropsied 1 day post-exposure.	
Strain: Wistar Kyoto, SH	Particle Size: Number Median Diameter: Low- 83 ± 2 nm, High- 88.2 nm; Volume Median		
Age: 14-16 wk	Diameter: Low- 207 ± 2 nm, High- 225 ± 2 nm		
Weight: NR	Figir- 225 ± 2 IIIII		
Reference:	CAPS	Route: Whole-body Inhalation	Microarray Data: 13 genes in the heart tissue and 47
(2005, <u>087956</u>)	(Northeastern regional back- ground)	Dose/Concentration: CAPS = $131 \pm 99 \mu g/m^3$	genes in the lung tissue were identified as possibly affected. Strict standards (1.5 fold response, 10% false
Species: Mouse	Ambient air copollutants	including O_3 = 10 ppb and NO_2 = 4.4 ppb	discovery rate) resulted in responses by only 1/13 genes (Rex3 - no known heart physiology) in the heart
Gender: Male	measured O ₃ , NO ₂	Time to Analysis: 6 h/day, 5 days/wk for 4 mo	tissue and 0/47 genes in the lung tissue. Using more liberal response (nonstatistical) standards (1.5 fold
Strain: DK (ApoE ^{-/-} , LDLr ^{-/-})	Particle Size: 389 ± 2 nm	(5/12/03-9/5/03). Sacrificed 3-4 days post- exposure.	only) and comparison of each CAPS animal with all 3 control animals (3x3 array) resulted in possible effects on 7 additional genes in the heart tissue and 37 genes
Age: 18-20 wk			in the lung tissue.
Reference:	CAPs	Route: Whole-body Inhalation	In situ Chemiluminescence(CL): Data show a
Gurgueira et al. (2002, <u>036535</u>)	(Harvard Ambient Particle Concentrator)	Dose/Concentration: $300 \pm 60 \mu g/m^3$	significant increase in lung and heart CL at 5 h. Lung CL increased linearly with time of exposure.
Species: Rat	СВ	Time to Analysis: 1, 3, 5 h CAPs Exposure	Oxidants: CAPs-initiated oxidative stress was not
Gender: Male	(C198 Fischer Scientific, Pitts- burg, PA USA)	followed by immediate post-exposure analysis.	detectable in those rats allowed to recover in room air after the simulated "peak" in particulate air pollution.
Strain: SD	Composed of 85.9 ± 0.2%	5 h CB, immediate analysis.	Rats breathing particle-free filtered air for 3 days had significantly lower levels of oxidants. Exposure to inert
Weight: 250-300 g	Carbon, $13.0 \pm 0.2\% O_2$, $1.17 \pm 0.2\%$ Sulfur	30min ROFA, Immediate analysis.	CB did not exert oxidant effects on the heart and lung.
	ROFA (Boston, MA USA oil-fired power plant)		BAL Inflammatory/Injury Markers: The water content of the lung and heart increased significantly upon exposure to CAPs but not to filtered air and increased as a function of length of exposure. Rats breathing CAPs also showed increases in LDH and CPK as a
	Particle Size: CAPs: 1-2.5 μm; CB: <2.5 μm; ROFA: <2.5 μm		function of length of exposure.
	· , · · · · · · · · · · · · ·		Antioxidant Enzymes: Data showed an increase in SOD and catalase activities in both the lung and heart. The pattern of increase was tissue specific.

Reference	Pollutant	Exposure	Effects
Reference: Hamoir et al. (2003, <u>096664</u>)	PSC: Polystyrene particles, Carboxylate modified, 3 types	Route: IT Instillation Dose/Concentration: PSC24: 0.04 or 4 mg/rabbit	Capillary Filtration Coefficient: A time-dependent increase correlating to total number of particles/surfa
Species: Rabbit	PSA: Polystyrene particles,	PSC110, PSC190, PSA190: 4 mg/rabbit	area, not particle size, was observed. PSA induced a significant increase in microvascular permeability as
Strain: New Zealand	Amine modified, 1 type Particle Size: PSC: 24, 110 or	Time to Analysis: 0, 30, 60, 90, 120 min	compared to PSC. This suggests that the number of particles exposed should be considered an important parameter for measuring air quality rather than total
Age: 12-16 wk	190 nm (PSC24, PSC110, PSC190); PSA: 190 nm		particle surface area.
Weight: 2.8 ± 0.5kg			
Reference: Happo	PMC (Coarse)	Route: IT Instillation	BALF Cells: 1. For the dose-response study, all the
et al. (2007, <u>096630</u>)	PMF (Fine)	Dose/Concentration: 1, 3, 10 mg/kg	PMC samples exhibited dose-dependent increases of total cell numbers. The 3 and 10 mg/kg doses of PMC
Species: Mouse	PMUF (Ultrafine)	Time course: 10 mg/kg	induced statistically significant increases. At 10 mg/kg only 2/6 samples induced statistically significant
Gender: Male	Collected in 6 European cities:	Time to Analysis: 1. Dose-Response study:	increases. No PMUF samples induced effects at any
Strain: C57BL/6J	Duisburg, Prague, Amsterdam, Helsinki, Barcelona, Athens	parameters measured 24 h post exposure. 2. Time course study: parameters measured 4, 12, 24 h	dose. 2. For the time-response study, no increases in cell numbers were shown at 4 h. Though the levels
Weight: 19-30 g Age: 10-11 wk	Particle Size: PMC: PM ₁₀ -2.5;	post single exposure (at 10 mg/kg).	induced by PMC at 24 h were lower than at 12 h, both levels were statistically significant. PMF induced
Age. 10-11 WK	PMF: PM _{2.5} -0.2; PMUF: PM0.2		statistically significant increases only at 12 h for 4/6 samples. PMUF induced only 1 significant increase at 12 h; the 24 h time point was not tested.
			BAL Injury Markers: 1. The lower doses of 1 and 3 mg/kg did not induce significant increases in any of the PM samples, except for PMUF-Athens. All 6 samples of PMC, at 10 mg/kg, induced significant increases. At 10 mg/kg, 4/6 PMF samples induced significant increases 2. At 4 h, none of the samples increased protein concentration. The PMC samples, excluding Prague, induced significantly higher concentrations at 12 h. At 24 h, only 3/6 PMC samples induced significant increases. Only 2 PMF samples induced significant increases at 12 and 24 h. At 12 h, effects induced by PMUF were minimal and inconsistent; the 24 h time point was not tested.
			Cytokines: 1. Only PMC induced dose-dependent responses that reached statistical significance at 10 mg/kg. PMF and PMUF induced minimal and inconsistent responses. 2. TNF-α levels increased significantly at 4 and 12 h by PMC. At 24 h, TNF-α levels returned to near control levels. PMF, at 4 h, induced statistically significant increases for 3/6 samples and significant increases for 3/6 samples and significant increases in 2/6 samples at 1½ h. No PMUF samples significantly increased TNF-α levels. PMC induced the highest IL-6 levels at 4 h. Levels at 12 and 24 h were reduced with 6/6 and 3/6 samples showing statistically significant increases, respectively. PMF showed a similar trend with 4 h inducing the highest levels that were reduced at 12 an 24 h. Of the PMUF samples, only the Helsinki and Duisburg samples induced statistically significant results at 4 and 12 h. Generally, the PMUF responses were negligible when compared to PMC and PMF. 2. All PMC samples induced the highest levels of KC production at 4 h. At 12 and 24 h, levels were reduced but 4/6 samples induced statistically significant levels. PMF showed a similar trend- the highest levels were induced at 4 h (in 3/6 samples). PMUF at 4 h showed small, though not significant, increases. At 12 h, only 2 samples showed statistically significant differences from the control; the 24 h time point was not tested.
Reference: Harder et al. (2005, <u>087371</u>)	Carbon UFP Particle Size: 37.6 ± 0.7 nm (diameter) Route: Inhalation Dose/Concentration: 180 μg/m³ Time to Analysis: 24 h exposure. 3 day recover		UFP induced mild pulmonary inflammation, significant increased PMN, and increased the total protein and albumin concentrations. Particle laden macrophages
Species: Rat		. •	albumin concentrations. Particle-laden macrophages sporadically accumulated in the alveolar region.
		Time to Analysis. 24 II exposure. 3 day recove	·
Gender: Male			

Weight: NR

Reference	Pollutant	Exposure	Effects
Reference:	CAPs (Detroit; July-Sept. 2000;	Route: Inhalation, IT Instillation.	The retention of PM in the airways was enhanced by
Harkema et al. (2004, <u>056842</u>)	Harvard Ambient Fine Particle Concentrator)	Dose/Concentration: 4 day concentration: 676 ± 288 µg/m ³ , 5 day concentration: 313 ± 119 µg/m ³ ,	allergic sensitization. Recovery of anthropogenic trace elements was greatest for CAPs-exposed rats. Temporal increases in these elements were associated with eosinophil influx, BALF protein content and increased airway mucosubstances. A mild pulmonary neutrophilic inflammation was observed in rats instilled
Species: Rat	Particle Size: 2.5 µm (diameter)	July concentration: 16-185 µg/m³, September	
Gender: Male		concentration: 81-755 μg/m³; IT Instillation- 200 μL (soluble and insoluble)	
Strain: F344, BN		Time to Analysis: F344 rats sensitized to	with the insoluble fraction but instillation of total, soluble or insoluble PM _{2.5} in allergic rats did not result in
Age: 10-12 wk		endotoxin, BN rats to OVA. Exposed 10 h/day 1, 4, 5 days (consecutive). Another group of rats IT	differential effects.
Weight: NR		instilled. Both groups killed 24 h post-exposure.	
Reference: Hiramatsu et al.	DE: generated by 2369-cc diesel engine (Isuzu) at 1050 rpm and	Route: Whole-body Inhalation	BALF Cells: Alveolar macrophages (AMs) increased dose-dependently at 30 and 90 day. High DE exposure
(2003, <u>155846</u>)	80% load with commercial light oil	Dose/Concentration: DEP: $100 \mu g/m^3$ or $3 mg/m^3$; $SO_2 < 0.01 ppm$; $NO_2 2.2 \pm 0.3$ or 15 ± 1.5	resulted in bronchus-associated lymphoid tissue (BALT) around DEP-AMs; this was less conspicuous in
Species: Mouse	Particle Size: NR	ppm; CO 3.5 ± 0.1 or 9.5 ± 0.6 ppm	C57BL/6 than in BALB/c mice. B- and T-cell
Gender: Female	Tarticle 0126. TVI	Time to Analysis: 7h/d, 5 days/wk for 4 or 12 wk, Immediate	populations were found in the BALT with no significant differences observed between the strains.
Strain: BALB/c and C57BL/6		miniculate	Lymphocytes and neutrophils increased time- and dose-dependently with a greater increase in BALB/c than C57BL/6 observed. No eosinophils or basophils
Age: 8 wk			were observed. Mac-1-positive cells exposed to high
Weight : 17-22 g			DE levels increased in both strains at 1 month (33.8%) and 3 mo (20.3%) vs. low dose group (5.3 and 7% respectively).
			Cytokines: At 30 days, TNF- α , IL-12p40, IL-4 and IL-10 mRNA increased, IL1b and iNOS decreased. IFN- γ increased in BALB/c but decreased in C57BL/c. IL-6 mRNA was not affected. At 90 day, IL-4 and IL-10 mRNA similarly increased in C57BL/6 mice exposed to low DE level but decreased at high DE level.
Reference:	ROFA	Route: Oropharyngeal Aspiration	Methacholine sensitivity: No ROFA effect was
Hollingsworth et al. (2004, <u>097816</u>)	Particle Size: NR	Dose/Concentration: 50 μl of 1μg/mL suspension	observed in wild type or knockout mice.
Species: Mouse		per mouse Time to Analysis: Parameters measured post	BALF Cells: ROFA increased total cell number. Total number of neutrophils with lavage fluid increased 24 h
Gender: Male		single exposure of 6 and 24 h.	post-exposure in both strains.
Strains: C57BL//6TLR ^{+/+} , C57BL//6TLR ^{-/-}			
Age: 8-9 wk			
Reference:	PM ₁₀	Route: IT Instillation	BALF Cells: PMT-R neutrophil cell number and
Hutchison et al. (2005, <u>097750</u>)	United Kingdom samples collected before (-B), during closure (-C) and	Dose/Concentration: 112 to 180 μg PM in 500 μl ; 0.44-0.72 mg/kg	percentage were significantly higher than PMT-C or control. PMS-R and PMI-R were also higher than their respective controls. The neutrophil cell numbers
Species: Rat	reopening of steel plant (-R)	Time to Analysis: 18 h	induced by PMI-R were greater than PMI-C and the control. Total cell count unchanged.
Gender: Male	PMT = PM total (aqueous sonicate)		BALF Inflammatory/Injury Markers: Only albumin
Strain: Wistar Kyoto	PMS = PM aqueous supernatant PMI = PM insoluble pellet		increased after PMT-R. Upon exposure, total protein and LDH did not increase.
Age: 3 m	Particle Size: PM ₁₀		Cytokine mRNA expression: Only PMT-R increased
Weight: 250-300 g	- 4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		IL-1ß mRNA expression. No effects on TNF-a and TGF-ß expression levels were observed. IL-6, MIP2, and GM-CSF mRNA was not detected in BAL cell extracts from either the control or treated groups.
Reference: Inque et	DEP (derived from 4 cyl, 2.74l light duty diesel engine) Particle Size: NR	Route: IT Instillation	BALF Cells: DEP induced an increase in total cells, neutrophils, and mononuclear cells. TLR4 knockout
		Dose/Concentration: 12 mg/kg	mice (C3H/HeJ) showed a much lower response.
al. (2006, <u>097815</u>)	Particle Size: NR	Time to Analysis: 24 h	
al. (2006, <u>097815</u>) Species: Mouse Gender: Male	Particle Size: NR	Time to Analysis: 24 h	Cytokines: DEP induced a massive increase in MIP-1x, IL-1β and KC. However, levels of MIP-1x were
al. (2006, <u>097815</u>) Species: Mouse	Particle Size: NR	Time to Analysis: 24 h	Cytokines: DEP induced a massive increase in MIP-1x, IL-1β and KC. However, levels of MIP-1x were significantly less in the knockout than the wild type while levels of IL-1β and KC were significantly higher in knockouts than the wild type.

Reference	Pollutant	Exposure	Effects
Reference: Inoue et al. (2005, 097481)	DEP (derived from 4 cyl, 2.74l light duty diesel)	Route: IT Instillation	BALF Cells: DEP significantly increased total cells, neutrophils and mononuclear cells but did not induce
Species: Mouse	Particle Size: NR	Dose/Concentration: 100 μg/mouse	an effect on eosinophils.
Gender: Male		Time to Analysis: 1/wk for 6 wk. Parameters measured 24 h after last administration	Cytokines: DEP increased IL-4, KC and MIP-1. The increase in IL-5 was not statistically significant.
Strain: NC/Nga			not oddo in iz o nac not oddiododiy olgimodiid
Age: 10 wk			
Reference: Ishihara et al. (2003, 096404) Species: Rat Gender: Male Strain: Wistar Kyoto Age: 5 wk	DE (from 2 engines, produced on site) -L = low level DE -M = medium level -MG = DE w/o particulates -HR = high level Measured Components: NO ₂ , SO ₄ , SO ₂ , CO, CO ₂ , NO _X , NO, HTHC, HCHO, O ₂ Particle Size: L: 0.33 -0.50 μm M: 0.35 - 0.40 μm HR: 0.42 - 0.45 μm	Route: Whole-body Inhalation Dose/Concentration: L: 0.18 - 0.21 mg/m³ M: 0.92- 1.18 mg/m³ MG: 0.01 mg/m³ HR: 2.57 - 2.94 mg/m³ Time to Analysis: 16 h/day, 6 days/wk, for 6, 12, 18 & 24 mo. Parameters measured immediately following last exposure.	Morbidity and Mortality: Weight gain in HR group was less than other groups at 18 and 24 mo. This indicates a significant difference between the HR and C group. Mortality during the study was frequent. C group experienced an 8% mortality rate, L group 12%, M group 15%, MG group 12% and HR group 23%. BALF Cells: The HR group showed a significant increase in total cell count from 6 to 18 mo. The percentage of PMN increased at 6mo in M, MG and HR group. M group lymphocytes significantly increased at 6, 12, and 24 mo of exposure. Macrophages decreased at 6 mo for the M and HR groups. BAL Inflammatory/Injury Markers: Significant differences were seen among groups with respect to number of total cells and percentages of cell differential, total protein, fucose, sialic acid, phospholipid and prostoglandin E2. Total protein increase was observed in both M and HR dose groups with the HR group increasing time-dependently. Mucus and Surfactant: The HR group showed a
Reference: Jones et al. (2005, 198883) Species: Rabbit Strain: New Zealand Weight: 2.5- 3.5 kg	ASP: Amorphous silica particles (Hypersil) MCSP: Microcrystalline silica particles Particle Size: ASP: 5 μm; MCSP: 5 μm	Route: Intrapulmonary Instillation (Right upper lobe of lung) Dose/Concentration: 50mg in 0.5 mL saline Time to Analysis: Parameters measured at varying times from 6 h to 91 days post treatment.	MCSP: At 6 h, neutrophils increased. Macrophages increased 3 fold. At 60 h, neutrophils were pyknotic and the lungs displayed a thickened interstitium containing silica particles. At 5 days, collagen deposition appeared. At 8 days, fibroblastic activity and necrosis were observed. At 15 days, aggregation of silica particles and necrotic debris were apparent. At 8 wk, fibroblasts were still present. At 13 wk, active scarring and raised neutrophil macrophage counts were still present. ASP: At 15 h, neutrophils increased. Macrophages tripled and remained increased for 3wk. At 4 day, macrophages bore particles. At 13 day, neutrophils decreased significantly. By 25 day, silica spheres were gradually removed from lungs. PET Scanning: 18F-fluoroproline showed increased activity beginning at 14 days and peaking at 41-54 days. Microautoradiography: 3 h-proline at 13 wk showed radiolabel localization to fibroblasts in the challenged lung.

Reference	Pollutant	Exposure	Effects
Reference: Kato and Kagawa (2003, 089563) Species: Rat Gender: Male Strain: Jcl Wistar Age: 5 wk	Roadside air (Prefectural Tokyo-Danishi- Yokohama highway, Yokohama- Haneda Airport Metropolitan expressway and Satsukibashi- Mizuecho city road, Japan) Particle Size: NR	Route: Whole-body Inhalation Dose/Concentration: Exposed group: 62.7 μg/m³ PM, 55.7 ppb NO ₂ .; Control group: 14.3 μg/m³ PM, 5.1 ppb NO ₂ Time to Analysis: Exposed for 24, 48, 60 wk. Parameters measured immediately following exposure.	Respiratory Tissue: Post 24 wk, the lung surface was light gray with some BC particle deposits. Post 48-60 wk, however, the surface was scattered with particle deposits in addition to its light gray color. Airway Changes: After 60 wk, no remarkable changes seen in the epithelium. The structure of the airways remained normal. Cells: No proliferation or ectopic growth of goblet cells were noted. Mast cells increased in epithelial intercellular space. No mast cell degranulation was observed. Lysosomes increased in ciliated cells post 48 wk. Clara cells were unaffected. Lymph Nodes: Deposition of carbon particles were noted in the trachea and bronchiole-associated lymph nodes post 24 wk. Alveolar Changes: No changes in morphology of broncho-alveolar junctions were noted. Anthracosis observed within alveolar walls and pleura post 24 wk and became progressively marked with increased exposure. No change in the number of alveolar holes
Reference: Kato et al. (2003, 198882) Species: Rat Gender: Male Strain: SD Age: 7 wk Weight: 190-220 g	Polystyrene latex suspension of latex beads (Japan Synthetic Rubber Co.), uncoated or coated with lecithin Particle Size: 240 nm	Route: IT Instillation with nebulizer Dose/Concentration: 5 ml of 0.2% suspension administered over 20 min at flow rate of 0.25 ml/min Time to Analysis: Exposed for 20 min. Parameters measured 30 min following treatment.	Alveolar Macrophages: Following treatment, AMs appeared undamaged. AMs ingested more uncoated than coated beads, but both were ingested. Ingestion of beads differed as coated beads were engulfed individually while uncoated beads were engulfed individually or in aggregates. Epithelial Cells: Type I cells incorporated coated beads within a layer of cytoplasm. Type II cells incorporated beads in lamellar bodies. Uncoated beads were not incorporated. Other: Neither type of beads were incorporated into endothelial cells, fibroblasts or interstitium of alveolar wall Monocytes: Only the coated beads were incorporated by the monocytes. They were found inside and outside phagosomes and lysosomes of monocytes. PMNs did not incorporate any beads.
Reference: Kleinman et al. (2003, 053535) Species: Rat Gender: NR Strain: F344n-NIA Age: 22-24 m	O ₃ CCL: O ₃ + Ammonium bisulfate (ABS) + Elemental Carbon (EC) CCH: O ₃ + ABS + EC Purified Air (control) Particle Size: CCL: 0.30 \pm 2.5 μ m; CCH: 0.29 \pm 2.3 μ m	Route: Nose-only Inhalation Dose/Concentration: O_3 : 0.2 ppm CCL: 50 μ g/m³ EC + 70 μ g/m³ ABS + 0.2 ppm O_3 CCH: 100 μ g/m³ EC + 140 μ g/m³ ABS + 0.2 ppm O_3 Time to Analysis: 4 h/days, 3 consecutive days/wk for 4 wk	BALF Cells: CCL and CCH induced macrophage respiratory burst activity. The effect induced by O ₃ was not significant. BAL Inflammatory/Injury Markers: Total protein, mucus glycoprotein and albumin were somewhat elevated in all exposure groups but only reached statistically significance for CCL and protein (very high variability). CCL and CCH both depressed Fc receptor side binding. No effect for O ₃ was observed. DNA Replication: O ₃ caused a slight effect of 20-40% increase. CCL and CCH caused between 250 - 340% increase for interstitial and epithelial cells. CCL induced greater reactions than the high dose.
Reference: Kleinman and Phalen (2006, 088596) Species: Rat Gender: Male Strain: SD Age: 6 wk Weight: 200 g	LO ₃ : Low O ₃ HO ₃ : High O ₃ LS: Low H ₂ SO ₄ HS: High H ₂ SO ₄ LOLS: Low O ₃ + Low H ₂ SO ₄ LOHS: Low O ₃ + High H ₂ SO ₄ HOLS: High O ₃ + low H ₂ SO ₄ HOHS: High O ₃ + high H ₂ SO ₄ Particle Size: LS = 0.23 μ m ± 2.3 HS = 0.28 μ m ± 2.1 LOLS = 0.23 μ m ± 2.3 LOHS = 0.28 μ m ± 2.1 HOLS = 0.23 μ m ± 2.3 HOHS = 0.28 μ m ± 2.3	Route : Nose-only Inhalation Dose/Concentration : $LO_3 = 0.30 \text{ ppm}$ $HO_3 = 0.61 \text{ ppm}$ $LS = 0.48 \text{ mg/m}^3$ $HS = 1.00 \text{ mg/m}^3$ $LOLS = 0.31 \text{ ppm} + 0.41 \text{ mg/m}^3$ $LOHS = 0.31 \text{ ppm} + 1.04 \text{ mg/m}^3$ $HOLS = 0.60 \text{ ppm} + 0.52 \text{ mg/m}^3$ $HOHS = 0.60 \text{ ppm} + 0.86 \text{ mg/m}^3$ Time to Analysis : Exposed for 4 h. Parameters measured 42 h post-exposure.	Inflammatory Lesions in Lung Parenchyma: Neither Type 1 or 2 lung lesions were affected by sulfuric acid alone. HO ₃ doubled Type 1 lesions and increased Type 2 lesions 25-fold. Additions of H ₂ SO ₄ to O ₃ appeared to have a dose-dependent protective effect for both types of lesions. DNA Synthesis in Nasal, Tracheal and Lung Tissue: Increased DNA synthesis was observed at all high O ₃ exposures but was not affected by coexposure to H ₂ SO ₄ . Macrophage FcR binding: No effects were observed (no data for LO ₃ and HO ₃). Macrophage Phagocytosis: All levels of exposure (no data for LO ₃ and HO ₃) decreased phagocytosis.

Reference	Pollutant	Exposure	Effects
Reference: Kodavanti et al. (2005, 087946) Species: Rat Gender: Male Strain: WKY and SH/NCrlBR Age: 11-14 wk	CAPs (EPA, NC) Measured components included Al, Be, Ba, Co, Cu, Zn, Pb, Mn, Ni, Ag, Ti, As. Particle Size: 1 day: 1.07-1.19 μm; 2 days: 1.27-1.48 μm	Route: Whole-body Inhalation Dose/Concentration: 1 day study: 1138-1765 μg/m³ 2 day study: 144-2758 μg/m³ Time to Analysis: 4 hr (SH only); 4 hr/day, 2 day (WKY and SH) Post-exposure: 1 day: 3 h except study #4, 18-20 h; 2 day: 18-20 h	Breathing Parameters: In a paired analysis of control SH and treated SH, treated SH showed an increase in expiratory and inspiratory time due to CAPs. The treated and control groups of WKY rats did not show significant differences. BALF Cells: In the 2 day study, WKY rats showed decreases in total cells; this decrease was associated with decreased macrophages. WKY showed an increase in neutrophils. BAL Inflammatory/Injury Markers: Total protein and albumin in WKY rats decreased whereas SH rats maintained the same approximate level. LDH activity lowered slightly in both strains. Cell Membrane Integrity: SH rats showed increased GGT (membrane bound enzyme) activity and plasma fibrinogen for 5/7 exposures but these increases did not appear to be dose-dependent. Cytokines: Levels were undetermined in SH rats. WKY showed slight increases in IL-6, TNF-a, and MIP-2 but these increases were not statistically significant.
Reference: Kooter et al. (2006, <u>097547</u>) Species: Rat Gender: Male Strain: SH Age: 12-14 wk	CAP-F = fine (Site I) CAP-UF = fine + ultrafine (Site II) (Netherlands) Some measured components: Ammonium, nitrate, sulfate ions: 56 ± 16% CAP-F mass, 17 ± 6% CAP-UF mass Particle Size: 0.15 <cap-f<2.5 0.58-1.41="" 0.65-0.75="" cap-uf<2.5="" td="" μm="" μm<=""><td>Route: Nose-only Inhalation Dose/Concentration: CAP-F 399- 3613 μg/m³ CAP-UF 269-556 μg/m³ Time to Analysis: 6 h/day for 2 days consecutive, 18 h</td><td>BALF Cells: A decrease in absolute neutrophils as well as percentages of reticulocytes and percentages of neutrophils were observed with CAP-F. Increased percentages of lymphocytes were observed with CAP-F. BALF Inflammatory/Injury Markers: Based on unchanged levels of LDH and ALP, no cytotoxicity was noted. No significant change in the levels of total cells were observed. MDA (malondialdehyde) decreased with CAP-UF. Ho-1 increased with CAP-UF and CAP-F. Cytokines: CC16 decreased at 457µg/m³ of CAP-F and increased at 3613 µg/m³ of CAP-F. Pathology. No changes were observed.</td></cap-f<2.5>	Route: Nose-only Inhalation Dose/Concentration: CAP-F 399- 3613 μg/m³ CAP-UF 269-556 μg/m³ Time to Analysis: 6 h/day for 2 days consecutive, 18 h	BALF Cells: A decrease in absolute neutrophils as well as percentages of reticulocytes and percentages of neutrophils were observed with CAP-F. Increased percentages of lymphocytes were observed with CAP-F. BALF Inflammatory/Injury Markers: Based on unchanged levels of LDH and ALP, no cytotoxicity was noted. No significant change in the levels of total cells were observed. MDA (malondialdehyde) decreased with CAP-UF. Ho-1 increased with CAP-UF and CAP-F. Cytokines: CC16 decreased at 457µg/m³ of CAP-F and increased at 3613 µg/m³ of CAP-F. Pathology. No changes were observed.
Reference: Kumar et al. (2004, 096655) Species: Rat Gender: Male Strain: Wistar Kyoto Weight: 150 ± 20 g	Fly Ash (Obra Thermal power Station, India) Particle Size: PM <5 µm (90%)	Route: Whole-body Inhalation Dose/Concentration: 14.4 ± 1.77 mg/m³ (fluid bed generator) Time to Analysis: 4 h/day for 28 day. Parameters measured immediately following last exposure.	Lung Weight: Lung body weight increased 25.58% relative to controls. Total body weight slightly decreased in the treated group. BALF Cells: Only eosinophils(%) increased 95% over controls. Congestion and focal infiltration of monocytes in alveolar area was seen. Fly ash laden macrophages in alveoli combined with hypertrophy of epithelial lining cells was observed. BAL Inflammatory/Injury Markers: LDH, GGT, ALP and lavagable protein increased by 140, 450, 160 and 50%, respectively.
Reference: Lei et al. (2004, <u>087999</u>) Species: Rat Gender: Male Strain: SD Weight: 318 ± 8 g	CAPs (Yaipei, Taiwan) Particle Size: 0.01- 2.5 μm	Reference: Nose-only Inhalation Dose/Concentration: 371 ± 208 μg/m³ Time to Analysis: 6 h/day for 3 day, 5 h post-exposure pulmonary function. 2 day post-exposure for BALF collection Pulmonary hypertension induced 2 wk pre-exposure	Respiratory Effects: Decreased respiratory frequency and increased tidal volume for both experimental and control groups were observed. However, only the experimental group levels were statistically significant. There was an increase in airway responsiveness (Penh/methacholine) for CAPs group when compared to the control. BALF Cells: A massive increase in total cell number and percent neutrophils was observed. There were no changes in percent macrophages, lymphocytes and eosinophils. BAL Inflammatory/Injury Markers: Total protein and LDH increased in the CAPs group. Cytokines: TNF-α and IL-6 were not affected.

Reference	Pollutant	Exposure	Effects
	CAPs from Asian dust storm (Taiwan)	Route: Nose-only Inhalation	BALF Cells: PM induced dose-dependent increases in
(2004, <u>087884</u>)		Dose/Concentration: 315.6 μg/m ³ (Low) or 684.5	total cells and percentage of neutrophils. No change in macrophages, lymphocytes or eosinophils occurred.
Species: Rat Gender: Male	Measured Components: Si, Al, S, Ca, K, Mg, Fe, As, Ni, W, V,	μg/m³ (High) Time to Analysis: Low: Exposed for 6 h.	Basophils were highly variable.
Strain: SD	OC, EC, SO ₂ , NO ₂ , nitrate, sulfate	Sacrificed 36 h post-exposure	BALF Inflammatory/Injury Markers: Dose-dependent increases were observed for total protein and LDH.
Weight: 300-350 g	Particle Size: 0.01- 2.5 μm	High: Exposed for 4.5 h. Sacrificed 36 h post-exposure	Cytokines: IL-6 increased dose-dependently. (control: 33.5 ± 7.5 , low 165.1 ± 117.2 , 273.6 ± 62.8 pg/mL).
		Pulmonary hypertension induced 2 wk pre- exposure.	
Reference: Li et al.	DEP (2369-cc diesel engine	Route: Inhalation	Airway Hyperresponsiveness: Penh values
(2007, <u>155929</u>)	manufactured by Isuzu Motor, operated at 1050 rpm, 80% load,	Dose/Concentration: DEP: 103.1 ± 9.2 μg/m ³ ,	increased in BALB/c mice compared to the control at day 0, but no significant changes occurred after this
Species: Mouse Gender: Female	commercial light oil)	CO: 3.5 ± 0.1 ppm, NO ₂ : 2.2 ± 0.3 ppm, \hat{SO}_2 : <0.01 ppm	time. Penh values increased in C57BL/6 mice at 1 wk compared to the control but returned to control levels at
Strain: BALB/c,	Particle Size: NR	Time to Analysis: Protocol 1: Exposed 7h/day, 5	8 wk.
C57BL/6		days/wk. Sacrificed at day 0, week 1, 4, 8. Protocol 2: DE alone or DE+NAC 7h/day, 1-5 days.	BALF: Compared to the other strain, the total number of cells and macrophages increased significantly at 1
Age: 9 wk		, ,	wk in C57BL/6 mice and at 8 wk in BALB/c mice.
Weight: NR			Neutrophils, lymphocytes, MCP-1, IL-12, IL-10, IL-4, IL-13 increased significantly for both strains. No cosinophils were found. IL-1β and IFN-γ increased significantly in BALB/c mice compared to C57BL/6 mice.
			HO-1 mRNA and Protein: HO-1 mRNA was more marked in BALB/c mice at 1 wk and C57BL/6 mice at 4 and 8 wk. HO-1 protein percentage changes from the control were greater in BALB/c mice at 1 wk and C57BL/c mice at 8 wk.
			NAC: NAC inhibited the increased Penh values, total number of cells and macrophages in C57BL/6 mice at 1 wk and neutrophils and lymphocytes in both strains.
	DEP (5500-watt single-cylinder	Route: Intranasal	A.fumigatus+DEP increased IgE, the mean BAL eosinophil percentage, goblet cell hyperplasia, and
(2008, <u>156709</u>) Species: Mouse	diesel engine generator (Yanmar, Model YDG 5500E),	Dose/Concentration: Average particle concentration: 1.28 mg/m ³	eosinophilic and mononuclear cell inflammatory
Gender: Female	406 cc displacement air-cooled engine, Number 2 Diesel	Time to Analysis: Four groups: saline+air control,	infiltrate around the airways and blood vessels compared to the A. fumigatus or DEP treatments.
Strain: BALB/c	Certification Fuel, 40 weight motor oil)	saline+DEP, A. fumigatus+air, A.fumigatus+DEP. A.	A.fumigatus+DEP also caused methylation at the IFN-y promoter sites CpG-53, CpG-45, and CpG-205.
Age: 11 wk	Particle Size: ~0.1 µm (MMAD)	fumigatus exposure every 4 day for 6 doses. DEP exposure 5 h/day for 3 wk concurrent with A.	
Weight: NR		fumigatus exposure.	
Reference: Lopes	PM (high density traffic; winter	Route: Open-Top Exposure Chamber	The papain+UAP treatment increased Lm values,
et al. (2009, <u>190430</u>)		Dose/Concentration: 33.86 ± 2.09 µg/m ³	collagen fibers, and decreased the density of elastin fibers over the papain+filtered air treatment. The
Species: Mouse	Particle Size: 10 μm (diameter)	Time to Analysis: Some rats pretreated with	papin+UAP treatment increased 8-isoprotane more
Gender: Male	i di diois Oize. To più (didilictei)	papain. Exposed to UAP or filtered air 24 h/day, 7 days/wk, 2 mo.	than any other group.
Strain: BALB/c			
Age: 6-8 wk			
Weight: NR			

Reference	Pollutant	Exposure	Effects
Reference: Mangum et al. (2004, <u>097326</u>) Species: Rat Gender: Female Strain: CDF (F344)/CrlBR Age: 7 wk	TiO ₂ (DuPont) Particle Size: NR	Route: Whole-body Inhalation Dose/Concentration: 10, 50 or 250 mg/m³ Time to Analysis: 6 h/day, 5 days/wk, 13 wk. Parameters measured 0, 4, 13, 26, 52 wk post-exposure.	OPN (osteopontin) Expression: At 0 wk, OPN mRNA expression exhibited a dose-dependent increase. Low dose induced a 2-fold increase while the high dose induced an almost 100 -fold increase. At 4 wk, the middose and high-dose elevated OPN mRNA levels. At 13 wk, the high dose elevated OPN mRNA levels. At 13 wk, the high dose elevated OPN mRNA levels. No significant elevation with mid dose level was observed. At 26 wk, the mid and high dose induced elevated OPN mRNA levels. At 52 wk, rats in the low, mid and high dose groups all indicated elevated levels of OPN mRNA. Specifically, the low, mid and high doses induced a 3-fold increase, 7-fold increase and 400-fold increase, respectively. OPN Protein in BALF: Data was not reported at 0 and 4 wk. At 13 wk, protein increased 9-fold (~800 pg/mL OPN) at mid dose and 100 -fold (~8000 pg/mL OPn) at high dose. At 26 wk, the mid and high dose groups remained elevated. At 52 wk, protein increased by 2.5
			fold in low dose, 7-fold in mid dose and 166-fold in high dose group. Histopathology: At 52 wk, slight OPN immunoreactivity was observed in control and low dose group (immunostaining mostly limited to intraalveolar MACS). Trichrome-stained lung sections from control and low dose groups showed no increase in collagen. Rats exposed to mid or high dose groups showed areas of lesions.
Reference: Martin et al. (2007, 096366) Species: Mouse Gender: Male Strain: BALB/c Age: 1-2 mo	UAP-BA: Urban Air particles (Buenos Airs, Argentina) Particle Size: <2.5 µm	Route: Intranasal Installation Dose/Concentration: 0.17 mg/kg Time to Analysis: 3×day, 3 days/wk, 2 days apart (1, 4, 7 day). Parameters measured 1 h post-exposure.	Particle Characteristics: 3 types, ultrafines <0.2 um (inorganics ND), bunched agglomerates of ultrafines and <40 um with aluminum silicates, ions and trace metals. BALF Cells: Increased amount of phagocytes in alveolar area, reducing airspace percentage (control 52.9% ± 1.39, UAP-BA 24.7% ± 2.87). Increased number of PAS positive cells.
			Morphometry: Induced focal inflammatory lesions. Accumulation of refractile material in upper and lower respiratory tract. PM in phagocytes of bronchiolar lumen and alveolar space. No evidence of fibrosis and/or collagen changes.
Reference: Mauad et al. (2008, <u>156743</u>) Species: Mouse Gender: Male, Female	PM (busy traffic street São Paulo, Brazil; Aug. 2005-April 2006) (NO ₂ , SO ₂ , CO) Particle Size: 2.5, 10 μm (diameter)	Route: Open-Top Chamber Dose/Concentration: PM $_2$ 5: filtered chamber- 2.9 \pm 3.0 µg/m 3 , nonfiltered chamber- 16.9 \pm 8.3 µg/m 3 ; Outdoor concentration: PM $_{10}$ - 36.3 \pm 15.8 µg/m 3 ; CO- 1.7 \pm 0.7 ppm, NO- 89.4 \pm 31.9 µg/m 3 , SO $_2$ - 8.1 \pm 4.8 µg/m 3	Mild foci of macrophage accumulations containing black dots of carbon pigment occurred in the alveolar areas on 90 day-old mice. Surface-to-volume ratio decreased from 15 to 90 days of age and was higher in mice exposed to air pollution. PM exposure reduced inspiratory and expiratory volumes at higher levels of transpulmonary pressure.
Strain: BALB/c Age: 10 day Weight: Parental: 21.4 ± 4.0 - 26.3 ± 2.8 g; 15 day-old offspring: 7.8 ± 1.1 - 9.0 ± 1.0 g; 90 day-old offspring: 20.3 ± 2.3 - 27.4 ± 1.8 g		Time to Analysis: Nonfiltered exposure 24 h/day for 4 mo. Mated at 120 days exposure. After birth, 30 females and offspring transferred to filtered or nonfiltered chamber. Killed 15 or 90 day of age.	
Reference: McDonald et al. (2004, <u>087459</u>) Species: Mouse Strain: C57BL/6 Age: 8-10 wk	DEE: high load, No 2, No cat (620: 1 dilution) DEE-ER (Control): Emissions Reduced (high load, low sulfur ECD1) (same dilution) (Yanmar diesel generator, 406 cc, 5500 watt load) Particle Size: DEE: 110 nm; DEE-ER: NR	Route: Whole-body inhalation Dose/Concentration: DEE PM: 236 μg/m³ DEE-ER PM: 7 μg/m³ Time to Analysis: DEE: 6 h/day for 7 days. DEE-ER: 6 h/day for 7 days. RSV administered post-exposure for some: single, 4 days. Those not infected with RSV sacrificed immediately upon last exposure.	Differences in Exposure Conditions: CO, PM, EC, OC, nitrate, alkyne, c2-c212 alkenes, phenanthrenes, total particle PAHs, total Oxy-PAHs, benzene, pyrene, benzo(ayrene, zinc were reduced by 90-100% in the emissions reduction case. Most other components were reduced by around 60%. DEE vs. DEE-RE Effects: DEE increased viral retention and lung histopathology. DEE-ER increases were not statistically significant. Cytokines: DEE increased TNF-α, IL-6, IFN-γ and HO-1. DEE-ER responses were not statistically significant (significantly higher variability in DEE-ER controls vs. DEE controls).

Reference	Pollutant	Exposure	Effects
Reference: McQueen et al. (2007, <u>096266</u>)	DEP: SRM 2975 (NIST) Particle Size: NR	Route: IT Instillation Dose/Concentration: 0.5 mL/rat of 1 mg/mL; 1-2.2 mg/kg	BALF Cells: A 9-fold increase in neutrophils with high individual variability in response was observed. Bilateral vagotomy prior to DEP reduced neutrophil
Species: Rat		Time to Analysis: 6 h.	increase to 3 fold. Vagotomy with saline instillation had no effect. Atropine reduced neutrophils to levels similar
Gender: Male		Pre-exposure: Vagotomy (sectioning of vagus	to saline response. No differences were observed between DEP response in anesthetized when
Strain: Wistar Kyoto		nerve) or atropine, 1 mg/kg i.p. administered 30 min prior, 2 and 4 h post.	compared to conscious animals. Macrophages, eosinophils and lymphocytes remain unchanged.
Weight: 228-500 g		11111 pilot, 2 and 4 ii post.	Respiratory Response: RMV increased post DEP. Vagatomy reduced response by one-third. Atropine pre treatment did not have effect.
Reference:	CP: Carbon particles	Reference: Intranasal Instillation	BALF Cells: No change in BAL cell count was seen.
Medeiros et al. (2004, <u>096012</u>)	PSA: ROFA (solid waste	Dose/Concentration: CP: 10 μg/mouse; 0.5	Quantitative cellular counts increased for perivascular area for both groups at all dose levels. Inflammatory
Species: Mouse	incinerator hospital Sao Paulo, Brazil)	mg/kg	cells in alveolar septum area only increased for PSA.
Gender: Male	PSB: electric precipitator, steel	PSA: 0.1, 1 or 10 μg/mouse; 0.005, 0.05, 0.5 mg/kg	
Strain: BALB/c	plant, Brazil)	PSB: 0.1, 1 or 10 µg/mouse; 0.005, 0.05, 0.5	
Age: 60 days	PSA/PSB Characteristics: Generally, PSB had greater	mg/kg	
Weight: 20-30 g	component concentrations than PSA: Br (100+x), Cr (3x), Fe (10+x), Mn (2x), Rb (60+x), Se (7x), Zn (4x). PMA>PMB: Ce (3x), Co (10+x), La (100x), Sb	Time to Analysis: Single, 24 h	
	(15x), V (50x). Particle Size: CP: 1.7 ± 2.5 μm (78%<2.5 μm); PMA: 1.2 ± 2.2 μm(98 %<2.5 μm); PMB: 1.2 ± 2.2 μm (98%<2.5 μm)		
Reference: Mutlu et al. (2006, <u>155994</u>)	PM ₁₀ Collected by baghouse from Dusseldorf, Germany	Route: IT Instillation Dose/Concentration: 100 ng/mouse; 1 µg/mouse;	Alveolar Fluid Clearance: At 100 μg/mouse, decreased clearance peaked at 24 h and recovered at 7 days.
Species: Mouse	Particle Size: NR	10 μg/mouse; 100 μg/mouse	Histology: Evidence of mild lung injury at doses of 100
Strain: C57BL/6		Time to Analysis: 1-7 days	μg/mouse or more was seen.
Age: 6-8 wk Weight: 20-25 g			BALF Cells: Significant increase in total cell number was observed. Neutrophils increased but this was not statistically significant.
			Wet/Dry Ratio: Exposure did not induce any effects.
			Na, K-ATPase: At 100 μg/mouse, decreased activity of Na, K-ATPase in basolateral membranes was observed.
Reference:	CAPs: produced at Tuxedo, NY	Route: Nose-only Inhalation	Respiratory Rate: CAPs decreased the respiratory
Nadziejko, et al. (2002, <u>087460</u>)	laboratory using centrifugal aerosol concentrator	Dose/Concentration: CAPS 80, 66 μg/m³; avg 73 μg/m³	rate as did FA at all dose levels. However, the FA- induced respiratory rate was not statistically significant unless the data was combined. UFA increased this rate
Species: Rat	FA: Fine Particle Sulfuric Acid Aerosol	FA: 299, 280, 119, 203 μg/m³; avg 225 μg/m³	significantly.
Gender: Male	71010001	UFA: 140, 565, 416, 750 μg/m ³ ; avg 468 μg/m ³	
Strain: SH	Acid Aerosol	Time to Analysis: 10 exposures of 4 h each, each	
Age: 16 wk	Particle Size: CAPs: PM _{2.5} ; FA: 160 nm; UFA: 50-75 nm	exposure at least 1 wk apart. (2 exposures to CAPs, 4 to FA and 4 to UFA)	
Reference: Nemmar	DEP: SRM 2975	Route: Intravenous Injection	BALF Cells: Marked cellular influx at all dose levels
et al. (2007, <u>156800</u>)	Particle Size: <1 μm	Dose/Concentration: 0.02, 0.1 or 0.5 mg/kg	Was observed. Macrophages increased at the high dose, but this was not statistically significant. PMN
Species: Rat	- r ·	Time to Analysis: single, 24 h	increased significantly at all dose levels.
Gender: Male		• • •	Wet/Dry Ratio: All dose levels induced increases.
Strain: Wistar Kyoto			
Age: 16 wk			
Weight: 424 ± 8g			

Reference	Pollutant	Exposure	Effects
	PS: Polystyrene particles	Route: IT Instillation	BALF Cells: Both PSA-60 and PSA-400 (PSA-
et al. (2003, <u>087931</u>) Species: Hamster	PSC: Polystyrene particles, Carboxylate modified	Dose/Concentration: 5, 50 or 500 μg/animal; 0.05, 0.5, 5 mg/kg	60>PSA-400) induced a massive influx of PMNs. PSA-60 effect may exhibit some dose-dependency.
Gender: Male and Female	PSA: Polystyrene particles, Amine modified	Time to Analysis: Single, 10 min post-exposure Rose Bengal administered to induce thrombosis,	BALF Inflammatory/Injury Markers: Small increases in total protein were seen at 500 µg level for both PSA-60 and PSA-400. LDH was increased at all PSA-60
Weight: 100-110 g	Particle Size: PS, PSC, PSA-60: 60 nm; PSA-400: 400 nm	immediate study thereafter	levels but not for 500 ug PSA-400. Histamine increased for all PSA-60 levels and PSA-400 but due to high variability only the effect at 500 μg PSA-60 was statistically significant.
Reference: Nemmar et al. (2003, 097487)	DEP: SRM 1650	Route: IT Instillation	BALF Cells: DEP led to a significant PMN flux at 1 h (13% of total cell number), 6 h (22%) and 24 h (37%).
Species: Hamster	Particle Size: NR	Dose/Concentration: 50 μg/animal	Histamine: Concentrations in BALF were consistently
Gender: NR		Time to Analysis: Single exposure, parameters measured 1, 3, 6 or 24 h post- exposure.	elevated starting at 1 h. Plasma histamine did not increase until 6 h.
Weight: 100-110 g			Pretreatment with Histamine Receptor Antagonist:
			A major decrease in DEP induced PMN infiltration was seen. No effect on histamine in BALF or plasma was observed.
Reference: Pereira	Ambient Particles (Porto Allegre, Brazil)	Route: Whole-body Inhalation	BAL Inflammatory/Injury Markers: An increase in lipid peroxidation was statistically significant only for
Species: Rat	Particle Size: <10µm	Dose/Concentration: P-6: 34, 22 or 225 μg/m ³	the 20 h continuously exposed group. Leukocytes also increased at P-20. No change at P-6. Total protein
Gender: Male		P-20: 139 or 112 μg/m ³	remained unaffected at all dose levels.
Strain: Wistar Kyoto		P-I: 99 μg/m ³	Wet to Dry Ratio (0h): No effect was observed.
Age: 3 m		Time to Analysis: P-6: single/continuous for 6 h P-20: single/continuous for 20h	
		P-I: intermittent (5 h) periods per day for 4 days	
		consecutively Parameters measured 0 or 24 h post-exposure	
Reference:	PM (Fe and soot from	Route: Inhalation	A significant reduction of cell proliferation occurred only
Pinkerton et al. (2004, <u>087465</u>)	combustion of acetylene and ethylene in a laminar diffusion flame system)	Dose/Concentration: Mean mass concentration: 243 ± 34 μg/m ³ ; Average Fe concentration: 96	within the proximal alveolar region of exposed animals compared to controls. There were no significant differences between the groups for alveolar formation
Species: Rat	Particle Size: Median diameter:	μg/m³	and separation within the proximal alveolar region.
Gender: Female (pregnant), Offspring- NR	72-74 nm; size range: 10-50 nm	Time to Analysis: Exposed 10 days postnatal age, 6 h/day, 3 days (consecutive).	
Strain: SD			
Age: 10 days (pups), Pregnant females- 10-14 days of gestation			
Weight: NR			
Reference: Pinkerton et al.	PM (Fe, Soot) (ethylene, iron pentacarbonyl, acetylene	Route: Whole-body Inhalation	Fe: Only the high dose had significant effects. This dose increased total protein in the lavage fluid,
(2002, <u>087645</u>)	combined; Fe ₂ O ₃ ; soot: 60% EC,	Dose/Concentration: Adult males: Fe- 57, 90 μg/m³, Soot- 250 μg/m³, Fe+Soot- Fe: 45 μg/m³,	decreased total antioxidant power, induced GST activity, and induced a non-significant, increasing trend
Species: Rat	40% OC) (CO, NO _X) Particle Size: Fe (diameter) 40	Total PM: 250 µg/m³; Neonates: Fe+Soot- Low: Fe- 30 µg/m³, Total PM: 250 µg/m³, High: Fe- 100	of GSH and GSSG. IL-1β, intracellular ferritin, and NF-
Gender: Male, Female	nm; Soot (primary particles, diameter) 20-40 nm	μg/m³, Total PM: 250 μg/m³	κB increased. Fe+Soot, Soot: Fe+Soot significantly reduced the total antioxidant power in BALF and supernatant from lung tissue homogenate. Fe+Soot significantly increased
Strain: SD		Time to Analysis: Adult males exposed to Fe, soot, Fe+Soot, or filtered air. Exposed 6 h/d, 3	
Age: 11-13 wk (adult male), 10-12 days (neonatal)		days (consecutive). BAL, 2 h postexposure, lung tissue, 24 h postexposure. Neonatal rats exposed to Fe+Soot 10-12 day-old and 23-25 day-old.	GSSG, IL-1β, NF-κB, CYP1A1, and CYP2E1. CYP2B1 increased but was not significant. Soot alone was not significant for anything.
Weight: NR			Neonates: The high-dose significantly decreased cell viability, increased LDH activity, and increased IL-1 β and ferritin. Both doses significantly increased GSSG, GRR, and GST, and decreased total antioxidant power.

Reference	Pollutant	Exposure	Effects
Reference Reference: Pires-Neto et al. (2006, 096734) Species: Mouse Gender: Male Strain: Swiss Age: 6 days Reference: Pourazar et al. (2005, 088305) Species: Human Gender: Male and Female (nonatopic & nonsmokers)	Pollutant Ambient Air: PM _{2.5} , NO ₂ and CB (Sao Paulo, Brazil) Particle Size: PM _{2.5} DEP: generated from idling Volvo diesel engine DEP 300 μg/m³ comprised of: NO ₂ 1.6 ppm NO 4.5 ppm CO 7.5 ppm Hydrocarbons 4.3 ppm Formaldehyde 0.26 mg/m³ Suspended particulates	Route: Whole-body Inhalation Dose/Concentration: PM _{2.5} : 46.49 μg/m³ Control: 18.62 μg/m³ NO ₂ : 59.52 μg/m³ Control: 37.08 μg/m³ Control: 0 μg/m³ Time to Analysis: 24 h/day, 7 days/wk for 5 mo (weaned at 21 days into exposure, mothers removed) Route: Whole-body Inhalation Dose/Concentration: DEP 300 μg/m³ Time to Analysis: Single exposure for 1 h. Parameters measured 6 h post exposure.	Nasal Cavity: Increased total mucus and acidic mucus at proximal and medial areas of cavity. Nonsecretory epithelium declined. No significant changes in amount of neutral mucus, volume proportion of neutral mucus, volume proportion of neutral mucus, volume proportion of nonsecretory epithelium, volume proportion of nonsecretory epithelium, volume proportion of nonsecretory epithelium or ratio between neutral and acidic mucus were observed. Types of Acidic Mucus Cells: Proximal and medium cells increased. Effects on distal cells were equivocal. Transcription Factors: Exposure induced increased cytoplasmic and nuclear immunoreactivity of phosphorylated p38 MAPK in bronchial epithelium. Increased nuclear translocation of phosphorylated p38 and JNK, MAPK as well as increased nuclear phosphorylated tyrosine immunoreactivity were observed. No change in total or nuclear c-fos immunoreactivity was seen. Exposure induced increased nuclear translocation of phosphorylated JNK
Age: 21-28 yr	4.3×10 ⁹ /cm ³ Particle Size: <10 μm		significantly associated with phosphorylation of nuclear c-jun and also resulted in an increase in nuclear p65. Cytokines: Expression of IL-8 was positively associated with nuclear phosphorylated p38 postexposure.
Reference: Pradhan et al. (2005, <u>096128</u>) Species: Rat Gender: Female Strain: Wistar Albino Weight: 120-180 g	RSPM: Respirable Suspended PM (Lucknow, India) Quartz dust (positive control) Particle Size: < 5 µm	Route: IT Instillation Dose/Concentration: 2.5, 5.0, or 10.0 mg/ 0.05 ml; 20, 42, 83 mg/kg Time to Analysis: 15 days.	Relative Lung Weight: A dose-dependent increase in total lung weight of RSPM-instilled animals was observed. BALF Cells: Exposure induced a dose-dependent increase in total cells dose-dependent with the low and mid dose levels. PMNs increased massively at all dose levels with RSPM inducing less of an increase than Quartz. Exposure at low dose levels resulted in an influx of inflammatory cells (predominantly macrophages into lumen of alveolar ducts and alveoli). Reaction at the high dose was more intense than that seen in mid dose-exposed lungs. BAL Inflammatory/Injury Markers: A significant dose-dependent increase in LDH and NO was observed, but the Quartz-induced increase was greater than the RSPM-induced increase. An increase in protein was significant at the mid dose level for RSPM and Quartz. Lung Biochemistry: An increase in lipid peroxidation was dose-dependent. Superoxide dismutase (SOD) enzyme levels showed a dose-dependent decrease.
Reference: Ramos et al. (2009, 190116) Species: Guinea Pig Gender: NR Strain: NR Age: NR Weight: 330-370 g	WS (Pine wood) (CO(<80ppm), CO ₂ (0.35%), O ₂ (20.1%), PM _{2.5} , PM ₁₀) Particle Size: PM _{2.5} , PM ₁₀	Route: Whole-body Inhalation Dose/Concentration: WS: 60 g , PM _{2.5} : $363 \pm 23 \text{ µg/m}^3$, PM ₁₀ : $502 \pm 34 \text{ µg/m}^3$ Time to Analysis: Exposed 3 h, 5 days/wk for 1, 2, 3, 4, 6, 7 mo.	WS significantly decreased body weight between 4 and 7 m exposure. The concentration of blood carboxyhemoglobin increased. Recovered BALF cells were higher in WS-exposed pigs. Macrophages and neutrophils increased. Inflammation in the lungs was seen. Pulmonary arterial hypertension and emphysematous lesions were observed. Macrophage and lung tissue homogenate elastolysis increased. Collagenolysis increased. Generally, MMP-2, MMP-9, and MMP-1 increased. BAL macrophage apoptosis increased with time.

Reference	Pollutant	Exposure	Effects
Reference: Rao et	DEP: SRM 2975 Particle Size: 0.5 µm	Route: IT Instillation	BALF Cells: Macrophages unaffected. Increased
al. (2005, <u>095756</u>)		Dose/Concentration: 5, 35, 50 mg/kg bw at 7days fo	PMNs at 1 day for all dose levels, sustained elevation at 7days for mid and high dose and at 30 days for all dose levels.
Species: Rat		Time to Analysis: Sacrificed 1, 7, 30 days post single exposure. Cytokines measured after 24 h	BAL Inflammatory/Injury Markers: Increased albumin
Strain: SD Weight: 175 g		incubation (in vitro).	at 1 and 30 days at all dose levels. Increased LDH except at low dose at 7 days.
			Cytokines: The high dose induced a significant increase of mRNA expression for IL-1 β , iNOS, MCP-1, and MIP-2 in BAL cells. MCP-1 mRNA sustained high levels at 7 days for mid and high dose and at 30 days for all dose levels. mRNA expression of IL-6, IL-10, TGF- β 1, TNF- α were unaffected. However, IL-6 and MCP-1 proteins increased significantly in BALF at 1 day for mid and high dose, returning to basal levels at 7 days. MIP-2 increased for all dose levels at all time points. NO level unaffected.
Reference: Reed et al. (2006, <u>156043</u>)	HWS (burned mix of hardwood in noncertified wood stove using	Route: Whole-body Inhalation	Organ Weights: Liver declined in rats of both genders at 1 wk and female rats at 6 m. Lung volume increased
Species: Rat, Mouse	a Pineridge model 27000, Heating and Energy Systems, Inc. Clackamas, OR)	Dose/Concentration: Low: 30 μg/m ³ Mid-low: 100 μg/m ³	and lung weight decreased in female rats at 6 m. Spleen weight increased in female mice and rats at 1 wk. Thymus weight decreased in male rats at 1 wk.
Gender: Male and Female	Measured Components: EC, OM, NO ₃ , SO ₄ , NH ₄ , metals	Mid-high: 300 μg/m ³ High: 1000 μg/m ³	Cells: Eosinophils decreased and lymphocytes increased in males at 6m. Neutrophils decreased at 6m
Strain: CDF (F344)/CrlBR (rat),	Particle Size: ~0.25 μm	Time to Analysis: 6 hr/day, 7 days/wk for 1wk or 6 mo. Immediate post-exposure analysis.	in both genders. Minimal increases in alveolar macrophages and sparse brown-appearing macrophages in all species.
SH (rat), A/J (mouse), and C57BL/6 (mouse)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Bacterial Clearance: Mice instilled with bacteria were mostly unaffected by exposure, except for a decline in histopathology summary score after 6m.
Age : 6-12 wk			Tumorigenesis: No values for exposed groups differed significantly from controls. There was no evidence of progressive exposure related trend.
Reference: Reed et	DE: generated from two 2000	Route: Whole-body Inhalation	Organ Weights: Kidney weight increased after 6m for
al. (2004, <u>055625</u>)	model 5.9 L Cummins ISM turbo diesel engines	Dose/Concentration: Low: 30 µg/m³	both males and female rats at the high dose. Kidney and liver weight increased for female mice at all dose
Species: Rat, Mouse	Co-exposure to 8 gas and 8	Mid-low: 100 μg/m ³	levels at 6 mo. Lung weight increased at high dose at 6m for female mice and male rats. Spleen weight
Gender: Male and	solid exhaust components measured	Mid-high: 300 μg/m ³	decreased in male mice at the low and mid-high levels.
Female Strain: CDF	Particle Size: 0.10 - 0.15 μm High: 1000 μg/m ³	0 10	Cells: Minimal increases in alveolar macrophages and PM within the macrophages were seen.
(F344)/CrlBR (rat), A/J (mouse)		Time to Analysis: 6 h/day, 7 days/wk for 1wk or 6 mo. Analyzed 1 day post-exposure.	Cytokines: TNF-α decreased in female rats after 6m.
Age: 12 wk			Tumorigenesis: No significant effect was observed.
Reference: Reed et al. (2008, <u>156903</u>)	GEE (2 1996 General Motors 4.3-L V-6 engines; unleaded	Route: Whole-body Inhalation	Body and Organ Weight and Histopathology in A/J: Kidney weight decreased, but no effects pertaining to
Species: Mouse	gasoline)	Dose/Concentration: Control: 2.5 ± 2.9, Low- exposure: 6.6 ± 3.7, Mid-exposure: 30.3 ± 11.8,	weight were significant. No visible inflammatory changes were seen.
Gender: Male, Female	Particle Size: 150 nm (MMAD)	High-exposure: 59.1 ± 28.3 , High filtered exposure: $2.3 \pm 2.6 \mu\text{g/m}^3$	Lung Damage in A/J: No significant effect was seen, but hypomethylation was seen in females at 1wk, and
Strain: C57BL/6, A/J, BALB/c		Time to Analysis: Exposed 6 h/day, 7 days/wk, 3 days-6 mo.	methylation was reduced in all exposed female groups. Bacteria in Lungs of C57BL/6: Exposure did not
Age: NR			affect the clearance of bacteria from the lung.
Weight: NR			Respiratory Allergic Response in BALB/c: Exposure had little effect, but serum total IgE increased significantly for the high-exposure group. Increasing trends were seen in OVA-specific serum IgE and IgG1, as well as neutrophils and eosinophils.

Reference	Pollutant	Exposure	Effects
Reference: Reed et al. (2008, 156903) Species: Mouse Gender: Male, Female (only BALB/c) Strain: C57BL/6, A/J, BALB/c Age: NR Weight: NR	GEE (two 1996 General Motors 4.3-L V-6 engines; regular, unleaded, non-oxygenated, non- reformulated gasoline blended to US average consumption for summer 2001 and winter 2001- 2002- Chevron-Phillips) Particle Size: 150 nm (MMAD)	Route: Whole-body Inhalation Dose/Concentration: PM; Low- 6.6 ± 3.7 µg/m³, Medium- 30.3 ± 11.8 µg/m³, High- 59.1 ± 28.3 µg/m³ Time to Analysis: A/J - exposed 6 h/days, 7 days/wk, 3 days-6 mo. C57BL/6- 1wk exposure. Instillation of P. aeruginosa. Killed 18 h postinstillation. BALB/c- Conditioned to exposure chambers and mated. Pregnant females exposed GD 1 and throughout gestation. Offspring exposures continued until 4 wk-old. Half of offspring sensitized to OVA. Tested for airway reactivity by methacholine challenge 48 h postinstillation and euthanized.	The kidney weight of female A/J mice decreased at 6m and was strongly related to PM by the removal of emission PM. PM-containing macrophages increased by 6 mo. Hypomethylation occurred in females at 1 wk. The clearance of P. aeruginosa was unaffected by exposure. Serum total IgE significantly and dose-dependently increased. OVA-specific IgE and IgG1 gave slight exposure-related evidence but were not significant.
Reference: Reed et al. (2008, 156903) Species: Rat Gender: Male, Female Strain: CDF (F344)/CrIBR, SHR Age: NR Weight: NR	GEE (two 1996 General Motors 4.3-L V-6 engines; regular, unleaded, non-oxygenated, non-reformulated Chevron-Phillips gasoline, U.S. average consumption for summer 2001 and winter 2001-2002) Particle Size: 150 nm (MMAD)	Route: Whole-body Inhalation Dose/Concentration: PM; Low- 6.6 ± 3.7 µg/m³, Medium- 30.3 ± 11.8 µg/m³, High- 59.1 ± 28.3 µg/m³ Time to Analysis: 6 h/day, 7 days/wk, 3 days-6 mo.	Organ Weight: At 6 mo. exposure, the heart weights of male and female rats increased and male rats' seminal vesicle weight decreased. Histopathology: PM-containing macrophages increased by 6 mo. Lung DNA Damage: Hypermethylation occurred in medium- and high-exposure male rats at 6 mo. BAL: For both genders in the high-exposure group, LDH and MIP-2 significantly increased at 6 mo. ROS decreased at 1wk and 6 mo. Generally, the production of hydrogen peroxide and superoxide decreased in the high-exposure group and medium- and high-exposure groups, respectively. Removal of Emission PM: The removal of emission PM strongly linked PM to increased seminal vesicle weight, red blood cell counts, LDH, lipid peroxides, and methylation.
Reference: Rengasamy et al. (2003, <u>156907</u>) Species: Rat Gender: Male Strain: SD Weight: ~200 g	DEP: SRM1650 CB Elftex-12 furnace black, Cabot, Boston, MA Particle Size: NR	Route: IT Instillation Dose/Concentration: 5, 15, or 35 µg/kg Time to Analysis: Single; 1, 3, 5, 7 days post exposure	CYP1A1: DEP at all doses significantly increased CYP1A1 protein, was maximal at 1 day, and normalized at 5 days. CB had no effect. CYP2B1: DEP and CB at 15 and 35 mg/kg inhibited activity at 1 day. Protein level significantly decreased at 1 day with 5, 15 and 35 mg/kg DEP and at 15 and 35 mg/kg CB. A time dependent decrease was shown at 35 mg/kg for both DEP and CB.
Reference: Renwick et al. (2004, 056067) Species: Rat Gender: Male Strain: Wistar Kyoto Weight: 370-470 g	FCB: Fine Carbon Black (Huber 990) UCB: Ultrafine Carbon Black (Printex 90, Degussa) FTO: Fine Titanium Dioxide (Tioxide) UTO: Ultrafine Titanium dioxide (Degussa) Particle Size: FCB: 260 nm; UCB: 14 nm; FTO: 250 nm; UTO: 29 nm	Route: IT Instillation Dose/Concentration: 125 or 500 μg/rat Time to Analysis: Single, 24 h	BALF Cells: UTO and UCB induced a large dose-dependent increase in percent neutrophils (only statistically significant at 500 μg for UTO). BAL Inflammatory/Injury Markers: UTO and UCB also increased total protein content only at the 500 μg dose. UCB induced LDH release at 125 and 500 μg, UTO and CB at 500 μg. UTO and UCB induced large dose-dependent increases in GGT activity (only statistically significant at 500 μg for UTO). Phagocytosis: All 4 particles decreased but only at the 500 μg level. Chemotaxis: Only UTO and UCB at 500 μg/l increased chemotactic migration.

Reference	Pollutant	Exposure	Effects
Reference: Rhoden et al. (2004, <u>087969</u>)		Route: Whole-body Inhalation	Particle Characteristics: Major components did not appear to show any correlation to total particle mass.
Species: Rat	Particle Size: CAPS: 0.1-2.5 μm	Dose/Concentration: 1060 ± 300 μg/m ³	Included Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe,
Gender: Male			Ni, Cu, Zn, Br, Ba, Pb. Metals Al, Si and Fe (somewhat less for Pb, Cu, K) correlated with TBARS.
Strain: SD		(CAPS-NAC = CAPS with 50 mg/kg bw NAS (N-	BALF Cells: CAPS increased PMN 4 fold. NAS treatment reduced this increase to control levels.
Weight: 250-300 g		acetylcysteine) pretreatment)	BAL Inflammatory/Injury Markers: LDH and total protein not affected. Histology confirms slight inflammation with CAPS and no inflammation with CAPs-NAC.
			Oxidative Stress: CAPS increased TBARS and oxidized protein by 2+ fold. NAS fully prevented the increase in TBARS and partially prevented an increase in protein carbonyl.
			Tissue Damage: Wet/dry ratio increased with CAPS but significantly decreased with NAC.
Reference: Rhoden	Urban Air Particles (UAP) (SRM	Route: IT Instillation	UAP significantly increased the total cell number, PMN,
et al. (2008, <u>190475</u>) Species: Rat	Particle Size: NR	Dose/Concentration: 1mg in 100 µL saline	MPO activity, and protein levels. MnTBAP prevented UAP-induced lung inflammation. UAP increased
Gender: Male	Faiticle Size. NIX	Time to Analysis: Instilled with UAP. CL analysis:15 min post-exposure. BAL	oxidants in lung CL, which was prevented by MnTBAP.
Strain: SD		measurements: 4 h post-exposure.	
Age: NR		Some rats pre-treated with MnTBAP 2 h prior to UAP exposure.	
Weight: 300 g		OAI CAPOSUIC.	
Reference: Rivero	Ambient air (Sao Paulo, Brazil)	Route: IT Instillation	Histopathology: At both doses, acute alveolar
et al. (2005, <u>088653</u>)	Particle Size: <2.5 µm	Dose/Concentration: 100 or 500 µg/rat; 0.4 or 2	inflammation was observed and was more pronounce in the 500 µg group.
Species: Rat		mg/kg	Lung Morphometry: Lumen wall ratio values show a dose-dependent increase in peribronchial as well as intra-acinar pulmonary arterioles. No effect in myocardial arterioles were observed.
Gender: Male		Time to Analysis: Single, 24 h	
Strain: Wistar Kyoto			Tissue Damage: Lung wet/dry ratios were unaffected.
Age: 3 mo. Weight: 250 g			
Reference: Roberts et al. (2004, 198903)	ROFA: SRI (cyclone power plant)	Route: IT Instillation	Technology: Laser capture microdissection of airway cells were used to analyze results.
Species: Rat	Particle Size: NR	Dose/Concentration: 0.5 mg/rat; 1.67 mg/kg	Protein: pERK1/2: ERK1/2 ratio increased by 60% at
Gender: Male Strain: SD		Time to Analysis: Single, 6 and 24 h	6 h and 80% at 24 h. NF-κB activity increased at 6 h but was not statistically significant.
Age: 60-90 days			
Weight: 300-350 g			
Reference: Saber et al. (2005, 097865) Species: Mouse	CB: Printex 90 (Degussa) Particle Size: DEP: 215 nm; CB: 90 nm	Route: Nose-only Inhalation Dose/Concentration: DEP: 20 mg/m³; CB: 20 mg/m³ Time to Analysis: 90 min/day for 4 days consecutively, 1 h	BALF Cells: Neutrophils increased significantly to 15% when compared to control (4%) with DEP exposure. No response difference was observed between TNF (+/+) and TNF(-/-). CB did not induce any changes in neutrophil numbers.
Gender: Female Strain: TNF(-/-) (B6, 129S-Tnftm1Gk1), C57/BL			Cytokines: IL-6 increased 2-3 fold in DEP and CB exposure in both normal and knockout mice. IL-1 β was unaffected.
Age: 9-10 wk			mRNA: In TNF (+/+) mice, DEP and CB increased expression of TNF mRNA 2- fold. IL-6 mRNA expression was high in DEP-exposed knockout mice when compared to normal mice.
			DNA: DNA strand breaks increased in both strains. Knockout mice showed a higher response to CB and DEP exposure. For normal mice, only CB induced a statistically significant effect.

Reference	Pollutant	Exposure	Effects
Reference: Schins et al. (2004, 054173)	Soluble fractions PMC: PM _{10-2.5} PMF: PM _{2.5} -B: Borken, Germany (rural) -D: Duisburg, Germany (industrialized) Particle Size: PM _{10-2.5} , PM _{2.5}	Route: IT Instillation Dose/Concentration: 0.32 ± 0.01 mg/rat; 0.91± 0.58 mg/kg	BALF cells: Both PMC showed a massive increase in neutrophils. PMC-B induced the greatest increase followed by PMC-D. Both PMF did not induce a significant increase.
Species: Rat Gender: Female Strain: Wistar Kyoto		Time to Analysis: Single, 18 h	BAL Inflammatory/Injury Markers: PMC from both sites induced markedly higher endotoxin concentration vs PMF as follows in decreasing order: PMC-B, PMC-D, PMF-B, PMF-D, control. Glutathione decreased only
Weight: 350-550 g			for PMC-B. LDH and total protein were unaffected. Cytokines: TNF-α and IL-8 increased with PMC from both sites. PMF induced a slight increase in IL-8 but did not induce an increase in TNF-α.
			Radical Formation: Formation of hydroxyl radicals increased with exposure. Relative intensity was: PMC-D, PMF-D, PMC-B, PMF-B, and control.
Reference: Seagrave et al. (2005, <u>088000</u>)	PM from 3 sources: NT: New Technology bus, Detroit Diesel 50G, exhaust oxidation	Route: IT Instillation Dose/Concentration: 0.25-2.2 mg/rat in 0.5mL saline	Engine Specific Emission data: HE had significantly higher PM and SVOC recovered emission rates than NE and NT.
Species: Rat Gender: Male	catalyst, 216 miles, 2002 model - in use		Organic mass in PM: The following PM sources are listed in decreasing order of percent of total mass: HE, NE, NT.
Strain: F344/DCrl BR	NE: Normal emitter bus, Detroit Diesel 50G, no catalyst, 134259 miles, 1997 model - in use		Total PAH: The following PM sources are listed in decreasing order of total mass: HE, NT, Control, NE.
Age: 11 ± 1 wk	HE: High Emitter bus, Cummins L10G, no catalyst, >250, 000 miles, 1992, retired		Nitro PAH: The following PM sources are also listed in decreasing order of total mass: NE, HE, Control, NT. Authors note confounding technical issues (mostly technique related) with mostly mild effects.
	Fuel composition very similar for 3 vehicles: methane (96-96.8%), ethane (1.6-1.9%), carbon dioxide (0.9-1.1%), nitrogen (0.6-0.8%), traces of other gases Particle Size: NR		BAL Inflammatory/Injury Markers: LDH showed dose-dependent increases with HE inducing higher increases than NT and NE. Total protein exhibited dose-dependent increases with HE, NT and the positive control SRM2975 inducing higher levels than NE.
			Potency Factors Cytotoxicity and Inflammation: HE was significantly more potent than NT and NE, with NT also showing significant potency.
			Lung Toxicity: The results were highly variable but the general toxicity levels in increasing order is the following: NE, NT, HE, Normal gasoline, diesels, and high gasolines, though individual factors may differ greatly.
Reference: Seagrave et al. (2006, 091291) Species: Rat Gender: Male	PM _{2.5} sources: BHM: Birmingham, Alabama; urban JST: Jefferson Street, Atlanta, Georgia; urban PNS: Pensacola, Florida; urban/residential CTR: Centreville, Alabama; rural "smoke" = downwind of forest fires/burns (NR) Particle Size: PM _{2.5}	Route: IT Instillation Dose/Concentration: 0.75, 1.5, 3 mg/rat Time to Analysis: Single, 24 h	BALF PMN: In general, the winter samples induced greater increases in potency than the summer samples except for PNS. For the winter samples, the samples that induced the greatest increases, in descending order, are: JST, BHM, CTR, PNS and Smoke. For the summer, the samples that induced increases, in descending order, are: BHM, JST, PNS, and CTR.
Strain: F344/Crl BR, Age: 11 ± 1 wk			BALF Macrophages: For the winter, the BHM and JST samples significantly increased potency whereas the PNS sample induced significantly negative potency. For the summer, only the BHM sample significantly induced potency.
			BALF Lymphocytes: Only the JST-W and BHM-W significantly increased potency. The BHM-S, CTR-S and PNS-S also significantly increased potency.
			Histopathology: All the winter and summer samples, excepting PNS, significantly induced inflammation.
			Lung weight/body Weight Ratio: In general, for all end points, JST-S was significantly less potent than JST-W. The summer samples of BHM and CTR were also generally more potent than their winter counterparts.

Reference	Pollutant	Exposure	Effects
Reference: Seagrave et al. (2005, 088000) Species: Rat Gender: Male, Female Strain: CDF(F- 344)/CrIBR Age: 10-12 wk	DE: (Two 6 cyl Cummins ISB turb0) HWS = hardwood smoke (mixed black/white oak, uncertified conventional wood stove) DE: EC = 557 μg/m³ OC = 269 μg/m³ NO = 45 ppm NO₂ = 4 ppm CO = 30 ppm THV = 2 ppm HWS: EC = 43 μg/m³ OC = 908 μg/m³ NO or NO₂ = 0 ppm CO = 13 ppm THV = 3 ppm Particle Size: DE: 0.14 ± 1.8 μm; HWS: 0.36 ± 2.1 μm	Route: Whole-body Inhalation Dose/Concentration: 30, 100, 300, 1000 μg/m³ TPM Time to Analysis: 6 h/day, 7 days/wk for 6 mo. 1 day post-exposure	Particle Characteristics: Major differences K: HWS>>DE; Ca DE>>HWS; Zn: DE>>HWS. BALF Cells: No effects were observed except for an increase in macrophages at 30 μg/m³ for HWS males exposed to HWS. Cytokines: IL-1β was unaffected by DE or HWS. MIP-2 decreased for both genders at 1000 HWS. TNF-α decreased in females with DE exposure. No TNF-α effects for HWS were observed. BAL Inflammatory/Injury Markers: LDH was unaffected by DE. Exposure to HWS induced an increase for males only at 100 and 300 but not at 1000 μg/m³. Protein was unaffected by DE. HWS exposure showed male-only effects at 100 and 300 μg/m³ but not at 1000. AP was unaffected by DE or HWS except for slight decline induced by HWS at 1000 μg/m³ for both genders. Other: β-glucose was unaffected by DE. HWS-exposed females showed decreased β-glucose at 100 and 300 but not at 1000 μg/m³. BALF GSH to (GSH+GSSG): No effects for DE were observed. HWS significantly decreased the ratio in both males and females at 1000 μg/m³. The effect for females was greater than the male effect.
Reference: Seagrave et al. (2008, 191990) Species: Rat Gender: Male Strain: SD Age: 10-12 wk Weight: 250-300 g	GEE (2 1996 General Motors 4.3-L V6 gasoline engines; conventional Chevron Phillips gasoline, U.S. average composition) (CO, NO, NO ₂ , SO ₂ , THC) (PM _{2.5} composition-EC, OC, SO4, NH4, NO ₃) Simulated downwind coal emission atmospheres (SDCAs) (fly ash, gas-phase pollutants, sulfate aerosols, NO, NO ₂ , SO ₂) Paved Road Dust (RD) (Los Angeles, CA; New York City, NY; Atlanta, GA) Particle Size: GEE: MMAD- 150 nm, RD: 2.6 ± 1.7 µm, SDCA: 0.1-1.0 µm	Route: Nose-only Inhalation Dose/Concentration: GEE: 60 μg/m³, SDCAs: 317-1072 μg/m³, RD: 306-954 μg/m³; GEE: CO-104 ppm, NO- 16.7 ppm, NO ₂ - 1.1 ppm, SO ₂ - 1.0ppm, THC- 12 ppm; SDCAs: CO- <1 ppm, NO-0.19-0.62 ppm, NO ₂ - 0.10-0.37 ppm, SO ₂ - 0.07-0.24 ppm, THC- <1 ppm Time to Analysis: 6 h exposure, immediately post-exposure	GEE produced CL in the lungs, heart, and liver. RD produced a significant effect in the heart at the low dose. SDCAs had no effect on CL. GEE did not affect the amount of macrophages or PMN. SDCAs increased macrophages. The RD low dose increased macrophages and PMN. SDCAs increased Penh values and tidal volumes.
Reference: Singh et al. (2004, <u>087472</u>) Species: Mouse Gender: Female Strain: CD-1 Age: 6-8 wk	A-DEP (4cyl light duty 2.7l Isuzu diesel at 6 kg/m) DEP: SRM 2975 Particle Size: A-DEP >50 μm	Route: Oropharyngeal Aspiration Dose/Concentration: 25 or 100 μg/mouse Time to Analysis: single, 4 h (18 h post-exposure measurements taken but NR due to similar results)	Particle Characteristics: DEP had 60% EC vs 9% in A-DEP. A-DEP had 50% OC vs 5% in DEP. Phenanthrene and Fluoranthene fractions were much more prevalent in PAH from DEP than A-DEP. BALF Cells: PMNs significantly increased dose-dependently with DEP and remained elevated at 18h. Endotoxin induced the greatest increases of PMNs. Macrophages increased with A-DEP and were unaffected by DEP. Cytokines: Endotoxin induced massive responses for IL-6, MIP-2 and TNF-α but no response from IL-5. A-DEP increased all 4 cytokines but only at the 100 μg dose level. Similarly, DEP only increased IL-6 at the 100 μg dose level. BAL Inflammatory/Injury Markers: Microalbumin increased for both pollutants except DEP induced increases only at 100 μg. Endotoxin increased microalbumin. NAG increased with 100 μg A-DEP.

Reference	Pollutant	Exposure	Effects
Reference: Smith et al. (2003, 042107) Species: Rat Gender: Male Strain: SD Age: 11-12 wk	CAPs (Fresno, CA) Particle Size: <2.5 μm	Route: Whole-body Inhalation Dose/Concentration: 6 exp in 2 sets of 3: Fall1 = 847 µg/m³ Fall2 = 260 µg/m³ Fall3 = 369 µg/m³ Winter1 = 815 µg/m³ Winter2 = 190 µg/m³ Winter3 = 371 µg/m³ Time to Analysis: 4 h/days for 3 consecutive days. Parameters measured immediately following last exposure.	Particle Characteristics: Nitrate showed the highest variability near 10 fold, followed by Si, S and EC. OC concentration was relatively consistent. Metals otherwise appeared proportionate to the concentrations. BALF Cells: Total cells increased at wk1. Percent of macrophages reduced in wk2 with CAPs. Number of neutrophils increased with CAPs, but only achieved statistical significance during wk1 of the fall and winter. Lymphocytes increased but were not statistically significant. BAL cell permeability: Upon CAPs exposure, the proportion of nonviable cells were increased up to 242% when compared to controls. The fall of wk2 induced the highest significant increases followed by fall wk1, fall wk3, and winter wk3.
Reference: Smith et al. (2006, 110864) Species: Rat Gender: Male Strain: SD Age: 8 wk Weight: 260-270 g	CFA: Coal Fly Ash (400 MW, Wasatch Plateau, Utah) (aerodynamic separation) Particle Size: 0.4-2.5 µm	Route: Nose-only Inhalation Dose/Concentration: 1400 μg/m³ PM _{2.5} including 600 μg/m³ PM ₁ Time to Analysis: 4 h/days for 3 consecutive days. Parameters measured 18 or 36 h post-exposure.	BALF Cells: Percent and total number of neutrophils in BALF and blood increased significantly at both 18 and 36 h. Percent of macrophages decreased slightly while number of macrophages increased in bronchiolealveolar duct regions at both time periods. Cytokines: MIP-2 and transferrin increased at 18 h. IL-1β increased at 36 h. Other: Gamma glutamyl transferase decreased at 36 h. Lung antioxidant increased at 18 h.
Reference: Song et al. (2008, 156093) Species: Mouse, Gender: Female Strain: BALB/c Age: 5-6 wk	DEP collected from a 4JB1-type, light-duty (2740 cc), four-cylinder diesel engine operated using standard diesel fuel at speeds of 1500 rpm under a load of 10 torque. Particle Size: 0.4 μm (mean diameter)		Airway Hyperresponsiveness: Intranasal exposure plus aerosolized DEP caused a significant increase in methacholine-induced Penh over the control. BAL Analysis: There was no significant increase in IFN-y in the BAL fluid following DEP treatment but there was a significant increase in IL-4 levels compared to the control. (IL-4 increase could indicate that DEP modulates Th-2 cytokines in the mouse model). DEP also induced an increase in total neutrophils and lymphocytes in the BAL when compared to the control. The nitrite concentration in BAL (indicating NO generation) was significantly greater in the DEP exposed group than the control. Histology: Peribronchial and perivascular infiltrates were more common in the group exposed to DEP than the control. Ym1 and Ym2 Expression: (see explanation in comments section) Ym1 and Ym2 transcripts were upregulated in response to DEP exposure in mice.
Reference: Steerenberg et al. (2006, <u>088249</u>) Species: Rat Strain: Crl/WKY Age: 6-8 wk	Ambient air samples PMC, PMF: -I: Rome, Italy -N: Oslo, Norway -PL: Lodz, Poland -NL: Amsterdam, Netherlands Measured Components: Li, Be, B, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sn, Sb, Ba, Ce, Nd, Sm, Au, Hg, Tl, Pb, Bi, U, Si, Endotoxins, Cl, NO-, SO4 Particle Size: PMC: 2.35-8.5 µm; PMF: 0.12-2.35 µm	Route: IT Instillation Dose/Concentration: 1 and 2.5 mg/animal Time to Analysis: Single, 24 h	Particle Characteristics: Concentrations of metals were highest in Rome. Amsterdam was noted for high Mg and V. Lodz was noted for high Pb, Zn, PAH. More of PMC was composed of Fe, Mn, Al, Cr, Cu. More of PMF, on the other hand, was composed of Zn, Pb, Ni, V. BALF Cells: PMNs increased. Cytokines: MIP-2 increased dose-dependently. TNF-α also increased. BAL Inflammatory/Injury Markers: CC16 decreased substantially. Crustal material (endotoxin, Na, Cl and metals but not Ti, As, Cd, Zn, V, Ni, Se) was positively associated with short term CC16. Albumin increased.

Reference	Pollutant	Exposure	Effects
Reference: Stinn et		Route: Nose-only Inhalation	Body Weight: Mean weight increased substantially during the first few weeks in all groups. Food consumption decreased in 1-24 mo but was recovered in 24-30 mo. Body weight decreased at 23 mo in all categories, but recovered except in high dose males at 30 mo.
al. (2005, <u>088307</u>)	diesel under USFTP 72)	Dose/Concentration: 3 and 10 mg/m ³	
Species: Rat	CO: 10, 37 ppm CO ₂ : 2170, 6540 ppm NO: 7.0, 22.8 ppm	Time to Analysis: 6 h/day, 7 days/wk for 24 mo; 6 mo. post-exposure	
Species: Rat Gender: Male and Female Strain: Crl: (WIU BR Age: 40 days	CO ₂ : 2170, 6540 ppm	Time to Analysis: 6 h/day, 7 days/wk for 24 mo; 6	in 24-30 mo. Body weight decreased at 23 mo in all categories, but recovered except in high dose males at 30 mo. Organ Weight: Absolute weight of lungs, larynx and trachea increased from 0 to 12 to 24 mo and stayed elevated at 30 mo: Low <hi, (12,="" (no="" 12="" 12,="" 18="" 24="" 24,="" 3="" 30="" 50="" all="" alveolar="" and="" any="" at="" bal="" balf="" between="" both="" but="" cavity="" cells:="" data="" de="" difference="" dose="" dose-dependently="" ec="" effects="" end="" epithelium="" exposure="" female="" female.="" females="" fold="" frequency,="" genders="" genders.="" greater="" group="" groups="" groups.="" high="" histopathology:="" hyperplasia="" in="" increased="" increases="" inflammatory="" injury="" interstitium="" larynx="" ldh="" levels.="" lumen="" lymphocytes="" macrophages="" male="" males="" manner.="" markers:="" measured="" metaplasia="" minute="" mo="" mo).="" mo.="" monocytes="" nasal="" neutrophils="" no="" observed,="" observed.<="" of="" parameters:="" particle-filled="" peripheral="" pmns="" pulmonary="" resolved="" respiratory="" showed="" squamous="" study.="" td="" than="" the="" tidal="" time-dependent="" unaffected="" volume="" volume,="" was="" were="" ~=""></hi,>
			Lung Histopathology: Alveolar region hyperplasia of alveolar epithelium increased at 12, 24, 30 mo in both genders at all dose levels except for 12 mo low dose males and females. Above lung histopathology was not time-dependent, though perhaps some small dose-dependence was observed. The following histopathology findings showed strong dose- and time-dependent increases that occurred in both genders (24-30 mo): goblet cell hyperplasia of bronchial epithelia, cuboidal/columnar hyperplasia of alveolar epithelium, chronic active inflammation and septal fibrosis. Tumorigenicity: Lung tumors were more prevalent in females than males and appeared to be dose-dependent. The major 3 types of tumors are the following:: bronchio-alveolar adenoma, bronchiolalveolar adenoma and benign keratinizing cystic cell tumors. Enhanced effects in females versus males may be the result of enhanced metabolism (body volume versus body weight) and increased respiratory volume/bw for females.

December 2009 D-109

Reference	Pollutant	Exposure	Effects
Reference: Sureshkumar et al. (2005, <u>088306</u>)	GE: Gasoline Exhaust (Honda generator EBK 1200, four stroke one cyl)	Route: Nose-only Inhalation Dose/Concentration: 0.635 mg/m³ Time to Analysis: 15 min/day 7, 14 or 21 days; ; <1 h post-exposure	BALF Cells: Neutrophils (%) increased at 7, 14 and 21 days (stable). Total cell count, macrophages and eosinophils were unaffected. Leukocytes and lymphocytes increased, though not significantly.
Species: Mouse Gender: Male	Including: $SO_2 = 0.11 \text{ mg/m}^3$ $NO_X = 0.49 \text{ mg/m}^3$ CO = 18.7 ppm		Cytokines: GE caused time-dependent increases in TNF- α and IL-6. IL-10 and IL-1 β were unaffected.
Strain: Swiss Age: 10-12 wk Weight: 20-25 g	Particle Size: GE >4 μm = 34.1% 3-4 μm = 15.8% 2-3 μm = 15.8% 1.5-2 μm = 10.6% 0.5-1.5 μm = 5.3% <0.5 μm = 18.4%		BAL Inflammatory/Injury Markers: y-GGT, ALP and LDH increased after 2 wk of GE exposure and stayed stable at 21 days. Total protein slightly increased on 14 and 21 days, though these increases were not statistically significant.
			Histopathology: Minor changes at 7 days, mild edema in alveolar region at 14 days and sloughing of epithelial cells in bronchiolar region and focal accumulation of inflammatory cells in alveolar region at 21 days were observed in a time-dependent manner.
Reference: Tesfaigzi et al. (2002, 025575) Species: Rat Gender: NR Strain: Brown- Norway	 wood- Pinus edulis) (CO, NO, NO_X, total hydrocarbon) Particle Size: Smaller size fraction: 0.405-0.496 μm, larger size fraction: 6.7-11.7 μm 	Route: Whole-body Inhalation Dose/Concentration: Target concentration (low, high exposure): 1, 10 mg/m ³ ; CO- 15-106.4 ppm, NO- 2.2-18.9 ppm, NO _x - 2.4-19.7 ppm, total hydrocarbon- 3.5-13.8 ppm Time to Analysis: 3 h/day, 5 days/wk, 4 or 12 wk.	Respiratory Function: Total pulmonary resistance increased for exposure groups and was significant for the low-exposure group. In exposed groups, forced expiratory flows and quasistatic compliance were lower and dynamic lung compliance higher, the latter being significant for the high-exposure group. For the high-exposure group, vital capacity slightly decreased, residual volume slightly increased, and CO-diffusing capacity had a slight, significant decrease.
Age: 7-8 wk Weight: 310-330 g			BALF Cells: Macrophages decreased significantly in the high-exposure group. Particle-laden macrophages increased with concentration. Lymphocytes and neutrophils slightly increased in the high-exposure group.
			Cytokines: LDH increased slightly and protein levels decreased slightly in the high-exposure group. Cytokines were below detectable levels.
			Histopathology: WS caused minimal to mild chronic inflammation in the epiglottis of the larynx. PAS-positive cells increased in the 30 day high-exposure group. AMs increased with time and concentration. Particle-laden macrophages were seen after 90 days. AB- and PAS-positive epithelial cells increased for the 90 day low exposure group.
Reference: Tin-Tin- Win-Shwe et al.	CB14: Printex 90 (Degussa) CB90: Flammruss 101	Route: IT Instillation Dose/Concentration: 25, 125, 625 μg/mouse;	Body Weight, Thymus, Spleen, Splenic Cell Count: No effects were observed.
Species: Mouse Gender: Male Strain: BALB/c Age: 7wk	(Degussa) cies: Mouse der: Male Particle Size: CB14: 14 nm CB95: 95 nm	approx. 1, 5, 25 mg/kg Time to Analysis: 1/wk for 4wk. 4 h post-exposure	BALF Cells: Increased total cell numbers were observed for 125, 625 µg CB14 (dose-dependent) and 625 µg CB95. Total cell count was twice as high for CB14 at 125 and 625 µg compared to CB95. AM numbers exhibited a dose-dependent response for both CB14 and CB95 for all doses except 125 µg. Lymphocyte numbers increased at 125 and 625 µg for CB14 and 625 µg for CB95. PMN numbers increased at 125 and 625 µg for CB14 and CB95, but the response was greater with CB14. PMN numbers were proportional to dose surface area for both PM sizes.
			BAL Cytokines: CB14 and CB95 induced dose-dependent increases in IL-1β. TNF- α increased at 125 and 625 μg dose in CB14 with the 125 dose inducing a slightly greater increase. CB14 and CB95 induced CCL-3 increases 125 and 625 μg.
			Chemokine mRNA in lung and lymph nodes: CCL-3 mRNA increased for CB14 but not CB95 4 h following the last exposure. CCL-2 was unchanged.
			Mediastinal lymph nodes: The number of CB-laden phagocytes increased in a dose-dependent manner for CB14 and CB95. CB14 had higher numbers at all doses compared to CB95.

Reference	Pollutant	Exposure	Effects
Reference: Tong et	PM _{2.5} (collected from stacked	Route: IT Instillation	Synchrotron X-ray imaging: PMFZ showed the
al. (2006, 097699) Species: Mouse Gender: Male Strain: KP600 CD-1	filter air sampler in Shanghai, China)	Dose/Concentration: PM: 25 mg/mL, 1mg/mouse	greatest increase in alveolar changes. Fe induced more hemorrhagic changes, whereas Zn induced more
	Fe: FeSO ₄	Fe: 15mg/mL, 0.6 mg/mouse	nonuniformity of lung texture. This suggests that Zn induces PBMC in a dose-dependent manner which
	Zn: ZnSO ₄	Zn: 15mg/mL, 0.6 mg/mouse	releases IL-1, IL-6, TNF-α, and IFN-y.
	PMF: PM _{2.5} + FeSO ₄	PMF: PM 25 mg/mL + Fe 15 mg/mL, 1.6 mg/mouse	Histopathology: PMFZ induced the most severe changes including serious inflammation/pus in bronchia
Weight: 22-26 g	PMFZ: PM _{2.5} + FeSO ₄ + ZnSO ₄	PMFZ: PM 25 mg/mL + Fe 15 mg/mL,	and bronchial epidermal cell hyperplasia. For Fe or PMF hemorrhagic changes predominated but were less
	Major Measured Components:		severe than PMFZ.
	Fe 26 ppm, Zn 9 ppm, S 61 ppm Particle Size: PM _{2.5}	Time to Analysis: Instilled twice at 0 and 24 h. Parameters measured 24 h following last exposure (at 48 h).	
Reference:	Ultrafine Carbon Particles	Route: Whole-body Inhalation	Pulmonary Inflammation: UFCP did not cause
Upadhyay et al. (2008, <u>159345</u>)	(UFCP)	Dose/Concentration: 172 μg/m ³	pulmonary inflammation.
Species: Rat	Particle Size: Size- 31 ± 0.3 nm, MMAD- 46 nm, Surface area	Time to Analysis: 24 h exposure. 4 days	Pulmonary and Cardiac Tissue: HO-1, ET-1, ETA, ETB, TF, PAI-1 significantly increased in the lung on
Gender: Male	concentration- 0.139 m ² particles/m ³ , Mass specific	recovery. Sacrificed 1st or 3rd day of recovery.	the 3rd recovery day. HO-1 was repressed in the heart,
Strain: SH	surface area- 807 m ² /g		but the other markers had slight, nonsignificant increases.
Age: 6 mo.			
Weight: NR			
Reference:	PM: precipitator unit power plant	Route: IT Instillation	BALF Cells: A dose-dependent increase in total cells
Wallenborn et al. (2007, <u>156144</u>)	residual oil combustion	Dose/Concentration: WKY vs SHRSP: 1.11, 3.33,	and neutrophils was observed. Equal response for all 3 strains except for SH, for both concentrations was
Species: Rat	Particle Size: PM: 3.76 μm (bulk) ± 2.15	8.33 mg/kg	observed.
Gender: Male	()	SH vs SHRSP: 3.33, 8.33 mg/kg	BAL inflammation/Injury Markers: LDH exhibited a dose-dependent increase in equal response for all 3
Strain: WKY, SH,,		Time to Analysis: Single, 24 h	strains. WKY had higher baseline levels of NAG activit
and stroke-prone SH (SHRSP) Age: 12-15 wk	I	Note: 4 h post-exposure study done on WKY vs SHRSP but not published.	but, upon PM exposure, SHRSP induced higher increases than WKY. GGT exhibited a dose-depenresponse for all 3 strains. SHRSP showed the high increase followed by WKY and SH. Protein levels increased at the high dose level with SHRSP exhib the highest increases followed by SH and WKY. Albumin levels were inconsistent between experiments.
			Oxidative Stress - Lung: (WKY vs SHRSP only): SOI decreased following increased exposure levels with SHRSP levels generally higher than WKY. Ferritin levels declined only in SHRSP.
			GPx: No action but SHRSP levels were similar to SHR and, in the WKY vs SHRSP experiment, SHRSP exhibited higher activity level than WKY.
			Ferritin: Equivocal results were observed. Levels decreased at the high dose for WKY and SHRSP but increased at medium doses for SH and SHRSP.
			ICDH: Levels increased for WKY and decreased for SHRSP.
Reference:	Zinc Sulfate (ZnSO ₄ ,	Route: Nose-only Inhalation	A trend toward increased BALF protein was seen. No
Wallenborn et al. (2008, <u>191171</u>)	71) Particle Size: NR	Dose/Concentration: $9.0 \pm 2.1 \ \mu g/m^3$, $35 \pm 8.1 \ \mu g/m^3$, $123.2 \pm 29.6 \ \mu g/m^3$	pulmonary-related effects were seen.
Species: Rat		Time to Analysis: Exposed 5 h/days, 3 days/wk,	
Gender: Male		16 wk. Half of the rats used for plasma/serum	
Strain: Wistar Kyoto		analysis, other half for isolation of cardiac mitochondria.	
Age: 13 wk			
Weight: NR			

Reference	Pollutant	Exposure	Effects
Reference: Wegesser and Last (2008, 190506) Species: Mouse Gender: Male Strain: BALB/c Age: 8-10 wk	Ambient PM _{2.5-10} Collected from San Joaquin Valley, CA Particle Size: PM _{10-2.5}	Route: IT Instillation Dose/Concentration: 25-50 µg/mouse Time to Analysis: 3, 6, 18, 24, 48, 72 h post IT instillation.	BALF Cells: Increased amount of viable cells found in PM-exposed mice with dose-response relationship between dose of PM and number of total cells recovered in BALF. At 6 h, increased numbers of macrophages at both 25 and 50 µg/mouse. Increased percentage of neutrophils observed with 50 µg/mouse PM only. Furthermore, both macrophages and neutrophils increased with longer time period from instillation, peaking at 24 h. At 50 µg/mouse, MIP-2 concentrations increased, peaking at 3 h, though not statistically significant and returned to basal levels by 6 h. Positive correlation observed between MIP-2 concentration and increased neutrophil counts. No correlation found between MIP-2 and macrophages.
Reference: Whitekus et al. (2002, 157142) Species: Mouse Gender: Female Strain: BALB/c Age: 6-8 wk Weight: NR	DEP (light-duty, four-cylinder engine- 4JB1 type, Isuzu Automobile, Japan; standard diesel fuel) (extracts) Particle Size: 0.5-4 µm	Route: Inhalation Dose/Concentration: 200, 600, 2000 μg/m³ Time to Analysis: Exposed 1 h/day,10 days. Animals receiving OVA had 20 min OVA exposure after DEP exposure.	DEP+OVA dose-dependently increased IgE and IgG1, being more effective than the OVA-alone treatment. This effect was significantly suppressed by thiol antioxidants NAC or BUC. DEP+OVA increased carbonyl protein and lipid peroxide over OVA. NAC or BUC suppressed lipid peroxide and protein oxidation. No general markers for inflammation were observed.
Reference: Wichers et al. (2004, <u>055636</u>) Species: Rat Gender: Male Strain: SH Age: 75 days	PM (HP-12): inside wall of stack of Boston, MA power plant burning # 6 oil. Particle Size: PM: 3.76 μm ± 2.15	Route: IT Instillation Dose/Concentration: 0.83, 3.33 or 8.33 mg/kg Time to Analysis: single, 6 h for Whole-body plethysmographs (WBP) and repeated daily for 4-7 days, 96 or 192 h post-exposure non-WBP animals: single, 24, 96, 192 h post-exposure	Tidal Volume: A dose-dependent decrease in tidal volume (45 % at high dose) was sustained for 1 day with very slow recovery over 7 days. Breathing Frequency: Dose-dependent increase (100 % at high dose) with recovery at 7 days was observed. Minute Ventilation: Small dose-dependent increases were observed with a return to normal ventilation in 2 days. Penh (enhanced pause): Equivocal results in all groups were observed (due to major control variation). BALF Cells: Dose-dependent increases in total cells at 24 h, with declined, but still elevated, levels at 192 h. Neutrophils increased significantly (10 fold) at 24 h in the mid and high dose groups and showed declined, but still elevated, levels at 192 h. Macrophages slowly increased in a dose-dependent manner at 192 h. BAL Inflammatory/Injury Markers: Protein and albumin increased at 24 h, returned to relative basal level at 192 h at the mid and high dose levels. NAG exhibited dose-dependent increases at 24 h and sustained these levels through 192 h.
Reference: Wichers et al. (2006, 103806) Species: Rat Gender: Male Strain: SH Age: 71-73 days Weight: 255-278 g	PM (HP-12): inside wall of stack of Boston, MA power plant burning # 6 oil. Particle Size: 1.95 µm ± 3.49	Route: Whole-body Inhalation Dose/Concentration: 13 mg/m³ Time to Analysis: Phase I: 1st day, filtered air, 2nd day, 6 h of PM Phase II: 1st day filtered air, 4 days of 6 h PM each Immediate post-exposure	Body/ Lung Weight: No effects on Phase I rats were observed. HP-12 exposure increased body weight, left lung, right intercostal, and right diaphragmatic lobes in Phase II rats. However, results appeared due to normal growth in juvenile rats over 4 days. Lung lobe to Body Weight Ratio: No effects at 1 or 4 days were observed. Deposition calculations: V and Co were used to estimate deposition rates (good correlation between two metals at R_2 = 0.94). Total HP-12 deposition using Co was 26 and 99 μ g (for 1 day and 4 day experiments) and using V was 31 and 116 μ g. Modeling information estimated HP-12 deposition at 43% in conducting airways and 57% in alveolar region. Breathing parameters: No changes were observed for 1 or 4 days studies except for a possible decrease in frequency for the 1 day study.

Reference	Pollutant	Exposure	Effects
Reference: Witten	DEP (heavy-duty Cummins N14 research engine operated at 75% throttle)	Route: Nose-only Inhalation	There were no differences for substance P. The low-
et al. (2005, <u>087485</u>) Species: Rat		Dose/Concentration: Low- 35.3 \pm 4.9 μ g/m ³ , High- 632.9 \pm 47.61 μ g/m ³	exposure group had significantly less NK1. DEP reduced NEP activity. Plasma extraversion dose-
Gender: Female	Particle Size: 7.234-294.27 nm	Time to Analysis: Exposed 4 h/day, 5 days/wk,	dependently increased and was greatest in capsaicin animals. Respiratory permeability dose-dependently
Strain: F344		3 wk. Pretreated with saline or capsaicin.	increased. IL-1β was significantly higher for the low- exposure group. IL-12 was significantly lower in the
Age: 8 wk			capsaicin high-exposure group. TNF-α increased in the high-exposure group and capsaicin low-exposure
Weight: ~175 g			group. High exposure induced particle-laden AMs in the lungs, perivascular cuffing consisting of mononuclear cells, alveolar edema and increased mast cell number. Neutrophil and eosinophil influx was not seen.
	DEP (Cummins N14 research	Route: Nose-only Inhalation	DEP dose-dependently increased plasma extraversion,
al. (2003, <u>097707</u>)	engine at 75% throttle) (EC- 34.93-601.67 µg/m³, OC- 1.90-	Dose/Concentration: Low- 35.3 ± 4.9 μg/m ³ ,	which was further increased by capsaicin. In the high- exposure group, particle-laden AMs (which were
Species: Rat Gender: Female	11.25 µg/m³, Sulfates 0.94-17.96 µg/m³, Na- 4.07-4.78 ng/m³, Mg-	High- 669.3 ± 47.6 μg/m° Time to Analysis: Exposed 4 h/day, 5 days/wk,	reduced by capsaicin), inflammatory cell margination, perivascular cuffing with subsequent mononuclear cell
Strain: F344/NH	0.60-0.86 ng/m³, Ca- 5.05-10.66 ng/m³, Fe- 3.17-6.44, Cr- 0.68-	3 wk. Pretreated with saline or capsaicin.	migration and dispersal, increased mast cells, and decreased substance P were all seen. NK-1R was
Age: ~4 wk	1.31 ng/m³, Mn- 0.11-0.22 ng/m³, Pb- 0.97-1.24 ng/m³)		downregulated in the low-exposure group and upregulated in the capsaicin-pretreated high-exposure
Weight: ~175 g	Particle Size: 7.5-294.3 nm		group. NEP decreased significantly for both groups.
Reference: Wu et	Zn ²⁺	Route: IT Instillation	Cells: Decreased number of airway epithelial cells
al. (2003, <u>199749</u>)	Particle Size: NA	Dose/Concentration: 50 µm/rat	shown with PTEN protein immunostaining. Macrophages were unaffected.
Species: Rat		Time to Analysis: Single, 24 h	
Gender: Male			
Strain: SD			
Age: 60 days	OD44 D : 4 OO (D)	B 4 17 1 20 2	PALEO II. OPOETI II. III. III. III. III. III. III. II
Reference: Yamamoto et al.	CB14: Printex 90 (Degussa)	Route: IT Instillation	BALF Cells: CB95 induced dose-dependent increases of PMN. CB14 induced an increase in PMNs but the
(2006, <u>096671</u>)	CB95: Flammruss 101 (Degussa)	Dose/Concentration: CB14: 0, 25, 125, 625 μg/mouse	increases were not dose-dependent. LTA massively increased PMN. LTA induced dose-dependent
Species: Mouse	LTA: Lipoteichoic acid	CB95: 0, 25, 125, 625 µg/mouse	increases in total cells, especially at high dose at 24 h. LTA had massive synergistic effect with CB14 and
Gender: Male	14CL: CB14 + LTA	LTA: 10 or 50 μg/mouse	CB95 for total cells and PMNs. Total cell count and
Strain: BALB/c	95CL: CB95 + LTA	14CL: 125 µg CB14 + 10 or 50 µg LTA	PMN levels were highest in 14CL with levels at 24 h higher than at 4 h. Macrophage data were inconsistent.
Age: 7 wk Weight: 23 g	CB14 measured Components: C 96.79%, HR 0.19%, N0.13%, S 0.11%, Ash 0.05%, O 2.74%	95CL: 125 μg CB95 + 10 or 50 μg LTA Time to Analysis: Single, 4 and 24 h	Cytokines: CB95 induced dose-dependent increases in IL-6, TNF-α, CCL2 and CCL3. CB14 induced dose-dependent increase in CCL2 and CCL3. Exposure induced increases of IL-6 at the high dose only. Slight
	CB95 measured Components: C 97.98%, HR 0.15%, N 0.28%, S 0.46%, Ash 0%, O 1.14%		effect on TNF-α was observed. LTA induced dosedependent increases of IL-6, TNF-α and CCL3. 14CL massively induced IL-6 and CCL2. No combination of CB and LTA affected TNF-α or CCL3.
	Particle Size: CB14: 14 nm; CB95: 90 nm		mRNA Expression: LTA, 14CL and 95CL increased TLR, mRNA expression with 95CL and 14CL inducing higher increases than LTA. No effect on TLR4 mRNA expression was observed.

Reference	Pollutant	Exposure	Effects
Reference: Yanagisawa et al. (2003, 087487) Species: Mouse	(4JB1 light duty 4cyc 2, 74 liter Isuzu engine) LPS DEP-OC: organic compounds DL: DEP + LPS DOL: DEP-OC + LPS Particle Size: 0.4 um	Route: IT Instillation Dose/Concentration: DEP/DEP-OC: 125 µg/mouse LPS: 75 µg/mouse	BALF Cells: DEP and DEP-OC increased neutrophils but the increases were not statistically significant. LPS increased neutrophils significantly. DL and DOL massively increased neutrophils at greater levels than LPS alone. Macrophages were unaffected.
Gender: Male Strain: ICR Age: 6 wk Weight: 29-33 g		Time to Analysis: Single, 24 h	Cytokines: LPS increased IL-1β, MIP-1α, MCP-1 and KC. DEP and DEP-OC had no effect. DL induced further increases. DOL decreased cytokines compared to LPS alone. DEP-OC increased IL-1β and MIP-1α mRNA expression slightly. DEP had no effect. LPS significantly increased IL-1β and MIP-1α mRNA expression. DL increased expressions while DOL did not. Pulmonary Edema: LPS, DEP and DEP-OC increased edema. DL further increased this effect. DOL had no
			effect compared to LPS alone. Histology: DL elevated neutrophil inflammation interstitial edema and alveolar hemorrhages. DOL induced neutrophilic inflammation without the alveolar hemorrhages. mRNA Expression of TLRs: DEP-OC, DL, DOL and LPS increased TLR ₂ . DEP had no effect. All particles
Reference: Yokohira et al.	DQ-12: Quartz dust (Douche Montan)	Route: IT Instillation	increased TLR4 mRNA expression. Lung Weight/Body Weight Ratio: DQ-12, HT and POF induced increases after 1 day. After 28 days, all
(2007, <u>097976</u>) Species: Rat	HT: Hydrotalcite (Kyoward 500, PL-1686, KYOWA)	Dose/Concentration: 4 mg/rat in 0.2 ml saline Time to Analysis: Single, 1 and 28 days	samples induced increases in lung weight. BALF Cells: Neutrophils increased significantly in
Gender: Male Strain: F344/DuCrj	POF: Potassium Octatitanate fiber (TISMO, Otsuka)		walls and alveolar spaces in all groups on 1 day except at HT. At 28 days, this increase was maintained only in walls with severe and moderate elevations, except for DQ-12.
Age: 10 wk	PdO: Palladium Oxide CB: Carbon Black (Mitsubishi Kasei)		Histopathology: DQ-12 caused pulmonary edema both at 1 and 28 days. PdO and CB induced edema at 28 days. Fibrosis was observed after 28 days with the most significant increase, in decreasing order, induced
	Particle Size: DQ12 <7 µm HT: 7.8 ± 1.5 µm		by DQ-12,PdO, POF, HT, CB, and the control. Histiocyte infiltration was observed after 1 day for DQ-
	POF: <50 um length; <2 µm width		12, POF and PdO. At 28 days, infiltration was observed for DQ-12, HT, POF and PdO. Restructuring of alveolar walls and microgranulation was observed for all 5
	PdO: 0.54 ± 1.11 µm		particles but only at 28 days with DQ 12, PdO, HT, POF, CB and control.
	CB: 28 nm		Immunohistochemistry: BrdU: At 1 day all 5 particles elevated in both area and number. Activity declined after 28 days but was still higher than the control.
			iNOS: At 1day DQ-12, POF and PdO induced increases. At 28 days, DQ-12 and HT induced increases.
			MMP-3: DQ-12 induced increases at both 1 and 28 days and PdO at 28 days.
			Toxicity scoring: The levels of toxicity are, in decreasing order, as follows: DQ-12, HT/PdO/POF, and CB.

DEP: SRM 2975 DEPE: SRM 1975	Route: IT Instillation	
DLI L. SINIVI 1813		iNOS Expression in AMs: Both DEP and DEPE increased 12 and 6 fold respectively. NO and
Particle Size: NR	Dose/Concentration: 35 mg/kg	peroxynitrite levels increased accordingly. AG had no effect on iNOS expression but AG attenuated NO for
	• • •	both DEP and DEPE but peroxynitrite only for DEPE.
	AG group coexposed 30 pre and 3, 6, 9 h post DEP/DEPE	DEP induced much higher levels of oxidants than DEPE. Unlike DEPE, DEP was unaffected by AG.
		Role of iNOS in Lung Injury: DEP and DEPE induced inflammation (PMN), cellular toxicity (LDH) and lung injury (protein). AG significantly attenuated the DEPE response but no effect was observed on the DEP responses.
		Cytokines: IL-12 levels were induced by both DEPE and DEP, with DEPE inducing higher increases than DEP, and both were significantly attenuated by AG. DEP and DEPE induced similar increases in IL-10 levels. AG increased DEP effect 3 fold and attenuated DEPE to control.
		CYP Enzymes: DEP and DEPE induced increases in CYP1A1 level and activity. AG attenuated CYP1A1 activity for both DEP and DEPE. CYP2B1 level and activity were slightly decreased by DEP and DEPE. AG had no effect.
		Cytosol Phase II Enzymes: DEPE had no effect; AG treatment increased catalase activity. DEP reduced catalase and GST activities. AG had no effect. Neither DEP, DEPE nor AG affected QR quinone reductase.
UFe: Ultrafine Fe particles	Route: Whole-body Inhalation	BALF Cells: No significant changes observed in total cell number, cell viability or cell differentials.
Particle Size: 72 nm	Dose/Concentration: 57 or 90 μg/m ³	Cytokines: Only at the high dose was an increase in
Time to Analysis: 6 h/days for 3 days, parameter measured within 2 h post-exposure.	Time to Analysis: 6 h/days for 3 days, parameters measured within 2 h post-exposure.	IL-1β observed. No effect on TNF-α or NF-κB-DNA binding activity was observed.
		BAL Inflammatory/Injury Markers: At the high dose, total protein increased. No significant changes were observed in LDH.
		Intracellular Ferritin: The high dose induced increases. No significant differences were observed between the low dose and control.
		Oxidative stress: Antioxidant level by FRAP value decreased at the high dose. GST (glutathione-Stranferase) activity increased at the high dose. No effect on intracellular GSH and GSSG (glutathione disulfide) was observed.
	UFe: Ultrafine Fe particles	Time to Analysis: Single, 1 day AG group coexposed 30 pre and 3, 6, 9 h post DEP/DEPE UFe: Ultrafine Fe particles Particle Size: 72 nm Time to Analysis: Single, 1 day AG group coexposed 30 pre and 3, 6, 9 h post DEP/DEPE Route: Whole-body Inhalation Dose/Concentration: 57 or 90 µg/m³ Time to Analysis: 6 h/days for 3 days, parameters

Table D-4. Effects related to immunity and allergy.

Study	Pollutant	Exposure	Effects
Reference: Apicella et al.	Poly OVA (Ovalbumin on polystyrene beads) Soluble OVA Particle Size: NR	Route: Cell Culture Dose/Concentration: PolyOVA and Soluble OVA:	IL-6: Stimulation with PolyOVA higher than stimulation with soluble OVA
(2006, <u>096586</u>) Species: Mouse		0.2,1.0 or 5.0 μg/mL	TNF-α: Stimulation with PolyOVA higher than stimulation with soluble OVA.
Strain: BALB/c		Time to Analysis: 48 h	IL-10: No modifications in levels after PolyOVA or soluble OVA stimulation.
Cell Line: 112D5 hybridoma Primary Macrophages: Peritoneal			Viability of Peritoneal Macrophages: Stimulation with PolyOVA led to 33% decrease in viability. Stimulation with soluble OVA led to 24% in viability.
i entoriea			Effects of PolyOVA Stimulated Macrophages Culture supernatants from PolyOVA stimulated macrophages had a percentage increase of asymmetric IgG; however, the addition of mnIL-6 at identical concentrations did not induce a significant increase. It also decreased the proliferation of 112D5 hybridoma.
Reference: Arantes-Costa et al. (2008, <u>187137</u>) Species: Mouse Gender: Male Strain: BALB/c	ROFA (solid waste incinerator powered by combustible oil; São Paulo, Brazil) Particle Size: NR	Route: Intranasal Instillation Dose/Concentration: 60 μg ROFA in 50 μL saline Time to Analysis: OVA sensitized days 1 and 14. OVA-challenged days 22, 24, 26, and 28. ROFA exposed 1-3 h after OVA challenge or saline. Pulmonary responsiveness measured day 30 then sacrificed. Lungs removed, fixed for 48 h.	ROFA increased pulmonary responsiveness and decreased ciliated cells in nonsensitized mice, which were both further amplified in the presence of OVA. ROFA did not affect eosinophils, macrophages, chronic inflammation, or neutral or acidic mucus.
Age: 6 wk		-	
Weight: NR			
Reference: Archer et al. (2004, 088097) Species: Mouse	PM = SRM 1648 (NIST) TiO ₂ Particle Size:	Route: Intranasal instillation Dose/Concentration: 500 μg/30 μl sterile saline, initial 0-750 μg range finding Time to Analysis: Ova challenge at 68 h, Meth-	Airway responsiveness (WBP): AR induced by Ova/Mch challenge was significantly and dose-dependently increased at doses of SRM1648 ≥500 μg . TiO₂/Ova exposure was not significantly different from saline. PM associated endotoxin did not contribute to enhanced AR.
Strain: BALB/c DO11.10+/+ transgenic - ova specific receptor for OVA peptide 323-339 Age: 4 wk	SRM1648: avg 1.4 μ m TiO ₂ : avg 0.3 μ g (sic)	acholine aerosolization/AR at 72 h	Lung inflammation/pathology: No increases in BAL macrophages or eosinophils and no histological alterations after PM exposure. Both TiO ₂ and PM increased pulmonary neutrophils, indicating particles alone were responsible for this increase and that the inflammatory response could occur independently of AR.
Reference: Barrett et al. (2006, 155677) Species: Mouse Gender: Male Strain: BALB/c Age: 8-10 wk	HWS (black/white oak) CO Total Vapor Hydrocarbon (TVH) Particle Size: 0.25 ± 3.3 , 0.35 ± 2.5 , 0.35 ± 2.0 , 0.36 ± 2.1 µm (MMAD \pm GSD)	Route: Whole-body Inhalation Dose/Concentration: HWS: 30, 100 300, 1000 μg/m³ CO: 0.7, 1.6, 4.0, 13 ppm TVH: 0.3, 0.6, 1.3, 3.1 ppm Time to Analysis: Pretreatment: ip 10 μg OVA and 2 mg aluminum hydroxide post-OVA. OVA aerosol challenge on day 14, followed by 3 days of HWS. Pre-OVA received aerosol OVA challenge on day 14, then 3 days of HWS on days 26-28 and an immediate (second) OVA challenge HWS 6 h/day for 3 days. Sacrificed 18 h post-exposure.	Allergic Inflammation: A statistically significant increase in eosinophils was observed at 300 µg/m³ HWS following OVA challenge as compared to OVA alone. No changes in macrophages, neurophils and lymphocytes were observed. Post-OVA HWS did not significantly alter BAL cytokine or serum antibody levels, but linear trend analyses indicated decreases in IL-2, IL-4, and IFN-γ in the absence of OVA, as well as a statistically significant upward trend in OVA-specific IgE when HWS exposure followed OVA challenge. HWS exposure pre-OVA (prior to second OVA challenge) resulted in a decrease in IL-13 (statistically significant at the high dose but no evidence of an exposure-dependent response), an increase in OVA IgG1 (trend significant) and no change in IL-2, IL-4, IL-5, IFN-γ, OVA IgE, total IgE or OVA IgG2a.

Study	Pollutant	Exposure	Effects
Reference: Burchiel et al. (2005, 088090) Species: Mouse Gender: Female Strain: A/J Age: 12-14 wk	HWS (black/white oak) HWS particle Mass BC OC CO Total Vapor Hydrocarbon 29 other minor components PAH and metals Particle Size: 0.3 ± 3, 0.4 ± 2, 0.4 ± 2, 0.4 ± 2 µm (MMAD ± GSD)	Route : Inhalation Dose/Concentration : HWS : 30, 100, 300, 1000 μg/m³ BC: 3, 12, 25, 43 μg/m³ OC: 40, 107, 281, 908 μg/m³ CO: 1, 2, 4, 13 ppm TVH: ND, 1, 1, 3 ppm Time to Analysis : 6 h/day for 6 mo.	Proliferative Responses: HWS increased splenic T cell proliferation at 100 μg/m³ with a dose dependent decrease at 300 and 1000 μg/m³ exposures (p<0.05) HWS exposure did not affect T (CD3), helper T cell (Th, CD4), cytotoxic T cell (CTL, CD8), macrophage (Mac-1), natural killer cell (NK, CD16) cell markers or B cell proliferative response to LPS.
Reference: Burchiel et al. (2004, 055557) Species: Mouse Strain: AJ Age: 10-12 wk	DE generated alternatively from two 2000 Cummins ISB Turbo Diesel 5.9 L engines using no 2 (chevron) oil and 15w/40 oil (Rotella T, Shell) run according to USEPA Dynamometer Schedule for Heavy-Duty Diesel Engines 18 PAHs quantified at exposure levels (text mentions 65) Particle Size: NR	Route: Inhalation Dose/Concentration: 30, 100, 300, 1000 mg/m³ diesel PM Time to Analysis: 6 h/day, 7 days/wk for 6 mo.	Proliferative Responses: DE depressed splenic T cell proliferation at all exposure levels but was not dose-dependent and most pronounced at the 30 μρ/m³ level. (p<0.05 at all levels) Splenic B cell proliferation was increased at the 30 μg/m³ level, but not at the other exposure levels. Little, if any, PAH was found in DE, and the majority of PAH tested in vitro enhanced T cell proliferation (below), so PAH is likely not responsible for the immunosuppressive effect of DE on murine spleen cell responses.
Reference: Chan et al. (2006, 097468) Species: Mouse Strain: DO11.10, BALB/c, Nrf 2 th Cell Types: Primary bone marrow dendritic cells and dendritic cell line (BC1), T cells (BMDC)	DEP: DE particles DEP methanol extract: Particle Size: NR	Route: Cell Culture Dose/Concentration: DEP: 10 μg/mL LPS: 5 ng/mL Time to Analysis: 24 h	Dendritic Cell Maturation: Organic DEP chemicals interfered in the expression of several DC maturation markers. Both DEP and DEP extracts were found to inhibit CD86 expression and IL-12 production in LPS-exposed DCs, and intact particles were not as effective as DEP extract. DEP extract treatment of BC1 cells reduced their ability to stimulate co-cultured antigen-specific T cells, leading to decreased IFN- y and increased IL-10 without affecting IL-4 or IL-13. DEP extract also induced oxidative stress and interfered with DC activation by several other Toll-like receptor agonists as well as the NF-kB cascade. Inhibition of IL-12 production by DEP extract was shown to be mediated by pro-oxidative chemicals that engage the Nrf2 pathway. Taken together the inhibition of both IL-12 and IFN- y indicates a suppression of the Th1 pathway and provides a novel explanation for the adjuvant effect of DEPs on allergic inflammation.

Study	Pollutant	Exposure	Effects	
Reference: Ciencewicki et al. (2007, 096557) Species: Mouse	DE: generated from a 30-kW (40 hp), 4-cylinder Deutz BF4M1008 diesel engine Influenza A/Bangkok/1/79 (H3N2 serotype) from Dr. Melinda Beck of the University of North Carolina, Chapel Hill O ₂ , CO, NO ₂ , NO, SO ₂ O ₂ : 20.9- 20.5% (Lo, Hi) CO: 0.9-5.4 ppm NO ₂ : 0.25-1.13 ppm NO: 2.5-10.8 ppm SO ₂ : 0.06-0.32 ppm H ₃ N ₂ : NR	cylinder Deutz BF4M1008 diesel engine Influenza A/Bangkok/1/79 (H3N2 serotype) from Dr. Melinda Beck of the University of North Carolina. Chapel Hill Dose/Concentration: DE: 529 or 2070 µg/m³ Time to Analysis: 4 h/day for 5 days. Virus exposure immediately after last DE exposure.	Time to Analysis: 4 h/day for 5 days. Virus exposure immediately after last DE exposure.	DE exposure on susceptibility to Influenza Infection: Mice exposed to 0.5 mg/m³ had significantly greater levels of HA mRNA compared to air-exposed mice. HA levels not significantly altered in mice exposed to 2.0 mg/m³.
Gender: Female Strain: BALB/c Age: 10-12 wk Weight: 17-20 g		Analyzed 18 h post infection.	DE Exposure on the Influenza-induced Inflammatory Response: f IL-6 mRNA levels were significantly greater when exposed to 0.5 mg/m³ of DE prior to infection compared to air exposure. Significantly increased amount of IL-6 protein observed in exposed mice. Exposure to DE in absence of influenza infection had no significant effect on IL-6 mRNA or protein levels.	
	Particle Size: NR		DE Exposure on Pulmonary Injury: Infection with the influenza virus increases levels of PMN in BAL fluid. Exposure to either dose of DE prior to infection showed no significant effect on PMN levels Exposure to DE alone had no effect on PMNs in BAL fluid. Neither exposure to DE nor infection with influenza significantly increased BAL fluid protein levels when compared to non-infected, air-exposed.	
			Other Markers of Injury, NAG and MIA were not statistically affected by DE or influenza exposure.	
	et GEE (General Motors 1996 model 4.3-L V6 engine; regular unleaded fuel) (CO, NO, NO ₂ , SO ₂ , NH ₃) Particle Size: NR		DE Exposure on the Influenza Induced Interferon Response: No significant change in TFN-α mRNA levels at either dose of DE, although mice exposed to 0.5 mg/m³ of DE prior to infection had significantly greater levels of IFN-B MRNA compared to air controls. No effect on any of the IFNs observed in uninfected mice exposed to DE.	
			DE Exposure on Surfactant Protein Expression: Influenza virus infection alone significantly increased expression of SP-A in air-exposed. Exposure to 0.5 mg/m³ of DE prior to infection had significant decreases in levels of SP-A mRNA in the lungs, this effect was not observed in 2.0 mg/m³ DE exposed. Decrease seen in expression of SP-A protein in lungs of mice exposed to 0.5 mg/m³ DE prior to infection Levels of SP-D mRNA and protein were significantly decreased in lungs of mice exposed to 0.5 mg/m³ of DE prior to infection compared with mice exposed to air or 2.0 mg/m³ DE prior to infection. Exposure to 0.5 mg/m³ of DE prior to infection with influenza decreased levels of SP-D, especially in airways. Mice exposed to 2.0 mg/m³ DE prior to infection showed no significant difference.	
al. (2008, <u>190204</u>) Species: Mouse		V6 engine; regular unleaded fuel) (CO, NO, NO ₂ , SO ₂ , NH ₃) Dose/Concentration: Low(L)-6.6 \pm 3.7 PM/m ³ , Medium(M)-30.3 \pm 11.8 PM/m ³ , High(H)-59.1 \pm	Pre-OVA: In nonsensitized mice, neutrophils and IgE decreased in the H group. IL-2 increased in the HF group and was dose-dependent. Eosinophils dose-dependently decreased. OVA-specific IgE increased in the H	
Gender: Male Strain: BALB/c Age: 8-10 wk		Time to Analysis: Pre-OVA protocol: OVA or saline sensitized 7 days. OVA challenge day 14. GEE or air exposed 6 h/day on days 26-28. Immediately after exposure on day 28 challenged with OVA.	group, and OVA-specific IgG2a dose- dependently increased. In OVA-sensitized mice, OVA-specific IgG1 increased in the M group. Airway hyperresponsiveness was lower in the M and HF groups.	
Weight: NR		or saline sensitized 7 days. OVA challenge day 1	exposure then sacrificed. Post-OVA protocol: OVA or saline sensitized 7 days. OVA challenge day 14. GEE or air exposed days 15-17. Tested for MChinduced changes 24 h post-exposure then	Post-OVA: In nonsensitized mice, neutrophils dose-dependently decreased, IL-4 decreased in the M group, IL-5 decreased in the HF group, and IFN-γ decreased at all exposures. In OVA-sensitized mice, IL-13 dose-dependently decreased.

Study	Pollutant	Exposure	Effects
Reference: de	CBP: Carbon black particles in	Route: Intranasal Droplet	Acute Airway Damage and Inflammation:
Haar et al. (2005, 097872)	phosphate buffered saline, 1: 10 & 1: 100 dilutions (Brunschwich Chemicals, Amsterdam, The Netherlands)	Dose/Concentration: CBP± OVA 200, 20, 2 μg (3.3, 0.33, 0.033 mg/ml)	Only day 4 had LDH increased in the 200 µg CBP+OVA group. The 200 µg CBP+OVA group induced significantly higher numbers of BAL
Species: Mouse	OVA: Ovalbumin	OVA only: 20 µg (0.5 mg/ml)	cells compared to OVA control. Total protein and
Gender: Female	Particle Size: CBP: 30-50 nm	Time to Analysis: Droplet applied on days 0, 1, 2.	TNF-a levels were increased only in 200 µg CBP+OVA group. RAS, parameter for
Strain: BALB/cANNCrl	Faiticle Size. ODF. 30-30 IIIII	Sacrificed on day 4 or challenged with OVA droplet on days 25, 26, & 27. Sacrificed on day 28	phagocytosis, 200 µg and 20 µg CBP+OVA had higher levels than OVA controls.
Age: 6-8 wk			Adjuvant Activity on PBLN: Total lymphocytes
Weight: NR			in PBLN significantly increased 4-5 fold in the 200 µg CBP+OVA exposed. 20 µg and 2 µg exposures did not increase the number of PBLN cells compared to OVA control. All CBP+OVA concentrations induced higher levels of IL-4, IL-5, IL-10, and IL-13, with 200 µg concentration having 10-200 times higher levels. IFN-y cytokine was increased in the 200 µg dose.
			IgE Production: In CBP+OVA, IgE were significantly increased.
			PBLN and Lung Lymphocytes after OVA Challenge: PBLN cell numbers increased in OVA and CBP+OVA sensitized mice. CD4 and CD8 populations increased in both groups. PBLN levels in CBP+OVA and challenged with PBS were higher than mice treated with OVA and challenged with PBS, both groups cytokine production was low, only IL-5 levels were significant in the CBP+OVA/PBS group. Higher lung lymphocyte numbers were caused by higher numbers of CD4 and CD19. Production of IL-5 and IL-10 was four to five times higher than in OVA treated mice.
			OVA Challenge Induces Asthma like Airway Inflammation in CBP+OVA Sensitized Mice: Total number of cells in BAL increased 10 fold in CBP+OVA mice challenged with OVA. Eosinophils exhibited highest increase in CBP+OVA/OVA group. Perivascular and peribronchial infiltrates and goblet cell hyperplasia in CBP+OVA/OVA was confirmed by histological examination. Antigen specific inflammation induced in CBP+OVA mice.

Study	Pollutant	Exposure	Effects
Reference: de Haar (2006, 144746) Species: Mouse Gender: Female Strain: BALB/cANNCr Age: 6-8 wk Weight: NR	CBP: fine (F) and ultrafine (UF) carbon black particles (Ken Donaldson Group) TiO ₂ : fine and ultrafine OVA: Ovalbumin Particle Size: F CBP: 260.0 nm UF CBP: 14.0 nm F TiO ₂ : 250.0 nm UF TiO ₂ : 29.0 nm	Route: Intranasal Droplet Dose/Concentration: CBP: 200 µg (3.3 mg/mL) TiO ₂ : 200 µg (3.3 mg/mL) OVA: 10 µg CBP+OVA: 200 +10 µg Time to Analysis: Days 0,1,2: Exposed to OVA or CBP+OVA. Sacrificed on day 8 & analyzed after 2 h, or continued to second group. Second group: days 25, 26, 27 given OVA challenge day 28: sacrificed , analyzed 24 h post sacrifice	Ultrafine Particles Induce Lung Inflammation: UF TiO ₂ and CBP induced a local inflammatory response in the airways and showed higher levels of LDH and total protein as compared to mice exposed to the F particles. Cytokine levels were much higher in groups exposed to ultrafine particles. Histologic analysis of the airways showed that exposure to ultrafine TiO ₂ or CBP leads to peribronchial and perivascular inflammatory infiltrates (mostly neutrophils). Exposure to OVA alone, or combined with fine TiO ₂ and fine CBP had no effects on lung histology. Ultrafine Stimulate Local Immune Responses: TiO ₂ and CBP particles stimulated the local immune response against co administered OVA antigen. Fine TiO ₂ particles induced a low but significant increase in PBLN cell number. Both types of ultrafine particles elicited higher levels of Th-2 associated cytokines, with UF CBP stimulating a greater response. IFN-y production was low, but significantly higher than OVA exposures. Ultrafine TiO ₂ Increase OVA-specific IgE and IgG1 Levels: Levels of OVA specific IgE were significantly increased in animals exposed to the UF TiO ₂ + OVA compared to F TiO ₂ or OVA-only. Average IgE level in mice exposed to ultrafine CBP+OVA was not a significant increase. OVA- specific IgG2a not detected in any groups. Ultrafine Particles Stimulate Allergic Airway Sensitization Against OVA: At day 28, the PBLN cell numbers were significantly higher in both ultrafine and combination with OVA. Production of OVA specific IL-4, IL-5, IL-10 and IL-13 by PBLN cells was significantly increased in both ultrafine TiO ₂ and CBP. IFN-y levels were significantly increased in ultrafine CBP+OVA only. Allergic airway inflammation and Influxes of eosinophils, neutrophils and lymphocytes were only found in both groups exposed to ultrafine particles.
Reference: de Haar (2008, 187128)	Ultrafine Carbon Black (UFCB) (Brunschwich Chemicals; Amsterdam, The Netherlands)	Route: Intranasal Exposure Dose/Concentration: 20 µg/mL	UFCB+OVA induced proliferation of CD4+ T- cells, increased cytokine production. UFCB+OVA did not induce any effects in
Species: Mouse	Particle Size: Diameter: 30-50 nm	Time to Analysis: Exposed days 1, 2, 3. OVA challenge days 25, 26, 27. Spleens and lymph	CD80/CD86-deficient mice. UFCB-induced airway inflammation is dose-dependent.
Gender: Female		nodes from DO11.10 mice pooled and CD4+ T-cells isolated. Solution injected into tail veins of BALB/c	
Strain: BALB/c, CD80/CD86- deficient, DO11.10		mice day 0. CTLA4-lg ip injected days 0, 2. PBLN cell suspensions plated, restimulated with OVA 4 day.	
Age: 6-8 wk			
Weight: NR			
Reference: de	Ultrafine Carbon Black (UFCB)	Route: Cell Culture	UFCB+OVA increased mDCs in the
Haar et al. (2008, 187128)	(Brunschwich Chemicals; Amsterdam, The Netherlands) Dose/Co	Dose/Concentration: 25 µg/mL	peribronchial lymph nodes, and their expressions of CD80, CD86, and MHC-11.
Species: Mouse	Particle Size: Diameter: 30-50 nm	Time to Analysis: 18 h	
Cell Line: Myeloid dendritic cells (mDCs)			

Study	Pollutant	Exposure	Effects
	DEP: SRM 2975 (NIST, Gaithersburg, MD)	Route: Inhalation	Lung Inflammation/Injury: Both the BAL
088079)		(79) Dose/C	Dose/Concentration: DEP: 20.6 ± 2.7 mg/m ³
Species: Rat	OVA: Ovalbumin	OVA 40.5 ± 6.3 mg/m ³	the air exposed control, suggesting that DEP exposure did not cause lung injury at 9 or 30
Gender: Male	Time to Analysis: 4 h/dayfor 5 days + OVA 30 days post-exposure	days post-exposure. OVA exposure caused significant increases in neutrophils,	
Strain: Brown- Norway (BN/CrlBR)		min/day1 x wk on days 8,15 & 29. Sacrificed on days 9 or 30.	lymphocytes, eosinophils, albumin and LDH activity in the lung after two exposures. DEP did show a strong effect on OVA-induced inflammatory responses.
Age: NR			, ,
Weight: 200-225 g			Alveolar Macrophage (AM) function: OVA exposure resulted in an increase in NO levels in the acellular BAL fluid and AM conditioned media. This increase was significantly attenuated in rats exposed to DEP. DEP exposure had no significant effect on the production of IL-10 or IL-12 by AM recovered from rats 9 and 30 days post exposure. In contrast, OVA sensitization elevated both IL-10 and IL-12 secretion by AM at both time points.
			Lymphocyte population and cytokine production: DEP exposure was found to increase the numbers of total lymphocytes, T cells and their CD4+ and CD8+ subsets in LDLN. OVA exposure also significantly increased these cell counts on days 9 and 30. DEP+OVA exposure showed a significant reduction in total lymphocytes, T cells, CD4+ and CD8+ subsets on day 30. Levels of IL-4 and IFN-y in lymphocyte conditioned media were below detection limit of the ELISA kits.
			Intracellular GSH levels in AM and Lymphocytes: DEP exposure alone slightly decrease GSH levels in AM, but markedly reduced GSH concentration in lymphocytes on days 9 and 30. OVA exposure significantly decreased intracellular GSH in both cell types. Combined exposure showed AM and lymphocytes to have depleted intracellular GSH
			OVA specific IgE and IgG levels in serum: In all samples collected on day 9, both serum IgG and IgE levels were under the detection limits. On day 30, no measureable IgE levels were found. The OVA exposure, however, resulted in elevated IgE levels, and was enhanced in rats preexposed to DEP. IgE and IgG levels for DEP+OVA was tw0 times higher than OVA alon indicating that DEP has an adjuvant effect on the production of IgG and IgE.
			the production of IgG ar

Effects of DEP and OVA on Lung iNOS expression: AM from various exposure groups did not stain for iNOS. 1 rat at day 9 from the combined DEP+OVA group showed a slightly positive iNOS staining. On day 30, 2 of 5 rats from combined exposure group and 1 from the OVA group showed a positive airway staining.

Study	Pollutant	Exposure	Effects
Reference: Dong et al. (2005, 088083) Species: Rat Gender: Male Strain: Brown-Norway (BN/CrlBR)	DEP: SRM 2975 Diesel Exhaust Particles (NIST) OVA: Ovalbumin Particle Size: 0.5 µm (MMAD)	Route: Nose-only Inhalation Dose/Concentration; DEP 22.7 ± 2.5 mg/m³ OVA 42.3 ± 5.7 mg/m³ Time to Analysis: Day 1, 8, 15: OVA exposure 30 min/day Days 24-28: DEP exposure 4 h/day Day 29: OVA challenge	Effect of DEP on OVA Induced Allergic Responses: DEP exposure had a synergistic effect with OVA on inducing airway hyper- responsiveness (AHR) in rats. DEP alone had no effect on IgG production. Levels of OVA- specific IgG and IgE increased in OVA+DEP exposure. This indicates that DEP pre-exposure augments the immune response of rats to OVA in the production of allergen specific IgG and IgE.
Age: NR Weight: 200-225 g		Day 30: Whole-body plethysmography Day 31: Sacrifice	Effect of DEP on OVA Induced Cell Differentiation: Neither DEP, OVA nor the combination induced elevated levels of LDH activity or albumin content, indicating that the exposure protocols did not cause significant lung injury. DEP alone induced moderate but significant increase of neutrophil numbers. OVA exposure induced a greater infiltration of neutrophils than DEP, and infiltration of neutrophils and lymphocytes. OVA-induced eosinophil count markedly increased with DEP exposure. Total lymphocytes, T cells, and their CD4+ and CD8+ subsets in LDLN from rats sensitized and challenged by OVA were significantly higher than those of air-exposed non sensitized rats. DEP+OVA exposure resulted in substantial increase in T cells compared to OVA alone. Effect of DEP on OVA-induced Oxidant Generation and GSH Depletion: Exposure to DEP or OVA alone. Effect of DEP on OVA-induced Oxidant Generation and GSH Depletion: Exposure to DEP or OVA alone had no effect on ROS production by AM. Substantial elevation seen in ROS for the DEP+OVA exposed group. Both OVA and DEP exposures resulted in an increased presence of NO in the acellular BAL fluid and in AM conditioned media; OVA+DEP exposure further increased these levels. The ATII cells from OVA exposed rats exhibited a higher percentage of cells that produce NO and superoxide than air exposed, non sensitized rats. DEP and OVA exposure resulted in a signi- ficant increase in the percentage of cells that produce NO and superoxide over the control. INOS Expression: Immunohistological analysis in lung tissues showed no AM staining in any group. Airway epithelium was found to be positive in all 5 rats from the DEP+OVA group and 3 of 5 rats from single exposure of DEP or OVA and 2 of 5 in air only exposed rats. iNOS expression was significantly higher in ATII cells isolated from rats exposed to combined DEP
			and OVA. GSH levels in AM and lymphocytes: Levels were slightly lowered by DEP or OVA exposure, though not statistically significant. DEP+OVA showed a significant reduction in GSH levels.

Study	Pollutant	Exposure	Effects	
Reference: Drela	ASM: Air suspended PM from Upper	Route: Intraperitoneal Injection	CD28 Expression on Thymocytes at Different	
et al. (2006, 096352) Species: Mouse	Silesia (Poland)	Dose/Concentration: 170 mg/kg	Stages of Development: ASM exposure accelerated thymocyte maturation but did not	
	1μg of ASM:	Time to Analysis: Single, 72 h	alter the expression of CD28 on peripheral CD4 and CD8 T cells isolated from lymph nodes. A	
Gender: Male	Pb (1.136 ng)		slight but not statistically significant decrease in	
Strain: BALB/c	Cu (0.004 μg)		the expression of CD28 on spleen T cells from ASM animals was observed.	
Age: 6 wk	Co (0.072 ng)		Distribution of CD28(low) and CD28(high):	
Weight: NR	Mn (0.406 ng)		Acute exposure to ASM resulted in the increase of CD28(low) and decrease of CD28 (high)	
· ·	Fe (0.016 µg)		thymocyte percentages in the total thymocyte population. The percentages of CD28 low and	
	Cd (0.154 ng)		high thymocytes did not differ between intact	
	Cr (0.418 ng)		and PBS controls. Acute ASM exposure resulted in the increase of the percentage of CD28(low)	
	Ni (0.238 ng)		and the decrease of CD28(high) thymocytes in the CD3 low subset. The percentage of CD28	
	Particle Size: 0.3-10 μm		low and high positive thymocytes did not differ in CD3 high thymocyte subset.	
			Natural Regulatory CD4+ CD25+ T Cells in the Thymus: The development of thymic natural regulatory cells was unaffected by ASM.	
			Proliferation of Splenocytes and Lymph Node Lymphocytes: Decreased proliferative responses were evident in splenocytes from ASM-exposed animals when cells were stimulated with low but not high levels of anti-CD3 mAb. In contrast, lymph node lymphocytes from ASM treated mice had increased proliferative responses independent of anti-CD3 concentration. Both CD4+ and CD8+ T cells from ASM treated mice proliferated more vigorously than from controls. Almost all CD8+ T cells from ASM mice were induced to proliferate.	
	UP: Urban ambient particles collected in	Route: Injection in hind foot pad	Allergy Screening: All samples were	
et al. (2004, 097545)	5 different sites (Amsterdam, Lodz, Oslo, Rome, Dutch seaside) during four-wk	Dose/Concentration: UP: 100- 200 μg	immunostimulatory in the popliteal lymph node assay; activity was weak in the absence of OVA	
Species: Mouse	periods in spring, summer, winter seasons from March 2001 to March	DEP: 50 μg	but statistically significant when injected with OVA, indicating an adjuvant effect. Particle	
Gender: NR	2004.	OVA: 50 μg	adjuvancy was further demonstrated via significant enhancement of OVA-specific	
Strain: BALB/cA	DEP as reference std: SRM 1650 (NIST)	Time to Analysis:	antibody responses. All ambient particle	
Age: NR	OVA: Ovalbumin (Sigma Chemical, St. Louis, MO)	Day 0: 1 exposure to OVA alone, OVA w/particles, particles alone.	fractions from all seasons increased IgG1. Except for a few coarse samples, all fractions significantly increased IgE. All fine fractions and	
Weight: NR	Particle Size: UP: PM ₁₀ and PM _{2.5}	Day 6: Lymph nodes harvested	some coarse fractions significantly increased IgG2a, indicating that most particles could exert	
		Day 21: 1 OVA w/o particles exposure	both Th1 and Th2 adjuvancy. In general, fine	
		Day 26: Antibody assay	particles demonstrated stronger adjuvant activity than coarse in a pair-wise comparison of coarse and fine particles from the same location.	
Reference:	UP: Urban ambient particles collected in	Route: Cell Culture	Inflammation: The coarse fractions were more	
Dybing, et al. (2004, <u>097545</u>)	5 different sites (Amsterdam, Lodz, Oslo, Rome, Dutch seaside) during four-wk	Dose/Concentration: 0-50 μg/ml	potent than the fine fractions. Among the samples, the overall effects of the coarse	
Species Rat	periods in spring, summer, winter seasons from March 2001 to March	Time to Analysis: 20 h	fractions on the cells were dependent on the site of collection. High MIP-2 levels were found	
Cell Lines: Type 2	2004.		using particles from some spring collections.	
cells, AM	DEP: SRM 2975 (NIST)		Coarse particles collected in summer demonstrated the highest potency, and samples	
	OVA: Ovalbumin (Sigma Chemical, St. Louis, MO)		collected during winter proved to be less potent but seasonal variation was not obvious for all sites. Only minor responses were observed	
	Particle Size: PM ₁₀ and PM _{2.5}		using fine fractions from urban sites.	

Study	Pollutant	Exposure	Effects
Reference: Farraj	DEP: SRM 2975 NIST	Route: Nose-only Inhalation	Airways Responsiveness: No significant
et al. (2006, 141730)	OVA: Ovalbumin	Dose/Concentration: DEP: 1.78 to 2.18 mg/m ³	differences in avg baseline Penh values of any treatment groups.
Species: Mouse	Anti-p75: Rabbit anti-mouse p75 neurotrophin receptor polyclonal antibody (Chemicon, Temecula, CA)	Anti-p75: 50 μl	Vehicle sensitized mice: exposure to DEP, anti-
Gender: Male		Anti-trkA: 50 μl	p75 or anti-trkA had no effect on MCH-induced Penh values.
Strain: BALB/c	Anti-trkA: anti-mouse trkA NGF receptor		OVA-sensitized DEP-exposed: seen increase of
Age: 6 wk	antibody (Santa Cruz, Santa Cruz, CA)	MCH: 0, 16, 32, 64 mg/ml	Penh values. Administration of anti-p75 or anti- trkA to OVA sensitized mice reversed DEP
Weight: NR	Particle Size: DEP: 1.47 μm (MMAD), 2.75 GSD	Time to Analysis: On day 0: ip injection of 20 μg OVA	induced Penh increases.
		Day 14: intranasal instillation of 50 µl anti-p75 or anti-trkA, 1 h after 1st exposure challenged with OVA aerosol for 1 h followed by a h exposure to	Lung Function in Ventilated Mice: Compared to vehicle sensitized mice, central airway resistance (Rn) increased 62% in OVA sensitized mice was not a significant increase.
		DEP 24 h after DEP exposure: MCH challenge	OVA-sensitized DEP-exposed mice, anti-p75 decreased central airway resistance (Rn) and anti-trkA did not significantly alter Rn. though Rn response for anti-p75 was significantly less than anti-trkA response, Constant phase model parameter of tissue elastance not significantly affected by any treatments or by increasing MCH dose, indicating development of significant regional ventilation inhomogeneity during bronchoconstriction.
			Airway Pathology: OVA-sensitized mice had small increases in intraepithelial mucus compared to vehicle-sensitized mice. DEP exposure did not enhance severity of OVA-induced airway pathology. Anti-p75 or anti-trkA administration did not influence airway morphology.
			BAL Cells: Vehicle-sensitized DEP-exposed mice had significantly enhanced macrophage numbers by 92% compared to air-exposed, vehicle-sensitized mice. Anti-p75 or Anti-trkA administration significantly suppressed DEP-induced macrophage increase to levels similar to air-exposed, vehicle-sensitized group. DEP co exposure significantly decreased number of macrophages in OVA-sensitized mice to control levels. Anti-trkA or anti-p75 had no effect in OVA-sensitized, DEP-exposed. Eosinophil number greater in OVA-sensitized DEP-exposed mice than in vehicle-sensitized air-exposed mice. No significant effects of DEP exposure on neutrophils from vehicle- or OVA-sensitized mice.
			Cytokines: IL4: OVA-sensitized DEP-exposed had five-fold increase over vehicle-sensitized, air-exposed mice and anti-trkA or anti-p75 significantly inhibited the DEP-induced increase.
			IL5, IL13: OVA-sensitized DEP-exposed had no significant change. Anti-p75 or anti-trkA administration had no significant effect.
			Serum IgE : OVA sensitized mice had a 10 fold increase in IgE levels for air and DEP exposed mice. Anti-p75, anti-trkA treatment did not cause significant effects on IgE levels.

Study	Pollutant	Exposure	Effects
Reference: Farraj et al. (2006, 088469) Species: Mouse Gender: Male Strains: C57/BI6 Age: 6 wk	DEP: SRM 2975 collected from diesel-powered industrial forklift filter (NIST) OVA: Ovalbumin Anti-p75: Rabbit anti-mouse p75 neurotrophin receptor polyclonal antibody Particle Size: 1.47 (MMAD), 2.75 (GSD)	Route: Nose-only Inhalation Dose/Concentration: DEP: 0.87 mg/m³ MCH: 0, 16, 32, 64 mg/ml OVA: 20 µg ip Anti-p75: 50 µl Time to Analysis: Day 0: OVA in gel vehicle, ip Day 14: anti-p75 exposure, intranasal instillation 1 h post anti-p75 exposure, OVA aerosol challenge for1 h 1 h post OVA challenge: DEP exposure for 5 h 48 h post DEP exposure: MCH challenge	Airway Responsiveness: No significant differences in average Penh values among any vehicle control groups. No significant differences in treatment groups in OVA-sensitized mice at baseline 0, 16, or 32 mg/mL of MCH. At 64 mg/mL MCH, OVA-sensitized, DEP-exposed mice had a 22% increase in Penh compared to vehicle mice, and a 68% increase compared to vehicle-sensitized, air-exposed mice. Instillation of anti-p75 inhibited the DEP induced increased Penh. BALF Cells: DEP exposure in vehicle-sensitized mice significantly increased macrophages by 161% compared to air-exposed, vehicle-sensitized mice, while OVA-sensitized mice had 69% increase. Anti-p75 administration significantly suppressed DEP-induced macrophage increase in vehicle-sensitized mice. No significant effects of DEP exposure or anti-p75 treatment in OVA-allergic mice. OVA-sensitized air-exposed mice had a several hundred fold increase in the number of eosinophils. No significant effects of DEP exposure or anti-p75 treatment on eosinophils from OVA-sensitized mice. OVA-exposure or DEP-exposure had no significant effects on neutrophil or lymphocyte number . Cytokines: No significant effects of DEP alone or with OVA on IL-4, IL-5, or IL-13. Serum IgE: OVA sensitization in the presence or absence of DEP or anti-p75 treatment on IgE levels. No significant effects of DEP or anti-p75 treatment on IgE levels.
Reference: Finkelman et al. (2004, 096572) Species: Mouse Gender: Female Strains: BALB/c, C57BL/6 Age: 2-4 mo	DEP: 4JB1 type; Isuzu Automobile, Tokyo, Japan Particle Size: 2 μm (MMAD)	Route: Group1: 1 ip injection of 2 mg of DEP. Group 2: daily ip injections of 2 mg of DEP Dose/Concentration: 2 mg Time to Analysis: 2-96 h	Serum Cytokines: Mice in group 1 demonstrated an increase in serum IL-6 production but no increase in IL-4 or IL-2 production. IFN-γ levels were decreased in group 2. TNF production was not affected. Spleen Cytokines: When injected before LPS, DEP had little effect on the LPS-induced TNF-α and IL-6 response, but resulted in a minor suppression of INF-γ and IL-10. DEP LPS-induced increase in INF-γ mRNA responses in spleen cells. DEP caused a dose related suppression of LPS stimulated INF-γ. DEP had little or no effect on the percentage of NK or NKT cells in the spleen and inhibited LPS-induced IFN-γ production by NK and NKT. DEP failed to inhibit the IFN-γ response by anti-CD3 mAb-activated NKT cells. Oxidant activity was not responsible for DEP inhibition of LPS-induced IFN-γ production.
Reference: Fujimaki and Kurokawa (2004, 096575) Species: Mouse Gender: Male Strains: BALB/c Age: 4 wk Cell Types: Cervical lymph- node (CLN) cells	DE \pm particles: Comparison of exposure to DE including particles and exposure to particle-filtered DE DE: 12.09 \pm 0.15 NO _X , 1.99 \pm 0.02 NO ₂ , 10.02 \pm 0.12 NO, 0.18 \pm 0.002 SO ₂ and 1769.2 \pm 13.2 CO ₂ (all in ppm). DE gas: 11.93 \pm 0.13 NO _X , 2.93 \pm 0.06 NO ₂ , 8.91 \pm 0.09 NO, 0.11 \pm 0.003 SO ₂ and 1838.8 \pm 15.3 CO ₂ (all in ppm) Particle Size: 0.4 μ m (MMAD)	Route: Whole-body Inhalation Dose/Concentration: Exposure to: 0, 1.0 mg/m³ or 1.0 mg/m³ DE gas only (0.04 mg/m³ PM) Time to Analysis: Exposure for 12 h daily for 5 wk. Days 14 and 35 challenge with sugi basic protein (SBP), a cedar pollen allergen, intranasally. Evaluation is 24 and 48 h after final SBP injection.	CLN Response: Exposure to DE or DE gas did not affect B1 lymphocyte subpopulations of CLN. Culture supernatants of CLN cells from DE exposed/SBP immunized mice showed significant increase in MCP-1 at 24 and 48 h. Exposure to DE or DE gas significantly increased the amount of TARC and MIP-1α in CLN cells from SBP-immunized mice at 48 h.

Study	Pollutant	Exposure	Effects
Reference: Fujimaki et al. (2005, 156456) Species: Mouse Gender: Male Strains: C57BL/6 Age: 4 wk	Pollutant DE generated by 4 cyl 2.74 l Isuzu diesel DE gas = DE filtered to remove particles Composition of Diesel Exhaust: DE DEP: 1.01 mg/m³ 1796 ppm CO₂ 12.09 ppm NOχ 0.18 ppm SO₂ Composition of filtered DE Gas: DEP: 0.04 mg/m³ 1839ppm CO₂ 11.93ppm NOχ 0.11 ppm SO₂	•	CLN: Exposure to DE and gas led to a decrease in total number of CLN cells and percentage of CD4+ and TCR-B levels. Cell proliferation response to SBP was higher in gas-exposed mice than in the control group. The production of MCP-1 increased in CLN cells when stimulated with SBP (in vitro) but the difference was not significant at 24 and 48 h. SBP-stimulated cells in gas-exposed mice showed greatly enhanced MIP-1α production at 24 and 48 h. Exposure to gas increased the amount of TARC in the culture supernatants of CLN cells. Plasma: Exposure to DE or gas significantly decreased the anti-SBP IgG1 antibody titers and
	Sugi Basic Protein (SBP)- allergen Particle Size: 0.4 µm (average diameter)		increased the anti-SBP IgG2a antibody titers in mouse plasma.
Reference: Fujimoto et al. (2005, <u>096556</u>) Species: Mouse	DEP: generated by a 2369-cc diesel engine operated at 1050 rpm and 80% load with commercial light oil Particle Size: 0.4 µm (MMAD)	Route: Whole-body Inhalation Dose/Concentration: 0.3, 1.0 and 3.0 mg DEP/m³ (Groups 1,2,3) Time to Analysis: Exposure began at 2 days postcoitum and was continued until 13 days postcoitum. Exposure time was 12 h daily for 7 days/wk. Pregnant females were sacrificed 14 days postcoitum.	mRNA Expression in Placentas: In groups exposed to DE, the expression of CYP1A1 mRNA decreased to undetectable levels during placental absorption and INF-y was increased.
Gender: Female 1st day of pregnancy) Strains: Slc: IRC	raticle Size. 0.4 piii (MINAD)		Levels of CYP1A1 mRNA in normal placentas from DE-exposed mice were unchanged. mRNA levels of inflammatory cytokines IL-2, IL-5, IL-12α, IL-12B and GM-CSF increased in placentas of mice exposed to DE.
Reference: Gao et al. (2004, 087950) Species: Human Cell Line: Lung fibroblasts infected with Mycoplasma fermentans	ROFA: collected near a power plant in FL burning low sulfur # 6 oil. (PM from Dusseldorf, volcanic ash for Mt. St. Helens, PM from Utah used to compare against ROFA in one experiment) NiSO ₄ , CuSO ₄ , VOSO ₄ , Na ₃ VO ₄ Particle Size: NR	Route: Cell Culture; seeded into 6-well plates (3-4.5×10° cells/3 mL/well) or 24-well plates (0.6-1×10° cells/1.0 mL/well) Dose/Concentration: PM: 3, 10, 20, 40, 50 μg/ml Metallic salts: 2, 20, 200 μM Time to Analysis: 24, 48h	Cytokines: ROFA exposure in combination with Mycoplasma fermentans infection synergistically amplifies the induction of IL-6 production in human lung fibroblasts (HLF). PM from the other sources has little synergistic effect on IL-6 release. Exposing HLF cells to,M. fermentans derived macrophage activating lipopeptide-2 (MALP-2) and ROFA has the same synergistic effect as M. fermentans infection and ROFA. MALP-2 and ROFA extract have a similar synergistic effect that requires more time to appear. ROFA contains high levels of V, Ni, Fe and Cu. Exposure of HLF to NiSO ₄ alone and NiSO ₄ with MALP-2 produced 10 and 50 fold increases, respectively, in IL-6 production. Exposure of HLF to CuSO ₄ , VOSO ₄ and Na ₃ VO ₄ , with and without the presence of MALP-2, did not produce as dramatic results as seen with Ni. The action of NiSO ₄ and MALP-2 on IL-6 production was found to be dose dependent.

Study	Pollutant	Exposure	Effects
	PM _{2.5} from the German cities of Hettstedt	Route: Oropharyngeal Aspirations	BAL Analysis: Hettstedt PM significantly
et al. (2003, 053153)	or Zerbst	Dose/Concentration: 50-100 μg	increased BAL protein and NAG levels. Zerbst PM did not. Mice exposed to Zerbst had lower
Species: Mouse	PM Composition: samples from Hettstedt have several-fold higher levels of Zn,	Time to Analysis: Single, 18 h.	levels of LDH than control groups. Hettstedt exposed mice had increased levels of IL-1B, IL-
Gender: Female	Mg, Pb, Cu and Cd than samples from Zerbst.	Sensitization Model: Mice were exposed to 50 µg	6 and MIP-2 in comparison to control and to mice exposed to Zerbst PM. PM _{2.5} at a dose of
Strain: BALB/c	Particle Size: PM _{2.5}	PM 2 h before being sensitized with 10 µg OVA, repeated two days later. On day 14 all mice were challenged with 20 µg OVA.	100 μg was not found to be toxic, therefore use for subsequent studies.
Age: 7wk		Parameters measured on days 2 and 7 after final exposure to OVA. Challenge Model: Mice were sensitized IP with 20 μ g OVA or adjuvant only. 14 days later mice were exposed to 100 μ g PM $_{2.5}$ followed 2 h later by 20 μ g OVA. Parameters measured on days 2 and 7 after	Airway Responsiveness (PenH): In allergic mice tested immediately after exposure, Hettstedt PM increased PenH 190% compared to baseline, Zerbst increased PenH by 120% and the Control increased by 44%: Two days after OVA challenge, no differences in nonallergic mice from either group. In allergic mice,
		final exposure to OVA.	Hettstedt PM still caused a significant response to Mch responsiveness, Zerbst none. No effects on day seven. IgE Levels: Serum collected on day 2 showed antigen-specific IgE was increased by Hettsted PM _{2.5} in both the sensitization and challenge
			phases when compared to the control and exposure to Zerbst. Day 7 serum indicated no effect.
			BALF Cells: In non-allergic mice both Hettsted and Zerbst PM increased neutrophil numbers (3-fold; not statistically significant) and in allerg mice, only Hettstedt PM significantly increased neutrophil count. Eosinophil numbers were increased only in allergic mice exposed to Hettstedt PM. Lymphocyte numbers were not different among groups.
			BAL Injury Markers: At 2 days after both Hettstedt and Zerbst PM administered in allerg mice caused significant increases in protein, LDH and NAG compared to the non-allergic groups. Both PMs caused an increase in LDH i allergic mice compared to the allergic control, but only Hettstedt caused an increase NAG in allergic mice compared to control. At 7 days no effect.
			BAL Cytokines: Allergic mice had increased levels of IL-4, IL-5 and IL-13 compared to non-allergic mice (at 2 days after). IL-5 was significantly increased by exposure to either PN in allergic mice compared to non-allergic mice. Exposure to either PM caused an increase in TNF-α and IFN-γ (by 6-8 fold) in allergic mice, there was also an increase in these inflammatory cytokines in the non-allergic group but was not statistically significant. No significant effects were observed in animals that underwent the sensitization protocol alone for any measurement or endpoint.
et al. (2008, 097226)	DEP (30kW (40hp) 4-cylinder Deutz BF4M1008 diesel engine, steady state, 20% full load) (Low dose: 21% O ₂ , 0.4wt ratio OC/EC; High dose: 20.7% O ₂ ,	Route: Inhalation Dose/Concentration: Low- 514 ± 3 μg/m³, High- 2026 ± 38 μg/m³	BAL Analysis: Neutrophils and lung injury dose-dependently increased. ICAM-1 increased immediately after both exposures and after 18h postexposure in the low dose.
Species: Mouse	0.4wt ratio OC/EC) (CO, NO _X , SO ₂)	Time to Analysis: 4 h/day, 1 or 5 days	Cytokines: After 1 day exposure, IFN-y and
Gender: Female	Particle Size: Diameter: ~240 nm	(consecutive). Necropsied immediately or 18 h postexposure.	TNF-α increased immediately at both doses and the high dose, respectively. Immediately after 5
Strain: BALB/c		Process Page 1	days exposure TNF-α and IFN-γ increased at
Age: ~12-14 wk Weight: 17-20 g			both concentrations and IL-6 increased at the low dose. At 18 h postexposure IL-6 and IFN-y increased at both doses, TNF- α and IL-13 increased at the low dose, and MIP-2 dose-dosed-at-ti-increased.
			dependently increased.

CCSP, Surfactants: CCSP decreased. SP-A and SP-D decreases were only significant after 5 days exposure, 18 h post-exposure.

Study	Pollutant	Exposure	Effects
Reference: Hamada et al. (2007, 091235) Species: Mouse Gender: Female (Pregnant close to partruition) Strain: BALB/c	Pollutant ROFA (obtained from a precipitator until of a local power plant) Composition of ROFA (in μg/mL): 341.2 Ni, 323.4 V, 232.2 Zn, 18.3 Co, 15.8 Mn, 8.4 Ca, 6.7 Cu, 6.1 Sr, 5.0 mg, 0.9 Sb, and 0.6 Cd. Particle Size: NR	Route: Nebulized ROFA leachate Dose/Concentration: 50 mg/mL dilution Time to Analysis: Pregnant mice exposed to nebulized ROFA leachate for 30 min/day at days 14, 16 and 18 of pregnancy. Newborns received a single injection (ip) of OVA (5 µg)+ alum (1mg) at day 0 followed by exposure to: 1. aerosolized OVA days 12, 13 and 14 (2-wk old protocol) OR 2. aerosolized OVA days 32, 33 and 34 (5 wk old protocol) Analysis 48 h after final allergen exposure	Susceptibility to Asthma: Exposure of mother to PBS aerosols during pregnancy did not result in prominent asthma features in young. The offspring of the ROFA mothers revealed increasing AHR and elevated numbers of eosinophils in the BAL fluid. Similar results were seen in both the 2-wk and 5-wk old groups. IgE Levels: Histopathology revealed prominent inflammation in the lungs of the ROFA neonates and increased allergen-specific IgE and IgG1 levels in the 5-wk group. Maternal Influence: Breast milk was not shown to be responsible for the increased susceptibility to allergy seen in offspring. IL-4 and IFN-y: IL-4 and IFN-y levels in maternal mice showed no difference between PBS exposed or ROFA exposed mice. Cultured spleen cells from mice born of ROFA-exposed mothers showed either increased or similar levels of IL-4 and decreased production of IFN-y causing an increase in the ratio of IL-4/IFN-y indicating greater susceptibility to develop Th2-allergic response. Eosinophils: Exposure of mothers to Ni levels similar to those found in ROFA had no
Reference: Hao et al. (2003, <u>096565</u>) Species: Mouse Gender: Female Strain: BALB/c Age: 6-7 wk	DEP (4-cylinder diesel engine under a 10-torque load) Particle Size: NR	Route: Nebulization Dose/Concentration: 2 mg DEP m³ Time to Analysis: Mild Sensitization- Mice receive IP OVA alum and are challenge with aerosolized OVA with and without DEPs. Mice sacrificed d19. Postchallenge Model- DEPs are delivered to mice sensitized by IP OVA and alum. Mice sacrificed d23. Transgenic Mice: Mice exposed to nebulized saline or DEPs for 1 h daily for 3 days. Mice sacrificed day 5.	appreciable effect on BAL eosinophil. Mild Sensitization: Exposure of previously OVA sensitized mice to aerosolized DEP and OVA did not affect OVA-specific IgE production, BAL eosinophilia or methacholine-induced AHR. Aerosolized particles induced inflammation and increased MBP deposition and MBP positive eosinophils in the mucosa. IL-5 Transgenic: Exposure to aerosolized DEP did not change BAL cytokine levels, but did increase AHR and BAL cell count. Classic Sensitization, Post-Challenge: Did not lead to a discernable increase in OVA-induced AHR. DEP treatment was associated with increased airway inflammation and mucin production in larger and intermediary airways.
Reference: Harkema et al. (2004, 056842) Species: Rat Gender: Male Strain: F344, BN Age: 10-12 wk Weight: NR	CAPs (Detroit; July-Sept. 2000; Harvard Ambient Fine Particle Concentrator) Particle Size: 2.5 μm (diameter)	Route: Inhalation; IT Instillation. Dose/Concentration: 4 day concentration: 676 ± 288 μg/m³, 5 day concentration: 313 ± 119 μg/m³, July concentration: 16-185 μg/m³, September concentration: 81-755 μg/m³, IT Instillation- 200 μL (soluble and insoluble) Time to Analysis: 10 h/day 1, 4, 5 day (consecutive); F344 rats sensitized to endotoxin, BN rats to OVA. Both groups killed 24 h postexposure.	The retention of PM in the airways was enhanced by allergic sensitization. Recovery of anthropogenic trace elements was greatest for CAPs-exposed rats. Temporal increases in these elements were associated with eosinophil influx, BAL protein content and increased airway mucosubstances. A mild pulmonary neutrophilic inflammation was observed in rats instilled with the insoluble fraction but instillation of total, soluble or insoluble PM _{2.5} in allergic rats did not result in differential effects.

Study	Pollutant	Exposure	Effects
Reference: Harrod	DEE: Diesel Engine Emissions	Route: Whole-body Inhalation	Viral Gene Expression: For air+RSV, RSV-F
et al. (2003, 097046)	generated from a 5.9-liter turbo diesel engine fueled by Number 2 fuel.	RSV: IT administration	gene expression was not apparent but RSV-G gene expression was detectable at very low
Species: Mouse	DEE Composition:	Dose/Concentration: DEE: 38.8 μg/m ³ (low level) or 10027 μg/m ³ (high level)	levels. In DEE+RSV (for high and low levels), RSV-F and -G were markedly elevated. ß-Actin
Gender: NR	NO _X : 2.0-43.3 ppm	RSV: 100 µl	mRNA levels not changed in DEE-exposed compared to air-treated. DEE+RSV for high and
Strains: C57BL/6	CO: 0.94-29.0 ppm	Time to Analysis: 6 h/day, 7 days	low levels show 10- to 20- fold induction of RSV- G mRNA levels as compared to air+RSV.
Age: 8-10 wk	SO ₂ : 8.3-364.9 ppb	After the final 6 h exposure period mice were	BALF Cells: Uninfected low-level DEE did not
	Particle Size: 0.1-0.2 µm (MMAD)	infected with RSV.	induce statistically significant increase in cell numbers as compared to air+RSV. High level
			DEE+RSV caused increase as compared to air+RSV. Uninfected high-level DEE had increase as compared to uninfected air group. For all groups, alveolar macrophages were predominant cell type and no substantial changes in infiltrating cell populations by exposure to DEE were noted.
			Lung Inflammation & Airway Epithelial Morphology: Lung sections from air- or DEE-exposed, uninfected did not exhibit any observable change. Low level DEE + RSV had increased inflammatory cell infiltration in peribronchial regions and loss of normal cuboidal appearance of Clara cells as compared to air+RSV. High level DEE+RSV had more apparent lung-inflammation, especially surrounding bronchi and bronchioles, and increased appearance of pseudo-stratified, columnar epithelial cell morphology and apparent airway epithelial cell sloughing as compared to low level DEE+RSV, indicating dose-related increase in lung histopathology to RSV infection by prior DEE exposure.
			Cytokines: TNF- α and IFN- γ were significantly increased in RSV-infected mice exposed to low or high level DEE and not increased in RSV-infected mice exposed to air. TNF- α levels elevated to similar levels for low and high level DEE+RSV. IFN- γ exhibited more dose-related increase with higher levels in high level DEE+RSV versus low level DEE+RSV.

Mucous Cell Metaplasia: DEE exposure in uninfected was not altered. Mucous metaplasia was increased in epithelium of RSV-infected mice when exposed to DEE in a dose-dependent manner. Following high level DEE+RSV, mucous staining of airway epithelial cells in more distal airways was occasionally

CCSP Production in Airway Epithelium: DEE alone did not have an effect CCSP-producing cells, or Clara cells, decreased in Low DEE + RSV and further decreased in high level DEE+RSV in large and terminal airways.

Surfactant Protein B: proSP-B staining post RSV alone shows now discernible decrease when compared to uninfected. Staining levels in alveolar lung regions decreased when exposed to low level DEE+RSV, and further decreased in high level DEE+RSV. Staining in airway epithelium following high level DEE+RSV diminished when compared to RSV alone or low level DEE+RSV.

SP-A: In alveolar type II cells and airway epithelial cells for untreated and air +RSV, no discernible changes in levels. Prior exposure to low or high level DEE decreased SP-A staining in alveolar type II cells and airways epithelial cells during RSV infection.

Study	Pollutant	Exposure	Effects
	DEE (2 2000 model 5.9-1 Cummins ISB turbo diesel engines, No. 2 certification	Route: Inhalation	Bacterial Clearance: Lung bacterial clearance
et al. (2005, <u>088144</u>)	diesel fuel)	Dose/Concentration: Low- 30 μg/m ³ PM, Mid- Low- 100 μg/m ³ PM, Mid-High- 300 μg/m ³ PM,	was decreased at all levels after 1wk exposure and was concentration-dependent 18h postinfection. Bacterial clearance was not affected at 6m and bacterial counts were higher.
Species: Mouse	Particle Size: NR	High- 1000 µg/m³ PM	
Gender: Male		Time to Analysis: 6 h/d, 7 days/wk, 1 wk or 6 mo. 1 wk exposure repeated on separate occasion.	Inflammation, Particle Deposition: Lung
Strain: C57B1/6		Immediately after exposure, mice anesthetized, IT	inflammation and histopathology were increase in all exposure groups postinfection. All
Age: 10-12 wk		instilled with Pseudomonas aeruginosa.	exposure groups possessed particle-laden macrophages. Higher doses had a
Weight: NR			concentration-dependent increase.
			Ciliated, Clara Cells, TTF-1: Generally, ciliated cells decreased with exposure dose, were more discernible in inflamed airways, and higher doses caused effects in small distal airways. Clara cells decreased equally at all exposures and were most notable in the distal airway epithelium. TTF-1 decreased postinfection.
Reference:	CAPs (Grand Rapids, MI; July)	Route: Whole-body Inhalation	CAPs enhanced the effects of OVA by causing
Heidenfelder et al. (2009, <u>190026</u>)	Particle Size: Diameter: 0.1-2.5 µm	Dose/Concentration: CAPs: 493 ± 391 μg/m³; OC: 244 ± 144 μg/m³, EC: 10 ± 4 μg/m³, Sulfate: 79 ±	differential expression in genes primarily involved in inflammation and airway remodeling. CAPs exposure alone had no effect on gene
Species: Rat		131 μ g/m³, Nitrate: 39 ± 67 μ g/m³, Ammonium: 39 ± 59 μ g/m³, Urban dust (Fe, Al, Ca, Si): 18 ± 6 μ g/m³	expression. CAPs+OVA also increased IgE,
Gender: Male		Time to Analysis: Sensitized to OVA 3 day.	mucin glycoprotein, and BALF total protein, and caused a more severe bronchopneumonia,
Strain: Brown- Norway		Challenged with OVA or saline 2wk later for 3 day. Exposed to CAPs 8h/d, 13d. OVA or saline	increased mucus cell metaplasia/hyperplasia and mucosubstances.
Age: 10-12 wk		challenge 9 day after first challenge. Sacrificed 24 h after last CAPs exposure.	
Weight: NR			
Reference: Hiramatsu et al.	DE -DE (generated by diesel engine and diluted with filtered clean air)	Route: Inhalation	Lung Histopathology: DEP-laden macrophages accumulated in the alveoli and
(2003, <u>155846</u>)	Particle Size: NR	Dose/Concentration: Low -0.1 mg/m³ High - 3 mg/m³	peribronchial tissues in a dose- and duration- dependent manner in both strains. Lymphocytes
Species: Mouse Gender: Female		Time to Analysis: 7 h/day, 5 days/wk, 1 or 3 mo	and neutrophils increased in both strains, but were greatest in the BALB/c mice.
Strains: BALB/c			BALF and Mac-1 Positive Cells: BALT formation in DEP-laden AMs was seen at the
and C57BL/6			high dose group and was greater in the BALB/c mice. Mac-1 positive cells, a marker for
Age: 8 wk Weight: 17-22 g			phagocytic activation of the AMs, was observed in the high dose groups of both strains at 1 and 3 mo, and in the low dose group at 1 mo. in BALB/c mice.
			Cytokine and iNOS mRNA expression:1 month of exposure increased TNF-α, IL-12p40, IL-4 and IL-10 mRNA in a dose-dependent manner. IL-1B and iNOS decreased in a dose-dependent manner. IFN-γ mRNA expression increased in BALB/c mice and decreased in C57BL/6 mice. Similar results were seen at 3 mo, except IL-4 and IFN-γ mRNA expression decreased in the BALB/c mice. In C57BL/6 mice, IL-4 and IL-10 mRNA increased at the low dose but decreased at the high dose. NF-κB activation occurred after 1 wk and 1 month DE exposure and was more prevalent in BALB/c mice.

Study	Pollutant	Exposure	Effects
Reference: Hiramatsu, (2005, 088285) Species: Mouse Gender: Female Strains: BALB/c Age: 8 wk Weight: 17-22 g	DE (generated by diesel engine and diluted with filtered clean air.) Mycobacterial Infection -M.tuberculosis (ATCC35812) Kurono strain Particle Size: NR	Route: Inhalation Dose/Concentration: Low - 0.1 mg/m³ High - 3 mg/m³ Mycobaterial infection: 5 mL (nebulized) of a 106 colony-forming units (CFU) suspension Time to Analysis: 7 h/day, 5 day/wk, 1, 2 or 6 mo. Subset infected on last day of DE exposure. CFU evaluation 7 wk postinfection.	Histopathological Observations: DEP-laden AMs and DEPs in the alveoli and peribronchial tissues increased in a time-dependent manner. DE-exposed mice had a greater number of mycobacterial lesions, which were disseminated. Lesions in the control mice had clear borders and consisted of epithelial cells and lymphocytes. Tubercle bacilli and DEPs coexisted in AMs. BALT was seen around DEPs in the 2 and 6-month exposure groups. Inflammation cells increased in a time-dependent manner with respect to DE exposure Granulomatous Lesions in Lungs: 6-month DE-exposed mice had a significantly higher amount of gross lesions than the 6-month control mice. Mycobacterial Burden: CFU in lungs were increased in DE-exposed animals but only the 6 month exposure resulted in statistically significant increases (a ~4-fold increase over control). CFU in spleen were not significantly altered by DE exposure. Cytokines and iNOS mRNA Expression: Infected DE-exposed mice had time-dependent increases of TNF-α, IL-18, IL-12p40, IFN-γ and iNOS mRNAs compared to the infected control mice. IL-12 mRNA expression decreased in infected 6-month DE-exposed mice.
Reference: Ichinose, T. et al. (2003, 041525) Species: Mouse Gender: NR Strains: BALB/cAnN, ICR, C3H/HeN Age: 6 wk Weight: NR	DE: DE generated by 3059cc 4-cylinder diesel engine Der f: Crude extract of D. farinae Particle Size: 0.4 μm (MMAD)	Route: Inhalation Dose/Concentration: 1. Air 2. DE only: 3.0 mg/m³ 3. Air + Der f: 1 mg Der f 4. DE 3.0 mg/m³ + 1 mg Der f Time to Analysis: DE: 12 h/day, 7 days/wk, 8 wk Der f: 2 wk intervals, 6 wk Analyzed 3 days after last instillation	Light Microscopic Observations: DE exposure caused the proliferation of nonciliated cells and epithelial cell hypertrophy. Soot-containing macrophages were found in the alveolar tissue spaces. Accumulated lymphocytes were present in the peribronchiola lymphoid tissue. Inflammatory cells and soot-containing macrophages were found in the submucosal layer and the vessel interstitium of mice treated with DE+Der f in all strains. DE+Der f treated C3H/He mice had desquamated goblet cells. Eosinophil Infiltration: DE treated C3H/He mice had a slight eosinophil infiltration in the submucosal layer. DE+Der f treated mice in all strains had a slight to moderate eosinophil infiltration. Lymphocyte Accumulation: Lymphocytes significantly increased in all strains under the DE treatment, and further increased under the DE+Der f treatment. Goblet Cell Proliferation: Little proliferation was seen in all strains under the DE+Der f caused a significant increase in proliferation compared to air+Der f in ICR mice, but a significant decrease in C3H/He mice. Local Cytokine and Chemokine Expression in Lung Tissue Supernatant: DE+saline significantly increased MIP-1a in all strains. MCP-1 also increased MIP-1a in all strains. MCP-1 also increased MIP-1a in all strains. MCP-1 and MIP-1a in all strains as compared with air+saline and air+Der f. IL-5 decreased in C3H/He mice treated with DE+Der f compared to air+Der f. IL-3 decreased in ICR and C3H/He mice compared to air+sealine.

Der f-specific Immunoglobulin Production in Plasma: Increased production of IgG1 was statistically significant in ICR and C3H/He mice treated with DE+Der f as compared to air+Der f. IgE was low in all strains.

Study	Pollutant	Exposure	Effects
Reference: Ichinose et al. (2004, <u>180367</u>) Species: Mouse Gender: NR	DEP: 2740cc 4-cylinder engine D. farinae: crude extract Particle Size: 0.4 µm (MMAD)	Route: IT Instillation Dose/Concentration: 1. D. farinae: 1 μm in PBS 2. D. farinae + DEP: 1 μg in PBS + 50 μg mg DEP Time to Analysis: 4 times at 2 wk intervals. Mice examined 3 wk after last instillation	Histological Changes: Mice in all three strains treated with DEP+D. farinae had a significant recruitment of eosinophils, more proliferation of goblet cells, and more eotaxin positive macrophages in the alveoli than mice treated with D. farinae alone.
Strains: BALB/c, ICR and C3H/He Age: 5 wk Weight: NR		eadmineu 3 wa aner iast iristiliation	Local Cytokine Expression in Lung Tissue Supernatant: DEP+D. farinae induced significant elevation of IL-5 in ICR and C3H/He mice as compared to D. farinae alone. Production levels of IL-4 and RANTES did not correlate with the manifestations of allergic airway inflammation induced by the D. farinae treatment with or without DEP.
			Cytokine Expression in Plasma: IL-5 in C3H/He mice treated with DEP+D. farinae was significantly higher than D. farinae alone. RANTES was unaffected by the DEP treatment in all strains.
			D. farinae-specific Immunoglobulin Production in Plasma: The adjuvant effect of DEP on IgG1 production was observed in all three strains, with C3H/H3 being statistically significant. The production levels of IgG1 correlated with the manifestations of eosinophilic airway inflammation by both treatments. No adjuvant effect on IgE production was observed.
Reference: Inoue et al. (2007, 096724) Species: Mouse Gender: Male Strain: ICR	PM-OC: Urban PM, collected for 1 month during early summer, 2001 in Urawa city Saitama, Japan LPS Particle Size: <2.0 µm	Route: IT Instillation Dose/Concentration: Vehicle group: PBS PM-OC group: 4 mg/kg of PM-OC LPS group: 2.5 mg/kg of LPS PM-OC+LPS group: combined administration of PM-OC+LPS	Effects of PM-OC on LPS Related Lung Inflammation: PM-OC alone did not significantly increase the infiltration of neutrophils, but LPS challenge showed a marked increase in the number of neutrophils compared with vehicle. Administration of LPS combined with PM-OC significantly increased the infiltration of neutrophils compared with LPS
Age: 6 wk Weight: 29-33 g		Time to Analysis: Single, 24 h	administration alone. Effects of PM-OC on Histological Changes in the Lung: Combined treatment with PM-OC and LPS resulted in enhanced neutrophilic inflammation.
			Effects of PM-OC on Pulmonary Edema Related to LPS: LPS group compared with vehicle group had a significant increase in lung water. The combined administration of PM-OC and LPS resulted in further increase in the lung water compared with LPS administration alone, however it was not statistically significant.
			Effects of PM-OC on Protein Expression IL- 1B, MIP-1α, MCP-1 and KC: The concentrations of these molecules were below the detection limits in the PM-OC group. LPS treatment significantly increased the protein levels of these molecules compared with the vehicle treatment. In the PM-OC + LPS group all concentrations, particularly KC, were smaller than in the LPS group.

Study	Pollutant	Exposure	Effects
Reference: Inoue et al. (2006, 090951) Species: Mouse Gender: Male	Carbon black (14 nm PrinteX 90; PrinteX 25; Degussa, Dusseldorf, Germany) Particle Size: 14 nm - 300 m ² /g 56 nm - 45 m ² /g	Route: IT Instillation Dose/Concentration: Vehicle group: PBS at pH7.4 LPS group: 2.5 mg/kg of LPS in vehicle Nanoparticle groups: 4 mg/kg carbon black nanoparticles (14 nm or 56 nm) in vehicle LPS + nanoparticle group: combined administration	Effects of Nanoparticles: Nanoparticles alone increased number of total cells and neutrophils, but not statistically significant. LPS exposure significantly increased numbers for both groups. Nanoparticles and/or LPS enhance pulmonary edema.
Strain: ICR Age: 6 wk Weight: 29-33 g		of carbon black and LPS in vehicle Time to Analysis: Single, 24 h	Histology: Treatment with LPS+14 nm nanoparticles markedly enhanced neutrophil sequestration into the lung parenchyma compared to LPS alone: LPS+56 nm nanoparticles did not.
			$\begin{tabular}{ll} \begin{tabular}{ll} \beg$
			Chemokines: Challenge with 14 nm nanoparticles alone elevated the levels of all chemokines without significance except for KC. LPS alone and with both nanoparticle groups caused significant increases in all chemokines.
			Formations of 8-OHdG in Lung: LPS plus nanoparticles resulted in intensive expression 8-OHdG, strongest in LPS+14 nm nanoparticle
			Plasma Coagulatory Changes: PT - no change for any group. APTT - some change with LPS and LPS + nanoparticle groups, fibrinogen level significantly elevated after LPS and for LPS+14 nm nanoparticle. APC decrease with LPS (significant) and LPS + nanoparticle groups. vWF increase with LPS (significant) and LPS+14 nm (significant).
Reference: Inoue et al. (2004, 087984)	DEPs [4JB-1 type light-duty, four- cylinder, 2.74 liter Isuzu diesel engine (Isuzu Automobile Co., Tokyo Japan)]	Route: IT instillation Dose/Concentration: Vehicle group: PBS; Washed DEP group: 4mg/kg of DEP; DEP-OC	COX-1 mRNA: Slightly elevated in both washed DEP and DEP-OC groups, but slightly decreased in other groups compared to vehicle group.
Species: Mouse Gender: Male Strain: ICR Age: 6 wk	Washed DEP and DEP-OC - extracted with dichloromethane Particle Size: NR	group: 4mg/kg of DEP-OC;LPS group: 2.5mg/kg of LPS; Washed DEP+LPS group: combined administration of washed DEP +LPS; DEP-OC+LPS group: combined administration of DEP-OC + LPS Time to Analysis: 4 h	COX-2 mRNA: Slightly increased with DEP-OC, increased with LPS, washed DEP+LPS and DEP-OC+LPS groups compared to vehicle. COX-2 in the DEP-OC+LPS decreased when compared to the LPS only group.
Weight: 29-33 g			Pulmonary Edema: Washed DEP + LPS group showed a synergistic enhancement of pulmonary edema and local expression of proinflammatory chemokines (MCP-1, MIP-1 α , KC, IL-1B).
Reference: Inoue et al. (2006, 096720)	Carbon black (PrinteX 90; PrinteX 25; Degussa, Dusseldorf, Germany)	Route: IT instillation Dose/Concentration: Vehicle group: PBS	Nanoparticles: Exposure to carbon nanoparticles resulted in the lung expression of TARC, GM-CSF and MIP-1α. The levels were higher in the 14 nm group compared to the 56 nm group.
Species: Mouse	Particle Size; 14 nm - 300 m²/g 56 nm - 45 m²/g	Ovalbumin (OVA) group: 1mg OVA; Nanoparticle groups: 50 mg carbon black nanoparticles (14 nm or 56 nm);;OVA + nanoparticle group: combined	
Gender: Male		administration of nanoparticles and OVA	OVA: In the presence of OVA, nanoparticles enhanced levels of TARC, GM-CSF, MIP-1α, IL-
Strain: ICR		Time to Analysis: Vehicle group - weekly for 6wk OVA group - biweekly for 6 wk	2 and IL-10, with the effects seen more prominently in the 14 nm particles + OVA group.
Age: 6-7 wk Weight: 29-33 g		Nanoparticle groups - weekly for 6 wk OVA+Nanoparticle group (same protocol as OVA and Nanoparticle) studied 24 h after last administration	

Study	Pollutant	Exposure	Effects
Reference: Inoue et al. (2005, 088625)	Carbon black (PrinteX 90; PrinteX 25; Degussa, Dusseldorf, Germany)	Route: IT Instillation Dose/Concentration: Vehicle group: PBS;	Nanoparticles + OVA: Nanoparticles given with OVA enhanced airway inflammation, characterized by increased eosinophils,
Species: Mouse	Particle Size: 14 nm - 300 m ² /g 56 nm - 45 m ² /g	Ovalbumin (OVA) group: 1mg ÕVA; Nanoparticle groups: 50mg carbon black nanoparticles (14nm or 56 nm); OVA + nanoparticle group: combined administration of nanoparticles and OVA	neutrophils, mononuclear cells and goblet cells. In addition, nanoparticles + OVA significantly
Gender: Male	3		increased local expression of IL-4, IL-5, eotaxin, IL-13, RANTES, MCP-1 and IL-6. The formation
Strain: ICR		Time to Analysis: Vehicle group - weekly for 6 wk	of 8-OHdG was enhanced by nanoparticles +
Age: 6-7wk		OVA group - biweekly for 6 wk Nanoparticle groups - weekly for 6 wk	OVA. 14 nm Nanoparticles: All these effects were
Weight: 29-33 g		OVA+Nanoparticle group: same protocol as OVA and Nanoparticle studied 24 h after last administration	more prominent when 14 nm nanoparticles were used. The 14 nm nanoparticle + OVA group significantly raised levels of total IgE and antigen specific production of IgG1 and IgE.
Reference: Inoue	Whole DE (generated by 4-cylinder,	Route: Whole-body Inhalation	BAL fluid, total cells, neutrophils, protein and
et al. (2006, 190142)	3.059l, Isuzu diesel engine, Isuzu automobile, Tokyo, Japan)	Dose/Concentration: 0.3 mgsoot/m ³ 1.0 mgsoot/m ³	gene levels (MCP-1 and KC) decreased compared to control with LPS, but were smaller with LPS + DE. Results are suggestive that
Species: Mouse	LPS Partials Size: 110 nm (needs nertials	3.0 mg soot/m³	short-term exposure to DE does not exacerbate LPS-related lung inflammation.
Gender: Male Strain: ICR	Particle Size: 110 nm (peak particle size)	LPS: 125 mg/kg Time to Analysis: LPS prior to	· ·
Age: 6 wk		12 h exposure to exhaust	
Weight: 29-33 g			
Reference: Inoue et al. (2007, 096702)	DEPs [4JB-1 type light-duty, four- cylinder, 2.74 liter Isuzu diesel engine (Isuzu Automobile Co., Tokyo Japan)]	Route: Cell Culture (Splenocytes resuspended to cell density of 1×10 ⁶ /mL and 1000 mL applied into each of 12-well plate)	Cell viability: No effect. Mononuclear cell response: Incubation with
Species: Mouse	LPS Particle Size: PM _{2.5}	Dose/Concentration: DEP: 100 mg/mL; LPS: 1	DEP alone inhibited basal cytokine production. LPS significantly increased protein levels of IFN-
Gender: Male		mg/mL; LPS(1mg/mL) + DEP (1, 10 or 100 mg/mL)	y, IL-2, and IL-10 compared to control. DEP suppressed the LPS-enhanced protein levels i a dose-dependent manner and moderately
Strain: ICR		Time to Analysis: 72 h	
Age: 6 wk			elevated the IL-13 level.
Weight: 29-33 g			
Cell Type Splenocytes			
Reference: Inoue et al. (2007, 198885)	Carbon nanoparticles (PrinteX 90, PrinteX 25; Dusseldorf, Germany) OVA	Route: IT Instillation Dose/Concentration: 50 μg and/or 1 μg OVA in PBS	Lung Responsiveness: Respiratory system resistance, Newtonian resistance and tissue dampening were significantly higher in the
Species: Mouse	Particle Size: CB14 = 14 nm, CB56 = 56 nm	Time to Analysis: 1×/wk for 6 wk; sacrifice 24 h	nanoparticle + OVA groups. Elastance and tissue elastance were higher in these groups but
Gender: Male	- 50 IIIII	after last exposure	not significantly so. Compliance was significantly lower in the nanoparticle + OVA
Strain: ICR			groups compared to the control.
Age: 6-7 wk			Lung mRNA Level for Muc5ac : Levels were significantly higher in nanoparticle + OVA groups
Weight: 20-30 g			compared to the control.
Reference: Inoue et. al. (2007, 096692)	DEP-OC collected from 4JB1 type, light duty, 4 cylinder, 2.74 liter Isuzu diesel engine, Isuzu Automobile Company, Tokyo, Japan) OVA	Route: IT Instillation Dose/Concentration: 50 μg and/or 1 μg OVA in PBS	Total respiratory system resistance, elastance, Newtonian resistance, tissue damping, tissue elastance displayed general positive trends and
Species: Mouse		Time to Analysis: DEP or DEP-OC w/ or w/o OVA	were significantly higher in OVA and OVA + DEP-OC groups. Compliance displayed a
Gender: Male	Particle Size: 0.4 µm	initially; OVA or vehicle every 2 wk for 6 wk; DEP	general negative trend and was significantly lower in the washed DEP + OVA group.
Strain: ICR		components or vehicle 1×/wk for 6 wk; sacrifice 24 h after last instillation	5 .
Age: 6-7 wk			
Weight: 29-34 g			

Reference: Ito et al. (2006, 088391) Species: Rat Cell Line: L2 cells of alveolar epithelial cell type I origin Reference: Jang et al. (2005, 155313) Species: Mouse Gender: Female Strains: BALB/c Age: 5-6 wk	DEP - generated from 2982-cc common rail direct injection diesel engine with oxidation catalyst and exhaust gas recirculation system. Particle Size: PM _{2.5} DEP -generated from 4JB1 type, light duty, four-cylinder diesel engine (Isuzu Automobile, Co, Tokyo, Japan) O ₃ - (generated with Sander Model 50 ozonizers, Sander, Eltze Germany) OVA Particle Size: NR	Route: Cell Culture Dose/Concentration: 1×10 ⁶ 1,10 or 30 mg/mL Time to Analysis: 3 h Route: Whole-body Inhalation Dose/Concentration: DEP: 2,000 µg/µL (sic) O3: 2 ppm (avg 1.98 ± 0.08 ppm) OVA sensitization: 10 mg Time to Analysis: OVA sensitization, DEP, O3 and OVA Challenge on d21- 23 Exposed to O3 for 3 h and DEP for 1 h AH and BAL measured 1 day after last challenge	ICAM-1 and LDL Receptor mRNA: Upregulation in a dose-dependent manner. Statistically significant at 30 mg/mL compared control. HO-1 and PAF Receptor mRNA: Up-regulation in dose-dependent manner and statistically significant at all doses compared to control. Correlation Between HO-1 and ICAM-1, LDL and PAF: Significant correlation between HO-1 and each of these. Airway Responsiveness: OVA + O ₃ + DEP exposure group had significantly higher methacholine-induce Penh than sham group of OVA group. Total cells, proportion of eosinophils and neutrophils: The OVA + O ₃ + DEP group was significantly higher than OVA group and OVA+O ₃ group. IL-4: OVA + O ₃ , OVA + DEP and OVA + O ₃ +
of alveolar epithelial cell type I origin Reference: Jang et al. (2005, 155313) Species: Mouse Gender: Female Strains: BALB/c	DEP -generated from 4JB1 type, light duty, four-cylinder diesel engine (Isuzu Automobile, Co, Tokyo, Japan) O ₃ - (generated with Sander Model 50 ozonizers, Sander, Eltze Germany) OVA	Route: Whole-body Inhalation Dose/Concentration: DEP: 2,000 µg/µL (sic) O₃: 2 ppm (avg 1.98 ± 0.08 ppm) OVA sensitization: 10 mg Time to Analysis: OVA sensitization, DEP, O₃ and OVA Challenge on d21- 23 Exposed to O₃ for 3 h and DEP for 1 h	in dose-dependent manner and statistically significant at all doses compared to control. Correlation Between HO-1 and ICAM-1, LDL and PAF: Significant correlation between HO-and each of these. Airway Responsiveness: OVA + O ₃ + DEP exposure group had significantly higher methacholine-induce Penh than sham group or OVA group. Total cells, proportion of eosinophils and neutrophils: The OVA + O ₃ + DEP group was significantly higher than OVA group and OVA+O ₃ group.
Reference: Jang et al. (2005, 155313) Species: Mouse Gender: Female Strains: BALB/c	duty, four-cylinder diesel engine (Isuzu Automobile, Co, Tokyo, Japan) O ₃ - (generated with Sander Model 50 ozonizers, Sander, Eltze Germany) OVA	Dose/Concentration: DEP: 2,000 μg/μL (sic) O ₃ : 2 ppm (avg 1.98 ± 0.08 ppm) OVA sensitization: 10 mg Time to Analysis: OVA sensitization, DEP, O ₃ and OVA Challenge on d21- 23 Exposed to O ₃ for 3 h and DEP for 1 h	and PAF: Significant correlation between HO-and each of these. Airway Responsiveness: OVA + O ₃ + DEP exposure group had significantly higher methacholine-induce Penh than sham group of OVA group. Total cells, proportion of eosinophils and neutrophils: The OVA + O ₃ + DEP group was significantly higher than OVA group and OVA+ O ₃ group.
et al. (2005, 155313) Species: Mouse Gender: Female Strains: BALB/c	duty, four-cylinder diesel engine (Isuzu Automobile, Co, Tokyo, Japan) O ₃ - (generated with Sander Model 50 ozonizers, Sander, Eltze Germany) OVA	Dose/Concentration: DEP: 2,000 μg/μL (sic) O ₃ : 2 ppm (avg 1.98 ± 0.08 ppm) OVA sensitization: 10 mg Time to Analysis: OVA sensitization, DEP, O ₃ and OVA Challenge on d21- 23 Exposed to O ₃ for 3 h and DEP for 1 h	exposure group had significantly higher methacholine-induce Penh than sham group of OVA group. Total cells, proportion of eosinophils and neutrophils: The OVA + O_3 + DEP group was significantly higher than OVA group and OVA+ O_3 group.
Gender: Female Strains: BALB/c	ozonizers, Sander, Eltze Germany) OVA	Time to Analysis: OVA sensitization, DEP, O ₃ and OVA Challenge on d21- 23 Exposed to O ₃ for 3 h and DEP for 1 h	neutrophils : The OVA + O_3 + DEP group was significantly higher than OVA group and OVA+ O_3 group.
Age: 5-6 wk		7.11 dile 5/12 inseconde 1 day diles last situationge	II -4 · O\/A + O ₂ O\/A + DEP and O\/A + O ₂ +
			DEP IL-4 level increased compare to OVA group.
			IFN-γ: Levels significantly decreased in OVA + DEP and OVA + $\rm O_3$ + DEP compared to OVA + $\rm O_3$.
Reference: Jaspers et al. (2005, <u>088115</u>) Species: Human Cell Lines: A549 cells, primary numan bronchial and nasal epithelial cells	DEas: aqueous-trapped solution of DE (emissions from Caterpillar diesel engine, model 3304) Influenza: A/Bangkok/1/79 (H3N2 serotype) Particle Size: NR	Route: Cell Culture Dose/Concentration: Influenza: 3×10 ⁵ cells infected with 320 hemagglutination units (HAU) DEas: For A549 cells: 6.25, 12.5, 25 μg/cm². For bronchial and nasal cells: 22 or 44 μg/cm². Time to Analysis: 2 h incubation with DEas then virus added. HA RNA levels analyzed at 0, 15, 30, 60 or 120 min post infection. IFN and MxA responses: analyzed 24 h post infection. Fluorescence: some cells treated with GSH-ET 30 min before DEas exposure. Measured 2 h post-influenza infection.	A549 Cells Increased Susceptibility: DEas enhances HA RNA levels in A549 cells in a dose-dependent manner. 25 μg/cm² significant enhanced levels in A549 cells compared to the influenza-infected controls. Viral protein levels were increased in A549 cells. Exposure to DEa increased the number of influenza-infected epithelial cells in A549 cells. Human Nasal and Bronchial Cells Susceptibility: Exposure to DEas increased HRNA levels in the nasal and bronchial cells. Statistically significant at 22 μg/cm² for nasal cells and approaching significance at 44 μg/cm for bronchial cells. Exposure of both types to 4 μg/cm² enhanced viral protein levels. Influenza Induced IFN Response in A549: Exposure to DEas does not suppress but enhances IFN-β mRNA levels. Treatment enhanced influenza-induced nuclear levels of both phospho-STAT-1 and ISFG3g. ISRE-promoter activity was enhanced, but not significantly. Treatment enhanced myxovirus resistance protein (MxA) mRNA levels. This da suggest that DEas exposure enhances influen: virus replication without suppressing production of IFN-β or IFN-β-inducible genes.
			Influenza Induced IFN Response in Human Nasal and Bronchial Cells: Exposure to DEa increased IFN-ß and MxA levels. Oxidative Stress in A549: DEas exposure dose-dependently increases oxidative stress in defense oxidative stress oxidative stress in defense oxidative stress
			A549 cells within 2-h post-exposure. Add the antioxidant GSH-ET and it reverses the effect Pretreatment with GSH-ET A549 cells reverse the effects of DEas on the number of influenza infected cells, and reduced HA RNA levels.

Oxidative Stress in Human Bronchial Cells: The results were the same as A549 cells pretreated with GSH-ET. Or Pretreatment with GSH-ET also reversed effects of DEas on HA RNA levels.

Study	Pollutant	Exposure	Effects
Reference: Kaan and Hegele (2003, 095753) Species: Guinea pig Gender: Female Strain: Cam Hartley Age: 22-29 days Weight: 250-300 g Cell Types: AM	PM ₁₀ - EHC-93 obtained (Environmental Health Canada, Ottawa, ON, Canada) RSV - Human RSV (long strain/lot18D) (American Tissue Culture Collection, Bethesda, MD) Particle Size: PM ₁₀ (0.35 μm MMAD)	Route: Cell Culture Dose/Concentration: PM ₁₀ : 500 µl/well (100 µg/ml MEM) RSV exposure:: 1 ml/well (6×10 ⁶ pfu/ml MEM) Groups: PM ₁₀ +RSV RSV+PM ₁₀ RSV only PM ₁₀ only negative control Time to Analysis: PM ₁₀ - 60 min; RSV - 90 min Parameters measured 24 h post treatment	Interaction on Phagocytic Ability of AM: Not affected by sequential exposure to RSV and PM ₁₀ . More than 95% of AM exposed to PM ₁₀ engulfed PM. AM exposed to PM ₁₀ showed significant increase in mean side scatter in comparison to negative control and RSV-infected AM. No significant difference between AM exposed only to PM ₁₀ and AM exposed to both agents. No significant side mean side scatter difference between AM exposed to both agents. No significant side mean side scatter difference between AM exposed to PM only and to both agents. Interaction on RSV Immunopositivity: PM ₁₀ exposure inhibits. All RSV-treated groups showed significantly greater proportion of RSV-immunopositive cells compared with negative control. PM ₁₀ +RSV showed significantly smaller proportion of RSV-immunopositive cells compared with RSV group. RSV+PM ₁₀ group similar to RSV group. Proportion of RSV-immunopositive AM was influenced by the sequence of exposure to RSV and PM ₁₀ . Interaction on RSV Replication: PM exposure suppressed RSV replication. AM exposed to both agents produced 3 to 9 fold less RSV progeny compared with RSV alone group. Quantity of RSV progency was not significantly affected by the sequence of exposure RSV and PM ₁₀ . Negative control and PM ₁₀ only did not propagate progeny. Interaction of RSV Yield: RSV alone group produced the highest RSV yield, those exposed to both agents, independent of sequence, showed a 5-fold decrease. Cytokine production: RSV infection stimulated all three cytokines measure (IL-6, IL-8 and TNF-α) compared to negative control. IL-6: PM ₁₀ significantly reduced RSV-induced IL-6 production. IL-6 was affected by the sequence of exposure to PM ₁₀ and RSV (PM ₁₀ +RSV vs. RSV+PM ₁₀). IL-8: PM ₁₀ significantly decreases RSV-induced IL-8 production and baseline. No affect on sequence of exposure. TNF-α: production was increased when exposed to RSV, PM ₁₀ or a combination of both agents. No
Reference: Kleinman et al. (2005, 087880) Species: Mouse Gender: Male Strains: BALB/c Age: 8-19 wk Weight: NR	CAPS: fine (F) and ultrafine (UF) using VACES system; performed a 2 sites in Los Angeles, CA, one 50-m downwind and another 150-m downwind from a complex of three roadways, State Road CA60, Interstate 10, and Interstate 5 F CAPS in 2001 and 2002, UF CAPS in 2002 only OVA: Ovalbumin Particle Size: UF: dp \leq 150 nm F: dp \leq 2.5 μ m	Route: Whole-body Inhalation OVA sensitization: nasal instillation OVA challenge: inhalation Dose/Concentration: UF at 50 m: 433 μg/m³ -UF at 150 m: 283 μg/m³ F at 50 m or 150 m: average 400 μg /m³ OVA sensitization: 50 μg/5 μl OVA challenge: 30 mg/m³ Time to Analysis: CAPS: 4 h/day, 5 days/wk for 2 wk Sensitization: On morning of each exposure 1st Challenge: week after 10 days of treatment 2nd Challenge: one week following 1st challenge Sacrificed: 24 h after 2nd challenge	There were significantly higher concentrations or IL-5, IgE, IgG1 and eosinophils in mice exposed to either CAPS compared to air. Mice exposed to CAPS at 50-m downwind showed higher levels of IL-5, IgG1, and eosinophils than those exposed to CAPS 150-m downwind.

Study	Pollutant	Exposure	Effects
Reference:	CAPS - concentrated fine (F) and	Route: Whole-body Chamber	50m Site: higher levels and statistically
Kleinman et al. (2007, <u>097082</u>)	ultrafine (UF) using VACES system - performed a 2 sites in Los Angeles, CA, on 50-m downwind and another 150-m downwind from State Road CA60 and Interstate 5. Fall 2001-summer 2004	Dose/Concentration: 50 m - F: 394 \pm 94 μg/m ³ 50 m - UF: 297 \pm 189 μg/m ³	significant concentration curves of IL-5 and IgG1 in F-CAP mice at the 50 m site.
Species: Mouse Gender: NR		150 m - F: 387 ± 68 μg/m³ 150 m - UF: 213 ± 95 μg/m³	150m Site: in no cases were responses greater than the 50m or control groups.
Strains: BALB/c	OVA	OVA - 50 mg in 5 mL saline	F vs. UF: The study was not able to differentiate between the effects of F PM and UF PM
Age: 6-8 wk	Particle Size: F: PM _{2.5} ; UF: PM0.15	Time to Analysis: 3, 4 h/day, 5 days/wk, 2wk OVA the morning of each exposure	exposures.
Reference: Klein-	ROFA	Route: Cell Culture	ROFA in BTE: ROFA and ROFA leachate
Patel et al. (2006, 097092)	V ₂ O ₅ , VOSO ₄ , SiO ₂ TiO ₂ , Fe ₂ (SO ₄) ₃ , NiSO ₄ , LPS	Dose/Concentration: ROFA: 0, 2.5, 5, 10, 15, 20 μg/cm ²	inhibition of LPS-induced TAP gene expression increases with exposure time and dose. Washed particles of ROFA at doses 2.5 to 10 mg/cm ²
Species: Cattle and Human	Particle Size: 1.95 μm (MMAD)	LPS: 100 ng/mL	significantly increased inducible TAP expression.
Cell Types		$V_2O_5\hbox{:}\ 0,0.15,0.3,0.61,1.25,2.5,5,10,20~\mu\text{g/cm}^2$	Soluble Metals in BTE: V ₂ O ₅ inhibition of LPS
Bovine tracheal epithelial cells (BTE) and A549		$\label{eq:niso} NiSO_{4_2} Fe_2(SO_4)_3, TiO_2, SiO_2 \!\!: 0, 1.23, 2.5, 5, 10, 20 \\ \mu g/cm^2$	and IL-1β induced TAP gene expression increases with exposure time and dose. NiSO ₄
(2 · 2) a / 10 · 10		VOSO ₄ : 0, 0.145, 0.29, 0.58, 1.16, 2.32 μg/cm ²	exhibits non-significant dose dependent suppression of inducible TAP gene expression.
		Time to Analysis: LPS: 0, 6, or 18 h	Fe ₂ (SO ₄) ₃ , TiO ₂ and SiO ₂ were found to have no effect.
		ROFA: 0, 2,4,6 h V ₂ O ₅ : 0, 0.25, 0.5, 1, 2, 4, 6, 8h NiSO ₄ , Fe ₂ (SO ₄) ₃ , TiO ₂ , SiO ₂ , VOSO ₄ : 6 h	A549: Results with ROFA and V_2O_5 in BTE were replicated using the A549 cell line and IL-1β to induce hBD2 gene expression.
			$ \begin{array}{lll} \textbf{Cellular Viability:} \ \text{Was not significantly affected} \\ \text{in ROFA doses below 20 } \mu g/cm^2 \ \text{and} \\ V_2O_5/VOSO_4 \ \text{doses below 2.5 } \mu g/cm^2. \end{array} $
Reference: Koike and Kobayashi (2005, 088303) Species: Rat Gender: Male Strains: Wistar Kyoto Age: 8-10 wk Weight: 280-350 g Cell Types: AM, PBM (peripheral blood monocytes), T-cells (antigen	Whole DEP: Diesel Exhaust Particles collected in the dilution tunnel of a diesel inhalation facility. (Ratio of organic extract to residual particles in the whole DEP was 3: 1.) Organic extract of DEP Residual particles of DEP OVA: Ovalbumin Particle Size: NR	Route: Cell Culture (1×10 ⁶ cells/ml) Dose/Concentration: Whole DEP: 10, 30, 100 μg/mL Organic extract of DEP: 7.5, 22.5, 75 μg/mL Residual particles: 2.5, 7.5, 25 μg/mL Time to Analysis: 24 h post exposure	la Antigen and Costimulatory Molecules: Most control AM did not express these molecules. Whole DEP did not cause any increase in expression level. 20% of control PBM expressed la and 10% B7; expression of these molecules was significantly increased by whole DEP. Organic extract significantly increased the expression of la and B7 molecules on PBM similar to whole DEP. Residuals caused no effect. Organic extract- induced expression of la antigen in PBM was reduced by treatment with NAC. AP Activity: After exposure to organic extract, T cell proliferation was significantly increased by the addition of control PBM in a cell number- dependent manner. AP activity of PBM was increased over control by exposure to 3 µg/mL
sensitized)			organic extract, although higher concentrations suppressed the activity of PBM. Cytokine Production: Organic extract treatment of PBM decrease IFN-γ production from T-cells stimulated by PBM. No significant effect on IL-4 observed. HO-1 Protein Level: Levels in PBM were significantly increased by exposure to whole DEP or organic extract. Levels induced by organic extract was diminished by NAC treatment.

Study	Pollutant	Exposure	Effects
Reference: Last et al. (2004, 097334) Species: Mouse Gender: NR Strains: BALB/c Age: 6 wk Weight: 16-20 g	PM - aerosol of soot and iron oxide OVA Particle Size: PM _{0.1} - PM _{2.5}	Route: Inhalation OVA - Intraperitoneal Injections; Aerosol Exposure Dose/Concentration: PM - 235-256 µg/m³ OVA - 10 µg/0.1 mL injection OVA aerosol - 10 mL of 10 mg/mL (1%) solution Time to Analysis: PM: 4 h/day, 3 days/wk; OVA: 2 ip injections days 1 and 15. Aerosol on day 28 after first ip; 60 min 3x/wk	2 Wk PM Exposure/4 Wk OVA Aerosol Treatment: The OVA alone group had significantly more airway collagen than the PM alone group. Histology showed significantly more collagen in the treatment than the air alone group. There was a significantly greater amount of goblet cells than the OVA alone group. 4 Wk OVA Aerosol/ 2 Wk PM Treatment: The OVA treatment had significantly more goblet cells than the PM alone group. 6 Wk Concurrent PM and OVA Treatment: Significantly more cells were observed in the OVA alone group over the treatment. The treatment had significantly more lymphocytes and significantly less macrophages than groups exposed to PM before or after OVA. Histology showed significantly more collagen in the treatment than the air or PM alone groups. The treatment had significantly more goblet cells than the OVA alone group.
Reference: Li et al. (2007, 093156) Species: Mouse Gender: Female Strain: BALB/c, C57BL/6 Age: 9 wk Weight: NR	DEP (2369-cc diesel engine manufactured by Isuzu Motor, operated at 1050 rpm, 80% load, commercial light oil) Particle Size: NR	Route: Inhalation Dose/Concentration: DEP: 103.1 ± 9.2 μg/m³, CO: 3.5 ± 0.1 ppm, NO ₂ : 2.2 ± 0.3 ppm, SO ₂ : <0.01 ppm Time to Analysis: Protocol 1: Exposed 7h/day, 5days/wk. Sacrificed at day 0, week 1, 4, 8. Protocol 2: DE alone or DE+NAC 7h/d, 1-5 days.	Airway Hyperresponsiveness: Penh values increased in BALB/c mice compared to the control at day 0, but no significant changes occurred after this time. Penh values increased in C57BL/6 mice at 1wk compared to the control but returned to control levels at 8 wk. BALF: Compared to the other strain, the total number of cells and macrophages increased significantly at 1wk in C57BL/6 mice and at 8wk in BALB/c mice. Neutrophils, lymphocytes, MCP-1, IL-12, IL-10, IL-4, IL-13 increased significantly for both strains. No eosinophils were found. IL-1B and IFN-y increased significantly in BALB/c mice compared to C57BL/6 mice. HO-1 mRNA and Protein: HO-1 mRNA was more marked in BALB/c mice at 1wk and C57BL/6 mice at 4 and 8 wk. HO-1 protein percentage changes from the control were greater in BALB/c mice at 1wk and C57BL/c mice at 8 wk. NAC: NAC inhibited the increased Penh values, total number of cells and macrophages in C57BL/6 mice at 1 wk and neutrophils and lymphocytes in both strains.
Reference: Li et al. (2009, 190457) Species: Mouse Gender: Female Strain: BALB/c Age: 6-8 wk Weight: NR Reference: Li et al. (2009, 190457) Species: Mouse Cell Line: RAW 264.7	CAPs (downtown Los Angeles, CA from major freeway, traffic mainly passenger cars and diesel trucks; Jan. 2007 or Sept. 2006) Ultrafine carbon black (UFCB; used as control) Particle Size: Fine- <2.5 µm (diameter), UF- <0.15 µm (diameter) CAPs (downtown Los Angeles, CA from major freeway, traffic mainly passenger cars and diesel trucks; Jan. 2007 or Sept. 2006) Ultrafine carbon black (UFCB) Particle Size: Fine- <2.5 µm (diameter), UF- <0.15 µm (diameter)	Route: Intranasal Instillation Dose/Concentration: 0.5 μg PM in 50 μL suspension Time to Analysis: Day 1 exposed to PM or saline. Day 2 exposed to PM+OVA or OVA or saline alone. Repeated on days 4, 7, 9. Different experiment: NAC ip injected 4 h pre-instillation on days 1, 2, 4, 7, 9. All animals rested and OVA aerosol challenged 30 min on days 21, 22. Sacrificed day 23. Route: Cell Culture Dose/Concentration: 1, 5, 8.3, 10 μg/mL Time to Analysis: NR	UFP alone had no effect on the lung. UFP+OVA significantly increased eosinophils, and OVA-specific IgG1 and IgE. The induction of eosinophils and IgG1 were inhibited by NAC. Generally, UFP+OVA mice had greater signs of inflammation than the other groups as determined by pulmonary histopathology and airway morphometry. UFP had a greater PAH content than fine particles. UFP significantly increased IL-5, IL-13, TNF-α, IL-6, KC, MCP-1, and MIP-1α. UFP induced greater HO-1 expression than fine particles. The higher PAH content of UFP correlated with HO-1 expression.

Study	Pollutant	Exposure	Effects
Reference: Liu et al. (2008, <u>156709</u>) Species: Mouse	DEP (5500-watt single-cylinder diesel engine generator (Yanmar, Model YDG 5500E), 406 cc displacement air-cooled engine, Number 2 Diesel Certification	Route: Intranasal Exposure Dose/Concentration: Average particle concentration: 1.28 mg/m³	A.fumigatus+DEP increased IgE, the mean BAL eosinophil percentage, goblet cell hyperplasia, and eosinophilic and mononuclear cell inflammatory infiltrate around the airways and
Gender: Female	Fuel, 40 weight motor oil)	Time to Analysis: Four groups: saline+air control.	blood vessels compared to the A. fumigatus or
Strain: BALB/c	Particle Size: ~0.1 µm (MMAD)	saline+DEP, A. fumigatus+air, A.fumigatus+DEP. A. fumigatus exposure every 4 days for 6 doses. DEP	DEP treatments. A.fumigatus+DEP also caused methylation at the IFN-γ promoter sites CpG-53,
Age: 11wk		exposure 5 h/dayfor 3 wk concurrent with A.	CpG-45, and CpG-205.
Weight: NR		fumigatus exposure.	
Reference: Liu et	DEP: 5500-watt single-cylinder diesel	Route: Inhalation	IgE Production: IgE production increased with the A.fumigatus treatment and increased further
al. (2007, <u>093093</u>) Species: Mouse	engine. Particle Size: NR	Dose/Concentration: Average particle concentration 1.28 mg/m ³ .	with the A.fumigatus and DEP treatment.
Gender: Female		Time to Analysis: 1. Aerosol vehicle (saline) + air	Histopathology: A. fumigatus with DEP caused an increase in goblet cell hyperplasia and
Strain: BALB/c Age: 11wk		Aerosol vehicle (saline) + DEP A. fumigatus + air A. fumigatus + DEP	eosinophil and mononuclear cell infiltrate around the airways and blood vessels as compared to the control and DEP treatments.
3 *		A. fumigatus: 62.5 μg aerosolized protein extract in 50 μL PBS; 6 total doses, every 4 d.	Gene Methylation: Greater methylation at the CpG-53 site of the IFN-y promoter occurred
		DEP exposure 5 h/day 3wk concurrent with A. fumigatus.	under the A. fumigatus + DEP treatment compared to the A. fumigatus or DEP treatments. The DEP treatment did not induce methylation. Methylation correlated with increased IgE and hypomethylation with decreased IgE. Hypomethylation occurred in the IL-4 promoter under the A. fumigatus + DEP treatment.
Reference:	Carbon-Black Particles (93% C)	Route: Cell Culture (0.5×10 ⁶ AM/well)	Effect of Time on Survival of S. Pneumoniae
Lundborg et al. (2007, <u>096040</u>)	DEPs (97% C) - toluene-extracted	Dose/Concentration: 20 μg/mL	when Incubated with Carbon Loaded AM: Loading AM with carbon significantly increased
Species: Rat	10-fold Cr, Mn, N; 50-100 fold Al, Cd,	surface area: 159 ± 4m²/g	the bacterial survival. Bacteria opsonization decreased bacterial survival.
Gender: Male	Cu, Fe, Mg, Pb, Zn more in DEP aggregates	Time to Analysis: 6 different experiments. AM pre- exposed to carbon or washed DEP. Loaded with	Effect of Carbon Load in AM on Survival of
Strains: SD Age: NR	Particle Size: Carbon aggregates: 0.17 ± 0.08 μm (mean diameter)	particles. Incubated with S. pneumoniae, ATCC strain or clinical isolates.	S. Pneumoniae: Bacterial survival increased in a dose-dependent manner as the carbon particle load of AM increased.
Weight: 300-400 g Cell Line: AM	Diesel Particles: $0.69 \pm 0.46 \ \mu m$ (mean diameter) Primary particles: $0.044 \pm 0.01 \ \mu m$ (mean diameter)		Survival of S. Pneumoniae after Incubation with Carbon or Washed Diesel Loaded AM: Bacterial survival increased in carbon loaded AM compared to the control. No difference existed with the washed diesel particles.
			Survival of the ATCC Strain and Clinical Isolates of S. Pneumoniae when Incubated with Carbon Loaded AM or Control AM: Carbon significantly increased the CFU of opsonized and unopsonized bacteria for the ATCC strain and clinical isolates.
			Ability of carbon or washed diesel loaded AM, incubated with the ATCC strain of S. pneumoniae, to induce LPO of lung surfactant: A 97% increase in the surfactant LPO occurred after incubation with washed diesel loaded AM compared to control AM. The effect of washed diesel particles was significantly greater than that of carbon particles.
			LPO by carbon loaded AM incubated with the ATCC strain or clinical isolates in the presence of absence of surfactant: LPO induced by AM increased when incubated with carbon loaded AM compared to control AM.

Study	Pollutant	Exposure	 Effects
Reference: Matsumoto et al. (2006, 098017) Species: Mouse Gender: Female Strains: BALB/c	DE (collected from a 2369 cm³ diesel engine operated at 1050 rpm and 80% load with commercial light oil; engine exhaust passed through a particulate air filter and charcoal filer) Diluted DE introduced into the exposure chamber. Composition of the DE: 3.5 ± 0.1 ppm CO, 2.2 ± 0.3 ppm NO ₂ , <0.01 ppm SO ₂ and 103.1 ± 9.2 µg/m³ DEP. Particle Size: NR	Route: Whole-body Inhalation Dose/Concentration: 100 μg/m³ DE Time to Analysis: Mice were initially sensitized w/ OVA (20ug absorbed to 2 mg alum diluted with 0.5 mL saline) via ip injection on day 0, 6 and 7. Two wks later the mice were challenged with OVA (0.1mg in 0.1mL saline) intranasally on day 21.	Airway Hyperresponsiveness: Exposure to DE significantly increased airway reactivity to methacholine after 1 wk in both 24 and 48 mg/mL Mch and after 4 wk in the 48 mg/mL. DE exposure caused an increase in airway sensitivity after 1 wk of exposure, 4 wk and 8 wk of exposure did not result in a significant increase.
Age: 6 wk Weight: 15-20 g		DE for 1d or 1,2, 3, 4 or 8 wk (at 7 h/day for 5 days/wk).	BAL Cells: The total cell count was increased after 1 wk of DE exposure. This increase was mostly due to an increase in eosinophils. After 1 wk the total cell count dropped drastically even after continuous exposure to DE. DE did not effect the number of CD3, CD4, CD8 or NK1 cells at any point in time.
			Cytokine/Chemokine mRNA Levels: DE exposure on day 1 caused an increase in mRNA levels of IL-4, IL-5 and IL-13 when compared to the control mice but longer periods of DE exposure failed to cause an increase. Protein levels of IL-4 were significantly elevated at compared to control at day 1, but did not persist with time. mRNA levels of MDC were increased at 1 wk of exposure (compared to control) but also decreased at time periods after. mRNA levels of RANTES were increased at 2 and 3 wk after exposure and remained elevated at 4 wk but not significantly. The level of RANTES protein increased as the weeks went along, but increased significantly only at 8 wk.
			Histopathology: OVA sensitization caused an increase peribronchial and perivascular infiltration of inflammatory cells which peaked at 1 wk after exposure and decreased afterward. DE exposure did not cause/show any additional signs of inflammation.
Reference: Morishita et al. (2004, 087979) Species: Rat Gender: Male Strain: Brown- Norway Age: 10-12 wk	CAPs (generated from ambient air in an urban Detroit community). Particle Size: 0.1-2.5 μm	Route: Whole-body Inhalation Dose/Concentration: July 676 μg/m³. September 313 μg/m³ Time to Analysis: First rats were sensitized (days 1-3) and challenged (days 14-16) with saline (control) or OVA by intranasal instillation (5% in saline, 150 μL/nasal passage). 4 days after the last intranasal challenge, rats began exposure in the chambers. Exposures were 10 h long. The July exposure was for 4 consecutive days. The September exposure was for 5	Recovery of Trace Elements in Animal Lung Tissues: July Exposure- Anthropogenic trace elements were below limit of detection in pulmonary tissue of animals exposed to July CAPs. September Exposure- Several elements were recovered from pulmonary tissue during the Sept. exposure. La concentrations were increased in both control/CAPs exposure and in the OVA/CAPs exposure groups. V concentration was increased in OVA/CAPs exposed animals but not in rats exposed to just CAPs. S content was only significant in animals exposed to OVA/CAPs compared to the non-
		consecutive days.	exposed control. Particle Characterization: July PM had an average mass concentration twice as high as the September mass concentration. S concentration was four-folds higher in July PM. In the September PM- the concentration of La was 12.5 fold higher than in July PM and Mn was 1.5 fold higher than in July PM.
			BALF Analysis: Eosinophil concentration was not significantly different when comparing rats exposed to CAPs only in either July or September (this was explained by the elapsed time between exposure and BALF collection). However OVA and CAP exposure in the September group led to elevated eosinophil levels. Similarly, the protein content was only significantly increased in the September OVA/CAP exposed rats, compared to the control group.

Study	Pollutant	Exposure	Effects
Reference: Nygaard et al. (2005, 088655) Species: Mouse Gender: Female Strain: BALB/c Age: 6-7 wk	Coarse and fine ambient air particles collected in Rome (spring), Oslo (1-summer, fine only, 2-following spring, fine and coarse), Lodz (summer) and Amsterdam (spring). These represent areas with high population and dominance of traffic. DEP (Standard reference material 1650a) Particle Size: Fine PM 0.1-2.5 µm; Coarse PM 2.5-10 µm	Route: Subcutaneous Injection into mouse footpads. Dose/Concentration: 100 μg of particle Time to Analysis: Animals were in eight groups: 1. Control- Hank's Balanced Salt Solution 2. OVA- 50 μg 3. OVA (50 μg)+ Amsterdam Coarse PM (100 μg) 4. OVA (50 μg)+ Amsterdam Fine PM (100 μg) 5. OVA (50 μg)+ Lodz Coarse PM (100 μg) 6. OVA (50 μg)+ Lodz Fine PM (100 μg) 7. 5. OVA (50 μg)+ Oslo Coarse PM (100 μg) 8. OVA (50 μg)+ Oslo Fine PM (100 μg) 8. OVA (50 μg)+ Oslo Fine PM (100 μg)	Cell Numbers and Cell Phenotypes in the Lymph Node: The overall number of B lymphocytes, lymph node cells, PLN cells, and the expression of MHC class II, CD86 and CD23 on B lymphocytes were increased by coexposure of OVA+ the particles compared to the OVA or particle groups alone. The OVA+ particle groups displayed a significant decrease in T lymphocytes. Particles only significantly increased the number of lymph node cells and MHC Class II expression. There were no differences observed between coarse and fine PM fractions.
		Analysis 5 days after injection.	Cytokine Production by Lymph Node (ex vivo culture of popliteal lymph node cells): The OVA + particle (DEP and Oslo1 only) significantly increased IL-4 and IL-10 levels. No change was observed in IFN-γ. The particle groups only increased IL-4 and IL-10. All coarse and fine particle fractions co-exposed with OVA significantly increased IL-4 and IL-10 compared to OVA alone. There was no significant difference between coarse and fine particles. IFN-γ levels were not significantly affected by most of the groups, but the fine fractions of PM consistently produced higher levels of IFN-γ.
			Lymph Node Histology: OVA + particle groups resulted in significantly enlarged lymph nodes and the formation of germinal centers.
Reference: Nygaard et al. (2005, 087980) Species: Mouse Gender: Female Strains: BALB/c Age: 6-8 wk	Polysterene Particles (PSP) Particle Size: 0.1 μm (diameter)	Route: Subcutaneous Injection into footpads. Dose/Concentration: 40 μg PSP (5.94×10 ¹⁰ particles) per injection suspended in HBSS. One injection per footpad Time to Analysis: 1. HBSS 2. OVA (10 μg per injection) 3. PSP (40 μg per injection) 4. OVA (10 μg per injection) + PSP (40 μg per injection). Antibody experiments: reinjected with 10 μg OVA on day 21. Killed on day 26. Popliteal lymph node cell experiments animals injected. Killed 1 to 21 days post-injection.	OVA-specific IgE, IgG1 and IgG2a Antibodies: Analysis at day 26 indicated IgE, IgG1 levels were significantly higher in mice exposed to OVA+PSP compared to mice injected with HBSS, OVA or PSP. No significant difference was observed for IgG2a levels. Number of Particle Containing Cells: There was no significant difference between PSP alone and OVA+PSP. Throughout days 0 -21 the number of particle-containing cells in the PSP or OVA+ PSP groups were significantly greater than the HBSS group. Total Cell Numbers, B and T Lymphocytes and MHC class Il Expression: The total cell number and B lymphocytes significantly increased by coexposure to OVA+ PSP when compared to the other groups. Both OVA and OVA+PSP increased T lymphocytes on Days 1, 3 and 5. MCH class Il expression was significantly higher in the OVA+PSP group on days 5, 7 and 21 than other groups. Cell Types and Surface Markers: The number of CD40+ B Lymphocytes showed a slight but significant decrease with OVA+PSP and OVA compared to HBSS and PSP. CD86+, CD23+ and CD69+ B lymphocytes were significantly higher in OVA+PSP group than other groups. PSP alone did not affect CD86+ or CD23+ levels.
			Cytokine Production: IL-4 and IL-10 were significantly higher in the OVA+PSP group when compared to the other groups. OVA alone caused a slight increase compared to PSP. PSP did not alter IL-4 or IL-10 levels.

Study	Pollutant	Exposure	Effects
Reference:	CB (carbon black/DEP)	Route: Single subcutaneous injection into footpad	OVA Specific IgE and Ig2a: OVA with CB, DEP
Nygaard et al. (2004, <u>058558</u>)	Polystrene Particles (PSP) Particle Size: PSP diameter: 0.0588, 0.202, 1.053, 4.64 or 11.14 µm	Dose/Concentration: 10 μg OVA + 40 μg (low dose) or 200 μg (high dose) of particles	or PSP of diameters 0.0588 and 0.202 µm increased IgE compared to OVA alone, as well
Species: Mouse		Time to Analysis: 5 days after OVA injection	as the 1.053, 4.64 and 11.14 µm PSP. OVA with 0.0588 µm PSP or CB significantly increased
Gender: Female	σ.202, 1.000, 1.01 στ ττ. ττ μ πι	Time to railaryolor o days and o with posteri	IgG2a compared to OVA alone.
Strain: BALB/c			Primary Cellular Response: All OVA and PSP groups (except the low dose of 11.14 µm PSP)
Age: 6-7 wk			had more total lymph node cell numbers than the OVA alone group. The low and high does
Weight: NR			groups of 0.202 μm PSP had the greatest amount of cell proliferation and lymphoblasts. The OVA and 0.202 PSP treatment produced the greatest amounts of B lymphocytes, IL-4, IL-10 and IFN-γ. IL-2 in the PLN cells was significantly lower in both dosage groups of OVA and 0.202 PSP than the OVA control.
			Particle Mass, Size, Number and Surface Area: Total particle surface area explained 64% of the variance in the IgE levels. 60-80% variance of the PLN cellular parameters (except CD23) were explained by total particle surface area, number and diameter.
Reference: Reed	GEE (two 1996 General Motors 4.3-L V-	Route: Whole-body Inhalation	The kidney weight of female A/J mice decreased
et al. (2008, <u>156903</u>)	6 engines; regular, unleaded, non- oxygenated, non-reformulated gasoline	Dose/Concentration: PM; Low- 6.6 ± 3.7 μg/m ³ , Medium- 30.3 ± 11.8 μg/m ³ , High- 59.1 ± 28.3	at 6 mo. and was strongly related to PM by the removal of emission PM. PM-containing
Species: Mouse	blended to US average consumption for summer 2001 and winter 2001-2002-	μg/m ³	macrophages increased by 6 mo. Hypomethylation occurred in females at 1 wk.
Gender: Male, Female (only BALB/c)	Chevron-Phillips) Particle Size: 150 nm (MMAD)	Time to Analysis: A/J- 6 h/day, 7days/wk, 3 days-6 mo. C57BL/6- 1wk exposure. Instillation of P. aeruginosa. Killed 18 h postinstillation. BALB/c-	The clearance of P. aeruginosa was unaffected by exposure. Serum total IgE significantly and dose-dependently increased. OVA-specific IgE and IgG1 gave slight exposure-related evidence
Strain: C57BL/6, A/J, BALB/c		Pregnant females exposed GD 1 and throughout gestation. Offspring exposures continued until 4wk- old. Half of offspring sensitized to OVA. Tested for	but were not significant.
Age: NR		airway reactivity by methacholine challenge 48 h post-instillation and euthanized.	
Weight: NR			
Reference: Roberts et al.	R-Total = ROFA (Residual oily fish ash) R-Soluble = Soluble fraction of ROFA	Route: IT Instillation	Uninfected Groups: Compared to the controls, the R-total and R-soluble groups had increased
(2007, <u>097623</u>)	R-Chelex = R-Soluble+Chelex (insoluble resin)	Dose/Concentration: 10 mg/kg (2.5-3 mg)	LDH, PMNs, lymphocytes and AMs. The R-total group had a slight, but significant increase in IL
Species: Rat	Particle Size: 2.2 µm (mean diameter)	Time to Analysis: Pre-exposure to ROFA samples on Day 0. Inoculation with 5×10 ⁴ L. Monocytogenes	6 and the R-soluble group had a decrease in IL-
Gender: Male		or saline on day 3. Sacrifice on days 6, 8, 10.	Infected Groups: The R-soluble group had
Strain: SD			increased levels of LDH (which also increased
Age: 10 wk			for the R-total group), albumin, BALF cells, NK cells, PMA-stimulated and zyomason-stimulated
Weight: 250-300 g			CL compared to all other groups at various time points. NOX was significantly elevated in the R-soluble group at early time points, but in later time points R-soluble and R-total AMs produced less NOX than the controls. IL-10 and IL-6 increased in the R-soluble group, while IL-12, IL-4 and IL-2 decreased. IL-12 also decreased in the R-total group.
Reference: Saxena et al.	DEPs (standard)	Route: Intrapulmonary Instillation	The BC G + DEP group had four times the BC G lung load than BC G alone. The load was
(2003, <u>054395</u>)	Particle Size: NR	Dose/Concentration: 100 μg/mouse	significantly greater in other organs in the BC G
Species: Mouse		Time to Analysis: Pre-exposure to 2.5×10 ⁴ bacillus Calmette-Guerin bacteria (BC G) with or	+ DEP group. Interstitial lymphocytes, T, B and NK cells were increased in the BC G + DEP
Gender: Female		without coadministration of DEP. Sacrifice 5 wk later.	group over the DEP-alone group. DEP caused no release of NO by AMs, but inhibited the
Strain: C57B1/6J		MOI.	release of NO in response to IFN-γ. Except for CD8 cells, no increase in IFN-γ was seen in the
Age: 18-30 wk			BC G + DEP group.
Weight: NR			

Study	Pollutant	Exposure	Effects
Reference: Schneider et al. (2005, <u>088368</u>) Species: Mouse Strain: BALB/c Cell Line: RAW 264.7	SRM 1648 (greater than 63% inOC; 4-7% OC; Si, S, Fe, Al, K greater than 1% by weight; Mg, Pb, Na, Zn, Cl, Ti, Cu, As, Cr, Ba, Br, Mn less than 1%) TiO_2 Particle Size: $\text{TiO}_2 = 0.3 \ \mu\text{m}$ average, 1.0 μ m max SRM 1648 = 0.4 μ m (mean diameter)	Route: Cell Culture (625,000 cells/cm² in 96 well plate) Dose/Concentration: 0, 7.8, 15.6, 31.2, and 62.5 µg/cm² Time to Analysis: 1, 3, 6, and 12 h	No significant toxicity was exhibited by SRM 1648. The rate of dye oxidation was significantly higher in SRM 1648-exposed cells. SRM 1648 significantly increased reduced glutathione compared to the control at the 12-h time point. SRM 1648 increased GSH and concurrently caused significant PGE2 production compared to the no ester control at the 6-h and 12-h time points.
Reference: Schober et al. (2006, 097321) Species: Human Gender: Male and Female Age: 21-39 yr treatment group; 23-32 yr control group Tissue Type: Whole blood samples	PM - organic extracts of airborne sample AERex1d - urban aerosol 1 day sample (total air volume - 1270m³) AERex5d - urban aerosol 5 day sample (total air volume - 6230m³) rBet v 1 (birch pollen allergen 1a, Biomay, Vienna, Austria) Particle Size: NR	Route: Cell Culture Dose/Concentration: 100 µL heparinized whole blood Time to Analysis: Blood stimulated with PBS/IL-3 for 10 min. Incubated with rBet v 1 alone or with AERex for 20 min. Ice bath 5 min. Incubated with antibody reagent 20 min.	Nine organic compound classes were identified in AERex1d and AERex5d, with AERex1d having 20 times more PAHs. Basophil activation increased in all treatment groups up to 90%, with AERex1d being the most pronounced. 5-50 fold lower concentrations of AERex1d were needed to achieve the maximal effect on basophil activation. AERex-induced enhancement of CD63 upregulation of rBet v 1 in sensitized basophils occurred in a dose-dependent manner. The AERex-alone treatment did not affect CD63 expression.
Reference: Shwe et al. (2005, 111553) Species: Mouse Gender: Male Strains: BALB/c Age: 8 wk Weight: NR	CB = carbon black particles (Degussa, Germany) CB14: C: 96.79% H: 0.19% N: 0.13% S: 0.11% Ash: 0.05% Others including O: 2.74% CB95: C: 97.98% H: 0.15% N: 0.28% S: 0.46% Others including O: 1.14% Particle Size: CB14 = 14 nm (primary particle size); CB95 = 95 nm (primary particle size)	Route: IT instillation Dose/Concentration: 25, 125, or 625 µg in 1 mL saline solution Time to Analysis: 1/wk for 4 wk; 4 or 24 h after last instillation	BALF Cells: In CB14, the total number of BAL cells increased significantly and dose-dependently. In CB95, only the 625µg dose showed a significant increase. Cytokine and Chemokine: For CB14 and CB95, 125 or 625 µg showed a significant IL-1B increase in a dose-dependent manner. For CB14, only the 625 µg dose showed a significant IL-6 increase. No difference was observed in the CB95 group. For CB14, only larger doses showed a significant TNF-α increase. For CB95, no significant differences were observed. In BAL Fluid: CCL-2 production was significantly increased for the 625µg dose in both the CB14 and CB95 groups. CCL-3 production was significantly increased for the larger doses in both the CB14 and CB95 groups. Splenic Lymphocytes: No significant differences were detected among the CB14 dosages, except for CD8+. No significant differences were observed among the various groups for CB95. Deposition in Lymph Nodes: For all dosages, greater deposition of CB14 than CB95 was observed. Chemokine mRNA Expression in Lungs and Lymph Nodes: At 125 µg, significant increases of CLL-3 mRNA expression was observed for CB14; for CB95, no differences were detected.

Study	Pollutant	Exposure	Effects
	CAPs: Concentrated Ambient Particles	Route: IFN-γ priming: aerosol	Inflammation: Saline-primed and unprimed
et al. (2007, <u>096100</u>)	(Collected from ambient Boston air on Teflon filters.)	Particle exposure and infection: Intranasal Instillation	mice exposed to CAPs produced a significant increase in PMNs in the lung (100% more than mice exposed to TiO.) Groups primed with IEN
Species: Mouse	TiO ₂	Dose/Concentration: CAPS or TiO ₂ : 50 μg/50 μL	mice exposed to TiO ₂ .) Groups primed with IFN- y then exposed to CAPs produced a strong
Gender: Male	IFN-γ	PBS	inflammatory response, a 2.5 increase in PMNs when compared to the increase caused by
Strains: BALB/c	S. pneumoniae (ATCC 6303, American Type Culture Collection, Manassas, VA)	S. pneumoniae: 105CFU/25 µl saline	PBS+ CAPs exposure.
Age: 8-10 wk	Particle Size: CAPs: <2.5 µm	Time to Analysis: Primed for 15 min	Cytokine Levels: IFN-γ primed and CAPs exposed groups
Weight: NR	raticle 0126. OAI 3. 12.0 μIII	One time particle exposure 3 h post priming with lung RNA analyzed 3, 6, 24 h after exposure	Inflammation+ S. Pneumo Infection: Saline- primed and unprimed mice exposed to CAPs
		Sacrificed 24 h after exposure or one time infection	produced a significant increase in PMNs in the lung (100% more than mice exposed to TiO ₂ .) Groups primed with IFN-y then exposed to CAPs produced a strong inflammatory response, a 2.5 increase in PMNs when compared to the increase caused by PBS+CAPs exposure.
			Cytokine Levels: IFN-y primed and CAPs exposed groups showed a 1.5-fold increase over the control.
			PMNs: Treatment with CAPs enhanced inflammation, causing a 2-fold increase in PMN numbers as compared to the infected control. IFN-y+CAPs+S. pneumo produced a 3.5 fold increase compared to the infected control and a 1.6-fold increase compared to PBS+CAPs+S.pneumo. Despite increased numbers of PMNs in the IFN-y+CAPs groups, the lungs were unable to clear the S. pneumo infection.
			Bacterial Load: Control groups showed efficient clearance of bacteria after infection. Unprimed, CAPs-treated, infected groups did not show a decrease in bacterial numbers. IFN-y+CAPs showed a 2.5-fold increase in bacterial numbers.
			Histopathology: Indicated moderate pneumonia in PBS+CAPs and severe pneumonia in IFN-y+CAPs. The other groups did not indicate areas of pneumonia.
			Bacterial Uptake AM and PMN Cells: In all the treated groups, the bacterial content in AMs showed a decrease, with a more marked decrease in the IFN-y+CAPs group, but these decreases were not statistically significant. Groups exposed to CAPs showed a statistically significant decrease in bacterial uptake by PMNs.
			ROS Levels in AM and PMN Cells: Intracellular ROS significantly increased in AM cells in the IFN-y+CAPs group, approximately 50% greater than controls. In PMNs, iROS increased 100% in the IFN-y+CAPs groups as compared to the controls.

Study	Pollutant	Exposure	Effects
Reference: Steerenberg et al. (2004, 087474)	DEP:SRM1650a (NIST, Gaithersburg, MD EHC-93: ambient PM (Ottawa, Canada)	Route: DEP/EHC-93: intranasal droplet; O ₃ : Whole-body inhalation Dose/Concentration: DEP/EHC-93: 50 μg (1.0	Body weight: Growth declined for O_3 exposed group while DEP or EHC-93 groups grew progressively. Exposure to L. mono caused all groups to decline in weight.
Species: Rat Gender: Male	O ₃ (positive control)	mg/ml) O ₃ : 2mg/m ³	Bacterial Count in the Lung: The number of
Strain: Wistar Kyoto Age: 6-8 wk	L. mono: Listeria monocytogenes (strain L242/73 type 4B) Particle Size: DEP, EHC-93: NR	L. mono: 0.2 or 0.3 ml (5x106 PFU/ml) *I have emailed author regarding correct dose Time to Analysis: DEP/EHC-93: 1/day for 7 days	bacteria in the lung of those rats exposed to O_3 was significantly greater than those exposed to saline. No differences in bacteria number were found for rats exposed to saline, EHC-93 or DEP at any time.
- 		(-7 days to -1 days) O ₃ 24 h/day for 7 days (-7 days to -1 daysR	Bacterial Count in the Spleen: The O ₃ exposed group exhibited statistically significant
		All rats infected on day 0. Sacrificed on days 3, 4, or 5.	increases in bacteria numbers when compared to the saline-treated group. No differences in bacteria number were found for rats exposed to saline, EHC-93 or DEP at any time. Exposure to O_3 decreases the defense of the respiratory tract against L. mono infection; however, DEP and EHC-93 did not appear to affect the host defense system in regards to clearing/fighting L. mono.
Reference: Steerenberg et al. (2005, <u>088649</u>) Species: Mouse Gender: Male Strain: BALB/cByJ.ico Age: 6-8 wk	PM: collected from Rome, Oslo, Lodz, Amsterdam and De Zilk during the spring, summer and winter. Rome, Oslo, Lodz and Amsterdam represent areas with high population and dominance of traffic. De Zilk, selected as a negative control site, has low traffic emissions and natural allergens. EHC-93: used as a positive control OVA: Ovalbumin Particle Size: Coarse PM: 2.5 - 10.0 μm (MMAD); Fine PM: 0.1 - 2.5 μm (MMAD); Ultrafine: <0.1 μm (MMAD); EHC-93: NR	Route: Intranasal Exposure OVA challenge: aerosol Dose/Concentration: PM: 450 µg PM (at 0, 3, or 9 mg/ml) OVA sensitization: 50 µg (0.4 mg/ml). OVA challenge: 20 µg (0.4 mg/ml) EHC-93 was administered at 0 - 900 µg to evaluate any dose-response relationship. Time to Analysis: Sensitization and PM exposure on days 0, 14 Challenged on days 35, 38, 41 for 20 min/day Sacrificed on day 42	Effects of Coarse and Fine Particles: Immunoglobulins: 6/13 of the coarse and 9/13 fine PM samples induced an increase in IgE and IgG1when compared to the control. IgG2a levels were increased in 3/13 of the coarse and 5/13 of the fine PM. Particles from De Zilk induced all three immunoglobulins, except the fine PM did not induce IgG2a. De Zilk was intended as a negative control (see Table 3). Analysis among the sites comparing the subclasses of antibodies indicated a rank as follows: Lodz >Rome ≥ Oslo. Histopathology: 9/13 of the coarse PM samples and 5/13 of the fine PM samples induced an inflammatory response. BALF Cells: Lodz (spring/ summer) coarse and fine PM induced a significant increase in eosinophils, neutrophils and monocytes. The coarse and fine PM from Rome (spring) induced an increase in neutrophils and the coarse PM in- duced an increase in eosinophils. Also both Lodz and Rome from the coarse PM from the spring induced an increase in macrophages. Other PM samples did not have an effect on BAL cell counts. Cytokine Production: None of the samples produced a significant effect on IL-4 levels. IFN- y levels were significantly decreased in mice exposed to the fine PM fraction (in 8/13 of the samples) when compared to control. Coarse particle exposure did not appear to affect IFN-y levels. TNF-α levels were significantly increased (in 2 of the 13 samples) when exposed to coarse PM; fine PM showed similar responses compared to the OVA only group. IL-5 was significantly increased in 4/13 of the coarse and fine PM samples. Analysis of PM Components: Samples from Lodz, Oslo and Rome (all spring) were
			evaluated and the water-soluble coarse PM fraction showed increased immunoglobulin and pathological responses and the water-insoluble fine PM fraction from Lodz (Spring) showed increased reactivity. Leukocytes and cytokines showed no major differences.

Study	Pollutant	Exposure	Effects
Reference:	EHC-93	Route: Sensitization, Challenge: Intranasal	Natural-Resistance-Associated Macrophage
Steerenberg et al. (2004, <u>087981</u>)	OVA	NAC: IP injection	Protein 1 (Nramp1): When exposed to only OVA, Nramp1S evoked less of an antibody
Species: Mouse	Particle Size: NR	Dose/Concentration: OVA: 200 μg (0.4 mg/ml)	responses (IgE, IgG1 and IgG2a) compared to Nramp1RHowever when coexposed to OVA and
Gender: Male		EHC-93: 150 μg (3 mg/ml)	EHC-93, the level of increased production of antibodies was similar in both groups. After
Strain:		NAC: 320 mg/kg	coexposure, the wild-type showed increased
BALB/cByJ.ico Age: 6-8 wk		Time to Analysis: OVA-only or OVA+EHC-93 sensitization on days 0 and 14.	histopathological lesions, whereas the macrophage-stimulation-deficient types showed only a slight increase (not significant). IL-4, IFN-
Treatment: 1. C.D2-Vil6:		Some mice received NAC before intranasal exposure on days 0 and 14	γ , TNF- α and IL-5 levels were similar in wild-type and the Nramp1 strains.
Nramp1S and Nramp1R deficient		OVA challenge on days 35, 38 and 41	Pretreatment with NAC: IgG2a concentration was increased further in the group pretreated
2. B6.129P2: Nos2tmLau: iNOS deficient 3. BALB/cIL4		Sacrificed on day 42	with NAC. The wild-type mice and the NAC pretreated mice showed similar histopathological lesion patterns. IL-4 levels were similar in wild-type and the NAC pretreated mice. (IFN-γ, TNF-α and IL-5 levels not reported) Inducible Nitric Oxide Synthase (iNOS): The wild-type and the iNOS-deficient mice had similar levels of increased IgE antibody production. The IgG1 and IgG2a antibody response was twice as great in the iNOS-deficient mice compared to the wild type. The wild-type and the iNOS-deficient mice showed similar histopathological lesions. No differences in BAL cells or cytokines were observed between the wild-type and iNOS-deficient mice.
(tm2Nnt): deficient in IL-4 4. BALB/c (wild type) pretreated with N- Acetylcysteine (NAC)			
			IL-4: The IL-4-deficient mice did not produce an increase in IgE or IgG1 antibodies, as was seen in the wild-type mice. The IgG2a antibody response in the IL-4-deficient mice was similar to the wild type response resulting in adjuvant activity for the IgG2a antibodies. Overall the histological response of the wild-type mice was greater compared to the IL-4 deficient mice. There was no real difference between the two strains observed in the BAL cells, except IL-5 was significantly lower in the IL-4-deficient mice.

Study	Pollutant	Exposure	Effects
Reference:	Deutz BF4M1008 diesel engine connected to a 22.3 kW Saylor Bell air compressor. The engine was operated on diesel fuel purchased from a service station in Research Triangle Park, NC. The engine was operated at a steady-	Route: Whole-body Inhalation	IgE Antibody Production: In the absence OVA,
Stevens et al. (2008, <u>155363</u>)		OVA immunization and challenge: intranasal	IgE antibodies were not detected. 18, 48 and 96 h following OVA, mice exposed to low and high
Species: Mouse		Dose/Concentration: High = 2000 μg/m ³ Low = 500 μg/m ³	doses of DE had an increase in antibodies over time. Mice exposed to high dose had an increase (non-significant) to the OVA exposed
Gender: Female Strain: BALB/c		Time to Analysis: DE exposure for 4 h/day on days 0-4.	control at the 48 h time mark
Age: 10-12 wk	High composition:	OVA immunization 40 min after DE exposure on	BAL Cells: Cell counts at 18 and 96 h after OVA treatment did not differ among treatment groups.
Weight: 17-20 g	O_2 : 4.3 ± 0.07 ppm	days 0-2	At 48 h the number of eosinophils, neutrophils and lymphocytes were significantly increased in
7701giit. 17 20 g	NO: 9.2 ± 0.30 ppm	Challenged on days 18 and 28.	mice exposed to both high and low
	NO ₂ : 1.1 ± 0.05 ppm	Sacrificed 4 h after last exposure of day 4 for gene	concentrations of DE. With DE exposure alone, only neutrophils were statistically increased in
	SO ₂ : 0.2 ± 0.10 ppm	set analysis or 18, 48, or 96 h after the last challenge	the high DE concentration. This indicates the combination exposure of DE and an antigen is
	Low composition:		essential to promote the development of allergic lung disease.
	O ₂ , NO, NO ₂ , SO ₂ below detection limits		BAL Cytokines: IL-6 production showed a
	Particle Size: NR		dose-dependent and time-dependent increase, but was significantly increase in the high dose group at 96 h. The high dose group saw a non significant increase in IL-10 levels over time. The greatest increase in IL-10 for the low dose group occurred18 h after OVA stimulation.
			Pulmonary Inflammation and Lung Injury: No differences among the groups were observed for macrophage, lymphocyte, neutrophil and eosinophil counts. Protein and LDH levels were not found to be increased in the BALF of any group.
			Gene Analysis: Pair wise comparisons revealed significant gene set difference between the high DE and control groups. Comparison of the high DE/OVA versus air/OVA showed significant changes in 23 gene sets, including genes involved in oxidative stress responses. The high DE/saline versus the air/saline showed significantly altered pathways. Altered pathways include those for cell adhesion, cell cycle control, apoptosis, growth and differentiation, and cytokine signaling. The results show that relatively short exposures to DE cause mild increases in immunologic sensitization to allergen.

Study	Pollutant	Exposure	Effects
Reference:		Route: Cell Culture	
Takizawa et al. (2003, <u>157039</u>)	Suspended DEP: collected using a 2,300-cc Isuzu diesel engine using standard diesel fuel at 1,050 rpm under a load of 6 torque.	Dose/Concentration: Suspended DEP: varying doses from 0-50 μg/ml	Preliminary experiments indicated that DEP at 0.1-50 µg/mL had no significant cytotoxicity to BET-1A cells and human bronchial epithelial cells (as analyzed by LDH levels).
Species: Human	DE exposure in vitro (air exposure):	IL-13: varying doses from 0-25 ng/ml	Eotaxin Production: (Eotaxin is a cc
Cell Lines: Normal Small Airway	collected using a 2,300-ml Isuzu diesel engine at 1,050 rpm.	DE exposure in vitro (air exposure): 100 μg/m³	chemokine that plays a role in eosinophil accumulation in a variety of allergic disorders)
Epithelial Cells and Bronchial Epithelial	Composition:	Time to Analysis: Cells were exposed to varying concentrations of suspended DEP for up to 24 h.	Epithelial and BET-1A cells treated with suspended DEP or IL- showed a dose-
Cells (BET-1A)	Fine particles: 1 mg/m ³	NF-kB: analyzed at 6 h after suspended DEP	dependent stimulatory effect on eotaxin release or production. Simultaneous exposure to 25
	CO: 10.6 ppm	exposure	ng/mL IL-13 and DEP depicted an additive effect for both cell types.
	NO ₂ : 7.3 ppm	Air exposure at 0, 2, 4, 8 or 14 h	Eotaxin mRNA: At 25 µg/mL, suspended DEP
	SO ₂ : 3.3 ppm		showed a time-dependent effect on eotaxin mRNA levels up to 12 h in both cell types.
	Particle Size: NR		Extracted RNA from human bronchial epithelial cells exposed to varying doses of DEP showed a dose-dependent effect for both cell types (up to 25 µg/mL DEP) on eotaxin mRNA levels after 12 h of exposure. IL-13 also induced a dose-dependent increase on eotaxin mRNA levels in cells in both cell types. Combination of IL-13 and DEP showed an additive effect on mRNA levels in BET-1A cells. DE exposure in vitro also showed a time-dependent stimulatory effect on eotaxin production in BET-1A cells.
			NF-kB / STAT6 Activation: (it has been suggested that NF-kB plays a role in the transcriptional regulation of eotaxin gene expression) Cells exposed to 1-25 µg/mL DEP for 6 h increased NF-kB. BET-1A cells treated with suspended DEP failed to activate STAT6.
			Effect of NAC and PDTC on Eotaxin mRNA Levels: (NAC and PDTC are antioxidant reagents with inhibitory effects on NF-kB activation) in BET-1A, both NAC and PDTC showed a dose-dependent inhibitory effect on DEP-induced eotaxin production. Both reagents also blocked DEP-induced eotaxin mRNA levels in BET-1A cells. NAC and PDTC did not suppress eotaxin production or eotaxin mRNA levels in IL-13 stimulated BET-1A cells. In addition pre-treatment with NAC attenuated NF-kB activation induced by DEP but had no effect on STAT6 induction by IL-13. These findings suggest that DEP stimulated eotaxin gene expression via NF-kB dependent, but STAT6-independent, pathways.

Study	Pollutant	Exposure	Effects	
Reference:	conventional wood stove that has a 0.5m³ firebox and a sliding gate air intake damper. The stove was operated over a 3 phase burn civel that spanned	Route: Whole-body Inhalation	Body Weight and Respiratory Function: No	
Tesfaigzi et al. (2005, <u>156116</u>)		0.5, 156116) 0.5m³ firebox and a sliding gate air intake damper. The stove was operated over a 3-phase burn cycle that spanned over a	difference in clinical signs or body weight was observed when comparing the two rat groups.	
Species: Rat			The wood smoke exposed group had a 45% lower dynamic lung compliance when compared to those exposed to the filtered air group before	
Gender: Male	with unprinted / unbleached newspaper and a mix of black and white oak.	OVA IP injection immunization on days 2, 9	the methacholine challenge. Challenging the rats with methacholine caused a decrease in	
Strain: Brown- Norway Age: 6 wk	Wood smoke components: organic material, small amounts of EC and	OVA aerosol exposure 2 h/day on days 67-70 following daily exposure to wood smoke or filtered air	dynamic lung compliance in both groups, but the decrease was greater in the air-exposed group. At the highest dose of methacholine, the	
	metals and associated analytes. Particle Size: 0.36 μm (MMAD)	Sacrificed day 70	dynamic lung compliance in controls was simila to the baseline value of the smoke-exposed group. No significant differences in total pulmonary resistance were observed. Wood smoke exposed rats had a 10% increase in functional residual capacity than the air-exposed group.	
			BAL Cells and Cytokines: There was no difference in lymphocyte, eosinophil or neutrophils in the BALF of either group. There was an increase, though not statistically significant, in macrophages the wood smoke exposed group when compared to the filtered ai group. In the BALF, IFN-γ and IL-18 levels were significantly decreased, IL-4 and GRO-α levels were increased in rats exposed to wood smoke compared to filtered air. Serum IgE levels experienced a reduction trend in the wood smoke group, but it did not reach significance. Both groups showed mild signs of inflammation. The average eosinophils present in stained tissue was 21% higher in the wood smoke exposed group compared to the air exposed.	
Reference: Tomita et al. (2006, 097827) Species: Mouse	fractionated into 13 different fractions based on acidic and basic functionality (one from light-duty, 4-cylinder diesel engine using standard diesel fueled and other generated from A4JB-type, Isuzu automobile, Japan) Individual PAH tested (Osaka, Japan): BbF = benzo[b]fluoranthene BeP = Benzo[b]fluoranthene BeP = Benzo[e]pyrene IDP = Indeno[1,2,3-cd]pyrene BpPe = Benzo[a]pyrene BaP = Benzo[a]pyrene BaP = Benzo[a]pyrene BkF = Benzo[a]hanthracene	fractionated into 13 different fractions based on acidic and basic functionality (one from light-duty, 4-cylinder diesel engine using standard diesel fueled and other generated from A4JB-type, Isuzu automobile, Japan) individual PAH tested (Osaka, Japan): BbF = benzo[b]fluoranthene BeP = Benzo[e]pyrene Dose/Concentration: DEP, fractionated DEP or PAH compounds: 0.5 μg - 10 mg/kg bw in 50 μl of olive oil Time to Analysis: Single, sacrificed 3 days post-exposure.	Dose/Concentration: DEP, fractionated DEP or PAH compounds: 0.5 μg - 10 mg/kg bw in 50 μl of	Effect on Thymus: DEP treatment (10 mg/kg o body weight) caused severe atrophy of the thymus while the spleen and lymph nodes appeared normal. Three days following DEP
Gender: Female Strain: C57BL/6J; AHR-deficient; mEH-deficient; ARNT floxed (loxP			treatment showed a marked reduction in thymus size. The total number of thymocytes was reduced by more than 70% mostly due to a massive reduction in DP cells (CD4+CD8+). DEP induced no significant alterations in the cel numbers of CD4/CD8 ratios in the spleen and lymph nodes.	
sequences inserted in Arnt gene); Tcell-specific ARNT-deficient			DEP Extracts: Only the WAC (carbonic acid fraction) and BE (weak basic fraction) did not produce a significant reduction in thymocyte numbers in vivo. Among the active fractions, 7 produced a marked selective loss of immature DP thymocytes, similar to the crude extract of	
Age: 7 wk	Particle Size: NR		DEP.	
Weight: 20 g			PAH Effects: Thymic involution was severely induced by the N and various other fractions. 7 out of the 8 PAH compounds were significantly effective in decreasing the number of thymocytes upon in vivo exposure. Only BpPe did not have an effect.	
			AHR/ARNT and mEH Deficient Mice (BaP and DEP only): In the absence of AHR, BaP treatment did not result in a loss of thymocytes. Like DEP, BaP produced severe thymic involution in mEH-deficient mice. DEP-mediated thymic involution was significantly enhanced in mEH-deficient mice.	

Study	Pollutant	Exposure	Effects
Reference: Verstraelen et al. (2005, <u>096872</u>)	DEP- SRM 2975 Particle Size: NR	Route: Cell Culture Dose/Concentration: DEP in varying concentrations: 0.2, 2, 20, 200, 2000 ng/mL	Biological Markers : Exposure to DEP alone did not alter expression levels of HLA-DR, CD86 or CD83.
Species: Human Tissue/Cell		LPS 100 ng/mL	Treatment with LPS alone caused a non- significant increase in all three markers when compared to the control.
Types: Monocyte- derived dendritic cells (Mo-DC) Cord blood samples of seven women were collected from umbilical vessels of placentas of		Time to Analysis: 24 h	Treatment with DEP+LPS caused a significant increase in the expression of CD83 and a non-significant increased expression of HLA-DR and CD86. DEP+ LPS induced a bell-shape doseresponse curve on the expression of all three markers, with a dose of 20 ng/mL DEP + 100 ng/mL LPS causing the largest increase in upregulation.
normal, full-term infants.			When only the results of the LPS-responsive donors (5 out of 7 blood cord samples) were included, the effects described above become more pronounced.
Reference: Walczak- Drzewiecka et al. (2003, 188803) Species: Mouse Cell Line:	Metal and Transition Metal Ions: Sr ²⁺ , Ni ²⁺ , Cd ²⁺ , Al ³⁺ , Pb ²⁺ Particle Size: NR	Route: Cell culture, Dose/Concentration: 0.1- 5 μmol Time to Analysis: 10 min - 4 h	B-Hex Mediator Release in Mast Cells: Incubation with SrCl ₂ , NiSO ₄ , CdCl ₂ or AICl ₃ resulted in a 2-5% release of B-hexoaminidase in mast cells. Incubation with a mixture of all these compounds induced a greater (11%) release in B-hexoaminidase, indicating there might be a additive effect.
C1.MC/C57.1 (C57) Mast Cells			Cell Viability: Incubation of cells at concentrations and incubation time employed did not result in decrease in cell viability.
			Antigen-Mediated Mediator Release in Mast Cells: Al³* and Ni²* enhanced antigen-mediated release. 10-7 M AlCl₃ released 23% of B-hexoaminidase compared to antigen alone, which induced 11% release of B-hexoaminidase. Cd²*, Sr²* and Pb²* enhanced antigen-mediated release to a lesser extent. Ni²*, Al³*, Sr²* and Cd²* depicted a dosedependent relationship with antigen-mediated B-hexoaminidase release.
			Antigen-Induced Protein Phosphorylation: Addition of the antigen induced the anticipated phosphorylation of multiple proteins in C57 mast cells The presence of Ni ²⁺ and Pb ²⁺ mediated an increase in phosphorylation of several of the proteins and Al ³⁺ mediated a decrease in phosphorylation of multiple proteins (specifically the 56 and 37 kD bands).
			Antigen-Mediated Cytokine Secretion (IL-4): At certain concentrations all tested metal and transition metal ions were able to induce IL-4 secretion or enhance antigen-induced IL-4 secretion in mast cells, but no dose-dependent relationship was established.
Reference: Wan and Yu (2006,	DEP from 4 cyl Isuzu diesel methanol extracts	Route: Cell Culture, PMBC = 1×10 ⁶ cell	Induction of NQO1 by DEPX: In PBMCs and DG75DEPX dose-dependently induced NQO1
157104)	Particle Size: NR	DG 75 = 3×10 ⁶ cells	mRNA expression NQO1 ARE was increased
Species: Human Cell Lines:	. SHOO GLO. IVI	lgE PMBC 1×10°/mL B-cells 0.5×10°/mL	NAC inhibited NQO1 gene expression dose dependently, p38 MAPK and P13K inhibition partially blocked NQO1 mRNA and ARE induction by DEPX.
Human, B cell lymphocytes PMBC		Dose /Concentration: 2.5, 5, 10, 20 μg DEPX/ plate (20 μg/mL)	Induction of phase II enzymes: DEPX induced IgE potentiation was reduced dose dependently
(>98.5% B cells- CD19+CD20+; <1		IgE DEPX 100 ng/mL sulfurophane at 0 - 30 μmol	by induced phase II enzymes.
% T cells (CD3+)) Human lymphocyte cell lines DG75 NQO1 wild type		Time to Analysis: 6 h mRNA; 16 h protein assay. IgE 14 days.	

Study	Pollutant	Exposure	Effects
Reference:	DEP (light-duty, four-cylinder engine-	Route: Cell Culture	DEP significantly reduced the GSH:GSSG ratio.
Whitekus et al. (2002, <u>157142</u>)	4JB1 type, Isuzu Automobile, Japan; standard diesel fuel) (extracts)	Dose/Concentration: 50 μg/mL	This effect was prevented by adding thiol antioxidants NAC or BUC. DEP increased lipid
Species: Mouse	Particle Size: NR	Time to Analysis: Exposed to antioxidants 5 h. HO-1 western blot, determination of cellular	peroxide levels, but the addition of all antioxidants decreased these levels. DEP
Cell Line: RAW 264.7		GSH:GSSG ratios, carbonyl protein content, lipid hydroperoxides performed.	increased carbonyl groups. NAC, BUC, and luteolin reduced HO-1 expression.
Reference:	DEP (light-duty, four-cylinder engine-	Route: Inhalation	DEP+OVA dose-dependently increased IgE and
Whitekus et al. (2002, <u>157142</u>)	4JB1 type, Isuzu Automobile, Japan; standard diesel fuel) (extracts)	Dose/Concentration: 200, 600, 2000 µg/m³	IgG1, being more effective than the OVA-alone treatment. This effect was significantly
Species: Mouse	Particle Size: 0.5-4 µm	Time to Analysis: Exposed 1 h/day, 10 days.	suppressed by thiol antioxidants NAC or BUC. DEP+OVA increased carbonyl protein and lipid
Gender: Female		Animals receiving OVA had 20 min OVA exposure after DEP exposure.	peroxide over OVA. NAC or BUC suppressed lipid peroxide and protein oxidation. No general
Strain: BALB/c			markers for inflammation were observed.
Age: 6-8 wk			
Weight: NR			
Reference: Witten et al. (2005,		Route: Nose-only Inhalation	There were no differences for substance P. The
087485)	research engine operated at 75% throttle)	Dose/Concentration: Low- $35.3 \pm 4.9 \mu g/m^3$, High- $632.9 \pm 47.61 \mu g/m^3$	low-exposure group had significantly less NK1. DEP reduced NEP activity. Plasma extraversion
Species: Rat	Particle Size: 7.234-294.27 nm	Time to Analysis: Exposed 4 h/day, 5 days/wk,	dose-dependently increased and was greatest in capsaicin animals. Respiratory permeability
Gender: Female		3 wk. Pretreated with saline or capsaicin.	dose-dependently increased. IL-1β was significantly higher for the low-exposure group.
Strain: F344			IL-12 was significantly lower in the capsaicin high-exposure group. TNF-α increased in the
Age: 8 wk			high-exposure group and capsaicin low-
Weight: ~175 g			exposure group. High exposure induced particle-laden AMs in the lungs, perivascular cuffing consisting of mononuclear cells, alveolar edema and increased mast cell number. Neutrophil and eosinophil influx was not seen.
Reference: Wong	DEP (Cummins N14 research engine at	Route: Nose-only Inhalation	DEP dose-dependently increased plasma
et al. (2003, <u>097707</u>)	75% throttle) (EC- 34,93-601.67 μg/m³, OC- 1.90-11.25 μg/m³, Sulfates 0,94-	Dose/Concentration: Low- $35.3 \pm 4.9 \mu\text{g/m}^3$, High- $669.3 \pm 47.6 \mu\text{g/m}^3$	extraversion, which was further increased by capsaicin. In the high-exposure group, particle-
Species: Rat	17.96 μg/m³, Na- 4.07-4.78 ng/m³, Mg- 0.60-0.86 ng/m³, Ca- 5.05-10.66 ng/m³,	Time to Analysis: Exposed 4 h/day, 5 days/wk,	laden AMs (which were reduced by capsaicin), inflammatory cell margination, perivascular
Gender: Female	Fe- 3.17-6.44, Cr- 0.68-1.31 ng/m ³ , Mn- 0.11-0.22 ng/m ³ , Pb- 0.97-1.24 ng/m ³)	3 wk. Pretreated with saline or capsaicin.	cuffing with subsequent mononuclear cell migration and dispersal, increased mast cells,
Strain: F344/NH	Particle Size: 7.5-294.3 nm		and decreased substance P were all seen. NK- 1R was downregulated in the low-exposure
Age: ~4 wk			group and upregulated in the capsaicin- pretreated high-exposure group. NEP
Weight: ~175 g			decreased significantly for both groups.

Study	Pollutant	Exposure	Effects
Reference: Yanagisawa et al. (2006, 096458) Species: Mouse Gender: Male Strain: ICR Age: 5 wk Weight: 25-28 g	Washed DEP (carbonaceous core), DEP-OC(extracted organic chemicals) and Whole DEP Particles collected from: 4JB1-Type, four-cylinder, 2.74 L, Isuzu diesel engine, while operated on standard diesel fuel at 200 g under a load of 10 torques. Particle Size: 0.4 µm (MMAD)	Route: IT Instillation Dose/Concentration: 50 μg/0.1L 1. Control- 0.1mL PBS 2. DEP-OC- 50 μg 3. Washed DEP- 50 ug 4. Whole DEP- 50 ug DEP-OC + 50 ug Washed DEP5. OVA- 1 μg = 6. DEP-OC- 1 μg + OVA 7. Washed DEP- 50 μg + OVA 8. Whole DEP- 50 μg DEP-OC + 50 μg Washed DEP + OVA Time to Analysis: All groups received OVA or PBS every 2 wk for 6 wk and the PM component or PBS once a week for 6 wk.	BALF Cells: DEP-OC + OVA caused a significant increase in PMN infiltration in the BALF compared to the control. Exposure to Whole DEP+ OVA caused PMN count to rise further. OVA alone DEP-OC +OVA, Washed DEP + OVA and Whole DEP + OVA all caused a significant increase in macrophages compared to the control. Lung Histology: Exposure to OVA, Washed DEP, DEP-OC and Whole DEP caused a slight increase in PMNs, mononuclear cells and goblet cell proliferation. Treatment with all three DEP groups + OVA caused a significant increase in mononuclear cells, PMNs and goblet cell proliferation. Whole DEP + OVA had the greatest impact. Th1 and Th2 Cytokine Expression: Washed DEP+OVA caused a significant increase in IFN-y compared to control, whereas Whole DEP+OVA caused a significant decrease compared to control. No significant differences in IL-2 and IL-4 levels were seen among groups. DEP-OC+ OVA and Whole DEP+ OVA caused significant increases in IL-5 compared to control and compared to OVA Whole DEP+OVA caused significant increase in IL-13 compared to control
			Eotaxin and MIP-1α Expression: OVA increased eotaxin levels and DEP-OC+OVA caused a more significant increase in eotaxin. Whole DEP alone caused a significant increase in MIP-1α and Whole DEP+OVA caused an even greater increase in MIP-1α.
			IgG1 Levels: Exposure to DEP-OC+OVA caused an increase in IgG1 and exposure to Whole DEP+OVA caused greater elevation in IgG1 levels.
Reference: Yang et al. (2003, 087886) Species: Mouse Gender: Female Strain: B6C3F1 Age: 6-8 wk	DEP- SRM 1650 Particle Size: 0.5 μm (MMAD)	Route: IT Aspiration Dose/Concentration: 1, 5, or 15 mg /kg Time to Analysis: 3 times in 2 wk or 6 times in 4 wk.	Toxicity of DEP Exposure: DEP did not have a significant effect on body, liver or spleen weight. The highest dose of DEP caused an increase in lung weight and lung weight relative to body weight. None of the hematological parameters were significantly different in the mice exposed for 2 wk; in the 4 wk group there was a significant decrease in platelet counts in mice exposed to 15 mg/kg. Exposure on Spleen IgM AFC: DEP exposure for 2 wk induced a dose-dependent decrease in spleen AFC in response to sRBC immunization. Mice exposed to 15 µg/kg depicted a 35% reduction in total spleen activity. In the group exposed to DEP for 4 wk, the decrease in AFC was not significantly different than the control. DEP Exposure on Spleen Cell Number/Lymphocyte Counts: Exposure for 2 or 4 wk did not affect total number of nucleated splenocytes. DEP caused a 30% reduction in total T cells. The number of B cells were not significantly affected.
			DEP Exposure on Spleen T-Cell Function: (evaluated in 2 wk exposure group only) DEP induced a dose-dependent decrease in spleen cell proliferation to ConA. DEP did not affect spleen cell proliferation in response to anti-CD3 mAb. Production of IL-2 in response to ConA was reduced in a dose-dependent manner by DEP exposure. IFN-γ production was decreased by exposure to DEP. IL-4 production was not measured.

Study	Pollutant	Exposure	Effects
Reference: Yin et al. (2005, <u>088133</u>)	DEP = SRM 2975 (NIST) Listeria	Route: Nose-only inhalation (DEP), IT instillation (Listeria)	Lung Deposit: Estimated mean lung deposit of DEP = 406 ± 29 μg/rat DEP prolonged growth of bacteria in lung
Species: Rat	Particle Size: NR	Dose/Concentration: 100,000 CFU (Listeria); 21.2 ± 2.3 mg/m ³ (DEP)	Alveolar Macrophage (AM) Response: DEP
Gender: Male		Time to Analysis: DEP exposure for 4 h/day for 5	significantly inhibited Listeria-induced IL-1β
Strain: Brown- Norway (BN/CrlBR)		days; infection with Listeria 7 days post-exposure; sacrifice 3 and 7 days postinfection	secretion at day 7 and TNF- α and IL-12 at both day 3 and day 7 IL-10 production was enhanced at day 7.
Age: NR			T-Lymphocyte Response: DEP significantly reduced the development of T cells in response
Weight: 200-250 g			to Listeria infection. These lymphocytes displayed increased production of IL-6 at day 7, but significantly diminished levels of IL-10, IL-2 and IFN-y.
Reference: Yin et	DEP = SRM 2975 (NIST)	Route: Inhalation (DEP), IT instillation (Listeria)	Lung Deposit: Estimated mean lung deposit of
al. (2004, <u>097685</u>)	Listeria	Dose/Concentration: 20.62 ± 1.31 mg/m³ (DEP).	DEP = 389 ± 25 μg/rat
Species: Rat	Particle Size: NR	100,000 CFU Listeria	Pulmonary Responses and Bacterial Clearance: DEP significantly augmented
Gender: Male		Time to Analysis: DEP exposure for 4 h/day for 5	Listeria-induced PMN infiltration, lung CFU and recoverable AM at all times post-infection. LDH
Strain: Brown- Norway (BN/CrlBR)		days; inoculation with bacteria 2 h postexposure; sacrifice 3, 7, 10 days postinfection	activity was increased 3 days post-infection. Bacterial count in DEP exposed rats remained significantly higher through day 7.
Age: NR			Cytokine Production by AM: DEP exposure
Weight: 200-250 g			significantly lowered Listeria-induced production of IL-1 β , TNF- α and IL-12. Production of IL-10 was strongly augmented.
			T-lymphocyte Responses: DEP moderately but not significantly lowered the total number of lymphocytes, CD4+ cells and lymphocyte IL-10 production. Listeria-induced T-cell development was strongly inhibited, as were the development of CD8+ cells, IL-12 production and IFN-y secretion. DEP and Listeria exposure showed and increased production of IL-6 at day 3 and day 7 post-exposure.
Reference: Yin et	DEP = SRM 2975	Route: IT Instillation of Listeria; Cell Culture	AM Phagocytosis: None of the DEP or CB
al. (2007, <u>198980</u>) Species: Rat	eDEP = organic DEP extract wDEP = washed DEP	(2.5×10° cells/well) Dose/Concentration: DEP: 10, 50, 100 μg/mL;	treatments were cytotoxic or affected the number of adherent cells. 10-100 µg/mL. DEP
Gender: Male	CB = carbon black	CB: 50 µg/mL	significantly decreased AM phagocytosis in a concentration- and time-dependent manner, with
Strain: Brown-	Particle Size: DEP: median diameter- 19.4 μm, surface area- 91 m²/g; CB: 0.1-	Time to Analysis: Sacrifice 7 days postinfection or	increased concentration and time decreasing activity.
Norway (BN/CrlBR)	0.6 μm	no infection. Cell culture: 1, 4, 16, 24 h.	Bacterial Activity: The inhibition of AM bactericidal activity by DEP was time- and
Age: NR			concentration-dependent. eDEP and wDEP inhibited the AM bactericidal activity but were
Weight: 225-250 g			less effective than DEP. The CB treatment was not significant.
Cell Line: AM			Cytokine Secretion by AM: DEP and eDEP concentration-dependently decreased TNF-α, IL-1B and IL-12, but increased IL-10. wDEP and CB did not show a significant effect.
			Cytokine Secretion by Lymphocytes: DEP and cDEP concentration-dependently decreased IL-2 and IFN-y. wDEP and CB had little effect, except high concentrations of wDEP decreased IFN-y.

Study	Pollutant	Exposure	Effects
Reference: Yin et al. (2004, <u>087983</u>) Species: Rat Gender: Male Strain: Brown- Norway (BN/CrIBR) Age: NR	DEP = SRM2975 eDEP = organic DEP extract wDEP = washed DEP CB = carbon black Particle Size: DEP- NR, CB- 0.1-0.6 µm	Route: IT Instillation of Listeria; Cell Culture Dose/Concentration: 50 µg/mL (DEP or CB) Time to Analysis: Killed 7 days postinstillation. AM isolated then incubated. DEP treatments for up to 24 h.	DEP-Induced ROS Production: ROS was induced by DEP or eDEP and inhibited by eDEP with ANF or NAC. eDEP induction of ROS was time-dependent. wDEP or CB did not induce ROS. DEP-Induced HO-1 Expression: DEP- or eDEP-induced HO-1 expression was inhibited by ANF, NAC or SB203580. wDEP or CB did not induce ROS. DEP or eDEP exposure resulted in a 2.5- to 3-fold induction of HO-1 expression in uninfected AM.
Weight: 225-250 g Cell Line: AM			eDEP-Modulated Cytokine Production: eDEP exposure resulted in a time-dependent increase in LPS-stimulated IL-10 or TNF-α production, and both were inhibited by ANF or NAC. wDEP did not affect either. SOD pretreatment attenuated eDEP-upregulated HO-1 expression, inhibited IL-10, and reversed eDEP inhibition of IL-12. Znpp decreased IL-10.
Reference: Yin et al. (2003, 096127) Species: Rat Gender: Male Strain: Brown- Norway (BN/CriBR) Age: NR Weight: 200-250 g	DEP = SRM 1650a L. monocytogenes Particle Size: NR	Route: Nose-only Inhalation (DEP); IT Instillation (Listeria) Dose/Concentration: 50 or 100 mg/m³ (DEP); 100,000 bacteria per 500 µL sterile saline (Listeria) Time to Analysis: DEP exposure for 4 h. Bacterial inoculation. Sacrificed 3, 7 days post-exposure.	Lymphocyte Population: DEP-alone exposure increased total lymphocytes, T cells and T-cell subsets. Elevated cell counts in the combined exposure were DEP dose-dependent, with the 100 mg/m³ treatment having significant increases in the cell number and CD8+/CD4+ ratio. IL-2: DEP exposure in noninfected rats at both doses increased IL-2 in the 24 h culture and decreased IL-2 in the 48 h culture. The increase in IL-2 at 3 days postinfection was not significant. DEP exposure increased IL-2Rα in response to ConA stimulation. DEP-treated infected rats had increases in ConA-inducible CD4+/IL-2Rα+ and CD8+/ IL-2Rα+. IL-6: IL-6 production was dose-dependent in DEP-treated uninfected rats and infected rats. The combined exposure produced less IL-6 than the DEP-alone or Listeria-alone treatments. IFN-γ: DEP decreased IFN-γ at 3 days post-exposure, but increased at 7 days post-exposure in a dose-dependent manner. Uninfected DEP-treated rats did not substantially respond to HKLM. HKLM-induced IFN-γ production is strongly inhibited at all
Reference: Zelikoff et al. (2003, 039009) Species: Rat Gender: Male Strain: F344 Age: 7-8 mo Weight: NR	CAPS (concentrated ambient PM _{2.5} from New York City) S.pneumoniae Particle Size: 0.4 µm (MMAD)	Route: Nose-only Inhalation (CAPS); IT Instillation (S.pneumoniae) Dose/Concentration: CAPS: Study 1- Mean- 345 μg/m³; 60-600 μg/m³. ,Study 2- Mean-107 μg/m³; 65-150 μg/m³ (S.pneumoniae 2-4×10 ⁷) Time to Analysis: Study 1: Uninfected rats exposed to air or CAPS for 3 h. Sacrificed 3, 24, or 72 h post-exposure or IT instilled 4, 24, 72, 120 h and sacrificed 4, 24, 72 h postinfection Study 2: Infection with bacteria. Exposed 48 h later to CAPS or filtered air for 5 h. Sacrifice 9, 18, 24, 72, 120 h post-exposure.	Study 1: CAPS did not effect cell numbers, viability, profiles, lavageable LDH activity, total protein, or total circulating WBC counts. Exposure to CAPs prior to infection significantly increased PMN and decreased lymphocytes. WBC levels returned to control levels by 4 h postinfection. CAPS had no effect on circulating monocyte values. CAPS significantly increased bacterial burdens at 24 h, but thereafter the burden decreased to below control levels. Study 2: In CAPS exposed rats, PMN decreased, Pam increased, and the cytokines TNF-q, IL-1β and IL-6 decreased. Lymphocytes and monocytes were unaffected. Bacterial burdens in CAP-exposed rats were about 10% greater at 18 h. CAPS significantly increased the percent of affected lung area and severity of infection.

Study	Pollutant	Exposure	Effects
Reference: Zelikoff et al. (2002, 037797) Species: Rat Gender: Male Strain: Fischer 344 Age: 7-9 mo. Weight: NR	Ambient NYC PM Single transition metals of Fe, Mn, Ni Streptococcus pneumoniae Particle Size: NYC PM: PM _{2.5} Fe ^{2+,} Mn ²⁺ , Ni ²⁺ : 0.4 μm (MMAD)	Route: Nose-only Inhalation, IT instillation (S. pneumoniae) Dose/Concentration: Single metals/NYC PM: 65-90 μg/m³; 15-20×10 ⁶ (S.pneumoniae) Time to Analysis: Infection/no infection followed by 5 h exposure to NYC PM or single transition metal. Sacrifice 4, 5, 9, 18, 24, and 120 h after exposure.	CAPs exposure to infected rats significantly increased pulmonary bacterial burdens of S. pneumo in a time-dependent manner. At 9 h, 18 h, 24 h, and 5 days after CAPs exposure, bacterial burdens were 10%, 300%, 70% and 30% above controls. Uninfected rats exposed to the single transition metals showed significant alterations in PMNs and lymphocytes values at 1 h post-exposure. Exposure to Fe of uninfected rats significantly increased superoxide anion production by pulmonary macrophages. Uninfected rats exposed to inhaled Fe significantly reduced B-lymphocyte proliferation at 48 h, but did not affect T-lymphocyte production. Inhaled Ni, for the uninfected, significantly decreased T-lymphocyte production at 18 h, and did not affect B-lymphocyte production. Inhalation of Fe by infected rats facilitated an increase in bacterial numbers while Ni inhibited bacterial clearance. Inhaled Fe by infected also significantly decreased PMNs and lymphocyte numbers by 35% and increased pulmonary macrophage numbers by 29% when compared to the air exposed group. Results demonstrated that inhalation of Fe altered innate and adaptive immunity in uninfected hosts, and both Fe and Ni reduced pulmonary bacterial clearance in previously infected rats.
Reference: Zhong et al. (2006, 093264) Species: Mouse Gender: Male Strain: BALB/c Age: 6-8 wk Weight: NR Cell Line: J774A.1, IFN-y-primed AMs, unprimed AMs	CAPs: Concentrated Air Particles (Boston, MA) Urban air particles (UAP) SRM1649 (Washington, DC) TiO₂ Carbon Black (CB) (Sigma, St. Louis, MO) Streptococcus pneumoniae: strain ATCC6303 Particle Size: UAP = NR; TiO₂/CB = NR; CAPs: ≤PM₂.5	Route: Cell Culture Dose/Concentration: NR, 100 µg/mL Time to Analysis: CAPs for 1 h; bacteria for 1 h. Binding measured 15 h after bacteria exposure. Ingestion measured 2 h after bacteria exposure. Rate and number of killed bacteria measured 2 h after bacteria exposure.	Binding, Internalization and Killing of Bacteria: CAPS significantly increased binding of bacteria by IFN-y-primed AMs, normal AMs and J774A.1. CAPS decreased internalization and absolute number of bacteria killed by macrophages of all types. The rate of killing of internalized bacteria was similar in the presence or absence of CAPs; however, CAPs did cause a decrease in the absolute number of bacteria killed by all three types of macrophages, due to the decrease in internalization. Effects of other particles: TiO ₂ and CB had no effect on J774 binding or internalization of S. pneumo. TiO ₂ and CB's effects on primed and unprimed AMs were not reported. Testing with UAPs, however, showed effects similar to those observed with CAPs. Soluble components: The soluble fraction of CAPs, especially iron, is responsible for decreased internalization.

Table D-5. Effects of the central nervous system.

Reference	Pollutant	Exposure	Results
Reference: Calderón- Garcidueñas et al. (2003, 156316) Species: Dog Gender: Male, Female	Urban Air (Mexico City-high PM region, Tlaxcala- low PM region) (PM, Pb, volatile organic compounds, formaldehyde, acetaldehyde, mutagenic PM, alkane hydrocarbons, Ni, V, Mn, Cr, peroxyacetyl NO ₄ ^{2*} , LPS, endotoxins) Particle Size: PM: 2.5, 10 µm	Route: Ambient Air Exposure Dose/Concentration: Mexico City: PM ₁₀ : 78 μg/m³, PM _{2.5} : 21.6 μg/m³, Pb in TSP: <0.4 μg/m³ Time to Analysis: Dogs raised in house or outdoor-indoor kennel. Lifetime exposure.	Mexico City dogs had significantly greater apurinic and apyrimidic sites in the olfactory bulb and hippocampus. Histopathological changes in the respiratory and olfactory epithelium were greatest in Mexico City dogs. Mexico City dogs also had greater immunoreactivity than the controls for NF-kB, iNOS, cyclooxygenase-2, glial fibrillatory acidic protein, ApoE, amyloid precursor product and B-amyloid.
Strain: Mixed breed			
Age: 7d-10 yr			
Weight: 349 ± 116g - 20 kg			

Reference	Pollutant	Exposure	Results
Reference: Campbell et al. (2005, <u>087217</u>)	CAPs from Los Angeles, lacking reactive organic and H ₂ O soluble gases, O ₃ , NO _X , SO _X	Route: Whole-body Inhalation Dose/Concentration: 20-fold concentration of near highway ambient air,	Mice were challenged with OVA prior to exposure and 1 and 2 wk following exposure, and then brains were assayed. F+UF and UF exposure increased NF-kB DNA binding in brain. TNF-
Species: Mouse	Particle Size: F+UF: <2.5 µm; UF: <0.18 µm	avg UF concentration: 282,5 µg/m ³ , avg F concentration: 441.7 µg/m ³	α increased with F+UF. IL-1α increased with UF and F+UF. This suggests a possible link between PM exposure and neurodegenerative disease processes.
Strain: BALB/c		Time to Analysis: 4 h/day, 5 days/wk for 2	neurouegenerative disease processes.
Age: 7 wk		wk	
Reference: Che et al. (2007, 096460)	Gasoline exhaust (collected from 1996 Guangzhou passenger car with Dongfeng Gasoline Series 155	Route: IT Instillation Dose/Concentration: 5.6, 16.7, or 50.0	A dose-dependent increase was observed in brain DNA damage starting at 5.6 L/kg. Increase in lipid peroxidation and carbonyl protein was also observed at 50 L/kg. Decrease in
Species: Rat	kw engine and no exhaust catalytic converter fuelled with 90-octane Pb-	L/kg, final volume 0.3 mL/rat Time to Analysis: 1/wk for 4 wk; 24 h post	brain SOD occurred at all exposures. GPx activity was unchanged with exposure. This suggests an association
Strain: SD	free gasoline from China Petroleum).	-instillation.	between gasoline exhaust and oxidative damage to the brain.
Gender: Male and Female	Particle Size: NR		
Age: 9 wk			
Weight : 190- 220 g			
Reference: Kleinman et al.	CAPs (Los Angeles, CA) (OC, EC = ~50%; sulfate, nitrate ~11%)	Route: Whole-body Inhalation	Activated AP-1 dose-dependently increased. Activated NF-kB significantly increased with the high CAPs dose. GFAP (which
(2008, <u>190074</u>)	Particle Size: NR	Dose/Concentration: High dose: Mass concentration- 114.2 µg/m³, Low dose:	represented activated astrocytes) and activated JNK significantly increased with the low CAPs dose.
Species: Mouse		Mass concentration: 30.4 μg/m ³	organicana, increased mar allo lott of a crease.
Gender: Male		Time to Analysis: 5 h/day, 3days/wk, 6 wk; 24 h postexposure.	
Strain: ApoE-		, , , , , , , , ,	
Age: 6 wk			
Weight: NR			
Reference: Liu et al. (2005,	CAPs from Taiyuan, China	Route: IT Instillation	In the brain, SOD and CAT activity were significantly decreased at the 2 highest doses; GSH levels were
<u>)88650</u>)	Particle Size: <2.5 μm	Dose/Concentration: 0, 1.5, 7.5, or 37.5 mg/kg, final volume 0.2 mL/rat	significantly decreased at the highest dose. This suggests an association between PM exposure and oxidative damage
Species: Rat		Time to Analysis: 24 h	mediated by prooxidant/antioxidant imbalance or high levels o free radicals.
Strain: Wistar			
Gender: Male			
Age: 8 wk	OADs form Orand Davids MI	Davida Milada hadadahalada	DVAL CAR along any it OVA in record NE
Reference: Sirivelu et al.	CAPs from Grand Rapids, MI	Route: Whole-body Inhalation	PVN: CAPs alone or with OVA increased NE.
(2006, <u>111151</u>)	Particle Size: <2.5 μm	Dose/Concentration: 500 μg/m ³ Time to Analysis: 8h; assayed at 24-h PE	MPA: CAPs increased Da when treated with OVA while no changes in NE, 5-HIAA and DOPAC were observed.
Species: Rat		Time to Analysis. on, assayed at 24-111 L	Arcuate nucleus: OVA sensitization increased NE levels.
Gender: Male Strain: Brown			OB: CAPs and OVA increased NE levels, but no changes in Da, DOPAC, or 5-HIAA were observed.
Norway			Other areas: No differences in other areas of hypothalamus,
Age: 12-13 wk			substantia nigra, or cortex were observed. CAPs alone or with OVA increased serum corticosterone. These results suggest that CAPs can cause region-specific modulation of neurotransmitters in brain and that the stress axis may be activated causing aggravation of allergic airway disease.
Reference:	CAPs from Tuxedo, NY	Route: Whole-body Inhalation	CAPs-exposed ApoE ^{-/-} mice had an 29% reduction in TH-
Veronesi et al. (2005, <u>087481</u>)	Particle Size: <2.5 μm	Dose/Concentration: Average daily concentration 113 μg/m ³	stained neurons and a 8% increase in GFAP staining compared to air-exposed ApoE ^{-/-} . No differences were see in C57 mice. The results suggest that ApoE ^{-/-} mice, characterized
Species: Mouse		Time to Analysis: 6 h/day, 5days/wk for 4	by increased brain oxidative stress, are susceptible to PM-induced neurodegeneration.
Strain: ApoE ^{-/-} or C57BI/6		mo	
Age: Young			

Reference	Pollutant	Exposure	Results
Reference: Win-	(Route: Whole-body Inhalation	Mice in the LTA+NPDE group had significantly longer mean
Shwe et al. (2008, <u>190146</u>)	diesel engine, steady-state condition, 5 h/d, 2000rpm, 0 Nm)	Dose/Concentration: $148.86 \pm 8.44 \mu g/m^3$	escape latencies, indicating impaired acquisition of spatial learning. NPDE directly increased NR1 and TNF-α.
Species: Mouse	(CO, CO ₂ , NO, NO ₂ , SO ₂) Particle Size: 26.21 ± 1.50 nm (diameter)	Time to Analysis: 5 h/day, 5 days/wk, 4 wk. Some mice ip injected with	LTA+NPDE increased NR2A, NR2B, and IL-1β, however LTA was primarily responsible for the increases.
Gender: Male		lipoteichoic acid (LTA) 1×/wk, 4 wk. Morris	
Strain: BALB/c		water maze behavioral test: 3 days acquisition, 2 day probe trial.	
Age: 7 wk			
Weight: NR			
Reference:	ROFA from Universidade de São	Route: Intranasal Instillation	Exposed rats had increased lipid peroxidation in striatum and
Zanchi et al. (2008, <u>157173</u>)	Paulo, Brazil	Dose/Concentration: 20 µg/10 µl saline	cerebellum. This could be reversed with N-acetylcysteine treatment. ROFA treatment altered motor activity shown by
Species: Rat	Particle Size: 1.2 ± 2.24 μm (MMAD)	Time to Analysis: 30 days	decreased general exploration and peripheral walking, and was not prevented by NAC. Results suggests that chronic
Gender: Male			ROFA induces behavioral changes and brain oxidative stress.
Strain: Wistar			
Age: 45 days			

Table D-6. Reproductive and developmental effects.

Reference	Pollutant	Exposure	Effects
Reference: Fedulov	DEP	Route: Intranasal Instillation	DEP increased BAL PMN counts in normal and pregnant mice. In pregnant mice, DEP and TiO ₂ increased IL-1β, TNF-α, IL-6
et al. (2008, <u>097482</u>) Species: Mouse	Carbon black (CB) TiO ₂	Dose/Concentration: DEP, TiO $_2$: 50 μg in 50 μL, 50 μg/mouse; CB: 250 μg in 50 μL	and KČ compared to nonpregnant controls. Offspring of DEP, CB or TiO₂ exposed mice had increased AHR and airway
Gender: Female (pregnant), Offspring: NR	Particle Size: NR	Time to Analysis: Particle samples baked 3 h. Protocol 1a: Pregnant mice treated with DEP or TiO ₂ . Analyzed 19 or 48 h later. Protocol 1b:	inflammation. TiO_2 exclusively altered the expression of 80 genes in pregnant mice.
Strain: BALB/c		Pregnant mice DEP, TiO ₂ or CB treated day 14 of pregnancy. 4 day-old offspring i.p. injected with	
Age: NR		OVA+alum. 12-14 days-old exposed aerosolized OVA.	
Weight: NR			
Reference: Fujimoto et al. (2005, 096556)	DE: generated by 2369 cc diesel engine at 1050	Route: Inhalation	Significant increase in absorbed placentas were observed in the 0.3 and 3.0 concentration. A decrease in absorbed
Species: Mouse	rpm at 80% load with	Dose/Concentration: 0.3, 1.0 or 3.0 mg DEP/m ³	placentas was observed for the 1.0 concentration. Increased
Strain: Slc:ICR	commercial light oil	Time to Analysis: 12 h/day, 7 days/wk from 2 day post coitum to 13 dpc. Sacrificed 14 dpc. mRNA	inflammatory cytokine mRNA in placentas from exposed offspring were observed. An increased number of absorbed
Gender: Females (pregnant mice and fetuses)	Particle Size: 0.4 μm (MMAD)	expression examined in female fetuses.	placentas in DE-exposed offspring were seen.
Age: NR (pregnant females), 14 days of gestation (fetuses)			
Reference:	DEP(SRM2975)	Route: Whole-body Inhalation	Body weight of exposed unchanged at birth. Body weight
Hougaard et al. (2008, <u>156570</u>)	Particle Size: 90 m ² /g	Dose/Concentration: 20 mg DEP/m³	decreased at weaning.
Species: Mouse	(SA)	Time to Analysis: Exposed 1 h/dayfrom gestation days 7-19. Mice separated for behavioral testing	Unchanged dams & pups at weaning. At 2 mo, exposed female pups required less time to locate platform in spatial Reversal
Strain: C57BI/6		on PND 22 (day of delivery is PND 0). Behavioral	task of Morris Water maze.
Gender: Pregnant females, male and female offspring		testing at 12, 16 wk for female offspring and 13, 17 wk for male offspring.	
Age: 12 ,16 wk (female offspring), 13, 17 wk (male offspring)			

Reference	Pollutant	Exposure	Effects
Reference: Hougaard et al. (2008, <u>156570</u>)	DEP (SRM 2975) Particle Size: 240 nm (MMAD); surface area 90 mg²/g, density 2.1 g/cm³	Route: Inhalation Dose/Concentration: 19.1 ± 1.13 mg DEP/m³	DEP females gained more weight during gestation. Generally, DEP pups weighed less. No significant DNA damage was measured, but DEP caused slightly higher IL-6, MCP-1, and
Species: Mouse		Time to Analysis: Pregnant dams exposed GD 7-	MIP-2. Plasma thyroxin levels as well as learning and memory were similar amongst the groups.
Gender: Female (pregnant), Offspring- male, female		19, 1 h/day. GD 20 named PND 0 for pups. Weights recorded, 1 pup from each group sacrificed PND 2. Weights recorded PND 9. PND 22 1 male and female removed from each group for behavioral testing. Dams and remaining	Tota anima ananga na graupa.
Strain: C57BL/6		offspring sacrificed PND 23 or 24.	
Age: NR			
Weight: NR			
Reference: Huang et al. (2008, <u>156574</u>)	ME: Motorcycle Exhaust (generated from 1992	Route: Nose-only Inhalation	After exposure, decreased body weight and testicular spermatid number were observed. 1: 10 ME exposure for 4 wk
Species: Rat	Yamaha cabin motorcycle with two-stroke 50 cc	Dose/Concentration: 1: 10 and 1: 50 dilutions	(no recovery) decreased testicular weight and increased the inflammatory cytokine mRNA. Glutathione system and lipid
Gender: Male (adults), male and female (fetuses)	engine). Particle Size: NR	Time to Analysis: 2 h/day (1 h in morning and 1 h in afternoon), for 5 consecutive days/wk, for 4 wk (1:50, 1:10 dilutions) and 2 wk (1:10 dilution). Male mated with untreated females. Pregnant	peroxidation were not affected.
Strain: Wistar		females sacrificed on 20 days of gestation. Male and female fetuses observed.	
Age: 8 wk (male adults), 20 days of gestation (fetuses)			
Reference:		Route: Ambient Air Exposure	Decreased testicular, epididymal sperm counts, decreased
Lichtenfels et al. (2007, <u>097041</u>)	Brazil	Dose/Concentration: NA	number of germ cells, and decreased elongated spermatids were observed. Decreased SSR, and a sex ratio shift (fewer
Species: Mouse	Particle Size: NR	Time to Analysis: Males housed in open-top chambers for 24 h/day, everyday for 4 mo, beginning 10 days after birth. Males mated to non-exposed females immediately following exposure.	males) also occurred after exposure.
Gender: Male and Female			
Strain: Swiss		Males sacrificed immediately following mating. Pregnant females remain in chamber and	
Age: NR		sacrificed on 19 days of pregnancy.	
Reference: Mauad et al. (2008, <u>156743</u>)		Route: Ambient Air Exposure Dose/Concentration: PM _{2.5} : filtered chamber- 2.9	Mild foci of macrophage accumulations containing black dots of carbon pigment occurred in the alveolar areas on 90 day-old
Species: Mouse	2005-April 2006) (NO ₂ , SO ₂ , CO)	± 3.0 µg/m ³ , nonfiltered chamber- 16.9 ± 8.3	mice. Surface-to-volume ratio decreased from 15 to 90 days age and was higher in mice exposed to air pollution. PM
Gender: Male, Female	Particle Size: 2.5, 10 μm (diameter)	μ g/m³; Outdoor concentration: PM ₁₀ - 36.3 ± 15.8 μ g/m³, CO- 1.7 ± 0.7 ppm, NO- 89.4 ± 31.9 μ g/m³, SO ₂ - 8.1 ± 4.8 μ g/m³	exposure reduced inspiratory and expiratory volumes at higher levels of transpulmonary pressure.
Strain: BALB/c		Time to Analysis: Nonfiltered exposure 24 h/day	
Age: 10 days		for 4 mo. Mated at 120 days exposure. After birth, 30 females and offspring transferred to filtered or	
Weight: Parental: $21.4 \pm 4.0 - 26.3 \pm 2.8$ g; 15 day-old offspring: $7.8 \pm 1.1 - 9.0 \pm 1.0$ g; 90 days-old offspring: $20.3 \pm 2.3 - 27.4 \pm 1.8$ g		nonfiltered chamber. Killed 15 or 90 days of age.	
Reference: Mohallem et al.	Filtered or ambient air in downtown Sao Paulo situated at crossroads	Route: Whole-body Inhalation Dose/Concentration: PM ₁₀ : 35.5 ± 12.8 µg/m ³ ;	No effects in adult exposed animals. Increased implantation failure of neonatal exposed-dams.
(2005, <u>088657</u>) Species: Mouse	with high traffic density	CO: 2.2 ± 1.0 ppm; NO ₂ : 107.8 ± 42.3 μg/m ³ ; SO ₂ :	Sex ratio, # of pregnancies, resorbtions, fetal deaths, and fetal
Strain: BALB/c	(predominant source of air pollution is	11.2 \pm 5.3 μ g/m ² Time to Analysis: Exposed for 24 h/7days/wk for	placenta Weights unchanged after neonatal ambient air exposure.
Gender: Female	automotive).	4 mo. Newborns mated after reaching	
Age: 10 wk, 10 days	Particle Size: NR	reproductive age of 12 wk. All pregnant females sacrificed between 19th and 20th day of pregnancy.	

Reference	Pollutant	Exposure	Effects
Reference: Mori et al. (2007, <u>096564</u>)	DEP: generated by 4- cylinder diesel engine	Route: Dorsal Subcutaneous Instillation	cDNA library screen after sub-cutaneous injection identified activated clones related to prostanoids and arachadonic acid
Species: Mouse	Particle Size: NR	Dose/Concentration: 0.2 ml (of 1.1mg/ml or 0.37 mg/ml)	(Platg2c2c, Acsl6) and sperm production (Stk35). However, the route of exposure was unconventional.
Strain: C57/BL		Time to Analysis: 2×/wk for 10 wk; 1 wk post last	·
Gender: Male		instillation.	
Age: 6 wk			
Reference: Ono et al. (Ono et al., 2007, 156007)	DE: generated from 4-cyl diesel Isuzu engine at 1500 rpm using standard	Route: Inhalation Dose/Concentration: NR	PND 8 and 16 male reproductive accessory gland weight decreased. PND 21 decreased serum testosterone (T); PND 84 increased serum T. FSHr, sTAR mRNA decreased PND 35
Species: Mouse	diesel fuel.	Time to Analysis: Exposed from 2 day post coitum to 16 dpc. Parameters for male offspring	and 84. Relative testis and epididymal weight unchanged. Sertoli cell degeneration observed.
Strain: ICR	Particle Size: NR	measured on days 8, 16, 21, 35, 84 and sacrificed	•
Gender: Pregnant females, male offspring		at 84 days.	
Age: NR (pregnant females), 12 wk (offspring)			
Reference: Ono et	DE: generated from 4JB-	Route: Whole-body Inhalation	Dose-dependent increase in seminiferous tubule degeneration
al. (Ono et al., 2007, 156007)	2type, light duty 3060 cc 4-cyl Isuzu diesel engine	Dose/Concentration: 1.0 mg DEP/m ³	and decreased DSP. After 1 mo recovery, DSP recovered at the lowest dose.
Species: Mouse	under 1500 rpm	Time to Analysis: Pregnant females exposed	
Strain: ICR	Particle Size: NR	from 2 day postcoitum- 16 dpc. Without undergoing further exposure, male offspring	
Gender: Male offspring, Pregnant females		sacrificed at 12 wk.	
Age: 12 wk (male offspring)			
Reference: Pinkerton et al. (2004, 087465)	PM (Fe and soot from combustion of acetylene and ethylene in a laminar	Route: Inhalation Dose/Concentration: Mean mass concentration:	A significant reduction of cell proliferation occurred only within the proximal alveolar region of exposed animals compared to controls. There were no significant differences between the
Species: Rat	diffusion flame system)	243 ± 34 μg/m³; Average Fe concentration: 96 μg/m³	groups for alveolar formation and separation within the proximal alveolar region
Gender: Female (pregnant), Offspring- NR	Particle Size: Median diameter: 72-74 nm; size range: 10-50 nm	Time to Analysis: Exposed 10 days postnatal age, 6 h/day, 3 days (consecutive). Bromodeoxyuridine injected 2 h before necropsy.	proximal directal region
Strain: SD			
Age: 10 days (pups), Pregnant females- 10-14 days of gestation			
Weight: NR			
Reference: Silva et al. (Silva et al., 2008, <u>156981</u>)	Ambient air: Sao Paulo, Brazil Particle Size: NR	Route: Ambient Air Exposure Dose/Concentration: NR	Decreased placental weight with exposure in 1st wk of pregnancy. Decreased placental weight with exposure in any of the 3 wk of
Species: Mouse	Particle Size: NR	Time to Analysis: 1st wk, 2nd wk, 3rd wk	pregnancy.
Strain: Swiss		or combo of exposure during pregnancy.	
Gender: Females (pregnant mice)			
Age: 1st, 2nd, 3rd wk of pregnancy (females), GD19 (fetuses)			

Reference	Pollutant	Exposure	Effects
Reference: Somers	Ambient air: 2 sites in	Route: Ambient Air Exposure	ESTR germ line mutations following exposure.
et al. (2002, <u>078100</u>)	Canada (polluted industrial area 1km	Dose/Concentration: NR	Heritable mutation rate increased 1.5 to 2 fold in urban vs.
Species: Mouse	downwind from two integrated steel mills &	Time to Analysis: Exposed 24 h/day, 7 days/wk	rural site. Increased frequency is paternal line dependent.
Strain: Swiss Webster	rural location 30 km away)	for 10 wk from September 10, 1999-November 21, 1999. Exposed to clean air for 6 wk post-treatment. Paired with mice within exposure	
Gender: Male and Female	Particle Size: NR	group. 5d old pups measured.	
Age: 6-8 wk (adult male and females), 5 days (pups)			
Reference: Somers et al. (2004, <u>078098</u>)	PM (rural or urban- industrial)	Route: Ambient Air Exposure	The offspring of urban-industrial mice inherited paternal ESTR mutations 1.9-2.1 times more than rural or HEPA-filtered
Species: Mouse	Particle Size: >0.1 µm	Dose/Concentration: Mean TSP: Rural- 16.2 ± 8.3 - 31.7 ± 13.2 μg/m³, Urban-Industrial- 38.9 ± 10.5 - 115.3 ± 25.3 μg/m³	offspring. Maternal ESTR mutations were not significant.
Gender: NR		• •	
Strain: Sentinal Lab		Time to Analysis: Exposed 10 wk. Bred 9 wk postexposure.	
Age: NR			
Weight: NR			
Reference:	DE	Route: Inhalation	Exposed pups had increased caspase 3 positive cells and
Sugamata et al. (2006, <u>157025</u>)	Particle Size: NR	Dose/Concentration: 0.3 mg DEP/m ³	decreased purkinjie cell number (cerebellum), similar to human Autism brain phenotype.
Species: Mouse		Time to Analysis: Pregnant females exposed	
Strain: ICR		from 2 day post coitum to 16 dpc. Offspring sacrificed 11 wk after birth.	
Gender: Pregnant Females, male and female offspring			
Age: 11 wk (offspring), NR (pregnant females)			
Reference: Tozuka	DE: generated by diesel	Route: Whole-body Inhalation	Gestational and lactational exposure to DE's And PAHs. 7 milk
et al. (2004, <u>090864</u>)	engine (309 cc Model NFAD-50)	Dose/Concentration: 1.73mg/m ³	PAHs increased in DE-exposed dams. DE exposure can lead to PAH pup exposure through breast milk.
Species: Rat	Particle Size: NR	Time to Analysis: Exposed 6 h/day from GD 7-20	
Strain: F344		with no exposure on Saturdays or Sundays (4 non-exposure days total). Fetuses and maternal	
Gender: Pregnant females, male and female fetuses		blood collected on GD20. PAHs: Exposed 6 h/day from GD 7-14 with no exposure on Saturdays or Sundays. Breast milk collected PND14.	
Age: Gestation day 20 (fetuses), NR (pregnant females)			
Reference: Tsukue	DE: generated by 2369	Route: Whole-body Inhalation	SF-1 & MIS mRNA did not change. Other steroidogenic genes
et al. (2004, <u>096643</u>) Species: Mouse	cc Isuzu diesel engine operating at 1050 rpm	Dose/Concentration: 0.1 mg DEP/m³ (at 1:8 dilution with clean air)	were also unchanged. BMP-15 and oocyte differentiation mRNA decreased.
Strain: Slc: ICR	with 80% load and using commercial light oil.	Time to Analysis: Exposed for 8h/day from 2 day	
Gender: Pregnant females, female fetuses	Particle Size: NR	postcoitum to 13 dpc (with no exposure on days 4, 5, 11, 12). Sacrificed 14 dpc. Only female fetuses studied.	
Age: Gestation day 14 (fetuses)			

Reference	Pollutant	Exposure	Effects
Reference: Tsukue et al. (2002, 030593) Species: Mouse Strain: C57/BL Gender: Females, male and female offspring Age: 6 wk, 70 days post natal (offspring) Reference: Ueng et al. (2004, 096199) Species: Mouse Gender: Female Strain: Wistar Age: 21days Cell Line: MCF-7	DE: generated by light-duty, 4-cyl Isuzu diesel engine at 1500 rpm. Particle Size: NR ME: generated from a Yamaha Cabin motorcycle 2-stroke 50-cc engine and variable venture carburetor Particle Size: NR	Route: Whole-body Inhalation Dose/Concentration: 0.3, 1.0 or 3.0 mg DEP/m³ Time to Analysis: Exposed 12 h/day, 7 days/wk for 4 mo. Some females sacrificed immediately following exposure. Remainder mated with unexposed males. Parameters measured in offspring at postnatal day 70. Route: Intraperitoneal Instillation. Cell Culture. Dose/Concentration: IP: 1, 10, 50 μg/ml Cell Culture: 0.01, 0.1, 1, 10, 50, 100 μg/ml Time to Analysis: IP: 1/day for 3 days and sacrificed on 24 day. Cell Culture: 3, 24, 30, 48 h and 2 days.	DE-exposed females had decreased uterine weight at 4 mo. Offspring had decreased body weight at 6 and 8 wk of age. Decreased rate of good nesting construction (3 mg/m³). AGD decreased In males (30 and 70 days old). Organ weight decreased in females and female crown to rump length decreased. 10 mg/kg +E2 induced anti-estrogenic uterine effects and antiestrogenic with in vitro (MCF-7 cells) E2 screen.
Reference: Veras et al. (2008, 190493) Species: Mouse Gender: Male, Female Strain: BALB/c Age: 20 days, newborns Weight: NR	PM (downtown São Paulo, Brazil near crossroads with high traffic density, 67% PM _{2.5} comprises air pollution) Particle Size: 2.5 μm (diameter)	Route: Open-Top Chamber Dose/Concentration: PM _{2,5} - 27.5 μg/m³; NO ₂ - 101 μg/m³; CO- 1.81 μg/m³; SO ₂ - 7.66 ppm Time to Analysis: 20 days-old mice maintained in filtered or nonfiltered chamber until 60 days-old. Offspring maintained in respective chambers until 21 days-old. Offspring mate at 60 days-old. Females euthanized 18th GD.	Fetal weight and maternal blood space volume and surfaces declined in the groups exposed to nonfiltered air. Fetal capillary surfaces were greater in nonfiltered air groups. There was a significant gestational effect on maternal:fetal surface ratios with values declining significantly in groups exposed during pregnancy to nonfiltered air. The total oxygen diffusive conductance of the intervascular barrier increased significantly during pregestational exposure to nonfiltered air. Mass-specific conductance increased during pregestational and gestational periods of exposure to nonfiltered air.
	PM (São Paulo, Brazil; near crossroads with high traffic density) (Al, Ca, Cu, Fe, K, Na, Ni, P, Pb, S, Si, Ti, V, Zn, C) Particle Size: 2.5 μm (diameter)	Route: Open-Top Chamber Dose/Concentration: Mean: Non-filtered- 27.5 μg/m³, Filtered- 6.5 μg/m³ Time to Analysis: 20 days-old mice maintained in filtered or non-filtered chamber. Allowed to mate at 60 days. 2 generation model.	Ambient air pollution extended the estrus cycle, which reduced the number of cycles. Antral follicles decreased. Mating time increased and fertility and pregnancy indices decreased. The mean post-implantation loss rate increased, which was influenced by both pre- and post-gestational exposure. Fetal weight decreased and was also influenced by pre- and post-gestational exposure, which exhibited a significant interaction.
Reference: Watanabe (2005, 087985) Species: Rat Gender: Female (pregnant), Offspring- male Strain: F344/DuCrj Age: 7 days of gestation - parturition (females), 96 days (offspring) Weight: 240-262 g	DE (309cc engine, Model NFAD50, Yanmar Diesel Co., Osaka, Japan, 1800rpm, 45% load) (PM, NO ₂) Particle Size: 90% <0.5 µm	Route: Inhalation Dose/Concentration: High dose total group: PM-1.71 μg/m³, NO ₂ - 0.79 ppm; Low dose total group: PM- 0.17 μg/m⁵, NO ₂ - 0.10 ppm Time to Analysis: Pregnant rats exposed gestational day 7 to delivery 6 h/day. 5 groups: high dose total DE, high dose PM, NO ₂ filtered, low dose total DE, low dose PM, NO ₂ filtered, clean air control. Offspring sacrificed day 96 after birth.	All groups had significantly less daily sperm production than the control. PM and NO $_2$ in DE decreased spermatogenia but was not significant, however the high dose PM filtered group achieved significance. Pachytene cells, spermatids, and Sertoli cells were lower in all groups compared to the control.

Reference	Pollutant	Exposure	Effects
Reference: Yauk et al. (2008, 157164) Species: Mouse Strain: C57BL/6 x CBA F1 hybrid Gender: Male Age: 7-9 wk	HEPA-Filtered air (PM removed) and ambient air at 2 sites: -2 km from two integrated steel mills -1 km from major highway on Hamilton Harbor Components: Metals 3.6 ± 0.7 μg/m³ TSP 9.4+17 μg/m³ Particle Size: NR	Route: Ambient Air Exposure Dose/Concentration: NR Time to Analysis: Parameters measured 3, 10 wk, or 10 + 6 wk recovery following exposure.	10+6 wk exposure induced increased ESTR mutations in sperm DNA of exposed v filtered. No testicular DNA adducts seen in exposed males. At 3 wk DNA increased adducts seen in lungs of exposed males, not in filtered males. Mutations were PM dependent, and gas-phase independent.
Reference: Yokota et al. (2009, 190518) Species: Mouse Gender: Female (pregnant), Male (offspring) Strain: ICR Age: NR Weight: NR	DE (2369-cc diesel engine, Isuzu Motors, Ltd., Tokyo, Japan; 1050 rpm, 80% load, commercial light oil) Particle Size: NR	Route: Inhalation. Pre-natal Exposure Dose/Concentration: DE: 1.0 mg/m³; CO: 2.67 ppm, NO ₂ : 0.23 ppm, SO ₂ : <0.01 ppm Time to Analysis: Pregnant mice exposed 8 h for 5 days from GD 2-17. Mothers and pups kept in clean room. Pups weaned on PND 21 then transported to Tokyo University of Science. 2wk acclimation. Exposed 12 h light/dark cycle. Activity monitor with infrared ray sensor measured spontaneous motor activity (SMA), 10 min intervals 2 days. After behavioral test, mice decapitated.	Prenatal DE exposure decreased SMA in the male offspring. DE decreased locomotor activity during the light phase. Dopamine levels in the striatum and nucleus accumbens did not change, but HVA concentrations decreased in DE-exposed mice.
Reference: Yoshida et al. (2006, 156170) Species: Mouse Strain: ICR, C57BI/6J or DDY Gender: Pregnant Females, Male fetuses Age: 14 days of gestation (fetuses), 2-13 days of gestation (pregnant females)	DE(generated from a 4-cyl., 2300 cc diesel Isuzu engine at 1050 rpm and 80% load). Particle Size: NR	Route: Whole-body Inhalation Dose/Concentration: 0.1 mg DEP/m³ Time to Analysis: Exposure on 2-13 days of gestation. Parameters measured on 14 days of gestation.	Responses to exposure showed strain-related variations with ICR as the most sensitive followed by C57 and ddY as the least sensitive. MIS mRNA expression, a factor in male gonadal differentiation, was significantly decreased in the ICR and C57 strains. Ad4BP/SF-1 expression was significantly decreased in the ICR strain only.
Reference: Yoshida et al. (2006, 097015) Species: Mouse Strain: ICR Gender: Pregnant females and male offspring Age: 2-16 days postcoitum (pregnant females), 28 days (male offspring)	DE: generated by 4Jb1- type, light duty 4-cylinder Isuzu diesel engine using standard diesel fuel at 1500 rpm. Particle Size: NR	Route: Whole-body Inhalation Dose/Concentration: 0.3, 1.0 or 3.0 mg DEP/m³ Time to Analysis: Pregnant females exposed 12 h/days, 7 days/wk from 2-16 days postcoitum. Offspring sacrificed on postnatal day 28.	NOAEL 0.3 mg DEP/m³. DE exposure induced increased reproductive gland weight (two higher doses) in male mice. mRNA decreases in aromatase and 3 μ-hD (3.0 mg DEP/m³). No change in sex ratio. Two higher doses induced significant increased reproductive organ weights. Male pup weight Increased at PND 28. Increased serum T was observed in pups exposed to 1.0mg DEP/m³. Serum T positively correlated with DSP, testis weight, steroid enzyme mRNA.
Reference: Yoshida et al. 2004 (2004, 097760) Species: Mouse Gender: Female (pregnant), Offspring- male Strain: ICR Age: 4, 6 wk Weight: NR	DE Particle Size: NR	Route: Inhalation Dose/Concentration: 6wk-old males, embryos: 0.3, 1.0, 3.0 mg DEP/m³, Pregnant mice: 0.1, 3.0 mg DEP/m³ Time to Analysis: 6 wk-old males: Exposed 12 h/day, 6 mo. 1 mo clean air exposure. Pregnant mice: Exposed 2-13 p.c. 8 h/day. Male embryos: Exposed 2-16 p.c. Examined at 4 wk-old.	6wk-old Males: In the seminiferous tubules, DE dose-dependently caused degenerative and necrotic changes, desquamation of the seminiferous epithelium, and loss of spermatozoa. Spermatogenesis was still inhibited after a 1m clean air exposure. Pregnant Mice: Ad4BP/5F-1 and MIS mRNA significantly and dose-dependently decreased in male fetuses exposed to DE. 4wk-old Male Newborns: Tissue weight of the testis and accessory reproductive glands were significantly greater in DE-exposed mice. Blood testosterone concentration was 8X higher than the control at 1.0 mg DEP/m³. No significant differences occurred for testosterone synthetase mRNA.

Table D-7. Mutagenic/genotoxic effects in bacterial cultures.

Reference	Pollutant	Exposure	Effects
Reference: Binkova et al. (2007, <u>156273</u>) Species:	PM (Prague, Košice, Sofia, Czech Republic; summer, winter) (organic extracts) Particle Size: Diameter: <10	Route: Cell Culture Dose/Concentration: 100 µg EOM/mL Time to Analysis: PM collected 24 h daily 3	DNA adducts in EOM treatments were greater with S9 than without. Positive correlations were found between the amount of DNA adducts and the PAH content (notably BaP) in the EOM treatment.
Salmonella (±S9 (rat liver))	μm	mo, extracted. 24 h incubation BaP, c-PAH, EOM, with or without S9. 32P-Postlabeling 4 h. Autoradiography 1-24 h.	
Cell Line: Calf thymus DNA			
Reference: Brits et al. (2004, 087397)	PM (Flanders, Belgium; urban, rural, industrial sites) (organic extracts)	Route: Cell Culture Dose/Concentration: 2.5, 5, 10, 20m³ air equivalents/mL	Ames: S9 induced mutagenicity of all extracts from all areas in a dose-dependent manner. Without S9, only extracts from the urban and industrial areas were mutagenic at the highest dose.
Species: S. typhimuriam	Particle Size: 10 μm (diameter)	Time to Analysis: Air samples extracted.	Vitotox: Extracts were toxic at the highest dose.
Strain: TA98 ± S9 (Ames);	(diameter)	Ames assay 48 h. Vivotox test. Comet assay 24 h. MN assay.	Comet: Significant DNA damage in the extracts was seen and enhanced by S9.
TA104 recN2-4 and TA104pr1 (Vitotox)			MN: A dose-response relationship was seen in the urban extracts for increased micronucleated binuclear cells.
Cell Line: Human whole blood (Comet, MN assays)			
Reference: Brown et al.	PM (New Zealand, summer, winter) (extracts)	Route: Cell Culture	Generally, the mutagenic rate was positively correlated to PM ₁₀ , as well as PAH and BaP. PM ₁₀ levels were higher and more
(2005, <u>095919</u>)	Particle Size: 10 μm	Dose/Concentration: 9.7-20.8 μg/m³ (summer), 21.8-61 μg/m³ (winter)	mutagenic in winter than summer.
Species: S. typhimuriam	(diameter)	Time to Analysis: Air samples collected 15 days, extracted. Ames test: Bacteria growth	
Strain:TA98		12 h, incubated 24 h. Hepatoma bioassay: 24 h incubation 2x. EROD assay.	
Cell Line: Rat hepatoma H4IIE			
Reference: Bunger et al.	DEP (diesel fuel (DF), low- sulfur diesel fuel (LSDF),	Route: Cell Culture	No OCC: Without oxidation catalytic converter (OCC), DF extract produced the highest number of revertant colonies at all load
(2006, <u>156303</u>) Species:	rapeseed oil methyl ester (RME), and soybean oil	Dose/Concentration: Log 2 dilutions of extracts: 1.0, 0.5, 0.25, 0.125	modes in both TA98 and TA100 \pm S9. RME, SME, and LSDF extracts caused lower or no mutagenic effects, seen especially at partial lead modes and idle medical expectation.
Salmonella typhimuriam	methyl ester (SME)) (SOF- soluble organic fractions)	Time to Analysis: SOF extracted 12 h. Plates incubated 48 h.	partial load modes and idle motion. OCC: With OCC, all extracts reduced the number of revertant
Strain: TA98, TA 100	Particle Size: Total particulate matter (no OCC) (gh-1): Mean DF- 4.0 ± 0.2; 2.8 ± 0.5; 1.8 ± 0.0; 3.4 ± 0.2; 1.2 ± 0.1		colonies in TA98 and TA100 \pm S9 at partial load modes B, C, and D. At load mode A (rated power), there was an increase of the number of revertant colonies in all assays -S9, significant for extracts from RME (TA98, TA100) and SME (TA98). S9 lowered frequency of mutations. At load mode E (idling), number of revertant colonies of DF extracts increased \pm S9.
Reference: Bunger et al. (2007, <u>156305</u>)	Diesel engine emissions (DEE)—rapeseed oil (RSO) and rapeseed methyl ester	Route: Cell Culture Dose/Concentration: Log 2 dilutions of	Compared to DF, RSO significantly increased mutagenic effects of particle extracts (i.e., revertants) by 9.7-59 in TA98 and by 5.4-22.3 in TA100. (mRSO, RSO with lowered viscosity and fuel
Species: Salmonella	(RME, biodiesel), natural gas derived synthetic fuel (GTL), and diesel fuel (DF)	rived synthetic fuel (GTĽ), d diesel fuel (DE) Time to Analysis: SOF extracted 12 h.	preheating in tank, produced highest number of revertant colonies in both strains ±S9.) RSO fuels condensates had 13.5 times stronger mutagenicity than DF. RME extracts had moderate but
typhimuriam Strain: TA98, TA	(SOF- soluble organic fractions)	Plates incubated 48 h.	significantly higher mutagenic response in TA98 +S9 and TA100 -S9. Effects of GTL did not differ significantly from DF.
100	Particle Size: NR		

Reference	Pollutant	Exposure	Effects
Reference: de Kok et al. (2005, 088656) Species: S. typhimurium Strain: TA98 (with and without rat liver S9) Cell Line: Salmon testis DNA Reference:	A-DEP and forklift DEP (SRM	Route: Cell Culture Dose/Concentration: Mutagenicity assay: 2.5, 9, or 18m³ sampled air in 100 µL DMSO; DNA adduct assay: 5 µL DMSO containing PM ₁₀ or TSP from equivalent 50m³ sampled air. PM _{2.5} concentration equivalent to 35m³ sampled air. Time to Analysis: Mutagenicity assay: Cells incubated 1 h with extracts. DNA adduct assay: DNA incubated 4 h with extracts.	Overall, the direct mutagenicity and DNA reactivity of PM _{2.5} extracts were higher compared to PM ₁₀ and TSP. S9 generally reduced mutagenic activity in TA98 but increased reactivity to Salmon testis DNA. Total PAH and total carcinogenic PAH levels correlated with the mutagenicity of TSP and the S9-mediated mutagenicity of PM _{2.5} . Neither transition metal composition nor radical generating capacity of PM correlated with mutagenic potential. Total PAH and carcinogenic PAH levels from PM ₁₀ and PM _{2.5} correlated with direct and S9-mediated DNA adducts; for TSP these levels correlated with direct DNA reactivity only. A-DEPs were more mutagenic in both TA98 and TA100 than SRM 2975. There was 22× more PAH-related and 8-45× more
DeMarini et al (2004, 066329) Species: Salmonella Strain: TA98, TA98NR, TA98/1, 8-DNP6, YG1021, YG1024, TA100	2975) DEP (EOM) Particle Size: 0.4 μm (mean diameter)	Dose/Concentration: 0, 0.25, 0.5, 1.0, 2.0 EOM µg/plate Time to Analysis: DEPs sonicated 20min. Centrifuged 10 min. Organic material extracted and concentrated. Ames assay. Incubated 3 days.	nitroarene-related activity.
Reference: EI Assouli et al. (2007, 186914) Species: S. typhimuriam Strain: TA98 (±S9)	PM (Jeddah, Saudi Arabia; 11 sites, urban, winter) (organic extracts) Particle Size: 10 μm (diameter)	Route: Cell Culture Dose/Concentration: 2.5, 50, 100 μg/plate; EOM range: 6-40 μg/m³ Time to Analysis: 24 h air samples, extracted. Refluxed 18-24 h. GC-MS. Comet assay. 48 h incubation. Ames assay.	PAHs varied from 0.83 to 0.18 ng/m³. Only 2 locations of heavy petrol driven cars showed strong genotoxic responses. A correlation existed between DNA damage and the amount of pollutants and PAHs. Toxicity and mutagenicity occurred only in the presence of S9. Only 3 of the 11 sites exhibited moderate mutagenic activities.
Reference: Endo et al. (2003, 097260) Species: S. typhimuriam Strain: YG1024 (±S9)	PM (Tokyo, Japan; winter) (organic extracts) Particle Size: Diameter: >12.1 - 0.06> μm; Bimodal mass concentration: 1-2 μm	Route: Cell Culture Dose/Concentration: 2.5, 5, 10 μL; 0.30 - 22.76 μg/m³ Time to Analysis: Air samples collected, extracted. 90 min pre-incubation. 48 h incubation.	Mutagenicity tests showed dose-response relationships that were higher without S9 and increased with decreasing size.
Reference: Erdinger et al. (2005, <u>156423</u>) Species: S. typhimurium Strain: TA98. TA100, TA98NR	PM (Baden-Württemberg, Germany; urban, 8 locations, glass fiber filters) (organic extracts) Particle Size: NR	Route: Cell Culture Dose/Concentration: 0.25, 2.5, 5, 12.5, 25 m³/plate Time to Analysis: Standard Ames test protocol followed.	Extracts were mutagenic in all strains evaluated. No significant difference in response with or without metabolic activation. Activity in TA98NR suggests that the mutagenicity correlates with concentrations of air pollutants such as NO _x .
	PM (wood smoke (WS) (New Jersey) and cigarette smoke (CS) (Tobacco Research and Health Institute, University of Kentucky) (organic extracts) Particle Size: 10 µl aliquots of organic extracts	Route: Cell Culture Dose/Concentration: 62.5, 12.5 µg TPM equivalent/plate Time to Analysis: Incubation, shaking 25 min. Agar added. 48 h incubation. Rat lung explants incubated 18 h. 12 h incubation with treatments.	WS and CS were equally mutagenetic to TA98, but CS was 3-fold more mutagenetic to TA100 than WS. CS induced CYP1A1 in the explants, but WS did not.
	DEP extract (DP), gasoline engine exhaust particulate extract (GP), diesel exhaust SVOC extract (DSVOC), gasoline engine SVOC extract (GSVOC), NIST SRM 1650a Particle Size: Gasoline PM: 0.554 mg extract (mg PM)-1; Diesel PM: 0.363 mg extract (mg PM)-1	Route: Cell Culture Dose/Concentration: 1.48, 4.44, 13.3, 40, 120, 360, 1080 µg/plate Time to Analysis: 30 min preincubation. 48 h (YG1029). 66 h (YG1024). Overnight preincubation 20 h.	Mutations: All samples induced mutations in both strains. The increase was highly significant and dose-dependent. Response with S9 was generally greater than without S9. PM extract was more mutagenic than SVOC extract. DP, GP, and GSVOC: Dose-response was seen for DNA damage and micronuclei induction. GP, GSVOC and SRM 1650a were stronger inducers of micronuclei than DP.

Reference	Pollutant	Exposure	Effects
Reference: Matsumoto et al. (2007, <u>187020</u>) Species: S. typhimuriam Strain: TA98, TA100 (±S9)	APM (airborne particulate matter) APE (airborne particulate extracts) (Hokkaido, Japan; residential) Particle Size: NR	Route: Cell Culture Dose/Concentration: Crude APE: 979mg/m³ air (CALUX BaP Equivalent (BaPEq)), 21 mg/m³ air (CALUX TCDD Equivalent (TCDDEq)); Cleaned APE: 7.87 mg/m³ air (CALUX BaPEq), 0.614 mg/m³ air (CALUX TCDDEq) Time to Analysis: Air samples collected, extracted. Preincubation with S. typhimuriam. 3, 24 h exposure in CALUX assay. RNA extracted from mice 6 days after last application.	Most of the CALUX BaPEq for crude APE was derived from PAH-like compounds, as suggested by the CALUX BaPEq of cleaned APE accounting for 0.80% of CALUX BaPEq for crude APE. CALUX TCDDEq showed TCDD and similar compounds to have a low contribution. The TA100 strain was more mutagenic to APE, with and without S9. S9 increased mutagenicity in both strains.
Reference: Pastorkova et al. (2004, <u>087431</u>) Species: S. typhimuriam Strain: TA98, YG1041 (±S9)	PM (EOM) (Plzeň, Prague, Ústí, Zďár - Czech Republic) Particle Size: 10 μm (diameter)	Route: Cell Culture Dose/Concentration: TA98 (4 doses): 20-200 µg/plate, YG1041 (4 doses): 4-20 µg/plate Time to Analysis: Collected 24 h every 18th day, Oct-Mar, 1999-2003. Extracted. Ames assay. 70 h incubation.	Significant dose-response effects in mutagenic potency of EOM occurred. Prague, one of the most polluted cities, had the highest mutagenicity values. Increasing time-trends were observed in the TA98 ± S9 mutagenicity and PAH concentrations.
Reference: Rivedal et al. (2003, 097684) Species: S. typhimurim Strain: TA100, TA98, TA100NR, TA98NR, TA98/1,8-DNP6	DEP (SRM 1650)(organic extracts) (fractionated into PAH, nitro-PAH, dinitro-PAH, aliphatics, polar fraction) Particle Size: NR	Route: Cell Culture Dose/Concentration: Ames: 300, 600 DEP/plate; Gap junction: 100, 200 µg/mL DEP Time to Analysis: Extracted 16 h. Fractionated. Ames assay. Gap junction intracellular communication: exposed 1-6 h. Western blot.	TA100 was the most mutagenic without S9 activation. GJIC was dose- and time-dependently inhibited. The polar fraction was the most potent inhibitor. Nitro-PAH and dinitro-PAH were the most responsive fractions in the Ames assay.
Reference: Seagrave et al. (2003, 054979) Species: Salmonella Strain: TA98, TA100	Compressed natural gas (CNG) emissions (heavy-duty vehicles): High emitter (HE), Normal emitter (NE), New technology (NT) Particle Size: NR	Route: Cell Culture Dose/Concentration: PM (mg/mi)- NE-7.0, NT-5.0, HE-406; Recovered PM (mg/mi)- NE-1.26, NT-0.71, HE-57.1; Recovered SVOC-NE-58, NT-26.4, HE-227.5 Time to Analysis: Samples collected in filters 7x/day over several days. Recovered PM, recovered SVOC extracts combined. Ames assay.	All three CNG emissions were mutagenic in both strains. Mutagenicity was reduced by S9 in TA100 but not in TA98. Activity ranking in both strains was HE>NE>NT.
Reference: Sharma et al. (2007, 156975) Species: S typhimurium Strain: TA98, YG1041, YG5161 Cell Line: Human A549 lung epithelial cells	PM (airborne, 4 sites: an oven hall and receiving hall in a waste incineration plant; heavy-traffic street; background; Mar-June 2005) Particle Size: 2.5 μm (diameter)	Route: Cell Culture Dose/Concentration: 0.25 mg/ml Time to Analysis: Samples taken over 7-16 days. A549 cells incubated 24 h. Comet and microsuspension assays performed.	DNA damage: Samples from all four sites induced DNA damage in the comet assay with the street samples more damaging than the oven hall sample. Mutations: Microsuspension assay was used to assess mutagenic activity. No mutagenic activity was observed for any of the non-polar fractions from any sample sites. The moderately polar fractions were all mutagenic, except for the oven hall sample, only when S9 was added. Comparatively, the polar and crude fractions were mutagenic without metabolic activation, suggesting a direct mutagenic effect.
Reference: Song et al. (2007, 155306) Species: S. typhimurium Strain: TA98, TA100 Cell Line: Rat fibrocytes L-929 cells	PM (soluble organic fraction (SOF) extracts from diesel engines using fuels blended with ethanol by volume: E0 - base diesel fuel; E5 - 5%; E10 - 10%; E15 - 15%; E20 - 20%) Particle Size: Density (g/cm³): E0 - 0.8379; E5 - 0.8349; E10 - 0.8324; E15 - 0.8301; E20 - 0.8279	Route: Cell Culture Dose/Concentration: Ames Assay: 0.025, 0.05, 0.1 mg/plate; Comet Assay: 0.125, 0.25, 0.5, 1.0 mg/mL Time to Analysis: Samples extracted 24 h. Ames and comet assays performed	All PM extracts induced higher mutational response in TA98 (3- to 5-fold increase over spontaneous) than in TA100 (2-to 3-fold increase). The highest brake specific revertants (BSR) ±S9 in both strains occurred with E20 and lowest BSR was in E5 (except in TA98 -S9). E0 and E20 caused more significant DNA damage (similar in effect) than the other extracts. Damage was dosedependent but variable with increasing ethanol volume.

Reference	Pollutant	Exposure	Effects
Reference: Zhang et al. (2007, <u>157186</u>) Species: S. typhimurium Strain: TA98, TA100 Cell Line: A549	Gasoline engine exhaust (GEE) Methanol engine exhaust (MEE) Particle Size: NR	Route: Cell Culture Dose/Concentration: MTT Assay- 0.05-0.8 GEE or MEE L/ml; MN Assay- 0.025, 0.05, 0.1, 0.2 GEE or MEE L/ml; Comet Assay- 0.025, 0.05, 0.1, 0.2, 0.4 GEE or MEE L/ml; Ames Assay- GEE: 0.625, 1.25, 2.5, 5.0, 10, 20 L/plate; MEE: 0.3125, 0.625, 1.25, 2.5, 5.0, 10, 20 L/plate Time to Analysis: Organic extracts from GEE and MEE. MTT assay- 24 h incubation, followed by 2 or 24 h incubation, followed by 4 h incubation. MN assay- 24 h incubation. Comet assay. Ames assay- 72 h incubation.	Mutagenicity: GEE was mutagenic in TA98 but not TA100, -S9 at 10 and 20 L/plate and +S9 at ≥1.25 L/plate. Mutagenicity was higher with S9 than without at 0.625-10 L/plate and a doseresponse was reported. MEE had no effect in either strain. MN: GEE significantly and dose-dependently induced MN. MEE had no significant effect at any dose. DNA damage: GEE significantly induced DNA damage at all doses compared to controls. MEE had no effect at any dose.
Reference: Zhao et al. (2004, 100972) Species: Rat Gender: Male Strain: SD Age: NR Weight: ~200 g Cell Line: S. typhimurium YG1024 (±S9)	DEP (SRM 2975) DEPE (SRM 1975) Carbon black (CB) (Elftex-12 furnace black, Cabot, Boston, MA) Particle Size: NR	Route: IT Instilled. Cell Culture. Dose/Concentration: DEP or CB: 35mg/kg; S9: 25, 50, 100, 200 μg/plate; Cytosolic protein: 20, 40, 80, 160 μg/plate; Microsomal protein: 5, 10, 20, 40 μg/plate Time to Analysis: Rats instilled. Sacrificed 1, 3, 7 days post-exposure. S9, cytosolic, microsomal fractions prepared from lung homogenates. Ames assay: 72 h incubation.	DEP and CB-exposed lung S9 time-dependently decreased 2-aminoanthracene (2-AA) mutagenicity. Metyrapone and α -napthoflavone inhibited the S9-activation of 2-AA in DEP and CB exposed rats. Lung S9 increased the mutagenicity of DEPE but not of DEP or CB. Liver S9 reduced DEPE dose-dependently. CYP2B1 and CYP1A1 activated DEPE, with CYP2B1 being more effective.
Reference: Zhao et al. (2006, 100996) Species: S. typhimuriam Strain: YGL024 (±S9)	DEP (SRM 2975) DEPE (SRM 1975) Aminoguanidine (AG) Particle Size: NR	Route: Cell Culture Dose/Concentration: NR Time to Analysis: Lung S9 obtained from rats used in in vivo experiment. Ames test. Modified microsuspension assay. All assays in duplicate plates. Repeated 3x.	AG significantly lowered 2-aminoanthracene mutagenic activity of DEP or DEPE-exposed lung samples, with DEP being lowered the most.

Table D-8. Mutagenicity and genotoxicity data summary: In vitro and in vivo.

Reference	Particle	Exposure	Effects
Reference: Abou	PM (3 French metropolitan cities: Urban	Route: Cell Culture	Seasonal variation was observed with genotoxic effects being greater in winter. PM _{2.5} was more active than PM ₁₀ extracts. Samples from the "Proximity Sector" (downtown area with heavy traffic
Chakra et al. (2007, 098819)	ocoloi, i roximity ocoloi, industrial	Dose/Concentration: 200 μL organic extract; 20 μL aphidicoline	
Species: Human	Sector") (organic extracts)	Time to Analysis: 24 h	exhibited the strongest genotoxic responses.
Gender: Male,	,		
Female	Particle Size: 2.5, 10 µm (diameter)		
Age: 6-13 yr and Adults			
Participant Characteristics: Non-smokers			
Cell Line: HeLa S3 cells			
Reference: Arrieta et	PM (El Paso, Texas; Juarez,	Route: Cell Culture	EROD activity declined at higher extract amounts,
al. (2003, <u>096210</u>)	Chihuahua, Mexico; Sunland Park, New Mexico) (organic extracts)	Dose/Concentration: EROD test: 0.03,	but luciferase activity was not inhibited. Cytotoxicity occurred only at extract equivalents to 0.47 m³ air. PAH concentration increased with PM mass.
Species: Rat	, , ,	0.17, 0.34, 0.50, 0.68, 4.96, 9.93 extract	
Cell Line: Hepatoma (H4IIE)	Particle Size: 10 μm (diameter)	equivalents (m³ air); Luciferase: 0.17, 0.51, 1.26, 5.01 extract equivalents (m³ air)	
,		Time to Analysis: 24 h	
Species: Mouse			
Cell Line: Hepatoma H1I1.1c2			

Reference	Particle	Exposure	Effects
Reference: Bao et al. (2007, <u>097258</u>)	DEP (organic extracts) (SRM 2975) Particle Size: NR	Route: Cell Culture Dose/Concentration: 10, 20, 50, 100 µg/mL	The nucleus of DEP-treated cells was condensed and shrunken compared to controls. DEPs
Cell Line: Human- hamster hybrid (AL)	Faiticle Size. NIX		accumulated in cells, disrupting the mitochondrial cristae, and were lodged in large cytoplasmic
		Time to Analysis: Phagocytosis inhibitors: Exposed 24 h with or without cytochalasin B or ammonium chloride. Cytotoxicity: 24, 48 h incubation. Mutations: Exposed 24 h. 5-7 days culture. Incubated additional 7-8 days.	vacuoles. DEP produced minimal toxicity. CD59 locus mutations dose-dependently increased but decreased when simultaneously treated with cytochalasin B or ammonium chloride.
Reference: Carvalho- Oliveria et al. (2005,	PM (Sao Paulo, Brazil; spring, bus strike and non-strike days) (organic extracts)	Route: Cell Culture	Element concentrations, sulfur and BTEX decreased on the strike day. Micronuclei decreased in T. pallida during the strike. Toxicity measured in A. cepa was not significant, but higher on strike days.
<u>077898</u>)	Particle Size: 2.5 µm (diameter)	Dose/Concentration: Strike day: 47.32 μg/m ³ ; Non-strike day: 43.01 μg/m ³	
Species: T. pallida; A. cepa		Time to Analysis: 8 h. 24 h recovery. A. cepa roots induced 5 days. Exposed 30 h. Fixed 24 h.	
Reference: Dybdahl	DEP (SRM 1650)	Route: Cell Culture	DEP induced dose-dependent increases of IL-1α, IL-
et al. (2004, <u>089013</u>) Species: Human	Particle Size: NR	Dose/Concentration: 10, 50, 100, 500 μg DEP/mL	6, IL-8, TNF-α. The cytokines increased 4-18-fold at the highest dose. Cell viability did not decrease. Comet tail length increased at 100 and 500 μg/mL
Cell Line: A549		Time to Analysis: 2, 5, 24 h incubation.	for 2, 5, 24 h.
	PM (PRG-SM, PRG-LB, Košice, Sofia;	Route: Cell Culture	Cell viability significantly decreased in the 24, 48 h
et al. (2007, <u>156458</u>) Species: Human	winter, summer) (organic extracts) Particle Size: 10 µm (diameter)	Dose/Concentration: 5-150 μg/mL	exposure groups compared to the 2 h exposure group. DNA migration significantly dose-dependently
Cell Line: Hepatoma	ratucie Size. To pitt (diameter)	Time to Analysis: 2, 24, 48 h	increased at most concentrations. In general, oxidative DNA damage did not significantly increase.
Hep G2		Poster Cell Culture	Total DNA adducts record from CO to 200 adducts
Reference: Gabelova et al. (2007, <u>156457</u>)	(Slovak Republic) and Sofia (Bulgaria);	Dose/Concentration: 5 -150 µg/ml	Total DNA adducts ranged from ~60 to 200 adducts per 108 nucleotides. Extracts also produced
Species: Human	urban, winter, summer)	Time to Analysis: 24 h DNA adduct	approximately the same levels of strand breaks. Results suggested that the genotoxic potential of
Cell Line: Hepatoma Hep G2 cell line	(organic extracts) Particle Size: 10 μm (diameter)	formation. 2 h Comet assay. Oxidative DNA damage measured by Fpg-sensitive sites.	ambient air was at least 6-fold greater in the winter compared to summer. No substantial difference was reported for oxidative DNA damage induced by summer vs. winter samples.
Reference: Gong et al. (2007, <u>091155</u>)	DEP (aggregates, exhaust 4JB1-type LD,274 1,4-cylinder Isuzu diesel engine,	Route: Cell Culture	HO-1 expression was dose-dependent and greatest with the DEP+ox-PAPC treatment. DEP significantly dose-dependently upregulated or downregulated a number of genes and was shown to have a synergistic effect with co-treatment of ox-PAPC. The
Species: Human	10 torque load, cyclone impactor, dilution tunnel constant volume sampler)	Dose/Concentration: 5, 15, 25 μg/mL	
Cell Line:	Particle Size: <1 µm (diameter)	Time to Analysis: Cells treated with DEP, ox-PAPC (oxidized 1-palmitoyl-2-	
Microvascular endothelial (HMEC)	, (eaoo)	arachidonyl-sn-glycero-3- phosphoryloblogray DED-by PADC phosphoryloblogray DED-by PADC phosphoryloblogray DED-by PADC	most varying genes were significantly enriched for EpRE, inflammatory response, UPR, immune response, cell adhesion, lipid metabolism, apoptosis and protein folding genes.
Reference: Greenwell et al.	PM (South Wales, UK) (urban, industrial)		Industrial PM was more bioreactive than urban PM. Coarse fractions had greater oxidative potential and bioreactivity than fine fractions.
(2003, <u>097478</u>) Species: Rat	Particle Size: Coarse diameter: 10-2.5 μm, Fine diameter: 2.5-0.1 μm	Dose/Concentration: Urban mean: 18.7 ± 4.7 mg/day; Industrial mean: 22.6 ± 2.5 mg/day	
Cell Line: Epithelial	μπ, τ me diameter. 2.5-0.1 μm	Time to Analysis: 24 h air samples 4-11	
fluid; icosahedral bacteriophage φX174-RF DNA		days. Substrates vortexed 1 h, suspended 4 h, centrifuged 1 h. Oxidation assay.	
Reference: Gu et al. (2005, <u>195923</u>)	DPM (1980 model General Motors 5.7-L V-8 engine)		DPM significantly and dose-dependently increased aberrant cells at 25-100 μ g/mL. DPM increased MN formation dose-dependently. Mutant frequencies were not significant and showed no dose-dependent trends. DPM was toxic to cells at the highest concentration.
Species: Hamster	Particle Size: NR	Dose/Concentration: 25, 50, 100, 150 μg/mL; 10 μg DPM in 10 μg in DPPC/mL; 10 μg in D	
Strain: Chinese		μg DPM in 10 μg DMSO/mL Time to Analysis: Chromosomal aborration:	
Cell Line: Lung fibroblast (V79)		Time to Analysis: Chromosomal aberration: 24 h incubation. Treated 24 h. Incubated again 24 h. MN assay: 24 h treatment. Gene mutation: 24 h treatment. Cells replated. 7 days expression times. Staining at 8, 10 days.	

Reference	Particle	Exposure	Effects
Reference: Gualtieri et al. (2005, <u>097841</u>) Species: Human Cell Line: A549	TD (Tire debris, generated by rotating new vehicle wheel against a steel brush, significant component of PM ₁₀) (organic extracts) Particle Size: 10-80 μm (diameter)	Route: Cell Culture Dose/Concentration: 50, 60, 75 μg/mL Time to Analysis: Particles extracted 6 h. Cells subcultured every 3-4 days. After 24 h, TD treatments 24, 48, 72 h.	A time- and dose-dependent inhibitory effect on the reduction of MTT was seen. Mortality increased dose-dependently and was significantly greater than the controls. DNA strand breaks increased significantly in a dose-dependent manner. A significant cell cycle block in the G1 phase with a consequent decrease in the cell number in the S and G2/M phases was seen. Exposed cells had a modified morphology.
Reference: Gutierrez-Castillo et al. (2006, <u>089030</u>) Species: Human Cell Line: A549	$PM_{2.5}$ and PM_{10} (4 monitoring stations in Mexico City: (1) downtown high auto traffic, (2) two industrial areas with high levels of auto traffic and low vegetation, (3) medium-traffic residential area) (winter, spring , 4 sampling days in each period) (aqueous and organic extracts) Particle Size: 2.5 or 10 μm (diameter)	Route: Cell Culture $ \begin{aligned} \textbf{Dose/Concentration:} & 0.05, 0.07, 0.1 \text{m}^3/\text{ml} \\ \text{equivalents PM}_{2.5}, 0.82, 1.25, 1.63 \text{m}^3/\text{ml} \\ \text{equivalents PM}_{10} \end{aligned} $ $ \begin{aligned} \textbf{Time to Analysis:} & 48 \text{ h} \end{aligned} $	Higher amounts of water-soluble metals were found in samples collected during winter. Water-soluble extracts increased DNA damage 1.7-fold over the background. Similar results were observed with organic extracts. In general, $PM_{2.5}$ extracts had greater genotoxic potential than PM_{10} extracts, and water soluble fractions form both particle sizes were more genotoxic than the corresponding organic extracts.
Reference: Izawa H et al. (2007, 190387) Cell Line: NA	DEPE (4JB-1 Isuzu 4-cylinder direct- injection 2740cc diesel engine; 1500 rpm, 10 kg/m load) Particle Size: NR	Route: Cell Culture Dose/Concentration: DEP: Ah-1 experiment- 111, 55.5, 27.8, 13.9, 6.9, 3.5, 1.7 µg/mL; Foods, polyphenols experiment- 27.8 µg/mL Time to Analysis: DEPE incubated 2 h for dioxin toxicity measurement. Absorbance at 405 nm measured. Food, polyphenol inhibitory effects: food extract or polyphenol solution added to cytosol solution, shaken 5 min. DEPE added, shaken 5 min. 2 h incubation. Absorbance at 405 nm measured.	The dioxin toxicity equivalent was 6,479 ± 58 ng DEQ/g of DEP. The absorbance showed a sigmoid curve and dose-dependently increased from 6.9 to 27.8 μg DEP/mL. The Ginkgo biloba extract significantly inhibited AhR activation significantly more than the other foods, and was followed by green tea, onions, and garlic. Quercetin and myricetin dose-dependently inhibited AhR activation. Ginkgolides A and B had weak inhibitory effects and resveratol was the weakest.
Reference: Jacobsen et al. (2008, <u>156597</u>) Species: Mouse Cell Line: FE1- MutaTM lung epithelial cells	DEP (SRM 1650b) Carbon black (CB) (Printex 90) Particle Size: DEP: 18-30 nm; CB: 14 nm; Agglomerates in suspensions: DEP Peaks- 249 nm, CB Peaks- 476 nm	Route: Cell Culture Dose/Concentration: 37.5, 75 µg/mL Time to Analysis: 8 repeated 72 h incubations.	Mutagenicity: The 75 µg/mL dose was significantly increased compared to the 37.5 µg/mL dose. Linear regression showed a significant increasing trend by increasing exposure. There was no change in the total cell numbers. ROS: ROS production increased in DEP-treated cells after 3 h of exposure. CB-treated cells showed a dose-dependent increase.
Reference: Karlsson et al. (2004, 198976) Species: Human Cell Line: Fibroblasts; calf thymus DNA with human liver microsomes or rat liver S9	PM (urban dust particles, SRM 1649) (extracted with DCM, acetone, DMSO, water) (Fe 3% w/w, Ti 0.32% w/w, V 0.04% w/w, Mn 0.03% w/w, Cu 0.025% w/w) Particle Size: <10 µm (mean diameter)	Route: Cell Culture Dose/Concentration: 0.1, 1.0, 10, 100 µg/cm² Time to Analysis: Fibroblasts exposed 24 h. Comet assay. Calf thymus incubated 2 h with microsomes or S9. 32P-labelled.	DNA damage increased dose-dependently, and a significant amount of DNA-damaged cells had particle interactions. DNA damage induced by the insoluble particle core significantly increased after each extraction. Native particles were more genotoxic than those extracted with DMSO, DCM and water, but not with acetone or hexane. DMSO extracts had the most adduct-forming PACs, and water extracts had the most oxidizing substances.
Reference: Karlsson et al. (2005, 086392) Species: Human Cell Line: A549	PM (subway station, urban street) Subway particles: O ₂ , Fe (Fe from Fe ₃ O ₄) Street particles: Fe from Fe ₂ O ₃ Particle Size: 10 μm (diameter)	Route: Cell Culture Dose/Concentration: Comet: 5, 10, 20, 40 µg/cm²; 8-oxodG: 10 µg/cm² Time to Analysis: 4 h.	Both PM types induced concentration-dependent DNA damage, but subway particles were more potent. Subway particles caused more 8-oxodG formation and oxidation of dG, the latter of which was inhibited by deferoxaminemesylate. Oxidation from subway particles was due to nonsoluble, redox active substances, and soluble substances from street particles.
Reference: Karlsson et al. (2006, <u>156625</u>) Species: Human Cell Line: A549; monocytes from heparinized whole blood	PM (wood- old, modern boiler; pellets- pellets burner, electrical ignition; tire- road simulator studded, friction tires; Street- busy street, Stockholm; Subway- platform near street) Particle Size: 2.5, 10 μm (diameter)	Route: Cell Culture Dose/Concentration: 40 µg/cm² Time to Analysis: Cells grown 24 h. Comet assay. Monocytes incubated 10 days. Macrophages incubated 18 h.	All particles tested caused DNA damage, but there was no significant difference between the size fractions. Subway particles were the most genotoxic. The urban street particles were the most potent inducers of the cytokines. On the Teflon filters, PM ₁₀ was somewhat more potent than PM _{2.5} .

Reference	Particle	Exposure	Effects
Reference: Kubátová et al. (2004, <u>087986</u>) Species: Monkey Cell Line: African green kidney COS-1 (CV-1 cells with origin-defective SV40 mutants) (±S9)	(WS) from chimney, hardwood smoke) (organic extracts) Particle Size: NR	Route: Cell Culture Dose/Concentration: 25, 50, 100, 200 µg/mL; 50mg of each material used for all experiments Time to Analysis: 24 h cytotoxicity. 2 h SOS chromotest.	WS had significantly increased cytotoxicity in fractions of 25-250°C, and DE in nonpolar fractions of 250 and 300°C and polar fractions of 50°C. The cytotoxicity of DE PM nonpolar fractions corresponded to increased concentrations of PAHs. WS was not genotoxic and DE was genotoxic in midpolarity fractions (50-250°C). Genotoxic response was not increased after S9 activation.
Reference: Landvik et al. (2007, <u>096722</u>) Species: Mouse Cell Line: Hepatoma	DEP extracts (DEPE in the paper) Particle Size: NR	Route: Cell Culture Dose/Concentration: 10, 20, 30, 50, 70 µg/mL Time to Analysis: 24 h	50 and 70 μg/mL DEPE did not induce DNA fragmentation but did cleave caspase 3 to a minor extent.
Reference: Mehta et al. (2008, 190440) Species: Human Cell Line: A549	PM (SRM 1949a) Particle Size: ≤ 0.18 μm (diameter)	Route: Cell Culture Dose/Concentration: 0, 50, 100, 200, 400 µg/mL Time to Analysis: Cell culture and cell viability assay: PM treatment 24 h. 10 days incubation. Host cell reactivation assay: pGL3-luciferase plasmid UV irradiated 20 min. PM treatment 24 h. 16 h transfection. 24 h PM incubation. DNA repair synthesis assay: PM treatment 24 h. Proteinase K treatment 30 min. supf mutagenesis assay: PM treatment 24 h. PM culture 60 h. DNA extracted. Overnight incubation of transformed bacteria.	PM reduced colony-forming ability and repair synthesis capacity was proportional to the PM concentration. PM dose-dependently decreased HCR capacity and decreased more than TSP. PM induced cyclobutane dimmers and pyrimidine<6-4>pyrimidones mutations in UV-irradiated supf.
Reference: Meng and Zhang (2007, 198963) Species: Rat Gender: Male Strain: Wistar Kyoto Age: NR Weight: Mean: 230g; Range: 200-250g Cell Line: AMs from treated rats	PM (Baotou, Wuwei, China) (normal weather, dust storms, Mar 1-31) (organic extracts, water soluble fractions) Particle Size: 2.5 μm	Route: Cell Culture Dose/Concentration: AM: 0, 33.3, 100, 300 µg/mL; Water-soluble: 0, 75, 150, 300 µg/mL; Organic extracts: 0, 25, 50, 100 µg/mL; Mass concentration normal day: 68.49 ± 28.83 µg/m²; Mass concentration dust storm day: 221.83 ± 69.89 µg/m³ Time to Analysis: 24 h; cultures 4 h.	OC, NH_4^+ , NO_3^- were higher in normal weather $PM_{2.5}$. SO_4^{-2} . Ca^{2+} were higher in dust storm $PM_{2.5}$. Fe, Al, Ca, Mg were 5x higher in dust storm $PM_{2.5}$. Cell viability reduced in a concentration-dependent manner, with normal weather being slightly more cytotoxic. DNA damage was dose-dependently induced, with normal weather and organic extracts showing the greatest damage.
Reference: Motta et al. (2004, 198953) Species: Hamster Strain: Chinese Cell Line: Epithelial liver, ovary	PM (Catania, Sicily; spring) (organic extracts) Particle Size: NR	Route: Cell Culture Dose/Concentration: 0.60, 1.21, 2.42, 4.85, 9.70, 19.40 μg/mL; 0.78, 1.56, 2.12, 6.25, 12.50, 25.00 μg/mL Time to Analysis: 24 h	The treatment was only slightly cytotoxic at the highest dose. DNA damage and aberrant cells generally increased with dose. No effect was seen in the Chinese hamster ovary cells without metabolic activation.
Reference: Oh and Chung (2006, 088296) Cell Line: A549 (Comet), CHO-K1 (CBMN), H4IIE (EROD-microbiassay)	Crude extract (CE) DEP and fractions of CE of DEP (organic extracts: F1 - organic bases, F2 - organic acids, F3 - aliphatic, F4 - aromatic, F5 - slightly polar, F6moderately polar, F7 - high polar) Particle Size: Diameter: <2.5 µm, 87.71%, 2.5-10 µm, 3.87%, >10 µm, 8.42%	Route: Cell Culture Dose/Concentration: 100 μg/mL Time to Analysis: DEP generated, extracted. Comet assay- 24 h incubation, CE, DEP exposed 24 h. MN assay- cultured 24 h, 4 h treatment, growth medium incubation 20 h. EROD-microbioassay- 48 h.	DNA damage: CE significantly increased the amount of DNA damage in A549 cells with and without SKF-525A, a CYP450 inhibitor, and in CHO-K1 cells. It significantly increased MN formation ±S9 compared to controls. Organic Extracts: Organic base (F1) and neutral (F3-F7) fractions of CE of DEP significantly induced DNA damage without SKF-525A compared to controls. Adding SKF-525A completely inhibited damage caused by F3, F4, F6 and F7 but kept the effect of F1 similar to that without SKF and only partially inhibited that of F5. F2 did not induce DNA damage with or without SKF. All fractions except F6 induced MN formation ±S9.

Reference	Particle	Exposure	Effects
Reference: Poma et	PM (L'Aquila, Italy; urban); air samples	Route: Cell Culture	PM and CB dose-dependently reduced cell proliferation and induced micronuclei. PM and CB also reduced cellular metabolism of the macrophages and induced significant amounts of apoptosis. PM produced more micronuclei than equally-weighted CB.
al. (2006, <u>096903</u>) Species: Mouse	collected weekly basis Jan-Mar 2004. Carbon black (CB)	Dose/Concentration: 1, 3, 10 μg/cm ²	
•	Particle Size: 2.1-0.43 μm (diameter)	Time to Analysis: Cells cultured 48 h. Treatment 48 h. MN assay: 44 h incubation, 28 h incubation.	
	PM (Mexico City from an industrial area with high-traffic and a medium-traffic residential area)	Route: Cell Culture	Water and organic extracts induced a significant dose-dependent increase in the micronuclei frequency. After doses of PM from different regions
et al. (2007, <u>156929</u>)		Dose/Concentration: 1.25, 1.63, 2.5 m³/ml	
Species: Human Cell Line: A549	(aqueous or organic extracts)	equivalents of PM ₁₀ Time to Analysis: Cells treated 24 h	were normalized for mass differences, the genotoxic potency was higher for samples from the industrial
Gen Ente. A040	Particle Size: 10 µm (diameter)	followed by 48 h incubation with cytochalasin B. Micronuclei frequency determined.	area.
Reference: Salonen	PM (Vallila, Finland; busy traffic site;	Route: Cell Culture	PAHs decreased from winter to spring. TNF-α dose-
et al. (2004, <u>187053</u>) Species: Mouse	spring, winter) Particle Size: <10 µm (diameter)	Dose/Concentration: 15, 50, 150, 500, 1000 μg/mL of RPMI	dependently increased and was higher in spring samples. IL-6 generally increased in spring but not in winter. NO does dependently increased and was
Cell Line: RAW 264.7	Talado 3.201 No pin (danoto)	Time to Analysis: 24 h	winter. NO dose-dependently increased and was higher in winter. Cell viability generally decreased but there were no consistent potency differences between the samples. Generally, proinflammatory activity, cytotoxicity and IL-6 were associated with the insoluble PM fractions. Polymyxin B inhibited IL-6 and TNF-a. OH and 8-hydroxy-2'-deoxyguanosine dose-dependently increased and were higher in the spring and winter, respectively.
Reference: Seaton et	PM (3 busy London underground (LU)	Route: Cell Culture	PM ₁₀ caused less LDH release, IL-8 stimulation and
al. (2005, <u>198904</u>) Species: Human	stations and cabs) (LU dust in PM _{2.5} samples: iron oxide 64-71%, chromium	Dose/Concentration: Assays: 1, 10, 50, 100 µg/mL	free radical activity than LU dust particles that contained PM _{2.5} . Chelation had little effect on PM ₁₀
Cell Line: A549	0.1-0.2%, manganese 0.5-1%, copper <0.1-0.9%; respirable dust samples: 1-2%)	Time to Analysis: 8, 24 h.	soluble components.
	Particle Size: Diameter: <2.5 μ m, 10 μ m, Median diameter: 0.4 μ m		
Reference: Sevastyanova et al.	PM ₁₀ (Prague, Czech Republic; Ko*sice; Slovak Republic; Sofia, Bulgaria)	Route: Cell Culture	DNA adducts were observed in all cell types evaluated. Highest adduct levels were observed in
(2007, <u>156969</u>)	(urban, summer, winter)	Dose/Concentration: 10-100 μg/ml	HepG2 cells, followed by HEL and THP-1 cells. A correlation between DNA adduct levels and
Species: Human	(organic extracts)	Time to Analysis: 24 h	carcinogenic PAH content was observed in HepG2
Cell Line: HepG2 cell line, embryonic lung diploid fibroblasts (HEL), or acute monocytic leukemia cells (THP-1)	Particle Size: 10 μm (diameter)		cells at 50 µg/ml.
Reference: Shi et al. (2003, <u>088248</u>)	PM (Düsseldorf, Germany, July-Dec.) Weekly samplings July-Dec 1999.	Route: Cell Culture	Coarse and fine particles generated ·OH, but coarse particles had significantly higher ·OH formation as
Species: Human	Particle Size: Fine diameter: <2.5 μm;	Dose/Concentration: Fine: 0.57-2.49 mg; Coarse: 0.66-1.89 mg; Concentration: 0.57	well as 8-hydroxy-2'-deoxyguanosine formation. 8-hydroxy-2'-deoxyguanosine and OH had a
Cell Line: A549	Coarse diameter: 10-2.5 µm	mg/mL Time to Analysis: NR	significant correlation.
Reference: Skarek et	PM (urban: Ústí and Laben, Karviná;	Route: Cell Culture	The urban areas had a much greater level of
al. (2007, <u>096814</u>)	background: Červenohorské sedlo, Košetice - Czech Republic; July)	Dose/Concentration: SOS: 8, 4, 2, 1 m³/ml;	carcinogenic PAHs and overall number of PAHs than the background areas. Significant genotoxic activity
Species: Rat Cell Line: Modified	(organic extracts, TSP); GP (gas phase). 24 h samples July 2002	Dioxin: TSP+GP- 8, 1.33, 0.22, 0.04 m³/ml, PM _{2.5} +GP: 4, 0.66, 0.11, 0.02 m³ ml-1	was only detected at TSP+GP without S9 from urbar areas. PM _{2.5} +GP had lower dioxin activity at the urban areas, but similar levels of toxicity were seen for both treatments in the background areas.
hepatoma H4IIE.luc; SOS: E. coli PQ37 (±S9)	Particle Size: <2.5 μm (diameter)	Time to Analysis: . SOS chromotest: 22 h incubation. Dioxin toxicity test: 24 h exposure.	
Reference: Song et al. (2007, <u>155306</u>)	PM (soluble organic fraction (SOF) extracts from diesel engines using fuels blended with ethanol by volume: E0 - base diesel fuel; E5 - 5%; E10 - 10%; E15 - 15%; E20 - 20%)	Route: Cell Culture	All PM extracts induced higher mutational response in TA98 (3- to 5-fold increase over spontaneous) than in TA100 (2-to 3-fold increase). The highest brake specific revertants (BSR) ±S9 in both strains occurred with E20 and lowest BSR was in E5 (except in TA98 -S9). E0 and E20 caused more significant DNA damage (similar in effect) than the other extracts. Damage was dose-dependent but variable with increasing ethanol volume.
Species: S. typhimurium		Dose/Concentration: Ames Assay: 0.025, 0.05, 0.1 mg/plate; Comet Assay: 0.125, 0.25, 0.5, 1.0 mg/mL	
Strain: TA98, TA100 Cell Line: Rat fibrocytes L-929 cells	Particle Size: Density (g/cm³): E0-0.8379; E5-0.8349; E10-0.8324; E15-0.8301; E20-0.8279	Time to Analysis: 24 h	

Reference	Particle	Exposure	Effects
Reference: Ueng et al. (2005, <u>097054</u>)	(2005, 097054) 50-cc engine) pecies: Human Particle Size: NR Pll Line: Lung ithelium CL5 ancerous), BEAS-b, WI-38 normal		Drug Metabolism Array Study: MEP increased CYP1A1, CYP3A7 and UGT2B.
Species: Human Cell Line: Lung		Dose/Concentration: 1, 10, 100, 200 μg/mL Time to Analysis: microarray analysis. RT-PCR: 2 h. ELISA: 12 h incubation. Centrifuged 24 h post-treatment. Bioactivity: 12 h incubation. Centrifuged 24 h post-treatment. Medium replaced 48 h post-incubation. Fibroblasts determined 96 h post-incubation. Time response studies: 3-48 h treatment. Concentration response studies: 6 h treatment.	Cytokine Array Study: MEP increased fibroblast growth factor (FGF)-6, FGF-9, IL-1α, IL-22 and vascular endothelial growth factor (VEGF)-D mRNA.
epithelium CL5 (cancerous), BEAS- 2B, WI-38 normal lung fibroblast			Oncogene, Tumor Suppressor, Estrogen Signaling Pathway: MEP increased fra-1, c-src, SHC, p21, COX7RP, and decreased p53 and Rb expression.
			RT-PCR: MEP increased CYP1A1, CYP1B1, IL-6, IL-11, IL-1 α , FGF-6, FGF-9, VEGF-D, fra-1 and p21.
			Concentration and Time Responses: Concentration and time-dependent increases occurred for FGF-9, IL-1α, IL-6, IL-11, but decreased time-dependently after 6 h exposure.
			BEAS-2B Cells: MEP had concentration-dependent increases on CYP1A1 and CYP1B1 but did not affect anything else.
			Peroxide, MEP+NAC, WI-38 Cells: MEP increased peroxide production. The MEP+NAC treatment reduced MEP-elevated levels of IL-1a, IL-6, FGF-9, VEGF-D to control levels. Fibroblasts increased in WI-38 cells.
Reference: Umbuzeiro et al.	PM (urban; São Paulo, Brazil- Cerqueira César street station, Ibirapuera park	Route: Cell Culture	The TSP and EOM were similar for both sites. The PAH fraction had very low mutagenicity for the Cerqueira César sample in the YG1041 strain and no mutagenicity for the Ibirapuera sample. Nitro-PAH and oxy-PAH had similar mutagenetic activities from both samples. S9 decreased mutagenicity in nitro-PAH but was increased in oxy-PAH. DNA adduct levels were dose-dependent and not different between the two sites.
(2008, <u>190491</u>)	station) (winter- June 17, 18; average temperature: 16°C) (EOM)	Dose/Concentration: Cerqueira César: UPM- 156 μg/m³, EOM- 57.7 mg/total UPM;	
Species: Salmonella typhimurium	Particle Size: NR	Ibirapuera Park: UPM- 32 μg/m³, EOM- 41.7 mg/total UPM; Salmonella assay- 0.5, 1, 5, 10, 50, 100 UPM equiv/plate (μg)	
Strain: TA98, YG1041 (+/- S9)		Time to Analysis: Organic extraction 20 h. PAH fractionation.	
Reference:	PM (Dusseldorf, Germany) (Particles	Route: Cell Culture	PM induced dose- and time-dependent reductions in ds-DNA due to the formation of DNA-SB. The soluble component caused higher DNA damage. Apoptosis and DNA fragmentation increased dose-dependently. $\Delta\Psi m$ decreased dose-dependently in control cells, but not in cells with Bcl-xl overexpression. PM caused activation of caspase 9. Pretreatment with iron chelators or a free radical scavenger reduced PM-induced DNA-SB formation, DNA fragmentation, caspase 9 activation, and weakened $\Delta\Psi m$ reductions.
Upadhyay et al. (2003, <u>097370</u>)	contain carbon (19.70%), hydrogen(1.4%),nitrogen (<.05%), oxygen(14.12%), sulfur (2.09%), ash	Dose/Concentration: 1, 5, 25, 100 μg/cm ² ; 10, 25, 50, 100 μg/cm ²	
Species: Human	(63.24%)) (lonizable metals concentrations (ppm): Co(103),	Time to Analysis: 1, 4, 8, 12, 24 h.	
Cell Line A549	Cu(48),Cr(104),Fe(14,521), Mn(21.3), Ni(1,519),Ti(131), V(2,767)		
	Particle Size: NR		
Reference:	vanidis et al. 15, 096432) DEP: 2.0L engine GM Astra; GEP: 1.6L passenger vehicle Ford; Wood smoke soot: domestic fireplace exhaust	Route: Incubation	PM generated ·OH by a Fenton reaction, which is increased by the addition of EDTA but inhibited by deferoxamine. PM dose-dependently induced dG hydroxylation and 8-hydroxy-2'-deoxyguanosine formation. Transition metals Ni, V, Co, Cr that are capable of redox cycling electron producing ROS were found in the PM samples.
(2005, <u>096432</u>)		Dose/Concentration: 20, 40 mg/5mL	
Cell Line: NR		Time to Analysis: PM incubated with $\rm H_2O_2$ and 2'-deoxyguanosine (dG). Stored 3-7 days at -20°C.	
	Particle Size: >10.2 - <0.41 μm (diameter)		
Reference: Xu and	ang (2004, (Taiyuan: coal-fume pollution; Beijing:	Route: Cell Culture	Taiyuan had a significantly higher daily PM _{2.5} average than Beijing. It was shown that the smaller the particulate diameter, the higher the concentration of ReD and Dh. A door, and time response.
2nang (2004, <u>097231</u>)		Dose/Concentration: 5, 50, 200 µg/mL	
Species: Human	Particle Size: 2.5 µm (diameter)	Time to Analysis: 12-24 h	of BaP and Pb. A dose- and time-response relationship was seen in DNA fragmentation.
Cell Line: A549			

Annex D References

- Aam BB; Fonnum F (2007). ROS scavenging effects of organic extract of diesel exhaust particles on human neutrophil granulocytes and rat alveolar macrophages. Toxicology, 230: 207-18. 155123
- Abou Chakra OR; Joyeux M; Nerriere E; Strub MP; Zmirou-Navier D (2007). Genotoxicity of organic extracts of urban airborne particulate matter: an assessment within a personal exposure study. Chemosphere, 66: 1375-81. 098819
- Adamson IYR; Vincent R; Bakowska J (2003). Differential production of metalloproteinases after instilling various urban air particle samples to rat lung. Exp Lung Res, 29: 375-388. <u>087943</u>
- Agopyan N; Head J; Yu S; Simon SA (2004). TRPV1 receptors mediate particulate matter-induced apoptosis. Am J Physiol Lung Cell Mol Physiol, 286: 563-572. <u>156198</u>
- Agopyan N; Li L; Yu S; Simon SA (2003). Negatively charged 2- and 10-"mu"m particles activate vanilloid receptors, increase cAMP, and induce cytokine release. Toxicol Appl Pharmacol, 186: 63-76. 056065
- Ahn E-K; Yoon H-K; Jee Bo K; Ko H-J; Lee K-H; Kim Hyung J; Lim Y (2008). COX-2 expression and inflammatory effects by diesel exhaust particles in vitro and in vivo. Toxicol Lett, 176: 178-187. 156199
- Ahsan MK; Nakamura H; Tanito M; Yamada K; Utsumi H; Yodoi J (2005). Thioredoxin-1 suppresses lung injury and apoptosis induced by diesel exhaust particles (DEP) by scavenging reactive oxygen species and by inhibiting DEP-induced downregulation of Akt. Free Radic Biol Med, 39: 1549-1559. 156200
- Alfaro-Moreno E; Martinez L; Garcia-Cuellar C; Bonner JC; Murray JC; Rosas I; Rosales SP; Osornio-Vargas AR (2002).

 Biologic effects induced in vitro by PM10 from three different zones of Mexico City. Environ Health Perspect, 110: 715-720. 156204
- Amakawa K; Terashima T; Matsuzaki T; Matsumaru A; Sagai M; Yamaguchi K (2003). Suppressive effects of diesel exhaust particles on cytokine release from human and murine alveolar macrophages. Exp Lung Res, 29: 149-164. 156211
- Amara N; Bachoual R; Desmard M; Golda S; Guichard C; Lanone S; Aubier M; Ogier-Denis E; Boczkowski J (2007). Diesel exhaust particles induce matrix metalloprotease-1 in human lung epithelial cells via a NADP(H) oxidase/NOX4 redox-dependent mechanism. Am J Physiol Lung Cell Mol Physiol, 293: L170-181. 156212
- Andre E; Stoeger T; Takenaka S; Bahnweg M; Ritter B; Karg E; Lentner B; Reinhard C; Schulz H; Wjst M (2006). Inhalation of ultrafine carbon particles triggers biphasic pro-inflammatory response in the mouse lung. Eur Respir J, 28: 275-285. 091376
- Anselme F; Loriot S; Henry J-P; Dionnet F; Napoleoni J-G; Thnillez C; Morin J-P (2007). Inhalation of diluted diesel engine emission impacts heart rate variability and arrhythmia occurrence in a rat model of chronic ischemic heart failure. Arch Toxicol, 81: 299-307. 097084
- Anseth JW; Goffin AJ; Fuller GG; Ghio AJ; Kao PN; Upadhyay D (2005). Lung surfactant gelation induced by epithelial cells exposed to air pollution or oxidative stress. Am J Respir Cell Mol Biol, 33: 161-168. 088646
- Antonini JM; Taylor MD; Leonard SS; Lawryk NJ; Shi X; Clarke RW; Roberts JR (2004). Metal composition and solubility determine lung toxicity induced by residual oil fly ash collected from different sites within a power plant. Mol Cell Biochem, 255: 257-265. 097199
- Apicella C; Custidiano A; Miranda S; Novoa L; Dokmetjian J; Gentile T (2006). Differential macrophage modulation of asymmetric IgG antibody synthesis by soluble or particulate stimuli. Immunol Lett, 103: 177-185. 096586
- Arantes-Costa F; Lopes F; Toledo A; Magliarelli-Filho P; Moriya H; Carvalho-Oliveira R; Mauad T; Saldiva P; Martins M (2008). Effects of residual oil fly ash (ROFA) in mice with chronic allergic pulmonary inflammation. Toxicol Pathol, 36: 680-686. 187137

Note: Hyperlinks to the reference citations throughout this document will take you to the NCEA HERO database (Health and Environmental Research Online) at http://epa.gov/hero. HERO is a database of scientific literature used by U.S. EPA in the process of developing science assessments such as the Integrated Science Assessments (ISA) and the Integrated Risk Information System (IRIS).

December 2009 D-172

- Archer AJ; Cramton JL; Pfau JC; Colasurdo G; Holian A (2004). Airway responsiveness after acute exposure to urban particulate matter 1648 in a DO1110 murine model. Am J Physiol, 286: L337-L343. <u>088097</u>
- Arimoto T; Takano H; Inoue K; Yanagisawa R; Yoshino S; Yamaki K; Yoshikawa T (2007). Pulmonary exposure to diesel exhaust particle components enhances circulatory chemokines during lung inflammation. Int J Immunopathol Pharmacol, 20: 197-201. 097973
- Arrieta DE; Ontiveros CC; Li W-W; Garcia JH; Denison MS; McDonald JD; Burchiel SW; Washburn BS (2003). Aryl hydrocarbon receptor-mediated activity of particulate organic matter from the Paso del Norte airshed along the US-Mexico border. Environ Health Perspect, 111: 1299-1305. 096210
- Auger F; Gendron MC; Chamot C; Marano F; Dazy AC (2006). Responses of well-differentiated nasal epithelial cells exposed to particles: role of the epithelium in airway inflammation. Toxicol Appl Pharmacol, 215: 285-294. 156235
- Bachoual R; Boczkowski J; Goven D; Amara N; Tabet L; On D; Lecon-Malas V; Aubier M; Lanone S (2007). Biological effects of particles from the Paris subway system. Chem Res Toxicol, 20: 1426-1433. <u>155667</u>
- Bagate K; Meiring JJ; Cassee FR; Borm PJA (2004). The effect of particulate matter on resistance and conductance vessels in the rat. Inhal Toxicol, 16: 431-436. 055638
- Bagate K; Meiring JJ; Gerlofs-Nijland ME; Cassee FR; Borm PJA (2006). Signal transduction pathways involved in particulate matter induced relaxation in rat aorta--spontaneous hypertensive versus Wistar Kyoto rats. Toxicol In Vitro, 20: 52-62. 097608
- Bagate K; Meiring JJ; Gerlofs-Nijland ME; Cassee FR; Wiegand H; Osornio-Vargas A; Borm PJA (2006). Ambient particulate matter affects cardiac recovery in a Langendorff ischemia model. Inhal Toxicol, 18: 633-643. 096157
- Bao L; Chen S; Wu L; Hei Tom K; Wu Y; Yu Z; Xu A (2007). Mutagenicity of diesel exhaust particles mediated by cell-particle interaction in mammalian cells. Toxicol Sci, 229: 91-100. 097258
- Barrett EG; Henson RD; Seilkop SK; McDonald JD; Reed MD (2006). Effects of hardwood smoke exposure on allergic airway inflammation in mice. Inhal Toxicol, 18: 33-43. <u>155677</u>
- Bartoli CR; Wellenius GA; Coull BA; Akiyama I; Diaz EA; Lawrence J; Okabe K; Verrier RL; Godleski JJ (2009).

 Concentrated ambient particles alter myocardial blood flow during acute ischemia in conscious canines. Environ Health Perspect, 117: 333-337. 179904
- Bartoli CR; Wellenius GA; Diaz EA; Lawrence J; Coull BA; Akiyama I; Lee LM; Okabe K; Verrier RL; Godleski JJ (2009). Mechanisms of Inhaled Fine Particulate Air Pollution-Induced Arterial Blood Pressure Changes. Environ Health Perspect, 117: 361-366. 156256
- Batalha JR; Saldiva P H; Clarke RW; Coull BA; Stearns RC; Lawrence J; Murthy GG; Koutrakis P; Godleski JJ (2002). Concentrated ambient air particles induce vasoconstriction of small pulmonary arteries in rats. Environ Health Perspect, 110: 1191-1197. 088109
- Baulig A; Blanchet S; Rumelhard M; Lacroix G; Marano F; Baeza-Squiban A (2007). Fine urban atmospheric particulate matter modulates inflammatory gene and protein expression in human bronchial epithelial cells. Front Biosci, 12: 771-82. 151733
- Bayram H; Ito K; Issa R; Ito M; Sukkar M; Chung KF (2006). Regulation of human lung epithelial cell numbers by diesel exhaust particles. Eur Respir J, 27: 705-713. <u>088439</u>
- Becher R; Bucht A; Ovrevik J; Hongslo JK; Dahlman HJ; Samuelsen JT; Schwarze PE (2007). Involvement of NADPH oxidase and iNOS in rodent pulmonary cytokine responses to urban air and mineral particles. Inhal Toxicol, 19: 645-655. 097125
- Beck-Speier I; Dayal N; Karg E; Maier KL; Schumann G; Schulz H; Semmler M; Takenaka S; Stettmaier K; Bors W; Ghio A; Samet JM; Heyder J (2005). Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles. Free Radic Biol Med, 38: 1080-1092, 156262
- Becker S; Dailey LA; Soukup JM; Grambow SC; Devlin RB; Huang YC (2005). Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress. Environ Health Perspect, 113: 1032-1038. 088592
- Becker S; Mundandhara S; Devlin RB; Madden M (2005). Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: further mechanistic studies. Toxicol Appl Pharmacol, 207: 269-275. 088590

December 2009 D-173

- Bhattacharyya SN; Dubick MA; Yantis LD; Enriquez JI; Buchanan KC; Batra SK; Smiley RA (2004). In vivo effect of wood smoke on the expression of two mucin genes in rat airways. Inflammation, 28: 67-76. <u>088095</u>
- Binkova B; Chvatalova I; Lnenickova Z; Milcova A; Tulupova E; Farmer PB; Sram RJ (2007). PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms. Mutat Res Fund Mol Mech Mutagen, 620: 49-61. <u>156273</u>
- Bitterle E; Karg E; Schroeppel A; Kreyling WG; Tippe A; Ferron GA; Schmid O; Heyder J; Maier KL; Hofer T (2006). Dose-controlled exposure of A549 epithelial cells at the air-liquid interface to airborne ultrafine carbonaceous particles. Chemosphere, 65: 1784-1790. <u>156276</u>
- Blanchet S; Ramgolam K; Baulig A; Marano F; Baeza-Squiban A (2004). Fine particulate matter induces amphiregulin secretion by bronchial epithelial cells. Am J Respir Cell Mol Biol, 30: 421-427. 087982
- Bonvallot V; Baeza-Squiban A; Baulig A; Brulant S; Boland S; Muzeau F; Barouki R; Marano F (2001). Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am J Respir Cell Mol Biol, 25: 515-521. 156283
- Brits E; Schoeters G; Verschaeve L (2004). Genotoxicity of PM10 and extracted organics collected in an industrial, urban, and rural area in Flanders, Belgium. Environ Res, 96: 109-118. <u>087397</u>
- Brown DM; Hutchison L; Donaldson K; Stone V (2007). The effects of PM10 particles and oxidative stress on macrophages and lung epithelial cells: modulating effects of calcium-signaling antagonists. Am J Physiol Lung Cell Mol Physiol, 292: 1444-1451. 156300
- Brown LE; Trought KR; Bailey CI; Clemons JH (2005). 2,3,7,8-TCDD equivalence and mutagenic activity associated with PM10 from three urban locations in New Zealand. Sci Total Environ, 349: 161-174. 095919
- Bunger J; Krahl J; Munack A; Ruschel Y; Schroder O; Emmert B; Westphal G; Muller M; Hallier E; Bruning T (2007). Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel. Arch Toxicol, 81: 599-603. <u>156305</u>
- Bunger J; Krahl J; Weigel A; Schroder O; Bruning T; Muller M; Hallier E; Westphal G (2006). Influence of fuel properties, nitrogen oxides, and exhaust treatment by an oxidation catalytic converter on the mutagenicity of diesel engine emissions. Arch Toxicol, 80: 540-546. 156303
- Burchiel SW; Lauer FT; Dunaway SL; Zawadzki J; McDonald JD; Reed MD (2005). Hardwood smoke alters murine splenic T cell responses to mitogens following a 6-month whole body inhalation exposure. Toxicol Appl Pharmacol, 202: 229-236. 088090
- Burchiel SW; Lauer FT; McDonald JD; Reed MD (2004). Systemic immunotoxicity in AJ mice following 6-month whole body inhalation exposure to diesel exhaust. Toxicol Appl Pharmacol, 196: 337-345. 055557
- Calcabrini A; Meschini S; Marra M; Falzano L; Colone M; De Berardis B; Paoletti L; Arancia G; Fiorentini C (2004). Fine environmental particulate engenders alterations in human lung epithelial A549 cells. Environ Res, 95: 82-91. 096865
- Calderón-Garcidueñas L; Maronpot RR; Torres-Jardon R; Henriquez-Roldan C; Schoonhoven R; Acuna-Ayala H; Villarreal-Calderon A; Nakamura J; Fernando R; Reed W; Azzarelli B; Swenberg JA (2003). DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol Pathol, 31: 524-538. 156316
- Campbell A; Oldham M; Becaria A; Bondy SC; Meacher D; Sioutas C; Misra C; Mendez LB; Kleinman M (2005).

 Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology, 26: 133-140. 087217
- Campen MJ; Babu NS; Helms GA; Pett S; Wernly J; Mehran R; McDonald JD (2005). Nonparticulate components of diesel exhaust promote constriction in coronary arteries from ApoE -/- mice. Toxicol Sci, 88: 95-102. 083977
- Campen MJ; McDonald JD; Gigliotti AP; Seilkop SK; Reed MD; Benson JM (2003). Cardiovascular effects of inhaled diesel exhaust in spontaneously hypertensive rats. Cardiovasc Toxicol, 3: 353-361. <a href="https://doi.org/10.2003/00.
- Campen MJ; McDonald JD; Reed MD; Seagrave J (2006). Fresh gasoline emissions, not paved road dust, alter cardiac repolarization in ApoE-/- mice. Cardiovasc Toxicol, 6: 199-210. 096879
- Cao D; Tal TL; Graves LM; Gilmour I; Linak W; Reed W; Bromberg PA; Samet JM (2007). Diesel exhaust particulate-induced activation of Stat3 requires activities of EGFR and Src in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol, 292: L422-L429. 156322

- Cao Q; Zhang S; Dong C; Song W (2007). Pulmonary responses to fine particles: Differences between the spontaneously hypertensive rats and wistar kyoto rats. Toxicol Lett, 171: 126-137. <u>097491</u>
- Carter JM; Corson N; Driscoll KE; Elder A; Finkelstein JN; Harkema JN; Gelein R; Wade-Mercer P; Nguyen K; Oberdorster G (2006). A comparative dose-related response of several key pro- and antiinflammatory mediators in the lungs of rats, mice, and hamsters after subchronic inhalation of carbon black. J Occup Environ Med, 48: 1265-1278. 095936
- Carvalho-Oliveira R; Pozo RMK; Lobo DJA; Lichtenfels AJFC; Martins-Junior HA; Bustilho JOWV; Saiki M; Sato IM; Saldiva PHN (2005). Diesel emissions significantly influence composition and mutagenicity of ambient particles: a case study in Sao Paulo, Brazil. Environ Res, 98: 1-7. 077898
- Cassee FR; Boere AJF; Fokkens PHB; Leseman DLAC; Sioutas C; Kooter IM; Dormans JAMA (2005). Inhalation of concentrated particulate matter produces pulmonary inflammation and systemic biological effects in compromised rats. J Toxicol Environ Health A Curr Iss, 68: 773-796. 087962
- Chan RC-F; Wang M; Li N; Yanagawa Y; Onoe K; Lee JJ; Nel AE (2006). Pro-oxidative diesel exhaust particle chemicals inhibit LPS-induced dendritic cell responses involved in T-helper differentiation. J Allergy Clin Immunol, 118: 455-465. 097468
- Chang C-C; Chen S-H; Ho S-H; Yang C-Y; Wang H-D; Tsai M-L (2007). Proteomic analysis of proteins from bronchoalveolar lavage fluid reveals the action mechanism of ultrafine carbon black-induced lung injury in mice. Proteomics, 7: 4388-4397. 097475
- Chang C-C; Chiu H-F; Wu Y-S; Li Y-C; Tsai M-L; Shen C-K; Yang C-Y (2005). The induction of vascular endothelial growth factor by ultrafine carbon black contributes to the increase of alveolar-capillary permeability. Environ Health Perspect, 113: 454-460. 097776
- Chang C-C; Hwang J-S; Chan C-C; Cheng T-J (2007). Interaction effects of ultrafine carbon black with iron and nickel on heart rate variability in spontaneously hypertensive rats. Environ Health Perspect, 115: 1012-1017. 155720
- Chang C-C; Hwang J-S; Chan C-C; Wang P-Y; Hu T-H; Cheng T-J (2004). Effects of concentrated ambient particles on heart rate, blood pressure, and cardiac contractility in spontaneously hypertensive rats. Inhal Toxicol, 16: 421-429. 055637
- Chauhan V; Breznan D; Goegan P; Nadeau D; Karthikeyan S; Brook JR; Vincent R (2004). Effects of ambient air particles on nitric oxide production in macrophage cell lines. Cell Biol Toxicol, 20: 221-239. 096682
- Chauhan V; Breznan D; Thomson E; Karthikeyan S; Vincent R (2005). Effects of ambient air particles on the endothelin system in human pulmonary epithelial cells (A549). Cell Biol Toxicol, 21: 191-205. <a href="https://doi.org/10.1016/j.ncent
- Che W; Zhang Z; Zhang H; Wu M; Liang Y; Liu F; Shu Y; Li N (2007). Compositions and oxidative damage of condensate, particulate and semivolatile organic compounds from gasoline exhausts. Environ Toxicol Pharmacol, 24: 11-18. 096460
- Chen LC; Hwang JS (2005). Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice IV Characterization of acute and chronic effects of ambient air fine particulate matter exposures on heart-rate variability. Inhal Toxicol, 17: 209-216. 087218
- Chen LC; Nadziejko C (2005). Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice V CAPs exacerbate aortic plaque development in hyperlipidemic mice. Inhal Toxicol, 17: 217-224. <u>087219</u>
- Cheng MD; Malone B; Storey JM (2003). Monitoring cellular responses of engine-emitted particles by using a direct aircell interface deposition technique. Chemosphere, 53: 237-243. <u>156337</u>
- Chin BY; Trush MA; Choi AM; Risby TH (2003). Transcriptional regulation of the HO-1 gene in cultured macrophages exposed to model airborne particulate matter. Am J Physiol Lung Cell Mol Physiol, 284: L473-480. <u>156340</u>
- Cho H-Y; Jedlicka AE; Clarke R; Kleeberger SR (2005). Role of Toll-like receptor-4 in genetic susceptibility to lung injury induced by residual oil fly ash. Physiol Genomics, 22: 108-117. <u>156344</u>
- Churg A; Brauer M; del Carmen Avila-Casado M; Fortoul TI; Wright JL (2003). Chronic exposure to high levels of particulate air pollution and small airway remodeling. Environ Health Perspect, 111: 714-718. <u>087899</u>
- Churg A; Xie C; Wang X; Vincent R; Wang RD (2005). Air pollution particles activate NF-kappaB on contact with airway epithelial cell surfaces. Toxicol Appl Pharmacol, 208: 37-45. <a href="https://doi.org/10.2082/10.2082-10.2082-1.208

- Ciencewicki J; Gowdy K; Krantz QT; Linak WP; Brighton L; Gilmour MI; Jaspers I (2007). Diesel exhaust enhanced susceptibility to influenza infection is associated with decreased surfactant protein expression. Inhal Toxicol, 19: 1121-1133. 096557
- Corey LM; Baker C; Luchtel Daniel L (2006). Heart-rate variability in the apolipoprotein E knockout transgenic mouse following exposure to Seattle particulate matter. J Toxicol Environ Health A Curr Iss, 69: 953-965. 156366
- Costa DL; Lehmann JR; Winsett D; Richards J; Ledbetter AD; Dreher KL (2006). Comparative pulmonary toxicological assessment of oil combustion particles following inhalation or instillation exposure. Toxicol Sci, 91: 237-246.
- Courtois A; Andujar P; Ladeiro Y; Baudrimont I; Delannoy E; Leblais V; Begueret H; Galland MAB; Brochard P; Marano F (2008). Impairment of NO-Dependent Relaxation in Intralobar Pulmonary Arteries: Comparison of Urban Particulate Matter and Manufactured Nanoparticles. Environ Health Perspect, 116: 1294-1299. 156369
- Cozzi E; Hazarika S; Stallings HW; Cascio WE; Devlin RB; Lust RM; Wingard CJ; Van Scott MR (2006). Ultrafine particulate matter exposure augments ischemia-reperfusion injury in mice. Am J Physiol, 291: H894-H903. 091380
- Dagher Z; Garcon G; Billet S; Verdin A; Ledoux F; Courcot D; Aboukais A; Shirali P (2007). Role of nuclear factor-kappa B activation in the adverse effects induced by air pollution particulate matter (PM25) in human epithelial lung cells (L132) in culture. J Appl Toxicol, 27: 284-290. 097566
- Dai J; Xie C; Vincent R; Churg A (2003). Air pollution particles produce airway wall remodeling in rat tracheal explants. Am J Respir Cell Mol Biol, 29: 352-358. <u>087944</u>
- Day KC; Reed MD; McDonald JD; Keilkop SK; Barrett EG (2008). Effects of gasoline engine emissions on preexisting allergic airway responses in mice. Inhal Toxicol, 20: 1145-1155. 190204
- DeMarini DM; Brooks LR; Warren SH; Kobayashi T; Gilmour MI; Singh P (2004). Bioassay-directed fractionation and Salmonella mutagenicity of automobile and forklift diesel exhaust particles. Environ Health Perspect, 112: 814-819. 066329
- de Haar C; Hassing I; Bol M; Bleumink R; Pieters R (2005). Ultrafine carbon black particles cause early airway inflammation and have adjuvant activity in a mouse allergic airway disease model. Toxicol Sci, 87: 409-418. 097872
- de Haar C; Hassing I; Bol M; Bleumink R; Pieters R (2006). Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy, 36: 1469-1479. 144746
- de Haar C; Kool M; Hassing I; Bol M; Lambrecht BN; Pieters R (2008). Lung dendritic cells are stimulated by ultrafine particles and play a key role in particle adjuvant activity. J Allergy Clin Immunol, 121: 1246-1254. 187128
- De Kok TM; Hogervorst JG; Briede JJ; Van Herwijnen MH; Maas LM; Moonen EJ; Driece HA; Kleinjans JC (2005). Genotoxicity and physicochemical characteristics of traffic-related ambient particulate matter. Environ Mol Mutagen, 46: 71-80. <u>088656</u>
- Dick CAJ; Brown DM; Donaldson K; Stone V (2003). The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol, 15: 39-52. 036605
- Doherty SP; Prophete C; Maciejczyk P; Salnikow K; Gould T; Larson T; Koenig J; Jaques P; Sioutas C; Zelikoff JT; Lippmann M; Cohen MD (2007). Detection of changes in alveolar macrophage iron status induced by select PM25-associated components using iron-response protein binding activity. Inhal Toxicol, 19: 553-562. 096532
- Dong CC; Yin XJ; Ma JYC; Millecchia L; Barger MW; Roberts JR; Zhang X-D; Antonini JM; Ma JKH (2005). Exposure of Brown Norway Rats to diesel exhaust particles Prior to ovalbumin (OVA) sensitization elicits IgE adjuvant activity but attenuates OVA-induced airway inflammation. Toxicol Sci, 88: 150-160. <u>088079</u>
- Dong CC; Yin XJ; Ma JYC; Millecchia L; Wu Z-X; Barger MW; Roberts JR; Antonini JM; Dey RD; Ma JKH (2005). Effect of diesel exhaust particles on allergic reactions and airway responsiveness in ovalbumin-sensitized Brown Norway Rats. Toxicol Sci, 88: 202-212. 088083
- Doornaert B; Leblond V; Galiacy S; Gras G; Planus E; Laurent V; Isabey D; Lafuma C (2003). Negative impact of DEP exposure on human airway epithelial cell adhesion, stiffness, and repair. Am J Physiol Lung Cell Mol Physiol, 284: L119-L132. 156410

- Dostert C; Petrilli V; Van Bruggen R; Steele C; Mossman BT; Tschopp J (2008). Innate Immune Activation Through Nalp3 Inflammasome Sensing of Asbestos and Silica. Science, 320: 674-677. 155753
- Doyle M; Sexton KG; Jeffries H; Bridge K; Jaspers I (2004). Effects of 1,3-butadiene, isoprene, and their photochemical degradation products on human lung cells. Environ Health Perspect, 112: 1488-1495. <u>088404</u>
- Drela N; Zesko I; Jakubowska M; Biernacka M (2006). CD28 in thymocyte development and peripheral T cell activation in mice exposed to suspended particulate matter. Toxicol Appl Pharmacol, 215: 179-188. 096352
- Duvall RM; Norris GA; Dailey LA; Burke JM; McGee JK; Gilmour MI; Gordon T; Devlin RB (2008). Source apportionment of particulate matter in the US and associations with lung inflammatory markers. Inhal Toxicol, 20: 671-683. 097969
- Dvonch JT; Brook RD; Keeler GJ; Rajagopalan S; D'Alecy LG; Marsik FJ; Morishita M; Yip FY; Brook JR; Timm EJ; Wagner JG; Harkema JR (2004). Effects of concentrated fine ambient particles on rat plasma levels of asymmetric dimethylarginine. Inhal Toxicol, 16: 473-480. 055741
- Dybdahl M; Risom L; Bornholdt J; Autrup H; Loft S; Wallin H (2004). Inflammatory and genotoxic effects of diesel particles in vitro and in vivo. DNA Repair (Amst), 562: 119-131. 089013
- Dybing E; Lovdal T; Hetland RB; Lovik M; Schwarze PE (2004). Respiratory allergy adjuvant and inflammatory effects of urban ambient particles. Toxicol Sci, 198: 307-314. 097545
- ElAssouli S; AlQahtani M; Milaat W (2007). Genotoxicity of air borne particulates assessed by comet and the samonella mutagenicity test in Jeddah, Saudi Arabia. Int J Environ Res Publ Health, 4: 216-223. 186914
- Elder A; Gelein R; Finkelstein J; Phipps R; Frampton M; Utell M; Kittelson DB; Watts WF; Hopke P; Jeong CH; Kim E; Liu W; Zhao W; Zhuo L; Vincent R; Kumarathasan P; Oberdorster G (2004). On-road exposure to highway aerosols. 2. Exposures of aged, compromised rats. Inhal Toxicol, 16 Suppl 1: 41-53. 087354
- Elder A; Gelein R; Finkelstein JN; Driscoll KE; Harkema J; Oberdorster G (2005). Effects of subchronically inhaled carbon black in three species I Retention kinetics, lung inflammation, and histopathology. Toxicol Sci, 88: 614-629. 088194
- Elder ACP; Gelein R; Azadniv M; Frampton M; Finkelstein J; Oberdorster G (2004). Systemic effects of inhaled ultrafine particles in two compromised, aged rat strains. Inhal Toxicol, 16: 461-471. 055642
- Endo O; Sugita K; Goto S; Amagai T; Matsushita H (2003). Mutagenicity of size-fractioned airborne particles collected with Andersen low pressure impactor. Eisei Kagaku, 49: 22-27. 097260
- Erdinger L; Durr M; Hopker KA (2005). Correlations between mutagenic activity of organic extracts of airborne particulate matter, NOx and sulphur dioxide in southern Germany: results of a two-year study. Environ Sci Pollut Res Int, 12: 10-20. 156423
- Evans S-A; Al-Mosawi A; Adams RA; Berube KA (2006). Inflammation, edema, and peripheral blood changes in lung-compromised rats after instillation with combustion-derived and manufactured nanoparticles. Exp Lung Res, 32: 363-378. 097066
- Farraj AK; Haykal-Coates N; Ledbetter AD; Evansky PA; Gavett SH (2006). Inhibition of pan neurotrophin receptor p75 attenuates diesel particulate-induced enhancement of allergic airway responses in C57/B16J mice. Inhal Toxicol, 18: 483-491. 088469
- Farraj AK; Haykal-Coates N; Ledbetter AD; Evansky PA; Gavett SH (2006). Neurotrophin mediation of allergic airways responses to inhaled diesel particles in mice. Toxicol Sci, 94: 183-192. 141730
- Fedulov AV; Leme A; Yang Z; Dahl M; Lim R; Mariani TJ; Kobzik L (2008). Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am J Respir Cell Mol Biol, 38: 57-67. 097482
- Finkelman FD; Yang M; Orekhova T; Clyne E; Bernstein J; Whitekus M; Diaz-Sanchez D; Morris SC (2004). Diesel exhaust particles suppress in vivo IFN-gamma production by inhibiting cytokine effects on NK and NKT cells. J Immunol, 172: 3808-3813. <u>096572</u>
- Finnerty K; Choi J-E; Lau A; Davis-Gorman G; Diven C; Seaver N; Linak William P; Witten M; McDonagh Paul F (2007). Instillation of coarse ash particulate matter and lipopolysaccharide produces a systemic inflammatory response in mice. J Toxicol Environ Health A Curr Iss, 70: 1957-1966. 156434

December 2009 D-177

- Floyd HS; Chen LC; Vallanat B; Dreher K (2009). Fine ambient air particulate matter exposure induces molecular alterations associated with vascular disease progression within plaques of atherosclerotic susceptible mice. Inhal Toxicol, 21: 394-403. 190350
- Folkmann JK; Risom L; Hansen CS; Loft S; Moller P (2007). Oxidatively damaged DNA and inflammation in the liver of dyslipidemic ApoE-/- mice exposed to diesel exhaust particles. Toxicology, 237: 134-44. 097344
- Fritsch S; Diabate S; Krug HF (2006). Incinerator fly ash provokes alteration of redox equilibrium and liberation of arachidonic acid in vitro. Biol Chem, 387: 1421-1428. <u>156452</u>
- Fujii T; Hayashi S; Hogg JC; Mukae H; Suwa T; Goto Y; Vincent R; Van Eeden SF (2002). Interaction of alveolar macrophages and airway epithelial cells following exposure to particulate matter produces mediators that stimulate the bone marrow. Am J Respir Cell Mol Biol, 27: 34-41. 036478
- Fujii T; Hayashi S; Hogg JC; Vincent R; Van Eeden SF (2001). Particulate matter induces cytokine expression in human bronchial epithelial cells. Am J Respir Cell Mol Biol, 25: 265-271. <u>156455</u>
- Fujimaki H; Kurokawa Y (2004). Diesel exhaust-associated gas components enhance chemokine production by cervical lymph-node cells from mice immunized with sugi basic proteins. , 16: 61-65. <u>096575</u>
- Fujimaki H; Kurokawa Y; Yamamoto S; Satoh M (2006). Distinct requirements for interleukin-6 in airway inflammation induced by diesel exhaust in mice. Immunopharmacol Immunotoxicol, 28: 703-714. 096601
- Fujimaki H; Yamamoto S; Kurokawa Y (2005). Effect of diesel exhaust on immune responses in C57BL/6 mice intranasally immunized with pollen antigen. J UOEH, 27: 11-24. 156456
- Fujimoto A; Tsukue N; Watanabe M; Sugawara I; Yanagisawa R; Takano H; Yoshida S; Takeda K (2005). Diesel exhaust affects immunological action in the placentas of mice. Environ Toxicol, 20: 431-440. <u>096556</u>
- Furuyama A; Hirano S; Koike E; Kobayashi T (2006). Induction of oxidative stress and inhibition of plasminogen activator inhibitor-1 production in endothelial cells following exposure to organic extracts of diesel exhaust particles and urban fine particles. Arch Toxicol, 80: 154-162. 097056
- Gabelová A; Valovicova Z; Bacova G; Labaj J; Binkova B; Topinka J; Sevastyanova O; Sram RJ; Kalina I; Habalova V; Popov TA; Panev T; Farmer PB (2007). Sensitivity of different endpoints for in vitro measurement of genotoxicity of extractable organic matter associated with ambient airborne particles (PM10). Mutat Res Fund Mol Mech Mutagen, 620: 103-113. 156458
- Gabelová A; Valovicova Z; Labaj J; Bacova G; Binkova B; Farmer Peter B (2007). Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM(10). Mutat Res, 620: 135-144. 156457
- Gao F; Barchowsky A; Nemec AA; Fabisiak JP (2004). Microbial stimulation by Mycoplasma fermentans synergistically amplifies IL-6 release by human lung fibroblasts in response to residual oil fly ash (ROFA) and nickel. Toxicol Sci, 81: 467-479, 087950
- Garcon G; Dagher Z; Zerimech F; Ledoux F; Courcot D; Aboukais A; Puskaric E; Shirali P (2006). Dunkerque City air pollution particulate matter-induced cytotoxicity, oxidative stress and inflammation in human epithelial lung cells (L132) in culture. Toxicol In Vitro, 20: 519-528. 096633
- Gavett SH; Haykal-Coates N; Copeland L B; Heinrich J; Gilmour MI (2003). Metal composition of ambient PM2.5 influences severity of allergic airways disease in mice. Environ Health Perspect, 111: 1471-1477. 053153
- Geng H; Meng Z; Zhang Q (2005). Effects of blowing sand fine particles on plasma membrane permeability and fluidity, and intracellular calcium levels of rat alveolar macrophages. Toxicol Lett, 157: 129-137. 096689
- Geng H; Meng Z; Zhang Q (2006). In vitro responses of rat alveolar macrophages to particle suspensions and water-soluble components of dust storm PM(2.5). Toxicol In Vitro, 20: 575-584. 097026
- Gerlofs-Nijland ME; Rummelhard M; Boere AJF; Leseman DLAC; Duffin R; Schins RPF; Borm PJA; Sillanpaa M; Salonen RO; Cassee FR (2009). Particle induced toxicity in relation to transition metal and polycyclic aromatic hydrocarbon contents . Environ Sci Technol, 43: 4729-4736. 190353
- Gerlofs-Nijland ME; Boere AJ; Leseman DL; Dormans JA; Sandstrom T; Salonen RO; van Bree L; Cassee FR (2005). Effects of particulate matter on the pulmonary and vascular system: time course in spontaneously hypertensive rats. Part Fibre Toxicol, 2: 2. <u>088652</u>

- Gerlofs-Nijland ME; Dormans JA; Bloemen HJ; Leseman DL; John A; Boere F; Kelly FJ; Mudway IS; Jimenez AA; Donaldson K; Guastadisegni C; Janssen NA; Brunekreef B; Sandstrom T; van Bree L; Cassee FR (2007). Toxicity of coarse and fine particulate matter from sites with contrasting traffic profiles. Inhal Toxicol, 19: 1055-1069. 097840
- Ghelfi E; Rhoden CR; Wellenius GA; Lawrence J; Gonzalez-Flecha B (2008). Cardiac oxidative stress and electrophysiological changes in rats exposed to concentrated air particles are mediated by TRP-dependent pulmonary reflexes. Toxicol Sci, 102: 328-336. 156468
- Ghio AJ; Cohen MD (2005). Disruption of iron homeostasis as a mechanism of biologic effect by ambient air pollution particles. Inhal Toxicol, 17: 709-716. <u>088272</u>
- Ghio AJ; Piantadosi CA; Wang X; Dailey LA; Stonehuerner JD; Madden MC; Yang F; Dolan KG; Garrick MD; Garrick LM (2005). Divalent metal transporter-1 decreases metal-related injury in the lung. Am J Physiol, 289: L460-L467. 088275
- Gilmour MI; McGee J; Duvall Rachelle M; Dailey L; Daniels M; Boykin E; Cho S-H; Doerfler D; Gordon T; Devlin Robert B (2007). Comparative toxicity of size-fractionated airborne particulate matter obtained from different cities in the United States. Inhal Toxicol, 19 Suppl 1: 7-16. 096433
- Gilmour MI; O'Connor S; Dick CAJ; Miller CA; Linak WP (2004). Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion. J Air Waste Manag Assoc, 54: 286-295. 057420
- Gilmour PS; Morrison ER; Vickers MA; Ford I; Ludlam CA; Greaves M; Donaldson K; MacNee W (2005). The procoagulant potential of environmental particles (PM10). Occup Environ Med, 62: 164-171. <u>087410</u>
- Gilmour PS; Rahman I; Donaldson K; MacNee W (2003). Histone acetylation regulates epithelial IL-8 release mediated by oxidative stress from environmental particles. Am J Physiol Lung Cell Mol Physiol, 284: L533-L540. 096959
- Gilmour PS; Schladweiler MC; Nyska A; McGee JK; Thomas R; Jaskot RH; Schmid J; Kodavanti UP (2006). Systemic imbalance of essential metals and cardiac gene expression in rats following acute pulmonary zinc exposure. J Toxicol Environ Health A Curr Iss, 69: 2011-2032. 156472
- Gilmour PS; Schladweiler MC; Richards JH; Ledbetter AD; Kodavanti UP (2004). Hypertensive rats are susceptible to TLR4-mediated signaling following exposure to combustion source particulate matter. Inhal Toxicol, 16 Suppl 1: 5-18. 087948
- Gilmour PS; Ziesenis A; Morrison ER; Vickers MA; Drost EM; Ford I; Karg E; Mossa C; Schroeppel A; Ferron GA; Heyder J; Greaves M; MacNee W; Donaldson K (2004). Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol, 195: 35-44. 054175
- Godleski JJ; Clarke RW; Coull BA; Saldiva PHN; Jiang NF; Lawrence J; Koutrakis P (2002). Composition of inhaled urban air particles determines acute pulmonary responses. Ann Occup Hyg, 46: 419-424. 156478
- Gong KW; Zhao W; Li N; Barajas B; Kleinman M; Sioutas C; Horvath S; Lusis AJ; Nel A; Araujo JA (2007). Air pollutant chemicals and oxidized lipids exhibit genome wide synergistic effects on endothelial cells. Genome Biol, 8: R149. 091155
- Goto Y; Hogg JC; Shih CH; Ishii H; Vincent R; van Eeden SF (2004). Exposure to ambient particles accelerates monocyte release from bone marrow in atherosclerotic rabbits. Am J Physiol, 287: L79-L85. <a href="https://doi.org/10.2007/10.200
- Gottipolu RR; Wallenborn JG; Karoly ED; Schladweiler MC; Ledbetter AD; Krantz T; Linak WP; Nyska A; Johnson JA; Thomas R; Richards JE; Jaskot RH; Kodavanti UP (2009). One-month diesel exhaust inhalation produces hypertensive gene expression pattern in healthy rats. Environ Health Perspect, 117: 38-46. 190360
- Gowdy K; Krantz QT; Daniels M; Linak WP; Jaspers I; Gilmour MI (2008). Modulation of pulmonary inflammatory responses and antimicrobial defenses in mice exposed to diesel exhaust. Toxicol Appl Pharmacol, 229: 310-319. 097226
- Graff DW; Schmitt MT; Dailey LA; Duvall RM; Karoly ED; Devlin RB (2007). Assessing the role of particulate matter size and composition on gene expression in pulmonary cells. Inhal Toxicol, 19 Suppl 1: 23-28. <u>156488</u>
- Greenwell LL; Moreno T; Richards RJ (2003). Pulmonary antioxidants exert differential protective effects against urban and industrial particulate matter. J Biosci, 28: 101-107. 097478

- Gu Z-W; Keane MJ; Ong T; Wallac WE (2005). Diesel exhaust particulate matter dispersed in a phospholipid surfactant induces chromosomal aberrations and micronuclei but not 6-thioguanine-resistant gene mutation in V79 cells. J Toxicol Environ Health A Curr Iss, 68: 431-444. 195923
- Gualtieri M; Rigamonti L; Galeotti V; Camatini M (2005). Toxicity of tire debris extracts on human lung cell line A549. Toxicol In Vitro, 19: 1001-1008. <u>097841</u>
- Gunnison A; Chen LC (2005). Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice VI Gene expression in heart and lung tissue. Inhal Toxicol, 17: 225-233. <u>087956</u>
- Gurgueira SA; Lawrence J; Coull B; Murthy GGK; Gonzalez-Flecha B (2002). Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect, 110: 749-755. 036535
- Gutierrez-Castillo ME; Roubicek DA; Cebrian-Garcia ME; De Vizcaya-Ruiz A; Sordo-Cedeno M; Ostrosky-Wegman P (2006). Effect of chemical composition on the induction of DNA damage by urban airborne particulate matter. Environ Mol Mutagen, 47: 199-211. 089030
- Hamada K; Suzaki Y; Leme A; Ito T; Miyamoto K; Kobzik L; Kimura H (2007). Exposure of pregnant mice to an air pollutant aerosol increases asthma susceptibility in offspring. J Toxicol Environ Health A Curr Iss, 70: 688-695. 091235
- Hamoir J; Nemmar A; Halloy D; Wirth D; Vincke G; Vanderplasschen A; Nemery B; Gustin P (2003). Effect of polystyrene particles on lung microvascular permeability in isolated perfused rabbit lungs: role of size and surface properties. Toxicol Appl Pharmacol, 190: 278-285. <a href="https://doi.org/10.108/journal.org/10.1081/jo
- Hansen C; Neller A; Williams G; Simpson R (2007). Low levels of ambient air pollution during pregnancy and fetal growth among term neonates in Brisbane, Australia. Environ Res, 103: 383-389. 090703
- Hao M; Comier S; Wang M; Lee James J; Nel A (2003). Diesel exhaust particles exert acute effects on airway inflammation and function in murine allergen provocation models. J Allergy Clin Immunol, 112: 905-914. 096565
- Happo MS; Salonen RO; Halinen AI; Jalava PI; Pennanen AS; Kosma VM; Sillanpaa M; Hillamo R; Brunekreef B; Katsouyanni K; Sunyer J; Hirvonen MR (2007). Dose and time dependency of inflammatory responses in the mouse lung to urban air coarse, fine, and ultrafine particles from six European cities. Inhal Toxicol, 19: 227-246. 096630
- Harder V; Gilmour P; Lentner B; Karg E; Takenaka S; Ziesenis A; Stampfl A; Kodavanti U; Heyder J; Schulz H (2005). Cardiovascular responses in unrestrained WKY rats to inhaled ultrafine carbon particles. Inhal Toxicol, 17: 29-42. 087371
- Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E (2004). Effects of concentrated ambient particles on normal and hypersecretory airways in rats. Health Effects Institute. Boston, MA. 056842
- Harrod KS; Jaramillo RJ; Berger JA; Gigliotti AP; Seilkop SK; Reed MD (2005). Inhaled diesel engine emissions reduce bacterial clearance and exacerbate lung disease to Pseudomonas aeruginosa infection in vivo. Toxicol Sci, 83: 155-165. 088144
- Harrod KS; Jaramillo RJ; Rosenberger CL; Wang S-Z; Berger JA; McDonald JD; Reed MD (2003). Increased susceptibility to RSV infection by exposure to inhaled diesel engine emissions. Am J Respir Cell Mol Biol, 28: 451-463. 097046
- Heidenfelder BL; Reif DM; Harkema JR; Cohen Hubal EA; Hudgens EE; Bramble LA; Wagner JG; Morishita M; Keeler GJ; Edwards SW; Gallagher JE (2009). Comparative microarray analysis and pulmonary changes in brown Norway rats exposed to ovalbumin and concentrated air particulates. Toxicol Sci, 108: 207-221. 190026
- Hetland RB; Cassee FR; Lag M; Refsnes M; Dybing E; Schwarze PE (2005). Cytokine release from alveolar macrophages exposed to ambient particulate matter: heterogeneity in relation to size, city and season. Part Fibre Toxicol, 2: 1-15. 087887
- Hetland RB; Cassee FR; Refsnes M; Schwarze PE; Lag M; Boere AJF; Dybing E (2004). Release of inflammatory cytokines, cell toxicity and apoptosis in epithelial lung cells after exposure to ambient air particles of different size fractions. Toxicol In Vitro, 18: 203-212. 097535

- Hiramatsu K; Azuma A; Kudoh S; Desaki M; Takizawa H; Sugawara I (2003). Inhalation of diesel exhaust for three months affects major cytokine expression and induces bronchus-associated lymphoid tissue formation in murine lungs. Exp Lung Res, 29: 607-622. 155846
- Hiramatsu K; Saito Y; Sakakibara K; Azuma A; Kudoh S; Takizawa H; Sugawara I (2005). The effects of inhalation of diesel exhaust on murine mycobacterial infection. Exp Lung Res, 31: 405-415. <u>088285</u>
- Hirano S; Furuyama A; Koike E; Kobayashi T (2003). Oxidative-stress potency of organic extracts of diesel exhaust and urban fine particles in rat heart microvessel endothelial cells. Toxicology, 187: 161-170. 097345
- Holder AL; Lucas D; Goth-Goldstein R; Koshland CP (2008). Cellular Response to Diesel Exhaust Particles Strongly Depends on the Exposure Method. Toxicol Sci, 103: 108-115. 093322
- Hollingsworth JW; Cook DN; Brass DM; Walker JKL; Morgan DL; Foster WM; Schwartz DA (2004). The role of Toll-like receptor 4 in environmental airway injury in mice. Am J Respir Crit Care Med, 170: 126-132. 097816
- Hougaard KS; Jensen KA; Nordly P; Taxvig C; Vogel U; Saber AT; Wallin H (2008). Effects of prenatal exposure to diesel exhaust particles on postnatal development, behavior, genotoxicity and inflammation in mice. Part Fibre Toxicol, 5: 3. 156570
- Huang JY; Liao JW; Liu YC; Lu SY; Chou CP; Chan WH; Chen SU; Ueng TH (2008). Motorcycle exhaust induces reproductive toxicity and testicular interleukin-6 in male rats. Toxicol Sci, 103: 137-148. <u>156574</u>
- Huang SL; Hsu MK; Chan CC (2003). Effects of submicrometer particle compositions on cytokine production and lipid peroxidation of human bronchial epithelial cells. Environ Health Perspect, 111: 478-482. <u>087376</u>
- Hutchison GR; Brown DM; Hibbs LR; Heal MR; Donaldson K; Maynard RL; Monaghan M; Nicholl A; Stone V (2005). The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation. Respir Res, 6: 43. 097750
- Hwang B-F; Lee Y-L; Lin Y-C; Jaakkola JJK; Guo YL (2005). Traffic related air pollution as a determinant of asthma among Taiwanese school children. Thorax, 60: 467-473. <u>089454</u>
- Iba MM; Fung J; Chung L; Zhao J; Winnik B; Buckley BT; Chen LC; Zelikoff JT; Kou YR (2006). Differential inducibility of rat pulmonary CYP1A1 by cigarette smoke and wood smoke. Mutat Res Fund Mol Mech Mutagen, 606: 1-11. 156582
- Ichinose T; Takano H; Sadakane K; Yanagisawa R; Kawazato H; Sagai M; Shibamoto T (2003). Differences in airway-inflammation development by house dust mite and diesel exhaust inhalation among mouse strains. Toxicol Appl Pharmacol, 187: 29-37. 041525
- Ichinose T; Takano H; Sadakane K; Yanagisawa R; Yoshikawa T; Sagai M; Shibamoto T (2004). Mouse Strain Differences in Eosinophilic Airway Inflammation Caused by Intratracheal Instillation of Mite Allergen and Diesel Exhaust Particles. J Appl Toxicol, 24: 69-76. 180367
- Imrich A; Ning Y; Lawrence J; Coull B; Gitin E; Knutson M; Kobzik L (2007). Alveolar macrophage cytokine response to air pollution particles: oxidant mechanisms. Toxicol Appl Pharmacol, 218: 256-264. 155859
- Inoue K-I; Takano H; Yanagisawa R; Hirano S; Ichinose T; Shimada A; Yoshikawa T (2006). The role of toll-like receptor 4 in airway inflammation induced by diesel exhaust particles. Arch Toxicol, 80: 275-279. 097815
- Inoue K-i; Takano H; Yanagisawa R; Hirano S; Kobayashi T; Ichinose T; Yoshikawa T (2007). Effects of organic chemicals derived from ambient particulate matter on lung inflammation related to lipopolysaccharide. Arch Toxicol, 80: 833-838. 096724
- Inoue K-I; Takano H; Yanagisawa R; Ichinose T; Sakurai M; Yoshikawa T (2006). Effects of nano particles on cytokine expression in murine lung in the absence or presence of allergen. Arch Toxicol, 80: 614-619. 096720
- Inoue K-i; Takano H; Yanagisawa R; Ichinose T; Shimada A; Yoshikawa T (2005). Pulmonary exposure to diesel exhaust particles induces airway inflammation and cytokine expression in NC/Nga mice. Arch Toxicol, 79: 595-599.

 097481
- Inoue K-I; Takano H; Yanagisawa R; Sakurai M; Abe S; Yoshino S; Yamaki K; Yoshikawa T (2007). Effects of components derived from diesel exhaust particles on lung physiology related to antigen. Immunopharmacol Immunotoxicol, 29: 403-412. <a href="https://doi.org/10.2016/j.com/nat/10

- Inoue K-i; Takano H; Yanagisawa R; Sakurai M; Ueki N; Yoshikawa T (2007). Effects of diesel exhaust particles on cytokine production by splenocytes stimulated with lipopolysaccharide. J Appl Toxicol, 27: 95-100. <u>096702</u>
- Inoue K; Takano H; Yanagisawa R; Hirano S; Sakurai M; Shimada A; Yoshikawa T (2006). Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ Health Perspect, 114: 1325-1330. 090951
- Inoue K; Takano H; Yanagisawa R; Ichinose T; Sadakane K; Yoshino S; Yamaki K; Uchiyama K; Yoshikawa T (2004). Components of diesel exhaust particles differentially affect lung expression of cyclooxygenase-2 related to bacterial endotoxin. J Appl Toxicol, 24: 415-418. 087984
- Inoue K; Takano H; Yanagisawa R; Sakurai M; Abe S; Yoshino S; Yamaki K; Yoshikawa T (2007). Effects of nanoparticles on lung physiology in the presence or absence of antigen. Int J Immunopathol Pharmacol, 20: 737-744. 19885
- Inoue K; Takano H; Yanagisawa R; Sakurai M; Ichinose T; Sadakane K; Yoshikawa T (2005). Effects of nano particles on antigen-related airway inflammation in mice. Respir Res, 6: 106. <u>088625</u>
- Inoue K; Takano H; Yanagisawa R; Sakurai M; Ueki N; Yoshikawa T (2006). Effects of diesel exhaust on lung inflammation related to bacterial endotoxin in mice. Basic Clin Pharmacol Toxicol, 99: 346-352. 190142
- Ishihara Y; Kagawa J (2003). Chronic diesel exhaust exposures of rats demonstrate concentration and time-dependent effects on pulmonary inflammation. Inhal Toxicol, 15: 473-492. 096404
- Ishii H; Fujii T; Hogg JC; Hayashi S; Mukae H; Vincent R; van Eeden SF (2004). Contribution of IL-1 beta and TNF-alpha to the initiation of the peripheral lung response to atmospheric particulates (PM10). Am J Physiol, 287: L176-L183. 088103
- Ishii H; Hayashi S; Hogg JC; Fujii T; Goto Y; Sakamoto N; Mukae H; Vincent R; van Eeden SF (2005). Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment. Respir Res, 6: 87. 096138
- Ito K; Christensen WF; Eatough DJ; Henry RC; Kim E; Laden F; Lall R; Larson TV; Neas L; Hopke PK; Thurston GD (2006). PM source apportionment and health effects: 2 An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. J Expo Sci Environ Epidemiol, 16: 300-310. 088391
- Ito T; Suzuki T; Tamura K; Nezu T; Honda K; Kobayashi T (2008). Examination of mRNA expression in rat hearts and lungs for analysis of effects of exposure to concentrated ambient particles on cardiovascular function. Toxicol Sci, 243: 271-283. 096823
- Izawa H; Watanabe G; Taya K; Sagai M (2007). Inhibitory effects of foods and polyphenols on activation of aryl hydrocarbon receptor induced by diesel exhaust particles. Environ Sci J Integr Environ Res, 14: 149-156. 190387
- Jacobsen NR; Mrller P; Cohn CA; Loft S; Vogel U; Wallin H (2008). Diesel exhaust particles are mutagenic in FE1-Muta[™] Mouse lung epithelial cells. Mutat Res Fund Mol Mech Mutagen, 641: 54-57. 156597
- Jalava P; Salonen RO; Halinen AI; Sillanpaa M; Sandell E; Hirvonen MR (2005). Effects of sample preparation on chemistry, cytotoxicity, and inflammatory responses induced by air particulate matter. Inhal Toxicol, 17: 107-117. 088648
- Jalava PI; Salonen RO; Halinen AI; Penttinen P; Pennanen AS; Sillanpaa M; Sandell E; Hillamo R; Hirvonen M-R (2006). In vitro inflammatory and cytotoxic effects of size-segregated particulate samples collected during long-range transport of wildfire smoke to Helsinki. Toxicol Appl Pharmacol, 215: 341-353. <a href="https://doi.org/10.1007/journal.org/10.1007/journa
- Jalava PI; Salonen RO; Pennanen AS; Sillanpaa M; Halinen AI; Happo MS; Hillamo R; Brunekreef B; Katsouyanni K; Sunyer J; Hirvonen M-R (2007). Heterogeneities in inflammatory and cytotoxic responses of RAW 264.7 macrophage cell line to urban air coarse, fine, and ultrafine particles from six European sampling campaigns. Inhal Toxicol, 19: 213-225. 096950
- Jang A-S; Choi Inseon S; Takizawa H; Rhim T; Lee J-H; Park S-W; Park C-S (2005). Additive effect of diesel exhaust particulates and ozone on airway hyperresponsiveness and inflammation in a mouse model of asthma. J Korean Med Sci, 20: 759-763. 155313
- Jaspers I; Ciencewicki JM; Zhang W; Brighton LE; Carson JL; Beck MA; Madden MC (2005). Diesel exhaust enhances influenza virus infections in respiratory epithelial cells. Toxicol Sci, 85: 990-1002. <u>088115</u>

D-182

- Jimenez LA; Drost EM; Gilmour PS; Rahman I; Antonicelli F; Ritchie H; MacNee W; Donaldson K (2002). PM10-exposed macrophages stimulate a proinflammatory response in lung epithelial cells via TNF-alpha. Am J Physiol Lung Cell Mol Physiol, 282: L237-L248. <u>156610</u>
- Jones HA; Hamacher K; Clark JC; Schofield JB; Krausz T; Haslett C; Boobis AR (2005). Positron emission tomography in the quantification of cellular and biochemical responses to intrapulmonary particulates. Toxicol Appl Pharmacol, 207: 230-236. 198883
- Jung H; Guo B; Anastasio C; Kennedy IM (2006). Quantitative measurements of the generation of hydroxyl radicals by soot particles in a surrogate lung fluid. Atmos Environ, 40: 1043-1052. 132421
- Kaan PM; Hegele RG (2003). Interaction between respiratory syncytial virus and particulate matter in guinea pig alveolar macrophages. Am J Respir Cell Mol Biol, 28: 697-704. 095753
- Kafoury RM; Madden MC (2005). Diesel exhaust particles induce the over expression of tumor necrosis factor-alpha (TNF-alpha) gene in alveolar macrophages and failed to induce apoptosis through activation of nuclear factor-kappaB (NF-kappaB). Int J Environ Health Res, 2: 107-113. 156617
- Karlsson HL; Ljungman AG; Lindbom J; Moller L (2006). Comparison of genotoxic and inflammatory effects of particles generated by wood combustion, a road simulator and collected from street and subway. Toxicol Lett, 165: 203-211. 156625
- Karlsson HL; Nilsson L; Moller L (2005). Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chem Res Toxicol, 18: 19-23. <u>086392</u>
- Karlsson HL; Nygren J; Möller L (2004). Genotoxicity of airborne particulate matter: the role of cell-particle interaction and of substances with adduct-forming and oxidizing capacity. Mutat Res, 565: 1-10. 198976
- Kato A; Kagawa J (2003). Morphological effects in rat lungs exposed to urban roadside air. Inhal Toxicol, 15: 799-818. 089563
- Kato T; Yashiro T; Murata Y; Herbert DC; Oshikawa K; Bando M; Ohno S; Sugiyama Y (2003). Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell Tissue Res, 311: 47-51. 198882
- Katterman ME; Birchard S; Seraphin S; Riley Mark R (2007). Cellular evaluation of the toxicity of combustion derived particulate matter: influence of particle grinding and washing on cellular response. Chemosphere, 66: 567-573. 096358
- Kendall M; Guntern J; Lockyer NP; Jones FH; Hutton BM; Lippmann M; Tetley TD (2004). Urban PM2.5 surface chemistry and interactions with bronchoalveolar lavage fluid. Inhal Toxicol, 16 Suppl 1: 115-129. 156634
- Khandoga A; Stampfl A; Takenaka S; Schulz H; Radykewicz R; Kreyling W; Krombach F (2004). Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. Circulation, 109: 1320-1325. 087928
- Kim YM; Reed W; Wu W; Bromberg PA; Graves LM; Samet JM (2005). Zn2+-induced IL-8 expression involves AP-1, JNK, and ERK activities in human airway epithelial cells. Am J Physiol, 290: L1028-L1035. <u>088454</u>
- Klein-Patel ME; Diamond G; Boniotto M; Saad S; Ryan LK (2006). Inhibition of beta-defensin gene expression in airway epithelial cells by low doses of residual oil fly ash is mediated by vanadium. Toxicol Sci, 92: 115-125. 097092
- Kleinman M; Phalen R (2006). Toxicological interactions in the respiratory system after inhalation of ozone and sulfuric acid aerosol mixtures. Inhal Toxicol, 18: 295-303. 088596
- Kleinman M; Sioutas C; Stram D; Froines J; Cho A; Chakrabarti B; Hamade A; Meacher D; Oldham M (2005). Inhalation of concentrated ambient particulate matter near a heavily trafficked road stimulates antigen-induced airway responses in mice. J Air Waste Manag Assoc, 55: 1277-1288. 087880
- Kleinman MT Sioutas C Chang MC Boere AJ Cassee FR (2003). Ambient fine and coarse particle suppression of alveolar macrophage functions. Toxicol Lett, 137: 151-158. 1087938
- Kleinman MT; Araujo JA; Nel A; Sioutas C; Campbell A; Cong PQ; Li H; Bondy SC (2008). Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways. Toxicol Lett, 178: 127-130, 190074

- Kleinman MT; Hyde DM; Bufalino C; Basbaum C; Bhalla DK; Mautz WJ (2003). Toxicity of chemical components of fine particles inhaled by aged rats: effects of concentration. J Air Waste Manag Assoc, 53: 1080-1087. 053535
- Kleinman MT; Sioutas C; Froines JR; Fanning E; Hamade A; Mendez L; Meacher D; Oldham M (2007). Inhalation of concentrated ambient particulate matter near a heavily trafficked road stimulates antigen-induced airway responses in mice. Inhal Toxicol, 19 Suppl 1: 117-126. 097082
- Knuckles TL; Dreher KL (2007). Fine oil combustion particle bioavailable constituents induce molecular profiles of oxidative stress, altered function, and cellular injury in cardiomyocytes. J Toxicol Environ Health A Curr Iss, 70: 1824-1837. 156652
- Knuckles TL; Lund AK; Lucas SN; Campen MJ (2008). Diesel exhaust exposure enhances venoconstriction via uncoupling of eNOS. Toxicol Appl Pharmacol, 230: 346-351. 191987
- Kocbach A; Namork E; Schwarze P (2008). Pro-inflammatory potential of wood smoke and traffic-derived particles in a monocytic cell line. Toxicology, 247: 123-132. 198874
- Kodavanti UP; Schladweiler MC; Gilmour PS; Wallenborn JG; Mandavilli BS; Ledbetter AD; Christiani DC; Runge MS; Karoly ED; Costa DL; Peddada S; Jaskot R; Richards JH; Thomas R; Madamanchi NR; Nyska A (2008). The role of particulate matter-associated zinc in cardiac injury in rats. Environ Health Perspect, 116: 13-20. 155907
- Kodavanti UP; Schladweiler MC; Ledbetter AD; McGee JK; Walsh L; Gilmour PS; Highfill JW; Davies D; Pinkerton KE; Richards JH; Crissman K; Andrews D; Costa DL (2005). Consistent pulmonary and systemic responses from inhalation of fine concentrated ambient particles: roles of rat strains used and physicochemical properties. Environ Health Perspect, 113: 1561-1568. <u>087946</u>
- Koike E; Kobayashi T (2005). Organic extract of diesel exhaust particles stimulates expression of Ia and costimulatory molecules associated with antigen presentation in rat peripheral blood monocytes but not in alveolar macrophages. Toxicol Appl Pharmacol, 209: 277-285. 088303
- Kooter IM; Boere AJ; Fokkens PH; Leseman DL; Dormans JA; Cassee FR (2006). Response of spontaneously hypertensive rats to inhalation of fine and ultrafine particles from traffic: experimental controlled study. Part Fibre Toxicol, 15: 3-7. 097547
- Kristovich R; Knight DA; Long JF; Williams MV; Dutta PK; Waldman WJ (2004). Macrophage-mediated endothelial inflammatory responses to airborne particulates: impact of particulate physicochemical properties. Chem Res Toxicol, 17: 1303-1312. <u>087963</u>
- Kubatova A; Dronen LC; Picklo MJ Sr; Hawthorne SB (2006). Midpolarity and nonpolar wood smoke particulate matter fractions deplete glutathione in RAW 264.7 macrophages. Chem Res Toxicol, 19: 255-261. 198835
- Kubatova A; Steckler TS; Gallagher JR; Hawthorne SB; Picklo MJSr (2004). Toxicity of wide-range polarity fractions from wood smoke and diesel exhaust particulate obtained using hot pressurized water. Environ Toxicol Chem, 23: 2243-2250. 087986
- Kumar VS; Mani U; Prasad AK; Lal K; Gowri V; Gupta A (2004). Effect of fly ash inhalation on biochemical and histomorphological changes in rat lungs. Indian J Exp Biol, 42: 964-968. 096655
- Kyoso M; Narisawa M; Ito E; Ishijima M; Yana K; Kato A; Ito T; Ishihara Y (2005). Influence of Exposure to Diesel Emissions in Rats and Distribution Profile for R-R Interval. Proc Inst Mech Eng H, 5: 5544-5547. 186998
- Landvik NE; Gorria M; Arlt VM; Asare N; Solhaug A; Lagadic-Gossmann D; Holme JA (2007). Effects of nitrated-polycyclic aromatic hydrocarbons and diesel exhaust particle extracts on cell signalling related to apoptosis: possible implications for their mutagenic and carcinogenic effects. Toxicology, 231: 159-174. 096722
- Last JA; Ward R; Temple L; Pinkerton KE; Kenyon NJ (2004). Ovalbumin-induced airway inflammation and fibrosis in mice also exposed to ultrafine particles. Inhal Toxicol, 16: 93-102. 097334
- Lee CC; Cheng YW; Kang JJ (2005). Motorcycle exhaust particles induce IL-8 production through NF-kappaB activation in human airway epithelial cells. J Toxicol Environ Health A Curr Iss, 68: 1537-1555. <a href="https://doi.org/10.1007/j.nc/
- Lee CC; Kang JJ (2002). Extract of motorcycle exhaust particles induced macrophages apoptosis by calcium-dependent manner. Chem Res Toxicol, 15: 1534-1542. 198864
- Lei Y-C; Chan C-C; Wang P-Y; Lee C-T; Cheng T-J (2004). Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats. Environ Res, 95: 71-76. <u>087884</u>

- Lei YC; Chen MC; Chan CC; Wang PY; Lee CT; Cheng TJ (2004). Effects of concentrated ambient particles on airway responsiveness and pulmonary inflammation in pulmonary hypertensive rats. Inhal Toxicol, 16: 785-792. 087999
- Lei YC; Hwang JS; Chan CC; Lee CT; Cheng TJ (2005). Enhanced oxidative stress and endothelial dysfunction in streptozotocin-diabetic rats exposed to fine particles. Environ Res, 99: 335-343. 10.2005/. Environ Res, 99: 335-343. 10.2005/. Environ Res, 99: 335-343. 10.2005/. Environ Res, 99: 335-343. 10.2005/. 10.2005/</a
- Lemos M; Mohallen S; Macchione M; Dolhnikoff M; Assun

 air Pollution induces structural alterations in murine pulmonary and coronary arteries. Inhal Toxicol, 18: 247-253.

 088594
- Li J; Li Q; Xu J; Li J; Cai X; Liu R; Li Y; Ma J; Li W (2007). Comparative study on the acute pulmonary toxicity induced by 3 and 20 nm TiO2 primary particles in mice. Environ Toxicol Pharmacol, 24: 239-244. 093156
- Li N; Kim S; Wang M; Froines JR; Sioutas (2002). Use of a stratified oxidative stress model to study the biological effects of ambient concentrated and diesel exhaust particulate matter. Inhal Toxicol, 14: 459-486. 042080
- Li N; Wang M; Bramble LA; Schmitz DA; Schauer JJ; Sioutas C; Harkema JR; Nel AE (2009). The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential. Environ Health Perspect, 117: 1116-1123. 190457
- Li N; Wang M; Oberley TD; Sempf JM; Ne (2002). Comparison of the pro-oxidative and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial epithelial cells and macrophages. J Immunol, 169: 4531-4541. 087451
- Li Y-J; Kawada T; Matsumoto A; Azuma A; Kudoh S; Takizawa H; Sugawara I (2007). Airway inflammatory responses to oxidative stress induced by low-dose diesel exhaust particle exposure differ between mouse strains. Exp Lung Res, 33; 227-244. 155929
- Li Z; Carter JD; Dailey LA; Huang YC (2005). Pollutant particles produce vasoconstriction and enhance MAPK signaling via angiotensin type I receptor. Environ Health Perspect, 11: 1009-1014. <u>088647</u>
- Li Z; Hyseni X; Carter JD; Soukup JM; Dailey LA; Huang Y-CT (2006). Pollutant particles enhanced H2O2 production from NAD(P)H oxidase and mitochondria in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol, 291: C357-C365. 156693
- Lichtenfels AJFC; Gomes JB; Pieri PC; Miraglia SGEK; Hallak J; Saldiva PHN (2007). Increased levels of air pollution and a decrease in the human and mouse male-to-female ration in Sao Paulo, Brazil. Fertil Steril, 87: 230-232. 097041
- Lijinsky W; Reuber MD (1987). Chronic carcinogenesis studies of acrolein and related compounds. Toxicol Ind Health, 3: 337-345. 007583
- Lindbom J; Gustafsson M; Blomqvist G; Dahl A; Gudmundsson A; Swietlicki E; Ljungman AG (2007). Wear particles generated from studded tires and pavement induces inflammatory reactions in mouse macrophage cells. Chem Res Toxicol, 20: 937-946. 155934
- Lippmann M; Hwang J; Maclejczyk P; Chen L (2005). PM source apportionment for short-term cardiac function changes in ApoE-/- mice. Environ Health Perspect, 113: 1575-1579. <u>087453</u>
- Lippmann M; Ito K; Hwang JS; Maciejczyk P; Chen LC (2006). Cardiovascular effects of nickel in ambient air. Environ Health Perspect, 114: 1662-1669. 091165
- Liu J; Ballaney M; Al-Alem U; Quan C; Jin X; Perera F; Chen LC; Miller RL (2008). Combined Inhaled Diesel Exhaust Particles and Allergen Exposure Alter Methylation of T Helper Genes and IgE Production In Vivo. Toxicol Sci, 102: 76-81. 156709
- Liu L-JS; Curjuric I; Keidel D; Heldstab J; Kunzli N; Bayer-Oglesby L; Ackermann-Liebrich U; Schindler C; SAPALDIA team (2007). Characterization of source-specific air pollution exposure for a large population-based Swiss cohort (SAPALDIA). Environ Health Perspect, 115: 1638-1645. 093093
- Liu P-L; Chen Y-L; Chen Y-H; Lin S-J; Kou Y-R (2005). Wood smoke extract induces oxidative stress-mediated caspase-independent apoptosis in human lung endothelial cells: role of AIF and EndoG. Am J Physiol, 289: L739-L749. 088304
- Liu X; Meng Z (2005). Effects of airborne fine particulate matter on antioxidant capacity and lipid peroxidation in multiple organs of rats. Inhal Toxicol, 17: 467-473. <u>088650</u>

- Liu Y-Q; Keane M; Ensell M; Miller W; Kashon M; Ong T-m; Mauderly J; Lawson D; Gautam M; Zielinska B; Whitney K; Eberhardt J; Wallace W (2005). In vitro genotoxicity of exhaust emissions of diesel and gasoline engine vehicles operated on a unified driving cycle. J Environ Monit, 7: 60-66. <u>097019</u>
- Long JF; Waldman WJ; Kristovich R; Williams M; Knight D; Dutta PK (2005). Comparison of ultrastructural cytotoxic effects of carbon and carbon/iron particulates on human monocyte-derived macrophages. Environ Health Perspect, 113: 170-174. 087454
- Lopes FD; Pinto TS; Arantes-Costa FM; Moriya HT; Biselli PJ; Ferraz LF; Lichtenfels AJ; Saldiva PH; Mauad T; Martins MA (2009). Exposure to ambient levels of particles emitted by traffic worsens emphysema in mice. Environ Res, 109: 544-551. 190430
- Lund AK; Knuckles TL; Obot Akata C; Shohet R; McDonald JD; Gigliotti A; Seagrave JC; Campen MJ (2007). Gasoline exhaust emissions induce vascular remodeling pathways involved in atherosclerosis. Toxicol Sci, 95: 485-94.

 125741
- Lundborg M; Bouhafs R; Gerde P; Ewing P; Camner P; Dahlen SE; Jarstrand C (2007). Aggregates of ultrafine particles modulate lipid peroxidation and bacterial killing by alveolar macrophages. Environ Res, 104: 250-257. 096040
- Ma C; Wang J; Luo J (2004). Activation of nuclear factor kappa B by diesel exhaust particles in mouse epidermal cells through phosphatidylinositol 3-kinase/Akt signaling pathway. Biochem Pharmacol, 67: 1975-1983. 088417
- Maciejczyk P; Chen LC (2005). Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice: VIII source-related daily variations in in vitro responses to CAPs. Inhal Toxicol, 17: 243-253. <u>087456</u>
- Madden MC; Dailey LA; Stonehuerner JG; Harris BD (2003). Responses of cultured human airway epithelial cells treated with diesel exhaust extracts will vary with the engine load. J Toxicol Environ Health A Curr Iss, 66: 2281-2297. 198877
- Mangum JB; Bermudez E; Sar M; Everitt JI (2004). Osteopontin expression in particle-induced lung disease. Exp Lung Res, 30: 585-598. 097326
- Martin S; Dawidowski L; Mandalunis P; Cereceda-Balic F; Tasat DR (2007). Characterization and biological effect of Buenos Aires urban air particles on mice lungs. Environ Res, 105: 340-349. <a href="https://doi.org/10.2007/00.2007
- Mason CE (2002). Gasoline ETBE vapor condensate rat micronucleus test (satellite procedure). Princeton Research Center . East Millstone, NJ. <u>087645</u>
- Matsumoto A; Hiramatsu K; Li Y; Azuma A; Kudoh S; Takizawa H; Sugawara I (2006). Repeated exposure to low-dose diesel exhaust after allergen challenge exaggerates asthmatic responses in mice. Clin Immunol, 121: 227-235. 098017
- Matsumoto S; Ishii H; Tanabe T; Kawai J (2007). Chemical state analysis of fine particles using XAFS. Tetsu-To-Hagane, 93: 132-137. 187020
- Matsuo M; Shimada T; Uenishi R; Sasaki N; Sagai M (2003). Diesel exhaust particle-induced cell death of cultured normal human bronchial epithelial cells. Biol Pharm Bull, 26: 438-447. 198879
- Matsuzaki T; Amakawa K; Yamaguchi K; Ishizaka A; Terashima T; Matsumaru A; Morishita T (2006). Effects of diesel exhaust particles on human neutrophil activation. Exp Lung Res, 32: 427-439. <a href="https://example.com/neutrophil/n
- Mauad T; Rivero DH; de Oliveira RC; Lichtenfels AJ; Guimaraes ET; de Andre PA; Kasahara DI; Bueno HM; Saldiva PH (2008). Chronic exposure to ambient levels of urban particles affects mouse lung development. Am J Respir Crit Care Med, 178: 721-728. 156743
- McDonald JD; Harrod KS; Seagrave J; Seikop SK; Mauderly JL (2004). Effects of low sulfur fuel composition and a catalyzed particle trap on the composition and toxicity of diesel emissions. Environ Health Perspect, 112: 1307-1312. 087459
- McQueen DS; Donaldson K; Bond SM; McNeilly JD; Newman S; Barton NJ; Duffin R (2007). Bilateral vagotomy or atropine pre-treatment reduces experimental diesel-soot induced lung inflammation. Toxicol Appl Pharmacol, 219: 62-71. 096266
- Medeiros N Jr; Rivero DH; Kasahara DI; Saiki M; Godleski JJ; Koutrakis P; Capelozzi VL; Saldiva PH; Antonangelo L (2004). Acute pulmonary and hematological effects of two types of particle surrogates are influenced by their elemental composition. Environ Res, 95: 62-70. 096012

- Mehta M; Chen LC; Gordon T; Rom W; Tang MS (2008). Particulate matter inhibits DNA repair and enhances mutagenesis. Mutat Res Genet Toxicol Environ Mutagen, 657: 116-121. 190440
- Meng Z; Zhang Q (2007). Damage effects of dust storm PM2.5 on DNA in alveolar macrophages and lung cells of rats. Food Chem Toxicol, 45: 1368-1374. 198963
- Mohallem SV; de Araujo Lobo DJ; Pesquero CR; Assuncao JV; de Andre PA; Saldiva PH; Dolhnikoff M (2005). Decreased fertility in mice exposed to environmental air pollution in the city of Sao Paulo. Environ Res, 98: 196-202. <u>088657</u>
- Molinelli AR; Santacana GE; Madden MC; Jiménez BD (2006). Toxicity and metal content of organic solvent extracts from airborne particulate matter in Puerto Rico. Environ Res, 102: 314-325. 198949
- Moller W; Hofer T; Ziesenis A; Karg E; Heyder J (2002). Ultrafine particles cause cytoskeletal dysfunctions in macrophages. Toxicol Appl Pharmacol, 182: 197-207. 036589
- Montiel-Davalos A; Alfaro-Moreno E; Lopez-Marure R (2007). PM2.5 and PM10 induce the expression of adhesion molecules and the adhesion of monocytic cells to human umbilical vein endothelial cells. Inhal Toxicol, 19 Suppl 1: 91-98. 156778
- Mori T; Watanuki T; Kashiwagura T (2007). Diesel exhaust particles disturb gene expression in mouse testis. Environ Toxicol, 22: 58-63. 096564
- Morishita M; Keeler G; Wagner J; Marsik F; Timm E; Dvonch J; Harkema J (2004). Pulmonary retention of particulate matter is associated with airway inflammation in allergic rats exposed to air pollution in urban Detroit. Inhal Toxicol, 16: 663-674. 087979
- Motta S; Federico C; Saccone S; Librando V; Mosesso P (2004). Cytogenetic evaluation of extractable agents from airborne particulate matter generated in the city of Catania (Italy). Mutat Res, 561: 45-52. 198953
- Moyer CF; Kodavanti UP; Haseman JK; Costa DL; Nyska A (2002). Systemic vascular disease in male B6C3F1 mice exposed to particulate matter by inhalation: studies conducted by the national toxicology program. Toxicol Pathol, 30: 427-434. 052222
- Mutlu GM; Green D; Bellmeyer A; Baker CM; Burgess Z; Rajamannan N; Christman JW; Foiles N; Kamp DW; Ghio AJ; Chandel NS; Dean DA; Sznajder JI; Budinger GR (2007). Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway. J Clin Invest, 117: 2952-2961. 121441
- Mutlu GM; Snyder C; Bellmeyer A; Wang H; Hawkins K; Soberanes S; Welch LC; Ghio AJ; Chandel NS; Kamp D; Sznajder Jacob I; Budinger GRS (2006). Airborne particulate matter inhibits alveolar fluid reabsorption in mice via oxidant generation. Am J Respir Cell Mol Biol, 34: 670-676. 155994
- Nadziejko C; Fang K; Nadziejko E; Narciso SP; Zhong M; Chen LC (2002). Immediate effects of particulate air pollutants on heart rate and respiratory rate in hypertensive rats. Cardiovasc Toxicol, 2: 245-252. 087460
- Nadziejko C; Fang K; Narciso S; Zhong M; Su WC; Gordon T; Nadas A; Chen LC (2004). Effect of particulate and gaseous pollutants on spontaneous arrhythmias in aged rats. Inhal Toxicol, 16: 373-380. 055632
- Nam HY; Choi BH; Lee JY; Lee SG; Kim YH; Lee KH; Yoon HK; Song JS; Kim HJ; Lim Y (2004). The role of nitric oxide in the particulate matter (PM2.5)-induced NFkappaB activation in lung epithelial cells. Toxicol Lett, 148: 95-102. 198887
- Nemmar A; Al-Maskari S; Ali Badreldin H; Al-Amri Issa S (2007). Cardiovascular and lung inflammatory effects induced by systemically administered diesel exhaust particles in rats. Am J Physiol Lung Cell Mol Physiol, 292: L664-L670. 156800
- Nemmar A; Hoet PH; Dinsdale D; Vermylen J; Hoylaerts MF; Nemery B (2003). Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation, 107: 1202-1208. 096567
- Nemmar A; Hoet PH; Vermylen J; Nemery B; Hoylaerts MF (2004). Pharmacological stabilization of mast cells abrogates late thrombotic events induced by diesel exhaust particles in hamsters. Circulation, 110: 1670-1677. 087959
- Nemmar A; Hoylaerts MF; Hoet PHM; Vermylen J; Nemery B (2003). Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl Pharmacol, 186: 38-45. <u>087931</u>
- Nemmar A; Inuwa IM (2008). Diesel exhaust particles in blood trigger systemic and pulmonary morphological alterations. Toxicol Lett, 176: 20-30. 096566

- Nemmar A; Nemery B; Hoet PHM; Vermylen J; Hoylaerts MF (2003). Pulmonary inflammation and thrombogenicity caused by diesel particles in hamsters: role of histamine. Am J Respir Crit Care Med, 168: 1366-1372. 097487
- Niwa Y; Hiura Y; Murayama T; Yokode M; Iwai N (2007). Nano-sized carbon black exposure exacerbates atherosclerosis in LDL-receptor knockout mice. Circ J, 71: 1157-1161. 091309
- Niwa Y; Hiura Y; Sawamura H; Iwai N (2008). Inhalation exposure to carbon black induces inflammatory response in rats. Circ J, 72: 144-149. <u>156812</u>
- Nozaki JI; Yamamoto R; Ma L; Shima M (2007). Trial to evaluate effects of ambient particulate matter on health: A preliminary study using two-dimensional gel electrophoresis. Environ Health Prev Med, 12: 138-142. 097862
- Nurkiewicz TR; Porter DW; Barger M; Castranova V; Boegehold MA (2004). Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environ Health Perspect, 112: 1299-1306. 087968
- Nurkiewicz TR; Porter DW; Barger M; Millecchia L; Rao KMK; Marvar PJ; Hubbs AF; Castranova V; Boegehold MA (2006). Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environ Health Perspect, 114: 412-419. 088611
- Nurkiewicz TR; Porter DW; Hubbs AF; Cumpston JL; Chen BT; Frazer DG; Castranova V (2008). Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol, 5: 1. <u>156816</u>
- Nurkiewicz TR; Porter DW; Hubbs AF; Stone S; Chen BT; Frazer DG; Boegehold MA; Castranova V (2009). Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol Sci, 110: 191-203. 191961
- Nygaard UC; Alberg T; Bleumink R; Aase A; Dybing E; Pieters R; Lovik M (2005). Ambient air particles from four European cities increase the primary cellular response to allergen in the draining lymph node. Toxicology, 207: 241-254. 088655
- Nygaard UC; Ormstad H; Aase A; Lovik M (2005). The IgE adjuvant effect of particles: characterisation of the primary cellular response in the draining lymph node. Toxicology, 206: 181-193. <u>087980</u>
- Nygaard UC; Samuelsen M; Aase A; Lovik M (2004). The capacity of particles to increase allergic sensitization is predicted by particle number and surface area, not by particle mass. Toxicol Sci, 82: 515-524. 058558
- Obot CJ; Morandi MT; Beebe TP; Hamilton RF; Holian A (2002). Surface components of airborne particulate matter induce macrophage apoptosis through scavenger receptors. Toxicol Appl Pharmacol, 184: 98-106. <u>042370</u>
- Obot CJ; Morandi MT; Hamilton RF; Holian A (2004). A comparison of murine and human alveolar macrophage responses to urban particulate matter. Inhal Toxicol, 16: 69-76. 095938
- Oh S-M; Chung K-H (2006). Identification of mammalian cell genotoxins in respirable diesel exhaust particles by bioassay-directed chemical analysis. Toxicol Lett, 161: 226-235. <u>088296</u>
- Okayama Y; Kuwahara M; Suzuki AK; Tsubone H (2006). Role of reactive oxygen species on diesel exhaust particle-induced cytotoxicity in rat cardiac myocytes. J Toxicol Environ Health A Curr Iss, 69: 1699-1710. 156824
- Okeson CD; Riley MR; Fernandez A; Wendt JOL (2003). Impact of the composition of combustion generated fine particles on epithelial cell toxicity: influences of metals on metabolism. Chemosphere, 51: 1121-1128. 042292
- Okeson CD; Riley MR; Riley-Saxton E (2004). In vitro alveolar cytotoxicity of soluble components of airborne particulate matter: effects of serum on toxicity of transition metals. Toxicol In Vitro, 18: 673-680. 087961
- Ono N; Oshio S; Niwata Y; Yoshida S; Tsukue N; Sugawara I; Takano H; Takeda K (2007). Prenatal exposure to diesel exhaust impairs mouse spermatogenesis. Inhal Toxicol, 19: 275-281. 156007
- Osornio-Vargas AR; Bonner JC; Alfaro-Moreno E; Martinez L; Garcia-Cuellar C; Rosales SP; Miranda J; Rosas I (2003).

 Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition. Environ Health Perspect, 111: 1289-1293. 052417
- Pastorkova A; Cerna M; Smid J; Vrbikova V (2004). Mutagenicity of airborne particulate matter PM10. Cent Eur J Public Health, 12: S72-S75. <u>087431</u>
- Penn A; Murphy G; Barker S; Henk W; Penn L (2005). Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells. Environ Health Perspect, 113: 956-963. <u>088257</u>
- Pereira CEL; Heck TG; Saldiva PHN; Rhoden CR (2007). Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung. Braz J Med Biol Res, 40: 1353-1359. 156019

- Pinkerton KE; Zhou Y; Teague SV; Peake JL; Walther RC; Kennedy IM; Leppert VJ; Aust AE (2004). Reduced lung cell proliferation following short-term exposure to ultrafine soot and iron particles in neonatal rats: key to impaired lung growth? Inhal Toxicol, 1: 73-81. 087465
- Pires-Neto RC; Lichtenfels AJ; Soares SR; Macchione M; Saldiva PHN; Dolhnikoff M (2006). Effects of Sao Paulo air pollution on the upper airways of mice. Environ Res, 101: 356-361. <u>096734</u>
- Poma A; Limongi T; Pisani C; Granato V; Picozzi P (2006). Genotoxicity induced by fine urban air particulate matter in the macrophages cell line RAW 264.7. Toxicol In Vitro, 20: 1023-1029. 096903
- Pourazar J; Mudway IS; Samet JM; Helleday R; Blomberg A; Wilson SJ; Frew AJ; Kelly FJ; Sandstrom T (2005). Diesel exhaust activates redox-sensitive transcription factors and kinases in human airways. Am J Physiol, 289: L724-L730. 088305
- Pozzi R; De Berardis B; Paoletti L; Guastadisegni C (2005). Winter urban air particles from Rome (Italy): effects on the monocytic-macrophagic RAW 2647 cell line. Environ Res, 99: 344-354. <u>088610</u>
- Pradhan A; Waseem M; Dogra S; Khanna AK; Kaw JL (2005). Alterations in bronchoalveolar lavage constituents, oxidant/antioxidant status, and lung histology following intratracheal instillation of respirable suspended particulate matter. J Environ Pathol Toxicol Oncol, 24: 19-32. 096128
- Proctor SD; Dreher KL; Kelly SE; Russell JC (2006). Hypersensitivity of prediabetic JCR: LA-cp rats to fine airborne combustion particle-induced direct and noradrenergic-mediated vascular contraction. Toxicol Sci, 90: 385-391. 088480
- Prophete C; Maciejczyk P; Salnikow K; Gould T; Larson T; Koenig J; Jaques P; Sioutas C; Lippmann M; Cohen M (2006). Effects of select PM-associated metals on alveolar macrophage phosphorylated ERK1 and -2 and iNOS expression during ongoing alteration in iron homeostasis. J Toxicol Environ Health A Curr Iss, 69: 935-951. 156888
- Radomski A; Jurasz P; Alonso-Escalano D; Drews M; Morandi M; Malinski T; Radomski MW (2005). Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol, 146: 882-893. 091377
- Ramage L; Guy K (2004). Expression of C-reactive protein and heat-shock protein-70 in the lung epithelial cell line A549, in response to PM10 exposure. Inhal Toxicol, 16: 447-452. 055640
- Ramos C; Cisneros J; Gonzalez-Avila G; Becerril C; Ruiz V; Montaño M (2009). Increase of matrix metalloproteinases in woodsmoke-induced lung emphysema in guinea pigs. Inhal Toxicol, 21: 119-132. 190116
- Rao KM; Ma JY; Meighan T; Barger MW; Pack D; Vallyathan V (2005). Time course of gene expression of inflammatory mediators in rat lung after diesel exhaust particle exposure. Environ Health Perspect, 113: 612-617. 095756
- Reed MD; Barrett EG; Campen MJ; Divine KK; Gigliotti AP; McDonald JD; Seagrave JC; Mauderly JL; Seilkop SK; Swenberg JA (2008). Health effects of subchronic inhalation exposure to gasoline engine exhaust. Inhal Toxicol, 20: 1125-1143. 156903
- Reed MD; Campen MJ; Gigliotti AP; Harrod KS; McDonald JD; Seagrave JC; Mauderly JL; Seilkop SK (2006). Health effects of subchronic exposure to environmental levels of hardwood smoke. Inhal Toxicol, 18: 523-539. <u>156043</u>
- Reed MD; Gigliotti AP; McDonald JD; Seagrave JC; Seilkop SK; Mauderly JL (2004). Health effects of subchronic exposure to environmental levels of diesel exhaust. Inhal Toxicol, 16: 177-193. 055625
- Reibman J; Hsu Y; Chen LC; Bleck B; Gordon T (2003). Airway epithelial cells release MIP-3alpha/CCL20 in response to cytokines and ambient particulate matter. Am J Respir Cell Mol Biol, 28: 648-654. 156905
- Rengasamy A; Barger MW; Kane E; Ma JKH; Castranova V; Ma JYC (2003). Diesel exhaust particle-induced alterations of pulmonary phase I and phase II enzymes of rats. J Toxicol Environ Health A Curr Iss, 66: 153-167. 156907
- Renwick LC; Brown D; Clouter A; Donaldson K (2004). Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med, 61: 442-447. <u>056067</u>
- Rhoden CR; Ghelfi E; González-Flecha B (2008). Pulmonary inflammation by ambient air particles is mediated by superoxide anion. Inhal Toxicol, 20: 11-15. 190475
- Rhoden CR; Lawrence J; Godleski JJ; Gonzalez-Flecha B (2004). N-acetylcysteine prevents lung inflammation after short-term inhalation exposure to concentrated ambient particles. Toxicol Sci, 79: 296-303. <u>087969</u>

D-189

Rhoden CR; Wellenius GA; Ghelfi E; Lawrence J; Gonzalez-Flecha B (2005). PM-induced cardiac oxidative stress and dysfunction are mediated by autonomic stimulation. Biochim Biophys Acta, 1725: 305-313. <u>087878</u>

- Riley MR; Boesewetter DE; Kim AM; Sirvent FP (2003). Effects of metals Cu, Fe, Ni, V, and Zn on rat lung epithelial cells. Toxicology, 190: 171-184. 053237
- Riley MR; Boesewetter DE; Turner RA; Kim AM; Collier JM; Hamilton A (2005). Comparison of the sensitivity of three lung derived cell lines to metals from combustion derived particulate matter. Toxicol In Vitro, 19: 411-419. 096452
- Ritz SA; Wan J; Diaz-Sanchez D (2007). Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract. Am J Physiol Lung Cell Mol Physiol, 292: L33-39. 198901
- Rivedal E; Myhre O; Sanner T; Eide I (2003). Supplemental role of the Ames mutation assay and gap junction intercellular communication in studies of possible carcinogenic compounds from diesel exhaust particles. Arch Toxicol, 77: 533-542. 097684
- Rivero DH; Soares SR; Lorenzi-Filho G; Saiki M; Godleski JJ; Antonangelo L; Dolhnikoff M; Saldiva PH (2005). Acute cardiopulmonary alterations induced by fine particulate matter of Sao Paulo, Brazil. Toxicol Sci, 85: 898-905.

 088653
- Roberts E; Charboneau L; Espina V; Liotta L; Petricoin E; Dreher K (2004). Application of laser capture microdissection and protein microarray technologies in the molecular analysis of airway injury following pollution particle exposure. J Toxicol Environ Health A Curr Iss, 67: 851-861. 198903
- Roberts JR; Young S-H; Castranova V; Antonini JM (2007). Soluble metals in residual oil fly ash alter innate and adaptive pulmonary immune responses to bacterial infection in rats. Toxicol Appl Pharmacol, 221: 306-319. 097623
- Rodriguez Ferreira Rivero DH; Sassaki C; Lorenzi-Filho G; Nascimento Saldiva PH (2005). PM2.5 induces acute electrocardiographic alterations in healthy rats. Environ Res, 99: 262-266. <u>088659</u>
- Rosas Perez I; Serrano J; Alfaro-Moreno E; Baumgardner D; Garcia-Cuellar C; Martin Del Campo JM; Raga GB; Castillejos M; Colin RD; Osornio Vargas AR (2007). Relations between PM10 composition and cell toxicity: a multivariate and graphical approach. Chemosphere, 67: 1218-28. 097967
- Roubicek DA; Gutierrez-Castillo ME; Sordo M; Cebrian-Garcia ME; Ostrosky-Wegman P (2007). Micronuclei induced by airborne particulate matter from Mexico City. Mutat Res Fund Mol Mech Mutagen, 631: 9-15. 156929
- Saber AT; Bornholdt J; Dybdahl M; Sharma AK; Loft S; Vogel U; Wallin H (2005). Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation. Arch Toxicol, 79: 177-182. 097865
- Sakamoto N; Hayashi S; Gosselink J; Ishii H; Ishimatsu Y; Mukae H; Hogg JC; van Eeden SF (2007). Calcium dependent and independent cytokine synthesis by air pollution particle-exposed human bronchial epithelial cells. Toxicol Appl Pharmacol, 225: 134-141. 096282
- Salnikow K; Li X; Lippmann M (2004). Effect of nickel and iron co-exposure on human lung cells. Toxicol Appl Pharmacol, 196: 258-265. <u>087469</u>
- Salonen R; Halinen A; Pennanen A; Hirvonen M; Sillanpaa M; Hillamo R; Shi R; Borm P; Sandell E; Koskentalo T; Aarnio P (2004). Chemical and in vitro toxicologic characterization of wintertime and springtime urban-air particles with an aerodynamic diameter below 10 µm in Helsinki. Scand J Work Environ Health, 30: 80-90. <a href="https://doi.org/10.1007/jan.2007/
- Samet JM; Dewar BJ; Wu W; Graves LM (2003). Mechanisms of Zn2+-induced signal initiation through the epidermal growth factor receptor. Toxicol Appl Pharmacol, 191: 86-93. 113782
- Santini MT; Rainaldi G; Ferrante A; Romano R; Clemente S; Motta A; De Berardis B; Balduzzi M; Paoletti L; Indovina PL (2004). Environmental fine particulate matter (PM25) activates the RAW 2647 macrophage cell line even at very low concentrations as revealed by 1H NMR. Chem Res Toxicol, 17: 63-74. 087879
- Saxena QB; Saxena RK; Siegel PD; Lewis DM (2003). Identification of organic fractions of diesel exhaust particulate (DEP) which inhibit nitric oxide (NO) production from a murine macrophage cell line. Toxicol Lett, 143: 317-322. 096986
- Saxena RK; Saxena QB; Weissman DN; Simpson JP; Bledsoe TA; Lewis DM (2003). Effect of diesel exhaust particulate on bacillus Calmette-Guerin lung infection in mice and attendant changes in lung interstitial lymphoid subpopulations and IFN gamma response. Toxicol Sci, 73: 66-71. 054395
- Schins RPF; Lightbody JH; Borm PJA; Shi T; Donaldson K; Stone V (2004). Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicol Appl Pharmacol, 195: 1-11. 054173

- Schneider J; Hock N; Weimer S; Borrmann S; Kirchner U; Vogt R; Scheer V (2005). Nucleation particles in diesel exhaust: composition inferred from in situ mas spectrometric analysis. Environ Sci Technol, 39: 6153-6161. 088368
- Schober W; Belloni B; Lubitz S; Eberlein-Konig B; Bohn P; Saritas Y; Lintelmann J; Matuschek G; Behrendt H; Buters J (2006). Organic extracts of urban aerosol (< or =PM25) enhance rBet v 1-induced upregulation of CD63 in basophils from birch pollen-allergic individuals. Toxicol Sci, 90: 377-384. 097321
- Seagrave J; Campen M; McDonald J; Mauderly J; Rohr A (2008). Oxidative stress, inflammation, and pulmonary function assessment in rats exposed to laboratory-generated pollutant mixtures. J Toxicol Environ Health A Curr Iss, 71: 1352-1362. 191990
- Seagrave J; Dunaway S; McDonald JD; Mauderly JL; Hayden P; Stidley C (2007). Responses of differentiated primary human lung epithelial cells to exposure to diesel exhaust at an air-liquid interface. Exp Lung Res, 33: 27-51.
- Seagrave J; Knall C; McDonald JD; Mauderly JL (2004). Diesel particulate material binds and concentrates a proinflammatory cytokine that causes neutrophil migration. Inhal Toxicol, 1: 93-98. <u>087470</u>
- Seagrave J; Mauderly JL; Seilkop SK (2003). In vitro relative toxicity screening of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions. J Toxicol Environ Health A Curr Iss, 66: 1113-1132. 054979
- Seagrave J; McDonald JD; Reed MD; Seilkop SK; Mauderly JL (2005). Responses to subchronic inhalation of low concentrations of diesel exhaust and hardwood smoke measured in rat bronchoalveolar lavage fluid. Inhal Toxicol, 17: 657-670. 088000
- Seagrave JC; McDonald JD; Bedrick E; Edgerton ES; Gigliotti AP; Jansen JJ; Ke L; Naeher LP; Seilkop SK; Zheng M; Mauderley JL (2006). Lung toxicity of ambient particulate matter from southeastern US sites with different contributing sources: relationships between composition and effects. Environ Health Perspect, 114: 1387-93. 091291
- Seaton A; Cherrie J; Dennekamp M; Donaldson K; Hurley JF; Tran CL (2005). The London Underground: Dust and hazards to health. Occup Environ Med, 62: 355-362. 198904
- Sevastyanova O; Binkova B; Topinka J; Sram RJ; Kalina I; Popov T; Novakova Z; Farmer PB (2007). In vitro genotoxicity of PAH mixtures and organic extract from urban air particles part II: human cell lines. Mutat Res Fund Mol Mech Mutagen, 620: 123-134. <a href="https://doi.org/10.1001/japa-
- Sharma AK; Jensen KA; Rank J; White PA; Lundstedt S; Gagne R; Jacobsen NR; Kristiansen J; Vogel U; Wallin H (2007). Genotoxicity, inflammation and physico-chemical properties of fine particle samples from an incineration energy plant and urban air. Mutat Res Fund Mol Mech Mutagen, 633: 95-111. 156975
- Shi T; Knaapen AM; Begerow J; Birmili W; Borm PJA; Schins RPF (2003). Temporal variation of hydroxyl radical generation and 8-hydroxy-2'-deoxyguanosine formation by coarse and fine particulate matter. Occup Environ Med, 60: 315-321. 088248
- Shwe T-T-W; Yamamoto S; Kakeyama M; Kobayashi T; Fujimaki H (2005). Effect of intratracheal instillation of ultrafine carbon black on proinflammatory cytokine and chemokine release and mRNA expression in lung and lymph nodes of mice. Toxicol Appl Pharmacol, 209: 51-61. 111553
- Sigaud S; Goldsmith Carroll-Ann W; Zhou H; Yang Z; Fedulov A; Imrich A; Kobzik L (2007). Air pollution particles diminish bacterial clearance in the primed lungs of mice. Toxicol Appl Pharmacol, 223: 1-9. 096100
- Silva PJ; Erupe ME; Price D; Elias J; Malloy QG; Li Q; Warren B; Cocker DR 3rd (2008). Trimethylamine as precursor to secondary organic aerosol formation via nitrate radical reaction in the atmosphere. Environ Sci Technol, 42: 4689-4696. 156981
- Simkhovich BZ; Marjoram P; Kleinman MT; Kloner RA (2007). Direct and acute cardiotoxicity of ultrafine particles in young adult and old rat hearts. Basic Res Cardiol, 102: 467-475. <u>096594</u>
- Singal M; Finkelstein JN (2005). Use of indicator cell lines for determining inflammatory gene changes and screening the inflammatory potential of particulate and non-particulate stimuli. Inhal Toxicol, 17: 415-425. 198905
- Singh P; DeMarini DM; Dick CA; Tabor DG; Ryan JV; Linak WP; Kobayashi T; Gilmour MI (2004). Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice. Environ Health Perspect, 112: 820-825. <u>087472</u>

- Skarek M; Janosek J; Cupr P; Kohoutek J; Novotna-Rychetska A; Holoubek I (2007). Evaluation of genotoxic and non-genotoxic effects of organic air pollution using in vitro bioassays. Environ Int, 33: 859-66. <a href="https://doi.org/10.1007/journal.org/10.1007/journa
- Smith KR; Kim S; Recendez JJ; Teague SV; Menache MG; Grubbs DE; Sioutas C; Pinkerton KE (2003). Airborne particles of the California Central Valley alter the lungs of healthy adult rats. Environ Health Perspect, 111: 902-908. 042107
- Smith KR; Veranth JM; Kodavanti UP; Aust AE; Pinkerton KE (2006). Acute pulmonary and systemic effects of inhaled coal fly ash in rats: comparison to ambient environmental particles. Toxicol Sci, 93: 390-399. <u>110864</u>
- Somers CM; McCarry BE; Malek F; Quinn JS (2004). Reduction of particulate air pollution lowers the risk of heritable mutations in mice. Science, 304: 1008-1010. 078098
- Somers CM; Yauk CL; White PA; Parfett CLJ; Quinn JS (2002). Air pollution induces heritable DNA mutations. PNAS, 99: 15904-15907. 078100
- Song CL; Zhou YC; Huang RJ; Wang YQ; Huang QF; Lu G; Liu KM (2007). Influence of ethanol-diesel blended fuels on diesel exhaust emissions and mutagenic and genotoxic activities of particulate extracts. J Hazard Mater, 149: 355-363. 155306
- Song H-M; Jang A-S; Ahn M-H; Takizawa H; Lee S-H; Kwon J-H; Lee Y-M; Rhim T; Park C-S (2008). Ym1 and Ym2 expression in a mouse model exposed to diesel exhaust particles. Environ Toxicol, 23: 110-116. 156093
- Steerenberg P; Verlaan A; De Klerk A; Boere A; Loveren H; Cassee F (2004). Sensitivity to ozone, diesel exhaust particles, and standardized ambient particulate matter in rats with a listeria monocytogenes-induced respiratory infection. Inhal Toxicol, 16: 311-317. 087474
- Steerenberg PA; Van Amelsvoort L; Lovik M; Hetland RB; Alberg T; Halatek T; Bloemen HJT; Rydzynski K; Swaen G; Schwarze P; Dybing E; Cassee FR (2006). Relation between sources of particulate air pollution and biological effect parameters in samples from four European cities: an exploratory study. Inhal Toxicol, 18: 333-346. 088249
- Steerenberg PA; Withagen CE; van Dalen WJ; Dormans JA; Heisterkamp SH; van Loveren H; Cassee FR (2005). Dose dependency of adjuvant activity of particulate matter from five European sites in three seasons in an ovalbumin-mouse model. Inhal Toxicol, 17: 133-145. <u>088649</u>
- Steerenberg PA; Withagen CET; van Dalen WJ; Dormans JAMA; van Loveren H (2004). Adjuvant Activity of Ambient Particulate Matter in Macrophage Activity-Suppressed, N-Acetylcysteine-Treated, iNOS- and IL-4-Deficient Mice. Inhal Toxicol, 16: 835-843. <u>087981</u>
- Stevens JP; Zahardis J; MacPherson M; Mossman BT; Petrucci GA (2008). A new method for quantifiable and controlled dosage of particulate matter for in vitro studies: the Electrostatic Particulate Dosage and Exposure System (EPDExS). Toxicol In Vitro, 22(7): 1768-1774. 155363
- Stinn W; Teredesai A; Anskeit E; Rustemeier K; Schepers G; Schnell P; Haussmann H-J; Carchman RA; Coggins CR; Reininghaus W (2005). Chronic nose-only inhalation study in rats, comparing room-aged sidestream cigarette smoke and diesel engine exhaust. Inhal Toxicol, 17: 549-576. <a href="https://doi.org/10.108/journal.org/10.1081/journal.org/10.1
- Sugamata M; Ihara T; Sugamata M; Takeda K (2006). Maternal Exposure to Diesel Exhaust Leads to Pathological Similarity to Autism in Newborns. Eisei Kagaku, 52: 486-488. <a href="https://doi.org/10.1016/j.com/10.1
- Sun Q; Wang A; Jin X; Natanzon A; Duquaine D; Brook RD; Aguinaldo JG; Fayad ZA; Fuster V; Lippmann M; Chen LC; Rajagopalan S (2005). Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA, 294: 3003-3010. <a href="https://doi.org/10.1007/jam.20
- Sun Q; Yue P; Deiuliis JA; Lumeng CN; Kampfrath T; Mikolaj MB; Cai Y; Ostrowski MC; Lu B; Parthasarathy S; Brook RD; Moffatt-Bruce SD; Chen LC; Rajagopalan S (2009). Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation, 119: 538-546. 190487
- Sun Q; Yue P; Kirk RI; Wang A; Moatti D; Jin X; Lu B; Schecter AD; Lippmann M; Gordon T; Chen LC; Rajagopalan S (2008). Ambient air particulate matter exposure and tissue factor expression in atherosclerosis. Inhal Toxicol, 20: 127-137. 157033

D-192

- Sun Q; Yue P; Ying Z; Cardounel AJ; Brook RD; Devlin R; Hwang JS; Zweier JL; Chen LC; Rajagopalan S (2008). Air Pollution Exposure Potentiates Hypertension Through Reactive Oxygen Species-Mediated Activation of Rho/ROCK. Arterioscler Thromb Vasc Biol, 28: 1760-1766. 157032
- Sureshkumar V; Paul B; Uthirappan M; Pandey R; Sahu AP; Lal K; Prasad AK; Srivastava S; Saxena A; Mathur N; Gupta YK (2005). Proinflammatory and anti-inflammatory cytokine balance in gasoline exhaust induced pulmonary injury in mice. Inhal Toxicol, 17: 161-168. <u>088306</u>
- Takizawa H; Abe S; Okazaki H; Kohyama T; Sugawara I; Saito Y; Ohtoshi T; Kawasaki S; Desaki M; Nakahara K; Yamamoto K; Matsushima K; Tanaka M; Sagai M; Kudoh S (2003). Diesel exhaust particles upregulate eotaxin gene expression in human bronchial epithelial cells via nuclear factor-kappa B-dependent pathway. Am J Physiol Lung Cell Mol Physiol, 284: L1055-L1062. 157039
- Tal TL; Graves LM; Silbajoris R; Bromberg PA; Wu W; Samet JM (2006). Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn2+. Toxicol Appl Pharmacol, 214: 16-23. 108588
- Tamagawa E; Bai N; Morimoto K; Gray C; Mui T; Yatera K; Zhang X; Xing L; Li Y; Laher I (2008). Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction. Am J Physiol Lung Cell Mol Physiol, 295: L79-L85. 191988
- Tamaoki J; Isono K; Takeyama K; Tagaya E; Nakata J; Nagai A (2004). Ultrafine carbon black particles stimulate proliferation of human airway epithelium via EGF receptor-mediated signaling pathway. Am J Physiol Lung Cell Mol Physiol, 287: L1127-L1133. 157040
- Tankersley CG; Bierman A; Rabold R (2007). Variation in heart rate regulation and the effects of particle exposure in inbred mice. Inhal Toxicol, 19: 621-629. 097910
- Tankersley CG; Campen M; Bierman A; Flanders SE; Broman KW; Rabold R (2004). Particle effects on heart-rate regulation in senescent mice. Inhal Toxicol, 16: 381-390. 094378
- Tankersley CG; Champion HC; Takimoto E; Gabrielson K; Bedja D; Misra V; El-Haddad H; Rabold R; Mitzner W (2008). Exposure to inhaled particulate matter impairs cardiac function in senescent mice. Am J Physiol Regul Integr Comp Physiol, 295: R252-R263. 157043
- Tao F; Kobzik L (2002). Lung macrophage-epithelial cell interactions amplify particle-mediated cytokine release. Am J Respir Cell Mol Biol, 26: 499-505. <u>157044</u>
- Tesfaigzi Y; McDonald JD; Reed MD; Singh SP; De Sanctis GT; Eynott PR; Hahn FF; Campen MJ; Mauderly JL (2005). Low-level subchronic exposure to wood smoke exacerbates inflammatory responses in allergic rats. Toxicol Sci, 88: 505-513. 156116
- Tesfaigzi Y; Singh SP; Foster JE; Kubatko J; Barr EB; Fine PM; McDonald JD; Hahn FF; Mauderly JL (2002). Health effects of subchronic exposure to low levels of wood smoke in rats. Toxicol Sci, 65: 115-125. 025575
- Thomson E; Kumarathasan P; Goegan P; Aubin RA; Vincent R (2005). Differential regulation of the lung endothelin system by urban particulate matter and ozone. Toxicol Sci, 88: 103-113. 087554
- Thomson E; Kumarathasan P; Vincent R (2006). Pulmonary expression of preproET-1 and preproET-3 mRNAs is altered reciprocally in rats after inhalation of air pollutants. Exp Biol Med, 231: 979-984. 097483
- Tomita S; Maekawa S-I; Rahman M; Saito F; Kizu R; Tohi K; Ueno T; Nakase H; Gonzalez FJ; Hayakawa K; Korenaga T; Takahama Y (2006). Thymic involution produced by diesel exhaust particles and their constituents in mice. Toxicol Environ Chem, 88: 113-124. 097827
- Tong Y; Zhang G; Li Y; Tan M; Wang W; Chen J; Hwu Y; Hsu P-C; Je JH; Margaritondo G; Song W; Jiang R; Jiang Z (2006). Synchrotron microradiography study on acute lung injury of mouse caused by PM(25) aerosols. Eur J Radiol, 58: 266-272. 097699
- Totlandsdal AI; Refsnes M; Skomedal T; Osnes JB; Schwarze PE; Lag M (2008). Particle-induced cytokine responses in cardiac cell cultures--the effect of particles versus soluble mediators released by particle-exposed lung cells. Toxicol Sci, 106: 233-241. 157056
- Tozuka Y; Watanabe N; Ohsawa M; Toriba A; Kizu R; Hayakawa K (2004). Transfer of polycyclic aromatic hydrocarbons to fetuses and breast milk of rats exposed to diesel exhaust. Eisei Kagaku, 50: 497-502. 090864

- Tsukue N; Tsubone H; Suzuki AK (2002). Diesel exhaust affects the abnormal delivery in pregnant mice and the growth of their young. Inhal Toxicol, 14: 635-651. 030593
- Tsukue N; Yoshida S; Sugawara I; Taked K (2004). Effect of diesel exhaust on development of fetal reproductive function in ICR female mice. Eisei Kagaku, 50: 174-80. <u>096643</u>
- Tzeng H-P; Yang R-S; Ueng T-H; Lin-Shiau S-Y; Liu S-H (2003). Motorcycle exhaust particulates enhance vasoconstriction in organ culture of rat aortas and involve reactive oxygen species. Toxicol Sci, 75: 66-73. 097247
- Tzeng H-P; Yang Rong S; Ueng T-H; Liu S-H (2007). Upregulation of cyclooxygenase-2 by motorcycle exhaust particulate-induced reactive oxygen species enhances rat vascular smooth muscle cell proliferation. Chem Res Toxicol, 20: 1170-1176. 097883
- U.S. EPA (1976). Air quality data 1970 annual statistics. U.S. Environmental Protection Agency. Research Triangle Park, NC. EPA-450/2-76-019. 015607
- Ueng T-H; Hung C-C; Kuo M-L; Chan P-K; Hu S-H; Yang P-C; Chang LW (2005). Induction of fibroblast growth factor-9 and interleukin-1alpha gene expression by motorcycle exhaust particulate extracts and benzo(a)pyrene in human lung adenocarcinoma cells. Toxicol Sci, 87: 483-496. 097054
- Ueng T-H; Wang H-W; Huang Y-P; Hung C-C (2004). Antiestrogenic effects of motorcycle exhaust particulate in MCF-7 human breast cancer cells and immature female rats. Arch Environ Contam Toxicol, 46: 454-462, 096199
- Umbuzeiro GA; Franco A; Martins MH; Kummrow F; Carvalho L; Schmeiser HH; Leykauf J; Stiborova M; Claxton LD (2008). Mutagenicity and DNA adduct formation of PAH, nitro-PAH, and oxy-PAH fractions of atmospheric particulate matter from Sao Paulo, Brazil. Mutat Res Genet Toxicol Environ Mutagen, 652: 72-80. 190491
- Upadhyay D; Panduri V; Ghio A; Kamp DW (2003). Particulate matter induces alveolar epithelial cell DNA damage and apoptosis: role of free radicals and the mitochondria. Am J Respir Cell Mol Biol, 29: 180-187. 097370
- Upadhyay S; Stoeger T; Harder V; Thomas RF; Schladweiler MC; Semmler-Behnke M; Takenaka S; Karg E; Reitmeir P; Bader M; Stampfl A; Kodovanti U; Schulz H (2008). Exposure to ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats. Part Fibre Toxicol, 5: 19. 159345
- Valavanidis A; Vlahoyianni T; Fiotakis K (2005). Comparative study of the formation of oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct from the nucleoside 2'-deoxyguanosine by transition metals and suspensions of particulate matter in relation to metal content and redox reactivity. Free Radic Res, 39: 1071-1081. 096432
- Veranth J; Kaser E; Veranth M; Koch M; Yost G (2007). Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol, 4: 2. <u>090346</u>
- Veranth JM; Moss TA; Chow JC; Labban R; Nichols WK; Walton JC; Walton JG; Yost GS (2006). Correlation of in vitro cytokine responses with the chemical composition of soil-derived particulate matter. Environ Health Perspect, 114: 341-349. 087479
- Veranth JM; Reilly CA; Veranth MM; Moss TA; Langelier CR; Lanza DL; Yost GS (2004). Inflammatory cytokines and cell death in BEAS-2B lung cells treated with soil dust, lipopolysaccharide, and surface-modified particles. Toxicol Sci, 82: 88-96. 087480
- Veras MM; Damaceno-Rodrigues NR; Caldini EG; Maciel Ribeiro AA; Mayhew TM; Saldiva PH; Dolhnikoff M (2008). Particulate urban air pollution affects the functional morphology of mouse placenta. Biol Reprod, 79: 578-584. 190493
- Veras MM; Damaceno-Rodrigues NR; Guimarães Silva RM; Scoriza JN; Saldiva PH; Caldini EG; Dolhnikoff M (2009). Chronic exposure to fine particulate matter emitted by traffic affects reproductive and fetal outcomes in mice. Environ Res, 109: 536-543. <a href="https://doi.org/10.1001/journal.org/10.1001/jour
- Veronesi B; De Haar C; Lee L; Oortgiesen M (2002). The surface charge of visible particulate matter predicts biological activation in human bronchial epithelial cells. Toxicol Appl Pharmacol, 178: 144-154, 024599
- Veronesi B; Makwana O; Pooler M; Chen LC (2005). Effects of subchronic exposures to concentrated ambient particles: VII. Degeneration of dopaminergic neurons in Apo E-/- mice. Inhal Toxicol, 17: 235-241. 087481

- Verstraelen S; Van Den Heuvel R; Nelissen I; Witters H; Verheyen G; Schoeters G (2005). Flow cytometric characterisation of antigen presenting dendritic cells after in vitro exposure to diesel exhaust particles. Toxicol In Vitro, 19: 903-907. 096872
- Vogel CFA; Sciullo E; Wong P; Kuzmicky P; Kado N; Matsumura F (2005). Induction of proinflammatory cytokines and C-reactive protein in human macrophage cell line U937 exposed to air pollution particulates. Environ Health Perspect, 113: 1536-1541. 087891
- Walczak-Drzewiecka A; Wyczolkowska J; Dastych J (2003). Environmentally relevant metal and transition metal ions enhance Fc epsilon RI-mediated mast cell activation. Environ Health Perspect, 111: 708-713. 188803
- Wallenborn JG; Evansky P; Shannahan JH; Vallanat B; Ledbetter AD; Schladweiler MC; Richards JH; Gottipolu RR; Nyska A; Kodavanti UP (2008). Subchronic inhalation of zinc sulfate induces cardiac changes in healthy rats. Toxicol Appl Pharmacol, 232: 69-77. 191171
- Wallenborn JG; McKee JK; Schladweiler MC; Ledbetter AD; Kodavanti UP (2007). Systemic translocation of particulate matter-associated metals following a single intratracheal instillation in rats. J Toxicol Sci, 98: 231-239. <u>156144</u>
- Wan ECH; Yu JZ (2006). Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry. J Chromatogr A, 1107: 175-181. 157104
- Wang Y-Z; Ingram JL; Walters DM; Rice AB; Santos JH; Van Houten B; Bonner JC (2003). Vanadium-induced STAT-1 activation in lung myofibroblasts requires H2O2 and P38 MAP kinase. Free Radic Biol Med, 35: 845-855. <u>157106</u>
- Watanabe N (2005). Decreased number of sperms and Sertoli cells in mature rats exposed to diesel exhaust as fetuses. Toxicol Lett, 155: 51-58. <u>087985</u>
- Wegesser TC; Last JA (2008). Lung response to coarse PM: bioassay in mice. Toxicol Appl Pharmacol, 230: 159-166. 190506
- Wellenius GA; Batalha JRF; Diaz EA; Lawrence J; Coull BA; Katz T; Verrier RL; Godleski JJ (2004). Cardiac effects of carbon monoxide and ambient particles in a rat model of myocardial infarction. Toxicol Sci, 80: 367-376. 087874
- Wellenius GA; Coull BA; Batalha JRF; Diaz EA; Lawrence J; Godleski JJ (2006). Effects of ambient particles and carbon monoxide on supraventricular arrhythmias in a rat model of myocardial infarction. Inhal Toxicol, 18: 1077-1082. 156152
- Wellenius GA; Coull BA; Godleski JJ; Koutrakis P; Okabe K; Savage ST (2003). Inhalation of concentrated ambient air particles exacerbates myocardial ischemia in conscious dogs. Environ Health Perspect, 111: 402-408. 055691
- Whitekus MJ; Li N; Zhang M; Wang M; Horwitz MA; Nelson SK; Horwitz LD; Brechun N; Diaz-Sanchez D; Nel AE (2002). Thiol antioxidants inhibit the adjuvant effects of aerosolized diesel exhaust particles in a murine model for ovalbumin sensitization. J Immigr Minor Health, 168: 2560-2567. 157142
- Wichers LB; Nolan JP; Winsett DW; Ledbetter AD; Kodavanti UP; Schladweiler MCJ; Costa DL; Watkinson WP (2004). Effects of instilled combustion-derived particles in spontaneously hypertensive rats Part II: pulmonary responses. Inhal Toxicol, 16: 407-419. 055636
- Wichers LB; Rowan WH, 3rd; Nolan JP; Ledbetter AD; McGee JK; Costa DL; Watkinson WP (2006). Particle deposition in spontaneously hypertensive rats exposed via whole-body inhalation: measured and estimated dose. Toxicol Sci, 93: 400-410. 103806
- Wilson MR; Foucaud L; Barlow PG; Hutchison GR; Sales J; Simpson RJ; Stone V (2007). Nanoparticle interactions with zinc and iron: Implications for toxicology and inflammation. Toxicol Appl Pharmacol, 225: 80-89. 097268
- Win-Shwe TT; Yamamoto S; Ahmed S; Kakeyama M; Kobayashi T; Fujimaki H (2006). Brain cytokine and chemokine mRNA expression in mice induced by intranasal instillation with ultrafine carbon black. Toxicol Lett, 63: 153-160. 088415
- Win-Shwe TT; Yamamoto S; Fujitani Y; Hirano S; Fujimaki H (2008). Spatial learning and memory function-related gene expression in the hippocampus of mouse exposed to nanoparticle-rich diesel exhaust. Neurotoxicology, 29: 940-947. 190146
- Witten ML; Wong SS; Sun NN; Keith I; Kweon C; Foster DE; Schauer JJ; Sherrill DL (2005). Neurogenic responses in rat lungs after nose-only exposure to diesel exhaust. Health Effects Institute. Boston, MA. 087485

- Wold LE; Simkhovich BZ; Kleinman MT; Nordlie MA; Dow JS; Sioutas C; Kloner RA (2006). In vivo and in vitro models to test the hypothesis of particle-induced effects on cardiac function and arrhythmias. Cardiovasc Toxicol, 6: 69-78. 097028
- Wong SS; Sun NN; Keith I; Kweon C-B; Foster DE; Schauer James J; Witten ML (2003). Tachykinin substance P signaling involved in diesel exhaust-induced bronchopulmonary neurogenic inflammation in rats. Arch Toxicol, 77: 638-650. 097707
- Wottrich R; Diabate S; Krug HF (2004). Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono- and co-culture. Int J Hyg Environ Health, 207: 353-361. 094518
- Wu W; Samet JM; Silbajoris R; Dailey LA; Sheppard D; Bromberg PA; Graves LM (2004). Heparin-binding epidermal growth factor cleavage mediates zinc-induced epidermal growth factor receptor phosphorylation. Am J Respir Cell Mol Biol, 30: 540-547. 096949
- Wu W; Silbajoris RA; Whang YE; Graves LM; Bromberg PA; Samet JM (2005). p38 and EGF receptor kinase-mediated activation of the phosphatidylinositol 3-kinase/Akt pathway is required for Zn2+-induced cyclooxygenase-2 expression. Am J Physiol Lung Cell Mol Physiol, 289: L883-L889. 097350
- Wu W; Wang X; Zhang W; Reed W; Samet JM; Whang YE; Ghio AJ (2003). Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells. J Biol Chem, 278; 28258-28263, 199749
- Wu YH; Vincent JH (2007). A modified Marple-type cascade impactor for assessing aerosol particle size distributions in workplaces. J Occup Environ Hyg, 4: 798-807. 098412
- Xu D-Q; Zhang W-L (2004). Monitoring of pollution of air fine particles (PM25) and study on their genetic toxicity. Biomed Environ Sci, 17: 452-458. 097231
- Yacobi NR; Phuleria HC; Demaio L; Liang CH; Peng CA; Sioutas C; Borok Z; Kim KJ; Crandall ED (2007). Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties. Toxicol In Vitro, 21: 1373-1381. 156166
- Yamamoto S; Tin Tin Win S; Ahmed S; Kobayashi T; Fujimaki H (2006). Effect of ultrafine carbon black particles on lipoteichoic acid-induced early pulmonary inflammation in BALB/c mice. Toxicol Appl Pharmacol, 213: 256-266. 096671
- Yanagisawa R; Takano H; Inoue K; Ichinose T; Sadakane K; Yoshino S; Yamaki K; Kumagai Y; Uchiyama K; Yoshikawa T; Morita M (2003). Enhancement of acute lung injury related to bacterial endotoxin by components of diesel exhaust particles. Thorax, 58: 605-612. <u>087487</u>
- Yanagisawa R; Takano H; Inoue KI; Ichinose T; Sadakane K; Yoshino S; Yamaki K; Yoshikawa T; Hayakawa K (2006). Components of diesel exhaust particles differentially affect Th1/Th2 response in a murine model of allergic airway inflammation. Clin Exp Allergy, 36: 386-395. 096458
- Yang C-Y; Tseng Y-T; Chang C-C (2003). Effects of air pollution on birthweight among children born between 1995 and 1997 in Kaohsiung, Taiwan. J Toxicol Environ Health A Curr Iss, 66: 807-816. 087886
- Yatera K; Hsieh J; Hogg James C; Tranfield E; Suzuki H; Shih C-H; Behzad Ali R; Vincent R; van Eeden Stephan F (2008). Particulate matter air pollution exposure promotes recruitment of monocytes into atherosclerotic plaques. Am J Physiol Heart Circ Physiol, 294: H944-H953. 157162
- Yauk C; Polyzos A; Rowan-Carroll A; Somers CM; Godschalk RW; Van Schooten FJ; Berndt ML; Pogribny IP; Koturbash I; Williams A; Douglas GR; Kovalchuk O (2008). Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. PNAS, 105: 605-610. 157164
- Yin H; Too HP; Chow GM (2005). The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials, 26: 5818-5826. 088133
- Yin X-J; Schafer R; Ma JYC; Antonini JM; Roberts JR; Weissman DN; Siegel PD; Ma JKH (2003). Alteration of pulmonary immunity to Listeria monocytogenes by diesel exhaust particles (DEPs) II Effects of DEPs on T-cell-mediated immune responses in rats. Environ Health Perspect, 111: 524-530. 096127
- Yin XJ; Dong CC; Ma JY; Roberts JR; Antonini JM; Ma JK (2007). Suppression of phagocytic and bactericidal functions of rat alveolar macrophages by the organic component of diesel exhaust particles. J Toxicol Environ Health A Curr Iss. 70: 820-828. 198980

- Yin XJ; Dong CC; Ma JYC; Antonini JM; Roberts JR; Stanley CF; Schafer R; Ma JKH (2004). Suppression of cell-mediated immune responses to listeria infection by repeated exposure to diesel exhaust particles in brown Norway rats. Toxicol Sci, 77: 263-271. 097685
- Yin XJ; Ma JYC; Antonini JM; Castranova V; Ma JKH (2004). Roles of reactive oxygen species and heme oxygenase-1 in modulation of alveolar macrophage-mediated pulmonary immune responses to listeria monocytogenes by diesel exhaust particles. Toxicol Sci, 82: 143-153. <u>087983</u>
- Ying Z; Kampfrath T; Thurston G; Farrar B; Lippmann M; Wang A; Sun Q; Chen LC; Rajagopalan S (2009). Ambient particulates alter vascular function through induction of reactive oxygen and nitrogen species. Toxicol Sci, 111: 80-88. 190111
- Yokohira M; Takeuchi H; Yamakawa K; Saoo K; Matsuda Y; Zeng Y; Hosokawa K; Imaida K (2007). Bioassay by intratracheal instillation for detection of lung toxicity due to fine particles in F344 male rats. Exp Toxicol Pathol, 58: 211-221. 097976
- Yokota S; Furuya M; Seki T; Marumo H; Ohara N; Kato A (2004). Delayed exacerbation of acute myocardial ischemia/reperfusion-induced arrhythmia by tracheal instillation of diesel exhaust particles. Inhal Toxicol, 16: 319-331. 096516
- Yokota S; Mizuo K; Moriya N; Oshio S; Sugawara I; Takeda K (2009). Effect of prenatal exposure to diesel exhaust on dopaminergic system in mice. Neurosci Lett, 449: 38-41. 190518
- Yokota S; Seki T; Furuya M; Ohara N (2005). Acute functional enhancement of circulatory neutrophils after intratracheal instillation with diesel exhaust particles in rats. Inhal Toxicol, 17: 671-679. 096003
- Yokota S; Seki T; Naito Y; Tachibana S; Hirabayashi N; Nakasaka T; Ohara N; Kobayashi H (2008). Tracheal instillation of diesel exhaust particles component causes blood and pulmonary neutrophilia and enhances myocardial oxidative stress in mice. J Toxicol Sci, 33: 609-620. <a href="https://doi.org/10.1001/journal.com/en/4009
- Yoshida S; Ono N; Tsukue N; Oshio S; Umeda T; Takano H; Takeda K (2006). In utero exposure to diesel exhaust increased accessory reproductive gland weight and serum testosterone concentration in male mice. Environ Sci J Integr Environ Res, 13: 139-147. 097015
- Yoshida S; Takedab K (2004). The effects of diesel exhaust on murine male reproductive function. Eisei Kagaku, 50: 210-214. <u>097760</u>
- Yoshida S; Yoshida M; Sugawara I; Takeda K (2006). Mice strain differences in effects of fetal exposure to diesel exhaust gas on male gonadal differentiation. Environ Sci J Integr Environ Res, 13: 117-123. <u>156170</u>
- Yun Y-P; Joo J-D; Lee J-Y; Nam H-Y; Kim Y-H; Lee K-H; Lim C-S; Kim H-J; Lim Y-G; Lim Y (2005). Induction of nuclear factor-"kappa"B activation through TAK1 and NIK by diesel exhaust particles in L2 cell lines. Toxicol Lett, 155: 337-342. 088302
- Zanchi AC; Venturini CD; Saiki M; Nascimento Saldiva PH; Tannhauser Barros HM; Rhoden CR (2008). Chronic nasal instillation of residual-oil fly ash (ROFA) induces brain lipid peroxidation and behavioral changes in rats. Inhal Toxicol, 20: 795-800. 157173
- Zelikoff JT; Chen LC; Cohen MD; Fang K; Gordon T; Li Y; Nadziejko C; Schlesinger RB (2003). Effects of inhaled ambient particulate matter on pulmonary antimicrobial immune defense. Inhal Toxicol, 15: 131-150. 039009
- Zelikoff JT; Schermerhorn KR; Fang K; Cohen MD; Schlesinger RB (2002). A role for associated transition metals in the immunotoxicity of inhaled ambient particulate matter. Environ Health Perspect, 5: 871-875. 037797
- Zhang J; Ghio AJ; Chang W; Kamdar O; Rosen GD; Upadhyay D (2007). Bim mediates mitochondria-regulated particulate matter-induced apoptosis in alveolar epithelial cells. FEBS Lett, 581: 4148-4152. 156179
- Zhang Q; Kleeberger SR; Reddy SP (2004). DEP-induced fra-1 expression correlates with a distinct activation of AP-1-dependent gene transcription in the lung. Am J Physiol Lung Cell Mol Physiol, 286: L427-L436. 157183
- Zhang Z; Che W; Liang Y; Wu M; Li N; Shu Y; Liu F; Wu D (2007). Comparison of cytotoxicity and genotoxicity induced by the extracts of methanol and gasoline engine exhausts. Toxicol In Vitro, 21: 1058-1065. 157186
- Zhao H; Barger MW; Ma JKH; Castranova V; Ma JYC (2006). Cooperation of the inducible nitric oxide synthase and cytochrome P450 1A1 in mediating lung inflammation and mutagenicity induced by diesel exhaust particles. Environ Health Perspect, 114: 1253-1258. 100996

- Zhao L; Wang X; He Q; Wang H; Sheng G; Chan LY; Fu J; Blake DR (2004). Exposure to hazardous volatile organic compounds, PM sub(10) and CO while walking along streets in urban Guangzhou, China. Atmos Environ, 38: 6177-6184. 100972
- Zhong W; Levin L; Reponen T; Hershey GK; Adhikari A; Shukla R; LeMasters G (2006). Analysis of short-term influences of ambient aeroallergens on pediatric asthma hospital visits. Sci Total Environ, 370: 330-336. 093264
- Zhou Y-M; Zhong C-Y; Kennedy IM; Pinkerton KE (2003). Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats. Environ Toxicol, 18: 227-235. <u>087940</u>

Annex E. Epidemiologic Studies

E.1. Short-Term Exposure and Cardiovascular Outcomes

E.1.1. Cardiovascular Morbidity Studies

Table E-1 Short-term exposure – cardiovascular morbidity outcomes: PM₁₀

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Baccarelli et al. (2007,	Outcome: Fasting and postmethionine-	Pollutant: PM ₁₀ (some TSP measures	PM Increment: IQR
<u>091310</u>)	load total homocysteine (tHcy)	used to predict PM ₁₀)	Percent Change: [Lower CI, Upper
Period of Study: Jan 1995-Aug 2005	Age Groups: 11-84 yr	Averaging Time: 24 h	CI]: Homocysteine, fasting: 0.4 (-2.4,
Location: Lombardia region, Italy	Study Design: Cross-sectional / Panel	Mean (SD): NR	3.3) Homocysteine, postmethionine-load:
	N: 1,213 participants	Percentiles:	1.1 (-1.5, 3.7)
	Statistical Analyses: Generalized additive models	25th: 20.1 50th: 34.1 75th: 52.6	Percent Change: per 25.7m3 increase in 7-day ma of PM ₁₀
	Covariates: Age, sex, BMI, smoking,	Max: 390.0	Homocysteine, fasting: 1.0 (-1.9, 3.9)
	alcohol, hormone use, temperature, day of the yr, and long-term trends	Monitoring Stations: 53	Homocysteine, postmethionine-load: 2.0 (-0.6, 4.7)
	,,	•	Percent Change: on fasting
	Season: Adjusted for long-term trends to account for season	Copollutant: CO, NO ₂ , SO ₂ , O ₃	homocysteine per IQR increase in 24-h PM ₁₀ levels
	Dose-response Investigated? No		Among smokers: 6.2 (0.0, 12.7)
	Statistical Package: R v2.2.1		Among non-smokers: -1.6 (-5.5, 2.5)
	Lags Considered: 1-day, 7-day ma.		Percent Change: on postmethionine- load homocysteine per IQR increase in 24-h PM ₁₀ levels: Among smokers: 6.0 (0.5, 11.8)
			Among non-smokers: -0.1 (-3.6, 3.5)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Baccarelli et al. (2007,	Outcome: Prothrombin time (PT)	Pollutant: PM ₁₀ (some TSP measures	PM Increment: SD
090733) Period of Study: Jan 1995-Aug 2005	Activated partial thromboplastin time (APTT)	used to predict PM ₁₀) Averaging Time: Hourly concentrations	Effect Estimate [Lower CI, Upper CI]: Estimated changes in endpoint
Location: Lombardia region, Italy	Fibrinogen Functional antithrombin	used to calculate lags of same day, 7-day, 30-day, and h 0-6	PT (international normalized ratio): At time of blood sample: -0.06 (-0.12,
	Protein C, antigen	Mean (SD): NR Percentiles:	0.00) Avg levels 7 days prior: -0.03 (-0.10,
	Functional protein S Free protein S	Sep-Nov: 5th: 33.1	0.04) Avg levels 30 days prior: -0.08 (-0.14, -0.01)
	Age Groups: 11-84 yr	50th: 51.2 75th: 76.5	(Hourly ma presented in Fig 2)
	Study Design: Cross-sectional / Panel	Max: 148.9 Dec-Feb: 25th: 47.9	APTT (ratio to reference plasma): At time of blood sample: 0.02 (-0.04,
	N: 1,218 participants		0.08) Avg levels 7 days prior: 0.00 (-0.07,
	Statistical Analyses: Generalized additive models	50th: 68.5 75th: 95.3 Max: 238.3	0.06) Avg levels 30 days prior: 0.01 (-0.06,
	Covariates: Age, sex, BMI, smoking, alcohol, hormone use, temperature, day of the yr, and long-term trends	Mar-May: 25th: 30.0	0.08) Fibrinogen: At time of blood sample: 0.01 (-0.05,
	Season: Adjusted for long-term trends to account for season	50th: 64.1 75th: 64.8 Max: 158.5	0.07) Avg levels 7 days prior: -0.03 (-0.09, 0.04)
	Dose-response Investigated? No	Jun-Aug:	Avg levels 30 days prior: -0.02 (-0.09, 0.05)
	Statistical Package: R software v2.2.1	25th: 28.0 50th: 44.3 75th: 61.3 Max: 94.7	Functional antithrombin: At time of blood sample: -0.02 (-0.09, 0.04)
		Monitoring Stations: 53 sites	Avg levels 7 days prior: -0.06 (-0.13, 0.01)
		$\textbf{Copollutant:} \ CO, \ NO_2 \ , \ SO_2, \ O_3$	Avg levels 30 days prior: -0.06 (-0.13, 0.02)
			Functional protein C: At time of blood sample: 0.00 (-0.06, 6.1) Avg levels 7 days prior: -0.06 (-0.12, 0.01) Avg levels 30 days prior: -0.06 (-0.14, 0.01)
			Protein C, antigen: At time of blood sample: 0.00 (-0.06, 6.0) Avg levels 7 days prior: -0.04 (-0.10, 0.03) Avg levels 30 days prior: -0.06 (-0.14, 0.01)
			Functional protein S: At time of blood sample: 0.04 (-0.03, 0.10) Avg levels 7 days prior: -0.03 (-0.11, 0.06) Avg levels 30 days prior: -0.14 (-0.23, -0.05)
			Free protein S: At time of blood sample: 0.05 (-0.01, 0.10) Avg levels 7 days prior: 0.01 (-0.05, 0.07) Avg levels 30 days prior: -0.01 (-0.08, 0.06)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Barclay et al. (2009, <u>179935</u>)	Heart Rhythm outcomes, & Heart Rate	Pollutant: PM ₁₀	PM Increment: NR
		Averaging Time: daily	Beta (Lower CI, Upper CI):
Period of Study: Jan 2003-May 2005	Age Groups: 70.4 (8.9)	Mean (SD): 20.25	Haemoglobin: 0.136 (-0.274, 0.546)
Location: Aberdeen, Scotland	Study Design: Panel	Min: 7.375	Mean corpuscular haemoglobin: 0.030 (-0.232, 0.291)
	N: 132 patients w/ chronic heart failure	Max: 68.3	Platelets: 0.096 (-0.923, 1.115) Haematocrit: 0.131 (-0.289, 0.551)
	Statistical Analyses: Linear & Mixed Effects Regression Model	Monitoring Stations: 1 Copollutant: PM _{2.5} , PNC, NO ₂	White blood cells: 0.034 (-1.175, 1.244) C reactive protein: -4.872 (-12.094, 2.351)
	Covariates: Age, temperature, humidity, pressure	Co-pollutant Correlation: NO ₂ city: 0.294	IL-6: 2.207 (-4.995, 9.410) von Willebrand factor: 0.660 (-2.651,
	Dose-response Investigated? No	NO city: 0.112	3.970) E-selectin: -0.536 (-2.528, 1.457)
	Statistical Package: NR	NO ₂ personal: 0.055 PNC DEOM: 0.241	Fibrinogen: -0.432 (-2.470, 1.607) Factor VII: 0.990 (-1.265, 3.245)
	Lags Considered: Lags 0-2 day	PM _{2.5} total: 0.476* PM _{2.5} traffic: 0.882* PNC total: 0.125 PNC traffic: 0.190 *Correlations based on 3-day avg concentrations	day-dimer: -1.225 (-4.505, 2.055) All arrhythmias: -3.447 (-11.521, 4.627) Ventricular ectopic beats: -2.110 (- 12.135, 7.915) Ventricular couplets: -1.561 (-10.811, 7.689) Ventricular couplets: -1.561 (-10.811, 7.689) Ventricular runs: -0.709 (-6.677, 5.259) Supraventricular ectopic beats: 0.033 (-9.242, 9.308) Supraventricular couplets: 0.006 (-8.618, 8.629) Supraventricular runs: 3.710 (-2.847, 10.266) Avg HR: 0.321 (-0.197, 0.838) 24 h SDNN: 1.040 (-0.415, 2.494) 24 h SDANN: 1.195 (-0.473, 2.863) 24 h RMSSD: 0.321 (-0.197, 0.838) 24 h PNN: 2.837 (-3.791, 9.465) 24 h LF power: 0.583 (-3.622, 4.787) 24 h LF normalized: -3.137 (-5.540, -0.733)* 24 h PRower: 0.872 (-4.649, 6.392) 24 h HF power: 0.872 (-4.649, 6.392) 24 h LF/HF ratio: -0.296 (-3.832, 3.240) *p < 0.05
			Notes: LF= low frequency HF= high frequency
Reference: Briet et al. (2007, <u>093049</u>)	Outcome: Endothelial Function	Pollutant: PM ₁₀	PM Increment: 1 SD
Period of Study: NR	Age Groups: 20-40 yr	Averaging Time: 24 h	Beta (Lower CI, Upper CI), P, R2:
Location: Paris, France	Study Design: Panel	5 day Mean (SD): 43 (10)	Flow-mediated brachial artery dilation: 0.07 (-0.62, 0.76), NS, 0.03
	N: 40 white male nonsmokers	Monitoring Stations: NR	Reactive hyperemia:
	Statistical Analyses: Multiple Robust	Co-pollutant: PM _{2.5} , SO ₂ , NO, NO ₂ , CO	15.91 (7.74, 24.0), <0.001, 0.16
	Regression	Co-pollutant Correlation: N/A	
	Covariates: R53R/R53H genotype, diet, subject factor, visit, temperature		
	Dose-response Investigated? No		
	Statistical Package: NCSS		
	Lags Considered: 0-5 day		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Choi et al. (2007, <u>093196</u>)	Outcome: Blood pressure	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 2001-2003	Study Design: Cross-sectional	Averaging Time: Measured hourly and calculated 24-h means Percentiles: Warm season: Median: 36.7 Cold season: Median: 45.7	Effect Estimate [Lower CI, Upper CI]:
Location: Incheon, South Korea	N: 10459 subjects with a hospital health examination		Estimate (p-value) for the relationship between systolic blood pressure (SBP) and diastolic blood pressure (DBP) and
	Statistical Analyses: Linear regression		an increase in PM ₁₀ on lag day 1
	Covariates: Season: Effect modification by season	Monitoring Stations: 9 stations	SBP: Warm season: 0.0798 (p < 0.001)
	modification by occoon	Copollutant: NO ₂ , SO ₂	DBP: Warm season: 0.0240 (p < 0.001)
			Note: No evidence of associations between PM ₁₀ and BP during the cold season
Reference: Chuang et al. (2007, 091063)	Outcome: High-sensitivity C-reactive protein (hs-CRP)	Pollutant: PM ₁₀	PM Increment: IQR (1-day avg: 32.7 2-day avg: 34.5
Period of Study:	Fibrinogen, plasminogen activator	Averaging Time: Hourly data used to calculate avg over 1- to 3-day periods	3-day avg: 26.0)
Between Apr-Jun 2004 or 2005	fibrinogen inhibitor-1 (PAI-1), tissue-	Mean (SD): 1-day avg: 49.2 (18.0)	Effect Estimate [Lower CI, Upper CI]:
Location: Taipei, Taiwan	type plasminogen activator (tPA), 8- hydroxy-2'-deoxyguanosine (8-OHdG),	2-day àvg: 55.3 (18.6)	% change in health endpoint per increase in IQR of PM ₁₀ (1-3 day
	and log-transformed HRV indices (SDNN = standard deviation of NN	3-day avg: 54.9 (18.2) Range (Min, Max):	averaging period single pollutant models)
	intervals, r-MSSD = square root of the mean of the sum of the squares of	1-day avg: 29.5, 83.4	hs-CRP: 1-day: 135.8 (1.8, 269.7)
	differences between adjacent NN intervals, LF = low frequency [0.04-	2-day avg: 25.5, 85.1 3-day avg: 22.2, 87.2	2-day: 108.2 (-10.9, 227.3) 3-day: 109.6 (2.5, 216.7)
	0.15Hz], and HF = high frequency [0.15-0.40Hz])	Monitoring Stations: 2 sites (each pollutant measured at one site only) Copollutant: PM _{2.5} , Sulfate, Nitrate, OC, EC, NO ₂ , CO, SO ₂ , O ₃	8-OHdG: 1-day: -9.2 (-21.5, 3.2) 2-day: -6.1 (-17.0, 4.8)
	Age Groups: 18-25 yr		3-day: -5.6 (-13.8, 2.6) PAI-1: 1-day: 30.0 (12.4, 47.7) 2-day: 19.1 (3.6, 34.7)
	Study Design: Panel (cross-sectional)		
	N: 76 students		3-day: 21.2 (9.7, 32.8)
	Statistical Analyses: Linear mixed-effects models		tPA: 1-day: 16.0 (-4.1, 36.2) 2-day: 10.4 (-6.3, 27.2) 3-day: 8.8 (-2.8, 20.5)
	Covariates: Age, sex, BMI, weekday, temperature of previous day, relative		Fibrinogen: 1-day: 5.3 (1.5, 15.2)
	humidity		2-day: 1.5 (-4.4, 7.5) 3-day: 3.3 (-1.1, 7.7)
	Season: Only 1 season of data collection		Heart Rate Variability
	Dose-response Investigated? No		SDNN: 1-day: -4.9 (-7.8, -2.1)
	Statistical Package: NR		2-day: -4.0 (-6.6, -1.4) 3-day: -4.1 (-6.1, -2.2)
	3		r-MSSD: 1-day: -4.8 (-12.3, 2.7) 2-day: -2.2 (-9.0, 4.7) 3-day: -4.0 (-9.0, 0.9)
			LF: 1-day: -6.1 (-10.1, -2.1) 2-day: -3.0 (-7.2, 1.2) 3-day: -4.3 (-7.0, -1.6)
			HF : 1-day: -5.5 (-13.0, 2.1) 2-day: -2.7 (-9.5, 4.1) 3-day: -2.0 (-7.2, 3.2)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ebelt et al. (2005, <u>056907</u>)	Outcome: CVD	Pollutant: PM ₁₀	Note: Total personal fine particle
Reference: Ebelt et al. (2005, 056907) Period of Study: Summer of 1998 Location: Vancouver, Canada	Age Groups: Range from 54-86 yr mean age= 74 yr Study Design: Extended analysis of a repeated-measures panel study N: 16 persons with COPD Statistical Analyses: Earlier analysis expanded by developing mixed-effect regression models and by evaluating additional exposure indicators Dose-response Investigated? No Statistical Package: SAS V8	Averaging Time: 24 h Mean (SD): Ambient PM ₁₀ : 17 ± 6 Exposure to ambient PM ₁₀ : 10.3 ± 4.6 Range (Min, Max): Ambient PM _{10-2.5} : 7-36 Exposure to ambient PM _{10-2.5} : 1.5-23.8 Monitoring Stations: 5 Copollutant (correlation): Ambient concentrations and exposure to ambient PM were highly correlated	exposure (T) were dominated by exposures to non ambient particles which were not correlated with ambient fine particle exposure (A) or ambient concentrations (C). Results for each of these metrics are listed. Effect estimates and 95% CI for IQR range increases in exposure Increment: C10: IQR = 7 μg/m³ SBP (mm Hg): -2.2 (-4.78-0.38) DBP (mm Hg): -0.78 (-2.65-1.09) Ln-SVE (bph): 0.16 (-0.07-0.40) HR (bpm): -102 (-0.79-2.82) SDNN (ms): -2.14 (-6.94-2.65) R-MSSD (ms): -2.24 (-4.27-0.21)
	outload i ushago. Si o vo	for each respective metric: $r \ge 0.71$ $PM_{10-2.5}$: $r \ge 0.72$ $PM_{2.5}$: $r \ge 0.92$	Increment: A10: IQR = 6.5µg/m³ SBP (mm Hg): -2.81 (-5.67-0.05) DBP (mm Hg): -0.59 (-2.79-1.62) Ln-SVE (bph): 0.27 (0.03-0.52) HR (bpm): 0.86 (-1.61-3.33) SDNN (ms): -3.91 (-9.73-1.91) R-MSSD (ms): -0.81 (-4.94-3.31)
Reference: Folino et al. (2009, 191902) Period of Study: Jun 2006-May 2007 Location: Padua, Italy	Outcome: HRV & Inflammatory Markers Age Groups: 45-65 yr Study Design: Panel	Pollutant: PM ₁₀ Averaging Time: 24 h Mean (SD): Summer: 46.4 (16.1) Winter: 73.0 (30.9)	PM Increment: 1 µg/m ³ Beta (SE), p-value: SDNN: 0.115 (0.093), 0.218 SDANN: 0.138 (0.103), 0.182 RMSSD: 0.049 (0.034), 0.146 pH: 0.002 (0.001), 0.033
	N: 39 patients w/ myocardial infarction Statistical Analyses: Linear Regression Model, ANOVA Covariates: Temperature, relative humidity, atmospheric pressure, beta- blocker, aspirin, or nitrate consumption, smoking habit	Spring: 38.3 (15.4) Monitoring Stations: NR Copollutant: PM _{2.5} , PM _{0.25} Co-pollutant Correlation: NR	LTB4: 0.427 (0.0279), 0.126 eNO: 0.000 (0.002), 0.851 PTX3: -0.003 (0.001), 0.033 C-reactive protein: -0.006 (0.004), 0.161 CC16: -0.002 (0.002), 0.280 IL-8: 0.000 (0.003), 0.895
	Dose-response Investigated? No		
	Statistical Package: Stata		
	Lags Considered: NR		
Reference: Forbes et al. (2009,	Outcome: Inflammation markers	Pollutant: PM ₁₀	PM Increment: 1 µg/m³
190351)	Age Groups: 16+ yr	Averaging Time: Yearly	Percent Change (Lower CI, Upper
Period of Study: 1994, 1998, 2003 Location: England	Study Design: Cross-sectional	1994	CI):
	N: 25,000 white adults w/ fibrinogen measurements & 17,000 white adults w/ C-reactive protein measurements	1998	Fibrinogen 1994 Crude: -0.068 (-0.367, 0.231) 1994 Adjusted: 0.080 (-0.164, 0.326) 1998 Crude: -0.592 (-0.902, -0.280)
	Statistical Analyses: Multilevel Linear Regression Models	Median: 17.9 Range: 12.6-27.0 IQR: 2.7	1998 Adjusted: -0.388 (-0.727, -0.047) 2003 Crude: -0.339 (-0.696, 0.019) 2003 Adjusted: -0.069 (-0.458, 0.322)
	Covariates: Age, sex, BMI, social class, region, cigarette smoking	2003 Median: 16.2 Range: 11.0-22.7	Combined: -0.077 (-0.254, 0.100) C-reactive protein
	Dose-response Investigated? No	IQR: 2.6	1998 Crudė: -0.914 (-2.206, 0.395)
	Statistical Package: Stata	Monitoring Stations: NR	1998 Adjusted: -0.266 (-1.782, 1.274) 2003 Crude: 0.286 (-1.327, 1.925)
	Lags Considered: NR	Copollutant: NO ₂ , SO ₂ , O ₃	2003 Adjusted: 0.661(-1.068, 2.421) Combined: 0.140 (-1.003, 1.296)
		Co-pollutant Correlation: N/A	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Kaufman (1987, <u>190960</u>)	Outcome: Inflammation	Pollutant: PM ₁₀	PM Increment: NR
Period of Study: Nov 2004-2005	Age Groups: 10-18 yr	Averaging Time: 24 h	Beta (SE):
Location: Isfahan, Iran	Study Design: Panel	Mean (SD): 122.08 (33.63)	CRP: 1.5 (0.2) Ox-LDL: 1.4 (0.1)
	N: 374 children	0th: 11.00 25th: 86.50	MDA: 1.3 (0.1) CDE: 1.1 (0.1)
	Statistical Analyses: Linear Regression, Logistic Regression	50th: 153.0 75th: 191.00	HOMA-IR: 1.1 (0.3)
	Covariates: Age, gender, BMI, waist	Monitoring Stations: 3	
	circumference, healthy eating index, physical activity level	Copollutant: O ₃ , SO ₂ , NO ₂ , CO	
	Dose-response Investigated? No	Co-pollutant Correlation: NR	
	Statistical Package: SPSS		
	Lags Considered: 0- to 7-day avg		
Reference: Liao et al. (2004, <u>056590</u>)	Outcome: 5-min HR, HRV indices (HF,	Pollutant: PM ₁₀	PM Increment: SD
Period of Study: 1996-1998	LF, SDNN)	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Location: ARIC study cohort	Study Design: Cross-sectional	Mean (SD): 24.3 (11.5)	Estimate (SE)
(Washington County, MD Forsyth County, NC	Statistical Analyses: Linear regression	Copollutant:	HF: -0.06 ms2 (0.018) SDNN: -1.03 ms (0.31)
and selected suburbs of Minneapolis, MN).		O₃ CO	H: 0.32 beats/min (0.158)
The 4th quarter of the ARIC cohort was		SO ₂ NO ₂	
sampled exclusively from black residents of Jackson, MS.		NO ₂	
Reference: Liao et al. (2005, <u>088677</u>)	Outcome: Fibrinogen, factor VIII co-	Pollutant: PM ₁₀	PM Increment: 1 SD (12.8 μg/m³)
Period of Study: 1987-1989 baseline health exam	agulant activity (VIII-C), von Willebrand factor (vWF), white blood cell count (WBC), and serum albumin	Averaging Time: 24-h avg (1, 2, and 3 days prior to the exam)	Effect Estimate: Adjusted regression coefficient (SE): Fibrinogen (mg/dl):
Location: 3 centers in the U.S.	Age Groups: 45-64 yr	Mean (SD): 29.9 (29.9)	0.163 (0.755)
(Forsyth County, NC suburbs of Minneapolis, MN	Study Design: Cross-sectional	Mean (SD) within Quartiles:	Factor VIII-C (%): Non-linear association: β (PM ₁₀) = -5.30, p < 0.0
black residents of Jackson, MS)	N: 10,208 participants (7705 for PM)	Q1-3: 24.0 (6.96) Q4: 47.3 (10.11)	β (PM ₁₀)2 = 0.80, p < 0.05
	Statistical Analyses: Multiple linear	Copollutant: CO, SO ₂ , NO ₂ , O ₃	vWF (%): Diabetics: 3.93 (1.80)
	regression		Nondiabetics: -0.54 (0.58)
	Covariates: Age, sex, ethnicity-center, education, smoking, drinking status,		Albumin (g/dl): CVD: -0.006 (0.003)
	BMI, history of chronic respiratory disease, humidity, season, cloud cover,		Non-CVD: 0.029 (0.017)
	and temperature		p < 0.05
	Dose-response Investigated? Yes, examined higher-ordered terms for each pollutant		
	Statistical Package: SAS v8.2		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Liao et al. (2007, <u>180272</u>)	Outcome: Ectopy	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 1999-2004	Age Groups: Women 50-79 yr	Averaging Time: Daily	Percent Change (Lower CI, Upper
Location: 24 U.S. states	Study Design: Panel	Mean (SD)*:	CI):
	N : 57,422	All: 27.5 (12.1) No Ectopy: 27.5 (12.1)	All Ventricular Ectopy Lag 0: 1.01 (0.95, 1.07)
	Statistical Analyses: Logistic regression & random effects modeling	Any Ectopy: 27.5 (11.9) 5th, 95th percentile*: All: 12.2, 48.9 No Ectopy: 12.3, 48.8 Any Ectopy: 11.8, 49.3 Monitoring Stations: NR‡	Lag 1: 1.02 (0.96, 1.09) Lag 2: 0.99 (0.93, 1.06)
	Covariates: Age, race, center, education, history of CVD/chronic lung disease, rel. humidity, temperature, smoking		Current Smoker Ventricular Ectopy Lag 0: 1.21 (0.96, 1.53) Lag 1: 1.32 (1.07, 1.65) Lag 2: 1.22 (0.95, 1.56) Nonsmoker Ventricular Ectopy
	Dose-response Investigated? No	Copollutant: PM _{2.5}	Lag 0: 1 (0.93, 1.06)
	Statistical Package: SAS, Stata	Co-pollutant Correlation: NR	Lag 1: 1.01 (0.94, 1.07) Lag 2: 0.98 (0.92, 1.05)
	Lags Considered: Lags 0-365 day	*Lag 1	All Supraventricular Ectopy
	‡ Monitors used in model for spatial interpolation of daily PM values.		Lag 0: 1 (0.95, 1.06) Lag 1: 1 (0.95, 1.05) Lag 2: 0.99 (0.94, 1.04)
			All Ventricular or Supraventricular Ectopy Lag 0: 1 (0.95, 1.04) Lag 1: 1 (0.96, 1.04) Lag 2: 0.98 (0.94, 1.02)
Reference: Liu et al. (2007, <u>156705</u>)	Outcome: Heart rate, blood pressure,	Pollutant: PM ₁₀ (personal)	PM Increment: 10 μg/m ³
Period of Study: May 2005-Jul 2005	brachial arterial diameter, flow-mediated vasodilatation (FMD), plasma cytokines, and thiobarbituric acid reactive substances (TBARS)	Averaging Time: Real-time monitor measured exposure during 24-h period prior to clinic measures	Effect Estimate [Lower Cl, Upper Cl]: **p < 0.05 *p < 0.10. Regression coefficients (SE)
Location: Windsor, Ontario, Canada	Age Groups: 18-65 yr	Median (5th-95th percentile): 0-24 h: 25.5 (9.8-133.0) 0-6 h: 15.3 (5.3-83.2) 7-12 h: 17.0 (7.1-186.3) 13-18 h: 28.5 (11.4-167.0) 19-24 h: 30.5 (10.1-148.2) Monitoring Stations: Personal monitoring Copollutant (correlation): Ambient PM _{2.5} (r = 0.34)	End-diastolic basal diameter (µm): All
	Study Design: Panel		subjects (n=24): -2.52 (3.27) subjects not taking vasoactive meds
	N: 24 nonsmoking subjects with type I or II diabetes over a 7 week period (2-14 visits for subjects)		(n=17): -3.93 (3.66) subjects w/BMI ≤ 29kg/m2 (n=14): 8.85 (5.85)
	170 total vascular measurements and 134 total blood samples collected		End-systolic basal diameter (µm): All subjects (n=24): -9.02 (3.58)** subjects not taking vasoactive meds
	Statistical Analyses: Mixed effects regression models		(n=17): -10.59 (4.36)** subjects w/BMI ≤29kg/m2 (n=14): 3.85 (5.49)
	Covariates: (Time-dependent covariates) Daily temperature, relative humidity, blood glucose level, also checked for confounding by ambient air pollutant concentrations (controlled for ambient PM _{2.5})		End-diastolic FMD (%): All subjects (n=24): 0.20 (0.08)** subjects not taking vasoactive meds (n=17): 0.23 (0.09)** subjects w/BMI ≤29kg/m2 (n=14): 0.12 (0.05)**
	Season: No adjustment since testing was completed within a 7-wk period during early summer		End-systolic FMD (%): All subjects (n=24): 0.38 (0.18)** subjects not taking vasoactive meds
	Dose-response Investigated? No		(n=17): 0.51 (0.22)** subjects w/BMI ≤ 29kg/m2 (n=14): 0.18
	Statistical Package: S-Plus		(0.10)*
			Flow (cm/s): All subjects (n=24): -0.16 (0.19)
			subjects not taking vasoactive meds (n=17): -0.48 (0.21)** subjects w/BMI ≤ 29kg/m2 (n=14): -0.39 (0.23)*
			Heart rate (bpm): All subjects (n=24): 0.01 (0.11) subjects not taking vasoactive meds (n=17): -0.06 (0.12) subjects w/BMI ≤ 29kg/m2 (n=14): 0.15 (0.12)
			Diastolic blood pressure (mm Hg): All subjects (n=24): 0.19 (0.16) subjects not taking vasoactive meds

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			(n=17): 0.40 (0.18)** subjects w/BMI ≤ 29kg/m2 (n=14): 0.27 (0.21)
			Systolic blood pressure (mm Hg): All subjects (n=24): 0.17 (0.19) subjects not taking vasoactive meds (n=17): 0.43 (0.24)* subjects w/ BMI ≤ 29kg/m2 (n=14): 0.38 (0.24)
			CRP (μg/mL): All subjects (n=24): 0.11 (0.07) subjects not taking vasoactive meds (n=17): 0.10 (0.09) subjects w/ BMI ≤ 29kg/m2 (n=14): 0.02 (0.03)
			ET-1 (pg/mL): All subjects (n=24): 0.00 (0.00) subjects not taking vasoactive meds (n=17): 0.00 (0.00) subjects w/BMI ≤ 29kg/m2 (n=14): 0.00 (0.01)
			IL-6 (pg/mL): All subjects (n=24): 0.00 (0.05) subjects not taking vasoactive meds (n=17): 0.01 (0.05) subjects w/BMI ≤ 29kg/m2 (n=14): -0.00 (0.03)
			TNF-α (pg/mL): All subjects (n=24): 0.03 (0.05) subjects not taking vasoactive meds (n=17): 0.02 (0.05) subjects w/ BMI ≤ 29kg/m2 (n=14): 0.03 (0.08)
			TBARS (pmol/mL) All subjects (n=24): 16.12 (4.00)** subjects not taking vasoactive meds (n=17): 8.10 (9.18) subjects w/ BMI ≤ 29kg/m2 (n=14): -0.28 (6.60)
			regression coefficients (SE) among subjects not taking vasoactive medications, with lag time
			End-diastolic basal diameter (μm): 0-6 h: 29.91 (10.64)** 7-12 h: 0.72 (3.95) 13-18 h: -3.62 (2.80) 19-24 h: -0.57 (1.7)
			End-systolic basal diameter (µm): 0-6 h: 28.88 (11.22)** 7-12 h: -0.78 (4.58) 13-18 h: -7.70 (3.30)** 19-24 h: -2.87 (2.05)
			End-diastolic FMD (%): 0-6 h: -0.12 (0.10) 7-12 h: 0.04 (0.05) 13-18 h: 0.11 (0.03)** 19-24 h: 0.12 (0.04)**
			End-systolic FMD (%): 0-6 h: 0.36 (0.08)** 7-12 h: 0.48 (0.32) 13-18 h: 0.19 (0.06)** 19-24 h: 0.34 (0.13)**
			Flow (cm/s): 0-6 h: -0.34 (0.22) 7-12 h: -0.26 (0.27 13-18 h: -0.27 (0.15)* 19-24 h: -0.30 (0.11)**
			Heart rate (bpm): 0-6 h: 0.31 (0.13)** 7-12 h: 0.26 (0.12)**

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			13-18 h: 0.01 (0.09) 19-24 h: -0.08 (0.05)
			Diastolic blood pressure (mm Hg): 0-6 h: -0.29 (0.12)** 7-12 h: 0.24 (0.12)** 13-18 h: 0.46 (0.17)** 19-24 h: 0.18 (0.14)
			Systolic blood pressure (mm Hg): 0-6 h: -0.65 (0.18)** 7-12 h: 0.17 (0.19) 13-18 h: 0.86 (0.24)** 19-24 h: 0.11 (0.10)
			CRP (µg/mL): 0-6 h: 0.15 (0.13) 7-12 h: 0.15 (0.13) 13-18 h: 0.03 (0.06) 19-24 h: 0.04 (0.03)
			ET-1 (pg/mL): 0-6 h: 0.02 (0.00)**: 7-12 h: -0.00 (0.00) 13-18 h: -0.00 (0.00) 19-24 h: 0.00 (0.00)
			IL-6 (pg/mL): 0-6 h: 0.03 (0.06) 7-12 h: 0.00 (0.06) 13-18 h: 0.02 (0.03) 19-24 h: 0.00 (0.02)
			TNF-α (pg/mL): 0-6 h: 0.01 (0.07) 7-12 h: 0.09 (0.04)** 13-18 h: 0.01 (0.04) 19-24 h: -0.00 (0.03)
			TBARS (pmol/mL): 0-6 h: -4.44 (6.72) 7-12 h: 11.94 (5.08)** 13-18 h: 5.06 (4.03) 19-24 h: 1.06 (4.64)
			Note: Adding ambient PM _{2.5} data as a covariate in the model yielded similar regression coefficients for personal PM ₁₀
Reference: Lipsett et al. (2006,	Outcome: HRV parameters: SDNN,	Pollutant: PM ₁₀	PM Increment: SE*1000
088753) Period of Study: Feb-May 2000	SDANN, r-MSSD, LF, HF, total power, triangular index (TRII).	Averaging Time: 2 h	Effect Estimate (change in HRV per unit increase in PM concentration):
Location: Coachella Valley, CA	Study Design: Panel study	Mean (range): Indio: 23.2 (6.3-90.4)	SDNN: -0.71 msec (SE = 0.268)
200410111 Obdottolia valley, Ort	N: 19 non-smoking adults with coronary		Notes: Weekly ambulatory 24 h ECG
	artery disease		recordings (once per week for up to 12 wk), using Holter monitors, were made.
	Statistical Analysis: Mixed linear regression models with random effects parameters	Copollutant: O₃	Subjects' residences were within 5 miles of 1 of 2 PM monitoring sites. Regressed HRV parameters against 18: 00-20: 00 mean particulate pollution.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ljungman et al. (2008,	Outcome: Ventricular Arrhythmia	Pollutant: PM ₁₀	PM Increment: Interquartile Range
180266) Period of Study: Aug 2001-Dec 2006 Location: Gothenburg & Stockholm, Sweden	Age Groups: 28-85 yr	Averaging Time: Hourly	Odds Ratio (Lower CI, Upper CI):
	Study Design: Case-crossover	Gothenburg, Stockholm	2 h: 1.31 (1.00, 1.72) 24 h: 1.24 (0.87, 1.76)
	N: 88 patients w/ implantable cardioverter defibrillators	Median: 2h: 18.95, 14.62 24 h: 19.92, 15.23	Notes: OR of ventricular arrhythmia for an IQR increase of air pollutants in
	Statistical Analyses: Conditional logistic regression	Min: 2h: 0.00, 0.33	different subgroups (Fig 2)
	Covariates: Temperature, humidity, pressure, ischemic heart disease, ejection fraction, heart disease,	24 h: 2.13, 3.96 Max:	
	diabetes, use of beta-blockers, age, BMI, location at time of arrhythmia, distance from air pollution monitor	2h: 203.75, 159.79 24 h: 78.01, 90.50	
	Dose-response Investigated? No	IQR: 2h: 14.16, 11.59	
	Statistical Package: Stata, S-plus	24 h: 11.49, 9.59	
	Lags Considered: Lags 2-24 h	Monitoring Stations: 2	
		Copollutant: PM _{2.5} , NO ₂	
		Co-pollutant Correlation 2 h NO ₂ : 0.36 24 h NO ₂ : 0.29	
Reference: Ljungman et al. (2009,	Outcome: Interleukin-6 Response	Pollutant: PM ₁₀	PM Increment: Interquartile Range
191983) Paried of Study: May 2003, Jul 2004	Age Groups: 35-80 yr	Averaging Time: 24 h	(17.4 µg/m³)
Period of Study: May 2003-Jul 2004 Location:	Study Design: Panel	Mean: 31.6 25th: 21.1 75th: 38.4 Monitoring Stations: NR	Change of IL-6 (Lower CI, Upper CI), p-value: 0.0 (-1.3, 1.3), 1.0
Athens, Greece Helsinki, Finland	N: 955 male myocardial infarction survivors		
Ausburg, Germany Barcelona, Spain	Statistical Analyses: Additive Mixed		
Rome, Italy	Models	Copollutant: CO, NO ₂ , PNC, PM _{2.5}	
Stokholm, Sweeden	Covariates: Age, sex, BMI, city, HDL/total cholesterol, smoking, alcohol intake, HbA1c, NT-proBNP, history of MI, heart failure, or diabetes, phlegm	Co-pollutant Correlation PM _{2.5} : 0.81	
	Dose-response Investigated? No		
	Statistical Package: NR		
	Lags Considered: 1 day		
Reference: Mar et al. (2005, <u>087566</u>)	Outcome: Change in arterial O ₂ satura-	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 1999-2001	tion, heart rate, and blood pressure (SBP and DBP)	Averaging Time: 24 h	Unit change in measure(95% CI): Among all subjects:
Location: Seattle, WA	Age Groups: >75 yr	Mean (SD): Indoor: 12.6 (7.8)	Each increase in outdoor same day
	Study Design: Panel study	Outdoor: 14.5 (7.0)	PM ₁₀ was associated with: SBP: -0.10 mmHg (95% CI: -1.37, 1.18)
	N: 88 elderly subjects		DBP: -0.03 mmHg (95% CI: -0.79, 0.73)
	Statistical Analysis: GEE		HR: -0.48 beats/min (95% CI: -1.03, 0.06)
			Each increase in indoor same day PM _{2.5} was associated with: SBP: 0.92 mmHg (95% CI: -0.95, 2.78)
			DBP: 0.63 mmHg (95% CI: -0.29, 1.56)
			HR: 0.02 beats/min (95% CI: -0.54, 0.58)
			Notes: Results by health status presented in Fig 1. Used 2 sessions that each were 10 consecutive days of measurement. Used personal, indoor, and outdoor measures of PM _{2.5}

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Metzger et al. (2007,	Outcome: Days with any event recorded by the ICD, days with ICD shocks/defibrillation and days with	Pollutant: PM ₁₀	PM Increment: OR (95% CI):
092856)		Averaging Time: 24 h	Outcome = Any event recorded by ICD
Period of Study: Jan 1993-Dec 2002	either cardiac pacing or defibrillation	Mean (SD): 28.0 (12.2)	OR = 1.00 (95% CI: 0.97, 1.03)
Location: Atlanta, GA	Study Design: Repeated measures	Median: 26.4	
	N: 884 subjects	Copollutant:	
	Statistical Analysis: Logistic regression with GEE to account for residual autocorrelation within subjects	O ₃ , NO ₂ , CO, SO ₂ . Aug1998-Dec2002: Oxygenated hydrocarbons	
Reference: Min et al. (2008, <u>191901</u>)	Outcome: Heart Rate Variability	Pollutant: PM ₁₀	PM Increment: 1 SD (19 µg/m³)
Period of Study: Dec 2003-Jan 2004	Age Mean (SD): 44.3 (21.9)	Averaging Time: 1 h	Percent Change: [Lower CI, Upper
Location: Taein Isalnd, South Korea	Study Design: Panel	Mean (SD): 33.244 (19.017)	CI]:
	N: 1.349 participants	Percentiles:	SDNN 6-h avg: -4.34 (-7.99, -0.55)**
	Statistical Analyses: Linear Regression	25th: 18.000 50th: 26.000 75th: 41.000	9-h avg: -5.48 (-9.61, -1.17)**h^ 12-h avg: -6.23 (-10.47, -1.79)*** 24-h-avg: -4.73 (-9.73, 0.56)-
	Covariates: Age, sex, BMI, smoking	Range: 187.000. 16.000	48-h avg: -1.25 (-5.59, 3.29) 72-h avg: -0.85 (-5.35, 3.86)
	Dose-response Investigated? No	Monitoring Stations: 1	LF
	Statistical Package: SAS, R	Copollutant: NO ₂ , SO ₂	6-h avg: -10.32 (-18.05, -1.86)**
	Lags Considered: 0-72 h	.,	9-h avg: -13.79 (-22.26, -4.39)*** 12-h avg: -14.48 (-23.18, -4.80)*** 24-h-avg: -13.15 (-23.36, -1.57)** 48-h avg: -0.10 (-9.99, 10.87) 72-h avg: -7.61 (-17.04, 2.88)
			HF 6-h avg: -1.07 (-10.43, 9.28) 9-h avg: -3.28 (-13.72, 8.43) 12-h avg: -4.06 (-14.77, 8.00) 24-h-avg: -1.22 (-13.96, 13.41) 48-h avg: -3.55 (-14.01, 8.18) 72-h avg: -3.88 (-14.64, 8.23)
			Notes: Percent change in HRV for air pollution children, adults, and the elderly (Fig 2)
			Percent change in HRV for PM ₁₀ exposure in all ages (Fig 3)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Peters et al. (2009,	Outcome: Plasma Fibrinogen	Pollutant: PM ₁₀	PM Increment: 13.5 μg/m ³
<u>191992</u>)	Age Groups: 37-81	Averaging Time: 24 h	Change (Lower CI, Upper CI):
Period of Study: May 2003-Jul 2004	Study Design: Panel	Mean (SD): 30.3	Genotype 1 1
Location: Helsinki, Finland Ausburg, Germany Barcelona, Spain Rome, Italy Stokholm, Sweeden	N: 854 adults Statistical Analyses: Additive Mixed Models Covariates: Age, sex, BMI, city, HDL/total cholesterol, smoking, HbA1c, NT-proBNP, history of arrhythmia, asthma, arthrosis, stroke, bronchitis, season, apparent temperature, relative humidity, weekday, hour of visit Dose-response Investigated? No Statistical Package: NR Lags Considered: 0- to 5-day avg	Min: 0 Max: 194 Monitoring Stations: NR Copollutant: PM _{2.5} , PM _{10-2.5} Co-pollutant Correlation: NR	rs2070006: 1.22 (0.47, 1.96) rs2070006: 1.22 (0.47, 1.96) rs2070011: 1.16 (0.41, 1.90) rs1800790: 0.27 (-0.36, 0.91) rs2227399: 0.27 (-0.36, 0.91) rs6056: 0.19 (-0.45, 0.83) rs4220: 0.19 (-0.45, 0.83) Haplotype in cluster 2: 0.09 (-0.53, 0.76) rs1800791: 0.18 (0.21, 1.40) Genotype 1 2 rs2070006: 0.5 (-0.19, 2.15) rs2070011: 0.42 (-0.28, 1.13) rs1800790: 1.28 (0.54, 2.01) rs2227399: 1.28 (0.55, 2.02) rs6056: 1.26 (0.49, 2.04) Haplotype in cluster 2: 1.17 (0.35, 1.99) rs1800791: 0.40 (-0.48, 1.28) Genotype 2 2 rs2070006: 0.11 (-1.94, 2.15) rs2070011: 0.08 (-2.08, 2.24) rs1800790: 2.15 (0.71, 3.60) s2227399: 2.18 (0.73, 3.63) s6056: 2.24 (0.72, 3.77) s4220: 2.25 (0.73, 3.78)
Defenses Described to 1 (0007	Outcome Managerial Infrastru	Pullutura DM	Haplotype in cluster 2: 2.16 (0.61, 3.71 rs1800791: -0.13 (-1.84, 1.58)
Reference: Rosenlund et al. (2007, 114679)	Outcome: Myocardial Infarction	Pollutant: PM ₁₀	PM Increment: 5th-95th percentile (5µg/m³)
Period of Study: 1985-1996	Age Groups: 15-79 yr	Averaging Time: 5 yr Odds Ratio (Low Median: 2.4	Odds Ratio (Lower CI, Upper CI):
Location: Stockholm County	Study Design: Case-control		All Subjects
	N: 24,387 first event of myocardial infarction cases and 276,926 population	5th-95th: 0.3-6.2	Controls: 1.0 All Cases: 1.04 (1.00, 1.09)
	based controls Statistical Analyses: Logistic	Median: 2.2 5th-95th: 0.3-6.0	Nonfatal Cases: 0.98 (0.963, 1.03) Fatal Cases: 1.16 (1.09, 1.24)
	Statistical Analyses: Logistic Regression	Monitoring Stations: NR	In-hospital death: 1.05 (0.95, 1.17) Out-of-hospital death: 1.23 (1.14, 1.33)
	Covariates: Age, sex, calendar yr, SES	Copollutant: NO ₂ , CO	Subjects who did not move b/t
	Dose-response Investigated? No	Co-pollutant Correlation: HNR	population censuses Controls: 1.0
	Statistical Package: Stata	To pondum contration. That	All Cases: 1.11 (1.02, 1.21)
	Lags Considered: 5 yr		Nonfatal Cases: 1.05 (0.96, 1.15) Fatal Cases: 1.56 (1.28, 1.91) In-hospital death: 1.58 (1.13, 2.19) Out-of-hospital death: 1.56 (1.22, 1.98)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ruckerl et al. (2007,	Outcome: Interleukin-6 (IL-6),	Pollutant: PM ₁₀	PM Increment: IQR
<u>156931</u>)	fibrinogen, C-reactive protein (CRP)	Averaging Time: Hourly and 24 h (lag	Effect Estimate [Lower CI, Upper CI]:
Period of Study: May 2003-Jul 2004	Age Groups: 35-80 yr	0-4, mean of lags 0-4, mean of lags 0-1,	% change in mean blood markers per
Location: Athens, Augsburg,	Study Design: Repeated measures/	mean of lags 2-3, means of lags 0-3)	increase in IQR increase of air pollutant.
Barcelona, Helsinki, Rome, and Stockholm	longitudinal		IL-6: Lag (IQR): % change in GM
Stockholili	N: 1003 MI survivors	Percentiles: NR	(95%CI) Lag 0 (17.4): -0.34 (-1.66, 0.99)
	Statistical Analyses: Mixed-effect	Range (Min, Max): NR	Lag 1 (17.4): -0.69 (-1.95, 0.58) Lag 2 (17.4): -1.59 (-3.99, 0.88)
	models	Monitoring Stations: Central	5-day avg (13.5): -0.87 (-2.28, 0.55)
	Covariates: City-specific confounders	monitoring sites in each city	Fibrinogen: Lag (IQR): % change in
	(age, sex, BMI) long-term time trend and apparent temperature RH, time of	Copollutant:	AM (95%CI) Lag 0 (17.4): 0.06 (-0.43, 0.55)
	day, day of week included if adjustment	NO Lag 1 (17.4): 0.14 (-0.35, NO Lag 2 (17.4): 0.24 (-0.24,	Lag 0 (17.4): 0.00 (-0.43, 0.53) Lag 1 (17.4): 0.14 (-0.35, 0.63)
	improved model fit		Lag 2 (17.4): 0.24 (-0.24, 0.72)
	Season: Long-term time trend	NO_2	5-day avg (13.5): 0.60 (0.10, 1.09)
	Dose-response Investigated? Used p-splines to allow for nonparametric		CRP: Lag (IQR): % change in GM (95%CI)
	exposure-response functions		Lag 0 (17.4): -0.71 (-2.75, 1.37) Lag 1 (17.4): -0.63 (-2.61, 1.39)
	Statistical Package: SAS v9.1		Lag 2 (17.4): -1.42 (-4.23, 1.47) 5-day avg (13.5): -1.35 (-3.45, 0.79)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ruckerl et al. (2006,	Outcome: C-reactive protein (CRP)	Pollutant: PM ₁₀	PM Increment: IQR (15.2
088754)	serum amyloid A (SAA) E-selectin	Averaging Time: 24 h	5-day avg: 12.8)
Period of Study: Oct 2000-Apr 2001	vWF intercellular adhesion molecule-1	Mean (SD): 20.0 (13.0)	Effect Estimate [Lower CI, Upper CI]: Effects of air pollution on blood markers
Location: Erfurt, Germany	(ICAM-1) fibrinogen Factor VII prothrombin fragment 1+2 D-dimer Age Groups: 50+ yr Study Design: Panel (12 repeated measures at 2-wk intervals) N: 57 male subjects with coronary disease Statistical Analyses: Fixed effects linear and logistic regression models Covariates: Models adjusted for different factors based on health endpoint CRP: RH, temperature, trend, ID ICAM-1: temperature, trend, ID VWF: air pressure, RH, temperature, trend, ID FVII: air pressure, RH, temperature, trend, ID, weekday	Percentiles: 25th: 10.8 50th: 15.6 75th: 26.0	presented as OR (95%CI) for an increase in the blood marker above the 90th percentile per increase in IQR air pollutant.
		Range (Min, Max): 5.4, 74.5	CRP: Time before draw: 0-23 h: 1.2 (0.8, 1.9)
		Monitoring Stations: 1 site	24-47 h: 2.0 (1.1, 3.6)
		Copollutant:	48-71 h: 2.2 (1.2, 3.8) 5-day mean: 2.0 (1.2, 3.7)
		UFPs AP PM _{2.5}	ICAM-1: Time before draw: 0-23 h: 1.3 (0.9, 1.8)
		PM ₁₀ OC EC	24-47 h: 3.1 (2.0, 4.8) 48-71 h: 3.4 (2.2, 5.2) 5-day mean: 3.4 (2.2, 5.3)
		NO ₂ CO	Effects of air pollution on blood markers presented as % change from the mean/GM in the blood marker per increase in IQR air pollutant.
			vWF: Time before draw: 0-23 h: 4.0 (-0.6, 8.5) 24-47 h: 6.0 (0.6, 11.5) 48-71 h: 1.1 (-4.9, 7.0)
	Season: Time trend as covariate Dose-response Investigated? Sensitivity analyses examined nonlinear exposure-response functions Statistical Package: SAS v8.2 and S-Plus v6.0		5-day mean: 6.1 (-0.6, 12.8) FVII: Time before draw: 0-23 h: -6.6 (-10.42.5) 24-47 h: -8.4 (-12.34.3) 48-71 h: -5.9 (-9.6, -2.0) 5-day mean: -8.0 (-12.4, -3.4)
			Note: Summary of results presented in figures. SAA results indicate increases in association with PM (not as strong and consistent as with CRP)
			No association observed between Eselectin and PM
			An increase in prothrombin fragment 1+2 was consistently observed, particularly with lag 4
			Fibrinogen results revealed few significant associations, potentially due to chance
			D-dimer results revealed null associations in linear and logistic analyses

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Study Reference: Ruckerl et al. (2007, 091379) Period of Study: Oct 2000-Apr 2001 Location: Erfurt, Germany	Outcome: Soluble CD40 ligand (sCD40L), platelets, leukocytes, erythrocytes, hemoglobin Age Groups: 50+ yr Study Design: Panel (12 repeated measures at 2-wk intervals) N: 57 male subjects with coronary disease Statistical Analyses: Fixed effects linear regression models Covariates: Long-term time trend, weekday of the visit, temperature, RH, barometric pressure Season: Time trend as covariate Dose-response Investigated? No Statistical Package: SAS v8.2 and S-Plus v6.0	Concentrations ¹ Pollutant: PM ₁₀ Averaging Time: 24 h Mean (SD): 20.0 (13.0) Percentiles: 25th: 10.8 50th: 15.6 75th: 26.0 Range (Min, Max): 5.4, 74.5 Monitoring Stations: 1 site Copollutant: UFPs AP PM _{2.5} PM ₁₀ NO	PM Increment: IQR (15.2 5-day avg: 12.8) Effect Estimate [Lower CI, Upper CI]: Effects of air pollution on blood markers presented as % change from the mean/GM in the blood marker per increase in IQR air pollutant. sCD40L, % change GM (pg/mL): lag0: 1.6 (-3.5, 7.0) lag 1: 1.1 (-5.4, 7.9) lag 2: -3.5 (-8.9, 2.2) lag 3: -1.4 (-6.0, 3.4) 5-day mean: -1.2 (-7.8, 5.8) Platelets, % change mean (103/µI): lag 0: -0.4 (-1.9, 1.0) lag 1: 0.4 (-1.4, 2.3) lag 2: 0.5 (-1.4, 2.3) lag 2: 0.5 (-1.4, 2.3) lag 3: -0.1 (-1.6, 1.4) 5-day mean: 0.0 (2.1, 0.0) Leukocytes, % change in mean (103/µI): lag0: -1.1 (-2.8, 0.7) lag 1: -0.5 (-2.6, 1.5) lag 2: 0.1 (-2.1, 2.4) lag 3: -0.7 (-2.6, 1.2) 5-day mean: -1.1 (-3.6, 1.4) Erythrocytes, % change mean (106/µI): lag0: 0.0 (-0.4, 0.5) lag 1: -0.4 (-1.0, 0.1) lag 2: -0.7 (-1.2, -0.2) lag 3: -0.4 (-0.8, 0.0) 5-day mean: -0.6 (-1.2, -0.1) Hemoglobin, % change mean (g/dI):
Reference: Steinvil et al. (2008, 188893) Period of Study: 2003-2006 Location: Tel-Aviv, Israel	Outcome: Inflammation Age Groups: Mean (SD): 46 (12) yr Study Design: Panel N: 3659 Statistical Analyses: Linear Regression Covariates: Age, waist circumference, BMI, HDL, OLDL, triglycerides, diastolic & systolic BP, alcohol consumption, sports intensity, medications, smoking status, family history of CHD, temperature, humidity, precipitation, season, & yr Dose-response Investigated? No Statistical Package: SPSS Lags Considered: 0-7 days	Pollutant: PM ₁₀ Averaging Time: 24 h Mean (SD): 64 (100.8) 25th: 33.1 50th: 43.0 75th: 60.7 Monitoring Stations: NR Copollutant: SO ₂ , NO ₂ , O ₃ , CO Co-pollutant Correlation: SO ₂ : 0.043 NO ₂ : 0.082 O ₃ : -0.113 CO: 0.075	lag 0: -0.1 (-0.7, 0.6) lag 1: -0.4 (-1.2, 0.3) lag 2: -0.7 (-1.3, 0.0) lag 3: -0.3 (-0.9, 0.2) 5-day mean: -0.7 (-1.5, 0.1) PM Increment: Interquartile Range (27.6 µg/m³) hs-CRP Relative % Change (Lower Cl, Upper Cl): Men: Lag 0: -1 (-2, 1) Lag 1: 0 (-1, 1); Lag 2: -1 (-2, 1) Lag 3: -1 (-2, 0) Lag 4: 0 (-1, 1) Lag 5: 0 (-1, 2) Lag 6: 1 (0, 2) Lag 7: 1 (0, 1) 0-7 avg: -2 (-5, 1) Women: Lag 0: 0 (-2, 2) Lag 1: 0 (-1, 2) Lag 2: 1 (0, 2) Lag 3: 0 (-1, 1) Lag 5: 0 (-1, 2) Lag 5: 0 (-1, 2) Lag 5: 0 (-1, 2) Lag 6: -1 (-3, 1) Lag 5: 0 (-1, 2) Lag 6: -1 (-3, 1) Lag 7: 0 (-2, 1) 0-7 avg: 1 (-2, 4)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			0-7 avg: -0.4(-1.9, 1.0)
			Women: Lag0: 0.3(-0.6, 1.2); Lag1: -0.1(-0.8, 0.7); Lag2: -0.3(-0.9, 0.3) Lag3: -0.1(-0.7, 0.5); Lag4: 0.2(-0.4, 0.9); Lag5: 0.2(-0.7, 1.2) Lag6: -0.3(-1.4, 0.8); Lag7: 0.7(-0.1, 1.5); 0-7 avg: 0.0(-1.5, 1.5)
			WBC Absolute Change (Lower Cl, Upper Cl):
			Men: Lag0: 2 (-22, 27) Lag1: 3 (-14, 19) Lag2: 1 (-22, 24) Lag3: -7 (-28, 14) Lag4: -22 (-44, -1) Lag5: -20 (-46, 7) Lag6: -5 (-27, 16) Lag7: -4(-16, 9) 0-7avg: -11(-58, 36)
			Women: Lag 0: 20 (-6, 46)
Reference: Su et al. (2006, <u>157022</u>)	Outcome: Total cholesterol, HDL, tryglycerides, LDL, hs-CRP, IL-6, TNF-	Pollutant: PM ₁₀	PM Increment: High vs Low pollution days
eriod of Study: Feb-Apr 2002 ocation: Taipei, Taiwan	α, tPA, PAI-1, and fibrinogen Age Groups: 40-75 yr	Averaging Time: 1 h (High pollution day = PM ₁₀ from 08:	Effect Estimate [Lower CI, Upper CI CHD patients (n = 23): P-value for
	Study Design: Panel study	00-18: 00 > 100) Copollutant: O ₃	paired t-test comparing health endpoir means on high and low pollution days
	N: 49 subjects (31 males and 18 females) with coronary heart disease or multiple risk factors for CHD		hs-CRP: p = 0.568 IL-6: p = 0.856 TNF-α: p = 0.246 PAI-1: p = 0.008
	Statistical Analysis: Linear mixed effects regression		tPA: p = 0.322
			Fibrinogen: p = 0.189 P-value for health endpoint in mixed- effects models PAI-1: p = 0.010 tPA: p = 0.329 Fibrinogen: p = 0.747
			Patients with multiple CHD risk factors (n = 26): P-value for paired t-test comparing health endpoint means on high and low pollution days
			hs-CRP: p = 0.475 IL-6: p = 0.561 TNF-α: p = 0.572 PAI-1: p = 0.098 tPA: p = 0.260
			Fibrinogen: p = 0.087 P-value for health endpoint in mixed- effects models PAI-1: p = 0.891 tPA: p = 0.789
			Fibrinogen: p = 0.923
			Notes: Subjects had paired fasting blood samples taken during high and low air pollution days.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Vedal et al., (2004, <u>055630</u>)	Outcome: Implantable cardioverter	Pollutant: PM ₁₀	PM Increment: 5.6 μg/m³ (SD)
Period of Study: 1997-2000	defibrillator (ICD) discharge	Averaging Time: 24 h	Percent Change [CI]: Values NR
Location: Vancouver, British Columbia	Age Groups: All Study Design: Time series	Mean (min-max): 12.9 (3.8-49.3) SD = 5.6	Notes: The author states that significant negative associations were found for ICD discharge with same-day lag, and also for 3-day lag with more arrhythmia-prone patients. All other non-significant percent change estimates are shown in Fig 3 and 4.
	(Retrospective, longitudinal panel study)	Monitoring Stations: 8	
	N: 50 ICD patients with 1+ discharges (40,328 person-days and 257 arrhythmia event days)	Copollutant (correlation): O ₃ : r = 0.11 SO ₂ : r = 0.70 NO ₂ : r = 0.49 CO: r = 0.43	
	Statistical Analyses: Multiple logistic regression with GEE		
	Covariates: Temperature, relative humidity, barometric pressure, rainfall, wind direction and speed	Other variables: Temp: r = 0.43 Humidity: r = -0.35	
	Season: Summer (May-Sep) and winter (Oct-Apr)	Baro Pressure: r = 0.26 Rain: r = -0.63 Wind: r = -0.53	
	Dose-response Investigated: No		
	Statistical Package: NR		
	Lags Considered: -3 day		
Reference: Vedal et al. (2004, <u>055630</u>)	Outcome: ICD discharges (arrhythmias)	Pollutant: PM ₁₀	Increment: 1 SD
Period of Study: 1997-2000	, ,	Mean: 12.9 (SD = 5.6)	Effect Estimates, e.g., % change in the rate of arrhythmia, were presented in Fig 3. No association with PM_{10} was observed while SO_2 was associated with an increase in the rate of arrhythmia among 16 patients with at least 2 discharges per yr.
Location: Vancouver, British Columbia, Canada	N: 150 patients w/ICD, 4 yr	Copollutant): O ₃ , SO ₂ , NO ₂ , CO	
	Statistical Analysis: Logistic regression, GEE		
	Covariates: Temporal trends, temperature, relative humidity, wind speed, rain		
	Season: Summer, winter		
	Dose-response Investigated? No		
	Lags Considered: 0, 1, 2, and 3 days		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Whitsel et al. (2009,	Outcome: Heart Rate Variability	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
191980) Period of Study: 1993-2004 Location: U.S.	Age Groups: 50-79 yr	Averaging Time: 24 h	Beta (Lower CI, Upper CI):
	Study Design: Panel	Amsterdam	Supine Position, Amsterdam
	N : 4,295 women	Mean: 20.0	Lag 0: -0.06 (-0.95, 0.84) Lag 1: 0.18 (-0.74, 1.10)
	Statistical Analyses: Random Effects Model	Min: 3.8 25th: 10.4 50th: 16.9	Lag 2: 0.93 (0.01, 1.85) 5-day avg: 0.49 (-0.74, 1.72)
	Covariates: Temperature, humidity	75th: 23.9 Max: 82.2	Supine Position, Erfurt Lag 0: -0.36 (-0.83, 0.11)
	Dose-response Investigated? No	Erfurt	Lag 1: -0.40 (-0.91, 0.11) Lag 2: -0.68 (-1.20, -0.17)
	Statistical Package: SUDAAN	Mean: 23.1	5-day avg: -0.68 (-1.44, 0.09)
	Lags Considered: 0	Min: 4.5 25th: 10.5 50th: 16.3 75th: 27.4 Max: 118.1	Supine Position, Helsinki Lag 0: -0.44 (-2.27, 1.40) Lag 1: -0.17 (-1.69, 1.3.5) Lag 2: -1.14 (-2.51, 0.23) 5-day avg: -0.59 (-3.08, 1.90)
		Helsinki	Supine Position, Pooled
		Mean: 12.7 Min: 3.1 25th: 8.1 50th: 10.6	Lag 0: -0.30 (-0.71, 0.11) Lag 1: -0.25 (-0.68, 0.18) Lag 2: -0.26 (-1.22, 0.70)* 5-day avg: -0.36 (-0.99, 0.27)
		75th: 16.0 Max: 39.8	Standing Position, Amsterdam
			Lag 0: -0.44 (-1.6, 0.72) Lag 1: -0.61 (-1.8, 0.59)
		Monitoring Stations: 3 Copollutant: NR	Lag 2: 0.32 (-0.88, 1.51) 5-day avg: -0.55 (-2.15, 1.04)
		Co-pollutant Correlation: N/A	Standing Position, Erfurt Lag 0: -0.59 (-1.24, 0.06) Lag 1: -0.70 (-1.42, 0.03) Lag 2: -0.65 (-1.37, 0.07) 5-day avg: -0.68 (-1.74, 0.39)
			Standing Position, Helsinki Lag 0: 1.17 (-1.46, 3.80) Lag 1: 0.01 (-2.17, 2.19) Lag 2: -0.63 (-2.60, 1.34) 5-day avg: -1.96 (-5.51, 1.60)
			Standing Position, Pooled Lag 0: -0.48 (-1.03, 0.07) Lag 1: -0.62 (-1.21, -0.03) Lag 2: -0.41 (-1.00, 0.17) 5-day avg: -0.72 (-1.57, 0.14)
			*p < 0.1
Reference: Yeatts et al. (2007, <u>091266</u>)	Outcome: Heart Rate Variability	Pollutant: PM ₁₀	PM Increment: 1 µg/m ³
Period of Study:	Age Groups: 21-50 yr	Averaging Time: 24 h	Beta, SE, p-value (Lower CI, Upper
2-wk period b/t Sep 2003-Jul 2004	Study Design: Panel	Mean (SD): 17.5 (7.8)	CI): NR
.ocation: Chapel Hill, NC	N: 12 asthmatics	Min: 1.4	
	Statistical Analyses: Linear Mixed	Max: 45.6	
	Model	Monitoring Stations: 1	
	Covariates: Temperature, humidity, pressure	Copollutant: PM _{2.5} , PM _{10-2.5}	
	Dose-response Investigated? No	Co-pollutant Correlation	
	Statistical Package: SAS	$PM_{2.5} = 0.90^{*}$ $PM_{10-2.5} = 0.73^{*}$	
	Lags Considered: 1 day	*p < 0.01	
	Lago Considered. Tady	γ - 0.01	

 $^{^{1}}$ All units expressed in $\mu g/m^{3}$ unless otherwise specified.

Table E-2. Short-term exposure - cardiovascular morbidity studies: PM_{10-2.5}.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chuang et al. (2007,	Outcome: Heart Rate Variability	Pollutant: PM _{10-2.5}	PM Increment: Interquartile range
091063) Period of Study: Nov 2002-Mar 2003	Age Groups: 52-76 yr	Averaging Time: 1 h among CHD, among hypertensive	Percent Change (Lower CI, Upper CI):
Location: Taipei, Taiwan	N: 10 CHD & 16 Hypertensive Patients Statistical Analyses: Linear Mixed Effects Model	Mean (SD): 16.4 (10.7), 14.0 (11.1)	Cardiac Patients- SDNN 1h moving: -1.73 (-3.53, 0.08)
		IQR: 14.8, 11.9	2h moving: -1.97 (-4.43, 0.49) 3h moving: -1.70 (-4.39, 0.89)
		Min: 0.7, 0.3	4h moving: -1.75 (-5.42, 1.92)
	Covariates: Age, sex, BMI, time of day, temperature, humidity, pressure, HRV Dose-response Investigated? No	Max: 59.6, 66.5 Monitoring Stations: 1 personal	Cardiac Patients- r-MSSD 1h moving: -4.39 (-9.54, 0.03)
		monitor each	2h moving: -4.36 (-8.99, 0.27) 3h moving: -4.20 (-9.02, 0.61)
	Statistical Package: S-PLUS	Copollutant: PM _{1.0-2.5} , PM _{0.3-1.0}	4h moving: -2.70 (-9.24, 3.84)
	Lags Considered: 1- to 4-h ma	Co-pollutant Correlation: NR	Cardiac Patients- LF 1h moving: -1.85 (-4.33, 0.62) 2h moving: -3.87 (-8.22, 0.47 3h moving: -2.98 (-6.65, 0.69) 4h moving: -3.11 (-8.22, 1.99)
			Cardiac Patients- HF 1h moving: -4.46 (-9.23, 0.32) 2h moving: -4.41 (-9.55, 0.72) 3h moving: -3.80 (-9.12, 1.53) 4h moving: -3.39 (-10.62, 3.84)
			Cardiac Patients- LF: HF ratio 1h moving: 8.45 (-3.48, 20.38) 2h moving: 1.66 (-15.22, 18.55) 3h moving: 11.69 (-7.27, 30.64) 4h moving: 8.18 (-17.22, 33.57)
			Hypertensive Patients- SDNN 1h moving: -2.64 (-3.93, 0.55 2h moving: -3.51 (-7.87, 0.85) 3h moving: -2.74 (-6.22, 0.74) 4h moving: -2.49 (-6.13, 1.15)
			Hypertensive Patients- r-MSSD 1h moving: -2.53 (-5.10, 0.04) 2h moving: -5.42 (-10.92, 0.09) 3h moving: -3.15 (-6.32, 0.03) 4h moving: -4.23 (-8.88, 0.42)
			Hypertensive Patients- LF 1h moving: -4.38 (-8.78, 0.03) 2h moving: -5.23 (-10.95, 0.05) 3h moving: -3.34 (-1.72, 0.04) 4h moving: -2.96 (-6.63, 0.71)
			Hypertensive Patients- HF 1h moving: -4.92 (-9.94, 0.10) 2h moving: -6.07 (-12.28, 0.13) 3h moving: -1.94 (-5.44, 1.55) 4h moving: -2.78 (-6.78, 1.21)
			Hypertensive Patients- LF: HF ratio 1h moving: 5.94 (-3.27, 15.15) 2h moving: 10.70 (-2.19, 23.59) 3h moving: -1.51 (-17.02, 14.00) 4h moving: 3.41 (-16.91, 23.74)
			*p < 0.05

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ebelt et al. (2005, <u>056907</u>)	Outcome: CVD	Pollutant: PM _{10-2.5}	Note: Total personal fine particle
Period of Study: Summer of 1998 Location: Vancouver, Canada	Age Groups : range from 54-86 yr mean age= 74 yr	Averaging Time: 24 h	exposure (T) were dominated by exposures to non ambient particles which were not correlated with ambient
	Study Design: extended analysis of a repeated-measures panel study	Mean (SD): Ambient PM _{10-2.5} : 5.6 (3.0) Exposure to ambient PM _{10-2.5} : 2.4 (1.7)	fine particle exposure (A) or ambient concentrations (C). Results for each of these metrics are listed.
	N: 16 persons with COPD	Range (Min, Max):	PM Increment:
	Statistical Analyses: Earlier analysis expanded by developing mixed-effect regression models and by evaluating additional exposure indicators Dose-response Investigated? No	Ambient PM _{10-2.5} : (-1.2-11.9) Exposure to ambient PM _{10-2.5} : (-0.4-7.2) Monitoring Stations: 5 Copollutant (correlation): Ambient concentrations and exposure to ambient PM were highly correlated	Increment: C10-2.5: IQR = 4.5 µg/m ³ SBP (mm Hg): -2.12 (-5.07-0.82) DBP (mm Hg): -0.92 (-3.37-0.36) Ln-SVE (bph): 0.06 (-0.24-0.36) HR (bpm): 1.09 (-0.69-2.86) SDNN (ms): 2.64 (-2.85-8.13) R-MSSD (ms): -0.33 (-4.49-3.82)
	Statistical Package: SAS V8	for each respective metric: r ≥ 0.71	Increment: A10-2.5: IQR = 2.4 µg/m ³
			SBP (mm Hg): -2.55 (-6.15-1.05) DBP (mm Hg): -0.75 (-3.50-2.01) Ln-SVE (bph): 0.26 (-0.07-0.58) HR (bpm): 1.04 (-0.95-3.03) SDNN (ms): 0.68 (-3.07-4.42) R-MSSD (ms): 1.10 (-3.08-5.28)
Reference: Lipsett et al. (2006, 088753)	Outcome: HRV parameters, specifically SDNN, SDANN, r-MSSD, LF, HF, total	Pollutant: PM _{10-2.5}	PM Increment: SE*1000
Period of Study: Feb-May 2000	power, triangular index (TRII).	Averaging Time: 2 h	Effect Estimate (change in HRV per unit increase in PM concentration):
Location: Coachella Valley, CA	Study Design: Panel study	Monitoring Stations: 2	SDNN: -0.72 msec (SE = 0.296)
Eccation: Coachella valley, OA	N : 19 non-smoking adults with coronary artery disease	Copollutant: O ₃	Notes: PM _{10-2.5} calculated by subtracting PM _{2.5} concentration from
	Statistical Analysis: Mixed linear regression models with random effects parameters		PM ₁₀ concentration. Weekly ambulator 24-h ECG recordings (once per wk for up to 12 wk), using Holter monitors, were made. Subjects' residences were within 5 mi of 1 of 2 PM monitoring sites. Regressed HRV parameters against 18: 00-20: 00 mean particulate pollution
Reference: Metzger et al. (2007, 092856)	Outcome: Days with any event recorded by the ICD, days with ICD	Pollutant: PM _{10-2.5} (n/cm³) Averaging Time: 24 h	PM Increment: OR (95% CI): OR = 1.03 (95% CI: 1.00, 1.07)
Period of Study: Aug 1998-Dec 2002	shocks/defibrillation and days with either cardiac pacing or defibrillation		
Location: Atlanta, GA	Study Design: Repeated measures	Mean (SD): 9.6 (5.4) Median: 8.7	
	N: 884 subjects between 1993 and 2002	Copollutant:	
	Statistical Analysis: Logistic regression with GEE to account for residual autocorrelation within subjects	O ₃ , NO ₂ , CO, SO ₂ , oxygenated hydrocarbons	
Reference: Pekkanen et al. (2002,	Outcome: ST Segment Depression	Pollutant: PM _{10-2.5} (n/cm ³)	PM Increment: IQR
035050) Period of Study: Winter 1998-1999	(>0.1mV) Study Design: Panel of ULTRA Study	Averaging Time: 24 h Median: 4.8	Effect Estimate(s): PM _{10-2.5} : OR = 1.99 (0.70, 5.67), lag 2
Location: Helsinki, Finland	participants N: 45 subjects, 342 biweekly submaximal exercise tests, 72 exercise induced ST Segment Depressions	IQR: 5.5 Monitoring Stations: 1 Copollutant: NO ₂ , CO, PM _{2.5} , PM ₁ ,	Notes: The effect was strongest for ACP and PM _{2.5} , which in 2 pollutant models appeared independent. Increases in NO ₂ and CO were also associated with increased risk of ST
	Statistical Analysis: Logistic regression / GAM	ACP, ultrafine	segment depression, but not with coarse particles.
Reference: Timonen et al. (2006, 088747)	Outcome: HRV measurements: [LF, HF, LFHFR, NN interval, SDNN, r-	Pollutant: PM _{10-2.5}	PM Increment: 10 µg/m ³
Period of Study: 1998-1999	MSSD]	Means: Amsterdam: 15.3	Effect Estimate: SDNN 0.69ms (95% CI: -1.24, 2.63)
Location: Amsterdam, Netherlands	Study Design: Panel study	Erfurt: 3.7 Helsinki: 6.7	HF: 2.9% (95% CI: -7.3, 13.1)
Erfurt, Germany Helsinki, Finland	N: 131 elderly subjects with stable coronary heart disease	Copollutant: NO ₂ , CO	LFHFR: -3.3 (95% Cl: -12.7, 6.1) Notes: Followed for 6 mo with biweekly clinic vicits
	Statistical Analysis: Linear mixed models		clinic visits

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Yeatts et al. (2007, <u>091266</u>)	Outcome: Heart Rate Variability	Pollutant: PM _{10-2.5}	PM Increment: 1 μg/m ³ .
Period of Study:	Age Groups: 21-50 yr	Averaging Time: 24 h	Beta, SE (Lower CI, Upper CI), p-
12-wk period b/t Sep 2003-Jul 2004	Study Design: Panel	Mean (SD): 5.3 (2.8)	value
Location: Chapel Hill, NC	N: 12 asthmatics	Min: 0	HRV Max Heart Rate: -1.95, 0.88 (-3.67, -
	Statistical Analyses: Linear Mixed	Max: 14.6	0.23), 0.03 ASDNN5: -0.77, 0.37 (-1.580, -0.04),
	Model	Monitoring Stations: 1	0.05
	Covariates: T emperature, humidity, pressure	Copollutant: PM _{2.5} , PM ₁₀	SDANN5: -3.76, 1.53 (-6.76, -0.76), 0.02
	Dose-response Investigated? No	Co-pollutant Correlation:	SDNN24HR(mesc): -3.36, 1.38 (-6.06, -0.65), 0.02
	Statistical Package: SAS	PM _{2.5} = 0.46* PM ₁₀ = NR	rMSŚD: -0.75, 0.53 (-1.79, 0.28), 0.16 pNN50 24hr: -0.50, 0.27 (-1.03, 0.03),
	Lags Considered: 1 day	*p < 0.01	0.07 pNN50_7min: -1.88, 0.55 (-2.95, -0.81), 0.07 Low-frequency power: -0.19, 0.42 (-1.01, 0.63), 0.65 Percent low frequency: 0.57, 1.08 (-1.55, 2.69), 0.60 High-frequency power: -0.46, 0.17 (-0.79, -0.14), 0.01 Percent high frequency: -2.14, 0.94 (-3.98, -0.30), 0.03 Blood Lipids Triglycerides: 4.78, 2.02 (0.81, 8.74), 0.02 VLDL: 1.15, 0.44 (0.29, 2.02), 0.01 Total cholesterol: 0.78, 0.54 (-0.28, 1.84), 0.15
			Hematologic Factors Circulating eosinophils: 0.16, 0.06 (0.04, 0.28), 0.01 Platelets: -1.71, 1.11 (-3.89, 0.47), 0.13
			Circulating Proteins Plasminogen: -0.01, 0.01 (-0.02, 0.00), 0.08 Fibrenogen: -0.04, 0.02 (-0.08, 0.00), 0.07 Von Willibrand factor: -1.23, 0.66 (-2.53, 0.06), 0.07 Factor VII: -0.90, 0.85 (-2.58, 0.77), 0.29

 $^{^{1}\}text{All units}$ expressed in $\mu\text{g/m}^{3}$ unless otherwise specified.

Table E-3. Short-term exposure - cardiovascular morbidity studies: PM_{2.5} (including PM components/sources).

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Adar et al. (2007, <u>001458</u>)	Outcome: Heart rate variability: heart	Pollutant: PM _{2.5} (µg/m ³)	PM Increment: IQR
Period of Study: Mar-Jun 2002	rate, standard deviation of all normal-to- normal intervals (SDNN), square root of	Averaging Time: Measurements	Effect Estimate [Lower CI, Upper CI]:
Location: St. Louis, Missouri	the mean squared difference between adjacent normal-to-normal intervals (rMSSD), percentage of adjacent normal-to-normal intervals that differed by more than 50 ms (pNN50), high frequency power (HF in the range of 0.15-0.4Hz), low frequency power (LF, in the range of 0.04-0.15Hz), and the ratio of LF/HF Age Groups: ≥ 60 yr Study Design: Panel (4 planned	collected over 48 h period surrounding the bus trip (during which health endpoints were measured) used to calculate 5-, 30-, 60-min, 4-h, 24-h ma	% change (95%CI) in HRV per IQR in the 24-h ma of the microenvironmental pollutant (IQr = 4.5 µg/m³)
		Median (IQR):	Single-pollutant models: SDNN: -5.5 (-6.3, -4.8) rMSSD: -9.1 (-9.8, -8.4) pNN50 + 1: -12.2 (-13.3, -11.1). LF: - 10.8 (-12.3, -9.3) HF: -15.1 (-16.7, -13.7)
		Monitoring Stations: 2 portable carts H: 1.0 (0.9, 1.2)	LF/HF: 5.1 (3.9, 6.4)
			, ,
	repeated measures surrounding bus		Two-pollutant models (with particle

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	trips with a total of 158 person-trips, 35 participating in all 4 trips) N: 44 participants	PM _{2.5} BC Fine particle counts coarse particle counts	number count coarse): SDNN: -5.7 (-6.5, -4.9) rMSSD: -9.4(-10.1, -8.6) pNN50+1: -13.1(-14.3, -11.9).
	Statistical Analyses: Generalized additive models	Correlation notes: 24-h mean PM _{2.5} , BC, and fine particle count concentra-	LF: -10.7(-12.4, -9.1) HF: -14.9(-16.5, -13.3); LF/HF: 4.9 (3.6, 6.2)' H: 0.9 (0.7,1.1)
	Covariates: Subject, weekday, time, apparent temperature, trip type, activity, medications, and autoregressive terms	tions ranged from 0.80-0.98 r = 0.76-0.97 when limited to time spent on the bus	Independent short- and medium-term associations with HRV across all time periods
	Season: Limited data collection period	r = 0.55-0.86 when comparing bus	% change per IQR (95%CI)
	Dose-response Investigated? No	concentrations to 24-h ma	IQR 5-min means = 6.8 µg/m³ and 23:
	Statistical Package: SAS v8.02, R	r = -0.003-0.51 when comparing 5-min avg and 24-h ma	55-h means = 4.2 μg/m³ SDNN: 5-min mean: -0.5 (-0.8, -0.1)
	v2.0.1	Poor correlations found between coarse particle count concentrations and all fine particulate measures during all times periods	23: 55-h mean: -4.6 (-5.3, -4.0) rMSSD: 5-min mean: -0.9 (-1.3, -0.5) 23: 55-h mean: -7.5 (-8.1 to -6.8) pNN50 + 1 5-min mean: -1.1 (-1.7 to -0.5) 23: 55-h mean: -9.9 (-10.9 to -8.9). LF 5-min mean: 0.4 (-0.5, 1.2) 23: 55-h mean: -10.0 (-11.4 to -8.6) HF 5-min mean: -1.5 (-2.3 to -0.6) 23: 55-h mean: -12.9 (-14.2 to -11.5) LF/HF 5-min mean: 1.9 (1.3, 2.4) 23: 55-h mean: 3.2 (2.1, 4.3) H: 5-min mean: 0.8 (0.7, 0.9) Independent associations of short-term avg (5-min means) of PM with HRV by bus and nonbus periods
			IQR for bus = 10 μ g/m ³) and nonbus = 5.6 μ g/m ³)
			% change (95%CI) p-value of interaction SDNN Bus: -5.0 (-6.3 to -3.7) Nonbus: -0.5 (-0.9 to -0.2) p-value for interaction: <0.0001. rMSSD Bus: -4.8 (-6.2 to -3.5) Nonbus: -0.7 (-1.1 to -0.4. p-value for interaction: <0.0001 pNN50 + 1 Bus: -6.3 (-8.4 to -4.2) Nonbus: -0.8 (-1.4 to -0.3) p-value for interaction: <0.0001 LF: Bus: -7.0 (-9.8 to -4.1) Nonbus: 0.6 (-0.1, 1.4)
			p-value for interaction: <0.0001. HF: Bus: -10.7 (-13.5 to -7.9)' Nonbus: -0.7 (-1.5, 0.04) p-value for interaction: <0.0001. LF/HF: Bus: 3.9 (1.7, 6.0)
			Nonbus: 1.4 (0.8, 1.9) p-value for interaction: 0.39. H: Bus: 0.7 (0.5, 1.0) Nonbus: -0.01 (-0.08, 0.1) p-value for interaction: <0.0001
			Note: Exposure to health associations by all lag periods presented in Fig 2 (magnitude of associations increased with averaging period, with the largest associations consistently found for 24-h ma)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Adar et al. (2007, <u>001458</u>)	Outcome: Heart rate variability: heart	Pollutant: BC (ng/m³)	PM Increment: IQR
Period of Study: Mar-Jun 2002 Location: St. Louis, Missouri	the mean squared difference between adjacent normal-to-normal intervals (rMSSD), percentage of adjacent normal-to-normal intervals that differed by more than 50 ms (pNN50), high frequency power (HF in the range of 0.15-0.4Hz), low frequency power (LF, in the range of	Averaging Time: Measurements collected over 48 h period surrounding the bus trip (during which health endpoints were measured) used to calculate 5-, 30-, 60-min, 4-h, 24-h ma	Effect Estimate [Lower CI, Upper CI]: % change (95%CI) in HRV per IQR in the 24-h ma of the microenvironmental pollutant (IQr = 459 ng/m³)
		Median (IQR): All: 330 (337) Facility: 285 (270) Bus: 2911 (2464) Activity: 482 (1168) Lunch: 434 (276)	Single-pollutant models SDNN: -5.3 (-6.5 to -4.1) rMSSD: -10.7 (-11.9 to -9.5) pNN50 + 1: -13.2 (-15.0 to -11.4) LF: -11.3 (-13.7 to -8.8) HF: -18.8 (-21.1 to -16.5)
	Age Groups: ≥ 60 yr	Monitoring Stations: 2 portable carts	LF/HF: 9.3 (7.2, 11.4)
	Study Design: Panel (4 planned repeated measures with a total of 158 person-trips	Copollutant: PM _{2.5} BC Fine particle counts Coarse particle counts	H: 1.0 (0.8, 1.3) Independent short- and medium-term associations with HRV across all time periods
	35 participating in all 4 trips)	Correlation notes: 24-h mean PM _{2.5} ,	% change per IQR (95%CI)
	N: 44 participants Statistical Analyses: Generalized	BC, and fine particle count concentrations ranged from 0.80 to 0.98	IQR 5-min means = 337 ng/m ³ and 23: 55-h means = 490 ng/m ³) SDNN: 5-min mean: -0.3 (-0.5 to -0.1)
	additive models Covariates: Subject, weekday, time, apparent temperature, trip type, activity, medications, and autoregressive terms	r = 0.76 to 0.97 when limited to time spent on the bus r = 0.55 to 0.86 when comparing bus concentrations to 24-h ma	23: 55-h mean: -4.7 (-5.9 to -3.5) rMSSD: 5-min mean: -0.3 (-0.5 to -0.1) 23: 55-h mean: -9.3 (-10.5 to -8.1) pNN50 + 1: 5-min mean: -0.3 (-0.6 to -
	Season: Limited data collection period	r = -0.003 to 0.51 when comparing 5-min avg and 24-h ma	20. 00-11 111Call 10.0 (-12.0 to -0.1)
	Dose-response Investigated? No Statistical Package: SAS v8.02, R v2.0.1	Poor correlations found between coarse particle count concentrations and all fine particulate measures during all times periods	LF: 5-min mean: -0.5 (-0.9 to -0.1) 23: 55-h mean: -9.8 (-12.4 to -7.2) HF: 5-min mean: -0.9 (-1.2 to -0.5) 23: 55-h mean: -15.4 (-17.8 to -12.9) LF/HF: 5-min mean: 0.3 (0.1, 0.6) 23: 55-h mean: 6.5 (4.5, 8.6) H: 5-min mean: 0.1 (0.1, 0.2) 23: 55-h mean: 0.4 (0.2, 0.7)
			Independent associations of short-term avg (5-min means) of PM with HRV by bus and nonbus periods
			IQR for bus = $2.6 \mu g/m^3$) and nonbus = $0.27 \mu g/m^3$)
			% change (95%CI) p-value of interaction SDNN: Bus: -4.6 (-6.1 to -3.0)' Nonbus: - 0.1 (-0.3, 0.1) p-value for interaction: <0.0001 rMSSD: Bus: -2.6 (-4.2 to -0.9): Nonbus: -0.3 (-0.5 to -0.1) p-value for interaction: 0.64 pNN50 + 1: Bus: -2.0 (-4.5, 0.5): Nonbus: -0.5 (-0.8 to -0.1) p-value for interaction: 0.34 LF: Bus: -6.0 (-9.3 to -2.5): Nonbus: -0.2 (-0.7, 0.3)
			p-value for interaction: 0.028 HF: Bus: -5.8 (-9.1 to -2.3) Nonbus: -0.9 (-1.4 to -0.4) p-value for interaction: 0.50 LF/HF: Bus: -0.8 (-3.1, 1.7) Nonbus: 0.8 (0.5, 1.1) p-value for interaction: <0.0001 H: Bus: -0.5 (-0.8 to -0.2) Nonbus: 0.3 (0.26, 0.34) p-value for interaction: <0.0001
			Note: Exposure to health associations by all lag periods presented in Fig 2 (magnitude of associations increased with averaging period, with the largest associations consistently found for 24-h ma)
Reference: Auchincloss et al. (2008, 156234)	Outcome: Blood pressure: Systolic (SBP), diastolic (DBP), mean arterial	Pollutant: PM _{2.5}	PM Increment: 10 μg/m³ (approx. equivalent to difference between 90th

E-23

Reference

Design & Methods

Concentrations¹

Effect Estimates (95% CI)

Period of Study: Jul 2000-Aug 2002

Location:

6 U.S. communities (Baltimore City and Baltimore County, Maryland Chicago, Illinois Forsyth County, North Carolina Los Ángeles, California Northern Manhattan and the Bronx, New York and St. Paul, Minnesota)

Part of MESA (Multi-ethnic Study of Atherosclerosis)

(MAP), pulse pressure (PP)

Avg of 2nd and 3rd BP measurement used for analyses

Age Groups: 45-84 yr

Study Design: Cross-sectional (Multi-Ethnic Study of Atherosclerosis baseline examination)

N: 5,112 persons (free of clinically apparent cardiovascular disease)

Statistical Analyses: Linear regression secondary analyses used log binomial models to fit a binary hypertension outcome

Covariates: Age, sex, race/ ethnicity, per capita family income, education, BMI, diabetes status, cigarette smoking status, exposure to ETS, high alcohol use, physical activity, BP medication use, meteorology variables, and copollutants

Examined site as a potential confounder and effect modifier

Heterogeneity of effects also examined by traffic-related exposures, age, sex, type 2 diabetes, hypertensive status, cigarette use, by levels of SO₂ and CO, and for weather variables

Season: Adjusted for temperature and barometric pressure to adjust for seasonality (because seasons vary by the study sites)

Also performed sensitivity analyses adjusting for season to examine the potential for residual confounding not accounted for by weather variables

Dose-response Investigated?Assessed nonlinear relationships-no evidence of strong threshold/nonlinear effects for PM_{2.5}

Statistical Package: NR

Averaging Time: 5 exposure metrics constructed: prior day, avg of prior 2 days, prior 7 days, prior 30 days, and prior 60 days

Mean (SD):

Prior day: 17.0 (10.5) Prior 2 days: 16.8 (9.3) Prior 7 days: 17.0 (6.9) Prior 30 days: 16.8 (5.0) Prior 60 days: 16.7 (4.4)

Percentiles: NR

Range (Min, Max): NR

Monitoring Stations: Used monitor nearest the participant's residence to calculate exposure metrics

Copollutant:

SO₂ NO₂ CO

Traffic-related exposures (straight-line distance to a highway total road length around a residence)

Correlations with PM2.5 averaged over prior 30 days:

Cool: r = -0.67 Moderate: r = -0.30 Warm: r = 0.23

CO Cool: r = 0.20 Moderate: r = 0.71 Warm: r = 0.23

SO₂ Cool: r = 0.36 Moderate: r = -0.17 Warm: r = -0.11

NO₂ Cool: r = 0.55 Moderate: r = 0.66 Warm: 0.32 and 10th percentile for prior 30 day mean)

Effect Estimate [Lower CI, Upper CI]: Adjusted mean difference (95% CI) in PP and SBP (mmHg) per 10 μ g/m³ increase in PM_{2.5} (avgd for the prior 30 days)

Pulse Pressure

(PM $_{2.5}$ avgd for prior 30 days) Adjustment variables: Person-level Covariates: 1.04 (0.25, 1.84), p = 0.010 Person-level cov., weather: 1.12 (0.28, 1.97), p = 0.009 Person-level cov., weather, gaseous copollutants: 2.66 (1.61, 3.71), p = 0.000 Person-level cov., study site: 0.93 (-0.04, 1.90), p = 0.060 Person-level cov., study site, weather: 1.11 (0.01, 2.22), p = 0.049 Person-level cov., study site, weather, gaseous copollutants: 1.34 (0.10, 2.59), p = 0.035

Systolic Blood Pressure

Adjustment variables: Person-level Covariates: 0.66 (-0.41, 1.74), p=0.226 Person-level cov., weather: 0.99 (-0.15, 2.13), p=0.089 Person-level cov., weather, gaseous copollutants: 2.8 (1.38, 4.22), p=0.000 Person-level cov., study site: 0.86 (-0.45, 2.17), p=0.200 Person-level cov., study site, weather: 1.32 (-0.18, 2.82), p=0.085 Person-level cov., study site, weather, gaseous copollutants: 1.52 (-0.16, 3.21), p=0.077

Additional results: Associations became stronger with longer averaging periods up to 30 days. For example: Adjusted (personal covariates and weather) mean differences in PP: Prior day: -0.38 (-0.76, 0.00)

Prior 2 days: -0.22 (-0.65, 0.21) Prior 7 days: 0.52 (-0.08, 1.11) Prior 30 days: 1.12 (0.28, 1.97) Prior 60 days: 1.08 (0.11, 2.05)

(Pattern held for additional adjustments and for SBP results

therefore, only results for 30-day mean differences were presented)

Additional results (not presented): None of DBP results were statistically significant

Results for MAP were similar to SBP, though weaker and generally not significant

Effect modification: Associations between $PM_{2.5}$ and BP were stronger for persons taking medications, with hypertension, during warmer weather, in the presence of high NO_2 , residing $\leq 300m$ from a highway, and surrounded by a high density of roads (Fig 1)

associations were not modified by age, sex, diabetes, cigarette smoking, study site, high levels of CO or SO₂, season, nor residence ≤ 400m fro a highway

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Note: Supplementary material available on-line shows results for DBP and MAP, among others
Reference: Baccarelli et al. (2009,	Outcome: Heart rate variability	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
188183)	Age Groups: Elderly	Averaging Time: 48-h ma	Percent Change [Lower CI, Upper CI],
Period of Study: Nov 2000-Jun 2005	Study Design: Panel	Geometric Mean (95%CI):	P:
Location: Boston, Mass	N : 549 men	All Visits: 10.5 (10.0, 10.9) Visits w/ Genotype Data: 10.4 (9.9, 11.0)	All Subjects w/ Genotype Data SDNN: -6.0 (-13.5, 2.0), 0.14
	Statistical Analyses: Mixed-effects model	Visits w/o Genotype Data: 10.5 (9.8, 11.4)	HF: -17.1 (-32.3, 1.6), 0.07 LF: -8.2 (-22.1, 8.2), 0.31
	Covariates: Age, past/current CHD, BMI, mean arterial pressure, fasting	Monitoring Stations: 1	All Subjects
		Copollutant: NR	SDNN: -7.1 (-13.2, -0.6), 0.03 HF: -18.7 (-31.1, -4.0), 0.01
	blood glucose, smoking, alcohol consumption, use of beta-blockers, CA channel blockers, angiotensin- converting enzyme inhibitors, room temperature, season, apparent temperature	Correlation: N/A	LF: -11.8 (-23.2, -1.3), 0.08
	Season: No		
	Dose-response Investigated? No		
	Statistical Package: SAS		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Barclay et al. (2007,	Outcome: Haematological outcomes,	Pollutant: PM _{2.5}	PM Increment: NR
192229) Period of Study: Jan 2003-May 2005	Heart Rhythm outcomes, & Heart Rate Variability outcomes	Averaging Time: Daily	Beta (Lower CI, Upper CI): Haemoglobin: -0.509 (-1.560, 0.542) Mean corpuscular haemoglobin: 0.188 (-
	Age Groups: 70.4 (8.9)	Mean: 7.454	
Location: Aberdeen, Scotland	Study Design: Panel	Min: 1.092	0.481, 0.857) Platelets: 3.022 (0.403, 5.642)
	N: 132 patients w/ chronic heart failure	Max: 21.97	Haematocrit: -0.813 (-1.892, 0.267) White blood cells: -1.652 (-4.727, 1.424)
	Statistical Analyses: Linear & Mixed	Monitoring Stations: 0	C reactive protein: 4.924 (-13.022, 22.869)
	Effects Regression Model	Copollutant: PM ₁₀ , PNC, NO ₂	IL-6: -5.980 (-23.649, 11.690)
	Covariates: Age, temperature, humidity, pressure	Co-pollutant Correlation NO ₂ city: 0.164	von Willebrand factor: 1.363 (-6.561, 9.287)
	Dose-response Investigated? No	NO city: 0.048	E-selectin: 2.136 (-2.946, 7.217) Fibrinogen: -5.579 (-10.403, -0.755)*
	Statistical Package: NR	PM ₁₀ city: 0.476* NO ₂ personal: 0.169	Factor VII: 3.747 (-1.959, 9.452) day-dimer: 5.211 (-2.974, 13.397)
	Lags Considered: Lags 0-2 day	PNC DEOM: 0.115 PM _{2.5} traffic: 0.522*	All arrhythmias: -7.082 (-28.789, 14.626)
		PNC total: 0.367* PNC traffic: 0.234	Ventricular ectopic beats: -12.203 (-39.021, 14.615)
		*correlations based on 3-day avg concentrations	Ventricular couplets: -1.255 (-25.678, 23.168)
		Notes: PM _{2.5} values model predicted	Ventricular runs: -2.548 (-17.448, 12.351)
			Supraventricular ectopic beats: 4.898 (-19.772, 29.568)
			Supraventricular couplets: 6.138 (-16.242, 28.518)
			Supraventricular runs: -0.545 (-17.577, 16.487)
			Avg HR: 0.617 (-0.782, 2.016) 24 h SDNN: 3.645 (-0.227, 7.517) 24 h SDANN: 4.437 (0.030, 8.844)* 24 h RMSSD: 0.617 (-0.782, 2.016) 24 h PNN 50%: 11.247 (-6.228, 28.722) 24 h LF power: 4.439 (-6.823, 15.701) 24 h LF normalized: -5.659 (-11.815, 0.497) 24 h HF power: 3.800 (-10.863, 18.464) 24 h HF normalized: -6.597 (-13.724, 0.531) 24 h LF/HF ratio: 1.033 (-8.355, 10.414)
			*p < 0.05
			Notes: Estimates also available for PM _{2.5} traffic
			LF= low frequency HF= high frequency
Reference: Briet et al. (2007, <u>093049</u>)	Outcome: Endothelial Function	Pollutant: PM _{2.5}	PM Increment: 1 SD
Period of Study: NR	Age Groups: 20-40 yr	Averaging Time: 24 h	Beta (Lower CI, Upper CI), P, R2:
Location: Paris, France	Study Design: Panel	5 day Mean (SD): 28 (6)	Flow-mediated brachial artery dilation: -0.32 (-1.10, 0.46), NS, 0.04
	N: 40 white male nonsmokers	Monitoring Stations: NR	Reactive hyperemia: 15.68 (7.11, 23.30), <0.0001, 0.24
	Statistical Analyses: Multiple Robust Regression	Co-pollutant: PM ₁₀ , SO ₂ , NO, NO ₂ , CO	Changes in Endothelial function b/t
	Covariates: R53R/R53H genotype, diet, subject factor, visit, temperature	Co-pollutant Correlation: N/A	visits: 1.98 (0.67, 3.259), 0.004, 0.44
	Dose-response Investigated? No		
	Statistical Package: NCSS		
	Statistical Fackage. NOOO		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Cárdenas et al. (2008,	Outcome: Heart Rate Variability	Pollutant: PM _{2.5}	PM Increment: NR
<u>191900</u>)	Age Groups: 20-40 yr	Averaging Time: NR	Mean Difference (Lower CI, Upper CI),
Period of Study: NR	Study Design: Panel	25th, 50th, 75th percentile:	lag:
Location: Mexico City, Mexico	N: 54 subjects	Indoor: 14.8, 28.3, 47.9 Outdoor: 6.4, 10.8, 16.8	Ln low frequency Indoors: -0.028 (-0.0423, -0.0138)
	Statistical Analyses: Linear GEE models	Monitoring Stations: NR	Outdoors: -0.194 (-0.4509, 0.0627)
	Covariates: Localization, supine position, gender, age, humidity, heart rate, orthostatic position, head-up tilt test result	Co-pollutant: NR Co-pollutant Correlation: N/A	Ln high frequency Indoors: -0.019 (-0.0338, -0.0044) Outdoors: -0.298 (-0.5553, -0.0401) Ln LF/HF ratio Indoors: -0.017 (-0.0330, -0.0007)
	Dose-response Investigated? No		Outdoors: -0.278 (-0.5540, 0.0030)
	Statistical Package: NR		
	Lags Considered: NR		
Reference: Cavallari et al. (2007,	Outcome: Heart Rate Variability	Pollutant: PM _{2.5}	PM 1 mg Increment: m ³
157425)	Age Groups: 22-63	Averaging Time: Hourly	Beta (Lower CI, Upper CI):
Period of Study: 1999-2006	Study Design: Panel	Mean (SD): 1.12 (0.76)	Model 1
Location: Massachusetts	N: 36 males	Min: 0.12	Lag 1 h: -1.44 (-7.75, 4.87) Lag 2 h: -5.33 (-10.97, 0.31)*
	Statistical Analyses: Mixed Effects	Monitoring Stations: NR Lag 5 h: -4.73 (-9.3 Copollutant: NR Lag 5 h: -4.73 (-11. Lag 6 h: -3.52 (-9.8 Lag 7 h: -1.59 (-7.5 Lag 8 h: -0.72 (-7.6 Lag 10 h: -3.66 (-8. Lag 11 h: -8.60 (-11. Lag 12 h: -5.98 (-14. Lag 12 h: -5.98 (-14	Lag 3 h: -6.86 (-11.91, -1.81)‡ Lag 4 h: -2.17 (-9.33, 4.99)
	Regression Model		Lag 5 h: -4.73 (-11.99, 2.53)
	Covariates: Age, smoking, heart rate at work		Lag 7 h: -1.59 (-7.53, 4.35) Lag 8 h: -0.72 (-7.63, 6.20) Lag 9 h: -5.55 (-10.65, -0.45)‡
	Dose-response Investigated? No		
	Statistical Package: SAS		Lag 10 h: -3.66 (-8.85, 1.53) Lag 11 h: -8.60 (-17.45, 0.24)*
	Lags Considered: Lags 0-14 h		Lag 12 h: -5.98 (-14.67, 2.70) Lag 13 h: -8.27 (-17.00, 0.46)*
			Lag 14 h: -4.19 (-12.71, 4.33)
			Model 2 Lag 1 h: 4.10 (-0.39, 8.60)* Lag 2 h: -3.21, (-8.78, 2.37) Lag 3 h: -6.45 (-11.59, -1.31)‡ Lag 4 h: -0.01 (-6.96, 6.94) Lag 5 h: -2.03 (-8.27, 4.22) Lag 6 h: -1.99 (-8.46, 4.48) Lag 7 h: -0.34 (-6.22, 5.54) Lag 8 h: 0.72 (-6.35, 7.78) Lag 9 h: -5.26 (-10.62, 0.11)* Lag 10 h: -3.68 (-9.17, 1.80) Lag 11 h: -9.41 (-18.60, -0.23)‡ Lag 12 h: -6.45 (-15.62, 2.72) Lag 13 h: -7.33 (-16.55, 1.89) Lag 14 h: -4.75 (-13.81, 4.32)
			*p < 0.05, ‡p < 0.10
			Notes: Model 1 adjusted for smoking status and age only. Model 2 adjusted for smoking status, age, and heart rate during work.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chahine et al. (2007, 156327)	Outcome: Heart Rate Variability	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
	Age Groups: Mean 72.8(6.6) yr	Averaging Time: 1 h	Percent Change (Lower CI, Upper CI),
Period of Study: Jan 2000-Jun 2005	Study Design: Panel	Mean (SD): 11.7 (7.8)	p-value:
Location: Boston, MA	N: 539 white males	Monitoring Stations: 1	log10 SDNN Total: -6.8 (-12.9, -0.2), 0.0436
	Statistical Analyses: Mixed Effects	Copollutant: PM _{1.0}	GSTM1 wildtype: -2.0 (-11.3, 8.3), 0.6908
	Model	Co-pollutant Correlation: N/A	GSTM1 null: -10.5 (-18.2, -2.2), 0.0150
	Covariates: Age, BMI, mean arterial pressure, fasting blood glucose, smoking, alcohol consumption, use of beta-blockers, calcium channel blockers, ACE inhibitors, room temperature, season, outdoor temperature		HMOX-1 <25 repeats: 7.4 (-8.7, 26.2), 0.3891 HMOX-1 ≥25 repeats: -8.5 (-14.8, -1.8), 0.0137 log10 HF
	•		Total: -17.3 (-30.0, -2.3), 0.0263 GSTM1 wildtype: -4.0 (-24.8, 22.6),
	Dose-response Investigated? No Statistical Package: SAS		0.7442 GSTM1 null: -24.2 (-39.2, -5.5), 0.0139
	Lags Considered: 0- to 2-day ma		HMOX-1 <25 repeats: 8.9 (-27.1, 62.8),
	Lago conclusion o to L day ma		0.6759 HMOX-1 ≥25 repeats: -20.1 (-32.9, -5.0) 0.0115
			log10 LF Total: -11.2 (-22.8, 2.2), 0.0986 GSTM1 wildtype: -0.6 (-19.0, 22.0), 0.9545 GSTM1 null: -17.0 (-31.0, -0.2), 0.0478 HMOX-1 <25 repeats: 14.0 (-18.6, 59.5), 0.4465 HMOX-1 ≥25 repeats: -14.0 (-25.7, -0.5), 0.0430
Reference: Chen and Schwartz (2008,	Outcome: White Blood Cell count	Pollutant: PM _{2.5}	PM Increment: Quartile, 1yr avg (36.8
<u>190106</u>)	Age Groups: 20-89 yr	Averaging Time: 24 h	μg/m³) Avg WBC count(SE) by PM quartile: Q1: 6760 (79)
Period of Study: 1989-1991	Study Design: Panel	Mean (SD): 36.8 (13.0) Median(range)	
Location: U.S.	N: 2,978 participants	for Q1: 23.1(14.6-27.8)	Q2 : 6942 (99) Q3 : 6895 (84)
	Statistical Analyses: Mixed Effects Models	Q2 : 31.2 (27.9-34.3) Q3 : 38.8 (34.3-43.3) Q4 : 53.7 (43.3-78.5)	Q4: 7109 (61) Beta(Lower CI, Upper CI), p-value:
	Covariates: Age, sex, race, SES, smoking, alcohol consumption, MS	Monitoring Stations: NR	Crudè: 239 (58, 420), 0.01 Model 1: 145 (10, 281), 0.035
	abnormalities, indoor air pollutants, exercise	Copollutant: NR	Model 2: 141 (6, 277), 0.041 Model 3: 138 (2, 273), 0.046
	Dose-response Investigated? No	Co-pollutant Correlation: N/A	Model 1: Age, sex, race, SES, smoking,
	Statistical Package: Stata		alcohol consumption, MS abnormalities. Model 2: Model 1 plus indoor air
	Lags Considered: NR		pollutants, exercise. Model 3: Clean
	Lago Colloideled. NA		areas (Q1) vs other more polluted areas

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chuang et al. (Chuang et al. 2007, 091063)	Outcome: High-sensitivity C-reactive protein (hs-CRP) Fibrinogen, plasminogen activator	Pollutant: PM ₁₀ , nitrate, sulfate	PM _{2.5} Increment: IQR (1-day avg: 20.4
Period of Study: Between Apr-Jun		Averaging Time: Hourly data used to calculate avg over 1- to 3-day periods	2-day avg: 25.2 3-day avg: 20.0)
Period of Study: Between Apr-Jun 2004 or 2005 Location: Taipei, Taiwan	al., 2007, 091063) Period of Study: Between Apr-Jun 2004 or 2005 Fibrinogen, plasminogen activator fibrinogen inhibitor-1 (PAI-1), tissue-type plasminogen activator (tPA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and log-transformed HRV indices (SDNN = standard deviation of NN intervals, r-MSSD = square root of the mean of the sum of the squares of differences between adjacent NN intervals, LF = low frequency [0.04-0.15Hz], and HF = high frequency [0.15-2] Averaging Time: Hourly data used calculate avg over 1- to 3-day period data used calculate avg over 1- to 3-day period data used calculate avg over 1- to 3-day period data used calculate avg over 1- to 3-day period data used calculate avg over 1- to 3-day period data used calculate avg over 1- to 3-day period data used calculate avg over 1- to 3-day period data used calculate avg over 1- to 3-day period data used calculate avg over 1- to 3-day period data used calculate avg over 1- to 3-day period data used calculate avg over 1- to 3-day period data used calculate avg over 1- to 3-day avg: 31.8 (10.6) 2-day avg: 36.4 (12.6) 3-day avg: 36.5 (12.6) 3-day avg: 36.5 (12.6) 3-day avg: 36.5 (12.6) 3-day avg: 36.5 (12.6) 3-day avg: 15.0, 53.4 3-day avg: 12.7, 59.5	calculate avg over 1- to 3-day periods Mean (SD): 1-day avg: 31.8 (10.6) 2-day avg: 36.4 (12.6) 3-day avg: 36.5 (12.6) Range (Min, Max): 1-day avg: 15.0, 53.4 3-day avg: 15.0, 53.4 3-day avg: 12.7, 59.5 Monitoring Stations: 2 sites (each pollutant measured at 1 site only) Copollutant: PM ₁₀ Sulfate Nitrate OC EC NO ₂ CO SO ₂	3-day avg: 20.0) Effect Estimate [Lower CI, Upper CI]: % change in health endpoint per increase in IQR of PM _{2.5} (1-3 day averaging period single pollutant models) hs-CRP: 1-day: 90.2 (-10.2, 190.1) 2-day: 99.1 (-26.1, 224.3) 3-day: 100.4 (-2.9, 203.7) 8-OHdG: 1-day: -5.0 (-14.3, 4.4) 2-day: -5.5 (-15.6, 4.6) 3-day: -5.6 (-13.8, 2.6) PAI-1: 1-day: 20.4 (17.3, 33.5) 2-day: 16.2 (1.9, 30.5) 3-day: 20.0 (18.5, 31.5) tPA: 1-day: 12.0 (-2.4, 26.3) 2-day: 12.0 (-2.9, 26.9); 3-day: 12.0 (-2.7, 26.6) Fibrinogen:
			1-day: 2.6 (-2.7, 7.8) 2-day: 1.5 (-4.1, 7.1); 3-day: 3.6 (-0.8, 8.1)
			Heart Rate Variability SDNN: 1-day: -4.0 (-6.1 to -1.9) 2-day: -2.5 (-4.6 to -0.4) 3-day: -3.0 (-5.0 to -1.1)
			r-MSSD: 1-day: -3.0 (-8.7, 2.7) 2-day: -2.0 (-8.4, 4.4); 3-day: -3.6 (-8.8, 1.6)
			LF: 1-day: -3.1 (-6.1 to -0.1) 2-day: -3.2 (-4.6, 0.1); 3-day: -3.4 (-6.1 to -0.6)
			HF: 1-day: -3.7 (-9.4, 2.1) 2-day: -2.1 (-8.4, 4.3); 3-day: -4.0 (-9.3, 1.2)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chuang et al. (2007, 091063)	Outcome: High-sensitivity C-reactive protein (hs-CRP)	Pollutant: Nitrate	Nitrate Increment: IQR (1-day avg: 2.5 2-day avg: 4.0
	Fibrinogen, plasminogen activator fibrinogen inhibitor-1 (PAI-1), tissue-type	Averaging Time: Hourly data used to calculate avg over 1-3 day periods	3-day avg: 3.4)
Period of Study: Between Apr-Jun 2004 or 2005 Location: Taipei, Taiwan fibrinogen inhibitor-1 plasminogen activate 2'-deoxyguanosine (8 transformed HRV ind (SDNN = standard de intervals, r-MSSD = s mean of the sum of tl differences between intervals, LF = low fr 0.15Hz], and HF = hi	plasminogen activator (tPA), issue-type plasminogen activator (tPA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and log-transformed HRV indices (SDNN = standard deviation of NN intervals, r-MSSD = square root of the mean of the sum of the squares of differences between adjacent NN intervals, LF = low frequency [0.04-0.15Hz], and HF = high frequency[0.15-0.40Hz])	lean (SD): 1-day avg: 4.5 (2.7) -day avg: 4.7 (2.4) -day avg: 4.4 (2.2) ange (Min, Max): 1-day avg: 0.7, 10.6 -day avg: 0.7, 8.9 -day avg: 0.8, 7.5 lonitoring Stations: 2 sites (each ollutant measured at 1 site only)	Effect Estimate [Lower CI, Upper CI]: % change in health endpoint per increase in IQR of nitrate (1-3 day averaging period single pollutant models) hs-CRP: 1-day: -2.1 (-21.9, 17.8) 2-day: -11.6 (-58.6, 35.5) 3-day: -18.7 (-69.9, 32.5) 8-OHdG: 1-day: 9.0 (4.0, 14.1)
	Age Groups: 18-25 yr	Copollutant: PM ₁₀ Sulfate	2-day: 15.1 (5.9, 24.3) 3-day: 15.0 (4.9, 25.0)
	Study Design: Panel (cross-sectional)	PM _{2.5} OC	PAI-1: 1-day: 4.0 (-2.5, 10.4) 2-day: 11.6 (0.1, 23.1)
	N: 76 students	EC NO ₂ CO SO ₂ O ₃	3-day: 16.9 (4.3, 29.4)
	Statistical Analyses: Linear mixed- effects models Covariates: Age, sex, BMI, weekday,		tPA: 1-day: 2.0 (-6.2, 10.3) 2-day: 12.9 (-1.6, 27.5) 3-day: 10.0 (-5.8, 25.8)
	temperature of previous day, relative humidity Season: Only 1 season of data		Fibrinogen: 1-day: 1.6 (-1.3, 4.5) 2-day: 1.3 (-3.9, 6.5) 3-day: 1.0 (-4.6, 6.6)
	collection Dose-response Investigated? No		Heart Rate Variability SDNN: 1-day: -1.5 (-2.6 to -0.3) 2-day: -2.6 (-4.7 to -0.5)
	Statistical Package: NR		3-day: -3.0 (-5.3 to -0.7)
			r-MSSD: 1-day: -5.5 (-8.7 to -2.2) 2-day: -7.1 (-14.0 to -0.2) 3-day: -8.1 (-14.5 to -1.8)
			LF: 1-day: -1.0 (-1.6 to -0.5) 2-day: -2.0 (-5.6, 1.6) 3-day: -2.0 (-5.2, 1.2)
			HF: 1-day: -2.0 (-5.3, 14[potential typo, possibly 1.4]) 2-day: -4.9 (-10.9, 0.9) 3-day: -6.9 (-13.4 to -0.3)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chuang et al. (2007,	Outcome: High-sensitivity C-reactive	Pollutant: Sulfate	Sulfate Increment: IQR
091063) Period of Study: Between Apr-Jun	protein (hs-CRP) Fibrinogen, plasminogen activator	Averaging Time: Hourly data used to calculate avg over 1- to 3-day periods	(1-day avg: 3.9 2-day avg: 4.3 3-day avg: 3.8)
2004 or 2005 Location: Taipei, Taiwan fibrinogen inhibitor-1 (PAI-1 plasminogen activator (tPA 2'-deoxyguanosime (8-OHd transformed HRV indices (SDNN = standard deviatio intervals, r-MSSD = square mean of the sum of the squ differences between adjace intervals, LF = low frequence 0.15Hz], and HF = high frequence 0.40Hz]) Age Groups: 18-25 yr Study Design: Panel (cross N: 76 students) Statistical Analyses: Line effects models Covariates: Age, sex, BMI temperature of previous dalumidity	(SDNN = standard deviation of NN intervals, r-MSSD = square root of the mean of the sum of the squares of differences between adjacent NN intervals, LF = low frequency [0.04-0.15Hz], and HF = high frequency[0.15-0.40Hz]) Age Groups: 18-25 yr Study Design: Panel (cross-sectional) N: 76 students	Mean (SD): 1-day avg: 4.1 (3.6) 2-day avg: 4.1 (3.7) 3-day avg: 3.9 (3.5) Range (Min, Max): 1-day avg: 0.4, 10.9 2-day avg: 0.4, 11.5 Monitoring Stations: 2 sites (each pollutant measured at 1 site only) Copollutant: PM ₁₀ PM _{2.5} Nitrate	Effect Estimate [Lower CI, Upper CI]: % change in health endpoint per increase in IQR of sulfate (1-3 day averaging period single pollutant models) hs-CRP: 1-day: 80.0 (9.8, 150.2) 2-day: 87.1 (14.9, 159.4) 3-day: 71.1 (13.0, 129.2) 8-OHdG: 1-day: 1.0 (0.3, 1.3) 2-day: -0.4 (-5.4, 4.7) 3-day: -0.3 (-4.3, 3.7) PAI-1:
	Covariates: Age, sex, BMI, weekday, temperature of previous day, relative humidity Season: Only 1 season of data collection		1-day: 12.0 (5.4, 18.7) 2-day: 13.3 (6.6, 19.9) 3-day: 11.2 (5.7, 16.6) tPA: 1-day: 2.0 (-4.6, 8.7) 2-day: 3.8 (-2.8, 10.3) 3-day: 3.0 (-2.3, 8.2) Fibrinogen:
	Dose-response Investigated? No Statistical Package: NR		1-day: Ž.9 (0.2, 5.5) 2-day: 2.8 (0.1, 5.5) 3-day: 2.2 (0.4, 4.7)
			Heart Rate Variability SDNN: 1-day: -3.1 (-4.1 to -2.1) 2-day: -4.1 (-5.2 to -3.1) 3-day: -2.0 (-2.9 to -1.2)
			r-MSSD: 1-day: -5.0 (-8.0 to -2.0) 2-day: -6.0 (-8.9 to -2.9) 3-day: -5.7 (-8.2 to -3.2)
			LF: 1-day: -3.4 (-4.9 to -1.8) 2-day: -3.0 (-4.5 to -1.5) 3-day: -3.0 (-4.3 to -1.7)
			HF: 1-day: -3.5 (-6.5 to -0.4) 2-day: -3.9 (-7.0 to -0.8) 3-day: -3.0 (-5.5 to -0.5)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chuang et al. (2007,	Outcome: ST Segment Depression	Pollutant: PM _{2.5}	PM Increment: Interquartile Increase
<u>098629</u>)	Age Groups: 43-75 yr	Averaging Time: Hourly	Change (Lower CI, Upper CI):
Period of Study: NR	Study Design: Panel	25th, 50th, 75th percentile:	12-h mean
Location: Boston, MA	N: 48 coronary artery disease patients	12-h avg: 6.18, 8.91, 13.18 24-h avg: 6.38, 9.20, 13.31 Max: 12-h avg: 37.13	PM _{2.5} : -0.022 (-0.032, -0.012) PM _{2.5} + NO ₂ : -0.023 (-0.034, -0.012)
	Statistical Analyses: Linear & Mixed Logistic Regression models		PM _{2.5} + SO ₂ : -0.009 (-0.02, 0.001) PM _{2.5} + BC: -0.011 (-0.023, 0.001)
	Covariates: Participant, day of week, order of visit, visit date, hour of day,	24-h avg: 40.38 Monitoring Stations: 1	24-h mean PM _{2.5} : -0.026 (-0.037, -0.015) PM _{2.5} + NO ₂ : -0.017 (-0.029, 0.004)
	hourly temperature Dose-response Investigated? No	$\textbf{Co-pollutant:} \ BC, \ CO, \ O_3, \ NO_2, \ SO_2$	PM _{2.5} + SO ₂ : -0.014 (-0.025, -0.002) PM _{2.5} + BC: -0.012 (-0.026, 0.003)
	Statistical Package: R	Co-pollutant Correlation BC: 0.56	Relative Risk (Lower CI, Upper CI):
	Lags Considered: Lags 1-72 h	O ₃ : 0.20 NO ₂ : 0.38 SO ₂ : 0.25	12-h mean PM _{2.5} : 1.02 (0.86, 1.21) PM _{2.5} + NO ₂ : 0.99 (0.82, 1.21) PM _{2.5} + SO ₂ : 0.87 (0.71, 1.05) PM _{2.5} + BC: 0.92 (0.74, 1.14)
			24-h mean PM _{2.5} : 1.22 (0.99, 1.50) PM _{2.5} + NO ₂ : 1.00 (0.80, 1.25) PM _{2.5} + SO ₂ : 1.04 (0.83, 1.30) PM _{2.5} + BC: 0.87 (0.65, 1.17)
			Mean (Lower CI, Upper CI): 12-h mean Myocardial Infarction: -0.042 (-0.057, - 0.026) No Myocardial Infarction: -0.012 (-0.023, 0.00) p- for interaction: 0.002 Visit 1: -0.102 (-0.12, -0.085) Visits 2-4: 0.006 (-0.005, 0.017) p- for interaction: <0.001 Diabetic: -0.097 (-0.119, -0.074) Non-diabetic: -0.099 (-0.019, 0.002) p- for interaction: <0.001 Diurnal daytime pattern: -0.032 (-0.043, - 0.021) Diurnal nighttime pattern: -0.006 (-0.018, 0.006) p- for interaction: <0.001 24-h mean Myocardial Infarction: -0.027 (-0.043, - 0.012) No Myocardial Infarction: -0.025 (-0.038, 0.011) p- for interaction: 0.787 Visit 1: -0.127 (-0.148, -0.105) Visits 2-4: 0.001 (-0.011, 0.013) p- for interaction: <0.001 Diabetic: -0.118 (-0.144, -0.091) Non-diabetic: -0.118 (-0.144, -0.091) Non-diabetic: -0.13 (-0.024, -0.002) p- for interaction: <0.001 Diurnal daytime pattern: -0.031 (-0.043, - 0.020) Diurnal nighttime pattern: -0.018 (-0.030, -0.005) p- for interaction: 0.233 Notes: The effects of PM on half-h St

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Dales et al. (2007, <u>155743</u>)	Outcome: Vascular Reactivity	Pollutant: PM _{2.5}	PM Increment: Interquartile Range
Period of Study: NR	Age Groups: 18-50 yr	Averaging Time: 2 h	(27.02 μg/m³)
Location: Ottawa, Canada	Study Design: Panel	Mean (SD): Downtown: 40 (20) Tunney's Pasture: 10 (10) p-value 0.000	Beta (SE), p-value: Flow mediated vasodilation (%): -0.016
	N: 39 volunteers		(0.0072) p=0.03 Heart Rate (beats/min): 0.081 (0.135) p=0.55 Diastolic blood pressure (mmHg): 0.088
	Statistical Analyses: Mixed Effects		
	Model	Monitoring Stations: NR	(0.088) p=0.32
	Covariates: Temperature, humidity, wind speed, time of day testing was	Copollutant: PM1.0	Systolic blood pressure (mmHg): -0.108 (0.006) p=0.48
	done, site	Co-pollutant Correlation N/A	
	Dose-response Investigated? No		
	Statistical Package: S-PLUS		
	Lags Considered: NR		2
Reference: de Hartog et al. (2009, 191904)	Outcome: Heart Rate Variability	Pollutant: PM _{2.5}	PM Increment: 1 μg/m ³
Period of Study: 1998-1999	Age Groups: 50+	Averaging Time: Daily	Beta (Lower CI, Upper CI):
Location:	Study Design: Panel	p25, p50, p75. p95: Amsterdam: 10.4, 16.7, 23.9, 47.0	SDNN Local traffic: -0.12 (-0.36, 0.12)
Amsterdam, The Netherlands Erfurt, Germany	N: 122 coronary heart disease patients	Erfurt: 10.8, 16.3, 26.7, 62.3	Long-range transport: -0.04 (-0.14, 0.06) Oil combustion: -0.29 (-1.04, 0.45)
and Helsinki, Finland	Statistical Analyses: Linear Regression		Industry: 0.03 (-0.12, 0.19)
	Covariates: Time trend, temperature, humidity, pressure	Monitoring Stations: NR Copollutant: PM <0.1, PM0.1-1.0, NO ₂ ,	Crustal: 0.11 (-0.35, 0.56) Salt: -0.19 (-1.92, 1.55) HF Local traffic: 0.43 (-0.91, 1.79) Long-range transport: 0.19 (-0.38, 0.77)
	Dose-response Investigated? No	SO ₂	
	Statistical Package: SAS	Co-pollutant Correlation NR	
	Lags Considered: Lags 0-3 days	Note: Correlations are provided for source-specific PM _{2.5} & elements	Oil combustion: 1.05 (-2.70, 4.94) Industry: 0.62 (-0.34, 1.59) Crustal: 1.57 (-1.28, 4.50) Salt: -1.43 (-9.86, 7.78)
			SDNN ABS: -0.52 (-1.39, 0.31) S: -0.51 (-1.36, 0.33) V: -0.66 (-1.73, 0.41) Zn: 0.12 (-0.55, 0.79) Ca: 0.27 (-0.58, 1.11) Cl: 0.14 (-0.39, 0.67) Fe: 0.15 (-1.00, 1.30) Cu: -0.08 (-0.74, 0.57)
			SDNN ABS: 2.91 (-2.54, 8.67) S: 0.25 (-4.42, 5.14) V: 0.73 (-4.74, 6.53) Zn: 3.85 (-0.26, 8.13) Ca: 3.39 (-1.80, 8.86) CI: 1.13 (-1.48, 3.81) Fe: 6.69 (0.11, 13.69) Cu: 3.00 (-0.85, 7.00) Notes: Estimates provided are for all subjects at lag 1, estimates are also available at lags 0, 2, and 3, as well as for subjects w/o beta-blockers at lags 0-3.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: DeMeo et al. (2004,	Outcome: Oxygen saturation	Pollutant: PM _{2.5}	PM Increment: IQR (13.42 μg/m³)
<u>087346</u>)	Age Groups : 60.4-89.2 yr	Averaging Time: 6 h, 12 h, 24 h, 48 h	increase 6 h: 13.42 µg/m ³
Period of Study: Jul-Aug 1999	Study Design: Cross-sectional study		12 h: 10.81 μg/m³ 24 h: 10.26μg/m³
Location: Boston, MA	N: 28 adult participants		48: 10.57 μg/m ³
	Statistical Analyses: GLM, Natural Spline Smoothing, Regression Analysis, Random-effects model		Overall: 0.172% (-0.313, 0.031) decrease 6 h: -0.769% (-1.21 to -0.327) decrease B-blocker users: -0.062% (-0.248, 0.123)
	Covariates: Mean temperature, Dew point temperature, Barometric pressure, Medication use		Rest: 6 h: -0.173 (-0.345 to -0.001) 12 h: -0.160 (-0.308 to -0.012) 24 h: -0.169 (-0.316 to -0.022)
	Season: Summer		48 h: -0.153 (-0.304, 0.002)
	Dose-response Investigated? No		Exercise: 6 h: -0.005 (-0.215, 0.205)
	Statistical Package: S-PLUS, SAS		12 h: -0.014 (-0.196, 0.168) 24 h: 0.001 (-0.180, 0.182) 48 h: -0.011 (-0.196, 0.174)
	Lags Considered: Hourly lags between 2 and 7 h		Post exercise Rest: 6 h: -0.173 (-0.332 to -0.014) 12 h: -0.128 (-0.266, 0.010) 4 h: -0.113 (-0.250, 0.023) 48 h: -0.157 (-295 to -0.019)
			Paced breathing: 6 h: -0.142 (-0.292, 0.007) 12 h: -0.139 (-0.269 to -0.010) 24 h: -0.121 (-0.248, 0.007) 48 h: -0.082 (0.211, 0.047)
			Summary over protocol 6 h: -0.131 (-0.247 to -0.015) 12 h: -0.120 (-0.221, 0.020) 24 h: -0.112 (-0.212 to -0.013)
			Notes: Fig of the variation in oxygen saturation during the first rest period vs individual hourly lag measurements for $\mathrm{PM}_{2.5}$
Reference: Diez-Roux et al. (2006,	Outcome: C-reactive protein (CRP)	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
156400) Period of Study: Baseline data collected Jun 2000-Aug 2002	assessed continuously and as a dichotomous variable (cutpoint, 3 mg/L) interleukin-6 (IL-6)	Averaging Time: Prior day, prior 2 days, prior wk, prior 30 days, and prior 60 days	Effect Estimate [Lower CI, Upper CI]: Adjusted (all personal-level covariates) relative difference in CRP (mg/L) per
Location:	Age Groups: 45-84 yr	Mean (SD): Presented in Fig 1 by site	10 μg/m³ increase in PM _{2.5}
USA		Percentiles: Presented in Fig 1 by site	Prior day: 0.99 (0.96, 1.01)
6 field centers: Baltimore, MD	Study Design: Cross-sectional		Prior 2 days: 0.99 (0.96, 1.01) Prior 7 days: 1.00 (0.96, 1.04)
Chicago, IL Forsyth Co, NC	N: 5634 persons	Range: NR	Prior 30 days: 1.03 (0.98, 1.10) Prior 60 days: 1.04 (0.97, 1.11)
Los Ángeles, CA	Statistical Analyses: Linear regression & logistic regression	Monitoring Stations: NR	Odds Ratios of CRP of ≥ 3 mg/L per
New York, NY St. Paul, MN	Covariates: Age, sex, race/ethnicity, general health status, BMI, diabetes,	Long-term exposure to PM estimated based on residential history reported retrospectively	10 μg/m³ increase in PM _{2.5} (adjusted for all personal-level covariates)
	cigarette status, secondhand smoke, physical activity, arthritis flare in last 2	All addresses geocoded	Prior day: 0.98 (0.92, 1.04)
	wk, medications, infections in last 2 wk (also ran models including site,	Ambient AP obtained from U.S. EPA	Prior 2 days: 0.99 (0.93, 1.06) Prior 7 days: 1.05 (0.96, 1.15)
	copollutants, and weather)	Copollutant:	Prior 30 days: 1.12 (0.98, 1.29) Prior 60 days: 1.12 (0.96, 1.32)
	Season: Examined seasonal patterns in the residuals of fully adjusted models stratified by season	SO_2 NO_2 CO O_3	(, , , , , , , , , , , , , , , , , , ,
	Dose-response Investigated? No		
	Statistical Package: NR		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Dubowsky et al. (2006,	Outcome: White blood cells (WBC),	Pollutant: PM _{2.5} (ambient)	PM Increment: 6.1 μg/m³ (5-day mean)
088750) Period of Study: Mar-Jun 2002 Location: St. Louis, Missouri		Averaging Time: Hourly data used to calculate avg concentrations over 1-7	Effect Estimate [Lower CI, Upper CI]:
	Age Groups: ≥ 60 yr	days preceding the blood draw (ambient PM _{2.5})	Note: Most results presented in figures. Selected result in abstract text: %
	Study Design: Panel (4 planned repeated measures	Microenvironmental PM _{2.5} measures were avgd over the 1-2 days preceding	change in WBC per increase in IQR (5.4 µg/m³) of PM _{2.5} avgd over the previous week: 5.5 (0.1, 11)
	n = 35 participated in 4 trips)	the blood draw	Associations (% changes and 95%CI)
	N: 44 participants	Mean (SD) (1-day): 16 (6.0)	between 5-day mean ambient
	Statistical Analyses: Linear mixed models	Percentiles (1-day): 0: 6.5 25th: 12	concentrations and markers of inflammation per increase (IQR) in pollutant.
	Covariates: Sex, obesity, diabetes, smoking history, time-varying	75th: 22 100th: 28	CRP: All participants: 14 (-5.4, 37)
	parameters (apparent temperature, h,	Monitoring Stations: 1 ambient monitor	
	day, trip, residence, mold, pollen, illness, and juice intake), medication and vitamin consumption (day of blood draw)	PM _{2.5} (ambient)	(diabetes, obesity, and hypertension): 81 (21, 172)
	Season: Limited data collection period	BC (ambient) PM _{2.5} (microenvironment)	Among those with at least 2 of the conditions: 11 (-7.3, 33)
	Dose-response Investigated? No	CO NO ₂	IL-6: All participants: -2.1 (-13, 11)
	Statistical Package: SAS v8.02	SO ₂ O ₃	Among those with all 3 conditions (diabetes, obesity, and hypertension): 23 (-5.3, 59)
			Among those with at least 2 of the conditions: -3.1 (-14, 9.7)
			WBC (x109/L): All participants: 3.4 (-1.8, 8.9)
			Among those with all 3 conditions (diabetes, obesity, and hypertension): 0.4 (-8.8, 11)
			Among those with at least 2 of the conditions: 3.6 (-1.7, 9.1)
Reference: Dubowsky et al. (2006,	Outcome: White blood cells (WBC),	Pollutant: BC (ng/m ³) (ambient)	PM Increment: 230 ng/m³ (5-day mean)
088750) Period of Study: Mor. Jun 2002	C-reactive protein (CRP), interleukin-6 (IL-6)	Averaging Time: Hourly data used to	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Mar-Jun 2002 Location: St. Louis, Missouri	Age Groups: ≥ 60 yr	calculate avg concentrations over 1-7 days preceding the blood draw (ambient	Note: Most results presented in figures.
Education. Of Education (1995)	Study Design: Panel (4 planned repeated measures	PM) microenvironmental PM _{2.5} measures were avgd over the 1-2 days preceding the blood draw Mean (SD) (1-day): 900 (280)	Associations (% changes and 95%CI) between 5-day mean ambient concentrations and markers of
	n = 35 participated in 4 trips)		inflammation per increase (IQR) in
	N: 44 participants		pollutant. CRP: All participants: 13 (-0.34, 28)
	Statistical Analyses: Linear mixed	Percentiles (1-day): 0: 290	Among those with all 3 conditions
	models Covariates: Sex, obesity, diabetes, smoking history, time-varying		(diabetes, obesity, and hypertension): 49 (16, 90)
	parameters (apparent temperature, h, day, trip, residence, mold, pollen, illness,		Among those with at least 2 of the conditions: 9.0 (-3.8, 24)
	and juice intake), medication and vitamin consumption (day of blood draw)	PM _{2.5} (ambient)	IL-6: All participants: -0.8 (-8.9, 8.0)
	Season: Limited data collection period Dose-response Investigated? No	BC (ambient) PM _{2.5} (microenvironment) CO	Among those with all 3 conditions (diabetes, obesity, and hypertension): 15 (-2.2, 35)
	Statistical Package: SAS v8.02	NO ₂ SO ₂	Among those with at least 2 of the
	Salibilida i donago. O/10 10.02	O ₃	conditions: -2.7 (-11, 6.2)
			WBC (x109/L): All participants: 1.3 (-2.1, 4.8)
			Among those with all 3 conditions (diabetes, obesity, and hypertension): 0.05 (-5.9, 6.3)
			Among those with at least 2 of the conditions: 1.5 (-2.0, 5.1)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ebelt et al. (2005, <u>056907</u>)	Outcome: CVD	Pollutant: PM _{2.5}	PM Increment:
			PM Increment: Increment: C2.5: IQR = 5.8 SBP (mm Hg): -1.70 (-3.48-0.08) DBP (mm Hg): -0.58 (-2.02-0.85) Ln-SVE (bph): 0.20 (0.00-0.40) HR (bpm): 0.93 (-0.90-2.75) SDNN (ms): -4.37 (-9.40-0.65) R-MSSD (ms): -2.79 (-6.16-0.57) Increment: NS_C2.5: IQR = 4.2 SBP (mm Hg): -1.52 (-2.94 - 0.09) DBP (mm Hg): -0.77 (-1.87-0.32) Ln-SVE (bph): 0.19 (-0.01-0.38) HR (bpm): 1.03 (-0.43-2.48) SDNN (ms): -3.83 (-7.77-0.11) R-MSSD (ms): -2.90 (-5.550.25) Increment: S_C2.5: IQR = 1.5 SBP (mm Hg): -1.10 (-3.48-1.28) DBP (mm Hg): -1.10 (-3.48-1.28) DBP (mm Hg): -0.76 (-1.15-2.68) Ln-SVE (bph): 0.09 (-0.05-0.23) HR (bpm): -0.42 (-2.28-1.44) SDNN (ms): -3.14 (-9.73-3.45) R-MSSD (ms): 0.24 (-5.14-5.63) Increment: A2.5: IQR = 4.4 SBP (mm Hg): -1.90 (-3.66-0.14) DBP (mm Hg): -0.33 (-1.72-1.06) Ln-SVE (bph): 0.20 (0.02-0.37) HR (bpm): 0.57 (-1.34-2.47) SDNN (ms): -3.91 (-8.79-0.97) R-MSSD (ms): -1.05 (-4.79-2.17) Increment: NS_A2.5: IQR = 3.4 SBP (mm Hg): -1.70 (-3.270.14) DBP (mm Hg): -0.51 (-1.71-0.70) Ln-SVE (bph): 0.20 (0.02-0.37) HR (bpm): 0.69 (-0.96-2.35) SDNN (ms): -4.18 (-8.51-0.15) R-MSSD (ms): -1.40 (-4.40-1.60) Increment: S_T2.5: IQR = 0.9 SBP (mm Hg): -1.55 (-3.35-0.26) DBP (mm Hg): -0.24 (-1.75-1.26) SDNN (ms): -0.68 (-4.74-3.38) R-MSSD (ms): 0.091 (-3.51-5.33) Increment: T2.5: IQR = 10.1 SBP (mm Hg): -0.24 (-1.75-1.26) SDNN (ms): -0.68 (-4.74-3.38) R-MSSD (ms): 0.091 (-3.51-5.33) Increment: T2.5: IQR = 10.1 SBP (mm Hg): -0.34 (-1.26-1.94) Ln-SVE (bph): 0.04 (-0.01-11)
			R-MSSD (ms): 0.91 (-3.51-5.33) Increment: T2.5: IQR = 10.1 SBP (mm Hg): -1.26 (-2.60-0.08) DBP (mm Hg): 0.34 (-1.26-1.94)
			Increment: N2.5: IQR = 8.9 SBP (mm Hg): -0.81 (-2.15-0.53) DBP (mm Hg): 0.40 (-1.19-1.98) Ln-SVE (bph): -0.04 (-0.18-0.10) HR (bpm): -0.35 (-0.85-0.14) SDNN (ms): -1.10 (-3.10-0.90) R-MSSD (ms): -0.54 (-2.54-1.46)
			Note: Total personal fine particle exposure (T) were dominated by exposures to non ambient particles which were not correlated with ambient fine particle exposure (A) or ambient concentrations (C). Results for each of these metrics are listed.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Fan et al. (2008, <u>191979</u>)	Outcome: Cardiopulmonary Health	Pollutant: PM _{2.5}	PM Increment: 10 μg/m³
Period of Study: Feb-May 2005	(FEV, FVC, PEF, SDNN, HR)	Averaging Time: Daily	Beta (SE), p-value:
Location: Paterson, New Jersey	Age Groups: 61.2 (13.7)	Mean (SD):	ΔSDNN
	Study Design: Panel	ΔPM _{2.5} avg	Morning, ∆PM _{2.5} avg 15min: -14.5 (6.9), 0.06
	N: 11	Morning: 35.2 (25.9) Afternoon: 24.1 (22.1)	2h: -18.9 (4.2), 0.0002 4h: -2.5 (8.6), 0.78
	Statistical Analyses: Mixed Effects models, Linear Regression models	ΔPM _{2.5} peak	Morning, ΔPM _{2.5} peak
	Covariates: Temperature, humidity	Morning: 71.3 (56.1) Afternoon: 64.3 (43.5)	15min: -9.2 (11.2), 0.43 2h: -5.1 (13.8), 0.72
	Dose-response Investigated? No	Range:	4h: -7.4 (12.0), 0.55
	Statistical Package: SAS	ΔPM _{2.5} avg	Afternoon, $\triangle PM_{2.5}$ avg 15min: -2.4 (7.6), 0.77
	Lags Considered: 0	Morning: 1.1 - 87 Afternoon: 1.2 - 98	2h: -20.2 (10.8), 0.10
		ΔPM _{2.5} peak	4h: -0.7 (11.2), 0.95 Afternoon, ΔPM _{2.5} peak
		Morning: 4.0 - 278 Afternoon: 3.0 - 150	15min: 0.6 (8.9), 0.95
		Monitoring Stations: NR	2h: 19.2 (14.6), 0.23 4h: -6.8 (14.1), 0.64
		Copollutant: NR	ΔHR
		Co-pollutant Correlation: N/A	Morning, ∆PM _{2.5} avg 15min: 1.2 (3.1), 0.71
		·	2h: -5.5 (2.9), 0.08 4h: -3.1 (4.6), 0.51
			Morning, ΔPM _{2.5} peak
			15min: 0.8 (4.4), 0.86 2h: -7.2 (4.2), 0.11
			4h: -7.1 (6.3), 0.28
			Afternoon, $\Delta PM_{2.5}$ avg 15min: -2.0 (4.0), 0.62
			2h: 0.9 (5.4), 0.87
			4h: 8.2 (5.2), 0.14
			Afternoon, ΔPM _{2.5} peak 15min: -5.6 (5.3), 0.31
			2h: 3.1 (8.1), 0.71 4h: 11.1 (8.1), 0.20
			Δ FEV ₁
			Morning, $\Delta PM_{2.5}$ avg: 0.02 (0.04), 0.68 Morning, $\Delta PM_{2.5}$ peak: -0.13 (0.08), 0.16
			Δ FVC
			Morning, $\Delta PM_{2.5}$ avg: -0.10 (0.09), 0.31 Morning, $\Delta PM_{2.5}$ peak: -0.12 (0.17), 0.51
			Δ PEF
			Morning, $\Delta PM_{2.5}$ avg: -0.54 (0.62), 0.42 Morning, $\Delta PM_{2.5}$ peak: -1.46 (1.12), 0.24
			Notes: Estimates relative to increases in
			the avg and peak PM _{2.5} concentrations
Reference: Folino et al. (2009, <u>191902</u>)	Outcome: HRV & Inflammatory Markers	2.0	PM Increment: 1 μg/m ³
Period of Study: Jun 2006-May 2007	Age Groups: 45-65 yr	Averaging Time: 24 h	Beta (SE), p-value:
Location: Padua, Italy	Study Design: Panel	Mean (SD): Summer: 33.9 (12.7)	SDNN: 0.109 (0.115), 0.345 SDANN: 0.127 (0.126), 0.314
	N: 39 patients w/ myocardial infarction	Winter: 62.1 (27.9) Spring: 30.8 (14.0)	RMSSD: 0.045 (0.040), 0.256 pH: 0.002 (0.001), 0.041
	Statistical Analyses: Linear Regression Model, ANOVA	Monitoring Stations: NR	LTB4: 0.590 (0.324), 0.069 eNO: -0.002 (0.003), 0.503
	Covariates: Temperature, relative	Copollutant: PM ₁₀ , PM _{0.25}	PTX3: -0.004 (0.002), 0.013
	humidity, atmospheric pressure, beta- blocker, aspirin, or nitrate consumption, smoking habit	Co-pollutant Correlation: NR CC16: -0.002 (0.00	C-reactive protein: -0.008 (0.005), 0.115 CC16: -0.002 (0.002), 0.410 IL-8: 0.000 (0.003), 0.989
	Dose-response Investigated? No		
	Statistical Package: Stata		
	Lags Considered: NR		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Folino et al. (2009, <u>191902</u>)	Outcome: HRV & Inflammatory Markers	Pollutant: PM _{0.25}	PM Increment: 1 µg/m ³
Period of Study: Jun 2006-May 2007	Age Groups: 45-65 yr	Averaging Time: 24 h	Beta (SE), p-value:
Location: Padua, Italy	Study Design: Panel	Summer: 17.6 (7.5) SDANN: 0.214 (0.214), 0.31 Winter: 30.5 (17.4) RMSSD: 0.081 (0.077), 0.29	SDNN: 0.214 (0.204), 0.295
	N: 39 patients w/ myocardial infarction		RMSSD: 0.081 (0.077), 0.291
	Statistical Analyses: Linear Regression	Spring: 18.8 (10.8)	pH: 0.005 (0.002), 0.004 LTB4: 0.835 (0.533), 0.117
	Model, ANOVA	Monitoring Stations: NR	eNO: -0.006 (0.005), 0.182 PTX3: -0.006 (0.003), 0.071
	Covariates: Temperature, relative humidity, atmospheric pressure, beta-	Copollutant: PM ₁₀ , PM _{2.5}	C-reactive protein: -0.011 (0.007), 0.104
	blocker, aspirin, or nitrate consumption, smoking habit	Co-pollutant Correlation: NR	CC16: 0.001 (0.004), 0.890 IL-8: -0.004 (0.006), 0.527
	Dose-response Investigated? No		
	Statistical Package: Stata		
	Lags Considered: NR		
Reference: Goldberg et al. (2008,	Outcome: Oxygen saturation & pulse	Pollutant: PM _{2.5}	PM Increment: Interquartile Range
<u>180380</u>)	rate	Averaging Time: Daily	(7.3 μg/m³)
Period of Study: Jul 2002-Oct 2003	Age Groups: 50-85 yr	IQR: 7.3	Mean Difference (Lower CI, Upper CI), lag:
Location: Montreal, Canada	Study Design: Panel	Monitoring Stations: 8	Oxygen Saturation
	N: 31	Co-pollutant: CO, NO ₂ , SO ₂ , O ₃	Unadjusted:
	Statistical Analyses: Mixed Random Effects Model	Co-pollutant Correlation	-0.087 (-0.143, -0.031), lag 0 Unadjusted: -0.058 (-0.114, -0.002), lag 1
	Covariates: Body temperature, consumption of salt, intake of fluids, being ill the day before, ambient temperature, relative humidity, barometric pressure	NO ₂ : 0.62	Unadjusted: -0.083 (-0.155, -0.010), lag 0-2-day av Adjusted: -0.056 (-0.117, 0.005), lag 0 Adjusted: -0.019 (-0.079, 0.041), lag 1 Adjusted: -0.039 (-0.118, 0.039), lag 0
	Dose-response Investigated? No		2-day avg
	Statistical Package: Splus		Pulse Rate Unadjusted: 0.226 (-0.037, 0.489), lag 0
	Lags Considered: lags 1 day; 0- to 2-day avg		Unadjusted: 0.288 (0.022, 0.554), lag 1 Unadjusted: 0.420 (0.067, 0.772), lag 0- 2-day avg Adjusted: 0.158 (-0.136, 0.451), lag 0 Adjusted: 0.246 (-0.040, 0.531), lag 1 Adjusted: 0.353 (-0.034, 0.740), lag 0- 2-day avg

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Goldberg et al. (2008,	Outcome: Shortness of Breath &	Pollutant: PM _{2.5}	PM Increment: Interquartile Range
180380)	General health	Averaging Time: Daily	(7.3 µg/m²)
Period of Study: Jul 2002-Oct 2003	Age Groups: 50-85 yr	Mean: 9.5	Mean Difference (Lower CI, Upper CI), lag:
Location: Montreal, Canada	Study Design: Panel	Median: 7.0	General Health
	N: 31	Min: 0.8	Unadjusted: -0.317 (-0.699, 0.064), lag 0 Unadjusted: -0.284 (-0.670, 0.103), lag 1
	Statistical Analyses: Mixed Random Effects Model	Max: 50.2	Unadjusted: -0.048 (-0.427, 0.332), lag 2 Unadjusted: -0.241 (-0.620, 0.139), lag 3
	Covariates: Body temperature,	IQR: 7.3	Unadjusted: -0.010 (-0.390, 0.370), lag 4 Unadjusted: -0.482 (-1.053, 0.090), lag
	consumption of salt, intake of fluids, being ill the day before, ambient	Monitoring Stations: 8	0-2-day avg
	temperature, relative humidity, barometric pressure	Co-pollutant: CO, NO ₂ , SO ₂ , O ₃	Adjusted: -0.125 (-0.545, 0.295), lag 0 Adjusted: -0.167 (-0.568, 0.234), lag 1
	Dose-response Investigated? No	Co-pollutant Correlation CO: 0.66	Adjusted: -0.081 (-0.464, 0.302), lag 2 Adjusted: -0.222 (-0.602, 0.157), lag 3
	Statistical Package: Splus	NO ₂ : 0.54 O ₃ : 0.32	Adjusted: 0.016 (-0.364, 0.396), lag 4 Adjusted: -0.281 (-0.886, 0.325), lag
	Lags Considered: lags 0-4 days; 0- to	SO ₂ : 0.50	0-2-day avg
	2-day avg		Shortness of breath at night Unadjusted: -0.421 (-0.847, 0.006), lag 0 Unadjusted: -0.278 (-0.711, 0.155), lag 1 Unadjusted: -0.100 (-0.526, 0.327), lag 2 Unadjusted: -0.200 (-0.645, 0.206), lag 3 Unadjusted: -0.206 (-0.632, 0.220), lag 4 Unadjusted: -0.555 (-1.172, 0.063), lag 0-2-day avg Adjusted: -0.171 (-0.639, 0.297), lag 0 Adjusted: -0.130 (-0.579, 0.319), lag 1 Adjusted: -0.127 (-0.553, 0.299), lag 2 Adjusted: -0.192 (-0.616, 0.231), lag 3 Adjusted: -0.171 (-0.594, 0.253), lag 4 Adjusted: -0.301 (-0.952, 0.350), lag 0-2-day avg
Reference: Ibald-Mulli et al. (2004,	Outcome: Blood Pressure & Heart Rate	Pollutant: PM _{2.5}	PM Increment: Interquartile Range
087415)	Age Groups: 40-84	Averaging Time: 24 h	(27.02 μg/m³)
Period of Study: Winter 1998-1999	Study Design: Panel	Mean (SD):	Beta (SE), p-value:
Location: Helsinki, Finland	N: 131 adults w/ CHD	Downtown: 40 (20) Tunney's Pasture: 10 (10)	Flow mediated vasodilation (%): -0.016 (0.0072) p=0.03
Erfurt, Germany Amsterdam, the Netherlands	Statistical Analyses: Linear Regression	p-value 0.000	Heart Rate (beats/min): 0.081 (0.135) p=0.55
	Covariates: Trend, day of week, temperature, barometric pressure,	Monitoring Stations: NR	Diastolic blood pressure (mmHg): 0.088 (0.088) p=0.32
	relative humidity, medication use	Copollutant: PM _{1.0}	Systolic blood pressure (mmHg): -0.108 (0.006) p=0.48
	Dose-response Investigated? No	Co-pollutant Correlation: N/A	-0.100 (0.000) p-0.40
	Statistical Package: SAS		
	Lags Considered: 0-2, 5-day avg		
Reference: Langrish et al. (2009, 191908)	Outcome: Cardiovascular Effects	Pollutant: PM _{2.5}	PM Increment: NR
Period of Study: Aug 2008	Age Groups: Median 28 yr	Averaging Time: NR	Mean (Lower CI, Upper CI): W/o Mask (Day)
Location: Beijing, China	Study Design: Panel	Mean: W/o mask: 86	SBP: 100 (104, 116)
Location: Deijing, Olima	N : 15	W/ mask: 140	DBP: 73 (69, 76) MAP: 85 (81, 88)
	Statistical Analyses: NR	Monitoring Stations: NR	Heart Rate: 79 (74, 84) Avg NN interval: 829 (789, 869)
	Covariates: NR	Co-pollutant: CO, SO ₂ , NO ₂	pNN50: 15.9 (10.7, 21.0) RMSSD: 35.1 (29.2, 41.0)
	Dose-response Investigated? No	Co-pollutant Correlation: N/A	SDNN: 61.2 (54.9, 67.5)
	Statistical Package: NR		Triangular index: 12.9 (11.9, 13.9) LF power: 816 (628, 1004)
	Lags Considered: NR		HF power: 460 (325, 595) LFn: 62.8 (56.7, 68.9) HFn: 29.2 (25.5, 32.8) HF/LF ratio: 0.738 (0.507, 0.970)
			W/ Mask (Day) SBP: 109 (104, 114) DBP: 73 (70-76) MAP: 85 (81, 89)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Heart Rate: 78 (73, 82) Avg NN interval: 850 (805, 896) pNN50: 17.9 (14.2, 21.6) RMSSD: 37.1 (32.2, 42.0) SDNN: 65.5 (59.0, 72.2)* Triangular index: 13.8 (13.0, 14.5) LF power: 919 (717, 1122)* HF power: 485 (400, 569) LFn: 64.5 (60.6, 68.4) HFn: 30.0 (27.0, 33.1) HF/LF ratio: 0.680 (0.519, 0.842)
			W/o Mask (During Walk) SBP: 121 (115, 127) DBP: 81 (75-87) MAP: 94 (89, 99) Heart Rate: 88 (82, 94) Avg NN interval: 594 (562, 627) pNN50: 3.3 (0.8, 5.7) RMSSD: 17.2 (13.4, 21.0) SDNN: 45.8 (36.8, 54.8) Triangular index: 10.7 (9.1, 12.4) LF power: 313 (170, 455) HF power: 76.5 (33.6, 120.0) LFn: 68.2 (60.9, 75.5) HFn: 16.1 (11.9, 20.3) HF/LF ratio: 0.259 (0.173, 0.344)
			W/ Mask (During Walk) SBP: 114 (108, 120) DBP: 79 (74, 83) MAP: 90 (86, 94) Heart Rate: 91 (85, 97) Avg NN interval: 613 (571, 655) pNN50: 2.1 (-0.1, -4.4) RMSSD: 20.0 (15.5, 24.6) SDNN: 54.8 (42.5, 67.0) Triangular index: 11.4 (9.4, 13.3)
			W/ Mask (During Walk) LF power: 414 (233, 595) HF power: 116.8 (52.6, 181.0) LFn: 67.9 (61.9, 73.9) HFn: 16.0 (12.5, 19.4) HF/LF ratio: 0.247 (0.180, 0.314)
			Mean (SD): W/o Mask (After Walk) Headache: 2.53 (5.55) Dizziness: 1.07 (2.22) Tiredness: 8.47 (12.14) Sickness: 1.07 (2.22) Cough: 1.80 (4.80) Difficulty Breathing: 0.67 (0.90) Eye irritation: 1.40 (3.60) Throat irritation: 1.47 (4.07) Nose irritation: 1.53 (3.78) Unpleasant Smell: 0.93 (1.22) Bad taste: 0.73 (0.96) Difficulty walking: 12.53 (13.24) Perception of Pollution: 19.80 (18.37)
			W/ Mask (After Walk) Headache: 0.73 (1.03) Dizziness: 0.80 (1.57 Tiredness: 7.40 (9.37) Sickness: 0.87 (1.51) Cough: 1.00 (1.73) Difficulty Breathing: 3.80 (8.10) Eye irritation: 1.67 (3.27) Throat irritation: 1.07 (2.63) Nose irritation: 1.07 (1.91) Unpleasant Smell: 0.60 (0.91) Bad taste: 0.60 (1.18) Difficulty walking: 15.13 (11.51) Perception of Pollution: 11.60 (10.44) *p < 0.05 Notes: Estimates also available for 24 h, night, before walk, and 24 h after walk.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Lanki et al. (2006, <u>088412</u>) Period of Study: Fall 1998-spring 1999 Location: Helsinki, Finland	Outcome: ST segment depressions (2 endpoints: >0.1mV regardless of the direction of the ST slope and >0.1mV with horizontal or downward slope [stricter criteria]) Age Groups: Mean = 68.2 (6.5) yr Study Design: Panel	Pollutant: PM _{2.5} (Analyses conducted for source specific PM _{2.5}) Averaging Time: Daily filter samples Mean: Crustal: 0.6 Long-range transported: 6.4 Oil combustion: 1.6 Salt: 0.9	PM Increment: 1 μg/m³ Effect Estimate [Lower CI, Upper CI]: Adjusted ORs between daily source-specific $PM_{2.5}$ concentrations and ST-segment depressions. ST-segment depression defined as >0.1 mV (n = 62) Crustal Lag 0: 0.80 (0.47, 1.36)
	N: 45 elderly nonsmoking persons with stable coronary heart disease 342 total exercise tests for analyses Statistical Analyses: Generalized additive models with penalized splines (logistic regression) principal components analysis and linear regression of 13 measured elements used to apportion PM _{2.5} mass between different sources Covariates: Subject, linear terms for time trend, temperature, relative humidity, penalized spline for change in heart rate during the exercise test Season: NR	Local traffic: 2.9 Total: 12.8 Percentiles: Crustal 25: 0.0 50: 0.4 75: 1.1; Max: 5.3 Long-range transported 25: 2.2 50: 5.5 75: 9.8; Max: 26.5 Oil combustion 25: 0.6 50: 1.3 75: 2.3;	Lag 1: 0.66 (0.40, 1.10) Lag 2: 1.18 (0.68, 2.06) Lag 3: 1.87 (0.85, 4.09) Long-range transport Lag 0: 0.94 (0.84, 1.05) Lag 1: 1.00 (0.92, 1.08) Lag 2: 1.11 (1.02, 1.20) Lag 3: 1.06 (0.95, 1.18) Oil combustion Lag 0: 0.87 (0.57, 1.32) Lag 1: 1.04 (0.75, 1.45) Lag 2: 1.10 (0.83, 1.46) Lag 3: 1.12 (0.79, 1.58) Salt Lag0: 1.03 (0.57, 1.85) Lag1: 0.72 (0.37, 1.40)
	Dose-response Investigated? No Statistical Package: S-plus 2000 and R	Max: 12.2	Lag2: 0.66 (0.31, 1.40) Lag3: 1.55 (0.83, 2.89) Local traffic Lag 0: 0.91 (0.69, 1.21) Lag 1: 1.22 (0.88, 1.69) Lag 2: 1.53 (1.19, 1.97) Lag 3: 0.98 (0.78, 1.23) ST-segment depression defined as >0.1 mV with horizontal or downward slope (n = 46) Crustal Lag0: 0.76 (0.42, 1.35) Lag1: 0.41 (0.22, 0.79) Lag2: 1.17 (0.65, 2.09) Lag3: 1.60 (0.72, 3.59) Long-range transport Lag 0: 0.98 (0.86, 1.10) Lag 1: 1.03 (0.95, 1.12) Lag 2: 1.11 (1.02, 1.21) Lag 3: 1.02 (0.95, 1.10) Oil combustion Lag 0: 0.95 (0.61, 1.49) Lag 1: 1.13 (0.76, 1.68) Lag 2: 1.33 (0.98, 1.80)
		Oil combustion: r = 0.35 Salt: r = 0.19 Local traffic: r = 0.26	Lag 3: 1.29 (0.90, 1.86) Salt Lag 0: 1.15 (0.56, 2.38) Lag 1: 0.90 (0.44, 1.81) Lag 2: 1.39 (0.63, 3.08) Lag 3: 1.93 (1.00, 3.72) Local traffic Lag 0: 0.89 (0.64, 1.23) Lag 1: 1.21 (0.86, 1.71) Lag 2: 1.37 (1.03, 1.83) Lag 3: 1.03 (0.80, 1.32) Adjusted ORs for the association of indicator elements of PM _{2.5} sources and ST-segment depressions in multipollutant models (models include all 5 indicator elements). ST-segment depression defined as >0.1 mV (n = 62) Si (Crustal) Lag0: 0.73 (0.39, 1.38)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Lag1: 0.48 (0.25, 0.93) Lag2: 0.78 (0.35, 1.71) Lag3: 1.95 (0.69, 5.48)
			S (Long-range transport) Lag0: 0.70 (0.25, 1.95) Lag1: 0.58 (0.23, 1.47) Lag2: 1.08 (0.44, 2.63) Lag3: 1.60 (0.73, 3.48)
			Ni (Oil combustion) Lag0: 0.78 (0.30, 2.04) Lag1: 1.20 (0.58, 2.46) Lag2: 1.15 (0.61, 2.18) Lag3: 1.02 (0.41, 2.54)
			CI (Salt) Lag0: 1.03 (0.79, 1.34) Lag1: 0.88 (0.56, 1.38) Lag2: 1.02 (0.62, 1.69) Lag3: 1.27 (0.85, 1.91)
			ABS (Local traffic) Lag0: 0.92 (0.36, 2.37) Lag1: 1.83 (0.73, 4.59) Lag2: 4.46 (1.69, 11.79) Lag3: 0.92 (0.40, 2.12)
			ST-segment depression defined as >0.1 mV with horizontal or downward slope (n = 46)
			Si (Crustal) Lag0: 0.67 (0.33, 1.36) Lag1: 0.34 (0.15, 0.81) Lag2: 0.81 (0.33, 2.00) Lag3: 1.90 (0.64, 5.65)
			S (Long-range transport) Lag0: 0.84 (0.29, 2.47) Lag1: 0.89 (0.34, 2.32) Lag2: 1.36 (0.54, 3.45) Lag3: 1.12 (0.53, 2.40)
			Ni (Oil combustion) Lag0: 1.10 (0.36, 3.37) Lag1: 1.16 (0.45, 2.96) Lag2: 1.64 (0.84, 3.20) Lag3: 1.63 (0.64, 4.14)
			CI (Salt) Lag0: 1.13 (0.80, 1.62) Lag1: 0.99 (0.58, 1.68) Lag2: 1.55 (0.87, 2.76) Lag3: 1.45 (0.94, 2.25)
			ABS (Local traffic) Lag0: 0.74 (0.25, 2.23) Lag1: 1.76 (0.62, 5.00) Lag2: 4.86 (1.55, 15.26) Lag3: 0.97 (0.39, 2.41)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Lanki et al. (2008, <u>191984</u>)	Outcome: ST Segment Depressions	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: Jan 1999-Apr 1999	>0.1 mV	Averaging Time: Hourly	Odds Ratio (Lower CI, Upper CI):
Location: Helsinki, Finland	Age Groups: 50+	25th, 50th, 75th, Max:	Personal PM _{2.5}
	Study Design: Panel	Personal PM _{2.5}	1-h avg: 3.26 (1.07, 9.99)* 4-h avg: 2.42 (0.75, 7.83)
	N: 41 elderly people w/ CHD Statistical Analyses: Logistic Regression Model	1h: 6.9, 11.2, 15.8, 41.5 4h: 5.9, 10.0, 14.6, 41.3 8h: 5.0, 7.9, 13.0, 34.9	8-h avg: 1.57 (0.49, 5.09) 12-h avg: 1.96 (0.44, 8.64) 22-h avg: 2.06 (0.30, 14.10)
	Covariates: Long-term time trend, temperature, humidity, change in heart	12h: 5.2, 7.8, 12.1, 28.8 22h: 6.6, 9.3, 13.0, 30.2	Outdoor PM _{2.5} 1-h avg: 1.77 (0.87, 3.58)
	rate following exercise test	Outdoor PM _{2.5} 1h: 8.9, 12.9, 17.8, 42.9 4h: 8.8, 12.5, 17.6, 40.8	4-h avg: 2.47 (1.05, 5.85)* 8-h avg: 1.83 (0.80, 4.20)
	Dose-response Investigated? No	8h: 8.3, 12.1, 17.2, 39.2	12-h avg: 1.90 (0.77, 4.65) 24-h avg: 1.60 (0.59, 4.39)
	Statistical Package: R	12h: 8.3, 11.9, 17.0, 37.0 24 h: 9.0, 12.5, 17.7, 30.5	*p < 0.05
	Lags Considered: lags 0-24 h	Monitoring Stations: 1	
		Co-pollutant: PM<0.1	
		Co-pollutant Correlation Personal & Outdoor PM _{2.5} 1 h & 1 h: 0.70 4 h & 4 h: 0.54 8 h & 8 h: 0.60 12 h & 12 h: 0.50 22 h & 24 h: 0.80	
		Notes: 1-22 h pollutant averaging times. Correlations also available for personal-personal and outdoor-outdoor.	
Reference: Liao et al. (2007, <u>180272</u>)	Outcome: Ectopy	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: 1999-2004	Age Groups: women 50-79 yr	Averaging Time: Daily	Percent Change (Lower CI, Upper CI):
Location: 24 U.S. States	Study Design: Panel	Mean (SD)*:	All Ventricular Ectopy
	N: 57,422	All: 13.8 (79) No Ectopy: 13.8 (7.9)	Lag 0: 1.01 (0.91, 1.13) Lag 1: 1.07 (0.96, 1.20)
	Statistical Analyses: logistic regression & random effects modeling	Any Ectopy: 13.8 (7.6) 5th, 95th percentile*:	Lag 2: 1.09 (0.98, 1.21) Current Smoker Ventricular Ectopy
	Covariates: Age, race, center, education, history of CVD/chronic lung	All: 5, 29.1 No Ectopy: 5, 29.2 Any Ectopy: 5.06, 28.5	Lag 0: 1.52 (1.04, 2.24) Lag 1: 2 (1.32, 3.03) Lag 2: 1.59 (0.99, 2.55)
	disease, rel. humidity, temperature, smoking	Monitoring Stations: NR‡	Nonsmoker Ventricular Ectopy
	Dose-response Investigated? No	Copollutant: PM ₁₀	Lag 0: 0.99 (0.89, 1.11) Lag 1: 1.05 (0.94, 1.17)
	Statistical Package: SAS, Stata	Co-pollutant Correlation: NR	Lag 2: 1.08 (0.97, 1.21)
	Lags Considered: lags 0-365 days	*Lag 1	All Supraventricular Ectopy Lag 0: 1.04 (0.96, 1.13)
		‡Monitors used in model for spatial	Lag 1: 1.01 (0.93, 1.10) Lag 2: 0.96 (0.87, 1.05)
		interpolation of daily PM values.	All Ventricular or Supraventricular
			Ectopy Lag 0: 1.03 (0.96, 1.11) Lag 1: 1.04 (0.97, 1.11) Lag 2: 1 (0.94, 1.07)
Reference: Lipsett et al. (2006, <u>088753</u>)	Outcome: HRV parameters, specifically SDNN, SDANN, r-MSSD, LF, HF, total	Pollutant: PM _{2.5}	PM Increment: SE*100
Period of Study: Feb-May 2000	power, triangular index (TRII).	Averaging Time: 2 h	Effect Estimate (change in HRV per unit increase in PM concentration):
Location: Coachella Valley, CA	Study Design: Panel study	Mean (range) Indio: 23.2 (6.3-90.4)	SDNN: -0.37 msec (SE = 1.01)
	N: 19 non-smoking adults with coronary artery disease	Palm Springs: 14 (4.7-52)	Notes: Weekly ambulatory 24 h ECG recordings (once per week for up to 12
	Statistical Analysis: Mixed linear regression models with random effects parameters	Monitoring Stations: 2 Copollutant: O ₃	wk), using Holter monitors, were made. Subjects' residences were within 5 mi of 1 of 2 PM monitoring sites. Decreased HRV was associated with PM _{2.5} , but these effects were not statistically significant. Regressed HRV parameters against 18: 00-20: 00 mean particulate pollution.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ljungman et al. (2008,	Outcome: Ventricular Arrhythmia	Pollutant: PM _{2.5}	PM Increment: Interquartile Range
<u>180266</u>)	Age Groups: 28-85 yr	Averaging Time: Hourly	Odds Ratio (Lower CI, Upper CI): 2 h: 1.23 (0.84, 1.80) 24 h: 1.28 (0.90, 1.84) Notes: OR of ventricular arrhythmia for an IQR increase of air pollutants in
Period of Study: Aug 2001-Dec 2006	Study Design: Case-crossover	Median:	
Location: Stockholm, Sweden	N: 88 patients w/ implantable cardioverter defibrillators	2 h: 9.17 24 h: 9.49	
	Statistical Analyses: Conditional logistic regression	Min: 2 h: 0.15 24 h: 2.97	different subgroups (Fig 2)
	Covariates: Temperature, humidity, pressure, ischemic heart disease, ejection fraction, heart disease, diabetes, use of beta-blockers, age, BMI, location at time of arrhythmia, distance from air pollution monitor	Max: 2 h: 99.25 24 h: 47.07 IQR: 2 h: 6.69	
	Dose-response Investigated? No	24 h: 5.27	
	Statistical Package: Stata, S-plus	Monitoring Stations: 1	
	Lags Considered: lags 2-24 h	Copollutant: PM ₁₀ , NO ₂	
	zago conciacion lago 2 2 1 m	Co-pollutant Correlation: NR	
Reference: Ljungman et al. (2009, 191983) Period of Study: May 2003-Jul 2004 Location: Athens, Greece Helsinki, Finland Ausburg, Germany Barcelona, Spain Rome, Italy Stokholm, Sweeden	Outcome: Interleukin-6 Response Age Groups: 35-80 yr Study Design: Panel N: 955 male myocardial infarction survivors Statistical Analyses: Additive Mixed Models Covariates: Age, sex, BMI, city, HDL/total cholesterol, smoking, alcohol intake, HbA1c, NT-proBNP, history of MI, heart failure, or diabetes, phlegm Dose-response Investigated? No Statistical Package: NR Lags Considered: 1 day	Pollutant: PM _{2.5} Averaging Time: 24 h Mean: 17.7 25th: 10.9 75th: 21.9 Monitoring Stations: NR Copollutant: CO, NO ₂ , PNC, PM _{2.5} Co-pollutant Correlation: PM ₁₀ : 0.81	PM Increment: Interquartile Range (11.0 μg/m³) Change of IL-6 (Lower CI, Upper CI), p-value: 0.6 (-0.8, 2.0), 0.40
Reference: Luttman-Gibson et al.	Outcome: Heart rate variability	Pollutant: PM _{2.5}	PM Increment: IQR
(2006, <u>089794)</u> Period of Study: Jun-Dec 2000	Age Groups:	Averaging Time: 1 h	Percent change (95% CI): Each 13.4 μg/m³ increase in 24 h mean PM _{2.5}
Location: Steubenville, OH	Study Design: Panel study	24 h	concentration was associated with:
Location: Steabenville, On	N: 32 participants	Mean (IQR)	SDNN: -4.0% (95% CI: -7.0% to -0.9%)
	Statistical Analysis: Linear mixed models	PM _{2.5} : 20.0 (15.2) Sulfate: 6.0 (5.1)	r-MSSD: -6.5% (95% CI: -12.1% to -0.6%)
		Sulfate: 6.9 (5.1) EC: 1.1 (0.6)	HF: -11.4% (95% CI: -21.5% to -0.1%)
		Copollutant: NO ₂ , SO ₂ , O ₃	Each 5.1 µg/m³ increase in sulfates on the previous day was associated with: SDNN: -3.3% (95% CI: -6.0% to -0.5%)
			r-MSSD: -5.6% (95% CI: -10.7%, 0.2%)
			HF: -10.3% (95% CI: -19.5% to -0.1%)
			Notes: The authors conclude that increases in both traffic related particles and sulfates may adversely effect autonomic function.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Mar et al. (2005, <u>087566</u>)	Outcome: Change in arterial O ₂	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: 1999-2001	saturation, heart rate, and blood pressure (SBP and DBP)	Averaging Time: 24 h	Unit change in measure (95% CI):
Location: Seattle, WA	Age Groups: >75 yr	Mean (SD):	Among all subjects: Each increase in outdoor same day PM _{2.5} was associated
	Study Design: Panel study	Personal: 9.3(8.4) Indoor: 7.4 (4.8)	with: SBP: -0.81 mmHg (95% CI: -2.34, 0.73)
	N: 88 elderly subjects	Outdoor: 9.0 (4.6)	DBP: -0.46 mmHg (95% CI: -1.49 to
	Statistical Analysis: GEE		0.57) H: -0.75 beats/min (95% CI: -1.42 to
			-0.07)
			Each increase in indoor same day PM _{2.5} was associated with: SBP: 0.92 mmHg (95% CI: -2.04 to 3.87)
			DBP: 0.38 mmHg (95% CI: -1.43 to 2.20)
			H: 0.22 beats/min (95% CI: -0.71 to 1.16)
			Each increase in personal same day PM _{2.5} was associated with: SBP: 0.37 mmHg (95% CI: -0.93 to 1.67)
			DBP: -0.20 mmHg (95% CI: -0.85 to 0.46)
			H: 0.44 beats/min (95% CI: 0.04 to 0.84)
			Notes: Results by health status presented in Fig 1
			Used 2 sessions that each were 10 consecutive days of measurements
			Used personal, indoor, and outdoor measures of $\ensuremath{PM}_{2.5}$
Reference: Metzger et al. (2007, 092856)	Outcome: Days with any event recorded by the ICD, days with ICD shocks/defibrillation and days with either	Pollutant: PM _{2.5} Averaging Time: 24 h	PM Increment: OR (95% CI): Outcome = Any event recorded by ICD
Period of Study: Aug 1998-Dec 2002	cardiac pacing or defibrillation	Mean (SD):	PM _{2.5} OR = 1.00
Location: Atlanta, GA	Study Design: Repeated measures	PM _{2.5} : 17.8 (8.6) PM _{2.5} sulfates: 5.0 (3.4)	(95% Cl: 0.95, 1.04) PM _{2.5} EC
	N: 884 subjects between 1993 and 2002		OR = 1.01
	Statistical Analysis: Logistic regression with GEE to account for residual	PM _{2.5} water-soluble metals: 0.029	(95% CI: 0.98, 1.05) PM _{2.5} OC
	autocorrelation within subjects	(0.024) Percentiles:	OR = 1.01 (95% CI: 0.98, 1.03)
		PM _{2.5} : Median: 16.2	PM _{2.5} Sulfates OR = 0.99
		PM _{2.5} sulfates: Median: 4.1 PM _{2.5} EC: Median: 1.4	(95% CI: 0.93, 1.06)
		PM _{2.5} OC: Median: 3.9 PM _{2.5} water-soluble metals:	PM _{2.5} Water soluble metals OR = 0.95
		Median: 0.022	(95% CI: 0.90, 1.00
		Copollutant:	
		O_3 NO_2	
		CO SO ₂	
		Oxygenated hydrocarbons	
Reference: O'Neill et al. (2007, <u>091362</u>)	Outcome: Soluble intercellular adhesion molecule 1 (ICAM-1)	2.0	PM Increment: IQR (specific to lag period)
Period of Study: May 1998-Dec 2002	Vascular cell adhesion molecule 1	Averaging Time: 24 h (lagged ma of days 0 to 1, 2, 3, 4, and 5)	Effect Estimate [Lower CI, Upper CI]:
Location: Boston, MA	(VCAM-1)	Mean (SD): 11.4 (5.9)	% change per IQR of PM _{2.5}
	von Willebrand factor (vWF)	Descriptive statistics represent entire	ICAM-1 - All subjects Lag 0: 2.87 (-4.63, 10.95)
	Age Groups: Mean (SD): 56.6 (10.6)	study period	2 ďma: 2.25 (-5.15, 10.22) 3 dma: 1.48 (-5.63, 9.11)
	Study Design: Cross-sectional	Percentiles: IQR range: 7.6	4 dma: 1.80 (-4.98, 9.07) 5 dma: 1.51 (-5.30, 8.80)
	N: 92 participants (type 2 diabetic patients)	Range (Min, Max): 0.07, 33.7)	6 dma: 2.12 (-4.23, 8.89)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	Statistical Analyses: linear regression	Monitoring Stations: 1 site	Subjects not known to be taking
	Covariates: Apparent temperature, season, age, race, sex, glycosylated hemoglobin, cholesterol, smoking history, BMI Dose-response Investigated? No	Copollutant: PM _{2.5} BC SO ₄ ²⁻	statins Lag 0: 5.47 (-3.74, 15.57) 2 dma: 5.70 (-3.70, 16.01) 3 dma: 4.57 (-4.31, 14.27) 4 dma: 4.57 (-4.27, 14.23) 5 dma: 3.80 (-4.84, 13.22)
	Statistical Package: NR		6 dma: 3.79 (-4.49, 12.80)
	J		Subjects who report smoking in the past (but not within 6 mo) Lag 0: 0.9 (-9.56, 12.66) 2 dma: 0.40 (-12.08, 14.65) 3 dma: 1.34 (-9.23, 13.14) 4 dma: 2.29 (-6.84, 12.30) 5 dma: 1.09 (-8.30, 11.44) 6 dma: 3.08 (-6.30, 13.40);
			Subjects who did not report smoking in the past Lag 0: 0.46 (-8.23, 9.97) 2 dma: 1.37 (-7.96, 11.65) 3 dma: -0.96 (-10.01, 9.00) 4 dma: -1.34 (-10.35, 8.58) 5 dma: -0.87 (-10.17, 9.40) 6 dma: -1.78 (-10.64, 7.94)
			VCAM-1 - All subjects Lag 0: 6.88 (-2.88, 17.62) 2 dma: 8.18 (-1.43, 18.72) 3 dma: 6.92 (-1.66, 16.25) 4 dma: 6.46 (-1.16, 14.66) 5 dma: 8.57 (0.05, 17.80) 6 dma: 11.76 (3.48, 20.70)
			Subjects not known to be taking statins Lag 0: 10.26 (-0.64, 22.35) 2 dma: 15.02 (3.76, 27.49) 3 dma: 14.59 (3.94, 26.34) 4 dma: 15.15 (4.54, 26.84) 5 dma: 16.16 (5.77, 27.58) 6 dma: 17.66 (7.77, 28.45)
			Subjects who report smoking in the past (but not within 6 mo) Lag 0: 13.2 (-1.30, 29.72) 2 dma: 18.4 (0.69, 39.33) 3 dma: 15.7 (1.19, 32.30) 4 dma: 13.1 (0.88, 26.78) 5 dma: 13.2 (0.49, 27.58) 6 dma: 16.2 (3.76, 30.10)
			Subjects who did not report smoking in the past Lag 0: -3.12 (-12.41, 7.17) 2 dma: -0.34 (-10.57, 11.05) 3 dma: -1.09 (-11.15, 10.12) 4 dma: -0.81 (-10.91, 10.43) 5 dma: 2.07 (-8.59, 13.96) 6 dma: 4.89 (-5.56, 16.50)
			vWF - All subjects Lag 0: 15.16 (-9.79, 47.01) 2 dma: 12.57 (-9.19, 39.55) 3 dma: 25.14 (-9.77, 73.74) 4 dma: 23.42 (-9.47, 68.25) 5 dma: 17.92 (-10.22, 54.87) 6 dma: 20.48 (-8.82, 59.22)
			Subjects not known to be taking statins Lag 0: 7.40 (-19.82, 43.88) 2 dma: 7.10 (-19.09, 41.76) 3 dma: 10.78 (-17.92, 49.52) 4 dma: 11.61 (-16.64, 49.42) 5 dma: 9.15 (-20.32, 49.53) 6 dma: 7.91 (-20.70, 46.85)
			Subjects who report smoking in the

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			past (but not within 6 mo) Lag 0: 19.23 (-24.29, 87.77) 2 dma: 19.92 (-29.65,104.41) 3 dma: 29.54 (-17.24, 102.76) 4 dma: 41.98 (-6.95, 116.63) 5 dma: 44.05 (-1.23, 110.07) 6 dma: 50.39 (9.35, 106.82)
			Subjects who did not report smoking in the past Lag 0: -14.21 (-53.20, 57.24) 2 dma: -20.66 (-63.14, 70.77) 3 dma: -28.89 (-68.43, 60.19) 4 dma: -23.51 (-55.11, 30.34) 5 dma: -29.18 (-60.08, 25.66) 6 dma: -30.68 (-55.95, 9.08)
Reference: O'Neill et al. (2007, <u>091362</u>)	Outcome: Soluble intercellular adhesion molecule 1 (ICAM-1)		PM Increment: IQR (specific to lag period)
Period of Study: May 1998-Dec 2002 Location: Boston, MA	Vascular cell adhesion molecule 1	Averaging Time: 24 h (lagged ma of days 0 to 1, 2, 3, 4, and 5)	Effect Estimate [Lower CI, Upper CI]:
Ecoulion: Boston, Wir	(VCAM-1) von Willebrand factor (vWF)	Mean (SD): 1.1 (0.8)	% change per IQR of BC ICAM-1All subjects
	Age Groups: Mean (SD): 56.6 (10.6)	descriptive statistics represent entire study period	Lag 0: 5.09 (-2.37, 13.11) 2 dma: 3.97 (-10.24, 20.42)
	Study Design: Cross-sectional	Percentiles: IQR range: 0.8	3 dma: 5.10 (-10.17, 22.96) 4 dma: 8.38 (-6.46, 25.56)
	N: 92 participants (type 2 diabetic patients)	Range (Min, Max): 0.2, 5.8	5 dma: 10.09 (-7.36, 30.83) 6 dma: 10.58 (-5.34, 29.18)
	Statistical Analyses: Linear regression	Monitoring Stations: 1 site Copollutant:	Subjects not known to be taking statins
	Covariates: Apparent temperature, season, age, race, sex, glycosylated hemoglobin, cholesterol, smoking history, BMI	PM _{2.5} BC SO ₄ ²⁻	Lag 0: 5.77 (-3.92, 16.44) 2 dma: 2.39 (-7.65, 13.52) 3 dma: 0.84 (-8.16, 10.73) 4 dma: 1.67 (-6.71, 10.80)
	Dose-response Investigated? No		5 dma: 1.55 (-6.46, 10.24) 6 dma: 2.20 (-6.47, 11.68)
	Statistical Package: NR		Subjects who report smoking in the past (but not within 6 mo) Lag 0: 5.84 (0.87, 11.05) 2 dma: 5.08 (-2.34, 13.07) 3 dma: 4.44 (-2.70, 12.11) 4 dma: 5.02 (-1.78, 12.29) 5 dma: 5.89 (-2.14, 14.58) 6 dma: 6.73 (-1.54, 15.70)
			Subjects who did not report smoking in the past Lag 0: 6.04 (0.87, 11.48) 2 dma: 6.54 (-1.64, 15.39) 3 dma: 5.86 (-1.90, 14.22) 4 dma: 6.11 (-1.18, 13.94) 5 dma: 6.89 (-1.42, 15.89) 6 dma: 7.86 (-1.35, 17.94)
			VCAM-1 - All subjects Lag 0: 9.26 (2.98, 15.91) 2 dma: 10.18 (1.93, 19.10) 3 dma: 15.45 (2.70, 29.78) 4 dma: 17.97 (3.63, 34.30) 5 dma: 23.83 (8.41, 41.44) 6 dma: 27.51 (11.96, 45.21)
			Subjects not known to be taking statins Lag 0: 9.19 (3.23, 15.49) 2 dma: 14.64 (5.02, 25.14) 3 dma: 14.39 (5.30, 24.28) 4 dma: 14.19 (5.71, 23.36) 5 dma: 19.11 (9.44, 29.65) 6 dma: 22.60 (11.79, 34.45)
			Subjects who report smoking in the past (but not within 6 mo) Lag 0: 12.4 (2.77, 22.92) 2 dma: 28.5 (8.38, 52.24) 3 dma: 25.14 (3.50, 51.30) 4 dma: 23.1 (2.70, 47.58)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			5 dma: 32.0 (7.29, 62.30) 6 dma: 31.8 (9.74, 58.26)
			Subjects who did not report smoking in the past Lag 0: 5.15 (-5.63, 17.17) 2 dma: 2.09 (-9.07, 14.61) 3 dma: 3.90 (-6.38, 15.31) 4 dma: 4.92 (-4.63, 15.43) 5 dma: 7.89 (-1.31, 17.95) 6 dma: 10.97 (0.98, 21.96)
			vWF- All subjects Lag 0: 7.96 (-4.34, 21.84) 2 dma: 14.87 (-2.85, 35.82) 3 dma: 15.34 (-3.22, 37.45) 4 dma: 15.47 (-7.60, 44.31) 5 dma: 19.50 (-8.89, 56.74) 6 dma: 20.53 (-9.80, 61.05)
			Subjects not known to be taking statins Lag 0: 3.23 (-8.91, 17.00) 2 dma: 9.82 (-8.39, 31.66) 3 dma: 17.79 (-16.03, 65.21) 4 dma: 13.14 (-18.71, 57.47) 5 dma: 16.14 (-20.43, 69.52) 6 dma: 13.25 (-22.09, 64.62)
			Subjects who report smoking in the past (but not within 6 mo) Lag 0: 7.63 (-17.01, 39.58) 2 dma: 37.64 (-7.18, 104.10) 3 dma: 75.41 (6.16, 189.85) 4 dma: 72.05 (-3.34, 206.22) 5 dma: 73.14 (6.94, 180.32) 6 dma: 71.23 (14.00, 157.19)
			Subjects who did not report smoking in the past Lag 0: 10.22 (-23.14, 58.04) 2 dma: 17.07 (-18.86, 68.91) 3 dma: 6.56 (-42.75, 98.36) 4 dma: -9.20 (-65.79, 140.99) 5 dma: -23.86 (-71.05, 100.29) 6 dma: -48.69 (-77.75, 18.29)
Reference: O'Neill et al. (2005, <u>088423</u>)		Pollutant: PM _{2.5}	PM Increment: IQR (value not given)
Period of Study:	reactivity, specifically percent change in brachial artery diameter (flow-mediated	Mean (SD): 11.5 (6.4)	Percent change (95% CI): PM _{2.5} 6-day ma
Baseline period: May 1998-Jan 2000 Time trial: 2000-2002	and nitroglycerin-mediated)	Range: 1.1-40.0	Nitroglycerin-mediated reactivity: -7.6%
Location: Boston, MA	N: 270 patients with diabetes or at risk of diabetes, who participated in non-air	Monitoring Stations: 1	(95% Cl: 12.8% to -2.1%)
· · · · · · · · · · · · · · · · · · ·	pollution related studies at the Joselyn Diabetes Center in Boston	Copollutant: Sulfates	Notes: PM _{2.5} was positively associated with nitroglycerin-mediated reactivity
	Statistical Analysis: Linear regression	BC Ultrafine particle counts	an association was also reported with ultrafine particles. Effect estimates were larger in type II than type I diabetes. BC and sulfate increases were associated with decreased flow-mediated reactivity among those with diabetes. Although the largest associations were with the 6-day ma, similar patterns and quantitatively similar results appear in the other lags.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: O'Neill et al. (2007, <u>091362</u>)	Outcome: soluble intercellular adhesion molecule 1 (ICAM-1)	Pollutant: SO ₄ ²⁻	PM Increment: IQR (specific to lag period)
Period of Study: May 1998-Dec 2002 Location: Boston, MA	vascular cell adhesion molecule 1 (VCAM-1)	Averaging Time: 24 h (lagged ma of days 0 to 1, 2, 3, 4, and 5)	Effect Estimate [Lower CI, Upper CI]: % change per IQR of PM _{2.5}
,	von Willebrand factor (vWF)	Mean (SD): 3.0 (2.0)	ICAM-1 All subjects
	Mean Age: 56.6 (10.6)	descriptive statistics represent entire study period	Lag 0: 5.30 (-2.60, 13.83) 2 dma: 4.02 (-3.26, 11.85)
	Study Design: Cross-sectional	Percentiles: IQR range: 2.2	3 dma: 4.03 (-5.34, 14.34) 4 dma: -0.79 (-7.30, 6.18)
	N: 92 participants (type 2 diabetic	Range (Min, Max): 0.5, 9.6)	5 dma: 1.06 (-7.10, 9.93) 6 dma: 3.15 (-5.66, 12.78)
	patients) Statistical Analyses: Linear regression	Monitoring Stations: 1 site	Subjects not known to be taking
	Covariates: Apparent temperature, season, age, race, sex, glycosylated hemoglobin, cholesterol, smoking history, BMI Dose-response Investigated? No	Copollutant: PM _{2.5} , BC, SO ₄ ²⁻	statins Lag 0: 10.14 (0.44, 20.77) 2 dma: 9.39 (-1.28, 21.20) 3 dma: 10.93 (-2.23, 25.85) 4 dma: -0.24 (-9.66, 10.16) 5 dma: 4.03 (-8.66, 18.47) 6 dma: 5.66 (-7.52, 20.72)
	Statistical Package: NR		Subjects who report smoking in the past (but not within 6 mo) Lag 0: -4.00 (-24.79, 22.52) 2 dma: -4.82 (-18.01, 10.48) 3 dma: -7.19 (-23.66, 12.83) 4 dma: -9.8 (-27.96, 12.97) 5 dma: -10.4 (-29.92, 14.44) 6 dma: -6.8 (-25.72, 17.03)
			Subjects who did not report smoking in the past Lag 0: 6.67 (-4.34, 18.94) 2 dma: 5.65 (-4.67, 17.10) 3 dma: 10.21 (-5.83, 28.99) 4 dma: 0.80 (-9.94, 12.83) 5 dma: 2.80 (-10.85, 18.54) 6 dma: 5.15 (-7.78, 19.89)
			VCAM-1 All subjects Lag 0: -0.04 (-3.75, 3.80) 2 dma: 0.94 (-4.79, 7.01) 3 dma: -0.87 (-3.50, 1.82) 4 dma: 0.13 (-2.02, 2.34) 5 dma: -0.47 (-2.67, 1.78) 6 dma: -0.46 (-1.99, 1.09)
			Subjects not known to be taking statins Lag 0: -1.34 (-11.23, 9.66) 2 dma: -0.19 (-11.13, 12.09) 3 dma: -2.84 (-13.90, 9.64) 4 dma: 4.28 (-6.18, 15.90) 5 dma: -0.26 (-13.44, 14.93) 6 dma: -3.44 (-16.51, 11.67)
			Subjects who report smoking in the past (but not within 6 mo) Lag 0: 0.07 (-23.40, 30.73) 2 dma: -5.62 (-20.77, 12.43) 3 dma: -26.92 (-33.31 to -19.91) 4 dma: -3.06 (-28.01, 30.56) 5 dma: -6.42 (-30.75, 26.47) 6 dma: -6.46 (-28.55, 22.47)
			Subjects who did not report smoking in the past Lag 0: -3.28 (-12.66, 7.12) 2 dma: -3.17 (-11.75, 6.23) 3 dma: -9.67 (-22.07, 4.70) 4 dma: -5.51 (-14.28, 4.15) 5 dma: -12.17 (-22.05 to -1.05) 6 dma: -11.77 (-20.95 to -1.52)
			vWF (sulfate measures not available)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Park et al. (2008, <u>156845</u>)	Outcome: Total homocysteine (tHcy)	Pollutant: PM _{2.5}	PM Increment: IQR
Period of Study: Jan 1995-Jun 2005	Mean Age: 73.6 ± 6.9 yr	Averaging Time: 24 h (ma up to 7 days prior to blood collection)	Effect Estimate [Lower CI, Upper CI]:
Location: Greater Boston area, MA	Study Design: Cross-sectional and	Mean (SD): 12.0 (6.6)	Estimated % change in tHcy per IQR increase in pollutant.
	N: 960 men	Median: 10.6	Lag model
	Statistical Analyses: Generalized	Range (Min, Max): 2.0, 62.0	Concurrent day. IQR: 7.66 Model 1: 1.32 (-0.83, 3.52)
	additive models (also hierarchical mixed- effects regression models to assess	Monitoring Stations: 1 site	Model 2: 1.55 (-0.77, 3.91)
	repeated measures of tHcy)	Copollutant:	Model 3: 1.57 (-0.38, 3.56)
	Covariates: Model 1: season, age, long-term trend, apparent temperature	PM _{2.5} BC (r = 0.51) OC (r = 0.51)	1-day previous. IQR: 6.91 Model 1: -1.43 (-3.51, 0.69) Model 2: -1.41 (-3.53, 0.76)
	Model 2: further adjustment for BMI, systolic blood pressure, smoking status, pack yr of cigarettes, alcohol consumption Model 3: further adjustment for serum creatinine, plasma folate, vitamin B6, and vitamin B12 Dose-response Investigated? Modeled continuous covariates as penalized splines to determine if association with tHcy was linear Statistical Package: R software	SO_4^{2-} (r = 0.85)	Model 3: -1.28 (-3.12, 0.60) 2-day ma. IQR: 6.47 Model 1: 0.04 (-2.13, 2.26) Model 2: -0.07 (-2.26, 2.17) Model 3: 0.25 (-1.69, 2.22) 3-day ma. IQR: 5.83 Model 1: -0.64 (-2.92, 1.69) Model 2: -0.74 (-3.04, 1.61) Model 3: -0.59 (-2.63, 1.49) 4-day ma. IQR: 5.21 Model 1: -0.63 (-2.94, 1.72) Model 2: -0.86 (-3.19, 1.52) Model 3: -0.73 (-2.78, 1.37) 5-day ma. IQR: 4.68 Model 1: -0.51 (-2.79, 1.83) Model 2: -0.82 (-3.13, 1.54)
			Model 3: -0.84 (-2.85, 1.22) 6-day ma. IQR: 4.50 Model 1: -0.91 (-3.32, 1.56) Model 2: -1.32 (-3.76, 1.17) Model 3: -1.44 (-3.58, 0.74) 7-day ma. IQR: 4.20 Model 1: -0.84 (-3.27, 1.64) Model 2: -1.19 (-3.64, 1.33)
			Model 3: -1.69 (-3.84, 0.51) Stratified analyses: No significant difference in effect of PM _{2.5} among those with high and low levels of vitamins

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Park et al. (2008, <u>156845</u>)	Outcome: Total homocysteine (tHcy)	Pollutant: BC	PM Increment: IQR
Period of Study: Jan 1995-Jun 2005	Mean Age: 73.6 ± 6.9 yr	Averaging Time: 24 h (ma up to 7 days prior to blood collection)	Effect Estimate [Lower CI, Upper CI]: Estimated % change in tHcy per IQR increase in pollutant.
Location: Greater Boston area, MA	Study Design: cross-sectional and	Mean (SD): 0.99 (0.56)	
	N: 960 men	Median: 0.87	Lag model Concurrent day. IQR: 0.66 Model 1: 2.64 (-0.12, 5.48)
	Statistical Analyses: Generalized	Range (Min, Max): 0.07, 3.7	Model 2: 2.62 (-0.17, 5.48) Model 3: 3.13 (0.76, 5.55)
	additive models (also hierarchical mixed- effects regression models to assess	Monitoring Stations: 1 site	1-day previous. IQR: 0.66
	repeated measures of tHcy)	Copollutant	Model 1: 1.46 (-0.98, 3.96) Model 2: 1.32 (-1.14, 3.85)
	Covariates: Model 1: season, age, long- term trend, apparent temperature	(correlation): PM _{2.5} (r = 0.51)	Model 3: 0.95 (-1.12, 3.05)
	Model 2: further adjustment for BMI,	BC OC (r = 0.0.51)	2-day ma. IQR: 0.60 Model 1: 2.75 (-0.18, 5.76)
	systolic blood pressure, smoking status, pack yr of cigarettes, alcohol consumption	SO_4^{2-} (r = 0.50)	Model 2: 2.63 (-0.33, 5.67) Model 3: 2.59 (0.10, 5.14)
	Model 3: further adjustment for serum		3-day ma. IQR: 0.57 Model 1: 2.95 (-0.44, 6.46)
	creatinine, plasma folate, vitamin B6, and vitamin B12		Model 2: 2.97 (-0.46, 6.51) Model 3: 3.12 (0.21, 6.11)
	Dose-response Investigated? Modeled continuous covariates as penalized splines to determine if association with		4-day ma. IQR: 0.52 Model 1: 3.94 (0.24, 7.78) Model 2: 3.76 (0.02, 7.64)
	tHcy was linear		Model 3: 3.00 (-0.13, 6.22)
	Statistical Package: R software		5-day ma. IQR: 0.49 Model 1: 3.26 (-0.60, 7.27) Model 2: 2.64 (-1.23, 6.67) Model 3: 2.38 (-0.89, 5.77)
			6-day ma IQR: 0.44 Model 1: 1.63 (-1.99, 5.38) Model 2: 1.03 (-2.62, 4.80) Model 3: 0.93 (-2.15, 4.11)
			7-day ma. IQR: 0.44 Model 1: 1.38 (-2.45, 5.36) Model 2: 0.69 (-3.16, 4.70) Model 3: 0.45 (-2.81, 3.83)
			% change in tHcy per IQR increase in BC, 24-h avg
			Among those with low folate: 5.31 (2.26 8.42)
			Among those with low B12: 5.06 (2.03, 8.17)
			nearly null associations among those with high levels

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Park et al. (2008, <u>156845</u>)	Outcome: Total homocysteine (tHcy)	Pollutant: OC	PM Increment: IQR
Period of Study: Jan 1995-Jun 2005	Mean Age: 73.6 ± 6.9 yr	Averaging Time: 24 h (ma up to 7 days	Effect Estimate [Lower CI, Upper CI
Location: Greater Boston area, MA	Study Design: Cross-sectional and	prior to blood collection)	Estimated % change in tHcy per IQR increase in pollutant.
	longitudinal analyses performed N: 960 men	Mean (SD): 3.5 (1.8) Median: 3.1	Lag model
	Statistical Analyses: Generalized	Range (Min, Max): 0.29, 11.8	Concurrent day. IQR: NA
	additive models (also hierarchical mixed-	Monitoring Stations: 1 site	Model 1: NA Model 2: NA
	effects regression models to assess repeated measures of tHcy)	Copollutant (correlation):	Model 3: NA
	Covariates: Model 1: season, age, long-	PM _{2.5} (r = 0.51) BC (r = 0.51)	1-day previous. IQR: 2.00 Model 1: 2.12 (-0.98, 5.31)
	term trend, apparent temperature	OC`	Model 2: 1.69 (-1.51, 5.00) Model 3: 1.87 (-0.81, 4.62)
	Model 2: further adjustment for BMI, systolic blood pressure, smoking status,	SO ₄ (r = 0.41)	2-day ma. IQR: 1.93
	pack yr of cigarettes, alcohol consump- tion		Model 1: -0.39 (-3.67, 3.01) Model 2: -0.88 (-4.26, 2.61)
	Model 3: further adjustment for serum creatinine, plasma folate, vitamin B6, and vitamin B12		Model 3: 1.05 (-1.86, 4.06)
			3-day ma. IQR: 1.68 Model 1: 0.53 (-2.66, 3.83)
	Dose-response Investigated? Modeled continuous covariates as penalized splines to determine if association with tHcy was linear Statistical Package: R software		Model 2: 0.14 (-3.15, 3.54) Model 3: 1.32 (-1.44, 4.16)
			4-day ma. IQR: 1.64
			Model 1: 1.57 (-1.89, 5.15)
			Model 2: 1.42 (-2.14, 5.12) Model 3: 1.89 (-1.15, 5.03)
			5-day ma, IQR: 1.60
			Model 1: 2.27 (-1.49, 6.16) Model 2: 2.11 (-1.77, 6.15)
			Model 3: 2.12 (-1.29, 5.65)
			6-day ma. IQR: 1.43 Model 1: 2.83 (-0.74, 6.52)
			Model 2: 2.78 (-0.90, 6.60) Model 3: 2.53 (-0.59, 5.74)
			7-day ma. IQR: 1.23
			Model 1: 2.75 (-0.41, 6.02) Model 2: 2.55 (-0.71, 5.92)
			Model 3: 2.55 (-0.21, 5.39)
			% change in tHcy per IQR increase in OC, 7-day avg.
			Among those with low B12: 5.23 (1.59, 9.01)
			Nearly null associations among those with high levels

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Park et al. (2005, <u>057331</u>)	Outcome: Change in HRV (SDNN, HF,	Pollutant: PM _{2.5}	PM Increment: 8 μg/m³
Period of Study: Nov 2000-Oct 2003 Location: Greater Boston area, MA	LF, LFHFR) Mean age: 72.7 yr Study Design: Cross-sectional	Averaging Time: 4 h 24 h	Percent change (95% CI): 48h mean PM _{2.5} : 20.8% decrease in HF (95% CI: 4.6%, 34.2%)
	N: 497 adult males living in the Greater	48 h Mean (SD): 11.4 (8.0)	18.6% increase in LFHFR (4.1%, 35.2%).
	Boston, MA area	Range: 6.45-62.9 Copollutant: O ₃ , Particle number count, BC, NO ₂ , SO ₂ , CO	Notes: Subjects were monitored during a 4-min rest period between 8 a.m. and 1 p.m. Modifying effects of hypertension, IHD, diabetes, and use of cardiac/anti-hypertensive medications also examined. Linear regression analyses. This subject group is from the VA Normative Aging Study. The 4-h averaging period was most strongly associated with HRV indices. The PM effect was robust in models including O ₃ . The HRV change per IQR increase in PM _{2.5} were larger in subjects with hypertension (n = 335) IHD (n = 142), and diabetes (n = 72). In addition, those who did not use calcium-channel blockers had a greater decline in LF associated with each IQR increase in PM _{2.5} than did those who did use calcium channel blockers. IQR increases in 48h mean BC concentration were also associated with adverse changes in HRV, suggesting traffic pollution may be particularly toxic.
Reference: Park et al. (2006, <u>091245</u>)	Outcome: Change in HF	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: Nov 2000-Dec 2004 Location: Greater Boston area, MA	Study Design: Cross-sectional N: Statistical Analysis: Linear regression models	Averaging Time: 48 h Mean (SD): PM ₂₅ : 11.7 (7.8) Sulfates: 3.3 (3.3) BC: 0.92 (0.46) Copollutant: O ₃	Percent change (95% CI): Wild-type HFE genotype: 31.7% (95% CI: 10.3, 48.1)
			Among those with either of the 2 HFE variants, there was no association between 48h PM _{2.5} and HF (shown in a graph, ~10% non-significant increase).
			Notes: Normative Aging Study. Examining association between PM and HF among those with and without the wild-type HFE genotype.
Reference: Pekkanen et al. (2002,	Outcome: ST-Segment Depression	Pollutant: PM _{2.5}	PM Increment: IQR
035050) Period of Study: Winter 1998-1999	(>0.1mV) Study Design: Panel of ULTRA Study	Averaging Time: 24 h Median: 10.6 IQR: 7.9	Effect Estimate(s): ACP: OR = 3.29 (1.57, 6.92), lag 2
Location: Helsinki, Finland	participants N: 45 Subjects, n = 342 biweekly submaximal exercise tests, 72 exercise induced ST Segment Depressions Statistical Analysis: Logistic regression / GAM	Pollutant: PM1 Median: 7.0 IQR: 5.6	PM ₁ : OR = 4.56 (1.73, 12.03), lag 2 PM _{2.5} : OR = 2.84 (1.42, 5.66), lag 2 Notes : The effect was strongest for ACP
		2	and PM _{2.5} , which in 2 pollutant models appeared independent. Increases in NO ₂ and CO were also associated with increased risk of ST-segment
		Copollutant: NO ₂ , CO, PM _{10-2.5} , ultrafine	depression, but not with coarse particles.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Park et al. (2008, <u>156845</u>)	Outcome: Total homocysteine (tHcy)	Pollutant: SO ₄ ²⁻	PM Increment: IQR
Period of Study: Jan 1995-Jun 2005 Location: Greater Boston area, MA	Mean Age: 73.6 ± 6.9 yr Study Design: Cross-sectional and	Averaging Time: 24 h (ma up to 7 days prior to blood collection)	Effect Estimate [Lower CI, Upper CI]: Estimated % change in tHcy per IQR
200000000000000000000000000000000000000	longitudinal analyses performed	Mean (SD): 3.2 (3.0)	increase in pollutant.
	N: 960 men	Median: 2.4	Lag model
	Statistical Analyses: Generalized additive models (also hierarchical mixed-	Range (Min, Max): 0.39, 29.0	Concurrent day: IQR: NA Model 1: NA
	effects regression models to assess repeated measures of tHcy)	Monitoring Stations: 1 site	Model 2: NA Model 3: NA
	Covariates: Model 1: season, age, long- term trend, apparent temperature	Copollutant (correlation): PM _{2.5} (r = 0.85) BC (r = 0.50) OC (r = 0.41)	1-day previous: IQR: 2.61 Model 1: 0.91 (-0.77, 2.62) Model 2: 0.99 (-0.94, 2.95)
	Model 2: further adjustment for BMI, systolic blood pressure, smoking status, pack yr of cigarettes, alcohol consumption	SO ₄ ²⁻	Model 3: 0.91 (-0.72, 2.57) 2-day ma: IQR: 2.10 Model 1: -0.25 (-2.07, 1.60) Model 2: -0.29 (-2.35, 1.82) Model 3: 0.05 (-1.74, 1.86)
	Model 3: further adjustment for serum creatinine, plasma folate, vitamin B6, and vitamin B12 Dose-response Investigated? Modeled		3-day ma: IQR: 1.73 Model 1: -0.15 (-1.97, 1.69) Model 2: -0.17 (-2.23, 1.93)
	continuous covariates as penalized splines to determine if association with they was linear		Model 3: -0.01 (-1.78, 1.80) 4-day ma: IQR: 1.64 Model 1: -0.69 (-2.74, 1.41)
	Statistical Package: R software		Model 2: -0.60 (-2.95, 1.81) Model 3: -0.58 (-2.63, 1.51)
			5-day ma: IQR: 1.60 Model 1: -1.14 (-3.53, 1.30) Model 2: -0.90 (-3.64, 1.92) Model 3: -1.09 (-3.48, 1.36)
			6-day ma; ' IQR: 1.40 Model 1: 0.00 (-2.39, 2.44) Model 2: 0.36 (-2.36, 3.16) Model 3: 0.41 (-2.01, 2.89)
			7-day ma IQR: 1.30 Model 1: -0.16 (-2.51, 2.24) Model 2: 0.30 (-2.37, 3.04) Model 3: 0.07 (-2.25, 2.43)
			Stratified analyses: No significant difference in effect of SO ₄ ²⁻ among those with high and low levels of vitamins
Reference: Peters et al. (2005, <u>095747</u>)	Outcome: Myocardial infarction	Pollutant: PM _{2.5}	Effect Estimate: 2-h lag: OR = 0.93
Also Peters et al. (2005, <u>156859</u>) Period of Study: Feb 1999, Jul 2001	Study Design: Case-crossover	Averaging Time: 1 h: Median = 14.5	95% Cl: 0,83, 1.04 24-h mean, 2-day lag: OR = 1.18
Period of Study: Feb 1999-Jul 2001 Location: Augsburg, Germany	N: 691 myocardial infarction patients	IQR: 9.1	95% CI: 1.03, 1.34
	Statistical Analysis: Conditional logistic regression	c 24-h: Median = 14.9 IQR: 7.7 Copollutant: NO ₂ , SO ₂ , CO	Notes: Examined triggering for MI at various lags before MI onset (up to 6 h
	Dose-response Investigated? No		before MI, up to 5 days before MI). PM _{2.5} levels 2 days before MI onset were associated with increased risk of MI, but not on the concurrent day, or lags 1, 3, 4, or 5. These findings are consistent with the prior Boston MI study for a 1- to 2-day lagged effect of PM _{2.5} .

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Pope et al. (2004, <u>055238</u>)	Outcome: Change in autonomic	Pollutant: PM _{2.5} (TEOM)	PM Increment: 100 μg/m ³
Period of Study: Winter 1999-2000 (in Wasatch Front, UT). Summer 2000 (in	function (measured by changes in HRV), C-reactive protein (CRP), blood cell counts, platelets, and blood viscosity associated with short-term changes in PM _{2.5}	Averaging Time: 24 h	Effect Estimate: Each 100 μg/m ³ increase associated with: -35 (SE = 8)
Hawthorne, UT). Winter 2000-2001 (in Bountiful, UT and		Mean (SD): 18.9 (13.4) Copollutant: None	msec decline in SDNN 0.81 (SE 0.17) mg/dL increase in CRP 0.31 (SE 9.34) k/µL increase in platelets 0.07 (SE 0.21) cP increase in blood
Lindon, UT) Location: Utah: Wasatch Front,	Age Groups: Elderly (specific age range not given)	•	
Hawthorne, Bountiful, and Lindon	Study Design: Panel study		viscosity
	N: 88 elderly subjects		Notes: The study observed small but statistically significant adverse
	Statistical Analysis: Linear regression		associations between daily mean PM _{2.5} and HRV and C-reactive protein (CRP).
	Season: Winter, summer		The authors point out, however, that most of the variability in the temporal
	Dose-response Investigated? No		deviation of these physiological endpoints was not explained by PM _{2.5} . These observations therefore suggest that PM _{2.5} may be 1 of multiple factors that influence HRV and CRP.
Reference: Pope et al. (2006, <u>091246</u>)	Outcome: Acute ischemic heart disease	Pollutant: PM _{2.5} (FRM)	PM Increment: 10 μg/m ³
Period of Study: 1994-2004	Study Design: Case-crossover study (time-stratified control selection)	Averaging Time: 24 h	Effect Estimate: For same-day increase in $PM_{2.5}$: OR = 1.045
Location: Wasatch Front, Utah	N: Statistical Analysis: Conditional logistic regression	Mean (SD): Site 1: 10.1 Site 2: 10.8 Site 3: 11.3	95% CI: 1.011, 1.080
		Monitoring Stations: 3	Notes: Case-crossover study (time- stratified control selection) triggering of
		Copollutant: PM ₁₀ (FRM) measured at 4 monitoring sites	acute ischemic heart disease by ambient PM _{2.5} concentrations on the same and previous 3 days. PM _{2.5} measured at 3 sites and estimated for missing days. Effect estimates were larger for those with angiographically demonstrated coronary artery disease.
Reference: Pope et al. (2004, <u>055238</u>)	Outcome: Heart rate variability (HRV)	Pollutant: PM _{2.5}	PM Increment: 100 μg/m ³
Period of Study: 1999-2001	C-reactive protein (CRP)	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Location: Wasatch Front, Utah	Blood cell counts, whole blood viscosity	Mean (SD): 23.7 (20.2)	Regression coefficients (SE) for associations with concurrent day
	Age Groups: 54-89 yr	Range (Min, Max): 1.7, 74.0	pollutant: Mean H: -4.49 (1.73)
	Study Design: Panel study	Monitoring Stations: NR	SDNN: -34.94 (8.32) SDANN: -18.98 (8.67)
	N: 88 participants	Copollutant: None	r-MSSD: -42.25 (10.90) CRP: 0.81 (0.18)
	Statistical Analyses: Linear regression		Whole blood viscosity: 0.07 (0.21) WBC: -0.07 (0.38)
	Covariates: Subject-specific fixed effects		Granulocytes: 0.02 (0.37)
	Interactive spline smooths for temp, RH (partial control for H)		Lymphocytes: -0.07 (0.14) Monocytes: 0.12 (0.04) Basophils: -0.01 (0.01)
	Season: Temperature as covariate		Eosinophils: -0.01 (0.02) RBC: 0.03 (0.06)
	Dose-response Investigated? Yes, also assessed PM by including cubic smoothing splines with 3 df		Platelets: 0.31 (9.34)
	Statistical Package: SAS		
Reference: Rich et al. (2005, <u>079620</u>)	Outcome: Confirmed ventricular	Pollutant: PM _{2.5} (TEOM)	PM Increment: 7.8 μg/m ³
Period of Study: Jul 1995-Jul 2002	arrhythmias Study Design: Case-crossover (time-	Averaging Time: 1-h avg 24-h avg	Effect Estimate: For mean PM _{2.5} in the 24 h before ventricular arrhythmia: OR
Location: Eastern Massachusetts, USA	stratified control selection)	Median (IQR):	= 1.19
	N: 203 patients with implantable cardioverter defibrillators	1-h avg: Median = 9.2 µg/m ³ 24-h avg: Median = 9.8 µg/m ³	95% CI: 1.02, 1.38
	Statistical Analysis: Conditional logistic	IQr = 7.8 Copollutant: O ₃ , BC, CO, NO ₂ , SO ₂	Notes: 794 ventricular arrhythmias among 84 subjects.
	regression	ουροπαιαπι. O ₃ , DO, OO, NO ₂ , OO ₂	Lag h: 0-2, 0-6, 0-23, 0-47

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Rich et al. (2006, <u>088427</u>)	Outcome: Confirmed episodes of	Pollutant: PM _{2.5} (TEOM)	PM Increment: 9.4 μg/m ³
Period of Study: Jul 1995-Jul 2002 Location: Eastern Massachusetts, USA	N: 203 patients with implantable	Averaging Time: 1-h avg 24-h avg	Effect Estimate: 0-h lag: OR 1.41 (0.82, 2.42)
Ecotation: Educati Midosdonidoctio, COA		Median (IQR): 1-h avg: Median = 9.2 μg/m ³	Notes: 91 paroxysmal atrial fibrillation (PAF) episodes among 29 subjects.
	cardioverter defibrillators	24-h avg: Median = 9.8 μg/m³ IQr = 7.8	Lag h: 0, 0-23
	Statistical Analysis: Conditional logistic regression	$\textbf{Copollutant:} \ O_3, \ BC, \ CO, \ NO_2, \ SO_2$	Positive, but not significant increases in the relative odds of PAF associated with $PM_{2.5}$ concentrations in the same h and 24-h before PAF episode onset. Authors note reduced statistical power for $PM_{2.5}$ analyses due to missing data.
Reference: Rich et al. (2006, <u>088427</u>)	Outcome: Confirmed episodes of	Pollutant: BC	PM Increment: 0.91µg/m³ (IQR)
Period of Study: Jul 1995-Jul 2002 Location: Eastern Massachusetts, USA	paroxysmal atrial fibrillation Study Design: Case-crossover (time-	Averaging Time: 1-h avg, 24-h avg Median (IQR): IQR: 0.91µg/m³	Effect Estimate: 0- to 23-h lag period: OR 1.46 (95% CI: 0.67, 3.17)
LOSGIN MODERNICO	stratified control selection) N: 203 patients with implantable cardioverter defibrillators	Copollutant: O ₃ , PM _{2.5} , CO, NO ₂ , SO ₂	Notes: 91 paroxysmal atrial fibrillation (PAF) episodes among 29 subjects.
	Statistical Analysis: Conditional logistic		Lag h: 0, 0-23
	regression		Positive, but not significant increases in the relative odds of PAF associated with BC concentrations in the same h and 24 h before PAF episode onset. Authors note reduced statistical power for BC analyses due to missing data.
Reference: Rich et al. (2006, <u>089814</u>)	Outcome: Confirmed ventricular arrhythmia Study Design: Case-crossover design	Pollutant: PM _{2.5} (CAMM)	PM Increment: 9.7 µg/m³ (IQR)
Period of Study: May 2001-Dec 2002		Averaging Time: 24 h	Effect Estimate: OR (PM _{2.5}) = 0.95 (95% Cl: 0.72, 1.27)
Location: St. Louis, MO metropolitan area	(time-stratified control selection) Dose-response Investigated? No	Median (IQR): 16.2 μg/m³ (IQr = 9.7) Copollutant: NO ₂ , SO ₂ , CO, O ₃ , EC, OC	OR (SO ₂) = OR = 1.24 (95% CI: 1.07, 1.44)
			Notes: 139 confirmed ventricular arrhythmia episodes among 56 subjects. Lags: 0-2h, 0-6h, 0-11h, 0-23h, 0-47h
			Authors did not find increased relative odds of VA associated with each IQR increase in 24-h mean PM _{2.5} , but did find non-significantly increased relative odds of VA associated with 24-h EC. Shorter and longer lag times' relative odds estimates provided no evidence of immediate ventricular arrhythmic effects of air pollution.
Reference: Rich et al. (2004, <u>055631</u>)	Outcome: ICD discharges (as a proxy for VT/VF)	Pollutant: PM _{2.5} (Partisol)	PM Increment: Effect Estimate: Odds ratios were less than 1.0 at all lags (0, 1,
Period of Study: Feb-Dec 2000	Age Groups: 15-85 yr	Averaging Time: 1 h	2, 3) for PM _{2.5} .
Location: Vancouver, British Columbia, Canada	Study Design: Case-crossover design (ambidirectional control selection ± 7 days)	Mean (SD), IQR: Mean: : 8.2 μg/m³ (SD = 10.7) IQr = 5.2	No consistent association between any of the air pollutants and implantable cardioverter defibrillators discharges.
	N: 34 patients with implantable cardioverter defibrillators	Copollutant: O ₃ , EC, OC, SO ₄ ²⁻ , CO, NO ₂ , SO ₂ , PM ₁₀	Notes: Same study as Vedal et al. (2004, <u>055630</u>), except Rich (2004) used data from a shorter time period so
	Statistical Analysis: Conditional logistic regression	PM ₁₀ : Mean: : 13.3 μg/m ³ (SD = 4.9) IQr = 7.4	as to estimate relative odds of ICD discharge associated with acute increases in more pollutants than Vedal
	Dose-response Investigated? No	1.7	(2004, <u>055630</u>).

Reference: Rich et al. (2008, 156910) Period of Study: NR Location: New Jersey Age Groups: 25-68 Study Design: Panel N: 11 subjects Statistical Analyses: Measures Covariates: Long-term month, weekday, appa Dose-response Invest Statistical Package: Statistical	Repeated In trends, calendar trent temperature Stigated? No SAS Sod Variability shift): mean cycle Intervals (MCL), of normal R-R percentage of fierences greater), low frequency squency (0.15- w to high	Pollutant: PM _{2.5} Averaging Time: 24 h Mean (SD): NR Monitoring Stations: NR Copollutant: NR Co-pollutant Correlation: N/A Pollutant: In-vehicle PM _{2.5} compone identified with factor analysis (crusta material, wear of steel automotive components, gasoline combustion, speed-changing traffic with engine emissions and brake wear Averaging Time: Exposure assesseduring 3 p.m. to 12 a.m. work shifts Mean: PM _{2.5} mass = 23.0 µg/m³	Effect Estimate: % change in the health outcome per 1 SD change in the "speed change" factor MCL: 7% HRV: 16% supraventricular ectopic beats: 39% % Neutrophils: 7%
Period of Study: NR Location: New Jersey Age Groups: 25-68 Study Design: Panel N: 11 subjects Statistical Analyses: Measures Covariates: Long-term month, weekday, appa Dose-response Invest Statistical Package: Statisti	n trends, calendar arent temperature stigated? No SAS 6d variability shift): mean cycle ntervals (MCL), of normal R-R percentage of frerences greater), low frequency equency (0.15- w to high	Mean (SD): NR Monitoring Stations: NR Copollutant: NR Co-pollutant Correlation: N/A Pollutant: In-vehicle PM _{2.5} compone identified with factor analysis (crusta material, wear of steel automotive components, gasoline combustion, speed-changing traffic with engine emissions and brake wear Averaging Time: Exposure assesseduring 3 p.m. to 12 a.m. work shifts	ePAD: 0.19 (0.05, 0.33), 0.01 RV diastolic pressure: 0.23 (0.11, 0.34), <0.001 RV systolic pressure: 0.12 (-0.07, 0.31), 0.23 MPAP: 0.12 (-0.05, 0.28), 0.16/ PM Increment: 1 SD change in source factor Effect Estimate: % change in the health outcome per 1 SD change in the "speed change" factor ed MCL: 7% HRV: 16% supraventricular ectopic beats: 39% % Neutrophils: 7%
Study Design: Panel N: 11 subjects Statistical Analyses: Measures Covariates: Long-termonth, weekday, appa Dose-response Invest Statistical Package: Statistical Analyses: Pack	n trends, calendar arent temperature stigated? No SAS 6d variability shift): mean cycle ntervals (MCL), of normal R-R percentage of frerences greater), low frequency equency (0.15- w to high	Monitoring Stations: NR Copollutant: NR Co-pollutant Correlation: N/A Pollutant: In-vehicle PM _{2.5} compone identified with factor analysis (crusta material, wear of steel automotive components, gasoline combustion, speed-changing traffic with engine emissions and brake wear Averaging Time: Exposure assesseduring 3 p.m. to 12 a.m. work shifts	RV diastolic pressure: 0.23 (0.11, 0.34), <0.001 RV systolic pressure: 0.12 (-0.07, 0.31), 0.23 MPAP: 0.12 (-0.05, 0.28), 0.16/ PM Increment: 1 SD change in source factor Effect Estimate: % change in the health outcome per 1 SD change in the "speed change" factor ed MCL: 7% HRV: 16% supraventricular ectopic beats: 39% % Neutrophils: 7%
N: 11 subjects Statistical Analyses: Measures Covariates: Long-term month, weekday, appa Dose-response Invest Statistical Package: Statistical Analyses: length of normal R-R interval of the standard deviation intervals (SDNN), and normal R-R interval difthan 50 msec (PNN50 (0.04-0.15Hz), high fre 0.40Hz), high fre 0	n trends, calendar arent temperature stigated? No SAS 6d variability shift): mean cycle ntervals (MCL), of normal R-R percentage of frerences greater), low frequency equency (0.15- w to high	Copollutant: NR Co-pollutant Correlation: N/A Pollutant: In-vehicle PM _{2.5} compone identified with factor analysis (crusta material, wear of steel automotive components, gasoline combustion, speed-changing traffic with engine emissions and brake wear Averaging Time: Exposure assesseduring 3 p.m. to 12 a.m. work shifts	<0.001 RV systolic pressure: 0.12 (-0.07, 0.31), 0.23 MPAP: 0.12 (-0.05, 0.28), 0.16/ PM Increment: 1 SD change in source factor Effect Estimate: % change in the health outcome per 1 SD change in the "speed change" factor MCL: 7% HRV: 16% supraventricular ectopic beats: 39% % Neutrophils: 7%
Statistical Analyses: Measures Covariates: Long-term month, weekday, appa Dose-response Invest Statistical Package: 3 Lags Considered: 0-6 (measured 10 h after selength of normal R-R interval of the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals (SDNN), and normal R-R interval off the standard deviation intervals	n trends, calendar arent temperature stigated? No SAS 6d variability shift): mean cycle ntervals (MCL), of normal R-R percentage of frerences greater), low frequency equency (0.15- w to high	Pollutant: In-vehicle PM _{2.5} compone identified with factor analysis (crusta material, wear of steel automotive components, gasoline combustion, speed-changing traffic with engine emissions and brake wear Averaging Time: Exposure assesseduring 3 p.m. to 12 a.m. work shifts	RV systolic pressure: 0.12 (-0.07, 0.31), 0.23 MPAP: 0.12 (-0.05, 0.28), 0.16/ PM Increment: 1 SD change in source factor Effect Estimate: % change in the health outcome per 1 SD change in the "speed change" factor MCL: 7% HRV: 16% supraventricular ectopic beats: 39% % Neutrophils: 7%
Measures Covariates: Long-term month, weekday, appa Dose-response Invest Statistical Package: 3 Lags Considered: 0-6 Reference: Riediker et al. (2004, 091261) Period of Study: Fall 2001 Location: Wake County, North Carolina Cocation: Wake County, North Carolina Dose-response Invest Statistical Package: 3 Lags Considered: 0-6 (measured 10 h afters length of normal R-R intervals (SDNN), and normal R-R interval dift than 50 msec (PNN50 (0.04-0.15Hz), high fre 0.40Hz), the ratio of lo frequency. Blood analysis (measthift): Uric acid, blood gamma glutamyl trans blood cell count, red bhematocrit, hemoglobic cell volume (MCV), ne and %), lymphocytes (reactive protein, plasm plasminogen activator von Willebrand factor of vthzelin-1, protein C, at Age Groups: 23-30 yr Study Design: Panel N: 9 healthy male troo measures (36 person-Statistical Analyses: regression models (pri	n trends, calendar arent temperature stigated? No SAS 6d variability shift): mean cycle ntervals (MCL), of normal R-R percentage of frerences greater), low frequency equency (0.15- w to high	Pollutant: In-vehicle PM _{2.5} compone identified with factor analysis (crusta material, wear of steel automotive components, gasoline combustion, speed-changing traffic with engine emissions and brake wear Averaging Time: Exposure assesseduring 3 p.m. to 12 a.m. work shifts	o.23 MPAP: 0.12 (-0.05, 0.28), 0.16/ PM Increment: 1 SD change in source factor Effect Estimate: % change in the health outcome per 1 SD change in the "speed change" factor MCL: 7% HRV: 16% supraventricular ectopic beats: 39% % Neutrophils: 7%
month, weekday, appa Dose-response Invest Statistical Package: 3 Lags Considered: 0-6 Reference: Riediker et al. (2004, 091261) Period of Study: Fall 2001 Location: Wake County, North Carolina Location: Wake County, North Carolina Dose Heart rate of (measured 10 h after selength of normal R-R intervals (SDNN), and normal R-R interval dit than 50 msec (PNN50 (0.04-0.15Hz), high fre 0.40Hz), the ratio of lo frequency. Blood analysis (measshift): Uric acid, blood gamma glutamyl trans blood cell count, red be hematocrit, hemoglobic cell volume (MCV), ne and %), lymphocytes (reactive protein, plasm plasminogen activator von Willebrand factor von Wi	stigated? No SAS 6d variability shift): mean cycle ntervals (MCL), of normal R-R percentage of ferences greater), low frequency equency (0.15- w to high	identified with factor analysis (crusta material, wear of steel automotive components, gasoline combustion, speed-changing traffic with engine emissions and brake wear Averaging Time: Exposure assessed during 3 p.m. to 12 a.m. work shifts	ents al FM Increment: 1 SD change in source factor Effect Estimate: % change in the health outcome per 1 SD change in the "speed change" factor MCL: 7% HRV: 16% supraventricular ectopic beats: 39% % Neutrophils: 7%
Reference: Riediker et al. (2004, 091261) Period of Study: Fall 2001 Location: Wake County, North Carolina Location: Wake County, North Carolina Discreptibility of the standard deviation intervals (SDNN), and normal R-R interval difference (N.04-0.15Hz), high free 0.40Hz), the ratio of logamma glutamyl trans blood cell count, red bhematocrit, hemoglobic cell volume (MCV), ne and %), lymphocytes (reactive protein, plasm plasminogen activator von Willebrand factor of vtnzelin-1, protein C, at Age Groups: 23-30 yr. Study Design: Panel N: 9 healthy male troo measures (36 person-Statistical Analyses: regression models (pri	variability shift): mean cycle ntervals (MCL), of normal R-R percentage of ferences greater), low frequency equency (0.15- w to high	identified with factor analysis (crusta material, wear of steel automotive components, gasoline combustion, speed-changing traffic with engine emissions and brake wear Averaging Time: Exposure assessed during 3 p.m. to 12 a.m. work shifts	Effect Estimate: % change in the health outcome per 1 SD change in the "speed change" factor MCL: 7% HRV: 16% supraventricular ectopic beats: 39% % Neutrophils: 7%
Reference: Riediker et al. (2004, 091261) Period of Study: Fall 2001 Location: Wake County, North Carolina Location: Wake County, North Carolina Blood analysis (measshift): Uric acid, blood gamma glutamyl transblood cell count, red bhematocrit, hemoglobic cell volume (MCV), ne and %), lymphocytes (reactive protein, plasm plasminogen activator von Willebrand factor vthzelin-1, protein C, a Age Groups: 23-30 yr Study Design: Panel N: 9 healthy male troo measures (36 person-Statistical Analyses: regression models (pri	variability shift): mean cycle ntervals (MCL), of normal R-R percentage of fferences greater), low frequency equency (0.15- w to high	identified with factor analysis (crusta material, wear of steel automotive components, gasoline combustion, speed-changing traffic with engine emissions and brake wear Averaging Time: Exposure assessed during 3 p.m. to 12 a.m. work shifts	Effect Estimate: % change in the health outcome per 1 SD change in the "speed change" factor MCL: 7% HRV: 16% supraventricular ectopic beats: 39% % Neutrophils: 7%
Reference: Riediker et al. (2004, 091261) Period of Study: Fall 2001 Location: Wake County, North Carolina Location: Wake County, North Carolina Blood analysis (PNN50 (0.04-0.15Hz), high fre 0.40Hz), the ratio of lo frequency. Blood analysis (meas shift): Uric acid, blood gamma glutamyl trans blood cell count, red b hematocrit, hemoglobic cell volume (MCV), ne and %), lymphocytes (reactive protein, plasm plasminogen activator von Willebrand factor vthzelin-1, protein C, a Age Groups: 23-30 yr Study Design: Panel N: 9 healthy male troo measures (36 person-Statistical Analyses: regression models (pri	variability shift): mean cycle ntervals (MCL), of normal R-R percentage of ferences greater), low frequency equency (0.15- w to high	identified with factor analysis (crusta material, wear of steel automotive components, gasoline combustion, speed-changing traffic with engine emissions and brake wear Averaging Time: Exposure assessed during 3 p.m. to 12 a.m. work shifts	Effect Estimate: % change in the health outcome per 1 SD change in the "speed change" factor MCL: 7% HRV: 16% supraventricular ectopic beats: 39% % Neutrophils: 7%
Period of Study: Fall 2001 Location: Wake County, North Carolina Location: Location: Wake County, North Carolina Location: Location: Location County, North Carolina Location: Location: Location County, North Carolina Location: Location: Location County, North Carolina Location: Location County, North Caroli	shift): méan cycle ntervals (MCL), of normal R-R percentage of fferences greater), low frequency equency (0.15- w to high	identified with factor analysis (crusta material, wear of steel automotive components, gasoline combustion, speed-changing traffic with engine emissions and brake wear Averaging Time: Exposure assessed during 3 p.m. to 12 a.m. work shifts	Effect Estimate: % change in the health outcome per 1 SD change in the "speed change" factor MCL: 7% HRV: 16% supraventricular ectopic beats: 39% % Neutrophils: 7%
Covariates: Potential temperature, relative hof law-enforcement ac shift and the avg spee Controlling had no effer mates for "crustal" and factors However, confounder in "speed change" and bloom and vWF reduced the and the Cl included ze Season: Only 1 season. Dose-response Inves	urea nitrogen, peptidase, white lood cell count, n, mean red blood utronphils (count count and %), Chinogen, inhibitor type 1, (vWF), endo- and interleukin-6 pers, repeated days) Mixed effects incipal factor ion of exposure) confounders: ununidity, number tivities during the d during the shift ect on effect estimates of the section of the shift extended the shift extend	Monitoring Stations: Per vehicle Copollutant (correlation): Correlation to PM _{2.5} Mass Benzene: r = 0.50 Aldehydes: r = 0.34 CO: r = 0.52 Aluminum: r = 0.58 Silicon: r = 0.66 Sulfur: r = 0.58 Calcium: r = 0.37 Titanium: r = 0.41 Chromium: r = 0.51 Iron: r = 0.71 Copper: r = 0.16 Selenium: r = 0.38 Tungsten: r = 0.37 PM2.Lightscatter: r = 0.71	% lymphocytes: -10% red blood cell volume MCV: 1% vWF: 9% blood urea nitrogen: 7% protein C: -11% % change in the health outcome per 1 SD change in the "crustal" factor MCL: 3% serum uric acid concentrations: 5% Note: Results (including Cls) are reported in figures 2 & 3.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Riojas-Rodriguez et al. (2006, 156913)	Outcome: Heart rate variability (5-	Pollutant: PM _{2.5} (nephelometry)	PM Increment: 10 μg/m ³
Period of Study: Dec 2001-Apr 2002	2002 Study Design: Panel study an area N: 30 patients from the outpatient clinic of the National Institute of Cardiology of Mexico, where each subject had existing ischemic heart disease.	Averaging Time: 5 min Mean (SD), Range: 46.8 µg/m³ (SD = 1.82)	Effect Estimate: Each 20 µg/m ³ increase in 5 min PM _{2.5} was associated with a: -0.008 decrease in the In(HF)(95% CI: -0.015, 0.0004
		Range: 0-483 μg/m³ Copollutant: CO	Notes: Population of subjects with known ischemic heart disease (25 men and 5 women who had at least 1 prior MI [not in last 6 mo])
			Each 10 µg/m ³ increase in 5-min mean PM _{2.5} was associated with nonsignificantly decreased HF, and with similar, but smaller changes in LF and VLF.
Reference: Romieu et al. (2005, 086297)	Outcome: Heart rate variability (HF, LF, VLF, PNN50, SDNN, r-MSSD)	Pollutant: PM _{2.5}	PM Increment: 8 μg/m ³
Period of Study: 2000-2001	Age Groups: >60 yr of age	Averaging Time: 24 h Copollutant: O ₃ , NO ₂ , SO ₂ , PM ₁₀	Effect Estimate: In the group receiving the fish oil supplement, each 8 µg/m ³
Location: Mexico City, Mexico	Study Design: Double blind randomized controlled trial N: 50 elderly residents of a Mexico City nursing home		change in 24-h mean total exposure PM _{2.5} was associated with a: a) 54% reduction (95% CI: -72% to -24%) in HF (log transformed) in the pre-
			supplementation phase
			b) 7% reduction (95% CI: -20%, 7%) in the supplementation phase.
			Changes in other HRV parameters were also smaller in the supplementation phase. In the group receiving soy oil supplementation, the % reduction in HF was also smaller in the supplementation phase, but the differences were smaller and not statistically significant.
			Notes: Study of the effect of omega-3-fatty acid supplementation (2 g/day of fish oil vs 2 g/day of soy oil) to mitigate the effect of ambient PM _{2.5} on HRV. Subjects had no cardiac arrhythmias, cardiac pacemakers, allergies to omega-3 fatty acids or fish, treatment with oral anticoagulants, or history of bleeding diathesis. PM _{2.5} was measured and estimated indoors, outdoors, and with regards to total exposure (the same as Holguin et al. (2003)).

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Romieu et al. (2008,	Outcome: Copper/zinc superoxide	Pollutant: PM _{2.5} (indoor)	PM Increment: 10 μg/m ³
156922)	dismutase activity (Cu/Zn SOD)	Averaging Time: 24 h (same day)	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Sep 2001-Apr 2002	Lipoperoxidation (LPO)	Mean (SD): 38.7 (14.7)	Regression coefficient (SE
Location: Mexico City, Mexico	Reduced glutathione (GSH) Age Groups: 60-96 yr Study Design: Intervention (randomly assigned fish oil or soy oil) N: 52 participants Statistical Analyses: Linear mixed models Covariates: Time Dose-response Investigated? Assessed possible nonlinearity using generalized additive mixed models with p-splines Statistical Package: STATA v8.2 and SAS v9.1	Percentiles: 25th: 30.62 50th: 35.11 75th: 41.10 Range (Min, Max): 14.8, 70.9 Monitoring Stations: Indoor measured inside nursing home Copollutant: O ₃	p-value): Cu/Zn SOD: -0.05 (0.02 0.001) LPO (square root transformed): 0.08 (0.09 0.381) GSH (log-transformed quadratic term for PM): -0.05 (0.01 0.002) Regression coefficient (SE p-value) by supplementation groups (same transformations as above): Cu/Zn SOD Soy Oil: -0.06 (0.02, <0.001) Fish Oil: * 0.04 (0.02, 0.009) LPO Soy Oil: -0.02 (0.14, 0.904) Fish Oil: * 0.16 (0.07, 0.024) GSH Soy Oil: -0.03 (0.04, 0.406) Fish Oil: -0.09 (0.04, 0.017)
			*Quadratic term for PM
Reference: Ruckerl et al. (2007, 156931)	Outcome: Interleukin-6 (IL-6), fibrinogen, C-reactive protein (CRP)	Pollutant: PM _{2.5}	PM Increment: IQR
Period of Study: May 2003-Jul 2004 Location: Athens, Augsburg, Barcelona, Helsinki, Rome, and Stockholm	Age Groups: 35-80 yr Study Design: Repeated measures / longitudinal N: 1003 MI survivors	Averaging Time: Hourly and 24-h (lag 0-4, mean of lags 0-4, mean of lags 0-1, mean of lags 2-3, means of lags 0-3) Mean (SD): Presented by city only Monitoring Stations: Central monitoring sites in each city	Effect Estimate [Lower Cl, Upper Cl]: % change in mean blood markers per increase in IQR of air pollutant. IL-6 Lag (IQR): % change in GM (95%Cl) Lag 0 (11.0): 0.46 (-0.89, 1.83) Lag 1 (11.0): -0.39 (-1.69, 0.93)
	Statistical Analyses: Mixed-effect models Covariates: City-specific confounders (age, sex, BMI) Long-term time trend and apparent temperature	Copollutant: SO ₂ O ₃ NO NO ₂	Lag 2 (11.0): -0.23 (-1.53, 1.07) 5-day avg (8.6): 0.05 (-1.37, 1.50) Fibrinogen Lag (IQR): % change in AM (95%CI) Lag 0 (11.0): 0.05 (-0.48, 0.58) Lag 1 (11.0): 0.17 (-0.35, 0.69)
	RH, time of day, day of week included if adjustment improved model fit Season: Long-term time trend Dose-response Investigated? Used psplines to allow for nonparametric exposure-response functions		CRP Lag 2 (11.0): 0.20 (-0.32, 0.71) 5-day avg (8.6): 0.38 (-0.21, 0.96) CRP Lag (IQR): % change in GM (95%CI) Lag 0 (11.0): 0.11 (-1.95, 2.21) Lag 1 (11.0): -0.06 (-1.98, 1.90) Lag 2 (11.0): 0.11 (-1.80, 2.06) 5-day avg (8.6): -0.13 (-2.15, 1.92)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)	
Reference: Ruckerl et al. (2006,	serum amyloid A (SAA) E-selectin von Willebrand Factor (vWF) intercellular adhesion molecule-1 (ICAM- 1) fibrinogen Factor VII prothrombin fragment 1+2	Pollutant: PM _{2.5}	PM Increment: IQR (16.4	
<u>088754</u>)		Averaging Time: 24 h	5-day avg: 12.2)	
Period of Study: Oct 2000-Apr 2001 Location: Erfurt, Germany		Mean (SD): 20.0 (15.0) Percentiles: 25th: 9.7 50th: 14.9 75th: 26.1	Effect Estimate [Lower CI, Upper CI]: Effects of air pollution on blood markers presented as OR (95%CI) for an increase in the blood marker above the 90th percentile per increase in IQR air pollutant.	
	D-dimer	Range (Min, Max): 2.6, 83.7	CRP	
	Age Groups: 50+ Study Design: Panel (12 repeated	Monitoring Stations: 1 site Copollutant: UFPs AP	Time before draw: 0 to 23 h: 1.1 (0.7, 1.8)	
	measures at 2-wk intervals) N: 57 male subjects with coronary disease		24-47 h: 1.5 (0.9, 2.5) 48-71 h: 1.2 (0.8, 1.9) 5-day mean: 1.4 (0.9, 2.3)	
	Statistical Analyses: Fixed effects linear and logistic regression models	PM _{2.5} PM ₁₀ OC	ICAM-1	
	Covariates: Models adjusted for different factors based on health endpoint	EC NO ₂ CO	NO ₂ 24-47 h: 1.3 (0.8, 1.8) CO 48-71 h: 1.8 (1.2, 2.7)	Time before draw: 0-23 h: 0.7 (0.4, 0.9) 24-47 h: 1.3 (0.8, 1.8) 48-71 h: 1.8 (1.2, 2.7) 5-day mean: 1.1 (0.8, 1.5)
	CRP: RH, temperature, trend, ID		Effects of air pollution on blood markers	
	ICAM-1: temperature, trend, ID		presented as % change from the mean/GM in the blood marker per	
	vWF: air pressure, RH, temperature, trend, ID		increase in IQR air pollutant. vWF	
	FVII: air pressure, RH, temperature, trend, ID, weekday		Time before draw: 0-23 h: 3.9 (-0.3, 8.1) 24-47 h: 3.1 (-1.6, 7.8) 48-71 h: 3.6 (-1.1, 8.3)	
	Season: Time trend as covariate		5-day mean: 5.6 (0.5, 10.8)	
	Dose-response Investigated? Sensitivity analyses examined nonlinear exposure-response functions		FVII Time before draw: 0-23 h: -2.5 (-6.2 to	
	Statistical Package: SAS v8.2 and S- Plus v6.0		1.4) 24-47 h: -2.8 (-6.1 to 0.6) 48-71 h: -2.3 (-5.0 to 0.6) 5-day mean: -3.5 (-6.4 to -0.4)	
			Note: Summary of results presented in figures. SAA results indicate increase in association with PM (not as strong and consistent as with CRP)	
			No association observed between E-selectin and PM	
			An increase in prothrombin fragment 1+2 was consistently observed, particularly with lag 4	
			Fibrinogen results revealed few significant associations, potentially due to chance	
			D-dimer results revealed null associations in linear and logistic analyses	

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ruckerl et al. (2006,	Outcome: C-reactive protein (CRP)	Pollutant: EC	PM Increment: IQR (2.3
<u>088754</u>)	serum amyloid A (SAA) E-selectin	Averaging Time: 24 h	5-day avg: 1.8)
Period of Study: Oct 2000-Apr 2001 Location: Erfurt, Germany	von Willebrand Factor (vWF) intercellular adhesion molecule-1 (ICAM-1) fibrinogen Factor VII prothrombin fragment 1+2 D-dimer	Mean (SD): 2.6 (2.4) Percentiles: 25th: 1.0 50th: 1.8 75th: 3.2	Effect Estimate [Lower CI, Upper CI]: Effects of air pollution on blood markers presented as OR (95%CI) for an increase in the blood marker above the 90th percentile per increase in IQR air pollutant.
	Age Groups: 50+ yr	Range (Min, Max): 0.2, 12.4	CRP
	Study Design: Panel (12 repeated measures at 2-wk intervals)	Monitoring Stations: 1 site Copollutant: UFPs AP PM _{2.5}	Time before draw: 0-23 h: 1.2 (0.7, 2.0) 24-47 h: 1.3 (0.7, 2.4) 48-71 h: 1.6 (0.9, 2.7) 5-day mean: 1.2 (0.7, 2.1)
	N: 57 male subjects with coronary disease		ICAM-1
	Statistical Analyses: Fixed effects linear and logistic regression models	PM ₁₀ OC	Time before draw: 0-23 h: 1.0 (0.7, 1.6)
	Covariates: Models adjusted for	EC NO₂	24-47 h: 2.6 (1.7, 3.8)
	different factors based on health endpoint	CO	48-71 h: 4.0 (2.5, 6.1)
	CRP: RH, temperature, trend, ID		5-day mean: 2.2 (1.4, 3.3) Effects of air pollution on blood markers
	ICAM-1: temperature, trend, ID		presented as % change from the mean/GM in the blood marker per
	vWF: air pressure, RH, temperature,		increase in IQR air pollutant.
	trend, ID FVII: air pressure, RH, temperature,		∨WF
	trend, ID, weekday		Time before draw: 0-23 h: 5.0 (0.0, 10.1)
	Season: Time trend as covariate		24-47 h: 7.6 (1.4, 13.7) 48-71 h: 1.1 (-5.2, 7.4)
	Dose-response Investigated? Sensitivity analyses examined nonlinear exposure-response functions		5-day mean: 5.7 (-0.5, 12.0) FVII
	Statistical Package: SAS v8.2 and S-Plus v6.0		Time before draw: 0-23 h: -5.7 (-10.5 to - 0.7) 24-47 h: -6.9 (-11.2 to -2.3) 48-71 h: -4.2 (-8.4, 0.2) 5-day mean: -6.0 (-10.5 to -1.2)
			Note: Summary of results presented in figures. SAA results indicate increase in association with PM (not as strong and consistent as with CRP)
			No association observed between E-selectin and PM
			An increase in prothrombin fragment 1+2 was consistently observed, particularly with lag 4
			Fibrinogen results revealed few significant associations, potentially due to chance
			D-dimer results revealed null associations in linear and logistic analyses

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ruckerl et al. (2006,	Outcome (ICD9 and ICD10): C-reactive	Pollutant: OC	PM Increment: IQR (0.7
<u>088754</u>)	protein (CRP) Serum amyloid A (SAA)	Averaging Time: 24 h	5-day avg: 0.5)
Period of Study: Oct 2000-Apr 2001	E-selectin von Willebrand Factor (vWF)	Mean (SD): 1.5 (0.6)	Effect Estimate [Lower CI, Upper CI]:
Location: Erfurt, Germany	intercellular adhesion molecule-1 (ICAM- 1) Fibrinogen Factor VII Prothrombin fragment 1+2	25th: 1.1 50th: 1.4 75th: 1.8	Effects of air pollution on blood markers presented as OR (95%CI) for an increase in the blood marker above the 90th percentile per increase in IQR air pollutant.
	D-dimer	Range (Min, Max): 0.3, 3.4	CRP Time before draw: 0-23 h: 1.2 (0.7, 1.9)
	Age Groups: 50+ yr	Monitoring Stations: 1 site	24-47 h: 1.3 (0.8, 2.1)
	Study Design: Panel (12 repeated measures at 2-wk intervals)	Copollutant: UFPs	48-71 h: 1.4 (0.8, 2.4) 5-day mean: 1.2 (0.7, 1.8)
	N: 57 male subjects with coronary disease Statistical Analyses: Fixed effects linear and logistic regression models	AP PM _{2.5} PM ₁₀ OC EC	ICAM-1 Time before draw: 0-23 h: 0.9 (0.6, 1.3) 24-47 h: 2.0 (1.3, 3.2) 48-71 h: 3.0 (1.8, 4.8) 5-day mean: 1.3 (0.8, 2.0)
	Covariates: Models adjusted for different factors based on health endpoint CRP: RH, temperature, trend, ID ICAM-1: temperature, trend, ID vWF: air pressure, RH, temperature, trend, ID FVII: air pressure, RH, temperature, trend, ID, weekday	NO ₂ CO	Effects of air pollution on blood markers presented as % change from the mean/GM in the blood marker per increase in IQR air pollutant. vWF Time before draw: 0-23 h: 5.5 (0.2, 10.8) 24-47 h: 8.0 (2.1, 13.9) 48-71 h: 3.5 (-2.6, 9.6) 5-day mean: 7.4 (2.0, 12.8)
	Season: Time trend as covariate Dose-response Investigated? Sensitivity analyses examined nonlinear exposure-response functions Statistical Package: SAS v8.2 and S-		FVII Time before draw: 0-23 h: -6.1 (-10.6 to 1.4) 24-47 h: -7.2 (-11.4 to -2.8) 48-71 h: -3.8 (-8.2, 0.9) 5-day mean: -5.6 (-9.8 to -1.1)
	Plus v6.0		Note: Summary of results presented in figures. SAA results indicate increase in association with PM (not as strong and consistent as with CRP)
			No association observed between E-selectin and PM
			An increase in prothrombin fragment 1+2 was consistently observed, particularly with lag 4
			Fibrinogen results revealed few significant associations, potentially due to chance
			D-dimer results revealed null associations in linear and logistic analyses

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ruckerl et al. (2007, 091379) Period of Study: Oct 2000-Apr 2001 Location: Erfurt, Germany	Outcome: Soluble CD40 ligand (sCD40L), platelets, leukocytes, erythrocytes, hemoglobin Age Groups: 50+ yr	Pollutant: PM _{2.5}	PM Increment: IQR (16.4
		Averaging Time: 24 h	5-day avg: 12.2)
		Mean (SD): 20.0 (15.0)	Effect Estimate [Lower CI, Upper CI]:
	Study Design: Panel (12 repeated measures at 2-wk intervals)	Percentiles: 25th: 9.7 50th: 14.9 75th: 26.1 Range (Min, Max): 2.6, 83.7 Monitoring Stations: 1 site	Effects of air pollution on blood markers presented as % change from the mean/GM in the blood marker per increase in IQR air pollutant.
	N: 57 male subjects with coronary disease Statistical Analyses: Fixed effects		sCD40L, % change GM (pg/mL)
			lag0: 1.5 (-4.0, 7.3) Lag1: 0.2 (-5.4, 6.2)
	linear regression models		Lag2: -2.6 (-8.0, 3.1) Lag3: 0.5 (-3.9, 5.0)
	Covariates: Long-term time trend, weekday of the visit, temperature, RH, barometric pressure	Copollutants: UFPs AP	5-day mean: 0.2 (-5.4, 6.2) Platelets, % change mean (103/μΙ)
	Season: Time trend as covariate	PM _{2.5} PM ₁₀	Lag0: -0.6 (-1.9, 0.7) Lag1: 0.1 (-1.3, 1.5)
	Dose-response Investigated? No	NO	Lag2: 0.5 (-0.9, 1.9)
	Statistical Package: SAS v8.2 and S-		Lag̃3: 0.2 (-1.1, 1.5) 5-day mean: -0.4 (-1.9, 1.2)
	Plus v6.0		Leukocytes, % change in mean (103/µl) Lag0: -1.6 (-3.2, 0.0) Lag1: -0.4 (-2.2, 1.4) Lag2: -0.2 (-2.1, 1.7) Lag3: -0.8 (-2.4, 0.7) 5-day mean: -1.6 (-3.5, 0.3)
			Erythrocytes, % change mean (106/µl) Lag0: -0.1 (-0.5, 0.3) Lag1: -0.3 (-0.7, 0.2) Lag2: -0.4 (-0.8, 0.0) Lag3: -0.2 (-0.5, 0.1) 5-day mean: -0.4 (-0.8, 0.0)
			Hemoglobin, % change mean (g/dl) Lag0: 0.0 (-0.6, 0.5) Lag1: -0.2 (-0.8, 0.3) Lag2: -0.5 (-1.1, 0.0) Lag3: -0.2 (-0.7, 0.2) 5-day mean: -0.5 (-1.0, 0.1)
Reference: Sarnat et al. (2006, <u>090489</u>)	Outcome: Supraventricular ectopy	Pollutant: PM _{2.5}	PM Increment: IQR
Period of Study: Summer and fall 2000 Location: Steubenville, OH	(SVE) or ventricular ectopy (VE) N: 32 nonsmoking older adults	Averaging Time: 5 days Median (IQR): PM _{2,5} : Median: 19.0 μg/m³	Effect Estimate: PM _{2.5} : SVE: OR = 1.42 (95% CI: 0.99, 2.04)
Location: Steubenville, Off	Statistical Analysis: Logistic mixed		VE: OR = 1.02 (95% CI: 0.63-1.65)
	effects regression Season: Summer and fall	IQr = 10.0 Sulfate: Median: 6.1. IQR: 4.2	Sulfate: SVE: OR = 1.70 (95% CI: 1.12, 2.57)
	Dose-response Investigated? No	EC: Median: 0.9. IQR: 0.5	VE: OR = 1.08 (95% CI: 0.65, 1.80)
		Copollutants: O ₃ , NO ₂ , SO ₂	EC: SVE: OR = 1.15 (95% CI: 0.73, 1.81)
			VE: OR = 1.00 (95% CI: 0.57, 1.75)
			Notes: Longitudinal study of 32 nonsmoking older adults who had ECG measurements made every week for 24 wk. PM measured within 1 mile of subjects' residences, and central site pollutant measurements were also made.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Schneider et al. (2008,	Outcome: Endothelial Function	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
191985) Period of Study: Nov 2004-Dec 2005	Parameters Age Groups: 48-80 yr	Averaging Time: Daily	Percent Change: (Lower Cl, Upper Cl) Jag:
Location: Chapel Hill, NC	Study Design: Panel	Mean (SD): 13.6 (7.0)	CI), lag: FMD: ^l
Ecoulon: Onaper mii, 110	N: 22 diabetics	Min: 2.0	-17.3 (-34.6, 0.0), lag 0 -4.4 (-24.6, 15.8), lag 1
	Statistical Analyses: Mixed Models	Max: 38.9	-18.6 (-44.8, 7.6), lag 2 1.6 (-23.6, 26.9), lag 3
	Covariates: Season, day of the week, temperature, relative humidity, barometric pressure	Monitoring Stations: 2 Copollutant: NR	18.4 (-3.5, 40.3), lag 4 -19.4 (-62.6, 23.8), 5-day ma NTGMD:
	Dose-response Investigated? No		2.5 (-9.0, 13.9), lag 0
	Statistical Package: SAS		-13.6 (-24.5, -2.6), lag 1* -10.2 (-23.5, 3.0), lag 2
	Lags Considered: 0-4 days; 5-day ma		-8.0 (-22.4, 6.4), lag 3 3.6 (-7.9, 15.0), lag 4 -19.4 (-44.3, 5.5), 5-day ma
			LAEI: 0.4 (-4.2, 5.0), lag 0 -0.3 (-6.0, 5.4), lag 1 2.5 (-4.3, 9.4), lag 2 -7.3 (-13.5, -1.1), lag 3* -2.3 (-8.0, 3.3), lag 4 -4.6 (-15.3, 6.1), 5-day ma
			SAEI: -3.0 (-13.0, 7.0), lag 0 -17.0 (-27.5, -6.4), lag 1** -9.7 (-23.5, 4.2), lag 2 -15.1 (-29.3, -0.9)*, lag 3 -2.1 (-14.0, 9.7), lag 4 -25.4 (-45.4, -5.3), 5-day ma*
			SVR: -1.6 (-3.7, 0.4), lag 0 1.6 (-0.9, 4.1), lag 1 3.5 (0.5, 6.5), lag 2 2.4 (-0.5, 5.3), lag 3 3.2 (0.7, 5.6), lag 4* 4.5 (-0.3, 9.2), 5-day ma *p < 0.05, ** p < 0.01
			Notes: Percent change (95% CI) per 10 μg/m³ PM _{2.5} by GSTM1 genotype (Fig 3)
Reference: Schwartz et al. (2005,	Outcome: Heart rate variability (HRV),	Pollutant: PM _{2.5}	PM Increment: IQR (not given)
074317) Period of Study: 12 wk during the	(SDNN, r-MSSD, PNN50, LFHFR)	Averaging Time: 1 h, 24 h	Effect Estimate: 24 h: 2.6 ms decrease in SDNN (95% CI: 0.8 to -6.0)
summer of 1999	Age Groups: 61-89 yr	Median: 24-h: 10 μg/m ³	10.1 ms decrease in r-MSSD (95% CI: -
Location: Boston, MA	Study Design: Panel study	Monitoring Stations: 1	2.8 to -16.9).
	N: 28 elderly subjects	Copollutant: BC, O ₃ , CO, SO ₂ , NO ₂	1 h: 3.4 ms decrease in SDNN (95% CI: 0.6 to -7.3)
	Statistical Analysis: Mixed models. To examine heterogeneity of effects, hierarchical modeling was used.		7.4 ms decrease in r-MSSD (95% CI: 1.6 to -15.5).
	Season: Summer		Notes: Various log-transformed HRV parameters were measured for 30
	Dose-response Investigated? No		minutes once a week. The random effects model indicated that the negative effect of BC on HRV was not restricted to a few subjects.
			Same study population as Gold et al. (2005). Boston Elders Study
			For each pollutant/averaging time, similarly sized changes were observed for PNN50 (%) and LFHFR.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Schwartz et al. (2005,	Outcome: Heart rate variability (HRV),	Pollutant: BC	PM Increment: IQR
074317)	(SDNN, r-MSSD, PNN50, LFHFR)	Averaging Time: 24 h	Effect Estimate: 5.1 ms decrease in
Period of Study: 12 wk during the summer of 1999	Age Groups: 61-89 yr	Median: 1.0 μg/m ³	SDNN (-1.5 to -8.6)
Location: Boston, MA	Study Design: Panel study	Monitoring Stations: 1	10.1 ms decrease in r-MSSD (-2.4 to - 17.2).
	N: 28 elderly subjects Statistical Analysis: Mixed models. To examine heterogeneity of effects, historial modeling upon used.	$\textbf{Copollutant:} \ PM_{2.5}, \ O_3, \ CO, \ SO_2, \ NO_2$	Notes: Various log-transformed HRV parameters were measured for 30 minutes once a week. The random
	hierarchical modeling was used.		effects model indicated that the negative effect of BC on HRV was not restricted
	Season: Summer Dose-response Investigated? No		to a few subjects. Same study population as Gold et al. (2005). Boston Elders Study. Subjects with a prior MI experienced greater declines in BC associated HRV. For each pollutant/averaging time, similarly sized changes were observed for PNN50 (%) and LFHFR.
Reference: Schwartz et al. (2005,	Outcome: HF (high frequency	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
<u>074317</u>)	component of heart rate variability)	Averaging Time: 48 h Mean (SD): 11.4 µg/m³ (8.0) Copollutant: None	Effect Estimate: 34% decrease in HF
Period of Study: 2000	Study Design: Cross-sectional N: 497 subjects Statistical Analysis: Linear regression, controlling for covariates		(95% CI: -9% to -52%) in subjects without the GSTM1 allele. In subjects with the allele, no effect was noted. Similar findings for obese subjects and those with high neutrophil counts.
Location: Boston, Massachusetts			
			Notes: Study population: Normative Aging Study.
			Effects of $PM_{2.5}$ appear to be mediated by ROS.
Reference: Sorensen et al. (2005,	ypooytoo ua aoy	Pollutant: PM _{2.5}	PM Increment: see below
089428) Period of Study: Nov 1999-Aug 2000		Averaging Time: 48 h	Effect Estimate [Lower CI, Upper CI]:
Location: Copenhagen, Denmark		Mean (SD): Fall: 20.7	Association between 8-oxodG in lymphocytes and personal exposure
Location. Copennagen, Dennark	Study Design: Panel (repeated	Summer: 12.6	transition metals in PM _{2.5} .
	measures)	Percentiles: IQR Fall: 13.1-27.7	% increase in 8-oxodG per increase in metal concentration indicated
	N: 49 students living and studying in central Copenhagen	IQR summer: 9.4-24.3	Vanadium: 1.9% per 1 µg/L (0.6, 3.3)
	50 students examined each season (66	Range (Min, Max): NR	Chromium: 2.2% per 1 µg/L (0.8, 3.5)
	subjects total	Monitoring Stations: NA (personal assessment)	Platinum: 6.1% per 1 ng/L (-0.6, 13.2)
	32 participated in each season	Copollutant (correlation):	Nickel: 0.8% per 10 μg/L (-2.1, 3.7)
	total of 98 measurements)	Spearman correlations with PM _{2.5} mass: chromium (r = 0.22)	Copper: -0.8% per 10 µg/L (-2.7, 1.0)
	Statistical Analyses: Mixed models repeated measures	copper (r = 0.33)	Iron: 0.6% per 10 μg/L (-1.4, 2.6)
	Covariates: PM _{2.5} , season, subject (random factor)	iron (r = 0.29)	Note: PM _{2.5} mass was independently associated with 8-oxodG in 5 of 6
	Dose-response Investigated? No	vanadium (p>0.5)	transition metal models (p < 0.02 in models with vanadium, chromium,
	Statistical Package: SAS v8e	nickel (p>0.5)	nickel, copper, and iron
	-	platinum (p>0.5)	p = 0.07 in platinum model). No transition metals were associated with 8- oxodG measured in urine

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Sorensen et al. (2003,	Outcome: RBC count, hemoglobin, platelet count, fibrinogen, PLAAS (2-aminoadipic semialdehyde in plasma proteins), HBGGS (γ-glutamyl semialdehyde in hemoglobin), HBAAS (2-aminoadipic semialdehyde in hemoglobin), MDA (malondialdehyde) Age Groups: 20-33 γr	Pollutant: PM _{2.5} (personal)	PM Increment: 1 μg/m³
042700)		Averaging Time: 48 h	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Nov 1999-Aug 2000 Location: Copenhagen, Denmark		Median: 16.1 μg/m³ Percentiles: Q25-Q75: 10.0-24.5	Relationship between exposure and biomarkers
		Copollutant: Urban background PM ₂₅	Estimate (p-value): Platelet count (x 106/g protein): 0.0008 (0.37)
	Study Design: Panel (repeated measures)	Personal PM _{2.5}	Fibrinogen (nmol/g protein): 0.0006 (0.69)
	N: 50 students living and studying in central Copenhagen		PLAAS (pmol/mg protein): 0.0016 (0.061)
	50 students examined each season (68 subjects total		HBGGS (pmol/mg protein): 0.0001 (0.94)
	31 participated in each season		HBAAS (pmol/mg protein): 0.0006 (0.64)
	total of 195 measurements)		Increase (95%CI) in biomarkers per 10 µg/m ³ increase in PM _{2.5}
	Statistical Analyses: Mixed model repeated-measures analysis		RBC
	Covariates: Season, avg outdoor		Men: 0% (-1.6, 1.6)
	temperature, and sex		Women: 2.3% (0.5, 4.1)
	Season: Repeated measures 4 times (once per season)		Hemoglobin
	Dose-response Investigated? No		Men: 0.0% (-1.7, 1.5)
	Statistical Package: SAS v8e		Women: 2.6% (0.8, 4.5)
Reference: Sorensen et al. (2003,	Outcome: RBC count, hemoglobin,	Pollutant: Personal exposure to black	PM Increment: 10-6/m
042700) Period of Study Nov 1000 Aug 2000	platelet count, fibrinogen, PLAAS (2- aminoadipic semialdehyde in plasma	carbon (10-6/m) Averaging Time: 48 h	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Nov 1999-Aug 2000 Location: Copenhagen, Denmark	proteins), HBGGS (γ-glutamyl semi- aldehyde in hemoglobin), HBAAS (2-	Median: 8.1	Relationship between exposure and biomarkers
2004.10111 Copolinagon, Boliman	aminoadipic semialdehyde in hemoglobin), MDA (malondialdehyde)	Percentiles: Q25-Q75: 5.0-13.2	Estimate (p-value): RBC count (x 109/g
	Age Groups: 20-33 yr	Copollutant:	protein): 0.0003 (0.75)
	Study Design: Panel (repeated measures)	Urban background PM _{2.5}	Hemoglobin (µmol/g protein): 0.0004 (0.65)
	N: 50 students living and studying in central Copenhagen	Personal PM _{2.5}	Platelet count (x 106/g protein): 0.0009 (0.51)
	50 students examined each season (68 subjects total		Fibrinogen (nmol/g protein): -0.0027 (0.29)
	31 participated in each season		PLAAS (pmol/mg protein): 0.0041 (0.0009)
	total of 195 measurements)		HBGGS (pmol/mg protein): 0.0024
	Statistical Analyses: Mixed model repeated-measures analysis		(0.25)
	Covariates: Season, avg outdoor temperature, and sex		HBAAS (pmol/mg protein): 0.0022 (0.20) MDA (pmol/mg protein): 0.0018 (0.30)
	Season: Repeated measures 4 times (once per season)		
	Dose-response Investigated? No		
	Statistical Package: SAS v8e		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Sorensen et al. (2003,	Outcome: RBC count, hemoglobin, platelet count, fibrinogen, PLAAS (2-aminoadipic semialdehyde in plasma proteins), HBGGS (y-glutamyl semialdehyde in hemoglobin), HBAAS (2-aminoadipic semialdehyde in	Pollutant: PM _{2.5} (urban background	PM Increment: 1 μg/m ³
042700)		concentration) Averaging Time: 48 h Median: 9.2 µg/m³ Percentiles: Q25-Q75: 5.3-14.8	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Nov 1999-Aug 2000 Location: Copenhagen, Denmark			Relationship between exposure and biomarkers
	hemoglobin), MDA (malondialdehyde) Age Groups: 20-33 yr		Estimate (p-value): RBC count (x 109/g protein): 0.0008 (0.36)
	Study Design: Panel (repeated measures)	Copollutant: Urban background PM _{2.5}	Hemoglobin (µmol/g protein): 0.0005 (0.53)
	N: 50 students living and studying in central Copenhagen	Personal carbon black	Platelet count (x 106/g protein): -0.0008 (0.49)
	50 students examined each season (68		Fibrinogen (nmol/g protein): 0.0004 (0.84)
	subjects total		PLAAS (pmol/mg protein): 0.0004 (0.76)
	31 participated in each season		HBGGS (pmol/mg protein): -0.0020
	total of 195 measurements)		(0.39)
	Statistical Analyses: Mixed model repeated-measures analysis		HBAAS (pmol/mg protein): -0.0021 (0.29)
	Covariates: S eason, avg outdoor temperature, and sex		MDA (pmol/mg protein): 0.0012 (0.52)
	Season: Repeated measures 4 times (once per season)		
	Dose-response Investigated? No		
	Statistical Package: SAS v8e		
Reference: Sullivan et al. (2007,	Outcome: Blood CRP, fibrinogen, D-	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
100083)	dimer	Averaging Time: 24 h	Effect Estimate: Among those with
Period of Study: Feb 2000-Mar 2002	Age Groups: >55 yr of age	Median (IQR): 7.7 μg/m ³ (6.4)	CVD, PM _{2.5} 1 day earlier: CRP: 1.25 (95% CI: 0.97, 1.58)
Location: Seattle, Washington, USA	Study Design: Panel study N: 47 elderly subjects	Monitoring Stations: 1	Fibrinogen: 1.01 (95% CI: 0.97, 1.05)
		Copollutant: Indoor PM _{2.5}	D-dimer: 1.04 (95% CI: 0.93, 1.15)
			With COPD: CRP: 0.69 (95% CI: 0.34, 1.42)
			Fibrinogen: 1.05 (95% CI: 0.97, 1.13)
			D-dimer: 1.10 (95% CI: 0.95, 1.28)
			Healthy: CRP: 1.01 (95% CI: 0.85, 1.19)
			Fibrinogen: 0.88 (95% CI: 0.81, 0.95)
			D-dimer: 1.10 (95% CI: 0.75, 1.58)
			Notes: Out of 47 subjects, n = 23 with CVD and n = 24 (n = 16 COPD and 8 healthy) without CVD. Blood markers were measured on 2-3 morning over a 5-10 day period, and outdoor $PM_{2.5}$ was measured at a central monitoring site.
			These findings are not consistent with and effect of fine PM on markers of inflammation and thrombosis in the elderly.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Sullivan et al. (2005,	Outcome: Heart rate variability (H, LF,	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
<u>109418</u>)	HF, r-MSSD, SDNN)	Averaging Time: 1 h	Effect Estimate: 1 h:
Period of Study: Feb 2000-Mar 2002	Study Design: Panel study	Median (IQR): 10.7 (7.6)	With CVD: HF: (3% increase, 95% CI:
Location: Seattle, Washington, USA	N: 34 elderly subjects with (n = 21) and without (n = 13) CVD.	, , , , ,	-19, 32)
		Copollutant: CO, NO ₂	Without CVD: HF(5% decrease, 95% CI:
	Statistical Analysis: Linear mixed		-34, 36)
	effects regression		Similarly, no association was found for 4-h or 24-h mean $PM_{2.5}$ concentrations.
			Notes: 285 daily 20 min HRV measures were made in the homes of study subjects over a 10-day period.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Sullivan et al. (2005,	Outcome (ICD9 and ICD10): High-	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
109418)	sensitivity C-reactive protein (hs-CRP)	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Feb 2000-Mar 2002	fibrinogen	(0-day and 1-day lags)	Multiplicative change in mean outcome associated with 10 μg/m³ increase in PM
Location: Seattle area, WA	D-dimer	Mean (SD): NR	Among those with different disease
	Endothelin-1 (ET-1)	Percentiles: For all subject-days: 25th: 5.2	status.
	Interleukin-6 (IL-6	50th: 7.7 75th: 11.5	CRP Fold-rise (95%CI) CV
	Interleukin-6 receptor (IL-6r)	90th: 19.9	0-day lag: 1.21 (0.86, 1.70)
	Tumor necrosis factor-α (TNF-8- α) Tumor necrosis factor-receptors (p55,	Range (Min, Max): 1.3, 33.9	CV 1-day lag: 1.25 (0.97, 1.58);
	p75)	Monitoring Stations: NA, measured at participant's residence	COPD 0-day lag: 0.93 (0.48, 1.80)
	Monocyte chemoattractant protein-1 (MCP-1)	Copollutant: None	COPD 1-day lag: 0.69 (0.33, 1.46) Healthy
	Age Groups: ≥ 55 yr		0-day lag: 0.98 (0.88, 1.08) Healthy
	Study Design: Panel (repeated measures)		1-day lag: 1.01 (0.84 1.21) Fibrinogen Fold-rise (95%CI)
	N: 47 participants with (23) and without (10 COPD and 8 healthy) CVD		CV 0-day lag: 1.02 (0.98, 1.06) CV
	Statistical Analyses: Mixed models		1-day lag: 1.0 (0.97, 1.03); COPD
	Covariates: Age, gender, medication use, meteorological variables		0-day lag: 1.0 (0.91, 1.09) COPD 1-day lag: 1.08 (0.99, 1.17)
	(temperature and RH)		Healthy
	Dose-response Investigated? No Statistical Package: SAS v8.02		0-day lag: 0.94 (0.87, 1.01) Healthy 1-day lag: 0.99 (0.88, 1.17)
			D-dimer Fold-rise (95%CI) CV 0-day lag: 1.02 (0.88, 1.17) CV 1-day lag: 1.03 (0.93, 1.15); COPD 0-day lag: 1.04 (0.93, 1.16) COPD 1-day lag: 1.09 (0.94, 1.27) Healthy 0-day lag: 0.95 (0.79, 1.14) Healthy 1-day lag: 0.97 (0.71, 1.31) Among those with cardiovascular disease MCP-1 Fold-rise (95%CI) 0-day lag: 1.3 (1.1, 1.7) 1-day lag: 1.0 (0.9, 1.3) ET-1 Fold-rise (95%CI) 0-day lag: 1.1 (0.8, 1.2) 1-day lag: 1.1 (0.9, 1.2) Note: TNF-α and IL-6 measures were below the limit of detection of assays
Reference: Timonen et al. (2006,	Outcome: Heart variability (HRV)	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
<u>088747</u>)	measurements: [LF, HF, LFHFR, NN interval, SDNN, r-MSSD]	Means:	Effect Estimate: SDNN
Period of Study: 1998-1999	Study Design: Panel study	Amsterdam: 20.0	-0.33ms (95% CI: -1.05, 0.38)
Location: Amsterdam, Netherlands	N: 131 elderly subjects with stable	Erfurt: 23.3	HF: -0.3% (95% CI: -10.6, 5.4)
Erfurt, Germany	coronary heart disease	Helsinki: 12.7	LFHFR: -1.4 (95% CI: -5.9, 8.7)
Helsinki, Finland	Statistical Analysis: Linear mixed models	Copollutant: NO ₂ , CO	Notes: Followed for 6 mo with biweekly clinic visits
			2-day lag. ULTRA Study

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Vallejo et al. (2006, <u>157081</u>) Period of Study: Apr-Aug 2002 Location: Mexico City metropolitan area	Outcome: Heart rate variability measures (SDNN, pNN50) Age Groups: Mean age 27 yr Study Design: Panel study N: 40 young healthy participants (non-smokers, no meds or history of CVD, respiratory, neurological, or endocrine disease) Statistical Analysis: Linear mixed effects models	Pollutant: PM _{2.5} (pDR nephelometric method-DataRAM) Copollutant: None	PM Increment: 30 μg/m³ Effect Estimate: pNN50: 0 h lag: -0.01% (95% Cl: -0.03, 0.01) 1 h: -0.01% (95% Cl: -0.04, 0.02) 2 h: -0.05% (95% Cl: -0.09, 0.00) 3 h: -0.07% (95% Cl: -0.13 to -0.02) 4 h: -0.08% (95% Cl: -0.14 to -0.01) 5 h: -0.06% (95% Cl: -0.13, 0.02) 6 h: -0.05% (95% Cl: -0.13, 0.04) SDNN: 0 h: 0.00% (95% Cl: -0.13, 0.04) SDNS0N: 0 h: 0.00% (95% Cl: -0.02, 0.01) 1 h: 0.00% (95% Cl: -0.02, 0.01) 3 h: -0.01% (95% Cl: -0.02, 0.01) 5 h: -0.01% (95% Cl: -0.02, 0.01) 5 h: -0.01% (95% Cl: -0.02, 0.01) 6 h: 0.00% (95% Cl: -0.02, 0.02) Notes: Subjects underwent 13 h of ECC monitoring and personal PM _{2.5} measurement. HRV measures were regressed against different lags of PM _{2.5} concentration.
Reference: Van Hee et al. (2009,	Outcome: Left Ventricular Mass Index	Pollutant: PM _{2.5}	PM Increment: 10 µg/m ³
192110) Period of Study: Jul 2000-Aug 2002	and Ejection Fraction Age Groups: 45-84 yr	Averaging Time: NR	Difference (Lower CI, Upper CI), p-value:
Location: Baltimore, Maryland	Study Design: Cross-sectional	Mean (SD): Fig only	Left Ventricular Mass Index
Chicago, Illinois	N: 3,827 participants	Monitoring Stations: N/A	Unadjusted: -6.0 (-7.8, -4.2), <0.0001
Winston-Salem, North Carolina St. Paul	Statistical Analyses: Linear Regression Models Covariates: Age, race, income, sex, education, medication use, LDL, HDL,	Interpolation used Copollutant: NR	All covariates except center, BP: -6.1 (-7.8, -4.4), <0.0001
Minnesota		Co-pollutant Correlation: N/A	All covariates except BP: 3.7 (-6.0, 13.4), 0.46
New York, New York	physical activity, alcohol consumption, smoking, diabetes, systolic BP, diastolic		Full model: 4.6 (-4.7, 13.9), 0.33
Los Angeles, California	BP Dose-response Investigated? No		Full model plus center/race interaction: 3.8 (-6.1, 13.7), 0.45
	Statistical Package: Stata		Left Ventricular Ejection Fraction
	Lags Considered: NR		Unadjusted: 3.0 (2.2, 3.8), <0.0001
			All covariates except center, BP: 1.4 (0.5, 2.2), 0.001
			All covariates except BP: -1.1(-5.8, 3.7), 0.66
			Full model: -1.3 (-6.0, 3.5), 0.60
			Full model plus center/race interaction: 3.0 (-8.0, 2.0), 0.24
Reference: Wellenius et al. (2007,	Outcome: Circulating levels of B-type	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
<u>092830</u>)	natriuretic peptide (BNP	Copollutant: NO ₂ , SO ₂ , O ₃ , CO, BC	Effect Estimate: Same day PM _{2.5} : 0.8%
Period of Study: Feb 2002-Mar 2003	Measured in whole blood at 0, 6, 12 wk)		increase in BNP (95% CI: -16.4, 21.5)
Location: Boston, Massachusetts, USA	Study Design: Panel study N: 28 subjects (each with chronic stable HF and impaired systolic function)		Notes: The study found no association between any pollutant and measures of BNP at any lag. Further, the within subject coefficient of variation was large
	Statistical Analysis: Linear mixed effects models		suggesting the magnitude of effected air pollutant health effects are small in relation to within subject variability in BNP.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Wellenius et al. (2007,	Outcome (ICD9 and ICD10): B-type	Pollutant: PM _{2.5}	PM Increment: IQr = 8.1 μg/m ³
092830) Period of Study: Feb 2002-Mar 2003	natriuretic peptide (BNP) (natural-log transformed)	Averaging Time: Daily (assessed lags of 0-3 days)	Effect Estimate [Lower CI, Upper CI]: % change in BNP per IQR increase in
Location: Boston, Massachusetts	Age Groups: 33-88 vr	Mean (SD): 10.9 (8.4)	PM _{2.5}
,	Study Design: Panel (blood collected at 0, 6, and 12 wk)	Percentiles: 50th: 8.0 µg/m ³	Lag0: 1.5 (-18.7, 19.2)
	N: 28 patients with chronic stable heart	Range (Min, Max): 0.7-50.9 µg/m ³	Lag1: 2.1 (-20.0, 30.3)
	failure and impaired systolic function	Monitoring Stations: 1 monitor	Lag2: 1.3 (12.3, 17.1)
	Statistical Analyses: Linear mixed-	Copollutant (correlation):	Lag3: 5.6 (-16.8, 34.0)
	effects models	CO (r = 0.35)	Note: No significant associations
	Covariates: Temperature, dew point, mean dew point over the past 3 days,	NO_2 (r = 0.31)	observed between any pollutant and BNP levels at any lags (presented in
	calendar month of blood draw, mea- surement occasion, treatment	SO_2 (r = 0.18)	Fig 2)
	assignment, measurement occasion by treatment assignment interaction	O_3 (r = 0.35)	
		BC(r = 0.68)	
	Season: Adjusted for calendar month		
	Dose-response Investigated? No		
	Statistical Package: SAS v9.1		
Reference: Wheeler et al. (2006, 088453)	Outcome: Heart rate variability	Pollutant: PM _{2.5}	PM Increment: 11.65 μg/m³ (IQR) in 4 h
	Age Groups: 49-76 yr	Averaging Time:	PM _{2.5}
Period of Study: Fall 1999 and spring 2000	N: 18 subjects with COPD and 12	1 h	Effect Estimate: Among COPD patients: 8.3% increase in SDNN (95%
Location: Atlanta, GA	subjects with a recent MI	4 h	CI: 1.7, 15.3)
	Statistical Analysis: Linear-mixed effect model	24 h	Among MI patients: 2.9% decrease in SDNN (95% CI: -7.8, 2.3)
	Season: Fall and spring	Mean: 24-h: 17.8 μg/m ³	Results for 1-h and 24-h averaging times
	coacom ram and opining	Copollutant: O ₃ , CO, SO ₂ , NO ₂	were similar.
			Notes: Data was collected on 7 days in the fall of 1999 or spring of 2000.
			Effects were modified by medication use, baseline pulmonary function, and health status.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Yeatts et al. (2007, <u>091266</u>)	Outcome: Heart Rate Variability	Pollutant: PM _{2.5}	PM Increment: 1 μg/m³
Period of Study: 12-wk period b/t	Age Groups: 21-50 yr	Averaging Time: 24 h	Beta, SE (Lower CI, Upper CI), p-
Sep 2003-Jul 2004 Location: Chapel Hill, NC	Study Design: Panel	Mean (SD): 12.5 (6.0)	value:
	N: 12 asthmatics	Min: 0.6	HRV
	Statistical Analyses: Linear Mixed	Max: 37.1	Max Heart Rate: 0.40, 0.43 (-0.45, 1.24), 0.36
	Model	Monitoring Stations: 1	ASDNN5: -0.07, 0.15 (-0.37, 0.22), 0.63
	Covariates: Temperature, humidity, pressure	Copollutant: PM _{10-2.5} , PM ₁₀	SDANN5: 1.66, 0.65 (0.39, 2.93), 0.02
	Dose-response Investigated? No	Co-pollutant Correlation:	SDNN24HR(mesc): 1.16, 0.58 (0.02,
	Statistical Package: SAS	$PM_{10-2.5} = 0.46*$	2.29), 0.06
	Lags Considered: 1 day	$PM_{10} = NR$	rMSSD: 0.53, 0.20 (0.14, 0.91), 0.01
		*p < 0.01	pNN50_24hr: -0.06, 0.11 (-0.27, 0.15), 0.58
			pNN50_7min: 0.47, 0.42 (-0.35, 1.29), 0.27
			Low-frequency power: -0.23, 0.14 (-0.51, 0.05), 0.11
			Percent low frequency: -0.78, 0.41 (-1.59, 0.03), 0.07
			High-frequency power: 0.14, 0.07 (-0.01, 0.28), 0.07
			Percent high frequency: 0.64, 0.36 (-0.07, 1.34), 0.09
			Blood Lipids
			Triglycerides: -0.63, 0.84 (-2.29, 1.02), 0.46
			VLDL: -0.17, 0.22 (-0.61, 0.26), 0.44
			Total cholesterol: -0.06, 0.22 (-0.49, 0.36), 0.77
			Hematologic Factor
			Circulating eosinophils: -0.02, 0.00 (-0.02, -0.02), 0.27
			Platelets: -0.01, 0.45 (-0.88, 0.86), 0.98
			Circulating Proteins
			Plasminogen: 0.00, 0.00 (-0.01, 0.00), 0.82
			Fibrenogen: 0.00, 0.01 (-0.01, 0.02), 0.59
			Von Willibrand factor: -0.31, 0.29 (-0.87, 0.25), 0.28
			Factor VII: -0.65, 0.33 (-1.29, -0.01), 0.05

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Yue et al. (2007, <u>097968</u>)	Outcome: QT interval and T-wave	Pollutant: PM _{2.5} , PNC (n/cm ³)	PM Increment: . IQR
Period of Study: Oct 2000-Apr 2001	amplitude for ECG recordings, and vWF, CRP from blood samples	Averaging Time: Mean:	Effect Estimate: Each IQR increase in
Location: Erfurt, Germany	Study Design: Panel study	Mass concentrations of PNC (0.1-2.84 n/cm³)	0-23 h mean traffic particle concentration was associated with: QT interval: 0.6%
	N: 56 patients (male CAD patients with	Monitoring Stations: 1	(95% Cl: -0.3, 1.4)
	12 clinical visits) Statistical Analysis: Linear and logistic	Copollutant: None	T wave amplitude: -1.6% (95% CI: -3.3, 0.1)
	regression models		vWF: 3.2% (95% CI: -0.5, 7.0)
	Dose-response Investigated? No		CRP: (OR = 1.5
			95% CI 1.0-2.3)
			Each IQR increase in 0-23 h mean combustion-generated particle concentration was associated with: QT interval: 0.1%(-0.3, 0.6)
			T wave amplitude: -0.2% (-1.2, 0.7)
			vWF: 2.8% (0.8, 4.8)
			CRP (OR = 1.0
			0.8, 1.2)
			Notes: Five sources of particles were identified (airborne soil, local trafficrelated ultrafine particles, combustiongenerated aerosols, diesel traffic-related particles, and secondary aerosols).
Reference: Yue et al. (2007, <u>097968</u>)	Outcome: QT interval, T wave	Pollutant: Five particle source factors	PM Increment: IQR
Period of Study: Oct 12, 2000-Apr 27, 2001	amplitude, von Willebrand factor (vWF), C-reactive protein (CRP above 90th percentile compared to below)	(airborne soil, local traffic-related ultrafine particles, combustion-generated aerosols, diesel traffic-related particles,	Effect Estimate [Lower CI, Upper CI]: QT interval, % change (95%CI)
Location: Erfurt, Germany	Age Groups: >50 yr	and secondary aerosols); see below for size fractions (factor scores)	Factor 1: 0-5 h: -0.1 (-0.6, 0.6)
	Study Design: Panel (12 visits	Averaging Time: Used daily factor scores in analyses Mean (SD): Factor 1: particles from airborne soil	6-11 h: -0.5 (-1.1, 0.2) 12-17 h: 0.1 (-0.4, 0.4)
	625 observations for repolarization parameters and 578 observations for		18-23 h: -0.2 (-0.7, 0.2) 0-23 h: -0.2 (-0.9, 0.4)
	inflammatory markers)		1 day: -0.1 (-0.7, 0.6) 2 day: -0.3 (-0.9, 0.4)
	N: 57 male coronary artery disease patients Statistical Analyses: Linear and logistic fixed-effects regression models (generalized additive models) Covariates: Trend, weekday, and meteorological variables (temperature, relative humidity, barometric pressure)	(1.0-2.8 µm): 2390 (1696) Factor 2: ultrafine particles from local	3 day: -0.7 (-1.4, 0.1) 4 day: -0.2 (-0.9, 0.5)
		traffic (0.01-0.1 µm): 9931 (5858)	0-4 day avg: -0.7 (-1.8, 0.3) Factor 2:
		Factor 3: secondary aerosols from local fuel combustion (0.1-0.5 µm): 3770 (6129) Factor 4: particles from traffic (0.01-0.5 µm): 6865 (5689)	0-5 h: 0.2 (-0.4, 0.8) 6-11h: 0.8 (-0.0, 1.7)
			12-17 h: 0.6 (-0.2, 1.4) 18-23 h: 0.5 (-0.4, 1.4)
			0-23 h: 0.9 (-0.1, 2.0)
	Dose-response Investigated? No	Factor 5: secondary aerosols from multiple sources (0.2-1.0 µm): 4732 (3890) Median:	1 day: 1.5 (0.3, 2.7) 2 day: -0.4 (-1.7, 1.0)
	Statistical Package: SAS v9.1 and S-		3 day: 0.5 (-0.9, 1.9) 4 day: 0.1 (-1.2, 1.4)
	Plus v6.0		0-4 day avg: 1.6 (-0.1, 3.3) Factor 3:
		Factor 1: 2053 Factor 2: 8531	0-5 h: 0.1 (-0.3, 0.5) 6-11 h: 0.2 (-0.3, 0.6)
		Factor 3: 1348 Factor 4: 5045	12-17 h: 0.2 (-0.3, 0.6)
		Factor 5: 3752	18-23 h: 0.1 (-0.3, 0.4) 0-23 h: 0.1 (-0.3, 0.6)
		IQR (5-day avg): Factor 1: 1110	1 day: 0.1 (-0.3, 0.4) 2 day: -0.1 (-0.4, 0.3)
		Factor 2: 5749 Factor 3: 4124	3 day: -0.2 (-0.5, 0.2)
		Factor 4: 5000	4 day: -0.1 (-0.5, 0.2) 0-4 day avg: -0.1 (-0.7, 0.6)
		Factor 5: 3393 Range (Min, Max):	Factor 4: 0-5 h: 0.2 (-0.4, 0.8)
		Factor 1: 284, 12960 Factor 2: 866, 26632	6-11 h: 0.8` (0.0, 1.6) 12-17 h: 0.5 (-0.2, 1.3)
		Factor 3: 139, 39097 Factor 4: 283, 27605	18-23 h: 0.5 (-0.2, 1.2)
		Factor 5: 67, 20129	0-23 h: 0.6 (-0.3, 1.4) 1 day: -0.4 (-1.5, 0.7)
		Monitoring Stations: 1 monitor	2 day: -0.9 (-2.0, 0.1) 3 day: -0.5 (-1.4, 0.5)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
		Copollutant: NA	4 day: -0.5 (-1.3, 0.2) 0-4 day avg: -0.3 (-1.7, 1.1) Factor 5: n0-5 h: 1.0 (-0.1, 2.1) 6-11 h: 0.9 (-0.2, 2.0) 12-17 h: 0.3 (-0.7, 1.4) 18-23 h: -0.1 (-1.2, 1.0) 0-23h: 0.7 (-0.6, 1.9) 1 day: 0.1 (-1.1, 1.3) 2 day: -0.2 (-1.5, 1.1) 3 day: -0.6 (-1.9, 0.8) 4 day: -0.9 (-2.0, 0.2) 0-4 day avg: -0.4 (-1.9, 1.2)
			T wave amplitude, % change (95%Cl) Factor 1: 0-5 h: -0.3 (-1.5, 0.9) 6-11 h: -0.6 (-1.9, 0.7) 12-17 h: 0.1 (-0.8, 0.9) 18-23 h: -0.6 (-1.5, 0.4) 0-23 h: -0.5 (-1.8, 0.9) 1 day: 0.4 (-0.9, 1.7) 2 day: 1.2 (-0.3, 2.7) 3 day: 0.2 (-1.2, 1.7) 4 day: -0.2 (-1.3, 1.0) 0-4 day avg: 0.8 (-1.1, 2.6) Factor 2: 0-5 h: -1.7 (-3.0 to -0.4) 6-11 h: -2.6 (-4.5 to -0.6)
			12-17 h: -1.0 (-2.6, 0.7) 18-23 h: -1.1 (-2.8, 0.7) 0-23 h: -3.1 (-5.3 to -0.9) 1 day: -0.3 (-2.9, 2.2) 2 day: -1.2 (-4.1, 1.7) 3 day: -0.5 (-3.2, 2.1) 4 day: -3.4 (-9.9, 3.1) 0-4 day avg: -1.5 (-4.4, 1.5) Factor 3: 0-5 h: -0.3 (-1.1, 0.6) 6-11 h: -0.1 (-0.9, 0.9) 12-17 h: 0.1 (-0.9, 1.0) 18-23 h: -0.4 (-1.2, 0.4) 0-23 h: -0.2 (-1.2, 0.7) 1 day: 0.1 (-0.7, 0.8)
			2 day: -0.1 (-0.7, 0.7) 3 day: 0.4 (-0.3, 1.1) 4 day: 0.1 (-0.7, 0.7) 0-4 day avg: 0.3 (-0.9, 1.5) Factor 4: 0-5 h: -1.5 (-2.8 to -0.2) 6-11 h: -1.3 (-3.0, 0.3) 12-17 h: -1.1 (-2.7, 0.4) 18-23 h: -0.9 (-2.4, 0.6) 0-23 h: -1.6 (-3.3, 0.1) 1 day: -1.2 (-3.3, 0.9) 2 day: -1.0 (-3.2, 1.2) 3 day: 0.2 (-1.5, 1.9) 4 day: 0.5 (-1.0, 2.0) 0-4 day avg: -1.7 (-4.1, 0.7)
			Factor 5: 0-5 h: -1.6 (-3.6, 0.4) 6-11 h: -0.1 (-2.1, 2.0) 12-17 h: -0.2 (-2.2, 1.8) 18-23 h: -1.8 (-3.8, 0.2) 0-23 h: -1.2 (-3.4, 1.0) 1 day: -1.8 (-4.2, 0.6) 2 day: -0.7 (-3.5, 2.1) 3 day: 0.8 (-1.5, 3.2) 4 day: 0.5 (-1.5, 2.5) 0-4 day avg: -1.4 (-4.0, 1.2) vWF, % change (95%CI)Factor 1: 0-5 h: 1.1 (-1.5, 3.6) 6-11 h: 1.6 (-1.2, 4.5)
			12-17 h: 0.4 (-1.4, 2.1) 18-23 h: 1.4 (-0.6, 3.5) 0-23 h: 1.6 (-1.3, 4.4) 1 day: -1.0 (-3.9, 1.9) 2 day: -1.8 (-4.8, 1.2)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reterence	Design & Methods	Concentrations	3 day: -2.5 (-5.8, 0.9) 4 day: 0.5 (-2.9, 3.9) 0-4 day avg: -2.5 (-7.1, 2.2) Factor 2: 0-5 h: 0.4 (-2.4, 3.2) 6-11 h: -0.4 (-4.3, 3.4) 12-17 h: 2.1 (-1.4, 5.7) 18-23 h: 2.3 (-1.4, 5.9) 0-23 h: 1.9 (-2.8, 6.6) 1 day: 2.8 (-2.8, 8.3) 2 day: 5.1 (-0.8, 11.1) 3 day: 11.4 (5.3, 17.6) 4 day: 6.6 (0.0, 13.1) 0-4 day avg: 11.4 (3.7, 19.1) Factor 3: 0-5 h: 1.8 (0.1, 3.6) 6-11 h: 1.7 (-0.3, 3.7) 12-17 h: 2.2 (0.3, 4.2) 18-23 h: 2.8 (1.1, 4.5) 0-23 h: 2.8 (0.8, 4.8) 1 day: 2.7 (1.0, 4.4) 2 day: 3.4 (1.8, 5.0) 3 day: 2.3 (0.8, 3.8) 4 day: 1.4 (-0.2, 2.9) 0-4 day avg: 4.8 (2.0, 7.6) Factor 4: 0-5h: 1.5 (-1.4, 4.3) 6-11h: 2.0 (-1.7, 5.6) 12-17h: 2.6 (-0.8, 5.9) 18-23h: 3.5 (0.4, 6.6) 0-23h: 3.2 (-0.5, 7.0) 1 day: 5.4 (0.6, 10.2) 2 day: 4.5 (-0.6, 9.5) 3 day: 3.8 (-0.6, 8.1) 4 day: 3.0 (-0.6, 6.6) 0-4d avg: 11.3 (5.0, 17.6) Factor 5: 0-5h: 1.9 (-2.8, 6.6) 6-11 h: 3.2 (-1.6, 8.0) 12-17 h: 2.4 (-2.3, 7.1) 18-23 h: 1.6 (-3.1, 6.2) 0-23 h: 2.9 (-2.5, 8.2)
			1 day: -2.2 (-7.6, 3.2) 2 day: -1.3 (-7.4, 4.9) 3 day: 1.1 (-4.8, 7.1) 4 day: 1.3 (-4.2, 6.7) 0-4 day avg: 3.3 (-4.1, 10.6)
			CRP, Odds Ratio (95%CI) Factor 1 0-5 h: 0.9 (0.7, 1.1) 6-11 h: 1.4 (1.1, 1.8) 12-17 h: 1.2 (1.0, 1.4) 18-23 h: 1.0 (0.8, 1.3) 0-23 h: 1.1 (0.9, 1.5) 1 day: 1.4 (1.1, 1.8) 2 day: 1.3 (1.0, 1.7) 3 day: 1.0 (0.7, 1.4) 4 day: 1.1 (0.9, 1.5) 0-4 day avg: 1.6 (1.1, 2.2) Factor 2 0-5h: 0.8 (0.6, 1.0) 6-11h: 1.0 (0.7, 1.4) 12-17h: 1.1 (0.8, 1.5)
			18-23h: 1.0 (0.8, 1.4) 0-23h: 0.9 (0.6, 1.4) 1 day: 0.9 (0.6, 1.5) 2 day: 2.1 (1.3, 3.3) 3 day: 1.9 (1.0, 3.6) 4 day: 1.4 (0.8, 2.3) 0-4d avg: 1.4 (0.8, 2.6) Factor 3 0-5 h: 1.0 (0.8, 1.1) 6-11 h: 0.9 (0.8, 1.1) 12-17 h: 1.0 (0.9, 1.2) 18-23 h: 1.0 (0.8, 1.2) 0-23 h: 1.0 (0.8, 1.2) 1 day: 1.1 (1.0, 1.3)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			2 day: 1.0 (0.9, 1.2) 3 day: 1.2 (1.1, 1.4) 4 day: 1.1 (1.0, 1.3) 0-4 dY avg: 1.2 (1.0, 1.5) Factor 4 0-5 h: 0.8 (0.6, 1.1) 6-11 h: 0.8 (0.6, 1.1) 12-17 h: 1.3 (1.0, 1.8) 18-23 h: 1.1 (0.8, 1.5) 0-23 h: 1.0 (0.7, 1.4) 1 day: 1.5 (1.0, 2.3) 2 day: 2.0 (1.3, 3.2) 3 day: 1.5 (0.9, 2.3) 4 day: 1.3 (0.9, 1.8) 0-4 day avg: 1.7 (1.0, 2.9) Factor 5 0-5 h: 0.7 (0.5, 1.1) 6-11 h: 1.4 (0.9, 2.1) 12-17 h: 1.9 (1.3, 2.8) 18-23 h: 1.4 (1.0, 2.0) 0-23 h: 1.4 (1.0, 2.0) 0-23 h: 1.6 (1.0, 2.6) 2 day: 1.6 (1.0, 2.6) 3 day: 2.3 (1.3, 4.1) 4 day: 1.6 (0.9, 2.8) 0-4 day avg: 2.1 (1.2, 3.8)
Reference: Zanobetti et al. (2004, 087489)	Outcome: Blood pressure (systolic blood pressure, diastolic blood pressure,	Pollutant: PM _{2.5}	PM Increment: . 10.4 μg/m ³ for 5-day mean, 13.9 μg/m ³ for 2-day mean
Period of Study: 1999-2001	mean arterial blood pressure)	Averaging Time: 24 h	Effect Estimate: Each 10.4 µg/m ³
Location: Boston, Massachusetts, USA	Age Groups: Elderly	Median (10th-90th percentile)	increase in 5-day mean PM _{2.5}
Dodaisin Boton, maccachacotto, Co. (Study Design: Panel study	Median: 8.8 μg/m³	concentration was associated with: Systolic BP: 2.8mmHg (95% CI: 0.1, 5.5)
	N : 62 elderly subjects with n = 631 repeated visits for cardiac rehabilitation	10th-90th: 13.4	Diastolic BP: 2.7mmHg (95% CI: 1.2,
	Statistical Analysis: Linear mixed	Monitoring Stations: 1	4.3)
	effects models	Copollutant: SO ₂ , O ₃ , CO, NO ₂ , BC	Mean arterial BP: 2.7mmHg (95% CI: 1.0, 4.5)
		120-h avg	Each 13.9 μg/m³ increase in 2-day mean
		Median: 0.651	PM _{2.5} , during exercise in person with H.70bpm
		10th-90th: 0.376	Diastolic: 7.0mmHg (95% CI: 2.3, 12.1)
			Mean arterial BP: 4.7mmHg (95% CI: 0.5, 9.1)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Zeka et al. (2006, <u>157177</u>)	Outcome: White blood cells (WBC), C-	Pollutant: BC	PM Increment: 1 SD increase
Period of Study: Nov 2000-Dec 2004 Location: Greater Boston area	reactive protein (CRP), sediment rate, fibrinogen	Averaging Time: Hourly (PN, BC, PM _{2.5}) and 24-h (SO ₄ ²) measurements	Effect Estimate [Lower CI, Upper CI]: % increase (95%CI) in biomarker per 1
(Massachusetts)	Age Groups: Mean age (SD) = 73.0 (6.7)	used to create 48-h, 1-wk, and 4-wk ma Mean (SD): 0.77 (0.63)	SD increase in pollutant. Fibrinogen
	Study Design: Cross-sectional	Percentiles: 50th: 0.61	48 h: 0.84 (-0.63, 2.31) 1 wk: 0.60 (-0.95, 2.15)
	N: 710 subjects	75th: 1.00	4 wk: 1.78 (0.19, 3.36) CRP
	Statistical Analyses: Linear regression	90th: 1.51	48 h: 4.51 (-2.03, 11.06)
	Covariates: Age, BMI, season (also	Monitoring Stations: 2 sites	1 wk: 1.07 (-5.55, 7.68) 4 wk: 5.41 (-1.00, 11.81)
	assessed potential for confounding by temperature, RH, barometric pressure,	Units: ng/m ³	Sediment rate 48 h: -4.56 (-25.55, 16.43)
	hypertensive or cardiac medications, hypertension, smoking, alcohol, and	Copollutant (correlation):	1 wk: 1.98 (-18.15, 22.11) 4 wk: 21.65 (1.48, 41.82)
	fasting glucose levels)	PM _{2.5} (r = 0.52)	WBC count
	Dose-response Investigated? No	BC	48 h: -0.63 (-2.45, 1.19) 1 wk: -0.13 (-1.87, 1.60)
		PN (r = 0.30)	4 wk: -0.55 (-2.36, 1.26) Note: No statistically significant
		SO_4^{2-} (r = 0.30)	ofference was reported for any category of effect modifiers (age, obesity, medications, homozygous for the deletion of GSTM1-null, hypertension)
			However, results suggested almost all the effect of BC on sediment rate was among the younger group (<78 yr)
			There was a 4-fold difference for the association between BC and CRP in the presence of obesity
			Also evidence for effect modification by obesity of the association between BC and sediment rate
			There was a suggestive greater effect of BC on CRP among GSTM1-null subjects (9.73% [1.48, 17.98]) vs GSTM1-present subjects (-2.97% [-14.05, 8.10] for concentrations 4-wk prior)
			A stronger effect of BC on sediment rate was seen among non-users of statins (36.01% [13.88, 58.13]) vs users (-12.29% [39.13, 14.55])
Reference: Zeka et al. (2006, <u>157177</u>)	Outcome: White blood cells (WBC), C-	Pollutant: SO ₄ ²⁻	PM Increment: 1 SD increase
Period of Study: Nov 2000-Dec 2004 Location: Greater Boston area	reactive protein (CRP), sediment rate, fibrinogen	Averaging Time: Hourly (PN, BC, PM _{2.5}) and 24-h (SO ₄ ²⁻) measurements used to create 48-h, 1-wk, and 4-wk ma	Effect Estimate [Lower CI, Upper CI]: % increase (95%CI) in biomarker per 1
(Massachusetts)	Age Groups: Mean age (SD) = 73.0 (6.7)		SD increase in pollutant. Fibrinogen:
	Study Design: Cross-sectional	Mean (SD): 2.29 (1.62)	48 h: 0.60 (-1.23, 2.42)
	N: 710 subjects	Percentiles: 50th: 1.84	1 wk: 0.03 (-1.93, 1.99) 4 wk: 1.12 (-0.52, 2.77)
	Statistical Analyses: Linear regression	75th: 2.81	CRP: 48 h: 1.57 (-7.13, 10.27)
	Covariates: Age, BMI, season (also	90th: 4.10	1 wk: 0.21 (-8.27, 8.69) 4 wk: 5.29 (-1.91, 12.49)
	assessed potential for confounding by temperature, RH, barometric pressure,	Monitoring Stations: 2 sites	Sediment rate: 48 h: 4.05 (-23.26, 31.36)
	hypertensive or cardiac medications, hypertension, smoking, alcohol, and fasting glucose levels)	Copollutant (correlation): PM _{2.5} (r = 0.50)	1 wk: -5.87 (-32.39, 20.64) 4 wk: -1.60 (-25.24, 22.04)
	Dose-response Investigated? No	BC (r = 0.30)	WBC count: 48 h: -0.12 (-2.35, 2.11)
	· · · · · · · · · · · · · · · · · · ·	PN (r = -0.15)	1 wk: -0.48 (-2.87, 1.90) 4 wk: 0.75 (-1.30, 2.80)
		SO ₄ ²⁻	Note: No statistically significant difference was reported for any category of effect modifiers (age, obesity, medications, homozygous for the deletion of GSTM1-null, hypertension)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Zeka et al. (2006, <u>157177</u>)	Outcome (ICD9 and ICD10): White	Pollutant: PM _{2.5}	PM Increment: 1 SD increase
Period of Study: Nov 2000-Dec 2004 Location: Greater Boston area	blood cells (WBC), C-reactive protein (CRP), sediment rate, fibrinogen	Averaging Time: Hourly (PN, BC, PM _{2.5}) and 24-h (SO ₄ ²) measurements	Effect Estimate [Lower CI, Upper CI]: % increase (95%CI) in biomarker per 1
(Massachusetts)	Age Groups: Mean age (SD) = 73.0 (6.7)	used to create 48-h, 1-wk, and 4-wk ma Mean (SD): 11.16 (7.95)	SD increase in pollutant. Fibrinogen: 48 h: -0.18 (-1.93, 1.57)
	Study Design: Cross-sectional	Percentiles:	1 wk: -1.39 (-3.46, 0.67) 4 wk: 1.14 (-0.60, 2.88)
	N: 710 subjects	50th: 9.39	CRP: 48 h: -4.88 (-13.29, 3.53) 1 wk: -1.37 (-10.44, 7.71)
	Statistical Analyses: Linear regression	75th: 14.57	4 wk: 4.36 (-3.25, 11.96) Sediment rate: 48 h: -16.91 (-43.66,
	Covariates: Age, BMI, season (also assessed potential for confounding by	90th: 21.48	9.84)
	temperature, RH, barometric pressure, hypertensive or cardiac medications,	Monitoring Stations: 2 sites	1 wk: -18.89 (-47.48, 9.70) 4 wk: 24.93 (0.68, 49.18)
	hypertensive of cardiac medications, hypertension, smoking, alcohol, and fasting glucose levels)	Copollutant (correlation): PM _{2.5}	WBC count: 48 h: -3.18 (-5.39 to -0.97) 1 wk: -0.51 (-3.02, 2.00) 4 wk: -0.03 (-2.17, 2.10)
	Dose-response Investigated? No	BC (r = 0.52)	Note: No statistically significant
	Statistical Package: NR	PN (r = -0.02)	difference was reported for any category of effect modifiers (age, obesity,
	·	SO_4^{2-} (r = 0.50)	medications, homozygous for the deletion of GSTM1-null, hypertension)
Reference: Zhang et al. (2009, <u>191970</u>)	Outcome: Myocardial Ischemia	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: 1999-2003	Age Groups: 52-90	Averaging Time: NR	Odds Ratio (Lower CI, Upper CI), lag:
Location: U.S.	Study Design: Panel	Mean (SD):	Minnesota Codes*
	N: 55,529	Lag 0: 14.1 (8)	MC4: 1.04 (0.97, 1.10), lag 0-2 MC4: 1.04 (0.98, 1.11), lag 3-5
	Statistical Analyses: Logistic & Linear Regression	Lag 1: 13.8 (8)	MC5: 1.05 (1.00, 1.09), lag 0-2 MC5: 1.04 (1.00, 1.08), lag 3-5
	Covariates: Age, race/ethnicity,	Lag 2: 13.8 (8)	MC 4 or 5: 1.04 (1.00, 1.09), lag 0-2 MC 4 or 5: 1.03 (0.99, 1.07), lag 3-5
	education, exam site, BMI, current smoking status, history of CHD, diabetes, hypertension, SBP, chronic lung disease, or hypercholesterolemia, day of week, time of day, temperature, dew point, pressure, season	Lag 3: 13.8 (8)	Change (Lower CI, Upper CI), lag:
		Lag 4: 13.9 (8)	ST-segment amplitude
		Lag 5: 14.1 (8) Lag 0-2: 13.9 (7)	Lead I: -0.07 (-0.36, 0.21), lag 0-2 Lead I: 0.18 (-0.10, 0.46), lag 3-5
	Dose-response Investigated? No	Monitoring Stations: NR‡	Lead II: -0.12 (-0.47, 0.23), lag 0-2 Lead II: 0.16 (-0.18, 0.50), lag 3-5
	Statistical Package: SAS	Co-pollutant: NR	Lead aVL: -0.01 (-0.25, 0.23), lag 0-2 Lead aVL: 0.11 (-0.12, 0.34), lag 3-5
	Lags Considered: 0-5-day	Monitors used in model for spatial interpolation of daily PM values.	Lead V1: -0.02 (-0.39, 0.35), lag 0-2 Lead V1: -0.02 (-0.39, 0.35), lag 0-2 Lead V2: 0.07 (-0.57, 0.70), lag 0-2 Lead V2: -0.01 (-0.61, 0.62), lag 3-5 Lead V3: -0.11 (-0.68, 0.47), lag 0-2 Lead V3: -0.11 (-0.68, 0.47), lag 0-2 Lead V3: -0.02 (-0.58, 0.54), lag 3-5 Lead V4: -0.0.3 (-0.51, 0.45), lag 0-2 Lead V5: -0.01 (-0.41, 0.39), lag 0-2 Lead V5: -0.01 (-0.41, 0.39), lag 0-2 Lead V5: 0.35 (-0.04, 0.74), lag 3-5 Lead V6: 0.35 (-0.04, 0.74), lag 3-5 Lead V6: 0.35 (0.04, 0.65), lag 3-5 T-wave amplitude Lead I: -1.60 (-3.07, -0.13), lag 0-2 Lead I: -0.54 (-1.99, 0.92), lag 0-2 Lead II: -0.54 (-1.99, 0.92), lag 0-2 Lead II: -0.55 (-1.18, 0.71), lag 3-5 Lead V1: 1.21 (-2.50, 0.10), lag 0-2 Lead V1: 1.45 (-0.16, 3.06), lag 0-2 Lead V2: 0.18 (-2.96, 2.60), lag 0-2 Lead V2: 0.18 (-2.96, 2.60), lag 0-2 Lead V3: -0.13 (-2.87, 2.60), lag 0-2 Lead V3: -0.13 (-2.87, 2.60), lag 0-2 Lead V4: 0.64 (-1.94, 3.22), lag 3-5 Lead V4: -2.03 (-4.69, 0.63), lag 0-2 Lead V5: 0.55 (-1.69, 2.78), lag 3-5 Lead V5: -1.92 (-4.22, 0.38), lag 0-2 Lead V5: 0.55 (-1.69, 2.78), lag 3-5 Lead V6: 0.63 (-2.36, 1.10), lag 0-2 Lead V6: 0.55 (-1.69, 2.78), lag 3-5 Lead V6: 0.56 (-1.69, 2.78), lag 3-5 Lead V6: 0.63 (-2.36, 1.10), lag 0-2 Lead V6: 0.63 (-2.36, 1.10), lag 0-2 Lead V6: 0.82 (-0.86, 2.49), lag 3-5

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			QRS/T angle-spatial (°): 0.19 (-0.21, 0.59), lag 0-2
			QRS/T angle-spatial (°): -0.20 (-0.59, 0.19), lag 3-5
			QRS/T angle-frontal (°): 0.13 (-0.24, 0.50), lag 0-2
			QRS/T angle-frontal (°): 0.35 (-0.01, 0.71), lag 3-5
			Heart Rate (beats/min): 0.16 (0.02, 0.30), lag 0-2
			Heart Rate (beats/min): 0.04 (-0.10, 0.18), lag 3-5
			*Any ST abnormality (MC 4.1-4.4)
			Any T abnormality (MC 5.1-5.4)

 $^{^{1}\}text{All}$ units expressed in $\mu\text{g/m}^{3}$ unless otherwise specified.

Table E-4. Short-term exposure-cardiovascular morbidity studies: Other size fractions.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Adar et al. (2007, <u>001458</u>)	Outcome: Heart rate variability: heart	Pollutant: Particle count fine (PC fine)	PM Increment: IQR
Period of Study: Mar-Jun 2002 Location: St. Louis, Missouri	normal intervals (SDNN), square root of the mean squared difference between adjacent normal-to-normal intervals (rMSSD), percentage of adjacent	Averaging Time: Measurements collected over 48-h period surrounding the bus trip (during which health	Effect Estimate [Lower CI, Upper CI]: % change (95%CI) in HRV per IQR in the 24-h ma of the microenvironmental pollutant (IQr = 39 pt/cm³)
	normal-to-normal intervals that differed by more than 50 ms (pNN50), high	endpoints were measured) used to calculate 5-, 30-, 60-min, 4-h, 24-h ma	Single-pollutant models
	frequency power (HF in the range of 0.15-0.4Hz), low frequency power (LF,	Median (IQR):	SDNN: -5.1 (-5.8 to -4.4)
	in the range of 0.04-0.15Hz), and the	All: 42 (57) Facility: 36 (45)	rMSSD: -8.0 (-8.7 to -7.2)
	ratio of LF/HF Age Groups: ≥ 60 yr	Bus: 105 (96) Activity: 50 (133)	pNN50 + 1: -10.2 (-11.3 to -9.0)
		Lunch: 69 (48)	LF: -9.9 (-11.4 to -8.4)
	Study Design: Panel (4 planned repeated measures with a total of 158	Monitoring Stations: 2 portable carts	HF: -13.7 (-15.1 to -12.2)
	person-trips 35 participating in all 4 trips)	Copollutant: PM _{2.5} BC Fine particle counts Coarse particle counts	LF/HF: 4.3 (3.1, 5.5)
	N: 44 participants		H: 0.9 (0.8, 1.1)
	Statistical Analyses: Generalized additive models		Note: Exposure to health associations by all lag periods presented in Fig 2
	Covariates: Subject, weekday, time, apparent temperature, trip type, activity,	Correlation notes: 24-h mean PM _{2.5} , BC, and fine particle count concentrations ranged from 0.80 to 0.98	(magnitude of associations increased with averaging period, with the largest associations consistently found for 24-h ma)
	medications, and autoregressive terms Season: Limited data collection period	r = 0.76 to 0.97 when limited to time spent on the bus	ma,
	Dose-response Investigated? No	r = 0.55 to 0.86 when comparing bus	
	Statistical Package: SAS v8.02, R v2.0.1	concentrations to 24-h ma r = -0.003 to 0.51 when comparing 5-min avg and 24-h ma. Poor correlations found between coarse particle count concentrations and all fine particulate measures during all times periods	

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Adar et al. (Adar et al.,	Outcome: Heart rate variability: heart	Pollutant: Particle count coarse (PT	PM Increment: IQR
2007, <u>001458</u>) Period of Study: Mar-Jun 2002 Location: St. Louis, Missouri	rate, standard deviation of all normal-to- normal intervals (SDNN), square root of the mean squared difference between adjacent normal-to-normal intervals (rMSSD), percentage of adjacent	Averaging Time: Measurements collected over 48-h period surrounding the bus trip (during which health	Effect Estimate [Lower CI, Upper CI]: % change (95%CI) in HRV per IQR in the 24-h ma of the microenvironmental pollutant (IQr = 0.066 pt/cm³)
	normal-to-normal intervals that differed by more than 50 ms (pNN50), high		Single-pollutant models
	frequency power (HF in the range of 0.15-0.4Hz), low frequency power (LF,	ma	SDNN: 2.4 (1.3, 3.6)
	in the range of 0.04-0.15Hz), and the	Median (IQR): All: 0.02 (0.11)	rMSSD: 3.9 (2.6, 5.1)
	ratio of LF/HF	Facility: 0.01 (0.04) Bus: 0.16 (0.13)	pNN50 + 1: 2.9 (1.0, 4.9)
	Age Groups: ≥ 60 yr	Activity: 0.29 (0.26)	LF: 6.4 (3.7, 9.1)
	Study Design: Panel (4 planned repeated measures with a total of 158	Lunch: 0.16 (0.36)	HF: 10.2 (7.4, 13.1)
	person-trips	Monitoring Stations: 2 portable carts Copollutant:	LF/HF: -3.3 (-5.0 to -1.6)
	35 participating in all 4 trips)	PM _{2.5} BC	H: -1.1 (-1.3 to -0.8)
	N: 44 participants Statistical Analyses: Generalized	Fine particle counts Coarse particle counts	Two-pollutant models (with $PM_{2.5}$): SDNN: -0.7 (-1.9, 0.6)
	additive models	Correlation notes: 24-h mean PM _{2.5} , BC, and fine particle count	rMSSD: -1.3 (-2.6 to -0.05)
	Covariates: Subject, weekday, time, apparent temperature, trip type, activity,	concentrations ranged from 0.80 to 0.98	pNN50 + 1: -4.3 (-6.3 to -2.4)
	medications, and autoregressive terms	r = 0.76 to 0.97 when limited to time spent on the bus	LF: 0.2 (-2.5, 3.0)
	Season: Limited data collection period	r = 0.55 to 0.86 when comparing bus	HF: 1.3 (-1.5, 4.1)
	Dose-response Investigated? No	concentrations to 24-h ma	LF/HF: -0.9 (-2.7, 1.0)
	Statistical Package: SAS v8.02, R v2.0.1	r = -0.003 to 0.51 when comparing 5- min avg and 24-h ma. Poor correlations	H: -0.6 (-0.9 to -0.4)
		found between coarse particle count concentrations and all fine particulate measures during all times periods	Note: Exposure to health associations by all lag periods presented in Fig 2 (magnitude of associations increased with averaging period, with the largest associations consistently found for 24-h ma)
Reference: Delfino et al. (2008,	Outcome: C-reactive protein (CRP)	Pollutant: PM (multiple size fractions	PM Increment: IQR
156390) Period of Study: 2005-2006	Fibrinogen, tumor necrosis factor-α (TNF-α) and its soluble receptor-II	and components) Averaging Time: 24-h avg preceding the blood draw (lag 0) and cumulative avg up to 5 days preceding the draw	Effect Estimate [Lower CI, Upper CI]:
Location: Los Angeles, California, air	(TNF-RÍI)		Note: Nearly all results presented in figures
basin	Interleukin-6 (IL-6) and its soluble receptor (IL-6sR)	Outdoor hourly PM: EC: Mean (SD):	Results: The authors found significant positive associations for CRP, IL-6,
	Fibrin D-dimer	1.61 (0.62) Median: 1.56	sTNF-RII, and sP-selectin with outdoor and/or indoor concentrations of quasi-
	Soluble platelet selectin (sP-selectin)	IQR: 0.92 Min, Max: 0.24, 3.94	ultrafine PM ≤ 0.25 µm in diameter, EC,
	Soluble vascular cell adhesion mole- cule-1 (sVCAM-1)	OC: Mean (SD): 5.94 (2.11) Median: 5.58 OGNI, DC, FN, CO, and dioxide from the current-multiday ayo. There were	OCpri, BC, PN, CO, and nitrogen dioxide from the current-day and multiday avg. There were consistent
	Intracellular adhesion molecule-1 (sICAM-1) and myeloperoxidase (MPO)	IQR: 2.79 Min-Max: 2.51, 13.60 BC: Mean (SD): 2.00 (0.77)	positive but largely nonsignificant coefficients for TNF-α, sVCAM-1, and sICAM-1, but not fibrinogen, IL-6sR, or
	Erythrocyte lysates for glutathione peroxidase-1 (GPx-1) Copper-zinc superoxide dismutase (cu, Zn-SOD)	Median: 1.89 IQR: 0.96 Min-Max: 0.58, 5.11 OCpri: Mean (SD): 3.37 (1.21) Median: 3.21	D-dimer. The authors found inverse associations for erythrocyte Cu, Zn-
			SOD with these pollutants and other PM size fractions (0.25-2.5 and 2.5-10 µm). Inverse associations of GPx-1 and MPO
	Age Groups: ≥ 65 yr	IQR: 1.63 Min-Max: 0.99, 7.11	with pollutants were largely nonsignificant. Indoor associations were
	Study Design: Panel (biomarkers measured weekly 12 times)	Secondary OC: Mean (SD): 2.49 (1.50) Median: 2.10 IQR: 1.86 Min-Max: 0, 8.10 PN (p/cm³): Mean (SD): 16,043 (5886)	often stronger for estimated indoor EC, OCpri, and PN of outdoor origin than for
	N: 29 participants (nonsmoking with history of coronary artery disease)		uncharacterized indoor measurements. There was no evidence for positive associations with SOA.
	Statistical Analyses: Mixed models	Median: 13,968 IQR: 7,386 Min May: 6927, 34262	
	Covariates: temperature (infectious illnesses were excluded by excluding weeks with such observations)	Min-Max: 6837, 31263 Indoor hourly PM EC: Mean (SD): 1.31 (0.52) Median: 1.30 IQR: 0.70	
	Season: Collected 6 wk of data during warm period and 6 wk of data during	Min-Max: 0.19, 2.89	

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	cool period	EC of outdoor origin: Mean (SD): 1.11 (0.39)	•
	Dose-response Investigated? No	Median: 1.06	
	Statistical Package: NR	IQR: 0.51 Min-Max: 0.41, 2.97	
		OC: Mean (SD): 5.69 (1.51)	
		Median: 5.60 IQR: 1.96	
		Min-Max: 2.34, 10.79	
		OCpri of outdoor origin: Mean (SD): 2.18 (0.82)	
		Median: 2.15	
		IQR: 1.07 Min-Max: 0.32, 5.21	
		Secondary OC of outdoor origin: Mean	
		(SD): 2.08 (1.26)	
		Median: 1.75 IQR: 1.45	
		Min-Max: 0, 6.87	
		PN (particles/cm ³): Mean (SD): 14,494 (6770)	
		Median: 12,341	
		IQR: 7,337 Min-Max: 1016, 43027	
		PN of outdoor origin (p/cm³): Mean	
		(SD): 10,108 (3108)	
		Median: 9,580 IQR: 3.684	
		Min-Max: 1016, 17700	
		Outdoor PM mass PM0.25: Mean (SD): 9.47 (2.97)	
		Median: 9.4	
		IQR: 4.2 Min-Max: 3.31, 18.75	
		PM0.25-2.5: Mean (SD): 13.53 (10.67)	
		Median: 11.7	
		IQR: 11.5 Min-Max: 1.29, 66.77	
		PM _{10-2.5} : Mean (SD): 10.04 (4.07)	
		Median: 9.9 IQR: 5.9	
		Min-Max: 1.76, 22.38	
		Indoor PM mass PM0.25: Mean (SD): 10.45 (6.77)	
		Median: 9.5	
		IQR: 4.5 Min-Max: 1.42, 69,86	
		PM0.25-2.5 (µg/m³): Mean (SD): 7.36	
		(4.57)	
		Median: 6.5 IQR: 5.7	
		Min-Max: 0.77, 30.86	
		PM _{10-2.5} : Mean (SD): 4.12 (4.76) Median: 2.8	
		IQR: 3.5	
		Min-Max: 0.12, 37.63	
		Copollutant: Outdoor hourly gases (NO ₂ , CO, O ₃) and indoor hourly gases (NO ₂ , CO)	
ference: Pekkanen et al. (2002,	Outcome: ST Segment Depression	Polluţant: Ultrafine NC0.01-0.1 μm	PM Increment: IQR
5050) riod of Study: Winter 1998-1999	(>0.1mV) Study Design: Panel of ULTRA Study	(n/cm³) Averaging Time: 24 h	Effect Estimate(s): NC0.01-0.1: OF = 3.14 (1.56, 6.32), lag 2
•	participants		, , ,
cation: Helsinki, Finland	N: 45 Subjects, n = 342 biweekly	Median: 14,890	Notes : The effect was strongest for ACP and PM _{2.5} , which in 2 pollutant
	submaximal exercise tests, 72 exercise	IQR: 9830	models appeared independent.
	induced ST Segment Depressions	Monitoring Stations: 1	Increases in NO ₂ and CO were also associated with increased risk of ST
	Statistical Analysis: Logistic regression / GAM	Copollutant: NO ₂ , CO, PM _{2.5} , PM _{10-2.5} , PM _{1, ACP}	segment depression, but not with coarse particles.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Peters et al. (2005, 095747)	Outcome: Myocardial infarction	Pollutant: Ultrafine (TNC) (n/cm³)	PM Increment: Effect Estimate: 2-h lag: OR = 0.95
Also Peters et al, 2005 (2005, <u>156859</u>)	Study Design: Case-crossover	Averaging Time: 1 h: Median = 10,001	95% CI: 0.84, 1.06
Period of Study: Feb 1999-Jul 2001	N: 691 myocardial infarction patients	IQR: 7919	24-h mean, 2-day lag: OR = 1.04
Location: Augsburg, Germany	Statistical Analysis: Conditional logistic regression	24 h: Median = 10,934	95% CI: 0.90, 1.20
Location ragooding, commany	Dose-response investigated	IQR: 6276	Notes: Examined triggering for MI at
	(yes/no)? No	Copollutant: NO ₂ , SO ₂ , CO	various lags before MI onset (up to 6 h before MI, up to 5 days before MI). No statistically significant increases in lagged ultrafine particle concentration were found.
Reference: Ruckerl et al. (2006,	Outcome (ICD9 and ICD10):	Pollutant: AP (n/cm ³)	PM Increment: IQR (1299
088754)	C-reactive protein (CRP)	Averaging Time: 24 h	5-day avg: 1127)
Period of Study: Oct 2000-Apr 2001	Serum amyloid A (SAA)	Mean (SD): 1593 (1034)	Effect Estimate [Lower CI, Upper CI]:
Location: Erfurt, Germany	E-selectin	Percentiles:	Effects of air pollution on blood markers presented as OR (95%CI) for an
	von Willebrand Factor (vWF) Intercellular adhesion molecule-1	25: 821	increase in the blood marker above the 90th percentile per increase in IQR air
	(ICAM-1)	50: 1238	pollutant. CRP
	Fibrinogen	75: 2120	Time before draw:
	Factor VII	Range (Min, Max): 328, 4908	0 to 23 h: 0.7 (0.5, 1.2) 24 to 47 h: 1.5 (0.9, 2.6)
	Prothrombin fragment 1+2	Unit (i.e. µg/m³): n/cm³	48 to 71 h: 3.2 (1.7, 6.0) 5-day mean: 1.5 (0.8, 3.0)
	D-dimer	Monitoring Stations: 1 site	ICAM-1 Time before draw:
	Age Groups: 50+ yr	Copollutant: UFPs	0 to 23 h: 0.6 (0.4, 0.9) 24 to 47 h: 1.8 (1.2, 2.8)
	Study Design: Panel (12 repeated measures at 2-wk intervals)	AP	48 to 71 h: 1.6 (1.0, 2.5) 5-day mean: 0.9 (0.6, 1.5)
	N: 57 male subjects with coronary disease Statistical Analyses: Fixed effects linear and logistic regression models	PM _{2.5}	Effects of air pollution on blood markers
		PM ₁₀	presented as % change from the mean/GM in the blood marker per
		OC	increase in IQR air pollutant.
	Covariates: Models adjusted for	EC	vWF Time before draw:
	different factors based on health endpoint	NO ₂	0 to 23 h: 4.8 (0.2, 9.3) 24 to 47 h: 5.9 (0.4, 11.5)
	CRP: RH, temperature, trend, ID	CO	48 to 71 h: 7.0 (0.7, 13.4) 5-day mean: 13.5 (6.3, 20.6)
	ICAM-1: temperature, trend, ID		FVII Time before draw:
	vWF: air pressure, RH, temperature, trend, ID		0 to 23 h: 0.0 (-2.9, 3.0) 24 to 47 h: -2.9 (-6.1, 0.4) 48 to 71 h: -3.6 (-6.8 to -0.3)
	FVII: air pressure, RH, temperature, trend, ID, weekday		5-day mean: -4.1 (-7.9 to -0.3) Note: Summary of results presented i
	Season: Time trend as covariate		figures.
	Dose-response Investigated? Sensitivity analyses examined nonlinear exposure-response functions		SAA results indicate increase in association with PM (not as strong and consistent as with CRP)
	Statistical Package: SAS v8.2 and S- Plus v6.0		No association observed between E-selectin and PM
			An increase in prothrombin fragment 1+2 was consistently observed, particularly with lag 4
			Fibrinogen results revealed few significant associations, potentially due to chance
			D-dimer results revealed null associations in linear and logistic analyses

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ruckerl et al. (2006,	Outcome: Soluble CD40 ligand (sCD40L), platelets, leukocytes, erythrocytes, hemoglobin	Pollutant: AP (n/cm³)	PM Increment: IQR (1299
088754)		Averaging Time: 24 h	5-day avg: 1127)
Period of Study: Oct 2000-Apr 2001	Age Groups: 50+ yr	Mean (SD): 1593 (1034)	Effect Estimate [Lower CI, Upper CI]:
Location: Erfurt, Germany	Study Design: Panel (12 repeated measures at 2-wk intervals)	Percentiles: 25th: 821	Effects of air pollution on blood markers presented as % change from the mean/GM in the blood marker per
	N: 57 male subjects with coronary	50th: 1238	increase in IQR air pollutant. sCD40L, % change GM (pg/mL)
	disease	75th: 2120	lag0: 6.9 (0.5, 13.8)
	Statistical Analyses: Fixed effects linear regression models	Range (Min, Max): 328, 4908	lag1: -1.1 (-8.0, 6.4) lag2: -4.9 (-11.9, 2.7)
	Covariates: Long-term time trend, weekday of the visit, temperature, RH, barometric pressure	Monitoring Stations: 1 site Copollutant: UFPs	lag3: -3.8 (-10.3, 3.2) 5-day mean: -1.3 (-9.9, 8.1) Platelets, % change mean (103/µl) lag0: -1.0 (-2.5, 0.5)
	Season: Time trend as covariate	AP	lag1: -0.4 (-2.1, 1.6) lag2: 0.8 (-1.0, 2.4)
	Dose-response Investigated? No	PM _{2.5}	lag3: 0.0 (-1.8, 1.7) 5-day mean: -0.9 (-3.0, 1.3)
	Statistical Package: SAS v8.2 and S- Plus v6.0	PM ₁₀	Leukocytes, % change in mean (103/µI)
		NO	ag0: -1.9 (-3.8 to -0.1) ag1: -0.6 (-2.9, 1.6) ag2: -0.6 (-3.2, 2.0) ag3: -2.3 (-4.6, 0.1) 5-day mean: -2.7 (-5.5, 0.1) Erythrocytes, % change mean (106/µl) ag0: -0.1 (-0.5, 0.3) ag1: -0.4 (-0.9, 0.2) ag2: -0.4 (-0.9, 0.2) ag3: -0.4 (-0.6, 0.3) 5-day mean: -0.4 (-1.0, 0.2) Hemoglobin, % change mean (g/dl) ag0: -0.2 (-0.7, 0.4) ag1: -0.3 (-1.0, 0.4) ag2: -0.1 (-0.9, 0.6) 5-day mean: -0.2 (-1.1, 0.6)
Reference: Ruckerl et al. (2007, 156931)	Outcome: Interleukin-6	Pollutant: UFP (n/cm ³)	PM Increment: IQR
Period of Study: May 2003-Jul 2004	(IL-6), fibrinogen, C-reactive protein (CRP)	Averaging Time: Hourly and 24 h (lag 0-4, mean of lags 0-4, mean of lags 0-1, mean of lags 2-3, means of lags 0-3)	Effect Estimate [Lower CI, Upper CI]: % change in mean blood markers per increase in IQR of air pollutant.
Location: Athens, Augsburg, Barcelona, Helsinki, Rome, and	Age Groups: 35-80 yr	Mean (SD): Presented by city only	IL-6
Stockholm	Study Design: Repeated measures / longitudinal	Percentiles: NR	Lag (IQR): % change in GM (95%CI) Lag 0 (11852): 1.88 (-0.16, 3.97)
	N: 1003 MI survivors	Range (Min, Max): NR	Lag 1 (11852): -0.67 (-2.56, 1.25) Lag 2 (11852): -2.12 (-4.03 to -0.17)
	Statistical Analyses: Mixed-effect models	Monitoring Stations: Central monitoring sites in each city	5-day àvg (11003): -0.93 (-3.37, 1.56) Fibrinogen
	Covariates: City-specific confounders (age, sex, BMI)	Copollutant: SO ₂	Lag (IQR): % change in AM (95%CI) Lag 0 (11852): 0.40 (-0.40, 1.19) Lag 1 (11852): 0.11 (-0.69, 0.91)
	Long-term time trend and apparent temperature	O ₃	Lag 2 (11852): 0.09 (-0.71, 0.90) 5-day avg (11003): 0.50 (-2.20, 3.20)
	RH, time of day, day of week included if adjustment improved model fit	NO NO ₂	CRP Lag (IQR): % change in GM (95%CI)
	Season: Long-term time trend		Lag 0 (11852): 1.33 (-3.05, 5.90) Lag 1 (11852): -1.52 (-4.39, 1.45)
	Dose-response Investigated? Used p-splines to allow for nonparametric exposure-response functions		Lag 2 (11852): -1.63 (-6.70, 3.71) 5-day avg (11003): -0.08 (-3.78, 3.75)
	Statistical Package: SAS v9.1		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Pekkanen et al. (2002, 035050)	Outcome: ST Segment Depression (>0.1mV)	Pollutant: Ultrafine NC0.01-0.1 μm (n/cm³)	PM Increment: IQR
Period of Study: Winter 1998-1999	Age Groups: Study Design: Panel of	Averaging Time: 24 h	Effect Estimate(s): NC0.01-0.1: OR = 3.14 (1.56, 6.32), lag 2
Location: Helsinki, Finland	ULTRA Study participants	Median: 14,890	Notes: The effect was strongest for
	N: 45 Subjects, n = 342 biweekly submaximal exercise tests, 72 exercise	IQR: 9830	ACP and PM _{2.5} , which in 2 pollutant models appeared independent.
	induced ST Segment Depressions	Monitoring Stations: 1	Increases in NO ₂ and CO were also associated with increased risk of ST
	Statistical Analysis: Logistic regression / GAM	$ \begin{tabular}{ll} \textbf{Copollutant:} & NO_2, CO, PM_{2.5}, PM_{10\text{-}2.5}, \\ PM_1, ACP \end{tabular} $	segment depression, but not with coarse particles.
Reference: Peters et al. (2005,	Outcome: Myocardial infarction	Pollutant: Ultrafine (TNC) (n/cm³)	PM Increment: Effect Estimate:
<u>095747</u>)	Study Design: Case-crossover	Averaging Time: 1 h: Median = 10,001	2-h lag: OR = 0.95
Also Peters et al, 2005 (2005, <u>156859</u>)	N: 691 myocardial infarction patients	IQR: 7919	95% CI: 0.84, 1.06
Period of Study: Feb 1999-Jul 2001	Statistical Analysis: Conditional	24-h: Median = 10,934	24-h mean, 2-day lag: OR = 1.04
Location: Augsburg, Germany	logistic regression	IQR: 6276	95% CI: 0.90, 1.20
	Dose-response Investigated? No	Copollutant: NO ₂ , SO ₂ , CO	Notes: Examined triggering for MI at various lags before MI onset (up to 6 h before MI, up to 5 days before MI). No statistically significant increases in lagged ultrafine particle concentration were found.
Reference: Ruckerl et al. (2007, 091379)	Outcome (ICD9 and ICD10): Soluble CD40 ligand (sCD40L), platelets,	Pollutant: UFP	PM Increment: IQR (10,005
Period of Study: Oct 2000-Apr 2001	leukocytes, erythrocytes, hemoglobin	Averaging Time: 24 h	5-day avg: 6,821)
Location: Erfurt, Germany	Age Groups: 50+ yr	Mean (SD): 12,602 (6455)	Effect Estimate [Lower CI, Upper CI]:
Location. Entite, Germany	Study Design: Panel (12 repeated measures at 2-wk intervals)	Percentiles: 25th: 7326	sCD40L, % change GM (pg/mL) lag 0: 7.1 (0.1, 14.5) lag 1: 0.3 (-6.6, 8.6)
	N: 57 male subjects with coronary	50th: 11,444	lag 2: 0.6 (-5.9, 8.6)
	disease	75th: 17,332	lag 3: -8.5 (-15.8, -0.5) 5-day mean: -0.7 (-7.6, 6.8)
	Statistical Analyses: Fixed effects linear regression models	Range (Min, Max): 328, 4908	Platelets, % change mean (103/μl) lag 0: -1.8 (-3.4, -0.2)
	Covariates: Long-term time trend,	Monitoring Stations: 1 site	lag 1: -1.1 (-2.9, 0.6) lag 2: 1.0 (-2.9, 0.8)
	weekday of the visit, temperature, RH, barometric pressure	Copollutant:	lag 3: -2.4(4.5, -0.3)
	Season: Time trend as covariate	AP	5-day mean: -2.2 (-4.0, -0.3) Leukocytes, [103/μΙ]
		PM _{2.5}	lag 0: -2.4 (-4.5, -0.2) lag 1: -2.1 (-4.4, 0.2)
	Dose-response Investigated? No Statistical Package: SAS v8.2 and S-	PM ₁₀	lag 2: -0.2 (-2.4, 2.8) lag 3: -1.5 (-4.4, 1.4)
	Plus v6.0	NO	5-day mean: -1.6 (-4.1, 0.8)

 $^{^1 \}text{All units}$ expressed in $\mu \text{g/m}^3$ unless otherwise specified.

E.1.2. Cardiovascular Emergency Department Visits and Hospital Admissions

Table E-5. Short-term exposure-cardiovascular: ED/HA PM₁₀

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Anderson et al. (2003,	Outcome: Ischemic Heart Disease	Pollutant: PM ₁₀	PM Increment: 10th-90th percentile
054820)	Age Groups: 0-15, 15-64, 65-74, 75+	Averaging Time: 24 h	% Change in Daily IHD Admissions
Period of Study: 1992-1994	Study Design: Time series	Mean (min-max): NR Monitoring Stations: NR	by Age [CI]: 0-15 yr: NR
Location: London, U.K.	N: NR		15-64 yr: 2.6 [0.3,5]
	Statistical Analyses: NR	Copollutant: NR	65-74 yr: 2.5 [0.1,4.9]
	Covariates: NR		75+ yr: 2.2 [0.2,4.6]
	Dose-response Investigated? No		Notes: RRs are presented in graph form showing little change with
	Statistical Package: NR		increasing age (PM increment of 10 μg/m³). This article is primarily a systematic literature review of other studies.
Reference: Andersen et al. (2008,	Outcome (ICD-10): CVD, including	Pollutant: PM ₁₀	PM Increment: 13 μg/m³ (IQR)
189651)	angina pectoris (I20), myocardial infarction (I21-22), other acute ischemic	Averaging Time: 24 h	Relative risk (RR) Estimate [CI]:
Period of Study: May 2001-Dec 2004	heart diseases (124), chronic ischemic heart disease (125), pulmonary	Mean (SD): 24(14)	CVD hospital admissions
Location: Copenhagen, Denmark	embolism (126), cardiac arrest (146), cardiac arrhythmias (148-48), and heart failure (150).	Median: 21	(4-day avg, lag 0 -3), age 65+:
		IQR: 16-28	One-pollutant model: 1.03 [1.01-1.05]
	Age Groups: >65 yr (CVD and RD), 5-18 yr (asthma)	99th percentile): 72	Adj for NCtot: 1.04 [1.02-1.06]
		Monitoring Stations: 1 Copollutant (correlation): NCtot: r = 0.39	Adj for NCa212: 1.05 [1.01-1.09]
	Study Design: Time series		RD hospital admissions
	N: NR	NC100: r = 0.28	(5-day avg, lag 0 -4), age 65+:
	Statistical Analyses: Poisson GAM	NCa12: $r = 0.02$ NCa23: $r = 0.12$ NCa57: $r = 0.45$ NCa512: $r = 0.63$ PM _{2.5} : $r = 0.80$ CO: $r = 0.37$ NO ₂ : $r = 0.35$ NO _X : $r = 0.32$ NO _X curbside: $r = 0.18$	One-pollutant model: 1.06 [1.02-1.09]
	Covariates: Temperature, dew-point temperature, long-term trend,		Adj for NCtot: 1.05 [1.01-1.10]
	seasonality, influenza, day of the week, public holidays.		Adj for NCa212: 1.04 [0.98-1.11]
	Season: NR		Asthma hospital admissions
	Dose-response Investigated: No		(6-day avg lag 0-5), age 5 - 18:
	Statistical Package: R (gam	O ₃ : r = -0.21 Other variables: Temperature: r = 0.12	One-pollutant model: 1.02 [0.93-1.12]
	procedure, mgcv package)		Adj for NCtot: 1.01 [0.91-1.12]
	Lags Considered: Lag 0 -5 days, 4-day pollutant avg (lag 0 -3) for CVD.	Relative humidity: r = 0.05	Adj for NCa212: 0.94 [0.81-1.09]
	day politicant avg (lag 0 -3) for CVD.		Estimates for individual day lags reported only in Fig form (see notes):
			Notes: Fig 2: Relative risks and 95% confidence intervals per IQR in single day concentration (0- to 5-day lag).
			Summary of Fig 2: CVD: Positive, marginally or statistically significant associations at Lag 0-Lag 2.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Anderson et al. (2007,	Outcome (ICD10): Hospital Admission,	Pollutant: Source specific PM ₁₀	PM Increment: IQR
<u>156214</u>)	CVD, including angina pectoris (I20), myocardial infarction (I21-22), other acute ischemic heart diseases (I24), chronic ischaemic heart disease (I25),	components	RR Estimate
Period of Study: January 1999-December 2004		Averaging Time: 24 h	Respiratory disease (age >65)
Location: Copenhagen, Denmark	pulmonary embolism (I26), cardiac arrest (I46), cardiac arrhythmias	Mean (SD): Percentiles: 25th: 16	Single pollutant model:
	(148-48), and heart failure (150).	50th (Median): NR	PM ₁₀ : 1.027 (1.013, 1.042), IQR=14
	Age Groups Analyzed: Age >65	75th: 30	PM ₁₀ (other 5 sources): 1.045 (1.016, 1.074), IQR=13
	Study Design: Time series	Monitoring Stations: 1	Biomass: 1.040 (0.009, 1.072), IQR=5.4
	N: 2192 days, 9 Hospitals	Copollutant (correlation): PM ₁₀ :	Secondary: 1.050 (1.021, 1.081),
	Statistical Analyses: Principal Component Analysis and Constrained	Biomass: r = 0.53 Secondary: r = 0.73	IQR=6.1
	Physical Receptor Model (COPREM), Poisson regression, GAM,	Oil: r = 0.57 Crustal: r = 0.37	Oil: 1.035 (1.006, 1.065), IQR=2.8
	Covariates: Season, day of the wk,	Sea salt: r = 0.04	Crustal: 1.054 (1.028, 1.081), IQR=1.8
	public holidays, influenza epidemics	Vehicle: r = 0.02 Notes: Correlations between source	Sea salt: 0.98 (0.947, 1.017), IQR=2.2
	and meteorology	specific PM ₁₀ components presented in	Vehicle: 0.989 (0.949, 1.032), IQR=0.6
	Season: All yr Dose-response Investigated? No	paper	Notes: 2 pollutant model results for PM ₁₀ with source specific components
	Statistical package: R, gam/mgcv package		and gases also presented in manuscript.
	Lags Considered: 0-6 days		
Reference: Baccarelli et al. (2007, 091310)	Outcome (ICD9 and ICD10): Fasting and postmethionine-load total	Pollutant: PM ₁₀ (some TSP measures used to predict PM ₁₀)	PM Increment: IQR
Period of Study: Jan 1995-Aug 2005	homocysteine (tHcy)	Averaging Time: Hourly concentrations	in 24-h ma of PM ₁₀
Location: Lombardia region, Italy	Age Groups: 11-84 yr	used to calculate 24-h ma and 7-day ma Mean (SD): NR Percentiles: 25th: 20.1 50th: 34.1	
	Study Design: Cross-sectional/Panel		Homocysteine, fasting: 0.4 (-2.4, 3.3)
	N: 1,213 participants		Homocysteine, postmethionine-load: (-1.5, 3.7)
	Statistical Analyses: Generalized additive models		Estimates (%) per 25.7m ³ increase in 7
	Covariates: age, sex, BMI, smoking,		day ma of PM ₁₀
	alcohol, hormone use, temperature, day of the yr, and long-term trends		Homocysteine, fasting: 1.0 (-1.9, 3.9)
	Season: Adjusted for long-term trends	Range (Min, Max): Max: 390.0	Homocysteine, postmethionine-load: 2.0 (-0.6, 4.7)
	to account for season	Monitoring Stations: 53 sites	Estimates of effect (%) on fasting
	Dose-response Investigated? No	Copollutant:	homocysteine per IQR increase in 24-h PM ₁₀ levels
	Statistical Package: R software v2.2.1	NO ₂ SO ₂	Among smokers: 6.2 (0.0, 12.7)
		O ₃	Among non-smokers: -1.6 (-5.5, 2.5)
			Estimates of effect (%) on postmethionine-load homocysteine per IQR increase in 24-h PM ₁₀ levels
			Among smokers: 6.0 (0.5, 11.8)
			Among non-smokers: -0.1 (-3.6, 3.5)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ballester et al. (2006,	Outcome (ICD-9): All cardiovascular	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
088746)	disease (390-459), including all heart diseases (410-414, 427, 428)	Averaging Time: 24 h	Relative risk [CI]: Relative risks are
Period of Study: 1995-1999 Location: 5 Spanish cities: Granada,	Age Groups: All ages	Mean (10-90th percentile): overall mean NR.	expressed only in the form of figures (see notes).
Huelva, Madrid, Seville, Zaragoza	Study Design: Time series	City specific means	Percentage change in risk [CI]: All
	N: NR	Granada: 43.2 (24.8, 62.6)	cardiovascular diseases (avg of lags 0 - 1): 0.91% [0.35, 1.47]
	Statistical Analyses: Poisson GAMs	Huelva: 38.6 (23.1, 57.3)	Heart disease (avg of lags 0 -1)
	Covariates: Dily temp, barometric pressure relative humidity	Madrid: 35.7 (21.4, 54.4)	1.56% [0.82, 2.31]
	Daily influenza incidence, day of the week, holidays, unusual events (ex. medical strikes), seasonal variation,	Seville: 41.9 (27.3, 57.6)	Notes: Relative risks for the single pollutant models are expressed in
		Zaragoza: 32.8 (17.3, 50.3)	Fig 2.
	trend	Monitoring Stations: At least three stations/city (15+)	Fig 2: Time sequence of the combined association between PM ₁₀ and hospital
	Dose-response Investigated: No	Copollutant (correlation): Summary of the correlation coefficients between each pair of pollutants within cities: BS: r = 0.48	admissions for all CVD (A) and heart disease (B).
	Statistical Package: S-Plus GAM function		Summary of results: Significant, positive
	Lags Considered: lag 0-3 days, lag 0-1 avg		association of PM ₁₀ with both overall CVD and heart disease hospitalizations
		TSP: N/A	at Lag 0 and Lag 1.
		NO ₂ : from r = 0.13 to r = 0.62 (median r = 0.40)	Relative risks for 2 pollutant models are expressed in Fig 3: Fig 3:
		SO_2 : from r = 0.20 to r = 0.51 (median r = 0.46)	Combined estimates of the association between hospital admissions for heart diseases and air pollutants (avg of lags
		CO: from $r = 0.34$ to $r = 0.45$	0-1
		(median $r = 0.37$)	Adjusted for CO, NO_2 , O_3 , or SO_2)
		O_3 : from r = -0.07 to r = 0.16 (median r = 0.11)	Summary of results: Significant, positive association remains after adjusting for pollutants.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Bell et al. (2008, 091268) Period of Study: 1995-2002 Location: Taipei, Taiwan	Design & Methods Outcome (ICD-9): Hospital admissions for ischemic heart disease (410 , 411, 414), cerebrovascular disease (430-437). Age Groups: All Study Design: Time series N: 6,909 hospital admissions for ischaemic heart diseases, 11,466 for cerebrovascular disease. Statistical Analyses: Poisson regression Covariates: Day of the week, time, apparent temperature, long-term trends, seasonality Season: All Dose-response Investigated: No Statistical Package: NR Lags Considered: lags 0-3 days, avg of lags 0-3	Concentrations¹ Pollutant: PM₁0 Averaging Time: 24 h Mean (range IQR): 49.1 (12.7-215.5 27.6) Monitoring Stations: Taipei area: 13 monitors Taipei City: 5 monitors Monitors with correlations of 0.75 + for PM₁0: 12 monitors Copollutant: NR	Effect Estimates (95% CI) PM Increment: 28 μg/m³ (near IQR) Percentage increase estimate [95% CI]: Ischemic heart disease: Taipei area (13 monitors): L0: 1.91 (-1.25, 5.17) L1: 0.39 (-2.73, 3.61) L2: 1.80 (-1.33, 5.04) L3: 2.01 (-1.14, 5.26) L03: 2.91 (-1.52, 7.55) Taipei City (5 monitors): L0: 2.08 (-1.04, 5.30) L1: 0.43 (-2.64, 3.60) L2: 2.17 (-0.92, 5.36) L3: 2.16 (-0.94, 5.36) L03: 3.40 (-1.19, 8.20) Monitors with > = 0.75 between monitor correlations (12 monitors): L0: 1.82 (-1.29, 5.03) L1: 0.35 (-2.72, 3.52) L2: 1.93 (-1.15, 5.10) L3: 1.93 (-1.16, 5.12) L03: 2.86 (-1.63, 7.54) Cerebrovascular disease: Taipei area (13 monitors): L0: -1.41 (-3.80, 1.04) L1: -1.95 (4.31, 0.48) L2: 0.77 (-1.62, 3.23) L3: 2.64 (0.21, 5.12) L03: 0.01 (-3.33, 3.47) Taipei City (5 monitors): L0: -1.27 (-3.64, 1.16) L1: -2.13 (-4.47, 0.27) L2: 0.85 (-1.52, 3.28) L3: 2.52 (0.13, 4.97) L03: -0.07 (-3.53, 3.51) Monitors with > = 0.75 between monitor correlations (12 monitors): L0: -1.34 (-3.70, 1.07) L1: -1.98 (-4.31, 0.40) L2: 0.80 (-1.56, 3.22) L3: 2.61 (0.22, 5.05) L03: -0.02 (-3.40, 3.49)
Reference: Chan et al. (2007, 147787) Period of Study: Apr 1997-Dec 2002 Location: Boston, MA	Outcome: Cerebrovascular Emergency Admissions Age Groups: 50+ yr Study Design: Tme series Statistical Analyses: GAM Poisosn Regression Covariates: Yr, mo, day of wk, temperature, dew point Dose-response Investigated? No Statistical Package: NR Lags Considered: 0-3 days	Pollutant: PM ₁₀ Averaging Time: 24 h Mean (SD): 50.2 (22.1) Min: 16.0 Max: 325.4 IQR: 25.4 Monitoring Stations: 16 Copollutant: O ₃ , CO, SO ₂ , NO ₂ , PM _{2.5} Co-pollutant Correlation: O ₃ : 0.43 CO: 0.47 SO ₂ : 0.59 NO ₂ : 0.64 PM _{2.5} : 0.61	PM Increment: Interquartile Range (25.4 µg/m³) Percent Change (Lower Cl, Upper Cl), p-value: Cerebrovascular Disease Lag 0: 1.001 (0.969, 1.033) Lag 1: 0.999 (0.9787, 1.020) Lag 2: 1.023 (0.989, 1.057) Lag 3: 1.030 (1.011, 1.049) Lag 3 + Os: 1.018 (0.987, 1.049) Lag 3 + CO: 1.019 (0.988, 1.050) Lag 3 + CO: 1.015 (0.985, 1.045) Stroke Lag 0: 0.969 (0.897, 1.041) Lag 1: 0.992 (0.918, 1.066) Lag 2: 1.004 (0.993, 1.015) Lag 3: 1.009 (0.988, 1.030) Ischaemic stroke Lag 0: 0.984 (0.932, 1.036) Lag 1: 0.993 (0.939, 1.047) Lag 2: 0.989 (0.927, 1.041) Lag 3: 1.042 (0.981, 1.103) Haemorrhagic stroke Lag 0: 0.966 (0.884, 1.048) Lag 1: 0.990 (0.908, 1.072) Lag 2: 1.002 (0.920, 1.084) Lag 1: 0.990 (0.908, 1.072) Lag 2: 1.002 (0.920, 1.084) Lag 3: 0.974 (0.902, 1.046)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chan et al. (2008, <u>093297</u>)	Outcome (ICD-9): Emergency visits for	Pollutant: PM ₁₀	PM Increment: 25.4 μg/m³ (IQR)
Period of Study: 1995-2002	ischaemic heart diseases (410-411, 414), cerebrovascular diseases	Averaging Time: 24 h	OR [95% CI]: In environmental
Location: Taipei Metropolitan area, Taiwan	(430-437), and COPD (493, 496)	Mean (SD): High dust events: Pre-dust periods: 45.5 (17.6)	conditions without dust storms (results only shown for best-fitting model)
	Age Groups: All	Asian dust events: 122.7 (24.4)	Lag 3 days: 1.023 (1.003, 1.041)
	Study Design: Time series	Low dust events: Pre-dust periods: 59.4	
	N: NR	(31.0)	
	Statistical Analyses: Poisson regression models	Asian dust events: 61.1 (17.8)	
	Covariates: Yr, mo, day of wk,	Monitoring Stations: 1	
	temperature, dew point temperature, PM _{2.5} , NO ₂	Copollutant: NR	
	Season: All		
	Dose-response Investigated: No		
	Statistical Package: SAS version 8.0		
	Lags Considered: 0- to 7-day lags		
Reference: Chang et al. (2007,	Outcome: CVD HA	Pollutant: PM ₁₀	PM Increment: Interquartile Range
147621)	Age Groups: NR	Averaging Time: 24 h	(24.51 μg/m³)
Period of Study: 1997-2001	Study Design: Case-crossover	Mean: 48.32	Odds Ratio (Lower CI, Upper CI): ≥20°C
Location: Taipei, Taiwan	Statistical Analyses: Conditional Logistic Regression	Min: 14.44	PM ₁₀ : 1.085 (1.061, 1.110) PM ₁₀ + SO ₂ : 1.131 (1.103, 1.161)
	Covariates: Temperature, humidity	25th: 32.65	PM ₁₀ + NO ₂ : 10.977 (0.950, 1.006)
	Dose-response Investigated? No	50th: 42.80	PM ₁₀ + CO: 1.025 (0.999, 1.052) PM ₁₀ + O ₃ : 1.064 (1.039, 1.090)
	Statistical Package: SAS	75th: 57.16	<20°C
	Lags Considered: 0-2 days	Max: 234.91	PM ₁₀ : 1.142 (1.105, 1.180) PM ₁₀ + SO ₂ : 1.235 (1.184, 1.288)
	,	Monitoring Stations: 6	PM ₁₀ + NO ₂ : 1.148 (1.103, 1.194) PM ₁₀ + CO: 1.165 (1.121, 1.212)
		Copollutant: O ₃ , CO, SO ₂ , NO ₂	PM ₁₀ + O ₃ : 1.142 (1.105, 1.180)
		Co-pollutant Correlation: NR	
Reference: D'Ippoliti et al. (2003, 074311)	Outcome: Myocardial Infarction HA	Pollutant: TSP	PM Increment: Quartiles
Period of Study: Jan 1995-Jun 1997	Age Groups: 18+ yr	Averaging Time: 24 h	Odds Ratio (Lower CI, Upper CI):
Location: Rome, Italy	Study Design: Case-crossover	Mean (SD): 66.9 (19.7)	Lag 0-2-day avg QI: 1.0 (ref)
	Statistical Analyses: Conditional Logistic Regression	25th: 54.7	QII: 1.048 (0.957, 1.148) QIII: 1.105 (1.007, 1.214)
	Covariates: Temperature, humidity	50th: 66.4	QIV: 1.132 (1.023, 1.253)
	Dose-response Investigated? No	75th: 78.4	Various Lags Lag 0: 1.023 (1.004, 1.042)
	Statistical Package: NR	IQR: 23.7	Lag 1: 1.015 (0.996, 1.034)
	Lags Considered: 0-4 days	Monitoring Stations: 3	Lag 2: 1.017 (0.999, 1.035) Lag 3: 0.989 (0.974, 1.003)
	•	Copollutant: CO, SO ₂ , NO ₂	Lag 4: 1.001 (0.987, 1.016)
		Co-pollutant Correlation: CO: 0.35 SO ₂ : 0.29 NO ₂ : 0.38	

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Fung et al., (2005, <u>093262</u>)	Outcome (ICD-9): Cardiovascular	Pollutant: PM ₁₀	PM Increment: 26 μg/m ³
Period of Study:	diseases	Averaging Time: 24 h	% Change in Daily Admission [CI]:
Nov 1995-Dec 2000	(410-414, 427-428)	Mean (min-max): 38.0 (5-248)	Age <65
Location: London, Ontario	Age Groups: <65 yr, 65+ yr	SD = 23.5	Current day mean: 2.6 [-2.3,7.7]
	Study Design: Time series	Monitoring Stations: 4 Copollutant (correlation):	2-day mean: -1.2 [-7.2,5.1]
	N: 12,947 CVD admissions		3-day mean: -3 [-9.6,4]
	Statistical Analyses: GAM with locally weighted regression smoothers	NO_2 : $r = 0.30$	Age 65+
	(LOESS)	SO ₂ : r = 0.24	Current day mean: 0.9 [-2.3,4.2]
	Covariates: Maximum and minimum temp, humidity, day of the week,	CO: r = 0.21	2-day mean: -0.9 [-4.8,3.2]
	seasonal cycles, secular trends	O_3 : $r = 0.53$	3-day mean: -0.1 [-4.4,4.5]
	Season: NR	COH: r = 0.29	
	Dose-response Investigated? No		
	Statistical Package: S-Plus		
	Lags Considered: Current to 3-day mean		
Reference: Hanigan et al. (2008,	Outcome: Daily emergency hospital admissions for total cardiovascular (ICD-9: 390-459	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
156518)		Averaging Time: 24 h	Percent change [95% CI]: Overall
Period of Study: 1996-2005 (Apr-Nov of each yr)	ICD-10: 100-199), ischemic heart disease (ICD-9: 410-414	Mean (SD	CVD: Lag 0 (indigenous): -3.78 [-13.4, 6.91]
Location: Darwin, Australia		range): 21.2 (8.2	Lag 0 (non-indigenous): -3.43 [-9.00,
	ICD-10: I20-I25).	55.2)	2.49]
	Age Groups: All	Monitoring Stations: N/A (see notes)	All unstratified associations either negative or zero and not statistically
	Study Design: Time series	Copollutant: NR	significant.
	N: 8,279 hospital admissions		All other results of stratified analysis (by
	Statistical Analyses: Poisson generalized linear models		indigenous status) reported in a Fig (see notes).
	Covariates: Indigenous status, time in days, temperature, relative humidity, day of the week, influenza epidemics, change between ICD editions, holidays, yrly population		Notes: Fig 3: Associations between hospitalizations for non-indigenous and indigenous people with estimated ambient PM ₁₀ . Summary: Confidence intervals were wide, but indigenous people generally had stronger
	Season: Apr-Nov (corresponding to the dry season)		associations with PM ₁₀ than non- indigenous people. Daily PM ₁₀ exposure levels were estimated for the population
	Dose-response Investigated? No		of the city from visibility data using a
	Statistical Package: R version 2.3.1		previously validated models.
	Lags Considered: 0-3		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)		
Reference: Hanigan et al. (2008,	Outcome: Cardiorespiratory Disease	Pollutant: PM ₁₀	PM Increment: 10 µg/m³		
156518) Period of Study: 1996-2005 (Apr-Nov of each yr) Location: Darwin, Australia	HA (ICD 9: 390-519 ICD 10: I00-99 & J00-99) Age Groups: NR Study Design: Time series	Averaging Time: 24 h Mean (SD): 21.2 (8.2) Range: 55.2	Percent Change (Lower Cl, Upper Cl, lag: Tot. Cardiovascular, Indigenous: -3.43 (9.00, 2.49), lag 0		
				Monitoring Stations: 2 (monitored &	Tot Cardiovascular, Non-Indigenous: -
				N: 8279 events	modeled)
		Statistical Analyses: poisson regression	Copollutant: NR Co-pollutant Correlation: N/A	*Fig 3. percent change in hospital admissions per 10 μg/m ³ increase in PM ₁₀	
	Covariates: Indigenous status, time in days, temperature, relative humidity, day of the week, influenza epidemics, change between ICD editions, holidays, yearly population				
	Dose-response Investigated? No				
	Statistical Package: R				
	Lags Considered: lags 0-3				
	Reference: Henrotin et al. (2007, 093270)	Outcome: Ischemic and hemorrhagic strokes	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³	
	Period of Study: Mar 1994-Dec 2004	Age Groups: All	Averaging Time: 24 h	OR Estimate [CI]: Ischemic stroke	
Location: Dijon, France	Study Design: Bi-directional case- crossover N: 1487 (ischemic) and 220 (hemorrhagic) stroke patients Statistical Analyses: Conditional logistic regression	Mean (min-max): 21.1 (2-103)	Same-day lag: 1.009 [0.930,1.094]		
		SD = 11.3	1-day lag: 1.011 [0.998,1.094] 2-day lag: 0.960 [0.889,1.036] 3-day lag: 0.990 [0.919,1.066]		
		Monitoring Stations: 1			
		Copollutant: NR			
		оорониши. Тих	Hemorrhagic stroke		
	Covariates: Temperature, relative humidity, influenza epidemics, holidays		Same-day lag: 0.901 [0.730,1.111]		
			1-day lag: 1.014 [0.828,1.241]		
	Season: NR		2-day lag: 1.100 [0.903,1.339]		
	Dose-response Investigated? Yes		3-day lag: 0.991 [0.881,1.212]		
	Statistical Package: STATA software v. 8.2		Notes: Ischemic stroke ORs were also categorized into male and female, yielding similar results (none were significant for any lag days).		
	Lags Considered: 0-3 days				
Reference: Issever et al. (2005,	Outcome: Acute coronary syndrome	Pollutant: PM ₁₀	PM Increment: NR		
<u>097736</u>)	(ACS)	Averaging Time: 24 h	RR Estimate [CI]: NR		
Period of Study: Jan 1997-Dec 2001 Location: Istanbul, Turkey	Age Groups: All	Mean: NR Monitoring Stations: 1 Copollutant (correlation): ACS: r = 0.37 (p = 0.003) ACS controlled for temp: r = 0.29 (p = 0.02)	Notes: This study focused more on the seasonal change in acute coronary syndrome admissions.		
	Study Design: Time series				
	N: 2889 ACS admissions				
	Statistical Analyses: Multiple stepwise regression, Pearson correlation				
	Covariates: Humidity, temperature, pressure				
	Season: NR				
	Dose-response Investigated? No				

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Jalaludin et al. (2006,	Outcome (ICD-9): Cardiovascular	Pollutant: PM ₁₀	PM Increment: 7.8 μg/m³ (IQR)
189416)	disease (390-459), cardiac disease (390-429), ischemic heart disease	Averaging Time: 24 h	Percent Change Estimate [CI]:
Period of Study: Jan 1997-Dec 2001	(410-413) and cerebrovascular disease or stroke (430-438)	Mean (min-max): 16.8 (3.8-103.9)	All CVD Same-day lag: 0.72 [-0.14,1.60]
Location: Sydney, Australia	Age Groups: 65+ yr	SD = 7.2	Avg 0-1 day lag: 0.25 [-0.61,1.12]
	Study Design: Time series	Monitoring Stations: 14	Cool (same-day lag): 1.34 [0.08,2.61]
	N: NR	Copollutant (correlation):	Warm (same-day lag): 0.33 [-0.83,1.50] Cardiac disease
	Statistical Analyses: GAM, GLM	Warm BSP: r = 0.82	Same-day lag: 1.15 [0.14,2.18] Avg 0-1 day lag: 0.97
	Covariates: Temperature, humidity	PM _{2.5} : r = 0.89 O ₃ : r = 0.59	[-0.07,2.02] Cool (same-day lag): 1.35 [-0.16,2.89]
	Season: Warm (Nov-Apr) and cool (May-Oct)	NO_2 : r = 0.44; CO: r = 0.31	Warm (same-day lag): 1.12 [-0.23,2.48] Ischemic heart disease Same-day lag: 0.59 [-0.95,2.17]
	Dose-response Investigated? No	SO ₂ : r = 0.37	Avg 0-1 day lag: 0.61
	Statistical Package: S-Plus	Cool BSP: r = 0.75	[-0.95,2.20] Cool (same-day lag): 0.33 [-2.00,2.72]
	Lags Considered: 0-3	PM _{2.5} : r = 0.88 O ₃ : r = 0.22	Warm (same-day lag): 0.79 [-1.23,2.85] Stroke
		NO ₂ : r = 0.67 CO: r = 0.48 SO ₂ : r = 0.46	Same-day lag: -1.66 [-3.48,0.20] Avg 0-1 day lag: -2.05 [-3.88,-0.20]
		Other variables: Warm	Cool (same-day lag): 0.46 [-2.17,3.17] Warm (same-day lag): -3.49 [-5.97,- 0.95]
		Temp: r = 0.36 Rel humidity: r = -0.25	Notes: All other lag-day ORs were provided, yet none were significant. Percent change in ED attendance was
		Cool Temp: r = 0.13 Rel humidity: r = 0.05	also reported graphically (Fig 1-5).
Reference: Johnston et al. (2007,	Outcome (ICD-10): All cardiovascular	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
<u>155882</u>)	conditions (100-199), including ischemic heart disease (120-125).	Averaging Time: 24 h	OR Estimate [95% CI]: All respiratory
Period of Study: 2000, 2004, 2005 (Apr-Nov of each yr)	Age Groups: All	Median: 17.4	conditions: Ischemic heart disease: Lag 0: 0.82 [0.68-0.98]
Location: Darwin, Australia	Study Design: Case-crossover	IQR: 13.6-22.3	Lag 0 (non-indigenous): 0.75
	N: 2466 emergency admissions	10-90th Percentile: 10.3-27.7	[0.61-0.93]
	Statistical Analyses: Conditional	Range: 1.1-70.0	Lag 3 (indigenous): 1.71 [1.14-2.55]
	logistic regression	Monitoring Stations: 1	Notes:
	Covariates: Weekly influenza rates, temperature, humidity, days with rainfall >5mm, public holidays, school holiday periods (for respiratory conditions only)	Copollutant: NR	Fig 5: OR and 95% CI for hospital admissions for cardiovascular conditions.
	Season: Apr-Nov (dry season)		Summary: Negative associations in overall study population and in non-
	Dose-response Investigated? No		indigenous people. Positive
	Statistical Package: NR		associations in Indigenous people at Lag 1, Lag 2, and Lag 3.
	Lags Considered: 0-3		Fig 6: OR and 95% CI for hospital admissions for ischaemic heart disease.
			Summary: Negative associations in overall study population and non-indigenous people. Positive association in indigenous people.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Koken et al. (2003,	Outcome (ICD-9): Acute myocardial	Pollutant: PM ₁₀	PM Increment: 8.0 μg/m³ (IQR)
<u>)49466</u>)	infarction (410.00-410.92), pulmonary heart disease (416.0-416.9), cardiac	Averaging Time: 24 h	Percent Change Estimate [CI]: No PI
Period of Study: Jul and Aug, 1993-1997	dysrhythmias (427.0-427.9), congestive heart failure (428.0)	Mean (min-max): 24.2 (7.0-51.6)	data reported
Location: Denver, Colorado	Age Groups: 65+ yr	SD = 6.25	
	Study Design: Time series	Monitoring Stations: 3	
	N: 298 days	Copollutant (correlation):	
	Statistical Analyses: GLM, GEE	NO_2 : $r = 0.56$	
	Covariates: Maximum temp and dew point temp	SO ₂ : r = 0.36 O ₃ : r = 0.03	
	Season: NR	CO: r = 0.25	
	Dose-response Investigated: Yes	Other variables: Max temp: r = 0.38	
	Statistical Package: SAS (PROC GENMOD)	Dew point temp: r = -0.24	
	Lags Considered: 0-4 days		
Reference: Lanki et al., (2006, <u>089788</u>)	Outcome (ICD-9): Acute myocardial	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 1992-2000	infarction	Averaging Time: 24 h	Pooled Rate Ratio [CI]: All 5 cities (35+ yr)
ocation:	(410	Median: Augsburg: 43.5	Same-day lag: 1.003 [0.995,1.011]
Augsburg, Barcelona, Helsinki, Rome, and Stockholm	ICD-10: I21, I22)	Barcelona: 57.4	1-day lag: 1.001 [0.990,1.011] 2-day lag: 1.002 [0.994,1.010]
	Age Groups: 35+ yr, <75 yr, 75+ yr	Helsinki: 21.0 Rome: 48.5	3-day lag: 1.002 [0.991,1.013] 3 cities with hospital discharge register
	Study Design: Time series	Stockholm: 12.5 Copollutant (correlation): Augsburg PNC: r = 0.53	(35+ yr) Same-day lag: 1.003 [0.994,1.012] 1-day lag: 0.997 [0.988,1.006] 2-day lag: 1.003 [0.995,1.012]
	N: 26,854 hospitalizations		
	Statistical Analyses: GAM		
	Covariates: Temperature, barometric	CO: r = 0.56	3-day lag: 1.003 [0.986,1.020] Warm season (35+ yr)
	pressure	NO_2 : r = 0.64 O_3 : r = 0.43	Same-day lag: 1.006 [0.990,1.022]
	Season: Warm (Apr-Sep) and cold	•	1-day lag: 1.000 [0.985,1.016] 2-day lag: 1.005 [0.990,1.020]
	(Oct-Mar)	Barcelona: PNC: r = 0.38 CO: r = 0.44	3-day lag: 1.010 [0.995,1.025] Cold season (35+ yr)
	Dose-response Investigated: No	NO_2 : $r = 0.48$	Same-day lag: 1.001 [0.991,1.012]
	Statistical Package: R package mgcv 0.9-5	O ₃ : r = 0.01	1-day lag: 0.998 [0.987,1.009] 2-day lag: 1.001 [0.991,1.012]
		Helsinki: PNC: r = 0.45	3-day lag: 0.991 [0.981,1.002]
	Lags Considered: 0-3 days	CO: r = 0.21 NO ₂ : r = 0.40	Age >75 Non-fatal
		O ₃ : r = 0.40	Same-day lag: 1.012 [0.995,1.029]
		Rome: PNC: r = 0.32	1-day lag: 1.000 [0.983,1.017] 2-day lag: 0.999 [0.982,1.017]
		CO: r = 0.41	3-day lag: 1.001 [0.984,1.018]
		NO ₂ : r = 0.29 O ₃ : r = 0.59	Fatal Same-day lag: 1.009 [0.985,1.034]
		·	1-day lag: 0.998 [0.974,1.023]
		Stockholm: PNC: r = 0.06 CO: r = 0.41	2-day lag: 1.003 [0.978,1.028] 3-day lag: 1.018 [0.975,1.063]
		NO_2 : $r = 0.29$	Notes: Pooled rate ratios were also
		O ₃ : r = 0.59	provided for groups <75 yielding similar results to the overall 3-city data.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Lee et al. (2003, <u>095552</u>)	Outcome (ICD-10): Angina pectoris	Pollutant: PM ₁₀	PM Increment: 40.4 µg/m³ (IQR)
Period of Study:	(I20), acute/subsequent myocardial infarction (I21-I23), other acute	Averaging Time: 24 h	RR Estimate [CI]: All yr
Dec 1997-Dec 1999	ischemic heart diseases (I24)	Mean (SD): 64.0 (31.8)	All ages: 0.99 [0.96,1.01] 64+ yr: 1.05 [1.01,1.10]
Location: Seoul, Korea	Age Groups: All ages, 64+ yr	Monitoring Stations: 27	Summer
	Study Design: Time series	Copollutant (correlation):	All ages: 1.03 [0.97,1.09]
	N : 822 days	All yr SO ₂ : r = 0.59	64+ yr: 1.09 [1.00,1.19]
	Statistical Analyses: GAM with LOESS, Pearson correlation	NO ₂ : r = 0.74 O ₃ : r = 0.11 CO: r = 0.60	Two-pollutant model CO (1 ppm IQI): 1.04 [0.98,1.11] O ₃ (21.7 ppb IQI): 1.07 [1.03,1.11]
	Covariates: Temperature, relative humidity, day of the week	Temp: r = -0.07 Humidity: r = 0.02 Summer	NO ₂ (14.6 ppb IQI): 1.09 [1.02,1.16] SO ₂ (4.4 ppb): 0.98 [0.94,1.03]
	Season: Summer (Jun-Aug) and winter	SO ₂ : r = 0.61	
	Dose-response Investigated: Yes	NO_2 : r = 0.73 O_3 : r = 0.64	
	Statistical Package: NR	CO: r = 0.55 Temp: r = -0.01	
	Lags Considered: 0-6 days	Humidity: r = -0.11	
Reference: Lee et al. (2008, <u>192076</u>)	Outcome: Congestive Heart Failure HA	Pollutant: PM ₁₀	PM Increment: Interquartile Range
Period of Study: 1996-2005	(ICD 9: 428)	Averaging Time: 24 h	(27.45 μg/m³)
ocation: Taipei, Taiwan	Age Groups: NR	Mean: 49.94	Odds Ratio (Lower CI, Upper CI):
	Study Design: Case-crossover	Min: 11.33	W/ Hypertension: 1.23 (1.15, 1.32)
	N: 18593 events	25th : 33.37	W/o Hypertension: 1.20 (1.15, 1.25)
	Statistical Analyses: conditional logistic regression	50th: 45.05	W/ Diabetes: 1.20 (1.12, 1.40)
	Covariates: Temperature, humidity	75th: 60.82	W/o Diabetes: 1.21 (1.15, 1.26)
	Dose-response Investigated? No	Max: 234.92	W/ Dysrhythmia: 1.17 (1.08, 1.27)
	Statistical Package: SAS	Monitoring Stations: 6	W/o Dysrhythmia: 1.22 (1.17, 1.27)
	Lags Considered: Lags 0-2	Copollutant: SO ₂ , CO, NO ₂ , O ₃	W/ COPD: 1.21 (1.07, 1.36)
		Co-pollutant Correlation SO ₂ : 0.52 CO: 0.67 NO ₂ : 0.35 O ₃ : 0.39	W/o COPD: 1.21 (1.16, 1.25)
Reference: Larrieu et al. (2007,	Outcome (ICD-10): Hospital	Pollutant: PM ₁₀	PM Increment: 10 µg/m ³
<u>193031)</u>	admissions for cardiovascular disease		1.0
Period of Study: 1998-2003	(100-199), cardiac disease (100-152), ischemic heart disease (120-125), and	Averaging Time: 24 h	ERR [95% CI]:
_ocation:	stroke (cerebrovascular disease: 160-64 and transient ischemic attack:	Mean: Bordeaux: 21.0	CVD: All ages: 0.7 [0.1, 1.2]
B French urban area: Bordeaux, Le Havre, Lille, Lyon, Marseille, Paris,	G45-G46).	Le Havre: 21.7	65+ yr: 1.1 [0.5, 1.7]
Rouen, and Toulouse	Age Groups: All, and 65 +	Lille: 22.1	Cardiac diseases: All ages: 0.8 [0.2, 1.4]
	Study Design: Time series	Lyon: 24.6	65+ yr: 1.5 [0.7, 2.2]
	N: Statistical Analyses: generalized	Marseille: 28.9	Ischemic heart diseases: All ages: 1.9
	additive Poisson regression	Paris: 23.1	[0.8, 3.0]
	Covariates: Temperature, holidays, influenza epidemic periods, long-term	Rouen: 21.2	65+ yr: 2.9 [1.5, 4.3]
	trend, season, day of the week,	Toulouse: 21.8	Strokes: All ages: 0.2 [-1.6, 1.9]
	Season: NR	Monitoring Stations: 32	65+ yr: 0.8 [-0.9, 2.5]
	Dose-response Investigated: No	Copollutant: NR	
	Statistical Package: R 2.2.1		
	Lags Considered: 0 -to 1-day lag (mean)		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Le Tertre et al. (2002,	Outcome (ICD-9): Cardiac diseases	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
<u>023746)</u>	(390-429), ischemic heart disease (410- 413), and stroke (430-438)	Averaging Time: 24 h	Pooled Percent Increase [CI]: Cardiac
Period of Study: 1990-1997	Age Groups: <65 yr, 65+ yr	Mean (SD):	(all ages)
Location: Barcelona, Birmingham, London, Milan,	Study Design: Time series	Barcelona: 55.7 (18.4)	Fixed: 0.5 [0.3,0.7]
the Netherlands, Paris, Rome, and Stockholm	N: NR	Birmingham: 24.8 (13.1)	Random: 0.5 [0.2,0.8]
	Statistical Analyses: GAM	London: 28.4 (12.3)	Cardiac (over 65)
	Covariates: Long term trend, season,	Milan: 51.5 (22.7)	Fixed: 0.7 [0.4,1.0]
	days of the week, holidays, influenza epidemics, temperature, and humidity	Netherlands: 39.5 (19.9)	Random: 0.7 [0.4,1.0]
	Season: NR	Paris: 22.7 (10.8)	IHD (<65)
	Dose-response Investigated: No	Rome: 52.5 (12.9)	Fixed: 0.3 [-0.1,0.6]
	Statistical Package: S-Plus	Stockholm: 15.5 (7.2)	Random: 0.3 [-0.2,0.7]
	Lags Considered: 0-3 days	Monitoring Stations: 1-12	IHD (over 65)
	Lags considered. 0-0 days	Copollutant: NR	Fixed: 0.6 [0.3,0.8]; Random: 0.8 [0.3,1.2]
			Stroke (over 65)
			Fixed: 0.0 [-0.3,0.3]; Random: 0.0 [-0.3,0.3]
			Deaths: Cardiac: 0.5 [0.2,0.8]; Cardiac (65+): 0.7 [0.4,1.0]
			IHD (65+): 0.8 [0.3,1.2]
			Notes: Estimated percentage increases are also provided by city for cardiac admissions and ischemic heart disease in Fig 1-3.
Reference: Mann et al. (2002, <u>036723</u>)	Outcome (ICD-9): Ischemic heart	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 1988-1995	disease (410-414), secondary congestive heart failure (sCHF) (428),	Averaging Time: 24 h	Percent Change in IHD Admissions
Location: South Coast Air Basin,	and secondary arrhythmia (sARR) (426, 427)	Mean (min-max): 43.7 (0.22-251)	[CI]: Secondary ARR
California	Age Groups: All, 40-59 yr, >60 yr	SD = 27.7	Same-day lag: 0.59 [-0.71,1.91]
	Study Design: Time series	Monitoring Stations: 20	1-day lag: 0.46 [-0.86,1.80]
	N: 54,863 IHD admissions	Copollutant (correlation): Region 1:	2-day lag: -0.04 [-1.37,1.31]
	Statistical Analyses: GAM	CO: r = 0.28	Secondary CHF
	Covariates: Temperature, day of the	O ₃ : r = 0.20 NO ₂ : r = 0.36 Region 2: CO: r = 0.15 O ₃ : r = 0.57 NO ₂ : r = 0.53	Same-day lag: -0.62 [-1.77,0.55]
	week, relative humidity		1-day lag: -0.45 [-1.60,0.71]
	Season: NR		2-day lag: -0.36 [-1.52,0.82]
	Dose-response Investigated: No	Region 3:	No secondary diagnosis
	Statistical Package: S-Plus	CO: r = 0.36 O ₃ : r = 0.30	Same-day lag: -0.25 [-1.23,0.75]
	Lags Considered: 0-5 days	NO ₂ : r = 0.46 Region 4:	1-day lag: 0.04 [-0.97,1.06]
		CO: r = 0.27 O ₃ : r = 0.33	2-day lag: 0.18 [-0.82,1.20]
		NO_2 : r = 0.50	All IHD admissions: 0.19 [-0.576,0.955]
		Region 5: CO: r = 0.40	MI admissions: -0.10 [-1.33,1.12]
		O ₃ : r = 0.43 NO ₂ : r = 0.53 Region 6: CO: r = 0.33 O ₃ : r = 0.20 NO ₂ : r = 0.42	Other acute IHD admissions: 0.36 [-0.87,1.60]
		Region 7: CO: r = 0.28	
		O ₃ : r = 0.48 NO ₂ : r = 0.60	

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Metzger et al. (2004,	Outcome (ICD-9): Emergency visits for	Pollutant: PM ₁₀	PM Increment: 10 μg/m³
<u>044222</u>)	ischemic heart disease (410-414), cardiac dysrhythmias (427), cardiac arrest (427.5), congestive heart failure (428), peripheral vascular and	Averaging Time: 24 h	(approximately 1 SD)
Period of Study: Aug 1993-Aug 2000 Location: Atlanta Metropolitan area		Median (10% - 90% range): 26.3 (13.2,	RR [95% CI]: For 3-day ma: All CVD: 1.009 [0.998, 1.019]
(Georgia)	cerebrovascular disease (433-437, 440, 443-444, 451-453), atherosclerosis	44.7) Monitoring Stations: NR	Dysrhythmia: 1.008 [0.989, 1.029]
	(440), and stroke (436).	Copollutant (correlation):	Congestive heart failure: 0.992 [0.968-1.016]
	Age Groups: All	O ₃ : r = 0.59	
	Study Design: Time series	NO ₂ : r = 0.49 CO: r = 0.47	Ischemic heart disease: 1.011 [0.992-1.030]
	N: 4,407,535 emergency department visits	SO ₂ : r = 0.20 PM _{2.5} : r = 0.84	Peripheral vascular and
	Statistical Analyses: Poisson generalized linear modeling	PM _{10-2.5} : r = 0.59 UFP: r = -0.13	cerebrovascular disease: 1.020 [0.999-1.043]
	Covariates: Day of the wk, hospital	PM _{2.5} water-sol metals: r = 0.74	Notes: Results for Lags 0-7 expressed in figures
	entry and exit indicator variables,	PM _{2.5} sulfates: r = 0.74	· ·
	federally observed holidays, temporal trends, temperature, dew point	$PM_{2.5}$ acidity: $r = 0.68$ $PM_{2.5}$ OC: $r = 0.69$	Fig 1: RR (95% CI) for single-day lag models for the association of ER visits
	temperature	PM _{2.5} EC: r = 0.56	for CVD with daily ambient PM ₁₀ .
	Season: All	oxygenated hydrocarbon: r = 0.58 Other variables: Temperature: r = 0.58 Dew point: r = 0.44	Summary: Statistically significant association at Lag 0. Positive but not statistically significant association at Lag 1. Negative, statistically significan
	Dose-response Investigated: No		
	Statistical Package: SAS		association at Lag 7, and negative
	Lags Considered: 3-day ma, lags 0 -7		associations at Lag 2 through Lag 6.
Reference: Middleton et al. (2008,	Outcome: Hospital admissions for all	Pollutant: PM ₁₀	PM Increment: 10 μg/m³, and across
156760) Period of Study: 1005 1009	cardiovascular disease (ICD-10: 100-152).	Averaging Time: 24 h	quartiles of increasing levels of PM ₁₀
Period of Study: 1995-1998, 2000-2004	Age Groups: All, also stratified by age (<15 vs >15 yr)	Mean (SD median 5% - 95% range): Cold: 57.6 (52.5	Percentage increase estimate [CI]: All age/sex groups (Lag 0): All admissions: 0.85 (0.55, 1.15)
Location: Nicosia, Cyprus	Study Design: Time series	50.8	Cardiovascular: 1.18 (-0.01, 2.37)
	Statistical Analyses: Generalized	20.0-103.0	Nicosia residents (Lag 0):
	additive Poisson models	5.0-1370.6)	Cardiovascular: 0.73 (-0.62, 2.09)
	Covariates: Seasonality, day of the week, long- and short-term trend,	Warm: 53.4 (50.5	Males (Lag 0): All admissions: 0.96 (0.54, 1.39)
	temperature, relative humidity	30.7	Cardiovascular: 1.27 (-0.15, 2.72)
	Dose-response Investigated: No	32.0-77.6	Females (Lag 0): All admissions: 0.74
	Statistical Package: STATA SE 9.0, R 2.2.0	18.4-933.5)	(0.31, 1.18)
		Monitoring Stations: 2	Cardiovascular: 0.99 (-1.11, 3.14)
	Lags Considered: Lag 0 -2 days	Copollutant: NR	Aged <15 yr (Lag 0): All admissions: 0.47 (-0.13, 1.08)
			Aged >15 yr (Lag 0): All admissions: 0.98 (0.63, 1.33)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Peel et al. (2007, <u>090442</u>)	Outcome (ICD-9): Ischemic heart	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: Jan 1993-Aug 2000	disease (410-414), dysrhythmia (427), congestive heart failure (428),	Averaging Time: 24 h	OR Estimate [CI]: All CVD: 1.010
Location: Atlanta, GA	peripheral vascular and cerebrovascular disease (433-437, 440,	Mean (SD): Daily levels: 27.9 (12.3)	[1.000,1.020] IHD: 1.009 [0.991,1.027]
	443, 444, 451-453)	Diff in case and control-day avg: 9.1	Dysrhythmia: 1.011 [0.991, 1.031]
	Age Groups: All	(7.5)	Peripheral/Cerebrovascular disease:
	Study Design: Case-crossover	Monitoring Stations: 1	1.017 [0.996,1.039] CHF: 1.001 [0.978,1.024]
	N: 4,407,535 ED visits	Copollutant: NR	With comorbid hypertension IHD: 1.003 [0.973,1.034]
	Statistical Analyses: Conditional logistic regression		Dysrhythmia: 1.037 [0.988,1.089]
	Covariates: Avg temp and dew point temp		Peripheral/Cerebrovascular disease: 1.024 [0.990,1.060] CHF: 1.041 [0.999,1.084]
	Season: NR		No comorbid hypertension IHD: 1.013 [0.991,1.036]
	Dose-response Investigated: No		Dysrhythmia: 1.006 [0.985,1.028]
	Statistical Package: SAS v. 9.1		Peripheral/Cerebrovascular disease:
	Lags Considered: 0-2 days		1.013 [0.987,1.040] CHF: 0.982 [0.955,1.010] With comorbid diabetes IHD: 1.022 [0.979,1.067] Dysrhythmia: 1.049 [0.968,1.137]
			Peripheral/Cerebrovascular disease: 1.016 [0.965,1.069] CHF: 1.029 [0.982,1.078] No comorbid diabetes IHD: 1.006 [0.987,1.026] Dysrhythmia: 1.009 [0.989,1.029]
			Peripheral/Cerebrovascular disease: 1.018 [0.995,1.042] CHF: 0.992 [0.966,1.019] With comorbid COPD IHD: 0.981 [0.921,1.044] Dysrhythmia: 0.984 [0.889,1.088]
			Peripheral/Cerebrovascular disease: 1.086 [0.998,1.181] CHF: 1.010 [0.954,1.069] No comorbid COPD IHD: 1.012 [0.993,1.031] Dysrhythmia: 1.012 [0.992,1.032]
			Peripheral/Cerebrovascular disease: 1.013 [0.991,1.035] CHF: 0.999 [0.974,1.025]
Reference: Pope et al., (2006, <u>091246</u>)	Outcome: Myocardial infarction or	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 1994-2004	unstable angina (ICD codes not reported)	Averaging Time: 24 h	Percent increase in risk [95% CI]:
Location: Wasatch Front area, Utah	Age Groups: All	Mean (SD maximum):	Results summarized in Fig (see notes).
	Study Design: Case-crossover	Ogden: 28.5 (16.5	Notes: Fig 1: Percent increase in risk (and 95% CI) of acute coronary events
	N: 12,865 patients who underwent coronary arteriography	163) SLC Hawthorne: 27.7 (17.4	associated with 10 μg/m³ of PM ₁₀ for different lag structures.
	Statistical Analyses: Conditional logistic regression	162)	Summary of Fig 1: Positive, statistically significant or marginally significant associations between association seen
	Covariates: Temperature and dew point temperature	Provo/Orem, Lindom: 32.7 (21.1 240)	for Lag 0, Lag 1 and 2-, 3-, and 4-day ma. Non-statistically significant
	Season: NR	SLC AMC: 35.9 (20.4	associations
	Dose-response Investigated: No	161)	
	Statistical Package: NR	SLC North: 45.1 (25.1	
	Lags Considered: 0- to 3-day lag, 2- to	199)	
	4-day lagged ma	Monitoring Stations: 5	
		Copollutant: NR	

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Santos et al. (2008,	Outcome: Cardiac Arrhythmia ER Visits	Pollutant: PM ₁₀	PM Increment: Interquartile Range
192004)	(ICD 10: I45-I49)	Averaging Time: 24 h	(22.2 µg/m³)
Period of Study: Jan 1998-Aug 1999	Age Groups: 17+ yr	Mean (SD): 48.64 (20.34)	Percent Increase (Lower CI, Upper CI):
Location: Sao Paulo, Bazil	Study Design: Time series	Min: 18.68	PM ₁₀ + NO ₂ ,CO: -5.6 (-12.7, 2.1)
	N: 3251 ER visits	Max: 137.76	PM ₁₀ + CO: -1.1 (-7.0, 5.1) PM ₁₀ + NO ₂ : -2.4 (-9.4, 5.1)
	Statistical Analyses: Poisson	Monitoring Stations: 14	Fig 1. PM ₁₀ effects, reported as percent
	Covariates: Temperature, humidity, seasonality	$\textbf{Copollutant:}\ SO_2,\ CO,\ NO_2,\ O_3$	increase, on arrhythmia ER visits caused by interquartile range increases, lags 0-6.
	Dose-response Investigated? Yes	Co-pollutant Correlation:	Fig 2. Relative risks and 95% CI for
	Statistical Package: S-Plus	SO ₂ : 0.675* CO: 0.580*	arrhythmia ER visits according to the
	Lags Considered: Lags 0-13	NO ₂ : 0.781*	division of air pollutant daily concentrations in quintiles.
		O ₃ : 0.438* *p < 0.01	1
Reference: Tolbert et al. (2007,	Outcome (ICD-9): Combined CVD	Pollutant: PM ₁₀	PM Increment: 16.30 μg/m³ (IQR)
<u>090316)</u>	group, including: Ischemic heart disease (410-414), cardiac	Averaging Time: 24 h	Risk ratio [95% CI]: Single pollutant
Period of Study: 1993-2004	dysrhythmias (427), congestive heart failure (428), and peripheral vascular	Mean (median	models: CVD: 1.008 (0.997-1.020)
Location: Atlanta Metropolitan area, Georgia	and cardiovascular disease (433-437, 440, 443-445, and 451-453).	IQR, range, 10th-90th percentiles): 26.6 (24.8	
	Age Groups: All	17.5-33.8	
	Study Design: Time series	0.5-98.4	
	N: 10,234,490 ER visits (283,360 and	12.3-42.8)	
	1,072,429 visits included in the CVD and RD groups, respectively)	Monitoring Stations: NR	
	Statistical Analyses: Poisson generalized linear models	Copollutant (correlation): O_3 : r = 0.59	
	Covariates: Long-term temporal trends, season (for RD outcome), temperature, dew point, days of week, federal holidays, hospital entry and exit	NO ₂ : r = 0.53 CO: r = 0.51 SO ₂ : r = 0.21 Coarse PM: r = 0.67 PM _{2.5} : r = 0.84	
	Season: All	PM _{2.5} SO ₄ : r = 0.69 PM _{2.5} EC: r = 0.61	
	Dose-response Investigated: No	PM _{2.5} OC: r = 0.65 PM _{2.5} TC: r = 0.67	
	Statistical Package: SAS version 9.1	PM _{2.5} water-sol metals: r = 0.73	
	Lags Considered: 3-day ma (lag 0-2)	OHC: r = 0.53	
Reference: Tsai et al. (2003, 080133)	Outcome (ICD-9): Cerebrovascular	Pollutant: PM ₁₀	PM Increment: 66.33 µg/m³ (IQR)
Period of Study: 1997-2000	diseases (430-438), subarachnoid	Averaging Time: 24 h	OR Estimate [CI]: Two-pollutant
	hemorrhagic stroke (430), primary intracerebral hemorrhage (431-432),	• •	model (all stroke admissions)
Location: Kaohsiung, Taiwan	ischemic stroke (433-435), and others (436-438)	Mean (min-max): 78.82 (20.50-217.33)	Primary intracerebral hemorrhage (PIH) Adj for SO ₂ : 1.55 [1.31,1.83]
	Age Groups: All	Monitoring Stations: 6	Adj for NO ₂ : 1.28 [1.01,1.61];
	Study Design: Case-crossover	Copollutant: NR	Adj for CO: 1.45 [1.20,1.74] Adj for O ₃ : 1.56 [1.27,1.91]
	, ,		Ischemic stroke (IS) Adj for SO₂: 1.46 [1.32,1.61]
	N: 23,179 admissions		Adj for NO ₂ : 1.16 [1.01,1.34]
	Statistical Analyses: Conditional logistic regression		Adj for CO: 1.35 [1.21,1.51] Adj for O ₃ : 1.51 [1.34,1.71]
	Covariates: Temperature and humidity		Single-pollutant model Temp >20°C
	Season: NR		PIH: 1.54 [1.31,1.81] IS: 1.46 [1.32,1.61]
	Dose-response Investigated: No		Temp <20°C
	Statistical Package: SAS		PIH: 0.82 [0.48,1.40] IS: 0.97 [0.65,1.44]
	Lags Considered: Cumulative 0-2 days		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ulirsch et al. (2007,	Outcome (ICD-9): CVD (390-429).	Pollutant: PM ₁₀	PM Increment: 50 µg/m³, and
<u>091332</u>)	Age Groups: 65 +	Averaging Time: 24 h	24.3 μg/m³ (mean increase in PM ₁₀)
Period of Study: Nov 1994-Mar 2000	Study Design: Time series	Mean (range 10th - 90th percentiles):	Mean percent of change (% change in the mean number of daily
Location: Pocatello, Idaho and Chubbuck, Idaho	N: 39,347 admissions/visits	24.2 (3.0-183.0	admissions and visits) [95% CI]:
	Statistical Analyses: Log-linear generalized linear models	10.5-40.7) Monitoring Stations: 4	For 24.3 µg/m³ increase in PM10: All-age RD/CVD: 3.7 [1.3, 6.3] All-age CVD (Lag 0): -0.02 [-5.9, 6.3]
	Covariates: Time, temperature, relative humidity, influenza, day of the week	Copollutant (correlation): NO ₂ : r = 0.47	All-age CVD (Lag 1): 1.9 [-4.1, 8.4] All-age CVD (Lag 2): -3.1 [-9.1, 3.4] All-age CVD (Lag 3): 0.5 [-5.6, 6.9]
	Season: All, and separate analyses were performed for the all-age group for cool months (Oct-Mar) vs warm months (Apr-Sep).	Other variables: Correlation for PM ₁₀ between monitors: $r = 0.42\text{-}0.87$	All-age CVD (Lag 4): -1.7[-4.3, 0.9] Lag 0-4 days: -0.5 [-8.0, 7.6] For 50 µg/m3 increase in PM10 (single pollutant models, Cls not given):
	Dose-response Investigated: No		All-age respiratory disease: 8.4
	Statistical Package: S-plus version 6.1		All-age RD/CVD: 7.9 18-64 yr RD: 7.2
	Lags Considered: 0- to 4-day lags, and mean of days 0 -4		All-age CVD (Lag 3): 1.0 All-age CVD (Lag 4): -3.6 All-age CVD (Lag 0 -4): -1.1
			Notes: Included urgent care visits as well as emergency department visits and hospital admissions.
Reference: Yang et al. (2007, <u>092847</u>) Period of Study: 1996-2005	Outcome: Congestive Heart Failure HA (ICD 9: 428) Age Groups: NR	Pollutant: PM ₁₀ Averaging Time: 24 h	PM Increment: Interquartile Range (27.02 µg/m³)
Location: Taipei, Taiwan		Mean: 49.47	Odds Ratio (Lower CI, Upper CI):
Location: Talpel, Talwan	Study Design: case-crossover	Min: 14.42	Temp ≥20°C PM ₁₀ : 1.15 (1.10-1.21)*
	N: 24,240 events	25th: 33.08	PM ₁₀ + SO ₂ : 1.23 (1.17, 1.30)* PM ₁₀ + NO ₂ : 1.03 (0.97, 1.10)
	Statistical Analyses: Poisson	50th: 44.71	PM ₁₀ + CO ₂ : 1.09 (1.03, 1.15)*
	Covariates: Temperature, humidity	75th: 60.10	PM ₁₀ + O ₃ : 1.10 (1.04, 1.15)* Temp <20°C
	Dose-response Investigated? No	Max: 234.91	PM ₁₀ : 0.99 (0.93, 1.05) PM ₁₀ + SO ₂ : 0.96 (0.89, 1.03)
	Statistical Package: SAS	Monitoring Stations: 6	PM ₁₀ + NO ₂ : 0.97 (0.90, 1.04) PM ₁₀ + CO ₂ : 0.96 (0.90, 1.03)
	Lags Considered: lags 0-3	Copollutant: NR	PM ₁₀ + O ₃ : 1.00 (0.94, 1.05)
		Co-pollutant Correlation: N/A	*p < 0.05
Reference: Yang et al. (2007, 092847)	Outcome: Congestive Heart Failure HA	<u>'</u>	PM Increment: Index (>125 µg/m³) vs
Period of Study: 1996-2001	Age Groups: NR	Averaging Time: 24 h	Comparison (≤125 μg/m³)
Location: Taipei, Taiwan	Study Design: case-crossover	Mean (SD):	Relative Risk (Lower CI, Upper CI), lag:
	N: NR	Index days: 111.68 (38.32)	0.915 (0.805, 1.041), lag 0
	Statistical Analyses: Poisson	Comparison days: 55.43 (24.66)	1.114 (0.993, 1.250), lag 1
	Covariates: NR	Monitoring Stations: 7	0.983 (0.873, 1.106), lag 2
	Dose-response Investigated? No	Copollutant: NR	0.974 (0.870, 1.090), lag 3
	Statistical Package: SAS	Co-pollutant Correlation: N/A	(o.o.o, 1.000), lug o
	Lags Considered: Lags 0-3	•	

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Villeneuve et al. (2006, 090191) Period of Study: Apr 1992-Mar 2002 Location: Edmonton, Canada	Outcome (ICD-9): Stroke (430-438), including ischemic stroke (434-436), hemorrhagic stroke (430,432), and transient ischemic attacks (TIA) (435). Age Groups: 65+ yr Study Design: Case-crossover N: 12,422 visits Statistical Analyses: Conditional logistic regression Covariates: Temperature and relative humidity Season: summer (Apr-Sep), winter (Oct-Mar) Dose-response Investigated: No Statistical Package: SAS (PHREG) Lags Considered: 0, 1, and 3 days	Pollutant: PM ₁₀ Averaging Time: 24 h Mean (SD): All yr: 24.2 (14.8) Summer: 25.9 (16.4) Winter: 22.6 (12.9) Monitoring Stations: 3 Copollutant (correlation): All yr SO ₂ : r = 0.19 NO ₂ : r = 0.34; CO: r = 0.30 O ₃ -mean: r = 0.07; O ₃ -max: r = 0.22 PM _{2.5} : r = 0.79 Summer SO ₂ : r = 0.18 NO ₂ : r = 0.57; CO: r = 0.38 O ₃ -mean: r = 0.20; O ₃ -max: r = 0.40 PM _{2.5} : r = 0.85 Winter SO ₂ : r = 0.48; CO: r = 0.53 O ₃ -mean: r = -0.26; O ₃ -max: r = -0.26; O ₃ -max: r = -0.29 PM _{2.5} : r = 0.70	PM Increment: μg/m³ (IQR) All yr: 16.0 Summer: 17.5 Winter: 16.0 Adjusted OR Estimate [CI]: Acute ischemic stroke All yr Same-day lag: 0.98 [0.94,1.03] 1-day lag: 1.00 [0.96,1.05] 3-day lag: 0.99 [.93,1.05] summer Same-day lag: 0.93 [0.87,1.00] 1-day lag: 1.01 [0.94,1.08] 3-day lag: 0.96 [0.88,1.04] Winter Same-day lag: 1.04 [0.97,1.11] 1-day lag: 1.05 [0.95,1.15] Hemorrhagic stroke All yr Same-day lag: 1.01 [0.90,1.12] 1-day lag: 1.03 [0.93,1.15] 3-day lag: 1.13 [0.98,1.30] summer Same-day lag: 1.02 [0.88,1.20] 1-day lag: 1.07 [0.91,1.26] 3-day lag: 1.20 [0.98,1.46] Winter Same-day lag: 1.05 [0.90,1.22] 1-day lag: 1.04 [0.91,1.19] 3-day lag: 1.11 [0.90,1.37] Transient cerebral ischemic attack All yr Same-day lag: 0.96 [0.90,1.02] 1-day lag: 0.99 [0.94,1.05] 3-day lag: 0.99 [0.94,1.05] 3-day lag: 0.99 [0.94,1.05] 3-day lag: 0.99 [0.91,1.08] 3-day lag: 0.99 [0.91,1.08] 3-day lag: 0.99 [0.91,1.08] 3-day lag: 0.99 [0.84,1.04] Winter Same-day lag: 0.95 [0.87,1.04] 1-day lag: 0.99 [0.92,1.07] 3-day lag: 0.99 [0.83,1.05] Notes: Adjusted ORs are provided for an IQR increase in the 3-day mean in Fig 1-4 for single and two-pollutant models.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: von Klot et al. (2005,	Outcome (ICD-9): Acute myocardial	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
088070)	infarction (410	Averaging Time: 24 h	Pooled RR Estimate [CI]:
Period of Study: 1992-2001 Location:	ICD-10: I21-I22), angina pectoris (411, 413	Mean (5th-95th percentile): Augsburg: 44.7 (16.8-81.4) Barcelona: 52.2 (25.3-89.2) Helsinki: 25.3 (9.5-57.6)	All cardiac admissions: 1.021 [1.005,1.048]
Augsburg, Germany	ICD-10: I20, I24), dysrhythmia (427		Myocardial infarction: 1.026
Barcelona, Spain	ICD-10: I46.0, 46.9, I47-I49, R00.1, R00.8), heart failure (428	Rome: 51.1 (23.3-89.4) Stockholm: 14.6 (6.4-30.0)	[0.995,1.058]
Helsinki, Finland	ICD-10: 150)	Monitoring Stations: NR	Angina pectoris: 1.008 [0.986,1.032]
Rome, Italy	Age Groups: 35+ yr	Copollutant (correlation): Augsburg	Notes: Rate ratios for 0-3 day lags are provided in graphical form (Fig 1).
Stockholm, Sweden	Study Design: Cohort	PNC: r = 0.52 CO: r = 0.57;	Same-day levels were significantly associated with cardiac readmissions.
	N: 22,006 MI survivors	NO ₂ : r = 0.64 O ₃ : r = -0.32	
	Statistical Analyses: GAM, Spearman correlation	Barcelona	
	Covariates: Temperature, dew point temp, avg barometric pressure, relative humidity	PNC: r = 0.29 CO: r = 0.39; NO ₂ : r = 0.36 O ₃ : r = -0.14	
	Season: NR	Helsinki	
	Dose-response Investigated: No	PNC: r = 0.46 CO: r = 0.21; NO ₂ : r = 0.40 O ₃ : r = 0.02	
	Statistical Package: R		
	Lags Considered: 0-3 days	Rome PNC: r = 0.33 CO: r = 0.31; NO ₂ : r = 0.48 O ₃ : r = -0.22	
		Stockholm PNC: r = 0.06 CO: r = 0.38; NO ₂ : r = 0.29 O ₃ : r = 0.15	
Reference: Wellenius et al. (2005,	Outcome (ICD-9): Congestive heart	Pollutant: PM ₁₀	PM Increment: 24 μg/m³ (IQR)
087483) Beriod of Study, Ion 1097 Nov 1000	failure (428.0-428.1)	Averaging Time: 24 h	Percent Increase [CI]: Single-pollutant:
Period of Study: Jan 1987-Nov 1999 Location: Pittsburgh, Pennsylvania	Age Groups: 65+ yr Study Design: Case-crossover	Mean (5th-95th percentile): 31.06 (8.89-70.49)	3.07 [1.59,4.57] Adj. for CO: -1.10 [-3.02,0.86]
	N: 55,019 patients	SD = 20.10	Adj. for NO ₂ : 0.52 [-1.46,2.53]
	Statistical Analyses: Conditional	Monitoring Stations: 17	Adj. for O ₃ : 2.80 [1.29,4.33]
	logistic regression, Pearson's pairwise correlation	Copollutant (correlation):	Adj. for SO ₂ : 2.18 [0.37,4.02]
	Covariates: Temperature, barometric pressure, dew point	CO: r = 0.57 $NO_2: r = 0.64$	Percent Increase (with 10 μg/m³ increment)
	Season: NR	O ₃ : r = 0.29	1.27 [0.66,1.88]
	Dose-response Investigated: No	SO ₂ : r = 0.51	
	Statistical Package: SAS		
	Lags Considered: 0-3 days		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Wellenius et al. (2005,	Outcome (ICD-NR): Ischemic stroke	Pollutant: PM ₁₀	PM Increment: 22.96 μg/m³ (IQR)
088685)	and hemorrhagic stroke	Averaging Time: 24 h	Percent Increase [CI]: Ischemic (same-
Period of Study: Jan 1986-Nov 1999	Age Groups: 65+ yr	Mean (SD): 32.69 (19.75)	day lag): 1.03 [0.04,2.04]
Location:	Study Design: Case-crossover (time-stratified)	Monitoring Stations: NR	Hemorrhagic: -0.58 [-5.48,4.58]
Birmingham, Chicago, Cleveland, Detroit, Minneapolis, New Haven,	N: 115,503 hospital admissions	(data obtained from the U.S. EPA)	Notes: Percent increase in rate for ischemic and hemorrhagic stroke are
Pittsburgh, Salt Lake City, Seattle	Statistical Analyses: Conditional logistic regression	Copollutant (correlation): CO: r = 0.43	provided for each city in graphical form (Fig A and B).
	Covariates: Temperature and humidity	NO_2 : $r = 0.53$	
	Season: NR	SO ₂ : r = 0.39	
	Dose-response Investigated: No	Other variables: Temp: r = 0.22	
	Statistical Package: SAS (v.9) and R-statistical package		
	Lags Considered: 0-2 days		
Reference: Wellenius et al.,(2006,	Outcome (ICD-9): Congestive heart	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
088748)	failure (428)	Averaging Time: 24 h	Percent Increase [CI]: Same-day lag:
Period of Study: Jan 1986-Nov 1999	Age Groups: 65+ yr	Median: Overall: 28.3	0.72 [0.35,1.10]
Location:	Study Design: Case-crossover (time-stratified)	Birmingham: 33.0	p-value = 0.0002
Birmingham, Chicago, Cleveland, Detroit, Minneapolis, New Haven,	N: 292,918 admissions	Chicago: 31.5	Notes: City-specific percent increas are graphed in Fig 1 for same-day la
Pittsburgh, Salt Lake City, Seattle	Statistical Analyses: Conditional	Cleveland: 34.5	showing a significant association in Chicago, Detroit, Seattle, and the
	logistic regression	Detroit: 29.5	summary values.
	Covariates: Temperature and barometric pressure	Minneapolis: 24.0	Percent increase in admission rate s are provided for lag 0-3 days in Fig 2
	Season: NR	New Haven: 22.	where same-day lag showed a
	Dose-response Investigated: No	Seattle: 25.8	significant association.
	Statistical Package: SAS (v.9) and R-	Monitoring Stations: NR	
	statistical package	(data obtained from the U.S. EPA)	
	Lags Considered: 0-3 days	Copollutant: NR	
Reference: Yang et al. (2004, <u>094376</u>)	Outcome (ICD-9): Cardiovascular	Pollutant: PM ₁₀	PM Increment: 66.33 μg/m³ (IQR)
Period of Study: 1997-2000	diseases (410-429)	Averaging Time: 24 h	OR Estimate [CI]: Temp >25°C: 1.43
Location: Kaohsiung, Taiwan	Age Groups: All Study Design: Case-crossover	Median (min-max): 78.82 (20.50-217.33)	[1.316,1.573] Temp <25°C: 1.568 [1.433,1.715]
	N: 29,661 admissions	Monitoring Stations: 6	Adj for SO ₂ Temp >25°C: 1.460 [1.333,1.599]
	Statistical Analyses: Conditional logistic regression	Copollutant: NR	Temp <25°C: 1.543 [1.404,1.696] Adj for NO₂ Temp >25°C: 1.306 [1.154,1.478]
	Covariates: Temperature and humidity		Temp <25°C: 0.912 [0.809,1.028] Adj for CO
	Season: NR		Temp >25°C: 1.260 [1.144,1.388]
	Dose-response Investigated: No		Temp <25°C: 1.259 [1.128,1.406] Adj for O ₃
	Statistical Package: SAS		Temp >25°C: 1.086 [0.967,1.220] Temp <25°C: 1.703 [1.541,1.883]
	Lags Considered: Cumulative 0-2 days		•

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Yang et al. (2008, <u>157160</u>)	Outcome (ICD-9): Congestive heart	Pollutant: PM ₁₀	PM Increment: 27.02 µg/m³ (IQR)
Period of Study: 1996-2004 Location: Taipei, Taiwan	failure (428)	Averaging Time: 24 h Mean (median, range, IQR):	OR [95% CI]:
	Age Groups: All		Single pollutant models: >20 °C: 1.15 [1.10-1.21]
	Study Design: Case-crossover N: 24,240 CHF hospital admissions	49.47 (44.71, 14.42-234.91, 33.08-44.71)	<20 °C: 0.99 [0.93-1.05]
	Statistical Analyses: Conditional	Monitoring Stations: 6 Copollutant: NR	Adjusted for SO ₂ : ≥ 20 °C: 1.23
	logistic regression		[1.17-1.30]
	Covariates: temperature, humidity		<20 °C: 0.96 [0.89-1.03]
	Season: All		Adjusted for NO ₂ : ≥ 20 °C: 1.03 [0.97-1.10]
	Dose-response Investigated: No		<20 °C: 0.97 [0.90-1.04]
	Statistical Package: SAS		Adjusted for CO: ≥ 20 °C: 1.09
	Lags Considered: Cumulative lag 0-2 days		[1.03-1.15]
			<20 °C: 0.96 [0.90-1.03]
			Adjusted for O₃: ≥ 20 °C: 1.10 [1.04-1.15]
			<20 °C: 1.00 [0.94-1.05]
Reference: Zanobetti and Schwartz	Outcome (ICD-9): Cardiovascular	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
(2002, <u>034821</u>) Period of Study: 1988-1994	disease (390-429) with/without diabetes (250)	Averaging Time: 24 h	Percent Change [CI]: All 4 cities
Location:	Age Groups: 65-74 and 75+ yr with diabetes, 65-74 and 75+ yr without	Median (25-75th percentile): Chicago: 33 (23-46)	<75 (w/ diabetes): 1.6 [1.2,2.0] 75+ (w/ diabetes): 2.0 [1.6,2.4] <75 (w/o diabetes): 0.9 [0.6,1.1]
Cook county (Chicago), Illinois	diabetes	Detroit: 32 (21-49)	75+ (w/o diabetes): 1.3 [1.0,1.5]
Wayne county (Detroit), Michigan Allegheny county (Pittsburgh),	Study Design: Time series	Pittsburgh: 30 (19-47)	Chicago
Pennsylvania	N: NR	Seattle: 27 (18-39) Monitoring Stations: NR (obtained from USEPA Aerometric Information Retrieval System) Copollutant: NR	<75 (w/ diabetes): 1.9 [1.1,2.7] 75+ (w/ diabetes): 2.0 [1.1,3.0]
and King county (Seattle), Washington	Statistical Analyses: GAM, meta- regression Covariates: Temperature, prior day's temperature, relative humidity,		<75 (w/o diabetes): 0.7 [0.2,1.2] 75+ (w/o diabetes): 1.2 [0.8,1.7]
			Detroit
	barometric pressure, day of the week	Copolitiant. NA	<75 (w/ diabetes): 1.3 [0.5,2.2] 75+ (w/ diabetes): 2.1 [1.0,3.1]
	Season: NR		<75 (w/o diabetes): 1.2 [0.7,1.7] 75+ (w/o diabetes): 1.2 [0.7,1.6]
	Dose-response Investigated: No		Pittsburgh <75 (w/ diabetes): 1.8 [0.9,2.7] 75+ (w/ diabetes): 0.9 [-0.2,2.0] <75 (w/o diabetes): 0.6 [0.1,1.2] 75+ (w/o diabetes): 1.6 [1.2,2.1]
			Seattle <75 (w/ diabetes): 1.9 [0.1,3.7] 75+ (w/ diabetes): 2.7 [0.7,4.8] <75 (w/o diabetes): 0.8 [0.0,1.6] 75+ (w/o diabetes): 0.9 [0.2,1.6]
			Notes : Overall percent increases were also provided for each city, yielding similar results.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Zanobetti and Schwartz	Outcome (ICD-9): Myocardial infarction	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
(2005, <u>088069</u>)	(410)	Averaging Time: 24 h	Percent Increase [CI]: MI only: 0.65
Period of Study: 1985-1999	Age Groups: >65 yr	Median: Ranged from 15.5-34.1Avg	[0.3,1]
Location: 21 U.S. cities (Birmingham, Alabama	Study Design: Case-crossover	across all cities = 27	Previous COPD admission: 1.3 [-
Boulder, Colorado	N: 302,453 admissions	Monitoring Stations: 1+ (data obtained	0.1,2.8]
Canton, Ohio Chicago, Illinois	Statistical Analyses: Conditional logistic regression	from USEPA's Aerometric Information Retrieval System)	Secondary pneumonia diagnosis: 1.4 [-0.8,3.6]
Cincinnati, Ohio Cleveland, Ohio	0 0	Copollutant: NR	Notes: Fig 1 presents percent change
Colorado Springs, Colorado	Covariates: Temperature	•	in MI per lag day, showing same-day
Detroit, Michigan Honolulu, Hawaii	Season: NR		lag to be significant. Fig 2 shows percent change with/without other co-
Houston, Texas Minneapolis-St. Paul, Minnesota	Dose-response Investigated: Yes		morbidities.
Nashville, Tennessee New Haven, Connecticut	Statistical Package: SAS (PROC PHREG)		
Pittsburgh, Pennsylvania Provo-Orem, Utah Salt Lake City, Utah Seattle, Washington Steubenville, Ohio Youngstown, Ohio)	Lags Considered: 0-2 days		

¹All units expressed in µg/m³ unless otherwise specified.

Table E-6. Short-term exposure-cardiovascular-ED/HA - PM_{10-2.5}.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Halonen et al. (2009,	Outcome: Cardiovascular	Pollutant: PM _{10-2.5}	PM Increment: Interquartile Range
180379)	Hospitalizations & Mortality (ICD 10: 100-99)	Averaging Time: Daily	Percent Change (Lower CI, Upper
Period of Study: 1998-2004	Age Groups: 65+ yr	Mean (SD): NR	CI): All Cardiovascular Morality
Location: Helsinki, Finland	Study Design: Time series	Min: 0.0	Lag 0: -0.01 (-1.52, 1.53) Lag 1: -0.26 (-1.69, 1.18)
	N: NR	25th percentile: 4.9	Lag 2: -0.61 (-2.03, 0.83)
	Statistical Analyses: Poisson, GAM	50th percentile: 7.5	Lag 3: -0.57 (-1.98, 0.85) 5-day mean: -0.70 (-2.56, 1.20)
	Covariates: Temperature, humidity,	75th percentile: 12.1	Coronary Heart Disease HA
	influenza epidemics, high pollen episodes, holidays	Max: 101.4	Lag 0: 1.12 (-0.28, 2.55) Lag 1: -0.38 (-1.68, 0.94)
	Dose-response Investigated? No	Monitoring Stations: NR	Lag 2: 0.01 (-1.33, 1.37)
	Statistical Package: R	Copollutant: PM<0.03, PM0.03-0.1, PM<0.1,	Lag̃ 3: -0.53 (-1.82, 0.78) 5-day mean: 0.23 (-0.29, 0.75)
	Lags Considered: lags 0-3 days; 5-day	PM<0.10.29, PM _{2.5} , CO, NO ₂	Stroke HA
	(0-4) mean	Co-pollutant Correlation	Lag 0: -1.33 (-3.26, 0.63) Lag 1: -1.90 (-3.82, 0.07) ‡
		PM<0.03: 0.14	Lag 2: -1.09 (-3.04, 0.89) Lag 3: -0.51 (-2.40, 1.43)
		PM0.03-0.1: 0.28	5-day mean: -2.21 (-4.75, 0.39)
		PM<0.1: 0.24	Arrhythmia HA
		PM<0.10.29: 0.20	Lag 0: 0.57 (-1.33, 2.49) Lag 1: -0.65 (-2.55, 1.29)
		PM _{2.5} : 0.25	Lag 2: 0.02 (-1.93, 2.00) Lag 3: -1.34 (-3.26, 0.62) 5-day mean: -1.11 (-3.68, 1.53)
			*p < 0.05, ‡p < 0.10

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Host et al. (2008,	Outcome (ICD-10): Daily hospitalizations for all cardiovascular (100-199), cardiac (100-152), and	Pollutant: PM _{10-2.5}	PM Increment: 10 μg/m³, and an 18.8 μg/m³ increase (corresponding to an increase in pollutant levels between
<u>155852</u>)(Host et al., 2008, <u>155852</u>) Period of Study: 2000-2003		Averaging Time: 24 h	
Location: Six French cities: Le Havre,	ischemic heart diseases (120-125). Age Groups: For cardiovascular Mean µg/m3 (5th -95th percent Le Havre: 7.3 (2.5-14.0)	Mean μg/m3 (5th -95th percentile): Le Havre: 7.3 (2.5-14.0)	the lowest of the 5th percentiles and the highest of the 95th percentiles of the cities' distributions)
Lille, Marseille, Paris, Rouen, and Toulouse	diseases: All ages, and restricted to ≥ 65 yr	Lille: 7.9 (2.2-13.7)	ERR (excess relative risk) Estimate [CI]:
	Study Design: Time series	Marseille: 11.0 (4.5-21.0)	For all cardiovascular diseases (10 µg/m³ increase): All ages: 0.5% [-
	N: NR (Total population of cities:	Paris: 8.3 (3.2-15.9)	1.2, 2.3]
	approximately 10 million)	Rouen: 7.0 (3.0-12.5)	≥ 65 yr: 1.0% [-1.0, 3.0]
	Statistical Analyses: Poisson regression	Toulouse: 7.7 (3.0-15.0)	For all cardiovascular diseases (18 µg/m³ increase): All ages: 1.0% [-
	Covariates: Seasons, days of the week, holidays, influenza epidemics,	Monitoring Stations: 13 total: 1 in Toulouse	2.3, 4.3] ≥ 65 yr: 1.9% [-2.0, 5.9]
	pollen counts, temperature, and temporal trends	4 in Paris	For cardiac diseases (10 µg/m ³
	•	2 each in other cities	increase): All ages: 0.1% [-1.9, 2.1]
	Dose-response Investigated: No		≥ 65 yr: 1.6% [-0.8, 4.1]
	Statistical Package: MGCV package in R software (R 2.1.1)	Overall: r>0.6	For cardiac diseases (18.8 µg/m³ increase): All ages: 0.1% [-3.6, 4.0]
	Lags Considered: Avg of 0-1 days	Ranged between $r = 0.28$ and $r = 0.73$ across the six cities.	≥ 65 yr: 3.1% [-1.5, 7.9]
			For ischemic heart diseases (10 µg/m³ increase): All ages: 2.8% [-0.8, 6.6]
			≥ 65 yr: 6.4% [1.6, 11.4]
			For ischemic heart diseases (18 µg/m³ increase): All ages: 5.4% [-1.5, 12.8]
			≥ 65 yr: 12.4 [3.1, 22.6]
Reference: Metzger et al. (2004, 044222)	Outcome (ICD-9): Emergency visits for ischemic heart disease (410-414),		PM Increment: 5 μg/m³ (approximately 1 SD)
Period of Study: Aug 1998-Aug 2000	cardiac dysrhythmias (427), cardiac arrest (427.5), congestive heart failure	Averaging Time: 24 h	RR [95% CI]: For 3 day ma: All CVD:
Location: Atlanta Metropolitan area	(428), peripheral vascular and cerebrovascular disease (433-437, 440,	Median μg/m3 (10% - 90% range): 9.1 (4.4, 16.2)	1.012 [0.985, 1.040]
(Georgia)	443-444, 451-453), atherosclerosis	Monitoring Stations: 1	Dysrhythmia: 1.021 [0.974, 1.070]
	(440), and stroke (436).	Copollutant (correlation):	Congestive heart failure: 1.020 [0.964-1.079]
	Age Groups: All	PM_{10} : $r = 0.59$ O_3 : $r = 0.35$	Ischemic heart disease: 0.994
	Study Design: Time series N: 4,407,535 emergency department	NO_2 : r = 0.46	[0.946-1.045]
	visits between 1993-2000 (data not reported for 1998 - 2000)	CO: $r = 0.32$ SO ₂ : $r = 0.21$ PM _{2.5} : $r = 0.43$ UFP: $r = 0.13$ PM _{2.5} water soluble metals: $r = 0.47$ PM _{2.5} sulfates: $r = 0.26$ PM _{2.5} acidity: $r = 0.23$ PM _{2.5} EC: $r = 0.51$ PM _{2.5} coxygenated hydrocarbon: $r = 0.31$ Other variables: Temperature: $r = 0.20$ Dew point: $r = 0.00$	Peripheral vascular and cerebrovascular disease: 1.022 [0.972-1.074]]
	Statistical Analyses: Poisson generalized linear modeling		Results for Lags 0-7 expressed in figures (see notes).
	Covariates: Day of the wk, hospital entry and exit indicator variables, federally observed holidays, temporal trends, temperature, dew point temperature		Notes: Fig 1: RR (95% CI) for single-day lag models for the association of ER visits for CVD with daily ambient PM _{10-2.5} .
	Season: All		Summary of Fig 1 results: Positive association at Lag 0.
	Dose-response Investigated: No		
	Statistical Package: SAS		
	Lags Considered: 3-day ma; lags 0 -7		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Peng et al. (2008, <u>156850</u>)	Outcome (ICD-9): Emergency	Pollutant: PM _{10-2.5}	PM Increment: 10 μg/m³
Period of Study: Jan 1999-Dec 2005	hospitalizations for: Cardiovascular disease, including heart failure (428), heart rhythm disturbances (426-427), cerebrovascular events (430-438), ischemic heart disease (410-414, 429), and peripheral vascular disease (440-448).	Averaging Time: 24 h	Percentage change [95% CI]: CVD: Lag
Location: 108 U.S. counties in the following states: Alabama, Arizona,		Mean μg/m3 (IQR): All counties assessed: 9.8 (6.9-15.0)	0 (unadjusted for PM _{2.5}): 0.36 [0.05, 0.68]
California, Colorado, Connecticut, District of Columbia, Florida, Georgia,		Counties in Eastern U.S.: 9.1 (6.6-13.1)	Lag 0 (adjusted for PM _{2.5}): 0.25 [-0.11, 0.60]
Idaho, Illinois, Indiana, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota,	Age Groups: 65 + yr, 65-74, 75+	Counties in Western U.S.: 15.4 (10.3-21.8)	Notes : Effect estimates for PM _{10-2.5} (0-2 day lags) are showing in Fig 2-5.
Missouri, Nevada, New Hampshire,	Study Design: Time series	inomitoring outlions. At icast i pair or	Fig 2: Percentage change in emergency hospital admissions for CVD per
New Jersey, New Mexico, New York, North Carolina, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas,	N: approximately 12 million Medicare enrollees (3.7 million CVD and 1.4 million RD admissions)	co-located monitors (physically located in the same place) for PM ₁₀ and PM _{2.5} per county	10 µg/m³ increase in PM (single pollutant model and model adjusted for PM _{2.5} concentration)
Utah, Virginia, Washington, West Virginia, Wisconsin	Statistical Analyses: Two-stage Bayesian hierarchical models:	Copollutant (correlation): $PM_{2.5}$: r = 0.12	Fig 4: Percentage change in emergency hospital admissions rate for CVD and
	Overdispersed Poisson models for	PM ₁₀ : r = 0.75	RD per a 10 μg/m³ increase in PM _{10-2.5}
	county-specific data. Bayesian hierarchical models to obtain national avg estimate	Other variables: Median within-county correlations between monitors: r = 0.60	(0-2 day lags, Eastern vs Western USA)
	Covariates: Day of the wk, age-specific intercept, temperature, dew point temperature, calendar time, indicator for age of 75 yr or older. Some models were adjusted for PM _{2.5} .		Fig 5: County-specific log relative risks of emergency hospital admissions for CVD per 10 μ g/m³ increase in PM _{10-2.5} at Lag 0 (unadjusted for PM _{2.5} and plotted vs percentage of urbanicity)
			No significant associations between
	Dose-response Investigated: No Statistical Package: R version 2.6.2		PM _{10-2.5} and cause-specific cardiovascular disease.
	Lags Considered: 0-2 days		
Reference: Tolbert et al. (2007,	Outcome (ICD-9): Combined CVD	Pollutant: PM _{10-2.5}	PM Increment: 5.89 μg/m³ (IQR)
<u>090316</u>)	group, including: Ischemic heart disease (410-414), cardiac	Averaging Time: 24 h	Risk ratio [95% CI]: CVD: 1.004
Period of Study: Aug 1998-Dec 2004	dysrhythmias (427), congestive heart	Mean (µg/m3) (median IQR, range,	(0.990-1.019)
Location: Atlanta Metropolitan area, Georgia	failure (428), and peripheral vascular and cardiovascular disease (433-437, 440, 443-445, and 451-453)	10th-90th percentiles): 9.0 (8.2	
	Age Groups: All	5.6-11.5	
	Study Design: Time series	0.5-50.3	
	N: NR for 1998-2004. For 1993-2004:	3.6-15.1)	
	10,234,490 ER visits (283,360 visits).	Monitoring Stations: 1	
	Statistical Analyses: Poisson generalized linear models	Copollutant (correlation): PM_{10} : $r = 0.67$ O_3 : $r = 0.36$	
	Covariates: Long-term temporal trends, temperature, dew point, days of week, federal holidays, hospital entry and exit	\overrightarrow{NO}_2 : r = 0.48 \overrightarrow{CO} : r = 0.38SO ₂ : r = 0.16 $\overrightarrow{PM}_{2.5}$: r = 0.47	
	Season: All	PM _{2.5} SO ₄ : r = 0.32 PM _{2.5} EC: r = 0.49	
	Dose-response Investigated: No	PM _{2.5} OC: r = 0.49 PM _{2.5} TC: r = 0.51	
	Statistical Package: SAS version 9.1	PM _{2.5} water-sol metals: r = 0.50 OHC: r = 0.41	
	Lags Considered: 3-day ma (lag 0-2)	OHO. 1 - 0.41	

Table E-7. Short-term exposure – cardiovascular: ED/HA PM_{2.5} (including PM components/sources)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)	
Reference: Andersen et al. (2008,	Outcome (ICD-10): CVD, including	Pollutant: PM _{2.5}	PM Increment: 5 μg/m³ (IQR)	
Period of Study: May 2001-Dec 2004 Location: Copenhagen, Denmark	angina pectoris (120), myocardial infarction (121-22), other acute ischemic heart diseases (124), chronic ischaemic heart disease (125), pulmonary embolism (126), cardiac arrest (146), cardiac arrhythmias (148-48), and heart failure (150). RD, including chronic bronchitis (J41-42), emphysema (J43), other chronic obstructive pulmonary disease (J44), asthma (J45), and status asthmaticus (J46). Pediatric hospital admissions for asthma (J45) and status asthmaticus (J46). Age Groups: > 65 yr (CVD and RD),	Averaging Time: 24 h Mean µgm³ (SD): 10(5) Median: 9 IQR: 7-12 99th percentile): 28 Monitoring Stations: 1 Copollutant (correlation): NCtot: r = 0.40 NC100: r = 0.29 NCa12: r = 0.07 Nca23: r = -0.25 NCa57: r = 0.51	gina pectoris (120), myocardial arction (121-22), other acute ischemic art diseases (124), chronic ischaemic art diseases (125), pulmonary holism (126), cardiac arrest (146), rdiac arrhythmias (148-48), and heart lure (150). RD, including chronic onchitis (J41-42), emphysema (J43), ere chronic obstructive pulmonary sease (J44), asthma (J45) and status thmaticus (J46). Pediatric hospital missions for asthma (J45) and status thmaticus (J46). Rediatric hospital missions for asthma (J45) and status thmaticus (J46). Rediatric hospital missions for asthma (J45) and status thmaticus (J46). Rediatric hospital missions for asthma (J45) and status thmaticus (J46). Rediatric hospital hospital admissions (Amean µgm³ (SD): 10(5) Median: 9 [1.01-1.06] (J.01-1.06] (J	Relative risk (RR) Estimate [CI]: CVD hospital admissions (4-day avg, lag 0 - 3), age 65+: One-pollutant model: 1.03 [1.01-1.06] Adj for NCtot: 1.03 [1.01-1.06] RD hospital admissions (5-day avg, lag
	Study Design: Time series	PM ₁₀ : r = 0.80 CO: r = 0.46	One-pollutant model: 1.15 [1.00-1.32]	
	N: NR	NO ₂ : r = 0.42 NO _x : r = 0.40	Adj for NCtot: 1.13 [0.98-1.32]	
	Statistical Analyses: Poisson GAM Covariates: Temperature, dew-point temperature, long-term trend, seasonality, influenza, day of the week, public holidays, school holidays (only for 5-18 yr olds), pollen (only for pediatric asthma outcome) Season: NR Dose-response Investigated: No Statistical Package: R statistical software (gam procedure, mgcv package) Lags Considered: Lag 0-5 days, 4-day pollutant avg (lag 0-3) for CVD, 5-day avg (lag 0-4) for RD, and a 6-day avg (lag 0-5) for asthma.	NO $_{\rm X}$: r = 0.40 curbside: r = 0.28 O $_{\rm 3}$: r = -0.20 Other variables: Temperature: r = -0.01 Relative humidity: r = 0.21	Estimates for individual day lags reported only in Fig form (see notes): Notes: Fig 2: Relative risks and 95% confidence intervals per IQR in single day concentration (0-5 day lag). Summary: CVD: Marginally significant association at Lag 0. RD: No statistically or marginally significant associations. Positive associations at Lag 4-5.Asthma: Wide confidence intervals make interpretation difficult. Positive associations at Lag 1, 2, 3.	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ballester et al. (2006,	Outcome (ICD-9): The number of daily	Pollutant: Black smoke (BS)	PM Increment: 10 μg/m ³
088746)	emergency admissions with primary diagnosis for all cardiovascular disease	Averaging Time: 24 h	Relative risk [CI]: Relative risks are
Period of Study: 1995-1999 Location: 6 Spanish cities: Barcelona,	(390-459) and heart diseases (410-414, 427, 428)	Mean μg/m3 (10-90th percentile): Overall mean NR.	expressed only in the form of figures (see notes).
Bilbao, Pamplona, Valencia, Vigo, Zaragoza	Age Groups: All ages	City specific means	Percentage change in risk [CI]: All cardiovascular diseases (avg of lags 0 -
v	Study Design: Time series	Barcelona: 35.0 (19.4, 53.0)	1) 0.24% [-0.18, 0.67]
	N: NR	Bilbao: 18.5 (8.8, 31.0)	Heart disease (avg of lags 0 -1) 0.71% [0.13, 1.29]
	Statistical Analyses: Poisson GAMs	Pamplona: 7.4 (2.3, 13.0)	Notes: Relative risks for the single
	Covariates: Daily temperature, barometric pressure, and relative	Valencia: 40.3 (20.3, 66.4)	pollutant models are expressed in Fig 2.
	humidity	Vigo: 79.4 (43.9, 122.3)	Fig 2: Time sequence of the combined association between BS and hospital
	Daily influenza incidence, day of the	Zaragoza: 40.4 (23.8, 61.3)	admissions for all CVD (A) and heart disease (B). Summary: Significant,
	week, holidays, unusual events (ex. medical strikes), seasonal variation, trend of the series	Monitoring Stations: NR (at least 3 stations per city)	positive association of TSP with both overall CVD and heart disease hospitalizations at Lag 0.
	Season: NR	Copollutant (correlation): Summary of	Relative risks for 2 pollutant models are
	Dose-response Investigated: No	the correlation coefficients between each pair of pollutants within cities:	expressed in Fig 3: Combined estimates of the association between
	Statistical Package: S-Plus GAM function	PM_{10} : r = 0.48 TSP: from r = 0.16 to r = 0.69 (median r = 0.43)	hospital admissions for heart diseases and air pollutants (avg of lags 0-1
	Lags Considered: 0-3 days, 0- to 1-day avg	NO_2 : from r = 0.23 to r = 0.69 (median r = 0.48)	Adjusted for CO, NO ₂ , O ₃ , or SO ₂). Summary: Significant, positive association remains after adjusting for
		SO ₂ : from r = 0.09 to r = 0.59 (median r = 0.24) CO: from r = 0.62 to r = 0.69	NO ₂ , O ₃ , and SO ₂ . Association remains positive but becomes marginally
		(median r = 0.69) O ₃ : from r = -0.43 to r = -0.06 (median r = -0.16)	significant after adjusting for CO.
Reference: Ballester et al. (2006,	Outcome (ICD-9): The number of daily	Pollutant: TSP	PM Increment: 10 μg/m ³
088746) Boriod of Study: 1002 1000	emergency admissions with primary diagnosis for all cardiovascular disease	Averaging Time: 24 h	Relative risk [CI]: Relative risks are
Period of Study: 1993-1999 Location: 7 Spanish cities: Barcelona,	(390-459) and heart diseases (410-414, 427, 428)	Mean μg/m3 (10-90th percentile): Overall mean NR.	expressed only in the form of figures (see notes).
Bilbao, Cartagena, Castellon, Gijon, Oviedo, Valencia	Age Groups: All ages	City specific means Barcelona: 51.8 (29.4, 78.8)	Percentage change in risk [CI]: All cardiovascular diseases: 0.07% [-0.23, 0.36]
	Study Design: Time series	Bilbao: 58.3 (30.3, 92.3)	
	N: NR	Cartagena: 54.9 (32.5, 79.9) Castellon: 60.4 (32.0, 92.1)	Heart disease 0.45% [0.04, 0.86]
	Statistical Analyses: Poisson GAMs Covariates: Daily temperature,	Gijon: 77.4 (47.4, 118.3) Oviedo: 76.0 (48.3, 111.8) Valencia: 61.0 (44.1, 80.7)	Notes : Relative risks for the single pollutant models are expressed in Fig 2.
	barometric pressure, and relative humidity	Monitoring Stations: NR (at least three stations per city)	Fig 2: Time sequence of the combined association between TSP and hospital admissions for all CVD (A) and heart
	Daily influenza incidence, day of the week, holidays, unusual events (ex.	Copollutant (correlation): Summary of the correlation coefficients between	disease (B).
	medical strikes), seasonal variation, trend of the series	each pair of pollutants within cities: BS: from r = 0.16 to r = 0.69 (median r = 0.43)	Summary of results: Positive, marginally significant association of TSP with overall CVD at Lag 0. Positive,
	Season: NR	PM_{10} : NA NO ₂ : from r = -0.13 to r = 0.65	statistically significant relation between TSP and heart disease hospitalizations
	Dose-response Investigated: No	(median r = 0.48)	at Lag 0.
	Statistical Package: S-Plus GAM function	SO ₂ : from r = 0.06 to r = 0.69 (median r = 0.31) CO: from r = 0.06 to r = 0.59	Relative risks for 2 pollutant models are expressed in Fig 3:
	Lags Considered: 0-3 days, 0- to 1-day avg	(median $r = 0.47$) O ₃ : from $r = -0.27$ to $r = 0.07$ (median $r = -0.03$)	Fig 3: Combined estimates of the association between hospital admissions for heart diseases and air pollutants (avg of lags 0-1 adjusted for CO, NO_2 , O_3 , or SO_2).
			Summary of results: Small positive significant or marginally significant associations between TSP and general CVD and heart disease hospitalizations remain constant after adjustment for CO, NO ₂ , O ₃ , or SO ₂ .

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Bell et al. (2008, <u>091268</u>) Period of Study: 1995-2002	Outcome (ICD-9): Hospital admissions for ischemic heart disease (410, 411, 414), cerebrovascular disease	Pollutant: PM _{2.5} Averaging Time: 24 h	PM Increment: 20 μg/m³ (near IQR) Percentage increase estimate [95% CI]:
Location: Taipei, Taiwan	(430-437), asthma (493), and pneumonia (486).	Mean µg/m3 (range IQR): 31.6 (0.50-355.0 20.2)	Ischemic heart disease: L0: 3.48 (-0.39, 7.51)
	Age Groups: All	Monitoring Stations: 2	L1: 3.55 (-0.30, 7.56) L2: 3.32 (-0.50, 7.29)
	Study Design: Time series	Copollutant (correlation): NR	L3: 2.80 (-1.04, 6.79) L03: 8.38 (2.28, 14.84)
	N: 6,909 hospital admissions for ischaemic heart diseases, 11,466 for cerebrovascular disease, 19,966 for pneumonia, and 10,231 for asthma	coponaum (cononauon), m	Cerebrovascular disease: L0: -2.22 (-50.2, 0.67) L1: -1.30 (-4.08, 1.55)
	Statistical Analyses: Poisson regression		L2: 0.24 (-2.49, 3.040 L3: 1.21 (-1.41, 3.90) L03: -1.45 (-5.58, 2.87)
	Covariates: Day of the week, time, apparent temperature, long-term trends, seasonality		Asthma: L0: 0.46 (-2.41, 3.42) L1: -1.36 (-4.33, 1.71) L2: -0.83 (-3.67, 2.10)
	Season: All		L3: -0.78 (-3.63, 2.16) L03: -1.75 (-6.21, 2.92)
	Dose-response Investigated: No		
	Statistical Package: NR		Pneumonia: L0: 0.06 (-2.74, 2.94) L1: 0.34 (-2.446, 3.20)
	Lags Considered: lags 0-3 days, mean of lags 0-3		L2: -0.59 (-3.38, 2.29) L3: -0.44 (-3.22, 2.41) L03: -0.61 (-4.87, 3.85)
Reference: Bell et al. (2008, <u>091268</u>) Period of Study: 1999-2005	Outcome (ICD-9): Heart failure (428), heart rhythm disturbances (426-427), cerebrovascular events (430-438)	Pollutant: PM _{2.5} Averaging Time: 24 h	PM Increment: 10 μg/m³ Percent increase [95% PI]:
Location: 202 U.S. counties	cerebrovascular events (430-438), ischemic heart disease (410-414, 429), peripheral vascular disease (440-449), COPD (490-492), respiratory tract infections (464 - 466, 480 - 487)	Mean (μg/m3): Descriptive information	Cardiovascular admissions:
		presented in Fig S2 (boxplots): IQR: 8.7 µg/m³	Lag 0 (all seasons): 0.80 [0.59-1.01] Lag 0 (winter, national): 1.49 [1.09-1.89]
	Age Groups: 65+	Monitoring Stations: NR	Lag 0 (winter, northeast): 2.01 [1.39-2.63]
	Study Design: Time series	Copollutant (correlation): NR	Lag 0 (winter, southeast): 1.06 [-0.07-2.21]
	N: NR	openature (berrolation). The	Lag 0 (winter, northwest): 0.85
	Statistical Analyses: Two-stage Bayesian hierarchical model to find national avg		[-4.11-6.07] Lag 0 (winter, southwest): 0.76 [-0.25-1.79] Lag 0 (spring, national): 0.91
	First stage: Poisson regression (county-specific)		[0.47-1.35] Lag 0 (spring, northeast) 0.95 [0.32-1.58]
	Covariates: Day of the week, temperature, dew point temperature, temporal trends, indicator for persons 75+ yr, population size		Lag 0 (spring, southeast): 0.75 [-0.26-1.78] Lag 0 (spring, northwest): -0.07 [-12.40-13.98] Lag 0 (spring, southwest): 1.78 [-0.87-4.51] Lag 0 (summer, national): 0.18 [-0.23-0.58] Lag 0 (summer, northeast): 0.55
	Season: All, Jun-Aug (Summer), Sep-Nov (Fall), Dec-Feb (Winter), Mar-May (Spring)		
	Dose-response Investigated: No		[0.08-1.02] Lag 0 (summer, southeast): -0.67
	Statistical Package: NR		[-1.60-0.26]
	Lags Considered: 0- to 2-day lags		Lag 0 (summer, northwest): -1.55 [-15.22-14.31]
			Lag 0 (summer, southwest): -1.20 [-4.90-2.65]
			Lag 0 (fall, national): 0.68 [0.29-1.07] Lag 0 (fall, northeast): 1.03 [0.48-1.58] Lag 0 (fall, southeast): 0.17 [-0.72-1.07] Lag 0 (fall, southwest): -0.67 [-6.96-6.05] Lag 0 (fall, southwest): 0.30 [-0.98-1.59] Lag 1 (all seasons): 0.07 [-0.12-0.26] Lag 1 (winter): 0.56 [0.16-0.96] Lag 1 (spring): -0.10 [-0.58-0.39] Lag 1 (summer): -0.16 [-0.54-0.22] Lag 1 (fall): 0.04 [-0.28-0.35] Lag 2 (all seasons): [0.06 [-0.12-0.23] Lag 2 (winter): 0.27 [-0.12-0.65]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Lag 2 (summer): -0.12 [-0.50-0.26] Lag 2 (fall): 0.02 [-0.30-0.34] Respiratory admissions: Lag 0 (all
			seasons): 0.22 [-0.12-0.56] Lag 0 (winter, national): 1.05 [0.29-1.82] Lag 0 (winter, northeast): 1.76
			[0.60-2.93] Lag 0 (winter, southeast): 0.59
			[-1.35-2.58] Lag 0 (winter, northwest): -0.07 [-6.74-7.08]
			Lag 0 (winter, southwest): 0.03 [-1.25-1.34]
			Lag 0 (spring, national): 0.31 [-0.47-1.11]
			Lag 0 (spring, northeast): 0.34 [-0.66-1.34] Lag 0 (spring, southeast): -0.06
			[-1.77-1.68] Lag 0 (spring, northwest): -8.52
			[-25.62-12.51] Lag 0 (spring, southwest): 1.87
			[-2.00-5.90] Lag 0 (summer, national): -0.62 [-1.33-0.09]
			Lag 0 (summer, northeast): -0.8 [-1.65-0.07]
			Lag 0 (summer, southeast): -0.15 [-1.88-1.61]
			Lag 0 (summer, northwest): 0.25 [-21.46-27.96] Lag 0 (summer, southwest): 0.64
			[-5.38-7.04] Lag 0 (fall, national): 0.02 [-0.63-0.67]
			Lag 0 (fall, northeast): -0.01 [-0.87-0.85] Lag 0 (fall, southeast): -0.58 [-2.06-0.91]
			Lag 0 (fall, northwest): -1.38 [-11.84-10.32]
			Lag 0 (fall, southwest): 1.77 [-0.73-4.33] Lag 1 (all seasons): 0.05 [-0.29-0.39]
			Lag 1 (winter): 0.50 [-0.27-1.27] Lag 1 (spring): -0.24 [-1.01-0.53] Lag 1 (summer): 0.28 [-0.39-0.95]
			Lag 1 (fall): 0.15 [-0.49-0.79 Lag 2 (all seasons): 0.41 [0.09-0.74]
			Lag 2 (winter, national): 0.72 [0.01-1.43] Lag 2 (winter, northeast): 0.79 [-0.21-1.80]
			Lag 2 (winter, southeast): 0.4 [-1.45, 2.27]
			Lag 2 (winter, northwest): -0.06 [-6.52-6.85] Lag 2 (winter, southwest): 1.2
			[-0.10-2.52] Lag 2 (spring, national): 0.35
			[-0.29-0.99] Lag 2 (spring, northeast): 0.04
			[-0.88-0.97] Lag 2 (spring, southeast): 0.75 [-0.82-2.34]
			Lag 2 (spring, northwest): 2.29 [-14.26-22.03]
			Lag 2 (spring, southwest): 1.05 [-2.18-4.39]
			Lag 2 (summer, national): 0.57 [-0.07-1.23] Lag 2 (summer, northeast): 0.77
			[-0.01-1.56] Lag 2 (summer, southeast): -0.52
			[-2.07-1.06] Lag 2 (summer, northwest): 0.74
			[-18.73-24.86] Lag 2 (summer, southwest): 2.41 [-2.61-7.69]
			Lag 2 (fall, national): 0.39 [-0.22-1.01] Lag 2 (fall, northeast): 0.12 [-0.82-1.07]
			Lag 2 (fall, southeast): 0.14 [-1.29-1.59]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Lag 2 (fall, northwest): -0.74 [-10.08-9.58] Lag 2 (fall, southwest): 0.97[-1.36-3.36]
Reference: Bell et al. (2009, <u>191007</u>)	Outcome: CVD hospital admissions	Pollutant: PM _{2.5}	Increment: 20% of the population acquiring air conditioning
Period of Study: 1999-2005	Study Design: Retrospective Cohort	Averaging Time: 24 h	Percent Change (95% CI) in
Location: 168 U.S. Counties	Covariates: Socio-economic conditions, long term temperature	Mean (SD) Unit: NR Range (Min, Max): NR	community-specific PM health effect estimates for CVD hospital
	Statistical Analysis: Bayesian hierarchical model	Copollutant (correlation): NR	admissions Any AC, including window units Yearly health effect: -4.3 (-72.7 to 4.2)
	Age Groups: ≥ 65 yr		Summer health effect: -148 (-327 to 31.1) Winter health effect: -80.0 (-182 to 22.0)
			Central AC Yearly health effect: -42.5(-63.4-21.6) Summer health effect: -79.5 (-143 to 15.7)
Reference: Bell et al. (2009, <u>191997</u>)	Outcome: Cardiovascular HA	Pollutant: PM _{2.5}	Winter health effect: -41.9 (-124 to 40.0) PM Increment: Interquartile Range in
Period of Study: 1999-2005	Age Groups: 65+	Averaging Time: Daily	the fraction of PM _{2.5}
Location: U.S.	Study Design: time series	Mean: EC: 0.715	Percent Increase in PM Health Effect (Lower CI, Upper CI), lag
	N: NR	Ni: 0.002 V: 0.003	EC: 25.8 (4.4, 47.2), lag 0 EC + Ni: 14.0 (-7.6, 35.5), lag 0
	Statistical Analyses: Bayesian Hierarchical Regression	Min: EC: 0.309	EC + V: 14.9 (-7.8, 37.6), lag 0 EC+ V, HS education: 15.0 (3.3, 26.8),
	Covariates: time trend, day of week,	Ni: 0.003	lag 0
	seasonality, dew point, temperature	V: 0.001 Max:	EC+ V, median income: 15.8 (4.1, 27.5), lag 0
	Statistical Package: NR	EC: 1.73 Ni: 0.021	EČ+ V, racial composition: 14.2 (2.8, 25.6), lag 0
	Lags Considered: 0-2	V: 0.010	EC+ V, percent living in urban area:
		Interquartile Range: EC: 0.245	14.7 (3.1, 26.3), lag 0 EC+ V, population: 13.6 (2.2, 25.0), lag
		Ni: 0.001 V: 0.001	0 EC + Ni, V: 11.9 (-10.4, 43.2), lag 0
		Interquartile Range of Percents:	Ni: 19.0 (9.9, 28.2), lag 0
		EC: 1.7 Ni: 0.01	Ni + EC: 17.3 (7.7, 26.9), lag 0 Ni + V: 15.5 (4.1, 26.9), lag 0
		V: 0.01	Ni + EC, V: 14.9 (3.4, 26.4), lag 0 V: 27.5 (10.6, 44.4), lag 0
		Monitoring Stations: NR	V + EC: 23.1 (4.9, 41.4), lag 0
		Copollutant: Al, NH4+, As, Ca, Cl, Cu, EC, OMC, Fe, Pb, Mg. Ni, NO ₃ -, K, Si, Na+, SO ₄ =, Ti, V, Zn	V+ Ni: 10.9 (-9.6, 31.5), lag 0 V + EC, Ni: 8.1 (-13.3, 29.5), lag 0 EC: 11.8 (-69.2, 92.8), lag 1
		Co-pollutant Correlation:	EC: 21.0 (-46.6, 88.6), lag 2 Ni: 20.6 (-15.5, 56.7), lag 1
		Ni, V: 0.48 V. EC: 0.33	Ni: -2.3 (-32.5, 27.9), lag 2 V: 34.0 (-31.2, 99.1), lag 1
		v, EC. 0.33 Ni, EC: 0.30	V: 8.0 (-46.8, 62.7), lag 2
		Note: Pollutant concentrations available	11.5), lay 0
		for all fractions of PM _{2.5}	Median income: 21.3 (-20.0, 62.5), lag 0 Percent black: 26.9 (-15.8, 69.6), lag 0 Percent living in urban area: 34.4 (- 29.0, 97.8), lag0 Population: -4.3 (-13.3, 4.8), lag 0
			Notes: Interquartile ranges in percent HS education, median income, percent black, percent living in urban area, and population are 5.2 %, \$9,223, 17.3%, 11.0%, and 549,283 respectively.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chan et al. (2007, <u>147787</u>)	Outcome: Cerebrovascular Emergency	Pollutant: PM _{2.5}	PM Increment: Interquartile Range
Period of Study: Apr 1997-Dec 2002	Admissions	Averaging Time: 24 h	(19.7 µg/m²)
Location: Boston, MA	Age Groups: 50+ yr	Mean (SD): 31.5 (16.0)	Percent Change (Lower CI, Upper CI), p-value:
	Study Design: Time series	Min: 15.6	Cerebrovascular Disease Lag 0: 1.006 (0.993, 1.019)
	Statistical Analyses: GAM Poisosn Regression	Max: 200.6	Lag 1: 1.002 (0.990, 1.014)
	Covariates: Yr, mo, day of wk, temperature, dew point	IQR: 19.7 Monitoring Stations: 16	Lag 2: 1.015 (0.978, 1.052) Lag 3: 1.021 (1.005, 1.037) Lag 3 + O ₃ : 1.009 (0.987, 1.031)
	Dose-response Investigated? No	Copollutant: O ₃ , CO, SO ₂ , NO ₂ , PM ₁₀	Lag 3 + CO: 1.014 (0.993, 1.035) Lag 3 + O ₃ + CO: 1.009 (0.987, 1.031)
	Statistical Package: NR	Co-pollutant Correlation	- ,
	Lags Considered: 0-3 days	O ₃ : 0.33 CO: 0.44 SO ₂ : 0.51	Stroke Lag 0: 0.931 (0.831, 1.031) Lag 1: 0.936 (0.845, 1.027) Lag 2: 0.931 (0.820, 1.042)
		NO ₂ : 0.50	Lag 3: 0.991 (0.969, 1.013)
		PM ₁₀ : 0.61	Ischaemic stroke Lag 0: 0.981 (0.907, 1.055) Lag 1: 0.994 (0.920, 1.078) Lag 2: 0.960 (0.885, 1.035) Lag 3: 1.059 (0.984, 1.134)
			Haemorrhagic stroke Lag 0: 0.870 (0.740, 1.010) Lag 1: 0.882 (0.761, 1.003) Lag 2: 0.909 (0.810, 1.008) Lag 3: 0.921 (0.830, 1.012)
Reference: Chan et al. (2008, <u>093297</u>)	Outcome (ICD-9): Emergency visits for ischaemic heart diseases (410-411,	Pollutant: PM _{2.5}	PM Increment: 19.7 μg/m³ (IQR)
Period of Study: 1995-2002	414), cerebrovascular diseases (430-	Averaging Time: 24 h	OR [95% CI]: In environmental conditions without dust storms (results
Location: Taipei Metropolitan area, Taiwan	437), and COPD (493, 496)	Mean μg/m3 (SD): NR	only given for best-fitting model)
	Age Groups: All Study Design: Time series	Monitoring Stations: 1	Lag 6 days: 1.024 (1.004, 1.044)
	N: NR	Copollutant (correlation): NR	
	Statistical Analyses: Poisson		
	regression		
	Covariates: Yr, mo, day of wk, temperature, dewpoint temperature, PM ₁₀ , NO ₂		
	Season: All		
	Dose-response Investigated: No		
	Statistical Package: SAS version 8.0		
	Lags Considered: 0- to 7-day lags		
Reference: Delfino et al, (2008, 156390)	Outcome: Cardiovascular hospital admissions	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study: October	Study Design: Time series	Averaging Time: Hourly Mean (SD) Unit by county:	Relative Rate (Min CI, Max CI) All Cardiovascular
2001–2003–November 2003	Statistical Analysis: Poisson	Los Angeles	All Periods: 0.996 (0.989-1.003) Pre-Wildfire: 0.992 (0.976-1.009)
Location: Southern California	regression with GEE	Before Fires: 27.2 (12.4) μg/m ³ During Fires: 54.1 (21.0) μg/m ³	Wildfire: 1.008 (0.999-1.018), $p = 0.104$
	Age Groups: All	After Fires: 15.9 (5.5) µg/m ³	Post-Wildfire: 0.991 (0.964-1.019), p = 0.955
		Orange Before Fires: 23.2 (9.6) µg/m³ During Fires: 64.3 (26.5) µg/m³ After Fires: 15.5 (10.2) µg/m³ Riverside Before Fires: 32.7 (14.7) µg/m³ During Fires: 42.1 (25.5) µg/m³	Ischaemic Heart Disease All Periods: 0.991 (0.980-1.003) Pre-Wildfire: 0.990 (0.963-1.017) Wildfire: 0.117 (0.990-1.024), p = 0.313 Post-Wildfire: 0.989 (0.950-1.030), p = 0.076
		After Fires: 16.9 (10.2) µg/m ³	p = 0.976
		San Bernadino Before Fires: 35.7 (16.6) µg/m³ During Fires: 45.3 (28.7) µg/m³ After Fires: 18.5 (8.3) µg/m³ San Diego Before Fires: 18.5 (6.7) µg/m³	Congestive Heart Failure All Periods: 0.989 (0.974-1.004) Pre-Wildfire: 0.978 (0.942-1.015) Wildfire: 1.016 (0.933-1.039), p = 0.096 Post-Wildfire: 0.969 (0.914-1.027),

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
-------	------------------	-----------------------------	---------------------------

During Fires: 76.1 (66.6) μg/m³ After Fires: 14.2 (7.2) μg/m³ Ventura Before Fires: 18.4 (8.3) µg/m³ During Fires: 50.1 (50.5) µg/m³ After Fires: 12.9 (4.3) µg/m³ Copollutant (correlation): NR

Cardiac Dysrhythmia All Periods: 0.980 (0.962-0.998) Pre-Wildfire: 0.979 (0.935-1.025) Wildfire: 0.989 (0.961-1.017), p = 0.721Post-Wildfire: 0.976 (0.912-1.044), p = 0.934

Cerebrovascular Disease and Stroke Cereprovascular Disease and Custos
All Periods: 1.019 (1.004-1.035)
Pre-Wildfire: 1.015 (0.996-1.052)
Wildfire: 1.016 (0.997-1.036), p = 0.971 Post-Wildfire: 1.044 (0.987-1.104), p = 0.379

Relative Rate (Min CI, Max CI) in

relation to pre-wildfire period (1) All Cardiovascular: Wildfire, unadjusted for PM_{2.5}: 0.958 (0.920-0.997) Wildfire, adjusted for PM2.5: 0.947 (0.902 - 0.994)Post-wildfire, unadjusted for PM2.5: 1.061 (1.006-1.119) Post-wildfire, adjusted for PM_{2.5}: 1.053 (0.994-1.114)Ischaemic Heart Disease: Wildfire, unadjusted for PM2.5: 0.913 (0.852-Wildfire, adjusted for PM_{2.5}: 0.905 (0.832 - 0.985)Post-wildfire, unadjusted for PM_{2.5}: 1.029 (0.943-1.123) Post-wildfire, adjusted for PM_{2.5}: 1.029 (0.936-1.131)Congestive Heart Failure: Wildfire, Wildfire, adjusted for PM_{2.5}: 0.911 (0.819-1.014) Post-wildfire, unadjusted for PM_{2.5}: 1.113 (0.997-1.242) Post-wildfire, adjusted for PM_{2.5}: 1.105 (0.982-1.244) Cardiac Dysrhythmia: Wildfire, unadjusted for PM_{2.5}: 0.968 (0.874-1 072) Wildfire, adjusted for PM_{2.5}: 0.964 (0.851-1.093)Post-wildfire, unadjusted for PM_{2.5}: 1.089 (0.949-1.251) Post-wildfire, adjusted for PM_{2.5}: 1.057 (0.914-1.223)Cerebrovascular Disease and Stroke: Wildfire, unadjusted for PM_{2.5}: 1.066 (0.981-1.159)Wildfire, adjusted for PM2.5: 1.017 (0.922-1.123)Post-wildfire, unadjusted for PM2.5: 1.013 (0.907-1.132) Post-wildfire, adjusted for PM_{2.5}: 1.013 (0.902-1.138)

Reference: Dominici et al. (2006,

Period of Study: 1999-2002

Location: 204 U.S. counties. located in: Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, District of Columbia, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas

Outcome (ICD-9): Daily counts of hospital admissions for primary diagnosis of heart failure (428), heart rhythm disturbances (426-427) cerebrovascular events (430-438), ischemic heart disease (410-414, 429), peripheral vascular disease (440-448), chronic obstructive pulmonary disease (490-492), and respiratory tract infections (464-466, 480-487).

Age Groups: >65 yr Study Design: Time series

N: 11.5 million Medicare enrollees

Statistical Analyses: Bayesian 2-stage

Pollutant: PM_{2.5} Averaging Time: 24 h

Mean (µg/m³) (IQR): 13.4 (11.3-15.2)

Monitoring Stations: NR Copollutant (correlation): NR

Other variables: Median of pairwise correlations among PM2.5 monitors within the same county for 2000: r = 0.91 (IQR: 0.81-0.95)

PM Increment: 10 µg/m³ (Results in figures; see notes)

Percent increase in risk [95% PI]: Cerebrovascular disease (Lag 0): Age 65+: 0.81 [0.30, 1.32] Age 65-74: 0.91 [0.01, 1.82] Age 75+: 0.80 [0.21, 1.38]

Peripheral vascular disease (Lag 0): Age 65+: 0.86 [-0.06, 1.79] Age 65-74: 1.21 [-0.26, 2.67] Age 75+: 0.86 [-0.39, 2.11]

Ischemic heart disease (Lag 2): Age 65+: 0.44 [0.02, 0.86] Age 65-74: 0.37 [-0.22, 0.96] Age 75+: 0.52 [-0.01, 1.04]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Utah, Virginia, Washington, West Virginia, Wisconsin	hierarchical models. First stage: Poisson regression (county-		Heart rhythm disturbances (Lag 0): Age 65+: 0.57 [-0.01, 1.15]
	specific) Second stage: Bayesian hierarchical models, to produce a national avg estimate		Age 65-74: 0.46 [-0.63, 1.54] Age 75+: 0.72 [0.02, 1.42] Heart failure (Lag 0):
	Covariates: Day of the week, seasonality, temperature, dew point temperature, long-term trends		Age 65+: 1.28 [0.78, 1.78] Age 65-74: 1.21 [0.35, 2.07] Age 75+: 1.36 [0.78, 1.94]
	Season: NR		COPD (Lag 0): Age 65 +: 0.91 [0.91, 1.64]
	Dose-response Investigated: No		Age 65-74: 0.42 [-0.64, 1.48] Age 75+: 1.47 [0.54, 2.40]
	Statistical Package: R statistical software version 2.2.0		Respiratory tract infection: Age 65+: 0.92 [0.41, 1.43]
	Lags Considered: 0-2 days, avg of days 0-2		Ağe 65-74: 0.93 [0.04, 1.82] Age 75+: 0.92 [0.32, 1.53]
			Annual reduction in admissions attributable to a 10 μg/m³ reduction in daily PM _{2.5} level (95% PI): Cerebrovascular disease: Annual number of admissions: 226,641
			Annual reduction in admissions: 1836 [680, 2992]
			Peripheral vascular disease: Annual number of admissions: 70,061
			Annual reduction in admissions: 602 [-42, 1254]
			Ischemic heart disease: Annual number of admissions: 346,082
			Annual reduction in admissions: 1523 [69, 2976]
			Heart rhythm disturbances: Annual number of admissions: 169,627
			Annual reduction in admissions: 967 [-17, 1951]
			Heart failure: Annual number of admissions: 246,598
			Annual reduction in admissions: 3156 [1923, 4389]
			COPD: Annual number of admissions: 108,812
			Annual reduction in admissions: 990 [196, 1785]
			Respiratory tract infections: Annual number of admissions: 226,620
			Annual reduction in admissions: 2085 [929, 3241]
			Notes: Fig 2: Point estimates and 95% posterior intervals of the % change in admissions rates per 10 µg/m³ (national avg relative rates) for single lag (0, 1, and 2 days) and distributed lag models for 0 to 2 days (total) for all outcomes. Summary: Positive significant or marginally significant associations between PM _{2.5} and cerebrovascular disease at Lag 0
			Peripheral vascular disease at Lags 0 and 2
			Ischemic heart disease at Lag 2
			Heart rhythm disturbances at Lag 0

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Heart failure at Lag 0, Lag 2, and Lags 0 -2
			COPD at Lag 0, Lag 1, and Lags 0-2
			and respiratory tract infections at Lag 2 and Lags 0-2.
			Fig 3: Point estimates and 95% posterior intervals of the % change in admission rates per 10 μg/m³ (regional relative rates). Summary: For cardiovascular diseases, all estimates in the Midwestern, Northeastern, and Southern regions were positive, while estimates in the other regions (South, West, Central, Northwest) were close to 0. For respiratory disease, there were larger effects in the Central, Southeastern, Southern, and Western regions than in the other regions.
			Fig 4: Point estimates and 95% posterior intervals of the % change in admission per 10 µg/m³ (Eastern vs Western regions): Summary: All estimates for cardiovascular outcomes were positive in the U.S. Eastern region but not in the U.S. Western region. The estimates for respiratory tract infections were larger in the Western region than in the Eastern region. The estimates for CCPD were positive in the both regions.
Reference: Halonen et al. (2009,	Outcome: Cardiovascular	Pollutant: PM _{2.5}	PM Increment: Interquartile Range
180379)	Hospitalizations & Mortality (ICD 10: 100-99)	Averaging Time: Daily	Percent Change (Lower CI, Upper
Period of Study: 1998-2004	Age Groups: 65+ yr	Mean (SD): NR	CI): All Cardiovascular Morality
Location: Helsinki, Finland	Study Design: Time series	Min: 1.1	Lag 0: 0.73 (-0.66, 2.13) Lag 1: 0.74 (-0.63, 2.13)
	N: NR	25th percentile: 5.5	Lag 2: 0.74 (-0.62, 2.11)
	Statistical Analyses: Poisson, GAM	50th percentile: 9.5	Lag 3: 0.06 (-1.29, 1.43) 5-day mean: 0.87 (-0.94, 2.70)
	influenza enidemics high nollen	75th percentile: 11.7	Coronary Heart Disease HA Lag 0: -0.17 (-1.5.0, 1.18)
		Max: 69.5	Lag 1: -0.03 (-1.31, 1.26) Lag 2: -0.63 (-1.87, 0.62)
	Dose-response Investigated? No	Monitoring Stations: NR	Lag 3: 0.48 (-0.78, 1.76)
	Statistical Package: R	Copollutant: PM<0.03, PM0.03-0.1, PM<0.1,	5-day mean: 0.80 (-0.94, 2.58) Stroke HA
	Lags Considered: lags 0-3 days; 5-day	DM 40 40 00 DM CO NO	Lag 0: -0.99 (-2.78, 0.84) Lag 1: 0.02 (-1.74, 1.82)
	(0-4) mean	Co-pollutant Correlation PM<0.03: 0.14 PM0.03-0.1: 0.48 PM<0.1: 0.35 PM<0.10.29: 0.88 PM _{10-2.5} : 0.25	Lag 2: -1.38 (-3.13, 0.40) Lag 3: -0.17 (-1.92, 1.61) 5-day mean: -0.78 (-3.10, 1.60) Arrhythmia HA Lag 0: 0.82 (-1.03, 2.68) Lag 1: 0.18 (-1.58, 1.97) Lag 2: -0.09 (-1.82, 1.67) Lag 3: -0.48 (-2.22, 1.29) 5-day mean: 0.16 (-2.16, 2.54) *p < 0.05, ‡p < 0.10

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Host et al. (2008, <u>155852</u>)	Outcome (ICD-10): Daily hospitalizations for all cardiovascular (100-199), cardiac (100-152), and	Pollutant: PM _{2.5}	PM Increment: 10 μg/m³ increase, and
Period of Study: 2000-2003		Averaging Time: 24 h	a 27 µg/m³ increase (corresponding to the difference between the lowest of the
Location: Six French cities: Le Havre, Lille, Marseille, Paris, Rouen, and Toulouse	ischemic heart diseases (120-125), all respiratory diseases (J00-J99), respiratory infections (J10-J22).	Mean (5th -95th percentile): Le Havre: 13.8 (6.0-30.5)	5th percentiles and the highest of the 95th percentiles of the cities' distributions)
10010000	Age Groups: For cardiovascular	Lille: 15.9 (6.9-26.3)	ERR (excess relative risk) Estimate [CI]:
	diseases: All ages, and restricted to ≥ 65 yr. For all respiratory diseases: 0-14	Marseille: 18.8 (8.0-33.0)	For all cardiovascular diseases (10 µg/m³ increase): All ages: 0.9% [0.1,
	yr, 15-64 yr, and ≥ 65 yr. For respiratory infections: All ages	Paris: 14.7 (6.5-28.8)	1.8]
	Study Design: Time series	Rouen: 14.4 (7.5-28.0)	≥ 65 yr: 1.9% [0.9, 3.0]
	N: NR (Total population of cities:	Toulouse: 13.8 (6.0-25.0)	For all cardiovascular diseases (27 µg/m³ increase): All ages: 2.5% [0.2,
	approximately 10 million)	Monitoring Stations: 13 total: 1 in Toulouse	4.9]
	Statistical Analyses: Poisson regression	4 in Paris	≥ 65 yr: 5.3% [2.6, 8.2]
	Covariates: Seasons, days of the wk,	2 each in other cities	For ischemic heart diseases (27 µg/m ³ increase): All ages: 5.2% [-0.6, 11.3]
	holidays, influenza epidemics, pollen counts, temperature, and temporal	Copollutant (correlation):	≥ 65 yr: 12.7% [6.3, 19.5]
	trends Season: NR	PM _{10-2.5} : Overall: r > 0.6 Ranged between r = 0.28 and	For cardiac diseases (10 µg/m³ increase): All ages: 0.9% [-0.1, 2.0]
	Dose-response Investigated: No	r = 0.73 across the six cities.	≥ 65 yr: 2.4% [1.2, 3.7]
	Statistical Package: MGCV package in R software (R 2.1.1)		For cardiac diseases (27 µg/m³ increase): All ages: 2.5% [-0.3, 5.4]
	Lags Considered: Avg of 0-1 days		≥ 65 yr: 6.8% [3.3, 10.3]
			For ischemic heart diseases (10 µg/m³ increase): All ages: 1.9 % [-0.2, 4.0]
			≥ 65 yr: 4.5% [2.3, 6.8]
			For all respiratory diseases (10 µg/m³ increase): 0-14 yr: 0.4% [-1.2, 2.0]
			15-64 yr: 0.8% [-0.7, 2.3];
			≥ 65 yr: 0.5% [-2.0, 3.0]
			For all respiratory diseases (27 µg/m ³ increase): 0-14 yr: 1.1% [-3.1, 5.5]
			15-64 yr: 2.2% [-1.8, 6.4];
			≥ 65 yr: 1.3% [-5.3, 8.2]
			For respiratory infections (10 µg/m³ increase): All ages: 2.5% [0.1, 4.8]
			For respiratory infections (27 µg/m ³ increase): All ages: 7.0% [0.7, 13.6]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Jalaludin et al. (2006, 189416) Period of Study: Jan 1997-Dec 2001 Location: Sydney, Australia	Outcome (ICD-9): Cardiovascular disease (390-429), cardiac disease (390-429), ischemic heart disease (410-413) and cerebrovascular disease or stroke (430-438) Age Groups: 65+ yr Study Design: Time series N: NR Statistical Analyses: GAM, GLM Covariates: Temperature, humidity Season: Warm (Nov-Apr) and cool (May-Oct) Dose-response Investigated: No Statistical Package: S-Plus Lags Considered: 0-3 days	Pollutant: PM _{2.5}	PM Increment: 4.8 μg/m³ (IQR) Percent Change Estimate [CI]: All CVD Same-day lag: 1.26 [0.56,1.96] Avg 0-1 day lag: 0.85 [0.18,1.52] Cool (same-day lag): 2.23 [0.98,3.50] Warm (same-day lag): 0.73 [-0.05,1.52] Cardiac disease Same-day lag: 1.55 [0.74,2.38] Avg 0-1 day lag: 1.33 [0.54,2.13] Cool (same-day lag): 2.37 [0.87,3.89] Warm (same-day lag): 1.13 [0.22,2.04] Ischemic heart disease Same-day lag: 1.17 [-0.08,2.44] Avg 0-1 day lag: 1.24 [0.04,2.45] Cool (same-day lag): 0.57 [-1.74,2.94] Warm (same-day lag): 1.31 [-0.04,2.68] Stroke Same-day lag: -0.89 [-2.41,0.65] Avg 0-1 day lag: -1.08 [-2.54,0.41] Cool (same-day lag): 1.45 [-1.17,4.15] Warm (same-day lag): -2.19 [-4.00,-0.36] Notes: All other lag-day ORs were provided, yet none were significant. Percent change in ED attendance was also reported graphically (Fig 1-5).
Reference: Jalaludin et al. (2006, 189416) Period of Study: Jan 1997-Dec 2001 Location: Sydney, Australia	Outcome (ICD-9): Cardiovascular disease (390-459), cardiac disease (390-459), ischemic heart disease (410-413) and cerebrovascular disease or stroke (430-438) Age Groups: 65+ yr Study Design: Time series N: NR Statistical Analyses: GAM, GLM Covariates: Temperature, humidity Season: Warm (Nov-Apr) and cool (May-Oct) Dose-response Investigated: No Statistical Package: S-Plus Lags Considered: 0-3 days	Rel humidity: r = 0.20 Pollutant: BS,P Averaging Time: 24 h Mean/104/m (min-max): 0.26 (0.04-3.37) SD = 0.22 Monitoring Stations: 14 Copollutant (correlation): Warm PM _{2.5} : r = 0.93 PM ₁₀ : r = 0.82 O ₃ : r = 0.48 NO ₂ : r = 0.35 CO: r = 0.33 SO ₂ : r = 0.21 Cool PM _{2.5} : r = 0.90 PM ₁₀ : r = 0.75 O ₃ : r = -0.08 NO ₂ : r = 0.62 SO ₂ : r = 0.62 SO ₂ : r = 0.48 Other variables: Warm Temp: r = 0.23 Rel humidity: r = -0.04 Cool Temp: r = -0.09 Rel humidity: r = 0.36	PM Increment: 0.18/ 104/m (IQR) Percent Change Estimate [CI]: All CVD Same-day lag: 1.05 [0.44,1.66] Avg 0-1 day lag: 0.79 [0.20,1.38]; Cool (same-day lag): 2.38 [1.15,3.62] Warm (same-day lag): 0.45 [-0.18,1.09] Cardiac disease Same-day lag: 1.34 [0.63,2.05] Avg 0-1 day lag: 1.13 [0.44,1.82]; Cool (same-day lag): 2.50 [1.04,3.98] Warm (same-day lag): 0.80 [0.07,1.54] Ischemic heart disease Same-day lag: 0.91 [-0.17,2.02] Avg 0-1 day lag: 0.90 [-0.14,1.95]; Cool (same-day lag): 0.52 [-1.74,2.83] Warm (same-day lag): 0.93 [-0.15,2.03] Stroke Same-day lag: -0.93 [-2.27,0.42] Avg 0-1 day lag: -0.82 [-2.11,0.49]; Cool (same-day lag): 1.38 [-1.19,4.01]; Warm (same-day lag): -1.85 [-3.31,-0.36] Notes: All other lag-day ORs were provided, yet none were significant. Percent change in ED attendance was also reported graphically (Fig 1-5).

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Lisabeth et al. (2008, 155939)	Outcome: Ischemic stroke and transient ischemic attacks (ICD codes	Pollutant: PM _{2.5}	PM Increment: 5.1 μg/m³ (IQR)
Period of Study: 2001-2005	not reported).	Averaging Time: 24 h	RR Estimate [CI]: Lag 0: 1.03 (0.99, 1.07)
Location: Nueces County, Texas	Age Groups: 45+ yr	Median μg/m3 (IQR): 7.0 (4.8-10.0)	Lag 1: 1.03 (1.00-1.07)
,	Study Design: Time series	Monitoring Stations: 6 Copollutant (correlation): NR	All other lags and avg (lag 0-5) were not
	N: 3,508 stroke/TIAs (2,350 strokes, and 1,158 TIAs)		statistically or marginally significant. Adjusted for O ₃ : Lag 0: 1.03 (0.99, 1.07)
	Statistical Analyses: Poisson regression		Lag 1: 1.03 (0.99-1.06)
	Covariates: Temperature, day of week, temporal trends		All other lags and avg (lag 0-5) were not statistically or marginally significant.
	Season: All, but looked at potential effect modification by season (Summer: Jun-Sep; Non-summer: Oct-May)		Notes: Fig 3: % change in stroke/TIA risk associated with an IQR increase in $PM_{2.5}$
	Dose-response Investigated: No		
	Statistical Package: S-plus 7.0		
	Lags Considered: Lags 0-5 days, and		
-	avg lag effect (0-5 days)		
Reference: Metzger et al. (2004, 044222)	Outcome (ICD-9): Emergency visits for ischemic heart disease (410-414),	Pollutant: PM _{2.5}	PM Increment: Approximately 1 SD increase: PM _{2.5} : 10 μg/m ³
Period of Study: Aug 1998-Aug 2000	cardiac dysrhythmias (427), cardiac arrest (427.5), congestive heart failure	Averaging Time: 24 h Median µg/m3 (10%-90% range):	PM _{2.5} water-sol metals: 0.03 μg/m ³ PM _{2.5} sulfates: 5 μg/m ³
Location: Atlanta Metropolitan area	(428), peripheral vascular and cerebrovascular disease (433-437, 440,	PM _{2.5} : 17.8 (8.9, 32.3) PM _{2.5} water soluble metals: 0.021	PM _{2.5} acidity: 0.02 μequ/m ³ PM _{2.5} OC: 2 μg/m ³
(Georgia)	443-444, 451-453), atherosclerosis (440), and stroke (436).	(0.006-0.061) PM _{2.5} acidity: 4.5 (1.9-1.07)	PM _{2.5} EC: 1 µg/m ³ RR [95% CI]: PM _{2.5} (3-day ma):
	Age Groups: All	PM $_{2.5}$ OC: 0.010 (-0.001-0.045) PM $_{2.5}$ EC: 4.1 (2.2-7.1) Monitoring Stations: 1 Copollutant (correlation): PM $_{10}$: $r = 0.84$ O $_{3}$: $r = 0.65$ NO $_{2}$: $r = 0.46$ CO: $r = 0.44$ SO $_{2}$: $r = 0.46$ CO: $r = 0.44$ SO $_{2}$: $r = 0.17$ PM $_{10.2.5}$: $r = 4.3$ UFP: $r = -0.16$ PM $_{2.5}$ sulfates: $r = 0.77$ PM $_{2.5}$ sulfates: $r = 0.77$ PM $_{2.5}$ sulfates: $r = 0.77$ PM $_{2.5}$ acidity: $r = 0.58$ PM $_{2.5}$ OC: $r = 0.51$ PM $_{2.5}$ EC: $r = 0.48$ oxygenated hydrocarbon: $r = 31$	
	Study Design: Time series		All CVD: 1.033 [1.010, 1.056] Dysrhythmia: 1.015 [0.976, 1.055]
	N: 4,407,535 emergency department visits for 1993-2000 (data not reported for 1998-2000)		Congestive heart failure: 1.055 [1.006-1.105]
	Statistical Analyses: Poisson generalized linear modeling		Ischemic heart disease: 1.023 [0.983-1.064]
	Covariates: Day of the wk, hospital entry and exit indicator variables, federally observed holidays, temporal		Peripheral vascular and cerebrovascular disease: 1.050 [1.008-1.093]
	trends, temperature, dew point temperature		PM _{2.5} water soluble metals (3-day ma):
	Season: All		All CVD: 1.027[0.998, 1.056] Dysrhythmia: 1.031 [0.982, 1.082]
	Dose-response Investigated: No Statistical Package: SAS		Congestive heart failure: 1.040 [0.981-1.103]
	Considered: 3-day ma, lags 0 -7 Lags Considered: 3-day ma, lags 0 -7 Temperature: r = 0.20 Dew point: r = 0.00	Temperature: r = 0.20	Ischemic heart disease: 1.000 [0.951-1.051]
			Peripheral vascular and cerebrovascular disease: 1.043 [0.991-1.098]
			PM _{2.5} sulfates (3-day ma): All CVD: 1.003 [0.968, 1.039] Dysrhythmia: 0.986 [0.926, 1.048]
			Congestive heart failure: 1.009 [0.938-1.085]
			Ischemic heart disease: 0.997 [0.936-1.062]
			Peripheral vascular and cerebrovascular disease: 1.025 [0.964-1.090]
			PM _{2.5} acidity (3-day ma):

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			All CVD: 0.994 [0.966, 1.022] Dysrhythmia: 0.991 [0.942, 1.043]
			Congestive heart failure: 0.989 [0.930-1.052]
			Ischemic heart disease: 0.992 [0.944-1.043]
			Peripheral vascular and cerebrovascular disease: 1.004 [0.955-1.056]
			PM _{2.5} OC (3-day ma) : All CVD: 1.026 [1.006, 1.046] Dysrhythmia: 1.008 [0.975, 1.044]
			Congestive heart failure: 1.048 [1.007-1.091]
			Ischemic heart disease: 1.028 [0.994-1.064]
			Peripheral vascular and cerebrovascular disease: 1.026 [0.990-1.062] hydrocarbons simultaneously.
			PM _{2.5} OC (3-day ma): All CVD: 1.020 [1.005, 1.036] Dysrhythmia: 1.011 [0.985, 1.037]
			Congestive heart failure: 1.035 [1.003-1.068]
			Ischemic heart disease: 1.019 [0.992-1.046]
			Peripheral vascular and cerebrovascular disease: 1.021 [0.994-1.049]
			Results for Lags 0-7 expressed in figures (see notes).
			Notes : Fig 1: RR (95% CI) for single- day lag models for the association of ER visits for CVD with daily ambient PM _{2.5} and associated components.
			Summary of Fig 1 results: Statistically significant positive associations at Lag 0 and Lag 1 for PM _{2.5} , at Lag 0 for PM _{2.5} water soluble metals (inverse association at Lag 7), at Lag 0, Lag 1, and Lag 3 for organic and EC (inverse association at Lag 7).
			Fig 2: RR (95%) of multipollutant models for the association of ER visits for CVD with daily ambient air quality measurements.
			Summary of Fig 2 results: Positive association after adjustment for NO ₂ , CO, and oxygenated hydrocarbons, but attenuated when adjusted for total carbon and null when adjusted for NO ₂ , CO, total carbon, and oxygenated

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Peng et al. (2008, <u>156850</u>)	Outcome (ICD-9): Emergency hospitalizations for: Cardiovascular disease, including heart failure (428), heart rhythm disturbances (426-427), cerebrovascular events (430-438), inchapital beart disease (440-438),	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: Jan 1999-Dec 2005		Averaging Time: 24 h	Percentage change [95% CI]: CVD and
Location: 108 U.S. counties in the following states: Alabama, Arizona,		Mean μg/m3 (IQR): All counties assessed: 13.5 (11.1-15.8)	RD (unadjusted for PM ₁₀ -25): Lag 0: 0.71 [0.45, 0.96]
California, Colorado, Connecticut, District of Columbia, Florida, Georgia,	ischemic heart disease (410-414, 429), and peripheral vascular disease	Counties in Eastern U.S.:	Lag 2: 0.44 [0.06, 0.82]
Idaho, Illinois, Indiana, Kentucky,	(440-448). Respiratory disease, including COPD (490-492) and	13.8 (12.3-15.8)	Most values NR (see note)
Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Missouri, Nevada, New Hampshire,	respiratory tract infections (464-466, 480-487)	Counties in Western U.S.: 11.1 (10.1-14.3)	Notes : Effect estimates for PM _{10-2.5} (0-2 day lags) are showing in Fig 2-5.
New Jersey, New Mexico, New York, North Carolina, Ohio, Oklahoma,	Age Groups: 65 + yr, 65-74, ,75 +	Monitoring Stations: At least 1 pair of co-located monitors (physically located	Fig 2: Percentage change in emergency hospital admissions for CVD per 10
Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas,	Study Design: Time series N: ~12 million Medicare enrollees (3.7	in the same place) for PM ₁₀ and PM _{2.5} per county	μg/m³ increase in PM _{2.5} (single pollutant model and model adjusted for PM _{10-2.5}
Utah, Virginia, Washington, West Virginia, Wisconsin	million CVD and 1.4 million RD admissions)	Other variables: Median within-county correlations between monitors: r = 0.92	concentration) Fig 3: Percentage change in emergency
	Statistical Analyses: Two-stage Bayesian hierarchical models: Overdispersed Poisson models for county-specific data		hospital admissions for RD per 10 $\mu g/m^2$ increase in $PM_{2.5}$ (single pollutant model and model adjusted for $PM_{10\cdot2.5}$ concentration)
	Bayesian hierarchical models to obtain national avg estimate		No significant associations between PM _{2.5} and cause-specific cardiovascular disease.
	Covariates: Day of the week, age- specific intercept, temperature, dew point temperature, calendar time, indicator for age of 75 yr or older. Some models were adjusted for PM _{10-2.5} .		uiscuse.
	Season: NR		
	Dose-response Investigated: No		
	Statistical Package: R version 2.6.2		
	Lags Considered: 0-2 days		
Reference: Peters et al. (2005, <u>156859</u>)	Outcome: Transmural or nontransmural acute MI	Pollutant: PM _{2.5} Averaging Time: 1 h and 24 h	PM Increment: 1-h avg: 9.1 μg/m ³ (IQR)
Period of Study: Feb 1999-Jul 31,	Age Groups: NR	Mean µg/m3 (range IQR/ median	24-h avg: 7.7 μg/m³ (IQR)
2001 Location: Germany: City of Augsburg,	Study Design: Case-crossover and time series	IQR): 1-h avg: 16.3 (-6.9-355.2 10.7-19.8	OR [95% CI]: Case-Crossover (control selection method (unidirectional with
County Augsburg, and County Aichach- Friedlberg	N: 851 MI survivors	14.5)	three control periods):
•	Statistical Analyses: Conditional logistic regression for case-crossover	24-h avg: 16.3 (6.1-58.5 11.6-19.3	1-h avg: Lag 0: 0.98 (0.88, 1.10)
	element. Poisson regression for time series element.	14.9) Monitoring Stations: 1	Lag 1: 0.97 (0.87, 1.09) Lag 2: 0.93 (0.83, 1.04)
	Covariates: Case-crossover: Season,	Copollutant (correlation):	Lag 3: 0.98 (0.88, 1.09) Lag 4: 0.96 (0.86, 1.07)
	temperature, day of the week, time series: trend, season, influenza, weather, and day of the week	24-h avg: TNC: r = 0.37 TSP: r = 0.89	Lag 5: 0.94 (0.84, 1.05) Lag 6: 0.90 (0.80, 1.01).
	Season: All	PM ₁₀ : r= 0.92 CO: r = 0.57	24-h avg: Lag 0: 0.95 (0.83, 1.080) Lag 1: 1.10 (0.96, 1.25)
	Dose-response Investigated: No	NO ₂ : r = 0.67 NO: r = 0.59	Lag 2: 1.18 (1.03, 1.34)
	Statistical Package:	SO ₂ : r = 0.58	Lag 3: 1.07 (0.94, 1.22) Lag 4: 0.94 (0.83, 1.07)
	SAS, version 8.2	O ₃ : r = -0.24 1hr avg:	Lag 5: 0.90 (0.79, 1.02) Case-Crossover (control selection
	Poisson: R, version 1.7.1	TNC: r = 0.42 CO: r = 0.52	method: bidirectional with 16 control periods):
	Lags Considered: Lags 0-6 h, 0-5 days	NO ₂ : r = 0.58 NO: r = 0.50 SO ₂ : r = 0.48	24-h avg: Lag 0: 1.03 (0.94, 1.12) Lag 1: 1.07 (0.98, 1.16) Lag 2: 1.08 (0.99, 1.17)
	Poisson: Single lagged days, 5-day, 15-day, 30-day, and 45-day ma	O ₃ : r = -0.35 Other variables: 24-h avg: Temperature: r = 0.05 1-h avg: Temperature: r = -0.01	Lag 3: 1.01 (0.92, 1.10) Lag 4: 0.96 (0.88, 1.04) Lag 5: 0.93 (0.85, 1.02) Lag 0 -4 (IQR = 5.8): 1.03 (0.94, 1.14) Unidirectional: Model 1 (unadjusted):
			1.175 (1.033, 1.337)
			Model 2 (adjusted for day of week using indicator variables): 1.179 (1.035,

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			1.343)
			Model 3 (adjusted for temperature- quadratic, linear air pressure): 1.170 (1.028, 1.333)
			Model 4 (adjusted for temperature- quadratic, linear air pressure, day of week): 1.176 (1.031, 1.341)
			Model 5 (temperature-quadratic, air pressure-quadratic, relative humidity-quadratic, day of week using indicator variables): 1.170 (1.026, 1.336)
			Model 6 (temperature-penalized spline, 4.4 df, linear air pressure, day of week using indicator variables): 1.175 (1.030, 1.340
			Model 7 (temperature-penalized spline, 4.4 df, linear air pressure, relative humidity-penalized spline, 7.8 df, day of week using indicator variables: 1.177 (1.030, 1.344)
			Bidirectional (16 control periods): Model 1 (unadjusted): 1.077 (0.988, 1.174)
			Model 2 (adjusted for day of the week using indicator variables): 1.078 (0.988, 1.175)
			Model 3 (adjusted for temperature- quadratic, linear air pressure): 1.060 (0.970, 1.160)
			Model 4 (adjusted for temperature- quadratic, linear air pressure, day of the week): 1.060 (0.969, 1.160)
			Model 5
			(temperature-quadratic, air pressure- quadratic, relative humidity-quadratic, day of the week using indicator variables): 1.065 (0.973, 1.166)
			Model 6 (temperature-penalized spline, 4.4 df, linear air pressure, day of the week using indicator variables): 1.068 (0.976, 1.168)
			Model 7 (temperature-penalized spline, 4.4 df, linear air pressure, relative humidity-penalized spline, 7.8 df, day of the week using indicator variables: 1.077 (0.983, 1.179)
			Bidirectional (4 control periods): Model 1 (unadjusted): NR
			Model 2 (adjusted for day of the week by design): 1.049 (0.964, 1.141)
			Model 3 (adjusted for temperature-quadratic, linear air pressure): NR
			Model 4 (adjusted for temperature- quadratic, linear air pressure, day of the week): 1.032 (0.944, 1.128)
			Model 5 (temperature-quadratic, air pressure-quadratic, relative humidity-quadratic, day of the week by design): 1.033 (0.945, 1.130)
			Model 6 (temperature-penalized spline, 4.4 df, linear air pressure, day of the week by design): 1.036 (0.947, 1.132)
			Model 7 (temperature-penalized spline, 4.4 df, linear air pressure, relative

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			humidity-penalized spline, 7.8 df, day of the week by design): 1.039 (0.950, 1.136)
			Stratified: Model 1 (unadjusted): NR
			Model 2 (adjusted for day of week by design): 1.059 (0.972, 1.154)
			Model 3 (adjusted for temperature- quadratic, linear air pressure): NR
			Model 4 (adjusted for temperature- quadratic, linear air pressure, day of week): 1.047 (0.957, 1.145)
			Model 5 (temperature-quadratic, air pressure-quadratic, relative humidity-quadratic, day of week by design): 1.045 (0.954, 1.144)
			Model 6 (temperature-penalized spline, 4.4 df, linear air pressure, day of week by design): 1.054 (0.964, 1.153odel 7 (temperature-penalized spline, 4.4 df, linear air pressure, relative humidity-penalized spline, 7.8 df, day of week by design): 1.056 (0.965, 1.156) RR (95% CI): Time series (24 h avg): Lag 0: 0.97 (0.89, 1.07) Lag 1: 1.04 (0.96, 1.13) Lag 2: 1.07 (0.98, 1.15) Lag 3: 1.03 (0.95, 1.11) Lag 4: 0.98 (0.90, 1.07) Lag 5: 0.98 (0.90, 1.06) Lag 0-4: 1.03 (0.94, 1.12) Lag 0-14: 1.03 (0.95, 1.13) Lag 0-29: 1.09 (1.01, 1.18) Lag 0-44: 1.08 (1.00, 1.17) Time series (OR [95% CI]): Model 1 (unadjusted): 1.059 (0.981, 1.142) Model 2 (adjusted for day of week using indicator variables): 1.056 (0.979,
			1.140) Model 3 (adjusted for temperature- quadratic, linear air pressure): 1.062
			(0.982, 1.148) Model 4 (adjusted for temperature-quadratic, linear air pressure, day of week): 1.059 (0.979, 1.146)
			Model 5 (temperature-quadratic, air pressure-quadratic, relative humidity-quadratic, day of week using indicator variables): 1.063 (0.981, 1.151)
			Model 6 (temperature-penalized spline, 4.4 df, linear air pressure, day of week using indicator variables): 1.065 (0.985, 1.153)
			Model 7 (temperature-penalized spline, 4.4 df, linear air pressure, relative humidity-penalized spline, 7.8 df, day of week using indicator variables: 1.069 (0.988, 1.157)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Pope et al.(2006, <u>091246</u>)	Outcome: Myocardial infarction or	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: 1994-2004	unstable angina (ICD codes not reported)	Averaging Time: 24 h	Percent increase in risk [95% CI]:
Location: Wasatch Front area, Utah	Age Groups: All, <65, 65+	Mean (μg/m3) (SD maximum): Ogden: 10.8 (10.6	Same-day increase in PM _{2.5} (Lag 0): Index MI and unstable angina: 4.81 [0.98-8.79]
	Study Design: Case-crossover	108)	Subsequent MI: 3.23 [-3.87, 10.85]
	N: 12,865 patients who underwent coronary arteriography	SLC Hawthorne: 11.3 (11.9	All acute coronary events: 4.46
	otational / mary coor containerial	94)	[1.07-7.97]
	logistic regression Covariates: Temperature and dew	Provo/Orem, Lindom: 10.1 (9.8	All acute coronary events excluding observations using imputed PM _{2.5} data: 4.24 [0.33-8.31]
	point temperature	82)	Stable presentation: -2.57 [-5.39, 0.34]
	Season: NR	Monitoring Stations: 3	Remaining results summarized in
	Dose-response Investigated: No	Copollutant (correlation): NR	figures (see notes).
	Statistical Package: NR		Notes: Fig 1: Percent increase in risk
	Lags Considered: 0- to 3-day lag, 2- to 4-day lagged ma		(and 95% CI) of acute coronary events associated with 10 µg/m ³ of PM _{2.5} for different lag structures.
			Summary of Fig 1: Positive, statistically significant association seen for Lag 0, Lag 1 and 2, 3, and 4 day ma. Positive but non-statistically significant associations seen for Lags 2 and 3.
			Fig 2: Percent increase in risk (and 95% CI) of acute coronary events associated with 10 µg/m³ of PM _{2.5} stratified by various characteristics.
Reference: Pope et al. (2008, <u>191969</u>)	Outcome: Heart Failure	Pollutant: PM _{2.5}	PM Increment: 10 µg/m ³
Period of Study: 1994-2006	Hospitalizations	Averaging Time: NR	Percent Increase: (Lower CI, Upper
Location: Ogden, Salt Lake City, & Provo/Orem, Utah	Age Groups: NR Study Design: Case-crossover	Mean (SD): Ogden: 10.6(9.9) All HF Admission	All HF Admissions
Tovorotom, own	N: 2,618	SLC, Hawthorne: 11.1 (11.2)	All: 13.1 (1.3, 26.2)* Men: 13.4 (-1.7, 30.7)‡
	Statistical Analyses: Conditional	Provo/Orem, Lindon: 10.1 (9.3)	Women: 12.7 (-5.1, 33.9) Age <65 yr: 3.5 (-13.5, 23.8)
	Covariates: Age, sex, length of stay, temperature, pressure, clearing index,	Max: Ogden: 108	Age ≥65 yr: 19.6 (4.0, 37.5)* Length of stay 0-2 days:
		SLC, Hawthorne: 94	24.4 (-0.8, 56.0) ‡ Length of stay 3-7 days:
	day of the week, seasonality, and long- term trends	Provo/Orem, Lindon: 82	10.8 (-4.6, 28.7) Length of stay 8+ days:
	Season: Adjusted for long-term trends to account for season	Monitoring Stations: NR	6.5 (-15.9, 34.8)
	Dose-response Investigated? No	Copollutant: PM ₁₀	First HF Admissions: 2.1 (-11.3, 17.5) Subsequent HF Admits: 32.4 (10.7,
	Statistical Package: NR		58.4) †
	Lags Considered: 0- to 28-day ma.		All HF Admissions All: 32.4 (10.7, 58.4) † Men: 29.2 (2.7, 62.6)* Women: 41.5 (5.4, 89.9)* Age <65 yr: -3.1 (-26.5, 27.8) Age ≥65 yr: 64.1 (28.6, 109) † Length of stay 0-2 days: 68.9 (12.5, 154)* Length of stay 3-7 days: 35.7 (5.9, 73.9)* Length of stay 8+ days: 2.6 (-28.5, 47.1)
			*p < 0.05, † p < 0.01, ‡p < 0.10

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Sarnat et al. (2008,	Outcome (ICD-9): Cardiovascular	Pollutant: PM _{2.5}	PM Increment: IQR (specific values not
097972)	disease ED visits: Ischemic heart disease (410-414), cardiac	Averaging Time: 24 h	given)
Period of Study: Nov 1998-Dec 2002 Location: Atlanta (Georgia)	dysrhythmias (427), congestive heart failure (428), and peripheral vascular and cerebrovascular disease (433-437, 440, 443-444, 451-453)	Mean (µg/m3) (median 10th-90th percentile):	Risk ratio [95% CI]: CVD (Lag 0): All seasons: Total PM _{2.5} : 1.022 [1.007, 1.038]
metropolitan area		Total PM _{2.5} : Cool season: 15.8 (14.3	PM _{2.5} EC: 1.02 [1.013-1.037]
	Age Groups: All	7.5-25.5).	PM _{2.5} zinc: 1.013 [1.005-1.022]
	Study Design: Time series	Warm season: 18.2 (17.0 9.1-29.0)	PM _{2.5} potassium: 1.030 [1.018-1.042]
	N: >4.5 million emergency department visits	PM _{2.5} EC:	PM _{2.5} silicon: 1.008 [1.00-1.016]
	Statistical Analyses: Poisson	Cool: 1.7 (1.4 0.6-3.3).	PM _{2.5} sulfate: 1.007 [0.994-1.019]
	generalized linear models	Warm: 1.4 (1.3 0.6-2.5)	PM _{2.5} nitrate: 1.002 [0.990-1.014]
	Covariates: Day of the week, holidays,	PM _{2.5} Zn (ng/m ³):	PM _{2.5} selenium: 1.002 [0.991-1.012]
	hospital, long-term trends, temperature, dew point temperature	Cool: 15.7 (11.7	PM _{2.5} OC: 1.024 [1.013-1.035]
	Season: All, warm season (Apr 15-Oct 14), and cool season (Oct 15-Apr 14).	4.6-30.2) Warm: 10.9 (8.5 3.3-20.2)	Cool season: Total PM _{2.5} : 1.028 [1.012-1.044]
	Dose-response Investigated: No	PM _{2.5} K (ng/m³): Cooi: 63.0 (53.9 24.3-114.2) Warm: 52.7 (43.3 23.2-93.5)	PM _{2.5} EC: 1.029 [1.015-1.044]
	Statistical Package: NR		PM _{2.5} Zinc: 1.012 [1.002-1.022]
	Lags Considered: 0-day lag		PM _{2.5} K: 1.037 [1.021-1.054]
			PM _{2.5} Si: 1.022 [1.002-1.043]
		PM _{2.5} Si (ng/m³): Cool: 67.7 (54.1 24.3-123.5). Warm: 110.9 (89.0 32.9-186.3)	PM _{2.5} sulfate: 1.014 [0.991-1.037]
			PM _{2.5} nitrate: 1.006 [0.993-1.019]
			PM _{2.5} Se: 1.012 [0.997-1.027]
		PM _{2.5} SO ₄ ²⁻ :	PM _{2.5} OC: 1.027 [1.013-1.040]
		Cool: 3.4 (0.6 1.5-5.8). Warm: 6.0 (5.2	Warm season: Total PM _{2.5} : 1.006 [0.990-1.022]
		2.3-10.8)	PM _{2.5} EC: 1.021 [1.000-1.043]
		PM _{2.5} NO ₃ -: Cool: 1.4 (1.2 0.5-2.6). Warm: 0.7 (2.9 0.3-1.2)	PM _{2.5} Zinc: 1.017 [1.002-1.033]
			PM _{2.5} K: 1.024 [1.007-1.041]
			PM _{2.5} Si: 1.005 [0.996-1.014]
		PM _{2.5} Se (ng/m ³):	PM _{2.5} sulfate: 1.001 [0.988-1.015]
		Cool: 1.4 (1.1 0.4-3.0).	PM _{2.5} nitrate: 1.000 [0.969-1.033]
		Warm: 1.2 (0.9 0.4-2.7)	PM _{2.5} Se: 0.996 [0.981-1.011]
		PM _{2.5} OC: Cool: 4.6 (3.9 1.9-8.0) Warm: 4.0 (3.7 2.1-6.4)	PM _{2.5} OC: 1.027 [1.004-1.051]
		Monitoring Stations: 1	
		Copollutants: NR	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Schreuder et al. (2006,	Outcome: Cardiac HA	Pollutant: PM _{2.5} (ng/m ³)	PM Increment: Interquartile Range
<u>097959</u>)	Age Groups: NR	Averaging Time: 24 h	Relative Risk (Lower CI, Upper CI):
Period of Study: Sep 1995-May 2002	Study Design: Time series	Arithmetic Mean: 10,580	Entire Period, Lag 0: 1.008 (0.985,
Location: Spokane, WA	Statistical Analyses: GAM Poisosn	Geometric Mean: 8,790	1.032)
	Regression	Min: 930	Entire Period, Lag 1: 1.000 (0.978, 1.023)
	Covariates: Season, temperature, relative humidity, day of week	Max : 43,230	Heating Season, Lag 1: 1.015 (0.968,
	Dose-response Investigated? No	IQR: Entire period: 7.7 μg/m ³ Heating season: 10.1μg/m ³	1.063)
	Statistical Package: S-Plus		Non-Heating Season, Lag 1: 0.995 (0.969, 1.021)
	Lags Considered: 0-1 day	Non-heating season: 5.5µg/m³	
		Monitoring Stations: NR	
		Copollutant: NR	
		Co-pollutant Correlation: NR	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Sullivan et al. (2005,	Outcome: Acute MI	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
109418) Period of Study: 1988-1994	Age Groups: All, <50, 50-59, 70+ Study Design: Case-crossover	Averaging Time: 1 h, 2 h, 4 h, and 24 h	Odds ratio [95% CI]:
			1-h Averaging Time: 1.01 [0.98, 1.05]
Location: King County, Washington	N: 5793 cases of acute MI (5793 case days and 20,134 referent exposure days from these case individuals)	Summary of PM _{2.5} 1 h before MI onset:	2-h Averaging Time: 1.01 [0.97, 1.05]
		Mean (μg/m3) (median IQR, 90th percentile range):	4-h Averaging Time: 1.02 [0.98, 1.04]
	Statistical Analyses: Conditional	12.8 (8.6	24-h Averaging Time: 1.02 [0.98, 1.07]
	logistic regression	5.3-15.9	Association between PM _{2.5} (24 h)
	Covariates: Relative humidity, temperature, season, day of week	27.3	lagged 1 or 2 days non-significant (data not shown)
	Season: All, and also conducted	2.0-147)	Season (1-h avg): Heating: 1.01
	stratified analysis by season of event (heating season: Nov-Feb	Monitoring Stations: 3	[0.98-1.05]
	nonheating season: Mar-Oct)	Copollutant (correlation): 1-h avg:	Nonheating: 0.99 [0.91-1.09] Age (1-h avg): <50 yr: 1.04 [0.95, 1.14]
	Dose-response Investigated: No	PM_{10} : $r = 0.78$	50-60 yr: 0.99 [0.94, 1.05]
	Statistical Package: SAS version 8.0	CO: r = 0.47	70+ yr: 1.03 [0.98, 1.08] Age (24-h avg): <50 yr: 1.07 [0.98, 1.19]
	and SPSS version 10	SO ₂ : r = 0.16	50-69 yr: 0.99 [0.93, 1.06] 70+ yr: 1.04 [0.99, 1.11]
	Lags Considered: Lag 1 and Lag 2 for 24-h avg		Sex (1-h avg): Men: 1.02 [0.98, 1.06] Women: 1.00 [0.95, 1.06]
	24 11 419		Sex (24-h avg): Men: 1.03 [0.99, 1.08] Women: 1.00 [0.94, 1.07]
			Race (1-h avg): White: 1.01 [0.97, 1.04]
			Nonwhite: 1.06 [0.97, 1.17] Race (24-h avg): White: 1.01 [0.97,
			1.06] Nonwhite: 1.10 [0.99, 1.23] Smoking status (1-h avg): Current: 0.99
			[0.93, 1.06] Nonsmoker: 1.03 [0.97, 1.08] Smoking status (24-h avg): Current:
			0.99 [0.95, 1.14]
			Nonsmoker: 1.03 [0.98, 1.09] Survivor of MI * (1-h avg): Yes: 1.02
			[0.98, 1.06]; No: 0.96 [0.86, 1.08] Survivor of MI * (24-h avg): Yes: 1.03
			[0.98, 1.07]; No: 0.97 [0.85, 1.10] Previous congestive heart failure (1 h
			avg): Yes: 1.06 [0.97, 1.16]; No: 1.00
			[0.97, 1.04] Previous congestive heart failure (24-h avg): Yes: 1.08 [0.97, 1.2]; No: 1.00
			[0.97, 1.04] Previous MI (1-h avg): Yes: 1.03 [0.97,
			1.1]; No: 1.01 [0.96, 1.06]
			Previous MI (24-h avg): Yes: 1.04 [0.97, 1.17]; No: 1.02 [0.98, 1.08]
			Hypertension (1-h avg): Yes: 1.02 [0.97, 1.07]; No: 1.01 [0.96, 1.06]
			Hypertension (24-h avg): Yes: 1.02 [0.97, 1.07]; No: 1.02 [0.97, 1.08]
			Diabetes mellitus (1-h avg): Yes: 1.06 [0.98, 1.14]; No: 1.01 [0.97, 1.05]
			Diabetes mellitus (24-h avg): Yes: 1.04 [0.95, 1.14]; No: 1.01 [0.97, 1.06]
			*Compares those who survive hospitalization (yes) with those who died in hospital from complications of

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Symons et al. (2006,	Outcome: Congestive heart failure	Pollutant: PM _{2.5}	PM Increment: 9.2 µg/m³ (IQR)
091258) Period of Study: Apr-Dec 2002 Location: Baltimore, Maryland	Age Groups: All	Averaging Time: 8 h & 24 h	RR Estimate [CI]: 8 h (participant's onset period) Same-day lag: 0.87 [0.69,1.09] 1-day lag: 0.96 [0.78,1.18] 2-day lag: 1.09 [0.91,1.30] 3-day lag: 0.99 [0.79,1.23] Cumulative 1-day lag: 0.89 [0.67,1.16] Cumulative 2-day lag: 0.99 [0.74,1.33] Cumulative 3-day lag: 0.98 [0.70,1.36]
	Study Design: Case-crossover	Mean (min-max):	
	N: 125 patients	8 h	
	Statistical Analyses: Conditional	Statistical Analyses: Conditional 17.0 (0.1-111.9) 3-da	
	Covariates: Temperature and humidity	SD = 12.7	
		24 h	
	Season: NR	16.0 (3.5-69.2)	24 h avg Same-day lag: 0.81 [0.65,1.01]
	Dose-response Investigated: Yes	SD = 10.0	1-day lag: 0.90 [0.74,1.11]
	Statistical Package: SAS and S-Plus	Monitoring Stations: 8	2-day lag: 0.85 [0.68,1.07] 3-day lag: 0.86 [0.70,1.05]
	Lags Considered: 0-3 days (single and cumulative)	Copollutant (correlation): NR	Cumulative 1-day lag: 0.82 [0.64,1.04] Cumulative 2-day lag: 0.76 [0.57,1.01] Cumulative 3-day lag: 0.70 [0.51,0.97] Notes : β coefficients presented in Fig
Reference: Tolbert et al. (2007,	Outcome (ICD-9):	Pollutant: PM _{2.5}	PM Increment:
090316)	Combined CVD group, including:	Averaging Time: 24 h	PM _{2.5} : 10.96 μg/m³ (IQR) PM _{2.5} sulfate: 3.82 μg/m³ (IQR) PM _{2.5} total carbon: 3.63 μg/m³ (IQR) PM _{2.5} OC: 2.61 μg/m³ (IQR) PM _{2.5} EC: 1.15 μg/m³ (IQR)
Period of Study: Aug 1998-Dec 2004	Ischemic heart disease (410-414), cardiac dysrhythmias (427), congestive	Mean (μg/m3) (median IQR, range,	
Location: Atlanta Metropolitan area, Georgia	heart failure (428), and peripheral vascular and cardiovascular disease (433-437, 440, 443-445, and 451-453)	10th -90th percentiles): PM _{2.5} : 17.1 (15.6	
		11.0-21.9 0.8-65.8	PM _{2.5} water-soluble metals: 0.03 μg/m (IQR)
	Age Groups: All	7.9-28.8).	Risk ratio [95% CI] (single pollutant models): PM _{2.5} : CVD: 1.005 [0.993-1.017] PM _{2.5} sulfate:
	Study Design: Time series	PM _{2.5} sulfate: 4.9 (3.9	
	N: NR for 1998-2004.	2.4-6.2 0.5-21.9	
	For 1993-2004: 10,234,490 ER visits	1.7-9.5).	CVD: 0.999 [0.987-1.011] PM _{2.5} total carbon:
	(283,360 and 1,072,429 visits included in the CVD and RD groups, respectively)	PM _{2.5} OC: 4.4 (3.8 2.7-5.3	CVD: 1.016 [1.005-1.026]
		0.4-25.9	PM _{2.5} OC: CVD: 1.015 [1.005-1.026]
	Statistical Analyses: Poisson generalized linear models	2.1-7.2).	PM _{2.5} EC: CVD: 1.015 [1.005-1.025]
	Covariates: Long-term temporal trends, season (for RD outcome), temperature, dew point, days of week, federal holidays, hospital entry and exit	PM _{2.5} EC: 1.6 (1.3 0.9-2.0	PM _{2.5} water-soluble metals: CVD: 1.009 [0.997-1.021]
		0.1-11.9 0.6-3.0).	Notes: Results of selected multi-
		PM _{2.5} water-soluble metals: 0.030	pollutant models for cardiovascular disease are presented in Fig 1.
	Season: All	(0.023	Fig 1: PM _{2.5} total carbon adjusted for
	Dose-response Investigated: No	0.014-0.039 0.003-0.202	CO, NO ₂ , or NO ₂ +CO Summary of results: PM _{2.5} total carbo continued to have a positive, statistical significant association with CVD after adjustment for NO ₂ but not after adjustment
	Statistical Package: SAS version 9.1	0.009-0.059) Monitoring Stations: 1	
	Lags Considered: 3-day ma(lag 0 -2)	Copollutant (correlation): Between PM _{2.5} and:	
		PM_{10} : r = 0.84 O_3 : r = 0.62	aujuotinoni
		NO ₂ : r = 0.47 CO: r = 0.47	
		SO ₂ : r = 0.17	
		PM _{10-2.5} : r = 0.47 PM _{2.5} SO ₄ : r = 0.76	
		PM _{2.5} EC: r = 0.65 PM _{2.5} OC: r = 0.70	
		PM _{2.5} TC: r = 0.71 PM _{2.5} water-sol metals: r = 0.69	
		OHC: r = 0.50	
		Between PM _{2.5} SO ₄ and: PM ₁₀ : r = 0.69	
		O ₃ : r = 0.56 NO ₂ : r = 0.14	
		CO: r = 0.14 SO ₂ : r = 0.09	
		PM _{10-2.5} : r = 0.32 PM _{2.5} : r = 0.76	
		PM _{2.5} EC: r = 0.32	
		PM _{2.5} OC: r = 0.33	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
		PM _{2.5} TC: r = 0.34 PM _{2.5} water-sol metals: r = 0.65 OHC: r = 0.47	
		Between $PM_{2.5}$ EC and: PM_{10} : $r = 0.61$ O_3 : $r = 0.40$ NO_2 : $r = 0.64$ CO: $r = 0.66SO_2: r = 0.22PM_{10-2.5}: r = 0.49PM_{2.5}: r = 0.65PM_{2.5}$	
		SO ₄ : r = 0.32 PM _{2.5} OC: r = 0.82 PM _{2.5} TC: r = 0.91 PM _{2.5} water-sol metals: r = 0.52 OHC: r = 0.35	
		Between PM_{25} OC and: PM_{10} : $r = 0.65$ O_3 : $r = 0.54$ NO_2 : $r = 0.62$ CO : $r = 0.59$ SO_2 : $r = 0.17$ PM_{10-25} : $r = 0.49$ $PM_{2.5}$: $r = 0.49$ $PM_{2.5}$: $r = 0.70$ $PM_{2.5}$ SO ₄ : $r = 0.33$ $PM_{2.5}$ EC: $r = 0.82$ $PM_{2.5}$ TC: $r = 0.98$ $PM_{2.5}$ water-sol metals: $r = 0.49$ OHC: $r = 0.37$	
		Between $PM_{2.5}$ total carbon and: PM_{10} : $r = 0.67$ O_3 : $r = 0.52$ NO_2 : $r = 0.65$ CO : $r = 0.63$ SO_2 : $r = 0.19$ $PM_{10-2.5}$: $r = 0.51$ $PM_{2.5}$: $r = 0.71$ $PM_{2.5}$: SO_4 : $r = 0.34$ $PM_{2.5}$: $PM_{2.5}$	
		Between PM _{2.5} water-soluble metals and: PM ₁₀ : $r = 0.73$ O_3 : $r = 0.43$ NO_2 : $r = 0.32$ CO: $r = 0.35SO_2: r = 0.06PM10-2.5: r = 0.50PM2.5: r = 0.69PM2.5: SO_4: r = 0.65$	
		PM _{2.5} EC: r = 0.52 PM _{2.5} OC: r = 0.49 PM _{2.5} TC: r = 0.52	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Villeneuve et al. (2006, 090191) Period of Study: Apr 1992-Mar 2002 Location: Edmonton, Canada	Outcome (ICD-9): Stroke (430-438), including ischemic stroke (434-436), hemorrhagic stroke (430,432), and transient ischemic attacks (TIA) (435). Age Groups: 65+ yr Study Design: Case-crossover N: 12,422 visits Statistical Analyses: Conditional logistic regression Covariates: Temperature and relative humidity Season: Summer (Apr-Sep), winter (Oct-Mar) Dose-response Investigated: No Statistical Package: SAS (PHREG) Lags Considered: 0, 1, and 3 days	Pollutant: PM _{2.5} Averaging Time: 24 h Mean µg/m3 (SD): All yr: 8.5 (6.2) Summer: 8.7 (7.1) Winter: 8.3 (5.2) Monitoring Stations: 3 Copollutant (correlation): All yr SO ₂ : r = 0.22 NO ₂ : r = 0.41 CO: r = 0.43 O ₃ -mean: r = -0.07 O ₃ -max: r = 0.07 PM ₁₀ : r = 0.79 Summer SO ₂ : r = 0.20 NO ₂ : r = 0.20 NO ₂ : r = 0.52 CO: r = 0.42 O ₃ -mean: r = 0.11 O ₃ -max: r = 0.34 PM ₁₀ : r = 0.85 Winter SO ₂ : r = 0.28 NO ₂ : r = 0.28 NO ₂ : r = 0.57 CO: r = 0.71 O ₃ -mean: r = -0.45 O ₃ -mean: r = -0.45 O ₃ -max: r = -0.35 PM ₁₀ : r = 0.70	PM Increment: µg/m³ (IQR) All yr: 6.3 Summer: 6.5 Winter: 6.0 Adjusted OR Estimate [CI]: Acute ischemic stroke All yr: Same-day lag: 1.00 [0.96,1.04] 1-day lag: 1.01 [0.96,1.05] 3-day lag: 1.01 [0.96,1.06] Summer: Same-day lag: 0.96 [0.90,1.03] 1-day lag: 1.01 [0.94,1.07] 3-day lag: 0.98 [0.89 [1.07] Winter: Same-day lag: 1.04 [0.99,1.10] 1-day lag: 1.05 [0.98,1.13] Hemorrhagic stroke All yr: Same-day lag: 0.99 [0.90,1.08] 1-day lag: 1.05 [0.98,1.13] Hemorrhagic stroke All yr: Same-day lag: 0.99 [0.90,1.08] 1-day lag: 1.05 [0.93,1.19] Summer: Same-day lag: 0.99 [0.86,1.15] 1-day lag: 1.12 [0.97,1.30] 3-day lag: 1.12 [0.97,1.30] 3-day lag: 1.12 [0.97,1.30] 3-day lag: 1.108 [0.88,1.31] Winter: Same-day lag: 1.04 [0.92,1.18] 1-day lag: 1.08 [0.97,1.20] 3-day lag: 1.11 [0.94,1.31] Transient cerebral ischemic attack All yr: Same-day lag: 0.98 [0.93,1.03] 1-day lag: 0.99 [0.95,1.04] 3-day lag: 0.99 [0.95,1.04] 3-day lag: 0.96 [0.90,1.03] Summer: Same-day lag: 0.97 [0.90,1.05] 1-day lag: 0.98 [0.88,1.09] Winter: Same-day lag: 0.97 [0.90,1.05] 1-day lag: 0.97 [0.91,1.04] 3-day lag: 0.97 [0.91,1.04] 3-day lag: 0.94 [0.86,1.03] Notes: Adjusted ORs are provided for an IQR increase in the 3-day mean in Fig 1-4 for single and two-pollutant models.
Reference: Zanobetti and Schwartz (2006, 090195)	Outcome (ICD-9): Myocardial infarction (410) or pneumonia (480-487)		PM Increment: Difference between the 90th and 10th percentile for PM _{2.5}
Period of Study: 1995-1999	Age Groups: 65+ yr	Averaging Time: 24 h Median (µg/m3) (IQR 5th-95th	Myocardial infarction cohort (Lag 0):
Location: Boston Metropolitan area	Study Design: Case-crossover	percentile):	17.17 μg/m° Myocardial infarction cohort (Lag 0-1):
	N: 15,578 patients admitted for MI and 25,857 admitted for pneumonia	11.1 (7.23-16.14	16.32 µg/m ³
	Statistical Analyses: Conditional	3.87-26.31) Monitoring Stations: 1	Pneumonia cohort (Lag 0): 17.14 μg/m ³
	logistic regression		Pneumonia cohort (Lag 0): 16.32 μg/m³
	Covariates: Temperature, day of the week.	Copollutant (correlation): BC: r = 0.66	Percentage (%) increase in risk [95% CI]:
	Season: All, and also tested for interaction by warm (Apr-Sep) vs cold season	NO ₂ : r = 0.55	Myocardial infarction cohort: Lag 0: 8.50 (1.89-14.43)
		CO: r = 0.52	Lag 0-1: 8.65 (1.22-15.38)
	Dose-response Investigated: No	O_3 : $r = 0.20$	Pneumonia cohort:
	Statistical Package: SAS version 8.2	PM non-traffic: r = 0.74	Lag 0: 6.48 (1.13-11.43) Lag 0-1: 5.56 (-0.45, 11.27)
	(PROC PHREG) Lags Considered: Lag 0 , and mean of lags 0 -1		Notes : Assessed for effect modification by season. Results are reported in Fig 2. Summary of results: PM_{25} is associated with pneumonia hospitalization in the cold season but not the hot season. PM_{25} is associated with MI hospitalization in the hot season but not the cold season.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Zanobetti and Schwartz	Outcome (ICD-9): Myocardial infarction	Pollutant: BC	PM Increment: Difference between the 90th and 10th percentile for BC
(2006, <u>090195</u>)	(410) or pneumonia (480-487)	Averaging Time: 24 h	90th and 10th percentile for BC
Period of Study: 1995-1999	Age Groups: 65 + yr	Median (µg/m3) (IQR 5th-95th	Myocardial infarction cohort (Lag 0): 2.01 μg/m ³
Location: Boston Metropolitan area	Study Design: Case-crossover	percentiles):	10
	N: 15,578 patients admitted for MI and	1.15 (0.74-1.72	Myocardial infarction cohort (Lag 0-1): 1.69 μg/m³
	25,857 admitted for pneumonia	0.42-2.83)	10
	Statistical Analyses: Conditional	Monitoring Stations: 1	Pneumonia cohort (Lag 0): 2.05 μg/m³
	logistic regression	Copollutant (correlation):	Pneumonia cohort (Lag 0 -1): 1.69 μα/m³
	Covariates: Temperature, day of the week.	PM _{2.5} : r = 0.66	Percentage (%) increase in risk [95%
	Season: All, and also assessed for	NO ₂ : r = 0.70	CI]:
	interaction by hot (Apr-Sep) vs cold season	CO: r = 0.82	Myocardial infarction cohort: Lag 0: 6.98 (-0.27-13.76)
	Dose-response Investigated: No	O_3 : r = -0.25 PM non-traffic: r = -0.01	Lag 0-1: 8.34 (0.21-15.82)
	Statistical Package: SAS Software Release 8.2		Pneumonia cohort: Lag 0: 10.76 (4.54-15.89) Lag 0-1: 11.71 (4.79, 17.36)
	Lags Considered: Lag 0 , and mean of lags 0 -1		Notes: Assessed for effect modification by season. Results are reported in Fig 2. Summary of results: PM ₂ BC is associated with pneumonia hospitalization in the cold season but not the hot season. BC had a stronger positive association with MI hospitalization in the cold season, but the confidence interval was wide.

¹All units expressed in µg/m³ unless otherwise specified.

Table E-8. Short-term exposure-cardiovascular-ED/HA-other size fractions.

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Andersen et al, (2008, 189651)	Outcome (ICD-10): CVD, including angina pectoris (I20), myocardial infarction (I21-22), other acute ischemic	Pollutant: Total number concentration of ultrafine and accumulation mode particles (NCtot) (particles/cm³)	PM Increment: IQR increase in pollutant level: Nctot: 3907 particles/cm³ (IQR)
Period of Study: May 2001-Dec 2004 Location: Copenhagen, Denmark	heart diseases (I ² 4), chronic ischaemic heart disease (I ² 5), pulmonary embolism (I ² 6), cardiac arrest (I ⁴ 6), cardiac arrhythmias (I ⁴ 8- ⁴ 8), and heart failure (I ⁵ 0).	Averaging Time: 24 h NCtotal Mean (SD): 8,116 (3502)	N _{ca12} : 342 particles/cm ³ (IQR) N _{ca23} : 1786 particles/cm ³ (IQR) N _{ca57} : 3026 particles/cm ³ (IQR) N _{C100} : 3259 particles/cm ³ (IQR)
	RD, including chronic bronchitis (J41-42), emphysema (J43), other chronic obstructive pulmonary disease (J44), asthma (J45), and status	Median: 7,358 IQR: 5,738-9,645 99 th Percentile: 19,895 NCa12 Mean (SD): 493 (315)	N _{ca212} : 495 particles/cm³ (IQR) Relative risk (RR) Estimate [CI]: CVD hospital admissions (4-day avg, lag 0 - 3), age 65+ One-pollutant model (NCtot):
	asthmaticus (J46). Pediatric hospital admissions for asthma (J45) and status asthmaticus (J46).	Median: 463 IQR: 308-650 99 th Percentile: 1,263 NCa23	1.00 [0.99-1.02] Adj for PM ₁₀ : 0.98 [0.96-1.01] Adj for PM _{2.5} : 0.99 [0.95-1.03] Adj for CO: 0.99 [0.97-1.02]
	Age Groups: >65 yr (CVD and RD), 5-18 yr (asthma) Study Design: Time series	Mean (SD): 2,253 (1,364) Median: 2,057 IQR: 1,280-3,066 99 th Percentile: 6,096	Adj for NO ₂ : 1.01 [0.98-1.03] Adj for O ₃ : 1.01 [0.96-1.06] One-pollutant model (NC100): 1.00 [0.98-1.02]
	N: NR	NCa57	One pollutant model (Nca12): 0.99 [.97-1.01]
	Statistical Analyses: Poisson GAM	Mean (SD): 5,104 (2,687) Median: 4,562 IQR: 3,248-6,274	Adj for other size fractions: 0.99 [0.97-1.02]
	Covariates: Temperature, dew-point temperature, long-term trend,	99 th Percentile: 14,410	One pollutant model (Nca23): 0.99 [0.96-1.01]
	seasonality, influenza, day of the week, public holidays, school holidays (only for 5-18 yr olds), pollen (only for pediatric asthma outcome)	NCa100 Mean (SD): 6,847 (2,846) Median: 6,243 IQR: 4,959-8,218	Adj for other size fractions: 0.99 [0.96-1.02] One pollutant model (NCa57): 1.01 [0.98-1.02] Adj for other size fractions:
	Season: NR	99th Percentile: 16,189 NCa212	0.99 [0.97-1.02] One pollutant model (Nca212): 1.02 [1.00-1.04]

Design & Methods Concentrations1 Effect Estimates (95% CI) Study Mean (SD): 392 (441) Adj for other size fractions: Dose-response Investigated: No 1.02 [1.00-1.05] Adj for PM₁₀: 0.98 [0.95-1.01] Median: 246 IQR: 89-584 Statistical Package: R statistical 99th Percentile: 2,248 RD hospital admissions (5-day avg, lag software (gam procedure, mgcv 0 -4), age 65+: One-pollutant model: 1.04 [1.00-1.07] package) *NC, number concentration tot, total (all particles 6-700 in diameter) a12, size Lags Considered: Lag 0 -5 days, 4-day pollutant avg (lag 0 -3) for CVD, 5-day avg (lag 0-4) for RD, and a 6-day avg (lag 0-5) for asthma. Adj for PM₁₀: 1.00 [0.96-1.05] Adj for PM₂₅: 0.97 [0.89-1.05] Adj for CO: 1.03 [0.98-1.07] Adj for NO₂: 1.00 [0.95-1.05] Adj for O₃: 0.95 [0.87-1.04] One pollutant model (NC100): 1.03 [0.99-1.07] mode with mean diameter of 12 nm a23, size mode with median diameter of 23 nm a57, size mode with median diameter of 57 nm a212 size mode with median diameter of 212 nm NC100 = a12+a23+0.797*a57+0.084*a One pollutant model (Nca12): 1.01 [0.98-1.05] Monitoring Stations: 1 Adj for other size fractions: 1.01 [0.97-1.05] Copollutant (correlation): Correlation of NCtot with: One pollutant model (Nca23): PM_{10} : r = 0.39 0.99 [0.94-1.03] PM_{2.5}: r = 0.40 NO₂: r = 0.68 : r = 0.66 Adj for other size fractions: 0.98 [0.94-1.03] One pollutant model (Nca57): NC₁₀₀: r = 0.98 NC_{a12}: r = 0.31 NC_{a23}: r = 0.57 1.04 [1.00-1.08] Adj for other size fractions: 1.02 [0.97-1.06] NC_{a57} : r = 0.87One pollutant model (Nca212): NC_{a212}: r = 0.29 CO: r = 0.54 1.04 [1.01-1.08] Adj for other size fractions: 1.03 [0.99-1.07] NO_x curbside: r = 0.36 Adj for PM₁₀: 1.01 [0.96-1.07] O_3 : r = -0.12Asthma hospital admissions (6-day avg Other variables: lag 0-5), age 5-18: One-pollutant model: 1.07 [0.98-1.17] Temperature: r = -0.06 Relative humidity: r = -0.04 Adj for PM₁₀: 1.03 [0.92-1.15] Adj for PM_{2.5}: 1.04 [0.85-1.28] Adj for CO: 1.09 [0.99-1.21] Adj for NO₂: 1.07 [0.96-1.19] Adj for O₃: 1.08 [0.87-1.35] One pollutant model (NC100): 1.06 [0.97-1.16] One pollutant model (Nca212): 1.08 [0.99-1.18] Adj for other size fractions: 1.07 [0.97-1.19] One pollutant model (Nca23): 1.09 [0.98-1.21] Adj for other size fractions: 1.08 [0.97-1.21] One pollutant model (Nca57): 1.02 [0.94-1.12] Adj for other size fractions: 0.93 [0.83-1.04] One pollutant model (Nca212): 1.08 [1.00-1.17] Adj for other size fractions: 1.12 [1.02-1.23] Adj for PM₁₀: 1.10 [0.96-1.13] Notes: Fig 2: Relative risks and 95% confidence intervals per IQR in single day concentration (0-5 day lag). Summary of Fig 2: CVD: Positive, marginally or statistically significant associations at Lag 2 (Nctot, Nca57, Nca212), Lag 3 (Nca212), and Lag 1 (Nca212). RD: Positive, statistically or marginally significant associations at Lag 4 (Nctot, Nca57, NCa212) and Lag 5 (Nctot, Nca57, Nca212), and to a lesser extent Lag 2 (Nctot, Nca212) and Lag 3 (Nctot, Nca212). Asthma: Wide confidence intervals make interpretation difficult. Positive, significant association for Nca212 at Lag 1

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Lanki et al. (2006, <u>089788</u>)	Outcome (ICD-9): Acute myocardial infarction (410	Pollutant: UFP (PNC)	PM Increment: 10,000 particles/cm ³
Period of Study: 1992-2000	ICD-10: I21, I22)	Averaging Time: 24 h	Pooled Rate Ratio [CI]: All 5 cities (35+ yr)
Location: Augsburg, Barcelona, Helsinki, Rome, and Stockholm	Age Groups: 35+ yr, <75 yr, 75+ yr	Median particles/cm3: Augsburg: 12,400	Same-day lag: 1.005 [0.996,1.015]
Heisinki, Norile, and Stockholm	Study Design: Time series	Barcelona: 76,300 Helsinki: 13,600	1-day lag: 0.997 [0.982,1.012] 2-day lag: 0.999 [0.990,1.008]
	N: 26,854 hospitalizations	Rome: 46,000	3-day lag: 0.998 [0.979,1.017]
		Stockholm: 11,800 Copollutant (correlation):	3 cities with hospital discharge register (35+ yr)
	Statistical Analyses: GAM Covariates: Temporature, barometric	Augsburg PM ₁₀ : r = 0.53	Same-day lag: 1.013 [1.000,1.026] 1-day lag: 0.995 [0.953,1.039]
	Covariates: Temperature, barometric pressure	CO: r = 0.63 NO ₂ : r = 0.65	2-day lag: 1.001 [0.989,1.014] 3-day lag: 1.009 [0.974,1.046]
	Season: Warm (Apr-Sep) and cold (Oct-Mar)	O_3 : $r = 0.26$	Warm season (35+ yr)
	Dose-response Investigated: No	Barcelona: PM ₁₀ : r = 0.38	Same-day lag: 1.009 [0.972,1.048] 1-day lag: 1.023 [0.988,1.060];
	Statistical Package: R package mgcv 0.9-5	CO: r = 0.80 NO ₂ : r = 0.49 O ₃ : r = -0.35	2-daý lag: 1.050 [1.016,1.085] 3-day lag: 1.022 [0.987,1.058]
	Lags Considered: 0-3 days	Helsinki: PM ₁₀ : r = 0.45 CO: r = 0.48 NO ₂ : r = 0.82 O ₃ : r = 0.01	Cold season (35+ yr) Same-day lag: 1.014 [1.001,1.028] 1-day lag: 1.001 [0.956,1.048] 2-day lag: 1.001 [0.989,1.014] 3-day lag: 1.009 [0.971,1.049]
		Rome: PM ₁₀ : r = 0.32 CO: r = 0.83 NO ₂ : r = 0.68 O ₃ : r = 0.03	Age >75Non-fatal Same-day lag: 1.032 [1.008,1.056] 1-day lag: 1.009 [0.985,1.032] 2-day lag: 0.989 [0.966,1.013] 3-day lag: 1.009 [0.969,1.051]
		Stockholm: PM ₁₀ : r = 0.06 CO: r = 0.56 NO ₂ : r = 0.83	Fatal Same-day lag: 1.016 [0.978,1.055] 1-day lag: 1.001 [0.966,1.038] 2-day lag: 1.005 [0.969,1.041] 3-day lag: 0.984 [0.948,1.021]
		O ₃ : r = -0.01	Notes: Rate ratios for PNC are given for 0-5 lag days in graph form (Fig 1) for each city. Pooled rate ratios were also provided for groups <75 yielding similar results to the overall 3-city data.
Reference: Metzger et al. (2004, 044222)	Outcome (ICD-9): Emergency visits for ischemic heart disease (410-414),	Pollutant: UFP (10-100 nm particle count) (no/cm³)	PM Increment: 30,000 no/cm ³ (approximately 1 SD)3
Period of Study: Aug 1998-Aug 2000	cardiac dysrhythmias (427), cardiac arrest (427.5), congestive heart failure	Averaging Time: 24 h	RR [95% CI]: For 3 day ma: All CVD:
Location: Atlanta Metropolitan area	(428), peripheral vascular and cerebrovascular disease (433-437, 440,	Median (10%-90% range): 25,900	0.985 [0.965, 1.005]
(Georgia)	443-444, 451-453), atherosclerosis	(11,500-74,600)	Dysrhythmia: 0.972 [0.937, 1.008]
	(440), and stroke (436).	Monitoring Stations: 1 Copollutant (correlation):	Congestive heart failure: 0.983 [0.943-1.025]
	Age Groups: All	PM_{10} : r = -0.13	Ischemic heart disease: 0.989
	Study Design: Time series	O ₃ : r = -0.13 NO ₂ : r = 0.26	[0.953-1.026]
	N: 4,407,535 emergency department visits between 1993-2000 (data not reported for 1998-2000)	CO: r = 0.10 SO ₂ : r = 0.24 PM _{2.5} : r = -0.16	Peripheral vascular and cerebrovascular disease: 0.998 [0.960-1.039]
	Statistical Analyses: Poisson generalized linear modeling	PM _{2.5} water soluble metals: r = -0.27 PM _{2.5} sulfates: r = -0.31; PM _{2.5} acidity: r = -0.39;	Results for Lags 0-7 expressed in figures (see notes).
	Covariates: Day of the week, hospital entry and exit indicator variables, federally observed holidays, temporal trends, temperature, dew point	$PM_{2.5}$ OC: $r = 0.08$; $PM_{2.5}$ EC: $r = 0.08$; $PM_{2.5}$ oxygenated hydrocarbon: $r = 0.05$	Notes: Fig 1: RR (95% CI) for single- day lag models for the association of ER visits for CVD with daily ambient UFP.
	temperature	Other variables: Temperature: r = -0.33	Summary of Fig 1 results: Null or
	Season: All	Dew point: r = -0.41	negative associations.
	Dose-response Investigated: No		
	Statistical Package: SAS		
	Lags Considered: 3-day ma, lags 0-7		

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: von Klot et al. (2005,	Outcome (ICD-9): Acute myocardial	Pollutant: UFP (PNC)	PM Increment: 10,000 particles/cm ³
<u>088070</u>)	infarction (410	Averaging Time: 24 h	Pooled RR Estimate [CI]:
Period of Study: 1992-2001	ICD-10: I21-I22), angina pectoris (411, 413	Mean particle/cm3 (5th-95th	All cardiac admissions: 1.026
Location: Augsburg, Germany	ICD-10: I20, I24), dysrhythmia (427	percentile): Augsburg:	[1.005,1.048]
Barcelona, Spain	ICD-10: I46.0, 46.9, I47-I49, R00.1,	Barcelona:	Myocardial infarction: 1.039 [0.998.1.082]
Helsinki, Finland	R00.8), heart failure (428	Helsinki: Rome:	Angina pectoris: 1.020 [0.992,1.048]
Rome, Italy	ICD-10: 150)	Stockholm:	
Stockholm, Sweden	Age Groups: 35+ yr	Monitoring Stations: NR	
otootatoitti, ottodott	Study Design: Cohort	Copollutant (correlation): Augsburg	
	N: 22,006 MI survivors	PM_{10} : r = 0.52	
	Statistical Analyses: GAM, Spearman correlation	CO: r = 0.63 NO ₂ : r = 0.64 O ₃ : r = -0.32	
	Covariates: Temperature, dew point temp, avg barometric pressure, relative humidity	Barcelona PM ₁₀ : r = 0.29 CO: r = 0.71:	
	Season: NR	NO_2 : $r = 0.44$	
	Dose-response Investigated: No	O ₃ : r =-0.55	
	Statistical Package: R-software with "mgcv" package	Helsinki PM ₁₀ : r = 0.46 CO: r = 0.47;	
	Lags Considered: 0-3 days	NO ₂ : r = 0.83 O ₃ : r =-0.16	
		Rome PM ₁₀ : r = 0.33 CO: r = 0.80; NO ₂ : r = 0.71 O ₃ : r = -0.47	
	ethon is a pracified	Stockholm PM_{10} : $r = 0.06$ CO: $r = 0.54$; NO_2 : $r = 0.80$ O_3 : $r = -0.17$	

¹All units expressed in μg/m³ unless otherwise specified.

E.2. Short-Term Exposure and Respiratory Outcomes

E.2.1. Respiratory Morbidity Studies

Table E-9. Short-term exposure-respiratory morbidity outcomes -PM₁₀.

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Aekplakorn, et al. (2003,	Outcome: Upper respiratory symptoms,	Pollutant: PM ₁₀	PM Increment : 10 μg/m ³
<u>089908</u>)	lower respiratory symptoms, cough	Averaging Time: Daily	Odds Ratios [Lower CI, Upper CI]
Period of Study: 107 days, from Oct 1997-Jan 1998	Age Groups: 6-14 yr old	Mean (SD):	lag: Asthmatics: URS: 1.03 (0.99, 1.07)
	Study Design: Logistic regression	Sob Pad station: 31.92	lag 0
Location: Mae Mo district, Lampang Province, North Thailand	N: 98 asthmatic school children, 98		LRS: 1.04 (0.99, 1.09) lag 0
Trovince, North Thailand	non-asthmatic school children	Sob Mo station: 33.64	Cough: 1.04 (1.00, 1.07)
	Statistical Analyses: GEE, stratified	Hua Fai station: 37.45	lag 0 Non-Asthmatics: URS: 1.04 (0.99, 1.08)
	analysis, PROC GENMOD	Range (Min, Max):	lag 0
	Covariates: Temperature and relative humidity	Sob Pad: 6.63, 153.25	LŘS: 1.0 (0.93, 1.07) lag 0
	Season: Winter	Sob Mo: 4.23, 121.80	Cough: 0.99 (0.94, 1.05) lag 0
	Dose-response Investigated? No	Hua Fai: 6.98, 113.30	$PM_{10} + SO_2$ Asthmatics: URS: 1.03 (0.99, 1.07)
	Statistical Package: SAS v 8.1	Monitoring Stations: 3	lag 0 LRS: 1.03 (0.98, 1.09)
		Copollutant: PM _{2.5} , SO ₂	lag 0 Cough: 1.04 (1.00, 1.08) lag 0 Non-Asthmatics: URS: 1.04 (0.99, 1.08) lag 0 LRS: 1.0 (0.93, 1.07) lag 0
			Cough: 0.99 (0.95, 1.05) lag 0

Design & Methods	Concentrations1	Effect Estimates (95% CI)
Outcome: Daily symptoms (prospective daily recording of symptoms via diary) Age Groups: 0-3 yr Study Design: Panel study of children with genetic susceptibility to asthma		PM Increment: IQR (14.5 μg/m³) increase Odds Ratios (95%CI) for incident wheezing symptoms Age 0-1
	Percentiles: 25th: 15.7 75th: 30.2 IQR: 14.5 Copollutant (correlation): $PM_{2.5}$ ($r = 0.79$) Number concentration of ultrafine particles, UFP ($r = 0.37$) NO ₂ ($r = 0.43$) NO _x ($r = 0.40$) CO ($r = 0.45$) O ₃ ($r = -0.32$) Temp ($r = 0.25$)	Age 0-1 L0: 1.05 (0.88, 1.25) L1: 1.00 (0.82, 1.22) L2: 1.01 (0.83, 1.23) L3: 1.20 (0.98, 1.46) L4: 1.23 (1.02, 1.48) L2-4: 1.21 (0.99, 1.48) Age 1-2 L0: 1.00 (0.86, 1.15) L1: 1.02 (0.87, 1.19) L2: 1.05 (0.93, 1.19) L3: 0.96 (0.84, 1.09) L4: 1.04 (0.90, 1.21) L2-4: 1.03 (0.88, 1.22) Age 2-3 L0: 0.87 (0.72, 1.06) L1: 0.95 (0.78, 1.15) L2: 0.99 (0.82, 1.17) L3: 1.03 (0.84, 1.25) L4: 0.94 (0.74, 1.19) Age 0-3 L0: 0.97 (0.87, 1.08) L1: 0.99 (0.89, 1.10) L2: 1.01 (0.92, 1.12) L3: 1.03 (0.89, 1.10) L2: 1.01 (0.92, 1.12) L3: 1.03 (0.94, 1.15) L2-4: 1.04 (0.94, 1.15) L2-4: 1.04 (0.92, 1.17) Two pollutant models (lag 2-4) 1-pollutant models (lag 2-4) 1-pollutant model: 1.21 (0.99, 1.48) 2-pollutant (adj for NO ₂): 1.13 (0.88, 1.45) 2-pollutant (adj for CO): 1.23 (0.96, 1.57) 110 children living within 5km radius from monitor (sensitivity analysis): Age 0-1: 1.32 (0.95, 1.82)
	Outcome: Daily symptoms (prospective daily recording of symptoms via diary) Age Groups: 0-3 yr Study Design: Panel study of children with genetic susceptibility to asthma (mothers had asthma) N: 205 children (living within a 15km radius of the central monitor during the first 3 yr of life) born between Aug 2, 1998 and Dec 12, 2001 Statistical Analyses: Logistic regression model (GEE) Covariates: Temperature, season, gender, age, exposure to smoking, and paternal history of asthma Effect modification: gender, medication use, and paternal history of asthma Statistical Package: SAS v9.1	Outcome: Daily symptoms (prospective daily recording of symptoms via diary) Age Groups: 0-3 yr Study Design: Panel study of children with genetic susceptibility to asthma (mothers had asthma) N: 205 children (living within a 15km radius of the central monitor during the first 3 yr of life) born between Aug 2, 1998 and Dec 12, 2001 Statistical Analyses: Logistic regression model (GEE) Covariates: Temperature, season, gender, age, exposure to smoking, and paternal history of asthma Effect modification: gender, medication use, and paternal history of asthma Statistical Package: SAS v9.1 Lag: 0.1.2.3.4.2-4

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Boezen et al. (2005,	Outcome: FEV ₁ , airway	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
087396)	hyperresponsiveness (AHR), serum total IgE and daily data on lower	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Two consecutive winters (winter 1993-winter 1995)	respiratory symptoms (LRS), upper respiratory symptoms (URS), cough	Mean (SD):	AHR-/lgE- Upper Respiratory Symptoms
Location: Rural (Meppel, Nunspeet)	and morning and evening peak expiratory flow	Winter 93/94 Urban: 41.5 Winter 93/94 Rural: 44.1	Lag 0: OR = 0.99 (0.97-1.01) Lag 1: OR = 1.01 (0.99-1.03)
and urban (Amsterdam) areas in the Netherlands	Age Groups: 50-70 yr	Winter 94/95 Urban: 31.1 Winter 94/95 Rural: 26.6	Lag 2: OR = 1.00 (0.96-1.02)
	Study Design: Case-control study	Percentiles: 50th(Median):	5-day mean: OR = 1.00 (0.96-1.04) Cough
	N: 327 patients	Winter 93/94 Urban: 34.6 Winter 93/94 Rural: 30.4	Lag 0: OR = 1.00 (0.99-1.02) Lag 1: OR = 0.99 (0.98-1.01)
	Statistical Analyses: Logistic	Winter 94/95 Urban: 28.9 Winter 94/95 Rural: 23.7	Lag 2: OR = 1.00 (0.98-1.01) 5-day mean: OR = 0.98 (0.95-1.01) >10% fall in morning peak expiratory
	regression Covariates: daily minimum	Range (Min, Max):	flow
	time trend, weekend/holidays, and influenza incidence for the rural and urban areas and two winters separately	93/94 Urban: (12.1-112.7) 93/94 Rural: (7.9-242.2) 94/95 Urban: (8.8-89.9) 94/95 Rural: (7.1-96.9)	Lag 1: OR = 1.01 (0.98-1.04) Lag 2: OR = 0.97 (0.94-1.00) 5-day mean: OR = 0.97 (0.92-1.02) AHR-/lgE+ Upper Respiratory Symptoms
	Season: winter	Copollutant:	Lag 0: OR = 1.01 (0.99-1.03)
	Dose-response Investigated? No	SO ₂ NO ₂	Lag 1: OR = 1.02 (1.00-1.04) Lag 2: OR = 1.01 (0.99-1.03)
	Lags Considered: 0, 1, 2, and 5-day	BS	5-day mean: OR = 1.08 (1.04-1.11) Cough
	mean		Lag Ö: OR = 1.01 (0.99-1.03) Lag 1: OR = 0.99 (0.98-1.01) Lag 2: OR = 1.00 (0.98-1.02) 5-day mean: OR = 1.01 (0.97-1.05) >10% fall in morning peak expiratory
			flow Lag 1: OR = 0.99 (0.97-1.02) Lag 2: OR = 0.99 (0.97-1.02) 5-day mean: OR = 0.97 (0.93-1.01) AHR+/IgE- Upper Respiratory Symptoms
			Lag 0: OR = 0.99 (0.95-1.03) Lag 1: OR = 1.01 (0.97-1.05) Lag 2: OR = 0.99 (0.96-1.03) 5-day mean: OR = 0.98 (0.91-1.06) Cough
			Lag 0: OR = 1.00 (0.97-1.02) Lag 1: OR = 1.01 (0.98-1.03) Lag 2: OR = 0.99 (0.96-1.02) 5-day mean: OR = 1.02 (0.96-1.08) >10% fall in morning peak expiratory
			flow Lag 1: OR = 0.99 (0.95-1.03) Lag 2: OR = 0.99 (0.95-1.03) 5-day mean: OR = 0.99 (0.93-1.06) AHR+/loE+
			Upper Řespiratory Symptoms Lag 0: OR = 1.01 (0.98-1.04) Lag 1: OR = 1.03 (1.00-1.05) Lag 2: OR = 1.02 (0.99-1.05) 5-day mean: OR = 1.06 (1.00-1.11)
			Cough Lag 0: OR = 1.03 (1.01-1.06) Lag 1: OR = 1.00 (0.98-1.02) Lag 2: OR = 0.99 (0.97-1.01) 5-day mean: OR = 0.99 (0.95-1.04) Lag 2: OR = 0.99 (0.96-1.03) 5-day mean: OR = 0.99 (0.92-1.05) >10% fall in morning peak expiratory flow
			Lag 1: OR = 1.04 (1.00-1.07) Lag 2: OR = 1.03 (0.99-1.06) 5-day mean: OR = 1.05 (0.99-1.11)
Reference: Boezen et al. (1999,	Outcome: Respiratory symptoms	Pollutant: PM ₁₀	Increment: 100 µg/m³
040410) Periods of Study: 3 Winters (1992-1995)	Lower respiratory symptoms (wheeze, attacks of wheezing, shortness of breath)	Averaging Time: 24-h avg Mean (SD): Winter 1992-93	Odds Ratio (Lower CI, Upper CI) lag OR for respiratory symptoms and exposure to PM ₁₀ in children with BHR
Location: Urban and rural areas of the Netherlands	Upper respiratory symptoms (sore throat, runny or blocked nose)	Urban: 54.8 Rural: 44.7 Winter 1993-94	and high serum total IgE Lower Respiratory Symptoms 1.32 (1.07, 1.63) 0

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Deference: Chattanadhuay et al. (2007	Outcome pulmonary function to to	Dellistants DM	0.93 (0.69, 1.25) 0-5 avg >10% morning PEF decrease 0.97 (0.80, 1.17) 0 1.09 (0.91, 1.30) 1 1.02 (0.85, 1.21) 2 0.95 (0.71, 1.28) 0-5 avg >10% evening PEF decrease 1.02 (0.85, 1.22) 0 1.06 (0.90, 1.25) 1 1.08 (0.93, 1.27) 2 1.04 (0.80, 1.34) 0-5 avg.
Reference: Chattopadhyay et al. (2007, 147471)	(respiratory impairments)	Pollutant: PM ₁₀ Averaging Time: 8 h	Respiratory impairments (SD):
Period of Study: NR	Age Groups: All ages	Mean (SD):	North Kolkata
Location: Three different points in Kolkata, India: North, South, and	Study Design: Cross-sectional	North Kolkata: 535.9	Male (n = 137) Restrictive: 4 (2.92)
Central	N: 505 people studied for PFT	Central Kolkata: 1114.5	Obstructive: 5 (3.64) Combined Res. And Obs.: 6 (4.37)
	total population of Kolkata not given	South Kolkata: 909.2	Total: 15 (10.95) Female (n = 152)
	Statistical Analyses: Frequencies	Monitoring Stations: 1	Restrictive: 3 (1.97) Obstructive: 5 (3.28)
	Covariates: Meteorologic data (i.e. temperature, wind direction, wind	Copollutant:	Combined Res. And Obs.: N/A Total: 8 (5.26)
	speed, and humidity) Dose-response Investigated? No	PM<10-3.3	Total (n = 289) Restrictive: 7 (2.42)
	Dose-response investigated? NO	PM<3.3-0.4	Obstructive: 10 (3.46) Combined Res. And Obs: 6 (2.07) Total: 23 (7.96)
			Central Kolkata Male (n = 44) Restrictive: 6 (13.63) Obstructive: 1 (2.27) Combined Res. And Obs.: 1 (2.27) Total: 8 (18.18) Female (n = 50) Restrictive: 3 (6.00) Obstructive: 2 (4.00) Combined Res. And Obs.: N/A Total: 5 (10.00) Total (n = 94) Restrictive: 9 (9.57) Obstructive: 3 (3.19) Combined Res. And Obs.: 1 (1.06) Total: 13 (13.82)
			South Kolkata Male (n = 52) Restrictive: 1 (1.92) Obstructive: 2 (3.84) Combined Res. And Obs.: 3 (5.76) Total: 6 (11.53) Female (n = 70) Restrictive: 2 (2.85) Obstructive: 1 (1.42) Combined Res. And Obs.: N/A Total: 3 (4.28) Total (n = 122) Restrictive: 3 (2.45) Obstructive: 3 (2.45) Combined Res. And Obs.: 3 (2.45) Total: 9 (7.37)

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Dales et al. (2006, <u>090744</u>)	Health Outcome: Respiratory Illness:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: Jan 1986-Dec 2000	Asphyxia (799) Respiratory failure (799.1) Dyspnea and respiratory abnormalities	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) Lag:
Location: 11 Canadian Cities: Calgary, Edmonton, Halifax, London, Hamilton, Ottawa, St. John, Toronto, Vancouver, Windsor, Winnipeg		Copollutants (correlation): O_3 : $r = -0.29$ to 0.41 NO_2 : $r = -0.26$ to 0.69 SO_2 : $r = -0.09$ to 0.61 CO : $r = -0.13$ to 0.71	In respiratory illness and exposure to PM ₁₀ in neonates
	(786) Respiratory distress syndrome (769) Unspecified birth asphyxia in live-born infant (768.9) Other respiratory problems after birth (770.8)		PM ₁₀ alone: 2.13 (-0.50, 4.76) Multipollutant model PM ₁₀ : 1.45 (-1.90, 4.80) PM ₁₀ , O ₃ : 2.67 (0.98, 4.39) PM ₁₀ , NO ₂ : 2.48 (1.18, 3.80) PM ₁₀ , SO ₂ : 1.41 (0.35, 2.47) PM ₁₀ , CO: 1.30 (0.13, 2.49)
	Pneumonia (486)		
	Study Design: Time-series		
	Statistical Analyses: Poisson		
	Age Groups: 0-27 days		
Reference: de Hartog et al. (2003,	Outcome: Respiratory symptoms	Pollutant: PM ₁₀	'There was a tendency toward positive
001061)	Age Groups: ≥ 50 yr	Averaging Time: 24 h	associations between avoidance of activities and both particulate air
Period of Study: Winter of 1998-1999	Study Design: Panel	Mean (SD):	pollution (PM ₁₀) and gases, but none of
Amsterdam, from Nov 1998 to Jun 1999	N: 131 subjects with history of coronary	Amsterdam: 36.5 Erfurt: 27.1	the associations were statistically significantIn both incidence analyse and prevalence analyses, odds ratios for PM ₁₀ were generally similar to the corresponding odds ratios for PM _{2.5} , buwere somewhat less significant.'
Erfurt, from Oct 1998 to Apr 1999	heart disease	Helsinki: 19.6	
Helsinki, from Nov 1998 to Apr 1999 Location:	Statistical Analyses: Logistic regression	Range (Min, Max): Amsterdam: (13.6-112.0)	
Amsterdam, the Netherlands; Erfurt, Germany; Helsinki, Finland	Covariates: Ambient temperature, relative humidity, atmospheric pressure, incidence of influenza-like illness	Erfurt: (5.2-104.2) Helsinki: (6.4-67.4)	
	Season: Winter	Monitoring Stations: 1	
	Dose-response Investigated? No	Copollutant: PM _{2.5}	
	Statistical Package: S-PLUS 2000	N _{C0.01-0.1} CO	
	Lags Considered: 0-, 1-, 2-, 3-, and 5-day avg	NO ₂ SO ₂	
Reference: Delfino et al. (1998,	Outcome: asthma symptom severity	Pollutant: PM ₁₀	PM Increment: 42 µg/m ³ (90th
<u>051406</u>)	Age Groups: 9-17	Averaging Time: 24 h	percentile increase) Asthma symptoms:
Period of Study: Aug-Oct 1995	Study Design: Panel Study	Mean (SD):	Everyone: 1.47 (0.90, 2.39) lag 0
Location: Alpine, CA	N: 24 non-smoking pediatric asthmatics	31 (8)	Everyone: 1.73 (1.03, 2.89) lag 0-4 Less symptomatic: 2.47 (1.23-4.95)
	Statistical Analyses: GEE	90th: 42	lag 0 Less symptomatic: 4.03 (1.22, 13.33)
	Covariates: Day of week, temperature, humidity, wind speed		lag 0-4 More symptomatic: 1.50 (0.80, 2.80)
	Statistical Package: SAS	Copollutant (correlation):	lag 0 More symptomatic: 1.95 (1.12, 3.43)
	Lags Considered: 0-5, 0, 0-4	O ₃ (r = 0.32)	$\begin{array}{l} \text{lag } 0\text{-}4' \\ \text{PM}_{10} + \text{O}_3 \\ \text{Asthma symptoms: 1.31 } (0.84, 2.06) \\ \text{lag } 0 \\ \text{1.65 } (1.03, 2.66) \\ \text{lag } 0\text{-}4 \\ \text{Less symptomatic: 2.08 } (1.12\text{-}3.83) \\ \text{lag } 0 \\ \text{Less symptomatic: 3.35 } (1.06, 10.51) \\ \text{lag } 0\text{-}4 \\ \text{More symptomatic: 1.40 } (0.77, 2.53) \\ \text{lag } 0 \\ \text{More symptomatic: 1.87 } (1.11, 3.13) \\ \text{lag } 0\text{-}4 \\ \end{array}$

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Delfino et al. (2002, 093740)	Outcome: Asthma symptoms that interfere with daily activities	Pollutant: PM ₁₀ Averaging Time: 1 h max Mean (SD): 38(15)	PM Increment: 90th percentile increase
Period of Study: Mar-Apr 1996	Age Groups: 9-19 yr	Percentiles: 90th: 63	Effect Estimate [Lower CI, Upper CI]:
Location: Alpine, California	Study Design: Daily panel study	Range (Min, Max): (12-69) Averaging Time: 8 h max	ORs for risk of asthma symptoms in
(a semi-rural area)	N: 22 asthmatic children	Mean (SD): 28(12) Percentiles: 90th: 46	those who report a respiratory infection compared to those who do not have a
	Statistical Analyses: GEE	Range (Min, Max): (8-57) Averaging Time: 24 h	respiratory infection 1 h max PM ₁₀ lag 0: 4.88 (1.31-18.2)
	Covariates: Temperature, relative humidity, day-of-week trends, linear time trend across the 61 days, and upper or lower respiratory infection	Mean (SD): 20(9) Percentiles: 90th: 32 Range (Min, Max): (7-42) Copollutant (correlation): 1 h max PM ₁₀	8 h max PM_{10} la \bar{q} 0: 6.78 (1.38-33.3) 24 h mean PM_{10} lag 0: 4.68 (0.71-30.7) 3-day ma 1 h max PM_{10} : 11.1 (1.10-112) 3-day ma 8 h max PM_{10} : 10.1 (1.42-
	Season: "Early spring season" of Mar-Apr	8 h max PM ₁₀ : r = 0.93 24 h PM ₁₀ : r = 0.84	72.0) 3-day ma 24 h PM ₁₀ : 2.67 (0.60-11.8) Effect modification by anti-inflammatory
	Dose-response Investigated? Yes	1 h max O₃: r = 0.68 8 h max O₃: r = 0.95	Effect modification by anti-inflammatory medication use on the relationship of
	Statistical Package: SAS, version 8	1 h max NO_2 : r = 0.49 8 h max NO_2 : r = 0.55	asthma symptoms in children 1 h max PM ₁₀ lag 0: 1.41 (0.87-2.30)
	Lags Considered: 0-, 1-, 2-, 3-, 4-, 5-, and 3-day ma	8 h max PM_{10} : 1 h max PM_{10} : $r = 0.93$ 24 h PM_{10} : $r = 0.95$ 1 h max O_3 : $r = 0.72$	On medication: 0.96 (0.25-3.69) Not on medication: 1.92 (1.22-3.02)
		8 h max O ₃ : r = 0.65 1 h max NO ₂ : r = 0.48 8 h max NO ₂ : r = 0.55 24 h PM ₁₀ : 1 h max PM ₁₀ : r = 0.84	8 h max PM ₁₀ lag 0: 1.19 (0.74-1.94) On medication: 0.75 (0.18-3.04) Not on medication: 1.68 (0.91-3.09)
		8 h max PM ₁₀ : r = 0.95 1 h max O ₃ : r = 0.74 8 h max O ₃ : r = 0.71	24 h mean PM_{10} lag 0: 1.08 (0.73-1.61) On medication: 0.80 (0.24-2.69) Not on medication: 1.35 (0.82-2.22)
		1 h max NO_2 : r = 0.37 8 h max NO_2 : r = 0.44	3-day ma 1 h max PM ₁₀ : 1.45 (0.76- 2.76)
			On medication: 1.01 (0.14-7.02)
			Not on medication: 1.92 (0.99-3.71) 3-day ma 8 h max PM ₁₀ : 1.32 (0.76-
			2.29)
			On medication: 0.82 (0.17-3.94) Not on medication: 1.89 (1.10-3.24)
			3-day ma 24 h PM ₁₀ : 1.22 (0.84-1.77) On medication: 0.75 (0.26-2.14)
			Not on medication: 1.75 (1.15-2.68)
			Dose-response results are found in Fig 2 and not quantitatively reported elsewhere.
Reference: Delfino et al. (2003,	Outcome: Asthma severity scale	Pollutant: PM ₁₀	PM Increment: IQR 37.0 µg/m ³
090941) Period of Study: Nov. 1000, Jan 2000	Peak Expiratory Flow Rate (PEF)	Mean (SD): 59.9 (24.7)	OR Estimate [Lower CI, Upper CI]
Period of Study: Nov 1999-Jan 2000 Location:	Age Groups: Ages 10 to 16	Range (Min, Max): 20-126	lag:
Huntington Park, Los Angeles	Study Design: Longitudinal study panel	IQR: 37	Lag 0
	N: 22 children	90th: 86.0	Symptom Scores >1: 1.45 (1.11, 1.90)
	Statistical Analyses: Regression	Monitoring Stations: 1	Symptom Scores >2: NR
	analysis (GEE, GLM) multivariate regression models	Copollutant (correlation):	Lag 1
	Covariates: Day of the week, Maximum	8-h max $NO_2 = 0.38$	Symptom Scores >1: 1.07 (0.64, 1.77)
	Temperature, Respiratory Infections	8-h max $O_3 = -0.16$	Symptom Scores >2: NR
	Season: Winter	8-h max CO = 0.50	
	Dose-response Investigated? No	8-h max $SO_2 = 0.73$	
	Statistical Package: SAS		
	Lags Considered: 0, 1		

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Delfino et al. (2004,	Outcome: FEV ₁	Pollutant: PM ₁₀	Results presented graphically: Percent
056897) Period of Study: Sep Oct 1000	Age Groups: 9-19 yr old	Averaging Time: 4 h, 8 h, 12 h, 24 h Personal Monitor	predicted FEV ₁ was inversely associated with personal exposure to
Period of Study: Sep-Oct 1999	Study Design: Panel study	1-h max personal PM last 24-h	fine particles.
Apr-Jun 2000	N: 24 children	Mean (SD): 151.0 (12.03)	 Inverse associations of FEV₁ with stationary-site indoor, outdoor and
Location: Alpine, California	Statistical Analyses: GLM	90th: 292.4 Range (Min, Max): (9.1, 996.8)	central-site gravimetric PM _{2.5} and PM ₁₀ , and with hourly TEOM PM ₁₀
	Akaike's information criterion and Bayesian information criterion	Mean personal PM last 24-h Mean (SD): 37.9 (19.9) 90th: 65.1	and mannearly 1.20m1 m _{[0}
	Covariates: Day of week, Personal temperature and relative humidity, time of FEV₁ maneuver (morning, afternoon, or evening), Season (fall 1999 or spring 2000)	Range (Min, Max): (3.9, 113.8) Central outdoor stationary-site PM 1-h Maximum TEOM PM ₁₀ last 24-h	
	As-needed medication use	Mean (SD): 54.4 (13.8) 90th: 71.0	
	Presence or absence of upper or lower respiratory infections	Range (Min, Max): (24.4, 95.4) Mean TEOM PM ₁₀ last 24-h Mean (SD): 29.7 (8.6)	
	Season: Spring, Fall	90th: 40.9 Range (Min, Max): (12.9, 50.7)	
	Dose-response Investigated? No	24-h mean PM ₁₀ Mean (SD): 23.6 (9.1) 90th: 34.6 Range (Min, Max): (3.2, 48.0) Copollutant (correlation): 8-h max personal PM 8-h max O ₃ = 0.03 8-h Max NO ₂ = 0.26 24-h Mean Personal PM = 0.94 8-h Max TEOM PM ₁₀ = 0.38 24-h Central HI PM ₁₀ = 0.37 24-h Central HI PM ₁₀ = 0.37 24-h Central HI PM ₁₀ = 0.32 24-h Indoor HI PM ₁₀ = 0.32 24-h Indoor HI PM ₂₅ = 0.39 24-h Indoor HI PM ₂₅ = 0.37 24-h mean personal PM 8-h max O ₃ = 0.01 8-h Max NO ₂ = 0.27 8-h Max Personal PM = 0.94 8-h Max TEOM PM ₁₀ = 0.36 24-h Central HI PM ₁₀ = 0.36 24-h Central HI PM ₂₅ = 0.43 24-h Outdoor HI PM ₁₀ = 0.36 24-h Central HI PM ₂₅ = 0.43 24-h Outdoor HI PM ₁₀ = 0.36 24-h Mean TEOM PM ₁₀ = 0.34 24-h Outdoor HI PM ₁₀ = 0.34 24-h Outdoor HI PM ₁₀ = 0.43 24-h Indoor HI PM ₁₀ = 0.29 24-h Indoor HI PM ₁₀ = 0.29 24-h Mean TEOM PM ₁₀ = 0.39 8-h Max Personal PM = 0.40 24-h Mean Personal PM = 0.40 24-h Mean Personal PM = 0.39 8-h Max Personal PM = 0.39 8-h Max TEOM PM ₁₀ = 0.92 24-h Central HI PM ₂₅ = 0.78 24-h Outdoor HI PM ₁₀ = 0.79 24-h Outdoor HI PM ₂₅ = 0.78 24-h Outdoor HI PM ₂₅ = 0.78 24-h Outdoor HI PM ₂₅ = 0.78 24-h Outdoor HI PM ₁₀ = 0.79	
	Statistical Package: SAS		
	Lags Considered: Lag 0-4		

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Delfino et al. (2006,	Outcome: Fractional Concentration of	Pollutant: PM ₁₀	PM Increment: IQR increase
<u>090745</u>)	Nitric Oxide in exhaled air (FENO)	Central Site	(Riverside: 28.41 µg/m³, Whittier 21.87 µg/m³)
Period of Study: Region 1: Aug to Mid Dec 2003. Region 2: Jul through Nov	Age Groups: 9 through 18	Averaging Time: 24 h	Coefficient [Lower CI, Upper CI]
2004	Study Design: Longitudinal Panel Study	Riverside	lag: Lag = 2-day ma
Location: Region 1: Riverside, CA. Region 2: Whittier, CA	N: 45 children	Mean (SD): 70.82 (29.36) 50th(Median): 65.96	Stratified by Medication Use
	Statistical Analyses: Linear mixed- effects models	Range (Min, Max): (30.75,54.05) μg/m ³	Not Taking Anti-Inflamm. Medication
		Whittier	Central 0.76 (-1.54, 3.07)
	Two-stage hierarchical model		Taking Anti-Inflamm. Medication
	Empirical Variograms Fourth-order polynomial distributed lag mixed-effects model	Mean (SD): 35.73 (16.6) 50th(Median): 34.65	Central 0.53 (-0.83, 1.90)
		Range (Min, Max):	Inhaled Corticosteroids
	Covariates: Personal temperature, Personal Rel. Humid., 10-day exposure run, Respiratory infections, Region of study, Sex, Cumulative daily use of as- needed B-agonist inhalers	(5.86, 105.46) μg/m ³	Central 1.28 (-0.01, 2.58)
		Monitoring Stations: 48 personal nephelometers, 2 central sites	Antileukotrienes +- inhaled corticosteroids
			Central -2.10 (-5.33, 1.12)
	Dose-response Investigated? No Lags Considered: Lag 0, Lag 1, 2-day		Notes : Fig of Estimated lag effect of hourly personal PM _{2.5} on FENO.
	ma		Fig of the Estimated lag effect of hourly personal $\rm PM_{2.5}$ on FENO by use of medications.
			Fig of one- and two-pollutant models for change in FENO using 2-day Ma personal and central-site pollutant measurements.

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Desqueyroux et al. (2002,	Outcome: Asthma attacks	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
026052) Period of Study: Nov 1995-Nov 1996 Location: Paris, France	Age Groups: Adults.	Averaging Time: 24 h	OR Estimate [Lower CI, Upper CI]
	Study Design: Panel study	Mean (SD):	lag: 0.87 [0.71, 1.06] lag 1 0.93 [0.80, 1.08] lag 2
	N: 60 moderate to severe adult	Summer: 23 (9)	1.11 [0.98, 1.26] lag 3
	asthmatics	Winter: 28 (14)	1.17 [1.03, 1.33] lag 4 1.16 [1.01, 1.34] lag 5
	Statistical Analyses: Marginal logistic regression	Range (Min, Max):	1.21 [1.01, 1.34] lag 3-5
	Covariates: FEV ₁ , smoking, allergy,	Summer: 6, 63	Vs seasons alone: Winter: 1.41 [1.16, 1.71] lag 3-5
	oral steroid treatment, mean daily temperature, relative humidity, pollen	Winter: 9, 84	Summer: 1.03 [0.72, 1.47] lag 3-5
	counts, season, holiday period	Monitoring Stations: 7	Vs link to explanatory factors:
	Season: winter, summer	$\textbf{Copollutant:} \ SO_2 \ , \ NO_2, \ O_3$	No link: [1.71 [1.20, 2.43] lag 3-5 Link: 1.27 [1.06, 1.52] lag 3-5
	Dose-response Investigated? No		Vs occurrence of infection:
	Statistical Package: SAS		Without infection:
	Lags Considered: 1, 2, 3, 4, 5, 3-5		1.52 [1.16, 2.00] lag 3-5 With infection: 1.30 [1.03, 1.65] lag 3-5
			Vs baseline pulmonary function: FEV ₁ >/ = 68% predicted: 1.38 [1.06, 1.79] lag 3-5 FEV <68% predicted: 1.45 [1.11, 1.90] lag 3-5
			Vs smoking habits: Nonsmokers: 1.53 [1.18, 1.98] lag 3-5 Current & ex-smokers: 1.18 [0.90, 1.54] lag 3-5
			Vs allergy: Non-allergic: 1.29 [0.94, 1.77] lag 3-5 Allergic: 1.49 [1.17, 1.90] lag 3-5
			Vs regular oral steroid treatment: No: 1.41 [1.15, 1.73] lag 3-5 Yes: 1.41 [0.88, 2.25] lag 3-5
			Multipollutant model: $PM_{10} + NO_2$: 1.43 [1.16, 1.76] Lag 3-5 $PM_{10} + SO_2$: 1.51 [1.20, 1.90] Lag 3-5 $PM_{10} + O_3$: 1.09 [0.71, 1.67] Lag 3-5
Reference: Diette et al. (2007, <u>156399</u>)	Outcome: Asthma in the last 12 mo	Pollutant: PM ₁₀	Notes: "Pollutant concentrations in the
Period of Study: Sep 2001-Dec	(493.x)	Averaging Time: 72 h	homes of asthmatic and control children who lived in the same home for their
2003	Age Groups: 2 to 6 yr old	50th(Median): 43.7	whole life were not different compared with those who had moved at least
Location: East Baltimore, MD	Study Design: Prospective cohort	IQR: (29-70)	once."
	N: 150 with asthma		
	150 without asthma Statistical Analyses: Student's two-tailed t-test Kruskal-Wallis test Pearson's chi square Fisher's exact test		
	Covariates: Season of collection		
	Dose-response Investigated? No		
	Statistical Package: STATASE 8.0		

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Ebelt et al. (2005, <u>056907</u>)	Outcome: spirometry	Pollutant: PM ₁₀	PM Increment: Ambient PM ₁₀ : 7 (IQR)
Period of Study: Summer of 1998	Age Groups: Range from 54-86 yr	Averaging Time: 24 h	Exposure to ambient PM ₁₀ : 6.5 (IQR)
Location: Vancouver, Canada	mean age = 74 yr	Mean (SD): Ambient PM ₁₀ : 17 (6)	Notes: Effect estimates are presented
	Study Design: Extended analysis of a repeated-measures panel study	Exposure to ambient PM ₁₀ : 10.3 (4.6) Range (Min, Max):	in Fig 2 and Electronic Appendix Table 1 (only available with electronic version of article) and not provided quantitatively
	N: 16 persons with COPD	Ambient PM ₁₀ : (7-36) Exposure to ambient PM ₁₀ : (1.5-23.8)	elsewhere.
	Statistical Analyses: Earlier analysis expanded by developing mixed-effect regression models and by evaluating additional exposure indicators	Monitoring Stations: 5 Copollutant (correlation): Ambient PM ₁₀₋₂₅ : $r = 0.69$ Ambient PM ₂₅ : $r = 0.78$	
	Dose-response Investigated? No	Exposure to Ambient PM10: r = 0.71	
	Statistical Package: SAS V8		
Reference: Fischer et al. (2007, 156435)	Outcome: Respiratory Symptoms, Sore throat, Runny nose, Cold, Sick at home		Increment: 10 µg/m³
Period of Study: 7 wk (dates not	Study Design: Prospective cohort	Averaging Time: 24-h avg	% Increase in eNO and PM ₁₀ and change in spirometric lung function lag
specified)	N: 68	Mean (SD): 56 μg/m ³	eNO and PM10 only
Location: The Netherlands	Statistical Analyses: Linear regression model (PROC mixed)	IQ (25th, 75th): (21, 187) μg/m³ Copollutants: BS	6.5 (0.9, 12.4) 1 7.8 (-11.3, 31.0) 2 FVC mean (SEM)
	Age Groups: 10-11	NO_2	0.4 (0.5) 1 0.6 (1.6) 2
	Lag: 1-2	CO NO	FEV₁ mean (SEM) -0.3 (0.5) 1
	Statistical Package: SAS v 6.11		-2.1 (1.9) 2 PEF mean (SEM) -2.8 (3.3) 1
			7.1 (12.0) 2 MMEF mean (SEM) -0.5 (1.7) 1 -2.5 (5.9) 2
Reference: Forsberg et al. (1998,	Outcome: Respiratory Symptoms,	Pollutant: PM ₁₀	Increment: 10 μg/m³
<u>051714</u>)	Shortness of breath	Averaging Time: 24-h avg	OR between prevalence of acute
Period of Study: Jan 1994-March 1994	Wheeze, Asthma attacks, Recent asthma, Dry cough, Doctor-diagnosed asthma, Recently treated for asthma,	Mean (SD): Urban: 13.4 μg/m3 Rural: 11.5 μg/m3 Range (Min, Max): Urban: (0, 40.5) μg/m3 Rural: (1.6, 29.0) μg/m3 Copollutants (correlation):	respiratory symptoms and PM ₁₀ exposure for urban and rural children lag
Location: Urban and rural areas of Umea, Sweden	Early chest illness		Urban children:
	Study Design: Cohort panel Statistical Analyses: Logistic linear		Cough: 1.031 (0.957, 1.112) 0 0.997 (0.923, 1.077) 1 1.018 (0.940, 1.103): 2
	regression	BS: r = 0.73	1.094 (0.895, 1.338) 0-6 avg Phlegm:
	Age Groups: 6-12		0.998 (0.899, 1.108) 0 1.035 (0.928, 1.154) 1
			1.121 (1.013, 1.240) 2 1.043 (0.822, 1.324) 0-6 avg
			Upper respiratory symptoms: 1.004 (0.949, 1.063) 0
			0.975 (0.922, 1.031) 1
			0.951 (0.895, 1.010) 2 0.849 (0.687, 1.050) 0-6 avg
			Lower respiratory symptoms:
			0.984 (0.872, 1.110) 0 0.919 (0.812, 1.039) 1
			0.894 (0.771, 1.036) 2 0.800 (0.617, 1.038) 0-6 avg
			Rural children (control)
			Cough: 0.997 (0.900, 1.105) 0
			1.003 (0.906, 1.112) 1 0.997 (0.891, 1.116) 2
			0.855 (0.655, 1.115) 0-6 avg
			Phlegm: 1.024 (0.880, 1.192) 0
			0.995 (0.853, 1.160) 1
			1.117 (0.956, 1.305) 2 1.041 (0.742, 1.459) 0-6 avg
			Upper respiratory symptoms: 1.093 (0.989, 1.208) 0 1.018 (0.918, 1.130) 1

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
			1.075 (0.962, 1.201) 2 1.052 (0.786, 1.407) 0-6 avg Lower respiratory symptoms: 1.022 (0.855, 1.180) 0 0.998 (0.855, 1.164) 1 1.000 (0.830, 1.206) 2 0.939 (0.703, 1.253) 0-6 avg
			OR between incidence of acute respiratory symptoms and PM ₁₀ exposure in urban and rural children lag
			Urban Children: Cough: 1.114 (0.886, 1.401) 0 0.891 (0.703, 1.130) 1 0.766 (0.577, 1.017) 2
			0.817 (0.523, 1.276) 0-6 avg Phlegm: 0.954 (0.664, 1.371) 0 1.056 (0.744, 1.501) 1 1.416 (0.969, 2.069) 2
			0.808 (0.357, 1.827) 0-6 avg Upper respiratory symptoms: 1.155 (0.965, 1.383) 0 0.788 (0.629, 0.986) 1 0.886 (0.728, 1.077) 2
			0.770 (0.549, 1.081) 0-6 avg Lower respiratory symptoms: 1.060 (0.828, 1.356) 0 0.763 (0.584, 0.996) 1 0.652 (0.493, 0.863) 2 0.519 (0.306, 0.882) 0-6 avg
			Rural Children: Cough: 1.052 (0.767, 1.444) 0 0.753 (0.547, 1.038) 1 0.840 (0.571, 1.235) 2 0.800 (0.409, 1.565) 0-6 avg
			Phlegm: 1.051 (0.731, 1.509) 0 1.010 (0.693, 1.472) 1 0.998 (0.652, 1.528) 2 0.797 (0.344, 1.847) 0-6 avg
			Upper respiratory symptoms: 1.044 (0.813, 1.341) 0 0.810 (0.612, 1.072) 1 0.800 (0.611, 1.048) 2 0.714 (0.417, 1.220) 0-6 avg Lower respiratory symptoms:
			1.079 (0.756, 1.539) 0 0.888 (0.615, 1.281) 1 0.715 (0.472, 1.083) 2 0.822 (0.395, 1.711) 0-6 avg OR between prevalence of medication
			use and PM10 exposure in urban and rural children lag Bronchodilator use - Urban children: 0.998 (0.951, 1.048) 0 0.999 (0.952, 1.049) 1
			1.006 (0.953, 1.062) 2 0.919 (0.775, 1.090) 0-6 avg Rural children: 0.970 (0.904, 1.040) 0 0.959 (0.893, 1.030) 1
			1.008 (0.927, 1.095) 2 1.087 (0.914, 1.292) 0-6 avg OR between incidence of medication use and PM₁₀ exposure in urban and rural children lag
			Bronchodilator use - Urban children: 1.498 (0.899, 2.498) 0 1.049 (0.565, 1.947) 1 1.148 (0.674, 1.954) 2 1.787 (0.611, 5.227) 0-6 avg
			Rural children: 1.275 (0.702, 2.315) 0 0.924 (0.437, 1.956) 1

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
			1.005 (0.522, 1.936) 2 1.823 (0.534, 6.277) 0-6 avg
Reference: Goncalves et al. (2005,	Outcome: Respiratory	Pollutant: PM ₁₀	PCA coefficients: PC1, PC2, PC3:
089884) Period of Study: Dec 1992-Mar 1993. Dec 1992-Mar 1994	morbidity/admissions Age Groups: Children <13 yr	Averaging Time: 24 h	Summer 1992/1993: PM ₁₀ : 0.69, 0.45, 0.13
	Study Design: Time series	Copollutant: SO ₂ , O ₃	Solar Radiation: -0.04, 0.94 to -0.12
Location: Sao Paulo	Statistical Analyses: Principal component analysis		Mean Temperature: 0.62, 0.44 to -0.47
	Covariates: Daily mean temperature, daily mean water vapor density, solar radiation		Mean Water Vapor Density: 0.73 to -0.46 to -0.26 SO ₂ : 0.78 to -0.03, 0.33 O ₃ : 0.18, 0.63, 0.37
	Season: Summer		Respiratory Mortality: 0.05 to -0.02, 0.81
	Dose-response Investigated? No		Variations explained by Principal
	Statistical Package: NR Lags Considered: Lag 3		Component: PC1: 0.29 PC2: 0.27 PC3: 0.17
			Summer 1993/1994: PM ₁₀ : 0.38, 0.80 to -0.23
			Solar Radiation: 0.02, 0.09 to -0.97
			Mean Temperature: 0.71, 0.40 to -0.37
			Mean Water Vapor Density: 0.88, 0.25, 0.09 SO ₂ : 0.01, 0.92, 0.00 O ₃ : 0.47 to -0.06 to -0.35
			Respiratory Mortality: -0.73, 0.11, 0.08
			Variations explained by Principal Component: PC1: 0.31 PC2: 0.25 PC3: 0.18
			Notes: Association between respiratory morbidity and air pollution more likely during summer with smaller contrasts in synoptic weather condition (summer 1992/93) but respiratory morbidity more related to weather variables during summer with larger contrasts (summer 1993/94).
Reference: Gordian and Choudhury (2003, 054842)	Outcome: Asthma medication among school children	Pollutant: PM ₁₀	Model regression slope coefficient for PM ₁₀ (estimated SE) lag:
Period of Study: 1994-Dec 1996	Age Groups: Elementary school	Averaging Time: 24 h Mean (SD): 36.11 (30.46)	7.25 (2.88)
Location: Anchorage, Alaska	children (kindergarten-6th grade)	Range (Min, Max): 2.96, 210.0	lag 21
	Study Design: Time series	Monitoring Stations: 1	RR: 1.075 (1.016, 1.138)
	Statistical Analyses: Time series regression model	Monitoring Stations.	Notes : PM ₁₀ coefficients for other lags were also statistically significant but not
	Covariates: Day of the week, month, time trend, temperature		reported.
	Season: All seasons		
	Dose-response Investigated? No		
	Statistical Package: SAS		
	Lags Considered: 1, 2, 7, 14, 21, 28		

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Harre et al. (1997, <u>095726</u>)	Outcome: Respiratory symptoms,	Pollutant: PM ₁₀	Increment: 35.04 µg/m ³
Period of Study: Jun 994-Aug 1994	Cough, Wheeze, Chest tightness, Shortness of breath, Change in sputum volume, Nose, throat, or eye irritation, PEFR Study Design: Prospective cohort	Averaging Time: 24-h avg	Relative Risk (Lower CI, Upper CI)
ocation: Christchurch, New Zealand		Copollutants:	lag: Chest symptoms: 1.38 (1.07, 1.78) 1
		CO	Wheeze: 0.97 (0.75, 1.26) 1
	Statistical Analyses: Poisson, log	SO ₂	Nebulizer Use: 0.71 (0.42, 1.18) 1 Inhaler Use: 0.94 (0.78, 1.13) 1
	linear regression	NO ₂	
	Age Groups: >55		
Reference: Hastings and Jardine 2002, 030344)	Outcome: Weekly rates of upper respiratory disease (URD), reported by	Pollutant: PM ₁₀	PM max Quartiles (combining all camps):
Period of Study: 1997-1998	the medical treatment facility in each	Mean (SD): PM ₁₀ avg: 75.5	Q1: <58.7 μg/m³
.ocation: Bosnia (U.S. military camps)	military camp	PM ₁₀ max: 92.9	Q2: 60.1 to <75.54 μg/m ³ Q3: 78.56 to <107,56 μg/m ³
Soution: Booma (O.O. minutary outripo)	Age Groups: U.S. soldiers	Percentiles: PM ₁₀ max:	Q4: >107.56 μg/m³
	Study Design: Ecologic (at level of military camp)	25th: 58.57	For dichotomous analysis cutoff = 74.55 µg/m ³
	N: 5 camps	50th: 74.55 75th: 107.56	PM avg Quartiles (combining all
	Statistical Analyses: 1. Pearson correlations between weekly	PM ₁₀ avg: 25th: 42.19	camps): Q1: <42.19 μg/m3
	URD rates and weekly PM ₁₀ (avg and	50th: 64.17 75th: 81.75	Q2: 42.19 to 64.17 μg/m3 Q3: 64.17 to 81.75 μg/m3
	max) 2.Kruskal Wallace test to compare URD		Q4: >81.75 μg/m3
	rates in the 4 exposure quartiles 3. Mann Whitney test to compare	Range (Min, Max): PM ₁₀ avg: 25.0, 338.7	For dichotomous analysis cutoff = 64.17 µg/m ³
	dichotomized exposure groups (above and below 50th percentile)	PM ₁₀ max: 25.0, 338.7	Pearson correlation coefficients
	Dose-response Investigated? Yes Lags Considered: Weekly rates of URD disease were related to avg weekly PM levels in the same week	Monitoring Stations: At least 1 in each of the 5 camps	between URD rate and PM category [value]: PM ₁₀ max: quartiles of PM*UR
			rates
			All camps 0.203 [0.041] Blue Factory camp 0.277 [0.095]
			Comanche 0.165 [0.237] Demi 0.639 [0.123]
			McGovern 0.535 [0.177]
			Tuzla Main 0.107 [0.327]
			PM ₁₀ max: dichotomous PM*URD rate All camps 0.283 [0.007]
			Blue Factory camp 0.038 [0.430] Comanche 0.282 [0.107]
			Demi 0.927 [0.012]
			McGovern 0.853 [0.033] Tuzla Main 0.155 [0.258]
			PM ₁₀ avg: quartiles of PM*URD rates:
			All camps 0.149 [0.101] Blue Factory camp 0.301 [0.077]
			Comanche 0.246 [0.141]
			Demi 0.437 [0.231] McGovern 0.853 [0.033]
			Tuzla Main 0.182 [0.222]
			PM ₁₀ avg: dichotomous PM*URD rate All camps 0.060 [0.305]
			Blue Factory camp -0.075 [0.365]
			Comanche 0.143 [0.268] Demi N/A*
			McGovern N/A* Tuzla Main 0.123 [0.303]
			Kruskal Wallace p-value comparing URD rates across exposure quartiles:
			PM ₁₀ max
			All camps 0.047 Blue Factory camp 0.321
			Comanche 0.556
			Demi 0.165 McGovern 0.202
			Tuzla Main 0.554
			PM ₁₀ avg

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
			All camps 0.672 Blue Factory camp 0.809 Comanche 0.658 Demi 0.564 McGovern 0.157 Tuzla Main 0.891
			Mann-Whitney p-value comparing URD rates between upper and lower 50th percentile of PM:
			PM ₁₀ max All camps 0.034 Blue Factory camp 0.173 Comanche 0.314 Demi 0.083 McGovern 0.401 Tuzla Main 0.481
			PM ₁₀ avg All camps 0.824 Blue Factory camp 0.682 Comanche 0.508 Demi N/A* McGovern N/A* Tuzla Main 0.656
			Notes: * There were no days that fell in the upper 50 percentile for PM avg in these camps
			-Rates of URD by PM quartiles for each camp presented in figures. Authors state, "Generally the avg URD rate increased with quartile of maximum exposurethe trend was not as clear for quartiles of PM $_{10}$ avg exposure"

	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Hong et al. (2007, <u>091347</u>)	Outcome: Peak expiratory flow rate	Pollutant: PM ₁₀	Effect Estimate: Regression
Period of Study: Mar 23-May 2004	(PEFR)	Averaging Time: 24 h	coefficients of morning and daily mean PEFR on PM ₁₀ and metal components
Location: School on the Dukjeok Island near Incheon City, Korea	Age Groups: 3rd to 6th grade (mean age = 9.6 yr)	Mean (SD): 35.30 (23.48)	using linear mixed-effects regression
	Study Design: Panel study	50th (Median): 29.36	Lag 1 (PM₁₀) Morning PEFR
	N: 43 schoolchildren	Range (Min, Max):	Crude:
	Statistical Analyses: Mixed linear	(12.24-124.87)	Mean PEFR
	regression	PM Component:	Crude: ß = 0.00, p = 0.93 Adjusted: ß = -0.05, p = 0.12
	Covariates: Age, sex, height, weight,	Fe: mean = 0.208 (0.203) µg/m ³	Lag 1 (logFe) Morning PEFR
	asthma history, and passive smoking exposure at home	Median = 0.112	Crude: $\hat{S} = -1.26$, $p = 0.31$
	Dose-response Investigated? No	Range (Min, Max): (0.061-0.806)	Adjusted: ß = -3.24, p = 0.13 Mean PEFR
	Lags Considered: 0, 1, 2, 3, 4, 5	Mn: mean = $0.008 (0.005) \mu g/m^3$	Crude: ß = -1.20, p = 0.20 Adjusted: ß = -2.37, p = 0.15
	-	Median = 0.007	Lag 1 (logMn) Morning PEFR
		Range (Min, Max): (0.000-0.019)	Crude: ß = -4.40, p < 0.01
			Adjusted: ß = -9.82, p < 0.01 Mean PEFR
		Pb: mean = 0.051 (0.031) μg/m ³	Crude: $\beta = -4.05$, p < 0.01 Adjusted: $\beta = -8.44$, p < 0.01
		Median = 0.051	Lag 1 (logPb)
		Range (Min, Max): (0.011-0.155)	Morning PEFR Crude: ß = -6.79, p < 0.01
		Zn: mean = 0.021 (0.021) µg/m³	Adjusted: ß = -6.83, p < 0.01 Mean PEFR
		Median = 0.013	Crude: $\beta = -6.23$, p < 0.01
		Range (Min, Max): (0.006-0.112)	Adjusted: ß = -6.37, p < 0.01 Lag 1 (logZn)
		Al: mean = 0.085 (0.100) μg/m ³	Morning PEFR Crude: ß = -0.55, p = 0.71
		Median = 0.031	Adjusted: ß = -0.98, p = 0.59
		Range (Min, Max): (0.017-0.344)	Mean PEFR Crude: ß = 1.33, p = 0.24
		Copollutant: PM _{2.5}	Adjusted: ß = 1.53, p = 0.28 Lag1 (logAl)
			Morning PEFR
			Crude: ß = -0.58, p = 0.57 Adjusted: ß = -2.22, p = 0.25
			Mean PEFR
			Crude: ß = -0.59, p = 0.45 Adjusted: ß = -1.48, p = 0.32
			Regression coefficients of morning and
			daily mean PEFR on metal components of PM ₁₀ and GSTM1 and GSTT1
			genotype using linear mixed-effects regression
			Lag 1 (logPb)
			Morning PEFR: ß = -7.26, p < 0.01 Mean PEFR: ß = -6.43, p < 0.01
			GSTM1
			Morning PEFR: ß = 21.19, p = 0.23 Mean PEFR: ß = 20.09, p = 0.25
			Lag 1 (logMn) Morning PEFR: ß = -10.31, p < 0.01
			Mean PEFR: ß = -8.66, p < 0.01
			GSTM1 Morning PEFR: ß = 21.02, p = 0.23
			Mean PEFR: ß = 19.84, p = 0.25
			Lag 1 (logPb) Morning PEFR: ß = -7.26, p < 0.01
			Mean PEFR: ß = -6.43, p < 0.01 GSTT1
			Morning PEFR: $\& = 2.07$, p = 0.90
			Mean PEFR: ß = -2.39, p < 0.88 Lag 1 (logMn)
			Morning PEFR: ß = -10.32, p < 0.01
			Mean PEFR: ß = -8.67, p < 0.01 GSTT1
			Morning PEFR: $\& = 2.02, p = 0.90$

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Hwang et al. (2006,	Outcome: Allergic rhinitis	Pollutant: PM ₁₀	Increment: 10 µg/m³
			· · ·
Reference: Jalaludin et al. (2004,	Outcome: Respiratory symptoms,	Pollutant: PM ₁₀	* Parental atopy was a measure of genetic predisposition and was defined as the father or the mother of the index child ever having been diagnosed as having asthma, allergic rhinitis, or atopic eczema. ** Visible mold found in the home. Increment: 10 µg/m³
<u>056595</u>)	Wheeze, Dry cough, Wet cough	Averaging Time: 24-h avg	Odds Ratio (Lower CI, Upper CI)
Period of Study: Feb 1994-Dec 1994	Study Design: Longitudinal study panel		Lag
Location: Western and southwestern Sydney, Australia	Statistical Analyses: Logistic regression model (GEE)	IQ Range (25th,75th): (12.00, 122.8)	Wheeze 1.01 (0.99, 1.03) 0
	Age Groups: 9-11 yr	Copollutants (correlation): O ₃ : r = 0.13 NO ₂ : r = 0.26	1.01 (0.97, 1.04) 1 0.99 (0.96, 1.03) 2 1.02 (0.98, 1.06) 0.2 avg 1.04 (0.99, 1.10) 0.5 avg Dry Cough 1.00 (0.98, 1.03) 0 1.00 (0.97, 1.03) 1 1.00 (0.97, 1.03) 1 1.00 (0.97, 1.03) 0.2 avg 1.03 (0.98, 1.08) 0.5 avg Wet Cough 1.01 (0.99, 1.04) 0 0.99 (0.97, 1.01) 1 1.00 (0.97, 1.03) 2 0.99 (0.96, 1.02) 0.2 avg Inhaled B2-agonist Use 0.99 (0.94, 1.04) 0 1.09 (0.97, 1.03) 1 0.99 (0.97, 1.01) 2 1.00 (0.97, 1.03) 1 0.99 (0.97, 1.01) 0 1.00 (0.98, 1.03) 1 0.99 (0.97, 1.01) 2 1.00 (0.97, 1.02) 0.2 avg 1.02 (0.98, 1.06) 0.5 avg Inhaled Corticosteroid Use 1.00 (0.99, 1.01) 0 1.00 (0.99, 1.02) 1 1.00 (0.99, 1.02) 2 1.00 (0.98, 1.02) 0.2 avg 1.00 (0.99, 1.02) 2 1.00 (0.99, 1.02) 2 1.00 (0.99, 1.02) 2 1.00 (0.97, 1.02) 0.5 avg Doctor Visit for Asthma 1.11 (1.04, 1.19) 0 1.10 (1.02, 1.19) 1 1.15 (1.06, 1.24) 2 1.11 (1.03, 1.20) 0-2 avg 1.14 (0.98, 1.31) 0-5 avg OR for respiratory symptoms and

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
			All children Wheeze: 1.01 (0.99, 1.04) Dry Cough: 1.00 (0.97, 1.02) Wet Cough: 1.01 (0.98, 1.04) Inhaled B2-agonist Use: 1.00 (0.98, 1.02) Inhaled Corticosteroid Use: 0.99 (0.98, 1.01) Doctor Visit for asthma: 1.11 (1.03, 1.19) Group 1* Wheeze: 1.01 (0.98, 1.04) Dry Cough: 0.97 (0.94, 0.99) Wet Cough: 1.00 (0.97, 1.03) Inhaled B2-agonist use: 1.00 (0.98, 1.02) Inhaled Corticosteroid Use: 1.00 (0.98, 1.01) Doctor Visit for asthma: 1.09 (0.98, 1.21) Group 2** Wheeze: 1.01 (0.97, 1.05) Dry Cough: 1.02 (0.98, 1.06) Wet Cough: 1.01 (0.96, 1.06) Inhaled B2-agonist use: 0.99 (0.94, 1.05) Inhaled Corticosteroid Use: 0.99 (0.97, 1.01) Doctor Visit for asthma: 1.12 (1.02, 1.23) Group 3*** Wheeze: 1.08 (0.90, 1.31) Dry Cough: 1.02 (0.94, 1.11) Inhaled B2-agonist use: 0.98 (0.84, 1.11) Inhaled Corticosteroid Use: 1.27 (1.08, 1.49) Doctor Visit for asthma: NR
			*Group 1 consists of children with a history of wheeze in the past 12 mo, positive histamine challenge, and doctor diagnosed asthma.
			**Group 2 consists of children with a history of wheeze in the past 12 mo and doctor diagnosed asthma.
			***Group 3 consists of children only with a history y of wheeze in the past 12 mo.

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Jansen, et al. (2005,	Outcome: FENO: fractional exhaled	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
082236)	nitrogen oxide, Spirometry, Blood pressure, SaO₂: oxygen saturation,	Averaging Time: 24 h	Slope [95% CI]: dependence of FENO
Period of Study: 1987-2000	Pulse rate	Mean (SD):	concentration [ppb] on PM ₁₀
Location: Seattle, WA	Age Groups: 60-86 yr old	Pollutant: PM ₁₀ Averaging Time: 24 h Mean (SD): Fixed-site Monitor: 18.0 All Subjects (N = 16) Indoor, home: 11.93 Outdoor, home: 13.47 Personal: 23.34 Asthmatic Subjects (N = 7) Indoor, home: 12.54 Outdoor, home: 11.86 Personal: 26.88 COPD Subjects (N = 9) Indoor, home: 11.45 Outdoor, home: 14.76 Personal: 19.91 Range (Min, Max): Fixed-site Monitor 2.5, 51 IQR: All Subjects Indoor, home: 6.93 Outdoor, home: 9.53 Personal: 20.72 Asthmatic Subjects Indoor, home: 10.19 Outdoor, home: 8.77 Personal: 20.08 COPD Subjects Indoor, home: 4.56	Asthmatic Subjects
	Study Design: Short-term cross-		Indoor, home: 3.81 [-0.86: 8.50]
	sectional case series	Personal: 23.34	Outdoor, home: 5.87 [2.87: 8.88]*
	N: 16 subjects diagnosed with COPD, asthma, or both	Asthmatic Subjects (N = 7)	Personal: 0.66 [-0.56: 1.88]
	Statistical Analyses: Linear mixed		COPD Subjects
	effects model with random intercepts	COPD Subjects (N = 9)	Indoor, home: 2.19 [-3.48: 7.87]
	Covariates: Age, relative humidity, temperature, medication use	Outdoor, home: 14.76 Personal: 19.91 Range (Min, Max): Fixed-site Monitor 2.5, 51 IQR: All Subjects Indoor, home: 6.93 Outdoor, home: 9.53 Personal: 20.72 Asthmatic Subjects Indoor, home: 10.19 Outdoor, home: 8.77 Personal: 20.08 COPD Subjects	Outdoor, home: 4.45 [-1.11: 10.01]
	, ,		Personal: 0.17 [-1.61: 1.96]
	Season: winter 2002-2003		Results indicate that FENO may be a
	Dose-response Investigated? No		more sensitive biomarker of PM
	Statistical Package: STATA		exposure than other traditional health endpoints.

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Johnston, et al. (2006,	Outcome: Asthma symptoms	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
091386)	Age Groups: All ages	Averaging Time: Daily	RR Estimate [Lower CI, Upper CI]
Period of Study: 7 mo (Apr 7-Nov 7, 2004)	Study Design: Time-series	Mean (SD): 20 (6.4)	Symptoms attributable to asthma Overall:1.010 (0.98,1.04)
Location: Darwin, Australia	N: 251 people (130 adults, 121 children	Range (Min, Max): 2.6-43.3	Adults:1.027 (0.987,1.068) Children:0.930 (0.966, 1.060)
	Statistical Analyses: Logistic regression model	PM Component: Vegetation fire smoke (95%) and motor vehicle emissions	Using preventer: 1.022 (0.985, 1.060)
	Covariates: Minimum air temperature, doctor visits for influenza and the prevalence of asthma symptoms and, the fungal spore count and both onset of asthma symptoms and commencement of reliever medication Season: "Dry season"-specific months	(5%) Monitoring Stations: 1 Correlation: PM _{2.5} r = 0.90	Became symptomatic Overall: 1.240 (1.106,1.39) Adults: 1.277 (1.084,1.504) Children: 1.247 (1.058,1.468) Using preventer:1.317 (1.124,1.543) Used Reliever Overall: 1.010 (0.99, 1.04)
	NR, note Southern Hemisphere		Adults: 1.026 (0.990, 1.063) Children: 1.006 (0.960,1.055)
	Dose-response Investigated? No		Using preventer: 1.035 (1.004,1.060)
	Statistical Package: STATA8		Commenced Reliever Overall: 1.132 (0.99, 1.29)
	Lags Considered: 0-5 days		Adults: 1.199 (0.994, 1.446) Children: 1.093 (0.906,1.319) Using preventer:1.194 (0.996, 1.432)
			Commenced Oral Steroids Overall: 1.540 (1.01, 2.34) Adults: 1.752 (1.008, 3.045) Children: 1.292 (0.682, 2.448) Using preventer:1.430 (0.888, 2.304)
			Asthma Attack Overall: 1.030 (0.95, 1.12) Adults: 1.08 (0.976, 1.202) Children: 0.861 (0.710, 1.044) Using preventer:1.051 (0.939,1.175)
			Exercise induced asthma Overall: 0.980 (0.92, 1.05) Adults: 0.988 (0.902, 1.081) Children: 0.972 (0.844,1.119) Using preventer:1.026 (0.928,1.134)
			Saw a health professional for asthma Overall: 1.030 (0.85, 1.26) Adults: 1.064 (0.794, 1.424) Children: 0.998 (0.749,1.328) Using preventer:0.924 (0.731, 1.169)
			Missed school or work due to asthma Overall: 1.102 (0.941, 1.290) Adults: 1.135 (0.897, 1.435) Children: 1.073 (0.862,1.333) Using preventer:1.025 (0.857,1.228)
			Mean daily number of asthma symptoms Overall: 1.020 (1.001,1.031) Adults: 1.027 (1.005,1.049) Children: 1.016 (0.986,1.047) Using preventer:1.034 (1.011,1.058)
			Mean Daily number of applications of reliever Overall: 1.020 (1.00,1.030) Adults: 1.032 (1.008, 1.057) Children: 1.002 (0.969,1.034) Using preventer:1.022 (1.001,1.043)

Pollutant: PM ₁₀ Averaging Time: Daily Mean (SD): 23.5 (8.4) Range (Min, Max): 9.0, 44.0 Monitoring Stations: 5 Copollutant (correlation): BS: 0.59 SO ₂ : 0.70 NO ₂ : 0.54 O ₃ : 0.21 Temp: 0.04 Humid: -0.41	PM Increment: 10 μg/m³ for binary responses data (results that use odds ratios [ORs]) Incident episodes of 1) Asthma a) lag 0: 1.06 (0.61, 1.83) b) 0-2 mean: 1.09 (0.48, 2.49) c) 0-4 mean: 1.07 (0.44, 2.65) 2) Nocturnal cough a) lag 0: 1.10 (0.88, 1.37) b) 0-2 mean: 1.03 (0.77, 1.37) c) 0-4 mean: 1.11 (0.86, 1.42) 3) Respiratory infections a) lag 0: 0.64 (0.35, 1.15) b) 0-2 mean: 0.74 (0.38, 1.43) c) 0-4 mean: 0.74 (0.38, 1.43) c) 0-4 mean: 0.99 (0.58, 1.68) Prevalent episodes of 1) Asthma a) lag 0: 1.07 (0.72, 1.59) b) 0-2 mean: 1.18 (0.64, 2.17) c) 0-4 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.71 (0.71, 4.12) 4) Eye irritation a) lag 0: 1.18 (1.01, 1.39) b) 0-2 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.42 (1.12, 1.80) Analysis restricted to days with no steroid use: Incident episodes of 1) Eye irritation a) lag 0: 1.07 (0.66, 1.71)
Mean (SD): 23.5 (8.4) Range (Min, Max): 9.0, 44.0 Monitoring Stations: 5 Copollutant (correlation): BS: 0.59 SO ₂ : 0.70 NO ₂ : 0.54 O ₃ : 0.21 Temp: 0.04	ratios [ORs]) Incident episodes of 1) Asthma a) lag 0: 1.06 (0.61, 1.83) b) 0-2 mean: 1.09 (0.48, 2.49) c) 0-4 mean: 1.07 (0.44, 2.65) 2) Nocturnal cough a) lag 0: 1.10 (0.88, 1.37) b) 0-2 mean: 1.03 (0.77, 1.37) c) 0-4 mean: 1.11 (0.86, 1.42) 3) Respiratory infections a) lag 0: 0.64 (0.35, 1.15) b) 0-2 mean: 0.74 (0.38, 1.43) c) 0-4 mean: 0.99 (0.58, 1.68) Prevalent episodes of 1) Asthma a) lag 0: 1.07 (0.72, 1.59) b) 0-2 mean: 1.18 (0.64, 2.17) c) 0-4 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.09 (0.79, 1.52) 3) Respiratory infections a) lag 0: 1.17 (0.68, 2.03) b) 0-2 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.71 (0.71, 4.12) 4) Eye irritation a) lag 0: 1.18 (1.01, 1.39) b) 0-2 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.42 (1.12, 1.80) Analysis restricted to days with no steroid use: Incident episodes of 1) Eye irritation
Range (Min, Max): 9.0, 44.0 Monitoring Stations: 5 Copollutant (correlation): BS: 0.59 SO ₂ : 0.70 NO ₂ : 0.54 O ₃ : 0.21 Temp: 0.04	1) Asthma a) lag 0: 1.06 (0.61, 1.83) b) 0-2 mean: 1.09 (0.48, 2.49) c) 0-4 mean: 1.07 (0.44, 2.65) 2) Nocturnal cough a) lag 0: 1.10 (0.88, 1.37) b) 0-2 mean: 1.03 (0.77, 1.37) c) 0-4 mean: 1.11 (0.86, 1.42) 3) Respiratory infections a) lag 0: 0.64 (0.35, 1.15) b) 0-2 mean: 0.74 (0.38, 1.43) c) 0-4 mean: 0.99 (0.58, 1.68) Prevalent episodes of 1) Asthma a) lag 0: 1.07 (0.72, 1.59) b) 0-2 mean: 1.18 (0.64, 2.17) c) 0-4 mean: 1.18 (0.64, 2.17) c) 0-4 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.09 (0.79, 1.52) 3) Respiratory infections a) lag 0: 1.17 (0.68, 2.03) b) 0-2 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.71 (0.71, 4.12) 4) Eye irritation a) lag 0: 1.18 (1.01, 1.39) b) 0-2 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.42 (1.12, 1.80) Analysis restricted to days with no steroid use: Incident episodes of 1) Eye irritation
Range (Min, Max): 9.0, 44.0 Monitoring Stations: 5 Copollutant (correlation): BS: 0.59 SO ₂ : 0.70 NO ₂ : 0.54 O ₃ : 0.21 Temp: 0.04	a) lag 0: 1.06 (0.61, 1.83) b) 0-2 mean: 1.09 (0.48, 2.49) c) 0-4 mean: 1.07 (0.44, 2.65) 2) Nocturnal cough a) lag 0: 1.10 (0.88, 1.37) b) 0-2 mean: 1.03 (0.77, 1.37) c) 0-4 mean: 1.11 (0.86, 1.42) 3) Respiratory infections a) lag 0: 0.64 (0.35, 1.15) b) 0-2 mean: 0.74 (0.38, 1.43) c) 0-4 mean: 0.99 (0.58, 1.68) Prevalent episodes of 1) Asthma a) lag 0: 1.07 (0.72, 1.59) b) 0-2 mean: 1.18 (0.64, 2.17) c) 0-4 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.10 (0.79, 1.52) 3) Respiratory infections a) lag 0: 1.17 (0.68, 2.03) b) 0-2 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.71 (0.71, 4.12) 4) Eye irritation a) lag 0: 1.18 (1.01, 1.39) b) 0-2 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.42 (1.12, 1.80) Analysis restricted to days with no steroid use: Incident episodes of 1) Eye irritation
Copollutant (correlation): BS: 0.59 SO ₂ : 0.70 NO ₂ : 0.54 O ₃ : 0.21 Temp: 0.04	c) 0-4 mean: 1.07 (0.44, 2.65) 2) Nocturnal cough a) lag 0: 1.10 (0.88, 1.37) b) 0-2 mean: 1.03 (0.77, 1.37) c) 0-4 mean: 1.11 (0.86, 1.42) 3) Respiratory infections a) lag 0: 0.64 (0.35, 1.15) b) 0-2 mean: 0.74 (0.38, 1.43) c) 0-4 mean: 0.99 (0.58, 1.68) Prevalent episodes of 1) Asthma a) lag 0: 1.07 (0.72, 1.59) b) 0-2 mean: 1.18 (0.64, 2.17) c) 0-4 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.09 (0.79, 1.52) 3) Respiratory infections a) lag 0: 1.17 (0.68, 2.03) b) 0-2 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.71 (0.71, 4.12) 4) Eye irritation a) lag 0: 1.18 (1.01, 1.39) b) 0-2 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.42 (1.12, 1.80) Analysis restricted to days with no steroid use: Incident episodes of 1) Eye irritation
BS: 0.59 SO ₂ : 0.70 NO ₂ : 0.54 O ₃ : 0.21 Temp: 0.04	2) Nocturnal cough a) lag 0: 1.10 (0.88, 1.37) b) 0-2 mean: 1.03 (0.77, 1.37) c) 0-4 mean: 1.11 (0.86, 1.42) 3) Respiratory infections a) lag 0: 0.64 (0.35, 1.15) b) 0-2 mean: 0.74 (0.38, 1.43) c) 0-4 mean: 0.99 (0.58, 1.68) Prevalent episodes of 1) Asthma a) lag 0: 1.07 (0.72, 1.59) b) 0-2 mean: 1.18 (0.64, 2.17) c) 0-4 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.09 (0.79, 1.52) 3) Respiratory infections a) lag 0: 1.17 (0.68, 2.03) b) 0-2 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.71 (0.71, 4.12) 4) Eye irritation a) lag 0: 1.18 (1.01, 1.39) b) 0-2 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.42 (1.12, 1.80) Analysis restricted to days with no steroid use: Incident episodes of 1) Eye irritation
SO ₂ : 0.70 NO ₂ : 0.54 O ₃ : 0.21 Temp: 0.04	b) 0-2 mean: 1.03 (0.77, 1.37) c) 0-4 mean: 1.11 (0.86, 1.42) 3) Respiratory infections a) lag 0: 0.64 (0.35, 1.15) b) 0-2 mean: 0.74 (0.38, 1.43) c) 0-4 mean: 0.99 (0.58, 1.68) Prevalent episodes of 1) Asthma a) lag 0: 1.07 (0.72, 1.59) b) 0-2 mean: 1.18 (0.64, 2.17) c) 0-4 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.09 (0.79, 1.52) 3) Respiratory infections a) lag 0: 1.17 (0.68, 2.03) b) 0-2 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.71 (0.71, 4.12) 4) Eye irritation a) lag 0: 1.18 (1.01, 1.39) b) 0-2 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.42 (1.12, 1.80) Analysis restricted to days with no steroid use: Incident episodes of 1) Eye irritation
NO ₂ : 0.54 O ₃ : 0.21 Temp: 0.04	3) Respiratory infections a) lag 0: 0.64 (0.35, 1.15) b) 0-2 mean: 0.74 (0.38, 1.43) c) 0-4 mean: 0.99 (0.58, 1.68) Prevalent episodes of 1) Asthma a) lag 0: 1.07 (0.72, 1.59) b) 0-2 mean: 1.18 (0.64, 2.17) c) 0-4 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.09 (0.79, 1.52) 3) Respiratory infections a) lag 0: 1.17 (0.68, 2.03) b) 0-2 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.71 (0.71, 4.12) 4) Eye irritation a) lag 0: 1.18 (1.01, 1.39) b) 0-2 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.42 (1.12, 1.80) Analysis restricted to days with no steroid use: Incident episodes of 1) Eye irritation
O ₃ : 0.21 Temp: 0.04	b) 0-2 mean: 0.74 (0.38, 1.43) c) 0-4 mean: 0.99 (0.58, 1.68) Prevalent episodes of 1) Asthma a) lag 0: 1.07 (0.72, 1.59) b) 0-2 mean: 1.18 (0.64, 2.17) c) 0-4 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.10 (0.79, 1.52) 3) Respiratory infections a) lag 0: 1.17 (0.68, 2.03) b) 0-2 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.71 (0.71, 4.12) 4) Eye irritation a) lag 0: 1.18 (1.01, 1.39) b) 0-2 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.42 (1.12, 1.80) Analysis restricted to days with no steroid use: Incident episodes of 1) Eye irritation
Temp: 0.04	Prevalent episodes of 1) Asthma a) lag 0: 1.07 (0.72, 1.59) b) 0-2 mean: 1.18 (0.64, 2.17) c) 0-4 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.09 (0.79, 1.52) 3) Respiratory infections a) lag 0: 1.17 (0.68, 2.03) b) 0-2 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.71 (0.71, 4.12) 4) Eye irritation a) lag 0: 1.18 (1.01, 1.39) b) 0-2 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.42 (1.12, 1.80) Analysis restricted to days with no steroid use: Incident episodes of 1) Eye irritation
·	a) lag 0: 1.07 (0.72, 1.59) b) 0-2 mean: 1.18 (0.64, 2.17) c) 0-4 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.09 (0.79, 1.52) 3) Respiratory infections a) lag 0: 1.17 (0.68, 2.03) b) 0-2 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.71 (0.71, 4.12) 4) Eye irritation a) lag 0: 1.18 (1.01, 1.39) b) 0-2 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.42 (1.12, 1.80) Analysis restricted to days with no steroid use: Incident episodes of 1) Eye irritation
Traille. C.41	c) 0-4 mean: 1.16 (0.63, 2.13) 2) Nocturnal cough a) lag 0: 1.05 (0.83, 1.34) b) 0-2 mean: 1.10 (0.81, 1.50) c) 0-4 mean: 1.09 (0.79, 1.52) 3) Respiratory infections a) lag 0: 1.17 (0.68, 2.03) b) 0-2 mean: 1.31 (0.51, 3.36) c) 0-4 mean: 1.71 (0.71, 4.12) 4) Eye irritation a) lag 0: 1.18 (1.01, 1.39) b) 0-2 mean: 1.28 (1.03, 1.59) c) 0-4 mean: 1.42 (1.12, 1.80) Analysis restricted to days with no steroid use: Incident episodes of 1) Eye irritation
	b) 0-2 mean: 0.83 (0.45, 1.53) c) 0-4 mean: 0.92 (0.46, 1.83) 2) Throat irritation a) lag 0: 1.33 (0.66, 2.69) b) 0-2 mean: 1.28 (0.58, 2.80) c) 0-4 mean: 1.06 (0.38, 2.95) 3) Nose irritation a) lag 0: 0.74 (0.48, 1.13) b) 0-2 mean: 0.76 (0.42, 1.36) c) 0-4 mean: 0.96 (0.53, 1.73) Prevalent episodes of 1) Eye irritation a) lag 0: 1.20 (0.88, 1.65) b) 0-2 mean: 1.71 (0.97, 3.01) c) 0-4 mean: 1.97 (1.03, 3.76) 2) Throat irritation a) lag 0: 1.20 (0.88, 1.65) b) 0-2 mean: 1.08 (0.68, 1.73) c) 0-4 mean: 0.91 (0.47, 1.73) 3) Nose irritation a) lag 0: 1.23 (0.83, 1.82) b) 0-2 mean: 1.09 (0.78, 1.52) c) 0-4 mean: 0.91 (0.47, 1.73) 3) Nose irritation a) lag 0: 1.20 (0.91, 1.58) b) 0-2 mean: 1.09 (0.78, 1.52) c) 0-4 mean: 1.09 (0.73, 1.61) Notes: The authors noted that incident or prevalent wheeze was not correlated with levels of any type of pollutant. Also, they state no relationship was observed between PEF variables and levels of PM. The authors also note that in a multipollutant model assessing independent effects of PM and O ₃ on

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Kulkarni et al. (2006, 089257)	Outcome: Lung function by spirometry: FVC, FEV ₁ , FEV ₁ : FVC, FEF ₂₅₋₇₅	Pollutant: Primary PM ₁₀ (μg/m³) concentration was modeled, and was	PM Increment: 1.0 µg/m³
Period of Study: Nov 2002-Dec	Age Groups: 8-15 yr	considered a covariate for carbon content of macrophages. Carbon	% Change [Lower CI, Upper CI]: Single pollutant model:
2003	Study Design: Cross-sectional	content of alveolar macrophages was the primary variable of interest.	FEV ₁ : -4.3 [-8.5, 0.2] p = 0.04 R2 = 0.06
Location: Leicester, United Kingdom	N: 114 children, 64 provided sputum for assessment of carbon content of macrophages.	Averaging Time: 1 yr 50th(Median): Children without asthma, 1.21	Single pollutant model: FVC: -1.2 [-5.6, 3.2] p = 0.59 R2 = 0.005
	Statistical Analyses: Linear regressions, Spearman rank correlations. Mann-Whitney, Chi-square and unpaired t tests were used to compare results between asthmatic and	Children with asthma, 1.81 Range (Min, Max): Children without asthma, 0.10, 2.17 Children with asthma, 0.17, 2.13	Single pollutant model: FEF_{25-75} : -8.6 [-17.3, 0.1] p = 0.05 $R2 = 0.06$
	non asthmatic children	PM Component: Carbon content in alveolar macrophages	2 pollutant model with Macrophage Carbon:
	Covariates: BMI, sex, exercise, traffic PM ₁₀	Monitoring Stations: NR.	FEV_1 : PM_{10} -2.9 [-6.9, 1.2] p = 0.17
	Dose-response Investigated? Yes	Copollutant (correlation):	FVC: PM ₁₀ 0.1 [-4.4, 4.6] p = 0.96
	Statistical Package: SPSS	Vs carbon content in macrophages (increment, coefficient range]) -1.0 µg/m³, 0.1 [0.01-0.18]	FEF ₂₅₋₇₅ : PM ₁₀ -5.5 [-14.2, 3.1] p = 0.21
Reference: Kuo, et al. (2002, <u>036310</u>)	Outcome: Asthma (yes/no)	Pollutant: PM ₁₀	PM Increment: Dichotomized annual avg:
Period of Study: 1-yr period (yr not	Age Groups: 13-16 yr	Averaging Time: 1 h	<65.9 μg/m ³
specified)	Study Design: Cohort	Mean (SD):	≥ 65.9 µg/m³
Location: Central Taiwan	N: 12,926 total children	School A: 59.7	OR Estimate [Lower CI, Upper CI] lag:
	775 asthmatic children 8 junior high schools	School B: 65.3	Crude (outcome = asthma, yes/no) <65.9 µg/m³: 1 (ref)
	Statistical Analyses: Pearson correlation coefficients Logistic regression School C: 84.3 School D: 59.2	School C: 84.3	≥ 65.9 µg/m ³ : 0.837 [NR]
		School D: 59.2	Adjusted (outcome = asthma, yes/no)
	Covariates: Gender, age, residential	School E: 75.3	<65.9 μg/m³: 1 (ref) ≥ 65.9 μg/m³: 0.947 [0.640, 1.401]
	area, level of parental education, number cigarettes smoked by family	School F: 60.2	Notes: Asthma prevalence was highest in urban areas and lowest in rural areas
	members, incense burning in the home, frequency of physical activities	School G: 54.1	Pearson correlation between annual
	Dose-response Investigated? No	School H: 69.0	PM levels at each school and asthma
	Statistical Package: SAS 6.12	Monitoring Stations: 8 (1 for each school)	prevalence at each school: 0.214 (p > 0.05)
	Lags Considered: Monthly avg at each	,	
	school		
Reference: Lagorio et al. (2006, 089800)	Outcome: Lung function of subjects (FVC and FEV ₁) with COPD, Asthma	Pollutant: PM ₁₀	PM Increment: 1 μg/m ³
Period of Study: May 1999-Jun 1999 Jan 1999-Dec 1999	Age Groups: COPD: 50 to 80 yr Asthma: 18 to 64 yr	Averaging Time: 24 h Mean (SD): Overall: 42.8 (21.8) Spring: 36.9 (10.8)	They observed negative association between ambient PM_{10} and respiratory function (FVC and FEV_1) in the COPD panel. The effect on FVC was seen at
Location: Rome, Italy	Study Design: Time series panel	Winter: 49.0 (28.1)	lag 24 h, 48 h, and 72 h. The effect on FEV ₁ was evident at lag 72 h. There
	N : COPD N = 11; Asthma N = 11	Range (Min, Max): (7.9, 123)	was no statistically significant effect of PM ₁₀ on FVC and FEV ₁ in the asthmatic
	Statistical Analyses: Non-parametric Spearman correlation	PM Component: NR	and IHD panels.
	GEE	Monitoring Stations: Two fixed sites: (Villa Ada and Istitute superior di Sanita)	β Coefficient (SE) COPD
	Covariates: COPD and IHD: daily mean temperature, season variable (spring or winter), relative humidity, day of week	(Villa Ada and Istituto superior di Sanita) Copollutant (correlation): $NO_2 r = 0.45$ $O_3 r = -0.36$	FVC(%) 24 h -0.66 (0.30) 48-h -0.75 (0.35) 72-h -0.94 (0.47) FEV ₁ (%) 24 h -0.37 (0.27)
	Asthma: season variable, temperature, humidity, and $\beta\mbox{-}2\mbox{-}agonist$ use	CO r = 0.55 $SO_2 r = 0.21$ $PM_{10-2.5} r = 0.61$	48-h -0.58 (0.31) 72-h -0.87 (0.43) Asthma
	Season: Spring and winter	$PM_{2.5} r = 0.93$	FVC(%) 24 h -0.12 (0.24) 48-h -0.09 (0.29)
	Dose-response Investigated? Yes		72-h -0.08 (0.36) FEV ₁ (%) 24 h -0.28 (0.28)
	Statistical Package: STATA		48-h -0.40 (0.34)
	Lags Considered: 1-3 days		72-h -0.40 (0.43)

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Lee, et al. (2007, <u>093042</u>)	Outcome: PEFR (peak expiratory flow	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 2000-2001	rate), lower respiratory symptoms (cold, cough, wheeze)	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]
Location: South-Western Seoul	Age Groups: 61-89 yr (77.8 mean age)	Mean (SD): 71.40 (30.69)	lag:
Metropolitan area, Seoul, South Korea	Study Design: Longitudinal panel	Percentiles: 25th: 43.47	PEFR (peak expiratory flow rate)
	survey	50th(Median): 74.92	-0.39 (-0.63 to -0.14)
	N: 61 adults	75th: 87.54	1 day
	Statistical Analyses: Logistic regression model	Range (Min, Max):	relative odds of a lower respiratory symptom (cold, cough, wheeze)
	Covariates: Temperature (Celsius),	26.23, 148.34	1.015 (0.900,1.144)
	relative humidity, age, season	Monitoring Stations: 2	1 day
	Dose-response Investigated? No		
	Statistical Package: SAS 8.0		
	Lags Considered: 0-4 days		
Reference: Lewis, et al. (2005,	Outcome: Poorer lung function	Pollutant: PM ₁₀	PM Increment: 19.1 μg/m ³
081079) Pariod of Study:	(increased diurnal variability and decreased forced expiratory volume)	Averaging Time: 2 wk	Lung function among children
Period of Study: Winter 2001-spring 2002	Age Groups: 7-11 yr	Mean (SD): Eastside 23.0 (13.5)	reporting use of maintenance CSs Diurnal variability FEV ₁ Lag 1: 1.53 [-0.85, 3.90] Lag 1: 2.94 [-1.07, 6.96] PM ₁₀ + O ₃ Lag 2: 5.32 [0.32, 10.33]
Location: Detroit, Michigan, USA	Study Design: longitudinal cohort study	Southwest 28.2 (16.1)	
	N: 86 children	Range (Min, Max): 2.9, 70.9	
	Statistical Analyses: descriptive statistics and bivariate analyses of	PM Component: ("likely" in southwest site) carbon and diesel emissions	Lag 2: 13.73 [8.23, 19.23] PM ₁₀ + O ₃ Lag 3-5: 1.46 [-2.21,5.13] Lag 3-5: 3.30 [0.58, 6.02] PM ₁₀ + O ₃
	exposures, multivariable regression models that included interaction terms	Monitoring Stations: 2	Lowest daily value FEV ₁ Lag 1: -0.28 [-2.34, 1.77]
	between exposure measures and CS use or, alternatively, presence of a URI,	Copollutant:	Lag 1: -6.25 [-11.15 to -1.36] PM ₁₀ + O ₃
	multivariate analog of linear regression.	PM _{2.5} 0.93	Lag 2: -2.21 [-3.97 to -0.46] Lag 2: -5.97 [-11.06 to -0.87] PM ₁₀ + O ₃
	Covariates: sex, home location, annual	O ₃ Daily mean 0.59	Lag 3-5: -2.58 [-7.65, 2.49] Lag 3-5: 1.98 [-0.38, 4.33] PM ₁₀ + O ₃
	family income, presence of one or more smokers in household, race, season (entered as dummy variables), and parameters to account for intervention	O ₃ 8-h peak 0.57	Lung function among children reporting presence of URI on day of lung function assessment
	group effect. Season: Winter 2001 (Feb 10-23), spring 2001 (May 5-18), summer 2001 (Jul 14-27), fall 2001 (Sep 22-Oct 5), winter 2002 (Jan 18-31), and spring 2002 (May 18-31).		Diurnal variability FEV $_1$ Lag 1: 3.51 [-4.52,11.55] Lag 1: 3.21 [-1.28,7.71] PM $_{10}$ + O $_3$ Lag 2: 1.12 [-4.62, 6.86] Lag 2: 5.40 [-0.82, 11.62] PM $_{10}$ + O $_3$ Lag 3-5: 3.90 [0.34, 7.47] Lag 3-5: 6.27 [0.07, 12.47] PM $_{10}$ + O $_3$ Lowest daily value FEV $_1$
	Dose-response Investigated? No		Lag 1: -2.72 [-9.47, 4.03]
	Lags Considered: 1-2 days		Lag 1: -13.11 [-21.59 to -4.62] PM ₁₀ + O ₃
	3-5 days		Lag 2: 0.24 [-5.10, 4.63] Lag 2: -3.32 [-6.83, 0.18] PM ₁₀ + O ₃ Lag 3-5: -4.48 [-8.36, 0.60] Lag 3-5: -3.17 [-5.82 to -0.51] PM ₁₀ + O ₃

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Mar et al. (2004, <u>057309</u>)	Outcome: Respiratory symptoms	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 1997-1999	Age Groups: Adults: Ages 20-51 yr	Mean (SD): 1997: 24.5 (18.5)	OR Estimate [Lower CI, Upper CI]
Location: Spokane, Washington	4000 00 0 240 0	lag:	
	Study Design: Time-series	, ,	Adult Respiratory symptoms: Wheeze: 1.01[0.93, 1.09] lag 0
	N: 25 people	-	0.98[0.91, 1.06] lag 1 0.99[0.92, 1.06] lag 2
		PM_{10}	Breath: 1.02[0.96, 1.08] lag 0 1.01[0.97, 1.06] lag 1
			1.02[0.97, 1.06] lag 2 Cough: 0.96[0.88, 1.05] lag 0
	Statistical Package: STATA 6		0.97[0.90, 1.04] lag 1 0.98[0.92, 1.05] lag 2
	Lags Considered: 0-2 days		Sputum: 1.01[0.92, 1.12] lag 0 0.99[0.91, 1.08] lag 1 1.00[0.93, 1.08] lag 2
			Runny Nose: 0.98[0.93, 1.04] lag 0 0.97[0.93, 1.02] lag 1; 0.97[0.94, 1.01] lag 2
			Eye Irritation: 0.97[0.87, 1.08] lag 0 0.97[0.88, 1.06] lag 1 0.97[0.91, 1.04] lag 2
			Lower Symptoms: 0.96[0.91, 1.02]
			lag 0 0.95[0.89, 1.00] lag 1 0.95[0.90, 1.00] lag 2
			Any Symptoms: 0.97[0.93, 1.02] lag 0 0.96[0.91, 1.00] lag 1 0.95[0.91, 0.99] lag 2
			Children Respiratory symptoms: Wheeze: 0.92[0.71, 1.18] lag 0 0.89[0.64, 1.24] lag 1 0.95[0.69, 1.31] lag 2
			Breath: 1.04[0.95, 1.15] lag 0 1.04[0.95, 1.15] lag 1 1.06[0.95, 1.19] lag 2
			Cough: 1.09[1.02, 1.16] lag 0 1.08[1.02, 1.14] lag 1 1.10[1.02, 1.18] lag 2
			Sputum: 1.08[0.98, 1.17] lag 0 1.07[0.98, 1.17] lag 1 1.07[0.98, 1.16] lag 2
			Runny Nose: 1.08[1.00, 1.16] lag 0 1.08[1.02, 1.15] lag 1 1.08[1.02, 1.14] lag 2
			Eye Irritation: 1.06[0.74, 1.51] lag 0 0.94[0.70, 1.26] lag 1 0.99[0.88, 1.12]lag 2
			Lower Symptoms: 1.07[1.00, 1.14]
			lag 0 1.06[0.98, 1.15] lag 1 1.07[0.95, 1.19] lag 2
			Any Symptoms: 1.07[1.02, 1.11] lag 0 1.09[1.03, 1.15] lag 1 1.10[1.03, 1.17] lag 2

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Mar et al. (2005, <u>087566</u>)	Outcome: Pulmonary function (arterial	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: 1999-2001	oxygen saturation) and cardiac function (heart rate and blood pressure)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI)
Location: Seattle, Washington	Study Design: Time series		Lag Indoor
	N: 88		Systolic: 0.92 (-0.95, 2.78) 0 Diastolic: 0.63 (-0.29, 1.56) 0
	Statistical Analyses: Linear logistic regression		Outdoor Systolic: -0.10 (-1.37, 1.18) 0
	Age Groups: >57		Diastolic: -0.03 (-0.79, 0.73) 0
			Nephelometer Systolic: 0.35 (-0.91, 1.61) 0 Diastolic: -0.12 (-0.91, 0.67) 0
			% Increase between heart rate and PM10 exposure for people >57 PM ₁₀
			Indoor: 0.02 (-0.54, 0.58) 0 Outdoor: -0.48 (-1.03, 0.06) 0 Nephelometer: -0.31 (-0.76, 0.14) 0
Reference: McCormack et al. (2009, 99833)	Outcome: Asthma symptoms	Pollutant: PM _{10-2.5} , PM _{2.5}	Increment: 10 µg/m ³
Period of Study: Sep 2001-Apr 2004	Study Design: Panel	Averaging Time: 3 days	Relative Risk (Min CI, Max CI) Lag
Location: East Baltimore, Maryland	Statistical Analysis: Chi-square, Student t-test, Negative binomial	Mean (SD) Unit:	Bivariate Models, PM _{10-2.5} Cough, wheezing, chest tightness:
	regression models with GEE, Logistic regression with GEE	PM _{10-2.5} : 17.4 ± 21.2 μg/m ³	1.05 (0.99-1.10), p = 0.08 Slow down: 1.08 (1.03-1.13). p < 0.01
		PM _{2.5} : 40.3 ± 35.4 μg/m ³	Symptoms with running:
	Statistical Package: StataSE	Range (Min, Max): NR	1.03 (0.97-1.09). p = 0.39 Nocturnal symptoms:
	Age Groups: Asthmatic children aged Cop	Copollutant (correlation): NR	1.06 (1.01-1.11), p = 0.03 Limited speech: 1.11 (1.05-1.18), p < 0.01 Rescue medication use: 1.06 (1.02-1.11), p < 0.01
			Bivariate Models, PM _{2.5} Cough, wheezing, chest tightness: 1.01 (0.98-1.05), p = 0.41 Slow down: 1.00 (0.97-1.04), p = 0.85 Symptoms with running: 1.04 (1.01-1.07), p = 0.14 Nocturnal symptoms: 1.02 (0.98-1.05), p = 0.37 Limited speech: 1.01 (0.95-1.07), p = 0.33 Rescue medication use: 1.03 (1.00-1.60), p = 0.06
			Multivariate Models, PM $_{10.2.5}$ Cough, wheezing, chest tightness: 1 .06 (1.01-1.12), p = 0.02 Slow down: 1.08 (1.02-1.14), p = 0.01 Symptoms with running: 1.00 (0.94-1.08), p = 0.81 Nocturnal symptoms: 1.08 (1.01-1.14), p = 0.02 Limited speech: 1.11 (1.03-1.19), p < 0.01 Rescue medication use: 1.06 (1.01-1.10), p = 0.02
			Multivariate Models, $PM_{2.5}$ Cough, wheezing, chest tightness: 1.03 (0.99-1.07), $p = 0.18$ Slow down: 1.04 (1.00-1.09), $p = 0.06$ Symptoms with running: 1.07 (1.02-1.11), $p < 0.01$ Nocturnal symptoms: 1.06 (1.01-1.10), $p = 0.01$ Limited speech: 1.07 (1.00-1.14), $p = 0.04$ Rescue medication use: 1.04 (1.01-1.08), $p = 0.04$

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Mortimer et al. (2008, 187280)	Outcome: Respiratory Symptoms, Decreased lung function	Pollutant: PM ₁₀	Increment: NR
Period of Study: 1989-2000	Study Design: Time series	Averaging Time: 24-h avg	β (SE):
Location: Joaquin Valley, California	Statistical Analyses:	Copollutants (correlation):	FVC: PM ₁₀ (age 0-3 yr): 0.0121 (0.0037)
Location: Godquiii valley, Gallionia	Deletion/Substitution/ Addition algorithm	CO: r = 0.05	FEV ₁ : PM ₁₀ (age 0-3 yr): 0.0102
	(GEE)	NO_2 : $r = 0.30$	(0.0034)
	Logistic linear regression	O_3 : $r = 0.39$	PEF:
	Age Groups: 6-11		PM ₁₀ (Mother smoked during pregnancy):
			-0.0102 (0.0039)
Reference: Mortimer et al. (2002,	Outcome: peak expiratory flow rate	Pollutant: PM ₁₀	PM Increment: 20 μg/m ³
030281)	(PEFR) and symptoms	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Jun-Aug 1993	Age Groups: 4-9 yr	Mean (SD): 53	(RR estimates are odds ratios for
Location: Eight urban areas of the U.S.: Bronx and East Harlem, NY	Study Design: Cohort study	Monitoring Stations: NR	incidence of morning asthma symptoms using the avg of lag 1-2)
Baltimore, MD	N: 846 children with a history of asthma	Copollutant (correlation):	3 urban areas (DE, CL, CH)
Washington, DC	Statistical Analyses: Mixed linear models and GEE	8-h avg O ₃ : r = 0.51	Single pollutant: OR = 1.26 (1.00-1.59)
Detroit, MI	Covariates: Day of study, previous 12-		O_3+PM_{10} : OR = 1.25 (0.97-1.61)
Cleveland, OH	h mean temperature, urban area, diary number, rain in the past 24 h		O ₃ +SO ₂ +NO ₂ +PM ₁₀ : OR = 1.14 (0.80-
Chicago, IL	Season: Summer		1.48)
and St. Louis, MO.	Dose-response Investigated? No		
	Statistical Package: SAS		
	Lags Considered: 0, 1, 2, 3, 4, 5, 6, 1-5 avg, 1-4 avg, 0-4 avg, 0-3 avg		
Reference: Moshammer and	Outcome: Lung Function: FVC, FEV ₁ ,	Pollutant: PM ₁₀	Notes: "Acute effects of 'active particle
Neuberger (2003, <u>041956</u>)	MEF ₂₅ , MEF ₅₀ , MEF ₇₅ , PEF, LQ Signal, PAS Signal	Averaging Time: 8 h	surface' as measured by diffusion charging were found on pulmonary
Period of Study: 2000-2001	Age Groups: Ages 7 to 10	Daily Means	function (FVC, FEV ₁ , MEF ₅₀) of elementary school children and on
Location: Linz, Austria	Study Design: Case-crossover	Mean (SD): 23.13 (20.08)	asthma-like symptoms of children who had been classified as sensitive."
	N: 161 children	Range (Min, Max): (NR, 190.79)	naa boon dabbiiida do bondavo.
	1898-2120 "half-h means"	Monitoring Stations: 1	
	Statistical Analyses: Correlations	Copollutant (correlation): LQ = 0.751	
	Regression Analysis	PAS = 0.406	
	Covariates: Morning, evening, night	PAS = 0.400	
	Season: Spring, summer, winter, fall		
	Dose-response Investigated? No		
Reference: Moshammer et al. (2006,	Outcome: Respiratory symptoms and	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
090771)	decreased lung function	Averaging Time: 8 h	% change in Lung Function per 10 μg/m3
Period of Study: 2000-2001	Age Groups: Children ages 7-10	Mean (SD):	FEV: 0.11 FVC: 0.06
Location: Linz, Austria	Study Design: Time-series	Maximum 24 h: 76.39	FEV _{0.5} : -0.19
	N: 163 children	Annual avg: 19.06 Percentiles:	MEF ₇₅ %: -0.30 MEF ₅₀ %: -0.36
	Statistical Analyses: GEE model	8-h mean 25th: 14.39 8-h mean 50th(Median): 24.85	MEF ₂₅ %: 0.41 PEF: 0.22
	Covariates: Sex, age, height, weight	8-h mean 75th: 38.82	% change in Lung Function per IQR FEV: -0.27
	Dose-response Investigated? NR	Monitoring Stations: 1 station	FVC: -0.07
	Statistical Package: NR	Copollutant (correlation): PM ₁ : r = 0.91	FEV _{0.5} : -0.47 MEF ₇₅ %: -0.74
	Lags Considered: 1	PM _{2.5} : r = 0.93 NO ₂ : r = 0.62	MEF ₅₀ %: -0.86 MEF ₂₅ %: 0.98
			PEF: -0.54

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Neuberger et al. (2004, 093249)	Outcome: Ratio measure: Time to peak tidal expiratory flow divided by total	Pollutant: PM ₁₀	PM Increment: Interquartile range (NR)
Period of Study: Sep 1999-Mar 2000	expiration time (i.e., tidal lung function, a surrogate for bronchial obstruction)	Averaging Time: 24 h	Change in mean associated with an IQR increase in PM (p-value)
Location: Vienna, Austria	Age Groups: 3.0-5.9 yr (preschool	Copollutant (correlation): PM _{2.5} (r = 0.94) in Vienna	lag
	children)		-1.067 (0.241)
	Study Design: Longitudinal prospective cohort		lag 0
	N: 56 children		
	Statistical Analyses: Mixed models linear regression, with autoregressive correlation structure		
	Covariates: Age, sex, respiratory rate, phase angle, temperature, kindergarten, parental education, observer (also in sensitivity analyses: height, weight, cold/sneeze on same day, heating with fossil fuels, hair cotinine, number of tidal slopes used to measure tidal lung function)		
	Dose-response Investigated? No		
	Statistical Package: SAS 8.0		
	Lags Considered: 0		
Reference: Neuberger et al. (2004, 093249)	Outcome: Forced oscillatory resistance (at zero Hz), FVC, FEV ₁ , MEF ₂₅ , MEF ₅₀ ,		PM Increment: 1 μg/m³
Period of Study: Oct. 2000-May 2001	MEF ₇₅ , PEF	Averaging Time: 24 h Monitoring Stations: 1	Notes: No significant associations between PM ₁₀ and the metrics of lung
Location: Linz, Austria	Age Groups: 7-10 yr Study Design: Longitudinal prospective	Monitoring Stations.	function were reported. The authors state they only reported significant associations, so results are assumed to
	cohort		be null.
	N: 164 children Statistical Analyses: Mixed models		
	linear regression with autoregressive correlation structure		
	Covariates: sex, time and individual		
	Season: Oct-May		
	Dose-response Investigated? No		
	Statistical Package: NR		
	Lags Considered: 0-7		
Reference: Odajima et al. (2008, 192005)	Outcome: PEF	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: Apr 2003-Mar 2004	Study Design: Panel/Field Statistical Analysis: GEE	Moon (SD) Unit:	Relative Risk (Min CI, Max CI) Lag
Location: Fukuoka, Japan	Statistical Package: SAS	Warmer months, 5-8 am SPM: 40.7 μg/m ³	Apr-Sep, morning sample, multi-
	Covariates: Age, sex, growth index,	NO ₂ : 15.2 ppb O ₃ : 17.7 ppb	pollutant:: SPM, 5am-8am: -0.6 (-1.228, 0.028) SPM, 2am-5am: -0.78 (-1.399, -0.161)
	temperature, NO ₂ , O ₃ Age Groups: Asthmatic children, 4-11 yr old	Warmer months, 7-10pm SPM, 11pm-2am: -(SPM: 41.5 μg/m³ 0.045) NO ₂ : 20.0 ppb SPM, 8pm-11am: -(O ₃ : 28.1 ppb 0.145)	SPM, 8pm-11am: -0.732 (-1.318, - 0.145)
		Colder months, 5-8am SPM: 32.6 µg/m³ NO ₂ : 20.5 ppb O ₃ : 17.5 ppb	O ₃ , 5am-8am: -0.575 (-1.569, 0.419) O ₃ , 2am-5am: -0.052 (-0.997, 0.893) O ₃ , 11pm-2am: -0.305 (-1.269, 0.658) O ₃ , 8pm-11am: -0.416 (-1.283, 0.451) NO ₂ , 5am-8am: -0.3 (-2.246, 1.645) NO ₂ , 2am-5am: 0.265 (-1.354, 1.885)
		Colder months, 7-10pm SPM: 34.7 µg/m ³ NO ₂ : 28.0 ppb	NO ₂ , 2alii-3alii. 0.203 (-1.334, 1.063) NO ₂ , 11pm-2am: -0.187 (-1.447, 1.073) NO ₂ , 8pm-11am: 0.432 (-0.689, 1.553) Single-pollutant model:
		O ₃ : 19.4 ppb Range (Min, Max):	SPM, 5am-8am: -0.67 (-1.236, -0.104) SPM, 2am-5am: -0.761 (-1.328, -0.194) SPM, 11pm-2am: -0.661 (-1.159, -

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
		Warmer months, 5-8am SPM: (11.0, 126.0) NO ₂ : (1.3, 44.7) O ₃ : (0.3, 52.3)	0.163) SPM, 8pm-11am: -0.714 (-1.212, - 0.215)
		Warmer months, 7-10pm SPM: (8.3, 191.3) NO ₂ : (3.0, 51.3) O ₃ : (1.3, 71.3)	Evening sample, multi-pollutant model SPM, 7pm-10pm: -0.449 (-1.071, 0.174) SPM, 4pm-7pm: -0.434 (-1.122, 0.254) SPM, 1pm-4pm: -0.415 (-1.015, 0.184) SPM, 10am-1pm: -0.522 (-1.199, 0.155)
		Colder months, 5-8am SPM: (9.0, 160.0) NO ₂ : (1.3, 44.0) O ₃ : (0.6, 48.7)	O ₃ , 7pm-10pm: -0.22 (-1.171, 0.731) O ₃ , 4pm-7pm: -0.118 (-0.809, 0.574) O ₃ , 1pm-4pm: -1.086 (-0.888, 0.516) O ₃ , 10am-1pm: -0.315 (-1.123, 0.493) NO ₂ , 7pm-10pm: 0.296 (-0.806, 1.397) NO ₂ , 4pm-7pm: 0.220 (-0.818, 1.258)
		Colder months, 7-10pm SPM: (10.3, 131.0) NO ₂ : (3.6, 49.0) O ₃ : (1.0, 60.0)	NO ₂ , 1pm-4pm: 0.438 (-0.568, 1.444) NO ₂ , 10am-1pm: 0.536 (-0.546, 1.617) Single-pollutant model:
		Copollutant (correlation): Warmer months (24-h mean): O ₃ : r = 0.32 NO ₂ : r = 0.30	SPM, 7pm-10pm: -0.449 (-0.956, 0.058) SPM, 4pm-7pm: -0.449 (-1.029, 0.131) SPM, 1pm-4pm: -0.414 (-0.943, 0.115) SPM, 10am-1pm: -0.486 (-1.051, 0.079)
		Colder months (24-h mean): O ₃ : r = -0.02 NO ₂ : r = 0.45	Oct-Mar, morning sample, multi-pollutant: SPM, 5am-8am: 0.290 (-0.279, 0.859) SPM, 2am-5am: 0.431 (-0.173, 1.036) SPM, 11pm-2am: 0.304 (-0.311, 0.919) SPM, 8pm-11am: 0.010 (-0.523, 0.543) O ₃ , 5am-8am: -0.415 (-1.568, 0.738) O ₃ , 2am-5am: -0.046 (-1.245, 1.153) O ₃ , 11pm-2am: 0.046 (-1.265, 1.273) O ₃ , 8pm-11am: -0.470 (-2.017, 1.077) NO ₂ , 5am-8am: -0.319 (-2.269, 1.631) NO ₂ , 2am-5am: 0.262 (-1.777, 2.300) NO ₂ , 11pm-2am: 0.609 (-1.132, 2.350) NO ₂ , 8pm-11am: 0.155 (-1.545, 1.856)
			Single-pollutant model: SPM, 5am-8am: 0.308 (-0.189, 0.805) SPM, 2am-5am: 0.485 (-0.026, 0.996) SPM, 11pm-2am: 0.486 (-0.049, 1.022) SPM, 8pm-11am: 0.100 (-0.414, 0.613)
			Evening Sample, Multi-pollutant Model SPM, 7pm-10pm: 0.059 (-0.397, 0.515) SPM, 4pm-7pm: 0.360 (-0.093, 0.812) SPM, 1pm-4pm: 0.357 (-0.157, 0.871) SPM, 10am-1pm: 0.169 (-0.394, 0.731) O ₃ , 7pm-10pm: -0.656 (-2.394, 1.083) O ₃ , 4pm-7pm: 0.046 (-1.140, 1.232) O ₃ , 1pm-4pm: 0.164 (-1.038, 1.365) O ₃ , 10am-1pm: 0.656 (-0.613, 1.942) NO ₂ , 7pm-10pm: -0.415 (-2.444, 1.613) NO ₂ , 4pm-7pm: -0.144 (-1.490, 1.202) NO ₂ , 1pm-4pm: -0.181 (-1.821, 1.459) NO ₂ , 10am-1pm: 0.194 (-1.503, 1.890)
			Single-pollutant model: SPM, 7pm-10pm: 0.071 (-0.388, 0.529) SPM, 4pm-7pm: 0.318 (-0.123, 0.758) SPM, 1pm-4pm: 0.317 (-0.171, 0.804) SPM, 10am-1pm: 0.112 (-0.412, 0.636)

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Peacock et al. (2003, 042026)	Outcome: Reduced peak expiratory flow rate (PEFR)	Pollutant: PM ₁₀	Increment: 10 µg/m³ Odds Ratio (Lower CI, Upper CI)
Period of Study: Nov 1996-Feb 1997	Age Groups: 7-13 yr	Averaging Time: Daily	Lag Change in PEFR
Location: Southern England	Study Design: Time-series	Mean (SD): Rural (nationally validated) 21.2 (11.3)	Community -0.04 (-0.11, 0.03) 0
v	N: 179	Rural (locally validated) 18.7 (11.3) Urban 1 18.4 (9.8)	0.03 (-0.04, 0.05) 1 -0.01 (-0.07, 0.05) 2
	Statistical Analyses: GEE, multiple regression	Urban 2 22.7 (10.6) Percentiles:	-0.10 (-0.25, 0.05) 0-4 avg
	Covariates: Day of the week, 24-h mean outside temperature.	10th Rural (nationally validated) 11.0 Rural (locally validated) 9.0	Local -0.01 (-0.06, 0.03) 0
	Season: Winter	Urban 1 10.5 Urban 2 12.5	0.04 (0.01, 0.08) 1 0.01 (-0.04, 0.05) 2
	Dose-response Investigated? No	90th	0.04 (-0.05, 0.13) 0-4 avg
	Statistical Package: STATA	Rural (nationally validated) 33.0 Rural (locally validated) 32.5	20% decrease in PEFR
	Lags Considered: Same day, lag 1, lag 2, 5-day ma	Urban 1 32.0 Urban 2 36.0	All children 1.012 (0.992, 1.031) 0
		Range (Min, Max): Rural (nationally validated) 7.0, 82.0 Rural (locally validated) 6.6, 87.9 Urban 1 4.7, 62.8 Urban 2 6.7, 63.7	1.016 (0.995, 1.036) 1 1.013 (1.000, 1.025) 2 1.037 (0.992, 1.084) 0-4 avg
		Monitoring Stations: 3	Wheezy Children Only 1.016 (0.986, 1.047) 0
		Copollutants:	1.030 (1.001, 1.060) 1 1.018 (0.995, 1.041) 2
		NO_2	1.114 (1.057, 1.174) 0-4 avg
		O ₃ SO _{2,2} SO ₄ ²⁻	.
Reference: Peled, et al. (2005, 156015)	Outcome: Reduced peak expiratory flow (PEF)	Pollutant: PM ₁₀	PM Increment: 1 μg/m ³
Period of Study: 5-6 wk between Mar-	Age Groups: 7-10 yr	Averaging Time: Daily	β coefficient (SE) [95% CI]
Jun 1999 and Sep-Dec 1999.	Study Design: Nested cohort study	Mean:	Sderot:
Location: Ashdod, Ashkelon and	N: 285	Ashkelon: 67.1	PM ₁₀ MAX: -0.34 (0.41) [-1.16, 0.46]
Sderot, Israel	Statistical Analyses: Time series	Sderot: 52.9	PM ₁₀ MAX x sin(ω2 day): 0.84 (0.22) [0.405, 1.28]
	analysis, generalized linear model, GEE, one-way ANOVA	Ashdod: 31.0 PM Component: Local industrial	PM ₁₀ MAX x cos (ω1 day): -1.61 (0.41) [-2.43, 0.79]
	Covariates: seasonal changes, meteorological conditions and personal physiological, clinical and	emissions, desert dust, vehicle emissions and emissions from two electric power plants	PM_{10} MAX x sin (ω 1 day): 0.44 (0.120) [-0.68-0.21]
	socioeconomic measurements	Monitoring Stations: 6	In Sderot, an interaction between PM ₁₀
	Season: Spring, fall	Copollutant: PM _{2.5}	and the sequential day were significantly associated with PEF.
	Dose-response Investigated? No		
Defendant Discoulated (0004	Statistical Package: STATA	Ballatant DM	DM I
Reference: Pitard, et al. (2004, 087433)	Outcome: Respiratory drug sales	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 732 days (Jul	Age Groups: 0-14, 15-64, 65-74, over 75 yr	Averaging Time: Daily	Percent increase in sales of anti- asthmatics and bronchodilators (Lower
1998-Jun 2000)	Study Design: Ecological time-series	Mean (SD): 16.7 (13.3)	CI, Upper CI)
Location: City of Rouen, France	N : 106,592	Percentiles: 25th: 8.00	lag:
	Statistical Analyses: Generalized		6.2 (2.4, 10.1)
	additive model	50th(Median): 13.0 75th: 20	lag 10 days
	Covariates: Days of the weeks, trend, seasonal variations, influenza	Range (Min, Max): 2.00, 126	Percent increase in sales of cough and cold preparation for children under 15 yr
	epidemics, meteorological variables, holidays	Monitoring Stations: 2	of age (Lower CI, Upper CI)
	Dose-response Investigated? No	Copollutant (correlation):	lag:
	Statistical Package: S-plus	SO ₂ (0.39)	9.2 (5.9, 12.6)
	J p		10 days

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Preutthipan et al. (2004,	Outcome: Decreases in peak	Pollutant: PM ₁₀	PM Increment: Authors classified exposure according to High and Low
<u>055598</u>)	expiratory flow rates (PEFR), respiratory symptoms including wheeze,	Averaging Time: Daily	PM ₁₀ days:
Period of Study: 31 days (school days) from Jan-Feb 1999	shortness of breath, runny/stuffed nose, sneezing, cough, phlegm, and sore	Mean (SD): 111.0 (39)	High = >120 μg/m³ Low = <120 μg/m³
Location: Mae Pra Fatima School,	throat	Range (Min, Max): 46, 201	Daily reported respiratory symptoms and diurnal PEFR variability as
central Bangkok, Thailand	Age Groups: Third to ninth grade	Monitoring Stations: 1	classified by concurrent days with high
	Study Design: Time- Series	Copollutant:	vs low PM ₁₀ Mean % reporting (SEM)
	N: 133 children (93 asthmatics, 40 nonasthmatics)	SO ₂	Asthmatics: High PM ₁₀
	,	CO	Wheeze/shortness of breath = 21.3 (1.4)
	Statistical Analyses: For continuous data, an unpaired t-test or Mann-Whitney U test was used. For categorical data, the chi-square test or Fisher's exact test was used. One-way analysis of covariance (ANCOVA) was used to compare avg daily reported respiratory symptoms, diurnal PEFR variability, and the prevalence of PEFR decrements between groups of days. Covariates: Age, sex, weight, height, parents smoking, person smoking in home, daily number of household cigarettes, air-conditioned bedroom, fuel used for cooking (charcoal, gas), distance from home to main road Dose-response Investigated? No Lags Considered: Up to 5 days	O ₃	Runny/stuffed nose or sneezing = 42.3 (1.8) Cough = 59.9 (1.9) Phlegm = 60.5 (2.3) Sore throat = 23.7 (1.5) Any respiratory symptoms = 72.2 (3.2) Diurnal PEFR variability = 3.0 (0.4) Asthmatics: Low PM ₁₀ Wheeze/shortness of breath = 19.3 (1.3) Runny/stuffed nose or sneezing = 35.8 (1.6) Cough = 59.1 (1.6) Phlegm = 58.6 (2.0) Sore throat = 21.0 (1.4) Any respiratory symptoms = 63.8 (2.8) Diurnal PEFR variability = 2.8 (0.3) Nonasthmatics: High PM ₁₀ Wheeze/shortness of breath = 11.7 (1.4) Runny/stuffed nose or sneezing = 40.9 (2.5) Cough = 50.4 (2.6) Phlegm = 50.2 (2.5) Sore throat = 27.1 (1.7) Any respiratory symptoms = 67.8 (3.7) Diurnal PEFR variability = 2.4 (0.4) Nonasthmatics: Low PM ₁₀ Wheeze/shortness of breath = 9.3 (1.2) Runny/stuffed nose or sneezing = 33.1 (2.2) Cough = 54.0 (2.2) Phlegm = 49.9 (2.2) Sore throat = 23.9 (1.5) Any respiratory symptoms = 56.4 (3.2) Diurnal PEFR variability = 2.1 (0.4) Notes: None of the daily reported
			respiratory symptoms had significant direct correlations with daily PM ₁₀ levels, according to the authors.

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Rabinovitch et al. (2004,	Outcome: Respiratory symptoms, Asthma symptoms (cough and wheeze), Upper respiratory symptoms	Pollutants: PM ₁₀	Increment: 1 μg/m³ β (SE)
<u>096753</u>)		Averaging Time: 24-h avg	AM: -0.010 (0.008)
Periods of Study: Nov 1999-Mar 2000	Study Design: Time-series panel	Mean (SD): 28.1 (13.2)	PM: -0.011 (0.010) Odds Ratio (Lower CI, Upper CI)
Nov 2000-Mar 2001	Statistical Analyses: Logistic linear	Range (Min, Max):	Lag
Nov 2001-Mar 2002	regression	(6.0, 102.0)	1.016 (0.911, 1.133)
Location: Denver, Colorado	Age Groups: 6-12	Copollutant:	0-3 avg. OR for respiratory symptoms and PM ₁₀
		CO	exposure for children age 6-12 Asthma exacerbation:
		NO_2	1.00 (0.75, 1.25) 0-3 avg Medication: 0.85 (0.75, 0.95) 0-3 avg
		SO ₂	Previous night's symptoms:
		O ₃	1.10 (1.00, 1.20) 0-3 avg Current day's symptoms:
		03	1.00 (0.90, 1.10) 0-3 avg % Increase (Lower CI, Upper CI)
			% increase (2006) 6, opper 67) Lag % increase in FEV ₁ or PEF and PM ₁₀ exposure for children age 6-12 AM FEV ₁ : -0.01 (-0.02, 0.01) 0-3 avg PM FEV ₁ : -0.02 (-0.03, 0.02) 0-3 avg AM PEF: -0.025 (-0.035, 0.02) 0-3 avg PM PEF: 0.00 (-0.03, 0.03) 0-3 avg
Reference: Renzetti et al. (2009,	Outcome: Airway inflammation and	Pollutant: PM ₁₀	All results are presented in Fig format.
<u>199834</u>)	function	Averaging Time: Daily	
Period of Study: Jun 2006-Jul 2006	Study Design: Panel	Mean (SD) Unit:	
Location: Pescara and Ovindoli, Italy	Covariates: NR	Urban: 56.9 ± 13.1 μg/m ³	
	Statistical Analysis: Student T-test, Pearson's correlation coefficients	Rural: 13.8 ± 5.6 µg/m ³	
	Statistical Package: StatView	Copollutant (correlation): NR	
	Age Groups: Children, mean age 9.9 yr		

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Rojas-Martinez et al. (2007, 091064)	Outcome: Lung function: FEV ₁ , FVC, FEF ₂₅₋₇₅ %	Pollutant: PM ₁₀	PM Increment: IQR
		Averaging Time: 24 h, 6 mo	PM ₁₀ , 6-LC: 36.4
Period of Study: 1996-1999 Location: Mexico City, Mexico		Mean (SD): 24-h averaging Tlalnepantla: 66.7 (35.6)	GIRLS One-pollutant model
	Study Design: School-based "dynamic" cohort study	Xalostoc: 96.7 (49.4) Merced: 79.3 (40.8) Pedregal: 53.4 (31.9)	FVC: -39 [-47: -31] FEV: -29 [-36: -21] FEF _{25-75%} : -17 [-36: 1]
	N: 3170 children	Cerro de la Estrella: 69.6 (35.3) 6-mo averaging	FEV ₁ /FVC: 0.12 [0.07: 0.17] Two-pollutant model
	14,545 observations	Mean: 75.6	PM ₁₀ , 6-LC & O ₃ FVC: -30 [-39: -22]
	Statistical Analyses: Three-level generalized linear mixed models with unstructured variance-covariance matrix		FEV: -24 [-31: -16] FEF _{25-75%} : -9 [-26: 9] FEV ₁ /FVC: 0.10 [0.06: 0.15]
	Covariates: Age, body mass index, height, height by age, weekday spent outdoors, environmental tobacco	75th: 92.2 Monitoring Stations: 5 sites for PM ₁₀ , 10 for other pollutants	PM ₁₀ , 6-LC & NO ₂ FVC: -21 [-30: -13] FEV: -17 [-25: -8]
	smoke, previous-day mean air pollutant concentration, time since first test	Copollutant: O ₃	FEF _{25-75%} : -23 [-43: -4] FEV ₁ /FVC: 0.07 [0.02: 0.13] Multipollutant model
	Dose-response Investigated? No	NO ₂	PM ₁₀ , 6-LC, O ₃ , & NO ₂ FVC: -14 [-23: -5]
	Statistical Package: SAS		FEV: -11 [-20: -3]
	Lags Considered: 0-1 days		FEF25-75%: -7 [-27: 12] FEV ₁ /FVC: 0.08 [0.03: 0.13]
			BOYS One-pollutant model FVC: -33 [-41: -25] FEV: -27 [-34: -19] FEF _{25-75%} : -18 [-34: -2] FEV ₁ /FVC: 0.04 [-0.01: 0.09] Two-pollutant model PM _{10.} 6-LC & O ₃ FVC: -28 [-36: -19] FEV: -22 [-30: -15] FEF _{25-75%} : -10 [-27: 7] FEV ₂ /FVC: 0.04 [-0.01: 0.09] PM _{10.} 6-LC & NO ₂ FVC: -16 [-26: -7] FEV ₂ /FVC: 0.005 [-0.06: 0.05] Multipollutant model PM _{10.} 6-LC, O ₃ , & NO ₂ FVC: -12 [-22: -3] FEV ₂ -75%: -12 [-30: 6] FEV ₂ /FVC: -0.002 [-0.06: 0.05]
			Long-term exposure to O_3 , PM_{10} , and NO_2 is associated with decrements in FVC and FEV, growth in Mexico City schoolchildren. In a multipollutant model, PM_{10} (-12%), O_3 (-9%), and NO_2 (-41%) each contribute independently and statistically significantly to diminished FVC growth. For FEV, however, the multipollutant model indicates that only PM_{10} (-15%) and NO_2 (-25%) each contribute independently and statistically significantly to diminished FEV ₁ growth.

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Study Reference: Sahsuvaroglu et al. (2009, 190983) Period of Study: 1994-1995 Location: Hamilton, Canada	Design & Methods Outcome: Asthma symptoms Study Design: Panel Covariates: Neighborhood income, dwelling value, state of housing, deprivation index, smoking Statistical Analysis: Logistic regressions Statistical Package: SPSS N: 6388 Age Groups: Children in grades 1 and 8	Concentrations1 Pollutant: PM ₁₀ Averaging Time: 3-yr avg Avg: All Subjects: 20.90 μg/m³ Boys: 20.88 μg/m³ Girls: 20.92 μg/m³ Range: All Subjects: 26.98 Boys: 26.98 Girls: 20.10 Copollutant (correlation): NO _χ Theissen: 0.083 SO ₂ Theissen: -0.021 O ₃ Theissen: -0.251 NO ₂ Kriged: 0.126 NO ₂ LUR: 0.072	Increment: NR Odds Ratio (95%CI) for copollutant model PM10Spline and NO2LUR All Girls: 1.063 (0.969-1.666) Older Girls: 1.058 (0.918-1.219) Odds Ratio (95%CI) for copollutant model PM10Spline and NO2LUR, SO2Theissen and O3Theissen All Girls: 1.045 (0.943-1.158) Older Girls: 1.044 (0.891-1.225) Regression coefficients (95%CI) between non-allergic asthma and PM10Spline exposure All Children: 1.043 (0.996-1.092) Younger Children: 1.011 (0.929-1.100) Older Children: 1.073 (1.013-1.136) All Girls: 1.069 (0.999-1.144) All Boys: 1.024 (0.962-1.091) Younger Girls: 1.065 (0.943-1.203) Younger Boys: 0.962 (0.853-1.085)
Reference: Sanchez-Carrillo et al. (2003, 098428) Period of Study: 1996-1997 Location: metropolitan Mexico City, Mexico	Outcome: Upper respiratory symptom indicator (wet cough, sore throat, hoarseness, nose dryness, and head cold); Lower respiratory symptom indicator (dry cough, lack of air, and chest sounds); and Ocular symptom indicator (eye irritation, eye itch, eye burning, teary eyes, red eyes, and eye infection) Age Groups: All ages Study Design: Cohort N: 151,418 interviews Statistical Analyses: Logistic regression models Covariates: Sex, age, education, cigarette smoking, season, emergency episode mass media report, temperature, and relative humidity Dose-response Investigated? Yes Statistical Package: NR Lags Considered: 1	Pollutant: PM ₁₀ Averaging Time: 24 h Mean (SD): Northeast: 132 (52) Northwest: 87 (46) Central: 85 (37) Southeast: 79 (35) Southwest: 55 (28) Range (Min, Max): Northeast: (34-269) Northwest: (10-275) Central: (9-319) Southeast: (14-225) Southeast: (14-2264) Monitoring Stations: Up to 32 Copollutant (correlation): O ₃ : r = 0.067 O ₃ 8: 00-18: 00 h: r = 0.075 SO ₂ : r = 0.265 NO ₂ : r = 0.265	Older Girls: 1.072 (0.984-1.169) Older Boys: 1.075 (0.995-1.160) Effect Estimate [Lower CI, Upper CI]: PM ₁₀ quartiles: 10.04-52.62 (ref) 52.63-73.58 Upper respiratory indicator: 1.02 (0.99-1.06) Lower respiratory indicator: 1.04 (0.99-1.09) Ocular indicator: 0.99 (0.95-1.03) 73.59-101.91 Upper respiratory indicator: 1.07 (1.03-1.10) Lower respiratory indicator: 1.09 (1.04-1.14) Ocular indicator: 0.89 (0.86-0.92)101.92-318.80 Upper respiratory indicator: 1.03 (0.90-0.97) Lower respiratory indicator: 1.03 (0.98-1.08) Ocular indicator: 0.84 (0.81-0.87) Northeast - 2nd quartile Upper respiratory indicator: 0.354 (0.112-1.222) Lower respiratory indicator: 0.215 (0.040-1.160) Ocular indicator: 1.080 (0.915-1.274) 3rd quartile Upper respiratory indicator: 0.118 (0.039-0.356) Lower respiratory indicator: 0.126 (0.023-0.690) Ocular indicator: 1.228 (0.720-2.095) 4th quartile Upper respiratory indicator: 0.095 (0.034-0.267) Lower respiratory indicator: 0.119 (0.026-0.549) Ocular indicator: 0.878 (0.619-1.246) Northwest - 2nd quartile Upper respiratory indicator: 0.199 (0.898-1.090) Lower respiratory indicator: 1.133 (0.974-1.317) Lower respiratory indicator: 1.246 (1.087-1.429) Ocular indicator: 1.218 (0.808-1.834) 3rd quartile Upper respiratory indicator: 1.246 (1.087-1.429) Ocular indicator: 1.218 (0.808-1.834) 3rd quartile Upper respiratory indicator: 1.216 (0.125-0.951) 4th quartile Upper respiratory indicator: 1.202 (1.044-1.385) Ocular indicator: 0.245 (0.125-0.951) 4th quartile Upper respiratory indicator:

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
			1.019 (0.904-1.149) Lower respiratory indicator: 1.344 (1.137-1.589) Ocular indicator: 1.949 (1.416-2.683) Central - 2nd quartile Upper respiratory indicator: 1.088 (1.002-1.183) Lower respiratory indicator: 1.046 (0.930-1.176) Ocular indicator: 1.220 (1.115-1.335) 3rd quartile Upper respiratory indicator: 1.054 (0.977-1.137) Lower respiratory indicator:
			1.055 (0.948-1.175) Ocular indicator: 1.049 (0.965-1.142) 4th quartile Upper respiratory indicator: 0.899 (0.826-0.979) Lower respiratory indicator: 0.952 (0.845-1.073) Ocular indicator: 0.875 (0.796-0.963) Southeast - 2nd quartile Upper respiratory indicator:
			0.778 (0.575-1.052) Lower respiratory indicator: 1.047 (0.916-1.196) Ocular indicator: 0.460 (0.299-0.708) 3rd quartile Upper respiratory indicator: 1.297 (1.127-1.491) Lower respiratory indicator: 1.391 (1.131-1.711)
			Ocular indicator: 0.474 (0.314-0.715) 4th quartile Upper respiratory indicator: 0.893 (0.812-0.983) Lower respiratory indicator: 0.937 (0.818-1.073) Ocular indicator: 0.314 (0.182-0.542) Southwest - 2nd quartile Upper respiratory indicator:
			0.987 (0.913-1.066) Lower respiratory indicator: 2.181 (1.177-4.040) Ocular indicator: 1.026 (0.928-1.135) 3rd quartile Upper respiratory indicator: 0.673 (0.673-1.886) Lower respiratory indicator: 0.899 (0.790-1.024)
			Ocular indicator: 1.017 (0.862-1.200) 4th quartile Upper respiratory indicator: 0.524 (0.524-1.787) Lower respiratory indicator: 4.346 (0.917-20.606) Ocular indicator: 0.187 (0.090-0.387)

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Schildcrout et al. (2006, 089812)	Outcome: Asthma Symptoms, Rescue Inhaler Uses	Pollutant: PM ₁₀	PM Increment: 25 μg/m³
Period of Study: Nov 1993-Sep 1995	Age Groups: 5-12 yr	Averaging Time: 24-h avg	One-pollutant model Asthma Symptoms:
Location: Albuquerque, New Mexico	Study Design: Meta-analysis of CAMP	Seattle: Daily Albuquerque: Daily Baltimore: 50% of study days measured	1.02 [0.94, 1.11] 0 1.01 [0.97, 1.06] 1 1.02 [0.98, 1.07] 2
Baltimore, Maryland	N: 990 children	Boston: 23% of study days measured Denver: 37% of study days measured	1.01 [0.98, 1.05] 3-day moving sum
Boston, Massachusetts	Statistical Analyses: "Working independence covariance structure"	San Diego: 24% of study days measured	Rescue Inhaler Uses: [0.97, 1.05] 0
Denver, Colorado	Logistic Regression	St. Louis: 19% of study days measured Toronto: 47% of study days measured	[0.97, 1.05] 1 1.00 [0.97, 1.03] 2
San Diego, California	Poisson Regression	Percentiles: 10th: 6.8-14.0	1.01 [0.98, 1.03]
Seattle, Washington	"GEE Procedure"	25th: 12.0-22.4	3-day moving sum
St. Louis, Missouri	Covariates: Season, age, race-	50th(Median): 17.7-32.4 75th: 26.2-42.7	Two-pollutant model Asthma Symptoms:
Toronto, Ontario, Canada	ethnicity, annual family income, day of the week	90th: 32.5-53.9 Monitoring Stations: 1-12	CO-PM ₁₀ 1.08 [1.01, 1.15] 0
	Dose-response Investigated?	Copollutant (correlation):	1.06 [0.99, 1.14] 1 1.08 [1.02, 1.14] 2
	Statistical Package: SAS 8.2	NO_2 r = 0.26-0.64 SO_2 r = 0.31-0.65	1.05 [1.01, 1.08]
	R	O ₃ r = 0.03-0.73 CO r = 0.24-0.88	3-day moving sum
	Lags Considered: 0 day lag, 1 day lag, 2 day lag, 3-day moving sum		NO ₂ ⁻ PM ₁₀ 1.06 [0.99, 1.13] 0 1.04 [0.97, 1.11] 1 1.08 [1.02, 1.15] 2 1.04 [1.00, 1.07] 3-day moving sum
			SO ₂ -PM ₁₀ 1.05 [0.98, 1.13]; 0 1.04 [0.96, 1.14] 1 1.05 [0.98, 1.12] 2 1.04 [0.99, 1.08] 3-day moving sum
			Rescue Inhaler Uses: $ \begin{array}{l} \text{CO-PM}_{10} \\ \text{1.06} \ [0.99, 1.13] \ 0 \\ \text{1.05} \ [0.99, 1.11] \ 1; \\ \text{1.05} \ [1.01, 1.09] \ 2 \\ \text{1.03} \ [1.00, 1.07] \\ \text{3-day moving sum} \\ \text{NO}_2 \ PM_{10} \\ \text{1.03} \ [0.97, 1.08] \ 0 \\ \text{1.03} \ [0.98, 1.08] \ 1 \\ \text{1.04} \ [1.00, 1.09] \ 2 \\ \text{1.02} \ [1.00, 1.05] \\ \text{3-day moving sum} \\ \end{array} $
			SO ₂ -PM ₁₀ 1.01 [0.95, 1.07] 0 1.02 [0.97, 1.07] 1 1.03 [0.98, 1.09] 2 1.02 [0.98, 1.05] 3-day moving sum

Table E-10. Short-term exposure - respiratory morbidity outcomes - PM_{10-2.5}.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Aekplakorn et al.	Outcome: Upper respiratory	Pollutant: PM _{10-2.5}	PM Increment: 10 μg/m³
(2003, <u>089908</u>)	symptoms, lower respiratory symptoms, cough	Averaging Time: Daily	Odds Ratios [Lower CI, Upper CI] lag:
Period of Study: 107 days, Oct 1997-Jan 1998	Age Groups: 6-14 yr	Mean (SD): NR	Asthmatics:
Location: Mae Mo district,	Study Design: Logistic regression	Range (Min, Max): NR	URS: 1.04 (0.93, 1.17) lag 0 LRS: 1.09 (0.95, 1.26) lag 0
Lampang Province, north Thailand	N: 98 asthmatic school children	Monitoring Stations: 3	Cough: 1.08 (0.96, 1.21) lag 0
TTanatu	Statistical Analyses: Generalized Estimating Equations, stratified analysis, PROC GENMOD	Copollutant: PM ₁₀ , SO ₂	Non-Asthmatics: URS: 1.05 (0.99, 1.19) lag 0 LRS: 0.90 (0.72, 1.11) lag 0 Cough: 0.95 (0.81, 1.11) lag 0
	Covariates: Temperature and relative humidity		300gii. 3.30 (0.01, 1.11) lug 3
	Season: Winter		
	Dose-response Investigated? No		
	Statistical Package: SAS v 8.1		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Bourotte et al.	Outcome: Peak expiratory flow (PEF)	Pollutant: PM _{2.5}	PM Increment: NR
(2007, <u>150040</u>)	Age Groups: Avg age 39.8 ± 12.3 yr	Averaging Time: 24 h	Effect [Lower CI, Upper CI] lag:
Period of Study: May 2002-Jul 2002	Study Design: Cross-sectional	Mean (SD): 21.7 (12.9) μg/m ³	Morning PEF
Location: Sao Paulo, Brazil	N: 33 patients	Range (Min, Max): (4.13, 62.0)	Na ⁺ concurrent day = -0.454 (-1.605, 0.697) Na ⁺ 2-day lag = -0.907 (-2.288, 0.474)
	Statistical Analyses: Linear mixed-effects model	Components: Na ⁺ K ⁺	Na ⁺ 3-daý lag = -1.361 (-2.972, 0.251) K ⁺ concurrent day = 1.685 (-0.492, 3.862) K ⁺ 2-day lag = 1.838 (-1.272, 4.984)
	Covariates: Gender, Age, BMI, Air Pollutants, Ambient temperature, Relative Humidity	Mg2 ⁺ Ca2 ⁺ Finf	K ⁺ 3-day lag = 2.604 (-0.812, 6.025) Mg_2^+ concurrent day = 2.265* (-0.427, 4.956) Mg_2^+ 2-day lag = 1.271 (-1.869, 4.410)
	Season: Winter	CI- NO _{3.}	Mg_2^{-1} 3-day lag = 0.939 (-2.425, 4.303) Ca_2^{+1} concurrent day = 5.491* (2.558, 8.424)
	Dose-response Investigated? No	SO ₄ ²⁻	Ca ₂ ⁺ 2-day lag = 6.358* (2.251, 10.465) Ca ₂ ⁺ 3-day lag = 6.069 (1.962, 10.176)
	Statistical Package: S-plus	Monitoring Stations: 1	F _{inf} concurrent day = 1.572 (-0.792, 3.935) F _{inf} 2-day lag = 1.630 (-1.679, 4.939)
	Lags Considered : 2-day lag, 3-day lag		$\begin{aligned} F_{\inf} & 3\text{-day lag} &= 2.736^* (-1.754, 7.226) \\ & \text{Cl} & \text{concurrent day} &= -0.951 \ (-2.238, 0.336) \\ & \text{Cl} & 2\text{-day lag} &= -1.871 \ (-3.242 \text{ to} -0.4997) \\ & \text{Cl} & 3\text{-day lag} &= -2.286^* (-3.934 \text{ to} -0.638) \\ & \text{NO}_3 & \text{concurrent day} &= 4.195^* \ (-0.063, 8.452) \\ & \text{NO}_3 & 2\text{-day lag} &= 6.292^* \ (2.034, 10.55) \\ & \text{NO}_3 & 3\text{-day lag} &= 7.341^* \ (3.083, 11.60) \\ & \text{SO}_4^2 & \text{concurrent day} &= 3.528 \ (-0.053, 7.110) \\ & \text{SO}_4^2 & 2\text{-day lag} &= 4.411^* \ (0.829, 7.991) \\ & \text{SO}_4^2 & 3\text{-day lag} &= 6.175^* \ (2.593, 9.756) \end{aligned}$
			Evening PEF Na* concurrent day = -0.680 (-1.831, 0.471) Na* 2-day lag = -1.90 (-3.316 to -0.494) Na* 3-day lag = -2.336* (-3.878 to -0.794) K* concurrent day = 0.613 (-1.564, 2.790) K* 2-day lag = 0.613 (-2.497, 3.723) K* 3-day lag = 0.000 (-3.421, 3.421) Mg ₂ + concurrent day = 0.718 (-3.522, 2.085) Mg ₂ + 2-day lag = -1.933 (-5.073, 1.206) Mg ₂ + 3-day lag = -3.591 (-7.056 to -0.126) Ca ₂ + concurrent day = 2.312* (-1.208, 5.832) Ca ₂ + 2-day lag = 2.023 (-2.084, 6.130) Ca ₂ + 3-day lag = 2.023 (-2.084, 6.130) Ca ₂ + 3-day lag = 2.591 (-7.056 to -0.126) Crocurrent day = -1.281 (-3.644, 1.083) Finf 2-day lag = -2.503 (-5.930, 0.924) Finf 3-day lag = -4.540 (-9.149, 0.068) CF concurrent day = -0.317 (-1.604, 0.970) CF 2-day lag = -1.268 (-2.556, 0.019) CF 3-day lag = -1.902 (-3.589 to -0.216) NO ₃ concurrent day = 3.146 (-1.112, 7.404) NO ₃ -2-day lag = 3.146 (-1.112, 7.404) NO ₃ -3-day lag = 1.049 (-3.209, 5.306) SO ₄ -2 concurrent day = 1.764 (-1.817, 5.346) SO ₄ -2 -2-day lag = 2.646 (-0.935, 6.228) SO ₄ -3-day lag = 1.764 (-1.817, 5.346)
Reference: Ebelt et al. (2005,	Outcome: Spirometry	Pollutant: PM _{10-2.5}	PM Increment: Ambient PM _{10-2.5} : 4.5 (IQR)
<u>056907</u>)	Age Groups: Range from 54-86 yr	Averaging Time: 24 h	Exposure to ambient PM _{10-2.5} : 2.4 (IQR)
Period of Study: Summer of 1998	Mean age= 74 yr	Mean (SD): Ambient PM _{10-2.5} : 5.6 (3.0)	Notes: Effect estimates are presented in Fig 2 and
Location: Vancouver, Canada	Study Design: Extended analysis of a repeated-measures panel study	Exposure to ambient PM _{10-2.5} : 2.4 (1.7) Range (Min, Max):	Electronic Appendix Table 1 (only available with electronic version of article) and not provided quantitatively elsewhere.
	N: 16 persons with COPD	Ambient PM _{10-2.5} : (-1.2-11.9)	
	Statistical Analyses: Earlier analysis expanded by developing mixed-effect regression models and by evaluating additional exposure indicators	Exposure to ambient PM _{10-2.5} : (-0.4-7.2) Monitoring Stations: 5 Copollutant (correlation):	
	Dose-response Investigated? No	Ambient PM ₁₀ : r= 0.69 Ambient PM _{2.5} : r= 0.15	
	Statistical Package: SAS V8	Nonsulfate Ambient $PM_{2.5}$: r= 0.14 Exposure to Ambient $PM_{10.2.5}$: r= 0.73	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Lagorio et	Outcome: Lung function of subjects	PM Size: PM _{10-2.5}	PM Increment: 1 µg/m³
al.(2006, <u>089800)</u> Period of Study: May 1999-June 1999 and Nov	(FVC and FEV ₁) with COPD, Asthma Age Groups : COPD 50-80 yr Asthma 18-64 yr	Averaging Time: 24 h Mean (SD):	They observed no statistically significant effect of $PM_{\rm 10-2.5}$ on FVC and FEV $_{\rm 1}$ on any of the panels (COPD, Asthma).
1999-Dec 1999	Study Design: Time series	Overall: 15.6 (7.2) Spring: 18.7 (7.4)	β Coefficient (SE)
Location: Rome, Italy	N: COPD N = 11; Asthma N = 11	Winter: 12.3 (5.4)	0000
	Statistical Analyses: Non-parametric	Range (Min, Max): (3.4, 39.6) PM Component:	COPD FVC(%)
	Spearman correlation GEE	Cd: 0.46±0.40 ng/m³ Cr: 1.9±1.7 ng/m³ Fe: 283±167 ng/m³	24 h`-1.32 (1.06)^l 48-h -1.46 (1.31) 72-h -1.38 (1.53)
	Covariates: COPD: daily mean temperature, season variable (spring or winter), relative humidity, day of week	Ni: 4.8±6.5 ng/m ³ Pb: 30.6±19.0 ng/m ³ Pt: 5.0±8.6 pg/m ³ V: 1.8±1.4 ng/m ³	FEV ₁ (%) 24 h -0.59 (0.95) 48-h -1.01 (1.19) 72-h -0.90 (1.42)
	Asthma: season variable, temperature, humidity, and -2-agonist use	Zn: 45.8±33.1 ng/m³ Monitoring Stations: Two fixed sites: (Villa Ada and Istituto	Asthma FVC(%) 24 h -0.17 (0.75)
	Season: Spring and winter	superior di Sanita)	48-h -0.36 (0.91)
	Dose-response Investigated? Yes	Copollutant (correlation): NO ₂ r = 0.51	72-h -0.24 (1.07) FEV₁(%)
	Statistical Package: STATA	$O_3 r = 0.31$ CO r = -0.09	24 h -0.67 (0.89) 48-h -1.19 (1.07)
	Lags Considered: 1-3 days	SO ₂ r = -0.16 PM ₁₀ r = 0.61 PM _{2.5} r = 0.34	72-h -0.51 (1.26)
Reference: Laurent et al.	Outcome: Sales of short acting β-	Pollutant: PM ₁₀	Increment: 10 µg/m³
(2008, <u>156672</u>)	agonists	Averaging Time: NR	Percent Increase in Short Acting β-agonists sold
Period of Study: Dec 2003-Dec 2004	Study Design: Case-crossover Covariates: NR	Mean (SD) Unit: 20.8 (10.2) μg/m ³	Per increment increase in ambient PM ₁₀ at lags 4-7, a 7.5% increase (95% Cl: 4-11.2%) was seen in SABA
Location: Strasbourg, France	Statistical Analysis: Conditional	Range (Min, Max): NR	sales.
	logistic regression Age Groups: 0-39 yr	Copollutant (correlation): NO ₂ , O ₃ , correlations NR	All other results were given in Fig 1 and 2
Reference: Tang et al. (2007,	Outcome: Peak expiratory flow rate	Pollutant: PM _{10-2.5}	PM Increment: 15.9 µg/m ³
<u>091269</u>)	(PEFR) of asthmatic children	Averaging Time: 1 h	RR Estimate [Lower CI, Upper CI]
Period of Study: Dec 2003-Feb 2005	Age Groups: 6-12 yr	Mean (SD):	lag:
Location: Sin-Chung City,	Study Design: Panel study	Personal: 17.8 (19.6)	Change in morning PEFR:
Taipei County, Taiwan	N: 30 children	Ambient: 17.0 (10.6)	-20.55 (-45.83, 4.73) lag 0
	Statistical Analyses:	Range (Min, Max):	-39.05 (-104.16 , 26.06) lag 1
	Linear mixed-effect models were used to estimate the effect of PM exposure	Personal: 0.3-195.7	-39.56 (-79.56, 0.44) lag 2
	on PEFR	Ambient: 0.1-80.2	-37.15 (-105.01, 30.7) 2-day mean
	Covariates: Gender, age, BMI, history of respiratory or atopic disease in	Monitoring Stations: 1	-35.47 (-27.32, 56.38) 3-day mean
	family, SHS, acute asthmatic exacerbation in past 12 mo, ambient temperature and relative humidity, presence of indoor pollutants, and presence of outdoor pollutants,		Change in evening PEFR:
			-1.68 (-19.13, 15.78) lag 0
			1.59 (-14.32, 17.5) lag 1
	Dose-response Investigated? yes		0.86 (-30.84, 32.57) lag 2
	Statistical Package: S-Plus 2000		5.97 (-15.57, 27.5) 2-day mean
	Lags Considered: 0-2		29.75 (-1.69, 61.18) 3-day mean

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
eference: Trenga et al.,	Outcome: Lung function: FEV ₁ , PEF,	Pollutant: PM _{10-2.5} (coarse)	PM Increment: 10 μg/m ³
2006, <u>155209</u>)	MMEF (maximal midexpiratory flow	Averaging Time: 24 h	Adult
eriod of Study: 1999-2002	assessed only for children)	• •	Outdoor Home PM ₁₀ -PM _{2.5}
·	Age Groups: Adults (56-89-yr-old)	Percentiles: Subject-specific exposure	FEV ₁
ocation: Seattle, WA	healthy & with COPD	PM ₁₀ -PM _{2.5}	Overall: Lag 0 -27.9 [-87.5: 31.8]
	Anthonotic children C 40 un ald	Outdoor	Lag 1 47.1 [-5.1: 99.4] No-COPD: Lag 0 -49.2 [-22.3: 23.9]
	Asthmatic children 6-13-yr-old	25th: 3.3	Lag 1 74.3 [6.8: 141.8]
	Study Design: Adult and pediatric	50th (Median): 4.7	COPD: Lag 0 7.3 [-84.7: 99.4]
	panel study over 3 yr with 1 monitoring	75th: 6.9	Lag 1 11.5 [-65.4: 88.3]
	period ("session") per yr	A 1 11	PĔF '
	N: 57 adults (33 healthy, 24 with	Adults	Overall: Lag 0 5.3 [-5.1: 15.7]
	COPD) = 692 subject-days = 207	Outdoor 25th: 3.3	Lag 1 -2.5 [-11.6: 6.5]
	study-days	50th (Median): 5.0	No-COPD: Lag 0 5.1 [-7.7: 17.8]
	olday dayo	75th: 7.1	Lag 1 -5.8 [-17.5: 5.9]
	17 asthmatic children = 319 subject-		COPD: Lag 0 5.7 [-10.3: 21.6] Lag 1 1.7 [-11.5: 14.9]
	days = 98 study-days	Range (Min, Max):	Pediatric
	Statistical Analyses: Mixed effects,	Subject-specific exposure	FEV ₁
	longitudinal regression models, with		Outdoor Home PM ₁₀ -PM _{2.5}
	the effects of pollutant decomposed	Children	Overall
	into each subject's a) overall mean	Outdoor (0.0, 25.3)	Lag 0 -7.43 [-69.41: 54.55]
	h) Difference between their residen	Adults	Lag 1 -25.61 [-88.16: 36.94]
	b) Difference between their session-	Outdoor (0.0, 25.7)	No Anti-inflam. Medication
	specific mean and overall mean	, ,	Lag 0 -63.87 [-199.58: 71.84]
	c) Difference between their daily	Monitoring Stations: 2	Lag 1 -96.48 [-232.48: 39.52]
	values and session-specific mean	Also subject-specific local	Anti-inflam. Medication Lag 0 6.57 [-96.90: 110.04]
	•	outdoors (i.e., at each home),	Lag 1 -8.63 [-217.39: 200.14]
	Covariates: Gender, age, ventral site	indoor, and personal	PEF
	temperature and relative humidity, CO,	Copollutant (correlation):	Outdoor Home PM ₁₀ -PM _{2.5}
	NO ₂	. ,	Overall
	Season: NR	CO	Lag 0 4.53 [-6.60: 15.67]
		NO ₂	Lag 1 -3.35 [-14.31: 7.62]
	Dose-response Investigated? No	-	No Anti-inflam. Medication
	Statistical Package: SAS	PM _{2.5}	Lag 0 2.05 [-22.36: 26.45]
	· ·		Lag 1 -6.56 [-30.90: 17.78] Anti-inflam. Medication
	Lags Considered: 0-1 days		Lag 0 5.15 [-7.90: 18.19]
			Lag 1 -2.58 [-15.35: 10.19]
			MMEF
			Outdoor Home PM ₁₀ -PM _{2.5}
			Overall
			Lag 0 -0.01 [-7.29: 7.28]
			Lag 1 -2.07 [-9.25: 5.12]
			No Anti-inflam. Medication
			Lag 0-7.14 [-23.16: 8.87]
			Lag 1 -14.39 [-30.11: 1.32] Anti-inflam. Medication
			Lag 0 1.76 [-6.78: 10.30]
			Lag 1 0.89 [-7.56: 9.33]
			Lag 1 0.00 [1.00. 0.00]

Table E-11. Short-term exposure - respiratory morbidity outcomes - $PM_{2.5}$ (including components/sources).

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Adamkiewicz et al. (2004,	Outcome: FENO	Pollutant: PM _{2.5}	PM Increment: 17.9 μg/m ³
<u>087925</u>)	Age Groups: Ranged 53.5-90.6 yr	Averaging Time: 1 h	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Aug-Dec 2000	Study Design: Prospective cohort	Mean (SD): 19.5	1-h Single pollutant models:
Location: Steubenville, Ohio	N: Total of 294 breaths from 29 subjects	Percentiles: 25th: 7.6	0.36 (0.58-2.14)
	Statistical Analyses: Fixed effect	75th: 25.5	PM Increment: 17.7
	models, ANOVA, GLM procedure	Range (Min, Max): NR, 105.8	Effect Estimate [Lower CI, Upper CI]:
	Covariates: Subject, week of study, day of the week, h of the day, ambient	Monitoring Stations: 1	24-h ma: 1.45 (0.33-2.57)
	barometric pressure, temperature, and relative humidity	Averaging Time: 24 h	Multipollutant models for PM _{2.5} , ambient NO and room NO and estimated
	Dose-response Investigated? No	Mean (SD): 19.7	change in FENO (ppb) for an IQR in pollutant measure
	Statistical Package: SAS	Percentiles: 25th: 9.7	Model 1 1.95 (0.47-3.43)
	·	75th: 27.4	, ,
	Lags Considered: Hourly lags, 0-48 h	Range (Min, Max): NR, 57.8	Model 2 1.38 (0.26-2.51)
		Monitoring Stations: 1 Copollutant (correlation):	Model 4 1.97 (0.48-3.46)
		Ambient NO `	Notes: Association of FENO with PM _{2.5} at different lags presented in Fig 1 are
		Indoor NO NO ₂	not presented quantitatively elsewhere.
		O ₃ SO ₂	
Reference: Adar et al. (2007, <u>098635</u>)	Outcome: FENO	Pollutant: PM _{2.5}	PM Increment: 9.8 μg/m ³
Period of Study: Mar-Jun 2002	Age Groups: 60+	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Location: St. Louis, MO	Study Design: Panel Study	Mean (SD): Pretrip: 14.8 Post-trip: 16.5	Pre-trip % change: 21.9 (6.7, 39.4) Post-trip % change: -4.7 (-17.1, 9.6)
	N: 44 non-smoking seniors		
	Statistical Analyses: Mixed models containing random subject effects	Percentiles: 25th (pretrip): 11.2	
	ovariates: Day of week, trip type, ENO collection device, current illness,	75th (pretrip): 20.1 25th (post-trip): 11.7 75th (post-trip): 21.6	
	use of vitamins, antihistamines, statins, steroids, and asthma medications, temperature, pollen, mold, NO	Monitoring Stations: 1	
	concentration in testing room	Copollutant (correlation): BC	
	Statistical Package: SAS	NO_2	
	Lags Considered: 0	SO ₂ O ₃	
Reference: Aekplakorn et al. (2003,	Outcome: Upper respiratory	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
089908)	symptoms, lower respiratory symptoms, cough	Averaging Time: Daily	Odds Ratios [Lower CI, Upper CI]
Period of Study: 107 days, from Oct 1997-Jan 1998	Age Groups: 6-14 yr old	Mean (SD):	lag: Asthmatics:
Location: Mae Mo district, Lampang	Study Design: Logistic regression	Sob Pad station: 24.77	URS: 1.04 (0.99, 1.09) lag 0
Province, north Thailand	N: 98 asthmatic school children	Sob Mo station: 24.89	LRS: 1.05 (0.98, 1.2) lag 0 Cough: 1.05 (0.99, 1.10) lag 0
	Statistical Analyses: Generalized	Hua Fai station: 26.27	Non-Asthmatics: URS: 1.03 (0.96, 1.09) lag 0
	Estimating Equations, stratified	Range (Min, Max):	LRS: 1.02 (0.93, 1.10) lag 0
	analysis, PROC GENMOD Covariates: Temperature and relative humidity	Sob Pad: 4.52, 24.77	Cough: 1.00 (0.93, 1.07) lag 0 PM ₁₀ + SO ₂
		Sob Mo: 3.13, 24.89	Asthmatics: URS: 1.04 (0.99, 1.10) lag 0
	Season: Winter	Hua Fai: 3.67, 26.27	LRS: 1.05 (0.98, 1.10) lag 0 Cough: 1.05 (0.99, 1.11) lag 0
	Dose-response Investigated? No	Monitoring Stations: 3	Non-Asthmatics:
	Statistical Package: SAS v 8.1	Copollutant: PM ₁₀ SO ₂	URS: 1.03 (0.97, 1.09) lag 0 LRS: 1.02 (0.93, 1.11) lag 0 Cough: 1.00 (0.93, 1.07) lag 0

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Allen et al. (2008, <u>156208</u>)	Outcome: Daily changes in exhaled	Pollutant: PM _{2.5}	Health effect estimates presented in
Period of Study: 1999-2002 (additional	nitric oxide (FENO) and 4 lung function measures, midexpiratory flow (MEF),	Mean (SD): 11.23 (6.48)	graphic form (Fig 1). Summary from text is as follows:
PM composition data collected Dec 2000 and May 2001)	peak expiratory flow (PEF), forced expiratory volume in 1 second (FEV ₁),		Personal LAC, personal PM _{2.5} , and
Location: Seattle, USA	and forced vital capacity (FVC)	2.76-40.38	ambient-generated PM _{2.5} were associated with (p < 0.05) and ambient
	Age Groups: 6-13 yr	25th: 6.38	PM _{2.5} was marginally associated
	Study Design: Panel study	75th: 14.73	(p=0.09) with increased FENO. Neither of the ambient combustion markers
	N: 19 children with asthma	Copollutant (correlation):	(LAC, LG) nor nonambient-generated PM _{2.5} was associated with FENO
	Statistical Analyses: Linear mixed	Ambient LAC* r=0.83	changes.
	effects model with random intercept to test for within participant associations	Ambient LG**r=0.84	All of the ambient concentrations were associated with decrements in PEF and
	Covariates: Temperature, relative	Personal PM _{2.5} : r=0.34	MEF while ambient-generated PM _{2.5}
	humidity, BMI, age, and, in the case of FENO, ambient NO measured at a	Personal LAC: r=0.54	was marginally associated (p < 0.10).
	centrally located monitoring site	Ambient-generated PM _{2.5} : r=0.87	Only ambient LG was associated with a decrease in FEV ₁ and there were no
	Models also included a term for within-	Nonambient-generated PM _{2.5} : r=-0.06	associations between exposure metrics and FVC.
	participant, within-session effects, and a term for participant between-session	* LAC Light-absorbing carbon	
	effects Effect modification: Decided a priori to include interaction term for PM _{2.5} exposure and inhaled corticosteroids	** LG: Leroglucosan (a marker of wood	
		smoke)	
-			
Reference: Barraza-Villarreal et al.(2008, <u>156254</u>)	Outcome: Respiratory Symptoms, Coughing, Wheezing, Airway	Pollutant: PM _{2.5}	Increment: 17.5 μg/m ³
Period of Study: Jun 2003-Jun 2005	inflammation, Asthma	Averaging Time: Maximum 8-h avg	% Increase (Lower CI, Upper CI)
Location: Mexico City	Study Design: Prospective cohort	Mean (SD) unit:	lag:
Eccution: Michies Oily	Statistical Analyses: Bivarate analysis	28.9 (2.8)	Asthmatic children Inflammatory Marker:
	Age Groups: 6-14	Range (Min, Max):	FENO: 1.08 (1.01, 1.16) 0 IL-8: 1.08 (0.98, 1.19) 0
		(4.2, 102.8)	ph_EBC: -0.03 (-0.09, 0.03) 0
		Copollutants (correlation):	Lung Function: FEV ₁ : -16.0 (-31.0 to -0.13) 0-4 avg
		O ₃	FVC: -23.0 (-42.0 to -5.21) 0-4 avg FEV25-75: -11.0 (-42.0, 20.3) 0-4 avg
		NO ₂	Nonasthmatic children Inflammatory Marker: FENO: 0.89 (0.78, 1.01) 0 IL-8: 1.16 (1.00, 1.36) 0; ph_EBC: -0.05 (-0.14, 0.04) 0 Lung Function: FEV ₁ : -21.0 (-42.3, 0.38) 0-4 avg FVC: -29.0 (-52.8 to -4.35) 0-4 avg FEV ₂₆₋₇₅ : -20.0 (-69.0, 29.0) 0-4 avg All children age 6-14 Respiratory Symptom: Cough: 1.11 (1.06, 1.17) Wheezing: 1.06 (0.99, 1.13)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Bennett et al. (2007,		Pollutant: PM _{2.5}	PM Increment: 1 µg/m³
<u>156268</u>)	symptoms (wheeze, shortness of breath on waking, cough in the morning,	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Period of Study: 1992-2005	phlegm in the morning, cough with	Mean (SD): 6.8	Within-person (longitudinal effects)
Location: Melbourne, Australia	phlegm in the morning, asthma attack)	` ,	Wheeze: OR=1.08 (0.79-1.48)
,	Age Groups: All ages with a mean of	Range (Min, Max): (1.8-73.3)	SOB on waking: OR=1.34 (0.84-2.16) Cough in the morning:
	37.2 yr	Monitoring Stations: 1	OR=0.74 (0.47-1.15)
	Study Design: Cohort study		Phlegm in the morning: OR=1.55 (0.95-2.53)
	N: 1446 persons		Cough w/ phlegm morning:
	Statistical Analyses: Logistic regression models		OR=1.28 (0.70-2.33) Asthma attack: OR=0.91 (0.55-1.49) Between-person (cross-sectional)
	Covariates: Age, gender, current smoking status, medication use (ß2-agonist and inhaled steroid), atopy	Wheeze: OR=1.3 SOB on waking: 0	effects Wheeze: OR=1.32 (0.82-2.10) SOB on waking: OR=1.29 (0.46-3.60) Cough in the morning:
	Dose-response Investigated? No		OR=0.21 (0.07-0.62) Phlegm in the morning:
	Statistical Package: STATA statistical software, version 9 (Statcorp, 2005)		OR=0.49 (0.16-1.44) Cough w/ phlegm morning: OR=0.28 (0.08-0.97) Asthma attack: OR=0.52 (0.17-1.59)

Reference: Bourotte et al. (2007, Outcome: Peak expiratory flow (PEF) Pollutant: PM22 (Fine) PM Increment: NR	Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Period of Study: May 2002-Jul 2002		Outcome: Peak expiratory flow (PEF)	Pollutant: PM _{2.5} (Fine)	PM Increment: NR
Location: Sao Paulo, Brazil Study Design: Cross-sectional Mean (SD): 11.9 (5.12) No. Concurrent day = -0.40 (2.48 f. 1687) No. 2.48 (1.48) = -0.40 (2.48 f. 1687) No. 2.48 (1.48) = -0.48		Age Groups: Avg age 39.8 ± 12.3 yr	Averaging Time: 24 h	Effect [Lower CI, Upper CI] lag:
Statistical Analyses: Caper Age, BMI, Air Pollutants, Ambient temperature, Relative Humidity Caper Age, BMI, Air Pollutants, Ambient temperature, Relative Humidity Caper Age, BMI, Air Pollutants, Ambient temperature, Relative Humidity Caper Age, BMI, Air Pollutants, Ambient temperature, Relative Humidity Caper Age, BMI, Air Pollutants, Ambient temperature, Relative Humidity Caper Age, BMI, Air Caper Age, BMI, Air Pollutants, Ambient temperature, Relative Humidity Caper Age, BMI, Air Caper Ag	• •	Study Design: Cross-sectional	Mean (SD): 11.9 (5.12)	
Statistical Analyses: (2.82, 26.6) Na 3-day lag = -0.205 (4.356, 3.974)	Location: Sao Paulo, Brazil	N: 33 patients	Range (Min, Max):	-0.409 (-2.485, 1. 6 67)
Cl 3 -day lag 2 = 0.202 (4 .716, 6 .5.120) NO $_{3}^{-}$ concurrent day 2 1.796 (4 .0.939, 4.531) NO $_{3}^{-}$ 2-day lag 2 2.695 (4 .0.040, 5.430) NO $_{3}^{-}$ 2-day lag 2 3.144 (0.409, 5.878) SO $_{4}^{-}$ concurrent day 2 2.120 (4 .0.032, 4.272) SO $_{4}^{-2}$ 2-day lag 2 2.120 (4 .0.032, 4.272) SO $_{4}^{-2}$ 3-day lag 2 2.120 (4 .0.032, 4.272)	• •	N: 33 patients Statistical Analyses: Linear mixed-effects model Covariates: Gender, Age, BMI, Air Pollutants, Ambient temperature, Relative Humidity Season: Winter Dose-response Investigated? No Statistical Package: S-plus	Range (Min, Max): (2.82, 26.6) Components: K ⁺ Mg ₂ ⁺ Ca ₂ ⁻ Finf CI ⁻ NO ₃ ⁻ SO ₄ ² -	Na* concurrent day = -0.409 (-2.485, 1.667) Na* 2-day lag = -0.818 (-4.139, 2.503) Na* 3-day lag = -0.205 (-4.356, 3.974) K* concurrent day = -0.211 (-2.778, 2.357) K* 2-day lag = -0.843 (-4.695, 3.008) K* 3-day lag = 0.843 (-4.695, 3.008) K* 3-day lag = 0.843 (-4.292, 5.978) Mg2* concurrent day = -1.750 (-5.302, 1.802) Mg2* 3-day lag = -5.016 (-10.79, 0.762) Mg2* 3-day lag = -3.850 (-10.15, 2.449) Ca2* concurrent day = 3.192* (-0.599, 6.943) Ca2* 2-day lag = 5.880 (1.105, 10.65) Ca2* 3-day lag = 7.560* (2.103, 13.02) Fint concurrent day = 2.218* (-0.033, 4.470) Fint 2-day lag = 3.697* (1.446, 5.949) Fint 3-day lag = 4.067* (1.065, 7.069) CIT 2-day lag = 1.615 (-5.714, 2.483) CIT 3-day lag = -1.615 (-5.714, 2.2483) NO3* concurrent day = -1.615 (-5.744, 2.483) NO3* concurrent day = -1.615 (-5.714, 2.483) NO3* 2-day lag = 3.593 (0.858, 6.328) NO3* 2-day lag = 3.593 (0.858, 6.328) NO3* 2-day lag = 3.697* (1.065, 7.226) SO4* 2-day lag = 3.180 (1.028, 5.332) SO4* 2-day lag = 3.180 (1.028, 5.332) SO4* 2-day lag = -0.205 (-3.256, 3.117) Na* 3-day lag = -1.023 (-5.174, 3.129) K* concurrent day = -1.636 (-5.966, 2.592) K* 3-day lag = -1.054 (-6.189, 4.081) Mg2* 2-day lag = -1.054 (-6.189, 4.081) Mg2* 2-day lag = -1.656 (-5.966, 2.592) K* 3-day lag = -1.054 (-6.189, 4.081) Mg2* 2-day lag = -5.040 (0.265, 9.815) Ca2* 2-day lag = -5.040 (0.265, 9.815) Ca2* 3-day lag = -5.040 (-0.417, 10.50) Fint concurrent day = -1.646 (-1.36, 1.612) Ca2* concurrent day = -1.054 (-6.189, 4.081) Mg2* 2-day lag = -5.040 (-0.403, 4.100) Fint 3-day lag = -1.658 (-5.966, 2.592) K* 3-day lag = -1.658 (-5.966, 2.592) Ca2* 3-day lag = -5.040 (-0.403, 4.100) Fint 3-day lag = -5.040 (-0.403, 4.100) Fint 2-day lag = -5.040 (-0.403, 4.100) Fint 3-day lag = -5.040 (-0.403, 4.100) Fint 2-day lag = -5.040 (-0.409, 4.099) CIT 3-day lag = -5.040 (-0.409, 5.878) Co4* -6.0032* 4.272)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: de Hartog et al. (2003, 001061)	Outcome: Respiratory symptoms	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
	Age Groups: ≥ 50 yr	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Winter of 1998-1999 (in Amsterdam, from Nov 1998-Jun	Study Design: Cohort	Mean (SD):	Association of air pollution and
1999; in Erfurt, from Oct 1998-Apr 1999; and in Helsinki, from Nov	N: 131 subjects with history of coronary	Amsterdam, the Netherlands: 20.0	incidence of symptoms in three panels of elderly subjects
1998-Apr 1999.)	heart disease	Erfurt, Germany: 23.4	Lag 0 Chest pain w/ physical exertion: 1.04
Location: Amsterdam, the Netherlands	Statistical Analyses: Logistic regression	Helsinki, Finland: 12.8	(0.96-1.13)
Erfurt, Germany	Covariates: Ambient temperature,	Range (Min, Max):	Shortness of breath: 1.04 (0.96-1.12) Awakened, breathing problems: NA
and Helsinki, Finland	relative humidity, atmospheric pressure, incidence of influenza-like illness	Amsterdam, the Netherlands: (3.8-82.2)	Avoidance of activities: 1.04 (0.96-1.14) Phlegm: 1.03 (0.93-1.13)
and ricionia, rimand	Season: Winter	Erfurt, Germany: (4.5-118.1)	Lag 1 Chest pain w/ physical exertion: 1.01
	Dose-response Investigated? No	Helsinki, Finland: (3.1-39.8)	(0.93-1.09)
	Statistical Package: S-PLUS 2000	Unit (i.e. μg/m³): μg/m³	Shortness of breath: 1.06 (0.99-1.14) Awakened, breathing problems: 1.09
	Lags Considered: 0-, 1-, 2-, 3-, and 5-day avg	Monitoring Stations: 1	(1.00-1.20) Avoidance of activities: 1.03 (0.95-1.12)
		Copollutant:	Phlegm: 1.10 (1.01-1.19) Lag 2
		PM ₁₀	Chest pain w/ physical exertion: 0.98
		NC0.01-0.1	(0.90-1.05) Shortness of breath: 1.05 (0.98-1.12)
		CO	Awakened, breathing problems: 1.04 (0.95-1.14)
		NO_2	Avoidance of activities: 1.05 (0.97-1.14) Phlegm: 1.08 (1.00-1.18)
		SO ₂	Lag 3
			Chest pain w/ physical exertion: 1.00 (0.93-1.08)
			Shortness of breath: 1.08 (1.01-1.15) Awakened, breathing problems: 0.99
			(0.91-1.08)
			Avoidance of activities: 1.06 (0.98-1.14) Phlegm: 1.10 (1.01-1.19)
			5-day Chest pain w/ physical exertion: 1.02
			(0.91-1.13)
			Shortness of breath: 1.12 (1.02-1.24) Awakened, breathing problems: 1.03
			(0.90-1.18) Avoidance of activities: OR= 1.09 (0.97-
			1.22)
			Phlegm: OR= 1.16 (1.03-1.32)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Delfino et al. (2004,	Outcome: FEV ₁	Averaging Time: 24-h avg 1-h max % predicted FEV ₁ was associated with personal specified with perso	Results presented graphically;
056897)	Age Groups: 9-19 yr old		% predicted FEV₁ was inversely associated with personal exposure to
Period of Study: Sep-Oct 1999	Study Design: Panel study	personal PM last 24 h	fine particles.
Apr-Jun 2000	N: 24 children	Mean (SD): 151.0 (12.03) 90th: 292.4 Range (Min, Max): (9.1, 996.8)	Inverse associations of FEV ₁ with stationary-site indoor, outdoor and
Location: Alpine, California	Statistical Analyses: GLM	Mean personal PM last 24 h	central-site gravimetric PM _{2.5} and PM ₁₀ , and with hourly TEOM PM ₁₀
	Akaike's information criterion and Bayesian information criterion	Mean (SD): 37.9 (19.9) 90th: 65.1	and with houry FEOWT Wijo
	Covariates: Day of wk, personal temperature and relative humidity, time of FEV ₁ maneuver (morning, afternoon, or evening), Season (fall 1999 or spring 2000), As-needed medication use.	Range (Min, Max): 3.9, 113.8 Home stationary-site PM 24-h Mean indoor PM _{2.5}	
	Presence or absence of upper or lower respiratory infections	Mean (SD): 12.1 (5.4) 90th: 20.2	
	Season: Spring, fall	Range (Min, Max): 2.8, 35.3 24-h Mean outdoor PM _{2.5}	
	Dose-response Investigated? No Statistical Package: SAS Lags Considered: 0-4	Mean (SD): 11.0 (5.4) 90th: 18.4	
		Range (Min, Max): 1.8, 31.0 Central outdoor stationary-site PM 24-h Mean PM _{2.5}	
		Mean (SD): 10.3 (5.6) 90th: 18.4	
		Range (Min, Max): 1.7, 29.1 Copollutant (correlation): 24-h Central HI PM_{25} 8-h max O_3 = 0.24 8-h Max NO_2 = 0.73 8-h Max Personal PM = 0.38 24-h Mean Personal PM = 0.43 8-h Max TEOM PM_{10} = 0.71 24-h Mean TEOM PM_{10} = 0.78 24-h Central HI PM_{10} = 0.90 24-h Outdoor HI PM_{25} = 0.89 24-h Indoor HI PM_{10} = 0.72 24-h Indoor HI PM_{10} = 0.72 24-h Indoor HI PM_{10} = 0.73	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Delfino et al. (2006, 090745)	Outcome: Fractional Concentration of Nitric Oxide in exhaled air (FENO)	Pollutant: PM _{2.5} Personal Exposure Averaging Time: 24 h	PM Increment: IQR increase (Riverside: 28.41 μg/m³, Whittier 21.87
Period of Study: Region 1: Aug-Mid	Age Groups: 9 through 18	Riverside	μg/m³)
Dec 2003. Region 2: Jul-Nov 2004 Location: Region 1: Riverside, CA.	Study Design: Longitudinal Panel Study	Mean (SD): 32.78 (21.84) 50th(Median): 28.14 Range (Min, Max): 7.27, 98.43	Coefficient [Lower CI, Upper CI] lag:
Region 2: Whittier, CA	N: 45 children	Whittier Mean (SD): 36.2 (25.46) 50th(Median):	Mixed-model estimates of the
	Riverside children	29.07	association between personal and
	32 Whittier children	Range (Min, Max): 7.55, 197.05 Personal Exposure	central-site air pollutant exposure and FENO
	Statistical Analyses: Linear mixed- effects models	Averaging Time: 1 h Riverside Mean (SD): 97.94 (70.29)	Lag 0 Personal 0.42 (-0.15, 0.99) Central 0.03 (-0.68, 0.74)
	Two-stage hierarchical model	50th(Median): 83.7 Range (Min, Max): 14.9, 431.8	Lag 1
	Empirical Variograms		Personal 0.51 (-0.10, 1.12)
	Fourth-order polynomial distributed lag mixed-effects model	Whittier Mean (SD): 93.63 (75.19) 50th(Median): 71.95	Central 0.44 (-0.28, 1.16) 2-day ma
	Covariates: Personal temperature,	Range (Min, Max): 5.8, 572.9 Personal Exposure	Personal 1.01 (0.14, 1.88) Central 0.52 (-0.43, 1.47)
	Personal Rel. Humid., 10-day exposure run, Respiratory infections, Region of study, Sex, Cumulative daily use of as-	Averaging Time: 8 h Riverside	Stratified by Medication Use Lag = 2-day ma
	needed B-agonist inhalers	Mean (SD): 47.21 (30.9) 50th(Median): 38.5	Not Taking Anti-Inflamm. Medication Personal 1.11 (-1.39, 3.60)
	Dose-response Investigated? No	Range (Min, Max): 8.9, 132.1	Central 0.44 (-1.65, 2.53) Taking Anti-Inflamm. Medication
	Lags Considered: 0, 1, 2, MA day	Whittier Mean (SD): 51.75 (36.88) 50th(Median): 40.15 Range (Min, Max): 8.7, 254.1 Central Site	Personal 1.51 (0.11, 1.84) Central 0.55 (-0.47, 1.57) Inhaled Corticosteroids Personal 1.58 (0.72, 2.43) Central 1.16 (0.11, 2.20) Antileukotrienes +- inhaled corticosteroids
		Averaging Time: 24 h Riverside Mean (SD): 36.63 (23.46) 50th(Median): 29.26	Personal -0.89 (-2.73, 0.95) Central -0.75 (-2.83, 1.32) Notes:
		Range (Min, Max): (9.52, 87.22)	Fig of Estimated lag effect of hourly personal PM _{2.5} on FENO.
		Whittier Mean (SD): 18 (12.14) 50th(Median): 16.3 Range (Min, Max): 2.7, 77.09	Fig of the Estimated lag effect of hourly personal $PM_{2.5}$ on FENO by use of medications.
		Moniforing Stations: 48 personal nephelometers 2 central sites Copollutant (correlation): Personal 24-h personal PM _{2.5} 1.00	Fig of one- and two-pollutant models for change in FENO using 2-day Ma personal and central-site pollutant measurements.
		24-h personal EC 0.18 24-h personal OC 0.15 24-h personal NO ₂ 0.33 24-h central PM _{2.5} 0.64 24-h central EC 0.12	
		24-h central OC 0.21 24-h central NO ₂ 0.22 Central 24-h personal PM _{2,5} 0.64	
		24-h personal EC 0.00 24-h personal OC - 0.11 24-h personal NO_2 0.12 24-h central $PM_{2.5}$ 1.00 24-h central EC 0.55	
		24-h central OC 0.66 24-h central NO ₂ 0.25	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Delfino et al. (2006, 090745)	Outcome: Fractional Concentration of Nitric Oxide in exhaled air (FENO)	Pollutant: PM _{2.5}	PM Increment: IQR increase (Riverside: 28.41 µg/m³, Whittier 21.87
Period of Study: Region 1: Aug-Mid	Age Groups: 9 through 18	PM Component: EC	μg/m³)
Dec 2003. Region 2: Jul-Nov 2004		Personal Exposure	Coefficient [Lower CI, Upper CI] lag:
Location: Region 1: Riverside, CA.	Study Design: Longitudinal Panel Study	Averaging Time: 24 h	Mixed-model estimates of the association between personal and
Region 2: Whittier, CA	N: 45 children	Riverside	central-site air pollutant exposure and FENO
	Statistical Analyses: Linear mixed-effects models	Mean (SD): 0.42 (0.69) 50th(Median): 0.34 μg/m³	
	Two-stage hierarchical model	Range (Min, Max): 0.01, 6.94	Personal 0.29 (0.10, 0.48) Central 0.10 (-0.65, 0.85)
	Empirical Variograms	Whittier	Lag 1
	Fourth-order polynomial distributed lag	Mean (SD): 0.78 (1.42)	Personal -0.01 (-0.23, 0.21)
	mixed-effects model	50th(Median): 0.47	Central 0.99 (0.27, 1.71)
	Covariates: Personal temperature, personal rel. humid., 10-day exposure	Range (Min, Max): 0, 17.2	2-day ma Personal 0.72 (0.32, 1.12)
	run, respiratory infections, region of	Central Site	Central 1.38 (0.15, 2.61)
	study, sex, cumulative daily use of as- needed B-agonist inhalers	Averaging Time: 24 h	Stratified by Medication Use
	Dose-response Investigated? No	Riverside	Lag = 2-day ma Not Taking Anti-Inflamm. Medication
	Lags Considered: Lag 0, Lag 1, 2-day ma	Mean (SD): 1.61 (0.78) 50th(Median): 1.35	Personal Ö.84 (0.08, 1.60) Central 1.02 (-2.55, 4.60) Taking Anti-Inflamm. Medication
		Range (Min, Max): 0.52, 3.64	Personal 0.71 (0.28, 1.15)
		Whittier	Central 1.42 (0.25, 2.60) Inhaled Corticosteroids
		Mean (SD): 0.71 (0.43) 50th(Median): 0.63	Personal 0.67 (0.28, 1.07) Central 1.28 (0.07, 2.49) Antileukotrienes +- inhaled
		Range (Min, Max): 0.14, 2.95	corticosteroids Personal 0.03 (-3.29, 3.35)
		Monitoring Stations : 48 personal nephelometers,	Central 1.15 (-1.58, 3.88) Notes:
		2 central sites	Fig of Estimated lag effect of hourly
		Copollutant (correlation): Personal	personal PM _{2.5} on FENO.
		24-h personal PM _{2.5} 0.18 24-h personal EC 1.00 24-h personal OC 0.41	Fig of the estimated lag effect of hourly personal PM _{2.5} on FENO by use of medications.
		24-h personal NO ₂ 0.0.21 24-h central PM _{2.5} 0.00 24-h central EC 0.04 24-h central OC -0.01 24-h central NO ₂ 0.23 Central 24-h personal PM _{2.5} 0.12 24-h personal EC 0.04 24-h personal OC 0.03 24-h personal NO ₂ 0.19 24-h central PM _{2.5} 0.55 24-h central EC 1.00 24-h central OC 0.87 24-h central NO ₂ 0.70	Fig of one- and two-pollutant models for change in FENO using 2-day Ma personal and central-site pollutant measurements.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Delfino et al. (2006,	Outcome: Fractional Concentration of	Pollutant: PM _{2.5}	PM Increment: IQR increase (Riverside: 28.41 µg/m³, Whittier 21.87
090745) Period of Study: Region 1: Aug-Mid	Nitric Oxide in exhaled air (FENO)	PM Component: OC	µg/m³)
Dec 2003. Region 2: Jul through Nov	Age Groups: 9 through 18	Personal Exposure	Mixed-model estimates of the
2004	Study Design: Longitudinal Panel Study	Averaging Time: 24 h	association between personal and central-site air pollutant exposure and
Location: Region 1: Riverside, CA. Region 2: Whittier, CA	N: 45 children	Riverside	FENO
.,,,,	Statistical Analyses: Linear mixed-effects models	Mean (SD): 5.63 (2.59) 50th(Median): 4.98	Lag 0 Personal 0.51 (-0.28, 1.30) Central 0.93 (-0.20, 2.06)
	Two-stage hierarchical model	Range (Min, Max): 1.94, 12.38	Lag 1
	Empirical Variograms	Whittier	Personal 0.13 (-0.77, 1.03)
	Fourth-order polynomial distributed lag mixed-effects model	Mean (SD): 6.81 (3.45) 50th(Median): 6.43	Central0.51 (-0.64, 1.66) 2-day ma
	Covariates: Personal temperature,	Range (Min, Max): 2.18, 31.5	Personal 0.94 (-0.47, 2.35) Central 1.6 (-0.17, 3.37)
	personal rel. humid., 10-day exposure run, respiratory infections, region of	Central Site	Stratified by Medication Use
	study, sex, cumulative daily use of as- needed B-agonist inhalers	Averaging Time: 24 h	Lag = 2-day ma. Not Taking Anti-Inflamm. Medication
	Dose-response Investigated? No	Riverside	Personal 0.88 (-1.62, 3.38)
	Lags Considered: Lag 0, Lag 1, 2-day	Mean (SD): 6.88 (1.86)	Central 0.36 (-4.07, 4.79) Taking Anti-Inflamm. Medication
	ma	Percentiles: 50th	Personal 0.87 (-0.79, 2.53) Central 2.05 (0.24, 3.86)
		Median: 6.07	Inhaled Corticosteroids Personal 2.47 (0.30, 4.64)
		Range (Min, Max): 4.11, 11.62	Central 1.96 (0.14, 3.78)
		Whittier	Antileukotrienes +- inhaled corticosteroids
		Mean (SD): 3.93 (1.49) 50th(Median): 3.76	Personal 0.52 (-1.99, 3.02) Central 1.29 (-2.58, 5.15)
		Range (Min, Max): 1.64, 8.82	Notes:
		Monitoring Stations: 48 personal nephelometers,	Fig of Estimated lag effect of hourly personal PM _{2.5} on FENO.
		2 central sites	Fig of the Estimated lag effect of hourly personal PM _{2.5} on FENO by use of
		Copollutant (correlation): Personal	medications.
		24-h personal PM _{2.5} 0.15 24-h personal EC 0.41 24-h personal OC 1.00 24-h personal NO ₂ 0.20 24-h central PM _{2.5} -0.11 24-h central EC 0.03 24-h central OC -0.02 24-h central NO ₂ 0.21 Central 24-h personal PM _{2.5} 0.21 24-h personal EC -0.01 24-h personal CC -0.02 24-h personal NO ₂ 0.17 24-h central PM _{2.5} 0.66 24-h central EC 0.87 24-h central C 0.87 24-h central OC 1.00 24-h central NO ₂ 0.62	Fig of one- and two-pollutant models for change in FENO using 2-day Ma personal and central-site pollutant measurements

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Dubowsky et al. (2006,	Outcome: Chronic inflammation,	Pollutant: PM _{2.5}	Increment: 5.4 µg/m³
<u>088750</u>)	Diabetes, Obesity, Hypertension, Cardiac Risk	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI)
Period of Study: Mar 2002-Jun 2002	Study Design:	Mean (SD) unit: 16 (6.0)	Lag
Location: St. Louis, Missouri	Prospective Cohort	Range (Min, Max): 6.5, 28	% increase in inflammatory response
	Statistical Analyses:	Copollutants:	and exposure to PM _{2.5} in people ≥ 60 Inflammatory Marker:
	Poisson, LOESS	BC	IL-6: -8 (-16, 8)
	Age Groups:	CO	1: -6 (-10, 5) 2: -5 (-11, 6)
	≥ 60	NO_2	3: -3 (-9, 6) 4: -4 (-12, 10)
		SO ₂	5: -5 (-13, 8) 6: -6 (-14, 9)
		O_3	7 CRP: -2 (-22, 15) 1: 3 (-8, 17) 2: 4 (-9, 20) 3: 9 (-4, 27) 4: 11 (-5, 35) 5: 8 (-9, 29) 6: 5 (-12, 26) 7 WBC: 0 (-2, 4) 1: 1 (-1, 2) 2: 2 (-1, 3) 3: 1 (-2, 5) 4: 3 (-1, 10) 5: 5 (0, 12) 6: 8 (0, 14)
			% Increase in inflammatory responses and exposure to ambient $PM_{2.5}$ concentrations in people ≥ 60 Inflammatory Marker: CRP All conditions*: 14 (-5.4, 37) 0-5 avg 3 conditions met*: 81 (21, 172) 0-5 avg 2 conditions met*: 11 (-7.3, 33) 0-5 avg IL-6 All conditions*: -2.1 (-13, 11) 0-5 avg 3 conditions met*: 23 (-5.3, 59) 0-5 avg 2 conditions met*: -3.1 (-14, 9.7) 0-5 avg WBC All conditions*: 3.4 (-1.8, 8.9) 0-5 avg 3 conditions met*: 3.6 (-1.7, 9.1) 0-5 avg 2 conditions met*: 0.4 (-8.8, 11) 0-5 avg 2 conditions met*: 3.6 (-1.7, 9.1) 0-5 avg
			* All conditions met means model is adjusted for sex, obesity, diabetes, smoking history, ambient and microenvironmental apparent temperature, mold, pollen, trip, h, and vitamins.
			Three conditions met means model is adjusted for three of the variables.
			Two conditions met means model is adjusted for 2 of the variables.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ebelt et al. (2005, <u>056907</u>)	Outcome: spirometry,	Pollutant: PM _{2.5}	PM Increment: Ambient PM _{2.5} : 5.8
Period of Study: Summer of 1998	Age Groups: range from 54-86 yr	Averaging Time: 24 h	(IQR)
Location: Vancouver, Canada	Mean age= 74 yr	Mean (SD): Ambient PM _{2.5} : 11.4 (4.6)	Exposure to ambient PM _{2.5} : 4.4 (IQR)
	Study Design: extended analysis of a	Exposure to ambient PM _{2.5} : 7.9 (3.7) Nonsulfate ambient PM _{2.5} : 9.3 (3.7)	Nonsulfate ambient PM _{2.5} : 4.2 (IQR)
	repeated-measures panel study N: 16 persons with COPD	Exposure to nonsulfate ambient PM _{2.5} :	Exposure to nonsulfate ambient PM _{2.5} : 3.4 (IQR)
	Statistical Analyses: Earlier analysis	6.5 (3.0) Total exposure to PM _{2.5} : 18.5 (14.9)	Total exposure to PM _{2.5} : 10.1 (IQR)
	expanded by developing mixed-effect regression models and by evaluating additional exposure indicators	Exposure to nonambient PM _{2.5} : 10.6 (14.5) Range (Min, Max):	Exposure to nonambient $PM_{2.5}$: 8.9 (IQR)
	Dose-response Investigated? No	Ambient PM _{2.5} : (4.2-28.7) Exposure to ambient PM _{2.5} : (0.9-21.3)	Notes: Effect estimates are presented in Fig 2 and Electronic Appendix Table
	Statistical Package: SAS V8	Nonsulfate ambient PM _{2.5} : (3.3-23.3) Exposure to nonsulfate ambient PM _{2.5} :	(only available with electronic version of article) and not provided
		(0.7-16.9) Total exposure to PM _{2.5} : (2.2-90.9) Exposure to nonambient PM _{2.5} : (-2.6-85.0)	quantitatively elsewhere.
		Monitoring Stations: 5	
		Copollutant (correlation): Ambient PM ₁₀ : r= 0.78 Ambient PM _{10.25} : r= 0.15 Ambient Sulfate- 0.82 Nonsufate Ambient PM _{2.5} : r= 0.98	
Reference: Ebelt et al. (2005, <u>056907</u>)	Outcome: spirometry	Pollutant: Sulfate (SO ₄)	PM Increment: Ambient Sulfate: 1.5
Period of Study: Summer of 1998	Age Groups: Range from 54-86 yr	Averaging Time: 24 h	(IQR)
Location: Vancouver, Canada	Mean age= 74 yr	Mean (SD): Ambient Sulfate: 2.0 (1.1)	Exposure to Ambient Sulfate: 0.9 (IQR)
	Study Design: extended analysis of a repeated-measures panel study	Exposure to Ambient Sulfate: 0.2 (4.7)	Notes: Effect estimates are presented in Fig 2 and Electronic Appendix Table 1 (only available with electronic version
	N: 16 persons with COPD	Range (Min, Max): Ambient Sulfate: (0.4-5.4)	of article) and not provided quantitatively elsewhere.
	Statistical Analyses: Earlier analysis expanded by developing mixed-effect regression models and by evaluating	Exposure to ambient Sulfate: (0.2-4.7) Monitoring Stations: 5	
	additional exposure indicators	Copollutant (correlation): Ambient PM _{2.5} : r= 0.82	
	Dose-response Investigated? No Statistical Package: SAS V8	Nonsulfate Ambient PM _{2.5} : r= 0.74 Exposure to Ambient Sulfate: r= 0.82	
Reference: Ferdinands et al. (2008, 156433)	Outcome: Respiratory Symptoms, airway inflammation	Pollutant: PM _{2.5}	The study presents results qualitatively not quantitatively.
Period of Study: Aug 2004	Study Design: Prospective cohort	Averaging Time: 24-h avg	not qualitatively.
Location: Atlanta, Georgia	Statistical Analyses: Pearson	Mean (SD) unit: 27.2 (11.9)	
	Correlation Analysis	Range (Min, Max): 21.7, 34.7	
	Age Groups: 14-18	Copollutants (correlation): O ₃ : r= 0.8-0.9	
Reference: Gent et al. (2003, <u>052885</u>)	Outcome: Respiratory symptoms	Pollutant: PM _{2.5}	PM Increment: 12 μg/m ³ same day
Period of Study: Apr-Sep 2001	including: Wheeze, persistent cough, chest tightness, shortness of breath	Averaging Time: 24 h	19 μg/m³ previous day
Location: Connecticut	Age Groups: Infants	Mean (SD): 13.1 (7.9)	Model 5 (same day) Wheeze <6.9 = 1.00
Springfield, MA	Study Design: 1-yr prospective cohort study	Percentiles: 20th: 6.9 40th: 9.0 50th(Median): 10.3	6.9-8.9 = 0.95 (0.83, 1.10) 9.0-12.0 = 1.04 (0.89, 1.20) 12.1-18.9 = 1.05 (0.92, 1.20)
	N: 1002 infants	60th: 12.1 80th: 19.0	≥ 19.0 = 0.93 (0.78, 1.11) Persistent Cough <6.9 =1.00
	17160 observations	Range (Min, Max): 3.7, 44.2	6.9-8.9 = 0.95 (0.87, 1.04)
	Statistical Analyses: Logistic regression analysis	Monitoring Stations: 4 sites	9.0-12.0 = 0.96 (0.87, 1.06) 12.1-18.9 = 1.00 (0.91, 1.09)
	GEEs	Copollutant (correlation):	≥ 19.0 = 0.95 (0.83, 1.09) Chest Tightness <6.9 = 1.00
	Tests for linear trend	Temperature: 0.58	6.9-8.9 = 1.01 (0.86, 1.19) 9.0-12.0 = 1.06 (0.89, 1.26)
	Test for goodness of fit		12.1-18.9 = 1.24 (1.06, 1.45) ≥ 19.0 = 1.05 (0.84, 1.33)
	Hosmer-Lemeshow statistic for regression		Shortness of Breath <6.9 = 1.00 6.9-8.9 = 1.01 (0.87, 1.17) 9.0-12.0 = 1.03 (0.87, 1.22)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	Covariates: Temperature		12.1-18.9 = 1.07 (0.91, 1.25) ≥ 19.0 = 1.03 (0.83, 1.28)
	Dose-response Investigated? No		Bronchodilator $<6.9 = 1.00$
	Statistical Package: SAS		6.9-8.9 = 1.04 (0.99, 1.09) 9.0-12.0 = 1.02 (0.96, 1.08)
	Lags Considered: 1-day lag		12.1-18.9 = 1.04 (0.99, 1.09) ≥ 19.0 = 1.02 (0.97, 1.08)
			Model 6 (previous day)
			Wheeze <6.9 = 1.00 6.9-8.9 = 1.06 (0.95, 1.20)
			9.0-12.0 = 1.09 (0.94, 1.28) 12.1-18.9 = 1.03 (0.89, 1.19)
			≥ 19.0 = 1.14 (0.97, 1.34)
			Persistent Cough <6.9 =1.00 6.9-8.9 = 1.04 (0.94, 1.14)
			9.0-12.0 = 1.05 (0.94, 1.17) 12.1-18.9 = 1.03 (0.94, 1.14)
			≥ 19.0 = 1.12 (1.02 1.24)
			Chest Tightness <6.9 = 1.00 6.9-8.9 = 1.03 (0.87, 1.23)
			9.0-12.0 = 1.04 (0.85, 1.27) 12.1-18.9 = 1.00 (0.84, 1.19)
			≥ 19.0 = 1.21 (1.00, 1.46)
			Shortness of Breath <6.9 = 1.00 6.9-8.9 = 1.00 (0.84, 1.19)
			9.0-12.0 = 1.09 (0.90, 1.31) 12.1-18.9 = 1.09 (0.90, 1.31)
			≥ 19.0 = 1.26 (1.02, 1.54)
			Bronchodilator <6.9 = 1.00 6.9-8.9 = 0.98 (0.94, 1.03)
			9.0-12.0 = 0.99 (0.95, 1.03) 12.1-18.9 = 0.97 (0.94, 1.01)
			≥ 19.0 = 0.99 (0.95, 1.04)
			PM _{2.5} + O ₃ : Medication Users: Same-day
			Wheeze <6.9 = 1.00 6.9-8.9 = 0.89 (0.75, 1.29)
			9.0-12.0 = 1.02 (0.87, 1.19) 12.1-18.9 = 0.94 (0.77, 1.15)
			≥ 19.0 = 0.83 (0.65, 1.06)
			Persistent Cough < 6.9 = 1.00 6.9-8.9 = 0.95 (0.84, 1.06)
			9.0-12.0 = 0.97 (0.86, 1.10) 12.1-18.9 = 0.94 (0.77, 1.15)
			≥ 19.0 = 0.83 (0.65, 1.06)
			Chest Tightness <6.9 = 1.00 6.9-8.9 = 0.90 (0.74, 1.09)
			9.0-12.0 = 0.97 (0.79, 1.18) 12.1-18.9 = 0.97 (0.76, 1.25)
			≥ 19.0 = 0.76 (0.54, 1.05)
			Shortness of Breath <6.9 = 1.00 6.9-8.9 = 0.95 (0.80, 1.12)
			9.0-12.0 = 1.00 (0.82, 1.21) 12.1-18.9 = 0.90 (0.73, 1.12)
			≥ 19.0 = 0.87 (0.65, 1.17) Bronchodilator <6.9 = 1.00
			6.9-8.9 = 1.03 (0.98, 1.08)
			9.0-12.0 = 1.01 (0.96, 1.07) 12.1-18.9 = 1.02 (0.95, 1.08)
			≥ 19.0 = 0.99 (0.91, 1.07) Previous Day
			Wheeze < 6.9 = 1.00
			6.9-8.9 = 1.03 (0.89, 1.18) 9.0-12.0 = 1.05 (0.88, 1.24)
			12.1-18.9 = 0.98 (0.82, 1.17) ≥ 19.0 = 1.05 (0.85, 1.29)
			Persistent Cough < 6.9 = 1.00
			6.9-8.9 = 0.99 (0.89, 1.11) 9.0-12.0 = 0.98 (0.86, 1.10)
			12.1-18.9 = 0.95 (0.83, 1.10) ≥ 19.0 = 1.00 (0.88, 1.15)
			Chest Tightness < 6.9 = 1.00
			6.9-8.9 = 0.89 (0.72, 1.10) 9.0-12.0 = 0.90 (0.70, 1.16)
			12.1-18.9 = 0.81 (0.63, 1.03) ≥ 19.0 = 0.91 (0.71, 1.17)
			Shortness of Breath < 6.9 = 1.00
			6.9-8.9 = 0.96 (0.78, 1.18)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Study	Design & Methods	Concentrations	9.0-12.0 = 1.00 (0.81, 1.25) 12.1-18.9 = 0.96 (0.74, 1.24) ≥ 19.0 = 1.20 (0.94, 1.52) Bronchodilator <6.9 = 1.00 6.9-8.9 = 0.99 (0.94, 1.04) 9.0-12.0 = 0.97 (0.93, 1.02) 12.1-18.9 = 0.96 (0.91, 1.02) ≥ 19.0 = 0.97 (0.89, 1.04) PM _{2.5} + O ₃ : Non-users: Same-day Wheeze <6.9 = 1.00 6.9-8.9 = 0.92 (0.72, 1.17) 9.0-12.0 = 1.08 (0.85, 1.36) 12.1-18.9 = 0.94 (0.73, 1.22) ≥ 19.0 = 1.15 (0.75, 1.75) Persistent Cough <6.9 = 1.00 6.9-8.9 = 0.96 (0.83, 1.12) 9.0-12.0 = 1.02 (0.89, 1.18) 12.1-18.9 = 0.93 (0.78, 1.12) ≥ 19.0 = 1.07 (0.85, 1.34) Chest Tightness <6.9 = 1.00 6.9-8.9 = 0.84 (0.54, 1.31) 9.0-12.0 = 1.09 (0.74, 1.61) 12.1-18.9 = 0.78 (0.47, 1.30) ≥ 19.0 = 0.71 (0.36, 1.39) Shortness of Breath <6.9 = 1.00 6.9-8.9 = 0.61 (0.39, 0.95) 9.0-12.0 = 1.17 (0.72, 1.90) Bronchodilator Use: <6.9 = 1.00 6.9-8.9 = 0.95 (0.78, 1.15) 9.0-12.0 = 0.95 (0.78, 1.15) 9.0-12.0 = 0.95 (0.78, 1.15) 9.0-12.0 = 0.95 (0.78, 1.15) 9.0-12.0 = 1.18 (0.71, 1.97) Persistent Cough <6.9 = 1.00 6.9-8.9 = 1.01 (0.78, 1.31) 9.0-12.0 = 1.15 (0.88, 1.51) 12.1-18.9 = 0.85 (0.69, 1.06) ≥ 19.0 = 0.99 (0.76, 1.30) Previous-day Wheeze <6.9 = 1.00 6.9-8.9 = 1.01 (0.78, 1.31) 9.0-12.0 = 1.15 (0.88, 1.51) 12.1-18.9 = 1.08 (0.78, 1.51) ≥ 19.0 = 1.17 (0.72, 2.30) 9.0-12.0 = 1.18 (0.71, 1.97) Persistent Cough <6.9 = 1.00 6.9-8.9 = 1.01 (0.78, 1.31) 9.0-12.0 = 1.15 (0.88, 1.51) 12.1-18.9 = 1.08 (0.78, 1.51) ≥ 19.0 = 1.14 (0.88, 1.46) Chest Tightness <6.9 = 1.00 6.9-8.9 = 1.07 (0.94, 1.22) 9.0-12.0 = 1.30 (0.87, 1.22) ≥ 19.0 = 1.14 (0.88, 1.46) Chest Tightness <6.9 = 1.00 6.9-8.9 = 1.07 (0.94, 1.22) 9.0-12.0 = 1.30 (0.88, 1.91) 12.1-18.9 = 0.84 (0.57, 1.24) ≥ 19.0 = 1.48 (0.94, 2.34) Bronchodilator Use <6.9 = 1.00 6.9-8.9 = 1.05 (0.85, 1.34) 9.0-12.0 = 1.30 (0.88, 1.91) 12.1-18.9 = 0.84 (0.57, 1.24) ≥ 19.0 = 1.48 (0.94, 2.34) Bronchodilator Use <6.9 = 1.00 6.9-8.9 = 1.05 (0.85, 1.34) 9.0-12.0 = 1.30 (0.88, 1.91) 12.1-18.9 = 0.84 (0.54, 2.34) Bronchodilator Use <6.9 = 1.00 6.9-8.9 = 1.05 (0.85, 1.34) 9.0-12.0 = 1.30 (0.88, 1.31)
			daily prevalence of respiratory symptoms for users of asthma maintenance medication
Reference: Gent et al. (2009, <u>180399</u>	Outcome: Increased asthma symptoms and medication use		Odds Ratio and p-value for sources and components of PM ₂₅ .
Period of Study: 2000-2003 Location: New Haven County CT	Study Design: Panel	Averaging Time: Daily Mean: (estimated sources, µg/m³)	Lags are 0, 1 or 2 days, and the mean
	Covariates: Season, day of the week, date	Motor Vehicle: 6.6	of days 0-2 (L02). Source: Motor Vehicle
	Statistical Analysis: Logistic regression	Road Dust: 2.3	EC, Increment = 1000 ng/m ³ Wheeze
	Statistical Package: SAS	Sulfur: 5.5	L0: 1.04, p = 0.04 L1: 1.01, p = 0.70

 Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Age Groups: Children aged 4-12	Biomass Burning: 0.9	L2: 1.00, p = 0.99 L02: 1.07, p = 0.06
	Oil: 0.8	Persistent Cough
	Sea Salt: 0.5	L0: 1.01, p = 0.42 L1: 1.01, p = 0.38
		L2: 0.99, p = 0.44
	Range (Min, Max): NR	L02: 1.03, p = 0.23
	Copollutant (correlation): NR	Shortness of Breath L0: 1.06, p = 0.001
		L1: 1.01, p = 0.65
		L2: 1.01, p = 0.63 L02: 1.12, p = 0.01
		Chest Tightness
		L0: 1.03, p = 0.20 L1: 1.02, p = 0.24
		L2: 1.01, p = 0.59
		L02: 1.10, p = 0.04 Inhaler Use
		L0: 1.01, p = 0.15
		L1: 1.00, p = 0.72 L2: 1.00, p = 0.75
		L02: 1.02, p = 0.40
		Zn, Increment = 10 ng/m ³
		Wheeze L0: 1.00, p = 0.69
		L1: 0.99, p = 0.54
		L2: 1.00, p = 0.89 L02: 1.00, p = 0.98
		Persistent Cough
		L0: 1.00, p = 0.60 L1: 1.00, p = 0.77
		L2: 0.99, p = 0.24
		L02: 1.00, p = 0.94 Shortness of Breath
		L0: 1.02, p = 0.001
		L1: 1.00, p = 0.57 L2: 1.01, p = 0.49
		L02: 1.04, p = 0.06
		Chest Tightness L0: 1.00, p = 0.72
		L1: 1.00, p = 0.96
		L2: 1.01, p = 0.38 L02: 1.03, p = 0.13
		Inhaler Use L0: 1.00, p = 0.41
		L1: 1.00, p = 0.44
		L2: 1.00, p = 0.52 L02: 1.01, p = 0.53
		Pb, Increment = 5 ng/m ³ Wheeze
		L0: 1.02, p = 0.31
		L1: 1.00, p = 0.91 L2: 1.01, p = 0.62
		L02: 1.07, p = 0.13
		Persistent Cough L0: 1.02, p = 0.25
		L1: 1.00, p = 0.88
		L2: 1.00, p = 0.87 L02: 1.05, p = 0.12
		Shortness of Breath
		L0: 1.03, p = 0.11 L1: 0.98, p = 0.51
		L2: 1.03, p = 0.05 L02: 1.12, p = 0.01
		Chest Tightness
		L0: 1.02, p = 0.31
		L1: 0.99, p = 0.79 L2: 1.03, p = 0.13
		L02: 1.10, p = 0.02
		Inhaler Use L0: 1.01, p = 0.06
		L1: 0.98, p = 0.11 L2: 1.02, p = 0.04
		L02: 1.04. p = 0.10
		Cu, Increment = 5 ng/m ³ Wheeze

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			L0: 1.01, p = 0.59 L1: 0.99, p = 0.55 L2: 0.99, p = 0.82 L02: 1.02, p = 0.67 Persistent Cough L0: 1.02, p = 0.13 L1: 1.02, p = 0.21 L2: 0.98, p = 0.26 L02: 1.05, p = 0.04 Shortness of Breath L0: 1.06, p = 0.01 L1: 1.01, p = 0.74 L2: 0.96, p = 0.10 L02: 1.06, p = 0.21 Chest Tightness L0: 10.3, p = 0.23 L1: 1.02, p = 0.42 L2: 0.97, p = 0.17 L02: 1.04, p = 0.39 Inhaler Use L0: 1.01, p = 0.22 L1: 0.99, p = 0.37 L2: 1.00, p = 0.70 L02: 1.01, p = 0.70 L02: 1.01, p = 0.70
			Se, Increment = 1 ng/m^3 Wheeze L0: 1.00 , $p = 0.97$ L1: 0.99 , $p = 0.52$ L2: 1.00 , $p = 0.91$ L02: 1.02 , $p = 0.71$ Persistent Cough L0: 1.00 , $p = 0.84$ L1: 0.99 , $p = 0.32$ L2: 1.00 , $p = 0.84$ L1: 0.99 , $p = 0.32$ L2: 1.00 , $p = 0.93$ L02: 0.98 , $p = 0.43$ Shortness of Breath L0: 1.02 , $p = 0.40$ L1: 0.97 , $p = 0.10$ L2: 1.01 , $p = 0.55$ L02: 1.02 , $p = 0.67$ Chest Tightness L0: 1.00 , $p = 0.79$ L1: 0.97 , $p = 0.13$ L2: 1.01 , $p = 0.79$ L1: 0.97 , $p = 0.61$ Inhaler Use L0: 0.99 , $p = 0.61$ Inhaler Use L0: 0.99 , $p = 0.20$ L1: 1.01 , $p = 0.02$ L2: 0.99 , $p = 0.32$ L02: 0.99 , $p = 0.32$ L02: 0.99 , $p = 0.75$ Source: Road Dust
			Si, Increment = 100 ng/m ³ Wheeze L0: 1.03, p = 0.03 L1: 1.00, p = 0.99 L2: 1.02, p = 0.26 L02: 1.07, p = 0.04 Persistent Cough L0: 1.02, p = 0.01 L1: 1.00, p = 0.78 L2: 1.01, p = 0.60 L02: 1.05, p = 0.02 Shortness of Breat1.04, p = 0.01h L0: 1.04, p = 0.01 L1: 1.01, p = 0.60 L2: 1.01, p = 0.60 L2: 1.01, p = 0.63 L0: 1.02, p = 0.02 Chest Tightness L0: 1.02, p = 0.02 L1: 1.02, p = 0.17 L2: 1.00, p = 0.88 L02: 1.06, p = 0.10 Inhaler Use L0: 1.02, p = 0.004 L1: 0.99, p = 0.18 L2: 1.01, p = 0.45

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			L02: 1.03, p = 0.09
			Fe, Increment = 100 ng/m ³
			Wheeze
			L0: 1.04, p = 0.02 L1: 1.00, p = 0.80
			L2: 1.00, p = 0.87
			L02: 1.07, p = 0.05 Persistent Cough
			L0: 1.02, p = 0.06
			L1: 1.01, p = 0.52 L2: 0.99, p = 0.52
			L02: 1.04, p = 0.04
			Shortness of Breath
			L0: 1.06, p = 0.002 L1: 1.01, p = 0.65
			L2: 0.98, p = 0.27
			L02: 1.08, p = 0.04 Chest Tightness
			L0: 1.01, p = 0.47
			L1: 1.02, p = 0.22 L2: 0.98, p = 0.35
			L02: 1.05, p = 0.21
			Inhaler Use L0: 1.02, p = 0.004
			L0. 1.02, p = 0.004 L1: 0.99, p = 0.44
			L2: 1.00, p = 0.91
			L02: 1.03, p = 0.08
			Al, Increment = 50 ng/m ³ Wheeze
			L0: 1.02, p = 0.17
			L1: 1.01, p = 0.73
			L2: 1.02, p = 0.30 L02: 1.07, p = 0.03
			Persistent Cough
			L0: 1.03, p = 0.001 L1: 1.00, p = 0.96
			L2: 1.00, p = 0.68
			L02: 1.06, p = 0.01 Shortness of Breath
			L0: 1.05, p = 0.002
			L1: 1.01, p = 0.63
			L2: 1.01, p = 0.59 L02: 1.09, p = 0.004
			Chest Tightness
			L0: 1.02, p = 0.21 L1: 1.02, p = 0.18
			L2: 1.00, p = 0.94
			L02: 1.07, p = 0.04 Inhaler Use
			L0: 1.02. p = 0.02
			L1: 0.99, p = 0.27 L2: 1.01, p = 0.50
			L02: 1.02. p = 0.11
			Ca, Increment = 50 ng/m ³ Wheeze
			L0: 1.07, p = 0.02
			L1: 1.00, p = 0.97
			L2: 1.01, p = 0.74 L02: 1.14, p = 0.04
			Persistent Cough
			L0: 1.05, p = 0.01 L1: 0.99, p = 0.64
			L2: 1.00, p = 0.90
			L02: 1.09, p = 0.03 Shortness of Breath
			L0: 1.10, p = 0.002
			L1: 1.02, p = 0.66 L2: 1.00, p = 0.89
			L02: 1.18, p = 0.01
			Chest Tightness L0: 1.04, p = 0.26
			L0. 1.04, p = 0.26 L1: 1.03, p = 0.43
			L2: 1.00, p = 0.93
			L02: 1.14, p = 0.07 Inhaler Use
			L0: 1.04, p = 0.01

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			L1: 0.97, p = 0.06 L2: 1.01, p = 0.44 L02: 1.04, p = 0.17
			Ba, Increment = 10 ng/m ³
			Wheeze L0: 0.99, p = 0.57
			L1: 1.00, p = 0.92 L2: 0.99, p = 0.48
			L02: 0.99, p = 0.81 Persistent Cough
			L0: 1.00, p = 0.83 L1: 1.01, p = 0.38
			L2: 0.99, p = 0.32 L02: 1.00, p = 0.81
			Shortness of Breath L0: 1.04, p = 0.02
			L1: 1.00, p = 0.96 L2: 0.96, p = 0.05
			L02: 1.03, p = 0.38 Chest Tightness
			L0: 1.01, p = 0.63 L1: 1.00, p = 0.88
			L2: 0.98, p = 0.30 L02: 1.02, p = 0.51
			Inhaler Use L0: 1.01, p = 0.08
			L1: 0.99, p = 0.19 L2: 1.00, p = 0.92
			L02: 1.01, p = 0.36
			Ti, Increment = 5 ng/m ³ Wheeze
			L0: 1.00, p = 0.59 L1: 0.99, p = 0.49
			L2: 1.01, p = 0.34 L02: 1.01, p = 0.56
			Persistent Cough L0: 1.00, p = 0.57
			L1: 1.00, p = 0.55 L2: 1.00, p = 0.30
			L02: 1.01, p = 0.29 Shortness of Breath
			L0: 1.01, p = 0.01 L1: 1.00, p = 0.56
			L2: 1.00, p = 0.60 L02: 1.03, p = 0.05
			Chest Tightness L0: 1.00, p = 0.34
			L1: 1.00, p = 0.55 L2: 0.99, p = 0.49
			L02: 1.01, p = 0.52 Inhaler Use
			L0: 1.00, p = 0.72 L1: 1.00, p = 0.30
			L2: 1.00, p = 0.67 L02: 1.00, p = 0.66
			Source: Sulfur S, Increment = 1000 ng/m ³
			Wheeze L0: 0.98, p = 0.43
			L1: 0.99, p = 0.62 L2: 1.02, p = 0.29
			L2: 1.02, p = 0.29 L02: 1.00, p = 0.99 Persistent Cough
			L0: 1.00, p = 0.84
			L1: 1.00, p = 0.69 L2: 1.02, p = 0.21
			L02: 1.02, p = 0.27 Shortness of Breath
			L0: 1.01, p = 0.63 L1: 0.99, p = 0.71
			L2: 1.01, p = 0.55 L02: 1.01, p = 0.79
			Chest Tightness L0: 0.99, p = 0.80
			L1: 1.01, p = 0.62

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			L2: 1.01, p = 0.81 L02: 1.02, p = 0.68 Inhaler Use L0: 0.99, p = 0.13 L1: 1.00, p = 0.81 L2: 1.02, p = 0.04 L02: 1.00, p = 0.81
			P, Increment = 50 ng/m ³ Wheeze L0: 0.98, p = 0.39 L1: 0.98, p = 0.48 L2: 1.02, p = 0.38 L02: 0.99, p = 0.89 Persistent Cough L0: 1.00, p = 0.75 L1: 0.99, p = 0.69 L2: 1.01, p = 0.38 L02: 1.03, p = 0.30 Shortness of Breath L0: 1.01, p = 0.61 L1: 0.99, p = 0.71 L2: 1.01, p = 0.67 L02: 1.01, p = 0.78 Chest Tightness L0: 1.00, p = 0.88 L1: 1.01, p = 0.72 L2: 1.00, p = 0.88 L1: 1.01, p = 0.72 L2: 1.00, p = 0.87 L02: 1.02, p = 0.67 Inhaler Use L0: 0.98, p = 0.15 L1: 1.00, p = 0.83 L2: 1.01, p = 0.11 L02: 1.01, p = 0.11 L02: 1.00, p = 0.99
			Source: Biomass Burning K, Increment = 50 ng/m^3 Wheeze L0: 0.98 , $p = 0.06$ L1: 0.99 , $p = 0.43$ L2: 1.00 , $p = 0.85$ L02: 0.96 , $p = 0.04$ Persistent Cough L0: 1.00 , $p = 0.64$ L1: 1.00 , $p = 0.83$ L2: 1.00 , $p = 0.83$ L2: 1.00 , $p = 0.86$ Shortness of Breath L0: 1.01 , $p = 0.01$ L1: 0.98 , $p = 0.09$ L2: 1.00 , $p = 0.38$ L02: 1.00 , $p = 0.38$ L02: 1.00 , $p = 0.09$ L2: 1.00 , $p = 0.09$ L2: 1.00 , $p = 0.09$ L1: 0.98 , 0.99 L2: 0.98 , 0.99 L2: 0.98 , 0.99 L2: 0.99 , 0.99
			Source: Oil V, Increment = 10 ng/m^3 Wheeze L0: 0.99 , $p = 0.73$ L1: 0.96 , $p = 0.03$ L2: 0.99 , $p = 0.56$ L02: 0.99 , $p = 0.56$ L02: 0.99 , $p = 0.04$ Persistent Cough L0: 1.01 , $p = 0.56$ L1: 0.99 , $p = 0.24$ L2: 0.98 , $p = 0.01$ L02: 0.96 , $p = 0.05$ Shortness of Breath L0: 1.01 , $p = 0.46$ L1: 0.98 , $p = 0.24$

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			L2: 1.00, p = 0.83 L02: 0.98, p = 0.58 Chest Tightness L0: 0.99, p = 0.71 L1: 0.98, p = 0.32 L2: 0.98, p = 0.23 L02: 0.94, p = 0.12 Inhaler Use L0: 0.98, p = 0.12 L1: 1.00, p = 0.68 L2: 0.99, p = 0.22 L02: 0.96, p = 0.03
			Ni, Increment = 5 ng/m^3 Wheeze L0: 1.01 , $p = 0.59$ L1: 0.97 , $p = 0.09$ L2: 1.00 , $p = 0.76$ L02: 0.99 , $p = 0.72$ Persistent Cough L0: 1.01 , $p = 0.21$ L1: 0.99 , $p = 0.57$ L2: 0.99 , $p = 0.57$ L2: 0.99 , $p = 0.23$ L02: 1.00 , $p = 0.99$ Shortness of Breath L0: 1.04 , $p = 0.05$ L1: 0.98 , $p = 0.36$ L2: 1.00 , $p = 0.81$ L02: 1.04 , $p = 0.32$ Chest Tightness L0: 1.01 , $p = 0.58$ L1: 1.00 , $p = 0.89$ L2: 0.98 , $p = 0.27$ L02: 1.01 , $p = 0.84$ Inhaler Use L0: 1.01 , $p = 0.48$ L1: 1.00 , $p = 0.83$ L2: 0.99 , $p = 0.51$ L02: 1.01 , $p = 0.48$
			Source: Sea Salt Na, Increment = 100 ng/m^3 Wheeze L0: 0.98 , $p = 0.23$ L1: 1.00 , $p = 0.80$ L2: 1.00 , $p = 0.88$ L02: 0.97 , $p = 0.29$ Persistent Cough L0: 1.00 , $p = 0.58$ L1: 0.99 , $p = 0.19$ L2: 1.00 , $p = 0.61$ L02: 0.98 , $p = 0.21$ Shortness of Breath L0: 1.00 , $p = 0.94$ L1: 0.99 , $p = 0.46$ L2: 1.01 , $p = 0.63$ L02: 0.99 , $p = 0.74$ Chest Tightness L0: 0.99 , $p = 0.75$ L2: 1.00 , $p = 0.88$ L02: 0.98 , $p = 0.61$ Inhaler Use L0: 0.99 , $p = 0.61$ Inhaler Use L0: 0.99 , $p = 0.35$ L1: 1.00 , $p = 0.85$ L02: 0.99 , $p = 0.85$
			CI, Increment = 10 ng/m ³ Wheeze L0: 1.00, p = 0.89 L1: 1.00, p = 0.88 L2: 1.00, p = 0.38 L02: 1.00, p = 0.81 Persistent Cough L0: 1.00, p = 0.31 L1: 1.00, p = 0.31 L2: 1.00, p = 0.51

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			L02: 1.00, p = 0.06 Shortness of Breath L0: 1.00, p = 0.89 L1: 1.00, p = 0.94 L2: 1.00, p = 0.70 L02: 1.00, p = 0.80 Chest Tightness L0: 1.00, p = 0.24 L1: 1.00, p = 0.28 L2: 1.00, p = 0.52 L02: 1.00, p = 0.65 Inhaler Use L0: 1.00, p = 0.69 L1: 1.00, p = 0.69 L1: 1.00, p = 0.52 L2: 1.00, p = 0.52 L2: 1.00, p = 0.52 L2: 1.00, p = 0.51 L02: 1.00, p = 0.51
			Odds Ratio (95%CI) from repeated measures logistic regression models of respiratory symptoms and daily source concentrations of PM ₂₅ . Lag 0 Model Wheeze, p = 0.23 Motor Vehicle: 1.05 (0.99-1.10) Road Dust: 1.10 (1.01-1.19) Sulfur: 0.97 (0.94-1.00) Biomass Burning: 0.80 (0.66-0.98) Oil: 1.02 (0.86-1.20) Sea Salt: 0.96 (0.86-1.07)
			Persistent Cough, p < 0.001 Motor Vehicle: 1.02 (0.99-1.04) Road Dust: 1.06 (1.01-1.11) Sulfur: 1.00 (0.98-1.01) Biomass Burning: 0.97 (0.92-1.03) Oil: 1.02 (0.95-1.10) Sea Salt: 0.99 (0.92-1.07)
			Shortness of Breath, p < 0.001 Motor Vehicle: 1.06 (1.01-1.11) Road Dust: 1.12 (1.02-1.22) Sulfur: 0.98 (0.94-1.02) Biomass Burning: 1.05 (0.95-1.17) Oil: 1.07 (0.92-1.26) Sea Salt: 1.01 (0.92-1.12)
			Chest Tightness, p < 0.001 Motor Vehicle: 1.02 (0.97-1.08) Road Dust: 1.04 (0.95-1.15) Sulfur: 0.99 (0.94-1.03) Biomass Burning: 1.06 (0.95-1.18) Oil: 0.99 (0.82-1.18) Sea Salt: 0.95 (0.84-1.08)
			Inhaler Use, p < 0.001 Motor Vehicle: 1.02 (1.00-1.05) Road Dust: 1.06 (1.02-1.11) Sulfur: 0.98 (0.97-1.00) Biomass Burning: 1.00 (0.96-1.03) Oil: 0.98 (0.91-1.05) Sea Salt: 0.99 (0.94-1.04)
			Lag 02 Model Wheeze, p = 0.86 Motor Vehicle: 1.10 (1.01-1.19) Road Dust: 1.26 (1.05-1.51) Sulfur: 0.98 (0.92-1.04) Biomass Burning: 0.64 (0.46-0.88) Oil: 0.80 (0.56-1.08) Sea Salt: 0.91 (0.82-1.16)
			Persistent Cough, p < 0.001 Motor Vehicle: 1.03 (0.98-1.09) Road Dust: 1.16 (1.02-1.32) Sulfur: 1.01 (0.98-1.05) Biomass Burning: 0.93 (0.81-1.06) Oil: 0.84 (0.71-1.00) Sea Salt: 0.88 (0.77-1.01)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Shortness of Breath, p = 0.006 Motor Vehicle: 1.12 (1.01-1.24) Road Dust: 1.28 (1.05-1.55) Sulfur: 0.97 (0.90-1.04) Biomass Burning: 0.78 (0.52-1.18) Oil: 0.94 (0.69-1.29) Sea Salt: 1.01 (0.79-1.29)
			Chest Tightness, p = 0.39 Motor Vehicle: 1.08 (0.98-1.20) Road Dust: 1.20 (0.97-1.49) Sulfur: 1.00 (0.92-1.08) Biomass Burning: 0.87 (0.62-1.22) Oil: 0.80 (0.58-1.10) Sea Salt: 0.95 (0.71-1.27)
			Inhaler Use, p < 0.001 Motor Vehicle: 1.03 (0.98-1.08) Road Dust: 1.09 (1.00-1.19) Sulfur: 1.00 (0.97-1.03) Biomass Burning: 0.95 (0.87-1.04) Oil: 0.92 (0.81-1.05) Sea Salt: 0.97 (0.88-1.07)
			Odds Ratio (95%CI) from repeated measures logistic regression models of respiratory symptoms and daily source concentrations of PM ₂₅ when copollutants are included.
			Wheeze Motor Vehicle NO ₂ : 1.03 (0.98-1.08) CO: 1.05 (0.99-1.11) SO ₂ : 1.04 (0.99-1.09) O ₃ : 1.06 (0.97-1.16) Road Dust NO ₂ : 1.11 (1.02-1.20) CO: 1.10 (1.01-1.19) SO ₂ : 1.10 (1.01-1.19) SO ₃ : 1.11 (1.01-1.23) Sulffur NO ₂ : 0.96 (0.92-0.99) CO: 0.97 (0.94-1.01) SO ₂ : 0.97 (0.94-1.01) SO ₂ : 0.79 (0.65-0.98) CO: 0.80 (0.66-0.98) SO ₂ : 0.79 (0.64-0.98) O ₃ : 0.74 (0.57-0.97) Oil NO ₂ : 1.02 (0.86-1.20) SO ₂ : 1.01 (0.86-1.19) O ₃ : 0.99 (0.85-1.07) CO: 0.96 (0.85-1.07) CO: 0.96 (0.85-1.07) CO: 0.96 (0.86-1.08) SO ₂ : 0.99 (0.86-1.08) SO ₂ : 0.99 (0.86-1.07) CO: 0.96 (0.86-1.08) SO ₂ : 0.95 (0.85-1.07) O ₃ : 1.01 (0.72-1.40)
			Inhaler Use Motor Vehicle NO ₂ : 1.02 (0.99-1.04) CO: 1.02 (0.99-1.05) SO ₂ : 1.02 (0.99-1.04) O ₃ : 1.02 (0.98-1.07) Road Dust NO ₂ : 1.06 (1.02-1.10) CO: 1.06 (1.02-1.11) SO ₂ : 1.06 (1.02-1.11) SO ₃ : 1.06 (1.00-1.13) Sulfur
			NO ₂ : 0.98 (0.96-1.00) CO: 0.98 (0.96-1.00) SO ₂ : 0.98 (0.96-1.00)

	Design & Methods	Concentrations '	Effect Estimates (95% CI)
eference: Girardot et al. (2006, 88271)	Outcome: Pulmonary function/spirometry-FVC, FEV ₁ , PEF,	Pollutant: PM _{2.5}	O ₃ : 0.97 (0.95-1.00) Biomass Burning NO ₂ : 1.00 (0.96-1.03) CO: 0.99 (0.96-1.03) SO ₂ : 0.99 (0.96-1.03) Oil NO ₂ : 0.99 (0.95-1.03) Oil NO ₂ : 0.98 (0.91-1.05) CO: 0.97 (0.91-1.04) SO ₂ : 0.97 (0.91-1.04) SO ₂ : 0.98 (0.94-1.04) O ₃ : 1.03 (0.88-1.22) Sea Salt NO ₂ : 0.99 (0.94-1.04) CO: 0.99 (0.94-1.04) SO ₂ : 1.01 (0.88-1.15) PM Increment: 1 µg/m³ % Change ± Cl
eriod of Study:	FVC/FEV ₁ , FEF25-75	Averaging Time: 24 h	p value Univariate:
ug 2002-Oct 2002	Age Groups: 18-82 yr	Mean:	FVC: 0.023 ± 0.035 0.51
un 2003-Aug 2003	Study Design: Cohort	Trail: 13.9 ± 8.2	FEV ₁ : 0.015 ± 0.029 0.607
ocation: Charlies Bunion Trail (portion f Appalachia Trail)		Estimated personal: 15.0 ± 7.4 Range (Min, Max):	PEF: 0.185 ± 0.091 0.043
	Statistical Analyses: Multiple linear regression	Trail: 1.6 , 38.4	FVC/FEV ₁ : 0.003 ± 0.023 0.905
	Covariates: Age, h hiked, mean	Estimated personal:	FEF25-75%: 0.052 ± 0.093 0.578
	temperature, sex, smoking status, history of asthma or wheeze symptoms,	0.21, 41.9	Adjusted: FVC: 0.007 +/ 0.040 0.966
	carriage of backpack, whether reaching summit or not	Copollutant (correlation): O ₃ (r=0.67,	FEV ₁ : 0.003 ± 0.033
	Season: Fall 2002, Summer 2003	for estimated personal exposure)	0.937 PEF: 0.258 ± 0.103
	Dose-response Investigated? No		0.013 FVC/FEV ₁ : - 0.011 ± 0.027
	Statistical Package: SAS		0.676 FEF25-75%: - 0.041 ± 0.109
			0.707 Spirometry result for each quintile \pm Cl Quintile 1 (6.0 μg/m³): FVC (L): Prehike: 4.32 ± 0.13 Posthike: 4.32 ± 0.13 Posthike: 4.33 ± 0.12 FEV ₁ (L): Prehike: 3.39 ± 0.10 Posthike: 3.40 ± 0.10 Posthike: 3.40 ± 0.10 FEV ₁ /FVC (%): Prehike: 78.66 ± 0.86 Posthike: 78.63 ± 0.81 FEF25-75% (L/sec): Prehike: 3.27 ± 0.14 Posthike: 3.26 ± 0.14 POsthike: 3.26 ± 0.14 POsthike: 7.58 ± 0.22 Quintile 2 (10.4 μg/m³): FVC (L): Prehike: 4.30 ± 0.11 Posthike: 4.30 ± 0.11 FeV ₁ (L): Prehike: 3.42 ± 0.09 Posthike: 3.43 ± 0.09 FEV ₁ /FVC (%): Prehike: 79.57 ± 0.71 Posthike: 79.57 ± 0.69 FEF25-75% (L/sec): Prehike: 3.39 ± 0.14 Posthike: 3.38 ± 0.14 PEF (L/sec): Prehike: $8.37 + 0.23$ Posthike: 8.26 ± 0.25 Quintile 3 (14.8 μg/m³): FVC (L): Prehike: 4.34 ± 0.12 Posthike: 4.33 ± 0.12 FEV ₁ (L): Prehike: 4.33 ± 0.12 FEV ₁ (L): Prehike: 4.33 ± 0.12 FeV ₁ (L): Prehike: 3.40 ± 0.09 FEV ₁ /FVC (%): Prehike: 79.20 ± 0.81 Posthike: 78.83 ± 0.80 FEF25-75% (L/sec): Prehike: 3.19 ± 0.13 Posthike: 3.21 ± 0.13

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			FVC (L): Prehike: 4.23 ± 0.11 Posthike: 4.23 ± 0.11 Fosthike: 4.23 ± 0.10 Posthike: 3.36 ± 0.10 Posthike: 3.36 ± 0.10 FEV ₁ /FVC (%): Prehike: 79.18 ± 0.81 Posthike: 79.26 ± 0.79 FEF25-75% (L/sec): Prehike: 3.34 ± 0.15 Posthike: 3.30 ± 0.15 Posthike: 3.30 ± 0.15 Posthike: 7.73 ± 0.26 Quintile $5 (25.6 \ \mu g/m^3)$: FVC (L): Prehike: 4.15 ± 0.11 Posthike: 4.15 ± 0.11 Posthike: 4.18 ± 0.12 FEV ₁ (L): Prehike: 4.15 ± 0.10 Posthike: 4.18 ± 0.10 FEV ₁ /FVC (%): Prehike: 79.73 ± 0.66 Posthike: 79.55 ± 0.64 FEF25-75% (L/sec): Prehike: 3.22 ± 0.14 Posthike: 3.24 ± 0.14 Posthike: 7.77 ± 0.23 Overall ($15.0 \ \mu g/m^3$): FVC (L): Prehike: 4.27 ± 0.05 Posthike: 4.27 ± 0.05 Prehike: 4.27 ± 0.05 Posthike: 4.27 ± 0.05 Posthike: 4.27 ± 0.05 Prehike: 4.27 ± 0.05 Posthike: 4.27 ± 0.05 Prehike: 4.27 ± 0.05 Prehike: 4.27 ± 0.05 Posthike: 4.27 ± 0.05 Prehike: 4.27 ± 0.05 Prehike: 4.27 ± 0.05 Posthike: 4.27 ± 0.05 Prehike: 4.27 ± 0.05
Reference: Hertz-Picciotta et al. (2007, 135917)	Outcome: Lower respiratory illness-croup (J05, J04), acute	Pollutant: PM _{2.5}	PM Increment : 25 μg/m ³
Period of Study: 1994-2003	bronchitis (J20), acute bronchiolitis (J21)	Averaging Time: 24 h	RR Estimate [Lower CI, Upper CI] lag:
Location: Teplice and Prachatice, Czech Republic	Age Groups : Neonates followed for 2-4.5 yr	Mean (SD): PAH: 22.3 (SD-16 for 3-day avg and 11 for 45-day avg)	Birth-23 mo: 1.30 [1.08, 1.58] lag 1-30 2-4.5 yr:
	Study Design: Cohort	, 0,	1.23 [0.94, 1.62] lag 1-30 RR Estimate for categories of
	N: 1133 children		exposure [Lower CI, Upper CI] lag: Crude RR:
	Statistical Analyses: Generalized linear longitudinal models		Birth-23 mo: > 50 µg/m³: 2.26 [1.81, 2.82] lag 1-30
	Covariates: District, mother's age, mother's education, mother or adult smoke, child's sex, season, day of the week, fuel for heating and/or cooking, breastfeeding category, number of other children, temperature		25-50 μg/m²: 1.48 [1.32, 1.65] lag 1-30 < 25 μg/m²: Referent 2-4.5 yr: > 50 μg/m³: 3.66 [2.07, 6.48] lag 1-30 25-50 μg/m³: 1.60 [1.41, 1.82] lag 1-30 < 25 μg/m³:
	Season: Winter, spring, summer and fall		Referent
	Dose-response Investigated? No		
	Statistical Package : SUDAAN version 8		
	Lags Considered: 1-3, 1-7, 1-14, 1-30, 1-45		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Hertz- Picciotta et al.	Outcome: Lower respiratory	Pollutant: PM _{2.5}	PAH Increment: 100 ng/m ³
2007, <u>135917</u>)	illness-croup (J05, J04), acute bronchitis (J20), acute bronchiolitis (J21)	Averaging Time: 24 h	RR Estimate [Lower CI, Upper CI]
Period of Study: 1994-2003		Mean (SD):	lag: Birth-23 mos:
Location: Teplice and Prachatice, Czech Republic	Age Groups: Neonates followed for 2-4.5 yr	PAH:	1.29 [1.07, 1.54] lag 1-30 2-4.5 yr:
	Study Design: Cohort	52.5 ng/m ³ (SD-57 ng/m ³ for 3-day avg and 46 ng/m ³ for 45-day avg)	1.56 [1.22, 2.00] lag 1-30 RR Estimate for categories of exposure
	N: 1133 children	and to fight for to day arg,	[Lower CI, Upper CI] lag:
	Statistical Analyses: Generalized linear longitudinal models		Crude RR: Birth-23 mgs:
	Covariates: District, mother's age, mother's education, mother or adult smoke, child's sex, season, day of the week, fuel for heating and/or cooking, breastfeeding category, number of other children, temperature		> 100 ng/m ³ : 2.52 [2.22, 2.87] lag 1-30 40-100 ng/m ³ : 1.87 [1.65, 2.13] lag 1-3 < 40 ng/m ² : Reference 2-4.5 yr: > 100 ng/m ³ : 2.26 [1.93, 2.65] lag 1-30 40-100 ng/m ³ : 1.40 [1.20, 1.64] lag 1-3 < 40 ng/m ³ : Reference
	Dose-response Investigated? No		
	Statistical Package : SUDAAN version 8		
	Lags Considered: 1-3, 1-7, 1-14, 1-30, 1-45		
Reference: Hogervorst, et al. (2006, 156559)	Outcome: Decreased lung function	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
,	Age Groups: 8-13 yr	Averaging Time: Daily	RR Estimate [Lower CI, Upper CI]
Period of Study: 2002 Location: Maastricht, the Netherlands	Study Design: Multivariate linear regression (enter method) analysis N: 342 children	Mean (SD): 19.0 (3.2)	lag:
(six schools selected)		Monitoring Stations: 6	FEV: 3.62 [0.50,7.63] lag NR
		Copollutant:	FVC: 1.80 [-2.10, 5.80] lag NR
	Statistical Analyses: ANOVA, chi square	PM ₁₀	FEF: 5.93 [-2.34, 14.89] lag NR
	Covariates: Independent variables: Age, height, gender, smoking at home by parents, pets, use of ventilation hoods during cooking, presence of unvented geysers, tapestry in the home, indoor/outdoor time, education level of parents.	Total Suspended Particles (TSP)	
	Dependent variables: lung function indices		
	Dose-response Investigated? No		
Reference: Holguin et al, (2007,	Outcome: FeNO, FEV ₁	Pollutant: PM _{2.5}	Increment: NR
099000) Period of Study:	Study Design: Panel	Averaging Time: 48 h	Relative Risk (Min CI, Max CI)
	Covariates: sex, age, body mass	Mean (SD) Unit: 17.5 (8.9) μg/m ³	Lag
_ocation: Ciudad Juarez, Mexico	index, day of week, season, yr of maternal and paternal education,	Range (Min, Max): NR	Results not given in table form, but
	passive smoking	Copollutant (correlation): NR	abstract states that no significant associations with PM _{2.5} were observed
	Statistical Analysis: linear and nonlinear mixed effects models	. ,	
	Age Groups: 6-12 yr		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Hong et al. (2007, <u>091347</u>)	Outcome: Peak expiratory flow rate	Pollutant: PM _{2.5}	Effect Estimate:
Period of Study: Mar 23-May 2004	(PEFR)	Averaging Time: 24 h	Regression coefficients of morning and
Location: School on the Dukjeok Island near Incheon City, Korea	Age Groups: 3rd-6th grade (mean age=9.6 yr)	Mean (SD): 20.27 (8.23)	daily mean PEFR on PM _{2.5} Lag 1 (PM _{2.5})
	Study Design: Panel study	50th(Median): 22.07	Morning PEFR
	N: 43 schoolchildren	Range (Min, Max): 5.94-36.28	Crude: ß= -0.14, p=0.12 Adjusted: ß= -0.54, p,0.01
	Statistical Analyses: Mixed linear regression	Copollutant: PM ₁₀	Mean PEFR Crude: ß= -0.15, p=0.02 Adjusted: ß= -0.54, p,0.01
	Covariates: age, sex, height, weight, asthma history, and passive smoking exposure at home	Components of PM ₁₀ (Fe, Mn, Pb, Zn, Al)	Regression coefficients of morning and daily mean PEFR on PM _{2.5} and GSTM1 and GSTT1 genotype using linear mixed-effects regression
	Dose-response Investigated? No		Lag 1 (PM _{2.5})
	Lags Considered: 0, 1, 2, 3, 4, 5		Morning PEFR: ß= -0.57, p < 0.01 Mean PEFR: ß= -0.56, p < 0.01 GSTM1 Morning PEFR: ß= 20.04, p=0.25 Mean PEFR: ß= 18.75, p=0.28 GSTT1 Morning PEFR: ß= 2.31, p=0.89 Mean PEFR: ß= 1.75, p=0.91
Reference: Jansen, et al. (2005,	Outcome: FENO: fractional exhaled	ed Pollutant: PM _{2.5}	PM Increment: PM _{2.5} : 10 μg/m ³
<u>082236</u>)	nitrogen oxide, Spirometry, Blood pressure, SaO ₂ : oxygen saturation,	Averaging Time: 24 h	Slope [95% CI]: dependence of FENO
Period of Study: 1987-2000	Pulse rate	Mean (SD):	concentration [ppb] on PM _{2.5}
Location: Seattle, WA	Age Groups: 60-86-yr-old	Fixed-Site Monitor: 14.0	Asthmatic Subjects
	Study Design: Short-term cross-	All Subjects (N=16)	Indoor, home: 3.69 [-0.74: 8.12]
	sectional case series	Indoor, home: 7.29 Outdoor, home: 10.47 Asthmatic Subjects (N=7) Indoor, home: 7.25	Outdoor, home: 4.23 [1.33: 7.13]*
	N: 16 subjects diagnosed with COPD, asthma, or both		Copd Subjects
	Statistical Analyses: Linear mixed	Outdoor, home: 8.99	Indoor, home: -0.35 [-7.45: 6.75]
	effects model with random intercepts	COPD Subjects (N=9) Indoor, home: 7.33 Outdoor, home: 11.66 Range (Min, Max):	Outdoor, home: 3.83 [-1.84: 9.49]
	Covariates: Age, relative humidity, temperature, medication use		Results indicate that FENO may be a more sensitive biomarker of PM
	Season: Winter 2002-2003	Fixed-Site Monitor: 1.3, 44	exposure than other traditional health endpoints.
	Dose-response Investigated? No	IQR All Subjects	·
	Statistical Package: STATA	Indoor, home: 4.05 Outdoor, home: 8.87 Asthmatic Subjects Indoor, home: 5.72 Outdoor, home: 7.55 COPD Subjects Indoor, home: (3.18 Outdoor, home: 6.71	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Johnston, et al. (2006,	Outcome: Asthma symptoms	Pollutant: PM _{2.5}	PM Increment: 5 µg/m ³
<u>091386</u>)	Age Groups: All Ages	Averaging Time: Daily	RR Estimate [Lower CI, Upper CI]
Period of Study: 7 mo (Apr-Nov 2004)	Study Design: Time-series	Mean (SD): 11.1 (5.4)	lag: Symptoms attributable to asthma
Location: Darwin, Australia	N: 251 people	Range (Min, Max): 2.2, 36.5	Overall: 1.000 (0.98,1.01)
,	(130 adults, 121 children	PM Component: Vegetation fire smoke	Adults: 1.000 (0.976,1.026) Children: 1.008 (0.980, 1.037)
	Statistical Analyses: Logistic regression model	(95%) and motor vehicle emissions (5%)	Using preventer: 1.013 (0.990, 1.037) Became symptomatic Overall: 1.150 (1.07.1.23)
	Covariates: Minimum air temperature, doctor visits for influenza and the prevalence of asthma symptoms and, the fungal spore count and both onset of asthma symptoms and commencement of reliever medication Season: "Dry season"- note Southern Hemisphere Dose-response Investigated? No Statistical Package: STATA8 Lags Considered: 0-5 days	Monitoring Stations: 1	Overall: 1.150 (1.07,1.23) Adults: 1.165 (1.058,1.284) Children: 1.148 (1.042,1.264) Using preventer: 1.181 (1.076,1.296) Used Reliever Overall: 1.000 (0.98,1.02) Adults: 1.007 (0.980, 1.035) Children: 1.002 (0.972,1.034) Using preventer: 1.020 (1.000,1.042) Commenced Reliever Overall: 1.120 (1.03,1.210) Adults: 1.141 (1.021, 1.275) Children: 1.112 (0.994,1.243) Using preventer: 1.129 (1.013,1.257) Commenced Oral Steroids Overall: 1.310 (1.03,1.66) Adults: 1.601 (1.192, 2.150) Children: 0.995 (0.625,1.459) Using preventer: 1.350 (1.040,1.752) Asthma Attack Overall: 0.980 (0.94,1.04) Adults: 1.026 (0.962, 1.095) Children: 0.832 (0.731, 0.946) Using preventer: 1.002 (0.934,1.075) Exercise induced asthma Overall: 0.990 (0.95,1.03) Adults: 0.998 (0.943, 1.056) Children: 0.982 (0.899,1.071) Using preventer: 1.002 (0.942,1.067) Saw a health professional for asthma Overall: 1.030 (0.91,1.16) Adults: 1.079 (0.999, 1.296) Using preventer: 0.980 (0.847,1.133) Missed school or work due to asthma Overall: 1.035 (0.924,1.131) Adults: 1.077 (0.923, 1.247) Children: 1.000 (0.887,1.124) Mean daily number of asthma symptoms Overall: 1.003 (0.99,1.01) Adults: 0.998 (0.998, 1.020) Using preventer: 1.005 (0.897,1.124) Mean daily number of asthma symptoms Overall: 1.004 (0.995,1.023) Using preventer: 1.005 (0.897,1.124) Mean Daily number of applications of reliever Overall: 1.000 (0.993,1.010) Adults: 1.001 (0.986, 1.016) Children: 1.000 (0.993,1.010)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Koenig et al. (2003,	Outcome: Exhaled NO (eNO)	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
156653) Period of Study: Winter 2000-2001,	Age Groups: 6-13 yr old	Averaging Time: 10 consecutive days Mean (SD): Outdoor: 13.3 (1.4)	Results presented as change in eNO (95% CI)
Spring 2001	Study Design: Cohort	Indoor: 11.1 (4.9)	Among ICS* nonuser
Location: Seattle, WA	N: 19 children	Personal: 13.4 (3.2) Central-site: 10.1 (5.7)	Personal monitor 4.48 (1.02, 7.93)
	Statistical Analyses: Linear mixed- effects regression	Range (Min, Max): Outdoor: Max: 40.4	Outdoor monitor 4.28 (1.38, 7.17)
	Covariates: Medication use, ambient	Indoor: Max: 36.3 Personal: Max: 49.4	Indoor monitor 4.21 (1.02, 7.41)
	NO reading for specific individual on specific day of session, mean ambient	Central-site: NR	Central site 3.82 (1.22, 6.43)
	NO for subject during session, mean ambient NO for subject during all	Monitoring Stations: Outdoor: NR	Among ICS* user
	sessions	Indoor: NR Personal: NR	Personal monitor -0.09 (-2.39, 2.21)
	Season: Winter, Spring	Central-site: 3	Outdoor monitor 0.74 (-2.28, 3.76)
	Dose-response Investigated? No	Copollutant (correlation): Outdoor PM-central-site NO: 0.50	Indoor monitor -1.11 (-5.08, 2.87)
	Statistical Package: STATA	For NO values < 100 ppb, outdoor PM-	Central site 1.28 (-1.23, 3.79)
		central-site NO: 0.04	* ICS: Inhaled corticosteroid
Reference: Koenig et al. (2003,	Outcome: Increased exhaled nitric	Pollutant: PM _{2.5}	PM Increment: 10-µg/m ³
156653)	oxide (eNO)	Averaging Time: Daily	RR Estimate [Lower CI, Upper CI]
Period of Study: Winter 2000-2001, Spring 2001	Age Groups: 6-13 yr of age	Mean: Home indoor 9.5 Home outdoor 11.1	lag:
Location: Seattle, WA	Study Design: Combined recursive and predictive model	Recursive model Eag: 7.0 Recursive model Eig: 2.1 Predictive model Eag: 6.0 Predictive model Eig: 4.0 Combined model Eag: 6.4 Combined model Eig: 3.2	Eag= ambient-generated personal exposure
	N: 19 children with asthma		Eig= indoor-generated personal
	Statistical Analyses: Linear mixed effects model		exposure
	Covariates: Residence type, air	25th: Home indoor 5.7	eNO= exhaled nitric oxide
	cleaner, avg outdoor temperature, avg daily rainfall	Home outdoor 6.3 Recursive model Eag: 4.2 Recursive model Eig: 0.0 Predictive model Eag: 3.4 Predictive model Eig: 0.9 Combined model Eag: 3.7 Combined model Eig: 0.5 50th(Median): Home indoor 7.6 Home outdoor 9.5 Recursive model Eag: 5.9 Recursive model Eig: 1.2	Recursive model with 8 children, Eag was marginally associated with increases in eNO [5.6 ppb [-0.6,11.9].
	Season: Winter, Spring		Eig was not associated with eNO (-0.19
	Dose-response Investigated? No		ppb).
	Statistical Package: STATA 7.0 for health analyses, SAS 8.0		For those combined estimates, only Eag was significantly associated with
	on the first house analysis, sho s.s		an increase in eNO:
		Predictive model Eag: 5.0 Predictive model Eig: 2.2	Eag: 5.0 ppb [0.3, 9.7]
		Combined model Eag: 5.5 Combined model Eig: 1.7	Eig: 3.3 ppb [1.1, 7.7]
		75th: Home indoor 10.8 Home outdoor 14.6 Recursive model Eag: 9.2 Recursive model Eig: 2.3 Predictive model Eag: 7.5 Predictive model Eig: 4.9 Combined model Eag: 7.8 Combined model Eig: 4.2	Notes: Effects were seen only in children who were not using corticosteroid therapy
		Range (Min, Max): Home indoor 2.3, 36.3 Home outdoor 2.8, 40.4 Recursive Eag: 1.8,22.6 Recursive Eig: 0.0,17.2 Predictive Eag: 1.3,22.6 Predictive Eig: 0.0,33.0 Combined Eag: 1.3,22.6 Combined Eig: 0.0,33.0 Monitoring Stations: 19 personal environmental monitors	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Kongtip et al. (2006, 096920)	Outcome: respiratory and other Outcomes reported	Pollutant: PM _{2.5}	PM Increment: 1 μg/m ³
Period of Study: Sep-Oct 2004	Age Groups: Age range 15-55 yr	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
	Study Design: Panel study	Mean (SD): 70.94	Model 1 Headache: 1.011 (0.999-1.022)
Location: Dindang district, Bangkok metropolitan, Thailand	,	Percentiles: 50th(Median): 72.05	Nose congestion: 1.006 (0.997-1.015) Sore throat: 1.000 (0.991-1.008)
	N: 77 street vendors	Range (Min, Max): 23.20-120.00	Cold: 1.006 (0.995-1.017)
	Statistical Analyses: Binary logistic regression Covariates: Gender, age, type of fuel	Monitoring Stations: 1	Cough: 0.989 (0.980-0.998) Phlegm: 0.998 (0.992-1.003)
		Copollutant (correlation):	Chest tightness: 0.995 (0.955-1.036) Fever: 1.008 (0.993-1.024)
	used, working duration (months)	SO ₂	Eye irritation: 1.022 (1.011-1.033)
	Dose-response Investigated? No	NO_2	Dizziness: 1.027 (1.013-1.041) Weakness: 0.996 (0.983-1.008)
		O ₃	Upper respiratory symptom: 1.001 (0.994-1.008)
		VOCs	Lower respiratory symptom: 0.997 (0.992-1.002)
		CO	Model 2 Headache: 1.004 (0.996-1.013)
			Nose congestion: 1.003 (0.996-1.010) Sore throat: 0.995 (0.989-1.001) Cold: 0.996 (0.988-1.004) Cough: 0.996 (0.988-1.004) Chest ightness: 0.997 (0.991-0.999) Chest ightness: 0.997 (0.970-1.025) Fever: 1.010 (0.998-1.022) Eye irritation: 1.019 (1.010-1.028) Dizziness: 1.020 (1.009-1.032) Weakness: 1.003 (0.994-1.012)
			Upper respiratory symptom: 0.995 (0.990-1.000)
			Lower respiratory symptom: 0.995 (0.991-0.999)
Reference: Lagorio et al. (2006, 089800)	Outcome: Lung function (FVC and FEV ₁) of subjects with COPD, Asthma	Pollutant: PM _{2.5}	PM Increment : 1 μg/m ³
Period of Study:	Age Groups: COPD 50-80 yr	Averaging Time: 24 h	They observed negative association between ambient PM _{2.5} and respiratory
May-Jun1999 and Nov-Dec 1999	Asthma 18-64 yr	Mean (SD): Overall: 27.2 (19.4)	function (FVC and FEV ₁) in the COPD panel. The effect on FVC was seen at
Location: Rome, Italy	Study Design: Time series	Spring: 18.2 (5.0) Winter: 36.7 (24.1) Range (Min, Max): 4.5, 100	lag 24 h, 48 h, and 72 h. The effect on
	N: COPD = 11		FÉV ₁ was evident at lag 72 h. There was no statistically significant effect of
	Asthma = 11	PM Component:	PM _{2.5} on FVC and FEV ₁ in the asthmatic and IHD panels.
	Statistical Analyses: Non-parametric	Cd: 0.46±0.40 ng/m ³ Cr: 1.9±1.7 ng/m ³	β Coefficient (SE)
	Spearman correlation	Fe: 283±167 ng/m³ Ni: 4.8±6.5 ng/m³	COPD
	GEE	Pb: 30.6±19.0 ng/m ³	FVC(%) 24 h -0.80 (0.36)
	Covariates: COPD and IHD: daily	Pt: 5.0±8.6 pg/m³ V: 1.8±1.4 ng/m³	48-h -0.89 (0.41)
	mean temperature, season variable (spring or winter), relative humidity, day	Zn: 45.8±33.1 ng/m³	72-h -1.10 (0.55) FEV₁(%) 24 h -0.47 (0.33)
	of week Asthma: season variable, temperature, humidity, and β-2-agonist use	Monitoring Stations: 2 fixed sites: (Villa Ada and Istituto superior di Sanita)	48-h -0.69 (0.37) 72-h -1.06 (0.50) Asthma
	Season: Spring and Winter	Copollutant (correlation): NO ₂ r = 0.43	FVC(%)
	Dose-response Investigated? Yes	O ₃ r = -0.51 CO r = 0.67	24 h -0.14 (0.29) 48-h -0.07 (0.33)
	Statistical Package: STATA	$SO_2 r = 0.34$	72-h -0.06 (0.39) FEV ₁ (%)
	Lags Considered: 1-3 days	$PM_{10-2.5} r = 0.34$ $PM_{10} r = 0.93$	48-h -0.30 (0.34) 48-h -0.36 (0.39) 72-h -0.40 (0.46)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Lee et al. (2007, <u>093042</u>)	Outcome: PEFR (peak expiratory flow rate), lower respiratory symptoms (cold, cough, wheeze)	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: 2000-2001		Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]
Location: South-Western Seoul	Age Groups : 61-89 yr of age (77.8	Mean (SD): 51.15 (19.94)	lag:
Metropolitan area, Seoul, South Korea	mean age)	Percentiles:	PEFR (peak expiratory flow rate)
	Study Design: longitudinal panel survey	25th: 33.00	-0.54 (-0.89,-0.19)
	N: 61 adults	50th(Median): 53.20	1 day
	Statistical Analyses: SAS MIXED,	75th: 87.54	relative odds of a lower respiratory
	logistic regression model	Range (Min, Max):	symptom (cold, cough, wheeze) 0.976 (0.849,1.121)
	Covariates: Temperature (Celsius), relative humidity, age,	17.94, 92.71	1 day
	Dose-response Investigated? No	Monitoring Stations: 2	i day
	Statistical Package: SAS 8.0		
	Lags Considered: 0-4 days		
Reference: Lewis et al. (2005, <u>081079</u>)	Outcome: Poorer lung function	Pollutant: PM _{2.5}	PM Increment: 12.5 μg/m ³
Period of Study: Winter 2001-Spring	(increased diurnal variability and decreased forced expiratory volume)	Averaging Time: 2 wk	RR Estimate [Lower CI, Upper CI]
2002	Age Groups: 7-11 yr old	Mean (SD):	lag:
Location: Detroit, Michigan, USA	Study Design: Longitudinal cohort	Eastside	Lung function among children reporting use of maintenance CSs
	study	15.7 (10.6)	Diurnal variability FEV ₁
	N: 86 children	Southwest	Lag 1: 1.61 [-0.5,3.72] Lag 1: 0.99 [-5.64, 7.62] PM _{2.5} + O ₃
	Statistical Analyses: Descriptive statistics and bivariate analyses of	17.5 (12.2)	Lag 2: 2.96 [-1.74,7.66] Lag 2: 4.62 [-4.31, 13.54] PM _{2.5} + O ₃
	exposures, multivariable regression multivariate analog of linear regression.	Range (Min, Max): 1.0, 56.1	Lag 3-5: 1.37 [-1.49,4.22] Lag 3-5: 2.70 [1.0, 4.40] PM _{2.5} + O ₃
	Covariates: Sex, home location,	Monitoring Stations: 2	Lowest daily value FEV ₁ Lag 1: -2.23 [-6.99,2.53]
	annual family income, presence of one	Copollutant (correlation):	Lag 1: 3.36 [-3.92, 10.63] PM _{2.5} + O ₃
	or more smokers in household, race, season (entered as dummy variables),	PM ₁₀ 0.93	Lag 2: -0.21 [-4.09,3.68] Lag 2: 0.88 [-8.69, 10.46] PM _{2.5} + O ₃
	and parameters to account for intervention group effect.	O ₃ Daily mean 0.57	Lag 3-5: -0.76 [-5.00, 3.49] Lag 3-5: -2.78 [-4.87 to -0.70] PM _{2.5} +
	Season: Winter 2001 (Feb 10-23),	O ₃ 8-h peak 0.53	O ₃
	Spring 2001 (May 5-18), Summer 2001 (Jul 14-27), Fall 2001 (Sep 22-Oct 5),		Lung function among children reporting presence of URI on day of lung function
	Winter 2002 (Jan 18-31), and Spring 2002 (May 18-31)].		assessment Diurnal variability FEV ₁
	Dose-response Investigated? No		Lag 1: 4.08 [-1.78, 9.94]
	Lags Considered: 1-2 days, 3-5 days		Lag 1: 3.99 [-2.76, 10.74] PM _{2.5} + O ₃ Lag 2: 7.62 [-0.49, 15.73]
	go		Lag 2: 4.10 [-1.41, 9.60] PM _{2.5} + O ₃ Lag 3-5: 1.47 [-7.73, 10.67]
			Lag 3-5: 3.81 [-1.83, 9.45] PM _{2.5} + O ₃ Lowest daily value FEV ₁
			Lag 1: -1.21 [5.62,3.21]
			Lag 1: -0.74 [-4.14, 2.65] PM _{2.5} + O ₃ Lag 2: -0.10 [4.36,4.16]
			Lag 2: -1.67 [-5.09, 1.75] PM _{2.5} + O ₃ Lag 3-5: -2.88 [-5.46 to -0.30]
			Lag 3-5: -2.78 [-4.79 to -0.77] PM _{2.5} + O ₃

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Liu et al. (2009, <u>192003</u>)	Outcome: Decreased lung function	Pollutant: PM _{2.5}	Increment: 5.4 µg/m³
Period of Study: 4 wk in 2005	Study Design: Panel	Averaging Time: 1, 2 & 3 days	Percent Change (Min Cl, Max Cl)
Location: Windsor, Ontario, Canada	Statistical Analysis: mixed-effects	Mean (SD) Unit (1d): 6.5 μg/m ³	Lag FEV₁
	regression models	Range (Min, Max): 2.0-19.0	Same Day: -0.5 (-1.3-0.3)
	Statistical Package: S-PLUS	Copollutant (correlation):	Lag 1 Day: -0.5 (-1.1-0.5) 2-Day Avg: -0.6 (-1.5-0.4)
	Age Groups: Asthmatic children, 9-14 yr	SO ₂ : 0.56	3-Day Avg: -1.1 (-3.1-0.9) FEF 25%-75%
		NO ₂ : 0.71	Same Day: -1.9 (-3.50.3)
		O ₃ : -0.41	Same Day: -1.9 (-3.5-0.3) Lag 1 Day: -1.2 (-2.8-0.3) 2-Day Avg: -2.0 (-3.8-0.2) 3-Day Avg: -3.3 (-7.2-0.8) FeNO Same Day: 5.3 (-3.6-15) Lag 1 Day: 1.7 (-6.3-15) 2-Day Avg: 4.3 (-5.4-15.1) 3-Day Avg: -17.3 (-33.5-2.9) TBARS Same Day: 16.9 (2.2-33.6) Lag 1 Day: 14.6 (0.8-30.4) 2-Day Avg: 22.0 (4.8-42.1) 3-Day Avg: 69.1 (20.1-138.2) 8-Isoprostane Same Day: 5.1 (-3.6-14.5) Lag 1 Day: -3.8 (-12.1-5.3) 2-Day Avg: 0.1 (-9.8-11.1) 3-Day Avg: 0.1 (-9.8-11.1)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Mar et al. (2004, <u>057309</u>)	Outcome: Respiratory Symptoms	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: 1997-1999	Age Groups: Adults: Ages 20-51 yr	Mean (SD):	OR Estimate [Lower CI, Upper CI]
Location: Spokane, Washington	Children: Ages 7-12 yr	1997: 11.0 (5.9)	lag: Adult Respiratory symptoms:
	N: 25 people	1998: 10.3 (5.4)	Wheeze:
	Statistical Analyses: Logistic regression	1999: 8.1 (3.8) Unit (i.e. μg/m³):	1.04[0.86, 1.26] lag 0 1.00[0.83, 1.19] lag 1 0.99[0.84, 1.17] lag 2
	Covariates: Temperature, relative humidity, day of-the-wk	Monitoring Stations: 1 station	Breath: 0.97[0.87, 1.08] lag 0 0.98[0.87, 1.10] lag 1
	Statistical Package: STATA 6	Copollutant (correlation):	0.95[0.80, 1.13] lag 2 Cough:
	Lags Considered: 0-2 days	PM _{2.5}	0.86[0.62, 1.21] lag 0
		$PM_1 r = 0.92$	0.87[0.63, 1.20] lag 1 0.89[0.66, 1.20] lag 2
		$PM_{10} r = 0.61$	Sputum : 0.94[0.63, 1.41] lag 0
		$PM_{10-2.5}r = 0.28$	0.90[0.62, 1.31] lag 1
			0.92[0.66, 1.27] lag 2 Runny Nose:
			0.98[0.83, 1.15] lag 0 0.95[0.82, 1.10] lag 1
			0.93[0.80, 1.08] lag 2 Eye Irritation:
			0.91[0.70, 1.20] lag 0
			0.89[0.70, 1.13] lag 1 0.86[0.68, 1.08] lag 2
			Lower Symptoms: 0.91[0.73, 1.13] lag 0
			0.89[0.72, 1.10] lag 1
			0.89[0.72, 1.10] lag 2 Any Symptoms:
			0.92[0.80, 1.07] lag 0 0.89[0.76, 1.04] lag 1
			0.89[0.75, 1.05]
			lag 2 Children Respiratory symptoms:
			Wheeze: 0.55[0.26, 1.19] lag 0
			0.53[0.18, 1.58] lag 1 0.55[0.19, 1.64] lag 2
			Breath:
			1.13[0.86, 1.48] lag 0 1.12[0.86, 1.44] lag 1
			1.10[0.82, 1.48] lag 2 Cough:
			1.17[0.98, 1.40] lag 0
			1.21[1.00, 1.47] lag 1 1.18[0.99, 1.42] lag 2
			Sputum: 1.06[0.92, 1.22] lag 0
			1.10[0.91, 1.34] lag 1
			1.09[0.92, 1.30] lag 2 Runny Nose :
			1.09[0.85, 1.39] lag 0 1.12[0.89, 1.41] lag 1
			1.16[0.94, 1.42] lag 2
			Eye Irritation: 0.93[0.53, 1.64] lag 0
			0.75[0.45, 1.27] lag 1 0.77[0.65, 0.91] lag 2
			Lower Symptoms:
			1.18[1.00, 1.38] lag 0 1.21[1.00, 1.46] lag 1
			1.17[0.96, 1.43] lag 2 Any Symptoms:
			1.17[1.03, 1.34] lag 0
			1.22[1.04, 1.43] lag 1 1.23[1.07, 1.42] lag 2

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Mar et al. (2005, <u>087566</u>)	Outcome: Pulmonary function (arterial	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study: 1999-2001	oxygen saturation) and cardiac function (heart rate and blood pressure)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI)
Location: Seattle, Washington	Study Design: Time series		Lag Personal:
	Statistical Analyses: Linear logistic regression		Systolic: 0.37 (-0.93, 1.67) 0 Diastolic: -0.20 (-0.85, 0.46) 0 Indoor:
	Age Groups: > 57		Systolic: 0.92 (-2.04, 3.87) 0 Diastolic: 0.38 (-1.43, 2.20) 0 Outdoor: Systolic: -0.81 (-2.34, 0.73) 0 Diastolic: -0.46 (-1.49, 0.57) 0
			% Increase between heart rate and PM _{2.5} exposure for people > 57 PM _{2.5} : Personal: 0.44 (0.04, 0.84) 0 Indoor: 0.22 (-0.71, 1.16) 0 Outdoor: -0.75 (-1.42 to -0.07) 0
Reference: Mar et al. (2005, <u>088759</u>)	Outcome: Respiratory Symptoms	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: 1999-2002	Age Groups: 6-13 yr	Averaging Time: 24 h	Change in FE(NO) (exhaled NO
Location: Seattle, Washington	Study Design: Time-Series	Mean (SD):	concentration) with air pollution [Lower CI, Upper CI] lag:
	N: 19 children	Results presented in Fig 1.	Medication use:
	Statistical Analyses: Polynomial distributed lag model, Poisson regression	Monitoring Stations: 3 Stations	No meds: 6.99[3.43, 10.55] lag 1-h Meds: -0.18[-3.33, 2.97] lag 1-h No meds: 6.30[2.64, 9.97] lag 4-h
	Covariates: Age, ambient NO levels, temperature, relative humidity, modification of use of inhaled corticosteroids		Meds: -0.77[-4.58, 3.04] lag 4-h No meds: 0.46[-1.18, 2.11] lag 8-h Meds: 0.40[-1.94, 2.74] lag 8-h
	Season: Winter, Spring		
	Dose-response Investigated? No		
	Statistical Package: STATA		
	Lags Considered: 0-8 h		
Reference: McCreanor et al. (2007,	Outcome: Decreased Lung Function	Pollutant: PM _{2.5}	% changes in FEV and FVC are
092841) Period of Study: 2003-2005	Age Groups: Adults	Averaging Time: 1 h	presented in Fig 1-3. Results are not presented quantitatively in text or
Location: London, England	Study Design: Crossover study N: 60 adults	Mean (SD): NR 50th(Median): Oxford St: 28.3 Hyde Park: 11.9	tables. The authors did not find any significant differences in respiratory symptoms between the two locations. Also, there were no significant
	Statistical Analyses: Linear regression	Range (Min, Max):	differences in sputum eosinophil counts
	Covariates: Temperature, relative humidity, age, sex, bod-mass index, and race or ethnic group	Oxford St: (13.9, 76.1) Hyde Park: (3, 55.9)	or eosinophil cationic protein levels.
Reference: Moshammer and	Outcome: Lung Function: FVC, FEV ₁ ,	Pollutant: PM _{2.5}	Notes: "Acute effects of 'active particle
Neuberger (2003, <u>041956</u>) Period of Study: 2000-2001	MEF ₂₅ , MEF ₅₀ , MEF ₇₅ , PEF, LQ Signal, PAS Signal	Averaging Time: 8 h means & daily means	surface' as measured by diffusion charging were found on pulmonary function (FVC, FEV ₁ , MEF ₅₀) of
Location: Linz, Austria	Age Groups: Ages 7-10	Mean (SD): 14.61 (10.83)	elementary school children and on
	Study Design: Case-crossover	Range (Min, Max):	asthma-like symptoms of children who had been classified as sensitive."
	N: 161 children	(NR, 119.92)	
	1898-2120 "half-h means"	Monitoring Stations: 1	
	Statistical Analyses: Correlations Regression Analysis	Copollutant (correlation):	
	Covariates: Morning, evening, night	LQ = 0.751	
	Season: Spring, Summer, Winter, Fall	PAS = 0.354	
	Dose-response Investigated? No		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Moshammer et al. (2006, 090771) Period of Study: 2000-2001 Location: Linz, Austria	Outcome: Respiratory symptoms and decreased lung function Age Groups: Children ages 7-10 Study Design: Time-series N: 163 children Statistical Analyses: Generalized estimating equations model Covariates: Sex, age, height, weight Dose-response Investigated? NR Statistical Package: NR Lags Considered: 1	Pollutant: PM _{2.5} Averaging Time: 8 h Mean (SD): Maximum 24 h: 76.39 Annual avg: 19.06 Percentiles: 8-h mean 25th: 8.64 8-h mean 50th(Median): 15.70 8-h mean 75th: 25.82 Monitoring Stations: 1 station Copollutant (correlation): PM ₁ r = 0.95 PM ₁₀ r = 0.93 NO ₂ r = 0.54	PM Increment: 10 μg/m³ % change in Lung Function per 10 μg/m³ FEV: 0.23 FVC: 0.08 FEV _{0.5} : 0.33 MEF ₇₅ %: -0.49 MEF ₅₀ %: -0.58 MEF ₂₅ %: -0.83 PEF: 0.41 % change in Lung Function per IQR FEV: -0.59 FVC: -0.2 FEV _{0.5} : 0.85 MEF ₇₅ %: -1.25 MEF ₇₅ %: -1.25 MEF ₇₅ %: -1.25 MEF ₇₅ %: -1.06 Multiple pollutant model FEV: 0.10 FVC: 0.21 FEV _{0.5} : 0.06 MEF ₇₅ %: -0.15 MEF ₅₀ %: -0.15 MEF ₅₀ %: -0.21 PEF: -0.18 % change in Lung Function per IQR FEV: 0.27 FVC: 0.54 FEV _{0.5} : 0.39 MEF ₅₀ %: 0.11 MEF ₂₅ %: 0.54 PEF: 0.015: -0.47
Reference: Murata et al. (2007, 189159) Period of Study: Nov 2004 Location: Tokyo, Japan	Outcome: Exhaled nitric oxide levels, (eNO), a marker of airway inflammation Age Groups: 5-10 yr Study Design: Cohort/Panel study N: 19 schoolchildren* Statistical Analyses: Linear regression Covariates: None Season: Nov (fall) Dose-response Investigated? No Statistical Package: SAS Lags Considered: Lag h 1-24, 8-h ma, 7-h ma, 6-h ma, 24-h ma	Pollutant: PM _{2.5} Averaging Time: Hourly, 24 h Mean (SD): 39.0 (16.9) µg/m³ (daily mean) Range (Min, Max): 10, 120 (range of hourly values) Monitoring Stations: 1, on the street where the children lived	PM Increment: IQR 110 µg/m³ Mean [Lower CI, Upper CI] lag: 0.145 [0.62, 0.228] ppb eNO 8-h ma Notes: Associations for lag h 1-24 presented in figures. Authors state "Individual hourly lag models showed a consistent association between the eNO value and PM _{2.5} for exposure in the previous 24 h" "The trend on the graphs strongly suggest that fluctuations in eNO were affected by changes in air pollutants over at least the previous 8-h period" PM _{2.5} , black carbon, and NO _X were all highly correlated (shown in figures), so effects are difficult to separate Pollutant concentrations peaked in the morning and evening h during traffic peaks

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Neuberger et al. (2004, 093249)	Outcome: Questionnaire derived asthma score, and a 1-5 point	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: Jun 1999-Jun 2000	respiratory health rating by parent	Averaging Time: 24 h	Change in mean associated unit increase in PM
ocation: Austria (Vienna and a rural	Age Groups: 7-10 yr	Copollutant (correlation):	(p-value)
area near Linz)	Study Design: Cross-sectional survey	PM ₁₀ (r=0.94) in Vienna	lag
	N: about 2000 children		Respiratory Health score
	Statistical Analyses: mixed models linear regression-used factor analysis to develop the "asthma score"		Vienna: 0.016 (p>0.05) lag 4 week avg Rural area: 0.022 (p < 0.05) lag 4 week avg
	Covariates: Pre-existing respiratory conditions, temperature, rainy days, # smokers in household, heavy traffic on residential street, gas stove or heating, molds, sex, age of child, altergies of child, asthma in other family members		Asthma score Vienna: 0.006 (p>0.05) lag 4 week avg Rural area: 0.004 (p>0.05) lag 4 week avg
	Dose-response Investigated? No		
	Statistical Package: NR		
	Lags Considered: 4-wk avg (preceding		
	interview)		
Reference: Neuberger et al. (2004,	Outcome: Ratio measure: Time to peak tidal expiratory flow divided by total	Pollutant: PM _{2.5}	PM Increment: Interquartile range (NR)
93249)	expiration time (i.e., tidal lung function,	Averaging Time: 24 h	Change in mean associated with an
eriod of Study: Sep 1999-Mar 2000	a surrogate for bronchial obstruction)	PM Component: Total carbon	IQR increase in PM (p-value) lag
ocation: Vienna, Austria	Age Groups: 3.0-5.9 yr (preschool children)	EC	PM _{2.5} mass: -0.987 (0.091)
	Study Design:	OC	lag 0
	Longitudinal prospective cohort	Copollutant (correlation):	Total carbon: -0.815 (0.041)
	N: 56 children	PM ₁₀ (r=0.94) in Vienna	lag 0
	Statistical Analyses: mixed models linear regression, with autoregressive correlation structure		EC: -0.657 (0.126)
	Covariates: Age, sex, respiratory rate,		lag 0 OC: -0.942 (0.025)
	phase angle, temperature, kindergarten, parental education, observer (also in sensitivity analyses: height, weight, cold/sneeze on same day, heating with fossil fuels, hair cotinine, number of tidal slopes used to measure tidal lung function)		lag 0
	Dose-response Investigated? No		
	Statistical Package: SAS 8.0		
	Lags Considered: Lag 0		
Reference: Neuberger et al. (2004,	Outcome: Forced oscillatory resistance	Pollutant: PM _{2.5}	PM Increment: 1 µg/m ³
93249)	(at zero Hz), FVC, FEV ₁ , MÉF ₂₅ , MEF ₅₀ , MEF ₇₅ , PEF	Averaging Time: 24 h	Notes: Authors report increased
eriod of Study: Oct. 2000-May 2001	Age Groups: 7-10 vr	Monitoring Stations: 1	oscillatory resistance significantly associated with PM _{2.5} (lag 0)
ocation: Linz, Austria	Study Design: Longitudinal prospective cohort	Č	accounted man m _{2.5} (lag o)
	N: 164 children		
	Statistical Analyses: Mixed models linear regression with autoregressive correlation structure		
	Covariates: Sex, time and individual		
	Season: Oct-May		
	Dose-response Investigated? No		
	Statistical Package: NR		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: O'Connor et al. (2008, <u>156818</u>)	Outcome: Pulmonary function and respiratory symptoms	Pollutant: PM _{2.5}	PM Increment: 13.2 μg/m ³ 90th-10th percentile
Period of Study: Aug 1998-Jul 2001	Age Groups: 5-12 yr	Averaging Time: 24 h Mean (SD): 14	Change in pulmonary function
Location: Boston, the Bronx, Chicago, Dallas, New York, Seattle, Tucson	Study Design: Inner-City Asthma Study (ICAS)-Panel/cohort study	Range (Min, Max):	lag FEV₁: -1.47 (-2.00 to -0.94) lag 0-4
	N: 861 children	5-35 (estimated from Fig)	PEFR: -1.10 (-1.65 to -0.56) lag 0-4
	Statistical Analyses: Mixed effects	Copollutant (correlation):	PM _{2.5} +O ₃ +NO ₂ FEV ₁ : -0.73 (-1.33 to -0.12) lag 0-4
	models	NO ₂ (r=0.59)	PEFR: -0.25 (-0.88, 0.38) lag 0-4
	Lags Considered: Lag 0-6, 0-4	SO ₂ (r=0.37)	, , , ,
		CO (r=0.44)	Risk of Respiratory Symptoms lag
		O ₃ (r=-0.02)	Wheeze: 0.98 (0.88, 1.09) lag 0-4 Nighttime asthma: 1.11 (0.94, 1.30) lag 0-4 Slow play: 1.01 (0.89, 1.15) lag 0-4 Missed school: 1.33 (1.06, 1.66) lag 0-4
			PM _{2.5} +O ₃ +NO ₂ Wheeze: 0.92 (0.81, 1.05) lag 0-4 Nighttime asthma: 1.03 (0.86, 1.23) lag 0-4 Slow play: 0.92 (0.79, 1.06) lag 0-4 Missed school: 1.13 (0.87, 1.45) lag 0-4
Reference: Peacock et al. (2003,	Outcome: Reduced peak expiratory	Pollutant: Sulfate (SO ₄ ²⁻)	Sulfate (SO ₄ ²⁻)
042026)	flow rate (PEFR)	Averaging Time: Daily avg	Increment: 1.3 µg/m³
Period of Study: Nov 1996-Feb 1997	Age Groups: 7-13 yr of age	Mean (SD): Urban 2	Odds ratio [Lower CI, Upper CI]
Location: northern Kent, UK	Study Design: Time Series	24 h avg: 1.3 (1.1)	lag:
	N : 179	Percentiles:	1.090 [0.898, 1.322]
	Statistical Analyses: generalized estimating equations	10th: Urban 2 0.5	5 days
	Covariates: Day of the week, 24-h	90th: Urban 2 2.4	
	mean outside temperature.	Range (Min, Max):	
	Season: Winter	Urban 2 0.3, 6.7	
	Dose-response Investigated? No	Monitoring Stations: 3	
	Statistical Package: STATA		
	Lags Considered: Same day, lag 1, lag 2, 5-day ma		
Reference: Peled, et al. (2005,	Outcome: Reduced peak expiratory	Pollutant: PM _{2.5}	PM Increment: 1 µg/m ³
156015)	flow (PEF)	Averaging Time: Daily	β coefficient (SE) [95% CI]
Period of Study: 5-6 wk between Mar-Jun 1999 and Sep-Dec 1999.	Age Groups: 7-10 yr	Mean:	Ashkelon:
Location: Ashdod, Ashkelon and	Study Design: Nested cohort study N: 285	Ashkelon: 24.0	PM _{2.5} MAX: -0.144 (0.12) [-0.38-0.09]
Sderot, Israel		Sderot: 29.2	Ashdod:
	Statistical Analyses: Time series analysis	Ashdod: 23.9	PM _{2.5} MAX: -2.74 (0.61) [-3.95-1.53]
	Generalized linear model, generalized estimating equations, one-way ANOVA, generalized linear model	PM Component: Local industrial emissions, desert dust, vehicle emissions and emissions from two electric power plants	PM _{2.5} MAX TMAX: 0.11 (0.02) [0.06- 0.16] In Ashdod, PM _{2.5} and an interaction
	Covariates: Seasonal changes,	Monitoring Stations: 6	between PM _{2.5} and temperature were significantly associated.
	meteorological conditions and personal physiological, clinical and socioeconomic measurements	Copollutant: PM ₁₀	agamoantiy associated.
	Season: Spring, Fall		
	Dose-response Investigated? No		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Penttinen et al. (2006,	Outcome: Decreased lung function and	Pollutant: PM _{2.5}	PM Increment: 1.3 μg/m ³
087988) Period of Study: Nov 1996-Apr 1997	respiratory symptoms Age Groups: Adults, mean age 53 yr	PM Component: Soil, heavy fuel oil, sea salt	PM ₂₅ , long range:
Location: Helsinki, Finland	Study Design: Time Series	Averaging Time: 24 h	PEF Morning: 0.37[-0.59, 1.34] lag 0
, , ,	N: 78 people	Percentiles: 25th:	-1.04[-1.88 to -0.19] lag 1 -0.82[-1.81, 0.16] lag 2
	Statistical Analyses: Generalized least	Long range transport: 2.44 Local combustion: 1.75 Soil: 0.14	0.22[-0.64, 1.08] lag 3 -0.24[-1.12, 0.64] 5 day mean.
	Statistical Analyses: Generalized least squares autoregressive model Covariates: Temperature, relative humidity, day of study, day of study squared, binary dummy variable for weekends Season: Winter, Spring Dose-response Investigated? NR Statistical Package: SAS version 6 Lags Considered: 0-3		PEF Afternoon: 0.20[-0.67, 1.06] lag 0 -0.20[-1.24, 0.83] lag 1 -0.30[-1.14, 0.53] lag 2 0.45[-0.57, 1.47] lag 3 0.03[-0.79, 0.85] 5 day mean. PEF Evening: -0.33[-1.30, 0.64] lag 0 -0.29[-1.13, 0.55] lag 1 -0.41[-1.46, 0.64] lag 2 0.39[-0.47, 1.24] lag 3 0.07[-0.81, 0.95] 5 day mean PM ₂₅ , local combustion: PEF Morning: -0.73[-1.69, 0.23] lag 0 -0.46[-1.24, 0.32] lag 1 -0.43[-1.49, 0.63] lag 2 0.34[-0.47, 1.15] lag 3 -0.25[-1.03, 0.53] 5 day mean. PEF Afternoon: -0.21[-1.07, 0.65] lag 0 -0.81 [-1.77, 0.16] lag 1 -0.83[-1.74, 0.09] lag 2 0.20[-0.80, 1.20] lag 3 -0.87[-1.63 to -0.12] 5 day mean. PEF Evening: -0.51[-1.48, 0.45] lag 0 -1.16[-1.93 to -0.39] lag 1 0.23[-1.35, 0.90] lag 2 0.56[-0.21, 1.32] lag 3 -1.14[-1.95 to -0.33] 5 day mean PM ₂₅ , soil: PEF Morning: 0.81[0.05, 1.57] lag 0 0.03 [-0.65, 0.71] lag 1 0.50[-0.34, 1.35] lag 2 -0.07[-0.74, 0.61] lag 3 0.39[-0.46, 1.23] 5 day mean. PEF Afternoon: 1.05[0.38, 1.72] lag 0 0.40[-0.38, 1.19] lag 1 0.50[-0.34, 1.35] lag 2 -0.07[-0.74, 0.61] lag 3 0.39[-0.46, 1.23] 5 day mean. PEF Vening: 1.08[0.33, 1.84] lag 0 0.40[-0.38, 1.19] lag 1 0.66 [0.03, 1.30] lag 2 -0.36[-1.12, 0.41] lag 3 0.55 [-0.21, 1.32] 5 day mean. PEF Evening: -0.52[-1.00, 0.56] lag 0 0.40[-0.38, 1.73] 5 day mean. PEF Afternoon: 1.05[0.38, 1.72] lag 0 0.40[-0.38, 1.19] lag 1 0.66 [0.03, 1.30] lag 2 -0.36[-1.12, 0.41] lag 3 0.55 [-0.21, 1.32] 5 day mean.
			-0.04[-0.75, 0.67] lag 0

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			0.29[-0.98, 1.55] lag 1 0.08 [-1.13, 1.28] lag 2 0.62[-0.31, 1.54] lag 3 0.07 [-0.64, 0.78] 5 day mean.
			PEF Evening: 0.57[-0.23, 1.37] lag 0 0.12[-0.92, 1.15] lag 1 -0.97[-2.39, 0.45] lag 2 0.40[-0.31, 1.12] lag 3 0.43[-0.33, 1.19] 5 day mean
			PM ₂₅ , salt: PEF Morning: 0.76[-0.13, 1.65] lag 0 0.43 [-0.30, 1.16] lag 1 0.13[-0.75, 1.02] lag 2 0.38[-0.47, 1.23] lag 3 0.95[-0.18, 2.09] 5 day mean.
			PEF Afternoon: 0.62[-0.18, 1.41] lag 0 0.80[-0.08, 1.69] lag 1 0.14[-0.62, 0.90] lag 2 0.16[-0.83, 1.15] lag 3 0.88 [-0.18, 1.94] 5 day mean.
			PEF Evening: 1.09[0.19, 1.98] lag 0 0.63[-0.10, 1.35] lag 1 0.32[-0.62, 1.26] lag 2 -0.31[-1.16, 0.54] lag 3 0.88[-0.27, 2.02] 5 day mean
			PM ₂₅ , unidentified: PEF Morning: 0.38[-0.67, 1.43] lag 0 0.09[-0.83, 1.00] lag 1 0.22[-0.82, 1.26] lag 2 0.78 [-0.10, 1.66] lag 3 0.78[-0.14, 1.69] 5 day mean.
			PEF Afternoon: 0.02[-0.92, 0.96] lag 0 0.65[-0.48, 1.77] lag 1 0.17[-0.71, 1.05] lag 2 0.69[-0.36, 1.75] lag 3 0.17 [-0.72, 1.06] 5 day mean.
			PEF Evening: -0.11[-1.17, 0.95] lag 0 0.19[-0.72, 1.10] lag 1 0.86[-0.25, 1.96] lag 2 0.15[-0.70, 1.01] lag 3 -0.19[-1.15, 0.77] 5 day mean
			PM ₂₅ , local combustion: PEF morning: Cu: -0.25 [-1.25, 0.75] Zn: -0.45[-1.19, 0.29] Mn: 0.13[-0.83, 1.08] Fe: 0.08[-0.70, 0.85]. PEF afternoon: Cu: -0.37[-1.29, 0.55] Zn: -0.19[-0.87, 0.50] Mn: -0.48[-1.37, 0.42] Fe: 0.29[-0.45, 1.04]. PEF evening: Cu: -0.48[-1.47, 0.52] Zn: -0.17[-0.92, 0.57] Mn: 0.51[-0.44, 1.47] Fe: 0.34[-0.46, 1.14]
			PM ₂₅ , long range: PEF morning: S: 0.11[-0.886, 1.07] K: -0.10[-1.00, 0.80] Pb: -0.62[-1.37, 0.13]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Br: -0.40 [-1.40, 0.60]. PEF afternoon: S: -0.05[-0.92, 0.81] K: 0.26[-0.56, 1.07] Pb: -0.12[-0.84, 0.60] Br: 0.15[-0.81, 1.12]. PEF evening: S: 0.08[-0.86, 1.02] K: 0.18[-0.70, 1.07]; Pb: -0.20[-0.97, 0.58] Br: 0.35[-0.71, 1.40]
			PM _{2.5} , soil: PEF morning: Si: 0.27[-0.43, 0.97] Al: 0.17 [-0.72, 1.05] Ca: 0.13[-1.08, 1.35]. PEF afternoon: Si: 0.39[-0.24, 1.01] Al: 0.49[-0.29, 1.27] Ca: 0.15[-0.92, 1.22] PEF evening: Si: 0.60[-0.06, 1.26] Al: 0.76[-0.08, 1.60] Ca: 0.90[-0.22, 2.03]
			PM _{2.5} , Oil combustion: PEF morning: V: -0.01[-0.87, 0.86] Ni: -0.09[-1.08, 0.90]. PEF afternoon: V: -0.48[-1.32, 0.35] Ni: 0.26[-0.72, 1.23]. PEF evening: V: 0.02[-00.88, 0.92] Ni: 0.50[-0.55, 1.55]
			PM ₂₅ , Sea salt: PEF morning: Na: 0.92[-0.34, 2.17] Cl: 0.93[0.08, 1.79] PEF afternoon: Na: 0.96[-0.24, 2.16] Cl: 0.57[-0.22, 1.36] PEF evening Na: 0.87[-0.40, 2.15] Cl: 0.65[-0.19, 1.49]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Study Reference: Pino et al. (2004, 050220) Period of Study: Apr 1995-Oct 1996 Location: Santiago, Chile	Design & Methods Outcome: Respiratory Symptoms, Wheezing bronchitis Study Design: Time-series Statistical Analyses: Bayesian hierarchical analysis, cubic spline Age Groups: 4 mo-2 yr old	Concentrations ¹ Pollutant: PM _{2.5} Averaging Time: 24-h avg Mean (SD) unit: 52.0 (31.6) Range (5th, 95th): 17.0, 114.0 Copollutants (correlation): SO ₂ : r= 0.73 NO ₂ : r= 0.85	Increment: 10 μg/m³ % Increase (Lower CI, Upper CI) lag: % increase in wheezing bronchitis and PM _{2.5} exposure for infants 4 mo-2 yr old 4.75 (1.25, 8.25) 1 3.85 (0.45, 7.75) 2 2.25 (-1.00, 6.00) 3 1.75 (-2.20, 5.75) 4 4.00 (0.25, 8.00) 5 5.00 (1.00, 8.50) 6 7.00 (3.50, 11.00) 7 8.10 (4.00, 11.25) 8 9.00 (6.00, 12.00) 9 8.75 (5.75, 12.00) 10 1.50 (-3.50, 4.75) 11 0.25 (-3.75, 4.25) 12 0.00 (4.00, 4.00) 13 1.00 (-3.50, 4.50) 14 1.50 (-3.50, 4.50) 15 OR for wheezing bronchitis and PM _{2.5} exposure in infants 4 mo to 2 yr old according to family history of asthma Yes to family history of asthma 1.09 (1.00, 1.19) 1 1.10 (1.02, 1.20) 2
Reference: Rabinovitch et al., (2006, 088031) Period of Study: 2001-2003 (two winters 2001-2002 and 2002-2003)	Outcome: Bronchodilator doser activations (daily) and urinary leukotriene E4 (daily) Age Groups: Children 6-13 yr old	Pollutant: PM _{2.5} Averaging Time: Morning (midnight to 11: 00 AM) mean Morning (midnight to 11: 00 AM)	1.11 (1.02, 1.22) 3 No to family history of asthma 1.04 (1.00, 1.08) 1 1.02 (0.98, 1.06) 2 1.01 (0.96, 1.05) 3 PM Increment: IQR (over current and previous day) Doser Activation Morning avg PM ₂₅ TEOM Year 1:
Location: Denver, CO	Study Design: School-based cohort study N: 73 children Statistical Analyses: Doser activation: Poisson regression with GEE with AR1 working covariance Urinary leukotriene E4: linear mixed model with spatial exponential covariance Covariates: Temperature, pressure, humidity, time trend, Friday indicator, upper respiratory infection (URI), height (leukotriene E4 only). Season: Winter Dose-response Investigated? NR Statistical Package: SAS Lags Considered: 0-2 days	maximum 24-h mean Mean (SD): 24-h mean, TEOM Year 1, N: 55 days: 6.5 (3.2) Year 2, N: 128 days: 8.2 (3.7) 24-h mean, FRM Year 1, N: 55 days: 11.8 (7.2) Year 2, N: 122 days: 11.2 (5.5) Morning mean, TEOM Year 1, N: 71 days: 7.4 (4.7) Year 2, N: 127 days: 9.1 (5.0) Morning maximum, TEOM Year 1, N: 71 days: 15.5 (9.5) Year 2, N: 127 days: 18.4 (9.6) Percentiles: 24-h mean, TEOM Year 1 25th: 4.4 50th(Median): 6.2 75th: 7.9 Year 2 25th: 55 50th(Median): 7.3 75th: 9.9 24-h mean, FRM Year 1 25th: 7.8 50th(Median): 10.1 75th: 14.1 Year 2 25th: 7.5 50th(Median): 9.3 75th: 13.3	Pct Increase: 3.0 [-0.5: 6.6] p = 0.10 Year 2: Pct Increase: 2.7 [1.1: 4.4] p = 0.006 Aggregated yr: 2.2 [0.7: 3.6] p = 0.005 Morning max PM ₂₅ TEOM Year 1 Pct Increase: 4.0 [0.5: 7.6] p = 0.02 Year 2 Pct Increase: 4.0 [0.5: 7.6] p = 0.02 Year 2 Pct Increase: 2.3 [0.7: 4.0] p = 0.009 Aggregated yr 2.6 [0.9: 4.2] p= 0.002 24-h PM ₂₅ TEOM Lag 0: 0.4 [-0.7: 1.6] p-value = 0.45 Lag 1: 0.9 [-0.7: 2.4] p-value = 0.27 Lag 2: -0.4 [-1.7: 0.9] p-value = 0.59 Lag 0-2 Avg: 0.6 [-1.0: 2.2] p-value = 0.43 FRM Lag 0: 0.2 [-1.2: 1.6] p-value = 0.81 Lag 1: 0.9 [-0.9: 2.6] p-value = 0.81 Lag 2: -0.2 [-2.2: 1.8] p-value = 0.88 Lag 0-2 Avg: 1.2 [-0.6: 2.9] p-value = 0.20 Morning avg PM ₂₅ TEOM URI not adjusted Mild/Moderate Asthmatics: 1.5 [-0.5: 3.4] p = 0.14 Severe Asthmatics: 3.7 [1.6: 5.8] p-= 0.0006 Difference between severity groups, p = 0.12 Aggregated severity group: 2.2 [0.7: 3.6] p= 0.005 URI adjusted Mild/Moderate Asthmatics:
		Morning mean, TEOM Year 1 25th: 4.0	1.0 [-1.9: 3.9]p= 0.50 Severe Asthmatics: 6.0 [1.8: 10.1] p = 0.006 Difference between severity groups,

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Gludy	Design & Methods	50th(Median): 5.9 75th: 9.6 Year 2 25th: 5.2 50th (Median): 8.5 75th: 11.6 Morning maximum, TEOM Year 1 25th: 8 50th (Median): 13 75th: 20 Year 2 25th: 11 50th (Median): 16 75th: 23 Range (Min, Max): 24-h mean, TEOM Year 1 (2.1, 23.7) Year 2 (1.7, 20.5) 24-h mean, FRM Year 1 (4.3, 53.5) Year 2 (3.4, 26.3) Morning mean, TEOM Year 1 (1.4, 22.7) Year 2 (1.6, 30.2) Morning maximum, TEOM Year 1 (4, 42) Year 2 (4, 46) Monitoring Stations: 2 (1 TEOM and 1 Federal Reference Monitor [FRM])	p = 0.08 Aggregated severity groups: 2.7 [-0.1: 5.4] p= 0.06 Morning maximum PM ₂₅ TEOM URI not adjusted Mild/Moderate Asthmatics: 1.9 [-0.2: 4.1] p= 0.07 Severe Asthmatics: 3.9 [1.1: 6.8] p = 0.006 Difference between severity groups, p = 0.29 Aggregated severity groups: 2.6 [0.9: 4.2] p= 0.002 URI adjusted Mild/Moderate Asthmatics: 1.6 [-2.2: 5.4] p = 0.41 Severe Asthmatics: 8.1 [2.9: 13.4] p = 0.003 Difference between severity groups, p = 0.03 Aggregated severity groups: 3.8 [0.2: 7.4] p = 0.04 Leukotriene E4 24-h PM ₂₅ TEOM Lag 0: 3.3 [-0.7: 7.2] p = 0.09 Lag 1: -1.6[-5.7: 2.5] p = 0.40 Lag 2: 1.1 [-2.8: 5.1] p= 0.64 Lag 0-2 Avg: 2.3 [-4.0: 8.6] p = 0.45 FRM Lag 0: 2.7 [1.1: 6.5] p = 0.12 Lag 1: -0.8 [-4.9: 3.3] p = 0.65 Lag 2: -0.8 [-4.9: 3.3] p = 0.71 Lag 0-2 Avg: 2.6 [-2.3: 7.5] p= 0.27 Leukotriene E4 Morning avg PM ₂₅ TEOM Height 25percentile: 8.9 [3.0: 14.7] p= 0.004 Height 75percentile: 1.9 [-3.4: 7.3] p = 0.47 Model w/o Height × Pollutant: 5.6 [1.0 10.2] p = 0.02 Morning maximum PM ₂₅ TEOM Height 50percentile: 8.3 [3.4: 13.2] p = 0.001 Height 50percentile: 8.3 [3.4: 13.2] p= 0.001 Height 50percentile: 8.3 [-2.0: 8.4] p= 0.004 Height 50percentile: 6.1 [2.1: 10.2] p= 0.004 Height 75 percentile: 6.2 [-2.0: 8.4] p= 0.23
Poforonce: Pahinovitch et al. (2004	Outcome: Pacniratory symptoms	Pollutant: PM	Model w/o Height × Pollutant: 6.2 [1.9: 10.5] p = 0.006 PM Increment: 1 μg/m ³
Reference: Rabinovitch et al. (2004, 096753)	Outcome: Respiratory symptoms, Asthma symptoms (cough and wheeze), Upper respiratory symptoms	Pollutant: PM _{2.5} Averaging Time: 24-h avg	β (SE)
Periods of Study: Nov 1999-Mar 2000	Study Design: Time-series	Mean (SD): 10.8 (7.1)	AM: -0.003 (0.009)
Nov 2000-Mar 2001	Statistical Analyses: Logistic linear	Range (Min, Max): (1.8, 53.5)	PM: 0.004 (0.011)
lov 2001-Mar 2002	regression, PROC Mixed, PROC Genmod	Copollutant (correlation):	Odds Ratio (Lower CI, Upper CI)
Location: Denver, Colorado	Age Groups: 6-12	NO ₂ SO ₂ O ₃	Lag 0.971 (0.843, 1.118) 0-3 avg.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ranzi et al. (2004, <u>089500</u>)	Outcome: respiratory symptoms, PEF	Pollutant: PM _{2.5}	PM Increment: 10 µg/m ³
Period of Study: Feb-May 1999	measurements, drug consumption and daily activity	Averaging Time: 24 h	Effect Estimate:
ocation: Emilia-Romagmna, Italy	Age Groups: Children, mean age=(7.2-	Mean (SD):	Urban-industrial panel
urban-industrial and rural area)	7.9 yr)	Urban= 53.07	Cough and Phlegm: RR=1.0044
	Study Design: Panel study	Rural= 29.11	(1.0011-1.0077)
	N: 120 children	Monitoring Stations: 3	
	Statistical Analyses: Ecological analysis and Panel analysis	Copollutant (correlation):	
	Covariates: Temperature, humidity, gender, medicinal use, symptomatic	TSP: r=0.613 Daily air pollution concentrations: r=	
	status of previous day	0.658	
	Dose-response Investigated? No		
	Statistical Package: NR		
	Lags Considered: 0, 1, 2, 3, 0-3 ma		
Reference: Rodriguez et al. (2007, 092842)	Outcome: Body temperature, cough, runny/ blocked nose, wheeze/ rattle	Pollutant: PM _{2.5}	PM Increment: NR
Period of Study: 1996-2003	chest (daily)	Averaging Time: 1 h and 24 h	[Lower CI, Upper CI]
ocation: Perth, Australia	Age Groups: Children 0-5 yr old	Mean (SD): 1-h averaging, 20.767	lag: NR
Total, Adolana	Study Design: hospital-based cohort	24-h averaging, 8.534	LAG: 0 day PM ₂₅ , 1-h
	study N: 198-263 children	Range (Min, Max): 1-h averaging	Body temperature: 1.004 [0.998: 1.011 Cough: 1.006 [1.000: 1.012]
		(0.012: 93.433)	Wheeze/rattle chest: 1.004 [0.998: 1.010]
	Statistical Analyses: Logistic regression with GEE and AR (order not	24-h averaging	Runny/blocked nose: 0.997 [0.983: 1.010]
	specified) working covariance	(0.004: 39.404)	PM _{2.5} , 24-h
	Covariates: temperature, humidity Dose-response Investigated? No	Monitoring Stations: 10 total, usually 3-5 sites for each pollutant	Body temperature: 1.005 [0.986: 1.024 Cough: 1.019 [0.999: 1.040]
	Statistical Package: SAS	Copollutant (correlation):	Wheeze/rattle chest: 0.990 [0.969: 1.012]
	Lags Considered: 0-5 days	O ₃	Runny/blocked nose: 0.968 [0.926: 1.013]
	Lags Considered. 0-5 days	NO ⁺	. ,
		CO	LAG: 5 days PM ₂₅ , 1-h Body temperature: 1.005 [0.999: 1.040 Cough: 1.003 [0.995: 1.010] Wheeze/rattle chest: 1.005 [0.998: 10.12] Runny/blocked nose: 1.015 [1.000: 1.030] PM ₂₅ , 24-h Body temperature: 1.020 [0.998: 1.011 Cough: 1.006 [0.984: 1.011] Wheeze/rattle chest: 1.018 [0.997: 1.040] Runny/blocked nose: 1.039 [0.990: 1.089]
			LAG: 0-5 days PM ₂₅ , 1-h Body temperature: 1.000 [0.998: 1.002 Cough: 1.001 [0.999: 1.003] Wheeze/rattle chest: 1.002 [1.000: 1.004] Runny/blocked nose: 1.01 [0.997: 1.006] 1.02 PM ₂₅ , 24-h Body temperature: 1.000 [0.994: 1.005 Cough: 1.004 [0.997: 1.011] Wheeze/rattle chest: 1.001 [0.995: 1.007] Runny/blocked nose: 0.998 [0.985: 1.011]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Study Reference: Sakai et al. (2004, 087435) Period of Study: Nov 1999-Mar 2001 Location: Diesel-powered ship from Tokyo, Japan to Showa Station on Ongul Island, Antarctica for 366 days (from Feb 1, 2000) and then heading back to Japan on Feb 1, 2001	Outcome: circulating leukocyte counts and serum inflammatory cytokine levels Age Groups: 24-57 yr, mean=36.1 ± 4.7 yr	Concentrations ¹ Pollutant: PM _{5.0-2.0} Averaging Time: 24 h Unit (i.e. μg/m3): particles/L PM Component: organic and inorganic substances, including microorganisms Copollutant (correlation): PM _{2.0-0.3} PM _{10-5.0}	Effect Estimate: Multiple regression analysis between inhaled factors in Antarctica Total leukocyte Cigarette smoking= 0.211, p < 0.001 Support staff= 0.139, p=0.024 Total PM= 0.168, p=0.004 Segmented PMN Cigarette smoking= 0.015, p=0.805 Support staff= 0.097, p=0.119 Total PM= 0.272, p < 0.001 Band-formed PMN Cigarette smoking= 0.035, p=0.543 Support staff= 0.010, p=0.864 Total PM= 0.470, p < 0.001 Monocyte
			Cigarette smoking= 0.081, p=0.187 Support staff= -0.019, p=0.759 Total PM= 0.328, p < 0.001 G-CSF Cigarette smoking= 0.131, p < 0.038 Support staff= 0.176, p=0.005 Total PM= 0.078, p=0.186 IL-6 Cigarette smoking= 0.182, p=0.004 Support staff= 0.076, p=0.228 Total PM= 0.158, p=0.008
Reference: Sakai et al. (2004, 087435) Period of Study: Nov 1999-Mar 28, 2001 Location: Diesel-powered ship from Tokyo, Japan to Showa Station on Ongul Island, Antarctica for 366 days (from Feb 1, 2000) and then heading back to Japan on Feb 1, 2001	Outcome: circulating leukocyte counts and serum inflammatory cytokine levels Age Groups: 24-57 yr, mean=36.1 ± 4.7 yr Study Design: cohort N: 39 members of 41st Japanese Antarctic Research Expedition (JARE-41) Statistical Analyses: ANOVA Covariates: Smoking history, occupational pollutant exposure Dose-response Investigated? No Statistical Package: SPSS 11.5J	Pollutant: PM _{10-5.0} Averaging Time: 24 h Unit (i.e. µg/m3): particles/L Monitoring Stations: NR Copollutant (correlation): PM _{2.0-0.3} PM _{10-5.0}	Effect Estimate: Multiple regression analysis between inhaled factors in Antarctica Total leukocyte Cigarette smoking= 0.211, p < 0.001 Support staff= 0.139, p=0.024 Total PM= 0.168, p=0.004 Segmented PMN Cigarette smoking= 0.015, p=0.805 Support staff= 0.097, p=0.119 Total PM= 0.272, p < 0.001 Band-formed PMN Cigarette smoking= 0.035, p=0.543 Support staff= 0.010, p=0.864 Total PM= 0.470, p < 0.001 Monocyte Cigarette smoking= 0.081, p=0.187 Support staff= -0.019, p=0.759 Total PM= 0.328, p < 0.001 G-CSF Cigarette smoking= 0.131, p < 0.038 Support staff= 0.176, p=0.005 Total PM= 0.078, p=0.186

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Silkoff et al. (2005, <u>087471</u>)	Outcome: Lung function: FEV ₁ , PEF	Pollutant: PM _{2.5}	PM Increment: SD
Period of Study: Winter 1999-2000,	Age Groups: Adults (>40 yr-old) with	Averaging Time: 24 h	Winter 1999-2000: 5.2
Winter 2000-2001	COPD, as well as >10 pack-yr tobacco use, FEV ₁ < 70%, FEV ₁ /FVC < 60%,	Mean (SD):	Winter 2000-2001: 9.6
Location: Denver, CO	and no other lung disease	Winter 1999-2000: 9.0 (5.2)	Model results reported graphically only.
	Study Design: COPD patient panel study (2 independent panels	Winter 2000-2001: 14.3 (9.6)	No quantitative results reported. Direction of slope (±) and statistical
	One for each winter)	Percentiles: Winter 1999-2000	significance (SIG: yes; NS: no) inferred from graphs.
	N: 34 subjects (16 1st winter, 18	25th 5.4 50th(Median): 7.7	Among subjects with severe COPD
	second winter)	75th: 11.3	observed in Winter 1999-2000, statistically significant, but marginal,
	Statistical Analyses: Mixed effects models with first-order, autoregressive,	Winter 2000-2001 25th 7.6	improvements in PEF associated with
	ma variance-covariance	50th(Median): 11.7 75th: 17.2	morning lag 0 PM _{2.5} .
	Binary outcomes (rescue medication	Range (Min, Max):	There were no statistically significant associations between rescue
	use, total symptom score) assessed using Poisson regression with GEE and	Winter 1999-2000 (1.8, 36.6)	medication use and symptom score with PM.
	first-order, auto-regressive variance- covariance	Winter 2000-2001	
	Covariates: Temperature, relative	(3.4, 59.6)	
	humidity, barometric pressure analysis run separately for each winter	Monitoring Stations: multiple sites	
	Season: Winter	Copollutant (correlation):	
	Dose-response Investigated? No	CO	
	Statistical Package: SAS	NO ₂	
	Lags Considered: 0-2 days	PM ₁₀	
Reference: Sivacoumar et al. (2006,	Outcome: Respiratory symptoms,	Pollutant: PM _{2.5}	The study does not present quantitative
<u>111115</u>)	Decreased pulmonary function	Averaging Time: 24-h avg	results of association.
Period of Study: Apr 1998-May 1998; Sep 1998-Oct 1998	Study Design: Case-control		
Location: Pammal, India	Statistical Analyses: Poisson		
	Age Groups: >18		
Reference: Slaughter et al. (2003, 086294)	Outcome: Asthma attacks, asthma severity, medication use	Pollutant: PM _{2.5}	PM Increment: 10 μg/m³ increase
Period of Study: 1994	Age Groups: 5.1-13.1 yr old	Averaging Time:	RR Estimate [Lower CI, Upper CI] lag:
Location: Seattle, WA	Study Design: Cross-sectional study	Daily Avg	Inhaler use:
Eccusion: ceatile, WA	N: 133 children	25th: 5.0	1-day lag: 1.04 (0.98, 1.10) OR Estimate [Lower CI, Upper CI]
	Statistical Analyses: Ordinal Logistic	50th(Median): 7.3 3	lag: Asthma Attack:
	Regression	75th: 11.3	1-day lag: 1.20 (1.05, 1.37)
	Poisson Modeling	Monitoring Stations: 3	Previous day: 1.13 (1.03, 1.23) Medication Use
	Covariates: Temperature, Day of the Week, Seasonality	Copollutant (correlation):	Nontransition model: Previous Day: 1.08 (1.01, 1.15)
	Dose-response Investigated? No	$PM_{10} = 0.75$	Notes: Figures of estimated odds ratios
	Statistical Package: STATA	CO = 0.82	for having a more serious asthma attack for short-term, within-subject increases in PM _{2.5} , PM ₁₀ , and CO. Transition models additionally control
	Lags Considered: 1-, 2-, 3-day lag		
	Lago Outionered. 1-, 2-, 3-day idy		for the previous day's severity.
			Figures of estimated relative risks for having inhaler use for short-term, within-subject increases in PM _{2.5} , PM ₁₀ , and CO. Transition models additionally control for the previous day's severity.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Strand et al. (2006, 089203)	Outcome: Reduced forced expiratory volume (FEV ₁)	Pollutant: PM _{2.5}	PM Increment : 10 μg/m ³
 ,	Age Groups: 6-12 yr old	Averaging Time: Daily Mean (SD): Outdoor: 12.699 (6.426) Indoor: 8.148 (4.348) Sulfate/PM _{2.5} /outdoor: 0.079 (0.067)	Effects Estimate:
Period of Study: 2002-2004 Location: Denver, Colorado, United States	Study Design: Mixed model analysis (using the default restricted maximum likelihood (REML) estimators)		Using the estimated slope for the validation study model [Lower CI, Upper CI] lag:
	N: 50 children	Sulfate/PM _{2.5} /indoor: 0.074 (0.060) Range (Min, Max):	2.2 percent decrease in FEV ₁ per 10 μg/m ³ increase in ambient PM _{2.5} [0.0,
	Statistical Analyses: least squares regression, SAS "Output Delivery System" (ODS)	Mean Personal: (0, 3.035) Outdoor: (0, 6.303) Indoor: (0, 2.759) PM Component: EC, sulfate, nitrate and	4.3 decrease] 1 day
	Season: Fall and Winter	ETS. Monitoring Stations: 2 fixed monitors	
	Dose-response Investigated? Yes	and up to 10 personal monitors on a	
	Statistical Package: SAS	given day.	
		Copollutant (correlation): Sulfate (0.63)	
Reference: Tang et al. (2007, <u>091269</u>)	Outcome: Peak expiratory flow rate	Pollutant: PM _{2.5}	PM Increment: 24.5 μg/m ³
Period of Study: Dec 2003-Feb 2005	(PEFR) of asthmatic children	Averaging Time: 1 h	RR Estimate [Lower CI, Upper CI]
Location: Sin-Chung City, Taipei	Age Groups: 6-12 yr	Mean (SD):	lag: Change in morning PEFR:
County, Taiwan	Study Design: Panel study	Personal: 27.8 (25.3)	-6.00 (-29.85, 17.85) lag 0
	N: 30 children	Range (Min, Max):	-12.52 (-77.93, 52.9) lag 1 -24.87 (-71.49, 21.74) lag 2
	Statistical Analyses: Linear mixed- effect models were used to estimate the effect of PM exposure on PEFR	Monitoring Stations: 1	-45.67 (-117.09, 25.74) 2-day mean -5.69 (-105.96, 94.59) 3-day mean Change in evening PEFR: 0.50 (-18.82, 19.82) lag 0 16.66 (-7.59, 40.9) lag 1 11.60 (-11.1, 34.31) lag 2 39.97 (7.1, 72.85) 2-day mean -3.32 (-66.14, 59.5) 3-day mean
	Covariates: Gender, age, BMI, history of respiratory or atopic disease in family, SHS, acute asthmatic exacerbation in past 12 mo, ambient temp and relative humidity, presence of indoor pollutants, and presence of outdoor pollutants,		
	Dose-response Investigated? yes		
	Statistical Package: S-Plus 2000		
	Lags Considered: 0-2		
Reference: Timonen et al. (2004, 087915)	Outcome: Urinary concentration of Clara cell protein CC16 of subjects with	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: Oct 1998-Apr 1999	coronary heart disease	Averaging Time: 24 h Mean (SD):	RR Estimate [Lower CI, Upper CI] lag: Pooled estimate; 2.8 (-1.1-6.7) lag 0 2.9 (-0.6-6.5) lag 1 5.0 (-2.4-12.4) lag 2 1.6 (-4.7-7.9) lag 3 9.7 (-6.0-25.4) 5-day mean CC16 was not associated to PM _{2.5} in the pooled analysis but CC16 was
Location: Amsterdam, Netherlands	Age Groups: 50+	Amsterdam: 20.0 µg/m³	
Erfurt, Germany Helsinki, Finland	Study Design: Longitudinal cohort study (panel)	Helsinki: 12.7 µg/m³ Range (Min, Max): Amsterdam: 3.8-82.2 Erfurt: 4.5-118.1	
	N: 37 (Amsterdam)		
	47 (Erfurt)		
	47 (Helsinki)	Helsinki: 3.1-39.8	
	Statistical Analyses: The response of interest was log transformed, creatinine adjusted CC16. Mixed-effect model was used to investigate the association between CC16 and air pollutants.	Monitoring Stations: 3 Copollutant (correlation): Spearman Correlation: NC 0.01-0.1: Amsterdam -0.15 Erfurt 0.62	significantly associated to PM _{2.5} in Helsinki: 23.3 (6.3-40.3) lag 0 (6.4 (-8.2-21.1) lag 1 20.2 (6.9-33.5) lag 2 17.6 (4.3-30.9) lag 3
	Covariates: Subjects, long term time trend, temperature (lags 0-3), relative humidity (lags 0-3), barometric pressure (lags 0-3), and weekday of visit.	Helsinki 0.80	38.8 (15.8-61.8) 5-day mean
	Dose-response Investigated? yes	NO₂: Amsterdam 0.49 Erfurt 0.82	
	Statistical Package: S-Plus and SAS	Helsinki 0.35 CO: Amsterdam 0.58	
		Erfurt 0.77	

Post Provided Pr	Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
185209 MMEF (maximal midexpiratory flow assessed only for children) Period of Study: 1999-2002 assessed only for children Personal Cabin: 8 Personal Cabin: 8 Personal Cabin: 1.3 75/hr: 16.3 75/h	<u> </u>			
Contain stativity Seasesses of unity to funder) Seasesses of unity to funder)		MMEF (maximal midexpiratory flow		ADULT
Personal Age Groups: Adults (56:89-yr-old) Personal 50lin(Median) 11.3 50lin(Median) 11.5 50lin(Me	Period of Study: 1999-2002	assessed only for children)		Personal PM _{2.5} - FEV ₁
Asthmatic children 6-13-yr-old Asthmatic children 6-13-yr-old Study Design: Adult and pediatric panel study over 3 yr with 1 monitoring period ("session") per yr 75th: 10.2 N: 57 adults (33 healthy, 24 with COPD) = 682 subject-days = 207 study-days 17 asthmatic children = 319 subject-days = 98 study-days Statistical Analyses: Mixed effects, longitudinal regression models, with the effects of pollutant decomposed into each subject's a) overall mean o; Difference between their session-specific mean and overall mean o; Difference between their daily values and session-specific mean and overall mean o; Difference between their daily values and session-specific mean and overall mean o; Difference between their daily values and session-specific mean and overall mean o; Difference between their daily values and session-specific mean and overall mean o; Difference between their daily values and session-specific mean and overall mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their daily values and session-specific mean o; Difference between their da	Location: Seattle, WA		Personal	Overall: Lag 0 -6.0 [-29.1: 17.2]
Indoor		•	50th(Median): 11.3	No-COPD: Lag 0 -4.6 [-31.0: 21.9]
panef study over 3 yr with 1 monitoring period ("session") per yr 19. 50th; (Median): 7.5 5th; (Median): 7.5 7th; (1.2 total outdoor 25th; (3.2 to				COPD: Lag 0 -10.2 [-55.8: 35.4]
period ('session') per yr N: 57 adults (33 healthy, 24 with COPD) = 6962 subject-days = 207 study-days 17 asthmatic children = 319 subject-days = 98 study-days Statistical Analyses: Mixed effects, longitudinal regression models, with the effects of pollutant decomposed into each subject's a) overall mean a) overall mean b) Difference between their session-specific mean and overall mean c) Difference between their session-specific mean and overall mean c) Difference between their session-specific mean and overall mean c) Difference between their daily values and session-specific mean Covariates: Gender, age, ventral site temperature and relative humidity, CO, NO ₂ Dose-response investigated? No Statistical Package: SAS Lags Considered: 0-1 days Copollutant (corrolation): CO NO ₂ Dose-response investigated? No Statistical Package: SAS Lags Considered: 0-1 days Copollutant (corrolation): CO NO ₂ Dose-response investigated? No Statistical Package: SAS Lags Considered: 0-1 days Copollutant (corrolation): CO NO ₂ Phys. Phys				
## 1.57 adunts (1.51 realiny, 24 mill COPP) ## 25 study-days ## 37 asthmatic children = 319 subject-days = 98 study-days ## 35 studits (1.51 realing) ## 35 studits (1.52 realing) ## 36 study-days ## 36 studits (1.52 realing) ## 37 studits (1.52 realing) ## 38 studits (1.52 realing) ## 37 studits (1.52		period ("session") per yr	75th: 10.2	Lag 1 2.1 [-1.9: 6.1]
17 asthmatic children = 319 subject-days = 98 study-days 75th: 14 14.45 15.51 14.45 15.51 14.45 15.51				Lag 1 1.9 [-2.5: 6.3]
Adults Personal Personal Personal Adults Personal Statistical Analyses: Mixed effects, longitudinal regression models, with the effects of pollutant decomposed into each subject's a) overall mean b) Difference between their session-specific mean and overall mean c) Difference between their daily values and session-specific mean and overall mean c) Difference between their daily values and session-specific mean and elative humidity, CO, NO ₂ Dose-response Investigated? No Statistical Package: SAS Lags Considered: 0-1 days Coppllutant (correlation): CO NO ₂ Monitoring Stations: 2 also subject-specific local outdoor (2.8, 4.4) Lag 1.29,7 [-102.9: 43.5] COPP: Lag 0.2 [-71.7: 76.8] Lag 1.29,7 [-102.9: 43.5] COPP: Lag 0.0 5 [-5.6: 4.6] Lag 1.23,3 7.8] Covariates: Gender, age, ventral site temperature and relative humidity, CO, NO ₂ Children, Personal 1.0, 49.4 Indoor (2.2, 36.3) Local outdoor (2.8, 4.4) Lag 1.1,7 [-12.0: 14.3] Coppllutant (correlation): CO NO ₂ Monitoring Stations: 2 also subject-specific local outdoors (in- at each home), indoor, and personal Lag 1.49,1 4.52 [-102.6: 12.1] PEF Overall: Lag 0.1.4 [-3.6: 6.4] No-COPD: Lag 0.3 [-3.7.9] Coppllutant (correlation): CO NO ₂ PM _{3.5} PM _{10.2.5} (coarse) Coppllutant (correlation): CO NO ₂ PM _{3.5} PM _{10.2.5} (coarse) PEF Overall: Lag 0.2.3 [-3.3.7.9] Coppllutant (-3.3, 6.6) Lag 1.49,1 4.6.6 [-3.3] CoPD: Lag 0.4 [-5.6: 6.4] No-COPD: Lag 0.4.9 [-2.2: 10.6: 12.1] PEF Overall: Lag 0.2.3 [-3.7.9] Coppllutant (-3.3, 6.6) Lag 1.49,1 4.6.6 [-3.3] CoPD: Lag 0.4 [-5.6: 6.4] No-COPD: Lag 0.4.9 [-2.2: 10.6: 12.1] PEF Overall: Lag 0.2.3 [-3.7.9] No-COPD: Lag 0.4.9 [-3.6: 6.4] No-COPD: Lag 0.4.9 [-3.				
Personal Lag 1 19.4 11.3 : 50.1 No-COPD: Lag 0 1.5 5.05.1 S 5.05.1				
effécts of pollutant decomposed into each subject's a) overall mean b) Difference between their session-specific mean and overall mean c) Difference between their daily values and session-specific mean c) Difference between their daily values and session-specific mean Covariates: Gender, age, ventral site temperature and relative humidity, CO, NO ₂ Dose-response Investigated? No Statistical Package: SAS Lags Considered: 0-1 days Copollutant (correlation): COO NO ₂ Dose-response Investigated? No Statistical Package: SAS Lags Considered: 0-1 days Copollutant (correlation): CO NO NO ₂ Copollutant (correlation): CO NO ₂ PM _{2.5} PM _{102.5} (coarse) Lag 1.24 {4.66.61.3} Lag 1.2.3 {3.3.7.8} Lag 1.2.1 {2.4.97.6.82} Lag 1.2.2 {3.3.3.7.8} Lag 1.2.1 {3.2.2.7.8.0.CC} COPD: Lag 0.2.2 {1.51.8.7} Copollutant (correlation): CO NO ₂ PM _{2.5} PM _{102.5} (coarse) Lag 1.2.4 {3.7.6.82.7.7.6.8} Lag 1.2.4 {3.7.6.82.7.7.6.8} Lag 1.2.4 {3.7.6.82.7.7.6.8} Lag 1.2.4 {3.7.6.82.7.7.6.8} Lag 1.2.5 {3.5.8.4} Copollutant (correlation): Copollutant (corre			Personal	Lag 1 19.4 [-11.3: 50.1]
each subject's a) overall mean b) Difference between their session-specific mean and overall mean c) Difference between their daily values and session-specific mean c) Difference between their daily values and session-specific mean covariates: Gender, age, ventral site temperature and relative humidity, CO, NO2 Dose-response Investigated? No Statistical Package: SAS Lags Considered: 0-1 days Monitoring Stations: 2 also subject-specific local outdoors (i.e., at each home), indoor, and personal CO NO2 Dose-response Investigated? No Statistical Package: SAS Lags Considered: 0-1 days Monitoring Stations: 2 also subject-specific local outdoors (i.e., at each home), indoor, and personal CO NO2 PM2.5 PM102.5 (coarse) Monitoring Stations: 2 also subject-specific local outdoors (i.e., at each home), indoor, and personal CO DI Lag 0 4.0 [-2.2: 10. Lag 1 1.4 [-3.6: 6.32] PEF Overall: Lag 0 2.3 [-3.5: 8.4] COPD: Lag 0 3.2 [-15.5: 8.7] No-COPD: Lag 0 4.9 [-5.5: 6.4] Overall: Lag 0 1.5 [-3.5: 8.4] COPD: Lag 0 4.9 [-6.2: 44.4] COPD: Lag 0 4.9 [-6.2: 44.4] COPD: Lag 0 4.0 [-2.2: 10. Lag 1 4.0 [-4.4: 8.4] COPD: Lag 0 2.3 [-3.3: 7.9] Lag 1 -7.0 [-4.4: 8.4] COPD: Lag 0 -4.3 [-10.6: 6.9] Correlation): Correlation): Correlation (i.e., at each home), indoor, and personal (i.e., at each home), indoor, at each home				
a) overall mean b) Difference between their session-specific mean and overall mean c) Difference between their daily values and session-specific mean Covariates: Gender, age, ventral site temperature and relative humidity, CO, NO2 Dose-response Investigated? No Statistical Package: SAS Lags Considered: 0-1 days Monitoring Stations: 2 also subject-specific local outdoors (i.e., at each home), indoor, and personal CO NO2 Monitoring Stations: 2 also subject-specific local outdoors (i.e., at each home), indoor, and personal CO NO2 Monitoring Stations: 2 also subject-specific local outdoors (i.e., at each home), indoor, and personal CO NO2 PM _{2.5} PM _{10-2.5} (coarse) PEF Overall: Lag 0 -0.5 [-5.6: 4.6] Lag 1.2, [-3.5: 8.4] COPD: Lag 0 0.1 [-5.4: 5.6 Lag 1.2, [-3.5: 8.4] COPD: Lag 0 -1.4 [-3.5: 6: 32, 7] Outdoor Home PM _{2.5} - FEV, Overall: Lag 0 -1.4 [-3.5: 6: 32, 7] Overall: Lag 0 -1.4 [-3.5: 6: 32, 7] Outdoor Home PM _{3.5} - FEV, Overall: Lag 0 -2.3 [-3.5: 8.4] COPD: Lag 0 -1.4 [-3.5: 6: 32, 7] Dose-response Investigated? No Statistical Package: SAS Lags Considered: 0-1 days Monitoring Stations: 2 also subject-specific local outdoors (i.e., at each home), indoor, and personal CO NO2 PM _{2.5} PM _{10-2.5} (coarse) More (2., 40.4) Adults, Personal 1.0, 49.4 Indoor (2.2, 36.3) Lag 1.4 [-1.6: 6.9] Lag 1.4 [-1.6: 4.9] No-COPD: Lag 0 -1.8 [-1.6: 6.9] Lag 1.4 [-1.6: 4.9] No-COPD: Lag 0 -1.8 [-1.6: 6.9] Lag 1.4 [-1.6: 4.9] No-COPD: Lag 0 -1.8 [-1.6: 6.9] Lag 1.7 [-1.6: 0.9] PEF Overall: Lag 0 -0.5 [-5.4: 5.6] COPD: Lag 0 -1.5 [-9.9: 6.9] Lag 1.7 [-1.6: 0.9] PEDIATRIC FEV, Overall: Lag 0 -0.5 [-5.4: 5.9] COPD: Lag 0 -1.5 [-9.9: 6.9] Lag 1.7 [-1.6: 0.9] PEDIATRIC FEV, Overall: Lag 0 -0.5 [-5.4: 5.9] COPD: Lag 0 -1.5 [-9.9: 6.9] Lag 1.7 [-1.6: 0.9] PEDIATRIC FEV,			75th: 12.4	
Statistical Package: SAS Lags Considered: 0-1 days Copplicate of the service of the servic		a) overall mean	25th: 5.1	PEF
c) Difference between their daily values and session-specific mean Covariates: Gender, age, ventral site temperature and relative humidity, CO, NO2 Dose-response Investigated? No Statistical Package: SAS Lags Considered: 0-1 days Monitoring Stations: 2 also subject-specific local outdoors (at each home), indoor, and personal Copollutant (correlation): COpollutant (correlation): COpollutant (correlation): COPD: Lag 0.3.2, I-15.1 8.7] Outdoor Home PM2.5 - FEV.1 Overall: Lag 0.1.4 [-35.6: 32.7]. No-CO 0.1.5 [-36.1: 39.2] Lag 1.0.7 [-26.9: 48.4] COPD: Lag 0.3.2 [-45.1: 8.7] Overall: Lag 0.1.4 [-35.6: 32.7]. No-CO 0.1.5 [-36.1: 39.2] Lag 1.0.7 [-26.9: 48.4] COPD: Lag 0.3.2 [-45.1: 8.7] Overall: Lag 0.1.4 [-35.6: 32.7]. No-CO 0.1.5 [-36.1: 39.2] Lag 1.0.7 [-26.9: 48.4] COPD: Lag 0.3.2 [-45.1: 8.7] Overall: Lag 0.1.4 [-35.6: 32.7]. No-CO 0.1.5 [-36.1: 39.2] Lag 1.0.7 [-26.9: 48.4] COPD: Lag 0.3.2 [-45.1: 8.7] No-COPD: Lag 0.4.5 [-36.1: 39.2] Lag 1.0.4 [-36.6: 9] Copollutant (correlation): CO Overall: Lag 0.1.4 [-36.6: 9] Lag 1.0.4 [-36.6: 9] Lag 1.0.4 [-36.6: 9] Lag 1.0.4 [-36.6: 9] Lag 1.0.5 [-36.1: 39.2] Lag 1.0.7 [-36.1: 9] Copollutant (correlation): CO Overall: Lag 0.1.5 [-36.1: 39.2] Lag 1.0.4 [-36.6: 9] Lag 1.0.5 [-36.1: 39.2] Lag 1.0.7 [-36.9: 4.3] Lag 1.2.9 [-36.9: 4.3]				Lag 1 2.3 [-3.3: 7.8]
Solth (Median): 8.6 75th: 13.1 Covariates: Gender, age, ventral site temperature and relative humidity, CO, NO2 Dose-response Investigated? No Statistical Package: SAS Lags Considered: 0-1 days Monitoring Stations: 2 also subject-specific local outdoors (i.e., at each home), indoor, and personal COPD: Lag 0 -3.2 [-15.51: 8.7] Lag 1 -1.4 [-35.6: 32.7]. No-CO Discreption (i.e., at each home), indoor, and personal COPD: Lag 0 -3.2 [-15.51: 8.7] Lag 1 -1.4 [-35.6: 32.7]. No-CO Discreption (i.e., at each home), indoor, and personal COPD: Lag 0 -1.4 [-36.6: 6.9] Lag 1 -1.4 [-36.6: 6.9] No-COPD: Lag 0 -1.8 [-10.6: 6.9] Lag 1 -1.4 [-4.6: 4.9] COPD: Lag 0 -1.8 [-10.6: 6.9] Lag 1 -1.4 [-1.4: 6.4] No-COPD: Lag 0 -1.8 [-10.6: 6.9] Lag 1 -1.4 [-1.1: -9.6]. No-CO O-32.6 [-69.5: 4.3] Lag 1 -2.9 [-62.5: 4.5] COPD: Lag 0 -3.6 [-69.5: 4.5] COPD:		·	Local outdoor	No-COPD: Lag 0 0.1 [-5.4: 5.6] Lag 1 2.5 [-3.5: 8.4]
Covariates: Gender, age, ventral site temperature and relative humidity, CO, NO2 Dose-response Investigated? No Statistical Package: SAS Lags Considered: 0-1 days Monitoring Stations: 2 also subject-specific local outdoor (i.e., at each home), indoor, and personal Copollutant (correlation): CO NO2 PM25 PM10-25 (coarse) PM10-25 (coarse) Coording Min, Max): Children, Personal 1.0, 49.4 Indoor (2.2, 36.3) Local outdoor (2.2, 36.3) Local outdoor (i.e., 40.4) Lag 1 -2.4 [-37.6: 32.7], No-CC 0 1.5 [-36.1: 39.2] Lag 1 1.0.7 [-26.9: 48.4] COPD: Lag 0 -8.9 [-62.2: 44.4 Lag 1 -4.5.2 [-102.6: 12.1] PEF Overall: Lag 0 2.3 [-3.3: 7.9] Lag 1 -4.5 [-10.6: 6.9] Lag 1 -4.8 [-14.6: 4.9] Corp Lag 0 -1.8 [-10.6: 6.9] Lag 1 -4.8 [-14.6: 4.9] Central Sites PM25 - FEV1 Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -3.5 [-70.0: -1.4] PEF Overall: Lag 0 -3.5 [-8.5] COPD: Lag 0 -1.5 [-9.0 c.0] COPD: Lag 0 -1.5 [-9.0 c.0] COPD: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-118.4: 23.1] PEF Overall: Lag 0 -1.5 [-9.0 c.9] Lag 1 -7.0.8 [-0.0 c.9] Lag 1 -2.4 [-7.0 c.9]			50th(Median): 8.6	COPD: Lag 0 -3.2 [-15.1: 8.7]
NO2		Covariates: Gender, age, ventral site	75th: 13.1	Outdoor Home PM _{2.5} - FEV ₁
Indoor (2.2, 36.3) Local outdoor (2.8, 40.4) Adults, Personal 1.3, 66.6 Indoor(1.6, 65.3) Local outdoor (0.0, 41.5)				Overall: Lag 0 -1.4 [-35.6: 32.7] Lag 1 -2.4 [-37.6: 32.7]. No-COPD: Lag
Statistical Package: SAS Adults, Personal 1.3, 66.6 Indoor(1.6, 65.3) Local outdoor (0.0, 41.5)			Indoor (2.2, 36.3)	0 1.5 [-36.1: 39.2]
Lags Considered: 0-1 days Cocal outdoor (0.0, 41.5)				COPD: Lag 0 -8.9 [-62.2: 44.4]
Monitoring Stations: 2 also subject-specific local outdoors (i.e., at each nome), indoor, and personal Copollutant (correlation): CO NO2 PM2.5 PM10-2.5 (coarse) Overall: Lag 0 2.3 [-3.3: 7.9] Lag 1 0.4 [-5.6: 6.4] COPD: Lag 0 4.0 [-2.2: 10. day 1 2.0 [-4.4: 8.4] COPD: Lag 0 -1.8 [-10.6: 6.9] Lag 1 -4.8 [-14.6: 4.9] Coverall: Lag 0 -3.5: [-70.0: -1. lag 1 -40.4 [-71.1: -9.6]. No-COPD: Lag 0 -43.6 [-95.0: 7.8] Lag 1 -9.0 [-62.5: 4.5] COPD: Lag 0 -43.6 [-95.0: 7.8] Lag 1 -70.8 [-118.4: 23.1] PEF Overall: Lag 0 0 -1.5 [-4.2: 7.1] Lag 1 -2.3 [-7.4: 2.9] No-COPD: Lag 0 -2.5 [-3.5: 8.6] Lag 1 -0.5 [-6.1: 5.0] COPD: Lag 0 -1.5 [-9.9: 6.9] Lag 1 -7.1 [-15.0: 0.9] PEDIATRIC FEV ₁				
also subject-specific local outdoors (i.e., at each home), indoor, and personal Copollutant (correlation): CO NO2 PM25 PM10-2.5 (coarse) COPD: Lag 0 4.0 [-2.2: 10.48 - 4] COPD: Lag 0 -1.8 [-10.6: 6.9] Lag 1 -4.8 [-14.6: 4.9] Central Sites PM25 - FEV1 Overall: Lag 0 -35.5 [-70.0: -1. Lag 1 -40.4 [-71.1: -9.6]. No-COPD: Lag 0 -43.6 [-95.0: 7.8] Lag 1 -70.8 [-118.4: 23.1] PEF Overall: Lag 0 1.5 [-4.2: 7.1] Lag 1 -2.3 [-7.4: 2.9] No-COPD: Lag 0 2.5 [-3.5: 8.6] Lag 1 -7.1 [-15.0: 0.9] PEDIATRIC FEV1		Lags Considered. 0-1 days	, ,	
$ \begin{array}{c} \text{COPD: Lag } 0 \text{ -}1.8 \text{ [-}10.6: 6.9]} \\ \text{COpollutant (correlation):} \\ \text{CO} \\ \text{NO}_2 \\ \text{PM}_{2.5} \\ \text{PM}_{10\cdot 2.5} \text{ (coarse)} \\ \end{array} \begin{array}{c} \text{COPD: Lag } 0 \text{ -}1.8 \text{ [-}10.6: 6.9]} \\ \text{Cortral Sites } \text{PM}_{2.5} \text{ -}\text{FEV}_1 \\ \text{Overall: Lag } 0 \text{ -}35.5 \text{ [-}70.0: -1.} \\ \text{Lag } 1 \text{ -}40.4 \text{ [-}71.1: -9.6]. No-COPD: Lag } 0 \text{ -}32.6 \text{ [-}69.5: 4.3]} \\ \text{Lag } 1 \text{ -}29.0 \text{ [-}62.5: 4.5]} \\ \text{COPD: Lag } 0 \text{ -}43.6 \text{ [-}95.0: 7.8]} \\ \text{Lag } 1 \text{ -}70.8 \text{ [-}118.4: 23.1]} \\ \text{PEF} \\ \text{Overall: Lag } 0 \text{ 1.5 [-}4.2: 7.1]} \\ \text{Lag } 1 \text{ -}2.3 \text{ [-}7.4: 2.9]} \\ \text{No-COPD: Lag } 0 \text{ -}1.5 \text{ [-}9.9: 6.9]} \\ \text{Lag } 1 \text{ -}7.1 \text{ [-}15.0: 0.9]} \\ \text{PEDIATRIC FEV}_1 \end{array} $				No-COPD: Lag 0 4.0 [-2.2: 10.1]
$ \begin{array}{c} \textbf{Copollutant (correlation):} \\ \textbf{CO} \\ \textbf{NO}_2 \\ \textbf{PM}_{2.5} \\ \textbf{PM}_{10.2.5} \ (\text{coarse}) \end{array} \\ \begin{array}{c} \textbf{Lag } 1 - 4.8 \left[-14.6 : 4.9 \right] \\ \textbf{Central Sites } \textbf{PM}_{2.5} - \text{FEV}_1 \\ \textbf{Overall:} \ \textbf{Lag } 0 - 35.5 \left[-70.0 : -1. \\ \textbf{Lag } 1 - 4.04 \left[-71.1 : -9.6 \right] . \textbf{No-COPD:} \\ \textbf{Lag } 1 - 29.0 \left[-62.5 : 4.5 \right] \\ \textbf{COPD:} \ \textbf{Lag } 0 - 43.6 \left[-95.0 : 7.8 \right] \\ \textbf{Lag } 1 - 70.8 \left[-118.4 : 23.1 \right] \\ \textbf{PEF} \\ \textbf{Overall:} \ \textbf{Lag } 0 1.5 \left[-4.2 : 7.1 \right] \\ \textbf{Lag } 1 - 2.3 \left[-7.4 : 2.9 \right] \\ \textbf{No-COPD:} \ \textbf{Lag } 0 2.5 \left[-3.5 : 8.6 \right] \\ \textbf{Lag } 1 - 0.5 \left[-6.1 : 5.0 \right] \\ \textbf{COPD:} \ \textbf{Lag } 0 - 1.5 \left[-9.9 : 6.9 \right] \\ \textbf{Lag } 1 - 7.1 \left[-15.0 : 0.9 \right] \\ \textbf{PEDIATRIC FEV}_1 \end{array} $			at each home), indoor, and personal	COPD: Lag 0 -1.8 [-10.6: 6.9]
NO ₂ Overall: Lag 0 -35.5 [-70.0: -1. PM _{2.5} Coarse) O -32.6 [-69.5: 4.3] Lag 1 -29.0 [-62.5: 4.5] COPD: Lag 0 -43.6 [-95.0: 7.8 Lag 1 -70.8 [-118.4: 23.1] PEF Overall: Lag 0 1.5 [-4.2: 7.1] Lag 1 -2.3 [-7.4: 2.9] No-COPD: Lag 0 2.5 [-3.5: 8.6 Lag 1 -0.5 [-6.1: 5.0] COPD: Lag 0 -1.5 [-9.9: 6.9] Lag 1 -7.1 [-15.0: 0.9] PEDIATRIC FEV ₁				Lag 1 -4.8 [-14.6: 4.9]
PM _{10-2.5} (coarse) 0 -32.6 [-69.5: 4.3] Lag 1 -29.0 [-62.5: 4.5] COPD: Lag 0 -43.6 [-95.0: 7.8] Lag 1 -70.8 [-118.4: 23.1] PEF Overall: Lag 0 1.5 [-4.2: 7.1] Lag 1 -2.3 [-7.4: 2.9] No-COPD: Lag 0 2.5 [-3.5: 8.6] Lag 1 -0.5 [-6.1: 5.0] COPD: Lag 0 -1.5 [-9.9: 6.9] Lag 1 -7.1 [-15.0: 0.9] PEDIATRIC FEV ₁				Overall: Lag 0 -35.5 [-70.0: -1.0]
Lag 1 -29.0 [-62.5: 4.5] COPD: Lag 0 -43.6 [-95.0: 7.8] Lag 1 -70.8 [-118.4: 23.1] PEF Overall: Lag 0 1.5 [-4.2: 7.1] Lag 1 -2.3 [-7.4: 2.9] No-COPD: Lag 0 2.5 [-3.5: 8.6] Lag 1 -0.5 [-6.1: 5.0] COPD: Lag 0 -1.5 [-9.9: 6.9] Lag 1 -7.1 [-15.0: 0.9] PEDIATRIC FEV ₁				Lag 1 -40.4 [-71.1: -9.6]. No-COPD: Lag 0 -32.6 [-69.5: 4.3]
Lag 1 -70.8 [-118.4: 23.1] PEF Overall: Lag 0 1.5 [-4.2: 7.1] Lag 1 -2.3 [-7.4: 2.9] No-COPD: Lag 0 2.5 [-3.5: 8.6 Lag 1 -0.5 [-6.1: 5.0] COPD: Lag 0 -1.5 [-9.9: 6.9] Lag 1 -7.1 [-15.0: 0.9] PEDIATRIC FEV ₁			1 W10-2.5 (COCISC)	Lag 1 -29.0 [-62.5: 4.5]
Overall: Lag 0 1.5 [-4.2: 7.1] Lag 1 -2.3 [-7.4: 2.9] No-COPD: Lag 0 2.5 [-3.5: 8.6 Lag 1 -0.5 [-6.1: 5.0] COPD: Lag 0 -1.5 [-9.9: 6.9] Lag 1 -7.1 [-15.0: 0.9] PEDIATRIC FEV ₁				Lag 1 -70.8 [-118.4: 23.1]
Lag 1 -2.3 [-7.4: 2.9] No-COPD: Lag 0 2.5 [-3.5: 8.6 Lag 1 -0.5 [-6.1: 5.0] COPD: Lag 0 -1.5 [-9.9: 6.9] Lag 1 -7.1 [-15.0: 0.9] PEDIATRIC FEV ₁				
Lag 1 -0.5 [-6.1: 5.0] COPD: Lag 0 -1.5 [-9.9: 6.9] Lag 1 -7.1 [-15.0: 0.9] PEDIATRIC FEV ₁				Lag 1 -2.3 [-7.4: 2.9]
Lag 1 -7.1 [-15.0: 0.9] PEDIATRIC FEV₁				Lag 1 -0.5 [-6.1: 5.0]
PEĎIATRIČ FEV₁				
Personal PM _{2.5}				PEDIATRIC FEV ₁
Overall:				Overall:
Lag 0 -13.08 [-38.26: 12.10] Lag 1 -16.12 [-42.61: 10.37].				
No anti-inflammatory medicati Lag 0 -41.73 [-94.31: 10.84]				No anti-inflammatory medication:
Lag 1 -30.99 [-82.17: 20.19].				Lag 1 -30.99 [-82.17: 20.19].
Anti-inflammatory medication: Lag 0 -4.61 [-34.49: 25.28]				
Lag 1 -10.87 [-45.01: 23.27] Indoor PM _{2.5}				Lag 1 -10.87 [-45.01: 23.27]
Overall:				Overall:
Lag 0 -45.90 [-89.92: 1.88] Lag 1 -64.78 [-111.27: 18.28]				
No anti-inflammatory medicati				No anti-inflammatory medication:
Lag 0 -75.92 [-145.16: 6.67] Lag 1 -65.08 [-136.98: 6.82].				Lag 1 -65.08 [-136.98: 6.82].
Anti-inflammatory medication: Lag 0 -28.50 [-94.72: 37.71]				

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
-			Lag 1 -64.60 -147.23: 18.04] Outdoor Home PM _{2.5} Overall: Lag 0 -13.11 [-57.41: 31.19] Lag 1 -9.37 [-54.73: 36.00]. No anti-inflammatory medication: Lag 0 -24.42 [-81.22: 32.38] Lag 1 16.52 [-45.76: 78.80]. Anti-inflammatory medication: Lag 0 -3.59 [-75.88: 68.70] Lag 1-26.76 [-89.53: 36.01] Central Sites PM _{2.5} . Overall: Lag 0 -12.32 [-53.21: 28.56]
			Lag 1 5.75 [-33.27: 44.76]. No anti-inflammatory medication: Lag 0 -33.59 [-89.99: 22.82] Lag 1 31.30 [-29.91: 92.51] Anti-inflammatory medication: Lag 0 -2.13 [-71.99: 67.73] Lag 1 -3.53 [-67.32: 60.27] PEF: Personal PM _{2.5} Overall: Lag 0 0.31 [-4.02: 4.64] Lag 1 -2.19 [-6.49: 2.12] No anti-inflammatory medication: Lag 0 0.22 [-8.85: 9.29]
			Lag 1 -10.48 [-18.68: 2.28] Anti-inflammatory medication: Lag 0 0.34 [-4.67: 5.35] Lag 1 0.74 [-4.21: 5.69] Indoor PM _{2.5} Overall: Lag 0 -8.68 [-16.64: -0.72] Lag 1 -9.22 [-17.51: -0.93] No anti-inflammatory medication: Lag 0 -13.34 [-25.90: -0.79] Lag 1 -17.13 [-29.86: 4.41]. Anti-inflammatory medication: Lag 0 -5.98 [-15.85: 3.89] Lag 1 -4.19 [-14.59: 6.20] Outdoor Home PM _{2.5}
			Outcool none PW _{2.5} Overall: Lag 0 -6.27 [-14.07: 1.53] Lag 1 -5.64 [-13.73: 2.44]. No anti-inflammatory medication: Lag 0 -7.52 [-17.56: 2.51] Lag 1 -6.92 [-18.03: 4.19]. Anti-inflammatory medication: Lag 0 -5.22 [-14.77: 4.34] Lag 1 -4.78 [-14.42: 4.86] Central Sites PM _{2.5} Overall: Lag 0 -5.62 [-12.86: 1.62] Lag 1 -2.45 [-9.34: 4.43].
			No anti-inflammatory medication: Lag 0 -6.32 [-16.31: 3.68] Lag 1 -0.83 [-11.60: 9.95] Anti-inflammatory medication: Lag 0 -5.29 [-13.42: 2.85] Lag 1 -3.04 [-10.76: 4.67] MMEF Personal $PM_{2.5}$ Overall: Lag 0 -0.99 [-3.96: 1.98] Lag 1 -1.08 [-4.05: 1.88]. No anti-inflammatory medication:
			Lag 0 -3.32 [-9.52: 2.88] Lag 1 -2.49 [-8.23: 3.25]. Anti-inflammatory medication: Lag 0 -0.31 [-3.77: 3.16] Lag 1 -0.59 [-4.06: 2.89] Indoor PM _{2.5} Overall: Lag 0 -3.29 [-8.52: 1.94] Lag 1 -11.08 [-16.26: 5.90]. Anti-inflammatory medication: Lag 0-12.65 [-20.74: -4.56]' Lag 1 -

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			13.84 [-21.82: 5.85] Anti-inflammatory medication: Lag 0 2.14 [-4.17: 8.45] Lag 1 -9.33 [-15.89: -2.78] Outdoor Home PM₂5 Overall: Lag 0 -4.13 [-9.28: 1.01] Lag 1 -0.73 [-6.02: 4.56] No anti-inflammatory medication: Lag 0 -8.23 [-14.77: 1.69] Lag 1 -1.19 [-8.45: 6.07] Anti-inflammatory medication: Lag 0 -0.68 [-6.87: 5.50] Lag 1 -0.42 [-6.72: 5.87] Central Sites PM₂5. Overall: Lag 0 -2.10 [-6.99: 2.79] Lag 1 -0.12 [-4.67: 4.42] No anti-inflammatory medication: Lag 0 -8.21 [-14.79: 1.62] Lag 1 -0.22 [-7.34: 6.90] Anti-inflammatory medication: Lag 0 0.82 [-4.48: 6.12] Lag 0 0.82 [-4.48: 6.12] Lag 1 -0.09 [-5.19: 5.01]
Reference: Tang et al. (2007, <u>091269</u>)	Outcome: Peak expiratory flow rate	Pollutant: PM _{2.5-1}	No quantitative effects reported.
Period of Study: Dec 2003-Feb 2005	(PEFR) of asthmatic children Age Groups: 6-12 yr	Averaging Time: 1 h	
ocation: Sin-Chung City, Taipei	Study Design: Panel study	Mean (SD):	
County, Taiwan	N: 30 children	Personal: 6.2 (4.8)	
	Statistical Analyses: Linear mixed-	Range (Min, Max):	
	effect models were used to estimate the effect of PM exposure on PEFR	Personal: 0.3-86.8	
	Covariates: Gender, age, BMI, history of respiratory or atopic disease in family, SHS, acute asthmatic exacerbation in past 12 mo, ambient temp and relative humidity, presence of indoor pollutants, and presence of outdoor pollutants,	Monitoring Stations: 1	
	Dose-response Investigated? Yes		
	Statistical Package: S-Plus 2000		
	Lags Considered: 0-2		
Reference: Tang et al. (2007, <u>091269</u>)	Outcome: Peak expiratory flow rate	Pollutant: PM1	PM Increment: 27.6 μg/m ³
Period of Study: Dec 2003-Feb 2005 Location: Sin-Chung City, Taipei County, Taiwan	(PEFR) of asthmatic children	Averaging Time: 1 h	RR Estimate [Lower CI, Upper CI]
	Age Groups: 6-12 yr Study Design: Panel study	Mean (SD):	lag: Change in morning PEFR:
	N: 30 children	Personal: 34.0 (28.9)	-6.44 (-30.18, 17.29) lag 0 -12.26 (-77.6 , 53.09) lag 1
	Statistical Analyses: Linear mixed-	Ambient: 31.4 (18.8)	-4.38 (-54.79, 46.03) lag 2 -44.06 (-113.79, 25.67) 2-day mean
	effect models were used to estimate the effect of PM exposure on PEFR	Range (Min, Max):	-6.01 (-101.48, 89.46) 3-day mean
	Covariates: Gender, age, BMI, history of respiratory or atopic disease in family, SHS, acute asthmatic exacerbation in past 12 mo, ambient temp and relative humidity, presence of indoor pollutants, and presence of outdoor pollutants,	Personal: 1.8-284.6 Ambient: 0.1-128.4 Monitoring Stations: 1	Change in evening PEFR: 1.17 (-17.79, 20.13) lag 0 -4.98 (-27.77, 17.81) lag 1 11.30 (-11.55, 34.16) lag 2 41.74 (11.36, 72.13) 2-day mean 28.21 (-19.08, 75.5) 3-day mean
	Dose-response Investigated? yes		
	Statistical Package: S-Plus 2000		
	Lags Considered: 0-2		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Timonen et al. (2004,	Outcome: Urinary concentration of	Pollutant: NC 0.01-0.1	PM Increment: 10,000 /cm ³
<u>087915</u>)	Clara cell protein CC16 of subjects with coronary heart disease	Averaging Time: 24 h	RR Estimate [Lower CI, Upper CI]
Period of Study: Oct 1998-Apr 1999	Age Groups: 50+	Mean (SD): Amsterdam: 17338 /cm ³	lag:
Location: Amsterdam, The Netherlands	Study Design: Longitudinal cohort	Erfurt: 21124 /cm ³ Helsinki: 17041 /cm ³	Pooled estimate;
Erfurt, Germany	study (panel)		1.7 (-4.4-7.8) lag 0
Helsinki, Finland	N: N=37 (Amsterdam)	Range (Min, Max): Amsterdam: 5699-37195	-1.8 (-8.3-4.6) lag 1
	N=47 (Erfurt) N=47 (Helsinki)	Erfurt: 3867-96678	1.5 (-5.6-8.6) lag 2
	Statistical Analyses: The response of	Helsinki: 2305-50306 Unit (i.e. μg/m³): 1/cm³	2.3 (-4.8-9.3) lag 3
	interest was log transformed, creatinine adjusted CC16. Mixed-effect model was	Monitoring Stations: 3	1.8 (-9.4-13.0) 5-day mean
	used to investigate the association between CC16 and air pollutants.	PM _{2.5} : Amsterdam -0.15	There was no association between NC 0.01-0.1 and CC16 in the pooled
	Covariates: Subjects, long term time	Erfurt 0.62 Helsinki 0.14	analysis.
	trend, temperature (lags 0-3), relative humidity (lags 0-3), barometric pressure	NO ₂ : Amsterdam 0.49	
	(lags 0-3), and weekday of visit.	Erfurt 0.82	
	Dose-response Investigated? yes	Helsinki 0.72 CO:	
	Statistical Package:	Amsterdam 0.22 Erfurt 0.72	
	S-Plus and SAS	Helsinki 0.35	
	Lags Considered: 0-3		
Reference: Timonen et al. (2004,	Outcome: Urinary concentration of	Pollutant: NC10-0.1	PM Increment: 1000 /cm ³
087915)	Clara cell protein CC16 of subjects with coronary heart disease	Averaging Time: 24 h	RR Estimate [Lower CI, Upper CI] lag:
Period of Study: Oct 1998-Apr 1999	Age Groups: 50+	Mean (SD): Amsterdam: 2131 /cm ³	Pooled estimate;
Location: Amsterdam, The Netherlands	Study Design: Longitudinal cohort	Erfurt: 1829 /cm ³ Helsinki: 1390 /cm ³	4.3 (-1.4-10.0) lag 0
Erfurt, Germany	study (panel)		5.1 (-0.6-10.7) lag 1
Helsinki, Finland	N: N=37 (Amsterdam)	Range (Min, Max): Amsterdam: 413-6413	4.5 (-0.5-9.6) lag 2
	N=47 (Erfurt) N=47 (Helsinki)	Erfurt: 303-6848 Helsinki: 344-3782	1.6 (-3.5-6.7) lag 3
	Statistical Analyses: The response of	Unit (i.e. µg/m³): 1/cm³	13.1 (-4.3-30.5) 5-day mean
	interest was log transformed, creatinine adjusted CC16. Mixed-effect model was		CC16 was not associated to NC 0.1-1.0
	used to investigate the association between CC16 and air pollutants.	Monitoring Stations: 3 Copollutant (correlation):	in the pooled analysis but CC16 was significantly associated to NC 0.1-1.0 in
	•	Spearman Correlation: NC 0.1-0.01: Amsterdam 0.16	Helsinki:
	Covariates: Subjects, long term time trend, temperature (lags 0-3), relative		15.5 (0.001-30.9) lag 0
	humidity (lags 0-3), barometric pressure (lags 0-3), and weekday of visit.		10.8 (-4.2-25.8) lag 1
	Dose-response Investigated? Yes	PM _{2.5} :	10.5 9-4.1-25.1) lag 2
	Statistical Package: S-Plus and SAS	Amsterdam 0.80 Erfurt 0.84	17.4 (3.4-31.4) lag 3
	Lags Considered: 0-3	Helsinki 0.80 NO ₂ :	43.2 (17.4-69.0) 5-day mean
		Amsterdam 0.67 Erfurt 0.82	
		Helsinki 0.72	
		CO: Amsterdam 0.60	
		Erfurt 0.78	
		Helsinki 0.51	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: von Klot et al. (2002,	Outcome: Asthma symptoms	Pollutant: MC0.5-0.1	NC Increment: 1 IQR
034706)	(wheezing, shortness of breath at rest, waking up with breathing problems, or coughing without having a cold) and Asthma medication (inhaled short-acting	Averaging Time: 10-min intervals	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Sep 1996-Mar 1997 (winter)		Mean (SD): 24.8 Percentiles:	Association between the prevalence of inhaled ß2- agonist use and MC0.1-0.5
Location: Erfurt, Germany	ß2- agonists, inhaled long-acting ß2- agonists, inhaled corticosteroids, cromolyn sodium, theophylline, oral	25th: 11.4 50th(Median): 19.6 75th: 33.1	Same day, IQR= 21, OR= 0.98 (0.92-1.04)
	corticosteroids, and N-acetylcysteine)	Range (Min, Max): (2.4-108.3)	5-day mean, IQR= 21
	Age Groups : Adults, mean=59.0 yr and range =37-77 yr	Copollutant (correlation): PM _{10-2.5} : r= 0.51	OR= 1.11 (1.02-1.20) 14-day mean IQR= 17, OR= 1.01 (0.93-1.10)
	Study Design: Panel study	NC0.1-0.01: r= 0.45 NC0.5-0.1: r= 0.95	Association between the prevalence of
	N: 53 adult asthmatics	NC2.5-0.5: r= 0.92 MC2.5-0.01: r= 1.00	inhaled corticosteroid use and
	Statistical Analyses: Logistic regression models	PM ₁₀ : r= 0.91 NO ₂ : r= 0.69	MC0.1-0.5 Same day, IQR= 2,
	Covariates: Seasonal variation in	CO: r= 0.66 SO ₂ : r= 0.60	OR= 1.09 (1.02-1.17) 5-day mean IQR= 21,
	medication use or symptom prevalence, meteorological factors (relative humidity,		OR= 1.28 (1.18-1.39)
	temperature), weekend, Christmas holidays		14-day mean, IQR= 17, OR= 1.49 (1.38-1.61)
	Season: Winter		Association between the prevalence of wheezing and MC0.1-0.5
	Dose-response Investigated? No		Same day, IQR= 21,
	Statistical Package: NR		OR= 1.01 (0.94-1.08) 5-day mean, IQR= 21,
	Lags Considered: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ma calculated from same day and preceding days		OR= 1.08 (0.99-1.17) 14-day mean, IQR= 17, OR= 1.05 (0.96-1.15)
Reference: von Klot et al. (2002,	Outcome: Asthma symptoms	Pollutant: MC2.5-0.01	NC Increment: 1 IQR
034706)	(wheezing, shortness of breath at rest, waking up with breathing problems, or	Averaging Time: 10-min intervals	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Sep 1996-Mar 1997 (winter)		Mean (SD): 30.3	Association between the prevalence of
Location: Erfurt, Germany	ß2- agonists, inhaled long-acting ß2-	Percentiles:	inhaled ß2- agonist use and MC0.01- 2.5
•	agonists, inhaled corticosteroids, cromolyn sodium, theophylline, oral	25th: 13.5	Same day, IQR= 28, OR= 0.96 (0.90-1.04) 5-day mean, IQR= 26 , OR= 1.10 (1.01.01)
	corticosteroids, and N-acetylcysteine)	50th(Median): 24.6	
	Age Groups: Adults, mean=59.0 yr and range =37-77 yr	75th: 41.3	
	Study Design: Panel study	Range (Min, Max): (3.6-133.8)	14-day mean, IQR= 20, OR= 1.03 (0.95-1.12)
	N: 53 adult asthmatics	Copollutant (correlation):	
	Statistical Analyses: Logistic	PM _{10-2.5} : r= 0.52	
	regression models	NC _{0.5-0.1} : r= 0.45	
	Covariates: Seasonal variation in medication use or symptom prevalence,	NC _{2.5-0.5} : r= 0.94	
	meteorological factors (relative humidity, temperature), weekend, Christmas	MC _{0.5-0.1} : r= 1.00	
	holidays	NC _{0.1-0.01} : r= 0.45	
	Season: Winter	PM ₁₀ : r= 0.94	
	Dose-response Investigated? No	NO ₂ : r= 0.68	
	Statistical Package: NR	CO: r= 0.65	
	Lags Considered: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ma calculated from same day and preceding days	SO ₂ : r= 0.62	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: von Klot et al. (2002,	waiting up with broatining probleme, or	Pollutant: NC0.1-0.01	NC Increment: 1 IQR
034706) Period of Study: Son 1006 Mar 1007		Averaging Time: 10-min intervals	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Sep 1996-Mar 1997 (winter)	coughing without having a cold) and Asthma medication (inhaled short-acting	Mean (SD): 17,300 /cm ³	Association between the prevalence of
Location: Erfurt, Germany	ß2- agonists, inhaled long-acting ß2- agonists, inhaled corticosteroids,	Percentiles:	inhaled ß2- agonist use and NC0.01-0.1 Same day, IQR= 15000,
	cromolyn sodium, theophylline, oral corticosteroids, and N-acetylcysteine)	25th: 9286	OR= 0.97 (0.90-1.04) 5-day mean, IQR= 10000, OR= 1.11 (1.01-1.21) 14-day mean, IQR= 7700,
	Age Groups: Adults, mean=59.0 yr and	50th(Median): 16940	
	range =37-77 yr	75th: 24484	OR= 1.08 (0.96-1.21)
	Study Design: Panel study	Range (Min, Max): (3272-46195)	Association between two pollutants, jointly in one model, and the
	N: 53 adult asthmatics	Unit (i.e. µg/m³): 1/cm³	Outcomes
	Statistical Analyses: Logistic regression models	Copollutant (correlation):	Inhaled short-acting ß2- agonist use NC0.1-0.01 OR= 1.07 (0.97-1.18)
	Covariates: Seasonal variation in	PM _{10-2.5} : r= 0.41	MC0.5-0.1: OR= 1.07 (0.98-1.18)
	medication use or symptom prevalence,	NC _{0.5-0.1} : r= 0.55	Inhaled corticosteroid use NC0.1-0.01 OR= 1.01 (0.87-1.18)
	meteorological factors (relative humidity, temperature), weekend, Christmas	NC _{2.5-0.5} : r= 0.34	MC0.5-0.1: OR= 1.53 (1.39-1.69)
	holidays	MC _{0.5-0.1} : r= 0.45	Wheezing
	Season: Winter	MC _{2.5-0.01} : r= 0.45	NC0.1-0.01 OR= 1.12 (1.01-1.24) MC0.5-0.1: OR= 1.02 (0.92-1.12)
	Dose-response Investigated? No	PM ₁₀ : r= 0.51	Association between the prevalence of
	Statistical Package: NR	NO ₂ : r= 0.66	inhaled corticosteroid use and NC0.01- 0.1
	Lags Considered: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ma calculated from same day	CO: r= 0.66	
	and preceding days	preceding days SO_2 : r= 0.36	Same day, IQR= 15000, OR= 1.07 (1.00-1.15) 5-day mean, IQR= 10000, OR= 1.22 (1.12-1.33) 14-day mean, IQR= 7700, OR= 1.45 (1.29-1.63)
			Association between the prevalence of wheezing and NC0.1-0.01 Same day, IQR= 15000, OR= 0.94 (0.86-1.01) 5-day mean, IQR= 10000, OR= 1.13 (1.03-1.24) 14-day mean, IQR= 7700, OR= 1.27 (1.13-1.43)
			Association between the prevalence of respiratory symptoms and NC0.1-0.01 Attack of shortness of breath and wheezing Same day, IQR= 15000, OR= 1.01 (0.91-1.12) 5-day mean, IQR= 10000, OR= 1.08 (0.96-1.21) 14-day mean, IQR= 7700, OR= 1.26 (1.08-1.48)
			Walking up with breathing problems Same day, IQR= 15000, OR= 1.04 (0.96-1.13) 5-day mean, IQR= 10000, OR= 1.09 (0.99-1.19) 14-day mean, IQR= 7700, OR= 1.26 (1.13-1.41)
			Shortness of breath Same day, IQR= 15000, OR= 0.98 (0.90-1.06) 5-day mean, IQR= 10000, OR= 1.09 (0.99-1.19) 14-day mean, IQR= 7700, OR= 1.24 (1.11-1.40)
			Phlegm Same day, IQR= 15000, OR= 1.01 (0.94-1.09)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			5-day mean, IQR= 10000, OR= 1.11 (1.02-1.21) 14-day mean, IQR= 7700, OR= 1.11 (0.99-1.25)
			Cough Same day, IQR= 15000, OR= 1.07 (0.98-1.16) 5-day mean, IQR= 10000, OR= 1.17 (1.07-1.28) 14-day mean, IQR= 7700, OR= 1.20 (1.06-1.35)
Reference: von Klot et al. (2002, 034706)	Outcome: Asthma symptoms (wheezing, shortness of breath at rest,	Pollutant: NC0.5-0.1	NC Increment: 1 IQR
Period of Study: Sep 1996-Mar 1997	waking up with breathing problems, or	Averaging Time: 10-min intervals	Effect Estimate [Lower CI, Upper CI]:
(winter)	coughing without having a cold) and Asthma medication (inhaled short-acting	Mean (SD): 2005 /cm ³	Association between the prevalence of inhaled ß2- agonist use and NC0.5-0.1
Location: Erfurt, Germany	ß2- agonists, inhaled long-acting ß2- agonists, inhaled corticosteroids, cromolyn sodium, theophylline, oral corticosteroids, and N-acetylcysteine) Age Groups: Adults, mean=59.0 yr and range =37-77 yr	Percentiles:	Same day, IQK= 1800, OR= 0.99 (0.92-1.05)
		25th: 958	5-day mean, IQR= 1500,
		50th(Median): 1610	OR= 1.10 (1.03-1.19) 14-day mean, IQR= 1450,
		75th: 2767	OR= 0.95 (0.86-1.05)
	Study Design: Panel study	Range (Min, Max): (291-6700)	Association between the prevalence of inhaled corticosteroid use and NC0.5-
	N: 53 adult asthmatics	Unit (i.e. µg/m³): 1/cm³	0.1
	Statistical Analyses: Logistic regression models	Copollutant (correlation):	Same day, IQR= 1800, OR= 1.06 (0.99-1.14) 5-day mean, IQR= 1500, OR= 1.23 (1.14-1.32) 14-day mean, IQR= 1450, OR= 1.51 (1.37-1.67)
		PM _{10-2.5} : r= 0.50	
	Covariates: Seasonal variation in medication use or symptom prevalence, meteorological factors (relative humidity, temperature), weekend, Christmas holidays	NC _{0.1-0.01} : r= 0.55	
		NC _{2.5-0.5} : r= 0.76	
		MC _{0.5-0.1} : r= 0.95	Association between the prevalence of wheezing and NC0.5-0.1
	Season: Winter	MC _{2.5-0.01} : r= 0.93	Same day, IQR= 1800, OR= 1.00 (0.93-1.07)
	Dose-response Investigated? No	PM ₁₀ : r= 0.85	5-day mean, IQR= 1500,
	Statistical Package: NR	NO ₂ : r= 0.75	OR= 1.08 (1.00-1.17) 14-day mean, IQR= 1450,
	Lags Considered: 0, 1, 2, 3, 4, 5, 6, 7,	CO: r= 0.79	OR= 1.11 (1.00-1.24)
	8, 9, 10, ma calculated from same day and preceding days	SO ₂ : r= 0.51	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: von Klot et al. (2002,	Outcome: Asthma symptoms	Pollutant: NC2.5-0.5	NC Increment: 1 IQR
034706)	(wheezing, shortness of breath at rest, waking up with breathing problems, or coughing without having a cold) and Asthma medication (inhaled short-acting	Averaging Time: 10-min intervals	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Sep 1996-Mar 1997 (winter)		Mean (SD): 21.4 /cm ³	Association between the prevalence of
Location: Erfurt, Germany	R2- agonists, inhaled long-acting ß2- agonists, inhaled corticosteroids,	Percentiles:	inhaled ß2- agonist use and NC2.5-0.5
,	cromolyn sodium, theophylline, oral	25th: 5.6	Same day, IQR= 26, OR= 0.99 (0.93- 1.05)
	corticosteroids, and N-acetylcysteine)	50th(Median): 13.0	5-day mean, IQR= 22, OR= 1.09 (1.01-1.17)
	Age Groups: Adults, mean=59.0 yr and range =37-77 yr	75th: 31.6	14-day mean, IQR= 17, OR= 1.08 (1.02-1.15)
	Study Design: Panel study	Range (Min, Max): (0.9-127.6)	Association between the prevalence of
	N: 53 adult asthmatics	Unit (i.e. µg/m³): 1/cm³	inhaled corticosteroid use and NC2.5-
	Statistical Analyses: Logistic	Copollutant (correlation):	0.5
	regression models	PM _{10-2.5} : r= 0.48	Same day, IQR= 26, OR= 1.13 (1.06- 1.21)
	Covariates: Seasonal variation in medication use or symptom prevalence,	NC _{0.1-0.01} : r= 0.34	5-day mean, IQR= 22, OR= 1.28 (1.19- 1.37)
	meteorological factors (relative humidity, temperature), weekend, Christmas	NC _{0.5-0.1} : r= 0.76	14-day mean, IQR= 17, OR= 1.44 (1.36-1.53)
	holidays	MC _{0.5-0.1} : r= 0.92	Association between the prevalence of
	Season: Winter	MC _{2.5-0.01} : r= 0.94	wheezing and NC2.5-0.5
	Dose-response Investigated? No	PM ₁₀ : r= 0.88	Same day, IQR= 26, OR= 1.03 (0.95-
	Statistical Package: NR	NO ₂ : r= 0.54	1.10) 5-day mean, IQR= 22, OR= 1.05 (0.97-
	Lags Considered: 0, 1, 2, 3, 4, 5, 6, 7,	CO: r= 0.46	1.13) 14-day mean, IQR= 17, OR= 1.03
	8, 9, 10, ma calculated from same day and preceding days	SO ₂ : r= 0.66	(0.96-1.10)
Reference: von Klot et al. (2002,	Outcome: Asthma symptoms	Pollutant: PM _{10-2.5}	PM Increment: 1 IQR
034706)	(wheezing, shortness of breath at rest, waking up with breathing problems, or	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Sep 1996-Mar 1997 (winter)	coughing without having a cold) and Asthma medication (inhaled short-acting	Mean (SD): 10.3	Association between the prevalence of
Location: Erfurt, Germany	ß2- agonists, inhaled long-acting ß2- agonists, inhaled corticosteroids,	Percentiles:	inhaled ß2- agonist use and PM _{10-2.5}
·	cromolyn sodium, theophylline, oral	25th: 2.9	Same day, IQR= 12, OR= 1.01 (0.95- 1.06)
	corticosteroids, and N-acetylcysteine)	50th(Median): 6.9	5-day mean, IQR= 11, OR= 1.01 (0.94- 1.09)
	Age Groups: Adults, mean=59.0 yr and range =37-77 yr	75th: 14.6	14-day mean, IQR= 6.7, OR= 0.92 (0.86-1.00)
	Study Design: Panel study	Range (Min, Max): (-8.7-64.3)	Association between the prevalence of
	N: 53 adult asthmatics	Copollutant (correlation):	inhaled corticosteroid use and PM _{10-2.5}
	Statistical Analyses: Logistic	NC _{0.1-0.01} : r= 0.41	Same day, IQR= 12, OR= 1.03 (0.98-
	regression models	NC _{0.5-0.1} : r= 0.50	1.08) 5-day mean, IQR= 11, OR= 1.12 (1.04-
	Covariates: Seasonal variation in medication use or symptom prevalence,	NC _{2.5-0.5} : r= 0.48	1.20) 14-day mean, IQR= 6.7, OR= 1.27
	meteorological factors (relative humidity, temperature), weekend, Christmas	MC _{0.5-0.1} : r= 0.51	(1.18-1.37)
	holidays	MC _{2.5-0.01} : r= 0.52	Association between the prevalence of wheezing and PM _{10-2.5}
	Season: Winter	PM ₁₀ : r= 0.67	Same day, IQR= 12, OR= 0.97 (0.91-
	Dose-response Investigated? No	NO ₂ : r= 0.45	1.02)
	Statistical Package: NR	CO: r= 0.42	5-day mean, IQR= 11, OR= 1.06 (0.98- 1.15)
	Lags Considered: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ma calculated from same day and preceding days	SO ₂ : r= 0.28	14-day mean, IQR= 6.7, OR= 1.05 (0.96-1.15)
Reference: Ward et al. (2002, <u>025839</u>)	Outcome: Change in PEF (peak	Pollutant: PM _{2.5}	PM Increment:
Period of Study: 1997 (two 8-wk	expiratory flow), self reported respiratory symptoms (same day	Averaging Time: 24 h	Winter: 12.3 µg/m ³
periods)	cough, illness, short of breath, waking	Mean (SD):	Summer: 6.3 µg/m³
Location: Birmingham and Sandwell, UK	up at night with cough or wheeze, wheeze)	Winter: 12.7 µg/m ³	Mean (PEF I/min) [Lower CI, Upper CI] lag:
	Age Groups: 9 yr olds	Summer: 12.3 µg/m ³	Winter morning:
	Study Design:	Range (Min, Max):	0.80 [-1.97, 3.67] lag 0 0.62 [-2.22, 3.54] lag 1

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	Time-series Panel study	Winter: 4, 37	-0.86 [-4.32, 2.47] lag 2 -2.47 [-5.30, 0.36] lag 3
	N: 162 children from 5 schools	Summer: 5, 28	-4.07 [-10.60, 2.42] 7-day mean
	Statistical Analyses: Linear regression (PEF),		Winter afternoon: 0.95 [-2.22, 4.23] lag 0
	Logistic regression (respiratory symptoms)	Total mass Monitoring Stations:	-0.99 [-4.69, 2.72] lag 1 -1.60 [-5.18, 2.01] lag 2 -3.45 [-6.53 to -0.25] lag 3
	Covariates: Trend, temperature, schooldays (yes/no)	5 stations near the 5 schools	1.00 [-11.47, 13.56] 7-day mean Summer morning:
	Season: Winter (Jan 13-Mar 10)	Copollutant (correlation):	-1.49 [-3.65, 0.67] lag 0 0.21 [-2.12, 2.55] lag 1
	Summer (May 19- Jul 14)	Winter: PM ₁₀ (r=0.93)	2.50 [0.28, 4.72] lag 2
	Dose-response Investigated? No	NO ₂ (r=0.88)	3.41 [1.40, 5.44] lag 3 3.90 [-2.53, 10.33] 7-day mean
	Statistical Package: Nr	O ₃ (r=-0.83)	Summer afternoon:
	Lags Considered: Lag 0, lag 1, lag 2, lag 3, 7-day ma	Summer: HNO ₃ (r=0.81)	-0.49 [-2.43, 1.45] lag 0 -0.78 [-2.72, 1.16] lag 1 0.57 [-1.35, 2.49] lag 2 0.16 [-1.85, 2.17] lag 3 -0.08 [-5.43, 5.27] 7-day mean
			Winter morning in atopy/recent wheezing subgroup: -0.072 [-0.527, 0.383] lag 0 -0.271 [-0.701, 0.159] lag 1 0.127 [-0.354, 0.608] lag 2 0.055 [-0.391, 0.501] lag 3
			Winter morning in no atopy or recent wheezing subgroup: 0.126 [-0.413 , 0.666] lag 0 0.193 [-0.340 , 0.728] lag 1 -0.170 [-0.788 , 0.447] lag 2 -0.314 [-0.846 , 0.216] lag 3
			Winter morning in subgroup with parental atopy/recent wheezing: 0.187 [-0.008, 0.382] lag 0 -0.006 [-0.207, 0.195] lag 1 -0.011 [-0.226, 0.204] lag 2 -0.037 [-0.228, 0.154] lag 3
			Winter morning in subgroup without parental atopy/recent wheezing: 0.026 [-0.341 , 0.395] lag 0 0.068 [-0.307 , 0.444] lag 1 -0.099 [-0.535 , 0.335] lag 2 -0.252 [-0.615 , 0.110] lag 3
			RR Estimate [Lower CI, Upper CI] lag:
			Cough: Winter: 0.98 [0.80, 1.18] lag 0 0.95 [0.77, 1.17] lag 1 1.02 [0.83, 1.24] lag 2 1.01 [0.83, 1.23] lag 3 1.31 [0.82, 2.09] 7-day mean
			Summer: 1.13 [1.04, 1.22] lag 0 1.04 [0.94, 1.13] lag 1 0.94 [0.87, 1.02] lag 2 0.89 [0.82, 0.96] lag 3 0.81 [0.62, 1.06] 7 day mean
			Illness: Winter: 1.17 [1.05, 1.32] lag 0 1.07 [0.95, 1.23] lag 1 1.16 [1.01, 1.35] lag 2 1.01 [0.90, 1.16] lag 3 1.57 [1.15, 2.13] 7-day mean
			Summer: 1.02 [0.91, 1.13] lag 0 1.00 [0.89, 1.13] lag 1 0.96 [0.85, 1.07] lag 2 0.97 [0.86, 1.09] lag 3 0.68 [0.41, 1.13] 7-day mean

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Shortness of breath: Winter: 1.07 [0.94, 1.24] lag 0 0.98 [0.84, 1.13] lag 1 0.96 [0.82, 1.13] lag2 0.91 [0.79, 1.07] lag 3 0.82 [0.58, 1.18] 7-day mean
			Summer: 1.04 [0.90, 1.20] lag 0 1.08 [0.93, 1.25] lag 1 0.97 [0.84, 1.13] lag 2 0.93 [0.81, 1.08] lag 3 1.16 [0.76, 1.77] 7-day mean
			Wake at night with cough/wheeze: Winter: 1.10 [0.96, 1.26] lag 0 1.05 [0.90, 1.22] lag 1 0.98 [0.83, 1.13]; lag 2 0.94 [0.81, 1.09]; lag 3 0.93 [0.66, 1.32] 7-day mean
			Summer: 0.93 [0.78, 1.10] lag 0 0.81 [0.67, 0.98] lag 1 0.91 [0.77, 1.09] lag 2 0.97 [0.83, 1.13] lag 3 1.04 [0.57, 1.90] 7-day mean
			Wheeze: Winter: 0.98 [0.83, 1.16] lag 0 0.90 [0.75, 1.05] lag 1 1.00 [0.83, 1.20] lag 2 1.13 [0.95, 1.35] lag 3 1.02 [0.68, 1.57]; 7-day mean
			Summer: 1.02 [0.88, 1.19] lag 0 0.98 [0.84, 1.16] lag 1 0.87 [0.74, 1.02] lag 2 0.85 [0.72, 0.99] lag 3 0.96 [0.51, 1.81] 7-day mean
Reference: Ward et al. (2002, <u>025839</u>)	Outcome: Change in PEF (peak	Pollutant: Sulfate	PM Increment:
Period of Study: 1997 (two 8-wk	expiratory flow), self reported respiratory symptoms (same day	Averaging Time: 24 h	Winter: 4.8 μg/m³ Summer: 3.1 μg/m³
periods)	cough, illness, short of breath, waking up at night with cough or wheeze,	Mean (SD):	Mean (PEF I/min) [Lower CI, Upper CI]
Location: Birmingham and Sandwell, UK	wheeze)	Winter: 2.4 µg/m ³	lag
	Age Groups: 9 yr olds	Summer: 3.8 μg/m ³	Winter morning:
	Study Design:	Range (Min, Max):	-1.75 [-4.00, 0.50] lag 0 -0.91 [-3.44, 1.62] lag 1
	Time-series panel study	Winter: 0.8, 14.9	-0.62 [-3.16, 1.91] lag 2 -1.82 [-4.27, 0.64] lag 3
	N: 162 children from 5 schools	Summer: 1.1, 7.8	-3.22 [-8.03, 1.58] 7-day mean
	Statistical Analyses: Linear regression (PEF),	PM Component:	Winter afternoon: 0.99 [-1.58, 3.55] lag 0
	Logistic regression (respiratory	SO ₄	0.79 [-2.42, 4.00] lag 1 -1.89 [-4.99, 1.21] lag 2
	symptoms)	Monitoring Stations: 2 stations	-1.73 [-4.69, 1.23] lag 3
	Covariates: Trend, temperature, schooldays (yes/no)		-1.96 [-13.35, 9.42] 7-day mean Summer morning:
	Season: Winter (Jan 13-Mar 10)		-0.72 [-3.27, 1.82] lag 0
	Summer (May 19- Jul 14)		-1.69 [-4.28, 0.90] lag 1 1.35 [-1.27, 3.97] lag 2
	Dose-response Investigated? No		3.38 [1.03, 5.72] lag 3 2.98 [-4.17, 10.13] 7-day mean
	Statistical Package: Nr		Summer afternoon:
	Lags Considered: Lag 0, lag 1, lag 2, lag 3, 7-day ma		-0.32 [-2.81, 2.17] lag 0 0.84 [-1.63, 3.30] lag 1 -0.08 [-2.61, 2.44] lag 2 -0.25 [-2.69, 2.19]lag 3 -2.20 [-9.51, 5.12] 7-day mean
			Winter morning in atopy/recent wheezing subgroup: 0.200 [-0.755, 1.156] lag 0 -0.219 [-1.318, 0.881] lag 1 -0.431 [-1.526, 0.664]; lag 2 1.200 [0.095, 2.305] lag 3

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Winter morning in no atopy or recent wheezing subgroup: -0.613 [-1.714, 0.488] lag 0 -0.174 [-1.423, 1.075] lag 1 0.006 [-1.243, 1.253] lag 2 -1.080 [-2.308, 0.148] lag 3
			Winter morning in subgroup with parental atopy/recent wheezing: 0.457 [0.003, 0.910] lag 0 0.078 [-0.503, 0.660] lag 1 -0.102 [-0.656, 0.452] lag 2 0.002 [-0.609, 0.613] lag 3
			Winter morning in subgroup without parental atopy/recent wheezing: -0.622 [-1.379, 0.136] lag 0 -0.272 [-1.147, 0.602] lag 1 -0.138 [-1.005, 0.728] lag 2 -0.496 [-1.359, 0.367] lag 3
			RR Estimate [Lower CI, Upper CI] lag:
			Cough: Winter: 1.01 [0.84, 1.20] lag 0 1.02 [0.85, 1.24] lag 1 0.99 [0.82, 1.20] lag 2 0.86 [0.71, 1.05] lag 3 0.78 [0.53, 1.14] 7-day mean
			Summer: 1.08 [0.98, 1.20] lag 0 1.03 [0.93, 1.15] lag 1 0.97 [0.88, 1.07] lag 2 0.90 [0.82, 0.99] lag 3 0.73 [0.54, 0.97] 7 day mean
			Illness: Winter: 1.06 [0.96, 1.17] lag 0 1.15 [1.03, 1.28] lag 1 1.14 [1.00, 1.28] lag 2 1.04 [0.92, 1.18] lag 3 1.30 [1.00, 1.66] 7-day mean
			Summer: 0.98 [0.86, 1.11] lag 0 0.97 [0.84, 1.12] lag 1 1.01 [0.88, 1.16] lag 2 0.95 [0.84, 1.09] lag 3 0.72 [0.46, 1.12] 7-day mean
			Shortness of breath: Winter: 0.96 [0.85, 1.07] lag 0 0.98 [0.86, 1.12] lag 1 0.94 [0.82, 1.07] lag2 0.93 [0.81, 1.08] lag 3 0.80 [0.59, 1.07] 7-day mean
			Summer: 0.95 [0.80, 1.14] lag 0 1.07 [0.89, 1.28] lag 1 1.04 [0.87, 1.24] lag 2 0.94 [0.80, 1.12] lag 3 [0.58 [0.33, 1.04] 7-day mean
			Wake at night with cough/wheeze: Winter: 0.97 [0.87, 1.08] lag 0 1.01 [0.89, 1.15] lag 1 1.00 [0.88, 1.14]; lag 2 0.93 [0.82, 1.07]; lag 3 0.79 [0.59, 1.05] 7-day mean
			Summer: 0.95 [0.78, 1.16] lag 0 0.81 [0.67, 0.99] lag 1 0.93 [0.76, 1.13] lag 2 0.87 [0.72, 1.05] lag 3 0.77 [0.41, 1.48] 7-day mean
			Wheeze: Winter: 1.00 [0.87, 1.15] lag 0 0.96 [0.82, 1.13] lag 1 0.88 [0.75, 1.04] lag 2 1.12 [0.95, 1.32] lag 3

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			0.83 [0.58, 1.20]; 7-day mean
			Summer: 0.97 [0.80, 1.17] lag 0 .09 [0.89, 1.32] lag 1 1.00 [0.82, 1.22] lag 2 0.81 [0.69, 0.97] lag 3 1.30 [0.68, 2.50] 7-day mean
Reference: Ward et al. (2002, <u>025839</u>)	Outcome: Change in PEF (peak expiratory flow), self reported	Pollutant: NO ₃	PM Increment: Winter: 6.7 μg/m ³
Period of Study: 1997 (two 8-week periods)	respiratory symptoms (same day cough, illness, short of breath, waking	Averaging Time: 24 h	Summer: 3.7 µg/m³
Location: Birmingham and Sandwell,	up at night with cough or wheeze, wheeze)	Mean (SD): Winter: 3.6 μg/m ³	Mean (PEF I/min) [Lower CI, Upper CI] lag:
JK	Age Groups: 9 yr olds	Summer: 3.5 µg/m ³	Winter morning: -2.08 [-4.02 to -0.15] lag0
	Study Design: Time-series panel study	Range (Min, Max):	-0.64 [-2.87, 1.59] lag 1 0.71 [-1.69, 3.11] lag 2
	N: 162 children from 5 schools	Winter: 0.1, 29.9	-1.38 [-3.61, 0.84] lag 3
	Statistical Analyses: Linear regression (PEF),	Summer: 0.7, 13.2	-0.92 [-5.32, 3.47] 7-day mean Winter afternoon:
	Logistic regression (respiratory symptoms)	Monitoring Stations: 2 stations	0.24 [-1.89, 2.38] lag0 -0.72 [-3.87, 2.43] lag 1 -1.37 [-5.11, 2.38] lag 2
	Covariates: Trend, temperature, schooldays (yes/no)		-2.54 [-5.74, 0.66] lag 3 0.21 [-7.67, 8.11] 7-day mean
	Season: Winter (Jan 13-Mar 10)		Summer morning: -0.80 [-2.74, 1.15] lag 0
	Summer (May 19- Jul 14)		0.68 [-1.31, 2.67] lag1 1.42 [-0.73, 3.58] lag2
	Dose-response Investigated? No		2.54 [0.48, 4.59] lag3 1.74 [-2.66, 6.13] 7-day mean
	Statistical Package: Nr		Summer afternoon:
	Lags Considered: Lag 0, lag 1, lag 2, lag 3, 7-day ma		-0.72 [-2.47, 1.03] lag 0 -0.59 [-2.36, 1.18] lag 1 -0.33 [-2.11, 1.45] lag 2 0.66 [-1.26, 2.58] lag 3 0.47 [-3.36, 4.29] 7-day mean
			Winter morning in atopy/recent wheezing subgroup: -0.036 [-0.627 , 0.555] lag 0 0.142 [-0.573 , 0.857] lag 1 0.000 [-0.760, 0.759] lag 2 0.689 [-0.061, 1.439] lag 3
			Winter morning in no atopy or recer wheezing subgroup: -0.434 [-1.116, 0.248] lag 0 -0.201 [-1.002 , 0.600] lag 1 0.154 [-0.703 , 1.010] lag 2 -0.605 [-1.422 , 0.210] lag 3
			Winter morning in subgroup with parental atopy/recent wheezing: 0.228 [-0.054, 0.511] lag 0 0.476 [0.060, 0.892] lag 1 0.196 [-0.202, 0.594] lag 2 0.083 [-0.321, 0.487] lag 3
			Winter morning in subgroup withou parental atopy/recent wheezing: -0.482 [-0.952, -0.012] lag 0 -0.276 [-0.846, 0.294] lag 1 0.078 [-0.520, 0.675] lag 2 -0.298 [-0.864, 0.268] lag 3
			RR Estimate [Lower CI, Upper CI] lag:
			Cough: Winter: 0.92 [0.80, 1.07] lag 0 0.91 [0.77, 1.07] lag 1 0.99 [0.83, 1.17] lag 2 0.87 [0.73, 1.03] lag 3 0.71 [0.52, 0.97] 7-day mean
			Summer: 1.05 [0.97, 1.13] lag 0

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			1.01 [0.93, 1.10] lag 1 0.95 [0.88, 1.03] lag 2 0.89 [0.83, 0.96] lag 3 0.81 [0.68, 0.97] 7 day mean
			Illness: Winter: 1.05 [0.97, 1.14] lag 0 1.11 [1.01, 1.22] lag 1 1.13 [1.01, 1.26] lag 2 1.13 [1.04, 1.26] lag 3 1.13 [0.92, 1.38] 7-day mean
			Summer: 0.97 [0.87, 1.09] lag 0 0.98 [0.87, 1.10] lag 1 0.95 [0.85, 1.06] lag 2 0.94 [0.85, 1.05] lag 3 0.74 [0.54, 1.03] 7-day mean
			Shortness of breath: Winter: 0.99 [0.90, 1.10] lag 0 1.01 [0.90, 1.13] lag 1 0.93 [0.82, 1.05] lag2 0.98 [0.86, 1.13] lag 3 0.85 [0.67, 1.08] 7-day mean
			Summer: 1.04 [0.90, 1.18] lag 0 1.12 [0.98, 1.28] lag 1 1.04 [0.90, 1.20] lag 2 0.90 [0.79, 1.03] lag 3 1.06 [0.78, 1.43] 7-day mean
			Wake at night with cough/wheeze: Winter:
			0.98 [0.89, 1.08] lag 0 1.05 [0.94, 1.16] lag 1 0.99 [0.88, 1.12]; lag 2 0.99 [0.87, 1.12]; lag 3 0.84 [0.67, 1.05] 7-day mean
			Summer: 0.94 [0.80, 1.09] lag 0 0.86 [0.72, 1.01] lag 1 0.94 [0.79, 1.11] lag 2 0.92 [0.79, 1.07] lag 3 0.95 [0.62, 1.47] 7-day mean
			Wheeze: Winter: 0.98 [0.87, 1.10] lag 0 1.00 [0.87, 1.14] lag 1 0.89 [0.77, 1.03] lag 2 1.11 [0.95, 1.30] lag 3 0.80 [0.61, 1.07] 7-day mean
			Summer: 1.01 [0.87, 1.17] lag 0 0.96 [0.83, 1.11] lag 1 0.95 [0.82, 1.10] lag 2 0.87 [0.75, 1.01] lag 3 1.04 [0.67, 1.60] 7-day mean

¹All units expressed in µg/m³ unless otherwise specified.

E.2.2. Respiratory Emergency Department Visits and Hospital Admissions

Table E-12. Short-term exposure-respiratory-ED/HA-P M_{10} .

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Andersen et al. (2008,	Hospital Admissions/ED visits	Pollutant: PM ₁₀ (μg/m ³)	PM Increment: 13 μg/m³ 3 (IQR)
<u>189651</u>)	Outcome (ICD-10):	Averaging Time: 24 h	Relative risk (RR) Estimate [CI]:
1st page: 458	RD, including chronic bronchitis	Mean (SD): 24(14)	RD hospital admissions (5 day avg,
Period of Study: May 2001- Dec 2004	(J41-42), emphysema (J43), other chronic obstructive pulmonary disease (J44), asthma (J45), and status asthmaticus (J46).	Median: 21	lag 0 -4), age 65+: One-pollutant model: 1.06 [1.02-1.09]
Location: Copenhagen, Denmark		IQR : 16-29	Adj for NCtot: 1.05 [1.01-1.10]
	Pediatric hospital admissions for	99th percentile: 72	Adj for NCa212: 1.04 [0.98-1.11]
	asthma (J45) and status asthmaticus (J46).	Monitoring Stations: 1	Asthma hospital admissions (6-day
	Age Groups Analyzed: >65 yr (RD	Copollutant (correlation): NCtot: r = 0.39	avg lag 0-5), age 5 - 18: One-pollutant model: 1.02 [0.93-1.12]
	combined), 5-18 yr (asthma)	NC100: r = 0.28 NCa12: r = 0.02	Adj for NCtot: 1.01 [0.91-1.12]
	Study Design: Time series	Nca23: r = -0.12	Adj for NCa212: 0.94 [0.81-1.09]
	N: NR	NCa57: r = 0.45 Nca212: r = 0.63	Estimates for individual day lags
	Statistical Analyses: Poisson GAM	PM _{2.5} : r = 0.80 CO: r = 0.37	reported only in Fig form (see notes):
	Covariates: temperature, dew-point temperature, long-term trend,	NO_2 : r = 0.35 : r = 0.32	Notes: Fig 2: Relative risks and 95% confidence intervals per IQR in single
	seasonality, influenza, day of the week,	curbside: r = 0.18 O ₃ : r = -0.21	day concentration (0-5 day lag).
	public holidays, school holidays (only for 5-18 yr olds), pollen (only for	Other variables:	Summary of Fig 2: RD: Positive, statistically or marginally significant
	pediatric asthma outcome)	Temperature: r = 0.12 Relative humidity: r = 0.05	associations at Lag 2-5. Asthma: Wide
	Season: NR		confidence intervals make interpretation difficult. Positive associations at Lag 1,
	Dose-response Investigated: No		2, 3, and 5.
	Statistical package: R statistical software (gam procedure, mgcv package)		
	Lags Considered: Lag 0 -5 days, 5-day avg (lag 0-4) for RD, and a 6-day avg (lag 0-5) for asthma.		
Reference: Cheng et al. (2007, 093034)	Outcome (ICD-9: 480-486): Pneumonia	Pollutant: PM ₁₀	PM Increment: 62.53 µg/m³ (IQR)
Period of Study: 1996-2004	Age Groups: NR	Averaging Time: 24 h	OR Estimate [CI]: Single Pollutant Model: Temp>25°C: 1.21 [1.15,1.28]
Location: Kaohsiung, Taiwan	Study Design: Case-crossover	Mean (min-max):	Temp < 25°C: 1.57 [1.50,1.65]
	N: 82,587 pneumonia hospital	77.01 (16.7-232)	Two-Pollutant Model: Temp>25°C
	admissions	Percentiles: 25%: 42.12	Adj. for SO ₂ : 1.21 [1.14,1.28]
	Statistical Analyses: Conditional logistic regression	50%: 75.27	Adj. for NO ₂ : 1.15 [1.07,1.24]
	Covariates: Temperature and humidity	75%: 104.65	Adj. for CO: 1.10 [1.03,1.17]
	on the same day	Monitoring Stations: 6	Adj. for O ₃ : 0.96 [0.89,1.03]
	Season: NR	Copollutant: NR	Temp < 25°C
	Dose-response Investigated? No		Adj. for SO ₂ : 1.56 [1.48,1.65]
	Statistical Package: SAS		Adj. for NO ₂ : 1.09 [1.02,1.16]
	Lags Considered: Cumulative lag period up to 2 previous days		Adj. for CO: 1.30 [1.22,1.39]
	period up to 2 previous days		Adj. for O ₃ : 1.56 [1.48,1.65]

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chimonas and Gessner	Outcome (ICD-9): Asthma (493.0-	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
(2007, <u>093261)</u>	493.9); Lower respiratory illness-LRI (466.1, 466.0, 480-487, 490, 510-511); Inhaled quick-relief medication; Steroid medication	Averaging Time: 24 h and 1 wk	RR Estimate [CI]:
Period of Study: Jan 1999-Jun 2003		Mean (min-max):	Same Day Outpatient Asthma: 1.006 [1.001,1.013]
Location: Anchorage, Alaska	Age Groups: <20 yr old	Daily: 27.6 (2-421)	Outpatient LRI: 1.001 [0.987,1.015]
	Study Design: Time series	Weekly: 25.3 (5.0-116.0)	Inpatient Asthma: 1.003 [0.922,1.091] Inpatient LRI: 1.015 [0.978,1.053]
	N: 42,667 admissions		Inhaled Steroid Prescriptions: 1.006 [0.996,1.011]
	Statistical Analyses: GEE for	Copollutant: Daily PM _{2.5}	Quick-relief Medication: 1.018 [1.006,1.030]
	multivariable modeling	ρ = 0.25 (p < 0.01)	Weekly (median increase) Outpatient Asthma: 1.021 [1.004,1.038]
	Covariates: Season, serial correlation, yr, weekend, temperature, precipitation,	Weekly PM _{2.5}	Outpatient LRI: 1.013 [0.978,1.049]
	and wind speed	ρ = 0.08 (p = 0.21)	Inpatient Asthma: 1.023 [0.948,1.104] Inpatient LRI: 1.025 [0.981,1.072]
	Season: NR		Inhaled Steroid Prescriptions: 0.989 [0.969,1.010]
	Dose-response Investigated? No		Quick-relief Medication: 1.057 [1.037,1.077]
	Statistical Package: SPSS (dataset), SAS (analysis)		1.007 [1.007,1.077]
	Lags Considered: 1 day and 1 week		
Reference: Chiu et al. (2008, <u>191989</u>)	Outcome: Hospital admissions for COPD	Pollutant: PM ₁₀	All results refer to "dust storm days" and can be found in Table 3
Period of Study: 1996-2001	Study Design: Time-series	Averaging Time: 24 h	can be found in Table 3
Location: Taipei, Taiwan	, ,	Mean (SD) Unit:	
	Covariates: Temperature, humidity, PM ₁₀ and O ₃	Index Days: 111.68 ± 38.32 μg/m ³	
	Statistical Analysis: Poisson regression	Comparison Days: 55.43 ± 24.66 µg/m ³	
		Range (Min, Max): NR	
	Statistical Package: SAS	Copollutant (correlation): NR	
Poforomona Chin et al. (2000, 400240)	Age Groups: All	Dallistants DM	In an amount IOD
Reference: Chiu et al. (2009, <u>190249</u>)	Outcome: Hospital admissions for pneumonia (ICD-9 480-486)	Pollutant: PM ₁₀	Increment: IQR
Period of Study: 1996-2004	Study Design: Time-series	Averaging Time: 24 h	Odds Ratio (95% CI)
Location: Taipei, Taiwan	Covariates: Weather variables, day of	Mean Unit: 49.47 μg/m³	Temperature ≥ 23° C: 1.11 (1.08-1.14) Temperature < 23° C: 1.09 (1.07-1.11)
	the week, seasonality, long-term time trends	Range (Min, Max): 14.42, 234.91 Copollutant (correlation):	Adjusted for SO ₂
	Statistical Analysis: Conditional logistic regression	SO ₂ : 0.50	Temperature ≥ 23° C: 1.10 (1.08-1.13) Temperature < 23° C: 1.19 (1.17-1.22)
	Statistical Package: SAS	NO ₂ : 0.58	Adjusted for NO ₂
	Age Groups: All	CO: 0.34	Temperature ≥ 23° C: 0.90 (0.88-0.93)
	•	O ₃ : 0.31	Temperature < 23° C: 1.09 (1.07-1.12)
			Adjusted for CO
			Temperature ≥ 23° C: 1.03 (1.00-1.05) Temperature < 23° C: 1.07 (1.05-1.10)
			Adjusted for O ₃
			Temperature ≥ 23° C: 1.05 (1.03-1.08) Temperature < 23° C: 1.09 (1.07-1.11)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Erbas et al. (2005, <u>073849</u>)	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: Increase from 10th to
Period of Study: Jan 2000-Dec 2001	Outcome (ICD-10): Asthma (J45, J46)	Averaging Time: 1 h	90th percentile
Location: Melbourne, Australia	Age Groups: 1-15 yr	Mean (SD):	RR Estimate [CI]:
	Study Design: Time series	Western: 2.99 (2.11) 10th percentile: 13.67	Same day lag
	N: 8955 asthma cases	90th percentile: 48.00 Inner Melbourne: 4.54 (2.65)	Western: NR
	Statistical Analyses: GAM, GEE (if	10th percentile: 15.63 `	Inner Melbourne: 1.17 [1.05,1.31]
	autocorrelation was present in	90th percentile: 59.73 South/Southeastern: 1.13 (1.18)	South/Southeastern: 1.14 [0.95,1.33]
	residuals)	10th percentile: 12.00 90th percentile: 36.05	Eastern: 1.09 [1.01,1.18]
	Covariates: Temp and humidity	Eastern: 3.61 (2.39)	Notes: All other lags NR
	Season: NR	10th percentile: 16.00 90th percentile: 51.05	
	Dose-response Investigated? No	Combined: 30.07 (10.55-112.33) SD = 15.27	
	Statistical Package: NR	10th percentile: 16.00	
	Lags Considered: 0, 1, 2 days	90th percentile: 50.51 Monitoring Stations: Data obtained from an air quality simulation model (TAPM) by CSIRO Atmospheric Research	
		Copollutant: NR	
Reference: Farhat et al. (2005,	Hospital Admissions and Emergency Room Visits	Pollutant: PM ₁₀	PM Increment: 30 µg/m³ (IQR)
089461)		Averaging Time: 24 h	RR Estimate [CI]:
Period of Study: Aug 1996-Aug 1997	Outcome (ICD-9): Lower respiratory tract diseases (466, 480-519) including	Mean (min-max): 62.6 (25.5-186.3)	Lower respiratory tract disease 5-day ma
Location: São Paulo, Brazil	pneumonia or bronchopneumonia (480-486), asthma (493), bronchiolitis (466)	SD = 26.6	Copollutant model:
	Age Groups: <13 yr	IQr = 30 N = 396	NO ₂ : 2.1 [-7.1,11.3] SO ₂ : 16.5 [10.5,22.6]
	Study Design: Time series	Monitoring Stations: 13	O₃: 10.1 [5.0,15.2] CO: 14.1 [8.1,20.2]
	N: 43,635	•	Multipollutant model: 5.2 [-4.6,15.1]
		Copollutant (correlation): SO ₂ : r = 0.69	Pneumonia or bronchopneumonia 6-day ma
	Statistical Analyses: GAM, Poisson regression, Pearson correlation	NO ₂ : r = 0.83 O ₃ : r = 0.35	Copollutant model: NO ₂ : 14.8 [-3.8,33.4]
	Covariates: Time, temperature, humidity, weekday	CO: r = 0.72 (all p < 0.05)	SO ₂ : 14.8 [-0.3,30.0]; O ₃ : 16.2 [1.0,31.3] CO: 17.6 [0.4,34.8] Multipollutant model: 5.23 [-16.2,26.6]
	Season: NR	Additional correlations:	Asthma or bronchiolitis
	Dose-response Investigated? No	Rel humidity: r = -0.55 Min temp: r = -0.44	2-day ma Copollutant model:
	Statistical Package: S-Plus	(both p < 0.05)	NO ₂ : -11.04 [-50.0,28.0] SO ₂ : 15.8 [-7.8,39.3]
	Lags Considered: 0-7 days		O ₃ : 11.7 [-10.4, 33.9] CO: 12.4 [-14.8,39.7] Multipollutant model: -15.5 [-61.2,30.2]

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Fung et al. (2006, <u>089789</u>)	Hospital Admission/ED	Pollutant: PM ₁₀	PM Increment: : 7.9 µg/m ³
Period of Study: June 1995-Mar 99	Outcome: Respiratory diseases (460-	Averaging Time: 24-h avg	Rr Estimate (65+ Yr)
Location: Vancouver, Canada	519)	Mean (SD): 13.31(6.13) μg/m ³	Dm Method:
	Age Groups: Age >65	Range (Min, Max): (3.77, 52.17)	1.014[0.998,1.029]
	Study Design: Time series	Monitoring Stations: NR	Lag 0 1.016[0.998,1.034]
	N: 26,275 individuals admitted	Copollutant (correlation): PM ₁₀ :	3-day avg
	Statistical Analyses: Poisson	PM _{2.5} r = 0.80	0.988[0.970, 1.006]
	regression (spline 12 knots), case- crossover (controls +/7 days from case	PM _{10-2.5} r = -0.11	5-day avg
	date), Dewanji and Moolgavkar (DM) method	CO r = 0.46	0.983[0.963, 1.004]
	Covariates: Long-term trends, day-of-		7-day avg Time Series: 1.016[0.999, 1.033]
	the-week effect, weather	Coh r = 0.61	Lag 0
	Season: All yr	O ₃ r = -0.08	1.015[0.996, 1.035]
	Dose-response Investigated? No	$NO_2 r = 0.54$	3-day avg
	Statistical Package: SPlus, R	$SO_2 r = 0.61$	1.009[0.987, 1.032]
	Lags Considered: 0-7 days		5-day avg 1.009[0.983, 1.036]
	3		7-day avg
			Case-Crossover:
			1.017[0.998, 1.036]
			Lag 0
			1.015[0.993, 1.037]
			3-day avg 1.008[0.984, 1.033]
			5-day avg 1.003[0.976, 1.031]
			7-day avg
Reference: Fung al. (2005, <u>093262</u>)	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: 26 μg/m ³
Period of Study: Nov 1995-Dec 2000	Outcome (ICD-9): Asthma (493) and all other respiratory diseases (460-519)	Averaging Time: 24 h	% Change in Daily Admission [CI]:
Location: London, Ontario		Mean (min-max):	Age <65
	Age Groups: <65 yr	38.0 (5-248)	Current day mean: -0.9 [-6.8,5.4]
	65+ yr	SD = 23.5	2-day mean: -1.3 [-8.5,6.6]
	Study Design: Time series	Monitoring Stations: 4	3-day mean: 1.9 [-6.5,11]
	N: 5574 respiratory admissions	•	
	Statistical Analyses: GAM with locally	Copollutant (correlation): NO ₂ : r = 0.30	Age 65+
	weighted regression smoothers (LOESS)	SO ₂ : r = 0.24	Current day mean: 3.3 [-1.7,8.6]
		CO: r = 0.21	2-day mean: 5 [-1.5,11.9] 3-day mean: 1.2 [-6.1,9.1]
	Covariates: Maximum and minimum temp, humidity, day of the week,	O ₃ : r = 0.53	
	seasonal cycles, secular trends	COH: r = 0.29	
	Season: NR	COn. 1 = 0.29	
	Dose-response Investigated? No		
	Statistical Package: S-Plus		
	Lags Considered: Current to 3-day mean		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Galán et al. (2003, <u>087408</u>)	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 1995-1998	Outcome (ICD): Asthma (493)	Averaging Time: 24 h	RR Estimate [CI]:
Location: Madrid, Spain	Age Groups: All ages	Mean (min-max): 32.1 (11.2-108.6)	Single-pollutant
	Study Design: Time series	SD = 12.1	Current-day lag: 1.011 (0.980-1.042)
	N: 555,153 at-risk	Monitoring Stations: 13	1-day lag: 1.006 (0.976-1.037)
	Statistical Analyses: GAM,	Copollutant (correlation):	2-day lag: 1.008 (0.978-1.038)
	autoregressive Poisson regression	SO ₂ : r = 0.581 NO ₂ : r = 0.717	3-day lag: 1.039 (1.010-1.068)
	Covariates: Temperature, relative humidity, pollen, yr, day of the week,	O_3 : $r = -0.188$	4-day lag: 1.027 (0.999-1.056)
	public holiday	Other variables:	Adjustment for pollen (PM ₁₀ 3-day lag)
	Season: NR	O.europaea: r = -0.066 Plantago sp.: r = -0.202	O. europaea: 1.041 (1.011-1.071)
	Dose-response Investigated? No	Poaceae: r = -0.132 Urticaceae: r = -0.104	Plantago sp.: 1.046 (1.017-1.076)
	Statistical Package: S-Plus	Temp: r = -0.122	Poaceae: 1.043 (1.015-1.073)
	Lags Considered: 0, 1, 2, 3, and 4 day s	Humidity: r = 0.119	Urticaceae: 1.038 (1.009-1.068)
	•		All four: 1.045 (1.016-1.074)
Reference: Hajat et al. (2002, <u>030358</u>)	Family Practice consultations	Pollutant: PM ₁₀	PM Increment: All Year: 18
Period of Study: Jan 1992-Dec 1994	Outcome: Upper Resp Disease	Averaging Time: 24 h	Warm Season: 15
Location: London, England	(excluding allergic rhinitis) (460-3), (465), (470-5), (478)	Mean (SD): 28.5 (13.7) μg/m ³	Cold Season: 20
	Age Groups: 0-14,	Percentiles: 10th: 15.8	% Change, Single Pollutant Models: All Year: Ages
	15-64, >65 yr	90th: 46.5	0-14: 2.0[-ŏ.2, 4.2] Lag 3
	Study Design: Time series	Monitoring Stations: 1	Ages 15-64: 5.7[2.9, 8.6] Lag 2
	N: 268,718-295,740 registered patients	Warm Season: A Lag 3 Ages 15-64: 6.0 Lag 2	Ages >65: 10.2[5.3, 15.3] Lag 2 Warm Season: Ages 0-14: 1.1[-2.4, 4.8]
	Statistical Analyses: Poisson		Lag 3
	regression, GAM, LOESS smoothers, default convergence criteria		Lag 2
	Covariates: Long term trends, pollen		Ages >65: 0.1[-7.7, 8.5] Lag 2 Cold Season: Ages 0-14: 2.7[-0.1, 5.5]
	counts, flu, meteorological variables		Lag 3 Ages 15-64: 3.6[1.0, 6.4]
	Season: All yr		Lag 2 Ages >65: 18.9[11.7, 26.7] Lag 2
	Dose-response Investigated? No		% Change, 2 Pollutant Models:
	Statistical Package: SPLUS		0-14 Yr PM ₁₀ w/ NO ₂ : 3.8[1.6, 6.1]
	Lags Considered: 2-3		PM ₁₀ w/ O ₃ : 1.8[-0.4, 3.9]
			PM ₁₀ w/ SO ₂ : 2.0[-0.6, 4.6]
			15-65 Yr
			PM ₁₀ w/ NO ₂ : 2.8[0.7, 4.9] PM ₁₀ w/ O ₃ : 4.8[2.6, 7.0]
			PM ₁₀ w/ SO ₂ : 4.8[2.2, 7.5]
			>65 Yr
			PM ₁₀ w/ NO ₂ : 4.6[0.5, 8.8]
			PM ₁₀ w/ O ₃ : 10.7[5.7, 16.0]
			PM ₁₀ w/ SO ₂ : 10.6[4.5, 17.1]

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Hanigan et al. (2008,	Outcome: Cardiorespiratory Disease	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
<u>156518</u>)	HA (ICD 9: 390-519 ICD 10: I00-99 & J00-99)	Averaging Time: 24 h Mean (SD): 21.2 (8.2)	Percent Change (Lower CI, Upper CI) lag:
Period of Study: 1996-2005 (Apr-Nov of each yr)			
Location: Darwin, Australia	Age Groups: NR	Range: 55.2	Total Respiratory: 4.81 (-1.04, 11.01), lag 0
,	Study Design: Time series	Monitoring Stations: 2 (monitored &	Total Resp., Indigenous: 9.40 (1.04,
	N : 8279 events	modeled)	18.46), lag 0
	Statistical Analyses: Poisson regression	Copollutant: NR	Total Resp., Non-Indigenous: 3.14 (-2.99, 9.66), lag
	Covariates: Indigenous status,	Co-pollutant Correlation	Resp. Infection, Indigenous: 15.02
	Dose-response Investigated? No	N/A	(3.73, 27.54), lag 3
	Statistical Package: R		Resp. Infection, Non-Indigenous: 0.67 (7.55, 9.61), lag 3
	Lags Considered: Lags 0-3		Asthma Indigenous: 16.27 (3.55, 40.17), lag 1
			Asthma Non-Indigenous: 8.54 (-5.60, 24.80), lag 1
			*Fig 3. percent change in hospital admissions per 10 μg/m³ increase in PM ₁₀
Reference: Hanigan et al. (2008,	Hospital Admissions/ED visits	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
<u>156518</u>)	Outcome (ICD-9 or ICD-10):	Averaging Time: 24 h	Percent change [95% CI]:
Period of Study: 1996-2005 (Apr-Nov of each yr)	Daily emergency hospital admissions for total respiratory (ICD-9: 460-519	Mean (SD range): 21.2 (8.2-55.2) Monitoring Stations: N/A (see notes) Copollutant (correlation): NR	Overall respiratory disease: Lag 0: 4.81 [-1.04, 11.01] Lag 0 (indigenous people): 9.40 [1.04, 18.46] Lag 0 (non-indigenous people): 3.14 [-2.99, 9.66] In unstratified analyses, the subgroups
Location: Darwin, Australia	ICD-10: J00-J99), asthma (ICD-9: 493		
	ICD-10: J45-J47), COPD (ICD-9: 490-492, 494-496		
	ICD-10: J40-J44, J47, J67), and respiratory infections (ICD-9: 461-466, 480-487, 514		of respiratory infections, asthma, and COPD all had positive associations with PM ₁₀ Lag 0. Asthma:
	ICD-10: J00-J22).		Lag 1 (indigenous people):
	Age Groups Analyzed: All		16.27 [-3.55, 40.17] Lag 1 (non-indigenous people):
	Study Design: Time series		8.54 [-5.60, 24.80]
	N: 8,279 hospital admissions		Respiratory infections: Lag 3 (indigenous people):
	Statistical Analyses: Poisson generalized linear models		15.02 [3.73, 27.54] Lag 3 (non-indigenous people): 0.67 [-7.55, 9.61]
	Covariates: Indigenous status, time in days, temperature, relative humidity, day of the week, influenza epidemics, change between ICD editions, holidays, yrly population		Notes: Fig 3: Associations between hospitalizations for non-indigenous and indigenous people with estimated ambient PM ₁₀ .
	Season: Apr-Nov (corresponding to the dry season)		Summary of Fig 3: Confidence intervals were wide, but indigenous
	Dose-response Investigated? No		people generally had stronger
	Statistical package: R version 2.3.1		associations with PM ₁₀ than non- indigenous people. Daily PM ₁₀ exposur
	Lags Considered: Lag 0 -3		levels were estimated for the population of the city from visibility data using a previously validated models.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Hapcioglu et al. (2006,	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: NR
093263) Period of Study: Jan 1997-Dec 2001	Outcome (ICD-9): COPD (ICD: NR)	Averaging Time: 1 mo	Notes: RRs only provided for season, not PM
	Age Groups: NR	Mean (SD): NR	
Location: Istanbul, Turkey	Study Design: Time series	Monitoring Stations: 1	
	N: 1586 patients	Copollutant: NR	
	Statistical Analyses: Multiple stepwise regression, Pearson correlation	Correlation with COPD: r = 0.28	
	Covariates: Humidity, temperature, and pressure	p = 0.03	
	Season: Summer, fall, winter, spring	Adj for temp: r = 0.16	
	Dose-response Investigated? No	p = 0.23	
	Statistical Package: SPSS		
	Lags Considered: NR		
Reference: Hwang and Chan (2002,	Clinic visits	Pollutant: PM ₁₀	PM Increment: 10% Increase In PM ₁₀ (5.9 µg/m ³)
<u>)23222</u>)	Outcome: LRI	Averaging Time: 24 h	Percent Change: 0-14
Period of Study: 1998 Location: Taiwan	466, 480-486 (acute bronchitis, acute bronchiolitis, pneumonia)	Mean (SD): 58.9 μg/m³ (14.0) Range (Min, Max): 33.3, 83.1 μg/m³	0.5% (-0.1, 0.8] Lag0 [-0.3, 0.3] Lag1
	Age Groups: 0-14 yr, 15-64, 65+ yr	PM Component:	0.3 [0.0, 0.6] Lag2 15-64
	Study Design: Cluster analysis of small study areas	Monitoring Stations: 59	0.6 [0.2, 0.9] Lag0 0.2 [-0.1, 0.5] Lag1 0.3 [0.0, 0.6] Lag2
	N: 50 communities	Notes: Number Of stations estimated from fig.	65+ 0.8 [0.4, 1.1] Lag0
	Statistical Analyses: GLM to model temporal patterns, hierarchical model to obtain estimates across 50 communities	Copollutant: NR	0.3 [-0.1, 0.6] Lag1 0.5 [0.1, 0.8] Lag2 All Ages
	Covariates: Day of week, temperature, dew point, summer/Winter		0.5 [Õ.2, N0.8] Lag0 [-0.3, 0.3] Lag1 0.3 [0.0, 0.6] Lag2
	Season: All		
	Dose-response Investigated? Yes		
	Statistical Package: NR		
	Lags Considered: 0-2		
Reference: Jaffe et al. (2003, <u>041957</u>)	ED visits	Pollutant: PM ₁₀	PM Increment: 50 μg/m ³
Period of Study: July 1991-June	Outcome (ICD10): Asthma (493)	Averaging Time: 24 h	% Change
996 Location: Cincinnati, Cleveland,	Age Groups: Age 5-34 yr	Mean (SD): Cincinnati: 43.0(16.4)	Asthma
Columbus, Ohio	Study Design: Time-series	Cleveland: 60.8(28.4)	Cincinnati: -22%[-49,-19] Lag 3
	N: 4,416 recipients	Columbus: 37.4(16.3) Range (Min, Max):	Cleveland: 12%[0,27] Lag 2
	Statistical Analyses: Poisson regression, GAM	Cincinnati: (16,90) Cleveland: (12,183)	Columbus: 32%[-6,-85] Lag 3
	Covariates: City, day of week, wk, yr,	Columbus: (7,87)	Ar Estimate [Lower Ci, Upper Ci]
	minimum temperature, dispersion	Monitoring Stations: 3	Lag:
	parameter Season: Jun-Aug only	Copollutant (correlation): Cincinnati:	Asthma
	Dose-response Investigated? Yes	PM_{10} $O_3 r = 0.42$	Cincinnati: PM ₁₀ : Nr
	Statistical Package: NR	NO_2 r = 0.36 SO_2 r = 0.31	Cleveland: PM ₁₀ : 1.32
	Lags Considered: 0-3 days	Cleveland: PM ₁₀	Columbus: PM ₁₀ : 3.62
	•	N_{3} (1) N_{3} (2) N_{2} (2) N_{2} (2) N_{2} (2) N_{3} (2) N_{2} (2) N_{3} (3) N_{3} (3) N_{3} (3) N_{2} (4) N_{3} (5) N_{3} (6) N_{3} (7) N_{3} (8) N_{3	Notes: Dose response was investigate by assessing the relationship between odds of ed visit by quintile of PM ₁₀ . Results are displayed in Fig. "no consistent effects for all three cities were observed for PM ₁₀ ." Rate ratios were also reported for each city.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Jalaludin et al. (2004,	Doctor Visits	Pollutant: PM ₁₀	PM Increment: IQR (µg/m³)
<u>056595</u>)	Outcome (ICD- NR): Respiratory	Averaging Time: 24 h	Same day: 12.0 1-day lag: 12.02
Period of Study: Feb-Dec 1994	symptoms (wheeze, dry cough, and wet cough), asthma medication use, and	Mean (SD): 22.8 (13.8)	2-day lag: 12.25
Location: Sydney, Australia	doctor visits for asthma	Monitoring Stations: 4	2-day avg: 11.15 5-day avg: 10.23
	Age Groups: Primary school children	Copollutant (correlation):	OR Estimate [CI]:
	Study Design: Longitudinal cohort study	O ₃ : r = 0.13	Doctor Visits for Asthma Same day: 1.11 [1.04,1.19]
	N: 125 children	NO ₂ : r = 0.26	1-day lag: 1.10 [1.02,1.19]
	Statistical Analyses: GEE logistic regression models	Other variables:	2-day lag: 1.15 [1.06,1.24] 2-day avg: 1.11 [1.03,1.20]
		Temp: r = 0.04	5-day avg: 1.14 [0.98,1.31]
	Covariates: Temperature, humidity, daily pollen count, daily alternaria count, number of h spend outdoors, season	Humidity: r = -0.29	Prevalence of Doctor Visits for Asthma:
		Total pollen: r = 0.04	Quartile 1: 0.50 (mean PM = 12.4)
	Season: Fall (Feb-Apr), winter (May-Aug), spring/summer (Sep-Dec)	Alternaria: r = 0.04	Quartile 2: 0.38 (mean PM = 17.2) Quartile 3: 0.65 (mean PM = 23.0) Quartile 4: 0.63 (mean PM = 38.3)
	Dose-response Investigated? No		Notes: ORs and prevalence are also
	Statistical Package: SAS		provided for wheeze, dry cough, wet
	Lags Considered: 0-2 days		cough, inhaled β2-agonist use, and inhaled corticosteroid use. None were statistically significant.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Johnston et al. (2007,	Hospital Admissions/ED visits	Pollutant: PM ₁₀	PM Increment: 10 µg/m ³
155882)	Outcome (ICD-10):	Averaging Time: 24 h	OR Estimate [95% CI]: All respiratory
Period of Study: 2000, 2004, 2005 (Apr-Nov of each yr)	All respiratory conditions (J00-J99),	Median: 17.4	conditions: Lag 0: 1.08 [0.98-1.18]
Location: Darwin, Australia	including asthma (J45-46), COPD (J40-J44), and respiratory infections	IQR: 13.6-22.3	Lag 0 (indigenous): 1.17 [0.98-1.40]
	(J00-J22).	10-90th Percentile: 10.3-27.7	COPD: Lag 0: 1.21 [1.0-1.47]
	Age Groups Analyzed: All	Range: 1.1-70.0	Lag 0 (indigenous): 1.98 [1.10-3.59]
	Study Design: Case-crossover	Monitoring Stations: 1	Asthma: Lag 0: 1.14 [0.90-1.44]
	N: 2466 emergency admissions	Copollutant (correlation): NR	Asthma + COPD: Lag 0: 1.19 [1.03-1.38]
	Statistical Analyses: Conditional logistic regression		Notes: Fig 1: Adjusted OR and 95% CI for hospital admissions for all
	Covariates: Weekly influenza rates, temperature, humidity, days with rainfall >5mm, public holidays, school holiday periods (for respiratory conditions only)		respiratory conditions per 10 µg/m³ rise in PM₁₀ for the same day and lags up to 3 days, overall and stratified by indigenous status.
	Season: Apr-Nov (dry season)		Summary of Fig 1 results: Marginally
	Dose-response Investigated? No		significant positive association at Lag 0 in overall study population. Larger marginally significant positive association among indigenous people.
	Statistical package: NR		
	Lags Considered: 0-3 days		Fig 2: OR and 95% CI for hospital admissions for COPD. Summary of Fig 2 results: Marginally significant positive associations at Lag 0 and Lag 1 in overall study population and among non-indigenous people. Large, statistically significant positive association at Lag 0 for indigenous people, with smaller, non-significant positive associations at Lag 1 and Lag2.
			Fig 3: OR and 95% CI for hospital admissions for asthma.
			Summary of Fig 3 results: Positive, non-significant (sometime marginally significant) associations at Lag 0, Lag 2, and Lag 3 for overall population and indigenous status strata.
			Fig 4: OR and 95% CI for hospital admissions for respiratory infections.
			Summary of Fig 4 results: Negative associations at Lag 2 and Lag 3 in all population strata.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Kim et al. (2007, <u>092837</u>)	Ed Visits	Pollutant: PM ₁₀	PM Increment: 47.4 μg/m ³
Period of Study: 2002	Outcome (ICD10): Asthma (J45), (J46)	Averaging Time: 8 h	Rr Estimate For Asthma (Stratified
Location: Seoul, Korea	Age Groups: All Ages	Mean (SD): Daily Concentration: 67.6	By Sep):
	Study Design: Cass-Crossover	(39.0) μg/m³	Individual Level Sep:
	N: 92,535 Visits	Relevant Exposure Term (Difference Between Concentration On Event Day	Quintile 1-1.06[1.02, 1.09]
	Statistical Analyses: Conditional	And Mean Of Concentrations On Control Days): 26.0 (19.7)	Quintile 2-1.07[1.04, 1.10]
	Logistic Regression, Relative Effect Modification (Rem)	Percentiles: 50th(Median): Daily	Quintile 3-1.06[1.03, 1.10]
	Covariates: Time Trend, Season, Daily	Concentration: 61.9	Quintile 4-1.03[0.99, 1.07]
	Mean Temperature, Relative Humidity, Air Pressure. Sep As Modifier Of Air	Relevant Exposure Term: 21.6	Quintile 5-1.10[1.05, 1.14]
	Pollution Asthma Visit Association.	Range (Min, Max): Daily	Regional Level Sep:
	Season: All Year	Concentration: (4.9, 302.0)	Quintile 1-1.04[0.99, 1.10]
	Dose-response Investigated? No	Relevant Exposure Term: (0.0, 143.1)	Quintile 2-1.03[1.00, 1.07]
	Statistical Package: Nr	Monitoring Stations: 3	Quintile 3-1.05[1.03, 1.08]
	Lags Considered: 0-2 days	Copollutant: Nr	Quintile 4-1.06[1.02, 1.10]
			Quintile 5-1.09[1.06, 1.13]
			Total-1.06[1.04, 1.08], 3 D Ma
			Notes: Relative Effect Modification (Rem) Estimates Presented In Paper.
Reference: Ko et al. (2007, <u>091639</u>)	Ed Visits	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: Jan 2000-Dec 2004	Outcome (ICD-9): COPD: chronic	Averaging Time: 24 h	Rr Estimate
Location: Hong Kong, China	bronchitis (491), emphysema (492), chronic airway obstruction (496)	Mean (SD): 50.1(23.9) μg/m ³	COPD:
	Age Groups: All Ages	Percentiles: 25th: 31.9	1.003[1.000, 1.005] Lag 0
	Study Design: Time Series	50th(Median): 44.5	1.005[1.002, 1.007] Lag 1 1.010[1.007, 1.012] Lag 2
	N: 15 hospitals, 119,225 admissions	75th: 64.1	1.011[1.008, 1.013] Lag 3 1.008[1.006, 1.011] Lag 4
	Statistical Analyses: Poisson	Range (Min, Max): (13.6, 172.2)	1.007[1.004, 1.009] Lag 5
	regression, gam with stringent	Monitoring Stations: 14 Stations	1.005[1.002, 1.008] Lag 0-1
	convergence criteria, aphea2 protocol. Covariates: Time trend, season, temperature, humidity, other cyclical	Copollutant (correlation): PM ₁₀ :	1.011[1.008, 1.014] Lag 0-2 1.016[1.013, 1.019] Lag 0-3 1.020[1.017, 1.024] Lag 0-4
	factors, day, day of wk, holidays	SO ₂ r = 0.436	1.024[1.021, 1.028] Lag 0-5
	Season: All yr, interactions with season tested	NO ₂ r = 0.229	
		O ₃ r = 0.421	
	Dose-response Investigated? No	$PM_{2.5}$ r = 0.952	
	Statistical Package: Splus 4.0		
	Lags Considered: 0-5 days		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ko et al. (2007, <u>091639</u>)	Hospital Admission	Pollutant: PM ₁₀	PM Increment: 10.0 µg/m ³
Period of Study:	Outcome (ICD-9): Asthma (493)	Averaging Time: 24 h	RR Estimate:
Jan 2000-Dec 2004 Location: Hong Kong, China	Age Groups: All, 0-14, 15-56, 65+	Mean (SD): 52.5(27.1) μg/m ³	Asthma (Single-pollutant model):
	Study Design: Time series	Percentiles: 25th: 30.9	1.006[1.003, 1.010] lag 0 1.005[1.002, 1.009] lag 1
	N: 69,716 admissions, 15 hospitals	50th(Median):	1.005[1.002, 1.009] lag 2 1.008[1.005, 1.012] lag 3
	Statistical Analyses: Poisson	47.1	1.006[1.002, 1.009] lag 4 1.006[0.999, 1.006] lag 5
	regression, with GAM with stringent convergence criteria.	75th : 68.8	1.008[1.004, 1.012]; lag 0-1
	Covariates: Time trend, season,	Range (Min, Max): (13.4, 198.9)	1.012[1.008, 1.016] lag 0-2 1.015[1.011, 1.019] lag 0-3
	temperature, humidity, other cyclical factors	Monitoring Stations: 14 stations Copollutant (correlation): PM ₁₀ :	1.018[1.013, 1.022] lag 0-4 1.019[1.015, 1.024] lag 0-5
	Season: All yr, evaluated effect of season in analysis	SO ₂ r = 0.436 NO ₂ r = 0.761	Asthma by age group 0-14: 1.023[1.015, 1.031] lag 0-5 14-65: 1.014[1.006, 1.022] lag 0-5
	Dose-response Investigated? No	$O_3 r = 0.600$ $PM_{2.5} r = 0.956$	
	Statistical Package: SPLUS 4.0		>65: 1.015[1.009, 1.022] lag 0-4
	Lags Considered: 0-5 days		Asthma-Effect of season: 1.148[1.051, 1.245] lag 0-5
Reference: Kuo et al. (2002, <u>036310</u>)	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: NR
Period of Study: 1 yr	Outcome (ICD-NR): Asthma	Averaging Time: 1 h	OR Estimate:
Location: central Taiwan	Age Groups: 13-16 yr	Mean (min-max): NR	PM ₁₀ <65.9 μg/m³-referent
	Study Design: Cohort	Range: (54.1-84.3)	PM ₁₀ >65.9 μg/m ³
	N : 12,926	Monitoring Stations: 8	Crude OR: 0.837
	Statistical Analyses: Multiple logistic	$ \begin{tabular}{ll} \textbf{Copollutant:} & Values NR \\ \textbf{Notes:} & Author states that a positive correlation was found between NO$_2$ and PM_{10}$ \\ \end{tabular} $	Adj OR: 0.947
	regression, Pearson correlation		95% CI: (0.640,1.401)
	Covariates: Sex, age, residential area, level of parents' education, number of cigarettes smoked by smokers in the family, incense burning, frequency of physical activity		
	Season: NR		
	Dose-response Investigated? No		
	Statistical Package: SAS		
	Lags Considered: NR		
Reference: Langley-Turnbaugh et al.	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: NR
(2005, <u>093269</u>)	Outcome (ICD-9): Asthma (493xx)	Averaging Time: NR	RR Estimate [CI]: NR
Period of Study: 2000-2001	Age Groups: 0-18 yr, 19+ yr	Mean (min-max): NR	Notes: Portland filters contained more
Location: Portland, Bridgeton, and Presque Isle, Maine	Study Design: Time series	Monitoring Stations: NR	PM in the winter (Jan) and Bridgeton filters contained more PM in the spring
	N: NR	Copollutant: NR	(May)
	Statistical Analyses: NR	•	study analyzed metal components of
	Covariates: NR		PM ₁₀ (Mn, Cu, Pb, As, V, Ni, Al)
	Season: Winter, spring, summer, fall		Clinical data shows a strong peak in fall and weaker peaks in Jan and May for
	Dose-response Investigated? No		asthma admissions
	Statistical Package: NR		
	Lags Considered: NR		
	Notes: Hospital admissions were used to determine seasonality of asthma admissions so that PM components from those time periods could be analyzed		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Lee et al. (2002, <u>034826</u>)	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: IQR: 40.4 µg/m ³
Period of Study: Dec 1997-Dec 1999	Outcome (ICD10): Asthma, J45, J46,	Averaging Time: 24 h	RR Estimate:
Location: Seoul, Korea	Age Groups: Children <15 yr	Mean (SD): 64.0 (31.8) μg/m ³	Single Pollutant: 1.07 (1.04, 1.11) lag 1
	Study Design: Time-Series	Percentiles: 25th: 40.5 µg/m ³	Two pollutant models:
	N: 822 days, 6,436 admissions	50th(Median): 59.1 μg/m ³	+SO ₂ : 1.05 (1.01, 1.09) lag 1 +NO ₂ : 1.03 (0.99, 1.07) lag 1
	Statistical Analyses: Poisson	75th: 80.9 μg/m ³	+O₃: 1.06 (1.03, 1.10) lag 1 +CO: 1.04 (1.00, 1.08) lag 1
	regression, GAM, LOESS smoothers.	Range (Min, Max): NR	Three pollutant models: +O ₃ + CO: 1.02 (0.98, 1.06), lag 1
	Covariates: Days of the week, temperature, humidity	Monitoring Stations: 27	Four pollutant models: +O ₃ + CO +SO ₂ : 1.02 (0.98, 1.06), lag 1
	Season: All	Notes: Copollutant (correlation): PM ₁₀ -SO ₂ : 0.585	Five pollutant model:
	Dose-response Investigated? No	PM ₁₀ -NO ₂ : 0.738	1.016 (0.975, 1.059) lag 1 Notes: Investigated the association
	Statistical Package: NR	PM ₁₀ -O ₃ : 0.106	between outdoor air pollution and asthma attacks in children <15 yr.
	Lags Considered: 0-5, 0-1 ma for 1-2, 2-3, and 3-4 days	PM ₁₀ -CO: 0.598	asuma attacks in omaten \$15 yr.
Reference: Lee et al. (2006, <u>090176</u>)	Hospital Admission	Pollutant: PM ₁₀	PM Increment: IQr = 33.4
Period of Study: Jan 1997-Dec 2002	Outcome: Asthma (493)	Averaging Time: 24 h	Percent Increase:
Location: Hong Kong, China	Age Groups: <18 yr	Mean (SD): 56.1 (24.2)	Single pollutant model:
	Study Design: Time series	Percentiles: 25th: 37.3	4.97 [2.96, 7.03], lag 0
	N: 26,663 asthma admissions for asthma and 5821 admissions for influenza	50th(Median): 51.1	5.71 [3.78, 7.68], lag 1
		75th: 70.7	6.40 [4.51, 8.32], lag 2
	Statistical Analyses: Poisson	Monitoring Stations: 10	7.25 [5.38, 9.16], lag 3
	regression, GAM Covariates: Temperature, atmospheric pressure, relative humidity	Notes: Copollutant (correlation): PM ₁₀ -PM _{2.5} : 0.90	7.45 [5.58, 9.35], lag 4
		PM ₁₀ -SO ₂ : 0.39	5.96 [4.11, 7.85], lag 5
	Season: All	PM ₁₀ -NO ₂ : 0.80	Multipollutant model (SO ₂ , CO, NO ₂ , O ₃) 3.67 [1.52,5.86] lag4
	Dose-response Investigated? No	PM ₁₀ -O ₃ : 0.60	
	Statistical Package: SAS 8.02	· · · · · · · · · · · · · · · · · · ·	
	Lags Considered: 0-5		
	Notes: Controls were admissions for influenza ICD9 487		
Reference: Lin et al. (2005, <u>087828</u>)	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: 12.5 μg/m ³
Period of Study: 1998-2001	Outcome (ICD-9): Respiratory	Averaging Time: 24 h	OR Estimate [CI]:
Location: Toronto, North York, East	infections including laryngitis, tracheitis, bronchitis, bronchiolitis, pneumonia,	Mean (min-max):	Adjusted for weather
York, Etobicoke, Scarborough, and York (Canada)	and mindoniza (101, 100, 100 101)	20.41 (4.00-73.00)	4-day avg: 1.22 [1.10,1.34]
	Age Groups: 0-14 yr	SD = 10.14	6-day avg: 1.25 [1.11,1.40]
	Study Design: Bidirectional case- crossover	Monitoring Stations: 4 Copollutant (correlation):	Adj for weather and other gaseous pollutants
	N: 6782 respiratory infection hospitalizations	PM _{2.5} : r = 0.87	4-day avg: 1.14 [0.99,1.32]
	Statistical Analyses: Conditional	PM _{10-2.5} : r = 0.76	6-day avg: 1.20 [1.01,1.42]
	logistic regression (Cox proportional hazards model)	CO: r = 0.10	Notes: OR's were also categorized into "Boys" and "Girls," yielding similar
	Covariates: Daily mean temp and dew	SO ₂ : r = 0.48	results
	point temp	NO_2 : $r = 0.54$	
	Season: NR	O_3 : $r = 0.54$	
	Dose-response Investigated? No		
	Statistical Package: SAS 8.2 PHREG procedure		
	Lags Considered: 1-7 day avg		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Lin et al, (2008, <u>126812</u>)	Outcome: Respiratory hospital	Pollutant: O ₃ (PM ₁₀ is secondary)	All PM ₁₀ results are given in Fig 3
Period of Study: 1991-2001	admissions (ICD-9 466, 490-493, 496	Averaging Time: 24 h	
Location: New York State, U.S.	Study Design: Time-series	Mean (SD) Unit: 19.56 (10.92) μg/m ³	
	Covariates: Demographic characteristics, PM ₁₀ , meteorological	Range (Min, Max): 1.0, 90.00	
	conditions, day of the week, seasonality, long term trends and different lag periods	Copollutant (correlation): Given in Fig 3	
	Statistical Analysis: GAM and case- crossover design at the regional level and Bayesian hierarchical model at the state level		
	Age Groups: Children 0-17 yr		
Reference: Lin et al. (2002, <u>026067</u>)	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: 14.8 μg/m ³
Period of Study: Jan 1981-Dec 1993	Outcome (ICD-9): Asthma (493)	Averaging Time: 6 days (predicted	RR Estimate [CI]:
Location: Toronto	Age Groups: 6-12 yr	daily values)	Adj for weather and gaseous pollutants BCC 5-day avg: 0.99 [0.90,1.09]
	Study Design: Uni- and bi-directional	Mean (min-max):	BCC 6-day avg: 1.01 [0.90,1.12]
	case-crossover (UCC, BCC) and time- series (TS)	30.16 (3.03-116.20)	TS 5-day avg: 1.03 [0.95,1.11] TS 6-day avg: 1.02 [0.94,1.11]
	N: 7,319 asthma admissions	SD = 13.61	Boys-adj for weather UCC 1-day avg: 1.10 [1.04,1.17]
	Statistical Analyses: Conditional logistic regression, GAM	Monitoring Stations: 1	UCC 2-day avg: 1.10 [1.02,1.17] BCC 1-day avg: 1.04 [0.98,1.09]
		Copollutant (correlation): PM _{2.5} : r = 0.87	BCC 2-day avg: 1.01 [0.95,1.08]
	Covariates: Maximum and minimum temp, avg relative humidity	PM _{10-2.5} : r = 0.83	TS 1-day avg: 1.03 [0.99,1.07] TS 2-day avg: 1.01 [0.96,1.05] Girls-adj for weather UCC 1-day avg: 1.07 [0.99,1.16] UCC 2-day avg: 1.15 [1.04,1.26] BCC 1-day avg: 0.99 [0.92,1.06] BCC 2-day avg: 1.03 [0.95,1.12] TS 1-day avg: 0.99 [0.94,1.04]
	Season: Apr-Sep, Oct-Mar	CO: r = 0.38	
	Dose-response Investigated? No	SO ₂ : r = 0.44	
	Statistical Package: NR	NO ₂ : r = 0.52	
	Lags Considered: 1-7 day avg	O ₃ : r = 0.44	TS 2-day avg: 1.02 [0.96,1.08]
			Notes: The author also provides RR using UCC, BCC, and TS analysis for female and male groups for days 3-7, yielding similar results
Reference: Linares et al. (2006,	Outcome: Respiratory system diseases	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
<u>092846</u>)	460-519, bronchitis 460-496, pneumonia 480-487	Averaging Time: 24 h	RR Estimate
Period of Study: Jan 1995-Dec 2000	Age Groups: <10 yr	Mean (SD): 33.4 μg/m ³ , (13.7)	Bronchitis
Location: Madrid, Spain	Study Design: Time series	Range (Min, Max): 6, 109 μg/m ³	1.09 [1.01, 1.16] lag 2
	N: ~15,000 admissions, 2192 days	Monitoring Stations: 24	AR% Estimate
	Statistical Analyses: Poisson	Notes: Copollutant (correlation):	Bronchitis
	regression, dummy variables to adjust for season and weather	PM ₁₀ -SO ₂ : 0.532	7.9 [CI NR] lag2
	Covariates: Temperature, difference in barometric pressure, relative humidity, pollen counts, influenza epidemics	PM ₁₀ -: 0.721 relative and attributable ris	Notes: Only statistically significant relative and attributable risks were presented by the authors.
	Season: All	PM ₁₀ -NO ₂ : 0.711	The authors conducted multivariate
	Dose-response Investigated? Yes		modeling using a linear term to represent PM ₁₀ . They also report an
	Statistical Package: S-Plus 2000		apparent estimated PM ₁₀ effect threshold of 60 μg/m³, based on
	Lags Considered: 0-13		examination of a scatter plot of respiratory emergency hospital admissions and PM ₁₀ levels.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Luginaah, et al. (2005,	Hospital Admission/ED:	Pollutant: PM ₁₀	PM Increment: Interquartile range
057327) Period of Study: Apr 1995-Dec 2000	admission	Averaging Time: 24-h max	(75th-25th) 31 μg/m ³
	Outcome: All respiratory: 460-519	Mean (SD): 50.6 ,(35.5)	RR Estimates (Time Series)
Location: Windsor, Ontario, Canada	Age Groups: All, 0-14, 15-64, and >65	Range (Min, Max): 9, 349	All Age Groups Females 0.996 [0.950, 1.044], lag 1
	Study Design: Times-series, bi- directional case-crossover	Monitoring Stations: 4	1.015 [0.963, 1.069], lag 2 1.022 [0.968, 1.078], lag 3
	N: 4214 admissions	Notes: Copollutant (correlation): PM ₁₀ -NO ₂ : 0.33	All Age Groups Males 1.008 [0.965, 1.054], lag 1
	Statistical Analyses: Poisson	PM ₁₀ -SO ₂ : 0.22	1.036 [0.986, 1.089], lag 2 1.027 [0.974, 1.083], lag 3
	regression, GAM w/ stringent convergence criteria or natural splines,	PM ₁₀ -CO: 0.21	
	conditional logistic regression	PM ₁₀ -O ₃ : 0.33	RR Estimates (Case Crossover)
	Covariates: Age, sex	10 - 0	All Age Groups Females
	Maximum & minimum temperature, change in barometric pressure from previous day		1.034 [0.974, 1.098], lag 1 1.045 [0.972, 1.124], lag 2 1.054 [0.970, 1.145], lag 3
	Season: All		All Age Groups Males 0.997 [0.942, 1.056], lag 1
	Dose-response Investigated? No		1.022 [0.953, 1.097], lag 2
	Statistical Package: S-Plus		1.008 [0.930, 1.092], lag 3 Notes: Results, stratified by age group
	Lags Considered: 1-3		available in manuscript.
Reference: Martins et al. (2002,	Hospital Admission/ED:	Pollutant: PM ₁₀	PM Increment: 1 µg/m ³
035059)	ER visits	Averaging Time: Daily	Regression Coefficients (SE):
Period of Study: May 1996-Sep 1998	Outcome (ICD10): Chronic lower	Mean (SD): 60.0 μg/m ³ , (26.3)	0.0024 (0.0023), 6 day ma
Location: Sao Paulo, Brazil	respiratory disease (CLRD) (40-47)	Range (Min, Max):	Notes: % Increase (SD) for ER visits
	Includes chronic bronchitis,	per 2435	per 2435 μg/m³ (IQR) PM ₁₀ (lag 6 day
	emphysema, other COPDs, asthma, bronchiectasia	PM Component: None	ma) presented graphically in text.
	Age Groups: >64 yr	Monitoring Stations: 12	
	Study Design: Time series	Notes: Copollutant (correlation):	
	N: 712 for CLRD	PM ₁₀ -CO: 0.73	
	1 hospital	PM ₁₀ - NO ₂ : 0.83	
	Statistical Analyses: Poisson	PM ₁₀ -SO ₂ : 0.72	
	regression GAM, LOESS smoothers, no mention of stringent criteria	PM ₁₀ -O ₃ : 0.35	
	Covariates: Day of week, time minimum temperature, relative humidity		
	Season: All		
	Statistical Package: S-Plus		
	Lags Considered: 2-7 3 day ma		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Masjedi et al. (2003,	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: NR
052100) Revised of Study: See 1007 Feb 1009	Outcome (ICD-9): Acute asthma and	Averaging Time: 24 h	Results:
Period of Study: Sep 1997-Feb 1998		Mean (min-max):	Time-series analysis
Location: Tehran, Iran	Age Groups: NR	108.41 (14.5-506.60)	Asthma: $\beta = 0.002$ p = 0.32
	Study Design: Time series	SD = 59.55	COPD: β = 0.004
	N: 355 patients	Monitoring Stations: 3	p = 0.02 Total Acute Resp Conditions: $β = 0.006$
	Statistical Analyses: Multiple stepwise regression, autoregression method (time series), Pearson correlation	Copollutant: NR	p = 0.27 Correlation of 3-day mean
	Covariates: NR		Asthma: r = -0.21 β = -0.16
	Season: NR		p = 0.08
	Dose-response Investigated? No		Correlation of weekly mean
	Statistical Package: NR		Asthma: r = -0.27 β = -0.008
	Lags Considered: 3-, 7-, and 10-day mean		p = 0.12 Correlation of 10-day mean
			Asthma: r = -0.38 β = -0.066 p = 0.089
Reference: McGowan et al. (2002,	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: 14.8 μg/m³ (IQR)
030325)	Outcome (ICD-9): Pneumonia (480-	Averaging Time: 24 h	% Increase [CI]:
Period of Study: Jun 1988-Dec 1998	487), acute respiratory infections (460-466), chronic lung diseases (491-492,	Mean (min-max):	Respiratory Admissions (2-day lag) 0-14 yr: 3.62 [2.34,4.90]
Location: Christchurch, New Zealand	494-496), asthma (493)	25.17 (0-283)	15-64 yr: 3.39 [1.85,4.93]
	Age Groups: <15 yr, 15-64, 65+	SD = 25.49	65+ yr: 2.86 [1.23,4.49] All ages: 3.37 [2.34,4.40]
	Study Design: Time series	Monitoring Stations: 1	Overall Acute respiratory infections: 4.53
	N: 20,938 admissions	Copollutant: NR	[2.82,6.24] Pneumonia/influenza: 5.32 [3.46,7.18]
	Statistical Analyses: GAM with log link, Linear Regression Model		Chronic lung diseases: 3.95 [2.15,5.75] Asthma: 1.86 [0.48,.3.24]
	Covariates: Wind speed, relative humidity, temperature		Total Respiratory Admissions Same day lag: 2.52 [1.49,3.55] 1-day lag: 2.56 [1.53,3.59]
	Season: NR		2-day lag: 3.37 [2.34,4.40]
	Dose-response Investigated? No		3-day lag: 3.09 [2.06,4.12] 4-day lag: 3.13 [2.10,4.16]
	Statistical Package: S-PLUS		5-day lag: 3.21 [2.18,4.24]; 6-day lag: 3.09 [2.06,4.12]
	Lags Considered: 0-6 days		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Medina-Ramon et al.	Outcome: 490-496, except 493	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
(2006, <u>087721</u>)	(COPD), 480-487 (Pneumonia)	Averaging Time: 24-h avg	% change [Lower CI, Upper CI]
Period of Study: 1986-99	Age Groups: 65 + (U.S. Medicare beneficiaries)	Mean (SD): 30.4 μg/m ³ (5.1)	lag:
Location: 36 U.S. Cities	Study Design: Case crossover	Monitoring Stations: at least one per	COPD warm season
	N: 578,006 COPD admissions	city	0.81(0.22,1.41) at lag 0
	1,384,813 Pneumonia admissions	Notes: PM ₁₀ measurements made every 2, 3 or 6 days depending on the	1.47(0.93,2.01) at lag 1
	Statistical Analyses: Conditional	city.	COPD cold season
	logistic regression, Meta-analysis using REML random effects models	Copollutant: NR	0.06(-0.40,0.51) at lag 0
	Covariates: Mean and variance of daily		0.10(-0.30,0.49) at lag 1
	summer apparent temperature index, %		Pneumonia warm season
	65+ living in poverty,% households with central air-conditioning mortality rate for		0.84 (0.50,1.19) at lag 0
	emphysema among 65+(surrogate for smoking history), % PM ₁₀ from traffic		0.79 (0.45,1.13) at lag 1
	Season: Warm(May -Sepnd		Pneumonia cold season
	Cold(Oct-Apr)		0.30 (0.07,0.53) at lag 0
	Dose-response Investigated? No		0.14 (-0.17,0.45) at lag 1
	Statistical Package: SAS		
	STATA		
	Lags Considered: 0-1 days		
Reference: Meng et al., (2007, <u>093275</u>)	Outcome (ICD-NR): Poorly controlled	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: Nov 2000-Sep 2001	asthma defined as (1) daily or weekly asthma symptoms or (2) at least 1 ED	Averaging Time: 24 h	OR Estimate [CI]:
Location: Los Angeles and San Diego	visit or hospitalization due to asthma over the past 12 mo	Mean (25-75th percentile): NR	All Adults: 1.08 [0.82,1.43]
counties, California	Age Groups: >18 yr	Monitoring Stations: NR	18-64 yr: 1.14 [0.84,1.55]
	Study Design: Time series	Copollutant (correlation): PM _{2.5} : r = 0.84	65+: 0.84 [0.41,1.73]
	N: 1609 asthma patients		Men: 0.72 [0.42,1.21]
	Statistical Analyses: Logistic	O ₃ : r = -0.72	Women: 1.38 [0.99,1.94]
	regression		Exposure above 44.01 µg/m³ (annual
	Covariates: Age, sex, race/ethnicity,	CO: r = 0.42	concentration)
	poverty level, insurance status, smoking behavior, employment, asthma	Other variables:	All Adults: 1.56 [0.96,2.52]
	medication use, and county	Traffic: r = 0.14	18-64 yr: 1.40 [0.81,2.41]
	Season: NR		65+: 2.23 [0.60,8.27]
	Dose-response Investigated: No		Men: 0.80 [0.27,2.41]
	Statistical Package: NR		Women: 2.06 [1.17,3.61]
	Lags Considered: NR		Notes: This study focused more on the relation between poorly controlled asthma and traffic density.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Middleton et al. (2008, 156760)	Hospital Admissions/ED visits	Pollutant: PM ₁₀	PM Increment: 10 µg/m³, and across
	Outcome (ICD-NR):	Averaging Time: 24 h	quartiles of increasing levels of PM ₁₀ Percentage increase estimate [CI]:
Period of Study: 1995-1998, 2000-2004	Hospital admissions for all respiratory disease (ICD-10: J00-J99).	Mean (SD	All age/sex groups (Lag 0): All admissions: 0.85 (0.55, 1.15)
Location: Nicosia, Cyprus	Age Groups Analyzed: All, also stratified by age (<15 vs >15 yr)	median 5% - 95%	Respiratory (all): 0.10 (-0.91, 1.11) Respiratory (cold months): -0.33 (-1.47, 0.82)
	Study Design: Time series	range):	Respiratory (warm months): 1.42 (-0.42, 3.31)
	N: Statistical Analyses: Generalized additive Poisson models	Cold: 57.6 (52.5	CVD + RD: 0.56 (-0.21, 1.34) Nicosia residents (Lag 0):
	Covariates: Seasonality, day of the week, long- and short-term trend,	50.8	Respiratory (all): 0.25 (-0.84, 1.36) Respiratory (cold months): -0.22 (-1.45, 1.02)
	temperature, relative humidity	20.0-103.0	Respiratory (warm months):
	Season: NR	5.0-1370.6)	1.80 (-0.22, 3.85) CVD + RD: 0.38 (-0.47, 1.23)
	Dose-response Investigated: No	Warm: 53.4 (50.5	Males (Lag 0): All admissions: 0.96 (0.54, 1.39)
	Statistical package: STATA SE 9.0, and the MGCV package in the R	30.7	Respiratory (all): -0.06 (-1.37, 1.26) Respiratory (cold months):
	software (R 2.2.0)	32.0-77.6	-0.16 (-1.76, 1.46) Respiratory (warm months):
	Lags Considered: lag 0 -2 days	18.4-933.5)	1.10 (-1.47, 3.74) CVD + RD: 0.63 (-0.34, 1.62)
		Monitoring Stations: 2	Females (Lag 0):
		Copollutant (correlation): NR	All admissions: 0.74 (0.31, 1.18) Respiratory (all): 0.39 (-1.21, 2.02)
Reference: Moore et al. (2008, 196685)	Outcome: Hospital admissions for	Other variables: Pollutant: Ox (PMxx secondary)	Respiratory (cold months): -0.26 (-2.18, 1.70) Respiratory (warm months): 3.27 (-0.00, 6.65) CVD + RD: 0.59 (-0.68, 1.87) Aged <15 yr (Lag 0): All admissions: 0.47 (-0.13, 1.08) Respiratory (all): -0.35 (-1.77, 1.08) Respiratory (cold months): -0.31 (-2.02, 1.42) Respiratory (warm months): -0.59 (-3.53, 2.45) Aged >15 yr (Lag 0): All admissions: 0.98 (0.63, 1.33) Respiratory (all): 0.59 (-0.87, 2.07) Respiratory (cold months): 0.02 (-1.76, 1.83) Respiratory (warm months): 3.89 (1.05, 6.80)
Reference: Moore et al. (2008, <u>196685</u>)	Outcome: Hospital admissions for asthma (ICD-9 493)	Pollutant: O ₃ (PM ₁₀ secondary)	Results given are for O ₃
Period of Study: 1983-2000	Study Design: Time-series	Averaging Time: Quarterly	
Location: California's South Coast Air Basin	Covariates: Income, demographic and	Mean (SD) Unit: NR Range (Min, Max): NR	
	residential variables Statistical Analysis: HRMSM	Copollutant (correlation):	
	Age Groups: Children ages 0-19 yr	1hr O ₃ : 0.52 8hr O ₃ : 0.46 24 h NO ₂ : 0.53 24 h CO: 0.36 24 h SO ₂ : 0.13	

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Nascimento et al. (2006,	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: 24.7 µg/m ³
<u>093247</u>)	Outcome (ICD-10): Pneumonia (J12-	Averaging Time: 24 h	Regression coefficients (SE):
Period of Study: May 2000-Dec 2001	J18)	Mean (min-max):	Same day: -0.00053 (0.00125)
Location: São Jose dos Campos, Brazil	Age Groups: 0-10 yr	40.2 (3.4-196.6)	1-day lag: 0.00029 (0.00057)
	Study Design: Time series	SD = 26.9	2-day lag: 0.00089 (0.00069)
	N: 1265 admissions	Monitoring Stations: 2	3-day lag: 0.00122 (0.00053)*
	Statistical Analyses: GAM, Poisson regression	Copollutant (correlation):	4-day lag: 0.00126 (0.00055)*
	Covariates: Temperature, humidity	SO_2 : $r = 0.30$	5-day lag: 0.00098 (0.00071)
	Season: NR	O_3 : $r = 0.09$	6-day lag: 0.00035 (0.00056)
	Dose-response Investigated? Yes	Other variables:	7-day lag: -0.00067 (0.00123)
	Statistical Package: S-Plus, SPSS	Admissions: r = 0.21	*p < 0.05
	Lags Considered: 0-7 days	Temp: r = -0.14	Notes: Percent increase over all lag
		Notes: All p < 0.05	days is displayed in Fig 2
Reference: Neuberger et al. (2004, 093249)	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 1999-2000 (1 yr	Outcome (ICD-9): Bronchitis, emphysema, asthma, bronchiectasis,	Averaging Time: 24 h	Log Relative Rate Estimate (p-value):
period)	extrinsic allergic alveolitis, and chronic	Maximum daily mean:	Vienna
Location: Vienna and Lower Austria	airway obstruction (490-496)	Vienna: 105	Male: 2 day lag = 4.217 (0.030)
	Age Groups: 3.0-5.9 yr		Association with tidal lung function: $\beta = -1.067$ (p-value = 0.241)
	7-10 yr	Monitoring Stations: NR	Notes: Effect parameters with
	65+	Copollutant: NR	significant coefficients for respiratory health included: male sex, allergy, asthma in family, and traffic for Vienna and age, allergy, asthma in family, and passive smoking for the rural area. Effect parameters with significant coefficients for log asthma score were allergy, asthma in family, and rain for Vienna and allergy, asthma in family, and passive smoking for the rural area.
	Study Design: Time series		
	N: 366 days (admissions NR)		
	Statistical Analyses: GAM		
	Covariates: SO ₂ , NO, NO ₂ , O ₃ , temperature, humidity, and day of the week		
	Season: NR		
	Dose-response Investigated? Yes		
	Statistical Package: S-Plus 2000		
	Lags Considered: 0-14 days		
Reference: Oftedal et al. (2003,	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: IQr = 11.04
055623)	Outcome: All Respiratory (460-517)	Averaging Time: 24 h	RR Estimate
Period of Study: 1995-2000	Age Groups: All	Mean (SD): 16.8 μg/m ³ , (10.2) 1994-	1.035 [0.990, 1.083] 1994-1997
Location: Drammen, Norway	Study Design: Time-series	1997	0.992 [0.948, 1.037] 1998-2000
	N: ~4,458 admissions	16.5 µg/m³, (10.3) 1998-2000	1.021 [0.990, 1.053] 1994-2000
	Statistical Analyses: Poisson	16.6 , μg/m ³ (10.2) total period	2 Pollutant Model
	regression, GAM w/ stringent convergence criteria	PM Component: Benzene, formaldehyde, toluene	PM ₁₀ w/ benzene: 1.01 (0.978, 1.043)
	Covariates: Temperature, humidity, influenza epidemics, summer and Christmas vacation	Monitoring Stations: NR Notes: Copollutant (correlation):	
	Season: All	Correlation between pollutants ranged	
		from -0.47-0.78 with the exception of the VOCs studied	
	Dose-response Investigated? Yes	Notes: Benzene, formaldehyde and	
	Statistical Package: S-Plus	toluene also evaluated	
	Lags Considered: 2-3		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Peel et al. (2005, <u>056305</u>)	ED visits	Pollutant: PM ₁₀	PM Increment: PM ₁₀ : 10 μg/m ³
Period of Study: Jan 1993-Aug 2000	Outcome: Asthma (493, 786.09)	Averaging Time: 24-h avg	RR Estimate [Lower CI, Upper CI]
Location: Atlanta, Georgia	COPD (491, 492, 496)	Mean (SD): 27.9 (12.3) μg/m ³	All Respiratory Outcomes:
	URI (460-466, 477)	Percentiles: 10th: 13.2	1.013 (1.004-1.021), 3 day ma
	Pneumonia (480-486)	90th: 44.7	URI:
	Age Groups: All ages. Secondary analyses conducted by age group: 0-1, 2-18, >18	Monitoring Stations: "Several"	1.014 (1.004-1.025) , 3 day ma 1.073 (1.048-1.099) , 14-day dist. lag
	Study Design: Time series	Copollutant (correlation):	Asthma:
	N: 31 hospitals	8 h O_3 : $r = 0.59$	1.009 (0.996-1.022), 3 day ma
	Statistical Analyses: Poisson GEE for	1 h NO ₂ : r = 0.49	1.099 (1.065-1.135), 14-day dist. lag:
	URI, asthma and all RD	1 h CO: r = 0.47	Pediatric Asthma 2-18yrs):
	Poisson GLM for pneumonia and	1 h SO_2 : r = 0.20	1.016 (0.998 -1.034)
	COPD)	24-h PM _{2.5} : 0.84	Pneumonia:
	Covariates: Avg temperature and dew point, pollen counts	24 h PM _{10-2.5} : r = 0.59	1.011 (0.996-1.027) , 3 day ma
	Season: All (secondary analyses of	24 h UF: r = -0.13	1.087 (1.044-1.132), 14-day dist. lag
	warm season)	Components: r ranged from 0.42-0.74	COPD:
	Dose-response Investigated? Yes		1.018 (0.994-1.043), 3 day ma
	Statistical Package: SAS 8.3, S-Plus 2000		1.092 (1.023-1.165), 14-day dist. lag
	Lags Considered: 0-7 day , 3 day ma, 0-13 days unconstrained distributed lag		Notes: RRs obtained using AQS 1993-2000, AQS 1998-2000 and ARIES data compared. Infant (0-1 y) and pediatric (2-18 y) asthma was associated more strongly with PM ₁₀ , PM _{2.5} and OC than adult asthma.
Reference: Ren et al. (2006, <u>092824</u>)	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: NR
Period of Study: Jan 1996-Dec 2001	Outcome (ICD-9): Respiratory	Averaging Time: 24 h	Coefficient Estimates:
Location: Brisbane, Australia	diseases (460-519) excluding influenza (487.0-487.8)	Mean (min-max): 15.84 (2.5-60)	Respiratory Hospital Admissions
	Age Groups: NR	Monitoring Stations: 1	Same day: -0.004296
	Study Design: Time series	Copollutant: NR	1-day lag: -0.002474
	N: NR		2-day lag: -0.004229
	Statistical Analyses: GAM		*all statistically significant
	Covariates: Day of week, relative		Respiratory Emergency Visits
	humidity, influenza outbreaks		Same day: -0.000887
	Season: NR		1-day lag: -0.004209
	Dose-response Investigated? Yes		2-day lag: -0.003440
	Statistical Package: S-Plus		Notes: Relative risks were provided in
	Lags Considered: 0, 1, and 2 days		graphical form (Fig 3)
Reference: Sauerzapf et al. (2009, 180082)	Outcome: COPD	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: Mar 2006-Mar 2007	Study Design: Case-Crossover	Averaging Time: 24 h	Odds Ratio (95% CI)
Location: Norfolk, UK	Covariates: Environmental factors and Influenza	Mean (SD) Unit:	Lag 0-7, unadjusted: 1.079 (0.980- 1.188)
200ation Honork, Cit	Statistical Analysis: Logistic	Control: 19.87 (8.51) µg/m ³	Lag 0-8, adjusted: 1.101 (0.988-1.226)
	regression	Case: 20.47 (9.27) µg/m ³	Lag 1-8, unadjusted: 1.056 (0.961-
	Statistical Package: SPSS 14	Range (Min, Max):	1.161)
	Age Groups: >18 yr	Control: 9.77-34.27	Lag 1-8, adjusted: 1.054 (0.949-1.170)
	N: 1050 adult COPD admissions	Case: 10.04-35.03	
		Copollutant (correlation): NR	

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Sinclair and Tolsma (2004,	Outpatient Visits	Pollutant: PM ₁₀	PM Increment: 11.61 (1 SD)
088696) Period of Study: 25 Months Location: Atlanta, Georgia	Outcome: Asthma (493)	Averaging Time: 24-h avg	RR Estimate [Lower CI, Upper CI]
	URI (460, 461, 462, 463, 464, 465, 466,	Mean (SD): PM ₁₀ mass-29.03 μg/m ³	lag:
	477)	(11.61)	Child Asthma: 1.049 (S), lag 3-5 day
	LRI (466.1, 480, 481, 482, 483, 484, 485, 486).	Monitoring Stations: 1	LRI: 1.074 (S), 3-5 day lag
	Age Groups: < = 18 yr, 18+ yr (asthma)	Notes: Copollutant: NR	Notes: Numerical findings for significan
	All ages (URI//LRI)		results only presented in manuscript. Results for all lags presented
	Study Design: Times series		graphically for each outcome (asthma, URI, and LRI).
	N : 25 mo		
	260,000-275,000 health plan members (Aug 1998-Aug 2000)		
	Statistical Analyses: Poisson GLM		
	Covariates: Season, Day of week, Federal Holidays, Study Months		
	Season: NR		
	Dose-response Investigated?: No		
	Statistical Package: SAS		
	Lags Considered: Three 3-day ma (0-2, 2-5, 6-8)		
Reference: Slaughter et al. (2005,	Hospital Admissions and ED visits	Pollutant: PM ₁₀	PM Increment: 25 μg/m ³
<u>173854</u>)	Outcome: All respiratory (460-519)	Averaging Time: 24-h avg Range (90% of concentrations): 7.9-	RR Estimate [Lower CI, Upper CI] lag: ER visits PM ₁₀ All Respiratory Lag 1: 1.01 [0.99, 1.04] Lag 2: 1.01 [0.98, 1.03] Lag 3: 1.02 [0.99, 1.04] Acute Asthma
Period of Study: Jan 1995-Jun 2001	Asthma (493)		
Location: Spokane, WA	COPD (491,492, 494,496)	41.9 µg/m³	
	Pneumonia (480-487)	Monitoring Stations:	
	Acute URI not including colds and sinusitis (464, 466, 490)	Notes: Copollutant (correlation):	
	Age Groups: All, 15+ yr for COPD Study Design: Time series	PM ₁₀ PM1 r = 0.50	Lag 1: 1.03 [0.98, 1.07] Lag 2: 1.01 [0.96, 1.05]
	N: 2373 visit records	PM _{2.5} r = 0.62	Lag 3: 1.00 [0.95, 1.04] COPD (adult)
	Statistical Analyses: Poisson	$PM_{10-2.5} r = 0.94$	Lag 1: 1.00 [0.93, 1.07] Lag 2: 0.99 [0.92, 1.06]
	regression, GLM with natural splines.	CO r = 0.32	Lag 3: 1.02 [0.95, 1.08]
	For comparison also used GAM with smoothing splines and default	Temperature r = 0.11	Hospital Admissions PM ₁₀ All Respiratory
	convergence criteria.	Temperature 1 0.11	Lag 1: 0.99 [0.95, 1.02]
	Covariates: Season, temperature, relative humidity, day of week		Lag 2: 0.99 [0.96, 1.02] Lag 3: 1.00 [0.97, 1.03]
	Season: All		Asthma Lag 1: 1.03 [0.95, 1.12]
	Dose-response Investigated?: No		Lag 2: 1.01 [0.94, 1.10] Lag 3: 1.00 [0.92, 1.09]
	Statistical Package: SAS, SPLUS		COPD (adult)
	Lags Considered: 1 -3 day		Lag 1: 0.98 [0.90, 1.07] Lag 2: 1.03 [0.96, 1.11] Lag 3: 1.02 [0.94, 1.09]

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Sun et al. (2006, <u>090768</u>)	ED visits	Pollutant: PM ₁₀	Children ED Visits
Period of Study: Jan 2004-Dec 2004	Outcome: Asthma (493.xx)	Averaging Time: Monthly avg for 2004	r = 0.626
Location: Taichung, Taiwan (Central Taiwan)	Age Groups: <55, <16, 16-55 yr	Mean (SD): ~ 60.3 μg/m³ (NR)	P = 0.015
	Study Design: Cross-sectional	(estimated from Fig)*	Adult ED Visits
	N: NR	Range (Min, Max): (~35, 80)	r = 0.384
	All diagnoses for all patients at 4 medical centers	Monitoring Stations: 11 Copollutant: NR	P = 0.109
	Statistical Analyses: Pearson's correlations, multiple correlation coefficients from regression analyses.		
	Covariates: Only copollutants considered		
	Dose-response Investigated? No		
	Statistical Package: SPSS		
	Lags Considered: None		
Reference: Szyszkowicz (2007,	Outcome: ED visits for asthma (ICD-	Pollutant: PM ₁₀	Increment: IQR
092829)	(493)	Averaging Time: 24 h	Percent Relative Risk (95% CI)
Period of Study: Jan 1992-Mar 2002	Study Design: Time-series	Mean (SD) Unit: 22.6 (13.1) μg/m ³	*Only statistically significant results are
Location: Edmonton, Canada	Covariates: Temperature, relative humidity	Median, IQR: 19.4, 15.0 Copollutant (correlation): NR	presented in the paper* No lag, ≥ 10 yr Apr-Sep, All: 3.7 (1.5-6.0) Apr-Sep, Female: 4.5 (1.8-7.3) Apr-Sep, Male: 3.3 (0.1-6.7)
	Statistical Analysis: Poisson regression		
	Age Groups: All		2 day lag, < 10 yr Year round, All: 2.7 (0.1-5.4) Apr-Sep, All: 6.3 (2.6-10.2) Apr-Sep, Male: 7.4 (3.1-11.9) 2 day lag, <a>≥ 10 yr Apr-Sep, All: 2.4 (0.1-4.7) Apr-Sep, Female: 3.9 (1.1-6.7)
Reference: Tecer et al, (2008, $\underline{180030}$)	Outcome: ED visits for respiratory	Pollutant: PM ₁₀	Increment: 10 µg/m ³
Period of Study: Dec 2004-Oct 2005	problems (ICD-9 470-478, 493)	Averaging Time: NR	Odds Ratio (95% CI)
Location: Zonguldak, Turkey	Study Design: Bidirectional Case- crossover	Mean, Unit: 53.3 µg/m ³ Range (Min, Max): 12-237.5 Copollutant (correlation): PM _{2.5} /PM ₁₀ Mean: 0.56	Asthma Lag 0: 1.14 (1.03-1.26)
	Covariates: Daily meteorological parameters		Lag 1: 0.92 (0.83-1.02) Lag 2: 0.92 (0.81-1.03) Lag 3: 1.01 (0.92-1.11)
	Statistical Analysis: Conditional logistic regression		Lag 4: 1.16 (1.06-1.26) Allergic Rhinitis with Asthma
	Statistical Package: Stata		Lag 0: 1.07 (1.01-1.13) Lag 1: 0.96 (0.91-1.02)
	Age Groups: 0-14 yr	Range: 0.17-0.88	Lag 2: 0.93 (0.88-0.99) Lag 3: 0.96 (0.90-1.02) Lag 4: 1.08 (1.02-1.14) Allergic Rhinitis Lag 0: 1.06 (0.99-1.13) Lag 1: 1.08 (1.01-1.16) Lag 2: 0.92 (0.87-0.99) Lag 3: 0.97 (0.92-1.03) Lag 4: 1.09 (1.03-1.16) Upper Respiratory Disease Lag 0: 0.88 (0.68-1.14) Lag 1: 1.17 (0.91-1.51) Lag 2: 1.00 (0.76-1.31) Lag 3: 0.95 (0.76-1.19) Lag 4: 1.15 (0.97-1.35) Lower Respiratory Disease Lag 0: 1.01 (0.86-1.19) Lag 1: 1.04 (0.88-1.23) Lag 2: 1.04 (0.88-1.23) Lag 2: 1.04 (0.92-1.18) Lag 3: 1.23 (1.07-1.41) Lag 4: 0.99 (0.90-1.08)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Tolbert et al. (2007,	Hospital Admissions/ED visits	Pollutant: PM ₁₀	PM Increment: 16.30 µg/m³ (IQR)
090316)	Outcome (ICD-9):	Averaging Time: 24 h	Risk ratio [95% CI]:
Period of Study: 1993-2004	Combined RD group, including:	Mean (median	Single pollutant models:
Location: Atlanta Metropolitan area, Georgia	Asthma (493, 786.07, 786.09), COPD (491, 492, 496), URI (460-465, 460.0,	IQR, range, 10th-90th percentiles):	RD: 1.015 (1.006-1.024)
•	477), pneumonia (480-486), and bronchiolitis (466.1, 466.11, and	26.6 (24.8	Notes: Results of selected multi-
	466.19))	17.5-33.8	pollutant models for respiratory disease are presented in Fig 2.
	Age Groups Analyzed: All	0.5-98.4	Fig 2: PM ₁₀ adjusted for CO, O ₃ , NO ₂ ,
	Study Design: Time series	12.3-42.8)	or NO ₂ /O ₃ (nonwinter months only)
	N: 10,234,490 ER visits (283,360 and 1,072,429 visits included in the CVD and RD groups, respectively)	Monitoring Stations: NR Copollutant (correlation): O_3 : $r = 0.59$ NO_2 : $r = 0.53$	Summary of results: PM ₁₀ remained predictive of RD in non-winter months after adjustment for pollutants.
	Statistical Analyses: Poisson generalized linear models	CO: r = 0.51 SO ₂ : r = 0.21	
	Covariates: Long-term temporal trends, season (for RD outcome), temperature, dew point, days of week, federal holidays, hospital entry and exit	Coarse PM: r = 0.67 PM _{2.5} : r = 0.84 PM _{2.5} : SQ ₄ : r = 0.69 PM _{2.5} EC: r = 0.61 PM _{2.5} OC: r = 0.65	
	Season: All	PM _{2.5} TC: r = 0.67 PM _{2.5} water-sol metals: r = 0.73	
	Dose-response Investigated: No	OHC: r = 0.53	
	Statistical package: SAS version 9.1		
	Lags Considered: 3-day ma(lag 0 -2)		
Reference: Tsai et al. (2006, <u>089768</u>)	Outcome: Asthma (493)	Pollutant: PM ₁₀	PM Increment: 62.28 μg/m ³
Period of Study: 1996-2003	Age Groups: All (universal health care	Averaging Time: 24-h avg	OR Estimate [Lower CI, Upper CI]
Location: Kaohsiung City, Taiwan	covers >96% of the population)	Mean (SD): 76.62 μg/m ³ (NR)	lag:
	Study Design: Case crossover	Percentiles: 25th: 41.73	Single-pollutant model, 0-2 day cumulative lag
	N: 17,682 admissions	50th(Median): 74.40	≥ 25oC: 1.302 [1.155, 1.467] <25oC: 1.556 [1.398, 1.371]
	63 hospitals Statistical Analyses: Conditional	75th: 104.01	Two-pollutant models, 0-2 day
	Logistic Regression	Range (Min, Max): (16.70, 232.00)	cumulative lag PM ₁₀ w/ SO ₂
	Covariates: Temperature, humidity	Monitoring Stations: 6	≥ 25oC: 1.305 [1.156, 1.473] <25oC: 1.540 [1.374, 1.727]
	Season: Warm and cool seasons	Copollutant: NR	PM ₁₀ w/ O ₃ ≥ 25oC: 0.985 [0.842, 1.152] <25oC: 1.581 [1.402, 1.783]
	Dose-response Investigated? No		
	Statistical Package: SAS		PM ₁₀ w/ NO ₂ ≥ 25oC: 1.237 [1.052, 1.455]
	Lags Considered: 0-2 day cumulative		<25oC: 1.009 [0.875, 1.163] PM ₁₀ w/ CO ≥ 25oC: 1.156 [1.012, 1.320] <25oC: 1.300 [1.134, 1.490]

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ulirsch et al. (2007, 091332) Period of Study: Nov 1994-Mar 2000 Location: Pocatello, Idaho Chubbuck, Idaho	Outcome: Respiratory Disease (460-499, 509-519) Reactive Airway Disease (786.09) Age Groups: All age groups Study Design: Time series N: 39,347 visits (TS1) 29,513 visits (TS2) Statistical Analyses: Poisson regression, GLM. Sensitivity Analyses Covariates: Time, Temperature, Relative Humidity Influenza Season: Warm/Cool Dose-response Investigated? No Statistical Package: S-Plus Lags Considered: 0-4 day lags Notes: Time series (TS) 1 includes HA, ED and urgent care visits. TS 2 includes family practice data available after 1997	Pollutant: PM ₁₀ Averaging Time: NR Mean (SD): TS1: 24.2 μg/m³ (NR) 10th: 10.5 90th: 40.7 TS2: 23.2 10th: 10.0 90th: 37.4 Range (Min, Max): TS1: (3.0, 183.0) TS2: (3.0, 183.0) Monitoring Stations: 4 Notes: Copollutant (correlation): PM ₁₀ w/ NO ₂ : r = 0.47. PM ₁₀ with other copollutants weakly correlated.	PM Increment: Single Pollutant Models, TS1: 24.4 μg/m³ Single Pollutant Models: TS2: 23.2 μg/m³ Multipollutant Models: TS1/TS2: 50 μg/m³ Mean Percentage Change, lag 0 TS 1: Single Pollutant All-age (all yr): 4.0 [1.4,6.7] 18-64: 3.4 [0.2, 6.7] 0-17: 4.3 [-0.1, 8.9] 65+: 5.6 [-1.4, 13.1] 0-17/65+: 5.5 [1.4, 9.6] All age (Cool season): 4.3 [1.3, 7.5] All age (Warm season): 6.7 [-0.8, 14.8] TS2: Single Pollutant All-age: 3.3 [0.3, 6.3] 18-64: 3.3 [-0.4, 7.0] 0-17: 5.0 [0.1, 10.1] 65+: 6.9 [-0.4, 14.7] Multipollutant (PM₁0 + SO₂) All-age (all yr): TS1 10.8 TS2 9.1 0-17: TS1 10.8 TS2 31.3 0-17/65+: TS1 14.2 TS2 25.3 All age (Cool season) TS1 11.9 Multipollutant (PM₁0 + NO₂) All-age (all yr) TS1: TS2 16.3 18-64: TS1 9.3 TS2 17.3 0-17: TS1 4.6 TS2 18.7 65+: TS1 12.4 TS2 23.7 0-17/65+: TS1 19.5 32.7 All age (Cool season): TS1 11.1 TS2 16.8 Notes: Results from multipollutant model with PM₁0, SO₂ and NO₂ also
Reference: Vegni and Ros (2004,	Hospital Admissions	Pollutant: PM ₁₀	available. PM Increment: Increase from 5th-95th
087448) Period of Study: Sep 2001-Sep 2002 Location: Milan area, Italy	Outcome (ICD-9): Respiratory, non- infectious admissions (ICD: NR) Age Groups: NR	Averaging Time: 24 h Mean (5th-95th percentile): Overall: 41.5 (13-98) SD = 28.2 Spring: 29.0 (10-51) SD = 12.6 Summer: 24.8 (10-40) SD = 9.9 Fall: 51.8 (21-114) SD = 27.1 Winter: 64.1 (20-135) SD = 35.7 Monitoring Stations: 1	percentile Spring: 85 μg/m³ summer: 30 μg/m³
	Study Design: Time series N: 9881 admissions Statistical Analyses: Poisson regression Covariates: Temperature, wind velocity, relative humidity, week day, holidays Season: Spring, summer, fall, winter		Fall: 93 μg/m³ Winter: 115 μg/m³ RR Estimate [CI]: Overall: 1.10 [0.83,1.46] Adjusted: 0.97 [0.67,1.41] Notes: 1-day and 2-day lags show similar results, with no association
	Dose-response Investigated? No Statistical Package: STATA v. 5 Lags Considered: 0, 1, and 2 days		between PM ₁₀ and daily hospital admissions

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Vigotti et al. (2007, <u>090711</u>)	ED Visits	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: Jan 2000-Dec 2000	Outcome: Asthmatic attack (493), dry	Averaging Time: 24 h	RR Estimate [Lower CI, Upper CI]
Location: Pisa, Italy	cough (468), acute bronchitis (466)	Mean (SD): 35.4 (15.8) μg/m ³	lag:
	Age Groups: <10 yr; 65+ yr	Percentiles: 25th: NR	<10 y: 10%[2.3, 18.2]
	Study Design: Time series	50th(Median): 31.6	lag 1
	N: 966 Emergency room visits	75th: NR	65+: 8.5% [1.5, 16.1]
	Statistical Analyses: Poisson regression, GAM, LOESS smoothers,	Range (Min, Max): (9.5, 100.1)	lag 2
	stringent criteria	Monitoring Stations:	
	Covariates: Temperature, humidity, relative humidity, day of study, rainfall,	2	
	influenza, day of-the-wk, holidays, time trend	Copollutant (correlation): PM ₁₀ :	
	Season: All yr	$NO_2 r = 0.58$	
	Dose-response Investigated? No	CO r = 0.70	
	Statistical Package: NR		
	Lags Considered: 0-5 days		
Reference: Xirasagar et al. (2006,	Hospital Admission/ED:	Pollutant: PM ₁₀	PM Increment: NR
093267)	Outcome: Asthma or Asthmatic	Averaging Time: Monthly means	RR Estimate [Lower CI, Upper CI]
Period of Study: 1998-2001 Location: Taiwan	Bronchitis (493) Age Groups: <2 yr old, 2~5 yr old, 6~14 yr old	Mean (SD): 24.4 μg/m ³ (NR)	lag: NR
Location. Idiwan		Percentiles: NR	AR Estimate [Lower CI, Upper CI]
	Study Design:	Range (Min, Max): NR	lag: NR
	N: 27, 275 pediatric hospitalizations	PM Component: NR	Notes: Plot of monthly asthma
	Statistical Analyses: ARIMA Modeling	Monitoring Stations: 44 air quality	admission rates per 100,000 population by age group
	Spearman's Correlations	monitoring banks. 23 weather observatories	Plot of mean monthly concentration trends of criteria air pollutants
	Covariates: Season, ambient temp., rel. humidity, atmospheric pressure,		Mean monthly trends of climatic factors
	rainfall, h of sunshine	<2 yr old: r = 0.315	Other Outcomes Assessed? NR
	Season: Spring: Feb-Apr	2~5 yr old: r = 0.589	
	Summer: May-Jul Fall: Aug-Oct Winter: Nov-Jan	6~14 yr old: r = 0.493	Other Exposures Assessed? Seasonality
	Dose-response Investigated? No		
	Statistical Package: EViews 4		
	Lags Considered: NR		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Wong et al., (2002,	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
023232)	Outcome (ICD- NR): Asthma (493) for	Averaging Time: 24 h	ER Estimate [CI]:
Period of Study: 1995-1997 (Hong Kong) and 1992-1994 (London)	ages 15-64 and respiratory disease (460-519) for ages 65+	Mean (min-max): Hong Kong: 51.8 (14.1-163.8) SD = 25.0	Single-pollutant excess risk (mean lag 0-1 day)
Location: Hong Kong and London	Age Groups: 15-64, 65+	London: 28.5 (6.8-99.8)	Asthma-Hong Kong: -1.1 [-2.4,0.1] Asthma-London: 1.4 [-0.1,3.0]
	Study Design: Time series	SD = 13.7	Respiratory Disease-Hong Kong: 1.0 [0.5,1.5]
	N: NR	Monitoring Stations: NR	Respiratory Disease-London:
	Statistical Analyses: Poisson regression, GAM	Copollutant (correlation): Hong Kong	0.4 [-0.3,1.2] Warm season Asthma-Hong Kong: -1.0 [-2.8, 0.8]
	Covariates: Temperature, humidity, and influenza	NO ₂ : r = 0.82 SO ₂ : r = 0.30 O ₃ : r = 0.54	Asthma-London: 0.6 [-1.9,3.1] Respiratory Disease-Hong Kong: 0.8 [0.1,1.4]
	Season: Warm (Apr-Sep) and cool (Oct-Mar)	London NO ₂ : r = 0.68 SO ₂ : r = 0.64	Respiratory Disease-London: 1.8 [0.5,3.1] Cool season
	Dose-response Investigated? Yes	O ₃ : r = 0.17	Asthma-Hong Kong: -1.2 [-2.8,0.4]
	Statistical Package: S-Plus	Other variables: Hong Kong	Asthma-London: 1.6 [-0.3,3.6] Respiratory Disease-Hong Kong:
	Lags Considered: 0-3 days	Temp: r = -0.42 Humidity: r = -0.53 London	1.2 [0.6,1.9] Respiratory Disease-London: -0.5 [-1.5,0.5]
		Temp: r = 0.02 Humidity: r = -0.05	Notes: RRs are shown graphically in Fig 1 and 2. Exposure response curves are provided in Fig 5 of the article
Reference: Wong et al. (2006, <u>093266</u>)	General Practitioner Visits	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 2000-2002	Outcome (ICPC-2): Respiratory	Averaging Time: 24 h	RR Estimate [CI]:
Location: Hong Kong (8 districts)	diseases/symptoms: upper respiratory tract infections (URTI), lower respiratory	Mean (min-max): Ranged from 43.4-56.9 (dependent on location)	Overall URTI
	infections, influenza, asthma, COPD, allergic rhinitis, cough, and other		1.020 [1.016,1.025]
	respiratory diseases	Monitoring Stations: 1 per district	Overall Non-UTRI
	Age Groups: All ages	Copollutant (correlation): PM _{2.5} : r = 0.94	1.025 [1.018,1.032]
	Study Design: Time series	O ₃ : r = 0.40	Notes: RRs are also reported for each
	N: 269,579 visits	SO ₂ : r = 0.28	individual general practitioner yielding similar results
	Statistical Analyses: GAM, Poisson regression	-	
	Covariates: Season, day of the week, climate		
	Season: NR		
	Dose-response Investigated? No		
	Statistical Package: S-Plus		
	Lags Considered: 0-3 days		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Yang et al. (2007, <u>092847</u>)	Hospital Admission/ED:	Pollutant: PM ₁₀	PM Increment: 26.41 µg/m³
Period of Study: 1996-2003	Outcome: Asthma (493)	Averaging Time: NR	OR Estimate [Lower CI, Upper CI]
Location: Taipei, Taiwan	Age Groups: All ages	Mean (SD): 48.99 μg/m ³	lag:
	Study Design: Case-crossover	Percentiles: 25th: 32.64	Asthma
	N: 25,602 asthma hospital admissions	50th(Median): 44.13	Single-Pollutant Model: Temperature >25° C: 1.046[0.971, 1.128]
	Statistical Analyses: NR	75th: 59.05	Temperature <25° C:
	Covariates: Temperature, humidity, day of-the-wk, seasonality, long term trends	Range (Min, Max): (14.44, 234.91)	1.048[1.011, 1.251] Two-Pollutant Model: Adjusted for SO ₂ :
	Season: All yr	PM Component: NR	>25° C-1.006[0.920, 1.099]
	Dose-response Investigated? No	Monitoring Stations: 6 Stations	<25° C-1.088[1.040, 1.138]
	Statistical Package: SAS	Notes: Copollutant: NR	Adjusted for NO₂: >25° C-0.800[0.717, 0.892]
	Lags Considered: 0-2	Notes. Coponitiant. NIX	<25° C-0.982[0.937, 1.029]
			Adjusted for CO: >25° C-0.920[0.844, 1.002]
			<25° C-1.029[0.984, 1.076]
			Adjusted for O ₃ : >25° C-1.038[0.950, 1.134]
			<25° C-1.042[1.004, 1.081]
			AR Estimate [Lower CI, Upper CI] lag: NR
			Notes: Other Outcomes Assessed?
			Other Exposures Assessed? SO_2 , NO_2 , CO , O_3
Reference: Yang et al. (2007, <u>092847</u>)	Hospital Admission	Pollutant: PM ₁₀	PM Increment: 26.41 µg/m ³
Period of Study: 1996-2003	Outcome: COPD (490-192), (494),	Averaging Time: 24 h	OR Estimate [Lower CI, Upper CI]
Location: Taipei, Taiwan	(496)	Mean (SD): 48.99 μg/m ³	Single-Pollutant Model (0-2 day cum
	Age Groups: All ages	25th: 32.64	lag):
	Study Design: Case-crossover	50th(Median): 44.13	Temperature >20° C: 1.133[1.098, 1.168]
	N: 46,491COPD admissions, 47 hospitals	75th: 59.05	Temperature <20° C: 1.035[0.994,
	Statistical Analyses: Conditional logistic regression	Range (Min, Max): (14.44, 48.99)	1.077] Two-Pollutant Model:
	Covariates: Weather, day of-the-wk, seasonality, long term trends	Monitoring Stations:	PM ₁₀ w/ SO ₂ : >20° C-1.180[1.139, 1.223] <20° C-1.004[0.954, 1.057]
	Season: Warm/Cool	6 Stations	PM ₁₀ w/ NO ₂ : >20° C-1.013[0.973, 1.055]
	Dose-response Investigated? No	Notes: Copollutant: NR	<20° C-1.074[1.022, 1.129] PM ₁₀ w/ CO:
	Statistical Package: SAS		>20° C-1.061[1.023, 1.100]
	Lags Considered: 0-2 cumulative		<20° C-1.067[1.016, 1.120] PM ₁₀ w/ O ₃ : >20° C-1.097[1.062, 1.133] <20° C-1.036[0.996, 1.079]

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)	
Reference: Yang et al. (2004, <u>087488</u>)	Hospital Admissions	Pollutant: PM ₁₀	PM Increment: 7.9 μg/m³ (IQR)	
Period of Study: Jun 1995-Mar 1999	Outcome (ICD-9): Respiratory	Averaging Time: 24 h	OR Estimate [CI]:	
Location: Vancouver area, British	diseases (460-519), pneumonia only (480-486), asthma only (493)	Mean (min-max):	Values NR	
Columbia	Age Groups: 0-3 yr	13.3 (3.8-52.2)	Notes: Author states that ORs for PM ₁₀	
	Study Design: Case control,	SD = 6.1	increased with lag time up to 3 days for both single and multiple-pollutant	
	bidirectional case-crossover (BCC), and time series (TS)	Monitoring Stations: NR (data obtained from Greater Vancouver	models.	
	N : 1610 cases	Regional District Air Quality Dept)		
	Statistical Analyses: Chi-square test, Logistic regression, GAM (time-series), GLM with parametric natural cubic splines	Copollutant (correlation): $PM_{2.5}$: r = 0.83		
		PM _{10-2.5} : r = 0.83		
	Covariates: Gender, socioeconomic status, weekday, season, study yr, influenza epidemic month	CO: r = 0.46		
		O ₃ : r = -0.08		
	Season: Spring, summer, fall, winter	NO_2 : r = 0.54		
	Dose-response Investigated? No	SO ₂ : r = 0.61		
	Statistical Package: SAS (Case control and BCC), S-Plus (TS)			
	Lags Considered: 0-7 days			

¹All units expressed in μg/m³ unless otherwise specified.

Table E-13. Short-term exposure-respiratory-ED/HA-PM $_{10-2.5}$.

Reference	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Chen et al.	Hospital Admissions	Pollutant: PM _{10-2.5} (µg/m ³)	PM Increment: 4.2 μg/m ³
(2005, <u>087555</u>) Period of Study:	Outcome (ICD-9): Acute respiratory infections (460-466), upper	Averaging Time: 24 h	RR Estimate [CI]:
Jun 1995-Mar 1999	respiratory tract infections (470-478),	Mean (min-max):	Adj for weather conditions
Location: Vancouver area,	pneumonia and influenza (480-487), COPD and allied conditions (490-	5.6 (0.1-24.6)	Overall admission
BC	496), other respiratory diseases (500-519)	SD = 3.6	1-day avg: 1.03 [1.00,1.06]
	Age Groups: >65 yr	Monitoring Stations: 13	2-day avg: 1.05 [1.02,1.08]
	Study Design: Time series	Copollutant (correlation): PM _{2.5} : r = 0.38	3-day avg: 1.06 [1.02,1.09]
	N: 12,869	PM ₁₀ : r = 0.83 COH: r = 0.63	Adj for weather conditions and copollutants
	Statistical Analyses: GLM	CO: r = 0.53	Overall admission
	·	O ₃ : r = -0.13 NO₂: r = 0.54	1-day avg: 1.02 [0.98,1.06]
	Covariates: Temp and relative humidity	SO ₂ : r = 0.57	2-day avg: 1.05 [1.01,1.10]
	Season: NR	Other variables:	3-day avg: 1.06 [1.02,1.11]
	Dose-response Investigated? No	Mean temp: r = 0.13	Notes: RR's were also provided for lags 4-7 in Table 3,
	Statistical Package: S-Plus	Rel humidity: r = -0.27	yielding similar results
	Lags Considered: 1, 2, 3, 4, 5, 6, and 7-day avg		

Reference	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Fung et al. (2006,		Pollutant: PM _{10-2.5} (µg/m ³)	PM Increment: :
<u>089789)</u>	Admission	Averaging Time: 24-h avg	4.3 μg/m³
Period of Study: Jun 1995-Mar 1999	Outcome: Respiratory diseases (460-519)	Mean (SD)	RR Estimate (65+ yr)
_ocation: Vancouver,	Age Groups: Age >65	5.6(3.88) μg/m ³	DM method:
Canada	Study Design: Time series	Range (Min, Max):	1.011[0.998,1.024] lag 0
	N: 26,275 individuals admitted	(-2.9, 27.07)	1.016[1.0,1.032] 3-day avg
	Statistical Analyses: Poisson	Monitoring Stations:	1.020[1.001,1.039] 5-day avg
	regression (spline 12 knots), case- crossover (controls +/7 days from	NR	1.020[0.998,1.042] 7-day avg
	case date), Dewanji and Moolgavkar	Notes: Copollutant	Time series:
	(DM) method	(correlation): PM _{10-2.5}	1.0168[1.003, 1.031] lag 0
	Covariates: Long-term trends, day- of-the-week effect, weather	PM ₁₀ r = 0.83	1.020[1.003, 1.037] 3-day avg
	Season: All yr	PM _{2.5} r = 0.34	1.019[0.999, 1.039] 5-day avg
	Dose-response Investigated? No	CO r = 0.51	1.018[0.994, 1.042] 7-day avg
	Statistical Package: SPlus, R	CoH r = 0.61	Case-crossover:
	Lags Considered: 0-7 days	$O_3 r = -0.11$	1.019[1.003, 1.034] lag 0
		NO ₂ r = 0.52	1.019[1.009, 1.038] 3-day avg
		SO ₂ r = 0.57	1.020[0.999, 1.042] 5-day avg
		-	1.018[0.994, 1.043] 7-day avg
Reference: Halonen et al.	Outcome: Hospital Admissions	Pollutant: PM _{10-2.5}	PM Increment: Interquartile Range
2009, <u>180379</u>)	Age Groups: 65+ yr	Averaging Time: Daily	Percent Change (Lower Cl, Upper Cl):
Period of Study: 1998-2004	Study Design: Time series	Mean (SD): NR	All Respiratory Mortality Lag 0: -0.66 (-4.16, 2.97)
.ocation: Helsinki, Finland	N: NR	Min: 0.0	Lag 1: 2.90 (-0.48, 6.39) ‡
	Statistical Analyses: Poisson, GAM	25th percentile: 4.9	Lag 2: 0.35 (-3.03, 3.84) Lag 3: -0.38 (-3.67, 3.02)
	Covariates: Temperature, humidity,	50th percentile: 7.5	5-day mean: 0.36 (-4.54, 5.51) Pneumonia HA
	influenza epidemics, high pollen episodes, holidays	75th percentile: 12.1	Lag 0: 0.72 (-1.28, 2.77) Lag 1: 0.55 (-1.34, 2.49)
	Dose-response Investigated? No	Max: 101.4	Lag 2: 0.65 (-1.24, 2.58)
	Statistical Package: R	Monitoring Stations: NR	Lag 3: 0.03 (-1.86, 1.96) 5-day mean:
	Lags Considered: Lags 0-3 & 5-day	Copollutant:	Asthma + COPD HA Lag 0: 2.49 (0.47, 4.56)*
	(0-4) mean	PM<0.03, PM0.03-0.1, PM<0.1,	Lag 1: 1.37 (-0.66, 3.44) Lag 2: 0.7 (-1.36, 2.80)
		PM<0.10.29, PM _{2.5} , CO, NO ₂	Lag 3: 1.97 (-0.02, 4.00)‡
		Co-pollutant Correlation PM<0.03: 0.14 PM0.03-0.1: 0.28 PM<0.1: 0.24 PM<0.10.29: 0.20 PM _{2.5} : 0.25	5-day mean: 2.67 (-0.17, 5.58)‡ Other HA Lag 0: 1.38 (-1.24, 4.06) Lag 1: -1.62 (-4.22, 1.05) Lag 2: -1.25 (-3.88, 1.45) Lag 3: 0.04 (-2.52, 2.67) 5-day mean: 0.24 (-3.62, 4.26)
			*p < 0.05, ‡p < 0.10

Reference	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Host et al. (2007,	Outcome (ICD-10): Daily	Pollutant: PM _{10-2.5}	PM Increment: 10 µg/m³, and an 18.8 µg/m³ increase
155851)	hospitalizations for all respiratory diseases (J00-J99), respiratory	Averaging Time: 24 h	(corresponding to an increase in pollutant levels between the lowest of the 5th percentiles and the highest of the 95th
Period of Study: 2000-2003	infections (J10-J22).	Mean μg/m3 (5th -95th	percentiles of the cities' distributions)
Location: Six French cities: Le Havre, Lille, Marseille,	Age Groups: For all respiratory diseases: 0-14 yr, 15-64 yr, and ≥	percentile): Le Havre: 7.3 (2.5-14.0)	ERR (excess relative risk) Estimate [CI]: For all respiratory diseases (10 µg/m³ increase): 0-14 yr: 6.2% [0.4, 12.3]
Paris, Rouen, and Toulouse	65 yr For respiratory infections: All ages	Lille: 7.9 (2.2-13.7)	15-64 yr: 2.6%
	Study Design: Time series	Marseille: 11.0 (4.5-21.0)	[-0.5, 5.8]
	N: NR (Total population of cities:	Paris: 8.3 (3.2-15.9)	≥ 65 yr: 1.9% [-1.9, 5.9]
	approximately 10 million)	Rouen: 7.0 (3.0-12.5)	For all respiratory diseases (18.8 µg/m³ increase): 0-14 yr:
	Statistical Analyses: Poisson regression	Toulouse: 7.7 (3.0-15.0)	12.0 [0.8, 24.3]
	Covariates: Seasons, days of the	Monitoring Stations: 13 total: 1 in Toulouse	15-64 yr: 5.0 [-0.9, 11.1]
	week, holidays, influenza epidemics,	4 in Paris	≥ 65 yr: 3.7 [-3.6, 11.4]
	pollen counts, temperature, and temporal trends		For respiratory infections (10 µg/m³): All ages: 4.4% [0.9, 8.0]
	Dose-response Investigated: No	2 each in other cities	For respiratory infections (18 µg/m³): All ages: 8.4% [1.7,
	Statistical Package: MGCV package in R software (R 2.1.1)	Copollutant (correlation): PM _{2.5} : Overall: r>0.6	15.5]
	Lags Considered: Avg of 0-1 days	Ranged between $r = 0.28$ and $r = 0.73$ across the six cities.	
Reference: Lin et al. (2005,	Hospital Admissions	Pollutant: PM _{10-2.5} (μg/m ³)	PM Increment: 6.5 μg/m ³
<u>087828</u>)	Outcome (ICD-9): Respiratory	Averaging Time: 24 h	OR Estimate [CI]:
Period of Study: 1998-2001	infections including laryngitis, tracheitis, bronchitis, bronchiolitis,	Mean (min-max):	Adjusted for weather
Location: Toronto, North York, East York, Etobicoke,	pneumonia, and influenza (464, 466, 480-487)	10.86 (0-45.00)	4-day avg: 1.16 [1.07,1.26]
Scarborough, and York (Canada)	Age Groups: 0-14 yr	SD = 5.37	6-day avg: 1.21 [1.10,1.32]
(Ganada)	Study Design: Bidirectional case-	Monitoring Stations: 4	Adj for weather and other gaseous pollutants
	crossover	Copollutant (correlation):	4-day avg: 1.13 [1.03,1.23]
	N: 6782 respiratory infection	$PM_{2.5}$: r = 0.33	6-day avg: 1.17 [1.06,1.29]
	hospitalizations	PM_{10} : $r = 0.76$	Notes: OR's were also categorized into "Boys" and "Girls,"
	Statistical Analyses: Conditional logistic regression (Cox proportional	CO: r = 0.06	yielding similar results
	hazards model)	SO ₂ : r = 0.29	
	Covariates: Daily mean temp and dew point temp	NO ₂ : r = 0.40	
	Season: NR	O_3 : $r = 0.30$	
	Dose-response Investigated? No		
	Statistical Package: SAS 8.2 PHREG procedure		

Reference	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Lin et al. (2002,	Hospital Admissions	Pollutant: PM _{10-2.5} (µg/m ³)	PM Increment: 8.4 µg/m³
<u>026067</u>)	Outcome (ICD-9): Asthma (493)	Averaging Time: 6 days	RR Estimate [CI]:
Period of Study: Jan 1981-Dec 1993	Age Groups: 6-12 yr	(predicted daily values)	Adj for weather and gaseous pollutants BCC 5-day avg: 1.14 [1.01,1.28]
Location: Toronto	Study Design: Uni- and bi-directional case-crossover (UCC, BCC) and time-series (TS)	Mean (min-max):	BCC 6-day avg: 1.17 [1.03,1.33]
		12.17 (0-68.00)	TS 5-day avg: 1.14 [1.05,1.23] TS 6-day avg: 1.15 [1.06,1.25]
	N: 7,319 asthma admissions	SD = 7.55	Boys-adj for weather UCC 1-day avg: 1.08 [1.01,1.16]
	Statistical Analyses: Conditional	Monitoring Stations: 1	UCC 2-daý avg: 1.08 [0.99,1.17] BCC 1-day avg: 1.06 [1.00,1.14]
	logistic regression, GAM	Copollutant (correlation): PM _{2.5} : r = 0.44	BCC 2-day avg: 1.06 [0.98,1.14]
	Covariates: Maximum and minimum temp, avg relative humidity	PM ₁₀ : r = 0.83	TS 1-day avg: 1.08 [1.03,1.12] TS 2-day avg: 1.07 [1.01,1.13] Girls-adj for weather
	Season: Apr-Sep, Oct-Mar	CO: r = 0.17	UCC 1-day avg: 1.07 [0.97,1.18]
	Dose-response Investigated? No	SO ₂ : r = 0.28	UCC 2-day avg: 1.16 [1.03,1.31] BCC 1-day avg: 0.98 [0.90,1.07]
	Statistical Package: NR	NO_2 : $r = 0.38$	BCC 2-day avg: 1.05 [0.94,1.16] TS 1-day avg: 1.00 [0.94,1.06]
	Lags Considered: 1- to 7-day avg	O_3 : $r = 0.56$	TS 2-day avg: 1.05 [0.98,1.13]
			Notes: The author also provides RR using UCC, BCC, and TS analysis for female and male groups for day 3-7, yielding similar results
Reference: Peel et al. (2005,	ED visits	Pollutant: PM _{10-2.5} (μg/m ³)	PM Increment: 5
<u>056305</u>)	Outcome: Asthma (493, 786.09) COPD (491, 492, 496) URI (460-466, 477)	Averaging Time: 24 h avg	RR Estimate [Lower CI, Upper CI]
Period of Study: Jan 1993-Aug 2000		Mean (SD): 9.7 (4.7)	All Respiratory Outcomes: 1.003 [0.982, 1.025]
Location: Atlanta, Georgia	Pneumonia (480-486)	Percentiles: 10th: 4.4	URI: 1.013 [0.987, 1.039]
•	Age Groups: All ages. Secondary analyses conducted by age group: 0-1, 2-18, >18	90th: 16.2	Asthma: 0.998 [0.987, 1.039]
		Monitoring Stations:	Pneumonia: 0.975 [0.940, 1.011]
	Study Design: Time series	"Several"	COPD: 0.948 [0.897, 1.003]
	N: 31 hospitals	Copollutant (correlation):	
	Statistical Analyses: Poisson GEE	24 h PM ₁₀ : r = 0.59	
	for URI, asthma and all RD	8 h O ₃ : r = 0.35	
	Poisson GLM for pneumonia and COPD)	1 h NO ₂ : r = 0.46	
	Covariates: Avg temperature and	1 h CO: r = 0.32	
	dew point, pollen counts	1 h SO ₂ : r = 0.21	
	Season: All (secondary analyses of warm season)	24 h PM _{2.5} : r = 0.43	
	Dose-response Investigated? Yes	Components: r ranged from 0.23-0.51	
	Statistical Package: SAS 8.3 S-Plus 2000		
	Lags Considered: 0-7 days, 3-day ma, 0-13 days unconstrained distributed lag		

Reference	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Peng et al. (2008,	Outcome (ICD-9): Emergency	Pollutant: PM _{10-2.5}	PM Increment: 10 µg/m³
156850)	hospitalizations for respiratory disease, including COPD (490-492)	Averaging Time: 24 h	Percentage change [95% CI]: Respiratory disease (RD):
Period of Study: Jan 1999-Dec 2005		Mean (IQR): All counties	Lag 0 (unadjusted for PM _{2.5}): 0.33 [-0.21, 0.86]
ocation: 108 U.S. counties	Age Groups: 65 + yr, 65-74, ,75 +	assessed: 9.8 (6.9-15.0) Counties in Eastern U.S.: 9.1	Lag 0 (adjusted for PM _{2.5}): 0.26 [-0.32, 0.84]
n the following states: Alabama, Arizona, California,	Study Design: Time series	(6.6-13.1)	Most values NR (see note)
Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Illinois,	N: Approximately 12 million Medicare enrollees (1.4 million RD admissions)	Counties in Western U.S.: 15.4 (10.3-21.8)	Notes: Fig 3: Percentage change in emergency hospital admissions for RD per 10 µg/m³ increase in PM (single pollutant model and model adjusted for PM _{2.5} concentration
ndiana, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Missouri, Nevada, New Hampshire, New Jersey, New Mexico, New York, North	Statistical Analyses: Two-stage Bayesian hierarchical models: Over dispersed Poisson models for county- specific data. Bayesian hierarchical models to obtain national avg	Monitoring Stations: At least 1 pair of co-located monitors (physically located in the same place) for PM_{10} and $PM_{2.5}$ per county	Fig 4: Percentage change in emergency hospital admissions rate for CVD and RD per a 10 µg/m³ increase i PM _{10-2.5} (0-2 day lags, Eastern vs Western USA)
Carolina, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode	estimate Covariates: Day of the week, age-	Copollutant (correlation): PM _{2.5} : r = 0.12	
sland, South Carolina, Tennessee, Texas, Utah,	specific intercept, temperature, dew point temperature, calendar time,	PM ₁₀ : r = 0.75	
Virginia, Washington, West Virginia, Wisconsin	Some models were adjusted for PM _{2.5} .	Other variables: Median within- county correlations between monitors: r = 0.60	
	Dose-response Investigated: No		
	Statistical Package: R version 2.6.2		
	Lags Considered: 0-2 days		
Reference: Slaughter et al.	Hospital Admissions and ED visits	Pollutant: PM _{10-2.5} (µg/m ³)	PM Increment: 25 µg/m ³
2005, <u>073854)</u> Period of Study:	Outcome: All respiratory (460-519)	Averaging Time: 24 h avg	RR Estimate [Lower CI, Upper CI] lag:
lan 1995-Jun 2001	Asthma (493) COPD (491,492, 494,496)	Range (90% of Concentrations): Reported for PM _{2.5} and PM ₁₀ only	ER visits:
ocation: Spokane, WA	Pneumonia (480-487) Acute URI not including colds and		PM _{10-2.5}
	sinusitis (464, 466, 490)	Monitoring Stations: 1	All Respiratory
	Age Groups: All, 15+ yr for COPD	Copollutant (correlation):	Lag 1: 1.01 [0.98, 1.04]
	Study Design: Time series	PM _{10-2.5}	Lag 2: 1.01 [0.98, 1.04]
	N: 2373 visit records	PM1 r = 0.19	Lag 3: 1.02 [0.99, 1.05]
	Statistical Analyses: Poisson regression, GLM with natural splines.	$PM_{2.5} r = 0.31$	Acute Asthma
	For comparison also used GAM with smoothing splines and default	$PM_{10} r = 0.94$ CO r = 0.32	Lag 1: 1.03 [0.98, 1.08]
	convergence criteria.		Lag 2: 1.01 [0.96, 1.07]
	Covariates: Season, temperature, relative humidity, day of week	Temperature r = 0.11	Lag 3: 0.99 [0.94, 1.05]
	Season: All		COPD (adult)
	Dose-response Investigated?: No		Lag 1: 1.01 [0.93, 1.09] Lag 2: 0.98 [0.90, 1.06]
	Statistical Package: SAS, SPLUS		Lag 2: 0.96 [0.90, 1.00]
	Lags Considered: 1 -3 days		Lag 0. 1.02 [0.30, 1.10]

Reference	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Tecer et al.	Outcome: ED visits for respiratory	Pollutant: PM _{10-2.5}	Increment: 10 µg/m³
(2008, <u>180030</u>)	problems (ICD-9 470-478, 493)	Averaging Time: NR	Odds Ratio (95% CI)
Period of Study: Dec 2004-Oct 2005	Study Design: Bidirectional Case- crossover	Mean, Unit : 24.3 μg/m ³	Asthma Lag 0: 1.18 (1.01-1.39)
Location: Zonguldak, Turkey	Covariates: Daily meteorological parameters Statistical Analysis: Conditional logistic regression Statistical Package: Stata Age Groups: 0-14 yr	Range (Min, Max): 4, 195.8 Copollutant (correlation): PM _{2.5} /PM _{10-2.5} Mean: 1.49 Range: 0.21, 7.53	Lag 1: 0.92 (0.78-1.08) Lag 2: 0.98 (0.84-1.15) Lag 3: 1.11 (0.97-1.27) Lag 4: 1.17 (1.05-1.31) Allergic Rhinitis with Asthma Lag 0: 0.96 (0.88-1.04) Lag 1: 1.08 (0.99-1.18) Lag 2: 0.93 (0.86-1.02) Lag 3: 0.94 (0.86-1.03) Lag 4: 1.10 (1.03-1.18) Allergic Rhinitis Lag 0: 1.06 (0.95-1.19) Lag 1: 1.17 (1.04-1.31) Lag 2: 0.92 (0.84-1.02) Lag 3: 0.99 (0.91-1.08) Lag 4: 1.15 (1.06-1.25) Upper Respiratory Disease Lag 0: 0.80 (0.54-1.19) Lag 1: 1.22 (0.92-1.61) Lag 2: 0.97 (0.70-1.33) Lag 3: 0.94 (0.66-1.33) Lag 3: 0.94 (0.68-1.33) Lag 4: 1.08 (0.88-1.32)
			Lower Respiratory Disease Lag 0: 0.90 (0.71-1.16) Lag 1: 1.20 (0.97-1.50) Lag 2: 1.00 (0.84-1.19) Lag 3: 1.26 (1.08-1.47) Lag 4: 1.02 (0.93-1.13)
Reference: Yang et al., (2004, <u>087488</u>)	Hospital Admissions	Pollutant: PM _{10-2.5} (μg/m ³)	PM Increment: 4.2 μg/m³ (IQR)
Period of Study:	Outcome (ICD-9): Respiratory diseases (460-519), pneumonia only	Averaging Time: 24 h	OR Estimate [CI]:
Jun 1995-Mar 1999	(480-486), asthma only (493)	Mean (min-max):	3-day lag
Location: Vancouver area, British Columbia	Age Groups: 0-3 yr	5.6 (0-24.6)	1.12 [0.98,1.28]
Bridgi Columbia	Study Design: Case control, bidirectional case-crossover (BCC), and time series (TS)	SD = 3.6 Monitoring Stations: NR (data obtained from Greater	Adj for gaseous pollutants: 1.22 [1.02,1.48] Notes: Author states that ORs for PM _{10.25} increased with lag time up to 3 days for both single and multiple-pollutant
	N: 1610 cases	Vancouver Regional District Air Quality Dept)	models. More adjusted ORs and RRs are provided in Fig 1.
	Statistical Analyses: Chi-square test, Logistic regression, GAM (timeseries), GLM with parametric natural	Copollutant (correlation): PM _{2.5} : r = 0.39	
	cubic splines	PM ₁₀ : r = 0.83	
	Covariates: Gender, socioeconomic status, weekday, season, study yr, influenza epidemic month	CO: r = 0.33 O ₃ : r = -0.16	
	Season: Spring, summer, fall, winter	NO_2 : r = 0.37	
	Dose-response Investigated? No	SO ₂ : r = 0.54	
	Statistical Package: SAS (Case control and BCC), S-Plus (TS)	-	
	Lags Considered: 0-7 days		

¹All units expressed in μg/m³ unless otherwise specified.

 Table E-14.
 Short-term exposure-respiratory-ED/HA-PM_{2.5} (including PM components/sources).

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Andersen et al. (2008,	Outcome (ICD-10): RD, including	Pollutant: PM _{2.5}	PM Increment: 5 μg/m³ (IQR)
<u>189651</u>)	chronic bronchitis (J41-42), emphysema (J43), other chronic obstructive pulmonary disease (J44), asthma (J45), and status asthmaticus	Averaging Time: 24 h	Relative risk (RR) Estimate [CI]: RD hospital admissions (5-day avg, lag 0-4), age 65+:
Period of Study: May 2001-Dec 2004		Mean μg/m3 (SD): 10(5)	
Location: Copenhagen, Denmark	(J46). Pediatric hospital admissions for	Median: 9	One-pollutant model: 1.00 [0.95-1.00]
	asthma (J45) and status asthmaticus (J46).	IQR: 7-12	Adj for NCtot: 1.00 [0.95-1.06]
	Age Groups: > 5-18 yr (asthma)	99th percentile: 28	Asthma hospital admissions (6-day avg
	Study Design: Time series	Monitoring Stations: 1	lag 0-5), age 5-18:
	N: NR	Copollutant (correlation): NCtot: r = 0.40	One-pollutant model: 1.15 [1.00-1.32]
	Statistical Analyses: Poisson GAM	NC100: r = 0.29	Adj for NCtot: 1.13 [0.98-1.32]
	Covariates: Temperature, dew-point temperature, long-term trend,	NCa12: r = 0.07 Nca23: r = -0.25 NCa57: r = 0.51	Estimates for individual day lags reported only in Fig form (see notes):
	seasonality, influenza, day of the week, public holidays, school holidays (only for 5-18 yr olds), pollen (only for pediatric asthma outcome)	NCa212: r = 0.82 PM ₁₀ : r = 0.80 CO: r = 0.46 NO ₂ : r = 0.42	Notes: RD: No statistically or marginally significant associations. Positive associations at Lag 4-5.Asthma: Wide confidence intervals make interpretation
	Season: NR	: r = 0.40 NO _x curbside: r = 0.28	dificult. Positive associations at Lag 1, 2, 3.
	Dose-response Investigated: No	O ₃ : r = -0.20 Other variables: Temperature: r = -0.01 Relative humidity: r = 0.21	7."
	Statistical Package: R statistical software (gam procedure, mgcv package)		
	Lags Considered: Lag 0-5 days, 4-day pollutant avg (lag 0-3) for CVD, 5-day avg (lag 0-4) for RD, and a 6-day avg (lag 0-5) for asthma.		
Reference: Babin et al. (2007, 093250)	ED Visit/Admissions	Pollutant: PM _{2.5}	PM Increment: 1 µg/m ³
Period of Study: Oct 2001-Sep 2004	Outcome: Asthma-493	Averaging Time: 24 h	%Change ED Visits
Location: Washington, DC	Age Groups: 1-17 yr,1-4, 5-12, 13-17	Mean: "low, never reached code red"	Ages 5-12:
	Study Design: Time-series	Percentiles: NR	-0.2 (-0.6,0.2), lag 0
	N: NR	Range (Min, Max): NR	% Change ED Admissions:
	Statistical Analyses: Poisson	Monitoring Stations: 3	Ages 5-12:
	regression, spline w/ 12 knots to adjust for long term trend	Copollutant (correlation): NR	-0.4 (-1.6,0.8), lag 0
	Covariates: Temperature, mold, pollen,		Ages 1-17:
	seasonal trends,		0.2 (-0.6,1.1), lag 0
	Season: All		AR Estimate [Lower CI, Upper CI] lag:
	Dose-response Investigated?No		NR
	Statistical Package: STATA		Notes: No significant interactions between PM and O ₃ or other covariates
	Lags Considered: 0-4		were observed.

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Barnett et al. (2005, 087394)	Outcome (ICD: NR): All respiratory admissions (including asthma,	Pollutant: PM _{2.5}	PM Increment: 3.8 μg/m³ (IQR)
Period of Study: 1998-2001 Location: 5 Australian cities (Brisbane,	pneumonia, and acute bronchitis)	Averaging Time: 24 h	Percent Increase Estimate [CI]:
	Age Groups: Children aged <1 yr, 1-4 yr, and 5-14 yr	Auckland (A): 11.0 (2.1-37.6)	Pneumonia & Acute Bronchitis: Single Pollutant Model <1 yr (B,M,P,S): 1.7 [0.0,3.4]
Canberra, Melbourne, Perth, and Sydney) and 2 New Zealand cities (Auckland, Christchurch)	Study Design: Matched case- crossover		1-4 yr (B,M,P,S): 2.4 [0.1,4.7] Matched Multipollutant Model
	N: ~2.4 million children <15 yr old	Canberra (Ca): NR	1-4 yr with 1-h SO ₂ (B,S): 1.9 [-1.7,5.6] 1-4 yr with temp (B,M,P,S): 2.3 [-0.4,5.1]
	Statistical Analyses: Random effects meta-analysis	Christchurch (Ch): NR	Respiratory Admissions: Single Pollutant Model <1 yr (B,M,P,S): 2.4 [1.0,3.8]
	Covariates: Temperature, current	Melbourne (M): 8.9 (2.8-43.3) Perth (P): 8.1 (1.7-29.3)	1-4 yr (B,M,P,S): 1.7 [0.7,2.7] Matched Pollutant Model
	minus previous day's temperature, relative humidity, pressure, extremes	Sydney (S): 9.4 (2.4-82.1)	<1 yr with 1-h SO ₂ (B,S): 3.1 [0.5,5.7] <1 yr with temp (B,M,P,S): 1.8 [0.2,3.4]
	of hot and cold, day of the week, public holiday, and day after public	Monitoring Stations: 1-3 per city	1-4 yr with PM ₁₀ (B,M,P,S): 2.9 [0.2,5.6] 1-4 yr with 1-h SO ₂ (B,S): 1.3 [-1.8,4.4]
	holiday	Copollutant: NR	1-4 yr with 1-h NO ₂ (B,M,P,S):
	Season: Warm (Nov-Apr) and Cool (May-Oct)		-1.5 [-3.2,0.2] 1-4 yr with temp (B,M,P,S,): 1.5 [-0.2,3.1]
	Dose-response Investigated? No		
	Statistical Package: SAS		
	Lags Considered: NR		
Reference: Bell et al. (2008, <u>091268</u>) Period of Study: 1995-2002	Outcome (ICD-9): Hospital admissions for asthma (493), and pneumonia (486).	Pollutant: PM _{2.5} Averaging Time: 24 h	PM Increment: 20 µg/m³ (near IQR) Percentage increase estimate [95% CI]:
Location: Taipei, Taiwan	Age Groups: All	Mean (range IQR): 31.6 (0.50-355.0	Asthma: L0: 0.46 (-2.41, 3.42)
Location: Idipol, Idiwali	Study Design: Time series		L1: -1.36 (-4.33, 1.71)
	N: 19,966 hospital admissions for pneumonia, and 10,231 for asthma	20.2)	L2: -0.83 (-3.67, 2.10)
	Statistical Analyses: Poisson	Monitoring Stations: 2	L3: -0.78 (-3.63, 2.16)
	regression	Copollutant (correlation): NR	L03: -1.75 (-6.21, 2.92)
	Covariates: Day of the week, time,	, ,	Pneumonia: L0: 0.06 (-2.74, 2.94)
	apparent temperature, long-term trends, seasonality		L1: 0.34 (-2.446, 3.20)
	Season: All		L2: -0.59 (-3.38, 2.29)
	Dose-response Investigated: No		L3: -0.44 (-3.22, 2.41)
	Statistical Package: NR		L03: -0.61 (-4.87, 3.85)
	Lags Considered: lags 0-3 days, mean of lags 0-3		
Reference: Bell et al. (2008, <u>091268</u>)	Outcome (ICD-9): COPD (490-492),	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: 1999-2005	respiratory tract infections (464-466, 480-487)	Averaging Time: 24 h	Percent increase [95% PI]: Respiratory admissions:
Location: 202 U.S. counties	Age Groups: 65+	Mean (μg/m3):	Lag 0 (all seasons): 0.22 [-0.12-0.56] Lag 0 (winter, national): 1.05 [0.29-1.82]
	Study Design: Time series	Descriptive information presented in Fig	Lag 0 (winter, northeast):
	N: NR	S2 (boxplots): IQR: 8.7 µg/m ³	1.76 [0.60-2.93] Lag 0 (winter, southeast):
	Statistical Analyses: Two-stage	Monitoring Stations: NR	0.59 [-1.35-2.58] Lag 0 (winter, northwest):
	Bayesian hierarchical model to find national avg	Copollutant (correlation): NR	-0.07 [-6.74-7.08] Lag 0 (winter, southwest):
	First stage: Poisson regression (county-specific)	Coponatant (correlation). The	0.03 [-1.25-1.34] Lag 0 (spring, national):
	Covariates: Day of the week, temperature, dew point temperature, temporal trends, indicator for persons 75+ yr, population size		0.31 [-0.47-1.11] Lag 0 (spring, northeast): 0.34 [-0.66-1.34] Lag 0 (spring, southeast): -0.06 [-1.77-1.68] Lag 0 (spring, northwest):
	Season: All, Jun-Aug (Summer), Sep-Nov (Fall), Dec-Feb (Winter), Mar-May (Spring)		-8.52 [-25.62-12.51] Lag 0 (spring, southwest): 1.87 [-2.00-5.90]
	Dose-response Investigated: No		Lag 0 (summer, national): -0.62 [-1.33-0.09]

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	Statistical Package: NR Lags Considered: 0-2 day lags		Lag 0 (summer, northeast): -0.8 [-1.65-0.07] Lag 0 (summer, southeast): -0.15 [-1.88-1.61] Lag 0 (summer, northwest): 0.25 [-21.46-27.96] Lag 0 (summer, southwest): 0.64 [-5.38-7.04] Lag 0 (fall, national): 0.02 [-0.63-0.67] Lag 0 (fall, northeast): -0.01 [-0.87-0.85] Lag 0 (fall, southeast): -0.58 [-2.06-0.91] Lag 0 (fall, southeast): -1.38 [-11.84-10.32] Lag 0 (fall, southwest): 1.77 [-0.73-4.33] Lag 1 (all seasons): 0.05 [-0.29-0.39] Lag 1 (spring): -0.24 [-1.01-0.53] Lag 1 (summer): 0.28 [-0.39-0.95] Lag 1 (signing): -0.24 [-1.01-0.53] Lag 2 (winter, northeast): 0.79 [-0.21-1.80] Lag 2 (winter, northeast): 0.79 [-0.21-1.80] Lag 2 (winter, southeast): 0.4 [-1.45, 2.27] Lag 2 (winter, southwest): 1.2 [-0.10-2.52] Lag 2 (spring, northeast): 0.04 [-0.88-0.97] Lag 2 (spring, northeast): 0.04 [-0.88-0.97] Lag 2 (spring, southeast): 0.75 [-0.82-2.34] Lag 2 (summer, northwest): 2.99 [-14.26-22.03] Lag 2 (summer, northwest): 0.75 [-0.32-2.34] Lag 2 (summer, northwest): 0.75 [-0.32-2.34] Lag 2 (summer, northwest): 0.75 [-0.32-2.34] Lag 2 (summer, southeast): 0.75 [-0.82-2.34] Lag 2 (summer, northwest): 1.05 [-2.18-4.39] Lag 2 (summer, northwest): 0.74 [-1.56] Lag 2 (summer, northwest): 0.75 [-0.01-1.56] Lag 2 (summer, northwest): 0.76 [-0.01-1.56] Lag 2 (summer, northwest): 0.77 [-0.01-1.56] Lag 2 (summer, northwest): 0.76 [-0.82-1.07] Lag 2 (fall, northeast): 0.77 [-0.08-9.58] Lag 2 (fall, northwest): 0.74 [-10.08-9.58] Lag 2 (fall, northwest): 0.75 [-0.07-9.58] Lag 2 (fall, northwest):
Reference: Bell et al. (2009, 191007) Period of Study: 1999-2005 Location: 168 U.S. Counties	Outcome: Respiratory hospital admissions Study Design: Retrospective Cohort Covariates: Socio-economic conditions, long term temperature Statistical Analysis: Bayesian hierarchical model Age Groups: ≥65	Pollutant: PM _{2.5} Averaging Time: 24 h Mean (SD) Unit: NR Range (Min, Max): NR Copollutant (correlation): NR	0.97[-1.36-3.36] Increment: 20% of the population acquiring air conditioning Percent Change (95% CI) in community-specific PM health effect estimates for respiratory hospital admissions Any AC, including window units Yearly health effect: 44.5 (-87.5-176) Summer health effect: -74.8 (-417-267) Winter health effect: -32.5 (-245-180) Central AC Yearly health effect: 27.6 (-46.7-102) Summer health effect: -38.6 (-100-82.6) Winter health effect: 43.8 (-125-213)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Bell et al. (2009, <u>191007</u>)	Outcome: Respiratory HA	Pollutant: PM _{2.5}	PM Increment: Interquartile Range in
Period of Study: 1999-2005	Age Groups: 65+	Averaging Time: Daily	the fraction of PM _{2.5}
Location: 168 U.S. Counties	Study Design: Time series	Mean: EC: 0.715	Percent Increase (Lower CI, Upper CI):
	N: NR	Ni: 0.002	EC: 511 (80.7, 941), lag 0
	Statistical Analyses: Bayesian Hierarchical Regression	V: 0.003 Min: EC: 0.309	EC + Ni: 399 (-45.1, 843), lag 0 EC + V: 386 (-74.8, 846), lag 0 EC + Ni, V: 362 (-98.0, 823), lag 0
	Covariates: Time trend, day of week, seasonality, dew point, temperature	Ni: 0.003 V: 0.001 Max:	Ni: 223 (36.9, 410), lag 0 Ni + EC: 176 (-18.7, 370), lag 0 Ni + V: 151 (-78.4, 381), lag 0
	Statistical Package: NR	EC: 1.73 Ni: 0.021	Ni + EC, V: 136 (-94.9, 368), lag 0 V: 392 (46.3, 738), lag 0
	Lags Considered: 0-2	V: 0.010 Interquartile Range: EC: 0.245 Ni: 0.001 V: 0.001 Interquartile Range of Percents: EC: 1.7 Ni: 0.01	V + EC: 279 (-93.2, 651), lag 0 V+ Ni: 230 (-193.7, 653), lag 0 V + EC, Ni: 140 (-300, 579), lag 0 EC: -1.5 (80.7, 941), lag 1 EC: 17.5 (-22.3, 57.3), lag 2 Ni: -7.2 (-66.6, 52.1), lag 1 Ni: -4.9 (-22.3, 12.5), lag 2 V: -19.6 (-127, 88.3), lag 1
		V: 0.01	V: 10.5 (-21.5, 42.4), lag 2
		Monitoring Stations: NR	HS education: -77.8 (-390, 234), lag 0 median income: 45.9 (-411, 503), lag0
		Copollutant: Al, NH4+, As, Ca, Cl, Cu, EC, OMC, Fe, Pb, Mg. Ni, NO ₃ -, K, Si, Na+, SO ₄ =, Ti, V, Zn	Percent black: -53.1 (-557, 451), lag 0 Percent living in urban area: -41.9 (- 774.7, 691), lag 0 Population: -22.9 (-121, 75.3), lag 0
		Co-pollutant Correlation: Ni, V: 0.48 V, EC: 0.33 Ni, EC: 0.30	Notes: Interquartile ranges in percent HS education, median income, percent black, percent living in urban area, and population are 5.2 %, \$9,223, 17.3%,
		Note: Pollutant concentrations available for all fractions of $\mbox{PM}_{2.5}$	11.0%, and 549,283 respectively.
Reference: Chardon et al. (2007,	Doctors house calls	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
091308)	Outcome (ICPC2): Asthma (R96),	Averaging Time: Mean of the daily	% Change, lag 0-3-day avg
Period of Study: 2000-2003	Upper respiratory disease (URD R07, R21, R29, R75, R76, R02), Lower	means Macon (SD): 14 7/7 34) us/m ³	URD
Location: Greater Paris Area, France	respiratory disease (LRD, R05, R78)	Mean (SD): 14.7(7.34) μg/m ³	6.0 (3.1, 9.1)
	Age Groups: All	Percentiles: 25th: 9.5	LRD
	Study Design: Time series	50th(Median): 12.9	5.8 (2.8, 8.9)
	N : 8027 for asthma 52928 for LRD 74845 for URD	75th: 18.2	Asthma
		Range (Min, Max): (3, 69.6)	4.4 (-1.3, 10.4)
	Statistical Analyses: Quasi-Poisson,	Monitoring Stations: 1-4	
	GAM, parametric penalized spline smoothers.	Copollutant:	
	Covariates: Lagged and current temperature, humidity, long term trends, seasonality, pollen counts, influenza epidemic, days of the week, holidays, bank holidays	PM_{10} : $r = 0.95$ NO_2 : $r = 0.68$	
	Season: All		
	Dose-response Investigated? No		
	Statistical Package: R		
	Lags Considered: 0-3 days		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chen et al. (2005, <u>087555</u>)	Hospital Admissions	Pollutant: PM _{2.5}	PM Increment: 4.0 µg/m³ (IQR)
Period of Study: Jun 1995-Mar 1999	Outcome (ICD-9): Acute respiratory	Averaging Time: 24 h	RR Estimate [CI]:
Location: Vancouver area, BC	infections (460-466), upper respiratory tract infections (470-478), pneumonia	Mean (min-max):	Adj for weather conditions
	and influenza (480-487), COPD and allied conditions (490-496), other	7.7 (2.0-32.0)	Overall admission
	respiratory diseases (500-519)	SD = 3.7	1-day avg: 1.02 [0.99,1.05]
	Age Groups: >65 yr	Monitoring Stations: 13	2-day avg: 1.02 [0.99,1.06]
	Study Design: Time series	Copollutant (correlation): PM ₁₀ : r = 0.83	3-day avg: 1.02 [0.98,1.05]
	N: 12,869	PM _{10-2.5} : r = 0.38 COH: r = 0.39	Adj for weather conditions and
	Statistical Analyses: GLM	CO: r = 0.23	copollutants
	Covariates: Temp and relative humidity	O ₃ : r = -0.01 NO ₂ : r = 0.36	Overall admission
	Season: NR	SO ₂ : r = 0.42	1-day avg: 1.01 [0.98,1.06]
	Dose-response Investigated? No	Other variables:	2-day avg: 1.01 [0.98,1.05]
	Statistical Package: S-Plus	Mean temp: r = 0.41	3-day avg: 1.00 [0.96,1.04]
	Lags Considered: 1-, 2-, 3-, 4-, 5-, 6-, and 7-day avg	Rel humidity: r = -0.23	Notes: RR's were also provided for lags 4-7 in Table 3, yielding similar results
Reference: Chimonas and Gessner (2007, 093261)	Outcome (ICD-9): Asthma (493.0-493.9)	Pollutant: PM _{2.5}	PM Increment: 5 μg/m ³
Period of Study: Jan 1999-Jun 2003	Lower respiratory illness-LRI (466.1,	Averaging Time: 24 h and 1 wk	RR Estimate [CI]:
Location: Anchorage, Alaska	466.0, 480-487, 490, 510-511) Inhaled quick-relief medication	Mean (min-max):	Same Day
Location: Allohorago, Alacika	Steroid medication	Daily: 6.1 (0.5-69.8)	Outpatient Asthma: 0.992 [0.964,1.024] Outpatient LRI: 0.952 [0.907,1.001]
	Age Groups: <20 yr old	Weekly: 5.8 (1.8-45.0)	Inpatient Asthma: 0.936 [0.798,1.098] Inpatient LRI: 0.919 [0.823,1.027]
	Study Design: Time series	Monitoring Stations: NR	Inhaled Steroid Prescriptions: 0.988 [0.902,1.083]
	N: 42,667 admissions	Copollutant: N/A	Quick-relief Medication:
	Statistical Analyses: GEE for multivariable modeling		0.962 [0.901,1.028] Weekly (median increase) Outpatient Asthma: 0.983 [0.935,1.038]
	Covariates: Season, serial correlation, yr, weekend, temperature, precipitation, and wind speed		Outpatient LRI: 0.969 [0.874,1.075] Inpatient Asthma: 0.754 [0.513.1.109] Inpatient LRI: 0.943 [0.715,1.245]
	Season: NR		Inhaled Steroid Prescriptions: 1.018 [0.883,1.175]
	Dose-response Investigated? No		Quick-relief Medication: 0.978 [0.882,1.087]
	Statistical Package: SPSS (dataset), SAS (analysis)		0.010 [0.002,1.007]
	Lags Considered: 1 day and 1 wk		
Reference: Delfino et al. (2009,	Outcome: Respiratory hospital	Pollutant: PM _{2.5}	Increment: 10 µg/m³
191994) Paried of Study: Oct 2003 Nov 2003	admissions	Averaging Time: Hourly	Relative Rate (Min CI, Max CI)
Period of Study: Oct 2003-Nov 2003 Location: Southern California	Study Design: Time series Statistical Analysis: Poisson	Mean (SD) Unit by county: Los Angeles	All Respiratory, All Ages: All Periods: 1.009 (0.999-1.018)
	regression with GEE	Before Fires: 27.2 (12.4) µg/m ³ During Fires: 54.1 (21.0) µg/m ³	Pre-Wildfire: 1.022 (1.004-1.040) Wildfire: 1.028 (1.014-1.041), p = 0.639
	Age Groups: All	After Fires: 15.9 (5.5) µg/m ³	Post-Wildfire: 0.999 (0.968-1.031),
		Orange Before Fires: 23.2 (9.6) µg/m³ During Fires: 64.3 (26.5) µg/m³ After Fires: 15.5 (10.2) µg/m³	p = 0.198 All Respiratory, Ages 0-4: All Periods:
		Riverside	0.994 (0.967-1.021) Pre-Wildfire: 0.982 (0.921-1.046)
		Before Fires: 32.7 (14.7) µg/m³ During Fires: 42.1 (25.5) µg/m³ After Fires: 16.9 (10.2) µg/m³	Wildfire: 1.045 (1.010-1.082), p = 0.103 Post-Wildfire: 0.894 (0.807-0.991), p = 0.126
		San Bernadino Before Fires: 35.7 (16.6) µg/m ₃ ³	All Respiratory, Ages 5-19: All Periods:
		During Fires: 45.3 (28.7) µg/m³ After Fires: 18.5 (8.3) µg/m³	1.014 (0.983-1.046) Pre-Wildfire: 1.026 (0.946-1.113)
		San Diego Before Fires: 18.5 (6.7) µg/m ³	Wildfire: 1.027 (0.984-1.076), p = 0.990
		During Fires: 76.1 (66.6) μg/m ³	Post-Wildfire: 0.958 (0.852-1.077), p = 0.354
		After Fires: 14.2 (7.2) μg/m³ Ventura	All Respiratory, Ages 20-64: All Periods

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
		Before Fires: 18.4 (8.3) µg/m³ During Fires: 50.1 (50.5) µg/m³ After Fires: 12.9 (4.3) µg/m³ Copollutant (correlation): NR	1.015 (1.002-1.029) Pre-Wildfire: 1.036 (1.007-1.066) Wildfire: 1.024 (1.005-1.044), p = 0.534 Post-Wildfire: 1.007 (0.960-1.056), p = 0.315
			All Respiratory, Ages 65-99: All Periods: 1.009 (0.996-1.022) Pre-Wildfire: 1.022 (0.994-1.050) Wildfire: 1.030 (1.011-1.049), p = 0.649 Post-Wildfire: 1.024 (0.967-1.074), p = 0.932
			Asthma, All Ages, Male and Female: All Periods: 1.022 (1.001-1.042) Pre-Wildfire: 0.998 (0.949-1.050) Wildfire: 1.048 (1.021-1.076), p = 0.097 Post-Wildfire: 0.986 (0.910-1.068), p = 0.792
			Asthma, All Ages, Male: All Periods: 1.010 (0.980-1.040) Pre-Wildfire: 1.021 (0.944-1.106) Wildfire: 1.031 (0.990-1.073), p = 0.848 Post-Wildfire: 1.063 (0.948-1.192), p = 0.553
			Asthma, All Ages, Female: All Periods: 1.029 (1.001-1.058) Pre-Wildfire: 0.979 (0.913-1.050) Wildfire: 1.059 (1.022-1.097), p = 0.056 Post-Wildfire: 0.928 (0.829-1.037), p = 0.412
			Asthma, Ages 0-4, Males and Females: All Periods: 0.996 (0.947-1.048) Pre-Wildfire: 0.924 (0.824-1.035) Wildfire: 1.083 (1.021-1.149), p = 0.017 Post-Wildfire: 0.924 (0.767-1.113), p = 0.999
			Asthma, Ages 0-4, Males: All Periods: 1.018 (0.963-1.076) Pre-Wildfire: 0.942 (0.815-1.089) Wildfire: 1.086 (1.016-1.162), p = 0.101 Post-Wildfire: 1.057 (0.839-1.332), p = 0.380
			Asthma, Ages 0-4, Females: All Periods: 0.937 (0.845-1.040) Pre-Wildfire: 0.880 (0.706-1.099) Wildfire: 1.073 (0.965-1.194), p = 0.116 Post-Wildfire: 0.699 (0.515-0.949), p = 0.214
			Asthma, Ages 5-19, Males and Females: All Periods: 1.006 (0.966-1.048) Pre-Wildfire: 1.045 (0.936-1.167) Wildfire: 0.999 (0.935-1.068), p = 0.492 Post-Wildfire: 0.918 (0.788-1.069), p = 0.198
			Asthma, Ages 5-19, Males: All Periods: 0.991 (0.935-1.051) Pre-Wildfire: 1.034 (0.892-1.198) Wildfire: 0.969 (0.883-1.064), p = 0.462 Post-Wildfire: 0.979 (0.806-1.189), p = 0.671 Asthma, Ages 5-19, Females: All Periods: 1.026 (0.964-1.092) Pre-Wildfire: 1.065 (0.901-1.260) Wildfire: 1.033 (0.943-1.132), p = 0.768 Post-Wildfire: 0.831 (0.640-1.079), p = 0.136
			Asthma, Ages 20-64, Males and Females: All Periods: 1.043 (1.012-

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			1.076) Pre-Wildfire: 1.037 (0.957-1.123) Wildfire: 1.041 (0.995-1.090), p = 0.931 Post-Wildfire: 1.000 (0.882-1.132), p = 0.624
			Asthma, Ages 20-64, Males: All Periods: 1.013 (0.954-1.077) Pre-Wildfire: 1.159 (0.996-1.349) Wildfire: 0.939 (0.837-1.053), p = 0.026 Post-Wildfire: 1.275 (1.020-1.595), p = 0.486
			Asthma, Ages 20-64, Females: All Periods: 1.052 (1.015-1.090) Pre-Wildfire: 0.995 (0.904-1.096) Wildfire: 1.064 (1.014-1.116), p = 0.247 Post-Wildfire: 0.908 (0.780-1.056), p = 0.310
			Asthma, Ages 65-99, Males and Females: All Periods: 1.027 (0.974-1.082) Pre-Wildfire: 0.951 (0.849-1.064) Wildfire: 1.101 (1.030-1.178), p = 0.032 Post-Wildfire: 1.168 (0.967-1.412), p = 0.072
			Asthma, Ages 65-99, Males: All Periods: 1.046 (0.957-1.142) Pre-Wildfire: 0.948 (0.804-1.116) Wildfire: 1.185 (1.077-1.305), p = 0.029 Post-Wildfire: 0.902 (0.629-1.294), p = 0.804
			Asthma, Ages 65-99, Females: All Periods: 1.018 (0.958-1.081) Pre-Wildfire: 0.947 (0.813-1.102) Wildfire: 1.065 (0.977-1.162), p = 0.195 Post-Wildfire: 1.263 (1.024-1.557), p = 0.032
			Acute Bronchitis and Bronchiolitis, All Ages: All Periods: 1.044 (0.990-1.102) Pre-Wildfire: 1.001 (0.890-1.126) Wildfire: 1.096 (1.018-1.179), p = 0.223 Post-Wildfire: 1.031 (0.870-1.222), p = 0.779
			Acute Bronchitis and Bronchiolitis, Ages 0-4: All Periods: 1.017 (0.949-1.089) Pre-Wildfire: 0.987 (0.847-1.149) Wildfire: 1.092 (0.997-1.195), p = 0.276 Post-Wildfire: 0.910 (0.700-1.183), p = 0.588 Acute Bronchitis and Bronchiolitis, Ages 5-19: No Convergence
			Acute Bronchitis and Bronchiolitis, Ages 20-64: All Periods: 1.039 (0.912-1.183) Pre-Wildfire: 1.001 (0.792-1.266) Wildfire: 1.044 (0.872-1.252), p = 0.778 Post-Wildfire: 1.259 (0.921-1.722), p = 0.275
			Acute Bronchitis and Bronchiolitis, Ages 65-99: All Periods: 1.134 (1039-1.238) Pre-Wildfire: 1.073 (0.764-1.505) Wildfire: 1.143 (1.032-1.265), p = 0.730 Post-Wildfire: 1.190 (0.865-1.638), p = 0.652
			COPD, Ages 20-99: All Periods: 1.018 (0.994-1.042) Pre-Wildfire: 1.007 (0.958-1.058) Wildfire: 1.038 (1.004-1.075), p = 0.320 Post-Wildfire: 1.024 (0.943-1.112),

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			p = 0.728
			COPD, Ages 20-64: All Periods: 1.022 (0.980-1.066) Pre-Wildfire: 0.995 (0.916-1.081) Wildfire: 1.068 (1.009-1.131), p = 0.161 Post-Wildfire: 1.015 (0.893-1.153), p = 0.728
			COPD, Ages 65-99: All Periods: 1.019 (0.992-1.048) Pre-Wildfire: 1.014 (0.955-1.077) Wildfire: 1.031 (0.990-1.074), p = 0.660 Post-Wildfire: 1.023 (0.928-1.128), p = 0.878
			Pneumonia, All Ages: All Periods: 1.009 (0.994-1.024) Pre-Wildfire: 1.045 (0.931-1.180) Wildfire: 1.028 (1.007-1.050), p = 0.420 Post-Wildfire: 0.980 (0.927-1.035), p = 0.045
			Pneumonia, Ages 0-4: All Periods: 0.995 (0.944-1.049) Pre-Wildfire: 1.048 (0.931-1.180) Wildfire: 1.018 (0.948-1.092), p = 0.691 Post-Wildfire: 0.823 (0.649-1.044), p = 0.089
			Pneumonia, Ages 5-19: All Periods: 1.031 (0.966-1.098) Pre-Wildfire: 1.017 (0.882-1.172) Wildfire: 1.064 (0.990-1.142), p = 0.586 Post-Wildfire: 1.017 (0.767-1.349), p = 0.998
			Pneumonia, Ages 20-64: All Periods: 1.008 (0.982-1.035) Pre-Wildfire: 1.041 (0.982-1.104) Wildfire: 1.032 (0.994-1.072), p = 0.823 Post-Wildfire: 1.013 (0.913-1.124), p = 0.633
			Pneumonia, Ages 65-99: All Periods: 1.011 (0.993-1.030) Pre-Wildfire: 1.050 (1.006-1.097) Wildfire: 1.029 (1.002-1.057), p = 0.445 Post-Wildfire: 0.985 (0.920-1.055), p = 0.127
			Relative Rate (Min CI, Max CI) in relation to pre-wildfire period (1) All Respiratory, All Ages: Wildfire, unadjusted for PM _{2.5} : 0.961 (0.916-1.008) Wildfire, adjusted for PM _{2.5} : 0.903 (0.850-0.960) Post-wildfire, unadjusted for PM _{2.5} : 1.143 (1.072-1.219) Post-wildfire, adjusted for PM _{2.5} : 1.173 (1.097-1.253)
			All Respiratory, Ages 0-4: Wildfire, unadjusted for PM _{2.5} : 0.865 (0.757-0.989) Wildfire, adjusted for PM _{2.5} : 0.842 (0.717-0.988) Post-wildfire, unadjusted for PM _{2.5} : 1.152 (0.957-1.388) Post-wildfire, adjusted for PM _{2.5} : 1.162 (0.954-1.415)
			All Respiratory, Ages 5-19: Wildfire, unadjusted for $PM_{2.5}$: 1.098 (0.901-1.324) Wildfire, adjusted for $PM_{2.5}$: 1.087 (0.863-1.370)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Post-wildfire, unadjusted for PM _{2.5} : 1.373 (1.089-1.732) Post-wildfire, adjusted for PM _{2.5} : 1.467 (1.142-1.883)
			All Respiratory, Ages 20-64: Wildfire, unadjusted for PM _{2.5} : 0.991 (0.922-1.066) Wildfire, adjusted for PM _{2.5} : 0.923 (0.843-1.012) Post-wildfire, unadjusted for PM _{2.5} : 1.074 (0.971-1.188) Post-wildfire, adjusted for PM _{2.5} : 1.104 (0.992-1.228)
			All Respiratory, Ages 65-99: Wildfire, unadjusted for PM _{2.5} : 0.932 (0.867-1.003) Wildfire, adjusted for PM _{2.5} : 0.874 (0.795-0.959) Post-wildfire, unadjusted for PM _{2.5} : 1.147 (1.045-1.259) Post-wildfire, adjusted for PM _{2.5} : 1.193 (1.084-1.313)
			Asthma, All Ages: Wildfire, unadjusted for $PM_{2.5}$: 1.088 (0.965-1.227) Wildfire, adjusted for $PM_{2.5}$: 0.992 (0.856-1.149) Post-wildfire, unadjusted for $PM_{2.5}$: 1.264 (1.085-1.473) Post-wildfire, adjusted for $PM_{2.5}$: 1.336 (1.134-1.573)
			Asthma, Ages 0-4: Wildfire, unadjusted for $PM_{2.5}$: 0.806 (0.632-1.029) Wildfire, adjusted for $PM_{2.5}$: 1.282 (0.958-1.716) Post-wildfire, unadjusted for $PM_{2.5}$: 1.092 (1.759-1.572) Post-wildfire, adjusted for $PM_{2.5}$: 1.133 (0.777-1.654)
			Asthma, Ages 5-19: Wildfire, unadjusted for PM _{2.5} : 1.254 (0.999-1.575) Wildfire, adjusted for PM _{2.5} : 1.282 (0.958-1.716) Post-wildfire, unadjusted for PM _{2.5} : 1.564 (1.160-2.109) Post-wildfire, adjusted for PM _{2.5} : 1.629 (1.184-2.243)
			Asthma, Ages 20-64: Wildfire, unadjusted for PM _{2.5} : 1.273 (1.067-1.518) Wildfire, adjusted for PM _{2.5} : 1.221 (0.979-1.524) Post-wildfire, unadjusted for PM _{2.5} : 1.362 (1.043-1.779) Post-wildfire, adjusted for PM _{2.5} : 1.486 (1.111-1.987)
			Asthma, Ages 65-99: Wildfire, unadjusted for $PM_{2.5}$: 0.869 (0.657-1.151) Wildfire, adjusted for $PM_{2.5}$: 0.645 (0.450-0.925) Post-wildfire, unadjusted for $PM_{2.5}$: 0.924 (0.606-1.408) Post-wildfire, adjusted for $PM_{2.5}$: 1.005 (0.650-1.552)
			Acute Bronchitis and Bronchiolitis, All Ages: Wildfire, unadjusted for PM _{2.5} : 1.143 (0.878-1.490) Wildfire, adjusted for PM _{2.5} : 0.959 (0.696-1.321)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Post-wildfire, unadjusted for PM _{2.5} : 1.482 (1.042-2.109) Post-wildfire, adjusted for PM _{2.5} : 1.580 (1.089-2.291)
			Acute Bronchitis and Bronchiolitis, Ages 0-4: Wildfire, unadjusted for PM _{2.5} : 1.128 (0.819-1.555) Wildfire, adjusted for PM _{2.5} : 0.899 (0.607-1.333) Post-wildfire, unadjusted for PM _{2.5} : 1.520 (0.947-2.440) Post-wildfire, adjusted for PM _{2.5} : 1.547 (0.954-2.507)
			Acute Bronchitis and Bronchiolitis, Ages 5-19 No Correlation
			Acute Bronchitis and Bronchiolitis, Ages 20-64: Wildfire, unadjusted for PM _{2.5} : 1.350 (0.688-2.648) Wildfire, adjusted for PM _{2.5} : 1.320 (0.608-2.863) Post-wildfire, unadjusted for PM _{2.5} : 2.454 (1.068-5.640) Post-wildfire, adjusted for PM _{2.5} : 2.515 (1.055-5.998)
			Acute Bronchitis and Bronchiolitis, Ages 65-99: Wildfire, unadjusted for PM _{2.5} : 1.166 (0.643-2.115) Wildfire, adjusted for PM _{2.5} : 0.934 (0.422-20.66) Post-wildfire, unadjusted for PM _{2.5} : 0.911 (0.428-1.942) Post-wildfire, adjusted for PM _{2.5} : 0.997 (0.439-2.262)
			COPD, Ages 20-99: Wildfire, unadjusted for PM _{2.5} : 0.988 (0.875-1.115) Wildfire, adjusted for PM _{2.5} : 0.913 (0.779-1.069) Post-wildfire, unadjusted for PM _{2.5} : 1.043 (0.885-1.228) Post-wildfire, adjusted for PM _{2.5} : 1.064 (0.897-1.262)
			COPD, Ages 20-64: Wildfire, unadjusted for $PM_{2.5}$: 0.967 (0.779-1.201) Wildfire, adjusted for $PM_{2.5}$: 0.873 (0.660-1.156) Post-wildfire, unadjusted for $PM_{2.5}$: 1.175 (0.862-1.601) Post-wildfire, adjusted for $PM_{2.5}$: 1.311 (0.954-1.802)
			COPD, Ages 65-99: Wildfire, unadjusted for $PM_{2.5}$: 1.002 (0.869-1.156) Wildfire, adjusted for $PM_{2.5}$: 0.926 (0.767-1.117) Post-wildfire, unadjusted for $PM_{2.5}$: 0.985 (0.811-1.196) Post-wildfire, adjusted for $PM_{2.5}$: 0.981 (0.798-1.206)
			Pneumonia, All Ages: Wildfire, unadjusted for $PM_{2.5}$: 0.943 (0.868-1.025) Wildfire, adjusted for $PM_{2.5}$: 0.888 (0.799-0.986) Post-wildfire, unadjusted for $PM_{2.5}$: 1.294 (1.158-1.446) Post-wildfire, adjusted for $PM_{2.5}$: 1.318 (1.174-1.479)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Pneumonia, Ages 0-4: Wildfire, unadjusted for $PM_{2.5}$: 0.938 (0.705-1.247) Wildfire, adjusted for $PM_{2.5}$: 0.951 (0.678-1.333) Post-wildfire, unadjusted for $PM_{2.5}$: 1.458 (0.974-20182) Post-wildfire, adjusted for $PM_{2.5}$: 1.374 (0.885-2.133)
			Pneumonia, Ages 5-19: Wildfire, unadjusted for $PM_{2.5}$: 0.891 (0.604-1.312) Wildfire, adjusted for $PM_{2.5}$: 0.830 (0.541-1.272) Post-wildfire, unadjusted for $PM_{2.5}$: 0.960 (0.588-1.569) Post-wildfire, adjusted for $PM_{2.5}$: 0.969 (0.578-1.624)
			Pneumonia, Ages 20-64: Wildfire, unadjusted for PM _{2.5} : 0.927 (0.795-1.081) Wildfire, adjusted for PM _{2.5} : 0.837 (0.690-1.016) Post-wildfire, unadjusted for PM _{2.5} : 1.314 (1.064-1.622) Post-wildfire, adjusted for PM _{2.5} : 1.300 (1.047-1.615)
			Pneumonia, Ages 65-99: Wildfire, unadjusted for $PM_{2.5}$: 0.959 (0.861-1.068) Wildfire, adjusted for $PM_{2.5}$: 0.899 (1.782-1.033) Post-wildfire, unadjusted for $PM_{2.5}$: 1.277 (1.102-1.481) Post-wildfire, adjusted for $PM_{2.5}$: 1.331 (1.142-1.552)
Reference: Dominici et al. (2006, 088398)	Outcome (ICD-9: Daily counts of hospital admissions for primary	Pollutant: PM _{2.5} Averaging Time: 24 h	PM Increment: 10 μg/m³ (Results in figures see notes)
Period of Study: 1999-2002 Location: 204 U.S. counties, located in Alabama, Alaska, Arizana, Arkanasa	diagnosis of chronic obstructive pulmonary disease (490-492), and respiratory tract infections (464-466, 480-487).	Mean (µg/m³) (IQR): 13.4 (11.3-15.2) Monitoring Stations: NR	Percent increase in risk [95% PI]: COPD (Lag 0): Age 65 +: 0.91 [0.18, 1.64]
in: Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, District of Columbia, Florida,	Age Groups: >65 yr	Copollutant (correlation): NR	Age 65-74: 0.42 [-0.64, 1.48] Age 75+: 1.47 [0.54, 2.40]
Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana,	Study Design: Time series	Other variables: Median of pairwise	Respiratory tract infection: Age 65+:
Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi,	N: 11.5 million Medicare enrollees	correlations among PM _{2.5} monitors within the same county for 2000: r =	0.92 [0.41, 1.43]
Missouri, Nevada, New Hampshire, New Jersey, New Mexico, New York,	Statistical Analyses: Bayesian 2-stage hierarchical models.	0.91 (IQR: 0.81-0.95)	Age 65-74: 0.93 [0.04, 1.82] Age 75+: 0.92 [0.32, 1.53]
North Carolina, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas, Utah, Virginia, Washington, West Virginia, Wisconsin	First stage: Poisson regression (county-specific)		Annual reduction in admissions attributable to a 10 μg/m³ reduction in
	Second stage: Bayesian hierarchical models, to produce a national avg estimate		daily PM _{2.5} level (95% PI): Cerebrovascular disease: Annual number of admissions: 226,641
	Covariates: Day of the week, seasonality, temperature, dew point		Annual reduction in admissions: 1836 [680, 2992]
	temperature, long-term trends		COPD: Annual number of admissions: 108,812
	Season: NR Dose-response Investigated: No		Annual reduction in admissions: 990 [196, 1785]
	Statistical Package: R statistical software version 2.2.0		Respiratory tract infections: Annual number of admissions: 226,620
	Lags Considered: 0-2 days, avg of days 0-2		Annual reduction in admissions: 2085 [929, 3241]

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Dominici et al. (2006,	Outcome (ICD-9): Respiratory tract	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
088398) Period of Study: 1999-2002	infections (464-466, 480-487) and Chronic Obstructive Pulmonary Disease (490-492)	Averaging Time: Daily or every 3 days (depending on county)	Percentage Change in Hospital Admission Rates [PI]:
Location: U.S. (mainland)	Age Groups: All >65 yr	Mean: 13.4 (IQR: 11.3-15.2)	COPD-Same day
	65-74 yr >75 yr	Monitoring Stations: NR (used data	All >65: 0.91 [0.18,1.64]
	Study Design: Time series	from Air Quality System database)	65-74 yr: 0.42 [-0.64,1.48]
	N: 11.5 million at-risk	Copollutant: NR	>75: 1.47 [0.54,2.40]
	Statistical Analyses: Bayesian 2-stage		Respiratory Tract Infections-2-day lag
	hierarchical models (day-to-day variation), Poisson regression (county-		All >65: 0.92 [0.41,1.43]
	specific RRs)		65-74 yr: 0.93 [0.04,1.82]
	Covariates: Calendar time (seasonality		>75: 0.92 [0.32,1.53]
	and yr), temperature, dew point Season: NR		Notes: Other lag data shown in Fig 2-4
	Dose-response Investigated? No		
	Statistical Package: NR		
	Lags Considered: 0, 1, 2 days		
Reference: Erbas et al. (2005, <u>073849</u>)	Outcome (ICD):	Pollutant: PM0.1-1 (API)	PM Increment: Increase from the
Period of Study: Jul 1989-Dec 1992	COPD (490-492, 494, 496) Asthma (493)	Averaging Time: 24 h	10 th -90th percentile (value NR)
Location: Melbourne, Australia	Age Groups: NR	Mean (min-max): NR Monitoring Stations: 9 Copollutant (correlation): NR	RR Estimate [CI]:
	Study Design: Time series		COPD
	N: NR		GAM:
	Statistical Analyses: GLM, GAM,		0.95 [0.91,1.00]
	Parameter Driven Poisson Regression, Transitional Regression, Seasonal-		GLM, PDM, TRM: NR
	Trend decomposition based on Loess		Asthma
	smoothing for seasonal adjustment Covariates: Secular trends.		NR
	seasonality, relative humidity, dry bulb temp, dew point temp		Notes: This study was used to demonstrate that conclusions are highly dependent on the type of model used
	Season: NR		, ,,
	Dose-response Investigated? Yes		
	Statistical Package: S-Plus, SAS		
	Lags Considered: 0-5 days		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Fung et al. (2006, <u>089789</u>)	Hospital Admission/ED:	Pollutant: PM _{2.5}	PM Increment: : 4 μg/m ³
Period of Study: Jun 1995-Mar 1999	Hospital Admission	Averaging Time: 24-h avg	RR Estimate (65+ yr)
Location: Vancouver, Canada	Outcome: Respiratory diseases	Mean (SD): 7.72(3.61)	DM method:
	(460-519)	Range (Min, Max): (2, 32)	1.007[0.994, 1.020]
	Age Groups: Age >65	Monitoring Stations: NR	Current
	Study Design: Time series, case crossover	Copollutant (correlation):	1.007[0.990,1.023] 3 day
	N: 26,275 individuals admitted	PM _{2.5} :	0.995[0.979,1.012] 5 day
	Statistical Analyses: Poisson	$PM_{10} r = 0.80$	0.995[0.971,1.020] 7 day
	regression (spline 12 knots), case- crossover (controls +/7 days from case	$PM_{10-2.5}$ r = 0.34	Time series:
	date), Dewanji and Moolgavkar (DM)	CO r = 0.23	1.003[0.989, 1.018]
	method	CoH $r = 0.38$	Current
	Covariates: Long-term trends, day-of- the-week effect, weather	$O_3 r = -0.03$	1.000[0.982, 1.018] 3 day
	Season: All yr	$NO_2 r = 0.36$	0.993[0.972, 1.014] 5 day
	Dose-response Investigated? No	$SO_2 r = 0.42$	0.995[0.971, 1.020] 7 day
	Statistical Package: SPlus, R		Case-crossover:
	Lags Considered: 0-7 days		1.002[0.986, 1.019]
	,		Current
			1.001[0.981, 1.021] 3 day
			0.988[0.966, 1.011] 5 day
			0.984[0.959, 1.010] 7 day
Reference: Hinwood et al. (2006,	Hospital Admission	Pollutant: PM _{2.5}	Increment: 1 µg/m³
<u>088976</u>)	Outcome (ICD-9): COPD (490-496.99,	Averaging Time: 24-h avg	Notes: Odds ratio for PM _{2.5} and all
Period of Study: Jan 1992-Dec 1998	except asthma), pneumonia /influenza (480-489.99), asthma	Mean (SD): 9.2 (4.3)	respiratory, COPD, pneumonia and asthma. Authors found an elevation in
Location: Perth, Australia	Age Groups: All ages	Percentiles:	the odds ratio for lags 2 and 3
	Study Design: Time stratified case-	10th: 5.0	reaaching significance in all age grou for lag 3. For each increase of 1 μg/n
	crossover	90th: 14.5	the number of hospitalizations increases 0.2% for respiratory disease,
	N: NR	Monitoring Stations: 13	0.5% for pneumonia and 0.3% for asthna. PM _{2.5} concentrations were also
	Statistical Analyses: Conditional logistic regression	Notes: Copollutant: NR	significantly associated with asthma for those aged under 15 yr with an
	Covariates: Time trend, season, temperature, humidity, day of wk, holidays		estimated 0.5% increase in hospitalizations.
	Season: All yr		
	Dose-response Investigated? No		
	Statistical Package: NR		
	Lags Considered: 0-3 days		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Hirshon et al. (2008,	Outcome: Hospital admissions for	Pollutant: PM _{2.5} zinc	Increment: NR
180375)	asthma	Averaging Time: 24 h	Relative Risk (95% CI), Best fit Model
Period of Study: Jun 2002-Nov 2002	Study Design: Time-series Covariates: Spatial distance from	Mean (SD) Unit: 22.42 (25.14) μg/m ³	Medium = 8.63-20.76 ng/m ³ High = >20.76 ng/m ³
Location: Baltimore, Maryland	Covariates: Spatial distance from pollution monitor, demographic	Range (Min, Max): NR	No Lag Medium: 1.12 (0.98-1.28)
	variation, long term, seasonal and daily trends, weather and other pollutants	Copollutant (correlation):	High: 1.09 (0.91-1.30)
	Statistical Analysis: Overdispersed	Ni: 0.41	1-day Lag Medium: 1.23 (1.07-1.41)
	Poisson regression	Cr: 0.17	High: 1.16 (0.97-1.39) 2-day Lag
	Age Groups: 0-17 yr	Fe: 0.54	Medium: 1.11 (0.94-1.30) High: 1.15 (0.96-1.38)
		Sulfate: 0.01	Controlling for Time Trends
		CO: 0.40	No Lag
		PM _{2.5} : 0.39	Medium: 1.08 (0.95-1.23) High: 0.98 (0.86-1.11)
		O ₃ : 0.01	1-day Lag Medium: 1.13 (1.003-1.28)
		NO ₂ : 0.66	High: 1.03 (0.91-1.16) 2-day Lag
		EC: 0.48	Medium: 1.13 () High: 0.98-1.31
			Controlling for Time Trends and Additional Copollutants
			No Lag Medium: 1.12 (0.98-1.29) High: 1.09 (1.01-1.30) 1-day Lag Medium: 1.20 (1.04-1.38) High: 1.12 (0.93-1.35) 2-day Lag Medium: 1.12 (0.95-1.32) High: 1.19 (0.98-1.44)
Reference: Host et al. (2007, <u>155851</u>)	Outcome (ICD-10): Daily	Pollutant: PM _{2.5}	PM Increment: 10 µg/m³ increase, and
Period of Study: 2000-2003	hospitalizations for all respiratory diseases (J00-J99), respiratory	Averaging Time: 24 h	a 27 μg/m³ increase (corresponding to the difference between the lowest of th
Location: Six French cities: Le Havre, Lille, Marseille, Paris, Rouen, and	infections (J10-J22). Age Groups: For all respiratory	Mean (5th -95th percentile): Le Havre: 13.8 (6.0-30.5)	5th percentiles and the highest of the 95th percentiles of the cities' distributions)
Toulouse	diseases: 0-14 yr, 15-64 yr, and ≥ 65 yr.	Lille: 15.9 (6.9-26.3)	ERR (excess relative risk) Estimate [CI]:
	For respiratory infections: All ages	Marseille: 18.8 (8.0-33.0)	For all respiratory diseases (27 µg/m ³
	Study Design: Time series	Paris: 14.7 (6.5-28.8)	increase): 0-14 yr: 1.1% [-3.1, 5.5] 15-64 yr: 2.2% [-1.8, 6.4];
	N: NR (Total population of cities: approximately 10 million)	Rouen: 14.4 (7.5-28.0)	13-04 yr. 2.2 % [-1.0, 0.4], ≥ 65 yr: 1.3% [-5.3, 8.2]
	Statistical Analyses: Poisson	Toulouse: 13.8 (6.0-25.0)	For respiratory infections (10 µg/m ³
	regression	Monitoring Stations: 13 total: 1 in Toulouse 4 in Paris	increase): All ages: 2.5% [0.1, 4.8]
	Covariates: Seasons, days of the week, holidays, influenza epidemics,		For respiratory infections (27 µg/m ³ increase): All ages: 7.0% [0.7, 13.6]
	pollen counts, temperature, and temporal trends	2 each in other cities	iliciease). Ali ages. 7.0 /0 [0.7, 13.0]
	Season: NR	Copollutant (correlation):	
	Dose-response Investigated: No	PM _{10-2.5} : Overall: r > 0.6	
	Statistical Package: MGCV package in R software (R 2.1.1)	Ranged between $r = 0.28$ and $r = 0.73$ across the six cities.	
	Lags Considered: Avg of 0-1 days	1 - 0.75 doi 055 the 51x olues.	
	Eago Considered. Avg or 0-1 days		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ko et al. (2007, <u>091639</u>)	ED Visits	Pollutant: PM _{2.5}	PM Increment: PM ₁₀
Period of Study: Jan 2000-Dec 2004	Outcome (ICD-9): COPD: Chronic	Averaging Time: 24 h	RR Estimate
Location: Hong Kong, China	bronchitis (491), Emphysema (492), Chronic airway obstruction (496)	Mean (SD): 35.7 (20.6)	COPD: 1.002[0.998, 1.001] lag 0
	Age Groups: All ages	Percentiles:	1.003[0.999, 1.007] lag 1
	Study Design: Time series	25th: 19.4	1.011[1.007, 1.014] lag 2 1.013[1.010, 1.017] lag 3
	N: 15 hospitals, 119,225 admissions	50th(Median): 31.7	1.011[1.008, 1.015] lag 4 1.009[1.006, 1.013] lag 5
	Statistical Analyses: Poisson	75th: 46.7	1.004[0.999, 1.008]lag 0-1 1.010[1.006, 1.015]lag 0-2
	regression, GAM with stringent convergence criteria, APHEA2 protocol.	Range (Min, Max): (6.0, 163.2)	1.018[1.013, 1.022]lag 0-3
	Covariates: Time trend, season,	Monitoring Stations: 14	1.024[1.019, 1.029]lag 0-4 1.031[1.026, 1.036]lag 0-5
	temperature, humidity, other cyclical factors, day, day of wk, holidays	Copollutant (correlation): PM _{2.5} :	4-Pollutant model: 1.014[1.007, 1.022] lag 0-5
	Season: All yr, interactions with season tested	$PM_{10} r = 0.952$	3-Pollutant model: 1.011[1.004, 1.017] lag 0-5
	Dose-response Investigated? No	$NO_2 r = 0.441$	1.011[1.004, 1.017] lag 0-3
	Statistical Package: SPLUS 4.0	$O_3 r = 0.394$	
	Lags Considered: 0-5 days	SO ₂ r = 0.282	
Reference: Ko et al. (2007, <u>092844</u>)	Hospital Admission	Pollutant: PM _{2.5}	PM Increment: 10.0 μg/m ³
Period of Study: Jan 2000-Dec 2005	Outcome (ICD-9): Asthma (493)	Averaging Time: 24 h	RR Estimate
Location: Hong Kong, China	Age Groups: All, 0-14, 15-56, 65+	Mean (SD): 36.4 (21.1)	Asthma (Single-pollutant model):
Essection: Floring Rolling, Offinia	Study Design: Time series	Percentiles:	1.008[1.004, 1.013] lag 0 1.004[1.000, 1.009] lag 1
	N: 69,716 admissions, 15 hospitals	25th: 20.0	1.004[1.000, 1.009] lag 2 1.009[1.005, 1.014] lag 3
	Statistical Analyses: Poisson	50th(Median): 32.5	1.006[1.001, 1.011] lag 4
	regression, with GAM with stringent convergence criteria.	75th: 47.7	1.002[0.998, 1.007] lag 5 1.009[1.004, 1.014] lag 0-1 1.012[1.007, 1.018] lag 0-2
	Covariates: Time trend, season,	Range (Min, Max): (6, 163)	1.017[1.011, 1.022] lag 0-3
	temperature, humidity, other cyclical factors	Monitoring Stations: 14	1.020[1.014, 1.026] lag 0-4 1.021[1.015, 1.028] lag 0-5
	Season: All yr, evaluated effect of	Copollutant (correlation): PM _{2.5} :	Asthma in Age:
	season in analysis	PM_{10} r = 0.956	0-14: 1.024[1.013, 1.034] lag 0-5 14-65: 1.018[1.008, 1.029] lag 0-5
	Dose-response Investigated? No	NO_2 r = 0.774 O_3 r = 0.585	>65: 1.021[1.012, 1.030] lag 0-4
	Statistical Package: SPLUS 4.0	$SO_2 r = 0.482$	Asthma-Cold Season:
	Lags Considered: 0-5 days		1.139[1.043, 1.244] lag 0-5
Reference: Lee et al. (2006, <u>090176</u>)	Hospital Admission	Pollutant: PM _{2.5}	PM Increment: IQr = 20.6 μg/m ³
Period of Study: Jan 1997-Dec 2002	Outcome: Asthma (493)	Averaging Time: 24 h	Percent increase:
Location: Hong Kong, China	Age Groups: <18 yr	Mean (SD): 45.3 μg/m ³ , (16.2)	Single pollutant model:
	Study Design: Time series	Percentiles: 25th: 33.4	5.10 [2.95, 7.30], lag 0
	N: 26,663 asthma admissions for	50th(Median): 43.0	5.00 [2.88, 7.16], lag 1
	asthma and 5821 admissions for influenza	75th: 54.0	5.48 [2.75, 6.95], lag 2
	Statistical Analyses: Poisson	Range (Min, Max): NR	4.83 [2.78, 6.93], lag 3
	regression, GAM	Monitoring Stations: 10	6.59 [4.51, 8.72], lag 4
	Covariates: Temperature, atmospheric pressure, relative humidity	Copollutant (correlation):	5.24 [3.18, 7.34], lag 5
	Season: All	PM _{2.5} -PM ₁₀ : 0.89	Multipollutant model (SO ₂ , NO ₂ , CO, O ₃)
	Dose-response Investigated? No	PM _{2.5} -SO ₂ : 0.48	3.24 [0.93, 5.60], lag 4
	Statistical Package: SAS 8.02	PM _{2.5} -NO ₂ : 0.74	
	Lags Considered: 0-5	PM _{2.5} -O ₃ : 0.47	
	Notes: Controls were admissions for influenza ICD9 487		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Letz and Quinn (2005,	Emergency Dept Visits	Pollutant: PM _{2.5}	PM Increment: NR
088752)	Outcome (ICD-9): Asthma or reactive	Averaging Time: 24-h AQI	Correlation with Outcomes:
Period of Study: Oct 2001-Aug 2002	airway disease (493.0-493.9), wheezing (786.07), dyspnea (786.01-786.9),	AQI Range (min-max): (4-109)	Same-day
Location: San Antonio, Texas	shortness of breath (786.05), bronchitis (490-496), or cough (786.2)	Monitoring Stations: Data obtained	All visits: r = 0.082
	Age Groups: NR (basic air force	from the Texas Commission on Environmental Quality	Proven asthmatic events: r = -0.042
	trainees)	Copollutant (correlation): NR	3-day
	Study Design: Historic (retrospective) cohort		All visits: r = 0.097
	N: 149 ED visits		Proven asthmatic events: r = 0.011
	Statistical Analyses: Pearson correlation		
	Covariates: NR		
	Season: NR		
	Dose-response Investigated? No		
	Statistical Package: SPSS		
	Lags Considered: NR		
Reference: Lin et al. (2005, <u>087828</u>)	Hospital Admissions	Pollutant: PM _{2.5}	PM Increment: 7.8 μg/m ³
Period of Study: 1998-2001	Outcome (ICD-9): Respiratory	Averaging Time: 24 h	OR Estimate [CI]:
Location: Toronto, North York, East	and mindenza (101, 100, 100 101)	Mean (min-max):	Adjusted for weather
York, Etobicoke, Scarborough, and York (Canada)		9.59 (0.25-50.50)	4-day avg: 1.11 [1.02,1.22]
	Age Groups: 0-14 yr	SD = 7.06	6-day avg: 1.11 [1.00,1.24]
	Study Design: Bidirectional case- crossover	Monitoring Stations: 4	Adj for weather and other gaseous pollutants
	N: 6782 respiratory infection hospitalizations	Copollutant (correlation): PM _{10-2.5} : r = 0.33	4-day avg: 0.94 [0.81,1.08]
	Statistical Analyses: Conditional logistic regression (Cox proportional hazards model)	PM_{10} : r = 0.87	6-day avg: 0.90 [0.76,1.07]
		CO: r = 0.10	Notes: OR's were also categorized into "Boys" and "Girls," yielding similar
	Covariates: Daily mean temp and dew	SO ₂ : r = 0.47	results
	point temp	NO_2 : $r = 0.48$	
	Season: NR	O ₃ : r = 0.56	
	Dose-response Investigated? No		
	Statistical Package: SAS 8.2 PHREG procedure		
	Lags Considered: 1- to 7-day avg		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Lin et al. (2002, <u>026067</u>)	Hospital Admissions	Pollutant: PM _{2.5}	PM Increment: 9.3 μg/m ³
Period of Study: Jan 1981-Dec 1993	Outcome (ICD-9): Asthma (493)	Averaging Time: 6 days (predicted	RR Estimate [CI]:
Location: Toronto	Age Groups: 6-12 yr	daily values)	Adj for weather and gaseous pollutants BCC 5-day avg: 0.94 [0.85,1.03]
	Study Design: Uni- and bi-directional	Mean (min-max):	BCC 6-day avg: 0.92 [0.83,1.02]
	case-crossover (UCC, BCC) and time- series (TS)	17.99 (1.22-89.59)	TS 5-day avg: 0.96 [0.90,1.02] TS 6-day avg: 0.94 [0.88,1.01]
	N: 7,319 asthma admissions	SD = 8.49	Boys-adj for weather UCC 1-day avg: 1.09 [1.04,1.15]
	Statistical Analyses: Conditional	Monitoring Stations: 1	UCC 2-day avg: 1.09 [1.02,1.16] BCC 1-day avg: 1.01 [0.97,1.06]
	logistic regression, GAM	Copollutant (correlation):	BCC 2-day avg: 0.99 [0.93,1.05]
	Covariates: Maximum and minimum temp, avg relative humidity	PM ₁₀ : r = 0.87	TS 1-day avg: 1.00 [0.97,1.04] TS 2-day avg: 0.98 [0.94,1.02]
	Season: Apr-Sep, Oct-Mar	PM _{10-2.5} : r = 0.44	Girls-adj for weather UCC 1-day avg: 1.06 [0.99,1.14]
	Dose-response Investigated? No	CO: r = 0.45	UCC 2-day avg: 1.11 [1.02,1.21] BCC 1-day avg: 0.99 [0.93,1.06]
	Statistical Package: NR	SO ₂ : r = 0.46	BCC 2-day avg: 1.02 [0.94,1.09]
	Lags Considered: 1- to 7-day avg	NO ₂ : r = 0.50	TS 1-day avg: 0.99 [0.95,1.04] TS 2-day avg: 1.00 [0.95,1.06]
		O ₃ : r = 0.21	Notes: The author also provides RR using UCC, BCC, and TS analysis for female and male groups for days 3-7, yielding similar results
Reference: Magas et al. (2007,	Hospital Admission/ED: Admissions	Pollutant: PM _{2.5}	Notes: Coefficient for PM _{2.5} was not
090714)	Outcome: Asthma 493.01-493.99	Averaging Time: 24-h avg	significant and thus not reported.
Period of Study: 2001-2003	Age Groups: <15 yr	Mean (SD): NR	
Location: Oklahoma City Metro area, Oklahoma and Cleveland counties	Study Design: Time series	Range (Min, Max): NR	
	N: 1,270 admissions	Monitoring Stations: 10	
	Statistical Analyses: Negative binomial regression	Copollutant (correlation): NR	
	Covariates: Temperature, humidity, pollen count, mold		
	Season: All		
	Dose-response Investigated? No		
	Statistical Package: NR		
	Lags Considered: 1		
Reference: Mohr et al. (2008, <u>180215</u>)	Outcome: Asthma ER Visits	Pollutant: PM _{2.5} EC	PM Increment: 0.1 µg/m ³
Period of Study: Jun 2001-May 2003	Age Groups: 2-17 yr	Averaging Time: 24 h	Relative Risk Effect (Lower Cl, Upper
Location: St. Louis, MO	Study Design: Time series	Std Dev: 0.1	CI): Weekend Exposure
	Statistical Analyses: GEE Poisson	Monitoring Stations: 1	Summer: 1.05 (1.00, 1.11) Fall: 0.99 (0.97, 1.01)
	models	Copollutant: NO _X , SO ₂ , O ₃	Winter: 0.96 (0.92, 1.00)
	Covariates: Season, weekend exposure, allergens	Co-pollutant Correlation	Spring: 0.96 (0.92, 1.00)
	Dose-response Investigated: No	NO _X : 0.68*	Weekday Exposure Summer: 1.01 (0.98, 1.03)
	Statistical Package: SAS	SO ₂ : 0.09 O ₃ : -0 06	Fall: 1.00 (0.99, 1.01)
	Lags Considered: 1 day	*p≤0.05	Winter: 0.99 (0.96, 1.01) Spring: 0.98 (0.96, 1.01)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Neuberger et al. (2004,	Hospital Admissions	Pollutant: PM _{2.5}	PM Increment: 10 µg/m ³
<u>093249</u>)	Outcome (ICD-9): Bronchitis,	Averaging Time: 24 h	Log Relative Rate Estimate (p-value):
Period of Study: 1999-2000 (1-yr period)	emphysema, asthma, bronchiectasis, extrinsic allergic alveolitis, and chronic	Maximum daily mean:	Vienna
Location: Vienna and Lower Austria	airway obstruction (490-496)	Vienna: 96.4	Male: 2-day lag = 5.467 (0.019) Female: 3-day lag = 5.596 (0.009)
	Age Groups: 3.0-5.9 yr 7-10 yr	Rural area: 48.0	Rural
	65+ yr	Monitoring Stations: NR	Male: 10-day lag = 9.893 (0.012) Female: 11-day lag = 10.529 (0.011)
	Study Design: Time series	Copollutant (correlation): NR	Association with tidal lung functioN:
	N: 366 days (admissions NR)		β = -0.987 (p-value = 0.091)
	Statistical Analyses: GAM		Notes: Effect parameters with significant coefficients for respiratory
	Covariates: SO ₂ , NO, NO ₂ , O ₃ , temperature, humidity, and day of the week		health included: male sex, allergy, asthma in family, and traffic for Vienna and age, allergy, asthma in family,
	Season: NR		passive smoking, and PM fraction for the rural area. Effect parameters with
	Dose-response Investigated? Yes		significant coefficients for log asthma
	Statistical Package: S-Plus 2000		score were allergy, asthma in family, and rain for Vienna and allergy, asthma in family, and passive smoking for the rural area. Cross-correlation coefficient are provided in Fig 1.
	Lags Considered: 0-14 days		
Reference: Ostro et al. (2008, <u>097971</u>)	Outcome: Respiratory disease	Pollutant: PM _{2.5} and components	Increment: NR
Period of Study: 2000-2003	(ICD-9 460-519)	Averaging Time: 24 h	Relative Risk (Min CI, Max CI)
Location: Six California Counties	Study Design: Time-Series Statistical Analysis: Poisson Regression	Mean (SD) Unit: 19.4 μg/m³ Lag	Lag
		IQR: 14.6 μg/m ³	Full results are presented graphically in
	Statistical Package: R	Copollutants:	figures 1 and 2.
	Age Groups: Children <19 yr	EC, OC, NO ₂ , SO ₄ , Cu, Fe, K, Si, Zn	Excess risks for all-yr respiratory hospital admissions in children <19yrs, 3-day lag
			PM _{2.5} : 4.1% (1.8-6.4) EC: 5.4% (0.8-10.3) Fe: 4.7% (2.2-7.2) OC: 3.4% (1.1-5.7) Nitrates: 3.3% (1.1-5.5) Sulfates: 3.0% (0.4-5.7)
			Excess risks for cool season (Oct-Mar) respiratory hospital admissions in children <19yrs, 3 day lag
			PM _{2.5} : 5.1% (1.6-8.9) EC: 6.8% (-0.2-14.2) Fe: 4.8% (1.7-8.0) K: 4.0% (0.3-7.7)

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Slaughter et al. (2005,	Hospital Admissions and ED visits	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
<u>73854</u>)	Outcome: All respiratory (460-519)	Averaging Time: 24-h avg	RR Estimate [Lower CI, Upper CI]
Period of Study: Jan 1995-Jun 2001	Asthma (493) COPD (491,492, 494,496)	Range (90% of Concentrations):	lag: ER visits:
Location: Spokane, WA	Pneumonia (480-487)	4.2-20.2 μg/m ³	PM _{2.5}
	Acute URI not including colds and sinusitis (464, 466, 490)	Monitoring Stations:	All Respiratory Lag 1: 1.01 [0.98, 1.04]
	Age Groups: All, 15+ yr for COPD	One	Lag 2: 1.02 [0.99, 1.04]
	Study Design: Time series	Notes: Copollutant (correlation):	Lag 3: 1.02 [0.99, 1.05] Acute Asthma
	N: 2373 visit records	PM _{2.5}	Lag 1: 1.03 [0.98, 1.09] Lag 2: 1.00 [0.95, 1.05]
	Statistical Analyses: Poisson	PM1 r = 0.95	Lag 3: 1.01 [0.96, 1.06]
	regression, GLM with natural splines.	$PM_{10} r = 0.62$	COPD (adult) Lag 1: 0.96 [0.89, 1.04]
	For comparison also used GAM with smoothing splines and default	PM _{10-2.5} r = 0.31	Lag 2: 1.01 [0.93, 1.09] Lag 3: 1.00 [0.93, 1.08]
	convergence criteria.	CO r = 0.62	Hospital Admissions:
	Covariates: Season, temperature,	Temperature r = 0.21	PM _{2.5} All Respiratory
	relative humidity, day of week	Tomporatare 1 0.21	Lag 1: 0.98 [0.94, 1.01]
	Season: All		Lag 2: 0.99 [0.96, 1.03] Lag 3: 1.01 [0.98, 1.05]
	Dose-response Investigated?: No		Asthma Lag 1: 1.01 [0.91, 1.11]
	Statistical Package: SAS, SPLUS		Lag 2: 1.03 [0.94, 1.13]
	Lags Considered: 1 -3 days		Lag 3: 1.02 [0.93, 1.13] COPD (adult)
			Lag 1: 0.99 [0.91, 1.08] Lag 2: 1.06 [0.98, 1.16]
			Lag 3: 1.03 [0.94, 1.12]
Reference: Tecer et al. (2008, <u>180030</u>)	Outcome: ED visits for respiratory problems (ICD-9 470-478, 493)	Pollutant: PM _{2.5}	Increment: 10 µg/m ³
Period of Study: Dec 2004-Oct 2005	Study Design: Bidirectional Case- crossover	Averaging Time: NR	Odds Ratio (95% CI)
ocation: Zonguldak, Turkey		Mean, Unit: 29.1 μg/m ³	Asthma Lag 0: 1.15 (0.99-1.34)
	Covariates: Daily meteorological	Range (Min, Max): 4.55, 95.65	Lag 1: 0.85 (0.70-1.03)
	parameters	Copollutant (correlation):	Lag 2: 0.87 (0.73-1.04) Lag 3: 0.93 (0.79-1.10)
	Statistical Analysis: Conditional	PM _{2.5} /PM ₁₀	Lag 4: 1.25 (1.05-1.50) Allergic Rhinitis with Asthma
	logistic regression	Mean: 0.56	Lag 0: 1.21 (1.10-1.33)
	Statistical Package: Stata	Range: 0.17-0.88	Lag 1: 0.84 (0.75-0.93) Lag 2: 0.89 (0.81-0.98)
	Age Groups: 0-14 yr	PM _{2.5} /PM _{10-2.5}	Lag 3: 0.99 (0.90-1.09) Lag 4: 1.06 (0.95-1.19)
		Mean: 1.49	Allergic Rhinitis
			Lag 0: 1.08 (0.98-1.20) Lag 1: 1.03 (0.93-1.13)
		Range: 0.21-7.53	Lag 2: 0.89 (0.80-0.99)
			Lag 3: 0.98 (0.89-1.09) Lag 4: 1.18 (1.00-1.24)
			Upper Respiratory Disease Lag 0: 0.99 (0.49-2.00)
			Lag 1: 0.52 (0.22-1.20)
			Lag 2: 1.29 (0.75-2.22) Lag 3: 1.29 (0.69-2.43)
			Lag 4: 1.47 (0.87-2.50) Lower Respiratory Disease
			Lag 0: 1.06 (0.78-1.44)
			Lag 1: 0.85 (0.59-1.22) Lag 2: 1.08 (0.72-1.61)
			Lag 3: 1.18 (0.92-1.52)
Reference: Tolbert et al. (2007,	Outcome (ICD-9):	Pollutant: PM ₂₅	Lag 4: 0.72 (0.54-0.96)h PM Increment:
190316)	Combined RD group, including:	Averaging Time: 24 h	PM _{2.5} : 10.96 μg/m ³ (IQR)
Period of Study: Aug 1998-Dec 2004	• •		
ocation: Atlanta Metropolitan area,	Asthma (493, 786.07, 786.09), COPD (491, 492, 496), URI (460-465, 460.0,	Mean (median IQR, range, 10th-90th percentiles):	PM _{2.5} sulfate: 3.82 µg/m ³ (IQR)
Georgia	477), pneumonia (480-486), and bronchiolitis (466.1, 466.11, and	PM _{2.5} : 17.1 (15.6	PM _{2.5} total carbon: 3.63 μ g/m ³ (IQR)
	466.19))	11.0-21.9 0.8-65.8	PM _{2.5} OC: 2.61 μg/m ³ (IQR)
	Age Groups: All	7.9-28.8) PM _{2.5} sulfate: 4.9 (3.9	PM _{2.5} EC: 1.15 μg/m ³ (IQR)
		2.4-6.2	PM _{2.5} water-soluble metals: 0.03 µg/n

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	Study Design: Time series	0.5-21.9 1.7-9.5)	(IQR)
	N : NR for 1998-2004.	PM _{2.5} ÓC: 4.4 (3.8	Risk ratio [95% CI] (single pollutant models):
	For 1993-2004: 10,234,490 ER visits	2.7-5.3 0.4-25.9	PM _{2.5} :
	(283,360 and 1,072,429 visits included in the CVD and RD groups,	2.1-7.2) PM _{2.5} EC: 1.6 (1.3	
	respectively)	0.9-2.0	RD: 1.005 [0.995-1.015]
	Statistical Analyses: Poisson	0.1-11.9 0.6-3.0)	PM _{2.5} sulfate:
	generalized linear models	PM _{2.5} water-soluble metals: 0.030 (0.023	RD: 1.007 [0.996-1.018]
	Covariates: Long-term temporal trends, season (for RD outcome),	0.014-0.039 0.003-0.202	PM _{2.5} total carbon:
	temperature, dew point, days of week, federal holidays, hospital entry and exit	0.009-0.059)	RD: 1.001 [0.993-1.008]
	Season: All	Monitoring Stations: 1	PM _{2.5} OC:
	Dose-response Investigated: No	Copollutant (correlation): Between PM _{2.5} and:	RD: 1.003 [0.995-1.011]
	Statistical Package: SAS version 9.1	PM_{10} : r = 0.84 O_3 : r = 0.62	PM _{2.5} EC:
	Lags Considered: 3-day ma(lag 0 -2)	NO_2 : r = 0.47	RD: 0.996 [0.989-1.004]
	Lags considered. 5-day ma(lag 6-2)	CO: r = 0.47 SO ₂ : r = 0.17	PM _{2.5} water-soluble metals:
		PM _{10-2.5} : r = 0.47; PM _{2.5} SO ₄ : r = 0.76;	RD: 1.005 [0.995-1.015]
		$PM_{2.5}$ EC: r = 0.65;	
		PM _{2.5} OC: r = 0.70; PM _{2.5} TC: r = 0.71;	
		PM _{2.5} water-sol metals: r = 0.69	
		OHC: r = 0.50	
		Between $PM_{2.5} SO_4$ and: PM_{10} : $r = 0.69$ O_3 : $r = 0.56$	
		NO_2 : $r = 0.14$	
		CO: r = 0.14 SO ₂ : r = 0.09	
		PM _{10-2.5} : r = 0.32; PM _{2.5} : r = 0.76;	
		$PM_{2.5}$ EC: r = 0.32;	
		PM _{2.5} OC: r = 0.33; PM _{2.5} TC: r = 0.34;	
		PM _{2.5} water-sol metals: r = 0.65	
		OHC: r = 0.47	
		Between PM _{2.5} EC and: PM ₁₀ : $r = 0.61$ O ₃ : $r = 0.40$	
		NO ₂ : r = 0.64 CO: r = 0.66	
		SO ₂ : r = 0.22	
		PM _{10-2.5} : r = 0.49 PM _{2.5} : r = 0.65	
		PM _{2.5} SO ₄ : r = 0.32 PM _{2.5} OC: r = 0.82	
		$PM_{2.5}$ TC: r = 0.91	
		PM _{2.5} water soluble metals: r = 0.52 OHC: r = 0.35	
		Between PM _{2.5} OC and: PM ₁₀ : $r = 0.65$ O ₃ : $r = 0.54$	
		NO_2 : r = 0.62	
		CO: r = 0.59 SO ₂ : r = 0.17	
		$PM_{10-2.5}$: r = 0.49	
		PM _{2.5} : r = 0.70 PM _{2.5} SO ₄ : r = 0.33	
		PM _{2.5} EC: r = 0.82 PM _{2.5} TC: r = 0.98	
		PM _{2.5} water-sol metals:	
		r = 0.49 OHC: r = 0.37	
		Between PM _{2.5} total carbon and: PM ₁₀ : r = 0.67	
		O_3 : $r = 0.52$	
		NO ₂ : r = 0.65 CO: r = 0.63	
		SO_2 : r = 0.19	
		PM _{10-2.5} : r = 0.51 PM _{2.5} : r = 0.71	

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
		$\begin{array}{l} PM_{2.5} SO_4; r=0.34 \\ PM_{2.5} EC; r=0.91 \\ PM_{2.5} OC; r=0.98 \\ PM_{2.5} water-sol metals; \\ r=0.52 \\ OHC; r=0.38 \\ Between PM_{2.5} water-soluble metals \\ and; PM_{10}; r=0.73 \\ O_3; r=0.43 \\ NO_2; r=0.32 \\ CO; r=0.35 \\ SO_2; r=0.36 \\ PM_{10:2.5}; r=0.60 \\ PM_{10:2.5}; r=0.60 \\ PM_{2.5} SO_4; r=0.65 \\ PM_{2.5} EC; r=0.52 \\ PM_{2.5} CC; r=0.52 \\ PM_{2.5} CC; r=0.49 \\ PM_{2.5} TC; r=0.52 \\ \end{array}$	
Reference: Wong et al. (2006, <u>093266</u>)	General Practitioner Visits	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: 2000-2002	Outcome (ICPC-2): Respiratory	Averaging Time: 24 h	RR Estimate [CI]:
Location: Hong Kong (8 districts)	diseases/symptoms: upper respiratory tract infections (URTI), lower respiratory	Mean (min-max):	Overall URTI
	infections, influenza, asthma, COPD, allergic rhinitis, cough, and other	35.7 (9-120)	1.021 [1.010,1.032]
	respiratory diseases	SD = 16.7	Notes: RRs are also reported for each
	Age Groups: All ages	Monitoring Stations: 1 per district	individual general practitioner yielding similar results
	Study Design: Time series	Copollutant (correlation):	
	N : 269,579 visits	PM_{10} : $r = 0.94$	
	Statistical Analyses: GAM, Poisson regression		
	Covariates: Season, day of the week, climate		
	Season: NR		
	Dose-response Investigated? No		
	Statistical Package: S-Plus		
	Lags Considered: 0-3 days		
Reference: Yang Q et al. (2004, 087488)	Hospital Admissions	Pollutant: PM _{2.5}	PM Increment: 4.0 µg/m³ (IQR)
Period of Study: Jun 1995-Mar 1999	Outcome (ICD-9): Respiratory diseases (460-519), pneumonia only	Averaging Time: 24 h	OR Estimate [CI]:
Location: Vancouver area, British	(480-486), asthma only (493)	Mean (min-max):	Values NR
Columbia	Age Groups: 0-3 yr	7.7 (2.0-32.0)	Notes: Author states that no significant association was found between PM _{2.5}
	Study Design: Case control,	SD = 3.7	and respiratory disease hospitalizat
	bidirectional case-crossover (BCC), and time series (TS)	Monitoring Stations: NR (data obtained from Greater Vancouver	
	N : 1610 cases	Regional District Air Quality Dept)	
	Statistical Analyses: Chi-square test, Logistic regression, GAM (time-series),	Copollutant (correlation):	
	GLM with parametric natural cubic splines	PM_{10} : r = 0.83 $PM_{10-2.5}$: r = 0.39	
	Covariates: Gender, socioeconomic	CO: r = 0.24	
	status, weekday, season, study yr, influenza epidemic month	O ₃ : r = -0.03	
	Season: Spring, summer, fall, winter	NO ₂ : r = 0.37	
	Dose-response Investigated? No	SO ₂ : r = 0.43	
	Statistical Package: SAS (Case		
	control and BCC), S-Plus (TS)		

Reference	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Zanobetti and Schwartz	Hospital Admission/ED:	Pollutant: PM non-traffic	PM Increment: PM non-traffic lag 0:
(2006, <u>090195</u>) Period of Study: 1995-1999	Outcome: Pneumonia (480-487)	Averaging Time: 24 h	13.44 μg/m³ PM non-traffic lag 0-1 avg: 10.28 μg/m³ % change in Pneumonia:
	Age Groups: >65 y	Percentiles (pneumonia cohort): 5th: -7.3	
Location: Boston, MA	Study Design: Case-crossover, time stratified	25th: -3.28 μg/m ³	PM non-traffic -0.57 [-7.51, 6.36]
	N: 24,857 for Pneumonia	50th(Median): -0.88	lag 0
	Statistical Analyses: Condition logistic	75th: 1.92	PM non-traffic -0.94 [-7.20, 5.32]
	regression	95th: 12.11	mean lag 1
	Covariates: Season, long term trend, day of-the-wk, mean temperature,	PM Component: BC	v
	relative humidity, barometric pressure, extinction coefficient	Monitoring Stations: 4-5 monitors	
	Season: All yr	Copollutant (correlation):	
	Dose-response Investigated? No	PM non-traffic: PM _{2.5} r = 0.74	
	Statistical Package: SAS	CO r = -0.01 NO ₂ r = 0.14	
	Lags Considered: 0-1	O ₃ r = -0.47 BC r = -0.01	
	Notes: Also looked at MI cohort	DC 1 = -0.01	
Reference: Zhong et al. (2006,	Hospital Admissions	Pollutant: PM _{2.5}	PM Increment: NR
093264)	Outcome (ICD-9): Asthma (493-	Averaging Time: 24 h	RR Estimate [CI]:
Period of Study: Apr-Oct 2002	493.91)	Mean (SD): Apr: 12.4 (3.8)	NR
Location: Cincinnati, Ohio	Age Groups: 1-18 yr	May: 13.6 (5.8) Jun: 21.6 (9.9) Jul: 25.8 (11.9) Aug: 20.3 (8.7) Sep: 19.5 (11.1)	Notes: This study focused primarily or aeroallergens and asthma visits
	Study Design: Time series		
	N: 1254 admissions		
	Statistical Analyses: Poisson multiple regression, GAM	Oct: 12.8 (6.4)	
	Covariates: Season, temperature, humidity, O ₃ , day of the week	Monitoring Stations: NR (data obtained from the National Virtual Data System)	
	Season: NR	Copollutant (correlation): NR	
	Dose-response Investigated? Yes	Notes: Author states all pairwise	
	Statistical Package: NR	correlations were insignificant	
	Lags Considered: 1-5 days		
Reference: Zanobetti and Schwartz	Outcome: Pneumonia (480-487)	Pollutant: PM _{2.5}	PM Increment: PM _{2.5} lag 0:
2006, <u>090195</u>)	Age Groups: >65 y	Averaging Time: 24 h	17.17 μg/m³
Period of Study: 1995-1999	Study Design: Case-crossover, time	Percentiles (pneumonia cohort):	PM _{2.5} lag 0-1 avg: 16.32 μg/m ³
Location: Boston, MA	stratified	25th: 7.23 μg/m ³	% change in Pneumonia:
	N: 24,857 for Pneumonia	50th(Median): 11.10	6.48[1.13, 11.43]
	Statistical Analyses: Condition logistic regression	75th: 16.14	lag 0
	Covariates: Season, long term trend, day of-the-wk, mean temperature,	PM Component: Black Carbon (BC), PM non-traffic	5.56[-0.45, 11.27] mean lag 1
	relative humidity, barometric pressure, extinction coefficient	Monitoring Stations: 4-5 monitors	
	Season: All yr	Copollutant (correlation):	
	Dose-response Investigated? No	PM _{2.5} : CO r = 0.52	
	Statistical Package: SAS	$NO_2 r = 0.55$ $O_3 r = 0.20$	
	Lags Considered: 0-1	BC r = 0.66 PM non-traffic r = 0.74	
	Notes: Also looked at MI cohort		
	Hotes. Also looked at Mil Colloit		

 $^{^1\!\}text{All}$ units expressed in $\mu\text{g/m}^3$ unless otherwise specified.

 Table E-15.
 Short-term exposure-respiratory-ED/HA-Other Size Fractions.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Andersen et al. (2007, 093201)	Outcome (ICD10): Respiratory disease (J41-46) Asthma (J45, 46)	Pollutant: Number concentration (NC) of ultrafine & accumulation mode particles	PM Increment: Based on the IQR, specific to metric (see below).
Period of Study: 2001-2004	Age Groups: 5-18 and >65	Averaging Time: 24 h	RR Estimate:
Location: Copenhagen, Denmark	Study Design: Time-series	Mean particles/cm3 (SD):	Single pollutant results, Asthma, (5-18 yr), lag 0-5:
	N: 1327 days ~1.5 million people at-risk	NCtot (total): 8116 (3502) 25th: 4959 50th: 6243	PM _{2.5} : 1.15 [1, 1.32], IQr = 5 NCtot: 1.07 [0.98, 1.17], IQr = 3907 NC100: 1.06 [0.97, 1.16], IQr = 3259
	Statistical Analyses: Poisson regression, GAM.	75th: 8218 99th: 16189 IQR: 3259	NCa12: 1.08 [0.99,1.18], IQr = 342 NCa212: 1.08 [1, 1.17], IQr = 495 NCa23: 1.09 [0.98,1.21], IQr = 1786
	Covariates: Influenza epidemics, pollen, temperature, dew point, day-of-week, holiday, season.	NC100 (<100 nm): 6847 (2864) 25th: 5738 50th (Median): 7358 75th: 9645	NCa57: 1.02 [0.94,1.12], IQr = 3026 2-pollutant results: NCa212 w/ PM ₁₀ : 1.1 [0.96, 1.13], IQr = 495
	Season: All	99th: 19895 IQR: 3907	NCtot w/ PM ₁₀ : 1.03 [0.92, 1.15] NCtot w/ PM _{2.5} : 1.04 [0.85, 1.28]
	Dose-response Investigated? No	Mean particles/cm³ for 4 size modes	All RD, (>65 yr), lag 0-4, single pollutant
	Statistical Package: R with gam and mgcv packages.	(median diameter (nm) noted): NCa12: 493(315) NCa23: 2253 (1364)	results: PM _{2.5} : 1 [0.95, 1.05] NCtot: 1.04 [1, 1.07] Qr = 3907
	Lags Considered: 0-5	NCa57: 5104 (2687) NCa212: 6847 (2864)	NC100: 1.03 [0.99, 1.07], IQr = 3259 NC12: 1.01 [0.98, 1.05], IQr = 342
		Monitoring Stations: 3 (Background, rural Background, urban Curbside, urban)	NC212: 1.04 [1.01, 1.08], IQr = 495 NCa23: 0.99 [0.94, 1.03], IQr = 1786 NCa57: 1.04 [1, 1.08], IQr = 3026
		Notes: NC exposure data available for n = 578 days. Information on distribution of 4 size modes provided in the paper.	2-pollutant results: NCa212 w/ PM ₁₀ : 1.01 [0.96, 1.07], IQr = 495 NCtot w/ PM _{2.5} : 0.97 [0.89, 1.05] NCtot w/ PM ₁₀ : 1 [0.96, 1.05]
		Copollutant (correlation): NCtot and PM_{10} : $r = 0.39$ NCtot and $PM_{2.5}$: $r = 0.40$ NCtot and NO_2 : $r = 0.68$ PM_{10} and $PM_{2.5}$: $r = 0.8$ "Low or no" correlations between 4 size modes NCa212 and $PM_{2.5}$: $r = 0.8$ NCa212 and $PM_{0.5}$: $r = 0.63$ NCa57 and NO ₂ : $r = 0.63$	Notes: Multipollutant model results also included for models with 4 size modes.
		Notes: selected correlations reported in text, all correlations in annex to the manuscript	
Reference: Agarwal et al. (2006,	Outcome (ICD-NR): COPD, asthma,	Pollutant: SPM (Suspended PM)	PM Increment: NR
099086)	emphysema	Averaging Time: 8 h	RR Estimate [CI]: NR
Period of Study: 2000-2003	Age Groups: NR	Mean μg/m³ (SD):	Notes: This study analyzed seasonal variation of pollutants and health
Location: Safdarjung area of Delhi	Study Design: Time series	Qtr I: 297.5 (34.6)	outcomes and correlations among the
	N: NR	Qtr II: 398.0 (85.6)	variables
	Statistical Analyses: Kruskal-Wallis one-way analysis, Chi-square,	Qtr III: 220.0 (78.0)	
	Multivariate linear regression	Qtr IV: 399.0 (54.6)	
	Covariates: Temp (min & max), relative humidity at 0830 and 1730 h, wind	Monitoring Stations: 2	
	speed Season: I (Jan-Mar), II (Apr-Jun), III	Copollutant (correlation): RSPM: r = 0.771	
	(Jul-Sep), IV (Oct-Dec)	Other variables:	
	Dose-response Investigated? Yes	RH0830: r = -0.482	
	Statistical Package: SPSS	RH1730: r = -0.531	
	Lags Considered: NR	COPD: r = 0.474	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Agarwal et al. (2006,	Outcome (ICD-NR): COPD, asthma,	Pollutant: RSPM (Respirable	PM Increment: NR
099086)	emphysema	Suspended PM <10 µm)	RR Estimate [CI]: NR
Period of Study: 2000-2003	Age Groups: NR	Averaging Time: 8 h	Notes: This study analyzed seasonal
Location: Safdarjung area of Delhi	Study Design: Time series	Mean μg/m³ (SD):	variation of pollutants and health outcomes and correlations among the
	N: NR	Qtr I: 119.0 (19.8)	variables
	one-way analysis. Chi-square.	Qtr II: 132.0 (28.4)	
	Multivariate linear regression	Qtr III: 75.0 (23.4)	
	Covariates: Temp (min & max), relative humidity at 0830 and 1730 h, wind	Qtr IV: 168.0 (40.6)	
	speed	Monitoring Stations: 2	
	Season: I (Jan-Mar), II (Apr-Jun), III (Jul-Sep), IV (Oct-Dec)	copollutant (correlation): SPM: r = 0.771	
	Dose-response Investigated? Yes	Other variables:	
	Statistical Package: SPSS	Temp (min): r = -0.420	
	Lags Considered: NR	COPD: r = 0.353	
Reference: Arbex et al. (2007, <u>091637</u>)	Hospital Admission	Pollutant: TSP	PM Increment: 10 µg/m ³
Period of Study: Mar 2003-Jul 2004	Outcome (ICD10): Asthma (J15, J45)	Averaging Time: 24 h	% Increase
Location: Araraquara, Sao Paulo State,	Age Groups: All	Mean (SD): 46.8 μg/m³ (24.4)	6.96 [1.4-12.86] 2-day ma 9.090 [3.12-15.40] 3 day ma
Brazil	Study Design: Time-series	Range (Min, Max):	10.28 [4.05-16.90] 4-day ma
	N: 493 days, 1 hospital, 640 admissions	6.7-137.8 μg/m ³	11.63 [5.46-19.318] 5 day ma 12.61 [5.68-20.00] 6-day ma
	Statistical Analyses: Generalized	Monitoring Stations: 1	12.56 [5.47-20.13] 7-day ma
	linear Poisson regression model with natural cubic spline, Mann-Whitney U Test	Notes: TSP used as a proxy for fine & ultrafine particles since it is composed	% Increase by TSP quintile: 9.25-28.45 μg/m³:: 1.00 28.46-48.85 μg/m³:: 1.55 [045-5.77]
	Covariates: Temperature and humidity	of 85-95% PM _{2.5} .	48.86-69.06 μg/m³: : 2.46 [1.08-5.60] 69.07-88.44 μg/m³: : 2.77 [1.32-5.84]
	Season: All	Copollutant (correlation): NR	88.45-108.9 μg/m ³ : : 2.94 [1.48-5.85]
	Dose-response Investigated? Yes, quintile analysis		Notes: No TSP threshold for asthma admissions noted. Analysis of lag structure indicated that the acute effect
	Statistical Package: SPSS V.11 & Splus 4.5		of TSP on admissions started 1 day after TSP concentration increase and remained unchanged for next 4 days.
	Lags Considered: 0-9		Notes: To evaluate the association
	·		between TSP generated from burning sugar cane and asthma hospital admissions.
Reference: Bartzokas et al. (2004,	Outcome: Respiratory and	Pollutant: PM4.5 (black smoke)	PM Increment: NR
093252)	cardiovascular diseases (combined)	Averaging Time: 10-day ma	Correlation with Number of
Period of Study: Jun 1992-May 2000	Age Groups: NR	Mean μg/m³ (SD): NR	Admissions:
Location: Athens, Greece	Study Design: Time series	Monitoring Stations: 1	Entire yr
	N: 1554 patients	Copollutant (correlation): N	Original: r = 0.18
	Statistical Analyses: Simple linear regression and linear stepwise		Smoothed: r = 0.31
	regression, Pearson correlation		Warm period
	Covariates: Temperature, atmospheric pressure, relative humidity, wind speed		Original: r = 0.19
	Season: Warm (May-Sep) and cold		Smoothed: r = 0.30
	(Nov-Mar)		Cold period
	Dose-response Investigated? No		Original: r = 0.18
	Statistical Package: NR		Smoothed: r = 0.34
	Lags Considered: NR		*All above values are statistically significant

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Erbas et al. (2005, <u>073849</u>)	Outcome (ICD): COPD (490-492, 494, 496) Asthma (493)	Pollutant: PM 0.1-1 (API)	PM Increment: Increase from the 10th
Period of Study: Jul 1989-Dec 1992		Averaging Time: 24 h	90th percentile (value NR)
Location: Melbourne, Australia	Age Groups: NR	Mean (min-max): NR	RR Estimate [CI]:
	Study Design: Time series	Monitoring Stations: 9	COPD
	N: NR	Copollutant (correlation): NR	GAM:
	Statistical Analyses: GLM, GAM,		0.95 [0.91,1.00]
	Parameter Driven Poisson Regression,		GLM, PDM, TRM: NR
	Transitional Regression, Seasonal- Trend decomposition based on Loess		Asthma
	smoothing for seasonal adjustment		NR
	Covariates: Secular trends, seasonality, relative humidity, dry bulb temp, dew point temp		Notes: This study was used to demonstrate that conclusions are highl dependent on the type of model used
	Season: NR		
	Dose-response Investigated? Yes		
	Statistical Package: S-Plus, SAS		
	Lags Considered: 0-5 days		
Reference: Halonen et al. (2008,	Outcome: Respiratory Hospitalizations	Pollutant: PM _{2.5}	PM Increment: Interquartile
<u>189507</u>)	& Mortality (ICD 10: J00-99)	Averaging Time: Daily	Percent Change (Lower CI, Upper
Period of Study: 1998-2004	Age Groups: 65+ yr	Mean (SD): NR	CI): All Respiratory Mortality
Location: Helsinki, Finland	Study Design: Time series	Min: 1.1	Lag 0: 2.67 (-0.39, 5.82) ‡
	N: NR	25th percentile: 5.5	Lag 1: 1.59 (-1.43, 4.70) Lag 2: 0.03 (-2.99, 3.16)
	Statistical Analyses: Poisson, GAM	50th percentile: 9.5	Lag 3: -0.11 (-3.13, 3.01) 5-day mean: 1.39 (-2.83, 5.81)
	Covariates: Temperature, humidity, influenza epidemics, high pollen episodes, holidays	75th percentile: 11.7	, , ,
		Max: 69.5	Pneumonia HA Lag 0: 0.93 (-0.85, 2.75)
	Dose-response Investigated? No	Monitoring Stations: NR	Lag 1: 2.41 (0.64, 4.21) Lag 2: 1.48 (-0.27, 3.26)
	Statistical Package: R	Copollutant: PM<0.03, PM0.03-0.1,	Lag 3: 1.91 (0.14, 3.70)
	Lags Considered: Lags 0-3 & 5-day	PM<0.1,	5-day mean: 3.10 (0.60, 5.65)
	(0-4) mean	PM<0.10.29, PM _{10-2.5} , CO, NO ₂	Asthma + COPD HA Lag 0: 2.48 (0.60, 4.39)
		Co-pollutant Correlation	Lag 1: 2.62 (0.78, 4.49) Lag 2: 1.22(-0.62, 3.10)
		PM<0.03: 0.14	Lag 3: 0.59 (-1.28, 2.49)
		PM0.03-0.1: 0.48	5-day mean: 2.49 (-0.08, 5.12)
		PM<0.1: 0.35	Other HA Lag 0: 0.05 (-2.38, 2.54)
		PM<0.10.29: 0.88	Lag 1: 0.2 (-2.17, 2.62)
		PM _{10-2.5} : 0.25	Lag 2: 2.03 (-0.29, 4.41) Lag 3: 1.72 (-0.63, 4.12) 5-day mean: 1.88 (-1.50, 5.36)
			*p < 0.05, ‡p < 0.10

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Llorca et al. (2005, <u>087825</u>) Period of Study: Jan 1992-Dec 1995 Location: Torrelavega, Spain	Outcome (ICD-9): Respiratory (460-519) and cardiac (390-459) admissions (analyzed combined and individually) Age Groups: NR Study Design: Time series N: 18,137 admissions Statistical Analyses: Stepwise multiple linear regression, Poisson regression, Spearman correlation Covariates: Influenza, day of week, wind speed, northeast and southwest winds, minimum and maximum temperature Season: NR Dose-response Investigated? No Statistical Package: STATA Intercooled, Release 6	Pollutant: TSP (total suspended particles) Averaging Time: 24 h Mean μg/m³ (SD): 48.8 (23.7) Monitoring Stations: 3 Copollutant (correlation): SO ₂ : r = -0.400 SH2: r = -0.392 NO: r = -0.109 NO ₂ : r = -0.120 Other variables: Rain: r = -0.339 Max temp: r = 0.071 Min temp: r = -0.003 Avg temp: r = 0.035 Wind speed: r = -0.357	PM Increment: NR Rate Ratio Estimate [CI]: Cardiorespiratory Admissions Single-pollutant model: 0.92 [0.86,0.98] Five-pollutant model: 1.05 [0.97,1.14] Respiratory Admissions Single-pollutant model: 0.98 [0.89,1.08] Five-pollutant model: 0.91 [0.80,1.02]
	Lags Considered: NR		
Reference: Michaud et al. (2004, 188530) Period of Study: Jan 1997-May 2001 Location: Hilo, Hawaii	ED visits Outcome: Asthma/COPD (490-496) Respiratory Irritation (506-508) Age Groups: All Study Design: Time-series N: 1,561 ER visits Statistical Analyses: Multiple linear regression Covariates: Hourly temperature, minimum daily temperature, humidity, yr, month, day of the week Season: all Dose-response Investigated? No Statistical Package: STATA 6.0 SAS Lags Considered: Previous night,	Pollutant: PM1 Averaging Time: 24-h avg Mean (SD): 1.91 (2.95) µg/m³ Range (Min, Max): 0.0, 56.6 µg/m³ Monitoring Stations: 2 Notes: Copollutant (correlation): NR	PM Increment: 10 μg/m³ RR Estimate [Lower CI, Upper CI] lag: Asthma, COPD (499-496): Adjusted for day, month & yr: 1.11 (0.92, 1.34), 00: 00-6: 00AM 1.14 (1.03, 1.26), lag 1 1.06 (0.83, 0.94), lag 2 0.91 (0.06, 1.05), lag 3 Asthma (493, 495): Adjusted for day, month & yr: 1.03 (0.90, 1.42), 00: 00-6: 00AM 1.02 (0.94, 1.21), lag 1 1.02 (0.99, 1.23), lag 2 0.97 (0.69, 1.15), lag 3 Bronchitis (490, 491): Adjusted for day, month & yr: 1.02 (0.82, 1.41), 00: 00-6: 00AM 1.07 (1.18, 1.49), lag 1 0.97 (0.60, 1.34), lag 2 0.93 (0.43, 1.18), lag 3 Notes: Crude and estimates adjusted for month and yr only also presented.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Migliaretti et al. (2005,	Cases: Asthma (493)	Pollutant: TSP	PM Increment: 10 μg/m³ increase
088689) Period of Study: 1997-1999		Averaging Time: Means of daily total levels at stations	% Increase, lag 0-2-day avg
ocation: Turin, Italy	487, 490-493, 494-496, 500-519, 390- 405, 410-429)	Mean (SD): 105.3 μg/m ³ , (44.2)	1 pollutant model:
•	Age Groups: 0-14, 15-64, >64	Percentiles: 25th: NR	<15: 1.90[0.40, 3.40]
	Study Design: Case-control	50th(Median) : 96.0 μg/m ³	15-64: 2.30 [-0.01, 5.20]
	, ,	75th NR	>64: 2.30 [1.10, 3.60]
	N: Cases: 1,401	Monitoring Stations:	Total: 2.30[1.10, 3.60]
	Controls: 201,071	10	% Increase, lag 0-2-day avg
	Statistical Analyses: Logistic regression	Notes: Copollutant (correlation):	2 pollutant model:
	Covariates: Gender, age, daily mean	All seasons: NO ₃ TSP = 0.80	<15: -0.12 [-0.03, 2.50]
	temperature, season, day of week, holidays, education level	Winter: NO ₃ ⁻ TSP = 0.77	15-64: 0.90 [-0.04, 5.61]
	Season: All	Summer: NO_3 TSP = 0.69	>64: 1.2 [-0.01, 4.32]
	Dose-response Investigated? No		Total: 0.91 [-0.02, 3.11]
	Lag: 0- to 2-day avg		
Reference: Migliaretti et al. (2004,	Outcome:	Pollutant: Total suspended particulate	PM Increment: 10 μg/m ³
87425)			
eriod of Study: 1997-1999	Cases: Asthma (493)	Averaging Time: Mean of admission day and 3 preceding days	% Increase, lag 1-3-day avg
ocation: Turin, Italy	Controls: Non-respiratory or cardiac admissions (460-487, 490-493, 494-496, 500-519, 390-405, 410-429)	Mean (SD): 114.5 μg/m³, (42.8)	<4 yr: 1.8% [0.00, 3.05]
·		Percentiles:	4-15 yr: 3.0% [0.01, 5.08]
	Age Groups: 0-15	25th: NR	all: 1.8% [0.03, 3.02]
	Study Design: Case-control	50th(Median): 109.9 μg/m ³	adjusted for all covariates
	N: Cases: 1,060	75th: NR	Notes: Multipollutant models also use
	Controls: 25,523	Monitoring Stations: 10	
	Statistical Analyses: Logistic regression µg/m³ increase	Notes: Copollutant (correlation): TSP-NO: 0.76	
	Covariates: Gender, age, daily mean temperature, season, day of week, holidays, solar radiation		
	Season: All		
	Lags Considered: 1- to 3-day avg		
Reference: Neuberger et al. (2004,	Outcome (ICD-9): Bronchitis,	Pollutant: PM ₁	PM Increment: NR
93249)	emphysema, asthma, bronchiectasis, extrinsic allergic alveolitis, and chronic	Averaging Time: 24 h	Effect parameters (Vienna children)
Period of Study: 1999-2000 (1-yr eriod)	airway obstruction (490-496)	Mean μg/m³ (SD): NR	Respiratory Health Male sex = 0.098
ocation: Vienna and Lower Austria	Age Groups: 3.0-5.9 yr 7-10 yr 65+ yr	Monitoring Stations: NR Copollutant (correlation): NR	Allergy = 0.238 Asthma in family = 0.190
	Study Design: Time series	Copolitiant (correlation). Nix	Traffic = 0.112 Log Asthma Score
	N: 366 days (admissions NR)		Allergy = 0.210 Asthma in family = 0.112
	Statistical Analyses: GAM		Rain = 0.257 *only significant coefficients are
	Covariates: SO ₂ , NO, NO ₂ , O ₃ ,		presented
	temperature, humidity, and day of the week		Association with tidal lung function: β = -1.059 (p-value = 0.060)
	Season: NR		Notes: No significant associations
	Dose-response Investigated? Yes		between PM and respiratory mortality were found for either sex. Data is also
	Statistical Package: S-Plus 2000		provided for children in the rural area where age, allergy, asthma in family,
	Lags Considered: 0-14 days		passive smoking, and PM fraction had significant coefficients.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Peel et al. (2005, <u>056305</u>)	Hospital Admission/ED:	Pollutant: UF (10-100nm)	Increment:
Period of Study: Jan 1993-Aug 2000	ED visits	Averaging Time: 24-h avg	30,000 #/cm ³
Location: Atlanta, Georgia	Outcome: Asthma 493, 786.09	Mean (SD): 3800 (40700)	All Respiratory Disease
	COPD 491, 492, 496 URI 460-466, 477	Percentiles:	0.984 [0.968-1.000]
	Pneumonia 480-486	10th: 11500	URI
	Age Groups: All ages. Secondary	90th: 74600	0.986 [0.966, 1.006]
	analyses conducted by age group: Infants 0-1 yr	PM Component: Oxygenated	Asthma
	Pediatric asthma 2-18 yr Adults >18 yr	hydrocarbons (OH), sulfate, acidity, EC (EC), OC (OC), water-soluble transition	0.999 [0.977, 1.021]
	Study Design: Case-control	metals	Pneumonia
	All respiratory disease vs. finger wounds	Monitoring Stations: "Several"	0.997 [0.953, 1.002]
		Copollutant (correlation):	COPD
	N: 31 hospitals ED visits NR	PM_{10} : r = -0.13	0.982 [0.942, 1.022]
	Statistical Analyses: Poisson	O ₃ : r = -0.13	0.002 [0.042, 1.022]
	generalized linear models	NO ₂ : r = 0.26	
	General linear models	CO: r = 0.10	
	Covariates: Avg temperature and dew point, pollen counts	SO ₂ : r = 0.24	
	Season: All	PM _{2.5} : r = -0.16	
	Dose-response Investigated? Yes	PM _{10-2.5} : r = 0.13	
	Statistical Package: SAS 8.3 S-Plus 2000		
	Lags Considered: 0-7 days and 14-day distributed lag		
Reference: Simpson et al. (2005, 087438)	Outcome: All Respiratory (460-519) Asthma (493)	Pollutant: BSP (indicator of particles <2 µm in diameter)	PM Increment: "per unit increase"
Period of Study: 1996-1999	COPD (490-492) Pneumonia, acute bronchitis (466, 480-486)	(10 -4 m -1)	RR Estimate [Lower CI, Upper CI]
Location: Brisbane, Sydney,		Averaging Time: 24-h avg	lag:
Melbourne, and Perth, Australia	Age Groups: All ages, split into f15-64	Mean (SD): Means only	Single pollutant model Respiratory >64 yr
	and >64 yr	Brisbane 0.3 10 -4 m -1	1.0401 [1.0045, 1.0770] lag1
	Study Design: Time-series	Sydney 0.3 10 -4 m -1	1.0520 [1.0164, 1.0889] lag2; 1.0451 [1.0093, 1.0821] lag3
	N: NR ~64,000 admissions	Melbourne 0.3 10 -4 m -1	1.0552 [1.0082, 1.1045] lag 0-1 avg Asthma 15-64 yr
	Statistical Analyses: GAM w/ LOESS smoothers	Perth 0.3 10 -4 m -1	1.0641 [1.0006, 1.1315] lag2
	GLM w/ natural and penalized spline	Range (Min, Max):	1.0893 [1.0240, 1.1587] lag3 Asthma + COPD >64 yr
	smoothers	Brisbane 0.0, 2.5 10 -4 m -1	1.0713 [1.0179, 1.1276] lag3 1.0552 [1.0082, 1.1045] lag 0-1 avg
	Covariates: Temperature, relative humidity, rain, day of the week, public	Sydney 0.0, 1.6 10 -4 m -1	Pneumonia & Acute Bronchitis >64 yr
	and school holidays, influenza		1.0587 [1.0013, 1.1193] lag1 1.0636 [1.0056, 1.1249] lag 2
	epidemics, and controlled burn events	Melbourne 0.0, 2.2 10 -4 m -1	1.0769 [1.0046, 1.1544] lag 0-1 avg
	Season: All	Perth 0.1, 1.8 10 -4 m -1	Multipollutant model Respiratory admissions >64 yr
	Dose-response Investigated? Yes	PM Component: Monitoring Stations: "network of sites across each city"	No other pollutants:
	Statistical Package: S-Plus	Copollutant (correlation): NR	1.0552 [1.0082, 1.1045] lag 0-1 avg Max 1 h NO ₂
	R Lags Considered: 1-3 days, 0- to 1-day avg	. , ,	1.0028 [0.9513, 1.0572] lag 0-1 avg Max 1 h O₃ 1.0534 [1.0058-1.1033] lag 0-1 avg

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Sinclair and Tolsma (2004,	Outpatient Visits	Pollutant: PM _{2.5-10} (µg/m ³)	PM Increment: 4.74 (1 SD)
088696)	Outcome: Asthma (493) URI (460, 461, 462, 463, 464, 465, 466, 477)	Averaging Time: 24-h avg	RR Estimate [Lower CI, Upper CI]
Period of Study: 25 mo		Mean (SD): PM coarse mass	lag:
Location: Atlanta, Georgia	LRI (466.1, 480, 481, 482, 483, 484, 485, 486).	(2.5-10 μm)-9.67 μg/m³ (4.74)	Child Asthma:
	Age Groups: < = 18 yr; 18+ yr	Monitoring Stations: 1	Coarse PM = 1.053 (S)
	(asthma); All ages (URI//LRI)	Copollutant (correlation): NR	3-5 day lag
	Study Design: Times series		URI:
	N: 25 mo		Course PM = 1.021 (S)
	260,000-275,000 health plan members (Aug 1998-Aug 2000)		3-5 day lag
	Statistical Analyses: Poisson GLM		LRI:
	Covariates: Season, day of week,		Coarse PM = 1.07 (S)
	federal holidays, study months		3-5 day lag
	Season: NR		Notes: Numerical findings for significant
	Dose-response Investigated?: No		results only presented in manuscript. Results for all lags presented
	Statistical Package: SAS		graphically for each outcome (asthma, URI, and LRI).
	Lags Considered: Three 3-day ma (0-2, 2-5, 6-8)		Orti, and Litty.
Reference: Sinclair and Tolsma (2004,	Outpatient Visits	Pollutant: UF (PM ₁₀ -100 nm)	PM Increment: NR
088696)	Outcome: Asthma (493)	Averaging Time: 24 h avg	RR Estimate [Lower CI, Upper CI]
Period of Study: 25 mo	URI (460, 461, 462, 463, 464, 465, 466, 477) LRI (466.1, 480, 481, 482, 483, 484, 485, 486). Age Groups: < = 18 yr, 18+ yr (asthma)	Mean (SD): PM ₁₀ -100 nm area (μm2/cm ³)- 249.33 (244.09) Monitoring Stations: 1 Copollutant (correlation): NR	lag:
Location: Atlanta, Georgia			Adult Asthma:
			Ultrafine PM area = 1.223 (S)
	All ages (URI//LRI)		3-5 days lag
	Study Design: Times series		URI:
	N: 25 mo		Ultrafine PM: = 1.041 (S)
	260,000-275,000 health plan members (Aug 1998-Aug 2000)		0-2 days lag
	Statistical Analyses: Poisson GLM		LRI:
	Covariates: Season, day of week,		Ultrafine PM area = 1.099 (S)
	federal holidays, study months		6-8 days lag
	Season: NR		Notes: Numerical findings for significant
	Dose-response Investigated?: No		results only presented in manuscript. Results for all lags presented
	Statistical Package: SAS		graphically for each outcome (asthma, URI, and LRI).
	Lags Considered: Three 3-day ma (0-2, 2-5, 6-8)		OIXI, dilu LIXI).

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Slaughter et al. (2005,	Hospital Admissions and ED visits Outcome: All respiratory (460-519) Asthma (493) COPD (491,492, 494,496) Pneumonia (480-487)	Pollutant: PM ₁	PM Increment: 10 µg/m ³
<u>073854)</u>		Averaging Time: 24-h avg	RR Estimate [Lower CI, Upper CI]
Period of Study: Jan 1995-Jun 2001 Location: Spokane, WA		Range (90% of concentrations): $3.3-17.6 \mu g/m^3$	lag:
,	Acute URI not including colds and sinusitis (464, 466, 490)	Monitoring Stations: 1	ED visits:
	Age Groups: All, 15+ yr for COPD	Copollutant (correlation):	PM ₁
	Study Design: Time series	PM_1	All Respiratory
	N: 2373 visit records	$PM_{2.5} r = 0.95$	Lag 1: 1.01 [0.98, 1.04]
	Statistical Analyses: Poisson	$PM_{10} r = 0.50$	Lag 2: 1.02 [0.99, 1.06]
	regression, GLM with natural splines. For comparison also used GAM with	$PM_{10-2.5} r = 0.19$	Lag 3: 1.02 [0.99,1.06]
	smoothing splines and default	CO r = 0.63	Acute Asthma
	convergence criteria.		Lag 1: 1.03 [0.97, 1.09]
	Covariates: Season, temperature, relative humidity, day of week		Lag 2: 0.99 [0.93, 1.05]
	Season: All		Lag 3: 1.02 [0.96, 1.08]
	Dose-response Investigated?: No		COPD (adult)
	Statistical Package: SAS, SPLUS		Lag 1: 0.96 [0.87, 1.05]
	Lags Considered: 1 -3 days		Lag 2: 1.02 [0.93, 1.12]
			Lag 3: 0.99 [0.90, 1.09]
Reference: Slaughter et al. (2005,	Hospital Admissions and ED visits	Pollutant: PM _{2.5}	PM Increment: 10 µg/m ³
073854)	Outcome: All respiratory (460-519) Asthma (493)	Averaging Time: 24-h avg	RR Estimate [Lower CI, Upper CI]
Period of Study: Jan 1995-Jun 2001 Location: Spokane, WA	COPD (491,492, 494,496) Pneumonia (480-487)	Range (90% of Concentrations): $4.2-20.2 \mu g/m^3$	lag: ER visits:
	Acute URI not including colds and sinusitis (464, 466, 490)	Monitoring Stations: 1	PM _{2.5} All Respiratory
	Age Groups: All, 15+ yr for COPD	Notes: Copollutant (correlation):	Lag 1: 1.01 [0.98, 1.04]
	Study Design: Time series	PM _{2.5}	Lag 2: 1.02 [0.99, 1.04] Lag 3: 1.02 [0.99, 1.05]
	N: 2373 visit records	PM1 r = 0.95	Acute Asthma Lag 1: 1.03 [0.98, 1.09]
	Statistical Analyses: Poisson	$PM_{10} r = 0.62$	Lag 2: 1.00 [0.95, 1.05]
	regression, GLM with natural splines. For comparison also used GAM with	$PM_{10-2.5} r = 0.31$	Lag 3: 1.01 [0.96, 1.06] COPD (adult)
	smoothing splines and default	Temperature r = 0.21	Lag 1: 0.96 [0.89, 1.04]
	convergence criteria. Covariates: Season, temperature, relative humidity, day of week		Lag 3: 1.00 [0.93, 1.08] Hospital Admissions:
	Season: All		PM _{2.5} All Respiratory
	Dose-response Investigated?: No		Lag 1: 0.98 [0.94, 1.01] Lag 2: 0.99 [0.96, 1.03]
	Statistical Package: SAS, SPLUS		Lag 3: 1.01 [0.98, 1.05] Asthma
	Lags Considered: 1 -3 days		Lag 1: 1.01 [0.91, 1.11] Lag 2: 1.03 [0.94, 1.13] Lag 3: 1.02 [0.93, 1.13]
			COPD (adult) Lag 1: 0.99 [0.91, 1.08] Lag 2: 1.06 [0.98, 1.16] Lag 3: 1.03 [0.94, 1.12]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Zanobetti and Schwartz	Outcome: Pneumonia (480-487)	Pollutant: PM _{2.5}	PM Increment: PM _{2.5} lag 0: 17.17 µg/m ³
(2006, <u>090195</u>)	Age Groups: >65 y	Averaging Time: 24 h	
Period of Study: 1995-1999	Study Design: Case-crossover, time	Percentiles (pneumonia cohort):	PM _{2.5} lag 0-1 avg: 16.32 μg/m ³
Location: Boston, MA	stratified	25th: 7.23 μg/m ³	% change in Pneumonia:
	N: 24,857 for Pneumonia	50th(Median): 11.10	6.48[1.13, 11.43]
	Statistical Analyses: Condition logistic regression	75th: 16.14	lag 0
	Covariates: Season, long term trend, day of-the-wk, mean temperature,	PM Component: Black Carbon (BC), PM non-traffic	5.56[-0.45, 11.27] mean lag 1
	relative humidity, barometric pressure, extinction coefficient	Monitoring Stations: 4-5 monitors	
	Season: All yr	Copollutant (correlation): PM _{2.5} :	
	Dose-response Investigated? No	CO r = 0.52 NO ₂ r = 0.55	
	Statistical Package: SAS	O_3 r = 0.20 BC r = 0.66 PM non-traffic r = 0.74	
	Lags Considered: 0-1		
	Notes: Also looked at MI cohort		
Reference: Zanobetti and Schwartz	Outcome: Pneumonia (480-487)	Pollutant: BC	PM Increment: BC lag 0: 2.05 µg/m ³
(2006, <u>090195</u>)	Age Groups: >65 y	Averaging Time: 24 h	BC lag 0-1 avg: 1.69 μg/m ³
Period of Study: 1995-1999	Study Design: Case-crossover, time	Percentiles (pneumonia cohort): 5th: 0.42	% change in Pneumonia:
Location: Boston, MA	stratified	25th: 0.74 μg/m ³	BC-10.76[4.54, 15.89] lag 0
	N: 24,857 for Pneumonia	50th(Median): 1.15 75th: 1.72 95th: 2.83 PM Component: PM non-traffic Monitoring Stations: 4-5 monitors Copollutant (correlation): BC: PM _{2.5} r = 0.66 CO r = 0.82 NO ₂ r = 0.70 O ₃ r = -0.25	
	Statistical Analyses: Condition logistic regression		BC-11.71[4.79, 17.36]
	Covariates: Season, long term trend, day of-the-wk, mean temperature, relative humidity, barometric pressure, extinction coefficient		mean lag 1
	Season: All yr		
	Dose-response Investigated? No		
	Statistical Package: SAS	PM non-traffic r = -0.01	
	Lags Considered: 0-1		
	Notes: Also looked at MI cohort		

 $^{^{1}}$ All units expressed in $\mu g/m^{3}$ unless otherwise specified.

E.3. Short-Term Exposure and Mortality

Table E-16. Short-term exposure-mortality - PM₁₀.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Aga et al. (2003, <u>054808</u>)	Outcome: Nonaccidental Mortality	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: ~5 yr for most cities, during the 1990s	(<800)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
-	Study Design: Time-series Statistical Analyses: Poisson GAM.	Mean (SD): NR	All ages Fixed effects: 0.71% (0.60,0.83) 0-1
Location: 28 European cities (APHEA2)	LOESS	Range (Min, Max): (15, 66)	Random effects: 0.67% (0.47,0.87) 0-1 >65
	Age Groups: All ages	Copollutant: BS	Fixed effects: 0.79% (0.66,0.92) 0-1 Random effects: 0.74% (0.52,0.95) 0-1
	>65	Note: PM ₁₀ only measured in 21 cities.	Models with effect modifiers (>65) 24-h NO ₂ : 25th Percentile: 0.30% (0.07,0.53) 75th Percentile: 0.97% (0.82,1.11) 24-h temperature: 25th Percentile: 0.44% (0.25,0.64) 75th Percentile: 0.91% (0.77,1.05) 24-h relative humidity: 25th Percentile: 0.98% (0.82,1.14) 75th Percentile: 0.98% (0.82,1.14) 75th Percentile: 0.98% (0.82,1.14) 75th Percentile: 0.98% (0.77,1.09) 75th Percentile: 0.93% (0.77,1.09) 75th Percentile: 0.61% (0.43,0.79) Proportion individuals >65 25th Percentile: 0.67% (0.50,0.83) 75th Percentile: 0.85% (0.71,0.99) Northwest/Central East: 25th Percentile: 0.81% (0.63,0.98) 75th Percentile: 0.26% (-0.05,0.57) Northwest/South: 25th Percentile: 0.81% (0.63,0.98) 75th Percentile: 0.81% (0.63,0.98) 75th Percentile: 0.81% (0.63,0.98) 75th Percentile: 0.81% (0.63,0.98)
Reference: Analitis et al. (2006, 088177)	Outcome: Mortality: Cardiovascular diseases (390-459)	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: NR	Respiratory diseases (460-519)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Location: 29 European cities	Study Design: Time-series	Median (SD) unit: Range: 9-64 μg/m ³	Cardiovascular: Fixed effects: 0.64% (0.47, 0.80) 0-1
(APHEA2)	Statistical Analyses: 2-stage	Range (Min, Max): NR	Random effects: 0.76% (0.47, 1.05) 0-1
	hierarchical modeling Age Groups: All ages	Copollutant: BS	0.90% (0.57, 1.23) 0-5 Respiratory: Fixed effects:
		Note: PM ₁₀ only measured in 21 cities.	0.58% (0.21, 0.95) 0-1 Random effects: 0.71% (0.22, 1.20) 0-1 1.24% (0.49, 1.99) 0-5
Reference: Ballester et al. (2002,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
030371)	Nonaccidental (<800)	Averaging Time: 24-h avg	Relative Risk (Lower CI, Upper CI)
Period of Study: 1990-1996	Cardiovascular diseases (390-459)	Mean (SD): Huelva: 42.5 (15)	lag: Nonaccidental:
Location: 13 Spanish cities	Respiratory diseases (460-519)	Madrid: 37.8 (17.7)	Random effects: 1.006 (0.998, 1.015) 0-1
	Study Design: Ecological time series	Sevilla: 45.1 (14)	Fixed Effects: 1.005 (1.001, 1.010) 0-1
	Statistical Analyses: Poisson GAM,	Range (Min, Max): NR	PM ₁₀ +SO ₂ : 1.013 (1.006, 1.020) 0-1 Cardiovascular:
	LOESS Age Groups: All ages	Copollutant:	1.012 (1.005, 1.018) 0-1 PM ₁₀ +SO ₂ :
	Age Groups. All ages	BS TSP	Random effects: 1.024 (1.001, 1.048) 0-1
		SO ₂	Fixed effects: 1.021 (1.007, 1.035) 0-1
		Note: PM ₁₀ only measured in 3 cities.	Respiratory: 1.013 (1.001, 1.026) 0-1
		Hote. I Will only measured in 3 cities.	PM ₁₀ +SO ₂ : 1.003 (0.983, 1.023) 0-1

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Bateson and Schwartz	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
(2004, <u>086244</u>) Period of Study: 1088 1001	Heart Disease (390-429)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Period of Study: 1988-1991	Respiratory (460-519)	Mean (SE) unit: 37.6 (15.5) μg/m ³	All-cause: 1.14% (0.44, 1.85) 0-1 Modification of Effect by Prior Diagnosis
Location: Cook County, Illinois	Study Design: Bi-directional case-crossover	Range (Min, Max): (3.7, 128)	Myocardial Infarction: 1.98% (-0.25, 4.26) 0-1
	Statistical Analyses: Conditional logistic regression	Copollutant: NR	Diabetes: 1.49% (-0.06, 3.07) 0-1 Congestive heart failure: 1.28% (-0.06, 2.64) 0-1
	Age Groups: ≥ 65		COPD: 0.58% (-0.82, 2.00) 0-1 Conduction Disorders:
	Study population:		0.64% (-0.61, 1.90) 0-1 All other heart or lung diseases:
	65,180 elderly residents with history of hospitalization for heart or lung disease		0.74% (-0.29, 1.79) 0-1 All-cause Men 65: 2.0% (0.3, 3.8) 0-1 75: 1.5% (-0.2, 3.1) 0-1 85: 0.9% (-0.7, 2.5) 0-1 95: 0.3% (-1.3, 1.9) 0-1 All: 1.3% (0.4, 2.3) 0-1 Women 65: 0.1% (-1.6, 1.9) 0-1 75: 0.7% (-1.1, 2.4) 0-1 85: 1.2% (-0.5, 3.0) 0-1 95: 1.8% (0.03, 3.6) 0-1 All: 1.0% (0.1, 1.9) 0-1 Total 65: 1.1% (-0.12, 2.3) 0-1 75: 1.1% (-0.1, 2.3) 0-1 85: 1.2% (-0.0, 2.4) 0-1 95: 1.2% (0.0, 2.4) 0-1 All: 1.1% (0.4, 1.9) 0-1
Reference: Bell et al. (2009, <u>191007</u>)	Outcome: Mortality	Pollutant: PM ₁₀	Increment: 20% of the population
Period of Study: 1987-2000	Study Design: Time-series	Averaging Time: 24 h	acquiring air conditioning
Location: 84 U.S. Counties	Covariates: Socio-economic conditions, long term temperature	Mean (SD) Unit: NR	Percent Change (95% CI) in community-specific PM health effect estimates for mortality
	Statistical Analysis: Bayesian hierarchical model	Range (Min, Max): NR Copollutant (correlation): NR	Any AC, including window units Yearly health effect: -30.4 (-80.4-19.6) Summer health effect: 29.9 (-84-144)
	Age Groups: All		Winter health effect: -573 (-9100-7955) Central AC Yearly health effect: -39 (-81.4-3.3) Summer health effect: 20. (-60.3-64.3) Winter health effect: -1777 (-5755-2201)
Reference: Bell et al. (2007, <u>093256</u>)	Outcome: Mortality	Pollutant: PM ₁₀	PM Increment: Interquartile Range in the fraction of PM _{2.5}
Period of Study: 1999-2005	Age Groups: 65+	Averaging Time: Daily	Percent Increase in PM ₁₀ Health
Location: U.S.	Study Design: Time series	Mean: Ni: 0.002	Effect (Lower CI, Upper CI)
	N: NR	Min: Ni: 0.003	Ni: 14.8 (-8.1, 37.7), lag 0 Ni: 14.7 (4.0, 25.3), lag 1
	Statistical Analyses: Bayesian Hierarchical Regression	Max: Ni: 0.021	Ni: 14.7 (1.8, 27.5), lag 2
	Covariates: Time trend, day of week,	Interquartile Range: Ni: 0.001	HS education: -31.9 (-82.4, 18.6)
	seasonality, dew point, temperature	Interquartile Range of Percents: Ni: 0.01	median income: -12.3 (-62.3, 37.7)
	Statistical Package: NR	Monitoring Stations: NR	Percent black: 48.7 (-15.8, 113)
	Lags Considered: 0-2	Copollutant: Al, NH4+, As, Ca, Cl, Cu,	Percent living in urban area: -20.1 (-102, 61.7)
		EC, OMC, Fe, Pb, Mg. Ni, NO ₃ -, K, Si, Na+, SO ₄ =, Ti, V, Zn	Population: 5.1 (-14.4, 24.5)
		Co-pollutant Correlation Ni, V: 0.48 Ni, EC: 0.30	Notes: Interquartile ranges in percent HS education, median income, percent black, percent living in urban area, and population are 5.2 %, \$9,223, 17.3%,
		Note: Pollutant concentrations available for all fractions of $\mbox{PM}_{2.5}$	11.0%, and 549,283 respectively.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Bellini et al. (2007, 097787) Period of Study: 1996-2002 Location: 15 Italian cities	Outcome: Mortality All-cause (nonaccidental) (<800) Cardiovascular (390-459) Respiratory (460-519) Study Design: Meta-analysis Statistical Analyses: Poisson GLM Age Groups: All ages	Pollutant: PM ₁₀ Averaging Time: 24-h avg Mean (SD): NR Range (Min, Max): NR Copollutant: SO ₂ NO ₂ CO O ₃	Increment: 10 μg/m³ % Increase (Lower CI, Upper CI) lag: All-cause: 0.31% (-0.19, 0.74) 0-1 Winter: 0.08% 0-1 Summer: 1.95% 0-1 PM ₁₀ +NO ₂ : 0.30% 0-1 PM ₂₀ +NO ₂ : 0.08% 0-1 Respiratory: 0.54% (-0.91, 1.74) 0-1 Winter: 0.27% 0-1 Summer: 3.61% 0-1 PM ₁₀ +NO ₂ : 0.19% 0-1 Cardiovascular: 0.54% (0.02, 1.02) 0-1 Winter: 0.20% 0-1 Summer: 2.79% 0-1 PM ₁₀ +NO ₂ : 0.55% 0-1 PM ₁₀ +O ₃ : 0.57% 0-1 PM ₁₀ +O ₃ : 0.57% 0-1 PM ₁₀ +O ₃ : 0.57% 0-1 PM ₁₀ +NO ₂ : 0.39% 0-1
Reference: Burnett et al. (2004, 086247) Period of Study: 1981-1999 Location: 12 Canadian cities	Outcome: Mortality: Nonaccidental (<800) Study Design: Time-series Statistical Analyses: 1. Poisson, natural splines 2. Random effects regression model Age Groups: All ages	Pollutant: PM ₁₀ Averaging Time: 24-h avg Mean (SD): PM _{2.5} : 12.8 PM _{10-2.5} : 11.4 Range (Min, Max): NR Copollutant (correlation): NO ₂ O ₃ SO ₂ CO Note: PM ₁₀ measurement calculated as the sum of PM _{2.5} and PM _{10-2.5}	Increment: 10 µg/m³ % Increase (Lower CI, Upper CI) lag: 1981-1999 PM ₁₀ : 0.57% (0.05, 0.89) 1 PM ₁₀ +NO ₂ : 0.07% (-0.44, 0.58) 1
Reference: Cakmak et al. (2007, 091170) Period of Study: Jan 1997-Dec 2003 Location: Chile-7 cities	Outcome: Mortality: Nonaccidental (<800) Cardiovascular diseases (390-459) Respiratory diseases (460-519) Study Design: Time-series Statistical Analyses: Poisson Random effects regression model Age Groups: All age ≤ 64 yr 65-74 yr 75-84 yr ≥ 85 yr	measurements. Pollutant: PM ₁₀ Averaging Time: 24-h avg Mean (SD): 84.9 Range (Min, Max): NR Copollutant (correlation): O ₃ : r = -0.16-0.13 SO ₂ : r = 0.37-0.77 CO: r = 0.49-0.82 Note: Correlations are between pollutants for seven monitoring stations.	Increment: 10 μg/m³ % Increase (Lower CI, Upper CI) lag: Nonaccidental: 0.97% (-1.09, 2.76) 0 1.31% (-1.56, 3.68) 0-5 PM ₁₀ +O ₃ +SO ₂ +CO: 0.80% (-0.87, 2.28) 0 ≤ 64: 0.52% (-0.55, 1.51) 0 0.49% (-0.51, 1.43) 0-5 65-75: 1.07% (-1.23, 3.03) 0 1.31% (-1.57, 3.69) 0-5 75-84: 1.41% (-1.71, 3.94) 0 1.93% (-2.57, 5.30) 0-5 ≥ 85: 1.56% (-1.94, 4.34) 0 2.14% (-2.97, 5.85) 0-5 Apr-Sep: 1.03% (-1.17, 2.93) 0 1.37% (-1.64, 3.82) 0-5 Oct-Mar: 0.07% (-0.07, 0.21) 0 0.15% (-0.15, 0.44) 0-5 Cardiovascular: 1.14% (-1.31, 3.21) 0 1.49% (-1.82, 4.14) 0-5 Respiratory: 2.03% (-2.75, 5.56) 0 3.11% (-5.25, 8.25) 0-5

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chen et al. (2008, <u>190106</u>)	Outcome (ICD9: 2001; ICD10: 2002-2004):	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: 2001-2004		Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Location: Shanghai, China	Mortality: Nonaccidental causes (ICD9 <800;	Mean (SD): 102.0	Nonaccidental Single Pollutant: 0.26% (0.14, 0.37)
	ICD10 A00-R99) Cardiovascular (ICD9 390-459; I	Range (Min, Max): (14.0-566.8)	PM ₁₀ +SO ₂ : 0.08% (-0.07, 0.22)
	CD10 I00-I99) `	Copollutant (correlation):	PM ₁₀ +NO ₂ : 0.01% (-0.14, 0.17) PM ₁₀ +SO ₂ +NO ₂ : 0.00% (-0.16, 0.16)
	Respiratory (ICD9 460-519; ICD10 J00-J98)	SO ₂ r = 0.64	Cardiovascular mortality Single Pollutant: 0.27% (0.10, 0.44)
	Study Design: Time-series	$NO_2 r = 0.71$	PM ₁₀ +SO ₂ : 0.12% (-0.10, 0.34)
	Statistical Analyses: Poisson GAM		PM ₁₀ +NO ₂ : 0.01% (-0.22, 0.25) PM ₁₀ +SO ₂ +NO ₂ : 0.01% (-0.23, 0.25)
	Age Groups: All ages		Respiratory mortality Single Pollutant: 0.27% (-0.01, 0.56) PM ₁₀ +SO ₂ : -0.04% (-0.41, 0.33) PM ₁₀ +NO ₂ : -0.05% (-0.45, 0.34) PM ₁₀ +SO ₂ +NO ₂ : -0.10% (-0.50, 0.30)
Reference: Daniels et al. (2004,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
087343)	Total (Nonaccidental) mortality	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Period of Study: 1987-1994	Cardiovascular-Respiratory (390-448) (480-486, 487, 490-496, 507)	Mean (SD):	Total (nonaccidental):
Location: 20 Largest U.S. cities	Other-cause mortality	Los Angeles: 46.0 New York: 28.8	0.17% (0.03, 0.30) 0 0.20% (0.07, 0.33) 1
	Study Design: Time-series	Chicago: 35.6 Dallas-Ft. Worth: 23.8	0.28% (0.16, 0.41) 0-1 avg
	Statistical Analyses: City-Specific Estimates: Poisson GLM, natural cubic splines Combined Estimates: 2-stage Bayesian hierarchical model	Houston: 30.0 San Diego: 33.6 Santa Ana-Anaheim: 37.4 Phoenix: 39.7 Detroit: 40.9	Cardiovascular-Respiratory: 0.17% (-0.01, 0.35) 0 0.27% (0.09, 0.44) 1 0.30% (0.18, 0.51) 0-1 avg
	Age Groups: All ages	Miami: 25.7 Philadelphia: 35.4 Minneapolis: 26.9 Seattle: 25.3 San Jose: 30.4 Cleveland: 45.1	Other-cause: 0.17% (-0.03, 0.37) 0 0.12% (-0.07, 0.31) 1 0.20% (0.01, 0.38) 0-1 avg Threshold Models: Total Mortality
		San Bernardino: 37.0 Pittsburgh: 31.6 Oakland: 26.3 Atlanta: 34.4 San Antonio: 23.8	Threshold = $15 \mu\text{g/m}^3$ 0.30% (0.17, 0.42) 0.1 avg Threshold = $0 \mu\text{g/m}^3$ 0.28% (0.16, 0.41) 0.1 avg Threshold = $20 \mu\text{g/m}^3$ 0.30% (0.16, 0.43) 0.1 avg

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: De Leon et al. (2003,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 18.16 µg/m³
<u>055688</u>)	Circulatory (390-459)	Averaging Time: 24-h avg	Relative Risk (Lower CI, Upper CI)
Period of Study: Jan 1985-Dec 1994	Cancer (140-239)	Mean (SD):	lag:
Location: New York, New York	Study Design: Time-series	33.27 μg/m ³	All Ages Cancer: 1.014 (1.000, 1.029) 0-1
	Statistical Analyses: Poisson GAM	IQR (25th, 75th):	-w/out respiratory:
	•		1.011 (0.996, 1.026) 0-1 -w/ respiratory:
	Age Groups: All ages	(22.67, 40.83)	1.051 (0.998, 1.107) 0-1 Circulatory: 1.025 (1.014, 1.035) 0-1
	<75 yr	Copollutant (correlation):	-w/out respiratory: 1.022 (1.012, 1.033) 0-1
	>75 yr	O ₃ CO	-w/ respiratory:
			1.054 (1.022, 1.086) 0-1 <75 yr
		SO ₂	Cancer: 1.003 (0.985, 1.021) 0-1 -w/out respiratory:
		NO ₂	1.002 (0.983, 1.022) 0-1
			-w/ respiratory: 1.009 (0.943, 1.078) 0-1
			Circulatory: 1.027 (1.012, 1.043) 0-1
			-w/out respiratory: 1.027 (1.011, 1.043) 0-1
			-w/ respiratory: 1.033 (0.980, 1.089) 0-1
			>75 yr
			Cancer: 1.033 (1.009, 1.058) 0-1 -w/out respiratory:
			1.025 (1.000, 1.050) 0-1
			-w/ respiratory: 1.129 (1.041, 1.225) 0-1
			-w/out pneumonia:
			1.026 (1.002, 1.050) 0-1 -w/ pneumonia:
			1.183 (1.058, 1.323) 0-1
			-w/out COPD: 1.032 (1.008, 1.057) 0-1 -w/ COPD: 1.008 (0.849, 1.197) 0-1
			Circulatory: 1.025 (1.012, 1.038) 0-1 -w/out respiratory:
			1.022 (1.008, 1.035) 0-1
			-w/ respiratory: 1.066 (1.027, 1.106) 0-1
			-w/out pneumonia:
			1.023 (1.010, 1.036) 0-1 -w/ pneumonia:
			1.078 (1.018, 1.141) 0-1
			-w/out COPD: 1.025 (1.012, 1.038) 0-1
			-w/ COPD: 1.058 (0.991, 1.130) 0-1
Reference: Dominici et al. (2003,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 μg/m ³
042804)	All-cause (nonaccidental) (<800) Cardiac (390-448)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Period of Study: 1987-1994	Respiratory (490-496) Influenza (487)	Mean (SD): NR	Cardio-respiratory
Location: 88 U.S. cities	Pneumonia (480-486, 507) Other causes	Range (Min, Max): NR	0.31% (0.15, 0.50) 1
	Study Design: Time-series	Copollutant (correlation): NR	All-cause
	Statistical Analyses: 2-stage Bayesian		0.22% (0.10, 0.38) 1
	hierarchical model		Other causes
	Age Groups: <65 yr; 65-74 yr; ≥ 75 yr		0.13% (-0.05, 0.29) 1
Reference: Dominici et al. (2004,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 μg/m ³
059158)	Total (nonaccidental)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI)
Period of Study: 1987-1994	Study Design: Time-series	Mean (SD): NR	lag:
Location: 90 U.S. cities (NMMAPS)	Statistical Analyses: Poisson. GAM,	Range (Min, Max): NR	α = 3
	GLM		0.2% (0.05, 0.35)
	Age Groups: All ages		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Dominici et al. (2004,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
<u>096951</u>)	Total (nonaccidental)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Period of Study: 1986-1993	Study Design: Time-series	Mean (SD): Birmingham 34.8	Combined analysis:
Location: 10 U.S. cities	Statistical Analyses: 2-stage Bayesian	Canton 28.4	0.26% (-0.37, 0.65) 0-1
	hierarchical model	Colorado Springs 27.5 Minneapolis/St. Paul 28.1	Separate analysis:
	Age Groups: All ages	Seattle 32.2 Spokane 42.9	0.28% (-0.12, 0.63) 0-1
		Chicago 36.3 Detroit 36.7 New Haven 28.6 Pittsburgh 36.0 New York: 28.8	Notes: A separate analysis assumes the mortality data does not provide any information on the log relative rates of mortality.
Reference: Dominici et al. (2007,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
097361) Period of Study: DM : 1097 2000	All-cause (nonaccidental)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Period of Study: PM ₁₀ : 1987-2000	Cardiorespiratory	Mean (SD): NR	PM ₁₀ All-cause:
PM _{2.5} : 1999-2000 Location: 100 U.S. counties	Other-cause	Range (Min, Max): NR	East: 1987-1994: 0.29% (0.12, 0.46) 1
(NMMAPS)	Study Design: Time-series	Copollutant (correlation): NR	1995-2000: 0.13% (-0.19, 0.44) 1
	Statistical Analyses: 2-stage Bayesian hierarchical model		1987-2000: 0.25% (0.11, 0.39) 1 West: 1987-1994: 0.12% (-0.07, 0.30) 1
Peteranas Dominisi et al. (2007	Age Groups: All ages	Pollutont: DM	1995-2000: 0.18% (-0.07, 0.44) 1 1987-2000: 0.12% (-0.02, 0.26) 1 National: 1987-1994: 0.21% (0.10, 0.32) 1 1995-2000: 0.18% (0.00, 0.35) 1 1987-2000: 0.19% (0.10, 0.28) 1 Cardiorespiratory: East: 1987-1994: 0.39% (0.16, 0.63) 1 1995-2000: 0.30% (-0.13, 0.73) 1 1987-2000: 0.34% (0.15, 0.54) 1 West: 1987-1994: 0.17% (-0.07, 0.40) 1 1995-2000: 0.13% (-0.23, 0.50) 1 1987-2000: 0.13% (-0.23, 0.50) 1 1987-2000: 0.14% (-0.05, 0.33) 1 National: 1987-1994: 0.28% (0.14, 0.43) 1 1995-2000: 0.21% (-0.03, 0.44) 1 1995-2000: 0.21% (-0.03, 0.44) 1 1995-2000: 0.21% (-0.03, 0.44) 1 1995-2000: 0.15% (-0.09, 0.39) 1 West: 1987-1994: 0.21% (-0.03, 0.44) 1 1995-2000: 0.15% (-0.09, 0.39) 1 West: 1987-1994: 0.29% (-0.15, 0.62) 1 1987-2000: 0.23% (-0.15, 0.62) 1 1987-2000: 0.17% (-0.07, 0.41) 1 National: 1987-1994: 0.15% (-0.02, 0.32) 1 1995-2000: 0.17% (-0.07, 0.41) 1 1987-2000: 0.15% (-0.00, 0.29)1
Reference: Dominici et al. (2007,	Outcome: Total mortality	Pollutant: PM ₁₀	The study does not provide results
099135)	Study Design: Time-series	Averaging Time: 24-h avg	quantitatively.
Period of Study: 2000-2005	Statistical Analyses: 2-stage Bayesian	Mean (SD): NR	Note: The study investigated whether county-specific short-term effects of
Location: 72 U.S. counties representing 69 communities	hierarchical model	Range (Min, Max): NR	PM ₁₀ on mortality are modified by long- term county-specific nickel or vanadium
	Age Groups: All ages	Copollutant (correlation): NR	PM _{2.5} concentrations.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Fischer et al. (2003,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 80 µg/m³
043739)	Nonaccidental (<800)	Averaging Time: 24-h avg	Relative Risk (Lower CI, Upper CI)
Period of Study: 1986-1994	Pneumonia (480-486)	Median (SD) unit: 34	lag: Cardiovascular
Location: The Netherlands	COPD (490-496)	Range (Min, Max): (10, 278)	<45: 0.906 (0.728, 1.128) 0-6
	Cardiovascular (390-448)	Copollutant:	45-64: 1.023 (0.945, 1.106) 0-6 65-74: 1.002 (0.945, 1.062) 0-6
	Study Design: Time-series	BS	≥ 75: 1.016 (0.981, 1.052) 0-6 COPD
	Statistical Analyses: Poisson GAM,	O ₃	<45: 1.153 (0.587, 2.268) 0-6 45-64: 1.139 (0.841, 1.541) 0-6
	LOESS Age Groups:	NO ₂	65-74: 1.166 (0.991, 1.372) 0-6
	<45 yr	SO ₂	≥ 75: 1.066 (0.965, 1.178) 0-6 Pneumonia
	45-64 yr 65-74 yr	CO	<45: 1.427 (0.806, 2.525) 0-6 45-64: 1.712 (1.042, 2.815) 0-6
	≥ 75 yr		65-74: 1.240 (0.879, 1.748) 0-6 ≥ 75: 1.123 (1.011, 1.247) 0-6
Reference: Fischer et al. (2004,	Outcome: Total mortality	Pollutant: PM ₁₀	The study does not present quantitative
<u>055605</u>)	Study Design: NR	Averaging Time: Weekly avg	results.
Period of Study: Jun 2003-Aug 2003	Statistical Analyses: NR	Mean (SD):	Notes: The study estimates the number of deaths attributable to PM ₁₀ during the
Location: The Netherlands	Age Groups: All ages	2000: 31 2002: 33	summers of 2000, 2002, and 2003.
		2003: 35	
		IQR (25th, 75th): NR	
Poforonou Forostions et al. (2005	Outcome: Mortelity:	Copollutant: O ₃ Pollutant: PM ₁₀	Increment: 29.7 μg/m ³
Reference: Forastiere et al. (2005, 086323)	Outcome: Mortality:		. •
Period of Study: 1998-2000	Ischemic heart disease (410-414)	Averaging Time: 24-h avg Mean (SD):	% Increase (Lower CI, Upper CI)
Location: Rome, Italy	Study Design: Time-stratified case- crossover	52.1 (22.2) IQR (25th, 75th):	lag:
	Statistical Analyses: Conditional	(36.0, 65.7)	4.8% (0.1, 9.8) 0
	logistic regression	Copollutant (correlation): PNC: r = 0.38	4.9% (0.0, 10.1) 1
	Age Groups: >35	CO: r = 0.34 NO ₂ : r = 0.45	3.8% (-1.0, 8.9) 2
		SO ₂ : r = 0.23	2.8% (-2.0, 7.7) 3
	Outcome: Martality:	O ₃ : r = 0.13	6.1% (0.6, 11.9) 0-1
Reference: Forastiere et al. (2007, 090720)	Outcome: Mortality: Natural (<800)	Pollutant: PM ₁₀	Increment: 10 μg/m ³
Period of Study: 1998-2001	Malignant neoplasms (140-208) Diabetes mellitus (250)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI)
Location: Rome, Italy	Hypertensive disease (401-405) Previous acute myocardial infarction	Mean Range (SD) unit: 51.0 (21.0) μg/m ³	lag:
2004.10 In 10 Ino., Italy	(410, 412)	IQR (25th, 75th):	Nonaccidental: 1.1% (0.7, 1.6) 0-1
	Other ischemic heart diseases (411, 413-414)	(36.1, 63.0)	Low income: 1.9% 0-1
	Conduction disorders (426) Dysrhythmia (427)	Copollutant (correlation): NR	Low SES: 1.4% 0-1
	Heart failure (428)	opoliatant (contration). M	High income: 0.0% 0-1
	Cerebrovascular disease (430-438) Peripherical artery disease (440-448)		High SES: 0.1% 0-1
	COPD (490-496) Study Design: Time stratified case		Low PM Area: 0.9% (-0.4, 2.1) 0-1
	Study Design: Time-stratified case- crossover		High PM Area: 1.47% (0.4, 2.5) 0-1
	Statistical Analyses: Conditional logistic regression		
	Age Groups: >35		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Forastiere et al. (2008,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
<u>186937</u>)	Nonaccidental (<800)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Period of Study: 1997-2004	Study Design: Time-stratified case-	Mean Range (SD) unit:	Total: 0.60% (0.31, 0.89) 0-1 Age
Location: 9 Italian cities	crossover	35.1-71.5	35-64: -0.20% (-0.77, 0.37) 0-1
	Statistical Analyses: Conditional logistic regression	Range (5th, 95th):	65-74: 0.51% (0.05, 0.98) 0-1 75-84: 0.59%(0.20, 0.97) 0-1
	Age Groups: >35	Lowest 5th: 14.3	≥ 85: 0.97% (0.53, 1.42) 0-1 ≥ 65: 0.75% (0.42, 1.09)
		Highest 95th: 147.0	Sex
		Copollutant (correlation): NR	Men: 0.72% (0.37, 1.07) 0-1 Women: 0.83% (0.33, 1.33) 0-1
			Median income (by census block) Low (<20th percentile): 0.80% (-0.02, 1.62) 0-1 Mid-low (20th-50th percentile): 0.68% (0.25, 1.12) 0-1 Mid-high (51st-80th percentile): 0.85% (0.40, 1.30) 0-1 High (>80th percentile): 0.30% (-0.25, 0.86) 0-1
			Location of death Out-of-hospital: 0.71% (0.32, 1.11) 0-1 Discharged 2-28 days before death: 1.34% (0.49, 2.20) 0-1 In-hospital: 0.65% (0.33, 0.97) 0-1 Nursing home: -0.04% (-1.02, 0.95) 0-1
Reference: Goldberg et al. (2003,	Outcome: Mortality: Congestive Heart	Pollutant: PM ₁₀	This study does not present results
035202) Period of Study: 1084 1003	Failure (428)	Averaging Time: 24-h avg	quantitatively for PM ₁₀
Period of Study: 1984-1993	Study Design: Time-series	Mean (SD): PM ₁₀ : 32.2 (17.6)	
Location: Montreal, Quebec, Canada	Statistical Analyses: Poisson, natural splines	IQR (25th, 75th): PM ₁₀ : (19.7, 41.1)	
	Age Groups: ≥ 65	$ \begin{array}{l} \textbf{Copollutant (correlation):} \ PM_{2.5}, \ TSP, \\ Sulfate, \ CoH, \ SO_2, \ NO_2, \ CO, \ O_3 \end{array} $	
Reference: Goldberg et al. (2003, 035202)	Outcome: Mortality:	Pollutant: PM ₁₀	This study does not present results quantitatively for PM ₁₀
Period of Study: 1984-1993	Diabetes (250)	Averaging Time: 24-h avg	quantitatively for 1 m ₁₀
Location: Montreal, Quebec, Canada	Study Design: Time-series Statistical Analyses: Poisson, natural spline	Mean (SD): PM ₁₀ : 32.2 (17.6) μg/m ³ IQR (25th, 75th): PM ₁₀ : (19.7, 41.1)	
	Age Groups: ≥ 65	Copollutant (correlation): PM _{2.5} , Sulfate, CoH, SO ₂ , NO ₂ , CO, O ₃	
Reference: Kan and Chen (2003,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 μg/m³
087372) Period of Study: Ion 2000 Dec 2001	Nonaccidental (<800)	Averaging Time: 24-h avg	Relative Risk (Lower CI, Upper CI)
Period of Study: Jan 2000-Dec 2001 Location: Shanghai, China	Cardiovascular (390-459)	Mean (SD): 91.14 (51.85)	lag: Nonaccidental:
Location. Shanghal, China	COPD (490-496)	Range (Min, Max): (17.0, 385.0)	All ages: 1.003 (1.001, 1.005) 0 <65: 1.001 (0.997, 1.005) 0
	Study Design: Time-series	Copollutant (correlation):	65-75: 1.005 (1.001, 1.008) 0
	Statistical Analyses: Poisson GAM, LOESS	SO ₂ : r = 0.71	>75: 1.003 (1.001, 1.006) 0
	Age Groups: All ages	NO_2 : $r = 0.73$	Cardiovascular: All ages: 1.003 (1.000, 1.006) 0
	<65 yr		<65: 1.002 (0.994, 1.010) 0 65-75: 1.003 (0.998, 1.008) 0
	65-75 vr		>75: 1.003 (1.000, 1.006) 0
	>75 yr		COPD: All ages: 1.005 (0.999, 1.011) 0 <65: 1.004 (0.981, 1.027) 0 65-75: 0.996 (0.986, 1.007) 0 >75: 1.006 (1.000, 1.012) 0
			Multipollutant models: SO ₂ : 1.001 (0.998, 1.003) 0 NO ₂ : 1.001 (0.998, 1.003) 0 SO ₂ +NO ₂ : 1.000 (0.997, 1.003) 0

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Kan and Chen (2003,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
<u>087372</u>)	Nonaccidental (<800)	Averaging Time: 24-h avg	Odds Ratio (Lower CI, Upper CI) lag:
Period of Study: Jan 2000-Dec 2001	Cardiovascular (390-459)	Mean (SD): 91.14 (51.85)	Nonaccidental: Bidirectional referent days:
Location: Shanghai, China	COPD (490-496)	IQR (25th, 75th): (54, 114)	7 days: 1.000 (0.9988, 1.002) 0-1 ma
	Study Design: Case-crossover	Copollutant (correlation):	7 and 14 days: 1.002 (1.000, 1.004) 0-1 ma
	Statistical Analyses: Conditional	SO ₂ : r = 0.71	7, 14, and 21 days: 1.003 (1.001, 1.005) 0-1 ma
	logistic regression	NO_2 : r = 0.73	Unidirectional referent days: 7 days: 1.015 (1.012, 1.018) 0-1 ma
	Age Groups: All ages		7 and 14 days: 1.017 (1.015, 1.019) 0-1 ma 7, 14, and 21 days: 1.019 (1.012, 1.021) 0-1 ma Bidirectional referent days (7, 14, and 21 days): Cardiovascular: 1.004 (1.001, 1.007) 0-1 ma COPD: 1.006 (0.999, 1.013) 0-1 ma Nonaccidental: PM ₁₀ +SO ₂ : 0.997 (0.994, 1.025) 0-1 ma PM ₁₀ +NO ₂ : 0.997 (0.994, 1.025) 0-1 ma PM ₁₀ +SO ₂ +NO ₂ : 0.995 (0.992, 1.025) 0-1 ma
Reference: Kan et al. (2005, <u>087561</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: Apr 2003-May 2003	Severe acute respiratory syndrome	Averaging Time: 24-h avg	Relative Risk (Lower CI, Upper CI)
Location: Beijing, China	(SARS) Study Design: Time-series	Mean (SD): 149.1 (8.1)	lag: 0.99 (0.96-1.03) 0
		Range (Min, Max): (34, 246)	1.00 (0.97-1.04) 1
	Statistical Analyses: Poisson, GAM, smoothing spline	Copollutant:	1.02 (0.98-1.06) 2 1.04 (0.99-1.09) 3
	Age Groups: All ages	SO ₂	1.06 (1.00-1.11) 4 1.06 (1.00-1.12) 5
		NO_2	1.05 (0.98-1.12) 6
Reference: Kan et al. (2007, <u>091267</u>)	Outcome (ICD10): Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: Mar 2004-Dec 2005	Total (nonaccidental) (A00-R99)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Location: Shanghai, China	Cardiovascular (I00-I99) Respiratory (J00-J98)	Mean (SD): 107.9 (2.39) μg/m ³	PM_{10}
	Study Design: Time-series	Range (Min, Max): (22.0, 403.0)	Total: 0.16% (0.02, 0.30) 0-1
	Statistical Analyses: Poisson GAM, penalized splines	Copollutant (correlation): PM ₁₀ PM _{2.5} : r = 0.84	Cardiovascular: 0.31% (0.10, 0.53) 0-1 Respiratory: 0.33% (-0.08, 0.75) 0-1
	Age Groups: All ages	PM _{10-2.5} : r = 0.88 O ₃ : r = 0.21	1.03pii atory. 0.00 /0 (-0.00, 0.10) 0-1

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Kan et al. (2008, <u>156621</u>) Period of Study: Jan 2001-Dec 2004 Location: Shanghai, China	Outcome: Mortality: Total (nonaccidental) (A00-R99) Cardiovascular (100-I99) Respiratory (J00-J98) Study Design: Time-series Statistical Analyses: Poisson GLM, natural splines Age Groups: All ages; 0-4 yr 5-44 yr 45-64 yr ≥ 65 yr	Pollutant: PM ₁₀ Averaging Time: 24-h avg Mean (SD): Warm season: 87.4 (1.8) Cool season: 116.7 (2.8) Entire period: 102.0 (1.7) Range (Min, Max): NR Copollutant (correlation): SO ₂ NO ₂ O ₃	Increment: 10 μg/m³ % Increase (Lower CI, Upper CI) lag: Nonaccidental Warm season: 0.21 (0.09, 0.3) 0-1 Cool season: 0.26 (0.22, 0.30) 0-1 Entire period: 0.25 (0.14, 0.37) 0-1 Female: 0.33 (0.18, 0.48) 0-1 Male: 0.17 (0.03, 0.32) 0-1 5-44: 0.04 (-0.52, 0.59) 0-1 45-64: 0.17 (-0.11, 0.45) 0-1 ≥ 65: 0.26 (0.15, 0.38) 0-1 Cardiovascular Warm season: 0.22 (-0.14, 0.58) 0-1 Cool season: 0.25 (0.05, 0.45) 0-1 Entire period: 0.27 (0.10, 0.44) 0-1 Respiratory Warm season: -0.28 (-0.93, 0.38) 0-1 Cool season: 0.58 (0.25, 0.92) 0-1 Entire period: 0.27 (-0.01, 0.56) 0-1 Stratified by Educational Attainment Nonaccidental: Low: 0.33 (0.19, 0.47) 0-1 High: 0.18 (0.01, 0.36) 0-1 Cardiovascular: Low: 0.30 (0.10, 0.51) 0-1 High: 0.23 (-0.03, 0.50) 0-1 Respiratory: Low: 0.36 (0.00, 0.72) 0-1 High: 0.02 (-0.43, 0.47) 0-1
Reference: Keatinge and Donaldson (2006, <u>087536</u>) Period of Study: 1991-2002 Location: London, England	Outcome: Mortality: Total (nonaccidental) Study Design: Time-series Statistical Analyses: Poisson GAM Age Groups: ≥ 65 yr	Pollutant: PM ₁₀ Averaging Time: 24-h avg Mean (SD): NR Range (Min, Max): NR Copollutant: O ₃ SO ₂	Increment: 10 μg/m³ Mortality per 106 (Lower CI, Upper CI) lag: PM ₁₀ +Temp: 2.1 (0.9, 3.3) 0-2 avg PM ₁₀ +Temp+Acclim: 1.6 (0.4, 2.8) 0-2 avg PM ₁₀ +Temp+Acclim+Acclim x T: 1.5 (0.3, 2.6) 0-2 avg PM ₁₀ +Temp+Acclim+Acclim x T+Sun: 1.4 (0.2, 2.5) 0-2 avg PM ₁₀ +Temp+Acclim+Acclim x T+Sun+Wind: 0.8 (-0.4, 1.9) 0-2 avg PM ₁₀ +Temp+Acclim+Acclim x T+Sun+Wind+Abs. Humid.: 0.8 (-0.3, 1.9) 0-2 avg PM ₁₀ +Temp+Acclim+Acclim x T+Sun+Wind+Abs. Humid.: 0.9 (-0.3, 2.0) 0-2 avg PM ₁₀ +Temp+Acclim+Acslim x T+Sun+Wind+Abs. Humid.+ Rain: 0.9 (-0.3, 2.0) 0-2 avg PM ₁₀ +Temp+Abs. Humid.:
Reference: Kettunen et al. (2007, 091242) Period of Study: 1998-2004 Location: Helsinki, Finland	Outcome (ICD10): Mortality: Stroke (I60-I61, I63-I64) Study Design: Time-series Statistical Analyses: Poisson GAM, penalized thin-plate splines Age Groups: ≥ 65	Pollutant: PM ₁₀ Averaging Time: 24-h avg Median (SD) unit: Cold Season: 16.3 Warm Season: 16.5 Range (Min, Max): Cold Season: (3.1, 136.7) Warm Season: (3.3, 67.4) Copollutant: PM _{2.5} PM _{10-2.5} UFP O ₃ CO NO ₂	1.9 (0.7, 3.1) 0-2 avg Increment: Cold Season: 13.8 μg/m³ Warm Season: 9.8 μg/m³ % Increase (Lower CI, Upper CI) lag: Cold Season -0.56% (-3.32, 2.29) 0 -0.93% (-3.55, 1.75) 1 -1.68% (-4.30, 1.00) 2 -1.53% (-4.14, 1.14) 3 Warm Season 10.89% (0.95, 21.81) 0 8.56% (-0.88, 18.90) 1 2.06% (-6.76, 11.71) 2 -2.89% (-11.32, 6.34) 3

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Kim et al. (2003, <u>155899</u>)	Outcome (ICD10): Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Reference: Kim et al. (2003, 155899) Period of Study: Jan 1995-Dec 1999 Location: Seoul, Korea	Outcome (ICD10): Mortality: Nonaccidental (all except S01-S99, T01-T98) Cardiovascular (I00-I52) Respiratory (J00-J98) Cerebrovascular (I60-I69) Study Design: Time-series Statistical Analyses: Poisson GAM Age Groups: All ages	Pollutant: PM ₁₀ Averaging Time: 24-h avg Mean (SD): 69.19 (10.36) IQR (25th, 75th): (44.82, 87.95) Copollutant (correlation): NR	Increment: 10 µg/m³ % Increase (Lower CI, Upper CI) lag: All cause: 2.8% (1.8, 3.7) 0 2.8% (1.9, 3.7) 1 1.4% (0.5, 2.3) 2 3.7% (2.1, 5.4) distributed lag (6-day) Respiratory: 8.3% (4.3, 12.5) 0 6.4% (2.7, 10.2) 1 6.5% (2.7, 10.4) 2 13.9% (6.8, 21.5) distributed lag (6-day) Pneumonia: 11.6% (4.2, 19.6) 0 9.0% (2.1, 16.3) 1 7.7% (0.8, 15.2) 2 17.1% (4.1, 31.7) distributed lag (6-day) COPD: 4.2% (-1.2, 10.0) 0 3.5% (-1.5, 8.9) 1 1.4% (-3.7, 6.8) 2 12.2% (2.5, 22.9) distributed lag (6-day) Cardiovascular: 2.0% (-0.9, 5.0) 0 3.3% (0.6, 6.2) 1 2.9% (0.1, 5.8) 2 4.4% (-0.6, 9.6) distributed lag (6-day) Myocardial infarction: 2.6% (-2.3, 7.8) 0 5.8% (1.0, 10.7) 1 5.5% (0.7, 10.6) 2 4.9% (-3.4, 13.9) distributed lag (6-day) Cerebrovascular: 3.2% (0.8, 5.5) 0 3.1% (0.9, 5.3) 1 2.4% (0.1, 4.6) 2 6.3% (2.3, 10.5) distributed lag (6-day) Ischemic stroke: -0.6% (-5.6, 4.7) 0 0.6% (-4.2, 5.7) 1
Reference: Kim et al. (2004, <u>087417</u>)	Outcome: Mortality: Nonaccidental	Pollutant: PM ₁₀	-0.1% (-4.9, 5.1) 2 10.3% (1.0, 20.4) distributed lag (6-day) Increment: 42.11 μg/m³
Period of Study: Jan 1997-Dec 2001	Study Design: Time-series	Averaging Time: 24-h avg	Relative Risk (Lower CI, Upper CI)
Location: Seoul, Korea	Statistical Analyses: Poisson GAM,	Mean (SD): 68.23 (36.36) μg/m ³	lag:
	LOESS	IQR (25th, 75th): (42.56, 84.67)	1.021 (1.009, 1.035)
	Age Groups: All ages	Copollutant (correlation): NR	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Le Tertre et al. (2005,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 1.0 µg/m³
<u>087560</u>)	Nonaccidental (<800)	Averaging Time: 24-h avg	β coefficient (SE) lag:
Period of Study: NR	Study Design: Time-series	Mean (SD): NR	Athens: 0.001311 (0.0003) Barcelona: 0.000575 (0.0002)
Location: 21 European cities (APHEA-2)	Statistical Analyses: Empirical Bayes	Range (Min, Max): NR	Basel: 0.000462 (0.0005)
	Age Groups: All ages	Copollutant: NO ₂	Birmingham: 0.000305 (0.0003) Budapest: -0.000248 (0.0005) Cracow: 0.000155 (0.0004) Erfurt: -0.000465 (0.0004) Geneva: -0.00059 (0.0005) Helsinki: 0.000389 (0.0004) London: 0.000591 (0.0002) Lyon: 0.001554 (0.0005) Madrid: 0.000372 (0.0003) Milan: 0.000372 (0.0003) Milan: 0.000901 (0.0002) Paris: 0.000411 (0.0003) Prague: 0.000097 (0.0002) Rome: (0.001333 (0.0003) Stockholm: 0.000479 (0.0009) Tel Aviv: 0.000522 (0.0003) Teplice: 0.000876 (0.0004) Torino: 0.000938 (0.0002) Zurich: 0.000365 (0.0004) Toulouse: NR (NR) Overall: 0.00055 (0.000098)
Reference: Lee et al. (2007, <u>093042</u>)	Outcome (ICD10): Mortality:	Pollutant: PM ₁₀	Increment: 41.49 µg/m³
Period of Study: Jan 2000-Dec 2004	Nonaccidental (A00-R99)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Location: Seoul, Korea	Study Design: Time-series	Mean (SD): w/ Asian dust days: 70.00 (47.80) w/o Asian dust days: 65.77 (33.60) Asian dust days only: 188.49 (142.85) Copollutant:	Model with Asian Dust Days
	Statistical Analyses: Poisson GAM		0.7% (0.2, 1.3) 1-3
	Age Groups: All ages		Model without Asian dust days
		CO NO_2 SO_2 O_3	1.0% (0.2, 1.8) 1-3
Reference: Lee and Shaddick (2007,	Outcome (ICD10): Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
156685)	Nonaccidental	Averaging Time: 24-h avg	Relative Risk (Lower CI, Upper CI)
Period of Study: Jan 1993-Dec 1997	Study Design: Time-series	Mean (SD): NR	lag: Constant model
Location: Cleveland, Ohio	Statistical Analyses:	Range (Min, Max): NR	Cleveland: 1.0049
Detroit, Michigan	Bayesian, penalized spline		Detroit: 1.0046
Minneapolis, Minnesota	2. Likelihood, penalized spline		Minneapolis: 1.0052
Pittsburgh, Pennsylvania	Age Groups: All ages		1 Pittsburgh: 1.0045
Reference: Martins et al. (2004,	Outcome (ICD10): Mortality:	Pollutant: PM ₁₀	The study does not present quantitative
<u>087457</u>)		Averaging Time: 24-h avg	results.
Period of Study: Jan 1997-Dec 1999	Study Design: Time-series	Mean (SD):	
Location: São Paulo, Brazil	Statistical Analyses: Poisson GLM, natural cubic splines	Cerqueira Cesar: 42.5(22.9) Santa Amaro: 49.6(32.1) Central: 52.1(23.5) Penha: 40.4(23.8) Santana: 72.6(24.5) Sao Miguel Paulista: 68.6(31.0)	
	Age Groups: ≥ 60		
		Range (Min, Max): NR	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Nawrot et al. (2007,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment:
<u>098619</u>)	Nonaccidental (<800)	Averaging Time: 24-h avg	Main analysis: NR Sensitivity analysis: 10 μg/m³
Period of Study: Jan 1997-Dec 2003	Cardiovascular (390-459)	Median (SD) unit:	% Increase (Lower CI, Upper CI) lag:
Location: Flanders, Belgium	Respiratory (460-519)	Winter: 43.3(0.88)	Highest season-specific PM ₁₀ quartile
	Study Design: Time-series	Spring: 39.5(0.88)	vs. the lowest season-specific PM ₁₀ quartile
	Statistical Analyses: Main analysis:	summer: 37.7(0.91)	Summer: 7.8% (6.1, 9.6)
	Segmented regression models	Fall: 37.2(0.88)	Spring: 6.3% (4.7, 7.8) Fall: 2.2% (0.58, 3.8)
	Sensitivity analysis: Poisson GAM, LOESS	Range (Min, Max): NR	Winter: 1.4% (0.06, 2.9) Warm months (Jun, Jul, Aug):
	Age Groups: All ages	Copollutant (correlation): NR	7.9% (6.2, 9.6) Cold months (Dec, Jan, Feb): 1.5% (0.22, 3.3) Intermediate months (Mar, Apr, May, Sep, Oct, Nov): 4.2% (2.9, 5.6) Warmer Periods (Apr-Sep) Nonaccidental: 1.5% (1.1, 2.0) 0 Respiratory: 2.0% (0.6, 3.7) 0 Cardiovascular: 1.8% (1.1, 2.4) 0

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: O'Neill et al. (2004,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: 1996-1998 1994-1995 Location: Mexico City, Mexico	Nonaccidental Study Design: Time-series Statistical Analyses: Poisson, natural cubic spline Age Groups: All ages	Averaging Time: 24-h avg Range: Hi-Vol: 46.3-164.0 TEOM: 48.2-107.5 Predicted: 30.2-162.4 Impactor: 58.4 Range (Min, Max): Xalostoc Hi-Vol: (40.0, 335.0) TEOM: (16.5, 291.2) Predicted: (60.6, 320.0) Tlalnepantla Hi-Vol: (25.0, 264.0) TEOM: (10.4, 275.9) Predicted: (17.7, 175.0) Merced Hi-Vol: (17.0, 266.0) TEOM: (9.4, 318.7) Predicted: (12.3, 160.8) Cerro de la Estrella Hi-Vol: (15.0, 292.0) TEOM: (13.7, 268.3) Predicted: (11.2, 154.4) Pedregal (1996-1998) Hi-Vol: (5.0, 226.0) TEOM: (7.8, 264.4) Predicted: (-0.5, 86.3) Pedregal (1994-1995) Hi-Vol: (8.7, 152.5) Impactor: (15.0, 154.0) Predicted: (3.9, 75.9)	% Increase (Lower CI, Upper CI) lag: TEOM 0.04% (-0.12, 0.20) 0 -0.02% (-0.18, 0.13) 1 -0.01% (-0.27, 0.25) 2 -0.03% (-0.19, 0.13) 3 -0.03% (-0.19, 0.13) 4 -0.05% (-0.21, 0.11) 5 0.05% (-0.25, 0.35) 0-5 Predicted -0.05% (-0.29, 0.19) 0 0.09% (-0.16, 0.34) 1 -0.12% (-0.43, 0.20) 2 -0.02% (-0.26, 0.21) 3 -0.14% (-0.37, 0.09) 4 -0.05% (-0.28, 0.18) 5 0.00% (-0.39, 0.38) 0-5 Sierra-Anderson High Volume Air Sampler 0.02% (-0.29, 0.32) 0 0.13% (-0.27, 0.54) 1 0.21% (-0.10, 0.52) 2 0.53% (0.07, 0.99) 3 0.11% (-0.20, 0.41) 4 0.38% (0.07, 0.70) 5 GAM: 2 LOESS terms, default convergence 1.68% (0.45, 2.93) 0 -0.36% (-1.56, 0.86) 1 -0.21% (-1.40, 1.00) 2 -0.18% (-1.40, 1.05) 3 1.31% (0.08, 2.55) 4 1.49% (0.25, 2.73) 5 1.77% (-0.26, 3.83) 0-5 Parametric: cubic splines 5 df 1.45% (0.09, 2.83) 0 -0.71% (-2.06, 0.67) 1 -0.59% (-1.95, 0.79) 2 -0.70% (-2.09, 0.71) 3 0.92% (-0.46, 2.32) 4 1.17% (-0.19, 2.55) 5 1.17% (-1.54, 3.95) 0-5 10 df 1.60% (0.20, 3.02) 0 -0.80% (-2.18, 0.60) 1 -0.73% (-2.11, 0.68) 2 -1.05% (-2.49, 0.40) 3 0.64% (-0.79, 2.10) 4 1.05% (-0.36, 2.48) 5 0.51% (-2.60, 3.71) 0-5 2 df 1.79% (0.48, 3.11) 0 -0.09% (-1.38, 1.22) 1 0.10% (-1.18, 1.40) 2 0.20% (-1.10, 1.52) 3 1.60% (0.30, 2.91) 4 1.72% (0.43, 3.04) 5
Reference: O'Neill et al. (2005, 098094) Period of Study: 1996-1998 1996-1999 Location: Mexico City and Monterrey,	Outcome: Mortality: Nonaccidental Cardiovascular (390-460) Respiratory (460-520) Other-causes	Pollutant: PM ₁₀ Averaging Time: 24-h avg Mean (SD): Mexico City: 75.8 (31.4) Monterrey: 50.0 (23.5)	1.90% (-0.36, 4.21) 0-5 The study focuses on the temperature-mortality relationship and only includes PM ₁₀ as a covariate in models.
Mexico Mexico	Study Design: Time-series Statistical Analyses: Poisson, natural cubic splines	Range (Min, Max): Mexico City: (18.0, 233.9) Monterrey: (6.2, 230.8)	
		Copollutant: O ₃	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: O'Neill et al. (2008,	Outcome:	Pollutant: PM ₁₀	Increment: 10 µg/m³
192314) Period of Study: Jan 1998-Dec 2002	Study Design: Time-series	Averaging Time: 24 h	Percent increase (95% CI) in all- cause adult mortality (>22yrs) by
Location:	Covariates: Temperature, day of week, temporal trends, sex	Mean (SD) μg/m³:	educational level and sex
Mexico City, Mexico	Statistical Analysis: Poisson	Mexico City: 53.8 (24.9) São Paulo: 48.9 (21.9)	Mexico City All Adults, Concurrent Day None: 0.76 (0.17-1.36)
Santiago, Chile São Paulo, Brazil	regression Statistical Package: S-Plus	Santiago: 78.7 (33.0)	Primary: 0.27 (-0.19-0.72) Secondary: 0.19 (-0.19-0.57)
odo i dalo, bideli	Age Groups: Adults over 21 yr	Range (Min, Max):	≥ 12 yr: 0.83 (0.03-1.63) All Adults, Lag 1
		Mexico City: 1.08-192.2	None: 0.62 (0.02-1.22) Primary: 0.62 (0.17-1.08)
		São Paulo: 12.0-171.3	Secondary: 0.29 (-0.09-0.90) ≥ 12 yr: 0.58 (-0.21-1.38)
		Santiago: 8.0-218.6	All Adults, Distributed Lags 0-5
		Copollutant: NR	None: 0.91 (-0.07-1.89) Primary: 0.48 (-0.27-1.24) Secondary: 0.27 (-0.36-0.90) ≥ 12 yr: 0.75 (-0.49-2.02) All Adults, df (yr) None: 5.4 Primary: 6.0 ≥ 12 yr: 3.0 Women, Concurrent Day None: 0.65 (-0.08-1.38) Primary: 0.48 (-0.13-1.09) Secondary: 0.35 (-0.16-0.86) ≥ 12 yr: 1.64 (0.69-2.59) Women, Lag 1 None: 0.62 (-0.12-1.36) Primary: 1.03 (0.42-1.64) Secondary: 0.59 (0.08-1.11) ≥ 12 yr: 1.79 (0.84-2.75) Women, Distributed Lags 0-5 None: 0.46 (-0.74-1.68) Primary: 1.39 (0.42-2.36) Secondary: 0.51 (-0.30-1.33) ≥ 12 yr: 1.71 (0.61-2.83) Women, df (yr) None: 5.4 Primary: 4.4 Secondary: 4.8 ≥ 12 yr: 1.0 Men, Concurrent Day None: 0.75 (-0.21-1.72) Primary: 0.52 (-0.11-1.15) Secondary: 0.56 (0.08-1.05) ≥ 12 yr: 1.20 (0.25-2.17) Men, Lag 1 None: 0.45 (-0.51-1.42) Primary: 0.70 (0.06-1.34) Secondary: 0.47 (-0.02-0.95)
			≥ 12 yr: 0.74 (-0.22-1.70) Men, Distributed Lags 0-5 None: 1.24 (-0.25-2.75) Primary: 0.65 (-0.39-1.69)
			Secondary: 0.88 (0.11-1.66) ≥ 12 yr: 1.07 (-0.41-2.57) Men, df (yr) None: 3.8 Primary: 5.6
			Secondary: 4.6 ≥ 12 yr: 3.8
			São Paulo All Adults, Concurrent Day None: 0.77 (-0.28-1.82) Primary: 1.27 (0.78-1.76) Secondary: 0.93 (-0.07-1.94) ≥ 12 yr: 2.93 (2.00-2.88) All Adults, Lag 1 None: 0.70 (-0.34-1.76) Primary: 1.32 (0.83-1.82) Secondary: 1.91 (0.58-2.60) ≥ 12 yr: 2.20 (1.27-3.15)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			All Adults, Distributed Lags 0-5 None: 0.76 (-0.91-2.46) Primary: 1.34 (0.55-2.14) Secondary: 1.91 (0.35-2.60) ≥ 12 yr: 2.20 (1.27-3.15) All Adults, df (yr) None: 4.0 Primary: 4.0 Secondary: 2.8 ≥ 12 yr: 1.6 Women, Concurrent Day None: 1.93 (0.87-3.00) Primary: 1.72 (1.04-2.41) Secondary: 0.85 (-0.21-1.92) ≥ 12 yr: 1.84 (0.56-3.13) Women, Lag 1 None: 1.41 (0.34-2.48) Primary: 1.64 (0.96-2.33) Secondary: 1.43 (0.36-2.50) ≥ 12 yr: 2.27 (0.99-3.56) Women, Distributed Lags 0-5 None: 2.00 (0.40-3.63) Primary: 2.05 (0.96-3.14) Secondary: 1.61 (0.07-3.17) ≥ 12 yr: 3.35 (1.49-5.25) Women, df (yr) None: 2.4 Primary: 3.6 Secondary: 1.74 ≥ 12 yr: 0.8 Men, Concurrent Day None: -0.43 (-2.15-1.32) Primary: 1.36 (0.71-2.02) Secondary: 1.74 (0.77-2.72) ≥ 12 yr: 2.81 (1.71-3.92) Men, Lag 1 None: -0.44 (-2.17-1.33) Primary: 1.44 (0.79-2.10) Secondary: 1.52 (0.55-2.49) ≥ 12 yr: 1.48 (0.38-2.59) Men, Distributed Lags 0-5 None: -0.30 (-3.09-2.56) Primary: 1.67 (0.65-2.70) Secondary: 1.06 (-0.34-2.49) ≥ 12 yr: 3.18 (1.60-4.79) Men, df (yr) None: 4.4 Primary: 3.2 Secondary: 0.8 ≥ 12 yr: 1.2
			Santiago All Adults, Concurrent Day None: 1.44 (0.53-2.36) Primary: 0.06 (-0.21-0.34) Secondary: 0.42 (0.06-0.78) ≥ 12 yr: 1.32 (0.60-2.05) All Adults, Lag 1 None: 2.08 (1.16-30.1) Primary: 0.53 (0.25-0.81) Secondary: 0.55 (0.19-0.91) ≥ 12 yr: 1.31 (0.59-2.04) All Adults, Distributed Lags 0-5 None: 3.18 (1.60-4.78) Primary: 0.58 (0.10-1.06) Secondary: 1.10 (0.48-1.73) ≥ 12 yr: 2.00 (0.93-3.07) All Adults, df (yr) None: 3.6 Primary: 5.6 Secondary: 4.0 ≥ 12 yr: 1.6 Women, Concurrent Day None: 0.91 (-0.06-1.89) Primary: 0.31 (-0.06-0.68) Secondary: 0.84 (0.33-1.36) ≥ 12 yr: 0.60 (-0.32-1.52) Women, Lag 1

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			None: 1.58 (0.58-2.58) Primary: 0.79 (0.42-1.17) Secondary: 0.76 (0.25-1.28) ≥ 12 yr: 0.53 (-0.39-1.45) Women, Distributed Lags 0.5 None: 1.15 (-0.48-2.80) Primary: 1.05 (0.41-1.69) Secondary: 1.29 (0.40-2.19) ≥ 12 yr: 1.06 (-0.27-2.41) Women, df (yr) None: 2.6 Primary: 4.8 Secondary: 4.4 ≥ 12 yr: 1.0 Men, Concurrent Day None: 0.05 (-1.02-1.12) Primary: -0.11 (-0.5-0.28) Secondary: 0.18 (-0.31-0.68) ≥ 12 yr: 1.52 (0.70-2.35) Men, Lag 1 None: 0.61 (-0.44-1.68) Primary: 0.23 (-0.16-0.62) Secondary: 0.49 (0.00-0.98) ≥ 12 yr: 1.03 (0.21-1.86) Men, Distributed Lags 0-5 None: 2.08 (0.28-3.91) Primary: 0.16 (-0.50-0.82) Secondary: 1.27 (0.43-2.12) ≥ 12 yr: 1.98 (0.76-3.20) Men, df (yr) None: 2.8
			Primary: 4.8 Secondary: 4.4 ≥ 12 yr: 1.6 Percent increase (95% CI) in all- cause adult mortality (≥65yrs) by educational level and sex
			Mexico City All Adults, Concurrent Day None: 0.41 (-0.25-1.08) Primary: 0.40 (-0.15-0.95) Secondary: 0.50 (-0.01-1.01) ≥ 12 yr: 1.51 (0.39-2.63) All Adults, Lag 1 None: 0.20 (-0.47-0.87) Primary: 0.80 (0.24-1.36) Secondary: 0.60 (0.09-1.12) ≥ 12 yr: 1.09 (-0.02-2.22) All Adults, Distributed Lags 0-5 None: 0.27 (-0.83-1.38)
			Primary: 0.99 (0.07-1.91) Secondary: 0.30 (-0.56-1.16) ≥ 12 yr: 1.83 (0.09-3.59) All Adults, df (yr) None: 5.6 Primary: 5.4 Secondary: 6.0 ≥ 12 yr: 3.2 Women, Concurrent Day None: 0.49 (-0.30-1.29)
			Primary: 0.39 (-0.33-1.11) Secondary: 0.52 (-0.16-1.20) ≥ 12 yr: 1.29 (0.12-2.48) Women, Lag 1 None: 0.73 (-0.07-1.54) Primary: 1.24 (0.52-1.97) Secondary: 0.55 (-0.13-1.23) ≥ 12 yr: 1.50 (0.32-2.70) Women, Distributed Lags 0-5 None: 0.75 (-0.56-2.08) Primary: 1.43 (0.29-2.59) Secondary: 0.06 (-1.01-1.15) ≥ 12 yr: 1.48 (0.10-2.87)
			Women, df (yr) None: 5.4 Primary: 4.2 Secondary: 4.8

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			≥ 12 yr: 0.6 Men, Concurrent Day None: 0.90 (-0.23-2.04) Primary: 0.37 (-0.40-1.16) Secondary: 0.78 (0.07-1.49) ≥ 12 yr: 1.66 (0.30-3.04) Men, Lag 1 None: -0.15 (-1.27-0.98) Primary: 0.26 (-0.53-1.05) Secondary: 0.93 (0.22-1.65) ≥ 12 yr: 0.95 (-0.41-2.32) Men, Distributed Lags 0-5 None: 0.80 (-0.95-2.58) Primary: 0.29 (-0.99-1.58) Secondary: 1.06 (-0.08-2.21) ≥ 12 yr: 1.76 (-0.35-3.91) Men, df (yr) None: 3.8 Primary: 5.6 Secondary: 4.6 ≥ 12 yr: 3.8
			≥ 12 yr: 3.8 São Paulo All Adults, Concurrent Day None: 0.60 (-0.48-1.70) Primary: 0.59 (1.00-2.19) Secondary: 1.21 (-0.01-2.44) ≥ 12 yr: 2.80 (1.67-3.94) All Adults, Lag 1 None: 0.62 (-0.47-1.72) Primary: 1.48 (0.89-2.07) Secondary: 2.31 (1.08-3.55) ≥ 12 yr: 2.52 (1.40-3.66) All Adults, Distributed Lags 0-5 None: 0.91 (-0.84-2.69) Primary: 1.73 (0.79-2.67) Secondary: 3.25 (1.39-5.16) ≥ 12 yr: 3.63 (2.01-5.29) All Adults, df (yr) None: 4.0 Primary: 3.8 Secondary: 2.6 ≥ 12 yr: 1.6 Women, Concurrent Day None: 1.82 (0.71-2.94) Primary: 1.84 (1.05-2.64) Secondary: 0.62 (-0.55-1.81) ≥ 12 yr: 1.00 (-0.27-2.29) Women, Lag 1 None: 1.36 (0.25-2.49) Primary: 1.76 (0.97-2.56) Secondary: 1.57 (0.39-2.76) ≥ 12 yr: 1.39 (0.12-2.68) Women, Distributed Lags 0-5 None: 1.80 (0.12-3.51) Primary: 1.97 (0.73-3.22) Secondary: 1.89 (0.19-3.61) ≥ 12 yr: 2.53 (0.70-4.40) Women, df (yr) None: 2.4 Primary: 3.4 Secondary: 1.2 ≥ 12 yr: 0.8 Men, Concurrent Day None: -0.67 (-2.50-1.19) Primary: 1.82 (1.00-2.65)
			Secondary: 2.46 (1.31-3.63) ≥ 12 yr: 1.73 (0.47-3.00) Men, Lag 1 None: -0.59 (-2.42-1.26) Primary: 1.59 (0.78-2.41) Secondary: 2.64 (1.49-3.80) ≥ 12 yr: 0.89 (-0.35-2.15) Men, Distributed Lags 0-5 None: 1.50 (-1.52-4.60) Primary: 2.46 (1.20-3.74) Secondary: 2.24 (0.56-3.95) ≥ 12 yr: 1.45 (-0.34-3.29)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Men, df (yr) None: 4.6
			Primary: 3.0
			Secondary: 0.8
			≥ 12 yr: 1.0
			Santiago
			All Adults, Concurrent Day None: 1.49 (0.54-2.45)
			Primary: 0.28 (-0.03-0.59)
			Secondary: 0.58 (0.13-1.04) ≥ 12 yr: 2.32 (1.50-3.15)
			All Adults, Lag 1
			None: 2.20 (1.24-3.17)
			Primary: 0.74 (0.43-1.05) Secondary: 0.64 (0.20-1.11)
			≥ 12 yr: 2.20 (1.36-3.04)
			All Adults, Distributed Lags 0-5 None: 3.21 (1.54-4.90)
			Primary: 0.92 (0.38-1.46)
			Secondary: 1.46 (0.67-2.25)
			≥ 12 yr: 4.02 (2.78-5.27) All Adults, df (yr)
			None: 3.8
			Primary: 5.2 Secondary: 4.0
			≥ 12 yr: 1.8
			Women, Concurrent Day
			None: 1.39 (0.41-2.39) Primary: 0.4 (0.01-0.8)
			Secondary: 0.91 (0.29-1.53)
			≥ 12 yr: 0.87 (-0.02-1.78)
			Women, Lag 1 None: 1.83 (0.83-2.85)
			Primary: 0.98 (0.58-1.38)
			Secondary: 0.73 (0.11-1.35) ≥ 12 yr: 0.76 (-0.15-1.68)
			Women, Distributed Lags 0-5
			None: 2.47 (0.85-4.11) Primary: 1.2 (0.52-1.88)
			Secondary: 1.71 (0.65-2.78)
			≥ 12 yr: 0.87 (-0.02-1.78)
			Women, df (yr) None: 2.4
			Primary: 4.8
			Secondary: 4.4
			≥ 12 yr: 0.6 Men, Concurrent Day
			None: 0.54 (-0.51-1.61)
			Primary: 0.34 (-0.12-0.80) Secondary: 0.25 (-0.40-0.91)
			≥ 12 yr: 1.97 (1.09-2.86)
			Men, Lag 1 None: 0.84 (-0.21-1.91)
			Primary: 0.43 (-0.03-0.89)
			Secondary: 0.61 (-0.04-1.26) ≥ 12 yr: 1.57 (0.67-2.46)
			Men, Distributed Lags 0-5
			None: 2.41 (0.64-4.22)
			Primary: 0.80 (0.02-1.59) Secondary: 1.58 (0.45-2.71)
			≥ 12 yr: 2.99 (1.66-4.33)
			Men, df (yr)
			None: 2.Ö Primary: 4.4
			Secondary: 4.4
			≥ 12 yr: 1.8

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Peng et al. (2005, <u>087463</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: 1987-2000	Nonaccidental	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Location: 100 U.S. cities (NMMAPS)	Study Design: Time-series	Median (SD) unit: 27.1	Winter: -0.4% (-0.30, 0.21) 0
	Statistical Analyses: Bayesian semiparametric hierarchical models	Range (Min, Max): (13.2, 48.7)	0.15% (-0.08, 0.39) 1 0.10% (-0.13, 0.33) 2
	Age Groups: All ages	Copollutant (correlation): NR	Spring: 0.32% (0.08, 0.56) 0 0.14% (-0.14, 0.42) 1 0.05% (-0.21, 0.32) 2 Summer: 0.13% (-0.11, 0.37) 0 0.36% (0.11, 0.61) 1 -0.03% (-0.27, 0.21) 2 Fall: 0.05% (-0.16, 0.25) 0 0.14% (-0.06, 0.34) 1 0.13% (-0.08, 0.35) 2 All Seasons: 0.09% (-0.01, 0.19) 0 0.19% (0.10, 0.28) 1 0.08% (-0.03, 0.19) 2 PM10 only (45 cities): Winter: 0.15% (-0.16, 0.45) 1 Spring: 0.13% (-0.21, 0.48) 1 Summer: 0.30% (-0.10, 0.69) 1 Fall: 0.07% (-0.23, 0.37) 1 PM10 + O3 (45 cities): Winter: 0.18% (-0.16, 0.52) 1 Spring: 0.10% (-0.03, 0.49) 1 Summer: 0.33% (-0.14, 0.81) 1 Fall: 0.08% (-0.25, 0.41) 1 PM10 + O3 (45 cities): Winter: 0.13% (-0.24, 0.49) 1 Spring: 0.1% 9(-0.18, 0.56) 1 Summer: 0.28% (-0.13, 0.70) 1 Fall: -0.01% (-0.34, 0.31) 1 PM10 + NO2 (45 cities): Winter: 0.21% (-0.18, 0.60) 1 Spring: 0.19% (-0.17, 0.54) 1
D ()	0.4	B II (1 B)	Summer: 0.34% (0.01, 0.68) 1 Fall: 0.13% (-0.12, 0.39) 1
Reference: Penttinen et al. (2004, 087432)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: 1988-1996	Total (nonaccidental) (<800)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag: Total (nonaccidental)
Location: Helsinki, Finland	Cardiovascular (390-459)	Median (SD) unit: 21 μg/m ³	-0.23% (-1.47, 1.01) 0
	Respiratory (460-519)	Range (Min, Max): (0.2, 213) Copollutant (correlation):	0.88% (-0.32, 2.08) 1 0.11 (-0.51, 0.73) 0-3 avg
	Study Design: Time-series	O ₃ : r = -0.09	Cardiovascular -1.22% (-3.00, 0.56) 0
	Statistical Analyses: Poisson GAM, LOESS	NO ₂ : r = 0.50 CO: r = 0.45	0.63% (-1.09, 2.35) 1
	Age Groups:	SO ₂ : r = 0.61 TSP: r = 0.72	0.08% (-0.96, 0.81) 0-3 avg Respiratory
	15-64 yr 65-74 yr		3.94% (0.01, 7.87) 0 3.96% (0.11, 7.81) 1
Poference: Oign et al. (2007, 002054)	≥ 75 yr	Dellutent: DM	2.13% (0.03, 4.22) 0-3 avg
Reference: Qian et al. (2007, <u>093054</u>)	Outcome: Mortality: Total (nonaccidental) (<800)	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: 2001-2004 Location: Wuhan, China	Cardiovascular (390-459)	Averaging Time: 24-h avg Mean (SD): 141.8 3	% Increase (Lower CI, Upper CI) lag: Nonaccidental
Location: Wurlan, Olima	Stroke (430-438)	Range (Min, Max): (24.8, 477.8)	0.36% (0.19, 0.53) 0 0.28% (0.12, 0.45) 1
	Cardiac Diseases (390-398)	Copollutant (correlation):	0.43% (0.24, 0.62) 0-1
	Respiratory (460-519)	NO ₂	0.08% (-0.15, 0.31) 0-4 <45 yr
	Cardiopulmonary	SO ₂	0.28% (-0.26, 0.82) 0 0.45% (-0.06, 0.96) 1
	Study Design: Time-series	O ₃	0.53% (-0.08, 1.13) 0-1 0.41% (-0.31, 1.13) 0-4
	Statistical Analyses: Poisson GAM, natural splines	-,	≥ 45 yr 0.36% (0.19, 0.54) 0 0.27% (0.10, 0.44) 1
	Age Groups: All ages		0.42% (0.22, 0.62) 0-1 0.05% (-0.18, 0.29) 0-4 <65 yr

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	<45 yr		0.20% (-0.08, 0.49) 0 0.25% (-0.03, 0.52) 1
	≥ 45 yr		0.33% (0.01, 0.66) 0-1 0.01% (-0.38, 0.39) 0-4
	<65 yr		≥ 65 yr 0.41% (0.21, 0.61) 0
	≥ 65 yr		0.30% (0.10, 0.49) 1
			0.46% (0.24, 0.69) 0-1 0.10% (-0.16, 0.37) 0-4
			Cardiovascular 0.51% (0.28, 0.75) 0
			0.35% (0.12, 0.58) 1
			0.58% (0.31, 0.84) 0-1 0.35% (0.05, 0.66) 0-4
			<45 yr 0.59% (-0.62, 1.82) 0
			0.93% (-0.22, 2.08) 1 1.07% (-0.27, 2.42) 0-1
			1.15% (-0.40, 2.72) 0-4 ≥ 45 yr
			0.51% (0.27, 0.75) 0
			0.33% (0.10, 0.56) 1 0.56% (0.30, 0.83) 0-1
			0.33% (0.02, 0.63) 0-4 <65 yr
			0.27% (-0.23, 0.76) 0 0.30% (-0.16, 0.77) 1
			0.42% (-0.12, 0.97) 0-1 0.43% (-0.19, 1.06) 0-4
			≥ 65 yr 0.57% (0.31, 0.83) 0
			0.36% (0.11, 0.61) 1
			0.61% (0.32, 0.90) 0-1 0.33% (0.00, 0.67) 0-4
			Stroke
			0.44% (0.16, 0.72) 0 0.41% (0.14, 0.68) 1
			0.58% (0.27, 0.89) 0-1 0.45% (0.09, 0.81) 0-4
			<45 yr 1.18% (-0.45, 2.83) 0
			1.66% (0.11, 3.24) 1 1.91% (0.10, 3.75) 0-1
			2.72% (0.58, 4.89) 0-4
			≥ 45 yr 0.42% (0.14, 0.70) 0
			0.37% (0.10, 0.65) 1 0.55% (0.23, 0.86) 0-1
			0.39% (0.03, 0.76) 0-4 <65 yr
			0.26% (-0.35, 0.87) 0 0.38% (-0.20, 0.96) 1
			0.48% (-0.19, 1.16) 0-1 0.57% (-0.21, 1.35) 0-4
			0.07 % (-0.21, 1.33) 0-4 ≥ 65 yr 0.49% (0.17, 0.80) 0
			0.41% (0.11, 0.72) 1
			0.61% (0.26, 0.96) 0-1 0.42% (0.02, 0.83) 0-4
			Cardiac
			0.49% (0.08, 0.89) 0 0.28% (-0.11, 0.67) 1
			0.49% (0.04, 0.94) 0-1 0.22% (-0.29, 0.74) 0-4
			<45 yr 0.25% (-1.64, 2.17) 0
			0.56% (-1.22, 2.38) 1
			0.61% (-1.47, 2.74) 0-1
			-0.42% (-2.80, 2.02) 0-4 ≥ 45 yr
			0.49% (0.09, 0.91) 0 0.27% (-0.12, 0.66) 1
			0.48% (0.03, 0.94) 0-1 0.25% (-0.27, 0.77) 0-4

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			<65 yr 0.00% (-0.89, 0.90) 0 0.12% (-0.73, 0.98) 1 0.13% (-0.86, 1.13) 0-1 0.05% (-1.08, 1.20) 0-4 ≥ 65 yr 0.60% (0.17, 1.03) 0 0.32% (-0.10, 0.74) 1 0.57% (0.09, 1.06) 0-1 0.26% (-0.29, 0.82) 0-4
			Respiratory 0.71% (0.20, 1.23) 0 0.63% (0.13, 1.13) 1 0.86% (0.28, 1.44) 0-1 0.19% (-0.48, 0.87) 0-4 <45 yr 1.74% (-1.28, 4.86) 0 2.52% (-0.30, 5.42) 1 2.95% (-0.41, 6.42) 0-1 3.47% (-0.61, 7.73) 0-4 ≥ 45 yr 0.69% (0.18, 1.21) 0 0.58% (0.09, 1.08) 1 0.13% (-0.54, 0.80) 0-1 0.13% (-0.54, 0.80) 0-4 <65 yr 0.06% (-1.30, 1.43) 0 -0.53% (-1.83, 0.79) 1 -0.32% (-1.84, 1.22) 0-1 -0.72% (-2.47, 1.05) 0-4 ≥ 65 yr 0.79% (0.27, 1.31) 0 0.76% (0.26, 1.26) 1 0.99% (0.41, 1.57) 0-1 0.30% (-0.38, 0.98) 0-4
			Cardiopulmonary 0.46% (0.23, 0.69) 0 0.35% (0.13, 0.57) 1 0.53% (0.28, 0.79) 0-1 0.11% (-0.19, 0.42) 0-4 <45 yr 0.71% (-0.48, 1.92) 0 1.26% (0.14, 2.4) 1 1.39% (0.06, 2.74) 0-1 1.41% (-0.18, 3.03) 0-4 ≥ 45 yr 0.45% (0.23, 0.68) 0 0.32% (0.10, 0.54) 1 0.51% (0.25, 0.77) 0-1 0.08% (-0.23, 0.38) 0-4 <65 yr 0.14% (-0.34, 0.61) 0 0.15% (-0.30, 0.61) 1 0.23% (-0.30, 0.76) 0-1 0.11% (-0.52, 0.74) 0-4 ≥ 65 yr 0.53% (0.28, 0.78) 0 0.39% (0.15, 0.63) 1 0.60% (0.32, 0.88) 0-1 0.11% (-0.22, 0.45) 0-4
			$\label{eq:two-pollutant Models} \begin{split} &\text{Nonaccidental} \\ &\text{Nonaccidental} \\ &\text{PM}_{10}\text{+NO}_2\text{: }0.14\% \ (-0.07, 0.36) \ 0 \\ &\text{PM}_{10}\text{+SO}_2\text{: }0.37\% \ (0.20, 0.55) \ 0 \\ &\text{PM}_{10}\text{+O}_3\text{: }0.34\% \ (0.17, 0.51) \ 0 \\ &\text{Cardiovascular} \\ &\text{PM}_{10}\text{+NO}_2\text{: }0.34\% \ (0.04, 0.63) \ 0 \\ &\text{PM}_{10}\text{+SO}_2\text{: }0.53\% \ (0.28, 0.77) \ 0 \\ &\text{PM}_{10}\text{+O}_3\text{: }0.50\% \ (0.26, 0.74) \ 0 \end{split}$
			Stroke PM ₁₀ +NO ₂ : 0.28% (-0.07, 0.63) 0 PM ₁₀ +SO ₂ : 0.49% (0.21, 0.78) 0 PM ₁₀ +O ₃ : 0.44 (0.16, 0.72) 0

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Cardiac $PM_{10}+NO_2\colon 0.24\% \ (-0.27, 0.75)\ 0 \\ PM_{10}+SO_2\colon 0.43\ (0.01, 0.84)\ 0 \\ PM_{10}+O_3\colon 0.44\% \ (0.03, 0.85)\ 0 \\ Respiratory$
			PM ₁₀ +NO ₂ : 0.46% (-0.19, 1.12) 0 PM ₁₀ +SO ₂ : 0.64% (0.11, 1.18) 0 PM ₁₀ +O ₃ : 0.67% (0.15, 1.20) 0
			Cardiopulmonary $PM_{10}+NO_2: 0.26\% (-0.02, 0.55) 0$ $PM_{10}+SO_2: 0.46\% (0.23, 0.70) 0$ $PM_{10}+O_3: 0.44\% (0.21, 0.67) 0$
Reference: Qian et al. (2008, <u>156894</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: Jul 2001-Jun 2004 Location: Wuhan, China	Total (nonaccidental) (<800) Cardiovascular (390-459) Stroke (430-438)	Averaging Time: 24-h avg Mean (SD): Normal temperature: 145.7 (64.6) Low temperature: 117.3 (49.5) High temperature: 96.3 (27.9)	% Increase (Lower CI, Upper CI) lag: Nonaccidental: Normal: All ages: 0.36 (0.17, 0.56) 0-1 <65: 0.23 (-0.10, 0.56) 0-1
	Cardiac diseases (390-398, 410-429) Respiratory (460-519) Cardiopulmonary (390-459, 460-519)	Range (Min, Max): NR Copollutant (correlation): Normal temperature: NO ₂ : r = 0/72	\geq 65: 0.51 (0.18, 0.64) 0-1 PM ₁₀ +NO ₂ : 0.07 (-0.17, 0.30) 0-1 PM ₁₀ +SO ₂ : 0.27 (0.06, 0.47) 0-1 PM ₁₀ +O ₃ : 0.38 (0.18, 0.58) 0-1 Low:
	Study Design: Time-series Statistical Analyses: Poisson GLM, natural splines and penalized splines Age Groups: All ages	NO ₂ : $r = 0.59$ O ₃ : $r = 0.69$ Low temperature: NO ₂ : $r = 0.83$ SO ₂ : $r = 0.74$ O ₃ : $r = 0.19$ High temperature: NO ₂ : $r = 0.68$ SO ₂ : $r = 0.15$ O ₃ : $r = 0.65$	All ages: 0.62 (-0.09, 1.34) 0-1 <65: 1.78 (0.52, 3.05) 0-1 ≥ 65: 0.22 (-0.61, 1.05) 0-1 PM ₁₀ +NO ₂ : 0.24 (-0.49, 0.97) 0-1 PM ₁₀ +SO ₂ : 0.45 (-0.27, 1.17) 0-1
	Age Groups: All ages <65 yr ≥ 65 yr		$\begin{array}{l} \text{PM}_{10} + \text{O}_3 \cdot 0.72 \; (0.00, 1.44) \; 0\text{-}1 \\ \text{High:} \\ \text{All ages:} \; 2.20 \; (0.74, 3.68) \; 0\text{-}1 \\ < 65 \colon 2.34 \; (-0.09, 4.83) \; 0\text{-}1 \\ \geq 65 \colon 2.14 \; (0.42, 3.89) \; 0\text{-}1 \\ \text{PM}_{10} + \text{NO}_2 \colon 1.87 \; (0.42, 3.35) \; 0\text{-}1 \\ \text{PM}_{10} + \text{SO}_2 \colon 2.12 \; (0.67, 3.60) \; 0\text{-}1 \\ \text{PM}_{10} + \text{O}_3 \colon 2.15 \; (0.55, 3.77) \; 0\text{-}1 \end{array}$
			Cardiovascular: Normal: All ages: 0.39 (0.11, 0.66) 0-1 <65: 0.17 (-0.40, 0.73) 0-1 ≥ 65: 0.44 (0.14, 0.74) 0-1 PM ₁₀ +NO ₂ : 0.11 (-0.23, 0.45) 0-1 PM ₁₀ +SO ₂ : 0.27 (-0.02, 0.55) 0-1 PM ₁₀ +O ₃ : 0.42 (0.15, 0.70) Low:
			All ages: 0.72 (-0.25, 1.70) 0-1 <65: 2.63 (0.67, 4.63) 0-1 ≥ 65: 0.24 (-0.84, 1.32) 0-1 $PM_{10}+NO_2$: 0.37 (-0.62, 1.38) 0-1 $PM_{10}+SO_2$: 0.50 (-0.47, 1.49) 0-1 $PM_{10}+O_3$: 0.82 (-0.16, 1.80) 0-1 High:
			All ages: $3.28 (1.24, 5.37) 0-1$ <65: 4.32 (0.10, 8.71) 0-1 $\ge 65: 3.03 (0.77, 5.34) 0-1$ $PM_{10}+NO_2: 3.00 (0.95, 5.09) 0-1$ $PM_{10}+SO_2: 3.20 (1.16, 5.29) 0-1$ $PM_{10}+O_3: 3.71 (1.50, 5.96) 0-1$
			Stroke: Normal: All ages: 0.38 (0.06, 0.70) <65: 0.17 (-0.53, 0.88) 0-1 ≥ 65: 0.43 (0.07, 0.79) 0-1 PM ₁₀ +NO ₂ : 0.09 (-0.31, 0.49) 0-1 PM ₁₀ +SO ₂ : 0.31 (-0.03, 0.64) 0-1 PM ₁₀ +O ₃ : 0.38 (0.05, 0.71) 0-1
			Low: All ages: 0.67 (-0.50, 1.85) 0-1 <65: 2.85 (0.34, 5.42) 0-1 ≥ 65: 0.11 (-1.22, 1.45) 0-1 PM ₁₀ +NO ₂ : 0.29 (-0.90, 1.51) 0-1 PM ₁₀ +SO ₂ : 0.53 (-0.65, 1.73) 0-1

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			$\begin{array}{l} PM_{10} + O_{3} \cdot 0.69 \; (-0.48, 1.87) \; 0\text{-}1 \\ High: \\ All \; ages: \; 2.35 \; (-0.03, 4.78) \; 0\text{-}1 \\ <65 \cdot 4.54 \; (-0.79, 10.16) \; 0\text{-}1 \\ \ge 65 \cdot 1.83 \; (-0.83, 4.57) \\ PM_{10} + NO_{2} \cdot 2.05 \; (-0.34, 4.49) \; 0\text{-}1 \\ PM_{10} + SO_{2} \cdot 2.31 \; (-0.07, 4.74) \; 0\text{-}1 \\ PM_{10} + O_{3} \cdot 2.77 \; (0.25, 5.35) \; 0\text{-}1 \end{array}$
			Cardiac: Normal: All ages: $0.32 (-0.14, 0.79) 0-1 < 65: -0.04 (-1.07, 1.01) 0-1 ≥ 65: 0.40 (-0.10, 0.91) 0-1 PM10+NO2: 0.02 (-0.57, 0.60) 0-1 PM10+SO2: 0.11 (-0.38, 0.61) 0-1 PM10+SO2: 0.41 (-0.06, 0.89) 0-1 Low: All ages: 0.50 (-1.10, 2.13) 0-1 < 65: 1.79 (-1.65, 5.35) 0-1 ≥ 65: 0.19 (-1.55, 1.95) 0-1 PM10+NO2: 0.12 (-1.53, 1.80) 0-1 PM10+SO2: 0.14 (-1.48, 1.78) 0-1 PM10+SO2: 0.72 (-0.90, 2.37) 0-1 High: All ages: 3.31 (-0.22, 6.97) 0-1 < 65: 2.71 (-4.58, 10.56) 0-1 ≥ 65: 3.45 (-0.41, 7.46) 0-1 PM10+NO2: 3.01 (-0.54, 6.69) 0-1 PM10+SO2: 3.01 (-0.54, 6.69) 0-1 PM10+SO2: 3.17 (-0.37, 6.84) 0-1 PM10+O3: 4.92 (0.96, 9.03) 0-1 $
			Respiratory: Normal: All ages: $0.80 \ (0.25, 1.35) \ 0-1$ $<65: -0.35 \ (-1.85, 1.18) \ 0-1$ $\geq 65: 0.93 \ (0.38, 1.50) \ 0-1$ $PM_{10}+NO_2: 0.30 \ (-0.39, 0.99) \ 0-1$ $PM_{10}+SO_2: 0.64 \ (0.07, 1.22) \ 0-1$ $PM_{10}+O_3: 0.84 \ (0.28, 1.41) \ 0-1$ $Low:$
			All ages: 1.07 (-0.76, 2.95) 0-1 <65: -1.13 (-6.33, 4.35) 0-1 \geq 65: 1.30 (-0.57, 3.20) 0-1 PM ₁₀ +NO ₂ : 0.44 (-1.46, 2.36) 0-1 PM ₁₀ +SO ₂ : 0.80 (-1.05, 2.69) 0-1 PM ₁₀ +O ₃ : 1.11 (-0.73, 2.99) 0-1 High:
			All ages: 1.15 (-3.54, 6.07) 0-1 <65: -3.42 (-15.82, 10.80) 0-1 ≥ 65: 1.76 (-3.03, 6.78) 0-1 PM ₁₀ +NO ₂ : 0.63 (-4.07, 5.55) 0-1 PM ₁₀ +SO ₂ : 1.03 (-3.66, 5.94) 0-1 PM ₁₀ +O ₃ : 2.66 (-2.44, 8.02) 0-1
			Cardiopulmonary: Normal: All ages: 0.45 (0.19, 0.70) 0-1 <65: 0.07 (-0.47, 0.61) 0-1 ≥ 65: 0.53 (0.25, 0.81) 0-1 PM₁₀+NO₂: 0.15 (-0.17, 0.47) 0-1 PM₁₀+SO₂: 0.34 (0.07, 0.61) 0-1 PM₁₀+O₃: 0.43 (0.17, 0.70) 0-1
			Low: All ages: 0.69 (-0.22, 1.61) 0-1 < 65 : 1.95 (0.04 , 3.90) 0-1 ≥ 65 : 0.43 (-0.57, 1.44) 0-1 PM ₁₀ +NO ₂ : 0.33 (-0.61, 1.27) 0-1 PM ₁₀ +SO ₂ : 0.50 (-0.42, 1.43) 0-1 PM ₁₀ +O ₃ : 0.76 (-0.16, 1.68) 0-1 High:
			All ages: $3.02 (1.03, 5.04) 0-1$ <65: 3.49 (-0.66, 7.81) 0-1 $\ge 65: 2.91 (0.74, 5.12) 0-1$ $PM_{10}+NO_2: 2.70 (0.72, 4.73) 0-1$ $PM_{10}+SO_2: 2.95 (0.96, 4.97) 0-1$ $PM_{10}+O_3: 3.32 (1.16, 5.53) 0-1$

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ren et al. (2006, <u>092824</u>) Period of Study: Jan 1996-Dec 2001 Location: Brisbane, Australia	Outcome: Mortality: Nonaccidental Cardiovascular (390-448) Study Design: Time-series Statistical Analyses: Poisson GAM,	Pollutant: PM ₁₀ Averaging Time: 24-h avg Mean (SD): 15.84 Range (Min, Max): (2.5, 60)	The study presents quantitative results associated with an incremental increase in temperature, not PM ₁₀ .
	cubic spline Age Groups: All ages	Copollutant: O ₃	
Reference: Roberts (2004, 087924)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m ³
Period of Study: 1987-1994	Nonaccidental (<800)	Averaging Time: 24-h avg	% Increase (SE) lag:
Location: Cook County, Illinois	Study Design: Time-series	Median (SD) unit:	GLM
Location: Cook County, Illinois Allegheny County, Pennsylvania	Statistical Analyses: Poisson GAM, smooth splines Poisson GLM, natural cubic splines Age Groups: ≥ 65 yr	Median (2) unit: Cook County Lower Temp.: 29.24 Middle Temp.: 30.03 Upper Temp.: 52.76 Allegheny County Lower Temp.: 16.50 Middle Temp.: 24.97 Upper Temp.: 55.42 Range (10th, 90th): Cook County Lower Tem.: (16.42, 46.42) Middle Temp.: (30.81, 82.81) Allegheny County Lower Temp.: (5.14, 34.54) Middle Temp.: (6.91, 57.91) Upper Temp.: (30.91, 88.99)	GLM Cook a = 0.5 No Interaction: 0.288% (0.157) 0 Low Temp.: -0.272% (0.380) 0 Middle Temp.: 0.344% (0.165) 0 Upper Temp.: 0.281% (0.239) 0 No Interaction: 0.359% (0.149) 1 Low Temp.: -0.168% (0.372) 1 Middle Temp.: 0.361% (0.156) 1 Upper Temp.: 0.616% (0.250) 1 No Interaction: 0.465% (0.176) 0-1 ma Low Temp.: 0.043% (0.397) 0-1 ma Middle Temp.: 0.506% (0.184) 0-1 ma Upper Temp.: 0.464% (0.256) 0-1 ma No Interaction: 0.633% (0.214) 0-3 ma Governor Temp.: 0.616% (0.221) 0-3 ma Upper Temp.: 0.616% (0.419) 0-3 ma Upper Temp.: 0.638% (0.222) 0-3 ma Upper Temp.: 0.718% (0.295) 0-3 ma a = 1 No Interaction: 0.117% (0.157) 0 Low Temp.: -0.351% (0.406) 0 Middle Temp.: 0.161% (0.165) 0 Upper Temp.: 0.096% (0.264) 0 No Interaction: 0.141% (0.150) 1 Low Temp.: -0.366% (0.397) 1 Middle Temp.: 0.301% (0.278) 1 No Interaction: 0.260% (0.181) 0-1 ma Low Temp.: -0.163% (0.431) 0-1 ma Middle Temp.: 0.305% (0.188) 0-1 ma Upper Temp.: 0.207% (0.291) 0-1 ma No Interaction: 0.289% (0.225) 0-3 ma diddle Temp.: 0.301% (0.231) 0-3 ma Middle Temp.: 0.301% (0.334) 0-3 ma Middle Temp.: 0.301% (0.334) 0-3 ma Middle Temp.: 0.115% (0.158) 0 0 Low Temp.: -0.464% (0.486) 0 0 Upper Temp.: -0.464% (0.486) 0 0 Upper Temp.: -0.455% (0.327) 1 No Interaction: 0.101% (0.152) 1 Low Temp.: -0.464% (0.486) 0 Upper Temp.: 0.455% (0.327) 1 No Interaction: 0.199% (0.160) 1 Upper Temp.: 0.157% (0.193) 0-1 ma Upper Temp.: 0.156% (0.327) 1 No Interaction: 0.157% (0.193) 0-1 ma Upper Temp.: 0.156% (0.327) 1 No Interaction: 0.157% (0.193) 0-1 ma Upper Temp.: 0.156% (0.346) 0-1 ma No Interaction: 0.157% (0.193) 0-1 ma Upper Temp.: 0.157% (0.193) 0-1 ma Upper Temp.: 0.159% (0.184) 0-1 ma No Interaction: 0.157% (0.193) 0-1 ma Upper Temp.: 0.150% (0.346) 0-1 ma No Interaction: 0.150% (0.346) 0-1 ma No Interaction: 0.150% (0.346) 0-1 ma No Interaction: 0.090% (0.560) 0-3 ma Low Temp.: 0.150% (0.346) 0-1 ma No Interaction: 0.090% (0.560) 0-3 ma Low Temp.: 0.150% (0.346) 0-1 ma No Interaction: 0.150% (0.3

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Allegheny α = 0.5 No Interaction: 0.078% (0.209) 0 Low Temp.: -0.759% (0.643) 0 Middle Temp.: 0.207% (0.216) 0 High Temp.: -0.367% (0.364) 0 No Interaction: 0.189% (0.206) 1 Low Temp.: -0.335% (0.691) 1 Middle Temp.: 0.293% (0.215) 1 High Temp.: -0.171% (0.349) 1 No Interaction: 0.224% (0.246) 0-1 ma Low Temp.: -0.753% (0.763) 0-1 ma Middle Temp.: 0.353% (0.253) 0-1 ma High Temp.: -0.142% (0.382) 0-1 ma No Interaction: 0.526% (0.300) 0-3 ma Low Temp.: 0.050% (0.733) 0-3 ma Middle Temp.: 0.688% (0.310) 0-3 ma High Temp.: -0.043% (0.436) 0-3 ma
			α = 1 No Interaction: 0.078% (0.211) 0 Low Temp.: -0.694% (0.656) 0 Middle Temp.: 0.214% (0.219) 0 High Temp.: -0.533% (0.430) 0 No Interaction: 0.179% (0.207) 1 Low Temp.: -0.283% (0.718) 1 Middle Temp.: 0.273% (0.217) 1 High Temp.: -0.221% (0.396) 1 No Interaction: 0.221% (0.249) 0-1 ma Low Temp.: -0.731% (0.794) 0-1 ma Middle Temp.: 0.348% (0.258) 0-1 ma High Temp.: -0.253% (0.447) 0-1 ma No Interaction: 0.464% (0.309) 0-3 ma Low Temp.: 0.056% (0.780) 0-3 ma Middle Temp.: 0.626% (0.319) 0-3 ma High Temp.: -0.356% (0.516) 0-3 ma
			q = 2 No Interaction: 0.034% (0.217) 0 Low Temp.: -1.059% (0.715) 0 Middle Temp.: 0.162% (0.230) 0 High Temp.: -0.233% (0.489) 0 No Interaction: 0.130% (0.244) 1 Low Temp.: -0.189% (0.800) 1 Middle Temp.: 0.157% (0.226) 1 High Temp.: 0.070% (0.471) 1 No Interaction: 0.183% (0.260) 0-1 ma Low Temp.: -0.918% (0.907) 0-1 ma Middle Temp.: 0.279% (0.273) 0-1 ma High Temp.: -0.001% (0.526) 0-1 ma No Interaction: 0.270% (0.331) 0-3 ma Low Temp.: -0.105% (0.898) 0-3 ma Middle Temp.: 0.394% (0.346) 0-3 ma High Temp.: -0.287% (0.615) 0-3 ma GAM
			Cook α = 0.5 No Interaction: 0.438% (0.151) 0 Low Temp.: -0.178% (0.364) 0 Middle Temp.: 0.439% (0.163) 0 Upper Temp.: 0.627% (0.197) 0 No Interaction: 0.495% (0.144) 1 Low Temp.: -0.114% (0.361) 1 Middle Temp.: 0.460% (0.151) 1 Upper Temp.: 0.938% (0.208) 1 No Interaction: 0.710% (0.169) 0-1 ma Low Temp.: 0.151% (0.379) 0-1 ma Middle Temp.: 0.686% (0.180) 0-1 ma Upper Temp.: 0.952% (0.214) 0-1 ma No Interaction: 0.923% (0.203) 0-3 ma Low Temp.: 0.532% (0.402) 0-3 ma Middle Temp.: 0.855% (0.210) 0-3 ma Upper Temp.: 1.289% (0.251) 0-3 ma
			α = 1 No Interaction: 0.190% (0.154) 0

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			α = 2 No Interaction: 0.061% (0.214) 0 Low Temp.: -1.048% (0.749) 0 Middle Temp: 0.206% (0.226) 0 High Temp: -0.332% (0.419) 0 No Interaction: 0.145% (0.211) 1 Low Temp.: -0.278% (0.816) 1 Middle Temp: 0.210% (0.223) 1 High Temp:: -0.105% (0.394) 1 No Interaction: 0.180% (0.256) 0-1 ma Low Temp.: -1.028% (0.931) 0-1 ma Middle Temp:: 0.210% (0.269) 0-1 ma High Temp:: -0.114% (0.441) 0-1 ma No Interaction: 0.275% (0.324) 0-3 ma Low Temp:: -0.384% (0.915) 0-3 ma Middle Temp:: 0.436% (0.338) 0-3 ma High Temp:: -0.366% (0.513) 0-3 ma
Reference: Roberts (2004, <u>087924</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	The study does not present quantitative
Period of Study: 1987-1994	Nonaccidental	Averaging Time: 24-h avg	results.
Location: Cook County, Illinois	Study Design: Time-series	Mean (SD): NR	
Allegheny County, Pennsylvania	Statistical Analyses: Poisson GLM	Range (Min, Max):	
	Age Groups: ≥ 65 yr	Max = 89	
Reference: Roberts (Roberts, 2005, 087992)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: NR β (SE) lag:
Period of Study:	Nonaccidental	Averaging Time: 24-h avg	Standard Model
Cook County: 1987-2000.	Study Design: Time-series	Mean (SD): NR	Cook County 0.000127 (0.000264) 0
Allegheny County: 1987-1998	Statistical Analyses: Poisson	Range (Min, Max): NR	-0.000042 (0.000249) 1 -0.000441 (0.000246) 2
Location: Cook County, Illinois	Age Groups: ≥ 65 yr	Copollutant (correlation): NR	,
Allegheny County, Pennsylvania			Allegheny County 0.000693 (0.000437) 0 0.000356 (0.000423) 1 0.000524 (0.000415) 2 Moving Total Model Cook County 0.000150 (0.000187) k = 2 -0.000047 (0.000153) k = 3 0.000009 (0.000133) k = 4 Allegheny County
P. (D.H. () DM	0.000633 (0.000310) k = 2 0.000542 (0.000255) k = 3 0.000598 (0.000351) k = 4
Reference: Roberts (2006, <u>089762</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment:
Period of Study: 1987-2000	Nonaccidental	Averaging Time: 24-h avg Mean (SD):	Cook County: 19.4 μg/m ³
Location: Cook County, Illinois	Study Design: Time-series	Cook County: 33.7 (19.4)	Suffolk County: 14.0 μg/m ³
Suffolk County, Massachusetts (NMMAPS)	Statistical Analyses: Poisson GLM Age Groups: ≥ 65 yr	Suffolk County: 25.9 (11.8) Range (10th, 90th): Cook County: (13.4, 58.1) Suffolk County: (14.0, 41.7) Copollutant (correlation): Cook County CO: r = 0.30 NO ₂ : r = 0.53 SO ₂ : r = 0.45 O ₃ : r = 0.44	% Increase (SD) lag: Cook County Standard Model: 0.49% (0.25) 0 Proposed Model: 0.29% (0.16) 0 Standard Model: 0.67% (0.25) 0-2 avg Proposed Model: 0.49% (0.25) 0-2 avg Suffolk County Standard Model: 0.88% (1.27) 0 Proposed Model: 0.85% (0.84) 0 Standard Model: 1.60% (0.71) 0-2 avg
		Suffolk County CO: $r = 0.33$ NO_2 : $r = 0.43$ SO_2 : $r = 0.23$ O_3 : $r = 0.36$	Proposed Model: 1.35% (0.73) 0-2 avg

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Roberts and Martin (2006, 197799)	Outcome: Mortality: Nonaccidental	Pollutant: PM ₁₀	The study does not present quantitative results.
	Study Design: Time-series	Averaging Time: 24-h avg	
Period of Study: 1987-2000	Statistical Analyses: Dose-response	Mean (SD): NR	
Location: Cook County, Illinois (NMMAPS)	Piecewise linear relationship (no-	IQR (25th, 75th):	
	threshold) with change point at 25 µg/m ³ and 50 µg/m ³	(23.9, 45.4)	
	Piecewise linear relationship	Suffolk County: (14.0, 41.7)	
	(threshold), exposure below 25 µg/m³ no effect, and exposures above 50 µg/m³ having a different effect then exposures between 25 µg/m³ and 50 µg/m³	Copollutant (correlation): NR	
	Age Groups: ≥ 65 yr		
Reference: Roberts and Martin (2006,	Outcome: Mortality: Nonaccidental	Pollutant: PM ₁₀	Increment: NR
088670)	Cardiorespiratory	Averaging Time: 24-h avg	β x 1000 (SE x 1000) lag:
Period of Study: 1987-2000	Study Design: Time-series	Mean (SD): NR	Nonaccidental Model 1
Location: 109 U.S. cities (NMMAPS)	Statistical Analyses: Poisson	IQR (25th, 75th): NR	Base df: 0.079 (0.050) 0
	2-stage Bayesian hierarchical model	Copollutant (correlation): NR	Double df: 0.044 (0.046) 0 Half df: 0.107 (0.052) 0 Base df: 0.180 (0.044) 1
	Age Groups: All ages		Double df: 0.149 (0.047) 1 Half df: 0.254 (0.048) 1 Base df: 0.059 (0.056) 2 Double df: 0.024 (0.056) 2 Half df: 0.143 (0.054) 2
			Model 2 Base df: 0.115 (0.037) 0-2 ma Double df: 0.107 (0.034) 0-2 ma Half df: 0.145 (0.039) 0-2 ma
			Cardio-respiratory Model 1 Base df: 0.103 (0.068) 0 Double df: 0.056 (0.067) 0 Half df: 0.134 (0.066) 0 Base df: 0.232 (0.060) 1 Double df: 0.179 (0.067) 1 Half df: 0.309 (0.059) 1 Base df: 0.210 (0.078) 2 Double df: 0.144 (0.075) 2 Half df: 0.305 (0.079) 2
			Model 2 Base df: 0.168 (0.047) 0-2 ma Double df: 0.140 (0.044) 0-2 ma Half df: 0.196 (0.051) 0-2 ma Notes: Model 1 uses current day's mortality count, while Model 2 uses a 3- day moving total mortality count.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Roberts and Martin (2007, 156917) Period of Study: 1987-2000 Location: 8 U.S. cities and >100 U.S. cities (NMMAPS)	Outcome: Mortality: Total (nonaccidental) Cardiorespiratory Study Design: Time-series Statistical Analyses: Poisson Age Groups: All ages	Pollutant: PM ₁₀ Averaging Time: 24-h avg Mean (SD): NR Range (Min, Max): NR	Increment: 10 µg/m³ β x 1000 (SE x 1000) lag: 8 U.S. cities Distributed Lag Model: 0.229 0-2 Weighted Model: 0.315 0-2 Standard Model: 0.276 0 -0.062 1 0.476 2 90 U.S. cities Total (nonaccidental) Standard Model: 0.078 (0.039) 0 0.182 (0.037) 1 0.108 (0.036) 2 Moving Total Model: 0.131 (0.023) 0-2 Weighted Model: 0.274 (0.075) 0-2 Cardio-respiratory Standard Model: 0.096 (0.055) 0 0.232 (0.053) 1 0.226 (0.051) 2 Moving Total Model: 0.174 (0.032) 0-2 Weighted Model: 0.389 (0.105) 0-2 Notes: The 8 U.S. cities consist of Chicago, Cleveland, Denver, El Paso, Houston, Nashville, Pittsburgh, and Salt Lake City.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Roberts and Martin (2007,	Outcome: Mortality: Nonaccidental	Pollutant: PM ₁₀	Increment: NR
156916)	Study Design: Time-series	Averaging Time: 24-h avg Mean (SD): Anchorage: 27.32	β Coefficient (SE) lag:
Period of Study: 1987-2000 Location: 10 U.S. cities (NMMAPS)	Statistical Analyses: Poisson		Pooled Estimates
	Age Groups: ≥ 65 yr	Chicago: 36.95 Cleveland: 39.83 Detroit: 40.78 El Paso: 40.14 Minneapolis/St. Paul: 28.01 Pittsburgh: 35.09 Salt Lake City: 37.40 Seattle: 28.72 Spokane: 34.52 Range (Min, Max): NR	Combined Model (Unconstrained Distributed Lag Model + Piecewise Linear Dose-Response Function) Change-point: 60 µg/m³ Slope below: 0.00130 (0.00016) 0-5 Slope above: -0.00163 (0.00026) 0-5 Change-point: 30 µg/m³ Slope below: 0.00014 (0.00039) 0-5 Slope above: -0.00003 (0.00015) 0-5 Piecewise Linear Dose-Response Model Change-point: 60 µg/m³ Slope below: 0.00044 (0.00011) 3-day ma Slope above: -0.00077 (0.00020) 3- day ma Change-point: 30 µg/m³ Slope below: 0.00022 (0.00026) 3-day ma Change-point: 30 µg/m³ Slope below: 0.000024 (0.00011) 3-day ma Polynomial Distributed Lag Model (degree 2) 0.00046 (0.00011) 0-5
Reference: Samoli et al. (2005,	Outcome: Mortality:	Pollutant: PM ₁₀	The study does not present quantitat
087436)	All-cause (nonaccidental) (<800) Cardiovascular (390-459)	Averaging Time: 24-h avg	results.
Period of Study: 1990-1997	Respiratory (460-519) Study Design: Time-series	Median (SD) unit:	
Location: 22 European cities (APHEA-2)	Statistical Analyses: Hierarchical modeling:	Range: (Stockholm: 14 $\mu g/m^3$ to Torino: 65 $\mu g/m^3$)	
	Poisson GAM, penalized splines Multivariate modeling	Percentile (90th):	
		Range: (Stockholm: 27 μg/m³ to Torino: 129 μg/m³)	
	Age Groups: All ages	Copollutant (correlation): BS	
Reference: Schwartz (2004, <u>078998</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: 1986-1993	Nonaccidental (<800)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Location: 14 U.S. cities	Study Design: Case-crossover	Mean (SD): NR	Overall:
	Time-series	Range (Min, Max): NR	Two stage: 0.36% (0.22, 0.50) 1 Single stage: 0.33% (0.19, 0.46) 1
	Statistical Analyses: Conditional logistic regression	Copollutant (correlation): NR	More winter temperature lags: Two Stage: 0.39% (0.23, 0.56) 1
	Poisson		One stage: 0.32% (0.19, 0.46) 1
	Age Groups: All ages		Time stratified with temperature matching:
	Notes: Case days matched to referent days that had the same temperature.		Two Stage: 0.39% (0.19, 0.58) 1 One Stage: 0.53% (0.34, 0.72) 1
	,		Poisson regression: 0.40% (0.18, 0.62) 1

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Schwartz (2004, <u>053506</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: 1986-1993	Nonaccidental (<800)	Averaging Time: 24-h avg	β x 1000 (SE x 1000) lag:
Location: 14 U.S. cities	Study Design: Case-crossover	Median (SD) unit: Range: 23-36 μg/m ³	Matched on CO: 0.527 (0.251)
	Statistical Analyses: Time-stratified	IQR (25th, 75th):	0-1 avg
	conditional logistic regression	Range 25th: 17-24 µg/m ³	Matched on O ₃ : 0.451 (0.170)
	Age Groups: All ages	Range 75th: 31-57 µg/m ³	0-1 avg
	Notes: Case days matched to referent days based on concentration of	Copollutant (correlation): CO	Matched on NO ₂ : 0.784 (0.185)
	gaseous air pollutants. Matched on the following conditions:	SO ₂	0-1 avg
	1. 24-h avg SO ₂ within 1 ppb	NO_2	Matched on SO ₂ : 0.811 (0.175)
	 Daily-maximum O₃ within 2 ppb 24-h avg NO₂ within 1 ppb 24-h avg CO within 0.03 ppm 	O ₃	0-1 avg
Reference: Sharovsky et al. (2004,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
<u>56976</u>)	Myocardial infarction	Averaging Time: 24-h avg	β (SE) lag:
Period of Study: Jul 1996-Jun 1998	Study Design: Time-series	Mean (SD): 58.2 (25.8)	PM ₁₀ : 0.001 (0.001)
.ocation: São Paulo, Brazil	Statistical Analyses: Poisson GAM	Range (Min, Max): (23, 186)	PM ₁₀ +CO+SO ₂ : 0.0004 (0.0008)
	Age Groups : ≥ 35 yr	Copollutant (correlation): CO: r = 0.73 SO ₂ : r = 0.72	
Reference: Simpson et al. (2005,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
187438)	Nonaccidental (<800)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI)
eriod of Study: 1/1996-12/1999	Cardiovascular (390-459)	Mean (SD): Brisbane: 16.60	lag:
ocation: 4 Australian cities	Respiratory (460-519)	Sydney: 16.30	0.2% (-0.8, 1.2)
	Study Design: Time-series	Melbourne: 18.20	
	meta-analysis	Range (Min, Max): Brisbane: (2.6, 57.6)	
	Statistical Analyses: Poisson GAM, natural splines	Sydney: (3.7, 75.5) Melbourne: (3.3, 51.9)	
	Poisson GLM, natural splines	Copollutant:	
	Age Groups: All ages	PM _{2.5} CO	
Reference: Slaughter et al. (2005,	Outcome: Mortality:	NO ₂ Pollutant: PM ₁₀	Increment: : 25 µg/m³
73854)	Nonaccidental (<800)	Averaging Time: 24-h avg	Relative Risk (Lower CI, Upper CI)
eriod of Study: Jan 1995-Dec 1999	Study Design: Time-series	Mean (SD): NR	lag:
ocation: Spokane, Washington	Statistical Analyses: Poisson GLM,	Range (9th, 95th): (7.9, 41.9) μg/m ³	1.00 (0.97, 1.03) 1
	natural splines	Copollutant (correlation):	0.98 (0.95, 1.01) 2
	Age Groups: All ages	PM ₁₀ PM _{10-2.5} : r = 0.94 CO: r = 0.32	1.00 (0.97, 1.03) 3
Reference: Staniswalis et al. (2005,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
87473)	Nonaccidental (<800)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI)
Period of Study: 1992-1995	Study Design: Time-series	Mean (SD): NR	lag:
ocation: El Paso, Texas	Statistical Analyses: Poisson	Range (Min, Max):	Poisson regression: 1.7% 3
	Principal component analysis (PCA)	(0.2, 133.4)	PCA:
	Age Groups: All ages	Notes: The chemical composition and	24-hly measurements: 2.06% 3
	-	size distribution of PM was not available, therefore, the study used wind speed as a surrogate variable for the PM_{10} composition.	Daily avg: 1.7% 3
Reference: Stafoggia et al. (2008,	Outcome:	Pollutant: PM ₁₀	Increment: 10 µg/m³
157005) Period of Study: 1997-2004	Mortality:	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag
Period of Study: 1997-2004	Total (nonaccidental) (<800)	Mean (SD) unit: Bologna: 50.4 (31.7)	Cardiovascular All yr: 0.63% (0.31, 1.38) 0-1

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Location: 9 Italian cities	Cardiovascular (390-459) Respiratory (460-519) Other natural causes Study Design: Time-stratified case- crossover Statistical Analyses: Conditional logistic regression Age Groups: ≥ 35 yr	Florence: 37.5 (16.6) Mestre: 48.1 (26.8) Milan: 57.9 (38.0) Palermo: 36.2 (21.7) Pisa: 35.1 (14.9) Rome: 47.3 (19.9) Taranto: 59.8 (18.9) Turin: 71.5 (38.1) Range (Min, Max): NR Copollutant (correlation): NR	Winter: 0.15% (-0.29, 0.59) 0-1 Spring: 0.72% (-0.07, 1.52) 0-1 Summer: 2.90% (1.14, 4.69) 0-1 Fall: 1.37% (0.43, 2.32) 0-1 Apparent Temperature <50th Percentile: 0.31% (-0.06, 0.67) 0-1 50th-75th Percentile: 2.05% (0.47, 3.66) 0-1 >75th Percentile: 2.68% (1.20, 4.17) 0-1 Respiratory All yr: 0.98% (0.27, 1.70) 0-1 Winter: 0.41% (-0.67, 1.51) 0-1 Spring: 2.99% (1.18, 4.83) 0-1 Summer: 3.89% (0.19, 7.73) 0-1 Fall: 0.45% (-1.11, 2.03) 0-1 Apparent Temperature <50th Percentile: 0.54% (-0.47, 1.57) 0-1 50th-75th Percentile: 3.15% (0.64, 5.73) 0-1 >75th Percentile: 4.12% (0.44, 7.93) 0-1
			Other natural causes All yr: 0.37% (0.09, 0.66) 0-1 Winter: 0.14% (-0.36, 0.63) 0-1 Spring: 0.29% (-0.47, 1.05) 0-1 Summer: 2.15% (0.90, 3.42) 0-1 Fall: 0.70% (-0.41, 1.83) 0-1 Apparent Temperature <50th Percentile: 0.07% (-0.27, 0.41) 0-1 50th-75th Percentile: 1.08% (-0.02, 2.19) 0-1 >75th Percentile: 2.30% (1.06, 3.56) 0-1
			Total (nonaccidental) All yr: 0.53% (0.25, 0.80) 0-1 Winter: 0.20% (-0.08, 0.49) 0-1 Spring: 0.62% (0.14, 1.10) 0-1 Summer: 2.54% (1.31, 3.78) 0-1 Fall: 1.21% (0.37, 2.06) 0-1 Apparent Temperature <50th Percentile: 0.21% (-0.06, 0.47) 0-1 50th-75th Percentile: 1.60% (0.64, 2.57) 0-1 >75th Percentile: 2.55% (1.58, 3.52) 0-1
			β coefficient (SE) lag: Linear interaction PM₁₀ and Apparent Temperature Cardiovascular <50th Percentile: -0.000117 (0.000415) 0-1 50th-75th Percentile: 0.003445 (0.001407) 0-1 >75th Percentile: 0.002764 (0.001795) 0-1
			Respiratory <50th Percentile: 0.001119 (0.000943) 0-1 50th-75th Percentile: -0.001120 (0.003480) 0-1 >75th Percentile: 0.005306 (0.004350) 0-1
			Other natural causes <50th Percentile: 0.000411 (0.000383) 0-1 50th-75th Percentile: -0.001526 (0.001207) 0-1 >75th Percentile:

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			0.002564 (0.001958) 0-1
			Total (nonaccidental) <50th Percentile: 0.000246 (0.000269) 0-1 50th-75th Percentile: 0.000584 (0.000880) 0-1 >75th Percentile: 0.002396 (0.001629) 0-1
Reference: Stölzel et al. (2007,	Outcome:	Pollutant: PM ₁₀	Increment: 23 µg/m ³
091374)	Mortality:	Averaging Time: 24-h avg	Relative Risk (Lower CI, Upper CI)
Period of Study: Sep 1995-Aug 2001	Total (nonaccidental) (<800)	Mean (SD) unit: : 31.9 (23.2)	lag: Total (nonaccidental)
Location: Erfurt, Germany	Cardio-respiratory (390-459, 460-519, 785, 786)	IQR (25th, 75th):	1.004`(0.980 1.029)
	Study Design: Time-series	(16.5, 39.5)	0 1.004 (0.981
	Statistical Analyses:	Copollutant (correlation): MC0.1-0.5: r = 0.85	1.027) 1
	Poisson GAM	MC0.01-2.5: r = 0.84	0.998 (0.976 1.021)
	Age Groups: All ages	NO: r = 0.54	2 0.984 (0.962
		NO_2 : $r = 0.62$	1.006)`
		CO: r = 0.50	3 0.993 (0.972 1.015)
			4 0.990 (0.969 1.012)
			Cardio-respiratory 1.007 (0.981 1.034)
			0 1.006 (0.981 1.032)
			0.996 (0.971 1.021) 2
			0.977 (0.953 1.002) 3
			0.994 (0.970 1.018) 4
			0.993 (0.969 1.017) 5
Reference: Sullivan et al. (2003,	Outcome:	Pollutant: PM ₁₀	Increment: : 16.51 µg/m³
043156)	Out-of-hospital cardiac arrest	Averaging Time: 24-h avg	Odds Ratio (Lower CI, Upper CI) lag:
Period of Study:	Study Design: Case-crossover	Median (SD) unit: Lag 0: 28.05	Overall
1985-1994	Statistical Analyses:	Lag 1: 27.97 Lag 2: 28.40	1.05 (0.87, 1.27)
Location: Western Washington	Conditional logistic regression Age Groups: 19-79	•	0
	•	Range (Min, Max): (7.38, 89.83)	0.91 (0.75, 1.11)
	Study Population: Out-of-hospital cardiac arrests: 1,206	Copollutant (correlation): SO ₂ CO	1 1.03 (0.82, 1.28)
		Notes: Study used nephelometry to measure particles and equated the measurements to PM _{2.5} concentrations.	2

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Sunyer et al. (2002,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 32.7 µg/m³
034835)	Respiratory mortality	Averaging Time: 24-h avg	Odds Ratio (Lower CI, Upper CI) lag:
Period of Study: 1985-1995	Study Design: Case-crossover	Median (SD) unit: 61.2	Asthmatic individuals with 1 ED visit
Location: Barcelona, Spain	Statistical Analyses: Condition logistic	Range (Min, Max): (17.3, 240.7)	0.884 (0.672, 1.162) 0-2 avg
	regression	Copollutant: BS	Asthmatic individuals with >1 ED visit
	Age Groups: >14	NO ₂ O ₃	1.084 (0.661, 1.778) 0-2 avg
	Study population: Asthmatic individuals: 5,610	03 SO₂ CO	Asthma/COPD individuals with >1 ED visit
			1.011 (0.746, 1.368) 0-2 avg
Reference: Touloumi et al. (2005,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
<u>087477</u>)	Total (nonaccidental) (<800)	Averaging Time: 24-h avg	β (x 1000) (SE (x 1000)):
Period of Study: 1990-1997	Cardiovascular (390-459)	Median (SD) unit: London: 25.1	Total (nonaccidental) No control: 0.4834 (0.1095)
Location: 7 European cities (London, Budapest, Stockholm, Zurich, Paris,	Study Design: Time-series	Budapest: 40.2	Reported Influenza Data
Lyon, Madrid) (APHEA2)	Statistical Analyses: Poisson GAM, LOESS	Stockholm: 13.7 Zurich: 27.5 Paris: 22.2	Count ID: 0.4967 (0.1089) 11 ID: 0.4740 (0.1090) MI ID: 0.5019 (0.1096)
	Age Groups: All ages	Lyon: 38.5 µ Madrid: 33.4 IQR (25th, 75th): London: (20.3, 33.9) Budapest: (34.3, 45.8) Stockholm: (10.3, 19.1) Zurich: (19.2, 38.5) Paris: (16.0, 33.0) Lyon: (29.7, 50.4) Madrid: (27.6, 41.0) Copollutant (correlation): NR	RI-ID: 0.4735 (0.1091) SF ID: 0.6714 (0.1080) Estimated Influenza Data APHEA-2: 0.5550 (0.1076) I1 EID: 0.5640 (0.1073) MI EID: 0.5872 (0.1100) RI EID: 0.5872 (0.1104) SF EID: 0.6641 (0.1073) Cardiovascular No control: 0.8432 (0.1665) Reported Influenza Data Count ID: 0.8896 (0.1662) I1 ID: 0.8545 (0.1661) MI ID: 0.8693 (0.1674) RI-ID: 0.8693 (0.1674) RI-ID: 0.8694 (0.1665) SF ID: 1.0107 (0.1659) Estimated Influenza Data APHEA-2: 0.9389 (0.1654) I1 EID: 0.9485 (0.1664) MI EID: 1.0440 (0.1686) RI EID: 1.0440 (0.1686) RI EID: 1.0585 (0.1652) Notes: I1 = one indicator for all epidemics M1 = multiple indicators, one per epidemic R1 = indicators for intervals indicating the range of influenza counts SF = separate smooth function during
B. F. 1.1.1 (2000 000 000)	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P. II. (. 1. DM	epidemic periods.
Reference: Tsai et al. (2003, <u>050480</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 67.00 µg/m³
Period of Study: 1994-2000	Total (nonaccidental) (<800)	Averaging Time: 24-h avg	Odds Ratio (Lower CI, Upper CI) lag:
Location: Kaohsiung, Taiwan	Respiratory (460-519)	Mean (SD): 81.45	Total (nonaccidental)
	Circulatory (390-459)	Range (Min, Max): (20.50, 232.00) Copollutant:	1.000 (0.947, 1.056) 0-2 avg
	Study Design: Bidirectional case- crossover	SO ₂	Respiratory
	Statistical Analyses: Conditional	NO ₂ CO	1.023 (0.829, 1.264) 0-2 avg
	logistic regression	O ₃	Circulatory
	Age Groups: All ages		0.971 (0.864, 1.092) 0-2 avg

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Vajanapoom et al. (2002,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 30 µg/m³
042542) Period of Study: 1992-1997 Location: Bangkok, Thailand	Total (nonaccidental) (<800) Respiratory (460-519)	Averaging Time: 24-h avg Mean (SD): 68.0 (23.9)	% Increase (Lower CI, Upper CI) lag: Total (nonaccidental) All ages: 2.3% (1.3, 3.3) 0-4 ma
Eccation: Bangrox, mailand	Cardiovascular (390-459) Other-causes	IQR (25th, 75th): (50.1, 80.7)	55-64: 1.5% (-0.8, 3.9) 0-4 ma 65-74: 4.2% (2.0, 6.3) 0-4 ma ≥ 75: 3.9% (2.1, 5.6) 0-4 ma
	Study Design: Time-series Statistical Analyses: Poisson GAM, LOESS	Copollutant (correlation): NR	Cardiovascular All ages: 0.8% (-0.9, 2.4) 0 55-64: -2.5% (-6.3, 1.3) 0 65-74: 2.9% (-0.7, 6.5) 0
	Age Groups:		≥ 75: 1.6% (-1.8, 5.0) 0
	All ages		Respiratory
	55-64 yr		All ages: 5.1% (0.6, 9.6) 0-2 ma 55-64: 1.4% (-11.3, 14.2) 0-2 ma
	65-74 yr		65-74: 2.8% (-9.5, 15.2) 0-2 ma ≥ 75: 10.2% (-0.1, 20.5) 0-2 ma
	≥ 75 yr		Other-causes All ages: 2.4% (1.3, 3.5) 0-4 ma 55-64: 1.7% (-1.1, 4.5) 0-4 ma 65-74: 5.6% (3.1, 8.1) 0-4 ma ≥ 75: 3.7% (1.8, 5.6) 0-4 ma
Reference: Vedal et al. (2003, <u>039044</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	The study does not present quantitative
Period of Study: Jan 1994-Dec 1996	Total (nonaccidental) (<800) Respiratory (460-519)	Averaging Time: 24-h avg	results
Location: Vancouver, British Columbia,	Cardiovascular (390-459) Study Design: Time-series	Mean (SD): 14.4 (5.9)	
Canada	Statistical Analyses: Poisson GAM, LOESS	Range (Min, Max): $(4.1, 37.2)$ Copollutant (correlation): O_3 : $r = 0.48$	
	Age Groups: All ages	SO ₂ : r = 0.76 NO ₂ : r = 0.84 CO: r = 0.71	
Reference: Venners et al. (2003, 089931)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 100 μg/m ³
Period of Study: Jan 1995-Dec 1995	Total (nonaccidental) (<800)	Averaging Time: 24-h avg	Relative Risk (Lower CI, Upper CI) lag:
Location: Chongqing, China	Study Design: Time-series	Mean (SD): 146.8	1.00 (0.93, 1.07) 0
01.0	Statistical Analyses: Poisson GAM, cubic spline Age Groups: All ages	Range (Min, Max): (44.7, 666.2) Copollutant: SO ₂	0.98 (0.91, 1.04) 1 1.00 (0.93, 1.07) 2 0.96 (0.90, 1.03) 3
		Notes: PM_{10} was measured for only 7 mo of the study period.	0.97 (0.90, 1.03) 4 0.99 (0.93, 1.06) 5
Reference: Vichit-Vadakan et al. (2008, 157095)	Outcome (ICD10): Mortality: Nonaccidental (A00-R99)	Pollutant: PM ₁₀	Increment: 10 µg/m ³
Period of Study: Jan 1999-Dec 2003	Cardiovascular (100-199) Ischemic heart diseases (120-125)	Averaging Time: 24-h avg	% Excess Risk (Lower CI, Upper CI) lag:
Location: Bangkok, Thailand	Stroke (160-169) Conduction disorder (144-149)	Mean (SD): 52.1 (20.1)	Cause-specific mortality:
200atom Bangkok, Maliana	Respiratory (J00-J98)	Range (Min, Max): (21.3, 169.2)	Nonaccidental: 1.3% (0.8, 1.7) 0-1 Cardiovascular: 1.9% (0.8, 3.0) 0-1
	Lower Respiratory Infection (J10-J22) COPD (J40-J47) Ashma (J45-J46) Senility (R54) Study Design: Time-series	Copollutant (correlation): NR	Ischemic heart disease: 1.5% (-0.4, 3.5) 0-1 Stroke: 2.3% (0.6, 4.0) 0-1 Conduction disorders: -0.%3 (-5.9, 5.6) 0-1 Cardiovascular:
	Statistical Analyses: Poisson, natural cubic spline Age Groups: All ages 0-4 yr		≥ 65 1.8 (0.2, 3.3) 0-1 Respiratory: All ages: 1.0 (-0.4, 2.4) 0-1 ≤ 1: 14.6 (2.9, 27.6) 0-1
	5-44 yr 18-50 yr 45-64 yr ≥ 50 yr ≥ 65 yr ≥ 75 yr		≥ 65: 1.3 (-0.8, 3.3) 0-1 LRI: <5: 7.7 (-3.6, 20.3) 0-1 COPD: 1.3 (-1.8, 4.4) 0-1 Asthma: 7.4 (1.1, 14.1) 0-1 Senility: 1.8 (0.7, 2.8) 0-1
	-·· y.		Age-specific for nonaccidental 0-4: 0.2 (-2.0, 2.4) 0-1 5-44: 0.9 (0.2, 1.7) 0-1 18-50: 1.2 (0.5, 1.9) 0-1 45-64: 1.1 (0.4, 1.9) 0-1 ≥ 50: 1.4 (0.9, 1.9) 0-1

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			≥ 65: 1.5 (0.9, 2.1) 0-1 ≥ 75: 2.2 (1.3, 3.0) 0-1
			Sex-specific for nonaccidental Male: 1.2 (0.7, 1.7) 0-1 Female: 1.3 (0.7, 1.9) 0-1
			Nonaccidental 1.2 (0.8, 1.6) 0 0.9 (0.6, 1.3) 1 0.9 (0.5, 1.3) 2 0.8 (0.4, 1.2) 3 0.3 (-0.1, 0.7) 4 1.3 (0.8, 1.7) 0-1 1.4 (0.9, 1.9) 0-4
			Cardiovascular 1.5 (0.5, 2.6) 0 1.7 (0.7, 2.7) 1 1.6 (0.6, 2.6) 2 0.8 (-0.1, 1.8) 3 -0.1 (-1.1, 0.9) 4 1.9 (0.8, 3.0) 0-1 1.9 (0.6, 3.2) 0-4
			Respiratory 1.0 $(-0.3, 2.3)$ 0 0.8 $(-0.5, 2.0)$ 1 1.1 $(-0.1, 2.3)$ 2 1.3 $(0.1, 2.6)$ 3 0.7 $(-0.6, 1.9)$ 4 1.0 $(-0.4, 2.4)$ 0-1 1.9 $(1.2, 2.6)$ 0-4 \geq 65 1.5 $(0.9, 2.0)$ 0 1.1 $(0.6, 1.7)$ 1 1.1 $(0.6, 1.6)$ 2 1.2 $(0.6, 1.7)$ 3 0.7 $(0.2, 1.2)$ 4 1.5 $(0.9, 2.1)$ 0-1 1.9 $(1.2, 2.6)$ 0-4
			Sensitivity analysis: Nonaccidental (df): 3: 1.3 (0.9, 1.8) 4: 1.2 (0.8, 1.7) 6: 1.3 (0.8, 1.7) 6, with SO ₂ : 1.2 (0.8, 1.7) 6, with NO ₃ : 1.1 (0.6, 1.7) 9: 1.1 (0.7, 1.6) 12: 1.1 (0.6, 1.5) 15: 1.2 (0.7, 1.6)
			Cardiovascular (df): 3: 1.8 (0.8, 2.7) 4: 1.6 (0.7, 2.6) 6: 1.7 (0.7, 2.7) 6, with SO_2 : 2.0 (0.9, 3.3) 6, with NO_2 : 2.3 (0.2, 4.3) 6, with NO_3 : 1.8 (0.5, 3.2) 9: 1.7 (0.6, 2.8) 12: 1.8 (0.7 to 3.0) 15: 2.2 (0.9, 3.4)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Villeneuve et al. (2003,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 15.4 µg/m³
055051)	Nonaccidental (<800)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Period of Study: 1986-1999	Cardiovascular (401-440)	Mean (SD):	Nonaccidental 3.7% (-0.5, 8.0) 0-2 avg
Location: Vancouver, Canada	Respiratory (460-519)	Daily 14.0	2.6% (-0.9, 6.1) 0 2.7% (-0.7, 6.2) 1
	Cancer (140-239)	Every 6th Day 19.6	1.9% (-1.4, 5.3) 2
	Study Design: Time-series	Range (Min, Max):	Cardiovascular
	Statistical Analyses: Poisson, natural splines	Daily (3.8, 52.2)	3.4% (-2.7, 9.8) 0-2 avg 5.1% (0.0, 10.4) 0
	Age Groups: ≥ 65 yr	Every 6th Day (3.5, 63.0)	1.3% (-3.8, 6.7) 1 0.6% (-4.3, 5.7) 2
	Ago Oroupo. = 00 yr	Copollutant: SO ₂	Respiratory
		CO NO ₂	PM ₁₀
		O ₃	0.1% (-9.5, 10.8) 0-2 avg 1.0% (-7.5, 10.4) 0
		PM _{2.5} PM _{10-2.5}	0.4% (-7.7, 9.3) 1 -1.3% (-8.9, 7.1) 2
			Cancer
			1.2% (-6.9, 10.1) 0-2 avg
			-2.5% (-8.8, 4.3) 0 2.3% (-4.6, 9.6) 1
Reference: Welty et al. (2008, <u>157134</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	3.3% (-3.7, 10.8) 2 Increment: 10 µg/m ³
Period of Study: 1987-2000	Total (nonaccidental)	Averaging Time: 24-h avg	% Excess Risk (Lower CI, Upper CI)
Location: Chicago, Illinois	Study Design: Time-series	Mean (SD): NR	lag:
Location. Chicago, Illinois	Statistical Analyses: Poisson-Gibbs	• •	Poisson-Gibbs Sampler 0.17% (0.01, 0.34) 3
	Sampler	Range (Min, Max): NR Copollutant (correlation): NR	-0.24% (-0.73, 0.23) 0-14
	Bayesian Distributed Lag Model		Unconstrained:
	Age Groups: All ages		-0.19% (-0.86, 0.48) 0-14
			Bayesian Distributed Lag Model -0.21% (-0.86, 0.41) 0-14
Reference: Welty and Zeger (2005,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m ³
087484)	Total (nonaccidental) (<800)	Averaging Time: 24-h avg	% Increase (SE) lag:
Period of Study: 1987-2000	Study Design: Time-series	Mean (SD): NR Range (Min, Max): NR Copollutant (correlation): NR	Distributed Lag Model:
Location: 100 U.S. cities (NMMAPS)	Statistical Analyses: Bayesian		Seasonally-Temporally Varying Temperature variables: 0, 1-2, 1-7, 1-14
	hierarchical model		S(t, 1 × yr): 0.229 (0.053) 1 S(t, 2 × yr): 0.220 (0.053) 1
	Age Groups: All ages		S(t, 4 × yr): 0.187 (0.050) 1
			S(t, 8 × yr): 0.178 (0.049) 1
			Temperature variables: 0, 1-2, 1-7, 1-14, 0×1-2, 0×1-7,
			1-2 × 1-7 S(t, 1 × yr): 0.195 (0.048) 1
			S(t, 2 × yr): 0.200 (0.051) 1
			S(t, 4 × yr): 0.176 (0.050) 1 S(t, 8 × yr): 0.149 (0.050) 1
			Distributed Lag Model: Nonlinear
			Temperature variables: 0, 1-2, 1-7, 1-14 S(t, 4 × yr): 0.239 (0.053) 1
			Temperature variables: 0, 1-2, 1-7, 1-14, 0×1-2, 0×1-7, 1-2 × 1-7
			S(t, 4 × yr): 0.172 (0.045) 1
			Temperature variables: S(0,2), S(1-2,2), S(1-7,2), S(1-14,2)
			S(t, 4 × yr): 0.186 (0.046) 1
			Temperature variables: S(0,2), S(1-2,2),
			S(1-7,2), S(1-14,2), S(0×1-2,2), S(0×1-7,2), S(1-2 × 1-7,2)
			S(t, 4 × yr): 0.189 (0.047) 1

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Temperature variables: S(0,4), S(1-2,4), S(1-7,4), S(1-14,4) S(t, 4 × yr): 0.175 (0.046) 1
			Temperature variables: S(0,4), S(1-2,4), S(1-7,4), S(1-14,4), S(0×1-2,4), S(0×1-7,4), S(1-2 × 1-7,4) S(t, 4 × yr): 0.190 (0.048) 1
			Temperature variables: 0, 1-2, 1-7 S(t, 4 × yr): 0.252 (0.053) 1
			Temperature variables: 0, 1-2, 1-7, 0×1-2, 0×1-7, 1-2 × 1-7 S(t, 4 × yr): 0.186 (0.044) 1
			Temperature variables: S(0,2), S(1-2,2), S(1-7,2) S(t, 4 × yr): 0.198 (0.046) 1
			Temperature variables: $S(0,2)$, $S(1-2,2)$, $S(1-7,2)$, $S(0\times1-2,2)$, $S(0\times1-7,2)$, $S(1-2\times1-7,2)$ $S(1,4\times1)$; $S(1,4\times1)$;
			Temperature variables: S(0,4), S(1-2,4), S(1-7,4) S(t, 4 × yr): 0.189 (0.045) 1
			Temperature variables: $S(0,4)$, $S(1-2,4)$, $S(1-7,4)$, $S(0\times1-2,2)$, $S(0\times1-7,4)$, $S(1-2\times1-7,2)$ $S(1,4\times1)$; $S(1,4\times1)$;
			Temperature variables: S(0,4), S(1-2,4) S(t, 4 × yr): 0.250 (0.045) 1
			Temperature variables: $S(0,4)$, $S(1-2,4)$, $S(0\times1-2,4)$ $S(t, 4\times yr)$: 0.253 (0.044) 1
			Temperature variables: S(0,4) S(t, 4 × yr): 0.220 (0.045) 1
			Notes: 0 indicates current-day temperature
			1-r indicates avg of lag 1 through lag r temperature
			$S\left(,\rho\right)$ indicates a natural spline smooth with ρ degrees of freedom.
			S (t, α x yr) indicates the natural spline smooth of time with degrees of freedom equal to α x (number of yr of data).

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Wong et al. (2007, <u>098391</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: Jan 1998-Dec 1998	Total (nonaccidental) (<800)	Averaging Time: 24-h avg	% Excess Risk (Lower CI, Upper CI)
Location: Hong Kong, China	Cardiorespiratory (390-519)	Mean (SD):	lag: Main Analysis
	Study Design: Main analysis: Time-	48.1 (24.3)	Nonaccidental Smokers:
	series Sensitivity analysis: Case-crossover, case-only	Range (Min, Max): (15.5, 140.5)	≥ 301: 80% (0.35, 3.26) 0 1.77% (0.46, 3.11) 2 ≥ 65: 3.20% (1.36, 5.07) 0
	Statistical Analyses: Main analysis: Poisson GAM	Copollutant: NO ₂	2.42% (0.73, 4.13) 2 Never-smokers
	Sensitivity analysis: Conditional logistic regression	SO ₂	≥ 30: -0.37% (-2.23, 1.52) 0 -0.03% (-1.72, 1.66) 2 ≥ 65P -0.70% (-2.81, 1.46) 0
	Age Groups: ≥ 30 yr; ≥ 65 yr	O_3	-0.13% (-2.04, 1.80) 2
			Cardiorespiratory Smokers ≥ 30: 1.43% (-0.86, 3.78) 0 2.32% (0.24, 4.44) 2 ≥ 65: 2.98% (0.47, 5.55) 0 2.61% (0.31, 4.95) 2
			Never-smokers ≥ 30: 0.02% (-2.75, 2.87) 0 -0.79% (-3.33, 1.82) 2 ≥ 65: 0.25% (-2.62, 3.19) 0 -0.66% (-3.29, 2.04) 2
			Sensitivity Analysis Poisson Regression Nonaccidental ≥ 30: 1.81% (0.21, 3.44) 0 1.93% (0.32, 3.56) 2 1.99% (0.14, 3.87) 0.3 ≥ 65: 2.31% (0.37, 4.29) 0 2.16% (0.20, 4.15) 2 2.57% (0.30, 4.89) 0-3
			Cardiorespiratory ≥ 30: 1.04% (-1.45, 3.59) 0 2.18% (-0.35, 4.77) 2 1.66% (-1.24, 4.64) 0-3 ≥ 65: 1.69% (-0.93, 4.37) 0 2.44% (-0.23, 5.18) 2 2.30% (-0.80, 5.50) 0-3
			Case-only: Logistic Regression Nonaccidental ≥ 30: 1.79% (0.21, 3.37) 0 1.94% (0.33, 3.56) 2 ≥ 65: 2.30% (0.42, 4.17) 0 2.16% (0.26, 4.07) 2
			Cardiorespiratory ≥ 30: 1.01% (-1.37, 3.40) 0 2.16% (-0.28, 4.61) 2 ≥ 65: 1.65% (-0.96, 4.27) 0 2.42% (-0.27, 5.12) 2
			Case-crossover Nonaccidental ≥ 30: 2.54% (0.35, 4.78) 0 1.35% (-0.81, 3.56) 2 ≥ 65: 3.96% (1.37, 6.63) 0 2.20% (-0.35, 4.81) 2
			Cardiorespiratory ≥ 30: 0.48% (-2.74, 3.80) 0 3.24% (-0.03, 6.61) 2 ≥ 65: 2.17% (-1.40, 5.86) 0 3.43% (-0.13, 7.13) 2
Reference: Wong et al. (2007, <u>093278</u>) Period of Study: Jan 1998-Dec 1998	Outcome: Mortality: Total (nonaccidental) (<800)	Pollutant: PM ₁₀ Averaging Time: 24-h avg Mean (SD): 48.1 (24.3)	Increment: 10 µg/m³ % Excess Risk (Lower CI, Upper CI) lag: Nonaccidental

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Location: Hong Kong, China	Cardiorespiratory (390-519)	Range (Min, Max): (15.5, 140.5) Copollutant:	Exercise ≥ 30: 0.13% (-1.16, 1.44) 1
	Study Design: Main analysis: Timeseries	NO ₂ SO ₂	≥ 65: 0.24% (-1.16, 1.67) 1
	Sensitivity analysis: Case-only	O_3	Never-exercise ≥ 30: 1.04% (0.07, 2.02) 1
	Statistical Analyses: Main analysis: Poisson GAM, natural cubic spline		≥ 65: 1.26% (0.27, 2.27) 1
	Sensitivity analysis: Logistic		Cardio-respiratory Exercise
	regression		≥ 30: 0.46% (-1.43, 2.39) 1 ≥ 65: 0.30% (-1.65, 2.29) 1
	Age Groups : ≥ 30 yr; ≥ 65 yr		Never-exercise ≥ 30: 0.97% (-0.36, 2.32) 1 ≥ 65: 0.98% (-0.45, 2.43) 1
			Difference in % Excess Risk (Exercise vs. Never-Exercise) Nonaccidental
			Poisson Regression ≥ 30: -2.86% (-4.03 to -1.67) 1 ≥ 65: -3.06% (-4.37 to -1.74) 1
			Case-only ≥ 30: -2.91% (-4.04 to -1.77) 1 ≥ 65: -3.12% (-4.38 to -1.84) 1
			Cardiorespiratory Poisson regression ≥ 30: -2.55% (-4.32 to -0.75) 1 ≥ 65: -2.64% (-4.48 to -0.76) 1
			Case-only ≥ 30: -2.63% (-4.32 to -0.92) 1 ≥ 65: -2.73% (-4.50 to -0.92) 1
			Adjusted Case-only Nonaccidental Sex
			≥ 30: -2.88% (-1.73 to -4.01) 1 ≥ 65: -3.09% (-1.82 to -4.35) 1
			Education ≥ 30: -2.94% (-1.80 to -4.07) 1 ≥ 65: -3.18% (-1.90 to -4.44) 1
			Job ≥ 30: -2.88% (-1.74 to -4.02) 1 ≥ 65: -3.11% (-1.83 to -4.37) 1
			Smoking ≥ 30: -2.82% (-1.66 to -3.96) 1 ≥ 65: -2.97% (-1.68 to -4.25) 1
			Illness time ≥ 30: -2.94% (-1.80 to -4.07) 1 ≥ 65: -3.16% (-1.88 to -4.42) 1
			Cardiorespiratory Sex ≥ 30: -2.61% (-0.89 to -4.29) 1
			≥ 65: -2.71% (-0.90 to -4.48) 1 Education ≥ 30: -2.58% (-0.85 to -4.27) 1
			≥ 65: -2.77% (-0.95 to -4.54) 1 Job ≥ 30: -2.68% (-0.96 to -4.37) 1 > 65: -2.68% (-0.98 to -4.46) 1
			≥ 65: -2.68% (-0.88 to -4.46) 1 Smoking ≥ 30: -2.46% (-0.73 to -4.17) 1 ≥ 65: -2.50% (-0.68 to -4.29) 1
			≥ 052.30% (-0.08 to -4.29) 1 Illness Time ≥ 30: -2.63% (-0.91 to -4.32) 1 ≥ 65: -2.73% (-0.92 to -4.51) 1

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Case-only by Exercise Group (Never as Reference) Nonaccidental ≥ 30 Low: -3.34% (-5.77 to -0.85) 1 Moderate: -6.32% (-8.55 to -4.03) 1 High: -1.74% (-3.06 to -0.40) 1 ≥ 65 Low: -3.79% (-6.67 to -0.82) 1 Moderate: -7.78% (-10.39 to -5.10) 1 High: -1.77% (-3.21 to -0.31) 1
			Cardiorespiratory ≥ 30 Low: -3.95% (-7.77, 0.04) 1 Moderate: -8.50% (-11.84 to -5.02) 1 High: -0.62% (-2.58, 1.38) 1 ≥ 65 Low: -3.97% (-8.17, 0.43) 1 Moderate: -9.42% (-13.00 to -5.69) 1 High: -0.68% (-2.71, 1.38) 1
Reference: Wong et al. (2002, <u>025436</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: 1995-1998	Respiratory (461-519)	Averaging Time: 24-h avg	Relative Risk (Lower CI, Upper CI)
Location: Hong Kong, China	COPD (490-496)	Mean (SD):	lag: Respiratory
	Pneumonia & Influenza (480-487)	51.53 (24.79)	1.008 (1.001 to 1.014) 1 COPD
	Cardiovascular (390-459)	Range (Min, Max):	1.017 (1.002, 1.033) 0-3
	IHD (410-414)	(14.05, 163.79)	Pneumonia & Influenza 1.007 (0.999, 1.015) 2
	Cerebrovascular (430-438)	Copollutant (correlation):	Cardiovascular 1.003 (0.998, 1.016) 2
	Study Design: Time-series	NO_2 : r = 0.780	IHD
	Statistical Analyses: Poisson	SO ₂ : r = 0.344	1.013 (1.001, 1.025) 0-3 Cerebrovascular
	Age Groups: ≥ 30 yr; ≥ 65 yr	O ₃ : r = 0.538	1.007 (0.998, 1.016) 2 Respiratory PM ₁₀ +SO ₂ +O ₃ +NO ₂ : 1.005 (0.992, 1.010) 1 COPD PM ₁₀ +SO ₂ +O ₃ +NO ₂ : 0.991 (0.968, 1.015) 0-3 PM ₁₀ +O ₃ +NO ₂ : 0.993 (0.970, 1.016) 0-3 Pneumonia & Influenza PM ₁₀ +SO ₂ +O ₃ +NO ₂ : 1.002 (0.991, 1.013) 2 IHD 0.994 (0.978, 1.009) 0-3

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Wong et al. (2008, <u>157152</u>)	Outcome (ICD10): Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: Bangkok: 1999-2003 Hong Kong: 1996-2002 Shanghai & Wuhan: 2001-2004 Location: Bangkok, Thailand Hong Kong, Shanghai, and Wuhan, China	Natural causes (A00-R99) Cardiovascular (I00-I99) Respiratory (J00-J98) Study Design: Time-series Statistical Analyses: Poisson GLM, natural splines Age Groups: All ages ≥ 65 yr ≥ 75 yr	Averaging Time: 24-h avg Mean (SD): Bangkok: 52.0 Hong Kong: 51.6 Shanghai: 102.0 Wuhan: 141.8 Range (Min, Max): Bangkok: (21.3, 169.2) Hong Kong: (13.7, 189.0) Shanghai: (14.0, 566.8) Wuhan: (24.8, 477.8) Copollutant: NO ₂ SO ₂ O ₃	**Excess Risk (Lower CI, Upper CI) lag: Random Effects (4 cities) Natural causes: 0.55% (0.26, 0.85) 0-1 Cardiovascular: 0.58% (0.22, 0.93) 0-1 Respiratory: 0.62% (0.22, 1.02) 0-1 Random Effects (3 Chinese cities) Natural causes: 0.37% (0.21, 0.54) 0-1 Cardiovascular: 0.44% (0.19, 0.68) 0-1 Respiratory: 0.60% (0.16, 1.04) 0-1 Sensitivity Analysis Random Effects (4 cities) Omit PM ₁₀ >95th: 0.53% (0.27, 0.78) 0-1 Omit PM ₁₀ >75th: 0.53% (0.29, 0.78) 0-1 Omit stations with high traffic source: 0.55% (0.26, 0.85) 0-1 Warm season-dichotomous variables: 0.86% (0.11, 1.60) 0-1 Add temperature at lag 1-2 days: 0.51% (0.23, 0.79) 0-1 Add temperature at lag 3-7 days: 0.35% (0.14, 0.57) 0-1 Daily PM ₁₀ defined by centering: 0.54% (0.26, 0.81) 0-1 Penalized spline: 0.52% (0.26, 0.77) 0-1 Random Effects (3 Chinese cities) Omit PM ₁₀ >95th: 0.47% (0.21, 0.73) 0-1 Omit PM ₁₀ >75th: 0.55% (0.24, 0.85) 0-1 Omit PM ₁₀ >75th: 0.55% (0.24, 0.85) 0-1 Omit stations with high traffic source: 0.38% (0.15, 0.76) 0-1 Omit stations with high traffic source: 0.38% (0.20, 0.57) 0-1 Omit stations with high traffic source: 0.38% (0.20, 0.57) 0-1 Omit stations with high traffic source: 0.38% (0.10, 0.76) 0-1 Omit pM ₁₀ defined by centering: 0.34% (0.20, 0.57) 0-1 Omit pdiened by centering: 0.36% (0.18, 0.53) 0-1 Add temperature at lag 3-7 days: 0.25% (0.10, 0.40) 0-1 Daily PM ₁₀ defined by centering: 0.37% (0.21, 0.53) 0-1 Natural spline with (8, 4, 4f: 0.56% (0.23, 0.49) 0-1 Penalized spline: 0.34% (0.23, 0.49) 0-1 Penalized spline: 0.34% (0.23, 0.49) 0-1
Reference: Wong et al. (2008, <u>157151</u>) Period of Study: Jan 1996-Dec 2002	Nonaccidental (A00-T99	Pollutant: PM ₁₀ Averaging Time: 24-h avg	Increment: 10 µg/m³ % Excess Risk (Lower CI, Upper CI) lag:
Location: Hong Kong	Z00-Z99)	Mean (SD): 51.6 (25.3)	Nonaccidental:
	Cardiovascular (I00-I99)	Range (Min, Max): (13.5, 188.5)	Low SDI 0.37 (-0.10, 0.84) 0
	Respiratory (J00-J98)	Copollutant:	0.40 (-0.04, 0.84) 1 0.14 (-0.28, 0.57) 2
	Study Design: Time-series	NO_2	-0.12 (-0.55, 0.30) 3 -0.14 (-0.56, 0.28) 4
	Statistical Analyses: Poisson GLM, natural splines	SO ₂	Middle SDI
	Age Groups: All ages	O ₃	0.70 (0.34, 1.07) 0 0.48 (0.14, 0.82) 1 0.35 (0.02, 0.68) 2 0.18 (-0.14, 0.51) 3 0.17 (-0.16, 0.50) 4
			High SDI 0.22 (-0.29, 0.73) 0 0.46 (-0.01, 0.94) 1 0.29 (-0.17, 0.75) 2 -0.05 (-0.51, 0.40) 3 -0.06 (-0.51, 0.40) 4
			All areas

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			0.45 (0.19, 0.72) 0 0.40 (0.15, 0.64) 1 0.22 (-0.02, 0.45) 2 0.00 (-0.24, 0.23) 3 0.03 (-0.20, 0.26) 4
			Cardiovascular: Low SDI 0.14 (-0.77, 1.06) 0 0.64 (-0.21, 1.49) 1 0.24 (-0.58, 1.07) 2 -0.27 (-1.09, 0.55) 3 0.01 (-0.80, 0.83) 4
			Middle SDI 0.66 (0.00, 1.34) 0 0.49 (-0.13, 1.12) 1 0.80 (0.20, 1.40) 2 0.65 (0.06, 1.25) 3 0.52 (-0.07, 1.12) 4
			High SDI 0.83 (-0.08, 1.75) 0 0.89 (0.04, 1.75) 1 0.12 (-0.70, 0.95) 2 -0.09 (-0.91, 0.73) 3 0.04 (-0.77, 0.86) 4
			All areas 0.52 (0.05, 1.00) 0 0.58 (0.14, 1.03) 1 0.43 (0.00, 0.86) 2 0.14 (-0.28, 0.57) 3 0.23 (-0.20, 0.65) 4
			Respiratory: Low SDI 0 0.69 (-0.44, 1.82) 0 1 0.55 (-0.50, 1.61) 1 2 0.36 (-0.66, 1.39) 2 3 -0.24 (-1.25, 0.78) 3 4 -0.17 (-1.17, 0.85) 4
			Middle SDI 0.31 (-0.50, 1.13) 0 0.77 (0.01, 1.53) 1 0.85 (0.12, 1.59) 2 0.66 (-0.07, 1.39) 3 0.69 (-0.03, 1.42) 4
			High SDI 0.27 (-0.85, 1.40) 0 0.72 (-0.32, 1.78) 1 1.46 (0.45, 2.47) 2 0.70 (-0.30, 1.71) 3 0.48 (-0.52, 1.48) 4
			All areas 0.39 (-0.20, 0.99) 0 0.70 (0.15, 1.26) 1 0.89 (0.36, 1.42) 2 0.45 (-0.08, 0.98) 3 0.43 (-0.10, 0.96) 4
			High SDI vs. Middle SDI Nonaccidental: 0.23 (-0.25, 0.72) 0-1 Cardiovascular: 0.49 (-0.40, 1.40) 0-1 Respiratory: 0.49 (-0.58, 1.58) 0-1
			High SDI vs. Low SDI Nonaccidental: 0.12 (-0.42, 0.67) 0-1 Cardiovascular: 0.82 (-0.20, 1.86) 0-1 Respiratory: -0.15 (-1.39, 1.10) 0-1
			Trend Test Nonaccidental: 0.04 (-0.15, 0.22) 0-1 Cardiovascular: 0.27 (-0.07, 0.61) 0-1 Respiratory: -0.04 (-0.46, 0.37)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			0-1 SDI = Social Deprivation Index. The higher the SDI the lower the SES of the individual.
Reference: Yang et al. (2004, <u>055603</u>)	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 31.43 µg/m³
Period of Study: 1994-1998	Nonaccidental (<800)	Averaging Time: 24-h avg	Odds Ratio (Lower CI, Upper CI) lag:
Location: Taipei, Taiwan	Circulatory (390-459)	Mean (SD): 51.99	Nonaccidental
	Respiratory (460-519)	Range (Min, Max): (13.71, 211.30)	0.995 (0.971, 1.020) 0
	Study Design: Bi-directional case-	Copollutant: SO ₂	Respiratory
	crossover	NO_2	0.986 (0.906, 1.074) 0
	Statistical Analyses: Conditional logistic regression	CO O₃	Circulatory
	Age Groups: All ages		0.988 (0.942, 1.035)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Zanobetti et al. (2003,	Outcome: Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
042812) Period of Study: 1000 1007	Nonaccidental (<800)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Period of Study: 1990-1997	Circulatory (390-459)	Mean (SD): Athens: 42.7 (12.9)	Cardiovascular 0.69% (0.31, 1.08) 0-1 avg
Location: 10 European cities (APHEA2)	Respiratory (460-519)	Budapest: 41 (9.1) Lodz: 53.5 (15.5)	40-day distributed lag 1.99% (1.44, 2.54)
	Study Design: Time-series	London: 28.8 (13.7)	4th degree
	Statistical Analyses: Poisson GAM	Madrid: 37.8 (17.7) Paris: 22.5 (11.5)	1.97% (1.38, 2.55)
	Age Groups: 15-64 yr	Prague: 76.2 (45.7) Rome: 58.7 (17.4) Stockholm: 15.5 (7.9)	Unrestricted Respiratory 0.74% (-0.17, 1.66) 0-1 avg
	65-74 yr	Tel Aviv: 50.3 (57.5)	40-day distributed lag 4.21% (1.70, 6.79)
	≥ 75 yr	Range (Min, Max): NR	4th degree
		Copollutant (correlation): NR	4.20% (1.08, 7.42) Unrestricted Unrestricted distributed lags Cardiovascular 1.34% (0.89, 1.79) 20 1.72% (1.20, 2.25) 30 1.97% (1.38, 2.55) 40 Respiratory 1.71% (-0.65, 4.12) 20 2.62% (0.19, 5.11) 30 4.20% (1.08, 7.42) 40 40-day lags Nonaccidental 15-64 -0.25% (-0.87, 0.36) 4th degree -0.01 (-0.76, 0.75) Unrestricted 65-74 0.78% (0.23, 1.33) 4th degree 0.74% (0.02, 1.45) Unrestricted ≥ 75 1.84% (0.92, 2.78) 4th degree 1.94% (1.07, 2.81) Unrestricted Cardiovascular 65-74 2.06% (1.05, 3.09) 4th degree
			1.62 (0.54, 2.70) Unrestricted ≥ 75 2.35% (1.42, 3.29) 4th degree
			2.52% (1.57, 3.48) Unrestricted Respiratory ≥ 75 4.57% (1.25, 7.99) 4th degree 4.52% (0.89, 8.28)
			Unrestricted

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Zeka et al. (2005, <u>088068</u>)	Outcome (ICD10): Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: Jan 1989-Dec 2000 Location: 20 U.S. cities	All-cause (nonaccidental) (V01-Y98) Heart Disease (I01-I51) IHD (I20-I25) Myocardial infarction (I21, I22) Dysrhythmias (I46-I49) Heart failure (I50) Stroke (I60-I69) Respiratory (J00-J99) Pneumonia (J12-J18) COPD (J40-J44, J47) Study Design: Time-stratified case-crossover Statistical Analyses: Conditional logistic regression Age Groups: All ages	Averaging Time: 24-h avg Mean (SD): Birmingham: 31.9 (18.0) μg/m³ Boulder: 22.1 (11.3) Caton: 26.6 (11.5) Chicago: 33.7 (16.4) Cincinnati: 31.4 (13.9) Cleveland: 37.5 (18.7) Colorado Springs: 24.0 (13.2) Columbus: 28.5 (12.5) Denver: 28.5 (12.5) Denver: 28.5 (12.8) Detroit: 32.1 (17.7) Honolulu: 15.9 (6.8) Minneapolis: 24.7 (12.3) Nashville: 30.1 (12.1) New Haven: 25.4 (14.4) Pittsburgh: 30.2 (18.5) Provo: 33.7 (22.2) Seattle: 26.4 (14.7) Salt lake City: 35.0 (20.8) μ Terra Haute: 29.2 (14.6) μ Youngstown: 30.8 (13.9) Range (Min, Max): NR Copollutant (correlation): NR	% Increase (Lower CI, Upper CI) lag: Single-lag model All-Cause (nonaccidental) 0.20% (0.08, 0.32) 0 0.35% (0.21, 0.49) 1 0.24% (0.14, 0.34) 2 Respiratory 0.34% (-0.07, 0.75) 0 0.52% (0.15, 0.89) 1 0.51% (0.16, 0.86) 2 COPD -0.06% (-0.63, 0.51) 0 0.43% (-0.14, 1.00) 1 0.39% (-0.16, 0.94) 2 Pneumonia 0.50% (0.09, 1.09) 0 0.59% (-0.12, 1.30) 1 0.82% (0.25, 1.39) 2 Heart disease 0.12% (-0.06, 0.30) 0 0.30% (0.12, 0.48) 1 0.37% (0.17, 0.57) 2 IHD 0.19% (-0.03, 0.41) 0 0.41% (0.19, 0.63) 1 0.43% (0.10, 0.76) 2 Myocardial Infarction 0.36% (-0.05, 0.77) 0 0.17% (-0.18, 0.52) 1 0.13% (-0.22, 0.48) 2 Heart Failure 0.17% (-0.63, 0.97) 0 -0.01% (-0.81, 0.79) 1 0.78% (-0.004, 1.56) 2 Dysrhythmias -0.23% (-1.41, 0.95) 0 0.37% (-0.47, 1.21) 1 0.33% (-0.55, 1.21) 2 Stroke 0.09% (-0.49, 0.60) 0 0.41% (-0.02, 0.84) 1 0.14% (-0.02, 0.84) 1 0.14% (-0.02, 0.84) 1 0.14% (-0.02, 0.85) 0-3 Respiratory 0.87% (0.38, 1.36) 0-3 COPD 0.43% (-0.35, 1.21) 0-3 Pneumonia 1.24% (0.46, 2.02) 0-3 Heart Disease 0.50% (0.25, 0.75) 0-3 IHD 0.65% (0.32, 0.98) Myocardial Infarction 0.36% (-0.25, 0.75) 0-3 IHD 0.65% (0.32, 0.98) Myocardial Infarction 0.36% (-0.25, 0.75) 0-3 IPO 0.65% (0.32, 0.98) Myocardial Infarction 0.36% (-0.50, 1.70) 0-3 Dysrhythmias 0.20% (-1.03, 1.43) 0-3 Stroke 0.46% (-0.13, 1.05) 0-3
Reference: Zeka et al. (2006, <u>088749</u>)	Outcome (ICD10): Mortality:	Pollutant: PM ₁₀	Increment: 10 µg/m ³
Period of Study: Jan 1989-Dec 2000	All-cause (nonaccidental) (V01-Y98) Heart Disease (I01-I51) Myocardial infarction (I21, I22)	Averaging Time: 24-h avg Mean (SD): Birmingham: 31.9 (18.0) μg/m³ Boulder: 22.1 (11.3) Caton: 26.6 (11.5) Chicago: 33.7 (16.4) Cincinnati: 31.4 (13.9)	% Increase (Lower CI, Upper CI) lag: All-cause (nonaccidental) Male: 0.46% (0.28, 0.64) 1-2 avg
Location: 20 U.S. cities			Female: 0.37% (0.17, 0.57) 1-2 avg
			White: 0.40% (0.22, 0.58) 1-2 avg Black: 0.37% (-0.02, 0.76) 1-2 avg
	Stroke (160-169)		Age:
	Respiratory (J00-J99)	Cleveland: 37.5 (18.7)	<65: 0.25% (0.01, 0.49) 1-2 avg
	Study Design: Time-stratified case-	Colorado Springs: 24.0 (13.2)	75: 0.23% (-0.06, 0.52) 1-2 avg

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
-	crossover Statistical Analyses: Conditional logistic regression Age Groups: All ages <65 yr 65-75 yr >75 yr	Columbus: 28.5 (12.5) Denver: 28.5 (12.8) Detroit: 32.1 (17.7) Honolulu: 15.9 (6.8) Minneapolis: 24.7 (12.3) Nashville: 30.1 (12.1) New Haven: 25.4 (14.4) Pittsburgh: 30.2 (18.5) Provo: 33.7 (22.2) Seattle: 26.4 (14.7) Salt lake City: 35.0 (20.8) Terra Haute: 29.2 (14.6) Youngstown: 30.8 (13.9) Range (Min, Max): NR	>75: 0.64% (0.44, 0.84) 1-2 avg Educational Attainment: Low (<8 yr): 0.62% (0.29, 0.95) 1-2 avg Medium (8-12 yr): 0.36% (0.12, 0.60) 1-2 avg High (>12 yr): 0.27% (-0.004, 0.54) 1-2 avg Location of Death: In hospital: 0.22% (0.04, 0.40) 1-2 avg Out of hospital: 0.71% (0.51, 0.91) 1-2 avg
		Copollutant (correlation): NR	Season: Winter: 0.28% (0.04, 0.52) 1-2 avg Summer: 0.19% (-0.22, 0.60) 1-2 avg Transition (spring/fall): 0.49% (0.25, 0.73) 1-2 avg
			Respiratory Male: 0.71% (0.004, 1.42) 0-3 Female: 1.04% (0.33, 1.75) 0-3 White: 0.88% (0.33, 1.43) 0-3 Black: 0.71% (-0.56, 1.98) 0-3
			Age: <65: 0.94% (-0.31, 2.19) 0-3 65-75: 0.87% (-0.25, 1.99) 0-3 >75: 0.88% (0.17, 1.59) 0-3
			Educational Attainment: Low (<8 yr): 0.82% (-0.32, 1.96) 0-3 Medium (8-12 yr): 0.88% (0.12, 1.64) 0-3 High (>12 yr): 0.88% (-0.04, 1.80) 0-3
			Location of Death: In hospital: 0.78% (0.17, 1.39) 0-3 Out of hospital: 1.09% (0.25, 1.93) 0-3
			Season: Winter: -0.007% (-0.87, 0.86) 0-3 Summer: 0.69% (-0.68, 2.06) 0-3 Transition (spring/fall): 1.57% (0.86, 2.28) 0-3
			Heart Disease Male: 0.54% (0.23, 0.85) 2 Female: 0.46% (0.15, 0.77) 2 White: 0.50% (0.25, 0.75) 2 Black: 0.64% (0.13, 1.15) 2
			Age: <65: 0.04% (-0.45, 0.53) 2 65-75: 0.60% (0.13, 1.07) 2 >75: 0.65% (0.30, 1.00) 2
			Educational Attainment: Low (<8 yr): 0.72% (0.23, 1.21) 2 Medium (8-12 yr): 0.38% (0.07, 0.69) 2 High (>12 yr): 0.54% (0.13, 0.95) 2
			Location of Death: In hospital: 0.15% (-0.14, 0.44) 2 Out of hospital: 0.93% (0.60, 1.26) 2
			Season: Winter: 0.41% (-0.002, 0.82) 2 Summer: 0.52 (0.03, 1.01) 2 Transition (spring/fall): 0.56% (0.13, 0.99) 2

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Myocardial Infarction Male: 0.21% (-0.40, 0.82) 0 Female: 0.59% (0.08, 1.10) 0 White: 0.24% (-0.27, 0.75) 0 Black: 0.99% (0.05, 1.93) 0 <65: 0.12% (-0.76, 1.00) 0 65-75: 0.92% (0.21, 1.63) 0 >75: 0.16% (-0.58, 0.90) 0
			Educational Attainment: Low (<8 yr): 0.33% (-0.83, 1.49) 0 Medium (8-12 yr): 0.79% (0.28, 1.30) 0 High (>12 yr): -0.13% (-0.82, 0.56) 0
			Location of Death: In hospital: 0.34% (-0.11, 0.79) 0 Out of hospital: 0.48% (-0.23, 1.19) 0
			Season: Winter: 0.32% (-0.37, 1.01) 0 Summer: 0.30% (-0.82, 1.42) 0 Transition (spring/fall): 0.38% -0.31, 1.07) 0
			Stroke Male: 0.11% (-0.58, 0.80) 1 Female: 0.59% (-0.04, 1.22) 1 White: 0.48% (0.01, 0.95) 1 Black: 0.13% (-0.87, 1.13) 1
			Age: <65: 0.09% (-1.09, 1.27) 1 65-75: -0.46% (-1.42, 0.50) 1 >75: 0.80% (0.27, 1.33) 1
			Educational Attainment: Low (<8 yr): 0.07% (-1.44, 1.58) 1 Medium (8-12 yr): 0.29% (-0.32, 0.90) 1 High (>12 yr): 0.52% (-0.28, 1.32) 1
			Location of Death: In hospital: 0.06% (-0.49, 0.61) 1 Out of hospital: 0.87% (0.05, 1.69) 1
			Season: Winter: -0.09% (-0.93, 0.75) 1 Summer: 0.67% (-0.31, 1.65) 1 Transition (spring/fall): 0.51% (-0.20, 1.22) 1
			Contributing causes of disease: All-cause Secondary pneumonia present: 0.67% (0.16, 1.18) 1-2 avg Secondary pneumonia absent: 0.34% (0.16, 0.52) 1-2 avg Secondary heart failure present: 0.42% (0.01, 0.83) 1-2 avg Secondary heart failure absent: 0.37% (0.19, 0.55) 1-2 avg Secondary stroke present: 0.85% (0.30, 1.40) 1-2 avg Secondary stroke absent: 0.32% (0.14, 0.50) 1-2 avg Diabetes present: 0.57% (0.02, 1.12) 1-2 avg Diabetes absent: 0.34% (0.14, 0.54) 1-2 avg
			Respiratory Secondary pneumonia present: 1,28% (-0.33, 2,89) 0-3 Secondary pneumonia absent: 0,78% (0.15, 1,41) 0-3 Secondary heart failure present: 1,48% (0.07, 2,89) 0-3 Secondary heart failure absent:

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			0.79% (0.26, 1.32) 0-3 Secondary stroke present: 1.95% (-0.11, 4.01) 0-3 Secondary stroke absent: 0.80% (0.29, 1.31) 0-3 Diabetes present: 1.96% (-0.22, 4.14) 0-3 Diabetes absent: 0.82% (0.31, 1.33) 0-3
			Heart Disease Secondary pneumonia present: 0.66% (-0.63, 1.95) 2 Secondary pneumonia absent: 0.49% (0.27, 0.71) 2 Secondary stroke present: 0.73% (-0.05, 1.51) 2 Secondary stroke absent: 0.48% (0.24, 0.72) 2 Diabetes present: 0.34% (-0.42, 1.10) 2 Diabetes absent: 0 .52% (0.28, 0.76) 2
			Myocardial Infarction Secondary pneumonia present: 1.54% (-1.05, 4.13) 0 Secondary pneumonia absent: 0.42% (0.05, 0.79) 0 Secondary stroke present: 0.50% (-1.38, 2.38) 0 Secondary stroke absent: 0.36% (-0.05, 0.77) 0 Diabetes present: 0.70% (-0.38, 1.78) 0 Diabetes absent: 0.41% (0.04, 0.78) 0
			Stroke Secondary pneumonia present: 1.74% (0.35, 3.13) 1 Secondary pneumonia absent: 0.29% (-0.16, 0.74) 1 Secondary heart failure present: 1.01% (-0.77, 1.79) 1 Secondary heart failure absent: 0.38% (-0.05, 0.81) 1 Diabetes present: 1.02% (-0.53, 2.57) 1 Diabetes absent: 0.37% (-0.08, 0.82) 1

¹All units expressed in µg/m³ unless otherwise specified.

 Table E-17.
 Short-term exposure-mortality - PM_{10-2.5}.

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Burnett et al. (2004,	Outcome: Mortality:	Pollutant: P10-2.5	Increment: 10 µg/m³
<u>086247</u>)	Nonaccidental (<800)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Period of Study: 1981-1999	Study Design: Time-series	Mean (SD): 11.4	1981-1999
Location: 12 Canadian cities	Statistical Analyses: 1. Poisson, natural splines	Range (Min, Max): NR Copollutant:	PM _{10-2.5} : 0.31% (-0.66, 1.33) 1
	2. Random effects regression model	NO ₂ O ₃ SO ₂	PM _{10-2.5} +NO ₂ : 0.65% (-0.23, 1.59) 1
	Age Groups: All ages	CO PM ₁₀ PM ₂₅	
		Note: PM ₁₀ measurement calculated as the sum of PM _{2.5} and PM _{10-2.5} measurements.	
Reference: Kan et al. (2007, <u>091267</u>)	Outcome (ICD10): Mortality:	Pollutant: PM _{10-2.5}	Increment: 10 µg/m³
Period of Study: Mar 2004-Dec 2005	Total (nonaccidental) (A00-R99)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI)
ocation: Shanghai, China	Cardiovascular (I00-I99)	Mean (SD): 56.4 (1.34)	lag: Total: 0.12% (-0.13, 0.36)
	Respiratory (J00-J98)	Range (Min, Max): (8.3, 235.0)	0-1
	Study Design: Time-series	Copollutant (correlation):	Cardiovascular: 0.34% (-0.05, 0.73)
	Statistical Analyses: Poisson	PM_{10} : $r = 0.88$	0-1
	GAM, penalized splines	PM _{2.5} : r = 0.48	Respiratory: 0.40% (-0.34, 1.13)
	Age Groups: All ages	O ₃ : r = 0.07	0-1
Reference: Kettunen et al. (2007,	Outcome (ICD10): Mortality:	Pollutant: PM _{10-2.5}	Increment:
191242)	Stroke (I60-I61, I63-I64)	Averaging Time: 24-h avg	Cold Season: 8.3 μg/m³
Period of Study: 1998-2004	Study Design: Time-series	Median (SD) unit: Cold Season:	Warm Season: 5.7 μg/m³
Location: Helsinki, Finland	Statistical Analyses: Poisson GAM, penalized thin-plate	6.7 Warm Season: 8.4	% Increase (Lower CI, Upper CI) lag: Cold Season: -1.04% (-6.63, 4.89) 0
	splines Age Groups: ≥ 65 yr	Range (Min, Max): Cold Season: (0.0, 101.4)	-2.49% (-7.57, 2.88)
		Warm Season: (0.0, 42.0)	14.93% (-9.99, 0.41) 2
		Copollutant: O ₃ , CO, NO ₂	-4.33% (-9.32, 0.93) 3
		PM ₁₀	Warm Season: 7.05% (-1.88, 16.80) 0
		PM _{2.5}	4.38% (-4.26, 13.81)
		UFP	1: -1.19% (-9.45, 7.84) 2
			1.42% (-6.79, 10.34) 3
Reference: Klemm et al. (2004,	Outcome: Mortality:	Pollutant: PM _{10-2.5}	Increment: NR
056585)	Nonaccidental (<800)	Averaging Time: 24-h avg	β (SE)
Period of Study: Aug 1998-Jul 2000	Cardiovascular (390-459)	Mean (SD): 9.69 (3.94)	lag:
Location: Fulton and DeKalb counties, Georgia (ARIES)	Respiratory (460-519)	Range (Min, Max): (1.71, 25.17)	Quarterly Knots:
	Cancer (140-239)	Copollutant: PM _{2.5} O ₃	0.00433 (0.00333) 0-1
	Study Design: Time-series	NO₂ CO	Monthly Knots:
	Statistical Analyses: Poisson	SO ₂	0.00617 (0.00360) 0-1
	GLM, natural cubic splines	Acid EC	Biweekly Knots:
	Age Groups: <65 yr, ≥ 65 yr	OC SO ₄ Oxygenated Hydrocarbons Nonmethane hydrocarbons	0.00516 (0.00381) 0-1

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Perez et al. (2008, <u>156020</u>)	Outcome: Respiratory mortality	Pollutant: PM _{10-2.5}	Increment: 10 µg/m³
Period of Study: Mar 2003-Dec 2005	Study Design: Cohort	Averaging Time: 24 h	Odds Ratio (95%CI) Lag
Location: Barcelona, Spain	Covariates: Temperature, humidity	Mean (SD) Unit: 14.0 (9.5) μg/m ³	Single Pollutant Model Avg L0-1: 1.000 (0.944-1.060), p = 0.991 L1: 1.002 (0.955-1.052), p = 0.931
	Statistical Analysis: autoregressive Poisson	Range (Min, Max): 0.1, 93.1	L2: 1.070 (1.023-1.118), p = 0.003
	regression models	Copollutant: PM _{2.5} -1, PM1	Multi-pollutant Model Avg L0-1: 1.002 (0.937-1.071), p = 0.958
	Statistical Package: NR		L1: 0.998 (0.943-1.056), p = 0.0.936
	Age Groups: All deaths		L2: 1.033 (0.980-1.089), p = 0.226
Reference: Perez et al. (2008, <u>156020</u>) Period of Study: Mar 2003-Dec 2005	Outcome: Cardiovascular mortality	Pollutant: PM _{10-2.5} Averaging Time: 24 h	Increment: 10 μg/m³ Odds Ratio (95%CI) Lag
Location: Barcelona, Spain	Study Design: Cohort	Mean (SD) Unit: 14.0 (9.5)	Avg L0-1: 1.054 (1.019-1.089), p = 0.002
Eccation: Darcelona, Spani	Covariates: Temperature, humidity	μg/m ³ Range (Min, Max): 0.1, 93.1	L1: 1.059 (1.031-1.072), p = 0.000 L2: 1.044 (1.017-1.072), p = 0.001
	Statistical Analysis: Autoregressive Poisson regression models	Copollutant: PM _{2.5} -1, PM1	Multi-pollutant Model Avg L0-1: 1.053 (1.013-1.094), p = 0.009 L1: 1.059 (1.026-1.094), p = 0.001
	Statistical Package: NR		L2: 1.044 (1.012-1.078), p = 0.007
	Age Groups: All deaths		
Reference: Perez et al. (2008, <u>156020</u>)	Outcome: Cerebrovascular mortality	Pollutant: PM _{10-2.5}	Increment: 10 µg/m³
Period of Study: Mar 2003-Dec 2005	Study Design: Cohort	Averaging Time: 24 h Mean (SD) Unit: 14.0 (9.5) μg/m³ Range (Min, Max): 0.1, 93.1 Copollutant: PM _{2.5} -1, PM1	Odds Ratio (95%CI) Lag Avg L0-1: 1.087 (1.018-1.161), p = 0.013
Location: Barcelona, Spain	Covariates: Temperature, humidity		L1: 1.086 (1.030-1.145), p = 0.002 L2: 1.051 (0.997-1.108), p = 0.064
	Statistical Analysis: Autoregressive Poisson regression models		Multi-pollutant Model Avg L0-1: 1.103 (1.022-1.191), p = 0.011 L1: 1.098 (1.030-1.171), p = 0.004
	Statistical Package: NR		L2: 1.076 (1.010-1.146), p = 0.023
	Age Groups: All deaths		
Reference: Slaughter et al. (2005, 073854)	Outcome: Mortality: Nonaccidental (< 800)	Pollutant: PM _{10-2.5} Averaging Time: 24-h avg	This study does not present quantitative results for PM _{10-2.5} .
Period of Study: Jan 1995-Dec 1999	Study Design: Time-series	Mean (SD) unit: NR	
Location: Spokane, Washington	Statistical Analyses: Poisson GLM, natural splines	Range (9th, 95th): NR	
	Age Groups: All ages	Copollutant (correlation): PM1: r = 0.19 PM _{2.5} : r = 0.31 PM ₁₀ : r = 0.94 CO: r = 0.32	
Reference: Stieb et al. (2002, <u>025205</u>)	Outcome: Mortality: All-cause	Pollutant: PM _{10-2.5}	Increment: 13.0 µg/m³
Period of Study:	(nonaccidental)	Averaging Time: NR	% Increase (Lower CI, Upper CI) lag:
Publication dates of studies: 1985-Dec 2000	Study Design: Meta-analysis	Mean (SD): NR	Single-pollutant models: 10 studies
Mortality series: 1958-1999	Statistical Analyses: Random effects model	Range (Min, Max): NR	PM _{10-2.5} : 1.2% (0.5, 1.9)
Location: 40 cities (11 Canadian cities, 19 U.S. cities, Santiago, Amsterdam, Erfurt, 7 Korean cities)	Age Groups: All ages	Copollutant: Varied between studies: PM _{2.5} , O ₃ , SO ₂ , NO ₂ , CO	Multipollutant models: 6 studies PM _{10-2.5} : 0.9% (-0.3, 2.0)

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Villeneuve et al. (2003,	Outcome: Mortality:	Pollutant: PM _{10-2.5}	Increment: 11.0 µg/m³
055051) Period of Study: 1986-1999 Location: Vancouver, Canada	Nonaccidental (<800) Cardiovascular (401-440) Respiratory (460-519) Cancer (140-239) Study Design: Time-series Statistical Analyses: Poisson, natural splines Age Groups: ≥ 65	Averaging Time: 24-h avg Mean (SD): Daily: 6.1 Every 6th Day 8.3 Range (Min, Max): Daily: (0.0, 72.0) Every 6th Day: (0.7, 35.0) Copollutant: PM _{2.5} PM ₁₀ SO ₂ CO NO ₂ O ₃	% Increase (Lower CI, Upper CI) lag: Nonaccidental 1.4% (-2.5, 5.4) 0-2 avg 1.0% (-1.9, 4.0) 0 -1.1% (-4.0, 1.8) 1 2.0% (-1.0, 5.1) 2 Cardiovascular 5.9% (-0.2, 12.4) 0-2 avg 5.9% (1.1, 10.8) 0 1.4% (-3.3, 6.4) 1 2.2% (-2.0, 6.7) 2 Respiratory -1.0% (-9.8, 8.8) 0-2 avg -1.5% (-9.4, 7.1) 0 -1.5% (-8.4, 6.0) 1 0.1% (-6.4, 6.9) 2
			Cancer 4.4% (-3.6, 13.1) 0-2 avg 3.1% (-2.9, 9.4) 0 -1.0% (-6.9, 5.3) 1 4.0% (-2.1, 10.4) 2
Reference: Wilson et al. (2007,	Outcome: Mortality:	Pollutant: PM _{10-2.5}	Increment: 10 µg/m³
157149)	Cardiovascular	Averaging Time: 24-h avg	% Excess Risk (Lower CI, Upper CI) lag:
Period of Study: 1995-1997 Location: Phoenix, Arizona	Study Design: Time-series	Mean (SD): NR	Central Phoenix: 2.4% (-1.2, 6.1) 0-5 ma
	Statistical Analyses: Poisson GAM, nonparametric smoothing spline	Range (Min, Max): NR Copollutant (correlation): NR	Middle Phoenix: 3.8% (0.3, 7.5) 0-5 ma 3.4% (1.0, 5.8) 1
1AH units augusta di augusta a	Age Groups: >25		3.0% (0.7, 5.4) 2 Outer Phoenix: 1.6% (-1.9, 5.2) 0-5 ma

 $^{^{1}\}text{All units}$ expressed in $\mu\text{g/m}^{3}$ unless otherwise specified.

Table E-18. Short-term exposure-mortality - $PM_{2.5}$ (including PM components/sources).

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Basu et al. (2008, <u>098716</u>)	Outcome (ICD10): Mortality:	Pollutant: PM _{2.5}	The study does not provide results
Period of Study: May 1999-Sept 2003	Nonaccidental (V01-Y98)	Averaging Time: 24-h avg	quantitatively.
Location: 9 California counties	Study Design: (1) Main analysis: Case-crossover	Mean (SE) unit: Contra Costa: 8.6 Fresno: 7.6	
	(2) Sensitivity analysis: Time-series	Kern: 11.3 Los Angeles: 19.8	
	Statistical Analyses:	Orange: 17.0	
	(1) Main analysis: conditional logistic regression	Riverside: 28.4 Sacramento: 8.8 San Diego: 13.4	
	(2) Sensitivity analysis: Poisson GAM	Santa Clara: 10.8 IQR (25th, 75th):	
	Age Groups: All ages	Contra Costa: (5.8, 10.1) Fresno: (3.8, 9.8) Kem: (8.0, 13.5) Los Angeles: (14.7, 23.3) Orange: (11.8, 21.0) Riverside: (17.9, 36.1) Sacramento: (5.8, 10.1) San Diego: (10.3, 15.8) Santa Clara: (7.2, 13.8)	
		Copollutant (correlation): PM ₁₀ r = 0.45 O ₃ (1hr) r = 0.28 O ₃ (8hr) r = 0.22 CO r = 0.45 NO ₂ r = 0.43	
Reference: Dominici et al. (2007, 097361)	Outcome: Mortality: All-cause (nonaccidental)	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study:	Cardiorespiratory Other-cause	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
PM ₁₀ : 1987-2000	Study Design: Time-series	Mean (SD): NR	1999-2000:
PM _{2.5} : 1999-2000	Statistical Analyses: 2-stage Bayesian hierarchical model	Range (Min, Max): NR	All-cause: 0.29% (0.01, 0.57) 1
Location: 100 U.S. counties (NMMAPS)		Copollutant (correlation): NR	Cardiorespiratory: 0.38% (-0.07, 0.82) 1
	Age Groups: All ages		
Reference: Dominici et al. (2007, 099135)	Outcome: Total mortality	Pollutant: PM _{2.5} , Nickel, speciated fine PM, and Vanadium	The study does not provide results quantitatively.
Period of Study: 2000-2005	Study Design: Time-series	Averaging Time: Annual avg	Note: The study investigated whether
Location: 72 U.S. counties	Statistical Analyses: 2-stage Bayesian hierarchical model	Mean (SD): NR	county-specific short-term effects of PM ₁₀ on mortality are modified by long-
representing 69 communities	Age Groups: All ages	Range (Min, Max): NR	term county-specific nickel or vanadium PM _{2.5} concentrations.
		Copollutant (correlation): NR	1 W2.5 CONCENTIATIONS.
Reference: Franklin et al. (2007,	Outcome: Mortality:	Pollutant: PM _{2.5}	Increment: 10 µg/m³
<u>091257</u>)	All-cause (nonaccidental (<800)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Period of Study: 1997-2002	Cardiovascular (390-429)	Mean (SD): 15.7 μg/m ³	All-cause (nonaccidental): 0.67% (-0.12, 1.46) 0
Location: 27 U.S. communities	Respiratory (460-519)	Range (Min, Max): NR	1.21% (0.29, 2.14)
	Stroke (430-438)	Copollutant (correlation): NR	10.82% (0.02, 1.63) 0-1
	Study Design: Time-stratified case- crossover	coponium (constitution), Title	Respiratory: 1.31% (-0.10, 2.73) 0 1.78% (0.20, 3.36) 1
	Statistical Analyses: Conditional logistic regression		1.67% (0.19, 3.16) 0-1 Cardiovascular:
	Age Groups: All ages		0.34% (-0.61, 1.28) 0 0.94% (-0.14, 2.02) 1. 0.54% (-0.47, 1.54) 0-1
			Stroke: 0.62% (-0.69, 1.94) 0 1.03% (0.02, 2.04) 1. 0.67% (-0.23, 1.57) 0-1

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
			Age≥ 75: All cause: 1.66% (0.62, 2.70) 1 Respiratory: 1.85% (0.27, 3.44) 1 Cardiovascular: 1.29% (0.15, 2.42) 1 Stroke: 1.52% (0.37, 2.67) 1
			Age<75: All cause: 0.62% (-0.30, 1.55) 1 Respiratory: 1.53% (-0.67, 3.74) 1 Cardiovascular: 0.26% (-1.04, 1.56) 1 Stroke: -0.78% (-2.32, 0.76) 1
			Male: All cause: 1.06% (0.07, 2.06) 1 Respiratory: 1.90% (0.14, 3.65) 1 Cardiovascular: 0.52% (-0.63, 1.66) 1 Stroke: 0.79% (-0.42, 2.02) 1
			Female: All cause: 1.34% (0.40, 2.27) 1 Respiratory: 1.57% (-0.22, 3.35) 1 Cardiovascular: 1.30% (0.14, 2.46) 1 Stroke: 0.79% (-0.51, 2.09) 1
			East: Il cause: 1.95% (0.50, 3.40)1 Respiratory: 2.66% (0.33, 5.00) 1 Cardiovascular: 1.52% (0.06, 2.98) 1 Stroke: 1.16% (-0.40, 2.73) 1
			West: All cause: 0.05% (-1.80, 1.89) 1 Respiratory: 0.67% (-2.00, 3.34) 1 Cardiovascular: 0.11% (-2.03, 2.24) 1 Stroke: 0.94% (-0.38, 2.26) 1
			$PM_{2.5}>15 \ \mu g/m^3$: All cause: 1.10% (-0.43, 2.64) 1 Respiratory: 1.42% (-0.84, 3.68) 1 Cardiovascular: 0.88% (-0.87, 2.62) 1 Stroke: 0.91% (-0.28, 2.10) 1
			PM _{2.5} ≤ 15 μ g/m³: All cause: 1.41% (-0.49, 3.30) 1 Respiratory: 2.46% (-0.49, 5.42) 1 Cardiovascular: 1.09% (-1.15, 3.32) 1 Stroke: 1.36% (-0.56, 3.27) 1
			Effect of A/C at percentile of air conditioning prevalence: 25th percentile (45% prevalence of A/C): All cause: 1.50% (0.13, 2.88) 1 Respiratory: 2.27% (0.27, 4.27) 1 Cardiovascular: 1.04% (-0.54, 2.63) 1 Stroke: 1.04% (-0.44, 2.53) 1
			75th percentile (80% prevalence of A/C): All cause: 0.85% (-0.64, 2.35) 1 Respiratory: 1.04% (-1.29, 3.37) 1 Cardiovascular: 0.81% (-0.93, 2.61) 1 Stroke: 1.03% (-0.76, 2.83) 1
			Effect of A/C at percentile of air conditioning prevalence in cities with summer peaking PM _{2.5} concentrations: 25th percentile (45% prevalence of A/C): All cause: 1.01% (-0.30, 2.32) 1 Respiratory: 0.76% (-1.38, 2.90) 1 Cardiovascular: 0.43% (-0.86, 1.72) 1 Stroke: 0.49% (-2.08, 1.73)
			Stroke: -0.18% (-2.08, 1.73) 1 75th percentile (77% prevalence of A/C): All cause: -0.55% (-1.95, 0.85) 1

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
			Respiratory: -2.08% (-4.47, 0.31) 1 Cardiovascular: -1.02% (-2.44, 0.41) 1 Stroke: 0.69% (-1.19, 2.57) 1
Reference: Franklin et al. (2008,	Outcome (ICD10): Mortality:	Pollutant: PM _{2.5}	Increment: 10 µg/m³ % Increase (Lower CI, Upper CI) lag:
097426)	Nonaccidental (V01-Y98)	Averaging Time: 24-h avg	
Period of Study: 2000-2005	Respiratory (J00-J99)	Range Mean (SD):	Nonaccidental: 0.74% (0.41, 1.07) 0-1 Cardiovascular: 0.47% (0.02, 0.92) 0-1
Location: 25 U.S. communities	Cardiovascular (I01-I52)	Winter: 9.6-34.4	Respiratory: 1.01% (-0.03, 2.05) 1-2 Stroke: 0.68% (-0.21, 1.57) 0-1
	Stroke (I60-J69)	Spring: 6.7-27.6	Winter: 0.15% (-0.42, 0.72) 0-1 Spring: 1.88% (1.29, 2.48) 0-1
	Study Design: Time-series	Summer: 7.6-26.0	Summer: 0.99% (0.35, 1.68) 0-1 Fall: 0.19% (-0.25, 0.64) 0-1
	Statistical Analyses:	Fall: 9.5-32.1	West: 0.51% (0.10, 0.92) 0-1
	1st stage: Poisson, cubic spline	Range (Min, Max): NR	East & Central:
	2nd stage: Random effects meta- analysis	Copollutant: Al, As, Br, Cr, EC, Fe, K, Mn, Na $^{+}$, Ni, NO ₃ $^{-}$, NH ₄ , OC, Pb, Si, SO ₄ $^{2-}$, V, Zn	0.92% (0.44, 1.39) 0-1 % Increase per 10 μg/m³ increase in
	Age Groups: All ages		PM _{2.5} for an IQR increase in species to PM _{2.5} mass proportion Univariate analysis Al: 0.58% As: 0.55% Br: 0.38 Cr: 0.33% EC: 0.06% Fe: 0.12% K: 0.41% Mn: 0.14% Na+: 0.20% Ni: 0.37% NO ₃ -: -0.49% NH4: 0.04% OC: -0.02% Pb: 0.17% Si: 0.41% SO ₄ -2: 0.51% V: 0.30% Zn: 0.23% Multivariate (1) Al: 0.79% Ni: 0.34% SO ₄ -2: 0.75% Multivariate (2) Al: 0.61% Ni: 0.35% As: 0.58%
Reference: Holloman et al. (2004,	Outcome (ICD10): Mortality:	Pollutant: PM _{2.5}	Increment: 10 µg/m ³
087375) Period of Study: 1000 2001	Cardiovascular (I00-I99)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI)
Period of Study: 1999-2001 Location: 7 North Carolina counties	Study Design: Time-series	Mean (SD): NR	lag:
Location: 1 North Carolina Counties	Statistical Analyses: 3-stage Bayesian hierarchical model	Range (Min, Max): NR	2.5% (-3.9 to 9.6)
	Age Groups: >16	Copollutant (correlation): NR	0
	Age Groups. 210		4.0% (-3.3 to 12.2)
			1
			11.4% (2.8-19.8)
			2
			-1.1% (-7.5 to 5.2)
			3

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Hopke et al. (2006, 088390) Period of Study: Washington, DC: Aug 1988-Dec 1997. Phoenix, Arizona: Mar 1995-Jun 1998 Location: Washington, DC and surrounding counties Phoenix, Arizona	Outcome: Mortality: Total (nonaccidental) Cardiovascular Cardiovascular-Respiratory Study Design: Source-apportionment Statistical Analyses: Receptor modeling Age Groups: All ages	Pollutant: Source-apportioned PM25: Washington, DC: Soil Traffic Secondary Sulfate Nitrate Residual Oil Wood Smoke Sea Salt Incinerator Primary Coal Phoenix, Arizona: Crustal Traffic Vegetation and Wood Burning Secondary Sulfate Metals Sea Salt Primary Coal Averaging Time: 24-h avg Mean (SD): NR Range (Min, Max): NR	The study does not present quantitative results.
		Copollutant (correlation): NR	
Reference: Ito et al. (2006, <u>088391</u>) Period of Study: Aug 1988-Dec 1997 Location: Washington, DC and surrounding counties	Outcome: Mortality: Total (nonaccidental) Cardiovascular Cardiovascular-Respiratory Study Design: Time-series Source-apportionment Statistical Analyses: Poisson GLM, natural splines Age Groups: All ages	Pollutant: Source-apportioned PM _{2.5} : Soil Traffic Secondary Sulfate Nitrate Residual Oil Wood Smoke Sea Salt Incinerator Primary Coal Averaging Time: 24-h avg Mean (SD): 17.8 (8.7) Range (Min, Max): NR Copollutant (correlation): NR	Increment: PM _{2.5} = 28.7 μg/m³ PM _{2.5} Sources 5-95th = Not reported % Increase (Lower CI, Upper CI) lag: Secondary sulfate (variance-weighted mean percent excess mortality) 6.7% (1.7, 11.7) 3 Primary coal-related PM _{2.5} (mean percent excess mortality) 5.0% (1.0, 9.1) 3 Residual oil (mean percent excess mortality) 2.7% (-1.1, 6.5) 2 Traffic-related PM _{2.5} (mean percent excess mortality) 2.6% (-1.6, 6.9) NR Soil-related PM _{2.5} (mean percent excess mortality) 2.1% (-0.8, 4.9) NR PM _{2.5} Sensitivity analysis: 2 df/yr: 7.9% (3.3, 12.6) 3 4 df/yr: 8.3% (3.7, 13.1) 3 8 df/yr: 8.3% (3.7, 13.2) 3 16 df/yr: 8.1% (3.1, 13.2) 3
Reference: Kan et al. (2007, <u>091267</u>)	Outcome (ICD10): Mortality:	Pollutant: PM _{2.5}	Increment: 10 μg/m ³
Period of Study: Mar 2004-Dec 2005 Location: Shanghai, China	Total (nonaccidental) (A00-R99) Cardiovascular (I00-I99) Respiratory (J00-J98)	Averaging Time: 24-h avg Mean (SD): 52.3 (1.57)	% Increase (Lower CI, Upper CI)
	Study Design: Time-series	Range (Min, Max): (2.0, 330.3)	Total: 0.36% (0.11, 0.61) 0-1
	Statistical Analyses: Poisson GAM, penalized splines Age Groups: All ages	Copollutant (correlation): PM_{10} : $r = 0.84$ $PM_{10:2.5}$: $r = 0.48$ O_3 : $r = 0.31$	Cardiovascular: 0.41% (0.01, 0.82) 0-1 Respiratory: 0.95% (0.16, 1.73) 0-1

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Kettunen et al. (2007, 091242) Period of Study: 1998-2004 Location: Helsinki, Finland	Outcome (ICD10): Mortality: Stroke (I60-I61, I63-I64) Study Design: Time-series Statistical Analyses: Poisson GAM, penalized thin-plate splines	Pollutant: PM _{2.5} Averaging Time: 24-h avg Median (SD) unit: Cold Season: 8.2 Warm Season: 7.8 Range (Min, Max): Cold Season: (1.1, 69.5)	Increment: Cold Season: 6.7 μg/m³ Warm Season: 5.7 μg/m³ % Increase (Lower CI, Upper CI) lag: Cold Season -0.19% (-3.77, 3.51) 0 -0.17% (-3.73, 3.52) 1
	Age Groups: ≥ 65	Warm Season: (1.1, 41.5) Copollutant: O ₃ CO NO ₂ PM ₁₀ PM _{10-2.5} UFP	0.59% (-2.95, 4.26) 2 0.46% (-3.10, 4.15) 3 Warm Season 6.86% (0.37, 13.78) 0 7.40% (1.33, 13.84) 1 4.01% (-1.79, 10.14) 2 -1.72% (-7.38, 4.29) 3
Reference: Klemm et al. (2004,	Outcome: Mortality:	Pollutant: PM _{2.5}	Increment: NR
056585)	Nonaccidental (<800)	Averaging Time: 24-h avg	β (SE) lag:
Period of Study: Aug 1998-Jul 2000	Cardiovascular (390-459)	Mean (SD): 19.62 (8.32)	Quarterly Knots:
Location: Fulton and DeKalb counties, Georgia (ARIES)	Respiratory (460-519)	Range (Min, Max): (5.29, 48.01)	PM _{2.5} : 0.00398 (0.00161)
	Cancer (140-239)	Copollutant: PM _{10-2.5}	0-1
	Study Design: Time-series Statistical Analyses: Poisson GLM,	O ₃ NO ₂	Monthly Knots:
		CO	PM _{2.5} : 0.00544 (0.00184)
	natural cubic splines Age Groups: <65	SO ₂ Acid	0-1
	≥ 65	EC OC	Biweekly Knots:
	-00	SO ₄ Oxygenated Hydrocarbons Nonmethane hydrocarbons NO ₃	PM _{2.5} : 0.00369 (0.00201) 0-1
Reference: Lippmann et al. (2006, 091165) Period of Study: 2000-2003	Outcome: Mortality: Nonaccidental (<800)	Pollutant: Speciated Fine PM: Al, Ar, Cr, Cu, EC, Fe, Mn, Ni, Nitrate, OC, Pb, Se, Si, Sulfate, V, Zn	The study does not present quantitative results.
Location: 60 U.S. cities (NMMAPS)	Study Design: Time-series	Averaging Time: Annual avg	
20041011 00 0.0. Olico (Minin a O)	Statistical Analyses: Poisson GLM	Mean (SD): R	
	Age Groups: All ages	Range (Min, Max): NR	
Reference: Mar et al. (2005, <u>087566</u>) Period of Study: 1995-1997	Outcome: Mortality: Nonaccidental (<800)	Pollutant: Source-apportioned PM _{2.5} : Soil Traffic	Increment: PM _{2.5} Sources 5-95th = NR % Increase (median percent excess risk) lag:
Location: Phoenix, Arizona	Cardiovascular (390-448)	Secondary Sulfate Nitrate	Secondary sulfate: 16.0% 0
	Study Design: Time-series	Residual Oil Wood Smoke	Traffic: 13.2% 1
	Statistical Analyses: Poisson GLM	Sea Salt	Copper (Cu) smelter: 12.0% 0
	Age Groups: ≥ 65	Incinerator Primary Coal	Sea salt: 10.2% 5
		Averaging Time: 24-h avg	Biomass/wood combustion: 8.6% 3
		Mean (SD): NR	
		Range (Min, Max): NR	

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Ostro et al. (2006, <u>087991</u>)	Outcome (ICD10): Mortality:	Pollutant: PM _{2.5}	Increment: 10 µg/m³
	Outcome (ICD10): Mortality: Total mortality (respiratory, cardiovascular, ischemic heart disease, diabetes) Respiratory (J00-J98) Cardiovascular (I00-I99) Ischemic heart disease (I20-I25) Diabetes (E10-E14) Study Design: Time-series Statistical Analyses: Poisson, natural splines and penalized splines Age Groups: All ages >65 yr	Pollutant: PM _{2.5} Averaging Time: 24-h avg Mean (SD): Contra Costa: 14 Fresno: 23 Kern: 22 Los Angeles: 21 Orange: 21 Riverside: 29 Sacramento: 14 Santa Clara: 15 San Diego: 16 Range (Min, Max): Contra Costa: (1, 77) Fresno: (1, 160) Kern: (1, 155) Los Angeles: (4, 85) Orange: (4, 114) Riverside: (2, 120)	· ,
		Sacramento: (1, 108) Santa Clara: (2, 74) San Diego: (0, 66) Copollutant (correlation): NO ₂ r = 0.56 CO r = 0.60 O ₃ (1h) r = -0.14 O ₃ (8h) r = -0.22	Ischemic heart disease: 0.3% (-0.5, 1.0) 0-1 Males: 0.5% (-0.2, 1.2) 0-1 Females: 0.8% (0.3, 1.3) 0-1 Whites: 0.8% (0.2, 1.3) 0-1 Blacks: 0.1% (-0.9, 1.2) 0-1 Hispanics: 0.8% (-0.1, 1.6) 0-1 In hospital: 0.6% (-0.1, 1.3) 0-1 Out of hospital: 0.6% (0.1, 1.1) 0-1 High school graduates: 0.4% (0.0, 0.8) 0-1 Non-high school graduates: 0.9% (-0.1, 1.9) 0-1 Natural splines All cause 4 df: 0.5% (-0.1, 1.1) 0-1 8 df: 0.4% (-0.1, 0.9) 0-1 12 df: 0.3% (-0.1, 0.7) 0-1
			Cardiovascular 4 df: 0.4% (-0.2, 0.9) 0-1 8 df: 0.1% (-0.5, 0.6) 0-1 12 df: 0.0% (-0.6, 0.6) 0-1 Respiratory 4 df: 2.1% (0.2, 4.1) 0-1 8 df: 1.6% (-0.5, 3.6) 0-1 12 df: 1.3% (-0.3, 2.9) 0-1 >65 All cause 4 df: 0.7% (0.0, 1.3) 0-1 8 df: 0.4% (-0.1, 0.9) 0-1 12 df: 0.3% (-0.1, 0.8) 0-1

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Ostro et al. (2007, <u>091354</u>)	Outcome (ICD10): Mortality:	Pollutant: PM _{2.5}	Increment: 14.6 µg/m³
Reference: Ostro et al. (2007, 091354) Period of Study: PM _{2.5} speciation analysis: Jan 2000-Dec 2003. PM _{2.5} analysis: Jan 1999-Dec 2003 Location: 6 California counties (2000-2003). 9 California counties (1999-2003) (CALFINE)	Outcome (ICD10): Mortality: Total (nonaccidental) mortality Respiratory (J00-J98) Cardiovascular (I00-I99) Study Design: Time-series Statistical Analyses: Poisson, natural splines Age Groups: >65	Pollutant: PM _{2.5} Averaging Time: 24-h avg Mean (SD): 2000-2003: 19.28 1999-2003: 18.6 Range (Min, Max): NR Copollutant (correlation): EC: r = 0.53 OC: r = 0.62 NO ₃ : r = 0.65 SO ₄ : r = 0.32 Al: r = 0.02 Br: r = 0.54 Ca: r = 0.23 Cl: r = 0.15 Cu: r = 0.23 Fe: r = 0.23 Fe: r = 0.23 K: r = 0.21 Ni: r = 0.21 Ni: r = 0.21 Ni: r = 0.21 S: r = 0.35 Si: r = 0.16 Ti: r = 0.24 V: r = 0.20 Zn: r = 0.51	Increment: 14.6 µg/m³ % Increase (Lower CI, Upper CI) lag: Cardiovascular 1.6% (0.0, 3.1) 3 Notes: The study does not present all estimates quantitatively.
Reference: Ostro et al. (2008, 097971) Period of Study: Jan 2000-Dec 2003 Location: 6 California counties	Outcome (ICD10): Mortality: Cardiovascular (I00-I99) Study Design: Time-series Statistical Analyses: Poisson, natural cubic splines and natural splines Age Groups:	Pollutant: PM _{2.5} , EC, OC, NO ₃ , SO ₄ , Ca, Cl, Cu, Fe, K, S, Si, Ti, Zn Averaging Time: 24-h avg Mean (SD): PM _{2.5} : 19.28 EC: 0.966 OC: 7.129 NO ₃ : 5.415 SO ₄ : 1.908 Ca: 0.080 Cl: 0.094 Cu: 0.007 Fe: 0.124 K: 0.117 S: 0.648 Si: 0.168 Ti: 0.009 Zn: 0.012	The study does not present quantitative results.
		Range (95th): PM _{2.5} : 46.91 EC: 2.57 OC: 15.91 NO ₃ : 17.46 SO ₄ : 5.18 Ca: 0.20 Cl: 0.41 Cu: 0.02 Fe: 0.34 K: 0.26 S: 1.70 Si: 0.43 Ti: 0.02 Zn: 0.04	
Reference: Perez et al. (2008, <u>156020</u>)	Outcome: Respiratory mortality	Pollutant: PM _{2.5-1}	Increment: 10 µg/m³
Period of Study: Mar 2003-Dec 2005	Study Design: Cohort	Averaging Time: 24 h	Odds Ratio (95%CI) lag
Location: Barcelona, Spain	Covariates: Temperature, humidity	Mean (SD) Unit: 5.5 (3.8) μg/m ³	Avg L0-1: 0.998 (0.849-1.174), p = 0.981
	Statistical Analysis: Autoregressive Poisson regression models	Range (Min, Max): 0.6, 45.5 Copollutant: PM _{10-2.5} , PM ₁	L1: 1.014 (0.886-1.161), p = 0.838 L2: 1.295 (1.141-1.470), p = 0.000
	Statistical Package: NR Age Groups: All deaths		Multi-pollutant Model Avg L0-1: 0.987 (0.806-1.208), p = 0.898 L1: 1.022 (0.859-1.214), p = 0. L2: 1.206 (1.028-1.416), p = 0.022

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Perez et al. (2008, <u>156020</u>)	Outcome: Cardiovascular mortality	Pollutant: PM _{2.5-1}	Increment: 10 µg/m³
Period of Study: Mar 2003-Dec 2005 Location: Barcelona, Spain	Study Design: Cohort Covariates: Temperature, humidity Statistical Analysis: Autoregressive Poisson regression models Statistical Package: NR Age Groups: All deaths	Averaging Time: 24 h Mean (SD) Unit: 5.5 (3.8) µg/m³ Range (Min, Max): 0.6, 45.5 Copollutant: PM _{10-2.5} , PM ₁	Odds Ratio (95%CI) lag Avg L0-1: 1.100 (1.002-1.207), p = 0.046 L1: 1.112 (1.031-1.200), p = 0.006 L2: 1.078 (0.999-1.163), p = 0.052 Multi-pollutant Model Avg L0-1: 0.994 (0.885-1.116), p = 0.920 L1: 0.984 (0.892-1.086), p = 0.754 L2: 0.981 (0.891-1.079), p = 0.688
Reference: Perez et al. (2008, <u>156020</u>)	Outcome: Cerebrovascular mortality	Pollutant: PM _{2.5-1}	Increment: 10 µg/m³
Period of Study: Mar 2003-Dec 2005	Study Design: Cohort	Averaging Time: 24 h	Odds Ratio (95%CI) lag
Location: Barcelona, Spain	Covariates: Temperature, humidity	Mean (SD) Unit: 5.5 (3.8) μg/m ³	Avg L0-1: 1.083 (0.897-1.307), p = 0.406
	Statistical Analysis: Autoregressive Poisson regression models	Range (Min, Max): 0.6, 45.5 Copollutant: PM _{10-2.5} , PM ₁	L1: 1.121 (0.964-1.303), p = 0.140 L2: 0.984 (0.841-1.152), p = 0.839
	Statistical Package: NR	10207	Multi-pollutant Model Avg L0-1: 0.899 (0.712-1.135),
	Age Groups: All deaths		p = 0.371 L1: 0.905 (0.743-1.102), p = 0.321 L2: 0.868 (0.711-1.060), p = 0.165
Reference: Rainham et al. (2005,	Outcome: Mortality:	Pollutant: PM _{2.5}	Increment: NR
088676)	Total (nonaccidental) (<800)	Averaging Time: 24-h avg	% Increase (Lower CI, Upper CI) lag:
Period of Study: 1981-1999	Cardiorespiratory (390-459	Mean (SD):	Winter and Winter Synoptic Events Winter
Location: Toronto, Canada	480-519)	All yr: 17.0 (8.7)	Total: 0.998% (0.997, 1.000) 2 Cardiorespiratory:
	Other-causes	Winters (Dec-Feb): 17.2 (6.8) Summers (Jun-Aug): 18.8 (10.2) Range (Min, Max): NR Copollutant:	0.998 (0.996, 1.000) 2 Other: 0.998% (0.996, 1.000) 2
	Study Design: Time-series		
	Statistical Analyses: Poisson GLM, natural splines		Dry Moderate Total: 1.001% (0.996, 1.007) 1 Cardiorespiratory:
	Age Groups: All ages	co	1.005 (0.998, 1.011) 1 Other: 0.997% (0.989, 1.006) 0
		NO_2	Dry Polar
		SO_2	Total: 0.998% (0.995, 1.001) 2
		O ₃	Cardiorespiratory: 0.995 (0.991, 0.999) 2 Other: 1.002% (0.998, 1.005) 1
			Moist Moderate Total: 0.998% (0.993, 1.002) 2 Cardiorespiratory:
			1.003 (0.995, 1.010) 1 Other: 0.997% (0.991, 1.004) 1
			Moist Polar Total: 1.001% (0.998, 1.005) 1 Cardiorespiratory: 1.002 (0.997, 1.007) 2
			Other: 1.003% (0.999, 1.007) 0 Moist Tropical Total: 1.007% (0.965, 1.203) 0 Cardiorespiratory: 1.123 (1.031, 1.224) 2 Other: 1.248% (1.123, 1.387) 0
			Transition Total: 1.003% (0.996, 1.009) 1 Cardiorespiratory: 0.996 (0.987, 1.004) 0 Other: 0.997% (0.990, 1.004) 0
			Summer and summer Synoptic Events Summer Total: 1.000% (1.000, 1.001) 0 Cardiorespiratory: 1.001 (1.000, 1.002) 0

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
			Other: 1.001% (1.000, 1.002) 0
			Dry Moderate Total: 1.001% (0.999, 1.002) 2 Cardiorespiratory: 1.002 (0.999, 1.004) 2 Other: 0.999% (0.997, 1.002) 0
			Dry Polar Total: 1.002% (0.999, 1.005) 2 Cardiorespiratory: 0.996 (0.991, 1.000) 0 Other: 1.003% (0.999, 1.007) 2
			Dry Tropical Total: 1.016% (1.006, 1.027) 0 Cardiorespiratory: 1.017 (1.005, 1.030) 2 Other: 1.017% (1.003, 1.031) 0
			Moist Moderate Total: 1.002% (1.000, 1.004) 2 Cardiorespiratory: 1.003 (0.999, 1.006) 2 Other: 1.004% (1.001, 1.006) 0
			Moist Polar Total: 1.005% (0.998, 1.011) 1 Cardiorespiratory: 1.008 (0.997, 1.018) 0 Other: 1.003% (0.995, 1.011) 1
			Moist Tropical Total: 0.999% (0.997, 1.001) 2 Cardiorespiratory: 0.996 (0.993, 1.000) 2 Other: 0.998% (0.995, 1.001) 1
			Transition Total: 1.005% (0.996, 1.014) 1 Cardiorespiratory: 1.007 (0.994, 1.020) 1 Other: 1.002% (0.996, 1.008) 2

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Rosenthal et al. (2008, 156925)	Outcome: Non-Dead on Arrival (DOA) Out-of-Hospital Cardiac Arrests (OHCA)	Pollutant: PM _{2.5}	Increment: 10 μg/m³
Period of Study: Jul 2002-Jul 2006	Witnessed non-DOA OHCA	Averaging Time: 24-h avg Hourly	Hazard Ratio (Lower CI, Upper CI) lag: Out-of-Hospital non-DOA Cardiac Arrests All 1.02 (0.94, 1.11) 0 1.00 (0.92, 1.08) 1 0.98 (0.90, 1.06) 2 1.00 (0.92, 1.12) 0-1 avg 1.01 (0.91, 1.12) 0-2 avg 1.02 (0.91, 1.14) 0-3 avg Asystole 1.03 (0.91, 1.17) 0 1.00 (0.89, 1.13) 1 1.01 (0.90, 1.13) 2 0.98 (0.87, 1.10) 3
Location: Indianapolis, Indiana	Study Design: Case-crossover	Mean (SD): NR IQR (25th, 75th): All non-DOA All heart rhythms: (9.4, 19.5) OHCA: (9.6, 19.5) Referents: (9.3, 19.5) Asystole: (9.2, 19.4) OHCA: (9.2, 19.7) Asystole: (9.2, 19.2) Witnessed non-DOA hourly All heart rhythms: (8.8, 20.7) OHCA: (8.8, 21.9) Referents: (8.8, 20.4)	
Econom molarapolio, mulana	Statistical Analyses: Time-stratified conditional logistic regression Age Groups: All ages Study Population: Non-DOA OHCA: 1,374 Witnessed non-DOA OHCA: 511		
		Asystole: (8.5, 19.8) OHCA: (9.4, 21.3) Referents: (8.3, 19.1) Copollutant (correlation): NR	1.03 (0.90, 1.18) 0-1 avg 1.05 (0.90, 1.22) 0-2 avg 1.04 (0.88, 1.22) 0-3 avg Vfib 1.08 (0.92, 1.28) 0 1.02 (0.87, 1.21) 1 0.96 (0.80, 1.14) 2 1.10 (0.93, 1.31) 3 1.06 (0.88, 1.28) 0-1 avg 1.01 (0.82, 1.25) 0-2 avg 1.05 (0.83, 1.32) 0-3 avg PEA 0.92 (0.77, 1.08) 0 0.98 (0.83, 1.15) 1 0.96 (0.82, 1.14) 2 0.95 (0.82, 1.10) 3 0.96 (0.80, 1.17) 0-1 avg 0.98 (0.80, 1.21) 0-2 avg 0.98 (0.78, 1.21) 0-3 avg Witnessed Out-of-Hospital non-DOA Cardiac Arrests (lag represents h in which or h before OHCA occurred) All: 1.12 (1.01, 1.25) 0 White: 1.18 (1.03, 1.35) 0 60-75: 1.25 (1.05, 1.49) 0
Reference: Schwartz et al. (2002, 025312)	Outcome: Mortality: Total (nonaccidental) (<800)	Pollutant: PM _{2.5} , PM _{2.5} sources (Traffic, Coal, Residual Oil)	Asystole: 1.22 (1.01, 1.59) 0 The study does not present quantitative results.
Period of Study: 1979-Late 1980's	Study Design: Time-series	Averaging Time: 24-h avg	
Location: 6 U.S. cities	Statistical Analyses: Hierarchical modeling:	Mean (SD): PM _{2.5} Range: (Madison: 11.3 to	
	Poisson GAM, LOESS	Steubenville: 30.5)	
	Multivariate modeling	Traffic Range: (Steubenville: 1.5 to Boston: 4.8)	
	Age Groups: All ages	Coal Range: (Madison: 4.9 to Steubenville: 19.2)	
		Residual Oil Range: (Boston: 0.5 to Steubenville: 0.9)	
		Range (Min, Max): NR	

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Reference: Simpson et al. (2005,	Outcome: Mortality:	Pollutant: PM _{2.5}	Increment: 10 µg/m³
087438) Period of Study: Jan 1996-Dec 1999 Location: 4 Australian cities	Nonaccidental (<800) Cardiovascular (390-459) Respiratory (460-519) Study Design: Time-series meta-analysis	Averaging Time: 24-h avg Mean (SD): Brisbane: PM _{2.5} : 7.50 Sydney: PM _{2.5} : 9.00 Melbourne: PM _{2.5} : 9.30 Perth: PM _{2.5} : 9.0 μg/m³ Range (Min, Max):	% Increase (Lower CI, Upper CI) lag: $PM_{2.5} \\ 0.9\% \; (\text{-}0.7, 2.5)$
	Statistical Analyses: Poisson GAM, natural splines Poisson GLM, natural splines	Brisbane: PM _{2.5} : (1.9, 19.7) Sydney: PM _{2.5} : (2.4, 35.3) Melbourne: PM _{2.5} : (2.7, 35.1) Perth: PM _{2.5} : (2.8, 37.3) Copollutant: CO, NO ₂	
	Age Groups: All ages	<u> </u>	
Reference: Slaughter et al. (2005, 073854)	Outcome: Mortality:	Pollutant: PM _{2.5}	Increment: PM _{2.5} : 10 µg/m ³
Period of Study: Jan 1995-Dec 1999	Nonaccidental (<800)	Averaging Time: 24-h avg	PM ₁₀ : 25 μg/m ³
Location: Spokane, Washington	Study Design: Time-series Statistical Analyses: Poisson GLM, natural splines	Mean (SD): NR Range (9th, 95th): PM _{2.5} : (4.2, 20.2) Copollutant (correlation):	Relative Risk (Lower CI, Upper CI) lag: PM _{2.5}
	Age Groups: All ages	PM _{2.5} : r = 0.95 PM ₁₀ : r = 0.62 PM _{10.25} : r = 0.31 CO: r = 0.62	(0.97, 1.04) 1 0.99 (0.96, 1.03) 2 1.00 (0.97, 1.03) 3
Reference: Stieb et al. (2002, <u>025205</u>)	Outcome: Mortality:	Pollutant: PM _{2.5}	Increment: PM _{2.5} : 18.3 µg/m ³
Period of Study: Publication dates of	All-cause (nonaccidental)	Averaging Time: NR	% Increase (Lower CI, Upper CI) lag:
studies: 1985-Dec 2000 Mortality series: 1958-1999	Study Design: Meta-analysis	Mean (SD): NR	Single-pollutant models
Location: 40 cities (11 Canadian cities, 19 U.S. cities, Santiago, Amsterdam, Erfurt, 7 Korean cities)	Statistical Analyses: Random effects model Age Groups: All ages	Range (Min, Max): NR Copollutant: Varied between studies: O ₃ SO ₂ NO ₂	18 studies PM _{2.5} : 2.0% (1.2, 2.7) Multipollutant models
		co	8 studies PM _{2.5} : 1.3% (0.6, 1.9)
Reference: Sullivan et al. (2003, 043156)	Outcome: Out-of-hospital cardiac arrest	Pollutant: PM _{2.5}	Increment: PM ₁₀ : 16.51 µg/m ³
Period of Study: 1985-1994	Study Design: Case-crossover	Averaging Time: 24-h avg	PM _{2.5} : 13.8 μg/m ³
Location: Western Washington	Statistical Analyses: Conditional logistic regression	Median (SD) unit: PM ₁₀	Odds Ratio (Lower CI, Upper CI) lag: Overall PM_{10}
	Age Groups: 19-79	Lag 0: 28.05	1.05 (0.87, 1.27) 0
	Study Population: Out-of-hospital	Lag 1: 27.97	0.91 (0.75, 1.11) 1 1.03 (0.82, 1.28) 2
	cardiac arrests: 1,206	Lag 2: 28.40	PM _{2.5} 0.94 (0.88, 1.01) 0
		Range (Min, Max): PM ₁₀ : (7.38, 89.83)	0.94 (0.88, 1.02) 1 1.00 (0.93, 1.08) 2
		Copollutant (correlation): SO ₂ , CO	PM _{2.5} : Stratified by subject
		Notes: Study used nephelometry to measure particles and equated the measurements to PM _{2.5} concentrations.	characteristics ≤ 55 0.95 (0.76, 1.18) 0 0.89 (0.71, 1.12) 1 0.95 (0.75, 1.20) 2 >55 0.94 (0.88, 1.02) 0 0.95, (0.88, 1.03) 1
			1.01 (0.93, 1.10) 2 Male 0.95 (0.87, 1.03) 0 0.96 (0.88, 1.04) 1 1.01 (0.93, 1.10) 2 Female 0.93 (0.82, 1.06) 0 0.92 (0.80, 1.07) 1 0.98 (0.83, 1.15) 2 White

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
			0.93 (0.86, 1.01) 0 0.95 (0.88, 1.03) 1
			1.03 (0.95, 1.12) 2 Non-White
			1.09 (0.88, 1.36) 0 0.96 (0.75, 1.22) 1
			0.88 (0.68, 1.14) 2 Current Smoker
			1.05 (0.92, 1.19) 0 0.98 (0.86, 1.12) 1
			1.06 (0.92, 1.22) 2 Nonsmoker
			0.93 (0.85, 1.01) 0 0.93 (0.85, 1.02) 1
			0.97 (0.89, 1.07) 2 Drinker
			1.13 (0.92, 1.39) 0 1.15 (0.94, 1.41) 1
			1.16 (0.92, 1.45) 2 Nondrinker
			0.94 (0.86, 1.03) 0 0.93 (0.85, 1.02) 1
			1.00 (0.92, 1.10) 2 Activity Level-Unrestricted
			0.96 (0.89, 1.03) 0
			0.96 (0.89, 1.04) 1 1.01 (0.93, 1.10) 2
			Activity Level-Limited 0.82 (0.56, 1.20) 0
			0.70 (0.45, 1.09) 1 0.97 (0.65, 1.43) 2
			PM _{2.5} : Stratified by disease state Heart disease
			0.95 (0.87, 1.04) 0 0.97 (0.89, 1.07) 1
			1.06 (0.96, 1.16) 2 Ischemic Heart Disease
			0.91 (0.80, 1.04) 0 0.97 (0.84, 1.11) 1
			1.09 (0.95, 1.26) 2 Active Angina
			0.98 (0.81, 1.20) 0 1.07 (0.88, 1.31) 1
			1.08 (0.89, 1.32) 2 Congestive Heart Failure
			0.91 (0.80, 1.03) 0 0.99 (0.87, 1.13) 1
			1.11 (0.97, 1.26) 2 Supraventricular tachycardia
			1.41 (0.97, 2.04) 0 1.55 (1.07, 2.25) 1
			1.23 (0.84, 1.82) 2 Bradycardia
			0.97 (0.64, 1.46) 0 1.29 (0.85, 1.96) 1
			1.30 (0.84, 2.01) 2 Asthma
			(0.80, 1.27) 0 0.92 (0.71, 1.19) 1
			0.93 (0.71, 1.22) 2 COPD
			1.00 (0.86, 1.17) 0 1.04 (0.88, 1.23) 1
			1.08 (0.92, 1.28) 2
			PM _{2.5} : Persons with prior recognized heart disease stratified by smoking
			status All heart disease
			Current smoker 1.08 (0.92, 1.26) 0
			1.06 (0.89, 1.26) 1 1.29 (1.06, 1.55) 2
			Nonsmoker 0.91 (0.82, 1.02) 0
			0.94 (0.84, 1.05) 1
			0.99 (0.88, 1.11) 2 Ischemic Heart Disease

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Study	Design & Methods	Concentrations1	Current smoker 1.06 (0.84, 1.34) 0 0.99 (0.75, 1.30) 1 1.39 (1.04, 1.86) 2 Nonsmoker 0.86 (0.73, 1.02) 0 0.93 (0.78, 1.11) 1 0.99 (0.83, 1.18) 2 Active Angina Current smoker 1.28 (0.88, 1.86) 0 1.26 (0.79, 2.01) 1 1.57 (0.99, 2.48) 2 Nonsmoker 0.87 (0.68, 1.12) 0 0.93 (0.72, 1.21) 1 0.91 (0.70, 1.17) 2 Congestive Heart Failure Current smoker 1.00 (0.79, 1.28) 0 1.03 (0.78, 1.35) 1 1.46 (1.10, 1.96) 2 Nonsmoker 0.88 (0.76, 1.03) 0 0.96 (0.82, 1.12) 1 0.99 (0.84, 1.17) 2 Supraventricular tachycardia Current smoker 1.280 (1.05, 156.57) 0 2.56 (0.82, 7.99) 1 1.15 (0.46, 2.86) 2 Nonsmoker 1.19 (0.74, 1.90) 0 1.35 (0.87, 2.10) 1 1.15 (0.73, 1.82) 2 Bradycardia
Defense at al. (2005	Outour Marielle	Pollutant:	Nonsmoker 0.84 (0.14, 4.95) 0 0.42 (0.03, 5.34) 1 0.51 (0.05, 5.79) 2 Nonsmoker 0.99 (0.63, 1.55) 0 1.42 (0.90, 2.24) 1 1.39 (0.88, 2.20) 2
Reference: Thurston et al. (2005, <u>997949</u>)	Outcome: Mortality: Total (nonaccidental) (<800)	PM _{2.5} , and source apportioned PM _{2.5} : Crustal	Increment: 10 µg/m³ % Increase:
eriod of Study: Washington, DC: Aug	Cardiovascular (390-448)	Traffic Secondary SO ₄	Total (nonaccidental):
988-Dec 1997. Phoenix, Arizona: 995-1997	Study Design: Time-series	Secondary NO ₃	Secondary sulfate:
ocation: Washington, DC and	Source-apportionment	Wood Oil	Phoenix: 5.2%
irrounding counties	Statistical Analyses: Poisson GLM,	Salt Incinerator	Washington, DC: 3.8%
noenix, Arizona	natural splines	Averaging Time: 24-h avg	Motor vehicles:
	Age Groups: Washington, DC: All ages	Median (SD) unit: NR	Phoenix: 0.9%
	Phoenix, Arizona: ≥ 65	Range (Min, Max): NR	Washington, DC: 4.2%
		Copollutant: PM _{2.5} species (Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Mo, Rh, Pd, Ag, Cd, Sn, Sb, Te, I, Cs, Ba, La, W, Au, Hg, Pb, OC, EC)	vidorilligion, DC. 4.276

Study	Design & Methods	Concentrations1	Effect Estimates (95% CI)
Study Reference: Villeneuve et al. (2003, 055051) Period of Study: 1986-1999 Location: Vancouver, Canada	Design & Methods Outcome: Mortality: Nonaccidental (<800) Cardiovascular (401-440) Respiratory (460-519) Cancer (140-239) Study Design: Time-series Statistical Analyses: Poisson, natural splines Age Groups: ≥ 65	Pollutant: PM _{2.5} Averaging Time: 24-h avg Mean (SD): Daily PM _{2.5} : 7.9 Every 6th Day PM _{2.5} : 11.6 Range (Min, Max): Daily PM _{2.5} : (2.0, 32.0) Every 6th Day PM _{2.5} : (1.8, 43.0)	Increment: PM _{2.5} (Daily): 9.0 μg/m³ PM _{2.5} (6th Day): 15.7 μg/m³ % Increase (Lower CI, Upper CI) lag: Nonaccidental PM _{2.5} (Daily) -0.1% (-5.1, 5.2) 0-2 avg -0.1% (-4.1, 4.1) 0 -0.3% (-4.2, 3.7) 1 0.5% (-3.3, 4.4) 2 PM _{2.5} (6th Day) -2.8% (-7.5, 2.1) 0 2.0% (-2.6, 7.0) 1 4.5% (-0.3, 9.5) 2
		Copollutant: SO ₂ CO NO ₂ O ₃	Cardiovascular $PM_{2.5}$ (Daily) 1.5% (-6.1, 9.7) 0-2 avg 4.3% (-1.7, 10.7) 0 -1.0% (-7.0, 5.4) 1 -0.5% (-6.5, 5.9) 2 $PM_{2.5}$ (6th Day) -1.5% (-8.9, 6.5) 0 -2.0% (-9.3, 5.8) 1 3.0% (-4.2, 10.8) 2 Respiratory $PM_{2.5}$ (Daily) -0.7% (-13.1, 13.4) 0-2 avg 6.7% (-3.7, 18.3) 0 -3.0% (-12.8, 7.9) 1 -5.8% (-15.2, 4.7) 2 $PM_{2.5}$ (6th Day) 10.0% (-4.7, 26.8) 0 8.3% (-5.4, 24.0) 1 0.3% (-12.4, 14.9) 2 $PM_{2.5}$ (Daily) -0.3% (-9.4, 9.8) 0-2 avg
			$\begin{array}{l} -4.5\% \ (-11.2, 2.8) \ 0 \\ 2.7\% \ (-5.0, 11.0) \ 1 \\ 2.5\% \ (-5.1, 10.7) \ 2 \\ PM_{2.5} \ (6th \ Day) \\ -5.1\% \ (-13.8, 4.5) \ 0 \\ -0.3\% \ (-9.7, 11.0) \ 1 \\ 0.2\% \ (-9.1, 10.4) \ 2 \end{array}$
Reference: Wilson et al. (2007, <u>157149</u>)	Outcome: Cardiovascular Study Design: Time-series	Pollutant: PM _{2.5} Averaging Time: 24-h avg	Increment: 10 µg/m³ % Excess Risk (Lower CI, Upper CI)
Period of Study: 1995-1997 Location: Phoenix, Arizona	Statistical Analyses: Poisson GAM,	Mean (SD): NR	lag: Central Phoenix:
	nonparametric smoothing spline Age Groups: >25	Range (Min, Max): NR	11.5% (2.8, 20.9) 0-5 ma 6.6% (1.1, 12.5) 1 2.0% (3.2, 7.5) 2
	Ago Groups. 720	Copollutant (correlation): NR	2.0% (-3.2, 7.5) 2 Middle Phoenix: 2.9% (-4.9, 11.4) 0-5 ma 6.4% (1.1, 11.9) 2 Outer Phoenix: 1.6% (-6.2, 10.0) 0-5 ma

E-359

 $^{^{1}\}text{All units}$ expressed in $\mu\text{g/m}^{3}$ unless otherwise specified.

 Table E-19.
 Short-term exposure-mortality - other PM size fractions.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Perez et al. (2008, <u>156020</u>)	Outcome: Respiratory mortality	Pollutant: PM ₁	Increment: 10 µg/m³
Period of Study: Mar 2003-Dec 2005	Study Design: Cohort	Averaging Time: 24 h	Odds Ratio (95%CI) lag
Location: Barcelona, Spain	Covariates: Temperature, humidity	Mean (SD) Unit: 20.0 (10.3) μg/m ³	Avg L0-1: 1.005 (0.960-1.053), p = 0.824
	Statistical Analysis: Autoregressive Poisson regression models	Range (Min, Max): 1.9, 80.1 Copollutant: PM _{10-2.5} , PM _{2.5-1}	L1: 1.012 (0.969-1.056), p = 0.599 L2: 1.042 (0.998-1.087), p = 0.063
	Statistical Package: NR	Copolitica III. 1 W1 _{10-2.5} , 1 W1 _{2.5-1}	Multi-pollutant Model
	Age Groups: All deaths		Avg L0-1: 1.007 (0.957-1.059), p = 0.799 L1: 1.008 (0.961-1.058), p = 0.739 L2: 1.010 (0.963-1.059), p = 0.678
Reference: Perez et al. (2008, <u>156020</u>)	Outcome: Cardiovascular mortality	Pollutant: PM ₁	Increment: 10 µg/m³
Period of Study: Mar 2003-Dec 2005	Study Design: Cohort	Averaging Time: 24 h	Odds Ratio (95%CI) lag
Location: Barcelona, Spain	Covariates: temperature, Humidity	Mean (SD) Unit: 20.0 (10.3) μg/m ³	Avg L0-1: 1.028 (1.000-1.057), p = 0.054
	Statistical Analysis: Autoregressive	Range (Min, Max): 1.9, 80.1	L1: 1.029 (1.003-1.056), p = 0.030
	Poisson regression models	Copollutant: PM _{10-2.5} , PM _{2.5-1}	L2: 1.023 (0.996-1.050), p = 0.091 Multi-pollutant Model
	Statistical Package: NR		Avg L0-1: 1.025 (0.995-1.057), p = 0.688
	Age Groups: All deaths		L1: 1.028 (1.000-1.058), p = 0.053 L2: 1.024 (0.995-1.053), p = 0.110
Reference: Perez et al. (2008, <u>156020</u>)	Outcome: Cerebrovascular mortality	Pollutant: PM ₁	Increment: 10 µg/m³
Period of Study: Mar 2003-Dec 2005	Study Design: Cohort	Averaging Time: 24 h	Odds Ratio (95%CI) lag
Location: Barcelona, Spain	Covariates: Temperature, humidity	Mean (SD) Unit: 20.0 (10.3) μg/m ³	Avg L0-1: 1.037 (0.981-1.097), p = 0.202
	Statistical Analysis: Autoregressive Poisson regression models	Range (Min, Max): 1.9, 80.1	L1: 1.056 (1.003-1.113), p = 0.039 L2: 1.020 (0.968-1.075), p = 0.460
	Statistical Package: NR	Copollutant: PM _{10-2.5} , PM _{2.5-1}	Multi-pollutant Model
	Age Groups: All deaths		Avg L0-1: 1.042 (0.981-1.107), p = 0.179 L1: 1.063 (1.004-1.124), p = 0.035 L2: 1.034 (0.976-1.095), p = 0.255
Reference: Slaughter et al. (2005, 073854)	Outcome: Mortality: Nonaccidental (<800)	Pollutant: PM ₁	This study does not present quantitative results for PM ₁ .
Period of Study: Jan 995-Dec 1999	Study Design: Time-series	Averaging Time: 24-h avg Mean (SD): NR	
Location: Spokane, Washington	Statistical Analyses: Poisson GLM, natural splines	Range (9th, 95th) PM ₁ : (3.3, 17.6)	
	Age Groups: All ages	Copollutant (correlation):	
		PM ₁ PM _{2.5} : r = 0.95 PM ₁₀ : r = 0.50	
		PM _{10-2.5} : r = 0.19 CO: r = 0.63	
Reference: Stölzel et al. (2007, 091374)	Outcome: Mortality:	Pollutant: MC _{0.1-0.5} , MC _{0.01-2.5}	Increment:
Period of Study: Sept 1995-Aug 2001	Total (nonaccidental) (<800)	Averaging Time: 24-h avg	MC _{0.1-0.5} : 13.1 μg/m³ MC _{0.01-2.5} : 16.8 μg/m³
Location: Erfurt, Germany	Cardio-respiratory (390-459, 460-519, 785, 786)	Mean (SD): MC _{0.1-0.5} : 17.6 (14.8) MC _{0.01-2.5} : 22.3 (19.2)	Relative Risk (Lower CI, Upper CI) lag:
	Study Design: Time-series	IQR (25th, 75th):	Total (nonaccidental)
	Statistical Analyses: Poisson GAM	MC _{0.1-0.5} : (8.4, 21.5) MC _{0.01-2.5} : (10.5, 27.3)	MC _{0.1-0.5} 1.010 (0.986
	Age Groups: All ages	Copollutant (correlation):	1.034) `
		MC _{0.1-0.5} NO: r = 0.52	1.006 (0.983 1.029)
		NO_2 : r = 0.60	1
		CO: r = 0.58 MC _{0.01-2.5}	1.007 (0.985 1.029)
		NO: r = 0.51 NO ₂ : r = 0.58 CO: r = 0.57	2 0.994 (0.973 1.016)
		JO. 1 = 0.01	3

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			1.002 (0.981 1.023)
			4 0.997 (0.976 1.018)
			5 MC _{0.01-2.5} 1.007 (0.985 1.030)
			0 1.005 (0.984 1.026)
			1 1.003 (0.983 1.023)
			2 0.989 (0.970 1.009) 3
			1.002 (0.982 1.022) 4
			0.998 (0.979 1.018) 5
			Cardio-respiratory MC0.1-0.5 1.004 (0.977 1.031)
			0 1.004 (0.979 1.029)
			1 1.001 (0.978 1.026)
			2 0.991 (0.967 1.014) 3
			1.000 (0.977 1.023)
			1.000 (0.976 1.023) 5
			MC0.01-2.5 1.001 (0.977 1.026) 0
			0.999 (0.976 1.022)
			0.998 (0.976 1.021) 2
			0.985 (0.964 1.007) 3
			1.001 (0.980 1.022)
			1.003 (0.981 1.024) 5

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)	
Reference: Yamazaki et al. (2007, 090748)	Outcome: Mortality:	Pollutant: PM7	Increment: 30 µg/m³	
	Intracerebral hemorrhage (431)	Averaging Time: 1-h avg	Odds Ratio (Lower CI, Upper CI) lag:	
Period of Study: 1995-1998	Ischaemic stroke (434)	Mean (SD): Warmer Months (Apr-Sep):	24-h avg concentrations Intracerebral hemorrhage	
Location: Hong Kong, China	Study Design: Time-stratified case- crossover	40.3 Colder Months (Oct-Mar): 39.4	Warmer months: 1.041 (0.984, 1.102) 0 Colder months: 1.005 (0.951, 1.061) 0	
	Statistical Analyses: Conditional logistic regression	Range (Min, Max): NR Copollutant (correlation): Warmer Months NO ₂ : r = 0.46-0.63 Ox: r = -0.14 to 0.20 Colder Months NO ₂ : 0.42-0.79 Ox: r = -0.36 to -0.14	Range (Min, Max): NR Ischaemic stroke Warmer months: 1.027 (0.993,	Ischaemic stroke Warmer months: 1.027 (0.993, 1.062) 0 Colder months: 1.005 (0.973, 1.039) 0
	Age Groups: ≥ 65		Exposure measured jointly as 24-h and 1-h mean concentrations Warmer months Intracerebral hemorrhage 1-h with 200 µg/m³ threshold: 2.397 (1.476, 3.892) 2 h 24-h: 1.019 (0.960, 1.082) 0	
			Ischaemic stroke 1-h with 200 μg/m³ threshold: 1.051 (0.750, 1.472) 2 h 24-h: 1.018 (0.983, 1.055) 0	
			Warmer months Intracerebral hemorrhage 1-h with 200 μg/m³ threshold: 0.970 (0.712, 1.322) 2 h 24-h: 1.015 (0.958, 1.075) 0	
			Ischaemic stroke 1-h with 200 µg/m³ threshold: 1.040 (0.855, 1.265) 2 h 24-h: 1.003 (0.968, 1.039) 0	

¹All units expressed in μg/m³ unless otherwise specified.

E.4. Long-Term Exposure and Cardiovascular Outcomes

Table E-20. Long-term exposure - cardiovascular morbidity outcomes - PM₁₀.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Baccarelli et al. (2008,	Outcome (ICD9 and ICD10): Deep Vein Thrombosis (DVT)	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
157984) Period of Study: 1995-2005	Prothrombin time (PT)	Averaging Time: 1 yr (immediately preceding the diagnosis date for cases	Effect Estimate [Lower CI, Upper CI] Estimated changes of PT associated
Location: Italy (Lombardy region)	Activated partial thromboplastin time	or the date of examination for controls)	with PM ₁₀ : Among DVT cases: -0.12 (-0.23, 0.00),
,	(aPTT) Age Groups: 18-84yrs	assessed other averaging periods presented in supplements (90 days, 180 days, 270 days, 2 yr)	p = 0.04 Among Controls: -0.06 (-0.11, 0.00) , p = 0.04 Estimated changes of aPTT
	Study Design: Case-control (DVT	Mean (SD): NR	
	outcome) Cross-sectional (PT and aPTT	Percentiles: NR	associated with PM ₁₀ : Among Controls: -0.09 (-0.19, 0.01),
	outcomes)	Range (Min, Max):	p = 0.07 Among DVT cases: 0.01 (-0.03, 0.04),
	N: 871 cases	Range for tertiles of exposure:	p = 0.78
	1210 controls (randomly selected from	1: 12.0-44.2	Risk of DVT associated with PM ₁₀
	friends and nonblood relatives of cases	2: 44.3-48.1	(avg of 1 yr preceding diagnosis/exam date):
	Frequency matched by age to cases)	3: 48.2-51.5	All subjects:
	Statistical Analyses: Unconditional logistic regression (DVT outcome)	Monitoring Stations: Monitors from 53 sites	1.70 (1.30, 2.23), p < 0.001 Sex: Male: 2.07 (1.50, 2.84), p < 0.001
	Linear regression (PT and aPTT outcomes)	exposure assigned by dividing area into 9 regions	Female: 1.40 (1.02, 1.92), p = 0.04 P for interaction: p = 0.02 Age:
	Covariates: Sex, area of residence, education, factor V Leiden or G20210A prothrombin mutation, current use of oral contraceptives or hormone therapy	Copollutant (correlation): NR	18-35yrs: 1.57 (1.11, 2.24), p = 0.01 36-50yrs: 1.97 (1.41, 2.77) , p < 0.001 51-84yrs: 1.54 (0.90, 2.63) , p = 0.12 P for interaction: p =
	(Variables controlled using penalized regression splines with 4 df) age, BMI, day of yr (for seasonality), index date, ambient temperature		0.99Premenopausal women with current use of oral contraceptives: No: 1.53 (0.86, 2.72), p = 0.14 Yes: 0.87 (0.46, 1.67), p = 0.68 P for interaction: p =
	Season: covariate		0.11Postmenopausal women with current use of hormone therapy:
	Dose-response Investigated? Yes		No: 1.60 (0.72, 3.54), p = 0.24
	Statistical Package: STATA v9.0 and R v2.2.0		Yes: 0.85 (0.29 , 2.45), $p = 0.76$ P for interaction: $p = 0.27$ Current use of oral contraceptive or hormone replacement therapy: No: 1.64 (1.05 , 2.57), $p = 0.03$ Yes: 0.97 (0.58 , 1.61), $p = 0.89$ P for interaction: $p = 0.048$ Body Mass Index: $1.3.3-22.0: 1.47$ (0.97 , 2.23), $p = 0.07$; $22.1-24.9: 1.72$ (1.17 , 2.54), $p = 0.006$ $25.0-53.3: 1.83$ (1.03 , 3.24), $p = 0.04$ P for interaction: $p = 0.37$ Education: Elementary/middle school 1.93 (1.35 , 2.76), $p < 0.001$ High school: 1.72 (1.24 , 2.39), $p = 0.001$ College: 1.35 (0.74 , 2.45), $p = 0.33$ P for interaction: $p = 0.21$ Deficiencies of natural anticoagulan proteins: None: 1.66 (1.26 , 2.18), $p < 0.001$ Any: 2.56 (0.91 , 7.18), $p = 0.07$ P for interaction: $p = 0.41$ Factor V Leiden or G20210A prothrombin mutation: None: 1.69 (1.27 , 2.23), $p < 0.001$ Any: 1.79 (1.05 , 3.05), $p = 0.03$ P for interaction: $p = 0.83$

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			No: 1.66 (1.26, 2.19), p < 0.001 Yes: 2.19 (1.33, 3.61), p = 0.002 P for interaction: p = 0.25 Any cause of thrombophilia: No: 1.59 (1.19, 2.13), p = 0.002 Yes: 1.96 (1.34, 2.87), p < 0.001 P for interaction: p = 0.27 Year of diagnosis: 1995-97: 1.61 (1.06, 2.46), p = 0.03 1998-00: 1.34 (0.90, 1.99), p = 0.15 2001-05: 2.14 (1.04, 4.39), p = 0.04 P for interaction: p = 0.12 Risk of DVT associated with PM ₁₀ over varying averaging times: 90 days: 0.91 (0.80, 1.03), p = 0.12 180 days: 0.96 (0.82, 1.13), p = 0.63 270 days: 1.26 (1.01, 1.57), p = 0.04 365 days: 1.70 (1.30, 2.23), p = 0.0001 2 yr: 1.47 (1.01, 2.14), p = 0.04 Risk of DVT associated with PM ₁₀ (yr preceding diagnosis/exam date) sensitivity analysis to evaluate the effect of different methods for adjusting for long-term trends: Handling of long-term time trends: Ignored: 1.13 (0.89, 1.42), p = 0.31 Dummy variable for each yr: 1.78 (1.31, 2.44), p = 0.0003 Linear term: 1.32 (1.02, 1.69), p = 0.03 Penalized spline, 2 df: 1.54 (1.19, 2.00), p = 0.001 Penalized spline, 3 df: 1.64 (1.26, 2.14), p = 0.0002 Penalized spline, 5 df: 1.70 (1.30, 2.23), p = 0.0001 Penalized spline, 5 df: 1.70 (1.29, 2.22), p = 0.0002 Penalized spline, 6 df: 1.66 (1.26, 2.19), p = 0.0003 Penalized spline, 7 df: 1.60 (1.21, 2.13), p = 0.001 Penalized spline, 8 df: 1.55 (1.15, 2.10), p = 0.004
Reference: Baccarelli et al. (2009, 188183)	Outcome: Deep Vein Thrombosis	Pollutant: PM ₁₀	Increment: NA
	Study Design: Case-control	Risk of DVT measured with regards to distance of residence from major road. Specific levels of PM ₁₀ not given.	Relative Risk (95%CI) of DVT
Period of Study: Jan 1995-Sept 2005 Location: Lombardia Region, Italy	Covariates: Age, Sex, area of residence, BMI, education, medication use		All subjects, age-adjusted: 1.33 (1.03-1.71), p = 0.03 All subjects, adjusted for covariates: 1.47 (1.10-1.96), p = 0.008
	Statistical Analysis: Logistic regression		All subjects, adjusted for covariates and background PM ₁₀ exposure: 1.47 (1.11-
	Statistical Package: Stata		1.96), p = 0.008

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Calderon-Garciduenas et	Outcome (ICD9 and ICD10): Plasma Endothelin-1 (ET-1) and pulmonary arterial pressure (PAP)	Pollutant: PM ₁₀ (μg/m ³)	PM Increment: NA
al. (2008, <u>156317</u>)		Exposures assessed quantitatively in Mexico City only	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Children recruited between Jul 2003 and Dec 2004	Age Groups: 6-13 yr	No monitors in Polotitlan	No health effects models with measured PM concentrations were presented
Location: Mexico (northeast or	7.9 ± 1.3 yr	Averaging Time: 1, 2, and 7 days	Used city of residence to assign
southwest Mexico city or Polotitlan)	Study Design: Cross-sectional	before the exam	exposure
	N: 81 children	Pollutant concentrations between 0700 and 1900 h were used for the estimates	No multivariable analyses presented
	Statistical Analyses: Analysis of variance by parametric one-way	Mean (SD): Presented only in figures	Authors presented (statistically significantly) elevated ET-1 levels
	analysis of variance and the Newman-	Percentiles: NR	among children residing in both areas
	Keuls multiple comparison post test, Pearson's correlation	Range (Min, Max): Presented only in	of Mexico City as compared to Polotitlan (control city):
	Covariates: Doesn't appear to have	figures	Mean ± SE (pg/mL)
	performed multivariable analyses	monitoring stations: 4 (2 in northeast Control: 1.2)	Control: 1.23 ± 0.06
	However, collected information on age, place and length of residency, daily	residency, daily Residence and school within 5 mi of	Southwest Mexico City: 2.40 ± 0.14
	outdoor time, household cooking methods, parents' occupational history,		Northeast Mexico City: 2.09 ± 0.10
	family history of atopic illnesses and respiratory disease, and personal	Copollutant (correlation): O ₃	Mexico City (overall): 2.24 ± 0.12
	history of otolaryngologic and respiratory symptoms	aryngologic and	Authors presented (statistically significantly) elevated PAP levels among children residing in both areas
	Season: No		of Mexico City as compared to Polotitlan (control city):
	Dose-response Investigated? No		Mean ± SE (mmHg)
	Statistical Package: STATA v8.3, or GraphPad Software, Inc.		Control: 14.6 ± 0.4
			Southwest Mexico City: 16.7 ± 0.6
			Northeast Mexico City: 18.6 ± 0.9
			Mexico City (overall): 17.3 ± 0.5
			Correlation between ET-1 and time spent outdoors: r = 0.31, p = 0.0012
			Correlation between PAP and time
			spent outdoors: r = 0.42, p = 0.0008

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Diez Roux et al. (2008,		Pollutant: PM ₁₀ (µg/m ³)	PM Increment: 21.0 µg/m³ (approx. 10th-90th percentile) Effect Estimate [Lower CI, Upper CI]: CIMT: Relative difference (95% CI): 1.01 (1.00, 1.02) Adj. for additional CVD RFs: 1.02 (1.00, 1.03) ABI: Mean difference (95% CI): 0.002 (-0.005, 0.009)
Period of Study: Baseline data collected Jun 2000-Aug 2002 Exposure assessed retrospectively between Aug 1982 and baseline date Location: USA (6 field centers: Baltimore, MD Chicago, IL	measures of subclinical atherosclerosis (common carotid intimal-medial thickness (CIMT), coronary artery calcification, and ankle-brachial index (ABI)) Age Groups: 44-84 yr (MESA cohort) Study Design: Cross-sectional retrospective cohort N: 5172 for coronary calcium analysis	Averaging Time: 20-yr imputed mean Mean (SD): 34.1 (7.5) Percentiles: NR Range (Min, Max): NR Monitoring Stations: A spatio-temporal model was used to predict monthly PM _{2.5} exposures based on the	
Forsyth Co, NC	5037 for CIMT analysis	geographic location of each participant's residence.	Adj. for additional CVD RFs: 0.001 (-0.006, 0.009)
Los Angeles, CA	5110 for ABI analysis	Copollutant (correlation with 20-yr imputed mean):	Coronary calcium: Relative prevalence (95% CI):
New York, NY St. Paul, MN	k, NY Statistical Analyses: Generalized PM ₁₀ 20-yr obsérved mean	PM ₁₀ 20-yr obsérved mean	1.02 (0.96, 1.07) Adj. for additional CVD RFs: 1.02 (0.96, 1.08) Coronary calcium (in those with
	Linear regression: CIMT, ABI, amount of calcium among persons with non-zero calcification)	$PM_{2.5}$ 20-yr imputed mean $r = 0.73$	calcium): Relative difference (95% CI): 0.98 (0.84, 1.13)
	Covariates: Age, sex, race/ethnicity, socioeconomic factors, cardiovascular risk factors (BMI, hypertension, high density lipoprotein and low density lipoprotein cholesterol, smoking, diabetes, diet, physical activity	PM_{10} 2001 imputed mean $r = 0.75$ PM_{10} 2001 observed mean $r = 0.80$	Adj. for additional CVD RFs: 1.01 (0.86, 1.18) Found no clear heterogeneity by age, sex, lipid status, smoking status, diabetes status, BMI, education or study site.
	models presented with and without adjustment for cardiovascular RFs)	PM _{2.5} 2001 mean r = 0.86	
	Season: NA		
	Dose-response Investigated? No		
	Statistical Package: NR		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Maheswaran et al. (2005,	Outcome (ICD9 and ICD10): Stroke	Pollutant: PM ₁₀ (µg/m³)	PM Increment: NA
088683)	mortality (ICD9: 430-438) and Emergency hospital admissions (ICD10:	Averaging Time: 5-yr avg	Effect Estimate [Lower CI, Upper CI]:
Period of Study: 1994-1998 Location: Sheffield, United Kingdom	l60-l69) Age Groups: ≥ 45 yr	Mean (SD): Presented mean values and ranges for each quintile of exposure:	Rate Ratios (95%CI) for stroke mortality adjusted for overdispersion by quintile of PM ₁₀ level
	Study Design: Small area ecological cross-sectional	1: 16.0 (<16.8)	Adjusted for sex and age:
	N: 1030 census enumeration districts	2: 17.5 (≥ 16.8, <18.2)	1: 1 (ref) 2: 0.95 (0.84, 1.08)
	(CEDs)	3: 18.8 (≥ 18.2, <19.3)	3: 1.12 (0.99, 1.27) 4: 1.16 (1.03, 1.32)
	108 CEDs excluded from PM analyses due to artifacts in the modeled	4: 19.8 (≥ 19.3, <20.6)	5: 1.39 (1.23, 1.58) Adjusted for sex, age, deprivation, and
	emissions data. The analysis was based on 2979 deaths, 5122	5: 23.3 (≥ 20.6)	smoking: 1: 1 (ref)
	admissions and a population of 199,682	Monitoring Stations: Used air pollution model incorporating point, line and grid	2: 0.94 (0.83, 1.07) 3: 1.08 (0.94, 1.24)
	Statistical Analyses: Poisson regression	sources of pollution and meteorological data.	4: 1.12 (0.97, 1.29) 5: 1.33 (1.14, 1.56)
	Covariates: Age, sex, socioeconomic deprivation, and smoking prevalence	Copollutant (correlation):	Rate Ratios (95%CI) for emergency hospital admissions because of
	(some models also included age-by-	CO (r = 0.82)	stroke by quintile of PM ₁₀ level
	deprivation interaction) Season: NA	NO_X (r = 0.87)	Adjusted for sex and age: 1: 1 (ref)
	Dose-response Investigated? Yes, examined quintiles of exposure		2: 1.06 (0.95, 1.17) 3: 1.10 (0.99, 1.23) 4: 1.25 (1.12, 1.38)
	Statistical Package: SAS		5: 1.40 (1.26, 1.55) Adjusted for sex, age, deprivation, and smoking: 1: 1 (ref) 2: 1.01 (0.91, 1.13) 3: 0.98 (0.87, 1.10) 4: 1.08 (0.96, 1.22) 5: 1.13 (0.99, 1.29)
			Rate Ratios (95%CI) for stroke mortality in relation to spatially smoothed (using a 1-km radius) modeled outdoor air pollution quintiles
			Adjusted for sex, age, socioeconomic deprivation, age by deprivation interaction, and smoking prevalence: 1: 1 (ref) 2: 0.86 (0.75, 0.98) 3: 1.05 (0.92, 1.21) 4: 1.03 (0.89, 1.19) 5: 1.24 (1.05, 1.47)
			Rate Ratios (95%CI) for emergency hospital admissions because of stroke in relation to spatially smoothed modeled outdoor air pollution quintiles
			Adjusted for sex, age, socioeconomic deprivation, age by deprivation interaction, and smoking prevalence: 1.1 (ref) 2: 1.05 (0.94, 1.17) 3: 1.07 (0.95, 1.20) 4: 1.06 (0.94, 1.20) 5: 1.15 (1.01, 1.31)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Maheswaran et al. (2005,	Outcome (ICD9 and ICD10): Coronary Heart Disease (CHD) mortality (ICD9: 410-414) and Emergency hospital	Pollutant: PM ₁₀ (μg/m ³)	PM Increment: NA
<u>090769</u>)		Averaging Time: 5-yr avg	Effect Estimate [Lower CI, Upper CI]:
Period of Study: 1994-1998	admissions (ICD10: I20-I25)	Mean (SD): Presented mean values	Rate Ratios (95%CI) for CHD
Location: Sheffield, United Kingdom	Age Groups: ≥ 45 yr	and ranges for each quintile of exposure:	mortality in relation to modeled outdoor air pollution quintiles,
	Study Design: Small area ecological cross-sectional	1: 16.0 (<16.8)	adjusted for overdispersion Adjusted for sex and age:
	N: 1030 census enumeration districts	2: 17.5 (≥ 16.8, <18.2)	1: 1 (ref)
	(CEDs)	3: 18.8 (≥ 18.2, <19.3)	2: 1.06 (0.98, 1.16) 3: 1.10 (1.01, 1.21)
	108 CEDs excluded from PM analyses due to artifacts in the modeled	4: 19.8 (≥ 19.3, <20.6)	4: 1.23 (1.13, 1.35) 5: 1.30 (1.19, 1.43)
	emissions data. Results based on 6857 deaths, 11407 hospital admissions and	5: 23.3 (≥ 20.6)	Adjusted for sex, age, deprivation, and smoking:
	199,682 people aged ≥ 45 yr	Monitoring Stations: Study used an air	1: 1 (ref) 2: 1.03 (0.94, 1.12)
	Statistical Analyses: Poisson regression	pollution model incorporating points, lines, and grids as sources of pollution, and meteorological data.	3: 1.00 (0.90, 1.11) 4: 1.08 (0.98, 1.20)
	Covariates: Age, sex, socioeconomic deprivation, and smoking prevalence	Copollutant (correlation): CO (r = 0.82)	5: 1.08 (0.96, 1.20) Adjusted for sex, age, deprivation, and smoking (spatially smoothed using a
	(some models also included age-by- deprivation interaction)	$NO_X (r = 0.87)$	1km radius): 1: 1 (ref)
	Season: NA	2	2: 0.97 (0.89, 1.07) 3: 1.00 (0.90, 1.10)
	Dose-response Investigated? Yes, examined quintiles of exposure		4: 1.03 (0.93, 1.15) 5: 1.07 (0.96, 1.21)
	Statistical Package: SAS		Rate Ratios (95%CI) for emergency hospital admissions from CHD in relation to modeled outdoor air pollution quintiles
			Adjusted for sex and age:
			1: 1 (ref) 2: 1.08 (0.98, 1.19) 3: 1.11 (1.01, 1.22) 4: 1.17 (1.07, 1.29) 5: 1.36 (1.23, 1.50) Adjusted for sex, age, deprivation, and smoking: 1: 1 (ref)
			2: 1.03 (0.93, 1.13) 3: 0.96 (0.86, 1.07) 4: 0.97 (0.87, 1.08) 5: 1.01 (0.90, 1.14) Adjusted for sex, age, deprivation, and smoking (spatially smoothed using a 1km radius): 1: 1 (ref) 2: 1.01 (0.92, 1.11)
			3: 1.04 (0.93, 1.15) 4: 0.97 (0.87, 1.08) 5: 1.07 (0.95, 1.20)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: O'Neill et al. (2007,	Outcome (ICD9 and ICD10):	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 2000-2004 Location: USA (6 field centers: Baltimore, MD Chicago, IL Forsyth Co, NC Los Angeles, CA New York, NY St. Paul, MN	Creatinine adjusted urinary albumin excretion Assessed 2 ways: continuous log urinary albumin/creatine ration (UACR) and clinically defined micro- or macroalbuminuria (UACR ≥ 25 mg/g) vs. normal levels Age Groups: 44-84 yr Study Design: Cross-sectional analyses and prospective cohort analyses N: 3901 participants free of clinical CVD at baseline Statistical Analyses: At baseline: multiple linear regression (continuous outcome) Binomial regression (dichotomous outcome) 3-yr change: repeated measures model with random subject effects (estimate 3-yr change in log UACR by levels of exposure) Covariates: Age, gender, race, BMI, cigarette status, ETS, percent dietary protein For repeated measures models: time Time x PM₁0 Season: NA Dose-response Investigated? Yes, examined quartiles of exposure Statistical Package: SAS	Averaging Time: Avg of previous month, avg of previous 2 mo (recent exposures) 20-yr directly monitored PM ₁₀ avg, 20-yr imputed PM ₁₀ avg (longer-term exposures) Mean (SD): Previous 20 yr: 34.7 (7.0) Previous month: 27.5 (7.9) Percentiles: NR Range (Min, Max): NR Monitoring Stations: NR (used closest monitor to residence to assign exposure 20-yr imputed PM ₁₀ was derived using a space-time model) Copollutant (correlation): PM _{2.5}	Effect Estimate [Lower CI, Upper CI]: Adjusted mean differences in log UACR (mg/g) per increase in PM ₁₀ among participants seen at baseline Previous 30 days Full sample: -0.42 (-0.085, 0.002) Within 10 km: -0.023 (-0.079, 0.034) Previous 60 days Full sample: -0.056 (-0.106 to -0.005) Within 10 km: -0.040 (-0.106, 0.025) 20 yr PM ₁₀ (nearest monitors) Full sample: -0.019 (-0.072, 0.033) Within 10 km: 0.009 (-0.067, 0.085) Imputed 20 yr exposure Full sample: -0.002 (-0.038, 0.035) Within 10 km: 0.016 (-0.033, 0.066) Adjusted relative prevalence of microalbuminuria vs. high-normal and normal levels (below 25 mg/g) per increase in PM ₁₀ among participants without macroalbuminuria during the baseline visit Previous 30 days: 0.88 (0.76, 1.02) Previous 60 days: 0.83 (0.70, 0.99) 20 yr PM ₁₀ (nearest monitors): 0.92 (0.77, 1.08) Imputed 20 yr exposure: 0.98 (0.87, 1.10) Adjusted mean 3-yr change (SE) in log UACR (mg/g) by quartiles of 1982-2002 exposure to PM ₁₀ from ambient monitors among participants seen in 2000-20004 Full sample Quartile: 18.5 to <29.3: 0.147 (0.024) 29.3 to <33.1: 0.159 (0.024) 33.1 to <36.3: 0.163 (0.024) 36.3 to 55.7: 0.174 (0.023) -trend: 0.42 Within 10 km Quartile: 18.5 to <29.3: 0.159 (0.030) 29.3 to <33.1: 0.155 (0.031) 33.1 to <36.3: 0.167 (0.028) 36.3 to 55.7: 0.152 (0.036) p-trend: 0.99 Interactions with either 20 yr or shorterterm PM exposure were not significant (p < 0.01) by gender, age, city, race/ethnicity or study site.
Reference: Puett et al, (2008, <u>156891</u>)	Outcome: Nonfatal myocardial infarction	Pollutant: PM ₁₀	Increment: 10 µg/m³
Period of Study: 1992-2002	Study Design: Cohort	Averaging Time: 3-, 12-, 24-, 36- and 48-mo ma	Hazard Ratio, 95% CI, 12 month ma
Location: Northeastern metropolitan U.S.	Covariates: Age in months, state of residence, yr and season	Mean (SD) Unit: NR	0.94 (0.77-1.15)
	Statistical Analysis: Cox proportional hazard	Range (Min, Max): NR Copollutant (correlation): NR	
	Statistical Package: SAS		
	Age Groups: 30-55		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Rosenlund et al. (2006, 114678)	Outcome (ICD9 and ICD10): Myocardial infarction (MI)	Pollutant: PM ₁₀ (modeled traffic-related pollution; also	PM Increment: 5 μg/m³ (5th to 95th percentile distribution among controls)
Period of Study: 1992-1994	Age Groups: 45-70 yr	modeled PM _{2.5} , but since the PM correlation was high (r = 0.998) only	Effect Estimate [Lower CI, Upper CI]:
Location: Stockholm County, Sweden	Study Design: Case-control	PM ₁₀ results were presented) (µg/m ³)	Association of 30-yr avg exposure to air
	N: 1397 cases	Averaging Time: 30 yr (PM only assessed during 2000, thus assumed	pollution from traffic with MI
	1870 controls	constant levels during 1960-2000)	Logistic regression
	Statistical Analyses: Logistic	Median (5th-95th percentile):	All cases: 1.00 (0.79, 1.27)
	regression (main analysis)	Cases: 2.6 (0.5-6.0)	Multinomial logistic regression
	Also performed multinomial logistic regression to assess cases as nonfatal,	Controls: 2.4 (0.6-5.9)	Nonfatal cases: 0.92 (0.71, 1.19)
	fatal in the hospital within 28 days, and	Range (Min, Max): NR	Fatal cases: 1.39 (0.94, 2.07)
	out-of-hospital death within 28 days with all controls as reference	Monitoring Stations: NR	In-hospital death: 1.21 (0.75, 1.94)
	Covariates: Age, sex, and hospital	Copollutant (correlation):	Out-of-hospital death: 1.84 (1.00, 3.40)
	catchment area (frequency matched	NO ₂ (r = 0.93)	After adjustment for heating-related
	variables)	CO (r = 0.66)	SO_2 , the estimate for fatal MI was 1.40 (0.86-2.26) for PM_{10} .
	Smoking, physical inactivity, diabetes, SES	SO ₂	(0.00 2.20) 101 1 W ₁₀ .
	Also assessed but did not include hypertension, BMI, job strain, diet, passive smoking, alcohol consumption, coffee intake, and occupational exposure to motor exhaust and other combustion products		
	Season: NA		
	Dose-response Investigated? No		
	Statistical Package: STATA v8.2		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Zanobetti & Schwartz (2007, 091247)	Outcome (ICD9 and ICD10): Death, subsequent myocardial infarction (MI	Pollutant: PM ₁₀	PM Increment: 10 µg/m ³
Period of Study: 1985-1999	ICD9 codes 410.0-410.9), and a first	Averaging Time: Yearly avg of pollution for that yr and lags up to the 3	Effect Estimate [Lower CI, Upper CI]:
Location: 21 U.S. cities (Birmingham,	admission for congestive heart failure (CHF	previous yr (distributed lag)	Hazard ratio (95%CI) for an increase in PM for the yr of failure and for the
Alabama	ICD9 code 428)	Mean (SD): 28.8 (all cities	distributed lag from the yr of failure up to 3 previous yr
Boulder, Colorado	Age Groups: ≥ 65 yr	SD not reported)	Death
Canton, Ohio	Study Design: Cohort	Percentiles: 10, 50, and 90 percentiles listed individually for each city (Table 2)	PM_{10} annual: 1.11 (1.05, 1.19), p = 0.001
Chicago, Illinois	N: 196,000 persons discharged alive	Range (Min, Max): NR	Distributed lag model Lag 0: 1.04 (0.96, 1.14), p = 0.336
Cincinnati, Ohio	following an acute MI	Monitoring Stations: NR (obtained	Lag 1: 1.07 (0.99, 1.14), p = 0.070
Cleveland, Ohio	Statistical Analyses: Cox's	data from the U.S. EPA Aerometric	Lag 2: 1.14 (1.10, 1.18), p = 0.000 Lag 3: 1.06 (0.99, 1.12), p = 0.077
Colorado Springs, Colorado	Proportional Hazards Regression	Information Retrieval System)	Sum lags 0-3: 1.34 (1.14, 1.52), p = 0.000
Columbus, Ohio	Meta-regression for city-specific results	Copollutant (correlation): None	CHF
Denver, Colorado	Covariates: Age, sex, race, type of MI, number of days of coronary care and		PM_{10} annual: 1.11 (1.03, 1.21), p = 0.009
Detroit, Michigan	intensive care, previous diagnoses for atrial fibrillation, and secondary or		Distributed lag model Lag 0: 1.09 (1.01, 1.18), p = 0.030
Honolulu, Hawaii	previous diagnoses for COPD, diabetes, and hypertension, and for		Lag 1: 1.09 (1.01, 1.19), p = 0.038 Lag 2: 1.13 (1.02, 1.25), p = 0.014
Houston, Texas	season of initial event (time period, and,		Lag 3: 1.04 (0.97, 1.12), p = 0.260
Minneapolis-St. Paul, Minnesota	sex, race, and type of MI were treated as stratification variables)		Sum lags 0-3: 1.41 (1.19, 1.66), p = 0.000
Nashville, Tennessee	Season: Assessed as a confounder		2nd MI PM ₁₀ annual: 1.17 (1.05, 1.31),
New Haven, Connecticut	Dose-response Investigated? No		p = 0.003 Distributed lag model
Pittsburgh, Pennsylvania	Statistical Package: NR		Lag 0: 1.09 (0.92, 1.30), p = 0.325
Provo-Orem, Utah	y .		Lag 1: 1.12 (0.97, 1.30), p = 0.108 Lag 2: 1.15 (1.08, 1.23), p = 0.000
Salt Lake City, Utah			Lag 3: 1.01 (0.94, 1.09), p = 0.783 Sum lags 0-3: 1.43 (1.12, 1.82),
Seattle, Washington			p = 0.005
Steubenville, Ohio			Hazard Ratio (95%CI) for an increase in PM (sum of the previous 3 yr distributed
and Youngstown, Ohio)			lag) for the sensitivity analyses Death
			Subjects with follow-up starting after 2nd MI:
			1.33 (1.15, 1.55), p = 0.000 Subjects admitted between 1985-1996: 1.45 (1.26, 1.68), p = 0.000 2nd cohort definition (yr defined at time of MI): 1.29 (1.15, 1.44), p = 0.000
			CHF Subjects with follow-up starting after
			2nd MI: 1.42 (1.22, 1.65), p = 0.000 Subjects admitted between 1985-1996: 1.51 (1.26, 1.81), p = 0.000 2nd MI Subjects admitted between 1985-1996: 1.62 (1.23, 2.13), p = 0.001
			Note: Age and sex effect modification results presented in Fig 1
			Used meta-regression to examine predictors of heterogeneity across city and found that most predictors were not significant modifiers of PM (Table 7)

E-371

¹All units expressed in µg/m³ unless otherwise specified.

 Table E-21.
 Long-term effects-cardiovascular- PM_{2.5} (including PM components/sources).

Study Design & Methods Reference: Allien et al. (2009, 1562/29) Reference Allien et al. (2009, 1562/29) Period of Study: Oct 2000-Sep 2002 Location: St U.S. communities (Chicaga, Illinois Chicaga, Illinois Chic		Destre 6 Market	• • • • • • • • • • • • • • • • • • •	F(f) (F () () () () () () () () (
Period of Study: Cxt 2000. Sep 2002 (exposure averaging period) control exposure averaging period (guaratilative measure of inflience transport of specific after aplation source) (guaratilative measure of inflience transport of control and period of control and the proximate of systemic effects of control and the proximate of systemic effects of control and specific period of control and the proximate of systemic effects of control and specific period of contro				, ,
(exposure averaging period) Count averaging period Count averaging period Count averaging period Count averaging period Count Manhattan and the Bronx, and St. Paul, Minnesola port of MESA (Multi-ethnic Study of Alterosderosis) Statistical Analyses: 2-part modeling and MESA (Multi-ethnic Study of Alterosderosis) Statistical Analyses: 2-part modeling and MESA (Multi-ethnic Study of Alterosderosis) Statistical Analyses: 2-part modeling and MESA (Multi-ethnic Study of Alterosderosis) Statistical Analyses: 2-part modeling and Mesa (Multi-ethnic Study of Alterosderosis) Alterosderosis) Statistical Analyses: 2-part modeling and Mesa (Multi-ethnic Study of Alterosderosis) Statistical Analyses: 2-part modeling and Mesa (Multi-ethnic Study of Alterosderosis) Statistical Analyses: 2-part modeling and Mesa (Multi-ethnic Study of Alterosderosis) Statistical Analyses: 2-part modeling and provided poisson regression with robust enor virianion. 2- Multiple linear regression of the log-transformed provided poisson regression with robust enor virianion. 2- Multiple linear regression of the log-transformed provided poisson regression with robust enor virianion. 2- Multiple linear regression of the log-transformed provided poisson regression with robust enor virianion. 2- Multiple linear regression of the log-transformed provided poisson regression with robust enor virianion. 2- Multiple linear regression of the log-transformed provided poisson regression with robust enor virianion. 2- Multiple linear regression of the log-transformed provided poisson regression with robust enor virianion. 2- Multiple linear regression of the log-transformed provided poisson regression with robust enor virianion. 2- Multiple linear regression of the log-transformed provided poisson regression with robust enor virianion. 2- Multiple linear regression of the log-transformed provided provided provided provided prov	, , , , , , , , , , , , , , , , , , , ,			
Locations: 10.5 communities (Chicago, Illinois Charles) 48 g Groups: 46-88 yr Study Design: Cross-sectional Proxyth County, North Carolina Charles and S. Paul, Minnesota) part of MESA (Multi-ethnic Study of Althereocterosis) 1. Morthern Manhattan and the Bronx, New York Althereocterosis) 1. Morthern Manhattan and the Bronx, New York Althereocterosis 1. Morthern Manhattan and the Bronx, New York Althereocterosis 1. Morthern Manhattan and the Bronx, New York Althereocterosis 1. Morthern Manhattan and the Bronx, New York Althereocterosis 1. Morthern Manhattan and the Bronx, New York Althereocterosis 1. Morthern Manhattan and the Bronx, New York Althereocterosis 1. Morthern Manhattan and the Bronx, New York Althereocterosis 1. Morthern Manhattan and the Bronx, New York Althereocterosis 1. Morthern Manhattan and the Bronx, New York Althereocterosis 1. Morthern Manhattan and the Bronx, New York Althereocterosis 1. Morthern Manhattan and the Bronx, New York Althereocterosis 1. Morthern Manhattan and the Bronx, New York Althernocterosis 1. Morthern Manhattan and the Bronx, New York Althernocterosis 1. Morthern Manhattan and the Bronx, New York Althernocterosis 1. Morthern Manhattan and the Bronx, New York Althernocterosis 1. Morthern Manhattan and the Bronx, New York Althernocterosis 1. Morthern Manhattan and the Bronx, New York Althernocterosis 1. Morthern Manhattan and the Bronx, New York Althernocterosis 1. Morthern Manhattan and the Bronx, New York Althernocterosis 1. Morthern Manhattan and the Bronx, New York Althernocterosis 1. Morthern Manhattan and the Bronx, New York Althernocterosis 1. Morthern Manhattan Althernocterosis 1. Morthern Manhattan Althernocterosis 1. Morthern Manhattan Althernocterosis 1. Morthernocterosis 1.		(quantitative measure of interest was		Results for fully adjusted models under
Study Design: Cross-sectional Forsyth Country, North Carolina No. 1, 147 participants (sensitivity analysis amorg 1269 participants) and manual nome, blood lipid concentrations, and income, reacelethnicity, and members with a sensitivity analysis used modified Poisson regression with robust error variance. Abstractic Analyses: 2-part modelling apart of MESA (Multi-ethnic Study of Altheroscierosis) Nodelect relative risk of having any AAC using a log link and a Gaussian rorr windle Sensitivity analysis used modified Poisson regression with trobust error variance. Abstractic Analyses: 2-part modelling apart of MESA (Multi-ethnic Study of Altheroscierosis) Nodelect relative risk of having any AAC using a log link and a Gaussian rorr windle Sensitivity analysis used modified Poisson regression with trobust error variance. Sensitivity analysis used modified Poisson regression with robust error variance. Poisson regression with robust error varia	outcome assessed in 2002	,	Mean (SD): 15.8 (3.6) μg/m ³	employment status, and roadway
Forsyth County, North Carolina Los Angeles, California Northern Manhathan and the Bronx, Now York and St. Paul, Minnesota) A Closing a log link and a Gaussian part of MESA (Multi-ethnic Study of Atheroscierosis) Sensitivity analysis used modified Poisson regression with robust error variance 2 Multiple linear regression of the log- transformed Act Agaistism cost 2 Sensitivity analysis used modified Poisson regression with robust error variance 2 Multiple linear regression of the log- transformed Act Agaistism cost 2 Sensitivity analysis used modified Poisson regression of the log- transformed Act Agaistism cost 2 Sensitivity analysis used modified Poisson regression with robust error variance 2 Multiple linear regression of the log- transformed Act Agaistism cost 2 Sensitivity analysis used modified Poisson regression of the log- transformed Act Agaistism cost 2 Sensitivity analysis model all participants by adding 1 prior to log- transformed between the processor of the log- transformed between the log-		• , ,	Percentiles: NR	· ·
Los Angeles, California Northern Manhattan and the Bronx, New York and St. Paul, Minnesota) part of MESA (Multi-ethnic Study of Atherosolerosis) Sensitivity analysis used modified Poisson regression with robust error variance 2) Multiple inser regression of the log- transforming Covariates: Age, gender, race/ethnicity, BMI, smoking status, pack-yr of smoking, diabetes, education, annual income, blood apind concentration, blood pressure, and medications Assessed impact of gender, age, diabetes, obesity, use of lipid-lowering medications, education, income, race/ethnicity, and players Sasson: NA Dose-response Investigated? NR Statistical Package: SAS v9.1			Range (Min, Max): 10.6-24.7 μg/m ³	(95% CI)
Northern Manhattan and the Broxx, New York and St. Paul, Minnesota) part of MESA (Multi-ethnic Study of Atherosdeross) And Guide dealther risk of having any AAC using a log link and a Gaussian error model Poisson regression with foutuse error variance 2) Multiple linear regression of the log-transformed AAC Agatison score (among those with AAC-ob) Sensitivity analysis modeled all participants of serious error was and medications. Sensitivity analysis modeled all participants of serious error was and medications. Covariates: Age, gender, racelethnicity, BMI, smoking, diabeties, education, annual income, blood pid concentration, blood pressure, and medications. Assessed impact of gender, age, diabetes, obesity, use of lipid-lowering medications, education, income, racelethnicity, and employment status on heterogenety of effects (or in sensitivity analyses). Sasson: NA Dose-response investigated? NR Statistical Package: SAS v9.1 Spending deproduct (10, 18, 23), 20, 20, 21, 45, 71, 15, 28, 29), 21, 22, 29, 21 address & 40 temployed: 1, 16, 10, 10, 12, 22, 29, 29, 31 address & near major road. 28, 640, 50, 99, 20, 21, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 20, 71, 45, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71				1.04 (0.89, 1.22)
and St. Paul, Minnesola) part of MESA (Multi-ethnic Study of Atheroscierosis) And Cusing a log link and a Gaussian error model And Cusing a log link and a Gaussian error model Sensitivity analysis used modified Poisson regression with robust error variance 2) Multiple linear regression of the log-transformed AAC Agatiston score (among those with AAC-o) Sensitivity analysis modeled all participants by adding 1 prior to log-transforming. Covariates: Age, gender, racelethnicity, BMI, smoking status, pack-yr of smoking, diabetes, education, annual income, blood picto-constration; and employed on pressure, and medications. Assessed impact of gender, age, diabetes, obesity, use of lipid-lowering medications, education, income, racelethnicity, and employment status on heterogeneity of effects (or in sensitivity, and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogeneity of effects (or in sensitivity) and employment status on heterogene			"general/background:) and 2) at least	≥ 10yrs at address & <10km from monitor: 1.08 (0.98, 1.18)
part of MESA (Multi-ethnic Study of Atheroscierosis) Sensitivity analysis used modified poisson regression with robust error variance 2) Multiple linear regression of the log-transformed AAC Agalston score (among those with AAC-90) Sensitivity analysis modeled all participants by adding 1 prior to log-transforming Covariates: Age, gender, race/ethnicity, BMI, smoking status, pack-yr of subject of the participants by adding 1 prior to log-transforming Covariates: Age, gender, race/ethnicity, BMI, smoking status, pack-yr of subject of the participants by adding 1 prior to log-transforming Covariates: Age, gender, race/ethnicity, BMI, smoking status, pack-yr of subject of the participants by adding 1 prior to log-transformed packed to the participants of the participants and the packed to the packed	and St. Paul. Minnesota)			
Sensitivity analysis used modified poisson regression with robust error variance 2) Multiple linear regression of the log-transformed AAC Agastson score (among those with AAC>0) Sensitivity analysis modeled all participants by adding 1 prior to log-transforming Covariates: Age, gender, race/ethnicity, BMI, smoking status, pack-yr of smoking, diabetes, education, annual income, blood lipid concentration, blood pressure, and medications Assessed impact of gender, age, diabetes, ducation, annual income, blood pressure, and medications on heterogenicity of effects (or in sensitivity analyses) Season: AA Dose-response investigated? NR Statistical Package: SAS v9.1 Lug (10.37, 12.07) Copollutant (correlation): Assessed traffic by roadway proximity continues and traffic by readway proximity continues and traffic by roadway proximity continues and traffic by roadway proximity continues and traffic by readway prox	part of MESA (Multi-ethnic Study of			<10yrs at address & employed:
Assessed traffic by roadway proximity 2) Multiple linear regression of the log-transformed AAC Agatston score (among those with AAC-0) Sensitivity analysis modeled all participants by adding 1 prior to log-transforming Covariates: Age, gender, race/ethnicity, BMI, smoking status, pack-yr of smoking, diabetes, education, annual income, blood lipid concentration, blood pressure, and medications Assessed impact of gender, age, diabetes, couclain, core, race/ethnicity, and employment status on heterogeneity of effects (or in sensitivity) analyses) Season: NA Dose-response Investigated? NR Statistical Package: SAS v9.1 Assessed impact of genders age, statistical Package: SAS v9.1 Statistical Package: SAS v9.1 Assessed impact of gender, age, diabetes, colorable, and additional properties of the colorable status on heterogeneity of effects (or in sensitivity) analyses) Season: NA Dose-response Investigated? NR Statistical Package: SAS v9.1 Statistical Package: SAS v9.1 Statistical Package: SAS v9.1 Assessed traffic by roadway proximity (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10, 1.22) (1.10 (1.10 (1.10, 1.22) (1.10 (1.1	Atherosclerosis)			
2) Multiple linear regression of the log-transformed AAC Agatson score (among those with AAC>0) Sensitivity analysis modeled all participants by adding 1 prior to log-transforming Covariates: Age, gender, race/ethnicity, BMI, smoking status, pack-yr of smoking, diabetes, education, annual income, biodol lipid concentration, blood pressure, and medications Assessed impact of gender, age, diabetes, obesity, use of lipid-lowering medications, education, income, race/ethnicity, and employment status on heterogeneity of effects (or in sensitivity analyses) Season: NA Statistical Package: SAS v9.1 Statistical Package: SAS v9.1 1.10 (1.00, 1.22) 22 (29rs at address & not employed: 1.16 (1.02, 1.31) 1.10 (1.00, 1.22) 22 (29rs at address & soft near major road: 1.10 (0.99, 1.23) 1.10 (0.99, 1.23				
(among those with ÄAC>0) Sensitivity analysis modeled all participants by adding 1 prior to log-transforming Covariates: Age, gender, race/ethnicity, BMI, smoking status, pack-yr of smoking, diabetes, education, annual income, blood lipid concentration, blood pressure, and medications of gender, age, diabetes, obesity, use of lipid-lowering medications, education, income, race/ethnicity, and employment status on helerogeneity of effects (or in sensitivity analyses) Season: NA Dose-response Investigated? NR Statistical Package: SAS v9.1 1.16 (102, 1.31) -10ys at address & address & 10, (9.91, 16.5) -10ys at address & (1.99, 16.7) -10ys at address & (1.99, 16.7) -10ys at address & (1.99, 16.7) -10ys at address & (1.90, 17.1) -10ys at address & (1.90, 1				1.10 (1.00, 1.22)
Sensitivity analysis modeled all participants by address & not near major transforming Covariates: Age, gender, race/ethnicity, BMI, smoking status, pack-yr of smoking, diabetes, education, annual income, blood lipid concentration, blood pressure, and medications Assessed impact of gender, age, diabetes, obesity, use of lipid-lowering medications, education, income, race/ethnicity, and employment status on heterogeneity of effects (or in sensitivity analyses) Season: NA Season: NA Statistical Package: SAS v9.1 Statistical Package: SAS v9.1 Statistical Package: SAS v9.1 Statistical Package: SAS v9.1 Ose response Investigated? NR Statistical Package: SAS v9.1 Stati				1.16 (1.02, 1.31)
participants by adding 1 prior to log-transforming Covariates: Age, gender, race/ethnicity, BMI, smoking status, pack-yr of smoking, diabetes, education, annual income, blood lipid concentration, blood pressure, and medications Assessed impact of gender, age, diabetes, obesity, use of lipid-lovering medications, education, income, race/ethnicity, and employment status on heterogeneity of effects (or in sensitivity analyses) Season: NA Dose-response investigated? NR Statistical Package: SAS v9.1 Statistical Package:		Sensitivity analysis modeled all		
Covariates: Age, gender, race/ethnicity, BMI, smoking status, pack-yr of smoking, diabetes, education, annual income, blood lipid concentration, blood pressure, and medications and diabetes, obesity, use of lipid-lowering medications, education, income, and employment status on heterogeneity of effects (or in sensitivity analyses) Season: NA Dose-response investigated? NR Statistical Package: SAS v9.1 Statistical Package: SAS v9.1 Log-transformed Agistson Score (Apage, Chapter, 26, 06, 06, 40, 50, 9), 210yrs at address 8 and comployed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (66, 33, 81), 220yrs at address 8 and employed: -15, 11, (68, 33, 11, 11, 11, 11, 11, 11, 11, 11, 11				≥ 20yrs at address & not near major
BMI, smoking status, pack-yr of smoking, diabetes, education, annual income, blood lipid concentration, blood pressure, and medications and medications and medications and income, blood lipid concentration, blood pressure, and medications and medications and income, advantage and income, advantage and income, aracelerinicity, and employment status on heterogeneity of effects (or in sensitivity analyses) Season: NA Dose-response Investigated? NR Statistical Package: SAS v9.1 Statistical P		y		Log-transformed Agatston Score
Inclusion criteria: https://doi.org/10.108/ Inclusion criteria: https://doi.org/10.108/">https://doi.org/10.108/">https://doi.org/10.108/">https://doi.org/10.108/">https:		BMI, smoking status, pack-yr of		(Agatston >0) % Change (95% CI)
Assessed impact of gender, age, diabetes, obesity, use of lipid-lowering medications, education, income, race/ethnicity, and employment status on heterogeneity of effects (or in sensitivity analyses) Season: NA				Inclusion criteria: <10yrs at address:
diabetes, obesity, use of lipid-lowering medications, education, income, race/ethnicity, and employment status on heterogeneity of effects (or in sensitivity analyses) Season: NA Dose-response Investigated? NR Statistical Package: SAS v9.1 Stat		pressure, and medications		≥ 10yrs at address: 8.0 (-29.7, 45.7)
medications, education, income, race/ethnicity, and employment status on heterogeneity of effects (or in sensitivity analyses) Season: NA Dose-response Investigated? NR Statistical Package: SAS v9.1 Statistical Pa				
on heterogeneity of effects (or in sensitivity analyses) Season: NA Season: NA Dose-response Investigated? NR Statistical Package: SAS v9.1 Statistic		medications, education, income,		
Season: NA Season: NA Dose-response Investigated? NR Statistical Package: SAS v9.1 Statis				monitor: 24.6 (-24.6, 73.8)
A3.8 (32.4, 119.9)		, , ,		29.1 (-25.7, 83.8)
Statistical Package: SAS v9.1		Season: NA		
Statistical Package: SAS v9.1 ≥ 20yrs at address & not employed: -14.1 (-72, 6, 44.4) 410yrs at address & near major road: 34.0 (-44.2, 112.1) ≥ 20yrs at address & not near major road: 3.9 (-39.9, 47.8) Log-transformed Agastson Score (all) % Change (95% CI) Inclusion criteria: <10yrs at address: - 8.5 (-81.3, 64.2) ≥ 10yrs at address: 40.7 (-11.5, 92.8) ≥ 10yrs at address & <10km from monitor: 60.7 (5.9, 115.4) ≥ 20yrs at address & <10km from monitor: 79.2 (10.1, 148.3) <10yrs at address & <10km from monitor: 79.2 (10.1, 148.3) <10yrs at address & employed: 33.5 (-35.9, 102.9) ≥ 20yrs at address & employed: 55.8 (-37.2, 148.7) <10yrs at address & not employed: 54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)		Dose-response Investigated? NR		
<10yrs at address & near major road: 34.0 (-44.2, 112.1) ≥ 20yrs at address & not near major road: 3.9 (-39.9, 47.8) Log-transformed Agatston Score (all) % Change (95% CI) Inclusion criteria: <10yrs at address: - 8.5 (-81.3, 64.2) ≥ 10yrs at address: 40.7 (-11.5, 92.8) ≥ 10yrs at address & <10km from monitor: 60.7 (5.9, 115.4) ≥ 20yrs at address: 64.1 (-1.73, 129.9) ≥ 20yrs at address: 64.1 (-1.73, 129.9) ≥ 20yrs at address & employed: 33.5 (-35.9, 102.9) ≥ 20yrs at address & employed: 55.8 (-37.2, 148.7) <10yrs at address & not employed: 54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)		Statistical Package: SAS v9.1		≥ 20yrs at address & not employed:
≥ 20yrs at address & not near major road: 3.9 (-39.9, 47.8) Log-transformed Agatston Score (all) % Change (95% CI) Inclusion criteria: <10yrs at address: - 8.5 (-81.3, 64.2) ≥ 10yrs at address: 40.7 (-11.5, 92.8) ≥ 10yrs at address & <10km from monitor: 60.7 (5.9, 115.4) ≥ 20yrs at address: 64.1 (-1.73, 129.9) ≥ 20yrs at address & <10km from monitor: 79.2 (10.1, 148.3) <10yrs at address & employed: 33.5 (-35.9, 102.9) ≥ 20yrs at address & employed: 55.8 (-37.2, 148.7) <10yrs at address & not employed: 54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)				
road. 3.9 (-39.9, 47.8) Log-transformed Agatston Score (all) % Change (95% CI) Inclusion criteria: <10yrs at address: - 8.5 (-81.3, 64.2) ≥ 10yrs at address: 40.7 (-11.5, 92.8) ≥ 10yrs at address & <10km from monitor: 60.7 (5.9, 115.4) ≥ 20yrs at address: 64.1 (-1.73, 129.9) ≥ 20yrs at address: 64.1 (-1.73, 129.9) ≥ 20yrs at address & <10km from monitor: 79.2 (10.1, 148.3) <10yrs at address & employed: 33.5 (-35.9, 102.9) ≥ 20yrs at address & employed: 55.8 (-37.2, 148.7) <10yrs at address & not employed: 54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)				
% Change (95% CI) Inclusion criteria: <10yrs at address: - 8.5 (-81.3, 64.2) ≥ 10yrs at address: 40.7 (-11.5, 92.8) ≥ 10yrs at address: 40.7 (-11.5, 92.8) ≥ 10yrs at address & <10km from monitor: 60.7 (5.9, 115.4) ≥ 20yrs at address & <61.1 (-1.73, 129.9) ≥ 20yrs at address & <10km from monitor: 79.2 (10.1, 148.3) <10yrs at address & employed: 33.5 (-35.9, 102.9) ≥ 20yrs at address & employed: 55.8 (-37.2, 148.7) <10yrs at address & not employed: 54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)				road: 3.9 (-39.9, 47.8)
8.5 (-81.3, 64.2) ≥ 10yrs at address: 40.7 (-11.5, 92.8) ≥ 10yrs at address & <10km from monitor: 60.7 (5.9, 115.4) ≥ 20yrs at address: 64.1 (-1.73, 129.9) ≥ 20yrs at address & <10km from monitor: 79.2 (10.1, 148.3) <10yrs at address & employed: 33.5 (-35.9, 102.9) ≥ 20yrs at address & employed: 55.8 (-37.2, 148.7) <10yrs at address & not employed: 54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)				% Change (95% CI)
≥ 10yrs at address & <10km from monitor: 60.7 (5.9, 115.4) ≥ 20yrs at address: 64.1 (-1.73, 129.9) ≥ 20yrs at address & <10km from monitor: 79.2 (10.1, 148.3) <10yrs at address & employed: 33.5 (-35.9, 102.9) ≥ 20yrs at address & employed: 55.8 (-37.2, 148.7) <10yrs at address & not employed: 54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)				
monitor: 60.7 (5.9, 115.4) ≥ 20yrs at address: 64.1 (-1.73, 129.9) ≥ 20yrs at address & <10km from monitor: 79.2 (10.1, 148.3) <10yrs at address & employed: 33.5 (-35.9, 102.9) ≥ 20yrs at address & employed: 55.8 (-37.2, 148.7) <10yrs at address & not employed: 54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)				
≥ 20yrs at address & <10km from monitor: 79.2 (10.1, 148.3) <10yrs at address & employed: 33.5 (-35.9, 102.9) ≥ 20yrs at address & employed: 55.8 (-37.2, 148.7) <10yrs at address & not employed: 54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)				monitor: 60.7 (5.9, 115.4)
<10yrs at address & employed: 33.5 (-35.9, 102.9) ≥ 20yrs at address & employed: 55.8 (-37.2, 148.7) <10yrs at address & not employed: 54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)				≥ 20yrs at address: 64.1 (-1.73, 129.9) ≥ 20yrs at address & <10km from
33.5 (-35.9, 102.9) ≥ 20yrs at address & employed: 55.8 (-37.2, 148.7) <10yrs at address & not employed: 54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)				
55.8 (-37.2, 148.7) <10yrs at address & not employed: 54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)				33.5 (-35.9. 102.9)
54.8 (-23.8, 133.4) ≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)				55.8 (-37.2, 148.7)
≥ 20yrs at address & not employed: 89.3 (-3.7, 182.3)				
os.s (-s.r, 102.s) <10yrs at address & near major road:				≥ 20yrs at address & not employed:
				<10yrs at address & near major road:
-30.6 (-141.3, 80.1) ≥ 20yrs at address & not near major				-30.6 (-141.3, 80.1) ≥ 20yrs at address & not near major

	Effect Estimates (95% CI)
	road: 51.3 (-8.3, 110.8)
	Exploratory/sensitivity analyses (also presented in figures): Detectable AAC RR (95%CI): Among women: 1.14 (1.00, 1.30) Among persons >65yrs: 1.10 (1.01, 1.19) Among users of lipid-lowering medications: 1.14 (1.00, 1.30) Among Hispanics: 1.22 (1.03, 1.45) Imputing missing covariates among residentially stable participants: 1.08 (0.98, 1.19) Agatston score % change (95%CI): Among Hispanics: 64 (-4, 133) Among persons earning >\$50,000: 72 (5, 139) Agatston score including those with Agatston = 0 % change (95%CI): Fully adjusted model: 41 (-12, 93) Among persons >65yrs: 75 (8, 143) Among diabetics: 149 (29, 270) Among users of lipid-lowering medications: 121 (25, 217) Among bispanics: 141 (45, 236) Imputing missing Covariates: 49 (1.3, 100.1)

Design & Methods Concentrations Effect Estimates (95% CI) Study Reference: Auchincloss et al. (2008, Outcome (ICD9 and ICD10): Blood Pollutant: PM_{2.5} PM Increment: 10 µg/m3 (approx. pressure: systolic (SBP), diastolic equivalent to difference between 90th Averaging Time: 5 exposure metrics (DBP), mean arterial (MAP), pulse and 10th percentile for prior 30 day Period of Study: Jul 2000-Aug 2002 constructed: prior day, avg of prior 2 days, prior 7 days, prior 30 days, and pressure (PP) mean) Location: 6 U.S. communities Avg of 2nd and 3rd BP measurement prior 60 days Effect Estimate [Lower CI, Upper CI]: (Baltimore City and Baltimore County, Adjusted mean difference (95% CI) in PP and SBP (mmHg) per 10 μg/m³ used for analyses Mean (SD): Prior day: 17.0 (10.5) Maryland Age Groups: 45-84 yr increase in PM_{2.5} (avg for the prior 30 Chicago, Illinois Prior 2 days: 16.8 (9.3) **Study Design:** Cross-sectional (Multi-Ethnic Study of Atherosclerosis baseline Forsyth County, North Carolina Prior 7 days: 17.0 (6.9) **Pulse Pressure** Adjustment variables: Person-level examination) Los Angeles, California Prior 30 days: 16.8 (5.0) Covariates: 1.04 (0.25, 1.84) N: 5,112 persons (free of clinically Person-level cov., weather: Northern Manhattan and the Bronx, Prior 60 days: 16.7 (4.4) apparent cardiovascular disease) 1.12 (0.28, 1.97) New York Percentiles: NR Person-level cov., weather, gaseous Statistical Analyses: Linear regression copollutants: 2.66 (1.61, 3.71) and St. Paul, Minnesota) Range (Min, Max): NR Person-level cov., study site: Secondary analyses used log binomial part of MESA (Multi-ethnic Study of 0.93 (-0.04, 1.90) models to fit a binary hypertension Monitoring Stations: Used monitor Atherosclerosis) Person-level cov., study site, weather: outcome nearest the participant's residence to 1.11 (0.01, 2.22) calculate exposure metrics Person-level cov., study site, weather, gaseous copollutants: 1.34 (0.10, 2.59)
Systolic Blood Pressure Covariates: Age, sex, race/ethnicity, per capita family income, education, BMI, diabetes status, cigarette smoking Copollutant (correlation): Adjustment variables: Person-level status, exposure to ETS, high alcohol SO₂ Covariates: 0.66 (-0.41, 1.74) use, physical activity, BP medication NO_2 Person-level cov. weather: use, meteorology variables, and 0.99 (-0.15, 2.13) copollutants CO Person-level cov., weather, gaseous copollutants: 2.8 (1.38, 4.22) Examined site as a potential Traffic-related exposures (straight-line confounder and effect modifier Person-level cov., study site: distance to a highway; total road length 0.86 (-0.45, 2.17) Heterogeneity of effects also examined around a residence) Person-level cov., study site, weather: by traffic-related exposures, age, sex, 1.32 (-0.18, 2.82) type 2 diabetes, hypertensive status, Person-level cov., study site, weather, gaseous copollutants: 1.52 (-0.16, 3.21)

Additional results: Associations cigarette use Season: Adjusted for temperature and became stronger with longer averaging periods up to 30 days. For example: barometric pressure to adjust for seasonality (because seasons vary by Adjusted (personal covariates and the study sites) weather) mean differences in PP: Prior day: -0.38 (-0.76, 0.00) Also performed sensitivity analyses Prior 2 days: -0.22 (-0.65, 0.21) Prior 7 days: 0.52 (-0.08, 1.11) adjusting for season to examine the potential for residual confounding not accounted for by weather variables Prior 30 days: 1.12 (0.28, 1.97) Prior 60 days: 1.08 (0.11, 2.05) Dose-response Investigated? (Pattern held for additional adjustments Assessed nonlinear relationships-no and for SBP results. Therefore, only evidence of strong threshold/nonlinear results for 30-day mean differences effects for PM2.5 were presented) Additional results (not presented): Statistical Package: NR None of DBP results were statistically significant. Rresults for MAP were similar to SBP, though weaker and generally not significant Effect modification: associations between PM_{2.5} and BP were stronger for persons taking medications, with hypertension, during warmer weather, in the presence of high NO₂, residing ≤ 300m from a highway, and surrounded by a high density of roads (Fig 1) Associations were not modified for age, sex, diabetes, cigarette smoking, study site, high levels of CO or SO₂, season, nor residence ≤ 400m fro a highway

Note: supplementary material available

on-line

	Concentrations ¹	Effect Estimates (95% CI)
Outcome: Flow cytometry	Pollutant: PM _{2.5}	Increment: NR
Study Design: Panel	Averaging Time: 1-, 2- and 7-day avg	Flow cytometry results and their
Covariates: NR Mean (SD	Mean (SD) Unit: $35.89 \pm 0.93 \mu g/m^3$	statistical significance in control vs. exposed children
Statistical Analysis: Pearson's	Range (Min, Max): NR	CD3 Exposed: 62.9±1.8
Correlation	Copollutant: PM ₁₀ , O ₃	Control: 67.1±1.7
<u>•</u>		P = 0.1 CD4
Age Groups: 9.7 ± 1.2 yr		Exposed: 39.3±1.3 Control: 38.2±1.4 P = 0.57 CD8 Exposed: 24.0±0.95 Control: 27.3±1.0 P = 0.02 CD4/CD8 Exposed: 1.7±0.14 Control: 1.4±0.07 P = 0.09 CD3-/CD19+ Exposed: 11.8±1.0 Control: 14.8±1.0 P = 0.04 CD56+ Exposed: 11.5±1.2 Control: 12.4±1.5 P = 0.63 CD56+/CD3-NK Exposed: 14.0±9.5 Control: 70.9±2.7 P = 0.003 HLA-DR+ Exposed: 27.5±4.2 Control: 17.0±2.4 P = 0.04 mCD14+ Exposed: 66.5±2.3 Control: 80.6±1.8 P = <0.001 CD14/CD69 Exposed: 0.20±0.07 Control: 1.0±0.26 P = <0.001 CD4/CD69 Exposed: 0.08±0.03
3	tudy Design: Panel ovariates: NR tatistical Analysis: Pearson's orrelation tatistical Package: Stata	tudy Design: Panel ovariates: NR Mean (SD) Unit: 35.89 ± 0.93 μg/m³ tatistical Analysis: Pearson's orrelation tatistical Package: Stata Averaging Time: 1-, 2- and 7-day avg Mean (SD) Unit: 35.89 ± 0.93 μg/m³ Range (Min, Max): NR Copollutant: PM ₁₀ , O ₃

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Diez Roux et al. (2008,	Outcome (ICD9 and ICD10): Three	Pollutant: PM _{2.5}	PM Increment: 12.5 μg/m³ (approx.
<u>156401</u>)	measures of subclinical atherosclerosis (common carotid intimal-medial	Averaging Time: 20-yr imputed mean	10th-90th percentile)
Period of Study: Baseline data collected Jun 2000-Aug 2002	thickness (CIMT), coronary artery calcification, and ankle-brachial index	Mean (SD): 21.7 (5.0)	Effect Estimate [Lower CI, Upper CI]: CIMT:
Exposure assessed retrospectively	(ABI))	Percentiles: NR	Relative difference (95% CI): 1.01 (1.00, 1.01)
between Aug 1982 and baseline date	Age Groups: 44-84 yr	Range (Min, Max): NR	Adj. for additional CVD RFs:
Location: USA (6 field centers: Baltimore, MD	Study Design: Cross-sectional	Monitoring Stations: NR	1.01 (1.00, 1.02) 1.02
Chicago, IL	N: 5172 for coronary calcium analysis	Long-term exposure to PM estimated	ABI: Mean difference (95% CI):
Forsyth Co. NC	5037 for CIMT analysis	based on residential history reported retrospectively	0.000 (-0.006, 0.006)
Los Angeles, CA	5110 for ABI analysis	all addresses geocoded	Adj. for additional CVD RFs: -0.001 (-0.006, 0.006)
New York, NY	Statistical Analyses: Generalized Additive Models (Binomial regression:	ambient AP obtained from U.S. EPA	Coronary calcium:
St. Paul, MN	presence of calcification	copollutant (correlation): PM_{10} 20-yr observed mean $r=0.64$ PM_{10} 20-yr imputed mean $r=0.73$ PM_{10} 20-yr imputed mean $r=0.73$ PM_{10} 2001 mean $r=0.43$ PM_{25} 2001 mean $r=0.64$ PM_{25} 2001 mean $r=0.64$	Relative prevalence (95% CI): 1.01 (0.96, 1.05) Adj. for additional CVD RFs: 1.01 (0.96, 1.06) 1.02 Coronary calcium (in those with calcium): Relative difference (95% CI): 0.99 (0.88, 1.12) Adj. for additional CVD RFs: 1.01 (0.89, 1.14)
	Linear regression: CIMT, ABI, amount of calcium)		
	Covariates: Age, sex, race/ethnicity, socioeconomic factors, cardiovascular risk factors (BMI, hypertension, high density lipoprotein and low density lipoprotein cholesterol, smoking, diabetes, diet, physical activity		
	Models presented with and without adjustment for cardiovascular RFs) exposures are reported.		
	Season: NA		
	Dose-response Investigated? No		
	Statistical Package: NR		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Hoffman et al. (2007, 091163)	Outcome (ICD9 and ICD10): Coronary artery calcification (CAC)	Pollutant: PM _{2.5}	PM Increment: 3.91 μg/m³ (10th-90th percentile)
Period of Study: 2000-2003	Age Groups: 45-74 yr	Averaging Time: 1 yr (2002, midpoint of the study)	Effect Estimate [Lower CI, Upper CI]:
Location: Ruhr area of Germany (3	Study Design: Cross-sectional	Mean (SD): Total: 22.8 (1.5)	Percent change (95%CI) in CAC
large cities: Essen, Mulheim, and Bochum)	N: 4494 participants	High traffic exposure (≤ 100m): 22.9 (1.4)	associated with an increase in PM _{2.5} Unadjusted: 12.7 (-7.0, 36.4)
	Statistical Analyses: Linear regression (outcome = natural logarithm of CAC score + 1) Logistic regression (outcome = CAC score above/below the age- and	22.8 (1.5) Percentiles: Q1: 21.54 Q2: 22.59 Q3: 23.75	Model 1 (adjusted for distance to major road): 12.3 (-7.3, 35.9) Model 2 (model 1 + city and area of residence): 29.7 (0, 68.3) Model 3 (model 2 + age, sex, education): 24.2 (0, 55.1)
	gender-specific 75th percentile)	10th-90th percentile: 3.91	Model 4 (model 3 + smoking, ETS, physical inactivity, waist-to-hip ratio):
	Covariates: City and area of residence, age, sex, education, smoking, ETS,	Range (Min, Max): NR	17.9 (-5.3, 46.7) Model 5 (model 4 + diabetes, blood
	physical inactivity, waist-to-hip ratio, diabetes, blood pressure, and lipids (and household income in a subset)	Monitoring Stations: Daily mean PM _{2.5} values for 2002 were estimated with the EURAD model using data from official emission inventories, meteorological	pressure, LDL, HDL, triglycerides): 17.2 (-5.6, 45.5) Adjusted ORs (95%CI) for the
	Season: NA	information, and regional topographical	association between the top quarter
	Dose-response Investigated? Yes, PM was also categorized into quartiles	data. Copollutant (correlation): None	of PM exposure vs. the low quarter of PM exposure and a CAC score above the age- and sex-specific 75th
	for analyses Statistical Package: NR	(Traffic was assessed using distance to roadways)	percentiles All: 1.22 (0.96, 1.54)
		Correlation between modeled daily avg of PM_{25} and measured PM_{25} : 0.86-0.88, depending on season.	No CHD: 1.22 (0.95, 1.57) Men: 1.09 (0.78, 1.53) Women: 1.34 (0.97, 1.87) Age <60 yr: 1.18 (0.83, 1.68) Age >60 yr: 1.27 (0.93, 1.75) Nonsmokers: 1.17 (0.89, 1.53) Current smokers: 1.30 (0.83, 2.05) Educational level Low: 1.16 (0.86, 1.57) Medium: 1.30 (0.83, 2.05) High: 1.62 (0.81, 3.25) Additional notes:
			No clear dose-response relationship demonstrated when exposure assessed in quartiles (Fig 2)
			Participants who had not been working full-time during the last 5 yr showed stronger effects, with possible doseresponse between $PM_{2.5}$ and CAC (results presented in Fig 3)
Reference: Hoffman et al. (2006,	Outcome (ICD9 and ICD10): Clinically	Pollutant: PM _{2.5} (μg/m ³)	Effect Estimate [Lower CI, Upper CI]:
091162)	manifest CHD (defined as self-reported history of a 'hard' coronary event, i.e.	Averaging Time: Yearly mean estimated with model for yr 2002 (on a spatial scale of 5 km)	Model 1: PM _{2.5} + high traffic exposure
Period of Study: Dec 2000-Jul 2003	myocardial infarction or application of a coronary stent or angioplasty or bypass		0.92 (0.36, 2.39)
Location: Ruhr area of Germany (2 large cities: Essen, Mulheim)	surgery)	Mean (SD):	Model 2: model 1 + age, sex
	Age Groups: 45-75 yr	Total: 23.3 (1.4) High traffic: 23.4 (1.4)	0.83 (0.31, 2.27)
	Study Design: Cross-sectional (German Heinz Nixdorf RBCALL study)	Low traffic: 23.3 (1.4)	Model 3: model 2 + education, diabetes,
	N: 3399 participants	Percentiles: NR	HbAlc, BMI, WHR, smoking status, ETS, physical activity, city, area of
	Statistical Analyses: Multivariable	Range (Min, Max): NR	residence
	logistic regression	Monitoring Stations: NR	0.56 (0.16, 2.01)
	Covariates: Sex, diabetes, hypertension, smoking status, ETS,	Copollutant (correlation): None (Traffic was assessed using distance to	Model 4: model 3 + hypertension, lipids
	nypertension; smoking status, ETS, educational level, physical activity, BMI, triglycerides, age, cigarettes smoked per day, WHR, LDL, HDL, HbAlc, indicator variable for cities, indicator variable for living in northern part of cities.	roadways)	0.55 (0.14, 2.11)
			Modeled vs. Measured: r = 0.86-0.88, depending on season
	Statistical Package: SAS v8.2		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Hoffmann et al, (2009,	Outcome: Peripheral Arterial Disease	Pollutant: PM _{2.5}	Increment: 3.91 µg/m³
<u>190376</u>)	Study Design:	Averaging Time: Daily	Odds Ratio (95%CI) for prevalence o
Period of Study: 2000-2003	Covariates: Height, weight, medication	Mean (SD) Unit: 22.96 (0.85)	peripheral arterial disease
Location: Ruhr area, Germany	use, diabetes, physical activity level, smoking, socioeconomic status,	Range (Min, Max): NR	0.87 (0.57-1.34)
	education, population density	Copollutant (correlation): NR	
	Statistical Analysis: NR		
	Statistical Package: NR		
	Age Groups: 45-75 yr		
Reference: Kunzli et al. (2005, <u>087387</u>) Period of Study: 1998-2003	Outcome (ICD9 and ICD10): Carotid intima-media thickness (CIMT)	Pollutant: PM _{2.5} (μg/m³) Averaging Time: GIS/geostatics model	PM Increment: 10 μg/m ³ Effect Estimate [Lower CI, Upper CI]
Location: Los Angeles Basin	Age Groups: Less than 40 yr excluded	to estimate 'long-term mean ambient	Percent change (95%CI) in CIMT
Location. Los Angeles Dasin	Mean age = 59.2 ± 9.8	concentrations of PM _{2.5} ' derived from data collected in 2000, including data	associated with an increase in PM _{2.5}
	Study Design: Cross-sectional	from 23 state and local monitoring stations.	concentration
	N: 798 participants	Mean (SD): 20.3 ± 2.6	Based on a linear model with log intimated media thickness as dependent variable
	Statistical Analyses: Linear regression	Percentiles: NR	Total population:
	Covariates: Age, sex, education,	Range (Min, Max): 5.2, 26.9	Unadjusted: 5.9 (1.0, 10.9), p = 0.018 Adjusted for age, sex, education,
	income, smoking, ETS, blood pressure, LDL cholesterol, treatment with	Monitoring Stations: 23 monitors	income: 4.4 (0.0, 9.0), p = 0.056
	antihypertensives or lipid-lowering medications	Copollutant (correlation): None	Adjusted for above + smoking, ETS,
		Copolitiani (correlation). None	multivitamins, alcohol: 4.2 (-0.2, 8.9), p = 0.064
	Season: NA		Among Females ≥ 60 yr: Unadjusted: 19.2 (8.8, 30.5), p = 0.00
	Dose-response Investigated? Yes, assessed PM _{2.5} in quartiles		Adjusted for age, sex, education, income:
	Statistical Package: NR		15.7 (5.7, 26.6) , p = 0.002 Adjusted for above + smoking, ETS, multivitamins, alcohol: 13.8 (4.0, 24.5) , p = 0.002 Among those taking lipid-lowering therapy: Unadjusted: 15.8 (2.1, 31.2) , p = 0.02 Adjusted for age, sex, education, income: 13.3 (0, 28.5) , p = 0.031 Adjusted for above + smoking, ETS, multivitamins, alcohol: 13.3 (-0.3, 28.8) , p = 0.060 For the observed contrast between lowest and highest exposure: Approximately 20 μ g/ m³ \rightarrow 12.1% (2.0 231%) increase in CIMT. Among nonsmokers: 6.6% (1.0-12.3% The estimate was small and not significant in current and former smokers. Women: In the range of 6-9% per 10 μ g/m³ Unadjusted means of CIMT across quartiles of exposure were 734, 753, 758, and 774 μ m Adjusted means trend across exposure groups, p = 0.041
Poforonco: Millor et al. (2007, 000420)	Outcome (ICD9 and ICD40): Eirct	Pollutant: DM /uc/m³\	
Reference: Miller et al. (2007, <u>090130</u>)	cardiovascular event (myocardial	Pollutant: PM _{2.5} (µg/m³)	PM Increment: 10 µg/m ³
Period of Study: 1994-2003 Location: 36 U.S. metropolitan areas (Women's Health Initiative)	infarction, coronary revascularization, stroke, and death from either coronary heart disease [categorized as "definite" or "possible"] or cerebrovascular disease)	Averaging Time: Annual avg concentration in 2000 (used to represent long-term exposure) Mean (SD): Individual exposure: 13.5 (3.7)	Effect Estimate [Lower CI, Upper CI] Estimated Hazards Ratio (95%CI) for the time to the first cardiovascular eve or death associated with an increase in PM _{2.5}
	Age Groups: 50-79 yr (median age at	Citywide avg exposure: 13.5 (3.7)	Any cardiovascular event (first event) Overall: 1.24 (1.09, 1.41)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	enrollment: 63)	Median: 13.4	Between cities: 1.15 (0.99, 1.32)
	Study Design: Cohort (median follow- up of 6 yr) N: 65,893 postmenopausal women	Percentiles: Quintile ranges: 1: 3.4, 10.9 2: 11.0, 12.4	Within cities: 1.64 (1.24, 2.18) Coronary heart disease (first event): Overall: 1.21 (1.04, 1.42) Between cities: 1.13 (0.95, 1.35)
	without previous cardiovascular disease	3: 12.5, 14.2 4: 14.3, 16.4	Within cities: 1.56 (1.11, 2.19)
	Statistical Analyses: Cox-proportional hazards regression Covariates: Age, race/ethnicity,	5: 16.5, 28.3 IQR: 11.6-18.3 10th-90th	Cerebrovascular disease (first event): Overall: 1.35 (1.08, 1.68) Between cities: 1.20 (0.94, 1.54)
	smoking status, the number of cigarettes smoked per day, the number of vr of smoking, systolic blood pres-	Personal: 9.1-18.3 City-wide: 9.3-17.8 Range (Min, Max):	Within cities: 2.08 (1.28, 3.40) MI (first event):
	sure, education level, household income, BMI, and presence or absence of diabetes, hypertension, or hyper-	Personal exposure: 3.4, 28.3 Citywide exposure: 4.0, 19.3 Monitoring Stations: 573 monitors	Ovèrall: 1.06 (0.85, 1.34) Between cities: 0.97 (0.75, 1.25) Within cities: 1.52 (0.91, 2.51)
	cholesterolemia (also evaluated ETS, occupation, physical activity, diet, alcohol consumption, waist circum- ference, waist-to-hip ratio, medical	The nearest monitor to the location of each residence was used to assign	Coronary revascularization (first event): Overall: 1.20 (1.00, 1.43) Between cities: 1.14 (0.93, 1.39)
	history, medications, and presence or absence of a family history of cardio-	exposure (monitor within 30 mi of residence	Within cities: 1.45 (0.98, 2.16)
	vascular disease as possible confounders in extended models)	Median of 20 monitors per city (range: 4-78))	Stroke (first event): Overall: 1.28 (1.02, 1.61) Between cities: 1.12 (0.87, 1.45)
	Season: NA Dose-response Investigated?	Copollutant (correlation): PM ₁₀	Within cities: 2.08 (1.25, 3.48) Any death from cardiovascular cause:
	Statistical Package: SAS v8.0, STATA	SO ₂	Overall: 1.76 (1.25, 2.47) Between cities: 1.63 (1.10, 2.40)
	v8.0	NO₂ CO	Within cities: 2.28 (1.10, 4.75)
		O ₃	Coronary heart disease death (definite diagnosis): Overall: 2.21 (1.17, 4.16) Between cities: 2.22 (1.06, 4.62) Within cities: 2.17 (0.60, 7.89)
			Coronary heart disease death (possible diagnosis): Overall: 1.26 (0.62, 2.56) Between cities: 1.20 (0.54, 2.63) Within cities: 1.57 (0.29, 8.51)
			Cerebrovascular disease death: Overall: 1.83 (1.11, 3.00) Between cities: 1.58 (0.90, 2.78) Within cities: 2.93 (1.03, 8.38)
			Estimated Hazard Ratios for cardiovascular events associated with an increase in PM_{25} according to selected characteristics (presented adjusted H and adjusted H including adjustment for city)
			Any cardiovascular event: H: 1.24 (1.09, 1.41) H (city): 1.69 (1.26, 2.27) Household income <\$20,000: H: 1.30 (1.10, 1.53) H (city): 1.75 (1.28, 2.40) Household income \$20,000-49,999: H: 1.23 (1.08, 1.41) H (city): 1.69 (1.25, 2.27) Household income ≥ \$50,000: H: 1.20 (1.02, 1.40)
			H (city): 1.66 (1.22, 2.26) P for trend: HR: p = 0.34 HR (city): p = 0.54 Education: Not high-school graduate: H: 1.40 (1.11, 1.75) H (city): 1.88 (1.32, 2.67) Education: High school grad/trade school/GED: H: 1.33 (1.14, 1.55) H (city): 1.79 (1.32, 2.44) Education: Some college or associate degree: H: 1.26 (1.09, 1.44)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			H (city): 1.74 (1.29, 2.34) Education: Bachelor's degree or higher: H: 1.11 (0.94, 1.31) H (city): 1.54 (1.13, 2.10)
			P for trend: H: p = 0.07 H (city): p = 0.15 Age <60 yr: H: 1.21 (0.84, 1.73) H (city): 1.66 (1.05, 2.61)
			Age 60-69 yr: H: 1.14 (0.93, 1.39) H (city): 1.53 (1.09, 2.14) Age ≥ 70 yr: H: 1.34 (1.11, 1.63)
			H (city): 1.85 (1.34, 2.56) P for trend: H: p = 0.20 H (city): p = 0.20 Current smoker: H: 1.68 (1.06, 2.66)
			H (city): 2.28 (1.33, 3.92) Former smoker: H: 1.24 (1.01, 1.52) H (city): 1.71 (1.23, 2.39)
			Never smoked: H: 1.18 (0.99, 1.40) H (city): 1.60 (1.16, 2.21) Living with smoker currently:
			H: 1.28 (0.84, 1.97) H (city): 1.65 (0.99, 2.76) Living with smoker formerly: H: 1.18 (1.00, 1.38)
			H (city): 1.59 (1.16, 2.16) Living with smoker never: H: 1.39 (1.07, 1.80)
			H (city): 1.90 (1.31, 2.78) BMI <22.5: H: 0.99 (0.80, 1.21) H (city): 1.35 (0.96, 1.88)
			BMI 22.5-24.7: H: 1.16 (0.96, 1.40) H (city): 1.58 (1.14, 2.19) BMI 24.8-27.2: H: 1.24 (1.05, 1.45) H (city): 1.69 (1.24, 2.30)
			BMI 27.3-30.9: H: 1.38 (1.18, 1.61) H (city): 1.88 (1.38, 2.56) BMI >30.9: H: 1.35 (1.12, 1.64)
			H (city): 1.84 (1.33, 2.55) P for trend: H: p = 0.003 H (city): p = 0.007 Waist-to-hip ratio <0.74:
			Walst-to-hip ratio 30.74. H: 1.07 (0.90, 1.29) H (city): 1.45 (1.05, 2.00) Waist-to-hip ratio 0.74-0.77:
			H: 1.12 (0.95, 1.31) H (city): 1.51 (1.11, 2.06) Waist-to-hip ratio 0.78-0.80:
			H: 1.24 (1.07, 1.44) H (city): 1.68 (1.23, 2.27) Waist-to-hip ratio 0.81-0.86: H: 1.30 (1.13, 1.50)
			H (city): 1.76 (1.30, 2.38) Waist-to-hip ratio >0.86: H: 1.29 (1.11, 1.50)
			H (city): 1.75 (1.29, 2.37) Waist circumference <73 cm: H: 1.05 (0.86, 1.27) H (city): 1.43 (1.02, 1.99)
			Waist circumference 73-78 cm: H: 1.20 (1.02, 1.41) H (city): 1.63 (1.19, 2.23)
			Waist circumference 79-85 cm: H: 1.22 (1.05, 1.41) H (city): 1.66 (1.22, 2.24)
			Waist circumference 86-95 cm: H: 1.33 (1.15, 1.53) H (city): 1.80 (1.33, 2.43) Waist circumference >95 cm:
			H: 1.27 (1.07, 1.51) H (city): 1.73 (1.26, 2.36) P for trend: H: p = 0.06
			H (city): p = 0.07 Hormone-replacement therapy-Current Use: H: 1.33 (1.09, 1.61)
			H (city): 1.85 (1.32, 2.58) Hormone-replacement therapy-No Current Use: H: 1.16 (0.98, 1.39)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			H (city): 1.57 (1.14, 2.17) Diabetes-yes: H: 0.96 (0.67, 1.37) H (city): 1.24 (0.78, 1.96) Diabetes-no: H: 1.28 (1.12, 1.47) H (city): 1.75 (1.30, 2.36) Hypertension-yes: H: 1.22 (1.02, 1.45) H (city): 1.65 (1.09, 2.27) Hypertension-no: H: 1.26 (1.05, 1.51) H (city): 1.74 (1.25, 2.40) Hypercholesterolemia-yes: H: 1.25 (0.94, 1.67) H (city): 1.71 (1.15, 2.54) Hypercholesterolemia-no: H: 1.23 (1.07, 1.42) H (city): 1.69 (1.25, 2.28) Family history of CVD- yes: H (city): 1.69 (1.25, 2.28) Family history of CVD- no: H: 1.07 (0.83, 1.37) H (city): 1.46 (1.00, 2.12) Time lived in current state: ≥ 20 yr: H: 1.21 (1.06, 1.39) H (city): 1.66 (1.23, 2.23) Time lived in current state: ≤ 9 yr: H: 1.39 (1.12, 1.72)' H (city): 1.97 (1.40, 2.79) Time lived in current state: ≤ 9 yr: H: 1.54 (1.06, 2.26) H (city): 2.24 (1.39, 3.59) Health insurance coverage-yes: H: 1.22 (1.07, 1.39) H (city): 2.71 (1.27, 2.30) Health insurance coverage-no: H: 1.82 (0.81, 4.10) H (city): 2.65 (1.12, 6.28) Time spent outdoors: <30 min: H: 1.09 (0.86, 1.39) H (city): 1.56 (1.05, 2.31) Time spent outdoors: <30 min: H: 1.09 (0.86, 1.39) H (city): 1.56 (1.05, 2.31) Time spent outdoors: <30 min: H: 1.09 (0.86, 1.39) H (city): 1.51 (1.05, 1.50) H (city): 1.52 (1.29, 2.57)
Reference : O'Neill et al. (2007, 156006)	Outcome (ICD9 and ICD10): Creatinine adjusted urinary albumin	Pollutant: PM _{2.5} (µg/m ³)	PM Increment: 10 μg/m ³
Period of Study: 2000-2004	excretion	Averaging Time: Avg of previous month, avg of previous 2 mo (recent	Effect Estimate [Lower CI, Upper CI]:
Location: USA (6 field centers: Baltimore, MD	Assessed 2 ways: continuous log urinary albumin/creatine ration (UACR) and clinically defined micro- or macro-	exposures) 20-yr imputed PM _{2.5} avg (longer-term	Adjusted mean differences in log UACR (mg/g) per increase in PM _{2.5} among participants seen at baseline
Chicago, IL	albuminuria (UACR ≥ 25 mg/g) vs. normal levels	exposures) Mean (SD): Previous month:	Previous 30 days Full sample: -0.017 (-0.087, 0.052)
Forsyth Co, NC	Age Groups: 44-84 yr	16.5 (4.8)	Within 10 km: 0.026`(-0.067, 0.119) Previous 60 days
Los Angeles, CA	Study Design: Prospective cohort	Percentiles: NR	Full sample: -0.040 (-0.121, 0.042) Within 10 km: -0.013 (-0.122, 0.097)
New York, NY	analyses (MESA cohort) N: 3901 participants, free of clinical	Range (Min, Max): NR	Imputed 20 yr exposure Full sample: 0.002 (-0.048, 0.052)
St. Paul, MN	CVD at baseline	Monitoring Stations: NR (used closest	Within 10 km: -0.012 (-0.076, 0.053)
	Statistical Analyses: Multiple linear regression (continuous outcome)	monitor to residence to assign value for recent exposures	microalbuminuria vs. high-normal and normal levels (below 25 mg/g)
	Binomial regression (dichotomous outcome)	20-yr PM _{2.5} exposures were imputed using a space-time model.)	per increase in PM _{2.5} among participants without
	Covariates: Age, gender, race, BMI,	Copollutant (correlation): PM ₁₀	macroalbuminuria during the baseline visit
	cigarette status, ETS, percent dietary protein		Previous 30 days: 0.94 (0.77, 1.16)
	Season: NA		Previous 60 days: 0.90 (0.71, 1.14)
	Dose-response Investigated? Yes, examined quartiles of exposure		Imputed 20 yr exposure: 0.98 (0.84, 1.14)
	Statistical Package: SAS		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Solomon et al. (2003,	Outcome (ICD9 and ICD10): Ischemic	Pollutant: Black smoke (µg/m³)	PM Increment: Categorical
156994)	heart disease (a self-reported history of medically diagnosed angina or heart	Averaging Time: Exposure measures	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Exposures measures 1966-1969	attack)	performed 1966-1969	Association of particulate pollution in
Health endpoints assessed via	Age Groups: 45 yr and older	women had to live within 5 miles of their current address for the past 30 yr to be	place of residence and ischemic heart disease
questionnaire, yr not reported but apparently 30 yr after exposure	Study Design: Cross-sectional	included	Low (ref): 1.0
assessment (given the 30 yr residency requirement)	N: 1,166 women	Mean (SD): 11 wards with pollution measures were categorized into high	High: 1.0 (0.7, 1.4)
Location: United Kingdom	Statistical Analyses: Log linear modeling	(mean >120 μg/m³) and low (mean <50 μg/m³) exposure categories when	
Location: Office Kingdom	Covariates: Smoking, passive smoking in childhood, tenancy, social class, worked in industry with respiratory hazard, childhood hospital admission for chest problem, diabetes, BMI		
		SD not reported	
		Percentiles: NR	
	Season: NA	Range (Min, Max): NR	
	Dose-response Investigated? No	Monitoring Stations: NR	
	Statistical Package: STATA	$\begin{tabular}{ll} \textbf{Copollutant (correlation):} & SO_2 \ (health results not presented) \end{tabular}$	

 $^{^{1}\}text{All}$ units expressed in $\mu\text{g/m}^{3}$ unless otherwise specified.

E.5. Long-Term Exposure and Respiratory Outcomes

Table E-22. Long-term exposure - respiratory morbidity outcomes - PM₁₀.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ackermann-Liebrich et al.	Outcome: Pulmonary function	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
(1997, <u>077537)</u> Pariod of Study: 1001 1003	Age Groups: 18-60 yr	Averaging Time: Continuously	Regression Coefficient β (Lower CI,
Period of Study: 1991-1993	Study Design: Cross-sectional	measured, 12-mo. avg. used	Upper CI) for air pollutants as predictors of pulmonary function
Location: Switzerland (Aarau, Basel, Davos, Geneva, Lugano, Montana,	N : 9651 people	Mean (SD): 21.2 (7.4)	FVC: -0.0345 (-0.0407 to -0.0283)
Payerne, Wald)	Statistical Analyses: Regression	Range: (10.1-33.4)	p < 0.001 FEV₁: -0.0160 (-0.0225 to -0.0095)
	analysis	Copollutant (correlation): SO ₂ : r = 0.93	p < 0.001
	Covariates: Age, sex, height, weight, education level, nationality, workplace	NO ₂ : r = 0.91	Percent Change (Lower CI, Upper CI) associated with increase in avg
	exposure	O ₃ : r = -0.55	annual air pollution concentration
	Season: NR	Summer Daytime	Healthy Never-smokers FVC: -3.39
	Dose-response Investigated? No	O_3 : $r = 0.31$	p < 0.001
	Statistical Package: NR	Excess O_3 : $r = 0.67$	FEV ₁ : -1.59 p < 0.001
		Altitude: r = -0.77	All Never-smokers FVC: -3.14 p < 0.001 FEV ₁ : -1.06 p < 0.001 Former Smokers FVC: -3.03 p < 0.001 FEV ₁ : -0.42 Current Smokers FVC: -3.21 p < 0.001 FEV ₁ : -1.35 p < 0.001 All FVC: -3.14 p < 0.001 All FVC: -3.14 p < 0.001 FEV ₁ : -1.03 p < 0.001 Long-term Residents FVC: -3.16 p < 0.001 Long-term Residents FVC: -3.16 p < 0.001
Reference: Avol et al. (2001, <u>020552</u>)	Outcome: FVC, FEV ₁ , MMEF, PEFR	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 1993-1998	Age Groups: 10 yr	Averaging Time: 24-h PM ₁₀ avgd over 1994	Mean Change (Lower CI, Upper CI)
Location: Southern California	Study Design: cohort		FVC: -1.8 (-9.1, 5.5)
	N : 110	Mean (SD): 15.0-66.2	FEV ₁ : -6.6 (-13.5, 0.3)
	Statistical Analyses: Linear regression		MMEF: -16.6 (-32.1 to -1.1)
	Covariates: Sex, race, cohort entry yr, annual avg change in height, weight, BMI		PEFR: -34.9 (-59.8 to -10.0)
	Dose-response Investigated? No		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Bayer-Oglesby et al. (2005,	Outcome: Respiratory symptoms	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
086245)	(chronic cough, bronchitis, cold, dry cough, conjunctivitis, wheeze,	Averaging Time: 12-mo avg	"Fig 2 shows that declining levels of
Period of Study: 1992-2001	sneezing, asthma, & hay fever)	Mean (SD): NR	PM ₁₀ were associated with declining prevalence of chronic cough, bronchitis,
Location: Switzerland (Lugano, Zurich, Bern, Geneva, Anieres, Biel, Langnau,	Age Groups: 6-15 yr	Range (Min, Max): NR	common cold, nocturnal dry cough, and conjunctivitis symptoms. For wheezing,
Payerne, & Montana)	Study Design: Cross-sectional	Monitoring Stations: 9	sneezing, asthma, and hay fever, no
	N: 9,591 children	Copollutant (correlation): NR	significant association could be seen with declining PM ₁₀ levels."
	Statistical Analyses: Logistic regression models	. , ,	"Fig 3 illustrates that, on an aggregate level, across regions the mean change
	Covariates: Age, sex, nationality, parental education, number of siblings, farming status, low birth weight, breast feeding, smoking, family history of asthma, bronchitis and/or atopy, mother who smokes, indoor humidity, mode of cooking & heating, carpeting, pets, removal of carpets/pets for health reasons, completed questionnaire & month, days max temperature <0°C, mother's belief of association between environmental exposures & respiratory health		in PM ₁₀ levels (r pearson = 0.81, p = 0.008). The strongest decline of adjusted prevalence of nocturnal dry cough was observed in Geneva, Lugano, and Anieres, where the strongest reduction of PM ₁₀ had also been achieved."
	Dose-response Investigated? Yes		
	Statistical Package: STATA		
Reference: Burr et al. (2004, <u>087809</u>)	Outcome: Self-report of symptoms only	Pollutant: PM ₁₀	Percent change PM10 in congested
Period of Study: 3 wk in Jul and Jan	for wheeze, cough, phlegm, rhinitis, and itchy eyes.	Averaging Time: Mean hourly	streets: 22.7
1997 and 2 wk in Nov 1996 and Apr 1997	Age Groups: all	concentrations Mean (SD): SD NR	Percent change PM10 in uncongested streets: 28.9
Location: North Wales, England	Study Design: Repeated measures	Congested streets -	Uncongested street sampling site was
•	N: 386 persons in congested streets and 425 in the uncongested streets in	1996-97 35.2 1998-99 27.2	20 m from the congested street sampler.
1996/199	1996/1997. Of these, 165 and 283 completed the second phase of the	Uncongested Streets 1996-97 11.6 1998-99 8.2	The opening of the by-pass produced a reduction in pollution in the congested streets. The health effects of these
	•	Monitoring Stations: 1 in congested street and 1 in uncongested	changed is likely to be greater for nasal and ocular symptoms than for lower respiratory symptoms. Uncertainty about the causality arises from low response rates and conflicting trends in respiratory and nasal symptoms.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Study Reference: Calderón-Garcidueñas et al. (2006, 091253) Period of Study: 1999, 2000 Location: Southwest Mexico City & Tlaxcala, Mexico	Design & Methods Outcome: Hyperinflation, interstitial markings-measured by chest radiograph, and lung function-FVC, FEV, PEF, FEF25-75, measured using spirometry tests Age Groups: 5-13 yr Study Design: Cohort N: 249 (total), 230 (Southwest Mexico City), 19 (Tlaxcala) Statistical Analyses: Bayes test, Spearman rank correlation, multiple regression Covariates: Age, sex Dose-response Investigated? No Statistical Package: SAS 8.2	Concentrations Pollutant: PM ₁₀ Averaging Time: 1 yr Mean (SD): Mexico City 1999-48 2000-45 Tlaxacala: 1994-2000: <naaqs air="" city-2="" copollutant:="" data="" mexico="" monitoring="" o<sub="" southwest="" stations:="" std="" tlxacala-periodic="">3</naaqs>	Effect Estimates (95% CI) PM Increment: NR % Change: % of children with FEV1 <80% expected value: Mexico City (n = 77): 7.8% Tlaxacala (n = 19): 0% % children with hyperinflation: Mexico City: 65.6% No hyperinflation: 79 Mild: 72 Moderate: 56 Severe: 23 Tlaxacala: 5.3% No hyperinflation: 18 Mild: 1 Moderate: 0 Severe: 0 % children with interstitial markings: Mexico City: 52.6% Number with: No interstitial markings: 19 Mild: 0 Moderate: 0 Severe: 0 Tlaxacala: 0% No interstitial markings: 109 Mild: 112 Moderate: 9 Severe: 0
Reference: Calderon-Garciduenas, et al. (2003, 156316) Period of Study: Jan 1999-Jun 2000 Location: Mexico City, Tuxpam, and Tlaxcala, Mexico	Outcome: Respiratory system changes Age Groups: 5-17 yr Study Design: Case-control of subjects examined for this study N: 174 cases, 27 controls, children Statistical Analyses: Chi-square test with Yates correction, Spearman's rank correlation test. Dose-response Investigated? No Statistical Package: SAS 8.2	Pollutant: PM ₁₀ Averaging Time: 12 h (daytime 08: 00-20: 00) and nighttime (20: 00-08: 00) Mean (SD): Mexico City Day/Night Jan-Jun 1999 76.0/50.0 Jul-Dec 1999 42.8/22.5 Jan-Jun 2000 75.2/47.5	Daily ambient exposure of children to a complex mixture of air pollutants produces significant chest X-ray abnormalities, a decrease in predicted values of FEF ₂₅₋₇₅ , FEF ₇₅ , and the FEV ₁ /FVC ratio in association with interstitial marking on chest X-rays, a mild restrictive pattern by spirometry, peripheral blood abnormalities, and an imbalance of serum cytokines.
Reference: Cavanagh et al. (2007, 189802) Period of Study: Mar-Aug 2004 Location: Christchurch, New Zealand	Outcome: A clinical study of excretion of 1-hydroypyrene (1-OHP) as a marker of PAH exposure Age Groups: Non-smoking males aged 12-18 yr Study Design: Comparison of 2 high pollution events and 2 low pollution events N: 89 male students in a boarding school Statistical Analyses: Wilcoxon signed rank test for paired observations, Mann-Whitney U test Season: Winter Dose-response Investigated? No	Pollutant: PM ₁₀ Averaging Time: 24 h Mean (SD): Fall Low Outdoor 19 Indoor NA Winter I Outdoor 43 Indoor 38 Winter II Outdoor 72 Indoor 84 Winter Low Outdoor 12 Indoor 16 Monitoring Stations: One inside the boarding house, and one outside	Urinary 1-OHP were raised after high- pollutions events. Peaks were slightly higher than for U.S. non-smokers of similar ages and slightly lower than for German non-smokers of similar ages. Urinary 1-OHP was slightly higher in asthmatics compared to non- asthmatics. There were no indoor sources of PAHs (wood-burning stoves, tobacco smoke). Diet is another source of PAHs, but all students ate in the boarding house. These results suggest 1-OHP could be used as a biomarker of ambient air pollution.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Downs et al. (2007, 092853)	Outcome: FEV ₁ , FEV ₁ as % of FVC, FEF25-75	Pollutant: PM ₁₀	PM Increment: 10 μg/m³ reduction in annual mean
Period of Study: 1991, 2002	Age Groups: 18-60 yr	Averaging Time: Annual	Percent / absolute reduction in annual
Location: Switzerland	Study Design: Prospective Cohort	Mean:	decline in lung function over 11-yr period (95% CI):
	N : 4742 people	Mean interval exposure: 238 μg/m³/yr	Annual decline in FEV ₁ reduced by 9%
	Statistical Analyses: Linear random	Percentiles:	3.1 mL (0.03-6.2)
	effects models	25th: 197 75th: 287	Annual decline in FEF ₂₅₋₇₅ reduced by 16% / 11.3 mL/second (4.3-18.2)
	Covariates: Age, sex, height, parental smoking, season, education, nationality, occupational exposure, smoking (status, pack-yr), atopy, BMI	730. 207	Annual decline in FEV ₁ as a percentage of FVC of 0.06 (0.01-0.12)
	Dose-response Investigated? Yes-linear fit best		A reduction in interval exposure of 109 µg per m³ cubic meter-yr (equivalent to
	Statistical Package: SAS 9.1, STATA 8.2, R 2.4		a reduction of 10 µg/m° in the annual avg during the mean follow-up time of 10.9 yr) was associated with: A reduction of 6.9 mL (95% CI, 2.1 to 11.7) in the annual decline in FEV ₁
			A 22% reduction in the annual decline in FEF25-75 (i.e., by 14.0 mL per second 95% Cl, 3.1 to 24.8)
Reference: Gauderman et al. (2000,	Outcome: FVC, FEV ₁ , MMEF, FEF75	Pollutant: PM ₁₀	PM ₁₀ Increment: 51.5 μg/m ³
<u>012531</u>)	Age Groups: Fourth, seventh, or tenth	Averaging Time: 24-h avg PM ₁₀	% Change (Lower CI, Upper CI)
Period of Study: 1993-1997	graders	Mean (SD): PM ₁₀ 51.5	PM ₁₀ -4th grade FVC -0.58 (-1.14 to -0.02)
Location: Southern California	Study Design: Cohort	Copollutant (correlation):	FEV ₁ -0.85 (-1.59 to -0.10)
	N: 3035 subjects	$PM_{2.5} r = 0.96$	MMEF -1.32 (-2.43 to -0.20) FEF ₇₅ -1.63 (-3.14 to -0.11)
	Statistical Analyses: Linear regression	•	PM ₁₀ -7th grade
	Covariates: Height, weight, BMI, asthma, smoking, exercise, room temperature, barometric pressure	$PM_{10-2.5} r = 0.92$ $NO_2 r = 0.65$	FVC -0.45 (-1.03, 0.13) FEV ₁ -0.44 (-1.10, 0.23)
	Dose-response Investigated? Yes	Inorg. Acid r = 0.68	MMEF -0.48 (-2.51, 1.59) FEF ₇₅ -0.50 (-2.26, 1.29)
	Statistical Package: SAS		PM ₁₀ -10th grade FVC 0.07 (-0.99, 1.13) FEV ₁ -0.46 (-1.84, 0.94) MMEF -0.71 (-4.87, 3.63) FEF ₇₅ -1.54 (-5.61, 2.71)
Reference: Gauderman et al. (2002,	Outcome: Lung function development:	Pollutant: PM ₁₀	PM Increment: 51.5 μg/m ³
026013)	FEV ₁ , maximal midexpiratory flow (MMEF)	Averaging Time: Annual 24-h avg	Association Estimate:
Period of Study: 1996-2000 Location: Southern California	Age Groups: Fourth grade children (avg age = 9.9 yr)	Mean (SD): The avg levels were presented in an online data supplement (Fig E1)	None of the pulmonary function tests
	Study Design: Cohort study	Monitoring Stations: 12	$FEV_1 r = -0.12 p = 0.63$
	N: 1678 children, 12 communities	Copollutant (correlation):	MMEF $r = -0.22 p = 0.30$
	Statistical Analyses: Mixed model linear regression	O_3 (10 AM to 6 PM) $r = 0.13$	'
	Covariates: Height, BMI, doctor-	$O_3 r = -0.37$	
	diagnosed asthma and cigarette smoking in previous yr, respiratory	NO ₂ r = 0.64	
	illness and exercise on day of test, interaction of each of these variables	Acid vapor r = 0.79	
	with sex, barometric pressure,	$PM_{2.5} r = 0.95$	
	temperature at test time, indicator variables for field technician and	$PM_{10-2.5} r = 0.95$	
	spirometer	EC r = 0.86	
	Dose-response Investigated? Yes	OC r = 0.97	
	Statistical Package: SAS (10)		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Gauderman et al. (2004,	Outcome: Lung function	Pollutant: PM ₁₀	PM Increment: Most to least polluted
056569) Period of Study: Air pollution data ascertainment: 1994-2000. Spirometry	FVC, FEV ₁ , MMEF (Maximal	Averaging Time: 24-h measurements	community
	midexpiratory flow rate)	over each yr used to create annual avg	Range: PM ₁₀ : 51.4 μg/m ³
testing: Spring 2001-Spring 2003	Age Groups: Children, Avg age 10 yr	Mean: Means are presented in figures only.	EC: 1.2 μg/m³ OC: 10.5 μg/m³
Location: 12 Communities in Southern California	Study Design: Prospective Cohort Study	Range (Min, Max): ~15, ~65	Difference in Lung Growth [Lower CI, Upper CI]:
	N: 12 Communities	Monitoring Stations: 12	FVC -60.2 (-190.6 to 70.3) FEV ₁ -82.1 (-176.9 to 12.8)
	2,034 Children	Copollutant (correlation):	MMEF -154.2 (-378.3 to 69.8)
	24,972 child-months	O_3 : $r = 0.18$	EC:
	Statistical Analyses: Linear regression	NO_2 : r = 0.67	FVC -77.7 (-166.7 to 11.3) FEV ₁ -87.9 (-146.4 to -29.4)
	of changes in sex-and-community specific lung growth function and PM	PM _{2.5} : r = 0.95	MMEF -165.5 (-323.4 to -7.6)
	Covariates: Random effect for	EC: r = 0.85	OC:
	communities	OC: r = 0.97	FVC -58.6 (-196.1 to 78.8) FEV ₁ -86.2 (-185.6 to 13.3)
	Season: ALL (except for PM _{2.5})		MMEF -151.2 (-389.4 to 87.1)
	Dose-response Investigated? No		Correlation with % below 80% predicted
	Statistical Package: SAS		Lung function (p-value) PM ₁₀ : 0.66 (0.02) EC: 0.74 (0.006)
Reference: Gauderman et al. (2007, 090121)	Outcome: pulmonary function tests FVC, FEV ₁ , MMEF/FEF25.75	Pollutant: PM ₁₀	PM Increment: 51.4 μg/m ³
Period of Study: 1993-2004	Age Groups: Children (mean age 10 at	Monitoring Stations: 1 in each	Pollutant effect reported as difference in 8 yr lung function growth from least to most polluted community. Negative
Location: 12 Southern California	recruitment, followed for 8 yr)	t community	
Communities	Study Design: Cohort Study (Children's Health Study)		difference indicates growth deficits associated with exposure. For PM ₁₀ FEV growth deficit is -111
	N: 3677 children		•
	(1718 in cohort 1 recruited 1993 and 1959 in cohort 2 recruited 1996)		
	22686 pulmonary function tests.		
	Statistical Analyses: Hierarchical mixed effects model with linear splines		
	Covariates: Adjustments for height, height squared, BMI, BMI squared, present asthma status, exercise or respiratory illness on day of test, smoking in previous yr, field technician, traffic indicator (distance from freeway, distance from major roads), random effects for participant and community.		
	Dose-response Investigated? no		
	Statistical Package: SAS		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Goss et al. (2004, <u>055624</u>)	Outcome: Cystic Fibrosis pulmonary	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 1999-2000	exacerbations, FEV ₁ Age Groups: > 6	Averaging Time: Annual mean of 24-h	Odds Ratio Estimate [Lower CI,
Location: USA	Study Design: Cohort	avg Mean (SD): 24.8(7.8) mg/m ³	Upper CI]: Odds of having 2 or more pulmonary
	N: 11484 patients	Percentiles: 25th: 20.3	exacerbations as compared to 1 or less
	Statistical Analyses: Logistic	50th(Median): 24.0	in 2000
	regression, t-tests, Mann-Whitney tests,	75th: 28.9	1.08 (1.02 -1.15)
	Chi-squared tests, polytomous regression, multiple linear regression	Monitoring Stations: 626	Odds of having 2 or more pulmonary exacerbations as compared to no exacerbations in 2000
	Covariates: Age, sex, lung function, weight, insurance status, pancreatic insufficiency, airway colonization, genotype, median household income by census tract, zipcode.		1.09 (1.02 -1.17) Decrease in FEV ₁ 38ml(18-58)
	Dose-response Investigated? No		
	Statistical Package: STATA, SAS		
Reference: Hanigan et al, (2008,	Outcome: Respiratory admissions	Pollutant: PM ₁₀	Increment: 10 µg/m³
156518)	Study Design: Time-series	Averaging Time: Daily levels estimated	Percent Increase (95% CI)
Period of Study: Fire Season (Apr-Nov) from 1996-2005	Covariates: Race, age	from visibility data	*Full results reported visually in Fig 3* Total Respiratory Admissions
Location: Darwin, Australia	Statistical Analysis: Over-dispersed Poisson generalized linear models	Mean Unit: *Only reported for 2005* 15.31 μg/m³	4.81 % (-1.04-11.01) Indigenous Respiratory Admissions, No Lag
	Statistical Package: R	Range (Min, Max): 6.93, 31.12	9.40% (1.04-18.46) Non-Indigenous Respiratory
	Age Groups: All	Copollutant (correlation): NR	Admissions, No Lag 3.14% (-2.99-9.66) Indigenous Respiratory Admissions, Lag 3 15.02% (3.73-27.54) Non-Indigenous Respiratory Admissions, Lag 3 0.67% (-7.55-9.61) Indigenous Asthma Admissions, Lag 1 16.27% (3.55-40.17) Non-Indigenous Asthma Admissions, Lag 1 8.54% (-5.60-24.80)
Reference: Ho et al. (2007, <u>093265</u>)	Outcome: Asthma	Pollutant: PM ₁₀	Odds Ratio from stepwise regression
Period of Study: Oct 1995-Mar 1996	Age Groups: 10-17 yr	Averaging Time: Monthly	model:
Location: Taiwan, Republic of China	Study Design: Screened junior high	Monitoring Stations: 72	Females (n = 32, 648)
	students for asthma, collected meteorological data to determine the relationship.		0.993 [0.990-0.997] Males: NS
	N: 69,367		Higher PM ₁₀ concentration resulted in
	Statistical Analyses: Logistic regression model, the maximum likelihood estimation with Fisher's scoring algorithm, stepwise regression model, Wald statistic, Akaike criteria. GEE, GENMOD		less asthma prevalence. However, a higher number of rain days seemed to reduce asthma prevalence Rain days might interact with PM ₁₀ .
	Covariates: Wind, barometric pressure, temperature, rain, humidity		
	Season: Fall-spring		
	Dose-response Investigated? No		
	Statistical Package: SAS		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Hong et al. (2004, <u>156565</u>)	Outcome: Respiratory symptoms	Pollutant: PM ₁₀	PM Increment: Low (Pelalawan),
Period of Study: 2001	Age Groups: <12 yr	Averaging Time: 24-h measurements	Medium (SP7), & High (Kerinci) PM Exposure
Location: Kerinci, SP7, and Pelalawan, Indonesia	Study Design: Disproportionate random sampling was used to select	were taken daily from 2 wk before he field survey to 1 mo after the survey	Odds Ratios (95% CI) for Symptoms
inuonesia	100 households from each village. An	Mean (SD):	by village: Cough/cold past 2 wks
	interviewer interviewed all children through the caregiver/parent to obtain	Kerinci 102.9 (49.6) μg/m ³	Pelalawan 1.00 SP7 2.03 (1.04, 3.96)
	symptoms in the past 2 wk (cough, cold, phlegm) and the last 12 mo.	SP7 73.7 (41.7)	Kerinci 3.17 (1.43, 7.07)
	N: 382 children	Pelalawan 26.1 (14.5)	Respiratory symptoms last 12 mo Pelalawan 1.00
	Statistical Analyses: Chi-square test, analysis of variance, prevalence rates, adjusted odds ratios, multivariate adjusted odds ratios from multiple logistic regression models, allowing for clustering. Covariates: Age, gender, no. of children in household, household income, floor area of house, fuel for cooking, no. of smokers in household, personal and family medical history.	P<0.01	SP7 1.15 (0.58, 2.26) Kerinci 1.42 (0.62, 3.25)
		Range (Min, Max):	Ever had rhinitis w/o flu Pelalawan 1.00
		Kerinci 25, 184	SP7 2.17 (0.57, 8.29)
		SP7 13, 138	Kerinci 0.56 (0.11, 2.83) Ever had wheezing
		Pelalawan 10, 66	Pelalawan 1.00 SP7 0.85 (0.35, 2.08)
		Monitoring Stations: 3	Kerinci 1.18 (0.46, 3.01)
	Dose-response Investigated? No		
	Statistical Package: SPSS STATA v.7		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Horak et al. (2002, <u>034792</u>)	Outcome:	Pollutant: PM ₁₀	PM Increment: 1 μg/m³
Period of Study: 1994-1997	Lung function growth measured by	Mean (SD):	Mean per unit increase in PM (p-value)
Location: Lower Austria	changes in: 1. FVC (forced vital capacity)	Winter: 21.0 (4.8)	Outcome: difference per day of FVC
	2. FEV ₁	Summer: 17.4 (2.8)	(mL/day) Summer: 0.001 (0.938)
	3. MEF ₂₅ -75 (midexpiratory flow	Range (Min, Max):	Winter: 0.008 (0.042) Controlling for temperature:
	between 25-75% of the forced vital capacity)	Winter: 9.4-30.5	Summer: -0.007 (0.417)
	Age Groups: 2-3 grade schoolchildren	Summer: 11.7-28.9	Winter: -0.003 (0.599) Controlling for O₃:
	(mean age = 8)	Monitoring Stations:	Summer: 0.001 (0.911) Winter: 0.010 (0.019)
	Study Design: Prospective cohort with repeated measures	NR, stations were located in the immediate vicinity of each of the 8	Controlling for NO ₂ : Summer: -0.018 (0.056)
	N: 975 children	elementary schools	Winter: 0.015 (0.000) Controlling for SO ₂ :
	Statistical Analyses: Linear regression	Copollutant (correlation):	Summer: 0.005 (0.575)
	GEE, nonstationary M-dependent correlation structure	Winter	Winter: 0.004 (0.492) In non-asthmatic children:
	Covariates: Gender, atopy, ETS	O ₃ : (r = -0.581)	Summer: -0.003 (0.710) Winter: 0.009 (0.030)
	exposure, baseline lung function, first height, height difference, school site	SO_2 (r = 0.520) NO_2 (r = 0.595)	In group not exposed to ETS: Summer: 0.014 (0.154)
	Season: Winter, summer	Summer	Winter: 0.012 (0.0018)
	Dose-response Investigated? No	O_3 (r = -0.429)	In group exposed to ETS: Summer: 0.022 (0.088)
	Dose-response investigateur No	SO ₂ (r = 0.335)	Winter: 0.003 (0.656) Outcome: difference per day of FEV ₁
		NO_2 (r = 0.412)	(mL/day) Summer: -0.023 (0.003)
		NO ₂ (1 - 0.412)	Winter: 0.001 (0.885)
			Controlling for temperature: Summer: -0.034 (0.000)
			Winter: -0.011 (0.016) Controlling for O₃:
			Summer: -0.022 (0.008)
			Winter: 0.004 (0.338) Controlling for NO ₂ :
			Summer: -0.038 (0.000)
			Winter: 0.011 (0.005) Controlling for SO₂:
			Summer: -0.022 (0.010)
			Winter: -0.005 (0.358)
			Outcome: difference per day MEF ₂₅₋₇₅
			(mL/day) Summer: -0.090 (0.000)
			Winter: -0.008 (0.395)
			Controlling for temperature:
			Summer: -0.112 (0.000)
			Winter: -0.013 (0.295) Controlling for O₃:
			Summer: -0.087 (0.000)
			Winter: -0.008 (0.434)
			Controlling for NO ₂ :
			Summer: -0.102 (0.000)
			Winter: 0.005 (0.610) Controlling for SO ₂ :
			Summer: -0.095 (0.000)
			Winter: -0.011 (0.474)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Hwang et al. (2006,	Outcome: Peak expiratory flow rate (PEFR), Forced Expiratory Volume in 1 second (FEV ₁), Forced Vital Capacity	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
088971)		Mean (SD): 55.58 (16.57)	RR Estimate [Lower CI, Upper CI]
Period of Study: 2001	(FVC), Self reported "frequent coughing," Self reported "shortness of	Percentiles: 25th: 42.96	Single pollutant model: 1.00 [0.99, 1.02]
Location: Taiwan	breath," Self reported " irritation of respiratory tract"	50th(Median): 53.81	Controlling for NO _X : 0.99 [0.97, 1.00]
	Age Groups: 24-55 yr (mean = 40)	75th: 70.37	Controlling for CO: 1.00 [0.99, 1.01]
	Study Design: Cohort	Range (Min, Max): 29.36, 99.58	Controlling for O ₃ : 1.00 [0.99, 1.02]
	N: 120 men (60 traffic policemen and 60 controls)	Monitoring Stations: 22 Copollutant (correlation): NO _x (r = 0.34)	
	Statistical Analyses: ANOVA, odds ratios calculated from 2X2 table	SO ₂ (r = 0.58) CO (r = 0.27) O ₃ (r = 0.28)	
	Dose-response Investigated? No	03 (1 0.20)	
Reference: Hwang et al, (2008,	Outcome: Oral Cleft	Pollutant: PM ₁₀	Increment: 10 μg/m³
134420) Paried of Study: 2001 2002	Study Design: Case-control	Averaging Time: hourly	Odds Ratio (Min CI, Max CI);
Period of Study: 2001-2003 Location: Taiwan	Covariates: Maternal age, plurality, gestational age, population density and season of conception	Mean (SD) Unit: Avg: 54.83 ± 13.07 μg/m ³ Spring: 64.44 ± 16.21 μg/m ³ Summer: 39.11 ± 8.31 μg/m ³	Single Pollutant Model Month 1: 1.01 (0.96-1.06) Month 2: 1.00 (0.95-1.05) Month 3: 0.99 (0.95-1.05)
	Statistical Analysis: Logistic regression	Fall: 47.76 ± 11.77 µg/m ³ Winter: 68.00 ± 21.88 µg/m ³	Two Pollutant Model (O ₃ + PM ₁₀) Month 1: 0.99 (0.94-1.04) Month 2: 0.99 (0.94-1.04)
	Age Groups: Infants	Range (Min, Max): Avg: 20.75-78.05 μg/m³ Spring: 23.33-94.33 μg/m³ Summer: 17.33-60.00 μg/m³ Fall: 21.00-72.00 μg/m³ Winter: 21.33-116.00 μg/m³	Month 3: 0.98 (0.93-1.04) Two Pollutant Model (CO + PM ₁₀) Month 1: 1.01 (0.96-1.06) Month 2: 1.00 (0.95-1.05) Month 3: 0.99 (0.95-1.05) Two Pollutant Model (NO _X + PM ₁₀) Month 1: 1.02 (0.97-1.08)
		Copollutant (correlation): CO: -0.19 NOx: 0.56 O ₃ : 0.39 SO ₂ : 0.50	Month 2: 1.01 (0.95-1.07) Month 3: 1.01 (0.95-1.07) Three Pollutant Model (O ₃ + CO + PM ₁₀) Month 1: 0.99 (0.94-1.04) Month 2: 0.99 (0.94-1.04) Month 3: 0.99 (0.93-1.04) Three Pollutant Model (O ₃ + NO _X + PM ₁₀) Month 1: 1.00 (0.94-1.06) Month 2: 0.98 (0.92-1.05) Month 3: 1.00 (0.93-1.06)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ingle et al. (2005, <u>089014</u>)	Outcome: Peak expiratory flow rate (PEFR), Forced Expiratory Volume in 1 second (FEV ₁), Forced Vital Capacity (FVC), Self reported "frequent coughing," Self reported "shortness of breath," Self reported "irritation of respiratory tract" Age Groups: 24-55 yr (mean = 40)	Pollutant: PM ₁₀	OR Estimate [p-value]
Period of Study: May 2003-Apr 2004		Mean (SD): Location-specific means:	Self reported frequent coughing 2.96 [p < 0.05]
Location: Jalgaon City, India		Prabhat: 224 (27)	Self reported shortness of breath
		Ajanta: 269 (41)	1.22 [p < 0.05] Self reported irritation in respiratory
		Icchdevi: 229 (24)	tract 7.5 [p < 0.05]
	Study Design: Cohort	Monitoring Stations: 3	Observed/expected lung function p-value for difference between groups:
	N : 120 men (60 traffic policemen and 60 controls)		FVC (L) Traffic policemen: 0.82 Controls: 0.99
	Statistical Analyses: ANOVA, odds ratios calculated from 2X2 table		Traffic policemen: Obs = 3.03 ± 1.7 Exp = 3.70 ± 2.8
	Dose-response Investigated? No		Controls: Obs = 3.18 ± 0.91 Exp = 3.19 ± 1.71 FEV ₁ (L) Traffic policemen: 0.73 Controls: 1.18 Traffic policemen: Obs = 2.27 ± 1.05 Exp = 3.08 ± 2.7 Controls: Obs = 3.61 ± 0.90 Exp = 3.06 ± 0.91 PEFR (L/s) Traffic policemen: 0.66 Controls: 0.92 Traffic policemen: Obs = 6.05 ± 2.15 Exp = 9.21 ± 0.47 Controls: Obs = 5.54 ± 1.85 Exp = 6.11 ± 2.31
Reference: Islam et al. (2007, <u>090697</u>)	Outcome: Respiratory symptoms, Asthma	Pollutants: PM ₁₀	The study doesn't present quantitative results on PM ₁₀ .
Period of Study: 2006		Averaging Time: 24-h avg	results of Fivi ₁₀ .
Location: 12 California communities	Study Design: Longitudinal study cohort	Copollutants (correlation): O ₃	
	Statistical Analyses: Cox proportional hazards regression	NO ₂	
	Age Groups:	EC	
	7-9 10-11 >11	ОС	

Design & Methods Concentrations¹ Effect Estimates (95% CI) Study Pollutant: PM_{2.5} Reference: Janssen et al. (2003, Outcome: Symptoms of asthma and PM Increment: 'Difference between the maximum and the minimum of the allergic disease (asthma, conjunctivitis, hay fever, tichy rash, eczema, phlegm, bronchitis), skin prick test (SPT) reaction to allergens, lung function (forced vital capacity [FVC], forced expiratory volume in 1 second [FEV.], and positive test fee full in EEV. Averaging Time: Annual exposure indicator' (3.5 μg/m³) Period of Study: Apr 1997-Jul 1998 Mean (SD): 20.5 μg/m³ (2.2) RR Estimate [Lower CI, Upper CI] Location: Netherlands-24 schools lag: Percentiles: Current wheeze 1.51 (0.90, 2.53) and positive test for fall in FEV₁ ≥ 15% 25th: 18 6 Asthma ever 1.03 (0.59, 1.82) Current conjunctivitis 2.08 (1.17, 3.71) Hay fever ever 2.28 (1.13, 4.57) after inhalation of maximal 23 mL 50th (Median): 20.4 hypertonic saline [BHR = bronchial hyper-responsiveness]) Current itchy rash 1.63 (0.91, 2.89) 75th: 22.1 Eczema ever 1.31 (0.94, 1.83) Current phlegm 1.53 (0.74, 3.19) Current bronchitis 1.71 (0.84, 3.50) Age Groups: 7-12 yr old Range (Min, Max): Study Design: Cohort 17.3, 24.4 Elevated total IgE 1.45 (0.74, 2.84) Any allergen (spt reactivity) 1.33 (0.83, N: 24 schools (see notes) Statistical Analyses: Multilevel model Indoor allergens (spt reactivity) 1.17 (0.70, 1.94)Covariates: Age, sex, non-Dutch Outdoor allergens (spt reactivity) 1.90 nationality, cooking on gas, current (1.06, 3.40) parental smoking, current pet possession, parental education level, FVC < 85% predicted 0.54 (0.29, 1.00) FEV₁ < 85% predicted 0.88 (0.37, 2.09) BHR 0.93 (0.51, 1.68) number of persons in the household. presence of an unvented water heater in kitchen, questionnaire not filled out Notes: by the mother, presence of mold stains in kitchen or living room or bedroom, parental respiratory symptoms, distance of home to motorway, cough or cold at Fig 1 of the article illustrates the association between exposures, including PM_{2.5}, and various respiratory symptoms among children with and time of lung function measurement. without a positive SPT and positive BHR. In general, the association between PM_{2.5} and respiratory bronchitis or severe cold or flu in 3 wk preceding measurement, season symptoms were higher for children with a positive SPT or BHR, except for the Dose-response Investigated? No outcome of current phlegm. This effect Statistical Package: MLwiN appeared to be the strongest for children with a positive BHR, particularly for current wheeze and current bronchitis. The authors also reported separate analyses for children with SPT reactivity for indoor and outdoor allergens, but did not report any clear differences between the two groups. The authors did report, in the text, that the OR of PM_{2.5} exposure for children sensitized for outdoor allergens was 7.64 for current itchy rash (p < 0.05).

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Kan, et al. (2007, <u>091383</u>)	Outcome: FEV ₁ and FVC	Pollutant: PM ₁₀	RR Estimate (Lower CI, Upper CI):
Period of Study: 1987-1992	Age Groups: Middle-aged (mean age was 54.2 yr)	Averaging Time: 24-h PM ₁₀ averaged over study period	(Note: for ARIC participants living <150 meters from major roads)
Location: Four Communities in the U.S.: Forsyth County, North Carolina	Study Design: Hierarchical regression	PM Component: Vehicle emissions	Women FEV₁(mL)
Jackson, Mississippi	N : 15,792	Monitoring Stations: 0	Age-adjusted model -29.5 (-52.2 to -6.9)
northwest suburbs of Minneapolis, Minnesota	Statistical Analyses: SAS PROC MIXED	Copollutant:	Multivariate model -15.7 (-34.4 to -2.9) FVC (mL)
and Washington County, Maryland.	Covariates: Distance to major roads, traffic exposure, age, ethnicity, sex, smoking, environmental tobacco smoke exposure, occupation, education, medical history, BMI.	NO ₂ O ₃	Age-adjusted model -33.2 (-60.4 to -5.9) Multivariate model -24.2 (-46.2, -2.3) FEV ₁ /FVC (%) Age-adjusted model
	Dose-response Investigated? No		-0.1(-0.5,0.2) Multivariate model
	Statistical Package:		0.1 (-0.3,0.4)
	SPSS Version 11 for traffic density,		Men FEV₁(mL)
	SAS Version 9.1.2 for statistical analysis		Age-adjusted model -38.4 (-76.7,0.6) Multivariate model -6.4 (-38.1,25.3) FVC (mL) Age-adjusted model -17.0(-62.0,28.0) Multivariate model 10.9(-24.7,46.5) FEV ₁ /FVC (%) Age-adjusted model -0.05 (-0.9,0.0) Multivariate model -0.03 (-0.7,0.2)
Reference: Kim et al. (2005, <u>087418</u>)	Outcome: Lung function (FEV ₁ , FVC)	Pollutant: PM ₁₀	PM Increment: NR
Period of Study: Mar and Dec 2000	Age Groups: Middle school students	Averaging Time: Monthly	OR Estimate [Lower CI, Upper CI]:
Location: Incheon & Ganghwa, Korea	Study Design: Panel	Mean (SD): Incheon	"The present study showed that the
	N: 368 children	Mar 64 Dec 54	values of FEV ₁ and FVC were greater in Dec than in Mar for both male and
	Statistical Analyses: Generalized liner model	Ganghwa	female students at all academic yrBecause only the level of PM ₁₀ was significantly higher for Mar than for Dec
	Covariates: Gender, grade	Mar 64 Dec 53	in both areas, the authors suggest that decrements of pulmonary function in
	Season: Spring and fall	Range (Min, Max): NR	Mar for both areas are associated with
	Dose-response Investigated? No		the increased level of PM ₁₀ "
	Statistical Package: SAS		
Reference: Kim et al. (2004, <u>087383</u>)	Outcome: Asthma, bronchitis	Pollutant: PM ₁₀	PM Increment: 1.4 (IQR)
Period of Study: Mar-Jun (spring) 2001	Age Groups: Children (in grades 3-5)	Averaging Time: 9 wk	OR Estimate [Lower CI, Upper CI]:
Sep-Nov (fall) 2001	Study Design: Cross-sectional	Mean (SD): Study Avg 30	Bronchitis All subjects: 1.03 [0.99, 1.07]
Location: Alameda County, CA	N: 1109 children, 871 (long term resident children), 462 (long term	Monitoring Stations: 10	LTR subjects: 1.02 [0.98, 1.07] LTR females: 1.04 [1.01, 1.09]
Location. Alameda County, CA	related females), 403 (long term related males)	Copollutant (correlation): r2 is approximately 0.9 for all copollutants – BC, PM _{2.5} , NO _x , NO ₂ , NO (NO _x -NO ₂)	LTR males: 1.01 [0.95, 1.06] Asthma All subjects: 1.02 [0.96, 1.09]
	Statistical Analyses: 2-stage multiple logistic regression model	25,25, 110 4, 1102, 110 (110 4 1102)	LTR subjects: 1.04 [0.97, 1.12] LTR females: 1.09 [0.92, 1.29]
	Covariates: Respiratory illness before age of 2, household mold/moisture, pests, maternal history of asthma (for asthma) Season: Spring and fall		LTR males: 1.02 [0.94, 1.10] Asthma excluding outlier school having a larger proportion of Hispanics All subjects: 1.06 [0.97, 1.16] LTR subjects: 1.08 [0.98, 1.19]
	, , ,		
	Dose-response Investigated? Yes		LTR females: 1.09 [0.96, 1.24] LTR males: 1.08 [0.97, 1.19]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Kumar et al. (2004, 189873) Period of Study: 1999-2001 Location: Mandi Gobindgarh and Morinda, Punjab State, northern India	Outcome: Chronic respiratory symptoms & Spirometric ventilatory defect Age Groups: >15 yr Study Design: Cross-sectional N: 3603 individuals Statistical Analyses: Logistic regression Covariates: Age, gender, migration, SES, smoking, type of cooking fuel use	Pollutant: PM ₁₀ Mean (SD): Study town 112.8 (17.9) Reference town 75.8 (2.9)	PM ₁₀ Increment: Low vs. High OR (Lower CI, Upper CI) p-value Chronic respiratory symptoms Low 1.00 (ref) High 1.5 (1.2, 1.8) <0.001 Spirometric ventilatory defect Low 1.00 (ref) High 2.4 (2.0-2.9) <0.001
	Dose-response Investigated? No		
Reference: Leonardi et al. (2000, 210272) Period of Study: 1996 Location: 17 cities of Central Europe Bulgaria, Czech Republic, Hungary , Poland, Romania, Slovakia) Reference: Lichtenfels et al, (2007, 197041) Period of Study: 2001-2003	Outcome: Immune biomarkers Age Groups: 9-11 Study Design: Cross-sectional N: 366 school children Statistical Analyses: Linear regression Covariates: Age, gender, parental smoking, laboratory of analysis, recent respiratory illness Dose-response Investigated? No Statistical Package: STATA Outcome: Secondary sex ratio Study Design: Retrospective Cohort Covariates: NR	Pollutant: PM ₁₀ Averaging Time: Annual PM ₁₀ Mean (SD): PM ₁₀ : 65 (14) Range (Min, Max): PM ₁₀ : (41, 96) 5th, median, & 95th percentile PM ₁₀ : 41, 63, 90 Pollutant: PM ₁₀ Averaging Time: Annual Mean (SD) Unit: 2001: 40.8 (40.8) unit:	% Change (Lower CI, Upper CI) p-value PM ₁₀ Neutrophils -5 (-33, 36) > .20 Total lymphocytes 20 (-6, 54); .150 B lymphocytes 42 (-3, 107); .067 Total T lymphocytes 30 (-2, 73); .072 CD4+ 28 (-10, 82); .177 CD8+ 29 (-5, 75); .097 CD4/CD8 7 (-20, 43) > .20 NK 33 (-10, 97); .157 Total IgG 11 (-10, 38) > .20 Total IgM 5 (-21, 39) > .20 Total IgM 5 (-62, 123) > .20 Increment: NR Correlation Coefficient: R2 = 0.7642, P = 0.13
Location: São Paulo, Brazil	Statistical Analysis: Correlation Coefficient Age Groups: Infants	2001: 49.8 (10.5) μg/m ³ 2002: 48.5 (11.4) μg/m ³ 2003: 49.4 (14.4) μg/m ³ Range (Min, Max): 31.71-60.96 μg/m ³ Copollutant (correlation): NR	,
Reference: Lubinski, et al. (2005, 087563) Period of Study: 1993-1997 Location: Poland	Outcome: Pulmonary function TLC: total lung capacity ITGV: interthoracic gas volume ITGV%TLC: ITGV percent total lung capacity Raw: airway resistance FVC: forced vital capacity FEV; forced expiratory volume, 1 second FEV;%FVC: FEV1 percent forced vital capacity PEF: peak expiratory flow FEF50: forced expiratory flow Age Groups: 18-23 males, healthy Study Design: Ecological cross-sectional study N: 1278 subjects Statistical Analyses: Multiple linear regression, ANOVA Covariates: Report unclear on whether or not there was covariate control, but may include NO2 and SO2 Dose-response Investigated? No	Pollutant: PM ₁₀ Averaging Time: 12 mo Mean (SD): A: Highest Pollution Region Katowice 67-125 Krakow 41-49 B: Moderate Pollution Region Bielsko-Biala 29-48 Opole 18-45 Lodz 23-38 Warsaw 35-45 Wroclaw 28-76 Zagan 5-35 C: Lowest Pollution Region Gizycko 5-18 Hel 12-18 Ostroda 23-33 Swinoujscie 7-16 Ustka 12-26 Copollutant: NO ₂ , SO ₂	PM Increment: 1 µg/m³ Slope, multiple regression TLC FEV1 PM10: -0.05 PM10: 0.031 +SO2: 0.03 +SO2: -0.08 +NO2: -0.16 +NO2: -0.12 ITGV FEV1/FVC PM10: 0.01 PM0: 0.00 +SO2: -0.07 +SO2: -0.14 +NO2: -0.07 +NO2: -0.048 ITGV/TLC PEF PM10: -0.06 PM10: -0.18 +SO2: 0.08 +SO2: 0.056 +NO2: 0.00 +NO2: -0.09 Raw FEF50 PM10: 0.075 PM10: 0.031 +SO2: -0.08 +SO2: -0.11 +NO2: 0.127 +NO2: -0.04 FVC PM10: 0.045 +SO2: 0.045 +NO2: -0.14

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: McConnell et al. (1999, 007028)	Outcome: Bronchitis, chronic cough, phleam	Pollutant: PM ₁₀	PM ₁₀ Increment: 19 μg/m ³
Period of Study: 1993 Location: Southern California	Age Groups: Children: 4th, 7th, & 10th	Averaging Time: Yearly avg 24 h PM ₁₀	Children w/ asthma Bronchitis: 1.4 (1.1,1.8)
	graders	Mean (SD): 34.8	Phlegm: 2.1 (1.4, 3.3) Cough: 1.1 (0.8, 1.7)
	Study Design: Cross-sectional	Range (Min, Max): 13.0, 70.7	Children w/ wheeze, no asthma Bronchitis: 0.9 (0.7, 1.3)
	N : 3676 people	Copollutant (correlation): NO ₂ r = 0.74	Phlegm: 0.9 (0.6, 1.4)
	Statistical Analyses: Logistic regression	O_3 r = 0.32 Acid r = 0.54 $PM_{2.5}$ r = 0.90	Cough: 1.2 (0.9, 1.8) Children w/ no wheeze, no asthma Bronchitis: 0.7 (0.4, 1.0)
	Covariates: Age, sex, race, grade, health insurance	$NO_2 r = 0.83$ $O_3 r = 0.50$ Acid $r = 0.71$	Phlegm: 0.8 (0.6, 1.3) Cough: 0.9 (0.7, 1.2)
	Dose-response Investigated? Yes	AGU 1 - 0.71	
Reference: McConnell et al. (2003,	Outcome: Bronchitis symptoms	Pollutant: PM ₁₀	PM Increment:
049490)	Age Groups: 9-19	Averaging Time: 4-yr avg	Between community range 47.8 μg/m ³
Period of Study: 1993-1999	Study Design: Communities selected	Mean (SD): .30.8(13.4) μg/m ³	Between community unit 1 μg/m³
Location: 12 Southern CA communities	on basis of historic levels of criteria pollutants and low residential mobility.	Range (Min, Max): 15.7-63.5	Within community 1 µg/m³
	N: 475 children	PM Component: particulate OC and EC	OR Estimate [Lower CI, Upper CI]
	Statistical Analyses: 3 stage regression combined to give a logistic	Copollutant (correlation): PM _{2.5} : r = 0.79	Between community per range 1.72(0.93-3.20)
	mixed effects model	$PM_{10-2.5}$: $r = 0.79$	Between Community per unit 1.01(1.00-
	Covariates: Sex, ethnicity, allergies history, asthma history, SES, insurance status, current wheeze, current exposure to ETS, personal smoking status, participation in team sports, in utero tobacco exposure through maternal smoking, family history of	Inorganic acid: r = 0.72	1.02)
		Organic Acid: r = 0.59	Within community per unit 1.04(0.99-1.10)
		EC: r = 0.71	
		OC: r = 0.70	
	asthma, amount of time routinely spent outside by child during 2-6 pm.	NO_2 : $r = 0.20$	
	Dose-response Investigated? No	O ₃ : r = 0.64	
	Statistical Package: SAS Glimmix macro		
Reference: McConnell et al. (2002,	Outcome: Asthma (new diagnosis)	Pollutant: PM ₁₀	RR Estimate [Lower CI, Upper CI]
023150)	Age Groups: 9-12 yr, 12-13 yr, 15-16 yr	Averaging Time: 4 yr	lag:
Period of Study: 1993-1998	Study Design: Cohort	Mean (SD): Low pollution communities:	Low PM communities: 1.0 [ref] 0 sport 1.5 [1.0, 2.2] 1 sport
Location: 12 communities in Southern California (grouped into either high and	N: 3535	21.6 (3.8)	1.2 [0.7, 1.9] 2 sports 1.7 [0.9, 3.2] ≥ 3 sports
low pollution communities)	Statistical Analyses: Multivariate proportion hazard model	High pollution communities: 43.3 (12.0)	High PM communities: 1.0 [ref] 0 sport 1.1 [0.7, 1.7] 1 sport 0.9 [0.5, 1.7] 2 sports
	Covariates: Sex, age, ethnic origin, BMI, child history of allergies and	Percentiles: Low pollution communities: 50th(Median): 20.8	2.0 [1.1, 3.6] ≥3 sports
	asthma history, ŚES, maternal smoking, time spent outside, history of wheezing, ownership of insurance (yes/no),	High pollution communities: 50th(Median): 43.3	High vs. Low PM ₁₀ communities: 0.8 (0.6, 1.0)
	number and type of sports played	Range (Min, Max): Low pollution communities: 16.62, 27.3	Incidence-N (incidence) number of sports:
	Dose-response Investigated? Yes	High pollution communities: 33.5, 66.9	Low PM communities: 49 (0.023) 0 54 (0.032) 1
	Statistical Package: SAS 8.1	Monitoring Stations: 12	22 (0.024) 2 13 (0.033) ≥3
		Copollutant (correlation): PM _{2.5} : r = 0.96 NO ₂ : r = 0.65	High PM communities: 55 (0.021) 0 36 (0.021) 1 14 (0.018) 2
		O ₃	16 (0.033) ≥3

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: McConnell, et al. (2006,	Outcome: Prevalence of bronchitic	Pollutant: PM ₁₀	PM Increment: 6.1 μg/m ³
<u>180226</u>)	symptoms (yrly).	Averaging Time: 365 days	OR Estimate [Lower CI, Upper CI] PM ₁₀ Dog (n = 292): 1.60 [1.12: 2.30]
Period of Study: 1996-1999	Age Groups: 10-15-yr-old	Percentiles: Community by yr	
Location: 12 Southern California communities	Study Design: Longitudinal cohort	$(n = 48 = 12 \text{ communities} \cdot 4 \text{ yr})$	No dog (n = 183): 0.89 [0.57: 1.39] PM ₁₀ *Dog interaction p-value: 0.02
oonmana oo	N: 475 asthmatic children	25th: NR	Cat (n = 202): 1.47 [0.96: 2.24] No Cat (n = 273): 1.20 [0.83: 1.73]
	Statistical Analyses: Multilevel logistic mixed effects models.	50th(Median): 3.4	PM ₁₀ *Cat interaction p-value: 0.41 Neither pet (n = 112): 0.91 [0.53: 1.56] Cat only (n = 71): 0.84 [0.42: 1.66]
		75th: NR	
	Covariates: Age, second-hand smoke	Range (Min, Max):	Dog only (n = 161): 1.41 [0.91: 2.19] Both pets (n = 131): 1.89 [1.15: 3.10]
	Personal smoking history Sex, race.	Community by yr (n = 48 = 12 communities · 4 yr):	Results suggest that dog ownership, a
	Dose-response Investigated? No	(0.89, 8.7)	source of residential exposure to endotoxin, may worsen the severity of
	Statistical Package: SAS with	Monitoring Stations: 12	respiratory symptoms from exposure to air pollutants in asthmatic children.
	GLIMMIX macro	Copollutant: O ₃ , NO ₂ , EC, OC, Acid vapor (acetic and formic acid)	
Reference: Meng et al. (2007, <u>093275</u>)		Pollutant: PM ₁₀	PM Increment: Continuous data: per
Period of Study: Nov 2000 and Sep	controlled asthma	Averaging Time: 24 h over 1 yr	10 μg/m³
2001 (collection of health data)	Age Groups: 18-64, 65+	Copollutant (correlation):	OR Estimate [Lower CI, Upper CI]
Location: Los Angeles and San Diego counties	Study Design: Long-term exposure study	O ₃ : r = -0.72	lag:
odunico	Comparison of cases and controls	NO ₂ : r = 0.83	All Adults: 1.08 [0.82, 1.43]
	N: 1,609 adults (represented individuals	PM _{2.5} : r = 0.84	Non-Elederly Adults: 1.14 [0.84, 1.55]
	age 18+ who reported ever having been	CO: r = 0.42	Elderly: 0.84 [0.41, 1.73]
	diagnosed as having asthma by a physician and had their address	TD: r = 0.14	Women: 1.38 [0.99, 1.94]
	successfully geocoded)	15.1 0.14	
	Statistical Analyses: Logistic regression to evaluate associations between TD (traffic density) and annual avg air pollution concentrations and poorly controlled asthma. Used sample weights that adjusted for unequal probabilities of selection into the CHIS sample.		
	Covariates: Age, sex, race/ethnicity, family federal poverty level, county, insurance status, delay in care for asthma, taking medications, smoking behavior, self-reported health status, employment, physical activity		
	Dose-response Investigated? yes		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Millstein et al. (2004, 088629)	Outcome: Wheezing & asthma medication use (ICD9 NR)	Pollutant: PM ₁₀	PM Increment: IQR 13.39 µg/m ³
Period of Study: Mar-Aug, 1995, and Sep 1995-Feb 1996	Age Groups: 4th grade students, mostly 9 yr at the time of the study	Averaging Time: Monthly means for PM ₁₀ . PM Component: Nitric acid, formic acid, acetic acid	Odds Ratio [lower CI, Upper CI] Annual PM ₁₀ : 0.93 [0.67, 1.27]
Data were taken from the Children's Health Study	Study Design: Cohort Study, stratified into 2 seasonal groups/		
Location: Alpine, Atascadero, Lake	N: 2081 enrolled, 2034 provided parent-	Monitoring Stations:	Mar-Aug
Arrowhead, Lake Elsinore, Lancaster, Lompoc, Long Beach, Mira Loma,	completed questionnaire.	1 central location in each community	PM ₁₀ : 0.91 [0.46, 1.80]
Riverside, San Dimas, Santa Maria, and	Statistical Analyses: Multilevel, mixed- effects logistic model.	Copollutant (correlation):	Sep-Feb
Jpland, CA	Covariates: Contagious respiratory	O ₃ : r = 0.76	PM ₁₀ : 0.65 [0.40, 1.06]
	disease, ambient airborne pollen and other allergens, temperature, sex, age race, allergies, pet cats, carpet in home, environmental tobacco smoke, heating fuel, heating system, water damage in home, education level of questionnaire signer, physician diagnosed asthma.	NO_2 : $r = 0.39$ $PM_{2.5}$: $r = 0.91$	
	Season: Mar-Aug, 1995, and Sep, 1995 to Feb, 1996		
	Statistical Package: GLIMMIX SAS 8.00 macro for generalized linear mixed models.	ı	
	Lags Considered: 14		
Reference: Neuberger et al. (2004, 093249)	Outcome: Questionnaire derived asthma score, and a 1-5 point	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: Jun 1999-Jun 2000	respiratory health rating by parent	Averaging Time: 24 h	Change in mean associated unit increase in PM (p-value) lag
ocation: Austria (Vienna and a rural	Age Groups: 7-10 yr	Copollutant (correlation): PM _{2.5} (r = 0.94) in Vienna	Respiratory Health score
area near Linz)	Study Design: Cross-sectional survey		Vienna: 0.005 (p>0.05)
	N: about 2000 children		lag 4 week avg
	Statistical Analyses: Mixed models linear regression-used factor analysis to develop the "asthma score"		Rural area: 0.008 (p>0.05)
			lag 4 week avg
	Covariates: Pre-existing respiratory conditions, temperature, rainy days, # smokers in household, heavy traffic on residential street, gas stove or heating, molds, sex, age of child, allergies of child, asthma in other family members		Asthma score
			Vienna: 0.006 (p>0.05)
			lag 4 week avg
			Rural area: -0.001 (p>0.05)
	Dose-response Investigated? No Statistical Package: NR		lag 4 week avg
	Lags Considered: 4 week avg (preceding interview)		
Reference: Oftedal et al. (2008, 093202)	Outcome: Lung function (PEF, FEF25%, FEF50%, FEV ₁ , FVC)	Pollutant: PM ₁₀	PM Increment: Per IQR
Period of Study: 2001-2002	Age Groups: 9-10 yr	IQR:	β (Lower CI, Upper CI) PM ₁₀ in 1st yr of life
ocation: Oslo, Norway	Study Design: Cross-sectional	PM ₁₀ in 1st yr of life: 10.3	PEF -72.5 (-122.3 to -22.7) FEF25% -77.4 (-133.4 to -21.4)
	N: 1847 children	PM ₁₀ lifetime: 5.8	FEF50% -53.9 (-102.6. to -5.2)
	Statistical Analyses: Linear regression		FEV ₁ -6.7 (-24.1, 10.7) FVC 0.5 (-18.5, 19.6)
	Covariates: Height, age, BMI, birth weight, temperature, maternal smoking, sex		PM ₁₀ lifetime exposure PEF -66.4 (-109.5 to -23.3) FEF25% -61.5 (-110.0 to -13.1)
	Dose-response Investigated? Yes		FEF50% -45.6 (-87.7 to -3.5) FEV ₁ -7.3 (-22.4, 7.7)
	Statistical Package: SPSS, STATA, S-Plus		FVC -2.1 (-18.6, 14.4)
	Lags Considered: 1-3		

Outcome: Respiratory allergy/hayfever Study Design: Cohort Covariates: Survey yr, age, family structure, usual source of care, health insurance, family income relative to federal poverty level, race/ethnicity Statistical Analysis: Logistic regression Statistical Package: SUDAAN Age Groups: 73,198 children aged 3-17 yr Outcome: Flexural dermatitis Asthma (493) Rhinoconjunctivitis Atopic dermatitis Wheeze Allergic rhinitis Atopy EIB (exercise-induced bronchial reactivity)	Pollutant: PM ₁₀ Averaging Time: NR Median: 24.1 µg/m³ IQR: 20.8-28.7 Copollutant (correlation): Summer O ₃ : 0.26 SO ₂ : -0.19 NO ₂ : 0.48 PM _{2.5} : 0.51 PM _{10-2.5} : 0.86 Pollutant: PM ₁₀ Averaging Time: 3 yr Mean (SD): Low concentrations: 26.9	Increment: 10 μg/m³ Odds Ratio (95% CI) Single Pollutant Model, variable N Adjusted: 1.04 (0.99-1.09) PM Increment: 10 μg/m³ (IQR) OR Estimate [Lower CI, Upper CI] EIB (during exam): 1.43 (1.02-2.01)
Covariates: Survey yr, age, family structure, usual source of care, health insurance, family income relative to federal poverty level, race/ethnicity Statistical Analysis: Logistic regression Statistical Package: SUDAAN Age Groups: 73,198 children aged 3-17 yr Outcome: Flexural dermatitis Asthma (493) Rhinoconjunctivitis Atopic dermatitis Wheeze Allergic rhinitis Atopy EIB (exercise-induced bronchial reactivity)	Median: 24.1 µg/m³ IQR: 20.8-28.7 Copollutant (correlation): Summer O ₃ : 0.26 SO ₂ : -0.19 NO ₂ : 0.48 PM _{2.5} : 0.51 PM _{10-2.5} : 0.86 Pollutant: PM ₁₀ Averaging Time: 3 yr Mean (SD): Low concentrations: 26.9	Single Pollutant Model, variable N Adjusted: 1.04 (0.99-1.09) PM Increment: 10 µg/m³ (IQR) OR Estimate [Lower CI, Upper CI]:
structure, usual source of care, héalth insurance, family income relative to federal poverty level, race/ethnicity Statistical Analysis: Logistic regression Statistical Package: SUDAAN Age Groups: 73,198 children aged 3-17 yr Outcome: Flexural dermatitis Asthma (493) Rhinoconjunctivitis Atopic dermatitis Wheeze Allergic rhinitis Atopy EIB (exercise-induced bronchial reactivity)	IQR: 20.8-28.7 Copollutant (correlation): Summer O ₃ : 0.26 SO ₂ : -0.19 NO ₂ : 0.48 PM _{2.5} : 0.51 PM _{10-2.5} : 0.86 Pollutant: PM ₁₀ Averaging Time: 3 yr Mean (SD): Low concentrations: 26.9	Adjusted: 1.04 (0.99-1.09) PM Increment: 10 μg/m³ (IQR) OR Estimate [Lower CI, Upper CI]:
insurance, family income relative to federal poverty level, race/ethnicity Statistical Analysis: Logistic regression Statistical Package: SUDAAN Age Groups: 73,198 children aged 3-17 yr Outcome: Flexural dermatitis Asthma (493) Rhinoconjunctivitis Atopic dermatitis Wheeze Allergic rhinitis Atopy EIB (exercise-induced bronchial reactivity)	Copollutant (correlation): Summer O ₃ : 0.26 SO ₂ : -0.19 NO ₂ : 0.48 PM _{2.5} : 0.51 PM _{10-2.5} : 0.86 Pollutant: PM ₁₀ Averaging Time: 3 yr Mean (SD): Low concentrations: 26.9	PM Increment: 10 μg/m³ (IQR) OR Estimate [Lower CI, Upper CI]:
regression Statistical Package: SUDAAN Age Groups: 73,198 children aged 3-17 yr Outcome: Flexural dermatitis Asthma (493) Rhinoconjunctivitis Atopic dermatitis Wheeze Allergic rhinitis Atopy EIB (exercise-induced bronchial reactivity)	SO ₂ : -0.19 NO ₂ : 0.48 PM _{2.5} : 0.51 PM _{10-2.5} : 0.86 Pollutant: PM ₁₀ Averaging Time: 3 yr Mean (SD): Low concentrations: 26.9	OR Estimate [Lower CI, Upper CI]
Age Groups: 73,198 children aged 3-17 yr Outcome: Flexural dermatitis Asthma (493) Rhinoconjunctivitis Atopic dermatitis Wheeze Allergic rhinitis Atopy EIB (exercise-induced bronchial reactivity)	PM _{10-2.5} : 0.86 Pollutant: PM ₁₀ Averaging Time: 3 yr Mean (SD): Low concentrations: 26.9	OR Estimate [Lower CI, Upper CI]
3-17 yr Outcome: Flexural dermatitis Asthma (493) Rhinoconjunctivitis Atopic dermatitis Wheeze Allergic rhinitis Atopy EIB (exercise-induced bronchial reactivity)	Pollutant: PM ₁₀ Averaging Time: 3 yr Mean (SD): Low concentrations: 26.9	OR Estimate [Lower CI, Upper CI]
Flexural dermatitis Asthma (493) Rhinoconjunctivitis Atopic dermatitis Wheeze Allergic rhinitis Atopy EIB (exercise-induced bronchial reactivity)	Averaging Time: 3 yr Mean (SD): Low concentrations: 26.9	OR Estimate [Lower CI, Upper CI]
Asthma (493) Rhinoconjunctivitis Atopic dermatitis Wheeze Allergic rhinitis Atopy EIB (exercise-induced bronchial reactivity)	Mean (SD): Low concentrations: 26.9	
Atopic dermatitis Wheeze Allergic rhinitis Atopy EIB (exercise-induced bronchial reactivity)	, ,	EIB (during exam): 1.43 (1.02-2.01)
Wheeze Allergic rhinitis Atopy EIB (exercise-induced bronchial reactivity)	High Concentrations: 22.0	
Atopy EIB (exercise-induced bronchial reactivity)	High Concentrations: 23.8	Flexural dermatitis (during exam): 0.79 (0.59-1.07)
reactivity)	Range (Min, Max):	Wheeze (past yr): 1.05 (0.72-1.54) Asthma (past yr): 1.23 (0.77-1.95)
		Rhinoconjunctivitis (past yr):
Age Groups: 9-11 yr		1.17 (0.86-1.59) Atopic dermatitis (past yr):
Study Design: Cross-sectional	9	1.28 (0.96-1.71) Asthma (lifetime): 1.32 (0.96-1.81)
N: 9615 Children (6672 complete	. , , ,	Allergic rhinitis (lífetime):
examination and questionnaire info)	-	1.32 (1.04-1.68) Atopic dermatitis (lifetime):
Statistical Analyses: Logistic regression	_	1.09 (0.88-1.36) Atopy (lifetime): 0.98(0.80-1.22)
•	-	Pollen: 1.14 (0.85-1.53) Indoor: 0.91 (0.72-1.15)
Covariates: Age, Sex, Family history of	Monitoring Stations. 10	Moulds: 1.00 (0.53-1.88) Highest correlated pollutant adjustments:
•		ElB (during exam): 1.16 (0.72-1.85)
Season: All		Flexural dermatitis (during exam): 0.93 0(.60-1.43)
Excluding end of spring and during summer for clinical examinations		Wheeze (past yr): 1.31 (0.71-2.36) Asthma (past yr): 1.25 (0.66-2.37) Rhinoconjunctivitis (past yr):
Dose-response Investigated? No		1.22 (0.98-1.68)
Statistical Package: SAS		Atopic dermatitis (past yr): 1.63 (1.07-2.49) Asthma (lifetime): 1.11 (0.70-1.74) Allergic rhinitis (lifetime): 1.19 (0.94-1.59) Atopic dermatitis (lifetime): 1.47 (1.07-2.00) Atopy (lifetime): 0.93(0.69-1.26) Pollen: 1.30 (0.98-1.57) Indoor: .83 (0.63-1.12) Molds: 1.62 (0.64-4.09)
Outcome: Asthma, cough, bronchitis, wheeze	Pollutant: PM ₁₀	PM Increment: 25 μg/m ³
Age Groups: 4th, 7th, & 10th graders	Averaging Time: 24-h PM ₁₀ averaged over 1994	OR (Lower CI, Upper CI) for respiratory illness
Study Design: Cohort	Mean based on data collected during	Based on 1986-1990 pollutant levels Ever asthma 0.93 (0.76, 1.13)
N: 3676 children		Current asthma 1.09 (0.86, 1.37)
Statistical Analyses: Stepwise logistic regression	Atascadero 28.0, 20.7 Lake Elsinore 59.5, 34.7	Bronchitis 0.94 (0.74, 1.19) Cough 1.06 (0.93, 1.21) Wheeze 1.05 (0.89, 1.25) Based on 1994 pollutant levels
Covariates: Community, grade, race, sex, height, BMI, asthma in parents, hay fever, health insurance, plants in home, mildew in home, passive smoke exposure, pest infestation, carpet, vitamin supplements, active smoking, pets, gas stove, air conditioner	Lancaster 47.0, 33.6 Lompoc 30.0, 13.0 Long Beach 49.5, 38.8 Mira Loma 84.9, 70.7 Riverside 84.9, 45.2 San Dimas 67.0, 36.7 Santa Maria 28.0, 29.2	Ever asthma 0.87 (0.67, 1.14) Current asthma 1.11 (0.81, 1.54) Bronchitis 0.90 (0.65, 1.26) Cough 1.14 (0.96, 1.35) Wheeze 1.01 (0.79, 1.29)
	Age Groups: 9-11 yr Study Design: Cross-sectional N: 9615 Children (6672 complete examination and questionnaire info) Statistical Analyses: Logistic regression Marginal Model (GENMOD) Covariates: Age, Sex, Family history of allergy, Passive smoking Parental education Season: All Excluding end of spring and during summer for clinical examinations Dose-response Investigated? No Statistical Package: SAS Outcome: Asthma, cough, bronchitis, wheeze Age Groups: 4th, 7th, & 10th graders Study Design: Cohort N: 3676 children Statistical Analyses: Stepwise logistic regression Covariates: Community, grade, race, sex, height, BMI, asthma in parents, hay fever, health insurance, plants in home, mildew in home, passive smoke exposure, pest infestation, carpet, vitamin supplements, active smoking,	Age Groups: 9-11 yr Study Design: Cross-sectional N: 9615 Children (6672 complete examination and questionnaire info) Statistical Analyses: Logistic regression Marginal Model (GENMOD) Covariates: Age, Sex, Family history of allergy, Passive smoking Parental education Season: All Excluding end of spring and during summer for clinical examinations Dose-response Investigated? No Statistical Package: SAS Outcome: Asthma, cough, bronchitis, wheeze Age Groups: 4th, 7th, & 10th graders Study Design: Cohort N: 3676 children Statistical Analyses: Stepwise logistic regression Covariates: Community, grade, race, sex, height, BMI, asthma in parents, hay fever, health insurance, plants in home, mildew in home, passive smoke exposure, pest infestation, carpet, vitamin supplements, active smoking, pets, gas stove, air conditioner High concentrations: 21.5-29.5 Copollutant (correlation): NO2: r = .46 SO2: r = .76 Oa: r = .02 Monitoring Stations: 16 Averaging Time: 24-h PM10 averaged over 1994 Mean based on data collected during 1986-1990, 1994: Alpine 37.4, 21.3 Atascadero 28.0, 20.7 Lake Elsinore 59.5, 34.7 Lake Gregory 38.3, 24.2 Lancaster 47.0, 33.6 Lompoc 30.0, 13.0 Long Beach 49.5, 38.8 Mira Loma 84.9, 70.7 Riverside 84.9, 45.2 Sant Dimas 67.0, 36.7 Santa Maria 28.0, 29.2 Lilland, 75.6, 49.0

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Pierse, et al. (2006,	Outcome: Cough without a cold	Pollutant: PM ₁₀	PM Increment: 10 µg/m³ (IQR)
088757)	Night time cough	Averaging Time: Annual PM ₁₀	Unadjusted OR estimates [Lower CI, Upper CI]:
Period of Study: 2 yr (once in 1998 and once in 2001—surveys)	Current wheeze	Mean (SD):	Cough without cold (1998): 1.22 (1.10 to 1.36)
Location: Leicestershire, UK	Age Groups: 1-5 yr	1998: 1.47	Cough without cold (2001):
	Study Design: Cross-sectional (cohorts)	Percentiles: 25th: 1998 (.73) and 2001 (.8) 75th: 1998 (1.93) and 2001 (1.84) 1.11 (1.01 to 1.23) Night-time cough (20 1.25 (1.09 to 1.43) Current wheeze (199 0.99 (0.89 to 1.10) Current wheeze (200	Night-time cough (1998):
	N: 4400 children		Night-time cough (2001): 1 25 (1 09 to 1 43)
	Statistical Analyses: Binomial generalized linear models (compared with likelihood ratio tests)		Current wheeze (1998):
	Spatial variograms (due to the spatial concerns)		Adjusted OR Estimate [Lower CI, Upper CI]:
	Covariates: Age, Gender		Cough without cold (1998): 1.21 (1.07 to 1.38)
	Mother/father has asthma		Cough without cold (2001): 1.56 (1.32 to 1.84)
	Coal heating the home, Smoking by household member in the home, Either parent continued education past 16 yr of age, Pre-term birth, Breast feeding, Gas cooking, Presence of pets, Number of cigarettes smoked by mother, Overcrowding, Single parenthood, Diet		Night-time cough (1998): 1.06 (0.94 to 1.19) Night-time cough (2001): 1.25 (1.06 to 1.47) Current wheeze (1998): 0.99 (0.88 to 1.12) Current wheeze (2001): 1.28 (1.04 to 1.58)
	Dose-response Investigated? Yes (Fig. 2 shows evidence of dose-response effect based on surveys, states in discussion).		When the child was originally asymptomatic in 1998: Unadjusted OR estimates [Lower CI, Upper CI]:
	Statistical Package: SAS 8.2		Cough without cold (2001): 1.68 (1.39 to 2.03)
	S-Plus 6.1		Night-time cough (2001): 1.21 (1.00 to 1.46) Current wheeze (2001): 1.22 (0.92 to 1.62) Adjusted OR Estimate [Lower CI, Upper CI]: Cough without cold (2001): 1.62 (1.31 to 2.00) Night-time cough (2001): 1.19 (0.96 to 1.47) Current wheeze (2001): 1.42 (1.02 to 1.97)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Qian et al. (2005, <u>093283</u>)	Outcome: FVC, FEV ₁ , FEV ₁ /FVC	Pollutant: PM ₁₀	PM Increment: 2.8 µg/m³ (1 SD)
Period of Study: 1990-1992	Age Groups: Middle aged (avg 56.8 yr)	Averaging Time: Annual	Effect Estimate: In Never Smokers
Location: Forsythe, NC	Study Design: Cross-sectional	Mean (SD): 27.9 (2.8)	FVC ß = -0.0108, SE = 0.0026,
Minneapolis, MN	N : 10,240 people	Percentiles: 25th: 25.8	p = .0001 FEV ₁ β = -0.0082, SE = 0.0029,
Jackson, MS.	Statistical Analyses: Regression	50th(Median): 27.5	p =.0047 FEV ₁ /FVC ß = -0.0024, SE = 0.0023,
	equations, multiple linear regression analyses	75th: 30.2	p = .2787 Smoking status
	Covariates: Ciriotang status, recent use	Range (Maximum-Minimum): 12.2	Current n = 2377, FVC = -1.96,
	of respiratory medication, current respiratory symptoms, chronic lung diseases, field center	Monitoring Stations: 3 (Minneapolis, MN)	FEV ₁ = -2.23, FEV ₁ /FVC = -0.94 Former n = 3858, FVC = -1.25, FEV ₁ = -1.10, FEV ₁ /FVC = -0.30
	Dose-response Investigated? No	5 (Jackson, MS)	Never n = 4005, FVC = -1.12, $FEV_1 = -0.63$, $FEV_1/FVC = 0.06$
	Statistical Package: SAS software,	and 9 (Forsythe, NC)	Recent Use of Respiratory Medication Yes n = 424, FVC = -2.65,
	version 9.1	Copollutant: O ₃	FEV ₁ = -3.89, FEV ₁ /FVC = -3.00 No n = 9816, FVC = -1.41, FEV ₁ = -1.20, FEV ₁ /FVC = -0.24 Current Respiratory Symptoms Yes n = 4340, FVC = -1.68, FEV ₁ = -1.70, FEV ₁ /FVC = -0.63 No n = 5900, FVC = -1.05, FEV ₁ = -0.63, FEV ₁ /FVC = 0.05 Chronic Lung Diseases Yes n = 1374, FVC = -1.95, FEV ₁ = -2.31, FEV ₁ /FVC = -1.18 No n = 8866, FVC = -1.35, FEV ₁ = -1.10, FEV ₁ /FVC = -0.19 Field Center Forsythe, NC n = 3504, FVC = -0.03, FEV ₁ = 0.05, FEV ₁ /FVC = -0.30 Minneapolis, MN n = 3793, FVC = 0.50, FEV ₁ = 0.54, FEV ₁ /FVC = -0.30 Jackson, MS n = 2943, FVC = -0.01, FEV ₁ = 0.17, FEV ₁ /FVC = -0.32
Reference: Rios et al. (2004, <u>087800</u>)	Outcome: Wheezing, asthma, cough at night	Pollutant: PM ₁₀	PM Increment: High vs. Low
Period of Study: 1998-2000	Age Groups: 13-14 yr	Averaging Time: Weekly measurements used to create annual	Global Cut-Off Score %, p-val: DC
Location: the metropolitan area of Rio de Janiero, Brazil, Duque de Caxias	Study Design: Cohort	PM estimate	Male: 15.0 Female: 22.3, p < .05†
(DC) and Seropedica (SR)	N: 4064 students	Mean (SD): DC	Private School: 16.6 Public School: 19.4, p < .05*
	Statistical Analyses: Cchi-squared	1998: 147	<5yr residence: 20.9
	•	1999: 115 2000: 110	>5yr residence: 16.8 No domestic smoking exposure: 17.6
	Covariates: Sex, type of school, time of residence, domestic smoking, residents	Total: 124 SR	Domestic smoking exposure: 20.4, p <
	per home	1998: 37	.05† <5 residents per home: 18.4
	Dose-response Investigated? Yes	1999: 31 2000: 37	5+ residents per home: 19.5 SR
	Statistical Package: Epilnfo	Total: 35 Monitoring Stations: NR	Male: 12.3 Female: 19.7, p < .05† Private School: 28.3, p < .05*† Public School: 14.7 <5yr residence: 10.8 >5yr residence: 16.5 No domestic smoking exposure: 14.8 Domestic smoking exposure: 18.3 <5 residents per home: 15.6 5+ residents per home: 17.4
			Notes: The Global Cut-off Score encompasses replies to the asthma component of ISAAC's written questionnaire that establishes a cut-off from which is defined the presence of asthma for the Brazilian population.
			*Comparing the cities in the same controlled variable
			†Comparing the controlled variable in the same city

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Rojas-Martinez et al. (2007,		Pollutant: PM ₁₀	PM Increment: IQR 6-LC: 36.4
091064)	FEF25-75%	Averaging Time: 6 mo	Slope [Lower CI, Upper CI] Girls
Period of Study: 1996-1999 Location: Mexico City, Mexico	Age Groups: Children 8 yr old at time of cohort recruitment	Mean (SD): 6-mo averaging	One-pollutant model
	Study Design: School-based "dynamic"	SD: NR	FVC: -39 [-47: -31] FEV: -29 [-36: -21]
	cohort study	Mean: 75.6	FEF25-75%: -17 [-36: 1] FEV ₁ /FVC: 0.12 [0.07: 0.17]
	N: 3170 children	Percentiles: 6-mo averaging	Two-pollutant model: PM ₁₀ , 6-LC & O ₃ FVC: -30 [-39: -22]
	14,545 observations	25th: 55.8	FEV: -24 [-31: -16]
	Statistical Analyses: Three-level generalized linear mixed models with	50th(Median): 67.5	FEF25-75%: -9 [-26: 9] FEV ₁ /FVC: 0.10 [0.06: 0.15]
		75th: 92.2	PM ₁₀ , 6-LC & NO ₂ FVC: -21 [-30: -13]
	Covariates: Age, body mass index, height, height by age, weekday spent	Monitoring Stations : 5 sites for PM ₁₀ , 10 for other pollutants	FEV: -17 [-25: -8] FEF25-75%: -23 [-43: -4]
	outdoors, environmental tobacco smoke, previous-day mean air pollutant concentration, time since first test	Copollutant:	FEV ₁ /FVC: 0.07 [0.02: 0.13] Multipollutant model: PM ₁₀ , 6-LC, O ₃ , & NO ₂
	Dose-response Investigated? No	O ₃	FVC: -14 [-23: -5] FEV: -11 [-20: -3]
	Statistical Package: SA	NO ₂	FEF25-75%: -7 [-27: 12] FEV ₁ /FVC: 0.08 [0.03: 0.13]
			Boys One-pollutant model FVC: -33 [-41: -25] FEV: -27 [-34: -19] FEF25-75%: -18 [-34: -2] FEV ₁ /FVC: 0.04 [-0.01: 0.09] Two-pollutant model: PM ₁₀ , 6-LC & O ₃ FVC: -28 [-36: -19] FEY: -22 [-30: -15] FEF25-75%: -10 [-27: 7] FEV ₁ /FVC: 0.04 [-0.01: 0.09] FEV ₁ /FVC: 0.04 [-0.01: 0.09] FEV ₁ /FVC: 0.24 [0.13: 0.34] PM ₁₀ , 6-LC & NO ₂ FVC: -16 [-26: -7] FEV: -19 [-27: -10] FEF25-75%: -26 [-44: -9] FEV ₁ /FVC: 0.005 [-0.06: 0.05] Multipollutant model PM ₁₀ , 6-LC, O ₃ , & NO ₂ FVC: -12 [-22: -3] FEY: -15 [-23: -6] FEF25-75%: -12 [-30: 6] FEV ₁ /FVC: -0.002 [-0.06: 0.05]
Reference: Schikowski et al. (2005,	Outcome: Respiratory symptoms &	Pollutant: PM ₁₀	PM Increment: 7 µg/m ³
088637)	pulmonary function		
	, ,	Averaging Time: NR	OR (Lower CI, Upper CI) for asthma
Period of Study: 1985-1994	Age Groups: Age 54-55		symptoms
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of	Age Groups: Age 54-55 Study Design: Cross-sectional	Averaging Time: NR Min, P25, Median, Mean, P75, Max Annual Mean	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18)
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of Germany [Dortmund (1985, 1990), Duisburg (1990), Gelsenkirchen (1986,	• . •	Min, P25, Median, Mean, P75, Max Annual Mean	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18) Chronic cough 1.03 (0.87, 1.23)
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of Germany [Dortmund (1985, 1990),	Study Design: Cross-sectional N: 4757 women Statistical Analyses: Linear & Logistic	Min, P25, Median, Mean, P75, Max Annual Mean 35, 40, 43, 44, 47, 53	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18) Chronic cough 1.03 (0.87, 1.23) Frequent cough 1.01 (0.93, 1.10) COPD 1.37 (0.98, 1.92)
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of Germany [Dortmund (1985, 1990), Duisburg (1990), Gelsenkirchen (1986,	Study Design: Cross-sectional N: 4757 women	Min, P25, Median, Mean, P75, Max Annual Mean 35, 40, 43, 44, 47, 53 5-yr Mean	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18) Chronic cough 1.03 (0.87, 1.23) Frequent cough 1.01 (0.93, 1.10)
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of Germany [Dortmund (1985, 1990), Duisburg (1990), Gelsenkirchen (1986,	Study Design: Cross-sectional N: 4757 women Statistical Analyses: Linear & Logistic regressions, including random effects model Covariates: Age, smoking, SES,	Min, P25, Median, Mean, P75, Max Annual Mean 35, 40, 43, 44, 47, 53 5-yr Mean 39, 43, 47, 48, 53, 56	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18) Chronic cough 1.03 (0.87, 1.23) Frequent cough 1.01 (0.93, 1.10) COPD 1.37 (0.98, 1.92) p < 0.1 FEV ₁ 0.953 (0.916, 0.989) p < 0.1
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of Germany [Dortmund (1985, 1990), Duisburg (1990), Gelsenkirchen (1986,	Study Design: Cross-sectional N: 4757 women Statistical Analyses: Linear & Logistic regressions, including random effects model Covariates: Age, smoking, SES, occupational exposure, form of heating,	Min, P25, Median, Mean, P75, Max Annual Mean 35, 40, 43, 44, 47, 53 5-yr Mean 39, 43, 47, 48, 53, 56 Monitoring Stations: 7	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18) Chronic cough 1.03 (0.87, 1.23) Frequent cough 1.01 (0.93, 1.10) COPD 1.37 (0.98, 1.92) p < 0.1 FEV ₁ 0.953 (0.916, 0.989) p < 0.1 FVC 0.966 (0.940, 0.992) p < 0.1
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of Germany [Dortmund (1985, 1990), Duisburg (1990), Gelsenkirchen (1986,	Study Design: Cross-sectional N: 4757 women Statistical Analyses: Linear & Logistic regressions, including random effects model Covariates: Age, smoking, SES, occupational exposure, form of heating, BMI, height	Min, P25, Median, Mean, P75, Max Annual Mean 35, 40, 43, 44, 47, 53 5-yr Mean 39, 43, 47, 48, 53, 56	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18) Chronic cough 1.03 (0.87, 1.23) Frequent cough 1.01 (0.93, 1.10) COPD 1.37 (0.98, 1.92) $p < 0.1$ FEV ₁ 0.953 (0.916, 0.989) $p < 0.1$ FVC 0.966 (0.940, 0.992) $p < 0.1$ FEV ₁ /FVC 0.989 (0.978, 1.000) $p < 0.1$
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of Germany [Dortmund (1985, 1990), Duisburg (1990), Gelsenkirchen (1986,	Study Design: Cross-sectional N: 4757 women Statistical Analyses: Linear & Logistic regressions, including random effects model Covariates: Age, smoking, SES, occupational exposure, form of heating, BMI, height Season: NR	Min, P25, Median, Mean, P75, Max Annual Mean 35, 40, 43, 44, 47, 53 5-yr Mean 39, 43, 47, 48, 53, 56 Monitoring Stations: 7	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18) Chronic cough 1.03 (0.87, 1.23) Frequent cough 1.01 (0.93, 1.10) COPD 1.37 (0.98, 1.92) $p < 0.1$ FEV ₁ 0.953 (0.916, 0.989) $p < 0.1$ FVC 0.966 (0.940, 0.992) $p < 0.1$ FEV ₁ /FVC 0.989 (0.978, 1.000)
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of Germany [Dortmund (1985, 1990), Duisburg (1990), Gelsenkirchen (1986,	Study Design: Cross-sectional N: 4757 women Statistical Analyses: Linear & Logistic regressions, including random effects model Covariates: Age, smoking, SES, occupational exposure, form of heating, BMI, height Season: NR Dose-response Investigated? No	Min, P25, Median, Mean, P75, Max Annual Mean 35, 40, 43, 44, 47, 53 5-yr Mean 39, 43, 47, 48, 53, 56 Monitoring Stations: 7	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18) Chronic cough 1.03 (0.87, 1.23) Frequent cough 1.01 (0.93, 1.10) COPD 1.37 (0.98, 1.92) $p < 0.1$ FEV, 0.953 (0.916, 0.989) $p < 0.1$ FVC 0.966 (0.940, 0.992) $p < 0.1$ FEV ₁ /FVC 0.989 (0.978, 1.000) $p < 0.1$ Five yr means Chronic bronchitis 1.13 (0.95, 1.34) Chronic cough 1.11 (0.93, 1.31)
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of Germany [Dortmund (1985, 1990), Duisburg (1990), Gelsenkirchen (1986,	Study Design: Cross-sectional N: 4757 women Statistical Analyses: Linear & Logistic regressions, including random effects model Covariates: Age, smoking, SES, occupational exposure, form of heating, BMI, height Season: NR Dose-response Investigated? No Statistical Package: SAS	Min, P25, Median, Mean, P75, Max Annual Mean 35, 40, 43, 44, 47, 53 5-yr Mean 39, 43, 47, 48, 53, 56 Monitoring Stations: 7	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18) Chronic cough 1.03 (0.87, 1.23) Frequent cough 1.01 (0.93, 1.10) COPD 1.37 (0.98, 1.92) p < 0.1 FEV₁ 0.953 (0.916, 0.989) p < 0.1 FVC 0.966 (0.940, 0.992) p < 0.1 FEV₁/FVC 0.989 (0.978, 1.000) p < 0.1 Five yr means Chronic bronchitis 1.13 (0.95, 1.34) Chronic cough 1.11 (0.93, 1.31) Frequent cough 1.05 (0.94, 1.17) COPD 1.33 (1.03, 1.72)
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of Germany [Dortmund (1985, 1990), Duisburg (1990), Gelsenkirchen (1986,	Study Design: Cross-sectional N: 4757 women Statistical Analyses: Linear & Logistic regressions, including random effects model Covariates: Age, smoking, SES, occupational exposure, form of heating, BMI, height Season: NR Dose-response Investigated? No	Min, P25, Median, Mean, P75, Max Annual Mean 35, 40, 43, 44, 47, 53 5-yr Mean 39, 43, 47, 48, 53, 56 Monitoring Stations: 7	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18) Chronic cough 1.03 (0.87, 1.23) Frequent cough 1.01 (0.93, 1.10) COPD 1.37 (0.98, 1.92) p < 0.1 FEV1 0.953 (0.916, 0.989) p < 0.1 FVC 0.966 (0.940, 0.992) p < 0.1 FEV2/IFVC 0.989 (0.978, 1.000) p < 0.1 Five yr means Chronic bronchitis 1.13 (0.95, 1.34) Chronic cough 1.11 (0.93, 1.31) Frequent cough 1.05 (0.94, 1.17) COPD 1.33 (1.03, 1.72) p < 0.1
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of Germany [Dortmund (1985, 1990), Duisburg (1990), Gelsenkirchen (1986,	Study Design: Cross-sectional N: 4757 women Statistical Analyses: Linear & Logistic regressions, including random effects model Covariates: Age, smoking, SES, occupational exposure, form of heating, BMI, height Season: NR Dose-response Investigated? No Statistical Package: SAS	Min, P25, Median, Mean, P75, Max Annual Mean 35, 40, 43, 44, 47, 53 5-yr Mean 39, 43, 47, 48, 53, 56 Monitoring Stations: 7	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18) Chronic cough 1.03 (0.87, 1.23) Frequent cough 1.01 (0.93, 1.10) COPD 1.37 (0.98, 1.92) p < 0.1 FEV₁ 0.953 (0.916, 0.989) p < 0.1 FVC 0.966 (0.940, 0.992) p < 0.1 FVC 0.966 (0.940, 0.992) p < 0.1 Five yr means Chronic bronchitis 1.13 (0.95, 1.34) Chronic cough 1.11 (0.93, 1.31) Frequent cough 1.05 (0.94, 1.17) COPD 1.33 (1.03, 1.72) p < 0.1 FEV₁ 0.949 (0.923, 0.975) p < 0.05
Period of Study: 1985-1994 Location: Rhine-Ruhr Basin of Germany [Dortmund (1985, 1990), Duisburg (1990), Gelsenkirchen (1986,	Study Design: Cross-sectional N: 4757 women Statistical Analyses: Linear & Logistic regressions, including random effects model Covariates: Age, smoking, SES, occupational exposure, form of heating, BMI, height Season: NR Dose-response Investigated? No Statistical Package: SAS	Min, P25, Median, Mean, P75, Max Annual Mean 35, 40, 43, 44, 47, 53 5-yr Mean 39, 43, 47, 48, 53, 56 Monitoring Stations: 7	symptoms Annual means Chronic bronchitis 1.00 (0.85, 1.18) Chronic cough 1.03 (0.87, 1.23) Frequent cough 1.01 (0.93, 1.10) COPD 1.37 (0.98, 1.92) p < 0.1 FEV₁ 0.953 (0.916, 0.989) p < 0.1 FVC 0.966 (0.940, 0.992) p < 0.1 FEV√/FVC 0.989 (0.978, 1.000) p < 0.1 Five yr means Chronic bronchitis 1.13 (0.95, 1.34) Chronic cough 1.11 (0.93, 1.31) Frequent cough 1.05 (0.94, 1.17) COPD 1.33 (1.03, 1.72) p < 0.1 FEV₁ 0.949 (0.923, 0.975)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
<u>91950</u>)	Study Design: Prospective Cohort	Averaging Time: Annual	Odds Ratio (95%CI) of reporting
eriod of Study: 1991-2002	Statistical Analysis: Logistic	Mean (SD) Unit:	symptoms at second interview Entire Sample, New Reports
Location: Switzerland	· ·	Range (Min, Max):	Regular Cough: 0.77 (0.62-0.97)
	Age Groups: Adults, 18-60 yr of age at start of study	Copollutant (correlation): NR	Chronic Cough or Phlegm:
ocation: Switzerland	Regression Model Age Groups: Adults, 18-60 yr of age at start of study Covariates: Sex, age, level of education, Swiss citizenship, BMI, parental smoking, parental history of asthma/atopy, early respiratory infection, smoking status, pack yr, daily number of cigarettes, yr since smoking cessation, passive smoking in general/at work, occupational exposure to airbourne irritants	, ,	Regular Cough: 0.77 (0.62-0.97) Regular Phlegm: 0.74 (0.56-0.99) Chronic Cough or Phlegm: 0.78 (0.62-0.98) Wheezing: 1.01 (0.74-1.39) Wheezing with Dyspnea: 0.70 (0.49-1.01) Wheezing without Cold: 1.06 (0.76-1.50) Entire Sample, Persistent Reports Regular Cough: 0.55 (0.39-0.78) Regular Phlegm: 0.82 (0.52-1.33) Chronic Cough or Phlegm: 0.67 (0.40-1.15) Wheezing with Dyspnea: 0.59 (0.30-1.23) Wheezing without Cold: 0.61- (0.35- 1.12) Persistent Non-Smokers, New Reports Regular Cough: 0.86 (0.63-1.19) Regular Phlegm: 0.70 (0.49-0.99) Chronic Cough or Phlegm: 0.71 (0.52-0.99) Wheezing: 0.93 (0.60-1.46) Wheezing with Dyspnea: 0.77 (0.50-1.20) Wheezing without Cold: 1.11 (0.66-1.92) Persistent Non-Smokers, Persistent Reports Regular Cough: 0.28 (0.14-0.60) Regular Phlegm: 0.87 (0.43-1.84) Chronic Cough or Phlegm: 0.35 (0.16-0.81) Wheezing without Cold: 1.11 (0.66-1.92) Persistent Reports Regular Cough: 0.53 (0.28-1.08) Wheezing without Cold: 0.35 (0.16-0.81) Wheezing without Cold: 0.61 (0.26-1.52) Gender-specific odds ratio (95%CI) of reporting symptoms at second interview New Reports Regular Cough, p = 0.73 Men: 0.75 (0.53-1.06) Women: 0.81 (0.58-1.15) Regular Phlegm, p = 0.41 Men: 0.85 (0.60-1.20) Women: 0.87 (0.63-1.21) Women: 0.88 (0.60-1.20) Women: 0.89 (0.63-1.21) Women: 0.89 (0.63-1.21) Women: 0.89 (0.6
			Gender-specific odds ra of reporting symptoms a interview New Reports Regular Cough, p = 0.73 Men: 0.75 (0.53-1.06) Women: 0.81 (0.58-1.15) Regular Phlegm, p = 0.41 Men: 0.85 (0.60-1.20) Women: 0.68 (0.46-1.00) Chronic Cough or Phlegm Men: 0.87 (0.63-1.21) Women: 0.71 (0.51-0.97) Wheezing, p = 0.20 Men: 0.83 (0.57-1.20) Women: 1.20 (0.78-1.87) Wheezing with Dyspnea, Men: 0.56 (0.36-0.87) Women: 1.00.57-1.842 Wheezing without Cold, p Men: 0.95 (0.63-1.42) Women: 1.25 (0.72-2.17) Persistent Reports Regular Cough, p = 0.02 Men: 0.75 (0.48-1.18) Women: 0.31 (0.17-0.56)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Women: 0.57 (0.32-1.01) Wheezing with Dyspnea, p = 0.63 Men: 0.56 (0.16-1.95) Women: 0.37 (0.13-1.05) Wheezing without Cold, p = 0.57 Men: 0.34 (0.12-0.91) Women: 0.49 (0.21-1.15)
			Odds Ratio (95%CI) of reporting symptoms at second interview with additional adjustment for annual outdoor PM exposure at baseline
			Entire Sample Regular Cough, p = 0.0003 New Reports: 0.77 (0.61-0.97) Persistent Reports: 0.55 (0.39-0.78) Regular Phlegm, p = 0.13 New Reports: 0.77 (0.59-1.02) Persistent Reports: 0.79 (0.46-1.33) Chronic Cough or Phlegm, p = 0.02 New Reports: 0.78 (0.62-0.98) Persistent Reports: 0.64 (0.40-1.02) Wheezing, p = 0.002 New Reports: 0.91 (0.63-1.33) Persistent Reports: 0.47 (0.31-0.72) Wheezing with Dyspnea, p = 0.03 New Reports: 0.65 (0.43-0.98) Persistent Reports: 0.55 (0.28-1.10) Severe Wheezing, p = 0.28 New Reports: 0.60 (0.66-1.40) Persistent Reports: 0.62 (0.34-1.12) Non-Smokers Regular Cough, p < 0.001 New Reports: 0.87 (0.63-1.19) Persistent Reports: 0.29 (0.16-0.52) Regular Phlegm, p = 0.07 New Reports: 0.70 (0.50-0.99) Persistent Reports: 0.36 (0.34-1.33) Chronic Cough or Phlegm, p = 0.008 New Reports: 0.72 (0.52-0.99) Persistent Reports: 0.38 (0.17-0.84) Wheezing, p = 0.07 New Reports: 0.87 (0.52-1.48) Persistent Reports: 0.48 (0.25-0.91) Wheezing with Dyspnea, p = 0.36 New Reports: 0.76 (0.48-1.19) Persistent Reports: 0.70 (0.27-1.82) Severe Wheezing, p = 0.57 New Reports: 1.11 (0.64-1.93)
Reference: Sharma et al. (2004,	Outcome: Lung function	Pollutant: PM ₁₀	Persistent Reports: 0.64 (0.26-1.54) PM Increment: 1 µg/m³
Period of Study: Nov 2002-Apr 2003 Location: 3 sections in Kanpur City, India: 1) Indian Institute of Technology Kanpur	Age Groups: 20-55 yr Study Design: Cohort N: 91 people	Averaging Time: 24 h Mean (SD): IITK 184 (40) VN 295 (58) JC 293 (90)	ΔPEF (difference or change in peak expiratory flow) -0.0318 L/min
(ITK) 2) Vikas Nagar (VN) 3) Juhilal Colony (JC)	Statistical Analyses: Linear regression Covariates: NR Season: Fall, Winter, spring Dose-response Investigated? No	PM Component: Lead, Nickel, Cadmium, Chromium, Iron, Zinc Benzene soluble fraction (includes polycyclic aromatic hydrocarbons [PAHs])	
	Statistical Package: Microsoft Excel Lags Considered: 1-day lag & 5-day ma	Copollutant (correlation): ΔPEF = mean daily deviations in PEF PM ₁₀ -ΔPEF: (-0.52) PM ₁₀ -PM _{2.5} : (0.67) PM ₁₀ -PM ₁₀ (1-day lag): (0.45) PM ₁₀ -PM _{2.5} (1-day lag): (0.46)	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Tager et al. (2005, <u>087538</u>)	Outcome: Lung Function (FEV ₁ , FVC,	Pollutant: PM ₁₀	PM Increment: 1 μg/m ³
Reference: Tager et al. (2005, <u>087538</u>) Period of Study: Apr 2000-Jun 2000, Feb 2001-Jun 2001, Feb 2002-Jun 2002 Location: Los Angeles, California San Francisco, California	PEFR, FEF75, FEF25-75, FEF25-75, FEF25-75/FVC ratio) Age Groups: 16-21+ y/o College Freshman Study Design: Retrospective cohort N: 255 students 108 Men (M) 147 Women (W) Statistical Analyses: Multivariate Linear Regression Covariates: Sex, height, weight, area of residence, age, race, ETS exposure,	Pollutant: PM ₁₀ Averaging Time: Cumulative lifetime exposure Median: Prior to 1987: M: 73 W: 71 1987 and later: M: 36 W: 34 Lifetime: M: 48 W: 45 Range (Min, Max): Prior to 1987: M: 34, 117 W: 31, 124 1987 and later: M: 18, 68 W: 20, 61 Lifetime: M: 21, 80 W: 18, 71 Monitoring Stations: Between 1 and 3	PM Increment: 1 μg/m³ Parameter Estimates (SD) (Lifetime PM ₁₀ , Interaction PM ₁₀ FEF25-75/FVC) LnFEF75: M: -0.009 (0.0009), 0.009 (0.007) W: -0.010 (0.0007), 0.008 (0.0005)
	respiratory disease history Dose-response Investigated? No	Copollutant (correlation): O ₃ prior to 1987: r = 0.68 O ₃ 1987 and later: r = 0.81 O ₃ -Lifetime: r = 0.57	
Reference: Tamura et a. (2003, 087445) Period of Study: 1998-1999 Location: Bangkok, Thailand	Outcome: Non-specific respiratory disease (Chronic bronchitis, acute bronchitis, bronchial asthma, dyspnea and wheezing) Age Groups: Adults Study Design: Cross-sectional N: 1603 policemen Statistical Analyses: Multiple logistic regression Covariates: Age, smoking status Dose-response Investigated? Yes Statistical Package: SPSS	Pollutant: PM ₁₀ Averaging Time: 24 h Mean (SD): Heavily Polluted 80-190 Moderately Polluted 60-69 Control 59 Monitoring Stations: 13	PM Increment: Heavily Polluted vs. Moderately Polluted vs. Control Number and Prevalence (%) of respiratory disease among heavily polluted, moderately polluted, and control areas. Heavily Polluted Chronic bronchitis 16 (3.0) Acute bronchitis 19 (3.5) Bronchial asthma 5 (0.9) Dyspnea & wheezing 49 (9.2) Any 1 of above 69 (13.0) Persistent cough 11 (2.1) Persistent phlegm 27 (1.3) Cough & phlegm 6 (1.1) Moderately Polluted Chronic bronchitis 8 (2.4) Acute bronchitis 12 (9.0) Bronchial asthma 2 (0.6) Dyspnea & wheezing 23 (6.8) Any 1 of above 37 (10.9) Persistent cough 1 (0.3) Persistent phlegm 11 (3.3) Control Chronic bronchitis 6 (1.9) Acute bronchitis 11 (3.3) Bronchial asthma 0 (0.0) Dyspnea & wheezing 23 (7.2) Any 1 of above 31 (9.4) Persistent cough 1 (0.3) Persistent cough 1 (0.3) Persistent phlegm 8 (2.4) Cough & phlegm 1 (0.3)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Wheeler and Ben-Schlomo	Outcome: FEV ₁	Pollutant: PM ₁₀	β (95%CI) for Height-age
(2005, <u>188766</u>)	Age Groups: 16-79 yr	Averaging Time: 1996 annual mean	standardized FEV1 by ambient air quality index
Period of Study: 1995-1997	Study Design: Data from Health	Mean (SD): 23.95 (3.58)	p-value
Location: England	Survey for England were coupled geographically with air pollution	Range (Min, Max): 17.87-43.37	Male
	measurements on a 1 km grid.		Good (ref)
	N: 26,426 households with 39,251 adults		Poor -0.023 (-0.030 to -0.016)
	Statistical Analyses: Logistic		<0.001
	regression, least squares regression		Female
	Covariates: Age, sex, height, body mass index, smoking status, household		Good (ref)
	passive smoke exposure, inhaler use in the previous 24-h, doctor diagnosis of		Poor -0.019 (-0.026 to -0.013)
	asthma.		<0.001
	Dose-response Investigated? No		
Reference: Zhang et al., (2002,	Outcome: Interview-self reports of	Pollutant: PM ₁₀	PM Increment: Interquartile range
034814)	symptoms: Wheeze (ever wheezy when having a cold)	Averaging Time: 2 yr	corresponded to 1 unit of change.
Period of Study: 1993-1996	Asthma (diagnosis by doctor)	Mean (SD): 151 (56)	RR Estimate [Lower CI, Upper CI] lag:
Location: 4 Chinese cities (urban and suburban location in each city):	Bronchitis (diagnosis by doctor), Hospitalization due to respiratory disease (ever)	IQR: 87	Association between persistent phlegm
Guangzhou, Wuhan, Lanzhou, Chongqing		Range (Min, Max):	and PM ₁₀ : 3.21 (1.55, 6.67)
	Persistent cough (coughed for at least 1 month per yr with or apart from colds)	Gives range (maxmin.):	< 0.05
		80	Between and within city modeled ORs, scaled to interquartile range of
	or mucus from the chest for at least 1 month per yr with or apart from colds) Age Groups: Elementary school students Sci	Monitoring Stations:	concentrations for each pollutant.
		2 types: municipal monitoring stations over a period of 4 yr (1993-1996)	No associations between any type of respiratory outcome and PM ₁₀
		Schoolyards of participating children over a period of 2 yr (1995-1996)	When scaled to an increment of
			50 μg/m³ of PM ₁₀ , ORs were:
	Study Design: Cross-sectional		Wheeze: 1.07
	N: 7,557 returned questionnaires		Asthma: 1.18
	7,392 included in first stage of analysis		Bronchitis: 1.53
	Statistical Analyses: 2-stage		Hospitalization: 1.17
	regression approach: Calculated odds ratios and 95% CIs of respiratory		Persistent cough: 1.20
	outcomes and covariates Second stage		Persistent phlegm: 1.95
	consisted of variance-weighted linear regressions that examined associations		
	between district-specific adjusted prevalence rates and district-specific		
	ambient levels of each pollutant.		
	Covariates: Age, gender, breast-fed,		
	house type, number of rooms, sleeping in own or shared room, sleeping in own		
	or shared bed, home coal use, ventilation device used, homes		
	smokiness during cooking, eye irritation		
	during cooking, parental smoking, mother's education level, mother's		
	occupation, father's occupation,		
	questionnaire respondent, yr of questionnaire administration, season of		
	questionnaire administration, parental asthma prevalence		

 $^{^{1}\}text{All}$ units expressed in $\mu\text{g/m}^{3}$ unless otherwise specified.

Table E-23. Long-term exposure - respiratory morbidity outcomes - PM_{10-2.5}.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Study Reference: Chattopadhyay et al. (2007, 147471) Period of Study: NR Location: Three different points in Kolkata, India: North, South, and Central		Concentrations ¹ Pollutant: PM<3.3-0.4 Averaging Time: 8 h Mean (SD): North Kolkata: 266.1 Central Kolkata: 435.3 South Kolkata: 449.1 Unit (i.e. µg/m³): µg/m³ Monitoring Stations: 1 Copollutant (correlation):	PM Increment: NR Respiratory impairments (SD): North Kolkata Male (n=137) Restrictive: 4 (2.92) Obstructive: 5 (3.64) Combined Res. And Obs.: 6 (4.37) Total: 15 (10.95) Female (n=152) Restrictive: 3 (1.97) Obstructive: 5 (3.28) Combined Res. And Obs.: 0 Total: 8 (5.26) Total (n=289)
	speed, and humidity) Dose-response Investigated? No	PM ₁₀ PM<10-3.3	Restrictive: 7 (2.42) Obstructive: 10 (3.46) Combined Res. And Obs.: 6 (2.07) Total: 23 (7.96) Central Kolkata Male (n=44) Restrictive: 6 (13.63) Obstructive: 1 (2.27) Combined Res. And Obs.: 1 (2.27) Total: 8 (18.18) Female (n=50) Restrictive: 3 (6.00) Obstructive: 2 (4.00) Combined Res. And Obs.: 0 Total: 5 (10.00) Total (n=94) Restrictive: 9 (9.57) Obstructive: 3 (3.19) Combined Res. And Obs.: 1 (1.06) Total: 13 (13.82)
			South Kolkata Male (n=52) Restrictive: 1 (1.92) Obstructive: 2 (3.84) Combined Res. And Obs.: 3 (5.76) Total: 6 (11.53) Female (n=70) Restrictive: 2 (2.85) Obstructive: 1 (1.42) Combined Res. And Obs.: 0 Total: 3 (4.28) Total (n=122) Restrictive: 3 (2.45) Obstructive: 3 (2.45) Combined Res. And Obs.: 3 (2.45) Total: 9 (7.37)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chattopadhyay et al. (2007, 147471)	Outcome: Pulmonary function tests (respiratory impairments)	Pollutant: PM<10-3.3 Averaging Time: 8 h	PM Increment: NR Respiratory impairments (SD):
Period of Study: NR	Age Groups: All ages	Mean (SD):	North Kolkata
Location: Three different points in	Study Design: Cross-sectional	North Kolkata: 269.8	Male (n=137) Restrictive: 4 (2.92)
Kolkata, India: North, South, and Central	N: 505 people studied for PFT	Central Kolkata: 679.2	Obstructive: 5 (3.64) Combined Res. And Obs.: 6 (4.37)
	Total population of Kolkata not given	South Kolkata: 460.1	Total: 15 (10.95)
	Statistical Analyses: Frequencies	Monitoring Stations: 1	Female (n=152) Restrictive: 3 (1.97)
	Covariates: Meteorologic data (i.e.		Obstructive: 5`(3.28) Combined Res. And Obs.: 0
	temperature, wind direction, wind speed, and humidity)	Copollutant (correlation): PM ₁₀	Total: 8 (5.26)
	Dose-response Investigated? No	PM<3.3-0.	Total (n=289) Restrictive: 7 (2.42)
	, ,	FIVING.3-0.	Obstructive: 10 (3.46) Combined Res. And Obs.: 6 (2.07)
			Total: 23 (7.96)
			Central Kolkata Male (n=44) Restrictive: 6 (13.63) Obstructive: 1 (2.27) Combined Res. And Obs.: 1 (2.27) Total: 8 (18.18) Female (n=50) Restrictive: 3 (6.00) Obstructive: 2 (4.00) Combined Res. And Obs.: 0 Total: 5 (10.00) Total: 5 (10.00) Total (n=94) Restrictive: 9 (9.57) Obstructive: 3 (3.19) Combined Res. And Obs.: 1 (1.06) Total: 13 (13.82) South Kolkata Male (n=52) Restrictive: 1 (1.92) Obstructive: 2 (3.84) Combined Res. And Obs.: 3 (5.76) Total: 6 (11.53) Female (n=70) Restrictive: 2 (2.85) Obstructive: 1 (1.42) Combined Res. And Obs.: 0 Total: 3 (4.28) Total (n=122) Restrictive: 3 (2.45)
			Obstructive: 3 (2.45) Combined Res. And Obs.: 3 (2.45)
Peferance: Delegant at (2009	Outcome: Dulmonary function and	Pollutant: DM	Total: 9 (7.37)
Reference: Dales et al., (2008, <u>156378</u>)	Outcome: Pulmonary function and inflammation	Pollutant: PM _{10-2.5}	Increment: Tertiles of exposure FEV ₁ :
Period of Study: Location: Windsor,	Age Groups: Grades 4-6	Averaging Time: Annual	<7.04: 2.18 ± 0.01
ON	Study Design: Cross-sectional	Mean: 7.25	7.04-7.53: 2.19 ± 0.02 >7.53: 2.14 ± 0.01
	prevalence design	5th: 6.02	FVC: <7.04: 2.52 ± 0.02
	Statistical Analyses: Multivariate linear regression	95th: 8.23	7.04-7.53: 2.53 ± 0.02 >7.53: 2.48 ± 0.02
	Covariates: Ethnic background,	Copollutant:	eNO:
	smokers at home, pets at home, acute	SO ₂	<7.04: 15.48 ± 0.63 7.04-7.53: 16.73 ± 0.76
	respiratory illness, medication use	NO_2	>7.53: 16.59 ± 0.79

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Gauderman et al. (2000,	Outcome: FVC, FEV ₁ , MMEF, FEF75	Pollutant: PM _{10-2.5}	Increment: 25.6 µg/m³
<u>012531)</u> Period of Study: 1993-1997	Age Groups: Fourth, seventh, or tenth graders	Averaging Time: 24-h avg PM_{10} & annual avg of 2-wk avg $PM_{2.5}$	% Change (Lower CI, Upper CI) PM _{10-2.5} -4th grade
ocation: Southern California	Study Design: Cohort	Mean (SD): PM _{10-2.5} 25.6	FVC -0.57 (-1.20 to -0.06) FEV ₁ -0.90 (-1.71 to -0.09)
	N: 3035 subjects	Copollutant (correlation):	MMEF -1.37 (-2.57 to -0.15)
	Statistical Analyses: Linear regression	O ₃ r = -0.29	FEF75 -1.62 (-3.24, 0.04) PM _{10-2.5} -7th grade
	Covariates: Height, weight, BMI, asthma, smoking, exercise, room temperature, barometric pressure	$NO_2 r = 0.44$ Inorg. Acid $r = 0.43$	FVC -0.35 (-1.02, 0.31) FEV ₁ -0.49 (-1.21, 0.24) MMEF -0.64 (-2.83, 1.60) FEF75 -0.74 (-2.65, 1.20)
	Dose-response Investigated? Yes		PM _{10-2.5} -10th grade
	Statistical Package: SAS		FVC -0.17 (-1.32, 0.99) FEV ₁ -0.68 (-2.15, 0.81) MMEF -1.41 (-5.85, 3.25) FEF75 -2.32 (-6.60, 2.17)
Reference: Gauderman et al. (2002,	Outcome: Lung function development:	Pollutant: PM _{10-2.5}	PM Increment: 29.1 µg/m³
<u>026013</u>)	FEV ₁ , maximal mid-expiratory flow (MMEF)	Averaging Time: Annual 24-h avg	Association Estimate:
Period of Study: 1996-2000 Location: Southern California	Age Groups: Fourth grade children (avg age = 9.9 yr)	Mean (SD): The avg levels were presented in an online data supplement (Fig E1)	PM _{10-2.5} was not correlated with any of the pulmonary function tests that were analyzed
	Study Design: Cohort study	Monitoring Stations: 12	a.i.a.y=04
	N: 1678 children, 12 communities	Copollutant (correlation):	
	Statistical Analyses: Mixed model linear regression	O ₃ (10 AM to 6 PM) r = 0.10	
	Covariates: Height, BMI, doctor-	O ₃ r = -0.31	
	diagnosed asthma and cigarette	$NO_2 r = 0.46$	
	smoking in previous yr, respiratory illness and exercise on day of test,	Acid vapor r = 0.63	
	interaction of each of these variables with sex, barometric pressure,	PM ₁₀ r = 0.95	
	temperature at test time, indicator variables for field technician and	PM _{10-2.5} r = 0.81	
	spirometer	EC r = 0.71	
	Dose-response Investigated? Yes	OC r = 0.96	
	Statistical Package: SAS (10)		
Reference: Leonardi et al. (2000,	Outcome: Immune biomarkers	Pollutant: PM _{10-2.5}	% Change (Lower CI, Upper CI)
110272)	Age Groups: 9-11	Averaging Time: Subtracting PM _{2.5}	p-value PM _{10-2.5}
Period of Study: 1996	Study Design: Cross-sectional	from PM ₁₀ provides avg PM _{10-2.5}	Neutrophils 1 (-27, 38) >.20
Location: 17 cities of Central Europe Bulgaria, Czech Republic, Hungary,	N: 366 school children	Mean (SD): PM _{10-2.5} : 20 (5)	Total lymphocytes 8 (-15, 38)
Poland, Romania, Slovakia)	Statistical Analyses: Linear regression	Range (Min, Max):	>.20 B lymphocytes 22 (-16, 76)
	Covariates: Age, gender, parental smoking, laboratory of analysis, recent	PM _{10-2.5} : (12, 38) 5th, median, & 95th percentile	>.20 Total T lymphocytes 2 (-25, 37)
	respiratory illness	•	>.20 CD4+ -1 (-30, 41)
	Dose-response Investigated? No	PM _{10-2.5} : 12, 19, 29	>.20
	Statistical Package: STATA		CD8+ 3 (-25, 41) >.20
			CD4/CD8 0 (-23, 30) >.20
			NK 1 (-33, 51) >.20
			Total IgG -3 (-21, 18)
			>.20 Total IgM 19 (-9, 55)
			>.20 Total IgA 16 (-12, 52)
			>.20 Total IgE -29 (-70, 70)
			>.20

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: McConnell et al. (2003, 049490)	Outcome: Bronchitic symptoms	Pollutant: PM _{10-2.5}	PM Increment: Between community range 24.8 µg/m³
Period of Study: 1993-1999	Age Groups: 9-19	Averaging Time: 4-yr avg	Between community unit 1 µg/m ³
Location: 12 Southern CA communities	Study Design: Communities selected on basis of historic levels of criteria	Mean (SD): 17.0(6.4)	Within community 1 µg/m ³
ECOUNTINE 12 COUNTINE OF COMMINICATION	pollutants and low residential mobility.	Range (Min, Max): 10.2-35.0	OR Estimate [Lower CI, Upper CI]
	N: 475 children	Copollutant (correlation):	Between community per range
	Statistical Analyses: 3 stage	PM _{2.5} : r = 0.24	1.38(0.65-2.92)
	regression combined to give a logistic mixed effects model	PM_{10} : r = 0.79	Between Community per unit
	Covariates: Sex, ethnicity, allergies	Inorganic acid: r = 0.38	1.01(0.98-1.04)
	history, asthma history, SES, insurance status, current wheeze, current	Organic Acid: r = 0.35	Within community per unit
	exposure to ETS, personal smoking	EC: r = 0.30	, .
	status, participation in team sports, in utero tobacco exposure through	OC: r = 0.27	1.02(0.95-1.10)
	maternal smoking, family history of asthma, amount of time routinely spent	NO ₂ : r = -0.22	
	outside by child during 2-6 pm.	O ₃ : r = 0.29	
	Dose-response Investigated? No		
	Statistical Package: SAS Glimmix macro		
Reference: Millstein et al. (2004, 088629)	Outcome: Wheezing & asthma medication use	Pollutant: PM _{10-2.5}	PM Increment: IQR 11.44 μg/m ³
Period of Study: Mar-Aug, 1995, and	Age Groups: 4th grade students,	Averaging Time: monthly	Odds Ratio [lower CI, Upper CI]
Sep 1995-Feb 1996	mostly 9 yr at the time of the study	PM Component: Nitric acid, formic acid, acetic acid	Annual
Data were taken from the Children's Health Study	Study Design: Cohort Study, stratified into 2 seasonal groups/	Monitoring Stations: 1 central location in each community	PM _{10-2.5} : 0.96 [0.74, 1.25] Mar-Aug
Location: Alpine, Atascadero, Lake Arrowhead, Lake Elsinore, Lancaster,	N: 2081 enrolled, 2034 provided parent-completed questionnaire.	Copollutant (correlation):	PM _{10-2.5} : 0.93 [0.54, 1.59] Sep-Feb PM _{10-2.5} : 0.68 [0.46, 1.01]
Lompoc, Long Beach, Mira Loma, Riverside, San Dimas, Santa Maria, and Jpland, CA	Statistical Analyses: Multilevel, mixed- effects logistic model.		
opianu, on	Covariates: Contagious respiratory disease, ambient airborne pollen and other allergens, temperature, sex, age race, allergies, pet cats, carpet in home, environmental tobacco smoke, heating fuel, heating system, water damage in home, education level of questionnaire signer, physician diagnosed asthma.	O ₃ : r = 0.77 PM _{2.5} : r = -0.08	1 W10.25. 0.00 [0.40, 1.01]
	Season: Mar-Aug, 1995, and Sep, 1995 to Feb, 1996		
	Statistical Package: SAS 8.00		
	Lags Considered: 14		
Reference: (Parker et al., 2009,	Outcome: Respiratory allergy/hayfever	Pollutant: PM _{10-2.5}	Increment: 10 µg/m³
<u>192359</u>)	Study Design: Cohort	Averaging Time: NR	Odds Ratio (95% CI)
Period of Study: 1999-2005	Covariates: Survey yr, age, family	Median: 11.2 μg/m ³	Single Pollutant Model, variable N
Location: U.S.	structure, usual source of care, health insurance, family income relative to	IQR: 8.2-15.2	Adjusted: 1.01 (0.95-1.07)
	federal poverty level, race/ethnicity	Copollutant (correlation): Summer	Single Pollutant Model, constant N
	Statistical Analysis: Logistic regression	O ₃ : 0.16 SO ₂ : -0.33	Adjusted: 1.13 (1.04-1.46)
	Statistical Package: SUDAAN	NO ₂ : 0.29	Multi-pollutant Model: 1.16 (1.06-1.24
	Age Groups: 73,198 children aged 3-17 yr	PM _{2.5} : 0.02 PM ₁₀ : 0.86	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Zhang et al. (2002,	Outcome: Interview-self reports of	Pollutant: PM _{10-2.5}	PM Increment: Interquartile range
034814)	symptoms: Wheeze (ever wheezy when having a cold)	Averaging Time: 2 yr	corresponded to 1 unit of change.
Period of Study: 1993-1996	Asthma (diagnosis by doctor)	Mean (SD): 59 (28)	RR Estimate [Lower CI, Upper CI] lag:
Location: 4 Chinese cities (urban and suburban location in each city): Guangzhou, Wuhan, Lanzhou,	Bronchitis (diagnosis by doctor), Hospitalization due to respiratory	Percentiles: 25th: NR	Association between bronchitis and PM _{10-2.5} : 2.20 (1.14, 4.26)
Chongqing	disease (ever)	50th(Median): NR	p < 0.05
	Persistent cough (coughed for at least 1 month per yr with or apart from colds)	75th: NR	Association between persistent cough
	Persistent phlegm (brought up phlegm	IQR: 42	and PM _{10-2.5} : 1.46 (1.12, 1.90)
	or mucus from the chest for at least 1 month per yr with or apart from colds)	Range (Min, Max):	p < 0.05
	Age Groups: Elementary school	Gives range (maxmin.): 80	Between and within city associations:
	students	Monitoring Stations:	Bronchitis: 3.18 (between city)
	age range: 5.4-16.2	2 types: municipal monitoring stations over a period of 4 yr (1993-1996)	Persistent phlegm (between city): 2.78
	Study Design: Cross-sectional		When scaled to an increment of 50 µg/m³ of PM _{10.2.5} associations (ORs between respiratory outcome and PM _{2.5} were:
	N: 7,557 returned questionnaires	Schoolyards of participating children over a period of 2 yr (1995-1996)	
	7,392 included in first stage of analysis		Wheeze: 1.14
	Statistical Analyses: 2-stage regression approach: Calculated odds		Asthma: 1.34
	ratios and 95% CIs of respiratory outcomes and covariates Second stage		Bronchitis: 2.56
	consisted of variance-weighted linear		Hospitalization: 1.58
	regressions that examined associations between district-specific adjusted		Persistent cough: 1.57
	prevalence rates and district-specific ambient levels of each pollutant.		Persistent phlegm: 3.45
	Covariates: Age, gender, breast-fed, house type, number of rooms, sleeping in own or shared room, sleeping in own or shared bed, home coal use, ventilation device used, homes smokiness during cooking, eye irritation during cooking, parental smoking, mother's education level, mother's occupation, father's occupation, questionnaire respondent, yr of questionnaire administration, season of questionnaire administration, parental asthma prevalence		

¹All units expressed in μg/m³ unless otherwise specified.

Table E-24. Long-term exposure - respiratory morbidity outcomes - PM_{2.5} (including PM components/sources).

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Annesi-	Outcome: EIB, Flexural atopic	Pollutant: PM _{2.5}	PM Increment: High vs. Low
Maesano et al.(2007, 091348)	dermatitis, asthma, rhiniconjuctivitis, allergic rhinitis	Averaging Time: 5-day mean (MonFri.) over a 13-wk to 24-wk	Allergic and respiratory morbidity OR Estimate (Lower CI, Upper CI)
Period of Study: Mar 1999-Oct 2000	Age Groups: Children mean 10.4 ± 0.7 yr	span	Proximity Level EIB (C) 1.35 (1.10, 1.67)
Location: France	Study Design: Semi-individual	Residential Proximity Level	Fl. Atopic dermatitis (C) 2.51 (2.06, 3.06)
(Bordeaux, Clermont- Ferrand, Creteil,	design	Mean (SD): Low conc: 8.7	Asthma (P) 1.11 (0.88, 1.39) Atopic asthma (P) 1.43 (1.07, 1.91)
Marseille, Strasbourg,, & Reims)	N: 5338	High conc: 20.7	Non-atopic asthma (P) 0.73 (0.49, 1.07) Rhiniconjunctivitis (P) 0.94 (0.77, 1.15)
rteinis)	Statistical Analyses: Logistic regression	Range (Min, Max):	Atopic dermatitis (P) 1.05 (0.88, 1.27) Asthma (L) 1.00 (0.82, 1.22)
	Covariates: Age, sex, family history	Low conc: (1.6, 12.2)	Allergic Řhinitis (L) 1.09 (0.93, 1.27) Atopic dermatitis (L) 0.94 (0.82, 1.09)
	of allergy, passive smoking	High conc: (12.5, 54.0)	City Level
	Season: NR	City Level	EIB (C) 1.43 (1.15, 1.78) FI. Atopic dermatitis (C) 2.06 (1.69, 2.51)
	Dose-response Investigated? No	Mean (SD):	Asthma (P) 1.31 (1.04, 1.66) Atopic asthma (P) 1.58 (1.17, 2.14)
	Statistical Package: SAS	Low conc: 9.6	Non-atopic asthma (P) 1.00 (0.68, 1.49) Rhiniconjunctivitis (P) 0.98 (0.80, 1.20)
		High conc: 23.0	Atopic dermatitis (P) 1.08 (0.90, 1.30)
		Range (Min, Max):	Asthma (L) 1.09 (0.69, 1.33) Allergic Rhinitis (L) 1.13 (0.97, 1.33)
		Low conc: (4.7, 12.7)	Atopic dermatitis (Ĺ) 0.95 (0.82, 1.09) Notes: C = Current
		High conc: (13.0, 54.5)	P = Past yr
			L = Lifetime Allergic sensitization OR Estimate (Lower CI, Upper CI)
			Proximity Level
			All allergens 1.19 (1.04, 1.36) Indoor allergens 1.29 (1.11, 1.50)
			Outdoor allergens 1.02 (0.85, 1.23)
			Moulds 1.13 (0.78, 1.65) City Level
			All allergens 1.32 (1.15, 1.51) Indoor allergens 1.51 (1.29, 1.76)
			Outdoor allergens 1.06 (0.88, 1.28)
	<u> </u>		Molds 1.00 (0.69, 1.46)
Reference: Bakke et al. (2004, <u>156246</u>)	Outcome: Spirometric measurements	Pollutant: Respirable dust	PM Increment: NR-exposure respirable dust
Period of Study: Jan	Age Groups: All ages, mean = 39	Averaging Time: 5-8 h	Effect Estimate (Lower CI, Upper CI):
1989-Jun 2002 Location: One of	yr Study Design: Cohort	Mean (SD): Drill and blast workers: 6.3 (2.8) Tunnel concrete workers: 6.1 (3.1)	Lung function changes predicted by multiple linear regression models using one exposure variable adjusted for age and observation time by non-smokers and ever smokers
Norway's major construction companies	N: 651 male construction workers	Shotcreting operators: 19 (11) TBM workers: 16 (6.6)	Non-smokers: β = -16.0
constituction companies	Statistical Analyses: Multiple	Outdoor concrete workers: 1.4 (0.73)	(-246.8)
	linear regression models	Foremen: 0.28 (0.48) Engineers: 0.09 (0.28)	SE = 4.5
	Covariates: Age, yr for non- smokers and ever smokers	Unit (i.e. µg/m³): mg·y/m³	Ever smokers: ß = -9.3
	Dose-response Investigated? No	Monitoring Stations: 16 tunnel	(-171.6)
	Statistical Package: SYSTAT 10.0	sites visited with sampling equipment	SE = 4.0
	and SPSS 11.0	Copollutant (correlation):	
		Total dust: $r = 0.99$ α quartz: $r = 0.48$	
		NO ₂ : r = 0.75	
		CO: r = 0.61 Oil mist: r = 0.83	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Bakke et al.	Outcome: Spirometric measurements	Pollutant: Total dust	PM Increment: NR-exposure expirable dust
(2004, <u>156246</u>) Period of Study: Jan 1989-Jun 2002	Age Groups: All ages, mean = 39 yr	Averaging Time: 5-8 h Mean (SD): Drill and blast workers: 18 (7.8)	Lung function changes predicted by multiple linear regression models using one exposure variable adjusted for age and observation time by non-smokers and ever smokers
Location: One of	Study Design: Cohort	Tunnel concrete workers: 21 (11) Shotcreting operators: 73 (41) TBM workers: 48 (20) Outdoor concrete workers: 6.5 (3.4) Non-smokers: ß = -4.0 (-6.5-1.4) SE = 1.3	Non-smokers: ß = -4.0 (-6.5-1.4)
Norway's major construction companies	N: 651 male construction workers		SE = 1.3
	Statistical Analyses: Multiple linear regression models	Foremen: 0.78 (1.3) Engineers: 0.27 (0.78)	Ever smokers: ß = -2.0 (-4.2-0.23) SE = 1.1
	Covariates: Age, yr for non-smokers and ever smokers	Unit (i.e. μg/m³): mg·y/m³	3E - 1.1
	Dose-response Investigated?	Monitoring Stations: 16 tunnel sites visited with sampling	
	No	equipment	
	Statistical Package:	Copollutant (correlation):	
	SYSTAT 10.0 and SPSS 11.0	Respirable dust: $r = 0.99$ α quartz: $r = 0.42$ NO_2 : $r = 0.67$ CO: $r = 0.49Oil mist: r = 0.81Oil vapor: r = 0.64VOC$: $r = 0.91$	
	Outcome: Respiratory symptoms	Pollutant: PM _{2.5}	PM Increment: NR
(2007, <u>156268</u>)	(from questionnaire)	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Period of Study: 1992-2005	Age Groups: All ages, mean = 37.2 yr	Mean (SD): 6.8	Respiratory symptoms in last 12 mo and exposure to ambi PM _{2.5} over the same period
Location: Melbourne,	Study Design: Cohort	Range (Min. Max): (1.8-73.3) Within-person (longitudinal) effect	Within-person (longitudinal) effects Wheeze: OR = 1.08 (0.79-1.48), p = 0.62
Australia	N : 1446	Monitoring Stations: up to 3	SOB on waking: OR = 1.34 (0.84-2.16), p = 0.22 Cough (AM): OR = 0.74 (0.47-1.15), p = 0.18
Statistical Analyses: Logistic Phlegm (A regression models Cough w/	Phlegm (AM): OR = 1.55 (0.95-2.53), p = 0.08 Cough w/ phlegm (AM): OR = 1.28 (0.70-2.33), p = 0.42		
	Covariates: Age, gender, use of $\Re 2$ -agonists, use of inhaled corticosteroids, smoking, yr of data collection, and avg daily exposure to $PM_{2.5}$ in the 12 mo corresponding to the time frame of symptoms		Asthma attack: OR = 0.91 (0.55-1.49), p = 0.69 Between-person (cross-sectional) effects Wheeze: OR = 1.32 (0.82-2.10), p = 0.25 SOB on waking: OR = 1.29 (0.46-3.60), p = 0.63 Cough (AM): OR = 0.21 (0.07-0.62), p = 0.01 Phlegm (AM): OR = 0.49 (0.16-1.44), p = 0.19 Cough w/ phlegm (AM): OR = 0.28 (0.08-0.97), p = 0.05
	Dose-response Investigated? No		Asthma attack: OR = 0.52 (0.17-1.59), p = 0.26
	Statistical Package: STATA, version 9		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Brauer et	Outcome: Allergen sensitivity (any, indoor,	Pollutant: PM _{2.5}	PM Increment: IQR 3.3 μg/m ³
al., 2007, <u>090691</u>)	outdoor, food, total) IgÉ>100 IU/mL	Averaging Time: 12 mo	Notes: Traffic-related pollution (PM _{2.5} , soot, NO ₂) was
Period of Study: 999-2000	Asthma (probable, MD-diagnosed, ever MD-diagnosed)	Mean (SD): SD: NR	associated with respiratory infections, asthma, and allergic sensitization in children during the first 4 yr of life.
.ocation: The	Bronchitis (MD-diagnosed, ever MD-diagnosed)	16.9	Symptom At 4-Yr-Old
letherlands	Dry cough at night	Percentiles: 25th: 14.8	Wheeze 4-yr-old: 1.23 [1.00: 1.51]
	Itchy rash Itchy rash/eczema	50th(Median): 17.3	Eárly-life: 1.20 [0.99: 1.46]
	Ear/Nose/Throat (ENT) infection	75th: 18.1	Asthma, MD-diagnosed 4-yr-old: 1.15 [0.82: 1.62]
	Eczema, MD-diagnosed Eczema, ever MD-diagnosed		Eárly-life: 1.32 [0.96: 1.83] Dry cough at night
	Flu/serious cold, MD-diagnosed Wheeze (ever, early, early frequent,	Range (Min, Max): (13.5, 25.2)	4-ýr-old: 1.11 [0.94: 1.31]
	persistent)	Monitoring Stations: 40	Early-life: 1.14 [0.98: 1.33] Bronchitis, MD-diagnosed
	Age Groups: Very young children	Copollutant (correlation): Soot: r = 0.97	4-yr-old: 0.88 [0.66: 1.18]
	(<4-yr-old) enrolled prenatally	NO ₂ : r = 0.93	Early-life: 0.86 [0.66: 1.11] ENT infection
	Study Design: Prospective birth cohort study	NO ₂ . 1 = 0.93	4-yr-old: 1.13 [0.98: 1.31] Early-life: 1.17 [1.02: 1.34]
	N: ~4000 subjects		Flu/serious cold, MD-diagnosed
	Statistical Analyses: Multiple		4-yr-old: 1.21 [1.02: 1.42] Early-life: 1.25 [1.07: 1.46]
	logistic regression		Itchy rash
	Dose-response Investigated? No		4-yr´-old: 0.96 [0.82: 1.11] Early-life: 0.98 [0.85: 1.14]
			Eczema, MD-diagnosed 4-yr-old: 1.00 [0.88: 1.21]
			Early-life: 0.98 [0.82: 1.17]
			Allergen Sensitivity At 4-Yr-Old Allergen, any: 1.55 [1.13: 2.11]
			Allergen, indoor: 1.03 [0.69: 1.55]
			Allergen, outdoor: 0.93 [0.54: 1.58] Allergen, food: 1.75 [1.23: 2.47]
			Allergen, total IgE>100 IU/mL: 0.84 [0.59: 1.18] Cumulative Allergy/Asthma Symptoms At 4-Yr-Old
			Wheeze, ever: 1.22 [1.06: 1.41]
			Asthma, ever MD-diagnosed: 1.32 [1.04: 1.69] Asthma, probable: 1.08 [0.90: 1.30]
			Wheeze, early: 1.16 [1.00: 1.34]
			Wheeze, persistent: 1.19 [0.96: 1.48] Wheeze, early frequent: 1.19 [0.96: 1.47]
			Bronchitis, ever MD-diagnosed: 0.96 [0.81: 1.13]
			Itchy rash/eczema: 0.99 [0.88: 1.13] Eczema, ever MD-diagnosed: 0.98 [0.85: 1.13]
			Lozema, ever iviD-uragnosed. 0.90 [0.00. 1.10]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Brauer et al., 2007, <u>090691</u>)	Outcome: Allergen sensitivity (any, indoor, outdoor, food, total) IgE>100	Pollutant: Soot (as PM _{2.5} absorbance)	PM Increment: IQR 0.58 E-5/m Notes: Traffic-related pollution (PM _{2.5} , soot, NO ₂) was
eriod of Study:	IU/mL	Averaging Time: 12 mo	associated with respiratory infections, asthma, and allergic
999-2000	Asthma (probable, MD-diagnosed, ever MD-diagnosed)	Mean (SD): 1.71	sensitization in children during the first 4 yr of life. Symptom At 4-Yr-Old
ocation: The letherlands	Bronchitis (MD-diagnosed, ever MD-diagnosed)	Percentiles: 25th: 1.33	Wheeze 4-yr-old: 1.18 [0.98: 1.41] Early-life: 1.18 [1.00: 1.40]
	Dry cough at night	50th(Median): 1.78	Asthma, MD-diagnosed
	Itchy rash	75th: 1.91	4-yr-old: 1.15 [0.85: 1.55] Early-life: 1.30 [0.98: 1.71]
	Itchy rash/eczema	Range (Min, Max): (0.77, 3.68)	Dry cough at night 4-vr-old: 1.13 [0.97: 1.30]
	Ear/Nose/Throat (ENT) infection	Unit (i.e. μg/ m³): 1E-5/m	Eárly-life: 1.14 [1.00: 1.31]
	Eczema, MD-diagnosed	Monitoring Stations: 40	Bronchitis, MD-diagnosed 4-yr-old: 0.90 [0.69: 1.16]
	Eczema, ever MD-diagnosed	Copollutant (correlation):	Early-life: 0.88 [0.69: 1.11] ENT infection
	Flu/serious cold, MD-diagnosed	NO ₂ : r = 0.96	4-yr-old: 1.15 [1.01: 1.31] Early-life: 1.16 [1.03: 1.31]
	Wheeze (ever, early, early frequent, persistent)	PM _{2.5} : r = 0.97	Flu/serious cold, MD-diagnosed 4-yr-old: 1.18 [1.02: 1.36] Early-life: 1.19 [1.04: 1.37]
	Age Groups: Very young children (<4-yr-old) enrolled prenatally		tichy rash 4-yr-old: 0.94 [0.82: 1.08] Early-life: 0.97 [0.85: 1.10]
	Study Design: Prospective birth cohort study		Eczema, MD-diagnosed 4-yr-old: 0.99 [0.84: 1.17]
	N: ~4000 subjects		Early-life: 0.97 [0.83: 1.14] Allergen Sensitivity At 4-Yr-Old
	Statistical Analyses: Multiple logistic regression		Allergen, any: 1.45 [1.11: 1.91] Allergen, indoor: 1.02 [0.71: 1.46] Allergen, outdoor: 0.95 [0.59: 1.52]
	Dose-response Investigated? No		Allergen, food: 1.64 [1.21: 2.23] Allergen, total IgE>100 IU/mL: 0.80 [0.59: 1.09] Cumulative Allergy/Asthma Symptoms At 4-Yr-Old Wheeze, ever: 1.18 [1.04: 1.34] Asthma, ever MD-diagnosed: 1.26 [1.02: 1.56] Asthma, probable: 1.06 [0.90: 1.24] Wheeze, early: 1.11 [0.97: 1.26] Wheeze, persistent: 1.18 [0.98: 1.42] Wheeze, early frequent: 1.14 [0.95: 1.37] Bronchitis, ever MD-diagnosed: 0.95 [0.82: 1.10] Itchy rash/eczema: 0.99 [0.89: 1.11] Eczema, ever MD-diagnosed: 0.99 [0.87: 1.12]
eference: Brauer et al.	Outcome: Questionnaire derived	Pollutant: PM _{2.5}	PM Increment: 3.2 μg/m ³
2002, <u>035192)</u> eriod of Study: NR	wheezing, dry nighttime cough, ear, nose and throat infections, skin rash Physician diagnosed asthma,	Averaging Time: 4 2-wk periods dispersed throughout 1 yr, adjusted for temporal trend	OR Estimate [Lower CI, Upper CI]; Unadjusted Wheeze 1.14 (0.99-1.30)
ocation: The etherlands	bronchitis, influenza, eczema	Mean (SD): 16.9	Asthma 1.08 (0.84-1.37)
	Age Groups: age 2	Percentiles:	Dry cough at night 1.10 (0.95-1.27) Bronchitis 1.00 (0.85-1.18)
	Study Design: Prospective cohort	10th: 14.0	E, N, T infections 1.14 (0.99-1.33) Flu 1.15 (1.03-1.28)
	N: 4146 children	25th: 15.0	Itchy rash 1.07 (0.95-1.20)
	Statistical Analyses: Logistic	50th(Median): 17.3	Eczema 1.02 (0.90-1.16) Adjusted
	regression Covariates: Maternal ago, maternal	75th: 18.2	Wheeze 1.14 (0.98-1.34) Asthma 1.12 (0.84-1.50)
	Covariates: Maternal age, maternal smoking, mattress cover (allergen-	90th: 19.1	Dry cough at night 1.04 (0.88-1.23) Bronchitis 1.04 (0.85-1.26)
	free), maternal education, paternal education, gender, gas stove, gas	Range (Min, Max): 13.5, 25.2	E, N, T infections 1.20 (1.01-1.42)
	water heater, any other siblings, ethnicity, breastfeeding, mold at	Monitoring Stations: 40	Flu 1.12 (1.00-1.27) Itchy rash 1.01 (0.88-1.16)
	home, pets, allergies in mother, allergies in father	Copollutant (correlation): Soot: r = 0.99	Eczema 0.95 (0.83-1.10) ′
	Dose-response Investigated? No	NO_2 : $r = 0.97$	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Brauer et al.	Outcome: Questionnaire derived	Pollutant: PM _{2.5} "soot"	PM Increment: 0.54 x 10-5/m (equivalent to 0.8 µg/m³ EC)
(2002, <u>035192</u>)	wheezing, dry nighttime cough, ear, nose and throat infections, skin rash	Averaging Time: 4 2-wk periods	OR Estimate [Lower CI, Upper CI]
Period of Study: NR Location: The Netherlands	Physician diagnosed asthma, bronchitis, influenza, eczema	dispersed throughout 1 yr, adjusted for temporal trend Mean (SD): 16.9 10-5/m Percentiles: 10th: 1.16 25th: 1.38	Unadjusted Wheeze 1.11 [0.99-1.24] Asthma 1.07 [0.87-1.31]
Netherlands	Age Groups: Age 2		Dry cough at night 1.08 [0.95-1.21] Bronchitis 0.98 [0.85-1.12]
	Study Design: Prospective cohort	50th(Median): 1.78 75th: 1.92	E, N, T infections 1.12 [0.99-1.27]
	N: 4146 children	90th: 2.19	Flu 1.13 [1.03-1.23] Itchy rash 1.07 [0.97-1.19]
	Statistical Analyses: Logistic	Range (Min, Max): 0.77, 3.68	Eczema 1.01 [0.91-1.13] Adjusted
	regression	Unit (i.e. μg/ m³): 10-5/m	Wheeze 1.11 [0.97-1.26] Asthma 1.12 [0.88-1.43]
	Covariates: Maternal age, maternal smoking, mattress cover (allergen-	Monitoring Stations: 40	Dry cough at night 1.02 [0.88-1.17] Bronchitis 0.99 [0.84-1.17]
	free), maternal education, paternal education, gender, gas stove, gas water heater, any other siblings, ethnicity, breastfeeding, mold at home, pets, allergies in mother, allergies in father	Copollutant (correlation): $PM_{2.5}$ (r = 0.99) NO_2 (r = 0.96)	Find that 3 (5.04-1.17) E, N, T infections 1.15 [1.00-1.33] Flu 1.09 [0.98-1.21] Itchy rash 1.02 [0.91-1.15] Eczema 0.96 [0.85-1.08]
	Dose-response Investigated? No		
Reference: Brauer et al. (2006, <u>090757</u>)	Outcome: Otitis Media (parental report of doctor's diagnosis prior to	Pollutant: PM _{2.5}	PM Increment: PM _{2.5} : 3 μg/m³ (~ IQR)
Period of Study:	age 2 yr)	PM Component: EC (EC)	EC: ~0.5 µg/m³ (~ IQR)
1997-2001	Age Groups: 0-2 yr	Averaging Time: 8 wk (4 2-week periods dispersed throughout 1 yr,	OR Estimate [Lower CI, Upper CI]
Location: Germany	Study Design: Prospective Cohort Study	adjusted for temporal trends)	The Netherlands: PM _{2.5} :
The Netherlands	N: 4,379 children total	Mean: The Netherlands: PM _{2.5} : 16.9	At age 1: 1.13 (0.98-1.32) At age 2: 1.13 (1.00-1.27)
	The Netherlands: 3,714 Germany: 665	EC: 1.72 Germany:	EC: At age 1: 1.11 (0.98-1.26)
	Statistical Analyses: Logistic	PM _{2.5} : 13.4	At age 2: 1.10 (1.00-1.22)
	regression	EC: 1.76 Range (Min, Max):	Germany: PM ₂ 5:
	Covariates: Sex, parental atopy, maternal education, siblings,	The Netherlands: PM _{2.5} : 13.5, 25.2	At age 1: 1.19 (0.73-1.92)
	maternal smoking during pregnancy, ETS exposure at home,	EC: 0.77, 3.68 Germany:	At age 2: 1.24 (0.84-1.83) EC:
	use of gas for cooking, indoor moulds and dampness, number of	PM _{2.5} : 12.0, 21.9	At age 1: 1.12 (0.83-1.51) At age 2: 1.10 (0.86-1.41)
	siblings, breast-feeding, and	EC: 1.40, 4.39 Monitoring Stations: 80 (40 for	
	presence of pets in the home	each cohort)	
	Season: All Dose-response Investigated? No		
Reference: Burr et al.	Outcome: Self-report of symptoms	Pollutant: PM ₂₅	% change PM ₁₀ in congested streets: 23.6
(2004, <u>087809</u>)	only for wheeze, cough, phlegm, rhinitis, and itchy eyes.	Averaging Time: Mean hourly	% change PM ₁₀ in uncongested streets: 26.6
Period of Study: 3 wk in Jul and Jan 1997 and 2	Age Groups: All	concentrations	Uncongested street sampling site was 20 m from the
wk in Nov 1996 and Apr 1997	Study Design: Repeated measures	Mean (SD): Congested Streets	congested street sampler.
Location: North Wales, England	N: 386 persons in congested streets and 425 in the uncongested streets in 1996/1997. Of these, 165 and 283 completed the second	1996-97 21.2 1998-99 16.2 Uncongested Streets 1996-97 6.7 1998-99 4.9	The opening of the by-pass produced a reduction in pollution in the congested streets. The health effects of these changed are likely to be greater for nasal and ocular symptoms than for lower respiratory symptoms. Uncertainty about the causality arises from low response rates and conflicting trends in
	phase of the study.	Monitoring Stations: 1 in congested street and 1 in uncongested	respiratory and nasal symptoms.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Calderón-	Outcome: Hyperinflation, interstitial	Pollutant: PM _{2.5}	PM Increment: NR
Garcidueñas et al. (2006, 091253)	radiograph, and lung function-FVC,	Averaging Time: 1 yr	% Change:
Period of Study:	FEV ₁ , PEF, FEF25-75, measured using spirometry tests	Mean (SD): 21	% of children with FEV $_1$ <80% expected value:
1999-2000	Age Groups: 5-13 yr	2000-19	Mexico City (n = 77): 7.8% Tlaxacala (n = 19): 0%
Location: Southwest Mexico City & Tlaxcala,	Study Design: Cohort1999-	Tlaxacala:	% children with hyperinflation: Mexico City: 65.6%
Mexico	N: 249 (total), 230 (Southwest	1994-2000: <naaqs std<="" td=""><td>Number with:</td></naaqs>	Number with:
	Mexico City), 19 (Tlaxcala)	Mexico City	No hyperinflation: 79 Mild: 72
	Statistical Analyses: Bayes test, Spearman rank correlation, multiple	Monitoring Stations:	Moderate: 56 Severe: 23
	regression	Southwest Mexico City-2	Tlaxacala: 5.3%
	Covariates: Age, sex	Tlxacala-periodic air monitoring data	Number with: No hyperinflation: 18
	Dose-response Investigated? No	Copollutant: O ₃	Mild: 1 Moderate: 0
	Statistical Package: SAS 8.2		Severe: 0
			% children with interstitial markings: Mexico City: 52.6% Number with: No interstitial markings: 19 Mild: 0 Moderate: 0 Severe: 0
Reference: Cesaroni et	Outcome: Self-reported chronic	Pollutant: PM emissions	Tlaxacala: 0% Number with: No interstitial markings: 109 Mild: 112 Moderate: 9 Severe: 0 Odds Ratios for quartiles of PM emissions:
al. (2008, <u>156326</u>)	bronchitis or emphysema, asthma, and rhinitis	(estimated)	Chronic bronchitis or emphysema (n = 397): 1st: 1.00
Period of Study: Data on PM emissions	Age Groups: 25-59 yr	n Mean: 0.12 kg/km ²	2nd: 0.96 (0.71, 1.30)
collected in 2002	Study Design: Cross-sectional		3rd: 0.90 (0.66, 1.23) 4th: 1.05 (0.77, 1.42)
cross-sectional survey carried out in 1995	N: 9,488 subjects who had been		p-trend = 0.871
Location: Rome, Italy	residents in same place for at least 3 yr and who had participated in an extension of the ISAAC initiative in Italy in 1994 & 1995		Asthma (n = 472): 1st: 1.00
		SD: 0.081	2nd: 1.10 (0.84, 1.44) 3rd: 0.94 (0.71, 1.24)
	Statistical Analyses: GEE with a logit link		4th: 1.06 (0.80, 1.39) p-trend = 0.980
	Covariates: Sex, age, smoking habits, education level, and variable to account for correlation of data for members of the same family		Rhinitis (n = 1227): 1st: 1.00 2nd: 1.41 (1.17, 1.69) 3rd: 1.11 (0.92, 1.34) 4th: 1.37 (1.14, 1.64)
	Effect Modifiers: stratified analysis by smoking status (only presented for the traffic score variable)		p-trend = 0.018
	Also stratified by education level (data not shown)		
	Dose-response Investigated: Wald test to calculate p for trend		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Dales et al.,	Outcome: Pulmonary function and	Pollutant: PM _{2.5}	Increment: Tertiles of exposure
(2008, <u>156378</u>)	inflammation	Averaging Time: Annual	FEV ₁ : <15.19: 2.16 ± 0.01
Period of Study: Location: Windsor, ON	Age Groups: Grades 4-6	Mean: 15.4	15.19-15.96: 2.17 ± 0.02
	Study Design: Cross-sectional prevalence design	5th: 14.2	>15.96: 2.18 ± 0.01 FVC:
	Statistical Analyses: Multivariate	95th: 17.2	<15.19: 2.51 ± 0.02 15.19-15.96: 2.50 ± 0.02
	linear regression	Copollutant:	>15.96: 2.52 ± 0.02
	Covariates: Ethnic background,	SO ₂	eNO: <15.19: 16.08 ± 0.70
	smokers at home, pets at home, acute respiratory illness, medication	NO ₂	15.19-15.96: 15.80 ± 0.76 >15.96: 16.79 ± 0.72
	use	NO ₂	>15.90. 10.79 ± 0.72
Reference: Gauderman	Outcome: FVC, FEV ₁ , MMEF,	Pollutant: PM _{2.5}	Increment: 25.9 µg/m ³
et al. (2000, <u>012531</u>)	FEF75	Averaging Time: Annual avg of	% Change (Lower CI, Upper CI)
Period of Study: 1993-1997	Age Groups: Fourth, seventh, or tenth graders	2-wk avg PM _{2.5}	PM _{2.5} -4th grade FVC -0.47 (-0.94, 0.01)
Location: Southern	Study Design: Cohort	Mean (SD): PM _{2.5} 25.9	FEV ₁ -0.64 (-1.28, 0.01)
California	N: 3035 subjects	Copollutant (correlation):	MMEF -1.03 (-1.95 to -0.09) FEF75 -1.31 (-2.57 to -0.03)
	Statistical Analyses: Linear	03: r = -0.32	PM _{2.5} -7th grade
	regression	$PM_{10-2.5}$: r = 0.76	FVC -0.42 (-0.89, 0.05) FEV ₁ -0.32 (-0.88, 0.24)
	Covariates: Height, weight, BMI, asthma, smoking, exercise, room temperature, barometric pressure	NO ₂ : r = 0.74	MMEF -0.29 (-1.99, 1.44) FEF75 -0.26 (-1.75, 1.25)
		Inorg. Acid: r = 0.79	PM _{2.5} -10th grade
	Dose-response Investigated? Yes		FVC 0.19 (-0.68, 1.07) FEV ₁ -0.25 (-1.41, 0.93)
	Statistical Package: SAS		MMEF -0.17 (-3.66, 3.46) FEF75 -0.79 (-4.27, 2.82)
Reference: Gauderman	Outcome: Lung function	Pollutant: PM _{2.5}	PM Increment: 22.2 µg/m ³
et al. (2002, <u>026013</u>)	development: FEV₁, maximal	Averaging Time: Annual 24-h avg	Association Estimate:
Period of Study:	midexpiratory flow (MMEF)	Mean (SD): The avg levels were	Non-statistically significant negative correlation between PM _{2.5}
1996-2000	Age Groups: Fourth grade children (avg age = 9.9 yr)	presented in an online data	and FEV₁and FVC growth rates were observed. MMEF growth
Location: Southern California	Study Design: Cohort study	supplement (Fig E1)	rates had a negative correlation with $PM_{2.5}$ (r = -0.43 p = 0.05). $PM_{2.5}$ was not significantly correlated to FEV_1 (r = -0.31
	N: 1678 children, 12 communities	PM Component: EC and OC.	p = 0.25)
	Statistical Analyses: Mixed model	Monitoring Stations: 12	
	linear regression	Copollutant (correlation):	
	Covariates: Height, BMI, doctor-	O ₃ : (10 AM to 6 PM) r = 0.14	
	diagnosed asthma and cigarette smoking in previous yr, respiratory	O ₃ : r = -0.39	
	illness and exercise on day of test, interaction of each of these	NO_2 : $r = 0.77$	
	variables with sex, barometric	Acid vapor: r = 0.87	
	pressure, temperature at test time, indicator variables for field	PM ₁₀ : r = 0.95	
	technician and spirometer	PM _{10-2.5} : r = 0.81	
	Dana wasanana lawashi wata da \/aa		
	Dose-response Investigated? Yes	EC: r = 0.93	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Study Reference: (Gauderman et al., 2004, 056569) Period of Study: Air pollution data ascertainment: 1994-2000. Spirometry teesting: spring 2001-spring 2003 Location: 12 Communities in Southern California	Outcome: Lung function FVC, FEV ₁ , MMEF (Maximal midexpiratory flow rate) Age Groups: Children, Avg age 10 yr Study Design: Prospective Cohort Study N: 12 Communities 2,034 children 24,972 child-mo Statistical Analyses: Linear regression of changes in sex-and-	Concentrations Pollutant: PM _{2.5} Averaging Time: 2-wk measurements used to create annual avg Mean: Means are presented in figures only. Range (Min, Max): ~6, ~27 Monitoring Stations: 12 Copollutant (correlation): PM ₁₀ : r = 0.95 O ₃ : r = 0.18	Effect Estimates (95% CI) PM Increment: Most to least polluted community Range: 22.8 μg/m³ Difference in Lung Growth [Lower CI, Upper CI]; FVC -60.1 (-166.1 to 45.9) FEV ₁ -79.7 (-153.0 to ¡6.4) MMEF -168.9 (-345.5 to 7.8) Correlation with % below 80% predicted Lung function (p-value) PM _{2.5} : 0.79 (0.002)
	community specific lung growth function and PM Correlation between % with low attained FEV ₁ and PM. Covariates: Random effect for communities	NO ₂ : r = 0.79 EC: r = 0.91 OC: r = 0.91	
	Dose-response Investigated? No		
	Statistical Package: SAS		
Reference: Gauderman et al. (2007, 090121)	Outcome: Pulmonary function tests FVC, FEV ₁ , MMEF/FEF25.75	Pollutant: PM _{2.5} Monitoring Stations: 1 in each	PM Increment: 22.8 μg/m³ Pollutant effect reported as difference in 8 yr lung function
Period of Study: 1993-2004	Age Groups: Children (mean age 10 at recruitment, followed for 8 yr)	community	growth from least to most polluted community. Negative difference indicate growth deficits associated with exposure
Location: 12 Southern California Communities	Study Design: Cohort Study (Children's Health Study)		For PM _{2.5} FEV growth deficit is -100
	N: 3677 children (1718 in cohort 1 recruited 1993 and 1959 in cohort 2 recruited 1996)		
	22686 pulmonary function tests.		
	Statistical Analyses: Hierarchical mixed effects model with linear splines		
	Covariates: Adjustments for height, height squared, BMI, BMI squared, present asthma status, exercise or respiratory illness on day of test, smoking in previous yr, field technician, traffic indicator (distance from freeway, distance from major roads), random effects for participant and community.		
	Dose-response Investigated? No		
	Statistical Package: SAS		
Reference: Gehring et al. (2002, 036250) Period of Study:	Outcome: Wheezing, cough without infection, dry cough at night, obstructive, spastic or asthmoid	Pollutant: PM _{2.5} Mean (SD): PM _{2.5} mass: 13.4	PM Increment: PM _{2.5} mass: $1.5 \mu g/m^3$ PM _{2.5} absorb. $0.4 * 10-5/m$ (IQR)
1995-2002	bronchitis, respiratory infections, sneezing, runny/stuffed nose	PM _{2.5} absorb. 1.77 * 10-5/m	RR Estimate [Lower CI, Upper CI]
Location: Munich, Germany	Age Groups: 0-2 yr	Percentiles: PM _{2.5} mass:	Wheeze (PM ₂₅ mass) Age of 1 yr: All: 0.91 (0.76-1.09)
··· ·· ··· ,	Study Design: Prospective cohort	10th: 12.2	Males: 0.91 (0.72-1.16) Females: 0.94 (0.70-1.27)
	N: 1756 infants	25th: 12.5	Age of 2 yr: All: 0.96 (0.83-1.12)
	Statistical Analyses: Logistic regression	50th(Median): 13.1 75th: 14.0	Males: 0.93 (0.76-1.14) Females: 1.04 (0.83-1.30) Cough W/O Infection (PM _{2.5} mass)
	Covariates: Sex, parental atopy (yes/no), maternal education, siblings (y/n), environmental tobacco smoke at home (y/n), use of gas for cooking (y/n), home dampness (y/n), indoor moulds	90th: 14.9 PM _{2.5} absorbance: 10th: 1.47 * 10-5 25th: 1.54 * 10-5	Age of 1 yr: All: 1.34 (1.11-1.61) Males: 1.43 (1.14-1.80) Females: 1.19 (0.84-1.70) Dry Cough At Night (PM _{2.5} mass) Age of 1 yr: All: 1.31 (1.07-1.60) Males: 1.39 (1.08-1.78) Females: 1.17 (0.81-1.68)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	(y/n), keeping of dogs (y/n) and cats (y/n) study (GINI or LISA)	50th(Median): 1.70 * 10-5	Age of 2 yr: All: 1.20 (1.02-1.42) Males: 1.25 (1.01-1.55)
	, , , , ,	75th: 1.88 * 10-5	Females: 1.13 (0.86-1.48)
	Dose-response Investigated? No		Bronchitis (PM _{2.5} mass)
		90th: 2.13 * 10-5	Age of 1 yr: All: 0.98 (0.80-1.20) Males: 0.97 (0.76-1.25)
		Range (Min, Max):	Females: 0.98 (0.68-1.41)
		PM _{2.5} mass: 11.9, 21.9	Age of 2 yr: All: 0.92 (0.78-1.09) Males: 0.92 (0.74-1.14)
		PM _{2.5} absorbance:	Females: 0.91 (0.68-1.21)
		1.38 to 4.39 * 10-5	Resp Infections (PM _{2.5} mass) Age of 1 yr: All: 1.04 (0.91-1.19)
		PM _{2.5} mass:	Males: 1.04 (0.87-1.25)
			Females: 1.06 (0.87-1.31) Age of 2 yr: All: 0.98 (0.80-1.20)
		PM _{2.5} absorbance: 1/m	Males: 0.99 (0.74-1.31): Females: 0.98 (0.73-1.31)
		PM Component: PM _{2.5} mass	Sneezing/Runny Nose (PM _{2.5} mass) Age of 1 yr: All: 1.01 (0.85-1.20)
		PM _{2.5} absorbance (as a marker of	Males: 0.97 (0.77-1.24)
		diesel soot)	Females: 1.08 (0.84-1.41) Age of 2 yr: All: 0.96 (0.82-1.12)
		Monitoring Stations: 40	Males: 0.91 (0.73-1.12)
		Copollutant (correlation):	Females: 1.04 (0.83-1.31) Wheeze (PM _{2.5} absorbance)
		NO ₂ : r = 0.99	Age of 1 yr: All: 0.93 (0.78-1.12)
		PM _{2.5} absorbance and NO ₂ : r = 0.95	Males: 0.91 (0.71-1.15) Females: 1.01 (0.74-1.37)
		PM _{2.5} mass and PM _{2.5} absorbance:	Age of 2 yr: All: 0.98 (0.84-1.14)
		r = 0.96	Males: 0.92 (0.75-1.13) Females: 1.07 (0.85-1.36)
			Cough W/O Infection (PM _{2.5} absorbance)
			Age of 1 yr: All: 1.32 (1.10-1.59) Males: 1.38 (1.11-1.71)
			Females: 1.25 (0.87-1.78)
			Dry Cough At Night (PM _{2.5} absorbance) Age of 1 yr: All: 1.27 (1.04-1.55)
			Males: 1.31 (1.04-1.67)
			Females: 1.16 (0.79-1.71)
			Age of 2 yr: All: 1.16 (0.98-1.37) Males: 1.17 (0.95-1.44)
			Females: 1.12 (0.84-1.48)
			Bronchitis (PM _{2.5} absorbance)
			Age of 1 yr: All: 0.99 (0.81-1.22)
			Males: 1.00 (0.78-1.27) Females: 0.94 (0.63-1.39)
			Age of 2 yr: All: 0.94 (0.79-1.12)
			Males: 0.91 (0.72-1.13)
			Females: 0.95 (0.71-1.28)
			Resp Infections (PM _{2.5} absorbance)
			Age of 1 yr: All: 1.03 (0.90-1.18)
			Males: 1.03 (0.86-1.23) Females: 1.05 (0.85-1.30)
			Age of 2 yr: All: 0.99 (0.80-1.22)
			Males: 0.96 (0.73-1.26)
			Females: 1.04 (0.75-1.43)
			Sneezing/Runny Nose (PM _{2.5} absorbance)
			Age of 1 yr: All: 0.95 (0.79-1.14)
			Males: 0.90 (0.70-1.16) Females: 1.06 (0.80-1.39)
			Age of 2 yr: All: 0.92 (0.78-1.09)
			Males: 0.83 (0.66-1.05)
			Females: 1.06 (0.83-1.34))

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Goss et al.	Outcome: Cystic Fibrosis	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
(2004, <u>055624</u>)	pulmonary exacerbations, FEV ₁	Averaging Time: Annual mean of	Odds Ratio Estimate [Lower CI, Upper CI]:
Period of Study: 1999-2000	Age Groups: Children and adults over the age of 6	24-h avg Mean (SD): 13.7(4.2)	Odds of having 2 or more pulmonary exacerbations as compared to 1 or less in 2000
Location: USA	Study Design: Ccohort	Percentiles: 25th: 11.8	1.21 (1.07 -1.33)
	N: 11484 patients	50th(Median): 13.9	Odds of having 1 pulmonary exacerbation as compared to no
	Statistical Analyses: Logistic regression, t-tests, Mann-Whitney	75th: 15.9	exacerbations in 2000
	tests, Chi-squared tests, polytomous regression, multiple	Monitoring Stations: 713	0.70 (0.59-0.98)
	linear regression		Decrease in FEV ₁ 155ml(115-194)
	Covariates: Age, sex, lung function, weight, insurance status, pancreatic insufficiency, airway colonization, genotype, median household income by census tract, zipcode.		Decrease in FEV $_1$ in 2000 after adjusting for FEV $_1$ in 1999 24ml(7-40)
	Dose-response Investigated? No		
	Statistical Package: STATA, SAS		
Reference: Hertz-	Outcome: Developmental	Pollutant: PM _{2.5}	PM Increment: 25 μg/m ³
Picciotto et al. (2005, 088678)	immunotoxicity as assessed by neonatal immunophenotypes	Averaging Time: 24 h	Adjusted for 3-day temperature and season, PM _{2.5} exposu
Period of Study: May	Age Groups: Not specified: every	14 day avg	during the 14 days before birth was associated with reduced T-lymphocyte fractions CD4+, CD3+ and an increase in B-
1994-Mar 1999	woman who delivered in the two aforementioned districts were asked	Mean (SD): Overall 24 h: 24.8	lymphocyte fraction (CD19+).
Location: Teplice and Prachatice, Czech	to participate	14-day avg:	The associations were not quantitatively reported anywhere else in the paper other than in Fig 2 and Table 3
Republic	Study Design: Cohort study	Teplice: 30.1	
	N: 1397 mother-infant pairs	Prachatice 19.8	
	Statistical Analyses: Multiple linear regression with lymphocyte	PM Component: PAHs	
	percentage as responding variable and pollutant exposure to 14day averaging period before the date of cord blood collection	Monitoring Stations: 2 stations: Teplice and Prachatice	
	Covariates: Season, length of labor, parity, number of previous stillbirths, medication during delivery, working status of mother, maternal education, exposure to active and secondhand smoke, family history of allergy, self-reports of workplace exposure to dust during pregnancy, self-reported maternal chronic or severe respiratory diseases during pregnancy. Ambient temperature and season were controlled for.		
	Dose-response Investigated? Yes		
	Statistical Package: SUDAAN (version 8)		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Hertz-	Outcome: Lower respiratory	Pollutant: PM _{2.5}	PM Increment: 25 µg/m ³
Picciotto et al., 2007, 135917) Period of Study:	illnesses, majority being acute laryngitis, tracheitis, bronchitis.	Averaging Time: Used 3-, 7-, 14-, 30- and 45-day avg	RR Estimate [Lower CI, Upper CI] lag:
	ICD10 codes J04 and J20		Bronchitis, birth-23 mo of age Categorical model
1994-98 + follow-ups at up to 4.5 yr of age for	Age Groups: Birth-4.5 yr of age.	Mean (SD): Daily mean 22.3 (sd 16 for 3-day avg, 11 for 45-day	High 30-day avg PM _{2.5} (greater than 50 μg/m³) 2.26(1.81-2.82)
child Location: Czech Republic districts of Teplice and Prachatice	Study Design: Longitudinal follow up of a stratified random sample of mother-infant pairs from previous Pregnancy Outcome Study. Low birth weight and preterm births sampled at higher fractions. N: 1133 children	avg)	Medium 30-day avg $PM_{2.5}$ (between 25 and 50 μg/m³) 1.48(1.32-1.65) Continuous model 1.30(1.08-1.58) Bronchitis, 2-4.5 yr of age Categorical model High 30-day avg $PM_{2.5}$ (greater than 50 μg/m³) 3.66(2.07-6.48)
	Statistical Analyses: Generalized linear longitudinal models, GEE to adjust for within subject correlations, robust variance estimates were obtained. Model fit judged using Akaike Information criterion.		Medium 30-day avg PM _{2.5} (between 25 and 50 μg/m³) 1.60(1.41-1.82) Continuous model 1.23(0.94-1.62) Notes: Results of other averaging periods shown in plots.
	Covariates: Age of child, breast feeding, environmental tobacco smoke, season, day of week, yr of birth, gender, birth weight, pregnancy data including age at delivery, length of gestation, maternal hypertension and diabetes, infant APGAR score, maternal work history, demographics, lifestyle, reproductive and medical histories, temperature, fuel type, other children in household		
	Dose-response Investigated? No		
	Statistical Package: SUDAAN version 8		
Reference: (Hogervorst	Outcome:	Pollutant: PM _{2.5}	PM Increment: 10 µg/m ³
t al., 2006, <u>156559</u>)	Decreased lung function	Averaging Time: Daily	RR Estimate [Lower CI, Upper CI] lag:
Period of Study: NR	Age Groups: 8-13 yr old	Mean (SD): 19.0 (3.2)	FEV
ocation: Maastricht, the letherlands (six schools	Study Design: Multivariate linear	Monitoring Stations: 6	3.62 [0.50,7.63]
elected)	regression (enter method) analysis N: 342 children	Copollutant:	FVC
	Statistical Analyses: ANOVA, Chi	PM ₁₀	1.80 [-2.10, 5.80] FEF
	square	TSP	
	Covariates: Independent variables: Age, height, gender, smoking at home by parents, pets, use of ventilation hoods during cooking, presence of unvented geysers, tapestry in the home, indoor/outdoor time, education level of parents.		5.93 [-2.34, 14.89]
	Dependent variables: lung function indices		
	Dose-response Investigated? No		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Islam et al.	Outcome: New onset asthma	Pollutant: PM _{2.5}	PM Increment: NR
(2007, <u>090697</u>)	Age Groups: 9-10 yr	Range (Min, Max):	IR Estimate [Lower CI, Upper CI]
Period of Study: 1993-2001	Study Design: Cohort	"Low" PM _{2.5} Communities	Low PM FVC ≤ 90: 19.4 (7.5, 50.5)
Location: 12	N: 2057	(5.7-8.5)	FVC 90-110: 16.8 (7.0, 40.1)
communities in Southern California, U.S.	Statistical Analyses: Cox proportional hazard model	"High" PM _{2.5} Communities (13.7-29.5)	FVC >110: 7.9 (2.9, 21.9) FEV₁ ≤ 90: 23.7 (9.4, 59.4) FEV₁ 90-110: 15.6 (6.5, 37.4)
	Covariates: Community, sex, race/ethnicity	Monitoring Stations: 12	FEV₁ >110: 6.5 (2.3, 18.7) FEF25-75 ≤ 90: 21.1 (8.8, 50.5) FEF25-75 90-110: 11.9 (4.7, 30.0)
	Season: All	Copollutant: NO ₂ , acid vapor, PM ₁₀	FFF0F 7F : 440 0 4 (0 0 40 0) '
	Dose-response Investigated? No	and elemental and OC correlated as a "non-O ₃ package" of pollutants	High PM
	Statistical Package: SAS V 9.1	with a similar pattern relative to each other across the 12	FVC ≤ 90: 14.2 (5.1, 39.6) FVC 90-110: 25.6 (11.1, 59.2)
	Lags Considered: 0-2 yr	communities.	FVC >110: 16.7 (6.5, 42.9) FEV ₁ ≤ 90: 20.8 (8.0, 54.0)
			FEV ₁ 90-110: 23.1 (10.0, 53.7)
			FEV₁ >110: 18.8 (7.5, 47.3) FEF25-75 ≤ 90: 23.8 (10.2, 55.6)
			FEF25-75 90-110: 23.9 (9.9, 57.7) FEF25-75 >110: 15.9 (6.3, 40.5)
			Overall: 18.4 (9.4, 35.9)
Reference: Karr et al. (2007, <u>090719</u>)	Outcome: Bronchioloitis	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study:	Study Design: Case-control. Cases included subjects with a	Averaging Time: 24 h (lifetime monthly avg from birth & 30 days	RR Estimate [Lower CI, Upper CI]
1995-2000	record of a single hospitalization with a discharge diagnosis of acute	preceding cases hospitalization)	Sub-chronic and chronic exposure: OR = 1.09 (1.04-1.14)
Location: South Coast Air Basin of southern	bronchiolitis.10 controls per case	Mean (SD): 25	Adjusted for adjusted: Sub-chronic OR = 1.10 (1.04, 1.16)
California	were matched on birth date and gestational age.	Percentiles: 25th: 19	Chronic OR = 1.09 (1.03-1.15)
	N: 18,595 cases	50th(Median): 23	Adjusted for CO and NO_2 : Sub-chronic OR = 1.14 (1.07, 1.21)
	169,472 controls	75th: 29	Chronic OR = 1.12 (1.06, 1.20)
	Statistical Analyses: Conditional logistic regression to estimate	Range (Min, Max): 6 to 111	Adjusted for O_3 , CO , and NO_2 : Chronic $OR = 1.15$ (1.08, 1.22)
	relative risk of hospitalization for bronchiolitis.	Monitoring Stations: 17	Sub-chronic OR = 1.13 (1.06, 1.21)
	Covariates: Confounders included in the model were: gender, parity, chronic lung disease, cardiac and pulmonary anomalies, SES covariates		
	Age, Gestational age, and season of birth were controlled for by matching		
	Dose-response Investigated? Yes		
	Statistical Package: STATA (Version 8)		
Reference: (Kim et al.,	Outcome: Asthma, bronchitis	Pollutant: PM _{2.5}	PM Increment: 0.7 (IQR)
2004, <u>087383</u>)	Age Groups: Children (grades 3-5)	Averaging Time: 10 wk	OR Estimate [Lower CI, Upper CI]:
Period of Study: Mar-Jun (spring) 2001	Study Design: Cross-sectional	Mean (SD): Study Avg 12	Bronchitis All subjects: 1.02 [1.00, 1.08]
Sep-Nov (fall) 2001	N: 1109 children, 871 (long term	Monitoring Stations: 10	LTR subjects: 1.03 [1.01, 1.08] LTR females: 1.04 [1.02, 1.05]
Location: Alameda	resident children), 462 (long term related females), 403 (long term	Copollutant (correlation): r2 is	LTR males: 1.02 [0.99, 1.05]
County, CA	related males)	approximately 0.9 for all copollutants-Black Carbon (BC),	Asthma All subjects: 1.00 [0.96, 1.12]
	Statistical Analyses: 2-stage multiple logistic regression model	PM ₁₀ , NO _X , NO ₂ , NO (NO _X -NO ₂)	LTR súbjects: 1.01 [0.97, 1.06] LTR females: 1.06 [0.99, 1.15]
	Covariates: Respiratory illness before age of 2, household mold/moisture, pests, maternal history of asthma (for asthma) Season: spring and fall		LTR males: 0.99 [0.95, 1.04] Asthma excluding outlier school having a larger proportion of Hispanics All subjects: 1.04 [0.96, 1.12] LTR subjects: 1.03 [0.94, 1.13] LTR females: 1.03 [0.91, 1.17]
			LTR males: 1.03 [0.94, 1.18]
	Dose-response Investigated? Yes		LTT THAICS. 1.00 [0.04, 1.10]

al. (2000, 010272) Period of Study: 1996 Stud Location: 17 cities of Central Europe (Bulgaria, Czech Republic, Hungary, Poland, Romania, Slovakia) Reference: McConnell (1999, 007028) Period of Study: 1993 Location: Southern California Reference: McConnell et al. (2003, 049490) Period of Study: 1993 Reference: McConnell et al. (2003, 049490) Period of Study: 1993 Reference: McConnell et al. (2003, 049490) Period of Study: 1993 Reference: McConnell et al. (2003, 049490) Period of Study: 1993 Study: Study: 1993-1999 Study: 1993-1999	Outcome: Immune biomarkers Age Groups: 9-11 Study Design: Cross-sectional N: 366 school children Statistical Analyses: Linear egression Covariates: Age, gender, parental smoking, laboratory of analysis, ecent respiratory illness Dose-response Investigated? No Statistical Package: STATA	Pollutant: PM _{2.5} Averaging Time: Annual PM _{2.5} Mean (SD): PM _{2.5} : 46 (10) Range (Min, Max): PM _{2.5} : (29, 67) 5th, median, & 95th percentile PM _{2.5} : 29, 44, 67	% Change (Lower CI, Upper CI) p-value PM _{2.5} Neutrophils -10 (-45, 46) >.20 Total lymphocytes 49 (11, 101); .008 B lymphocytes 63 (4, 155); .034 Total T lymphocytes 72 (32 123) <.001 CD4+ 80 (34 143) <.001 CD8+ 61 (17, 119); .003 CD4/CD8 16 (-17, 62) >.20
Period of Study: 1993 Coation: Southern California Reference: McConnell et al. (2003, 049490) Period of Study: 1993-1999 Coation: 12 Southern CA communities Cougliance Age 10th Stud Statis regre Cova healt Dose Steference: McConnell et al. (2003, 049490) Coation: 12 Southern CA communities	Outcome: Bronchitis, chronic	Pollutant: PM ₂₅	NK 63 (3, 158); .035 Total IgG 24 (2, 52); .034 Total IgM -9 (-32, 22) >.20 Total IgA -1 (-25, 32) >.20 Total IgE -4 (-61, 137) >.20 Child Respiratory symptoms OR Estimate (Lower CI,
Reference: McConnell et al. (2003, 049490) Period of Study: 1993-1999 Location: 12 Southern CA communities Suda selection of cri residue.	Age Groups: Children: 4th, 7th, & 10th graders Study Design: Cross-sectional N: 3676 people Statistical Analyses: Logistic egression Covariates: Age, sex, race, grade, nealth insurance Dose-response Investigated? Yes	Averaging Time: Yearly 2-wk avg Mean (SD): 15.3 Range (Min, Max): 6.7, 31.5 Copollutant (correlation): $NO_2 r = 0.83$ $O_3 r = 0.50$ Acid $r = 0.71$	Upper CI) PM ₂₅ Increment: 15 µg/m³ Children w/ asthma Bronchitis: 1.4 (0.9, 2.3) Phlegm: 2.6 (1.2, 5.4) Cough: 1.3 (0.7, 2.4) Children w/ wheeze, no asthma Bronchitis: 0.9 (0.6, 1.4) Phlegm: 1.0 (0.6, 1.8) Cough: 1.1 (0.6, 1.9) Children w/ no wheeze, no asthma Bronchitis: 0.5 (0.3, 1.0) Phlegm: 0.8 (0.4, 1.5)
al. (2003, 049490) Period of Study: 1993-1999 Location: 12 Southern CA communities Age Stud selec of cri resid		D-II-44- DM	Cough: 0.9 (0.6, 1.3)
regre logist Cova histor insur: curre smok team expo smok amou outsic	Age Groups: 9-19 Study Design: Communities selected on basis of historic levels of criteria pollutants and low esidential mobility. N: 475 children Statistical Analyses: 3 stage egression combined to give a ogistic mixed effects model Covariates: Sex, ethnicity, allergies history, asthma history, SES, nsurance status, current wheeze, current exposure to ETS, personal smoking status, participation in eam sports, in utero tobacco exposure through maternal smoking, family history of asthma, amount of time routinely spent outside by child during 2-6 pm. Dose-response Investigated? No Statistical Package: SAS Glimmix	Pollutant: PM _{2.5} Averaging Time: 4-yr avg Mean (SD): 13.8(7.7) Range (Min, Max): 5.5-28.5 Copollutant (correlation): PM ₁₀ : r = 0.79 PM _{10-2.5} : r = 0.24 Inorganic acid: r = 0.76 Organic Acid: r = 0.58 EC: r = 0.83 OC: r = 0.84 NO ₂ : r = 0.54 O ₃ : r = 0.72	PM Increment: Between community range 23 μg/m³ Between community unit 1 μg/m³ Within community 1 μg/m³ OR Estimate [Lower CI, Upper CI] Between community per range 1.81(1.14-2.88) Between Community per unit 1.03(1.01-1.05) Within community per unit 1.09(1.01-1.17)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	Outcome: Bronchitic symptoms	Pollutant: EC	PM Increment: Between community range 1.1 μg/m³
al. (2003, <u>049490</u>)	Age Groups: 9-19	Averaging Time: 4-yr avg	Between community unit 1 µg/m ³
Period of Study: 993-1999	Study Design: Communities	Mean (SD): 0.71(0.41)	Within community 1 µg/m³
ocation: 12 Southern	selected on basis of historic levels of criteria pollutants and low	Range (Min, Max): 0.1-1.2	OR Estimate [Lower CI, Upper CI]
CA communities	residential mobility.	Copollutant (correlation):	Between community per range
	N: 475 children	$PM_{2.5}$: $r = 0.83$	1.64(1.06-2.54)
	Statistical Analyses: 3 stage regression combined to give a	PM_{10} : $r = 0.71$	Between Community per unit
	logistic mixed effects model	$PM_{10-2.5}$: $r = 0.30$	1.55(1.05-2.30)
	Covariates: Sex, ethnicity, allergies	Inorganic acid: r = 0.82	Within community per unit
	history, asthma history, SES, insurance status, current wheeze,	Organic Acid: r = 0.66	2.63(0.83-8.33)
	current exposure to ETS, personal smoking status, participation in	OC: r = 0.88	` ,
	team sports, in utero tobacco	NO_2 : $r = 0.54$	
	exposure through maternal smoking, family history of asthma, amount of time routinely spent	O ₃ : r = 0.68	
	amount of time routinely spent outside by child during 2-6 pm.		
	Dose-response Investigated? No		
	Statistical Package: SAS Glimmix macro		
	Outcome: Bronchitic symptoms	Pollutant: OC	PM Increment: Between community range 10.2 μg/m ³
il. (2003, <u>049490</u>)	Age Groups: 9-19	Averaging Time: 4-yr avg	Between community unit 1 µg/m ³
Period of Study: 993-1999	Study Design: Communities selected on basis of historic levels of criteria pollutants and low residential mobility. N: 475 children	Mean (SD): 4.5(2.7)	Within community 1 µg/m³
ocation: 12 Southern		Range (Min, Max): 1.4-11.6	OR Estimate [Lower CI, Upper CI]
CA communities		Copollutant (correlation): PM _{2.5} : r = 0.84	Between community per range
			1.74(0.89-3.4)
	Statistical Analyses: 3 stage regression combined to give a	PM_{10} : $r = .70$	Between Community per unit
	logistic mixed effects model	$PM_{10-2.5}$: $r = 0.27$	1.06(0.99-1.13)
	Covariates: Sex, ethnicity, allergies	Inorganic acid: r = 0.83	Within community per unit
	history, asthma history, SES, insurance status, current wheeze,	Organic Acid: r = 0.69	1.41(1.12-1.78)
	current exposure to ETS, personal smoking status, participation in	EC: r = 0.88	` '
	team sports, in utero tobacco	NO_2 : r = 0.67	
	exposure through maternal smoking, family history of asthma, amount of time routinely spent outside by child during 2-6 pm.	O ₃ : r = 0.81	
	Dose-response Investigated? No		
	Statistical Package: SAS Glimmix macro		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: McConnell,	Outcome:	Pollutant: PM _{2.5}	PM Increment: 3.4 µg/m ³
et al. (2006, <u>180226</u>) Period of Study: 1996-1999	Prevalence of bronchitic symptoms (yrly).	Averaging Time: 365 days Percentiles: Community by yr (n = 48 = 12 communities · 4 yr)	OR Estimate [Lower CI, Upper CI] PM _{2.5} Dog (n = 292): 1.56 [1.15: 2.12]
Location: 12 Southern	Age Groups: 10-15-yr-old Study Design: Longitudinal cohort	25th: NR 50th(Median): 3.4	No dog (n = 183): 1.03 [0.71: 1.49] PM _{2.5} *Dog interaction p-value: 0.06 Cat (n = 202): 1.30 [0.90: 1.88] No Cat (n = 273): 1.36 [0.99: 1.83]
California communities	N: 475 asthmatic children	75th: NR	
	Statistical Analyses: Multilevel logistic mixed effects models.	Range (Min, Max): Community by yr (n = $48 = 12$ communities · 4 yr): (0.89, 8.7)	PM _{2.5} *Cat interaction p-value: 0.87 Neither pet (n = 112): 1.11 [0.71: 1.74] Cat only (n = 71): 0.85 [0.46: 1.57]
	Covariates: Age, second-hand smoke	Monitoring Stations: 12	Dog only (n = 161): 1.53 [1.04: 2.25] Both pets (n = 131): 1.58 [1.02: 2.46]
	Personal smoking history	Copollutant: O ₃	Results suggest that dog ownership, a source of residential exposure to endotoxin, may worsen the severity of respiratory symptoms from exposure to air pollutants in asthmatic
	Sex, race.	NO₂ EC	children.
	Dose-response Investigated? No	OC	Although PM _{2.5} was associated at a statistically significant
	Statistical Package: SAS	Acid vapor (acetic and formic acid)	level with ownership of both cats and dogs, it appears that dog ownership (with or without a cat) specifically worsens the association between $PM_{2.5}$ and respiratory symptoms in asthmatic children.
Reference: (Meng et al.,	Outcome: Poorly controlled asthma	Pollutant: PM _{2.5}	Results for PM _{2.5} were nonsignificant and not reported
2007, <u>093275</u>)	vs. controlled asthma	Averaging Time: 24 h	quantitatively.
Period of Study: Nov 2000 and Sep 2001	ICD9NR	Copollutant (correlation):	
Location: Los Angeles	Age Groups: 18-64, 65+	O ₃ : r = -0.76	
and San Diego counties	Study Design: Long-term exposure study	NO ₂ : r = 0.87	
	comparison of cases and controls	PM_{10} : r = 0.84	
	N: 1,609 adults (represented individuals age 18+ who reported ever having been diagnosed as having asthma by a physician and had their address successfully geocoded)	CO: r = 0.52 TD: r = 0.13	
	Statistical Analyses: Logistic regression to evaluate associations between TD (traffic density) and annual avg air pollution concentrations and poorly controlled asthma. Used sample weights that adjusted for unequal probabilities of selection into the CHIS sample.		
	Covariates: Age, sex, race/ethnicity, family federal poverty level, county, insurance status, delay in care for asthma, taking medications, smoking behavior, self-reported health status, employment, physical activity		
	Dose-response Investigated? yes		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	Outcome: Wheezing & asthma	Pollutant: PM _{2.5}	PM Increment: IQR: 5.24 µg/m ³
al. (2004, <u>088629</u>)	medication use (ICD 9 NR)	Averaging Time: Integrated values	Odds Ratio [lower CI, Upper CI]
Period of Study: Mar-Aug 1995, and Sep	Age Groups: 4th grade students, mostly 9 yr at the time of the study	for successive 2-wk periods	Annual
1995-Feb 1996	Study Design: Cohort Study, stratified into 2 seasonal groups/ N: 2081 enrolled, 2034 provided parent-completed questionnaire.	PM Component: Nitric acid, formic acid, acetic acid	PM _{2.5} : 1.04 [0.83, 1.29]
Data were taken from the Children's Health Study		Monitoring Stations: 1 central	Mar-Aug
Location: Alpine,		location in each community	PM _{2.5} : 0.91 [0.64, 1.30]
Atascadero, Lake Arrowhead, Lake	Statistical Analyses: Multilevel,	Copollutant (correlation):	Sep-Feb
Elsinore, Lancaster,	mixed-effects logistic model.	O ₃ : r = 0.09	PM _{2.5} : 1.18 [0.89, 1.58]
Lompoc, Long Beach, Mira Loma, Riverside,	Covariates: Contagious respiratory disease, ambient airborne pollen	NO ₂ : r = 0.28	
San Dimas, Santa Maria, and Upland, CA	and other allergens, temperature,	PM_{10} : $r = 0.33$	
	sex, age race, allergies, pet cats, carpet in home, environmental tobacco smoke, heating fuel, heating system, water damage in home, education level of questionnaire signer, physician	PM _{10-2.5} : r = -0.08	
	diagnosed asthma. Season: Mar-Aug, 1995, and Sep, 1995 to Feb, 1996		
	Statistical Package: GLIMMIX SAS 8.00 macro for generalized linear mixed models.		
	Lags Considered: 14		
Reference: Morgenstern	Outcome: Asthma, wheezing,	Pollutant: PM _{2.5}	PM Increment: 1.04 µg/m ³
et al. (2007, <u>090747</u>)	spastic/obstructive bronchitis. Dry cough at night, respiratory	Averaging Time: Annual	Odds Ratio [Lower CI, Upper CI]
Period of Study: Mar 1999-Jul 2000	infections, sneezing, runny/stuffed nose without a cold.	Mean (SD): 12.8	Adjusted OR for PM _{2.5} and: sneezing, runny/stuffed nose
Location: Munich,	Age Groups: at 1 yr & at 2 yr	Percentiles: 25th: 12.5	during the first yr of life was 1.16 [1.01, 1.34]
Germany	Study Design: Cohort	50th(Median): 12.9	At age 1 yr
	N: 3577 children for the prediction	75th: 13.3	For wheezing 1.01 [0.87, 1.18]
	models. Respiratory data available	Range (Min, Max): 6.8, 15.3	For cough without infection 1.05 [0.88, 1.25]
	for 3129 children at 1 yr. Statistical Analyses: Pearson's	Monitoring Stations: 40: traffic,	For dry cough at night1.08 [0.86, 1.27]
	correlation coefficient, prediction	n = 17 and background, n = 23.	For asthmatic, spastic, or obstructive bronchitis
	error expressed as root mean squared error (RMSE), multiple logistic regression with confounding factors, odds ratios	Copollutant (correlation):	1.04 [0.90, 1.29]
		$PM_{2.5}$ absorbance $r = 0.49$	For respiratory infection1.05 [0.88, 1.22]
	Covariates: Sex, Parental atopy	$NO_2 r = 0.45$	For sneezing, runny or stuffed nose 1.16 [1.01, 1.34]
	(genetic predisposition to allergies), environmental tobacco smoke at		At age 2 yr For wheezing 1.10 [0.96, 1.25]
	home, maternal education >or <12		For cough without infection NA, insufficient sample
	yr, sibling, gas stove, home dampness, indoor mold, pets. Since		For dry cough at night 1.03 [0.86, 1.19]
	it was not feasible to measure personal exposure to NO ₂ , PM _{2.5} ,		For asthmatic, spastic, or obstructive bronchitis
	and PM _{2.5} absorbance, exposure modeling was used.		1.05 [0.92, 1.20]
	Statistical Package: SAS V.8.02		For respiratory infection 1.09 [0.94, 1.07]
			For sneezing, runny or stuffed nose 1.19 [1.04, 1.36]
			1 of Sheezing, fullify of Stuffed 1056 1.13 [1.04, 1.50]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Morgenstern	Outcome: Asthma, wheezing,	Pollutant: PM _{2.5} Absorbance (PM _{2.5}	PM Increment: 0.22 x 10 -5
et al. (2007, <u>090747</u>)	spastic/obstructive bronchitis. Dry cough at night, respiratory	Averaging Times Applied	Odds Ratio [Lower CI, Upper CI]
Period of Study: May 1999-Jul 2000	infections, sneezing, runny/stuffed nose without a cold.	Averaging Time: Annual Mean (SD): 1.7 10 -5 m -1,	no lag
ocation: Munich,	Age Groups: at 1 yr & at 2 yr	Percentiles: 25th: 1.6 10 -5 m -1	At age 1 yr
Germany	Study Design: Cohort	50th(Median): 1.7 10 -5 m -1	For wheezing 0.97 [0.77, 1.23]
	N: 3577 children for the prediction	75th: 1.8 10 -5 m -1	For cough without infection 1.16 [0.87, 1.54]
	models. Respiratory data were available for 3129 children at 1 yr.		For dry cough at night1.09 [0.78, 1.51]
	Statistical Analyses: Pearson's	Range (Min, Max): 1.3, 3.2 10 -5 m -1	For asthmatic, spastic, or obstructive bronchitis
	correlation coefficient, prediction	Unit (i.e. μg/m³): 10 -5 m -1	1.14 [0.88, 1.48]
	error expressed as root mean squared error (RMSE), multiple	` ' ' '	For respiratory infections1.03 [0.86, 1.24]
	logistic regression with confounding factors, odds ratios	Monitoring Stations : 40: traffic, n = 17 and background, n = 23.	For sneezing, runny or stuffed nose 1.30 [1.03, 1.65]
	Covariates: Sex, Parental atopy		At age 2 yr
	(genetic predisposition to allergies), environmental tobacco smoke at		For wheezing 1.09 [0.90, 1.33]
	home, maternal education >or <12		For cough without infection NR insufficient data
	yr, sibling, gas stove, home dampness, indoor mold, pets. Since		For dry cough at night1.18 [0.93, 1.50]
	it was not feasible to measure personal exposure to NO ₂ , PM _{2.5} ,		For asthmatic, spastic, or obstructive bronchitis
	and PM _{2.5} absorbance, exposure modeling was used.		0.85 [0.30, 2.34]
	Statistical Package: SAS V.8.02		For respiratory infections1.05 [0.79, 1.39]
	Statistical Fackage. OAS V.0.02		For sneezing, runny or stuffed nose
			1.27 [1.04, 1.56]
Reference: Oftedal et al. (2008, <u>093202</u>)	Outcome: Lung function (PEF, FEF25%, FEF50%, FEV ₁ , FVC)	Pollutant: PM _{2.5}	PM Increment: Per IQR
Period of Study:	Age Groups: 9-10 yr	IQR:	β (Lower CI, Upper CI)
2001-2002	Study Design: Cross-sectional	PM _{2.5} in 1st yr of life: 6.2	PM _{2.5} in 1st yr of life
ocation: Oslo, Norway	N: 1847 children	PM _{2.5} lifetime: 3.6	PEF -76.1 (-122.2 to -30.0)
	Statistical Analyses: Linear		FEF25% -75.6 (-127.4 to -23.8)
	regression		FEF 50% -62.4 (-107.4 to -17.4)
	Covariates: Height, age, BMI, birth		FEV ₁ -12.7 (-28.8, 3.4)
	weight, temperature, maternal smoking, se		FVC -2.9 (-20.5, 14.7)
	Dose-response Investigated? Yes		PM _{2.5} lifetime exposure
	Statistical Package: SPSS,		PEF -57.7 (-94.4 to -21.1)
	STATA, S-Plus		FEF25% -51.8 (-93.1 to -10.6)
	Lags Considered: 1-3		FEF 50% -48.4 (-84.2 to -12.6)
			FEV ₁ -10.4 (-23.2, 2.4)
			FVC -3.9 (-17.9, 10.1)
Reference: (Parker et al., 2009, <u>192359</u>)	Outcome: Respiratory allergy/hayfever	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study: 1999-	Study Design: Cohort	Averaging Time: NR	Odds Ratio (95% CI)
2005	Covariates: Survey yr, age, family	Median: 13.1	Single Pollutant Model, variable N
Location: U.S.	structure, usual source of care,	IQR: 10.9-15.2	Adjusted: 1.16 (1.04-1.30)
	health insurance, family income relative to federal poverty level,	Copollutant (correlation):	Single Pollutant Model, constant N
	race/ethnicity	Summer O ₃ : 0.10	Adjusted: 1.23 (1.04-1.46)
	Statistical Analysis: Logistic regression	SO ₂ : 0.21	Multi-pollutant Model: 1.29 (1.07-1.56)
	Statistical Package: SUDAAN	NO ₂ : 0.53	
	Age Groups: 73,198 children aged	PM _{10-2.5} : 0.02	
	3-17 yr	PM ₁₀ : 0.51	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Sekine et al. (2004, 090762)	Outcome: Pulmonary function tests	, , ,	Results of multiple logistic regression analysis for respiratory symptoms
Period of Study:	Age Groups: 30-59 yr	Averaging Time: Measured each month for three consecutive days	Persistent cough
1987-1994	Study Design: Cross-sectional and longitudinal	(72 h)	Group 3: OR = 1.00 Group 2: OR = 1.02 (0.70-1.48) Group 1: OR = 1.07 (0.67-1.70)
Location: Nine districts in the Tokyo, Japan	N: 500 females	Mean (SD): 28.1-63.3	Persistent phlegm
metropolitan area: Chuo ward, Ohta ward, Shibuya ward, Itabashi	Statistical Analyses: Multiple logistic regression analysis	Range (Min, Max): 3.4-140.6 Copollutant (correlation): NO ₂	Group 3: OR = 1.00 Group 2: OR = 1.51 (1.11-2.04) Group 1: OR = 1.78 (1.26-2.53)
ward, Hachioji City, Tachikawa City, Ome City, Machida City, Tanashi City	Covariates: Group (classification by air pollution level), pulmonary function at initial test, age and height at the time of the initial test, number of yr investigated, yr of residence in the area, type of heater, housing structure, and job status.		Asthma Group 3: OR = 1.00 Group 2: OR = 1.99 (0.82-4.83) Group 1: OR = 2.66 (0.98-7.19) Wheeze Group 3: OR = 1.00 Group 2: OR = 1.39 (0.95-2.01) Group 1: OR = 1.34 (0.85-2.11) Breathlessness
	Dose-response Investigated? No		Group 3: OR = 1.00
	Statistical Package: SAS		Group 2: OR = 0.84 (0.47-1.50) Group 1: OR = 2.70 (1.48-4.91)
Reference: Sharma et	Outcome: Lung function	Pollutant: PM _{2.5}	PM Increment: 1 μg/m³
al. (2004, <u>156974</u>)	Age Groups: 20-55 yr	Averaging Time: 24 h	ΔPEF (difference or change in peak expiratory flow)
Period of Study: Nov 2002-Apr 2003	Study Design: Cohort	Mean (SD): IITK 158 (22)	-0.0297 L/min
Location: 3 sections in	N: 91 people	VN 85 (30)	
Kanpur City, India	Statistical Analyses: Linear	JC 59 (9)	
Indian Institute of Technology Kanpur (IITK)	regression Covariates: NR	PM Component: Lead, Nickel, Cadmium, Chromium, Iron, Zinc	
2) Vikas Nagar (VN)	Season: Fall, Winter, spring	Benzene soluble fraction (includes	
3) Juhilal Colony (JC)	Dose-response Investigated? No	polycyclic aromatic hydrocarbons [PAHs])	
	Statistical Package:	Copollutant (correlation):	
	Microsoft Excel	ΔPEF = mean daily deviations in PEF	
	Lags Considered: 1 day lag & 5-day ma	PM _{2.5} -ΔPEF: -0.30 PM _{2.5} -PM ₁₀ : 0.67 PM _{2.5} -PM ₁₀ (1-day lag): 0.49 PM _{2.5} -PM _{2.5} (1-day lag): 0.88	
Reference: (Singh et al., 2003, <u>052686</u>)	Outcome: Lung function (peak expiratory flow variability)	Pollutant: Respirable suspended PM (RSPM)	It appears that no associations between particulates and the outcome of interest were calculated and reported in this study
Period of Study: NR	Age Groups: Medical school-aged	Averaging Time: 8 h	
Location: Jaipur, India	students	Mean (SD): Roadside: 1,666	
	Study Design: Cross sectional	Campus: 177	
	N: 313 nonsmoker students	Monitoring Stations: 2	
	Statistical Analyses: Amplitude % mean was used as the measure of PEF variability. Mean value of amplitude % mean of peak flow variability were compared for in the two groups by application of Student's t-test. The two groups were: living on campus and commuters.		
	Dose-response Investigated? Yes		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Solomon et al., 2003, <u>087441</u>)	Outcome: Cardio-respiratory morbidity	Pollutant: Black Smoke	RR Estimate [Lower CI, Upper CI]
Period of Study:	Age Groups: 45 yr and older	Averaging Time: Annual	The findings provide no indication that prolonged residence in places that have had relatively high levels of particulate air
1966-1997	Study Design: Cross-sectional		pollution causes an important increase in cardio-respiratory morbidity.
Location: United Kingdom: Northern	N: 1,166 women		Prevalence ratios are based on high vs. low pollution with low
England, North-West Midlands, and Wales.	Statistical Analyses: Prevalence		as referent.
	ratios were reported for ischemic heart disease, asthma, productive		Particulate pollution in place of residence:
	cough, wheeze, and use of an inhaler for asthma or other breathing		Rr = 1.0 (0.7-1.4) for ischemic heart disease;
	problems.		Rr = 0.7 (0.5-1.0) for asthma
	Covariates: Smoked, passive smoking in childhood, tenancy, SES, worked in industry with respiratory hazards, childhood admission to hospital for chest problem, diabetes, BMI were all controlled for as potential confounders.		Rr = 1.0 (0.7 -1.5) for productive cough
	Dose-response Investigated? yes		
	Statistical Package: STATA		
Reference: Suglia et al.	Outcome: Lung function	Pollutant: Black Carbon (BC)	PM Increment: 0.22 µg/m³ (IQR)
(2008, <u>157027</u>)	Age Groups: 18-42	Averaging Time: Annual	Effect Estimate [Lower CI, Upper CI]
Period of Study: Mar 1986-Oct 1992	Study Design: Prospective cohort	Mean (SD): 0.62 (0.15)	FEV ₁ : -1.08 (-2.5, 0.3) FVC: -0.62 (-1.9, 0.6)
Location: Boston, MA	N: 272 women of childbearing age		FEF25-75%: -2.97 (-5.8 to -0.2) Current Smokers:
	Statistical Analyses: Linear		FEV ₁ : 0.62 (-2.1, 3.4)
	regression Covariates: Height, age, weight, race/ethnicity, yr, education		FVC: 0.64 (-2.0, 3.3) FEF25-75%: -2.63 (-3.7, 8.9) Former Smokers:
	Dose-response Investigated? yes-tertiles of exposure		FEV ₁ : -4.40 (-7.8 to -1.0) FVC: -3.11 (-6.1 to -0.2) FEF25-75%: -8.78 (-14.7 to -2.9)
	Statistical Package: SAS v. 9.0		Nonsmokers: FEV ₁ : -0.98 (-2.9, 0.9) FVC: -0.32 (-2.0, 1.4) FEF25-75%: -4.39 (-8.1 to -0.6)
			Exposure-response relationship presented graphically in Fig 1: the highest BC exposure group had decreases in FEV $_1$, FVC, and FEF25-75% compared with the lowest tertile group, although these differences were not statistically significant.
Reference: (Sunyer et	Outcome: Chronic bronchitis	Pollutant: PM _{2.5}	PM Increment: NR
al., 2006, <u>089771</u>)	Age Groups: Mean age (range)	Averaging Time: 18 mo	Odds ratio [Lower CI, Upper CI]
Period of Study: initial selection: 1991-1993,	Males- 42.62 (38.12-45.62)	Mean (SD): 3.7-44.9	Chronic phlegm prevalence at follow up
follow-up Jun 2000-Dec 2001	Females- 42.57 (39.92-45.69)	Copollutants: NO2, SO2	Males: 0.97 [0.70,1.35]
Location: 21 centers in	Study Design: Hierarchical models		
10 European countries	N : 6924		
	Statistical Analyses: General additive models (GAM)		
	Covariates: Smoking, age at end of education, occupational group, occupational exposures, respiratory infections during childhood, rhinitis, asthma, traffic intensity at household level.		
	Statistical Package: STATA-8		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Zhang et al.	Outcome: Interview-self reports of	Pollutant: PM _{2.5}	PM Increment: Interquartile range corresponded to 1 unit of
(2002, <u>034814</u>)	symptoms: Wheeze (ever wheezy when having a cold)	Averaging Time: 2 yr	change.
Period of Study: 1993-1996	Asthma (diagnosis by doctor)	Mean (SD): 92 (31)	RR Estimate [Lower CI, Upper CI]
Location: 4 Chinese	Bronchitis (diagnosis by doctor)	Percentiles:	lag:
cities (urban and suburban location in	Hospitalization due to respiratory	25th: NR	No association between PM _{2.5} and any type of respiratory morbidity.
each city): Guangzhou,	disease (ever)	50th(Median): NR	No between or within city association between PM _{2.5} and any
Wuhan, Lanzhou, Chongqing	Persistent cough (coughed for at least 1 month per yr with or apart	75th: NR	type of respiratory morbidity.
	from colds)	IQR: 39	When scaled to an increment of 50 µg/m ³ increase in PM _{2.5} , association (ORs) between respiratory outcome and PM _{2.5}
	Persistent phlegm (brought up phlegm or mucus from the chest for	Range (Min, Max):	was:
	at least 1 month per yr with or apart	Gives range (maxmin.):	Wheeze: 1.06
	from colds).	PM _{2.5} -98	Asthma: 1.29
	Age Groups: Elementary school students	Monitoring Stations: 2 types:	Bronchitis: 1.68
	age range: 5.4-16.2	municipal monitoring stations over a period of 4 yr (1993-1996)	Hospitalization: 1.08
	Study Design: Cross-sectional	schoolyards of participating	Persistent cough: 1.24
	N: 7,557 returned questionnaires	children over a period of 2 yr (1995-1996)	Persistent phlegm: 3.09
	7,392 included in first stage of analysis	(,	
	Statistical Analyses: 2-stage regression approach:		
	Calculated odds ratios and 95% CIs of respiratory outcomes and covariates Second stage consisted of variance-weighted linear regressions that examined associations between district-specific adjusted prevalence rates and district-specific ambient levels of each pollutant.		
	Covariates: Age, gender, breast-fed, house type, number of rooms, sleeping in own or shared room, sleeping in own or shared bed, home coal use, ventilation device used, homes smokiness during cooking, eye irritation during cooking, parental smoking, mother's education level, mother's occupation, father's occupation, questionnaire respondent, yr of questionnaire administration, season of questionnaire administration, parental asthma prevalence.		

¹All units expressed in µg/m³ unless otherwise specified.

Table E-25. Long-term exposure - respiratory morbidity outcomes - other PM size fractions.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: El-Zein et al. (2007,	ED Admissions	Pollutant: PM from diesel	PM Increment: NA
093043)	Outcome: Acute respiratory symptoms:	Range (Min, Max): NR	β (p-value):
Period of Study: 2000-2004	asthma, URTI, pneumonia, bronchitis	PM Component: NR	2-yr pre-ban vs. 2-yr post-ban Oct to Feb
Location: Beirut, Lebanon	Age Groups: <17	Monitoring Stations: 1	All Resp: 0.128 (0.32)
	Study Design: Ecological (natural experiment comparing admissions before and after ban on diesel fuel)	looked at outcome with respect to a	Asthma: -0.176 (0.16) Bronchitis: 0.505 (0.02) Pneumonia: 0.287 (0.17) URTI: -0.265 (0.41)
	N: 5 hospitals, 7573 admissions Oct- Feb, 4303 admissions Oct-Dec		Oct to Dec All Resp: -0.022 (0.87) Asthma: -0.21 (0.07)
	Statistical Analyses: T-test, Poisson regression	Copollutant: NR	Bronchitis: 0.2 (0.35) Pneumonia: -0.065 (0.78)
	Covariates: Month of Year, temperature, humidity, orthogonalized rainfall		URTI: -0.628 (0.05) 2-yr pre-ban vs. 1-yr post-ban Oct-Feb All Resp: -0.093 (0.45)
	Season: Oct-Dec (excluding flu season) and Oct-Feb		Asthma: -0.208 (0.05) Bronchitis: 0.286 (0.32)
	Dose-response Investigated? No		Pneumonia: -0.07 (0.76) URTI: -0.715 (0.11)
	Statistical Package: NR		Oct to Dec All Resp: -0.147 (0.02)
	Lags Considered: 1-2 yr before the ban compared to 1-2 yr after the ban		Asthma: -0.147 (0.00) Bronchitis: -0.011 (0.96) Pneumonia: -0.214 (0.15) URTI: -0.885 (0.06) 1-yr pre-ban vs. 1-yr post-ban Oct-Feb All Resp: -0.165 (0.04) Asthma: -0.212 (0.09) Bronchitis: 0.059 (0.85) Pneumonia: -0.034 (0.84) URTI: -1.023 (0.00) Oct to Dec All Resp: -0.17 (0.00) Asthma: -0.131 (0.00) Bronchitis: -0.145 (0.001) Pneumonia: -0.168 (0.12) URTI: -1.036 (0.00)
Reference: Kasamatsu et al. (2006, 156627)	Outcome: FVC, FEV ₁ , PEF, FEF75	Pollutant: PM ₇	PM Increment: 63.0 µg/m ³
Period of Study: 2001-2002	Age Groups: School Children aged 8-10	Averaging Time: Avg of 4 separate 2-7 consecutive day measurements within	Mean change of pulmonary function value [Lower CI, Upper CI] at lag 0
Location: Shenyang, China	Study Design: Children in three schools in three types of areas (commercial city area, residential city area, residential suburban area) invited to participate N: 322 children participated, 244 have complete data. Statistical Analyses: Genralized estimating equations Covariates: Age, height, Dose-response Investigated? No Statistical Package: SAS Lags: Considered: previous quarter.	each designated measurement month of the quarter Mean (SD): School A 7/2001 86.4(14.2) 10/2001 114.1(35.1) 1/2002 118.2(28.2) 4/2002 182.7(102.1) School B 7/2001 90.1(8.3) 10/2001 161.5(45.7) 1/2002 118.8(28.2) 4/2002 152.0(31.3) School C 7/2001 78.1(16.9) 10/2001 131.2(29.6) 1/2002 142.2(37.6) 4/2002 173.6(121.5)	Boys FVC -0.095(-0.170,-0.019) FEV ₁ -0.088(-0.158,-0.019) PEF -0.170(-0.365,0.032) FEF75 -0.063(-0.145,-0.019) FEV ₁ -0.082(-0.145,-0.019) FEV ₁ -0.069(-0.126,-0.006) PEF 0.095(-0.095,0.290) FEF75 -0.032(-0.151,0.082) Mean change of pulmonary function value [Lower CI, Upper CI] at lag 1(previous quarter) Boys FVC -0.145(-0.189,-0.095) FEV ₁ -0.095(-0.139,-0.057) PEF -0.082(-0.208,0.050) FEF75 0.013(-0.063,0.088)
		PM Component: mainly pollutants associated with coal heating	Girls FVC -0.126(-0.170,-0.088)
		Monitoring Stations: 1 at each location	FEV ₁ -0.101(-0.139,-0.063)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Kasamatsu et al.(2006,	Outcome: FVC, FEV ₁ , PEF, FEF75	Pollutant: PM _{2.1}	PM Increment: 42.1 μg/m³
156627) Period of Study: 2001-2002	Age Groups: School Children aged 8-10	Averaging Time: Avg of 4 separate 2-7 consecutive day measurements within	Mean change of pulmonary function value [Lower CI, Upper CI] at lag 0
Location: Shenyang, China	Study Design: Children in three schools in three types of areas (commercial city area, residential city area, residential suburban area) invited to participate N: 322 children participated, 244 have complete data. Statistical Analyses: Genralized estimating equations Covariates: Age, height, Dose-response Investigated? no Statistical Package: SAS Lags: Considered: previous quarter.	each designated measurement month of the quarter Mean (SD): School A 7/2001 47.6(6.4) 10/2001 54.2(20.5) 1/2002 68.9(15.8) 4/2002 115.8(76.7) School B 7/2001 45.6(6.5) 10/2001 74.4(27.1) 1/2002 63.3(17.9) 4/2002 96.3(27.6) School C 7/2001 42.5(9.5) 10/2001 59.7(13.1) 1/2002 76.4(22.1) 4/2002 123.0(100.9) PM Component: mainly pollutants associated with coal heating Monitoring Stations: 1 at each location	Boys FVC -0.126(-0.181,-0.076) FEV ₁ -0.122(-0.173,-0.076) PEF -0.164(-0.303,-0.025) FEF75 -0.046(-0.131,0.038) Girls FVC -0.110(-0.156,-0.067) FEV ₁ -0.101(-0147,-0.059) PEF 0.008(-0.131,0.147) FEF75 -0.055(-0.139,0.030) Mean change of pulmonary function value [Lower CI, Upper CI] at lag 1(previous quarter) Boys FVC -0.099(-0.145,-0.053) FEV ₁ -0.059(-0.106,-0.020) PEF -0.040(-0.158,0.086) FEF75 0.026(-0.046,0.092) Girls FVC -0.086(-0.125,-0.046) FEV ₁ -0.066(-0.106,-0.026)
		monitoring stations. Tal each location	PEF -0.079(-0.198,0.040) FEF75 -0.033(-0.106,0.040)

¹All units expressed in μg/m³ unless otherwise specified.

E.6. Long-Term Exposure and Cancer

Table E-26. Long-term exposure - cancer outcomes - PM₁₀.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Abbey et al., 1999,	Outcome (ICD9): Lung Cancer	Pollutant: PM ₁₀	PM Increment: 24.08 (IQR)
047559) Period of Study: 1977-1992	Mortality (162) Age Groups: 27-95 at baseline	Averaging Time: Monthly estimates from 1966-1992	RR, males: 3.36 [1.57, 7.19]
Location: California	California Study Design: Cohort (AHSMOG) N: 6,338 nonsmoking CA Seventh-Day Adventists Statistical Analyses: Time-dependent, cordes coeffice Coursepartical. RR, females: 1 PM ₁₀ above 10 IQR: 43 days/y Range (Min, Max): 0, 83.9 Correlations: Mean (SD): 51.24 (16.63) PM ₁₀ above 10 IQR: 43 days/y Males: 2.38 (1.	RR, females: 1.33 [0.60, 2.96]	
		Percentiles: IQR: 24.08 Range (Min, Max): 0, 83.9	PM ₁₀ above 100µg /m³ (days per yr) IQR: 43 days/yr Males: 2.38 (1.42, 3.97)
	hazards regression models Covariates: Age, smoking, education, occupation, BMI	SO ₄ : r = 0.68) SO ₂ : r = 0.31 O ₃ : r = 0.77 NO ₂ : r = 0.56 Lag : 3 yr	Females: 1.08 (0.55, 2.13)
Reference: Beeson et al. (1998, 048890)	Outcome (ICD9: Lung Cancer Mortality (ICDO-1: 162, ICDO-2: C34.0-C34.9)	Pollutant: PM ₁₀	PM Increment: 24 (IQR)
Period of Study: 1977-1992	Age Groups: 27-95 at baseline	Averaging Time: Averaged monthly estimates from 1966-1992	RR, males: 5.21 [1.94, 13.99]
Location: California	Study Design: Cohort (AHSMOG)	Mean (SD): 51 (16.52)	RR, females: Positive, but not statistically significant
	N: 6,338 nonsmoking CA Seventh-Day Adventists (non-Hispanic white)	Percentiles: IQR: 24 Range (Min, Max): 0, 84	
	Statistical Analyses: Time-dependent, gender-specific, Cox proportional hazards regression models		
	Covariates: Smoking, Education, Age, Alcohol		
	Statistical Package: SAS		
	Lags Considered: 3 yr		
Reference: Binkova et al. (2007, 156273)	Outcome: Total DNA adducts (bulky aromatic PAH-DNA adducts and	Pollutant: PM ₁₀	No relationship between short term exposure to C-PAHs evaluated by
Period of Study: Feb 2001	Age Groups: 22-50 yr	Range (Min, Max): 32-55 Monitoring Stations: 2 (and personal	personal monitors and DNA adduct level. Genetic damage was observed in
Location: Prague, Czech Republic	Study Design: Case Control	monitors)	city policemen working in winter outdoors in the Prague downtown area
	N: 53 occupationally exposed policemen and 52 control policemen		they had slightly elevated aromatic DNA adduct levels, which was statistically
	Statistical Analyses: Multivariate logistic regression, Mann-Whitney u-test		significant for a distinct DNA adduct spot that could originate from ambient exposure to B[α]P.
	Covariates: Smoking. Vitamin C, polymorphisms of XPD repair gene in		Total PAH-DNA adducts: p = 0.065
	exon 23 and 6 and GSTM 1 and XRCC1 genes		Exposed: 0.92 ± 0.28 adducts/108 nucleotids
	Season: Winter		Control: 0.82 ± 0.23 adducts/108 nucleotids
			B[α]P-like adducts:
			Exposed: 0.122 ± 0.36 adducts/108 nucleotids
			Control: 0.099 ± 0.035 adducts/108 nucleotids
			Multiple regression "like" B[α]P-DNA adduct for air pollution exposure group: B = 0.016, p = 0.01

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Liu et al., 2009, <u>190292</u>)	Outcome: Bladder Cancer Mortality	Pollutant: PM ₁₀	Increment:
Period of Study: 1995-2005	(ICD-9 188)	Averaging Time: Annual mean of 24-h	Odds Ratio (Min CI, Max CI)
Location: Taiwan	Age Groups: 50-69	avg Tertiles (median):	Lag
	Study Design: Case-crossover	T1: ≤52.80 T2: 53.04-71.72	T1 vs. T1: 1.00 (ref)
	Statistical Analysis: Multiple Logistic Regression		T2 vs. T1: 1.08 (0.83-1.41)
	Statistical Package: NR	Copollutant: O ₃ , CO, NO ₂ , SO ₂	T3 vs. T1: 1.39 (1.06-1.83)
	Covariates: none	Copollutant (correlation): NR	P for trend = .020
	Dose-response Investigated? No	Monitoring Sattions: 64	
Reference: (Pope et al., 2002, <u>024689</u>)	Outcome (ICD9): Lung cancer mortality	Pollutant: PM ₁₀	Effect estimates: Effect estimates were
Period of Study: 1982-1998	(162)	Mean (SD): 1982-1998: 28.8(5.9)	recorded in Fig 5 and not presented quantitatively anywhere else
Location: 50 U.S. states, District of Columbia, and Puerto Rico	Age Groups: Ages >30 yr Study Design: Longitudinal cohort (Cancer Prevention Study II)		,
	N: 1.2 million people		
	Statistical Analyses: Cox proportional hazard, generalized additive		
	Covariates: Age, sex, race, education, smoking status, marital status, occupational exposure, diet, body-mass index, alcohol consumption		
Reference: Sram et al, (2007, <u>188457</u>)	Outcome: Chromosomal aberrations	Pollutant: PM ₁₀	Results not given by PM increment.
Period of Study: Jan and Mar of 2004	Study Design: Panel	Averaging Time: NR	
Location: Prague, Czech Republic	Covariates: Urinary cotinine, plasma levels of vitamins A, E and C, folate, total cholesterol, HDL and LDL cholesterols, and triglycerides	Mean (SD) Unit:	
		Jan: 55.6 μg/m ³	
		Mar: 36.4 μg/m³	
	Statistical Analysis: Bivariate correlations, ANOVA, Mann-Whitney, Kruskal-Wallis and Spearman rank correlation	Copollutant: PM _{2.5}	
	Statistical Package: STATISTICA		
	Age Groups: 61 city policemen, aged 34 ± 8 yr, spending 8+ h outdoors		
Reference: Sram et al, (2007, <u>188457</u>)	Outcome: Chromosomal aberrations	Pollutant: PM _{2.5}	Results not given by PM increment.
Period of Study: Jan and Mar of 2004	Study Design: Panel	Averaging Time: NR	
Location: Prague, Czech Republic	Covariates: Urinary cotinine, plasma	Mean (SD) Unit:	
	levels of vitamins A, E and C, folate, total cholesterol, HDL and LDL	Jan: 44.4 μg/m ³	
	cholesterols, and triglycerides	Mar: 24.8 μg/m³	
	Statistical Analysis: Bivariate correlations, ANOVA, Mann-Whitney, Kruskal-Wallis and Spearman rank correlation	Copollutant: PM ₁₀	
	Statistical Package: STATISTICA		
	Age Groups: 61 city policemen, aged 34 ± 8 yr, spending 8+ h outdoors		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Tarantini et al., 2009, 192010)Period of Study: NR	Outcome: DNA methylation content estimated by Alu, LINE-1 and iNOS	Pollutant: PM ₁₀ Averaging Time: NR	Difference in DNA Methylation before and after work exposure, mean (SE) Alu (%5mC): 0.00 (0.08), p = 0.99 LINE-1 (%5mC): 0.02 (0.11), p = 0.89 iNOS (%5mC): -0.61 (0.26), p = 0.02
Location: Brescia, Italy	analysis		
	Study Design: Panel	Mean (SD) Unit: NR	
	Covariates: age, BMI, smoking, number of cigarettes/day	Individual Exposure Range: 73.4-1220 μg/m ³	
	Statistical Analysis: Mixed effects models	Copollutant (correlation): NR	
	Statistical Package: NR		
	Age Groups: 63 male workers between 27 and 55 yr, mean age 44.		
Reference: (Vineis et al., 2006,	Outcome: Lung cancer	Pollutant: PM ₁₀	Increment: 10 µg/m³
<u>192089</u>)	Study Design: Nested case-control	Averaging Time: NR	Odds Ratios (Min CI, Max CI) for
Period of Study: 1990-1999	Covariates: Age, sex, country, smoking	Mean by Country (μg/m³): France	increase in lung cancer per increment increase in PM ₁₀
Location: 10 European countries	status, time since recruitment, education, BMI, physical activity, intake of fruit, vegetables, meat, alcohol and energy	lle-de-France 1990-1994: 22.3 1995-1999: 19.9	0.91 (0.70-1.18)
	Statistical Analysis: Conditional logistic regression models	Northeast France 1990-1994: 30.2 1995-1999: 29.5 Italy	
	Statistical Package: NR	Turin	
	Age Groups: 35-74 at recruitment		
	•	Copollutant: NO ₂ , O ₃ , SO ₂	
Reference: (Wei et al., 2009, <u>192361</u>)	Outcome: Urinary 8-OHdG increase	Pollutant: PM _{2.5}	Increment: 166.29 µg/m ³
Period of Study: Nov 2006-Jan 2007	Study Design: Panel	Averaging Time: 24 h	8-OHdG Concentrations, pre and post-work shift, subjects avgd
Location: Peking, China	Covariates: NR	Median: 154.87 μg/m ³	Pre-work: 1.83
	Statistical Analysis: Analysis of variance model with autoregressive	IQR: 166.29	Post-work: 6.92
	terms Statistical Package: SAS	Copollutant (correlation): NA	Concentration Changes (95%CI) of 8 OHdG per IQR Increase
	Age Groups: Two nonsmoking security guards, ages 18 and 20		Pre-work: 0.256 (0.040, 0.472), p = 0.021
	-		Post-work: 2.370 (0.907, 3.833), p = 0.002

 $^{^1}$ All units expressed in $\mu g/m^3$ unless otherwise specified.

Table E-27. Long-term exposure - cancer outcomes - PM_{2.5} (including PM components/sources).

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Baccarelli et al, (2009,	Outcome: DNA methylation of LINE-1	Pollutant: PM _{2.5}	Increment: SD for each lag
<u>188183</u>)	and Alu	Averaging Time: NR	Correlation Coefficient (95% CI)
Period of Study: Jan 1999-Jun 2007	Study Design: Panel	Mean (SD) Unit: 4h: 12.2 (7.7) µg/m³ 1 day: 10.9 (6.3) µg/m³ 2 day: 10.6 (5.2) µg/m³ 3 day: 10.4 (4.8) µg/m³ 4 day: 10.3 (4.8) µg/m³ 5d: 10.2 (3.9) µg/m³ 6d: 10.3 (3.5) µg/m³	Lag for LINE-1 Methylation
Location: Boston, Massachusetts	Covariates: age, BMI, smoking status, pack-yr, statin use, fasting blood glucose, diabetes mellitus, percent lymphocytes and neutrophils in differential blood count, day of the week, season, temperature		4h: -0.07 (-0.13, -0.01), p = 0.03 1 day: -0.09 (-0.16, -0.02), p = 0.008 2 day: -0.10 (-0.17, -0.03), p = 0.003 3 day: -0.10 (-0.17,0.04), p = 0.003 4 day: -0.10 (-0.16, -0.03), p = 0.004 5d: -0.10 (-0.16, -0.03), p = 0.004
	Statistical Analysis: Mixed effects models	7d: 10.3 (3.3) µg/m³ Copollutants: Black carbon, Sulfate	6d: -0.11 (-0.17, -0.04), p = 0.001 7d: -0.13 (-0.19, -0.06), p < 0.001
	Statistical Package: SAS	Oopondants. Black Carbon, Canate	Correlation Coefficient (95% CI)
	Age Groups: 719 elderly individuals, mean age 73.3, range 55-100 yr		Lag for Alu Methylation 4h: 0.03 (-0.03, 0.09), p = 0.28 1 day: -0.01 (-0.07, 0.05), p = 0.74 2 day: -0.01 (-0.07, 0.05), p = 0.82 3 day: -0.01 (-0.07, 0.05), p = 0.78 4 day: -0.01 (-0.07, 0.05), p = 0.75 5d: -0.01 (-0.07, 0.05), p = 0.84 6d: -0.01 (-0.07, 0.05), p = 0.74 7d: -0.01 (-0.07, 0.05), p = 0.74
			Correlation Coefficient (95% CI)
			LINE-1 Methylation and ma of pollutant levels 4h: -0.04 (-0.11, 0.03), p = 0.24 7d: -0.11 (-0.18, -0.05), p = 0.001
Reference: Binkova et al. (2007, <u>156273</u>)	Outcome: Bulky aromatic PAH-DNA adducts	Pollutant: PM _{2.5}	Genetic damage was observed in city policemen working in winter outdoors in
Period of Study: Feb 2001	Age Groups: 22-50 yr	Range (Min, Max): 27-38	the Prague downtown area
Location: Prague, Czech Republic	Study Design: Case Control	c-PAHs: range = 18-22 ng/m³ B[a]P: range = 2.5-3.1 ng/m³ Monitoring Stations: 2	They had slightly elevated aromatic DNA adduct levels, which was more
•	N: 53 exposed policemen and 52 control policemen		pronounced for a distinct DNA adduct spot that could originate from ambient exposure to B[α]P.
	Statistical Analyses: Multivariate logistic regression, Mann-Whitney, Rank-Sum U-test		Total DNA-adduct level Exposed: 0.92±0.28 adducts/108 nucleotides
	Covariates: Smoking. Vitamin C, polymorphisms of XPD repair gene in exon 23 and 6 and GSTM 1 gene		Control: 0.82±0.23 adducts/108 nucleotides p = 0.065 "Like" B[a]P-derived DNA adducts
	Season: Winter		Exposed: 0.122±0.036 Control: 0.101±0.035 p < 0.01 Multiple Regression (exposed vs. control) B = 0.016, p = 0.011

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Brunekreef et al, (2009,	Outcome: Air pollution related lung	Pollutant: PM _{2.5} , estimated from PM ₁₀	Increment: 10 µg/m³
191947) Period of Study: 1987-1996	cancer deaths (ICD-9 162)	levelsf	Relative Risk (95% CI) for associations between PM _{2.5} and lung
Location: The Netherlands	Study Design: Case-cohort Covariates	Averaging Time: 24 h 50th Percentile: 28 µg/m³	cancer incidence
Location. The Netherlands		Range (Min, Max): 23-37	Case Cohort
	Individual: Sex, age, Quetelet index, smoking status, passive smoking	Copollutant (correlation): NO ₂ : 0.75	Unadjusted: 0.93 (0.71-1.22)
	status, educational level, occupation, occupational exposure, marital status,		Adjusted: 0.67 (0.41-1.10)
	alcohol use, intake of vegetables, fruits, energy, saturatured and	Black Smoke: 0.84	Unadjusted Complete: 0.87 (0.60-1.25)
	monounsaturated fatty acids, trans fatty acids, total fiver, folic acid and fish	NO: 0.69	Full Cohort
	Area-level: Percent of population with	SO ₂ : 0.43	Unadjusted: 0.96 (0.79-1.18)
	income below the 40th percentile and above the 80th percentile	302. 0.40	Adjusted: 0.81 (0.63-1.04)
	Statistical Analysis: Cox proportional hazards		Unadjusted Complete: 0.92 (0.74-1.15)
	Statistical Package: Stata, SPSS, R		
	Age Groups: 120,000 adults aged 55-69 yr at enrollment		
Reference: Liu et al. (2008, <u>156708</u>)	Outcome: Brain cancer deaths	No direct measures of pollutants	People who lived in the group of
Period of Study: 1995-2005	ICD9: 191	used an index to assign petrochemical	municipalities with the highest levels of air pollutants arising from petrochemical
Location: Taiwan	Age Groups: 29 yr of age or younger	air pollution exposure (each municipality was assigned an exposure by dividing	sources were at a statistically significant increased risk for brain cancer
	Study Design: Matched case-control by sex, yr of birth and death	the number of workers per municipality employed in the petrochemical industry by the municipalities total population). Study participants divided into tertiles based on this index.	development compared to the group living in municipalities with the lowest petrochemical air pollution exposure
	N: 340 matched pairs		index.
	Statistical Analyses: Conditional logistic regression	sacca on the mask.	Effect Measure: OR (95%CI) Tertile 1: 1. ?0 Tertile 2: 1.54 (0.98-2.42)
	Covariates: Age, gender, urbanization level of residence, nonpetrochemical air pollution exposure level		Tertile 3: 1.65 (1.00-2.73) P for trend <0.01
Reference: Nafstad et al. (2004,	Outcome: Lung cancer	PM values had small variations in	No effect estimates for PM
087949)	ICD7 162.1-162.9	exposure level, and strong correlations with another pollutant of interest (SO ₂)	
Period of Study: 1972-1998	Age Groups: 40-49 yr old men	and were not considered in analyses.	
Location: Oslo, Norway	Study Design: Cohort	Copollutants: SO ₂	
	N : 16,209 males	NO _X	
	Statistical Analyses: Cox regression models (proportional hazards)		
	Covariates: Age at inclusion, smoking habits, education		
	Season: all yr		
Reference: (Pope and Burnett, 2007,	Outcome: Lung cancer mortality (162)	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
090928)	Age Groups: >30 yr	Mean (SD): 1979-1983: 21.1(4.6)	RR Estimate [Lower CI, Upper CI]
Period of Study: 1982-1998 Location: 50 U.S. states, District of	Study Design: Longitudinal cohort (Cancer Prevention II Study)	1999-2000: 14.0(3.0) Avg : 17.7(3.7)	lag: Lung Cancer: 1979-1983: 1.08[1.01,
Columbia, and Puerto Rico	N : 415,000 CPS II patients with information involving PM_{10}	Averaging time: 1982-1998	1.16] 1999-2000: 1.13[1.04, 1.22]
	Statistical Analyses: Cox proportional hazard, incorporating a spatial random-effects component		Avg: 1.14[1.04, 1.23]
	Covariates: Age, sex, race, education, ETS, smoking status, marital status, occupational exposure, diet, body-mass index, alcohol consumption		RR results were also presented in Fig 2-5. Authors found that PM _{2.5} had the strongest association with increased risk of all-cause, cardiopulmonary, and lung cancer mortality.

Outcome: Chromosomal aberrations		
Outcome. Chiomosomai abenations	Pollutant: PM ₁₀	Results not given by PM increment.
Study Design: Panel	Averaging Time: NR	
Covariates: Urinary cotinine, plasma	Range : 32-55μg/m ³	
, , , , , , , , , , , , , , , , , , , ,	Copollutant: PM _{2.5}	
Statistical Analysis: Bivariate correlations, ANOVA, Mann-Whitney, Kruskal-Wallis and Spearman rank correlation		
Statistical Package: STATISTICA, SAS		
Age Groups: 53 city policemen, aged 22-50 yr, spending 8+ h outdoors		
Outcome: Chromosomal aberrations	Pollutant: PM _{2.5}	Results not given by PM increment.
Study Design: Panel	Averaging Time: NR	
Covariates: Urinary cotinine, plasma levels of vitamins A, E and C	Range: 27-38μg/m ³	
Statistical Analysis: Bivariate correlations, ANOVA, Mann-Whitney, Kruskal-Wallis and Spearman rank correlation	Copolitiant: 1 Mill	
Statistical Package: STATISTICA, SAS		
Age Groups: 53 city policemen, aged 22-50 yr, spending 8+ h outdoors		
Outcome: DNA damage (comet tail	Pollutant: PM _{2.5}	OR for being a highly damaged worker:
3 ,	Personal monitoring values observed in	1.02 (1.01-1.04), p = 0.03 Correlation between comet tail length
•		and PM 2.5: 0.57, p = 0.000
, ,	. 2.5	OR for being a highly damaged worker:
	,	1.03, p ≤ 0.07 Comet Tail Length
test, Chi-square, Spearman's		Outdoor Worker: 46.80 µm
	. •	Indoor Worker: 30.11 µm p < 0.01
Statistical Package: SPSS and STATA	•	Percent Highly DNA Damaged Cells Outdoor Worker: 68%
		Indoor Worker: 20%
	Covariates: Urinary cotinine, plasma levels of vitamins A, E and C Statistical Analysis: Bivariate correlations, ANOVA, Mann-Whitney, Kruskal-Wallis and Spearman rank correlation Statistical Package: STATISTICA, SAS Age Groups: 53 city policemen, aged 22-50 yr, spending 8+ h outdoors Outcome: Chromosomal aberrations Study Design: Panel Covariates: Urinary cotinine, plasma levels of vitamins A, E and C Statistical Analysis: Bivariate correlations, ANOVA, Mann-Whitney, Kruskal-Wallis and Spearman rank correlation Statistical Package: STATISTICA, SAS Age Groups: 53 city policemen, aged 22-50 yr, spending 8+ h outdoors Outcome: DNA damage (comet tail length) Age Groups: 18-60 Study Design: Panel Study N: 55 male workers Statistical Analyses: Mann-Whitney	Covariates: Urinary cotinine, plasma levels of vitamins A, E and C Statistical Analysis: Bivariate correlations, ANOVA, Mann-Whitney, Kruskal-Wallis and Spearman rank correlation Statistical Package: STATISTICA, SAS Age Groups: 53 city policemen, aged 22-50 yr, spending 8+ h outdoors Outcome: Chromosomal aberrations Study Design: Panel Covariates: Urinary cotinine, plasma levels of vitamins A, E and C Statistical Analysis: Bivariate correlations, ANOVA, Mann-Whitney, Kruskal-Wallis and Spearman rank correlation Statistical Package: STATISTICA, SAS Age Groups: 53 city policemen, aged 22-50 yr, spending 8+ h outdoors Outcome: DNA damage (comet tail length) Age Groups: 18-60 Study Design: Panel Study N: 55 male workers Statistical Analyses: Mann-Whitney test, Chi-square, Spearman's correlation, logistic regression Range: 32-55μg/m³ Copollutant: PM _{2.5} Averaging Time: NR Range: 27-38μg/m³ Copollutant: PM ₁₀ Pollutant: PM _{2.5} Personal monitoring values observed in this study reported in Tovalin et al. 2003 Median Personal Exposure to PM _{2.5} : Mexico City Outdoor Worker: 133 μg/m³ Indoor Worker: 86.6 μg/m³

¹All units expressed in μg/m³ unless otherwise specified.

 Table E-28.
 Long-term exposure - cancer outcomes - other PM size fractions.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Pope et al., 2002, <u>024689</u>)	Outcome: Lung cancer mortality (162)	Pollutant: PM ₁₅	Relative risks effect estimates were
Period of Study: 1982-1998	Age Groups: Ages >30 yr who were	Mean (SD): 1979-1983: 40.3(7.7)	recorded in Fig 5 and not presented quantitatively anywhere else.
Location: 50 U.S. states, District of	members of a household with at least 1 individual ≥45yrs.	Pollutant: PM15-2.5	
Columbia, and Puerto Rico	Study Design: Longitudinal cohort	Mean (SD): 1979-1983: 19.2(6.1)	
	(Cancer Prevention Study II)	Averaging Time: 1979-1983	
	N: 359,000 CPS II participants with information regarding PM15 and PM15-PM _{2.5}		
	Statistical Analyses: Cox proportional hazard, incorporating a spatial random-effects component		
	Covariates: Age, sex, race, education, ETS, smoking status, marital status, occupational exposure, diet, body-mass index, alcohol consumption		
	Smoking covariates adjusted for:		
	Indicator: current smoker, former smoker, pipe or cigar smoker, started smoking before or after age 18		
	Continuous, current and former smokers: yr smoked, yr smoked squared, cigarettes per day, cigarettes per day squared, number of h per day exposed to passive cigarette smoke.		

¹All units expressed in µg/m³ unless otherwise specified.

E.7. Long-Term Exposure and Reproductive Effects

Table E-29. Long-term exposure - reproductive outcomes - PM₁₀.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Bell at al. (2007, <u>091059</u>)	Outcome: Low birth weight	Pollutant: PM ₁₀	PM Increment: 7.4 μg/m³ (IQR)
Period of Study: 1999-2002	Age Groups: Neonates	Averaging Time: 24 h	Difference in birth weight [Lower CI,
Location: Connecticut-Fairfield,	Study Design: Cross-sectional	Mean (SD): 22.3 (5.3)	Upper CI]
Hartford, New Haven, New London, Windham, Massachusetts-Barnstable,	N: 358,504 births		per IQR for the gestational period: -8.2 [-11.1 to -5.3]
Berkshire, Bristol, Essex, Hampden, Middlesex, Norfolk, Plymouth, Suffolk,		Copollutant: NO ₂ , CO, SO ₂	Difference in birth weight by race of
Worcester	and linear regressions	Gestation exposure correlation:	mother [Lower CI, Upper CI]: Black: -7.9 [-16.0, 0.2]
	Covariates: Child's sex, mother's education, tobacco use, mother's	PM _{2.5} : r = 0.77	White: -9.0 [-12.2 to -5.9]
	marital status, mother's race, time prenatal care began, mother's age, birth order, gestation length	NO_2 : $r = 0.55$	Range among trimester models for change in birth weight per IQR increase (min, max)
	Dose-response Investigated? No		trimester: -6.6 to -4.7
	Statistical Package: NR		3rd
			OR Estimate for birth weight <2500 g [Lower CI, Upper CI]
			per IQR for the gestational period: 1.027 [0.991, 1.064]
			Notes: Analyses using first births alone yielded similar results. Two pollutant models for uncorrelated pollutants were analyzed but not presented quantitatively.
Reference: Brauer et al. (2008,	Outcome: Preterm birth, SGA, LBW	Pollutant: PM ₁₀	PM Increment: 1 µg/m ³
156292)	Age Groups: Study Design: Cross-	Averaging Time: 24-h	Effect Estimate [Lower CI, Upper CI]
Period of Study: 1999-2002	sectional	Mean (SD): 12.7	pollutant assessed for entire
Location: Vancouver, BC	N: 70,249 births	Range (Min, Max): 5.6, 35.4	pregnancy period:
	Statistical Analyses: Logistic regression	Monitoring Stations: 19	SGA: 1.02 (0.99, 1.05)
	Covariates: Sex, parity, month and yr	Copollutant:	LBW: 1.01 (0.95, 1.08)
	of birth, maternal age and smoking, neighborhood level income and education	NO NO ₂ CO SO ₂	Preterm (<30 wk): 1.13 (0.95, 1.35)
	Statistical Package: SAS	O ₃	

	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Chen et al. (2002, <u>024945</u>)	Outcome: Birth weight	Pollutant: PM ₁₀	PM Increment: 10 μg/m³
Period of Study: 1991-1999	Age Groups: Sngle births with	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Location: Washoe County, Nevada	gestational age between 37-44 wk and maternal all ages	Mean (SD): 31.53 (22.32)	Using continuous pollutant variables Model 1-PM ₁₀
	Study Design: Cross-sectional	Percentiles: 25th: 16.80	1 trimester Crude model: ß = -0.186 (0.225)
	N: 33,859 single births	50th(Median): 26.30	Adjusted model: ß = -0.082 (0.221)
	Statistical Analyses: multiple linear	75th: 39.35	2 trimester Crude model: ß = 0.045 (0.223)
	and logistic regression	Range (Min, Max): (0.97-157.32)	Adjusted model: ß = -0.020 (0.221) 3 trimester
	Covariates: infant sex, maternal residential city, education, medical risk	Monitoring Stations: 4	Crude model: $\beta = -0.509 (0.231)$ Adjusted model: $\beta = -0.395 (0.227)$
	factors, active tobacco use, drug use, alcohol use, prenatal care, mother's	Copollutant: CO	Whole
	age, race and ethnicity of mothers and weight gain of mothers	O_3	Crude model: ß = -0.823 (0.459) Adjusted model: ß = -0.726 (0.483)
	Dose-response Investigated? No		Model 2 CO and PM ₁₀
	Statistical Package: SPSS 10.0		3 trimester Crude model: ß = -1.044 (0.457)
	Cinitation : acting of or occurrent		Adjusted model: $\[S = -1.078 \] (0.445)$ $\[O_3 \]$ and $\[PM_{10} \]$
			3 trimester Crude model: ß = -1.035 (0.385)
			Adjusted model: ß = -0.966 (0.378)
			Model 3 PM_{10} , O_3 , and CO
			3 trimester Crude model: ß = -1.070 (0.458)
			Adjusted model: ß = -1.102 (0.446) Whole
			Crude model: ß = -1.413 (0.733)
			Adjusted model: ß = -1.332 (0.738) Using categorical pollutant variables-3
			trimester Model 1-PM ₁₀
			Adjusted model: ß = -10.243 (5.235) Model 2
			PM ₁₀ and CO
			Adjusted model: $\[\]$ = -11.883 (6.108) PM ₁₀ and O ₃ Adjusted model:
			ß = -9.144 (5.860) Model 3
			PM ₁₀ , CO, and O ₃ Adjusted model:
			ß = -10.937 (6.222) Using logistic regression
			(ref value = <19.72 μg/m°
			Exposure to PM ₁₀ at 3 trimester at >44.74 μg/m ³ : OR =
			1.105 (0.714-1.709)
			Between 19.72-44.74 μg/m³: OR = 1.050 (0.811-1.360)
			Notes: Crude model: model with air-
			pollutant variables controlled with gestational age only. Adjusted model:
			model with air-pollutant variables controlled with confounding variables
			including gestational age, infant sex,
			maternal residential city, education, medical risk factors, active tobacco use,
			drug use, alcohol use, the trimester begins
			prenatal visits, total prenatal visits, mother's age, race and ethnicity of mother,
			and weight gain of mother.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Dales et al. (2004, <u>087342</u>)	Outcome: SIDS (a sudden, unexplained death of a child <1 yr of age for which a clinical investigation	Pollutant: PM ₁₀	Notes: The abstract reports no association between increased daily rates of SIDS and fine particles measured every
Period of Study: Jan 1984-Dec 1999		Averaging Time: 24-hs (PM measures every 6 days	
Location: Canada (12 cities)	and autopsy fail to reveal a cause of death)	gaseous pollutants every day)	sixth day. However, no effect estimates presented for PM (only gaseous pollutants
	Age Groups: Infants <1 yr	Mean (IQR): PM ₁₀ : 23.43 (15.56)	adjusted for PM).
	Study Design: Time-series	Range (Min, Max): IQR presented	
	N: Total population of 12 cities:	above	
	10,310,309	Monitoring Stations: When data were	
	1556 cases of SIDS over study period	available from more than 1 monitoring site, they were avgd	
	Statistical Analyses: Random-effects regression model for count data (a	Copollutant:	
	linear association between air pollution and the incidence of SIDS was	PM _{2.5}	
	assumed on the logarithmic scale)	PM ₁₀	
	Covariates: Weather factors (daily mean temp, daily mean relative	CO	
	humidity, maximum change in	NO_2	
	barometric pressure, all measured on the day of death), length of time-period	O_3	
	adjustment, seasonal indicator variables, and size-fractionated PM Season: Used piece-wise constant functions in time that varied by 3, 6, or 12 mo	SO ₂	
	Dose-response Investigated? No		
	Statistical Package: NR		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Dugandzic et al. (2006,	Outcome: Low birth weight (LBW)	Pollutant: PM ₁₀	PM Increment:
088681)	(<2500 grams)	Averaging Time: 24-h	 IQR (5 μg/m²) Quartiles (first quartile is the reference)
Period of Study: Jan 1988-Dec 2000	Age Groups: Babies born ≥ 37 wk (full term)	Mean (SD):	Exposure period: first trimester Unadjusted model
Location: Nova Scotia, Canada	Study Design: Cross-sectional	Percentiles: 25th: 14	2nd quartile: 1.24 (0.95, 1.62)
	N: 74,284 births	50th(Median): 16	3rd quartile: 1.25 (0.96, 1.62) 4th quartile: 1.28 (1.00, 1.65)
	Statistical Analyses: Logistic	75th: 19	Per IQR: 1.09 (1.00, 1.18) Adjusted model
	regression	Range (Min, Max): Max: 53	2nd quartile: 1.24 (0.94, 1.64)
	Covariates: Maternal age, parity, prior fetal death, prior neonatal death, prior	Monitoring Stations: 18	3rd quartile: 1.24 (0.95, 1.64) 4th quartile: 1.33 (1.02, 1.74)
	low birth weight infant, smoking during pregnancy, neighborhood family	Copollutant: SO ₂ , O ₃	Per IQR: 1.09 (1.00, 1.19) Adjusted for Birth Year model
	income, infant gender, gestational age, weight change, yr of birth	Notes: Only 3 stations monitored more than 1 pollutant. Daily data were	2nd quartile: 1.14 (0.86, 1.52) 3rd quartile: 1.08 (0.82, 1.44)
	Season: All	available for gaseous pollutants while	4th quartile: 1.11 (0.84, 1.48) Per IQR: 1.03 (0.94, 1.14)
	Dose-response Investigated? Yes	particulate levels were measured every sixth day.	Exposure period: second trimester Unadjusted model
	Statistical Package: SAS		2nd quartile: 0.98 (0.76, 1.28)
	outionour ruonago. On o		3rd quartile: 1.09 (0.84, 1.40) 4th quartile: 1.00 (0.77, 1.28)
			Per IQR: 1.00 (0.91, 1.09) Adjusted model
			2nd quartile: 1.02 (0.77, 1.34) 3rd quartile: 1.16 (0.89, 1.51)
			4th quartile: 1.09 (0.83, 1.42)
			Per IQR: 1.02 (0.93, 1.12) Adjusted for Birth Year model
			2nd quartile: 0.99 (0.75, 1.31) 3rd quartile: 1.10 (0.84, 1.45)
			4th quartile: 1.01 (0.76, 1.34) Per IQR: 1.00 (0.90, 1.10)
			Exposure period: third trimester
			Unadjusted model 2nd quartile: 0.93 (0.72, 1.20)
			3rd quartile: 1.07 (0.83, 1.37) 4th quartile: 0.92 (0.71, 1.18)
			Per IQR: 0.95 (0.87, 1.05)
			Adjusted model 2nd quartile: 0.96 (0.73, 1.26)
			3rd quartile: 1.14 (0.88, 1.48) 4th quartile: 1.03 (0.79, 1.35)
			Per IQR: 0.99 (0.89, 1.09) Adjusted for Birth Year model
			2nd quartile: 0.92 (0.70, 1.21)
			3rd quartile: 1.04 (0.80, 1.36) 4th quartile: 0.92 (0.69, 1.22)
B. f. O'll 1 (0005	0 (B. II. 4. DM	Per IQR: 0.94 (0.85, 1.05)
Reference: Gilboa, et al. (2005, 087892)	Outcome: Birth defects	Pollutant: PM ₁₀	PM Increment: calculated as quartiles of avg concentration during wk 3-8 of
Period of Study: Jan 1996-Dec 2000	Age Groups: Newborn babies	Averaging Time: NR	pregnancy
Location: Seven Counties in Texas,	Study Design: Case-control	Percentiles: 25th: <19.5	Isolated Cardiac Defects Aortic artery and valve defects:
USA: (Bexar, Dallas, El Paso, Harris, Hidalgo, Tarrant, Travis)	N: 5,338 newborn babies	50th(Median): 19.5-<23.8	25th: 0.40 (0.15, 1.03)
J-,,,	4574 controls	75th: 23.8-<29.0	50th: 0.45 (0.18, 1.13) 75th: 0.68 (0.28, 1.65)
	Statistical Analyses: Logistic regression	100th: ≥ 29.0	Atrial Sepal defects: 25th: 1.41 (0.86, 2.31)
	Covariates: Alcohol consumption	Monitoring Stations: The Environmental Protection Agency	50th: 2.13 (1.34, 3.37)
	during pregnancy, attendant of delivery (i.e., the person who delivered the baby	provided raw data or hourly (for gases) or daily (for PM) air pollution	75th: 2.27 (1.43, 3.60) Pulmonary artery and valve defects:
	(physician/nursemaid-wife vs. other)),	concentrations for the seven study	25th: 1.14 (0.62, 2.10) 50th: 0.79 (0.41, 1.55)
	gravidity, marital status, maternal age, maternal education, maternal illness,	counties	75th: 0.68 (0.33, 1.40) Ventricular Sepal defects:
	maternal race/ethnicity, parity, place of delivery, plurality, prenatal care, season	Copollutant: CO, NO ₂ , O ₃ , SO ₂	25th: 0.83 (0.61, 1.11)
	of conception, and tobacco use during pregnancy		50th: 1.12 (0.85, 1.48) 75th: 0.98 (0.73, 1.32)
	Control frequency matched to cases by		Multiple Cardiac Defects Conotruncal defects:
	vital status, yr and maternal county of		25th: 1.13 (0.79, 1.62)
	residence		50th: 1.20 (0.84, 1.72) 75th: 1.26 (0.86, 1.84)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	Season: Covariate in model		Endocardial cushion and mitral valve defects:
	Dose-response Investigated? Yes		25th: 0.82 (0.54, 1.25)
	Statistical Package: SAS v 8.2		50th: 0.66 (0.42, 1.05)
	Sidiistical Fackage. SAS V 0.2		75th: 0.63 (0.38, 1.03) Isolated Oral Clefts
			Cleft lip with or without palate:
			25th: 1.29 (0.90, 1.85)
			50th: 1.45 (1.01, 2.07) 75th: 1.37 (0.94,2.00)
			Cleft palate:
			25th: 0.99 (0.55, 1.78)
			50th: 1.14 (0.64, 2.03) 75th: 1.11 (0.60, 2.06)
			Individual Birth Defects
			Aortic valve stenosis:
			25th: 0.91 (0.53, 1.57) 50th: 0.86 (0.50, 1.50)
			75th: 1.12 (0.63, 1.99)
			Atrial Sepal defects:
			25th: 1.10 (0.89, 1.35) 50th: 1.28 (1.04, 1.57)
			75th: 1.26 (1.04, 1.57)
			Coarctation of the aorta:
			25th: 0.78 (0.53, 1.15)
			50th: 0.68 (0.45, 1.02) 75th: 0.75 (0.48, 1.15)
			Endocardial cushion defects:
			25th: 0.87 (0.49, 1.55)
			50th: 1.12 (0.64, 1.96) 75th: 0.89 (0.47, 1.65)
			Ostium secundum:
			25th: 1.15 (0.85, 1.55)
			50th: 1.13 (0.83, 1.53) 75th: 1.06 (0.77, 1.48)
			Pulmonary artery atresia without
			ventricular Sepal defects:
			25th: 1.93 (1.08, 3.45)
			50th: 2.01 (1.11, 3.64) 75th: 0.86 (0.41, 1.83)
			Pulmonary valve stenosis:
			25th: 1.16 (0.88, 1.55)
			50th: 1.25 (0.94, 1.66) 75th: 1.27 (0.94, 1.71)
			Tetralogy of Fallot:
			25th: 1.21 (0.72, 2.01)
			50th: 1.40 (0.84, 2.33)
			75th: 1.45 0.85, 2.48) Ventricular Sepal defects:
			25th: 1.06 (0.90, 1.24)
			50th: 1.10 (0.94, 1.29)
			75th: 1.08 (0.92, 1.27)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Gouveia et al. (2004,	Outcome: Birth weight	Pollutant: PM ₁₀	PM Increment: 10 μg/m ³
Period of Study: 1997 Location: São Paulo, Brazil	Age Groups: Singleton full term live births within 1000 g to 5500 g Study Design: Cross sectional study N: 179,460 live births Statistical Analyses: GAM and Logistic regression models Covariates: Maternal age, length of gestation, season, infant gender, maternal education, number of antenatal care visits, parity, and the type of delivery Season: All seasons Dose-response Investigated? Yes Statistical Package: S-Plus 2000	Averaging Time: 24 h Mean (SD): 60.3 (25.2) Range (Min, Max): (25.5-153.0) Monitoring Stations: maximum of 12 sites Copollutant (correlation): CO: r = 0.9 SO ₂ NO ₂ O ₃	Mean [Lower CI, Upper CI]: Changes in birth weight (in g) First trimester = -13.7 (-27.0, -0.4) Second trimester = -4.4 (-18.9, 10.1) Third trimester = -4.4 (-18.9, 10.1) Third trimester = 14.6 (0.0, 29.2) RR Estimate [Lower CI, Upper CI]: (RR estimates are adjusted odds ratios for low birth weight according to quartiles of air pollution in each trimester of pregnancy.) 1st quartile First trimester = 1 (REF) Second trimester = 1 (REF) Third trimester = 1 (REF) 2nd quartile First trimester = 1.005 (0.994, 1.229) Second trimester = 1.003 (0.904, 1.113) Third trimester = 1.004 (0.914, 1.104) 3rd quartile First trimester = 1.074 (0.920, 1.254) Third trimester = 1.074 (0.920, 1.254) Third trimester = 1.144 (0.878, 1.491) Second trimester = 1.252 (1.028, 1.525) Third trimester = 1.252 (1.028, 1.525) Third trimester = 0.970 (0.780, 1.205) Multiple linear regression coefficients (SE) obtained from single, dual, and three pollutant models Single pollutant model = -1.37 (0.68) Two pollutant (PM ₁₀ and CO) = -0.51 (0.87) Two pollutant = -0.47 (0.88)
Reference: Ha et al. (2003, <u>042552</u>)	Outcome: Post-neonate total and respiratory mortality	Pollutant: PM ₁₀	PM Increment: 42.9 µg/m³
Period of Study: Jan 1995-Dec 1999	Age Groups: 1 month-1 yr	Averaging Time: 24 h	RR Estimate [Lower CI, Upper CI] lag: Total Mortality:
Location: Seoul, South Korea	2 yr-65 yr, >65 yr	Mean (SD): 69.2 (31.6)	1 month-1 yr (post-neonates):
	Study Design: Time-series	Percentiles: 25th: 44.8	1.142 [1.096, 1.190] lag 0 2 yr-65 yr:
	N: 1045 post-neonate deaths, 67,597 2-65 yr old deaths, 100,316 >65 yr old	50th(Median): 64.2 75th: 87.7	1.008 [1.006, 1.010] lag 0 >65 yr (elderly): 1.023 [1.023, 1.024] lag 0
	deaths Statistical Analyses: Generalized	Range (Min, Max): 10.5 μg/m³, Respiratory M 245 4 μg/m³ 1 month-1 yr (Respiratory Mortality: 1 month-1 yr (post-neonates): 2.018 [1.784, 2.283] lag 0
	additive model	Monitoring Stations: 27	2 yr-65 yr:
	Covariates: Seasonality, temperature, relative humidity, day of the week	Copollutant (correlation):	1.066 [1.044, 1.090] lag 0 >65 yr (elderly): 1.063 11.055 1.0721 lag 0
	Dose-response Investigated? No	NO_2 : r = 0.73	1.063 [1.055, 1.072] lag 0
	Statistical Package: S Plus	SO ₂ : r = 0.62	
	Lags Considered: 0, 1, 2, 3, 4, 5, 6, 7,	O ₃ : r = -0.02	
	ma from 1-5 days	CO: r = 0.63	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Hansen, et al. (2006,	Outcome: Pre-term birth (<37 wk)	Pollutant: PM ₁₀	PM Increment: Trimester One
<u>089818</u>)	Age Groups: Newborn babies	Averaging Time: recorded hourly, avgd	4.5 μg/m ³
Period of Study: Jul 2000-Jun 2003	Study Design: Cross-sectional	daily	Last 90 days prior to birth
Location: Brisbane, Australia	N: 1583 live pre-terms births	Mean (SD): 19.6 (9.4)	5.7 μg/m ³
	28,200 singleton live births	Range (Min, Max): 4.9, 171.7	Odds Ratio [Lower CI, Upper CI]:
	Statistical Analyses: Multiple logistic	Monitoring Stations: 5	Trimester 1
	regression models	Copollutant (correlation): Fine PM or bsp, 0.1 to <2.5 µg in	1.15 [1.06, 1.25]
	Covariates: Neonate gender, mother's age, parity, indigenous status, number	diameter (0.58 to 0.76)	Last 90 days prior to birth
	of antenatal visits, marital status, number of previous	O ₃ (0.54 to 0.83)	1.04 [0.92, 1.16]
	abortions/miscarriages, type of delivery, and index of SES	NO ₂ (0.54 to 0.75)	
	Season: all	PM ₁₀ (0.80 to 0.93)	
	Dose-response Investigated? Yes	Note: Correlations presented are for the individual pollutant across	
	Statistical Package: SAS version 8.2	monitoring stations (not correlations between PM ₁₀ and the pollutant.)	
Reference: Hansen et al. (2007,	Outcome: Birth weight and Small for	Pollutant: PM ₁₀	PM Increment: IQR (8.1 μg/m³)
<u>090703</u>)	Gestational Age (SGA	Averaging Time: Trimester and	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Jul 2000-Jun 2003 Location: Brisbane, Australia	<10th percentile for age and gender) Head circumference (HC) and crown-	monthly avg were used in analyses (calculated as the mean of daily values	Change (β) in mean birth weight (g)
Location. Dispane, Australia	heel length (CHL) among subsample	Hourly data was use to calculate daily	associated with trimester-specific exposures
	Study Design: Cross-sectional	means City wide augused	Trimester 1: Continuous exposure: -3.2 (-11.9, 5.5)
	N: 26,617 births (birth weight analysis) and 21,432 (HC and CHL analyses)	City-wide avg used) Mean (SD): 19.6 (9.4)	Quartiles of exposure: 1: Ref
	Statistical Analyses: Logistic (SGA) and linear (birth weight, HC, CHL)	Percentiles: 25th: 14.6 50th: 18.1 75th: 22.7	2: -4.7 (-19.7, 10.2) 3: 4.2 (-12.9, 21.3) 4: -0.2 (-19.2, 18.8)
	regressions Covariates: Gender, gestational age (with a quadratic term), maternal age	Range (Min, Max): (4.9, 171.7)	p-trend: 0.864 Trimester 2: Continuous exposure: 0.4 (-9.4, 10.2)
	(with a quadratic term), maternal age, parity, number of previous abortions/miscarriages, marital status,	Monitoring Stations: 5	Quartiles of exposure: 1: Ref
	indigenous status, number of antenatal visits, type of delivery, an index of SES, and season of birth	Copollutant (correlation): By trimesters: PM ₁₀ T1:	2: 12.7 (-2.3, 27.6) 3: 7.6 (-10.6, 25.7) 4: 1.0 (-18.7, 20.7)
	Season: Assessed as a covariate	PM_{10} T2: r = 0.12	p-trend: 0.922 Trimester 3:
	Dose-response Investigated? Yes,	PM ₁₀ T3: r = -0.55 O ₃ T1: r = 0.77	Continuous exposure: 3.6 (-6.9, 14.0) Quartiles of exposure:
	assessed exposures as quartiles	O_3 T2: r = 0.28 O_3 T3: r = -0.61	1: Ref 2: 2.9 (-12.8, 18.7)
	Statistical Package: SAS v8.2	NO ₂ T1: r = 0.32 NO ₂ T2: r = -0.65	3: 18.5 (0.0, 36.9) [°]
		NO_2^{-} T3: r = -0.17	4: 4.3 (-15.8, 24.4) p-trend: 0.524
		visibility reducing particles (bsp) T1: r = 0.82	ORs for SGA associated with trimester
		visibility reducing particles (bsp)	specific exposures Trimester 1:
		T2: r =15 visibility reducing particles (bsp)	Continuous exposure: 1.04 (0.96, 1.12) Quartiles of exposure:
		T3: r = -0.50 PM ₁₀ T1: r = 0.12	1: Ref
		PM ₁₀ T1. T = 0.12 PM ₁₀ T2:	2: 1.23 (1.07, 1.42) 3: 1.12 (0.95, 1.31)
		PM_{10} T3: r = 0.04	4: 1.12 (0.94, 1.34)
		O_3 T1: r = -0.11 O_3 T2: r = 0.80	p-trend: 0.361 Trimester 2:
		O_3 T3: r = 0.18	Continuous exposure: 0.95 (0.88, 1.04)
		NO ₂ T1: r = 0.77 NO ₂ T2: r = 0.25	Quartiles of exposure: 1: Ref
		NO ₂ T3: r = -0.72	2: 0.96 (0.83, 1.11)
		visibility reducing particles (bsp) T1: r = 0.23	3: 1.06 (0.89, 1.25) 4: 0.98 (0.81, 1.18)
		visibility reducing particles (bsp) T2: r = 0.80	p-trend: 0.962
		visibility reducing particles (bsp)	3: -0.02 (-0.08, 0.04) 4: -0.02 (-0.08, 0.05)
		T3: r = -0.24 PM ₁₀ T1: r = -0.55	p-trend: 0.605
		PM_{10} T2: r = 0.04	Trimester 2: Continuous exposure: -0.01 (-0.04, 0.02)
		PM ₁₀ T3:	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
		O ₃ T1: r = -0.56	Quartiles of exposure: 1: Ref
		O ₃ T2: r = -0.18	Trimester 3:
		O_3 T3: $r = 0.81$	Continuous exposure: 0.93 (0.85, 1.03) Quartiles of exposure:
		NO_2 T1: $r = -0.20$	1: Ref
		NO_2 T2: $r = 0.75$	2: 0.90 (0.78, 1.04) 3: 0.81 (0.68, 0.96)
		NO_2 T3: $r = 0.22$	4: 0.86 (0.71, 1.04) p-trend: 0.098
		visibility reducing particles (bsp) T1: r = -0.62	Change (β) in mean head circumference (HC
		visibility reducing particles (bsp) T2: r = 0.19	cm) associated with trimester-specific exposures Trimester 1:
		visibility reducing particles (bsp) T3: r = 0.79	Continuous exposure: -0.01 (-0.04, 0.02) Quartiles of exposure: 1: Ref
			2: -0.02 (-0.07, 0.04) 2: 0.03 (-0.02, 0.08) 3: 0.00 (-0.06, 0.06) 4: -0.01 (-0.08, 0.05) p-trend: 0.538 Trimester 3:
			Continuous exposure: 0.02 (-0.02, 0.05) Quartiles of exposure: 1: Ref 2: 0.02 (-0.04, 0.07) 3: 0.07 (0.01, 0.13) 4: 0.04 (-0.03, 0.11)
			p-trend: 0.171 Change (β) in mean crown-heel length (CHL
			cm) associated with trimester-specific exposures Trimester 1:
			Continuous exposure: 0.00 (-0.05, 0.05) Quartiles of exposure: 1: Ref
			2: 0.02 (-0.07, 0.11) 3: 0.01 (-0.10, 0.11) 4: 0.04 (-0.07, 0.16) p-trend: 0.511
			Trimester 2: Continuous exposure: 0.07 (0.01, 0.13) Quartiles of exposure: 1: Ref
			2: 0.10 (0.01, 0.18) 3: 0.11 (0.00, 0.21) 4: 0.13 (0.01, 0.24) p-trend: 0.049
			Trimester 3: Continuous exposure: -0.01 (-0.07, 0.05) Quartiles of exposure: 1: Ref
			2: -0.02 (-0.11, 0.07) 3: 0.10 (-0.01, 0.21) 4: -0.01 (-0.13, 0.10) p-trend: 0.883

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Hansen et al., 2009,	Outcome: Birth defects- artery and	Pollutant: PM ₁₀	Increment: 4µg/m³
92362)	valve, atrial and ventricular Sepal, conotruncal, endocardial cushion and	Averaging Time: daily	Odds Ratios (95% CI) for risk of defec
Period of Study: Jan 1997-Dec 2004	mitral valve, cleft lip and palate	Mean (SD) Unit: 18.0 μg/m ³	Aortic Artery and Valve Defects All Births, Matched: 1.10 (0.76-1.56)
.ocation: Brisbane, Australia	Study Design: Case-control	Range (Min, Max): (4.4, 151.7)	Births ≤ 12km to Monitor: 1.83 (1.16-2.98)
	Covariates: Mother's age, marital status, indigenous status, previous pregnancies, last menstrual period, area-level socioeconomic status, distance to a pollution monitor	Copollutant (correlation): NR	Births ≤ 6km to Monitor: 1.43 (0.73-2.90) All Births, Unmatched: 1.09 (0.84-1.39) Atrial Sepal Defects All Births, Matched: 1.06 (0.86-1.30)
	Statistical Analysis: Conditional logistic regression		Births ≤ 12km to Monitor: 1.07 (0.84-1.37)
	Statistical Package: R		0.88 (0.60-1.27)
	Statistical Package: R Age Groups: Neonates		Births ≤ 6km to Monitor: 0.88 (0.60-1.27) All Births, Unmatched: 1.14 (0.98-1.33) Pulmonary Artery and Valve Defects All Births, Matched: 0.90 (0.61-1.29) Births ≤ 12km to Monitor: 0.69 (0.43-1.08) Births ≤ 6km to Monitor: 1.46 (0.76-2.73) All Births, Unmatched: 0.99 (0.78-1.24) Ventricular Sepal Defects All Births, Matched: 0.87 (0.73-1.04) Births ≤ 12km to Monitor: 0.85 (0.69-1.03) Births ≤ 6km to Monitor: 0.90 (0.68-1.18) All Births, Unmatched: 1.15 (1.02-1.30) Conotruncal Defects All Births, Matched: 0.80 (0.54-1.19) Births ≤ 12km to Monitor: 0.94 (0.55-1.45) All Births, Matched: 0.97 (0.74-1.24) Endocardial Cushion and Mitral Valve Defects All Births, Matched: 1.29 (0.82-2.04) Births ≤ 12km to Monitor: 1.28 (0.75-2.19) Births ≤ 6km to Monitor: 1.29 (0.44-1.86)
			All Births, Unmatched: 0.94 (0.68-1.26) Cleft Lip All Births, Matched: 1.05 (0.72-1.51) Births ≤ 12km to Monitor: 1.16 (0.72-1.82)
			Births ≤ 6km to Monitor: 1.03 (0.56-1.82) All Births, Unmatched: 1.01 (0.79-1.27) Cleft Palate
			All Births, Matched: 0.69 (0.50-0.93) Births ≤ 12km to Monitor: 0.53 (0.29-0.87) Births ≤ 6km to Monitor: 0.71 (0.49-1.00) All Births, Unmatched: 0.89 (0.72-1.10) Cleft Lip with or without Cleft Palate All Births, Matched: 1.05 (0.84-1.30)
			All Births, Unmatched: 1.04 (0.89-1.21)\

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Jalaludin et al. (2007,	Outcome: Gestational age	Pollutant: PM ₁₀	PM Increment: 1 μg/m ³
156601) Period of Study: 1998-2000	(categorized: preterm birth: <37 wk term birth: ≥ 37 wk but <42 wk)	Averaging Time: 24 h avg used to calculate the mean concentration over	Effect Estimate [Lower CI, Upper CI]:
Period of Study: 1998-2000	Age Groups: Infants	the first trimester, the 3 mo preceding	ORs (air pollutant concentration during the
Location: Sydney, Australia		birth, the first month after the estimated date of conception, and the month prior	1st trimester and preterm birth by season) Fall: 1.462 (1.267, 1.688)
	Study Design: Cross-sectional	to delivery	Winter: 1.343 (1.190, 1.516) Spring: 1.119 (0.973, 1.288)
	N: 123,840 singleton births of >20 wk gestation	Mean (SD): (24 h avg) All yr: 16.3 (6.38)	Summer: 0.913 (0.889, 0.937)
	Statistical Analyses: Logistic	Summer: 18.2 (7.20) Fall: 17.0 (6.23)	ORs (air pollutant concentrations during different exposure periods and preterm
	regression	Winter: 14.5 (5.57)	birth for all of Sydney and among only those
	Covariates: Sex of child, maternal age, maternal smoking during pregnancy,	Spring: 15.7 (5.82) Monitoring Stations: 14 stations within	residing within 5 km of a monitoring
	gestational age at first antenatal visit,	the Sydney metropolitan area (levels	station) 1 month preceding birth
	whether mother identifies as being Aboriginal or Torres Strait Islander,	avgd to provide 1 estimate for the entire study area)	Sydney: 0.991 (0.979, 1.003) 5km: 1.008 (0.993, 1.022)
	whether first pregnancy, season of conception, SES, (temperature and	Copollutant (correlation): PM ₁₀	3 mo preceding birth Sydney: 0.989 (0.975, 1.004)
	relative humidity were not significant in single variable models and therefore,	$PM_{2.5}$ (r = 0.83)	5km: 1.012 (0.995, 1.030)
	were not included)	CO (r = 0.28) NO ₂ (r = 0.48)	1st month of gestation Sydney: 0.983 (0.973, 0.993)
	Season: Examined as covariate and effect modifier	O_3 (r = 0.50) SO_2 (r = 0.42)	5km: 0.957 (0.914, 1.002) 1st trimester
	Dose-response Investigated? No	Notes: Correlations between monitoring stations measuring PM ₁₀	Sydney: 0.987 (0.973, 1.001) 5km: 1.009 (0.978, 1.041)
	Statistical Package: SAS v8	ranged from 0.67 to 0.91	Notes: Authors note that effect of PM ₁₀ on preterm birth for infants conceived during
			the fall did not remain in 2 pollutant models (ORs between 0.77 and 1.04)
Reference: Kaiser et al. (2004,	Outcome: Postneonatal death:	Pollutant: PM ₁₀	PM Increment: Analysis 1:
<u>076674</u>)	All cause, SIDS (798.0)	Averaging Time: "annual mean levels" in each county Mean (SD): 28.4	16.4 µg/m³ (difference between reference level of 12 µg/m³ and observed mean level of 28.4 µg/m³)
Period of Study: 1995-1997	Respiratory disease (460-519)		
Location: 25 U.S. counties (23 metropolitan areas): Jackson, AL	Age Groups: Infants between 1-12 mo		Analysis 2:
Fresno, CA	Study Design: Attributable risk	Range (Min, Max):	13 μg/m³ (difference between reference
Los Angeles, CA Sacramento, CA	assessment	County range: 18.0, 44.8	level of 12 μg/m³ and 25 μg/m³)
San Diego, ĆA San Francisco, CA	N: 700,000 infants (# deaths NR)	Monitoring Stations: NR	AR Estimate [Lower CI, Upper CI]:
Denver, CO	Statistical Analyses: Risk assessment methods described in: Kunzli et al.	Notes: 14 out of 25 counties had PM ₁₀ levels >25 µg/m ³	Analysis 1: All cause 6% [3, 11]
Hartford, CT Cook, IL	Public-health impact of outdoor and	101010 - 20 руш	SIDS 16% [9, 23] Respiratory 24% [7, 44]
Baltimore, MD Wayne, MI	traffic-related air pollution: a European assessment. Lancet 2000, 356: 795-		Attributable # deaths per 100,000 infants:
St. Louis, MO	801.		All cause 14.7 [7.3, 25.6] SIDS 11.7 [6.8, 16.6]
Bronx, NY Kings, NY	Covariates: Maternal education, maternal ethnicity, parental marital		Respiratory 2.3 [0.7, 4.1] Analysis 2:
New York, NY Philadelphia, PA	status, maternal smoking during		All cause 5% [2, 8]
El Paso, TX Harris, TX	pregnancy, infant's month and yr of birth, avg temperature in the first 2 mo		SIDS 12% [7, 18] Respiratory 19% [6, 34]
Dallas, TX	of life		Attributable # deaths per 100,000 infants: All cause 10.9 [5.5, 19.1]
Oklahoma, OK Tulsa, OK	Season: All		SIDS 9.0 [5.3, 12.8] Respiratory 1.8 [0.5, 3.2]
Providence, RI Salt Lake City, UT	adjusted for month/yr of birth		Notes: -Authors did not extrapolate
King, WA Milwaukee, WI	Dose-response Investigated? NR		attributable cases below 12 µg/m³ (i.e., reference level was set at 12 µg/m³)
IVIIIVVAUNGE, VVI	Statistical Package: NR		-Attributable risks are based on the RRs
	Lags Considered: Annual, county-level mean		reported by Woodruff et al, 1997 for a 10 µg/m³ increase:
			All cause 1.04 [1.02-1.07]
			SIDS 1.12 [1.07, 1.17]
			Respiratory 1.20 [1.06, 1.36]
Reference: (Kim et al., 2007, <u>156642</u>)	Outcome (ICD9 and ICD10): LBW (low	Pollutant: PM ₁₀	PM increment: 10 μg/m ³
Period of Study: May 2001-May 2004	birth weight, less than 2500 g at later than gestational week 37), premature	Averaging Time: Used hourly	Preterm:
	delivery (birth before the completion of	exposure levels to calculate avg	1st Trimester Odds Ratios:

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Location: Seoul, Korea	the 37th week), stillbirth (intrauterine fetal death), IUGR (birth weight lower than the 10th percentile for the given gestational age), and congenital anomaly (a defect in the infant's body structure) Age Groups: Infants Study Design: Cross-sectional (women visiting the clinic for prenatal care were recruited with follow-up until discharge after delivery) N: 1514 observations (births) Statistical Analyses: Multiple logistic and linear regression (in addition, for birth weight, used generalized additive model to account for long-term trends and nonlinear relationships between the response variable and the predictors, and to produce smoothed plots of the relationship between PM and birth weight) Covariates: Adjustment 1: infant sex, infant order, maternal age and education, paternal education, season of birth Adjustment 2: adjustment 1 factors plus alcohol, maternal BMI, maternal weight prior to delivery (collected information on smoking, ETS, parity, past history of illnesses, history of illnesses, history of illnesses during pregnancy but did not use in analyses due to small numbers or non-significance) Season: Adjusted for season of delivery Dose-response Investigated? Yes Statistical Package: SAS 8.01, S-Plus 2000	exposure levels at each trimester, each month of pregnancy, and 6 wk before delivery from the nearest monitoring station (based on home address of mother) Also created categories within each pregnancy period (<25th percentile [referent], 25th to 50th percentile, and >50th percentile) Mean (SD): Range of PM means across pregnancy periods: 88.7-89.7 Monitoring Stations: 27 stations	Crude: 0.95 (0.90, 1.01) Adj 1: 0.93 (0.87, 1.00) Adj 2: 0.93 (0.85, 1.01) 2nd Trimester Odds Ratios: Crude: 0.99 (0.94, 1.06) Adj 1: 0.98 (0.92, 1.04) Adj 2: 1.00 (0.93, 1.07) 3rd Trimester Odds Ratios: Crude: 1.02 (0.98, 1.06) Adj 1: 1.05 (1.00, 1.10) Adj 2: 1.05 (0.99, 1.11) LBW: 1st Trimester Odds Ratios: Crude: 1.02 (0.93, 1.12) Adj 1: 1.03 (0.93, 1.14) Adj 2: 1.07 (0.96, 1.19) 2nd Trimester Odds Ratios: Crude: 1.03 (0.94, 1.14) Adj 2: 1.07 (0.94, 1.22) 3rd Trimester Odds Ratios: Crude: 1.03 (0.94, 1.14) Adj 1: 1.04 (0.93, 1.17) Adj 2: 1.07 (0.94, 1.22) 3rd Trimester Odds Ratios: Crude: 1.04 (0.97, 1.11) Adj 1: 1.05 (0.97, 1.14) Adj 2: 1.05 (0.96, 1.16) IUGR: 1st Trimester Odds Ratios: Crude: 1.07 (0.97, 1.19) Adj 1: 1.07 (0.95, 1.21) Adj 2: 1.14 (0.99, 1.31) 2nd Trimester Odds Ratios: Crude: 0.97 (0.82, 1.13) Adj 2: 0.93 (0.77, 1.13) 3rd Trimester Odds Ratios: Crude: 0.82 (0.68, 0.99) Adj 1: 0.88 (0.72, 1.08) Adj 2: 0.85 (0.67, 1.08) Birth defect: 1st Trimester Odds Ratios: Crude: 1.08 (0.98, 1.20) Adj 1: 1.12 (1.00, 1.25) Adj 2: 1.08 (0.98, 1.20) Adj 1: 1.11 (0.98, 1.22) 2nd Trimester Odds Ratios: Crude: 1.08 (0.98, 1.20) Adj 1: 1.11 (0.98, 1.22) 2nd Trimester Odds Ratios: Crude: 0.83 (0.76, 0.90) Adj 1: 1.11 (0.98, 1.22) 2nd Trimester Odds Ratios: Crude: 0.83 (0.76, 0.90) Adj 1: 1.11 (0.98, 1.20) Adj 2: 1.16 (1.00, 1.34) 3rd Trimester Odds Ratios: Crude: 0.83 (0.76, 0.90) Adj 1: 1.11 (0.98, 1.20) Adj 2: 1.16 (1.00, 1.34) 3rd Trimester Odds Ratios: Crude: 0.89 (0.95, 1.10) Stillbirth: 1st Trimester Odds Ratios: Crude: 0.89 (0.95, 1.10) Adj 2: 1.11 (0.98, 1.20) Adj 2: 1.16 (1.00, 1.34) 3rd Trimester Odds Ratios: Crude: 0.80 (0.76, 0.90) Adj 1: 1.11 (0.98, 1.20) Adj 2: 1.16 (1.00, 1.34) 3rd Trimester Odds Ratios: Crude: 0.80 (0.76, 0.90) Adj 1: 1.097 (0.86, 1.08) Adj 2: 0.95 (0.85, 1.02) Adj 2: 1.08 (0.95, 1.11) Adj 2: 1.07 (0.98, 1.17) 3rd Trimester Odds Ratios: Crude: 1.09 (0.93, 1.05) Adj 2: 1.08 (0.95, 1.11) Adj 2: 1.09 (0.95, 1.11) Adj 2: 1.07 (0.98, 1.17) 3rd Trimester Odds Ratios: Crude: 1.09 (0.95,

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			1st trimester: 7.8 (1.2, 14.5) 2nd trimester: -0.3 (-7.3, 6.8) 3rd trimester: -2.1 (-7.5, 3.4) 1st month: 4.4 (-1.0, 9.8) 2nd month: 6.4 (0.6, 12.2) 3rd month: 4.3 (-1.5, 10.2) 4th month: 3.0 (-3.7, 9.6) 5th month: -3.9 (-10.5, 2.7) 6th month: 0.1 (-5.7, 5.8) 7th month: 0.1 (-5.1, 5.3) 8th month: 0.0 (-4.5, 4.5) 9th month: 1.8 (-2.3, 5.9) Last 6 wk: -4.8 (-9.9, 0.4)
Reference: Lee et al. (2003, <u>043202</u>)	Outcome: Low birth weight (LBW), <2500 g	Pollutant: PM ₁₀	PM Increment: IQR, 41.9
Period of Study: Jan 1996-Dec 1998 Location: Seoul, South Korea	Age Groups: Child-bearing age women and their newborn children-delivered at 37-44 gestational wk	Averaging Time: Arithmetic avg of hourly measurements at 20 stations Mean (SD): 71.1 (30.1)	RR Estimate [Lower CI, Upper CI]: 1st trimester: 1.03 [1.00, 1.07]
	Study Design: Cross-section	Percentiles:	2nd trimester: 1.04 [1.00, 1.08]
	N: 388,905 full-term single births	25th: 47.4 50th(Median): 67.6	3rd trimester: 1.00 [0.95, 1.04]
	Statistical Analyses: Generalized	75th: 89.3	All trimesters: 1.06 [1.01, 1.10]
	additive model, LOESS, Akaike's criterion,	Range (Min, Max): 18.4, 236.9 Monitoring Stations: 20	Low exposure in last 5 mo using IQR during last 5 mo: 0.94 [0.85, 1.05]
	Covariates: Infant sex, birth order, maternal age, parental education level,	Copollutant (correlation): 1st trimester: PM ₁₀ -CO: 0.47	Low exposure in first 5 mo using IQR during first 5 mo: 1.04 [1.01, 1.08]
	time trend and gestational age. Season: All	PM ₁₀ -CO: 0.47 PM ₁₀ -SO ₂ : 0.78 PM ₁₀ -NO ₂ : 0.66	Notes: Birth weight was decreased by 19.6 g for an IQR increase in the 2nd trimester.
	Dose-response Investigated? Yes	2nd trimester: PM ₁₀ -CO: 0.68	The OR for LBW increased for female
	Statistical Package: NR	PM ₁₀ -SO ₂ : 0.82 PM ₁₀ -NO ₂ : 0.81 3rd trimester: PM ₁₀ -CO: 0.69 PM ₁₀ -SO ₂ : 0.85 PM ₁₀ -NO ₂ : 0.80	children, fourth or higher order child, mother <20 yr of age, and low parental education level.
Reference: Leem et al. (2006, <u>089828</u>)	Outcome (ICD9 and ICD10): Age	Pollutant: PM ₁₀	Effect Estimate [Lower CI, Upper CI]:
Period of Study: 2001-2002	Groups: Pre-term delivery	Averaging Time: Trimesters (daily	Crude and Adjusted RR for preterm
Location: Incheon, Korea	Study Design: Cross-sectional	hourly data used to calculate) Range (Min, Max): Reported ranges	delivery and exposure during the 1st trimester
	N: Cases: 2,082	within quartiles by trimester: 1st Trimester:	Crude Quartiles of exposure:
	Controls: 50,031 Statistical Analyses: Log-binomial	4: 64.57-106.39	4: 1.07 (0.95, 1.21)
	regression (corrected for overdispersion	3: 53.84-64.56 2: 45.95-53.83	3: 1.02 (0.90, 1.15) 2: 1.06 (0.94, 1.20)
	Used the log link function)	1: 26.99-45.94 3rd Trimester:	1: 1.00 Adjusted
	Covariates: Maternal age, parity, sex,	4: 65.63-95.91 3: 56.07-65.62	Quartiles of exposure: 4: 1.27 (1.04, 1.56)
	season of birth, and education level of each parent	2: 47.07-56.06	3: 1.13 (0.94, 1.37)
	Season: Controlled as a covariate	1: 33.12-47.06 Monitoring Stations: 27 monitoring	2: 1.14 (0.97, 1.34) 1: 1.00
	Dose-response Investigated? Yes, assessed quartiles of exposure	stations Pollutant levels for each area were	p-trend: 0.39 Crude and Adjusted RR for preterm
	Statistical Package: NR	predicted from the levels recorded at the monitors using ordinary block kriging	delivery and exposure during the 3rd trimester Crude
		Copollutant (correlation):	Quartiles of exposure: 4: 1.06 (0.94, 1.20)
		SO ₂ (r = 0.13)	3: 1.06 (0.94, 1.19) 2: 1.05 (0.93, 1.18)
		NO_2 (r = 0.37)	1: 1.00 ` ′
		CO (r = 0.27)	Adjusted Quartiles of exposure:
			4: 1.09 (0.91, 1.30) 3: 1.04 (0.90, 1.21) 2: 1.05 (0.91, 1.20)
			1: 1.00 p-trend: 0.33

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Lin et al. (2004, <u>095787</u>)	Outcome: Neonatal death	Pollutant: PM ₁₀	PM Increment: 1 μg/m³
Period of Study: Jan 1998-Dec 2000	Age Groups: Neonates (infants 0-28	Averaging Time: Daily values	Log relative rate (standard error) lag
Location: São Paulo, Brazil	days after birth)	Mean (SD): 48.62 (21.18)	Single pollutant model
	Study Design: Time series	Range (Min, Max): 13.9, 157.3	0.0017 (0.0008) lag 0
	N: 1096 days, 6697 deaths Statistical Analyses: Poisson regression (GAM)	Monitoring Stations: NR (indicated more than 1)	This translates to a 4.0% [95% CI: 0.3, 7.9] increase in neonatal mortality for a 23.3 µg/m³ increase in PM ₁₀
	Covariates: Non-parametric LOESS	Copollutant (correlation):	Two-pollutant model
	smoothers to control for: time (long term	CO r = 0.71	0.0000 (0.0011) lag 0
	trend), temperature, humidity, and day of week	$NO_2 r = 0.76$	Notes: -In two-pollutant model with PM ₁₀
	Also controlled for holidays with linear term	$SO_2 r = 0.80$ $O_3 r = 0.36$	and SO ₂ (which are highly correlated), effect of PM disappeared and effect of SO ₂ remained constant
	Season: All		_
	Dose-response Investigated? No		 Results from pollutant ma from 2-7 days not reported, authors indicate effects only
	Statistical Package: NR		found for lag 0 (same day levels)
	Lags Considered: Lag 0, "ma from 2 to 7 days"		 Confidence intervals reported in abstract are incompatible with βs/standard errors and plotted results in text: abstract
	Notes: No explicit control for season apart from temperature		indicates a 4% increase in mortality with 95% CI: 2-6 for a 23.3 $\mu g/m^3$ increase in PM_{10}
Reference: (Lin et al., 2004, <u>089827</u>)	Outcome: Low birth weight (<2500	Pollutant: PM ₁₀	PM Increment: Tertiles
Period of Study: 1995-1997	grams)	Averaging Time: NR, "daily	Entire pregnancy T1: <46.4 ppb
Location: Taipei and Kaoshiung,	Age Groups: Newborns	measurements"	T2: 46.4-63.1 ppb T3: >63.1 ppb
Taiwan	Study Design: Cross-sectional	Mean (SD): Reported by monitoring station: Taipei:	First trimester
	N: 92,288 infants	1. 48.78 2. 46.29	T1: <45.8 ppb T2: 45.8-67.6 ppb
	Statistical Analyses: Logistic regression	3. 48.79	T3: >67.6 ppb Second trimester
	Covariates: Gender, birth order,	4. 50.80 5. 52.54	T1: <44.6 ppb
	gestational weeks, season of birth, maternal age, maternal education,	Kaohsiung 1. 69.99	T2: 44.6-64.2 ppb T3: >64.2 ppb
	copollutants	2. 63.39	Third trimester T1: <43.7 ppb
	Season: All	3. 64.89 4. 75.79	T2: 43.7-63.7 ppb
	Dose-response Investigated? Yes	5. 77.27	T3: >63.7 ppb RR Estimate [Lower CI, Upper CI]
	Statistical Package: NR	Monitoring Stations:	Entire pregnancy T1: 1.00
	Lags Considered: The 9-month	10 (5 in each city)	T2: 0.96 [0.83, 1.11]
	pregnancy period for each infant, and each trimester	Notes: All pregnant women/infants included in study lived within 3 km of an air quality monitoring station	T3: 0.87 [0.71, 1.05] First trimester T1: 1.00
		Pollution assigned based on nearest air quality station to the maternal residence	T2: 0.96 [0.84, 1.09] T3: 0.97 [0.80, 1.17] Second trimester T1: 1.00
		Co-pollutant: CO, SO ₂ , O ₃ , NO ₂	T2: 1.03 [0.90, 1.17] T3: 1.00 [0.83, 1.21] Third trimester
			T1: 1.00 T2: 1.02 [0.90, 1.16]
			T3: 0.97 [0.81, 1.17] Notes: RR for births in Kaoshiung vs. Taipei: 1.13 [1.03, 1.24]
Reference: Lipfert et al. (2000, <u>004103</u>)	Outcome: Infant mortality	Pollutant: PM ₁₀	PM Increment: NR (present regression
Period of Study: 1990	Including respiratory mortality	Averaging Time: Yearly avg used	coefficients)
Location: U.S.	(traditional definition, ICD9 460-519).	Mean (SD): 33.1 (9.17) (based on 180 counties)	Effect Estimate [Lower CI, Upper CI]: Presented regression coefficients (standard errors)
	Age Groups: Infants	Range (Min, Max): (16.9, 59)	(3 PM exposures regressed jointly)
	Study Design: Cross-sectional	Monitoring Stations: NR	bold = p <0.05 Cause of death: All
	N: 2,413,762 infants in 180 counties	Copollutant (correlation):	Birth weight: All PM ₁₀ : 0.0114 (0.0015)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	(Ns differ for various models)	PM ₁₀	SO ₄ ²⁻ : -0.0002 (0.0061) NSPM ₁₀ : 0.0115 (0.0014)
	Statistical Analyses: Logistic regression	SO_4^{2-} (r = 0.10)	Cause of death: All Birth weight: LBW
	Covariates: Mother's smoking,	NSPM ₁₀ -non-sulfate portion of PM ₁₀ ($r = 0.91$)	PM ₁₀ : 0.0088 (0.0019) SO ₄ : 0.0265 (0.0080)
	education, marital status, and race	CO (r = 0.27)	NSPM ₁₀ : 0.0086 (0.0020)
	Month of birth	$SO_2 (r = 0.04)$	Cause of death: All Birth weight: normal
	And county avg heating degree days	Notes: TSP-based sulfate was adjusted	PM ₁₀ : 0.0092 (0.0024) SO ₄ ²⁻ : -0.0488 (0.0098)
	Dose-response Investigated? NR	for compatibility with the PM ₁₀ -based data	NSPM ₁₀ : 0.0096 (0.0024) Cause of death: All neonatal
	Statistical Package: NR		Birth weight: All PM ₁₀ : 0.0126 (0.0018)
			SO ₄ ² : 0.0267 (0.0076) NSPM ₁₀ : 0.0126 (0.0018)
			Cause of death: All neonatal
			Birth weight: LBW PM _{1g} : 0.0086 (0.0022)
			SO ₄ ²⁻ : 0.0388 (0.0088) NSPM ₁₀ : 0.0093 (0.0022)
			Cause of death: All neonatal Birth wt: normal
			PM ₁₀ : 0.0123 (0.0041) SO ₄ ² : -0.0334 (0.0169)
			NSPM ₁₀ : 0.0125 (0.0040)
			Cause of death: All post neonatal Birth wt: All
			PM ₁₀ : 0.0091 (0.0024) SO ₄ ²⁻ : -0.0474 (0.0100)
			NSPM ₁₀ : 0.0096 (0.0024) Cause of death: All post neonatal
			Birth wt: LBW PM ₁₀ : 0.0096 (0.0043)
			SO ₄ ²⁻ : -0.0247 (0.0173) NSPM ₁₀ : 0.0101 (0.0042)
			Cause of death: All post neonatal
			Birth wt: normal PM _{1g} : 0.0074 (0.0030)
			SO ₄ ²⁻ : -0.0569 (0.0121) NSPM ₁₀ : 0.0080 (0.0029)
			Cause of death: SIDS Birth weight: All
			PM ₁₀ : 0.0138 (0.0038) SO ₄ ²⁻ : -0.1078 (0.0151)
			NSPM ₁₀ : 0.0149 (0.0037)
			Cause of death: SIDS Birth weight: LBW
			PM ₁₀ : 0.0115 (0.0088) SO ₄ ²⁻ : -0.1378 (0.0337)
			NSPM ₁₀ : 0.0146 (0.0085) Cause of death: SIDS
			Birth weight: normal PM ₁₀ : 0.0137 (0.0042)
			SO ₄ ²⁻ : -0.0995 (0.0168) NSPM ₁₀ : 0.0147 (0.0041)
			Cause of death: All respiratory (ICD9: 460-
			519, 769, 770) Birth weight: All
			PM ₁₀ : 0.0168 (0.0034) SO ₄ ²⁻ : 0.0706 (0.0146)
			NSPM ₁₀ : 0.0166 (0.0034) Cause of death: All respiratory (ICD9: 460-
			519, 769, 770) Birth weight: LBW
			PM _{1g} : 0.0144 (0.0038) SO ₄ : 0.0821 (0.0158)
			NSPM ₁₀ : 0.0139 (0.0038)
			Cause of death: All respiratory (ICD9: 460-519, 769, 770)
			Birth weight: normal PM ₁₀ : 0.0177 (0.0091)
			SO ₄ ² : 0.0001 (0.0392) NSPM ₁₀ : 0.0118 (0.0090)
			Cause of death: Respiratory disease
			(ICD9: 460-519) Birth weight: All

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			PM ₁₀ : 0.0133 (0.0089) SO ₄ ² : 0.0093 (0.0384) NSPM ₁₀ : 0.0134 (0.0089) Cause of death: Respiratory disease (ICD9: 460-519) Birth weight: LBW PM ₁₀ : 0.0092 (0.0137) SO ₄ ² : 0.0434 (0.0580) NSPM ₁₀ : 0.0089 (0.0138) Cause of death: Respiratory disease (ICD9: 460-519) Birth weight: normal PM ₁₀ : 0.0126 (0.0120) SO ₄ ² : -0.0177 (0.0509) NSPM ₁₀ : 0.0128 (0.0119) Associations with SIDS by smoking status Smoking status: Yes Birth weight: Normal PM ₁₀ : 0.0202 (0.0073) SO ₄ ² : -0.0722 (0.0284) NSPM ₁₀ : 0.0206 (0.0071) Smoking status: No Birth weight: Normal PM ₁₀ : 0.0104 (0.0051) SO ₄ ² : -0.114 (0.021) NSPM ₁₀ : 0.0117 (0.005) Smoking status: Yes Birth weight: LBW PM ₁₀ : 0.0322 (0.0130) SO ₄ ² : -0.0958 (0.0483) NSPM ₁₀ : 0.0345 (0.0125) Smoking status: No Birth weight: LBW PM ₁₀ : -0.0044 (0.012) SO ₄ ² : -0.0172 (0.047) NSPM ₁₀ : -0.007 (0.012) Mean risks (955/CI) between post neonatal SIDS among normal birth weight babies pollutants regressed one at a time PM ₁₀ : 1.20 (1.02, 1.42) SO ₄ ² : 0.43 (0.37, 0.51) NSPM ₁₀ : 1.33 (1.18, 1.50)
Reference: Maisonet et al. (2001, 016624)	Outcome: Low birth weight (LBW): infants with a birth weight <2,500 g and	Pollutant: PM ₁₀ Averaging Time: Trimester avg calculated using 24-h measurements taken every 6 days Range (Min, Max): Ranges for categories of exposure: 1st Trimester <25th: <24.821	PM Increment: 10 μg/m³ for analyses assessing exposures continuously
Period of Study: 1994-1996	having a gestational age between 37 and 44 wk		Effect Estimate [Lower CI, Upper CI]:
Location: Northeastern U.S. (6 cities: Boston, Hartford, Philadelphia, Pittsburgh, Springfield, Washington DC)	Age Groups: Term live births (singleton)		ORs for term LBW by trimester 1st Trimester Crude <25th: 1.00
	Study Design: Cross-sectional N: 89,557 infants		25 to <50th: 1.02 (0.90, 1.14) 50 to <75th: 0.90 (0.65, 1.24) 75 to <95th: 0.87 (0.58, 1.30)
	Statistical Analyses: Logistic	25 to <50th: 24.821, 30.996 50 to <75th: 30.997, 36.142	≥ 95th: 0.89 (0.60, 1.33)
	regression (LBW) and linear regression (for reductions in birth weight)	75 to <95th: 36.143, 46.547 ≥ 95th: ≥ 46.548 2nd Trimester <25th: <24.702	Continuous: 0.93 (0.77, 1.13) 1st Trimester Adjusted <25th: 1.00
	Covariates: Gestational age, gender, birth order, maternal age, race/ethnicity, yr of education, marital status, adequacy of prenatal care, previous induced or spontaneous abortions, weight gain during pregnancy, maternal prenatal smoking, and alcohol consumption		25 to <50th: 1.02 (0.94, 1.11) 50 to <75th: 0.90 (0.78, 1.03) 75 to <95th: 0.85 (0.73, 1.00) ≥ 95th: 0.83 (0.70, 0.97) Continuous: 0.93 (0.85, 1.00) 2nd Trimester Crude <25th: 1.00 25 to <50th: 1.01 (0.93, 1.10) 50 to <75th: 0.90 (0.66, 1.21) 75 to <995th: 0.92 (0.62, 1.34)
	Season: Yes, as covariate	75 to <95th: 35.643, 43.588 ≥ 95th: ≥ 43.589	≥ 95th: 0.90 (0.61, 1.33) Continuous: 0.95 (0.78, 1.16)
	Dose-response Investigated? Yes, categorical exposure variables assessed	Monitoring Stations: 3-4 per city Copollutants: CO, SO ₂	2nd Trimester Adjusted <25th: 1.00 25 to <50th: 1.06 (0.97, 1.15)
	Statistical Package: STATA		50 to <75th: 0.95 (0.85, 1.07) 75 to <95th: 0.91 (0.79, 1.05) ≥ 95th: 0.77 (0.63, 0.95) Continuous: 0.93 (0.85, 1.02) 3rd Trimester Crude <25th: 1.00

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			25 to <50th: 0.94 (0.85, 1.05) 50 to <75th: 0.86 (0.58, 1.25) 75 to <95th: 0.86 (0.57, 1.29) ≥ 95th: 0.92 (0.61, 1.38) Continuous: 0.95 (0.75, 1.20) 3rd Trimester Adjusted
			<25th: 1.00 25 to <50th: 0.98 (0.87, 1.10) 50 to <75th: 0.92 (0.76, 1.11) 75 to <95th: 0.98 (0.75, 1.04) ≥ 95th: 0.91 (0.77, 1.07) Continuous: 0.96 (0.88, 1.06) Adjusted ORs by race/ethnicity
			Whites: 1st Trimester <25th: 1.00 25 to <50th: 1.13 (0.96, 1.33) 50 to <75th: 1.00 (0.92, 1.08)
			75 to <95th: 1.00 (0.91, 1.09) ≥ 95th: 0.92 (0.81, 1.04) Continuous: 0.94 (0.90, 0.98) 2nd Trimester <25th: 1.00 25 to <50th: 0.88 (0.77, 1.02)
			50 to <75th: 0.95 (0.89, 1.02) 75 to <95th: 0.95 (0.84, 1.07) ≥ 95th: 0.89 (0.64, 1.26) Continuous: 0.96 (0.89, 1.04) 3rd Trimester <25th: 1.00
			25 to <50th: 0.84 (0.64, 1.11) 50 to <75th: 0.91 (0.83, 1.01) 75 to <95th: 0.80 (0.71, 0.90) ≥ 95th: 1.03 (0.86, 1.24) Continuous: 0.95 (0.90, 1.00) African Americans:
			1st Trimester <25th: 1.00 25 to <50th: 1.01 (0.98, 1.05) 50 to <75th: 0.88 (0.79, 0.98) 75 to <95th: 0.83 (0.70, 0.97)
			≥ 95th: 0.81 (0.67, 0.99) Continuous: 0.93 (0.85, 1.01) 2nd Trimester <25th: 1.00 25 to <50th: 1.10 (0.93, 1.30) 50 to <75th: 0.95 (0.80, 1.12)
			75 to <95th: 0.88 (0.69, 1.11) ≥ 95th: 0.75 (0.54, 1.03) Continuous: 0.92 (0.80, 1.05) 3rd Trimester <25th: 1.00
			25 to <50th: 1.08 (0.92, 1.27) 50 to <75th: 0.89 (0.70, 1.12) 75 to <95th: 0.94 (0.75, 1.18) ≥ 95th: 0.83 (0.71, 0.97) Continuous: 0.99 (0.87, 1.11) Hispanics: 1st Trimester
			<25th: 1.00 25 to <50th: 0.83 (0.64, 1.06) 50 to <75th: 0.86 (0.70, 1.05) 75 to <95th: 0.79 (0.68, 0.93) ≥ 95th: 1.36 (1.06, 1.75) Continuous: 0.96 (0.84, 1.09)
			2nd Trimester <25th: 1.00 25 to <50th: 1.16 (0.84, 1.61) 50 to <75th: 0.86 (0.63, 1.19) 75 to <95th: 0.98 (0.71, 1.34) ≥ 95th: 0.68 (0.38, 1.21)
			Continuous: 0.92 (0.81, 1.05) 3rd Trimester <25th: 1.00 25 to <50th: 0.77 (0.55, 1.07) 50 to <75th: 1.12 (0.76, 1.66) 75 to <95th: 0.93 (0.65, 1.31) ≥ 95th: 0.90 (0.55, 1.47)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
-	-		Continuous: 0.96 (0.80, 1.15)
Reference: Mannes et al.(2005,	Outcome: Risk of SGA and birth weight	Pollutant: PM ₁₀	PM Increment: 1 μg/m ³
<u>087895</u>)	Age Groups: All singleton births >20	Averaging Time: 24 h	Risk of SGA
Period of Study: Jan 1998-Dec 2000	wk and ≥ 400 grams birth weight and maternal all ages	Mean (SD): 16.8 (7.1)	All births One month before birth:
Location: Metropolitan Sydney, Australia	Study Design: Cross-sectional	25th: 12.3	OR = 1.01 (1.00-1.03)
	N: 138,056 singleton births	50th(Median): 15.7	Third trimester: OR = 1.00 (0.99-1.013) Second trimester: OR = 1.01 (1.00.1.04)
	Statistical Analyses: Logistic and	75th: 19.9	OR = 1.01 (1.00-1.04) First trimester: OR = 1.00 (0.98-1.02)
	linear regression models	Range (Min, Max): (3.8-104.0)	5 km births One month before birth: OR = 1.00 (0.99-
	Covariates: Sex of child, maternal age, gestational age, maternal smoking,	Monitoring Stations: up to 14	1.02)
	gestational age at first antenatal visit, maternal indigenous status, whether	Copollutants (correlations): CO: r = 0.26	Third trimester: OR = 1.01 (0.99-1.02) Second trimester: OR = 1.02 (1.01-1.03)
	first pregnancy, season of birth, socioeconomic status	NO ₂ : r = 0.47	First trimester: OR = 1.01 (0.99-1.02) Change in birth weight
	Season: All seasons	O ₃ : r = 0.52	All births
	Included as covariate	PM _{2.5} : r = 0.81	One month before birth: § = -1.21 (-2.310.11)
	Dose-response Investigated? No		Third trimester: ß = -0.95 (-2.30-0.40) Second trimester:
	Statistical Package: SAS v8.02		ß = -2.05 (-3.360.74) First trimester: ß = -0.14 (-1.37- 1.09)
			5 km births One month before birth:
			ß = -2.98 (-4.251.71)
			Third trimester: $\beta = -3.84$ (-5.352.33) Second trimester:
			ß = -4.28 (-5.792.77) First trimester: ß = -2.57 (-4.041.10)
			Key second trimester findings
			Single pollutant model:
			$\[\] = -4.28 \ (-5.792.77) \] 2 \ pollutant \ (PM_{10} \ and \ CO): \]$
			ß = -3.72 (-6.291.15)
			2 pollutant (PM ₁₀ and NO ₂):
			$\beta = -2.65 (-4.320.98)$ 2 pollutant (PM ₁₀ and O ₃):
			ß = -5.47 (-7.063.88)
			4 pollutant (PM ₁₀ , NO ₂ , CO and O ₃): $\beta = -$
			3.27 (-7.05-0.51) Controlling for exposures in other
			pregnancy periods:
			ß = -3.03 (-4.851.21)
Reference: Pereira et al. (1998, 007264)	Outcome: Intrauterine mortality (fetuses over 28 wk of pregnancy)	Pollutant: PM ₁₀	PM Increment: NR (reported only regression coefficients for PM)
Period of Study: Jan 1991-Dec 1992	Study Design: Time-series	Averaging Time: 24 h mean	Effect Estimate [Lower CI, Upper CI]:
Location: Sao Paulo, Brazil	N: 730 days with PM measures	Mean (SD): 65.04 (27.28)	Regression coefficients (standard errors)
Notes: Paper does not focus on PM as	Statistical Analyses: Poisson	Range (Min, Max): (14.80, 192.80) for pollutants w	for pollutants when considered separately
a pollutant of interest.	regression	Monitoring Stations: 13 (avgd to provide city-wide pollutant level)	and simultaneously in the completed model:
	Covariates: Season, day of the week and weather (temperature and relative	Copollutants (correlation):	Separately: 0.0008 (0.0006)
	humidity)	NO ₂ (r = 0.45)	Simultaneously: -0.0005 (0.0010)
	Season: Assessed by including 24	SO_2 (r = 0.74)	
	indicator variables for month and yr	CO (r = 0.41)	
	Dose-response Investigated? No	O_3 (r = 0.25)	
	Statistical Package: NR		
	Lags Considered: Paper focuses on other pollutants (lags for PM not reported)		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ritz et al. (2000, <u>012068</u>)	Outcome: Preterm birth (treated	Pollutant: PM ₁₀	PM Increment: 50 μg/m ³
Period of Study: 1989-1993	dichotomously as birth at <37 wk gestation	Averaging Time: 24-h avg at 6 day	Effect Estimate [Lower CI, Upper CI]:
Location: Southern California	Also analyzed continuously)	intervals	All 8 stations
	Age Groups: Infants (born vaginally between 26-44 wk of gestation)	avgd pollutant measures for 1, 2, 4, 6, 8, 12, and 26 wk before birth and the whole pregnancy period	6 wk before birth Crude: 1.20 (1.09, 1.33) 2 exposure periods: 1.18 (1.07, 1.31)
	Study Design: Cross-sectional	Mean (SD): 6 wk before birth: 47.5	Other risk factors: 1.15 (1.04, 1.26) Other RFs plus season: 1.15 (1.03, 1.29)
	N: 97,158 births	(15.0) 1st month of pregnancy: 49.3 (16.9)	Multipollutant model: 1.19 (1.01, 1.40) 1st month of pregnancy
	Statistical Analyses: Logistic and linear regression	Range (Min, Max): 6 wk before birth:	Crude: 1.16 (1.06, 1.26) 2 exposure periods: 1.13 (1.04, 1.24)
	Covariates: Maternal age, race, education, parity, interval since the	12.3-152.3 1st month of pregnancy: 9.5-178.8	Other risk factors: 1.09 (1.00, 1.19) Other RFs plus season: 1.09 (0.99, 1.20) Multipollutant model: 1.12 (0.97, 1.29)
	previous live birth, access to prenatal care, infant sex, previous low weight or preterm births, smoking (reported as	Monitoring Stations: 17 stations (PM measured at only 8 stations)	Coastal stations only 6 wk before birth
	"pregnancy complications")	Copollutants (correlations):	Crude: 1.22 (1.00, 1.49) 2 exposure periods: 1.28 (1.04, 1.56)
	To examine effect modification, authors conducted stratified analysis by region, birth and conception seasons, maternal	6 wk before birth: CO (r = 0.43)	Other risk factors: 1.13 (0.93, 1.38) Other RFs plus season: 1.18 (0.92, 1.51) Multipollutant model: 1.42 (097, 2.01)
	age, race, education, and infant gender	NO_2 (r = 0.74)	1st month of pregnancy Crude: 1.28 (1.06, 1.54)
	Season: Some models included season of birth or conception	O_3 (r = 0.20)	2 exposure periods: 1.32 (1.09, 1.59) Other risk factors: 1.17 (0.97, 1.40)
	Also assessed as effect modifier in stratified analyses	1st month of pregnancy: CO (r = 0.37)	Other RFs plus season: 0.99 (0.79, 1.24) Multipollutant model: 1.09 (0.83, 1.41) Inland stations only
	Dose-response Investigated? Examined adequacy of linear or log-	NO_2 (r = 0.71) O_3 (r = 0.23)	6 wk before birth Crude: 1.27 (1.12, 1.44) 2 exposure periods: 1.27 (1.11, 1.44)
	linear relation using indicator terms for pollutant-avg quartiles	Notes: Avgd pollutant measures taken at the air monitoring station closest to	Other risk factors: 1.19 (1.05, 1.35) Other RFs plus season: 1.27 (1.10, 1.48)
	Results presented in Fig 2 (dose- response demonstrated for last 6 wk exposure period)	the residence	Multipollutant model: 1.18 (0.97, 1.43) 1st month of pregnancy Crude: 1.16 (1.04, 1.29)
	Statistical Package: NR		2 exposure periods: 1.16 (1.04, 1.29) Other risk factors: 1.09 (0.98, 1.21) Other RFs plus season: 1.09 (0.97, 1.24) Multipollutant model: 1.11 (0.93, 1.33) Crude estimates for last 6 wk exposure by season
			Fall: 1.08 (0.88, 1.31) Summer: 1.06 (0.87, 1.29) Winter: 1.33 (1.07, 1.65) Spring: 1.81 (1.41, 2.31) Reduction in mean gestation length for each increase in PM_{10} during last 6 wk before birth (linear regression analysis) Crude: 0.66 (\pm 0.24) days Adj: 0.90 (\pm 0.27) days
			Notes: Effect estimates remain stable when excluding SGA or LBW children or when restricting preterm births to SGA or LBW children only (results not presented)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ritz, et al. (2002, <u>023227</u>)	Outcome: 1) Aortic defects	Pollutant: PM ₁₀	Notes: The authors did not observe
Period of Study: 1987-1993	2) Defects of the atrium and atrium	Averaging Time: 24 h (every 6 days)	consistently increased risks and dose- response patterns for PM ₁₀ after
Location: Southern California	Sepum 3) Endocardial and mitral valve defects	PM Component: vehicle emissions	controlling for the effects of CO and O ₃ on these cardiac defects. (Quantitative results
(Jul 1990-Jul 1993 for Los Angeles,	4) Pulmonary artery and valve defects5) Conotruncal defects including	Monitoring Stations: 11 (for PM_{10})	not shown).
1989 for Riverside, 1988-1989 for San Bernardino, and 1987-1989 for Orange counties	tetralogy of Fallot, transposition of great vessels, truncus arteriosus communis, double outlet right ventricle, and	Copollutants (correlations): CO: r = 0.32	
	aorticopulmonary window and 6) Ventricular Sepal defects not	$NO_2(NR)$	
	included in the conotruncal category.	O ₃ (NR)	
	Age Groups: All live born infants and fetal deaths diagnosed between 20 wk of gestation and 1 yr after birth		
	Study Design: Case-control		
	N: 10,649 infants and fetuses		
	Statistical Analyses: Hierarchical (two-level) regression model, polytomous logistic regression, linear model		
	Covariates: Gender, no prenatal care, multiple births, no siblings, maternal race, maternal age, maternal education, born before 1990, season of conception,		
	Season: All		
	Dose-response Investigated? Yes, for O_3 and CO , study found a clear dose-response pattern for aortic Sepum and valve and ventricular Sepal defects and possibly for conotruncal and pulmonary artery and valve defects		
	Statistical Package: SAS		

Design & Methods Concentrations 1 Effect Estimates (95% CI) Study PM Increment: 10 µg/m³ Reference: Ritz et al. (2006, 089819) Outcome: Total infant deaths during the Pollutant: PM₁₀ first yr of life as well as all respiratory Period of Study: 1989-2000 causes of death (ICD-9 codes 460-519, 769, 770.4, 770.7, 770.8, and 770.9 Averaging Time: 24 h Effect Estimate [Lower CI, Upper CI]: Mean (SD): Location: 389 South Coast Air Basin All-cause death and ICD-10 codes J00-J98, P22.0, P22.9, P27.1, P27.9, P28.0, P28.4, 2 wk before death: 46.2 (SoCAB) zip codes 2 mo before death 1 month before death: 46.3 Single-pollutant model P28.5, and P28.9) and sudden infant 2 mo before death: 46.3 death syndrome (SIDS) (ICD-9 code 798.0 and ICD-10 code R95). <25th = 1.04 (1.01-1.06) 6 mo before death: 46.3 25th-75th = 0.96 (0.89-1.04) >75th = 1.14 (1.03-1.27) Range (Min, Max): Age Groups: Infants 0-1 yr Multiple-pollutant model: 2 wk before death: (21.0-83.5) <25th = 1.02 (0.99-1.05) 1 month before death: (25.0-77.2) Study Design: Case-control 25th-75th = 0.92 (0.84-1.00) 2 mo before death: (27.6-74.2) >75th = 1.07 (0.95-1.20) 6 mo before death: (31.3-69.5) N: 2,975,059 births and 19,664 infant SIDS deaths 2 mo before death: Monitoring Stations: maximum of 31 Single-pollutant model: Cases, n = 13,146 <25th = 1.03 (0.99-1.08) Copollutants (correlation): Controls, n = 151,015 25th-75th = 0.94 (0.81-1.08) 2 wk before death >75th = 1.13 (0.93-1.36) CO: r = 0.33Statistical Analyses: Conditional Multiple-pollutant model: <25th = 1.01 (0.95-1.07) NO_2 : r = 0.48logistic regression analysis O_3 : r = 0.1225th-75th = 0.90 (0.76-1.06) 1 month before death Covariates: Risk factors available on >75th = 0.99 (0.80-1.24) CO: r = 0.33birth and/or death certificates (maternal Respiratory death NO_2 : r = 0.48age, race/ethnicity, and education, level O₃: r = 0.12 2 wk before death of prenatal care, infant gender, parity, Postneonatal deaths (28 days to 1 y) 2 mo before death birth country, and death season) CO: r = 0.32 Single-pollutant model <25th = 1.05 (1.01-1.10) 25th-75th = 1.13 (1.01-1.10) Season: Death season (spring, NO_2 : r = 0.48 O₃: r = 0.12 summer, fall, winter) >75th = 1.46 (1.13-1.88) 6 mo before death Dose-response Investigated? Yes Multiple-pollutant model CO: r = 0.29 <25th = 1.04 (0.98-1.09) NO_2 : r = 0.44Statistical Package: NR O_3 : r = 0.1625th-75th = 1.09 (0.86-1.38)>75th = 1.40 (1.03-1.89) Postneonatal deaths (28 days to 3 mo) Single-pollutant model: <25th = 1.01 (0.95-1.08) 25th-75th = 1.16 (0.82-1.63) >75th = 1.44 (0.96-2.17) Multiple-pollutant model: <25th = 1.00 (0.92-1.09) 25th-75th = 0.97 (0.67-1.42) >75th = 1.23 (0.76-2.00) Post neonatal deaths (4-12 mo) Single-pollutant model: <25th = 1.12 (1.02-1.23) 25th-75th = 1.08 (0.81-1.44) >75th = 1.41 (1.02-1.96) Multiple-pollutant model: <25th = 1.07 (1.00-1.15) 25th-75th = 1.02 (0.75-1.40) >75th = 1.36 (0.92-2.01)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Rogers et al. (2006,	Outcome: VLBW	Pollutant: PM ₁₀	PM Increment: Quartile
091232)	Term, AGA, Preterm AGA, Preterm,	Averaging Time: annual	Notes: Statistically significant increases in
Period of Study: 1986-1988	SGA	Preterm SGA:	the odds of VLBW and preterm AGA births are associated with living in a county with
Location: Georgia, USA	Age Groups: Newborns and their mothers (<19 to ≥ 35-yr-old)	50th(Median) : 3.38	a PM ₁₀ point source. Preterm AGA births are also associated with living in an area
	Study Design: Case-control	Preterm AGA:	with very high (4th quartile) estimated PM ₁₀ exposure.
	N: 325 infants (69 preterm SGA	50th(Median) : 7.84	Delivery of VLBW vs. Term AGA infant
	59 preterm AGA	Term AGA:	County with point source 2.54 [1.46, 4.22]
	197 term AGA) and their mothers	50th(Median): 3.23	PM ₁₀ quartile 1st quartile: reference
	Statistical Analyses: Logistic	Monitoring Stations: NR	2nd quartile:
	regression Covariates: Maternal age, maternal race, maternal education, active and passive smoking, birth season, prepregnancy weight, pregnancy weight gain, maternal toxemia, anemia, asthma Dose-response Investigated? Yes, used Statistical Package: SUDAAN Cochran-Armitage test for trend to determine whether the observed proportions of cases and controls differed in a linear manner across exposure categories.	Percent Mothers Residing In County With Industrial Point Source Preterm SGA: 60.9% Preterm AGA: 79.7% Term AGA: 60.4% Percent Mothers Residing In PM ₁₀ Quartile (based on environmental transport model) Preterm SGA 1st quartile (<1.48): 31.9% 2nd quartile (1.48): 31.9% 2nd quartile (3.75-15.07): 26.1% 4th quartile (>15.07): 23.2% Preterm AGA 1st quartile (<1.48): 16.9% 2nd quartile (1.48-3.74): 22.1% 3rd quartile (<1.48): 16.9% 2nd quartile (>15.07): 32.2% Term AGA 1st quartile (<1.48): 24.7% 2nd quartile (<1.48): 24.7% 2nd quartile (1.48-3.74): 28.4% 3rd quartile (3.75-15.07): 27.9% 4th quartile (>15.07): 19.3%	2nd quartile: 0.81 [0.42, 1.55] 3rd quartile: 0.85 [0.45, 1.16] 4th quartile: 1.94 [0.98, 3.83] Delivery of Preterm AGA vs. Term AGA infant County with point source 4.31 [1.88: 9.87] PM ₁₀ quartile: st quartile: reference 2nd quartile: 1.56 [0.56: 4.35] 3rd quartile: 1.19 [0.44: 3.23] 4th quartile: 3.68 [1.44: 9.44] Delivery of Preterm AGA vs. Preterm SGA infant County with point source 2.07 [0.83: 5.16] PM ₁₀ quartile: 1.96 [0.59: 6.43] 3rd quartile: 2.10 [0.66: 6.73] 4th quartile: 2.58 [0.78: 8.51]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Romieu et al. (2004,	Outcome: Respiratory-related infant	Pollutant: PM ₁₀	PM Increment: 20 µg/m ³
093074)	mortality ICD9 (460-519)	Averaging Time: 24 h	RR Estimate [Lower CI, Upper CI] lag:
Period of Study: 1997-2001 Location: Ciudad Juarez, Mexico	ICD10 (J00-J99) Age Groups: 1 month to 1 yr	Mean (SD): 1997: 33.04 (20.67) μg/m ³	Total mortality: OR = 1.02 (0.94-1.11) lag 1 OR = 1.03 (0.95-1.12) lag 2
	Study Design: Case crossover	1998: 35.25 (17.32) µg/m ³	OR = 1.03 (0.94-1.13 ac2
	N: 216 respiratory-related deaths	1999: 45.92 (28.69) μg/m³	OR = 1.04 (0.95-1.15) ac3 Respiratory mortality
	N = 412 other causes and N = 628 total	2000: 43.38 (23.77) μg/m ³	OR = 0.95 (0.83-1.09) lag 1 OR = 1.04 (0.91-1.19) lag 2
	deaths	2001: 39.46 (29.43) μg/m ³	OR = 0.98 (0.81-1.19) ac2 OR = 0.97 (0.74-1.26) ac3
	Statistical Analyses: The acute effects of air pollution was modeled on both total and respiratory-related mortality as	Monitoring Stations: 5 stations in Ciudad Juarez	Higher SES OR = 0.82 (0.59, 1.14) lag 1
	a function of the pollution levels on the same day and preceding days and over	2 stations in El Paso (close to U.S Mexico border)	OR = 1.08 (0.84, 1.40) lag 2 OR = 0.89 (0.58, 1.35) ac2 OR = 0.97 (0.52, 1.82) ac3
	2- and 3-day avg before the date of death. Case-crossover with semi-	Copollutant (correlation): O ₃ : r = 0.01	Medium SES
	symmetric bidirectional referent selection was the approach used. Data were stratified by day of the week and calendar month. Data were analyzed with conditional logistic regression. Second and third polynomial distributed lag models were used to study lag structure. BIC was used to determine lag length.	Notes: Ciudad Juarez monitors measured PM ₁₀ every 6 days while El Paso monitors measured on a daily basis.	OR = 0.99 (0.79, 1.27) lag 1 OR = 1.11 (0.86, 1.43) lag 2 OR = 1.03 (0.73, 1.45) ac2 OR = 1.17 (0.72, 1.90) ac3 Lower SES OR = 1.61 (0.97-2.66) lag 1 OR = 1.07 (0.65, 1.75) lag 2 OR = 2.56 (1.06-6.17) ac2 OR = 1.76 (0.59, 5.23) ac3
	Covariate: Temperature, season		Notes:
	Dose-response Investigated? Yes		ac2 and ac3 represent cumulative PM ₁₀
	Statistical Package: STATA 7.0		ambient levels over 2 or 3 days before death.
	Lags Considered: 1-15 days		
Reference: Sagiv et al. (2005, <u>087468</u>)	Outcome: Preterm birth (<36 wk)	Pollutant: PM ₁₀	PM Increment: 1) 50 μg/m³ 2) Quartiles
Period of Study: Jan 1997-Dec 2001	Age Groups: Babies born between 20 and 44 wk	Averaging Time: Daily used to calculate 6-week period	(first quartile is the reference) Exposure period: 6 wk before birth
Location: Allegheny county, Beaver county, Lackawanna county,	Study Design: Time series	Mean (SD): 6-week period	Per 50 µg/m³: 1.07 (0.98, 1.18) 2nd quartile: 1.00 (0.95, 1.05)
Philadelphia county, Pennsylvania,	N: 3704 observation days, 187,997	27.1 (8.3)	3rd quartile: 1.04 (0.99, 1.09) 4th quartile: 1.03 (0.98, 1.08)
U.S.A.	births	Daily	Exposure period: 1-day acute time
	Statistical Analyses: Poisson regression	25.3 (14.6)	windows Per 50 μg/m ³ : 2-day lag: 1.10 (1.00, 1.21)
	Multivariable mixed-effects model with a	Percentiles: 6-week period	5-day lag: 1.07 (0.98, 1.18)
	random intercept for each county to incorporate count-level information.	50th (Median): 26.0 Daily	Notes: Within the article, authors provide a Fig 1 displaying a graph of the relative
	Covariates: Temperature, dew point	50th (Median): 21.6	risk (RR) and 95% confidence intervals (CI) for 1- to 7-day lags. While the
	temperature, mean 6-week level of copollutants (CO, NO ₂ , and SO ₂), long-term preterm birth trends	Range (Min, Max): 6-week period: 8.7, 68.9	authors report the 2- and 5-day lag RRs and 95% CIs in the text, the others are not
	Season: All	Daily: 2.0, 156.3	specifically reported. However, the Fig shows the approximate RRs per 50 µg/m ³
	Dose-response Investigated? Yes	Monitoring Stations: NR	as indicated below: 1-day lag: 1.05
	Statistical Package: NR	Copollutant (correlation): Daily	3-day lag: 1.05 4-day lag: 1.00
	Lags Considered: 1, 2, 3, 4, 5, 6, 7	PM ₁₀ -daily SO ₂ : r = 0.46 Also considered CO, NO ₂ and O ₃ as copollutants.	6-day lag: 0.97 7-day lag: 1.03

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Salam et al., 2005,	Outcome: Birth weight	Pollutant: PM ₁₀	PM Increment: IQR (interquartile range)
Reference: (Salam et al., 2005, 087885) Period of Study: 1975-1987 Location: Southern California	Outcome: Birth weight Low birth weight (LBW <2500 g) Intrauterine growth retardation (IUGR) Age Groups: Children born full-term (between 37 and 44 wk) Study Design: Cohort study N: 3901 children Statistical Analyses: Linear mixed- effects Logistic regression Covariates: Maternal age, months since last live birth, parity, maternal smoking during pregnancy, SES, marital status at childbirth, gestational diabetes, child's sex, child's race/ethnicity, child's	Averaging Time: Monthly Mean (SD): Entire pregnancy: $45.8 (12.9)$ First trimester: $46.6 (15.9)$ Second trimester: $45.4 (14.8)$ Third trimester: $45.4 (15.5)$ Monitoring Stations: 1 or 3 (See notes) Copollutant (correlation): Entire pregnancy PM_{10} - $O_{3}[10-6]$: $r = 0.54$ PM_{10} - $O_{3}[24 h)$: $r = 0.20$ PM_{10} - NO_{2} : $r = 0.41$ First-trimester PM_{10} - $O_{3}[10-6]$: $r = 0.41$	Outcome: birth weight (g) Single-pollutant model Entire pregnancy 18 μg/m³: -19.9 (-43.6, 3.8) First trimester 20 μg/m³: -3.0 (-22.7, 16.7) Second trimester 19 μg/m³: -15.7 (-36.1, 4.7) Third trimester 20 μg/m³: -21.7 (-42.2 to -1.1) Multipollutant model (Included O ₃ (24 h) in model Third trimester exposure) 20 μg/m³: -10.8 (-31.8, 10.2) Outcome: IUGR (ORs) Single-pollutant model Entire pregnancy 18 μg/m³: 1.1 (0.9, 1.3) First trimester 20 μg/m³: 1.0 (0.9, 1.2)
	grade in school (4th, 7th, and 10th), Julian day of birth	Second trimester $PM_{10}-O_3[10-6)$: $r = 0.50$	Second trimester 19 µg/m ³ : 1.0 (0.9, 1.2) Third trimester
	Season: All	$PM_{10}-O_3(24 \text{ h})$: $r = 0.27$ $PM_{10}-NO_2$: $r = 0.53$	20 μg/m³: 1.1 (0.9, 1.3) Outcome: LBW
	Dose-response Investigated? Yes Statistical Package: SAS	$PM_{10}\text{-CO: }r = 0.35$ Third trimester $PM_{10}\text{-O}_3[10\text{-}6]: r = 0.52$ $PM_{10}\text{-O}_3[24\text{ h}]: r = 0.31$ $PM_{10}\text{-NO}_2: r = 0.52$ $PM_{10}\text{-CO: }r = 0.37$ $\textbf{Notes:} \text{ Exposure estimates were calculated by spatially interpolated monthly avg which were based off of three monitoring stations located within 50 km of the ZIP code region of maternal birth residences.}$	Single-pollutant model Entire pregnancy 18 µg/m³: 1.3 (0.8, 2.2) First trimester 20 µg/m³: 1.0 (0.7, 1.5) Second trimester 19 µg/m³: 1.2 (0.8, 1.7) Third trimester 20 µg/m³: 1.3 (0.9, 1.9) Notes: Numbers reported for birth weight outcome are the effects on birth weight outcome (the change in birth weight in grams) across the IQR (which vary depending on air pollutant and duration of exposure measurement).
Reference: (Sokol et al., 2006, <u>098539</u>)	Outcome: Semen Quality	Pollutant: PM ₁₀	PM ₁₀ specific results are given in Fig 3 PM ₁₀ was not significantly correlated with
Period of Study: Jan 1996-Dec 1998 Location: Los Angeles, California	Study Design: Panel Statistical Analysis: Univariate and	Averaging Time: 0-9d, 10-14d and 70-90d	sperm quality.
	Multivariate Regression Statistical Package: SAS	Mean (SD) Unit: 35.74 ± 13.83 μg/m ³ Copollutant (correlation):	
	Age Groups: Males ranging 19-35 in age	O ₃ , NO ₂ , CO	
Reference: (Suh et al., 2007, <u>157028</u>)	Outcome: Birth weight	Pollutant: PM ₁₀	PM Increment: Trimester ≥ 90th
Period of Study: 2001-2004 Location: Seoul, Korea	Age Groups: Prenatal follow-up for newborns	Averaging Time: 24-h Mean (SD): 1st trimester: 76.41 (28.80)	percentile compared to <90thpercentile Least-square (ANCOVA) mean (SE)
	Study Design: based prospective cohort study	2nd trimester: 77.84 (31.63) 3rd trimester: 95.61 (26.15)	All Genotypes 1st trimester
	N: 199 pregnant mothers	Percentiles: 1st trimester 25th: 55.28	<90th , N(%): 158 (90.3%): 3253 (37)
	Statistical Analyses: ANCOVA, generalized linear models	50th(Median): 71.09 75th: 92.38	≥ 90th percéntile, N(%): 17 (9.7%): 2841 (145) P-Value for mean birth weight for ≥ 90th
	Covariates: infant's sex, maternal age, maternal and paternal education, parity, presence of illness during pregnancy, delivery month, gestational age (squared)	2nd trimester 25th: 48.65 50th(Median): 72.36 75th: 108.00 3rd trimester 25th: 77.10	percentile PM ₁₀ vs. for <90th percentile PM ₁₀ Adjusted: 0.009 Adjusted, with CO: 0.041 Adjusted, with NO ₂ : 0.092
	Dose-response Investigated? Yes	50th(Median): 96.35 75th: 116.68	Adjusted, with SO ₂ : 0.012 2nd trimester
	Statistical Package: SAS	Range (Min, Max): 1st trimester (21.00, 151.65) 2nd trimester (31.45, 139.13)	<90th percentile, N(%): 153 (89.5%): 3253 (39) ≥ 90th percentile, N(%): 18 (10.5%): 3026 (157) P-Value for mean birth weight for ≥ 90th

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
		3rd trimester (23.45, 172.75)	percentile PM ₁₀ vs. for <90th percentile
		Monitoring Stations: 27	Adjusted: 0.177
		Monitoring Stations: 27 Copollutant: CO SO ₂ NO ₂	Adjusted, with CO: 0.203 Adjusted, with NO ₂ : 0.151 Adjusted, with NO ₂ : 0.151 3rd trimester <90th percentile, N(%): 162 (90.5%): 3226 (38) ≥ 90th percentile, N(%): 17 (9.5%): 3122 (140) P-Value for mean birth weight for ≥ 90th percentile PM_{10} Adjusted: 0.487 Adjusted: 0.487 Adjusted, with CO: 0.748 Adjusted, with NO ₂ : 0.420 Adjusted, with SO ₂ : 0.466 Genotype Mspl TT 1st trimester <90th percentile, N(%): 60 (34.3%): 3350 (64) ≥ 90th percentile, N(%): 5 (2.9%): 3001 (229) P-Value for mean birth weight for ≥ 90th
			percentile PM_{10} vs. for <90th percentile PM_{10} Adjusted: 0.147 Adjusted with CO: 0.186 Adjusted, with NO ₂ : 0.430 Adjusted, with SO ₂ : 0.155 2nd trimester <90th percentile, N(%): 59 (34.5%): 3335 (66) \geq 90th percentile, N(%): 6 (3.5%): 3281 (249) P-Value for mean birth weight for \geq 90th percentile PM_{10} vs. for <90th percentile PM_{10} Adjusted, with CO: 0.833 Adjusted, with CO: 0.778
			Adjusted, with NO ₂ : 0.778 Adjusted, with SO ₂ : 0.806 3rd trimester <90th percentile, N(%): 61 (34.1%): 3327 (65) ≥ 90th percentile, N(%): 6 (3.4%): 3227 (300) p-Value for mean birth weight for
			≥ 90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ Adjusted: 0.749 Adjusted, with CO: 0.980 Adjusted, with NO ₂ : 0.635 Adjusted, with SO ₂ : 0.687 Genotype Mspl TC/CC 1st trimester
			<90th percentile, N(%): 98 (56.0%): 3193 (48) ≥ 90th percentile, N(%): 12 (6.9%): 2799 (169)
			P-Value for mean birth weight for ≥ 90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ Adjusted: 0.033 Adjusted, with CO: 0.073 Adjusted, with NO ₂ : 0.150 Adjusted, with SO ₂ : 0.036
			2nd trimester <90th percentile, N(%): 94 (55.0%): 3200 (52) ≥ 90th percentile, N(%): 12 (7.0%): 2933 (176) P-Value for mean birth weight for ≥ 90th percentile PM ₁₀ vs. for <90th
			percentile PM ₁₀ Adjusted: 0.161 Adjusted, with CO: 0.172

Adjusted, with NO ₂ : 0.152 Adjusted, with NO ₂ : 0.158 3rd trimester 9th percentile, N(%): 101 (6.4%, (49) 9 0th percentile, N(%): 11 (6.2%): (147) P. Value for mean birth weight for 9 oth percentile PMn ₁ vs. for -90th percentile PMn ₂ Adjusted (20, 20.14)
3rd trimester < 90th percentile, N(%): 101 (56.4% (9)) ≥ 90th percentile, N(%): 11 (6.2%): (147) P-Value for mean birth weight for ≥ 90th percentile PM ₁₀ vs. for <90th percentile, N(%): 87 (49.7%) (52.) 3 90th percentile, N(%): 87 (49.7%) (52.) ≥ 90th percentile, N(%): 7 (4.0%): 2 (232) P-Value for mean birth weight for ≥ 90th percentile PM ₁₀ vs. for <90th percentile PM
(49) ≥ 90th percentile, N(%): 11 (6.2%): (147) P-Value for mean birth weight for ≥ 90th percentile PM ₁₀ vs. for <90th percentile, N(%): 87 (49.7%) (50.16) (40.0%): 2 (23.22) P-Value for mean birth weight for ≥ 90th percentile, N(%): 7 (4.0%): 2 (23.22) P-Value for mean birth weight for ≥ 90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ vs.
(147) P-Value for mean birth weight for ≥ 90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ vs. for <90th Adjusted: 0.626 Adjusted, with CO: 0.978 Adjusted, with SO; 0.551 Adjusted, with SO; 0.551 Adjusted, with SO; 0.5614 Genotype Nool lielle 1st trimester <90th percentile, N(%): 87 (4.9.7%) (52) 2.90th percentile, N(%): 87 (4.9.7%) (52) 2.90th percentile PM ₁₀ Adjusted: 0.289 Adjusted: 0.289 Adjusted: 0.289 Adjusted: 0.289 Adjusted: 0.280 Adjusted: 0.280 Adjusted: 0.280 Soft percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile, N(%): 82 (48.0%) (55) Adjusted: 0.790 Adjusted; with CO: 0.783 Adjusted, with CO: 0.783 Adjusted; with CO: 0.707 Adjusted; with CO: 0.707 Adjusted; with CO: 0.707 Adjusted; with CO: 0.703 Adjusted; with CO: 0.707 Adjusted; with CO: 0.709 Adjusted; with CO: 0.279 Adjusted, with NO; 0.134 Adjusted; with CO: 0.150 Genotype Nool lie/val/Val/Val set trimester
≥ 90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ Adjusted: 0.626 Adjusted, with CO: 0.978 Adjusted, with CO: 0.978 Adjusted, with NO: 0.551 Adjusted, with NO: 0.561 Adjusted, with NO: 0.614 Genotype Nool lielle 1st trimester <90th percentile, N(%): 87 (49.7%) (52) ≥ 90th percentile, N(%): 87 (49.7%) (52) P-Value for mean birth weight for ≥ 90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ vs. for <90th percentile, N(%): 82 (48.0%) (55) ≥ 30th percentile, N(%): 82 (48.0%) (55) ≥ 30th percentile, N(%): 82 (48.0%) (55) ≥ 30th percentile, N(%): 11 (6.4%): (207) p-Value for mean birth weight for ≥ 90th percentile PM ₁₀ vs. for <90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 90 (50.3%) (53)
percentile PM₁₀ Adjusted, with N0₂ 0.561 Adjusted, with N0₂ 0.561 Adjusted, with N0₂ 0.561 Adjusted, with N0₂ 0.614 Genotype Nool lielle 1st trimester <
Adjusted, with CO: 0.978 Adjusted, with No; 0.514 Genotype Ncol Itelie 1st trimester <80th percentile, N(%): 87 (49.7%) (52) ≥ 90th percentile, N(%): 7 (4.0%): 2 (232) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ Adjusted: 0.289 Adjusted, with CO: 0.344 Adjusted, with NO; 0.641 Adjusted, with NO; 0.641 Adjusted, with NO; 0.641 Adjusted, with NO; 0.783 2nd trimester <80th percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile, N(%): 81 (48.0%) (55) ≥ 90th percentile, N(%): 82 (48.0%) (55) Adjusted, with NO; 0.790 Adjusted, with NO; 0.790 Adjusted, with NO; 0.707 Adjusted, with NO; 0.709 P-Value for mean birth weight for ≥90th percentile, N(%): 9 (5.0%): 2 (198) P-Value for mean birth weight for ≥90th percentile PM₁₀ Adjusted, with NO; 0.134 Adjusted, with NO; 0.134 Adjusted, with NO; 0.150 Genotype Not lleVal/Val/Val 1st trimester
Adjusted, with SO₂. 0.614 Genotype Ncol lielle 1st trimester <90th percentile, N(%): 87 (49.7%) (S2) ≥ 90th percentile, N(%): 7 (4.0%): 2 (232) PValue for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ dijusted. 0.289 Adjusted. 0.289 Adjusted. with CO: 0.344 Adjusted, with SO₂. 0.641 Adjusted or mean birth weight for ≥ 90th percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile, N(%): 11 (6.4%): (207) pValue for mean birth weight for ≥ 90th percentile PM₁₀ Adjusted, vith CO: 0.783 Adjusted, with NO₂. 0.707 Adjusted, with NO₂. 0.707 Adjusted, with SO₂. 0.733 3rd trimester <90th percentile, N(%): 9 (50.3%) (53) ≥ 90th percentile, N(%): 9 (50.3%) (53) ≥ 90th percentile, N(%): 9 (50.3%) (53) PValue for mean birth weight for ≥ 90th percentile, N(%): 9 (50.3%) (53) Adjusted: 0.161 Adjusted: 0.161 Adjusted: with NO₂. 0.134 Adjusted: with NO₂. 0.150 Genotype Nool lle\val\val\val\val\val\val\val\val\val\val
Genotype Ncol Ileile 1st trimester <90th percentile, N(%): 87 (49.7%) (52) 2 90th percentile, N(%): 7 (4.0%): 2 (232) P-Value for mean birth weight for 2 90th percentile PM ₁₀ vs. for <90th percentile PM ₂₀ Adjusted: 0.289 Adjusted: 0.289 Adjusted, with NO ₂ : 0.541 Adjusted, with NO ₂ : 0.541 Adjusted, with NO ₂ : 0.293 2nd trimester <90th percentile, N(%): 82 (48.0%) (55) 2 90th percentile, N(%): 11 (6.4%): (207) p-Value for mean birth weight for 2 90th percentile PM ₁₀ Adjusted: 0.790 Adjusted: 0.790 Adjusted, with NO ₂ : 0.707 Adjusted, with NO ₂ : 0.134 Adjusted, with NO ₂ : 0.135
90th percentile, N(%): 87 (49.7%) (52) ≥ 90th percentile, N(%): 7 (4.0%): 2 (232) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ Adjusted: 0.289 Adjusted, with CO: 0.344 Adjusted, with NO₂: 0.641 Adjusted, with NO₂: 0.293 2nd trimester <90th percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile PM₁₀ percentile PM₁₀ Adjusted: 0.790 Adjusted: 0.790 Adjusted, with NO₂: 0.707 Adjusted, with NO₂: 0.707 Adjusted, with NO₂: 0.707 Adjusted, with NO₂: 0.707 Adjusted percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 9 (5.0%): 2 (188) P-Value for mean birth weight for ≥ 90th percentile, N(%): 9 (5.0%): 2 (188) P-Value for mean birth weight for ≥ 90th percentile, N(%): 9 (5.0%): 2 (198) Adjusted, with NO₂: 0.733 Adjusted, with NO₂: 0.734 Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.1350 Genotype Nool lleVal/ValIVal 1st trimester
≥ 90th percentile, N(%): 7 (4.0%): 2 (232) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ Adjusted: 0.289 Adjusted, with CO: 0.344 Adjusted, with NO;: 0.641 Adjusted, with NO;: 0.641 Adjusted, with NO;: 0.293 2nd trimester <90th percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile, N(%): 11 (6.4%): (207) p-Value for mean birth weight for ≥ 90th percentile PM₁₀ Adjusted: 0.790 Adjusted, with CO: 0.783 Adjusted, with NO;: 0.707 Adjusted, with NO;: 0.707 Adjusted, with NO;: 0.707 (53) (53) ≥ 90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile PM₁₀ Adjusted, with NO;: 0.707 Adjusted (5.0%): 2 (198) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ Adjusted, with NO;: 0.150 Adjusted, with NO;: 0.134 Adjusted, with NO;: 0.134 Adjusted, with NO;: 0.150 Genotype Nool lieVail/ValVal
(232) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ ≥ 90th percentile PM₁₀ Adjusted: 0.289 Adjusted, with CO: 0.344 Adjusted, with CO: 0.641 Adjusted, with NO₂: 0.641 Adjusted, with SO₂: 0.293 2nd trimester - 90th percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile, N(%): 11 (6.4%): (207) p-Value for mean birth weight for ≥ 90th percentile PM₁₀ Adjusted: 0.790 Adjusted: 0.790 Adjusted, with CO: 0.783 Adjusted, with CO: 0.783 Adjusted, with NO₂: 0.707 Adjusted, with SO₂: 0.733 3rd trimester - 90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ vs. for <90th percentile PM₁₀ Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.150 Genotype Nool lle/val/Val/val stat timester
≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ Adjusted: 0.289 Adjusted: 0.289 Adjusted, with CO: 0.344 Adjusted, with NO₂: 0.641 Adjusted, with NO₂: 0.293 2nd trimester <90th percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile, N(%): 11 (6.4%): (207) p-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ vs. for <9
Adjusted: 0.289 Adjusted, with CO: 0.344 Adjusted, with NO ₂ : 0.641 Adjusted, with NO ₂ : 0.293 2nd trimester <90th percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile, N(%): 11 (6.4%): (207) p-Value for mean birth weight for ≥ 90th percentile PM₁0 vs. for <90th percentile PM₁0 Adjusted: 0.790 Adjusted; with CO: 0.783 Adjusted, with NO₂: 0.707 Adjusted, with NO₂: 0.733 3rd trimester <90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile PM₁0 Adjusted: 0.790 Ad
Adjusted, with CO ₂ : 0.44 Adjusted, with NO ₂ : 0.641 Adjusted, with NO ₂ : 0.293 2nd trimester <90th percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile, N(%): 11 (6.4%): (207) p-Value for mean birth weight for ≥ 90th percentile PM ₁₀ vs. for <90th pe
Adjusted, with SO₂: 0.293 2nd trimester <90th percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile, N(%): 11 (6.4%): (207) p-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ Adjusted: 0.790 Adjusted, with CO: 0.783 Adjusted, with NO₂: 0.707 Adjusted, with SO₂: 0.733 3rd trimester <90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 9 (5.0%): 2 (198) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ Adjusted: 0.161 Adjusted: 0.161 Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.150 Genotype Ncol lleVal/Val/val 1st frimester
<90th percentile, N(%): 82 (48.0%) (55) ≥ 90th percentile, N(%): 11 (6.4%): (207) p-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ vs. for <90th percentile PM₁₀ Adjusted: 0.790 Adjusted, with CO: 0.783 Adjusted, with SO₂: 0.707 Adjusted, with SO₂: 0.733 3rd trimester <90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 9 (5.0%): 2 (198) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ vs. for <90th percentile PM₁₀ Adjusted. 0.161 Adjusted, with CO: 0.279 Adjusted, with SO₂: 0.134 Adjusted, with SO₂: 0.150 Genotype Ncol IleVal/ValVal 1st trimester
(55) ≥ 90th percentile, N(%): 11 (6.4%): (207) p-Value for mean birth weight for ≥ 90th percentile PM₁0 vs. for <90th percentile PM₁0 vs. for <90th percentile PM₁0 Adjusted: 0.790 Adjusted, with C0: 0.783 Adjusted, with N0₂: 0.707 Adjusted, with SO₂: 0.733 3rd trimester <90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 9 (5.0%): 2 (198) P-Value for mean birth weight for ≥ 90th percentile PM₁0 Adjusted: 0.161 Adjusted: 0.161 Adjusted: with N0₂: 0.134 Adjusted, with N0₂: 0.134 Adjusted, with N0₂: 0.150 Genotype Ncoll lleVal/ValVal 1st trimester
(207) p-Value for mean birth weight for ≥ 90th percentile PM₁0 Adjusted: 0.790 Adjusted: 0.790 Adjusted, with CO: 0.783 Adjusted, with NO₂: 0.707 Adjusted, with SO₂: 0.733 3rd trimester <90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 9 (5.0%): 2 (198) P-Value for mean birth weight for ≥ 90th percentile PM₁0 Adjusted: 0.161 Adjusted: 0.161 Adjusted; with CO: 0.279 Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.150 Genotype Ncol lleVal/ValVal 1st trimester
≥ 90th percentile PM₁0 vs. for <90th percentile PM₁0 Adjusted: 0.790 Adjusted; 0.790 Adjusted, with CO: 0.783 Adjusted, with NO₂: 0.707 Adjusted, with SO₂: 0.707 Adjusted, with SO₂: 0.733 3rd trimester <90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 9 (5.0%): 2 (198) P-Value for mean birth weight for ≥ 90th percentile PM₁0 vs. for <90th percentile PM₁0 Adjusted: 0.161 Adjusted; 0.161 Adjusted, with CO: 0.279 Adjusted, with NO₂: 0.134 Adjusted, with SO₂: 0.150 Genotype Ncol IleVal/ValVal 1st trimester
percentile PM₁0 Adjusted: 0.790 Adjusted, with CO: 0.783 Adjusted, with NO₂: 0.707 Adjusted, with SO₂: 0.733 3rd trimester <90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 9 (5.0%): 2 (198) P-Value for mean birth weight for ≥ 90th percentile PM₁0 vs. for <90th percentile PM₁0 Adjusted: 0.161 Adjusted, with CO: 0.279 Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.150 Genotype Ncol IleVal/ValVal
Adjusted, with CO: 0.783 Adjusted, with NO ₂ : 0.707 Adjusted, with NO ₂ : 0.733 3rd trimester <90th percentile, N(%): 90 (50.3%) (53) \geq 90th percentile, N(%): 9 (5.0%): 2 (198) P-Value for mean birth weight for \geq 90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ Adjusted: 0.161 Adjusted: 0.161 Adjusted, with CO: 0.279 Adjusted, with NO ₂ : 0.134 Adjusted, with NO ₂ : 0.150 Genotype Ncol IleVal/ValVal
Adjusted, with SO₂: 0.733 3rd trimester <90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 9 (5.0%): 2 (198) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ Percentile PM₁₀ Adjusted: 0.161 Adjusted: 0.161 Adjusted, with CO: 0.279 Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.150 Genotype Ncol IleVal/ValVal 1st trimester
3rd trimester <90th percentile, N(%): 90 (50.3%) (53) ≥ 90th percentile, N(%): 9 (5.0%): 2 (198) P-Value for mean birth weight for ≥ 90th percentile PM₁0 vs. for <90th percentile PM₁0 Adjusted: 0.161 Adjusted: 0.161 Adjusted, with CO: 0.279 Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.150 Genotype Ncol IleVal/ValVal 1st trimester
(53) ≥ 90th percentile, N(%): 9 (5.0%): 2 (198) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ Adjusted: 0.161 Adjusted, with CO: 0.279 Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.150 Genotype Nool lleVal/ValVal 1st trimester
(198) P-Value for mean birth weight for ≥ 90th percentile PM₁0 vs. for <90th percentile PM₁0 Adjusted: 0.161 Adjusted: 0.161 Adjusted, with CO: 0.279 Adjusted, with NO₂: 0.134 Adjusted, with NO₂: 0.150 Genotype Ncol lleVal/ValVal 1st trimester
≥ 90th percentile PM₁0 vs. for <90th percentile PM₁0 Adjusted: 0.161 Adjusted, with CO: 0.279 Adjusted, with NO₂: 0.134 Adjusted, with SO₂: 0.150 Genotype Ncol IleVal/ValVal 1st trimester
percentile PM ₁₀ Adjusted: 0.161 Adjusted, with CO: 0.279 Adjusted, with NO ₂ : 0.134 Adjusted, with SO ₂ : 0.150 Genotype Ncol lleVal/ValVal 1st trimester
Adjusted, with CO: 0.279 Adjusted, with NO ₂ : 0.134 Adjusted, with SO ₂ : 0.150 Genotype Nool lleVal/ValVal 1st trimester
Adjusted, with SO ₂ : 0.150 Genotype Ncol IleVal/ValVal 1st trimester
Genotype Ncol IleVal/ValVal 1st trimester
15t tilliestei
<90th percentile, N(%): 71 (40.6%)
(56) ≥ 90th percentile, N(%): 10 (5.7%):
(171) P-Value for mean birth weight for
≥ 90th percentile PM ₁₀ vs. for <90th
percentile PM_{10} Adjusted: 0.009
Adjusted, with CO: 0.031 Adjusted, with NO₂: 0.058
Adjusted, with SO ₂ : 0.010
2nd trimester <90th percentile, N(%): 71 (41.5%)
(61) ≥ 90th percentile, N(%): 7 (4.1%): 2
(208) P-Value for mean birth weight for
≥ 90th percentile PM ₁₀ vs. for <90th
percentile PM_{10} Adjusted: 0.076
Adjusted, with CO: 0.093 Adjusted, with NO₂: 0.063
Adjusted, with SO₂: 0.061
3rd trimester <90th percentile, N(%): 72 (40.2%)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			(58) ≥ 90th percentile, N(%): 8 (4.5%): 3262 (180) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ Adjusted: 0.777 Adjusted: with CO: 0.607 Adjusted, with NO₂: 0.843 Adjusted, with SO₂: 0.791
Reference: Tsai et al. (2006, <u>090709</u>)	Outcome: Post neonatal mortality	Pollutant: PM ₁₀	PM Increment: 67.00 μg/m ³
Period of Study: 1994-2000	Age Groups: Infants more than 27	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Location: Kaohsiung, Taiwan	days and less than 1 yr	Mean (SD): 81.45 μg/m ³	OR = 1.040 (0.340-3.177)
	Study Design: Case-crossover study	Percentiles: 25th: 44.50	Note: Air pollution levels at the dates of
	N: 207 deaths	50th(Median): 79.20	infant death were compared with air pollution levels 1 week before and 1 week
	Statistical Analyses: Conditional logistic regression	75th: 111.50	after death
	Covariates: Temperature, humidity	Range (Min, Max): (20.50-232.00)	A cumulative lag up to 2 previous days was used to assign exposure.
	Dose-response Investigated? No	Monitoring Stations: 6	adda to addigit onpodulo.
	Statistical Package: SAS, version 8.2	Copollutant: SO ₂ NO ₂ CO O ₃	
Reference: Wilhelm and Ritz (2005,	Outcome: Term low birth weight (LBW)	Pollutant: PM ₁₀	PM Increment:
088668)	(<2500 g at ≥ 37 completed wk gestation), Vaginal birth <37 completed	Averaging Time:	1) 10 μg/m³ 2) 3 levels:
Period of Study: 1994-2000	wk acotation	24 h (every 6 days) Entire pregnancy	a) <25 percentile (reference) b) 25%-75 percentile
Location: Los Angeles County, California, U.S.	Age Groups: LBW: ≥ 37 completed wk	Trimesters of pregnancy Months of pregnancy	c) ≥ 75 percentile
Camorna, O.S.	Preterm births: <37 completed wk	6 wk before birth	Incidence of LBW (third trimester
	Study Design: Cross-sectional	Mean (SD):	exposure) <32.8 µg/m ³ : 2.0 (1.8, 2.2)
	N: For LBW: 136,134	First trimester: 42.2 Third trimester: 41.5	32.8 to <43.4 µg/m³: 2.0 (1.9, 2.1) ≥ 43.4 µg/m³: 2.2 (2.0, 2.4)
	For preterm birth:	6 wk before birth: 39.1	, ,
	106,483	Range (Min, Max):	Incidence of preterm birth (first trimester exposure)
	Statistical Analyses: Logistic regression	First trimester: 26.3, 77.4 Third trimester: 25.7, 74.6 6 wk before birth: 13.0, 103.7	<32.9 μg/m³: 8.7 (8.3, 9.2) 32.9 to <43.9 μg/m³: 8.8 (8.5, 9.1) ≥ 43.9 μg/m³: 8.6 (8.1, 9.0)
	Covariates: Maternal age, maternal race, maternal education, parity, interval since previous live birth, level of prenatal care, infant sex, previous LBW or preterm infant, birth season, other pollutants (CO, NO ₂ , O ₃ , PM ₁₀), gestational age (in birth weight analysis)	Monitoring Stations: Zip-code-level analysis: 8 Address-level analysis: 6 Copollutant (correlation): First trimester: PM ₁₀ -CO: r = 0.12	Incidence of preterm birth (6 wk before birth exposure) <31.8 µg/m³: 8.8 (8.4, 9.3) 31.8 to <44.1 µg/m³: 8.6 (8.3, 8.9) ≥ 44.1 µg/m³: 8.8 (8.4, 9.2) Outcome: LBW
	Dose-response Investigated? Yes	PM_{10} - NO_2 : $r = 0.29$ PM_{10} - O_3 : $r = -0.01$	Exposure Period: Third trimester
	Statistical Package: NR	$FM_{10}-O_3$, $I=-0.01$ $FM_{10}-PM_{2.5}$: $I=0.043$ Third trimester: $PM_{10}-CO$: $I=0.32$ $PM_{10}-NO_2$: $I=0.45$ $PM_{10}-O_3$: $I=0.45$ $PM_{10}-PM_{2.5}$: $I=0.52$ 6 wk before birth: $PM_{10}-CO$: $I=0.36$ $PM_{10}-NO_2$: $I=0.49$ $PM_{10}-O_3$: $I=0.49$ $PM_{10}-PM_{2.5}$: $I=0.60$	Address-level analysis: Single-pollutant model: Distance ≤ 1 mile Per 10 µg/m³: 1.22 (1.05, 1.41) 33.4 to <44.7 µg/m³: 1.08 (0.76, 1.52) ≥ 44.7 µg/m³: 1.48 (1.00, 2.19) Multipollutant model: Distance ≤ 1 mile Per 10 µg/m³: 1.36 (1.12, 1.65) 33.4 to <44.7 µg/m³: 1.16 (0.77, 1.74) ≥ 44.7 µg/m³: 1.58 (0.95, 2.62) Single-pollutant model: 1 <distance (0.77,="" (0.78,="" (0.79,="" (0.80,="" (0.90,="" (0.92,="" 0.93="" 0.95="" 0.96="" 0.98="" 1="" 1.02="" 1.06)="" 1.12)="" 1.13)="" 1.14)="" 1.18)="" 1.32)="" 10="" 2="" 33.4="" 44.7="" <44.7="" <distance="" mile="" model:="" model:<="" multipollutant="" m³:="" per="" single-pollutant="" td="" to="" µg="" ≤="" ≥=""></distance>

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			2 < distance ≤ 4 mile Per 10 μg/m³: 1.03 (0.99, 1.08) 33.9 to <45.0 μg/m³: 1.04 (0.96, 1.14) ≥ 45.0 μg/m³: 1.08 (0.97, 1.20) Multipollutant model: 2 < distance ≤ 4 mile Per 10 μg/m³: 1.04 (0.98, 1.09) 33.9 to <45.0 μg/m³: 1.02 (0.92, 1.12) ≥ 45.0 μg/m³: 1.06 (0.93, 1.21)
			Zip-code-level analysis Single-pollutant model: Per 10 μg/m³: 1.03 (0.97, 1.09) 33.2 to <43.6 μg/m³: 0.98 (0.86, 1.11) ≥ 43.6 μg/m³: 1.03 (0.88, 1.21) Multipollutant model: Per 10 μg/m³: 1.07 (0.99, 1.15) 33.2 to <43.6 μg/m³: 0.97 (0.85, 1.12) ≥ 43.6 μg/m³: 1.09 (0.90, 1.31)
			Outcome: LBW Exposure Period: Entire pregnancy period Address-level analysis: Multipollutant model: Per 10 µg/m ³ : 1.24 (0.91, 1.70)
			Outcome: Preterm Birth Exposure Period: First trimester of pregnancy Address-level analysis: Single-pollutant model: Distance ≤ 1 mile
			Per 10 μg/m³: 1.00 (0.93, 1.09) 33.3 to <45.1 μg/m³: 1.07 (0.90, 1.26) ≥ 45.1 μg/m³: 1.12 (0.91, 1.38) Multipollutant model: Distance ≤ 1 mile Per 10 μg/m³: 1.00 (0.90, 1.12) 33.3 to <45.1 μg/m³: 1.12 (0.92, 1.36)
			≥ 45.1 µg/m³: 1.17 (0.90, 1.50) Single-pollutant model: 1 <distance 2="" mile<br="" ≤="">Per 10 µg/m³: 1.01 (0.97, 1.05) 33.7 to <45.3 µg/m³: 1.03 (0.95, 1.12) ≥ 45.3 µg/m³: 1.07 (0.97, 1.19) Multipollutant model:</distance>
			1 <distance (0.98,="" (0.99,="" (1.00,="" 1.04="" 1.07="" 1.10)="" 1.13="" 1.17)="" 1.27)="" 10="" 2="" 33.7="" 4="" 45.3="" <45.3="" <distance="" mile="" mile<="" model:="" m³:="" per="" single-pollutant="" td="" to="" μg="" ≤="" ≥=""></distance>
			Per 10 µg/m ³ : 1.01 (0.99, 1.03) 34.1 to <45.5 µg/m ³ : 1.03 (0.99, 1.08) ≥ 45.5 µg/m ³ : 1.02 (0.96, 1.07) Multipollutant model: 2 <distance <math="">\leq 4 mile Per 10 µg/m³: 0.99 (0.97, 1.02) 34.1 to <45.5 µg/m³: 0.99 (0.95, 1.04) ≥ 45.5 µg/m³: 0.94 (0.89, 1.01)</distance>
			Zip-code-level analysis Single-pollutant model: Per 10 μ g/m ³ : 0.99 (0.96, 1.01) 33.3 to <44.2 μ g/m ³ : 1.01 (0.95, 1.08) ≥ 44.2 μ g/m ³ : 0.98 (0.90, 1.05) Multipollutant model: Per 10 μ g/m ³ : 0.99 (0.96, 1.03) 33.3 to <44.2 μ g/m ³ : 1.03 (0.97, 1.11) ≥ 44.2 μ g/m ³ : 1.01 (0.92, 1.11)
			Outcome: Preterm birth Exposure Period: 6 wk before birth Address-level analysis: Single-pollutant model: Distance ≤ 1 mile Per 10 µg/m³: 1.02 (0.95, 1.10)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			32.5 to <44.8 µg/m³: 1.09 (0.92, 1.29) ≥ 44.8 µg/m³: 1.12 (0.92, 1.37) Multipollutant model: Distance ≤ 1 mile Per 10 µg/m³: 1.06 (0.97, 1.16) 32.5 to <44.8 µg/m³: 1.09 (0.90, 1.31) ≥ 44.8 µg/m³: 1.17 (0.91, 1.49) Single-pollutant model: 1 <distance (0.89,="" (0.91,="" (0.93,="" (0.96,="" (0.97,="" (0.98,="" 0.98="" 0.99="" 1="" 1.00="" 1.01="" 1.01)="" 1.02="" 1.02)="" 1.03)="" 1.05)="" 1.06)="" 1.07)="" 1.10)="" 1.16)="" 10="" 2="" 32.3="" 33.1="" 4="" 45.3="" <45.3="" <distance="" mile="" model:="" multipollutant="" m³:="" per="" single-pollutant="" to="" µg="" ≤="" ≥=""> 45.3 µg/m³: 1.00 (0.96, 1.05)</distance>
			≥ 45.3 µg/m³: 0.98 (0.92, 1.04) Zip-code-level analysis Single-pollutant model: Per 10 µg/m³: 1.02 (0.99, 1.04) 32.1 to <44.3 µg/m³: 1.01 (0.95, 1.07) ≥ 44.3 µg/m³: 1.04 (0.96, 1.12) Multipollutant model: Per 10 µg/m³: 1.02 (0.99, 1.06) 32.1 to <44.3 µg/m³: 1.02 (0.95, 1.09) ≥ 44.3 µg/m³: 1.04 (0.95, 1.14) Notes: multipollutant model adds CO,NO ₂ , and O₃ in addition to the main pollutant of
Peference Woodruff et al. (4007	Outes may Destructed and tality	Pollutant: PM ₁₀	interest, PM ₁₀ .
Reference: Woodruff et al. (1997, 084271)	Outcome: Postneonatal mortality (death of an infant between 1 month and 1 yr of age)	Averaging Time: Mean of 1st 2 mo of	PM Increment: 10 µg/m³ (for continuous exposure analysis)
Period of Study: 1989-1991 Location: 86 Metropolitan Statistical Areas in the U.S. (counties with populations less than 100,000 were	1) All post neonatal deaths 2) Normal birth weight (NBW, ≥ 2500 g) SIDS deaths 3) NBW respiratory deaths	life analyzed as tertiles of exposure and as continuous exposure	Adjusted ORs for cause-specific post neonatal mortality by pollution category (tertiles) All causes
excluded)	Low birth weight (LBW) respiratory death	Mean (SD): 31.4 (7.8)	Low: Ref Medium: 1.05 (1.01, 1.09)
	Respiratory deaths: ICD9 codes 460- 519	Range (Min, Max): Overall: 11.9-68.8	High: 1.10 (1.04, 1.16) SIDS, NBW:
	SIDS: ICD9 code 798.0	Low category: <28.0	Low: Ref Medium: 1.09 (1.01, 1.17)
	Age Groups: Infants (1 month-1yr of	Medium category: 28.1-40.0	High: 1.26 (1.14, 1.39) Respiratory death, NBW: Low: Ref
	age) Study Design: Cross-sectional	High category: >40.0	Medium: 1.08 (0.87, 1.33)
	N: 3,788,079 infants	Monitoring Stations: NR	High: 1.40 (1.05, 1.85) Respiratory death, LBW:
	Statistical Analyses: Logistic regression		Low: Ref Medium: 0.93 (0.73, 1.18) High: 1.18 (0.86, 1.61)
	Covariates: Maternal education, maternal race, parental marital status, maternal smoking during pregnancy		All other causes: Low: Ref Medium: 1.03 (0.97, 1.08) High: 0.97 (0.90, 1.04)
	Avg temperature during the first 2 mo of life		Adjusted ORs for a continuous 10 µg/m ³ change in exposure
	Infant's month and yr of birth		All causes: 1.04 (1.02, 1.07) SIDS, NBW: 1.12 (1.07, 1.17)
	Assessed race as an effect modifier (p-val for interaction terms >0.2)		Respiratory death NBW: 1.20 (1.06, 1.36) Respiratory death
	Dose-response Investigated? Yes		LBW: 1.05 (0.91, 1.22) All other causes: 1.00 (0.99, 1.00)
	Statistical Package: NR		58.6. 588555. 1.00 (0.00, 1.00)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Woodruff et al. (2008,	Outcome: Postneonatal deaths	Pollutant: PM ₁₀	PM Increment: IQR (11 μg/m³)
098386) Period of Study: 1999-2002	Respiratory mortality (ICD10: J000-99, plus bronchopulmonary dysplasia [BPD]	Averaging Time: Measured continuously for 24 h once every 6 days	Effect Estimate [Lower CI, Upper CI]: Adjusted ORs for single pollutant models
Location: U.S. counties with >250,000 residents (96 counties)	P27.1) SIDS (ICD10: R95)	exposure assigned by calculating avg concentration of pollutant during first 2	All causes: 1.04 (0.99, 1.10)
	III-defined causes (R99);	mo of life	Respiratory: 1.18 (1.06, 1.31)
	All other deaths evaluated as a control	Median and IQR (25th-75th percentile): Survivors: 28.9 (23.3-34.4)	SIDS: 1.02 (0.89, 1.16)
	category	All causes of death: 29.1 (23.9-34.5)	III-defined + SIDS: 1.06 (0.97, 1.16)
	Age Groups: Infants aged >28 days and <1 yr	Respiratory: 29.8 (24.3-36.5)	Other causes: 1.02 (0.96, 1.07)
	Study Design: Cross-sectional	SIDS: 28.6 (23.5-33.8)	Adjusted ORs for multipollutant models (including CO, O ₃ , SO ₂)
	N: 3,583,495 births (6,639 post	SIDS + ill-defined: 28.8 (23.9-33.9)	Respiratory: 1.16 (1.04, 1.30)
	neonatal deaths)	Other causes: 29.2 (23.9-34.5)	SIDS: 1.02 (0.90, 1.16)
	Statistical Analyses: Logistic GEE (exchangeable correlation structure)	Percentiles: see above PM Component: Not assessed, but	OR for deaths coded as BPD per increase in IQR: 1.19 (0.85, 1.65)
	Covariates: Maternal race/ethnicity, marital status, age, education, primiparity, county-level poverty and per	controlled for region of the country to account for PM composition variation	OR for respiratory post neonatal death stratified by birth weight
	capita income levels, yr and month of birth dummy variables to account for	Monitoring Stations: NR	NBW only: 1.19 (1.05, 1.36)
	time trend and seasonal effects, and region of the country	Copollutant (correlation): PM ₁₀	LBW only: 1.12 (0.95, 1.31)
	Sensitivity analyses performed among	$PM_{2.5}$ (r = 0.34)	OR for respiratory deaths removing region
	only those mothers with smoking information (adjustment for smoking	CO (r = 0.18)	of U.S. as a confounding variable: 1.30 (1.04, 1.61)
	had no effect on the estimates)	$SO_2 (r = 0.00)$	OR for respiratory deaths assessing
	Season: Adjusted for yr and month of birth dummy variables to account for time trend and seasonal effects Dose-response Investigated?	$O_3 (r = 0.20)$	exposure as quartiles
		Notes: Monthly avg calculated if there were at least 3 available measures for	Highest vs. Lowest quartile: 1.31 (1.00, 1.71)
	Evaluated the appropriateness of a linear form from analysis based on quartiles of exposure and concluded that linear form was appropriate (data not shown)	PM Assigned exposures using the avg concentration of the county of residence	OR for respiratory deaths among only those deaths that occurred during the first 90 days (most closely matched exposure metric of the avg over the first 2 mo of life): 1.25 (1.06, 1.47)
	Statistical Package: SAS		
Reference: (Suh et al., 2007, <u>157028</u>)	Outcome: Birth weight	Pollutant: PM ₁₀	PM Increment: Trimester ≥ 90th percentile compared to <90th percentile
Period of Study: 2001-2004 Location: Seoul, Korea	Age Groups: Prenatal follow-up for newborns	Averaging Time: 24-h Mean (SD):	Least-square (ANCOVA) mean (SE)
Location Coods, No. Co	Study Design: Based prospective cohort study	1st trimester: 76.41 (28.80) 2nd trimester: 77.84 (31.63) 3rd trimester: 95.61 (26.15)	All Genotypes 1st trimester <90th percentile, N(%):
	N: 199 pregnant mothers	Percentiles: 1st trimester	158 (90.3%): 3253 (37) ≥ 90th percentile, N(%): 17 (9.7%): 2841
	Statistical Analyses: ANCOVA, generalized linear models	25th: 55.28 50th(Median): 71.09	(145) P-Value for mean birth weight for
	Covariates: Infant's sex, maternal age, maternal and paternal education, parity, presence of illness during pregnancy, delivery month, gestational age (squared)	75th: 92.38 2nd trimester 25th: 48.65 50th(Median): 72.36 75th: 108.00 3rd trimester	≥ 90th percentile PM₁0 vs. for <90th percentile PM₁0 Adjusted: 0.009 Adjusted, with CO: 0.041 Adjusted, with NO₂: 0.092 Adjusted, with SO₂: 0.012
	Dose-response Investigated? Yes	25th: 77.10 50th(Median): 96.35	2nd trimester <90th percentile, N(%):
	Statistical Package: SAS	75th : 116.68	153 (89.5%): 3253 (39) ≥ 90th percentile, N(%):
		Range (Min, Max): 1st trimester (21.00, 151.65) 2nd trimester (31.45, 139.13) 3rd trimester (23.45, 172.75)	18 (10.5%): 3026 (157) p-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀
		Monitoring Stations: 27	Adjusted: 0.177 Adjusted, with CO: 0.203
		Copollutant:	Adjusted, with NO ₂ : 0.151 Adjusted, with SO ₂ : 0.151 3rd trimester
		SO ₂	<90th percentile, N(%):

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
		NO ₂	162 (90.5%): 3226 (38) ≥ 90th percentile, N(%): 17 (9.5%): 3122
			(140) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th
			percentile PM ₁₀ Adjusted: 0.487
			Adjusted, with CO: 0.748 Adjusted, with NO₂: 0.420
			Adjusted, with SO ₂ : 0.466 Genotype Mspl TT 1st trimester
			<90th percentile, N(%): 60 (34.3%): 3350 (64)
			≥ 90th percentile, N(%): 5 (2.9%): 3001 (229)
			P-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀
			Adjusted: 0.147 Adjusted, with CO: 0.186 Adjusted, with NO₂: 0.430
			Adjusted, with SO ₂ : 0.155 2nd trimester
			<90th percentile, N(%): 59 (34.5%): 3335 (66)
			≥ 90th percentile, N(%): 6 (3.5%): 3281 (249)
			p̀-Vaĺue for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th percentile PM₁₀ Adjusted: 0.833
			Adjusted, vith CO: 0.833 Adjusted, with NO ₂ : 0.778
			Adjusted, with SO ₂ : 0.806 3rd trimester
			<90th percentile, N(%): 61 (34.1%): 3327 (65)
			≥ 90th percentile, N(%): 6 (3.4%): 3227 (300) P-Value for mean birth weight for
			≥ 90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ Adjusted: 0.749
			Adjusted, with CO: 0.980 Adjusted, with NO ₂ : 0.635
			Adjusted, with SO ₂ : 0.687 Genotype Mspl TC/CC
			1st trimester <90th percentile, N(%): 98 (56.0%): 3193 (48)
			≥ 90th percentile, N(%): 12 (6.9%): 2799 (169)
			P-Value for mean birth weight for ≥ 90th percentile PM ₁₀ vs. for <90th
			percentile PM₁₀ Adjusted: 0.033 Adjusted, with CO: 0.073
			Adjusted, with NO ₂ : 0.150 Adjusted, with SO ₂ : 0.036
			2nd trimester <90th percentile, N(%): 94 (55.0%): 3200
			(52) ≥ 90th percentile, N(%): 12 (7.0%): 2933
			(176) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th
			percentile PM ₁₀ Adjusted: 0.161 Adjusted with CO: 0.173
			Adjusted, with CO: 0.172 Adjusted, with NO ₂ : 0.152 Adjusted, with SO ₂ : 0.158
			3rd trimester <90th percentile, N(%):
			101 (56.4%): 3165 (49) ≥ 90th percentile, N(%): 11 (6.2%): 3087
			(147) P-Value for mean birth weight for

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			≥ 90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ Adjusted: 0.626 Adjusted, with CO: 0.978
			Adjusted, with NO ₂ : 0.551 Adjusted, with NO ₂ : 0.614 Genotype Ncol Ilelle
			1st trimester <90th percentile, N(%): 87 (49.7%): 3244 (52)
			≥ 90th percentile, N(%): 7 (4.0%): 2983 (232) P-Value for mean birth weight for
			≥ 90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ Adjusted: 0.289
			Adjusted, with CO: 0.344 Adjusted, with NO₂: 0.641 Adjusted, with SO₂: 0.293
			2nd trimester <90th percentile, N(%): 82 (48.0%): 3243 (55)
			≥ 90th percentile, N(%): 11 (6.4%): 3185 (207) P-Value for mean birth weight for
			≥ 90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ Adjusted: 0.790
			Adjusted, with CO: 0.783 Adjusted, with NO_2 : 0.707 Adjusted, with SO_2 : 0.733 3rd trimester
			 <90th percentile, N(%): 90 (50.3%): 3239 (53) ≥ 90th percentile, N(%): 9 (5.0%): 2944
			(198) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th
			percentile PM ₁₀ Adjusted: 0.161 Adjusted, with CO: 0.279
			Adjusted, with NO₂: 0.134 Adjusted, with SO₂: 0.150 Genotype NcoI IleVal/ValVal
			1st trimester <90th percentile, N(%): 71 (40.6%): 3262 (56)
			≥ 90th percentile, N(%): 10 (5.7%): 2773 (171) P-Value for mean birth weight for
			≥ 90th percentile PM ₁₀ vs. for <90th percentile PM ₁₀ Adjusted: 0.009 Adjusted, with CO: 0.031
			Adjusted, with NO ₂ : 0.058 Adjusted, with SO ₂ : 0.010 2nd trimester
			<90th percentile, N(%): 71 (41.5%): 3264 (61) ≥ 90th percentile, N(%): 7 (4.1%): 2862
			(208) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th
			percentile PM₁₀ Adjusted: 0.076 Adjusted, with CO: 0.093
			Adjusted, with NO ₂ : 0.063 Adjusted, with SO ₂ : 0.061 3rd trimester
			<90th percentile, N(%): 72 (40.2%): 3207 (58) ≥ 90th percentile, N(%): 8 (4.5%): 3262
			(180) P-Value for mean birth weight for ≥ 90th percentile PM₁₀ vs. for <90th
			percentile PM ₁₀ Adjusted: 0.777 Adjusted, with CO: 0.607

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Adjusted, with NO ₂ : 0.843 Adjusted, with SO ₂ : 0.791
Reference: Tsai et al. (2006, <u>098312</u>)	Outcome: Post neonatal mortality	Pollutant: PM ₁₀	PM Increment: 67.00 μg/m ³
Period of Study: 1994-2000	Age Groups: Infants more than 27	Averaging Time: 24 h	Effect Estimate [Lower CI, Upper CI]:
Location: Kaohsiung, Taiwan	days and less than 1 yr	Mean (SD): 81.45 μg/m ³	OR = 1.040 (0.340-3.177)
	Study Design: Case-crossover study	Percentiles: 25th: 44.50	Note: Air pollution levels at the dates of
	N: 207 deaths	50th(Median): 79.20	infant death were compared with air pollution levels 1 week before and 1 week
	Statistical Analyses: Conditional logistic regression	75th: 111.50	after death
	Covariates: Temperature, humidity	Range (Min, Max): (20.50-232.00)	A cumulative lag up to 2 previous days was used to assign exposure.
	Dose-response Investigated? No	Monitoring Stations: 6	
	Statistical Package: SAS, version 8.2	Copollutant: SO ₂ NO ₂ CO O ₃	
Reference: Wilhelm and Ritz (2005, 088668) Period of Study: 1994-2000 Location: Los Angeles County, California, U.S.	Outcome: Term low birth weight (LBW) (<2500 g at ≥ 37 completed wk gestation), Vaginal birth <37 completed wk gestation Age Groups: LBW: ≥ 37 completed wk Preterm births: <37 completed wk Study Design: Cross-sectional N: For LBW: 136,134 For preterm birth: 106,483 Statistical Analyses: Logistic regression Covariates: Maternal age, maternal race, maternal education, parity, interval since previous live birth, level of prenatal care, infant sex, previous LBW or preterm infant, birth season, other pollutants (CO, NO₂, O₃, PM₁₀), gestational age (in birth weight analysis) Dose-response Investigated? Yes Statistical Package: NR	Pollutant: PM ₁₀ Averaging Time: 24 h (every 6 days) Entire pregnancy Trimesters of pregnancy Months of pregnancy 6 wk before birth Mean (SD): First trimester: 42.2 Third trimester: 41.5 6 wk before birth: 39.1 Range (Min, Max): First trimester: 26.3, 77.4 Third trimester: 25.7, 74.6 6 wk before birth: 13.0, 103.7 Monitoring Stations: Zip-code-level analysis: 8 Address-level analysis: 6 Copollutant (correlation): First trimester: PM ₁₀ -CO: r = 0.12 PM-sNOc: r = 0.29	PM Increment: 1) 10 μg/m³ 2) 3 levels: a) <25 percentile (reference) b) 25%-75 percentile c) ≥ 75 percentile Incidence of LBW (third trimester exposure) <32.8 μg/m³: 2.0 (1.8, 2.2) 32.8 to <43.4 μg/m³: 2.0 (1.9, 2.1) ≥ 43.4 μg/m³: 2.2 (2.0, 2.4) Incidence of preterm birth (first trimester exposure) <32.9 μg/m³: 8.7 (8,3, 9.2) 32.9 to <43.9 μg/m³: 8.8 (8.5, 9.1) ≥ 43.9 μg/m³: 8.6 (8.1, 9.0) Incidence of preterm birth (6 wk before birth exposure) <31.8 μg/m³: 8.8 (8,4, 9.3) 31.8 to <44.1 μg/m³: 8.6 (8.3, 8.9) ≥ 44.1 μg/m³: 8.8 (8.4, 9.2) Outcome: LBW Exposure Period: Third trimester Address-level analysis: Single-pollutant model: Distance ≤ 1 mile Per 10 μg/m³: 1.22 (1.05, 1.41) 33.4 to <44.7 μg/m³: 1.08 (0.76, 1.52) ≥ 44.7 μg/m³: 1.18 (1.0, 2.19) Multipollutant model: Distance ≤ 1 mile Per 10 μg/m³: 1.36 (1.12, 1.65) 33.4 to <44.7 μg/m³: 1.16 (0.77, 1.74) ≥ 44.7 μg/m³: 1.58 (0.95, 2.62) Single-pollutant model: 1 <distance (0.78,="" (0.90,="" (0.92,="" (0.96,="" (0.97,="" (0.98,="" (0.99,="" 0.96="" 0.98="" 1="" 1.02="" 1.02)="" 1.03="" 1.04="" 1.06)="" 1.08="" 1.08)="" 1.09)="" 1.09)<="" 1.14)="" 1.18)="" 1.20)="" 10="" 2="" 33.4="" 33.9="" 4="" 45.0="" <44.7="" <45.0="" <distance="" mile="" model:="" multipollutant="" m³:="" per="" single-pollutant="" td="" to="" μg="" ≤="" ≥=""></distance>
			Zip-code-level analysis
			Single-pollutant model:

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Per 10 µg/m³: 1.03 (0.97, 1.09) 33.2 to <43.6 µg/m³: 0.98 (0.86, 1.11) ≥ 43.6 µg/m³: 1.03 (0.88, 1.21) Multipollutant model: Per 10 µg/m³: 1.07 (0.99, 1.15) 33.2 to <43.6 µg/m³: 0.97 (0.85, 1.12) ≥ 43.6 µg/m³: 1.09 (0.90, 1.31)
			Outcome: LBW Exposure Period: Entire pregnancy period Address-level analysis: Multipollutant model: Per 10 µg/m³: 1.24 (0.91, 1.70)
			Outcome: Preterm Birth Exposure Period: First trimester of pregnancy Address-level analysis: Single-pollutant model: Distance ≤ 1, mile Per 10 µg/m³: 1.00 (0.93, 1.09) 33.3 to <45.1 µg/m³: 1.07 (0.90, 1.26) ≥ 45.1 µg/m³: 1.12 (0.91, 1.38) Multipollutant model: Distance ≤ 1 mile Per 10 µg/m³: 1.10 (0.90, 1.12) 33.3 to <45.1 µg/m³: 1.12 (0.92, 1.36) ≥ 45.1 µg/m³: 1.17 (0.90, 1.50) Single-pollutant model: 1 <distance (0.92,="" (0.95,="" (0.96,="" (0.97,="" (0.98,="" (0.99,="" (1.00,="" 0.99="" 1="" 1.01="" 1.01)="" 1.02)="" 1.03="" 1.03)="" 1.04="" 1.04)="" 1.05)="" 1.07="" 1.07)="" 1.08)="" 1.10)="" 1.11)="" 1.12)="" 1.13="" 1.17)="" 1.19)="" 1.27)="" 10="" 2="" 33.3="" 33.7="" 34.1="" 4="" 45.3="" 45.5="" 6="" <44.2="" <45.3="" <45.5="" <distance="" before="" birth="" birth<="" exposure="" mile="" model:="" multipollutant="" m³:="" outcome:="" per="" period:="" preterm="" single-pollutant="" td="" to="" wk="" µg="" ≤="" ≥=""></distance>
			Address-level analysis: Single-pollutant model: Distance ≤ 1 mile Per 10 µg/m³: 1.02 (0.95, 1.10) 32.5 to <44.8 µg/m³: 1.09 (0.92, 1.29) ≥ 44.8 µg/m³: 1.12 (0.92, 1.37) Multipollutant model: Distance ≤ 1 mile
			Distance ≤ 1 mile Per 10 µg/m³: 1.06 (0.97, 1.16) 32.5 to <44.8 µg/m³: 1.09 (0.90, 1.31) ≥ 44.8 µg/m³: 1.17 (0.91, 1.49) Single-pollutant model: 1 <distance (0.89,="" (0.91,="" (0.96,="" 0.99="" 1.00="" 1.03)="" 1.07)="" 1.10)="" 10="" 2="" 32.3="" 45.3="" <45.3="" mile="" model:<="" multipollutant="" m³:="" per="" td="" to="" µg="" ≤="" ≥=""></distance>

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			1 < distance ≤ 2 mile Per 10 µg/m³: 1.01 (0.97, 1.06) 32.3 to <45.3 µg/m³: 1.00 (0.92, 1.10) ≥ 45.3 µg/m³: 1.02 (0.91, 1.16) Single-pollutant model: 2 < distance ≤ 4 mile Per 10 µg/m³: 0.99 (0.98, 1.01) 33.1 to <45.3 µg/m³: 1.00 (0.96, 1.05) ≥ 45.3 µg/m³: 0.98 (0.93, 1.03) Multipollutant model: 2 < distance ≤ 4 mile Per 10 µg/m³: 1.00 (0.98, 1.02) 33.1 to <45.3 µg/m³: 1.01 (0.96, 1.05) ≥ 45.3 µg/m³: 0.98 (0.92, 1.04)
			Zip-code-level analysis Single-pollutant model: Per 10 μ g/m³: 1.02 (0.99, 1.04) 32.1 to <44.3 μ g/m³: 1.01 (0.95, 1.07) ≥ 44.3 μ g/m³: 1.04 (0.96, 1.12) Multipollutant model: Per 10 μ g/m³: 1.02 (0.99, 1.06) 32.1 to <44.3 μ g/m³: 1.02 (0.95, 1.09) ≥ 44.3 μ g/m³: 1.04 (0.95, 1.14) Notes: multipollutant model adds CO,NO ₂ , and O ₃ in addition to the main pollutant of interest, PM ₁₀ .
Reference: Woodruff et al. (1997,	Outcome: Postneonatal mortality	Pollutant: PM ₁₀	PM Increment: 10 μg/m³ (for continuous
<u>084271</u>)	(death of an infant between 1 month and 1 yr of age	Averaging Time: Mean of 1st 2 mo of	exposure analysis)
Period of Study: 1989-1991	1) All post neonatal deaths	life	Adjusted ORs for cause-specific post neonatal mortality by pollution
Location: 86 Metropolitan Statistical Areas in the U.S. (counties with	2) Normal birth weight (NBW, ≥ 2500 g) SIDS deaths	analyzed as tertiles of exposure and as continuous exposure	category (tertiles)
populations less than 100,000 were excluded)	NBW respiratory deaths Low birth weight (LBW) respiratory deaths: ICD9 codes	Mean (SD): 31.4 (7.8)	All causes Low: Ref
		Range (Min, Max):	Medium: 1.05 (1.01, 1.09) High: 1.10 (1.04, 1.16)
	Respiratory deaths: ICD9 codes 460-519	Overall: 11.9-68.8	SIDS, NBW: Low: Ref
	SIDS: ICD9 code 798.0	Low category: <28.0	Medium: 1.09 (1.01, 1.17) High: 1.26 (1.14, 1.39)
	age) Study Design: Cross-sectional	Medium category: 28.1-40.0	Respiratory death, NBW:
		High category: >40.0	Low: Ref Medium: 1.08 (0.87, 1.33)
		Monitoring Stations: NR	High: 1.40 (1.05, 1.85) Respiratory death, LBW:
	N: 3,788,079 infants		Low: Ref Medium: 0.93 (0.73, 1.18)
	Statistical Analyses: Logistic regression		High: 1.18 (0.86, 1.61) All other causes:
	Covariates: Maternal education, maternal race, parental marital status, maternal smoking during pregnancy		Low: Ref Medium: 1.03 (0.97, 1.08) High: 0.97 (0.90, 1.04)
	Avg temperature during the first 2 mo of life		Adjusted ORs for a continuous 10 µg/m³ change in exposure
	Infant's month and yr of birth		All causes: 1.04 (1.02, 1.07) SIDS, NBW: 1.12 (1.07, 1.17)
	Assessed race as an effect modifier (p-val for interaction terms >0.2)		Respiratory death, NBW: 1.20 (1.06, 1.36) Respiratory death, LBW: 1.05 (0.91, 1.22) All other causes: 1.00 (0.99, 1.00)
	Dose-response Investigated? Yes		
	Statistical Package: NR		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Woodruff et al. (2008,	Outcome: Postneonatal deaths	Pollutant: PM ₁₀	PM Increment: IQR (11 μg/m³)
098386)	Respiratory mortality (ICD10: J000-99,	Averaging Time: Measured	Effect Estimate [Lower CI, Upper CI]:
Period of Study: 1999-2002	P27.1)	continuously for 24 h once every 6 days	Adjusted ORs for single pollutant models
Location: U.S. counties with >250,000 residents (96 counties)	SIDS (ICD10: R95)	exposure assigned by calculating avg concentration of pollutant during first 2	All causes: 1.04 (0.99, 1.10)
	III-defined causes (R99);	mo of life	Respiratory: 1.18 (1.06, 1.31)
	All other deaths evaluated as a control	Median and IQR (25th-75th percentile):	SIDS: 1.02 (0.89, 1.16)
	category	Survivors: 28.9 (23.3-34.4)	III-defined + SIDS: 1.06 (0.97, 1.16)
	Age Groups: Infants aged >28 days and <1 yr	All causes of death: 29.1 (23.9-34.5)	Other causes: 1.02 (0.96, 1.07)
	Study Design: Cross-sectional	Respiratory: 29.8 (24.3-36.5)	Adjusted ORs for multipollutant models
	N: 3,583,495 births (6,639 post	SIDS: 28.6 (23.5-33.8)	(including CO, O ₃ , SO ₂)
	neonatal deaths)	SIDS + ill-defined: 28.8 (23.9-33.9)	Respiratory: 1.16 (1.04, 1.30)
	Statistical Analyses: Logistic GEE	Other causes: 29.2 (23.9-34.5)	SIDS: 1.02 (0.90, 1.16)
	(exchangeable correlation structure)	Percentiles: see above	OR for deaths coded as BPD per increase in IQR: 1.19 (0.85, 1.65)
	Covariates: Maternal race/ethnicity, marital status, age, education, primiparity, county-level poverty and per capita income levels, yr and month of birth dummy variables to account for time trend and seasonal effects, and region of the country	PM Component: Not assessed, but controlled for region of the country to account for PM composition variation	OR for respiratory post neonatal death stratified by birth weight
		Monitoring Stations: NR	NBW only: 1.19 (1.05, 1.36)
		Copollutant (correlation):	LBW only: 1.12 (0.95, 1.31)
	Sensitivity analyses performed among	PM ₁₀	OR for respiratory deaths removing region
		$PM_{2.5}$ (r = 0.34)	of U.S. as a confounding variable: 1.30 (1.04, 1.61)
		CO (r = 0.18)	OR for respiratory deaths assessing
	Season: Adjusted for yr and month of	SO_2 (r = 0.00)	exposure as quartiles
	birth dummy variables to account for time trend and seasonal effects	O_3 (r = 0.20)	Highest vs. Lowest quartile: 1.31 (1.00, 1.71)
	Dose-response Investigated? Evaluated the appropriateness of a linear form from analysis based on quartiles of exposure and concluded	Notes: Monthly avg calculated if there were at least 3 available measures for PM	OR for respiratory deaths among only those deaths that occurred during the first 90 days (most closely matched exposure
	that linear form was appropriate (data not shown)	Assigned exposures using the avg concentration of the county of residence	metric of the avg over the first 2 mo of life): 1.25 (1.06, 1.47)
	Statistical Package: SAS		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Study Reference: Jedrychowski, et al., (2007, 156607) Period of Study: Jan 2001-Feb 2004 Location: Krakow, Poland		Concentrations Pollutant: PM _{2.5} Averaging Time: 48 h period Percentiles: 50th(Median): 35.3 Range (Min, Max): 10.3, 294.9 Monitoring Stations: No stations, personal monitoring Notes: PM measured during a 2 day period in the second trimester by Personal Environmental Monitoring Sampler (PEMS)	Effect Estimates (95% CI) PM Increment: in 1 μg/m² and tertiles T1: <27.0 μg/m³ T2: 27.0-46.2 μg/m³ T3: ≥ 46.2 μg/m³ Mean [Lower CI, Upper CI]: Birth weight (g) For In unit PM: $β = -172.39$ (p = 0.02) Tertiles: T1: ref T2: $β = -16.510$ [-94.630, 61.610] T3: $β = -109.956$ [-196.649 to -23.263] In low Vitamin A group (<1,378 μg) T1: ref T2: $β = -68.354$ [-165.643, 28.935] T3: $β = -185.070$ [-293.393 to -76.747] In high Vitamin A group (>1,378 μg) T1: ref T2: $β = 64.262$ [-70.464, 198.988] T3: $β = 38.593$ [-109.853, 187.039] Birth length (cm) For In unit PM: $β = -1.39$ (p = 0.00) Tertiles: T1: ref T2: $β = -0.288$ [-0.790, 0.214] T3: $β = 0.810$ [-1.367 to -0.253] In low Vitamin A group (<1,378 μg) T1: ref T2: $β = -0.514$ [-1.114, 0.086] T3: $β = -1.100$ [-1.768 to -0.432] In high Vitamin A group (>1,378 μg) T1: ref T2: $β = 0.039$ [-0.896, 0.974] T3: $β = 0.030$ [-1.326, 0.724]
Reference: (Lipfert et al., 2000, 004103)	Outcome (ICD9 and ICD10): Infant mortality	Pollutant: SO ₄ ²⁻ / NSPM ₁₀ (regressed jointly)	T3: β = -0.301 [-1.326, 0.724] PM Increment: NR (present regression coefficients)
Period of Study: 1990 Location: U.S.	Including respiratory mortality (traditional definition, ICD9 460-519), expanded definition (adds ICD9 769 and 770) Age Groups: Infants Study Design: Cross-sectional N: 2,413,762 infants in 180 counties (Ns differ for various models) Statistical Analyses: Logistic regression Covariates: Mother's smoking, education, marital status, and race Month of birth And county avg heating degree days Dose-response Investigated? NR Statistical Package: NR	Averaging Time: Yearly avg used Mean (SD): 33.1 (9.17) (based on 180 counties) Range (Min, Max): (16.9, 59) Monitoring Stations: NR Copollutant: PM ₁₀ NSPM ₁₀ CO SO ₂ Notes: TSP-based sulfate was adjusted for compatibility with the PM ₁₀ -based data	Effect Estimate [Lower CI, Upper CI]: Presented regression coefficients (standard errors) (3 PM exposures regressed jointly) bold = p < 0.05 Cause of death: All Birth weight: All SO ₄ *0.0002 (0.0061) NSPM ₁₀ : 0.0115 (0.0014) Cause of death: All Birth weight: LBW SO ₄ *0.0265 (0.0080) NSPM ₁₀ : 0.0265 (0.0080) NSPM ₁₀ : 0.0086 (0.0020) Cause of death: All Birth weight: normal SO ₄ *0.0488 (0.0098) NSPM ₁₀ : 0.0096 (0.0024) Cause of death: All neonatal Birth weight: All SO ₄ *0.0267 (0.0076) NSPM ₁₀ : 0.0126 (0.0018) Cause of death: All neonatal Birth weight: LBW SO ₄ *0.0388 (0.0088) NSPM ₁₀ : 0.0126 (0.0018) Cause of death: All neonatal Birth with weight: All neonatal Birth with wormal SO ₄ *0.0388 (0.0088) NSPM ₁₀ : 0.0125 (0.0040) Cause of death: All post neonatal Birth wt: All PM ₁₀ : 0.0091 (0.0024) Cause of death: All post neonatal Birth wt: All PM ₁₀ : 0.0091 (0.0024) Cause of death: All post neonatal Birth wt: LBW SO ₄ *0.0474 (0.0100) NSPM ₁₀ : 0.0096 (0.0024) Cause of death: All post neonatal Birth wt: LBW SO ₄ *0.0247 (0.0173) NSPM ₁₀ : 0.0101 (0.0042) Cause of death: All post neonatal Birth wt: LBW

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			NSPM ₁₀ : 0.0080 (0.0029) Cause of death: SIDS
			Birth weight: All
			SO ₄ ²⁻ : -0.1078 (0.0151)
			NSPM ₁₀ : 0.0149 (0.0037) Cause of death: SIDS
			Birth weight: LBW
			SO ₄ ²⁻ : -0.1378 (0.0337)
			NSPM ₁₀ : 0.0146 (0.0085)
			Cause of death: SIDS Birth weight: normal
			PM ₁₀ : 0.0137 (0.0042)
			SO ₄ ^{2–} : -0.0995 (0.0168) NSPM ₁₀ : 0.0147 (0.0041)
			Cause of death: All respiratory (ICD9: 460-
			519, 769, 770)
			Birth weight: All
			SO ₄ ²⁻ : 0.0706 (0.0146) NSPM ₁₀ : 0.0166 (0.0034)
			Cause of death: All respiratory (ICD9: 460-
			519, 769, 770)
			Birth weight: LBW SO ₄ ²⁻ : 0.0821 (0.0158)
			NSPM ₁₀ : 0.0139 (0.0038)
			Cause of death: All respiratory (ICD9: 460-
			519, 769, 770) Birth weight: normal
			PM ₁₀ : 0.0177 (0.0091)
			SO ₄ ² : 0.0001 (0.0392)
			NSPM ₁₀ : 0.0118 (0.0090) Cause of death: Respiratory disease
			(ICD9: 460-519)
			Birth weight: All
			PM ₁₉ : 0.0133 (0.0089) SO ₄ =: 0.0093 (0.0384)
			NSPM ₁₀ : 0.0134 (0.0089)
			Cause of death: Respiratory disease
			(ICD9: 460-519) Birth weight: LBW
			PM ₁₀ : 0.0092 (0.0137)
			SO ₄ ²⁻ : 0.0434 (0.0580)
			NSPM ₁₀ : 0.0089 (0.0138)
			Cause of death: Respiratory disease (ICD9: 460-519)
			Birth weight: normal
			SO ₄ ²⁻ : -0.0177 (0.0509)
			NSPM ₁₀ : 0.0128 (0.0119) Associations with SIDS by smoking status
			Smoking status: Yes
			Birth weight: Normal
			SO ₄ ²⁻ : -0.0722 (0.0284) NSPM ₁₀ : 0.0206 (0.0071)
			Smoking status: No
			Birth weight: Normal
			SO ₄ ²⁻ : -0.114 (0.021) NSPM ₁₀ : 0.0117 (0.005)
			Smoking status: Yes
			Birth weight: LBW
			SO ₄ ²⁻ : -0.0958 (0.0483) NSPM ₁₀ : 0.0345 (0.0125)
			Smoking status: No
			Birth weight: LBW
			SO ₄ ²⁻ : -0.0172 (0.047)
			NSPM ₁₀ : -0.0007 (0.012) Mean risks (95%CI) between post
			neonatal SIDS among normal birth weight
			babies
			pollutants regressed one at a time SO ₄ ²⁻ : 0.43 (0.37, 0.51)
			NSPM ₁₀ : 1.33 (1.18, 1.50)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Liu et al., 2007, <u>090429</u>)	Outcome: Intrauterine growth	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
Period of Study: 1985-2000	restriction (IUGR)	Averaging Time: 24 h (6-day schedule)	Effect Estimate
Location: 3 Canadian cities: Calgary,	Age Groups: Singleton term live births (37-42 wks gestation)	Mean (SD): 12.2	Single-pollutant model [Lower CI,
Edmonton, and Montreal	Study Design: Retrospective cohort	Percentiles: 25th: 6.3	Upper CI]: 1st trimester
	N: 386,202 singleton live births	50th(Median): 9.7	OR = 1.07 (1.03-1.10) 2nd trimester
	Statistical Analyses: Multiple logistic regression	75th: 15	OR = 1.06 (1.03-1.10) 3rd trimester
	Covariates: Maternal age, parity, infant gender, season, and city of residence at time period of birth		OR = 1.06 (1.03-1.10) Effect Estimate multi-pollutant model [Lower CI, Upper
	Season: All seasons	Monitoring Stations: Calgary (4), Edmonton (2), and Montreal (8)	CI]: 1st trimester
	Dose-response Investigated? No	Copollutant (correlation): SO ₂ : r = 0.44, p < 0.0001	OR= 1.03 (0.99-1.06)
	Statistical Package: NR	NO ₂ : r = 0.41, p < 0.0001 CO: r = 0.31, p < 0.0001 O ₃ : r = -0.14, p < 0.0001	2nd trimester OR= 1.01 (0.98-1.05) 3rd trimester OR= 1.03 (0.99-1.06)
			Note: ORs and CIs estimated from Fig. 6 and 7
Reference: Loomis et al. (1999,	Outcome (ICD9 and ICD10): Infant	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
<u>087288</u>)	mortality (daily counts of deaths)	Averaging Time: 24-h	Effect Estimate [Lower CI, Upper CI]:
Period of Study: Jan 1993-Jul 1995	All ICD9 codes, excluding accidents, poisoning, and violence (ICD9 ≥800)	Mean (SD): 27.4 (10.5)	%Change in infant mortality Lags 0-5 (single day) presented in Fig
Location: Mexico City (southwestern section)	Age Groups: Children <1 yr of age	Percentiles: Lower quartile: 20	Lag0,1,2: No association (results not presented)
	Study Design: Time-series	Median: 26	Lag3: 4.8 (0.97, 8.61) Lag4: 4.2 (0.37, 7.93) %Change in mortality when avg exposure
	N : 942 deaths (days were the unit of observation)	Upper quartile: 34	
		Range (Min, Max): 4, 85	levels during "windows" of 2 to 4 days were considered
	Statistical Analyses: Poisson regression (generalized additive model)	Monitoring Stations: 1	2 Days:
	Covariates: Final models controlled for	Copollutant:	No lag: -1.36 (-5.51, 2.8) Lag1: -0.95 (-5.10, 3.20)
	mean temp of 3 days before death and	O ₃	Lag2: 2.78 (-1.33, 6.89) Lag3: 4.93 (0.86, 9.01)
	nonparametrically smoothed periodic cycles	NO ₂	3 Days: No lag: -0.81 (-5.29, 3.67)
	Season: Yes (considered)	NO	Lag1: 1.99 (-2.46, 6.45)
	Dose-response Investigated? Loess	NO_X	Lag2: 4.54 (0.12, 8.96) Lag3: 6.87 (2.48, 11.26)
	smoother	SO ₂	4 Days: No lag: 1.95 (-2.76, 6.66)
	Statistical Package: NR	Notes: Pearson correlation coefficients ranging from 0.52 to 0.71	Lag1: 3.74 (-0.95, 8.42)
	Lags Considered: 0-5 (also considered lags with avg exposure levels during "windows" of 2 to 4 days)		Lag2: 5.87 (1.21, 10.53) Multipollutant models (3-day mean w/ 3-day lag) 1 pollutant model: 6.87 (2.48, 11.26) 2 pollutant models: w/ O ₃ : 6.24 (1.35, 11.14) w/ NO ₂ : 5.91 (-0.76, 12.59) 3 Pollutant model (w/ O ₃ and NO ₂): 6.30 (-0.54, 13.15)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Mannes et al. (2005,	Outcome: Risk of small for gestational	Pollutant: PM _{2.5}	PM Increment: 1 µg/m³
<u>087895</u>)	age (SGA) and birth weight	Averaging Time: 24 h	Risk of SGA All births
Period of Study: Jan 1998-Dec 2000	Age Groups: All singleton births >20 wk and ≥ 400 grams birth weight and	Mean (SD): 9.4 (5.1)	1 month before birth:
Location: metropolitan Sydney, Australia	maternal all ages	Percentiles: 25th: 6.5	OR = 1.01 (0.99-1.03) Third trimester: OR = 0.99 (0.97-1.02)
	Study Design: Cross-sectional	50th(Median): 8.4	Second trimester: OR = 1.03 (1.01-1.05)
	N: 138,056 singleton births	75th: 11.2	First trimester: OR = 0.99 (0.97-1.01)
	Statistical Analyses: Logistic and linear regression models	Range (Min, Max): (2.4-82.1)	5 km births 1 month before birth:
	Covariates: Sex of child, maternal age,	Monitoring Stations: up to 14	OR = 1.01 (0.97-1.04) Third trimester: OR = 1.00 (0.95-1.05)
	gestational age, maternal smoking,	Copollutant (correlation):	Second trimester: OR = 1.00 (0.96-1.05)
	gestational age at first antenatal visit, maternal indigenous status, whether	CO: r = 0.53	First trimester: OR = 0.99 (0.94-1.04)
	first pregnancy, season of birth, and socioeconomic status (SES)	NO ₂ : r = 0.66	Change in birth weight All births
	Season: All seasons	O ₃ : r = 0.36	1 month before birth: ß = -2.48 (-4.580.38)
	included as covariate.	PM_{10} : r = 0.81	Third trimester: $\beta = -0.98 (-3.74-1.78)$
			Second trimester: ß = -4.10 (-6.791.41)
	Dose-response Investigated? No		First trimester: ß = 0.36 (-2.29- 3.01) 5 km births
	Statistical Package: SAS System for Windows v8.02		1 month before birth:
			ß = -2.70 (-6.80- 1.40) Third trimester: ß = -2.83 (-9.00-3.34)
			Second trimester: ß = 1.54 (-4.59-7.67) First trimester: ß = 1.89 (-1.99-5.77)
Reference: Parker et al. (2005,	Outcome: Small for gestational age	Pollutant: PM _{2.5}	PM Increment: <11.9 µg/m³
<u>087462</u>)	(SGA) and birth weight	Averaging Time: NR (measurement	Referent PM Increment: 11.9-13.9 µg/m
Period of Study: 1999-2000	Age Groups: Infants delivered at 40 wk gestation	taken every 6 days)	Effect Estimate [Lower CI, Upper CI]:
Location: California	maternal all ages	Mean (SD): 15.42 (5.08) PM Component: metals, polycyclic aromatic hydrocarbons	First Trimester Birth weight: ß = -5.7 (-27.9-16.5) SGA: OR = 1.02 (0.84-1.23)
	Study Design: Cross-sectional		
	N: 18,247 singleton births	Monitoring Stations: 40	Second Trimester Birth weight: ß = 11.3 (-12.2-34.9)
	Statistical Analyses: Linear and	Copollutant (correlation):	SGA: OR = 0.89 (0.73-1.09) Third Trimester Birth weight: ß = 8.3 (-13.1-29.8)
	logistic regression models	PM _{2.5} -CO: r = 0.6	
	Covariates: Maternal race, maternal	Notes: Mean calculated for 9-month	SGA: OR = 1.00 (0.83-1.19) PM Increment: 13.9-18.4 μg/m ³
	Hispanic origin, marital status, parity, maternal education, and maternal age	exposure. The following means (SDs)	Effect Estimate [Lower CI, Upper CI]: First Trimester
	Season: Season of delivery (covariate)	are calculated for trimester:	Birth weight: ß = -2.5 (-24.5-19.5) SGA: OR = 1.12 (0.93-1.34)
	Dose-response Investigated? Yes	First: 15.70 (6.26)	Second Trimester
	Statistical Package: STATA	Second: 15.40 (6.53)	Birth weight: ß = -17.2 (-39.4-4.9) SGA: OR = 1.05 (0.88-1.26)
	·	Third: 14.29 (6.35)	Third Trimester Birth weight: ß = -8.1 (-30.2-13.9)
		PM categorized into quartiles:	SGA: OR = 0.98 (0.82-1.18)
		Q1: <11.9	PM Increment: >18.4 µg/m ³ Effect Estimate [Lower CI, Upper CI]:
		Q2: 11.9-13.9	First Trimester Birth weight: ß = -35.8 (-58.413.3)
		Q3: 13.9-18.4	SGA: OR = 1.26 (1.04-1.51)
		Q4: >18.4	Second Trimester Birth weight: ß = -46.6 (-68.624.6)
			SGA: OR = 1.24 (1.04-1.49)
			Third Trimester Birth weight: ß = -31.6 (-52.011.1)
			SGA: OR = 1.21 (1.02-1.43)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Parker and Woodruff	Outcome: Low birth weight	Pollutant: PM _{2.5}	PM Increment: 10 µg/m ³
(2008, <u>156846</u>)	Study Design: Cohort	Averaging Time: 9 mo	Change in Birth weight (9 month
Period of Study: 2001-2003	N: 785,965 Singleton births delivered at	Mean (SD): 14.5	exposure): Unadjusted: 19.4 (9.8, 29.0)
Location: U.S.	40 wk gestation	25th: 12.1	Adjusted for maternal factors:
	Statistical Analyses: GEE regression	75th: 17.6	18.4 (9.2, 27.7)
	models		Stratified by region: Industrial Midwest: -15.3 (-43.4, 12.9)
	linear and logistic regression	Copollutant (correlation): SO ₂ , NO ₂ CO O ₃	Northeast: -9.8 (-11.9, 26.6) Northwest: 27.5 (5.5, 49.4) Southern CA: 5.5 (-9.6, 20.5) Southeast: 7.3 (-11.9, 26.6) Southwest: 72.3 (34.0, 110.5) Upper Midwest: -0.7 (-62.0, 60.6)
	Covariates: Race/ethnicity, parity, maternal age		
	Season: Season of delivery		
	Statistical Package: SUDAAN		Multipollutant models: PM _{2.5} +PM _{10-2.5} : 14.2 (4.3, 24.1) PM _{2.5} +PM _{10-2.5} +SO ₂ +CO+NO ₂ +O ₃ : 28.6 (14.2, 43.0)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Rich et al. (2009, <u>180122</u>)	Outcome: Small for gestational age	Pollutant: PM _{2.5}	*All values are for first trimester, other
Period of Study: 1999-2003	Study Design: Retrospective Cohort	Averaging Time: 24 h	trimesters are available in paper
Location: New Jersey, United States	birth, apparent temperature, pregnancy complications	Mean (SD) Unit:	Increment: 4 µg/m³
		*All values are for first trimester, other trimesters are available in paper	Percent Change in Risk (95% CI) SGA: 4.5 (0.5-8.7) VSGA: 2.6 (-4.4-10.0)
	Statistical Analysis: Polytomous logistic regression	Reference Births: 13.8 (2.5)	Percent Change in Risk (95% CI) for
	Statistical Package: SAS	SGA Births: 13.9 (2.5)	single and two-pollutant models Single, SGA: 4.6 (-0.3-9.8)
	Age Groups: Gestational age 37-42	VSGA Births: 13.9 (2.4)	Single, VSGA: 4.5 (-4.0-13.4) Two (PM _{2.5} & NO ₂), SGA: 4.5 (-0.4-9.7)
	wks	Range (Min, Max): 2.0, 29.0	Two (PM _{2.5} & NO ₂), VSGA: 3.2 (-5.2-12.4)
		Copollutant (correlation):	Percent Change in Risk (95% CI) by pregnancy complication in third
		*All values are for first trimester, other trimesters are available in paper	trimester SGA
		NO ₂ : 0.01	Any Complication No: 4.7 (0.6-9.0)
		SO ₂ : 0.17	Yes: 2.2 (-6.1-11.3) Placental Abruption
		CO: 0.25	No: 4.0 (0.3-7.9) Yes: 11.7 (-21.7-59.5)
			Placental Praevia No: 3.9 (0.2-7.8) Yes: 23.2 (-20.9-91.9) Pre-eclampsia No: 4.2 (0.4-8.2) Yes: 2.7 (-13.8-22.3) Gestational Hypertension No: 4.3 (0.4-8.4) Yes: 3.9 (-7.8-17.1) Premature Rupture of the Membrane No: 3.7 (-0.1-7.7) Yes: 14.6 (-3.3-35.9) Gestational Diabetes No: 4.6 (0.8-8.6) Yes: -9.3 (-24.7-9.3) VSGA Any Complication No: 1.5 (-6.1-9.7) Yes: 12.6 (0.1-26.7) Placental Abruption No: 4.1 (-2.6-11.2) Yes: 7.6 (-29.8-64.9) Placental Praevia No: 4.1 (-2.5-11.2) Yes: 3.2 (-43.0-86.9) Pre-eclampsia No: 4.4 (-2.6-11.9) Yes: 3.9 (-15.7-28.1) Gestational Hypertension No: 3.2 (-4.0-10.9) Yes: 12.9 (-3.3-31.9) Premature Rupture of the Membrane No: 3.3 (-3.5-10.5) Yes: 21.9 (-3.6-54.2) Gestational Diabetes No: 4.3 (-2.5-11.5)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Ritz et al. (2007, <u>096146</u>)	Outcome: Preterm births (infants	Pollutant: PM _{2.5}	PM Increment: Reported analyses using
Period of Study: Jan 2003-Dec 2003	delivered before 37 wk) Age Groups: Births	Averaging Time: daily or every 3rd day used to calculate the entire pregnancy,	exposure categories Effect Estimate [Lower CI, Upper CI]:
Location: Los Angeles, California	Study Design: Case-control nested	the first trimester, and the last 6 wk before delivery	Birth cohort (phase I) Crude: Low: 1.0
	within a birth cohort (cases and controls matched on zip code and birth month)	Only reported first trimester exposures for PM	Mid: 0.96 (0.90, 1.03) High: 1.05 (0.99, 1.12)
	Phase 1: cross-sectional including all birth cohort	Range (Min, Max): NR	Adj for birth cert Covariates: Low: 1.0
	Phase 2: nested case-control of survey respondents	Ranges for 3 categories reported:	Mid: 1.01 (0.93, 1.09) High: 1.10 (1.01, 1.20)
	N: Phase 1: Birth cohort consisted of	Low (ref): ≤ 18.63	Survey respondents (phase II)
	58,316 eligible births. Phase II: 2,543	Mid: 18.64-21.36	Crude: Low: 1.0' Mid: 1.11 (0.90, 1.36) High: 1.27 (1.06, 1.53)
	Statistical Analyses: Logistic regression	High: >21.36	Adj for birth cert Covariates: Low: 1.0
	Covariates: Birth certificate information: maternal age,	Monitoring Stations: Each zip code was linked to the nearest monitoring station (number not reported)	Mid: 1.14 (0.90, 1.46) High: 1.27 (0.99, 1.64)
	race/ethnicity, parity, education, season of birth	Copollutant (correlation):	Adj for all Covariates: Low: 1.0 Mid: 1.15 (0.90, 1.47) High: 1.29 (1.00, 1.67)
	survey information: maternal smoking, alcohol consumption, living with a	NO_2	Two-phase model: * Low: 1.0
	smoker, and marital status during pregnancy	O ₃	Mid: 0.98 (0.84, 1.15) High: 1.07 (0.85, 1.35)
	income (imputed)	Notes: Daily or every 3rd day measurements used for mean	*Method to reduce potential selection bias
	occupation and pregnancy weight gain considered but not included in final models	calculations	and increase statistical efficiency
	Season: Yes		
	Dose-response Investigated? Yes, examined categories of exposure		
	Statistical Package: NR		
Reference: Slama et al. (2007, <u>093216</u>)	Outcome: Birth weight offspring at term	Pollutant: PM _{2.5} (estimated based on larger PM size fractions)	PM Increment: 1) 1 µg/m ³
Period of Study: Jan 1998-Jan 1999	Study Design: Cohort study	Averaging Time: Entire pregnancy	2) Quartiles: a) 1st (reference) (7.2-13.5 µg/m³)
Location: Munich, Germany	N : 1016 births	period and trimesters	b) 2nd (13.5-14.4 µg/m³) c) 3rd (14.4-15.4 µg/m³)
	Statistical Analyses: Poisson model	Mean (SD): 14.4	day) 4th (15.41-17.5 μg/m³)
	Covariates: Maternal passive smoking, maternal age, gestational duration, sex of child, parity, maternal education, maternal size, prepregnancy weight,	Percentiles: 25th: 13.5	Prevalence ratios (PRs) of birth weight <3000 g during exposure over
		50th(Median): 14.4 75th: 15.4	the whole pregnancy Single-pollutant models
	other pollutants (PM _{2.5} , PM _{2.5} absorbance, NO ₂), season of conception		Unadjusted models 2nd quartile: 1.07 (0.65, 1.73); 3rd
	Dose-response Investigated? Yes	component: 40	quartile: 1.38 (0.91, 2.09) 4th quartile: 1.45 (0.92, 2.25)
	Statistical Package: STATA	Temporal component: 1	Per 1 µg/m³: 1.06 (0.95, 1.19)
		Copollutant (correlation): p.a. = pregnancy avg	Adjusted models 2nd quartile: 1.08 (0.63, 1.82); 3rd
		trim. = trimester PM _{2.5} (p.a.)-PM _{2.5} (1st trim.): 0.85	quartile: 1.34 (0.86, 2.13) 4th quartile: 1.73 (1.15, 2.69); Per
		PM _{2.5} (p.a.)-PM _{2.5} (2nd trim.): 0.77 PM _{2.5} (p.a.)-PM _{2.5} (3rd trim.): 0.87	1 μg/m³: 1.13 (1.00, 1.29)
		PM _{2.5} (p.a.)-NO ₂ (p.a.): 0.45 PM _{2.5} (p.a.)-NO ₂ (1st trim.): 0.18	Multipollutant models Adjusted models
		PM _{2.5} (p.a.)-NO ₂ (2nd trim.): 0.32	2nd quartile: 1.01 (0.57, 1.85) 3rd quartile: 1.12 (0.64, 1.87)
		PM _{2.5} (p.a.)-NO ₂ (3rd trim.): 0.37 PM _{2.5} (1st trim.)-PM _{2.5} (2nd trim.): 0.40 PM _{2.5} (1st trim.)-PM _{2.5} (3rd trim.): 0.68	4th quartile: 1.36 (0.72, 2.45); Per 1 μg/m³: 1.07 (0.91, 1.26)
		PM _{2.5} (1st trim.)-NO ₂ (p.a.): 0.48 PM _{2.5} (1st trim.)-NO ₂ (1st trim.): 0.15	Single-pollutant models (restricted
		PM _{2.5} (1st trim.)-NO ₂ (2nd trim.): 0.41 PM _{2.5} (1st trim.)-NO ₂ (3rd trim.): 0.39	analysis to PM _{2.5} absorbance below the median)
		PM _{2.5} (2nd trim.)-PM _{2.5} (3rd trim.): 0.51 PM _{2.5} (2nd trim.)-NO ₂ (p.a.): 0.23	Per 1 μg/m ³ : 1.15 (0.89, 1.52)
		PM _{2.5} (2nd trim.)-NO ₂ (1st trim.): -0.03 PM _{2.5} (2nd trim.)-NO ₂ (2nd trim.): 0.17 PM _{2.5} (2nd trim.)-NO ₂ (3rd trim.): 0.30	Prevalence ratios (PRs) of birth weight <3000 g Multipollutant models (simultaneous

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
- Ciddy	boolgii & motilodo	PM _{2.5} (3rd trim.)-NO ₂ (p.a.): 0.39	Adjustment of 3rd trimester PM _{2.5} and
		PM _{2.5} (3rd trim.)-NO ₂ (p.a.): 0.39 PM _{2.5} (3rd trim.)-NO ₂ (2nd trim.): 0.21 PM _{2.5} (3rd trim.)-NO ₂ (2nd trim.): 0.21 PM _{2.5} (3rd trim.)-NO ₂ (2nd trim.): 0.23 PM _{2.5} (3rd trim.)-NO ₂ (3rd trim.): 0.23 PM _{2.5} (p.a.)- PM _{2.5} absorbance (p.a.): 0.69 PM _{2.5} (p.a.)- PM _{2.5} abs (2nd trim.): 0.48 PM _{2.5} (p.a.)- PM _{2.5} abs (3rd trim.): 0.52 PM _{2.5} (1st trim.)- PM _{2.5} abs (and trim.): 0.52 PM _{2.5} (1st trim.)- PM _{2.5} abs (and trim.): 0.57 PM _{2.5} (1st trim.)- PM _{2.5} abs (and trim.): 0.57 PM _{2.5} (1st trim.)- PM _{2.5} abs (3rd trim.): 0.57 PM _{2.5} (1st trim.)- PM _{2.5} abs (3rd trim.): 0.58 PM _{2.5} (2nd trim.)- PM _{2.5} abs (1st trim.): 0.09 PM _{2.5} (2nd trim.)- PM _{2.5} abs (2nd trim.): 0.08 PM _{2.5} (2nd trim.)- PM _{2.5} abs (3rd trim.): 0.09 PM _{2.5} (2nd trim.)- PM _{2.5} abs (3rd trim.): 0.41 PM _{2.5} (3rd trim.)- PM _{2.5} abs (1st trim.): 0.41 PM _{2.5} (3rd trim.)- PM _{2.5} abs (1st trim.): 0.44 PM _{2.5} (3rd trim.)- PM _{2.5} abs (1st trim.): 0.48 PM _{2.5} (3rd trim.)- PM _{2.5} abs (2nd trim.): 0.48 PM _{2.5} (3rd trim.)- PM _{2.5} abs (2nd trim.):	Adjustment of 3rd trimester PM _{2.5} and whole pregnancy PM _{2.5}) PM _{2.5} (whole pregnancy) Per 1 μg/m³: 0.96 (0.75, 1.19) PM _{2.5} (3rd trimester) Per 1 μg/m³: 1.17 (0.98, 1.40) Prevalence ratios (PRs) of birth weight <3000 g during exposure over the whole pregnancy (adjustment for season of conception) 4th quartile: 1.68 (1.05, 2.75); Per 1 μg/m³: 1.12 (0.97, 1.28) Prevalence ratios (PRs) of birth weight <3000 g during exposure over first trimester of pregnancy Each trimester separately 2nd quartile: 1.14 (0.74, 1.96); 3rd quartile: 1.28 (0.84, 2.10) 4th quartile: 1.65 (1.02, 2.60) Per 1 μg/m³: 1.10 (0.99, 1.20) All trimesters adjusted simultaneously 2nd quartile: 0.98 (0.57, 1.75) 4th quartile: 1.22 (0.71, 2.18) Per 1 μg/m³: 1.03 (0.90, 1.17)
		PM _{2.5} (3rd trim.)- PM _{2.5} abs (3rd trim.): 0.37	Prevalence ratios (PRs) of birth weight <3000 g during exposure over second trimester of pregnancy Each trimester separately 2nd quartile: 0.83 (0.52, 1.32); 3rd quartile: 1.08 (0.71, 1.60) 4th quartile: 0.94 (0.61, 1.47) Per 1 µg/m³: 1.01 (0.92, 1.12) All trimesters adjusted simultaneously 2nd quartile: 0.75 (0.46, 1.24) 3rd quartile: 0.86 (0.56, 1.30); 4th quartile: 0.75 (0.48, 1.23) Per 1 µg/m³: 0.94 (0.84, 1.06)
			Prevalence ratios (PRs) of birth weight <3000 g during exposure over third trimester of pregnancy Each trimester separately 2nd quartile: 1.30 (0.80, 2.17) 3rd quartile: 1.44 (0.85, 2.27) 4th quartile; 1.90 (1.20, 2.82) Per 1 µg/m²: 1.14 (1.02, 1.24) All trimesters adjusted simultaneously 2nd quartile: 1.34 (0.79, 2.30) 3rd quartile: 1.48 (0.86, 2.58) 4th quartile: 1.91 (1.00, 3.20) Per 1 µg/m³: 1.14 (0.99, 1.29)
			Prevalence ratios (PRs) of birth weight <3000 g during exposure over third trimester of pregnancy (adjustment for season of conception) All trimesters adjusted simultaneously Per 1 µg/m³: 1.25 (1.04, 1.50)
			Sensitivity analysis (bootstrapped PR) 2nd quartile: 0.98 (0.63, 1.61); 3rd quartile: 1.22 (0.82, 2.02) 4th quartile: 1.57 (1.02, 2.57) Per 1 µg/m³: 1.11 (0.98, 1.27)
			Estimated increments in prevalence of birth weight of <3000 g during exposure 9 mo after birth Per 1 µg/m³: 7% (-7%, 22%)
Reference: (Slama et al., 2007, 093216)	Outcome: Birth weight offspring at term	Pollutant: PM _{2.5} absorbance (estimated)	PM Increment: 1) 0.5 * 10-5/m 2) Quartiles:
Period of Study: Jan 1998-Jan 1999	Study Design: Cohort study	Averaging Time: Entire pregnancy period and trimesters	a) 1st (reference) (1.29-1.61) b) 2nd (1.61-1.72)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Location: Munich, Germany	N : 1016 births	Mean (SD): 1.76 *	c) 3rd (1.72-1.89) day) 4th (1.89-3.10)
	Statistical Analyses: Poisson model	Percentiles: 25th: 1.61*	Prevalence ratios (PRs) of birth
	Covariates: Maternal passive smoking,	50th(Median): 1.72*	weight <3000 g during exposure over the whole pregnancy
	maternal age, gestational duration, sex of child, parity, maternal education,	75th: 1.89 *	Single-pollutant models Unadjusted
		Unit (i.e. μg/m³): 10-5/m	models 2nd quartile: 1.19 (0.74, 1.99)
	absorbance, NO ₂), season of conception	Monitoring Stations: Spatial component: 40	3rd quartile: 1.56 (0.98, 2.50); 4th quartile: 1.52 (0.96, 2.46)
	Dose-response investigated? res	Temporal component: 1	Per 0.5 * 10-5/m: 1.25 (0.90, 1.70) Adjusted models
	Statistical Package: STATA	Copollutant (correlation): p.a. = pregnancy avg	2nd quartile: 1.21 (0.73, 1.97) 3rd quartile: 1.63 (0.98, 2.57);
		trim. = trimester abs = absorbance	4th quartile: 1.78 (1.10, 2.70) Per 0.5 * 10-5/m: 1.45 (1.06, 1.87)
		PM _{2.5} abs (p.a.)-PM _{2.5} abs (1st trim.): 0.54	
		PM _{2.5} abs (p.a.)-PM _{2.5} abs (2nd trim.):	Multipollutant models Adjusted models 2nd quartile: 1.19 (0.70, 2.01)
		0.84 PM _{2.5} abs (p.a.)-PM _{2.5} abs (3rd trim.):	3rd quartile: 1.55 (0.80, 2.80); 4th quartile: 1.46 (0.67, 2.90)
		0.55 PM _{2.5} abs (p.a.)-PM _{2.5} (p.a.): 0.69	Per 0.5 * 10-5/m: 1.33 (0.76, 2.38)
		PM _{2.5} abs (p.a.)-PM _{2.5} (1st trim.): 0.68 PM _{2.5} abs (p.a.)-PM _{2.5} (2nd trim.): 0.41	Prevalence ratios (PRs) of birth weight <3000 g during exposure over
		PM _{2.5} abs (p.a.)-PM _{2.5} (3rd trim.): 0.62 PM _{2.5} abs (p.a.)-NO ₂ (p.a.): 0.67	the whole pregnancy (adjustment for
		PM _{2.5} abs (p.a.)-NO ₂ (1st trim.): 0.34 PM _{2.5} abs (p.a.)-NO ₂ (2nd trim.): 0.63	season of conception) 4th quartile: 1.72 (1.08, 2.73)
		PM _{2.5} abs (p.a.)-NO ₂ (3rd trim.): 0.36	Per 0.5 * 10-5/m: 1.38 (0.96, 1.86)
		PM _{2.5} abs (1st trim.)-PM _{2.5} abs (2nd trim.): 0.32	Prevalence ratios (PRs) of birth weight <3000 g during exposure over
		PM _{2.5} abs (1st trim.)-PM _{2.5} abs (3rd trim.): -0.26	the whole pregnancy Single-pollutant models
		PM _{2.5} abs (1st trim.)-PM _{2.5} (p.a.): 0.33 PM _{2.5} abs (1st trim.)-PM _{2.5} (1st trim.):	(Restricted analysis to PM _{2.5} below the median)
		0.27 PM _{2.5} abs (1st trim.)-PM _{2.5} (2nd trim.):	Per 0.5 * 10-5/m: 1.67 (0.66, 3.73)
		0.08 PM _{2.5} abs (1st trim.)-PM _{2.5} (3rd trim.):	Prevalence ratios (PRs) of birth weight <3000 g during exposure over
		0.48 PM _{2.5} abs (1st trim.)-NO ₂ (p.a.): 0.29	first trimester of pregnancy Each trimester separately
		PM _{2.5} abs (1st trim.)-NO ₂ (1st trim.): 0.84 PM _{2.5} abs (1st trim.)-NO ₂ (2nd trim.):	2nd quartile: 1.15 (0.73, 1.80) 3rd quartile: 1.01 (0.61, 1.53);
		0.16 PM _{2.5} abs (1st trim.)-NO ₂ (3rd trim.): -	4th quartile: 1.04 (0.70, 1.57) Per 0.5 * 10-5/m: 1.03 (0.82, 1.28)
		0.39 PM _{2.5} abs (2nd trim.)-PM _{2.5} abs (3rd	All trimesters adjusted simultaneously
		trim.): 0.31 PM _{2.5} abs (2nd trim.)-PM _{2.5} (p.a.): 0.48	2nd quartile: 0.90 (0.52, 1.58) 3rd quartile: 0.82 (0.45, 1.31); 4th quartile: 0.88 (0.53, 1.42) Per 0.5 * 10-5/m: 1.02 (0.77, 1.29)
		PM _{2.5} abs (2nd trim.)-PM _{2.5} (1st trim.):	
		0.53 PM _{2.5} abs (2nd trim.)-PM _{2.5} (2nd trim.):	Prevalence ratios (PRs) of birth
		0.29 PM _{2.5} abs (2nd trim.)-PM _{2.5} (3rd trim.):	weight <3000 g during exposure over second trimester of pregnancy
		0.36 PM _{2.5} abs (2nd trim.)-NO ₂ (p.a.): 0.61	Each trimester separately 2nd quartile: 1.33 (0.85, 2.22)
		$PM_{2.5}^{-1}$ abs (2nd trim.)- NO_2 (1st frim.): 0.19	3rd quartile: 1.76 (1.07, 2.91); 4th quartile: 1.83 (1.11, 2.81)
		PM _{2.5} abs (2nd trim.)-NO ₂ (2nd trim.): 0.85	Per 0.5 * 10-5/m: 1.27 (1.04, 1.54)
		PM _{2.5} abs (2nd trim.)-NO ₂ (3rd trim.): 0.17	All trimesters adjusted simultaneously 2nd quartile: 1.30 (0.77, 2.16)
		PM _{2.5} abs (3rd trim.)-PM _{2.5} (p.a.): 0.52	3rd quartile: 1.63 (0.93, 2.73); 4th quartile: 1.99 (1.12, 3.33)
		PM _{2.5} abs (3rd trim.)-PM _{2.5} (1st trim.): 0.51	Per 0.5 * 10-5/m: 1.21 (0.93, 1.54)
		PM _{2.5} abs (3rd trim.)-PM _{2.5} (2nd trim.): 0.41	Prevalence ratios (PRs) of birth weight <3000 g during exposure over
		PM _{2.5} abs (3rd trim.)-PM _{2.5} (3rd trim.): 0.37	third trimester of pregnancy Each trimester separately
		PM _{2.5} abs (3rd trim.)-NO ₂ (p.a.): 0.40 PM _{2.5} abs (3rd trim.)-NO ₂ (1st	2nd quartile: 1.30 (0.85, 2.09)
		trim.):-0.34 PM _{2.5} abs (3rd trim.)-NO ₂ (2nd trim.):	3rd quartile: 0.92 (0.55, 1.50); 4th quartile: 1.50 (1.00, 2.27)
		0.21	Per 0.5 * 10-5/m: 1.20 (0.98, 1.44) All trimesters adjusted simultaneously
		PM _{2.5} abs (3rd trim.)-NO ₂ (3rd trim.): 0.88	2nd quartile: 0.99 (0.64, 1.62) 3rd quartile: 0.71 (0.40, 1.20);

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			4th quartile: 1.14 (0.68, 1.91) Per 0.5 * 10-5/m: 1.15 (0.92, 1.42)
			Prevalence ratios (PRs) of birth weight <3000 g during exposure over first trimester of pregnancy (adjustment for season of conception) All trimesters adjusted simultaneously 4th quartile: 0.73 (0.38, 1.38) Per 0.5 * 10-5/m: 0.93 (0.41, 1.32)
			Prevalence ratios (PRs) of birth weight <3000 g during exposure over second trimester of pregnancy (adjustment for season of conception) All trimesters adjusted simultaneously 4th quartile: 2.45 (1.22, 4.77) Per 0.5 * 10-5/m: 1.14 (0.70, 1.64)
			Prevalence ratios (PRs) of birth weight <3000 g during exposure over third trimester of pregnancy (adjustment for season of conception) All trimesters adjusted simultaneously 4th quartile: 1.19 (0.60, 2.48) Per 0.5 * 10-5/m: 1.29 (0.90, 1.75)
			Sensitivity analysis (bootstrapped PR) 2nd quartile: 1.19 (0.76, 1.91) 3rd quartile: 1.52 (0.99, 2.34); 4th quartile: 1.62 (1.06, 2.55) Per 0.5 * 10-5/m: 1.35 (1.01, 1.83)
			Estimated increments in prevalence of birth weight <3000 g during exposure 9 mo after birth Per 0.5 * 10-5/m: 18% (-16%, 57%)
Reference: Wilhelm et al. (2005, 088668)	Outcome: Term low birth weight (LBW) (<2500 g at ≥ 37 completed wk gestation)	Pollutant: PM _{2.5} Averaging Time: 24 h (every 3 days) Entire pregnancy	PM Increment: 1) 10 μg/m³ 2) 3 levels: a) <25 percentile (reference)
Period of Study: 1994-2000 Location: Los Angeles County, California, U.S.	Vaginal birth <37 completed wk gestation	Trimesters of pregnancy Months of pregnancy 6 wk before birth	b) 25%-75 percentile c) ≥ 75 percentile
	Age Groups: LBW: ≥ 37 completed wk	Mean (SD):	Incidence of LBW (third trimester
	Preterm births: <37 completed wk	First trimester: 21.9	exposure) <17.1 μg/m³: 2.4 (2.0, 2.8)
	Study Design: Cross-sectional study	Third trimester: 21.0 6 wk before birth: 21.0	17.1 to <24.0 µg/m³: 2.2 (2.0, 2.5) ≥ 24.0 µg/m³: 2.1 (1.7, 2.4)
	N: For LBW: 136,134	Range (Min, Max):	10 ()
	For preterm birth:	First trimester: 11.8-38.9	Incidence of preterm birth (first trimester exposure)
	106,483	Third trimester: 11.838.9 6 wk before birth: 9.9-48.5	<18.0 μg/m³: 10.6 (9.6, 11.7) 18.0 to <25.4 μg/m³: 8.8 (8.1, 9.5)
	Statistical Analyses: Logistic regression	Monitoring Stations: Zip-code-level analysis: 9	≥ 25.4 µg/m³: 9.0 (8.1, 10.0) Incidence of preterm birth (6 wk
	Covariates: Maternal age, maternal	Address-level analysis: 8	before birth exposure)
	race, maternal education, parity, interval since previous live birth, level of prenatal care, infant sex, previous LBW or	Copollutant (correlation): First trimester	<16.5 µg/m³: 8.2 (7.4, 9.1) 16.5 to <24.7 µg/m³: 8.8 (8.2, 9.4) ≥ 24.7 µg/m³: 9.6 (8.7, 10.5)
	preterm infant, birth season, other pollutants (not specified in birth weight analyses, also adjusted for gestational age)	PM _{2.5} -CO: 0.57 PM _{2.5} -NO ₂ : 0.73 PM _{2.5} -O ₃ : -0.55 PM _{2.5} -PM ₁₀ : 0.43 Third trimester:	Outcome: Preterm birth Exposure Period: First trimester of pregnancy
	Dose-response Investigated? Yes	PM _{2.5} -CO: 0.67	Address-level analysis: Single-pollutant model: Distance ≤ 1
	Statistical Package: NR	PM _{2.5} -NO ₂ : 0.78 PM _{2.5} -O ₃ : -0.60	mile Per 10 µg/m³: 0.85 (0.70, 1.02)
	Ü-	PM _{2.5} -PM ₁₀ : 0.52 6 wk before birth: PM _{2.5} -CO: 0.63	18.1 to <25.2 µg/m³: 0.91 (0.72, 1.16) ≥ 25.2 µg/m³: 0.83 (0.60, 1.14) Single-pollutant model:
		PM _{2.5} -NO ₂ : 0.74 PM _{2.5} -O ₃ : -0.60	1 <distance 2="" mile<br="" ≤="">Per 10 µg/m³: 0.85 (0.74, 0.99)</distance>
		PM _{2.5} -PM ₁₀ : 0.60	18.3 to <25.2 μg/m ³ : 0.81 (0.69, 0.94)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			≥ 25.2 µg/m³: 0.79 (0.65, 0.97) Multipollutant model1 <distance (0.70,="" (0.74,="" (0.78,="" (0.84,="" 0.76="" 0.79="" 0.83="" 0.84)<="" 0.85)="" 0.88)="" 1.18="" 1.65)="" 10="" 18.5="" 2="" 24.9="" 4="" <24.9="" <distance="" mile="" model:="" m³:="" per="" single-pollutant="" td="" to="" µg="" ≤="" ≥=""></distance>
			Zip-code-level analysis: Single-pollutant model: Per 10 μ g/m³: 0.73 (0.67, 0.80) 18.0 to <25.4 μ g/m³: 0.70 (0.61, 0.80) ≥ 25.4 μ g/m³: 0.64 (0.53, 0.76)
			Outcome: Preterm birth Exposure Period: 6 wk before birth Address-level analysis: Single-pollutant model: Distance ≤ 1 mile Per 10 µg/m³: 1.09 (0.91, 1.30) 16.8 to <24.1 µg/m³: 1.21 (0.97, 1.51) ≥ 24.1 µg/m³: 1.25 (0.93, 1.68) Single-pollutant model: 1 <distance (0.82,="" (0.87,="" (0.97,="" (0.99,="" (1.00,="" 0.94="" 1.04="" 1.05="" 1.06="" 1.08="" 1.08)="" 1.10)="" 1.13)="" 1.17)<="" 1.21)="" 1.24)="" 10="" 17.2="" 17.3="" 2="" 24.5="" 24.6="" 4="" <24.5="" <24.6="" <distance="" mile="" model:="" m³:="" per="" single-pollutant="" td="" to="" µg="" ≤="" ≥=""></distance>
			Zip-code-level analysis Single-pollutant model: Per 10 μg/m³: 1.10 (1.00, 1.21) 16.5 to <24.7 μg/m³: 1.06 (0.94, 1.20) ≥ 24.7 μg/m³: 1.19 (1.02, 1.40) (See Notes) Multipollutant model Per 10 μg/m³: 1.12 (0.90, 1.40) ≥ 24.6 μg/m³: 1.12 (0.82, 1.52) Notes: In the table, the 75 percentile is noted as 24.7 μg/m³. However, the text notes the 75 percentile as 24.3 μg/m³.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Woodruff et al. (2006,	Outcome (ICD10): SIDS (R95)	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
088758)	Respiratory mortality (J00-J99)	Averaging Time: 24 hrs (every 6 days)	RR Estimate [Lower CI, Upper CI] lag:
Period of Study: 1999-2000	Bronchopulmonary dysplasia (P27.1)	(time period between birth and post neonatal death for the infant who died	All-cause mortality:
Location: California	External accidents (V01-Y98)	and the same period for its four matched surviving infants)	Unadjusted: 1.15 (1.00, 1.32) Adjusted: 1.07 (0.93, 1.24) Cause-specific mortality:
	III-defined and unspecified causes of mortality (R99)	Percentiles: Infants who died of all causes (cases)	Respiratory (all): Jnadjusted: 2.15 (1.15, 4.02)
	Age Groups: >28 days old	25th: 13.4	Adjusted: 2.13 (1.12, 4.05) Respiratory (excluding deaths due to
	Study Design: Matched case-control (matched on date of birth and birth	50th(Median): 19.2	BPD): Adjusted: 1.42 (0.66, 3.03) Respiratory (BPD alone): Unadjusted: 6.00 (1.40, 27.76)
	weight)	75th : 23.6	
	N: 3877 infants	Matched controls	Respiratory (low birth weight infants only):
	Statistical Analyses: Conditional logistic regression	25th: 13.5	Unádjusted: 3.09 (1.14, 8.40)
	Covariates: Maternal race, education, parity, age, marital status	50th(Median): 18.4	Respiratory (normal birth weight infants only):
		75th : 22.7	Unadjusted: 1.66 (0.74, 3.70) Respiratory (with matched PM _{2.5} avgd
	Dose-response Investigated? Yes	Monitoring Stations:	over all monitors in county)
	Statistical Package: STATA	73 (from 39 counties)	Adjusted: 2.28 (0.94, 5.52) Respiratory (averaging all PM _{2.5} measurements in county over the 2-yr study period): Adjusted: 2.26 (0.83, 6.21) SIDS: Unadjusted: 0.86 (0.61, 1.22) Adjusted: 0.82 (0.55, 1.23) SIDS (includes ICD10 code R99: ill-defined and unspecified causes of mortality): Adjusted: 1.03 (0.79, 1.35) External causes: Unadjusted: 0.91 (0.56, 1.47) Adjusted: 0.83 (0.50, 1.39) Compare against the lowest quartile, estimates for respiratory-specific mortality were provided: 2nd quartile: 1.28 (0.47, 3.51) 3rd quartile: 1.75 (0.65, 4.72) 4th quartile: 2.35 (0.85, 6.54)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Woodruff et al. (2008,	Outcome (ICD10): Postneonatal	Pollutant: PM _{2.5}	PM Increment: IQR (7 µg/m³)
098386) Period of Study: 1999-2002	deaths: Respiratory mortality (J000-99, plus bronchopulmonary dysplasia [BPD] P27.1)	Averaging Time: Measured continuously for 24 h once every 6 days	Effect Estimate [Lower CI, Upper CI]: Adjusted ORs for single pollutant models
Location: U.S. counties with >250,000	SIDS (R95)	exposure assigned by calculating avg	All causes: 1.04 (0.98, 1.11)
residents (96 counties)	III-defined causes (R99)	concentration of pollutant during first 2 mo of life	Respiratory: 1.11 (0.96, 1.29)
	All other deaths evaluated as a control	Median and IQR (25th-75th	SIDS: 1.01 (0.86, 1.20)
	category	percentile):	III-defined + SIDS: 1.06 (0.97, 1.17)
	Age Groups: Infants aged >28 days and <1 yr	Survivors: 14.8 (11.7-18.7)	Other causes: 1.03 (0.96, 1.12)
	,	All causes of death: 14.9 (12.0-18.6)	Adjusted ORs for multipollutant models
	Study Design: Cross-sectional	Respiratory: 14.8 (11.5-18.5)	(including CO, O ₃ , SO ₂)
	N: 3,583,495 births (6,639 post neonatal deaths)	SIDS: 14.5 (12.0-17.5)	Respiratory: 1.05 (0.89, 1.24)
	Statistical Analyses: Logistic GEE	SIDS + ill-defined: 14.8 (12.1-18.5)	SIDS: 1.04 (0.87, 1.23)
	(exchangeable correlation structure)	Other causes: 14.9 (12.0-18.6)	OR for respiratory deaths assessing
	Covariates: maternal race/ethnicity, marital status, age, education, primiparity, county-level poverty and per capita income levels, yr and month of birth dummy variables to account for time trend and seasonal effects, and region of the country	Percentiles: See above	exposure as quartiles
		PM Component: Not assessed, but controlled for region of the country to account for PM composition variation	Highest vs. Lowest quartile: 1.39 (1.04, 1.85)
		Monitoring Stations: NR	
	sensitivity analyses performed among only those mothers with smoking information (adjustment for smoking had no effect on the estimates)	Copollutant (correlation): PM ₁₀ (r = 0.34)	
		PM _{2.5}	
	Season: Adjusted for yr and month of	CO (r = 0.35)	
	birth dummy variables to account for time trend and seasonal effects	SO ₂ (r = 0.21)	
	Dose-response Investigated?	O_3 (r = -0.10)	
	Evaluated the appropriateness of a linear form from analysis based on quartiles of exposure and concluded that linear form was appropriate (data not	Notes: Monthly avg calculated if there were at least 3 available measures for PM	
	shown)	Assigned exposures using the avg concentration of the county of residence	
	Statistical Package: SAS	concentration of the county of residence	

¹All units expressed in μg/m³ unless otherwise specified.

E.8. Long-Term Exposure and Mortality

Table E-30. Long-term exposure-mortality - PM₁₀.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Breitner et al., 2009,	Outcome: Mortality, excluding infants	Pollutant: PM ₁₀	Increment: IQR
188439) Period of Study: Oct 1991-Mar 2002	and ICD-9 ≥ 800	Averaging Time: Daily	Relative Risk (95% CI) Lag
	Study Design: Time-series Covariates: Seasonal and weekday	Mean (SD) Unit:	New City Limits 6-day IQR: 17.2
Location: Efurt, Germany	variations, influenza epidemics, air temperature, relative humidity	1 (10/1/1991-8/31/1995): 50.6 ± 32.2 µg/m ³	PDL: 0.997 (0.972-1.022) Mean of lags 0-5: 0.995 (0.971-1.019)
	Statistical Analysis: Semiparametric Poisson regression, polynomial distributed lag (PDL)	2 (9/1/1995-2/28/1998): 41.1 ± 28.4 μg/m ³	Old City Limits 6-day IQR: 17.2 PDL: 1.004 (0.978-1.031)
	Statistical Package: R	3 (3/1/1998-3/31/2002): 24.3 ± 15.4 μg/m ³	Mean of lags 0-5: 1.001 (0.976-1.027)
	Age Groups: All	Total: 38.0 ±28.3 μg/m ³	New City Limits
	7.go 0.00po17.iii	Range (Min, Max): NR	15-day IQR: 14.5 PDL: 1.008 (0.982-1.036)
		Copollutant: NO ₂ , CO, UFP	Mean of lags 0-14: 1.006 (0.981-1.032)
			Old City Limits 15-day IQR: 14.5 PDL: 1.019 (0.991-1.048) Mean of lags 0-14: 1.017 (0.990-1.044)
			Multiday Ma, 6-day Overall IQR: 24.2 Overall RR (95% CI): 0.998 (0.976-1.021) Period 1: 0.996 (0.969-1.024) Period 2: 1.013 (0.972-1.056) Period 3: 0.949 (0.897-1.004) Multiday Ma, 15-day Overall IQR: 22.3 Overall RR (95% CI): 1.020 (0.993-1.093) Period 1: 1.017 (0.984-1.051) Period 2: 1.012 (0.973-1.071) Period 3: 0.978 (0.911-1.051)
Reference: (Slama et al., 2007,	Outcome: Birth weight offspring at term		PM Increment: 1) 1 μg/m³
093216) Paried of Study: lon 1009, lon 1000	Study Design: Cohort study	larger PM size fractions)	2) Quartiles: a) 1st (reference) (7.2-13.5 µg/m³)
Period of Study: Jan 1998-Jan 1999	N : 1016 births	Averaging Time: Entire pregnancy period and trimesters	b) 2nd (13.5-14.4 μg/m³)
Location: Munich, Germany	Statistical Analyses: Poisson model		c) 3rd (14.4-15.4 µg/m³) day) 4th (15.41-17.5 µg/m³)
	Covariates: Maternal passive smoking,	Percentiles: 25th: 13.5	Prevalence ratios (PRs) of birth
	maternal age, gestational duration, sex of child, parity, maternal education,	50th(Median): 14.4	weight <3000 g during exposure over the whole pregnancy
	maternal size, prepregnancy weight, other pollutants (PM _{2.5} , PM _{2.5}	75th: 15.4	Single-pollutant models Unadjusted models
	absorbance, NO ₂), season of conception	monitoring otations.	2nd quartile: 1.07 (0.65, 1.73); 3rd quartile: 1.38 (0.91, 2.09)
	Dose-response Investigated? Yes	Spatial component: 40	4th quartile; 1.45 (0.92, 2.25)
	Statistical Package: STATA	Temporal component: 1 Copollutant (correlation):	Per 1 µg/m³: 1.06 (0.95, 1.19) Adjusted models
		p.a. = pregnancy avg	2nd quartile: 1.08 (0.63, 1.82); 3rd quartile: 1.34 (0.86, 2.13)
		trim. = trimester	4th quartile: 1.73 (1.15, 2.69); Per 1 μg/m ³ : 1.13 (1.00, 1.29)
		PM _{2.5} (p.a.)-PM _{2.5} (1st trim.): 0.85	, , ,
		PM _{2.5} (p.a.)-PM _{2.5} (2nd trim.): 0.77	Multipollutant models Adjusted models
		PM _{2.5} (p.a.)-PM _{2.5} (3rd trim.): 0.87	2nd quartile: 1.01 (0.57, 1.85)
		PM _{2.5} (p.a.)-NO ₂ (p.a.): 0.45	3rd quartile: 1.12 (0.64, 1.87) 4th quartile: 1.36 (0.72, 2.45); Per
		PM _{2.5} (p.a.)-NO ₂ (1st trim.): 0.18	1 μg/m³: 1.07 (0.91, 1.26)
		PM _{2.5} (p.a.)-NO ₂ (2nd trim.): 0.32	Single-pollutant models (restricted

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
		PM _{2.5} (p.a.)-NO ₂ (3rd trim.): 0.37	Analysis to PM _{2.5} absorbance below the
		PM _{2.5} (1st trim.)-PM _{2.5} (2nd trim.): 0.40	median) Per 1 μg/m³: 1.15 (0.89, 1.52)
		PM _{2.5} (1st trim.)-PM _{2.5} (3rd trim.): 0.68	
		PM _{2.5} (1st trim.)-NO ₂ (p.a.): 0.48	Prevalence ratios (PRs) of birth weight <3000 g
		PM _{2.5} (1st trim.)-NO ₂ (1st trim.): 0.15	Multipollutant models (simultaneous
		PM _{2.5} (1st trim.)-NO ₂ (2nd trim.): 0.41	adjustment of 3rd trimester PM _{2.5} and whole pregnancy PM _{2.5})
		PM _{2.5} (1st trim.)-NO ₂ (3rd trim.): 0.39	PM _{2.5} (whole pregnancy) Per 1 μg/m ³ : 0.96 (0.75, 1.19)
		PM _{2.5} (2nd trim.)-PM _{2.5} (3rd trim.): 0.51	PM _{2.5} (3rd trimester)
		PM _{2.5} (2nd trim.)-NO ₂ (p.a.): 0.23	Per 1 μg/m ³ : 1.17 (0.98, 1.40)
		PM _{2.5} (2nd trim.)-NO ₂ (1st trim.): -0.03	Prevalence ratios (PRs) of birth
		PM _{2.5} (2nd trim.)-NO ₂ (2nd trim.): 0.17	weight <3000 g during exposure over the whole pregnancy (adjustment for
		PM _{2.5} (2nd trim.)-NO ₂ (3rd trim.): 0.30	season of conception)
		PM _{2.5} (3rd trim.)-NO ₂ (p.a.): 0.39	4th quartile: 1.68 (1.05, 2.75); Per 1 μg/m ³ : 1.12 (0.97, 1.28)
		PM _{2.5} (3rd trim.)-NO ₂ (1st trim.): 0.33	
		PM _{2.5} (3rd trim.)-NO ₂ (2nd trim.): 0.21	Prevalence ratios (PRs) of birth weight <3000 g during exposure over
		PM _{2.5} (3rd trim.)-NO ₂ (3rd trim.): 0.23	first trimester of pregnancy
		PM _{2.5} (p.a.)- PM _{2.5} absorbance (p.a.):	Each trimester separately 2nd quartile: 1.14 (0.74, 1.96); 3rd
		0.69	quartile: 1.28 (0.84, 2.10)
		PM _{2.5} (p.a.)- PM _{2.5} abs (1st trim.): 0.33	4th quartile: 1.65 (1.02, 2.60) Per 1 µg/m ³ : 1.10 (0.99, 1.20)
		PM _{2.5} (p.a.)- PM _{2.5} abs (2nd trim.): 0.48	All trimesters adjusted simultaneously
		PM _{2.5} (p.a.)- PM _{2.5} abs (3rd trim.): 0.52	2nd quartile: 0.97 (0.60, 1.73); 3rd quartile: 0.98 (0.57, 1.75)
		PM _{2.5} (1st trim.)- PM _{2.5} abs (p.a.): 0.68	4th quartile: 1.22 (0.71, 2.18)
		PM _{2.5} (1st trim.)- PM _{2.5} abs (1st trim.): 0.27	Per 1 µg/m³: 1.03 (0.90, 1.17)
		$PM_{2.5}$ (1st trim.)- $PM_{2.5}$ abs (2nd trim.): 0.53	Prevalence ratios (PRs) of birth weight <3000 g during exposure over
		$PM_{2.5}$ (1st trim.)- $PM_{2.5}$ abs (3rd trim.): 0.51 $PM_{2.5}$ (2nd trim.)- $PM_{2.5}$ abs(p.a.): 0.41 $PM_{2.5}$ (2nd trim.)- $PM_{2.5}$ abs (1st trim.):	second trimester of pregnancy Each trimester separately 2nd quartile: 0.83 (0.52, 1.32); 3rd quartile: 1.08 (0.71, 1.60)
		0.08 PM _{2.5} (2nd trim.)- PM _{2.5} abs (2nd trim.): 0.29	4th quartile: 0.94 (0.61, 1.47) Per 1 µg/m³: 1.01 (0.92, 1.12) All trimesters adjusted simultaneously
		PM _{2.5} (2nd trim.)- PM _{2.5} abs (3rd trim.): 0.41 PM _{2.5} (3rd trim.)- PM _{2.5} abs (p.a.): 0.62 PM _{2.5} (3rd trim.)- PM _{2.5} abs (1st trim.):	2nd quartile: 0.75 (0.46, 1.24) 3rd quartile: 0.86 (0.56, 1.30); 4th quartile: 0.75 (0.48, 1.23) Per 1 µg/m³: 0.94 (0.84, 1.06)
		0.48 PM _{2.5} (3rd trim.)- PM _{2.5} abs (2nd trim.): 0.36	Prevalence ratios (PRs) of birth weight <3000 g during exposure over third trimester of pregnancy
		PM _{2.5} (3rd trim.)- PM _{2.5} abs (3rd trim.):	Each trimester separately 2nd quartile: 1.30 (0.80, 2.17)
		0.37	3rd quartile: 1.44 (0.85, 2.27)
			4th quartile: 1.90 (1.20, 2.82) Per 1 µg/m³: 1.14 (1.02, 1.24)
			All trimesters adjusted simultaneously 2nd quartile: 1.34 (0.79, 2.30)
			3rd quartile: 1.48 (0.86, 2.58)
			4th quartile: 1.91 (1.00, 3.20) Per 1 μg/m³: 1.14 (0.99, 1.29)
			Prevalence ratios (PRs) of birth weight <3000 g during exposure over
			third trimester of pregnancy (adjustment for season of conception)
			All trimesters adjusted simultaneously Per 1 µg/m³: 1.25 (1.04, 1.50)
			Sensitivity analysis (bootstrapped PR) 2nd quartile: 0.98 (0.63, 1.61); 3rd quartile: 1.22 (0.82, 2.02) 4th quartile: 1.57 (1.02, 2.57) Per 1 µg/m³: 1.11 (0.98, 1.27)
			Estimated increments in prevalence of birth weight of <3000 g during exposure 9 mo after birth

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Per 1 µg/m³: 7% (-7%, 22%)
Reference: (Slama et al., 2007,	Outcome: Birth weight offspring at term	Pollutant: PM _{2.5} absorbance (estimated)	PM Increment: 1) 0.5 * 10-5/m
093216)	Study Design: Cohort study	Averaging Time: Entire pregnancy	2) Quartiles:
Period of Study: Jan 1998-Jan 1999	N: 1016 births	period and trimesters	a) 1st (reference) (1.29-1.61) b) 2nd (1.61-1.72)
Location: Munich, Germany	Statistical Analyses: Poisson model	Mean (SD): 1.76 *	c) 3rd (1.72-1.89) day) 4th (1.89-3.10)
	Covariates: Maternal passive smoking,	Percentiles: 25th: 1.61*	Prevalence ratios (PRs) of birth
	maternal age, gestational duration, sex of child, parity, maternal education,	50th(Median): 1.72*	weight <3000 g during exposure over the whole pregnancy
	maternal size, prepregnancy weight, other pollutants (PM _{2.5} , PM _{2.5}	75th: 1.89 *	Single-pollutant models
	absorbance, NO ₂), season of conception	Unit (i.e. μg/ m³): 10-5/m	Unadjusted models 2nd quartile: 1.19 (0.74, 1.99)
	Dose-response Investigated? Yes	Monitoring Stations: Spatial component: 40	3rd quartile: 1.56 (0.98, 2.50); 4th quartile: 1.52 (0.96, 2.46)
	Statistical Package: STATA	Temporal component: 1	Per 0.5 * 10-5/m: 1.25 (0.90, 1.70)
		Copollutant (correlation): p.a. = pregnancy avg	Adjusted models 2nd quartile: 1.21 (0.73, 1.97)
		trim. = trimester	3rd quartile: 1.63 (0.98, 2.57); 4th quartile: 1.78 (1.10, 2.70)
		abs = absorbance $PM_{2.5}$ abs (p.a.)- $PM_{2.5}$ abs (1st trim.):	Per 0.5 * 10-5/m: 1.45 (1.06, 1.87)
		0.54 PM _{2.5} abs (p.a.)-PM _{2.5} abs (2nd trim.):	Multipollutant models Adjusted models
		0.84	2nd quartile: 1.19 (0.70, 2.01)
		PM _{2.5} abs (p.a.)-PM _{2.5} abs (3rd trim.): 0.55	3rd quartile: 1.55 (0.80, 2.80); 4th quartile: 1.46 (0.67, 2.90)
		PM _{2.5} abs (p.a.)-PM _{2.5} (p.a.): 0.69 PM _{2.5} abs (p.a.)-PM _{2.5} (1st trim.): 0.68	Per 0.5 * 10-5/m: 1.33 (0.76, 2.38)
		PM _{2.5} abs (p.a.)-PM _{2.5} (2nd trim.): 0.41	Prevalence ratios (PRs) of birth
		PM _{2.5} abs (p.a.)-PM _{2.5} (3rd trim.): 0.62 PM _{2.5} abs (p.a.)-NO ₂ (p.a.): 0.67	weight <3000 g during exposure over the whole pregnancy (adjustment for
		PM _{2.5} abs (p.a.)-NO ₂ (1st trim.): 0.34	season of conception)
		PM _{2.5} abs (p.a.)-NO ₂ (2nd trim.): 0.63 PM _{2.5} abs (p.a.)-NO ₂ (3rd trim.): 0.36	4th quartile: 1.72 (1.08, 2.73) Per 0.5 * 10-5/m: 1.38 (0.96, 1.86)
		PM _{2.5} abs (1st trim.)-PM _{2.5} abs (2nd	Prevalence ratios (PRs) of birth weight <3000 g during exposure over
		trim.): 0.32 PM _{2.5} abs (1st trim.)-PM _{2.5} abs (3rd	the whole pregnancy
		trim.): -0.26 PM _{2.5} abs (1st trim.)-PM _{2.5} (p.a.): 0.33	Single-pollutant models (Restricted analysis to PM _{2.5} below the
		PM _{2.5} abs (1st trim.)-PM _{2.5} (1st trim.):	median)
		0.27 PM _{2.5} abs (1st trim.)-PM _{2.5} (2nd trim.):	Per 0.5 * 10-5/m: 1.67 (0.66, 3.73)
		0.08	Prevalence ratios (PRs) of birth weight <3000 g during exposure over
		PM _{2.5} abs (1st trim.)-PM _{2.5} (3rd trim.): 0.48	first trimester of pregnancy
		PM _{2.5} abs (1st trim.)-NO ₂ (p.a.): 0.29 PM _{2.5} abs (1st trim.)-NO ₂ (1st trim.): 0.84	Each trimester separately 2nd quartile: 1.15 (0.73, 1.80)
		PM _{2.5} abs (1st trim.)-NO ₂ (2nd trim.):	3rd quartile: 1.01 (0.61, 1.53); 4th quartile: 1.04 (0.70, 1.57)
		0.16 PM _{2.5} abs (1st trim.)-NO ₂ (3rd trim.): -	Per 0.5 * 10-5/m: 1.03 (0.82, 1.28)
		0.39 PM _{2.5} abs (2nd trim.)-PM _{2.5} abs (3rd	All trimesters adjusted simultaneously 2nd quartile: 0.90 (0.52, 1.58)
		trim.): 0.31	3rd quartile: 0.82 (0.45, 1.31);
		PM _{2.5} abs (2nd trim.)-PM _{2.5} (p.a.): 0.48 PM _{2.5} abs (2nd trim.)-PM _{2.5} (1st trim.):	4th quartile: 0.88 (0.53, 1.42) Per 0.5 * 10-5/m: 1.02 (0.77, 1.29)
		0.53	Prevalence ratios (PRs) of birth
		PM _{2.5} abs (2nd trim.)-PM _{2.5} (2nd trim.): 0.29	weight <3000 g during exposure over
		PM _{2.5} abs (2nd trim.)-PM _{2.5} (3rd trim.): 0.36	second trimester of pregnancy Each trimester separately
		PM _{2.5} abs (2nd trim.)-NO ₂ (p.a.): 0.61	2nd quartile: 1.33 (0.85, 2.22) 3rd quartile: 1.76 (1.07, 2.91);
		PM _{2.5} abs (2nd trim.)-NO ₂ (1st trim.): 0.19	4th quartile: 1.83 (1.11, 2.81)
		PM _{2.5} abs (2nd trim.)-NO ₂ (2nd trim.): 0.85	Per 0.5 * 10-5/m: 1.27 (1.04, 1.54) All trimesters adjusted simultaneously
		PM _{2.5} abs (2nd trim.)-NO ₂ (3rd trim.):	2nd quartile: 1.30 (0.77, 2.16)
		0.17 PM _{2.5} abs (3rd trim.)-PM _{2.5} (p.a.): 0.52	3rd quartile: 1.63 (0.93, 2.73); 4th quartile: 1.99 (1.12, 3.33)
		PM _{2.5} abs (3rd trim.)-PM _{2.5} (1st trim.):	Per 0.5 * 10-5/m: 1.21 (0.93, 1.54)
		0.51 PM _{2.5} abs (3rd trim.)-PM _{2.5} (2nd trim.):	Prevalence ratios (PRs) of birth
		0.41 PM _{2.5} abs (3rd trim.)-PM _{2.5} (3rd trim.):	weight <3000 g during exposure over third trimester of pregnancy
		0.37	Each trimester separately
		PM _{2.5} abs (3rd trim.)-NO ₂ (p.a.): 0.40 PM _{2.5} abs (3rd trim.)-NO ₂ (1st trim.): -	2nd quartile: 1.30 (0.85, 2.09) 3rd quartile: 0.92 (0.55, 1.50);

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
		0.34 $PM_{2.5}$ abs (3rd trim.)- NO_2 (2nd trim.): 0.21 $PM_{2.5}$ abs (3rd trim.)- NO_2 (3rd trim.): 0.88	4th quartile: 1.50 (1.00, 2.27) Per 0.5 * 10-5/m: 1.20 (0.98, 1.44) All trimesters adjusted simultaneously 2nd quartile: 0.99 (0.64, 1.62) 3rd quartile: 0.71 (0.40, 1.20); 4th quartile: 1.14 (0.68, 1.91) Per 0.5 * 10-5/m: 1.15 (0.92, 1.42)
			Prevalence ratios (PRs) of birth weight <3000 g during exposure over first trimester of pregnancy (adjustment for season of conception) All trimesters adjusted simultaneously 4th quartile: 0.73 (0.38, 1.38) Per 0.5 * 10-5/m: 0.93 (0.41, 1.32)
			Prevalence ratios (PRs) of birth weight <3000 g during exposure over second trimester of pregnancy (adjustment for season of conception) All trimesters adjusted simultaneously 4th quartile: 2.45 (1.22, 4.77) Per 0.5 * 10-5/m: 1.14 (0.70, 1.64)
			Prevalence ratios (PRs) of birth weight <3000 g during exposure over third trimester of pregnancy (adjustment for season of conception) All trimesters adjusted simultaneously 4th quartile: 1.19 (0.60, 2.48) Per 0.5 * 10-5/m: 1.29 (0.90, 1.75)
			Sensitivity analysis (bootstrapped PR) 2nd quartile: 1.19 (0.76, 1.91) 3rd quartile: 1.52 (0.99, 2.34); 4th quartile: 1.62 (1.06, 2.55) Per 0.5 * 10-5/m: 1.35 (1.01, 1.83)
			Estimated increments in prevalence of birth weight <3000 g during exposure 9 mo after birth Per 0.5 * 10-5/m: 18% (-16%, 57%)
Reference: Wilhelm et al. (2005, 088668) Period of Study: 1994-2000	Outcome: Term low birth weight (LBW) (<2500 g at ≥ 37 completed wk gestation)	Pollutant: PM _{2.5} Averaging Time: 24 h (every 3 days) Entire pregnancy	PM Increment: 1) 10 μg/m³ 2) 3 levels: a) <25 percentile (reference)
Location: Los Angeles County, California, U.S.	Vaginal birth <37 completed wk gestation	Trimesters of pregnancy Months of pregnancy 6 wk before birth	b) 25%-75 percentile c) ≥ 75 percentile
,	Age Groups: LBW: ≥ 37 completed wk	Mean (SD):	Incidence of LBW (third trimester
	Preterm births: <37 completed wk	First trimester: 21.9	exposure) <17.1 μg/m ³ : 2.4 (2,0, 2.8)
	Study Design: Cross-sectional study	Third trimester: 21.0 6 wk before birth: 21.0	17.1 to <24.0 µg/m³: 2.2 (2.0, 2.5) ≥ 24.0 µg/m³: 2.1 (1.7, 2.4)
	N: For LBW: 136,134		, ,
	For preterm birth:	Range (Min, Max): First trimester: 11.8-38.9	Incidence of preterm birth (first trimester exposure)
	106,483	Third trimester: 11.838.9 6 wk before birth: 9.9-48.5	<18.0 µg/m³: 10.6 (9.6, 11.7) 18.0 to <25.4 µg/m³: 8.8 (8.1, 9.5)
	Statistical Analyses: Logistic regression	Monitoring Stations: Zip-code-level analysis: 9	≥ 25.4 µg/m³: 9.0 (8.1, 10.0)
	Covariates: Maternal age, maternal race, maternal education, parity, interval since previous live birth, level of prenatal care, infant sex, previous LBW or	Address-level analysis: 8 Copollutant (correlation): First trimester PM _{2.5} -CO: 0.57	Incidence of preterm birth (6 wk before birth exposure) <16.5 µg/m³: 8.2 (7,4,9.1) 16.5 to <24.7 µg/m³: 8.8 (8.2, 9.4) ≥ 24.7 µg/m³: 9.6 (8.7, 10.5)
	preterm infant, birth season, other pollutants (not specified in birth weight analyses, also adjusted for gestational age)	PM _{2.5} -NO ₂ : 0.73 PM _{2.5} -O ₃ : -0.55 PM _{2.5} -PM ₁₀ : 0.43 Third trimester:	Outcome: Preterm birth Exposure Period: First trimester of pregnancy
	Dose-response Investigated? Yes	PM _{2.5} -CO: 0.67	Address-level analysis: Single-pollutant model:
	Statistical Package: NR	PM _{2.5} -NO ₂ : 0.78 PM _{2.5} -O ₃ : -0.60 PM _{2.5} -PM ₁₀ : 0.52 6 wk before birth:	Distance ≤ 1 mile Per 10 µg/m³: 0.85 (0.70, 1.02) 18.1 to <25.2 µg/m³:

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
		PM _{2.5} -CO: 0.63 PM _{2.5} -NO ₂ : 0.74 PM _{2.5} -O ₃ : -0.60 PM _{2.5} -PM ₁₀ : 0.60	0.91 (0.72, 1.16) ≥ 25.2 µg/m³: 0.83 (0.60, 1.14) Single-pollutant model: 1 < distance ≤ 2 mile Per 10 µg/m³: 0.85 (0.74, 0.99) 18.3 to <25.2 µg/m³: 0.81 (0.69, 0.94) ≥ 25.2 µg/m³: 0.79 (0.65, 0.97) Multipollutant model1 < distance ≤ 2 mile Per 10 µg/m³: 1.18 (0.84, 1.65) Single-pollutant model: 2 < distance ≤ 4 mile Per 10 µg/m³: 0.83 (0.78, 0.88) 18.5 to <24.9 µg/m³: 0.79 (0.74, 0.85) ≥ 24.9 µg/m³: 0.76 (0.70, 0.84)
			Zip-code-level analysis: Single-pollutant model: Per 10 μg/m³: 0.73 (0.67, 0.80) 18.0 to <25.4 μg/m³: 0.70 (0.61, 0.80) ≥ 25.4 μg/m³: 0.64 (0.53, 0.76)
			Outcome: Preterm birth Exposure Period: 6 wk before birth Address-level analysis: Single-pollutant model: Distance \leq 1 mile Per 10 µg/m³: 1.09 (0.91, 1.30) 16.8 to \leq 24.1 µg/m³: 1.21 (0.97, 1.51) \geq 24.1 µg/m³: 1.25 (0.93, 1.68) Single-pollutant model: 1 < distance \leq 2 mile Per 10 µg/m³: 1.08 (0.97, 1.21) 17.2 to \leq 24.5 µg/m³: 0.94 (0.82, 1.08) \geq 24.5 µg/m³: 1.04 (0.87, 1.24) Single-pollutant model: 2 < distance \leq 4 mile Per 10 µg/m³: 1.05 (0.99, 1.10) 17.3 to \leq 24.6 µg/m³: 1.06 (1.00, 1.13) \geq 24.6 µg/m³: 1.08 (0.99, 1.17)
			Zip-code-level analysis Single-pollutant model: Per 10 µg/m³: 1.10 (1.00, 1.21) 16.5 to <24.7 µg/m³: 1.06 (0.94, 1.20) ≥ 24.7 µg/m³: 1.19 (1.02, 1.40)
			(See Notes) Multipollutant model Per 10 μg/m³: 1.12 (0.90, 1.40) ≥ 24.6 μg/m³: 1.12 (0.82, 1.52)
			Notes: In the table, the 75 percentile is noted as 24.7 μg/m ³ . However, the text notes the 75 percentile as 24.3 μg/m ³ .

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Woodruff et al. (2006,	Outcome (ICD10): SIDS (R95)	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
088758)	Respiratory mortality (J00-J99)	Averaging Time: 24 h (every 6 days)	RR Estimate [Lower CI, Upper CI] lag:
Period of Study: 1999-2000	Bronchopulmonary dysplasia (P27.1)	(time period between birth and post neonatal death for the infant who died	All-cause mortality:
Location: California	External accidents (V01-Y98)	and the same period for its four matched surviving infants) Percentiles: Infants	Unadjusted: 1.15 (1.00, 1.32) Adjusted: 1.07 (0.93, 1.24)
	III-defined and unspecified causes of	who died of all causes (cases)	Cause-specific mortality: Respiratory (all):
	mortality (R99)	25th: 13.4	Unadjusted: 2.15 (1.15, 4.02) Adjusted: 2.13 (1.12, 4.05)
	Age Groups: >28 days old	50th(Median): 19.2	Respiratory (excluding deaths due to
	Study Design: Matched case-control (matched on date of birth and birth	75th: 23.6	BPD): Adjusted: 1.42 (0.66, 3.03)
	weight)	Matched controls	Respiratory (BPD alone): Unadjusted: 6.00 (1.40, 27.76)
	N: 3877 infants	25th: 13.5	Respiratory (low birth weight infants
	Statistical Analyses: Conditional	50th(Median): 18.4	only): Unadjusted: 3.09 (1.14, 8.40) Respiratory (normal birth weight infants
	logistic regression Covariates: Maternal race, education, parity, age, marital status	75th: 22.7	only): Unadjusted: 1.66 (0.74, 3.70) Respiratory (with matched PM _{2.5} avgd
		Monitoring Stations:	over all monitors in county) Adjusted: 2.28 (0.94, 5.52)
	Dose-response Investigated? Yes	73 (from 39 counties)	Respiratory (averaging all PM _{2.5}
	Statistical Package: STATA	,	measurements in county over the 2-yr study period): Adjusted: 2.26 (0.83, 6.21) SIDS:
			Unadjusted: 0.86 (0.61, 1.22) Adjusted: 0.82 (0.55, 1.23)
			SIDS (includes ICD10 code R99: ill-
			defined and unspecified causes of mortality):
			Adjusted: 1.03 (0.79, 1.35)
			External causes:
			Unadjusted: 0.91 (0.56, 1.47)
			Adjusted: 0.83 (0.50, 1.39) Compare against the lowest quartile,
			estimates for respiratory-specific
			mortality were provided:
			2nd quartile: 1.28 (0.47, 3.51)
			3rd quartile: 1.75 (0.65, 4.72)
			4th quartile: 2.35 (0.85, 6.54)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Woodruff et al. (2008,	Outcome (ICD10): Postneonatal deaths: Respiratory mortality (J000-99, plus bronchopulmonary dysplasia [BPD] P27.1)	Pollutant: PM _{2.5}	PM Increment: IQR (7 µg/m³)
098386) Period of Study: 1999-2002		Averaging Time: Measured continuously for 24 h once every 6 days	Effect Estimate [Lower CI, Upper CI]: Adjusted ORs for single pollutant models
Location: U.S. counties with >250,000	SIDS (R95)	Exposure assigned by calculating avg	All causes: 1.04 (0.98, 1.11)
residents (96 counties)	III-defined causes (R99)	concentration of pollutant during first 2 mo of life	Respiratory: 1.11 (0.96, 1.29)
	All other deaths evaluated as a control category	Median and IQR (25th-75th percentile):	SIDS: 1.01 (0.86, 1.20)
	Age Groups: Infants aged >28 days and <1 yr	Survivors: 14.8 (11.7-18.7) All causes of death: 14.9 (12.0-18.6) Respiratory: 14.8 (11.5-18.5)	III-defined + SIDS: 1.06 (0.97, 1.17) Other causes: 1.03 (0.96, 1.12)
	Study Design: Cross-sectional	SIDS: 14.5 (12.0-17.5) SIDS + ill-defined: 14.8 (12.1-18.5) Other causes: 14.9 (12.0-18.6)	Adjusted ORs for multipollutant models (including CO, O_3 , SO_2)
	N: 3,583,495 births (6,639 post neonatal deaths)	Percentiles: See above	Respiratory: 1.05 (0.89, 1.24)
	Statistical Analyses: Logistic GEE	PM Component: Not assessed, but	SIDS: 1.04 (0.87, 1.23)
	(exchangeable correlation structure)	controlled for region of the country to account for PM composition variation	OR for respiratory deaths assessing exposure as guartiles
	Covariates: Maternal race/ethnicity, marital status, age, education, primiparity, county-level poverty and per capita income levels, yr and month of birth dummy variables to account for time trend and seasonal effects, and region of the country	Monitoring Stations: NR	Highest vs. Lowest quartile: 1.39 (1.04,
		Copollutant (correlation):	1.85)
		PM_{10} (r = 0.34)	
		PM _{2.5}	
	sensitivity analyses performed among	CO (r = 0.35)	
	only those mothers with smoking information (adjustment for smoking had	SO_2 (r = 0.21)	
	no effect on the estimates)	O_3 (r = -0.10)	
	Season: Adjusted for yr and month of birth dummy variables to account for time trend and seasonal effects	Notes: Monthly avg calculated if there were at least 3 available measures for PM	
	Dose-response Investigated? Evaluated the appropriateness of a linear form from analysis based on quartiles of exposure and concluded that linear form was appropriate (data not shown)	Assigned exposures using the avg concentration of the county of residence	
	Statistical Package: SAS		

¹All units expressed in μg/m³ unless otherwise specified.

E.9. Long-Term Exposure and Mortality

Table E-31. Long-term exposure-mortality - PM₁₀.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Breitner et al., 2009, 188439)	Outcome: Mortality, excluding infants and ICD-9 ≥ 800	Pollutant: PM ₁₀	Increment: IQR
		Averaging Time: Daily	Relative Risk (95% CI) lag
Period of Study: Oct 1991-Mar 2002	Study Design: Time-series	Mean (SD) Unit:	New City Limits
Location: Efurt, Germany	Covariates: Seasonal and weekday variations, influenza epidemics, air temperature, relative humidity	1 (10/1/1991-8/31/1995): 50.6 ± 32.2 µg/m³ 2 (9/1/1995-2/28/1998): 41.1 ± 28.4 µg/m³	6-day IQR: 17.2 PDL: 0.997 (0.972-1.022) Mean of lags 0-5: 0.995 (0.971-1.019)
	Statistical Analysis: Semiparametric Poisson regression, polynomial distributed lag (PDL)	3 (3/1/1998-3/31/2002): 24.3 ± 15.4 µg/m³ Total: 38.0 ±28.3 µg/m³	Old City Limits 6-day IQR: 17.2 PDL: 1.004 (0.978-1.031)
	Statistical Package: R	Range (Min, Max): NR	Mean of lags 0-5: 1.001 (0.976-1.027)
Age Groups: All	Copollutant: NO ₂ , CO, UFP	New City Limits 15-day IQR: 14-5 PDL: 1.008 (0.982-1.036) Mean of lags 0-14: 1.006 (0.981-1.032) Old City Limits 15-day IQR: 14-5 PDL: 1.019 (0.991-1.048) Mean of lags 0-14: 1.017 (0.990-1.044) Multiday Ma, 6-day	
			Overall IQR: 24.2 Overall RR (95% CI): 0.998 (0.976-1.021) Period 1: 0.996 (0.969-1.024) Period 2: 1.013 (0.972-1.056) Period 3: 0.949 (0.897-1.004) Multiday Ma, 15-day Overall IQR: 22.3 Overall RR (95% CI): 1.020 (0.993-
			1.093) Period 1: 1.017 (0.984-1.051) Period 2: 1.012 (0.973-1.071) Period 3: 0.978 (0.911-1.051)

¹All units expressed in µg/m³ unless otherwise specified.

Table E-32. Long-term exposure-mortality - $PM_{10-2.5}$.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: (Chen et al., 2005, <u>087942</u>)	Outcome: Mortality: CHD	Pollutant: PM _{10-2.5}	Increment: 10 µg/m³
Period of Study: 1973-1998	Study Design: Cohort	Averaging Time: 25 yr	Relative Risk (Lower CI, Upper CI)
Location: San Francisco, San Diego,	Statistical Analyses: Cox proportion	Mean (SD): 25.4	l ag: Males
Los Angeles, CA	hazards model	Range (Min, Max): NR	PM _{10-2.5} : 0.93 (0.68, 1.29) 0-1 PM _{10-2.5} +NO ₂ : 0.86 (0.62, 1.20) 0-1
	Age Groups: >25	Copollutant: NO ₂	PM _{10-2.5} +NO ₂ : 0.90 (0.62, 1.20) 0-1 PM _{10-2.5} +SO ₂ : 0.90 (0.64,1.27) 0-1 PM _{10-2.5} +O ₃ : 1.01 (0.67,1.51) 0-1
		O ₃	Females
		SO ₂	PM _{10-2.5} : 1.20 (0.95, 1.53) 0-1 PM _{10-2.5} +NO ₂ : 1.19 (0.92, 1.54) 0-1 PM _{10-2.5} +SO ₂ : 1.31 (1.03,1.68) 0-1 PM _{10-2.5} +O ₃ : 1.47 (1.10,1.96) 0-1
Reference: Goss et al. (2004, <u>055624</u>)	Outcome: Mortality	Pollutant: PM _{2.5}	Increment: 10 μg/m ³
Period of Study: 1999-2000	Study Design: Cohort Study (Cystic Fibrosis Cohort)	Averaging Time: Annual avg	PM _{2.5} : 1.32 (0.91-1.93)
Location: United States		Mean (SD) unit: PM _{2.5} : 13.7 (4.2)	
	Statistical Analyses: Logistic Regression	IQR: PM _{2.5} : 11.8-15.9	
	Age Groups: >6 yr	Copollutant: O ₃ NO ₂ SO ₂ CO	
Reference: Lipert et al. (2009,	Outcome: Mortality	Pollutant: PM _{10-2.5}	Increment: 12
<u>190271</u>)	Study Design: Retrospective Cohort	Mean (SD): 16.0 (5.1)	1.07 (1.01, 1.13)
Location: Various parts of the Untied States hazards regression Age Groups: Male U.S. veter	Statistical Analyses: Cox proportional hazards regression		
	Age Groups: Male U.S. veterans between ages of 39 and 63 (Avg. age: 51)		
Reference: McDonnell et al. (2000,	Outcome: Mortality	Pollutant: PM _{10-2.5}	Increment: IQR
<u>010319</u>)	Study Design: Cohort (AHSMOG	Averaging Time: Monthly avg	All Cause: 1.05 (0.92-1.20)
Period of Study: 1973-1977 Location: California	airport cohort)	Mean (SD): PM _{10-2.5} : 27.3 (8.6)	Resp: 1.19 (0.88, 1.62)
	Statistical Analyses: Cox regression models	IQR: 9.7	Lung Cancer: 1.25 (0.63-2.49)
	Age Groups: Males, 27 yr+	Copollutant: O ₃ : 0.70 SO ₂ : 0.31 NO ₂ : 0.23 SO ₄ : 0.47	

¹All units expressed in μg/m³ unless otherwise specified.

Table E-33. Long-term exposure-mortality - PM_{2.5} (including PM components/sources).

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Abrahamowicz et al. (2003,	Outcome: Mortality: All-causes	Pollutant: PM _{2.5}	Relative Risk (Min Cl, Max Cl)
086292)	Study Design: Case-cohort study	Averaging Time: Annual	Estimated from graph (Fig 1): log HR
Period of Study: 1982-1989	Statistical Analyses: Cox proportion-	Mean (SD): 18.2	for a 24.5 μg/m³ increase in PM _{2.5} over time
Location: 151 Cities	hazards model flexible regression spline generalization	Range (Min, Max): (9.0, 33.5)	Yr
	Age Groups: >18	Copollutant: Sulfates	0: 0.5 (-1.1, 1.6) 2: 0.6 (0.2, 0.9) 4: 0.6 (0.3, 0.8) 6: 0.8 (0.3, 1.1) 8: -1.0 (-1.5, 1.0)
Reference: Abrahamowicz et al. (2003,	Outcome: Mortality: All-causes	Pollutant: Sulfates	Relative Risk (Min Cl, Max Cl)
086292)	Study Design: Case-cohort study	Averaging Time: Annual	Estimated from graph (Fig 1): Log HR
Period of Study: 1982-1989	Statistical Analyses: Cox proportion-	Mean (SD): 18.2	for a 19.9 µg/m³ increase in Sulfates over time
Location: 151 Cities	hazards model flexible regression spline generalization	Range (Min, Max): (9.0, 33.5)	Yr
	Age Groups: >18	Copollutant: PM _{2.5}	0: 0.1 (-0.2, 0.7) 2: 0.1 (-0.2, 0.4) 4: 0.0 (-0.4, 0.3) 6: 0.3 (-0.1, 0.5) 8: 0.4 (-0.4, 1.6)
Reference: Ballester et al. (2008,	Outcome: Mortality- All-causes	Pollutant: PM _{2.5}	Potential Reduction in the total
189977)	Study Design: Health Impact	Averaging Time: Annual	burden of mortality (min CI, max CI) for four different decreases in annual
Period of Study: 2001-2002	Assessment	Mean (SD): NR	PM ₂₅ using a conservative estimate Reduction to 25 μg/m ₃ - 0.4 (0.1, 0.8)
Location: Europe	Statistical Analyses: Aphesis Network Age Groups: >30	Range (Min, Max): NR	Reduction to 29 µg/m³ - 0.4 (0.1, 0.6) Reduction to 20 µg/m³ - 0.8 (0.2, 1.6) Reduction to 15 µg/m³ - 1.6 (0.4, 3.1) Reduction to 10 µg/m³ - 3.0 (0.8, 5.8)
Reference: Beelen et al. (2008,	Outcome: Mortality:	Pollutant: PM _{2.5}	Increment: 11 µg/m³
<u>156263</u>)	Total (nonaccidental) (<800)	Averaging Time: Annual	Relative Risk (Min CI, Max CI)
Period of Study: 1987-1996	Cardio-respiratory (390-448, 490-496,	Mean (SD): 28.3 (2.1) μg/m ³	RR for the association between exposures to PM _{2.5} and cause
Location: Netherlands	487, 480-486, 507)	Range (Min, Max): (23.0, 36.8)	specific mortality Natural Cause:
	Pulmonary (460-519)	Copollutant (correlation):	Full cohort: 1.06 (0.97, 1.16)
	Cardiovascular (400-440)	NO ₂ : (>0.8)	Case cohort: 0.86 (0.66, 1.13) Cardiovascular:
	Lung Cancer (162)	BS: (>0.8) SO ₂ : (>0.6)	Full cohort: 1.04 (0.90, 1.21) Case cohort: 0.83 (0.60, 1.15)
	Other-causes		Respiratory: Full cohort: 1.07 (0.75, 1.52)
	Study Design: Case-cohort study and prospective cohort		Case cohort: 1.02 (0.56, 1.88)
	Statistical Analyses: Cox proportion-hazards model		Lung Cancer: Full cohort: 1.06 (0.82, 1.38) Case cohort: 0.87 (0.52, 1.47)
	Age Groups: 55-69		Other cause: F Ull cohort: 1.08 (0.96, 1.23) Case cohort: 0.85 (0.65, 1.12)
			RR for the association between exposures to BS and cause specific mortality Natural Cause: Full cohort: 1.05 (1.00, 1.11) Case cohort: 0.97 (0.83, 1.13) Cardiovascular: Full cohort: 1.04 (0.95, 1.13) Case cohort: 0.98 (0.81, 1.18) Respiratory: Full cohort: 1.22 (0.99, 1.50) Case cohort: 1.29 (0.91, 1.83) Lung Cancer: Full cohort: 1.03 (0.88, 1.20) Case cohort: 1.03 (0.77, 1.38) Other cause: Full cohort: 1.04 (0.97, 1.12) Case cohort: 0.91 (0.78, 1.07)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Breitner et al. (2009,	Outcome: Mortality, excluding infants and ICD-9 ≥ 800	Pollutant: PM _{2.5}	Increment: IQR
<u>188439</u>)		Averaging Time: Daily	Relative Risk (95% CI) lag
Period of Study: Oct 1991-Mar 2002	Study Design: Time-series	Mean (SD) Unit:	New City Limits
Location: Efurt, Germany	Covariates: Seasonal and weekday variations, influenza epidemics, air temperature, relative humidity	1 (10/1/1991-8/31/1995): 50.6 ± 32.2 µg/m³ 2 (9/1/1995-2/28/1998): 41.1 ± 28.4 µg/m³	6-day IQR: 13.3 PDL: 1.009 (0.984-1.035) Mean of lags 0-5: 1.004 (0.981-1.027)
	Statistical Analysis: Semiparametric Poisson regression, polynomial distributed lag (PDL)	3 (3/1/1998-3/31/2002): 24.3 ± 15.4 µg/m³ Total: 38.0 ±28.3 µg/m³	Old City Limits 6-day IQR: 13.3 PDL: 1.017 (0.990-1.044)
	Statistical Package: R	Range (Min, Max): NR	Mean of lags 0-5: 1.010 (0.986-1.035)
	Age Groups: All	Copollutant: NO ₂ , CO, UFP	New City Limits 15-day IQR: 11.5 PDL: 1.019 (0.988-1.050) Mean of lags 0-14: 1.017 (0.992-1.042) Old City Limits 15-day IQR: 11.5 PDL: 1.030 (0.997-1.063)
			Mean of lags 0-14: 1.025 (0.999-1.052) Multiday Ma, 6-day Overall IQR: 13.3 Overall RR (95% CI): 1.004 (0.981-1.027) Period 1: NR Period 2: 1.017 (0.990-1.044) Period 3: 0.974 (0.937-1.013)
			Multiday Ma, 15-day Overall IQR: 11.5 Overall RR (95% CI): 1.017 (0.992-1.042) Period 1: NR Period 2: 1.016 (0.988-1.045) Period 3: 1.016 (0.971-1.063)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Brunekreef et al. (2009, 191947)	Outcome: All cause mortality (ICD-9 400-440, 460-519, > 800)	Pollutant: PM _{2.5} , estimated from PM ₁₀ levelsf	Increment: 10 µg/m³
Period of Study: 1987-1996	Study Design: Case-cohort	Averaging Time: 24 h	Relative Risk (95 % CI) for PM _{2.5} concentrations and cause specific
Location: The Netherlands	Covariates:	50th Percentile: 28 μg/m ³	mortality Case Cohort
	Individual: sex, age, Quetelet index, smoking status, passive smoking	Range (Min, Max): 23-37	Natural Cause: 0.86 (0.66-1.13)
	status, educational level, occupation, occupational exposure, marital status,	Copollutant (correlation):	Cardiovascular: 0.83 (0.60-1.15) Respiratory: 1.02 (0.56-1.88)
	alcohol use, intake of vegetables, fruits,	NO ₂ : 0.75	Lung Cancer: 0.87 (0.52-1.47) Noncardiopulmonary, non-lung cancer:
	energy, saturatured and monounsaturated fatty acids, trans fatty	BS: 0.84	0.85 (0.65-1.23)
	acids, total fiver, folic acid and fish	NO: 0.69	Full Cohort Natural Cause: 1.06 (0.97-1.16)
	Area-level: Percent of population with income below the 40th percentile and above the 80th percentile	SO ₂ : 0.43	Cardiovascular: 1.04 (0.90-1.21) Respiratory: 1.07 (0.75-1.52) Lung Cancer: 1.06 (0.82-1.38)
	Statistical Analysis: Cox proportional hazards		Noncardiopulmonary, non-lung cancer: 1.08 (0.72-1.19) Relative Risk (95%CI) for PM ₂₅
	Statistical Package: Stata, SPSS, R		concentrations and cause specific
	Age Groups: 120,000 adults aged		mortality in full cohort analysis by confounder model
Reference: Chen et al. (2005, 087942)	Outcome: Mortality: CHD	Pollutant: PM25	Natural Cause Mortality Unadjusted: 1.11 (1.04-1.20) Smoking: 1.04 (0.96-1.13) Smoking, area-level income: 1.06 (0.97-1.16) Cardiovascular Mortality Unadjusted: 1.09 (0.97-1.23) Smoking: 1.02 (0.90-1.16) Smoking, area-level income: 1.04 (0.90-1.21) Respiratory Mortality Unadjusted: 1.23 (0.92-1.65) Smoking: 1.10 (0.81-1.50) Smoking: area-level income: 1.07 (0.75-1.52) Lung Cancer Mortality Unadjusted: 1.17 (0.95-1.46) Smoking: 1.06 (0.85-1.33) Smoking, area-level income: 1.06 (0.82-1.38) Noncardiopulmonary, Non-Lung Cancer Mortality Unadjusted: 1.10 (1.00-1.22) Smoking: 1.05 (0.94-1.16) Smoking, area-level income: 1.08 (0.96-1.22) Increment: 10 µg/m³
Reference: Chen et al. (2005, <u>087942</u>)	Outcome: Mortality: CHD	2.0	· -
Period of Study: 1973-1998	Study Design: Cohort	Averaging Time: 25 yr	Relative Risk (Lower CI, Upper CI) lag:
Location: San Francisco, San Diego, Los Angeles, CA	Statistical Analyses: Cox proportion hazards model	Mean (SD): 29.0	Males
2007 tilgeled, OA	Age Groups: >25	Range (Min, Max): NR Copollutant: NO ₂ , O ₃ , SO ₂	PM _{2.5} : 0.89 (0.69, 1.17) 0-1 PM _{2.5} +NO ₂ : 0.82 (0.61, 1.10); 0-1 PM _{2.5} +SO ₂ : 0.86 (0.65,1.14) 0-1 PM _{2.5} +O ₃ : 0.92 (0.65,1.29) 0-1
			Females PM _{2.5} : 1.19 (0.96, 1.47) 0-1 PM _{2.5} +NO ₂ : 1.18 (0.95, 1.47); 0-1 PM _{2.5} +SO ₂ : 1.36 (1.05,1.74) 0-1 PM _{2.5} +O ₃ : 1.61 (1.17,2.22) 0-1

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Eftim et al. (2008, <u>099104</u>)	Outcome (ICD-9): All nonaccidental	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study: 2000-2002	causes (<800) Study Design: Cross-sectional	Averaging Time: Annual avg	% Increase in Mortality for overall exposure period and individual yr
Location: USA, Same cities as six cities and ACS cohorts	Statistical Analyses: Log-linear	Mean (SD):	(95%Cl Min, 95%Cl Max):
olico ana 7100 conorto	regression, Poisson	ACS: 13.6 (2.8)	ACS (adjusted for age, sex) Overall: 10.8 (8.6, 13.0)
	Age Groups: >65	SCS: 14.1 (3.1)	2000: 10.9 (7.3, 14.6) ´ 2001: 9.1 (5.3, 12.7)
		Range (Min, Max): ACS: (6.0, 25.1); SCS: (9.6, 19.1)	2002: 10.1 (6.0, 14.3)
		, , , , , , , , , , , , , , , , , , ,	SCS (adjusted for age, sex) Overall: 20.8 (14.8, 27.1) 2000: 17.8 (9.8, 26.4) 2001: 16.5 (7.4, 25.0) 2002: 33.5 (19.2, 49.3)
Reference: Enstrom et al. (2005,	Outcome: Mortality: Cardiovascular-	Pollutant: PM _{2.5}	Relative Risk (Lower CI, Upper CI)
087356) Period of Study: 1973-2002	respiratory (390-448) (480-486, 487, 490-496, 507)	Averaging Time: Annual	RR from causes for both sexes by county from 1973-2002
Location: 25 California Colonies	Study Design: Retrospective cohort	Mean (SD): 23.4	Alameda: 0.962 (0.926,0.999)
11 California Colonies (EPA IPN study)	Statistical Analyses: Cox proportional hazards regression model, SAS PHREG	Range (Min, Max): (13.1 μg/m³, 36.1)	Butte: 0.999 (0.910,1.096) Contra Costa: 0.999 (0.943,1.058) Fresno: 0.935 (0.872,1.002) Humbolo: 0.992 (0.900,1.092)
	Age Groups: 35 or older		Kerri: 0.944 (0.872,1.023) Marin: 0.939 (0.867,1.016) Napa: 0.949 (0.868,1.038) Orange: 0.990 (0.948,1.034) Riverside: 0.959 (0.906,1.015) Sacramento: 0.998 (0.944,1.055) San Bernardino: 0.992 (0.938,1.049) San Diego: 0.992 (0.954, 1.033) San Francisco: 0.963 (0.914,1.014) San Joaquin: 0.925 (0.816,1.049) San Mateo: 0.949 (0.899, 1.003) Santa Barbara: 0.968 (0.878,1.068) Santa Clara: 0.955 (0.910,1.003) Santa Cruz: 0.890 (0.793,0.999) Solano: 0.901 (0.815,0.995) Sonoma: 0.968 (0.884,1.060) Stanislaus: 0.984 (0.904,1.072) Tulare: 1.047 (0.979,1.119) Ventura: 0.967 (0.872,1.072)
			RR from all causes for 11 counties for both sexes (EPA IPN study) Santa Barbara: 0.968 (0.878,1.068) Contra Costa: 0.999 (0.943,1.058) Alameda: 0.962 (0.926,0.999) Butte: 0.999 (0.910,1.096) San Francisco: 0.963 (0.914,1.014) Santa Clara: 0.955 (0.910,1.003) Fresno: 0.935 (0.872,1.002) San Diego: 0.992 (0.954,1.033) Kern: 0.944 (0.872,1.023) Riverside: 0.959 (0.906,1.015)
Reference: Filleul et al. (2005, <u>087357</u>)	Outcome: Nonaccidental causes (<800), cardiopulmonary disease (401-	Pollutant: Total suspended particles (TSP)	Increment: 10 µg/m³
Period of Study: 1974-1976	440 and 460-519), lung cancer (162)	Averaging Time: NR	Adjusted mortality rate ratios: 24 areas: All nonaccidental causes:
Location: 7 cities in France	Age Groups: 25-59 yr	Mean (SD): NR	1.00[0.99, 1.01]
	Study Design: Cohort	Range (Min, Max): (45, 243)	Lung cancer: 0.97[0.94, 1.01]
	N : 14,284 people	PM Component: NR	Cardiopulmonary disease: 1.01[0.99, 1.03]
	Statistical Analyses: Cox proportional hazard, regression Covariates: Sex, smoking habits, educational level, body-mass index	Monitoring Stations: 1 station Copollutant (correlation):	1.01[0.99, 1.03] 18 areas: All nonaccidental causes: 1.05[1.02, 1.08]
		BS r = 0.87 SO ₂ r = 0.17	Lung cancer: 1.00[0.92, 1.10]

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Fuentes et al. (2006,	Outcome: Mortality:	Pollutant: PM _{2.5}	Increment: 10 µg/m³
097647)	Study Design: Time-series	Averaging Time: Monthly	PM _{2.5} : 1.066 (1.064, 1.069)
Period of Study: Jun 2000 Location: Conterminous U.S.	Statistical Analyses: Generalized	Mean (SD): 6.60 (0.76)	PM ₁₀ : 1.030 (1.028, 1.032)
Location: Conteminous 0.5.	Poisson Regression	Copollutant: PM ₁₀ , O ₃	
	Age Groups: 0-14, 15-64, >65		
	Covariates: Temperature, pressure, dew point, wind speed, elevation, age, ethnicity		
Reference: Janes et al. (2007, <u>090927</u>)	Outcome: Mortality:	Pollutant: PM _{2.5}	Increment: 1 µg/m³
Period of Study: 2000-2002	Study Design: Time-series	Averaging Time: Annual avg	% Increase (Lower CI, Upper CI) lag: Overall % Increase by age-sex stratum
Location: 113 U.S. counties	Statistical Analyses: Cox proportional	Mean (SD): NR	Age Category
	hazards model	Range (Min, Max): NR	65-74: Male: 1.48 (0.93,2.03) Female: 0.83 (0.24,1.43)
	Age Groups: 65-74		75-84: Male: 0.85 (0.34,1.35) Female: 0.77 (0.28,1.27)
	75-84		85+: Male: 0.70 (0.03,1.38) Female: 0.59 (0.05,1.12)
	85+		National Trend % Increase by age-sex stratum Age Category 65-74: Male: 3.55 (2.77,4.34) Female: 1.97 (1.12,2.83) 75-84: Male: 2.48 (1.83,3.14) Female: 2.29 (1.66,2.93) 85+: Male: 1.38 (0.52,2.26) Female: 1.65 (1.01,2.29) Local Trend % Increase by age-sex stratum Age Category 65-74: Male: 0.04 (-0.58,0.67) Female: -0.03 (-0.71,0.66) 75-84: Male: -0.34 (-0.87,0.19) Female: -0.31 (-0.82, 0.21) 85+: Male: -0.01 (-0.71,0.73) Female: -0.22 (-0.74,0.31) *Local trends are county specific deviations from national trends
Reference: Jerrett et al. (2003,	Outcome: Mortality	Pollutant: Sulfates	Increment: 19.9 (Range)
087380) Period of Study: 1982	Study Design: Multilevel, individual- ecologic analysis	Mean (SD): 10.6	All Cause: SO ₄ : 1.17 (1.07, 1.27) SO ₄ + CO: 1.16 (1.10, 1.23)
Location: 151 cities from ACS	Statistical Analysis: Cox proportional hazards model	Range (Min, Max): 3.6,23.5	SO ₄ + NO ₂ : 1.16 (1.08, 1.24) SO ₄ + O ₃ : 1.17 (1.11, 1.24) SO ₄ + SO ₂ : 1.05 (0.98, 1.12)
	Covariates: Smoking, education, occupational exposures, BMI, marital status, alcohol consumption, gender		CPD: SO ₄ : 1.25 (1.16, 1.35) SO ₄ + CO: 1.28 (1.18, 1.39) SO ₄ + NO ₂ : 1.29 (1.17, 1.42) SO ₄ + O ₃ : 1.27 (1.17, 1.38) SO ₄ + SO ₂ : 1.13 (1.03, 1.24)
			Lung Cancer: SO ₄ : 1.31 (1.09, 1.58) SO ₄ + CO: 1.26 (1.03, 1.53) SO ₄ + NO ₂ : 1.31 (1.05, 1.65) SO ₄ + O ₃ : 1.30 (1.07, 1.59) SO ₄ + SO ₂ : 1.37 (1.08, 1.73)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Jerrett et al. (2005, 087600)	Outcome: Mortality: Non- accidental (<800)	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study: 1982-2000	IHD (410-414)	Averaging Time: Annual avg	Relative Risk (Lower CI, Upper CI) All Causes - PM _{2.5} Only:
Location: Los Angeles, California	Cardiopulmonary (400-440, 460-519)	Mean (SD): NR	1.24 (1.11,1.37)
•	Lung Cancer (162)	Range (Min, Max): NR	44 Ind. Covariates together+PM _{2.5} : 1.17 (1.03,1.32)
	Other Cancers (140-149,160, 161, 163-239)	Copollutant: O ₃	44 Ind. Covariates together+ PM _{2.5} +O ₃ : 1.20 (1.07,1.34) 44 Ind. Covariates together+intersection
	Other causes		within freeways within 500 m+ PM _{2.5} +O ₃ : 1.17 (1.05,1.31)
	Study Design: Retrospective Cohort		IHD - PM _{2.5} Only: 1.49 (1.20,1.85)
	Statistical Analyses: Cox regression hazards model		44 Ind. Covariates together+PM _{2.5} : 1.39 (1.12,1.73) 44 Ind. Covariates together+PM _{2.5} +O ₃ :
	kriging, radial basis function multiquadric interpolator		1.45 (1.15,1.82) 44 Ind. Covariates together+intersection within freeways within 500 m+
	Age Groups: All ages		PM $_{2.5}$ +O $_{3}$: 1.38 (1.11,1.72) Cardiopulmonary - PM $_{2.5}$ Only: 1.20 (1.04,1.39) 44 Ind. Covariates together+ PM $_{2.5}$ +O $_{3}$: 1.19 (1.02,1.38) 44 Ind. Covariates together+intersection within freeways within 500 m+ PM $_{2.5}$ +O $_{3}$: 1.13 (0.97,1.31) Lung Cancer - PM $_{2.5}$ Only: 1.60 (1.09,2.33) 44 Ind. Covariates together+PM $_{2.5}$: 1.44 (0.98,2.11) 44 Ind. Covariates together+intersection within freeways within 500 m+ PM $_{2.5}$ +O $_{3}$: 1.46 (0.99,2.16) Other Cancers - PM $_{2.5}$ Only: 1.09 (0.85,1.40) 44 Ind. Covariates together+ PM $_{2.5}$ +O $_{3}$: 1.08 (0.83,1.39) 44 Ind. Covariates together+intersection within freeways within 500 m+ PM $_{2.5}$ +O $_{3}$: 1.08 (0.83,1.39) All Other Causes - PM $_{2.5}$ Only: 1.11 (0.74,1.67) 44 Ind. Covariates together+ PM $_{2.5}$ +O $_{3}$: 0.95 (0.64,1.39) 44 Ind. Covariates together+intersection within freeways within 500 m+ PM $_{2.5}$ +O $_{3}$: 1.02 (0.71,1.48)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Laden et al. (2006, <u>087605</u>)	Outcome: Total mortality	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study: 1974-1998	Nonaccidental (<800)	Averaging Time: Annual avg	Relative Risk (Lower CI, Upper CI)
Period 1: 1974-1989	Cardiovascular (400-440)	Mean (SD): Period 1	lag: Period 1:
Period 2: 1990-1998	Respiratory (485-496)	Portage: 11.4	Portage: 1.00
Location: Nine U.S. Cities	Lung Cancer (162)	Topeka: 12.4 Watertown: 15.4	Topeka: 1.06 (0.86, 1.31) Watertown: 1.06 (0.87, 1.28)
Watertown, MA	Other	Harriman: 20.9 St Louis: 19.2	Harriman: 1.19 (0.98, 1.44) St Louis: 1.15 (0.96, 1.38)
Kingston, TN	Study Design: Prospective Cohort	Steubenville: 29.0	Steubenville: 1.31 (1.10, 1.57)
Harriman, TN	Statistical Analyses: Cox proportional	Period 2 Portage: 10.2	Period 2: Portage: NR
St. Louis, MO	hazards regression	Topeka: 13.1 Watertown: 12.1	Topeka: 1.01 (0.83, 1.22) Watertown: 0.82 (0.67, 1.00)
Steubenville, OH	Age Groups: 25-74	Harriman: 18.1 St. Louis: 13.4	Harriman: 1.10 (0.91, 1.33) St Louis: 0.96 (0.80, 1.15)
Portage, WI		Steubenville: 22.0	Steubenville: 1.06 (0.89, 1.27)
Wyocena, WI			Complete Period: Portage: 1.00
Pardeeville, WI			Topeka: 1.03 (0.89, 1.19) Watertown: 0.95 (0.83, 1.08)
Topeka, KS			Harriman: 1.15 (1.01, 1.32) St. Louis: 1.05 (0.93, 1.20) Steubenville: 1.18 (1.04, 1.34) RR for complete follow up avg PM ₂₅ Total Mortality: 1.16 (1.07, 1.26) Cardiovascular: 1.28 (1.13, 1.44) Respiratory: 1.08 (0.79, 1.49) Lung Cancer: 1.27 (0.96, 1.69) Other: 1.02 (0.90, 1.17) RR for Period 1 avg PM ₂₅ Total Mortality: 1.18 (1.09, 1.27) Cardiovascular: 1.28 (1.14, 1.43) Respiratory: 1.21 (0.89, 1.66) Lung Cancer: 1.20 (0.91, 1.58) Other: 1.05 (0.93, 1.19) Decrease in avg PM ₂₅ over the 2 periods Total Mortality: 0.73 (0.57, 0.95) Cardiovascular: 0.69 (0.46, 1.01) Respiratory: 0.43 (0.16, 1.13) Lung Cancer: 1.06 (0.43, 2.62) Other: 0.85 (0.56, 1.27)
Reference: Lipfert et al. (2006, <u>088756</u>)	Outcome: Mortality	Pollutant: Sulfate	Increment: 8
Period of Study: 1989-1996	Study Design: Retrospective Cohort	Mean (SD) from 1976-81: 10.7 (3.6)	1.045 (0.944, 1.157)
Location: Various parts of the Untied States	Statistical Analyses: Cox proportional hazards regression		
	Age Groups: Male U.S. veterans between ages of 39 and 63 (Avg. age: 51)		
Reference: Lipfert et al. (2006, <u>088756</u>)	Outcome: Mortality	Pollutant: PM _{2.5}	Increment: 8
Period of Study: 1989-1996	Study Design: Retrospective Cohort	Mean (SD): 14.3 (3.2)	1.118 (1.038, 1.203)
Location: Various parts of the Untied States	Statistical Analyses: Cox proportional hazards regression		
	Age Groups: Male U.S. veterans between ages of 39 and 63 (Avg age 51)		

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Lipfert et al. (2006, <u>088218</u>)	Outcome: Mortality: Non- accidental	Pollutant: PM _{2.5}	Increment: 10 μg/m³
Period of Study: 1997-2002	(<800) Study Design: Retrospective cohort	Averaging Time: Annual avg	% Increase per 10 µg/m³ increase in PM ₂₅
Location: Various parts of the Untied States	Statistical Analyses: Cox proportional	Mean (SD): 15.02 (4.80) μg/m³ (2000-2003)	Single-Pollutant Model As: -5.23%
	hazards regression	Range (Min, Max): (3.29, 24.96)	Cr: -2.11%
	AIC	Copollutant (correlation):	Cu: 2.12% Fe: 2.81%
	Age Groups: Male U.S. veterans between ages of 39 and 63 (Avg. age:	As: r = 0.443	Pb: -2.40% Mn: -1.20%
	51)	Cr: r = 0.379	Ni: 3.75% Se: -0.30%
		Cu: r = 0.530	V: 5.08%
		Fe: r = 0.379;	Zn: 1.52% OC: -0.02%
		Pb: r = 0.489	EC: 9.16% SO ₄ : 3.04%
		Mn: r = 0.389;	NO ₃ : 6.60%
		Ni: r = 0.140	NO ₂ : 6.92% Peak CO: -0.61% Peak O ₃ : 4.95% Peak SO ₂ : -4.20%
		Se: r = 0.312;	
		V: r = 0.197	Multiple Pollutants model- Pollutan
		Zn: r = 0.420;	with traffic density
		OC: r = 0.620	NO ₃ : 3.42% SO ₄ : -2.73%
		EC: r = 0.544;	EC: 6.27% Ni: 2.51% V: 3.27% Pollutant with NO ₃ EC: 5.93% Ni: 2.31% V: 3.11%
		SO ₄ : r = 0.827	
		NO ₃ : r = 0.649	
		NO ₂ : r = 0.641	
		Peak CO: r = 0.040	
		Peak O ₃ : r = 0.222	Pollutant with Peak O ₃
		Peak SO ₂ : r = 0.714	Traffic density: 2.40% EC: 10.79%
		1 can 302. 1 = 0.7 14	Fe: 5.94% NO ₃ : 7.57% PM _{2.5} : 8.97% V: 4.93% Ni: 3.65% SO ₄ : 6.75% Cu: 1.55% OC: 0.21%

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Krewski et al. (2009,	Outcome: Death	Pollutant: PM _{2.5}	Increment: 10 µg/m³
191193)	Study Design: Cohort	Averaging Time: NR	Hazard Ratio (95% CI)
Period of Study: 1979-2000	Covariates: Demographic,	Mean Unit:	MSA & DIFF Increment Change:
Location: 48 contiguous states U.S.	socioeconomic and ecologic characteristics	1979-1983: 21.20 μg/m³	10.78 (1.043-1.115) Change 5-15 μg/m³:
	Statistical Analysis: Cox proportional-	1999-2000: 14.02 μg/m³	1.128 (1.077-1.183)
	hazards model	Range (Min, Max):	Change 10-20 μg/m³: 1.079 (1.048-1.112)
	Statistical Package: NR	1979-1983: 10.77-30.01	HR (95% CI) Los Angeles
	Age Groups: Adults of at least 30 yr	1999-2000: 5.80-22.20	Parsimonious ecologic covariates: 1.126 (1.014-1.251)
		Copollutant:	HR (95% CI)
		SO ₄ ²⁻ , SO ₂ , PM ₁₅ , TSP, O ₃ , NO ₂ , CO	15-yr time window Group A: 0.98 (0.92-1.06) Group B: 1.01 (0.99-1.02) HR (95% CI) Third follow-up, 7 Ecologic Variables 1979-1983: 1.044 (1.028-1.060) 1999-2000: 1.057 (1.036-1.079) HR (95% CI) Nationwide analysis, 1999-2000 Standard Cox: 1.03 (1.01-1.05) Random Effects Cox: 1.06 (1.04-1.08) Increment: 1.5 µg/m³ HR (95% CI) 28 County, 3-yr model All 7 ecologic covariates:
Reference: Krewski et al. (2009,	Outcome: Death from cardiopulmonary	Pollutant: PM _{2.5}	0.977 (0.932-1.025) Increment: 10 μg/m ³
<u>191193</u>)	disease	Averaging Time: NR	Hazard Ratio (95% CI)
Period of Study: 1979-2000	Study Design: Cohort	Mean Unit:	MSA & DIFF Increment Change: 1.078 (1.077-1.182)
Location: 48 contiguous states U.S.	Covariates: Demographic, socioeconomic and ecologic characteristics	1979-1983: 21.20 μg/m³	Change 5-15 μg/m³: 1.208 (1.132-1.290)
		1999-2000: 14.02 μg/m³	Change 10-20 µg/m³:
	Statistical Analysis: Cox proportional- hazards model	Range (Min, Max):	1.127 (1.081-1.174) HR (95% CI)
	Statistical Package: NR	1979-1983: 10.77-30.01	Los Angeles Parsimonious ecologic covariates:
	Age Groups: Adults of at least 30 yr	1999-2000: 5.80-22.20	1.086 (0.939-1.285) HR (95% CI)
		Copollutant:	15-yr time window
		SO ₄ ²⁻ , SO ₂ , PM ₁₅ , TSP, O ₃ , NO ₂ , CO	Group A: 1.00 (0.90-1.11) Group B: 1.05 (1.03-1.07)
			HR (95% CI) Third follow-up, 7 Ecologic Variables 1979-1983: 1.094 (1.070-1.118) 1999-2000: 1.138 (1.106-1.172) HR (95% CI) Nationwide analysis, 1999-2000 Standard Cox: 1.09 (1.06-1.12) Random Effects Cox: 1.13 (1.10-1.16) Increment: 1.5 μg/m³ HR (95% CI) 28 County, 3-yr model All 7 ecologic covariates: 0 .940 (0.875-1.011)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Krewski et al. (2009,	Outcome: Death from ischemic heart	Pollutant: PM _{2.5}	Increment: 10 µg/m³
191193) Pariod of Study: 1070 2000	disease Study Posign: Cohort	Averaging Time: NR	Hazard Ratio (95% CI)
Period of Study: 1979-2000 Location: 48 contiguous states U.S.	Study Design: Cohort Covariates: Demographic,	Mean Unit:	MSA & DIFF Increment Change: 1.196 (1.177-1.407)
Location. 40 contiguous states 0.5.	socioeconomic and ecologic	1979-1983: 21.20 μg/m³	Change 5-15 µg/m³: 1.484 (1.311-1.680)
	characteristics	1999-2000: 14.02 μg/m³	Change 10-20 µg/m³:
	Statistical Analysis: Cox proportional- hazards model	Range (Min, Max):	1.283 (1.186-1.387) HR (95% CI)
	Statistical Package: NR	1979-1983: 10.77-30.01	Los Angeles Parsimonious ecologic covariates:
	Age Groups: Adults of at least 30 yr	1999-2000: 5.80-22.20	1.263 (10.22-1.563) HR (95% CI)
		Copollutant:	Third follow-up, 7 Ecologic Variables 1979-1983: 1.184 (1.146-1.222)
		SO ₄ ²⁻ , SO ₂ , PM ₁₅ , TSP, O ₃ , NO ₂ , CO	1999-2000: 1.242 (1.191-1.295)
			HR (95% CI) Nationwide analysis, 1999-2000
			Standard Cox: 1.15 (1.11-1.20) Random Effects Cox: 1.24 (1.19-1.29)
			Increment: 1.5 µg/m³ HR (95% CI)
			28 County, 3 vr model
			All 7 ecologic covariates: 1.072 (0.980-1.172)
Reference: Krewski et al. (2009, 191193)	Outcome: Death from lung cancer	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study: 1979-2000	Study Design: Cohort	Averaging Time: NR	Hazard Ratio (95% CI)
Location: 48 contiguous states U.S.	Covariates: Demographic, socioeconomic and ecologic	Mean Unit:	MSA & DIFF Increment Change; 1.142 (1.057-1.234)
2004.0 111 10 configurate dialog 0.0.	characteristics	1979-1983: 21.20 μg/m³	Change 5-15 µg/m³: 1.236 (1.114-1.372)
	Statistical Analysis: Cox proportional- hazards model	1999-2000: 14.02 μg/m³	Change 10-20 µg/m³: 1.143 (1.071-1.221)
	Statistical Package: NR	Range (Min, Max):	HR (95% CI) Los Angeles
	Age Groups: Adults of at least 30 yr	1979-1983: 10.77-30.01	Parsimonious ecologic covariates:
	Age Groups. Addits of at least 50 yr	1999-2000: 5.80-22.20	1.311 (0.897-1.915) HR (95% CI)
		Copollutant:	15-yr time window Group A: 1.08 (0.87-1.35)
		SO ₄ ²⁻ , SO ₂ , PM ₁₅ , TSP, O ₃ , NO ₂ , CO	Group B: 1.07 (1.02-1.13) HR (95% CI)
			Third follow-up, 7 Ecologic Variables
			1979-1983: 1.092 (1.033-1.154) 1999-2000: 1.138 (1.057-1.225)
			HR (95% CI) Nationwide analysis, 1999-2000
			Standard Cox: 1.11 (1.04-1.18)
			Random Effects Cox: 1.14 (1.06-1.23) Increment: 1.5 µg/m ³
			HR (95% CI) 28 County, 3-yr model
			All 7 ecologic covariates:
Reference: Krewski et al. (2009,	Outcome: Death from diabetes	Pollutant: PM _{2.5}	0.985 (0.832-1.166) Increment: 1.5 µg/m ³
<u>191193</u>)	Study Design: Cohort	Averaging Time: NR	HR (95% CI)
Period of Study: 1979-2000	Covariates: Demographic,	Mean Unit:	28 County, 3 yr model
Location: 48 contiguous states U.S.	socioeconomic and ecologic characteristics	1979-1983: 21.20 μg/m³ 1999-2000: 14.02 μg/m³	All 7 ecologic covariates:
	Statistical Analysis: Cox proportional- hazards model	Range (Min, Max): 1979-1983: 10.77-30.01	1.083 (0.723-1.621)
	Statistical Package: NR	1999-2000: 5.80-22.20	
	Age Groups: Adults of at least 30 yr	Copollutant: SO ₄ ²⁻ , SO ₂ , PM ₁₅ , TSP, O ₃ , NO ₂ , CO	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Krewski et al. (2009,	Outcome: Death from endocrine	Pollutant: PM _{2.5}	Increment: 1.5 µg/m³
191193)	disease	Averaging Time: NR Mean Unit: 1979-1983: 21.20 μg/m ³ 1999-2000: 14.02 μg/m ³	HR (95% CI)
Period of Study: 1979-2000	Study Design: Cohort		28 County, 3-yr model
Location: 48 contiguous states U.S.	Covariates: Demographic, socioeconomic and ecologic characteristics		All 7 ecologic covariates: 1.143 (0.835-1.564)
	Statistical Analysis: Cox proportional-hazards model	Range (Min, Max): 1979-1983: 10.77-30.01 1999-2000: 5.80-22.20	
	Statistical Package: NR	Copollutant:	
	Age Groups: Adults of at least 30 yr	SO ₄ ²⁻ , SO ₂ , PM ₁₅ , TSP, O ₃ , NO ₂ , CO	
Reference: Krewski et al. (2009,	Outcome: Death from digestive cancer	Pollutant: PM _{2.5}	Increment: 10 µg/m³
<u>191193)</u>	Study Design: Cohort	Averaging Time: NR	HR (95% CI)
Period of Study: 1979-2000	Covariates: Demographic,	Mean Unit:	Los Angeles
Location: 48 contiguous states U.S.	socioeconomic and ecologic characteristics	1979-1983: 21.20 µg/m³ 1999-2000: 14.02 µg/m³	Parsimonious ecologic covariates: 1.199 (0.817-1.758)
	Statistical Analysis: Cox proportional-hazards model	Range (Min, Max): 1979-1983: 10.77-30.01	, ,
	Statistical Package: NR	1999-2000: 5.80-22.20	
	Age Groups: Adults of at least 30 yr	Copollutant: SO ₄ ²⁻ , SO ₂ , PM ₁₅ , TSP, O ₃ , NO ₂ , CO	
Reference: Krewski et al. (2009,	Outcome: Death cancers other than	Pollutant: PM _{2.5}	Increment: 10 µg/m³
191193)	lung and digestive	Averaging Time: NR	HR (95% CI)
Period of Study: 1979-2000	Study Design: Cohort	Mean Unit: 1979-1983: 21.20 μg/m ³	Los Angeles
Location: 48 contiguous states U.S.	Covariates: Demographic, socioeconomic and ecologic characteristics	1999-2000: 14.02 µg/m³	Parsimonious ecologic covariates: 1.012 (0.788-1.299)
	Statistical Analysis: Cox proportional-hazards model	Range (Min, Max): 1979-1983: 10.77-30.01 1999-2000: 5.80-22.20	
	Statistical Package: NR	Copollutant: SO ₄ ²⁻ , SO ₂ , PM ₁₅ , TSP, O ₃ , NO ₂ , CO	
	Age Groups: Adults of at least 30 yr		
Reference: Krewski et al. (2009, 191193)	Outcome: Deaths from causes other than CPD, IHD and lung cancer	Pollutant: PM _{2.5}	Increment: 10 µg/m ³
Period of Study: 1979-2000	Study Design: Cohort	Averaging Time: NR Mean Unit:	Hazard Ratio (95% CI) MSA & DIFF
Location: 48 contiguous states U.S.	Covariates: Demographic, socioeconomic and ecologic	1979-1983: 21.20 µg/m³ 1999-2000: 14.02 µg/m³	Increment Change: 1.010 (0.968-1.055) Change 5-15 μg/m ³ :
	characteristics Statistical Analysis: Cox proportional- hazards model	Range (Min, Max): 1979-1983: 10.77-30.01 1999-2000: 5.80-22.20	1.026 (0.970-1.085) Change 10-20 µg/m³: 1.016 (0.981-1.053)
	Statistical Package: NR	Copollutant:	HR (95% CI) Third follow-up, 7 Ecologic Variables
	Age Groups: Adults of at least 30 yr	SO ₄ ²⁻ , SO ₂ , PM ₁₅ , TSP, O ₃ , NO ₂ , CO	1979-1983: 0.983 (0.960-1.007) 1999-2000: 0.953 (0.923-0.984)
Reference: McDonnell et al. (2000,	Outcome: Mortality	Pollutant: PM _{2.5}	Increment: IQR
<u>010319</u>)	Study Design: Cohort (AHSMOG	Averaging Time: Monthly avg	All Cause: 1.22 (0.95-1.58)
Period of Study: 1973-1977	airport cohort)	Mean (SD): 31.9 (10.7)	Resp: 1.64 (0.93-2.90)
Location: California	Statistical Analyses: Cox regression models	IQR: 24.3	Lung Cancer: 2.23 (0.56-8.94)
	Age Groups: Males, 27 yr+	Copollutants (correlation): Os: 0.68 SO2: 0.18 NO2: -0.08; SO4: 0.33	

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Miller et al. (2007, <u>090130</u>)	Outcome: CVD Mortality	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study: 1994-1998	Study Design: Prospective Cohort	Averaging Time: Annual avg (2000)	CVD Death: 1.76 (1.25, 2.47)
Location: 36 U.S. Metropolitan Areas	(WHI) Statistical Analyses: Cox proportional	Mean (SD): 13.4	CHD Death: 2.21 (1.17, 4.16)
	hazards regression	IQR: 11.6, 18.3	CV Death: 1.83 (1.11, 3.00)
	Age Groups: Postmenopausal women ages 50-79	Range: 3.4, 28.3	
Reference: Naess et al. (2007, 090736)	Outcome: Mortality: Nonaccidental (<800)	Pollutant: PM _{2.5}	Relative Risk (CI min, CI max)
Period of Study: 1992-1998	Lung cancer (162)	Averaging Time: 4-yr avg	RR for deaths from all causes Men (ages 51-70) PM _{2.5} exposure
Location: Oslo, Norway	COPD (490-496)	Mean (SD): PM _{2.5} : 15	(in µg/m³)
·	Cardiovascular (390-459)	Range (Min, Max): PM _{2.5} : (7, 22)	6.56-11.45: 1.00 11.46-14.25: 0.96 (0.89, 1.04)
	Study Design: Prospective Cohort	Copollutant (correlation):	14.26-18.43: 1.12 (1.03, 1.22) 18.44-22.34: 1.48 (1.36, 1.60)
	Statistical Analyses: Cox proportional	NO ₂ : r = 0.95	Men (ages 71-90) PM _{2.5} exposure (in μg/m³)
	hazards regression model Age Groups: 51-70, 71-90		6.56-11.45: 1.00 11.46-14.25: 0.99 (0.93, 1.06) 14.26-18.43: 1.10 (1.03, 1.17) 18.44-22.34: 1.19 (1.12, 1.27) Women (ages 51-70) PM _{2.5} exposure (in μg/m³) 6.56-11.45: 1.00 11.46-14.25: 0.96 (0.87, 1.07) 14.26-18.43: 1.08 (0.98, 1.20) 18.44-22.34: 1.44 (1.30, 1.59) Women (ages 71-90) PM _{2.5} exposure (in μg/m³) 6.56-11.45: 1.00 11.46-14.25: 1.03 (0.97, 1.09) 14.26-18.43: 1.07 (1.01, 1.12) 18.44-22.34: 1.11 (1.05, 1.16) Increment: 10 μg/m³ RR for death from CVD and lung cance Men (ages 51-70) CVD- PM _{2.5} : 1.11 (1.06, 1.16) COPD- PM _{2.5} : 1.32 (1.17, 1.49) Lung Cancer- PM _{2.5} : 1.07 (0.98, 1.17) Women (ages 51-70) CVD: PM _{2.5} : 1.16 (1.09, 1.24) COPD: PM _{2.5} : 1.16 (1.09, 1.09) CVD: PM _{2.5} : 1.16 (1.03, 1.09) CVD: PM _{2.5} : 1.16 (1.03, 1.09) CVD: PM _{2.5} : 1.10 (1.04, 1.24) PM _{2.5} : 1.14 (1.04, 1.24) Lung Cancer: PM _{2.5} : 1.08 (0.98, 1.19) Women (ages 71-90) CVD: PM _{2.5} : 1.02 (1.00, 1.05)
			COPD: PM _{2.5} : 1.09 (1.00, 1.18) Lung Cancer: PM _{2.5} : 1.16 (1.03, 1.31)
Reference: Naess et al. (2007, 090736)	Outcome: Mortality: Lung cancer (162)		Relative Risk (CI min, CI max)
Period of Study: 1992-1998	COPD (490-496)	Averaging Time: (Mo-yr) avg	RR on All-cause mortality of PM ₂₅ in Men Age 50-74
Location: Oslo, Norway	Cardiovascular (390-459)	Range Mean (SD): 14.2 (3.6)	Primary Education:
· · · · · · · · · · · · · · · · · · ·	Psychiatric causes (290, 292-302, 304, 306-319)	IQ Range (1st, 4th): (6.6, 22.3)	PM _{2.5} : 1.06 (1.00, 1.11) Individual: 1.34 (1.24, 1.43)
	Stomach cancer (151)	Copollutant (correlation):	Neighborhood: 1.22 (1.16, 1.28) Manual Class: PM _{2.5} : 1.06 (1.01, 1.12)
	Violence (800-999)	PM_{10} : $r = 0.95$	Individual: 1.28 (1.20, 1.37) Neighborhood: 1.20 (1.14, 1.26)
	Study Design: Multilevel cohort	NO_2 : r = 0.87	Income below median:
	Statistical Analyses: WinBUGS		PM _{2.5} : 1.05 (1.00, 1.12) Individual: 1.44 (1.35, 1.53)
	Age Groups: 50-74		Neighborhood: 1.16 (1.11, 1.21) Not owner occupied: PM _{2.5} : 1.06 (1.00, 1.13) Individual: 1.24 (1.12, 1.36)
			Neighborhood: 1.11 (1.05, 1.17) Lives in flat dwelling:

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			PM _{2.5} : 1.04 (0.98, 1.11) Individual: 1.19 (1.09, 1.31) Neighborhood: 1.10 (1.04, 1.17) More than one person per room in dwelling: PM _{2.5} : 1.10 (1.02, 1.18) Individual: 1.05 (0.98, 1.13) Neighborhood: 1.01 (0.96, 1.05)
			RR on All-cause mortality of PM $_{25}$ in Women Age 50-74 Primary Education Only: PM $_{25}$: 1.05 (1.00, 1.11) Individual: 1.32 (1.23, 1.42) Neighborhood: 1.18 (1.12, 1.24) Manual Class: PM $_{25}$: 1.07 (1.01, 1.13) Individual: 1.27 (1.18, 1.36) Neighborhood: 1.18 (1.12, 1.24) Income below median: PM $_{25}$: 1.05 (1.01, 1.10) Individual: 1.52 (1.41, 1.63) Neighborhood: 1.13 (1.09, 1.18) Not owner occupied: M $_{25}$: 1.07 (1.01, 1.14) Individual: 1.24 (1.12, 1.38) Neighborhood: 1.08 (1.02, 1.14) Lives in a flat dwelling: PM $_{25}$: 1.05 (0.99, 1.11) Individual: 1.21 (1.09, 1.34) Neighborhood: 1.09 (1.02, 1.15) More than one person per room in dwelling: PM $_{25}$: 1.11 (1.04, 1.19) Individual: 1.07 (0.99, 1.14) Neighborhood: 1.09 (1.02, 1.55)
			RR for Interquartile Increase (MI) in PM _{2.5} for different causes of death
			CVD: Age and sex adjusted: 1.11 (1.07, 1.15) Primary education only: M1+ Individual: 1.07 (1.04, 1.11) M1+ Neighborhood: 1.03 (1.00, 1.07) Manual Class: M1+ Individual: 1.08 (1.04, 1.11) M1+ Neighborhood: 1.06 (1.02, 1.10) Income below Median: M1+ Individual: 1.07 (1.03, 1.11) M1+ Neighborhood: 1.02 (0.98, 1.05) Not owner occupied: M1+ Individual: 1.05 (1.01, 1.09) M1+ Neighborhood: 1.03 (0.99, 1.07): Living in a Flat dwelling M1+ Individual: 1.04 (1.00, 1.08) M1+ Neighborhood: 1.01 (0.97, 1.05) Crowded household: M1+ Individual: 1.10 (1.05, 1.14) M1+Neighborhood: 1.10 (1.06, 1.15) Pulmonary Cancer: Age and sex adjusted: 1.12 (1.05, 1.19) Primary education only: M1+ Individual: 1.09 (1.01, 1.17) M1+ Neighborhood: 1.05 (0.98, 1.13) Manual Class: M1+ Individual: 1.09 (1.01, 1.17) M1+ Neighborhood: 1.10 (1.06, 1.13) Income below Median: M1+ Individual: 1.09 (1.01, 1.17)
			M1+ Neighborhood: 1.02 (0.95, 1.10) Not owner occupied: M1+ Individual: 1.07 (1.00, 1.15) M1+ Neighborhood: 1.04 (0.97, 1.12) Living in a Flat dwelling: M1+ Individual: 1.03 (0.96, 1.11)
			M1+ Neighborhood: 1.00 (0.92, 1.08) Crowded household: M1+ Individual: 1.10 (1.03, 1.14) M1+Neighborhood: 1.11 (1.04, 1.20) COPD: Age and sex adjusted: 1.17 (1.09, 1.25)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			Primary education only: M1+ Individual: 1.13 (1.05, 1.22) M1+ Neighborhood: 1.09 (1.01, 1.19) Manual Class: M1+ Individual: 1.14 (1.05, 1.23) M1+ Neighborhood: 1.12 (1.04, 1.22) Income below Median: M1+ Individual: 1.13 (1.04, 1.22) M1+ Neighborhood: 1.06 (0.97, 1.15) Not owner occupied: M1+ Individual: 1.10 (1.02, 1.19) M1+ Neighborhood: 1.07 (0.99, 1.16) Living in a Flat dwelling: M1+ Individual: 1.08 (1.00, 1.18) M1+ Neighborhood: 1.03 (0.95, 1.13) Crowded household: M1+ Individual: 1.16 (1.07, 1.26) M1+Neighborhood: 1.16 (1.07, 1.26) Estimates for psychiatric diseases, genetic cancer and violent death
Reference: Nerriere et al. (2005,	Outcome: Mortality: Lung Cancer (162)	Pollutant: PM _{2.5}	Increment: 10 µg/m³
088630) Period of Study:	Study Design: Time-series	Averaging Time: 48-h avg	% Increase (Lower CI, Upper CI)
Period of Study: Grenoble (2001) Paris (2002) Rouen (2002-2003) Strasbourg (2003) Location: Four French Cities- Grenoble, Rouen, Paris, and Strasbourg	Statistical Analyses: GIS Age Groups: 30-71 yr old nonsmoking adults	Mean Range : 17 to 49 μg/m ³	% increase in lung cancer deaths attributable to $PM_{2.5}$ exposure France: 8 (1, 16) Grenoble: 10 (3, 19) Rouen: 10 (2, 19) Strasbourg: 24 (4, 40)
Reference: Ozkaynak and Thurston (1987, 072960)	Outcome: Total Mortality	Pollutant: Sulfate	Range of estimated total mortality effects of air pollutions:
Period of Study: 1980	Study Design: Cross-sectional	Averaging Time: Annual avg	Sulfate: 4-9%
Location: U.S.	Statistical Analyses: Multiple regression analysis	Mean Range: Sulfate: 11.1 (3.5)	"Sulfate concentration was consistently found to be a significant predictor of mortality in the models considered. Fine particle mass coefficients were also often found to be statistically significant in the mortality regressions."
Reference: Pope et al. (2004, <u>055880</u>)	Outcome: Mortality: Cardiovascular	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study: 1982-2000	Diseases (390-459)	Averaging Time: Annual avg	Relative Risk (Lower CI, Upper CI)
Location: Metropolitan areas in all 50 states in the U.S.	Diabetes (250) Respiratory Disease (460-519)	Mean (SD): 17.1 (3.7)	All cardiovascular disease plus diabetes: PM _{2.5} : 1.12 (1.08, 1.15)
States III als C.S.	Study Design: Prospective Cohort Statistical Analyses: Cox proportional hazards regression Age Groups: >30	Range (Min, Max): NR	Former Smoker: 1.26 (1.23, 1.28) Current Smoker: 1.94 (1.90, 1.99) Ischemic Heart Disease: PM _{2.5} : 1.18 (1.14, 1.23) Former Smoker: 1.33 (1.29, 1.37) Current Smoker: 2.03 (1.96, 2.10) Diabetes: PM _{2.5} : 0.99 (0.86, 1.14) Former Smoker: 1.05 (0.94, 1.16)
			Current Smoker: 1.35 (1.20, 1.53) All other Cardiovascular Diseases: PM _{2.5} : 0.84 (0.71, 0.99) Former Smoker: 1.22 (1.09, 1.38) Current Smoker: 1.78 (1.56, 2.04) Diseases of the respiratory system: PM _{2.5} : 0.92 (0.86, 0.98) Former Smoker: 2.16 (2.04, 2.28) Current Smoker: 3.88 (3.66, 4.11) COPD: PM _{2.5} : 0.84 (0.77, 0.93) Former Smoker: 4.93 (4.48, 5.42) Current Smoker: 9.85 (8.95, 10.84) All other respiratory diseases: PM _{2.5} : 0.86 (0.73, 1.02) Former Smoker: 1.54 (1.36, 1.74) Current Smoker: 1.83 (1.57, 2.12)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Pope et al. (2007, <u>091256</u>)	Outcome (ICD7&8):	Pollutant: PM _{2.5}	The study does not present quantitative
Period of Study: 1960-1975 Location: New Mexico, Arizona, Utah, and Nevada	Mortality: Cardiovascular (ICD 7: 400-468, 331, 332 ICD 8: 390-458) Respiratory (ICD 7: 470-527 ICD 8: 460-519) Influenza/ pneumonia (ICD 7: 480-483, 490-493, ICD 8: 470-474, 480-486)	Averaging Time: 24-h avg Mean (SD): NR Range (Min, Max): NR	results Results are presented in figures. The References found that the strike-relate estimated percent decrease in mortalit was 2.5% (1.1-4.0),
	Study Design: Retrospective Cohort Statistical Analyses: Poisson regression model GAM SAS		
D. (1.1./0000_100107)	Age Groups: All smelter workers >18	B. II. (. 1 DM	
Reference: Pope et al. (2009, 190107) Period of Study: 1978-1982, 1997-2001 Location: 211 U.S. counties and 51 metropolitan areas	Outcome: Increased life expectancy Study Design: Cross-sectional Statistical Analysis: Cross-sectional regression Age Groups: Adults ≥45 yr	Pollutant: PM _{2.5} Averaging Time: Daily, quarterly and annual Mean (SD) Unit: 1979-1983: 20.61 ± 4.36 μg/m³ 1999-2000: 14.10 ± 2.86 μg/m³ Range (Min, Max): NR Copollutant (correlation): NR	Increment: 10 μg/m³ Regression Coefficient ± SD 211 County Units Intercept: 1.75 ± 0.27 Reduction in PM _{2.5} : 0.61 ± 0.20 Change in Income: 0.13 ± 0.01 Change in Population: 0.06 ± 0.02 Change in Black Population: -2.70 ± 0.64 Change in Lung Cancer Mortality Rate: -0.06 ± 0.02 Change in COPD Mortality Rate: -0.08 ± 0.02 R: 0.53 51 Metropolitan Areas Intercept: 2.09 ± 0.36 Reduction in PM _{2.5} : 0.95 ± 0.23 Change in Income: 0.11 ± 0.02 Change in Population: 0.05 ± 0.02 Change in Black Population: -5.98 ± 1.99 Change in Lung Cancer Mortality Rate: 0.02 ± 0.03 Change in COPD Mortality Rate: -0.19 ± 0.05

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Study Reference: Rainham et al. (2005, 088676) Period of Study: 1981-1999 Location: Toronto, Canada	Design & Methods Outcome: Total deaths (ICD9 <800), cardiorespiratory (390-459), non-cardiorespiratory (ICD9-NR) Study Design: Time-series Statistical Analyses: Generalized linear models were used Season: Winter (Dec-Feb) Summer (Jun-Aug) Statistical Package: S-Plus 6.1	Concentrations ¹ Pollutant: PM _{2.5} Averaging Time: NR Mean (SD): All yr: 17.0 (8.7) μg/m³ Winters: 17.2 (6.8) Summers: 18.8 (10.2) Avg Winter values: Dry Moderate: 17.0 (1.0) Dry Polar: 17.5 (0.5) Dry Tropical: No Comparison Moist Moderate: 17.1 (0.8) Moist Polar: 17.5 (0.6) Moist Tropical: 16.5 (3.6) Transition: 16.7 (1.0) Avg summer values: Dry Moderate: 18.4 (0.9) Dry Polar: 19.0 (1.2) Dry Tropical: 18.5 (2.4) Moist Moderate: 19.2 (1.2) Moist Moderate: 19.2 (1.2) Moist Tropical: 19.8 (1.1) Transition: 17.6 (1.5)	## Effect Estimates (95% CI) Mortality risk for winter season and within winter synoptic weather categories RR Estimate [Lower CI, Upper CI]: Winter: Total: 0.998[0.997, 1.000] Cardioresp: 0.998[0.996, 1.000] Other: 0.998 [0.996, 1.000] Dry Moderate: Total: 1.001[0.996, 1.007] Cardioresp: 1.005[0.998, 1.011] Other: 1.002 [0.998, 1.005] Dry Polar: Total: 0.998[0.995, 1.001] Cardioresp: 0.995[0.991, 0.999] Other: 1.002 [0.998, 1.005] Dry Tropical: NA Moist Moderate: Total: 0.998[0.993, 1.002] Cardioresp: 1.003[0.995, 1.010] Other: 0.997 [0.991, 1.004] Moist Polar: Total: 1.001[0.998, 1.005] Cardioresp: 1.002[0.997, 1.007] Moist Tropical: Total: 1.007[0.996, 1.203] Cardioresp: 1.123[1.031, 1.224] Other: 1.248 [1.123, 1.387] Transition Total: 1.003[0.996, 1.009] Cardioresp: 0.996[0.987, 1.004] Other: 0.997 [0.990, 1.004]
			Mortality risk for summer season and within summer synoptic weather categories RR Estimate [Lower CI, Upper CI]: Summer: Total: 1.000[1.000, 1.001] Cardioresp: 1.001[1.000, 1.002] Other: 1.001[1.000, 1.002] Other: 1.001[0.999, 1.002] Cardioresp: 1.002[0.999, 1.004] Other: 0.999[0.997, 1.002] Dry Moderate: Total: 1.002[0.999, 1.004] Other: 0.999[0.997, 1.002] Dry Polar: Total: 1.002[0.999, 1.005] Cardioresp: 0.996[0.991, 1.000] Other: 1.003[0.999, 1.007] Dry Tropical: Total: 1.016[1.006, 1.027] Cardioresp: 1.017[1.003, 1.030] Other: 1.017 [1.003, 1.031] Moist Moderate: Total: 1.002[1.000, 1.004] Cardioresp: 1.003[0.999, 1.006] Other: 1.004 [1.001, 1.006] Moist Polar: Total: 1.005[0.998, 1.011] Cardioresp: 1.008[0.997, 1.018] Other: 1.003 [0.995, 1.011] Moist Tropical: Total: 0.999[0.997, 1.001] Cardioresp: 0.996[0.993, 1.000] Other: 0.998 [0.995, 1.001] Transition: Total: 1.005[0.996, 1.014] Cardioresp: 1.007[0.994, 1.020] Other: 1.002 [0.996, 1.008]
Reference: Roman et al. (2008, 156921)	Outcome: Mortality Study Design: Expert Judgment Study	Pollutant: PM _{2.5} Averaging Time: Annual avg	Quantitative results are not presented in the text, but can be found graphically in Fig 3.
Period of Study: 2006 Location: U.S.	Statistical Analyses: Standard best practices for expert elicitation	Mean (SD): 4-30	"Most of the experts' central estimates fall at or above the 2002 ACS median $(0.6\% \text{ per } \mu\text{g/m}^3)$ and below the original Six Cities median $(1.2\% \text{ per } \mu\text{g/m}^3)$."

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Schwartz, et al. (2008,	Outcome: Mortality	Pollutant: PM _{2.5}	PM Increment: 10 μg/m ³
156921) Period of Study: 1979-1988	Study Design: Poisson regression with GAM	Averaging Time: Daily Mean (SD):	The difference between mean PM $_{2.5}$ concentrations of 10 μ g/m 3 and 20 μ g/m 3 is associated with about a 1.5% increase in deaths.
Location: Six U.S. metropolitan areas: Boston, Massachusetts	Statistical Analyses: Weighted linear regression	Boston-16.5 Knoxville-21.1 St. Louis-19.2	
Knoxville, Tennessee	Season: all	Steubenville-30.5	
St. Louis, Missouri	Dose-response Investigated? No	Madison-11.3 Topeka-12.2	
Steubenville, Ohio	Statistical Package: S-plus	SD not reported Range (Min, Max): (0,35)	
Madison, Wisconsin		Monitoring Stations: 6	
and Topeka, Kansas		Monitoring Stations.	
Reference: (Schwartz et al., 2008,	Outcome: Mortality: Nonaccidental	Pollutant: PM _{2.5}	Increment: 10 µg/m ³
156963)	(<800)	Averaging Time: Annual avg	Relative Risk (Lower CI, Upper CI)
Period of Study: 1979-1998	Study Design: Cross-sectional	Mean (SD): 17.5 (6.8)	Estimated from Fig 4: All Cause Mortality - Year before Death
Location: Watertown, MA	Statistical Analyses: Cox proportional hazards regression	Range (Min, Max): (8, 40)	0: 1.10 (1.00, 1.21) 1: 1.03 (0.98, 1.08)
Kingston and Harriman, TN	penalized splines		2: 1.01 (1.00, 1.02)
St Louis, MO	Bayesian Model Averaging		3: 1.00 (0.99, 1.01) 4: 1.00 (0.99, 1.01)
Steubenville, OH	Age Groups: >18		5: 1.00 Lung Cancer Mortality - Year Before
Portage, Wyocena			Death
Pardeeville WI			Estimated from Fig 5 0: 1.18 (1.00, 1.48)
Topeka, KS			1: 1.12 (0.98, 1.33) 2: 1.08 (0.92, 1.22)
			3: 1.02 (1.01, 1.03) 4: 1.01 (1.00, 1.02)
			5: 1.01
			RR per 10 µg/m³ increase of PM _{2.5} exposure
			Level Of Increase Estimated from Fig 3
			10 μg/m ³ : 1.15
			20 μg/m³: 1.29 30 μg/m³: 1.46
			40 µg/m³: 1.64
Reference: Tainio et al. (2005, <u>087444</u>)	Outcome (ICD10): Mortality: Cardiopulmonary (I11-I70 and J15-J47)	Pollutant: PM _{2.5}	Estimated Deaths Per Year (Min Cl, Max Cl) Associated with Primary
Period of Study: 1997-Present	Lung Cancer (C34)	Averaging Time: 24-h avg	PM _{2.5}
Location: Helsinki, Finland	Other causes	Mean (SD): 10.7	Emissions from buses in Helsinki in 2020 for different bus strategies
	Study Design: Time-series simulation	Range (Min, Max): NR	Cardiopulmonary Mortality
	Statistical Analyses: Monte Carlo Simulation		Current Fleet: 15.9 (0, 46.6) Modern Diesel: 7.9 (0, 23.0) Diesel with particle trap: 3.9 (0, 12)
	Age Groups: All ages		Diesel with particle trap: 3.9 (0, 12) Natural gas bus: 2.3 (0, 6.8) Lung Cancer Mortality Current Fleet: 2.2 (0, 6.1)
			Modern Diesel: 1.1 (0, 3.0) Diesel with particle trap: 0.6 (0, 1.6) Natural gas bus: 0.3 (0, 0.9)
			Total Mortality Current Fleet: 18.1 (0, 55.0) Modern Diesel: 9.0 (0, 27.0) Diesel with particle trap: 4.4 (0, 14.1)
			Natural Gas Bus: 2.6 (0, 8.0)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Villeneuve et al. (2002,	Outcome (ICD10): Mortality:	Pollutant: PM _{2.5}	Increment: 18.6 µg/m³
042576) Period of Study: 1974-1991	Nonaccidental (<800) Study Design: Prospective Cohort	Averaging Time: 24-h avg	Relative Risk (Min CI, Max CI)
Location: Six U.S. Cities: Steubenville,	Statistical Analyses: Poisson,	Mean (SD): Portage: 10.9 (7.2)	RR of all cause mortality for exposure of PM _{2.5} by age group
OH, St. Louis, MO, Portage, WI,	EPICURE	Topeka: 12.1 (7.1)	Exposure to PM _{2.5} remained fixed over entire study period
Topeka, KS, Watertown, MA, Kingston/ Harriman, TN	Age Groups: All ages	Harriman: 20.7 (9.4)	<60: 1.89 (1.32, 2.69) >60: 1.21 (1.02, 1.43)
	<60	Watertown: 14.9 (8.4)	Total: 1.31`(1.12, 1.52)
	≥ 60	St. Louis: 18.7 (10.6)	Exposure to PM _{2.5} was defined according to 13 calendar periods* (no
		Steubenville: 28.6 (21.0)	smoothing) <60: 1.52 (1.15, 2.00)
		Overall: 18.6	>60: 1.11 (0.95, 1.29) Total: 1.19 (1.04, 1.36)
		Range (Min, Max): NR	Exposure to PM _{2.5} was defined according to 13 calendar periods* (smoothed) <60: 1.43 (1.10, 1.85) >60: 1.09 (0.93, 1.26) Total: 1.16 (1.02, 1.32) Time dependent estimate of PM _{2.5} received during the previous 2 yr <60: 1.42 (1.09, 1.82) >60: 1.08 (0.94, 1.25) Total: 1.16 (1.02, 1.31) Time dependent estimate of PM _{2.5} received 3-5 yr before current yr <60: 1.35 (1.08, 1.67)
Reference: Willis et al. (2003, 089922)	Outcome: Mortality: All causes	Pollutant: Sulfates	>60: 1.08 (0.95, 1.22) Total: 1.14 (1.02, 1.27) Time dependent estimate of PM _{2.5} received >5 yr before current yr <60: 1.34 (1.11, 1.59) >60: 1.09 (0.99, 1.20) Total: 1.14 (1.05, 1.23) * The calendar periods used were: 1970-1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, and 1990+ RR of all cause mortality and PM _{2.5} exposure by city Portage: 1.16 (0.96, 1.39) Topeka: 1.06 (0.89, 1.27) Harriman Men: 1.04 (0.79, 1.36) Women: 0.96 (0.69, 1.31) Ali: 1.13 (0.95, 1.35) Watertown Men: 1.20 (0.95, 1.51) Women: 1.06 (0.78, 1.43) Ali: 1.32 (1.11, 1.51) St. Louis Men: 0.97 (0.76, 1.24) Women: 1.13 (0.86, 1.49) Steubenville Men: 1.39 (1.11, 1.74) Women: 1.22 (0.93, 1.61) All Cause. Metropolitan Scale: 1.25
Reference: Willis et al. (2003, <u>089922</u>)	Outcome: Mortality: All causes	Pollutant: Sulfates	All Cause, Metropolitan Scale: 1.25 (1.13, 1.37)
Period of Study: 1982-1989	Lung Cancer (162)	Averaging Time: Annual avg	All Cause, County Scale: 1.50 (1.30,
Location: U.S. Metropolitan areas in all 50 states	Cardiopulmonary (401-440, 460-519)	Mean (SD): 10.6 μg/m ³	1.73)
30 states	Study Design: Prospective Cohort	Range (Min, Max): 3.6, 23.5	CPD, Metropolitan Scale: 1.29 (1.15,
	Statistical Analyses: Cox proportional hazards model	Copollutant: CO, NO ₂ , O ₃ , SO ₂	1.46) CPD, County Scale: 1.75 (1.48, 2.08)
	Age Groups: All ages		·
Reference: Zanobetti and Schwartz (2009, 188462)	Outcome: Mortality, all causes, excluding ICD codes S00-U99	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study: 1999-2005	Study Design: Time-series	Averaging Time: 24 h	Percent Increase (95% CI) in mortality by increment of PM _{2.5} ,
Location: 112 U.S. Cities	Covariates: Region, season	Mean (SD) Birmingham AL - 16.5 Phoenix AZ - 11.4 LittleRock AR - 14.3	combined by season All Cause Mortality Overall: 0.98 (0.75-1.22)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
	Statistical Analysis: Poisson	Fresno CA - 19.4	Winter: 0.56 (0.17-0.94)
	regression	Bakersfield CA - 21.7 Los Angeles CA - 19.9	Spring: 2.57 (1.96-3.19) Summer: 0.25 (-0.13-0.63)
	Age Groups: All	Anaheim CA - 16.3	Fall: 0.95 (0.56-1.34)
		Rubidoux CA - 24.9	CVD
		Sacramento CA - 13.0 El Cajon CA - 13.5	Overall: 0.85 (0.46-1.24) Winter: 0.70 (0.04-1.36)
		Denver CO - 10.3	Spring: 2.18 (1.22-3.15)
		Hartford CT - 11.6 New Haven CT - 13.7	Summer: -0.03 (-0.75-0.69)
		Wilmington DE - 15.1	Fall: 0.92 (0.17-1.68) MI
		Davie FL - 8.4	Overall: 1.18 (0.48-1.89)
		Miami FL - 9.4 Jacksonville FL - 10.6	Winter: 1.29 (-0.14-2.75)
		Pensacola FL - 12.4	Spring: 2.12 (0.53-3.74) Summer: -0.03 (-1.46-1.42)
		Tampa FL - 11.9	Fall: 1.24 (0.12-2.36)
		Orlando FL - 10.3 Palm beach FL - 7.9	Stroke Overall: 1.78 (0.96-2.62)
		Pinellas FL - 10.4	Winter: 1.93 (0.34-3.54)
		Atlanta GA - 17.6	Spring: 2.04 (-0.02-4.13)
		Chicago IL - 15.9 Gary IN - 15.3	Summer: 1.64 (0.05-3.26) Fall: 1.69 (0.06-3.35)
		Indianapolis IN - 16.3	Respiratory
		Cedar Rapids IA - 11.0	Overall: 1.68 (1.04-2.33)
		Des Moines IA - 10.5 Davenport IA - 12.3	Winter: 0.86 (-0.16-1.88) Spring: 4.62 (3.08-6.18)
		Louisville KY - 15.9	Summer: 0.78 (-0.49-2.06)
		Baton Rouge LA - 13.4	Fall: 1.45 (0.19-2.72)
		Avondale LA - 12.3 New Orleans LA - 12.6	Percent Increase (95% CI) in
		Baltimore MD - 15.6	mortality by increment in PM _{2.5}
		Springfield MA - 12.3	combined by region
		Boston MA - 12.4 Worcester MA - 11.3	All Cause Mortality Humid Subtropical and Maritime:
		Holland MI - 12.1	1.02 (0.65-1.38)
		Grand Rapids MI - 13.6 Detroit MI - 16.2	Warm Summer Continental: 1.19 (0.73-1.64)
		Minneapolis MN - 11.1	Hot Summer Continental:
		Kansas MO - 12.0	1.14 (0.55-1.73)
		St Louis MO - 14.5 Omaha NE - 10.4	Dry: 1.18 (-0.70-3.10) Dry, Continental: 1.26 (-0.21-2.76)
		Elizabeth NJ - 14.7	Mediterranean: 0.50 (0.00-1.01)
		Albuquerque NM - 6.7	CVD
		New York NY - 14.8 Bath NY - 9.6	Humid Subtropical and Maritime: 0.78 (0.05-1.51)
		Durham NC - 14.3	Warm Summer Continental:
		Winston NC - 14.7	1.43 (0.67-2.19)
		Greensborough NC - 14.2 Charlotte NC - 15.3	Hot Summer Continental: 0.43 (-0.53-1.40)
		Raleigh NC - 14.3	Dry: 3.11 (-0.02-6.33)
		Middletown OH - 16.4 Youngstown OH - 15.6	Dry, Continental: 1.67 (-0.75-4.16) Mediterranean: 0.16 (-0.46-0.79)
		Cleveland OH - 16.4	MI
		Columbus OH - 16.2	Humid Subtropical and Maritime:
		Cincinnati OH - 17.1 Steubenville OH - 17.0	0.97 (-0.29-2.26) Warm Summer Continental:
		Toledo OH - 14.9	1.50 (0.05-2.97)
		Dayton OH - 16.2	Hot Summer Continental:
		Akron OH - 16.0 Warren OH - 15.3	0.64 (-0.96-2.28) Dry: 4.25 (-2.38-11.33)
		Oklahoma OK - 9.9	Dry, Continental: 0.60 (-7.42-9.32)
		Tulsa OK - 11.1	Mediterranean: 1.85 (-0.66-4.41) Stroke
		Bend OR - 7.8 Medford OR - 9.9	Stroke Humid Subtropical and Maritime:
		Klamath OR - 10.6	2.94 (1.59-4.32)
		Eugene OR - 8.0 Portland OR - 8.8	Warm Summer Continental: 1.85 (0.04-3.69)
		Gettysburg PA - 13.4	Hot Summer Continental:
		Pittsburgh PA - 15.7	0.77 (-1.77-3.38)
		State College PA - 13.2 Carlisle PA - 15.1	Dry: 1.82 (-6.98-11.45) Dry, Continental: 2.49 (-2.32-7.53)
		Harrisburg PA - 15.5	Mediterranean: 0.95 (-0.66-2.59)
		Erie PA - 13.1	Respiratory
		Scranton PA - 11.8 Allentown PA - 14.2	Humid Subtropical and Maritime: 0.91 (-0.25-2.08)
		Wilkes Barre PA - 12.8	Warm Summer Continental:
		Mercer PA - 14.1	2.12 (0.89-3.36)
		Easton PA - 14.0	Hot Summer Continental:

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
		Philadelphia PA - 14.5 Washington PA - 14.7 Providence RI - 11.5 Charleston SC - 12.1 Taylors SC - 15.3 Columbia SC - 14.0 Spartanburg SC - 14.2 Nashville TN - 14.0 Knoxville TN - 16.0 Memphis TN - 13.5 San Antonio TX - 9.4 Dallas TX - 12.9 EI Paso TX - 9.2 Houston TX - 12.9 Port Arthur TX - 11.5 Ft Worth TX - 12.2 Austin TX - 10.4 Salt Lake UT - 11.5 Provo UT - 9.5 WDC VA - 15.2 Annandale VA - 14.0 Dumbarton VA - 13.6 Chesapeake VA - 12.7 Norfolk VA - 12.7 Richmond VA - 14.3 Seattle WA - 10.1 Tacoma WA - 11.2 Spokane WA - 9.1 Dodge WI - 11.1 Milwaukee WI - 13.2 Waukesha WI - 13.2 Range (Min, Max): NR	3.36 (1.95-4.79) Dry: 5.81 (-0.04-12.00) Dry, Continental: -0.31 (-5.89-5.61) Mediterranean: 1.06 (-0.36-2.50)
Reference: Zeger et al. (2007, <u>157176</u>)	Outcome: Mortality	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study: 2000-2002	Study Design: Retrospective Cohort	Averaging Time: 3-yr avg	65+: 1.076 (1.044, 1.108)
Location: 250 largest U.S. counties	(MCAPS) Statistical Analyses: Log-linear		Eastern U.S.: 1.125 (1.091, 1.159)
	regression models (GAM)		Central U.S.: 1.196 (1.115, 1.277)
	Covariates: Age, gender, race, county-		Western U.S.: 1.029 (0.994, 1.064)
	level SES, education and COPD SMR		65-74: 1.156 (1.117, 1.196)
	Age Groups: 65+		75-84: 1.081 (1.042, 1.121)
	65-74, 75-84, 85+		85+: 0.995 (0.956, 1.035)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Reference: Zeger et al. (2008, <u>191951</u>)	Outcome: Mortality	Pollutant: PM _{2.5}	Increment: 10 µg/m³
Period of Study: 2000-2005	Study Design: Retrospective Cohort	Averaging Time: Annual	Relative Risk (Min CI, Max CI) lag
Location: 4568 zip codes in urban	Statistical Analysis: Log-linear regression model	Median (SD) Unit:	Risk estimate for increase in mortality
areas		Eastern: 14.0 μg/m ³	per increase in PM _{2.5} , all ages Eastern Region
	Age Groups: ≥65	Central: 10.7 µg/m³	Age: 1.155 (1.130-1.180)
		Western: 13.1 μg/m ³	Age + SES: 1.105 (1.084-1.125) Age + SES + COPD:
		All: 13.2 μg/m ³	1.068 (1.049-1.087) Central Region
		Range (IQR):	Age: 1.178 (1.133-1.222) Age + SES: 1.089 (1.052-1.125)
		Eastern: 12.3-15.3	Age + SES + COPD:
		Central: 9.8-12.2	1.132 (1.095-1.169) Western Region
		Western: 10.4-18.5	Age: 1.003 (0.981-1.025) Age + SES: 0.997 (0.978-1.016)
		All: 11.1-14.9	Age + SES + COPD: 0.989 (0.970-1.008)
		Copollutant (correlation): NR	Risk estimate for increase in mortality per increase in PM ₂₅ , ages 65-74 Eastern Region Age: 31.1 (26.8-35.5) Age + SES: 17.3 (14.6-20.0) Age + SES: 17.3 (14.6-20.0) Age + SES + COPD: 11.4 (8.8-14.1) Central Region Age: 39.0 (29.7-48.2) Age + SES: 16.5 (10.9-22.1) Age + SES + COPD: 20.4 (15.0-25.8) Western Region Age: 6.0 (2.3-9.6) Age + SES: -2.1 (-5.0-0.8) Age + SES: -2.1 (-5.0-0.8) Age + SES + COPD: -1.5 (-4.2-1.1) Risk estimate for increase in mortality per increase in PM ₂₅ , ages 75-84 Eastern Region Age: 17.6 (14.9-20.4) Age + SES: 12.4 (10.1-14.6) Age + SES + COPD: 8.9 (6.8-11.0) Central Region Age: 17.5 (12.7-22.2) Age + SES: 8.8 (4.6-13.0) Age + SES + COPD: 12.0 (7.6-16.4) Western Region Age: 0.4 (-2.0-2.7) Age + SES: 0.3 (-1.8-2.5) Age + SES: COPD: -0.2 (-2.2-1.9) Risk estimate for increase in mortality per increase in PM ₂₅ , aged ≥85 Eastern Region Age: -1.4 (-3.5-0.8) Age + SES: 1.4 (-0.7-3.5) Age + SES: 1.4 (-0.7-3.5) Age + SES: 1.7 (-0.3-3.7) Central Region Age: -2.1 (-5.9-1.6) Age + SES: -0.7 (-4.2-2.8)
	erwise specified.		Age + SES + COPD: -0.3 (-4.0-3.3) Western Region Age: -5.2 (-7.2-3.2) Age + SES: 0.9 (-0.8-2.7) Age + SES + COPD: -0.5 (-2.5-1.5)

 $^{^1\!\}text{All}$ units expressed in $\mu\text{g/m}^3$ unless otherwise specified.

Table E-34. Long-term exposure - central nervous system outcomes - PM.

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Author: Calderón-Garcidueñas et al.	Outcome (ICD9 and ICD10): COX2 (cyclooxygenase), IL-1β, CD14 in lungs, OB (olfactory bulb), frontal cortex, hippocampus, substantia nigrae, periaqueductal gray and vagus nerves	PM Size: No measure of PM	PM Increment: NA
(2008, <u>192369</u>)		used Mexico City as the "polluted city" and Tlaxcala and Veracruz as the "control cities"	Effect Estimate [Lower CI, Upper CI]:
Period of Study: NR Location: Mexico City (polluted city) and Tlaxcala and Veracruz (control			RT-PCR sample results from Control
	Age Groups Analyzed:	Averaging Time: NA	and Mexico City (MC) lung, CNS, PNS (peripheral nervous system) tissues and
cities), Mexico	Subjects 2-45 yr of age	Mean (SD): NA	p-value for the difference between the means
	mean=25.1 ± 1.5 yr	Percentiles: NA	Concentrations are normalized to the
	Study Design:	Range (Min, Max): NA	amount of GAPDH cDNA
	Cross-sectional	Unit (i.e. µg/m³): NA	COX2 (cyclooxygenase-2) lung Controls: 15.9± 6.7 x 106
	N: 47 deceased subjects with complete	Number of Monitoring Stations: NA	MC residents: 42.3± 7.4 x 106 P-value: 0.015
	autopsies and neuropathological examinations (each subject had to be	Co-pollutant (correlation):	IL-1β lung Controls: 3.08±1.87 x 106
	considered clinically healthy and	NA	MC residents: 4.51± 2.6 x 106
	cognitively and neurologically intact prior to death) (primarily cause of death:		P-value: 0.60 COX2 OB (olfactory bulb)
	accidents resulting in immediate death)		Controls: 12.9± .0 x 105 MC residents: 38.7± 5.5 x 105
	Statistical Analyses: NR		P-value: 0.0002 IL-1β OB
	likely used T-tests		Controls: 3.4± 0.8 x 104
	in addition, stated using "parametric procedure that considers the		MC residents: 7.7± 1.0 x 104 P-value: 0.003
	differences among variances of the variables of interest"		CD14 OB Controls: 0.01± 0.001
			MC residents: 0.04± 0.01
	Covariates: Age, gender, place of birth, place of residency, occupation, smoking		P-value: 0.04 COX2 frontal
	habits, clinical histories, cause of death, and time between death and autopsy Season: NR		Controls: 2.6± 0.4 x 105 MC residents: 5.0± 0.7 x 105
			P-value: 0.008
	Dose-response Investigated?		IL-1β frontal Controls: 0.6± 0.2 x 104
	(Yes/No): No		MC residents: 6.2± 1.3 x 104 P-value: 0.0002
	Statistical package: Stata		COX2 hippocampus Controls: 1.9± 0.5 x 105
			MC residents: 1.6± 8.7 x 105
			P-value: 0.1 IL-1β hippocampus
			Controls: 1.8±0.2 x 104 MC residents: 3.0±0.5 x 104
			P-value: 0.06
			COX2 substantia nigrae Controls: 0.16± 0.06
			MC residents: 0.97± 0.2
			P-value: 0.03 IL-1β substanita nigrae
			Controls: 0.01± 0.005 MC residents: 0.09± 0.03
			P-value: 0.06
			CD14 substantia nigrae Controls: 0.02± 0.005
			MC residents: 0.03± 0.007
			P-value: 0.7 COX2 periaqueductal gray
			Controls: 0.10± 0.03
			MC residents: 0.45± 0.12 P-value: 0.12
			IL-1β periaqueductal gray
			Controls: 0.009± 0.003 MC residents: 0.07± 0.02
			P-value: 0.09
			COX2 left vagus Controls: 0.65± 0.18
			MC residents: 2.68± 0.82 P-value: 0.03
			COX2 right vagus
			Controls: 0.43± 0.09

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
			MC residents: 3.68± 0.8 P-value: 0.0002 IL-1β left vagus Controls: 0.1± 0.03 MC residents: 1.3± 0.73 P-value: 0.06 IL-1 β right vagus Controls: 0.15± 0.09 MC residents: 0.87± 0.53 p-value: 0.66 CD14 left vagus Controls: 0.07± 0.01 MC residents: 0.79± 0.41 P-value: 0.01 CD14 right vagus Controls: 0.07± 0.01 MC residents: 0.31± 0.1 P-value: 0.02 Distribution of subjects with expression of Aβ42 as a function of age and residency Groups: No (%) with Aβ42 expression Controls <25yr APOE 3/3 (n=6): 0 (0) Controls >25yr APOE 3/3 (n=6): 0 (0) Controls >25yr APOE 3/3 (n=3): 0 (0) MC E2 or E3 <25yr (n=17): 10 (58.82) MC E4 (n=8): 8 (100) Controls E4 (n=3): 2 (66) Distribution of subjects with expression of α-synuclein as a function of age and Residency Groups: No (%) with α-synuclein expression Controls <25yr APOE 3/3 (n=6): 0 (0) Controls >25yr APOE 3/3 (n=3): 0 (0) MC E2 or E3 <25yr (n=17): 4 (23.5) MC E2 or E3 <25yr (n=17): 4 (23.5) MC E2 or E3 <25yr (n=10): 3 (30) MC E4 (n=8): 2 (25) Controls E4 (n=3): 0 (0)
Reference: Chen and Schwartz (2009, 179945)	Outcome: Change in central nervous system function	Pollutant: PM ₁₀ Averaging Time: 1 yr	Increment: 10 μg/m ³ Regression Coefficient β (95% CI)
Period of Study: 1989-1991	Study Design: Panel	Mean (SD) Unit: 37.2 ± 12.8 μg/m ³	Crude
Location: U.S.	Covariates: Age, sex, race/ethnicity, individual socioeconomic position, lifestyle factors, household and neighborhood characteristics, conventional CVD risk factors Statistical Analysis: Pearson Chisquare tests and t-tests, as appropriate Statistical Package: STATA Age Groups: 20-59 yr	Copollutant: O ₃	SRTT: 2.14 (-0.08-4.36) SDST: 0.08 (0.04-0.13) SDLT Trials: 0.22 (0.13-0.31) SDLT Trials: 0.22 (0.13-0.31) SDLT Trials: 0.22 (0.13-0.65) Model 1: adjusted for age, sex, race/ethnicity SRTT: 2.03 (-0.15-4.20) SDST: 0.10 (0.05-0.15) SDLT Trials: 0.23 (0.14-0.32) SDLT Total: 0.48 (0.27-0.68) Model 2: Model 1 + socioeconomic factors SRTT: -0.11 (-2.38-2.16) SDST: 0.01 (-0.04-0.06) SDLT Trials: 0.01 (-0.08-0.10) SDLT Total: -0.07 (-0.27-0.13) Model 3: Model 2 + lifestyle factors SRTT: -0.36 (-2.58-1.85) SDST: 0.00 (-0.04-0.05) SDLT Trials: 0.09 (0.00-0.17) SDLT Total: 0.12 (-0.07-0.31)

Study	Design & Methods	Concentrations ¹	Effect Estimates (95% CI)
Author: Suglia et al. (2008, <u>157027</u>)	Outcome (ICD9 and ICD10):	PM Size: Black carbon (BC)	PM Increment: 0.4 μg/m ³
Period of Study: 1986-2001	Cognition:	Averaging Time: Lifetime exposure	Effect Estimate [Lower CI, Upper CI]:
Location: Boston, Massachusetts	Kaufman Brief Intelligence Test, K-BIT (vocabulary and matrices subscales and composite IQ score)	Estimated 24 h measures of traffic using a spatiotemporal land-use regression model using data from >80 locations in Greater Boston (6021	Change in subscale score (95%CI) per IQR (0.4 μ g/m³) increase in log BC level K-BIT Vocabulary:
	Wide Range Assessment of Memory and Learning, WRAML (psychometric instrument with subscales on verbal memory, visual memory, learning, and	pollution measurements from 2127 unique exposure days) Predictors in the land-use regression	Adj for demographic factors: -2.0 (-5.3, 1.3) Adj for above factors + secondhand smoke: -2.0 (-5.3, 1.4)
	overall general index scale)	analysis were the BC level at a central station (to capture avg concentrations	Adj for above factors + birth weight: - 2.0 (-5.4, 1.3)
	All cognition scores have a mean of 100 and SD=15.	on that day), meteorological conditions, weekday/weekend, and measure of	Adj for above factors + blood lead level: -2.2 (-5.5, 1.1) Matrices:
	Age Groups Analyzed: Cognitive tests administered when children were 8-11 yr of age	traffic activity (GIS-based measures of cumulative traffic density within 100m, population density, distance to nearest major roadway, % urbanization)	Adj for demographic factors: -4.2 (-7.7, -0.7) Adj for above factors + secondhand
	Study Design: Cross-sectional	Used the avg of the cold and warm	smoke: -4.0 (-7.5, -0.4) Adj for above factors + birth weight:
	N: 202 children	seasons as the measure of avg lifetime	-4.0 (-7.6, -0.5)
	Statistical Analyses: Linear regression	BC exposure Mean (SD): 0.56 (0.13) µg/m ³	Adj for above factors + blood lead level: -4.0 (-7.6, -0.5)
	Covariates: Child's age at cognitive assessment, gender, primary language	Percentiles: NR	Composite: Adj for demographic factors: -3.4 (-6.6, -0.3)
	spoken at home, and maternal education (model 1	Range (Min, Max): NR	Adj for above factors + secondhand smoke: -3.3 (-6.4, -0.1)
	"Demographic factors")	Unit (i.e. µg/m³):	Adj for above factors + birth weight: -3.3 (-6.5, -0.2)
		Number of Monitoring Stations: >80 locations	Adj for above factors + blood lead level: -3.4 (-6.6, -0.3)
		Co-pollutant (correlation): NA	WRAML Verbal: Adj for demographic factors: -1.1 (-4.6, 2.3) Adj for above factors + secondhand smoke: -1.2 (-4.7, 2.3) Adj for above factors + birth weight: -1.3 (-4.7, 2.2) Adj for above factors + blood lead level: -1.3 (-4.8, 2.2) Visual: Adj for demographic factors: -5.2 (-8.6, -1.7) Adj for above factors + secondhand smoke: -5.3 (-8.8, -1.8) Adj for above factors + birth weight: -5.3 (-8.8, -1.8) Adj for above factors + blood lead level: -5.4 (-8.9, -1.9) Learning:
	Birth weight (model 3) and blood lead level (model 4)		
	Season: Separate land-use regression models were fit for the warm (May-Oct) and cold (Nov-Apr) seasons		
	Used avg of two seasons as measure of avg lifetime BC exposure		
	Dose-response Investigated? (Yes/No): No		
	Statistical package: SAS (v9.0)		
			Adj for demographic factors: -2.7 (-6.5, 1.1)
			Adj for above factors + secondhand smoke: -2.6 (-6.5, 1.2) Adj for above factors + birth weight:
			-2.6 (-6.5, 1.3) Adj for above factors + blood lead level: -2.8 (-6.6, 1.1)
			General: Adj for demographic factors:
			-3.7 (-7.2, -0.2) Adj for above factors + secondhand
			smoke: -3.7 (-7.3, -0.1) Adj for above factors + birth weight:
			-3.8 (-7.4, -0.2) Adj for above factors + blood lead level:
1			-3.9 (-7.5, -0.3)

¹All units expressed in μg/m³ unless otherwise specified.

Annex E References

- Abbey DE; Nishino N; McDonnell WF; Burchette RJ; Knutsen SF; Beeson WL; Yang JX (1999). Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. Am J Respir Crit Care Med, 159: 373-382. 047559
- Abrahamowicz M; Schopflocher T; Leffondre K; Du Berger R; Krewski D (2003). Flexible modeling of exposure-response relationship between long-term average levels of particulate air pollution and mortality in the American Cancer Society study. J Toxicol Environ Health A Curr Iss, 66: 1625-1654. 086292
- Ackermann-Liebrich U; Leuenberger P; Schwartz J; Schindler C; Monn C; Bolognini B; Bongard JP; Brandli O; Domenighetti G; Elsasser S; Grize L; Karrer W; Keller R; Keller-Wossidlo H; Kunzli N; Martin BW; Medici TC; Pliger B; Wuthrich B; Zellweger JP; Zemp E (1997). Lung function and long term exposure to air pollutants in Switzerland. Am J Respir Crit Care Med, 155: 122-129. 077537
- Adamkiewicz G; Ebelt S; Syring M; Slater J; Speizer FE; Schwartz J; Suh H; Gold DR (2004). Association between air pollution exposure and exhaled nitric oxide in an elderly population. Thorax, 59: 204-209. <u>087925</u>
- Adar SD; Adamkiewicz G; Gold DR; Schwartz J; Coull BA; Suh H (2007). Ambient and microenvironmental particles and exhaled nitric oxide before and after a group bus trip. Environ Health Perspect, 115: 507-512. 098635
- Adar SD; Gold DR; Coull BA; Schwartz J; Stone PH; Suh H (2007). Focused exposures to airborne traffic particles and heart rate variability in the elderly. Epidemiology, 18: 95-103. 001458
- Aekplakorn W; Loomis D; Vichit-Vadakan N; Shy C; Plungchuchon S (2003). Acute effects of SO2 and particles from a power plant on respiratory symptoms of children, Thailand. Southeast Asian J Trop Med Public Health, 34: 906-914. 089908
- Aga E; Samoli E; Touloumi G; Anderson HR; Cadum E; Forsberg B; Goodman P; Goren A; Kotesovec F; Kriz B; Macarol-Hiti M; Medina S; Paldy A; Schindler C; Sunyer J; Tittanen P; Wojtyniak B; Zmirou D; Schwartz J; Katsouyanni K (2003). Short-term effects of ambient particles on mortality in the elderly: results from 28 cities in the APHEA2 project. Eur Respir J, 40: 28s-33s. <u>054808</u>
- Agarwal R; Jayaraman G; Anand S; Marimuthu P (2006). Assessing respiratory morbidity through pollution status and meteorological conditions for Delhi. Environ Monit Assess, 114: 489-504. 099086
- Allen RW; Criqui MH; Diez Roux AV; Allison M; Shea S; Detrano R; Sheppard L; Wong N; Hinckley Stukovsky K; Kaufman JD (2009). Fine particulate air pollution, proximity to traffic, and aortic atherosclerosis: The multi-ethnic study of atherosclerosis. Epidemiology, 20: 254-264. 156209
- Allen RW; Mar T; Koenig J; Liu LJ; Gould T; Simpson C; Larson T (2008). Changes in lung function and airway inflammation among asthmatic children residing in a woodsmoke-impacted urban area. Inhal Toxicol, 20: 423-433. 156208
- Analitis A; Katsouyanni K; Dimakopoulou K; Samoli E; Nikoloulopoulos AK; Petasakis Y; Touloumi G; Schwartz J; Anderson HR; Cambra K; Forastiere F; Zmirou D; Vonk JM; Clancy L; Kriz B; Bobvos J; Pekkanen J (2006). Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology, 17: 230-233. 088177
- Andersen ZJ; Wahlin P; Raaschou-Nielsen O; Ketzel M; Scheike T; Loft S (2008). Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark. Occup Environ Med, 65: 458-66. 189651
- Andersen ZJ; Wahlin P; Raaschou-Nielsen O; Scheike T; Loft S (2007). Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen. J Expo Sci Environ Epidemiol, 17: 625-636.

 093201
- Anderson HR; Atkinson RW; Bremner SA; Marston L (2003). Particulate air pollution and hospital admissions for cardiorespiratory diseases: are the elderly at greater risk? Eur Respir J, 40: 39s-46s. 054820

Note: Hyperlinks to the reference citations throughout this document will take you to the NCEA HERO database (Health and Environmental Research Online) at http://epa.gov/hero. HERO is a database of scientific literature used by U.S. EPA in the process of developing science assessments such as the Integrated Science Assessments (ISA) and the Integrated Risk Information System (IRIS).

- Anderson ME; Bogdan GM (2007). Environments, indoor air quality, and children. Pediatr Clin North Am, 54: 295-307. 156214
- Annesi-Maesano, I.; Forastiere, F.; Kunzli, N.; Brunekref, B.; Environment and Health Committee of the European Respiratory Society.. (2007). Particulate matter, science and EU policy. Eur Respir J, 29: 428-431. 091348
- Arbex MA; Martins LC; De Oliveira RC; Pereira LA; Arbex FF; Cancado JE; Saldiva PH; Braga AL (2007). Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil. J Epidemiol Community Health, 61: 395-400. 091637
- Auchincloss AH; Roux AV; Dvonch JT; Brown PL; Barr RG; Daviglus ML; Goff DC; Kaufman JD; O'Neill MS (2008).

 Associations between Recent Exposure to Ambient Fine Particulate Matter and Blood Pressure in the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health Perspect, 116: 486-491. 156234
- Avol EL; Gauderman WJ; Tan SM; London SJ; Peters JM (2001). Respiratory effects of relocating to areas of differing air pollution levels. Am J Respir Crit Care Med, 164: 2067-2072. 020552
- Babin SM; Burkom HS; Holtry RS; Tabernero NR; Stokes LD; Davies-Cole JO; DeHaan K; Lee DH (2007). Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001-2004, and associations with air quality, socio-economic status and age group. Environ Health Global Access Sci Source, 6: 9. 093250
- Baccarelli A; Martinelli I; Pegoraro V; Melly S; Grillo P; Zanobetti A; Hou L; Bertazzi PA; Mannucci PM; Schwartz J (2009). Living near Major Traffic Roads and Risk of Deep Vein Thrombosis. Circulation, 119: 3118-3124. <u>188183</u>
- Baccarelli A; Martinelli I; Zanobetti A; Grillo P; Hou LF; Bertazzi PA; Mannucci PM; Schwartz J (2008). Exposure to Particulate Air Pollution and Risk of Deep Vein Thrombosis. Arch Intern Med, 168: 920-927. 157984
- Baccarelli A; Zanobetti A; Martinelli I; Grillo P; Hou L; Giacomini S; Bonzini M; Lanzani G; Mannucci PM; Bertazzi PA; Schwartz J (2007). Effects of exposure to air pollution on blood coagulation. J Thromb Haemost, 5: 252-260. 090733
- Baccarelli A; Zanobetti A; Martinelli I; Grillo P; Hou L; Lanzani G; Mannucci PM; Bertazzi PA; Schwartz J (2007). Air pollution, smoking, and plasma homocysteine. Environ Health Perspect, 115: 176-181. 091310
- Bakke B; Ulvestad B; Stewart P; Eduard W (2004). Cumulative exposure to dust and gases as determinants of lung function decline in tunnel construction workers. Occup Environ Med, 61: 262-269. 156246
- Ballester F; Medina S; Boldo E; Goodman P; Neuberger M; Iniguez C; Kunzli N (2008). Reducing ambient levels of fine particulates could substantially improve health: a mortality impact assessment for 26 European cities. J Epidemiol Community Health, 62: 98-105. 189977
- Ballester F; Rodriguez P; Iniguez C; Saez M; Daponte A; Galan I; Taracido M; Arribas F; Bellido J; Cirarda FB; Canada A; Guillen JJ; Guillen-Grima F; Lopez E; Perez-Hoyos S; Lertxundi A; Toro S (2006). Air pollution and cardiovascular admissions association in Spain: results within the EMECAS project. J Epidemiol Community Health, 60: 328-336. 088746
- Ballester F; Saez M; Perez-Hoyos S; Iniguez C; Gandarillas A; Tobias A; Bellido J; Taracido M; Arribas F; Daponte A; Alonso E; Canada A; Guillen-Grima F; Cirera L; Perez-Boillos MJ; Saurina C; Gomez F; Tenias JM (2002). The EMECAM project: a multicentre study on air pollution and mortality in Spain: combined results for particulates and for sulfur dioxide. Occup Environ Med, 59: 300-308. 030371
- Barclay JL; Egred M; Kruszewski K; Nandakumar R; Norton MY; Stirrat C; Redpath TW; Walton S; Hillis GS (2007). The relationship between transmural extent of infarction on contrast enhanced magnetic resonance imaging and recovery of contractile function in patients with first myocardial infarction treated with thrombolysis. Cardiology, 108: 217-22. 192229
- Barclay JL; Miller BG; Dick S; Dennekamp M; Ford I; Hillis GS; Ayres JG; Seaton A (2009). A panel study of air pollution in subjects with heart failure: negative results in treated patients. Occup Environ Med, 66: 325-334. 179935
- Barnett AG; Williams GM; Schwartz J; Neller AH; Best TL; Petroeschevsky AL; Simpson RW (2005). Air pollution and child respiratory health: a case-crossover study in Australia and New Zealand. Am J Respir Crit Care Med, 171: 1272-1278. 087394

- Barraza-Villarreal A; Sunyer J; Hernandez-Cadena L; Escamilla-Nunez MC; Sienra-Monge JJ; Ramirez-Aguilar M; Cortez-Lugo M; Holguin F; Diaz-Sanchez D; Olin AC; Romieu I (2008). Air pollution, airway inflammation, and lung function in a cohort study of Mexico City schoolchildren. Environ Health Perspect, 116: 832-838. 156254
- Bartzokas A; Kassomenos P; Petrakis M; Celessides C (2004). The effect of meteorological and pollution parameters on the frequency of hospital admissions for cardiovascular and respiratory problems in Athens. Indoor Built Environ, 13: 271-275. 093252
- Basu R; Feng WY; Ostro BD (2008). Characterizing temperature and mortality in nine California counties. Epidemiology, 19: 138-45. <u>098716</u>
- Bateson TF; Schwartz J (2004). Who is sensitive to the effects of particulate air pollution on mortality? A case-crossover analysis of effect modifiers. Epidemiology, 15: 143-149. <u>086244</u>
- Bayer-Oglesby L; Grize L; Gassner M; Takken-Sahli K; Sennhauser FH; Neu U; Schindler C; Braun-Fahrlander C (2005). Decline of ambient air pollution levels and improved respiratory health in Swiss children. Environ Health Perspect, 113: 1632-1637. 086245
- Beelen R; Hoek G; van den Brandt PA; Goldbohm RA; Fischer P; Schouten LJ; Jerrett M; Hughes E; Armstrong B; Brunekreef B (2008). Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ Health Perspect, 116: 196-202. 156263
- Beeson WL; Abbey DE; Knutsen SF (1998). Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: results from the AHSMOG study. Environ Health Perspect, 106: 813-823. 048890
- Bell M; Ebisu K; Peng R; Samet J; Dominici F (2009). Hospital Admissions and Chemical Composition of Fine Particle Air Pollution. Am J Respir Crit Care Med, 179: 1115-1120. 191997
- Bell ML; Ebisu K; Belanger K (2007). Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environ Health Perspect, 115: 1118-24. 091059
- Bell ML; Ebisu K; Peng RD; Dominici F (2009). Adverse health effects of particulate air pollution: modification by air conditioning. Epidemiology, 20: 682-686. 191007
- Bell ML; Kim JY; Dominici F (2007). Potential confounding of particulate matter on the short-term association between ozone and mortality in multisite time-series studies. Environ Health Perspect, 115: 1591-1595. 093256
- Bell ML; Levy JK; Lin Z (2008). The effect of sandstorms and air pollution on cause-specific hospital admissions in Taipei, Taiwan. Occup Environ Med, 65: 104-111. 091268
- Bellini P; Baccini M; Biggeri A; Terracini B (2007). The meta-analysis of the Italian studies on short-term effects of air pollution (MISA): Old and new issues on the interpretation of the statistical evidences. Environmetrics, 18: 219-229. 097787
- Bennett CM; Simpson P; Raven J; Skoric B; Powell J; Wolfe R; Walters EH; Abramson MJ (2007). Associations between ambient PM2.5 concentrations and respiratory symptoms in Melbourne, 1998-2005. J Toxicol Environ Health A Curr Iss, 70: 1613-1618. 156268
- Binkova B; Chvatalova I; Lnenickova Z; Milcova A; Tulupova E; Farmer PB; Sram RJ (2007). PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms. Mutat Res Fund Mol Mech Mutagen, 620: 49-61. 156273
- Boezen HM; Van Der Zee SC; Postma DS; Vonk JM; Gerritsen J; Hoek G; Brunekreef B; Rijcken B; Schouten JP (1999). Effects of ambient air pollution on upper and lower respiratory symptoms and peak expiratory flow in children. Lancet, 353: 874-878. 040410
- Boezen HM; Vonk JM; Van Der Zee SC; Gerritsen J; Hoek G; Brunekreef B; Schouten JP; Postma DS (2005). Susceptibility to air pollution in elderly males and females. Eur Respir J, 25: 1018-1024. <u>087396</u>
- Bourotte C; Curi-Amarante A-P; Forti M-C; APereira LA; Braga AL; Lotufo PA (2007). Association between ionic composition of fine and coarse aerosol soluble fraction and peak expiratory flow of asthmatic patients in Sao Paulo city (Brazil). Atmos Environ, 41: 2036-2048. 150040
- Brauer M; Gehring U; Brunekreef B; De Jongste J; Gerritsen J; Rovers M; Wichmann H-E; Wijga A; Heinrich J (2006). Traffic-related air pollution and otitis media. Environ Health Perspect, 114: 1414-1418. 090757

- Brauer M; Hoek G; Smit HA; De Jongste JC; Gerritsen J; Postma DS; Kerkhof M; Brunekreef B (2007). Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J, 29: 879-888. 090691
- Brauer M; Hoek G; Van Vliet P; Meliefste K; Fischer PH; Wijga A; Koopman LP; Neijens HJ; Gerritsen J; Kerkhof M; Heinrich J; Bellander T; Brunekreef B (2002). Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Respir Crit Care Med, 166: 1092-1098. 035192
- Brauer M; Lencar C; Tamburic L; Koehoorn M; Demers P; Karr C (2008). A cohort study of traffic-related air pollution impacts on birth outcomes. Environ Health Perspect, 116: 680-686. <u>156292</u>
- Breitner S; Stölzel M; Cyrys J; Pitz M; Wölke G; Kreyling W; Küchenhoff H; Heinrich J; Wichmann H; Peters A (2009). Short-Term Mortality Rates during a Decade of Improved Air Quality in Erfurt, Germany. Environ Health Perspect, 117: 448-454. 188439
- Briet M; Collin C; Laurent S; Tan A; Azizi M; Agharazii M; Jeunemaitre X; Alhenc-Gelas F; Boutouyrie P (2007). Endothelial function and chronic exposure to air pollution in normal male subjects. Hypertension, 50: 970-976. 093049
- Brunekreef B; Beelen R; Hoek G; Schouten L; Bausch-Goldbohm S; Fischer P; Armstrong B; Hughes E; Jerrett M; van den Brandt P (2009). Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: The NLCS-AIR Study. Health Effects Institute. Boston, MA. 139. 191947
- Burnett RT; Stieb D; Brook JR; Cakmak S; Dales R; Raizenne M; Vincent R; Dann T (2004). Associations between short-term changes in nitrogen dioxide and mortality in Canadian cities. Arch Environ Occup Health, 59: 228-236. 086247
- Burr ML; Karani G; Davies B; Holmes BA; Williams KL (2004). Effects on respiratory health of a reduction in air pollution from vehicle exhaust emissions. Occup Environ Med, 61: 212-218. 087809
- Cakmak S; Dales RE; Vidal CB (2007). Air pollution and mortality in Chile: Susceptibility among the elderly. Environ Health Perspect, 115: 524-7. 091170
- Calderón-Garcidueñas L; Macías-Parra M; Hoffmann HJ; Valencia-Salazar G; Henríquez-Roldán C; Osnaya N; Monte OC; Barragán-Mejía G; Villarreal-Calderon R; Romero L; Granada-Macías M; Torres-Jardón R; Medina-Cortina H; Maronpot RR (2009). Immunotoxicity and environment: immunodysregulation and systemic inflammation in children. Toxicol Pathol, 37: 161-169. 192107
- Calderón-Garcidueñas L; Maronpot RR; Torres-Jardon R; Henriquez-Roldan C; Schoonhoven R; Acuna-Ayala H; Villarreal-Calderon A; Nakamura J; Fernando R; Reed W; Azzarelli B; Swenberg JA (2003). DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol Pathol, 31: 524-538. 156316
- Calderón-Garcidueñas L; Mora-Tiscareno A; Fordham LA; Chung CJ; Valencia-Salazar G; Flores-Gomez S; Solt AC; Gomez-del Campo A; Jardon-Torres R; Henriquez-Roldan C; Hazucha MJ; Reed W (2006). Lung radiology and pulmonary function of children chronically exposed to air pollution. Environ Health Perspect, 114: 1432-1437. 091253
- Calderón-Garcidueñas L; Mora-Tiscareno A; Ontiveros E; Gomez-Garza G; Barragan-Mejia G; Broadway J; Chapman S; Valencia-Salazar G; Jewells V; Maronpot RR; Henriquez-Roldan C; Perez-Guille B; Torres-Jardon R; Herrit L; Brooks D; Osnaya-Brizuela N; Monroy M (2008). Air pollution, cognitive deficits and brain abnormalities: A pilot study with children and dogs. Brain Cognit, 68: 117-127. 156317
- Calderón-Garcidueñas L; Solt A; Henriquez-Roldan C; Torres-Jardon R; Nuse B; Herritt L; Stone I (2008). Long-term air pollution exposure is associated with neuroinflammation , an altered innate immune response, disruption of the blood-brain-barrier, ultrafine particle deposition, and accumulation of amyloid β 42 and α synuclein in children and young adults. Toxicol Pathol, 36: 289-310. 192369
- Cárdenas M; Vallejo M; Romano-Riquer P; Ruiz-Velasco S; Ferreira-Vidal AD; Hermosillo AG (2008). Personal exposure to PM2.5 air pollution and heart rate variability in subjects with positive or negative head-up tilt test. Environ Res, 108: 1-6. 191900
- Cavallari JM; Eisen EA; Chen JC; Fang SC; Dobson CB; Schwartz J; Christiani DC (2007). Night Heart Rate Variability and Particulate Exposures among Boilermaker Construction Workers. Environ Health Perspect, 115: 1046-1051. 157425

- Cavanagh JA; Brown L; Trought K; Kingham S; Epton MJ (2007). Elevated concentrations of 1-hydroxypyrene in schoolchildren during winter in Christchurch, New Zealand. Sci Total Environ, 374: 51-59. 189802
- Cesaroni G; Badaloni C; Porta D; Forastiere F; Perucci CA (2008). Comparison between several indices of exposure to traffic-related air pollution and their respiratory health impact in adults. Occup Environ Med, 65: 683-690. <u>156326</u>
- Chahine T; Baccarelli A; Litonjua A; Wright RO; Suh H; Gold DR; Sparrow D; Vokonas P; Schwartz J (2007). Particulate air pollution, oxidative stress genes, and heart rate variability in an elderly cohort. Environ Health Perspect, 115: 1617-1622. 156327
- Chan CC; Chuang KJ; Chen WJ; Chang WT; Lee CT; Peng CM (2008). Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in Taiwan. Environ Res, 106: 393-400. 093297
- Chan MN; Chan CK (2007). Mass transfer effects on the hygroscopic growth of ammonium sulfate particles with a water-insoluble coating. Atmos Environ, 41: 4423-4433. 147787
- Chang SY; Fang GC (2007). Springtime soluble particles in a suburban area of Taichung in central Taiwan. Atmos Res, 86: 30-41. 147621
- Chardon B; Lefranc A; Granados D; Gremy I (2007). Air pollution and doctors' house calls for respiratory diseases in the greater Paris area (2000-3). Occup Environ Med, 64: 320-324. <u>091308</u>
- Chattopadhyay BP; Mukherjee A; Mukherjee K; Roychowdhury A (2007). Exposure to vehicular pollution and assessment of respiratory function in urban inhabitants. Lung, 185: 263-70. 147471
- Chen J-C; Schwartz J (2009). Neurobehavioral effects of ambient air pollution on cognitive performance in US adults. Neurotoxicology, 30: 231-239. 179945
- Chen JC; Schwartz J (2008). Metabolic syndrome and inflammatory responses to long-term particulate air pollutants. Environ Health Perspect, 116: 612-617. 190106
- Chen L; Yang W; Jennison BL; Goodrich A; Omaye ST (2002). Air pollution and birth weight in northern Nevada, 1991-1999. Inhal Toxicol, 14: 141-157. 024945
- Chen LH; Knutsen SF; Shavlik D; Beeson WL; Petersen F; Ghamsary M; Abbey D (2005). The association between fatal coronary heart disease and ambient particulate air pollution: Are females at greater risk? Environ Health Perspect, 113: 1723-1729. 087942
- Chen Y; Yang Q; Krewski D; Burnett RT; Shi Y; McGrail KM (2005). The effect of coarse ambient particulate matter on first, second, and overall hospital admissions for respiratory disease among the elderly. Inhal Toxicol, 17: 649-655. 087555
- Cheng M-F; Tsai S-S; Wu T-N; Chen P-S; Yang C-Y (2007). Air pollution and hospital admissions for pneumonia in a tropical city: Kaohsiung, Taiwan. J Toxicol Environ Health A Curr Iss, 70: 2021-2026. 093034
- Chimonas MA; Gessner BD (2007). Airborne particulate matter from primarily geologic, non-industrial sources at levels below National Ambient Air Quality Standards is associated with outpatient visits for asthma and quick-relief medication prescriptions among children less than 20 years old enrolled in Medicaid in Anchorage, Alaska. Environ Res, 103: 397-404. 093261
- Chiu H; Tiao M; Ho S; Kuo H; Wu T; Yang C (2008). Effects of Asian Dust Storm events on hospital admissions for chronic obstructive pulmonary disease in Taipei, Taiwan. Inhal Toxicol, 20: 777-781. 191989
- Chiu HF; Cheng MH; Yang CY (2009). Air pollution and hospital admissions for pneumonia in a subtropical city: Taipei, Taiwan. Inhal Toxicol, 21: 32-37. 190249
- Choi JH; Xu QS; Park SY; Kim JH; Hwang SS; Lee KH; Lee HJ; Hong YC (2007). Seasonal variation of effect of air pollution on blood pressure. J Epidemiol Community Health, 61: 314-318. <u>093196</u>
- Chuang K-J; Chan C-C; Su T-C; Lee C-T; Tang C-S (2007). The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am J Respir Crit Care Med, 176: 370-376. 091063
- Chuang KJ; Chan CC; Su TC; Lin LY; Lee CT (2007). Associations between particulate sulfate and organic carbon exposures and heart rate variability in patients with or at risk for cardiovascular diseases. J Occup Environ Med, 49: 610-617. 098629
- D'Ippoliti D; Forastiere F; Ancona C; Agabiti N; Fusco D; Michelozzi P; Perucci CA (2003). Air pollution and myocardial infarction in Rome: a case-crossover analysis. Epidemiology, 14: 528-535. 074311

- Dales R; Burnett RT; Smith-Doiron M; Stieb DM; Brook JR (2004). Air pollution and sudden infant death syndrome. Pediatrics, 113: 628-631. 087342
- Dales R; Liu L; Szyszkowicz M; Dalipaj M; Willey J; Kulka R; Ruddy TD (2007). Particulate air pollution and vascular reactivity: the bus stop study. Int Arch Occup Environ Health, 81: 159-164. 155743
- Dales R; Wheeler A; Mahmud M; Frescura AM; Smith-Doiron M; Nethery E; Liu L (2008). The Influence of Living Near Roadways on Spirometry and Exhaled Nitric Oxide in Elementary Schoolchildren. Environ Health Perspect, 116: 1423-1427. 156378
- Dales RE; Cakmak S; Doiron MS (2006). Gaseous air pollutants and hospitalization for respiratory disease in the neonatal period. Environ Health Perspect, 114: 1751-1754. 090744
- Daniels MJ; Dominici F; Zeger SL; Samet JM (2004). The national morbidity, mortality, and air pollution study Part III: PM10 concentration-response curves and thresholds for the 20 largest US cities. Health Effects Institute. Cambridge, MA. <u>087343</u>
- Delfino R; Brummel S; Wu J; Stern H; Ostro B; Lipsett M; Winer A; Street D; Zhang L; Tjoa T (2009). The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup Environ Med, 66: 189. 191994
- Delfino RJ; Gong H; Linn WS; Hu Y; Pellizzari ED (2003). Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air. J Expo Sci Environ Epidemiol, 13: 348-363. 090941
- Delfino RJ; Quintana PJE; Floro J; Gastanaga VM; Samimi BS; Kleinman MT; Liu L-JS; Bufalino C; Wu C-F; McLaren CE (2004). Association of FEV1 in asthmatic children with personal and microenvironmental exposure to airborne particulate matter. Environ Health Perspect, 112: 932-941. 056897
- Delfino RJ; Staimer N; Gillen D; Tjoa T; Sioutas C; Fung K; George SC; Kleinman MT (2006). Personal and ambient air pollution is associated with increased exhaled nitric oxide in children with asthma. Environ Health Perspect, 114: 1736-1743. 090745
- Delfino RJ; Staimer N; Tjoa T; Polidori A; Arhami M; Gillen DL; Kleinman MT; Vaziri ND; Longhurst J; Zaldivar F; Sioutas C (2008). Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ Health Perspect, 116: 898-906. 156390
- Delfino RJ; Zeiger RS; Seltzer JM; Street DH (1998). Symptoms in pediatric asthmatics and air pollution: differences in effects by symptom severity, anti-inflammatory medication use and particulate averaging time. Environ Health Perspect, 106: 751-761. 051406
- Delfino RJ; Zeiger RS; Seltzer JM; Street DH; McLaren CE (2002). Association of asthma symptoms with peak particulate air pollution and effect modification by anti-inflammatory medication use. Environ Health Perspect, 110: A607-A617. 093740
- DeMeo DL; Zanobetti A; Litonjua AA; Coull BA; Schwartz J; Gold DR (2004). Ambient air pollution and oxygen saturation. Am J Respir Crit Care Med, 170: 383-387. 087346
- Desqueyroux H; Pujet J-C; Prosper M; Squinazi F; Momas I (2002). Short-term effects of low-level air pollution on respiratory health of adults suffering from moderate to severe asthma. Environ Res, 89: 29-37. 026052
- De Hartog JJ; Hoek G; Peters A; Timonen KL; Ibald-Mulli A; Brunekreef B; Heinrich J; Tiittanen P; Van Wijnen JH; Kreyling W; Kulmala M; Pekkanen J (2003). Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease: the ULTRA study. Am J Epidemiol, 157: 613-623. 001061
- de Hartog JJ; Lanki T; Timonen KL; Hoek G; Janssen NA; Ibald-Mulli A; Peters A; Heinrich J; Tarkiainen TH; van Grieken R; van Wijnen JH; Brunekreef B; Pekkanen J (2009). Associations between PM2.5 and heart rate variability are modified by particle composition and beta-blocker use in patients with coronary heart disease. Environ Health Perspect, 117: 105-111. 191904
- De Leon SF; Thurston GD; Ito K (2003). Contribution of respiratory disease to nonrespiratory mortality associations with air pollution. Am J Respir Crit Care Med, 167: 1117-1123. 055688

- Diette GB; Hansel NN; Buckley TJ; Curtin-Brosnan J; Eggleston PA; Matsui EC; McCormack MC; Williams DL; Breysse PN (2007). Home indoor pollutant exposures among inner-city children with and without asthma. Environ Health Perspect, 115: 1665-1669. 156399
- Diez Roux AV; Auchincloss AH; Astor B; Barr RG; Cushman M; Dvonch T; Jacobs DR Jr; Kaufman J; Lin X; Samson Px (2006). Recent exposure to particulate matter and C-reactive protein concentration in the multi-ethnic study of atherosclerosis x. Am J Epidemiol, 164: 437-448. 156400
- Diez Roux AV; Auchincloss AH; Franklin TG; Raghunathan T; Barr RG; Kaufman J; Astor B; Keeler J (2008). Long-term exposure to ambient particulate matter and prevalence of subclinical atherosclerosis in the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol, 167: 667-675. 156401
- Dominici F (2004). Time-series analysis of air pollution and mortality: a statistical review. Health Effects Institute. Boston. 059158
- Dominici F; Daniels M; McDermott A; Zeger SL; Samet JM (2003). Shape of the exposure-response relation and mortality displacement in the NMMAPS database. Health Effects Institute. Boston, MA. <u>042804</u>
- Dominici F; Peng RD; Bell ML; Pham L; McDermott A; Zeger SL; Samet JL (2006). Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA, 295: 1127-1134. 088398
- Dominici F; Peng RD; Ebisu K; Zeger SL; Samet JM; Bell ML (2007). Does the effect of PM10 on mortality depend on PM nickel and vanadium content? A reanalysis of the NMMAPS data. Environ Health Perspect, 115: 1701-1703. 099135
- Dominici F; Peng RD; Zeger SL; White RH; Samet JM (2007). Particulate air pollution and mortality in the United States: did the risks change from 1987 to 2000? Am J Epidemiol, 166: 880-888. 097361
- Dominici F; Zanobetti A; Zeger SL; Schwartz J; Samet JM (2004). Hierarchical bivariate time series models: a combined analysis of the effects of particulate matter on morbidity and mortality. Biostatistics, 5: 341-360. <u>096951</u>
- Downs SH; Schindler C; Liu L-JS; Keidel D; Bayer-Oglesby L; Brutsche MH; Gerbase MW; Keller R; Kunzli N; Leuenberger P; Probst-Hensch NM; Tschopp J-M; Zellweger J-P; Rochat T; Schwartz J; Ackermann-Liebrich U; (2007). Reduced exposure to PM10 and attenuated age-related decline in lung function. J Expo Sci Environ Epidemiol, 15: 185-204. 092853
- Dubowsky SD; Suh H; Schwartz J; Coull BA; Gold DR (2006). Diabetes, obesity, and hypertension may enhance associations between air pollution and markers of systemic inflammation. Environ Health Perspect, 114: 992-998.

 088750
- Dugandzic R; Dodds L; Stieb D; Smith-Doiron M (2006). The association between low level exposures to ambient air pollution and term low birth weight: A retrospective cohort study. Environ Health, 5: 3. <u>088681</u>
- Ebelt ST; Wilson WE; Brauer M (2005). Exposure to ambient and nonambient components of particulate matter: a comparison of health effects. Epidemiology, 16: 396-405. 056907
- Eftim SE; Samet JM; Janes H; McDermott A; Dominici F (2008). Fine particulate matter and mortality: a comparison of the six cities and American Cancer Society cohorts with a medicare cohort. Epidemiology, 19: 209-216. 099104
- El-Zein A; Nuwayhid I; El-Fadel M; Mroueh S (2007). Did a ban on diesel-fuel reduce emergency respiratory admissions for children? Sci Total Environ, 384: 134-140. 093043
- Enstrom JE (2005). Fine particulate air pollution and total mortality among elderly Californians, 1973-2002. Inhal Toxicol, 17: 803-816. 087356
- Erbas B; Kelly A-M; Physick B; Code C; Edwards M (2005). Air pollution and childhood asthma emergency hospital admissions: estimating intra-city regional variations. Int J Environ Health Res, 15: 11-20. 073849
- Fan Z; Meng Q; Weisel C; Laumbach R; Ohman-Strickland P; Shalat S; Hernandez M; Black K (2008). Acute exposure to elevated PM (2.5) generated by traffic and cardiopulmonary health effects in healthy older adults. J Expo Sci Environ Epidemiol, 19: 525–533. 191979
- Farhat SCL; Paulo RLP; Shimoda TM; Conceicao GMS; Lin CA; Braga ALF; Warth MPN; Saldiva PHN (2005). Effect of air pollution on pediatric respiratory emergency room visits and hospital admissions. Braz J Med Biol Res, 38: 227-235, 089461

- Ferdinands JM; Crawford CA; Greenwald R; Van Sickle D; Hunter E; Teague WG (2008). Breath acidification in adolescent runners exposed to atmospheric pollution: a prospective, repeated measures observational study. Environ Health Global Access Sci Source, 7: 10. 156433
- Filleul L; Rondeau V; Vandentorren S; Le Moual N; Cantagrel A; Annesi-Maesano I; Charpin D; Declercq C; Neukirch F; Paris C; Vervloet D; Brochard P; Tessier JF; Kauffmann F; Baldi I (2005). Twenty five year mortality and air pollution: results from the French PAARC survey. Occup Environ Med, 62: 453-460. 087357
- Fischer P; Hoek G; Brunekreef B; Verhoeff A; van Wijnen J (2003). Air pollution and mortality in the Netherlands: are the elderly more at risk? Eur Respir J, 40: 34S-38S. 043739
- Fischer PH; Brunekreef B; Lebret E (2004). Air pollution related deaths during the 2003 heat wave in the Netherlands. Atmos Environ, 38: 1083-1085. 055605
- Fischer SL; Koshland CP (2007). Daily and peak 1 h indoor air pollution and driving factors in a rural Chinese village. Environ Sci Technol, 41: 3121-3126. <u>156435</u>
- Folino AF; Scapellato ML; Canova C; Maestrelli P; Bertorelli G; Simonato L; Iliceto S; Lotti M (2009). Individual exposure to particulate matter and the short-term arrhythmic and autonomic profiles in patients with myocardial infarction. Eur Heart J, 30: 1614-1620. 191902
- Forastiere F; Stafoggia M; Berti G; Bisanti L; Cernigliaro A; Chiusolo M; Mallone S; Miglio R; Pandolfi P; Rognoni M; Serinelli M; Tessari R; Vigotti M; Perucci C (2008). Particulate Matter and Daily Mortality: A Case-Crossover Analysis of Individual Effect Modifiers. Epidemiology, 19: 571-580. 186937
- Forastiere F; Stafoggia M; Picciotto S; Bellander T; D'Ippoliti D; Lanki T; Von Klot S; Nyberg F; Paatero P; Peters A; Pekkanen J; Sunyer J; Perucci CA (2005). A case-crossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. Am J Respir Crit Care Med, 172: 1549-1555. 086323
- Forastiere F; Stafoggia M; Tasco C; Picciotto S; Agabiti N; Cesaroni G; Perucci CA (2007). Socioeconomic status, particulate air pollution, and daily mortality: differential exposure or differential susceptibility. Am J Ind Med, 50: 208-216. 090720
- Forbes LJ; Patel MD; Rudnicka AR; Cook DG; Bush T; Stedman JR; Whincup PH; Strachan DP; Anderson RH (2009). Chronic exposure to outdoor air pollution and markers of systemic inflammation. Epidemiology, 20: 245-253. 190351
- Forsberg B; Segerstedt B; Stjernberg N; Roemer W (1998). Air pollution and respiratory health of children: the PEACE panel study in Umea, Sweden. Eur Respir Rev, 8: 12-19. 051714
- Franklin M; Koutrakis P; Schwartz J (2008). The role of particle composition on the association between PM2.5 and mortality. Epidemiology, 19: 680-689. 097426
- Franklin M; Zeka A; Schwartz J (2007). Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. J Expo Sci Environ Epidemiol, 17: 279-287. 091257
- Fuentes M; Song HR; Ghosh SK; Holland DM; Davis JM (2006). Spatial association between speciated fine particles and mortality. Biometrics, 62: 855-863. <u>097647</u>
- Fung KY; Khan S; Krewski D; Chen Y (2006). Association between air pollution and multiple respiratory hospitalizations among the elderly in Vancouver, Canada. Inhal Toxicol, 18: 1005-1011. <u>089789</u>
- Fung KY; Luginaah IKMG; Webster G (2005). Air pollution and daily hospitalization rates for cardiovascular and respiratory diseases in London, Ontario. Int J Environ Stud, 62: 677-685. <u>093262</u>
- Galan I; Tobias A; Banegas JR; Aranguez E (2003). Short-term effects of air pollution on daily asthma emergency room admissions. Eur Respir J, 22: 802-808. <u>087408</u>
- Gauderman WJ; Avol E; Gilliland F; Vora H; Thomas D; Berhane K; McConnell R; Kuenzli N; Lurmann F; Rappaport E; Margolis H; Bates D; Peters J (2004). The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med, 351: 1057-1067. 056569
- Gauderman WJ; Gilliland GF; Vora H; Avol E; Stram D; McConnell R; Thomas D; Lurmann F; Margolis HG; Rappaport EB; Berhane K; Peters JM (2002). Association between air pollution and lung function growth in southern California children: results from a second cohort. Am J Respir Crit Care Med, 166: 76-84. <a href="https://doi.org/10.2002/00.20

- Gauderman WJ; McConnell R; Gilliland F; London S; Thomas D; Avol E; Vora H; Berhane K; Rappaport EB; Lurmann F; Margolis HG; Peters J (2000). Association between air pollution and lung function growth in southern California children. Am J Respir Crit Care Med, 162: 1383-1390. <u>012531</u>
- Gauderman WJ; Vora H; McConnell R; Berhane K; Gilliland F; Thomas D; Lurmann F; Avol E; Kunzli N (2007). Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study. Lancet, 369: 571-577. 090121
- Gehring U; Cyrys J; Sedlmeir G; Brunekreef B; Bellander T; Fischer P; Bauer CP; Reinhardt D; Wichmann HE; Heinrich J (2002). Traffic-related air pollution and respiratory health during the first 2 yrs of life. Eur Respir J, 19: 690-698. 036250
- Gent JF; Koutrakis P; Belanger K; Triche E; Holford TR; Bracken MB; Leaderer BP (2009). Symptoms and medication use in children with asthma and traffic-related sources of fine particle pollution. Environ Health Perspect, 117: 1168-1174. 180399
- Gent JF; Triche EW; Holford TR; Belanger K; Bracken MB; Beckett WS; Leaderer BP (2003). Association of low-level ozone and fine particles with respiratory symptoms in children with asthma. JAMA, 290: 1859-1867. 052885
- Gilboa SM; Mendola P; Olshan AF; Langlois PH; Savitz DA; Loomis D; Herring AH; Fixler DE (2005). Relation between ambient air quality and selected birth defects, seven county study, Texas, 1997-2000. Am J Epidemiol, 162: 238-252. 087892
- Girardot SP; Ryan PB; Smith SM; Davis WT; Hamilton CB; Obenour RA; Renfro JR; Tromatore KA; Reed GD (2006).

 Ozone and PM25 exposure and acute pulmonary health effects: a study of hikers in the Great Smoky Mountains National Park. Environ Health Perspect, 113: 612-617. 088271
- Goldberg MS; Burnett RT; Valois M-F; Flegel K; Bailar JC III; Brook J; Vincent R; Radon K (2003). Associations between ambient air pollution and daily mortality among persons with congestive heart failure. Environ Res, 91: 8-20. 035202
- Goldberg MS; Giannetti N; Burnett RT; Mayo NE; Valois MF; Brophy JM (2008). A panel study in congestive heart failure to estimate the short-term effects from personal factors and environmental conditions on oxygen saturation and pulse rate. Occup Environ Med, 65: 659-666. 180380
- Goncalves FLT; Carvalho LMV; Conde FC; Latorre MRDO; Saldiva PHN; Braga ALF (2005). The effects of air pollution and meteorological parameters on respiratory morbidity during the summer in Sao Paulo City. Environ Int, 31: 343-349, 089884
- Gordian ME; Choudhury AH (2003). PM10 and asthma medication in schoolchildren. Arch Environ Occup Health, 58: 42-47, 054842
- Goss CH; Newsom SA; Schildcrout JS; Sheppard L; Kaufman JD (2004). Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. Am J Respir Crit Care Med, 169: 816-821. 055624
- Gouveia N; Bremner SA; Novaes HMD (2004). Association between ambient air pollution and birth weight in Sao Paulo, Brazil. J Epidemiol Community Health, 58: 11-17. <u>055613</u>
- Ha E-H; Lee J-T; Kim H; Hong Y-C; Lee (2003). Infant susceptibility of mortality to air pollution in Seoul, South Korea. Pediatrics, 111: 284-290. 042552
- Hajat S; Anderson HR; Atkinson RW; Haines A (2002). Effects of air pollution on general practitioner consultations for upper respiratory diseases in London. Occup Environ Med, 59: 294-299. <a href="https://doi.org/10.2016/j.com/nat/10.2016/j.com/
- Halonen JI; Lanki T; Yli-Tuomi T; Kulmala M; Tiittanen P; Pekkanen J (2008). Urban air pollution, and asthma and COPD hospital emergency room visits. Thorax, 63: 635-641. <u>189507</u>
- Halonen JI; Lanki T; Yli-Tuomi T; Tiittanen P; Kulmala M; Pekkanen (2009). Particulate air pollution and acute cardiorespiratory hospital admissions and mortality among the elderly. Epidemiology, 20: 143-153. <u>180379</u>
- Hampson NB; Rudd RA; Hauff NM (2009). Increased long-term mortality among survivors of acute carbon monoxide poisoning*. Crit Care Med. 190271
- Hanigan IC; Johnston FH; Morgan GG (2008). Vegetation fire smoke, indigenous status and cardio respiratory hospital admissions in Darwin, Australia, 1996-2005: a time-series study. Environ Health, 7: 42. <u>156518</u>
- Hansen C; Neller A; Williams G; Simpson R (2006). Maternal exposure to low levels of ambient air pollution and preterm birth in Brisbane, Australia. BJOG, 113: 935-941. 089818

- Hansen C; Neller A; Williams G; Simpson R (2007). Low levels of ambient air pollution during pregnancy and fetal growth among term neonates in Brisbane, Australia. Environ Res, 103: 383-389. 090703
- Hansen CA; Barnett AG; Jalaludin B; Morgan G (2009). Ambient air pollution and birth defects in brisbane, Australia. PLoS ONE, 4: e5408. 192362
- Hapcioglu B; Issever H; Kocyigit E; Disci R; Vatansever S; Ozdilli K (2006). The effect of air pollution and meteorological parameters on chronic obstructive pulmonary disease at an Istanbul hospital. Indoor Built Environ, 15: 147-153. 093263
- Harre ESM; Price PD; Ayrey RB; Toop LJ; Martin IR; Town GI (1997). Respiratory effects of air pollution in chronic obstructive pulmonary disease: a three month prospective study. Thorax, 52: 1040-1044. 095726
- Hastings DL; Jardine S (2002). The relationship between air particulate levels and upper respiratory disease in soldiers deployed to Bosnia (1997-1998). Mil Med, 167: 296-303. 030344
- Henrotin JB; Besancenot JP; Bejot Y; Giroud M (2007). Short-term effects of ozone air pollution on ischaemic stroke occurrence: A case-crossover analysis from a 10-year population-based study in Dijon, France. Occup Environ Med, 64: 439-445. 093270
- Hertz-Picciotto I; Baker RJ; Yap PS; Dostal M; Joad JP; Lipsett M; Greenfield T; Herr CE; Benes I; Shumway RH; Pinkerton KE; Sram R (2007). Early childhood lower respiratory illness and air pollution.[see comment]. Environ Health Perspect, 115: 1510-1518. 135917
- Hertz-Picciotto I; Herr CE; Yap PS; Dostal M; Shumway RH; Ashwood P; Lipsett M; Joad JP; Pinkerton KE; Sram RJ (2005). Air pollution and lymphocyte phenotype proportions in cord blood. Environ Health Perspect, 113: 1391-1398, 088678
- Hinwood AL; De Klerk N; Rodriguez C; Jacoby P; Runnion T; Rye P; Landau L; Murray F; Feldwick M; Spickett J (2006). The relationship between changes in daily air pollution and hospitalizations in Perth, Australia 1992-1998: A case-crossover study. Int J Environ Health Res, 16: 27-46. <u>088976</u>
- Hirshon JM; Shardell M; Alles S; Powell JL; Squibb K; Ondov J; Blaisdell CJ (2008). Elevated ambient air zinc increases pediatric asthma morbidity. Environ Health Perspect, 116: 826-831. 180375
- Ho W-C; Hartley WR; Myers L; Lin M-H; (2007). Air pollution, weather, and associated risk factors related to asthma prevalence and attack rate. Environ Res, 104: 402-409. 093265
- Hoffmann B; Moebus S; Kroger K; Stang A; Mohlenkamp S; Dragano N; Schmermund A; Memmesheimer M; Erbel R; Jockel K-H (2009). Residential exposure to urban pollution, ankle-brachial index, and peripheral arterial disease. Epidemiology, 20: 280-288. 190376
- Hoffmann B; Moebus S; Mohlenkamp S; Stang A; Lehmann N; Dragano N; Schmermund A; Memmesheimer M; Mann K; Erbel R; Jockel K-H; Heinz Nixdorf Recall Study Investigative Group (2007). Residential exposure to traffic is associated with coronary atherosclerosis. Circulation, 116: 489-496. 091163
- Hoffmann B; Moebus S; Stang A; Beck E-M; Dragano N; Mohlenkamp S; Schmermund A; Memmesheimer M; Mann K; Erbel R; Jockel K-H; Heinz Nixdorf RECALL Study Investigative Group (2006). Residence close to high traffic and prevalence of coronary heart disease. Eur Heart J, 27: 2696-2702. 091162
- Hogervorst JG; de Kok TM; Briede JJ; Wesseling G; Kleinjans JC; van Schayck CP (2006). Relationship between radical generation by urban ambient particulate matter and pulmonary function of school children. J Toxicol Environ Health A Curr Iss, 69: 245-262. 156559
- Holguin F; Flores S; Ross Z; Cortez M; Molina M; Molina L; Rincon C; Jerrett M; Berhane K; Granados A; Romieu I (2007). Traffic-related exposures, airway function, inflammation, and respiratory symptoms in children. Am J Respir Crit Care Med, 176: 1236-1242. 099000
- Holloman CH; Bortnick SM; Morara M; Strauss WJ; Calder CA (2004). A Bayesian hierarchical approach for relating PM2.5 exposure to cardiovascular mortliaty in North Carolina. Environ Health Perspect, 112: 1282-1288. 087375
- Hong CY; Chia SE; Widjaja D; Saw SM; Lee J; Munoz C; Koh D (2004). Prevalence of Respiratory Symptoms in Children and Air Quality by Village in Rural Indonesia. J Occup Environ Med, 46: 1174-1179. <u>156565</u>
- Hong Y-C; Hwang S-S; Kim JH; Lee K-H; Lee H-J; Lee K-H; Yu S-D; Kim D-S (2007). Metals in particulate pollutants affect peak expiratory flow of schoolchildren. Environ Health Perspect, 115: 430-434. 091347

- Hopke PK; Ito K; Mar T; Christensen WF; Eatough DJ; Henry RC; Kim E; Laden F; Lall R; Larson TV; Liu H; Neas L; Pinto J; Stolzel M; Suh H; Paatero P; Thurston GD (2006). PM source apportionment and health effects: 1 Intercomparison of source apportionment results. J Expo Sci Environ Epidemiol, 16: 275-286. 088390
- Horak F Jr; Studnicka M; Gartner C; Spengler JD; Tauber E; Urbanek R; Veiter A; Frischer T (2002). Particulate matter and lung function growth in children: a 3-yr follow-up study in Austrian schoolchildren. Eur Respir J, 19: 838-845.

 034792
- Host S; Larrieu S; Pascal L; Blanchard M; Declercq C; Fabre P; Jusot JF; Chardon B; Le Tertre A; Wagner V; Prouvost H; Lefranc A (2007). Short-term Associations between Fine and Coarse Particles and Cardiorespiratory Hospitalizations in Six French Cities. Occup Environ Med, 18: S107-S108. 155851
- Host S; Larrieu S; Pascal L; Blanchard M; Declercq C; Fabre P; Jusot JF; Chardon B; Le Tertre A; Wagner V; Prouvost H; Lefranc A (2008). Short-term associations between fine and coarse particles and hospital admissions for cardiorespiratory diseases in six French cities. Occup Environ Med, 65: 544-551. 155852
- Hwang B-F; Jaakkola JJK; Lee Y-L; Lin Y-C; Guo Y-LL (2006). Relation between air pollution and allergic rhinitis in Taiwanese schoolchildren. Respir Res, 7: 23. <u>088971</u>
- Hwang J-S; Chan C-C (2002). Effects of air pollution on daily clinic visits for lower respiratory tract illness. Am J Epidemiol, 155: 1-10. 023222
- Hwang K-W; Lee J-H; Jeong D-Y; Lee C-H; Bhatnagar A; Park J-M; Kim S-H (2008). Observation of difference in the size distribution of carbon and major inorganic compounds of atmospheric aerosols after the long-range transport between the selected days of winter and summer. Atmos Environ, 42: 1057-1063. 134420
- Ibald-Mulli A; Timonen KL; Peters A; Heinrich J; Wolke G; Lanki T; Buzorius G; Kreyling WG; De Hartog J; Hoek G; Ten Brink HM; Pekkanen J (2004). Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: a multicenter approach. Environ Health Perspect, 112: 369-377. 087415
- Ingle ST; Pachpande BG; Wagh ND; Patel VS; Attarde SB (2005). Exposure to vehicular pollution and respiratory impairment of traffic policemen in Jalgaon City, India. Ind Health, 43: 656-662. 089014
- Islam T; Gauderman WJ; Berhane K; McConnell R; Avol E; Peters JM; Gilliland FD (2007). The relationship between air pollution, lung function and asthma in adolescents. Thorax, 62: 957-963. 090697
- Issever H; Disci R; Hapcioglu B; Vatansever S; Karan M A; Akkaya V; Erk O (2005). The effect of air pollution and meteorological parameters in Istanbul on hospital admissions for acute coronary syndrome. Indoor Built Environ, 14: 157-164. 097736
- Ito K; Christensen WF; Eatough DJ; Henry RC; Kim E; Laden F; Lall R; Larson TV; Neas L; Hopke PK; Thurston GD (2006). PM source apportionment and health effects: 2 An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. J Expo Sci Environ Epidemiol, 16: 300-310. 088391
- Jaffe DH; Singer ME; Rimm AA (2003). Air pollution and emergency department visits for asthma among Ohio Medicaid recipients, 1991-1996. Environ Res, 91: 21-28. 041957
- Jalaludin B; Mannes T; Morgan G; Lincoln D; Sheppeard V; Corbett S (2007). Impact of ambient air pollution on gestational age is modified by season in Sydney, Australia. Environ Health, 6: 16. 156601
- Jalaludin B; Morgan G; Lincoln D; Sheppeard V; Simpson R; Corbett S (2006). Associations between ambient air pollution and daily emergency department attendances for cardiovascular disease in the elderly (65+ years), Sydney, Australia. J Expo Sci Environ Epidemiol, 16: 225-237. 189416
- Jalaludin BB; O'Toole BI; Leeder SR (2004). Acute effects of urban ambient air pollution on respiratory symptoms, asthma medication use, and doctor visits for asthma in a cohort of Australian children. Environ Res, 95: 32-42. 056595
- Janes H; Dominici F; Zeger SL (2007). Trends in air pollution and mortality: an approach to the assessment of unmeasured confounding. Epidemiology, 18: 416-423. <a href="https://doi.org/10.2009/10.2
- Jansen KL; Larson TV; Koenig JQ; Mar TF; Fields C; Stewart J; Lippmann M (2005). Associations between health effects and particulate matter and black carbon in subjects with respiratory disease. Environ Health Perspect, 113: 1741-1746. 082236

- Janssen NAH; Brunekreef B; van Vliet P; Aarts F; Maliefste K; Harssema H; Fischer P (2003). The relationship between air pollution from heavy traffic and allergic sensitization, bronchial byperresponsiveness, and respiratory symptoms in Dutch schoolchildren. Epidemiology, 111: 1512-1518. 133555
- Jedrychowski W; Masters E; Choi H; Sochacka E; Flak E; Mroz E; Pac A; Jacek R; Kaim I; Skolicki Z; Spengler JD; Perera F (2007). Pre-pregnancy dietary vitamin A intake may alleviate the adverse birth outcomes associated with prenatal pollutant exposure: epidemiologic cohort study in Poland. Int J Occup Environ Health, 13: 175-180. 156607
- Jerrett M; Burnett RT; Ma R; Pope CA III; Krewski D; Newbold KB; Thurston G; Shi Y; Finkelstein N; Calle EE; Thun MJ (2005). Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology, 16: 727-736. 087600
- Jerrett M; Burnett RT; Willis A; Krewski D; Goldberg MS; DeLuca P; Finkelstein N (2003). Spatial analysis of the air pollution-mortality relationship in the context of ecologic confounders. J Toxicol Environ Health A Curr Iss, 66: 1735-1777. 087380
- Johnston FH; Bailie RS; Pilotto LS; Hanigan IC (2007). Ambient biomass smoke and cardio-respiratory hospital admissions in Darwin, Australia. BMC Public Health, 7: 240. <u>155882</u>
- Johnston FH; Webby RJ; Pilotto LS; Bailie RS; Parry DL; Halpin SJ (2006). Vegetation fires, particulate air pollution and asthma: a panel study in the Australian monsoon tropics. Int J Environ Health Res, 16: 391-404. 091386
- Just J; Segala C; Sahraoui F; Priol G; Grimfeld A; Neukirch F (2002). Short-term health effects of particulate and photochemical air pollution in asthmatic children. Eur Respir J, 20: 899-906. <u>035429</u>
- Kaiser R; Romieu I; Medina S; Schwartz J; Krzyzanowski M; Kunzli N (2004). Air pollution attributable postneonatal infant mortality in US metropolitan areas: a risk assessment study. Environ Health Global Access Sci Source, 3: 4. 076674
- Kan H-D; Chen B-H (2003). Air pollution and daily mortality in Shanghai: a time series study. Arch Environ Occup Health, 58: 360-367. 087372
- Kan H-D; Chen B-H; Fu C-W; Yu S-Z; Mu L-N (2005). Relationship between ambient air pollution and daily mortality of SARS in Beijing. Biomed Environ Sci, 18: 1-4. <u>087561</u>
- Kan H; Heiss G; Rose KM; Whitsel E; Lurmann F; London SJ (2007). Traffic exposure and lung function in adults: the Atherosclerosis Risk in Communities study. Thorax, 62: 873-879. 091383
- Kan H; London SJ; Chen G; Zhang Y; Song G; Zhao N; Jiang L; Chen B (2007). Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environ Int, 33: 376-384. <a href="https://doi.org/10.1007/jiang-10.1
- Kan H; London SJ; Chen G; Zhang Y; Song G; Zhao N; Jiang L; Chen B (2008). Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: The Public Health and Air Pollution in Asia (PAPA) Study. Environ Health Perspect, 116: 1183-1188. 156621
- Karr C; Lumley T; Schreuder A; Davis R; Larson T; Ritz B; Kaufman J (2007). Effects of subchronic and chronic exposure to ambient air pollutants on infant bronchiolitis. Am J Epidemiol, 165: 553-560. 090719
- Kasamatsu J; Shima M; Yamazaki S; Tamura K; Sun G (2006). Effects of winter air pollution on pulmonary function of school children in Shenyang, China. Int J Hyg Environ Health, 209: 435-444. <a href="https://doi.org/10.1016/j.com/nct/10.1016/j.co
- Kaufman Y (1987). Satellite sensing of aerosol absorption. J Geophys Res, 92: 4307-4317. 190960
- Keatinge WR; Donaldson GC (2006). Heat acclimatization and sunshine cause false indications of mortality due to ozone. Environ Res, 100: 387-393. <u>087536</u>
- Kettunen J; Lanki T; Tiittanen P; Aalto PP; Koskentalo T; Kulmala M; Salomaa V; Pekkanen J (2007). Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke, 38: 918-922. 091242
- Kim CG; Bell JNB; Power SA (2003). Effects of soil cadmium on Pinus sylvestris L. seedlings. Plant Soil, 257: 443-449.
- Kim H; Lee J-T; Hong Y-C; Yi S-M; Kim Y (2004). Evaluating the effect of daily PM10 variation on mortality. Inhal Toxicol, 1: 55-58. <u>087417</u>
- Kim JH; Lim DH; Kim JK; Jeong SJ; Son BK (2005). Effects of particulate matter (PM10) on the pulmonary function of middle-school children. J Korean Med Sci, 20: 42-45. <u>087418</u>

- Kim JJ; Smorodinsky S; Lipsett M; Singer BC; Hodgson AT; Ostro B (2004). Traffic-related air pollution near busy roads: the East Bay children's Respiratory Health Study. Am J Respir Crit Care Med, 170: 520-526. <u>087383</u>
- Kim OJ; Ha EH; Kim BM; Park HS; Jung WJ; Lee BE; Suh YJ; Kim YJ; Lee JT; Kim H; Hong YC (2007). PM10 and pregnancy outcomes: a hospital-based cohort study of pregnant women in Seoul. J Occup Environ Med, 49: 1394-1402. 156642
- Kim SY; O'Neill MS; Lee JT; Cho Y; Kim J; Kim H (2007). Air pollution, socioeconomic position, and emergency hospital visits for asthma in Seoul, Korea. Int Arch Occup Environ Health, 80: 701-710. <u>092837</u>
- Klemm RJ; Lipfert FW; Wyzga RE; Gust C (2004). Daily mortality and air pollution in Atlanta: two years of data from ARIES. Inhal Toxicol, 16 Suppl 1: 131-141. 056585
- Ko FWS; Tam W; Wong TW; Chan DPS (2007). Temporal relationship between air pollutants and hospital admissions for chronic obstructive pulmonary disease in Hong Kong. Thorax, 62: 780-785. <u>091639</u>
- Ko FWS; Tam W; Wong TW; Lai CKW; (2007). Effects of air pollution on asthma hospitalization rates in different age groups in Hong Kong. Clin Exp Allergy, 37: 1312-1319. 092844
- Koenig JQ; Jansen K; Mar TF; Lumley T; Kaufman J; Trenga CA; Sullivan J; Liu LJ; Shapiro GG; Larson TV (2003). Measurement of offline exhaled nitric oxide in a study of community exposure to air pollution. Environ Health Perspect, 111: 1625-1629. 156653
- Koken PJM; Piver WT; Ye F; Elixhauser A; Olsen LM; Portier CJ (2003). Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environ Health Perspect, 111: 1312-1317. 049466
- Kongtip P; Thongsuk W; Yoosook W; Chantanakul S (2006). Health effects of metropolitan traffic-related air pollutants on street vendors. Atmos Environ, 40: 7138-7145. <u>096920</u>
- Krewski D; Jerrett M; Burnett RT; Ma R; Hughes E; Shi Y; Turner MC; Pope AC III; Thurston G; Calle EE; Thun MJ (2009). Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Health Effects Institute. Cambridge, MA. Report Nr. 140. 191193
- Kulkarni N; Pierse N; Rushton L; Grigg J (2006). Carbon in airway macrophages and lung function in children. N Engl J Med, 355: 21-30. 089257
- Kumar R; Sharma M; Srivastva A; Thakur JS; Jindal SK; Parwana HK (2004). Association of outdoor air pollution with chronic respiratory morbidity in an industrial town in northern India. Arch Environ Occup Health, 59: 471-477. 089873
- Kunzli N; Jerrett M; Mack WJ; Beckerman B; LaBree L; Gilliland F; Thomas D; Peters J; Hodis HN (2005). Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect, 113: 201-206. 087387
- Kuo HW; Lai JS; Lee MC; Tai RC; Lee MC (2002). Respiratory effects of air pollutants among asthmatics in central Taiwan. Arch Environ Occup Health, 57: 194-200. <u>036310</u>
- Laden F; Schwartz J; Speizer FE; Dockery DW (2006). Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med, 173: 667-672. <a href="https://docs.pubm.ncbi.nlm.ncbi.n
- Lagorio S; Forastiere F; Pistelli R; Iavarone I; Michelozzi P; Fano V; Marconi A; Ziemacki G; Ostro BD (2006). Air pollution and lung function among susceptible adult subjects: a panel study. Environ Health, 5: 11. <u>089800</u>
- Langley-Turnbaugh SJ; Gordon NR; Lambert T (2005). Airborne particulates and asthma: a Maine case study. Toxicol Ind Health, 21: 75-92. <a href="https://doi.org/10.2005/10.20
- Langrish JP; Mills NL; Chan JK; Leseman DL; Aitken RJ; Fokkens PH; Cassee FR; Li J; Donaldson K; Newby DE; Jiang L (2009). Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask. Part Fibre Toxicol, 6: 8. 191908
- Lanki T; De Hartog JJ; Heinrich J; Hoek G; Janssen NAH; Peters A; Stolzel M; Timonen KL; Vallius M; Vanninen E; Pekkanen J (2006). Can we identify sources of fine particles responsible for exercise-induced ischemia on days with elevated air pollution? The ULTRA study. Environ Health Perspect, 114: 655-660. <u>088412</u>
- Lanki T; Hoek G; Timonen K; Peters A; Tiittanen P; Vanninen E; Pekkanen J (2008). Hourly variation in fine particle exposure is associated with transiently increased risk of ST segment depression. Br Med J, 65: 782-786. 191984

- Lanki T; Pekkanen J; Aalto P; Elosua R; Berglind N; D'Ippoliti D; Kulmala M; Nyberg F; Peters A; Picciotto S; Salomaa V; Sunyer J; Tiittanen P; Von Klot S; Forastiere F; for the HEAPSS Study Group (2006). Associations of traffic-related air pollutants with hospitalisation for first acute myocardial infarction: the HEAPSS study. Occup Environ Med, 63: 844-851. 089788
- Larrieu S; Jusot J-F; Blanchard M; Prouvost H; Declercq C; Fabre P; Pascal L; Le Tertre A; Wagner V; Riviere S; Chardon B; Borelli D; Cassadou S; Eilstein D; Lefranc A (2007). Short term effects of air pollution on hospitalizations for cardiovascular diseases in eight French cities: The PSAS program. Sci Total Environ, 387: 105-112. 093031
- Laurent O; Pedrono G; Segala C; Filleul L; Havard S; Deguen S; Schillinger C; Riviere E; Bard D (2008). Air pollution, asthma attacks, and socioeconomic deprivation: a small-area case-crossover study. Am J Epidemiol, 168: 58-65. 156672
- Le Tertre A; Schwartz J; Touloumi G (2005). Empirical Bayes and adjusted estimates approach to estimating the relation of mortality to eposure of PM10. Risk Anal, 25: 711-718. 087560
- Lee BE; Ha EH; Park HS; Kim YJ; Hong YC; Kim H; Lee JT (2003). Exposure to air pollution during different gestational phases contributes to risks of low birth weight. Hum Reprod, 18: 638-643. 043202
- Lee D; Shaddick G (2007). Time-varying coefficient models for the analysis of air pollution and health outcome data. Biometrics, 63: 1253-1261. 156685
- Lee IM; Tsai SS; Ho CK; Chiu HF; Wu TN; Yang CY (2008). Air pollution and hospital admissions for congestive heart failure: are there potentially sensitive groups? Environ Res, 108: 348-353. 192076
- Lee J-T; Kim H; Song H; Hong Y-C; Cho Y-S; Shin S-Y; Hyun Y-J; Kim Y-S (2002). Air pollution and asthma among children in Seoul, Korea. Epidemiology, 13: 481-484. 034826
- Lee J-T; Son J-Y; Cho Y-S (2007). A comparison of mortality related to urban air particles between periods with Asian dust days and without Asian dust days in Seoul, Korea, 2000-2004. Environ Res, 105: 409-13. 093042
- Lee JT; Kim H; Cho YS; Hong YC; Ha EH; Park H (2003). Air pollution and hospital admissions for ischemic heart diseases among individuals 64+ years of age residing in Seoul, Korea. Arch Environ Health, 58: 617-623. 095552
- Lee SL; Wong WHS; Lau YL (2006). Association between air pollution and asthma admission among children in Hong Kong. Clin Exp Allergy, 36: 1138-1146. <u>090176</u>
- Leem J-H; Kaplan BM; Shim YK; Pohl HR; Gotway CA; Bullard SM; Rogers JF; Smith MM; Tylenda CA (2006). Exposures to air pollutants during pregnancy and preterm delivery. Environ Health Perspect, 114: 905-910. 089828
- Leonardi GS; Houthuijs D; Steerenberg PA; Fletcher T; Armstrong B; Antova T; Lochman I; Lochmanova A; Rudnai P; Erdei E; Musial J; Jazwiec-Kanyion B; Niciu EM; Durbaca S; Fabianova E; Koppova K; Lebret E; Brunekreef B; Van Loveren H (2000). Immune biomarkers in relation to exposure to particulate matter: a cross-sectional survey in 17 cities of central Europe. Inhal Toxicol, 12: 1-14. 010272
- Letz AG; Quinn JM (2005). Relationship of basic military trainee emergency department visits for asthma and San Antonio air quality. Allergy Asthma Proc, 26: 463-467. 088752
- Lewis TC; Robins TG; Dvonch JT; Keeler GJ; Yip FY; Mentz GB; Lin X; Parker EA; Israel BA; Gonzalez L; Hill Y (2005). Air pollution-associated changes in lung function among asthmatic children in Detroit. Environ Health Perspect, 113: 1068-1075. 081079
- Le Tertre A; Medina S; Samoli E; Forsberg B; Michelozzi P; Boumghar A; Vonk JM; Bellini A; Atkinson R; Ayres JG; Sunyer J; Schwartz J; Katsouyanni K (2002). Short term effects of particulate air pollution on cardiovascular diseases in eight European cities. J Epidemiol Community Health, 56: 773-779. 023746
- Liao D; Duan Y; Whitsel EA; Zheng Z-J; Heiss G; Chinchilli VM; Lin H-M (2004). Association of higher levels of ambient criteria pollutants with impaired cardiac autonomic control: a population-based study. Am J Epidemiol, 159: 768-777, 056590
- Liao D; Heiss G; Chinchilli VM; Duan Y; Folsom AR; Lin HM; Salomaa V (2005). Association of criteria pollutants with plasma hemostatic/inflammatory markers: a population-based study. J Expo Sci Environ Epidemiol, 15: 319-328. 088677
- Liao KJ; Tagaris E; Manomaiphiboon K; Napelenok SL; Woo JH; He S; Amar P; Russell AG (2007). Sensitivities of Ozone and Fine Particulate Matter Formation to Emissions under the Impact of Potential Future Climate Change. Environ Sci Technol, 41: 8355-8361. 180272

- Lichtenfels AJFC; Gomes JB; Pieri PC; Miraglia SGEK; Hallak J; Saldiva PHN (2007). Increased levels of air pollution and a decrease in the human and mouse male-to-female ration in Sao Paulo, Brazil. Fertil Steril, 87: 230-232. 097041
- Lin C-M; Li C-Y; Mao I-F (2004). Increased risks of term low-birth-weight infants in a petrochemical industrial city with high air pollution levels. Arch Environ Occup Health, 59: 663-668. 089827
- Lin CA; Pereira LAA; Nishioka DC; Conceicao GMS; Graga ALF; Saldiva PHN (2004). Air pollution and neonatal deaths in Sao Paulo, Brazil. Braz J Med Biol Res, 37: 765-770. 095787
- Lin M; Chen Y; Burnett RT; Villeneuve PJ; Krewski D (2002). The influence of ambient coarse particulate matter on asthma hospitalization in children: case-crossover and time-series analyses. Environ Health Perspect, 110: 575-581. 026067
- Lin M; Stieb DM; Chen Y (2005). Coarse particulate matter and hospitalization for respiratory infections in children younger than 15 years in Toronto: a case-crossover analysis. Pediatrics, 116: 235-240. 087828
- Lin Y-C; Lee C-F; Fang T (2008). Characterization of particle size distribution from diesel engines fueled with palmbiodiesel blends and paraffinic fuel blends. Atmos Environ, 42: 1133-1143. 126812
- Linares C; Diaz J; Tob?as A; Migue JMDe; Otero A (2006). Impact of urban air pollutants and noise levels over daily hospital admissions in children in Madrid: a time series analysis. Int Arch Occup Environ Health, 79: 143-152. 092846
- Lipfert FW; Baty JD; Miller JP; Wyzga RE (2006). PM2.5 constituents and related air quality variables as predictors of survival in a cohort of U.S. military veterans. Inhal Toxicol, 18: 645-657. 088756
- Lipfert FW; Wyzga RE; Baty JD; Miller JP (2006). Traffic density as a surrogate measure of environmental exposures in studies of air pollution health effects: long-term mortality in a cohort of US veterans. Atmos Environ, 40: 154-169. 088218
- Lipfert FW; Zhang J; Wyzga RE (2000). Infant mortality and air pollution: a comprehensive analysis of US data for 1990. J Air Waste Manag Assoc, 50: 1350-1366. 004103
- Lippmann M; Ito K; Hwang JS; Maciejczyk P; Chen LC (2006). Cardiovascular effects of nickel in ambient air. Environ Health Perspect, 114: 1662-1669. 091165
- Lipsett MJ; Tsai FC; Roger L; Woo M; Ostro BD (2006). Coarse particles and heart rate variability among older adults with coronary artery disease in the Coachella Valley, California. Environ Health Perspect, 114: 1215-1220. 088753
- Lisabeth LD; Escobar JD; Dvonch JT; Sanchez BN; Majersik JJ; Brown DL; Smith MA; Morgenstern LB (2008). Ambient air pollution and risk for ischemic stroke and transient ischemic attack. Ann Neurol, 64: 53-59. 155939
- Liu CC; Chen CC; Wu TN; Yang CY (2008). Association of brain cancer with residential exposure to petrochemical air pollution in Taiwan. J Toxicol Environ Health A Curr Iss, 71: 310-314. 156708
- Liu CC; Tsai SS; Chiu HF; Wu TN; Chen CC; Yang CY (2009). Ambient exposure to criteria air pollutants and risk of death from bladder cancer in Taiwan. Inhal Toxicol, 21: 48-54. 190292
- Liu L; Poon R; Chen L; Frescura AM; Montuschi P; Ciabattoni G; Wheeler A; Dales R (2009). Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environ Health Perspect, 117: 668-674. 192003
- Liu L; Ruddy TD; Dalipaj M; Szyszkowicz M; You H; Poon R; Wheeler A; Dales R (2007). Influence of personal exposure to particulate air pollution on cardiovascular physiology and biomarkers of inflammation and oxidative stress in subjects with diabetes. J Occup Environ Med, 49: 258-265. 156705
- Liu S; Krewski D; Shi Y; Chen Y; Burnett R (2007). Association between maternal exposure to ambient air pollutants during pregnancy and fetal growth restriction. J Expo Sci Environ Epidemiol, 17: 426-432. <u>090429</u>
- Ljungman P; Bellander T; Schneider A; Breitner S; Forastiere F; Hampel R; Illig T; Jacquemin B; Katsouyanni K; von Klot S (2009). Modification of the interleukin-6 response to air pollution by interleukin-6 and fibrinogen polymorphisms. Environ Health Perspect. 117: 1373-1379. 191983
- Ljungman PLS; Berglind N; Holmgren C; Gadler F; Edvardsson N; Pershagen G; Rosenqvist M; Sjögren B; Bellander T (2008). Rapid effects of air pollution on ventricular arrhythmias. Eur Heart J, 29: 2894-2901. 180266

- Llorca J; Salas A; Prieto-Salceda D; Chinchon-Bengoechea V; Delgado-Rodriguez M (2005). Nitrogen dioxide increases cardiorespiratory admissions in Torrelavega (Spain). J Environ Health, 68: 30-35. 087825
- Loomis D; Castillejos M; Gold DR; McDonnell W; Borja-Aburto VH (1999). Air pollution and infant mortality in Mexico City. Epidemiology, 10: 118-123. <u>087288</u>
- Lubinski W; Toczynska I; Chcialowski A; Plusa T (2005). Influence of air pollution on pulmonary function in healthy young men from different regions of Poland. Ann Agric Environ Med, 12: 1-4. <u>087563</u>
- Luginaah IN; Fung KY; Gorey KM; Webster G; Wills C (2005). Association of ambient air pollution with respiratory hospitalization in a government designated "area of concern": the case of Windsor, Ontario. Environ Health Perspect, 113: 290-296. 057327
- Luttmann-Gibson H; Suh HH; Coull BA; Dockery DW; Sarnet SE; Schwartz J; Stone PH; Gold DR (2006). Short-term effects of air pollution on heart rate variability in senior adults in Steubenville, Ohio. J Occup Environ Med, 48: 780-788. 089794
- Magas OK; Gunter JT; Regens JL (2007). Ambient air pollution and daily pediatric hospitalizations for asthma. Environ Sci Pollut Res Int, 14: 19-23. 090714
- Maheswaran R; Haining RP; Brindley P; Law J; Pearson T; Fryers PR; Wise S; Campbell MJ (2005). Outdoor air pollution and stroke in Sheffield, United Kingdom: A small-area level geographical study. Stroke, 36: 239-243. <u>088683</u>
- Maheswaran R; Haining RP; Brindley P; Law J; Pearson T; Fryers PR; Wise S; Campbell MJ (2005). Outdoor air pollution, mortality, and hospital admissions from coronary heart disease in Sheffield, UK: A small-area level ecological study. Eur Heart J, 26: 2543-2549. 090769
- Maisonet M; Bush TJ; Correa A; Jaakkola JJK (2001). Relation between ambient air pollution and low birth weight in the northeastern United States. Environ Health Perspect, 1093: 351-356. 016624
- Mann JK; Tager IB; Lurmann F; Segal M; Quesenberry CP Jr; Lugg MM; Shan J; Van den Eeden SK (2002). Air pollution and hospital admissions for ischemic heart disease in persons with congestive heart failure or arrhythmia. Environ Health Perspect, 110: 1247-1252. 036723
- Mannes T; Jalaludin B; Morgan G; Lincoln D; Sheppeard V; Corbett S (2005). Impact of ambient air pollution on birth weight in Sydney, Australia. Occup Environ Med, 62: 524-530. 087895
- Mar TF; Jansen K; Shepherd K; Lumley T; Larson TV; Koenig JQ (2005). Exhaled nitric oxide in children with asthma and short-term PM25 exposure in Seattle. Environ Health Perspect, 113: 1791-1794. <u>088759</u>
- Mar TF; Koenig JQ; Jansen K; Sullivan J; Kaufman J; Trenga CA; Siahpush SH; Liu L-JS; Neas L (2005). Fine particulate air pollution and cardiorespiratory effects in the elderly. Epidemiology, 16: 681-687. 087566
- Mar TF; Larson TV; Stier RA; Claiborn C; Koenig JQ (2004). An analysis of the association between respiratory symptoms in subjects with asthma and daily air pollution in Spokane, Washington. Inhal Toxicol, 16: 809-815. 057309
- Martins LC; Latorre MRDO; Saldiva PHN; Braga ALF (2002). Air pollution and emergency room visits due to chronic lower respiratory diseases in the elderly: An ecological time-series study in Sao Paulo, Brazil. J Occup Environ Med, 44: 622-627. 035059
- Martins MCH; Fatigati FL; Vespoli TC; Martins LC; Martins MA; Saldiva PHN; Braga ALF (2004). Influence of socioeconomic conditions on air pollution effects in elderly people an analysis of six regions in Sao Paolo, Brazil. J Epidemiol Community Health, 58: 41-46. <a href="https://doi.org/10.2004/00.20
- Masjedi MR; Jamaati HR; Dokouhaki P; Ahmadzadeh Z; Taheri SA; Bigdeli M; Izadi S; Rostamian A; Aagin K; Ghavam SM (2003). The effects of air pollution on acute respiratory conditions. Respirology, 8: 213-230. <u>052100</u>
- McConnell R; Berhane K; Gilliland F; London SJ; Islam T; Gauderman WJ; Avol E; Margolis HG; Peters JM (2002). Asthma in exercising children exposed to ozone: a cohort study. Lancet, 359: 386-391. 023150
- McConnell R; Berhane K; Gilliland F; London SJ; Vora H; Avol E; Gauderman WJ; Margolis HG; Lurmann F; Thomas DC; Peters JM (1999). Air pollution and bronchitic symptoms in southern California children with asthma. Environ Health Perspect, 107: 757-760. 007028
- McConnell R; Berhane K; Gilliland F; Molitor J; Thomas D; Lurmann F; Avol E; Gauderman WJ; Peters JM (2003).

 Prospective study of air pollution and bronchitic symptoms in children with asthma. Am J Respir Crit Care Med, 168: 790-797. 049490

- McConnell R; Berhane K; Molitor J; Gilliland F; Kunzli N; thorne PS; Thomas D; Gauderman WJ; Avol E; Lurmann F; Rappaport E; Jerrett M; Peters JM (2006). Dog ownership enhances symptomatic responses to air pollution in children with asthma. Environ Health Perspect, 114: 1910-1915. 180226
- McCormack MC; Breysse PN; Matsui EC; Hansel NN; Williams D; Curtin-Brosnan J; Eggleston P; Diette GB (2009). Inhome particle concentrations and childhood asthma morbidity. Environ Health Perspect, 117: 294-298. 199833
- McCreanor J; Cullinan P; Nieuwenhuijsen MJ; Stewart-Evans J; Malliarou E; Jarup L; Harrington R; Svartengren M; Han I-K; Ohman-Strickland P; Chung KF; Zhang J (2007). Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med, 357: 2348-2358. 092841
- McDonnell WF; Nishino-Ishikawa N; Petersen FF; Chen LH; Abbey DE (2000). Relationships of mortality with the fine and coarse fractions of long-term ambient PM10 concentrations in nonsmokers. J Expo Sci Environ Epidemiol, 10: 427-436. 010319
- McGowan JA; Hider PN; Chacko E; Town GI (2002). Particulate air pollution and hospital admissions in Christchurch, New Zealand. Aust N Z J Public Health, 26: 23-29. 030325
- Medina-Ramon M; Zanobetti A; Schwartz J (2006). The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study. Am J Epidemiol, 163: 579-588, 087721
- Meng YY; Wilhelm M; Rull RP; English P; Ritz B (2007). Traffic and outdoor air pollution levels near residences and poorly controlled asthma in adults. Ann Allergy Asthma Immunol, 98: 455-463. <u>093275</u>
- Metzger KB; Klein M; Flanders WD; Peel JL; Mulholland JA; Langberg JJ; Tolbert PE (2007). Ambient air pollution and cardiac arrhythmias in patients with implantable defibrillators. Epidemiology, 18: 585-592. 092856
- Metzger KB; Tolbert PE; Klein M; Peel JL; Flanders WD; Todd KH; Mulholland JA; Ryan PB; Frumkin H (2004). Ambient air pollution and cardiovascular emergency department visits. Epidemiology, 15: 46-56. <u>044222</u>
- Michaud JP; Grove JS; Krupitsky DCEH (2004). Emergency department visits and "vog"-related air quality in Hilo, Hawai'i. Environ Res, 95: 11-9. <u>188530</u>
- Middleton N; Yiallouros P; Kleanthous S; Kolokotroni O; Schwartz J; Dockery DW; Demokritou P; Koutrakis P (2008). A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: the effect of short-term changes in air pollution and dust storms. Environ Health, 7: 39. 156760
- Migliaretti G; Cadum E; Migliore E; Cavallo F (2005). Traffic air pollution and hospital admission for asthma: a case-control approach in a Turin (Italy) population. Int Arch Occup Environ Health, 78: 164-169. 088689
- Migliaretti G; Cavallo F (2004). Urban air pollution and asthma in children. Pediatr Pulmonol, 38: 198-203. 087425
- Miller KA; Siscovick DS; Sheppard L; Shepherd K; Sullivan JH; Anderson GL; Kaufman JD (2007). Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med, 356: 447-458. https://doi.org/10.1007/journal.com/
- Millstein J; Gilliland F; Berhane K; Gauderman WJ; McConnell R; Avol E; Rappaport EB; Peters JM (2004). Effects of ambient air pollutants on asthma medication use and wheezing among fourth-grade school children from 12 Southern California communities enrolled in The Children's Health Study. Arch Environ Occup Health, 59: 505-514. 088629
- Min KB; Min JY; Cho SI; Paek D (2008). The relationship between air pollutants and heart-rate variability among community residents in Korea. Inhal Toxicol, 4: 435-444. 191901
- Mohr LB; Luo S; Mathias E; Tobing R; Homan S; Sterling D (2008). Influence of season and temperature on the relationship of elemental carbon air pollution to pediatric asthma emergency room visits. J Asthma, 45: 936-943. 180215
- Moore K; Neugebauer R; Lurmann F; Hall J; Brajer V; Alcorn S; Tager I (2008). Ambient ozone concentrations cause increased hospitalizations for asthma in children: An 18-year study in Southern California. Environ Health Perspect, 116: 1063-1070. 196685
- Morgenstern V; Zutavern A; Cyrys J; Brockow I; Gehring U; Koletzko S; Bauer CP; Reinhardt D; Wichmann H-E; Heinrich J (2007). Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup Environ Med, 64: 8-16. <u>090747</u>
- Mortimer K; Neugebauer R; Lurmann F; Alcorn S; Balmes J; Tager I (2008). Early-Lifetime exposure to air pollution and allergic sensitization in children with asthma. J Asthma, 45: 874-881. 187280

- Mortimer KM; Neas LM; Dockery DW; Redline S; Tager IB (2002). The effect of air pollution on inner-city children with asthma. Eur Respir J, 19: 699-705. 030281
- Moshammer H; Hutter H-P; Hauck H; Neuberger M (2006). Low levels of air pollution induce changes of lung function in a panel of schoolchildren. Eur Respir J, 27: 1138-1143. 090771
- Moshammer H; Neuberger M (2003). The active surface of suspended particles as a predictor of lung function and pulmonary symptoms in Austrian school children. Atmos Environ, 37: 1737-1744. 041956
- Murata A; Kida K; Hasunuma H; Kanegae H; Ishimaru Y; Motegi T; Yamada K; Yoshioka H; Yamamoto K; Kudoh S (2007). Environmental influence on the measurement of exhaled nitric oxide concentration in school children: special reference to methodology. J Nippon Med Sch, 74: 30-6. 189159
- Naess O; Nafstad P; Aamodt G; Claussen B; Rosland P (2007). Relation between concentration of air pollution and causespecific mortality: four-year exposures to nitrogen dioxide and particulate matter pollutants in 470 neighborhoods in Oslo, Norway. Am J Epidemiol, 165: 435-443. <u>090736</u>
- Nafstad P; Haheim LL; Wisloff T; Gram F; Oftedal B; Holme I; Hjermann I; Leren P (2004). Urban air pollution and mortality in a cohort of Norwegian men. Environ Health Perspect, 112: 610-605. 087949
- Nascimento LF; Pereira LA; Braga AL; Modolo MC; Carvalho JA Jr (2006). Effects of air pollution on children's health in a city in southeastern Brazil. Rev Saude Publica, 40: 77-82. 093247
- Nawrot TS; Torfs R; Fierens F; De Henauw S; Hoet PH; Van Kersschaever G; De Backer G; Nemery B (2007). Stronger associations between daily mortality and fine particulate air pollution in summer than in winter: evidence from a heavily polluted region in western Europe. J Epidemiol Community Health, 61: 146-149. 098619
- Nerriere E; Zmirou-Navier D; Desqueyroux P; Leclerc N; Momas I; Czernichow P (2005). Lung cancer risk assessment in relation with personal exposure to airborne particles in four French metropolitan areas. J Occup Environ Med, 47: 1211-1217. 088630
- Neuberger M; Schimek MG; Horak F Jr; Moshammer H; Kundi M; Frischer T; Gomiscek B; Puxbaum H; Hauck H; AUPHEP-Team (2004). Acute effects of particulate matter on respiratory diseases, symptoms and functions: epidemiological results of the Austrian Projects on Health Effects of Particulate Matter (AUPHEP). Atmos Environ, 38: 3971-3981. 093249
- O'Connor GT; Neas L; Vaughn B; Kattan M; Mitchell H; Crain EF; Evans R 3rd; Gruchalla R; Morgan W; Stout J; Adams GK; Lippmann M (2008). Acute respiratory health effects of air pollution on children with asthma in US inner cities. J Allergy Clin Immunol, 121: 1133-1139. 156818
- O'Neill MS; Bell ML; Ranjit N; Cifuentes LA; Loomis D; gouveia N; Borja-Aburto VH (2008). Air pollution and mortality in Latin America: The role of education. Epidemiology, 19: 810-819. 192314
- O'Neill MS; Diez-Roux AV; Auchincloss AH; Franklin TG; Jacobs Jnr DR; Astor BC; Dvonch JT; Kaufman J (2007). Airborne particulate matter exposure and urinary albumin excretion: The Multi-Ethnic Study of Atherosclerosis. Occup Environ Med, 65: 534-540. 156006
- O'Neill MS; Hajat S; Zanobetti A; Ramirez-Aguilar M; Schwartz J (2005). Impact of control for air pollution and respiratory epidemics on the estimated associations of temperature and daily mortality. Int J Biometeorol, 50: 121-129. 098094
- O'Neill MS; Loomis D; Borja Aburto VH; Gold D; Hertz-Picciotto I; Castillejos M (2004). Do associations between airborne particles and daily mortality in Mexico City differ by measurement method, region, or modeling strategy? J Expo Sci Environ Epidemiol, 14: 429-439. 087429
- O'Neill MS; Veves A; Sarnat JA; Zanobetti A; Gold DR; Economides PA; Horton ES; Schwartz J (2007). Air pollution and inflammation in type 2 diabetes: a mechanism for susceptibility. Occup Environ Med, 64: 373-379. 091362
- O'Neill MS; Veves A; Zanobetti A; Sarnat JA; Gold DR; Economides PA; Horton ES; Schwartz J (2005). Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. Circulation, 111: 2913-2920. 088423
- Odajima H; Yamazaki S; Nitta H (2008). Decline in peak expiratory flow according to hourly short-term concentration of particulate matter in asthmatic children. Inhal Toxicol, 20: 1263-1272. 192005
- Oftedal B; Brunekreef B; Nystad W; Madsen C; Walker S-E; Nafstad P (2008). Residential outdoor air pollution and lung function in schoolchildren. Epidemiology, 19: 129-137. <a href="https://doi.org/10.2008/ncbi.nlm.ncbi

- Oftedal B; Nafstad P; Magnus P; Bjorkly S; Skrondal A (2003). Traffic related air pollution and acute hospital admission for respiratory diseases in Drammen, Norway 1995-2000. Eur J Epidemiol, 18: 671-675. 055623
- Ostro B; Broadwin R; Green S; Feng W-Y; Lipsett M (2006). Fine particulate air pollution and mortality in nine California counties: results from CALFINE. Environ Health Perspect, 114: 29-33. <u>087991</u>
- Ostro B; Feng W-Y; Broadwin R; Green S; Lipsett M (2007). The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environ Health Perspect, 115: 13-19. <u>091354</u>
- Ostro BD; Feng WY; Broadwin R; Malig BJ; Green RS; Lipsett MJ (2008). The impact of components of fine particulate matter on cardiovascular mortality in susceptible subpopulations. Occup Environ Med, 65: 750-756. 097971
- Ozkaynak H; Thurston GD (1987). Associations between 1980 US mortality rates and alternative measures of airborne particle concentration. Risk Anal, 7: 449-461. <u>072960</u>
- Park SK; O'Neill MS; Vokonas PS; Sparrow D; Schwartz J (2005). Effects of air pollution on heart rate variability: The VA normative aging study. Environ Health Perspect, 113: 304-309. 057331
- Park SK; O'Neill MS; Vokonas PS; Sparrow D; Spiro A 3rd; Tucker KL; Suh H; Hu H; Schwartz J (2008). Traffic-related particles are associated with elevated homocysteine: the VA normative aging study. Am J Respir Crit Care Med, 178: 283-289. 156845
- Park SK; O'Neill MS; Wright RO; Hu H; Vokonas PS; Sparrow D; Suh H; Schwartz J (2006). HFE genotype, particulate air pollution, and heart rate variability; a gene-environmental interaction. Circulation, 114: 2798-2805. 091245
- Parker JD; Akinbami LJ; Woodruff TJ (2009). Air Pollution and Childhood Respiratory Allergies in the United States. Environ Health Perspect, 117: 140-147. 192359
- Parker JD; Woodruff TJ (2008). Influences of study design and location on the relationship between particulate matter air pollution and birthweight. Paediatr Perinat Epidemiol, 22: 214-227. 156846
- Parker JD; Woodruff TJ; Basu R; Schoendorf KC (2005). Air pollution and birth weight among term infants in California. Pediatrics, 115: 121-128. 087462
- Peacock JL; Symonds P; Jackson P; Bremner SA; Scarlett JF; Strachan DP; Anderson HR (2003). Acute effects of winter air pollution on respiratory function in schoolchildren in southern England. Occup Environ Med, 60: 82-89. 042026
- Peel JL; Metzger KB; Klein M; Flanders WD; Mulholland JA; Tolbert PE (2007). Ambient air pollution and cardiovascular emergency department visits in potentially sensitive groups. Am J Epidemiol, 165: 625-633. <u>090442</u>
- Peel JL; Tolbert PE; Klein M; Metzger KB; Flanders WD; Knox T; Mulholland JA; Ryan PB; Frumkin H (2005). Ambient air pollution and respiratory emergency department visits. Epidemiology, 16: 164-174. 056305
- Pekkanen J; Peters A; Hoek G; Tiittanen P; Brunekreef B; de Hartog J; Heinrich J; Ibald-Mulli A; Kreyling WG; Lanki T; Timonen KL; Vanninen E (2002). Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the exposure and risk assessment for fine and ultrafine particles in ambient air (ULTRA) study. Circulation, 106: 933-938. 035050
- Peled R; Friger M; Bolotin A; Bibi H; Epstein L; Pilpel D; Scharf S (2005). Fine particles and meteorological conditions are associated with lung function in children with asthma living near two power plants. Public Health, 119: 418-425. 156015
- Penard-Morand C; Charpin D; Raherison C; Kopferschmitt C; Caillaud D; Lavaud F; Annesi-Maesano I (2005). Long-term exposure to background air pollution related to respiratory and allergic health in schoolchildren. Clin Exp Allergy, 35: 1279-1287. 087951
- Peng RD; Chang HH; Bell ML; McDermott A; Zeger SL; Samet JM; Dominici F (2008). Coarse particulate matter air pollution and hospital admissions for cardiovascular and respiratory diseases among Medicare patients. JAMA, 299: 2172-2179. 156850
- Peng RD; Dominici F; Pastor-Barriuso R; Zeger SL; Samet JM (2005). Seasonal analyses of air pollution and mortality in 100 US cities. Am J Epidemiol, 161: 585-594. <u>087463</u>
- Penttinen P; Tiittanen P; Pekkanen J (2004). Mortality and air pollution in metropolitan Helsinki, 1988-1996. Scand J Work Environ Health, 2: 19-27. <u>087432</u>
- Penttinen P; Vallius M; Tiittanen P; Ruuskanen J; Pekkanen J (2006). Source-specific fine particles in urban air and respiratory function among adult asthmatics. Inhal Toxicol, 18: 191-198. <u>087988</u>

- Pereira LAA; Loomis D; Conceicao GMS; Braga ALF; Arcas RM; Kishi HS; Singer JM; Bohm GM; Saldiva PHN (1998).

 Association between air pollution and intrauterine mortality in Sao Paulo, Brazil. Environ Health Perspect, 106: 325-329. 007264
- Perez L; Tobias A; Querol X; Kunzli N; Pey J; Alastuey A; Viana M; Valero N; Gonzalez-Cabre M; Sunyer J (2008). Coarse particles from Saharan dust and daily mortality. Epidemiology, 19: 800-807. <u>156020</u>
- Peters A; Greven S; Heid I; Baldari F; Breitner S; Bellander T; Chrysohoou C; Illig T; Jacquemin B; Koenig W (2009). Fibrinogen genes modify the fibrinogen response to ambient particulate matter. Am J Respir Crit Care Med, 179: 484-491. 191992
- Peters A; von Klot S; Heier M; Trentinaglia I; Cyrys J; Hormann A; Hauptmann M; Wichmann HE; Lowel H (2005).

 Particulate air pollution and nonfatal cardiac events. Part I. Air pollution, personal activities, and onset of myocardial infarction in a case-crossover study. Health Effects Institute. Boston, MA. 156859
- Peters A; Wichmann HE; Lowel H; Meisinger C; Illig T; Holle R; John J; Keil U; Doring A; Filipiak B; Hense HW; Lowel H; Stieber J (2005). Partikel in der Aussenluft erhoren das Risiko für Herz-Kreislauf-Erkrankungen [Aerosol particles increase the risk of cardiovascular diseases]. Gesundheitswesen, 1: S79-S85. 095747
- Peters JM; Avol E; Gauderman WJ; Linn WS; Navidi W; London SJ; Margolis H; Rappaport E; Vora H; Gong H Jr; Thomas DC (1999). A study of twelve southern California communities with differing levels and types of air pollution II Effects on pulmonary function. Am J Respir Crit Care Med, 159: 768-775. 087237
- Pierse N; Rushton L; Harris RS; Kuehni CE; Silverman M; Grigg J (2006). Locally-generated particulate pollution and respiratory symptoms in young children. Thorax, 61: 216-220. <u>088757</u>
- Pino P; Walter T; Oyarzun M; Villegas R; Romieu I (2004). Fine particulate matter and wheezing illnesses in the first year of life. Epidemiology, 15: 702-708. 050220
- Pitard A; Zeghnoun A; Courseaux A; Lamberty J; Delmas V; Fossard JL; Villet H (2004). Short-term associations between air pollution and respiratory drug sales. Environ Res, 95: 43-52. 087433
- Pope C; Renlund D; Kfoury A; May H; Horne B (2008). Relation of heart failure hospitalization to exposure to fine particulate air pollution. Am J Cardiol, 102: 1230-1234. 191969
- Pope CA III; Burnett RT (2007). Confounding in air pollution epidemiology: the broader context. Epidemiology, 18: 424-426. <u>090928</u>
- Pope CA III; Burnett RT; Thun MJ; Calle EE; Krewski D; Ito K; Thurston GD (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287: 1132-1141. <u>024689</u>
- Pope CA III; Rodermund DL; Gee MM (2007). Mortality effects of a copper smelter strike and reduced ambient sulfate particulate matter air pollution. Environ Health Perspect, 115: 679-683. <a href="https://doi.org/10.1016/j.com/nc-10.1016/j.com/
- Pope CA; Hansen ML; Long RW; Nielsen KR; Eatough NL; Wilson WE; Eatough DJ (2004). Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ Health Perspect, 112: 339-345. 055238
- Pope CA III; Muhlestein JB; May HT; Renlund DG; Anderson JL; Horne BD (2006). Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation, 114: 2443-2448. <a href="https://doi.org/10.1007/journal.
- Pope III CA; Burnett RT; Thurston GD; Thun MJ; Calle EE; Krewski D; Godleski JJ (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109: 71-77. 055880
- Pope III CA; Ezzati M; Dockery DW (2009). Fine-particulate air pollution and life expectancy in the United States. N Engl J Med, 360: 376-386. 190107
- Preutthipan A; Udomsubpayakul U; Chaisupamongkollarp T; Pentamwa P (2004). Effect of PM10 pollution in Bangkok on children with and without asthma. Pediatr Pulmonol, 37: 187-192. 055598
- Puett RC; Schwartz J; Hart JE; Yanosky JD; Speizer FE; Suh H; Paciorek CJ; Neas LM; Laden F (2008). Chronic particulate exposure, mortality, and coronary heart disease in the nurses' health study. Am J Epidemiol, 168: 1161-1168. 156891
- Qian Z; He Q; Lin H-M; Kong L; Liao D; Dan J; Bentley CM; Wang B (2007). Association of daily cause-specific mortality with ambient particle air pollution in Wuhan, China. Environ Res, 105: 380-389. 093054

- Qian Z; He Q; Lin HM; Kong L; Bentley CM; Liu W; Zhou D (2008). High temperatures enhanced acute mortality effects of ambient particle pollution in the "oven" city of Wuhan, China. Environ Health Perspect, 116: 1172-1178. 156894
- Qian Z; Liao D; Lin H-M; Whitsel EA; Rose KM; Duan Y (2005). Lung function and long-term exposure to air pollutants in middle-aged American adults. Arch Environ Occup Health, 60: 156-163. 093283
- Rabinovitch N; Strand M; Gelfand EW (2006). Particulate levels are associated with early asthma worsening in children with persistent disease. Am J Respir Crit Care Med, 173: 1098-1105. 088031
- Rabinovitch N; Zhang LN; Murphy JR; Vedal S; Dutton SJ; Gelfand EW (2004). Effects of wintertime ambient air pollutants on asthma exacerbations in urban minority children with moderate to severe disease. J Allergy Clin Immunol, 114: 1131-1137. 096753
- Rainham DG; Smoyer-Tomic KE; Sheridan SC; Burnett RT (2005). Synoptic weather patterns and modification of the association between air pollution and human mortality. Int J Environ Health Res, 15: 347-360. <u>088676</u>
- Ranzi A; Gambini M; Spattini A; Galassi C; Sesti D; Bedeschi M; Messori A; Baroni A; Cavagni G; Lauriola P (2004). Air pollution and respiratory status in asthmatic children: Hints for a locally based preventive strategy AIRE study. Eur J Epidemiol, 19: 567-576. 089500
- Ren C; Tong S (2006). Temperature modifies the health effects of particulate matter in Brisbane, Australia. Int J Biometeorol, 51: 87-96. <u>092824</u>
- Renzetti G; Silvestre G; D'Amario C; Bottini E; Gloria-Bottini F; Bottini N; Auais A; Perez MK; Piedimonte G (2009). Less air pollution leads to rapid reduction of airway inflammation and improved airway function in asthmatic children. Pediatrics, 123: 1051-1058. 199834
- Rich DQ; Demissie K; Lu SE; Kamat L; Wartenberg D; Rhoads GG (2009). Ambient air pollutant concentrations during pregnancy and the risk of fetal growth restriction. J Epidemiol Community Health, 63: 488-496. 180122
- Rich DQ; Freudenberger RS; Ohman-Strickland P; Cho Y; Kipen HM (2008). Right heart pressure increases after acute increases in ambient particulate concentration. Environ Health Perspect, 116: 1167-1171. 156910
- Rich DQ; Kim MH; Turner JR; Mittleman MA; Schwartz J; Catalano PJ; Dockery DW (2006). Association of ventricular arrhythmias detected by implantable cardioverter defibrillator and ambient air pollutants in the St Louis, Missouri metropolitan area. Occup Environ Med, 63: 591-596. 089814
- Rich DQ; Mittleman MA; Link MS; Schwartz J; Luttmann-Gibson H; Catalano PJ; Speizer FE; Gold DR; Dockery DW (2006). Increased risk of paroxysmal atrial fibrillation episodes associated with acute increases in ambient air pollution. Environ Health Perspect, 114: 120-123. <u>088427</u>
- Rich DQ; Schwartz J; Mittleman MA; Link M; Luttmann-Gibson H; Catalano PJ; Speizer FE; Dockery DW (2005).

 Association of short-term ambient air pollution concentrations and ventricular arrhythmias. Am J Epidemiol, 161: 1123-1132. 079620
- Rich KE; Petkau J; Vedal S; Brauer M (2004). A case-crossover analysis of particulate air pollution and cardiac arrhythmia in patients with implantable cardioverter defibrillators. Inhal Toxicol, 16: 363-372. 055631
- Riediker M; Devlin RB; Griggs TR; Herbst MC; Bromberg PA; Williams RW; Cascio WE (2004). Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions. Part Fibre Toxicol, 1: 2. 091261
- Riojas-Rodriguez H; Escamilla-Cejudo JA; Gonzalez-Hermosillo JA; Tellez-Rojo MM; Vallejo M; Santos-Burgoa C; Rojas-Bracho L (2006). Personal PM2.5 and CO exposures and heart rate variability in subjects with known ischemic heart disease in Mexico City. J Expo Sci Environ Epidemiol, 16: 131-137. 156913
- Rios JLM; Boechat JL; Sant'Anna CC; Franca AT (2004). Atmospheric pollution and the prevalence of asthma: study among schoolchildren of 2 areas in Rio de Janeiro, Brazil. Ann Allergy Asthma Immunol, 92: 629-634. <u>087800</u>
- Ritz B; Wilhelm M; Hoggatt KJ; Ghosh JK (2007). Ambient air pollution and preterm birth in the environment and pregnancy outcomes study at the University of California, Los Angeles. Am J Epidemiol, 166: 1045-1052. 096146
- Ritz B; Wilhelm M; Zhao Y (2006). Air pollution and infant death in southern California, 1989-2000. Pediatrics, 118: 493-502. 089819
- Ritz B; Yu F; Chapa G; Fruin S (2000). Effect of air pollution on preterm birth among children born in Southern California between 1989 and 1993. Epidemiology, 11: 502-511. <u>012068</u>

- Ritz B; Yu F; Fruin S; Chapa G; Shaw GM; Harris JA (2002). Ambient air pollution and risk of birth defects in Southern California. Am J Epidemiol, 155: 17-25. 023227
- Roberts S (2004). Interactions between particulate air pollution and temperature in air pollution mortality time series studies. Environ Res, 96: 328-337. 087924
- Roberts S (2005). Using moving total mortality counts to obtain improved estimates for the effect of air pollution on mortality. Environ Health Perspect, 113: 1148-1152. <u>087992</u>
- Roberts S (2006). A new model for investigating the mortality effects of multiple air pollutants in air pollution mortality time-series studies. J Toxicol Environ Health A Curr Iss, 69: 417-435. <u>089762</u>
- Roberts S; Martin MA (2006). Applying a moving total mortality count to the cities in the NMMAPS database to estimate the mortality effects of particulate matter air pollution. Occup Environ Med, 63: 193-197. <u>088670</u>
- Roberts S; Martin MA (2006). The question of nonlinearity in the dose-response relation between particulate matter air pollution and mortality: can Akaike's Information Criterion be trusted to take the right turn? Am J Epidemiol, 164: 1242-1250. 097799
- Roberts S; Martin MA (2007). Methods for bias reduction in time-series studies of particulate matter air pollution and mortality. J Toxicol Environ Health A Curr Iss, 70: 665-675. <u>156917</u>
- Rodriguez C; Tonkin R; Heyworth J; Kusel M; De Klerk N; Sly PD; Franklin P; Runnion T; Blockley A; Landau L; Hinwood AL (2007). The relationship between outdoor air quality and respiratory symptoms in young children. Int J Environ Health Res, 17: 351-360 . 092842
- Rogers JF; Dunlop AL (2006). Air pollution and very low birth weight infants: a target population? Pediatrics, 118: 156-164. 091232
- Rojas-Martinez R; Perez-Padilla R; Olaiz-Fernandez G; Mendoza-Alvarado L; Moreno-Macias H; Fortoul T; McDonnell W; Loomis D; Romieu I (2007). Lung function growth in children with long-term exposure to air pollutants in Mexico City. Am J Respir Crit Care Med, 176: 377-384. 091064
- Roman HA; Walker KD; Walsh TL; Conner L; Richmond HM; Hubbell BJ; Kinney PL (2008). Expert judgment assessment of the mortality impact of changes in ambient fine particulate matter in the U.S. Environ Sci Technol, 42: 2268-2274. 156921
- Romieu I; Garcia-Esteban R; Sunyer J; Rios C; Alcaraz-Zubeldia M; Velasco SR; Holguin F (2008). The effect of supplementation with omega-3 polyunsaturated fatty acids on markers of oxidative stress in elderly exposed to PM(2.5). Environ Health Perspect, 116: 1237-1242. 156922
- Romieu I; Ramirez-Aguilar M; Moreno-Macias H; Barraza-Villarreal A; Miller P; Hernandez-Cadena L; Carbajal-Arroyo LA; Hernandez-Avila M (2004). Infant mortality and air pollution: modifying effect by social class. J Occup Environ Hyg, 46: 1210-1216. <u>093074</u>
- Romieu I; Tellez-Rojo MM; Lazo M; Manzano-Patino Cortez-Lugo M; Julien P; Belanger MC; Hernandez-Avila MHolguin F (2005). Omega-3 fatty acid prevents heart rate variability reductions associated with particulate matter. Am J Respir Crit Care Med, 172: 1534-1540. 086297
- Rosenlund M; Bellander T; Nordquist T; Alfredsson L (2007). Long-Term Exposure to Air Pollution and Cancer. Epidemiology, 18: S66. <u>114679</u>
- Rosenlund M; Bellander T; Nordqvist T; Alfredsson L (2006). A register-based case-control study of air pollution and myocardial infarction. Epidemiology, 17: S240. <u>114678</u>
- Rosenthal FS; Carney JP; Olinger ML (2008). Out-of-hospital cardiac arrest and airborne fine particulate matter: a case-crossover analysis of emergency medical services data in Indianapolis, Indiana. Environ Health Perspect, 116: 631-636. 156925
- Ruckerl R; Greven S; Ljungman P; Aalto P; Antoniades C; Bellander T; Berglind N; Chrysohoou C; Forastiere F; Jacquemin B; von Klot S; Koenig W; Kuchenhoff H; Lanki T; Pekkanen J; Perucci CA; Schneider A; Sunyer J; Peters A (2007). Air pollution and inflammation (interleukin-6, C-reactive protein, fibrinogen) in myocardial infarction survivors. Environ Health Perspect, 115: 1072-1080. 156931

- Ruckerl R; Ibald-Mulli A; Koenig WSchneider A; Woelke G; Cyrys J; Heinrich J; Marder V; Frampton M; Wichmann HE; Peters A (2006). Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Environ Health Perspect, 173: 432-441. <u>088754</u>
- Ruckerl R; Phipps RP; Schneider A; Frampton M; Cyrys J; Oberdorster G; Wichmann HE; Peters A (2007). Ultrafine particles and platelet activation in patients with coronary heart disease -- results from a prospective panel study. Part Fibre Toxicol, 4: 1. 091379
- Sagiv SK; Mendola P; Loomis D; Herring AH; Neas LM; Savitz DA; Poole C (2005). A time-series analysis of air pollution and preterm birth in Pennsylvania, 1997-2001. Environ Health Perspect, 113: 602-606. 087468
- Sahsuvaroglu T; Jerrett M; Sears MR; McConnell R; Finkelstein N; Arain A; Newbold B; Burnett R (2009). Spatial analysis of air pollution and childhood asthma in Hamilton, Canada: comparing exposure methods in sensitive subgroups. Environ Health, 8: Z. 190983
- Sakai M; Sato Y; Sato S; Ihara S; Onizuka M; Sakakibara Y; Takahashi H (2004). Effect of relocating to areas of reduced atmospheric particulate matter levels on the human circulating leukocyte count. J Appl Physiol, 97: 1774-1780. 087435
- Salam MT; Millstein J; Li Y-F; Lurmann FW; Margolis HG; Gilliland FD (2005). Birth outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: results from the Children's Health Study. Environ Health Perspect, 113: 1638-1644. 087885
- Samoli E; Analitis A; Touloumi G; Schwartz J; Anderson HR; Sunyer J; Bisanti L; Zmirou D; Vonk JM; Pekkanen J; Goodman P; Paldy A; Schindler C; Katsouyanni K (2005). Estimating the exposure-response relationships between particulate matter and mortality within the APHEA multicity project. Environ Health Perspect, 113: 88-95. 087436
- Sanchez-Carrillo CI; Ceron-Mireles P; Rojas-Martinez MR; Mendoza-Alvarado L; Olaiz-Fernandez G; Borja-Aburto VH (2003). Surveillance of acute health effects of air pollution in Mexico City. Epidemiology, 14: 536-544. 098428
- Santos U; Terra-Filho M; Lin C; Pereira L; Vieira T; Saldiva P; Braga A (2008). Cardiac arrhythmia emergency room visits and environmental air pollution in Sao Paulo, Brazil. J Epidemiol Community Health, 62: 267-272. 192004
- Sarnat JA; Marmur A; Klein M; Kim E; Russell AG; Sarnat SE; Mulholland JA; Hopke PK; Tolbert PE (2008). Fine particle sources and cardiorespiratory morbidity: An application of chemical mass balance and factor analytical source-apportionment methods. Environ Health Perspect, 116: 459-466. https://doi.org/10.2008/journal.com/
- Sarnat SE; Suh HH; Coull BA; Schwartz J; Stone PH; Gold DR (2006). Ambient particulate air pollution and cardiac arrhythmia in a panel of older adults in Steubenville, Ohio. Occup Environ Med, 63: 700-706. 090489
- Sauerzapf V; Jones AP; Cross J (2009). Environmental factors and hospitalisation for chronic obstructive pulmonary disease in a rural county of England. J Epidemiol Community Health, 63: 324-328. 180082
- Schikowski T; Sugiri D; Ranft U; Gehring U; Heinrich J; Wichmann HE; Kramer U (2005). Long-term air pollution exposure and living close to busy roads are associated with COPD in women. Respir Res, 22: 152-161. <u>088637</u>
- Schildcrout JS; Sheppard L; Lumley T; Slaughter JC; Koenig JQ; Shapiro GG (2006). Ambient air pollution and asthma exacerbations in children: An eight-city analysis. Am J Epidemiol, 164: 505-517. 089812
- Schindler C; Keidel D; Gerbase MW; Zemp E; Bettschart R; Brandli O; Brutsche MH; Burdet L; Karrer W; Knopfli B; Pons M; Rapp R; Bayer-Oglesby L; Kunzli N; Schwartz J; Liu L-JS; Ackermann-Liebrich U; Rochat T; the SAPALDIA Team (2009). Improvements in PM10 exposure and reduced rates of respiratory symptoms in a cohort of swiss adults (SAPALDIA). Am J Respir Crit Care Med, 179: 579-587. 191950
- Schneider A; Neas L; Herbst M; Case M; Williams R; Cascio W; Hinderliter A; Holguin F; Buse J; Dungan K (2008). Endothelial dysfunction: associations with exposure to ambient fine particles in diabetic individuals. Environ Health Perspect, 116: 1666-1674. 191985
- Schreuder AB; Larson TV; Sheppard L; Claiborn CS (2006). Ambient woodsmoke and associated respiratory emergency department visits in Spokane, Washington. Int J Occup Environ Health, 12: 147-153. <u>097959</u>
- Schwartz J (2004). Is the association of airborne particles with daily deaths confounded by gaseous air pollutants? An approach to control by matching. Environ Health Perspect, 112: 557-561. 053506
- Schwartz J (2004). The effects of particulate air pollution on daily deaths: a multi-city case crossover analysis. Occup Environ Med, 61: 956-961. <u>078998</u>

- Schwartz J; Coull B; Laden F; Ryan L (2008). The effect of dose and timing of dose on the association between airborne particles and survival. Environ Health Perspect, 116: 64-69. <u>156963</u>
- Schwartz J; Laden F; Zanobetti A (2002). The concentration-response relation between PM2.5 and daily deaths. Environ Health Perspect, 110: 1025-1029. 025312
- Schwartz J; Litonjua A; Suh H; Verrier M; Zanobetti A; Syring M; Nearing B; Verrier R; Stone P; MacCallum G; Speizer FE; Gold DR (2005). Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax, 60: 455-461. 074317
- Sekine K; Shima M; Nitta Y; Adachi M (2004). Long term effects of exposure to automobile exhaust on the pulmonary function of female adults in Tokyo, Japan. Occup Environ Med, 61: 350-357. 090762
- Sharma M; Kumar VN; Katiyar SK; Sharma R; Shukla BP; Sengupta B (2004). Effects of particulate air pollution on the respiratory health of subjects who live in three areas in Kanpur, India. Arch Environ Health, 59: 348-358. 156974
- Sharovsky R; Cesar LA; Ramires JA (2004). Temperature, air pollution, and mortality from myocardial infarction in Sao Paulo, Brazil. Braz J Med Biol Res, 37: 1651-1657. 156976
- Silkoff PE; Zhang L; Dutton S; Langmack EL; Vedal S; Murphy J; Make B (2005). Winter air pollution and disease parameters in advanced chronic obstructive pulmonary disease panels residing in Denver, Colorado. J Allergy Clin Immunol, 115: 337-344. 087471
- Simpson R; Williams G; Petroeschevsky A; Best T; Morgan G; Denison L; Hinwood A; Neville G (2005). The short-term effects of air pollution on hospital admissions in four Australian cities. Aust N Z J Public Health, 29: 213-221. 087438
- Sinclair AH; Tolsma D (2004). Associations and lags between air pollution and acute respiratory visits in an ambulatory care setting: 25-month results from the aerosol research and inhalation epidemiological study. J Air Waste Manag Assoc, 54: 1212-1218. 088696
- Singh V; Khandelwal R; Gupta AB (2003). Effect of air pollution on peak expiratory flow rate variability. J Asthma, 40: 81-86. 052686
- Sivacoumar R; Jayabalou R; Swarnalatha S; Balakrishnan K (2006). Particulate Matter from Stone Crushing Industry: Size Distribution and Health Effects. J Environ Eng., 132: 405-414. 111115
- Slama R; Morgenstern V; Cyrys J; Zutavern A; Herbarth O; Wichmann HE; Heinrich J; LISA Study Group (2007). Traffic-related atmospheric pollutants levels during pregnancy and offspring's term birth weight: a study relying on a land-use regression exposure model. Environ Health Perspect, 115: 1283-1292. 093216
- Slaughter JC; Kim E; Sheppard L; Sullivan JH; Larson TV; Claiborn C (2005). Association between particulate matter and emergency room visits, hospital admissions and mortality in Spokane, Washington. J Expo Sci Environ Epidemiol, 15: 153-159. 073854
- Sokol RZ; Kraft P; Fowler IM; Mamet R; Kim E; Berhane KT (2006). Exposure to environmental ozone alters semen quality. Environ Health Perspect, 114: 360-5. <u>098539</u>
- Solomon C; Poole J; Jarup L; Palmer K; Coggon D (2003). Cardio-respiratory morbidity and long-term exposure to particulate air pollution. Int J Environ Health Res, 13: 327-335. <u>087441</u>
- Solomon P; Baumann K; Edgerton E; Tanner R; Eatough D; Modey W; Marin H; Savoie D; Natarajan S; Meyer MB (2003). Comparison of integrated samplers for mass and composition during the 1999 Atlanta supersites project. J Geophys Res, 108: 8423. 156994
- Sorensen M; Daneshvar B; Hansen M; Dragsted LO; Hertel O; Knudsen L; Loft S (2003). Personal PM25 exposure and markers of oxidative stress in blood. Environ Health Perspect, 111: 161-165. 042700
- Sram R; Beskid O; Binkova B; Chvatalova I; Lnenickova Z; Milcova A; Solansky I; Tulupova E; Bavorova H; Ocadlikova D (2007). Chromosomal aberrations in environmentally exposed population in relation to metabolic and DNA repair genes polymorphisms. Mutat Res Fund Mol Mech Mutagen, 620: 22-33. 188457
- Stafoggia M; Schwartz J; Forastiere F; Perucci CA (2008). Does temperature modify the association between air pollution and mortality? A multicity case-crossover analysis in Italy. Am J Epidemiol, 167: 1476-1485. 157005

- Staniswalis JG; Parks NJ; Bader JO; Maldonado YM (2005). Temporal analysis of airborne particulate matter reveals a dose-rate effect on mortality in El Paso: indications of differential toxicity for different particle mixtures. J Air Waste Manag Assoc, 55: 893-902. 087473
- Steinvil A; Kordova-Biezuner L; Shapira I; Berliner S; Rogowski O (2008). Short-term exposure to air pollution and inflammation-sensitive biomarkers. Environ Res, 106: 51-61. 188893
- Stieb DM; Judek S; Burnett RT (2002). Meta-analysis of time-series studies of air pollution and mortality: effects of gases and particles and the influence of cause of death, age, and season. J Air Waste Manag Assoc, 52: 470-484. 025205
- Stölzel M; Breitner S; Cyrys J; Pitz M; Wolke G; Kreyling W; Heinrich J; Wichmann H-E; Peters A (2007). Daily mortality and particulate matter in different size classes in Erfurt, Germany. J Expo Sci Environ Epidemiol, 17: 458-467. 091374
- Strand M; Vedal S; Rodes C; Dutton SJ; Gelfand EW; Rabinovitch N (2006). Estimating effects of ambient PM2.5 exposure on health using PM2.5 component measurements and regression calibration. J Expo Sci Environ Epidemiol, 16: 30-38. 089203
- Su TC; Chan CC; Liau CS; Lin LY; Kao HL; Chuang KJ (2006). Urban air pollution increases plasma fibrinogen and plasminogen activator inhibitor-1 levels in susceptible patients. Eur J Cardiovasc Prev Rehabil, 13: 849-852. 157022
- Suglia SF; Gryparis A; Wright RO; Schwartz J; Wright RJ (2008). Association of black carbon with cognition among children in a prospective birth cohort study. Am J Epidemiol, 167: 280-286. 157027
- Suh YJ; Kim BM; Park BH; Park H; Kim YJ; Kim H; Hong YC; Ha EH (2007). Cytochrome P450IA1 polymorphisms along with PM(10) exposure contribute to the risk of birth weight reduction. Reprod Toxicol, 24: 281-288. <u>157028</u>
- Sullivan J; Ishikawa N; Sheppard L; Siscovick D; Checkoway H; Kaufman J (2003). Exposure to ambient fine particulate matter and primary cardiac arrest among persons with and without clinically recognized heart disease. Am J Epidemiol, 157: 501-509. 043156
- Sullivan JH; Hubbard R; Liu SL; Shepherd K; Trenga CA; Koenig JQ; Chandler WL; Kaufman JD (2007). A community study of the effect of particulate matter on blood measures of inflammation and thrombosis in an elderly population. Environ Health Perspect, 6: 3. 100083
- Sullivan JH; Schreuder AB; Trenga CA; Liu SL; Larson TV; Koenig JQ; Kaufman JD (2005). Association between short term exposure to fine particulate matter and heart rate variability in older subjects with and without heart disease. Thorax, 60: 462-466. 109418
- Sun HL; Chou MC; Lue KH (2006). The relationship of air pollution to ED visits for asthma differ between children and adults. Am J Emerg Med, 24: 709-713. 090768
- Sunyer J; Basagana X; Belmonte J; Anto JM (2002). Effect of nitrogen dioxide and ozone on the risk of dying in patients with severe asthma. Thorax, 57: 687-693. 034835
- Sunyer J; Jarvis D; Gotschi T; Garcia-Esteban R; Jacquemin B; Aguilera I; Ackerman U; De Marco R; Forsberg B; Gislason T; Heinrich J; Norback D; Villani S; Kunzli N (2006). Chronic bronchitis and urban air pollution in an international study. Occup Environ Med, 63: 836-843. <u>089771</u>
- Symons JM; Wang L; Guallar E; Howell E; Dominici F; Schwab M; Ange BA; Samet J; Ondov J; Harrison D; Geyh A (2006). A case-crossover study of fine particulate matter air pollution and onset of congestive heart failure symptom exacerbation leading to hospitalization. Am J Epidemiol, 164: 421-433. 091258
- Szyszkowicz M (2007). Air pollution and emergency department visits for depression in Edmonton, Canada. Int J Occup Med Environ Health, 20: 241-245. <u>092829</u>
- Sørensen M; Loft S; Andersen HV; Raaschou-Nielsen O; Skovgaard LT; Knudsen LE; Nielsen IV; Hertel O (2005).

 Personal exposure to PM2.5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation. J Expo Sci Environ Epidemiol, 15: 413-422. <u>089428</u>
- Tager IB; Balmes J; Lurmann F; Ngo L; Alcorn S; Kunzli N (2005). Chronic exposure to ambient ozone and lung function in young adults. Epidemiology, 16: 751-759. 087538
- Tainio M; Tuomisto JT; Hanninen O; Aarnio P; Koistinen KJ; Jantunen MJ; Pakkanen J (2005). Health effects caused by primary fine particulate matter (PM2.5) emitted from buses in the Helsinki metropolitan area, Finland. Risk Anal, 25: 151-160. 087444

- Tamura K; Jinsart W; Yano E; Karita K; Boudoung D (2003). Particulate air pollution and chronic respiratory symptoms among traffic policemen in Bangkok. Arch Environ Occup Health, 58: 201-207. 087445
- Tang C-S; Chang L-T; Lee H-C; Chan C-C (2007). Effects of personal particulate matter on peak expiratory flow rate of asthmatic children. Sci Total Environ, 382: 43-51. 091269
- Tarantini L; Bonzini M; Apostoli P; Pegoraro V; Bollati V; Marinelli B; Cantone L; Rizzo G; Hou L; Schwartz J; Bertazzi PA; Baccarelli A (2009). Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect, 117: 217-222. 192010
- Tecer LH; Alagha O; Karaca F; Tuncel G; Eldes N (2008). Particulate Matter (PM2.5, PM10-2.5, and PM10) and Children's Hospital Admissions for Asthma and Respiratory Diseases: A Bidirectional Case-Crossover Study. J Toxicol Environ Health A Curr Iss, 71: 512-520. 180030
- Thurston G; Ito K; Mar T; Christensen WF; Eatough DJ; Henry RC; Kim E; Laden F; Lall R; Larson TV; Liu H; Neas L; Pinto J; Stolzel M; Suh H; Hopke PK (2005). Results and implications of the workshop on the source apportionment of PM health effects. Epidemiology, 16: S134-S135. 097949
- Timonen KL; Hoek G; Heinrich J; Bernard A; Brunekreef B; De Hartog J; Hameri K; Ibald-Mulli A; Mirme A; Peters A; Tiittanen P; Kreyling WG; Pekkanen J (2004). Daily variation in fine and ultrafine particulate air pollution and urinary concentrations of lung Clara cell protein CC16. Occup Environ Med, 61: 908-914. 087915
- Timonen KL; Vanninen E; De Hartog J; Ibald-Mulli A; Brunekreef B; Gold DR; Henrich J; Hoek G; Lanki T; Peters A; Tarkiainen T; Tiittanen P; Kreyling W; Pekkanen J (2006). Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. J Expo Sci Environ Epidemiol, 16: 332-341. 088747
- Tolbert PE; Klein M; Peel JL; Sarnat SE; Sarnat JA (2007). Multipollutant modeling issues in a study of ambient air quality and emergency department visits in Atlanta. J Expo Sci Environ Epidemiol, 17: S29-S35. 090316
- Touloumi G; Samoli E; Quenel P; Paldy A; Anderson RH; Zmirou D; Galan I; Forsberg B; Schindler C; Schwartz J; Katsouyanni K (2005). Short-term effects of air pollution on total and cardiovascular mortality: the confounding effect of influenza epidemics. Epidemiology, 16: 49-57. <u>087477</u>
- Tovalin H; Valverde M; Morandi MT; Blanco S; Whitehead L; Rojas E (2006). DNA damage in outdoor workers occupationally exposed to environmental air pollutants. Occup Environ Med, 63: 230-236. 091322
- Trenga CA; Sullivan JH; Schildcrout JS; Shepherd KP; Shapiro GG; Liu LJ; Kaufman JD; Koenig JQ (2006). Effect of particulate air pollution on lung function in adult and pediatric subjects in a Seattle panel study. Chest, 129: 1614-1622. 155209
- Tsai CJ; Chang CT; Huang CH (2006). Direct field observation of the relative humidity effect on the beta-gauge readings. J Air Waste Manag Assoc, 56: 834-40. <u>098312</u>
- Tsai S-S; Chen C-C; Hsieh H-J; Chang C-C; Yang C-Y (2006). Air pollution and postneonatal mortality in a tropical city: Kaohsiung, Taiwan. Inhal Toxicol, 18: 185-189. 090709
- Tsai S-S; Cheng M-H; Chiu H-F; Wu T-N; Yang C-Y (2006). Air pollution and hospital admissions for asthma in a tropical city: Kaohsiung, Taiwan. Inhal Toxicol, 18: 549-554. <u>089768</u>
- Tsai S-S; Huang C-H; Goggins WB; Wu T-N; Yang C-Y (2003). Relationship between air pollution and daily mortality in a tropical city: Kaohsiung, Taiwan. J Toxicol Environ Health A Curr Iss, 66: 1341-1349. <u>050480</u>
- Ulirsch GV; Ball LM; Kaye W; Shy CM; Lee CV; Crawford-Brown D; Symons M; Holloway T (2007). Effect of particulate matter air pollution on hospital admissions and medical visits for lung and heart disease in two southeast Idaho cities. J Expo Sci Environ Epidemiol, 17: 478-487. 091332
- Vajanapoom N; Shy CM; Neas LM; Loomis D (2002). Associations of particulate matter and daily mortality in Bangkok, Thailand. Southeast Asian J Trop Med Public Health, 33: 389-399. 042542
- Vallejo M; Ruiz S; Hermosillo AG; Borja-Aburto VH; Cardenas M (2006). Ambient fine particles modify heart rate variability in young healthy adults. J Expo Sci Environ Epidemiol, 16: 125-130. 157081

- Van Hee VC; Adar SD; Szpiro AA; Barr RG; Bluemke DA; Diez Roux AV; Gill EA; Sheppard L; Kaufman JD (2009). Exposure to traffic and left ventricular mass and function: the Multi-Ethnic Study of Atherosclerosis. Am J Respir Crit Care Med, 179: 827-834. 192110
- Vedal S; Brauer M; White R; Petkau J (2003). Air pollution and daily mortality in a city with low levels of pollution. Environ Health Perspect, 111: 45-51. 039044
- Vedal S; Rich K; Brauer M; White R; Petkau J (2004). Air pollution and cardiac arrhythmias in patients with implantable cardiovascular defibrillators. Inhal Toxicol, 16: 353-362. 055630
- Vegni FE; Ros O (2004). Hospital accident and emergency burden is unaffected by today's air pollution levels. Eur J Emerg Med, 11: 86-88. 087448
- Venners SA; Wang B; Xu Z; Schlatter Y; Wang L; Xu X (2003). Particulate matter, sulfur dioxide, and daily mortality in Chongqing, China. Environ Health Perspect, 111: 562-567. 089931
- Vichit-Vadakan N; Vajanapoom N; Ostro B (2008). The Public Health and Air Pollution in Asia (PAPA) Project: estimating the mortality effects of particulate matter in Bangkok, Thailand. Environ Health Perspect, 116: 1179-1182. 157095
- Vigotti MA; Chiaverini F; Biagiola P; Rossi G (2007). Urban air pollution and emergency visits for respiratory complaints in Pisa, Italy. J Toxicol Environ Health A Curr Iss, 70: 266-269. <u>090711</u>
- Villeneuve PJ; Burnett RT; Shi Y; Krewski D; Goldberg MS; Hertzman C; Chen Y; Brook J (2003). A time-series study of air pollution, socioeconomic status, and mortality in Vancouver, Canada. J Expo Sci Environ Epidemiol, 13: 427-435. 055051
- Villeneuve PJ; Chen L; Stieb D; Rowe BH (2006). Associations between outdoor air pollution and emergency department visits for stroke in Edmonton, Canada. Eur J Epidemiol, 21: 689-700. 090191
- Villeneuve PJ; Goldberg MS; Krewski D; Burnett RT; Chen Y (2002). Fine particulate air pollution and all-cause mortality within the Harvard six-cities study: variations in risk by period of exposure. Ann Epidemiol, 12: 568-576. 042576
- Vineis P; Hoek G; Krzyzanowski M; Vigna-Taglianti F; Veglia F; Airoldi L; Autrup H; Dunning A; Garte S; Hainaut P; Malaveille C; Matullo G; Overvad K; Raaschou-Nielsen O; Clavel-Chapelon F; Linseisen J; Boeing H; Trichopoulou A; Palli D; Peluso M; Krogh V; Tumino R; Panico S; Bueno-De-Mesquita HB; Peeters PH; Lund EE; Gonzalez CA; Martinez C; Dorronsoro M; Barricarte A; Cirera L; Quiros JR; Berglund G; Forsberg B; Day NE; Key TJ; Saracci R; Kaaks R; Riboli E (2006). Air pollution and risk of lung cancer in a prospective study in Europe. Int J Cancer, 119: 169-174. 192089
- Von Klot S; Wolke G; Tuch T; Heinrich J; Dockery DW; Schwartz J; Kreyling WG; Wichmann HE; Peters A (2002).

 Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Respir J, 20: 691-702.

 034706
- Von Klot S; Peters A; Aalto P; Bellander T; Berglind N; D'Ippoliti D; Elosua R; Hormann A; Kulmala M; Lanki T; Lowel H; Pekkanen J; Picciotto S; Sunyer J; Forastiere F; Health Effects of Particles on Susceptible Subpopulations (HEAPSS) Study Group (2005). Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities. Circulation, 112: 3073-3079. 088070
- Ward DJ; Roberts KT; Jones N; Harrison RM; Ayres JG; Hussain S; Walters S (2002). Effects of daily variation in outdoor particulates and ambient acid species in normal and asthmatic children. Thorax, 57: 489-502. 025839
- Wei Y; Han I-K; Shao M; Hu M; Zhang J; Tang X (2009). PM2.5 Constituents and Oxidative DNA Damage in Humans. Environ Sci Technol, 43: 4757:4762. 192361
- Wellenius GA; Bateson TF; Mittleman MA; Schwartz J (2005). Particulate air pollution and the rate of hospitalization for congestive heart failure among medicare beneficiaries in Pittsburgh, Pennsylvania. Am J Epidemiol, 161: 1030-1036. 087483
- Wellenius GA; Schwartz J; Mittleman MA (2005). Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiaries. Stroke, 36: 2549-2553. <u>088685</u>
- Wellenius GA; Schwartz J; Mittleman MA (2006). Particulate air pollution and hospital admissions for congestive heart failure in seven United States cities. Am J Cardiol, 97: 404-408. <u>088748</u>
- Wellenius GA; Yeh GY; Coull BA; Suh HH; Phillips RS; Mittleman MA (2007). Effects of ambient air pollution on functional status in patients with chronic congestive heart failure: a repeated-measures study. Environ Health, 6: 1-7. 092830

- Welty LJ; Peng RD; Zeger SL; Dominici F (2008). Bayesian Distributed Lag Models: Estimating Effects of Particulate Matter Air Pollution on Daily Mortality. Biometrics, 65: 282-291. 157134
- Welty LJ; Zeger SL (2005). Are the acute effects of particulate matter on mortality in the National Morbidity, Mortality, and Air Pollution study the result of inadequate control for weather and season? A sensitivity analysis using flexible distributed lag models. Am J Epidemiol, 162: 80-88. <u>087484</u>
- Wheeler A; Zanobetti A; Gold DR; Schwartz J; Stone P; Suh HH (2006). The relationship between ambient air pollution and heart rate variability differs for individuals with heart and pulmonary disease. Environ Health Perspect, 114: 560-566. 088453
- Wheeler BW; Ben-Shlomo Y (2005). Environmental equity, air quality, socioeconomic status, and respiratory health: a linkage analysis of routine data from the Health Survey for England. J Epidemiol Community Health, 59: 948-954. 188766
- Whitsel E; Quibrera P; Christ S; Liao D; Prineas R; Anderson G; Heiss G (2009). Heart rate variability, ambient particulate matter air pollution, and glucose homeostasis: the environmental epidemiology of arrhythmogenesis in the Women's Health Initiative. Am J Epidemiol, 169: 693-703. 191980
- Wilhelm M; Ritz B (2005). Local variations in CO and particulate air pollution and adverse birth outcomes in Los Angeles County, California, USA. Environ Health Perspect, 113: 1212-1221. 088668
- Willis A; Jerrett M; Burnett RT; Krewski D (2003). The association between sulfate air pollution and mortality at the county scale: an exploration of the impact of scale on a long-term exposure study. J Toxicol Environ Health A Curr Iss, 66: 1605-1624. 089922
- Wilson WE; Mar TF; Koenig JQ (2007). Influence of exposure error and effect modification by socioeconomic status on the association of acute cardiovascular mortality with particulate matter in Phoenix. J Expo Sci Environ Epidemiol, 17: S11-S19. 157149
- Wong C-M; Atkinson RW; Anderson HR; Hedley AJ; Ma S; Chau PY-K; Lam T-H (2002). A tale of two cities: effects of air pollution on hospital admissions in Hong Kong and London compared. Environ Health Perspect, 110: 67-77. 023232
- Wong C-M; Ou C-Q; Thach T-Q; Chau Y-K; Chan K-P; Ho S-Y; Chung RY; Lam T-H; Hedley AJ (2007). Does regular exercise protect against air pollution-associated mortality? Prev Med, 44: 386-392. <u>093278</u>
- Wong CM; Ou CQ; Chan KP; Chau YK; Thach TQ; Yang L; Chung RY; Thomas GN; Peiris JS; Wong TW; Hedley AJ; Lam TH (2008). The effects of air pollution on mortality in socially deprived urban areas in Hong Kong, China. Environ Health Perspect, 116: 1189-1194. 157151
- Wong CM; Ou CQ; Lee NW; Chan KP; Thach TQ; Chau YK; Ho SY; Hedley AJ; Lam TH (2007). Short-term effects of particulate air pollution on male smokers and never-smokers. Epidemiology, 18: 593-598. 098391
- Wong CM; Vichit-Vadakan N; Kan H; Qian Z (2008). Public Health and Air Pollution in Asia (PAPA): a multicity study of short-term effects of air pollution on mortality. Environ Health Perspect, 116: 1195-1202. 157152
- Wong TW; Tam W; Tak Sun Yu I; Wun TY; Wong AH; Wong CM (2006). Association between air pollution and general practitioner visits for respiratory diseases in Hong Kong. Thorax, 61: 585-591. 093266
- Wong TW; Tam WS; Yu TS; Wong AHS (2002). Associations between daily mortalities from respiratory and cardiovascular diseases and air pollution in Hong Kong, China. Occup Environ Med, 59: 30-35. <u>025436</u>
- Woodruff TJ; Darrow LA; Parker JD (2008). Air pollution and postneonatal infant mortality in the United States, 1999-2002. Environ Health Perspect, 116: 110-115. <u>098386</u>
- Woodruff TJ; Grillo J; Schoendorf KC (1997). The relationship between selected causes of postneonatal infant mortality and particulate air pollution in the United States. Environ Health Perspect, 105: 608-612. <u>084271</u>
- Woodruff TJ; Parker JD; Schoendorf KC (2006). Fine particulate matter (PM25) air pollution and selected causes of postneonatal infant mortality in California. Environ Health Perspect, 114: 785-790. <u>088758</u>
- Xirasagar S; Lin HC; Liu TC (2006). Seasonality in pediatric asthma admissions: the role of climate and environmental factors. Eur J Pediatr, 165: 747-752. 093267
- Yamazaki S; Nitta H; Ono M; Green J; Fukuhara S (2007). Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case-crossover analysis. Occup Environ Med, 64: 17-24. 090748

- Yang C-Y; Chang C-C; Chuang H-Y; Tsai S-S; Wu T-N; Ho C-K (2004). Relationship between air pollution and daily mortality in a subtropical city: Taipei, Taiwan. Environ Int, 30: 519-523. 055603
- Yang C-Y; Chen Y-S; Yang C-H; Ho S-C (2004). Relationship between ambient air pollution and hospital admissions for cardiovascular diseases in Kaohsiung, Taiwan. J Toxicol Environ Health A Curr Iss, 67: 483-493. 094376
- Yang CY (2008). Air pollution and hospital admissions for congestive heart failure in a subtropical city: Taipei, Taiwan. J Toxicol Environ Health A Curr Iss, 71: 1085-1090. 157160
- Yang CY; Chen CJ (2007). Air pollution and hospital admissions for chronic obstructive pulmonary disease in a subtropical city: Taipei, Taiwan. J Toxicol Environ Health A Curr Iss, 70: 1214-1219. 092847
- Yang Q; Chen Y; Krewski D; Shi Y; Burnett RT; McGrail KM (2004). Association between particulate air pollution and first hospital admission for childhood respiratory illness in Vancouver, Canada. Arch Environ Occup Health, 59: 14-21. 087488
- Yeatts K; Svendsen E; Creason J; Alexis N; Herbst M; Scott J; Kupper L; Williams R; Neas L; Cascio W; Devlin RB; Peden DB (2007). Coarse particulate matter (PM25-10) affects heart rate variability, blood lipids, and circulating eosinophils in adults with asthma. Environ Health Perspect, 115: 709-714. 091266
- Yue W; Schneider A; Stolzel M; Ruckerl R; Cyrys J; Pan X; Zareba W; Koenig W; Wichmann HE; Peters A (2007).

 Ambient source-specific particles are associated with prolonged repolarization and increased levels of inflammation in male coronary artery disease patients. Mutat Res Fund Mol Mech Mutagen, 621: 50-60. 097968
- Zanobetti A; Canner MJ; Stone PH; Schwartz J; Sher D; Eagan-Bengston E; Gates KA; Hartley LH; Suh H; Gold DR (2004). Ambient pollution and blood pressure in cardiac rehabilitation patients. Circulation, 110: 2184-2189. 087489
- Zanobetti A; Schwartz J (2002). Cardiovascular damage by airborne particles: are diabetics more susceptible? Epidemiology, 13: 588-592. 034821
- Zanobetti A; Schwartz J (2003). Multicity assessment of mortality displacement within the APHEA2 project. Health Effects Institute. Boston, MA. <u>042812</u>
- Zanobetti A; Schwartz J (2005). The effect of particulate air pollution on emergency admissions for myocardial infarction:
 A multicity case-crossover analysis. Environ Health Perspect, 113: 978-982. 088069
- Zanobetti A; Schwartz J (2006). Air pollution and emergency admissions in Boston, MA. J Epidemiol Community Health, 60: 890-895, 090195
- Zanobetti A; Schwartz J (2007). Particulate air pollution, progression, and survival after myocardial infarction. Environ Health Perspect, 115: 769-775. 091247
- Zanobetti A; Schwartz J (2009). The effect of fine and coarse particulate air pollution on mortality: A national analysis. Environ Health Perspect, 117: 1-40. 188462
- Zeger S; Dominici F; McDermott A; Samet J (2008). Mortality in the Medicare population and chronic exposure to fine particulate air pollution in urban centers (2000-2005). Environ Health Perspect, 116: 1614-1619. 191951
- Zeger S; McDermott A; Dominici F; Samet J (2007). Mortality in the medicare population and chronic exposure to fine particulate air pollution. Johns Hopkins University. Baltimore.http://www.bepress.com/jhubiostat/paper133. 157176
- Zeka A; Sullivan JR; Vokonas PS; Sparrow D; Schwartz J (2006). Inflammatory markers and particulate air pollution: characterizing the pathway to disease. Int J Epidemiol, 35: 1347-1354. 157177
- Zeka A; Zanobetti A; Schwartz J (2005). Short term effects of particulate matter on cause specific mortality: effects of lags and modification by city characteristics. Occup Environ Med, 62: 718-725. 088068
- Zeka A; Zanobetti A; Schwartz J (2006). Individual-level modifiers of the effects of particulate matter on daily mortality. Am J Epidemiol, 163: 849-859. 088749
- Zhang J; Hu W; Wei F; Wu G; Korn LR; Chapman RS (2002). Children's respiratory morbidity prevalence in relation to air pollution in four Chinese cities. Environ Health Perspect, 110: 961-967. 034814
- Zhang Z; Whitsel E; Quibrera P; Smith R; Liao D; Anderson G; Prineas R (2009). Ambient fine particulate matter exposure and myocardial ischemia in the Environmental Epidemiology of Arrhythmogenesis in the Women's Health Initiative (EEAWHI) study. Environ Health Perspect, 117: 751-756. 191970

Zhong W; Levin L; Reponen T; Hershey GK; Adhikari A; Shukla R; LeMasters G (2006). Analysis of short-term influences of ambient aeroallergens on pediatric asthma hospital visits. Sci Total Environ, 370: 330-336. 093264

Annex F. Source Apportionment Studies

Table F-1. Epidemiologic studies of ambient PM sources, factors, or constituents

Reference: Andersen et al. (2007, <u>093201</u>) Location: 1 monitor in Copenhagen, Denmark/ 6 yr, but apportionment done for 1.5 yr only (2002-2003) Particle Size: PM ₁₀	Subjects: NR Exposure: NR	N: NR	Number of Constituents considered for grouping: 31	Grouping method: PCA + PMF/CMB hybrid (COPREM) # of groups: 12, but only 6 used in relating to health effects, and CO, NO ₂	Groups/Factors/ Sources: Road, vehicle, salt, biomass, oil, coal, rock, lime, NaNO ₃ , NH ₄ NO ₃ , (NH ₄) ₂ SO ₃ , (NH ₄ SO ₄)	PM variables used: Mass contribution of sources
	(4-day ma). Biom for asthma HA in Two pollutant me	ass and secon children (6-day odels: Crustal	dary components so (ma). effect for CVD adm	ndary compounds, oil ignificantly associated issions remained rob	, and crustal significantly asso d with respiratory HA (5-day manustrates) ust. Biomass effect for respirat	a). No significant effects tory admissions was
Reference: Bell et al. (Bell et al., 2009, 191007) Location: PM _{2.5} : 2000-2005 (6 yr)/106 US counties/EPA composition data		N: NR	Number of Constituents considered for grouping: 16 elements + NO ₃ , SO ₄ , EC, OC	Grouping method: NR # of groups: NR	in children in presence of othe Groups/Factors/ Sources: NR	
PM ₁₀ : 1987-2000/100 counties/EPA composition data Particle Size: PM ₁₀ , PM _{2.5}	was removed, in a	a sensitivity an ions: CVD an	alysis conducted by drespiratory HAs hi	selectively removing	er, effect of Ni was not signific cities from the overall estimat higher EC, Ni, and V PM _{2.5} . In inclusion of EC.	e.
Reference: Cakmak et al. (2009, 191995) Location: 1 monitor in Santiago, Chile Particle Size: PM _{2.5}	Subjects: NR Exposure: 1998-2009 (8.3 yr)	N: NR	Number of Constituents considered for grouping: 16 elements + CO, NO ₂ , SO ₂ , EC, OC	Grouping method: PCA # of groups: 4	Groups/Factors/ Sources: Vehicle (CO, NO ₂ , EC, OC), Soil (Al, Ca, Fe, Si), Combustion (Cr, Cu, Fe, Mn, Zn), Factor 4 (Br, Cl, Pb)	PM variables used: individual components, then groupings
	after adjustment f Groupings: Lag cardiac mortality a mortality, but sign estimates for Fac	or other eleme 1. Vehicle factor and respiratory ificant for total tor 1 significan	ents. or: Increased total mortality (but small and cardiac mortality)	nortality, cardiac morta ler than vehicle factor ty. Factor 4: increase ctors 3 and 4. Elderly	or total, cardiac, and respirator ality, and respiratory mortality. RRs). Combustion factor: gre d total, cardiac, and respirator had higher risk estimates for	Soil factor: increased eatest RR for respiratory mortality. Point
Reference: Franklin et al. (2008, 097426) Location: STN/25 communities/2000-2005 (6 yr)	Subjects: NR Exposure: NR	N: NR	Number of Constituents considered for grouping: 15 elements + EC, OC, NO ₃	Grouping method: NR # of groups: NR	Groups/Factors/ Sources: NR	PM variables used: Every component
Particle Size: PM _{2.5}	Results: The PM of species propor residual heteroge	tions and using	sociation was signif g backwards elimina	icantly modified by Al ation Al, sulfate, and N	, As, Sulfate, Ni, and Si. When Ni remained significant. Al and	including a combination Ni explained most of the

Note: Hyperlinks to the reference citations throughout this document will take you to the NCEA HERO database (Health and Environmental Research Online) at http://epa.gov/hero. HERO is a database of scientific literature used by U.S. EPA in the process of developing science assessments such as the Integrated Science Assessments (ISA) and the Integrated Risk Information System (IRIS).

Reference: Gent et al. (2009, 180399)

Location: 2 monitors in New Haven, CT/ 3.5 yr

Particle Size: PM25

Subjects: Children with physician diagnosed asthma and symptoms or medication use in previous 12 mo, and resided within 30km of

N: 149 Number of children Constituents considered for grouping: 17 elements + EC

Grouping method: PCA # of groups: 6 **Groups/Factors/ Sources:** Vehicle (EC, Zn, Pb, Cu, Se), road dust (Si, Fe, Al, Ca, Ba, Ti), sulfur (S, P). biomass burning, (K) oil (V, Ni), sea salt (Na, Cl)

In addition, effects of NO_2 , CO, SO_2 , and O_3 were included in the health outcomes model

PM variables used: Groupings and individual elements

county monitor Exposure: NR

New Haven

Results: Overall: Trace elements originating from motor vehicle, road dust, biomass burning, and oil sources associated with symptoms and/or medication use. No associations with S or sea salt.

 $\textbf{Specific Results:} \ PM_{2.5} \ mass \ from \ motor \ vehicle \ or \ road \ dust \ associated \ with \ increased \ odds \ of \ respiratory \ symptoms \ or \ associated \ with \ increased \ odds \ of \ respiratory \ symptoms \ or \ associated \ with \ increased \ odds \ of \ respiratory \ symptoms \ or \ associated \ with \ increased \ odds \ of \ respiratory \ symptoms \ or \ odds \ of \ respiratory \ symptoms \ or \ odds \ odds$ inhaler use. Reduced odds of wheeze or inhaler use with same day S. Significant reductions odds of wheeze with biomass

Co-pollutant: Positive effects of motor vehicles and road dust on wheeze were robust to the inclusion of gaseous copollutants. However, NO2 increases association with wheeze.

Reference: Ito et al. (2006.08)

Location: Washington,

Particle Size: PM_{2.5}

Subjects: NR N: NR **Exposure: NR**

Number of Constituents considered for grouping: NR

Grouping method: Comparison of: PMF; (absolute) PCA; UNMIX

of groups: 6-10 Groups/ Factors/

Sources: Different research groups gave different names to sources

Sources for which association with health was analyzed: Soil, traffic, Secondary SO₄, NO₃ (Washington, DC only), residual oil (Washington,

DC only), Wood smoke/ biomass combustion, Sea salt, incinerator (Washington, DC only), primary coal (Washington, DC only), Cu smelter

(Phoenix only)

PM variables used: Mass contribution of sources

Results: Overall, $PM_{2.5}$ effects observed at lag 3. Lag structure of association varied across source types, but consistent across investigators for total (nonaccidental mortality): soil factor - mostly positive at various lags (not significant); secondary sulfate - strongest association at lag 3; nitrate - mostly negative except at lag 3; residual oil - strongest association at lag 2 (not significant); wood-burning - increasing association as lag increases (not significant); incinerator - significant negative associations at lag 0; primary coal - significant association at lag 3.

Reference: Laden et al. (2000, 012102)

Location: Monitors in 6 Eastern US cities (Harvard Six Cities Study)

Particle Size: NR

Subjects: NR Exposure: NR Number of Constituents considered for grouping: 15

Grouping method: PCA # of groups: 8 Groups/ Factors/ Sources: PM variables used: Soil/crustal (PM fine), mobile vehicle exhaust (PM fine), coal (PM fine), fuel oil; metals, salt manganese,

Tracers: Si, V, Cl, Pb,

Results: Lag 0-1 avg for all results. Overall 6 cities, mobile source factor (using Pb as tracer) had greatest association with daily mortality (3.4%) with 10 µg/m3 increase. The greatest effects for mortality due to mobile sources were observed in Madison (Portage), Knoxville (Kingston-Harriman), and St. Louis, although the Madison results were not statistically significant. The coal source factor was only significant in Boston (Watertown) - 2.8% increase in mortality and the overall percent increase was also significant (1.1%). Deaths from pneumonia attributable to coal combustion sources was 7.9% (CI 3.1-12.7%) and statistically significant. The crustal factor was not associated with mortality in any city, although this factor was not a significant predictor in the regression model for Boston (Watertown) due to its low contribution to PM_{2.5} mass. For specific elements included simultaneously, S, Pb, and Ni were significantly associated with overall mortality (3.0, 1.6, 1.5%, respectively). Boston had the greatest percent increase in mortality for S (7.9%), Knoxville for Pb (15.0%), and Steubenville for Ni (8.2%), although the CIs are all quite large.

Reanalysis results: (Schwartz, 2003, 042811) Effects changed slightly. New percent increases in mortality for combined cities are 3.5 and 0.79 for traffic and coal, respectively. The coal factor in Boston decreased to 2.1% increased mortality. A residual oil factor in Boston and Steubenville resulted in at 22.9% increase in daily deaths (but was not significant in the original analysis)

Reference: Lanki et al. (2006, 088412)

Location: Monitors in Helsinki, Finland, Amsterdam, The Netherlands and Erfurt, Germany

Particle Size: UF/PM25

Subjects: NR

N: NR Number of Constituents Exposure: NR considered for grouping: 13 elements

Grouping method: Absolute **PCA**

of groups: 5

Groups/ Factors/ Sources: Crustal; long range transported; oil combustion; soil: traffic

PM variables used: Tracers: Si (crustal); S (long-range transport); Ni (oil combustion); Cl (salt); ABS (local traffic).

Results: Highest observed effects were for crustal sources and salt at lag 3 (when analyzing sources), but not consistent or significant. In multipollutant models only ABS associated with ST-segment depression, but wide Cls. When examining indicator elements of a source, local traffic found to be the most toxic, but when examined per IQR long-range transport and traffic had similar effects

	A.I.					:	
Reference: Lippmann et al. (2006, <u>091165)</u> Location: U.S.	Subjects: NR Exposure: NR	N: NR	Number of Constituents considered for	Grouping method: No grouping was	Groups/ Factors/ Sources: NR	PM variables used: Mass contribution of 16 constituents	
Particle Size: PM ₁₀ for risk			grouping: NR	performed # of groups: NR			
estimates, PM _{2.5} for speciation data				in PM ₁₀ risk estimates	across the 90 NMMAPs MSA: 2-, Cu, Pb, and OC. Al and Si I		
Reference: Mar et al. 2000, <u>001760</u>)	Subjects: Elderly only	N: NR	Number of Constituents	Grouping method:	Groups/ Factors/ Sources: Motor exhaust/road dust,	First used individual	
Location: 1 monitor in Phoenix, AZ	Exposure: NR		considered for grouping: 10 elements, OC,	factor analysis	soil, vegetative burning, local SO ₂ , regional SO ₄	constituents: S, Zn, Pb, K, OC, EC, TC (AL+Si+Ca+Fe+Ti),	
Particle Size: NR			EC, CO, NO ₂ ; SO ₂	# of groups: 3 or 5		then factor scores	
	Results: Cardiovascular mortality associated with $PM_{2.5}$ mass on lag 1 and 4 (6 and 4%, respectively). EC and TC associated with CV mortality for lag 1 (RR = 1.05); OC was weakly associated with CV mortality for lags 1 and 3. For total mortality, regional sulfate was positively associated at lag 0, but negatively associated at lag 3. The local SO_2 and the soil factors were negatively associated with total mortality. For CV mortality, secondary sulfate was positively associated at lag 0, motor vehicle at lag 1, and vegetative burning at lag 3.						
	Reanalysis resu	Its (Mar, 2003): Similar association	ns were observed.			
Reference: Mar et al. 2006, <u>086143</u>)	Subjects: NR	N: NR	Number of Constituents	Grouping method:	Sources for which association with health was	PM variables used: Mass contribution of	
ocation: Phoenix, AZ	Exposure: NR		considered for grouping: NR	Comparison of: PMF (absolute); PCA; UNMIX	analyzed: Soil, Traffic, secondary SO ₄ , NO ₃ , (Washington, DC only),	sources	
Particle Size: PM _{2.5}				# of groups: 6-10	residual oil (Washington, DC only), woodsmoke/		
				Groups/ Factors/ Sources: Different labs gave different names to sources (see Hopke et al, table 2)	biomass combustion, sea salt, incinerator (Washington, DC only); primary coal (Washington, DC only); Cu smelter (Phoenix only)		
	Results: Using daily PM _{2.5} data found the following associations with cardiovascular mortality: Secondary sulfate - greatest effect observed for all sources and at lag 0; traffic - associated at lag 1; copper smelter associated at lag 0; sea salt - had the greatest statistical significance and observed at lag 5; biomass/wood burning - less consistent lag structure but greatest association at lag 3; soil - did not show an association or consistent lag structure. For total (nonaccidental) mortality associations were weaker and consistently observed for only: copper smelter - lag 0; sea salt - lag 5.						
Reference: Ostro et al. 2007, <u>091354</u>)	Subjects NR Exposure: NR	N: NR	Number of Constituents	Grouping method: No	Groups/ Factors/ Sources: NR	Mass contribution of	
Location: Monitors in 6 CA counties, some with 2 monitors, for 4 yr	Exposure. Nix		considered for grouping: 15 elements, EC, OC; NO ₃ ; SO ₄ ,	grouping was performed # of groups: NA		every constituent	
Particle Size: PM _{2.5}			PM _{2.5} mass				
	NO ₃ and Zn. Duri	ng winter mor	iths (Oct -March) effe	ects observed for mos	alysis, at 3-day lag association at species for both all-cause an F, NO ₃ , SO ₄ , Fe, Mn, S, V, Zn),	d cardiovascular	
Reference: Ostro et al. 2009, <u>191971</u>)	Subjects NR Exposure: NR	N: NR	Number of Constituents	Grouping method: No	Groups/ Factors/ Sources:	Mass contribution of	
Location: Monitors in 6 CA counties, some with 2 monitors/4 yr	Exposure. INIX		considered for grouping: 9 elements,EC, OC, PM _{2.5} mass, SO ₄ ,	grouping was performed # of groups: NA		every constituent	
Particle Size: PM _{2.5}			NO ₃				
	Results: The follo						

Reference: Peng et al. N: NR Grouping **Groups/Factors/ Sources:** PM variables used: Subjects: Number of (2009, 191998)Medicare Constituents method: NR Only suggested in Tracers enrollees 65 or considered for discussion Location: 119 urban grouping: SO₄, NO₃, Si, EC, # of groups: NR older communities STN data/2000-2006 Exposure: NR OCM. Na. NH₄ Particle Size: PM25 Results: CVD HAs: EC associated with same-day CVD HAs in single and multi-pollutant models. In single pollutant models associations also observed for sulfate, nitrate, OCM, and ammonium. However, the sulfate, nitrate, OCM, and ammonium associations were reduced in the multi-pollutant models. Respiratory HAs: OCM associated with same-day respiratory HAs in single and multi-pollutant models. Some evidence for sulfate associations at one and two-day lag. Reference: Penttinen et N: 78 Number of Grouping method: PCA Groups/Factors/ Sources: PM variables used: Subjects: Adult al. (2006, 087 asthma subjects, Constituents Long range (PM mass, S, every component max 2 km from considered for K, Zn), local individually, then Location: Helsinki # of groups: 6 grouping: combustion-traffic (Cu, Zn, single monitor groupings 1996-1997 (7 mo) Unknown Mn, Fe), soil (Si, Al, Ca, Fe, Exposure: NR Mn), oil (V, Ni), salt (Na, Cl), Particle Size: PM25 unidentified **Results:** Long range $PM_{2.5}$ associated with decreased mean PEF in the morning at lag 1. Local combustion $PM_{2.5}$ associated with decreased mean PEF in the evening for lag 1. Local combustion $PM_{2.5}$ associated with decreased mean PEF in the afternoon and evening for 5-day mean lag. Negative significant association between long-range $PM_{2.5}$ and asthma symptom prevalence at lag 3. Sea-salt $PM_{2.5}$ negatively associated with bronchodilator use at lag 3 and 5-day mean lag. Sea-salt $PM_{2.5}$ negatively associated with corticosteroid use for 5-day mean lag. Unidentified $PM_{2.5}$ negatively associated with corticosteroid use at lag 1. Most consistent negative responses for local combustion, although not always significant. No consistent or significant associations between 5-day avg concentrations of elements and PEF, cough, asthma symptoms, or medication use. Grouping method: PCA Reference: Riediker et al. **N**: 9 Groups/ Factors/ Sources: PM variables used: Subjects: Number of Healthy male Constituents Soil; automotive steel wear; Mass contribution or (2004, <u>091261</u>) considered for gasoline combustion; score of sources young police # of groups: 4 Location: Inside 9 state officers grouping: 10 speed-changing traffic when 13+2 police patrol cars elements; 3 constituents Exposure: 4 gaseous Particle Size: PM25 consecutive days included; 3 when pollutants; 2 only 9 "PM-associated" physical variables constituents included Results: Using two different factor analysis models found most significant effects (MCL, SDNN, PNN₅₀, supraventricular ectopic beats, % neutrophils, % lymphocytes, MCV, von Willebrand Factor, and protein C) were for "speed-change factor" (i.e., Cu, S, aldehydes). Some associations observed for "crustal" and none for "steel wear" and "gasoline. Reference: Sarnat et al. Subjects: NR N: NR Number of **Groups/ Factors/ Sources:** PM variables used: Grouping (2008, <u>097972</u>) Constituents method: gasoline, diesel, wood Mass contribution or **Exposure: NR** smoke/ biomass burning, score of sources, and considered for Comparison of: Location: 1monitor in grouping: NR PMF, CMB-LGO, "a soil, secondary tracers Atlanta. GA for 2 yr SO₄/ammonium sulfate, priori decision' secondary nitrate/ Particle Size: PM_{2.5} # of groups: 9,11 ammonium nitrate, metal (6 of them common processing, railroad, bus between methods) and highway, cement kiln, power plants, other OC, ammonium bisulfate Results: Sulfate secondary associated with 1.2-2.0% increase in RD visits, significant negative association RD visits and primary emissions from coal-fired power plants. CVD significantly associated with other OC (1.014), biomass (1.033), diesel and gas for CMB-LGO. For PMF and CVD visits: diesel (1.025), gas, wood smoke, metal processing (1.013). Year-long associations: PMF diesel, EC, CMB-LGO gas, Zn and biomass combustion sources (CMB-LGO biomass burning, PMF wood smoke, and K). Diesel and gas sources association with RD in the warm season (1.2-2.1% per IQR). Reference: Schreuder et Subjects: NR Number of Grouping Groups/ Factors/ Sources: PM variables used: Vegetative burning; As-rich Vehicle; SO₄; NO₃; Soil; al. (2006, 097959) Constituents method: Tracers: TC **Exposure: NR** considered for Comparison of: (vegetative burning); Location: 1monitor in PMF, UNMIX, grouping: 11 Cu-rich; Marine Às (As-rich); Zn Spokane, WA for 7 yr elements, TC, Multilinear Engine (vehicle); Si (soil) NO_3 Particle Size: PM25 # of groups: 8 Results: Si, As, and Zn were not associated with any health outcomes; while an IQR increase in TC (vegetative burning) was associated with a 2% increase in respiratory ED visits.

Reference: Tsai et al. (2000, <u>006251</u>)	Subjects: NR	N: NR	Number of Constituents	Grouping method:	Groups/ Factors/ Sources: Oil burning, motor	PM variables used: individual constituents,
Location: 3 NJ sites for 2 summers (ATEOS study)	Exposure: NR		considered for grouping: 8 metals, IPM,	Unspecified type of factor analysis	emissions, resuspended dust, secondary aerosol, industrial sources	then factor scores, then tracers
Particle Size: NR			FPM, ŚO ₄ , ĆX, DCM, ACE, CO	# of groups: 5		
	Results: RR associated with 10 µg/m3 increases: Newark - 1.03 for industrial and total daily deaths; 1.02 for sulfate and to daily deaths; 1.04 for sulfate and cardiopulmonary deaths. Camden - 1.11 for oil burning sources and total daily deaths; 1.12 for oil burning sources and cardiopulmonary daily deaths; 1.02 for sulfate and cardiopulmonary daily deaths					
Reference: Yue et al. (2007, <u>097968</u>)	Subjects: Adult males	n: 56, data collected 12	Number of Constituents	Grouping method: PMF	Groups/ Factors/ Sources: Airborne soil, local traffic,	Mass contribution or
Location: 1monitor in German city, 30.000 samples	Exposure: CAD	times over 6 mo for every subject, but extended		# of groups: 5	local fuel combustion, remote traffic (diesel), secondary aerosols	score of sources
Particle Size: UF/PM _{2.5}		period of missing PM data	size distribution.			
					particles; vWF increased in rested to increasing CRP levels.	ponse to traffic-related

F-5

 Table F-2.
 Human clinical studies of ambient PM sources, factors, or constituents

Study: Gong et al. (2003, <u>042106</u>) Location: Los Angeles, CA Particle Size: PM _{2.5}	exposed at different times Results: Fe and EC a	N: 12 healthy, 12 asthmatic							
Study: Gong et al. (2005, <u>087921</u>) Location: Los Angeles, CA Particle Size: PM _{2.5}	Subjects: Elderly, COPD vs. healthy/ CAPs Exposure: NO ₂ (full factorial)	mmediately following e N: 6 healthy, 18 COPD	xposure. Sulfate conte Constituents considered for grouping: 7 elements + EC	Grouping method: PCA # of groups: 3 (note: OC was unavailable)	Groups/ Factors/ Sources: Crustal (Al Si CA K Fe), S (= SO ₄),Na	PM variables used: Total mass, then tracers:, SO ₄ , Si, Fe, EC			
Reference: Huang		entration of CAPs not obtion (FEV ₁ and FVC), w N: 35 male; 2 female	hich was enhanced by		owever, sulfate content	was associated with PM variables used:			
et al. (2003, 087377) Location: Chapel Hill, NC	adults Exposure: CAPs	N. 33 male, 2 lemale	considered for grouping: 8 elements and SO ₄	PCA # of groups: 2	Sources: Fe/SO ₄ /Se/V/Zn/Cu	Factor scores, then mass contribution of all 9 constituents			
Particle Size: PM _{2.5}	Results: Associations associated with Cu, Z	s observed between su n, and V content.	lfate,Zn, and Se conte	nt and increases in BA	L neutrophils. Increase	s in fibrinogen			
Reference: Urch et al. (2004, <u>055629</u>) Location: Toronto, Canada	Subjects: Healthy adults 19-50 yr/CAPs Exposure: O ₃	N: 23	Constituents considered for grouping: unknown	Grouping method: No grouping was performed # of groups: NA	Groups/ Factors/ Sources: NR	PM variables used: Every constituent in univariate analysis, then OC and SO ₄ in multivariate analysis			
Particle Size: PM _{2.5}						a.iara.iato a.ia.yo.o			
	Results: CAPs-induced increase in diastolic BP significantly associated with carbon content of the particles.								
Reference: Urch et al. (2004, <u>055629</u>)	Subjects: Healthy adults/CAPs	N : 24	Constituents considered for grouping: 14	Grouping method: No grouping was performed	Groups/ Factors/ Sources: NR	PM variables used: Every constituent in univariate analysis,			
Location: Toronto, Canada	Exposure: O ₃		elements, EC, OC	# of groups: NA		then OC and SO ₄ in multivariate analysis			
Particle Size: PM _{2.5}	Results: Both organic and EC content of CAPs associated with an increase in brachial artery vasoconstriction.								

F-6

Table F-3. Toxicological studies of ambient PM sources, factors, or constituents

Reference: Batalha et al. (2002, <u>088109</u>) Location: Boston, MA Particle Size: PM _{2.5}	Subjects: Rats Exposure: CAPs (3-day mean CAPs concentration range: 126.1-481.0 μg/m3) CAPs (3-day mean CAPs concentration range: 126.1-481.0 μg/m3)	N: 7-10 rats × 2 levels CAPs × 2 levels SO ₂ × 6 runs in different seasons	Constituents considered for grouping: 20 elements; OC; EC	Grouping method: Previous study in same city (Clarke et al., 2000, 013252) and PCA of this experiment's data # of groups: 4	Groups/ Factors/ Sources: V/Ni, S, Al/Si, Br/Pb	PM variables used: 4 tracers (Si, SO ₄ , V, Pb) and EC, OC in univariate step. 4 tracers (Si, SO ₄ , V, Pb) in multivariate step
	mean were similar. Pre- ratio in normal+CB rats	sented second+to exposed to CAP	hird day mean regres s. Si, SO ₄ significant	sion data. CAPs m for decreased L/W	analyses for second and third day a ass, Si, Pb, SO ₄ , EC, OC significant ratio in normal rats. Si, OC significa only Si remained significant with dec	for decreased L/W int for decreased L/W
Reference: Becker et al. (2005, 088590) Location: Chapel Hill, NC; repeated sampling for 1 yr	Subjects: Normal human bronchial epithelial and human AM Exposure: (2-3X105 cells/mL; 11 or 50 µg/mL)	N: NR	Constituents considered for grouping: 12 elements	Grouping method: PCA # of groups: 2	Groups/ Factors/ Sources: Cr/Al/Si/Ti/Fe/Cu ("crustal"), Zn/As/V/Ni/Pb/ Se	PM variables used: NR
Particle Size: PM ₁₀		ssociated with ar	ny endpoints. Stepwis	e linear regression	nial epithelial cells and IL-6 release in with individual constituents Fe and	
Reference: Clarke et al. (2000, 013252) Location: Boston, MA Particle Size: PM _{2.5}	Subjects: Dogs Exposure: CAPs (avg for all studies, paired: 203.4, crossover: 360.8 µg/m3) repeated exposure with several weeks in between	N: 10 dogs, 20 paired exposures, 24 crossover	Constituents considered for grouping: 19 elements, black C	Grouping method: PCA # of groups: 4 for exposure in paired runs,6 for exposure in crossover runs	Groups/ Factors/ Sources: V/Ni, S, Al/Si, Br/Pb, S, Na/Cl, Cr	PM variables used: All elements, then factor scores
F W2.5	increased with CAPs co (statistics not provided) BAL PMN percentages. Na associated with incr associated with decrea- analysis: None for 3-da percentage for 3rd-day	ompared to sham : Al and Ti (3-day : Sulfate associat eased blood lym sed blood eosino y avg. concentra only concentratio	. No significant hema vayg. concentrations) ed with increased WE pookles. Al, Mn, Si a phils. CAPs mass ass tion for BAL paramete on. V/Ni and Al/Si for i	tological effects wi associated with do BC. BC, Al, Mn, Si, associated with decre sociated with decre ers. V/Ni for increase ncreased blood PN	BAL cell differential percentages. To th CAPs exposure. Mixed linear regionse-dependent decreases in BAL AN Zn, Ti, V, Fe, Ni associated with increased blood lymphocytes. CAPs meased platelet count. Regression using and AM percentage and Br/Pb for incommunity of the count of th	ression analyses If and increases in reased blood PMN lass and BC ng results of factor creased PMN If lymphocyte
Reference: Duvall et al. (2008, 097969) Location: 5 US cities Particle Size:	Subjects Primary human airway epithelial cells (100,000 cells/mL; dose not provided) Exposure: NR	N: NR	Constituents considered for grouping: NR	Grouping method: CMB, but not on coarse and ultrafine # of groups: 6 or 7	Groups/ Factors/ Sources: Mobile, residual, oil, wood, soil, secondary SO ₄ , secondary NO ₃	PM variables used: Mass contribution of constituents, then mass contribution of sources
PM _{2.5}		lecreased HO-1	mRNA expressions. K	associated with d	increased IL-8 mRNA expression. Si ecreased HO-1 mRNA expression.	r associated with

Reference: Godleski et al. (2002, <u>156478</u>) Location: Boston, MA Particle Size: NR	Subjects: Rats Exposure: CAPs (3-day mean CAPs concentration range: 126.1-481.0 μg/m3)	N: 7-10 rats × 2 levels CAPs × 2 levels SO ₂ × 6 runs in different seasons	considered for	Grouping method: Previous study in same city (Clarke et al.), and PCA of this experiment's data	Groups/ Factors/ Sources: V/Ni, S, Al/Si/Ca, Br/Pb	PM variables used: 4 tracers (I, SO ₄ ,V, Pb) and EC, OC		
				# of groups: 4				
					Ps affected lung tissue mRNA invol on: Increased PMN associated with			
Reference: Gurgueira et al. (2002, 036535) Location: Boston, MA Particle Size: PM _{2.5}	Subjects Rats (Sprague Dawley) Exposure: CAPs (avg. mass concentration 600 µg/m3); also carbon black and ROFA	N: 13 experiments (1 rat/group at each time point)	Constituents considered for grouping: 20 elements	Grouping method: No grouping was performed # of groups: NA	Groups/ Factors/ Sources: NR	PM variables used: Mass contribution of every constituent		
FIVI2.5	Results: Increased oxid	dative stress in h	eart and lungs followi	ng CAPs exposure	(and ROFA exposure).			
	Univariate regression: Mn, Zn, Fe, Cu, and Ca most significant responses for lung (r^2 >0.40). Al, Si, Ti, Fe, and total mass most significant response for heart (r^2 >0.49).							
Reference: Kodavanti et al. (2005, <u>087946</u>)	Subjects Rats (SH and WKY) Exposure: CAPs	N: 6 1-day, 1-strain runs, 7 2-day, 2-strain runs,	Constituents considered for grouping: NR	Grouping method: No grouping was performed	Groups/ Factors/ Sources: NR	PM variables used: Mass contribution of every constituent		
Location: RTP, NC	(144-2758 µg/m3)	4-9 rats per		# of groups: NA		overy concutaent		
Particle Size: PM _{2.5}		Turi.		3 11				
	Results: No significant correlations between biologic responses and exposure variables (i.e., CAP mass, OC, inorganic C, sulfate, and other major elemental constituents). Al, Cu, Zn correlated with biologic responses when constituents normalized per unit mass of CAP (μg/mg). Zn correlated with plasma fibrinogen in SH rats (p = 0.0023).							
Reference: Lippmann et al. (2005, <u>087453</u>)	Subjects: Mice (C57 and ApoE)	N: C57: 3-6 mice/group	Constituents considered for grouping: 19	Grouping method: (Absolute) PCA	Groups/ Factors/ Sources: Regional SO ₄ (S/Si/OC); Resuspended soil	PM variables used: Mass contribution of		
Location: Rural location upwind from New York	Exposure: CAPs (avg. mass concentration 113 μg/m³)	ApoE ^{-/-} : 9-10 mice/group	elements + OC, EC, NO ₃		(CA/Fe/Al/Si);RO power plants (V/Ni/Se); traffic and unknown	sources		
Particle Size: PM _{2.5}	Secondary sulfate asso following exposure. Sec	ciated with decre condary sulfate a ed RMSSD at ni	eased HR after expos ssociated with decrea	ure. Residual oil as ased RMSSD and S	ng exposure, but increased HR after sociated with increased RMSSD ar SDNN in night following exposure. F ated with decreased HR during exp	ld SDNN in afternoon lesuspended soil		
	C57 mice: Motor vehicle	e/other source c	ategory associated wi	th decrease in RM	SSD in afternoon following exposur	е		
Reference: Lippmann et al. (2006, 091165) Location: Rural	Subjects: Mice (ApoE ^{-/-}) Exposure: CAPs (avg. mass concentration	N: 12 ApoE ^{-/-} mice (6/group)	Number of Constituents considered for grouping: NR	Grouping method: No grouping was performed	Groups/ Factors/ Sources: NR	PM variables used: Mass contribution of every constituent in CAPs portion of		
location upwind from New York City	85.6 μg/m ³)			# of groups: NR		CAP's portion of study, contribution of 16 constituents in epi portion		
Particle Size: PM _{2.5}	Results: Lag for HR elewas 0, 1 and 2.	evations on 14 da	ays with wind from NV	V was same day. L	ag for SDNN reduction on 14 days	with wind from NW		
	GAM analysis: B coefficient significant for Ni and HR (but not V, Cr, or Fe). B coefficient significant for Ni and log SDNN (but not V, Cr, or Fe).							

Reference: Maciejczyk and Chen (2005, 087456) Location: Rural;	Subjects: NR Exposure: CAPs (90,000/well; 300 µg/mL)	N: 110 samples	Constituents considered for grouping: 19 elements + OC, EC, NO ₃	Grouping method: (Absolute) PCA # of groups: 4	Groups/ Factors/ Sources: Regional SO ₄ soil; unknown oil combustion	PM variables used: Mass contribution of sources			
	Results: Correlation: V and Ni positively correlated with NF-κB. Oil combustion correlated the greatest with NF-κB (0.316). Significance not provided. Only 2% of mass contribution originates from this source.								
Particle Size: PM _{2.5}									
Reference: Nikolov et al. (2008, <u>156808</u>)	Subjects: Dogs Exposure:	N: 8 dogs, 24 exposure-days in 1997-98; 4 dogs, 21	Constituents considered for grouping: 13 elements, BC, EC,	Grouping method: Compared 3 factor-analytic	Groups/ Factors/ Sources: Oil Combustion V/Ni; power plants S ;road dust Al/Si ;motor vehicles BC/OC/EC	PM variables used: Mass contribution of every constituent			
Location: Boston, MA		exposure-days in 2001-2002		models within a SEM model	BOIOOILO	every constituent			
Particle Size: NR				# of groups: 4					
	Results: Univariate response for respiratory outcomes: road dust and oil combustion associated with decreased respiratory frequency; motor vehicles associated with increased respiratory frequency; motor vehicles associated with increased PEF; road dust associated with decreased penh and motor vehicles associated with increased penh.								
	Multivariate response with increased airway in		/ outcome: Road dus	t associated with o	decreased respiratory rate; Motor ve	hicles associated			
Reference: Rhoden et al.	Subjects: Rats (Sprague-Dawley)	N: 4-8 rats (1-2 per group - sham, CAPs,	Constituents considered for	Grouping method: No grouping was	Groups/ Factors/ Sources: NR	PM variables used: Mass contribution of			
(2004, <u>087969</u>) Location: Boston, MA Particle Size:	Exposure: CAPs (avg. mass concentration range 150-2520 µg/m3) acetylcysteine full factorial	vg sham/NAC, CAP/NAC) 10 exposures	elements	performed # of groups: NA		every constituent			
PM _{2.5}	Results: Increased oxidative stress and inflammation in lungs of CAPs animals that was attenuated with NAC.								
	Univariate regression: Al, Si, Fe, K, Pb, and Cu most significantly correlated with lung TBARS. No significant correlations for lung carbonyls or lung PMN.								
Reference: Saldiva et al. (2002, 025988) Location: Boston, MA	Subjects: Rats (Sprague-Dawley Exposure: CAPs (3-day avg. mass concentration range 126.1-481 µg/m3)	N: 7-10 rats/group (air/sham, SO ₂ /sham, air/CAP, SO ₂ /CAP) × 6 runs in	Constituents considered for grouping: 15 elements (used Clarke 2000 to select tracers)	Grouping method: Previous study in same city (Clarke et al. 2000)	Groups/ Factors/ Sources: V/Ni S Al/Si Br/Pb Na/Cl Cr	PM variables used: Mass contribution of 8 elements in univariate step. Tracers (Si, SO ₄ , V			
Particle Size: PM _{2.5}		different seasons		# of groups: 6		Pb, Br, Cl) and EC OC in multivariate step.			
	Results: Increased percent and number of PMN in majority of air and SO ₂ rats exposed to CAPs, but significance levels not provided. Other responses (protein, LDH, NAG) were variable and depended upon the CAPs exposure. No CAPs effect on histopathology.								
	not associated with PMI Pb, SO ₄ , EC, OC, Si as	N in normal rats. sociated with inc	Lymphocyte responsereased total protein in	e due to CB rats, b CB rats. Cl and V	eased PMN and lymphocytes for nor out not observed for SO ₄ , Si, or mas associated with decreased LDH in th increased neutrophil density in lu	s in this group. Br, CB rats. No BAL			
Reference: Seagrave et al. (2006, <u>091291</u>)	Subjects Rats (Fisher 344) Exposure: 0.75, 1.5	N: 5 rats/dose	Constituents considered for grouping: NR	Grouping method: CMB # of groups: 13	Groups/ Factors/ Sources: secondary NO ₃ ; secondary NH ₄ ; secondary SO ₄ ; coke production;	PM variables used: Mass contribution of			
Location: 4 SE US sites for 2 seasons	and 3 mg/rat via intratracheal instillation			# or groups. 13	vegetative detritus; natural gas combust; road dust; wood combust; meat cooking gasoline; diesel other OM; other mass	every constituent, then mass contribution of sources			
Particle Size:	Results: Potency depe	nded upon seaso	on and site of sample	collection. In gene	ral, effects were greater in the winte				
PM _{2.5}		t predictor for bo	th constituents, with d	iesel influencing so	e, As for first and major metal oxides econd constituent and nitrate influen nmatory responses.				

Reference: Grouping method: PLS Subjects: BEAS-2B N: 6; 16 runs Groups/ Factors/ Sources: NR Constituents PM variables Veranth et al. cells (35000 cells/cm2; over 6 mo considered for used: Mass (2006, 087479) grouping: 13 10, 20, 40, 80 µg/cm2) contribution every elements, TC, 5 OC variables, 4 EC # of groups: NR constituent (?) Location: 8 sites Exposure: Loose in the western surface soil sweepings variables, 2 ions, US through mechanical EU, one ratio (Ca: tumbler and cascade AI), OP. CO₃ Particle Size: impactor $\mathsf{PM}_{2.5}$ Results: Dose-related increase in IL-6 and decreases in cell viability for all soil types. IL-8 responses more variable and dependent upon soil type. Univariate correlations. Low correlations for all constituents tested with IL-6. Highest correlations for EC1 (R2 = 0.50) and pyrolyzed OC (R² = 0.46), then Ca/Al (R² = 0.21). Carbonate carbon, EC3, and Sr correlated with IL-8 (R² = 0.27, 0.13, and 0.25, respectively). EC and Ni correlated with IL-8 trend over the range of 10-80 µg/cm2 (R² = 0.39 and 0.27, respectively). Multivariate redundancy analysis OC1, OC3, OC2, EC2, Br, EC1, Ni correlated with IL-8 release, decreased viability, and decreased IL-6 at low and high doses. Ni, EC1, and EC2 correlated with IL-6 release at the high dose, decreased IL-6 at the low dose, decreased IL-8 release, and decreased viability. Br was negatively associated. PM variables Reference: Subjects: Dogs **N:** 6 dogs, 20 Constituents Grouping Groups/ Factors/ Sources: V/Ni exposures Wellenius et al. considered for method: used: Univariate: Exposure: CAPs (avg. (2003, 055)grouping: 15 Previous study Al/Si Mass mass concentration elements (+EC in same city Br/Pb Number range 161.3-957.3 Location: Ni, S, Si, BC OC?) (used Clarke (Clarke et ál. Na/CI Boston, MA µg/m³) repeated et al. 2000) 2000) Cr Multivariate: Ni, S, exposure with several Si, BC Particle Size: weeks in between # of groups: 6 (but did not use $\mathsf{PM}_{2.5}$ all in analysis of health effects) Results: ST-segment elevation increased with CAPs. Univariate regression: Si and Pb associated with peak ST-segment elevation and integrated ST-segment change.CAPs mass or number concentration were not associated with any change. Multivariate regression: Si associated with peak ST-segment elevation and integrated ST-segment change. Grouping method: PMF Reference: Subjects: Alveolar N: 45 PM Constituents Groups/Factors/ Sources: PM variables Zhang et al. macrophage cell line samples, 3 considered for Mobile, water soluble carbon, used: Mass grouping: 43 + EC, OC (2008, 192008) (NR8383); 1 ×106 sulfate, soil, iron, Cd and Zn point contribution of runs # of groups: 9 source, Pb, pyrotechnics, cells/ml sources Location: Metro area of Denver. Exposure: Soluble CO/ 45 samples components exposure concentration range through 1 yr from 20-200 pg of Particle Size: PM/cell 2.5; filtered to Results: Started with regression on 9 sources, then 3 (water-soluble carbon factor, soil dust source, iron source). Soil dust source was 0.22 um not significant. Final regression model excluded 3 days of outliers (Fe source most significant, then water-soluble carbon factor, then soil

dust source) for ROS effects, with adjusted R2 of 0.774. Fe source likely associated with industrial source and includes high loadings of water-soluble Fe and Ti (not identified); water-soluble C factor derived from both secondary organic aerosol and biomass smoke (largely consists of polar organic compounds), soil dust source identified by water-soluble resuspended dust elements and contains Mg and Ca.

Annex F References

- Andersen ZJ; Wahlin P; Raaschou-Nielsen O; Scheike T; Loft S (2007). Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen. J Expo Sci Environ Epidemiol, 17: 625-636.

 093201
- Batalha JR; Saldiva P H; Clarke RW; Coull BA; Stearns RC; Lawrence J; Murthy GG; Koutrakis P; Godleski JJ (2002). Concentrated ambient air particles induce vasoconstriction of small pulmonary arteries in rats. Environ Health Perspect, 110: 1191-1197. 088109
- Becker S; Mundandhara S; Devlin RB; Madden M (2005). Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: further mechanistic studies. Toxicol Appl Pharmacol, 207: 269-275. 088590
- Bell ML; Ebisu K; Peng RD; Dominici F (2009). Adverse health effects of particulate air pollution: modification by air conditioning. Epidemiology, 20: 682-686. 191007
- Cakmak S; Dales RE; Vida CB (2009). Components of particulate air pollution and mortality in Chile. Int J Occup Environ Health, 15: 152-158. 191995
- Clarke RW; Coull B; Reinisch U; Catalano P; Killingsworth CR; Koutrakis P; Kavouras I; Murthy GGK; Lawrence J; Lovett E; Wolfson JM; Verrier RL; Godleski JJ (2000). Inhaled concentrated ambient particles are associated with hematologic and bronchoalveolar lavage changes in canines. Environ Health Perspect, 108: 1179-1187. 013252
- Duvall RM; Norris GA; Dailey LA; Burke JM; McGee JK; Gilmour MI; Gordon T; Devlin RB (2008). Source apportionment of particulate matter in the US and associations with lung inflammatory markers. Inhal Toxicol, 20: 671-683. 097969
- Franklin M; Koutrakis P; Schwartz J (2008). The role of particle composition on the association between PM2.5 and mortality. Epidemiology, 19: 680-689. <u>097426</u>
- Gent JF; Koutrakis P; Belanger K; Triche E; Holford TR; Bracken MB; Leaderer BP (2009). Symptoms and medication use in children with asthma and traffic-related sources of fine particle pollution. Environ Health Perspect, 117: 1168-1174. 180399
- Godleski JJ; Clarke RW; Coull BA; Saldiva PHN; Jiang NF; Lawrence J; Koutrakis P (2002). Composition of inhaled urban air particles determines acute pulmonary responses. Ann Occup Hyg, 46: 419-424. 156478
- Gong H Jr; Linn WS; Clark KW; Anderson KR; Geller MD; Sioutas C (2005). Respiratory responses to exposures with fine particulates and nitrogen dioxide in the elderly with and without COPD. Inhal Toxicol, 17: 123-132. <u>087921</u>
- Gong H Jr; Linn WS; Sioutas C; Terrell SL; Clark KW; Anderson KR; Terrell LL (2003). Controlled exposures of healthy and asthmatic volunteers to concentrated ambient fine particles in Los Angeles. Inhal Toxicol, 15: 305-325. 042106
- Gurgueira SA; Lawrence J; Coull B; Murthy GGK; Gonzalez-Flecha B (2002). Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect, 110: 749-755. 036535
- Huang Y-CT; Ghio AJ; Stonehuerner J; McGee J; Carter JD; Grambow SC; Devlin RB (2003). The role of soluble components in ambient fine particles-induced changes in human lungs and blood. Inhal Toxicol, 15: 327-342. 087377
- Ito K; Christensen WF; Eatough DJ; Henry RC; Kim E; Laden F; Lall R; Larson TV; Neas L; Hopke PK; Thurston GD (2006). PM source apportionment and health effects: 2 An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. J Expo Sci Environ Epidemiol, 16: 300-310. 088391

Note: Hyperlinks to the reference citations throughout this document will take you to the NCEA HERO database (Health and Environmental Research Online) at http://epa.gov/hero. HERO is a database of scientific literature used by U.S. EPA in the process of developing science assessments such as the Integrated Science Assessments (ISA) and the Integrated Risk Information System (IRIS).

- Kodavanti UP; Schladweiler MC; Ledbetter AD; McGee JK; Walsh L; Gilmour PS; Highfill JW; Davies D; Pinkerton KE; Richards JH; Crissman K; Andrews D; Costa DL (2005). Consistent pulmonary and systemic responses from inhalation of fine concentrated ambient particles: roles of rat strains used and physicochemical properties. Environ Health Perspect, 113: 1561-1568. 087946
- Laden F; Neas LM; Dockery DW; Schwartz J (2000). Association of fine particulate matter from different sources with daily mortality in six US cities. Environ Health Perspect, 108: 941-947. <u>012102</u>
- Lanki T; De Hartog JJ; Heinrich J; Hoek G; Janssen NAH; Peters A; Stolzel M; Timonen KL; Vallius M; Vanninen E; Pekkanen J (2006). Can we identify sources of fine particles responsible for exercise-induced ischemia on days with elevated air pollution? The ULTRA study. Environ Health Perspect, 114: 655-660. 088412
- Lippmann M; Hwang J; Maclejczyk P; Chen L (2005). PM source apportionment for short-term cardiac function changes in ApoE-/- mice. Environ Health Perspect, 113: 1575-1579. <u>087453</u>
- Lippmann M; Ito K; Hwang JS; Maciejczyk P; Chen LC (2006). Cardiovascular effects of nickel in ambient air. Environ Health Perspect, 114: 1662-1669. 091165
- Maciejczyk P; Chen LC (2005). Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice: VIII source-related daily variations in in vitro responses to CAPs. Inhal Toxicol, 17: 243-253. 087456
- Mar TF; Ito K; Koenig JQ; Larson TV; Eatough DJ; Henry RC; Kim E; Laden F; Lall R; Neas L; Stolzel M; Paatero P; Hopke PK; Thurston GD (2006). PM source apportionment and health effects: 3 Investigation of inter-method variations in associations between estimated source contributions of PM25 and daily mortality in Phoenix, AZ. J Expo Sci Environ Epidemiol, 16: 311-320. 086143
- Mar TF; Norris GA; Koenig JQ; Larson TV (2000). Associations between air pollution and mortality in Phoenix, 1995-1997. Environ Health Perspect, 108: 347-353. 001760
- Nikolov MC; Coull BA; Catalano PJ; Diaz E; Godleski JJ (2008). Statistical methods to evaluate health effects associated with major sources of air pollution: a case-study of breathing patterns during exposure to concentrated Boston air particles. J Roy Stat Soc C Appl Stat, 57: 357-378. 156808
- Ostro B; Feng W-Y; Broadwin R; Green S; Lipsett M (2007). The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environ Health Perspect, 115: 13-19. 091354
- Ostro B; Roth L; Malig B; Marty M (2009). The effects of fine particle components on respiratory hospital admissions in children. Environ Health Perspect, 117: 475–480. 1919/11
- Peng R; Bell M; Geyh A; McDermott A; Zeger S; Samet J; Dominici F (2009). Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health Perspect, 117: 957-963. 191998
- Penttinen P; Vallius M; Tiittanen P; Ruuskanen J; Pekkanen J (2006). Source-specific fine particles in urban air and respiratory function among adult asthmatics. Inhal Toxicol, 18: 191-198. <u>087988</u>
- Rhoden CR; Lawrence J; Godleski JJ; Gonzalez-Flecha B (2004). N-acetylcysteine prevents lung inflammation after short-term inhalation exposure to concentrated ambient particles. Toxicol Sci, 79: 296-303. <u>087969</u>
- Riediker M; Devlin RB; Griggs TR; Herbst MC; Bromberg PA; Williams RW; Cascio WE (2004). Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions. Part Fibre Toxicol, 1: 2. 091261
- Saldiva PHN; Clarke RW; Coull BA; Stearns RC; Lawrence J; Krishna-Murthy GG; Diaz E; Koutrakis P; Suh H; Tsuda A; Godleski JJ (2002). Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am J Respir Crit Care Med, 165: 1610-1617. 025988
- Sarnat JA; Marmur A; Klein M; Kim E; Russell AG; Sarnat SE; Mulholland JA; Hopke PK; Tolbert PE (2008). Fine particle sources and cardiorespiratory morbidity: An application of chemical mass balance and factor analytical source-apportionment methods. Environ Health Perspect, 116: 459-466. 097972
- Schreuder AB; Larson TV; Sheppard L; Claiborn CS (2006). Ambient woodsmoke and associated respiratory emergency department visits in Spokane, Washington. Int J Occup Environ Health, 12: 147-153. 097959
- Schwartz J (2003). Daily deaths associated with air pollution in six US cities and short-term mortality displacement in Boston. $\underline{042811}$

- Seagrave JC; McDonald JD; Bedrick E; Edgerton ES; Gigliotti AP; Jansen JJ; Ke L; Naeher LP; Seilkop SK; Zheng M; Mauderley JL (2006). Lung toxicity of ambient particulate matter from southeastern US sites with different contributing sources: relationships between composition and effects. Environ Health Perspect, 114: 1387-93.

 091291
- Tsai FC; Apte MG; Daisey JM (2000). An exploratory analysis of the relationship between mortality and the chemical composition of airborne particulate matter. Inhal Toxicol, 12: 121-135. 006251
- Urch B; Brook JR; Wasserstein D; Brook RD; Rajagopalan S; Corey P; Silverman F (2004). Relative contributions of PM2.5 chemical constituents to acute arterial vasoconstriction in humans. Inhal Toxicol, 16: 345-352. 055629
- Veranth JM; Moss TA; Chow JC; Labban R; Nichols WK; Walton JC; Walton JG; Yost GS (2006). Correlation of in vitro cytokine responses with the chemical composition of soil-derived particulate matter. Environ Health Perspect, 114: 341-349. 087479
- Wellenius GA; Coull BA; Godleski JJ; Koutrakis P; Okabe K; Savage ST (2003). Inhalation of concentrated ambient air particles exacerbates myocardial ischemia in conscious dogs. Environ Health Perspect, 111: 402-408. 055691
- Yue W; Schneider A; Stolzel M; Ruckerl R; Cyrys J; Pan X; Zareba W; Koenig W; Wichmann HE; Peters A (2007).

 Ambient source-specific particles are associated with prolonged repolarization and increased levels of inflammation in male coronary artery disease patients. Mutat Res Fund Mol Mech Mutagen, 621: 50-60. 097968
- Zhang Y; Schauer JJ; Shafer MM; Hannigan MP; Dutton SJ (2008). Source apportionment of in vitro reactive oxygen species bioassay activity from atmospheric particulate matter. Environ Sci Technol, 42: 7502-7509. 192008