Integrated Risk Information System (IRIS) Program Public Science MeetingTopic #2: Consideration of vanadium speciation.

By Debbie C. Crans; Colorado State University

For developing *the* **Populations, Exposures, Comparators and Outcomes (PECO) criteria for Vanadium** with the ultimate goal of **setting guidelines for safe limits in drinking water**

Disclaimer

- I do not have any financial relationships with persons or organizations having an interest in a toxicological review of vanadium compounds.
- No interested party had reviewed the input I am providing at the meeting today.

IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

23

Vanadium

50.9415

Topic: Consideration of vanadium speciation. By Debbie C. Crans; Colorado State University

For developing the Populations, Exposures, Comparators and Outcomes (PECO) criteria for Vanadium with the ultimate goal of setting guidelines for safe limits in drinking water

Chemical Speciation (slides 1-15)

- Illustrate and define speciation
- Fundamental chemical and physical properties
- Speciation profile and Pourbaux diagrams Biological effects of speciation (slides 16-19)
- Speciation cause different biological effects
- ^a Differences in uptake by vanadium(V) and vanadium(IV)
- Future and recommendations with measurements (slides 20-21)
- Methods to measure V-content and speciation

Illustration of speciation.

Vanadate and decavanadate - composition the same – pH different

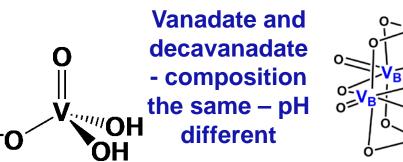
Vanadate (pH 7) Decavanadate (pH 3)

IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

Definition and illustration of speciation.

Definition of speciation (in chemistry)

Table 1. Recommended IUPAC Speciation Definitions⁹


term	IUPAC definition
chemical species	chemical elements: specific form or an element defined as to isotopic composition, electronic or oxidation state, and/or complex or molecular structure
speciation analysis	analytical chemistry: analytical activities of identifying and/ or measuring the quantities of one or more individual chemical species in a sample
speciation of an element (speciation)	distribution of a component among defined chemical species in a system

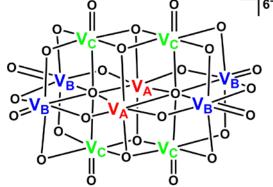

Crans, Inorg. Chem., 2013, 52, 12264-12275

Illustration of speciation

Crans et al. *Chem. Rev.* 2004, 104, 849-902 Aureliano & Crans, *J. Inorg. Biochem.*, **2009**, *103*, 536-546

IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

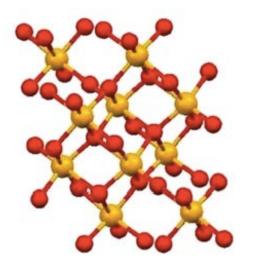


Vanadate (pH 7) Decavanadate (pH 3)

Topic: Consideration of vanadium speciation.

Vanadium Compounds:

Vanadium metal Vanadium salt (Inorganic salts) - focus of todays work Vanadium coordination complexes


Four classes of reactions result in diversity of compounds:

- Hydrolysis (reaction of solid with water)
- Acid Base protonation deprotonation reactions
- Condensation oligomerization reactions
- Redox reactions

Materials Presented in draft report

Structures are shown with regard to what is reported in the **solid state**

 V_2O_5 is a polymeric sheet that falls apart upon dissolution

Filonenko et al. Acta Crystallogr., Sect. B: Struct. Sci., 2004, 60, 375–381. Haber et al. App. Cat. A: General, 1997, 157, 3-22

Name	Elemental vanadium	Vanadyl sulfate	Sodium metavanadate	Ammonium metavanadate	Sodium orthovanadate	Vanadium pentoxide
CASRN	7440-62-2	27774-13-6	13718-26-8	7803-55-6	13721-39-6	1314-62-1
DTXSID ^a	2040282	4021428	3044336	1052533	2037269	2023806
Structure	V	v <u>²</u> +=o o <u> </u>			Nă Nă O O Nă	
Molecular weight (g/mol)	50.942	163	121.928	116.978	183.907	181.878
Molecular formula	v	VOSO4	NaVO ₃	NH4VO3	Na3VO4	V2O5
Selected Synonym(s)	Vanadium(Oxido)vanadium(2+) sulfate; oxo(sulfato)vanadium; oxovanadium(IV) sulfate; vanadium oxide sulfate; vanadium oxosulfate; vanadium oxysulfate; vanadium oxysulfate; vanadium sulfate; vanadic sodium trioxide; vanadium sulfate; vanadic sodium sulfate; vanadium sulfate; vanadium sulfate; vanadin(IV) oxide sulfateSodium vanadate(1^) vanadium trioxide; vanadium trioxide; vanadium sulfate; 		sodium trioxidovanadate(1 ⁻); sodium vanadium oxide; sodium vanadium trioxide; vanadic acid, monosodium salt;	Ammonium trioxovanadate(1 ⁻); ammonium tris(oxido)vanadate(1 ⁻); ammonium monovanadate; ammonium vanadate(V); vanadic acid, ammonium salt; ammonium vanadium oxide; ammonium vanadium trioxide	Trisodium tetraoxidovanadate (3 ⁻); sodium vanadium oxide, trisodium vanadate, sodium vanadate(V), vanadic acid, trisodium salt	Vanadium oxide; mu- oxido[tetrakis(oxido)]divanadium; divanadium pentoxide; vanadic anhydride; vanadin(V) oxide; vanadium(V) oxide
Water solubility (mol/L) ^b						

Table 1. Chemical identity and physiochemical properties of selected vanadium compounds as curated by EPA's CompTox Chemicals Dashboard

IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

Reaction: Hydrolysis of vanadium solids

Compounds: Vanadium salts

Table 1. Chemical identity and physiochemical properties of selected vanadium compounds as curated by EPA's CompTox Chemicals Dashboard

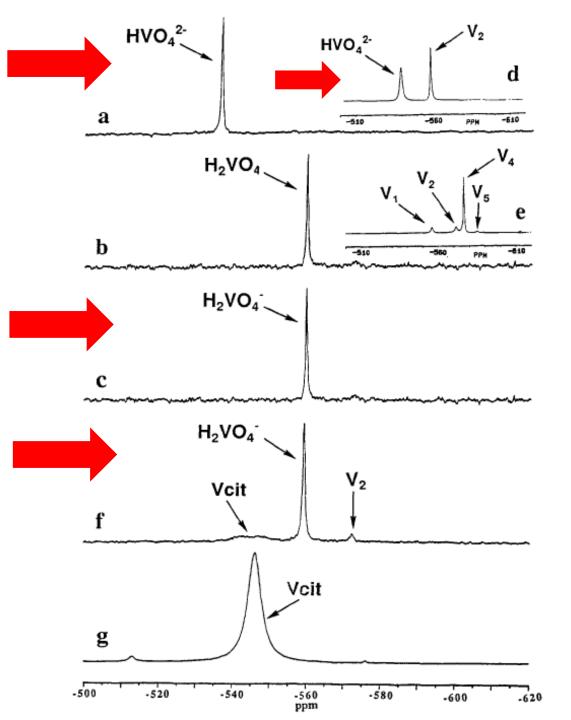
Name	Elemental vanadium	Vanadyl sulfate	Sodium metavanadate	Ammonium metavanadate	Sodium orthovanadate	Vanadium pentoxide
CASRN	7440-62-2	27774-13-6	13718-26-8	7803-55-6	13721-39-6	1314-62-1
DTXSID ^a	2040282	4021428	3044336	1052533	2037269	2023806
Structure	V	√ <u>2+</u> 0 0 [−] U U			Nắ Nả 0 0 Nă	

First reaction discussed – reaction with water: Hydrolysis (pH dependent)

Specific Reactions:

 $VOSO_4 + 5H_2O \rightarrow VO(H_2O)_5^{2+} + SO_4^{2-}$ (pH is acidic) $NaVO_3 + H_2O \rightarrow H_2VO_4^{-} + Na^+$ (pH near 7) $Na_3VO_4 + 2H_2O \rightarrow H_2VO_4^{-} + 3 Na^+ + 2OH^-$ (pH is basic) $V_2O_5 + H_2O + 2 NaOH \rightarrow 2H_2VO_4^{-} + 2 Na^+$ (pH is acidic)

Language needs to properly reflect species that exists


IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

Comparing NaVO₃ and Na₃VO₄

⁵¹V NMR spectra of vanadate solutions prepared NaVO₃ and Na₃VO₄:

- a) 0.38 mM vanadate prepared from Na_3VO_4 (pH 10.50),
- b) 0.38 mM vanadate prepared from NaVO₃ (pH 7.04),
- c) 0.4 mM vanadate prepared from Na_3VO_4 and adjusted to pH 7.04,
- d) 10.0 mM vanadate prepared from Na_3VO_4 (pH 12.5),
- e) 10.0 mM vanadate prepared from NaVO $_3$ (pH 7.04),
- f) 0.38 mM Na_3VO_4 adjusted to pH 7.04 with citric acid,
- g) 10.0 mM NaVO $_3$ and 40.0 mM citrate at pH 7.04.

Crans et al. Cell Mol. Biochemistry, 1995, 17-24.

Acid-Base & Oligomerization Reactions

Vanadium in oxidation state V $VO_4^{3-} + H_2O \rightarrow HVO_4^{2-} + HO^{-}$ $HVO_4^{2-} + H_2O \rightarrow H_2VO_4^{-} + HO^{-}$ $H_2VO_4^{-} + H_3O^{+} \rightarrow H_3VO_4 + H_2O^{-}$ $(H_3VO_4 \rightarrow H_2O + VO_2^{+} + HO^{-})$

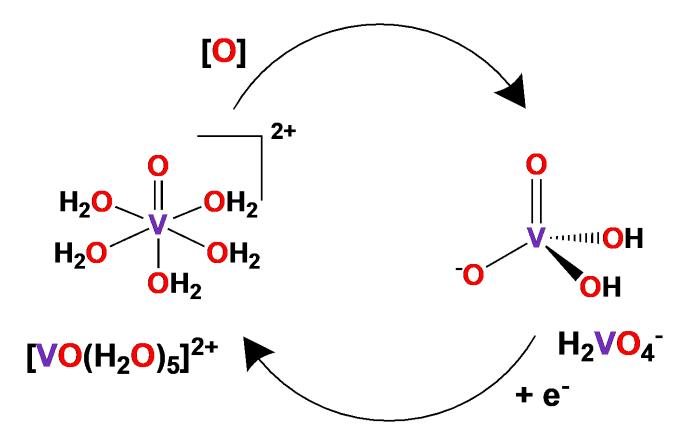
Vanadium in oxidation state IV VO(H_2O)₅²⁺ + SO₄²⁻ -> VO(OH)(H_2O)₅²⁺ + HSO₄⁻

Condensation Reactions (abbreviate V_1 , V_2 , V_4 , V_5 , V_{10}) $V_1 + V_1 \rightarrow V_2$ $\rightarrow V_4$ $\rightarrow V_{10}$

IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

From the left the three metavanadate solutions (pH 7.3-7.8) at 0.005, 0.05, 0.5 M

From the right three decavanadate solutions (pH 5.8-6.0) at 0.005, 0.05, 0.5 M


Redox chemistry of vanadium salts

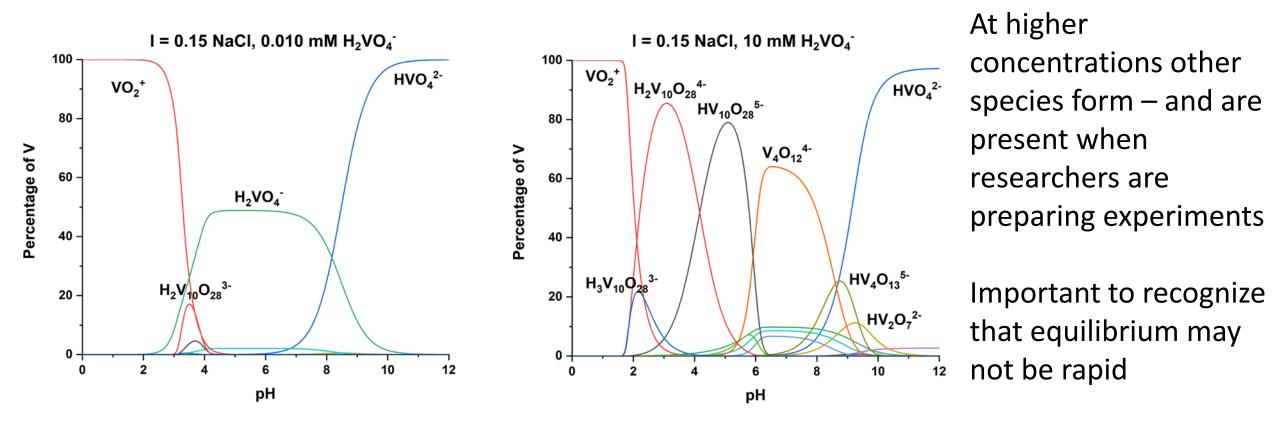
Redox reactions occur at the suitable redox potential which varies with pH and other reaction conditions.

A cycling between Vanadium(V) and Vanadium(IV) occur under physiological conditions

Importantly, all these reactions (hydrolysis, acid/base, condensation and redox) take place at the same time

Crans et al. Chem. Rev. 2004, 104, 849-902

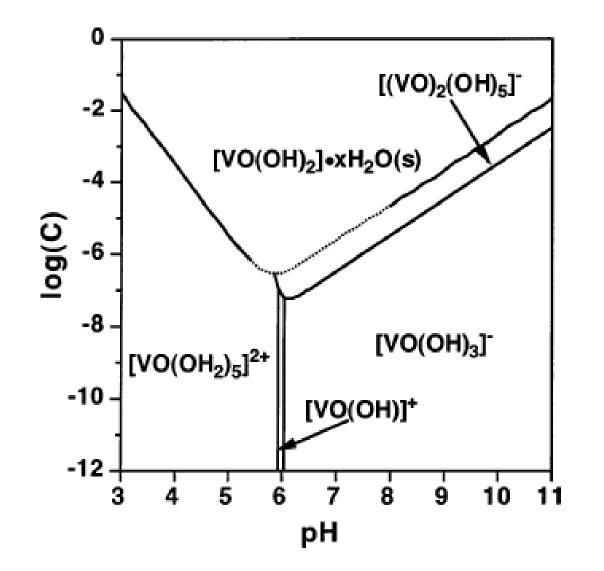
Distribution Diagrams V(V) - at physiological levels


At low concentration speciation is simple and mainly mononuclear species present

Crans et al. "Metal Toxicology Handbook" 2020 Bagchi D. and Bagchi M. in press

11

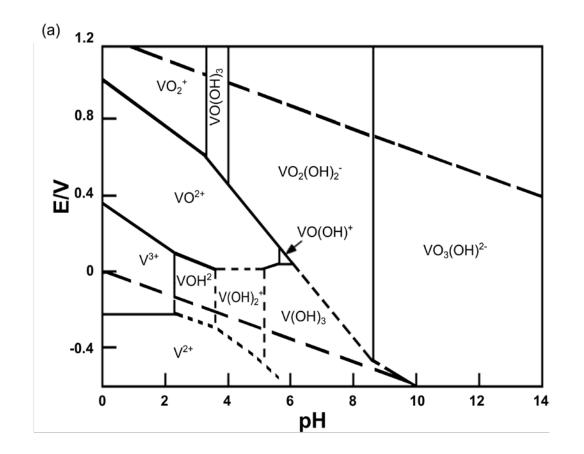
IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST


Distribution Diagrams V(V) – low and higher concentrations

Crans et al. "Metal Toxicology Handbook" 2020 Bagchi D. and Bagchi M. in press

IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

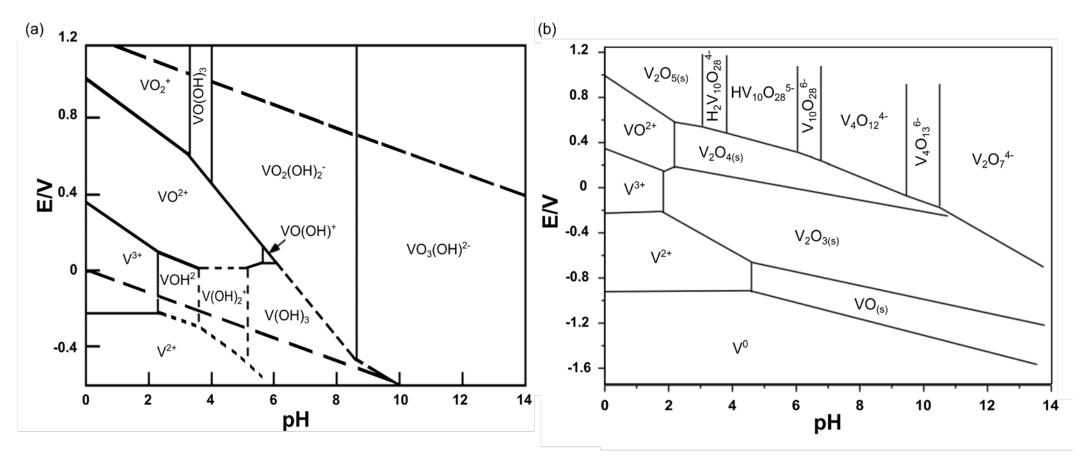
Distribution Diagrams V(IV)


Formation of VO(OH)₂ and derived species that are EPR silent complicate investigations near neutral pH

Below 1 microM except between pH 6-7 speciation is $VO(OH_2)_5^{2+}$ [(VO)₂(OH)₅]⁻, and [VO(OH)₃]⁻

Crans et al. Chem. Rev. 2004, 104, 849-902

IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST


Distribution Diagrams; at physiological levels

Representation of the Pourbaix diagram of vanadium of ionic strength of (a) 10⁻⁶ M Crans et al. *Chem. Rev.* 2004, 104, 849-902

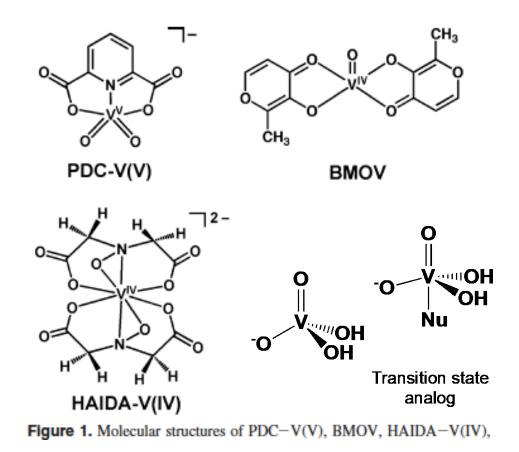
IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

Pourbaix Diagrams; low and higher concentrations

Representation of the Pourbaix diagram of vanadium of ionic strength of (a) 10⁻⁶ M (1) and (b) 1 M at 25°C (2) (1) Crans et al. *Chem. Rev.* 2004, 104, 849-902; (2) Povar et al. J. Electrochem. Sci. Eng. 2019, 9, 75–84.

IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

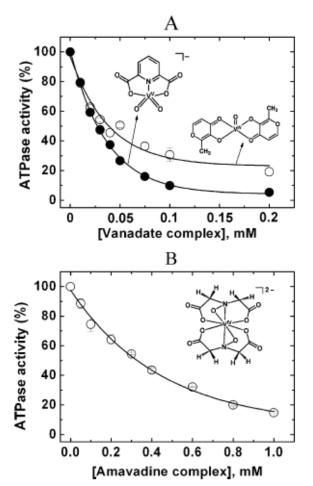
Biological effects as a consequence of speciation


Chemical Speciation (slides 1-15)

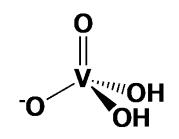
- Illustrate and define speciation
- Fundamental chemical and physical properties
- Speciation profile and Pourbaux diagrams

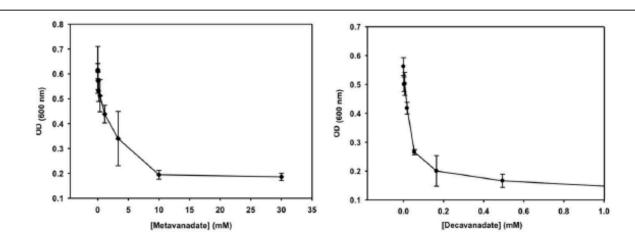
Biological effects of speciation (slides 16-19)

- Speciation cause different biological effects
- ^a Differences in uptake by vanadium(V) and vanadium(IV)
- Future and recommendations with measurements (slides 20-21)
- Methods to measure V-content and speciation


Inhibition by different V-compounds and salts: Sarcoplasmic Reticulum Calcium ATPase

The Sarcoplasmic Reticulum Ca²⁺-ATPase was inhibited by all three of these complexes – the order was **PDC-V(V) > BMOV > vanadate > HAIDA-V(IV)**, and the IC₅₀ values were **25**, **40**, **80**, and **325** μM,


Different species - different activity


Aureliano et al. *Inorg. Chem., 2008, 47*, 5677-5684

IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

V₁ affects growth less than V₁₀ on Mycobacteria

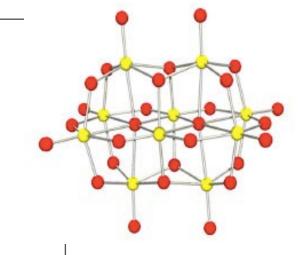
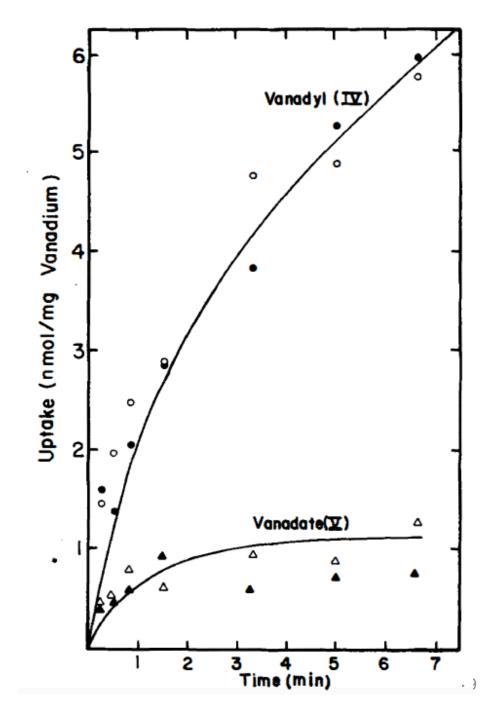


FIGURE 4 | The growth curve is shown for treatment with vanadate (left, prepared from a 40 mM colorless metavanadate solution) and decavanadate [right, prepared from a 100 mM orange decavanadate solution (1.0 M V-atoms) on *M. tb*].

TABLE 2 | The EC50 values for V1 and V10 treated Mycobacterium tuberculosis and smegmatis.

	EC ₅₀ (M. tb) (mM)	Stand. error	EC ₅₀ (M. tb) (mM V-atoms)	Stand. error	EC ₅₀ (M. smeg) (mM)	Stand. error	EC ₅₀ (<i>M. smeg</i>) (mM V-atoms)	Stand. error
V ₁	2.0	0.43	2.0	0.43	0.19	0.071	0.19	0.071
V ₁₀	0.029	0.005	0.29	0.05	0.0037	0.0004	0.037	0.004

Different species - different activity


Samart et al. Frontiers in Chemistry, 2018, 6, article #519 (16p).

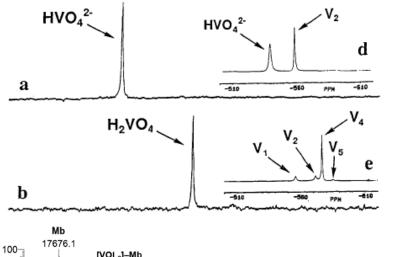
IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

Cellular uptake difference between vanadyl (V(IV)) and vanadate (V(V))

Cellular accumulation of vanadate and vanadyl. Cell growth and uptake studies were done using radiolabeled vanadium compounds. o represent 200 μ M [⁴⁸V]vanadyl uptake and • represent 200 μ M [⁴⁸V]vanadate uptake.

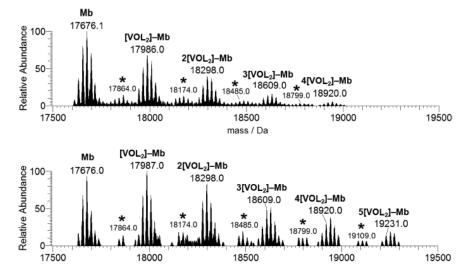
Willsky et al. J. Biol. Chem. 1984, 259, 13273-13281

Measuring vanadium and speciation


Chemistry section (slides 1-15)

- Illustrate and define speciation
- Fundamental chemical and physical properties
- Speciation profile and Pourbaux diagrams Biological effects (slides 16-19)
- Speciation cause different biological effects
- ^a Differences in uptake by vanadium(V) and vanadium(IV)

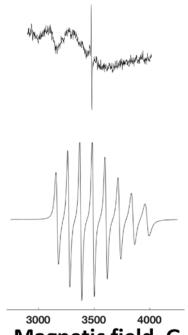
Future and recommendations with measurements (slides 20-21)


• Methods to measure V-content and speciation

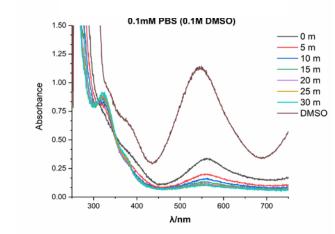
Measuring vanadium levels

Total vanadium

Atomic absorbance spectroscopy Inductively coupled plasma Various mass spectroscopies X-ray absorbance spectroscopy



Specific oxidation states Vanadium(V)


Magnetic resonance (NMR) UV-vis and IR spectroscopy Vanadium(IV)

Magnetic resonance (X-band EPR) UV-vis and IR spectroscopy Vanadium(III)

Magnetic resonance (High field EPR_ UV-vis and IR spectroscopy

Magnetic field, G

Ugone et al Inor. Chem. 2020,59, 9739-9755

mass / Da

IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

Topic: Consideration of vanadium speciation. By Debbie C. Crans; Colorado State University

Chemical Speciation (slides 1-15)

- Illustrate and define visible speciation
- Fundamental chemical and physical properties
- Speciation profile and Pourbaux diagrams
- **Biological effects of speciation (slides 16-19)**
- Speciation cause different biological effects
- ^a Differences in uptake by vanadium(V) and vanadium(IV)
- Future and recommendations with measurements (slides 20-21)
- Methods to measure V-content and speciation

Recommendations for developing the PECO criteria for studies and setting guidelines for safe limits in drinking water

IRIS Program Public Science Meeting Aug. 19, 3-5 pm EST

23

Vanadium

50.9415