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PREFACE 

 

A request was submitted by the Ecological Risk Assessment Forum (ERAF) to the Office 

of Research and Development’s Ecological Risk Assessment Support Center (ERASC) relating 

to the issue of terrestrial metals bioavailability.  The ERAF specifically requested a product that 

characterizes typical aerobic soils in terms of their potential to mitigate metals bioavailability to 

soil-dwelling biota in response to increased pressure from the academic community to explicitly 

incorporate bioavailability concepts into the ecological risk assessment (ERA) process.  An 

exhaustive literature search and corresponding meta-analysis of the empirical data was 

recommended and performed.  The result is a quantitative tool that broadly accounts for metals 

bioavailability and is proposed to augment the ERA process and risk-based remediation of 

metals-contaminated soils. The tool, or classification procedure, presented here is suggested to 

be used with other analyses such as direct toxicity testing of contaminated soils. The present 

document summarizes the derivation and potential use of this tool as described in the ERASC 

draft response and a peer-reviewed article (Anderson et al., 2013). 

 
 

EXECUTIVE SUMMARY 
 
 

Interstudy variation among bioavailability studies is a primary deterrent to a universal 

methodology to assess metals bioavailability to soil-dwelling organisms and is largely the result 

of specific experimental conditions unique to independent studies.  The primary objective of this 

review is to synthesize information in the open literature on the effects of soil chemical/physical 

properties on metals bioavailability independent of extraneous variation due to the specific 

attributes of individual studies.  Accordingly, two data sets were established from relevant 

literature; one includes data from studies related to bioaccumulation (total obs = 520), while the 

other contains data from studies related to toxicity (total obs = 1,264).  Experimental factors that 

affect bioavailability independent of the effect of soil chemical/physical properties were 

considered nuisance variables, i.e. variables not of direct interest in the context of this study, but 

that need to be considered in analyzing the data.  Variation associated with significant nuisance 

variables was statistically apportioned from the variation attributed to soil chemical/physical 

properties for both data sets using a linear mixed model.  Residual bioaccumulation data were 
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then used to develop a nonparametric regression tree whereby bootstrap and cross-validation 

techniques were used to internally validate the resulting classification procedure.  A similar 

approach was employed with the toxicity data set as an independent external validation.  These 

analyses obviously emphasize bioaccumulation as the primary metric for assessing 

bioavailability but demonstrate concurrence with studies on toxicity.  The validated classification 

procedure is proposed as a quantitative tool that broadly characterizes typical aerobic soils in 

terms of their potential to sequester common divalent cationic metal contaminants and mitigate 

their bioavailability to soil-dwelling biota. This classification procedure is proposed to augment 

other ERA approaches. 
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INTRODUCTION 
 
 

Bioavailability of metal contaminants has been given much attention over the last decade.  

In particular, a plethora of research has demonstrated that the uptake and subsequent effects of 

toxic trace elements to soil-dwelling organisms are largely regulated by the specific 

chemical/physical composition of contaminated soils.  Despite these recent advances in assessing 

terrestrial metals bioavailability (Scheckel et al., 2009), a disparity exists between the state of the 

science and regulatory practice in terms of explicitly incorporating methods to assess 

bioavailability into the ecological risk assessment (ERA) framework for metals.  Although the 

European Union has developed risk-based ecological soil standards using bioavailability models 

derived from empirical relationships (Smolders et al., 2009; Semennzin et al., 2007), the United 

States has yet to adopt a parallel approach (see U.S. EPA, 2007).  In general, a universally 

applicable methodology that accounts for metals bioavailability would augment the ERA process 

and risk-based remediation of metals-contaminated soils. 

Several methods are commonly applied to assess metals bioavailability.  Sequential-, 

parallel-, and single-chemical extractions characterize metal concentrations among various soil 

geochemical phases.  Relative advantages and disadvantages of chemical extraction methods are 

reviewed elsewhere (Rao et al., 2008; Gleyzes et al., 2002).  In general, however, current 

extraction methods are considered insufficient to accurately assess metals bioavailability 

simultaneously to multiple ecological receptors among heterogeneous soils (Peijnenburg et al., 

2007).  Moreover, chemical extractants can modify chemical speciation and soil solution 

chemistry, resulting in operationally defined phases with measured metals concentrations that 

may not correlate with biological responses (Scheckel et al., 2009; 2003). 

Alternatively, mechanistic models are predicated on theoretical thermodynamic and 

kinetic principles, and most predict biological effects of metals exposure.  Primary mechanistic 

models applicable to terrestrial metals bioavailability include the free ion activity model (Hough 

et al., 2005; Lofts et al., 2004; Parker and Pedler, 1997), the terrestrial biotic ligand model 

(Thakali et al., 2006a; Thakali et al., 2006b; Steenbergen et al., 2005), and soil-water metal 

equilibrium partitioning (Degryse et al., 2009).  Mechanistic models are essential to a 

comprehensive understanding of biological responses to soil contamination and have been 

correlated with measurements from field-contaminated soils (Koster et al., 2006; Parker et al., 
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2001).  However, application of mechanistic models can involve complicated input parameters 

(often modeled from theoretical functions that assume equilibrium conditions), which could limit 

their utility in regulatory practice.  

Bioavailability models predicated on empirical data, on the other hand, normalize 

experimental bioaccumulation or toxicity estimates from bioassays among contrasting soils (e.g., 

Criel et al., 2008; Rooney et al., 2007; Oorts et al., 2006).  Bioassays with soil-dwelling 

organisms are implicit indicators of bioavailability because they reflect cumulative mechanistic 

soil biogeochemical processes (Basta et al., 2005; Lanno et al., 2004).  Empirical models 

quantify these processes, as well as random variability, unlike mechanistic models.  Individual 

empirical models presented throughout the open literature, although applicable to the specific 

experimental conditions, may not provide tenable prediction across the entire range in 

contaminated soils types.  Moreover, preferentially utilizing a particular model in lieu of others 

available, all else equal, may be programmatically difficult to justify. 

Despite the preponderance of studies demonstrating systematic differences in uptake and 

toxicity among contaminated soils, universal regulatory acceptance of a methodology to assess 

metals bioavailability to soil-dwelling organisms is impeded in large part by irreproducibility 

among studies, leading to the overarching issue of uncertainty (SERDP and ESTCP, 2008).  The 

extent to which inconsistencies in the literature can be resolved by meta-analysis of the empirical 

data merits further investigation, given numerous experimental artifacts among independent 

studies (e.g., Lowe and Butt, 2007; Sochova et al., 2006; Clark et al., 2004; Crouau and Cazes, 

2003) and variations in standard test methods.  Many standard test methods exist for terrestrial 

toxicity testing (e.g., Environment Canada, 2005; ISO, 2005; ASTM, 2004; U.S. EPA, 1994).  

Selection of test species, range of contaminant doses, measurement endpoint, and numerous 

other experimental conditions are highly variable among studies and produce artifacts at the 

discretion of the researcher.  Moreover, comparison of exposure studies, as related to 

bioavailability, is operationally challenged by the same issues.  Application of current 

bioavailability models, regardless of the metric used to assess bioavailability, is limited to a 

specific suite of biotic and abiotic experimental conditions. 

One method employed to evaluate results from multiple studies on metals bioavailability 

is a modification of the species sensitivity distribution (SSD) approach (Smolders et al., 2009; 

Semennzin et al., 2007).  In a typical SSD, usually the 5th or 1st percentile of toxicity parameters, 
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which reflect media-specific contaminant concentrations, from the cumulative probability 

distribution of a sample of species is obtained (usually from the literature) and is considered 

protective of 95 or 99% of species, respectively (Posthuma et al., 2002).  In the context of 

bioavailability, toxicity parameters used in the SSD can be normalized based on regression 

models that include soil chemical/physical properties as predictors (Smolders et al., 2009; 

Semennzin et al., 2007).  Additional study-specific variation uncontrolled among bioavailability 

studies (e.g., metal, endpoint, dose, etc.), however, should be accounted for, as well as 

interspecies variation.  Moreover, the effects-based SSD approach ignores results of studies that 

report bioaccumulation as the metric of bioavailability.  A meta-analysis that utilizes data with 

both bioaccumulation and toxicity metrics that effectively apportions “nuisance variation” from 

the effect of soil chemical/physical properties is paramount to accurately synthesize the literature 

on terrestrial metals bioavailability universally applicable to ERAs. 

The primary objective of this review is to quantify soil chemical/physical property effects 

on terrestrial metals bioavailability by meta-analysis, controlling the confounding influence of 

the specific attributes of individual studies independent of soil metal sequestration.  In this 

context, bioavailability is defined, simplistically, as the fraction of a total metal load (in soil) that 

has the potential to traverse a biological membrane.  In fact, membrane transport is inherent in 

most, if not all, interpretations of bioavailability (Drexler et al., 2003).  It follows that body 

burden (i.e., bioaccumulation) is the appropriate metric for assessing bioavailability because 

trace metals usually achieve steady-state concentrations in most soil-dwelling organisms, 

especially essential trace elements (Mleczek et al., 2009; Nahmani et al., 2009; Vijver et al., 

2001; Peijnenburg et al., 2000; Spurgeon and Hopkin, 1999).  However, the majority of literature 

on the subject utilizes endpoints that reflect toxicity.  Consequently, two data sets were 

established from relevant literature; one includes information from studies related to 

bioaccumulation (total obs = 520), while the other contains studies related to toxicity 

(total obs = 1,264).  Experimental factors that affect bioavailability independent of the effect of 

soil chemical/physical properties were considered nuisance variables.  Variation associated with 

significant nuisance variables was statistically apportioned from the variation attributed to soil 

chemical/physical properties for both data sets using a linear mixed model.  Residual 

bioaccumulation data were then used to develop a nonparametric regression tree whereby 

bootstrap and cross-validation techniques were used to internally validate the resulting 
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classification procedure.  A similar approach was employed with the toxicity data set as an 

independent external validation.  These analyses obviously emphasize bioaccumulation as the 

primary metric for assessing bioavailability but simultaneously tests concurrence with studies on 

toxicity.  

 

METHODS 
 
 
DATA SETS 

Two independent data sets were compiled from published studies on the effects of abiotic 

soil factors on the bioavailability of the common divalent cationic metals cadmium (Cd), cobalt 

(Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) to soil-dwelling organisms available in 

the open literature.  Only studies that included multiple soil types were considered in order to 

limit the scope of the review exclusively to studies that were designed to investigate metals 

bioavailability in some capacity.  The only exception was that all the data used in the 

development of plant and invertebrate Ecological Soil Screening Levels (Eco-SSLs) for Cd, Co, 

Cu, Ni, Pb, and Zn (U.S. EPA, 2005) were included since those metals were already being 

considered.  Applicable studies for additional metals were lacking.  Some studies (e.g., Zhao et 

al., 2006) were excluded because results were presented in a form such that did not allow 

extraction.  Most studies that reported internal tissue concentrations also reported 

bioaccumulation factor (BAF) values computed as ratios of tissue metal concentration to total 

soil concentration determined by vigorous acid digestion.  In this context, BAF is used 

interchangeably with bioconcentration factor (BCF) values.  If BAF values were not reported, 

they were computed and used for all analyses, which is comparable to analyses based on tissue 

concentrations, given the objectives.  For studies employing a dose-response design, reported 

BAFs reflect a linear regression slope.    

The data sets comprehensively summarize bioaccumulation (i.e., BAF values) and acute 

toxicity (i.e., no-observed-effect level [NOEL], lowest-observed-effect level [LOEL], effective 

concentration for 10% of the population [EC10], EC20, EC50, and lethal concentration for 50% of 

the population [LC50] values) across 122 and 131 contaminated natural soils, respectively.  

However, due to co-use of select soils among multiple studies, a total of 189 independent soils 

were collated across both data sets.  The bioaccumulation data set contains BAF values for 
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11 plants, 2 earthworms, and 1 springtail, while the toxicity data set contains toxicity values for 

19 plants, 20 earthworms, 1 springtail, and microbes.  In addition to soil characterization 

variables, both data sets were developed with generalized variables ubiquitous to all studies; 

METAL, SPECIES, ENDPOINT, RECEPTOR (i.e., plant, invertebrate, or microbe), and TYPE 

(i.e., spiked vs. field-contaminated soils).  The bioaccumulation data set also contains a variable 

(DOSE) pertaining to the concentration the metal was either dosed or measured in 

field-contaminated soils―by evaluating DOSE on BAF values as opposed to tissue 

concentrations, nonlinear effects could be assessed more easily.  If the study had a dose-response 

design, the value of DOSE that was recorded is the highest dosed concentration.  The toxicity 

data set exclusively contains dose-response studies and a variable (PARAMETER) that reflects 

the reported toxicity benchmark (e.g., NOEL, LOEL, EC10, etc.).  All other data were considered 

too inconsistent or sparse to consider applicable for coding and analyses. 

Soil characterization data were highly inconsistent among studies, yielding only as many 

as three matrix properties common to most studies; pH, clay content, and either organic carbon 

(C) or soil organic matter (SOM).  Consequently, these were the properties selected to evaluate 

and were assumed to generally account for the cumulative and inherently interactive processes of 

metal sequestration and attenuation (Hamon et al., 2007); although it is well known that metals 

have variable affinities for soil geochemical phases (e.g., Saeki and Kunito, 2009), certain 

generalizations regarding metals bioavailability can be made.  In general, precipitation and solid 

phase adsorption are primary mechanisms mitigating metals bioavailability, but the magnitude of 

sequestration largely depends on both direct and indirect effects of soil reactivity; formation 

constants vary as a function of soil pH among metal-bearing minerals, and ionized organic and 

inorganic complexation sites within the soil matrix increase with soil pH due to deprotonation 

(Sparks, 2003).  Whereas, soil pH influences bioavailability directly by regulating the formation 

of additional solid phase sorbents, such as carbonate minerals (Sipos et al., 2009, 2008), and the 

chemical form of the metal species (Lofts et al., 2005; Nolan et al., 2003).   

Admittedly, omission of other soil matrix properties that have been shown to interact 

with metal solubility, thereby influencing bioavailability (e.g., amorphous oxides [e.g., Dayton et 

al., 2006; Bradl, 2004; Peijnenburg et al., 1999a] and cation exchange capacity [CEC] [e.g., 

Anderson and Basta, 2009b; Criel et al., 2008; Rooney et al., 2006]) is an oversimplification of 

soil metal sequestration.  However, soil CEC, when measured at ambient soil pH, is usually 
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correlated with total clay content and SOM because ionized organic functional groups and 

aluminosilicate clay edges (both of which contribute to overall soil CEC) are pH dependent (Ge 

and Hendershot, 2002; Basta et al., 1993).  Also, amorphous oxide data (see McKeague and Day, 

1993) were only reported in a small subset of studies.  To preserve symmetry among the data 

sets, promoting an unbiased quantitative assessment of the available data, only studies that 

reported all three selected soil properties were utilized.  The ranges in selected soil properties 

within the published studies have been compiled for both data sets and are summarized in 

Table 1. 

 

DATA MANAGEMENT AND ASSUMPTIONS 
Certain assumptions and conversions were necessary to accommodate variations in the 

design and reporting among studies.  Primary assumptions herein include (1) reported 

measurements among all studies reflect steady-state toxicokinetics and (2) exposure occurs 

through direct absorption (or adsorption if bioreactive upon contact) or dietary uptake (e.g., soil 

invertebrates).  All earthworms were depurated, but depuration and exposure times were also 

assumed not to affect BAF values.  Concentrations, including toxicity values, are on a dry 

weight-basis and, if necessary, were converted to mg kg−1.  Additionally, if organic C values 

were reported, they were doubled to estimate SOM values according to an approximation of the 

organic C content of SOM (Sleutel et al., 2007).  Then, if necessary, SOM values were converted 

to percentages as were clay content values.  All pH values reflect either potassium chloride (KCl) 

or calcium chloride (CaCl2) extracts and were analyzed indiscriminately.  No pH measurements 

in deionized water were recorded.   

 

APPORTIONMENT OF NUISANCE VARIATION 
The term nuisance variable refers to uncontrolled experimental conditions that influence 

BAF and/or toxicity measurements independent of the effect of soil metal sequestration.  For 

example, within a soil type, bioaccumulation is expected to be influenced by toxicity at higher 

doses depending on the metal, species, and other factors.  The term apportionment refers to the 

statistical methodology whereby variation attributed to significant nuisance variables is 

quantitatively partitioned from the effect associated with soil chemical/physical properties.   
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Effects of nuisance variables were evaluated statistically using a linear mixed model.  

This approach allows a choice in how to represent the effects of a given variable, as either a 

random source of variation (e.g., among species) or as a set of fixed effects (e.g., of individual 

species. Selection of nuisance variables to be included in the model was based on the Akaike 

Information Criterion (AIC) with small-sample bias correction (AICc, Burnham and Anderson, 

2002). The criterion can be applied in two ways (see Table 2).   The single model with best 

(lowest) AICc has been here termed the “most parsimonious model,” because of penalization of 

fit for the number of variables included in the model.  Alternatively, the use of AICc model 

weights may allow some consideration of model uncertainty in the selection of a single best 

model.   Additional details of the methodology are contained in Anderson et al. (2013). 

 

CLASSIFICATION PROCEDURE DEVELOPMENT AND VALIDATION 
Residual values (observed values of log BAF minus predicted values) from the best 

supported linear model describing nuisance variation were recovered for both data sets.  

Variation in residual values is assumed to be attributed solely to bioavailability differences 

among soils and random or latent error.  Residuals from the bioaccumulation data set were used 

as the response variable in the development of a regression tree (RT) methodology.  The RT 

methodology is essentially a case of the general classification and regression tree (CART) 

algorithm of Breiman et al. (1984), also see Ripley (1996), as implemented with the rpart() 

package Version 3.1-42 (Therneau and Atkinson, 2010; Faraway, 2006), with 

specially-programmed extensions (R Development Core Team, 2008). An extension of the 

methodology was to compute bootstrap support for particular variables, equal to percentages of 

bootstrap samples where a variable was selected in the CART algorithm.   Bootstrap samples 

were of the set of studies (all data or no data from a given study were selected into a given 

bootstrap sample).   While the CART algorithm is relatively well established, a brief summary of 

the standard algorithm, and our specific implementation, is provided in Anderson et al. (2013).  
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RESULTS AND DISCUSSION 
 
 
APPORTIONMENT OF NUISANCE VARIATION 

Mixed-model analysis of the nuisance variables resulted in four candidate models for the 

bioaccumulation data set and three candidate models for the toxicity data set with cumulative 

Akaike weights >99% (see Table 2).  All models presented in Table 2 are considered significant, 

given that the null models (i.e., intercept only) were also evaluated (Burnham and Anderson, 

2002).  The additive fixed effects of the variables METAL, RECEPTOR, ENDPOINT, and 

PARAMETER resulted in the most parsimonious model for the toxicity data set and accounted 

for 91% of the overall model weight.  The most parsimonious model for the bioaccumulation 

data set coincidentally also accounted for 91% of the overall model weight and contained the 

variables METAL, ENDPOINT, DOSE, and the METAL × DOSE interaction.  All four of the 

candidate bioaccumulation models contained the two-way METAL × DOSE interaction, 

reflecting a relatively strong influence on BAF values (see Table 2).  Significant random 

variation due to SPECIES was observed for both bioaccumulation (p = 0.0189) and toxicity 

(p = 0.0247) data sets, whereas, significant interstudy heterogeneity was only observed in the 

toxicity data set (p = 0.0129) as determined by variance component estimation (Lindsey, 1997).  

The variable TYPE only occurred in the third best model for the bioaccumulation data 

set, which only accounted for 3% of the overall model weight (see Table 2).  Although there is 

evidence to conclude that the contamination source may have influenced BAF values, the effect 

was minor relative to other experimental variables evaluated, similar to the results of Peijnenburg 

et al. (2000).  Most researchers subject artificially contaminated soils to various wet-dry cycles to 

simulate aging, attenuating the effect of the metal (Orrono and Lavado, 2009; Si et al., 2006).  

Metal salt-amended soils that are sufficiently “aged” can produce similar ecotoxicological effects 

of field-contaminated soils (Smolders et al., 2009).  Subsequent discussion and analyses pertain 

to the most parsimonious models (see Table 2). 

 

Bioaccumulation 
Variation in BAF values was predominantly apportioned by metal-stratified doses or the 

METAL × DOSE model parameter.  In general, mean predicted intrametal BAF values 

decreased with increasing dose, indicating constant (or declining) internal concentrations with 
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increasing total soil concentrations (see Figure 1).  Metal accumulation is related to metal 

solubility/speciation (McLaughlin, 2002), membrane transport (Welch and Norvel, 1999; 

Kochian, 1993), and uptake kinetics (Nahmani et al., 2009; Peijnenburg et al., 2000) and declines 

with saturation of detoxification mechanisms, resulting in inherent toxicity thresholds that can be 

quantified (Anderson et al., 2008).  Threshold metal accumulation is referred to as the critical 

body residue (Ma, 2005; McCarty and Mackay, 1993) and correlates with the onset of a toxic 

response (Conder et al., 2002; Lanno et al., 1998).  Critical body residues can impede further 

metal accumulation at toxic doses (e.g., Hasaan et al., 2009; Kumar et al., 2008).  Obviously, 

toxicity affects BAF values and is usually the reason for the “plateau effect” in metal 

salt-amended soils (McLaughlin, 2002; Hamon et al., 1999).  Although linear metal 

accumulation has been reported in plants and soil invertebrates at steady state (e.g., Yanai et al., 

2006; Spurgeon and Hopkin, 1996), results usually reflect subtoxic soil concentrations.  

Toxicity-induced nonlinear metal accumulation has also been demonstrated in many exposure 

studies (e.g., Anderson and Basta, 2009b; Smilde et al., 1992).  

Differences among SPECIES and ENDPOINT further apportioned variation in BAF 

values.  Approximately half of the bioaccumulation data set contains BAF values for vascular 

plants.  Among these, only two studies reported endpoints other than metal accumulation in 

aboveground biomass; one evaluated metal accumulation in the grain of several agronomic 

species (Smilde et al., 1992), while the other evaluated cumulative metal levels in the shoots and 

roots of Avena sp. (Bjerre and Schierup, 1985).  Conversely, BAF values for soil invertebrates 

reflect whole body residues.  So, SPECIES essentially contrasts aboveground bioaccumulation 

among plants and whole body residues among soil invertebrates, which confounded evaluation 

of RECEPTOR and ENDPOINT differences.  Mean predicted BAF values were in the following 

order: aboveground plant biomass < soil invertebrate whole body residues (see Figure 2).  Thus, 

although plants and soil invertebrates may be surrogate receptors for estimating potential 

terrestrial metals exposure (Scott-Fordsmand et al., 2004), results depend on the vegetative tissue 

analyzed and/or the specific metal-sensitivity of the species evaluated.  

 

Toxicity 
As expected, variation in toxicity values was apportioned by METAL.  Higher predicted 

toxicity values reflect relatively less toxicity because higher total soil concentrations were 
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required for equivalent toxicity.  Thus, the rank order of mean predicted toxicity values 

illustrates the observed relative potencies of the six metals evaluated in order of least potent to 

most potent.  Mean predicted toxicity values were in the order Cu = Pb = Zn > Ni > Co > Cd (see 

Figure 3).  Cadmium toxicity is expressed in numerous endpoints in plants (Hasaan et al., 2009) 

and soil invertebrates (Roh et al., 2006) and is routinely reported as a relatively potent cationic 

trace metal in ecological toxicity testing (e.g., Anderson and Basta, 2009b; Athar and Ahmad, 

2001; Bowers et al., 1997).  Predicted metal potencies are roughly consistent with trends in 

Eco-SSLs for plants and soil invertebrates (U.S. EPA, 2005).   

Moderate variation in toxicity values was apportioned by ENDPOINT.  Although some 

endpoints are specific to a receptor, evaluating them independently, in conjunction with 

RECEPTOR, accounted for the most variation.  As expected, reproduction-related endpoints 

(cocoon and grain production) were the most sensitive, while mortality (LC50 values) was the 

least sensitive (see Figure 4).  Studies with microbial endpoints (e.g., nitrification, 

mineralization, and respiration) tended to be relatively sensitive, underscoring their relevance to 

bioavailability studies, which have become commonplace in the literature (e.g., Magrisso et al., 

2009; Oorts et al., 2006; Smolders et al., 2004; Giller et al., 1999). 

Obviously, the reported toxicity parameter from a dose-response curve reflects the 

magnitude of an effect.  Consequently, PARAMETER was crucial to apportioning nuisance 

variation (see Figure 5).  As expected, LC50 values were the least sensitive, coinciding with the 

mortality endpoint.  However, an unexpected result was that, on average, mean predicted EC10 

values were lower than mean predicted NOEL and LOEL values.  EC10 values are estimated 

from fitted dose-response curves while NOEL and LOEL values are ordinarily determined by 

statistical comparisons of treated to negative control groups (Eaton and Klaassen, 2001), with 

possibly limited sensitivity.  Thus, EC10 estimates may be lower than NOEL values suggesting 

that quantitative dose-response evaluation can be a more conservative methodology, especially 

when low-dose values are scant. 

The variable RECEPTOR was a relatively minor source of nuisance variation.  Mean 

predicted toxicity values among receptors were in the following order: 

microbes < plants < springtails < earthworms (see Figure 6).  Thus, in general, microbes tend to 

produce more conservative toxicity estimates when endpoint, metal, and toxicity parameters 

have been accounted for.  However, the variance component estimate for species was significant 
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(p = 0.0247), illustrating intrareceptor differences in toxicity among species as are usually 

observed (Clark et al., 2004).  Accounting for specific sensitivities among species is critical to 

summarizing results from multiple toxicity studies (Anderson et al., 2008).   

 

CLASSIFICATION PROCEDURE FOR BIOAVAILABILITY 
Residuals from the most parsimonious models apportioning nuisance variation in the 

toxicity and bioaccumulation data sets were recovered.  Relationships between model residuals 

and SOM, CLAY, and pH are illustrated in Figure 7.  Significant (p < 0.0001) positive trends 

were associated with all three variables for the toxicity data set.  Similarly, significant 

(p < 0.0001) negative trends were associated with the bioaccumulation data set.  Collectively, 

both data sets tenably illustrate the effect of soil metal sequestration on bioavailability. Though a 

high degree of variation is evident in the data sets, the significant p-values serve to support 

further analysis. 

A final regression tree (RT) was identified using selected soil properties exclusively.  Use 

of internal and, in particular, external validation suggested no increase in predictive capacity 

beyond four terminal groups (see Figure 8).  The default four-group solution, which split first on 

pH, then CLAY, and again on pH, is shown in Figure 9.  However, subsequent bootstrap analysis 

suggested that SOM had substantial support for trees of MAXDEPTH 3 (50%).  (Precise 

definitions of MAXDEPTH and other CART parameters are found in documentation of R 

package rpart.)  Detailed examination of the results revealed that at the second split (based on 

CLAY), approximately the same improvement was obtained by a split on SOM.  Therefore, 

although default results are presented, similar solutions to the final RT (see Figure 9) could use 

the variable SOM in some way. 

The ability to use potentially important variables is limited by whether data are adequate 

to characterize their specific influence.  In particular, certain soil properties are often observed 

intercorrelated; e.g., stable clay-organic matter complexes are typical (Stevenson, 1994).  In fact, 

numerous bioavailability studies have demonstrated intercorrelation among the 

chemical/physical properties of their respective experimental soils (e.g., Anderson and Basta, 

2009a,b; Bradham et al., 2006; Dayton et al., 2006).  However, no significant intercorrelation 

was observed among the selected properties of the experimental soils collated in the current 

study, presumably due to tremendous diversity.  It just so happened in these particular analyses 



12 
 

that CLAY was selected by the CART algorithm instead of SOM at the second split, whereas 

bootstrap results suggest approximately the same improvement with both variables.  Regardless, 

pH was the primary variable modifying BAF values beyond nuisance variation and is generally 

considered the master variable regulating metal equilibria in contaminated soil systems.  

Therefore, the final RT presented in Figure 9, though not uniquely supported by the available 

data (other solutions could be equally valid), is a simple, yet robust tool broadly applicable to the 

assessment of terrestrial metals bioavailability composed of exposure studies independently 

validated by studies on toxicity.   

Central tendencies among the terminal nodes (i.e., bioavailability categories) were used 

to determine relative differences in bioavailability according to the proposed classification 

scheme.  Analysis of variance of the residual values among bioavailability categories indicated 

highly significant (p ≤ 0.0083) differences among all ordinal pair-wise combinations.  Table 3 

illustrates mean differences in residual BAF values for each category of increasing 

bioavailability.  Our results suggest a maximum 3.53-fold effect of soil metal sequestration on 

terrestrial metals bioavailability.  When normalized to the highest category of bioavailability, 

relative differences equate to 70%, 41%, and 28% bioavailability for the Medium-High, 

Medium-Low, and Low categories, respectively (see Table 3).  Overall, the validated 

classification procedure is proposed as a quantitative tool that broadly characterizes typical 

aerobic soils in terms of their potential to sequester common divalent cationic metals and 

mitigate their bioavailability to soil-dwelling biota.   

 

APPLICATION TO ECOLOGICAL RISK ASSESSMENT 
Although Screening Level ERAs are conservative and, hence, assume 

100% bioavailability, the ecological relevance of Baseline ERAs depend entirely on the extent to 

which bioavailability of contaminants is accurately quantified.  Direct toxicity testing of 

contaminated soils is the superior approach but can prohibitively add to assessment costs.  If 

direct toxicity tests are employed, interpreting results can be operationally difficult without 

accounting for potential spatial patterns in bioavailability that may result from soil heterogeneity.  

In either case, the quantitative tools presented in the current study (see Figure 9 in conjunction 

with Table 3) are proposed to augment terrestrial ERAs of cationic metals contaminated soils, 

e.g., in support of the interpretation of toxicity testing. 
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Typical Baseline ERAs include site characterization, risk assessment, and risk 

management phases (e.g., U.S. EPA, 1998).  Results of the current study can be directly applied 

to the site characterization and risk assessment phases.  For example, in the site characterization 

phase, soil composition data can be included to refine Conceptual Site Models in the context of 

bioavailability according to the classification procedure presented in Figure 9.  Based on the 

results of this investigation, risk assessors should, thus, routinely include relatively standard test 

methods for soil pH and total clay content (and SOM) in concert with total metals analyses.  

However, additional variables, not included in this investigation, may provide additional 

value-added information.  Specifically, the composition of SOM and total clay content can vary 

greatly, which can affect soil metal sequestration (Lock and Janseen, 2001).  Mineralogical 

analysis of clay-sized particles including amorphous oxide content can also improve on 

bioavailability estimates (e.g., Dayton et al., 2006; Bradl, 2004; Peijnenburg et al., 1999a).  The 

results of this investigation are, therefore, couched as the extent to which the current literature 

on soil metal bioavailability could be synthesized by meta-analysis.  Although a more 

exhaustive dataset including additional soil chemical/physical properties would likely improve 

the overall applicability, the results of the current study are a starting point for which additional 

research may improve upon pending the quantification of relevant variables in future studies.  

In the risk characterization phase, Figure 9 can be used in conjunction with some 

categorization of total soil concentrations to develop a matrix of risk categories.  For example, 

low concentration and low bioavailability equates to low risk.  Conversely, high concentration 

and high bioavailability equates to high risk.  Mapping heterogeneous sites by relative risk 

category could focus subsequent remedial efforts.  Additionally, adjustment factors presented in 

Table 3 can be used to normalize total soil concentrations for the development of site-specific 

Exposure Point Concentrations (EPCs) for soil-dwelling organisms according to the 

classification scheme presented in Figure 9.  For example, if the soil concentration of metal X 

has been sampled and determined to be 1,500 mg/kg, and the soil has a pH greater than 4.7 but 

less than 6.5 and clay content less than 26%, the bioavailability category (see Figure 9) would be 

Medium-High, leading to a factor difference of 1.42 (or 70% bioavailable) relative to the High 

category (see Table 3), which would result in a bioavailability-adjusted EPC of 1,050 mg/kg 

(1,500 × 0.70).  Alternatively, if the soil concentration of metal X has been sampled and 

determined to be 1,500 mg/kg, and the soil has a pH greater than 4.7 and clay content greater 
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than 26%, the bioavailability category (see Figure 9) would be Low, leading to a factor 

difference of 3.53 (or 28% bioavailable) relative to the High category (see Table 3), which would 

result in a bioavailability-adjusted EPC of 420 mg/kg (1,500 × 0.28).  The adjustment factors in 

Table 3 are calculated relative to the highest-bioavailability category.  The approach does not 

assume that the highest bioavailability values in the data would be used in all situations.  

Bioavailability-adjusted EPCs for soil-dwelling organisms can be used as input to trophic 

transfer models to predict site-specific exposures for higher-order wildlife species explicitly 

applying soil bioavailability concepts to risk estimates for the relevant receptor(s) evaluated at a 

given site. 
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Table 1.  Summary of Data Used in Meta-analyses 
 

Data set Reference Number of 
Soils 

Range in soil properties 

pHa Clay (%) SOM (%)b 

Bioaccumulation (Yanai et al., 2006) 25 4.30−7.77 1.8−44 2.40−29.2 

(Dayton et al., 2006) 21 4.00−7.90 10−60 0.400−5.80 

(Bradham et al., 2006) 21 4.00−7.90 10−60 0.400−5.80 

(Peijnenburg et al., 1999a) 20 3.81−7.43 0.20−47 0.300−15.1 

(Peijnenburg et al., 1999b) 20 3.81−7.43 0.20−47 0.300−15.1 

(Janssen et al., 1997) 20 3.81−7.43 0.20−47 0.300−15.1 

(Vijver et al., 2001) 16 3.09−7.30 0.20−47 0.300−35.0 

(Peijnenburg et al., 2000) 15 4.36−7.22 1.3−47 0.900−23.4 

(Nahmani et al., 2009) 7 4.58−6.54 1.1−5.0 0.284−2.36 

(Anderson and Basta, 2009a) 5 3.67−7.34 6.8−42 0.810−4.78 

(Weng et al., 2003) 4 4.70−6.80 4.0−4.0 4.00−4.00 

(Smilde et al., 1992) 3 4.20−7.20 3.0−40 3.70−7.00 

(Elmosly and Abdel-Sabour, 1997) 3 7.40−8.10 5.5−20 0.0500−1.00 

(Bjerre and Schierup, 1985) 3 6.20−7.50 4.9−8.0 1.90−17.7 

Toxicity (Oorts et al., 2006) 35 3.00−7.70 1.0−55 0.500−66.1 

(Criel et al., 2008) 19 3.00−7.50 5.0−51 0.800−46.6 

(Rooney et al., 2006) 18 3.40−7.50 5.0−51 0.760−46.6 

(Rooney et al., 2007) 16 3.60−7.70 0.40−55 0.500−66.1 

(Smolders et al., 2004) 12 3.00−7.50 5.0−51 0.800−46.6 
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Table 1.  Summary of Data Used in Meta-analyses (continued) 
 

Data set Reference Number of 
Soils 

Range in soil properties 

pHa Clay (%) SOM (%)b 

Toxicity cont. (Li et al., 2009) 10 4.30−7.53 1.0−48 1.60−10.6 

(Spurgeon and Hopkin, 1996) 9 4.00−6.00 20−20 5.00−15.0 

(de Haan et al., 1985) 6 4.60−5.60 4.0−58 1.60−19.4 

(Anderson and Basta, 2009b) 5 3.67−7.34 6.8−42 0.812−4.78 

(Vonk et al., 1996) 5 3.50−6.80 1.9−20 2.40−10.0 

(Donkin and Dusenbery, 1994) 4 5.10−6.20 16−39 1.70−3.40 

(Weng et al., 2003) 4 4.70−6.80 4.0−4.0 4.00−4.00 

(Donkin and Dusenbery, 1993) 4 5.10−6.20 16−39 1.70−3.40 

(ESG International Inc. and 
Aquaterra Environmental 
Consulting, 2000) 

3 6.05−8.10 11−30 2.90−12.8 

(Reber, 1989) 3 5.60−7.00 3.2−21 1.67−2.62 

(Sheppard et al., 1993) 2 7.30−7.90 43−46 2.70−8.90 

(Gunther and Pestemer, 1990) 1 6.10  9.9 1.31 

(Korthals et al., 1996) 1 4.10 4.0 1.90  

(Ma, 1982) 1 7.30 17 8.00  

(van Gestel and van Dis, 1988) 1 7.00 4.3 1.70 

(Spurgeon et al., 2000) 1 6.35 9.7 2.35 

(Kjaer and Elmegaard, 1996) 1 6.40 11 3.40 
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Table 1.  Summary of Data Used in Meta-analyses (continued) 
 

Data set Reference Number of 
Soils 

Range in soil properties 

pHa Clay (%) SOM (%)b 

Toxicity cont. (Hague and Ebing, 1983) 1 6.10 3.2 1.00 

(Dang et al., 1990) 1 8.30 24 0.560 

(TN & Associates Inc., 2000) 1 6.32 3.2 0.200 

(Pedersen et al., 2000) 1 6.70 14 9.00 

(Kapustka et al., 2006) 1 6.32 3.2 0.100 

(Howcroft et al., 2009) 1 5.60 13 4.72 
 
a pH values include KCl and CaCl2 extracts.  
b Studies that only reported organic C values were doubled to convert to soil organic matter (SOM) values (Sleutel et al., 2007).   
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Table 2.  Variable Selection Resultsa from Apportionment Analysis for Both Bioaccumulation and Toxicity Data Sets 
 

Data Set Variables Kb −2( max c) AICcd ΔAICce wf 

Toxicity METAL + RECEPTOR + ENDPOINT + PARAMETER  27 3,785.9 3,841.1 0.0 0.91 

METAL + ENDPOINT(RECEPTOR) + PARAMETER 31 3,782.2 3,845.8 4.7 0.09 

METAL + ENDPOINT + PARAMETER 26 3,797.6 3,850.7 9.6 0.01 

Bioaccumulation METAL + ENDPOINT + DOSE + METAL × DOSE 31 1,580.7 1,646.8 0.0 0.91 

METAL + DOSE + METAL × DOSE 29 1,591.5 1,653.1 6.3 0.04 

METAL + TYPE + DOSE + METAL × DOSE 30 1,589.5 1,653.4 6.5 0.03 

METAL + RECEPTOR + DOSE + METAL × DOSE 30 1,591.4 1,655.3 8.4 0.01 
 

a Only those models with a cumulative total of Akaike weights >99% are presented.  
b Number of model parameters.  
c Maximum Log-likelihood.  
d Small-sample adjusted Akaike Information Criterion (AICc).  
e AICc difference.  
f AICc weight. 
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Table 3.   Proposed Adjustments to Total Soil Concentrations That Account for Metals Bioavailability Based on the Central 
Tendencies of the Terminal Nodes (i.e., Bioavailability Categories) from Figure 9.  (See Example) 

 

 

Bioavailability Category 

High Medium-High Medium-Low Low 

Factor difference 1.00 1.42 2.44 3.53 

Percent bioavailable 100 70 41 28 

Example: The value of 1.42 for the medium-high category can be obtained in two steps from 
results displayed in Figure 9: First apply the antilogarithm (exponential) to the mean values for 
“H” and “M-H” groups, which were calculated in the natural logarithm scale.  Thus we compute 
values 1.878 (H) and 1.323 (M-H).  Finally, the value displayed is 1.42 = 1.878/1.323.  The 
corresponding percent bioavailable is the inverse of this value × 100: 70 = 100 × (1/1.42). 
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Figure 1.  Mean (± 1 SE) Predicted Natural Log (nl) BAF Values by Dose, as Stratified by Metal, from the Most Parsimonious 

Bioaccumulation Model Apportioning Nuisance Variation. 
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Figure 2.  Mean (± 1 SE) Predicted Natural Log (nl) BAF Values by Endpoint (confounded by receptor) from the Most 

Parsimonious Bioaccumulation Model Apportioning Nuisance Variation. 
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Figure 3.  Mean (± 1 SE) Predicted Natural Log (nl) Toxicity Values by Metal from the Most Parsimonious Toxicity Model 

Apportioning Nuisance Variation. 
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Figure 4.  Mean (± 1 SE) Predicted Natural Log (nl) Toxicity Values by Endpoint from the Most Parsimonious Toxicity Model 

Apportioning Nuisance Variation. 
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Figure 5.  Mean (± 1 SE) Predicted Natural Log (nl) Toxicity Values by Parameter from the Most Parsimonious Toxicity 

Model Apportioning Nuisance Variation. 
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Figure 6.  Mean (± 1 SE) Predicted Natural Log (nl) Toxicity Values by Receptor from the Most Parsimonious Toxicity Model 

Apportioning Nuisance Variation. 
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Figure 7.  Relationships Between Model Residuals and Soil Organic Matter (SOM), Clay Content, and pH for the Most 

Parsimonious Toxicity and Bioaccumulation Linear Models Apportioning Nuisance Variation (see Table 2).   
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Figure 8.  Internal (Bioaccumulation Data Set) and External (Toxicity Data Set) Validation 
Results of Cross-Validation Analyses Used to Determine the Optimal-Sized 
Regression Tree.  The upper figure relates the sum of squared error (from k-fold 
cross validation) for an RT model, relative to the error from use of an RT with no 
splits (i.e., use of the simple grand mean), to the number of terminal groups.  The 
lower figure relates the Spearman correlation between predictions and toxicity values 
to the number of groups. 
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Figure 9.  Regression Tree Results Constrained to Four Terminal Nodes (see Figure 8).  
Mean (m) and sample size (n) values are characterized for each terminal node, which 
are classified into bioavailability categories of High (H), Medium-High (M-H), 
Medium-Low (M-L), and Low (L).  Relative RSS gives the sum of squared error for 
an RT with a given number of splits, relative to an RT with no splits (i.e., simple use 
of the grand mean).   
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