Chronically Underestimated:

The impact of high early life water intake rates and short-term effects for deriving health-protective drinking water criteria

US EPA Temporal Exposures Workshop
Helen Goeden, Ph.D.
Minnesota Department of Health
Jan 28, 2016

Outline

- Background
- Evolving of Policy & Science
- Revised Methods Multiple Durations
- Results
- Challenges
- Conclusions

Background

 Health-based drinking water guidance (HBG)

"...a concentration of a contaminant, or mixture of contaminants, that is likely to pose little or no risk to human health"

Background cont.

- Basic equation from EPA
 - Health endpoints other than cancer
 - Reference dose (RfD) represents a no effect dose
 - Focus Chronic effect from chronic exposure
- Used for drinking water health based guidance (HBG) (MDH pre-2008)

HBG
$$(\mu g/L)_{chronic} = \frac{RfD_{chronic} \times 1000 \text{ ug/mg} \times RSC}{Intake Rate_{adult/chronic}}$$

Assumption: lower chronic reference dose and long term exposure offers maximum protection

Evolving Policy & Science

Consideration of infants & children in setting standards

[NAS 1993 report: Pesticides in the Diets of Infants and Children]

Federal Level

- Food Quality Protection Act 1996
- Amendments to Safe Drinking Water Act
- 1996 EPA Science Policy Council
- 1996 Executive Order by President Clinton

State Level

2001 Health Standards Statute (air & water)

Evolving Policy & Science

- A Review of the Reference Dose and Reference Concentration Process (EPA 2002)
 - Additional testing on life stage differences
 - Reference values for acute, short-term, subchronic & chronic
- Estimated Per Capita Water Ingestion and Body Weight in the United States – An Update (EPA 2004)
- A Framework for Assessing Health Risks of Environmental Exposures to Children (EPA 2006)
- Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens (2005)
 - Lifetime cancer slope factors
 - Age-Dependent Adjustment Factors (ADAFs)

Need for Revised Methods?

Standard Noncancer Equation (pre-2008)

HBG $(\mu g/L)_{chronic} = \frac{RfD_{chronic} \times 1000 \text{ ug/mg} \times RSC}{\text{intake Rate}_{adult/chronic}}$

Toxicity

- Protective of sensitive life stages?
- Protective of < chronic durations?

Exposure

- •Protective of high short-term exposures?
- Update Water Intake Rates

GOAL

 To derive health-based drinking water criteria that adequately protects susceptible life-stages and highly exposed populations

Revised Methods

Durations (EPA 2002)

- Acute: < 24 hours
- Short-term: > 24 hours up to 30 days
- Subchronic: > 30 days, up to ~10% of a lifespan (~90 days in typical laboratory rodent studies)
- Chronic: > ~ 10% of a life span

Revised Methods

For Each Duration (if sufficient data was available)

- Toxicity Assessment (RfD derivation)
 - Consider timing (e.g., life stage) & duration of dosing
 - Consider entire database in identifying 'co-critical' effects
 - Consider entire database in selecting type & magnitude of UFs
- Exposure Assessment (water intake rate)
 - Consider life-stage in calculating corresponding duration intake rates
 - Use updated age specific intake rate data
- Relative Source Contribution (RSC)
 - Based on "Exposure Decision Tree for RfD Apportionment" (EPA 2000)

Revised Methods

Standard Noncancer Equation

HBG
$$(\mu g/L)_{duration} = \frac{RfD_{duration} \times 1000 \text{ ug/mg} \times RSC_{duration}}{Intake Rate_{duration}}$$

Where:

 $HBG(\mu g/L) = Health-based$ Guidance value for a given duration

RfD (mg/kg-day) = Reference Dose for a given duration (acute, short-term, subchronic, and chronic)

Intake Rate (L/kg-day) = Water intake rate corresponding to given duration RSC = Relative Source Contribution, varies by duration and age group

Results

73 chemical assessments completed

- Solvents, pesticides, consumer product/personal care related chemicals, pharmaceuticals, . . .
- Short-term, subchronic and chronic values derived for 53 (~73%)
 - Remaining 20 chemicals had only subchronic & chronic (15) or only chronic value (5)

Results - Toxicity

Reference Doses

- Decreased with increasing duration
 - Short-term > Subchronic > Chronic
 - Chronic RfD was lowest for more than 90 percent (48/53)
- Exceptions Shorter Duration RfD was lowest
 - Developmental toxicants
 - Cholinesterase inhibitors
- MDH set the final Chronic RfD to lowest RfD value (EPA 2002)

Results - Toxicity

Comparison	Number of Chemicals	Geometric Mean ± GSD	90 th percentile	95 th percentile
Short-term RfD to Chronic RfD Ratio				
	53 ^a	3.7 ± 3.0	19.1	24.9
	16 ^b	2.8 ± 2.1	5.6	9.1
Subchronic RfD to Chronic RfD Ratio				
	53 ^a	2.0 ± 2.1	4.4	10.0
	16 ^b	1.6 ± 1.9	4.2	4.6

a) Includes chronic RfDs based on less than chronic studies

b) Limited to assessments in which comparison is across laboratory animal studies and chronic RfD is based on chronic study.

Results - Toxicity

Comparison	No. of Chemicals	Geometric Mean ± GSD	95 th percentile		
Short-term NOAEL to Chronic NOAEL Ratio					
Batke et al 2011	14	3.4 ± 3.7	29.2		
Zarn et al 2011 (pesticides)	Rat 107 Mouse 56	4.3 ± 4.7 3.4 ± 3.6	53.2 23.7		
Groeneveld et al 2004	35	4.9 ± 3.5	38.6		
Kramer et al 1996	71	4.1 ± 4.4	46		
Subchronic NOAEL to Chronic NOAEL Ratio					
Batke et al 2011	58	1.4 ± 2.1	4.7		
Zarn et al 2011 (pesticides)	Rat 222 Mouse 99	2.5 ± 3.4 2.2 ± 3.9	17.4 21.4		
Bokkers and Slob 2005	68	1.5 ± 5.3	22.7		
Groeneveld et al 2004	70	2.3 ± 3.6	18.4		
Pieters et al 1998	149	1.7 ± 5.6	29		

Results – Exposure

Age-Specific Water Intake Rates (EPA 2004)

Age Group

Results - Exposure

Water Intake Rate (L/kg per day)

- Decreased with age* (short-term > subchronic > chronic)
- Infant intake rates much higher than adults (mean values ~10-fold higher; 90th & 95th percentiles ~7-fold higher)
- By ~7 yrs of age similar to adult intake rates
- Calculated time-weighted average over exposure duration

*Not unique to drinking water — skin surface area as well as food, soil, and air intakes higher in early life

Results – Exposure

Default* Duration Specific Water Intake Rates

Age Group

^{*}default value - different life-stage or duration used if chemical specific information available

Results – Exposure

Relative Source Contribution Factor (EPA 2000)

- Used to account for exposures other than ingestion of drinking water (e.g., dermal & inhalation from water use; food; soil/dust; consumer products; etc.)
- Chemical-specific or Default (range 0.2 to 0.8)
- Changes with age and exposure patterns
- Young infants have more limited exposures
- Older infants, toddlers, children and adults have more varied exposures

Result - higher RSC for infants [Exceptions - highly volatile chemicals or baby consumer products]

Results – HBGs

Standard Noncancer Equation

HBG (μg/L)_{duration} =
$$\frac{\text{RfD}_{\text{duration}} \times 1000 \text{ ug/mg} \times \text{RSC}_{\text{duration}}}{\text{Intake Rate}_{\text{duration}}}$$

Where:

 $HBG(\mu g/L) = Health-based$ Guidance value for a given duration

RfD (mg/kg-day) = Reference Dose for a given duration

Intake Rate (L/kg-day) = Water intake rate corresponding to given duration

Default: Acute/Short-term (1 – 3 month infant); Subchronic (TWA birth to 8 yrs);
 and Chronic (TWA birth to 70 yrs)

RSC = Relative Source Contribution

Default: Acute/Short-term – 0.5 [except: highly volatile chemicals & baby consumer product (0.2) and prescription drugs (0.8)]; Subchronic and Chronic - 0.2 [except prescription drugs (0.8)]

Results – HBGs

Health-based Guidance (HBG)

- Unlike RfDs, HBGs did not decreased with increasing duration
- Chronic duration HBGs were lower than shorter duration for 28 of the 53 chemicals (~53%)
- The7-fold difference in short-term intake rate 'overwhelmed' the 2-4 fold differences in RfDs
- MDH set the final Chronic HBG to the lowest HBG value

Challenges

Toxicity data limitations

- Lower quality of shorter duration studies
- Inadequate reporting of effects at interim time points
- Latent effects of early-life exposures

Exposure data limitations

- Early-life exposures
 - Often only have measure of maternal exposure in laboratory animal studies
- Cumulative exposures to inform RSC, especially for high short-term exposures

Resources

Time intensive – resulting in fewer chemicals assessed

Conclusions

- Results support recommendations of EPA 2002
 report (i.e., calculation of multiple duration RfDs)
- Results demonstrate importance (necessity?)
 of evaluating shorter durations to ensure
 protectiveness
- In absence of shorter duration RfDs use chronic RfD may be reasonable option for screening level assessment (option suggested by EPA 2002)

Questions?

Helen Goeden, Ph.D. Health Risk Assessment Unit **Environmental Health Division** Minnesota Department of Health

Phone: 651-201-4904

helen.goeden@state.mn.us

Methodology can be found at: http://www.health.state.mn.us/divs/eh/risk/rules/water/hrlsonar08.pdf

Health-based Guidance values can be found at:

http://www.health.state.mn.us/divs/eh/risk/guidance/gw/table.html

