
 

Choosing number of stages of multistage model for cancer modeling:  SOP for contractor and 
IRIS analysts 
 
Definitions in this memo:  

1. Order of the multistage model is the highest power term in the multistage equation. For 
example, P(x; β)= β 0+ β 1*x+ β 2*x2 is of order 2 because 2 is the highest power in 
multistage equation. Also note that number of estimated parameters is always one 
more than the order. In this example, there are 3 estimated parameters.  

2. Dose groups are all the groups in the experiment, including the control group. For 
example, an experiment with doses 0, .1, 1, 10 has 4 dose groups 

3. Estimate on the boundary is the estimate of one of the β parameters that is equal to 0.  
Note that if the parameter's true value is assumed to be 0 and is fixed at zero, this is not 
a 'parameter on the boundary' situation 

4. Adequate model fit (as detailed in Section 2.3.5 of the BMD Technical Guidance 
document) for the multistage model is as follows: goodness-of-fit p-value > 0.05, scaled 
residuals < |2|, and good low-dose fit. 

 
Instructions: 
 

1. Fit all orders of the multistage model up to two less than the number of dose groups.  In 
other words, if there are k dose groups, fit up to model order k-2.  Fitting a k-2 order 
model to a dataset will leave 1 degree of freedom (df) with which to calculate the 
goodness-of-fit p-value; 

a. If all parameter (γ, β1, ... , βk-2) estimates are positive, then: 

i. Use the AIC to select the best-fitting model if at least one of the models 
provides an adequate fit to the data; 

ii. If none of the models adequately fit the data, try a k-1 order model.  If 
the k-1 order model fits adequately, use that model.  Adequate fit could 
be determined by looking at each dose group’s scaled residuals and the 
visual fit of the model to the data.  Flag the matter (i.e., using order k-1) 
for the NCEA Statistics Workgroup (SWG) and the Assessment Manager 
(AM). 

b. Otherwise (i.e., if any parameter is estimated to be zero and is thus at a 
boundary), use the following procedure (2): 

2. Examine fits of order 1 and 2 (linear and quadratic, respectively).  Examine the linear 
(parameters: γ (background), β1) and quadratic model (parameters: γ (background), β1, 
β2) for adequate fit;  

a. If neither model fits adequately, refer the matter to SWG and AM;  

b. If only one of the models fits adequately, use that model;  

c. If both models fit adequately: 



 

i. Use the model with the lowest AIC if all of the parameters (γ , β1,and  β2) 
are positive;  

ii.  Otherwise, use the model with the lower BMDL (more health protective). 
If BMD/BMDL ratio is larger than 3, flag this for the AM and SWG 

  
Discussion 
 
Model selection is discussed in USEPA (2012), Section 2.3.9, page 39, “Selecting the model to use 

for POD computation”.  See also Sections 2.3.5 through 2.3.8. 
  
This SOP differs from current practice in the BMDS training, which is to fit the highest order 
possible (k-1 = one less than number of dose groups).  The BMDS training cancer example 
(http://www.epa.gov/ncea/bmds/bmds_training/application/appl.htm#Example) considers 

both AIC and a LRT, and states “Under the recommendations of the benchmark dose guidance, the 

more parsimonious first-degree model would be generally preferred.”, but does not identify a single 

criterion (AIC, LRT, parsimony).  This change in practice is motivated by recent work by Nitcheva et 

al. (2007), discussed below, and by the fact that when k parameter estimates (k = number of dose 

groups) are non-zero the goodness-of-fit test cannot be made. This practice is expected to be 

appropriate for a large percentage of data sets (Nitcheva et al. 2007), but not for all, in which case 

higher-order multistage models and other types of models may be tried (see 2, above). 
 
This SOP differs from a practice used by some statisticians, which is to use likelihood ratio tests 
(LRT) to conduct a statistical hypothesis test (SHT) comparing model orders.  This is applied by 
stepping up (comparing 1st to 2nd order, 2nd to 3rd, etc.) until the test for the next higher order is 
not significant.  It is based upon the table of log-likelihoods and degrees of freedom reported by 
BMDS.  The method assumes that twice the LR statistic is asymptotically distributed as Chi-
square. 
 
Technical Background 
 
AIC assumes that that no parameters are on the boundary (i.e., equal to zero) and thus AIC is 
not reliable for evaluating fit of multistage models, for which some parameters often will be on 
the boundary (much more often than for other models). See Claeskens and Hjort (2008).  
 

A paper by Nitcheva et al. (2007) used formal statistical testing (accounting for parameters on 

the boundary) to show that for 91 IRIS datasets (having from 3 to 7 groups), about 80% are best 

fitted by a linear model and about 20% by the quadratic model. For none of the 14 datasets 

where a cubic model was fitted did the cubic model give sufficient improvement in fit (as 

determined by LRT).  The authors noted “… the use of the higher-order term adds little or no 

significance to the quality of the fit.” 

 



 

The approach of using standard LRT asymptotics to select a multistage model is flawed. The null 
hypothesis for each test for the next order k can be characterized as  Ho: βk = 0 versus Ha: βk > 0 
(with other model parameters being nuisance parameters).  There is a statistical objection to 
this one-sided test procedure (see Mohlenberghs and Verbeke 2007, Nitcheva et al. 2007, 
Kopylev and Sinha 2011, Kopylev 2012).  A correct test requires use of specialized asymptotic 
distributions that depend on parameters of the model.   Even in the simplest case, 1st vs. 2nd 
order, Ho: β2 = 0 versus Ha: β2 > 0, with Background γ >0 and β1 > 0, the mixture is half χ2(1) and 
half zero.  The distribution is more complicated when Background is at or near zero, and when 
more coefficients are added (and any of these are at or near zero). In such cases, the 
distributions can only be computed by simulation for each case.  It is thus feasible, but not 
practicable, to conduct such tests rigorously for orders higher than three, and not even for 2nd 
order models when background estimate is zero. 
 
Alternative procedure 
 
It would be feasible and practicable to conduct a valid test as done by Nitcheva et al. (2007) to 
compare model orders 1 and 2.  For routine use, this would require some expense to have 
expert contractor personnel write and test code for the procedure (we could also attempt to 
obtain code used by Nitcheva et al. to decrease effort).  However, we do not believe that 
routine use of this procedure for a formal statistical hypothesis test would change outcomes or 
add much value, compared to the simple procedure described above.   
 
If for some dataset there is special interest in higher-order models, these methods could be 
implemented. 
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Example 1  
 
Data from Acrylonitrile assessment draft modeling appendix, for 
Male Sprague-Dawley Rats, Zymbal Gland Tumors, Administered Dose Metric (Quast 2002) 
 

Dose Incidence N 

0.00 3 73 

3.42 4 45 

8.53 3 47 

21.20 16 44 
 
 

Model 
ordera 

Goodness of fit  
BMD10% 

(mg/kg-d) 
BMDL10% 

(mg/kg-d) p-value 
Scaled 

residuals 
AIC Coefficients * 

Two 
df=2 

0.407 -0.255 
0.934 
-0.896 
0.248 

137.814 γ = 0.0474 
β1 = 0 

β2 = 0.0008363 

11.2 6.25 

One 
df=2 

0.148 0.292 
0.156 
-1.645 
1.001 

140.414 γ = 0.0348 
β1 = 0.0148069 

7.12 4.79 

* From cancer models fitted in BMDS 2.40 by J.Fox, 14 May 2014 

 
BMDS cancer model counts only the non-zero parameters (including background and betas), so 
the Deviance test and Chi-square Goodness-of-Fit test both the 2nd and 1st degree models have 
4-2=2 degrees of freedom (df).   
 
In this case, the β1 parameter for the 2nd degree multistage model has been estimated on the 
boundary (i.e., equal to zero).  So, following the direction of Step 2 above, we would consider 
only the linear (i.e., 1st degree) and quadratic (i.e., 2nd degree models), in this case, the only 
models actually used.  Both the 1st and 2nd degree models provide adequate fit to the data (Step 
2.c).  As the β1 parameter was estimated as zero for the 2nd degree model, according to Step 2.c.ii, the 
model with the lowest BMDL would be selected as the best model.  In this example, that is the 1st 
degree model, with a BMD = 7.12 and a BMDL = 4.79. 
 
  



 

Example 2 
 
If we replace the Incidence (3) at zero dose with a zero (0) as follows:  
 

Dose Incidence N 

0.00 0 73 

3.42 4 45 

8.53 3 47 

21.20 16 44 

 
The modeling results are:  
 

Model 
ordera 

Goodness of fit  
BMD10% 

(mg/kg-d) 
BMDL10% 

(mg/kg-d) p-value 
Scaled 

residuals 
AIC Coefficients * 

Two 
df=2 

0.174 0 
1.346 
-1.266 
0.289 

114.428 γ = 0 
β1 = 0.0128276 
β2 = 0.00032934 
 

6.97 4.38 

One 
df=3 

0.319 0 
0.841 
-1.526 
0.69 

112.912 γ = 0 
β1 = 0.0178669 

5.90 4.26 

* From cancer models fitted in BMDS 2.40 by J.Fox, 15 May 2014 

 
In this example, the Deviance test and Chi-square Goodness-of-Fit test have 3 df (4-1=3) for the 
1st degree model and 2 df (4-2=2) for the 2nd degree model.     
 
In this case, the γ parameter has been estimated as zero for both the 1st and 2nd degree models.  
As this parameter has been estimated on the boundary, all other β coefficients for both models 
are estimated as non-zero.  Following Step 2.c.i above, the model with lowest BMDL should be 
chosen.  In this example, the 1st degree model would be selected as the best model, with a BMD 
= 5.90 and a BMDL = 4.26).   
  



 

Example 3 
 
Data for Bromate, for testicular mesothelioma tumors male F344/N rats 
From Nitcheva et al. (2007), Table 1 
 

Dose Incidence N 

0 0 71 

1.1 4 73 

6.1 5 73 

12.9 11 71 

28.7 31 67 

 
The modeling results are:  
 

Model 
ordera 

Goodness of fit  
BMD10% 

(mg/kg-d) 
BMDL10% 

(mg/kg-d) p-value 
Scaled 

residuals 
AIC Coefficients * 

Three 
df=2 

0.1602 -1.007 
1.584 
-0.321 
-0.189 
0.047 

231.261 γ = 0.0140719 
β1 = 0.01066274 
β2 = 0 
β3 =1.25521E-005 

9.04 5.32 

Two 
df=2 

0.1350 -1.095 
1.596 
-0.270 
-0.389 
0.187 

231.771 γ =0.016603 
β1 = 0.00768476 
β2 = 0.00044062 
 

9.03 5.01 

One 
df=3 

0.0717 -0.456 
1.870 
-1.047 
-1.118 
0.977 

231.647 γ = 0.00291998 
β1 = 0.0179367 

5.87 4.62 

* From cancer models fitted in BMDS 2.40 by J. Allen Davis, 15 May 2014 

 
In this example, the Deviance test and Chi-square Goodness-of-Fit test have 3 df (5-2=3) for the 
1st degree model, and 2 df (5-3=2) for the 2nd and 3rd degree models.  
 
The β2 parameter for the 3rd degree model is estimated on the boundary.  Therefore, according 
to Steps 2, only the 1st and 2nd degree models should be considered further.  Considering the fit 
statistics, it appears that both models fit the data adequately.  Therefore, according to Step 
2.c.i, the model with lowest AIC would be chosen as the best-fitting model.  In this case, that is 
the 1st degree model, with a BMD = 5.87, and a BMDL = 4.62. 


