# Temporal Exposures to Obesogens and Transgenerational Inheritance

Bruce Blumberg, Ph.D.

Department of Developmental and Cell Biology Department of Pharmaceutical Sciences University of California, Irvine

#### Main Points

- Obesogens exist and contribute to obesity epidemic
- Obesogen action may involve reprogramming of stem cells
- Obesogen exposure modifies response to diet
- Effects of obesogen exposure are heritable
- What do we know about temporal sensitivity windows?



#### The Worldwide Obesity Epidemic

- >35% of the US population are clinically obese (BMI > 30)
  - Double worldwide average (Flegal et al. JAMA 2010;303:235-241)
- 68% are overweight (BMI > 25) 86% estimated by 2020



BMI ~ 3

Subcutaneous obesi adaptive ceral obesity pathological From Lars Lind

#### The Worldwide Obesity Epidemic

- 34% of the US population are clinically obese (BMI > 30)
  - Double worldwide average (Flegal et al. JAMA 2010;303:235-241)
- 68% are overweight (BMI > 25) 86% estimated by 2020
- Obesity accounts for a huge fraction of healthcare costs
  - \$85.7 billion annually in US (2005), \$147 billion (2009)
  - New model (J. Health Economics, 2012) \$209.7 billion in 2008 \$
    - 20.6% of US healthcare costs.
- Obesity is associated with increases in
  - Metabolic syndrome -> type 2 diabetes
  - cardiovascular disease
  - hypertension
  - stroke

#### How does obesity occur?

- Prevailing wisdom "couch potato syndrome"
  - Positive energy balance, i.e., too much food, too little exercise
- Are there other factors in obesity ?
  - Stress (elevated glucocorticoids)
  - Inadequate sleep (stress?)
  - "Thrifty" genes which evolved to make the most of scarce calories
  - Viruses, gut microbes, SNPs
- What about role of prenatal nutrition or in utero experience?
  - Southampton studies
  - Maternal smoking decreases birth weight and increases obesity
- Is there a role for industrial chemicals in rise of obesity?
  - Baillie-Hamilton (2002) postulated a role for chemical toxins
  - Obesity epidemic roughly correlates with increased chemical use
  - Heindel (2003) "Endocrine Disruptors and the Obesity Epidemic"
- Many chemicals have effects on the endocrine system

### Hormonal control of weight

- Hormonal control of appetite and metabolism
  - Leptin, adiponectin, ghrelin are key players
  - Leptin, adiponectin adipocytes
  - Grehlin stomach
  - Thyroid hormone/receptor
    - Sets basal metabolic rate
- Hormonal control of fat cell
  development and lipid balance
  - Regulated through nuclear hormone receptors RXR, PPARγ
  - PPARγ master regulator of fat cell development
    - increased fat cell differentiation
    - Increased storage in existing cells
    - Increased insulin sensitivity





From Nature Medicine 10, 355 - 361 (2004)

#### Endocrine Disrupting Chemicals (EDCs)



 Are EDC-mediated disturbances in endocrine signaling pathways involved in adipogenesis and obesity

#### EDCs and the obesogen hypothesis

- **Obesogens** chemicals that inappropriately stimulate adipogenesis and fat storage, disturb adipose tissue homeostasis, or alter control of appetite/satiety to lead to weight gain and obesity
- Pre- and postnatal exposure to EDCs such as environmental estrogens (ER) increases weight
  - DES, genistein, bisphenol A
- Thiazolidinedione anti-diabetic drugs (PPARγ)
  - Increase fat storage and fat cell number at all ages in humans
- Urinary phthalates correlate with waist diameter and insulin resistance in humans
  - Many chemicals linked with obesity in epidemiological studies
- several compounds cause adipocyte differentiation in vitro (PPARγ)
  - phthalates, BPA, aklylphenols, PFOA, organotins
- Existence of obesogens is plausible

#### Endocrine disruption by organotins

- Organotins -> imposex in mollusks
- Sex reverses genetically female flounder and zebrafish -> males
- Which hormone receptors might be organotin targets?



- We found that tributyItin (TBT)
  - Binds and activates at ppb (low nM) two nuclear receptors, RXR and PPARγ critical for adipogenesis
  - TBT induced adipogenesis in cell culture models (nM)
  - Prenatal TBT exposure led to weight gain in mice, in vivo





Fat depot size increases at the expense of overall body mass

Grun et al., Molec Endocrinol, 2006

#### How does TBT exposure cause weight gain?

- Changes in the hormonal control of<br/>appetite and satiety?HypertrophyAltered ability of adipocytes to<br/>process and store lipids?Image: Control of adipocytes to<br/>preadipocytesImage: Control of adipocytesIncreased number of adipocytes?Image: Control of adipocytesImage: Control of adipocytes
- Mesenchymal stem cells (MSCs) (a.k.a. multipotent stromal cells) precursors to many lineages including bone, cartilage, and adipose.
  - MSCs differentiate into adipocytes following rosiglitazone exposure
  - MSCs may (or may not) home to adipose depots after induction
- *Hypothesis:* TBT induces adipogenesis in MSCs

۲

•

۲



MSCs can give rise to many cell types in vivo

- PPARγ controls choice between fat and bone pathways
- Expression and activation of PPAR $\gamma$ favors the fat and inhibits bone

твт

C57BI6/J Pregnant Dam

In utero exposed offspring

> MSC isolation and culture

# Prenatal TBT exposure reprograms MSCs to become fat cells instead of bone cells



Kirchner et al, 2010 Molecular Endocrinology 24, 526-539

### Are effects of TBT exposure heritable ?



#### TBT exposure has transgenerational effects Heavier fat depots





#### TBT exposure has transgenerational effects Larger fat cells





#### TBT exposure has transgenerational effects Increased expression of fat-specific genes in MSCs





vehicle 🗧 ROSI 🛛 📮 TBT 5.4 nM 📕 TBT 54.2 nM 🔳 TBT 542 nM

#### Obesogen exposure and development

- Organotins are exceptionally potent agonists of RXR and PPAR $\gamma$  at environmentally-relevant levels (ppb)
  - ~5 nM EC<sub>50</sub>, 12.5 nM K<sub>d</sub> on RXR $\alpha$
  - ~20 nM EC<sub>50</sub> and K<sub>d</sub> on PPAR $\gamma$
- TBT drives adipocyte differentiation in cell culture models, and in 2 vertebrate species: mouse and *Xenopus*
- The effects of maternal TBT exposure are transgenerational
  Fat depot size, adipocyte size, MSC gene expression, hepatic fat
- TBT exposure induces a transgenerational "thrifty phenotype, altering response to diet composition and fasting
  - Increased fat accumulation vs. control
  - TBT makes animals resistant to weight loss from fasting
- Multiple potential modes of action potential AOP
  - PPARγ-RXR (differentiation)
  - Adipogenic commitment
  - Aromatase expression/function estradiol levels
  - Glucocorticoid levels

#### Obesogens and temporal exposures

- TBT prenatal exposures -> later life effects
  - Prenatal alone (B6)
    - Chronic dose effects through F3, F4
  - Prenatal + nursing (B6)
    - Chronic dosing effects through F4
- Other TBT exposures?
  - Adolescent exposure (KM) obesity, hepatic steatosis, islet cell apoptosis, altered glucose homeostasis
  - Adult exposure (B6 mice, Wistar rats) increased adiposity, inflammation
- TZDs (Actos, Avandia PPARγ activators) weight gain in adult humans
- Other chemicals with transgenerational effects on obesity?
  - DDT (prenatal) -> F3 obesity in 50% of animals (Skinner et al, 2013)
  - Plastics mixture -> F3 obesity (Manikkam et al, 2013)

#### Conclusions – organotins and obesity

- Is organotin exposure a contributing factor for obesity?
  - Adult exposure rapidly induces adipogenic genes
    - Drugs that activate PPARγ increase obesity
  - Prenatal TBT exposure permanently alters adult phenotype
  - Prenatal TBT exposure recruits MSCs to adipocyte lineage
- Are humans exposed to sufficient levels of TBT for concern?
  - PVC is up to 3% w/w (0.1 M) organotins
  - TPT used as fungicide on high value crops, used in water systems
  - Average blood level of 27 nM TBT in 32 random people tested
  - 84 ng/g liver of Japanese men ≈ 270 nM
  - Blood TPT levels from ~0.5-2 nM in Finnish fishermen
    - TBT not found in blood, but at ≈ 100 nM in placenta
    - Offspring with highest prenatal TBT exposure are fatter at 18 months
- Human exposure to organotins may reach levels sufficient to activate high affinity receptors
  - 1000 x lower dose than natural dietary RXR and PPARγ ligands

# Is the environment making us fat?

| Obesoge    | ens - Just th   | e Tip of th   | ne Iceberg?     |
|------------|-----------------|---------------|-----------------|
| TBT/TPT    | DES             | Nicotine      | fructose        |
| Phthalates | Bisphenol A     | Air pollution | COX2 inhibitors |
| PFOA       | Genistein       | BaP           | PCBs ?, PBDEs ? |
|            | Organophosphate | pesticides    | many fungicides |

## Surprisingly, Many Fungicides are Obesogens



Janesick et al, 2016 Environmental Health Perspectives, in press

Obesogens - Just the Tip of the Iceberg ?TBT/TPTDESNicotinefructosePhthalatesBisphenol AAir pollutionCOX2 inhibitorsPFOAGenisteinBaPPCBs ?, PBDEs ?Organophosphate pesticidesmany fungicides

What don't we know yet?
 How many obesogens are out there

- Body burdens in population
- Molecular targets of action beyond RXR-PPARy
- Critical windows of exposure
- How does prenatal exposure alter adult phenotype?
- Is the prenatal reprogramming epigenetic?

#### **Implications For Human Health**

- Diet and exercise are insufficient to explain obesity epidemic particularly in the very young
- Obesogens inappropriately stimulate adipogenesis and fat storage
  - Prescription drugs
    - Thiazolidinedione anti-diabetic drugs (Actos, Avandia)
    - Atypical antipsychotics, tricyclic anti-depressants
  - Environmental contaminants
    - organotins, estrogens (BPA, DEHP), PFOA/S, DDE, POPs
    - Many fungicides, organophosphates, parabens
- Prenatal obesogen exposure reprograms exposed animals to be fat
  - Epigenetic changes alter fate of stem cell compartment -> more preadipocytes and more adipocyte progenitors
- Obesogens shift paradigm from treatment to prevention during pregnancy, childhood and puberty
  - Reduced exposure to obesogens, optimized nutrition

#### Chemicals with Transgenerational Effects

- Tributyl tin (RXR, PPARγ) plastic, industrial use, water pipes) increased fat mass, reprogram stem cells to produce more fat cells over time, fatty liver disease (Chamorro-Garcia et al, 2013)
- Vinclozolin (anti-androgen) fungicide, impairs male reproductive function (Anway and Skinner, 2005)
- Plastics mixture, BPA, DEHP, DBP, (estrogen, anti-androgen) obesity, reproductive diseases, sperm epimutations (Manikkam et al, 2013)
- Hydrocarbons, JP-8 jet fuel (?) obesity, reproductive diseases, sperm epimutations (Tracey et al, 2013)
- BPA, estrogen (plastics, thermal paper, recycled paper, food packaging), altered social interactions, modified gene expression (Wolstenholme et al, 2012)
- DDT, estrogen (pesticide) 50% of F3 males and female rats develop obesity (Skinner et al, 2013)

#### Chemicals with Transgenerational Effects

- Existence of transgenerational effects raises the stakes in the argument about whether and what chemicals to regulate.
- What will be the cost of waiting to demonstrate substantial certainty of harm to humans before acting to reduce exposures ?
- How to integrate possibility of transgenerational effects into current risk assessment paradigms?



On the Utility of ToxCast<sup>TM</sup> and ToxPi as Methods for Identifying New Obesogens

Amanda Shaine Janesick, Giorgio Dimastrogiovanni, Lenka Vanek, Christy Boulos, Raquel Chamorro-García, Weiyi Tang, and Bruce Blumberg

http://dx.doi.org/10.1289/ehp.1510352

#### SUMMARY

- Screening for PPAR  $\!\gamma$  and RXR transactivation appears to identify a good number of bona fide or potential obesogens
  - But not using ToxCast assays
  - Many obesogens activate neither receptor
- Combination of receptor activation and adipogenesis assays is a good predictor of activity in vivo (n=3)
- Toxcast assays for RXR and PPAR $\gamma$  activity are highly suspect
  - Attagene gives 5x more positives than other assays
  - Phase I  $\neq$  Phase II results in the SAME ASSAYS
  - Why do HTS nuclear receptor assays work so poorly?
- A fair number of obesogens remain to be identified

UCI - Blumberg Lab Tim Abreo Kotaro Azuma Raquel Chamorro-García Sohee Chung Riann Egusquiza Amanda Janesick Takashige Kawakami Ron Leavitt Angela Moya-Perez **Bassem Shoucri** Weiyi Tang Griselda Valdez Verna Vy Vu

 MGH/Harvard Medical School Toshi Shioda

- Former lab members Christy Boulos Giorgio Dimastrogiovanni Felix Grun Elina Karimullina Séverine Kirchner Jasmine Li Eric Martinez Lenka Vanek
- NINS Okazaki, Japan Taisen Iguchi
- NIHS Tokyo, Japan Jun Kanno
- Uppsala University Monica & Lars Lind
- Io Therapeutics Rosh Chandraratna



#### Funding from NIEHS, US-EPA, UC TSR&TP