Decoding the epigenome to navigate human health

Paul Giresi

EPA Workshop 9/2/2015

Epigenome is the instructions for using genome hardware

Hardware

Software

Genome

Epigenome

Instructions encoded within non-coding sequence

Access to regulatory information controlled by epigenome

EPINOMICS EPINOMICS

Techniques for measuring epigenomic features

Landscape of technologies for measuring epigenome

TECHNOLOGY LANDSCAPE

Rapid and efficient technology for profiling the epigenome

Rapid and efficient technology for profiling the epigenome

	ChIP-seq	DNase-seq Chromosome Chromosome	ATAC-seq Chromatin fibre Chromosome
Input requirement	10 ⁷ cells	10 ⁷ cells	100-50,000 cells
Sample prep time	2 days	4 days	2 hours (30 min hands-on)
Outputs	 Measures single factor only Limited factors can be probed 	High skills required to reproduce	 All proteins bound to genome in 1 reaction Higher-order chromatin compaction

Types of epigenomic features measured using ATAC-seq

Identification of active regulatory elements from limited number of cells

Compatible with fresh and archived blood samples

Landscape of hematopoietic development

Active regulatory elements are fingerprint of cell identity

Rapid and sensitive detection of epigenomic modulation

Rapid and efficient technology for profiling the epigenome

Binding locations of hundreds of factors read out at once

Detection of therapeutic modulation of epigenomic factors

CD4+ T cell activation
NFAT

Distance from binding site (bp)

Detection of therapeutic modulation of epigenomic factors

CD4+ T cell activation
NFAT

Distance from binding site (bp)

Rapid and efficient technology for profiling the epigenome

Distribution of fragment lengths driven by chromatin

Distribution of fragment lengths driven by chromatin

Single basepair resolution nucleosome positioning

Determination of functional epigenomic states

Real time monitoring of epigenomic changes in patients

Rapid and efficient technology for profiling the epigenome

Mapping epigenomic landscape to create purposeful navigation

Reference Maps

- Genome variants (1000 Genomes)
- Many regulators (ENCODE)
- Many many regulatory elements

Navigation

- Fast: clinical time scale
- Sensitive: clinical samples
- Actionable: clinical decision criteria

Measuring impact of environmental factors using plant epigenomics

- Continuously sample soil, air and water
- Material relative easy and inexpensive to obtain
- Able to sample from same plant over time
- Can perform follow-up experiments in controlled lab environment

EPINOMICS 2'

Acknowledgements

Team Advisers

Fergus Chan - Co-founder
Tracy Nance, PhD - Bioinformatics
Marie Brennan, MD/PhD - Physician
John Latham, PhD - Scientist
Matt Negulescu, Software engineer
Anupama Joshi, Software engineer

Howard Chang, MD/PhD - Stanford Will Greenleaf, PhD - Stanford Mike Snyder, PhD - Stanford

Anshul Kundaje, PhD - Stanford Robert Tibshirani, PhD - Stanford Joseph Ecker, PhD - Salk