Science Question 4: Utility of Subchronic Histopathological Data

Mark Harris

ToxStrategies, Inc.

Supported by ACC

June 25, 2014

Tox Strategies

90-Day Study in Table 3-2 Follows NTP Study Design

NTP	90-Day Study
Species/Strains: B6C3F1 mice, Fisher 344 rats	Species/Strains: B6C3F1 mice, Fisher 344 rats
Doses: 0, 14, 57, 172, 516 mg/L SDD (2-yr study doses)	Doses: 0, <mark>0.3</mark> , 4 , 14, 60, 170, 520 mg/L SDD
Research Laboratory: Southern Research Institute	Research Laboratory: Southern Research Institute

Study Design reviewed by Independent Expert Panel

Panel Member	Affiliation
Michael Dourson	TERA
Jeffery Fisher	Univ. of Georgia
David Gaylor	Gaylor & Associates
Kirk Kitchin	U.S. EPA
Bette Meek	Univ. of Ottawa
Xianglin Shi	Univ. of Kentucky
Patrick Winter	Washington Univ.

Study Objectives

Study was not designed to:

- Disprove that Cr(VI) is carcinogenic in mouse small intestine (NTP, 2008)
- Supplant the NTP 2-yr bioassay as basis for risk assessment
- Question the relevance of intestinal tumors to humans

Study was designed to:

- Inform the MOA for intestinal tumors in mice
 - Inclusion of lower doses and earlier time points
 - Inclusion of additional analyses (PK, pathology, biochemistry)
- Inform which risk assessment approaches are best suited for assessing the carcinogenic risk of Cr(VI) via ingestion
- To collect pharmacokinetic data to aid in extrapolation to humans
 - Kirman et al. (2012), rodent PBPK model
 - Kirman et al. (2013), human PBPK model
 - EPA-authored PBPK model (in peer-review)

Study Collaborators and Publications

Synchrotron analyses

Organization	Role	
Applied Speciation	Analytical chemistry	
Brooks Rand Laboratory	Analytical chemistry	
Duke University Medical School	Gastric fluid samples	
Environmental Standards	Analytical oversight	
Experimental Pathology Laboratories	Histopathological analyses	
George Washington Univ. Medical School	Kras mutation analysis	
Michigan State University	Toxicogenomic analyses	
National Center for Toxicological Research	Kras mutation analysis	
Southern Research Institute	In-life study, histopathology, biochemical analyses	
Summit Toxicology	Pharmacokinetic analysis	
ToxStrategies	Study oversight, data analysis	
Univ. of Cincinnati Medical School	Redox data	Puk

U.S. Army Engineer Research &

Development Center

Fublication Topic	Citation
Mouse 90-day study	2011, Toxicol Sci 123(1)
Rat 90-day study	2012, Toxicol Sci 125(1)
Mouse genomics	2012, Toxicol Applied Pharm 259
Rat genomics	2012, Toxicol Applied Pharm 262
Genomic Expression Profiles	2012, Reg Tox Pharm 64 (1)
K-ras/micronucleus	2013, Mut Res 754
PBPK- Rodents	2012, <i>CBI</i> 200
PBPK- Humans	2013, CBI 204
Iron homeostasis	2014, Food & Chem Tox 65
Synchrotron analysis	submitted

Citation

Science Question 4: Utility of Subchronic Histopathological Data Chad Thompson, Ph.D. ToxStrategies, Inc. Supported by ACC June 25, 2014 ToxStrategies

90-Day Study in Table 3-2 (Histological Changes Occur in Villi Before Crypts)							
			ادندوا	anaa af l			
SDD, mg/L:	Incidence of Lesion 0 0.3 4 14 60 170 520						
Day 8	<u> </u>	0.0	<u> </u>	17	<u>50</u>	170	<u>020</u>
Villous vacuolization	0/5	0/5	0/5	0/5	0/5	3/5	5/5
Crypt hyperplasia	0/5	0/5	0/5	0/5	0/5	0/5	3/5
<u>Day 91</u>							
Villous vacuolization	0/10	0/10	0/10	0/10	5/10	10/10	7/10
Crypt hyperplasia	0/10	0/10	0/10	0/10	0/10	9/10	9/10
Source: Thompson et al. (2011)					ToxStra	itegies	

Can Tumors Arise from Villi?-Part 2 • Cr localizes to duodenal villi of rats from Thompson et al. (2012). • Rats in NTP study likely had some Cr in villi (as evidenced by liver Cr data, for example), yet no tumors. • Suggests that toxicity-induced regenerative hyperplasia is requisite. Ca Quantity Qua