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Figure 3L Forest Plot of Extra Lifetime Bladder Cancer Risk at 10 pg/L iAs Exposure, using MLE Dose
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regression to combine multiple studies for two kinds of epidemiological studies:
case-control and cohort studies

» We assume that the prospective likelihood is given by a logistic equation applied to a
vector of p explanatory variables X = (Xl, . Xp):

logit{Pr(D = 1|X)} = a* + BTs(X)

» Due to the differing designs of case-control and cohort studies, methods were
developed for each study type independently in order to predict the prospective
likelihood of each study

» For the Bayesian implementation of the meta-regression:
» All analyses were conducted in the Stan programming language
» Defined necessary parameters for modeling and set priors:

» Case-control studies: 3 (slope parameter) and A (true proportion of doses in a
dose-interval)

» Cohort studies: u(d8) (expected number of cases in the referent group)
» Calculated the parameter a or o*
» Defined the log-likelihood contribution for each dose group

» Typical lifetable analysis methods, including consideration of background exposure
to iAs, were used to estimate extra risk of disease in the target population:

» Background rates of disease assumed to represent zero extra risk from iAs

» A mean background iAs dose of 0.071 pg/kg-day was assumed (0.05 pg/kg-day
from dietary sources, 0.021 pg/kg-day from drinking water, and 0 ug/kg-day
from inhalation) (Xue et al,, 2010; Mendez et al., 2017).
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exposure) is highly likely to resultin 1.0001 < OR < 20.

> 1stand 99t percentiles of gamma distribution (f(x) = ae % (ax)?~! / I'(b))
set equal to In(1.0001) and In(20), results in parameters listed in Table 2

» Important to note that gamma distribution gives greatest weight to values of x
closest to zero (hence, prior assumption is weaker association with iAs unless
data are sufficient to override prior)

» Estimates of pooled and study-specific 3 values derived from the hierarchical model

and estimated lifetime extra risks in the target population are summarized in Tables
3 and 4 and Figures 1-3.

Table 3. Summary of Bayesian Meta-Regression Outputs, Including Parameters Important for Risk Estimation in the Figure 1. Posterior Distributions for Pooled and Study-specific

Target Population Logistic Slope Parameters Using the MLE Dose Estimates.

SE of Percentiles Effective Distributions of hmean” and Indivisdal 'L
B Parameter Mean the SD Sample Rhat
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Mean Size ]
B _mean 0.2018 0.002 0.1775 0.0008 0.0572 0.1636 0.3018 0.6274 8219 1 L__H ,,,,,,,,,,,,,,,,, , )
B _sigma 0.6232 | 0.0026 | 0.2315 0.3198 0.4679 0.5767 0.724 1.2205 7788 1.0001 b |
Chen et al. (2010) 0.0879 | 0.0002 | 0.0212 | 0.0434 0.0742 0.0885 0.1022 0.1284 9221 0.9998 1 i
Sawada et al. (2013) - ) :
males 0.2968 | 0.0017 | 0.1686 | -0.0322 | 0.1823 0.2972 0.4107 0.6255 9294 1.0005 o it stuty (SR 2010,
Sawada et al. (2013) -
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Steinmaus et al. {2013) 0.1774 | 0.0003 | 0.0246 | 0.1303 0.1607 0.1771 0.1936 0.2272 8530 0.9998 ' oo st sty (S movmtn st
Wu et al. (2013) 1.349 0.0023 | 0.2164 | 0.9246 1.2018 1.3461 1.4953 1.7746 8934 0.9999 [
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Summaries of Stan model runs: 4 chains were run, each with 10000 iterations; “warm-up” = 5000; remaining 5000 iterations per chain
were thinned by 2 (every other iteration was dropped). Therefore, the total number of post-warmup draws = 10,000.

Effective samples = effective sample size used to estimate the parameters and Rhat is a measure of convergence (at convergence Rhat =
1). Effective sample sizes are large enough and the convergence criterion is satisfied for all parameters.
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Table 4. Pooled Meta-Regression Estimates of Extra Lifetime Bladder Cancer Incidence Risk at Various Doses (per
10,000) and Drinking Water Exposures using MLE Dose Estimates

Average Daily Arsenic Dose (ug/kg-day) o B o meltest sasty cBas 1oesy L
0.071" 0.12 0.19 0.26 0.33 0.75 1.45 i i
Extra Lifetime Risk® ¢ Average Daily Arsenic Drinking Water Concentration (ug/L) . "';_w e ' ;;Immm,‘ LLLLL
1.5 5 10 15 20 50 100
0 2.0 4.8 I.7 11 29 64 J&x :
(0.01-6.3) (0.02 - 16) (0.03 - 25) (0.04 - 35) (0.1 -106) (0.2-271) W of Inciacteat sty (Oaes S0U4)

2 U.5. daily background dose is estimated at 0.071 ug/kg, with 0.05 ug/kg from diet (Xue et al. 2010), 0.021 ug/kg from water, 1.5
ug/L median U.S. water level (Mendez et al. 2017)x 0.014 L/day mean U.S. water consumption rate (U.5. EPA, 2011, Table 23-1, “All
Ages”) and 0 ug/kg from air. Thus, 1.5 ug/L in water is associated with a background dose of 0.071 ug/kg and an extra risk of 0.

bThese extra risk estimates assume a mean U.S. background rate for bladder cancer of 2% (NCI, 2017). Predicted additional cases in
a cohort of size 10,000 for extra risk, x, when the background rate is b, would be 10,000%(1-b)*x. Thus, additional cases of bladder
cancer at an extra risk of 2/10,000 (0.02%) would be 10,000%(1-2%)*0.02% = 1.96.

tMean, 2.5% and 97.5% of Bayesian posterior slope distributions were used with US lifetables to estimate mean and credible
intervals for extra risk above average background risks.
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Black vertical lines indicate means of posterior distributions.
85% credible intervals for the logistic slope parameters are
highlighted in blue
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alternative distributions that considered different 15t or 99t percentile values did
not overly influence final risk estimates (Table 6)

Table 6. Posterior f_mean distribution values resulting from various prior Gamma distributions

Alternative Prior 2.5 percentile Mean 97.5" percentile | % Mean Difference
1.0001 - 10 0.0012 0.2108 0.6512 4.46

1.0001 - 30 0.0005 0.1966 0.6311 -2.58
1.00001 -20 0.0001 0.1707 0.5922 -15.41

1.001 - 20 0.0045 0.237 0.6673 17.44
Original Prior (1.0001 - 20) 0.0008 0.2018 0.6274 -

» These Bayesian meta-regression methods (Posters 6 and 7) allow for inclusion of
more studies than other meta-regression methods by reconciling different study
designs and exposure metrics, and could potentially be applied to any endpoint for
which multiple studies and incidence/mortality/morbidity lifetables are available

The logistic dose-response model used could be extended to consider fractional-

polynomial forms of the logistic model, logit(p(x)) = a* + B_1(xP1) + B_2(xP?),

to allow more flexibility in fitting datasets for the investigation of whether the data
suggest a J-shaped dose-response (e.g., negative slopes in the low dose region)
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