Science Question 4

Human relevance of mononuclear cell leukemia

MNCL is a spontaneous aging lesion occurring at high frequency in F-344 rats

- Spontaneous incidence ranges from 32-74%
 - Tumor data in DINP studies similar to historical averages ²²

	Range of MNCL in controls	Highest incidence of MNCL						
	for NTP feeding studies (Haseman)	Lington	Moore					
Male	32 – 74%	63.8% (51/80 rats)	49.2% (32/65 rats)					
Female	14 – 52%	53.8% (43/80 rats)	46.2% (30/65 rats)					

Incidence of MNCL from Haseman, ²² Lington, ⁴ and Moore ⁵

- Many factors affecting tumor frequency unrelated to treatment
 - e.g., dosing methods, caging, diet, vehicle, testing laboratory, etc.
- Species and strain specific
 - Not found in chronic studies in SD rats or in mice

Example of a treatment related vs spontaneous tumor type

Statilitary for Drive Statics									
	Investigator(s) 🕨	Bio\dynamics (1986)		Lington et a1(1997)		Moore (1998)		Moore (1998)	
	Strain & Species 🕨	S-D Rats		Fischer 344 Rats		Fischer 344 Rats		B6C3F1 Mice	
Organ▼	Tumor Type 🔻	male	female	male	female	male	female	male	female
Liver	Combined Adenoma + Carcinoma	NS	S	NS	NS	s	: S	s	S
Blood	Mononuclear Cell Leukemia	NR	NR	s	S	S	S	NR	NR

Key:

- S Significant
- NS No Significant Trend
- NR Not Reported / Relevant

Liver tumors

- treatment related
- consistent across species and strains of rodents

Summary for DINP Studies

defined Mode of Action

MNCL

- high spontaneous background incidence
- species and strain dependent
- incidence influenced by non treatment factors
- factor in recommendation that F344-N be discontinued for use by NTP

	Range of MNCL in controls for NTP feeding studies (Haseman)				
Male	32 – 74%				
Female	14 – 52%				

No change in incidence of MNCL in recovery animals

Animals were treated at 500, 1500, 6000, & 12000 ppm in the diet, a recovery group treated at 12000 for 78 wks. then untreated for 24 wks. before sacrifice was included.

Tumor Incidence Moore - Rat

• Liver

- Decreased incidence in recovery group
- Consistent with treatment related hypothesis. PPARα-mediated effects would reverse with cessation of treatment

MNCL

- equivalent incidence in recovery group
- Consistent with the hypothesis that these are spontaneous and age-related

The liver tumor data can be modeled but MNCL cannot (i.e., not dose-related)

Summary for DINP Studies

	Investigator(s) 🕨	Bio\dynar	nics (1986)	Lington et al (1997)		Moore (1998)		Moore (1998)		Lington + Moore	
	Strain & Species 🕨	S-D Rats		Fischer 344 Rats		Fischer 344 Rats		B6C3F1 Mice		Fischer 344 Rats	
Organ▼	Tumor Type 🔻	male	female	male	female	male	female	male	female	male	female
Liver	Combined Adenoma + Carcinoma	NS	S	NS	NS	s	1 S	S	S	М	М
Blood	Mon on uclear Cell Leukemia	NR	NR	s	S	s	S	NR	NR	NAM	NAM

<u>Key</u>:

S Significant

NS No Significant Trend

NR Not Reported / Relevant

M Acceptable Model

NAM No Acceptable Model

• Liver

 combined data set can be modeled for BMD MNCL

combined dataset
cannot be modeled for
BMD

MNCL is a high frequency aging lesion occurring spontaneously in F-344 rats

- MNCL in the Fischer rat is believed to reflect a high level of spontaneous DNA damage
 - biological plausibility that DINP would act by this mechanism is low
 - uniformly non-genotoxic in both in vitro and in vivo mutagenicity studies including unscheduled DNA repair
- MNCL tumor data from DiNP studies are not treatment specific
 - no change of incidence in recovery animals
 - combined dataset cannot be modeled
- Questionable relevance to humans