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Environmental Susceptibility of the Epigenome

Table 1. Broad environmental epigenetic regulators and references, higher order classifications of toxicants.

Factor Observational Epidemiology Citations Laboratory Toxicology Citations
Heavy metals (Pb, Cd, (Pilsner et al. 2009) (Wright et al. 2010) (Marsit et (Bihagi et al. 2011)
As, Ni) al. 2006)
Air pollution (particulate | (Madrigano et al. 2011) (Tarantini et al. 2009) (Yauk et al. 2008)
. matter)

Toxicant - . T
Persistent organo- (Kim et al. 2010) (Rusiecki et al. 2008) (Zama and Uzumcu 2009)
pollutants
Endocrine disrupting (Bromer et al. 2010) (Anderson et al. 2012;
chemicals Guerrero-Bosagna et al. 2008)
One-carbon metabolism | (Ba etal. 2011) (Hoyo et al. 2011) (Hirsch et al. (Mehedint et al. 2010) (McKay et al. 2011)

2008) (Fenech 2001a)
Nutrient Micro-nutrients (Fenech and Ferguson 2001) (Fenech 2001b) (Davis and Uthus 2003) (Rowling et al. 2002)

Caloric restriction

(Tobi et al. 2009)

(Hass et al. 1993)

Nutraceuticals (EGCG,
curcumin, piperine...)

(Yuasa et al. 2009)

(Shi et al. 1994) (Fang et al. 2003)

Pharmaceutical

(Yang et al. 2006)

(Tryndyak et al. 2006)

Smoking (Breitling et al. 2011) (Joubert et al. 2012) (Belinsky et al. 2003)
Lifestyle and | Socio-economic status (Borghol et al. 2012) (McGuinness et al. 2012)
Demographics | Stress (Essex et al. 2013) (Uddin et al. 2010) (Murgatroyd et al. 2009) (Champagne et al.

2004)
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What does this mean?

How should we interpret such
findings?
How should we go about this
moving forward?
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Utility of Epigenetic Marks for Public Health

Mechanistic:

Mediator of Genetic Risk:
Genotype —> Epigenotype —> Disease

Mediator of Exposure Risk:
Environment —> Epigenotype —> Disease

Biomarker:

Biomarker of Exposure:
Environment > Disease

Epigenotype
Biomarker of Disease:

Disease —> Epigenotype
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Utility of Epigenetic Marks for Public Health

Mechanistic:

Mediator of Exposure Risk:
Environment —> Epigenotype —> Disease

Implications:
» May provide mechanistic insight into exposure
associations
= Drive research regarding biology of the disease
and potential prevention and treatment
» Epigenetics may be target for intervention
*» Tissue type sampled may be critical
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DNAmM changes associated with prenatal exposure to smoking
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Detectible Cord Blood Methylation Differences By
Maternal Smoking in T2

Joubert et al, EHP, 2012

Samples: 1062 newborn cord blood samples (Norwegian Mother and Child Cohort)
Methylation measurements: 485,512 loci (lllumina 450K)
Exposure measurements: maternal plasma cotinine, 18wks Cord Blood
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Epigenetic Signatures of Prenatal Exposure Seen
In Newborns and in Young Children
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Utility of Epigenetic Marks for Public Health

Biomarker of Exposure:

o
\ R > Disease
Ie R
Implications:
» Epigenotypes may provide measurable biomarkers of
exposure

» May be able to measure past exposure — opens up
possibilities for design alternatives or overcoming
limitations of particular study designs

** Not causally related, so epigenetics are not the target
for intervention, but may be (better) biomarker of
cumulative exposure

» Non-target tissue may be useful proxy
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Utility of Epigenetic Marks for Public Health

Mechanistic:

Mediator of Genetic Risk:

Genotype —> Epigenotype —> Disease Provide mechanistic

insights, Potential

Mediator of Exposure Risk: targets of intervention,

Environment —> Epigenotype — Disease llluminate GXE
interactions

Biomarker:
~ Biomarker of Exposure: Expand reach Of
Environment > Disease exposure

Epigenotype measurement




Why care about Epg Mediation of Genetic
Effects for this workshop?

Genotype —> Epigenotype — Disease
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Epigenome-wide association data implicate DNA
methylation as an intermediary of genetic risk in
_ rheumatoid arthritis
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Mediator of Genetic Risk:
[ Genotype — Epigenotype — Disease]

Implications:

» Epigenotype more proximal to disease state — may
have higher effect sizes that can drive biological
discovery

» Epigenotype is potentially modifiable, genes are
(typically) not

» May provide mechanistic insight into genetic
associations

* Drive research regarding biology of the disease
and potential prevention and treatment

= Ancestry can confound exposure associations!
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Genetic Ancestry Can Confound
Exposure Associations!

Fig 1. Ancestry-specific methylation modules in CANDLE.
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Utility of Epigenetic Marks for Public Health

Provide mechanistic |
insights, Potential
Mediator of Exposure Risk: targets of intervention,
Environment —> Epigenotype —> Disease llluminate GXE
interactions ;

/" Biomarker of Exposure: Expand reach of
Environment > Disease exposure
Epigenotype measurement
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Challenges for Epigenetic Marks of
Cumulative Risk

e Tissue avallability & specificity (and relevance)
e DNAM Measurement
e Design and timing

e Potential confounding (by age, ancestry, cell type, batch,
tissue, etc)

e Load metric
e Statistical approach
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Utility in Relevant
Public Health Tissue

* |[dentify intervention

targets - Disease
* llluminate GxE tissue
(A) Epigenetics as a MEDIATOR of Exposure Risk: interactions
: : ) e Surrogate
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insights into
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(B) Epigenetics as a BIOMARKER of Exposure:

Environment > Disease
™ Epigenotype
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i
1
1

tissue
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*In certain circumstances a surrogate tissue may show the same relationship as diseased tissue
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Challenges for Epigenetic Marks of
Cumulative Risk

v Tissue avallability & specificity (and relevance)
e DNAmM Measurement
e Design and timing

e Potential confounding (by age, ancestry, cell type, batch,
tissue, etc)

e Load metric
e Statistical approach
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How Do We Measure DNA Methylation?

An Overview of Scale & Cost

Amt. DNA :
Scale Name Type of Method Needed Disadvantages
Global LUMA single measurement 500 ng ) Icé(z:?s HS IR STECiile
Genome-  Whole-genome . expensive
wide, gene- Bisulfite Bisulfite-based 1 ug P . |
o ) « amount of starting material
specific Sequencing
Reduced : : :
RRBS/SureSele : « mainly CpG island regions
Representation 1ug : :
ct e « amount of starting material
Bisulfite-based
Genome- . S :
— Infinium 450k Bisulfite-based 500 ng e genomic coverage
gene-
specific . . ' [ '
pectt MeDIP/MBD Antibody-based 4 ug MY ClpE |sla_1nd regions
« amount of starting material
CHARM/HELP Enzyme-based 3 ug « amount of starting material
Candidate Bisulfite - Bisulfite-based 500 ng « small number of loci
gene Pyrosequencing measured
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Challenges for Epigenetic Marks of
Cumulative Risk

v Tissue avallability & specificity (and relevance)
v DNAmM Measurement
e Design and timing

e Potential confounding (by age, ancestry, cell type, batch,
tissue, etc)

e Load metric
e Statistical approach
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: "Germﬁne Parental genomic
epimutation demethylation Epigenetic drift/somatic epimutation
E = e

Developmental tissue-specific epigenetic programming

B. Gametes —» Zygote —  Embryo —— Fotus — Babyichild —% Adolescent = Adut  — Elderly

‘ Patemal imprinting established
@ ‘(" |
S @
@ 2\ &
Matemal imprinting established |
C. | stochastic + environmental exposure —! B 1
Maternal factors , Diet/li e ,
ART B
D. 44 4 4 4 4 4 4 4
CVS Amniocentesis Placenta Urine  Blood Skin
Umbilical cord Stool  Buccallsaliva
Cord blood
4 4 & L
Sperm

Source: Foley DL, et al. 2009. Am J Epidemiol. 169(4):389-400. Prospects
for epigenetic epidemiology.
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Challenges for Epigenetic Marks of
Cumulative Risk

Tissue avallability & specificity (and relevance)
DNAmM Measurement
Design and timing

Potential confounding (by cell type, batch, tissue, age,
ancestry, etc)

e Load metric
e Statistical approach
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Cell Heterogeneity: Most tissues are heterogeneous
cell mixtures

Houseman et ai. BMC Bioinformatics 2012, 13:86 Page5of 16
hittps/fwww.bicmedcentral.com/1471-2105/13/86

A set of DNAmM sites can
distinguish types of cells
In blood

Figure 1 Clustering heatmap for external validation white blood cell data [So). Yellow = unmet hyl ted (¥iy = 0), black = pamially methylated
(Yiy = 0.5), blue = methylated (Y, = 1).
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Estimation and Adjustment for Cell
Type in Blood-derived DNA

(1) Houseman estimation — use the DNAmM patterns to
predict cell type proportions in a mixture (such as whole
blood)

Expected

Mnncm- 40 20 10 0 o 0 o o 0

B Call — 40

NK | © 4] o 1] 0 0 0 o 0 o o 0

TCall 4 O 4] o o o & 10 20 40

Granulocyte — 0 0 0

Manocyte a7 18 9 05 0 0 0 0 2

BCel 4 10 20 | 37 74 35 [ 0 o 0 0 0

MK -4 2 2 2 0 0 0 1 3 8 5 5 2

T(CcDa+) - © 0 0 0 0 0 2 0 0 1 g 2
T(CDé+) - © 0 0 0 0 0 13 23 | 40

Granulocyte — 3 4 7 0 10 7 m 38 2 10

Figure 3 Results of cell mixture reconstruction experiments validating prediction of individual profiles. Expected and observed
percentages of each cell typea are shown by color (red=100, white=0) and 1ext. Median rooe-mean-square-error over 12 samples had a median value [
of B.2%, ranging from 5.4% 10 11.6%.
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-
Estimation and Adjustment for Cell
Type in Blood-derived DNA

(1) Houseman estimation

(2) PC on predicted % cell type estimates
(3) Use PCs as adjustment factors

a Without adjustment b Adjusted with estimated
cell proportions
60 -
7 $ 40+
@ .
S > 30-
g g -
| " 104 .
biotechnol
I I . | — | | D_ I I I I I N
—0.10 -0.05 0 0.05 0.0 —0.10 0.05 0 0.05 010 Epigenome-wide association data implicate DNA
MEth‘fl&thn M'E'th}rlﬂtiﬂﬂ ;Eeezhnyqlstté?g aarstsrr;t;gtermediary of genetic risk in
difference (case vs. control) difference (case vs. control) .
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DNAmM Signatures of Aging

Genome Biology
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DNAmM Signatures of Aging
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Figure 2 Chronological age (y-axis) versus DNAm age (x-axis) in the test data. (A) Across all test data, the age correlation is 096 and the
error is 3.6 years. Results for (B) CD4 T cells measured at birth (age zero) and at age 1 (cor = 0.78, error = 0.27 years), (C) CD4 T cells and CD14
monocytes (cor = 090, error = 3.7), (D) peripheral blood mononudear cells (cor = 0.96, error = 1.9), (E) whole blood (cor = 095, error = 3.7), (F)

cerebellar samples (cor = 0.92, error = 5.9), (G) occipital cortex (cor = 098, error = 1.5), (H) noi . .
(l) buccal epithelium (cor = 083, error = 0.37), (J) colon (cor = 085, error = 5.6), (K) fat adipos DNA methylat|0n age Of human tlssues
errFJr = 12), (M) kidney (cor = 086, err_u-r —4.6?. (N) liver (cor = 0.89, error = 6.7), (0) lung (cor = D.a nd Ce” types

saliva (cor = 083, error = 27), (R) uterine cervix (cor = 0.75, error = 62), (8) uterine endometrium

of 10 Epstein Barr Virus transformed B cell, three naive B cell, and three peripheral blood mononu jqpyath

colored by disease status: brown for Werner progeroid syndrome, blue for Hutchinson-Gilford pre

Horvath Genome Biology 2013, 14R115

( BioMed Central http//genomebiology.com/2013/14/10/R115 [
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Challenges for Epigenetic Marks of
Cumulative Risk

Tissue avallability & specificity (and relevance)
DNAmM Measurement
Design and timing

Potential confounding (by age, ancestry, cell type, batch,
tissue, etc)

e Load metric
e Statistical approach
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What metric to use to quantify
cumulative exposure epigenetically?

e Individual CpG DNAmM levels?

e Unweighted score across CpGs defined by
some exposure association threshold?
o Not as predictive as weighted scores
e Weighted score? | e n
o Need high-precision ‘M‘IHII“II |
weights (large N)

wwwwwwwwwwwwwwwwwwwwwwwwww
mmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmm
oooooooooooooooooooooooo
2233292 9P2PPPPIPIIPIPPIPPPTPIPPIIPIPY

9L | \%H_l 2
< N N0 QVAN A » A
0? v‘\% OQ O q% $y~ ij X0 QN 0§|‘
W

JOHNS HOPKINS

@ Bl OOMBERG
VBB SCHOOL o PUBLIC HEALTH




Challenges for Epigenetic Marks of
Cumulative Risk

Tissue avallability & specificity (and relevance)
DNAmM Measurement
Design and timing

Potential confounding (by age, ancestry, cell type, batch,
tissue, etc)

v Load metric
e Statistical approach
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Challenges for Epigenetic Marks of
Cumulative Risk

Tissue avallability & specificity (and relevance)
DNAmM Measurement
Design and timing

Potential confounding (by age, ancestry, cell type, batch,
tissue, etc)

Load metric
v Statistical approach
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Utility of Epigenetic Marks for Public Health

Provide mechanistic |
insights, Potential
Mediator of Exposure Risk: targets of intervention,
Environment —> Epigenotype —> Disease llluminate GXE
interactions ;

/" Biomarker of Exposure: Expand reach of
Environment > Disease exposure
Epigenotype measurement
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