Moving Towards a Scientific Framework for Consideration of Epigenetic Change in Cumulative Risk Assessment

M. Daniele Fallin, Ph.D.

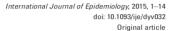
Professor & Chair, Department of Mental Health Director, Wendy Klag Center for Autism and Developmental Disabilities *Joint: Epidemiology, Biostatistics, Medicine, Psychiatry* Johns Hopkins Bloomberg School of Public Health and School of Medicine

EPA Workshop 2015

Environmental Susceptibility of the Epigenome

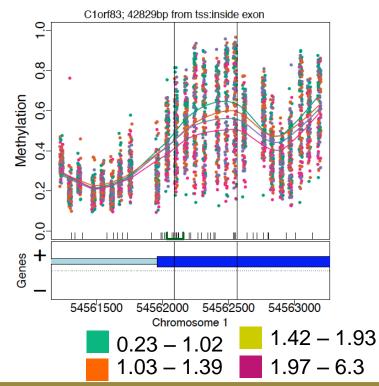
Table 1. Broad environmental epigenetic regulators and references, higher order classifications of toxicants.

	Factor	Observational Epidemiology Citations	Laboratory Toxicology Citations			
	Heavy metals (Pb, Cd,	(Pilsner et al. 2009) (Wright et al. 2010) (Marsit et	(Bihaqi et al. 2011)			
Tovicont	As, Ni)	al. 2006)				
	Air pollution (particulate	(Madrigano et al. 2011) (Tarantini et al. 2009)	(Yauk et al. 2008)			
	matter)					
Toxicant	Persistent organo-	(Kim et al. 2010) (Rusiecki et al. 2008)	(Zama and Uzumcu 2009)			
	pollutants					
	Endocrine disrupting		(Bromer et al. 2010) (Anderson et al. 2012;			
	chemicals		Guerrero-Bosagna et al. 2008)			
	One-carbon metabolism	(Ba et al. 2011) (Hoyo et al. 2011) (Hirsch et al.	(Mehedint et al. 2010) (McKay et al. 2011)			
		2008) (Fenech 2001a)				
Nutrient	Micro-nutrients	(Fenech and Ferguson 2001) (Fenech 2001b)	(Davis and Uthus 2003) (Rowling et al. 2002)			
Nutrient	Caloric restriction	(Tobi et al. 2009)	(Hass et al. 1993)			
	Nutraceuticals (EGCG,	(Yuasa et al. 2009)	(Shi et al. 1994) (Fang et al. 2003)			
	curcumin, piperine)					
Pharmaceutical		(Yang et al. 2006)	(Tryndyak et al. 2006)			
	Smoking	(Breitling et al. 2011) (Joubert et al. 2012)	(Belinsky et al. 2003)			
Lifestyle and	Socio-economic status	(Borghol et al. 2012) (McGuinness et al. 2012)				
Demographics	Stress	(Essex et al. 2013) (Uddin et al. 2010)	(Murgatroyd et al. 2009) (Champagne et al.			
			2004)			



Bakulski & Fallin. Environmental and Molecular Mutagenesis

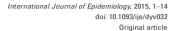
Environment ~ Epigenotype


Original article

Prenatal mercury concentration is associated with changes in DNA methylation at *TCEANC2* in newborns

Kelly M Bakulski,^{1†} HwaJin Lee,^{2†} Jason I Feinberg,^{1,2} Ellen M Wells,³ Shannon Brown,¹ Julie B Herbstman,^{1,4} Frank R Witter,² Rolf U Halden,^{2,5} Kathleen Caldwell,⁶ Mary Ellen Mortensen,⁶ Andrew E Jaffe,^{2,7} John Moye Jr,⁸ Laura E Caulfield,¹ Yi Pan,⁶ Lynn R Goldman,^{1,9‡} Andrew P Feinberg^{1,2‡} and M Daniele Fallin^{1,2}*[‡]

Tot Hg



C1orf83; 42763bp from tss:inside exon 0 -0.8 Methylation 0.6 4 o. 0.2 0.0 11.11 +Genes 54562000 54562500 54563000 54561500 Chromosome 1 0.93 - 1.6 0.085 - 0.60 0.61 - 0.91 1.64 - 6.8HNS HOPKINS HOPKINS

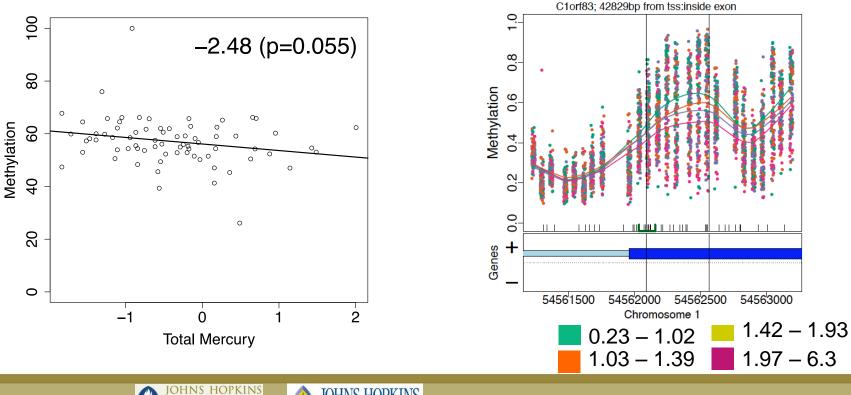
BLOOMBERG SCHOOL & PUBLIC HEALTH

MeHg

Environment ~ Epigenotype

Replication in Independent set of mother-child samples from

SCHOOL of PUBLIC HEALTH


Original article

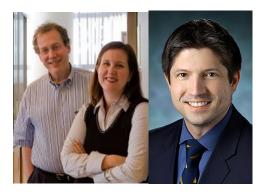
Prenatal mercury concentration is associated with changes in DNA methylation at *TCEANC2* in newborns

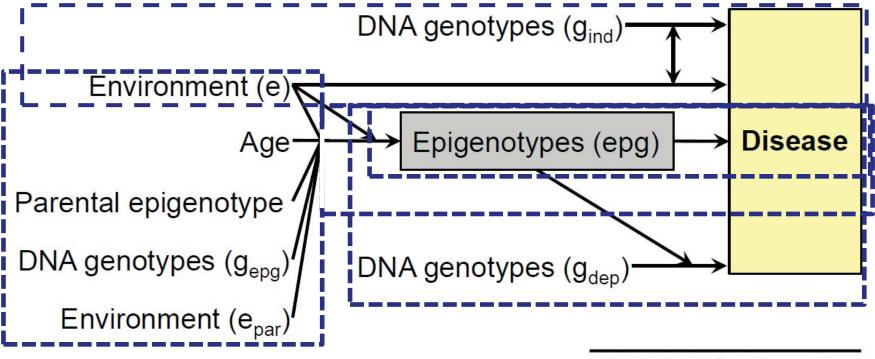
Kelly M Bakulski,^{1†} HwaJin Lee,^{2†} Jason I Feinberg,^{1,2} Ellen M Wells,³ Shannon Brown,¹ Julie B Herbstman,^{1,4} Frank R Witter,² Rolf U Halden,^{2,5} Kathleen Caldwell,⁶ Mary Ellen Mortensen,⁶ Andrew E Jaffe,^{2,7} John Moye Jr,⁸ Laura E Caulfield,¹ Yi Pan,⁶ Lynn R Goldman,^{1,9‡} Andrew P Feinberg^{1,2‡} and M Daniele Fallin^{1,2,‡‡}

Tot Hg

© 2004, Johns Hopkins University. All rights reserved.

What does this mean? How should we interpret such findings? How should we go about this moving forward?

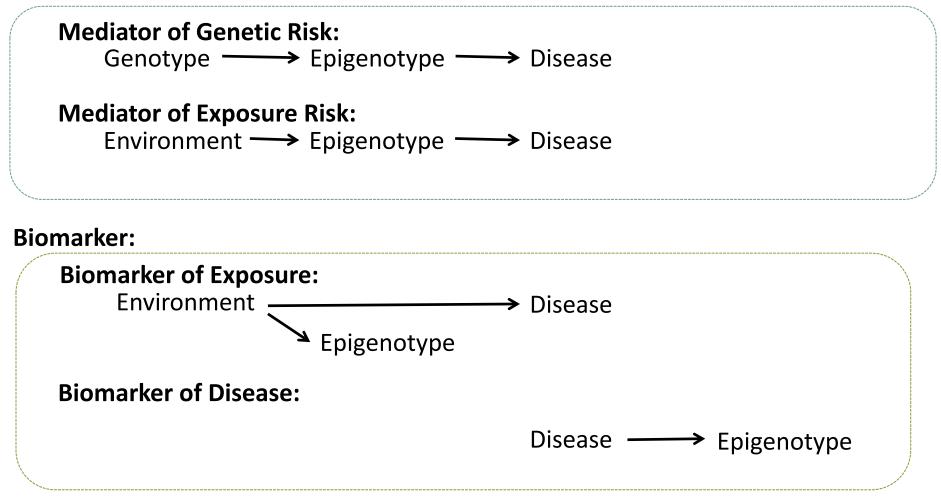


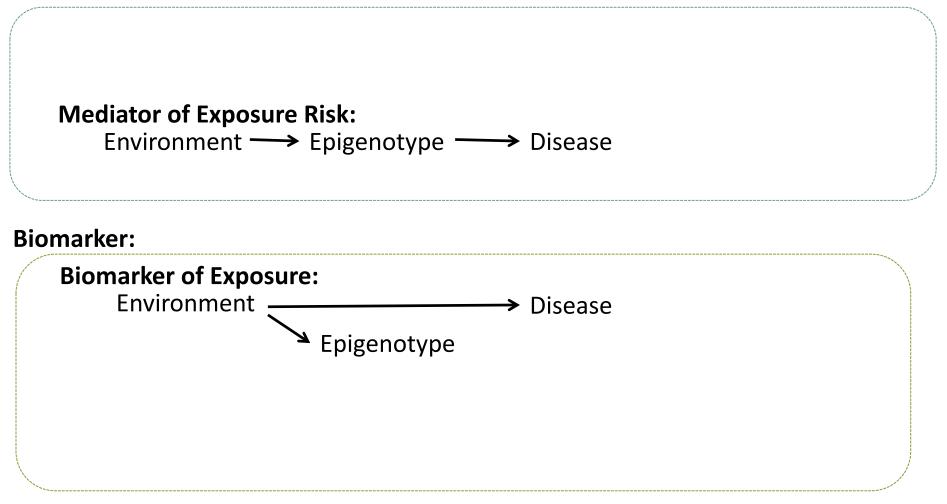


Opinion

An integrated epigenetic and genetic approach to common human disease

Hans T. Bjornsson^{1,2}, M. Daniele Fallin³ and Andrew P. Feinberg²



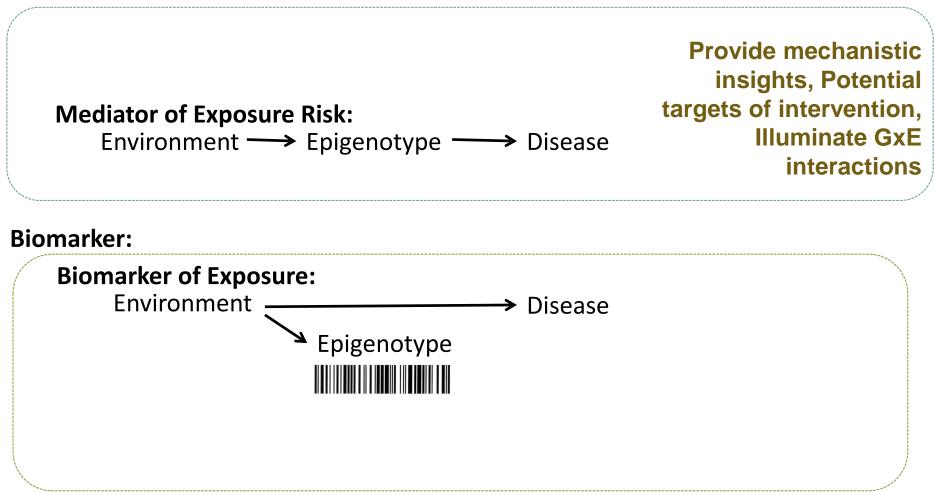

TRENDS in Genetics

Mechanistic:

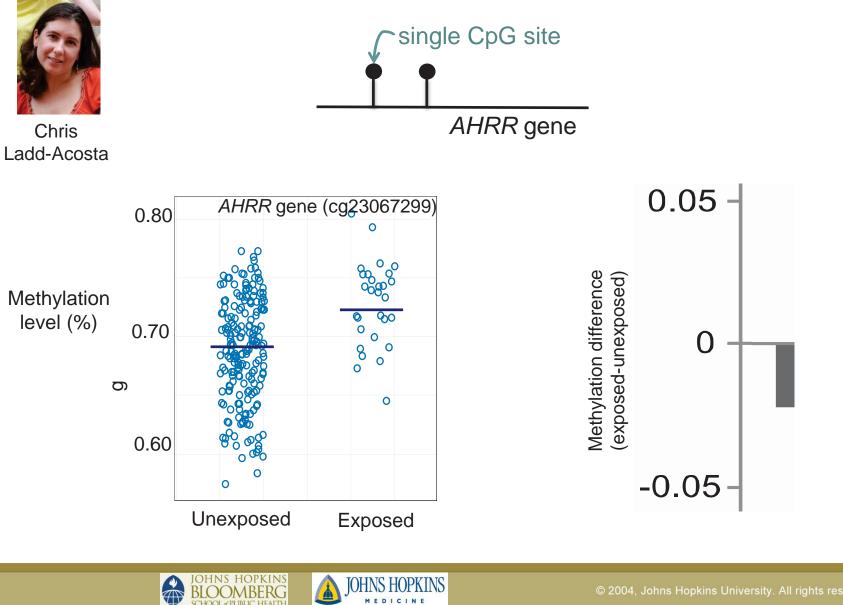
Mechanistic:

Mechanistic:

Mediator of Exposure Risk:

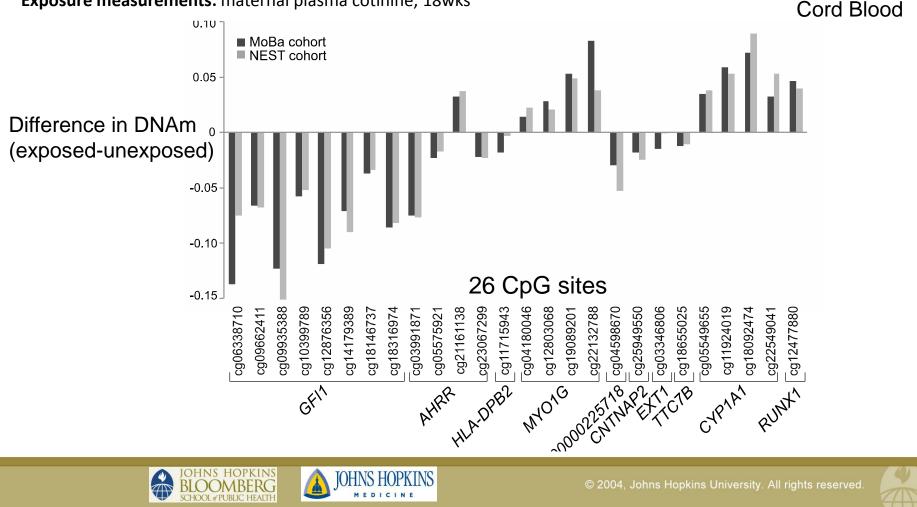

Environment ----> Epigenotype ----> Disease

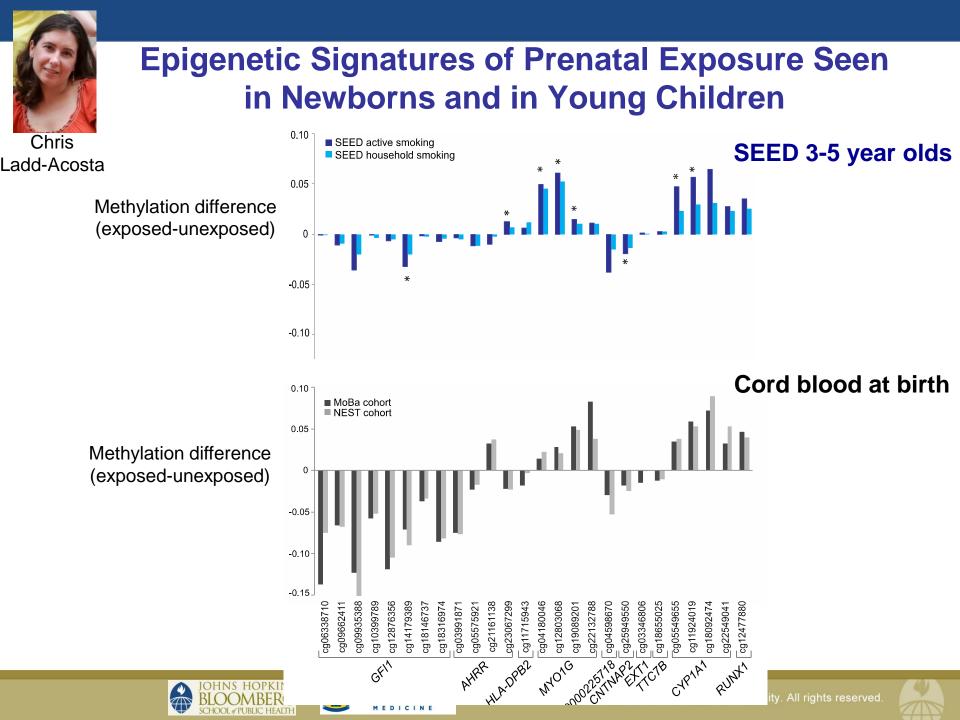
Implications:


- May provide mechanistic insight into exposure associations
 - Drive research regarding biology of the disease and potential prevention and treatment
- Epigenetics may be target for intervention
- Tissue type sampled may be critical

Mechanistic:

DNAm changes associated with prenatal exposure to smoking





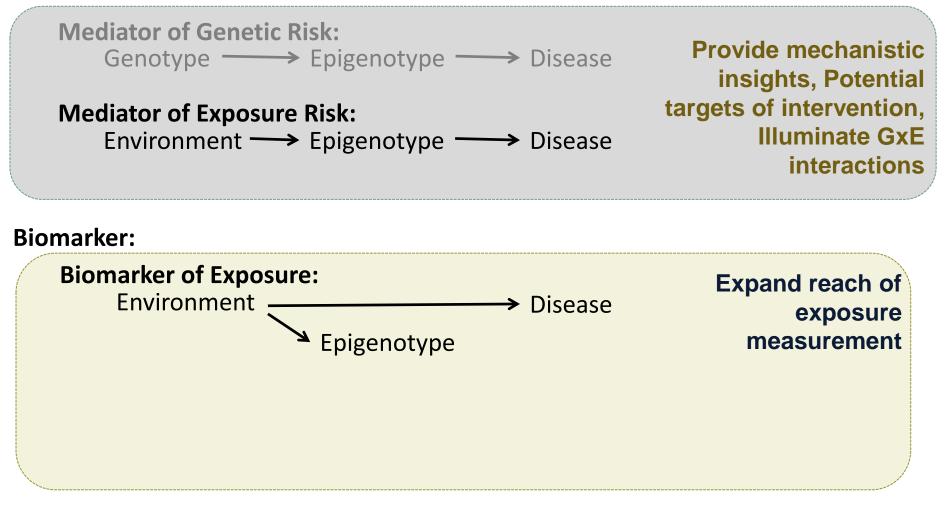
Detectible Cord Blood Methylation Differences By Maternal Smoking in T2

Joubert et al, EHP, 2012

Samples: 1062 newborn cord blood samples (Norwegian Mother and Child Cohort) Methylation measurements: 485,512 loci (Illumina 450K) Exposure measurements: maternal plasma cotinine, 18wks

Biomarker of Exposure:

Implications:

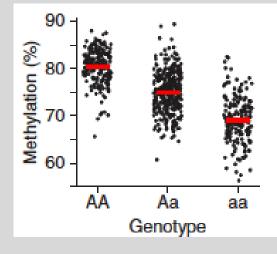

- Epigenotypes may provide measurable biomarkers of exposure
- May be able to measure past exposure opens up possibilities for design alternatives or overcoming limitations of particular study designs
- Not causally related, so epigenetics are not the target for intervention, but may be (better) biomarker of cumulative exposure
- Non-target tissue may be useful proxy

Mechanistic:

Why care about Epg Mediation of Genetic Effects for this workshop?

Mediator of Genetic Risk:

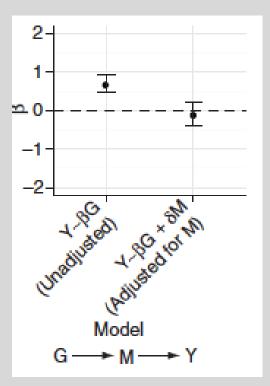
Genotype \longrightarrow Epigenotype \rightarrow Disease


Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis

Yun Liu^{1,2,12}, Martin J Aryee^{1,3,12}, Leonid Padyukov^{4,5,12}, M Daniele Fallin^{1,6,7,12}, Espen Hesselberg^{4,5}, Arni Runarsson^{1,2}, Lovisa Reinius⁸, Nathalie Acevedo⁹, Margaret Taub^{1,6}, Marcus Ronninger^{4,5}, Klementy Shchetynsky^{4,5}, Annika Scheynius⁹, Juha Kere⁸, Lars Alfredsson¹⁰, Lars Klareskog^{4,5}, Tomas J Ekström^{5,11} & Andrew P Feinberg^{1,2,6}

Why care about Epg Mediation of Genetic Effects for this workshop?

Mediator of Genetic Risk:


Genotype \longrightarrow Epigenotype \rightarrow Disease

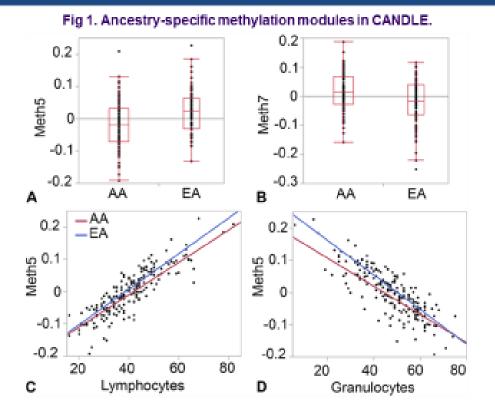
Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis

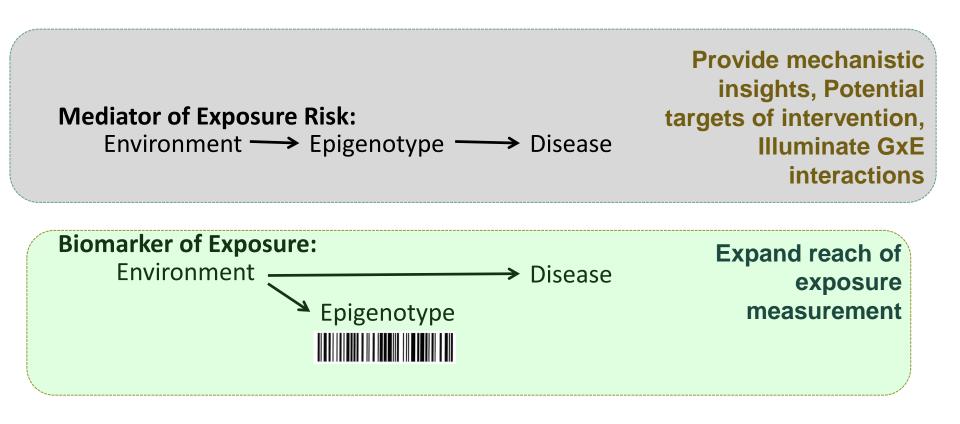
Yun Liu^{1,2,12}, Martin J Aryee^{1,3,12}, Leonid Padyukov^{4,5,12}, M Daniele Fallin^{1,6,7,12}, Espen Hesselberg^{4,5}, Arni Runarsson^{1,2}, Lovisa Reinius⁸, Nathalie Acevedo⁹, Margaret Taub^{1,6}, Marcus Ronninger^{4,5}, Klementy Shchetynsky^{4,5}, Annika Scheynius⁹, Juha Kere⁸, Lars Alfredsson¹⁰, Lars Klareskog^{4,5}, Tomas J Ekström^{5,11} & Andrew P Feinberg^{1,2,6}

Mediator of Genetic Risk:

Genotype \longrightarrow Epigenotype \rightarrow Disease

Implications:


- Epigenotype more proximal to disease state may have higher effect sizes that can drive biological discovery
- Epigenotype is potentially modifiable, genes are (typically) not
- May provide mechanistic insight into genetic associations
 - Drive research regarding biology of the disease and potential prevention and treatment
- Ancestry can confound exposure associations!


Genetic Ancestry Can Confound Exposure Associations!

Mozhui K, Smith AK, Tylavsky FA (2015) Ancestry Dependent DNA Methylation and Influence of Maternal Nutrition. PLoS ONE 10(3): e0118466. doi:10.1371/journal.pone.0118466 http://127.0.0.1:8081/plosone/article?id=info/doi/10.1371/journal.pone.0118466

Challenges for Epigenetic Marks of Cumulative Risk

- Tissue availability & specificity (and relevance)
- DNAm Measurement
- Design and timing
- Potential confounding (by age, ancestry, cell type, batch, tissue, etc)
- Load metric
- Statistical approach

	Utility in Public Health	Relevant Tissue
(A) Epigenetics as a MEDIATOR of Exposure Risk: Environment → Epigenotype → Disease	 Identify intervention targets Illuminate GxE interactions Provide mechanistic insights into observed associations 	 Disease tissue Surrogate tissue*
(B) Epigenetics as a BIOMARKER of Exposure: Environment ————————————————————————————————————	 Expand exposure measurement reach 	 Surrogate /disease tissue

*In certain circumstances a surrogate tissue may show the same relationship as diseased tissue

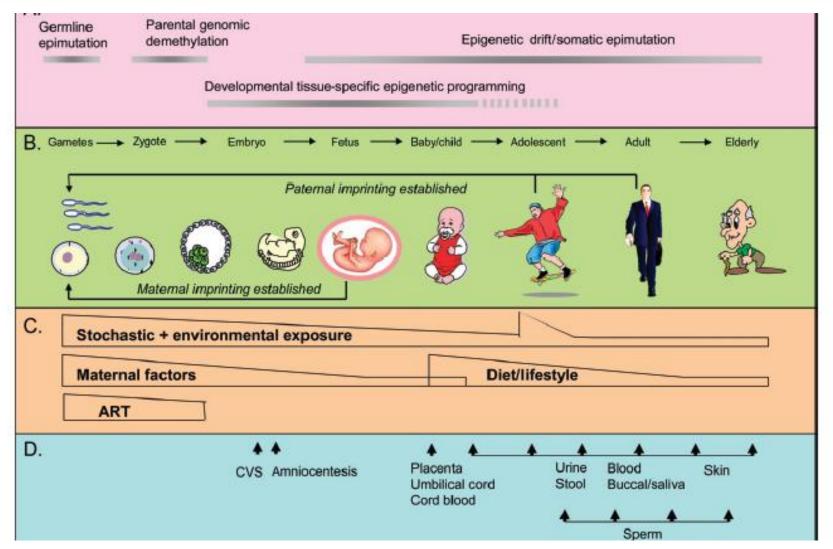
Challenges for Epigenetic Marks of Cumulative Risk

- Tissue availability & specificity (and relevance)
- DNAm Measurement
- Design and timing
- Potential confounding (by age, ancestry, cell type, batch, tissue, etc)
- Load metric
- Statistical approach

How Do We Measure DNA Methylation?

An Overview of Scale & Cost

Scale	Name	Type of Method	Amt. DNA Needed	Disadvantages
Global	LUMA	single measurement	500 ng	 does not identify specific loci
Genome- wide, gene- specific	Whole-genome Bisulfite Sequencing	Bisulfite-based	1 ug	expensiveamount of starting material
	RRBS/SureSele ct	Reduced Representation Bisulfite-based	1 ug	mainly CpG island regionsamount of starting material
Genome- scale, gene- specific	Infinium 450k	Bisulfite-based	500 ng	genomic coverage
	MeDIP/MBD	Antibody-based	4 ug	mainly CpG island regionsamount of starting material
	CHARM/HELP	Enzyme-based	3 ug	amount of starting material
Candidate gene	Bisulfite Pyrosequencing	Bisulfite-based	500 ng	 small number of loci measured

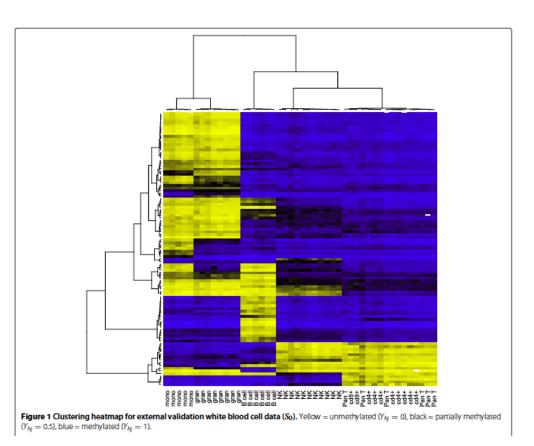

Challenges for Epigenetic Marks of Cumulative Risk

- Tissue availability & specificity (and relevance)
- DNAm Measurement
- Design and timing
- Potential confounding (by age, ancestry, cell type, batch, tissue, etc)
- Load metric
- Statistical approach

Source: **Foley DL, et al.** 2009. Am J Epidemiol. 169(4):389-400. Prospects for epigenetic epidemiology.

Challenges for Epigenetic Marks of Cumulative Risk

- Tissue availability & specificity (and relevance)
- DNAm Measurement
- Design and timing
- Potential confounding (by cell type, batch, tissue, age, ancestry, etc)
- Load metric
- Statistical approach



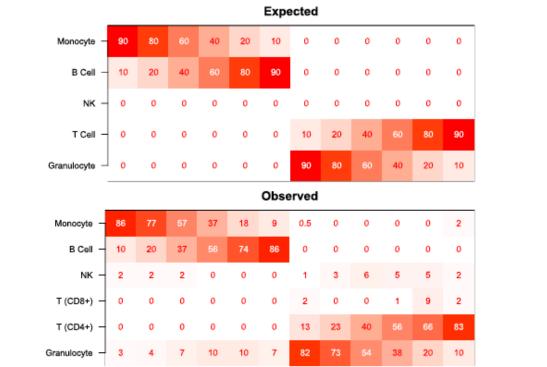
Cell Heterogeneity: Most tissues are heterogeneous cell mixtures

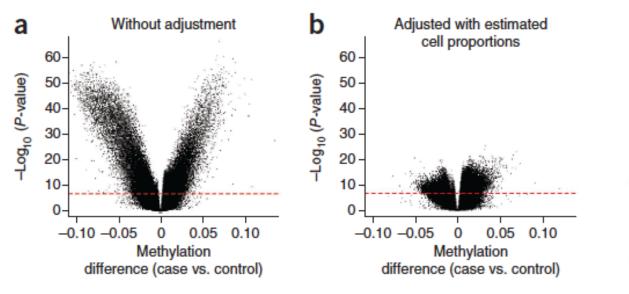
Houseman et al. BMC Bioinformatics 2012, 13:86 http://www.biomedcentral.com/1471-2105/13/86 Page 5 of 16

A set of DNAm sites can distinguish types of cells in blood

Estimation and Adjustment for Cell Type in Blood-derived DNA

(1) Houseman estimation – use the DNAm patterns to predict cell type proportions in a mixture (such as whole blood)




Figure 3 Results of cell mixture reconstruction experiments validating prediction of individual profiles. Expected and observed percentages of each cell type are shown by color (red=100, white=0) and text. Median root-mean-square-error over 12 samples had a median value of 8.2%, ranging from 5.4% to 11.6%.

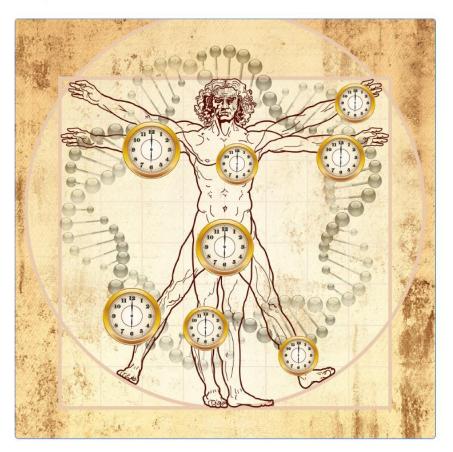
Estimation and Adjustment for Cell Type in Blood-derived DNA

(1) Houseman estimation(2) PC on predicted % cell type estimates(3) Use PCs as adjustment factors

ARTICLES

Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis

Yun Liu^{1,2,12}, Martin J Aryee^{1,3,12}, Leonid Padyukov^{4,5,12}, M Daniele Fallin^{1,6,7,12}, Espen Hesselberg^{1,5}, Arnis Runarsson^{1,3}, Lovisa Reinius⁸, Nathalie Acevedo¹, Margaret Taub^{1,6}, Marcus Ronninger^{4,5}, Riementy Schedrussy^{1,5}, Annia Schernius⁹, Juha Kere⁸, Lars Alfredsson¹⁰, Lars Klareskog^{4,5}, Tomas J Ekström^{3,11} & Andrew P Feinberg^{1,2,6}



nature

DNAm Signatures of Aging

© 2004, Johns Hopkins University. All rights reserve

DNAm Signatures of Aging

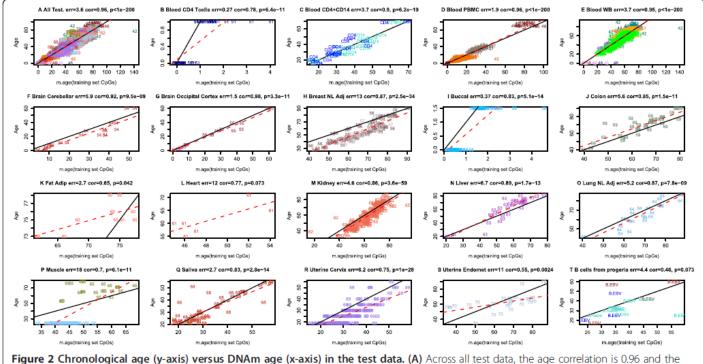


Figure 2 Chronological age (y-axis) versus DNAm age (x-axis) in the test data. (A) Across all test data, the age correlation is 0.96 and the error is 3.6 years. Results for (B) CD4 T cells measured at birth (age zero) and at age 1 (cor = 0.78, error = 0.27 years), (C) CD4 T cells and CD14 monocytes (cor = 0.90, error = 3.7), (D) peripheral blood mononuclear cells (cor = 0.96, error = 1.9), (E) whole blood (cor = 0.95, error = 3.7), (F)

cerebellar samples (cor = 0.92, error = 5.9), (G) occipital cortex (cor = 0.98, error = 1.5), (H) noi DNA methylation age of human tissues (I) buccal epithelium (cor = 0.83, error = 0.37), (J) colon (cor = 0.85, error = 5.6), (K) fat adipos error = 12), (M) kidney (cor = 0.86, error = 4.6), (N) liver (cor = 0.89, error = 6.7), (O) lung (cor = 0.1 and cell types saliva (cor = 0.83, error = 2.7), (R) uterine cervix (cor = 0.75, error = 6.2), (S) uterine endometrium

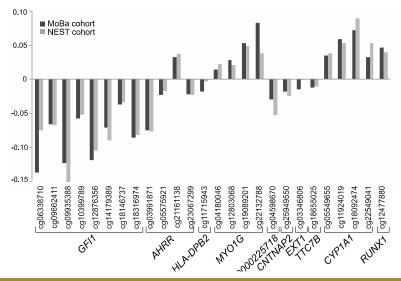
of 10 Epstein Barr Virus transformed B cell, three naive B cell, and three peripheral blood mononu Horvath

colored by disease status: brown for Werner progeroid syndrome, blue for Hutchinson-Gilford prc

Horvath Genome Biology 2013, 14:R115 http://genomebiology.com/2013/14/10/R115

Challenges for Epigenetic Marks of Cumulative Risk

- Tissue availability & specificity (and relevance)
- DNAm Measurement
- Design and timing
- Potential confounding (by age, ancestry, cell type, batch, tissue, etc)
- Load metric
- Statistical approach

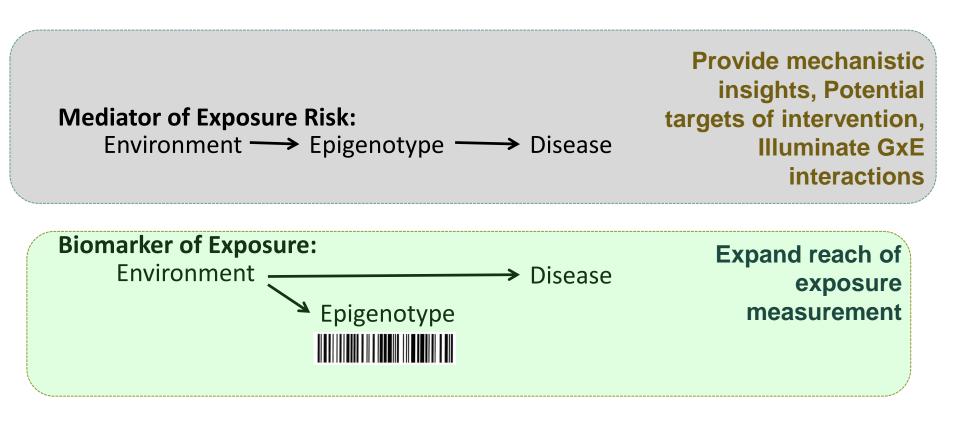


What metric to use to quantify cumulative exposure epigenetically?

- Individual CpG DNAm levels?
- Unweighted score across CpGs defined by some exposure association threshold?
 - Not as predictive as weighted scores
- Weighted score?
 - Need high-precision weights (large N)

Challenges for Epigenetic Marks of Cumulative Risk

- Tissue availability & specificity (and relevance)
- DNAm Measurement
- Design and timing
- Potential confounding (by age, ancestry, cell type, batch, tissue, etc)
- Load metric
- Statistical approach


Challenges for Epigenetic Marks of Cumulative Risk

- Tissue availability & specificity (and relevance)
- DNAm Measurement
- Design and timing
- Potential confounding (by age, ancestry, cell type, batch, tissue, etc)
- Load metric
- Statistical approach

Our Research Group

- Kelly Benke
- Kelly Bakulski
- Brooke Sheppard
- Jason Feinberg
- Shan Andrews
- Shannon Brown
- Andrew Jaffe (Leiber Institute)
- Weiyan Li

//epigenetics.jhu.edu/?section=viewPage&pageID=11

Edit View Favorites Tools Help

🗞 Convert 🔻 🛃 Select

Favorites 👍 🖉 Table of Contents — Febr...

👙 http://epigenetics.jhu.edu/?section=viewPage&...

Home

People

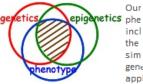
Research

Teaching

About The Center

> CEGS

Hopkins CEGS


MEDICAL SCIENCES

ABOUT THE CENTER / CE

The Center of Excellence in Genon research effort focused on under receiving a \$16.8 million grant ov CEGS has developed new genomebetween individuals as variatio understanding the epigenome r environmental factors lead to car

Key to the success of our CEGS disciplines to address the comp Feinberg is an expert in cancer et disease epigenetics generally wit Irizarry, Professor of Biostatistic Associate Professor of Epidemiol (Harvard University) and Lars K biology of stem cells and autoimn

The CEGS has developed genor Throughput Relative Methylation throughout the genome, chosen w we discovered that most variable found that aberrant methylation these shores, and involves much tissues.

Andy Feinberg Kasper Hansen Yun Liu Martin Aryee related illnesses, neuropsychiat Margaret Taub Rafa Irizarry Sarven

Sabunciyan Hwajin Lee Michael Multaup Carolina Montano

Others..

🖉 Web Slice Gallery 🔻 💋 Free Hotmail

▼ Page ▼ Safety ▼ Tools ▼ ② ▼

on m emise of the CEGS is that al development and how

ources in several different disease. For example, Dr. t have approached common areas. These include Rafael ta sets; M. Danielle Fallin, nd Professors George Daley in clinical and molecular

ding Comprehensive Highup to 4 million CpG sites the literature. Using CHARM. ences we term "shores." We sses of DNA methylation at itiation of widely disparate

enetics and human disease s the more complex task of me-wide tools to determine etic variation and disease eft). We will apply second-

generation sequencing for epigenetic measurement on an epidemiologic scale, apply our methods to the wealth of genetic and phenotypic information now available for many diseases, maximizing the impact of resources available in this renewal by combining them

