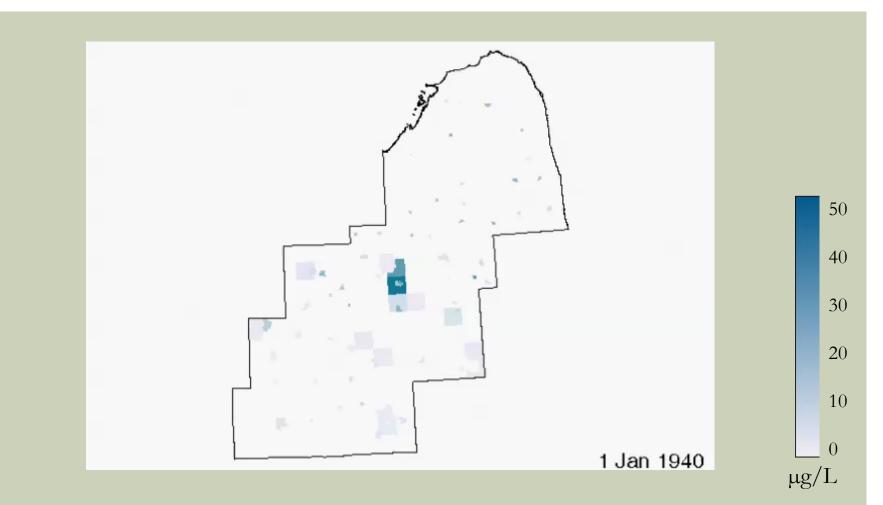

PERSPECTIVES ON TIMING OF EXPOSURE IN AN EPIDEMIOLOGIC STUDY OF ARSENIC: TEMPORAL MEASURES, EXPOSURE LIFELINES, EXPOSURE ERROR, AND UNCERTAINTY

Jaymie R. Meliker, PhD

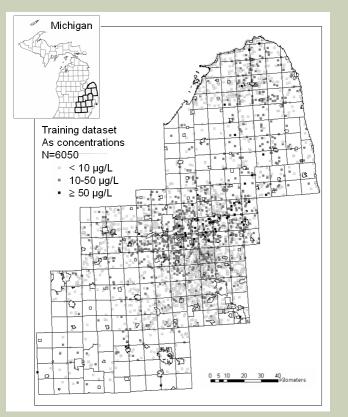
Program in Public Health Department of Family, Population, & Preventive Medicine Consortium for Inter-Disciplinary Environmental Research

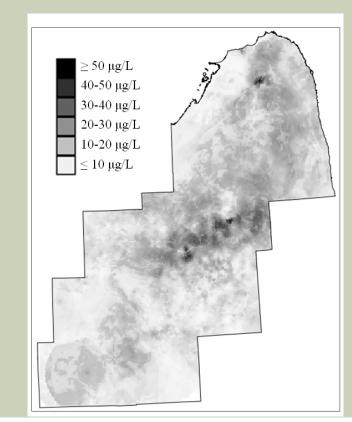
EPA Temporal Exposures Workshop, Jan 2016


- Lifetime Exposure to Arsenic in Drinking Water in a Bladder Cancer Case-Control Study
 - Typical Presentation of Results: Summary Measures of Exposure
 - Temporal Terms
 - Strategy for Visualizing Life-Course Exposure
 - Reporting Epidemiologic Associations Over the Life-Course
 - Strategy for Incorporating Error in Exposure in the Epidemiologic Estimate
 - Multiple Testing

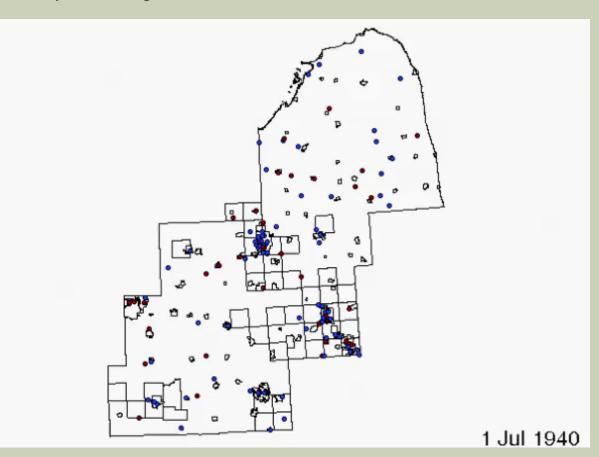
LIFETIME EXPOSURE TO ARSENIC IN DRINKING WATER

- Bladder cancer case-control study in 11 county study area of southeastern Michigan
- Public water supplies
- Private wells
- Residential mobility (and occupational mobility)
- Water supplies outside of study area
- Monte Carlo simulation analysis and biomarker analyses suggests drinking water most important route in this part of Michigan


Meliker et al., 2010, Cancer Causes and Control 21: 745-757. Meliker et al., 2007, Intl Arch Occup & Env Health 80: 184-197. Meliker et al., 2006, Intl J Hygiene & Env Health 209: 399-411.


HISTORICAL ARSENIC IN PUBLIC WATER SUPPLIES

PAST PRIVATE WELLS


- One of the principal challenges in reconstructing historical arsenic exposure
 - Geostatistical model (Meliker et al., 2008, Env Research 106: 42-50; Goovaerts et al., 2005, Water Resources Research 41: W07013.

INDIVIDUAL MOBILITY HISTORIES

99% of person-years reported for both cases and controls 64,040 person-years

Residential History Dataset								
Participant ID	Year In	Year Out	Address	City	Geographic Coordinates	Water Source	Arsenic Concentration Estimate	
2	1930	1940	XX Main St.	Bad Axe	X,Y	Community Supply	Retrieve from Public Supply Dataset	
2	1940	1983	XX State St.	Montrose	X,Y	Community Supply	Retrieve from Public Supply Dataset	
2	1983	1987	XX Genesee Rd.	Grand Blanc	X,Y	Private Well	Retrieve from Geostatistical Model	
2	1987	2004	XX Liberty St.	Jackson	X,Y	Community Supply	1.75 μg/L	_
3	1942	1966	XX Lapeer Rd.	Lapeer	X,Y	Private Well	Retrieve from Geostatistical Model	
3	1966	2004	XX Williams St.	Lapeer	X,Y	Community Supply	0.31 μg/L	

μg/L	50 40 30 20 10
	0 µg/L

			112/L
(chill	and and		20 10 μg/L
15		029	30
1	-	NIG	50

X, Y X, Y

Public Water Supply History Arsenic Data									
Town Name	Year In	Year Out	Arsenic Estimate						
Bad Axe	1920	2000	14.12 µg/L						
Montrose	1920	1979	12.58 µg/L						
Montrose	1979	2000	0.30 µg/L						

mat	tes from	Geostatis	stical Model	
	Year In	Year Out	Arsenic Estimate	
İ	1983	1987	8.50 μg/L	
	1942	1966	7.50 μg/L	

Arser	Arsenic Concentration Estimates at Residences in the Study Area								
ID	Year In	Year Out	Arsenic Estimate	Data Source					
2	1930	1940	14.12 μg/L	Public Supply Data					
2	1940	1979	12.58 µg/L	Public Supply Data					
2	1979	1983	0.30 µg/L	Public Supply Data					
2	1983	1987	8.50 µg/L	Geostatistical Model					
2	1987	2004	1.75 µg/L	Analyzed by Staff					
3	1942	1966	7.50 µg/L	Geostatistical Model					
3	1966	2004	0.31 µg/L	Analyzed by Staff					

ESTIMATES OF EXPOSURE AND ERROR OVER THE LIFE-COURSE

ID	Year In	Year Out	Arsenic Estimate	Error Estimate	Data Source
2	1930	1940	14.12 µg/L	3.51 µg/L	Public Supply Data
2	1940	1979	12.58 µg/L	2.31 µg/L	Public Supply Data
2	1979	1983	0.30 µg/L	0.04 µg/L	Public Supply Data
2	1983	1987	8.50 µg/L	10.43 µg/L	Geostatistical Model
2	1987	2004	1.75 µg/L	0.30 µg/L	Analyzed by Staff
3	1942	1966	7.50 µg/L	5.23 µg/L	Geostatistical Model
3	1966	2004	0.31 µg/L	0.25 µg/L	Analyzed by Staff

Measurement error (measured values)

SD (public supply data + geostatistical model)

Meliker et al., 2010, Annals of Epi 20: 750-758. 8

- Lifetime Exposure to Arsenic in Drinking Water in a Bladder Cancer Case-Control Study
 - Typical Presentation of Results: Summary Measures of Exposure
 - Temporal Terms
 - Strategy for Visualizing Life-Course Exposure
 - Reporting Epidemiologic Associations Over the Life-Course
 - Strategy for Incorporating Error in Exposure in the Epidemiologic Estimate
 - Multiple Testing

MULTIVARIATE-ADJUSTED^a ORs AND 95% CIs FOR LIFETIME AVERAGE ARSENIC IN DRINKING WATER AND BLADDER CANCER

				<u> </u>
	Cases ^b	Controls ^b	OR	95% CI
	(no.)	(no.)		
Arsenic Concentration in Water (TWA)				
Continuous (per 5 µg/L increase)	407	564	1.07	0.94, 1.22
Categorical				
<1 µg/L	187	264	1.00	
1-10 µg/L	182	180	0.88	0.67, 1.17
>10 µg/L	38	37	1.19	0.71, 1.99
Arsenic Intake from Water (TWA) ^c				
Continuous (per 5 µg/day increase)	394	534	1.03	0.93, 1.14
Categorical				
<1 μg/day	189	252	1.00	
1-10 µg/day	162	234	0.86	0.64, 1.14
>10 µg/day	43	48	1.07	0.66, 1.72

^aAdjusted for cigarette smoking history, education, history of employment in high-risk occupation, family history of bladder cancer, age, race, and sex.

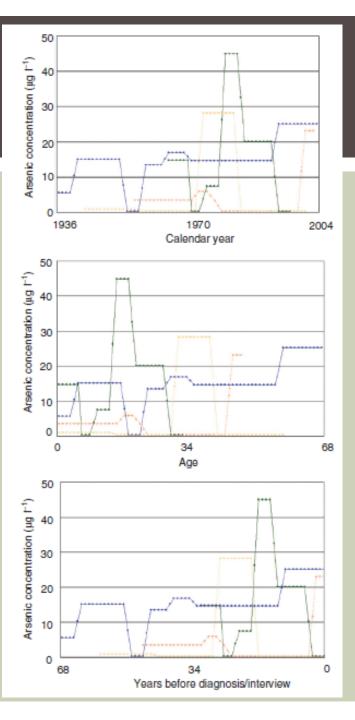
MULTIVARIATE-ADJUSTED ORs AND 95% CIs, STRATIFIED FOR FLUID CONSUMPTION

		Home Water Consumption Above 1 L/day					
		Cases (no.)	Controls (no.)	OR	95% CI		
Arsenic Concentration in Water (TWA))						
Continuous (per 5 µg/L increase)		202	262	1.23	1.00, 1.52		
Categorical							
<1 μg/L		79	123	1.00			
1-10 μg/L		104	124	1.15	0.76, 1.74		
>10 µg/L		19	15	1.88	0.85, 4.17		
		TT 377		· • • •	1 7 / 1 1		
			-		re 1 L/day and		
		ADOVE	Median Perc Contain Wate	_			
		Cases	Controls	OR	95% CI		
		(no.)	(no.)	OR	3070 01		
Arsenic Concentration in Water (TWA)		(110.)	(110.)				
Continuous (per 5 µg/L increase)		101	120	1.33	1.00, 1.76		
Categorical							
<1 µg/L		36	58	1.00			
1-10 μg/L		52	55	1.48	0.80, 2.74		
>10 µg/L		13	7	3.71	1.20, 11.42		

11

MIGHT ALSO CONSIDER TIME WINDOWS OF EXPOSURE

Metric 1: Arsenic	No. of	No. of	I Inadiustad	A directed*
			Unadjusted	Adjusted*
Concentration in Water	Cases	Controls	Model	Model
at Home			OR (95%CI)	OR (95%CI)
Age 20-29				
<5 µg/L	171	363	1.00	1.00
5-10 μg/L	32	34	2.00 (1.19, 3.34)	1.60 (0.92, 2.76)
>10 µg/L	15	35	0.91 (0.48, 1.71)	0.63 (0.33, 1.24)
			p ^b =0.37	p ^b =0.63
Age 30-39	1.44	245	1.00	1.00
<5 µg/L	166	345	1.00	1.00
5-10 µg/L	22	41	1.12 (0.64, 1.93)	1.13 (0.64, 2.02)
>10 µg/L	31	44	1.46 (0.89, 2.40) p ^b =0.14	1.13 (0.67, 1.92) p ^b =0.55
Age 40-49			1	1
<5 μg/L	151	335	1.00	1.00
5-10 µg/L	29	41	1.57 (0.94, 2.62)	1.62 (0.94, 2.77)
>10 µg/L	34	40	1.89 (1.15, 3.10)	1.55 (0.92, 2.63)
			p ^b =0.005	p ^b =0.04
Age 50-59				
<5 µg/L	141	304	1.00	1.00
5-10 µg/L	21	33	1.37 (0.77, 2.46)	1.25 (0.68, 2.32)
>10 µg/L	22	35	1.36 (0.77, 2.40)	1.24 (0.67, 2.28)
			p ^b =0.19	p ^b =0.39
Age 60-69				
$<$ 5 μ g/L	100	200	1.00	1.00
5-10 µg/L	15	21	1.43 (0.71, 2.89)	1.20 (0.56, 2.57)
>10 µg/L	9	12	1.50 (0.61, 3.68) p ^b =0.22	1.78 (0.67, 4.75) p ^b =0.24
			p =0.22	p =0.24

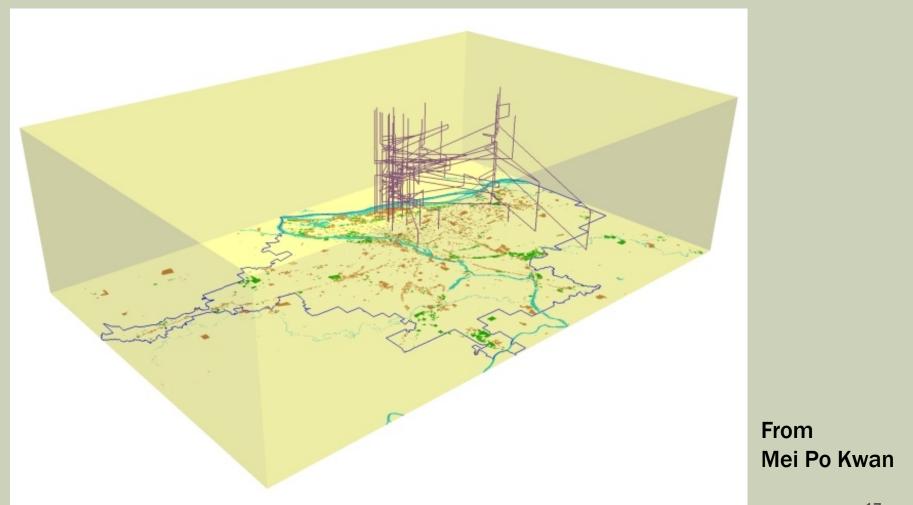

*Adjusted for smoking (ever/never), race (Black/white/other), gender, age, education.

^b = p value for test of trend.

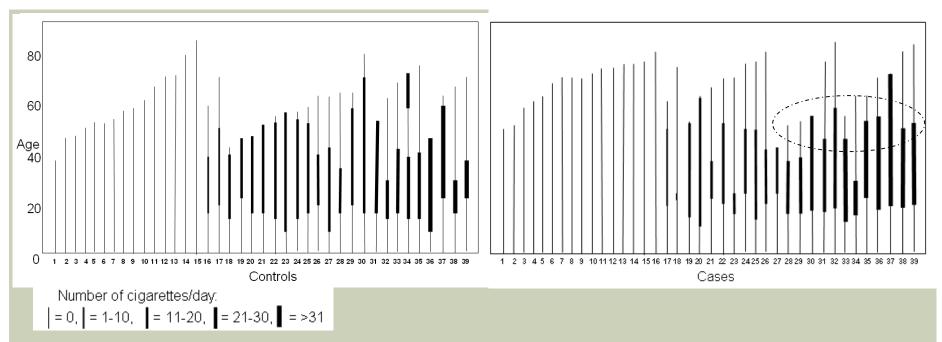
- Lifetime Exposure to Arsenic in Drinking Water in a Bladder Cancer Case-Control Study
 - Typical Presentation of Results: Summary Measures of Exposure
 - Temporal Terms
 - Strategy for Visualizing Life-Course Exposure
 - Reporting Epidemiologic Associations Over the Life-Course
 - Strategy for Incorporating Error in Exposure in the Epidemiologic Estimate
 - Multiple Testing

TEMPORAL TERMINOLOGY

- Duration
- Frequency
- Magnitude (typically expressed in units of concentration multiplied by time (e.g., (mg/m³)* h))
- Cumulative exposure (e.g., (mg/m³) * years)
- Time-weighted average (TWA) exposure ((mg/m³) per year)
- Peak exposure
- Time-specific exposures
 - Time windows
 - Temporally continuous
 - Which measure of time: age, calendar year, years prior to diagnosis, or others (years since menarche/or since beginning an occupation)



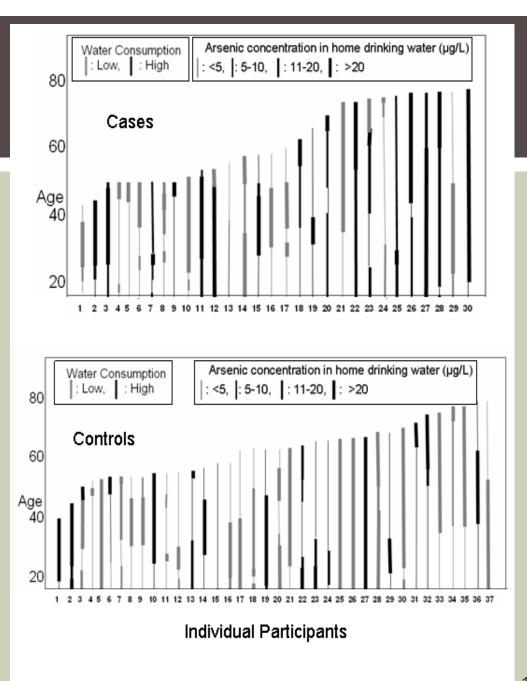
EXAMPLE: TIME-SPECIFIC EXPOSURES


Lifetime exposure to arsenic in drinking water for two cases (dark lines) and two controls (orange lines)

- Lifetime Exposure to Arsenic in Drinking Water in a Bladder Cancer Case-Control Study
 - Typical Presentation of Results: Summary Measures of Exposure
 - Temporal Terms
 - Strategy for Visualizing Life-Course Exposure
 - Reporting Epidemiologic Associations Over the Life-Course
 - Strategy for Incorporating Error in Exposure in the Epidemiologic Estimate
 - Multiple Testing

GEOSPATIAL LIFELINES

EXPOSURE LIFE-LINES FOR CIGARETTE SMOKING

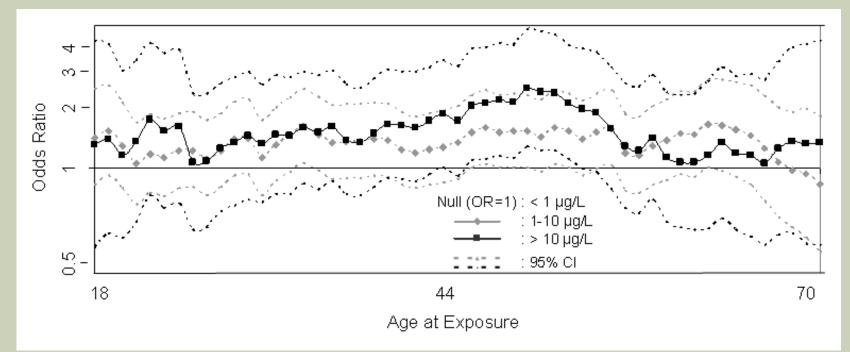


•Thickness of life-line increases with higher frequency of cigarettes smoked.

•There appear to be more heavy smokers around 40-50 years old among cases, compared with controls.

Meliker et al., 2005, J. Geographic Systems 7: 49-66.

Exposure Life-Lines for Cases and Controls Exposed to > 20 µg/L in Home Drinking Water at Some Point in Their Lives, and Their Water Consumption History.

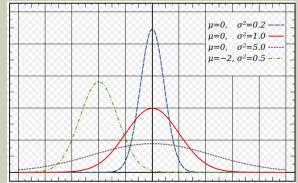

EXPOSURE LIFELINES: COMMENTS

- Useful for visualization of timing of exposure and disease patterns
- Able to stratify or show results across 2 sets of categories
- Difficult to visualize large amounts of data
- Unable to control for important covariates (age, race, sex)

- Lifetime Exposure to Arsenic in Drinking Water in a Bladder Cancer Case-Control Study
 - Typical Presentation of Results: Summary Measures of Exposure
 - Temporal Terms
 - Strategy for Visualizing Life-Course Exposure
 - Reporting Epidemiologic Associations Over the Life-Course
 - Strategy for Incorporating Error in Exposure in the Epidemiologic Estimate
 - Multiple Testing

RESULTS USING YEARLY EXPOSURES

Considered age, calendar year, years prior to diagnosis
Moving 5-year averages over each year of a participant's life


Only observe significant effects using age as temporal measure. Among those who consume >1 L/day of water from home. Not associated with age at diagnosis.

- Lifetime Exposure to Arsenic in Drinking Water in a Bladder Cancer Case-Control Study
 - Typical Presentation of Results: Summary Measures of Exposure
 - Temporal Terms
 - Strategy for Visualizing Life-Course Exposure
 - Reporting Epidemiologic Associations Over the Life-Course
 - Strategy for Incorporating Error in Exposure in the Epidemiologic Estimate
 - Multiple Testing

INCORPORATING DISTRIBUTIONS OF ERROR IN EXPOSURE: APPROACH

- Instead of only using point estimates of exposure, incorporate distributions of error in the estimate of exposure
 - Estimates of error terms in exposure from different databases
 - Draw exposure estimates from a probability distribution (e.g., normal)
 - Distribution is individuallevel, and can be timevarying
- Meliker et al., 2010, Annals of Epi 20: 750-758.

- Evaluate exposure-disease relationship
 - Repeat 99 times (or more)
 - Generate a range of possible risk estimates
- Propagate error in the exposure estimate through the epidemiologic analysis

10 : **Odds Ratio** 1 ł : ł. i ! : 1 ļ Upper Cl : OR Lower Cl 0.1 18 32 46 60 Age of Exposure

- Lifetime Exposure to Arsenic in Drinking Water in a Bladder Cancer Case-Control Study
 - Typical Presentation of Results: Summary Measures of Exposure
 - Temporal Terms
 - Strategy for Visualizing Life-Course Exposure
 - Reporting Epidemiologic Associations Over the Life-Course
 - Strategy for Incorporating Error in Exposure in the Epidemiologic Estimate
 - Multiple Testing

STUDY POWER

- Most studies do not have adequate power to include a multiple testing adjustment (Bonferroni; false discovery rate, etc.)
 - These adjustments would require substantially more sample size.
 - False positives are a distinct possibility

CONCLUSIONS FOR THE EPI STUDY

- Overall, little evidence of association using summary exposure metric (TWA)
 - Possible association when stratified by high water consumption and low consumption of other liquids
- Some evidence of elevated risk when individuals are exposed to arsenic in drinking water in their 40s.
 - Evidence remains to some extent when propagating exposure error though the model.
- Difficult to explain why risk might increase when individuals are exposed in their 40s.
- No significant associations using calendar year or years prior to diagnosis as the temporal measures.
- Observed temporally-specific association may be a false positive

CONCLUSIONS FOR TEMPORAL EXPOSURES

- Temporal resolution (years, days, hours, minutes)
- Temporal measure (since birth; prior to diagnosis; calendar year, etc.)
- Utility of visualizations?
- Errors in exposure over the life-course
- Multiple testing
- A strategy might be to treat results of temporally-specific analyses as exploratory; and if results are compelling then to design a follow-up study to confirm them.

ACKNOWLEDGMENTS

- Collaborators
 - University of Michigan: Jerome Nriagu, Al Franzblau, David Schottenfeld, Mark Wilson, Melissa Slotnick, Stacey Fedewa, Zorimar Rivera-Nuñez, Kathy Welch
 - BioMedware: Geoffrey Jacquez, Pierre Goovaerts, Gillian AvRuskin, Andrew Kaufmann
 - Michigan State Cancer Registry: Glenn Copeland
 - Stony Brook University/BYU: Chantel Sloan
- Numerous staff who have assisted with data collection, sample analysis, and data and project management
- Study Participants

TO CONTACT ME: JAYMIE.MELIKER@STONYBROOK.EDU

Software for the Environmental and Health Sciences

NCI Grant R01 CA096002

Thank you!

