Morphologic Evidence that Hexavalent Chromium Targets the Epithelium of Duodenal Villi But Not Crypts

Normal Duodenum

Villus Damage
Resulting in Crypt
Epithelial Hyperplasia

Intestinal Epithelial Neoplasia

Jeffrey C. Wolf, DVM, DACVP

Experimental Pathology Laboratories, Inc., Sterling, VA

Morphologic Evidence that Hexavalent Chromium Targets the Epithelium of Duodenal Villi But Not Crypts

NTP 2-Year Drinking Water Study in Mice (516 mg/L)

Southern Research 90-day Drinking Water Study in Mice (520 mg/L)

Same Findings

- Blunting and thickening of villi
- Histiocytic cells in lamina propria of villus tips
- Elongation of crypts
- Regenerative epithelial hyperplasia

Morphologic Evidence that Hexavalent Chromium Targets the Epithelium of Duodenal Villi But Not Crypts

Morphologic indications of villus damage

Lack of treatment-related effects in crypts

SDD (mg/L)	Day 8		Day 91	
	KN	MN	KN	MN
0	0	1	0	1
0.3	0	3	1	1
4	0	5	0	2
14	0	2	0	0
60	2	1	5*	2
170	3°	6	6"	9°
520	9*	11	25°	9°

Values represent total number of aberrant nuclei in 15 sections (3 slides per animal; 5 animals per treatment group, except only 4 animals were examined for 14 mg/L SDD treatment group at day 91).

KN = karyorrhectic nuclei; MN = micronuclei.

Significantly different from control group $(p \le 0.05)$ by Poisson regression,

- Lack of DNA damage in crypts
- Chromium localized to villi

Lack of aberrant foci

Supplemental Information

Karyorrhectic Nuclei (individual cell necrosis)

Micronuclei (chromosome breakage)

Mitotic Figures (enterocyte renewal)

Apoptotic Nuclei (physiologic cell loss, or damage to dividing cells)

