







# Science Question 4: Comments on the USEPA Mechanistic Studies Database

Mark Harris, Ph.D.

ToxStrategies, Inc.

Supported by ACC

Oct 30, 2014

Cr6study.info



#### **Overview of Comments**

Currently, the information in the database as well as associated summary figures/tables in the preliminary materials are inaccurate:

- Comment 1: The database is missing critical studies
- Comment 2: An inconsistent approach was used to classify entries in the database as "mutation" outcomes
- Comment 3: The database contains a number of inconsistent and inaccurate entries for the mutagenicity outcomes
- Comment 4: The accuracy of the entire database was called into question based on an independent review of mutation outcomes; a systematic approach is required prior to further assessment



## Comment 1 – Key Studies Missing from Database

Four key studies with mechanistic data were identified as missing from the database:

- 1. Thompson et al. (2011). **Investigation of the mode of action underlying the tumorigenic response induced in B6C3F1 mice exposed orally to hexavalent chromium.** *Toxicological Sciences* 123, 58-70.
- 2. Thompson et al. (2012a). Comparison of the effects of hexavalent chromium in the alimentary canal of F344 rats and B6C3F1 mice following exposure in drinking water: implications for carcinogenic modes of action. *Toxicological Sciences* 125, 79-90.
- 3. Thompson et al. (2012b). **Assessment of Cr(VI)-Induced Cytotoxicity and Genotoxicity Using High Content Analysis.** *PLoS One* 7, e42720.
- 4. Suh et al (2014). **High concentrations of hexavalent chromium in drinking water alters iron homeostasis in F344 rats and B6C3F1 mice**. Food Chemical Toxicology 65, 381-388.



### Comment 2 – Inconsistent and Erroneous Classification of "Mutation" Outcomes

- Repetition and inconsistencies with outcome labeling were found in the mutation entries (yellow)
  - i.e. all refer to the same type of assay outcome
- Inconsistent outcome category assignment (blue)
  - Approximately half of the micronuclei and chromosomal aberration outcomes were placed in the mutation category and the other half in DNA damage category
- Several entries appear to be classified as mutation outcomes in error (red)
- Misclassified mutation endpoints (blue)
  - Chromosome aberrations
  - Micronuclei

| Outcomes                                         | # entries |
|--------------------------------------------------|-----------|
| 1-NP nitroreductase activity                     | 1         |
| 8-azaguanine resistant colony formation          | 2         |
| Aberrant colonies                                | 2         |
| abnormal metaphase                               | 2         |
| abnormal metaphase cells                         | 1         |
| appearance                                       | 1         |
| Ar reversion                                     | 3         |
| Ara mutants                                      | 1         |
| CA                                               | 4         |
| Cell survival                                    | 1         |
| cell viability                                   | 1         |
| centromere spreading                             | 1         |
| characterization of revertant colony<br>genotype | 1         |
| Chromasomal mutation                             | 1         |
| Chromate reduction                               | 1         |
| chromatid-type aberrations                       | 1         |
| chromosomal aberration                           | 2         |
| chromosomal aberrations                          | 20        |
| chromosomal mutation                             | 11        |
| chromosome aberration                            | 5         |
| chromosome aberration frequency                  | 7         |
| chromosome breaks                                | 3         |
| chromosome damage                                | 12        |
| chromosome damage and repair                     | 12        |
| chromosome damage/instability                    | 1         |
| chromosome instability                           | 1         |
| chromosome-type aberrations                      | 1         |
| colony formation                                 | 3         |
| complexation and chelating                       | 1         |
| cytoplasmic bridges                              | 1         |
| DCF fluorescence                                 | 1         |
| development of a new cell culture model          | 1         |
| DNA damage                                       | 2         |
| DNA double-strand breaks                         | 1         |
| flocculation                                     | 1         |
| Forward mutation                                 | 1         |
| frequency of micronuclei                         | 1         |
| Gene convertants                                 | 2         |
| Gene mutation                                    | 20        |
| gene mutations                                   | 2         |
| Gene revertants                                  | 2         |
| HGPRT                                            | 2         |
| HIS reversion                                    | 5         |
| hprt mutation frequency                          | 3         |
| HPRT mutations                                   | 1         |
| incorporation of 1-NP into cells                 | 1         |
| indirect immune-rosetting reaction (iIRR)        | 1         |
| K-Ras codon 12 GAT mutation                      | 1         |
| lacZ- mutant plaques                             | 4         |
|                                                  | 1         |
| Lys* reveratants                                 | 1         |
|                                                  |           |

Continued next column

| Outcomes, continued                                        | # entries |
|------------------------------------------------------------|-----------|
| mammalian spot test                                        | 2         |
| micronucleated cells                                       | 1         |
| micronuclei induction                                      | 5         |
| micronucleus                                               | 8         |
| micronucleus frequency                                     | 2         |
| micronucleus induction                                     | 1         |
| mitochondrial cytochromes                                  | 1         |
| mitotic gene conversion                                    | 1         |
| MN induction                                               | 1         |
| mutagenic activity                                         | 16        |
| mutagenic effects                                          | 5         |
| mutagenic frequency                                        | 1         |
| mutagenicity                                               | 13        |
| mutant frequency                                           | 5         |
| Mutation                                                   | 7         |
| mutation frequency                                         | 24        |
| mutation frequency at HPRT locus                           | 1         |
| mutation identification                                    | 2         |
| mutation in bacterial lacI gene in                         | 2         |
| bacteriophage shuttle vector                               | _         |
| mutation in shuttle vector plasmid                         | 1         |
| УСрМР2                                                     | 1 ^       |
| mutation in shuttle vector pZ189                           | 1         |
| mutation of lacZ gene                                      | 2         |
| Mutation sequence                                          | 2         |
| mutation spectrum                                          | 5         |
| mutations                                                  | 6         |
| number of chromosomes                                      | 1         |
| number of mutations                                        | 1         |
|                                                            | 1         |
| other nuclear anomalies                                    |           |
| petite frequencies                                         | 1         |
| Plasmid survival                                           | 1         |
| polyploid cells                                            | 1         |
| postimplantation embryo loss                               | 1         |
| premature anaphase                                         | 1         |
| premature centromere division                              | 1         |
| reduction                                                  | 1         |
| Reduction of Cr(VI) to Cr(III) by gastric                  | 1         |
| juice, by saliva and by erythrocyte lysates                |           |
| deactivation of Cr(VI) mutagenicity by S9                  | 1         |
| fractions from various tissues                             |           |
| Reverse mutation                                           | 1         |
| reverse mutation induced by 1-NP                           | 2         |
| reversion mutagenesis                                      | 1         |
| reversion mutations                                        | 1         |
| revertants                                                 | 28        |
| Site specific oxidation patterns                           | 3         |
| Transformation of E.coli by HEK293-<br>replicated plasmids | 1         |
| X-gal mutation                                             | 2         |



# Comment 3 – Inconsistent and Inaccurate Entries within the Mutagenicity Outcomes

- The 311 entries characterizing mutagenicity do not all represent outcomes associated with hexavalent chromium.
  - A number of entries represent a chromium oxidation state other than hexavalent
- The separation of studies (144) into entries (311 rows) by chromium compound/valence state was inconsistent.
  - Some entry rows combined up to 12 compounds and several valences into one
- The separation of studies (144) into entries (311 rows) by cell type/strain was inconsistent.
  - Some entry rows combined multiple cell lines or strains while others listed them as separate outcomes
- The USEPA did not separate entries by route of administration.
  - At least three instances (DeFlora et al., 2006; Mirsalis et al., 1996; Newton and Lilly, 1986) where several
    routes of administration were combined into one outcome
- The USEPA database contains duplicate and repetitive entries.
  - Inclusion of unoriginal data (Patierno and Landolph, 1989) and incorrect/duplicated citations (De Flora et al. 1984 and DeFlora et al. 1985) resulting in inflated counts

