

Toxicological Review of Perfluorobutanoic Acid (PFBA) and Related Compound Ammonium Perfluorobutanoic Acid

(CASRN 375-22-4 CASRN 10495-86-0)

Supplemental Information—Appendices A though F

August 2021

Integrated Risk Information System Center for Public Health and Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is an external review draft for review purposes only. This information is distributed solely for the purpose of public comment. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

CONTENTS

APPENDIX A. SYSTEMATIC REVIEW PROTOCOL FOR THE PFAS IRIS ASSESSMENTS
APPENDIX B. ADDITIONAL DETAILS OF SYSTEMATIC REVIEW METHODS AND RESULTSB-1
APPENDIX C. ADDITIONAL TOXICOKINETIC INFORMATION IN SUPPORT OF DOSE-RESPONSE ANALYSIS
C.1. USE OF HALF-LIVES OF EXCRETION FOR DOSIMETRIC ADJUSTMENTSC-1
C.2. MIXED MODELING TO ESTIMATE HALF-LIFE IN HUMANSC-7
APPENDIX D. BENCHMARK DOSE MODELING RESULTS D-1
D.1. BENCHMARK DOSE MODELING APPROACHES D-1
D.1.1. Modeling Procedure for Dichotomous Noncancer DataD-1
D.1.2. Modeling Procedure for Continuous Noncancer DataD-1
D.1.3. Modeling Procedure for Continuous Noncancer Developmental Toxicity Data D-2
D.1.4. Modeling Procedure for Dichotomous Noncancer Developmental Toxicity Data D-3
D.1.5. Data Used for Modeling D-3
D.2. RELATIVE LIVER WEIGHT—MALE RATS (Butenhoff et al., 2012; van Otterdijk, 2007) D-16
D.3. RELATIVE LIVER WEIGHT—P ₀ MICE (Das et al., 2008) D-25
D.4. LIVER HYPERTROPHY—MALE RAT (Butenhoff et al., 2012; van Otterdijk, 2007) D-31
D.5. TOTAL T4—MALE RAT (Butenhoff et al., 2012; van Otterdijk, 2007) D-34
D.6. INCREASED FETAL MORTALITY – MALE AND FEMALE F ₁ MICE (Das et al., 2008) D-38
D.7. DELAYED EYE OPENING—F1 MALE AND FEMALE MICE (Das et al., 2008) D-45
D.8. VAGINAL OPENING—F1 FEMALE MICE (Das et al., 2008) D-51
D.9. PREPUTIAL SEPARATION—F1 MALE MICE (Das et al., 2008) D-57
D.10. RELATIVE LIVER WEIGHT—MALE HUMANIZED PPARα MICE (Foreman et al., 2009) D-61
APPENDIX E. SUMMARY OF PUBLIC COMMENTS AND EPA'S DISPOSITION
APPENDIX F. QUALITY ASSURANCE FOR THE IRIS TOXICOLOGICAL REVIEW OF PERFLUOROBUTANOIC ACID AND RELATED COMPOUND AMMONIUM
PERFLUOROBUTANOIC ACID AND RELATED COMPOUND AMMONION
REFERENCES

TABLES

Table B-1.	Perfluorobutanoic acid (PFBA) database search strategy	3-1
Table B-2.	Title/abstract-level screening criteria for the initial literature searches	3-4
Table B-3.	Example DistillerSR form questions to be used for title/abstract-level and full	
	text-level screening for literature search updates from 2019	3-6
Table D-1.	Sources of data used in benchmark dose modeling of PFBA endpoints	
Table D-2.	Data received from study authors for Das et al. (2008) on full litter resorptions (FLR))-4
Table D-3.	Data received from study authors for Das et al. (2008) on fetal death (litters without	
	full litter resorptions) combined with full litter resorptions)-5
Table D-4.	Data received from study authors for Das et al. (2008) on delayed eye opening)-8
Table D-5.	Data received from study authors for Das et al. (2008) on delayed vaginal opening D-	-11
Table D-6.	Data received from study authors for Das et al. (2008) on delayed preputial	
	separation D-	-14
Table D-7.	Dose-response data for relative liver weight in male rats (Butenhoff et al., 2012; van	
	Otterdijk, 2007) D-	-16
Table D-8.	Benchmark dose results for relative liver weight in male rats—constant variance,	
	BMR = 10% relative deviation (Butenhoff et al., 2012; van Otterdijk, 2007) D-	·17
Table D-9.	Benchmark dose results for relative liver weight in male rats—nonconstant variance,	
	BMR = 10% relative deviation (Butenhoff et al., 2012; van Otterdijk, 2007) D-	·19
Table D-10). Benchmark dose results for relative liver weight in male rats—log-normal	
	distribution, constant variance, BMR = 10% relative deviation (Butenhoff et al.,	
	2012; van Otterdijk, 2007) D-	·20
Table D-11	Benchmark dose results for relative liver weight in male rats—log-normal	
	distribution, constant variance, BMR = 1 standard deviation (Butenhoff et al.,	
	2012; van Otterdijk, 2007) D-	
	2. Dose-response data for relative liver weight in pregnant mice (Das et al., 2008) D-	·25
Table D-13	 Benchmark dose results for relative liver weight in pregnant mice—constant 	
	variance, BMR = 10% relative deviation (Das et al., 2008)	·26
Table D-14	 Benchmark dose results for relative liver weight in pregnant mice—constant 	
	variance, BMR = 1 standard deviation (Das et al., 2008)	.30
Table D-15	 Dose-response data liver hypertrophy in male rats (Butenhoff et al., 2012; van 	
	Otterdijk, 2007) D-	·31
Table D-16	Benchmark dose results for liver hypertrophy in rats—BMR = 10% extra risk	
	(Butenhoff et al., 2012; van Otterdijk, 2007) D-	·31
Table D-17	7. Dose-response data for liver hypertrophy (slight severity lesions) in male rats	
	(Butenhoff et al., 2012; van Otterdijk, 2007) D-	.34
Table D-18	8. Benchmark dose results for liver hypertrophy (slight severity lesions) in male	
	rats—BMR = 10% extra risk (Butenhoff et al., 2012; van Otterdijk, 2007) D-	.34
Table D-19	Dose-response data for total T4 levels in male rats (Butenhoff et al., 2012; van	
	Otterdijk, 2007) D-	.34
Table D-20). Benchmark dose results for total T4 levels in male rats—constant variance,	-
- 11 - c :	BMR = 1 standard deviation (Butenhoff et al., 2012; van Otterdijk, 2007) D-	.35
lable D-21	. Benchmark dose results for total T4 levels in male rats—nonconstant variance,	
	BMR = 1 standard deviation (Butenhoff et al., 2012; van Otterdijk, 2007) D-	-36

Table D-22.	Benchmark dose results for total T4 levels in male rats—log-normal distribution,	
	constant variance, BMR = 1 standard deviation (Butenhoff et al., 2012; van	
	Otterdijk, 2007) D	
Table D-23.	Dose-response data for increased fetal mortality (Das et al., 2008) D)-38
Table D-24.	Benchmark dose results for increased fetal mortality (male and female	
	mice)—BMR = 1% extra risk (Das et al., 2008) D	0-40
Table D-25.	Dose-response data for delayed eye opening in male and female mice (Das et al.,	
	2008) D)-45
Table D-26.	Benchmark dose results for delayed eye opening in male and female	
	mice—constant variance, BMR = 5% relative deviation (Das et al., 2008) D)-46
Table D-27.	Benchmark dose results for delayed eye opening in male and female	
	mice—constant variance, BMR = 1 standard deviation (Das et al., 2008) D)-50
Table D-28.	Dose-response data for delayed vaginal opening in female mice (Das et al., 2008) D)-51
Table D-29.	Benchmark dose results for delayed vaginal opening in female mice—constant	
	variance, 5% relative deviation (Das et al., 2008) D)-52
Table D-30.	Benchmark dose results for delayed vaginal opening in female mice—constant	
	variance, 1 standard deviation (Das et al., 2008) E)-56
Table D-31.	Dose-response data for delayed preputial separation in male mice (Das et al., 2008) D)-57
Table D-32.	Benchmark dose results for delayed preputial separation in male mice—constant	
	variance, BMR = 5% relative deviation (Das et al., 2008))-57
Table D-33.	Benchmark dose results for delayed preputial separation in male mice—constant	
	variance, BMR = 1 standard deviation (Das et al., 2008)	0-61
Table D-34.	Dose-response data for relative liver weight in male humanized PPAR $lpha$ mice	
	(Foreman et al., 2009) D	0-61
Table D-35.	Benchmark dose results for delayed preputial separation in male	
	mice—nonconstant variance, BMR = 10% relative deviation (Das et al., 2008) D	0-62

FIGURES

Figure C-1.	Mouse AUC after oral doses of PFBA	C-1
Figure C-2.	Mouse C _{max} after oral doses of PFBA.	C-2
Figure C-3.	Rat AUC after oral doses of PFBA.	. C-3
Figure C-4.	Rat C _{max} after oral doses of PFBA	C-4
Figure C-5.	Estimated human half-lives versus initial serum concentrations.	C-5
Figure D-1.	Dose-response curve for the Exponential M3 model fit to relative liver weight in	
	male rats (Butenhoff et al., 2012; van Otterdijk, 2007)	D-21
Figure D-2.	Dose-response curve for the Exponential M4 model fit to relative liver weight in	
	pregnant mice (Das et al., 2008)	D-27
Figure D-3.	Dose-response curve for the Weibull model fit to liver hypertrophy in male rats	
	(Butenhoff et al., 2012; van Otterdijk, 2007)	D-32
Figure D-4.	Dose-response curve for the Nested-Logistic model fit to increased fetal mortality in	
	male and female mice (Das et al., 2008).	D-41
Figure D-5.	Dose-response curve for the Hill model fit to delayed eye opening in male and	
	female mice (Das et al., 2008)	D-47
Figure D-6.	Dose-response curve for the Hill model fit to delayed vaginal opening in female mice	
	(Das et al., 2008)	D-53
Figure D-7.	Dose-response curve for the Exponential 3 model fit to delayed preputial separation	
	in male mice (Das et al., 2008)	D-58

ABBREVIATIONS AND ACRONYMS

ACO	agul Cal auidaga
ACO	acyl-CoA oxidase
ADME	absorption, distribution, metabolism,
	and excretion
AFFF	aqueous film-forming foam
AIC	Akaike's information criterion
ALP	alkaline phosphatase
ALT	alanine aminotransferase
AST	aspartate aminotransferase
atm ATSDR	atmosphere
AISDR	Agency for Toxic Substances and
AUC	Disease Registry area-under-the-concentration curve
AUC BMD	benchmark dose
BMDL	benchmark dose lower confidence limit
BMDL	Benchmark Dose Software
BMR	benchmark response
BW	
d vv C _{avg}	body weight average concentration
Cavg Cmax	maximum concentration
Смах СА	
CAR	Cochran-Armitage constitutive androstane receptor
CASRN	Chemical Abstracts Service registry
CASKIN	number
CDR	Chemical Data Reporting
CI	confidence interval
CL	clearance
CL CLA	clearance in animals
CLA	clearance in humans
CPAD	Chemical and Pollutant Assessment
GIND	Division
CPHEA	Center for Public Health and
OI IIIIII	Environmental Assessment
CV	constant variance
CYP450	cytochrome P450 superfamily
DAF	dosimetric adjustment factor
DNA	deoxyribonucleic acid
DNT	developmental neurotoxicity
DOD	Department of Defense
EPA	Environmental Protection Agency
EOP	Executive Office of the President
ER	extra risk
FLR	full-litter resorption
FTOH	fluorotelomer alcohol
GD	gestation day
GFR	glomerular filtration rate
GGT	γ-glutamyl transferase
GRADE	Grading of Recommendations
	Assessment, Development, and
	Evaluation
GSH	glutathione
	0

HAWC	Health Assessment Workspace
	Collaborative
HED	human equivalent dose
HERO	Health and Environmental Research
	Online
HISA	highly influential scientific information
HPT	hypothalamic-pituitary-thyroid
IRIS	Integrated Risk Information System
i.v.	intravenous
IQ	intelligence quotient
IQR	interquartile range
ISI	influential scientific information
IUR	inhalation unit risk
LLOQ	lower limit of quantitation
LN	log-normal
LOAEL	lowest-observed-adverse-effect level
MBq	megabecquerel
MOA	mode of action
NCEA	National Center for Environmental
	Assessment
NCV	nonconstant variance
NIOSH	National Institute for Occupational
	Safety and Health
NIS	sodium-iodide symporter
NOAEL	no-observed-adverse-effect level
NPL	National Priority List
NTP	National Toxicology Program
OAT	organic anion transporter
OECD	Organisation for Economic Co-
	operation and Development
OMB	Office of Management and Budget
ORD	Office of Research and Development
OSF	oral slope factor
PC	partition coefficient
PBPK	physiologically based pharmacokinetic
PBTK	physiologically based toxicokinetic
PECO	Populations, Exposures, Comparators,
	Outcomes
PFAA	perfluoroalkyl acid
PFAS	per- and polyfluoroalkyl substances
PFBA	perfluorobutanoic acid
PFBS	perfluorobutane sulfonate
PFCA	perfluoroalkyl carboxylic acid
PFDA	perfluorodecanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexane sulfonate
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctane sulfonate
PK PND	pharmacokinetic postnatal day
FND	postilatal uay

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

POD	point of departure	TRI	Toxic Release Inventory
POD_{HED}	human equivalent dose POD	TSCA	Toxic Substances Control Act
PPAR	peroxisome proliferator-activated	TSCATS	Toxic Substances Control Act Test
	receptor		Submissions
PQAPP	Programmatic Quality Assurance	TSH	thyroid-stimulating hormone
	Project Plan	TSHR	thyroid-stimulating hormone receptor
РТ	prothrombin time	UCMR	Unregulated Contaminant Monitoring
PXR	pregnane X receptor		Rule
QA	quality assurance	UDP-GT	uridine 5'-diphospho-
QAPP	Quality Assurance Project Plan		glucuronosyltransferase
QMP	Quality Management Plan	UF	uncertainty factor
RBC	red blood cell	UFA	animal-to-human uncertainty factor
RD	relative deviation	UFc	composite uncertainty factor
RfC	inhalation reference concentration	\mathbf{UF}_{D}	database deficiencies uncertainty factor
RfD	oral reference dose	UFH	human variation uncertainty factor
RS	Rao-Scott	$\rm UF_L$	LOAEL-to-NOAEL uncertainty factor
SD	standard deviation	UFs	subchronic-to-chronic uncertainty
S-D	Sprague-Dawley		factor
SE	standard error	$V_{ m d}$	volume of distribution
TD	toxicodynamic	VOC	volatile organic compound
TH	thyroid hormone	WOS	Web of Science
ТК	toxicokinetic		
TPO	thyroid peroxidase		

APPENDIX A. SYSTEMATIC REVIEW PROTOCOL FOR THE PFAS IRIS ASSESSMENTS

- A single systematic review protocol was used to guide the development of five, separate
 IRIS PFAS assessments (i.e., PFBA, PFHxA, PFHxS, PFNA, and PFDA). This "systematic review
 protocol for the PFAS IRIS assessments" was released for public comment and subsequently
 updated. The updated protocol and prior revisions can be found at the following location:
- 6 <u>http://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=345065</u>

APPENDIX B. ADDITIONAL DETAILS OF SYSTEMATIC REVIEW METHODS AND RESULTS

Search	Search strategy	Dates of search	
PubMed	PubMed		
Search terms	375-22-4[rn] OR "Heptafluoro-1-butanoic acid"[tw] OR "Heptafluorobutanoic acid"[tw] OR "Heptafluorobutyric acid"[tw] OR "Kyselina heptafluormaselna"[tw] OR "Perfluorobutanoic acid"[tw] OR "Perfluorobutyric acid"[tw] OR "Perfluoropropanecarboxylic acid"[tw] OR "2,2,3,3,4,4,4-heptafluoro-Butanoic acid"[tw] OR "Butanoic acid, 2,2,3,3,4,4,4-heptafluoro-"[tw] OR "Butanoic acid, heptafluoro-"[tw] OR "Perfluoro-n-butanoic acid"[tw] OR "Perfluorobutanoate"[tw] OR "2,2,3,3,4,4,4-heptafluorobutanoic acid"[tw] OR "Butyric acid, heptafluoro-"[tw] OR "Fluorad FC 23"[tw] OR "H 0024"[tw] OR "NSC 820"[tw] OR ((PFBA[tw] OR "FC 23"[tw] OR HFBA[tw]) AND (fluorocarbon*[tw] OR fluorotelomer*[tw] OR polyfluoro*[tw] OR perfluoro-*[tw] OR perfluoroa*[tw] OR perfluorob*[tw] OR perfluoros*[tw] OR perfluoroa*[tw] OR perfluorop*[tw] OR perfluoros*[tw] OR perfluoroa*[tw] OR perfluorop*[tw] OR PFOS[tw] OR PFOA[tw]))	No date limit-7/19/2017	
Literature update search terms	(((375-22-4[rn] OR "Heptafluoro-1-butanoic acid"[tw] OR "Heptafluorobutanoic acid"[tw] OR "Heptafluorobutyric acid"[tw] OR "Kyselina heptafluormaselna"[tw] OR "Perfluorobutanoic acid"[tw] OR "Perfluorobutyric acid"[tw] OR "Perfluoropropanecarboxylic acid"[tw] OR "2,2,3,3,4,4,4-heptafluoro-Butanoic acid"[tw] OR "Butanoic acid, 2,2,3,3,4,4,4-heptafluoro-"[tw] OR "Butanoic acid, heptafluoro-"[tw] OR "Perfluoro-n-butanoic acid"[tw] OR "Perfluorobutanoate"[tw] OR "2,2,3,3,4,4,4-heptafluorobutanoic acid"[tw] OR "Butyric acid, heptafluoro-"[tw] OR "Fluorad FC 23"[tw] OR "H 0024"[tw] OR "NSC 820"[tw] OR ((PFBA[tw] OR "FC 23"[tw] OR HFBA[tw]) AND (fluorocarbon*[tw] OR fluorotelomer*[tw] OR polyfluoro*[tw] OR perfluoro-*[tw] OR perfluoroa*[tw] OR perfluorob*[tw] OR perfluoros*[tw] OR perfluoroa*[tw] OR perfluorop*[tw] OR perfluoros*[tw] OR perfluoroa*[tw] OR fluorinated[tw] OR PFAS[tw] OR PFOS[tw] OR PFOA[tw])) AND ("2017/08/01"[PDAT] : "2018/02/14"[PDAT])	8/1/2017-2/14/2018	

Search	Search strategy	Dates of search	
Web of Science			
Search terms	TS="Heptafluoro-1-butanoic acid" OR TS="Heptafluorobutanoic acid" OR TS="Heptafluorobutyric acid" OR TS="Kyselina heptafluormaselna" OR TS="Perfluorobutanoic acid" OR TS="Perfluorobutyric acid" OR TS="Perfluoropropanecarboxylic acid" OR TS="2,2,3,3,4,4,4-heptafluoro-Butanoic acid" OR TS="Butanoic acid, 2,2,3,3,4,4,4-heptafluoro-" OR TS="Butanoic acid, heptafluoro-" OR TS="Perfluoro-n-butanoic acid" OR TS="Perfluorobutanoate" OR TS="2,2,3,3,4,4,4-heptafluorobutanoic acid" OR TS="Butyric acid, heptafluoro-" OR TS="Fluorad FC 23" OR TS="H 0024" OR TS="NSC 820" OR (TS=(PFBA OR "FC 23" OR HFBA) AND TS=(fluorocarbon* OR fluorotelomer* OR polyfluoro* OR perfluoro-* OR perfluoroa* OR perfluorob* OR perfluoroc* OR perfluorop* OR perfluoros* OR perfluorou* OR perfluoroo* OR perfluorop* OR PERFLUORS* OR PERFLUORS* OR PERFLUORS* OR perfluoroa* OR fluorinated OR PFAS OR PFOS OR PFOA))	No date limit-7/20/2017	
Literature update search terms	((TS="Heptafluoro-1-butanoic acid" OR TS="Heptafluorobutanoic acid" OR TS="Heptafluorobutyric acid" OR TS="Kyselina heptafluormaselna" OR TS="Perfluorobutanoic acid" OR TS="Perfluorobutyric acid" OR TS="Perfluoropropanecarboxylic acid" OR TS="2,2,3,3,4,4,4-heptafluoro-Butanoic acid" OR TS="Butanoic acid, 2,2,3,3,4,4,4-heptafluoro-" OR TS="Butanoic acid, heptafluoro-" OR TS="Perfluoro-n-butanoic acid" OR TS="Perfluorobutanoate" OR TS="2,2,3,3,4,4,4-Heptafluorobutanoic acid" OR TS="Butyric acid, heptafluoro-" OR TS="Fluorad FC 23" OR TS="Ho024" OR TS="NSC 820") OR TS=(PFBA OR "FC 23" OR HFBA) AND TS=(fluorocarbon* OR fluorotelomer* OR polyfluoro* OR perfluoro-* OR perfluoroa* OR perfluorob* OR perfluoroc* OR perfluorod* OR perfluoroe* OR perfluoroh* OR perfluoron* OR perfluoroo* OR perfluorop* OR perfluoros* OR perfluorou* OR perfluoroa* OR fluorinated OR PFAS OR PFOS OR PFOA)) AND PY=2017-2018	2017–2018	
Toxline			
Search terms	(375-22-4 [rn] OR "heptafluoro-1-butanoic acid" OR "heptafluorobutanoic acid" OR "heptafluorobutyric acid" OR "kyselina heptafluormaselna" OR "perfluorobutanoic acid" OR "perfluorobutyric acid" OR "perfluoropropanecarboxylic acid" OR "2,2,3,3,4,4,4-heptafluoro-butanoic acid" OR "butanoic acid 2 2 3 3 4 4 4-heptafluoro-" OR "butanoic acid heptafluoro-" OR "perfluoro-n-butanoic acid" OR "perfluorobutanoate" OR "2,2,3,3,4,4,4-heptafluoro-n-butanoic acid" OR "butyric acid heptafluoro-" OR "fluorad fc 23" OR "h 0024" OR "nsc 820" OR ((pfba OR "fc 23" OR hfba) AND (fluorocarbon* OR fluorotelomer* OR polyfluoro* OR perfluoro* OR perfluorinated OR fluorinated OR pfas OR pfos OR pfoa))) AND (ANEUPL [org] OR BIOSIS [org] OR CIS [org] OR DART [org] OR EMIC [org] OR EPIDEM [org] OR HEEP [org] OR HMTC [org] OR IPA [org] OR RISKLINE [org] OR MTGABS [org] OR NIOSH [org] OR NTIS [org] OR PESTAB [org] OR PPBIB [org]) AND NOT PubMed [org] AND NOT pubdart [org]	No date limit-7/20/2017	

Search	Search strategy	Dates of search
Literature update search terms	@AND+@OR+("heptafluoro-1-butanoic acid"+"heptafluorobutanoic+acid"+"heptafluorobutyric+acid"+"kyselina+hept afluormaselna"+"perfluorobutanoic+acid"+"perfluorobutyric+acid"+"perfluor opropanecarboxylic +acid"+"2 2 3 3 4 4 4-heptafluoro-butanoic+acid"+"butanoic+acid+2 2 3 3 4 4 4-heptafluoro-"+"butanoic+acid+heptafluoro-"+"perfluoro-n-butanoic acid"+"perfluorobutanoic+acid"+"butyric+acid+heptafluoro-"+"fluorad+fc+23"+" h0024"+"nsc+820"+@TERM+@rn+375-22-4("pfba"+"fc+23"+"hfba"))+(fluorocarbon*+ fluorotelomer*+polyfluoro*+perfluoro*+perfluorinated+fluorinated+pfas+pfo s+pfoa)+@RANGE+yr+2017+2018	2017-2018
TSCATS		
Search terms	375-22-4[rn] AND tscats[org]	No date limit-7/20/2017

	Inclusion criteria	Exclusion criteria
Populations	Humans Standard mammalian animal models, including rat, mouse, rabbit, guinea pig, hamster, monkey, dog	Ecological species
	Alternative animal models in standard laboratory conditions (e.g., <i>Xenopus</i> , zebrafish, minipig)	
	Human or animal cells, tissues, or organs (not whole animals); bacteria, nonmammalian eukaryotes; other nonmammalian laboratory species	
Exposures	Exposure is to PFBA	• Study population is not exposed to PFBA
	Exposure via oral, inhalation, dermal, intraperitoneal, or intravenous injection routes	• Exposure is to a mixture only
	Exposure is measured in air, dust, drinking water, diet, gavage, injection or via a biomarker of exposure (PFBA levels in whole blood, serum, plasma, or breastmilk)	
Outcomes	Studies that include a measure of one or more health effect endpoints, including but not limited to, effects on reproduction, development, developmental neurotoxicity, liver, thyroid, immune system, nervous system, genotoxicity, and cancer	
	In vivo or in vitro studies related to toxicity mechanisms, physiological effects/adverse outcomes, and studies useful for elucidating toxic modes of action (MOAs)	
	Qualitative or quantitative description of absorption, distribution, metabolism, excretion, toxicokinetic or toxicodynamic models (e.g., PBPK, PBTK, PBTK/TD)	
	Studies addressing risks to infants, children, pregnant women, occupational workers, the elderly, and any other susceptible or differentially exposed populations	

Table B-2. Title/abstract-level screening criteria for the initial literature searches

	Inclusion criteria	Exclusion criteria
Other	Structure and physiochemical properties	Not on topic, including:
	Reviews and regulatory documents	 Abstract only, inadequately reported abstract, or no abstract and not considered further because study was not potentially relevant
		 Bioremediation, biodegradation, or chemical or physical treatment of PFBA, including evaluation of wastewater treatment technologies and methods for remediation of contaminated water and soil
		Ecosystem effects
		 Studies of environmental fate and transport of PFBA in environmental media
		 Analytical methods for detecting/measuring PFAS compounds in environmental media and use in sample preparations and assays
		 Studies describing the manufacture and use of PFBA
		 Not chemical specific (studies that do not involve testing of PFBA)
		 Studies that describe measures of exposure to PFBA without data on associated health effects

MOA = mode of action; PBPK = physiologically based pharmacokinetic; PBTK = physiologically based toxicokinetic; TD = toxicodynamic.

		Used in title/abstract and full-text screening			Used in full text sc	reening only	
Question	Source of study if not identified from database search?	Does the article meet PECO criteria?	If meets PECO, what type of evidence?	If supplemental, what type of information?	Which PFAS did the study report?	If meets PECO, which health outcome(s) apply?	If meets PECO and endocrine outcome, which endocrine tags apply?
Answer options (can select multiple options)	• Source other than HERO database search	 Yes No Unclear Tag as potentially relevant supplemental information 	 Human Animal (mammalian models) In vitro or in silico genotoxicity PBPK or PK model 	 In vivo mechanistic or MOA studies, including non-PECO routes of exposure (e.g., injection) and populations (e.g., nonmammalian) In vitro or in silico studies (nongenotoxicity) ADME/toxicokinetic (excluding models) Exposure assessment or characterization (no health outcome) PFAS mixture study (no individual PFAS comparisons) Human case reports or case series Ecotoxicity studies 	 PFBA PFHxA PFHxS PFNA PFDA 	 General toxicity, including body weight, mortality, and survival Cancer Cardiovascular, including serum lipids Endocrine (hormone) Gastrointestinal Genotoxicity Growth (early life) and development Hematological, including nonimmune/hepatic/ renal clinical chemistry measures Hepatic, including liver measures and serum markers (e.g., ALT; AST) Immune/ inflammation 	 Adrenal Sex hormones (e.g., androgen; estrogen; progesterone) Neuroendocrine Pituitary Steroidogenesis Thyroid

Table B-3. Example DistillerSR form questions to be used for title/abstract-level and full text-level screening for literature search updates from 2019

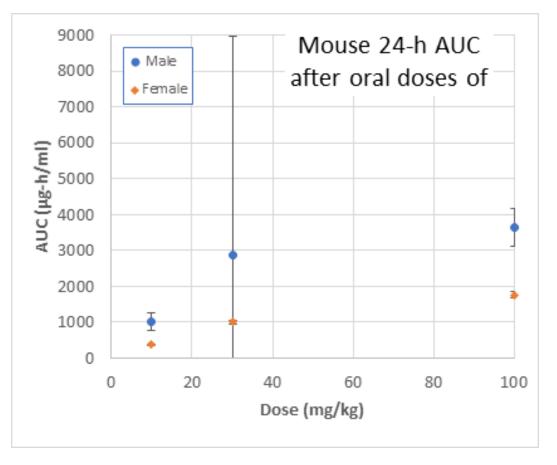
This document is a draft for review purposes only and does not constitute Agency policy.

		Used in ti	tle/abstract and	full-text screening		Used in full text sc	reening only
Question	Source of study if not identified from database search?	Does the article meet PECO criteria?	If meets PECO, what type of evidence?	If supplemental, what type of information?	Which PFAS did the study report?	If meets PECO, which health outcome(s) apply?	If meets PECO and endocrine outcome, which endocrine tags apply?
				 Environmental fate or occurrence (including food) Manufacture, engineering, use, treatment, remediation, or laboratory methods Other assessments or records with no original data (e.g., reviews, editorials, commentaries) 		 Musculoskeletal Nervous system, including behavior and sensory function Nutrition and metabolic Ocular PBPK or PK model Renal, including urinary measures (e.g., protein) Reproductive Respiratory Skin and connective tissue effects 	

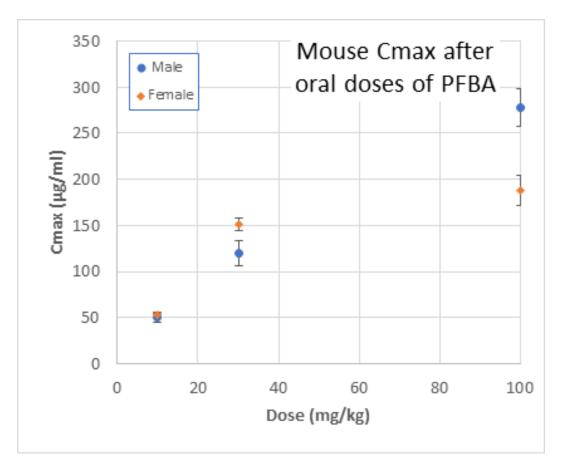
ADME = absorption, distribution, metabolism, and excretion; ALT = alanine aminotransferase; AST = aspartate aminotransferase; HERO = Health and Environmental Research Online; MOA = mode of action; PBPK = physiologically based pharmacokinetic; PECO = Populations, Exposures, Comparators, and Outcomes; PFAS = per- and polyfluoroalkyl substance; PFBA = perfluorobutanoic acid; PFDA = perfluorodecanoic acid; PFHxA = perfluorohexanoic acid; PFHxS = perfluorohexanesulfonate; PFNA = perfluorononanoic acid; PK = pharmacokinetic.

APPENDIX C. ADDITIONAL TOXICOKINETIC INFORMATION IN SUPPORT OF DOSE-RESPONSE ANALYSIS

C.1. USE OF HALF-LIVES OF EXCRETION FOR DOSIMETRIC ADJUSTMENTS


1 The pharmacokinetics of PFBA have only been measured after direct administration of

2 PFBA in single-exposure/single-day studies in animals (<u>Chang et al., 2008</u>). For the mouse, <u>Chang</u>


3 <u>et al. (2008)</u> performed 24-hour toxicokinetic studies after 10, 30, and 100 mg/kg oral doses.

- 4 Based on the area-under-the-concentration-curve (AUC) and maximum concentration (C_{max}), the
- 5 data also appear approximately linear below 30 mg/kg but show some saturation above that dose

6 rate (see Figure C-1, Figure C-2).

Figure C-1. Mouse AUC after oral doses of PFBA.

Figure C-2. Mouse C_{max} after oral doses of PFBA.

1 Chang et al. (2008) reported serum and liver concentrations in male rats and serum 2 concentrations in female rats given a 3–300 mg/kg oral dose of PFBA at 24 hours after dosing. 3 Although the time point for these measurements is not ideal given the short half-life of PFBA, the 4 data indicate that the dosimetry is approximately linear up to 100 mg/kg in male rats and up to 5 30 mg/kg in female rats (see Figure C-3, Figure C-4). Tissue levels then appear to saturate or 6 decline; this might be due to incomplete absorption at higher doses, saturable renal resorption, or 7 both, whereby excretion is more rapid for concentrations above the level of saturable resorption in 8 the kidney. With the half-life in female rats being \sim 3 hours, the female serum 24-hour data are 9 particularly subject to experimental noise, but at least provide an indication that use of the half-life 10 measured using a 30 mg/kg dose is applicable to BMD levels from bioassays at or below this dose 11 rate.

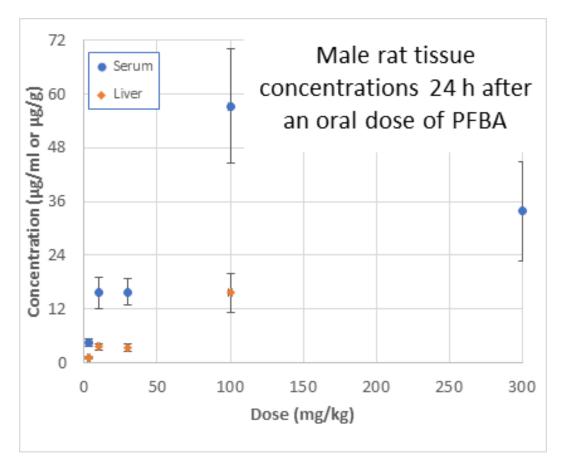
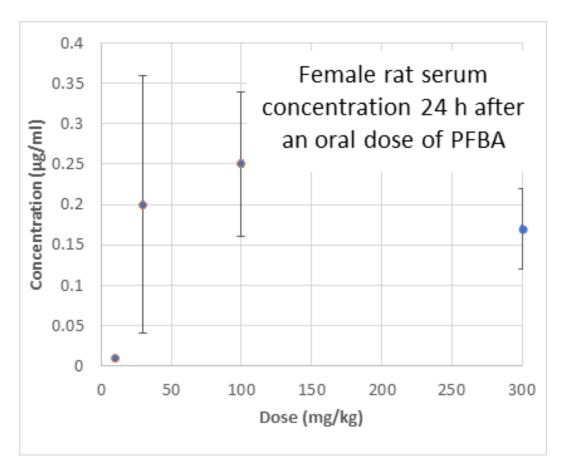



Figure C-3. Rat AUC after oral doses of PFBA.

Figure C-4. Rat C_{max} after oral doses of PFBA.

1 For the human data analyzed by Chang et al. (2008), detailed toxicokinetic parameters are 2 not available, but one can evaluate the relationship between the initial concentration and $t_{1/2}$. Here 3 we only consider data for subjects in which the final concentration is greater than the limit of 4 quantification to avoid statistical artifacts due to limited observational data. Although the lower 5 half-life of the subject with the highest initial concentration indicates a possible negative trend, the 6 half-life is in the range of subjects with lower initial concentrations. Thus, these data do not show a 7 clear dose dependence for half-life and are interpreted as only showing interindividual variation 8 (see Figure C-5). The human data appear consistent with first-order clearance across the range of

9 concentrations observed.

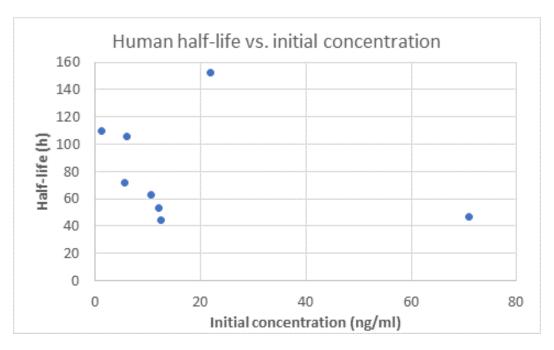


Figure C-5. Estimated human half-lives versus initial serum concentrations.

1 Chang et al. (2008) only evaluated one PFBA dose in monkeys, so determining whether the 2 biphasic clearance pattern is due to the classical distinction between distribution and excretion 3 phases or a nonlinearity in clearance is not possible. The data show linear clearance from 1–7 or 10 days after the i.v. dose was given, however, when serum concentrations were below 100 ng/mL. 4 5 Thus, interpreting these data as showing linear kinetics for serum concentrations below 100 ng/mL 6 under long-term exposure conditions seems reasonable. Because the highest initial condition of the 7 human subjects in Chang et al. (2008) was 72 ng/mL, to the extent that kinetics in monkeys can be 8 extrapolated to humans, the results for monkeys confirm the conclusion that human kinetics are 9 also reasonably assumed linear below ~ 100 ng/mL. This is approximately 1,000-fold below the 10 range of linearity in mice and rats, however, so uncertainty exists as to whether the range of linear 11 kinetics in humans and monkeys extends into the range of rodent-based points of departure. 12 <u>Russell et al. (2015)</u> attempted to evaluate the kinetics of PFBA as a metabolite of 13 6:2 fluorotelomer alcohol (FTOH) during a 1-day inhalation study (6-hour exposure, 24-hour 14 observation) and at the end of 23 days of exposure. The half-life of PFBA, however, could not be 15 estimated from the single-day data for male rats and could be estimated only for the high-level 16 exposure in female rats, with yields of PFBA 0.2% in males and not detectable or 0.02% in females. 17 Also, three metabolic intermediates occur between 6:2 FTOH and PFBA, but the model appears to 18 have assumed direct, instantaneous transformation through the first two steps. Assumptions about 19 the volume of distribution were made by <u>Russell et al. (2015)</u>. These simplifications in the model 20 likely explain the large discrepancy between the PFBA half-life determined from the single-day 21 exposure 6:2 FTOH for female rats (19 hours) and the half-life obtained for direct exposure to PFBA 22 (1.4-hour average) by Chang et al. (2008). Russell et al. (2015) used only male rats in the 23-day

1 6:2 FTOH inhalation study, from which they estimated a half-life of 27.7 hours, over three times 2 higher than the average obtained by <u>Chang et al. (2008)</u>. The discrepancy also could be due to an 3 underestimation of the metabolic yield from the 1-day experiments. In summary, whereas Russell 4 et al. (2015) described measurements of PFBA in male rats from 23 days of exposure to 6:2 FTOH, 5 the results for female rats after a single exposure are completely inconsistent with the results of 6 (Chang et al., 2008). Therefore, the conclusions from the multiday study are considered too 7 unreliable to be used. 8 The other long-term data available on internal dosimetry are from the bioassays (Butenhoff 9 et al., 2012; Das et al., 2008; van Otterdijk, 2007). Serum concentrations in nonpregnant female 10 mice after 17 days of exposure (24 hours after the last dose) are 2.0 ± 1.0 and $2.4 \pm 1.7 \mu g/mL$, and 11 for pregnant mice are 3.8 \pm 1.0 and 4.4 \pm 0.7 μ g/mL, for the 35- and 175-mg/kg dose groups, 12 respectively (Das et al., 2008). For female mice dosed with 30- and 100-mg/kg PFBA, Chang et al. 13 (2008) reported 4.1 \pm 1.7 and 6.4 \pm 3.9 μ g/mL in serum 24 hours after the dose; using linear 14 extrapolation based on the difference in dose, one might expect 4.8 and 11.2 μ g/mL at 24 hours 15 after doses of 35 and 175 mg/kg, given these data. Although the concentrations in the Das et al. 16 (2008) study are somewhat lower than these projections, the difference, especially at the low dose, 17 is within the range of uncertainty and precision expected for PK analysis. 18 Of note is that, given an average clearance of 28 mL/kg-hour obtained by Chang et al. 19 (2008) after 10- and 30-mg/kg doses, the predicted average serum concentrations for a 35-mg/kg 20 dose is 52 μ g/mL. This average concentration reflects the much higher concentrations expected in 21 the first few hours after each dose. 22 For male rats, Butenhoff et al. (2012) measured end-of-treatment serum levels of 38 ± 23 23 and $52 \pm 25 \,\mu$ g/mL after 28 and 90 days, respectively, at 30 mg/kg-day; we presume these 24 measurements were made 24 hours after the last dose. The corresponding values reported by 25 <u>Chang et al. (2008)</u> for a 30-mg/kg oral dose in the dose-range and time-course studies are 16 ± 3 26 and $29 \pm 13 \,\mu\text{g/mL}$, respectively. Although again, some discrepancy is found between the 27 short-term PK data and the bioassay measurements, the difference is that it is roughly within a 28 factor of 2, which is acceptable for PK analysis and does not indicate a strong time dependence in 29 the PK. One should keep in mind that the estimated clearance and half-life values are based on 30 multiple time points at which the serum concentration is measured, while the comparisons above 31 use only a single time point, 24 hours after dosing, when the result will be sensitive to experimental 32 variation. 33 Given these data and results, the half-life or clearance of PFBA measured in single-day 34 exposures by <u>Chang et al. (2008)</u> will be assumed to predict dosimetry after repeated exposures

that occur in bioassays. This is a common assumption for chemicals with relatively short half-lives
because pharmacokinetic studies are typically confined to a single day or less. Clearance in rats and
mice might include a slower beta phase, like that observed in monkeys. If a slow clearance phase

exists, internal dose from long-term exposure will be higher than is effectively estimated using the

1 clearance rate determined from single-day exposures, which would increase the HED compared

2 with the current prediction. Using an animal-human ratio of clearance values to estimate the HED

- 3 relies only on the assumptions that the average serum concentration (C_{AVG}) is predictive of systemic
- 4 effects in adults and that the relationship between C_{AVG} and dose rate is linear with the
- 5 proportionality determined by the clearance values estimated here (i.e., the clearance from
- 6 single-day experiments is predictive of bioassay conditions).

7 The human half-life estimates were from subjects who had been occupationally exposed to

8 PFBA, with the duration of the PK observation 7–10 days. Thus, those results are reasonably

9 expected to represent clearance under (subsequent to) chronic exposure conditions. The primary

- 10 uncertainty in predicting human clearance comes from assuming a volume of distribution equal to
- 11 that estimated for monkeys, which is thought modest given the physiological similarity between
- 12 monkeys and humans. Thus, the overall uncertainty from using the animal-human clearance ratio
- 13 to predict the HED for systemic effects in adults appears modest, especially compared to the case
- 14 where PK data such as used here are not available.

34

15 Because developmental effects are usually presumed to depend on peak concentration 16 rather than average concentration, it must be noted that use of the clearance ratio to estimate HEDs 17 for those endpoints also involves an assumption that the absorption rate in humans is similar to 18 that of animals. For PFBA, the absorption rate in mice and rats is fairly rapid, with the peak 19 concentration occurring 0.6–4 hours after bolus oral doses (<u>Chang et al., 2008</u>). That absorption in 20 humans would be faster than in rodents seems unlikely, and exposures are more likely spread out 21 over the day than in the animal bioassays. Therefore, the most likely case is that the peak 22 concentration in humans exposed at the HED will be lower than the peak concentration in mice or 23 rats at the corresponding dose rate. Thus, although this assumption creates uncertainty in the dose 24 extrapolation, the result is not expected to underpredict human health risks.

C.2. MIXED MODELING TO ESTIMATE HALF-LIFE IN HUMANS

25 A linear mixed-effects model was additionally used to estimate a $t_{1/2}$ for PFBA according to 26 methods described in Li et al. (2018). Briefly, linear mixed-effect models are extensions of simple 27 linear models that use the best linear unbiased prediction estimator to estimate random and fixed 28 effects for clustered data. One important consequence of clustering is that measurements of serum 29 PFBA units within the same person (cluster) are more similar than measurements on serum PFBA 30 in different people (i.e., other clusters). Failure to account for the intracluster correlation would 31 result in misleading inferences. Each individual in <u>Chang et al. (2008)</u> was assumed to have been 32 selected randomly from a larger population. Below is the mixed model formula used for estimating 33 the half-life of serum PFBA:

Serum PFBA_{ij} =
$$(\alpha_{pop} + \alpha_i) + (k_{pop} + k_i) \times t_{ij} + \varepsilon_{ij}$$
 (C-1)

- 1 where PFBA_{ij} is the natural logarithm of the serum PFBA concentrations measured at the *jth* time
- 2 point for the *ith* subject, α_{pop} is the population mean (also known as the fixed intercept for the
- **3** population); $\alpha_i \sim N(0, \sigma^2_\alpha)$ is a random intercept for the *ith* subject; k_{pop} is the fixed slope for the
- 4 population (also known as the average excretion rate constant for serum PFBA for the whole
- 5 population); $k_i \sim N(0, \sigma_k^2)$ is the random slope for the *ith* subject that allows the excretion rate to
- 6 vary by individuals; *t_{ij}* represents the observation time for the *jth* measurement of serum PFBA for
- 7 *ith* subject; and $\varepsilon_{ij} \sim N(0, \sigma^2_{\varepsilon})$ is the random-error effect (residual) for *jth* measurement of *ith*
- 8 subject. Of note, the small sample sizes (due to the exclusion of the only two subjects identified as
- 9 females) limited our ability to draw clear conclusions in gender-stratified comparisons.
- 10 The half-life of serum PFBA for the study population $(t_{1/2, \text{pop}})$ then was estimated as:

11
$$t_{1/2,\text{pop}} = \left| \frac{\ln(2)}{k_{\text{pop}}} \right|$$
 (C-2)

- 12 The mixed-effects model estimated k_{pop} to be -0.010, therefore resulting in an estimated $t_{1/2}$
- 13 of 67.9 hours. This value matches very closely to the median value calculated when not taking
- 14 clustering into account, and therefore was used in estimation of clearance in humans.

APPENDIX D. BENCHMARK DOSE MODELING RESULTS

D.1. BENCHMARK DOSE MODELING APPROACHES

As discussed in Section 5 of the body of the Toxicological Review, the endpoints selected for benchmark dose (BMD) modeling were relative liver weight, liver hypertrophy, total T4, and thyroid follicular hypertrophy incidence from <u>Butenhoff et al. (2012)</u> and relative liver weight, full litter resorption, delayed eye opening, delayed vaginal opening, and delayed preputial separation from <u>Das et al. (2008)</u>. The animal doses in the study were used in the BMD modeling and then converted to human equivalent doses (HEDs) using the ratio of animal-to-human clearance values; the modeling results are presented in this appendix.

8 D.1.1. Modeling Procedure for Dichotomous Noncancer Data

9 BMD modeling of dichotomous noncancer data was conducted using EPA's Benchmark Dose 10 Software (BMDS, version 3.1.2). For these data, the Gamma, Logistic, Log-Logistic, Log-Probit, 11 Multistage, Probit, Weibull, and Dichotomous Hill models available within the software were fit 12 using a benchmark response (BMR) of 10% extra risk (see Toxicological Review, Section 4.2.1 for 13 justification of selected BMRs). The Multistage model is run for all polynomial degrees up to n - 2, 14 where *n* is the number of dose groups including control. Adequacy of model fit was judged on the 15 basis of χ^2 goodness-of-fit *p*-value (p > 0.1), scaled residuals at the data point (except the control) 16 closest to the predefined benchmark response (absolute value <2.0), and visual inspection of the 17 model fit. In the cases where no best model was found to fit to the data, a reduced data set without 18 the high-dose group was further attempted for modeling and the result presented with that of the 19 full data set. In cases where a model with several parameters equal to the number of dose groups 20 was fit to the data set, all parameters were estimated, and no *p*-value was calculated, that model 21 was not considered for estimating a point of departure (POD) unless no other model provided 22 adequate fit. Among all models providing adequate fit, the benchmark dose lower confidence limit 23 (BMDL) from the model with the lowest Akaike's information criterion (AIC) was selected as a 24 potential POD when BMDL values were sufficiently close (within threefold). Otherwise, the lowest 25 BMDL was selected as a potential POD.

26 D.1.2. Modeling Procedure for Continuous Noncancer Data

BMD modeling of continuous noncancer data was conducted using EPA's Benchmark Dose
Software (BMDS, version 3.1.2). For these data, the Exponential, Hill, Polynomial, and Power
models available within the software are fit using a BMR of 1 standard deviation (SD) when no

- 1 toxicological information was available to determine an adverse level of response. When
- 2 toxicological information was available, the BMR was based on relative deviation, as outlined in the
- 3 Benchmark Dose Technical Guidance (U.S. EPA, 2012) (see Toxicological Review, Section 5.2.1 for
- 4 justification for using BMRs); when a BMR based on relative deviation was used, modeling results
- 5 using BMRs based on SD are included for reference. An adequate fit is judged on the basis of χ^2
- 6 goodness-of-fit *p*-value (p > 0.1), scaled residuals at the data point (except the control) closest to
- 7 the predefined benchmark response (absolute value <2.0), and visual inspection of the model fit. In
- 8 addition to these three criteria for judging adequacy of model fit, a determination is made on
- 9 whether the variance across dose groups is homogeneous. If a homogeneous variance model is
- 10 deemed appropriate based on the statistical test provided by BMDS (i.e., Test 2), the final BMD
- 11 results are estimated from a homogeneous variance model. If the test for homogeneity of variance
- 12 is rejected (*p* < 0.05), the model is run again while modeling the variance as a power function of the
- 13 mean to account for this nonhomogeneous variance. If this nonhomogeneous variance model does
- 14 not adequately fit the data (i.e., Test 3; *p* < 0.05), alternative approaches were assessed on a
- 15 case-by-case basis. For example, in cases where neither variance model fit, or constant variance did
- 16 not fit (with adequate Test-4 *p*-value) and nonconstant variance did fit (with inadequate Test-4
- 17 *p*-value), the log-normal distribution was attempted.
- In cases where a model with several parameters equal to the number of dose groups was fit to the data set, all parameters were estimated, and no *p*-value was calculated, that model was not considered for estimating a POD *unless* no other model provided adequate fit. Among all models providing adequate fit, the BMDL from the model with the lowest AIC was selected as a potential POD when BMDL estimates differed by less than threefold. When BMDL estimates differed by greater than threefold, the model with the lowest BMDL was selected to account for model uncertainty.

25 D.1.3. Modeling Procedure for Continuous Noncancer Developmental Toxicity Data

26 For continuous developmental toxicity data, data for individual animals were requested 27 from the study authors when possible. The use of individual animal data allows for the correct 28 measure of variance to be calculated. When a biological rationale for selecting a benchmark 29 response level is lacking, a BMR equal to 0.5 SD was used. The use of 1 SD for the BMR for 30 continuous endpoints is based on the observation that shifting the distribution of the control group 31 by 1 SD results in $\sim 10\%$ of the animal data points falling beyond an adversity cutoff defined at the 32 \sim 1.5 percentile (<u>Crump, 1995</u>). This approximates the 10% extra risk commonly used as the BMR 33 for dichotomous endpoints. Thus, the use of 0.5 SD for continuous developmental toxicity 34 endpoints approximates the extra risk commonly used for dichotomous developmental toxicity 35 endpoints.

1 D.1.4. Modeling Procedure for Dichotomous Noncancer Developmental Toxicity Data

For dichotomous developmental toxicity data, data for individual animals were requested
from the study authors when possible. This allowed the use of the nested logistic model, which
statistically accounts for intralitter similarity (the propensity of littermates to respond more like
one another than pups from another litter) by estimating intralitter correlation and using
litter-specific covariates. Judging model fit for this model is identical to the procedure used for
regular dichotomous models.

8 D.1.5. Data Used for Modeling

9 The source of the data used for modeling is provided in Table D-1. For endpoints from the

10 Das et al. (2008) study, the study authors kindly provided individual dam-level data to facilitate

11 modeling and to provide corrected data where needed. These data also are included in full in the

12 tables below.

Endpoint/Reference	Reference	Location	HAWC link
Relative liver weight	<u>Butenhoff et al.</u> (2012)	Appendix 1, page 37 (<u>van</u> <u>Otterdijk, 2007</u>)	https://hawcprd.epa.gov/ani/endpoint/ 100507453/
Relative liver weight	<u>Das et al. (2008)</u>	Figure 2, page 175	https://hawcprd.epa.gov/ani/endpoint/ 100507508/
Liver hypertrophy	<u>Butenhoff et al.</u> (2012)	Table 9, page 523	https://hawcprd.epa.gov/ani/endpoint/ 100507383/
Total T4	<u>Butenhoff et al.</u> (2012)	Table 8, page 522	https://hawcprd.epa.gov/ani/endpoint/ 100507375/
Full litter resorption	Das et al. (2008)	Table D-2	
Fetal mortality (full litter resorptions combined with fetal death from litters without full litter resorptions)	<u>Das et al. (2008)</u>	Table D-3	
Eyes opening	Das et al. (2008)	Table D-4	
Vaginal opening	Das et al. (2008)	Table D-5	
Preputial separation	Das et al. (2008)	Table D-6	

Table D-1. Sources of data used in benchmark dose modeling of PFBA endpoints

Dose (mg/kg-day)	Number of implants FLR
0	8
0	18
35	2
175	2
175	2
175	9
175	5
350	3
350	2
350	13
350	13
350	3
350	14
350	13

Table D-2. Data received from study authors for <u>Das et al. (2008)</u> on full litter resorptions (FLR)

Table D-3. Data received from study authors for Das et al. (2008) on fetal
death (litters without full litter resorptions) combined with full litter
resorptions

Dose (mg/kg-day)	Number of implants	Number of dead	Dam weight on GD1 (litter- specific covariate)
0	16	1	30
0	16	1	28.2
0	11	2	27.7
0	11	0	27.4
0	12	3	25.9
0	11	0	24.1
0	15	0	29.2
0	14	1	28
0	12	3	27.1
0	14	0	26.8
0	16	1	26.6
0	13	2	25.1
0	17	3	30.1
0	14	0	29
0	6	0	27.5
0	9	2	28.1
0	6	0	26.9
0	13	1	26.7
0	11	0	23.3
0	8	8	25.8
0	18	18	31.4
35	15	3	28.1
35	13	0	29.3
35	13	0	27.4
35	14	1	27
35	15	2	26.9
35	13	2	25.7
35	12	4	31.6

This document is a draft for review purposes only and does not constitute Agency policy.D-5DRAFT-DO NOT CITE OR QUOTE

Dose (mg/kg-day)	Number of implants	Number of dead	Dam weight on GD1 (litter- specific covariate)
35	13	0	29.2
35	14	1	27.7
35	16	0	27.5
35	13	2	28.1
35	7	3	25.5
35	15	1	30.3
35	13	0	27.5
35	14	1	28.1
35	13	1	27.9
35	11	0	26.4
35	10	1	27.4
35	13	1	27.9
35	13	0	26.1
35	13	1	24.8
35	12	1	24.8
35	2	2	23.1
175	14	1	28.1
175	15	0	27.5
175	14	0	27.4
175	14	1	27.5
175	15	2	29.4
175	14	1	27.5
175	15	0	26
175	16	2	26.2
175	11	0	23.4
175	16	3	29.1
175	11	0	28.2
175	13	0	25.8
175	11	2	26.8
175	15	1	26.9
175	14	1	25

This document is a draft for review purposes only and does not constitute Agency policy.D-6DRAFT-DO NOT CITE OR QUOTE

Dose (mg/kg-day)	Number of implants	Number of dead	Dam weight on GD1 (litter- specific covariate)
175	13	1	26.7
175	2	2	25.5
175	2	2	25.4
175	9	9	29
175	5	5	25
350	7	2	29.2
350	12	1	26.3
350	16	3	27.4
350	11	0	25.1
350	14	2	25.3
350	12	1	29.5
350	16	2	28.8
350	17	2	26.2
350	12	2	26.2
350	16	0	27.3
350	9	3	27.6
350	13	0	27.7
350	13	0	27.4
350	13	1	26.4
350	7	1	24.6
350	3	3	21.5
350	2	2	23
350	13	13	25.8
350	13	13	24.6
350	3	3	25.1
350	14	14	28.2
350	13	13	29.2
350	1	1	25.4

Dose (mg/kg-day)	Average day of eye opening
0	16.27
0	15.57
0	15.22
0	15.27
0	14.55
0	14.91
0	17.64
0	15.69
0	15.00
0	17.57
0	17.71
0	14.91
0	16.50
0	17.58
0	16.50
0	16.25
0	15.20
0	17.25
0	18.00
0	18.00
35	16.00
35	17.31
35	18.00
35	17.23
35	17.23
35	16.82
35	18.78
35	17.31
35	17.57
35	17.53
35	18.00

Table D-4. Data received from study authors for Das et al. (2008)on delayed eye opening

Dose (mg/kg-day)	Average day of eye opening
35	15.25
35	17.00
35	17.82
35	18.09
35	17.70
35	16.11
35	18.29
35	17.50
35	17.55
35	17.60
35	17.78
175	17.69
175	17.67
175	15.71
175	17.77
175	16.91
175	18.00
175	17.69
175	17.27
175	17.17
175	17.64
175	18.00
175	18.00
175	18.09
175	18.88
175	18.00
175	18.00
175	18.20
350	15.00
350	18.64
350	17.85
350	17.64
350	18.00

Dose (mg/kg-day)	Average day of eye opening
350	17.36
350	17.85
350	17.93
350	18.00
350	18.00
350	18.00
350	18.60
350	18.00
350	18.09
350	18.00

Dose (mg/kg-day)	Average day of vaginal opening
0	32.40
0	27.00
0	30.80
0	30.20
0	34.17
0	33.67
0	30.33
0	28.00
0	30.14
0	33.67
0	28.00
0	31.90
0	32.50
0	34.00
0	29.25
0	28.00
0	29.33
0	35.57
0	34.83
35	28.20
35	34.00
35	37.25
35	34.00
35	31.00
35	31.20
35	35.67
35	34.25
35	35.38
35	30.00
35	31.50
35	31.20

Table D-5. Data received from study authors for Das et al. (2008)on delayed vaginal opening

Dose (mg/kg-day)	Average day of vaginal opening
35	33.50
35	32.50
35	37.67
35	35.00
35	35.20
35	33.00
35	34.50
35	38.50
35	34.30
175	31.60
175	29.40
175	33.67
175	31.67
175	34.20
175	34.50
175	37.00
175	32.22
175	38.00
175	34.50
175	34.33
175	34.67
175	37.86
175	33.00
175	36.50
175	35.33
175	39.25
350	35.00
350	36.00
350	33.80
350	33.00
350	32.00
350	31.17
350	33.57

Dose (mg/kg-day)	Average day of vaginal opening
350	34.10
350	33.33
350	38.70
350	36.33
350	36.00
350	37.25
350	35.00
350	38.50

Dose (mg/kg-day)	Average day of preputial separation
0	29.00
0	28.20
0	28.20
0	28.00
0	31.80
0	29.20
0	28.71
0	30.00
0	31.00
0	28.29
0	30.00
0	29.80
0	31.00
0	29.50
0	29.00
0	31.00
0	29.67
35	27.40
35	33.40
35	28.20
35	31.80
35	30.00
35	31.33
35	35.50
35	30.22
35	33.17
35	30.00
35	29.00
35	30.14
35	30.29
35	29.80

Table D-6. Data received from study authors for Das et al. (2008)on delayed preputial separation

Dose (mg/kg-day)	Average day of preputial separation
35	30.43
35	30.00
35	27.50
35	28.20
35	28.57
35	29.25
35	30.17
175	26.60
175	28.80
175	30.50
175	31.71
175	31.11
175	32.33
175	28.00
175	31.00
175	35.00
175	30.60
175	30.13
175	29.50
175	30.00
175	31.60
175	31.00
175	30.17
175	31.50
350	28.00
350	31.80
350	31.50
350	32.40
350	31.83
350	30.80
350	31.17
350	33.80
350	34.00

This document is a draft for review purposes only and does not constitute Agency policy.D-15DRAFT-DO NOT CITE OR QUOTE

Dose (mg/kg-day)	Average day of preputial separation
350	30.33
350	30.00
350	33.17
350	32.00
350	32.80

D.2. RELATIVE LIVER WEIGHT–MALE RATS (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk, 2007</u>)¹

Table D-7. Dose-response data for relative liver weight in male rats(Butenhoff et al., 2012; van Otterdijk, 2007)

Dose (mg/kg-day)	n	Mean	SD
0	10	2.11	0.13
1.2	10	2.29	0.14
6	10	2.26	0.16
30	10	2.8	0.32

¹Throughout this document, if a model was selected as appropriately fitting the modeled data, that model's entries in the tables are in green shaded cells and the text is bolded.

Table D-8. Benchmark dose results for relative liver weight in malerats—constant variance, BMR = 10% relative deviation (Butenhoff et al., 2012;van Otterdijk, 2007

		10% Re devia				BMDS	
Models	Restriction ^a	BMD	BMDL	<i>p</i> -Value	AIC	classification ^b	BMDS notes
Constant varia	nce			•		•	
Exponential 2 (CV—normal)	Restricted	11.3634	9.4685	0.1720	-8.8244	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response SD > 1.5 actual response SD
Exponential 3 (CV—normal)	Restricted	11.3634	9.4572	0.1720	-8.8244	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response SD > 1.5 actual response SD
Exponential 4 (CV—normal)	Restricted	10.4110	4.8569	0.0584	-6.7628	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD
Exponential 5 (CV—normal)	Restricted	10.4033	4.8563	0.0584	-6.7621	Questionable	Constant variance test failed (Test 2 <i>p</i> - value < 0.05) Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD
Hill (CV—normal)	Restricted	6.6152	6.0656	NA	-4.1913	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response SD > 1.5 actual response SD df = 0, saturated model (goodness-of-fit p-value cannot be calculated)

		10% Re devia				BMDS	
Models	Restriction ^a	BMD	BMDL	<i>p</i> -Value	AIC	classification ^b	BMDS notes
Constant varia	nce						
Polynomial (3 degree) (CV—normal)	Restricted	12.8952	8.4671	0.0624	-6.8714	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD
Polynomial (2 degree) (CV—normal)	Restricted	12.1463	8.4560	0.0611	-6.8370	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD
Power (CV—normal)	Restricted	10.4151	8.4328	0.1668	-8.7631	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response SD > 1.5 actual response SD
Linear (CV—normal)	Unrestricted	10.4151	8.4328	0.1668	-8.7631	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response SD > 1.5 actual response SD

^a"Restriction" column denotes the restriction status of applied models.

^b"Classification" column denotes whether a model can be considered for model selection purposes. See BMDS User Guide: <u>https://www.epa.gov/bmds</u>.

Table D-9. Benchmark dose results for relative liver weight in malerats—nonconstant variance, BMR = 10% relative deviation (Butenhoff et al.2012; van Otterdijk, 2007)

		10% Re devia				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Nonconstant var	iance						
Exponential 2 (NCV—normal)	Restricted	11.3982	9.0908	0.0362	-15.2001	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 3 (NCV—normal)	Restricted	11.3962	9.0911	0.0362	-15.2001	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 4 (NCV—normal)	Restricted	10.5179	5.2058	0.0096	-13.1325	Questionable	Goodness-of-fit p-value < 0.1
Exponential 5 (NCV—normal)	Restricted	10.5091	5.2055	0.0096	-13.1313	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Hill (NCV—normal)	Restricted	11.1854	7.9783	0.0090	-13.0126	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Polynomial (3 degree) (NCV—normal)	Restricted	12.7313	8.1751	0.0104	-13.2674	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Polynomial (2 degree) (NCV—normal)	Restricted	11.9089	8.1513	0.0100	-13.2065	Questionable	Goodness-of-fit p-value < 0.1
Power (NCV—normal)	Restricted	10.5174	8.1228	0.0350	-15.1326	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Linear (NCV—normal)	Unrestricted	10.5179	8.1236	0.0350	-15.1326	Questionable	Goodness-of-fit <i>p</i> -value < 0.1

Table D-10. Benchmark dose results for relative liver weight in male rats—log-normal distribution, constant variance, BMR = 10% relative deviation (<u>Butenhoff et al., 2012; van Otterdijk, 2007</u>)

		10% Re devia				BMDS	
Models ^a	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Log-normal distribu	ution, constant	variance					
Exponential 2 (CV—log-normal)	Restricted	11.5672	9.5455	0.1004	-14.1752	Viable— Alternate	Modeled control response SD > 1.5 actual response SD
Exponential 3 (CV—log-normal)	Restricted	11.5672	9.6019	0.1004	-14.1752	Viable— Recommended	Lowest AIC Modeled control response SD > [1.5] actual response SD
Exponential 4 (CV—log-normal)	Restricted	10.6449	5.1404	0.0311	-12.1242	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD
Exponential 5 (CV—log-normal)	Restricted	10.6419	5.1401	0.0311	-12.1239	Questionable	Goodness-of-fit p-value < 0.1 Modeled control response SD > 1.5 actual response SD
Hill (CV—log-normal)	Restricted	10.5728	4.9799	0.0976	-14.1178	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD
Polynomial (3 degree) (CV—log-normal)	Restricted	12.6948	8.5635	0.0328	-12.2144	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD
Polynomial (2 degree) (CV—log-normal)	Restricted	11.9903	8.5515	0.0321	-12.1783	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD

		10% Re devia				BMDS	
Models ^a	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Log-normal distribution	ution, constant	variance					
Power (CV—log-normal)	Restricted	10.6452	8.5334	0.0979	-14.1242	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD
Linear (CV—log-normal)	Unrestricted	10.6452	8.5334	0.0979	-14.1242	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD

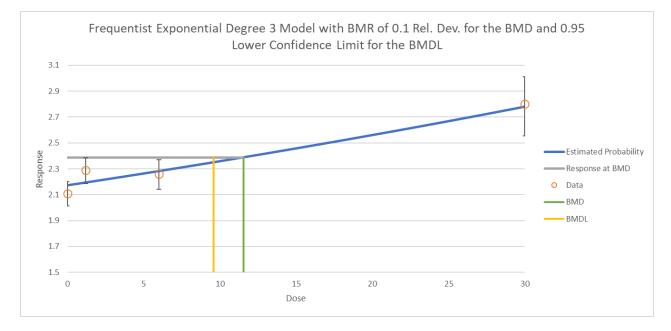


Figure D-1. Dose-response curve for the Exponential M3 model fit to relative liver weight in male rats (<u>Butenhoff et al., 2012; van Otterdijk, 2007</u>).

	User Input					
Info						
Model	frequentist Exponential degree 3 v1.1					
Dataset Name	Butenhoff_90_Lweight_rel					
Jser notes	[Add user notes here]					
Dose-Response Model	$M[dose] = a * exp(\pm 1 * (b * dose)^d)$					
Variance Model	Var[i] = alpha					
Model Options						
BMR Type	Rel. Dev.					
BMRF	0.1					
Tail Probability	-					
Confidence Level	0.95					
Distribution Type	Log-normal					
Variance Type	Constant					
Model Data						
Dependent Variable	[Dose]					
Independent Variable	[Mean]					
Total # of Observations	4					
Adverse Direction	Automatic					

			Model R	lesults				
Bonchm	ark Dece	1						
BMD	ark Dose							
	11.56718731							
BMDL BMDU	9.60187006							
AIC	14.67526197							
Test 4 P-value	-14.17517344 0.100441772							
D.O.F.	2							
D.O.F.	2	L						
Model P	arameters	Í						
# of Parameters								
Variable	Estimate							
a	2.171112769							
b	0.0082397							
d	Bounded							
log sizhe	E 04500440C							
log-alpha	-5.045994496							
Gooda	ess of Fit	[
Goodin		Estimated	Calc'd	Observed	Estimated		Observed	Scaled
Dose	Size	Median	Median	Mean	GSD	Calc'd GSD	SD	Residual
0	10	2.171112769	2.10600663	2.11	1.08352413	1.063487	0.13	-0.17835832
1.2	10	2.171112769	2.28573248	2.11	1.08352413		0.13	0.28401077
6	10	2.281146197	2.25435749	2.25	1.08352413		0.14	-0.06171542
30	10	2.779944166	2.78189148	2.8	1.08352413		0.32	0.058533184
Likelihood	s of Interest							
		# of						
Model	Log Likelihood*	Parameters	AIC					
A1	12.38576382	5	-14.771528					
A2	15.32442666	8	-14.648853					
A3	12.38576382	5	-14.771528					
AS								
fitted	10.08758672	3	-14.175173					
-	10.08758672 -8.71328445	3 2	-14.175173 21.4265689					
fitted R		2	21.4265689	ed in the LL do	erivation prior	to BMDS 3.	0.	
fitted R * Includes additive	-8.71328445 constant of -70.832	2	21.4265689	ed in the LL de	erivation prior	to BMDS 3.	0.	
fitted R * Includes additive	-8.71328445	2	21.4265689	ed in the LL d	erivation prior	to BMDS 3.	0.	
fitted R * Includes additive	-8.71328445 constant of -70.832	2	21.4265689	ed in the LL d	erivation prior	to BMDS 3.	0.	
fitted R * Includes additive	-8.71328445 constant of -70.832	2	21.4265689	ed in the LL d	erivation prior	to BMDS 3.	0.	
fitted R * Includes additive Tests of	-8.71328445 constant of -70.832 f Interest -2*Log(Likelihood	2 3. This constant	21.4265689 was not includ	ed in the LL d	erivation prior	to BMDS 3.	0.	
fitted R * Includes additive Tests of Test	-8.71328445 constant of -70.832 f Interest -2*Log(Likelihood Ratio)	2 3. This constant Test df	21.4265689 was not includ p-value	ed in the LL d	erivation prior	to BMDS 3.	0.	
fitted R * Includes additive Tests of Test 1	-8.71328445 constant of -70.832 f Interest -2*Log(Likelihood Ratio) 48.07542222	2 3. This constant Test df 6	21.4265689 was not includ p-value <0.0001	ed in the LL d	erivation prior	to BMDS 3.	0.	

Table D-11. Benchmark dose results for relative liver weight in malerats—log-normal distribution, constant variance, BMR = 1 standard deviation(Butenhoff et al., 2012; van Otterdijk, 2007)

		1 Star devia				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Log-normal distribu	ution, constant	variance		•	•		
Exponential 2 (CV—log-normal)	Restricted	9.7357	7.6047	0.1004	-14.1752	Viable— Alternate	Modeled control response SD > 1.5 actual response SD
Exponential 3 (CV—log-normal)	Restricted	9.7356	7.6049	0.1004	-14.1752	Viable— Recommended	Lowest AIC Modeled control response SD > [1.5] actual response SD
Exponential 4 (CV—log-normal)	Restricted	8.8962	0.0000	0.0311	-12.1242	Questionable	Goodness-of-fit p-value < 0.1 Modeled control response SD > 1.5 actual response SD
Exponential 5 (CV—log-normal)	Restricted	8.8943	6.9746	0.0311	-12.1239	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD
Hill (CV—log-normal)	Restricted	8.8323	4.0523	0.0976	-14.1178	Questionable	Goodness-of-fit p-value < 0.1 Modeled control response SD > 1.5 actual response SD
Polynomial (3 degree) (CV—log-normal)	Restricted	10.7197	6.8148	0.0328	-12.2144	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD
Polynomial (2 degree) (CV—log-normal)	Restricted	10.1369	6.8036	0.0321	-12.1783	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD
Power (CV—log-normal)	Restricted	8.8972	6.7871	0.0979	-14.1242	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD

		1 Star devia				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Log-normal distribu	ution, constant	variance					
Linear (CV—log-normal)	Unrestricted	8.8972	6.7871	0.0979	-14.1242	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Modeled control response SD > 1.5 actual response SD

D.3. RELATIVE LIVER WEIGHT-P₀ MICE (<u>Das et al., 2008</u>)

Table D-12. Dose-response data for relative liver weight in pregnant mice(Das et al., 2008)

Dose (mg/kg-day)	n	Mean	SD
0	6	8.04	0.66
35	6	8.76	1.37
175	7	10.28	0.75
350	6	10.65	0.62

Table D-13. Benchmark dose results for relative liver weight in pregnant mice–constant variance, BMR = 10% relative deviation (<u>Das et al., 2008</u>)

		10% Re devia				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varia	nce			•			
Exponential 2 (CV—normal)	Restricted	130.2877	98.9543	0.0486	73.1479	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 3 (CV—normal)	Restricted	130.2877	99.1362	0.0486	73.1479	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 4 (CV—normal)	Restricted	36.1911	15.1545	0.8612	69.1285	Viable— recommended	Lowest AIC
Exponential 5 (CV—normal)	Restricted	39.4346	15.2398	NA	71.0979	Questionable	df = 0, saturated model (goodness-of-fit p- value cannot be calculated)
Hill (CV—normal)	Restricted	38.7873	12.3846	NA	71.0979	Questionable	df = 0, saturated model (goodness-of-fit p- value cannot be calculated)
Polynomial (3 degree) (CV—normal)	Restricted	115.5880	84.4884	0.0736	72.3159	Questionable	Goodness-of-fit p-value < 0.1
Polynomial (2 degree) (CV—normal)	Restricted	115.5878	84.4883	0.0736	72.3159	Questionable	Goodness-of-fit p-value < 0.1
Power (CV—normal)	Restricted	115.5870	84.4876	0.0736	72.3159	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Linear (CV—normal)	Unrestricted	115.5882	84.4875	0.0736	72.3159	Questionable	Goodness-of-fit <i>p</i> -value < 0.1

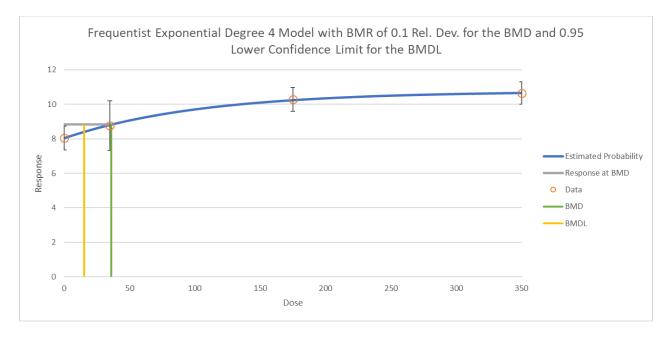


Figure D-2. Dose-response curve for the Exponential M4 model fit to relative liver weight in pregnant mice (<u>Das et al., 2008</u>).

	User Input
Info	
Model	frequentist Exponential degree 4 v1.1
Dataset Name	Das_p_Lweight_rel
User notes	[Add user notes here]
Dose-Response Model	M[dose] = a * [c-(c-1) * exp(-b * dose)]
Variance Model	Var[i] = alpha
Model Options	
BMR Type	Rel. Dev.
BMRF	0.1
Tail Probability	-
Confidence Level	0.95
Distribution Type	Normal
Variance Type	Constant
Model Data	
Dependent Variable	[Dose]
Independent Variable	[Mean]
Total # of Observations	4
Adverse Direction	Automatic

			#NAN	NE?				
		1						
Benchr	nark Dose							
BMD	36.19110286							
BMDL	15.15446485							
BMDU	87.70968183							
AIC	69.12846157							
Test 4 P-value	0.861196136							
D.O.F.	1	l.						
Model	arameters	1						
# of Parameters	4 analieters							
Variable	Estimate							
a	8.018710905							
b	0.009531749							
-								
С	1.342753894							
log-alpha	-0.39273843							
	<i></i>	r						
Goodn	ess of Fit	E a l'anna ta al	Calada	Observat	Estimated.		Observat	Carlad
Dose	Size	Estimated Median	Calc'd Median	Observed Mean	Estimated SD	Calc'd SD	Observed SD	Scaled Residual
0	6	8.018710905	8.04	8.04	0.82170879	0.66	0.66	0.063462168
35	6	8.798356028	8.76	8.76	0.82170879	1.37	1.37	-0.114338192
175	7	10.24876199	10.28	10.28	0.82170879	0.75	0.75	0.100580637
350	6	10.66937939	10.65	10.65	0.82170879	0.62	0.62	-0.057769406
	•						•	
Likelihood	ls of Interest			i i				
		# of						
Model	Log Likelihood*	Parameters	AIC					
A1	-30.54894422	5	71.0978884					
A2	-27.8068244	8	71.6136488					
A3	-30.54894422	5	71.0978884					
fitted	-30.56423079	4	69.1284616					
R	-42.8486201	2	89.6972402					
* Includes additive	e constant of -22.973	46. This constan	t was not inclu	ded in the LL	derivation prio	r to BMDS	3.0.	
		1						
Tests o	f Interest			1				
	-2*Log(Likelihood							
Test	Ratio)	Test df	p-value					
1	30.08359139	6	<0.0001					
2	5.484239634	3	0.13958431					
2 3 4	5.484239634 5.484239634	3 3 1	0.13958431 0.13958431					

Table D-14. Benchmark dose results for relative liver weight in pregnant
mice—constant variance, BMR = 1 standard deviation (<u>Das et al., 2008</u>)

		1 Stai devia				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varia	nce						
Exponential 2 (CV—normal)	Restricted	141.5518	104.9937	0.0524	73.6332	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 3 (CV—normal)	Restricted	141.5511	104.9942	0.0524	73.6331	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 4 (CV—normal)	Restricted	37.2658	16.6945	0.5517	70.0879	Viable— recommended	Lowest AIC
Exponential 5 (CV—normal)	Restricted	40.3641	16.7699	NA	71.7337	Questionable	df = 0, saturated model (goodness-of-fit p-value cannot be calculated)
Hill (CV—normal)	Restricted	39.5789	13.8731	NA	71.7337	Questionable	df = 0, saturated model (goodness-of-fit p-value cannot be calculated)
Polynomial (3 degree) (CV—normal)	Restricted	124.9178	90.1236	0.0725	72.9822	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Polynomial (2 degree) (CV—normal)	Restricted	124.9176	90.1235	0.0725	72.9822	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Power (CV—normal)	Restricted	124.9169	90.1256	0.0725	72.9822	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Linear (CV—normal)	Unrestricted	124.9180	90.1238	0.0725	72.9822	Questionable	Goodness-of-fit <i>p</i> -value < 0.1

D.4. LIVER HYPERTROPHY–MALE RAT (<u>Butenhoff et al., 2012</u>; <u>van</u> <u>Otterdijk, 2007</u>)

Table D-15. Dose-response data liver hypertrophy in male rats(Butenhoff et al., 2012; van Otterdijk, 2007)

Dose (mg/kg-day)	n	Incidence
0	10	0
1.2	10	0
6	10	0
30	10	9

Table D-16. Benchmark dose results for liver hypertrophy in rats–BMR = 10% extra risk (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk, 2007</u>)

		10% Ext	tra risk			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Gamma	Restricted	16.2946	5.3859	1.0000	8.5017	Viable—alternate	
Log-logistic	Restricted	23.5001	5.4486	1.0000	10.5017	Viable—alternate	
Multistage 3rd	Restricted	10.8404	5.0184	0.9796	8.8673	Viable—alternate	
Multistage 2nd	Restricted	6.8934	3.6966	0.8078	10.2814	Viable—alternate	
Multistage 1st	Restricted	2.4428	1.4091	0.0817	18.5672	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Weibull	Restricted	25.2757	5.3801	1.0000	8.5017	Viable— recommended	Lowest AIC
Dichotomous Hill	Unrestricted	23.4994	5.8336	0.9995	12.5017	Viable—alternate	
Logistic	Unrestricted	23.4727	8.4278	1.0000	8.5017	Viable—alternate	
Log-probit	Unrestricted	20.1374	5.4722	1.0000	10.5017	Viable—alternate	
Probit	Unrestricted	21.2661	7.6123	1.0000	10.5017	Viable—alternate	

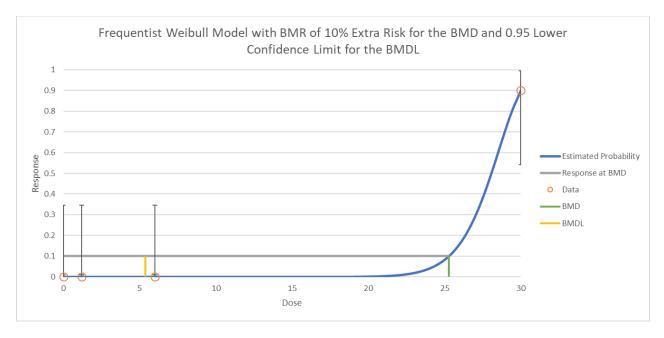


Figure D-3. Dose-response curve for the Weibull model fit to liver hypertrophy in male rats (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk, 2007</u>).

	User Input					
Info						
Model	frequentist Weibull v1.1					
Dataset Name	Butenhoff_90_Lhypertrophy					
User notes	[Add user notes here]					
Dose-Response Model	P[dose] = g + (1-g)*[1-exp(-b*dose^a)]					
Model Options						
Risk Type	Extra Risk					
BMR	0.1					
Confidence Level	0.95					
Background	Estimated					
Model Data						
Dependent Variable	Dose					
Independent Variable	Incidence					
Total # of Observations	4					

	Мо	del Result	:S		
Benchma	ark Dose	1			
BMD	25.27565904				
BMDL	5.380065202				
BMDU	26.31774355				
AIC	8.501660382				
P-value	1				
D.O.F.	3				
Chi ²	4.56905E-07				
		1			
Model Pa					
# of Parameters	3				
Variable	Estimate				
g	Bounded				
а	Bounded				
b	5.94337E-27				
Goodne	ss of Fit		-		-
Dose	Estimated	Expected	Observed	Size	Scaled
	Probability	P			Residual
0	1.523E-08	1.523E-07	0	10	-0.00039
1.2	1.523E-08	1.523E-07	0	10	-0.00039
6	1.52306E-08	1.52306E-07	0	10	-0.00039
30	0.899999999	8.999999992	9	10	8.003E-09
Analysis of	Deviance	1			
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-3.250829734	4	-	-	-
	-3.250830191	1	9.1381E-07	3	1
Fitted Model					

Dose (mg/kg-day)	n	Incidence
0	10	0
1.2	10	0
6	10	0
30	10	4

Table D-17. Dose-response data for liver hypertrophy (slight severity lesions)in male rats (Butenhoff et al., 2012; van Otterdijk, 2007)

Table D-18. Benchmark dose results for liver hypertrophy (slight severitylesions) in male rats—BMR = 10% extra risk (Butenhoff et al., 2012; vanOtterdijk, 2007

		10% Ex	tra risk			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Gamma	Restricted	23.1357	5.6717	1.0000	15.4602	Viable—alternate	
Log-logistic	Restricted	27.1575	5.5461	1.0000	17.4602	Viable—alternate	
Multistage 3rd	Restricted	17.7871	5.5407	0.9978	15.5422	Viable—alternate	
Multistage 2nd	Restricted	13.9892	5.1121	0.8984	17.8741	Viable—alternate	
Multistage 1st	Restricted	8.1158	3.9098	0.5376	19.5942	Viable— recommended	Lowest BMDL
Weibull	Restricted	27.4811	5.6718	1.0000	17.4602	Viable—alternate	
Dichotomous Hill	Unrestricted	27.1562	5.2830	0.9995	19.4602	Viable—alternate	BMD:BMDL ratio > 5
Logistic	Unrestricted	26.9449	13.6106	1.0000	15.4602	Viable—alternate	
Log-Probit	Unrestricted	24.8237	5.3131	1.0000	17.4602	Viable—alternate	
Probit	Unrestricted	25.5166	12.1561	1.0000	17.4602	Viable—alternate	

D.5. TOTAL T4–MALE RAT (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk,</u> <u>2007</u>)

Table D-19. Dose-response data for total T4 levels in male rats(Butenhoff et al., 2012; van Otterdijk, 2007)

Dose (mg/kg-day)	n	Mean	SD
0	10	5.27	0.71
1.2	10	5.97	1.08
6	9	4.46	0.88
30	9	3.23	0.55

This document is a draft for review purposes only and does not constitute Agency policy.D-34DRAFT-DO NOT CITE OR QUOTE

Table D-20. Benchmark dose results for total T4 levels in male rats—constantvariance, BMR = 1 standard deviation (Butenhoff et al., 2012; van Otterdijk.2007)

		1 Star devia				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varia	nce						
Exponential 2 (CV—normal)	Restricted	9.2322	6.5166	0.0138	104.3816	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 3 (CV—normal)	Restricted	9.2324	6.5166	0.0138	104.3816	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 4 (CV—normal)	Restricted	4.9496	2.5239	0.0075	104.9572	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 5 (CV—normal)	Restricted	5.7655	3.5138	NA	103.5642	Questionable	df = 0, saturated model (goodness-of-fit p-value cannot be calculated)
Hill (CV—normal)	Restricted	5.5394	3.2999	NA	103.5644	Questionable	df = 0, saturated model (goodness-of-fit p-value cannot be calculated)
Polynomial (3 degree) (CV—normal)	Restricted	11.5906	8.7704	0.0090	105.2374	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Polynomial (2 degree) (CV—normal)	Restricted	11.5906	8.7704	0.0090	105.2374	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Power (CV—normal)	Restricted	11.5906	8.7706	0.0090	105.2374	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Linear (CV—normal)	Unrestricted	11.5906	8.7704	0.0090	105.2374	Questionable	Goodness-of-fit <i>p</i> -value < 0.1

Table D-21. Benchmark dose results for total T4 levels in malerats—nonconstant variance, BMR = 1 standard deviation (Butenhoff et al., 2012; van Otterdijk, 2007)

			ndard ation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Nonconstant var	iance						
Exponential 2 (NCV—normal)	Restricted	11.3786	7.8978	0.0182	102.5921	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 3 (NCV—normal)	Restricted	11.3789	7.8977	0.0182	102.5921	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 4 (NCV—normal)	Restricted	5.8707	2.9606	0.0104	103.1558	Questionable	Goodness-of-fit p-value < 0.1
Exponential 5 (NCV—normal)	Restricted	5.8297	3.9098	NA	102.1810	Questionable	df = 0, saturated model (goodness-of-fit p-value cannot be calculated)
Hill (NCV—normal)	Restricted	5.8562	3.7033	NA	102.1809	Questionable	df = 0, saturated model (goodness-of-fit p-value cannot be calculated)
Polynomial (3 degree) (NCV—normal)	Restricted	13.7327	10.1890	0.0130	103.2666	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Polynomial (2 degree) (NCV—normal)	Restricted	13.7329	10.1889	0.0130	103.2666	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Power (NCV—normal)	Restricted	13.7325	10.1890	0.0130	103.2666	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Linear (NCV—normal)	Unrestricted	13.7332	10.1889	0.0130	103.2666	Questionable	Goodness-of-fit <i>p</i> -value < 0.1

Table D-22. Benchmark dose results for total T4 levels in malerats—log-normal distribution, constant variance, BMR = 1 standard deviation(Butenhoff et al., 2012; van Otterdijk, 2007)

		1 Star devia				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Log-normal distribu	ition, constant	variance		•	•		
Exponential 2 (CV—log-normal)	Restricted	12.0074	7.6347	0.0223	98.5676	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 3 (CV—log-normal)	Restricted	12.0074	7.6347	0.0223	98.5676	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 4 (CV—log-normal)	Restricted	5.7060	2.5325	0.0200	98.3698	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Exponential 5 (CV—log-normal)	Restricted	5.9263	3.4425	NA	97.5382	Questionable	df = 0, saturated model (goodness-of-fit p-value cannot be calculated)
Hill (CV—log-normal)	Restricted	-	-	-	-	Questionable	df = 0, saturated model (goodness-of-fit p-value cannot be calculated)
Polynomial (3 degree) (CV—log-normal)	Restricted	-	-	-	-	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Polynomial (2 degree) (CV—log-normal)	Restricted	-	-	-	-	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Power (CV—log-normal)	Restricted	-	-	-	-	Questionable	Goodness-of-fit <i>p</i> -value < 0.1
Linear (CV—log-normal)	Unrestricted	-	-	-	-	Questionable	Goodness-of-fit <i>p</i> -value < 0.1

D.6. INCREASED FETAL MORTALITY – MALE AND FEMALE F₁ MICE (<u>Das et al., 2008</u>)

Dose (mg/kg-day)	n (No. of implants)	No. of dead fetuses/neonates by PND 21	Litter-specific covariate (Maternal weight on GD1)
0	16	1	30
0	16	1	28.2
0	11	2	27.7
0	11	0	27.4
0	12	3	25.9
0	11	0	24.1
0	15	0	29.2
0	14	1	28
0	12	3	27.1
0	14	0	26.8
0	16	1	26.6
0	13	2	25.1
0	17	3	30.1
0	14	0	29
0	6	0	27.5
0	9	2	28.1
0	6	0	26.9
0	13	1	26.7
0	11	0	23.3
0	8	8	25.8
0	18	18	31.4
35	15	3	28.1
35	13	0	29.3
35	13	0	27.4
35	14	1	27
35	15	2	26.9
35	13	2	25.7
35	12	4	31.6

Table D-23. Dose-response data for increased fetal mortality (Das et al., 2008)

This document is a draft for review purposes only and does not constitute Agency policy.D-38DRAFT-DO NOT CITE OR QUOTE

Dose (mg/kg-day)	n (No. of implants)	No. of dead fetuses/neonates by PND 21	Litter-specific covariate (Maternal weight on GD1)
35	13	0	29.2
35	14	1	27.7
35	16	0	27.5
35	13	2	28.1
35	7	3	25.5
35	15	1	30.3
35	13	0	27.5
35	14	1	28.1
35	13	1	27.9
35	11	0	26.4
35	10	1	27.4
35	13	1	27.9
35	13	0	26.1
35	13	1	24.8
35	12	1	24.8
35	2	2	23.1
175	14	1	28.1
175	15	0	27.5
175	14	0	27.4
175	14	1	27.5
175	15	2	29.4
175	14	1	27.5
175	15	0	26
175	16	2	26.2
175	11	0	23.4
175	16	3	29.1
175	11	0	28.2
175	13	0	25.8
175	11 2 26.8		26.8
175	15	1	26.9
175	14	1	25

Dose (mg/kg-day)	n (No. of implants)	No. of dead fetuses/neonates by PND 21	Litter-specific covariate (Maternal weight on GD1)
175	13	1	26.7
175	2	2	25.5
175	2	2	25.4
175	9	9	29
175	5	5	25
350	7	2	29.2
350	12	1	26.3
350	16	3	27.4
350	11	0	25.1
350	14	2	25.3
350	12	1	29.5
350	16	2	28.8
350	17	2	26.2
350	12	2	26.2
350	16	0	27.3
350	9	3	27.6
350	13	0	27.7
350	13	0	27.4
350	13	1	26.4
350	7	1	24.6
350	3	3	21.5
350	2	2	23
350	13	13	25.8
350	13	13	24.6
350	3	3	25.1
350	14	14	28.2
350	13	13	29.2

Table D-24. Benchmark dose results for increased fetal mortality (male and female mice)–BMR = 1% extra risk (<u>Das et al., 2008</u>)

ModelsRestriction1% Extra risk <i>p</i> -ValueAICBMDS notes

This document is a draft for review purposes only and does not constitute Agency policy.D-40DRAFT-DO NOT CITE OR QUOTE

		BMD	BMDL			BMDS classification	
Nested logistic (lsc+ilc+)	Restricted	19.5989	5.7383	Infinity	0.2633	Viable— Recommended	Lowest AIC BMDL 3× lower than lowest non- zero dose
Nested logistic (lsc+ilc–)	Restricted	326.9633	170.7455	Infinity	<0.0001	Questionable	Goodness of fit p- value < 0.1
Nested logistic (lsc-ilc+)	Restricted	50.4014	10.1822	Infinity	0.0833	Questionable	Goodness of fit p- value < 0.1 BMDL 3× lower than lowest non- zero dose
Nested logistic (lsc-ilc-)	Restricted	191.2272	81.9934	Infinity	<0.0001	Questionable	Goodness of fit p- value < 0.1



Figure D-4. Dose-response curve for the Nested-Logistic model fit to increased fetal mortality in male and female mice (<u>Das et al., 2008</u>).

	User Input			
Info				
Model	frequentist Nested Logistic_lsc+ilc+_ v2.2			
Dataset Name	Das_FLR_Fetal_Death			
User notes	[Add user notes here]			
Dasa Daspansa Madal	P[dose] = alpha + theta1*Rij + [1 - alpha -			
Dose-Response Model	theta1*Rij]/[1+exp(-beta-theta2*Rij-rho*log(dose))]			
Model Options				
Risk Type	Extra Risk			
BMR	0.01			
Confidence Level	0.95			
Litter Specific Covariate	Overall Mean			
Intralitter Correlation	Estimate			
Background	Estimate			
Model Data				
Dependent Variable	Dose			
Independent Variable	Incidence			
Total # of Observations	87			

		Model R	esults			
Benchmark	Dece					
BMD	19.59891366					
BMDL	5.738265629					
BMDU	-					
AIC	688.92042					
P-value	0.263333333					
D.O.F.	78					
Chi ²	96.74138773					
Model Para						
# of Parameters	9					
Variable	Estimate					
alpha	-0.5312932					
beta	16.8290783					
theta1	0.024711312					
theta2	-0.913645475					
rho	1.08467654					
phi1	0.368252856					
phi2	0.135465621					
phi3	0.509745798					
phi4	0.576861839					
Bootstrap F	lesults					
# Iterations	1000					
Bootstrap Seed	1599045577					
Log-likelihood	-335.46021					
Observed Chi-square	96.74138773					
Combined P-value	0.263333333					
Bootstrap	Runs					
		Bootstrap Chi-s	square Percent	tiles		
Run	P-Value	50th	90th	95th	99th	
1	0.285	85.65851617	109.848694	117.6	134.18995	
2	0.258	85.12942257	110.722914		131.33939	
3	0.238	85.05473338	108.751327			
Combined	0.263333333	85.30000651	109.644757	117.9646	135.1/128	
Scaled Res	iduals					
Minimum scaled resid	ual for dose grou	p nearest the BMI)	-0.50395		
Minimum ABS(scaled	residual) for dose	e group nearest the	BMD	0.503952		
Average Scaled residu	al for dose group	nearest the BMD		-0.50395		
Average ABS(scaled re	÷ 1		BMD	0.503952		
Maximum scaled resid				-0.50395		
Maximum ABS(scaled	÷	•		0.503952		
- (,					

Dose	Lit. Spec. Cov.	Est. Prob.	Litter Size	Expected	Observed	Scaled Residua
0	23.3	0.044480361	11	0.489284	0	-0.330689547
0	24.1	0.06424941	11	0.706744	0	-0.401615664
0	25.1	0.088960722	13	1.156489	2	0.353012617
0	25.8	0.10625864	8	0.850069	8	4.33673202
0	25.9	0.108729771	12	1.304757	3	0.699492477
0	26.6	0.126027689	16	2.016443	1	-0.299772055
0	26.7	0.12849882	13	1.670485	1	-0.238711127
0	26.8	0.130969952	14	1.833579	0	-0.603802545
0	26.9	0.133441083	6	0.800646	0	-0.570250323
0	27.1	0.138383345	12	1.6606	3	0.498243205
0	27.4	0.145796738	11	1.603764	0	-0.633212408
0	27.5	0.14826787	6	0.889607	0	-0.606305933
0	27.7	0.153210132	11	1.685311	2	0.121734257
0	28	0.160623525	14	2.248729	1	-0.377819018
0	28.1	0.163094657	9	1.467852	2	0.241698202
0	28.2	0.165565788	16	2.649053	1	-0.434253259
0	29	0.185334837	10	2.594688	0	-0.741848906
0	29.2	0.190277099	15	2.854156	0	-0.756724162
0	30	0.210046149	15	3.360738	1	-0.567256611
0	30.1	0.21251728	10	3.612794	3	-0.138387912
0	31.4	0.244641985	17	4.403556	18	2.76675012
35	23.1	0.420439493	2	0.840879	2	1.558208765
	24.8		12		1	
35		0.193667312		2.324008		-0.612920728
35	24.8	0.193667312	13	2.517675	1	-0.657368032
35	25.5	0.160429819	7	1.123009	3	1.435714172
35	25.7	0.15539473	13	2.020131	2	-0.009511434
35	26.1	0.149721705	13	1.946382	0	-0.933727752
35	26.4	0.148530963	11	1.633841	0	-0.902727468
35	26.9	0.150776303	15	2.261645	2	-0.110930327
35	27	0.151716296	14	2.124028	1	-0.503951928
35	27.4	0.156698447	13	2.03708	0	-0.959178264
35	27.4	0.156698447	10	1.566984	1	-0.331093052
35	27.5	0.158199979	16	2.5312	0	-0.995853056
35	27.5	0.158199979	13	2.0566	0	-0.964622031
35	27.7	0.16145156	14	2.260322	1	-0.550928027
35	27.9	0.164988496	13	2.14485	1	-0.527947549
35	27.9	0.164988496	13	2.14485	1	-0.527947549
35	28.1	0.168763344	15	2.53145	3	0.189788804
35	28.1	0.168763344	14	2.362687	1	-0.585185094
35	28.1	0.168763344	13	2.193923	2	-0.088622513
35	29.2	0.192293335	13	2.499813	0	-1.08570969
35	29.3	0.194583201	13	2.529582	0	-1.093706422
35	30.3	0.218173919	15	3.272609	1	-0.834803748
35	31.6	0.249793258	12	2.997519	4	0.423637452
175	23.4	0.753292803	11	8.286221	0	-2.346999161
175	25	0.450913899	14	6.312795	1	-1.033293673
175	25	0.450913899	5	2.254569	5	1.415449135
175	25.4	0.381299381	2	0.762599	2	1.466122666
175	25.5	0.365523168	2	0.731046	2	1.516399081
175	25.8	0.322690467	13	4.194976	0	-0.932876612
175	26	0.298046899	15	4.470703	0	-0.884741991
175	26.2	0.276550941	16	4.424815	2	-0.460908554
175	26.7	0.235805287	13	3.065469	1	-0.505849379
175	26.8	0.229690589	11	2.526596	2	-0.152863219
175	26.9	0.2241858	15	3.362787	1	-0.512836334
175	27.4	0.204707536	14	2.865906	0	-0.687383811
175	27.5	0.202204115	14	2.830858	1	-0.441145101
175	27.5	0.202204115	14	2.830858	1	-0.441145101
175	27.5	0.202204115	15	3.033062	0	-0.683561326
175	28.1	0.194568014	14	2.723952	1	-0.421446879
175	28.2	0.194300585	11	2.137306	0	-0.659587572
175	29	0.199087513	9	1.791788	9	2.670218904
175	29.1	0.200338227	16	3.205412	3	-0.043633258
175	29.4	0.204695235	15	3.070429	2	-0.240145327
350	21.5	0.971795484	3	2.915386	3	0.201065485
350	23	0.901250165	2	1.8025	2	0.372789514
350	24.6	0.695111669	13	9.036452	13	0.848375256
350	24.6	0.695111669	7	4.865782	15	-1.502678856
350	24.0	0.601246578	3	1.80374	3	0.961150815
350	25.1	0.601246578	11	6.613712	0	-1.565382323
350	25.3	0.562306321	11	7.872288	2	-1.085132125
350	25.4	0.542866281	14	0.542866	1	0.91764604
350	25.8	0.467290016	13	6.07477	13	1.367719528
350	26.2	0.398842995	12	4.786116	2	-0.606043119
350	26.2	0.398842995	17	6.780331	2	-0.740295677
350	26.3	0.383300844	12	4.59961	1	-0.788584398
350	26.4	0.368470315	13	4.790114	1	-0.774204472
350	27.3	0.269132881	16	4.306126	0	-0.781258285
350	27.4	0.261775084	13	3.403076	0	-0.762807027
350	27.4	0.261775084	16	4.188401	3	-0.217527974
350	27.6	0.249017755	9	2.24116	3	0.246847242
	27.7	0.243559594	13	3.166275	0	-0.726875687
350				3.139422	14	2.387132337
350 350	28.2	0.224244443	14	3.139422	14	2.30/13233/
	28.2 28.8		14		2	-0.281313821
350		0.224244443 0.214724836 0.214117934		3.139422 3.435597 2.783533		

This document is a draft for review purposes only and does not constitute Agency policy.D-44DRAFT-DO NOT CITE OR QUOTE

D.7. DELAYED EYE OPENING-F₁ MALE AND FEMALE MICE (<u>Das et al.</u>, <u>2008</u>)

Table D-25. Dose-response data for delayed eye opening in maleand female mice (Das et al., 2008)

Dose (mg/kg-day)	n	Mean	SD
0	20	16.28	1.19
35	22	17.38	0.79
175	17	17.69	0.68
350	15	17.8	0.83

Table D-26. Benchmark dose results for delayed eye opening in male and female mice—constant variance, BMR = 5% relative deviation (<u>Das et al.</u>, <u>2008</u>)

		5% Re devia				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varia	nce				•		
Exponential 2 (CV—normal)	Restricted	252.3387	178.6688	0.0008	211.1176	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Exponential 3 (CV—normal)	Restricted	252.3380	178.7347	0.0008	211.1176	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Exponential 4 (CV—normal)	Restricted	20.4436	0.0000	0.7270	198.8811	Unusable	BMD computation failed; lower limit includes zero BMDL not estimated
Exponential 5 (CV—normal)	Restricted	175.5239	0.0000	NA	215.6060	Unusable	BMD computation failed; lower limit includes zero BMDL not estimated Residual at control >2 df = 0, saturated model (goodness-of-fit p-value cannot be calculated)
Hill (CV—normal)	Restricted	16.1508	4.8878	0.8659	198.7878	Viable— recommended	Lowest AIC BMDL 3× lower than lowest nonzero dose
Polynomial (3 degree) (CV—normal)	Restricted	247.2477	172.9292	0.0008	210.9441	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Polynomial (2 degree) (CV—normal)	Restricted	247.2476	172.9292	0.0008	210.9441	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Power (CV—normal)	Restricted	247.2483	172.9366	0.0008	210.9441	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Linear (CV—normal)	Unrestricted	247.2471	172.9288	0.0008	210.9441	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2

Figure D-5. Dose-response curve for the Hill model fit to delayed eye opening in male and female mice (<u>Das et al., 2008</u>).

	User Input			
Info				
Model	frequentist Hill v1.1			
Dataset Name	Das_EO_litter_SDs			
User notes	[Add user notes here]			
Dose-Response Model	M[dose] = g + v*dose^n/(k^n + dose^n)			
Variance Model	Var[i] = alpha			
Model Options				
BMR Type	Rel. Dev.			
BMRF	0.05			
Tail Probability	-			
Confidence Level	0.95			
Distribution Type	Normal			
Variance Type	Constant			
Model Data				
Dependent Variable	[Dose]			
Independent Variable Total # of Observations	[Mean]			
Adverse Direction	Automatic			

		[Model R	lesults				
D h		1						
	ark Dose							
BMD	16.15084927							
BMDL	4.88775303							
BMDU	58.67497527							
AIC	198.7877861							
Test 4 P-value	0.865852068							
D.O.F.	1	l						
		1						
	arameters							
# of Parameters	5							
Variable	Estimate							
g	16.28027637							
V	1.557732828							
k	14.75612987							
n	Bounded							
alpha	0.771309051							
		1						
Goodne	ess of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd SD	Observed	Scaled
		Median	Median	Mean	SD		SD	Residual
0	20	16.28027637	16.28	16.28	0.87824202	1.19	1.19	-0.00140733
35	22	17.3760338	17.38	17.38	0.87824202	0.79	0.79	0.02118221
175 350	17 15	17.71687421 17.77499146	17.69 17.8	17.69 17.8	0.87824202	0.68	0.68	-0.12616703 0.11028584
330	15	17.77433140	17.8	17.8	0.87824202	0.85	0.85	0.11028584
Likelihooda	s of Interest	1						
Likelihood		# of						
Model	Log Likelihood*	Parameters	AIC					
A1	-95.37962446	5	200.759249					
A1	-91.88601151	8	199.772023					
A3	-95.37962446	5	200.759249					
fitted	-95.39389305	4	198.787786					
R	-109.7197233	2	223.439447					
	constant of -68.001			dod in the LL	dorivation pric		2 0	
includes additive	CONSTANT OF -08.001	45. This constant	t was not inclu		uerivation pric		5.0.	
Tosts of	Interest	1						
Tests of	-2*Log(Likelihood							
Test	Ratio)	Test df	p-value					
rest	35.6674235							
1	1 12 00/4/12	6	< 0.0001					
1		2	0.07220604					
1 2 3	6.987225901 6.987225901	3	0.07230604 0.07230604					

Table D-27. Benchmark dose results for delayed eye opening in male and female mice—constant variance, BMR = 1 standard deviation (<u>Das et al., 2008</u>)

		1 Standard	deviation			BMDS	BMDS notes
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	
Constant varia	nce			•	•	•	
Exponential 2 (CV—normal)	Restricted	289.0417	204.0632	0.0008	211.1176	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Exponential 3 (CV—normal)	Restricted	289.0397	204.0631	0.0008	211.1176	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Exponential 4 (CV—normal)	Restricted	23.0895	12.5328	0.7270	198.8811	Viable— recommended	Lowest AIC
Exponential 5 (CV—normal)	Restricted	-9,999.0000	0.0000	NA	215.6060	Unusable	BMD computation failed BMD not estimated BMDL not estimated Residual at control >2 df = 0, saturated model (goodness-of-fit p-value cannot be calculated)
Hill (CV—normal)	Restricted	19.0723	0.0000	0.8659	198.7878	Unusable	BMD computation failed; lower limit includes zero BMDL not estimated
Polynomial (3 degree) (CV—normal)	Restricted	284.0211	198.2059	0.0008	210.9441	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Polynomial (2 degree) (CV—normal)	Restricted	284.0211	198.2059	0.0008	210.9441	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Power (CV—normal)	Restricted	284.0218	198.2009	0.0008	210.9441	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Linear (CV—normal)	Unrestricted	284.0204	198.2054	0.0008	210.9441	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2

D.8. VAGINAL OPENING-F₁ FEMALE MICE (Das et al., 2008)

Table D-28. Dose-response data for delayed vaginal opening infemale mice (Das et al., 2008)

Dose (mg/kg-day)	n	Mean	SD
0	83	31.59	5.386
35	97	33.598	5.715
175	89	34.292	5.714
350	87	35.023	5.188

Table D-29. Benchmark dose results for delayed vaginal opening in female mice—constant variance, 5% relative deviation (<u>Das et al., 2008</u>)

		5% Re devia				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varia	nce						
Exponential 2 (CV—normal)	Restricted	199.6149	137.1410	0.0106	348.8761	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Residual at control >2
Exponential 3 (CV—normal)	Restricted	199.6216	137.1431	0.0106	348.8761	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Residual at control >2
Exponential 4 (CV—normal)	Restricted	17.1139	0.0000	0.6944	341.9320	Unusable	BMD computation failed; lower limit includes zero BMDL not estimated
Exponential 5 (CV—normal)	Restricted	30.5201	0.0000	NA	343.9392	Unusable	BMD computation failed; lower limit includes zero BMDL not estimated df = 0, saturated model (goodness-of-fit p-value cannot be calculated)
Hill (CV—normal)	Restricted	13.5161	3.7929	0.8401	341.8184	Viable— recommended	Lowest AIC BMDL 3× lower than lowest nonzero dose
Polynomial (3 degree) (CV—normal)	Restricted	193.4400	130.5619	0.0115	348.7113	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Polynomial (2 degree) (CV—normal)	Restricted	193.4443	130.5615	0.0115	348.7113	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Residual at control >2
Power (CV—normal)	Restricted	193.4434	130.5626	0.0115	348.7113	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Residual at control >2
Linear (CV—normal)	Unrestricted	193.4436	130.5610	0.0115	348.7113	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Residual at control >2

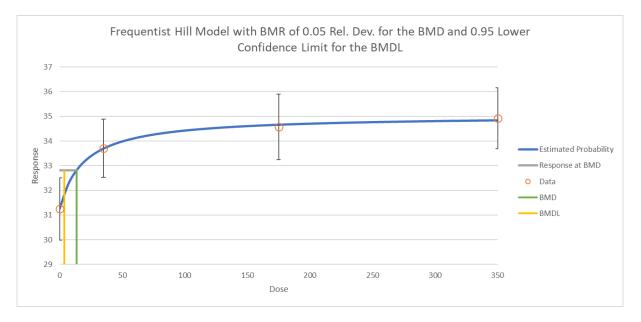


Figure D-6. Dose-response curve for the Hill model fit to delayed vaginal opening in female mice (<u>Das et al., 2008</u>).

	User Input
Info	
Model	frequentist Hill v1.1
Dataset Name	Das_VO_litter_SDs
User notes	[Add user notes here]
Dose-Response Model	M[dose] = g + v*dose^n/(k^n + dose^n)
Variance Model	Var[i] = alpha
Model Options	
BMR Type	Rel. Dev.
BMRF	0.05
Tail Probability	-
Confidence Level	0.95
Distribution Type	Normal
Variance Type	Constant
Model Data	
Dependent Variable	[Dose]
Independent Variable Total # of Observations	[Mean] 4
Adverse Direction	Automatic

			Model R	lesults				
Bonchm	nark Dose	1						
BMD	13.51609885							
BMDL	3.792905489							
BMDU	58.81907947							
AIC	341.8183924							
Test 4 P-value	0.840124836							
D.O.F.	1							
-	-	•						
Model Pa	arameters							
# of Parameters	5							
Variable	Estimate							
g	31.25160173							
v	3.782877454							
k	19.2052612							
n	Bounded							
alpha	6.040525655							
		-						
Goodne	ess of Fit				-		-	-
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd SD	Observed	Scaled
		Median	Median	Mean	SD		SD	Residual
0	19	31.25160173	31.25	31.25	2.45774809	2.62	2.62	-0.00284071
35	21	33.69418217	33.71	33.71	2.45774809	2.59	2.59	0.029493016
175 350	17 15	34.66038453 34.83770206	34.57 34.92	34.57 34.92	2.45774809 2.45774809	2.59 2.23	2.59 2.23	-0.15162862
330	1.5	34.83770200	54.52	34.92	2.43774803	2.23	2.23	0.129087230
Likelihood	s of Interest	1						
		# of		1				
Model	Log Likelihood*	Parameters	AIC					
A1	-166.8888479	5	343.777696					
A2	-166.5982185	8	349.196437					
A3	-166.8888479	5	343.777696					
fitted	-166.9091962	4	341.818392					
R	-177.364099	2	358.728198					
* Includes additive	constant of -66.163			ded in the LL	derivation pric	or to BMDS	3.0.	
Tests of	f Interest							
	-2*Log(Likelihood							
Test	Ratio)	Test df	p-value					
	21.53176107	6	0.00147157					
1	21.331/010/	-						
•	0.581258883	3	0.900709					
1			0.900709 0.900709					

Table D-28. Benchmark dose results for delayed vaginal opening in femalemice—constant variance, 1 standard deviation (Daset al., 2008)

		1 Star devia				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varia	nce						
Exponential 2 (CV—normal)	Restricted	316.9350	218.4320	0.0106	348.8761	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Exponential 3 (CV—normal)	Restricted	316.9457	218.4320	0.0106	348.8761	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2
Exponential 4 (CV—normal)	Restricted	35.1705	15.4720	0.6944	341.9320	Viable— recommended	Lowest AIC
Exponential 5 (CV—normal)	Restricted	34.9991	15.4632	NA	343.9392	Questionable	df = 0, saturated model (goodness-of-fit p-value cannot be calculated)
Hill (CV—normal)	Restricted	35.6204	0.0000	0.8401	341.8184	Unusable	BMD computation failed; lower limit includes zero BMDL not estimated
Polynomial (3 degree) (CV—normal)	Restricted	311.4806	211.1287	0.0115	348.7113	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Residual at control >2
Polynomial (2 degree) (CV—normal)	Restricted	311.4877	211.1313	0.0115	348.7113	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Residual at control >2
Power (CV—normal)	Restricted	311.4864	211.1303	0.0115	348.7113	Questionable	Goodness-of-fit <i>p</i> -value < 0.1 Residual at control >2
Linear (CV—normal)	Unrestricted	311.4866	211.1307	0.0115	348.7113	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2

D.9. PREPUTIAL SEPARATION-F1 MALE MICE (Das et al., 2008)

Dose (mg/kg-day)	n	Mean	SD
0	17	29.55	1.14
35	21	30.21	1.99
175	17	30.56	1.84
350	15	31.88	1.72

Table D-29. Dose-response data for delayed preputial separationin male mice (Das et al., 2008)

Table D-30. Benchmark dose results for delayed preputial separation in male mice—constant variance, BMR = 5% relative deviation (<u>Das et al., 2008</u>)

			elative ation				BMDS
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	BMDS classification	notes
Constant variance	5	•	•	•	•		
Exponential 2 (CV—normal)	Restricted	254.8183	179.1436	0.6004	277.5960	Viable—alternate	
Exponential 3 (CV—normal)	Restricted	254.8005	179.1431	0.6004	277.5960	Viable—recommended	Lowest AIC
Exponential 4 (CV—normal)	Restricted	252.8480	102.0115	0.3080	279.6149	Viable—alternate	
Exponential 5 (CV—normal)	Restricted	252.5410	101.9527	0.3076	279.6166	Viable—alternate	
Hill (CV—normal)	Restricted	194.2094	175.4639	0.2286	280.0252	Viable—alternate	
Polynomial (3 degree) (CV—normal)	Restricted	276.4524	176.5648	0.3427	279.4759	Viable—alternate	
Polynomial (2 degree) (CV—normal)	Restricted	269.5337	175.9153	0.3268	279.5372	Viable—alternate	
Power (CV—normal)	Restricted	252.7648	175.1179	0.5950	277.6140	Viable—alternate	
Linear (CV—normal)	Unrestricted	252.7653	175.1182	0.5950	277.6140	Viable—alternate	

Figure D-7. Dose-response curve for the Exponential 3 model fit to delayed preputial separation in male mice (<u>Das et al., 2008</u>).

	User Input
Info	
Model	frequentist Exponential degree 3 v1.1
Dataset Name	Das_PS_litter_SDs
User notes	[Add user notes here]
Dose-Response Model	M[dose] = a * exp(±1 * (b * dose)^d)
Variance Model	Var[i] = alpha
Model Options	
BMR Type	Rel. Dev.
BMRF	0.05
Tail Probability	-
Confidence Level	0.95
Distribution Type	Normal
Variance Type	Constant
Model Data	
Dependent Variable	[Dose]
Independent Variable	[Mean]
Total # of Observations	4
Adverse Direction	Automatic

			Model R	lesults				
D h		1						
BMD	ark Dose 254.8005164							
BMDL	179.1431485							
BMDU	443.2041287							
AIC	277.5960319							
Test 4 P-value	0.600364435							
D.O.F.	2							
0.0.1.		J						
Model Pa	arameters							
# of Parameters	4							
Variable	Estimate							
а	29.74458616							
b	0.000191484							
d	Bounded							
		1						
log-alpha	1.042066246							
		-						
Goodne	ess of Fit		•					1
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd SD	Observed	Scaled
		Median	Median	Mean	SD		SD	Residual
0	17	29.74458616	29.55	29.55	1.68376629	1.14	1.14	-0.47649088
35	21	29.94460185	30.21	30.21	1.68376629	1.99	1.99	0.722313504
175	17	30.75820529	30.56	30.56	1.68376629	1.84	1.84	-0.485353184
350	15	31.80636595	31.88	31.88	1.68376629	1.72	1.72	0.169372344
Likelihood	s of Interest	1						
		# of						
Model	Log Likelihood*	Parameters	AIC					
A1	-135.2877975	5	280.575595					
A2	-132.4445224	8	280.889045					
A3	-135.2877975	5	280.575595					
fitted	-135.7980159	3	277.596032					
R	-142.6419354	2	289.283871					
* Includes additive	constant of -64.325	57. This constant	was not includ	ed in the LL d	erivation prior	to BMDS 3.	0.	
Tests of	Interest							
	-2*Log(Likelihood							
Test	Ratio)	Test df	p-value					
1	20.39482594	6	0.00235492					
2	5.686550161	3	0.12789698					
3	5.686550161	3	0.12789698					

Table D-31. Benchmark dose results for delayed preputial separation in male
mice—constant variance, BMR = 1 standard deviation (<u>Das et al., 2008</u>)

		1 Standard deviation					BMDS
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	BMDS classification	notes
Constant varia	nce						
Exponential 2 (CV—normal)	Restricted	287.5467	201.6707	0.6004	277.5960	Viable—alternate	
Exponential 3 (CV—normal)	Restricted	287.5612	201.6697	0.6004	277.5960	Viable—recommended	Lowest AIC
Exponential 4 (CV—normal)	Restricted	286.3951	198.7931	0.3080	279.6149	Viable—alternate	
Exponential 5 (CV—normal)	Restricted	286.1679	197.6553	0.3076	279.6166	Viable—alternate	
Hill (CV—normal)	Restricted	201.3711	94.7311	0.2286	280.0252	Viable—alternate	
Polynomial (3 degree) (CV—normal)	Restricted	302.3780	199.5688	0.3427	279.4759	Viable—alternate	
Polynomial (2 degree) (CV—normal)	Restricted	297.6581	198.8516	0.3268	279.5372	Viable—alternate	
Power (CV—normal)	Restricted	286.2526	197.9759	0.5950	277.6140	Viable—alternate	
Linear (CV—normal)	Unrestricted	286.2531	197.9763	0.5950	277.6140	Viable—alternate	

D.10. RELATIVE LIVER WEIGHT–MALE HUMANIZED PPARα MICE (Foreman et al., 2009)

Table D-32. Dose-response data for relative liver weight in male humanized PPAR α mice (Foreman et al., 2009)

Dose (mg/kg-day)	n	Mean	SD
0	10	4.07	0.261
35	10	5.62	0.719
175	10	6.65	0.784
350	10	7.38	0.719

Table D-33. Benchmark dose results for delayed preputial separation in male mice—nonconstant variance, BMR = 10% relative deviation (<u>Das et al., 2008</u>)

		10% R devia	elative ation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Nonconstant var	iance				•		
Exponential 2 (NCV—normal)	Restricted	77.3820	62.7400	<0.0001	107.4138	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2 Modeled control response SD > 1.5 actual response SD
Exponential 3 (NCV—normal)	Restricted	77.3912	62.7399	<0.0001	107.4138	Questionable	Goodness-of-fit p-value < 0.1 Residual at control >2 Modeled control response SD > 1.5 actual response SD
Exponential 4 (NCV—normal)	Restricted	6.7656	4.8076	0.0951	80.0462	Questionable	Goodness-of-fit p-value < 0.1 BMD 3× lower than lowest nonzero dose BMDL 3× lower than lowest nonzero dose
Exponential 5 (NCV—normal)	Restricted	6.7678	4.8076	0.0951	80.0462	Questionable	Goodness-of-fit p-value < 0.1 BMD 3× lower than lowest nonzero dose BMDL 3× lower than lowest nonzero dose
Hill (NCV—normal)	Restricted	5.4945	4.4070	0.2883	78.3878	Viable— recommended	Lowest AIC BMD 3× lower than lowest nonzero dose BMDL 3× lower than lowest nonzero dose
Polynomial (3 degree) (NCV—normal)	Restricted	59.5695	46.0032	<0.0001	104.4698	Questionable	Goodness-of-fit p-value < 0.1 residual for dose group near BMD >2 residual at control >2 Modeled control response SD > 1.5 actual response SD

		10% Relative deviation				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Nonconstant var	iance						
Polynomial (2 degree) (NCV—normal)	Restricted	59.5723	46.0033	<0.0001	104.4698	Questionable	Goodness-of-fit p-value < 0.1 residual for dose group near BMD >2 residual at control >2 Modeled control response SD > 1.5 actual response SD
Power (NCV—normal)	Restricted	59.5691	46.0034	<0.0001	104.4698	Questionable	Goodness-of-fit p-value < 0.1 residual for dose group near BMD >2 residual at control >2 Modeled control response SD > 1.5 actual response SD
Linear (NCV—normal)	Unrestricted	59.5725	46.0031	<0.0001	104.4698	Questionable	Goodness-of-fit p-value < 0.1 residual for dose group near BMD >2 residual at control >2 Modeled control response SD > 1.5 actual response SD

APPENDIX E. SUMMARY OF PUBLIC COMMENTS AND EPA'S DISPOSITION

APPENDIX F. QUALITY ASSURANCE FOR THE IRIS TOXICOLOGICAL REVIEW OF PERFLUOROBUTANOIC ACID AND RELATED COMPOUND AMMONIUM PERFLUOROBUTANOIC ACID

1 This assessment was prepared under the auspices of the U.S. Environmental Protection 2 Agency's (EPA's) Integrated Risk Information System (IRIS) Program. The IRIS Program is housed 3 within the Office of Research and Development (ORD) in the Center for Public Health and 4 Environmental Assessment (CPHEA). EPA has an agency-wide quality assurance policy, and that 5 policy is outlined in the EPA Quality Manual for Environmental Programs (see CIO 2105-P-01.1) and 6 follows the specifications outlined in EPA Order CIO 2105.1. 7 As required by CIO 2105.1, ORD maintains a Quality Management Program, which is 8 documented in an internal Quality Management Plan (QMP). The latest version was developed in 9 2013 using Guidance for Developing Quality Systems for Environmental Programs (OA/G-1). An 10 NCEA/CPHEA-specific QMP also was developed in 2013 as an appendix to the ORD QMP. Quality 11 assurance for products developed within CPHEA is managed under the ORD QMP and applicable 12 appendices. 13 The IRIS Toxicological Review of Perfluorobutanoic Acid and Related Compound Ammonium 14 Perfluorobutanoic Acid has been designated as Highly Influential Scientific Information (HISA)/Influential Scientific Information (ISI) and is classified as QA Category A. Category A 15 16 designations require reporting of all critical QA activities, including audits. IRIS assessments are 17 developed through a seven-step process. Documentation of this process is available on the IRIS 18 website: https://www.epa.gov/iris/basic-information-about-integrated-risk-information-19 system#process. 20 Specific management of quality assurance within the IRIS Program is documented in a 21 Programmatic Quality Assurance Project Plan (PQAPP). A PQAPP was developed using the EPA 22 Guidance for Quality Assurance Project Plans (OA/G-5), and the latest approved version is dated 23 March 2020. All IRIS assessments follow the IRIS PQAPP, and all assessment leads and team 24 members are required to receive QA training on the IRIS PQAPP. During assessment development, 25 additional QAPPs may be applied for quality assurance management. They include:

Title	Document Number	Date
Program Quality Assurance Project Plan (PQAPP) for the Integrated Risk Information System (IRIS) Program	L-CPAD-0030729-QP-1-4	April 2021
An Umbrella Quality Assurance Project Plan (QAPP) for Dosimetry and Mechanism-Based Models (PBPK)	L-CPAD-0032188-QP-1-2	December 2020
Quality Assurance Project Plan (QAPP) for Enhancements to Benchmark Dose Software (BMDS)	L-HEEAD-0032189-QP-1-2	September 2020
Umbrella Quality Assurance Project Plan for CPHEA PFAS Toxicity Assessments	L-CPAD-0031652-QP-1-3	October 2020

1

During assessment development, this project underwent two quality audits during

2 assessment development including:

Date	Type of audit	Major findings	Actions taken
August 2020	Technical System Audit	No findings	None
August 2019	Technical System Audit	No findings	None

3 During **Step 3** of the IRIS Process, the IRIS Toxicological Review was subjected to external

4 reviews by other federal agency partners including the Executive Offices of the White House.

5 Comments during these IRIS Process steps are available in the Docket [EPA-HQ-ORD-2020-0675]

6 on regulations.gov.

1 **REFERENCES**

2 3 4 5	Butenhoff, J: Bjork, J; Chang, S; Ehresman, D; Parker, G; Das, K, et al. (2012). Toxicological evaluation of ammonium perfluorobutyrate in rats: twenty-eight-day and ninety-day oral gavage studies. Reproductive Toxicology 33: 513-530. http://dx.doi.org/10.1016/j.reprotox.2011.08.004
6 7 8 9	<u>Chang, S; Das, K; Ehresman, D; Ellefson, M; Gorman, G; Hart, J, et al.</u> (2008). Comparative pharmacokinetics of perfluorobutyrate in rats, mice, monkeys, and humans and relevance to human exposure via drinking water. Toxicological Sciences 104: 40-53. <u>http://dx.doi.org/10.1093/toxsci/kfn057</u>
10 11	Crump, K. (1995). Calculation of benchmark doses from continuous data. Risk Analysis 15: 79-89. http://dx.doi.org/10.1111/j.1539-6924.1995.tb00095.x
12 13 14	Das, K; Grey, B; Zehr, R; Wood, C; Butenhoff, J; Chang, S, et al. (2008). Effects of perfluorobutyrate exposure during pregnancy in the mouse. Toxicological Sciences 105: 173-181. http://dx.doi.org/10.1093/toxsci/kfn099
15 16 17	Foreman, J; Chang, S; Ehresman, D; Butenhoff, J; Anderson, C; Palkar, P, et al. (2009). Differential hepatic effects of perfluorobutyrate mediated by mouse and human PPAR-alpha. Toxicological Sciences 110: 204-211. <u>http://dx.doi.org/10.1093/toxsci/kfp077</u>
18 19 20	Li, Y: Fletcher, T: Mucs, D: Scott, K: Lindh, C: Tallving, P, et al. (2018). Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occupational and Environmental Medicine 75: 46-51. <u>http://dx.doi.org/10.1136/oemed-2017-104651</u>
21 22 23	Russell, M; Himmelstein, M; Buck, R. (2015). Inhalation and oral toxicokinetics of 6:2 FTOH and its metabolites in mammals. Chemosphere 120: 328-335. http://dx.doi.org/10.1016/j.chemosphere.2014.07.092
24 25 26	U.S. EPA (U.S. Environmental Protection Agency). (2012). Benchmark dose technical guidance. (EPA/100/R-12/001). Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum. <u>https://www.epa.gov/risk/benchmark-dose-technical-guidance</u>
27 28 29	van Otterdijk, F. (2007). Repeated dose 90-day oral toxicity study with MTDID 8391 by daily gavage in the rat followed by a 3-week recovery period. (Study Number 06-398). Maplewood, MN: 3M.