€EPA

Toxicological Review of Hexavalent Chromium [Cr(VI)] Supplemental Information

[CASRN 18540-29-9]

February 2022

Integrated Risk Information System Center for Public Health and Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is a preliminary draft for review purposes only. This information is distributed solely for the purpose of predissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

CONTENTS

APPENDI	X A. SYSTEMATIC REVIEW PROTOCOL FOR HEXAVALENT CHROMIUM	A-1
APPENDI	X B. SUMMARY OF OTHER AGENCY CONCLUSIONS	B-1
APPENDI	X C. INFORMATION IN SUPPORT OF HAZARD IDENTIFICATION AND DOSE-RESPONS	
	ANALYSIS	C-6
C.1.	PHARMACOKINETICS	C-6
	C.1.1. Absorption	C-6
	C.1.2. Distribution	C-7
	C.1.3. Metabolism	C-15
	C.1.4. Excretion	C-18
	C.1.5. Physiologically Based Pharmacokinetic Models	C-20
	C.1.5.1. Application of pharmacokinetic models for dose-response assess	mentC-21
	C.1.5.2. PBPK model assumptions for the human	C-26
	C.1.5.3. PBPK model assumptions for the mouse	C-31
	C.1.5.4. PBPK model assumptions for the rat	C-35
	C.1.5.5. General PBPK model considerations	C-39
	C.1.6. Literature overview of studies identified as ADME	C-40
C.2.	SUPPORTING EVIDENCE FOR SPECIFIC HEALTH EFFECTS	C-53
	C.2.1. Respiratory Effects	C-53
	C.2.1.1. Mechanistic studies relevant to noncancer respiratory toxicity	C-53
	C.2.2. Gastrointestinal Effects	C-64
	C.2.2.1. Apical studies relevant to toxicity of the gastrointestinal tract	C-64
	C.2.2.2. Mechanistic studies relevant to toxicity of the gastrointestinal tra	ctC-66
	C.2.3. Hepatic Effects	C-70
	C.2.3.1. Mechanistic studies relevant to hepatic toxicity	C-70
	C.2.4. Hematological Effects	C-79
	C.2.4.1. Mechanistic studies relevant to hematological effects	C-79
	C.2.5. Immune Effects	C-82
	C.2.5.1. Immune toxicity evidence tables	C-82
	C.2.5.2. Mechanistic studies relevant to immunotoxicity	C-97
	C.2.6. Male Reproductive Effects	C-105

This document is a draft for review purposes only and does not constitute Agency policy.iiiDRAFT-DO NOT CITE OR QUOTE

		C.2.6.1. Mechanistic studies relevant to male reproductive toxicity	C-105
	C.2.7.	Female Reproductive Effects	C-110
		C.2.7.1. Mechanistic studies relevant to female reproductive toxicity	C-110
	C.2.8.	Developmental Effects	C-116
		C.2.8.1. Mechanistic studies relevant to developmental toxicity	C-116
C.3.	SUPPO	DRTING EVIDENCE FOR A CARCINOGENIC MODE OF ACTION	C-120
	C.3.1.	Meta-analysis of Cr(VI) and cancer of the GI tract	C-120
		C.3.1.1. Study Evaluation Criteria	C-122
		C.3.1.2. Evaluation of exposure to Cr(VI)	C-123
		C.3.1.3. Results	C-139
	C.3.2.	Mechanistic evidence organized by the ten key characteristics of carcinogens	C-147
		C.3.2.1. Electrophilicity and DNA reactivity (KC#1)	C-148
		C.3.2.2. Genotoxicity (KC#2)	C-158
		C.3.2.3. Alters DNA repair or causes genomic instability (KC#3)	C-213
		C.3.2.4. Induces epigenetic alterations (KC#4)	C-215
		C.3.2.5. Induces oxidative stress (KC#5)	C-221
		C.3.2.6. Induces chronic inflammation (KC#6)	C-236
		C.3.2.7. Immunosuppression (KC#7)	C-236
		C.3.2.8. Modulation of receptor-mediated effects (KC#8)	C-236
		C.3.2.9. Causes immortalization (KC#9)	C-236
		C.3.2.10. Alters cell proliferation, cell death, or nutrient supply (KC#10)	C-237
	C.3.3.	Gene expression studies relevant to GI cancer cell signaling pathways	C-241
		C.3.3.1. Cell signaling pathways	C-246
	C.3.4.	Toxicogenomic studies	C-253
		C.3.4.1. Prioritization of studies for consideration	C-254
		C.3.4.2. Analysis of data reported by Kopec et al. (2012b; 2012a)	C-257
		C.3.4.3. Partial study evaluations	C-269
		C.3.4.4. Toxicogenomic analyses	C-272
	C.3.5.	Susceptible populations	C-276
		C.3.5.1. Genetic polymorphisms	C-276
		C.3.5.2. Carriers of the cystic fibrosis mutant allele	C-282
C.4.	SUPPO	ORTING EVIDENCE FOR EXPOSURE TO THE GENERAL POPULATION	C-284
	C.4.1.	Drinking water data from the Third Unregulated Contaminant Monitoring Rule	C-284
	C.4.2.	Local data of air, soil, and dust Cr(VI) concentrations	C-286

APPENDI	X D. DOSE-RESPONSE MODELING	. D-1
D.1.	BENCHMARK DOSE MODELING SUMMARY FOR NONCANCER ENDPOINTS	. D-2
	D.1.1. Evaluation of Model Fit and Model Selection	. D-4
	D.1.1.1. Modeling issues related to diffuse epithelial hyperplasia in mice	. D-5
	D.1.1.2. Modeling issues related to chronic liver inflammation in female rats	. D-9
	D.1.1.3. Modeling issues related to liver fatty changes in female rats	D-11
	D.1.1.4. Modeling issues related to lower respiratory effects in male rats at 90 days	D-12
	D.1.2. Calculation of regional deposited dose ratios (RDDR)	D-16
D.2.	BENCHMARK DOSE MODELING SUMMARY FOR CANCER ENDPOINTS	D-20
	D.2.1. Evaluation of Model Fit and Model Selection	D-23
D.3.	ALTERNATIVE APPROACHES FOR CANCER AND NONCANCER DOSE-RESPONSE ASSESSMENT	D-24
	D.3.1. Noncancer oral dose-response applying default BW ^{3/4} scaling approaches	D-24
	D.3.2. Order of uncertainty factor applications	D-26
	D.3.3. Uncertainty assessment of low-dose extrapolation method for oral cancer dose-response	D-29
D.4.	EXCLUSION OF HUMAN STUDIES FOR EXPOSURE-RESPONSE	D-31
D.5.	INDIVIDUAL-LEVEL ANALYSIS OF NEOPLASTIC AND NON-NEOPLASTIC LESIONS IN MICE FROM NTP (2008)	D-36
D.6.	PROBABILITY DISTRIBUTIONS OF HUMAN EQUIVALENT DOSE FOR CANCER AND NONCANCER PODS DERIVED FROM TOXICOKINETIC MODELING	D-40
	D.6.1. Noncancer model outputs	D-40
	D.6.2. Cancer model outputs	D-49
APPENDI	X E. SAS Code for Life Table Analysis	E-1
APPENDI	X F. QUALITY ASSURANCE FOR THE IRIS TOXICOLOGICAL REVIEW OF HEXAVALENT CHROMIUM	F-1
APPENDI	X G. RESPONSE TO EXTERNAL COMMENTS	. G-1
G.1.	RESPONSE TO PUBLIC COMMENTS	. G-1
G.2.	RESPONSE TO EXTERNAL PEER REVIEW COMMENTS	. G-1
REFEREN	CES FOR APPENDICES	R-1

TABLES

Table B-1. Noncancer inhalation assessments by other national and international health	
agencies (in reverse chronological order)	B-1
Table B-2. Cancer inhalation assessments by other national and international health agencies (in reverse chronological order)	р 2
-	D-3
Table B-3. Oral assessments by other national and international health agencies (in reverse chronological order)	B-4
Table C-1. Concentrations of chromium in erythrocytes and plasma (µg Cr/g) following ingestion	
of sodium dichromate dihydrate in drinking water (male F334 rats)	C-10
Table C-2. Ratio of erythrocytes:plasma concentrations following ingestion of sodium	
dichromate dihydrate in drinking water (male F334 rats)	C-10
Table C-3. Concentrations of chromium in erythrocytes and plasma (µg Cr/g) following ingestion of sodium dichromate dihydrate in drinking water (female B6C3F1 mice)	C-11
Table C-4. Ratio of erythrocytes:plasma concentrations following ingestion of sodium	
dichromate dihydrate in drinking water (female B6C3F1 mice)	C-11
Table C-5. Chromium in tissues ($\mu g/g$ wet tissue or $\mu g/mL$ blood) of mice and rats after ingesting	
K_2 CrO ₇ in drinking water (8 mg Cr(VI)/kg-day) for 4 or 8 weeks	C-12
Table C-6. Summary of oral and inhalation data from O'Flaherty and Radike (1991)	
Table C-7. Summary of oral and inhalation control group data from O'Flaherty and Radike (1991)	
Table C-8. The pH of the mouse, rat, and human gastrointestinal tract	
Table C-9. Selected studies of Cr(VI) reduction capacities	
Table C-10. Uncertainties and potential impacts of alternative dose metrics for rodent-to-human	
extrapolation	C-23
Table C-11. Final human physiological parameters for dose-response modeling and rodent-to-	
human extrapolation	C-26
Table C-12. Normalized sensitivity coefficients of human gastric model parameters with respect	
to pyloric flux dose metric	C-28
Table C-13. Human equivalent dose (mg/kg-d) outputs of 20,000 Monte Carlo simulations of	
varying baseline pH populations using the BW ^{3/4} -adjusted Cr(VI) dose escaping	
stomach reduction	C-30
Table C-14. Final mouse PBPK parameters for dose-response modeling and rodent-to-human extrapolation	C 21
Table C-15. Normalized sensitivity coefficients of mouse gastric model parameters with respect	
to pyloric flux dose metric	C-33
Table C-16. Lifetime average daily internal doses for the mouse during the NTP (2008) 2-year	
bioassay of sodium dichromate dihydrate	C-34
Table C-17. Average daily internal doses for the female mouse (F0 dams) during the NTP (1997)	
bioassay	C-35
Table C-18. Final rat PBPK parameters for dose-response modeling and rodent-to-human	
extrapolation	C-35
Table C-19. Normalized sensitivity coefficients of rat gastric model parameters with respect to	
average daily dose escaping stomach reduction	C-37
Table C-20. Lifetime average daily internal doses for the rat during the NTP (2008) 2-year	-
bioassay of sodium dichromate dihydrate (pH = 4.38)	C-38
Table C-21. Lifetime average daily internal doses for the rat during the NTP (2007b) 90-day	
bioassay of sodium dichromate dihydrate (pH = 4.38)	C-38

Table C-22. Comparison of internal-dose points of departure based on external-dose BMD	
modeling and internal-dose BMD modeling	C-39
Table C-23. In vivo Cr(VI) pharmacokinetic studies	C-41
Table C-24. In vitro and ex vivo Cr(VI) studies primarily focused on pharmacokinetics in the GI	
tract and blood	C-46
Table C-25. In vitro studies primarily examining distribution and reduction mechanisms	C-47
Table C-26. Human biomonitoring and biomarker studies	
Table C-27. Gastric emptying rates for rats, mice, and humans expressed as half-emptying time	
$(T_{1/2})$ and transit time (KLSD). Vehicle indicated in parentheses if known	C-50
Table C-28. Time-weighted average daily doses in mice for the NTP (2008) 2-year bioassay of	
sodium dichromate dihydrate. Doses in mg/kg-d Cr(VI).	C-52
Table C-29. Time-weighted average daily doses in rats for the NTP (2008) 2-year bioassay of	
sodium dichromate dihydrate. Doses in mg/kg-d Cr(VI).	C-52
Table C-30. Time-weighted average daily doses in rats for the NTP (2008) 2-year bioassay of	
sodium dichromate dihydrate at different time periods. Doses in mg/kg-d	
Cr(VI)	C-53
Table C-31. Mechanistic studies prioritized for informing potential Cr(VI)-induced respiratory	
toxicity	C-55
Table C-32. Experimental animal studies providing apical evidence of toxic effects of ingested	
Cr(VI) in the GI tract	C-64
Table C-33. Supporting mechanistic studies prioritized for informing Cr(VI)-induced GI tract	
toxicity	C-67
Table C-34. Mechanistic studies prioritized for informing potential Cr(VI)-induced hepatic toxicity	C-70
Table C-35. Mechanistic studies prioritized for informing potential Cr(VI)-induced hematological	
effects	C-80
Table C-36. Data summary tables for immunological outcomes included in the immune effects	
animal evidence synthesis	C-82
Table C-37. Mechanistic studies prioritized for informing potential Cr(VI)-induced immune	
toxicity	C-98
Table C-38. Summary of cytokine levels measured following Cr(VI) exposure	C-103
Table C-39. Mechanistic studies prioritized for informing potential Cr(VI)-induced male	
reproductive toxicity	C-106
Table C-40. Mechanistic studies prioritized for informing potential Cr(VI)-induced female	
reproductive toxicity	C-111
Table C-41. Mechanistic studies prioritized for informing potential Cr(VI)-induced developmental	
toxicity	
Table C-42. PECO for screening occupational studies relevant to Cr(VI)	C-120
Table C-43. Occupational group-specific criteria for rating certainty of exposure to Cr(VI)	C-123
Table C-43. Occupational group-specific criteria for rating certainty of exposure to Cr(VI) Table C-44. Comparison of studies included in meta-analyses or that met PECO, with search	C-123
Table C-44. Comparison of studies included in meta-analyses or that met PECO, with search	
Table C-44. Comparison of studies included in meta-analyses or that met PECO, with search phase, study evaluation rating, and rationale for exclusion in EPA meta-analysis	C-129
Table C-44. Comparison of studies included in meta-analyses or that met PECO, with search phase, study evaluation rating, and rationale for exclusion in EPA meta-analysisTable C-45. Summary effect estimates from random effects meta-analysis, by cancer site and	C-129
 Table C-44. Comparison of studies included in meta-analyses or that met PECO, with search phase, study evaluation rating, and rationale for exclusion in EPA meta-analysis Table C-45. Summary effect estimates from random effects meta-analysis, by cancer site and occupational group, where there are four or more estimates included 	C-129 C-140
 Table C-44. Comparison of studies included in meta-analyses or that met PECO, with search phase, study evaluation rating, and rationale for exclusion in EPA meta-analysis Table C-45. Summary effect estimates from random effects meta-analysis, by cancer site and occupational group, where there are four or more estimates included Table C-46. Mechanistic studies informing the intracellular reduction of Cr(VI) and reactivity of 	C-129 C-140
 Table C-44. Comparison of studies included in meta-analyses or that met PECO, with search phase, study evaluation rating, and rationale for exclusion in EPA meta-analysis Table C-45. Summary effect estimates from random effects meta-analysis, by cancer site and occupational group, where there are four or more estimates included Table C-46. Mechanistic studies informing the intracellular reduction of Cr(VI) and reactivity of Cr species with DNA and proteins 	C-129 C-140 C-148

Table C-49. Supporting genotoxicity studies in humans and animals exposed to Cr(VI) via	
inhalation or intratracheal instillation	.C-185
Table C-50. Supporting genotoxicity studies in GI tract tissues and cells following Cr(VI) exposures	C-203
Table C-51. Supporting genotoxicity studies in animals exposed per os to Cr(VI)	
Table C-52. Genotoxicity studies in animals exposed to Cr(VI) via i.p. injection	
Table C-53. In vitro genotoxicity studies in human cells	
Table C-54. Mechanistic studies relevant to altered DNA repair or genomic instability induced by	.0-210
Cr(VI) exposure	C-212
Table C-55. Studies of epigenetic alterations in humans, experimental animals, and human cells	.0-215
in vitro exposed to Cr(VI)	C 21F
	.0-215
Table C-56. Evidence in human studies prioritized for informing potential Cr(VI)-induced	c 222
oxidative stress	
Table C-57. In vitro studies of Cr(VI)-induced oxidative stress	
Table C-58. Mechanistic studies informing Cr(VI)-induced cellular immortalization	.C-236
Table C-59. Mechanistic studies relevant to Cr(VI)-induced cell death, cell proliferation, and	
changes in cellular energetics	
Table C-60. Gene expression studies in humans exposed to Cr(VI)	.C-241
Table C-61. Genes corresponding to positive results of Cr(VI) assays performed in vivo (rats) or in	
vitro (human cells or TOX21 HTS assays). Direction of change: \uparrow (up-regulated	
or activated); $igsidesplus$ (down-regulated or inhibited); $ riangle$ (protein modification or	
change of localization).	.C-247
Table C-62. Summary of considered toxicogenomic studies for Cr(VI) overall confidence	
classification	.C-255
Table C-63. Evaluation of the DNA microarray experiments in Kopec et al. (2012b; 2012a) using	
criteria outlined by Bourdon-Lacombe et al. (2015)	.C-258
Table C-64. Evaluation of the information available with microarray data using MIAME sections	.C-260
Table C-65. Studies of genetic polymorphisms in humans occupationally exposed to Cr(VI)	.C-276
Table C-66. Statistical summary of UCMR3 chromium (VI) concentrations in large public water	
systems (PWS)	.C-284
Table C-67. Summary of UCMR3 chromium (VI) concentration data (in μ g/L) grouped by EPA	
region	.C-285
Table C-68. Summary of UCMR3 Cr(VI) data for 20 large public water systems with the highest mean concentrations	.C-285
Table C-69. Cr(VI) concentrations in ambient PM_{10} (ng/m ³) at monitoring sites in Midlothian,	. C-285
Texas containing three cement manufacturing facilities and a steel mill (ATSDR,	
	c 200
2016) Table C-70. Cr(VI) concentrations (ng/m ³) in air measured at monitoring sites in Portland Oregon	. C-280
	c 207
reporting elevated metals concentrations (Oregon DEQ, 2016b)	.C-287
Table C-71. Cr(VI) concentrations (mean \pm SD in ng/m ³) in ambient PM ₁₀ measured in urban and	o 007
suburban New Jersey (Huang et al., 2014)	.C-287
Table C-72. Cr(VI) Mean Concentration in Air Districts with Chromium Plating and Anodizing	
Facilities for the Year 2005. Data from the California Air Resources Board	.C-287
Table C-73. Estimated environmental concentrations of chromium in selected locations within	
the United States	.C-288
Table D-1. Noncancer endpoints selected for dose-response modeling for Cr(VI) (oral) from NTP	
(2008)	D-2

Table D-2. Non-cancer endpoints selected for dose-response modeling for Cr(VI) (oral) from NTP (2007b)	D-3
Table D-3. Noncancer endpoints selected for dose-response modeling for Cr(VI) (oral) from NTP (1997)	D-4
Table D-4. Noncancer endpoints selected for dose-response modeling for Cr(VI) (inhalation)	
Table D-5. BMD model results for diffuse epithelial hyperplasia in female mice from NTP (2008)	5 1
(no high doses omitted)	D-6
Table D-6. Modeling alternatives for diffuse epithelial hyperplasia in mice from NTP (2008)	
Table D-7. RfDs for modeling alternatives of diffuse epithelial hyperplasia in mice from NTP	00
(2008)	
Table D-8. BMD model results for chronic liver inflammation in female rats from NTP (2008)	D-9
Table D-9. RfDs for modeling alternatives of chronic liver inflammation in female rats from NTP	
(2008) D	
Table D-10. BMD model results for fatty change in liver of female rats from NTP (2008) D	
Table D-11. BMD results for histiocytosis in male rats at 90 days from Glaser et al. (1990) D)-12
Table D-12. BMD results for total protein in BALF in male rats at 90 days from Glaser et al.	
(1990) E	
Table D-13. BMD results for LDH in BALF in male rats at 90 days from Glaser et al. (1990) D	
Table D-14. BMD results for albumen in BALF male rats at 90 days from Glaser et al. (1990) D	D-14
Table D-15. Calculation of RDDR for Glaser et al. (1985) and Glaser et al. (1990) using default	
MMAD parameters	D-17
Table D-16. Human Equivalent Concentrations of Cr(VI) in the 90-day inhalation study in rats by	
	D-17
Table D-17. RDDR calculations under different human ages and physiological activity for	
	D-18
Table D-18. RDDR calculations under different human ages and physiological activity for	
systemic effects	
Table D-19. Data of neoplastic lesions in rats and mice (NTP, 2008))-21
Table D-20. NTP historical control data for animals fed the NTP-2000 diet, from studies of all	
routes and vehicles of administration (incidence, mean % \pm standard deviation	
%) ^a	D-22
Table D-21. Summary of derivation of points of departure following oral exposure for effects	
outside of the gastrointestinal tract (default approach)	J-24
Table D-22. Effects and corresponding derivation of candidate values from PODS applying BW [%]	
scaling	
Table D-23. Summary of derivation of points of departure following oral exposure E	
Table D-24. Effects and corresponding derivation of candidate values Image: Contract of the second sec	כ-27
Table D-25. Overview of studies excluded for exposure-response analysis of upper respiratory	
tract (nasal) effects in humans E	D-31
Table D-26. Overview of studies excluded for exposure-response analysis of lung cancer in	
humans based on screening studies for adequate exposure-response data ^a D	J-33
Table D-27. Overview of studies excluded for exposure-response analysis of lung cancer in	
humans based on screening the most recent analyses	
÷ ,	D-35
Table D-28. Overview of studies excluded for exposure-response analysis of lung cancer in	
Table D-28. Overview of studies excluded for exposure-response analysis of lung cancer in humans E	
Table D-28. Overview of studies excluded for exposure-response analysis of lung cancer in	D-35

Table D-30. Individual-level overview of neoplastic and non-neoplastic lesions in female mice	
from NTP (2008) D-3	37
Table D-31. Summary of neoplastic and non-neoplastic lesions in mice from NTP (2008) D-3	9

FIGURES

•	arison of mean tissue concentrations in mice (n = 3) following 182 days of ither Cr(VI) or Cr(III) oral exposure. Groups compared are the 516 mg/L SDD	
g	roup and the 2000 mg/L sodium picolinate group. These correspond to	
a	pproximately 10 mg/kg-d Cr(VI), and 30 mg/kg-d Cr(III) respectively (average	
	ver study period weeks 14–51). These are a subset of data from the NTP	
	tudies Collins et al. (2010). Data were collected after a 2-day wash-out period,	
	nd therefore concentrations are lower than what would have been measured	
	uring ongoing exposure	C-7
	of RBC:plasma concentration as a function of Cr(VI) drinking water	
	oncentration (1 ppm = 1 mg/L) for male F334 rats and female B6C3F1 mice	
	sing data from NTP (2008).	C-9
	concentration of total chromium in GI tract tissues of mice and rats following	
-	xposure to 180 mg/L Cr(VI) in drinking water for 90 days [approximately 31.9	
a	nd 20.5 mg/kg-d Cr(VI) for mice and rats, respectively]. Data from Kirman et al.	
(2	2012)	C-13
Figure C-4. Reduc	tion of Cr(VI) in samples of human gastric juice (fasted subjects) using data	
fr	rom Proctor et al. (2012). Lines indicate model results by Schlosser and Sasso	
(2	2014). (A) 2:1 dilution of stomach contents, multiple initial Cr(VI)	
C	oncentrations. (B) 10:1 dilution of stomach contents, initial Cr(VI)	
C	oncentration of approximately 0.1 mg/L	C-16
Figure C-5. Urinar	ry rates of excretion by human volunteers administered a glass of drinking	
W	vater containing 2.5–5.0 mg Cr(VI) at day 2. Data from Kerger et al. (1996)	C-19
Figure C-6. Urinar	ry excretion rate of a human volunteer ingesting a glass of Cr(VI) in drinking	
W	vater repeatedly throughout the day (0.8 mg Cr(VI) daily) for 17 days. Data	
	rom Paustenbach et al. (1996)	C-20
Figure C-7. Schem	natic of the gastric model and parameters for Cr(VI). Parameter values and	
u	nits defined in Tables C-11 (humans), C-13 (mice), and C-16 (rats).	2-25
	profiles of the average daily oral Cr(VI) dose (left) and gastric pH, reducing	
	apacity (/10), and gastric emptying rate KLSD (right) in the human. Exposure to	
	r(VI) was assumed to occur via six discrete drinking water events of varying	
	nagnitude, occurring daily. Gastric emptying was elevated for a period of 3	
	ours in the morning, beginning 1 hour prior to the first daily drinking event to	
	imulate a morning fasted status. Gastric volume was also reduced to the	
	asted-state value during this time (not shown). Gastric pH was spiked to a	
	alue of 4.9 (which decreased exponentially) near the three other large drinking	
	vater events (to simulate breakfast, lunch and dinner fed status). Elevation of	
	he reducing capacity (lasting 2 hours) also occurred at the time of the spikes in	
	H. For Monte Carlo simulations, a uniform distribution was applied to the	
ti	iming of the pH and reducing capacity spikes	C-27

Figure C-9. (a) Percent Cr(VI) escaping stomach reduction (and being emptied to the small	
intestine) as a function of oral Cr(VI) dose for different values of baseline fasted-	
state stomach pH (human). (b) Pyloric flux as a function of oral dose for the	
human. The pH spike was set to begin 10 minutes prior to Cr(VI) ingestion for	
the three meals in this example (for human equivalent dose calculations, this is	
a random variable)	C-29
Figure C-10. Monte Carlo analysis (20000 iterations) of the human equivalent dose at selected	
values of the internal dose. Model assumes 3 daily spikes in pH during the 3	
large ingestion events, and elevated gastric emptying/reduced gastric volume	
during early morning ingestion event. All simulations assume lognormal	
distributions for both the baseline and fasted parameters, with coefficient of	
variance (CV) of 10% for stomach volume, 12% for baseline pH, 50% for fed and	
fasted reduction capacities and 20% for stomach emptying. A uniform	
distribution was applied to the timing of each pH spike to allow for the oral dose	
to occur up to 30 minutes after the start of a large meal (pH spike), and up to 10	
minutes before. All other parameters held constant. (a) Human equivalent	
dose (HED) at pyloric flux 4 mg/L-d. (b) Human equivalent dose (HED) at pyloric	
flux 0.1 mg/L-d	C-29
Figure C-11. Distribution of the average daily oral Cr(VI) dose in the mouse. Exposure to Cr(VI)	
was assumed to occur ad libitum in drinking water according to observed	
circadian drinking water data (Yuan, 1993)	C-32
Figure C-12. (a) Percent Cr(VI) escaping stomach reduction (and being emptied to the small	
intestine) as a function of oral Cr(VI) dose for different values of baseline	
stomach pH (mouse); (b) pyloric flux for the mouse using standard assumption	
at PHS = 4.5.	C-34
Figure C-13. Ad libitum drinking water assumptions applying data from the rat (Spiteri, 1982)	C-36
Figure C-14. (a) Percent Cr(VI) escaping stomach reduction (and being emptied to the small	
intestine) as a function of oral Cr(VI) dose for different values of baseline	
stomach pH (rat); (b) dose escaping stomach reduction for the rat using	
standard assumption at PHS = 4.38.	C-37
Figure C-15. Forest plot displaying summary measures for esophageal cancer risk from studies	
reporting (a) odds ratios.	C-142
Figure C-16. Forest plot displaying summary measures for esophageal cancer risk from studies	
reporting standardized mortality or incidence ratios	C-1/13
Figure C-17. Forest plot displaying summary measures for stomach cancer risk from studies	.0-145
reporting odds ratios.	C 144
	.0-144
Figure C-18. Forest plot displaying summary measures for stomach cancer risk from studies	C 14F
reporting standardized mortality or incidence ratios	.0-145
Figure C-19. Forest plot displaying summary measures for colon cancer from studies reporting	o c
standardized mortality or incidence ratios	.C-146
Figure C-20. Forest plot displaying summary measures for rectal cancer risk from studies	
reporting standardized mortality or incidence ratios	
Figure C-21. Binary Cr(III)-DNA adduct.	.C-154
Figure C-22. Overview of selected studies evaluating mutagenic markers in the gastrointestinal	
tract following ad libitum drinking water exposure. Full circle of a pie chart	
represents 2 years. Bar chart represents the maximum dose range, or the dose	
where an effect is first observed (whichever is lower). Full or empty circles	
represent sample size per group (darkened if an effect was observed)	C-200

Figure C-23. Overview of the NTP (2007b) genetic toxicology (ad libitum drinking water	
exposure). Full circle of a pie chart represents 2 years. Bar chart represents the	
maximum dose range, or the dose where an effect is first observed (whichever	
is lower). Full or empty circles represent sample size per group (darkened or	
shaded if an effect was observed)	.C-201
Figure C-24. Overview of selected studies evaluating mutagenic markers (but finding no effect)	
following ad libitum drinking water exposure (left) and oral gavage (right). Full	
circle of a pie chart represents 2 years. Bar chart represents the maximum dose	
range. Empty circles represent sample size per group	.C-202
Figure C-25. Overview of the Thompson et al. (2015a) study evaluating mutagenic markers (but	
finding no effect) following <i>ad libitum</i> drinking water exposure. Full circle of a	
pie chart represents 2 years. Bar chart represents the maximum dose range.	
Empty circles represent sample size per group	.C-202
Figure C-26. KEGG pathways of gene expression changes in rats exposed to Cr(VI) via ingestion.	
Red = activated or increased expression; turquoise = inactivated or decreased	
expression; green = no data or no change detected	.C-243
Figure C-27. KEGG pathways of gene expression changes in human cells exposed to Cr(VI) in	
vitro. Red = activated or increased expression; turquoise = inactivated or	
decreased expression; violet = discordant results from different studies;	
yellow = proteins that were modified or have changed localization; green = no	
data or no change detected	.C-244
Figure C-28. KEGG pathways of gene expression changes in cells exposed to Cr(VI) reported by	-
ToxCast/Tox21 HTS assays. Red = activated or increased expression;	
turquoise = inactivated or decreased expression; green = no data or no change	
detected	.C-245
Figure C-29. Design of microarray experiments conducted by Kopec et al. (2012b; 2012a)	.C-258
Figure C-30. Signal intensities box-plots for 8-day exposure mouse data (duodenum, top dose	
excluded). Due to the limitation in number of boxplots, this image does not	
include 520 mg/L SDD (180 mg/L Cr(VI)) exposure and control group. Note: 1	
mg/L SDD = 0.349 mg/L Cr(VI).	.C-261
Figure C-31. Signal intensities box-plots for 8-day exposure mouse data (duodenum, top 4 dose	
groups). The image includes top 4 exposure groups and corresponding controls.	
Note: 1 mg/L SDD = 0.349 mg/L Cr(VI).	.C-262
Figure C-32. Signal intensities box-plots for 90-day exposure mouse data (duodenum). The	
image includes all exposure groups and corresponding controls except for 4	
mg/L SDD exposed and control groups. Note: 1 mg/L SDD = 0.349 mg/L Cr(VI)	.C-263
Figure C-33. Principal component analysis of 8-day exposure data for mice and duodenal tissues.	
Exposure levels (mg/kg-day Cr(VI)) are color-coded.	.C-264
Figure C-34. Principal component analysis of 90-day exposure data for mice and duodenal	
tissues. Exposure levels (mg/kg-day Cr(VI)) are color-coded.	C-265
Figure C-35. Hierarchical clustering of microarrays from duodenum, jejunum and palate tissues	.0 205
from mice exposed to SDD for 7 days and 90 days. This visualization cannot	
provide adequate resolution and serves only for illustrative purposes. Text color	
coding: Green-exposed, gray-controls. Colored squares: red-duodenum, beige-	
jejunum, blue-palate; yellow-8 day, violet-91 days. Expression color coding:	
blue-low, red-high	C-267

Figure D-1. Alternative process for calculating the human equivalent dose for Cr(VI).	
Uncertainty factors UFL and UFA are applied to the internal rodent dose prior to	
animal-to-human extrapolation.	D-26
Figure D-2. Dose-response data for tumors and diffuse epithelial hyperplasia of the mouse small	
intestine (SI), and tumors of the rat oral cavity	D-29
Figure D-3. Model outputs and distribution for Rat (M) liver ALT (3 months) (NTP, 2008)	D-40
Figure D-4. Model outputs and distribution for Rat (F) liver ALT (90 days) (NTP, 2007b)	D-41
Figure D-5. Model outputs and distribution for Rat (M) liver ALT (90 days) (NTP, 2007b)	D-42
Figure D-6. Model outputs and distribution for Mouse (M) hyperplasia (NTP, 2008)	D-43
Figure D-7. Model outputs and distribution for Rat (M) liver ALT (12 months) (NTP, 2008)	D-44
Figure D-8. Model outputs and distribution for Mouse (F) hyperplasia (NTP, 2008)	D-45
Figure D-9. Model outputs and distribution for Mouse (F) liver chronic inflammation (2 years)	
(NTP, 2008)	D-46
Figure D-10. Model outputs and distribution for Rat (F) liver chronic inflammation (2 years) (NTP,	
2008)	D-47
Figure D-11. Model outputs and distribution for Mouse (F) Decreased F1 postnatal growth (NTP,	
1997)	D-48
Figure D-12. Model outputs and distribution for Adenomas or Carcinomas in the female mouse	
small intestine (NTP, 2008).	D-49
Figure D-13. Model outputs and distribution for Adenomas or Carcinomas in the male mouse	
small intestine (NTP, 2008).	D-50

ABBREVIATIONS

ADAF	age dependent adjustment factors
ADAF	age-dependent adjustment factors
ADME	absorption, distribution, metabolism, and excretion
AIC	Akaike's information criterion
ALT	alanine aminotransferase
ALP	alkaline phosphatase
Asc	ascorbate
AST ATSDR	aspartate aminotransferase
AISDK	Agency for Toxic Substances and Disease Registry
BAL	
BALF	bronchoalveolar lavage bronchoalveolar lavage fluid
BMD	benchmark dose
BMDL	benchmark dose lower confidence limit
BMDL	Benchmark Dose Software
BMD3 BMI	body mass index
BMR	benchmark response
BMDC	bone marrow-derived stem cell
BWDC	body weight
CA	chromosomal aberration
CASRN	Chemical Abstracts Service Registry
CASINI	Number
СНО	Chinese hamster ovary (cell line cells)
CPHEA	Center for Public Health and
GIIILII	Environmental Assessment
CL	confidence limit
CNS	central nervous system
Cr(III)	trivalent chromium
Cr(IV)	tetravalent chromium
Cr(V)	pentavalent chromium
Cr(VI)	hexavalent chromium
DAF	dosimetric adjustment factor
DLCO	diffusing capacity of carbon monoxide
DNA	deoxyribonucleic acid
ELF	epithelial lining fluid
EPA	Environmental Protection Agency
ER	extra risk
FDA	Food and Drug Administration
FEV1.0	forced expiratory volume of 1 second
FVC	forced vital capacity
GD	gestation day
GGT	γ-glutamyl transferase
GI	gastrointestinal
GLP	good laboratory practices
GSD	geometric standard deviation
GSH	glutathione
GST	glutathione-S-transferase
Hb	hemoglobin
HEC	human equivalent concentration
HED	human equivalent dose

HERO	Health and Environmental Research Online
i.p.	intraperitoneal
i.v.	intravenous
IRIS	Integrated Risk Information System
LC ₅₀	median lethal concentration
LD50	median lethal dose
LDH	lactate dehydrogenase
LOAEL	lowest-observed-adverse-effect level
MCH	mean cell hemoglobin
MCHC	mean cell hemoglobin concentration
MCV	mean cell (corpuscular) volume
MEF	maximal expiratory flow
MMAD	mas median aerodynamic diameter
MN	micronuclei
MOA	mode of action
MTD	maximum tolerated dose
CPHEA	Center for Public Health and
GFIILA	Environmental Assessment NCI
	National Cancer Institute
NOAEL	no-observed-adverse-effect level
NOALL	no-observeu-auverse-enect lever
NTP	National Toxicology Program
NZW	New Zealand White (rabbit breed)
ORD	Office of Research and Development
OSHA	Occupational Safety and Health
001111	Administration
РВРК	physiologically based pharmacokinetic
PDC	potassium dichromate
PND	postnatal day
POD	point of departure
POD _[ADJ]	duration-adjusted POD
POD[hed]	human equivalent dose POD
POD[HEC]	human equivalent concentration POD
I OD [IIEC]	
RBC	red blood cell, also known as
ILD G	erythrocyte
RD	relative deviation
RfC	inhalation reference concentration
RfD	oral reference dose
RDDR	regional deposited dose ratio
RNA	ribonucleic acid
SCE	sister chromatid exchange
SD	standard deviation
SDH	sorbitol dehydrogenase
SE	standard error
SSD	sodium dichromate dihydrate
PK	pharmacokinetics
1 17	pha macokinetics

This document is a draft for review purposes only and does not constitute Agency policy.

TSCATS	Toxic Substances Control Ace Test
	Submissions
TWA	time-weighted average
UF	uncertainty factor
UFA	animal-to-human uncertainty factor
UFh	human variation uncertainty factor
$\rm UF_L$	LOAEL-to-NOAEL uncertainty factor
UFs	subchronic-to-chronic uncertainty
	factor
UFd	database deficiencies uncertainty factor

UF_D database deficien WOS Web of Science

APPENDIX A. SYSTEMATIC REVIEW PROTOCOL FOR HEXAVALENT CHROMIUM

- 1 The systematic review protocol for the IRIS Toxicological Assessment of Hexavalent
- 2 Chromium, developed in 2019, can be found on the IRIS website at the below link. The protocol is
- 3 being updated to reflect the current draft and future updates to the literature search and will be
- 4 replaced with a newer version when it is complete.
- 5 <u>https://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=343950</u>

APPENDIX B. SUMMARY OF OTHER AGENCY CONCLUSIONS

Table B-1. Noncancer inhalation assessments by other national andinternational health agencies (in reverse chronological order)

Reference	Value (µg/m³)	Time adjustment	Chemical note	Endpoints/basis
Texas Commission on Environmental Quality (TCEQ)	0.0043	Lifetime/chronic	Particulate compounds	Excess lung cancer mortality risk of 1×10^{-5} , using risk value derived from <u>Gibb et al.</u> (2000b) and <u>Crump et al. (2003)</u> .
(<u>2014</u>)	0.066	Lifetime/chronic	Particulate compounds	Respiratory effect (increased relative lung weight after 90 days of exposure) in rats (<u>Glaser et al., 1985</u>).
	0.39	Acute	Particulate compounds	Respiratory effect (increased relative lung weight after 30 days of exposure) in rats (<u>Glaser et al., 1990</u>).
International Programme on	0.03	Lifetime/chronic	Cr(VI) salts	Respiratory effects in rats (<u>Glaser et al.,</u> <u>1990</u>).
Chemical Safety (IPCS) (<u>2013</u>)	0.005	Lifetime/chronic	Chromium trioxide, chromic acid	Upper respiratory effects in humans (<u>Lindberg and Hedenstierna, 1983</u>).
National Institute for Occupational Safety and Health (NIOSH) (<u>2013</u>)	or Occupational afety and Health		All Cr(VI) compounds	Lung cancer and nonmalignant respiratory effects. Based on analysis of Baltimore cohort data by <u>Park et al. (2004)</u> .
Agency for Toxic Substances and Disease Registry (ATSDR) (<u>2012</u>)	0.005	Chronic	Dissolved aerosols and mists	Upper respiratory effects (nasal irritation/ulceration, mucosal atrophy, and decreases in spirometric parameters), based on <u>Lindberg and Hedenstierna (1983)</u> .
	N/A	Chronic	Particulates	Insufficient data
	0.005	Intermediate	Dissolved aerosols and mists	Upper respiratory effects (nasal irritation/ulceration, mucosal atrophy, and decreases in spirometric parameters), based on <u>Lindberg and Hedenstierna (1983)</u> .
	0.3	Intermediate	Particulates	Respiratory tract (lung) and other effects. Based on quantitative analysis of rat studies (Glaser et al. (<u>1990</u> ; <u>1985</u>)) performed by <u>Malsch et al. (1994)</u> .

Reference			Chemical note	Endpoints/basis
California EPA (<u>2008</u>)	0.2	Chronic	Soluble compounds	Respiratory effect (bronchoalveolar hyperplasia) in rats (<u>Glaser et al., 1990</u>).
	0.002	Chronic	Chromic trioxide (as chromic acid mist)	Respiratory effects in humans (<u>Lindberg and</u> <u>Hedenstierna, 1983</u>).
Occupational Safety and Health Administration (OSHA) (<u>2006b</u>)	Health inistration		All Cr(VI) compounds	Lung cancer and nasal tissue damage. Based on quantitative analysis of Baltimore cohort data by Gibb et al. (2000a, b) and Luippold et al. (2003).
Dutch National Institute for Public Health and the Environment (RIVM) (<u>2001</u>)	0.0025	Chronic	Inhalable dust	Excess lifetime lung cancer risk of 1 × 10 ⁻⁴ , based on analysis of human occupational studies by the 1987 and 1994 World Health Organization air quality guidelines. ^b
<u>U.S. EPA IRIS (1998)</u>	0.008	Lifetime/chronic	Chromic acid mists/dissolved chromium aerosols	Effects in the nasal cavity. Based on Lindberg and Hedenstierna (1983).
	0.1	Lifetime/chronic	Cr(VI) particulates	Respiratory effects. Based on quantitative analysis of rat studies (<u>Glaser et al., 1990</u> ; <u>Glaser et al., 1985</u>) performed by <u>Malsch et</u> <u>al. (1994)</u> .

N/A = not applicable; TWA = time-weighted average.

^aSelected values from states known by U.S. EPA to have derived independent values; most states typically adopt values from U.S. EPA.

^bRisk value rationale and studies unchanged in <u>WHO (2000)</u>.

1 2 3

This document is a draft for review purposes only and does not constitute Agency policy.B-2DRAFT—DO NOT CITE OR QUOTE

Table B-2. Cancer inhalation assessments by other national and international health agencies (in reverse chronological order)

Reference	Risk factor (µg/m³)⁻¹	Rationale
Texas Commission on Environmental Quality (TCEQ) (<u>2014</u>)	Unit risk factor: 2.28 × 10 ⁻³ (particulate compounds)	Linearly extrapolated lung cancer risk based on a weighted average of <u>Gibb et al. (2000b)</u> and <u>Crump</u> <u>et al. (2003)</u> (human occupational cohorts).
International Programme on Chemical Safety (IPCS) (<u>2013</u>)	Occupational exposure risk: 6 × 10 ⁻³	Linearly extrapolated lung cancer risk based on <u>Gibb et al. (2000b)</u> .
	Environmental exposure risk: 4×10^{-2}	
International Agency for Research on Cancer (IARC) (<u>2012</u>).	Carcinogenic to humans (Group 1) ^b	Lung cancer, based on multiple evidence streams. Positive associations between Cr(VI) exposure and cancer of the nose and nasal sinuses in humans also cited.
National Toxicology Program (NTP) (<u>2011</u>)	Known to be human carcinogen ^b	Cancers of the lung and sinonasal cavity, based on studies in humans.
World Health Organization (<u>2000</u>)	4 × 10 ⁻²	Linearly extrapolated lung cancer risk based on multiple human occupational studies.
U.S. EPA IRIS (<u>1998</u>)	Inhalation unit risk: 1.2×10^{-2}	Linearly extrapolated lung cancer risk based on Mancuso (<u>1997</u> , <u>1975</u>) (human occupational cohort).
California Department of Health Services (CDHS) (<u>1985</u>)	Inhalation potency: 0.15 ^c	Linearly extrapolated lung cancer risk based on Mancuso (1975).

^aSelected values from states known by U.S. EPA to have derived independent values; most states typically adopt values from U.S. EPA.

^bAgency does not derive a quantitative risk factor.

^cAs part of an updated evaluation of the science for the public health goal (PHG), California EPA (<u>2011</u>) calculated a slope of 0.16 (μ g/m³)⁻¹ (with a 95% upper confidence of 0.35) using <u>Gibb et al. (2000b</u>), and a lower bound slope of 0.01 (μ g/m³)⁻¹ using <u>Luippold et al. (2003)</u>.

2

3 4

5

6

Table B-3. Oral assessments by other national and international health
agencies (in reverse chronological order)

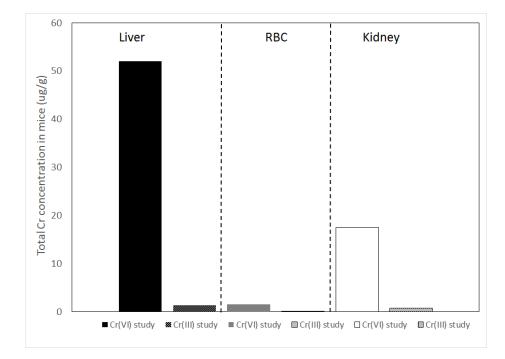
Reference	Risk value or limit	Rationale ^b		
Health Canada (<u>2016</u>)	Maximum acceptable concentration: 50 μg/L	Cancer precursor, mouse small intestine hyperplasia		
Texas Commission on Environmental Quality (TCEQ) (<u>2016</u>)	RfD: 3.1 × 10 ⁻³ mg/kg-day	Cancer precursor, mouse small intestine hyperplasia		
International Programme on Chemical Safety (IPCS) (<u>2013</u>)	Tolerable daily intake: 9 × 10 ⁻⁴ mg/kg-day	Mouse small intestine noncancer effects		
Agency for Toxic Substances and Disease Registry	Chronic MRL: 9 × 10 ⁻⁴ mg/kg-day	Mouse small intestine noncancer effects		
(ATSDR) (<u>2012</u>)	Intermediate MRL: 5 × 10 ⁻³ mg/kg-day	Hematological effects (rat data at 22 days)		
<u>California EPA (2011)</u>	Cancer PHG: 0.02 μg/L	1 × 10 ⁻⁶ cancer risk using OSF of 0.5 (mg/kg-day) ⁻¹ (mouse small intestine tumors)		
	Noncancer PHG: 2 µg/L	Liver noncancer effects (rats)		
California Department of Public Health (<u>2014</u> ; <u>2013</u>)	Proposed MCL: 10 μg/L Note: invalidated [see California State Water Board (<u>2017</u>) fact sheet]	Cancer risk [see California EPA (<u>2011</u>)]		
New Jersey DEP (2009)	Soil remediation criterion: 1 ppm soil concentration	1 × 10 ⁻⁶ cancer risk using OSF of 0.5 (mg/kg-day) ⁻¹ (mouse small intestine tumors)		
U.S. EPA/OPP (<u>2008a</u> , <u>b</u>)	OSF: 0.791 (mg/kg-day) ⁻¹	Upper-bound cancer risk estimate (mouse small intestine tumors; mutagenic MOA determined)		
Assessments based on scient	ce or rules published prior to 2008 National	Toxicology Program study		
U.S. Food and Drug Administration (<u>2013</u>)	Allowable level in bottled water: 0.1 mg/L (or 100 μg/L) total chromium	Not specified		
U.S. Environmental Protection Agency [Federal Register (<u>2010</u>)]	MCL: 100 μg/L (total chromium)	Allergic dermatitis ^c		
World Health Organization (2003)	50 μg/L	Provisional value (nonspecific)		
Dutch National Institute for Public Health and the Environment (RIVM) (<u>2001</u>)	5 × 10⁻³ mg/kg-day	Provisional noncancer effects, based on no-effect level [rats; <u>MacKenzie et</u> <u>al. (1958)</u>]		

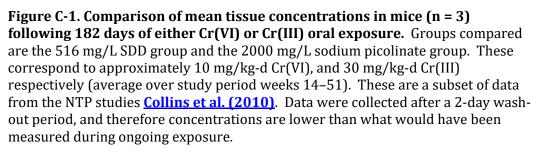
This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference	Risk value or limit	Rationale ^b		
<u>U.S. EPA/IRIS (1998)</u>	0, 8 - 1	No effect level for noncancer effects [rats; (<u>MacKenzie et al., 1958</u>)]		

MCL = maximum contaminant level; MRL = minimal risk level; OSF = oral slope factor; PHG = public health goal. ^aSelected values from states known by U.S. EPA to have derived independent values; most states typically adopt values from U.S. EPA (based on un-speciated total chromium).

^bAll values based on mouse data from <u>NTP (2008)</u>, unless otherwise noted.


^cBased on rule promulgated in 1991 (National Primary and Secondary Drinking Water Regulations, 56 FR 3526, 1-30-91 and 54 FR 22062, 5-22-89).


APPENDIX C. INFORMATION IN SUPPORT OF HAZARD IDENTIFICATION AND DOSE-RESPONSE ANALYSIS

C.1. PHARMACOKINETICS

C.1.1. Absorption

1 Water soluble Cr(VI) compounds are rapidly absorbed into cells and tissues in the body via 2 phosphate and sulfate anion transport due to the structural similarity of the tetrahedral 3 configuration of the chromate ($Cr_2O_4^{2-}$) or dichromate ($Cr_2O_7^{2-}$) anion to that of phosphate (HPO₄²⁻) 4 and sulfate $(SO_{4^{2}})$ anions, while Cr(III) compounds are absorbed slowly by passive diffusion. In the 5 gastrointestinal (GI) tract following oral ingestion, systemic uptake of Cr(VI) competes with the 6 rapid extracellular reduction to Cr(III) by gastric juices (Proctor et al., 2012; De Flora et al., 1997). 7 Studies listed in Section C.1.6 that administered Cr(VI) and Cr(III) to different treatment groups 8 have observed higher urinary, blood, and tissue chromium in the groups exposed to Cr(VI). This 9 was also observed by separate NTP bioassays of Cr(VI) and Cr(III), which found that the body 10 burdens of rats and mice exposed to Cr(VI) in drinking water were significantly higher than those 11 exposed to comparable levels of Cr(III) in feed (Collins et al., 2010). Figure C-1 illustrates the 12 difference in chromium concentrations of selected systemic tissues between the Cr(VI) and Cr(III) 13 studies. Despite the estimated daily dose of Cr(III) being threefold higher than that of Cr(VI), 14 chromium tissue concentrations were over tenfold higher for the Cr(VI) group. Because Cr(VI) is 15 more readily absorbed into the GI tract than Cr(III), this is also evidence that systemic absorption of 16 Cr(VI) can occur in rodents following chronic oral exposure, despite reduction of Cr(VI) to Cr(III) by 17 gastric juice (<u>Collins et al., 2010</u>).

1 While fewer Cr(VI) pharmacokinetic studies are available for the inhalation route than for

- 2 the oral route (see Section C.1.6), there is evidence that inhaled Cr(VI) is absorbed systemically.
- 3 The study in rats by <u>Cohen et al. (1997)</u> of inhaled soluble (potassium chromate) and insoluble
- 4 (barium chromate) Cr(VI) observed absorption of both forms of Cr(VI). Elevated chromium in this
- 5 study was observed in lung components and systemic tissues (kidney, liver, spleen), with higher
- 6 levels in groups exposed to the soluble form of Cr(VI). Occupational studies in humans who may
- 7 have been exposed primarily via inhalation have measured elevated chromium in multiple
- 8 biomarkers such as red blood cells and urine (Section C.1.6). <u>O'Flaherty and Radike (1991)</u>
- 9 exposed rats to Cr(VI) or Cr(III) at concentrations of 200 μ g/m³ via aerosol inhalation (6
- 10 hours/day) and detected elevated chromium in all measured tissues and excreta relative to
- 11 controls (Table C-6).

C.1.2. Distribution

- 12 Upon systemic absorption, Cr(VI) circulates in plasma, where it is absorbed into red blood
- 13 cells (RBCs), white blood cells, and other systemic tissues. Both the uptake and reduction of Cr(VI)
- 14 by RBCs has been estimated to be rapid (<u>Devoy et al., 2016</u>). Uptake to RBCs is facilitated by

1 nonspecific anion transport channels, including the band-3 anion exchanger protein, an anion

2 carrier system of the red blood cell membrane (Buttner et al., 1988; Ottenwaelder et al., 1988;

3 Ottenwälder et al., 1987; Buttner and Beyersmann, 1985). In humans, genetic polymorphisms in

4 the band-3 protein have been shown to be associated with increased accumulation of Cr(VI) in red

5 blood cells (Ou et al., 2008).

6 Because irreversible binding to hemoglobin occurs, and Cr(III) exhibits a lower rate of

7 transport through cellular membranes than Cr(VI), Cr(III) remains trapped in RBCs over the

8 remaining life of the cells. Supporting evidence is provided by the studies presented in Section

9 C.1.6. This property has been exploited for diagnostic purposes in that hexavalent radiolabeled

10 chromium-51 has been used to label and determine the survival time of RBCs in humans (Gray and

11 Sterling, 1950). Measured in vivo chromium concentration in plasma has been observed to rapidly

12 decrease to background levels after exposure to Cr(VI) has ceased, while in vivo chromium

13 concentration in RBCs decreases more gradually (as chromium-containing RBCs are replaced over

14 time).

15 Because chromium in the system varies with uptake of Cr(III) [both from diet and from

16 Cr(VI) reduction in the lumen], chromium concentration in RBCs may be normalized by

17 concentration in plasma to evaluate systemic distribution. While it is noted in <u>Kirman et al. (2012)</u>

18 that the RBC:plasma ratios are generally equal to or less than 1 for low concentrations (and exceed

19 1 at 60–180 mg/L), evaluating the data for ratios greater than 1 to assess absorption and

20 distribution may not be informative. For example, the RBC:plasma ratios are greater than 1 for

21 some of the control groups for rats and mice analyzed in the NTP (2008) Cr(VI) study (Tables C-2

22 and C-4). Instead, comparisons against control or Cr(III)-exposed groups are more appropriate.

23 Despite the complications from the 48-hour washout period,¹ a comparison of the NTP (2008)

24 RBC:plasma ratio data for dosed animals against control groups, as well as comparison with groups

25 from the <u>NTP (2007b)</u> Cr(III) study, can indicate systemic uptake of Cr(VI). A similar analysis using

26 concentration data for plasma and RBCs in the <u>Kirman et al. (2012)</u> study could not be performed

27 because concentrations are below the method detection limits for the control groups and low

28 concentration groups. For that dataset, RBC:plasma ratios are not informative until Cr(VI) drinking

29 water concentrations $\geq 20 \text{ mg/L}$ in both species, and they cannot be compared to controls.

30 The RBC:plasma ratio analysis of <u>NTP (2008)</u> data are provided in Figure C-2 and Tables C-1

31 through C-4. Analysis of the <u>NTP (2007b)</u> Cr(III) data are not presented, but those data indicate

32 RBC:plasma ratios <1 for all Cr(III) dietary exposure groups, with no dose-dependent increase. For

33 rats exposed to Cr(VI) in drinking water, the RBC:plasma ratio increases by approximately 90–

34 225% above controls at 20 mg/L Cr(VI) drinking water concentration. For mice, the ratio increases

35 by approximately 40–100% above controls at 20 mg/L Cr(VI). Because this increase in relative

¹After two days without Cr(VI) exposure, chromium concentration in the plasma will decrease more rapidly than concentration in RBCs. At the same time, chromium will also enter plasma from the tissues, which may counteract some of the washout.

- 1 RBC concentration was not observed in rodents exposed to Cr(III), it is likely that Cr(VI)
- 2 concentrations at or above 20 mg/L Cr(VI) in drinking water (equivalent to approximately² 0.88
- 3 mg/kg-d in rats and 1.5 mg/kg-d in mice) result in systemic Cr(VI) absorption beyond the liver
- 4 (where extensive reduction is expected to occur during the first-pass effect). More extensive
- 5 systemic distribution likely occurs as dose increases, as more Cr(VI) may escape reduction in the
- 6 stomach, small intestine, and liver.

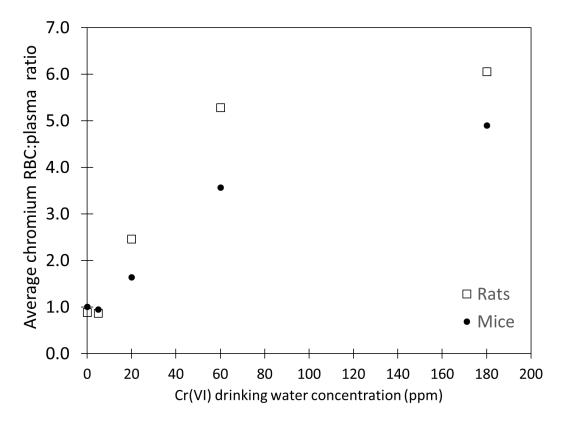


Figure C-2. Ratio of RBC:plasma concentration as a function of Cr(VI) drinking water concentration (1 ppm = 1 mg/L) for male F334 rats and female B6C3F1 mice using data from <u>NTP (2008)</u>.

²These are time-weighted average daily doses estimated from <u>NTP (2008)</u> drinking water consumption data during the first 53 weeks of exposure.

Cr(VI) concentrations:		0 mg/L	5 mg/L	20 mg/L	60 mg/L	180 mg/L
Erythrocytes	Day	μg Cr/g				
	6	0.044	0.051	0.126	0.252	0.391
	13	0.051	0.036	0.203	0.504	0.899
	182	0.05	0.054	0.208	0.591	0.997
	371	0.055	0.064	0.16	0.526	0.693
Plasma	Day	μg Cr/g				
	6	0.052	0.068	0.079	0.087	0.109
	13	0.054	0.048	0.079	0.103	0.146
	182	0.063	0.064	0.081	0.099	0.146
	371	0.054	0.062	0.071	0.11	0.146

Table C-1. Concentrations of chromium in erythrocytes and plasma (µg Cr/g) following ingestion of sodium dichromate dihydrate in drinking water (male F334 rats)

Data from <u>NTP (2008)</u>. Time-weighted average daily doses for each exposure group are not listed, since they vary with time over the lifespan of the rodent (and will be different at days 6, 13, 182, and 371).

Table C-2. Ratio of erythrocytes:plasma concentrations following ingestion of sodium dichromate dihydrate in drinking water (male F334 rats)

Cr(VI):	0 mg/L	5 mg/L		20 mg/L		60 mg/L		180 mg/L	
Day	Ratio	Ratio	%↑↓	Ratio	%↑↓	Ratio	%↑↓	Ratio	%↑↓
6	0.846	0.750	-11.4	1.59	88.5	2.90	242	3.59	324
13	0.944	0.750	-20.6	2.57	172	4.89	418	6.16	552
182	0.794	0.844	6.31	2.57	224	5.97	652	6.83	760
371	1.02	1.03	1.35	2.25	121	4.78	369	4.75	366
TWA:	0.888	0.867	-2.36	2.46	177	5.29	495	6.06	582

TWA = time-weighted average values

For the chromium picolinate studies (<u>NTP, 2007b</u>), the RBC/plasma ratio did not increase as a function of dose for rats (data not shown).

Cr(VI) concentrations:		0 mg/L	5 mg/L	20 mg/L	60 mg/L	180 mg/L
Erythrocytes	Day	μg Cr/g				
	6	0.04	0.056	0.108	0.26	0.374
	13	0.043	0.042	0.341	0.747	1.19
	182	0.058	0.079	0.194	0.719	1.561
	371	0.036	0.042	0.094	0.34	0.795
Plasma	Day	μg Cr/g				
	6	0.064	0.075	0.111	0.15	0.213
	13	0.034	0.038	0.133	0.204	0.311
	182	0.051	0.07	0.116	0.167	0.253
	371	0.065	0.086	0.118	0.15	0.209

Table C-3. Concentrations of chromium in erythrocytes and plasma (μ g Cr/g) following ingestion of sodium dichromate dihydrate in drinking water (female B6C3F1 mice)

Data from <u>NTP (2008)</u>. Time-weighted average daily doses for each exposure group are not listed, since they vary with time over the lifespan of the rodent (and will be different at days 6, 13, 182, and 371).

Table C-4. Ratio of erythrocytes:plasma concentrations following ingestion of sodium dichromate dihydrate in drinking water (female B6C3F1 mice)

Cr(VI):	0 mg/L	5 m	ng/L	20 mg/L		60 mg/L		180 mg/L	
Day	Ratio	Ratio	%↑↓	Ratio	%↑↓	Ratio	%↑↓	Ratio	%↑↓
6	0.625	0.747	19.5	0.973	55.7	1.73	177	1.76	181
13	1.26	1.11	-12.6	2.56	103	3.66	190	3.83	203
182	1.14	1.13	-0.764	1.67	47.1	4.31	279	6.17	443
371	0.554	0.488	-11.8	0.797	43.8	2.27	309	3.80	587
TWA:	1.01	0.950	-5.53	1.64	63.3	3.57	255	4.90	387

TWA = time-weighted average values

1

For the chromium picolinate studies (<u>NTP, 2007b</u>), the RBC/plasma ratio did not increase as a function of dose for mice (data not shown).

Twenty-one-day data from <u>NTP (2007b)</u> in rats, mice, and guinea pigs at 1, 3, 10, 30, 100,

2 and 300 mg/L Cr(VI) in drinking water showed increased chromium tissue concentrations

3 (including in the rat femur) beginning at 10–30 mg/L. While dose (mg/kg-d) data are not provided,

4 evaluation of other dose data from National Toxicology Program studies for rats and mice at 21

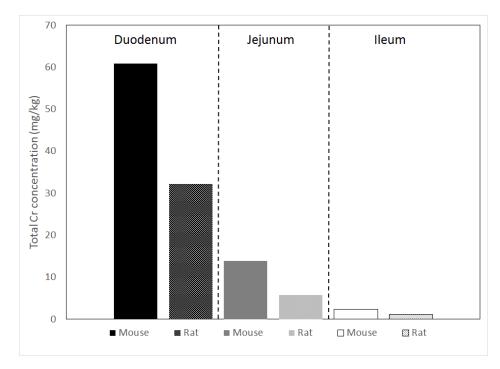
5 days indicates that the dose for rats and mice at 10 mg/L Cr(VI) would be greater than 1 mg/kg-d

6 (young growing mice will intake more water on a mg/kg basis).

7 Studies in rats and mice orally dosed with Cr(VI) have measured total chromium in

8 essentially all tissues, with highest concentrations in kidney, liver, spleen, and bone (Table C-5).

9 Additionally, total chromium concentrations in the small intestine following oral exposure have


10 been measured to be highest in the duodenum (the proximal small intestine) and lowest in the

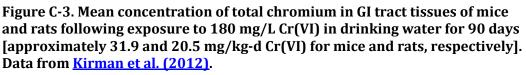

- 1 ileum (the distal small intestine) (Figure C-3). This may be an indication that as Cr(VI) in drinking
- 2 water traverses the small intestine, it is reduced to Cr(III) in the lumen over time.

Table C-5. Chromium in tissues (μ g/g wet tissue or μ g/mL blood) of mice and rats after ingesting K₂CrO₇ in drinking water (8 mg Cr(VI)/kg-day) for 4 or 8 weeks

Tissue	Controls	4-Week exposure	8-Week exposure				
Mice							
Liver	0.22 ± 0.14	10.92 ± 5.48	13.83 ± 6.06				
Kidney	0.24 ± 0.14	3.77 ± 0.99	4.72 ± 0.68				
Spleen	0.53 ± 0.38	5.04 ± 1.45	10.09 ± 2.50				
Femur	0.90 ± 0.48	7.43 ± 1.03	12.55 ± 2.99				
Lung	0.24 ± 0.12	0.99 ± 0.10	1.08 ± 0.26				
Heart	0.32 ± 0.15	0.80 ± 0.23	1.02 ± 0.20				
Muscle	0.32 ± 0.23	1.12 ± 0.37	0.60 ± 0.25				
Blood	0.14 ± 0.05	0.71 ± 0.07	0.42 ± 0.04				
Rats							
Liver	0.19 ± 0.14	3.32 ± 0.93	3.59 ± 0.73				
Kidney	0.34 ± 0.20	8.62 ± 2.40	9.49 ± 4.38				
Spleen	0.43 ± 0.20	3.65 ± 1.87	4.38 ± 0.84				
Femur	1.00 ± 0.46	1.85 ± 0.46	1.78 ± 0.99				
Lung	0.39 ± 0.43	1.10 ± 0.38	0.67 ± 0.24				
Heart	0.38 ± 0.22	0.52 ± 0.12	1.05 ± 0.19				
Muscle	0.24 ± 0.14	0.19 ± 0.10	0.17 ± 0.10				
Blood	0.19 ± 0.17	0.73 ± 0.15	0.58 ± 0.13				

Source: Kargacin et al. (1993)

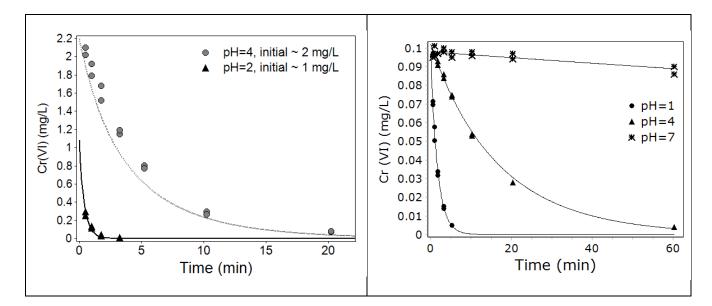
O'Flaherty and Radike (1991) exposed rats to Cr(VI) or Cr(III) at concentrations of 200 1 2 µg/m³ via aerosol inhalation (6 hours/day) or 12.9 mg/L via drinking water ingestion (ad libitum) 3 for 40 days (with an additional 20-day recovery period of no exposure). These concentrations are 4 within the ranges used by some Cr(VI) toxicological studies (NTP (2008) range: 5–180 mg/L Cr(VI) 5 via drinking water; Glaser et al. (1985) range: $25-200 \ \mu g/m^3$ via inhalation). Measured chromium 6 concentrations in the blood and lungs were higher in rats exposed to Cr(VI) via inhalation, while 7 chromium concentrations in the liver and intestine were higher in rats exposed to Cr(VI) via 8 drinking water. As a result, the severities of toxicological effects induced by Cr(VI) at both portal-9 of-entry tissues and systemic tissues may differ by exposure route. 10 For tissues outside the portals of entry and for urine, Cr(VI)-exposed groups exhibited 11 higher chromium levels than Cr(III)-exposed groups (which is consistent with higher systemic 12 absorption of Cr(VI)). For tissues at or near the portals-of-entry (lung for inhalation, intestine for 13 oral ingestion), chromium concentrations were comparable or higher for Cr(III) groups when 14 compared to Cr(VI) groups. This may indicate higher localized clearance of Cr(VI) from portal 15 tissues into blood via absorption. Chromium excretion in feces following oral ingestion of either 16 Cr(VI) or Cr(III) was comparable (fecal chromium can be due to both elimination of systemic chromium and the passing of unabsorbed chromium). All exposure groups (either Cr(VI) or Cr(III)) 17 18 exhibited higher chromium concentrations than control groups (see Tables C-6 and C-7).

Study day	Lung µg Cr/g	Liver µg Cr/g	Intestine µg Cr/g	Kidney μg Cr/g	Muscle µg Cr/g	Blood ng Cr/g	Urine μg Cr/day	Feces mg Cr/day
Inhalation Cr(VI) (200 µg/m ³ 6 hours/day)								
2	1.95	nd	1.10	nd	nd	42.5	0.520	nd
5	5.10	0.060	1.12	0.217	nd	58.4	0.207	nd
10	7.53	0.062	1.37	0.237	nd	73.8	0.266	0.018
20	13.3	0.066	2.36	0.310	0.047	72.8	0.135	0.048
40	24.3	0.089	3.24	0.580	0.054	75.7	0.047	0.082
60	13.0	0.038	0.820	0.137	0.027	39.8	0.012	nd
	1		Ingestion Cr	(VI) (12.9 mg/	L ad libitum)		1
2	nd	0.209	15.5	0.249	nd	9.00	0.622	0.997
5	nd	0.372	22.7	0.588	nd	11.8	1.79	0.835
10	nd	0.585	14.4	1.60	nd	18.5	2.01	0.949
20	1.17	1.18	29.0	1.71	0.077	48.9	3.08	0.977
40	0.650	1.50	6.80	1.90	0.103	58.3	2.19	1.51
60	0.450	0.509	0.830	0.634	0.070	11.3	0.217	nd
		l	nhalation Cr(III) (200 µg/m	³ 6 hours/da	y)	I	1
2	3.43	nd	3.57	nd	nd	61.5	0.215	0.028
5	8.43	nd	4.19	nd	nd	64.8	0.101	0.035
10	17.1	nd	25.6	nd	nd	23.4	0.084	0.016
20	35.4	nd	39.4	nd	nd	12.0	0.032	0.032
40	63.7	nd	4.80	nd	nd	105.7	0.002	0.074
60	42.9	nd	0.840	nd	nd	89.0	0.001	nd
			Ingestion Cr	(III) (12.9 mg/	L ad libitum)	I	I
2	nd	0.042	18.3	nd	nd	2.48	0.227	0.821
5	nd	trace	17.2	nd	nd	3.11	0.065	0.729
10	nd	0.034	20.6	nd	nd	16.8	0.040	1.20
20	nd	nd	26.8	nd	nd	5.60	0.075	1.07
40	nd	nd	7.15	nd	nd	4.72	0.017	1.12
60	nd	trace	0.830	nd	nd	5.52	nd	nd

 Table C-6. Summary of oral and inhalation data from <u>O'Flaherty and Radike</u> (1991)

Mean values (N = 6); nd = nondetect.

Study day	Lung µg Cr/g	Liver µg Cr/g	Intestine µg Cr/g	Kidney µg Cr/g	Muscle µg Cr/g	Blood ng Cr/g	Urine μg Cr/day	Feces mg Cr/day	
	Inhalation control group								
2	nd	0.036	1.13	nd	nd	nd	0.042	nd	
5	nd	0.041	0.64	nd	nd	nd	0.001	nd	
10	nd	nd	0.83	nd	nd	nd	nd	nd	
20	nd	nd	1.08	nd	nd	nd	nd	0.02	
40	nd	0.041	1.08	nd	nd	nd	nd	nd	
60	nd	0.032	0.84	nd	nd	nd	nd	nd	
			Inges	tion control	group				
2	nd	nd	0.65	1.58	trace	1.5	0.017	nd	
5	nd	nd	0.83	nd	trace	1.6	nd	0.002	
10	nd	nd	0.56	nd	nd	4.2	0.003	nd	
20	nd	nd	0.85	nd	trace	3.4	nd	0.013	
40	nd	0.035	0.68	nd	trace	6.8	0.01	nd	
60	nd	0.032	0.72	nd	0.038	2.5	nd	nd	


Table C-7. Summary of oral and inhalation control group data from <u>O'Flaherty</u> and Radike (1991)

Mean values (N = 6); nd = nondetect

C.1.3. Metabolism

1 Cr(VI) reduces to Cr(III) in the GI tract and in RBCs. Reduction takes place in the GI tract 2 tissue and liver following oral exposure (due to the first-pass effect) and in pulmonary tissues 3 following inhalation exposure. Extracellular reduction in gastric juice and in pulmonary fluids is 4 also possible. Extracellular reduction in the lung is likely to be less effective than reduction in the 5 GI tract, due to higher pH and lower reducing capacity. In blood, plasma reduces Cr(VI) poorly 6 relative to RBCs (Corbett et al., 1998). Intracellular reduction of Cr(VI) (which occurs after Cr(VI) 7 enters the cells of a susceptible tissue) is a potential pathway for metabolic activation. Reactive 8 intermediaries and reactive oxygen species (ROS) are generated as Cr(VI) is intracellularly reduced 9 to Cr(III).

Extracellular reduction in the stomach is expected to impact the systemic uptake of
 unreduced Cr(VI) and the exposure of the digestive tract epithelium. Stomach reduction may be a
 major source for interspecies and interindividual differences, due to the strong dependence on
 gastrophysiology and pH. Figure C-4 illustrates the rate of reduction in human gastric juice under
 different pH conditions. At higher values of pH, Cr(VI) reduction occurs slowly.

Figure C-4. Reduction of Cr(VI) in samples of human gastric juice (fasted subjects) using data from <u>Proctor et al. (2012)</u>. Lines indicate model results by <u>Schlosser and Sasso (2014)</u>. (A) 2:1 dilution of stomach contents, multiple initial Cr(VI) concentrations. (B) 10:1 dilution of stomach contents, initial Cr(VI) concentration of approximately 0.1 mg/L.

- The basal values of pH for humans and rodents in the fasted state are approximately 1.3 and
 4, respectively (Table C-8). Under these conditions, humans would reduce Cr(VI) more effectively
 than rodents. This pattern, however, is reversed during the fed state. Human gastric juice pH rises
 to a peak of about 6, and then decreases to baseline within two hours (Mudie et al., 2010). Rodent
- 5 gastric juice pH decreases during the fed state, but the dynamics are not well characterized.

	Female Balb/c mice			Female Wistar rats				Human ^a		
	Fed (n = 8)		Fasted (n = 7)		Fed (n = 5)		Fasted (n = 5)			
Section	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Fed	Fasted
Stomach	2.98	0.3	4.04	0.2	3.20	1.0	3.90	1.0	4.9	1.3
Duodenum	4.87	0.3	4.74	0.3	5.00	0.3	5.89	0.3	5.4	6.0
Jejunum	4.82	0.2	5.01	0.3	5.10	0.3	6.13	0.3	5.4–6.0	6.2–6.4
lleum	4.81	0.3	5.24	0.2	5.94	0.4	5.93	0.4	6.6–	7.4
Caecum	4.44	0.2	4.63	0.4	5.90	0.4	6.58	0.4	6.4	4
Proximal colon	4.69	0.3	5.02	0.3	5.51	0.5	6.23	0.4	6.8	8
Distal colon	4.44	0.3	4.72	0.2	5.77	0.5	5.88	0.5		

Table C-8. The pH of the mouse, rat, and human gastrointestinal tract

Adapted from Mcconnell et al. (2008) and Parrott et al. (2009).

Fed-state pH values for humans represent time-weighted average values during the fed-state, and not peak/maximum values occurring during a meal.

Fed-state pH values for rodents were obtained from animals that had not undergone an overnight fast, thus pH does not represent minimum values occurring during a meal.

^aStandard deviations not available; summary data reviewed in Parrott et al. (2009).

6 Fed-state reduction kinetics have greater uncertainties, as the gastric juice will be

7 heterogeneous and the pH fluctuation temporary. Secretion of additional gastric juices and

8 enzymes that are responsible for meal digestion occurs, and various ingested food components may

9 have different effects on reduction rate. Therefore, diet may result in high interindividual

10 variability of fed-state reduction kinetics in the human population. This variability is apparent in ex

11 vivo data by <u>Kirman et al. (2016)</u> (see <u>U.S. EPA (2021)</u>). In general, it is believed that gastric juice in

12 the fed state has a greater capacity³ for Cr(VI) reduction (because dietary contents such as

13 ascorbate and secreted gastric juices may act as reducing agents). Table C-9 contains a summary of

14 estimated Cr(VI) reducing capacities for various tissues and fluids in mice, rats, and humans. As

15 previously noted in the absorption section, the extent of Cr(VI) reduction by components of the

16 respiratory system is complicated by airway geometries and localized particle deposition.

³Reduction capacity is the total amount of Cr(VI) that can be reduced (as $t \rightarrow \infty$) and is a function of how much reducing agent (components capable of reducing Cr(VI)) is contained in gastric juice. This is different than the reduction rate (how fast Cr(VI) can reduce per unit of time), which is a function of stomach pH.

Reference	Species/media	Findings
Estimates of bodily fluid red	uction capacity (<i>ex vivo</i>) ^a	
Proctor et al. (2012)	Stomach contents (rat)	Study estimate: 15.7 μg/mL
	Stomach contents (mouse)	Study estimate: 16.6 μg/mL
<u>Kirman et al. (2013)</u>	Gastric fluid (human)	Study estimate: 20 μg/mL [based on a mean of 7 μg/mL (fasted) from this study and a median of 30 μg/mL (fed) from <u>De Flora et al.</u> (1987a)]
<u>Schlosser and Sasso (2014)</u>	Gastric fluid re-analysis (rat, mouse, human)	Re-analysis of data by <u>Proctor et al. (2012)</u> and <u>Kirman et al. (2013)</u> . Rat: 4/18 µg/mL (fast/slow pool). Mouse: (3/31 µg/mL fast/slow pool). Human: 10 µg/mL (fasted- state kinetics).
<u>De Flora et al. (2016)</u>	Gastric fluid (human)	Colorimetric method: $10.2 \pm 2.39 \mu g/mL$ (pre- meal) and $20.4 \pm 2.61 \mu g/mL$ (post-meal) Mutagenicity assay: $13.3 \pm 1.91 \mu g/mL$ (pre- meal) and $25.6 \pm 2.89 \mu g/mL$ (post-meal)
<u>Kirman et al. (2016)</u>	Gastric fluid (human)	Fasted state: 2.6 ± 2.8 and $12 \pm 18 \mu g/mL$ for fast and slow pools, respectively. Fed state: 0.68 \pm 0.76 and 27 \pm 28 $\mu g/mL$ for fast and slow pools.
	Gastric fluid re-analysis (rat, mouse, human)	Mouse: 6.1/27 μg/mL (fast/slow pool). Rat: 7.1/73 μg/mL (fast/slow pool).
<u>De Flora et al. (1987a)</u>	Gastric fluid (human)	8.3 ± 4.3 μ g/mL (fasting), 31.4 ± 6.7 μ g/mL (fed)
Petrilli and De Flora (1982)	Saliva (human)	1.4 ± 0.2 μg/mL
Petrilli et al. (1986)	Epithelial lining fluid (human)	23.7 ± 15.9 μg/mL
Estimates of cellular or orga		1.0
De Flora et al. (1997)	Intestinal bacteria (human fecal)	$3.8 \pm 1.7 \ \mu g/10^9$ bacteria (elimination via feces)
	Liver (human)	2.2 ± 0.9 μg/g liver homogenate
	Blood (human)	$52.1 \pm 5.9 \mu\text{g/mL}$ intact whole blood
	Red blood cells (human)	$63.4 \pm 8.1 \mu\text{g/mL}$ RBC lysate soluble fraction
Petrilli et al. (1986)	Pulmonary alveolar macrophages (human)	$4.4 \pm 3.9 \ \mu\text{g}/10^6 \text{ PAM S9 fraction}$
<u>De Flora et al. (1987a)</u>	Peripheral lung parenchyma (human)	200 \pm 70 μ g/g lung S12 fraction
Capellmann and Bolt (1992)	Plasma (human)	0.48–0.63 nmol/mL [at intubation of 1.5 nmol/mL Cr(VI)]
Upreti et al. (2005)	Intestinal epithelial cells and gut bacteria (rat)	Most Cr(VI) at 10 mg/L completely reduced by bacteria in 6 h. Complete reduction by some cells may take 24 h.

Table C-9. Selected studies of Cr(VI) reduction capacities

^aReduction capacities represent the mass of Cr(VI) that can be reduced by a tissue or fluid, per unit mass or volume of the media.

C.1.4. Excretion

1 2 Following oral ingestion, Cr(VI) and its metabolite Cr(III) are primarily eliminated via urinary excretion (Figures C-5 and C-6). Due to poor GI tract absorption of Cr(III), a significant

Supplemental Information—Hexavalent Chromium

- 1 amount of reduced chromium is eliminated in feces without being absorbed. Urinary excretion is
- 2 also a primary pathway for elimination following inhalation exposure. Intratracheal studies in
- 3 rodents have observed elevated urinary chromium, and biomonitoring studies in humans in
- 4 occupations where inhalation exposure may occur have also detected elevated chromium (see
- 5 Section C.1.6). Following chronic, low-dose oral exposure to Cr(VI), most systemic chromium is
- 6 likely in the trivalent form. Site-specific clearance of Cr(VI) by reduction to Cr(III) in tissues such as
- 7 the GI tract, liver, and blood is likely to be greater than systemic clearance of Cr(VI) in urine at low
- 8 doses. Variability in urinary clearance rates of Cr(VI) between individuals and across species does
- 9 not likely have a significant impact on toxicity under chronic low-dose exposure scenarios (since
- 10 most, if not all, systemic chromium will have been reduced to Cr(III)).
- 11 Intravenous studies have indicated that a significant percentage of chromium may be
- 12 excreted via biliary excretion and fecal elimination; however, these elimination pathways are minor
- 13 following oral ingestion (due to reduction in the stomach and liver; see Section C.1.6). Intravenous
- 14 injection of Cr(VI) leads to high systemic concentrations that are not observed following oral
- 15 exposure, and thus some distribution or metabolic mechanisms (i.e., RBC uptake and reduction)
- 16 may become saturated.

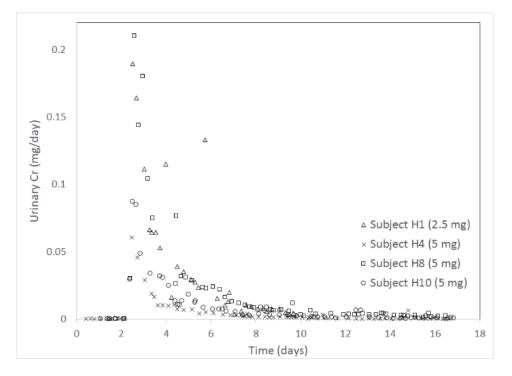


Figure C-5. Urinary rates of excretion by human volunteers administered a glass of drinking water containing 2.5–5.0 mg Cr(VI) at day 2. Data from <u>Kerger et al. (1996)</u>.



Figure C-6. Urinary excretion rate of a human volunteer ingesting a glass of Cr(VI) in drinking water repeatedly throughout the day (0.8 mg Cr(VI) daily) for 17 days. Data from <u>Paustenbach et al. (1996)</u>.

C.1.5. Physiologically Based Pharmacokinetic Models

A description of the available physiologically based pharmacokinetic (PBPK) models for
 Cr(VI) is available in Section 3.1.2.

3 There are significant uncertainties that may be difficult to fully characterize using PBPK 4 models. The stomach of both rodents and humans will dynamically fluctuate between the fed and 5 fasted states. This affects reaction dynamics in multiple ways. As noted in Table C-8, glandular 6 stomach pH is decreased for the rodent during the fed state, while the opposite is true for humans. 7 In addition to pH effects, gastric emptying is delayed in the fed state to digest food, and the volume 8 of contents in the lumen will be increased. Gastric juice induced by food consumption may also 9 have different reducing capacities (and ingested food itself may impact reduction kinetics). 10 MacKenzie et al. (1959) measured absorption in fed and fasted rats following a single oral dose and 11 observed that rats in the fasted state exhibited higher tissue and urinary chromium levels than rats 12 in the fed state. This would be consistent with more efficient Cr(VI) reduction in the fed rat than in 13 the fasted rat. Thus, it has been demonstrated that Cr(VI) reduction in the rodent may be affected 14 by fed status in vivo. 15 In addition to daily pH fluctuations, there is significant interindividual and life stage 16 variability of stomach pH in the human population. Hypochlorhydria (low stomach acid) is

1 exhibited by an unknown fraction of the population,⁴ leading to a consistently high stomach pH

2 (<u>Kalantzi et al., 2006</u>; <u>Feldman and Barnett, 1991</u>; <u>Christiansen, 1968</u>). Among adults without

- 3 hypochlorhydria, 5% of men may exhibit basal pH exceeding 5, and 5% of women may exhibit basal
- 4 pH exceeding 6.8 (Feldman and Barnett, 1991). It is expected that Cr(VI) reduction will be
- 5 decreased for individuals with high stomach pH, although the reduction rates are uncertain. Gastric
- 6 juice reduction data were obtained from adults with naturally low stomach pH or stomach pH
- 7 elevated by proton pump inhibitors. The gastric juice of those with high pH may be chemically or

8 biologically different. Neonates, infants, and young toddlers generally have neutral stomach pH for

9 the first 20–30 months, which then lowers to the normal adult range of 1–2 (<u>Neal-Kluever et al.</u>,

10 <u>2019; Bai et al., 2016</u>).

11 C.1.5.1. Application of pharmacokinetic models for dose-response assessment

A previous PBPK application of the <u>Kirman et al. (2013)</u> model by <u>Thompson et al. (2014)</u> defined the internal dose as the average lifetime daily milligrams Cr(VI) absorbed per liter small intestine segment for the duodenum, jejunum, and ileum individually. This metric was applied to the NTP 2-year bioassay, and dose-response modeling was performed on pooled data (male and female mice, duodenum, jejunum, and ileum). <u>Thompson et al. (2014)</u> excluded jejunum tissue from the analysis of hyperplasia. Due to uncertainties in site-specific absorption for the human, the study authors applied total small intestinal absorption (per L small intestine) as the human dose

19 metric for extrapolation.

However, site-specific absorption in the rodent small intestine is uncertain. Ingested
drinking water does not evenly distribute in the small intestine lumen, but instead forms multiple
discrete pockets of water that vary with time (Mudie et al., 2014). Motility in the intestine is highly
variable, and the intestine secretes enzymes that may impact reduction rates. At the microscopic
level, data for Cr(VI) indicates that uptake may not occur uniformly in GI tract epithelial cells
(Thompson et al., 2015a). The well-mixed compartment assumption is likely an inaccurate
description of the system, particularly for distal regions of the intestine.

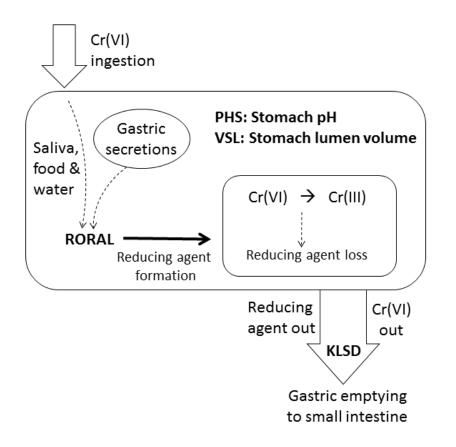
An alternative to the absorption dose metric is pyloric flux. Pyloric flux was defined by
 Thompson et al. (2014) to be average daily mg Cr(VI) emptied from the stomach to the small

29 intestine, per liter small intestine. This estimate requires only the stomach portion of the

- 30 gastrointestinal tract PBPK model. Fewer parameters are required to simulate pharmacokinetics in
- 31 the stomach, and many of these parameters (such as gastric volume and emptying rate) are well
- 32 characterized in rodents and humans. The full whole-body PBPK model by <u>Kirman et al. (2017)</u>
- **33** contains approximately 100 PBPK parameters, and many of the fitted chemical-specific parameters
- 34 have high uncertainty due to the constant presence of background Cr(III) and reduced Cr(III) in all

⁴One estimate is that less than 1% of the adult population may exhibit hypochlorhydria, whereas 10–20% of the elderly population may exhibit this condition (<u>Russell et al., 1993</u>).

Cr(VI) pharmacokinetics studies. The stomach-only model applied in this assessment contains
 approximately 20 parameters.


- Furthermore, the data underlying the ex vivo reduction model were generated under batch
 reaction conditions, which is similar to the stomach compartment. There is added uncertainty
 when extrapolating ex vivo data to the complex and dynamic intestinal compartments (which may
 contain different reducing agents). Uncertainties and the possible implications of these and other
 candidate internal dose metrics are outlined in Table C-10.
- 8 For this assessment, a hybrid PBPK-BW^{3/4} scaling approach was used for effects in the small
- 9 intestine and systemic effects. The hybrid approach applied BW^{3/4} scaling to the mg/kg-d Cr(VI)
- 10 escaping stomach reduction and entering the small intestine. Because the volume of the small
- 11 intestine (like other tissues) varies between species by allometry, interspecies scaling by BW^{3/4} is
- 12 numerically similar to scaling by small intestinal volume.
- 13 For effects in the oral mucosa, multiple dose metrics were explored. For example,
- 14 concentration of Cr(VI) ingested scaled by the exposed oral surface areas. However, without such
- 15 surface area data for rats, and without an oral pharmacokinetic or pharmacodynamic model, it was
- 16 not possible to develop these alternative dose metrics. In the absence of an adequately developed
- 17 theory or information to develop and characterize an oral portal-of-entry dosimetric adjustment
- 18 factor, application of BW^{3/4} scaling is recommended (<u>U.S. EPA, 2011b</u>, <u>2005</u>).

Dose metric	Added uncertainty	Extrapolation notes
Site-specific absorption Daily mg Cr(VI) absorbed in a small intestine (SI) segment, per L SI segment	 Small intestine lumen not well-mixed. Fluctuations in intestinal motility and secretions are not modeled. Cellular uptake in epithelium not uniformly distributed. High variability and uncertainty for: absorption of Cr(VI)/reduced Cr, perfusion of Cr(III)/ Cr(VI) from systemic plasma, absorption of background chromium (III). Differences in relative lengths of small intestinal segments between rodents and human preclude direct comparisons. 	 Human equivalent dose (HED) estimates: Similar to pyloric flux, since rapid GI uptake is assumed in all species, and human absorption is still normalized by total SI volume. Variability assessment: Difficulty in assessing interindividual variability site-specific absorption fractions. Inconsistent dose metric basis between humans and rodents, since only total Cr(VI) absorption in whole intestine can be estimated by current human PBPK models.
Pyloric flux Daily mg Cr(VI) emptying from the stomach to the SI, per liter SI	 Absorption not modeled (assumes 100% absorption in all species). Reduction in small intestine neglected. 	 HED estimates: Slightly higher than small intestine absorption dose metric, since this metric assumes 100% absorption for the rodent. Variability assessment: Can only assess stomach reduction variability.
Cr(VI) lumen concentration mg Cr(VI) in SI lumen, per liter SI lumen	 Estimates of Cr(VI) concentration in lumen contents not well- characterized. 	HED estimates: Similar to pyloric flux dose metric, since it normalizes the Cr(VI) mass by intestinal lumen volume (which will scale similarly as intestinal tissue volume). Variability assessment: Difficult to assess variability.
BW ^{3/4} -adjusted un- reduced Cr(VI) dose Daily mg Cr(VI) emptying from the stomach, per kg BW, multiplied by (BW _a /BW _h) ^{0.25}		 HED estimates: 10–20% lower than pyloric flux. Normalizing unreduced Cr(VI) by a BW^{3/4} adjustment has a similar impact on HED as normalizing to intestinal volumes. Variability assessment: Can only assess stomach reduction variability.

Table C-10. Uncertainties and potential impacts of alternative dose metrics for rodent-to-human extrapolation

Dose metric	Added uncertainty	Extrapolation notes
Stomach absorption mg Cr(VI) absorbed in stomach tissue, per liter stomach tissue	 Estimates of Cr(VI) stomach absorption not well characterized. Intestinal dose metric still applied for rodent. 	 HED estimates: Similar to pyloric flux due to pH dependence. Variability assessment: Difficult to assess absorption variability. Would lead to different dose metric basis between humans and rodents.
BW^{3/4} scaling Daily mg/kg Cr(VI) ingested, multiplied by (BW _a /BW _h) ^{0.25}	• Does not correct for species differences in Cr(VI) reduction.	HED estimates: For extrapolations in the low-dose region, would result in lower HEDs than all other approaches. For extrapolations in the high-dose region, would result in slightly lower (~20% lower) HEDs than methods listed above (due to high % of dose escaping for human model at high doses). Variability assessment: Cannot directly assess inter-individual variability in pharmacokinetics.
Cr(VI) ingested concentration Parts per million (mg/L) Cr(VI) ingested	 Does not correct for species differences in Cr(VI) reduction, tissue uptake, or tissue exposure duration. May require additional scaling to account for species differences in epithelial surface area and exposure time. 	 HED estimates: Would result in higher HEDs than most other approaches for both oral and intestinal tumors. Only feasible for oral mucosa, prior to mixing/dilution/reduction by gastric and intestinal contents. Variability assessment: Cannot directly assess inter-individual variability in pharmacokinetics.
BW ^{3/4} scaling, adjusted for target tissue volumes Daily mg/kg Cr(VI) ingested, multiplied by: (BW _a /BW _h) ^{0.25} × V _a /V _h (V _a and V _h represent tissue volume as % total body volume)	 Does not correct for species differences in Cr(VI) reduction or tissue uptake. Must assume steady-state tissue delivery and clearance. 	HED estimates: Difference from alternative approaches depend on organ site. Would be representative of local tissue dose. Only feasible for oral mucosa, prior to mixing/dilution/reduction by gastric and intestinal contents. Variability assessment: Cannot directly assess interindividual variability in pharmacokinetics.

1

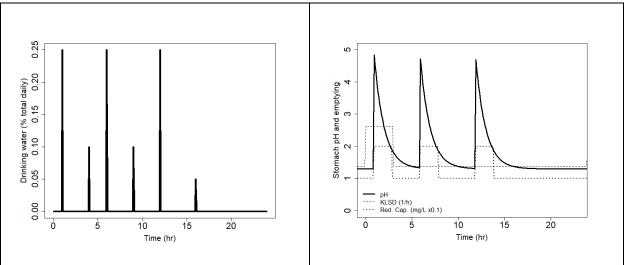
Figure C-7. Schematic of the gastric model and parameters for Cr(VI). Parameter values and units defined in Tables C-11 (humans), C-13 (mice), and C-16 (rats).

DRAFT—DO NOT CITE OR QUOTE

C.1.5.2. PBPK model assumptions for the human

1

Table C-11. Final human physiological parameters for dose-responsemodeling and rodent-to-human extrapolation


Parameter		
code	Parameter	
variable	value	Parameter source and notes
BW (kg)	80	Body weight. This value is chosen to maintain consistency for comparison
		with default approaches (such as BW ^{3/4} scaling (<u>U.S. EPA, 2011b</u> , <u>2005</u>)).
VSLC (L/kg ^{0.75})	9.92e-3	Stomach lumen volume or stomach contents volume (scaled by BW ^{3/4}).
	(baseline),	Baseline value (0.24 L for a 70 kg human) is based on ICRP (2006, 2002)
	2.02e-3	reference values for mass of stomach contents (average of adult male and
	(fasted)	female). Fasted-state value (0.049 L for a 70 kg human, applied in the
		morning) is based on the mean value measured by Grimm et al. (2018); this is
		also the default fasted value in GastroPlus (version 9.0) software. Lognormal
		coefficient of variance of 0.1 applied for Monte Carlo simulations (based on
		GastroPlus defaults).
PHS	1.3 (baseline),	Gastric pH. Varies based on fed status (Mudie et al., 2010; Parrott et al.,
	4.9 (fed spike)	<u>2009</u>). May be chronically elevated (>4) in some individuals (<u>Kalantzi et al.,</u>
		2006; Feldman and Barnett, 1991; Christiansen, 1968). Values of 1.3 and 4.9
		obtained from Parrott et al. (2009), and decaying exponential function
		$(e^{-0.9302t})$ following spike during meals estimated by digitizing data from
		Dressman et al. (1990). For Monte Carlo simulations, the spikes were assumed
		to begin up to 10 minutes after the breakfast/lunch/dinner oral doses, and up
		to 30 minutes before (uniform distribution). Lognormal coefficient of variance
		of 0.12 applied to baseline for Monte Carlo simulations (based on GastroPlus
KLSD (hr ⁻¹)	1.39	defaults). Gastric emptying rate (1st-order). Based on standard reference value of half-
KLSD (III)	(baseline),	emptying time of noncaloric liquids in adults (30 minutes) by <u>ICRP (2006</u> ,
	2.63 (fasted)	<u>2002</u>). Fasted-state value based on fasted half-emptying time for water of
	2.05 (103100)	15.8 minutes <u>Mudie et al. (2014)</u> . Lognormal coefficient of variance of 0.2
		applied for Monte Carlo simulations (based on GastroPlus defaults).
RORAL (L/hr)	Calculated	Sum of drinking water/food/saliva/GI fluid introduction into gastric
	(see text)	compartment. This value is not set, but calculated based on the steady-state
	=0.33	volume of stomach contents and stomach emptying rate (see text). As a
	(baseline)	comparison, the default Kirman et al. (2017) values for the human are 0.13–
	. ,	0.56 L/hr (varying with drinking rate). ICRP (2006, 2002) estimates the
	=0.129	average daily generation of saliva and gastric juice in adults to be 0.133 L/hr
	(fasted)	(which is approximately equal to the fasted-state RORAL). Thus, the model
		assumes that during a baseline 1-hour ingestion event, an adult may consume
		approximately 0.2 L of food and/or drinking water such that the total
		introduction of contents to the stomach is 0.33 L.
VSIC	8.77e-3	Volume of small intestine tissue used for internal dose scaling (fraction of
(fraction)		body weight). Used for pyloric flux estimates only. Value for a 70 kg human
		(~0.62 L) unchanged from <u>Kirman et al. (2012)</u> and <u>Kirman et al. (2017)</u> . This is
		consistent with the ICRP (2006, 2002) value for mass of intestine wall (0.65 kg
		for adult males, 0.60 kg for adult females).

Parameter		
code	Parameter	
variable	value	Parameter source and notes
CRE01 (mg/L)	10.0 (fasted)	Reducing capacity of human gastric juice assuming a single pool of reducing
	20.0 (fed)	agent according to the model by <u>Schlosser and Sasso (2014)</u> . Data from <u>De</u>
		Flora et al. (2016) were used to derive fasted/fed-state values, and estimate a
		lognormal distribution for Monte Carlo analyses (lognormal coefficient of
		variance of 0.5). Model set fed-state values lasting 2 hours for the 3 meals
		(breakfast/lunch/dinner), beginning at the time of the spikes in gastric pH.

For additional kinetic parameters used in the model, see <u>Schlosser and Sasso (2014)</u>. GastroPlus default values used or cited alongside gastric PK parameters, because they have been found to be consistent with values found by literature screening and also provided estimates of population variability.

1 The human PBPK model was run assuming the periodic bolus exposure profile for a period 2 of time until the internal dose metric reached steady-state (7 weeks). This was done to prevent an 3 underestimation of the internal dose, which may result from assuming continuous mg/kg-d 4 exposure (less reducing agent depletion occurs if the dose is spread evenly over 24 hours). These 5 drinking water assumptions are consistent with human surveys (U.S. EPA, 2019a; Barraj et al., 6 2009). 7 In addition, a change in gastric volume and gastric emptying from baseline was 8 incorporated to account for an early morning fasted state, and a pH spike above baseline was 9 incorporated to account for the fed state. This special fasted state was applied only in the morning,

- 10 and the parameters only needed to be set shortly (1 hour) before the first ingestion because steady-
- 10 and the parameters only needed to be set shortly (1 nour) before the first ingestion because steady
- 11 state in the gastric reducing agent mass balance was achieved quickly. These model assumptions
- 12 are illustrated in Figure C-8.

Figure C-8. Time profiles of the average daily oral Cr(VI) dose (left) and gastric pH, reducing capacity (/10), and gastric emptying rate KLSD (right) in the human. Exposure to Cr(VI) was assumed to occur via six discrete drinking water events of varying magnitude, occurring daily. Gastric emptying was elevated for a

period of 3 hours in the morning, beginning 1 hour prior to the first daily drinking event to simulate a morning fasted status. Gastric volume was also reduced to the fasted-state value during this time (not shown). Gastric pH was spiked to a value of 4.9 (which decreased exponentially) near the three other large drinking water events (to simulate breakfast, lunch and dinner fed status). Elevation of the reducing capacity (lasting 2 hours) also occurred at the time of the spikes in pH. For Monte Carlo simulations, a uniform distribution was applied to the timing of the pH and reducing capacity spikes.

1 Local sensitivity analyses were performed on selected model parameters at a lower and an

- 2 upper dose level. The sensitivity was characterized by the finite difference method, and the
- 3 sensitivity coefficients represent the ratios of the relative change in the response variable (internal
- 4 dose) to the relative change in the independent variable (parameter). For the human model, the
- 5 sensitivity of the internal dose to kinetic parameters was greater in the low-dose region. This is
- 6 also illustrated by Figure C-9 for the stomach pH parameter.

Table C-12. Normalized sensitivity coefficients of human gastric modelparameters with respect to pyloric flux dose metric

Parameter	Sensitivity coefficient at 0.04 mg/kg-d	Sensitivity coefficient at 0.4 mg/kg-d
CRE01 (reducing capacity of fast binary reaction, mg/L)	-1.2694	-0.7297
KLSD (gastric emptying rate, h ⁻¹)	0.7661	-0.0129
VSLC (baseline stomach lumen volume, fraction of BW)	-0.2226	-0.5593
VSLCFAST (fasted-state stomach lumen volume, fraction of BW)	-0.3550	-0.1289
K (rate constant for fast binary reaction, L/mg-h)	-1.1920	-0.0409
PHS (baseline)	0.2197	0.0143
PHSF (fed-state spike) ^a	5.1534	0.2461

^aTo avoid simulation artifacts caused by TSPIKE and ingestion time occurring at same time, the values of TSPIKE were set to 5 minutes prior to water ingestion events.

Note: this model analysis only incorporated two pH spikes (lunch and dinner) and held CRE01 constant (no fedstate increase to 20 mg/L).

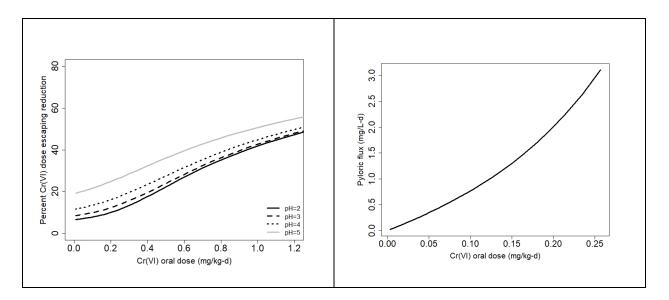
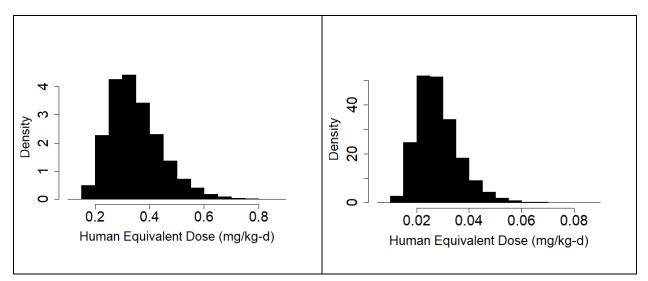



Figure C-9. (a) Percent Cr(VI) escaping stomach reduction (and being emptied to the small intestine) as a function of oral Cr(VI) dose for different values of baseline fasted-state stomach pH (human). (b) Pyloric flux as a function of oral dose for the human. The pH spike was set to begin 10 minutes prior to Cr(VI) ingestion for the three meals in this example (for human equivalent dose calculations, this is a random variable).

Figure C-10. Monte Carlo analysis (20000 iterations) of the human equivalent dose at selected values of the internal dose. Model assumes 3 daily spikes in pH during the 3 large ingestion events, and elevated gastric emptying/reduced gastric volume during early morning ingestion event. All simulations assume lognormal distributions for both the baseline and fasted parameters, with coefficient of variance (CV) of 10% for stomach volume, 12% for baseline pH, 50% for fed and fasted reduction capacities and 20% for stomach emptying. A uniform distribution was applied to the timing of each pH spike to allow for the oral dose to occur up to 30 minutes after the start of a large meal (pH spike), and up to 10 minutes before.

All other parameters held constant. (a) Human equivalent dose (HED) at pyloric flux 4 mg/L-d. (b) Human equivalent dose (HED) at pyloric flux 0.1 mg/L-d.

1 To evaluate the potential impact of pharmacokinetic susceptibility to adult populations with 2 high stomach pH, simulations were run using altered assumptions for baseline and fed-state pH 3 (see Table C-13). These simulations included estimation of the HED for low-dose and high-dose 4 internal dose PODs. Standard default population simulations assumed a mean baseline pH of 1.3 5 and a fed spike of 4.9. The PHS = 4 population assumed a mean baseline pH of 4 and a fed spike pH 6 of 4.9. For all simulations, the baseline pH had a lognormal distribution with a coefficient of 7 variance of 0.12. 8 While a fed-state pH spike was maintained for the high pH population, there is some

- 9 uncertainty regarding the daily pH profile in response to meals. The study in healthy elderly
- 10 subjects by <u>Russell et al. (1993)</u> observed that for individuals with high baseline pH, some exhibited
- 11 minimal pH change with meals, while others exhibited a decrease in pH with meals.

Table C-13. Human equivalent dose (mg/kg-d) outputs of 20,000 Monte Carlo simulations of varying baseline pH populations using the BW^{3/4}-adjusted Cr(VI) dose escaping stomach reduction

Internal dose POD (mg/kg-d)	Model assumption	Mean HED (mg/kg-d)	SD (mg/kg-d)	Lowest 1% HED (mg/kg-d)
0.03	Default	0.328	0.0942	0.171
	PHS = 4	0.220	0.102	0.0596
0.001	Default	0.0320	0.00945	0.0165
	PHS = 4	0.0178	0.0179	0.00204
0.000732	Default	0.0237	0.00708	0.0121
	PHS = 4	0.00943	0.00404	0.00269

12 At high internal dose (which is most relevant for cancer extrapolation), the mean value for 13 the HED of the pH = 4 population is approximately 33% lower than the HED of the default pH = 1.314 population. At low internal dose (which is most relevant for noncancer extrapolation), the mean 15 value for the HED of the pH = 4 population is approximately 44% lower than the default. However, 16 the value of the lowest 1% for the default assumption (0.0165 mg/kg-d) is still slightly lower than 17 the mean value of the pH = 4 population (0.0178 mg/kg-d), meaning that the pharmacokinetic 18 approach is protective for the average of that group. 19 For values lower than 0.001 mg/kg-d (i.e., 0.000732 mg/kg-d), the mean HED of the pH = 4 20 population (0.00943 mg/kg-d) is 22% less than the lowest 1% HED of the pH = 1.3 population 21 (0.0121 mg/kg-d). This is because at very low doses, the model is more sensitive to differences in 22 pH. However, all internal-dose PODs for this assessment (which are used to derive human 23 equivalent doses) are higher than 0.001 mg/kg-d. As a result, the pharmacokinetic approach 24 (which uses the lowest 1% value) is protective of the pH = 4 population. 25 The pharmacokinetics results for all PODs can be compared to BW^{3/4} scaling without 26 pharmacokinetic adjustment for interspecies Cr(VI) reduction (see Appendix D.3). By not

- 1 accounting for extracellular Cr(VI) reduction in either the rodent (gastric pH = 4.5) or the human
- 2 (gastric pH = 1.3), the default scaling approach technically applies to the most sensitive population
- 3 in terms of pharmacokinetics (i.e., a human population where gastric pH = 4.5 and gastric juice
- 4 reduction capacity is equivalent to that of the rodent). However, this does not consider the extreme
- 5 case where human pH is significantly higher than that assumed for the rodent (pH >> 4.5).
- 6 Applying $BW^{3/4}$ adjustment in accordance with (U.S. EPA, 2011b, 2005), and applying an
- 7 intraspecies uncertainty factor (UF_H) of 3 (rather than 10, because the default approach is implicitly
- 8 accounting for the most sensitive pharmacokinetic population) is protective of the population that
- 9 has high pharmacokinetic susceptibility. As noted in Appendix D.3, this specifically applies to the
- 10 low-dose region, where the model is most sensitive to gastric pH. At high doses, where the model is
- 11 more sensitive to gastric reducing capacity, the lower 1% predictions from Monte Carlo simulations
- 12 using the pharmacokinetic model are more health protective than BW^{3/4} scaling.
- 13 Appendix D.3 contains a table of the RfD derivation using default approaches (no gastric
- 14 reduction adjustment), and with $UF_{H} = 3$.

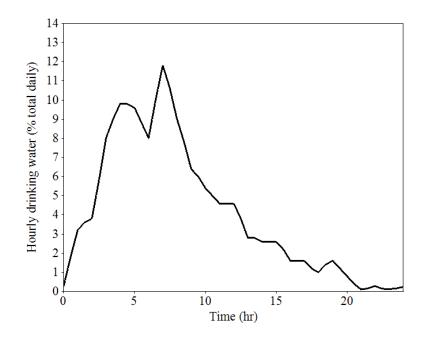

15 C.1.5.3. PBPK model assumptions for the mouse

Table C-14. Final mouse PBPK parameters for dose-response modeling and rodent-to-human extrapolation

Parameter code variable	Parameter value	Notes
BW (g)	50	Body weight. The time weighted average body weight of mice in the NTP 2008 bioassays.
VSLC (L/kg ^{0.75})	0.00696	Volume of the stomach lumen contents (scaled by BW ^{3/4}). Based on <u>Mcconnell</u> <u>et al. (2008)</u> "comfortably full" volume (0.37 mL in 18–22g mice). For a 50g mouse, this equates to a stomach volume of 0.736 mL.
PHS	4.5	Gastric pH. Value unchanged from <u>Kirman et al. (2012)</u> and <u>Kirman et al.</u> (2017) since reduction data in mice are only available for pH 4.5 (and thus, confidence is highest for the mouse reduction rate at that pH). This parameter can vary with both fed status and stomach region (forestomach vs. glandular stomach)(<u>Beasley et al., 2015; Kohl et al., 2013; Mcconnell et al., 2008;</u> <u>Browning et al., 1983</u>). The reduction model used in this assessment by <u>Schlosser and Sasso (2014)</u> performs well for the available data of Cr(VI) reduction in rodent gastric juices.
KLSD (hr ⁻¹)	4.33	Gastric emptying rate (1st-order). Value changed from default value of 9.4 hr ⁻¹ by <u>Kirman et al. (2012) Kirman et al. (2017)</u> . Based on the default fed-state GastroPlus stomach transit time of 19.2 minutes. This is consistent with literature, which estimates a half-emptying time for liquids in mice of approximately 10 minutes (<u>Roda et al., 2010; Miyasaka et al., 2004; Bennink et al., 2003; Symonds et al., 2002</u>) (see Table C-27). This parameter can vary based on fed status, and gastric and dietary contents.
RORAL (mL/hr)	3.2 (calculated)	Sum of drinking water/food/saliva/GI fluid introduction into gastric compartment. This value is not set, but calculated based on the steady-state volume of stomach contents and stomach emptying rate (see text). As a comparison, the value of RORAL by <u>Kirman et al. (2017)</u> for the <u>NTP (2008)</u> data

Parameter code variable	Parameter value	Notes
	value	
		ranges from 0.65–6.2 mL/hr (varying with drinking rate). In <u>Kirman et al.</u>
		(2017), this parameter was the sum of multiple individually-defined rates that
		had high uncertainty and variability. The value for the gastric fluid (acid)
		production component defined in the Kirman et al. (2017; 2012) models was a
		central estimate by Thompson et al. (2011a) based on (Tibbitts, 2003; Wang et
		al., 2000; Friis-Hansen et al., 1998; Ito and Schofield, 1974). Those data varied
		significantly with time, fed status, and other factors, and the exact source of the
		Thompson et al. (2011a) could not be determined. The saliva secretion rate
		component defined in Kirman et al. (2017; 2012) was based on a model by
		Timchalk et al. (2001), although it was not a measured parameter (it was
		instead calibrated to lead pharmacokinetic data). Values defined in Kirman et
		al. (2017; 2012) for the food and water intake component of RORAL were
		study-specific.
VSIC (fraction)	0.0393	Volume of small intestine (fraction of body weight). Used for pyloric flux
		estimates only. Value unchanged from Kirman et al. (2012), which is based on
		fractional tissue volumes of the duodenum, jejunum and ileum measured in
		that study. Value is consistent with <u>Brown et al. (1997)</u> (which estimates it to
		be 2–4 % of body weight).

For additional kinetic parameters used in the model, see <u>Schlosser and Sasso (2014)</u>.

Figure C-11. Distribution of the average daily oral Cr(VI) dose in the mouse. Exposure to Cr(VI) was assumed to occur ad libitum in drinking water according to observed circadian drinking water data (<u>Yuan, 1993</u>).

- 1 PBPK simulations were run assuming standard adult rodent physiology (Table C-14), with
- 2 circadian drinking water pattern (Figure C-11), for a period until steady-state was achieved
- 3 (7 weeks). This was done to prevent an underestimation of the internal dose, which may result

- 1 from assuming continuous mg/kg-d exposure (less reducing agent depletion occurs if the dose is
- 2 spread evenly over 24 hours).
- 3 Local sensitivity analyses were performed on selected model parameters at a lower and an
- 4 upper dose level using the finite difference method. For the rodent model, there was less of an
- 5 impact of dose region on model sensitivity (Table C-15). However, the rodent model was very
- 6 sensitive to changes in pH (Figure C-12), since the kinetic function of rate vs. pH by <u>Schlosser and</u>
- 7 <u>Sasso (2014)</u> is steep in the region around pH 4.5. Ex vivo rodent kinetic data are only available at
- 8 pH = 4.5 (mice) and pH = 4.38 (rats) <u>Proctor et al. (2012)</u>. The kinetic model by <u>Schlosser and Sasso</u>
- 9 (2014) adequately fits the rodent ex vivo data at these values of pH. Because the true value of the
- 10 rodent whole stomach pH (glandular stomach + forestomach) during the <u>NTP (2008)</u> 2-year
- 11 bioassay is uncertain, and because there are no ex vivo data for rodent kinetics at low pH, the model
- 12 will only be run at pH = 4.5 (mice) and pH = 4.38 (rats) when used for the dose-response
- 13 assessment. These values are fair approximations for the model since they fall within the range
- 14 observed in rodents, but they are not without uncertainty (<u>Beasley et al., 2015</u>; <u>Kohl et al., 2013</u>;
- 15 <u>Mcconnell et al., 2008; Browning et al., 1983</u>).

Table C-15. Normalized sensitivity coefficients of mouse gastric modelparameters with respect to pyloric flux dose metric

	Sensitivity coefficient at	Sensitivity coefficient at
Parameter	0.302 mg/kg-d	8.89 mg/kg-d
CRE01 (reducing capacity of fast binary reaction, mg/L)	-0.5083	-0.3009
CRE02 (reducing capacity of slow binary reaction, mg/L)	-0.3576	-0.6615
KLSD (gastric emptying rate, h ⁻¹)	0.8101	0.3231
VSLC (stomach lumen volume, fraction of BW)	-0.0301	-0.3243
K (rate constant for fast binary reaction, L/mg-h)	-0.5173	-0.1001
KS (rate constant for slow binary reaction, L/mg-h)	-0.3582	-0.5428
KVF (rate constant for slowest binary reaction, L/mg-h)	-0.0031	-0.0077
PHS (stomach pH)	7.8453	6.0116

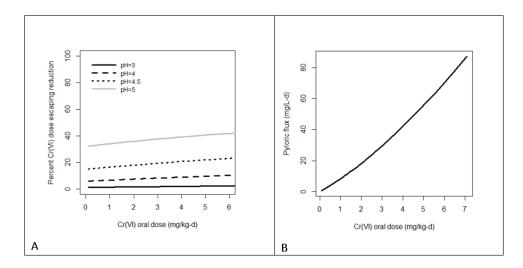


Figure C-12. (a) Percent Cr(VI) escaping stomach reduction (and being emptied to the small intestine) as a function of oral Cr(VI) dose for different values of baseline stomach pH (mouse); (b) pyloric flux for the mouse using standard assumption at PHS = 4.5.

- 1 Because the internal dose is very close to linear (Figure C-12), benchmark dose modeling
- 2 can be performed on the basis of the external oral dose, and PBPK model adjustments can be done
- 3 in subsequent steps. Table C-16 below lists the predicted internal doses for the (<u>NTP, 2008</u>) 2-year
- 4 drinking water bioassay. Table C-17 lists average daily internal doses for the female mouse (F0
- 5 dams) during the <u>NTP (1997)</u> bioassay.

Table C-16. Lifetime average daily internal doses for the mouse during theNTP (2008)2-year bioassay of sodium dichromate dihydrate

	TWA Dose		
Cr(VI) (mg/L)	(mg/kg-d)	Dose escaping (mg/kg-d)	Pyloric flux (mg/L-d)
Females			
5	0.302	0.0463	1.18
20	1.18	0.197	5.00
60	3.24	0.636	16.2
180	8.89	2.31	58.7
Males			
5	0.450	0.0700	1.78
10	0.914	0.149	3.79
30	2.40	0.443	11.3
90	5.70	1.29	32.9

TWA Dose: Time weighted average daily dose

Table C-17. Average daily internal doses for the female mouse (F0 dams)
during the <u>NTP (1997)</u> bioassay

TWA Dose (mg/kg-d)	Dose escaping (mg/kg-d)
11.6	3.09
24.4	8.61
50.6	24.8

BW = 24 g

2

1 C.1.5.4. *PBPK model assumptions for the rat*

Table C-18 outlines the kinetic parameters used for a standard rat. For additional kinetic

3 parameters used in the model, see <u>Schlosser and Sasso (2014</u>).

Table C-18. Final rat PBPK parameters for dose-response modeling androdent-to-human extrapolation

Parameter code variable	Parameter value	Notes
BW (g)	450/395 (males) 260/215 (females)	Body weight. The time weighted average body weights of male and female rats in the NTP 2008 bioassays. Values are listed for the (2-year/12-month) time periods.
VSLC (L/kg ^{0.75})	0.0125	Volume of the stomach lumen contents (scaled by BW ^{3/4}). Based on <u>Mcconnell</u> <u>et al. (2008)</u> "comfortably full" volume (3.38 mL for 160–190g rats). For 260g rat, this yields a stomach volume of 4.55 mL For a 450g rat, it yields 6.87 mL.
PHS	4.38	Gastric pH. Value unchanged from <u>Kirman et al. (2017)</u> , since reduction data in rats are only available for pH 4.38 (and thus, confidence is highest for the rat reduction rate at that pH). This parameter can vary with both fed status and stomach region (forestomach vs. glandular stomach) (<u>Beasley et al., 2015; Kohl et al., 2013; Mcconnell et al., 2008; Browning et al., 1983</u>). The reduction model used in this assessment by <u>Schlosser and Sasso (2014)</u> performs well for the available data of Cr(VI) reduction in rodent gastric juices.
KLSD (hr ⁻¹)	2.77	Gastric emptying rate (1st-order). Changed from default value of 2.4 hr ⁻¹ defined by <u>Kirman et al. (2012)</u> and <u>Kirman et al. (2017)</u> . Based on the default fed-state GastroPlus stomach transit time of 30 minutes. This is consistent with literature, which estimates a half-emptying time for liquids in rats of approximately 15 minutes (<u>Scarpignato et al., 1984; Purdon and Bass, 1973</u>). This parameter can vary based on fed status, and gastric and dietary contents.
RORAL (mL/hr)	12–19 (calculated)	Sum of drinking water/food/saliva/GI fluid introduction into gastric compartment. This value is not set, but calculated based on the steady-state volume of stomach contents and stomach emptying rate (see text). As a comparison, the default value calculated by <u>Kirman et al. (2017)</u> for the <u>NTP</u> (2008) study is 4–33 mL/hr (varying with drinking rate). In <u>Kirman et al. (2017)</u> , this parameter is the sum of multiple individually-defined rates that had high uncertainty and variability. The value for the gastric fluid (acid) production component defined in the Kirman et al. (2017; 2012) models was a central estimate by <u>Thompson et al. (2011a)</u> based on (<u>Runfola et al., 2003; Tibbitts</u> ,

Parameter		
code	Parameter	
variable	value	Notes
		2003; Kitamura et al., 1999; Takeuchi et al., 1998; Kuwahara et al., 1990;
		Wallmark et al., 1985). Those data varied significantly with time, fed status, and
		other factors, and the exact source of the Thompson et al. (2011a) could not be
		determined. The saliva secretion rate component defined in Kirman et al.
		(2017; 2012) was based on a model by Timchalk et al. (2001), although it was
		not a measured parameter (it was instead calibrated to lead pharmacokinetic
		data). Values defined in Kirman et al. (<u>2017</u> ; <u>2012</u>) for the food and water
		intake component of RORAL were study-specific.

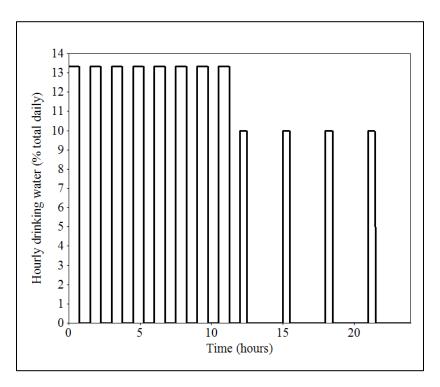


Figure C-13. *Ad libitum* drinking water assumptions applying data from the rat (<u>Spiteri, 1982</u>).

PBPK simulations were run assuming standard adult rodent physiology, with circadian
 drinking water pattern (Figure C-13), for a period of time until steady-state was achieved

3 (7 weeks). This was done to prevent an underestimation of the internal dose, which may result

- 4 from assuming continuous mg/kg-d exposure (less reducing agent depletion occurs if the dose is
- 5 spread evenly over 24 hours).
- 6 Local sensitivity analyses were performed on selected model parameters at a lower and an7 upper dose level using the finite difference method (Table C-19).

	Sensitivity coefficient at	Sensitivity coefficient at
Parameter	X mg/kg-d	X mg/kg-d
CRE01 (reducing capacity of fast binary reaction, mg/L)	-0.7410	-0.4692
CRE02 (reducing capacity of slow binary reaction, mg/L)	-0.2142	-0.6868
KLSD (gastric emptying rate, h ⁻¹)	0.8916	0.1877
VSLC (stomach lumen volume, fraction of BW)	-0.0410	-0.6081
K (rate constant for fast binary reaction, L/mg-h)	-0.7010	-0.0683
KS (rate constant for slow binary reaction, L/mg-h)	-0.2138	-0.4880
KVF (rate constant for slowest binary reaction, L/mg-h)	-0.0046	-0.0206
PHS (stomach pH)	8.3698	5.2725

Table C-19. Normalized sensitivity coefficients of rat gastric model parameters with respect to average daily dose escaping stomach reduction

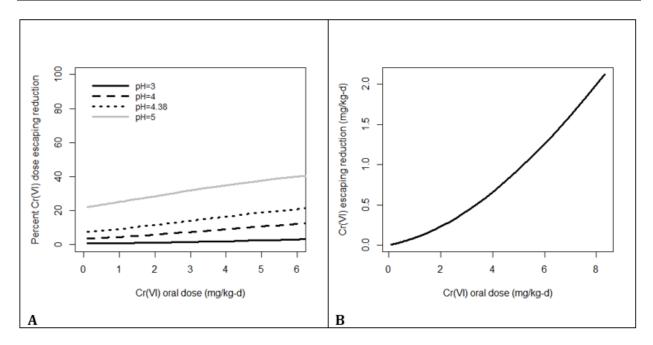


Figure C-14. (a) Percent Cr(VI) escaping stomach reduction (and being emptied to the small intestine) as a function of oral Cr(VI) dose for different values of baseline stomach pH (rat); (b) dose escaping stomach reduction for the rat using standard assumption at PHS = 4.38.

Because the internal dose is very close to linear (Figure C-14), benchmark dose modeling
can be performed on the basis of the external oral dose, and PBPK model adjustments can be done
in subsequent steps. Table C-20 below lists the predicted internal doses for the (NTP, 2008) 2-year
drinking water bioassay. This table includes values calculated at the 1-year time point for males.
Additionally, BMD modeling was performed on the basis of internal dose to evaluate the difference
between PODs derived from internal-dose and external-dose BMD modeling (difference was 1.2%
for liver ALT).

Cr(VI) concentration	TWA Dose (mg/kg-d) at 2 years	Cr(VI) dose escaping stomach reduction (mg/kg-d) at 2 years	TWA Dose at 1 year (mg/kg-d)	Cr(VI) dose escaping stomach reduction at 1 year (mg/kg-d)	TWA dose at 90 days (mg/kg-d)	Cr(VI) dose escaping stomach reduction at 90 days (mg/kg-d)
Females						
5	0.248	0.0195	0.0294	N/A	N/A	N/A
20	0.961	0.0881	1.14	N/A	N/A	N/A
60	2.60	0.339	3.01	N/A	N/A	N/A
180	7.13	1.66	8.28	N/A	N/A	N/A
Males						
5	0.200	0.0156	0.237	0.0187	0.413	0.0335
20	0.760	0.0683	0.882	0.0811	1.46	0.149
60	2.10	0.264	2.49	0.336	4.30	0.737
180	6.07	1.40	7.19	1.79	12.0	3.82

 Table C-20. Lifetime average daily internal doses for the rat during the NTP

 (2008)
 2-year bioassay of sodium dichromate dihydrate (pH = 4.38)

TWA BW at 2 years are: 450g (males), 260g (females). TWA BW at 1 year are: 395g (males), 215g (females). TWA BW at 90 days are: 246g (males). No relevant dose-response 1-year data for female rats. Oral doses assumed the circadian rat drinking water profile (<u>Spiteri, 1982</u>).

Table C-21. Lifetime average daily internal doses for the rat during the NTP(2007b)90-day bioassay of sodium dichromate dihydrate (pH = 4.38)

Cr(VI) concentration	TWA Dose (mg/kg-d) at 90 days	Cr(VI) dose escaping stomach reduction (mg/kg-d) at 90 days
Females		
0	0	0
21.8	1.74	0.181
43.6	3.49	0.500
87.2	6.28	1.26
174.5	11.5	3.33
349	21.3	9.00
Males		
0	0	0
21.8	1.74	0.188
43.6	3.14	0.446
87.2	5.93	1.22
174.5	11.2	3.38
349	20.9	9.22

 $BW_A = 0.160 \text{ kg} \text{ (females)}, 0.232 \text{ kg} \text{ (males)}$

Species/ sex	Dataset	BMR	Internal ^a BMD mg/kg-d	Internal ^a BMDL mg/kg-d (linear model) ^b	Internal dose derived from external BMDL _{1RD} (exponential 2 model) ^b	% diff.
Rat/M	Liver ALT (<u>NTP,</u> <u>2008</u>)	1RD	0.214	0.166	0.168	1.2

Table C-22. Comparison of internal-dose points of departure based on external-dose BMD modeling and internal-dose BMD modeling

^aDose escaping stomach reduction in rodent (mg/kg-d) estimated by pharmacokinetic modeling. ^bData were amenable to BMD modeling with the highest dose omitted.

1

C.1.5.5. General PBPK model considerations

2 Model estimates are based on physiological parameters that are near the standard 3 reference values in each species. Chromium ingestion may be associated with a water intake 4 (which increases volume of the stomach contents and potentially dilutes reducing agent) and food 5 intake (which increases gastric juice production and volume and alters pH and gastric emptying). 6 Simulations in the human and the rodents will both assume that RORAL (total gastric 7 contents rate into stomach, L/hr) is equal to KLSD (gastric emptying rate, hr⁻¹) multiplied by VSL 8 (gastric contents volume, L). The <u>Kirman et al. (2017)</u> model instead calculates gastric contents 9 volume as a function of RORAL and KLSD. For rats and humans, the model produces reasonable 10 values for stomach contents volume, but for mice, the stomach volume is outside the range 11 measured by Mcconnell et al. (2008). Since the individual-level components of the RORAL 12 parameter (gastric juice production, saliva production, and time-varying water and food ingestion) 13 have higher uncertainty than stomach volume (which is a single, measurable parameter), this 14 assessment defines a value for VSL rather than for RORAL. 15 Previously, in Kirman et al. (2012) and Sasso and Schlosser (2015), a mathematical 16 discrepancy existed since the chromium concentration was determined by the volume of the 17 stomach lumen, while the reducing agent concentration was determined by volume of stomach 18 contents (which was a function of RORAL and gastric emptying). The volumetric basis for Cr(VI) 19 and reducing agent concentrations should be the same because they both coexist in the same 20 reaction volume. If RORAL, gastric contents volume, and gastric emptying are related by a mass 21 balance equation, the volumetric basis for concentration calculation is the same for Cr(VI) and 22 reducing agent, and the discrepancy is resolved. Simulating gastric kinetics using physiology that is 23 not harmonized (i.e., with the discrepancy between gastric lumen volume and steady-state gastric 24 contents volume) leads to high internal doses in all species (i.e., >20-70% of the dose escaping 25 reduction). This is because the mass balance of the gastric contents consistently produces a volume 26 significantly lower than the stomach lumen volume. The rate of reduction is dependent on the 27 chromium concentration, and the predicted chromium concentration may be over-diluted if 28 dividing chromium mass by lumen volume instead of gastric contents volume.

1 If it is assumed that most Cr(VI) that escapes the stomach reduction is absorbed into the 2 system (which is reasonable given the high pH and surface area in the small intestine, and rapid 3 uptake of Cr(VI)), the modeling results in this assessment agree with in vivo pharmacokinetic 4 studies. Studies in rodents (Fébel et al., 2001; Thomann et al., 1994) have estimated that 5 approximately 10% of an ingested Cr(VI) dose might ultimately be absorbed into the system as 6 Cr(VI) when compared to Cr(III) (which is absorbed less readily). In humans, the Cr(VI) absorbed 7 following oral ingestion has been estimated to be lower (Finley et al., 1997; Kerger et al., 1997; Kerger et al., 1996; Paustenbach et al., 1996). An in vitro Cr(VI) bioaccessibility study estimated 8 9 that a significant percentage of Cr(VI) may be bioaccessible in humans at pH>3, even at low doses, 10 but that bioaccessibility decreases sharply at lower values of pH (Wang et al., In Press) (in press).

C.1.6. Literature overview of studies identified as ADME

11 Table C-23 presents a summary of studies that contain primary in vivo pharmacokinetic 12 data in rats, mice, and humans following Cr(VI) exposure. These tables indicate whether studies 13 contained concurrent data for Cr(III) exposure, as these data are informative in directly assessing 14 differences between Cr(VI) and Cr(III) kinetics. 15 Table C-24 presents a summary of studies that contain in vitro or ex vivo data related to 16 absorption and/or reduction in the GI tract or blood. These studies primarily focus on quantitative 17 analysis of kinetics. Tables C-23 and C-24 also indicate whether a study has been used 18 quantitatively or qualitatively in the development of any previously published physiologically 19 based pharmacokinetic (PBPK) model. 20 Table C-25 presents a summary of studies related to the distribution and reduction of Cr(VI) 21 in a variety of systems. These studies differ from those in Table C-24 in that the experiments 22 primarily focused on mechanisms by modifying the enzymes or transport carriers in the systems 23 tested. Tables C-23 to C-25 include only those studies pertaining primarily to Cr(VI) 24 pharmacokinetics, and do not include studies that primarily address Cr(VI) toxicity. 25 Table C-26 presents a summary of studies related to human biomonitoring of Cr(VI) in 26 industrial or volunteer populations that focus primarily on data on biomarkers of exposure as 27 opposed to human health effects. These differ from human studies in Table C-23 in that the 28 exposure profiles are not controlled or may be difficult to estimate. 29 All tables in this section are slightly modified from those released in September 2014 due to 30 a rescreening of articles from the literature search, addition of new studies, and public comments.

Reference	Species	Tissue matrices and notes	Cr(III) control ^a
		Intravenous (IV) injection	
Cavalleri et al. (1985)	Rat	Bile, whole blood, and plasma. 2 hour time course data.	Ν
Cikrt and Bencko (1979)	Rat	Total body burden, urine, feces, liver, kidneys, plasma, and GI tract wall. 24 hour time course data.	Y
Marouani et al. (2012)	Mouse	Fetus, placenta, liver, kidney, serum. Injection to pregnant mice at day 13 or 16 of gestation. Spot sample 1 hour after injection.	Y
<u>Liu et al. (1994)</u> Liu et al. (1996)	Mouse	Blood, liver, heart, spleen, kidney, and lung. Kinetics of pentavalent chromium (Cr V) following Cr VI reduction. 60 minute time course data.	Ν
Norseth et al. (1982)	Rat	Bile and liver. 2 hour time course data.	Y
<u>Merritt et al. (1989)</u>	Hamster	Urine, plasma, RBC, kidney, spleen, liver, and lung. Monthly or weekly injections. 5 week post exposure time course data	Ν
<u>Richelmi et al. (1984)</u>	Rat	Blood. In vivo Cr VI measurement of reduction and capacity. Spot sample at 1 minute post exposure.	Ν
		Intraperitoneal (IP) injection	
Afolaranmi and Grant (2013)	Rat	Liver, kidney, heart, brain, lung, spleen, testes, blood, urine, and feces. Effect of ascorbic acid. Spot sample 24 hours post exposure.	Ν
<u>Balakin et al. (1981)</u>	Rat	Liver, whole body (excluding liver), wall of cecum, chime of cecum, urine, and feces. Spot sample 30 minutes post exposure. This is a chelation study that included a Cr VI-only group.	Y
Bryson and Goodall (1983)	Mouse	Total body burden, urine, and feces. 21-day time course data.	Y
Bulikowski et al. (1999)	Rat	Skin. Injections over 30 days. Micronutrient interaction study with Cr VI-only groups.	Ν
<u>Döker et al. (2010)</u>	Mouse	Liver, kidney, brain, lung, heart, and testis. Effect on other essential metals analyzed. Spot sample at 12 hours post exposure.	Ν
<u>Manzo et al. (1983)</u>	Rat	Bile, plasma, liver, urine, feces, stomach, small intestine, and large intestine. Detection in GI tissues post exposure. 2 hour time course data.	Y
<u>Ogawa et al. (1976)</u>	Mouse	Urine, feces, whole body. Spot sample data at 48 hours post exposure.	Y
<u>Sankaramanivel et al.</u> (2006)	Rat	Bone (vertebrae, femur, and calvaria). IP injections once per day for 5 days.	Ν
<u>Suzuki (1988b)</u>	Rat	Plasma, whole blood. 60 minute time course data.	N

Table C-23. In vivo Cr(VI) pharmacokinetic studies

Reference	Species	Tissue matrices and notes	Cr(III) control ^a
<u>Ueno et al. (1995)</u>	Mouse	Liver. Total Cr and pentavalent (Cr V). 12-hour time course data.	N
<u>Minigaliyeva et al.</u> (2014)	Rat	Liver, kidney, spleen, brain. Injection 3 times per week (less than 7 weeks). Spot sample at end of study.	N
<u>Yamamoto et al. (1981)</u>	Mice <i>,</i> rabbits	Urine, feces, blood, liver. Single IP (50 or 200 umol/kg), time course data over undetermined length (at least 7 days)	N
		Subcutaneous injection	
<u>Mutti et al. (1979)</u>	Rat	Urine, spleen, liver, renal cortex, renal medulla, lung, and bone. 48 hour (single exposure) and 12 week (repeated exposure) time course data.	N
<u>Pereira et al. (1999)</u>	Mouse	Liver, kidney, and spleen. Multiple injections (once per week for varying number of weeks). Spot sample at 1 week after last exposure.	N
Yamaguchi et al. (1983)	Rat	Urine, feces, lung, liver, kidney, brain, heart, spleen, testis, muscle, hair, blood. 30-day time course data.	Y
		Dermal	
<u>Corbett et al. (1997)</u>	Human	Urine, RBC, plasma. 4-daytime course data	
		Oral	
Collins et al. (2010) (National Toxicology Program studies) <u>NTP (2008)</u> <u>NTP (2007b)</u>	Rat, Mouse, Guinea pig	Urine, feces, erythrocytes, plasma, liver, kidney, glandular stomach, and forestomach (2-year study). Multiple studies. Blood, kidney, and femur (21-day study in rats only). No mouse urinary data for chronic Cr III study. Chronic Cr III/Cr VI data at multiple sacrifice times (after 2-day washout period). Time course (2-day) gavage data (urine/feces only) for Cr III only. Guinea pig data only at 21 days.	Y
Donaldson and Barreras (1966)	Human, rat	Urine, feces. Both oral dose, and perfusion to the small intestine (bypassing stomach reduction) to assess Cr VI reduction and absorption.	Y
Iranmanesh et al. (2013)	Rat	Liver, kidney, intestine, spleen, and testicle. Drinking water exposure for 60 days. Spot sample after 7-day washout period. This is a chelation study that included a Cr VI-only group.	N
Finley et al. (1997) Finley et al. (1996) Kerger et al. (1997) Kerger et al. (1996) Paustenbach et al. (1996)	Human	Human pharmacokinetic volunteer studies. Urine, plasma, and RBC. Multiple exposure scenarios (i.e., single and repeated doses). Time course data over multiple days before, during and after exposure.	Y
<u>Kirman et al. (2012)</u>	Rat, Mouse	Oral cavity, stomach, duodenum, jejunum, ileum, plasma, red blood cell (RBC), and liver. Spot sample at end of 90-day exposure period.	N

Reference	Species	Tissue matrices and notes	Cr(III) control ^a
<u>Saxena et al. (1990)</u>	Rat, Mouse	Oral (drinking water) study in pregnant rodents. Maternal blood, placenta, and fetus.	N
Sutherland et al. (2000)	Rat	Bone, kidney, liver, and testes. Exposure for 44 weeks, with spot samples 4–6 days post-exposure (no time course data).	N
<u>Thomann et al. (1994)</u>	Rat	Blood, liver, kidney, spleen, bone, and total carcass. 6 week exposure followed by 140 days post exposure. Time course data of pre and post exposure periods.	N
Wang et al. (2015)	Rat	Heart, kidney, spleen, liver, lung, brain, stomach, testis, duodenum. Spot sample at end of 4-week exposure period (after overnight starvation).	N
<u>Witmer et al. (1989)</u>	Rat	Blood, kidney, spleen, liver, lung, brain, testes. Spot sample at end of 7- and 14-day exposure periods (24 hours after last treatment).	N
Yawets et al. (1984)	Rat	Liver. Single dose, spot sample.	N
		Intratracheal	
<u>Bragt and van Dura</u> (1983)	Rat	Urine, feces, blood, heart, lungs, spleen, kidneys, liver, pancreas, testes, and bone marrow (femur). 50-day post exposure time course data for whole body retention and blood. 10-day time course data for urine and feces. Spot sample data for other tissues at 50 days post exposure. 3 different Cr VI formulations.	N
Edel and Sabbioni (1985)	Rat	Lung, trachea, kidney, liver, spleen, pancreas, epididymis, testes, brain, heart, thymus, femur, skin, fat, muscle, stomach, small intestine, large intestine, blood, plasma, RBC, lung lavage, urine, and feces. Spot sample in tissues at 24 hours post exposure. 7-day time course data of excretion.	Y
Perrault et al. (1995)	Sheep	Bronchoalveolar lavages (BAL), lung. Exposure and analysis of particulate forms. 30-day time course data for BAL; spot sample for lung at day 30.	Y
<u>Gao et al. (1993)</u>	Rat	Blood, plasma, urine, and lymphocytes. 72-hour time course data.	Y
Vanoirbeek et al. (2003)	Rat	Lung, liver, plasma, RBC, urine. Spot tissue samples at 2 and 7 days post exposure. 7-day time course data of urinary excretion.	Y
Wiegand et al. (1988) Wiegand et al. (1987) Wiegand et al. (1984a)	Rabbit	Blood, plasma, RBC, liver, kidneys, urine, lung, and trachea. 4-hour post exposure time course data.	Y
<u>Song et al. (2014)</u>	Rat	Blood, plasma, RBC, lung. Once per week exposure for 28 days. Spot sample after overnight fast.	

Reference	Species	Tissue matrices and notes	Cr(III) control ^a
		Inhalation	I
Antonini et al. (2010)	Rat	Lung, heart, kidney, liver, spleen, brain. 1, 4, 25, 105 days exposure to welding fume.	N
<u>Cohen et al. (1997)</u>	Rat	Lung (and lung fluids/subcompartments), liver, kidney, and spleen. Exposure for 5 hours/day, 5 days a week. Spot samples at 2 or 4 weeks (24 hours post exposure)	N
Kalliomäki et al. (<u>1983</u> ; <u>1982</u>)	Rat	Blood, liver, kidneys, stomach, spleen and lung. Welding arc fumes (with chromium concentration measurement). Exposures vary in hours per day or number of days exposed. Spot samples at 24 hours post exposure. 106-day time course data for elimination study.	N
<u>Suzuki et al. (1984)</u>	Rat	Lung, whole blood, plasma, RBC, kidney, spleen, heart, liver, and testis. Aerosolized Cr III and Cr VI. Exposure for 2 or 6 hours. 7-day time course data.	Y
		Multiple routes	
<u>Coogan et al. (1991b)</u>	Rat	RBC, WBC. Oral and IV injection. Spot samples at 1 hour, 24 hours, and 7 days post exposure.	N
Fébel et al. (2001)	Rat	Oral and intrajejunal injection. Urine, feces, jejunum, liver, portae, hepatica, and cava caudalis. Spot sample data (at 60 minutes for intrajejunal injection, and 3 days for oral exposure).	Y
<u>Kargacin et al. (1993)</u>	Rat <i>,</i> Mouse	Oral and IP injection. Single and repeated exposures. Liver, kidney, spleen, femur, lung, heart, muscle, and blood. Spot sample data at 4 and 8 weeks for chronic drinking water, 4 and 14 days for repeated IP injections. Spot 24/72 hour data for single IP exposures.	N
MacKenzie et al. (1959)	Rat	Oral and injection into intestine. Stomach, intestine, blood, liver, kidney, spleen, urine, and feces. Spot samples 1, 7, and 14 days post-exposure after single oral dose. Spot sample 4 hours after intestinal injection and stomach tube experiments.	Y
<u>Miyai (1980)</u> Miyai et al. (1980)	Rat <i>,</i> Mouse	Inhalation, intratracheal. Lung, plasma, RBC, spleen, kidney, duodenum, testes, urine, and feces. Long-term (30+ day) time course data.	Y
O'Flaherty and Radike (1991)	Rat	Oral and inhalation. Lung, liver, intestine, kidney, muscle, blood, urine, feces. Exposure for 40 days, with time course data over 60 days	Y
<u>Sayato et al. (1980)</u>	Rat	Oral gavage and IV injection. Blood, brain, skull, thyroid, lung, heart, liver, spleen, pancreas, kidney, adrenal, stomach, intestine, bone, muscle, testis, urine, and feces. 30-day time course data of feces/urine and body retention. 5-day time course data for tissues.	Y

Reference	Species	Tissue matrices and notes	Cr(III) control ^a
<u>Susa et al. (1988)</u>	Mouse	Oral and IP injection. Liver, kidney, spleen, testes, urine and feces. Spot sample 24 hours post exposure. 3-day time course data for urine and feces. This is a chelation study that included Cr VI-only groups.	Ν

^aNotes (yes/no) if study also collected data for Cr III kinetics.

^bNotes (yes/no) whether data from a study were used qualitatively or quantitatively in a published PBPK model.

Table C-24. In vitro and ex vivo Cr(VI) studies primarily focused o	n
pharmacokinetics in the GI tract and blood	

Reference	Species	Test system	Notes		
Gastric systems					
<u>De Flora et al.</u> (<u>1987a)</u>	Human	Gastric juice	Hourly gastric juice samples via nasogastric tube. Cr VI reduction capacity estimated for fed and fasted humans. Circadian effects also observed.		
<u>De Flora et al. (1997)</u>	Human	Intestinal bacteria, gastric juice	Reduction and mutagenic activity of Cr VI analyzed at 60 min. Reducing capacities derived for intestine and other tissues (blood, RBC, lung fluids/bacteria, saliva).		
<u>De Flora et al. (2016)</u>	Human	Gastric juice	Reduction and mutagenic activity of Cr VI analyzed at 60 min.		
Donaldson and Barreras (1966)	Human, rat	Gastric juice; intestinal rings	Binding of Cr VI and Cr III by gastric juice (at low and high pH), and uptake by intestinal rings observed.		
<u>Gammelgaard et al.</u> (1999)	Rat	Artificial gastric juice; small intestine	1st order reduction rate half-life derived; permeability parameters through rat jejunum derived.		
<u>Kirman et al. (2013)</u>	Human	Gastric juice (fasted)	2nd-order reduction kinetics for human gastric juice derived. pH-dependent model derived.		
<u>Kirman et al. (2016)</u>	Human	Gastric juice (multiple types)	Revised 2nd-order reduction kinetics and pH model. Analysis of fed, fasted, and proton pump inhibitor (PPI) gastric samples.		
Proctor et al. (2012)	Rat, Mouse	Gastric juice and contents	2nd-order reduction kinetics derived. Reduction capacities estimated for both species.		
<u>Shrivastava et al.</u> (2003)	Rat	Crypt, mid and upper villus, intestinal loop	Cr VI reduction in various tissue types. Capacity and time needed to reduce Cr VI analyzed.		
<u>Skowronski et al.</u> (2001)	N/A	Artificial gastric juice	Oral bioaccessibility study. Examined Cr VI reduction in a simulated soil matrix/gastric juice environment.		
	,	Reduction	and/or uptake in RBCs		
<u>Aaseth et al. (1982)</u>	Human	RBC	Reduction rate of Cr VI in RBC, and trapping of reduced Cr III observed.		
Afolaranmi et al. (2010)	Human	Plasma, RBC, whole blood	Distribution into different blood components (RBC and plasma) observed.		
<u>Alexander and</u> Aaseth (1995)	Human, Rat	Human RBC, rat liver cells	Cellular uptake and reduction analyzed. Effect of pH and anion carrier inhibitors observed.		
Beyersmann et al. (1984)	Human	RBC	RBC permeability and reduction analyzed.		
<u>Branca et al. (1989)</u>	Human	Human RBC	Reduction of Cr VI in RBC observed.		
<u>Coogan et al. (1991b)</u>	Human, Rat	RBC, WBC, whole blood	Uptake kinetics, and distribution in cells examined.		
Corbett et al. (1998)	Human	Plasma, blood	Reduction in plasma quantified in fed/fasted individuals.		

This document is a draft for review purposes only and does not constitute Agency policy.C-46DRAFT—DO NOT CITE OR QUOTE

Reference	Species	Test system	Notes
<u>Devoy et al. (2016)</u>	Human	Plasma, RBC, whole blood	Uptake and retention by RBCs for different Cr VI and Cr III species.
Kortenkamp et al. (1987)	Human	RBC	Cellular uptake rates analyzed.
<u>Richelmi et al. (1984)</u>	Rat	RBC, plasma	Reduction of Cr VI in RBC and plasma observed.
<u>Sakurai et al. (1999)</u>	Rat	Blood	Reduction and fate in blood (focus on pentavalent, Cr V).
Wiegand et al. (1985)	Human, Rat	RBC	Uptake into RBC analyzed.

^aNotes (yes/no) whether data from a study were used qualitatively or quantitatively in a published PBPK model.

Table C-25. In vitro studies primarily examining distribution and reduction mechanisms

	Human	Rat
Liver	Jannetto et al. (2001) Lewalter and Korallus (1989) Myers and Myers (1998) Pratt and Myers (1993) Levina et al. (2007)	Aiyar et al. (1992)Alexander et al. (1982)Alexander et al. (1986)Arillo et al. (1987)De Flora et al. (1985)Garcia and Jennette (1981)Gruber and Jennette (1978)Gunaratnam and Grant (2001)Mikalsen et al. (1989)Mikalsen et al. (1991)Ohta et al. (1980)Rossi and Wetterhahn (1989)Rossi et al. (1988)Standeven and Wetterhahn (1991a)Ueno et al. (1990)Wiegand and Bolt (1985)Wiegand et al. (1986b)
Lung	Harris et al. (2005) Petrilli et al. (1986) Petruzzelli et al. (1989) Wong et al. (2012) Luczak et al. (2016) Krawic et al. (2017) Levina et al. (2007)	<u>De Flora et al. (1985)</u> <u>Suzuki (1988a)</u> <u>Suzuki and Fukuda (1990)</u> <u>Standeven and Wetterhahn (1992)</u>
RBC	Ormos and Mányai (1974) Ormos and Mányai (1977) Buttner and Beyersmann (1985) Buttner et al. (1988) Ottenwälder et al. (1987)	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

	Human	Rat
	Ottenwaelder et al. (1988) Wiegand et al. (1984b) Wiegand and Ottenwaelder (1985) Wiegand et al. (1986a)	
Other		Berndt (1976) (kidney) Standeven and Wetterhahn (1991a) (kidney) Debetto et al. (1988) (thymocytes) Arslan et al. (1987) (thymocytes) Liu et al. (1997) (skin) Mertz et al. (1969) (embryo)
Miscella	neous systems	
ovary Dillon et Krepkiy e O'Brien e Kitagawa	n and Uyeki (1987), Ortega et al. (2005), Sehln al. (2002): Chinese hamster lung et al. (2003): Rabbit liver metallothionein et al. (1992): Glutathione and other thiols (not et al. (1982): Bovine RBCs.	neyer et al. (1990), Sognier et al. (1991): Chinese hamster specific to a particular tissue or species).

Wei et al. (2016): HeLa cells and MCF-7 cells.

Wada et al. (1983): Dog liver.

Merritt et al. (1984): Rabbit blood

Table C-26. Human biomonitoring and biomarker studies

Reference	Biomarker and industry/exposure notes
<u>Chang et al. (2006)</u>	Whole blood / Residents living near electroplating factories
<u>Gargas et al. (1994)</u>	Urine / Human volunteer study of ingested chromite ore processing residue in soil
<u>Goldoni et al. (2006)</u> <u>Goldoni et al. (2010)</u> <u>Caglieri et al. (2006)</u>	Exhaled breath, plasma, RBCs, urine / Chrome plating
<u>Goldoni et al. (2008)</u>	Exhaled breath, pulmonary tissues / Lung cancer patients
<u>Kalahasthi et al. (2006)</u>	Plasma / Chrome plating (Cr(VI) and Cr(III) workers)
Lukanova et al. (1996)	Lymphocytes, RBCs, urine / Chrome plating
Miksche and Lewalter (1995)	RBCs, plasma, urine, whole blood / Review of multiple studies and workshop proceedings containing some original data
Muttamara and Leong (2004)	Blood, urine / Chromium alloy factory
Nomiyama et al. (1980)	Urine / Population from geographic areas of known chromium pollution
Pierre et al. (2008)	Urine / Chrome plating
<u>Sjogren et al. (1983)</u> Welinder et al. (1983)	Urine / Stainless steel welding
Minoia and Cavalleri (1988)	Plasma, RBCs, urine / Dichromate-producing factory (multiple job categories)

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference	Biomarker and industry/exposure notes
<u>Minoia et al. (1983)</u>	Urine / Workers exposed to Cr(VI) and Cr(III)
Bertram et al. (2014)	Urine / Welding (controlled experiment)
<u>Black et al. (2015)</u>	Urine / House dust (remediation study)
<u>Cena et al. (2015)</u>	Lung deposition (via deposition sampler) / Welding
<u>Ohta and Inui (1992)</u>	Lung tissue (autopsy)/ Chromate factory
Verschoor et al. (1988)	Urine/ Chrome plating
Mignini et al. (2009) Mignini et al. (2004)	Urine blood/ Leather working
<u>Coniglio et al. (1990)</u>	Urine

T _{1/2} (minutes)	KLSD ^a (hr ⁻¹)	Reference
Rat		
17	2.4	Kirman et al. (2012)
15 (fed)	2.77	GastroPlus defaults
7.5 (fasted)	5.55	
77 (liquid/semisolid)	0.54	Qualls-Creekmore et al. (2010)
118 (solids)	0.35	Enck and Wienbeck (1989)
1.1 fasted (liquid)	38	Takashima et al. (2013)
62 fed, 9 fasted ^b (liquid)	0.67, 4.6	Poulakos and Kent (1973)
119–138 (solid)	0.30–0.35	Schoonjans et al. (2002)
21–27 (semisolid)	1.5–2	Purdon and Bass (1973)
4.95 fasted (liquid)	8.4	Kataoka et al. (2012)
16.5 (liquid)	2.52	Scarpignato et al. (1984)
Mouse	1	
4.4	9.4	Kirman et al. (2012)
9.6 (fed)	4.33	GastroPlus defaults
2.4 (fasted)	17.3	
30.6	1.36	Inada et al. (2004)
16–17 fed (semisolid)	2.60	Roda et al. (2010)
2 fasted (semisolid)	20.8	
9–11 (liquids)	3.78–4.62	Symonds et al. (2002)
158 (solids)	0.26	
20 (non-nutrient liquid)	2.08	Symonds et al. (2008)
36 (nutrient liquid)	1.16	
91 (solids)	0.46	<u>Choi et al. (2007)</u>
30.6 (semisolid)	1.36	Osinski et al. (2002)
10 (non-nutrient liquid)	4.2	Miyasaka et al. (2004)
90 minutes (young mice) 58–67 min (old mice); pharmaceuticals	0.46 (young); 0.62–0.72 (old)	<u>De Smet et al. (2006)</u>
28 (solids, 19–38)	1.49 (1.09–2.19)	Bennink et al. (2003)
15 (liquids, 11–19)	2.77 (2.19–3.78)	

Table C-27. Gastric emptying rates for rats, mice, and humans expressed as half-emptying time $(T_{1/2})$ and transit time (KLSD). Vehicle indicated in parentheses if known.

T _{1/2} (minutes)	KLSDª (hr⁻¹)	Reference
Human		
35	1.2	Kirman et al. (2013)
13 (liquid, fasted)	3.20	Mudie et al. (2014)
Fasted 15.8 (water);12 (saline); 75 (glucose)	2.63; 3.47; 0.55	Mudie et al. (2010) (review article; see citation for further details of individual studies)
Fed 44 ± 15, 40 ± 13, 32 ± 7, 48 ± 9, 76 ± 6 (liquids); 105 ± 21 (solids)	0.55–1.30 (liquids); 0.40 (solids)	
30	1.39	ICRP (2006, 2002)
30 (fed)	1.39	GastroPlus defaults
7.5 (fasted)	5.55	

 a KLSD = log_e(2)/T_{1/2} × 60

^b<u>Poulakos and Kent (1973)</u> values from gastric emptying equation (1-exp(-t/tau), tau = 13 minutes fasted, 89 minutes fed, derived assuming 90% emptying at 30 minutes for the fasted state, 74% emptying at 120 minutes for the fed state)

- 1 Time-weighted average daily doses differ from doses presented in the evidence tables of the
- 2 April 2014 preliminary materials document (U.S. EPA, 2014b), since those values were based on the
- 3 average of three lifestages (and not weekly/monthly time-course data). Round-off error occurred
- 4 at the low doses due to lack of significant figures reported in NTP lifestage summary data. Time-
- 5 weighted average daily doses for mice and rats are presented below in Tables C-28 and C-29,
- 6 respectively. Lifetime average daily internal doses for the rat during the NTP 2-year bioassay (at
- 7 different data collection times) are presented in Table C-30.

Table C-28. Time-weighted average daily doses in mice for the NTP (2008)2-year bioassay of sodium dichromate dihydrate.Doses in mg/kg-d Cr(VI).

Original average daily dose (mg/kg-d)	Time weighted average daily dose (mg/kg-d)	Percent difference
Female Mice		
0.38	0.302	20
1.4	1.18	15
3.1	3.24	4
8.7	8.89	2
Male Mice	· · ·	
0.38	0.450	18
0.91	0.914	0.4
2.4	2.40	<0.1
5.9	5.70	3

Table C-29. Time-weighted average daily doses in rats for the <u>NTP (2008)</u> 2year bioassay of sodium dichromate dihydrate. Doses in mg/kg-d Cr(VI).

Original average daily dose (mg/kg-d)	Time weighted average daily dose (mg/kg-d)	Percent difference
Female Rats		
0.24	0.248	3
0.94	0.961	2
2.4	2.60	8
7	7.13	2
Male Rats		
0.21	0.200	4
0.77	0.760	1
2.1	2.10	<0.1
5.9	6.07	3

Cr(VI) concentration	TWA Dose at 2 years (mg/kg-d)	TWA Dose at 1 year (mg/kg-d)	TWA dose at 90 days (mg/kg-d)	
Females				
5	0.248	0.0294		
20	0.961	1.14		
60	2.60	3.01		
180	7.13	8.28		
Males				
5	0.200	0.237	0.413	
20	0.760	0.882	1.46	
60	2.10	2.49	4.30	
180	6.07	7.19	12.0	

Table C-30. Time-weighted average daily doses in rats for the <u>NTP (2008)</u> 2year bioassay of sodium dichromate dihydrate at different time periods. Doses in mg/kg-d Cr(VI).

TWA BW at 2 years are 450g (males) and 260g (females). TWA BW at 1 year are 395g (males) and 215g (females). There are no dose-response data for female rats at 1-year for this assessment.

C.2. SUPPORTING EVIDENCE FOR SPECIFIC HEALTH EFFECTS

C.2.1. Respiratory Effects

1

C.2.1.1. Mechanistic studies relevant to noncancer respiratory toxicity

2 Mechanistic evidence investigating the biological pathways involved in respiratory toxicity 3 following the inhalation of Cr(VI) is summarized in Table C-31. Studies identified in preliminary 4 title and abstract screening as "mechanistic" were further screened and tagged as "inhalation" if 5 they were studies of humans or animals exposed via inhalation or intratracheal instillation and 6 conducted in lung tissues or cells, or in cells derived from lung tissues. Studies of systemic toxicity 7 following inhalation exposures are summarized in Section C.3.2. A total of 255 potentially relevant 8 respiratory mechanistic studies were identified. A prioritization strategy was used to identify the 9 evidence most informative to chronic human exposures: 10 Studies of respiratory organs and tissues from humans with quantified inhalation exposure • 11 to Cr(VI)

- Experimental animal (mammalian) studies of respiratory organs and tissues exposed to Cr(VI) via inhalation or intratracheal instillation
- In vitro studies in human primary or immortalized cells derived from respiratory tissues
- Any outcome measured in lung tissues except for those relevant to genotoxicity (see Section C.3.2.2)

- 1 Sixty-nine studies meeting these prioritization criteria were identified; these studies
- 2 focused primarily on oxidative stress, apoptosis, and cellular toxicity of the lung. Mechanistic
- **3** evidence relevant to Cr(VI)-induced genotoxicity is reviewed in C.3.2.2.

System	Exposure	Results	Comments	Reference
Oxidative stress				
<i>Exposed:</i> lead chromate pigment factory workers (n = 22) <i>Referents:</i> office workers from chromate factory (n = 16)	Mean (SD) duration of work among chromate pigment workers = 9.7 (20.5)* years Chromium measured in urine, blood, and air; air sampling for 200 minutes at flow rate of 2–3 l/min; urine and blood measured with flameless atomic absorption spectrophotometer Chromium in air ranged from below LOD (0.0005 mg/m ³ among office workers to 0.5150 mg/m ³ in high exposure area of factory (pulverizing process); mean (SD) chromium among exposed group in blood: 6.75 (3.30) µg/L; in urine: 12.97 (16.31) (µg/g creatinine)		Chromium levels in blood (which are a marker of recent exposure) were similar between exposed and control groups; this suggests that exposure misclassification may be contributing to the null effects reported in the study The authors also suggest that urinary chromium reflects chromium in reduced form, which might not reflect genotoxicity in blood cells No adjustment for supplements/vitamins or diet *SD appears incorrect	<u>Kim et al. (1999)</u>
Rat, Sprague-Dawley	0.25 mg/kg Na ₂ Cr ₂ O ₇ (0.09 mg Cr(VI)/kg) per day via Intratracheal instillation, 3 days	 ↑ 8-OHdG adducts ([32P] postlabeling) were detected in lung, but not liver ↑ DNA-protein crosslinks ↑ DNA fragmentation 	No measure of cytotoxicity	<u>lzzotti et al.</u> (1998)
Rat, Sprague-Dawley, male	0.18 or 0.9 mg/m ³ Na ₂ CrO ₄ solution mist inhalation, whole body exposures in 1 m ³ volumetric inhalation chambers for 1, 2, or 3 wks Cr levels in blood and urine increased with dose and duration	1 wk (only stat sig for 0.18 mg/m ³) ↓ 8-OHdG repair 1–3 wks	Cr levels confirmed in inhalation chambers with personal air samplers and measured in whole blood and urine Indicates Cr(VI) exposure both increases oxidative DNA damage and inhibits repair of these lesions	<u>Maeng et al.</u> (2003)

Table C-31. Mechanistic studies prioritized for informing potential Cr(VI)-induced respiratory toxicity

System	Exposure	Results	Comments	Reference
Rat, Sprague-Dawley, male	0.063 or 0.630 mg Cr/kg (as K ₂ Cr ₂ O ₇) via intratracheal instillation, 1x/wk, 4 wks	↑ 8-OHdG ↑ NF-кВ;↓ CC16 in club cells	Weekly instillations allow recovery period which may underestimate the responses, but significant effects were still reported. Also 个 relative lung weight, 个 albumin and total	
			protein level in BALF	
Apoptosis				
<i>Exposed:</i> Chromium workers diagnosed with lung cancer (n = 67 males)	Mean exposure time 16.7 ± 10.0(SD) years (range 1– 41 years)	In lung cancer tissues (preserved in paraffin blocks):	The information regarding potential exposure is sparse. There were also differences in the type of lung cancer between exposed and referent	<u>Halasova et al.</u> (2010)
<i>Referent</i> : male controls with lung cancer but without known exposure to chromium (n = 104)	Total and hexavalent Cr measured in soil and air samples taken 'in the vicinity of the workplace' using atomic absorption spectrometry. Mean values of Cr(VI) in air of smelting plants was 0.019–0.03 mg/m ³ . Soil chromium had a value of 137 mg/kg.	↓ survivin (anti- apoptotic) ↑ p53 (pro-apoptotic)	which may impact results. No information on smoking, which may be important to consider given all participants had lung cancer.	
Rat, Sprague-Dawley, male	0.25 mg/kg-bw Na ₂ Cr ₂ O ₇ per day via intratracheal instillation, 3 days	↑ apoptosis in bronchial epithelium and lung parenchyma	Exposures to Cr(VI) alone. TUNEL analysis, used to measure apoptosis, is a sensitive method of detection.	<u>D'Agostini et al.</u> (2002)
		↑ 13/18 apoptosis- related genes (cDNA array analysis) in lung	State another lab saw no lung cancer after similar treatment for 30 mos, so predict apoptosis is protective post-genotoxicity	
Lung cellular responses	•			
<i>Exposed:</i> Electroplaters (n = 42 females) <i>Referent:</i> Jail wardens, frequency matched on age, BMI, alcohol and smoking (n = 43 females)	Cr(VI) in plasma measured using atomic absorption spectrophotometry. Total Cr was not different between exposed and referent (means of 0.44 and 0.41 μg/L, respectively).	个 cytotoxicity in exfoliated buccal and nasal mucosa	Workers performed bright plating that has lower potential for Cr(VI) exposure, and state that there was good compliance with PPE usage. This might account for the low plasma Cr(VI) levels and similarity between exposed and referent. There was co-exposure to cobalt although again levels were not different between exposed and referent. There was a high prevalence of smoking (frequency matched between exposed and referent) which may affect results.	<u>Wultsch et al.</u> (2017)

This document is a draft for review purposes only and does not constitute Agency policy.

System	Exposure	Results	Comments	Reference
Rat, F-344, male	360 μg/m ³ K₂CrO₄ via inhalation, 5 h/day, 5 days/week, 2 or 4 weeks	 ↑ total recoverable cells, neutrophils (PMN), and monocytes at 2 and 4 weeks in BALF; decline at 4w compared to 2w ↓ % PAM in BALF; no change in total PAM levels No changes in cell viability (80–90%) among exposure groups. 	Moderately informative: shorter exposure period but results generally support similar findings from chronic duration studies from same group. Ex vivo PAMs (exposed in vivo to K ₂ CrO ₄): Spontaneous: ↑ H ₂ O ₂ , no changes in superoxide anion LPS-inducible: ↑ NO, ↓ IL-1 and TNFα, ↑ IL-6	<u>Cohen et al.</u> (1998)
Rat, Long-Evans hooded, male	2 μg CaCrO₄ (insoluble) or 2 μg CrO₃ (soluble) via intratracheal instillation, 9 h	In vivo exposure: no effect on cell viability In vitro exposure: ↓ viability	Less informative: short exposure period; trypan blue dye exclusion is a less sensitive measure to determine cell viability	<u>Galvin and</u> Oberg (1984)
Rat, Sprague-Dawley, male and female	0.01, 0.05, 0.25 mg/kg Na ₂ Cr ₂ O ₇ - 2H ₂ O, 5x/wk, or 0.05, 0.25, 1.25 mg/kg, 1x/wk via intratracheal instillation, 30 weeks	Tumors that appeared to arise from tissues with cellular inflammatory foci involving alveolar macrophages, proliferation of bronchiolar epithelium or alveolar type II cells, and chronic inflammatory thickening of alveolar septa. The other main type of nontumor lesion was severe damage to the bronchioloalveolar region with alveolar atelectasis and subsequent confluent fibrosis.		<u>Steinhoff et al.</u> (1986)
Rat, Sprague-Dawley, male	0, 0.063 and 0.630 mg Cr/kg (as K ₂ Cr ₂ O ₇) via intratracheal instillation, 1x/wk, 4 wks	↑ relative lung weight ↑ albumin and total protein level in BALF	More informative: weekly instillations allow recovery period which may underestimate the responses, but significant effects were still reported.	<u>Zhao et al.</u> (2014)

This document is a draft for review purposes only and does not constitute Agency policy.

System	Exposure	Results	Comments	Reference
		↑ NF-κB; ↓ CC16 in club cells	Also 个 8-OHdG	
In vitro studies of oxidative s	tress, cellular toxicity, and death i	n primary and immortalize	ed human lung cells	1
HLF fetal human lung fibroblasts L-41 human epithelial-like cells	1, 2, 5, 10, 15, 20, 25, and 30 μM K ₂ Cr ₂ O ₇ , 2, 24 or 48 h	 ↑ cytotoxicity (MTT assay), dose- and duration-dependent (significant ≥20 μM); cytotoxicity recovered ≤5 μM after 24 h ↑ ROS (DCFH-DA) at 2 h ↑ antioxidant enzymes (glutathione peroxidase, glutathione reductase, catalase) 1–5 μM 	Oxidative stress and antioxidant enzymes induced at mildly toxic μM concentrations	Asatiani et al. (<u>2011</u> ; <u>2010</u>)
H460 human lung epithelial cells	10–50 µM Na₂Cr₂O⁊, 12 h	↑ ROS ↑ apoptosis; abrogated by antioxidants MnTBAP, catalase, DPI, or ROT, in cells transfected with antioxidant enzymes SOD or GPx, or by specific caspase inhibitors ↓ Bcl-2; abrogated by MnTBAP	Cr(VI) induces apoptosis by downregulating Bcl-2 via superoxide anion-mediated ubiquitin- proteasomal degradation and mitochondrial caspase-9 activation	<u>Azad et al.</u> (2008)
Human lung epithelial cells		↑ Src family kinases (SFK) → ↑ JNK	SFK activation was not completely reliant on ROS signaling	<u>Barchowsky</u> (2006)
BEAS-2B human bronchial epithelial cells	0.3 (nontoxic) or 1.8 (toxic) uM Cr(VI), 48 h	Cytotoxic signaling pathways: glycolysis regulation (GSK3beta, p70S6K), oxidative stress and inflammation (JNK, MTF-1), and protein degradation (UBC)		<u>Bruno et al.</u> (2016)

System	Exposure	Results	Comments	Reference
A549 human lung adenocarcinoma cells BEAS-2B human bronchial epithelial cells	0.5, 1, and 2 μM Cr(VI) (compound not reported), 3, 8, or 24 h	In BEAS-2B: ↑ cytotoxicity (≥1 μM; MTT) ↓ glutathione (3 h only) ↑ lipid peroxidation (TBARS) ◆ here successes 1	BEAS-2B cell line more sensitive to Cr(VI) effects than A549 cell line; polymorphisms for GST genes may be responsible for differing cellular responses to Cr(VI)	<u>Caglieri et al.</u> (2008)
		 ↑ heme oxygenase-1 (HO-1) A549: ↑ lipid peroxidation (TBARS) 		
HLF human lung fibroblasts (LL-24 cell line)	3, 6, and 9 μM Na₂CrO₄, 24 h		Pretreatment with 1 mM ascorbate or 20 μM tocopherol had no ameliorative effects Also 个 Cr-DNA adducts	<u>Carlisle et al.</u> (2000a)
A549 (human lung adenocarcinoma) and BEAS2B (human bronchial epithelial) cells	0.1, 0.5, 1.0 and 10 μM Na2CrO4, 0.5, 1 and 4 h	↑ apoptosis at 10 μM (caspase-3 activity and morphology)	Oxidative role in DNA damage decreased with time at lower Cr(VI) concentrations and increased with time at higher concentrations A549 more sensitive than BEAS2B Also 个 oxidative DNA damage (Fpg-modified comet assay)	<u>Cavallo et al.</u> (2010)
BEAS-2B human bronchial epithelial cells	1 μM Cr(VI), 48	 ↑ glycolysis ↓ respiration ↓ protein levels of β-F1- ATPase ↑ GAPDH 	Cr(VI) caused shift to fermentative metabolism	<u>Cerveira et al.</u> (2014)
Human non-small cell lung carcinoma CL3 cells	10–80 µМ К₂Сr₂О⁊, 1–12 h	个 JNK 个 MAPK11-14 (P38) 个 MAPK3, MAPK1 (ERK1/2)	Activation increased with dose and duration Use of multiple oxidants and antioxidants shows activation of these redox-initiated pathways do not clearly correlate with Cr(VI)-induced cytotoxicity	<u>Chuang et al.</u> (2000)

System	Exposure	Results	Comments	Reference
BEAS-2B human bronchial epithelial cells		In Cr(VI)-transformed cells: 个 metabolic adaptation and antioxidant defense, ATP production and mitochondrial proton leak via SIRT3 个 mitophagy proteins Pink1 and PRKN (Parkin), though mitophagy was suppressed	SIRT3 upregulation by Cr(VI) suppresses mitophagy; knockdown of SIRT3 suppressed cell proliferation NRF2 constitutively activated in Cr(VI)- transformed cells	<u>Clementino et al.</u> (2019)
BEAS-2B human bronchial epithelial cells		↑ NOTCH1 (Notch1) ↑ CDKN1A (P21) ↓ FBP1	FBP1, involved in gluconeogenesis, is lost in Cr(VI)-transformed cells Reintroduction of FBP1 caused 个ROS and 个apoptosis	<u>Dai et al. (2017a)</u>
LL 24 human lung cells and A549 human lung adenocarcinoma cells	5–200 μM Cr(VI)	 ↑ heme oxygenase gene (only in LL 24 cells) No effect on catalase, GST, glutathione reductase, Cu/Zn- and Mn-SODs, GPx, NAD(P)H:quinone oxidoreductase, or IL-8 gene expression 	RT-PCR and northern blot gene (RNA) expression analyses Authors conclude that heme oxygenase is responsible for Cr(VI)-induced stress responses, and not intracellular increases in glutathione and ROS	<u>Dubrovskaya</u> and Wetterhahn (1998)
BEAS-2B human bronchial epithelial cells MOLT-4 lymphoblastic leukemia cell line	0.5, 3, 6, 9, and 200 μM K ₂ Cr ₂ O ₇ , 4, 12, or 24 h	 ↑ apoptosis (PI; TUNEL flow), dose- and time-dependent ↑ p53 at 0.5 μM (12 h) and 3 μM (4 h) in MOLT-4 but not BEAS-2B cells Inhibition of caspase-3, -8 and -9 did not reduce apoptosis 	Cr(VI) induces apoptosis that may involve p53 in MOLT-4 cells but not in BEAS-2B; apoptosis did not involve caspases 3, 8 or 9 in these cells	Gambelunghe et al. (2006)

System	Exposure	Results	Comments	Reference
A549 human lung adenocarcinoma cells	0.2 μM K ₂ Cr ₂ O ₇ , 6, 12, or 24 h	 ↑ endoplasmic reticulum (ER) stress via ↑ GRP78 and p-PERK is associated with ↑ apoptosis and autophagy ↓ mitochondrial membrane potential (MMP) at 6–12 h but not 24 h 	Inhibiting ER stress (4PBA) reduced apoptosis and autophagy Suppressing apoptosis (Z-VAD-FMK) also suppressed autophagy Inhibiting autophagy (3-MA) increased apoptosis Authors surmise Cr(VI)-induced autophagy rescues ↓ MMP at 24 h via phagocytosing damaged mitochondria and then inhibiting apoptosis	<u>Ge et al. (2019)</u>
A549 human lung adenocarcinoma cells	10–500 μM Na ₂ Cr ₂ O ₇ , 1 or 16 h	↑ 8-OHdG ↓ OGG1 mRNA, dose- dependent (RT-PCR and RNase protection assay); not affected by adding H2O2 No effect on hAPE or GAPDH	Authors conclude that Cr(VI)-induced oxidative DNA damage may partly be due to a reduced capacity to repair endogenous and Cr(VI)-induced 8-OHdG lesions Also ↑ DNA strand breaks, dose-dependent (comet assay) that were 10X higher with FAPY	Hodges et al. (<u>2002</u> ; <u>2001</u>)
A549 human lung adenocarcinoma cells	12.5–800 μM Cr(VI)	↑ ROS and NF-кB, dose- dependent Effects abrogated by catalase, SOD, or D- mannitol No change in 8-OHdG levels or hogg1 expression	Possible that ≤800 μM doses of Cr(VI) are sufficient to induce ROS and NF-κB but too low to induce oxidative DNA lesions	<u>Kim et al. (2003)</u>
A549 human lung adenocarcinoma cells	5–80 μM Na ₂ Cr ₂ O ₇ , 2 h	↑ cytotoxicity >5 μM, dose-dependent Cr(VI) + 1 mM ascorbate ↑ ROS Cr(VI) + glutathione ↓ ROS	Ascorbate (max intracellular 80 μM) may promote Cr(VI)-induced oxidative stress by reducing intracellular Cr(VI) and stabilizing Cr(VI) and Cr(IV)	<u>Martin et al.</u> (2006)
Primary human bronchial epithelial cells BEAS-2B human bronchial epithelial cells	25 and 50 μM Na2CrO4, 3 or 6 h	Irreversible inhibition of thioredoxin reductase (TrxR)	Cr(VI) oxidizes and inhibits mitochondrial and cellular thioredoxins and peroxiredoxins involved in cell survival and redox signaling, leading to	Myers et al. (<u>2011; 2010;</u> 2009; 2008)

System	Exposure	Results	Comments	Reference
		Oxidation of protein thiols thioredoxins (Trx) and peroxiredoxins (Prx); scavenging peroxynitrite (MnTBAP) or adding ascorbate did not abrogate these effects Inhibition of aconitase, electron transport complexes I and II	increased sensitivity to ROS damage and decreased survival	
A549 human lung adenocarcinoma cells	10 μM Cr(VI)	 ↑ ROS and JNK activation at subcytotoxic levels ↑ Src family kinases (Fyn, Lck) at levels that did not induce ROS 		<u>O'Hara et al.</u> (2003)
BEAS-2B human bronchial epithelial cells SAECs (human small airway epithelial cells)	0.2, 2.0, 20, and 200 μM K ₂ Cr ₂ O ₇ , 1, 2, 6 or 48 h	\uparrow cytotoxicity (MTT assay) at 0.2 μM (20%) in BEAS-2B, 20 μM in SAEC, dose-dependent In SAECs: \uparrow cellular phosphoprotein \uparrow IL-6, IL-8 (pre- cytotoxic, at 0.2 and 2.0 μM respectively) Null for TNF-α	Cytotoxicity associated with inflammation and immune response via protein phosphorylation and cytokine signaling	<u>Pascal and</u> <u>Tessier (2004)</u>
A549 human lung adenocarcinoma cells	0.13, 0.67, 3.38, 16.9, and 84.57 μ M CrO ₃ or K ₂ Cr ₂ O ₇	↑ cytotoxicity ≥3.38 μM (colony formation assay), dose-dependent	Cytotoxicity induced at μM concentrations	<u>Popper et al.</u> (1993)
Primary human lung IMR90 fibroblasts H460 human lung epithelial cells	0.2–8 µМ К₂CrO₄, 3 h	 ↑ DNA DSB with ascorbate caused by aberrant mismatch repair ↑ cytotoxicity and apoptosis with ascorbate; effects reversed by suppressing DNA 	By restoring intracellular ascorbate to physiological levels via DHA (max intracellular 0.9 mM), it was shown that ascorbate can suppress Cr(VI)-induced oxidative damage but promotes Cr-DNA lesions that are either repaired by mismatch repair, independently of p53, or lead to cytotoxicity and apoptosis	Reynolds et al. (<u>2012; 2007;</u> <u>2007</u>)

This document is a draft for review purposes only and does not constitute Agency policy.

System	Exposure	Results	Comments	Reference
		mismatch repair but p53 status had no effect	Chromosomal aberrations not affected by XRCC1 status	
		个个 cytotoxicity and cell cycle delay in cells deficient in oxidative DNA damage repair (XRCC1 knockdown); effects reversed by ascorbate		
A549 human lung adenocarcinoma cells	1–20 μM Na₂Cr₂O⁊, 4 or 12 h	 ↑ cytotoxicity with dose (stat sig at 20 µM) at 4 h ↓ specific activity and level of urokinase-type plasminogen activator (uPA) activity ↑ uPA receptor protein 	Cr(VI) inhalation leads to a net loss of urokinase- type plasminogen activator activity that has been shown to promote pulmonary fibrosis	<u>Shumilla and</u> <u>Barchowsky</u> (1999)
A549 human lung adenocarcinoma cells	0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 μΜ K ₂ Cr ₂ O ₇ , 24 h	 ↑ cell proliferation ≤0.2 μM (A549 cells) ↑ cytotoxicity ≥3.2 μM ↑ autophagosomes; this effect was blocked by silencing HMGA2 ↑ expression of LC3II, Atg12-Atg5, Atg4, Atg10, HMGA1 and HMGA2 proteins ↓ expression of p62 	Cr(VI)-induced autophagy is correlated with transcription factor HMGA2 that is expressed in lung cancer patients	<u>Yang et al.</u> (2017)

BALF: bronchoalveolar lavage fluid

ICP-AES: inductively coupled argon plasma atomic emission spectroscopy

MMA-SS: manual metal arc-stainless steel

PAM: pulmonary alveolar macrophages

C.2.2. Gastrointestinal Effects

1 C.2.2.1. Apical studies relevant to toxicity of the gastrointestinal tract

- 2 The results relevant to GI tract toxicity from the four *high* confidence animal studies
- 3 synthesized in 3.2.2.2 (<u>Thompson et al., 2012c</u>; <u>Thompson et al., 2011b</u>; <u>NTP, 2008</u>, <u>2007b</u>) are
- 4 summarized in Table C-32, below. In addition to these four studies are other reports that continued
- 5 to evaluate the same tissues from these studies, as well as a fifth study (<u>Thompson et al., 2015b</u>)
- 6 that was only evaluated for genotoxicity endpoints but also reported evidence of hyperplasia and Cr
- 7 accumulation in GI tissues following drinking water exposures.

Table C-32. Experimental animal studies providing apical evidence of toxic effects of ingested Cr(VI) in the GI tract

System	Exposure	Results	Reference
Mouse (B6C3F1), male and female	0, 22, 44, 87, 174, 349 mg/L Cr(VI) 0, 3.1, 5.3, 9.1, 15.7, 27.9 mg/kg-d Cr(VI) 90 d	Diffuse epithelial hyperplasia of the duodenum (≥3.1 mg Cr(VI)/kg-d) Duodenal villi short, thick, and blunted, with cytoplasmic vacuolization in the epithelial cells lining the villi tips (all doses, not quantitatively measured)	<u>NTP (2007b)</u>
Mouse, BALB/c, C57BL/6, and B6C3F1, male (strain comparison study)	0, 22, 44, 87 mg/L Cr(VI) 0, 2.8, 5.2, 8.7 mg/kg-d Cr(VI) 90 d	Diffuse epithelial hyperplasia of the duodenum (≥2.8 mg Cr(VI)/kg-d)	
Rat, F344/N, male and female	0, 22, 44, 87, 174, 349 mg/L Cr(VI) 0, 1.7, 3.5, 5.9, 11.2, 20.9 mg/kg-d Cr(VI) 90 d	Epithelial hyperplasia, squamous metaplasia, and ulcers in the glandular stomach (20.9 mg/kg-d)	
Rat (F344/N), male	0, 5, 20, 60, or 180 mg/L Cr(VI) 0.200 0.760 2.10 6.07 mg/kg-d Cr(VI) 2 yr	No observed GI hyperplasia/metaplasia or stomach ulcers No salivary gland atrophy	<u>NTP (2008)</u>
Rat (F344/N), female	0, 5, 20, 60, or 180 mg/L Cr(VI) 0.248 0.961 2.60 7.13 mg/kg-d Cr(VI) 2 yr	No observed GI hyperplasia/metaplasia or stomach ulcers Mild salivary gland atrophy at highest dose (≥7.13 mg Cr(VI)/kg-d)	

System	Exposure	Results	Reference
Mouse (B6C3F1), male	0, 5, 10, 30, or 90 mg/L Cr(VI) 0.450, 0.914, 2.40, or 5.70 mg/kg-d Cr(VI) 2 yr	Diffuse epithelial hyperplasia of the duodenum (≥0.45 mg Cr(VI)/kg-d) Focal epithelial hyperplasia ≥2.40 mg/kg-d, not statistically significant Short, broad and blunt duodenal villi (no overt damage, necrosis, or degeneration indicative of atrophy)	
Mouse, (B6C3F1), female	0, 5, 20, 60, or 180 mg/L Cr(VI) 0.302, 1.18, 3.24, or 8.89 mg/kg-d Cr(VI) 2 yr	Diffuse epithelial hyperplasia of the duodenum (≥0.3 mg Cr(VI)/kg-d) and jejunum (8.89 mg/kg-d) Focal epithelial hyperplasia ≥3.24 mg/kg-d, not statistically significant Short, broad and blunt duodenal villi (no overt damage, necrosis, or degeneration indicative of atrophy)	
Mouse, B6C3F1 female Oral, drinking water	0, 0.1, 1.4, 4.9, 20.9, 59.3, and 181 mg/L Cr(VI) 0, 0.024, 0.32, 1.1, 4.6, 11.6, or 31.1 mg/kg-d Cr(VI) 7 d (n = 5) or 90 d (n = 10)	7 day: Duodenal hyperplasia (no statistically significant change), villous atrophy (no statistically significant change), and cytoplasmic vacuolization (statistically significant at 31.1 mg/kg), with no change in crypt apoptosis indices, mitotic activity, or increases in karyorrhectic nuclei in crypts 90 day: Diffuse epithelial hyperplasia of the small intestine (≥11.6 mg Cr(VI)/kg-d) Villous atrophy in duodenum and jejunum (31.1 mg/kg-d) Apoptosis in duodenal villi (31.1 mg/kg-d) Cytoplasmic vacuolization in duodenum and jejunum (≥4.6 mg Cr(VI)/kg-d	<u>Thompson et al.</u> (2011b)
Rat, Fischer 344/N female Oral, drinking water	0, 0.1, 1.4, 20.9, 59.3, and 181 mg/L Cr(VI) 0, 0.015, 0.21, 2.9, 7.2, 20.5 mg/kg-d Cr(VI) 7 d (n = 5) or 90 d (n = 10)	Diffuse epithelial hyperplasia of the small intestine (≥7.2 mg Cr(VI)/kg-d), villous cytotoxicity (≥7.2 mg Cr(VI)/kg-d) Apoptosis in duodenal villi (≥7.2 mg Cr(VI)/kg-d) (no atrophy or vacuolization) 7 days: No statistically significant changes in GSH/GSSG in oral mucosa or small intestine except in jejunum at 20.5 mg/kg-d and at 0.015 mg/kg-d in the oral mucosa. Note: sample size is 5 for 7-day data. 90 days: ↓ GSH/GSSG in oral mucosa and jejunum (≥2.9 mg/kg-d) and in plasma (≥7.2 mg/kg-d), dose- dependent, statistically significant. No changes in duodenum, or signs of lipid peroxidation (8- isoprostane) in any tissues.	<u>Thompson et al.</u> (2012c)

System	Exposure	Results	Reference
Mouse, B6C3F1 Oral, drinking water	0, 0.1, 1.4, 4.9, 20.9, 59.3, and 181 mg/L Cr(VI) 0, 0.024, 0.32, 1.1, 4.6, 11.6, or 31.1 mg/kg-d Cr(VI) 7 and 90 d	 In scraped duodenal epithelium: ↑ crypt enterocyte proliferation, dose-dependent ↑ villus cytotoxicity (disruption of cellular arrangement, desquamation, nuclear atypia, blunting) ↑ crypt enterocyte proliferation, dose-dependent No effect on mitotic/apoptotic indices in crypt compartment 7 days: ↑ aberrant nuclei at villi tips but not in crypts (≥11.6 mg/kg-d) 90 days: ↑ aberrant nuclei at villi tips but not in crypts (≥4.6 mg/kg-d) 	<u>O'Brien et al.</u> (2013) Continued analysis of tissues from <u>Thompson</u> et al. (2011b)
Mouse (B6C3F1) and rat (F344), female Oral, drinking water	0 and 180 mg/L Cr(VI) 0 and 31.1 mg/kg-d Cr(VI) 90 d	In duodenal villi and crypts: X-ray fluorescence (spectro)microscopy (μ-XRF) was used to image the Cr content in the villus and crypt regions of duodena. Cr(VI) was detected in crypts, slightly above detection limits, and was >30x higher in villi. Villous blunting and crypt hyperplasia in the duodenum (lengthening of the crypt compartment by ~2-fold) 1.5-fold increase in the number of crypt enterocytes No aberrant foci indicative of transformation	<u>Thompson et al.</u> (2015a) Continued analysis of tissues from <u>Thompson</u> <u>et al. (2011b)</u>
Mouse, B6C3F1 Oral, drinking water	0, 1.4, 21, and 180 mg/L Cr(VI) 0, 0.32, 4.6, and 31.1 mg/kg-d Cr(VI) 7 d	21 and 180 mg/L Cr(VI) significantly increased the number of crypt enterocytes Synchrotron-based X-ray fluorescence (XRF) microscopy revealed the presence of strong Cr fluorescence in duodenal villi, but negligible Cr fluorescence in the crypt compartment No effect on aberrant villous foci, and X-ray fluorescence detection of Cr(VI)	<u>Thompson et al.</u> (2015b)

1

2

C.2.2.2. Mechanistic studies relevant to toxicity of the gastrointestinal tract

Studies examining mechanistic endpoints relevant to interpretations of toxic effects in the
GI tract are summarized in Table C-33. Studies identified in preliminary title and abstract screening
as "mechanistic" were further screened and tagged as "GI" if conducted in GI tissues or cells. Only
studies conducted in vivo in animals or in vitro in human cells from the GI tract are prioritized for
consideration here:

 8 • Studies of gastrointestinal organs and tissues from humans with quantified exposure to 9 Cr(VI)

- Experimental animal studies of gastrointestinal tissues (excepting liver; these studies are summarized in Section C.2.3) using quantified oral (drinking water, gavage, diet),
 inhalation, or intratracheal instillation exposures
- In vitro studies in human primary or immortalized cells derived from gastrointestinal tissues
- Mechanistic endpoints relevant to interpretations of gastrointestinal toxicity in humans
 except for genotoxicity studies (see Section C.3.2.2) (apical outcomes synthesized for
 noncancer hazard identification have been summarized above in Section C.2.2.1)
- 9 Ten studies in experimental animals and three studies in GI-derived cells in vitro were
- 10 identified. No human exposure studies of toxicity of the GI tract were identified (studies in exposed
- 11 workers reporting genotoxic endpoints in buccal cells are summarized in C.3.2.2).

Table C-33. Supporting mechanistic studies prioritized for informing Cr(VI)induced GI tract toxicity

System	Exposure	Results	Reference
Mouse, B6C3F1 female Oral, drinking water		7 day: No change in crypt apoptosis indices, mitotic activity, or increases in karyorrhectic nuclei in crypts ↓ GSH/GSSG in oral (≥11.6 mg/kg-d) and duodenal (≥4.6 mg/kg-d) epithelium; no change in plasma. Note: sample size is only 5 for the 7-day group, and some observed changes occurred at slightly lower doses but were not statistically significant. 90 day: ↓ GSH/GSSG in duodenum and jejunum (≥1.1 mg/kg-d) and in plasma (≥11.6 mg/kg-d) No statistically significant increases in protein carbonyls or 8-OHdG levels in any tissues Some altered cytokines and chemokines	<u>Thompson et al.</u> (2011b)
Rat, Fischer 344/N female Oral, drinking water	181 mg/L Cr(VI) 0, 0.015, 0.21, 2.9, 7.2, 20.5 mg/kg-d Cr(VI)	7 days: No statistically significant changes in GSH/GSSG in oral mucosa or small intestine except in jejunum at 20.5 mg/kg-d and at 0.015 mg/kg-d in the oral mucosa. Note: sample size is 5 for 7-day data. 90 days: ↓ GSH/GSSG in oral mucosa and jejunum (≥2.9 mg/kg-d) and in plasma (≥7.2 mg/kg-d), dose- dependent, statistically significant. No changes in duodenum, or signs of lipid peroxidation (8- isoprostane) in any tissues.	<u>Thompson et al.</u> (2012c)

System	Exposure	Results	Reference
Mouse, B6C3F1 Oral, drinking water	0, 0.1, 1.4, 4.9, 20.9, 59.3, and 181 mg/L Cr(VI) 0, 0.024, 0.32, 1.1, 4.6, 11.6, or 31.1 mg/kg-d Cr(VI) 7 and 90 d	In scraped duodenal epithelium: No effect on mitotic/apoptotic indices in crypt compartment 7 days: ↑ aberrant nuclei at villi tips but not in crypts (≥11.6 mg/kg-d) 90 days: ↑ aberrant nuclei at villi tips but not in crypts (≥4.6 mg/kg-d)	O'Brien et al. (2013) Continued analysis of tissues from <u>Thompson</u> et al. (2011b)
F344 rats and B6C3F1 mice Oral, drinking water	0, 0.1, 1.4, 4.9 (mice only), 20.9, 59.3, and 181 mg/L Cr(VI), 90 d 0, 0.015, 0.21, 2.9, 7.2, 20.5 mg/kg-d Cr(VI) (rats) 0, 0.1, 1.4, 4.9, 20.9, 59.3, and 181 mg/L Cr(VI) (mice)	Dose-dependent decreases in Fe levels in the duodenum, liver, serum, and bone marrow Considered in hematological effects; not in GI effects synthesis. This assessment determined that evidence indicates Cr(VI) is likely to cause hematological effects based on iron-deficient anemia-like observations in rodents (see Section 3.2.5). Such observations were made in some of the studies cited in this table (including NTP (2008, 2007b)). This table does not list the observed hematological effects or effects related to iron homeostasis. See Section 3.2.5 for a synthesis of hematological effects, or click the <u>HAWC link</u> for a summary of selected datasets.	Suh et al. (2014) Continued analysis of tissues from <u>Thompson</u> et al. (2011b) and <u>Thompson et al.</u> (2012c)
Mouse, SKH-1 hairless, female Oral, drinking water	0, 5, and 20 mg/L Cr(VI) 1.20 and 4.82 mg Cr(VI)/kg-d 9 months	No effect on oxidative 8-OHdG adducts in forestomach, glandular stomach, duodenal cells, lung or skin No measure of cytotoxicity No changes in body weight	<u>De Flora et al.</u> (2008)
Mouse, C57BL/6J Oral, drinking water	0, 0.019, 0.19, 1.9 mg/L Cr(VI) 150 d 2 animals per dose group	In proximal and distal sections of GI tract: Histopathology: no effects on villous atrophy/blunting or inflammation; slight enterocyte hypertrophy and crypt hyperplasia Immunohistochemistry: no effect on Ki67	<u>Sánchez-Martín</u> <u>et al. (2015)</u>
Rat, Wistar Oral-drinking water	0, 87, 174, 262, 349, 436 mg/L Cr(VI) 0, 1.7, 3.5, 5.2, 7.0, 8.7 mg/kg-d 60 d	<u>Stomach</u> : ↓ p53 protein (≥87 mg/L) and mRNA (≥174 mg/L) ↑ c-Myc protein and mRNA (≥174 mg/L) ↑ galectin-1 protein (≥174 mg/L) and mRNA (≥87 mg/L) ↓ RKIP protein and mRNA (≥262 mg/L) ↓ Rho-GDIα protein and mRNA (≥262 mg/L) <u>Colon</u> : ↓ p53 protein and mRNA (≥262 mg/L) ↑ c-Myc protein (≥262 mg/L) and mRNA (≥87 mg/L) ↑ galectin-1 protein (≥349 mg/L) and mRNA (≥174 mg/L) ↓ RKIP protein (≥436 mg/L) and mRNA (≥349 mg/L) ↓ Rho-GDIα protein (≥262 mg/L) and mRNA (≥349 mg/L) ↓ Rho-GDIα protein (≥262 mg/L) and mRNA (≥349 mg/L)	<u>Tsao et al. (2011)</u>

System	Exposure	Results	Reference
Rat, Sprague- Dawley male Intragastric injection	1.77 mmol/kg Cr(VI); bile sampling every 40 mins	Alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (POBN) carbon-centered radical adduct in bile of rats exposed to Cr(VI)	<u>Kadiiska et al.</u> (1998)
Rat Oral gavage	530 mg/kg -day Cr(VI), 3 days 106 mg/kg-d Cr(VI), 30 days <u>Note</u> : The administered gavage potassium dichromate doses (1500 mg/kg and 300 mg/kg) are higher than the LD50 for rats listed in MSDS (130 mg/kg)	Intestinal epithelial cells, 3 d exposure: ↓ glucose-6-phosphate dehydrogenase, glutathione peroxidase, glutathione reductase, glutathione-S- transferase, superoxide dismutase and catalase ↓ glutathione and total thiols ↑ lipid peroxidation Intestinal epithelial cells, 30 d exposure: ↑ superoxide dismutase, glutathione peroxidase Null glucose-6-phosphate dehydrogenase, glutathione reductase and catalase ↓ glutathione-S-transferase	<u>Sengupta et al.</u> (1990)
Rat, Wistar, female i.p. injection	8.8 mg/kg Cr(VI) Single dose, 48 h	Type 2 cystatins were induced in kidneys and submandibular acini salivary glands. Not detected in parotid or sublingual glands, or in trachea, lung, stomach, small intestine, large intestine, spleen, liver, or pancreas.	<u>Cohen et al.</u> (1993)
In vitro human	primary and immortalized	d GI cells or gastric fluid	
Caco-2 human colorectal adenocarcino ma cells	0.1, 0.3, 1, 3, 10, 30, 100 μM Cr(VI)	Increase in 8-OHdG at non- and cytotoxic concentrations No change in p53, annexin-V (apoptosis markers), LC3B (autophagy marker) Translocation of ATF6 to nucleus (ER stress response marker)	<u>Thompson et al.</u> (2012a)
Human wild- type HCT116 colon cancer cells	30 μM Cr(VI) (formulation and compound uncertain)	Upregulated p53, p21CIP1/WAF1, ATM, DNA-PK, ATR, AKT and p38 (upstream p53 kinases) ↑ apoptosis involves DNA-PK-mediated p53 activation and increased PUMA concurrent with loss of p21 Note: chemical formulation preparation information not provided. It is only stated that chemical was 30 µM Cr(VI) and that it was "a gift from Professor Naresh Dalal, Department of Chemistry, Florida State University". The true dose is therefore unclear (it is possible it is 1/3 this value if the concentration was in units of the parent chromate compound)	Hill et al. (<u>2008b</u> ; <u>2008a</u>)
Human gastric cancer SGC- 7901 cells	3.53 μM Cr(VI)	Oxidative stress, apoptosis and necrosis all increased when the Unconventional prefoldin RPB5 Interacting protein (URI) is knocked down	<u>Luo et al. (2016)</u>

C.2.3. Hepatic Effects

1

C.2.3.1. Mechanistic studies relevant to hepatic toxicity

A large body of mechanistic information exists (125 studies) to inform the potential
hepatotoxicity of Cr(VI). Therefore, studies that are more informative for chronic human exposure
were prioritized:

- Studies of the liver or liver enzymes from humans with quantified exposure to Cr(VI)
- Experimental animal studies of the liver or liver enzymes using quantified oral (drinking water, gavage, diet), inhalation, or intratracheal instillation exposure to Cr(VI)
- 8 In vitro studies in human primary or immortalized cells derived from liver
- 9 Mechanistic endpoints relevant to interpretations of hepatic health effects in humans, including genotoxicity tests in liver tissues

11 This prioritization strategy identified 51 relevant studies. These include mammalian

- 12 studies of the liver or liver enzymes that focused on exposure routes more relevant to humans (oral
- 13 drinking water, gavage, and diet; inhalation), as well as repeat dose studies of longer durations (\geq 28
- 14 days). However, shorter duration studies also provided some supporting information and in vitro
- 15 studies in human liver primary cells or cell lines also provided insight into biological plausibility
- 16 and human relevance of the observed mechanisms. These studies, summarized in Table C-34,
- 17 primarily reported evidence of Cr(VI)-induced oxidative and endoplasmic reticulum stress,
- 18 mitochondrial dysfunction, inflammation, apoptosis, DNA damage, and cell proliferation.

Table C-34. Mechanistic studies prioritized for informing potential Cr(VI)induced hepatic toxicity

System	Route	Exposure ^a	Results	Comments	Reference			
Oxidative and	Oxidative and endoplasmic reticulum stress							
Mouse, ICR male		K ₂ Cr ₂ O ₇ -day, 36d repeat dose Confirmation by detection of ↑ Cr content in liver	 ↑ hepatic lipid peroxidation and MDA ↑ GSH levels ↑ CAT and GPx activity and mRNA ↑ Ho-1, Atf6, CHOP gene expression 		<u>Jin et al. (2014)</u>			

System	Route	Exposure ^a	Results	Comments	Reference
Rat, Wistar male	Oral gavage	30 mg/kg/ K ₂ Cr ₂ O ₇ -day, 28d repeat dose	 ↑ hepatic lipid peroxidation ↓ SOD, CAT, and GST activity ↑ Atf1 (MAPK stress response pathway) 		<u>Navya et al. (2017)</u>
Mouse, C57BL/J5, M&F	Oral drinking water	55–5500 μg/L Na ₂ Cr ₂ O ₇ , 5 months, repeat dose 2 animals per dose group	↑ GCLC (glutamyl- cysteine ligase catalytic subunit) Null NRF2 (NF-E2- related factor 2)	\uparrow GCLC but the mRNA expression was down For this study n = 2 males + 2 females	<u>Sánchez-Martín et al.</u> (2015)
Rat, Sprague- Dawley, female	Oral gavage	2.5 and 10 mg/kg-day Na₂Cr₂O7; 30, 60, 90, and 120 d	↑ hepatic mitochondrial and microsome peroxidation with concurrent excretion of lipid metabolites MDA, FA, ACT, and ACON	(n) not given, concerns with results interpretation 2002: 4 animals/group	Bagchi et al. (<u>2002b</u> ; <u>1997b; 1995a), Stohs</u> <u>et al. (2001)</u>
Rat, Sprague- Dawley, female	Oral gavage	25 mg/kg Na ₂ Cr ₂ O ₇ (reported as 0.5 LD50), 48h	↑ hepatic mitochondrial and microsome peroxidation with concurrent excretion of lipid metabolites	1995b n = 4–6 animals per group	<u>Bagchi et al. (1995b)</u>
Mouse, C57BL/6NTac and N12 p53- deficient C57BL/6TSG- p53, female	Oral gavage	2000&2002: 0.50 LD50, 0.10 LD50, 0.01 LD50. 2001: 0.50 LD50 reported as 95 mg/kg Na ₂ Cr ₂ O ₇ after 24h; 24h, 24h, and time course up to 96h respectively	↑ hepatic cytochrome C (reported as SOA production ↑ hepatic lipid peroxidation	Dosing and (n) not given (2000&2002)	Bagchi et al. (<u>2002a</u> ; <u>2001</u> ; <u>2000a</u>)
Rat, albino	Oral gavage	50 mg/kg-day K ₂ Cr ₂ O ₇ , 20d repeat dose	↑ liver triglycerides and phospholipids	Uninformative factors expected to decrease confidence in mechanistic reporting	Kumar and Rana (1982)
Rat, Sprague- Dawley (SD), male and female	Oral gavage	9 mg/kg and 17.5 mg/kg K2Cr2O7, 7d	↓ free radical scavenging capacity (benzoic acid hydroxylation method) ↓ GSH	Dose-dependent decreases	<u>Zhong et al. (2017c)</u>

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

System	Route	Exposure ^a	Results	Comments	Reference
Rat, Wistar, female	Oral drinking water	5 and 20 mg/L K ₂ Cr ₂ O ₇ , 15d	Null results CYP2E1 activity ↓ GSH (at both doses)		<u>Ma et al. (2015)</u>
Rat, Sprague- Dawley, male	i.p.	2.5, 5.0, 7.5, and 10 mg/kg bw-day K ₂ Cr ₂ O ₇ , 5d	个 ROS, MDA 个 SOD, CAT activity	Results dose dependent	<u>Patlolla et al. (2009b)</u>
Mouse, ddY, male	i.p.	20 mg/kg K ₂ Cr ₂ O ₇ , single dose, reports at 24&48h	个 lipid peroxidation (TBARS)		<u>Susa et al. (1989)</u>
Rat, Sprague- Dawley, male	i.p.	10–40 mg/kg Na2Cr2O7, single dose	个 GSH 20 mg/kg		<u>Standeven and</u> Wetterhahn (1991b)
Mouse, Swiss albino, male	i.p.	1mg/kg-bw CrO₃, single dose, reports at 5–8w	↑ SOD, peroxidase, CAT, lipid peroxidation, ascorbic acid content in liver tissue	Mice from live animal supply farm, "around" 48 mice range from 15–25g body weight. Increases were not time-dependent	<u>Acharya et al. (2004a)</u>
Rat, Wistar, male	i.p.	20 mg/kg body weight of K ₂ Cr ₂ O ₇ , single dose; 3m, 3h, 24h time course	↑ SOD at 24h Null for changes in CAT, lipid peroxidation (TBARS), CYP450		<u>Tagliari et al. (2004)</u>
Rat, Wistar, male	i.p.	20 mg /kg K ₂ Cr ₂ O ₇ , single IP dose, 24h	↑ lipid peroxidation, GSH level and GPx-1 activity; no change in GR activity ↓ TrxR-1 activity		Kotyzova et al. (2015)
Mouse, BALB/c	i.p.	0 or 400 μmol K ₂ Cr ₂ O ₇ (20.8 mg Cr(VI)/kg), single dose	In liver: \uparrow lipid peroxidation ($p < 0.05$) \uparrow heme oxygenase ($p < 0.001$) \downarrow GSH-peroxidase activity ($p < 0.1$); slight but nonsignificant reduction in GSH levels	Significantly decreased %PCEs (PCE/NCE ratio = 0.64 ± 0.14) ($p < 0.01$) Also \uparrow micronucleus frequency in bone marrow cells ($p < 0.001$)	<u>Wroñska-Nofer et al.</u> (1999)

System	Route	Exposure ^a	Results	Comments	Reference
HepG2 cells (human hepatocytes)	In vitro	5, 10, 20, 40 μM K ₂ Cr ₂ O ₇	↑ SOD, Nrf2, Keap1 mRNA at 10 μM ↓ SOD, Nrf2, Keap1 mRNA over 10 μM	In a separate study X. Zhong shows SOD activity decrease starting at 1uM but in L-02 (human fetal) cells.	<u>Zhong et al. (2017a)</u>
HepG2 cells (human hepatocytes)	In vitro	3–25 μM K ₂ Cr ₂ O ₇	↑ ROS production and MDA ≥12.5 μM		<u>Patlolla et al. (2009a)</u>
Hep3B cells (human hepatocytes)	In vitro	20 μM K ₂ Cr ₂ O ₇	↑ levels of SOD, GR, NO, CAT, MDA		<u>Zeng et al. (2013)</u>
L-02, human fetal hepatocytes	In vitro		↑ Endoplasmic reticulum stress and mitochondrial damage, and apoptosis; effects reversed by antioxidant treatment		<u>Liang et al. (2019)</u>
L-02 cells (human fetal liver)	In vitro		 ↑ ROS production (Zhang 2016; Yuan 2012; Xiao 2012) ↑ CHOP, PERK, IRE1 mRNA and protein (ER stress 6–10 μM, Zhang 2017) ↓ SOD, TRx and GHS (Zhong 2017a, 8&16 μM dose dependent) 	Doses not overtly cytotoxic, may be some decline in viability. Zhang 2016, Xiao 2012, Yi 2016, Zhong 2017a and Yuan 2015 measured ROS with DCF	Zhang et al. (2017); Zhong et al. (2017c); Yi et al. (2016); Zhang et al. (2016); Xiao et al. (2012a); Xiao et al. (2012b); Yuan et al. (2012)
Mitochondrial	dysfunctio	n		1	
Rat, Sprague- Dawley, female	Drinking water	10 mg/kg-day and 2.5 mg/kg-day Na ₂ Cr ₂ O ₇ , respectively; 90d and 120d	↑ hepatic mitochondrial and microsome peroxidation with concurrent excretion of lipid metabolites	This is the same study/effect listed above under oxidative stress	Bagchi et al. (<u>1997b</u> ; <u>1995a</u>)

System	Route	Exposure ^a	Results	Comments	Reference
Mouse, female C57BL/6NTac N12 p53- deficient C57BL/6TSG- p53	Assume by gavage	2000&2002: 0.50 LD50, 0.10 LD50, 0.01 LD50. 2001: 0.50 LD50 reported as 95 mg/kg Na ₂ Cr ₂ O ₇ after 24h. 24h, 24h, and time course up to 96h respectively	 ↑ hepatic cytochrome C (reported as SOA production ↑ hepatic lipid peroxidation 	Dosing and (n) not given (2000&2002). LD50 (2001) not consistent with LD50 reported in 1995b.	Bagchi et al. (<u>2002a</u> ; <u>2001</u> ; <u>2000a</u>)
Mouse, ICR, male	Feed	1 and 4 mg/kg/ K ₂ Cr ₂ O ₇ -day, 36d repeat dose	个 cytochrome C		<u>Jin et al. (2014)</u>
Mouse, Swiss albino, male	Gavage	0, 25, 50, and 100 mg/kg K ₂ Cr ₂ O ₇ single dose, 24h	个 cytochrome C (50&100 mg/kg)		<u>Wang et al. (2010b)</u>
L-02 human fetal hepatocytes	In vitro	Various (Yuan 1– 32 μ M; Xiao 2012 4–32 μ M Cr(VI); Xei 4 μ M for caspase 3/beclin, Ca+2 and ROS; Xiao 2014 25 μ M typically used for experiments (65– 75% survival rate); Yi 2015 2– 16 μ M Cr(VI) for mitochondrial effects; Zhang 2016 10 nM 24h 2x for 4w - ROS, MRCC, p53), Zhong 2017a 8&16 μ M; all units in Cr(VI) (parent compound was K ₂ Cr ₂ O ₇)	↓ ATP production (Yuan 2012, Xie 2014; Xiao 2014); ↓ mitochondrial respiratory chain complex (MRCC) I and II activity (25 μM Xiao 2014/ Zhang 2015, Zhong 2017a) ↓ MMP, ATP dose dependent (1–4 μM, Xie 2014) ↑ VDAC expression (protein&mRNA, accelerates movement of Ca2+ from ER to IMM; Yuan 2012, Yi 2017), Ca2+ effects	Xiao 2014 strong CC between mito ETC dysfunction and apoptosis	Yi et al. (2017); <u>Zhong</u> et al. (2017c); <u>Zhang et</u> al. (2016); <u>Xiao et al.</u> (2014); <u>Xie et al.</u> (2012); <u>Xiao et al.</u> (2012a); <u>Xiao et al.</u> (2012b); <u>Yuan et al.</u> (2012)

System	Route	Exposure ^a	Results	Comments	Reference
HepG2 human hepatocytes	In vitro	5, 10, 20, 40 μM K ₂ Cr ₂ O ₇	↑ mtDNA copy number, mt mass, NDUFA1, Foxo1, Sirt1, Akt1, Creb1, ATP50 and ATP3J gene expression at 10 μM ↓ mtDNA copy number, mt mass, NDUFA1, Foxo1, AKT1, Creb1, MAPK2, Pten, ATP50 and ATP3J gene expression over 10 μM		<u>Zhong et al. (2017a)</u>
L-02 human fetal hepatocytes	In vitro	1–4 μM K₂Cr₂O⁊, 24h	 ↓ ETFDH, CoQ10, ATP production, SOD, Bcl-2 ↑ ROS, caspase-3, caspase-9, MDA (lipid peroxidation), mitochondrial membrane depolarization and permeability transition pore (MPTP) opening, Ca2+, Cyt c release, Bax 	Cr(VI) induces CoQ10 deficiency (essential for cellular respiration and metabolism); effects reversed by pretreatment with CoQ10	<u>Zhong et al. (2017b)</u>
Inflammation				<u> </u>	<u> </u>
Mouse, ICR, male	Feed	1 and 4 mg/kg/K ₂ Cr ₂ O ₇ - day, 36d repeat dose	个 Ho-1		<u>Jin et al. (2014)</u>
Rat, Wistar, male	Gavage		个 serum levels of ALT, AST, and ALP 个 TNFα, MAPK gene expression		<u>Navya et al. (2017)</u>
Rat, Sprague- Dawley (SD), male and female	Gavage	9mg/kg and 17.5mg/kg K₂Cr₂O⁊, 7d	↑ serum levels of ALT, AST (17.5 mg/kg)		<u>Zhong et al. (2017c)</u>

System	Route	Exposure ^a	Results	Comments	Reference
L-02, human fetal hepatocytes	In vitro	4 and 8uM K ₂ Cr ₂ O ₇ (85–80% viability Yi 2017); 2–32uM Yi 2016; Zhong 2017a 8– 15uM	↑ ALT, AST leakage ↑ TNFα, IL-1β, LBT4 ↑ Nf-kB p65 (Yi 2016, 16uM)	All dose dependent	<u>Yi et al. (2017); Zhong et al. (2017c); Yi et al. (2017c); Yi et al. (2016)</u>
Apoptosis					
Mouse, ICR, male	Feed	1 and 4 mg/kg/K ₂ Cr ₂ O ₇ - day, 36d repeat dose	个 Caspase 3, 7, 9 个 cytochrome C	ER stress response	<u>Jin et al. (2014)</u>
Rat, Wistar, male	Gavage	30mg/kg/K2Cr2O7- day, 28d repeat dose	↓ Bcl-2		<u>Navya et al. (2017)</u>
Mouse, Swiss albino, male	Gavage	0, 25, 50, and 100 mg/kg K ₂ Cr ₂ O ₇ single dose, 24h	↑ cytochrome C, p53, Casp 3 ↓ Bcl-2 (100 mg/kg)		<u>Wang et al. (2010b)</u>
HepG2 cells (human hepatocytes)	In vitro	5, 10, 20, 40 μM K ₂ Cr ₂ O ₇	No significant change in cell viability at 10 μM ↓ Significant (20%) decline in cell viability at 40 μM		<u>Zhong et al. (2017a)</u>
HepG2 cells (human hepatocytes)	In vitro	3–25 μΜ K ₂ Cr ₂ O ₇	↓ Significant (20%) decline in cell viability at 25 μM		<u>Patlolla et al. (2009a)</u>
Hep3B cells (human hepatocytes)	In vitro	2.5–100 μM K ₂ Cr ₂ O ₇	↓ cell viability at 10um (10%), 20 μM (20%) ↑ caspase activity 20 μM		<u>Zeng et al. (2013)</u>
L-02 human fetal hepatocytes	In vitro		↑ autophagosomes, LC3-II, and protein degradation; ↓ p62/SQSTM1	Autophagy associated with ROS- AKT-mTOR pathway Autophagy blocked by antioxidants Inhibition of autophagy induced apoptosis	<u>Liang et al. (2018)</u>

System	Route	Exposure ^a	Results	Comments	Reference
L-02 human fetal hepatocytes	In vitro	μM for caspase 3/beclin, Ca+2 and ROS; Xiao 2014 25 μM	 ↑ p53 (Zhang 2016) ↑ Caspase 3 (25 μM Xiao 2014, Xie 2014 activity 1–4 μM 24h; Xiao 2012 dose dependent) ↑ apoptosis (25 μM, Xiao 2014; sig at 8 μM in Yuan 2012) ↑ Beclin-1 mRNA (1–4 μM, Xie 2014) ↓ Bcl-2, ↑ Bax&cyto C (Zhang 2017 dose dependent 6–10 μM) 		Yuan et al. (2012); Xiao et al. (2012a); Xiao et al. (2012b); Xie et al. (2014); Xiao et al. (2014); Zhang et al. (2016); Zhong et al. (2017c), Zhang et al. (2017)
L-02 human fetal hepatocytes	In vitro	0, 5, 10, 15 μM Cr(VI)	↑ Clusterin (CLU), dose-dependent	Overexpression of CLU can counteract Cr(VI)-induced MRCC I inhibition, preventing apoptosis	<u>Xiao et al. (2019)</u>
DNA damage					
Rat, Wistar, male	Gavage	30 mg/kg/ K₂Cr₂O⁊-day, 28d repeat dose	↓ OGG-1 个 GADD45		<u>Navya et al. (2017)</u>
Mouse, C57BL/J5	Drinking water	Na ₂ Cr ₂ O ₇ ; dose range 55–5500 μg/L, 5 months, repeat dose 2 animals per dose group	↑ p73 ↑ P-γH2AX positive (no dose dependence)	For this study n = 2 males + 2 females	<u>Sánchez-Martín et al.</u> (2015)
Rat, Sprague- Dawley, female	Gavage	25mg/kg Na ₂ Cr ₂ O ₇ (reported as 0.5 LD50), single dose	个 DNA SSBs in hepatic tissue	(n) not given	<u>Bagchi et al. (1995b),</u> <u>Stohs et al. (2001)</u>
Mouse, female C57BL/6NTac N12 p53- deficient C57BL/6TSG- p53	Assume by gavage	2000&2002: 0.50 LD50, 0.10 LD50, 0.01 LD50. 2001: 0.50 LD50 = 95 mg/kg Na ₂ Cr ₂ O ₇ , Single dose (?), 48h, 24h, up to 96h time course respectively	↑ DNA fragmentation in hepatic tissue	Dosing and (n) not given (2000&2002), DNA fragmentation measured by % 600nm absorbance in supernatant (2000). DNA fragmentation by electrophoresis (2001)	Bagchi et al. (<u>2002a</u> ; <u>2001</u> ; <u>2000a</u>)

This document is a draft for review purposes only and does not constitute Agency policy. C-77 DRAFT—DO NOT CITE OR QUOTE

System	Route	Exposure ^a	Results	Comments	Reference
Rat, Fischer 344, male	Drinking water	100 and 200 mg/L K ₂ Cr ₂ O ₇ , 3w	↑ hepatic DPCs	Quantitative analysis performed but not presented, results not visually convincing	<u>Coogan et al. (1991a)</u>
Rat, Wistar, female	Drinking water	5 and 20 mg/L K ₂ Cr ₂ O ₇ , 15d	Null results for O6- MeG adducts		<u>Ma et al. (2015)</u>
Mouse, Swiss albino, female	Drinking water	5 and 10 mg/L Na ₂ Cr ₂ O ₇ and 10mg/L K ₂ Cr ₂ O ₇ , 18d (duration of pregnancy)	Null results for hepatic MN in fetuses		<u>De Flora et al. (2006)</u>
Mouse, C56BL/6 Big Blue, female	eal	6.75 mg/kg-bw K2Cr2O7, 28d, single dose	↑ mutation frequency in liver, but only compared to pooled controls (p = 0.043; not statistically significant compared to concurrent liver controls (p = 0.085)	MF higher in lung than in liver or kidney	<u>Cheng et al. (2000)</u>
Rat, Sprague- Dawley, male	intratrach eal instillatio n	0.25 mg/kg bw Na ₂ Cr ₂ O ₇ , 3d	No effect on DNA- protein crosslinks, DNA fragmentation, 8-OHdG levels, or gene expression, including those associated with apoptosis, or various forms of DNA alterations in liver tissue		<u>D'Agostini et al. (2002);</u> Izzotti et al. (<u>2002</u> ; <u>1998</u>)
Mouse, BDF1, female	i.p.	25 mg/kg Na ₂ Cr ₂ O ₇ – acute; 12.5 mg/kg – subchronic, single injection for acute (1–14 days) or every 4 weeks for 128 d	个 changes in ploidy in acute group	N ranged from 3–5 per group. All regions of liver	<u>Garrison et al. (1990)</u>
Rat, Sprague- Dawley, male	i.p.	20 or 50 mg/kg- day Na2Cr2O7	1 h: DNA-DNA and DNA-protein crosslinks in liver, lung and kidney ↑ DNA strand breaks in liver 36–40 h: DNA- protein crosslinks in lung and kidney		<u>Tsapakos et al. (1981),</u> <u>Tsapakos et al. (1983)</u>

System	Route	Exposure ^a	Results	Comments	Reference
Mouse, albino male	i.p.	0 or 20 mg Cr(VI)/kg, single dose	DNA damage (comet assay), 15 min post- injection (all back to control levels at 3 h): 个 liver, kidney No increases in spleen, lung, brain	Cr(V) complexes Cytotoxicity not	<u>Ueno et al. (2001)</u>
Mouse	i.p.	80 mg/kg K2CrO4	DNA damage (comet assay) in liver, lung, kidney, spleen, and bone marrow		<u>Sasaki et al. (1997)</u>
Hep3B cells (human hepatocytes)	In vitro	20 μΜ K ₂ Cr ₂ O ₇	↑ DNA damage (30% comet cells) See Table 1 for other indicators of DNA damage		<u>Zeng et al. (2013)</u>
HepG2 cells (human hepatocytes)	In vitro	3–25 μM K ₂ Cr ₂ O ₇	↑ DNA damage (15 mean comet length at 12.5 μM, 25 length with 75% tail DNA at 25 μM)		<u>Patlolla et al. (2009a)</u>
Cell proliferati	on				
Mouse, C57BL/J5	Drinking water	Na ₂ Cr ₂ O ₇ ; dose range 55–5500 μg/L, 5 months, repeat dose 2 animals per dose group	↓ p16 and p19	For this study n = 2 males + 2 females	<u>Sánchez-Martín et al.</u> (2015)
Mouse, C57BL/J5	Drinking water (in vitro study)	10 nM K ₂ Cr ₂ O ₇ for 24h 2x week for 4 weeks, 5months, repeat dose	↑ senescence	Cr(VI) concentration was chosen according to the Cr(VI) values recorded in the blood circulation of exposed workers	<u>Zhang et al. (2016)</u>

i.p. = intraperitoneal injection

^aPotassium dichromate units conversion: $Cr(VI) = 0.353 \times K_2Cr_2O_7$; Potassium chromate units conversion: $Cr(VI) = 0.268 \times K_2CrO_4$; Sodium dichromate dihydrate units conversion: $Cr(VI) = 0.349 \times Na_2Cr_2O_72H_2O$ (usually denoted as $Na_2Cr_2O_7$, since study authors frequently list the salt as the chemical compound even if concentration or dose is based on the dihydrate); Chromium trioxide units conversion: $Cr(VI) = 0.52 \times CrO_3$.

C.2.4. Hematological Effects

1

C.2.4.1. Mechanistic studies relevant to hematological effects

Mechanistic evidence indicating the biological pathways involved in hematological toxicity
following Cr(VI) exposure is summarized in Table C-35. Studies identified in preliminary title and

4 abstract screening as "mechanistic" were further screened and tagged as "hematology" if involving

5 red blood cells (erythrocytes) or reporting other endpoints relevant to hematological toxicity

- 1 (e.g., measures of hemoglobin levels). Studies were prioritized for consideration in the synthesis of
- 2 mechanistic evidence for hematological effects if they were conducted in mammalian species:
- Studies in humans with quantified oral or inhalation exposure to Cr(VI)
- Studies in experimental animals with quantified oral (drinking water, gavage, diet),
 inhalation, or intratracheal instillation exposure to Cr(VI)
- In vitro studies in human primary erythrocytes
- 7 Mechanistic endpoints relevant to interpretations of hematological effects in humans
- 8 A total of 10 hematological studies were identified to include in the mechanistic syntheses,
- 9 including three drinking water exposure studies in rats, one i.p. injection study in mice, and six
- 10 investigations using human primary erythrocytes.

Table C-35. Mechanistic studies prioritized for informing potential Cr(VI)induced hematological effects

System/Route	Exposure ^a	Results/Comments	Reference
Rat, Wistar, male	700 mg/L K ₂ Cr ₂ O ₇ (67 mg/kg) in	In plasma: 个 IL-1 β , TNF- α , 8-iso- PGF(2a), and creatinine	<u>Mitrov et al. (2014)</u>
	drinking water, 14 d	In plasma and urine: 个 11-dehydro- TXB2	
		Markers indicating arachidonic acid peroxidation	
Rat, Wistar females, GD 9–21 Oral, drinking water	0, 50, 100, 200, and 400 mg/L K ₂ Cr ₂ O ₇	In pregnant rats: ↓ RBC counts, hemoglobin, hematocrit, and MCV levels at 200 and 400 mg/L	Samuel et al. (2012)
F344 rats and B6C3F1 mice Oral, drinking water	0, 0.1, 1.4, 4.9, 20.9, 59.3, and 181 mg/L Cr(VI), 90 d 0, 0.015, 0.21, 2.9, 7.2, 20.5 mg/kg-d Cr(VI) (rats) 0, 0.024, 0.32, 1.1, 4.6, 11.6, or 31.1 mg/kg-d Cr(VI) (mice)	Dose-dependent decreases in Fe levels in the duodenum, liver, serum, and bone marrow Induction of divalent metal transporter 1 and transferrin receptor 1 in duodenum ↑ Cr RBC:plasma ratios in rats ≥20.9 mg/L	<u>Suh et al. (2014)</u>

System/Route	Exposure ^a	Results/Comments	Reference
Rat, Sprague-Dawley Oral, drinking water	0, 30, 100, and 300 mg/L K ₂ Cr ₂ O ₇ (0, 10.6, 35.4, and 106.1 mg/L Cr(VI)) 0, 2.49, 7.57, 21.41 mg/kg-d Cr(VI) 4 weeks	Mean body weight gain, mean water consumption, clinical chemistry determinations, and oxidative stress levels in plasma Mild anemic effects and ↑ plasma malondialdehyde (MDA) levels correlated with ↓ global DNA methylation at 35.4 and 106.1 mg/L ↓ plasma glutathione peroxidase (GSH-Px) activity (all exposed groups) No effect on p16 methylation or plasma 8-OHdG levels	<u>Wang et al. (2015)</u>
Mouse, Swiss Intraperitoneal Injection	4 mg/kg-d K2Cr2O7, 5 d/wk, 2 wks	 ↓ Hemoglobin, hematocrit, and RBC counts Echinocytic transformation Leucopenia after 2 wks 	Ray and Sarkar (2012)
Human, primary erythrocytes	0, 0.1, 0.5, 1.0, 2.5, and 5 mM K ₂ Cr ₂ O ₇ , 1 h	 ↑ erythrocyte hemolysis and protein carbonyl content, dose- dependent ↑ lipid peroxidation (MDA levels) ↓ total SH content, NO levels ↑ SOD and glutathione S- transferase ↓ catalase, G6PD, glutathione peroxidase, glutathione reductase, and thioredoxin reductase 	<u>Ahmad et al. (2011)</u>
Human, primary erythrocytes	0 or 8 mM Na ₂ Cr ₂ O ₇ , 0, 2, and 4 h	 ↑ lipid peroxidation (TBARS) ≥2 h No hemolysis, but observed echinocytic transformation of RBCs ↓ GSH levels and GSSG-R activity No effect on catalase, GSH-Px, or SOD activities ↑ methemoglobin (hemoglobin oxidation) and ↓ NADH- methemoglobin reductase activity in RBCs 	<u>Fernandes et al. (1999)</u>
Human, primary erythrocytes	5–25 μg Cr(VI)/L blood	↓ glutathione reductase No effect on other erythrocyte enzymes	Koutras et al. (1964)
Human, primary erythrocytes	0, 1, 10, or 20 μM Cr(VI), 48 h	Evidence of eryptosis (apoptotic-like death of erythrocytes): ↑ intracellular Ca ²⁺ , ↓ ATP, ↓ cell volume, ↑ annexin-V (phosphatidylserine) binding ↑ hemolysis No effect on ceramide formation (inconsistent with eryptosis)	Lupescu et al. (2012)

System/Route	Exposure ^a	Results/Comments	Reference
Primary human erythrocytes and mitochondria from placenta tissue	0.05, 0.5, 1, 5 μg/mL K₂Cr₂O7	 ↑ lipid peroxidation level (TBARS) (decreased with coadministration of estrogen metabolite 4-OHE2) ↓ SOD and GST activity ↓ nitric oxide levels in blood 	Sawicka et al. (<u>2017</u> ; <u>2017</u>)
Human, primary erythrocytes	0, 1.25, 2.5, 5, 10, 20, 40, 80, and 160 μM Cr(VI), 48 h	 ↑ hemolysis, dose-dependent Evidence of eryptosis: ↑ intracellular Ca²⁺, ↓ ATP, ↓ cell volume, ↑ annexin-V (phosphatidylserine) binding Blocking Ca influx lessened cell volume reduction ↑ ROS; incubation with NAC did lower ROS levels but did not affect annexin-V binding 	<u>Zhang et al. (2014)</u>

^aPotassium dichromate units conversion: $Cr(VI) = 0.353 \times K_2Cr_2O_7$; Potassium chromate units conversion: $Cr(VI) = 0.268 \times K_2CrO_4$; Sodium dichromate dihydrate units conversion: $Cr(VI) = 0.349 \times Na_2Cr_2O_72H_2O$ (usually denoted as $Na_2Cr_2O_7$, since study authors frequently list the salt as the chemical compound even if concentration or dose is based on the dihydrate); Chromium trioxide units conversion: $Cr(VI) = 0.52 \times CrO_3$

C.2.5. Immune Effects

1 2

C.2.5.1. Immune toxicity evidence tables

- The immune evidence from experimental animals synthesized in Section 3.2.6 is
- 3 summarized in Table C-36. These studies were identified using the main PECO criteria in Appendix
- 4 A and screened for outcomes that inform Cr(VI)-induced immune toxicity. The evidence is
- 5 organized by the immune toxicity endpoints identified in the World Health Organization's *Guidance*
- 6 for Immunotoxicity Risk Assessment for Chemicals (<u>IPCS, 2012</u>).

Reference Host resista	(******)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
Host resista	nce	1		1		
		Short-term (5 days)	118.57 μg/m ³ for 5h/d for 5 consecutive days	Inhalation	Pathogen clearance	Decreased 72 h post- infection, but not 24 or 48 h post-infection and only in the high-dose group. Effect observed in both soluble and insoluble forms of Cr(VI), but the effect was not correlated with chromium lung burden

Table C-36. Data summary tables for immunological outcomes included in the immune effects animal evidence synthesis

Reference	Species (strain)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
<u>Cohen et</u> <u>al. (2010)</u>	Rats (male, F344)	Short-term (5 days)	118.57 μg/m ³ for 5h/d for 5 consecutive days	Inhalation	Pathogen clearance	Decreased 72 h post- infection, but not 24 or 48 h post-infection and only in the high-dose group. Effect observed in both soluble and insoluble forms of Cr(VI), but the effect was not correlated with chromium lung burden
Antibody re	sponses					
<u>NTP (2005)</u>	Mice (female, B6C3F1)	Short-term (28 days)	15.6, 31.3, 62.5, 125, 250 mg/L SDD	Drinking water	IgM AFC/10 ⁶ cells	Increased ~30% for 31.3 and 62.5 mg/L Not reproducible in second assay
					IgM AFC/spleen	34% incr. for 62.5 mg/L dose only Not reproducible in second assay
<u>NTP</u> (2006b)	Rats (female,	Short-term (28 days)		water	IgM AFC/10 ⁶ cells	No effect
	Sprague- Dawley)	(,			IgM AFC/spleen	No effect
<u>NTP</u> (2006a)	Rats (female,	Short-term (28 days)	14.3, 57.3, 172, 516 mg/L SDD	Drinking water	IgM AFC/10 ⁶ cells	66% incr. at 57.3 mg/L dose only
	F344)				IgM AFC/spleen	62% incr. at 57.3 mg/L dose only
<u>Glaser et</u> al. (1985)	Rats (male, Wistar TNO- W 74)	Short-term (28 days)	0.025, 0.050, 0.10 mg/m ³	Inhalation	# spleen cells necessary for lysis of 50% hemolysis SRBCs	No effect
		Subchronic (90 days)	0.025, 0.050, 0.10, 0.20 mg/m ³		# spleen cells necessary for lysis of 50% hemolysis SRBCs	Increased response for 0.050 mg/m ³ , 0.050 mg/m ³ + 2-month recovery and 0.20 mg/m ³ groups
Ex vivo WBC	function					
NTP (2005)	Mice	Short-term	15.6, 31.3, 62.5,	-	MLR	No effect
	(female, BC3F1)	(28 days)	125, 250 mg/L SDD	water	NK cell activity	No effect
					Spleen cell proliferation	No effect on anti-CD3 spleen cell proliferation

Reference	Species (strain)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
<u>NTP</u> (2006b)	Rats (female,	Short-term (28 days)		Drinking water	NK cell activity	No effect
	Sprague- Dawley)	(20 00 / 5)			Spleen cell proliferation	No effect on anti-CD3 spleen cell proliferation
NTP	Rats	Short-term	14.3, 57.3, 172,	Drinking	NK cell activity	No effect
<u>(2006a)</u>	(female <i>,</i> F344)	(28 days)	516 mg/L SDD	water	Spleen cell proliferation	No effect on anti-CD3 spleen cell proliferation
<u>Glaser et</u> <u>al. (1985)</u>	Rats (male, Wistar TNO- W 74)	Short-term (28 days) & Subchronic (90 days)	Short-term (0.050 mg/m ³), Subchronic (0.025, 0.050, 0.20 mg/m ³)	Inhalation	Phagocytosis	For both exposure regimens, phagocytosis significantly increased at lower Cr(VI) levels (up to 0.050 mg/m ³). Following subchronic exposure to 0.20 mg/m ³ , phagocytosis decreased significantly. In both instances, the investigators verified cellular viability prior to initiating the assay.
		Subchronic (90 days)	0.20 mg/m ³		Spleen cell proliferation	Compared to control, ConA stimulated T cell proliferative response (30 μg/mL, not 15 μg/mL ConA) was elevated in rats exposed to Cr(VI).
<u>Shrivastava</u> <u>et al.</u> (2005b)	Mice (Swiss)	Short-term & subchronic (3, 6, 9 weeks)	14.8 mg/kg	Drinking water	Phagocytosis	Compared to week 0, phagocytosis of spleen macrophages was significantly reduced to 36 ± 7% at the 9-week timepoint.
					Spleen cell proliferation	Compared to week 0, ConA stimulated T cell proliferative response was increased two-fold in mice exposed to Cr(VI), but the investigators did not analyze the findings statistically.

Reference	Species (strain)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
<u>Snyder and</u> <u>Valle</u> (1991)	Rat (F344)	Short-term (3 or 10 weeks)		Drinking water	Spleen cell proliferation	Compared to control, proliferative response to ConA was elevated at 100 mg/L and decreased at 200 mg/L in splenocytes isolated from rats exposed to chromium in drinking water. Response to LPS was increased at 100 mg/L and similar to control at 200 mg/L (3-wk exposure) in splenocytes isolated from rats exposed to chromium in drinking water. No dose- related pattern apparent.
					MLR	Chromium (100 mg/L) had no effect on thymidine uptake from rats exposed for 10 wks unless splenocytes were cultured in the presence of 0.1 mg/L chromate; investigators did not analyze findings statistically.
<u>Cohen et</u> <u>al. (1998)</u>	Rat (F344)	Short-term (28 days)	360 µg/m ³	Inhalation	Reactive oxygen species Nitric oxide	Potassium chromate had no effect on O_2 - or H_2O_2 production in the presence or absence of IFN- γ at 4 weeks, but increased opsonized zymosan- stimulated O_2 - and decreased H_2O_2 production in the presence IFN- γ . Chromium had no effect on LPS-stimulated nitric oxide production at 4 weeks, but reduced IFN-g-stimulated production at 4 weeks.

Reference	Species (strain)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
					Mitogen- stimulated cytokine production (LPS) by pulmonary alveolar macrophages exposed <i>in vivo</i> for 4 weeks	Decreased IL-1, TNFα Non-statistically significant increase in IL-6
<u>Johansson</u> <u>et al.</u> (1986)	Rabbit (strain not specified)	Chronic	0.9 ± 0.4 mg/m ³	Inhalation	Phagocytosis	No effect Note: Study outcome may have been affected by the 3-day gap between exposure to chromium and evaluation of effects on phagocytosis
<u>Karaulov et</u> <u>al. (2019)</u>	Rat (Wistar)	Chronic	20 mg/kg-day	Drinking water	Mitogen- stimulated cytokine production (ConA) by splenocytes exposed <i>in vivo</i> for 45, 90, or 135 days	Increased IL-4 (days 45, 90, and 135) and Decreased IL- 6 (day 135) No effect on IL-10 and IFNγ
Immune org	gan pathology	1				
<u>NTP (2005)</u>	Mice (female, B6C3F1)	Short-term (28 days)	15.6, 31.3, 62.5, 125, 250 mg/L SDD	Drinking water	Gross spleen and thymus lesions	No effect
<u>NTP</u> (2006b)	Rats (female, Sprague- Dawley)	Short-term (28 days)	14.3, 57.3, 172, 516 mg/L SDD	Drinking water	Gross spleen and thymus lesions	No effect
<u>NTP</u> (2006a)	Rats (female, F344)	Short-term (28 days)	14.3, 57.3, 172, 516 mg/L SDD	Drinking water	Gross spleen and thymus lesions	No effect
<u>NTP</u> (2007b)	Rats (male and female, F344)	Subchronic (3 months)	62.5, 125, 250, 500, and 1,000 mg/L SDD	Drinking water	Gross spleen and thymus lesions Histopathology on spleen, thymus, lymph nodes (mandibular,	No effect Note: Although the effect is unlikely to be due to immunotoxicity, histiocytic cellular infiltration of pancreatic lymph nodes was reported in male (≥125 mg/L) and female (1000 mg/L) rats.

Reference	Species (strain)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
	Mice (male and female, B6C3F1)	Subchronic (3 months)	62.5, 125, 250, 500, and 1,000 mg/L SDD		mesenteric and pancreatic)	No effect Note: Although the effect is unlikely to be due to immunotoxicity, histiocytic cellular infiltration of mesenteric lymph nodes was reported in male and female mice exposed to 125 mg/L or more.
	Mice (male, BALB/c)	Subchronic (3 months)	62.5, 125 and 250 mg/L SDD			No effect
	Mice (male, am3- C57BL/6)	Subchronic (3 months)	62.5, 125 and 250 mg/L SDD			No effect Note: Although the effect is unlikely to be due to immunotoxicity, histiocytic cellular infiltration of mesenteric lymph nodes was reported in male mice exposed to 250 mg/L.
<u>NTP (2008)</u>	Rat (male and female, F344/N)	2-year (day 22, 6 and 12 months)	14.3, 57.3, 172, or 516 mg/L SDD	Drinking water	Gross spleen and thymus lesions Histopathology on spleen, thymus, lymph nodes (mandibular and mesenteric)	No effect Note: Although the effect is unlikely to be due to immunotoxicity, histiocytic cellular infiltration of mesenteric and pancreatic lymph nodes was reported in male and female rats exposed to 57.3 mg/L or greater.
		2-year (day 22, 6 and 12 months)	Male and female rats – 14.3, 57.3, 172, 516; Male mice – 14.3, 28.6, 85.7, or 257.4 mg/L SDD; Female mice – 14.3, 57.3, 172, or 516 mg/L SDD			No effect Note: Although the effect is unlikely to be due to immunotoxicity, histiocytic cellular infiltration of the mesenteric lymph nodes of all exposed groups of males and females and of the pancreatic lymph nodes of 85.7 and 257.4 mg/L males and 172 and 516 mg/L females.

Reference	Species (strain)	Exposure design	Doseª	Exposure route	Endpoint	Results
<u>Karaulov et</u> <u>al. (2019)</u>	Rats (male, Wistar)	Chronic (135 days)	20/mg/kg-day	Drinking water	spleen, thymus, lymph nodes	Compared to control, structural changes including decreased reticular epitheliocytes and associations with T cells that could lead to functional impairment of the central immune system, data not reported for other timepoints.
						Compared to control, structural changes structural effects including increased B-zone and a decrease in the T-zone were observed in spleens across all timepoints.
						Lymph node size was increased and was attributed to changes in cellular elements.
<u>NTP (1996)</u>	Mice (female, BALBC)	Subchronic (90 days)	15, 50, 100, 400 mg/L PDC	Oral diet	Gross spleen and thymus lesions	No effect
<u>Glaser et</u> <u>al. (1986)</u>	Rats (male, Wistar TNO- W 74)	Chronic (18 months exposure + 12 months recovery)	0.025, 0.050, 0.010 mg/m ³ Cr(VI)	Inhalation	Histopathology of spleen	No effect Note: Animals were evaluated only after the full 30-month study duration (i.e., including the 12- month recovery period).
Immunoglo	bulin levels					
<u>NTP (2005)</u>	Mice (female, B6C3F1)	Short-term (28 days)	15.6, 31.3, 62.5, 125, 250 mg/L SDD	Drinking water	Antigen-specific IgM	No effect on serum titers of antigen-specific IgM (SRBC)
<u>NTP</u> (2006a)	Rats (female, F344)	Short-term (28 days)	14.3, 57.3, 172, 516 mg/L SDD	Drinking water	Antigen-specific IgM	No effect on serum titers of antigen-specific IgM (KLH)
<u>NTP</u> (2006b)	Rats (female, Sprague- Dawley)	Short-term (28 days)	14.3, 57.3, 172, 516 mg/L SDD	Drinking water	Antigen-specific IgM	No effect on serum titers of antigen-specific IgM (SRBC)

Reference	Species (strain)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
<u>Glaser et</u> al. (1985)	Rats (male, Wistar TNO- W 74)	Short-term (28 days)	0.025, 0.050, 0.10 mg/m ³	Inhalation	Total serum Ig	Total serum Ig data not shown or mentioned in the results
		Subchronic (90 days)	0.025, 0.050, 0.10, 0.20 mg/m ³			Dose responsive increase in total serum Ig, significant at concentrations ≥0.025 mg/m ³ , peaked at 0.10 mg/m ³ and declined to control levels at 0.20 mg/m ³
<u>Glaser et</u> <u>al. (1986)</u>	Rats (male, Wistar TNO- W 74)	Chronic (18 months exposure + 12 months recovery)	Sodium dichromate – 0.025, 0.050, 0.10 mg/m ³	Inhalation	Total serum Ig	According to the investigators, total serum Ig levels decreased in all sodium dichromate exposure groups and for all timepoints (monthly for first 6 months, every 3 months thereafter), but observed effects were not significant; data not shown.
<u>Glaser et</u> al. (1990)	Rats (male, albino	Short-term (30 days)	0.050, 0.10, 0.20, 0.40	Inhalation	Total serum Ig	No effect on total serum Ig levels; data not shown.
	Wistar)	Subchronic (90 days)	mg/m ³			No effect on total serum Ig levels; data not shown.
		Subchronic + recovery (90 days + 30-day recovery)				No effect on total serum Ig levels; data not shown.
Immune org	an weight					
<u>NTP (2005)</u>	Mice (female, B6C3F1)	Short-term (28 days)	15.6, 31.3, 62.5, 125, 250 mg/L SDD	Drinking water	Absolute and relative spleen and thymus weight	Non-replicated decrease in relative spleen weight (31.3 mg/L) No effect on relative thymus weight Note: Since significant changes in body weight were reported, absolute weights are not reliable.
<u>NTP</u> (2006b)	Rats (female, Sprague- Dawley)	Short-term (28 days)	14.3, 57.3, 172, 516 mg/L SDD	Drinking water	Absolute spleen, thymus, and lymph node weight	No effect (spleen, thymus) Protocol indicates that lymph node weight was collected, but data were not reported.

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference	Species (strain)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
<u>NTP</u> (2006a)	Rats (female, F344)	Short-term (28 days)	14.3, 57.3, 172, 516 mg/L SDD	Drinking water	Absolute spleen, thymus, and lymph node weight	No effect (spleen, thymus) Protocol indicates that lymph node weight was collected, but data were not reported.
<u>NTP</u> (2007b)	Rats (male and female, F344/N)	Subchronic (3 months)	62.5, 125, 250, 500, and 1,000 mg/L SDD	Drinking water	Absolute and relative spleen and thymus weight	Males – Relative spleen weights of 250 and 500 mg/L significantly less than control. Thymus weight unaffected. Females – Relative spleen weights of 500 and 1,000 mg/L significantly less than control. Thymus weight unaffected.
	Mice (male and female, B6C3F1)	Subchronic (3 months)	62.5, 125, 250, 500, and 1,000 mg/L SDD			Males – No effect on absolute spleen or thymus weight. Increase relative spleen and thymus weight (500 mg/L and 1,000 mg/L) Females – No effect on spleen weight. Absolute thymus weight increased for single dose group. Relative thymus weight increased for 125, 250, 500, and 1,000 mg/L dose groups. NOTE: Effects on organ weight were attributed to reduced body weights of the mice.
	Mice (male, B6C3F1)	Subchronic (3 months)	62.5, 125, and 250 mg/L SDD			Absolute thymus weight decreased (250 mg/L), considered treatment related. Spleen weight unaffected.
	Mice (male, BALB/c)	Subchronic (3 months)	62.5, 125, and 250 mg/L SDD			No effect on spleen or thymus weight.

Reference	Species (strain)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
	Mice (male, am3- C57BL/6)	Subchronic (3 months)	62.5, 125 and 250 mg/L SDD			Significant decrease in absolute thymus weight and relative spleen weights (250 mg/L)
						NOTE: Effects on organ weight were attributed to reduced body weights of the mice.
<u>Karaulov et</u> <u>al. (2019)</u>	Rats (male, Wistar)	Chronic (135 days)	20/mg/kg-day	Drinking water	Absolute spleen and thymus weight	Absolute spleen and thymus weight decreased in rats exposed to chromium in drinking water for up to 135 days
<u>Shrivastava</u> <u>et al.</u> (2005b)	Mice (male, Swiss)	Short-term & subchronic (3, 6, 9 weeks)	14.8 mg/kg	Drinking water	Relative spleen weight	Compared to week 0, relative spleen weight decreased gradually and achieved statistical significance at the 9-week timepoint.
<u>Jin et al.</u> (2016)	Mouse (male, ICR)	Short-term	50 mg/L for 7 days or 200 mg/L for 21 days	Drinking water	Relative spleen weight	Compared to control, relative spleen weight was significantly increased following exposure to 50 mg/L potassium dichromate on day 7. Compared to control, relative spleen weight was increased following exposure to 50 mg/L potassium dichromate for 21 days, but the effect was not significant.
<u>Glaser et</u> al. (1985)	Rats (male, Wistar TNO- W 74)	Short-term (28 days)	0.025, 0.050, 0.10 mg/m ³	Inhalation	Relative spleen weight	Compared to control, relative spleen weight increased for concentrations (≥0.050 mg/m ³)
		Subchronic (90 days)	0.025, 0.050, 0.10, 0.20 mg/m ³		Relative spleen weight	Compared to control, relative spleen weight increased for concentrations (≥0.050 mg/m ³)

Reference	Species (strain)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
<u>Glaser et</u> <u>al. (1986)</u>	Rats (male, Wistar TNO- W 74)	Chronic (18 months exposure + 12 months recovery)	Sodium dichromate – 0.025, 0.050, 0.10 mg/m ³	Inhalation	Spleen weight	No effect on spleen weight (relative or absolute not specified). Note: animals were evaluated only after the full 30-month study duration (i.e., including the 12- month recovery period).
<u>Kim et al.</u> (2004)	Rats (male, Sprague- Dawley)	Subchronic (13 weeks)	0.2, 0.5, 1.25 mg/m ³	Inhalation	Relative spleen weight	No effect on relative spleen weight.
WBC counts (spleen cells)						
<u>NTP (2005)</u>	Mice (female, BC3F1)	Short-term (28 days)	15.6, 31.3, 62.5, 125, 250 mg/L SDD	Drinking water	Total WBCs Absolute and relative splenic phenotypic analysis	 No effect on total WBC counts No effect on splenic absolute or relative levels B cells (ig+), T cells (CD3+), T helper cells (CD4+/CD8), T cytotoxic cells (CD4-/CD8+), immature T cells (CD4+/CD8+), and monocytes (Mac-3+ cells).
<u>NTP</u> (2006b)	Rats (female, Sprague- Dawley)	Short-term (28 days)	14.3, 57.3, 172, 516 mg/L SDD	Drinking water	Total WBCs Absolute and relative splenic phenotypic analysis	 No effect on total WBC counts No effect on splenic absolute number of B cells (CD45+), T cells (CD5+), T helper cells (CD4+/CD5+), T cytotoxic cells (CD8+/CD5+), and NK cells (CD8+) The percent macrophages increased in low and high dose Cr(VI) groups, no other subpopulations affected

Reference	Species (strain)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
<u>NTP</u> (2006a)	Rats (female,	Short-term (28 days)	14.3, 57.3, 172, 516 mg/L SDD	Drinking water	Total WBCs	• No effect on total WBC counts
	F344)				Absolute and relative splenic phenotypic analysis	 No effect on splenic absolute and relative numbers of B cells (CD45+), T cells (CD4+/CD5+), T helper cells (CD4+), and T cytotoxic cells (CD8+/CD5+) Absolute number of macrophages (HIS36+) increased at low dose
						 Increased NK cells (~40% change, single dose level 172 mg/L) and macrophages (~35% change, single dose level 14.3 mg/L).

Reference	Species (strain)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
Karaulov et al. (2019)	Rats (male, Wistar)	Chronic (135 days)	20/mg/kg-day	Drinking water	Total WBCs Absolute and relative splenic phenotypic analysis	 No effect on WBC counts after 90 days exposure Decreased absolute number splenic karyocytes and myeloid cells Timepoint specific effects on absolute number splenic plasma cells Absolute number of CD3+ cells decreased on days 90 and 135 Relative number of CD3+ cells unaffected Absolute number of CD3+ cells decreased on days 90 and 135 Relative number of CD4+ cells decreased on days 90 and 135 Relative number of CD4+ cells decreased on day 45 Absolute and relative number of CD8+ cells decreased on day 90 Absolute number of thymocytes decreased, but a dose-response was not evident Increased absolute number bone marrow myeloid cells, lymphocytes, neutrophils, and karyocytes at the 135- day timepoint
WBC (hema	tology)					
<u>NTP (2005)</u>	Mice (female, B6C3F1)	Short-term (28 days)	15.6, 31.3, 62.5, 125, 250 mg/L SDD	Drinking water	Hematology	No effect
<u>NTP</u> (2006b)	Rats (female, Sprague- Dawley)	Short-term (28 days)	14.3, 57.3, 172, 516 mg/L SDD	Drinking water	Hematology	No effect

Reference	Species (strain)	Exposure design	Doseª	Exposure route	Endpoint	Results
<u>NTP</u> (2006a)	Rats (female, F344)	Short-term (28 days)	14.3, 57.3, 172, 516 mg/L SDD	Drinking water	Hematology	No effect
<u>NTP</u> (2007b)	Mice (male and female, B6C3F1)	Subchronic (3 months)	62.5, 125, 250, 500, and 1,000 mg/L SDD	Drinking water	Hematology	No effect, either sex
	Mice (male, BALB/c)	Subchronic (3 months)	62.5, 125 and 250 mg/L SDD			No effect
	Mice (male, am3- C57BL/6)	Subchronic (3 months)	62.5, 125 and 250 mg/L SDD			No effect
<u>NTP</u> (2007b)	Rats (male and female, F344/N)	Subchronic (3 months)	62.5, 125, 250, 500, and 1,000 mg/L SDD	Drinking water	Hematology	Elevated WBC and lymphocytes in males and females, primarily in high dose groups (500 and 1,000 mg/L). Increased neutrophil and monocyte counts (at higher exposures in males and females) were reported to be an inflammatory response associated with lesions observed histopathologically (e.g., gastric lesions) and not believed to fully account for increased leukocyte numbers.
<u>NTP (2008)</u>	Rat (male and female F344/N)	2-year (day 22, 6 and 12 months)	14.3, 57.3, 172, or 516 mg/L SDD	Drinking water	Hematology	Increased WBC, neutrophils and eosinophils, sporadically with time and generally in higher dose groups.
	Mice (male and female, B6C3F1)		Male and female mice – 14.3, 57.3, 172, 516; Male mice – 14.3, 28.6, 85.7, or 257.4 mg/L SDD; Female mice – 14.3, 57.3, 172, or 516 mg/L SDD			Increased WBC, monocytes and basophils, but only on day 22 in the higher dose groups. Neutrophils increased on day 22 top two dose groups and at 12 months for top dose group. Lymphocytes increased for day 22 (14.3 mg/L–516 mg/L)

Reference	Species (strain)	Exposure design	Dose ^a	Exposure route	Endpoint	Results
<u>Shrivastava</u> <u>et al.</u> (2005a)	Mice (Swiss)	Short-term & subchronic (3, 6, 9 weeks)	14.8 mg/kg	Drinking water	Hematology	WBC decreased significantly at the 3-week timepoint. Compared to week 0, the relative number of lymphocytes, granulocytes and monocytes decreased significantly at all timepoints.
<u>NTP (1996)</u>	Mice (female, BALBC)	Subchronic (90 days)	15, 50, 100, 400 mg/L PDC	Oral diet	Hematology	No effect
<u>Krim et al.</u> (2013)	Rat (male, albino Wistar)	Short-term (30 days)	15 mg/kg PDC	Oral gavage	Hematology	No effect
<u>Glaser et</u> <u>al. (1986)</u>	Rats (male, Wistar TNO- W 74)	Chronic (18 months exposure + 12 months recovery)	Sodium dichromate – 0.025, 0.050, 0.10 mg/m ³	Inhalation	Hematology	No effect on total WBC counts observed in all sodium dichromate exposure groups and for all timepoints (monthly for first 6 months, every 3 months thereafter).
<u>Glaser et</u> <u>al. (1985)</u>	Rats (male, Wistar TNO- W 74)	Short-term (28 days) & Subchronic (90 days)	Short-term (0.025, 0.050, 0.10 mg/m ³) & Subchronic (0.025, 0.050, 0.10, 0.20 mg/m ³ CrO ₃)	Inhalation	Hematology	No effect
<u>Glaser et</u> <u>al. (1990)</u>	Rats (male, Wistar BOR:WISW)	Short-term (30 days) & subchronic (90 days)	0.050, 0.10, 0.20, 0.40 mg/m ³ CrO ₃	Inhalation	Hematology	Elevated blood WBCs (0.050–0.40 mg/m ³) at 30 days and 90 days, effect lost after 30–day recovery period (following 90 days of exposure).
<u>Kim et al.</u> (2004)	Rats (male, Sprague- Dawley)	Subchronic (13 weeks)	0.2, 0.5, 1.25 mg/m ³	Inhalation	Hematology	No effect on total WBC counts

^aPotassium dichromate units conversion: $Cr(VI) = 0.353 \times K_2Cr_2O_7$; Potassium chromate units conversion:

 $Cr(VI) = 0.268 \times K_2CrO_4$; Sodium dichromate dihydrate units conversion: $Cr(VI) = 0.349 \times Na_2Cr_2O_72H_2O$ (usually denoted as $Na_2Cr_2O_7$, since study authors frequently list the salt as the chemical compound even if concentration or dose is based on the dihydrate); Chromium trioxide units conversion: $Cr(VI) = 0.52 \times CrO_3$

SRBC = sheep red blood cell; KLH = keyhole limpet hemocyanin; MLR = mixed lymphocyte reaction; NK = natural killer; ConA = concanavalin A; LPS = liposaccharide

1 C.2.5.2. Mechanistic studies relevant to immunotoxicity

2 Studies initially tagged as "mechanistic" in the preliminary title and abstract screening were 3 further screened and tagged "immune" if they reported any immunotoxicological outcome. A large 4 body of mechanistic information (329 studies) exists to inform the potential immunotoxicity of 5 Cr(VI). Within this evidence base, studies were tagged with immune-related categories if they 6 reported relevant outcomes: "chronic inflammation" (39 studies) or "immune suppression" 7 (34 studies) if relevant to cancer (reviewed in Section 3.2.3 of the toxicological review), as well as 8 "cytokines" if a study reported cytokine measures (28 studies). In addition, studies tagged as 9 "dermal" in "potentially relevant supplemental material" were rescreened to identify allergic 10 sensitization (68 studies) or immune stimulation (61 studies) outcomes that also appeared to 11 involve nondermal exposures to Cr(VI). 12 Subsequent prioritization of the immune-relevant studies that are more informative for 13 chronic human exposure was conducted to identify mammalian studies of the immune system that 14 focused on exposure routes more relevant to humans (oral drinking water and inhalation) for 15 durations ranging from short-term to chronic. In addition, supporting information in vitro studies 16 in human and animal primary lymphocytes and cell lines provided insight into biological 17 plausibility and human relevance of the observed mechanisms. These prioritization criteria are as 18 follows: 19 • Studies in humans with quantified oral or inhalation exposure to Cr(VI) • Studies in experimental animals with quantified oral (drinking water, gavage, diet), 20 21 inhalation, or intratracheal instillation exposure to Cr(VI) 22 • Ex vivo assays performed on immune-relevant cells exposed in vivo 23 • In vitro studies in primary or immortalized mammalian cells derived from immune organ or 24 tissues 25 Mechanistic endpoints relevant to interpretations of immune health effects in humans and • 26 animals 27 Fourteen studies were identified that primarily reported evidence of Cr(VI)-induced 28 alterations in cell differentiation or activation, effector cell function, cell proliferation, and cell-cell

- communication; these studies are summarized in Table C-37. In addition, 21 studies reporting
- 30 cytokine measures were prioritized; these studies are summarized in Table C-38.

System	Route	Exposure	Results	Comments	Reference
Effects on immu	ine cell differe	ntiation or activation			
Human monocyte derived dendritic cells (MoDC)	Human monocyte derived dendritic cells (MoDC)	25, 50, 75, 100 nM K ₂ Cr ₂ O ₇ , 48h	↑ CD86 (dose dependence with significance at 100 nM); No change in CD83	100 nM $K_2Cr_2O_7$ considered nontoxic dose when cells were 75% viable	<u>Toebak et al.</u> (2006)
Mouse splenocytes from male and female C57BL/6	In vitro	0, 2, 5 μΜ K ₂ Cr ₂ O ₇ , 24h	ψ activation of T cells stimulated with anti-CD3 and anti-CD28 (ψ CD69 at both doses and ψ CD25 at 5 μ M)	Significant ↓ CD4+ T cell viability at 5 µM, but not 2 µM	<u>Dai et al. (2017b)</u>
Effects on immu	ine effector fu	nction of specific cell type	S		
Mouse RAW264.7 macrophages	In vitro	50 μg/mL welding fumes (250 μg/mL), 3 or 6h	 	↓ number live cells and percentage viable cells for all welding fumes (250 µg/mL) at 24 h, but only Ni-Cu WF caused a reduction in live cells at 50 µg/mL; GMA- MS = Cr(VI) not detected; GMA-SS = 2600 ± 120 µg/g Cr(VI); Ni-Cu WF = 422 ± 35 µg/g Cr(VI)	<u>Badding et al.</u> (2014)
Human primary lymphocytes	In vitro	K ₂ Cr ₂ O ₇ , 7d	ψ IgG production at 0.1–10 μM w/ 80% reduction at 2 μm by lymphocytes stimulated with PWM	Effects correlated with Cr content in cells	<u>Borella and</u> <u>Bargellini (1993)</u>
Mouse (BALB/cABOM) primary peritoneal macrophages	In vitro	0.313–40 μM, 18h (random migration) or 2.5 μM and 10 μM, 24h (phagocytosis) Na ₂ CrO ₄	No changes in random migration (chemokinesis) up to 2.5 µM, but ↓ random migration in concentrations at ≥5 µM for 18h in "stimulated" macrophages ↓ phagocytosis in resting macrophages at ≥2.5 µM, but not at lower concentrations	Viability not affected by 2.5 and 1.25 µM Cr(VI) during 28 days of exposure. 5 µM showed decreased viability after 48h. Chemokinesis studies carried out using stimulated macs, but stimuli not specified.	<u>Christensen et al.</u> (1992)

Table C-37. Mechanistic studies prioritized for informing potential Cr(VI)-induced immune toxicity

System	Route	Exposure	Results	Comments	Reference
Mouse splenocytes from male and female C57BL/6	In vitro	0, 2, 5 μM K₂Cr₂O⁊, 24h	↓ production cell surface expression of CD107a (indicates degranulation by CD8+ T cells)	Significant \downarrow CD8+ T cell viability at 5 μM and 2 μM	<u>Dai et al. (2017b)</u>
Bovine alveolar macrophages	In vitro	10–1000 μ g/mL MMA- SS, MIG-SS, MMA-MS, MMA-CI, MIG-MS welding fumes, or K ₂ CrO ₄ , 18h	 	Inhibited phagocytosis at concentration ~10x less than the LC50 (i.e., 1.59 μg/mL)	Hooftman et al. (1988)
Human PMBCs from shoe, leather, and hide industry workers	Ex vivo/In vitro	PBMCs collected from exposed humans exposed Cr(VI) in vitro to 10 ⁻⁵ mg/L, 1h	↓ percent phagocytosis, phagocytosis index and percent killing by PMNs collected from exposed workers and treated with Cr(VI) ex vivo		<u>Mignini et al.</u> (2009)
Effects on immu	ine cell prolife	eration			
Human primary lymphocytes	In vitro	0.1, 1, 10, 100 μM Cr(VI), 48h	↓ anti-CD3 proliferation at all concentrations ↓ anti-CD3 / anti-CD28 proliferation at 10 and 100 μM	Cr(VI) test substance reported as CrO ₃ as source, given as ion concentration. Resting and CD3 activated lymphocytes showed decreased viability (to ~80%) at 1 µM, with drop after 10 µM.	<u>Akbar et al.</u> (2011)
Human primary lymphocytes	In vitro	K ₂ Cr ₂ O ₇ , 4d	↑ proliferation by PHA-stimulated cells at $10^{-8}-10^{-6}$ mol/L (4d) ↓ proliferation by PHA-stimulated cells at $10^{-6}-2.5 \times 10^{-6}$ mol/L (4d)	Biphasic pattern; Effects correlated with Cr content in cells	Borella and Bargellini (1993)
Mouse splenocytes from male and female C57BL/6	In vitro	0, 2, 5 μM K₂Cr₂O7, 96h	\downarrow proliferation by anti-CD3/anti-CD28 stimulated CD4+ T cells at 2 and 5 μ M and CD8+ cells at 5 μ M	Significant ↓ CD4+ T cell viability at 5 μM, but not 2 μM.	<u>Dai et al. (2017b)</u>
Rat splenocytes, Fischer 344	In vitro	LPS/ConA assay: 0.01– 100 mg/mL K ₂ CrO ₄ ,	↓ mitogen stimulated proliferation by T lymphocyte (ConA) and B lymphocytes (LPS)		Snyder and Valle (1991)

System	Route	Exposure	Results	Comments	Reference
(splenocytes from Sprague- Dawley rats served as stimulator cells in the mixed lymphocyte cultures)		cells cultured "up to" 72h Mixed lymphocyte response (MLR): In vivo/ex vivo – 100 mg/L for 10 weeks followed by 0.1 mg/L for 5 days of culture In vitro – 0.1 mg/L K ₂ CrO ₄ , 5d	 cultures 0.1 mg/L and lower, no effect at higher doses ↑ MLR in cells exposed in vivo and in vitro (no statistics) ↑ or no effect on MLR at 0.1 mg/L in vitro (statistics provided for only one of two experiments) 		
Cross-sectional study in Italy of 20 exposed and 24 unexposed workers	Ex vivo/In vitro	PBMCs collected from exposed workers treated with additional Cr(VI) ex vivo	No effect on ConA-stimulated proliferation in PBMCs collected from unexposed workers in the presence of Cr(VI) administered ex vivo No effect on ConA-stimulated proliferation in PBMCs isolated from exposed workers and treated with Cr(VI) ex vivo Non-significant biphasic response in Con-A stimulated proliferation in PBMCs collected from unexposed HLA-B8-DR3-negative subjects treated Cr(VI) ex vivo No effect on Con-A stimulated proliferation in PBMCs collected from exposed HLA-B8- DR3-positive subjects treated Cr(VI) ex vivo The effect of Cr(VI) exposure ex vivo on proliferation of lymphocytes collected from HLA-B8-DR3-negative and -positive subjects stimulated by ConA was investigated, but comparisons between exposed and unexposed subjects in the presence and absence of Cr(VI) were not reported. ↓ ConA-stimulated proliferation in PBMCs collected from exposed HLA-B8-DR3- negative group treated with Cr(VI) in vitro in the absence of the monocytic/macrophage component.		<u>Mignini et al.</u> (2004)

System	Route	Exposure	Results	Comments	Reference
			The effect of Cr(VI) exposure ex vivo on proliferation of lymphocytes collected from HLA-B8-DR3-negative subjects stimulated by ConA in the absence of the monocytic/macrophagic component was investigated, but comparisons between exposed and unexposed subjects in the presence and absence of Cr(VI) were not reported.		
Cross-sectional study in Italy of 40 exposed tannery workers and 44 controls	Ex vivo/In vitro	Lymphocytes collected from exposed workers treated with additional Cr(VI) ex vivo	↑ ConA- and PHA- stimulated proliferation in PBMCs collected from workers exposed to high concentration of Cr(VI) (Group B) ex vivo No effect on LPS-stimulated proliferation in PBMCs collected from unexposed workers treated with low concentration of Cr(VI) ex vivo ↑ ConA- and PHA-stimulated proliferation in PBMCs collected from unexposed workers treated with 10^{-5} mg/mL Cr(VI) in vitro ↓ ConA- and PHA-stimulated proliferation in PBMCs collected from unexposed workers treated with 10^{-2} mg/mL Cr(VI) in vitro ↓ LPS-stimulated proliferation in PBMCs collected from unexposed workers treated with 10^{-2} mg/mL Cr(VI) in vitro ↓ LPS-stimulated proliferation in PBMCs collected from unexposed workers treated with 10^{-2} mg/mL or 10^{-5} mg/mL Cr(VI) in vitro The effect of Cr(VI) exposure in vitro on proliferation of lymphocytes collected from exposed workers stimulated by ConA, PHA and LPS was investigated, but comparisons between exposed and unexposed workers in the presence and absence of Cr(VI) were not reported.		<u>Mignini et al.</u> (2009)
Effects on comm	nunication bet	ween immune cells			
Human peripheral blood	Ex vivo/In vitro	PBMCs collected from exposed humans	No change in ICAM-1, VCAM and ELAM-1E- selectin levels		<u>Mignini et al.</u> (2009)

System	Route	Exposure	Results	Comments	Reference
mononuclear cells from shoe, leather, and hide industry workers		exposed Cr(VI) in vitro to 10 ⁻⁵ mg/L, 1h			
Human peripheral blood lymphocytes	In vitro	588 μg/mL, 0.5h	No effect on E-rosetting	Data not shown	<u>Bravo et al. (1990)</u>
Cross-sectional study in China of 56 workers exposed to potassium dichromate and 50 unexposed individuals living 20 km from factory	In vivo	14.4 ± 18.1 μg/m ³	C3 (g/L) – Exposed: 1.20 ± 0.24; Unexposed: 0.91 ± 0.13 C4 (g/L) – Exposed: 0.32 ± 0.07; Unexposed: 0.23 ± 0.05		<u>Qian et al. (2013)</u> , low
Mouse splenic T cells	In vitro	2 or 5 μM, 24h	Decreased anti-CD3/CD28-induced secretion of IL-2, IL-4, and IL-10 in splenocytes treated with 2 or 5 μM Cr(VI)		Dai et al. (2017b)

See Table C-38 for effects on cytokine levels following Cr(VI) exposure.

Cytokines measured in blood, serum and plasmaKuo and Wu (2002)Blood collected from Cr(VI)-exposed workers \uparrow IL-6 and IL-8 \downarrow TNF- α (NS) No effect on IL-2, IL-4, IL-10, or IFN- γ Sazakli et al. (2014)Blood collected from people exposed to Cr(VI) in drinking water \uparrow IL-12, dose-dependent No effect on IL-6, IL-8, or IL-10Snyder et al. (1996)Blood collected from people exposed to Cr(VI) environmentally in Hudson \downarrow IL-6	
(2002)workers \downarrow TNF- α (NS) No effect on IL-2, IL-4, IL-10, or IFN- γ Sazakli et al. (2014)Blood collected from people exposed to Cr(VI) in drinking water \uparrow IL-12, dose-dependent No effect on IL-6, IL-8, or IL-10Snyder et al. (1996)Blood collected from people exposed to Cr(VI) environmentally in Hudson \downarrow IL-6	
Sazakli et al. (2014)Blood collected from people exposed to Cr(VI) in drinking water \land IL-12, dose-dependent No effect on IL-6, IL-8, or IL-10Snyder et al. (1996)Blood collected from people exposed to Cr(VI) environmentally in Hudson \checkmark IL-6	
Sazakli et al. (2014)Blood collected from people exposed to Cr(VI) in drinking water \uparrow IL-12, dose-dependent No effect on IL-6, IL-8, or IL-10Snyder et al. (1996)Blood collected from people exposed to Cr(VI) environmentally in Hudson \downarrow IL-6	
(2014)to Cr(VI) in drinking waterNo effect on IL-6, IL-8, or IL-10Snyder et al. (1996)Blood collected from people exposed to Cr(VI) environmentally in Hudson↓ IL-6	
Snyder et al.Blood collected from people exposed to Cr(VI) environmentally in Hudson↓ IL-6	
(1996) to Cr(VI) environmentally in Hudson	
County, New Jersey	
Qian et al.Serum collected from Cr(VI)-exposed \downarrow IL-6, IL-10, IL-17A, IFN- γ , and IFN- γ ,	/IL-4
(2013) workers No effect on IL-2 or TNF- α	
Mignini et al. Plasma collected from Cr(VI)-exposed ↑ IL-2 and IL-6	
(<u>2009)</u> workers ↓ IL-12	
No change in IL-1β, IL-4, TNF-α, or IFN	1-γ
<u>Mitrov et al.</u> Plasma collected from rats exposed to \uparrow IL-1 β and TNF- α	
(2014) Cr(VI)	
Jin et al. (2016)Serum from LPS-stimulated mice \uparrow IL-6 and TNF- α	
exposed to Cr(VI)	
Thompson et al.Plasma from Cr(VI)-exposed rats \downarrow IL-12 and CXCL10 (IP-10)	
(2012c) No effect on IL-1α, IL-1β, IL-2, IL-4, IL-	
IL-13, IL-17, IL-18, TNF-α, IFN-γ, CCL5,	CXCL1,
Eotaxin, G-CSF, GM-CSF, MCP-1, or M	
Thompson et al. Plasma from Cr(VI)-exposed mice "Few cytokines exhibited significant c	•
(2011b) no specific data; tested IL-1α, IL-1β, IL	
IL-6, IL-7, IL-9, IL-10, IL-12, IL-13, IL-15	
α, IFN-γ, CXCL1, CCL5, CXCL10, G-CSF,	GM-CSF,
MCP-1, and MIP-1α	
Cytokines measured in BALF	
Cohen et al.BALF from Cr(VI)-exposed ratsNo effect on TNF- α , MIP-2, MCP-1, IL-	·6, IL-10, or
(2010) IL-12	
Cytokines secreted by MoDC	
Reutter et al.Human MoDC exposed to Cr(VI) in vitro \uparrow IL-1 β (1997)	
Toebak et al. Human MoDC exposed to Cr(VI) in vitro No effect on IL-8, CCL5, CCL17, CCL18	, CCL20, and
(2006) CCL22	·
Cytokines secretion by stimulated PBMCs, lymphocytes, splenocytes and macrophages	
Akbar et al. Stimulated (anti-CD3 or anti-CD3/anti- \downarrow IL-2 and IFN- γ	
(2011) CD28) primary human lymphocytes	
Ban et al. (2010) ConA-stimulated lymph nodes \downarrow IL-4 (NS), IL-5 (NS), and IL-13 (NS)	
collected from mice \uparrow IFN-γ (NS)	
<u>Cohen et al.</u> Pulmonary macrophages collected \downarrow IL-1, TNF- α , and IL-6 (NS)	
(1998) from Cr(VI) exposed rats, stimulated	
with LPS ex vivo	
Dai et al. Stimulated (anti-CD3/anti-CD28) \downarrow IL-2, IL-4, and IL-10	
(2017b) splenic lymphocytes collected from	
Cr(VI)-exposed mice	

Table C-38. Summary of cytokine levels measured following Cr(VI) exposure

Reference	Study design	Cytokines
<u>Katiyar et al.</u>	PHA and LPS-stimulated PBMCs	↑ PHA-stimulated IL-2 (NS) production
<u>(2008)</u>	collected from exposed workers	↑ PHA-stimulated IL-6 production
		No effect on LPS-stimulated TNF- $lpha$ production
Karaulov et al.	Mitogen-stimulated (ConA) splenocytes	个 IL-4 and IL-10 (NS)
(2019)	collected from rats	↓ IL-6
·		No effect on INF-γ
Cytokines secretion	on by unstimulated PBMCs	
Lindemann et al.	PBMCs collected from chromium	个 IL-4, IL-10, and IFN-γ
(2008)	sensitized workers and exposed to	No effect on IL-2 or IL-12
	Cr(VI) in vitro	
Cytokines secretion	on by peritoneal macrophages	
Christensen et	Newcastle disease virus infected	↓ IFN-α/β
al. (1992)	mouse peritoneal macrophages	•
<u></u>	exposed to Cr(VI) in vitro	
Jin et al. (2016)	Mouse peritoneal macrophages	↑ IL-1α, IL-1β, IL-6, and TNF-α
Cytokines secretio		
Adam et al.	TPA stimulated THP-1 cells	↑ IL-1β
(2017)		
Badding et al.	RAW264.7 cells exposed to Cr(VI)	个 TNF-α (NS)
(2014)	RAWZ04.7 Cells exposed to Cr(VI)	
	Calcons callested from miss	No effect on IL-6 or IL-1β
Ban et al. (2010)	Spleens collected from mice	↓ IL-4, IL-5, IL-13 and IFN-γ
<u>Jin et al. (2016)</u>	Serum from LPS-stimulated RAW264.7	\uparrow IL-6 and TNF-α
<u></u>	cells exposed to Cr(VI)	
-	d by HaCaT cultures	
Wang et al.	Human HaCaT cells treated with Cr(VI)	个 IL-1α and TNF-α
<u>(2010a)</u>		
<u>Lee et al. (2014)</u>	Human HaCaT cells treated with Cr(VI)	个 IL-1α and TNF-α
Cytokines secrete	-	
<u>Thompson et al.</u>	Duodenum from Cr(VI)-exposed rats	↑ IL-1α
<u>(2012c)</u>		↓ IL-4
		个 IL-6 (60 mg/L SDD)
		No effect on IL-1β, IL-2, IL-5, IL-10, IL-12, IL-13, IL-
		17, IL-18, TNF-α, IFN-γ, CCL5, CXCL1, CXCL10,
		Eotaxin, G-CSF, GM-CSF, MCP-1, or MIP-1α
Thompson et al.	Duodenum from Cr(VI)-exposed mice	\downarrow IL-1β and TNF-α, dose-dependent trends
(2011b)		For all other cytokines, no specific data was
		reported, other than "Several cytokines were
		significantly altered—generally beginning at 60
		mg/L SDD;" tested IL-1α, IL-2, IL-4, IL-5, IL-6, IL-7,
		IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, IFN-γ, CXCL1,
		CCL5, CXCL10, G-CSF, GM-CSF, MCP-1, and MIP-1a
Cytokines secrete	d by oral mucosa	
-	-	No effect on $\ -1\alpha \ -1\beta \ -2 \ -4 \ -5 \ -6 \ -10$
1201201		-
Thompson et al. (2012c)	Oral mucosa from Cr(VI)-exposed rats	No effect on IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-1 IL-12, IL-13, IL-17, IL-18, TNF-α, IFN-γ, CCL5, CXCL1, CXCL10, Eotaxin, G-CSF, GM-CSF, MCP-1, or MIP-1α

Reference	Study design	Cytokines
<u>Thompson et al.</u> (2011b)	Oral mucosa from Cr(VI)-exposed mice	"Significant differences from control animals were generally limited to the highest treatment dose," but no specific data; tested IL-1 α , IL-1 β , IL-2, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, TNF- α , IFN- γ , CXCL1, CCL5, CXCL10, G-CSF, GM- CSF, MCP-1, and MIP-1 α

NS = not statistically significant, BALF = bronchoalveolar lavage fluid, ConA = Concanavalin A, HaCaT cells = immortalized human keratinocytes, LPS = lipopolysaccharide, MoDC = monocyte-derived dendritic cell, PBMC = peripheral blood mononuclear cell, TPA = 12-O-tetradecanoylphorbol-13-acetate

C.2.6. Male Reproductive Effects

1

C.2.6.1. Mechanistic studies relevant to male reproductive toxicity

Mechanistic evidence indicating the biological pathways involved in male reproductive
toxicity following Cr(VI) exposure is summarized in Table C-39. Studies identified in preliminary
title and abstract screening as "mechanistic" were further screened and tagged as "reproductive" if
they involved reproductive tissues or cells; 49 studies were identified. Studies were prioritized for
consideration in the synthesis of mechanistic evidence for male reproductive effects if they were
conducted in mammalian species:

8 • Studies in humans with quantified oral or inhalation exposure to Cr(VI) 9 • Studies in experimental animals with quantified oral (drinking water, gavage, diet), 10 inhalation, or intratracheal instillation, or injection exposure to Cr(VI) • In vitro studies in primary or immortalized mammalian cells derived from male 11 12 reproductive tissues (i.e., Leydig, Sertoli, male germ cells) 13 • Mechanistic endpoints relevant to interpretations of male reproductive health effects in 14 humans 15 A total of 38 reproductive studies were identified to include in the male and female reproductive mechanistic syntheses. Several of the included oral exposure animal toxicological 16 17 studies in that section were identified as also reporting mechanistically relevant data, as well as i.p. 18 injection studies that did not meet PECO criteria but were reviewed as being potentially relevant 19 for mechanistic analysis. In vitro studies that evaluated Leydig, Sertoli, or male germ cells were 20 also considered for mechanistic evidence.

System	Route	Exposure	Results	Reference
Oxidative stress		·		
Mouse, male (strain not reported)	Oral (not specified)	5 mg/kg-day K ₂ Cr ₂ O ₇ , 30- or 60-day	 ↓ serum antioxidant enzymes (CAT, SOD, GPx) ↑ serum MDA 	<u>Rasool et al.</u> (2014)
Rat, Sprague- Dawley, male	Oral (inferred to be gavage)	10 mg/kg-day [form of Cr(VI) not reported], 13-day	 ↓ testicular and epididymal CAT, SOD, GST, glutathione ↑ testicular and epididymal MDA 	<u>Kim et al.</u> (2012)
Monkey, bonnet, male	Oral drinking water	100, 200, 400 mg/L K ₂ Cr ₂ O ₇ , 180-day	\downarrow testicular SOD, CAT, GPx, GR, G-6-PDH, γ -GT, and vitamins A, C, E \uparrow testicular GST and reduced glutathione \uparrow testicular H ₂ O ₂ and OH–	<u>Aruldhas et</u> <u>al. (2005)</u>
Monkey, bonnet, male	Oral drinking water	50, 100, 200, 400 mg/L K ₂ Cr ₂ O ₇ , 6-month	\downarrow SOD, and GDH in seminal plasma and sperm \uparrow H ₂ O ₂ in seminal plasma and sperm	<u>Subramanian</u> et al. (2006)
Mouse, Swiss albino, male	i.p. injection	1 mg/kg CrO ₃ , single injection	 ↓ testicular SOD, CAT, peroxidase ↑ testicular lipid peroxidation potential 	Acharya et al. (2006)
Rat, Wistar, male	i.p. injection	1–2 mg/kg-day K ₂ Cr ₂ O ₇ , 15 d	 ↓ testicular CAT ↑ testicular metallothionein ↑ testicular MDA, O2- 	Marouani et al. (2015a)
Rat, Wistar, male	i.p. injection	10 mg/kg-day Na2Cr2O7, 10 d	 ↓ testicular SOD, CAT, GPx ↑ testicular MDA Mitigated by cotreatment with antioxidant 	Hfaiedh et al. (2014)
Rat, Wistar, male	i.p. injection	2mg/kg-day, K ₂ Cr ₂ O ₇ , 21-day	 ↑ testicular indicators of lipid peroxidation (TBARS and H2O2) with significant effect decrease with antioxidant pretreatment ↓ testicular GSH and activity antioxidant, phosphatase, and aminotransferase mitigated by antioxidant pretreatment 	<u>El-</u> <u>Demerdash</u> et al. (2019)
Mouse, Swiss albino male	i.p. injection	CrO3 10 mg/kg-bw, single dose with sacrifice 5,6,7, and 8 weeks after treatment (control 5w only)	个 testicular indicators of lipid peroxidation (TBARS)	<u>Acharya et al.</u> (2004b)
Cultured mouse Leydig cells (TM3), Sertoli cells (TM4), and spermatogonial stem cells	In vitro	3.125–50 μM Cr(VI)	 ↑ ROS after 4 hours ↓ mRNA expression of antioxidant enzymes (Sod, Cat, Gpx1, Gsta4) after 24 hours ↑ mRNA expression of Gsta1 at all doses in somatic cells and low doses in germ cells after 24 hours 	<u>Das et al.</u> (2015)

Table C-39. Mechanistic studies prioritized for informing potential Cr(VI)induced male reproductive toxicity

System	Route	Exposure	Results	Reference
Cultured mouse spermatogonial stem cells (C18- 4)	In vitro	5–75 μM Cr(VI)	个 ROS after 24 hours	<u>Lv et al.</u> (2018)
Apoptosis of some	atic and geri	n cells		
Rat, Wistar male	i.p. injection	1–2 mg/kg-day K ₂ Cr ₂ O ₇ , 15-day	\uparrow BAX and DNA fragments in testis	<u>Marouani et</u> <u>al. (2015a)</u>
Mouse, ICR male	i.p. injection	16.2 mg/kg-day Cr(VI) , 1-week	↑ BAX and DNA fragments (γ-H2AX) in testis Qualitative histopathology showing degenerative changes in seminiferous tubules and germ cells; Cr(VI) treated males also had decreased litter sizes Mitigated by cotreatment with antioxidant (melatonin)	<u>Lv et al.</u> (2018)
Rat, Wistar male	i.p. injection	2mg/kg-day, K ₂ Cr ₂ O ₇ , 21-day	Qualitative histopathology showed degeneration of spermatogenic cells in testes and moderate atrophy	El- Demerdash et al. (2019)
Mouse, Swiss albino male	i.p. injection	CrO3 10 mg/kg-bw, single dose with sacrifice 5,6,7, and 8 weeks after treatment (control 5w only)	 ↓ sperm count at all timepoints ↑ sperm abnormalities at all timepoints 	<u>Acharya et al.</u> (2004b)
Rabbit, ITRC colony male	i.p. injection	2mg/kg-day, K2Cr2O7, sacrificed at 3 and 6 weeks 72h after last injection	Qualitative histological analysis, progressive testicular interstitial edema, no spermatocytes in seminiferous tubules	<u>Behari et al.</u> (1978)
Cultured mouse Leydig cells (TM3), Sertoli cells (TM4), and spermatogonial stem cells	In vitro	3.125–50 μM Cr(VI)	 ↑ TUNEL-positive cells ↓ mitochondrial membrane potential ↑ biomarkers of intrinsic apoptosis (e.g., cleavage of caspases 3 and 9, ↓ BCL2/BAX ratio) ↓ biomarkers of extrinsic apoptosis (Fas, caspase 8) in somatic cells Mitigated by cotreatment with antioxidant (N-acetyl-L-cysteine) 	<u>Das et al.</u> (2015)

System	Route	Exposure	Results	Reference
Cultured mouse spermatogonial stem cells (C18- 4)	In vitro	5–75 μM Cr(VI)	 ↑ TUNEL-positive cells ↑ DNA fragments (γ-H2AX) ↑ chromatin condensation ↑ biomarkers of intrinsic apoptosis (e.g., cleavage of caspases 3 and 9, ↑ BAX, ↓ BCL-2) Mitigated by cotreatment with antioxidant (melatonin) No effect on biomarkers of extrinsic apoptosis (caspase 8) [after 24 hours] 	<u>Lv et al.</u> (2018)
Altered steroidog	enesis and e	ffects on the hypo	thalamic-pituitary-gonadal axis	
Rat, Sprague- Dawley F1 male	Gavage	3–12 mg/kg- day Cr(VI) exposure to maternal doses during gestation from GD 12–21	Biphasic effect on testosterone (↑ at low dose, ↓ at high dose) Biphasic gene and/or protein expression of LHCRG, FSHR, SCARB1, and HSD3B1 ↓ expression of IGF1, CYP17A1 (protein) and HSD17B3 (mRNA) No change in gene and/or protein expression of CYP11A1, StAR, insulin-like-3 hormone, NR5A1, SOX9, AMH, LIF, PDGFA, DHH	<u>Zheng et al.</u> (2018)
Rabbit, New Zealand white male	Gavage	3.6 mg-kg/day Cr(VI) 10-week exposure by	↓ plasma testosterone	<u>Yousef et al.</u> (2006)
Rat, Wistar F1 male	Oral (not specified)	50–200 mg/L K ₂ Cr ₂ O ₇ exposure to maternal doses during gestation from GD 9–14	 ↓ testosterone in serum and testicular interstitial fluid ↓ serum FSH and LH ↓ gene and protein expression of AR and FSHR in Sertoli cells 	<u>Kumar et al.</u> (2017)
Rat, Wistar male	Oral drinking water	K ₂ Cr ₂ O ₇ , 500 mg/L in drinking water [estimated to be 73.05 mg/kg-day Cr(VI)], 30-day	 ↓ serum prolactin (60% of control) No change in serum LH Accumulation of Cr in target tissues (pituitary, hypothalamus, liver). 30% reduction in water intake and 11.6% reduction in BW. Study also includes in vitro study in primary anterior pituitary cells (see later in table). 	<u>Quinteros et</u> <u>al. (2007)</u>

System	Route	Exposure	Results	Reference
Rat, Wistar male	Oral	K ₂ Cr ₂ O ₇ , 200	$ m \uparrow$ Lipid peroxidation in pituitary and	Nudler et al.
	drinking	mg/L in	hypothalamus; no change in liver.	<u>(2009)</u>
	water	drinking water	↑ SOD activity in pituitary only	
		[estimated to	↑ CAT activity in liver only	
		be 11.6 mg/kg-	↑ glutathione reductase activity in	
		day Cr(VI)],	hypothalamus only	
		30-day	No changes in GPx activity	
			\uparrow in HO-1 mRNA expression in	
			hypothalamus and pituitary only	
			↑ MT-3 in hypothalamus and MT-1 in	
			anterior pituitary	
			Accumulation of Cr in target tissues	
			(pituitary, hypothalamus, liver). No	
			significant change in water consumption or	
			BW. Did not measure if oxidative effects	
			impacted downstream hormones.	
Rat, Wistar male	i.p.	2mg/kg-day,	\downarrow serum testosterone	El-
	injection	K ₂ Cr ₂ O ₇ , 21-day	↑ serum FSH	Demerdash
	injection	1201207, 21 007	Mitigated by cotreatment with antioxidant	et al. (2019)
Rat, Wistar male	i.p.	1–2 mg/kg-day	\downarrow serum testosterone and LH	Marouani et
	injection	$K_2Cr_2O_7$, 15-day	↑ serum FSH	al. (2012)
Rat, Wistar male		10 mg/kg-day	↓ serum testosterone	Hfaiedh et al.
Rat, Wistal Illale	i.p.		-	<u>(2014)</u>
	injection	Na2Cr2O7, 10- day	Mitigated by cotreatment with antioxidant	(2014)
Cultured mouse	In vitro	6.25–25 μM	\downarrow testosterone secretion by TM3 cells	Das et al.
Leydig cells		Cr(VI)	↓ mRNA expression of steroidogenic	(2015)
(TM3) and			enzymes (Cyp11a1, Hsd3b1, Cyp17a1,	
Sertoli cells			Cyp19a1) in TM3 cells	
(TM4)			\downarrow mRNA expression of Fshr, Ar in TM4 cells	
、 ,			↑ mRNA expression of Star in TM3 cells	
Primary anterior	In vitro	K ₂ Cr ₂ O ₇ , 0.1–	\downarrow prolactin at 0.1 uM at 72h, 1 and 10uM at	Quinteros et
pituitary cells		10uM up to 72h	48h and72h	al. (2007)
from male			No change in LH	<u>_</u>
Wistar rats			↑ Caspase 3 and 10 uM [cytotoxic,	
			prevented pretreatment with an antioxidant	
			(NAC)]	
			Same study that showed decreased prolactin	
			and no change in LH in vivo (see earlier in	
			table). Cell viability significantly reduced	
			after 24h at 10uM (~65%); 1uM after 72h.	
Primary anterior	In vitro	K ₂ Cr ₂ O ₇ , 10uM	Mechanisms involved in apoptosis include	Quinteros et
pituitary cells		for 72h	decreased CAT, GPx, increased p53 and Bax	<u>al. (2008)</u>
from male			Data not fully reviewed because cytotoxic	<u></u>
Wistar rats			concentration was used, as demonstrated in	
			Quinteros et al. (2007)	
Effects on blood-t	estis barrier	1		
Rat, Druckrey	i.p.	2 mg/kg-day	Leakage of Sertoli cell tight junctions and	Murthy et al.

System	Route	Exposure	Results	Reference
Mouse Sertoli cells (TM3)	In vitro	6.25–25 μM Cr(VI)	↓ mRNA expression of tight junction signaling molecules (tight junction protein 1, vimentin, occludin)	<u>Das et al.</u> (2015)
Primary co- culture of rat (Sprague- Dawley) Sertoli cells and germ cells	In vitro	10 µg/l Cr(VI)	 ↓ gap junction signaling and delocalization of connexin 43 from the membrane to the cytoplasm after 8 days; no effects on adherin or tight junction proteins (claudin-11 and N-cadherin) ↑ transepithelial resistance 	Carette et al. (2013)
Effects on meiosis	5			
Primary co- culture of rat (Wistar) Sertoli cells and germ cells	In vitro	0.5, 1, 10, 100 μg/l Cr(VI)	 ↓ late spermatocytes and round spermatids ↑ cells with alterations in meiotic prophase, ↑ asynapsis and fragmented synaptonemal complexes 	<u>Geoffroy-</u> <u>Siraudin et al.</u> (2010)

*Note: There are concerns for scientific integrity due to evidence of self-plagiarism within this research group

C.2.7. Female Reproductive Effects

1

C.2.7.1. Mechanistic studies relevant to female reproductive toxicity

Mechanistic evidence indicating the biological pathways involved in female reproductive
toxicity following Cr(VI) exposure is summarized in Table C-40. Studies identified in preliminary
title and abstract screening as "mechanistic" were further screened and tagged as "reproductive" if
they involved reproductive tissues or cells. Studies were prioritized for consideration in the
synthesis of mechanistic evidence for female reproductive effects if they were conducted in
mammalian species:

- 8 Studies in humans with quantified oral or inhalation exposure to Cr(VI)
- 9 Studies in experimental animals with quantified oral (drinking water, gavage, diet),
 10 inhalation, or intratracheal instillation, or injection exposure to Cr(VI)
- In vitro studies in primary or immortalized mammalian cells derived from female reproductive tissues (e.g., thecal and granulosa cells)
- Mechanistic endpoints relevant to interpretations of female reproductive health effects in humans
- 15 A total of 38 reproductive studies were identified to include in the male and female
- 16 reproductive mechanistic syntheses. Several of the included oral exposure animal toxicological
- 17 studies in that section were identified as also reporting mechanistically relevant data, as well as i.p.
- 18 injection studies that did not meet PECO criteria but were reviewed as being potentially relevant
- 19 for mechanistic analysis. In vitro studies conducted in relevant cell types, such as thecal and
- 20 granulosa cells, were also considered for mechanistic evidence.

System	Route	Exposure	Results	Reference
Altered steroido	genesis			
Rat, lactating Sprague– Dawley	Oral (drinkin g water)	50, 100, 200 mg/L K ₂ Cr ₂ O ₇ , repeat dose parturition to 21d postpartum, PNDs 25, 45, 65	For F1: ↓ FSH receptor gene expression in ovary ↓ E2, T, P4 (dose dependent, in hormone section of animal tox) ↑ FSH (not dose dependent) Mitigated by cotreatment with VitC	<u>Stanley et al.</u> (2013)
Rat, lactating Sprague– Dawley	Oral (drinkin g water)	5, 10, 25, 50, 100, and 200 mg/L K ₂ Cr ₂ O ₇ , repeat dose parturition to 21d postpartum, PNDs 25, 45, 65	For F1: ↓ E2, T, P4 (50mg/L, PND 25) ↑ time to puberty (50mg/L) Cotreatment with estradiol restored the ovarian protein expression of several antioxidant enzymes (Gpx1, catalase, Prdx3, and Txn2)	<u>Stanley et al.</u> (2014)
Rat, lactating Sprague– Dawley	Oral (drinkin g water)	50 mg/L K ₂ Cr ₂ O ₇ , repeat dose parturition to 21d postpartum, PND 25	For F1: ↓ ovarian expression of steroidogenic acute regulator protein (StAR), 3β- hydroxysteroid dehydrogenase, and aromatase ↑ genes involved in the metabolic clearance of estradiol (Cyp1a1, Cyp1b1, UDP- glucuronosyltransferases, Sult1a1, NAD(P)H quinone oxidoreductase 1) Mitigated by cotreatment with resveratrol	<u>Banu et al.</u> (2016)
Rat, Wistar females, GD 9– 21; female pups PND 65	Oral (drinkin g water)	Group 1: 50, 100, 200, and 400 mg/L K ₂ Cr ₂ O ₇ Group 2: 200 mg/L K ₂ Cr ₂ O ₇ followed by F1 lactational exposure through PND21 and drinking water exposure through PND 65	For F1: ↓ serum progesterone, estradiol, testosterone, prolactin, growth hormone ↑ serum LH and FSH	<u>Samuel et al.</u> (2012)
Primary rat granulosa cells	In vitro	10 μM K₂Cr₂O⁊, 12 or 24h	↓ FSH receptor protein expression Pretreatment with vitamin C mitigated	<u>Stanley et al.</u> (2013)

Table C-40. Mechanistic studies prioritized for informing potential Cr(VI)induced female reproductive toxicity

System	Route	Exposure	Results	Reference
Primary Sprague- Dawley rat granulosa cells (immature rats, 23–25 days old); immortalized rat granulosa cells	In vitro	10 uM K ₂ Cr ₂ O ₇ , 12 or 24h	↓ Erβ and FSH receptor gene expression Pretreatment with vitamin C mitigated	<u>Stanley et al.</u> (2011)
Immortalized rat granulosa cells	In vitro	12.5 μΜ K₂Cr₂O7, 12 and 24h	 ↓ gene expression of FSH receptor, LH receptor, Erα, Erβ, StAR, SF-1 (24h only), and 17β-hydroxysteroid dehydrogenases ↓ cell proliferation 50% 	<u>Banu et al.</u> (2008)
Oxidative stress				·
Rat, lactating Sprague– Dawley	Oral (drinkin g water)	50, 100, 200 mg/L K ₂ Cr ₂ O ₇ (2013) 5, 10, 25, 50, 100, and 200 mg/L K ₂ Cr ₂ O ₇ (2014) repeat dose parturition to 21d postpartum, PND 25 (2014) or PNDs 25, 45, 65 (2013)	For F1: ↓ ovarian SOD, catalase, glutathione peroxidase, and glutathione reductase activity (100mg/L 2013; 50mg/L, 2014) ↓ ovarian protein expression of GPx1, Txn2, Prdx3, CAT expression (2014) ↑ ovarian protein expression of glutathione-S-transferase (2013) ↑ ovarian LPO, H2O2 (dose dependent 2013; 50mg/L, 2014) Mitigated by cotreatment with VitC (2013) or EDA (2014)	Stanley et al. (<u>2014</u> ; <u>2013</u>)
Rat, strain not reported (assume Sprague- Dawley)	Oral (drinkin g water)	25 mg/L K ₂ Cr ₂ O ₇ , gestational day 9.5 to 14.5, placentae removed on GD 20; ovaries were removed from the F1 offspring on PND-1	For F1: ↑ p53/SOD-2 protein colocalization in the ovary; p53 has been demonstrated to reduce SOD-2 antioxidant activity	<u>Sivakumar et</u> <u>al. (2014)</u>
Rat, lactating Sprague– Dawley	Oral (drinkin g water)	50 mg/L K ₂ Cr ₂ O ₇ , repeat dose parturition to 21d post-partum, PND 25	 For F1: ↓ ovarian protein expression of catalase, glutathione peroxidase (GPx1), peroxiredoxin (PRDX) 3, and thioredoxin (TXN). ↑ ovarian protein expression of SOD1 and SOD2 ↑ oxidative damage in ovary (LPO, H2O2) Oxidative damage mitigated by cotreatment with resveratrol 	<u>Banu et al.</u> (2016)

System	Route	Exposure	Results	Reference
Mouse, Swiss albino female	Gavage	5 and 10 mg K ₂ Cr ₂ O ₇ /kg-body weight, 30 d Decreased bw and ovary weight at high dose	 ↑ Lipid peroxidation in ovary (MDA) ↓ ovarian SOD and CAT activity, and ↓ levels of vitamin C and glutathione (dose-dependent) Mitigated by cotreatment with vitamin E 	<u>Rao et al.</u> (2009)
Rat, Wistar female, GD 9– 21; female pups PND 65	Oral (drinkin g water)	Group 1: 50, 100, 200, and 400 mg/L K ₂ Cr ₂ O ₇ Group 2: 200 mg/L K ₂ Cr ₂ O ₇ followed by F1 lactational exposure through PND21 and then drinking water exposure through PND 65	For F1: ↓ ovarian SOD, CAT, GPx activity ↓ ovarian ascorbic acid ↑ ovarian LPO and H2O2 at all ages	<u>Samuel et al.</u> (2012)
Rat, Wistar female	i.p. injectio n	1 and 2 mg K ₂ Cr ₂ O ₇ /kg-bw, 15 d Sig decrease in food intake and weight (not water intake)	 ↑ Superoxide anion in uterus (as measured by cytochrome c and iodonitrotetrazolium reduction) ↓ CAT activity in uterus ↑ lipid peroxidation in uterus ↓ metallothionine All dose dependent 	<u>Marouani et</u> al. (2015b)
Primary rat granulosa and theca cells; immortalized rat granulosa cells	In vitro	10 uM K ₂ Cr ₂ O ₇ , 12h and 24h	 ↓ intracellular vitamin C levels ↓ SOD1, SOD2, CAT, GLRX1, GSTM1, GSTM2, GSTA, GR, TXN1, TXN2, TXNRD2, and PRDX3 gene expression (time-dependent) ↓ GR, GST, GPx, SOD, CAT activity ↑ H2O2, LPO Immortalized GCs showed similar effect. Cell viability not reported. VitC failed to mitigate CrVI effects on GSTM1, GSTM2, TXN1, and TXN2 in TCs 	<u>Stanley et al.</u> (2013)
Apoptosis				
Rat, lactating Sprague– Dawley	Oral (drinkin g water)	50 mg/L K ₂ Cr ₂ O ₇ , repeat dose parturition to 21d post-partum, PND 25	 For F1: ↑ follicular cell apoptosis (TUNEL) ↑ ovarian protein expression of cytochrome C, caspase-3 ↓ ovarian protein expression of Bcl-2, Bcl-XL, HIF-1α Mitigated by cotreatment with resveratrol 	<u>Banu et al.</u> (2016)
Rat, pregnant Sprague- Dawley	Oral (drinkin g water)	25 mg/L K ₂ Cr ₂ O ₇ , repeat dose GD 9.5 to 14.5; GDs 15.5 and 17.5, PNDs 1, 4, 25	For F1: ↑ germ cell apoptosis (TUNEL)	<u>Banu et al.</u> (2015)

System	Route	Exposure	Results	Reference
Rat, lactating Sprague– Dawley	Oral (drinkin g water)	5, 10, 25, 50, 100, and 200 mg/L K ₂ Cr ₂ O ₇ (2014) 50, 100, 200 mg/L K ₂ Cr ₂ O ₇ (2013) repeat dose parturition to 21d post-partum, PND 25 (2014) or PNDs 25, 45, 65 (2013)	For F1: ↑ dose-dependent follicular (granulosa) cell apoptosis (TUNEL) and atretic % ↑ ovarian protein expression of caspase-3 (50 mg/L, 2014) ↓ ovarian protein expression of Bcl-2, Bcl2l1 (50 mg/L, 2014) granulosa and theca cells with 50mg/L were 50% positive PND 25 (2013). 5mg/L were 30% positive PDN 25 (2014)	Stanley et al. (<u>2014</u> ; <u>2013</u>)
Rat, strain not reported (assume Sprague- Dawley)	Oral (drinkin g water)	25 mg/L K ₂ Cr ₂ O ₇ , gestational day 9.5 to 14.5, placentae removed on GD 20; ovaries were removed from the F1 offspring on PND-1	For F1: ↑ follicular cell apoptosis (TUNEL) ↑ ovarian protein expression of BAX, caspase 3 ↑ ovarian protein expression of p53, p27 ↓ ovarian protein expression of p-AKT, p-ERK, and XIAP (pro-survival)	<u>Sivakumar et</u> <u>al. (2014)</u>
Rat, Wistar female	i.p. injectio n	1 and 2 mg K ₂ Cr ₂ O ₇ /kg-bw, 15d Water intake diff was not sig but food intake was (data not shown)	 ↓ relative ovary/uterine weight (with decreased bw; 40% and 137% of controls, dose dependent) ↑ apoptotic cells and protein expression of Bax in uterus Uterine Bcl-2 was not detected in control or Cr(VI) treatment groups Apoptosis was characterized by chromatin condensation, detected by borated toluidine blue staining; Bax/Bcl-2 by immuno staining 	<u>Marouani et</u> <u>al. (2015b)</u>

System	Route	Exposure	Results	Reference
Primary Sprague- Dawley rat granulosa cells (immature rats, 22–25 days old)	In vitro	10uM K ₂ Cr ₂ O ₇ , 12 or 24h	↑ apoptosis ↑ translocation of cytochrome C from mitochondria to cytosol, ↑ cleaved caspase-3 and PARP (important terminal events in apoptosis) ↑ Bax, t-Bad ↓ Bcl-2, Bcl-XL, pBad-112/136, Hsp-70, Hsp-90 ↑ p-ERK, p-JNK; ↓ p-AKT; No change in p-p38 (indicates suppression of AKT pathway but activation of ERK1/2 pathway) ↑ p53 (total and phosphorylated at specific serine sites); higher in mitochondria compared to cytosol, suggesting translocation to the mitochondria ↓ apoptosis after cotreatment with ERK1/2 and JNK inhibitor ↓ p53 activity after cotreatment with ERK1/2 inhibitor; no effect of JNK inhibitor ↑ p-ERK in mitochondria and nucleus Mitigated by pretreatment with vitamin C	Banu et al. (2011)
Primary Sprague- Dawley rat granulosa cells (immature rats, 23–25 days old); immortalized rat granulosa cells	In vitro	10uM K₂Cr₂O⁊, 12 or 24h	Cell cycle arrest at G1 phase (decreased cell population at S and G2-M phases) ↓ protein expression of cyclin- dependent kinases 1, 2, 4, 6 in both cell types; cyclins D2&3, E2, B1; PCNA ↑ protein expression of p15, p16, p27 Results time dependent Mitigated by pretreatment with vitamin C	<u>Stanley et al.</u> (2011)
Ovarian extracell	ular matrix	[
Rat, pregnant Sprague- Dawley	Oral (drinkin g water)	25 mg/L K ₂ Cr ₂ O ₇ , repeat dose GD 9.5 to 14.5; GDs 15.5 and 17.5, PNDs 1, 4, 25	For F1: ↑ ovarian protein expression of Xpnpep2 and ↓ collagen (Col1, Col3, Col4) in fetuses ↓ ovarian protein expression of Xpnpep2 and ↑ collagen (Col1, Col3, Col4) in pups at PNDs 1, 4, and 25 Protein expression of Xpnpep2 and collagens measured using	<u>Banu et al.</u> (2015)

C.2.8. Developmental Effects

1

C.2.8.1. Mechanistic studies relevant to developmental toxicity

Mechanistic evidence indicating the biological pathways involved in developmental toxicity
following Cr(VI) exposure is summarized in Table C-41. Studies identified in preliminary title and
abstract screening as "mechanistic" were further screened and tagged as "developmental" if they
involved embryonic development or survival; 18 studies were identified. The following studies
were prioritized:

- Studies in humans with quantified oral or inhalation exposure to Cr(VI)
- Studies in experimental animals with quantified oral (drinking water, gavage, diet),
 inhalation, or intratracheal instillation, or injection exposure to Cr(VI)
- In vitro studies in primary or immortalized mammalian cells derived from tissues relevant
 to mammalian development, including embryonic and placental tissues and cells, as well as
 cells involved in organ development (e.g., osteoblasts)
- Mechanistic endpoints relevant to interpretations of effects on human development,
 including genotoxicity tests that are relevant to fetal development (e.g., rodent dominant
 lethal test)
- 16 Studies were prioritized for consideration in the synthesis of mechanistic evidence for
- 17 reproductive effects if they were conducted in mammalian species. Several of the included oral
- 18 exposure animal toxicological studies in that section were identified as also reporting
- 19 mechanistically relevant data, as well as i.p. injection studies that did not meet PECO criteria but
- 20 were reviewed as being potentially relevant for mechanistic analysis. In vitro studies conducted in
- 21 relevant cell types derived from tissues relevant to mammalian development were also considered
- 22 for mechanistic evidence. In vitro studies in human trophoblasts or mitochondria isolated from
- 23 human placentas were considered as potentially relevant to effects in the placenta, and studies in
- 24 osteoblasts were also considered as potentially relevant for the evaluation of skeletal effects.
- 25 Effects are also expected to be more likely in in vitro embryonic studies compared to in vivo
- 26 studies, as the in vitro studies incubated sperm or blastocytes directly with potassium dichromate.

System	Route	Exposure	Results	Reference
Fetal genotoxicity				
Mouse, pregnant Swiss albino	Oral (drinkin g water) or i.p. injectio n	5 and 10 mg/L K ₂ Cr ₂ O ₇ , drinking water, duration of pregnancy i.p. study: 50 mg/kg Na ₂ Cr ₂ O ₇ or K ₂ Cr ₂ O ₇ , single dose on GD17 sacrifice on GD 18	 ↑ significant increase in micronucleated polychromatic erythrocytes in maternal bone marrow, fetal liver, and fetal peripheral blood after i.p. injection. No effects after oral dosing. 	<u>De Flora et al.</u> (2006)
In vitro evaluations	of embryo	development		
Dub:(ICR) mouse blastocysts from day 4 of gestation with 6 days of exposure or embryos from day 8 for 24h	In vitro	0.25–2 μM K ₂ Cr ₂ O ₇	 ↑ blastocyst (1 and 2 µM) and embryo (all concentrations) SCEs No effects on embryo hatching, attachment of trophoblast outgrowth ↓ blastocyst inner cell masses ↓ embryo development including crownrump length 	<u>lijima et al.</u> <u>(1983)</u>
Sperm and untreated oocytes from BDF1 mice	In vitro	3.125, 6.25, 12.5, 25, or 50 μΜ K ₂ Cr ₂ O ₇	 ↓ acrosome reaction (12.5 µM+) ↑ time to expanded and hatching blastocyst stage ↓ blastocyst ICM and TE cell proliferation ↓ ICM-TE expression sox2, pou5f1, klf4 all conc; cdx2 at 12.5 µM; eomes and krt8 at 25 µM (all pluripotent marker genes) Sperm viability was significantly decreased at 6.25 µM 	<u>Yoisungnern</u> <u>et al. (2015)</u>
Balb/c mouse embryos at 2-cell stage	In vitro	$K_2Cr_2O_7$ and CaCrO ₄ at 0.02– 2.0 µg/L (20, 2 and 0.2 µM and 40, 4, and 0.4 µM respectively)	 ↓ blastocyst maturation after 3 days of culture with both salts; potassium dichromate arresting all at 4 cell stage at high dose ↓ hatching both salts ↓ implantation CaCrO₄ 	<u>Jacquet and</u> Draye (1982)
Mechanisms affect	ing bone de	evelopment		
Rat, Sprague- Dawley male	i.p. injectio n	60 μg/kg-bw K ₂ Cr ₂ O ₇ , single dose 48h	 ↑ TSH, effects on follicle morphology including atrophy ↓ free T4, T3, follicle size Pretreatment (i.p.) with ascorbic acid inhibits effects on hormones, treatment with mixture produces NS effects on hormones and morphology 	<u>Qureshi and</u> <u>Mahmood</u> (2010)

Table C-41. Mechanistic studies prioritized for informing potential Cr(VI)induced developmental toxicity

System	Route	Exposure	Results	Reference
Immortalized rat osteoblasts (FFC cells)	In vitro	0.1–100 μM Cr(VI) oxide	 ↓ cell viability (measured as ALP activity as a marker of cytotoxicity) Mitigated by Vitamin C; not by vitamins B2 or E 	<u>Ning and</u> <u>Grant (1999)</u>
Immortalized rat osteoblasts (FFC cells)	In vitro	0.1, 0.5, 1.0 μM Cr(VI) oxide	 ↓ protein synthesis at 0.1 µM, ↓ DNA, RNA synthesis at all doses No change in collagen synthesis ↓ production of collagen fibers, mitigated by ascorbic acid Lower doses suppressed collagenase activity (measured by L-leucine release) more than high doses (up to 100 µM) 	<u>Ning et al.</u> (2002)
Immortalized rat osteoblasts (FFC cells)	In vitro	0.1–100 μM Cr(VI) oxide	 ↓ cell viability (measured as ALP activity as a marker of cytotoxicity), partially mitigated by pretreatment to deplete GSH. No change in GSH content ↓ glutathione reductase activity after 48h at 0.1–1 µM Cr(VI) 	<u>Ning and</u> <u>Grant (2000)</u>
Mechanisms affect	ing insulin	regulation		
Wistar rats, exposed via drinking water from GD 9–14; F1 males evaluated on PND 59	Oral (drinkin g water)	50, 100, or 200 mg/L K ₂ Cr ₂ O ₇	 insulin receptor protein, IRS-1, and p-IRS-1^{tyr632} in liver and gastrocnemius muscle Akt^{Ser473} and no change in AKT in liver Akt and nonmonotonic effect on Akt^{Ser473} in gastrocnemius muscle GLUT 2 in liver GLUT 4 in gastrocnemius muscle PPARγ expression 	<u>Shobana et</u> al. (2017)
Oxidative stress an	d apoptosi	s in the placenta		
Timed pregnant Sprague-Dawley rats	Oral (drinkin g water)	50 mg/L potassium dichromate in drinking water from days post coitum 9.5–14.5. Euthanization on GD 18.5	 ↑ hypertrophy, basal zone thickness, pyknotic nuclei (not quantitated) Hemorrhagic lesions observed w/treatment ↑ apoptosis (TUNEL) in various regions/cell types (Al%) ↑ Casp-3 in yolk sac and metrial gland (maternal compartment), ND in basal and NS in labyrinth zones (fetal) ↑ AIF, Bax, ATM, p53, NOXA, PUMA, p27 all areas (Casp-3 indep) ↓ Bcl-2, Bcl-XL, XIAP 	Banu et al. (2017a) (appears to be the same experiment as Banu et al. (2017b))

System	Route	Exposure	Results	Reference
Timed pregnant Sprague-Dawley rats	Oral (drinkin g water)	50 mg/L K ₂ Cr ₂ O ₇ from days post coitum (dpc) 9.5–14.5. Euthanization on GD 18.5	 ↓ fetal weight, cytokeratin (TC marker), Cyclin D1 in metrial gland, basal and labyrinth zones ↓ markers for TGCs in basal and labyrinth zones, glycogen cells in basal zone, syncytial trophoblast in labyrinth zone ↑ marker for uterine NK cells in labyrinth zone ↑ LPO, H₂O₂ ↓ Gpx, Sod activity in whole extracts ↓ Prdx3, Txn2 mitochondrial expression all areas samples 	<u>Banu et al.</u> (2017b)
Human placental tissues	Ex vivo	0.02 to 1.2 mg/L Cr detected in placental tissue	 Placenta from male birth (results from higher Cr concentrations): ↑ CytoC, Casp-3, apoptosis inducing factor (AIF), vBAX, and p53, Bcl-2, Bcl-XL ↓ XIAP (x-linked apoptosis inhibitor) Placenta from female birth (results from higher Cr concentrations): ↑ CytoC, Casp-3, AIF, BAX, Bcl-2, Bcl-XL Null p53, XIAP 	<u>Banu et al.</u> (2018)
Human trophoblastic cell line BeWo	In vitro	5, 15, 30uM $K_2Cr_2O_7$ for 12 and 24h Dose rationale was LD50 for BeWo cells was ~30 μ M. Sig decline in viability at 15 μ M.	 ↑ GPX1 mRNA with 5 mM Cr(VI) treatment after 12 h, dose-dependent; decreased after 24 h ↓ GPX1 and SOD1 expression, 15 and 30 μM, 12 and 24h ↓ Catalase and SOD2 mRNA, 5, 15, and 30 μM, after 12 and 24 h, dose-dependent ↓ PRDX3 and TXN2, 5 μM, after 24 h only ↓ PRDX3 and TXN2 mRNA, 15 and 30 μM, 12 and 24 h 	<u>Banu et al.</u> (2018)
Primary human erythrocytes and mitochondria from placenta tissue	In vitro	0.05, 0.5, 1, 5 μg/mL K ₂ Cr ₂ O ₇	 ↑ lipid peroxidation level (TBARS); decreased with coadministration of estrogen metabolite 4-OHE2 ↓ SOD and GST activity; SOD increased with coadministration of estrogen metabolite 4-OHE2; GST increased with coadministration of estrogen metabolite 16α-OHE1 ↓ nitric oxide levels in blood; estrogen metabolites caused further reduction 	Sawicka et al. (<u>2017</u> ; <u>2017</u>)

C.3. SUPPORTING EVIDENCE FOR A CARCINOGENIC MODE OF ACTION

C.3.1. Meta-analysis of Cr(VI) and cancer of the GI tract

1 This section describes the methods for the review and meta-analysis of GI cancer risk 2 reported by occupational studies of workers with inhalation exposure to Cr(VI) (Section 3.2.1). 3 Occupational studies that analyzed cancer risks related to Cr(VI) exposure were identified as part of 4 the overall assessment search strategy process as described in the Cr(VI) Protocol (U.S. EPA, 5 2019b). This search strategy, which was conditioned on terms for Cr(VI), identified 35 potentially 6 relevant citations. Since these searches only identified references that mentioned chromium or 7 related terms in the title or abstract, an additional search strategy was developed to identify studies 8 of occupational groups with routine exposure to Cr(VI). Our list of occupational groups with 9 potential substantial exposure to Cr(VI) included those in categories I or II identified by the 10 Occupational Safety and Health Administration (OSHA; see Table C-42) (Shaw Environmental, 2006). Group I industries are "primary industry sectors where the majority of occupational 11 12 exposures occur to hexavalent chromium" while Group II industries "represent industries with 13 limited potential for occupational exposure to hexavalent chromium; consequently, less data were 14 available on occupational exposures and controls for these industries." This search resulted in 15 2.341 references. 16 Titles and abstracts for the second set of the references were screened by seven individuals 17 using Distiller imposing a rule that each study be screened by two reviewers; conflicts were 18 resolved by discussion. Screening decisions were guided by a PECO (population, exposure, 19 comparator, outcome) statement designed to capture studies examining associations of cancers of 20 the GI tract with Cr(VI)-exposed occupations (Table C-42). For our initial screening stage, we 21 included all cancer sites along the digestive tract. Different studies used different naming 22 conventions, partially due to the use of differing International Classification of Disease (ICD) coding 23 versions.

PECO Element	Evidence			
<u>P</u> opulation	Human including Epidemiological studies, Case-Control studies, Cohort/ prospective studies, Follow-up studies, Occupational mortality studies			
<u>E</u> xposure	Industries including any in group I or group II. Include analyses of cancer in relation to occupatio (e.g., stomach cancer and occupation in Sweden).			
	Group I	Group II		
	Chromate or chromium production, ferrochrome production	Chromium dye production		
	Chromated copper arsenate producers	Chromium catalyst users		

Table C-42. PECO for screening occupational studies relevant to Cr(VI)

This document is a draft for review purposes only and does not constitute Agency policy.

	Chromium catalyst production	Chromium dioxide producers			
	Chromium metal production	Chromium sulfate producers			
	Chromium plating, chrome plating, electroplating	Leather work and tanning, tanners			
	Stainless steel production	Portland cement work			
	Welding, Stainless steel (carbon steel welding low prevalence of exposure to generally low levels)	Producers of refractory brick			
	Chromium pigment production	Non-ferrous superalloy producers and users			
	Paint and coatings production	Producers of pre-case concrete products			
	Printing ink producers	Textile dying			
	Plastic colorant producers and users	Producers of colored glass			
	Plating mixture production	Printing – if working with pigments			
	Grinders, polishers (stainless steel)	Aircraft manufacturing; aerospace			
	Wood preserving	Brick masons, bricklayers			
	Painters – if in industry like shipbuilding, automobile manufacture; painting metals	Metal casting, cutting			
	Steel and iron foundry workers				
	Steel mills				
<u>C</u> omparator	Analyses of mortality due to cancer or incidence of cancer and associations with occupational groupings (industries; professions)				
<u>O</u> utcome	Gastrointestinal tract cancers (incidence, prevalence, mortality) ^a				
	Specific GI cancers identified by ICD-10, -9, -8 or -7 codes, including:				
	Oral cavity [ICD 140–149 (includes cancers of the mouth, lip, tongue, gum or oropharynx)]				
	Esophagus (ICD 150)				
	Stomach (ICD 151)				
	Small intestine [ICD 152 (includes the duodenum)]				
	Colon (ICD 153)				
	Rectum [ICD 154 (includes the recto	osigmoid junction and anus)			

^aAs noted above, nomenclature for cancer sites varied across studies. Some of the alternative designations included: buccal cavity, oral cavity; salivary glands; pharynx; hypopharynx; cardia, corpus, gastric, gastric cardia; bowel, intestine, large intestine; colorectal; digestive tract, digestive system, digestive organs (and peritoneum), gastrointestinal tract.

A total of 199 references were identified during title and abstract screening, and these
underwent full-text screening by three reviewers who resolved conflicts via discussion. Of these
199 references, 97 references were retained; the majority (93) were uniquely identified references.
A snowball search was conducted by cross-checking the reference lists identified using the two
search strategies with the studies included in the three recent meta-analyses, which resulted in
identification of an additional 20 references. In total, 35 references from the previous literature
searches, 93 references from the subsequent occupationally focused search, and 20 references from

- the snowball search of the reference lists in the three most recent meta-analyses were included in
 this review. Of these, 21 studies were not included because they were earlier follow-ups, the
 cohorts were not exposed to Cr(VI), or they did not contain results for site-specific GI tract cancers.
- 4

C.3.1.1. Study Evaluation Criteria

5 Studies were evaluated with respect to population selection; exposure and outcome 6 evaluation; confounding; analysis; selective reporting; sensitivity; and overall confidence, following 7 the framework outlined in the IRIS Handbook (U.S. EPA, 2020). Criteria were developed for the 8 exposure domain to identify those studies that used exposure assessment definitions that identified 9 groups with higher certainty and prevalence of exposure to Cr(VI) (U.S. EPA, 2019b). For the 10 evaluation of selected outcomes, we had higher confidence in studies of cancer incidence compared 11 to mortality. Cancer deaths ascertained from death certificates were considered a valid outcome 12 ascertainment method, acknowledging the potential for misdiagnosis of the underlying cause of 13 death and subsequent underascertainment, particularly for cancers with longer survival periods. 14 We had greater confidence in cancer incidence and mortality coding for stomach cancer compared 15 with other sites in the gastrointestinal tract because the probability that the diagnosis on the death 16 certificate is the same as that in the hospital medical records is higher (Percy et al., 1990; Percy et 17 al., 1981).

18 With a few exceptions, most of the studies compared cancer incidence or mortality in an 19 occupational group to that in the country or other geographical region in which the facilities were 20 located, by calculating a standardized incidence ratio (SIR) or standardized mortality ratio (SMR). 21 This study design can be subject to the healthy worker effect, a type of selection bias that results in 22 an underestimate of the relative risk because individuals in the workforce are a healthier 23 population than a general population that may be used for comparison. This limitation, and 24 reduction in study sensitivity, is not generally present in studies using internal comparisons. 25 Greater confidence was given to studies that considered major confounders of the association 26 between Cr(VI) exposure and GI tract cancers. Risk factors for these cancers vary by site, but 27 generally include sex, age, race/ethnicity, and geographic region. Individual-level information on 28 other risk factors, such as smoking and alcohol consumption that may be risk factors for certain GI 29 tract cancers and that may differ between the occupational groups and comparison populations 30 was not usually available to adjust the SMRs or SIRs, but the magnitude of bias likely differed across 31 the occupational categories. Other risk factors such as obesity, H. pylori infection, dietary factors 32 and family history of such cancers, likely were not differentially associated with chromium-exposed 33 occupations or jobs and thus any differences would be expected to be random. Appropriate 34 analysis methods were prioritized and largely included standardized ratios for mortality or 35 incidence of cancer or relative risk estimates for comparisons of exposure groups within the study 36 population; in a smaller number of studies, odds ratios were estimated for case-control study 37 designs.

1 C.3.1.2. Evaluation of exposure to Cr(VI)

2 For the purposes of this meta-analysis, only occupational studies were considered, and 3 studies were evaluated with respect to certainty of exposure to hexavalent chromium. 4 Occupational groups were identified after inventorying the database of references, and specific 5 criteria developed for 'good,' 'adequate,' and 'deficient' ratings for decreasing certainty of exposure 6 within each one. Many of the identified studies were registry based, with occupation inferred based 7 on a standardized set of occupation and/or industry codes. In the absence of further information 8 on potential for Cr(VI) exposure, the certainty of exposure for these studies was 'deficient.' 9 Since the focus of this meta-analysis was occupational exposure to Cr(VI), criteria to 10 evaluate the certainty of exposure to Cr(VI) were developed specific to occupational groups. Exposure certainty was rated as 'good', 'adequate,' or 'deficient' using the guidelines in Table C-43. 11 12 Potential bias in exposure assignments, as well as other domains of risk of bias and sensitivity, were 13 evaluated using the methods described in the IRIS Handbook (U.S. EPA, 2020). The results of the 14 study evaluations with domain-specific ratings and overall confidence ('high', 'medium,' or 'low') 15 are available in HAWC for the <u>cancer mortality studies with comparisons to external populations</u> and studies with comparisons within the target study population and are shown in Table C-44. 16

Occupation Group	Potential Co-exposures	Good	Adequate	Deficient
Brick masons/stone masons/tile setters/brick layers/cement or concrete workers The main source of Cr(VI) exposure in this group comes from exposure to Portland cement (production or use).	Asbestos, cement dust, silica, fiberglass, talc, solvents, asphalt (<u>US DHHS, 1990; Pedersen</u> <u>and Sieber, 1988</u> ; <u>Seta et</u> <u>al., 1988</u>)	histories and other	Cement production, exposure assigned using task related data from job histories	Cohort studies of bricklayers or case- control studies, where occupation was assigned based on standard codes for industry/ occupation
Chromate production, ferrochromium industry The main source of Cr(VI) exposure in this group comes from exposure to chromate and related compounds (production or use).	Asbestos, nickel, acid and alkali mists, nitrogen oxides, cyanide and solvents (<u>IARC, 1990</u>)	ferrochromium industry, with categories based on tasks involving direct exposure to Cr(VI)	case-control studies, with categories based on (1) ever employment or	Cohort studies of chromate workers, including chromate production, ferrochromium industry, or case- control studies, where the exposure assessment description was not sufficient to determine the prevalence or frequency of exposure to Cr(VI).

Table C-43. Occupational group-specific criteria for rating certainty of exposure to Cr(VI)

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE

Occupation Group	Potential Co-exposures	Good	Adequate	Deficient
			industry/ occupation.	
Building construction/carpenters/ wood workers The main source of Cr(VI) exposure in this group comes from exposure to refractory brick or Portland cement (construction, building) and from wood treated with chromated copper arsenate (CCA).	Asbestos, silica, wood dust, formaldehyde, wood preservatives, solvents (<u>Robinson et al., 1996</u>)	Cohort studies of construction workers, carpenters or woodworkers with categories based on tasks in Portland cement mixing or wood preservation or working with treated wood	Cohort studies of construction workers, carpenters or woodworkers with categories based on tasks in cement mixing (nonspecific) or broader wood working categories.	Cohort studies of construction workers, carpenters or woodworkers, or case-control studies, where occupation was assigned based on standard codes for industry/occupation
Automotive workers The main source of Cr(VI) exposure in this group comes from exposure to metalwork (e.g., welding) and to automotive paint.	Solvents, welding fumes, asbestos in brakes and clutches, metal welding fluids (<u>Gibel et al., 1985</u>) (<u>OSHA, 2006a</u>)	Cohort studies with task specific exposure assignments based on job histories, specifically spray painting, welding, or metal cutting (see criteria for painting, welding or metal work) with supplemental industrial hygiene evidence	Cohort studies with task specific exposure assignments based on job histories, specifically spray painting, welding, or metal cutting (see criteria for painting, welding or metal work, but with no supplemental information	Cohort studies of automotive workers, or case- control studies, where occupation was assigned based on standard codes for industry/occupation

Occupation Group	Potential Co-exposures	Good	Adequate	Deficient
Aircraft manufacturing workers The main source of Cr(VI) exposure in this group comes from exposure to metalwork (e.g., welding) and to aircraft paint.	Solvents, heavy metal salts, welding fumes, epoxy resins, asbestos, other fibers, ionizing radiation (<u>Lipworth et al., 2011</u> ; <u>Costa et al., 1989</u>)	Cohort studies with task specific exposure assignments based on job histories, specifically spray painting, welding, or metal cutting (see criteria for painting, welding or metal work), with supplemental industrial hygiene evidence; sprayers and hosemen	Cohort studies with task specific exposure assignments based on job histories, specifically spray painting, welding, or metal cutting (see criteria for painting, welding or metal work, but with no supplemental information	Cohort studies of aircraft manufacturing workers or case- control studies, where occupation was assigned based on standard codes for industry/occupation
Painter/ paint product/paint and coating manufacturers The main source of Cr(VI) exposure in this group comes from exposure to plaster and chromium- based pigments (usually used in marine, automotive, aircraft, etc. paints).	Solvents, pigments, aromatic azo dyes, PAHs, resins (<u>IARC, 2010</u>)	Cohort studies with task specific exposure assignments based on job histories; spray painting or coating in the marine, automotive or aircraft manufacturing industries, with supplemental industrial hygiene evidence	Cohort studies with task specific exposure assignments based on job histories; spray painting or coating in the marine, automotive or aircraft manufacturing industries, but with no supplemental information	Cohort studies of painters, plasterers, or paint manufacturing workers, or case- control studies, where occupation was assigned based on standard codes for industry/occupation
Printers The main source of Cr(VI) exposure in this group comes from exposure to chromium-based pigments in ink.	Solvents, dyes, lead salts (<u>Lynge et al., 1995</u>)	Cohort studies with task specific exposure assignments based on job histories; photoengravers, press operators, with supplemental industrial hygiene evidence	Cohort studies with task specific exposure assignments based on job histories; photoengravers, press operators, but with no supplemental information	Cohort studies of printing workers or case-control studies, where occupation was assigned based on standard codes for industry/occupation

Occupation Group	Potential Co-exposures	Good	Adequate	Deficient
Textile The main source of Cr(VI) exposure in this group comes from exposure to chromium-based pigments in fabric dyes.	Solvents, textile dusts and fibers, formaldehyde, dyes (<u>IARC, 1998</u>)	Cohort studies with task specific exposure assignments based on job histories (e.g., textile dying), with supplemental industrial hygiene evidence	Cohort studies with task specific exposure assignments based on job histories (e.g., textile dying), but with no supplemental information	Cohort studies of textile workers or case-control studies, where occupation was assigned based on standard codes for industry/occupation
Welder/metal fumes The main source of Cr(VI) exposure in this group comes from welding on stainless steel, and intensity of exposure varies by specific welding technique. For welding, highest exposure during Shielded Metal Arc Welding, less for Gas Metal Arc Welding and Tungsten Inert Gas Welding (Pesch et al., 2018).	Nickel and other metals, arsenic asbestos, formaldehyde, silica dust (<u>IARC, 1990</u>) (<u>IARC, 2018</u>)	Cohort studies with task specific exposure assignments based on job histories; Stainless steel welding: Shielded Metal Arc Welding, or stainless steel welding: unspecified technique but with monitoring data or other Cr(VI) -specific information	Cohort studies with task specific exposure assignments based on job histories; Stainless steel welding (unspecified technique)	Cohort studies with task specific exposure assignments based on job histories; Gas Metal Arc Welding, Tungsten Inert Gas Welding; or Cohort studies of welders or case-control studies, where occupation was assigned based on standard codes for industry/occupation
Tanners The main source of Cr(VI) exposure in this group comes from the "two bath" tanning process which uses hexavalent chromium salts as the tanning material (Stern, 2003).	Benzidine-based azo dyes, aromatic organic solvents, formaldehyde, and airborne leather dust (<u>IARC, 1981</u>)	Work processes involving leather tanning and cohort description supports that at least 50% of cohort first employed as leather tanners when two bath process was still used (pre1940s in US) and before mechanization was introduced.	Work processes involving leather tanning and cohort description supports that a large portion of cohort first employed as leather tanners when two bath process was still used (pre1940s in US) and before mechanization was introduced	Work processes involving leather tanning and cohort description supports that most of the cohort (>70%) first employed as leather tanners when one bath process was used (post1940s in US); or occupation was assigned based on standard codes for industry/occupation
Metal Workers The main source of Cr(VI) exposure in this group comes from work with chrome plating, stainless steel and steel alloys (tasks included: plating, melting, pouring, cutting,	Nickel (electroplating), polynuclear aromatic hydrocarbons, silica, carbon monoxide, nickel, phenol, formaldehyde, isocyanates, amines	Cohort studies analyzing stainless steel categories/tasks with some monitoring data or industrial hygiene documentation. Stainless steel machining,	Cohort studies involving steel foundries with subgroup analyses. Cohort studies analyzing stainless steel categories with	Iron or steel foundries; If occupation was assigned based on standard codes for industry/occupation

This document is a draft for review purposes only and does not constitute Agency policy.

Occupation Group	Potential Co-exposures	Good	Adequate	Deficient
grinding and welding operations).		Production of stainless steel products (grinding, polishing) (based on job histories), stainless steel production (based on job histories), steel foundries (by work area/task)	no or minimal monitoring data.	

1 The meta-analyses focused on the studies considered to be 'medium' or 'high' overall 2 confidence for which EPA had greater certainty in the exposure assessment for Cr(VI) and minimal 3 concern for other sources of bias. These studies reported a variety of effect estimates, including 4 standardized incidence or mortality ratios, standardized risk ratios, odds ratios, and proportionate 5 mortality ratios. Studies that calculated proportionate mortality ratios were not included. In some 6 instances, multiple risk estimates were reported – for example, for men or women separately, for 7 exposure or occupational subgroups, or by latency period. A priori, we selected risk estimates 8 (1) that were adjusted for potential confounders including age, sex, time period, and geographic 9 region; (2) for the longest latency period; (3) from the most recent follow-up of a specific study 10 cohort; (4) for the most highly exposed subgroup of the study population. A comparison of the 11 studies included in the three most recent meta-analyses and this analysis, with our rationale for 12 decisions to exclude, are in Table C-44. The table indicates the citations included in our meta-13 analysis and those in the three most recent meta-analyses. The studies included in each meta-14 analysis comprised an overlapping but different set of studies reflecting the various time periods 15 used for the literature searches, the inclusion criteria, and the results of the evaluations of study 16 "quality" used in the studies. In this analysis, the primary reason for considering a study to be of 17 low confidence was that exposure to Cr(VI) in the population was too uncertain. 18 When reviewing the studies captured by our literature search and evaluation of studies, 19 there were some cancer sites or groupings that were difficult to reconcile across studies due to 20 differences in ICD codes included, for example, or changes in coding practices and diagnostic 21 naming conventions over time and across geographical sites. Consequently, it was hard to 22 determine whether common cancer sites were contained within some of the groupings. Further, in 23 some cases, the number of studies for a given cancer site was small enough (and heterogenous 24 enough) that a meta-analysis seemed unlikely to yield useful information. Consequently, we 25 performed quantitative meta-analysis to derive summary risk estimates for a subset of GI tract 26 cancers by site: esophagus, stomach, rectum, and colon. For each of these four sites, there was a 27 larger number of studies to include in a summary effect estimate, and these studies used relatively 28 consistent definitions for these specific cancer sites. 29 Separate meta-analyses were performed to obtain summary estimates from studies 30 reporting odds ratios (stomach cancer, esophageal cancer), and from studies reporting SMR, SIR, or

- 1 SRR estimates (all four sites). All analyses were performed using the 'metafor' package in R, with a
- 2 random effects model. This package was also used to generate forest plots. The potential for
- 3 publication bias was evaluated using the Egger's test (Egger et al., 1997) for funnel plot asymmetry.
- 4 The I2 statistic value is used to represent the percentage of variation
- 5 across studies that is due to heterogeneity rather than chance.

	EPA	Welling	Deng	Suh		Overall	
All Included	Included	Included	Included	Included	Search	rating	Rationale for Exclusion
Andersson et al. (2010)	x				PECO_1	Medium	
<u>Birk et al. (2006)</u>	х		х	х	PECO_1	Medium	
<u>Davies et al. (1991)</u>	х	х		х	PECO_1	Medium	
<u>Franchini et al. (1983)</u>	х	х		х	PECO_1	Medium	
<u>Gibb et al. (2015)</u>	x		х		PECO_1	Medium	
<u>Hayes et al. (1989)</u>	х	х	х	х	PECO_1	Medium	
Huvinen and Pukkala (2013)	x		х		PECO_1	Medium	
Huvinen and Pukkala (2016)	x	х			PECO_1	Medium	
<u>Koh et al. (2013)</u>	х	х			PECO_1	Medium	
Korallus et al. (1993)	х	х	х	х	PECO_1	Medium	
Langard et al. (1990)	x	х		х	PECO_1	Medium	
Rafnsson et al. (1997)	x				PECO_1	Medium	
Rosenman and Stanbury (1996)	x	х			PECO_1	Medium	
<u>Silverstein et al. (1981)</u>	х	х		х	PECO_1	Medium	
<u>Sorahan and Harrington</u> (2000)	x	х		х	PECO_1	Medium	
<u>Sorahan et al. (1987)</u>	х	х	х		PECO_1	Medium	
<u>Hayes et al. (1979)</u>	х				PECO_1	Medium	
<u>Kano et al. (1993)</u>	х	х		х	PECO_1	Medium	
<u>Becker (1999)</u>	x	х		x	PECO_2	Medium	
<u>Boice et al. (1999)</u>	x		x	х	PECO_2	Medium	

Table C-44. Comparison of studies included in meta-analyses or that met PECO, with search phase, study evaluation rating, and rationale for exclusion in EPA meta-analysis

This document is a draft for review purposes only and does not constitute Agency policy.C-129DRAFT—DO NOT CITE OR QUOTE

All Included	EPA Included	Welling Included	Deng	Suh Included	Search	Overall rating	Rationale for Exclusion
Dalager et al. (1980)	x	Included	included	x	PECO_2	Medium	
Danielsen et al. (1996)	x			^	PECO_2	Medium	
Delzell et al. (2003)	x				PECO_2	Medium	
Edling et al. (1986)	x	x			PECO_2	Medium	
<u>Garabrant and Wegman</u> (1984)	х	x			PECO_2	Medium	
Garabrant et al. (1988)	х				PECO_2	Medium	
Hansen et al. (1996)	х				PECO_2	Medium	
laia et al. (2006)	х		х	x	PECO_2	Medium	
Jakobsson et al. (1993)	х	х	x		PECO_2	Medium	
Jakobsson et al. (1997)	х	x	x		PECO_2	Medium	
Kaerlev et al. (2000)	х				PECO_2	Medium	
Kusiak et al. (1993)	х				PECO_2	Medium	
Lipworth et al. (2011)	х	х	x		PECO_2	Medium	
<u>Lynge et al. (1995)</u>	х				PECO_2	Medium	
Mikoczy and Hagmar (2005)	х	х			PECO_2	Medium	
<u>Montanaro et al. (1997)</u>	х	х	х	х	PECO_2	Medium	
Morgan et al. (1981)	х				PECO_2	Medium	
<u>Moulin et al. (1990)</u>	х	х	х	х	PECO_2	Medium	
<u>Moulin et al. (1993a)</u>	х	x	x	x	PECO_2	Medium	
Park et al. (2005)	х		x		PECO_2	Medium	
Polednak (1981)	х				PECO_2	Medium	
Ramanakumar et al. (2008)	х				PECO_2	Medium	
Santibanez et al. (2008)	х				PECO_2	Medium	
<u>Sciannameo et al. (2019)</u>	х				PECO_2	Medium	

This document is a draft for review purposes only and does not constitute Agency policy.C-130DRAFT—DO NOT CITE OR QUOTE

	EPA	Welling	Deng	Suh		Overall	
All Included	Included	Included	Included	Included	Search	rating	Rationale for Exclusion
<u>Sjögren et al. (1987)</u>	х				PECO_2	Medium	
<u>Sorahan et al. (1994)</u>	х		х	х	PECO_2	Medium	
<u>Tarvainen et al. (2008)</u>	х				PECO_2	Medium	
Veyalkin and Gerein (2006)	х				PECO_2	Medium	
<u>Xu et al. (1996b)</u>	х	х			PECO_2	Medium	
<u>Olsen et al. (1988)</u>	х				PECO_2	Medium	
<u>Simonato et al. (1991)</u>	х	х	х	х	PECO_2	Medium	
<u>Axelsson et al. (1980)</u>	х	х			Snowball ID	Medium	
Costantini et al. (1989)	х	х		x	Snowball ID	Medium	
<u>Dab et al. (2011)</u>	х		х		Snowball ID	Medium	
<u>Hara et al. (2010)</u>	х	х		x	Snowball ID	Medium	
<u>Horiguchi et al. (1990)</u>	х	х	х	х	Snowball ID	Medium	
Pippard et al. (1985)	х	х	х	x	Snowball ID	Medium	
<u>Smailyte et al. (2004)</u>	х	х	х		Snowball ID	Medium	
<u>Deschamps et al. (1995)</u>	х	х		x	Snowball ID	Medium	
Aragones et al. (2002)					PECO_1	Low	Low confidence due to exposure assessment, which was based on self-reported occupation at one time point. Concern that occupation at one point in time does not represent etiologically relevant time window.
<u>Guberan et al. (1989)</u>			x	x	PECO_1	Low	<i>Low</i> confidence related to nonspecific exposure definition.
<u>Koh et al. (2011)</u>			x		PECO_1	Low	Main limitation is uncertain potential for exposure (highest likelihood for production and maintenance, but duration unknown and use of last held job could introduce misclassification) and low numbers of cases.
<u>Parent et al. (1998)</u>		х			PECO_1	Low	<i>Low</i> confidence due to the nonspecific nature of the exposure assignments.

All Included	EPA Included	Welling Included	Deng Included	Suh Included	Search	Overall rating	Rationale for Exclusion
<u>Satoh et al. (1981)</u>		x		х	PECO_1	Low	Although potential for chromium exposure seems clear, there is little information to inform potential for selection bias or outcome ascertainment, and low number of cases (n = 11).
<u>Sweeney et al. (1985)</u>		x			PECO_1	Low	Main limitations are uncertain potential for chromium exposure, and low number of deaths for certain cancer sites.
<u>Walrath et al. (1987)</u>		x			PECO_1	Low	Main limitation is unclear potential for chromium exposure.
Andjelkovich et al. (1992)					PECO_2	Low	<i>Low</i> confidence study due to lack of information on likelihood of Cr(VI) exposure.
Andersen et al. (1999)					PECO_2	Low	<i>Low</i> confidence study due to lack of information on potential for Cr(VI) exposure, lack of consideration of latency.
<u>Bertazzi and Zocchetti</u> (1980)					PECO_2	Low	Main limitation is lack of certainty regarding potential for chromium exposure.
<u>Bethwaite et al. (1990)</u>					PECO_2	Low	<i>Low</i> confidence study due to lack of certainty regarding Cr exposure.
Bouchardy et al. (2002)					PECO_2	Low	Main limitation is lack of certainty for occupation in general, and for chromium exposure potential.
<u>Brown et al. (2002)</u>					PECO_2	Low	Main limitation is the lack of certainty regarding chromium exposure, and potential healthy worker effect.
<u>Brownson et al. (1989)</u>					PECO_2	Low	Main limitation is lack of certainty regarding exposure (and occupation only at time of diagnosis).
<u>Bulbulyan et al. (1999)</u>					PECO_2	Low	Main limitation is lack of certainty regarding chromium exposure.
<u>Chiazze et al. (1980)</u>					PECO_2	Low	Main limitations are lack of certainty regarding chromium exposure, and uncertainty due to missing data. Further limitations are small sample size, and use of PMR analysis.

All Included	EPA Included	Welling Included	Deng Included	Suh Included	Search	Overall rating	Rationale for Exclusion
<u>Chow et al. (1994)</u>					PECO_2	Low	Main limitation is the lack of certainty regarding chromium exposure, and potential healthy worker effect.
<u>Chow et al. (1995)</u>					PECO_2	Low	Main limitation is the lack of certainty regarding chromium exposure, and potential healthy worker effect.
<u>Cocco et al. (1998)</u>					PECO_2	Low	Main limitation is lack of certainty regarding chromium exposure.
<u>Costa et al. (1989)</u>					PECO_2	Low	The main limitation is lack of specificity about which workers might be exposed to chromium and inclusion of short-term workers, lack of information on longest held or usual occupational group.
<u>Danielsen et al. (1993)</u>					PECO_2	Low	<i>Low</i> confidence study, given short time period (1977 onward) that stainless steel was in use during the overall study period from 1940–1979.
Divine and Barron (1986)					PECO_2	Low	<i>Low</i> confidence primarily due to uncertainties in exposure domain. Type of welding metal was not reported so there is low certainty about the extent of exposure to chromium in the industry.
<u>Dubrow and Wegman</u> (1984)					PECO_2	Low	<i>Low</i> confidence due to uncertainties in the exposure domain due to likely misclassification in exposure assignments; usual occupation on death certificate and broad exposure categories.
Dubrow and Gute (1988)					PECO_2	Low	Primary limitation is the unspecific nature of the exposure assignments and low sensitivity
<u>Engel et al. (2002)</u>					PECO_2	Low	Although the greater specificity in the incident cancer ascertainment is a strength, the nonspecific nature of the exposure assignments based on occupational and industry codes constrained any conclusions regarding any associations with Cr(VI)
Finkelstein and Verma (2005)					PECO_2	Low	Exposure based on membership in the bricklayers union is nonspecific with large uncertainties with regard to the prevalence, frequency and intensity of exposure to Cr(VI)

All Included	EPA Included	Welling Included	Deng Included	Suh Included	Search	Overall rating	Rationale for Exclusion
Golka et al. (2012)		Included		Included	PECO_2	Low	In addition to the nonspecific occupational and exposure group definitions for Cr(VI), the numbers of cases in the chromium VI relevant groups was small.
<u>Greene et al. (1979)</u>					PECO_2	Low	The lack of specificity in the exposure assignments is the major limitation, plus the number of deaths was small
<u>Huebner et al. (1992)</u>					PECO_2	Low	Although design and analysis are appropriate, main limitation is uncertain potential for chromium exposure.
Jansson et al. (2015)					PECO_2	Low	<i>Low</i> confidence study due to lack of information on potential for Cr(VI) exposure, lack of consideration of latency.
<u>Ji and Hemminki (2006)</u>					PECO_2	Low	<i>Low</i> confidence study due to lack of information on potential for Cr(VI) exposure.
<u>Kaerlev et al. (2002)</u>					PECO_2	Low	Main limitation is unclear potential for chromium exposure.
<u>Kang et al. (1997)</u>					PECO_2	Low	Main limitation is unclear potential for chromium exposure.
Keller and Howe (1993)					PECO_2	Low	Main limitation is unclear potential for chromium exposure.
<u>Kraus et al. (1982)</u>					PECO_2	Low	There is little certainty regarding chromium exposure, and unclear how census data were used to calculate expected number of deaths.
Lindsay et al. (1993)					PECO_2	Low	Lack of certainty regarding chromium exposure is the main limitation.
Macleod et al. (2017)					PECO_2	Low	<i>Low</i> confidence study due to lack of certainty regarding chromium exposure.
Malker and Gemne (1987)					PECO_2	Low	Main limitation is the lack of certainty regarding chromium exposure.
<u>Matanoski et al. (1986)</u>					PECO_2	Low	Main limitation is lack of information on potential for chromium study.
Mcmillan and Pethybridge (1983)					PECO_2	Low	Low numbers of deaths, uncertain potential for chromium exposure, and questionable statistical analysis.

All Included	EPA Included	Welling Included	Deng Included	Suh Included	Search	Overall rating	Rationale for Exclusion
<u>Melkild et al. (1989)</u>					PECO_2	Low	Main limitation is small sample size and uncertainty regarding chromium exposure.
Minder and Beerporizek (1992)		x			PECO_2	Low	Main limitation is lack of certainty for chromium exposure potential.
<u>Park et al. (1994)</u>					PECO_2	Low	<i>Low</i> confidence due to the nonspecific nature of the exposure assignments.
<u>Pukkala et al. (2009)</u>		x			PECO_2	Low	<i>Low</i> confidence study due to lack of information on potential for Cr(VI) exposure, lack of consideration of latency.
<u>Richiardi et al. (2012)</u>					PECO_2	Low	Main limitation is unclear potential for chromium exposure.
Robinson et al. (1995)		x			PECO_2	Low	Main limitation is unclear potential for chromium exposure.
Salg and Alterman (2005)		x			PECO_2	Low	Main limitation is unclear potential for chromium exposure.
Silverstein et al. (1985)					PECO_2	Low	Main limitation is unclear potential for chromium exposure. The welding conducted at the plant was not likely to involve exposure to Cr(VI).
<u>Sjödahl et al. (2007)</u>		x			PECO_2	Low	The large size of the cohort, almost complete ascertainment, number of cancer cases, and analysis of cancer incidence is a strength, allowing for analyses of relatively rare cancer types. However, the nonspecific nature of the exposure definition reduced certainty that prevalence of Cr(VI) exposure was adequate.
<u>Stellman and Garfinkel</u> (1984)					PECO_2	Low	Main limitation is unclear potential for chromium exposure.
<u>Stern (2003)</u>			х		PECO_2	Low	Main limitation is low potential for chromium exposure during study period.
<u>Sun et al. (2002)</u>					PECO_2	Low	Main limitation is unclear potential for chromium exposure.
<u>Urbaneja Arrúe et al.</u> (1995)					PECO_2	Low	Main limitation is unclear potential for chromium exposure.

All Included	EPA Included	Welling Included	Deng Included	Suh Included	Search	Overall rating	Rationale for Exclusion
<u>Wang et al. (1999)</u>					PECO_2	Low	Main limitation is unclear potential for chromium exposure.
Westberg et al. (2013)					PECO_2	Low	Main limitation is unclear potential for chromium exposure.
<u>Yuan et al. (2011)</u>					PECO_2	Low	Main limitation is lack of information on case and control selection and use of a single biomarker measurement of total chromium of unclear timing after diagnosis.
<u>Ahn et al. (2006)</u>		x			Snowball ID	Low	There is some likelihood of Cr(VI) exposure in certain process areas, but industrial hygiene measures indicate levels could be fairly low. Combined with rather short follow-up and low numbers of cases, it may be difficult to infer cancer associations with Cr(VI).
<u>Amandus (1986)</u>		х			Snowball ID	Low	Main limitation is uncertainty regarding likelihood of Cr(VI) exposure.
<u>Blair (1980)</u>				x	Snowball ID	Low	<i>Low</i> confidence study due to lack of certainty regarding Cr exposure.
<u>González et al. (1991)</u>		х			Snowball ID	Low	Exposure definitions were not specific to Cr(VI).
<u>Järvholm et al. (1982)</u>		х			Snowball ID	Low	Main limitations are small sample and unclear potential for chromium exposure.
<u>Kneller et al. (1990)</u>		х			Snowball ID	Low	Main limitation is lack of uncertainty for chromium exposure potential.
<u>Krstev et al. (2005)</u>		х			Snowball ID	Low	Main limitation is lack of certainty regarding potential for chromium exposure.
<u>Mallin et al. (1989)</u>		х			Snowball ID	Low	Main limitation is uncertain potential for chromium exposure.
Mcdowall (1984)		x			Snowball ID	Low	Main limitation is lack of information on potential for chromium exposure. Classification by tasks within this cohort of cement workers allowed adequate exposure contrast for dust exposure, but it is not known whether the exposures were to Portland cement. Therefore there is less certainty about chromium VI.
Santibañez et al. (2012)		х			Snowball ID	Low	Main limitation is unclear potential for chromium exposure.

All Included	EPA Included	Welling Included	Deng Included	Suh Included	Search	Overall rating	Rationale for Exclusion
<u>Stern et al. (2001)</u>		x			Snowball ID	Low	Main limitation is unclear potential for chromium exposure.
<u>Becker et al. (1991)</u>			х		PECO_1	Exclude	Earlier study of the cohort reported by <u>Becker (1999)</u> .
<u>Gibb et al. (2000b)</u>				х	PECO_1	Exclude	Earlier study of the cohort reported by Gibb et al. (2015).
Luippold et al. (2003)			х	х	PECO_1	Exclude	No GI tract cancer results.
Park et al. (2004)			х		PECO_1	Exclude	Lung cancer only.
Proctor et al. (2016)			х		PECO_1	Exclude	Lung cancer only.
<u>Rafnsson and</u> Jóhannesdóttir (1986)					PECO_1	Exclude	Earlier study of the cohort reported by <u>Rafnsson et al.</u> (1997).
<u>Sorahan et al. (1998)</u>			х		PECO_1	Exclude	No analyses for GI tract cancer.
Steenland et al. (1991)			х		PECO_1	Exclude	Cohort was not exposed to Cr(VI).
Steenland (2002)			х		PECO_1	Exclude	Cohort was not exposed to Cr(VI).
<u>Takahashi and Okubo</u> (1990)			х		PECO_1	Exclude	Earlier study of the cohort reported by <u>Hara et al. (2010)</u> .
<u>Moulin (1995)</u>		х			PECO_2	Exclude	Letter to the editor focused on lung cancer.
Becker et al. (1985)					PECO_2	Exclude	Earlier study of the cohort reported by <u>Becker (1999)</u> .
<u>Delzell et al. (1993)</u>					PECO_2	Exclude	Earlier study of the cohort reported by <u>Delzell et al.</u> (2003).
<u>laia et al. (2002)</u>					PECO_2	Exclude	In Italian. Same analyses as <u>laia et al. (2006)</u> .
Mastrangelo et al. (2002)					PECO_2	Exclude	Meta-analysis.
<u>Mikoczy et al. (1994)</u>			х		PECO_2	Exclude	Earlier study of the cohort reported by <u>Mikoczy and</u> <u>Hagmar (2005)</u> .
<u>Moulin et al. (2000)</u>			х		PECO_2	Exclude	Focus of the study is on lung cancer.
Sorahan and Cooke (1989)					PECO_2	Exclude	Earlier study of the cohort reported by <u>Sorahan et al.</u> (1994).
<u>Stern et al. (1987)</u>					PECO_2	Exclude	Earlier study of the cohort reported by <u>Stern (2003)</u> .
<u>Svensson et al. (1989)</u>					PECO_2	Exclude	Earlier study of the cohort reported by <u>Jakobsson et al.</u> (<u>1997)</u> .

All Included	EPA Included	Welling Included	Deng Included	Suh Included	Search	Overall rating	Rationale for Exclusion
<u>Veyalkin and Milyutin</u> (<u>2003)</u>					PECO_2		Earlier study of the cohort reported by <u>Veyalkin and</u> <u>Gerein (2006)</u> .

1

1 C.3.1.3. *Results*

2 As shown in Table 3-13 in the toxicological review, the summary effect estimates showed 3 small increases in risk for each cancer site associated with Cr(VI) exposure, although only the 4 estimate for rectal cancer was statistically significant. There were few studies reporting odds 5 ratios, but in each case (esophagus and stomach), summary effect estimates based on these studies 6 were somewhat higher compared with summary estimates based on other relative risk measures 7 (although neither odds ratio-based estimate was statistically significant). There was no evidence of 8 funnel plot asymmetry based on Egger's regression test, indicating that publication bias was not 9 likely to be present.

Summary effect estimates were also derived for each cancer site, stratified by occupational
grouping (see Table C-45 and Figures C-15 to C-20). This separation by occupational grouping did
show some expected patterns for colon cancer risk estimates (see Figure C-19) in that the
occupations with a higher certainty of exposure to Cr(VI) (i.e., ferrochromium, chromate

production, stainless-steel workers, chromium pigment exposed workers) showed higher summary
 effect estimates. However, there remained inconsistencies among the studies overall, and the

16 encer estimates. However, there remained mechasistences among the studies over an, and the

16 results for cancer of the rectum did not show a similar pattern of risk (see Figure C-20).

17 All risks were either slightly above or close to the null (RRs ranging from 1.01 to 1.45) with 18 the exception of stomach cancer among tannery workers (RR of 0.72). For example, when looking 19 at stomach cancer, there was a (nonsignificant) decreased risk for tannery workers, and a 20 (nonsignificant) increased risk for those working with metal coatings and metal platers (RRs of 21 0.72 and 1.26, respectively). Risks for other occupational groups were close to the null, ranging 22 from 1.01 to 1.10. Similarly, there was variation within occupational groups—among the group 23 'ferrochromium, chromate production, stainless-steel workers,' there were modestly elevated risks 24 for esophageal and colon cancer (RRs of 1.22 and 1.26), while risks were very close to 1 for stomach 25 or rectal cancer (RRs of 1.01 and 1.04). Looking across cancer sites, for the occupational groups 26 with 4 or more estimates, groups with a higher certainty of exposure prevalence 27 (i.e., ferrochromium, chromate production and stainless-steel workers, and chromium pigment 28 exposed workers) had higher relative risk estimates for esophageal and colon cancers but not 29 stomach or rectal cancers. The number of studies within another category with more certainty in 30 the probability of Cr(VI) exposure, "estimated or measured chromium exposure," was not enough 31 to calculate a summary estimate. For esophageal cancer the two studies in this category indicated 32 elevated, but not significant, effect estimates. For colon cancer, this category included two analyses 33 within one study of chromate production workers with exposure prior to and after work process 34 changes that reduced Cr(VI) concentrations. However, effect estimates are not consistent with 35 what would be expected since higher risk was observed for the post-change workers. A small 36 number of colon cancer cases contributed to the effect estimates (pre-change n = 7, post-change n = 4) and there was evidence of bias from the healthy worker effect with consequent impacts on 37

- 1 sensitivity. Heterogeneity in effect estimates (magnitude and direction) also was evident within
- 2 occupational groups for a specific cancer site as shown in the forest plots (Figures C-15 to C-20).

Table C-45. Summary effect estimates from random effects meta-analysis, by cancer site and occupational group, where there are four or more estimates included

Cancer		Number of individual effect	Summary effect estimate (95%	1 ²
Site	Occupational group	estimates	confidence interval)	-
Esophagus	Ferrochromium, chromate production, stainless-steel workers ^a	6	1.22 (0.90, 1.64)	0
	Chromium pigment exposed workers	5	1.42 (0.87, 2.32)	10.6
Stomach	Ferrochromium, chromate production, stainless steel workers	13	1.01 (0.75, 1.35)	49.9
	Welders	5	1.10 (0.76, 1.60)	19.7
	Tannery workers	6	0.79 (0.56, 1.12)	12.7
	Portland cement workers, masons	4	1.02 (0.65, 1.61)	59.0
	Chromium pigment exposed workers	6	1.07 (0.80, 1.42)	0
	Metal coatings, metal platers	6	1.26 (0.81, 1.98)	54.8
Colon	Ferrochromium, chromate production, stainless steel workers	4	1.26 (0.82, 1.91)	44.0
	Portland cement workers, masons	4	0.88 (0.61, 1.27)	0
	Chromium pigment exposed workers	4	1.45 (0.68, 3.09)	41.7
Rectum	Ferrochromium, chromate production, stainless steel workers ^a	10	1.04 (0.78, 1.38)	0
	Welders	5	1.28 (0.69, 2.41)	39.2
	Tannery workers	4	1.32 (0.80, 2.21)	25.3
	Chromium pigment exposed workers	4	1.11 (0.63, 1.98)	16.7

^aWarning displayed during estimation of the summary estimate indicates that "Ratio of largest to smallest sampling variance extremely large. May not be able to obtain stable results."

These results may be due to misclassification and heterogeneity of Cr(VI) exposure among and within the included studies. Although this analysis included studies that analyzed associations among occupational groups or subgroups with greater certainty of exposure to Cr(VI), variation in the prevalence, frequency and magnitude of exposure is likely within the exposure groups, which could decrease the ability to detect an association if it existed. Other factors that could contribute

- 1 to the observed heterogeneity of risk estimates include presence of co-exposures and bias due to
- 2 the use of occupational cohorts. Cancer risk in these industries is likely affected by prevalent
- 3 exposures to other carcinogens in addition to Cr(VI), which would vary both within and across
- 4 occupational groupings. As noted in Appendix Table C-43, two industry groupings with higher
- 5 certainty of Cr(VI) prevalence, ferrochromium, chromate production, and stainless-steel workers,
- 6 and chromium pigment exposed workers, had occupational settings characterized by different co-
- 7 exposures, which argues against a strong common confounder. In some cases, authors did attempt
- 8 to adjust for co-exposures or restrict the study population to minimize their effect. The majority of
- 9 the studies estimated relative risk using SMRs, which also are subject to a bias toward the null due
- 10 to the healthy worker effect. The summary effect estimates for esophageal and stomach cancers
- 11 calculated using odds ratios from the few case-control studies was not subject to this bias and
- 12 indicated a higher risk. However, these odds ratio estimates are based on very few studies and are
- 13 highly uncertain.
- 14 Previous meta-analyses reported summary effect estimates for stomach cancer which
- 15 ranged between 0.93 (<u>Deng et al., 2019</u>) to 1.27 (<u>Welling et al., 2015</u>). A statistically significant
- 16 increase in risk of stomach cancer was reported from two of the previous five estimates (Welling et
- 17 <u>al., 2015; Cole and Rodu, 2005</u>). This assessment's finding of no increased risk (summary relative
- 18 risk of 1.01) is within the range of these previous estimates. Two of the five previous meta-analyses
- 19 included estimates for cancers of the esophagus, colon and rectum (<u>Deng et al., 2019; Gatto et al.</u>,
- 20 2010). This assessment's summary estimate of 1.08 for esophageal cancer was not significantly
- 21 elevated, and was slightly less than that from <u>Gatto et al. (2010)</u>. The effect estimate for colon
- cancer of 1.10 (95% CI: 0.97, 1.25), was close to the estimate reported by <u>Deng et al. (2019)</u>.
- 23 Finally, this assessment's estimate of rectal cancer risk was significantly elevated, and very similar
- to those previously reported (1.18, 95% CI: 1.01, 1.37), compared with 1.17 (<u>Gatto et al., 2010</u>) and
- 25 1.14 (<u>Deng et al., 2019</u>)).

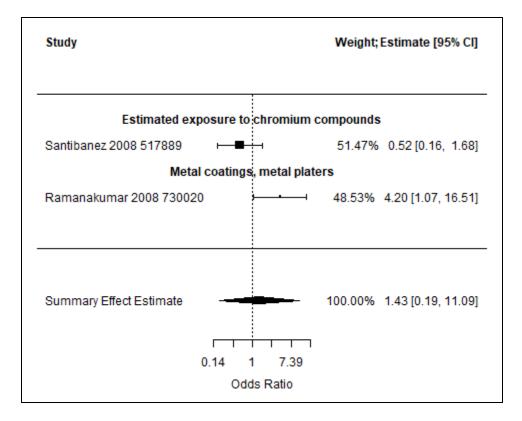


Figure C-15. Forest plot displaying summary measures for esophageal cancer risk from studies reporting (a) odds ratios.

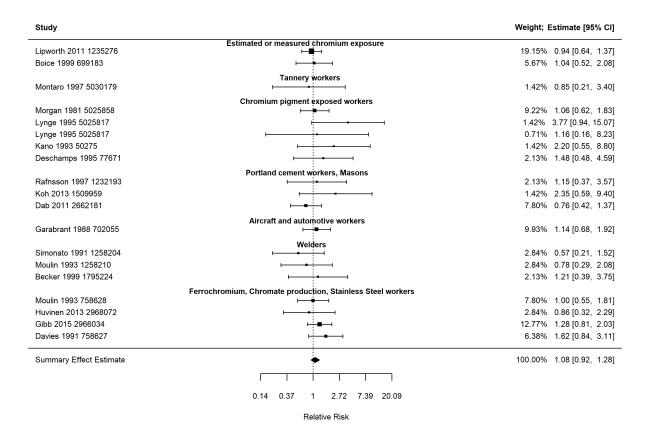


Figure C-16. Forest plot displaying summary measures for esophageal cancer risk from studies reporting standardized mortality or incidence ratios.

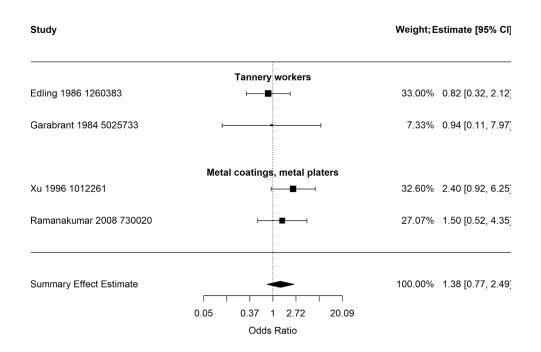


Figure C-17. Forest plot displaying summary measures for stomach cancer risk from studies reporting odds ratios.

Supplemental Information—Hexavalent Chromium

Image: products 0.75% 0.52 (1).2 Addras 197 5030179 4.44 0.75% 0.52 (1).2 Addras 197 5030179 4.44 0.75% 0.52 (1).2 Miccoc 2005 5020582 4.44 0.75% 0.52 (1).2 Gilling 1986 (20033) 4.44 0.75% 0.52 (1).2 Octamin 1998 (225919 1.75% 0.52 (1).2 0.40% 0.83 (1).05 Ordgan 1981 5025650 1.44 1.01 (1).02 (1) 0.40% 0.52 (1).02 0.40% 0.82 (1).05 0.40% 0.82 (1).05 0.40% 0.82 (1).05 0.40% 0.82 (1).05 0.40% 0.82 (1).05 0.40% 0.82 (1).05 0.40% 0.82 (1).05 0.40% 0.82 (1).05 0.40% 0.82 (1).05 0.40% 0.82 (1).05 0.40% 0.82 (1).05 0.40% 0.83 (1).07.01 0.40% 0.83 (1).07.01 0.40% 0.82 (1).05 0.40% 0.83 (1).07.01 0.40% 0.83 (1).07.01 0.40% 0.83 (1).07.01 0.40% 0.83 (1).07.01 0.40% 0.83 (1).07.01 0.40% 0.40% 0.40% 0.40% <td< th=""><th>Study</th><th>,</th><th>Weight; Estimate [95%</th></td<>	Study	,	Weight; Estimate [95%
Listen 12 33276 37.9% 0.72.0% 1.2 2.7% 1.04.0% 1.2 2.7% 1.04.0% 1.2 1.0 1.0 2.7% 1.04.0% 1.2 1.0 1.0 0.70 0.22 1.0 1.0 0.7% 0.22 1.0 1.0 0.7% 0.22 1.0 1.0 0.7% 0.22 1.0 1.0 0.7% 0.22 0.7% 0.22 1.0 1.0 0.0<			
japonth 2011 123276 book 1999 69103 doke 1999 69103 doke 1999 69103 doke 1999 69103 doke 1999 69103 doke 1999 69103 management of a set of	Andersson 2010 1673891		4.01% 1.11 [0.79, 1
bice 1998 699133	inworth 2011 1225276		2 72% 0 72 10 40 1
Gald aligners 495% 121 (2.5, 1 Pepard 1965 655359 0.75% 0.82 (0.1, 2 Jordan 197 2030179 4.44% 0.79% 0.82 (0.1, 2 Jordan 197 2030179 4.44% 0.79% 0.82 (0.1, 2 Jordan 198 1203019 4.44% 0.79% 0.82 (0.1, 2 Jordan 198 1203019 4.44% 0.79% 0.82 (0.1, 2 Jorgan 198 1203019 4.44% 0.79% 0.82 (0.1, 2 Jorgan 198 1203019 4.44% 0.79% 1.10 (7, 2, 1 Jorgan 198 1203019 4.44% 0.79% 1.10 (7, 2, 1 Jorgan 198 1203019 4.44% 0.79% 1.40 (0.8, 2 Jorgan 198 1203019 4.44% 0.79% 1.40 (0.8, 2 Jorgan 198 1203019 4.44% 0.79% 1.40 (0.8, 2 Jorgan 198 1203019 1.44 (0.4, 8 0.79% 1.40 (0.8, 2 Jorgan 198 1203019 1.40 (0.8, 2 0.40% 0.20 (0.1, 2 Jorgan 198 1203019 1.40 (0.8, 2 0.40% 0.20 (0.1, 2 Jorgan 198 1203019 1.40 (0.8, 2 0.40% <td< td=""><td></td><td></td><td></td></td<>			
Turany writers 0.75% 5.52 0.52	Soice 1999 099105	Gold miners	2.37% 1.04 [0.38, 1
Transmy writers 0.75% 0.52	Kusiak 1993 1032279	len i	4.95% 1.52 [1.25, 1
Tippard 1985 55339 			. ,
Alkacey 2005 5027786 	Pippard 1985 6553359	<u>⊢</u>	0.75% 0.52 [0.13, 2
bia 2005 5029522 Signar 1989 1232919	Montaro 1997 5030179	⊢ ∎ ; 1	2.44% 0.79 [0.43, 1
Eding 1986 1260383 chardmin 1996 12303919 Argan 1981 523586 Argan 1981 523587 Argan 1991 52257 Argan 1991 52257 Argan 1991 52257 Argan 1991 72221733 Argan 1997 1222193 Argan 1993 7231037 Portiand coernerj workers Argan 1993 7231037 Portiand coernerj workers Argan 1991 7222193 Argan 1991 7222193 Argan 1993 7231037 Portiand coernerj workers Argan 1993 723103 Argan 1993 723104 Argan 1993 72310 Argan 1993 723104 Argan 1993 723104 Argan 1993 72310 Argan 1993 723104 Argan 1993 723104 Arg	Vikoczy 2005 5029788	⊢≝⊣	
Detamini 1999 1235919 Image: 1991 100 100 100 100 100 100 100 100 10			
Chronium prime: exposed workers 4,01% 101 [07,4] ympe 1995 5028317 0,75% 14.01 [0,6] Gran 1981 5025636 2,14% 120 [06,0] Staps 1898 71024 2,14% 120 [06,0] Jeschamps 1995 77671 0,75% 14.09,56 Jeschamps 1995 77671 0,75% 15.8 [0,93,0] Jeschamps 1995 77671 0,75% 15.8 [0,93,0] Jeschamps 1995 77671 0,75% 15.8 [0,93,0] Jeschamps 1995 77671 0,66% 186 [1,21,2] Jeschamps 1995 77671 0,66% 186 [1,21,2] Jeschamps 1995 77671 0,66% 185 [1,21,2] Jeschamp 1997 [15426] 1,22% 0,82 [0,3,1,2] Jeschamp 1997 [125273 Portiant Centery oriters, Massen 0,60% Jake 201 [12622181 1,06% 0,83 [0,47,1] Jake 201 [126214] 1,06% 0,83 [0,47,1] Jeschamp 1997 [125206 1,97% 0,50 [1,63,0] Jeschamp 1997 [12737] 1,97% 0,92 [1,0,0,1] Jake 201 [126274] 1,97% 0,92 [1,0,0,1] Jeschamp 1997 [1277		, ⊢ ; ∎	
dogan 191 502585 401% 101 [0.7.1] yrge 195 5025817 401% 040% 032 [0.5.2] yrge 195 5025817 040% 032 [0.5.2] 040% 032 [0.5.2] stars 1995 5025 075% 1.6.2 [0.6.2] 0.75% 1.5.2 [0.8.6] brahan 2000 1230938 075% 1.6.2 [0.6.2] 0.75% 1.5.2 [0.8.6] brahan 2000 1230938 0.6.2 [0.6.2] 1.6.6 [0.5.2] 1.6.6 [0.5.2] 1.6.6 [0.5.2] brahan 2000 1230938 0.6.2 [0.6.2] 1.6.6 [0.5.2] 1.6.6 [0.5.2] 1.6.6 [0.5.2] brahan 2010 125203 0.6.6 [0.5.2] 1.6.6 [0.5.2] 1.6.6 [0.5.2] 1.6.6 [0.5.2] transchni 1985 123 [0.57] 0.46 [0.7.1] 2.6.6 [0.8.5 [0.4.2] 1.6.6 [0.7.1] 2.6.6 [0.8.5 [0.4.2] transchni 1985 123 [0.5.2] 0.46 [0.7.1] 2.6.6 [0.8.5 [0.4.2] 1.6.6 [0.5.2] 1.6.6 [0.5.1 [0.6] 1.6.6 [0.5.1 [0.6] 1.6.6 [0.5.1 [0.6] 1.6.6 [0.5.1 [0.6] 1.6.6 [0.5.1 [0.6] 1.6.6 [0.5.1 [0.6] 1.6.6 [0.5.1 [0.6] 1.6.6 [0.6.1 [0.6] 1.6.6 [0.6.1 [0.6] 1.6.6 [0.6.1 [0.6] 1.6.6 [0.6.1 [0.6] 1.6.6 [0.6.1 [0.6] 1.6.6 [0.6.1 [0.6] 1.6.6 [0.6] 1.6.6 [0.6.1 [0.6] 1.6.6 [0.6]	Costantini 1989 1235919	⊢-∎Ę	1.78% 0.43 [0.19, 0
ynge 1995 5025617 ynge 1995 5025617 tano 1993 50275 tano 1993 502743 tano 2013 2005 2 tano 2015 2 tano 201	4		4.04% 4.04 (0.70.4
ynge 1995 502817 tayos 1999 14024 bechamps 1995 77671 bechamps 1995 702845 bechamps 1995 702847 bechamps 1995 702875 bechamps 1998 702057 bechamps 1987 702057 bechamps 1988 702058 bechamps 1988 702058 bechamps 1988 702058 bechamps 1988 702057 bechamps 1988 702057 bechamps 1988 702058 bechamps 1988 702058 bechamp			
and 1989 50275 2.14% 120 [06.0] yings 1989 1024 0.75% 2.14% 120 [06.0] bachamps 1985 77671 0.75% 2.14% 120 [06.0] sanhan 1987 1514540 1.26% 0.816 [12.1] 2.84% 148 [12.1] sanhan 1987 1514540 1.28% 0.82 [03.1] 2.94% 0.82 [03.1] sanhan 1987 1514540 1.28% 0.82 [03.1] 2.94% 0.82 [03.1] sanabaran 1987 1514540 1.28% 0.82 [03.1] 2.94% 0.82 [03.1] sanabaran 1987 1514540 1.28% 0.82 [03.1] 2.94% 0.82 [03.1] sanabaran 1987 1515450 1.94% 0.40% 3.33 [0.47, 2] sanabaran 1987 1515461 0.40% 3.33 [0.47, 2] 2.94% 0.85 [0.49, 1] sanabaran 1988 7122 [03 1.94% 3.09% 7.2] 2.94% 0.85 [0.49, 1] sanabaran 1988 702043 1.94% 1.06% 0.33 [0.12, 1] 1.94% sanabaran 1988 702057 1.94% 3.57% 7.12 [10.80, 1] 1.95% 0.50 [1.3, 2] sanabaran 1988 702057 1.94% 3.75% 0.29 [1.5, 1] 1.95% 0.86 [0.7, 1] sanabaran 1988 702057 1.95% 0.51 [1.5, 1] 1.95% 0.50 [1.3, 2] 1.95% 0.50 [1.3, 2] sanabaran 1988 702057 1.95% 0.52 [1.6, 2] 1.95% 0.58 [1.7, 1] 1.95% 0.58 [1.7, 1] </td <td></td> <td></td> <td></td>			
lages 1995 14224 beschamps 1995 77871 Metal coultogs return Jakars Beschamps 1995 77871 Metal coultogs return Jakars Beschamps 1995 77871 Metal coultogs return Jakars Beschamps 1995 75440 Beschamps 1995 75440 Beschamps 1995 75440 Beschamps 1995 15440 Derivation 1996 196855 Hereit 2210 125293 Hereit 2200 12505 Hereit 2210 1250 1000 1000 1000 1000 1000 1000			
Jeschamps 1995 77671 0.75% 1.52 (0.3.6) Jordan 2000 1230938 1.68 (0.55) 2.69% 1.68 (0.55) Jordan 1997 1514540 1.41 3.46% 1.68 (0.55) Jordan 1997 1514540 1.44 1.32% 0.62 (0.3.1) Jara 2010 1250239 2.69% 1.68 (0.5) 2.69% 1.68 (0.5) Jarackin 1987 1514540 1.44 0.40% 3.3 (0.47, 23) Jarackin 1983 1231037 0.40% 3.3 (0.47, 23) 4.44 1.06% 0.38 (0.17, 1) Scholsson 1997 1522193 1.44 3.09% 1.70 (1.6) 2.69% 0.80% (0.7, 1) 1.06% 0.38 (0.12, 1) Jackosson 1997 1222193 1.44 1.06% 0.38 (0.12, 1) 1.06% 0.38 (0.12, 1) Jackosson 1997 1222193 1.44 1.06% 0.38 (0.12, 1) 1.66% 0.38 (0.12, 1) Jackosson 1997 1222103 1.44 1.06% 0.38 (0.12, 1) 1.66% 0.38 (0.12, 1) Jackosson 1997 1222103 1.44 1.67% 0.75% 0.50 (0.13, 2) 1.66% 0.65 (0.13, 2) 1.66% 0.65 (0.13, 2) 1.66% 0.65 (0.13, 2) 1.66% 0.65 (0.13, 2)			
Metal costing, metal platers 2.69%, 168 [0.5, 2. Sorhan 1987, 154.540 3.46%, 168 [0.5, 2. Sorhan 1987, 154.540 1.32%, 0.52 [0.31, 2. Sorhan 1987, 154.540 1.05%, 1.23 [0.40, 3. Sorhan 1997, 154.540 1.05%, 1.23 [0.40, 3. Sorhan 1997, 154.540 1.05%, 1.23 [0.40, 3. Sorhan 1997, 152.2193 1.05%, 1.23 [0.40, 3. Fortian Censent Workers, Masons 3.46%, 1.68 [0.7, 0.40, 1.05%, 0.38 [0.42, 1.05%, 0.38 [0.42, 1.05%, 0.38 [0.42, 1.05%, 0.38 [0.42, 1.05%, 0.38 [0.42, 1.05%, 0.38 [0.42, 1.05%, 0.38 [0.42, 1.05%, 0.38 [0.42, 1.05%, 0.38 [0.42, 1.05%, 0.38 [0.42, 1.05%, 0.38 [0.42, 1.05%, 0.38 [0.42, 1.05%, 0.38 [0.42, 1.05\%, 0.38 [0.44, 1.05\%, 0.48 [0.44,			
Sorahan 2001 1230938 Sorahan 1987 1514540 Sorahan 1987 123193 Portland cemer workers, Masons Portland cemer workers, Masons Portland cemer workers Sorahan 1987 1514540 Sorahan 1987 123193 Portland cemer workers Sorahan 1987 123193 Portland cemer workers Sorahan 1987 123193 Sorahan 1987 123193 Sorahan 1987 123087 Portland cemer workers Sorahan 1987 123087 Portland 1991 128201 Portland		Metal coatings, metal platers	
Jordan 1987 1514540 132% 02 (03 / 2 Jordan 1987 1514540 106% 123 (04 0 / 2 Jara 2010 1258239 291% 067 (04 0 / 1 Jara 2010 1258239 291% 067 (04 0 / 1 Jara 2010 1258239 040% 3 33 (0 / 7, 23 Rainson 1997 1232 193 101 Jarab 2011 258230 101 Jackbeson 1993 5020443 108 (0 / 7, 03 Jackbeson 1993 5020443 10.6% 0 / 79 (0.50 / 13. 2 Jackbeson 1993 5020443 10.6% 0 / 79 (0.50 / 13. 2 Jackbeson 1993 5020443 10.6% 0 / 79 (0.50 / 13. 2 Jackbeson 1993 5020443 10.6% 0 / 79 (0.50 / 13. 2 Jackbeson 1993 5020443 10.6% 0 / 79 (0.50 / 13. 2 Jackbeson 1993 12387 10.6% 1 / 70 (0.54 / 13. 2) Jackbeson 1991 1258208 101 / 26 / 13. 2) Jackbeson 1991 1258208 10.6% 1 / 70 (0.54 / 13. 2) Jackbeson 1997 1723 100 10.6% 1 / 70 (0.54 / 13. 2) Jackbeson 1997 1723 100 10.6% 1 / 70 (0.54 / 13. 2) Jackbeson 1997 1723 100 10.6% 1 / 70 (0.54 / 13. 2) Jackbeson 1997 1723 100 10.6% 1 / 70 (0.54 / 13. 2) Jackbeson 1997 1723 100 10.6% 1 / 70 (0.54 / 13. 2) Jackbeson 1997 17321 17 10.6% 1 / 70 (0.54 / 1	Sorahan 2000 1230938		2.69% 1.68 [0.95, 2
indiguchi 1990 1916855 106% 1.23 (20.4) 3 2.21 (9.0) 3 2.21 (9.0) 3 2.21 (9.0) 3 0.47 (9.3) 3 2.21 (9.0) 3 0.47 (9.3) 3 0.49 (9.3) 1 0.45 (9.4) 1 0.57 (9.5) 1 0.55 (9.4) 1 0.57 (9.5 (9.1) 1 0.55 (9.1) 1 0.55 (9.1) 1 0.55 (9.1) 1 0.55 (9.1) 1 0.55 (9.1) 1 0.55 (9.1) 1 0.55 (9.1) 1 0.55 (9.1) 1 0.55 (9.1) 1 0.55 (9.1) 1 0.55 (9.1) 1 0.55 (9.1) 1 0.55 (9.1) 1 0.55	Sorahan 1987 1514540		
Jara 2011 258239 Image: Signal S	Sorahan 1987 1514540	⊢_ ∎	1.32% 0.82 [0.31, 2
Franchini 1983 1231037	Horiguchi 1990 1916855	<u>⊢_;∎</u> {	1.06% 1.23 [0.40, 3
Portland cememotrers, Masons 3 4/6 / 108 (07.0 / 1 Adrason 1997 1232193 + 3.4/6 / 10.4 / 2 3.0% / 1.70 [1.04, 2 2.0% 0.55 [0.4, 1 2.0% 0.55 [0.4, 1 2.0% 0.55 [0.4, 1 2.0% 0.55 [0.4, 1 2.0% 0.55 [0.4, 1 2.0% 0.55 [0.4, 1 2.0% 0.55 [0.4, 1 0.75 / 0.50 [0.5, 1 0.5 / 0.5	Hara 2010 1258239	 ■ i l	2.91% 0.67 [0.40, 1
Admson 1997 1222193 Image: Control Contr	Franchini 1983 1231037	⊢ <u>+</u>	0.40% 3.33 [0.47, 23
Gh2 2013 1509959 3,09% 1.70 [1,04, 2] Jakobsson 1993 5029443 2,80% 0.85 [0,49, 1] Brailitye 2004 3080195 1.0% 3.88 [0,12, 1] Smailitye 2004 3080194 1.0% 0.88 [0,12, 1] Brailitye 2004 3080194 1.0% 0.88 [0,12, 1] Smailitye 2004 3080194 1.0% 0.89 [0,12, 1] Brailitye 2004 3080194 1.0% 0.87 [0,13, 2] Jarabara 1988 702057 1.0% 0.80 [0,21, 0] Jarabara 1988 702057 1.0% 0.87 [0,24, 2] Jointal 1989 1258206 1.0% 0.87 [0,24, 2] Jointal 1989 1258206 1.0% 0.87 [0,24, 2] Jointal 1993 1258206 1.0% 0.87 [0,24, 2] Jointal 1993 1258207 1.0% 0.86 [0,27, 1] Janielsen 1996 3001487 1.0% 0.85 [0,27, 1] Varialize 1999 1785227 1.0% 5.86 [14,9,23 Starker 1999 1795227 1.0% 5.86 [14,9,23 Carallus 1983 1254647 1.0% 0.82 [0,23, 1] Jacobsen 1997 1792177 1.0% 5.86 [14,9,23 Jacobsen 1993 1254647 1.0% 0.82 [0,23, 1] Jacobs			
Jakobsson 1903 5025443		· - ·	
Jab 2011 2662181			
Painting and varies, Woodworkers 3.25% 0.79 0.50 0.51 2.30% 0.40 0.27 0.50 0.51 2.30% 0.40 0.21 0.75% 0.50 0.13 2 Aircrait and automotive workers 2.30% 0.40 0.21 0.00 0.40 0.21 0.50 <t< td=""><td></td><td></td><td></td></t<>			
Smally 2004 3080195 Image 2004 3080195 32.5% 0.79 (0.50, 1) 0.75% 0.50 (0.13, 2) Sarabran 1988 702057 Image 2003 302940 3.57% 1.21 (0.80, 1) 0.75% 0.96 (0.51, 2) Sigera 1987 7233957 Image 2004 3000 199 1.6% 1.6% 0.5% 1.06% 1.6% (0.54, 5) Sigera 1987 7233957 Image 2004 3000 199 1.6% (0.54, 5) 1.06% 1.6% (0.54, 5) Simonato 1991 1258206 Image 2004 3081487 1.06% 1.06% (0.13, 0.33, 3) Janelsen 1996 3081487 Image 2004 3081487 1.06% (0.13, 0.33, 3) Janelsen 1996 205255867 Image 2004 2000 199 1.56% 0.65 [0.27, 1) Adulin 1993 756628 Image 2004 2000 199 1.3% 0.26 [0.67, 2) Adulin 1993 1234647 1.3% 0.26 [0.67, 2) 1.3% 0.26 [0.67, 2) Corallus 1993 1234647 Image 2000 199 1.3% 0.68 [0.7, 2) Surger 1999 175627 Image 2000 199 1.3% 0.80 [0.40, 1) 1.3% 0.80 [0.40, 1) Javies 1991 75627 Image 2000 199 1.3% 0.80 [0.40, 1) 1.3% 0.80 [0.40, 1) Javies 1991 75627 Image 200 1980 122 (0.20, 1) 1.3% 0.86 [0.7, 2) 1.3% 0.86 [0.7, 2) 1.3% 0.86 [0.7, 2) 1.3% 0.80	Jab 2011 2662 161	Painting and variab Weadworkers	1.06% 0.36[0.12, 1
Smally 2004 3080194 Aircraft and automotive workers Sigeren 1987 1233957 I = I Sigeren 1987 1258206 I = I Sigeren 1980 70257 I = I Sigeren 1987 1258206 I = I Sigeren 1996 3081487 I = I I = I Sigeren 1996 3081487 I = I I = I	Smailtye 2004 3080195		3 25% 0 79 10 50 1
Aircraft and automotive workers 2.00% 0.40 (0.21, 0 Detzell 2003 S029430			
Jarabrat 1986 702057 Long 2.30% 0.40 (0.21, 0. Delzell 2003 5029430 Jarabrat 3.57% 1.21 (0.80, 1.57%) Siggren 1987 1233957 Inf (0.54, 5. Jouris 1993 1258210 Jarabrat 3.73% 0.96 (0.65, 1. Jarabrat 1989 1795227 1.06% 1.67 (0.54, 5. Variance 1999 1795227 1.06% 0.65 (0.27, 1. Park 2005 5025867 0.75% 5.96 (1.49, 2.3 Joulin 1993 1256210 1.37% 0.92 (0.44, 1. Joulin 1993 758628 1.97% 0.92 (0.44, 1. Joulin 1993 1234647 1.26% 1.92 (0.44, 1. Jouris 1993 1234647 1.97% 0.48 (0.24, 1. Virvine 2013 2286072 Image: Comparison of the second secon		Aircraft and automotive workers	
Sjorgen 1987 1233957 1.06% 1.67 [0.54, 5] Simonato 1991 1258206 1.78% 2.09 [0.94, 4] Aoulin 1993 3081487 1.06% 1.03 [0.33] Backer 1999 1795227 1.06% 1.03 [0.32] Park 2005 5025867 0.75% 5.96 [1.49, 23] Aoulin 1993 125828 1.97% 0.92 [0.44, 1] Aoulin 1993 1258628 1.97% 5.96 [1.49, 23] Aoulin 1993 1254647 1.97% 0.92 [0.44, 1] Corallus 1993 1234647 1.97% 1.40 [0.67, 2] Corallus 1993 1234647 2.69% 1.92% 2.75 [1.03, 7] Backer 1991 758627 2.69% 1.92% 0.75% 5.96 [1.49, 23] Davies 1991 75827 1.40 [0.67, 2] 1.97% 1.40 [0.67, 2] 1.97% 1.40 [0.67, 2] Jakobsson 1997 1792177 1.97% 2.69% 0.80 [0.40, 1] 1.97% 0.66 [0.17, 2] 2.94% 0.75% 0.66 [0.17, 2] Davies 1991 758627	Garabrant 1988 702057		2.30% 0.40 [0.21, 0
jogren 1987 1233957 I.06% 17 [0.54, 5 Simonato 1991 1258206 3.73% 0.96 [0.65, 1 Janielsen 1996 3081487 1.06% 1.03 [0.33, 3 Jecker 1999 1795227 1.06% 1.03 [0.33, 3 Park 2005 5025867 0.55 [1.49, 23 Joulin 1993 758628 1.97% 0.95 [1.49, 23 Joulin 1993 12584047 1.97% 0.92 [0.44, 1 Joulin 1993 1234647 1.97% 1.40 [0.67, 2 Varial 1993 1234647 1.97% 1.40 [0.67, 2 Jakobsson 1997 1792177 1.97 Juvies 1991 758627 0.88 [0.40, 1 Javies 1991 758627 0.80 [0.40, 1 Javies 1991 758627 0.75% 0.56 [0.17, 2 Javies 1991 758627 1.97% 0.48 [0.23, 1 Javies 1991 758627 0.75% 0.66 [0.17, 2 Javies 1991 758627 0.75% 0.50 [0.13, 2 Javies 1990 14268 0.75% 0.50 [0.13, 2 Javies 19	Delzell 2003 5029430	⊢ ` ∎1	3.57% 1.21 [0.80, 1
Simonato 1991 1258206 Image: 1995 1258210 1.73% 0.96 [0.65, 1] Janielsen 1996 3081487 1.06% 0.09 [0.94, 4] Janielsen 1996 3081487 1.06% 0.05 [0.27, 1] Saecker 1999 1795227 1.56% 0.65 [0.27, 1] Park 2005 5025867 0.75% 5.96 [1.49, 23] Adulin 1993 758628 Image: 1993 758628 1.97% 0.92 [0.44, 1] Jauigues 1993 1234647 1.97% 0.92 [0.44, 1] 1.32% 2.75 [1.03, 7] Corallus 1993 1234647 2.66% 1.92 [1.09, 3] 1.97% 1.06 [0.67, 2] Vivinen 2013 22366072 Image: 1991 758627 2.66% 0.80 [0.40, 1] 1.92% 0.63 [0.24, 1] Javies 1991 758627 Image: 1991 758627 2.66% 0.80 [0.45, 1] 1.97% 0.48 [0.23, 1] Javies 1991 758627 Image: 1991 758627 Image: 1991 758627 0.75% 0.50 [0.17, 2] Summary Effect Estimate 100.00% 1.01 [0.89, 1] 1.01 [0.89, 1] 1.01 [0.89, 1]		Weigers	
Adulin 1993 1258210 1.78% 2.09 [0.94, 4] Janielsen 1996 3081487 1.06% 1.03 [0.33, 3] Becker 1999 1795227 1.05% 0.65 [0.27, 1] Park 2005 5025867 0.75% 5.96 [1.49, 23] Adulin 1993 126828 1.97% 0.92 [0.41, 4] Adulin 1993 126828 1.97% 0.92 [0.41, 4] Adulin 1993 126828 1.97% 0.92 [0.41, 4] Adulin 1993 1234647 1.32% 2.75 [1.03, 7] Corallus 1993 1234647 1.97% 1.40 [0.67, 2] Varkabosson 1997 1792177 1.41 2.69% [1.92, 3] Valves 1991 758627 2.14% 0.80 [0.40, 1] Davies 1991 758627 1.97% 0.48 [0.23, 1] Davies 1991 758627 0.75% 0.50 [0.13, 2] 0.75% 0.50 [0.13, 2] Mix 2006 1233708 1.01 [0.89, 1] 1.03 [0.61, 1] Summary Effect Estimate 100.00% 1.01 [0.89, 1]	Sjogren 1987 1233957	⊢ ; •	
Danielsen 1996 3081487 1.06% 1.03 (0.33, 3) Jecker 1999 1795227 Image: Chromate production, Stainless Steel workers 1.56% 0.65 [0.27, 1] Park 2005 5025867 0.75% 5.96 [1.49, 23 1.97% 0.92 [0.44, 1] Joulin 1993 75628 1.97% 0.92 [0.44, 1] 1.32% 2.75 [103, 7] Jangard 1990 1516040 1.97% 1.40 [0.67, 2] 2.69% 1.92 [1.09, 3] Korallus 1993 1234647 2.69% 1.92 [1.09, 3] 1.32% 0.63 [0.24, 1] Jakobsson 1997 1792177 2.69% 0.80 [0.45, 1] 1.32% 0.63 [0.24, 1] Javies 1991 758627 2.69% 0.80 [0.45, 1] 1.97% 0.48 [0.23, 1] Javies 1991 758627 1.97% 0.48 [0.23, 1] 1.97% 0.48 [0.23, 1] Javies 1991 758627 1.97% 0.50 [0.17, 2] 3.32% 0.73 [0.47, 1] 3.32% 0.75 [0.47, 1] 3.32% 0.75 [0.47, 1] 1.03 [0.61, 1] Summary Effect Estimate 100.00% 1.01 [0.89, 1] 1.01 [0.89, 1] 1.01 [0.89, 1] 1.01 [0.89, 1] 1.01 [0.89, 1] 1.01 [0.89, 1]		⊢ ₩ -1	
Backer 1999 1795227 1.56% 0.65 [0.27, 1] Ferrochromium, Chromate production, Stainless Steel workers 0.75% 5.96 [1.49, 23] Adulin 1993 758628 1.97% 0.92 [0.44, 1] Jaugard 1990 1516040 1.97% 1.40 [0.67, 2] Gorallus 1993 1234647 2.69% 1.92 [1.09, 3] Gorallus 1993 1234647 2.69% 0.85 [0.27, 1] Univene 2013 2968072 1.97% 1.40% [0.40, 1] Jakobson 1997 1792177 1.97% 0.48 [0.23, 1] Univene 2013 2968072 1.97% 0.48 [0.23, 1] Sibb 2015 2966034 1.97% 0.48 [0.23, 1] Javies 1991 758627 0.75% 0.66 [0.17, 2] Davies 1991 758627 0.75% 0.50 [0.13, 2] Summary Effect Estimate 100.00% 1.01 [0.89, 1]		<u> -</u>	
Ferrochromium, Chromate production, Stainless Steel workers 2Ark 2005 5025667 0.75% 5.96 [149, 23 Aoulin 1993 756628 1.97% 0.92 [0.44, 1 Aoulin 1990 1260384 1.32% 2.75 [1.03, 7 .angard 1990 1516040 1.97% 1.40 [0.67, 2 Gorallus 1993 1234647 2.69% 0.83 [0.24, 1 Iakobson 1997 1792177 1.32% 0.63 [0.24, 1 1uvinen 2013 2968072 1.97% 0.48 [0.23, 1 Davies 1991 758627 1.97% 0.48 [0.23, 1 Davies 1991 758627 0.75% 0.50 [0.17, 2 Javies 1991 758627 0.75% 0.50 [0.17, 2 Javies 1991 758627 0.75% 0.50 [0.13, 2 Summary Effect Estimate 1.01 [0.89, 1			
Park 2005 5025867 0.75% 5.96 [1.49, 23 Joulin 1990 758628 1.97% 0.27 [1.04, 1] Joulin 1990 1260384 1.32% 2.75 [1.04, 1] Jangard 1990 1516040 1.97% 1.40 [0.67, 2] Gorallus 1993 1234647 2.69% 1.92 [1.09, 3] Gorallus 1993 1234647 2.69% 1.92 [1.09, 3] Gorallus 1993 1234647 1.32% 0.83 [0.24, 1] Jackobson 1997 1792177 1.41 0.40 [0.40, 1] Juvinen 2013 2968072 1.97% 0.48 [0.23, 1] Joulin 1991 758627 1.97% 0.48 [0.23, 1] Javies 1991 758627 3.32% 0.75 [0.61, 7] Javies 1991 758627 3.32% 0.75 [0.17, 2] Javies 1991 758627 3.32% 0.75 [0.17, 2] Javies 1991 758627 3.32% 0.75 [0.17, 2] Javies 1991 758627 1.01 [0.81, 1] 1.01 [0.89, 1] Summary Effect Estimate 100.00% 1.01 [0.89, 1]	Becker 1999 1795227		1.56% 0.65 [0.27, 1
Aoulin 1993 758628 1.97% 0.92 (0.44, 1 Aoulin 1990 1260384 1.32% 2.75 [1.03, 7 .angard 1990 1516040 1.97% 0.80 [0.0, 1 1.97% 0.80 [0.0, 1 1.97% 0.80 [0.0, 1 1.97% 0.80 [0.0, 1 1.97% 0.80 [0.0, 1 1.97% 0.80 [0.0, 1 1.97% 0.80 [0.0, 1 1.97% 0.80 [0.0, 1 1.97% 0.80 [0.0, 1 1.97% 0.80 [0.2, 1 1.97% 0.80 [0.2, 1 1.97% 0.80 [0.2, 1 1.97% 0.80 [0.2, 1 1.97% 0.80 [0.2, 1 1.97% 0.81 [0.2, 3] 1.97% 0.81 [0.2, 3] 1.97% 0.81 [0.2, 3] 1.97% 0.81 [0.2, 3] 1.97% 0.50 [0.1, 3]	2014 2005 5025867	Ferrochromium, Chromate production, Stainless Steel workers	0.75% 5.00 [1.40, 23
Aoulin 1990 1260384 1.32% 2.75 (1.03, 7) .angard 1990 1516040 1.97% 1.40 [0.67, 2) Corallus 1933 1234647 2.69% 1.49 [1.09, 3) Korallus 1933 1234647 2.69% 0.63 [0.24, 1] Jakobson 1997 1792177 1.32% 0.63 [0.24, 1] Juvien 2013 2968072 1.97% 0.48 [0.23, 1] Javies 1991 758627 0.75% 0.66 [0.17, 2] Davies 1991 758627 0.75% 0.66 [0.17, 2] Davies 1991 758627 0.75% 0.50 [0.13, 2] Summary Effect Estimate 100.00% 1.01 [0.89, 1]			
Langard 1990 1516040 (varallus 1993 1234647 (varallus 1993 1234647 (varallus 1993 1234647 (varallus 1993 1234647 (varallus 1993 1234647 1.326% 0.80 [0.4, 1 1.326% 0.80 [0.4, 1 1.326% 0.80 [0.4, 1 1.326% 0.80 [0.4, 1 1.97% 0.48 [0.23, 1 0.75% 0.48 [0.23, 1 0.75% 0.48 [0.23, 1 0.75% 0.48 [0.23, 1 0.75% 0.50 [0.13, 2 varies 1991 758627 0.75% 0.50 [0.13, 2 varies 1991 758627 0.75% 0.50 [0.13, 2 1.91% 1.03 [0.61, 1 0.91% 1.03 [0.61, 1 0.91% 1.01 [0.89, 1 0.91% 1.01 [0.80, 1 0.91% 1.01 [0.91% 1.01 [0.91% 1.01]{0.91}{0.91}{0.91}{0.91			
Gorallus 1993 1234647 2.69% 1.92 [1.09, 3 Gorallus 1993 1234647 1.32% 0.63 [0.24, 1 Jakobsson 1997 1792177 1.91 2.69% 0.80 [0.40, 1 Juvinen 2013 2968072 1.91 2.69% 0.80 [0.40, 1 Jakobsson 1997 175627 1.97% 0.48 [0.23, 1 0.75% 0.68 [0.17, 2 Javies 1991 75627 1.91 3.32% 0.73 [0.47, 1 3.32% 0.73 [0.47, 1 Javies 1991 75627 1.91 1.97% 0.68 [0.17, 2 3.32% 0.75% 0.50 [0.13, 2 Javies 1991 75627 1.91 1.92 0.75% 0.50 [0.13, 2 0.75% 0.50 [0.13, 2 Javies 1991 75627 1.91 1.93 [0.61, 1 1.91% 1.93 [0.61, 1 1.91% 1.93 [0.61, 1 Summary Effect Estimate 100.00% 1.01 [0.89, 1			
Korallus 1993 1234647 1.32% 0.63 [0.24, 1] Jakobson 1997 1792177 2.14% 0.80 [0.40, 1] Luvinen 2013 2968072 2.69% 0.80 [0.40, 1] Sibb 2015 2966034 1.97% 0.48 [0.23, 1] Javies 1991 758627 0.75% 0.66 [0.17, 2] Davies 1991 758627 0.75% 0.66 [0.17, 2] Javies 1991 758627 0.75% 0.50 [0.13, 2] Vielsson 1980 14268 2.91% 1.03 [0.61, 1] Summary Effect Estimate 100.00% 1.01 [0.89, 1]	-		
lakobsson 1997 1792177 Life 2.14% 0.80 [0.40, 1 tuvinen 2013 2968072 Life 2.66% 0.80 [0.40, 1 bib 2015 2966034 Life 0.80 [0.40, 1 Davies 1991 758627 0.75% 0.66 [0.17, 2 Davies 1991 758627 0.75% 0.50 [0.10, 1] Davies 1991 758627 0.75% 0.50 [0.17, 2] Davies 1991 758627 0.75% 0.50 [0.17, 2] Davies 1991 758627 0.75% 0.50 [0.17, 2] Swelsson 1980 14268 2.91% 1.03 [0.61, 1]	Korallus 1993 1234647		
Sibb 2015 2966034 1.97% 0.48 (0.23, 1) Javies 1991 758627 0.75% 0.66 [0.17, 2) Davies 1991 758627 1.97% 0.56 [0.17, 2) Javies 1991 758627 1.97% 0.50 [0.13, 2) Jkr 2006 1233708 1.03 [0.61, 1] 0.75% Jxtelsson 1980 14268 2.91% 1.03 [0.61, 1] Summary Effect Estimate 100.00% 1.01 [0.89, 1]	lakobsson 1997 1792177	⊢ ∎1	
Davies 1991 758627 0.75% 0.66 (0.17, 2 Davies 1991 758627 3.32% 0.73 (0.74, 1 Dik 2006 1233708 2.91% 0.55 (0.13, 2 welsson 1980 14268 2.91% 1.03 (0.61, 1 Summary Effect Estimate 100.00% 1.01 (0.89, 1		⊢ ∎	
Davies 1991 758627 Jirk 2006 1233708 0.73 [0.47, 1 Uxelsson 1980 14268 0.75% 0.50 [0.13, 2 2.91% 1.03 [0.61, 1 Summary Effect Estimate 100.00% 1.01 [0.89, 1		⊢ - i	
birk 2006 1233708 0.75% 0.50 [0.13, 2 vxelsson 1980 14268 1.03 [0.61, 1 Summary Effect Estimate 100.00% 1.01 [0.89, 1	Davies 1991 758627	⊢	0.75% 0.66 [0.17, 2
xxelsson 1980 14268 2.91% 1.03 [0.61, 1 Summary Effect Estimate 100.00% 1.01 [0.89, 1	Davies 1991 758627	⊢≡÷I	
Summary Effect Estimate 100.00% 1.01 [0.89, 1	Birk 2006 1233708	⊢ _ i _ i _ i	
	Axelsson 1980 14268	⊢ ,	2.91% 1.03 [0.61, 1
	Summary Effect Estimate	•	100.00% 1.01 [0.89, 1
0.02 0.14 1 7.39 54.6			
		0.02 0.14 1 7.39 54.6	

Figure C-18. Forest plot displaying summary measures for stomach cancer risk from studies reporting standardized mortality or incidence ratios.

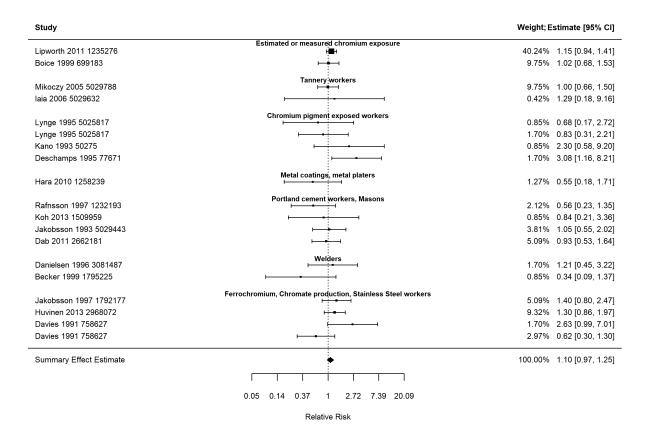
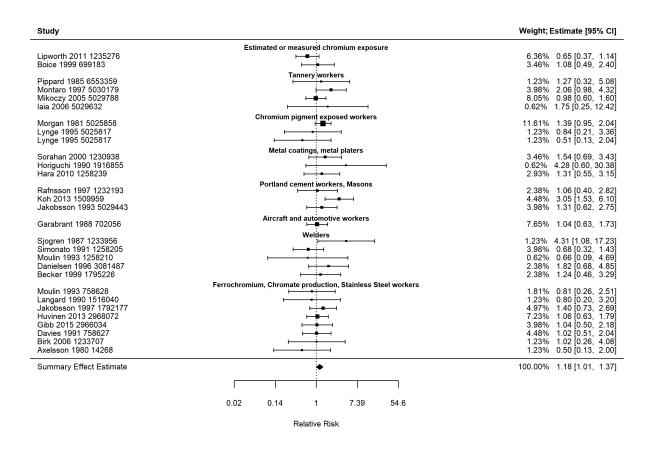



Figure C-19. Forest plot displaying summary measures for colon cancer from studies reporting standardized mortality or incidence ratios.

Figure C-20. Forest plot displaying summary measures for rectal cancer risk from studies reporting standardized mortality or incidence ratios.

C.3.2. Mechanistic evidence organized by the ten key characteristics of carcinogens

1 The hazard identification of cancers of the lung and GI tract include an analysis of whether a 2 mutagenic mode of action (MOA) could be involved in Cr(VI)-induced carcinogenesis. Because a 3 large and diverse set of mechanistic studies was identified that has potential relevance for 4 informing Cr(VI)-induced carcinogenicity in the GI tract and lung, several prioritization factors have 5 been considered to identify the most informative evidence for the MOA analysis for cancer of the GI 6 tract and lung following Cr(VI) exposures. 7 The first phase of the identification and screening of literature pertinent to the MOA 8 analysis is described in Appendix B.1. Mechanistically relevant studies are not included in the 9 initial PECO criteria, which are intended to identify studies in humans and animals reporting apical health effects data that will be evaluated for reporting quality, risk of bias, and sensitivity. Instead, 10 11 studies reporting mechanistic data are initially screened and categorized to provide a clearer view 12 of the proposed biological pathways and processes involved in the toxicity of the chemical and to 13 identify critical research gaps. The initial broad literature search for Cr(VI) identified 1,522 Cr(VI)

- 1 mechanistic studies, which were screened for relevance and sorted into groups primarily based on
- 2 the ten key characteristics (KCs) of carcinogens (Smith et al., 2016). These studies, summarized in
- 3 Sections C.3.3–C.3.12, were generally prioritized if they measured mechanistically relevant
- 4 biomarkers in humans exposed to Cr(VI) or were experimental studies conducted in mammals
- 5 exposed to Cr(VI) or in human primary cells or cell lines.
- 6 Because of the importance of determining whether Cr(VI) is mutagenic, it was determined
- 7 that the evidence that could be most informative for the mutagenic potential of Cr(VI) would be
- 8 subject to study evaluation for reporting quality, risk of bias, and sensitivity. This includes test
- 9 systems in animals that measure mutations (e.g., transgenic rodent assays) and structural and
- 10 numerical chromosomal aberrations (e.g., the micronucleus assay). The studies identified as most
- 11 informative for mutagenic risk and evaluated in HAWC are summarized separately below for the GI
- 12 tract and the lung. All other evidence for genotoxicity and other characteristics of carcinogens are
- 13 summarized and synthesized as supporting evidence for biological pathways and processes related
- 14 to carcinogenesis.

15 C.3.2.1. *Electrophilicity and DNA reactivity (KC#1)*

16 Studies informing the ability of Cr(VI), the reductive intermediates Cr(V) and Cr(IV), and the 17 final form Cr(III) to bind to DNA, forming adducts and crosslinks with DNA and proteins, are 18 summarized in Table C-46.

Study findings	Reference			
Formation and stabilization of intracellular Cr species and reactive oxygen species				
 Cr(V) complexes characterized by elemental analyses, electrospray mass spectrometry (ESMS), and EPR spectroscopy 	<u>Bartholomäus et al.</u> (2013)			
 Reduction of Cr(VI) generates Cr(V), superoxide and hydroxyl radicals in purified human cytochrome b(5) and NADPH:P450 reductase in reconstituted proteoliposomes (PLs) 	<u>Borthiry et al.</u> (2007)			
 Two Cr(V) ESR signals, g = 1.979 (nonthiol dependent) and 1.985 (thiol-dependent) in human bronchial epithelial cells (BEAS-2B) 	<u>Borthiry et al.</u> (2008)			
 Signals blocked by suppressing NAD(P)H 				
 ESR spectroscopy and electrospray mass spectrometry measured long-lived Cr(V) complexes formed by reduction of Cr(VI) with p-bromobenzenethiol (RSH) 	<u>Levina et al. (2010)</u>			
Cr-DNA adducts in acellular/in vitro test systems				
 Cr(VI) reduction by glutathione produces 2 Cr(V) complexes and glutathione thiyl radical, correlated with Cr-DNA adduct formation; no DNA strand breaks 	Aiyar et al. (<u>1991</u> , <u>1990</u> ; <u>1989</u>)			
 Cr(VI) reduction by H₂O₂ produces hydroxyl radical, DNA strand breaks, and 8-OHdG adducts with no Cr(V) generation 				
 Cr(VI) showed weak complexation with DNA at high molar ratios of CrO₄²⁻ to nucleotides (r > 1) but not at low molar ratios (r = 1:20 to r = 1:1). 	<u>Arakawa et al.</u> (2000)			

Table C-46. Mechanistic studies informing the intracellular reduction of Cr(VI) and reactivity of Cr species with DNA and proteins

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Study findings	Reference
 Calf thymus DNA and defined DNA polynucleotides 	<u>Borges and</u> Wetterhahn (1989)
 Low, non-physiological levels of ascorbate lead to GSH reduction of Cr(VI) that produce weakly mutagenic glutathione-Cr(III)-DNA adducts and no oxidative damage in human fibroblasts 	<u>Guttmann et al.</u> (2008)
 ATM activation by Cr(VI) in ascorbate-deficient cells; no ATM activation when ascorbate levels are restored in human lung H460 cells and normal human lung fibroblasts 	<u>Luczak et al. (2016)</u>
 DNA-protein crosslinks formed in human lung A549 cells in 3 steps: Cr(VI) reduction to Cr(III), Cr(III)-DNA binding, and capture of proteins by DNA-bound Cr(III) 	<u>Macfie et al. (2010)</u>
 Interstrand DNA crosslinks formed in XPA-null (GM04312), FANCD2-null (GM16633), and FANCD2-complemented (GM16634) human fibroblasts with ascorbate (1.3% of total adducts, dose-dependent) and glutathione (<1%, sublinear) Absence of FANCD2 and XPF-ERCC1 endonuclease produced no hypersensitivity to Cr(VI) with restored ascorbate levels 	<u>Morse et al. (2013)</u>
 Authors interpreted as evidence that DNA crosslinks are more commonly formed in vitro 	
 	Quievryn et al. (2002)
 Ascorbate-Cr(III)-DNA crosslinks inhibited by Mg²⁺ ions suggests predominant binding of ascorbate-Cr(III) to DNA through phosphate oxygen 	
 Cr-DNA adducts, and not oxidative strand breaks, responsible for mutation and replication fork stalling in SV40-immortalized human HF/SV fibroblasts 	<u>Quievryn et al.</u> (2003)
Ternary adducts more mutagenic than binary	
 Mutation spectra equally deletions and point mutations targeting G/C 	
 Reduction of Cr(VI) by ascorbate produced stable adducts in supercoiled φX174 DNA that could only be disrupted by phosphate treatment at high concentrations of ascorbate (1 mM) and not at lower concentrations of ascorbate (0.2 mM) 	Quievryn et al. (2006)
 In human fibroblasts, ternary adducts glutathione-Cr(III)-DNA and histidine-Cr(III)- DNA are more mutagenic than cysteine-Cr(III)-DNA; binary Cr-DNA adducts were weakly mutagenic 	Voitkun et al. (1998)
 Cr(VI) reduction by cysteine forms Cr-DNA and Cys-Cr-DNA adducts and interstrand DNA-DNA crosslinks that increase with Cr(VI) concentration but did not produce DNA breaks or oxidative DNA damage 	Zhitkovich et al. (2000)
 In human fibroblasts, binding of Cr(III) and the formation of Cr(III)-DNA adducts induces structural distortions of DNA 	Zhitkovich et al. (2001)
 Ascorbate-Cr(III)-DNA and cysteine-Cr(III)-DNA adducts were found to be 31-fold and 5.3-fold more mutagenic than the binary Cr(III)-DNA adducts, respectively 	
 Cysteine-dependent Cr(VI) reduction led to Cr-DNA adducts (54%), cysteine-Cr-DNA adducts (45%), and interstrand DNA crosslinks (1%) 	<u>Zhitkovich et al.</u> (2002)

Study findings	Reference
 Cr(III)-DNA binding: To backbone phosphates through reversible electrostatic interactions To nucleobases with the preference G>C>T~A, generating stable crosslinks resistant to dissociation by EDTA; this binding is slow due to slow ligand exchange in Cr(III) complexes 	Zhou et al. (2016)
In vivo test systems	
 <i>Exposed</i>: Four human adult volunteers <i>Referents:</i> Preingestion background DNA-protein crosslink levels for each individual served as the controls Ingestion of a single bolus dose of 5,000 µg Cr(VI) as K₂Cr₂O₇ alone (Cr(VI) or reduced to Cr(III) with orange juice; approximately equivalent to 71 µg Cr(VI) /kg, assuming a body weight of 70 kg). Blood samples were collected at 0, 60, 120, 180, and 240 mins after ingestion. No significant changes in DNA protein cross-linking after ingestion Very small sample size limits confidence in the results The only known ingestion study in humans; all other human studies evaluate inhalation in occupational cohorts 	<u>Kuykendall et al.</u> (1996)
 Rat, Fischer 344, male, exposed to 100 or 200 mg/L K₂Cr₂O7 in drinking water, 3 or 6 wks ↑ DNA-protein crosslinks in liver; not in splenic lymphocytes No cytotoxicity detected 	<u>Coogan et al.</u> (1991a)
 Rat, exposed to 20 m/kg-bw by i.p. injection, 40 h ↑ Cr binding to DNA, nonhistone proteins, and cytoplasmic RNA-protein fraction in liver 	Cupo and Wetterhahn (1985

1

As reviewed in Section 1.1, chromium (VI) can exist as chromate (CrO₄²⁻), hydrochromate
(HCrO₄²⁻) and dichromate (Cr₂O₇²⁻) anions, whose concentrations at equilibrium depend on the
metal concentration in the solution and pH. At physiological conditions (pH 7.4) and micromolar
Cr(VI) concentrations, the major form of Cr(VI) is chromate and the minor form is hydrochromate,
with the latter becoming a dominant form at pH≤6 (<u>Cieślak-Golonka, 1996</u>).
Chromium (VI) compounds have been traditionally considered unreactive towards purified

- 8 DNA under physiological conditions in buffer solutions. Their ability to induce DNA damage in
- 9 exposed cells and tissues in vitro and in vivo is explained by the uptake-reduction model of
- 10 Cr(VI)-mediated genotoxicity (<u>Wetterhahn et al., 1989</u>). Based on this model, Cr(VI) species taken
- 11 up by cells by anion transporters undergo intracellular reduction predominantly driven by
- 12 ascorbate, glutathione and cysteine to form DNA-reactive and/or oxidative damage-inducing
- 13 intermediates Cr(V), Cr(IV) and eventually the thermodynamically stable Cr(III), which
- 14 accumulates in cells via its binding to DNA and other molecules (<u>Zhitkovich, 2011</u>, <u>2005</u>).

1 *Cr(VI)*⁵

- 2 In spite of Cr(VI) being typically unreactive towards DNA, results of some cell-free studies in 3 buffered solutions support the existence of interactions between DNA and Cr(VI) compounds. A 4 study that employed chromium trioxide (CrO₃) demonstrated interaction between Cr(VI) and calf 5 thymus DNA at high CrO₃ concentrations (0.2–2 mmol/L) using several spectral analytical methods 6 (Khorsandi and Rabbani-Chadegani, 2013). Another study demonstrated the ability of CrO₃ at high 7 concentrations (>80 µmol/L) to cause DNA damage and induce DNA strand breaks and 8 linearization and degradation of supercoiled circular plasmid DNA, but with considerably lower 9 DNA-damaging potency of CrO_3 in comparison to $CrCl_3$ (Fang et al., 2014). Both studies suggest intercalative interaction between CrO₃ and DNA and imply that Cr(VI) and Cr(III) differ in their 10 11 modes of interactions with DNA. Similar results were also found for Cr(VI) in the form of the 12 chromate anion, which showed weak complexation with DNA at high molar ratios of CrO_4^{2-} to 13 nucleotides (r > 1), but not at low molar ratios (r = 1:20 to r = 1:1). The high concentrations of CrO₃ 14 or CrO_{4²⁻} at which the interactions with DNA were observed in these studies indicate little biological 15 relevance of these findings in the toxicological context of environmental exposures (Arakawa et al., 16 2000). 17 In contrast to Cr(VI), the intermediate Cr(IV) and Cr(V) and terminal Cr(III) species, 18 generated during intracellular reduction of Cr(VI), can induce DNA damage through their direct 19 interactions with DNA, or indirectly via oxidative damage (Arakawa et al., 2012). Reduction of 20 Cr(VI) in cell-free, cell-based and in vivo systems generates variable amounts of the intermediate 21 chromium species depending on the nature and concentration of the reducers, concentrations of Cr-22 species, and other conditions (Borges et al., 1991). It has been suggested that the abundance of 23 specific intermediate species could be a major factor in determining the DNA damaging activity of 24 Cr(VI) (Sugden and Stearns, 2000). 25 It should be noted that studies performed in cell-free or cell-based systems that do not fully 26 reflect physiological conditions and concentrations of intracellular reducers may not truly reflect 27 cellular and molecular processes that occur in human tissues under environmental exposures to 28 Cr(VI). This limitation affects mechanistic cell-free studies that use certain non-physiological 29 buffers and cell-based studies that employed ascorbate-depleted cells grown in standard growth 30 media (Quievryn et al., 2002). Since ascorbate represents a major intracellular reductant of Cr(VI) 31 (Suzuki and Fukuda, 1990), restoration of ascorbate in cell-based systems is necessary for a correct 32 assessment of the fate of Cr(VI) and DNA damage following its intracellular uptake. 33 Reduction of Cr(VI) is a kinetically controlled process, and the role of specific reductants 34 reflects their reaction rates with Cr(VI) compounds and intracellular concentrations. The highest 35 rate of Cr(VI) reduction was found for ascorbate, followed by cysteine and glutathione with
- 36 respective rate ratios of 61:13:1 (<u>Quievryn et al., 2003</u>). Since typical intracellular concentrations

⁵Because this discussion is specific to multiple Cr species, units were not converted to Cr(VI), as was done for other sections in this document.

- 1 of ascorbate (1–2 mM) and glutathione (1–10 mM) are comparable and considerably higher than
- 2 that of cysteine (0.03-0.2 mM) (<u>Tian et al., 2014</u>), the principal intracellular reducer of Cr(VI) is
- **3** ascorbate, accounting for 80-90% of its metabolism (<u>Zhitkovich, 2011</u>, <u>2005</u>). Ascorbate and
- 4 glutathione also display synergistic effect on the reduction of Cr(VI), and the rate of this reduction
- 5 by a mixture of ascorbate and glutathione under physiologically relevant conditions was found
- 6 higher than a sum of reduction rates of each of these reductants (<u>Suzuki, 1990</u>).
- 7 Reduction of Cr(VI) by ascorbate generates variable amounts of Cr(V), Cr(IV), and carbon-
- 8 based radicals (<u>Stearns and Wetterhahn, 1994</u>). At physiologically relevant molar ratios of
- 9 ascorbate to Cr(VI) exceeding 2:1, the only detectable intermediate reduction product is reportedly
- 10 Cr(IV). The presence of Cr(V) is detectable only at non-physiological ratios of equimolar or lower
- 11 ratio of ascorbate to Cr(VI), or in ascorbate-depleted cells (<u>Zhitkovich, 2011</u>; <u>Stearns and</u>
- 12 <u>Wetterhahn, 1994</u>). Reduction of Cr(VI) by ascorbate under physiologically relevant conditions is a
- 13 low oxidant-generating process that differs remarkably from reduction of Cr(VI) by glutathione,
- 14 which generates substantially more reactive oxygen species (<u>Wong et al., 2012</u>). However, in spite
- 15 of reduced DNA oxidative damage in cells with restored ascorbate, these cells can still experience a
- 16 large increase in genotoxicity, as displayed by an increased frequency of DNA double-strand breaks
- 17 in one study by <u>Wong et al. (2012)</u>.
- 18 The reduced form of glutathione (GSH) is a major intracellular reducer of Cr(VI) in cells
- 19 cultured without restoration of ascorbate. This reduction can be a one- or two-electron process
- 20 (<u>Zhitkovich, 2011</u>), but more typically it proceeds as a one-electron process sequentially producing
- 21 Cr(V), Cr(IV) and Cr(III) (<u>Marin et al., 2018</u>). Reduction by cysteine in the presence of variable
- 22 amounts of glutathione is also a one- or two-electron process, with the one-electron process
- dominating in the physiological range of concentrations (<u>Quievryn et al., 2001</u>).
- 24 *Cr(V)* and *Cr(IV)*
- The formation of the Cr(V) intermediate has been demonstrated by the EPR method in
 Cr(VI)-treated cells cultured in traditional media without ascorbate restoration in vitro (Liu and
 Shi, 2001); however, some evidence supports formation of Cr(V) also in the liver and kidney of mice
- following intravenous administration of Cr(VI) (Liu and Shi, 2001). In animal studies, intravenous
- 29 pre-treatment of animals with the metal ion chelators ascorbate or glutathione decreased, and pre-
- 30 treatment with NADH increased, EPR signal intensity corresponding to Cr(V) (Liu and Shi, 2001).
- Formation of Cr(V) and free radicals generated by these species has been considered to play an important role in Cr(VI)-induced DNA damage. The potential role of Cr(V) in the modification of DNA was examined in a cell-free system using sodium bis(2-ethy-2-
- 34 hydroxybutyrato)2oxochromate (V) monohydrate as the source of Cr(V) (<u>Shi and Dalal, 1994</u>).
- 35 Treatment with this Cr(V) compound induced damage in short DNA fragments of the TP53 gene in
- 36 vitro, accompanied by the formation of adducts at dG and dA positions and oxidative damage at dG
- 37 positions. These findings were interpreted as evidence for the ability of Cr(V) to interact with the
- 38 N7 atom of purines to form Cr(V)-dG and Cr(V)-dA DNA adducts. Furthermore, oxidative damage at

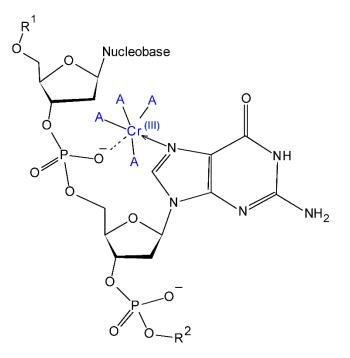
dG sites and formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) residues was presumably caused
by hydroxyl radicals generated through a Fenton-like reaction (I) (Shi and Dalal, 1994).

3 (I) $Cr(V)+H_2O_2\rightarrow Cr(VI) + \cdot OH + OH$ -

4 In addition to the indirect oxidative damage through reactive oxygen species, Cr(V) can also 5 induce direct oxidative DNA damage through abstraction of H atoms at the deoxyribose sugar 6 moiety, which results in generation of abasic sites (Sugden and Wetterhahn, 1997). Formation of 7 abasic sites was observed upon reduction of Cr(VI) by ascorbate and glutathione (Casadevall and 8 Kortenkamp, 1995; da Cruz Fresco et al., 1995). Cr(V) can further oxidize 8-OHdG residues 9 produced by oxidative DNA damage and form spiroiminohydantoin sites, characterized by DNA 10 polymerase arrest and a high degree of misincorporation of adenine opposite to these modified 11 sites, which results in $G \rightarrow T$ transversions (Sugden et al., 2001). 12 Cr(IV) is the major transient form of intracellular reduction of Cr(VI) in cells with 13 physiological levels of ascorbate. In the presence of hydrogen peroxide, Cr(IV) is a more potent 14 Fenton-like reagent than Cr(V) and generates hydroxyl radicals (II), which has been shown to cause 15 DNA strand breaks (Luo et al., 1996) and oxidative damage at dG positions, which are preventable by hydroxyl radical scavengers (Shi et al., 1999). In addition, this process generates Cr(V), which 16 17 can cause DNA damage through direct and indirect mechanisms.

(II) $Cr(IV)+H_2O_2\rightarrow Cr(V) + \cdot OH + OH -$

Cr(IV) can also produce Cr(V) by disproportionation (III) or comproportionation (IV)
reactions with Cr(VI). These processes were suggested to be a source of transient Cr(V) in studies
performed with cells exposed to Cr(VI) after restoration of physiological levels of ascorbate to
Cr(VI) (<u>Zhitkovich, 2011, 2005</u>).


23 (III) $2Cr(IV) \rightarrow Cr(V) + Cr(III)$ 24 (IV) $Cr(IV) + Cr(VI) \rightarrow 2Cr(V)$

25 *Cr(III)*

18

Cr(III) is a thermodynamically stable species produced by the reduction of Cr(VI) through 26 27 the intermediary species Cr(V) and Cr(IV), which transiently exist in variable amounts during the 28 intracellular reduction of Cr(VI). The interaction of Cr(III) with DNA is responsible for the 29 formation of DNA lesions, the most common of which are the binary Cr(III)-DNA adducts (Floro and 30 Wetterhahn, 1984). These adducts are generated by interactions between DNA and positively 31 charged, labile aqua Cr(III) complexes $[Cr(H_2O)_{6-n}(OH)_n]^{(3-n)+}$ and account for 75-95% of the total 32 DNA-bound chromium in Cr(VI)-treated cells with restored ascorbate levels (Zhitkovich, 2011). 33 However, the level of these adducts may be overestimated, because some of them may have been 34 formed by disruption of ternary ligand-Cr(III)-DNA adducts during DNA isolation. Also, high

- 1 intracellular concentration of ligands available for reaction with Cr(III) and formation of ternary
- 2 ligands argues against such a high proportion of binary adducts (<u>Salnikow and Zhitkovich, 2008</u>).
- 3 The structure of the binary Cr(III)-DNA adducts (Figure C-21) remains the subject of
- 4 ongoing scientific discussion due to the complexity of this issue and available conflicting
- 5 information. At low Cr(III)/DNA ratios (1:80 to 1:20), these adducts reportedly display structure of
- 6 chelates, in which Cr(III) binds through guanines and the backbone -PO₂-groups (<u>Khorsandi and</u>
- 7 <u>Rabbani-Chadegani, 2013</u>). This finding was also supported by an in vitro study that examined the
- 8 reduction of Cr(VI) by ascorbate. The reaction produced stable adducts, which could only be
- 9 disrupted by phosphate treatment at high concentrations of ascorbate (1 mM) and not at lower
- 10 concentrations of ascorbate (0.2 mM) (<u>Quievryn et al., 2006</u>). This finding is consistent with
- 11 bifunctional mode of Cr(III) binding to DNA, presumably involving N7-dG and phosphate groups. In
- 12 addition, there is the possibility that at least a fraction of Cr(III) could bind through
- 13 multicoordinated oligomers. As a result, binary adducts formed at low and high ascorbate levels
- seem to be different, with former being resistant and latter susceptible to phosphate-induced
- 15 dissociation (<u>Quievryn et al., 2002</u>).

Figure C-21. Binary Cr(III)-DNA adduct.

- 16 Two different forms of Cr(III)-DNA adducts were suggested by a study that examined
- 17 DNAzyme Ce13d reacted with CrCl₃. The results showed that Cr(III) first binds to the DNA
- 18 phosphate backbone through weak electrostatic interactions, which can be weakened by inorganic
- 19 phosphate. In the next step, Cr(III) slowly coordinates with all four nucleobases, following the
- 20 binding kinetics order of G>C>T≈A, and forms highly stable DNA interstrand crosslinks (Zhou et al.,

1 2016). A more recent study using 14-mer self-complementary oligodeoxyribonucleotides and low 2 Cr(III)/DNA ratios challenged the importance of phosphate groups in the formation of these binary 3 adducts. The study concluded that Cr(III) is coordinated with N7 of dG as a $[Cr(H_2O)_5]^+$ complex 4 located within the major groove of the DNA double helix structure without the direct participation 5 of neighboring bases of phosphate groups (Brown et al., 2020). Nevertheless, the preliminary 6 results of this study also support the formation of interstrand crosslinks. The differences between 7 the suggested roles of phosphate in forming Cr(III)-DNA adducts may reflect methodological 8 differences among these studies, some of which investigated reactivity of Cr(III) species under 9 different conditions, while others employed different types of spectral analytical methods. 10 Moreover, reactions of Cr(III) complexes with DNA do not appear to provide a full model of all 11 possible Cr-DNA interactions that occur during Cr(VI) reductions with variable amounts of 12 intracellular reducers. 13 Binary Cr(III)-DNA adducts can further conjugate proteins and form DNA-protein cross-14 links (DPCs). The DPCs represent ternary protein-Cr(III)-DNA adducts generated by a rate-limiting 15 reaction of binary Cr(III)-DNA adducts with proteins. In contrast to aldehydes, Cr(III)-mediated 16 formation of DPCs does not require stable protein-DNA binding prior to the crosslinking reaction. 17 Indeed, the major protein observed to be crosslinked to DNA in CHO cells treated with Cr(VI) was a 18 DNA-non-binding protein actin and not DNA-binding histores (Miller et al., 1991). Consistent with 19 this finding, binding of Cr(III) to proteins occurs through Cys, His, Glu and Asp residues, and not 20 through positively charged Lys and Arg residues that are typically involved in the formation of 21 stable DNA-protein complexes. Formation of DPCs in cultured cells exposed to Cr(VI) is decreased 22 by depletion of glutathione and facilitated by restoration of physiological levels of ascorbate (Macfie 23 et al., 2010). Overall, the DPCs are rare lesions and their biological significance is still incompletely 24 understood. In addition to inducing possible genotoxic responses, some studies demonstrated their 25 ability to inhibit specific gene expression (Macfie et al., 2010).

26 Other ternary adducts identified in the cells exposed to Cr(VI) are ascorbate-Cr(III)-DNA, 27 glutathione-Cr(III)-DNA, cysteine-Cr(III)-DNA, and histidine-Cr(III)-DNA. Examination of the 28 reactivity of complexes formed by Cr(III) and amino acids demonstrated that these ternary adducts 29 are formed from Cr(III)-cysteine or Cr(III)-histidine complexes attacking DNA and not from the binary Cr(III)-DNA adducts (Zhitkovich et al., 1996b). Likewise, the crosslinking of ascorbate to 30 31 DNA was consistent with the attack of DNA by transient Cr(III)-ascorbate complexes. Inhibition of 32 the formation of ascorbate-Cr(III)-DNA crosslinks by Mg²⁺ ions suggests predominant binding of 33 ascorbate-Cr(III) to DNA through phosphate oxygen (<u>Quievryn et al., 2002</u>). Ascorbate-Cr(III)-DNA 34 adducts were detected in Cr(VI)-treated human lung A549 cells with restored ascorbate levels, and 35 these crosslinks accounted for approximately 6% of the total DNA-bound chromium (Quievryn et 36 al., 2002). It is of note that a Cr(III)-mediated aggregation of DNA has also been observed in vitro, 37 but only at physiologically irrelevant high Cr(III)/DNA ratios (Brown et al., 2020).

1 Binding of Cr(III) and the formation of Cr(III)-DNA adducts induces structural distortions of 2 DNA (Zhitkovich et al., 2001). Cr(III) also appears to influence transitions between B-DNA and Z-3 DNA conformers induced by other reagents. Unlike the more frequent right-handed B-DNA, Z-DNA 4 is a left-handed double helical conformation that is only transiently and occasionally induced in 5 biological systems (<u>Rich and Zhang, 2003</u>). The toxicological significance of this finding is still not 6 fully understood, as this effect was only shown in synthetic polynucleotides and in the presence of 7 ethanol. Another study using calf thymus DNA did not support the Cr(III)-mediated induction of 8 conformational transitions from B to A or B to Z DNA structures (Khorsandi and Rabbani-9 Chadegani, 2013). 10 Lastly, Cr(III) can react with hydrogen peroxide in a Fenton-like reaction (V) and produce 11 hydroxyl radicals and singlet oxygen that can cause oxidative DNA damage.

12

(V) $Cr(III) + H_2O_2 \rightarrow Cr(IV) + \cdot OH + OH$ -

Cr(IV) produced in this reaction can subsequently undergo other redox reactions and form
 Cr(V). Formation of hydroxyl radicals and DNA strand breaks through this reaction was found to be
 reduced in the presence of ascorbate and glutathione (both reduced and oxidized). For this reason,
 the toxicological significance of this reaction is uncertain (Tsou and Yang, 1996).

17 Biological effects of Cr-DNA interactions

18 Binary Cr(III)-DNA adducts formed by the reaction of Cr(III) agua complexes and DNA are 19 reportedly weakly mutagenic lesions and their mutagenic potential is considerably lower in 20 comparison with any ternary ligand-Cr-DNA adduct (Ouievryn et al., 2003). Indeed, ascorbate-21 Cr(III)-DNA and cysteine-Cr(III)-DNA adducts were found to be 31-fold and 5.3-fold more 22 mutagenic than the binary Cr(III)-DNA adducts, respectively (Holmes et al., 2008; Zhitkovich et al., 23 2001). Consequently, ascorbate appears to be the most important intracellular reducer of Cr(VI) 24 that forms highly mutagenic DNA adducts. The ternary adducts glutathione-Cr(III)-DNA and 25 histidine-Cr(III)-DNA were also found to be mutagenic, and their mutagenicity exceeded that of 26 cysteine-Cr(III)-DNA (Voitkun et al., 1998); nevertheless, their toxicological significance is likely 27 limited in cells with physiological levels of ascorbate. 28 Under low, non-physiological levels of ascorbate, reduction of Cr(VI) by glutathione in vitro 29 produced mutagenic glutathione-Cr(III)-DNA adducts, but their amounts were relatively low at 2 30 mM glutathione (GSH) and substantially higher at 5 mM GSH (Guttmann et al., 2008). This finding 31 implies weak mutagenicity of lesions produced at physiological concentrations of GSH in ascorbate-32 depleted cells and suggests that studies employing standard cell cultures with low intracellular 33 ascorbate could have likely underestimated mutagenicity of Cr(VI). Taken together, studies 34 performed under non-physiological low ascorbate levels favored production of Cr(V), formation of 35 more stable Cr-DNA adducts, and a lower amount of highly mutagenic ternary species, which did 36 not truly reflect the genotoxic and mutagenic effects of Cr(VI) (Quievryn et al., 2006).

Supplemental Information—Hexavalent Chromium

1 Cells with restored ascorbate levels display considerably different cell signaling responses 2 to Cr(VI) than ascorbate-depleted cells. Human epithelial cancer cells H460 and human normal 3 lung fibroblasts IMR90 exposed to Cr(VI) under standard cell culture conditions without 4 restoration of intracellular ascorbate displayed activation of ATM, which was demonstrated by 5 phosphorylation of its three well-defined targets: ATM (autophosphorylation at Ser1981), CHK2 6 (Thr68) and KAP1 (Ser824). In contrast, cells with fully restored physiological levels of ascorbate 7 did not show activation of ATM signaling (Luczak et al., 2016). Activation of ATM correlated with 8 the extent of GSH-mediated reduction of Cr(VI), which is a dominant reductive process in 9 ascorbate-depleted cells. ATM activation is typically triggered by DNA double strand breaks (Lavin 10 and Kozlov, 2007), which can be formed by oxidative DNA damage through DNA base or sugar 11 damage, leading to single-strand breaks and subsequently to double-strand breaks (Woodbine et 12 al., 2011). As previously shown, reduction of Cr(VI) by glutathione in vitro and in cells with 13 depleted ascorbate leads to an appreciable formation of Cr(V), which can act as an oxidant 14 (Quievryn et al., 2003), while reduction of Cr(VI) by ascorbate is a low oxidant generating process 15 (Wong et al., 2012). Treatment with Cr(VI) also induces double-strand breaks in cells with restored 16 ascorbate; however, these are formed selectively in euchromatin and their signaling is dependent 17 on ATR rather than on ATM kinase (<u>Deloughery et al., 2015</u>). Formation of DSBs in euchromatin is 18 potentially more deleterious than their formation in heterochromatin, because it increases 19 probability of gene deletions and translocations affecting active tumor suppressors (Woodbine et 20 al., 2011). 21 Similar to higher mutagenicity, ternary adducts are also more genotoxic than binary Cr(III)-22 DNA adducts. This was demonstrated through more prominent DNA replication blocking by 23 ternary adducts in comparison to binary adducts. For instance, ascorbate-Cr(III)-DNA adducts

displayed more potent replication-blocking activity than Cr(III)-DNA adducts (<u>Snow and Xu, 1991</u>),
and the modification of pSP189 plasmid DNA in the presence of 0.2 mM Cr(VI)-1 mM ascorbate

26 generated sufficient levels of DNA lesions to block replication of >99.5% of these plasmids

27 (<u>Quievryn et al., 2003</u>). Reduced processivity of DNA polymerases and guanine-specific polymerase

- arrests was observed in several studies that used Cr-modified DNA as a template in vitro.
- 29 Polymerase-arresting DNA lesions were detected in vitro following reactions of Cr(III) or Cr(VI)

30 with DNA in the presence of ascorbate and attributed to bifunctional adducts of Cr(III) with DNA

31 phosphate groups (<u>O'Brien et al., 2002</u>). Similarly, treatment of normal human lung fibroblasts

32 with Cr(VI) that produced adduct levels of 0.13-0.92 mmol Cr/mol DNA led to guanine-specific DNA

replication termination and cell cycle arrest in S-phase, which were attributed to dG-dG interstrand

34 crosslinks (<u>Xu et al., 1996a</u>).

In contrast to these findings, low levels of DNA-bound Cr(III) were shown to increase DNA
 processivity, but to also decrease DNA replication fidelity in oxidatively damaged DNA exposed to
 Cr(III) in a cell-free system (Snow, 1994; Snow and Xu, 1991). Similarly, this binding was found to

38 stimulate mutagenic incorporation of dTTP nucleotide opposite to specific 6-0-methylguanine sites

- 1 (<u>Singh and Snow, 1998</u>). These findings support mutagenic effects of Cr(III)-induced DNA lesions
- 2 through changed kinetics and fidelity of DNA replication.
- 3 The specific role of Cr-species and Cr-induced DNA lesions in the toxicity and
- 4 carcinogenicity of Cr(VI) has not yet been conclusively established. Depending on experimental
- 5 conditions, reduction of Cr(VI) has been found to produce binary Cr-DNA and ternary ligand-Cr-
- 6 DNA adducts, interstrand crosslinks, DNA-protein crosslinks, oxidative damage to bases and
- 7 deoxyribose, DNA strand breaks, and DNA abasic sites, which have been associated to various
- 8 extent with cell cycle arrest, DNA repair, cell death and mutagenesis (Sugden et al., 2001; Arakawa
- 9 <u>et al., 2000; Casadevall et al., 1999; Stearns and Wetterhahn, 1997; Zhitkovich et al., 1996b;</u>
- 10 <u>Bridgewater et al., 1994</u>).

11 C.3.2.2. Genotoxicity (KC#2)

- 12 Inhalation route of exposure
- 13 Mutagenic MOA studies
- 14 Studies considered to be most relevant to a mutagenic MOA analysis for lung cancer are 15 studies of occupationally or environmentally exposed humans or studies in experimental animals 16 exposed via inhalation or intratracheal instillation and include measures of gene mutation (prior to 17 tumorigenesis), micronuclei induction, and chromosomal aberrations. Occupational studies were 18 only considered if they included a comparison or referent population exposed to Cr(VI) at lower 19 levels (or no exposure/exposure below detection limits) or for shorter periods of time. Animal 20 studies were considered if they included a concurrent control group exposed to vehicle-only 21 treatment or an untreated control. 22 Twenty-nine studies in humans occupationally exposed and one study in transgenic mice 23 were identified. These were evaluated in HAWC using criteria specific to the mutational assay used 24 in the study to judge the outcome ascertainment domain. The overall confidence judgments and 25 summaries of the study findings can be found in the Cr(VI) Toxicological Review in Section 3.2.3
- 26 Cancer—Mechanistic Evidence; more extensive summaries are in Table C-47 below. Human studies
- 27 reporting other outcomes informative to genotoxicity are summarized in the following sections.

Study Overview	Exposure	Results	Comments	Reference		
Chromosomal aberration	Chromosomal aberrations					
Cross-sectional study, South India. <i>Exposed</i> : n = 72 (n = 36 directly exposed via work in a tannery, n = 36 indirectly exposed via residence in proximity to tanneries) <i>Referent</i> : n = 36 unexposed controls ('normal and healthy individuals who had not exposed themselves to any kind of chemicals or radiation')	Assessment: Exposure to Cr(VI) inferred based on occupation and residence.In addition, Cr was measured in urine and air samples (unclear where air samples were collected)Levels: There was a gradient in levels of both, there were detectable chromium levels in both air and urine for 'controls.'SubjectsTotal no. of samplesChromium exposure (mean \pm SD) Total Cr in the air (mg/m ³)Cr content in urine (0.001 mg/m ³)Direct360.101 \pm 0.0030.021 \pm 0.0032.11 \pm 1.01Direct360.089 \pm 0.0030.013 \pm 0.0051.81 \pm 0.88exposure0.014 \pm 0.0040.006 \pm 0.0010.54 \pm 0.39Duration: Directly exposed subjects were "selected based on the duration of their exposure (0-5; 6-10; 11-15; 16-20; 21-25years) and were known to be exposed to Cr(VI) for a minimum of 8 h/day" while indirect exposure was inferred from residence of at least 30 years duration, 'in and around the tanneries.'	↑ chromosomal aberrations in DE group compared to IE group and controls Also observed ↑ mean tail length for comet assay in DE group compared to IE group and controls and ↑ MN among directly exposed subjects compared to indirectly exposed & controls; further elevated in those with longer duration of exposure	Low confidence. There is evidence that there is a gradient of chromium exposure across the three study groups, but inference is limited by small sample size and lack of description. Some of the controls also had detectable chromium in urine, suggesting that this is not really a true "control" group Concerns with chromosomal aberrations assay – culture of 72 hours may have missed first in vitro cell division Very limited evaluated of confounders	<u>Balachandar et</u> <u>al. (2010)</u>		

Table C-47. Chromosomal mutation studies in humans exposed to Cr(VI) via inhalation (evaluated in HAWC)

This document is a draft for review purposes only and does not constitute Agency policy.

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, Bulgaria. <i>Exposed:</i> Chromium plate workers (n = 15) <i>Referents 1:</i> age, gender, smoking- matched controls (n = 15) <i>Referents 2:</i> individuals of similar age from unpolluted rural region (n = 8)	Assessment: Blood samples and buccal mucosal cells taken from exposed group; exposure to Cr(VI) inferred based on occupation. Also measured Cr with personal air samplers and in urine samples. Levels: There was a gradient of chromium in air and urine across groups, although there was detectable Cr in urine of rural controls. Mean air concentration of total chromium was 0.0075 mg Cr/m ³ in the low-exposure group (n = 4) and 0.0249 mg Cr/m ³ in the high- exposure group (n = 7). (4 workers in the exposed group temporarily discontinued exposures and were considered separately.) Mean concentrations of Cr in urine were 18.63 µg/L (low) and 104.22 µg/L (high). Results reported for combined groups (0.0075 and 0.0249 mg Cr/m ³). Duration: Duration of exposure ranged from 2 to >20 yrs; mean duration of exposure was not reported.	In exposed workers compared to referent 1: Buccal cells: No difference in frequencies of chromosomal aberrations or SCEs Study also reported significantly increased MN in buccal cells and lymphocytes in referent 1 compared to referent 2	Low confidence. Although exposed and unexposed workers were matched on age, sex, and smoking habit, the two unexposed (worker and rural) groups were combined, resulting in lower confidence in comparability of exposed and unexposed group comparisons. Inference is further limited by small sample size and lack of description. Similar proportion of centromere- positive and -negative micronuclei indicate both clastogenic and aneugenic effects occurring	Benova et al. (2002)

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study of workers at a single facility in China. <i>Exposed</i> : n = 7 electroplating workers exposed to chromium <i>Referent</i> : n = 10 office workers Note: also included n = 7 electroplating workers exposed to nickel	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr in personal air samples from work room, hair and stool samples. Levels: Authors note that there seemed to be little cross-contamination of nickel and chromium in respective work areas based on air samples, but stool samples showed similar levels of both compounds between exposure groups. Hair levels of chromium were higher in chromium compared with nickel workers. The mean chromium (total) air concentration (by random air collection) was 8.1 µg/mm ³ , the mean chromium concentration in stool samples was 8.5 µg/g stool, and the mean chromium concentration in hair was 35.68 µg/g. (The exposure level of 8.1 µg chromium/mm ³ is as reported by Deng et al. (1988); however, this appears to be a reporting error, as this concentration is equivalent to 8,100,000 mg chromium/m ³ .) Duration: Mean duration of occupational exposure was 12.8 years.	 ↑ chromosomal aberrations in chromium workers compared to nickel workers & controls ↑ SCE in chromium & nickel workers compared to controls 	Low confidence. Although controls were age and sex matched to exposed subjects and were stated to have similar socioeconomic status, the small sample size is quite small and the analysis limited. Also unclear how well differentiated chromium exposure is by group - analyses of chromium in hair suggest there is delineation with controls, but no information on stool samples which showed similarities between nickel and chromium workers.	Deng et al. (1988)
Cross-sectional study, Slovak Republic. <i>Exposed</i> : n = 73 male welders <i>Referent</i> : n = 71 male controls (administrative officers and hospital employees)	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr in blood. <i>Levels</i> : Exposed workers had average values about twice as high as referent group (stated to be significantly different). Mean \pm SE was 0.07 ± 0.04 vs. $0.03 \pm 0.007 \mu$ mol/L. <i>Duration:</i> Mean \pm SD duration of occupational exposure was 10.2 ± 1.7 years.	No differences in CAs, CTAs, and CSAs between exposed and control groups ↑ CAs in individuals with Gln/Gln genotype compared to Arg/Gln or Arg/Arg genotypes in XRCC1 Arg299Gln; more pronounced in Cr- exposed workers	<i>Medium</i> confidence. Main limitations are related to lack of description (e.g., for participant selection) and lack of evaluation of confounders aside from smoking.	<u>Halasova et al.</u> (2012)

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, Slovak Republic. <i>Exposed</i> : n = 39 male welders <i>Referent</i> : n = 31 male controls (source not given)	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr in blood. <i>Levels:</i> Exposed workers had average values about twice as high as referent group. Mean ± SE was 0.07 ± 0.04 vs. 0.03 ± 0.007 µmol/L. <i>Duration</i> : Mean ± SD duration of occupational exposure was 10.2 ± 1.7 years.	No significant differences in frequencies of CTAs between exposed and control groups; only minor differences in CAs between groups ↑ CSAs in exposed compared to control groups ↑ CAs & CTAs in individuals with Gln/Gln genotype compared to Arg/Gln or Arg/Arg genotypes in XRCC1 Arg299Gln	<i>Low</i> confidence. Main limitations are related to sample size, unclear differentiation between exposure groups, and lack of description (e.g., for participant selection).	<u>Halasova et al.</u> (2008)
Cross-sectional study, Finland. <i>Exposed</i> : n = 23 male welders <i>Referent</i> : n = 22 male office employees at a printing company	Assessment: Exposure to Cr(VI) inferred based on occupation. Welders were chosen due to "exposure to MMA/SS welding fumes with little or no exposure to other agents in their occupational history."Also measured total Cr in urine. Levels: Urine levels are not discussed in text (table shows values ranging from 0.20 to 1.55 µmol/L).Duration: Welders likely had Cr(VI) exposure due to history of manual metal arc welding for at least 4 years and most for much longer (mean \pm SD = 21 \pm 10 years).	No significant differences (frequency of chromosome aberrations or SCEs)	Low confidence. Although Cr(VI) exposure seems likely to occur among these welders, the analysis is limited by small sample size when stratifying by smoking (found to be related to the outcome).	<u>Husgafvel-</u> <u>Pursiainen et al.</u> (1982)

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, Japan. <i>Exposed</i> : n = 51 male stainless steel welders <i>Referent</i> : n = 33 male office or research workers in the same factory	Assessment: Exposure to Cr(VI) inferred based on occupation. Total Cr also measured in urine samples. Levels: Mean urinary Cr was 9.8 and 4.2 μg/L among exposed and referent group, respectively. Duration: Welders had been 'constantly engaged' in stainless steel welding for 5–20 years (mean 12 years) and thus are presumed to have high potential for Cr(VI) exposure.	↑ chromosomal aberrations and SCEs in welder compared to controls	<i>Low</i> confidence. The main limitations are related to the outcome evaluation, as well as poorly described and reported data analysis and lack of consideration of potential confounders	<u>Koshi et al.</u> (<u>1984)</u>
Cross-sectional study, Sweden. Exposed: n = 24 stainless steel welders from six industries Referent: n = 24 matched referents who 'had no occupational (or other) experience with the handling of stainless steel (or other known mutagenic/carcinogenic agents).'	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured total Cr in air (welders only) and urine (all). <i>Levels:</i> Mean urinary Cr was 47 and 1.5 µmol/mol creatinine among exposed and referent group, respectively. Mean air Cr level 81 µg/m ³ . <i>Duration:</i> Welders were selected for their 'long and intense' welding on stainless steel (mean work duration of 19 years).	No significant differences (frequency of breaks or fragments; gaps and isogaps; interchanges, dicentrics, rigns, and markers; structural aberrations, hyperdiploidy; SCEs)	<i>Low</i> confidence. Main limitations are related to outcome ascertainment and statistical analysis, as well as limited description of results.	<u>Littorin et al.</u> (<u>1983)</u>

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, South Korea. <i>Exposed</i> : n = 51 male chrome plating and buffing workers <i>Referent</i> : n = 31 male office workers from 'industrial areas' in South Korea.	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr measured in air samples (total and VI), blood, and end-shift urine samples (See Table 1). Levels: Concentrations in blood and urine were significantly higher in exposed workers, indicating adequate delineation between groups. For example, the geometric mean blood level of Cr was 0.9 and 0.2 ug/dL in exposed and referent workers, respectively. Differently, while air measures were higher for exposed workers the difference was not statistically significant. Duration: Mean duration of occupational exposure was 9.1 years (range: 1 month – 40 years).	↑ frequency of chromatid exchange; chromosome/chro matid breaks and exchanges; and of translocations, with higher blood Cr ↑ frequency of translocations in exposed compared with unexposed.	<i>Low</i> confidence. Main limitations are related to lack of description for analysis and results reporting.	<u>Maeng et al.</u> (2004)

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, Italy. <i>Exposed</i> : n = 38 male plating factory workers (two groups from factories using nickel and chromium for bright plating, and two groups from factories using only chromium for hard plating) <i>Referent</i> : n = 35 'healthy male sanitary workers' not known to have chromium exposure Note: Analysis of SCEs only included n = 21 workers from factories using only chromium, and n = 14 'healthy blood donors' with similar selection as unexposed worker control group.	Assessment: Exposure to Cr(VI) inferred based on occupation. Exposed group was stratified based upon co-exposure to nickel ('bright' plating, vs. 'hard' plating). Also measured Cr in urine. Levels: Urinary Cr levels were lowest in controls (mean \pm SD = 1.9 \pm 1.4 ug/g crt), intermediate in bright plating (6.1 \pm 2.8 ug/g crt), and highest in hard plating groups (10.0 \pm 7.5 ug/g crt), indicating adequate delineation between groups. Duration: Mean (SD) years of exposure: bright plating = 9 (11); hard plating = 7 (3)	 ↑ frequency of total aberrations, chromosome-type aberrations in all exposed. Also ↑ chromatid-type aberrations in bright platers. ↑ SCEs for some worker compared to blood donors. 	Low confidence. Main limitations are related to outcome ascertainment, small sample size for certain analyses, and lack of description (e.g., for participant selection and statistical analysis).	<u>Sarto et al.</u> (<u>1982</u>)

Study Overview	Exposure	Results	Comments	Reference
Micronuclei				
Cross-sectional study, South India. <i>Exposed</i> : n = 72 (n = 36 directly exposed via work in a tannery, n = 36 indirectly exposed via residence in proximity to tanneries) <i>Referent</i> : n = 36 unexposed controls ('normal and healthy individuals who had not exposed themselves to any kind of chemicals or radiation')	Assessment: Exposure to Cr(VI) inferred based on occupation and residence. In addition, Cr was measured in urine and air samples (unclear where air samples were collected)Levels: There was a gradient in levels of both urine and air, there were detectable chromium levels in both air and urine for 'controls.'SubjectsTotal no. of samplesTotal no. of samplesChromium exposure (mean \pm SD) (1 mg/m ³)Direct360.101 \pm 0.0030.021 \pm 0.0032.11 \pm 1.01 exposureexposure0.0089 \pm 0.0030.013 \pm 0.0051.81 \pm 0.88 exposureControls360.014 \pm 0.0040.006 \pm 0.0010.54 \pm 0.39Duration: Directly exposed subjects were "selected based on the duration of their exposure (0-5; 6-10; 11-15; 16-20; 21-25 years) and were known to be exposed to Cr(VI) for a minimum of 8 h/day" while indirect exposure was inferred from residence of at least 30 years duration, 'in and around the tanneries.'	↑ micronuclei peripheral lymphocytes among directly exposed subjects compared to indirectly exposed & controls; and further elevated in those with longer duration of exposure	Low confidence. There is evidence that there is a gradient of chromium exposure across the three study groups, but inference is limited by small sample size and lack of description. Some of the controls also had detectable chromium in urine, suggesting that this is not really a true "control" group Very limited evaluated of confounders	<u>Balachandar et</u> <u>al. (2010)</u>

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, Bulgaria. <i>Exposed:</i> Chromium plate workers (n = 15) <i>Referents 1:</i> age, gender, smoking- matched controls (n = 15) <i>Referents 2:</i> individuals of similar age from unpolluted rural region (n = 8)	Assessment: Blood samples and buccal mucosal cells taken from exposed group; exposure to Cr(VI) inferred based on occupation. Also measured Cr with personal air samplers and in urine samples. Levels: There was a gradient of chromium in air and urine across groups, although there was detectable Cr in urine of rural controls. Mean air concentration of total chromium was 0.0075 mg Cr/m ³ in the low-exposure group (n = 4) and 0.0249 mg Cr/m ³ in the high- exposure group (n = 7). (4 workers in the exposures and were considered separately.) Mean concentrations of Cr in urine were 18.63 µg/L (low) and 104.22 µg/L (high). Results reported for combined groups (0.0075 and 0.0249 mg Cr/m ³). Duration: Duration of exposure ranged from 2 to >20 yrs; mean duration of exposure was not reported.	 ↑ micronuclei per peripheral blood leukocytes (PBLs) & ↑ overall number of PBLs with micronuclei in exposed workers compared to controls ↑ micronuclei in buccal cells in exposed workers compared to controls No significant difference between proportion of C+ and C- micronuclei in buccal or PBLs in exposed workers compared to controls 	Low confidence. Positive results reported for combined groups (0.0075 and 0.0249 mg chromium/m ³) Although exposed and unexposed workers were matched on age, sex, and smoking habit, the two unexposed (worker and rural) groups were combined, resulting in lower confidence in comparability of exposed and unexposed group comparisons. Inference is further limited by small sample size and lack of description.	<u>Benova et al.</u> (2002)
Cross-sectional study, India. <i>Exposed</i> : n = 102 male welders <i>Referent</i> : n = 102 male controls selected from the general population "with no history of exposure to welding fumes or any known physical or chemical agent in the workplace, but belonged to the same age group and socio-economic status as the welders."	Assessment: Exposure to Cr(VI) inferred based on occupation. Welders used shielded metal arc welding and were working with stainless steel electrodes. Also measured Cr in blood for a sample (~50%) of subjects. Levels: Welders had much higher chromium compared with controls, indicating delineation of exposure. Mean Cr was 151.65 and 17.86 µg/L in exposed and referent, respectively. DNA damage was measured by comet assay in all 204 subjects; frequency of micronuclei was measured in 58 welders and 53 controls. Duration: The duration of exposure varied widely (range: 1-24 years). (Overall mean not presented)	In buccal cells of exposed welders compared to referent: \uparrow micronuclei ($p < 0.001$); correlated with duration of work ($p = 0.0001$), age ($p = 0.007$), and Cr level in blood	Low confidence. There are limitations related to outcome evaluation, such as the use of outdated methods that are no longer recommended, which could lead to inaccurate scoring. There is also a lack of description/details on participant selection (e.g., concern for potential selection bias). Study also reported \uparrow mean comet tail length in whole blood cells (p < 0.001)	<u>Danadevi et al.</u> (2004)

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, Egypt. <i>Exposed</i> : n = 41 male electroplating workers exposed to chromium and nickel <i>Referent</i> : n = 41 male administrative workers at the same facility	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr (and nickel) in serum. Levels: Serum Cr significantly higher in exposed compared with controls. Mean Cr was 3.30 and 0.23 μ g/L in exposed and referent, respectively. Duration: Exposed workers were required to have worked in electroplating section at least 2 years, but most worked for considerably longer with mean \pm SD = 26.68 \pm 11.21 years.	In buccal cells of exposed electroplaters compared to referent: \uparrow micronucleus induction ($p < 0.001$) \uparrow serum Cr correlates with \uparrow micronuclei ($p < 0.05$)	 Medium confidence. There is delineation between exposed and unexposed groups, although limited description of methods (e.g., participant selection) and known co-exposure to nickel may limit inference. Study also reported ↑ serum 8-OHdG 	<u>El Safty et al.</u> (2018)
Cross-sectional study, China. <i>Exposed</i> : n = 87 workers from a single factory in China, who had 'occupational exposure to chromate from different work sections' <i>Referent</i> : n = 30 working in administrative offices without chromate exposure.	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured total Cr in air samples and in blood. Levels: Authors state "The concentration of Cr in the air and blood of subjects in the exposure group were significantly higher than the control group ($p < 0.001$)," which increases confidence in delineation of exposure groups. Geometric Mean \pm SD of Cr in blood was 8.5 ± 1.3 ug/L in exposed vs. 4.1 ± 1.4 ug/L in referent group, while median (IQR) of air concentrations were 15.5 (19.0) vs. 0.2 (0.4) mg/m ³ . Duration: Median duration of employment was 5 years in both exposed and referent.	↑ MN in peripheral lymphocytes in exposed workers compared with referent.	Medium confidence. Main limitations are related to lack of description (e.g., for participant selection). Study also reported 个 hypermethylation of CpG sites and 8-OHdG adducts	Hu et al. (2018) Related studies: Li et al. (2014a; 2014b)

Study Overview	Exposure	Results	Comments	Reference
Exposed 1: male welders working in areas without collective protections (n = 27) Exposed 2: male	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured total Cr in blood and urine. Levels: Cr levels in blood and urine were higher among both groups of welders compared with	↑ mean BN % in lymphocytes of welder compared to controls	<i>Low</i> confidence. Main limitations are related to lack of description (e.g., for participant selection, analysis), unknown contribution of Cr(VI) to Cr exposure (states that <5% of welding was done on stainlass stool, which raises cancer that	<u>larmarcovai et</u> <u>al. (2005)</u>
welders working in locations with smoke extraction systems (n = 33)	controls (means 129 to 145, compared with 92 μg/L), and urinary chromium was higher among welders working without smoke extraction systems.		stainless steel, which raises concern that total Cr measured in blood and urine may be attributed to Cr(III) exposure.) and known co-exposures to other metals.	
<i>Referents:</i> office workers with no history of occupational exposure to welding fumes or other physical/chemical agent in workplace (n = 30)	<i>Duration:</i> Welders exposed for 0.5–45 years			
<i>Exclusions:</i> history of radiotherapy or chemotherapy; use of therapeutic drugs known to be mutagenic or toxic for reproduction				

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, China. <i>Exposed</i> : n = 29 'healthy' chrome platers employed for at least one year at two facilities <i>Referent</i> : n = 29 subjects "randomly selected from the healthy workers in the same enterprises and been engaged in public security, support services, or administration work for more than one year, and had no specific chromate exposure history."	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr in blood. <i>Levels:</i> Blood Cr levels were significantly higher among exposed compared with unexposed workers, indicating adequate delineation between groups. Mean (range) values were 15.2 (2.1, 42) in exposed vs. 4.6 (0.2, 28) in referent group. <i>Duration</i> : Chrome platers had been employed for at least one year.	↑ micronuclei frequencies in peripheral lymphocytes of Cr- exposed workers compared to controls, but no correlation between blood Cr concentration and micronuclei	<i>Low</i> confidence. Limitations are the limited and poorly described statistical analysis, and limited description (e.g., for participant selection). Small sample size. Inconsistent results may indicate the influence of other occupational hazards on micronuclei concentrations	Linging et al. (2016)
Cross-sectional study, Sweden. <i>Exposed</i> : n = 24 stainless steel welders from six industries <i>Referent</i> : n = 24 matched referents who 'had no occupational (or other) experience with the handling of stainless steel (or other known mutagenic/carcinogenic agents).'	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured total Cr in air (welders only) and urine (all). Levels: Mean urinary Cr was 47 and 1.5 µmol/mol creatinine among exposed and referent group, respectively. Mean air Cr level 81 µg/m ³ . Duration: Welders were selected for their 'long and intense' welding on stainless steel (mean work duration of 19 years).	No significant differences in micronuclei between exposed and referent groups	Uninformative (for micronucleus only). Main limitations are primarily due to extended culture times and the lack of a measure of cell replication, which could result in bias towards the null. Other limitations are related to outcome ascertainment and statistical analysis, as well as limited description of results.	Littorin et al. (1983)

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, China. <i>Exposed</i> : n = 120 chromate exposed workers working at a chromate production facility <i>Referent</i> : n = 97 unexposed workers at same facility ('without contact history of harmful substances')	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr in whole blood. Levels: Cr levels were significantly higher among exposed compared with controls, indicating delineation of exposure. Median (interquartile range) of Cr in whole blood was 2.81 (3.86) and 0.99 (1.21) μ g/L in exposed and referent groups, respectively. Duration: Mean (SD) years of exposure in chromate group = 14.57 (5.85).	↑ MN frequency ratio in lymphocytes of exposed; results of exposure-SNP interaction on MN presented as well	<i>Medium</i> confidence. Main limitations are related to lack of description (e.g., for participant selection and statistical analysis)	<u>Long et al.</u> (2019)
Cross-sectional study, Portugal. Exposed 1: n = 5 stainless steel welders exposed to Cr(VI) Exposed 2: n = 33 tannery workers exposed to Cr(III) Referent: n = 20–30 unexposed controls ('not known to be exposed to either environmental or occupational carcinogens')	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr in plasma and in urine (mid- shift for welders). Levels: Urinary and plasma chromium levels were higher in both exposed groups compared with controls. For example, mean \pm SD levels in plasma were 2.43 \pm 2.11 in tanners, 1.55 \pm 0.67 in welders, and 0.41 \pm 0.11 µg/L. Duration: Not reported	↑ micronuclei in lymphocytes among tanners compared to control group; (there was also a marginal increase in the welders group, but not statistically significant)	Low confidence. Main limitation is small number of welders, lack of description for participant selection, analysis, and confounders. Study also reported ↑ formation of DNA protein crosslinks in welders compared to controls	<u>Medeiros et al.</u> (2003)

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, Italy. <i>Exposed</i> : n = 17 tannery finishing workers with potential exposure to Cr(VI) <i>Referent</i> (2 groups): n = 21 and n = 17 workers 'from different industries' Note: also evaluated n = 21 tannery workers with potential exposure to Cr(III).	Assessment: Exposure to Cr(VI) inferred based on occupation. State that tannery finishing workers had potential for exposure to Cr(VI) but with no supporting description or evidence. It is not clear from text but sounds like workers may have come from several different tanneries with differing potential for exposure to Cr(VI) containing dyes. <i>Levels:</i> Not reported <i>Duration:</i> Not reported	No significant associations	<i>Low</i> confidence. Main limitation is unclear potential for Cr(VI) exposure for tannery finishing workers.	<u>Migliore et al.</u> (1991)
Cross-sectional study, India. <i>Exposed</i> : $n = 100$ male electroplaters exposed to Cr(VI) and nickel. Group II: exposed <10 years, $n = 50$. Group III: exposed for ≥ 10 years, n = 50. <i>Referent</i> : $n = 50$ unexposed controls (Group I)	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr in plasma. <i>Levels</i> : Concentrations were significantly higher in exposed (and higher for longer exposed workers) compared with unexposed. Mean + SD levels for longer exposed and shorter exposed workers were 2.9 + 0.8 and $1.7 + 0.55 \mu g/L$, respectively, while values for referent were $0.55 + 0.08 \mu g/L$. <i>Duration:</i> Group II exposed 1–9 years; Group III exposed 10–25 years .	In buccal cells of Group II compared to Group I, and in Group III compared to Group II: \uparrow micronucleus frequency ($p < 0.05$), correlated with Cr levels in plasma ($p < 0.01$)	Low confidence. Main limitations are related to outcome ascertainment, limited statistical analysis, and lack of description (e.g., for participant selection). Co-exposure to nickel is also a concern. Study also reported \uparrow nuclear anomalies (karyorrhexis, karyolysis, pyknosis) ($p < 0.05$)	<u>Qayyum et al.</u> (2012)

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, India. <i>Exposed</i> : n = 66 welders <i>Referent</i> : n = 60 controls ("selected from the general population with no history of occupational exposure to welding fumes or any known physical or chemical agent in the workplace, but belonged to the same age group and socio- economic status as the welders.")	Assessment: Exposure to Cr(VI) inferred based on occupation. State that welders were engaged in SMA welding, working with electrodes containing 20% chromium. <i>Levels:</i> Not reported. <i>Duration:</i> Duration of welding ranged from 5– 20 years.	In buccal cells of exposed welders compared to referent: \uparrow micronucleus frequency and mean comet tail length (DNA damage) that increased with duration of work ($p < 0.05$)	Medium confidence. The overall sample size is adequate but may not be sufficient for analyses stratified by smoking and alcohol consumption (and may need to consider both simultaneously). Potential for chromium exposure seems high given occupational context, but lack of measurements in environmental or biological media are lacking.	<u>Sudha et al.</u> (2011)

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, Bulgaria. <i>Exposed</i> 1: n = 30 male workers at a hydraulic machinery plant. Of these, n = 16 had low level exposure to chromium (various occupations, did not work close to electroplating tanks) while n = 14 had higher exposure to chromium due to work as electroplaters <i>Exposed</i> 2: n = 10 hospitalized electroplaters from different plants were recruited from an occupational health clinic. <i>Referent</i> 1: n = 5 male administrative workers from the hydraulic machinery plant <i>Referent</i> 2: n = 13 administrative workers (workplace not described).	Assessment: Exposure to Cr(VI) inferred based on occupation. The workers were split into two groups based on levels of exposure. Also measured Cr in air, erythrocytes, and urine for exposed workers only. <i>Levels:</i> Mean air chromium (total) concentrations were 43 and 83 µg/m ³ in the low- and high-exposure groups, respectively. Mean chromium concentrations in erythrocytes and urine of the low-exposure group were 4.31 and 3.97 µg/L, respectively. The mean chromium concentrations in erythrocytes and urine of the high-exposure group were 8.4 and 5.0 µg/L, respectively. <i>Duration:</i> Duration of employment ranged from 4 to 25 years with mean durations of 10.44 and 11.63 years in the low- and high- exposure groups, respectively.	↑ MN and binucleated cells carrying MN in lymphocytes of exposed compared to control; also found correlations of Cr measured in air, erythrocytes and urine, with higher MN.	Low confidence. Limitations are due to small sample size, questionable pooling of various exposed and control groups, lack of consideration of confounding, and limited description of e.g., analysis.	<u>Vaglenov et al.</u> (1999)

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, Austria. <i>Exposed</i> : n = 22 bright chrome plating workers exposed to chromium and cobalt <i>Referent</i> : n = 22 jail wardens	Assessment: Exposure to Cr(VI) inferred based on occupation. Welders used mainly TIG process (95%) with smaller proportions of electric arc and very little autogenous welding. Also measured Cr in whole blood. <i>Levels</i> : Blood levels were higher in welders compared with controls. Mean+SD levels for exposed workers at the beginning and end of the work week were 1.4+0.9 and 2.3+1.5 µg/L, respectively, while values for referent were 0.2+0.2 µg/L. <i>Duration:</i> All welders worked 8 h per day, three weeks before and during the collection of the samples.	In exfoliated cells of exposed chrome platers compared to referent: Buccal cells: \uparrow micronucleus frequency by 23% that was not quite statistically significant ($p = 0.516$) Nasal cells: \uparrow micronucleus frequency by 97% ($p = 0.005$) \uparrow nuclear anomalies in both cell types	<i>Low</i> confidence. Limitations are due to small sample size and presence of co- exposures, which precluded more detailed analysis to separate effects.	Wultsch et al. (2014)
Cross-sectional study, China <i>Exposed</i> : n = 79 chromate production workers <i>Referent</i> : n = 112 peasant volunteers without occupational chromate exposures	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr in blood, urine, and air. Levels: Concentrations were higher in all media among exposed (mean (range); air: 13.01 ($1.03-56.60$) µg/m ³ ; blood: 9.19 ($1.17-51.88$) µg/L; urine: 17.03 ($2.78-97.23$) µg/g) creatinine compared to controls (air: 0.073 ($0.023-0.235$) µg/m ³ ; blood: 3.44 ($0.25-22.51$) µg/L; urine: 1.42 ($0.39-26.82$) µg/g. Duration: Mean (SE) years of work among chromate group = 14.89 (8.65).	 ↑ MN in binucleated cells among exposed compared to control group. Moderate correlations (0.353-0.517) between Cr in blood, urine, air and MN 	<i>Low</i> confidence. Limitations include unclear recruitment processes (leaving potential for selection bias), potential exposure to chromium in control group reducing sensitivity, and limited analysis (including unclear approach to address confounding)	<u>Xiaohua et al.</u> (2012)

The following studies were found to be *uninformative* due to critical deficiencies in the exposure or outcome domain: <u>Cid et al. (1991)</u>, <u>Coelho et al. (2013)</u>, <u>Hilali et al. (2008)</u>, <u>Sarto et al. (1990)</u>, <u>Sellappa et al. (2010)</u>, and <u>Wultsch et al. (2017)</u>.

1 Supporting genotoxicity studies in lung tissue

- 2 In addition to the studies measuring gene and chromosomal mutation summarized above,
- 3 other mechanistic evidence investigating genotoxicity specific to lung tissues following exposures
- 4 to Cr(VI) was identified in preliminary title and abstract screening. These studies were tagged as
- 5 "mechanistic" and further screened and tagged as "inhalation" and "cancer" if they were
- 6 epidemiological studies of humans exposed to Cr(VI) via inhalation or studies conducted in lung
- 7 tissues or cells that were relevant to carcinogenic processes. Four additional genotoxicity studies of
- 8 lung tumor tissue in occupationally exposed humans were identified. Genotoxicity evidence from in
- 9 vitro studies conducted in human primary or immortalized lung cells examining genotoxicity
- 10 endpoints relevant to lung cancer are also summarized below. The evidence is summarized in
- **11** Table C-48.

Study Overview	Exposure	Results	Comments	Reference
Gene mutation or gene e	xpression in tumor tissue			
20 lung tumor & normal tissue samples from 19 individuals undergoing surgery for lung cancer or at autopsy	Assessment: Based on occupation Levels: Not reported Duration: Male workers exposed to chromate for average 21.7 ± 9.1 (8–38) years	P53 mutations found in 4 (20%) of 20 chromate- exposed lung samples ↓ occurrence of p53 mutations in chromate exposed workers Key differences in chromate exposed workers: no G to T transversions; 50% point mutations had changes in AT base pairs; 50% of those with point mutations had double missense mutations	P53 mutations in chromate-exposed workers with lung cancer; the pattern of p53 mutations in lung cancer patients exposed to chromate differed from that of common lung cancers in 3 respects No adjustments for potential confounders; no information on smoking provided; small sample size; limited information on selection	<u>Kondo et al. (1997)</u>
<i>Exposed 1:</i> exocrine pancreatic cancer cases with K-ras mutated tumors (n = 83) <i>Exposed 2:</i> exocrine pancreatic cases without K-ras mutated tumors (n = 24)	Assessment: Finnish job-exposure matrix (Finjem): Inhalation exposure to chromium dust or fumes from welding, smelting, grinding, or related processing of steel or other materials containing chromium (including metallic chromium, Cr(III), Cr(VI), and other chromium compounds) Industrial hygiene evaluation: inhalation and dermal exposure to Cr(III) and Cr(VI) <i>Levels:</i> Not reported <i>Duration:</i> Not reported	 ↑ OR of K-ras codon 12 mutated pancreatic cancer with inhalation exposure to chromium ↑ proportion of glycine to valine mutations (G to T transversions) with inhalation exposure to chromium 	PCR-RFLP analysis of formalin-fixed and paraffin-embedded tumor specimens for point mutations at codon 12 of the K-ras gene Very few individuals actually exposed to Cr; wide confidence intervals indicate model instability	<u>Alguacil et al. (2003)</u>
Exposed: Chromium workers diagnosed with	Assessment: Total and hexavalent Cr measured in soil and air samples taken 'in	In lung cancer tissues (preserved in paraffin blocks):	The information regarding potential exposure is sparse.	Halasova et al. (2010)

Table C-48. Supporting genotoxicity studies in lung tissues and cells following Cr(VI) exposures

This document is a draft for review purposes only and does not constitute Agency policy.

Study Overview	Exposure	Results	Comments	Reference
lung cancer (n = 67 males) <i>Referent</i> : male controls with lung cancer but without known exposure to chromium (n = 104)	the vicinity of the workplace' using atomic absorption spectrometry. <i>Levels</i> : Mean values of Cr(VI) in air of smelting plants was 0.019–0.03 mg/m ³ . Soil chromium had a value of 137 mg/kg. <i>Duration:</i> Mean exposure time 16.7 ± 10.0(SD) years (range 1–41 years)	↓ surviving (anti- apoptotic) ↑ p53 (pro-apoptotic)	There were also differences in the type of lung cancer between exposed and referent which may impact results. No information on smoking, which may be important to consider given all participants had lung cancer. In addition, P53 detection by IHC is nonspecific and will include nonfunctional P53 protein.	
Exposed: lung cancer specimens from ex- chromate workers (n = 19) Referents 1: lung cancer specimens from individuals never exposed to chromate, silica, or other occupational compounds (n = 52) Referents 2: lung cancer specimens from nonasbestos pneumoconiosis (n = 63)	<i>Assessment:</i> Based on occupational history <i>Levels:</i> Not reported <i>Duration:</i> Not reported	In lung cancer tissues (squamous cell carcinomas) from chromate-exposed patients compared to nonexposed or pneumoconiosis patients: ↑ cyclin D1 expression (<i>p</i> < 0.001) No difference in bcl-2 or p53 expression	No assessment of exposure; reliance on work history alone. Minimal details on case/control selection. No consideration of confounders, except smoking status	<u>Katabami et al. (2000)</u>
Mouse, transgenic C57BL/6 Big Blue® mice	Intratracheal instillation (single administration): 0, 1.7, 3.4, or 6.8 mg/kg Cr(VI)	Significantly increased mutation frequency at all doses; increased with dose	Preliminary experiment identified doses >6.75 mg/kg were lethal	Cheng et al. (<u>2000</u> ; <u>1998</u>)

Study Overview	Exposure	Results	Comments	Reference
	Measured mutation frequency in lung at 1, 2, or 4 weeks post-exposure	and duration post- treatment Mutation spectrum: increased frequency of G:C to T:A transversions, associated with oxidative damage	Potentially underpowered with 4 mice per dose group Positive control not concurrently tested with Cr(VI)-treated group Inconsistent/low numbers of PFUs scored per animal Spontaneous mutations primarily G:C to A:T transitions	
In vitro genotoxicity in pr	imary and immortalized human lung cells			
Human lung cells			Distribution of bulky DNA adducts and oxidative DNA damage and mutational signature of p53 mutations following exposure to Cr(III), Cr(VI), and Cr(V)	<u>Arakawa et al. (2012)</u>
HLF human lung fibroblasts (LL-24 cell line)	3, 6, and 9 μM Na₂CrO₄, 24 h	个 Cr-DNA adducts	Pretreatment with 1 mM ascorbate or 20 μM tocopherol had no ameliorative effects Also ↑ cytotoxicity, duration- and dose- dependent (stat sig ≥6 μM) ↑ apoptosis ↑ p53 (4–6 fold)	<u>Carlisle et al. (2000a)</u>
A549 (human lung adenocarcinoma) and BEAS2B (human	0.1, 0.5, 1.0 and 10 μM Na2CrO4, 0.5, 1 and 4 h	个 oxidative DNA damage (Fpg-modified comet assay)	Oxidative role in DNA damage decreased with time at lower Cr(VI) concentrations and	<u>Cavallo et al. (2010)</u>

Study Overview	Exposure	Results	Comments	Reference
bronchial epithelial) cells			increased with time at higher concentrations A549 more sensitive than BEAS2B Also 个 apoptosis at 10 µM (caspase-3 activity and morphology)	
H460 human lung epithelial cells, IMR90 normal human lung fibroblasts, and normal mouse embryonic fibroblasts	0, 5, 10, 15, and 20 μM K ₂ CrO ₄	DNA damage response to Cr(VI)-induced DNA double-strand breaks (phosphorylation of yH2AX) dependent on ATR kinase and not ATM in ascorbate-restored cells DNA DSBs only formed in euchromatin	Involvement of ATR and DSBs forming in actively transcribed regions increases the probability that Cr(VI) can generate carcinogenic mutations	<u>Deloughery et al.</u> (2015)
Human bronchial epithelial cells and IMR- 90 embryonic lung fibroblasts	K ₂ CrO ₄ , 25–200 μM, 1–12 h	个 DNA-protein crosslinks, dose-dependent, persistent at 12 h		<u>Fornace et al. (1981)</u>
A549 human lung adenocarcinoma cells	10–500 µM Na₂Cr₂O7, 1 or 16 h	↑ DNA strand breaks, dose-dependent (comet assay) that were 10X higher with FAPY ↑ 8-OHdG	Authors conclude that Cr(VI)-induced oxidative DNA damage may partly be due to a reduced capacity to repair endogenous and Cr(VI)- induced 8-OHdG lesions Also ↓ OGG1 mRNA, dose-dependent (RT-PCR and RNase protection assay); not affected by adding H2O2 No effect on hAPE or GAPDH	Hodges et al. (<u>2002;</u> <u>2001</u>)

Study Overview	Exposure	Results	Comments	Reference
HeLa and human lung bronchial epithelial cells	0.25 μM Na ₂ CrO ₄ , 30 days, or 10 μM, 16 or 48 h	个 chromosomal aberrations with acute or chronic exposures	Chromosomal instability caused in part by suppressed activation of BubR1 and expression of Emi1, causing activation of APC/C, following nocodazole-induced mitotic arrest activation	<u>Hu et al. (2011)</u>
Human U2OS osteosarcoma cells, Werner syndrome (WS) skin fibroblasts (AG03141), WI-38 fetal lung fibroblasts, telomerase- immortalized cell lines (hTERT GM01604, (hTERT AMIE15010, AG03141, hTERT BJ skin fibroblasts)	0–4 μM Cr(VI), 6-48 h	 ↑ γH2AX foci in S-phase ↑ WRN colocalization at γH2AX foci ↑ telomere defects exacerbated by lack of telomerase Lack of WRN slowed Cr(VI)- induced DNA DSB repair 	Cr(VI) induces DNA DSBs and stalled replication forks; WRN helicase plays a role in the cellular recovery from Cr(VI)- induced replicative stress	Liu et al. (<u>2010a</u> , <u>2009</u>)
A549 (human lung adenocarcinoma) and BEAS2B (human bronchial epithelial) cells	0, 0.5, 1, 2, 3, 5 μM Cr(VI), 2–72 h	↓ Gene 33 (Mig6, ERRFI1), dose- and time-dependent (≥1 μM, 24 h); reversed by NAC ↑ DNA DSBs (γH2AX), dose-dependent (≥2 μM) Suppression of Gene 33 increases DNA damage (γH2AX, micronuclei) and cell transformation	Cr(VI) suppresses Gene 33, inhibiting the Cr(VI)- induced DNA damage response mediated in part by Gene 33-induced cell signaling pathways	<u>Park et al. (2016)</u>
Human lung epithelial A549 and colon HCT116 (MLH-/-) and DLD1 (MSH6-/-) cells	1–20 μM K₂CrO₄, 3–12 h	 ↑ survival, ↓ apoptosis in mismatch repair (MMR)-deficient cells ↑ DNA DSBs (γH2AX) and apoptosis in MMR-proficient cells 	MMR responsive to Cr- DNA adducts, not oxidative damage or crosslinks In MMR+ cells, apoptosis induced by Cr-DNA	Peterson-Roth et al. (2005); Zhitkovich et al. (2006)

Study Overview	Exposure	Results	Comments	Reference
		γH2AX foci occur in G2, but no G2 cell cycle arrest No p53 induction in either cell type at subtoxic levels	adducts independently of p53	
S-9 fraction from pulmonary alveolar macrophages or S-12 fraction of peripheral lung parenchyma of human patients	10–30 μg sodium dichromate dihydrate per plate	↓ mutagenicity in the Ames assay when Cr(VI) was preincubated with lung fractions		<u>Petrilli et al. (1986)</u> , <u>De</u> <u>Flora et al. (1987b)</u>
Primary human lung IMR90 fibroblasts, H460 human lung epithelial cells, and XPA- and XPF- human fibroblasts	1–5 μM K₂CrO₄, 3 h	Cr-DNA adducts are substrate for nucleotide excision repair (NER) ↑ mutagenicity of these adducts and ↑ apoptosis with NER deficiency	NER efficiently removes Cr-DNA adducts	Reynolds et al. (2004)
Human colon HCT116 (MLH1-/-) and DLD1 (MSH6-/-), lung epithelial H460, and lung fibroblast IMR90 cell lines	2–10 μmol/L K₂CrO₄, 3 h	Ternary ascorbate-Cr-DNA adducts are substrate for error-prone mismatch repair (MMR) MSH2-MSH6 dimer, leading to ↑ DNA DSBs and ↑ apoptosis Cells deficient in MMR have higher survival and lower DNA DSBs	Colon cells deficient in MMR have increased survival following Cr(VI) exposures, increasing probability of clonal selection of these cells	<u>Reynolds et al. (2009)</u>
Primary human lung IMR90 fibroblasts H460 human lung epithelial cells	0.2–8 μM K ₂ CrO ₄ , 3 h	 ↑ DNA DSB with ascorbate caused by aberrant mismatch repair ↑ cytotoxicity and apoptosis with ascorbate; effects reversed by suppressing DNA mismatch 	By restoring intracellular ascorbate to physiological levels via DHA (max intracellular 0.9 mM), it was shown that ascorbate can suppress Cr(VI)-induced oxidative damage but promotes Cr-DNA lesions	Reynolds et al. (<u>2012;</u> 2007; <u>2007</u>)

This document is a draft for review purposes only and does not constitute Agency policy.

Study Overview	Exposure	Results	Comments	Reference
		repair but p53 status had no effect 个个 cytotoxicity and cell cycle delay in cells deficient in oxidative DNA damage repair (XRCC1 knockdown); effects reversed by ascorbate Chromosomal aberrations not affected by XRCC1 status	that are either repaired by mismatch repair, independently of p53, or lead to cytotoxicity and apoptosis	
Primary human bronchial epithelial cells; p53+ and p53- H358 bronchoalveolar carcinoma isogenic cells	200 μM K₂CrO₄, 2 h	 ↑ DNA strand breaks ↑ apoptosis in p53+ cells Apoptosis mediated by p53-upregulated modulator of apoptosis (PUMA), BAX, cytochrome c and caspase-3 		<u>Russo et al. (2005)</u>
Primary human bronchial fibroblasts (PHBFs)	1–10 μM Na₂CrO₄, 24 h	Relative survival of 74% (1 μ M), 57% (2.5 μ M), 13% (5 μ M) and 0% (10 μ M) Chromosomal damage in 18% (1 μ M) and 33% (2.5 μ M) of metaphases		<u>Wise JP et al. (2002)</u>
Human SV40 transformed fibroblasts, Werner syndrome fibroblasts, primary human lung IMR90 fibroblasts, and and human colon HCT116 MLH1-/- and MLH1+ cells	0–30 μM K₂CrO₄, 3 h	 ↑ nuclear relocalization of WRN in response to Cr(VI) ↓ cell survival, ↑ DNA DSBs and ↓ RAD51 foci in cells lacking WRN ↓ DNA DSBs in cells lacking mismatch repair 	Error-prone mismatch repair of Cr-DNA adducts generates DNA DSBs and repair of persistent DNA DSBs is dependent on WRN helicase	Zecevic et al. (2009)

1

1 Supporting inhalation exposure genotoxicity studies

- 2 Another set of genotoxicity studies were identified that were informative for interpretations
- 3 of genotoxic risk in humans but did not specifically measure genotoxicity in lung tissues. These
- 4 studies were also identified in preliminary title and abstract screening as "mechanistic" were
- 5 further screened and tagged as "inhalation," "cancer," and "genotoxicity" if they were
- 6 epidemiological studies of humans or experimental animal studies exposed to Cr(VI) via inhalation
- 7 that measured genotoxicity endpoints. After removal of endpoints already considered that
- 8 reported gene and chromosomal mutation measures and/or studies specific to lung tissues (see
- 9 above), 29 genotoxicity studies of humans occupationally exposed and one study in animals
- 10 exposed via intratracheal instillation were identified. The evidence is summarized in Table C-49.

Table C-49. Supporting genotoxicity studies in humans and animals exposed to Cr(VI) via inhalation or
intratracheal instillation

Study Overview	Exposure	Results	Comments	Reference
Exposed: male welders	Assessment: Blood samples from 51 welders	个 DNA mean tail length in	There are limitations	Danadevi et al. (2004)
(n = 102)	& 49 controls, selected randomly, on 4th day	welders	related to outcome	
Referents: male general	of the work week. Cr and Ni content		evaluation, such as the	
population controls	measured with ICP-MS		use of outdated methods	
(n = 102), age and SES-	Levels: Welders had higher Cr and Ni		that are no longer	
matched to exposed	compared to controls ((Cr, 151.65 versus		recommended, which	
Exclusions: Take	17.86 mg/L; Ni, 132.39 versus 16.91 mg/L;		could lead to inaccurate	
medicines or exposed to	<i>p</i> < 0.001))		scoring. There is also a	
radiation 12 months	Duration: The duration of exposure varied		lack of	
before sampling	widely (range: 1–24 years). (Overall mean		description/details on	
	not presented)		participant selection	
			(e.g., concern for	
			potential selection bias).	
			Comet assay conducted	
			in all subjects, but	
			micronucleus test	
			conducted only in 58	
			welders and 53 controls,	
			selected randomly from	
			population (Study	
			reported 个 MN in	
			welders compared to	
			controls and with	
			increased duration of	
			welding work)	

Study Overview	Exposure	Results	Comments	Reference
Exposed: Chrome-plating workers (n = 19) Referents 1: hospital workers (n = 18) Referents 2: university personnel (n = 20) Exclusions: None stated	Assessment: Total Cr measured in urine, erythrocytes, and lymphocytes using graphite furnace atomic absorption <i>Levels:</i> Total Cr was higher in exposed workers compared with hospital workers (see table 3; for example, post-shift mean urine levels were 7.31 [SD = 4.33] in exposed vs. 0.12 [SD = 0.07] μg/g crt in referent). <i>Duration:</i> Mean (SD) years of exposure among chrome-plating workers = 6.3 (4.3)	↑ comet tail moment correlated with Cr lymphocyte concentrations Null apoptotic nuclei	Did not exclude smokers (high prevalence) although did present results stratified by smoking (small numbers). It is unclear if exposure was to Cr(VI) specifically (possible with chromeplating workers but measured total Cr in urine). State that previous air monitoring for total chromium showed levels of 0.4 to 5.6 µg/m ³ , which is fairly low. The comet assay is an insensitive method for measuring apoptosis.	<u>Gambelunghe et al.</u> (2003)
<i>Exposed:</i> chromium exposed workers (n = 10) <i>Referents:</i> nonexposed workers (n = 10)	Assessment: Urine and blood samples were taken from workers at the end of a workweek. Levels: Chromium concentrations in the factory ranged from 0.001 to 0.055 mg $Cr(VI)/m^3$ (obtained from personal and area samplers). Mean chromium concentrations in urine (5.97 µg/g creatinine), whole blood (5.5 µg/L), plasma (2.8 µg/L), and lymphocytes (1.01 µg/10 ¹⁰ cells) of exposed workers were significantly higher than in nonexposed workers. Duration: The mean duration of exposure was 15 yrs.	No difference in DNA strand breaks (alkaline elution assay) between groups	Very small sample + low exposure levels – probably limited power Study also reported no increased incidence in 8- OHdG	<u>Gao et al. (1994)</u>

Study Overview	Exposure	Results	Comments	Reference
Exposed 1: male welders working in areas without collective protections (n = 27) Exposed 2: male welders working in locations with smoke extraction systems (n = 33) Referents: office workers with no history of occupational exposure to welding fumes or other physical/chemical agent in workplace (n = 30) Exclusions: history of radiotherapy or chemotherapy; use of therapeutic drugs known to be mutagenic or toxic for reproduction	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured total Cr in blood and urine. Levels: Cr levels in blood and urine were higher among both groups of welders compared with controls (means 129 to 145, compared with 92 µg/L), and urinary chromium was higher among welders working without smoke extraction systems. Duration: Welders exposed for 0.5–45 years	↑ OTM _x ² distribution (measure of DNA damage) in welders at the end of the work week compared to beginning ↑ DNA strand breaks at end of work week in welders	Main limitations are related to lack of description (e.g., for participant selection, analysis), unknown contribution of Cr(VI) to Cr exposure and known co-exposures to other metals. Study also reported ↑ frequency of chromosomal damage in welders	larmarcovai et al. (2005)
<i>Exposed:</i> welders (n = 93) <i>Referents:</i> general population controls with no history of occupational exposure to welding fumes; age and SES-matched to exposed group (n = 60) <i>Exclusions:</i> medication; exposed to radiation within 12 months of sampling	Assessment: Exposure determined by occupation Levels: Not reported Duration: 5–15 years	↑ DNA mean tail length in welders compared to controls Study was not included due to a critically deficient rating in the exposure domain when evaluated for micronucleus frequency.	Study also reported ↑ frequency of MN in welders compared to controls; and in welders with increased duration of work	<u>Sellappa et al. (2010)</u>

Study Overview	Exposure	Results	Comments	Reference
Exposed: male welders (n = 66) Referents: male individuals from the general population with no history of occupational exposure to welding fumes or other physical/chemical exposure in workplace; age and SES-matched to welders (n = 60) Exclusions: medication; exposed to radiation within 12 months of sampling	Assessment: Exposure determined by occupation Levels: Not reported. Duration: Duration of welding ranged from 5–20 years.	↑ DNA mean tail length in welders compared to controls, and in welders with increased duration of work	Study also reported ↑ frequency of MN in welders compared to controls; and in welders with increased duration of work	<u>Sudha et al. (2011)</u>
Exposed: individuals (n = 115; 29 female, 86 male) with exposure to sodium dichromate for at least 6 months Referents: healthy volunteers (n = 60; 15 female, 45 male) in the same city without chromate exposure history. Exclusions: medical history of liver or renal disease, hypertension, diabetes, cardiovascular disease, or pregnancy	Assessment: Air-Cr concentration collected with point dust sampler and measured with electrothermal atomic absorption spectrometry. Personal air samples collected through full shift (8h) sampling to calculate cumulative dose Post-shift blood samples collected; chromium measured with ICP-MS Levels: Mean (SD) chromium in blood of exposed workers = 12.45 (20.28) µg/L.↑ accumulation of Cr in peripheral red blood cells in chromate-exposed workers Duration: Mean (SD) years of employment among exposed group: 12.86 (6.02); range: 1–33.	↑ urinary 8-hydroxy-2- deoxyguanosine, DNA strand breaks and global DNA hypomethylation in chromate exposed workers	urinary 8-hydroxy-2'- deoxyguanosine, DNA strand breaks and global DNA hypomethylation No adjustment for diet or other nonfolate supplements ↓ serum folate in chromate-exposed workers	<u>Wang et al. (2012)</u>

Study Overview	Exposure	Results	Comments	Reference
<i>Exposed:</i> electroplating workers (n = 157) <i>Referents:</i> individuals without exposure to chromium or known physical/chemical genotoxic agents (n = 93) <i>Exclusions:</i> abnormal liver and kidney function; cancer, diabetes, heart disease	Assessment: Air-Cr and blood Cr determined by graphite furnace atomic absorption spectrophotometer <i>Levels</i> : median (range) Cr in erythrocytes (μg/L) among exposed: 4.41 (0.93–14.98); among controls: 1.54 (0.14–4.58). Median (range) short-term concentrations of Cr in air: 0.060 (0.016–0.531) mg/m ³ <i>Duration:</i> Median (min-max) years of exposure among exposed group: 5.3 (0.5– 23)	 ↑ 8-OHdG adducts among exposed compared to referents ↑ Olive tail moment, tail length, & tail DNA% among exposed compared to referents 	Limited adjustment for confounders (including diet) Potential co-exposures to other metals in the workplace	<u>Zhang et al. (2011)</u>
Rat, Wistar	Intratracheal instillation, 1.3 and 2.5 mg/kg Na2Cr2O7, 24 h	个 DNA strand breaks in peripheral lymphocytes	Fluorometric analysis of DNA unwinding (FADU) assay	<u>Gao et al. (1992)</u>
DNA-protein crosslinks				
<i>Exposed 1:</i> Full time tannery workers, directly involved in chromium tanning or finishing process (n = 33) <i>Exposed 2:</i> Full time manual metal arc stainless steel welders (n = 5) <i>Referents:</i> Control individuals with no known exposure to environmental or occupational carcinogens (n = 30)	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr in plasma and in urine (mid-shift for welders). <i>Levels:</i> Urinary and plasma chromium levels were higher in both exposed groups compared with controls. For example, mean \pm SD levels in plasma were 2.43 \pm 2.11 in tanners, 1.55 \pm 0.67 in welders, and 0.41 \pm 0.11 µg/L. <i>Duration:</i> Not reported	↑ DNA-protein crosslinks in tannery workers & welders compared to controls	Main limitation is small number of welders, lack of description for participant selection, analysis, and confounders. Study also reported 个MN in tannery workers & welders compared to controls	<u>Medeiros et al. (2003)</u>

Study Overview	Exposure	Results	Comments	Reference
Exposed: residents living	Assessment: No description of exposure	个 DNA-protein crosslinks	Control for the following	<u>Taioli et al. (1995)</u>
near Hudson County,	assessment protocol	in exposed compared to	covariates – age, gender,	
New Jersey chromium-	Levels: Based on recruitment, exposed group	controls, after adjustments	race, smoking, weight –	
containing landfills and	had urinary chromium ≥0.5 μg/L	for covariates	increases confidence in	
with urinary chromium	Duration: Not reported		results	
≥0.5 µg/L (n = 33)			Unclear whether	
Referents: individuals			chromium measures	
living in			were also assessed in the	
noncontaminated areas			control population and	
(n = 49)			whether unexposed	
			status was confirmed.	
Exposed: male stainless	Assessment: Based on occupation. Welders	个 DNA-protein crosslinks	Comparisons of	Quievryn et al. (2001)
steel welders working in	worked in stainless steel industry using	in lymphocytes of welders	reduction rates and	
open environment	acetylene flame method in open	\downarrow excess of glutathione	extent of DNA damage	
(n = 5)	environment without protective masks over	over cysteine in welders	and DNA-protein adducts	
Referents: age-matched	nose or mouth		to levels of intracellular	
male control blood	Levels: Not reported		reductants glutathione	
samples obtained from	Duration: Not reported		and cysteine	
local blood center			Small sample size limits	
(n = 22)			confidence in results	

Study Overview	Exposure	Results	Comments	Reference
Exposed: Chrome-platers	Assessment: Personal breathing sampling	个 chromium in pre-&	Small sample size limits	Zhitkovich et al.
from metallurgic plant	pump with sampling flow of 21 min ⁻¹ for all	post-shift urine,	confidence	<u>(1996a)</u>
(n = 14)	workers over the course of one 8-hr shift;	erythrocytes, and	No consideration of	
Referents: residents of	collection using Millipore filters; analyzed	lymphocytes elevated in	covariates	
the same town, not	with atomic absorption flame method for	exposed compared to	Potential confounding by	
living in vicinity of the	total chromium	referents	other occupational	
factory and not known	11 workers also fitted with pumps with	No difference in DNA-	exposures	
to be exposed to	medium range flow (1.21 min ⁻¹); collection	protein crosslinks between		
chromium or other	with 5 mm PVC filters; analyzed with visible	exposed and referents;		
metals (n = 12) and	absorption spectrophotometer for Cr(VI),	however, there were +		
additional unexposed	with portion of each sample analyzed for	associations between DNA		
individuals living in	total chromium by flame atomic absorption	protein crosslinks and		
nearby coastal town	Blood samples collected post work shift;	chromium in erythrocytes		
(n = 6)	analyzed with flameless atomic absorption	at low and moderate		
	spectrometry	exposures with saturation		
	Urine samples collected pre & post work	at higher exposure levels		
	shift			
	Levels: Ambient levels of total chromium in			
	chrome-plating plant ranged from 0.009–			
	0.327 mg/m ³ (median = 0.041 mg/m ³) as			
	measured with Millipore filters and 0.008-			
	0.19 mg/m ³ (median = 0.027 mg/m ³)			
	measured by Higitest filters. Cr(VI) levels in			
	ambient air ranged from 0.0005–0.13 mg/m ³			
	$(median = 0.003 mg/m^3)$			
	Duration: Workers had been continually			
	employed at metallurgic plant for 8-h work			
	shifts for 1.5–15 years (mean: 9.5 ± 4.0)			

Study Overview	Exposure	Results	Comments	Reference
Exposed: railroad arc	Assessment: Chromium and nickel measured	个 DNA-protein cross-links	Unclear how there was	Costa et al. (1993)
welders (n = 21)	in blood of controls and welders with atomic	in welders compared to	an effect detected when	
Referents: unexposed	absorption	controls	there was no	
controls (office workers,	Levels: No difference in nickel levels		overall/meaningful	
supervisors, janitors,	between groups; small but not statistically		difference in chromium	
laboratory technicians)	significant difference in chromium between		or nickel between groups	
(n = 26)	groups (numbers not provided).		 is this due to an 	
	Duration: Welders had been exposed full		unmeasured	
	time to welding fumes for at least 6 months,		confounder?	
	but not stainless-steel welding		The exposed group did	
			not actually experience	
			high levels of Cr	
			exposure – this may have	
			limited power to detect	
			effects	
			Small sample size limits	
			confidence	
Sister chromatid exchange		1	1	
Exposed: Chromium	Assessment: Blood samples and buccal	No difference in SCE/cell	Although exposed and	<u>Benova et al. (2002)</u>
plate workers (n = 15)	mucosal cells taken from exposed group;	between exposed and	unexposed workers were	
Referents 1: age, gender,	exposure was estimated with personal air	controls	matched on age, sex, and	
smoking-matched	samplers and in urine samples.		smoking habit, the two	
controls (n = 15)	Levels: Mean air concentration of total		unexposed (worker and	
Referents 2: individuals	chromium was 0.0075 mg chromium/m ³ in		rural) groups were	
of similar age from	the low-exposure group and 0.0249 mg		combined, resulting in	
unpolluted rural region	chromium/m ³ in the high-exposure group		lower confidence in	
(n = 8)	(number of workers in each exposure group		comparability of exposed	
	was not reported).		and unexposed group	
	Mean concentrations of chromium in urine		comparisons. Inference	
	were 18.63 μg/L (low) and 104.22 μg/L		is further limited by	
	(high)		small sample size and	
	Duration: Duration of exposure ranged from		lack of description.	
	2 to >20 yrs; mean duration of exposure was		Study also reported ↑	
	not reported.		micronuclei in peripheral	
			lymphocytes and buccal	
			cells in workers	
			compared to controls	

Study Overview	Exposure	Results	Comments	Reference
Exposed: chromium	Assessment: Air samples from the	个 chromosomal	Although controls were	<u>Deng et al. (1988)</u>
electroplating workers	electroplating room were collected, along	aberrations and sister	age and sex matched to	
(n = 7)	with stool and hair samples to determine	chromatid exchanges (SCE)	exposed subjects and	
Referents: age and sex-	exposure.	in exposed group	were stated to have	
matched nonexposed	Levels: The mean chromium (total) air		similar socioeconomic	
office employees	concentration (by random air collection) was		status, the small sample	
(n = 10)	8.1 μg/mm ³ , the mean chromium		size is quite small and	
Exclusions: Recent x-ray	concentration in stool samples was 8.5 μ g/g		the analysis limited. Also	
examination, overt viral	stool, and the mean chromium		unclear how well	
diseases, medications	concentration in hair was 35.68 μ g/g. The		differentiated chromium	
known to have <i>in vitro</i>	valence of chromium that workers were		exposure is by group -	
chromosomal effects	exposed to was unspecified.		analyses of chromium in	
	Duration: Mean employment period of 12.8		hair suggest there is	
	yrs among exposed groups.		delineation with	
			controls, but no	
			information on stool	
			samples which showed	
			similarities between	
			nickel and chromium	
			workers	
			Also reports co-exposure	
			to nickel	
Exposed: male stainless	Assessment: Urine sampling at end workday	No differences in SCE	Although Cr(VI) exposure	Husgafvel-Pursiainen
steel welders (n = 23)	to evaluate chromium concentration	between exposure groups	seems likely to occur	<u>et al. (1982)</u>
Referents: men	Levels: Urinary chromium levels ranged from		among these welders,	
employed in office of	0.20–1.55 μmole/L		the analysis is limited by	
printing company	Duration: Welders had been employed in		small sample size when	
(n = 22)	manual metal arc (MMA) welding for at least		stratifying by smoking	
	4 years; mean (SD) length of		(found to be related to	
	employment = 21 (10). Welders worked in		the outcome).	
	poorly ventilated areas.		Study also reported No	
			differences in CA	
			between exposure	
			groups	

Study Overview	Exposure	Results	Comments	Reference
<i>Exposed:</i> male stainless steel welders (survey 1 n = 17; survey 2 & 3 n = 44) <i>Referents:</i> male office workers (survey 1 n = 6; survey 2 n = 7; survey 3 n = 20)	Assessment: Classification based on occupation. Spot urine samples collected during workday; analyzed with direct flameless atomic absorption spectrometer. <i>Levels:</i> Mean urinary Cr was 9.8 and 4.2 µg/L among exposed and referent group, respectively. <i>Duration:</i> Stainless steel welders employed for 5–20 years (mean 12.1)	No differences in sister chromatid exchanges (SCE) in exposed compared to controls	The main limitations are related to the outcome evaluation, as well as poorly described and reported data analysis and lack of consideration of potential confounders Study also reported ↑ chromosomal aberrations in exposed compared to controls	<u>Koshi et al. (1984)</u>
<i>Exposed 1:</i> chromium exposed electroplating male workers (n = 14) <i>Exposed 2:</i> nickel- chromium exposed electroplating male workers (n = 34) <i>Referents:</i> male administrative workers free of exposure to heavy metals and solvents (n = 43)	Assessment: Urine and blood samples collected; analyzed with atomic absorption spectrophometry Levels: Cr workers had the highest blood Cr (11.39 lg/l) and urine Cr concentrations (14.7 lg/g creatinine) Duration: At least 6 months of electroplating experience at the start of the study. Mean (SD) years of work among chromium workers = 6.6 (5.8); among nickel-chromium workers = 3.7 (4.6)	↑ sister chromatid exchanges and high frequency cells in Cr & Ni- Cr groups	Small sample size limits confidence Observed synergistic effect with smoking	<u>Lai et al. (1998)</u>
Exposed: manual metal arc stainless steel welders (n = 24) Referents: matched controls (n = 24)	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured total Cr in air (welders only) and urine (all). Levels: Mean urinary Cr was 47 and 1.5 μ mol/mol creatinine among exposed and referent group, respectively. Mean air Cr level 81 μ g/m ³ . Duration: Welders were selected for their 'long and intense' welding on stainless steel (mean work duration of 19 years).	No difference in cytogenetic effects (i.e., chromosomal aberrations, sister chromatid exchanges, or micronuclei) between groups	Main limitations are related to outcome ascertainment and statistical analysis, as well as limited description of results.	<u>Littorin et al. (1983)</u>

Study Overview	Exposure	Results	Comments	Reference
<i>Exposed:</i> male chromium platers (n = 12) <i>Referents</i> : none	Assessment: Venous blood and urine sample were collected over a 5-yr period. Levels: Urinary chromium concentrations ranged from 1.2 to 57.0 μg/g with a mean urinary chromium concentration of 17.9 μg/g creatinine. Duration: Employment duration ranged from 6.6 to 25.1 yrs, with mean employment duration of 15.5 yrs.	No association between urinary Cr and sister chromatid exchanges	Small sample size and no control group used in study limits exposure comparisons and power for analysis; limited adjustment for confounders	<u>Nagaya et al. (1991)</u>
Exposed: male chromium platers (n = 44) Referents: male controls unexposed to Cr or other harmful agents (n = 47) (further grouping by smoking within exposed and referents)	Assessment: Urinary collected during working hours; analyzed with direct flameless atomic absorption spectrophotometer. Levels: Mean among all chromium platers = 0.25 μmol/l Duration: Duration of employment: 0.5–30.7 years (mean(SD): 13.8 (8.7)	No association between urinary Cr and sister chromatid exchanges	Limited adjustment of confounders: only considered stratification by smoking status	<u>Nagaya et al. (1989)</u>
<i>Exposed:</i> male chromium platers (n = 24) <i>Referents</i> : sex, age, smoking-matched office worker controls, unexposed to Cr (n = 24)	Assessment: Urine samples analyzed with direct flameless atomic absorption spectrophotometer. Levels: The mean (SD) concentration of chromium in the urine was 13.1 (16.7) μg/L. Duration: Duration of employment ranged from 0.5 to 30.5 yrs with a mean employment of 11.6 yrs.	No difference in SCEs between exposed and unexposed groups; no association between urinary Cr and sister chromatid exchanges among exposed	Authors suggest that null results may be due to low exposures Consideration of smoking but minimal other confounders	<u>Nagaya (1986)</u>
<i>Exposed:</i> male welders (n = 39) <i>Referents:</i> unexposed men (n = 18)	Assessment: Chromium in urine samples (time of day unspecified) from workers analyzed with atomic absorption spectrometry Levels: Mean (SD) chromium among welders = 28.4 (19.8) μg/L Duration: Authors state that employees had been employed since 1983 (paper published in 1991); ~7–8 years (?)	↓ sister chromatid exchange frequency in welders compared to controls	Only considered age and smoking as potential covariates Authors note some concern with alkaline filter elution that might impact validity of results	<u>Popp et al. (1991)</u>

Study Overview	Exposure	Results	Comments	Reference
Exposed: male chromium platers (n = 38) Referents: male sanitary workers unexposed to ionizing radiation for at least 5 years & no mutagenic drugs (n = 35)	Assessment: Exposure to Cr(VI) inferred based on occupation. Exposed group was stratified based upon co-exposure to nickel ('bright' plating, vs. 'hard' plating).Also measured Cr in urine. Levels: Urinary Cr levels were lowest in controls (mean \pm SD = 1.9 \pm 1.4 µg/g crt), intermediate in bright plating (6.1 \pm 2.8 µg/g crt), and highest in hard plating groups (10.0 \pm 7.5 µg/g crt), indicating adequate delineation between groups. Duration: Mean (SD) years of exposure: bright plating = 9 (11); hard plating = 7 (3)	Association between urinary Cr and sister chromatid exchanges	Main limitations are related to outcome ascertainment, small sample size for certain analyses, and lack of description (e.g., for participant selection and statistical analysis). Study also reported ↑ chromosomal aberrations and sister chromatid exchanges in exposed groups	Sarto et al. (1982)
Exposed: chromium platers (n = 12) Referents: controls (n = 10)	Assessment: Based on occupation Levels: Cr(VI) exposure levels and blood concentrations were not reported. Duration: Exposure durations ranged from 0.5 to 18 yrs (mean exposure duration was not reported).	↑ sister chromatid exchanges in exposed group	Very small sample size; no consideration of confounders; no exposure information on participants Results supported by in vitro findings (human lymphocytes cultured & treated with Cr(VI) and Cr(III)	<u>Stella et al. (1982)</u>
Exposed: chromium workers (n = 35) Referents: age and gender-matched controls (n = 35)	Assessment: Based on occupation Levels: Not reported Duration: Exposure duration ranged from 2 to 14 yrs with a mean (SD) of 6.5 (4.2) yrs.	 ↑ sister chromatid exchanges in exposed group; association with work duration; synergy with smoking ↑ high frequency cells in exposed group; synergy with smoking 	No quantitative assessment of exposure; exposure based on work only; limited sample size Only adjusted for smoking, no other confounding incorporating into Cr analysis	<u>Wu et al. (2000)</u>

Study Overview	Exposure	Results	Comments	Reference
<i>Exposed:</i> chromium platers (n = 35) <i>Referents:</i> healthy subjects with no history of disease or previous exposure to chromium or other metals (n = 35)	Assessment: Personal exposure monitoring for 8h working shift (1.71/min) on only 10 individuals in the exposed group. Blood and urine samples collected at end of shift and analyzed with atomic absorption spectrophotometry Levels: Individual time-weighted average range: 0.049–1.130 mg/m ³ Duration: The mean duration of employment was 6.5 yrs.	↑ sister chromatid exchange and percent high frequency cells in exposed group compared to controls	Personal air sampling only obtained for n = 10 individuals in the exposed group; SCE analysis conducted based on work group rather than measured exposure level Unable to draw conclusions about effect of genotype due to small sample size	<u>Wu et al. (2001)</u>
<i>Exposed:</i> male welders (n = 39) <i>Referents:</i> matched controls not substantially exposed to carcinogens (n = 39)	Assessment: Venous blood samples analyzed with atomic absorption spectrometry <i>Levels</i> : Mean(SD) concentration of chromium in exposed group erythrocytes: 4.3 (7.0) μg/L <i>Duration:</i> Not reported	↑ sister chromatid exchange and DNA single strand breaks in exposed compared to controls	Only considered smoking status, no other covariates Possible confounding by co-exposure to other toxic metals, such as nickel – which was measured in this study as well	<u>Werfel et al. (1998)</u>

1

1 Eight studies evaluated DNA strand breaks in peripheral blood. Seven of these studies 2 identified increases in DNA strand breaks using the comet assay, either in relation to job 3 classification (Wang et al., 2012; Sudha et al., 2011; Zhang et al., 2011; Balachandar et al., 2010; 4 Iarmarcovai et al., 2005; Danadevi et al., 2004) or direct assessment of chromium biomarkers 5 (Gambelunghe et al., 2003). These seven studies covered a range of chromium industries, including 6 welding, chrome plating workers, and leather tanning. Confidence across some of these data may 7 be limited due to minimal evaluation of confounders (Zhang et al., 2011; Balachandar et al., 2010) 8 and lack of details regarding potential for selection bias (Iarmarcovai et al., 2005; Danadevi et al., 9 2004), among other concerns. One study did not identify differences in DNA strand breaks between 10 exposed and unexposed workers (Gao et al., 1994); however, in this study, the combination of low 11 exposure levels and small sample size in each group (n = 10) suggests that power to detect an effect 12 may have been limited. 13 Five studies evaluated DNA-protein crosslinks, four of which documented increases among 14 exposed groups compared to controls (Medeiros et al., 2003; Quievryn et al., 2001; Taioli et al., 15 1995; Costa et al., 1993). The fifth study did not document clear differences between exposed and 16 controls but did identify positive associations between DNA-protein crosslinks and chromium in 17 erythrocytes at low and medium exposure levels, with a saturation of crosslink incidence at higher 18 levels (Zhitkovich et al., 1996a). Small sample size limits confidence regarding results from all of 19 these studies on DNA-protein crosslinks. 20 Fifteen studies evaluated sister chromatid exchange (SCE). Elevated levels of SCEs 21 following exposures are indicative of increased DNA repair and are considered biomarkers of 22 exposure to potential genotoxic agents (Eastmond, 2014). Among these, six studies documented 23 increased SCEs per cell among exposed groups of welders (<u>Werfel et al., 1998</u>) or electroplating 24 workers (Wu et al., 2001; Wu et al., 2000; Lai et al., 1998; Deng et al., 1988; Stella et al., 1982) 25 compared to control groups. Similarly, one study documented an association between urinary 26 chromium and SCE (Sarto et al., 1982). While many of the individual studies had specific 27 limitations that may limit confidence, such as small sample size, concern is somewhat mitigated 28 when considering the data as a whole across several exposure scenarios and populations. Seven 29 studies did not observe impacts on SCEs, either through comparing exposed and control groups 30 (Benova et al., 2002; Nagaya, 1986; Koshi et al., 1984; Littorin et al., 1983; Husgafvel-Pursiainen et 31 al., 1982) and/or through evaluating the association with urinary chromium directly (Nagaya et al., 32 <u>1991; Nagava et al., 1989; Nagava, 1986</u>). One study documented a decrease in SCE frequency 33 among welders compared to controls, though the authors noted concerns with the alkaline filter elution that may have impacted the validity of the results (Popp et al., 1991). 34

1 <u>Oral route of exposure</u>

2 Mutagenic MOA studies

3 Studies considered to be most relevant to a mutagenic MOA analysis for cancer of the GI 4 tract are studies that measure gene mutation (prior to tumorigenesis), micronuclei induction, and 5 chromosomal aberrations following oral exposures in experimental animals. This includes gavage 6 exposures with the acknowledgment that this dosing regimen condenses the exposure time, 7 inhibiting gastric reduction and potentially increasing Cr(VI) exposure. Human studies of 8 occupationally exposed workers that tested GI tissues (i.e., buccal cells from the oral cavity) were 9 also considered. Although these subjects were exposed via inhalation, it is presumed to be relevant 10 to tissues in the oral cavity given exposure when breathing and via mucociliary clearance. 11 No oral exposure studies in humans meeting these criteria were identified, but eight studies 12 reporting occupational measures of mutagenic biomarkers in buccal cells were identified; these 13 studies have already been summarized with the mutagenic MOA studies for inhalation exposures in 14 the preceding section. Thirteen studies in animals exposed via drinking water, diet, or gavage were 15 identified; the findings reported in these studies are visualized in Figures C-22 to C-25, below. 16 These studies were evaluated in HAWC; the evaluations and the study findings are summarized in

the Cr(VI) Toxicological Review, Section 3.2.3.3.

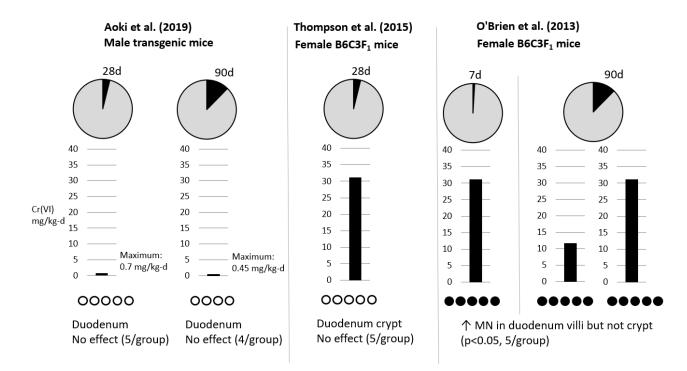
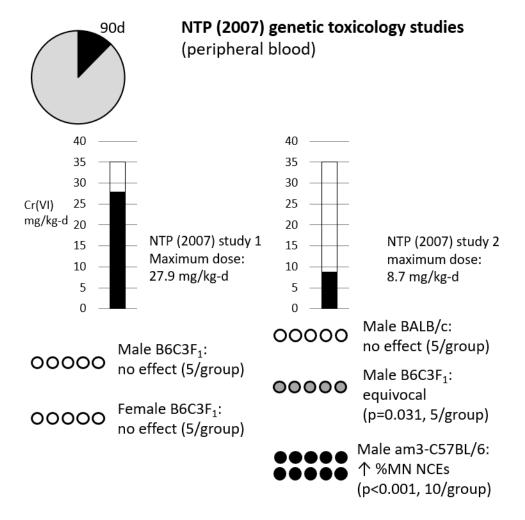
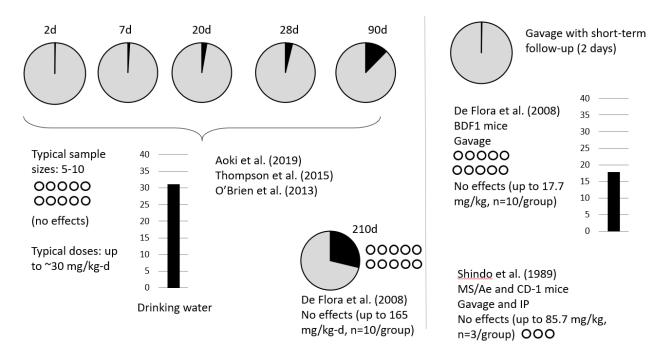




Figure C-22. Overview of selected studies evaluating mutagenic markers in the gastrointestinal tract following *ad libitum* drinking water exposure. Full circle of a pie chart represents 2 years. Bar chart represents the maximum dose

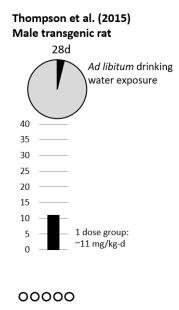

range, or the dose where an effect is first observed (whichever is lower). Full or empty circles represent sample size per group (darkened if an effect was observed).

Figure C-23. Overview of the <u>NTP (2007b)</u> genetic toxicology (*ad libitum* **drinking water exposure).** Full circle of a pie chart represents 2 years. Bar chart represents the maximum dose range, or the dose where an effect is first observed (whichever is lower). Full or empty circles represent sample size per group (darkened or shaded if an effect was observed).

Figure C-24. Overview of selected studies evaluating mutagenic markers (but finding no effect) following *ad libitum* **drinking water exposure (left) and oral gavage (right).** Full circle of a pie chart represents 2 years. Bar chart represents the maximum dose range. Empty circles represent sample size per group.

No effect in oral cavity (5/group)

Figure C-25. Overview of the <u>Thompson et al. (2015a)</u> study evaluating mutagenic markers (but finding no effect) following *ad libitum* drinking water

exposure. Full circle of a pie chart represents 2 years. Bar chart represents the maximum dose range. Empty circles represent sample size per group.

- 1 Supporting genotoxicity studies in GI tract tissue
- 2 In addition to the studies measuring gene and chromosomal mutation identified above,
- 3 mechanistic evidence of genotoxicity in GI tract tissues or in cells isolated from the GI tract were
- 4 identified in the preliminary title and abstract screening. These studies were tagged as
- 5 "mechanistic" were further screened and tagged as "GI tract" and "cancer" if they were studies in
- 6 humans or animals conducted in GI tissues or cells that were relevant to carcinogenic processes.
- 7 Seven genotoxicity studies of GI tissues in experimental animals and 10 studies in cells derived
- 8 from GI tissues were identified; no human studies were identified. This evidence is summarized in
- 9 Table C-50.

System	Exposure	Results	Reference
Mouse, B6C3F1 female Oral, drinking water	0, 0.1, 1.4, 4.9, 20.9, 59.3, and 181 mg/L Cr(VI) 0, 0.024, 0.32, 1.1, 4.6, 11.6, or 31.1 mg/kg-d Cr(VI) 7 d (n = 5) or 90 d (n = 10)	No increases in 8-OHdG adducts in any tissues	<u>Thompson et al.</u> (2011b)
Mouse (B6C3F1) and rat (F344), female Oral, drinking water	0 and 180 mg/L Cr(VI) 0 and 31.1 mg/kg-d Cr(VI) 13 wks	yH2AX elevated in duodenal villi but not crypts No aberrant foci indicative of transformation	Thompson et al. (2015a) Continued analysis of tissues from Thompson et al. (2011b)
Mouse, B6C3F1 Oral, drinking water	0, 1.4, 21, and 180 mg/L Cr(VI) 0, 0.32, 4.6, and 31.1 mg/kg-d Cr(VI) 7 d	No effect on γH2AX foci or on micronucleus induction in crypt enterocytes	<u>Thompson et al.</u> (2015b)
Mouse, SKH-1 hairless, female Oral, drinking water	0, 5, and 20 mg/L Cr(VI) 1.20 and 4.82 mg Cr(VI)/kg-d 9 months	No effect on DNA-protein crosslinks or oxidative 8- OHdG adducts in forestomach, glandular stomach, duodenal cells, lung or skin No measure of cytotoxicity	<u>De Flora et al.</u> (2008)
Mouse, C57BL/6J Oral, drinking water	0, 0.019, 0.19, 1.9 mg/L Cr(VI) 150 d 2 animals per dose group	In proximal and distal sections of GI tract: Immunohistochemistry: 1.5-fold increase in γH2AX in distal sections	<u>Sánchez-Martín et</u> <u>al. (2015)</u>

Table C-50. Supporting genotoxicity studies in GI tract tissues and cells following Cr(VI) exposures

System	Exposure	Results	Reference
Rat Oral gavage	530 mg/kg -day Cr(VI), 3 days 106 mg/kg-d Cr(VI), 30 days <u>Note</u> : The administered gavage potassium dichromate doses (1500 mg/kg and 300 mg/kg) are higher than the LD50 for rats listed in MSDS (130 mg/kg)	 Intestinal epithelial cells, 3 d exposure: ↓ glucose-6-phosphate dehydrogenase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, superoxide dismutase and catalase ↓ glutathione and total thiols ↑ lipid peroxidation Intestinal epithelial cells, 30 d exposure: ↑ superoxide dismutase, glutathione peroxidase Null glucose-6-phosphate dehydrogenase, glutathione reductase and catalase ↓ glutathione-S-transferase 	<u>Sengupta et al.</u> (1990)
Mouse, ddY, 4 per group Oral gavage	0 or 85.7 mg/kg Cr(VI) Single dose	p.o.: 个 DNA damage (comet assay) in stomach, colon, and lung (also in brain, liver, kidney, bladder, but not in bone marrow) in cells collected 8 hours after treatment Effects subsided at 24 h in all dose groups No clinical or microscopic signs of cytotoxicity	<u>Sekihashi et al.</u> (2001)
In vitro human	primary and immortalized	d GI cells or gastric fluid	
Human primary lymphocytes and gastric mucosal cells	177 μM or 0.57 mM Cr(VI)	↑ DNA damage (comet assay) (p < 0.001)	<u>Błasiak et al. (1999),</u> <u>Trzeciak et al.</u> (2000)
Pre- and post- meal gastric fluid samples from healthy volunteers (n = 8)	0.021 mg/L Cr(VI)	↓ mutagenicity of Cr(VI) (assessed via Ames reversion test) as a function of time in human gastric juice	<u>De Flora et al.</u> (2016)
Human gastric cancer SGC- 7901 cells	3.53 μM Cr(VI)	DNA damage (comet assay, γH2AX), oxidative stress, apoptosis and necrosis all increased when the Unconventional prefoldin RPB5 Interacting protein (URI) is knocked down	<u>Luo et al. (2016)</u>
Human primary gastric and nasal mucosa cells	0.087–0.349 μmoles/mL Cr(VI)	个 DNA damage (comet assay) and cytotoxicity, equal sensitivity in human and rat primary gastric and nasal mucosal cells	<u>Pool-Zobel et al.</u> (1994)

System	Exposure	Results	Reference
Human lung epithelial A549 and colon HCT116 (MLH-/-) and DLD1 (MSH6- /-) cells	1−20 μM K₂CrO₄, 3−12 h	 ↑ survival, ↓ apoptosis in mismatch repair (MMR)-deficient cells ↑ DNA DSBs (γH2AX) and apoptosis in MMR- proficient cells γH2AX foci occur in G2, but no G2 cell cycle arrest No p53 induction in either cell type at subtoxic levels MMR responsive to Cr-DNA adducts, not oxidative damage or crosslinks In MMR+ cells, apoptosis induced by Cr-DNA adducts independently of p53 	<u>Peterson-Roth et al.</u> (2005); Zhitkovich et al. (2006)
Human colon HCT116 (MLH1-/-) and DLD1 (MSH6- /-), lung epithelial H460, and lung fibroblast IMR90 cell lines	2–10 μmol/L K₂CrO₄, 3 h	Ternary ascorbate-Cr-DNA adducts are substrate for error-prone mismatch repair (MMR) MSH2- MSH6 dimer, leading to 个 DNA DSBs and 个 apoptosis Cells deficient in MMR have higher survival and lower DNA DSBs Colon cells deficient in MMR have increased survival following Cr(VI) exposures, increasing probability of clonal selection of these cells	<u>Reynolds et al.</u> (2009)
Caco-2 human colorectal adenocarcino ma cells	0.1, 0.3, 1, 3, 10, 30, 100 μM Cr(VI)	Increase in 8-OHdG at non- and cytotoxic concentrations, increase in yH2AX only at cytotoxic concentrations (24h) No change in p53, annexin-V (apoptosis markers), LC3B (autophagy marker) Translocation of ATF6 to nucleus (ER stress response marker)	<u>Thompson et al.</u> (2012a)
Human SV40 transformed fibroblasts, Werner syndrome fibroblasts, primary human lung IMR90 fibroblasts, and and human colon HCT116 MLH1-/- and MLH1+ cells	0–30 μM K₂CrO₄, 3 h	 ↑ nuclear relocalization of WRN in response to Cr(VI) ↓ cell survival, ↑ DNA DSBs and ↓ RAD51 foci in cells lacking WRN ↓ DNA DSBs in cells lacking mismatch repair Error-prone mismatch repair of Cr-DNA adducts generates DNA DSBs and repair of persistent DNA DSBs is dependent on WRN helicase 	<u>Zecevic et al. (2009)</u>

1

2 Supporting oral exposure genotoxicity studies

3 Besides the studies identified above that reported gene or chromosomal mutations or

4 measured genotoxicity endpoints directly in GI tissues, a small set of in vivo experimental animal

5 studies were identified that measured genotoxicity in tissues other than the GI tract following oral

6 exposures to Cr(VI). These studies identified in the preliminary title and abstract screening as

- 1 "mechanistic" were further screened and tagged as "oral exposure, "cancer," and "genotoxicity" if
- 2 they were in vivo oral exposure studies that measured genotoxicity endpoints. After removal of
- 3 endpoints already considered (see above), four genotoxicity studies in experimental animals were
- 4 identified; no human studies were identified. This evidence is summarized in Table C-51.

Table C-51. Supporting genotoxicity studies in animals exposed per os to Cr(VI)

System	Exposure	Results	Comments	Reference
Rat, Fischer 344	Oral-drinking water, 0, 0.35, 1.77, 7.07 mg Cr(VI)/L, 48 h Comparison to single gavage doses (20 mL/kg) at same concentrations	No increase in unscheduled DNA synthesis in hepatocytes collected from the rat livers and analyzed in the in vivo-in vitro hepatocyte DNA repair assay	No measure of cytotoxicity RDS not determined	<u>Mirsalis et al.</u> (1996)
Rat, Sprague- Dawley Oral, drinking water	0, 10.6, 35.4, 106.1 mg/L Cr(VI) 0, 2.49, 7.57, 21.41 mg/kg-d Cr(VI) 4 weeks	In plasma: no change in 8- OHdG levels	 ↑ MDA at two high doses ↓ GSH-Px ↓ global DNA methylation at two high doses No change in P16 methylation 	<u>Wang et al. (2015)</u>
Mouse, ddY, 4 per group	Oral gavage, 0 or 85.7 mg/kg Cr(VI) Single dose Also i.p.: 0 or 32.1 mg Cr(VI)/kg	p.o.: 个 DNA damage (comet assay) in stomach, colon, liver, kidney, bladder, lung, and brain, but not in bone marrow in cells collected 8 hours after treatment i.p.: 个 DNA damage (comet assay) in stomach, colon, and bladder (but not in liver, kidney, lung, brain, or bone marrow) at 8 h	Effects subsided at 24 h in all dose groups No clinical or microscopic signs of cytotoxicity	<u>Sekihashi et al.</u> (2001)
Mouse, Swiss albino	Oral gavage, 0, 0.21, 0.42, 0.84, 1.68, 3.37, 6.7, 13.5, or 26.9 mg/kg Cr(VI) Single dose	↑ DNA strand breaks (comet assay) in leukocytes at 24, 48, 72, and 96 hours and 1 and 2 wks post-treatment Dose-response from 0.59–9.5 mg/kg. Peak response at 48 h. No cytotoxicity detected (trypan blue).		Dana Devi et al. (2001)

System	Exposure	Results	Comments	Reference
Mouse, Swiss albino	Oral gavage, 0, 8.8, 17.7, and 35.4 mg/kg Cr(VI) Single dose or 1x/d, 5 d	↑ DNA damage (comet assay) in lymphocytes (statistically significant); increasing with dose		<u>Wang et al.</u> (2006)

1 <u>Injection studies</u>

2 Supporting evidence of the genotoxic effects of Cr(VI) is provided by studies investigating

3 mechanisms of genotoxic effects by more direct routes of administration in vivo, e.g.,

4 intraperitoneal (i.p.) injection. Twenty-three studies, summarized in Table C-52, were identified

5 that measured genotoxic endpoints in animals exposed to Cr(VI) via i.p. injection.

Table C-52. Genotoxicity studies in animals exposed to Cr(VI) via i.p. injection

System	Exposure ^a	Results	Comments	Reference
Gene and chrom	nosome mutation	1		
Mouse, CD-1, male	i.p.	↑ micronuclei in peripheral blood reticulocytes		<u>Awogi et al. (1992)</u>
Mouse, BDF ₁ , male Mouse, Swiss albino, pregnant females	i.p., 0 or 50 mg/kg K ₂ Cr ₂ O ₇ , 24 h	↑ micronuclei in bone marrow of males or dams ($p < 0.001$) and in peripheral blood and liver of fetuses ($p < 0.001$)	No effect on PCE/NCE ratios (no cytotoxicity) No effect on fetus body weights	<u>De Flora et al.</u> (2006)
Mouse, MS and ddY	i.p., 0, 12.5, 25, or 50 mg/kg K2CrO4 (0, 4.4, 8.8, or 17.7 mg Cr(VI)/kg), single dose	↑ micronuclei in bone marrow at 17.7 mg Cr(VI)/kg; statistically significant trend	Cytotoxicity not reported	<u>Hayashi et al.</u> (1982)
Mouse, ddY male	i.p.	In peripheral blood reticulocytes sampled at 0, 24, 48, and 72 h and hepatocytes at 5 d post-partial hepatectomy: ↑ micronucleus frequency		<u>Igarashi and</u> Shimada (1997)
Mouse, Slc:ddY	i.p., 0, 30, 40, and 50 mg/kg K2CrO4 (0, 10.6, 14.1, or 17.7 mg Cr(VI)/kg), 1x/d, 2 d	↑ micronucleus frequency in bone marrow cells; statistically significant dose-response	%PCEs decreased at two highest doses	Itoh and Shimada (1996)
Mouse, lacZ transgenic (Muta Mouse)	i.p., 40 mg/kg K2CrO4 (0 or 14.1 mg	↑ micronucleus frequency in peripheral blood reticulocytes	7 d post-injection is too long to detect	Itoh and Shimada (1997), Itoh and Shimada (1998)

This document is a draft for review purposes only and does not constitute Agency policy. C-207 DRAFT—DO NOT CITE OR QUOTE

System	Exposure ^a	Results	Comments	Reference
	Cr(VI)/kg), 1x/d, 2 d, or single dose sampled on d 1 and d 7	 ↑ mutant frequency in liver at 1 d ↑ mutant frequency in bone marrow at 7 d 	MN in bone marrow Cytotoxicity not reported	
Mouse, females C57BL/6J/BO M mated to T- stock males	i.p., 0, 10 or 20 mg/kg K2CrO4 (0, 2.7, or 5.4 mg Cr(VI)/kg)	+ mouse spot test in offspring	Decline in number of surviving offspring with dose	<u>Knudsen (1980)</u>
Rat, white outbred, male	i.p., 0 or 14 mg K ₂ Cr ₂ O ₇ /kg- body mass, single dose (4.9 mg/kg Cr(VI), 24 h	Rodent dominant lethal test: dominant lethal mutation frequency of 0.665 by comparing the number of live fetuses in the Cr(VI) treatment group to the control group Micronucleus test in bone marrow	Also exposed via gavage; was evaluated in HAWC for male repro and mutagenic outcomes	<u>Marat et al. (2018)</u>
Rat	i.p.	Chromosomal aberrations Lymphocytes and bone marrow cells		Newton and Lilly (1986)
Mouse, CBA × C57BI/6J hybrid male	i.p., 0, 0.5, 1.0, 2.0, 10, or 20 mg/kg K ₂ Cr ₂ O ₇ (0, 0.18, 0.35, 0.70, 3.5, or 7.1 mg Cr(VI)/kg), single dose i.p., 0, 1.0, or 2.0 mg/kg K ₂ Cr ₂ O ₇ (0, 0.35, 0.70 mg Cr(VI)/kg), 1x/d, 21 d	Rodent dominant lethal test Single dose: Statistically significant decrease in embryo survival at 7.1 mg Cr(VI)/kg Repeat dose: Statistically significant decrease in embryo survival at 0.7 mg Cr(VI)/kg		Paschin et al. (1982)
	i.p., 0, 1, 5, or 10 mg/kg K ₂ Cr ₂ O ₇ (0.35, 1.77, or 3.54 mg Cr(VI)/kg), single dose	↑ micronucleus frequency in bone marrow at 24, 48, or 72 h; peak at 48 h	No measure of cytotoxicity	
Mouse, BALB/c, C57BL/6 and DBA/2	i.p., K2CrO4	↑ micronucleus frequency in PCEs in all mouse strains		<u>Sato et al. (1990)</u>
Mouse, MS/Ae and CD-1 males	i.p., 0, 10, 20, 40, or 80 mg/kg K2CrO4 (0, 3.5, 7.1, 14.1,	↑ micronuclei in bone marrow cells, dose-response	%PCEs decreased at highest dose	<u>Shindo et al. (1989)</u>

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

System	Exposure ^a	Results	Comments	Reference
	or 28.3 mg Cr(VI)/kg), single dose			
Mouse, ddY, CD-1, BDF1, and ms, male	i.p., 0, 15, 30, or 60 mg/kg K2CrO4, single dose, 24 h	↑ micronucleus frequency in PCEs in all mouse strains		The Collaborative Study Group for the Micronucleus Test (<u>1988)</u>
Mouse, NMRI	i.p., 0, 12.12, 24.25, or 48.5 mg/kg K2CrO4 (0, 3.2, 6.49, or 13.0 mg Cr(VI)/kg), 2 doses 24 h apart	↑ micronuclei in bone marrow at 13 mg Cr(VI)/kg; statistically significant trend	Cytotoxicity not reported	<u>Wild (1978)</u>
Mouse, B6C3F1, male, 8–10/group	i.p., 0, 0.51, 5.1, and 51.0 μg Na2CrO4/day , 4 weeks (5.5e-5, 0.055, 0.55 mg/kg Cr(VI))	No significant increase in micronucleated erythrocytes (PCEs or NCEs) per 1000 cells analyzed from peripheral blood collected at the end of the treatment period.		<u>Witt et al. (2000)</u>
Mouse, BALB/c	i.p., 0 or 400 µmol K ₂ Cr ₂ O ₇ (20.8 mg Cr(VI)/kg), single dose	↑ micronucleus frequency in bone marrow cells (p < 0.001) Significantly decreased %PCEs (PCE/NCE ratio = 0.64 ± 0.14) (p < 0.01)	In liver: \uparrow lipid peroxidation ($p < 0.05$) \uparrow heme oxygenase ($p < 0.001$) \downarrow GSH-peroxidase activity ($p < 0.1$); slight but nonsignificant reduction in GSH levels	<u>Wroñska-Nofer et</u> <u>al. (1999)</u>
DNA damage				
Mouse, BDF1, female	i.p., 25mg/kg Na ₂ Cr ₂ O ₇ - acute; 12.5mg/kg - subchron, single injection for acute (1–14 days) or every 4 weeks for 128d	↑ changes in ploidy in acute group	N ranged from 3–5 per group. All regions of liver	<u>Garrison et al.</u> (1990)

System	Exposure ^a	Results	Comments	Reference
Rat, Sprague- Dawley, male	i.p., 0, 2.5, 5.0, 7.5, and 10 mg/kg bw- day K ₂ Cr ₂ O ₇ , 5d	In peripheral blood lymphocytes: 个 DNA damage (comet assay)	In liver: 个 ROS, MDA, SOD, CAT activity	<u>Patlolla et al.</u> (2009b)
Mouse	i.p., K2CrO4	DNA damage (comet assay) in liver, lung, kidney, spleen, and bone marrow		<u>Sasaki et al. (1997)</u>
Rat, Sprague- Dawley, male	i.p., 20 or 50 mg/kg-day	 1 h: DNA-DNA and DNA-protein crosslinks in liver, lung and kidney ↑ DNA strand breaks in liver 36–40 h: DNA-protein crosslinks in lung and kidney 		<u>Tsapakos et al.</u> (1981), Tsapakos et al. (1983)
Mouse, albino male	i.p., 0 or 20 mg Cr(VI)/kg, single dose	DNA damage (comet assay), 15 min post-injection (all back to control levels at 3 h): ↑ liver, kidney No increases in spleen, lung, brain	Same pattern as Cr(V) complexes Cytotoxicity not reported DNA damage reduced with deferoxamine	<u>Ueno et al. (2001)</u>

^aPotassium dichromate units conversion: $Cr(VI) = 0.353 \times K_2Cr_2O_7$; Potassium chromate units conversion: $Cr(VI) = 0.268 \times K_2CrO_4$; Sodium dichromate dihydrate units conversion: $Cr(VI) = 0.349 \times Na_2Cr_2O_72H_2O$ (usually denoted as $Na_2Cr_2O_7$, since study authors frequently list the salt as the chemical compound even if concentration or dose is based on the dihydrate); Chromium trioxide units conversion: $Cr(VI) = 0.52 \times CrO_3$

1

2 <u>In vitro studies</u>

3

In vitro investigations of the mechanisms of genotoxicity induced by Cr(VI) provide support

4 to observations in vivo. In general, if a study was conducted only in human primary cells or cell

- 5 lines derived from a specific tissue (e.g., lung, GI tissues, liver), the genotoxicity evidence is
- 6 summarized in those sections and not repeated here.

Table C-53. In vitro genotoxicity studies in human cells

System	Exposure ^a	Results	Comments	Reference	
Gene and chrom	Gene and chromosome mutation				
WIL2-NS human B lymphoblastoid cells	0, 0.01, 0.10, 1.00, 10, 100, and 1000 μM K ₂ Cr ₂ O ₇ , 48 h	↑ micronuclei, all concentrations (p < 0.001) ↑ necrotic cells ≥100 μ M ↓ nuclear division index	Folate deficiency increased DNA damage	<u>Alimba et al.</u> (2016)	
Primary human lymphocytes from four donors	0, 0.001, 0.01, 0.1, and 0.25 μg/mL K ₂ Cr ₂ O ₇ , 48 h	↑ chromosomal aberrations, all concentrations ($p < 0.05$) ↑ micronuclei, all concentrations ($p < 0.05$)	Significant increases in chromosomal mutations occurring at non-cytotoxic concentrations	<u>Botta et al. (1996)</u>	

System	Exposure ^a	Results	Comments	Reference
	(0, 0.35, 3.54, 35.4, and 88.4 ng/mL Cr(VI))	↓ mitotic index with dose; cytotoxic dose (50% decrease) estimated to be 0.15 μg/mL		
TK6 human lymphoblastoid cells	5 μΜ K2Cr2O7, 5 h	"Hotspot" mutations at the hprt gene (6-thioguanine resistant): C:G→A:T transversion, bp 243 (4.5%) A:T→T:A transversion, bp 247 (2%) G:C→A:T transition, bp 289 (2.5%) C:G→T:A transition, bp 312 (4%)	Hprt bp 243 is hotspot for H_2O_2 (G:C \rightarrow C:G transversion) and BaP Hprt bp 247 is hotspot for X-rays (A:T bp deletion) Overall, little overlap between Cr(VI) mutation spectra and that of oxidative DNA damaging agents	Chen et al. (<u>1994a, b</u>)
HeLa cells	1, 10, and 100 μM Na ₂ Cr ₂ O ₇ ; 1, 2.5, 8, 24, or 48 h	Mutation spectra: Single-base substitutions at G/C predominant More transversions and fewer transitions compared to spontaneous	Intracellular Cr(III) inhibits DNA synthesis and replication fidelity by inhibiting DNA synthesome polymerases α, δ, and ε	<u>Dai et al. (2009)</u>
HeLa and human lung bronchial epithelial cells	0.25 μ M Na ₂ CrO ₄ , 30 days, or 10 μ M, 16 or 48 h	↑ chromosomal aberrations with acute or chronic exposures	Chromosomal instability caused in part by suppressed activation of BubR1 and expression of Emi1, causing activation of APC/C, following nocodazole- induced mitotic arrest activation	<u>Hu et al. (2011)</u>
Human TK6 lymphoblastoid , HeLa cervical carcinoma epithelial, and 293T kidney epithelial cells	1–2000 μg/L K ₂ CrO ₄ , 10 min–14 d	Cytotoxicity ≥ 373 µg K ₂ CrO ₄ /L (= 100 µg Cr/L) with survival rate of 50%, 17%, and 10% for HeLa cells, 293T and TK6 cells, respectively Trace amounts (≥ 9.8 µg/L) of Cr(VI) initiate DNA damage response and genotoxicity that increases with time and dose	Primary Cr(VI)-induced DNA damage response pathways are error- free HR and error- prone TLS pathways	<u>Tian et al. (2016)</u>
DNA damage				•
TK6 human lymphoblastoid cells		↑ DNA strand breaks (comet assay); associated with oxidized base damage as measured by FPG and EndoIII addition	Cr(VI) delayed IR- induced DNA damage repair	<u>El-Yamani et al.</u> (2011)
Human fibroblast strains CRL 1187, XP12BE	0, 2, 5, 50 μM K ₂ CrO ₄ , 4 h	↑ DNA single-strand breaks induced in cells both deficient and proficient in excision repair	Other repair mechanisms involved in repair of DNA SSBs	<u>Fornace (1982)</u>

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

System	Exposure ^a	Results	Comments	Reference
(CRL1223) and XP25RO (CRL 1261)				
H460 human lung epithelial cells, IMR90 normal human lung fibroblasts, and normal mouse embryonic fibroblasts	0, 5, 10, 15, and 20 μM K ₂ CrO ₄	DNA damage response to Cr(VI)-induced DNA double- strand breaks (phosphorylation of yH2AX) dependent on ATR kinase and not ATM in ascorbate- restored cells DNA DSBs only formed in euchromatin	Involvement of ATR and DSBs forming in actively transcribed regions increases the probability that Cr(VI) can generate carcinogenic mutations	<u>Deloughery et al.</u> (2015)
Human U2OS osteosarcoma cells, Werner syndrome (WS) skin fibroblasts (AG03141), WI- 38 fetal lung fibroblasts, telomerase- immortalized cell lines (hTERT GM01604, (hTERT AMIE15010, AG03141, hTERT BJ skin fibroblasts)	0–4 μM Cr(VI), 6-48 h	 ↑ γH2AX foci in S-phase ↑ WRN colocalization at γH2AX foci ↑ telomere defects exacerbated by lack of telomerase Lack of WRN slowed Cr(VI)- induced DNA DSB repair 	Cr(VI) induces DNA DSBs and stalled replication forks; WRN helicase plays a role in the cellular recovery from Cr(VI)-induced replicative stress	Liu et al. (<u>2010a</u> , <u>2009</u>)
Wild-type and pol zeta mutated D2781N and L2618M human B-cell leukemia cell line	$Na_2Cr_2O_7$ and $KBrO_3$	Increased sensitivity to DNA damage (micronuclei, SCE) in cells with weaker variants of DNA polymerase zeta	Increased susceptibility to Cr(VI)- induced mutations in variants of DNA replication enzymes	<u>Suzuki et al.</u> (2018)
Human SV40 transformed fibroblasts, Werner syndrome fibroblasts, primary human lung IMR90 fibroblasts, and and human colon HCT116 MLH1-/- and MLH1+ cells	0–30 μM K₂CrO₄, 3 h	 ↑ nuclear relocalization of WRN in response to Cr(VI) ↓ cell survival, ↑ DNA DSBs and ↓ RAD51 foci in cells lacking WRN ↓ DNA DSBs in cells lacking mismatch repair 	Error-prone mismatch repair of Cr-DNA adducts generates DNA DSBs and repair of persistent DNA DSBs is dependent on WRN helicase	Zecevic et al. (2009)
GM03714A, GM0131B, and GM0922B human	K_2CrO_4 and ${}^{51}CrO_4{}^{2-}$ 0, 20, 50, 100, 150, and	Differences in cytotoxicity and DNA damage in response to Cr(VI) due to differences in rate of uptake of Cr(VI) among 3 individual cell lines		<u>Zhang et al.</u> (2002)

System	Exposure ^a	Results	Comments	Reference
lymphoblastic	200 μM, 3, 6,			
cell lines	or 12 h			

^aPotassium dichromate units conversion: $Cr(VI) = 0.353 \times K_2Cr_2O_7$; Potassium chromate units conversion: $Cr(VI) = 0.268 \times K_2CrO_4$; Sodium dichromate dihydrate units conversion: $Cr(VI) = 0.349 \times Na_2Cr_2O_72H_2O$ (usually denoted as $Na_2Cr_2O_7$, since study authors frequently list the salt as the chemical compound even if concentration or dose is based on the dihydrate); Chromium trioxide units conversion: $Cr(VI) = 0.52 \times CrO_3$

1

2

C.3.2.3. Alters DNA repair or causes genomic instability (KC#3)

- 3 Mechanistic studies relevant to detecting Cr(VI)-induced suppression of DNA repair
- 4 processes and/or genomic instability resulting from Cr(VI) exposure have been summarized in
- 5 Table C-54.

Table C-54. Mechanistic studies relevant to altered DNA repair or genomic instability induced by Cr(VI) exposure

Study Overview	Exposure	Results	Comments	Reference	
Effects on DNA re	Effects on DNA repair				
<i>Exposed:</i> chromate workers (n = 87) <i>Referents:</i> employees with no direct contact with chromium products (e.g., manages, officers, support crew) (n = 30) <i>Exclusions:</i> cancer, cardiovascular disease, kidney disease, pulmonary disease	Workers exposed to chromate by inhalation for ~ 5.0 years (IQR: 3.0– 10.0 years) Post-shift fasting blood samples collected; measurement with ICP-MS. Mean (SD) blood Cr in exposed group: 14.5 (33) ng/mL	ELISA of DNA repair-related genes POLBeta, ASCC3, BRCC3, and XRCC2 XRCC2 and BRCC3 protein levels were statistically associated with miR-3940-5p levels	Main limitations are related to lack of description (e.g., for participant selection).	<u>Li et al.</u> (2014b)	

Study Overview	Exposure	Results	Comments	Reference
<i>Exposed:</i> females working in the chromium industry; subgroups based on years of contact with chromium (1–2; 3–5; 7–10; 15+) (n = 66) <i>Referents:</i> females with no contact with the chromium industry (n = 15)	Exposure based on years working in the chromium industry (1–2; 3–5; 7–10; 15+)	↓ DNA repair synthesis in lymphocytes in exposed group; nonlinear relationship with duration of contact with chromium	Limited sample size within each exposed group when analyzed by duration (1–2 yrs: n = 13; 3–5 yrs: n = 15; 7–10 yrs: n = 21; 15+ yrs: n = 17)	<u>Rudnykh and</u> <u>Zasukhina</u> (1985)
hTERT immortalized clonal cell line derived from human bronchial fibroblasts (WTHBF-6)	0.1–0.3 μg/cm ² zinc chromate, 24, 72, and 120 h	After 120 h, but not 24 h, Cr(VI) induced dose- dependent decreases in nuclear Rad51, inhibition of the nuclear import of Rad51C and BRCA2, inhibition of Rad51 nucleofilaments, and complete blocking of homologous recombination repair (HR)	Prolonged exposure to Cr(VI) suppresses HR, increasing reliance on error-prone DNA DSB repair pathways and the potential for mutation	Browning et al. (<u>2017</u> ; <u>2016</u>)
Aneuploidy and G	enomic Instability			
Primary human fibroblasts	0, 2, 20, and 40 μg/L (0.01, 0.102, and 0.205 μM) K ₂ CrO ₄ , 24 h	Using 24 color M-FISH: ↑ chromosomal aberrations (structural and numerical), dose-dependent Simple and complex aneuploidy was observed at all doses, dose-dependent	Slowly resolved with time up to 30 d post-exposure	<u>Figgitt et al.</u> (2010)
BJ normal human foreskin fibroblasts, hTERT + and -	0.04, 0.4, and 4 mM Cr (VI) (K ₂ Cr ₂ O ₇), 24 h	 In hTERT- cells, 30 days post- exposure: Persistent induction of dicentrics, nucleoplasmic bridges, micronuclei and aneuploidy ↓ clonogenic survival ↑ β-gal staining and apoptosis 	Cr(VI) induced persistent genomic instability Telomerase- positive cells were not affected except for persistent tetraploidy	<u>Glaviano et al.</u> (2006)
Human MRC-5 cells	0, 0.25, 0.5, 1, 2, and 4 μΜ K₂Cr₂O ₇ , 30 h	个 kinetochore-positive micronuclei	Authors determined aneuploidy caused by malsegregation at anaphase, and not nondisjunction	<u>Güerci et al.</u> (2000), Seoane et al. (2002; <u>2001</u> , <u>1999</u>)
WTHBF-6 human bronchial fibroblasts	0.1, 0.15, and 0.2 μg/cm ² zinc chromate (0.12, 0.18, and 0.24	 ↑ centrosome amplification ↑ aneuploidy Premature centriole disengagement in S and G2, 		<u>Martino et al.</u> (2015)

Study				
Overview	Exposure	Results	Comments	Reference
	ppm), 24, 72, and 120 h	and premature centrosome separation in interphase		
Primary human skin fibroblasts	$0.01-100~\mu M$ Na_2CrO_4 and $0.001-10~\mu M$ $CaCrO_4$	↑ aberrant mitotic spindles and cell division patterns, dose-dependent		<u>Nijs and</u> <u>Kirsch-Volders</u> (1986)
Primary human peripheral blood lymphocytes	0.00476 μM and 0.00952 μM K ₂ Cr ₂ O ₇	 ↑ aneuploidy, dose- dependent ↑ SCEs, dose-dependent No change in cell cycle proliferative index 	Aneuploidy and DNA repair initiated at very low subtoxic concentrations	<u>Rao et al.</u> (1999)
Human BEAS-2B cell line		treated BEAS-2B cells in vitro, exhibited aneuploidy, grew into subclones that when injected into nude mice induced tumors. The aneuploid cells had no microsatellite instability, so DNA MMR and MLH1 expression was unaffected though tumor was induced. (was this particulate Cr?)		Rodrigues et al. (2009)
Human primary and immortalized hTERT- expressing urothelial cells (hTU1 cells)	1–5 μM NaCrO₄	↑ aneuploidy and chromosomal damage in chronic (not acute) incubations in primary and hTERT-immortalized human urothelial cells, dose- dependent	Solid-stain chromosomal analysis may be prone to false positive	<u>Wise et al.</u> (2016)

1 C.3.2.4. Induces epigenetic alterations (KC#4)

2

Seven studies in humans occupationally exposed to Cr(VI) were identified that evaluated

3 epigenetic alterations in relation to Cr(VI) exposure and/or mechanistic or apical outcomes,

4 including changes in microRNA levels, global methylation changes, and the methylation of specific

5 genes. The study findings are summarized in Table C-55.

Table C-55. Studies of epigenetic alterations in humans, experimental animals, and human cells in vitro exposed to Cr(VI)

Study Overview	Exposure	Results	Comments	Reference
Exposed: lung tumor samples from chromate workers with lung cancer during surgery	Exposure intensity ascertained based on work period in chromate industry. Mean (range) of exposure to chromate = 22.61 (12–38) years	↑ methylation of CpG sites at APC, MGMT, and hMLH1 genes in chromate lung cancer cases compared to	Limited description of selection; no consideration of confounders; no confirmation of nonexposure in	<u>Ali et al. (2011)</u>

Study Overview	Exposure	Results	Comments	Reference
or autopsy (n = 36) <i>Referents:</i> lung tumor samples from lung cancer patients without chromate exposure (n = 25)		nonchromate lung cancer	nonchromate group	
Exposed: factory workers with occupational exposure to chromate (n = 87) Referents: administrative workers from the same factory, without chromate exposure (n = 30) Exclusions: skin infection; cancer; cardiovascular disease; kidney disease; history of allergy, asthma, or allergic rhinitis	Air samples collected at 10 locations for 8hrs during regular working hours (flow rate: 1L/min); measurement with atomic absorption spectrometry. Median (IQR) air chromium in exposed group = 15.5 (19.0) ug/m ³ ; referent group = 0.2 (0.4) ug/m ³ Peripheral venous blood collected after work shift; chromium measured by ICP- MS. Mean (IQR) blood chromium in exposed group = 6.4 (7.2) ug/L; referent group = 3.9(1.5) ug/L	↑ methylation of CpG sites at DNA repair genes (MGMT, HOGG1, XRCC1, ERCC3, and RAD51) in exposed groups	Main limitations are related to lack of description (e.g., for participant selection). Simultaneous <i>in</i> <i>vitro</i> work demonstrated hypermethylation in human bronchial epithelial 16HBE cells treated with Cr(VI)	<u>Hu et al. (2018)</u>

Study Overview	Exposure	Results	Comments	Reference
Exposed: lung cancer cases with chromate exposure (at surgery or autopsy) (n = 23 patients; n = 30 lung cancer tumors) <i>Referents:</i> lung cancer cases with no chromate exposure (n = 38)	Chromate exposures for average (SD) 22.9 (6.9) years	↑ methylation of p16 gene in chromate lung cancer compared to non-chromate lung cancer, but non-significant (p = 0.528) ↑ methylation of p16 gene with duration of chromium exposure in chromate lung cancer cases (p = 0.064) Chromate lung cancer with methylation of p16 gene had reduced expression of p16 protein (0.076)	Methylation specific PCR and immunohistoche mistry of p16 (tumor suppressor gene) Smoking affected methylation of p16 gene in non- chromate lung cancer cases only Unclear how they determined there was no chromate exposure among referents, and no confirmation of this with biological measurement of Cr Small sample sizes, especially for some of the sub-analyses based on duration of exposure Analyses based on samples – some people contributed multiple samples to the analysis; these would not be independent No consideration of confounders	<u>Kondo et al.</u> (2006)

Study Overview	Exposure	Results	Comments	Reference
Cross-sectional study, China. <i>Exposed</i> : n = 87 workers at a chromate production facility exposed to chromate <i>Referent</i> : n = 30 workers from same facility, but unexposed to any chromium products	Exposure to Cr(VI) inferred based on occupation. Also measured total Cr in blood. Blood chromium levels were significantly higher in exposed compared with control subjects. Mean ± SD levels in blood were 14.5 ± 33 and 4.4 ± 1.9 ng/mL in exposed and referent groups, Refer to air monitoring (using cellulose filter) as showing all samples <50 ug/m ³ , but data not shown. The exposed group was divided by the median into two subgroups for high and low exposure.	 ↓ miR-3940-5p expression associated with Cr blood level, after adjusting for work duration, gender, age, smoking, drinking, and BMI ↓ miR-3940-5p & miR-590-5p in exposed group 	Main limitations are related to lack of description (e.g., for participant selection).	<u>Li et al. (2014b)</u>
Exposed: chromate workers with lung cancer (n = 26 patients, n = 35 tumors) <i>Referents</i> : lung cancer cases without chromate exposure (n = 26 patients, n = 26 tumors)	Chromate workers exposed to chromate for mean (SD) 22.9 (7.3) years	↓ expression of hMLH1 and hMSH2 proteins in chromate lung cancer In chromate lung cancer group, ↓ expression of nMLH1 in lung cancers with MSI at 3 or more loci	Several samples taken from the same patients – these are not statistically independent. No adjustment for covariates, though authors noted that there were no significant differences in age, Brinkman score, cancer stage, etc. in the evaluated characteristics There was an additional sub- analysis looking at methylation of MLH1 among chromate lung samples, but it was only conducted among 8 samples. 5 of 8 had methylation at hMLH1 gene, and 4 of those 5 also had	Takahashi et al. (2005)

This document is a draft for review purposes only and does not constitute Agency policy. C-218 DRAFT—DO NOT CITE OR QUOTE

Study				
Overview	Exposure	Results	Comments	Reference
			repression of hMLH1 protein	
Cross-sectional study, China. <i>Exposed</i> : n = 29 'healthy' chrome platers employed for at least one year at two facilities <i>Referent</i> : n = 29 subjects "randomly selected from the healthy workers in the same enterprises and been engaged in public security, support services, or administration work for more than one year, and had no specific chromate exposure history."	Exposure to Cr(VI) inferred based on occupation. Chrome platers had been employed for at least one year. Also measured Cr in blood; values were significantly higher among exposed compared with unexposed workers, indicating adequate delineation between groups. Mean (range) values were 15.2 (2.1, 42) in exposed vs. 4.6 (0.2, 28) in referent group.	↓ methylation of mitochondrial genes (MT-TF, MT-RNR1) in chromium exposed workers compared to controls No difference in methylation level of LINE-1 or in mtDNA copy number between groups	Limitations are the limited and poorly described statistical analysis, and limited description (e.g., for participant selection). Small sample size. Inconsistent results may indicate the influence of other occupational hazards on micronuclei concentrations	Linging et al. (2016)

Study				
Overview	Exposure	Results	Comments	Reference
Exposed: individuals (n = 115; 29 female, 86 male) with exposure to sodium dichromate for at least 6 months <i>Referents:</i> healthy volunteers (n = 60; 15 female, 45 male) in the same city without chromate exposure history. <i>Exclusions:</i> medical history of liver or renal disease, hypertension, diabetes, cardiovascular disease, or pregnancy	Air-Cr concentration collected with point dust sampler and measured with electrothermal atomic absorption spectrometry. Personal air samples collected through full shift (8h) sampling to calculate cumulative dose Post-shift blood samples collected; chromium measured with ICP-MS; mean (SD) chromium in blood of exposed workers = 12.45 (20.28) µg/L ↑ accumulation of Cr in peripheral red blood cells	Global DNA hypomethylation in chromate exposed workers	 ↑ urinary 8- hydroxy-2 - deoxyguanosine, DNA strand breaks No adjustment for diet or other non- folate supplements ↓ serum folate in chromate- exposed workers 	Wang et al. (2012)
Rat, Sprague- Dawley	0, 10.6, 35.4, 106.1 mg/L Cr(VI) 0, 2.49, 7.57, 21.41 mg/kg-d Cr(VI) in drinking water, 4 weeks	Mild anemic effects and increased plasma malondialdehyde (MDA) levels occurred in rats exposed to 100 mg/L or 300 mg/L Plasma glutathione peroxidase (GSH- Px) activity decreased in all exposed groups Global DNA methylation, p16 methylation No change in 8- OHdG levels	Mean body weight gain, mean water consumption, clinical chemistry determinations, and oxidative stress levels in plasma	<u>Wang et al.</u> (2015)

Study Overview	Exposure	Results	Comments	Reference
In vitro, 16HBE human bronchial epithelial cells	0, 0.8, 1.6, 3.1, 6.2, 12.5, 25.0, 50.0 and 100.0 μM Cr ₂ O ₇ ²⁻ ; 12, 24 or 48 h	↑ toxicity (≥12.5 μ M) and DNA damage (comet) (all concentrations), dose-dependent ↓ p16 expression and hypermethylation of p16 CpG1, CpG31, and CpG32 that correlated with toxicity and DNA damage ↑ p53 expression without CpG methylation (≥5 μ M)		<u>Hu et al. (2016a)</u>
In vitro, 16HBE human bronchial epithelial cells	0, 2, 5, and 10 μM Na₂CrO₄, 24 h	miR-3940-5p, which normally suppresses XRCC2 and inhibits HR, is downregulated by Cr(VI), enhancing DNA DSB repair	Follow-up study to <u>Li et al. (2014b)</u> It is difficult to interpret the effects of one dysregulated miRNA	<u>Li et al. (2016)</u>

1 C.3.2.5. Induces oxidative stress (KC#5)

2 Table C-56 summarizes studies of markers of systemic oxidative stress measured in urine

3 and blood in humans occupationally exposed to Cr(VI). Twenty-three studies were identified.

1 <u>Human studies of systemic oxidative stress</u>

Table C-56. Evidence in human studies prioritized for informing potential Cr(VI)-induced oxidative stress

System	Exposure	Results	Comments	Reference
<i>Exposed:</i> workers exposed to chromium from chemical, building, and metal industries (n = 40) <i>Referents:</i> age and sex- matched individuals, unexposed to Cr, living away from incinerators, industries, energy plants, etc. (n = 40) <i>Exclusions:</i> BMI <18 or >30 kg/m ² ; supine systolic blood pressure >140 mmHg; supine diastolic blood pressure >90 mmHg; concomitant disease; taking antioxidant drugs or medications interfering with GSH metabolism	Assessment: Urinary chromium evaluated from Saturday morning spot samples at the end of the work week; assessment with electrothermic atomization-atomic absorption spectrometry. <i>Levels</i> : Mean (SD) U-Cr (μg/g creatinine) was 0.62 (0.50) among workers and 0.30 (0.13) among controls. <i>Duration:</i> No information provided about duration of Cr exposure.	In red blood cells of exposed individuals: ↓ GSH ↓ GSH/GSSG ratio In plasma: ↓ plasma acid ascorbic levels ↓ total plasma antioxidant capacity ↓ TRAP Null effects on GSSG, DHA, lipoperoxidation (TBA-RM), total thiol levels	Systemic increases in oxidative stress with chromium exposure	<u>De Mattia et al.</u> (2004)

System	Exposure	Results	Comments	Reference
Exposed 1: Cement workers in building construction (n = 22 males) Exposed 2: Tannery workers (n = 20 males) Referent: 'normal healthy' volunteers (n = 23 males) Exclusions: history of drug or alcohol abuse, genetic disorders, 'severe medical diseases'	Assessment: Blood and urine total Cr measured using inductively coupled optical emission spectrometry Levels: Highest blood and urine Cr in tannery workers, followed by cement workers, then referents. Group I (control) n=23 Blood: 3.81±5.57 µg/L Urine: 6.27±5.31 µg/L Group II (cement) n=22 Blood: 15.27±2.61 µg/L Urine: 17.22±3.33 µg/L Group III (tannery) n=20 Blood: 18.90±1.88 µg/L Urine: 20.84±1.67 µg/L Duration: State that "Cement and tannery workers were usually exposed to chromium 8 h daily for a duration ranged from 1 month to 40 years."	 ↑ plasma malondialdehyde ↓ total thiol ↑ p53 protein 	It is unclear if exposure was to Cr(VI) specifically, although more likely for cement workers compared with tannery workers (as described in the discussion section); however, it is impossible to separate effects given total Cr was measured in blood and urine. Poor working conditions (e.g., lack of PPE) and co-exposures limit ability to attribute effects to chromium. The population also included adolescents (minimum age 14 years) which may affect comparability.	Elhosary et al. (2014)
Cross-sectional study, Egypt. <i>Exposed</i> : n = 41 male electroplating workers exposed to chromium and nickel <i>Referent</i> : n = 41 male administrative workers at the same facility	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr (and nickel) in serum. <i>Levels</i> : Serum Cr significantly higher in exposed compared with controls. Mean Cr was 3.30 and 0.23 ug/L in exposed and referent, respectively. <i>Duration</i> : Exposed workers were required to have worked in electroplating section at least 2 years, but most worked for considerably longer with mean ± SD = 26.68 ± 11.21 years.	个 8-OHdG adducts in serum	There is delineation between exposed and unexposed groups, although limited description of methods (e.g., participant selection) and known co-exposure to nickel may limit inference. Results correlated with increased micronuclei in buccal cells	<u>El Safty et al.</u> (2018)

This document is a draft for review purposes only and does not constitute Agency policy.

System	Exposure	Results	Comments	Reference
<i>Exposed:</i> workers from bichromate plant with mixed Cr exposure (n = 10) <i>Referents:</i> workers from bichromate plant with no Cr exposure (n = 10), age and alcohol consumption matched to exposed group	Assessment: Urine and blood samples collected at the end of the workweek; analyzed with electrothermal atomic absorption spectrophotometer. Levels: Mean (SD) Cr in whole blood, plasma, and urine of exposed workers: 5.5 (1.2) μ g/L, 2.8 (0.4) μ g/L, 5.9 (1.1) μ g/g creatinine, respectively. Mean (SD) Cr in whole blood, plasma, and urine of referents: 0.7 (0.1) μ g/L, 0.7 (0.1) μ g/L, 0.7 (0.1) μ g/g creatinine, respectively. Duration: No information on duration of exposure.	No difference in 8- OHdG adducts (lymphocytes and urine) or DNA strand breaks (lymphocytes) between exposed and referents	Did not appear to control for key covariates – presents unadjusted results; very small sample size also limits confidence in results	<u>Faux et al. (1994)</u>
<i>Exposed:</i> chromium exposed workers (n = 10) <i>Referents:</i> non-exposed workers (n = 10)	Assessment: Urine and blood samples were taken from workers at the end of a workweek. <i>Levels</i> : Chromium concentrations in the factory ranged from 0.001 to 0.055 mg Cr(VI)/m ³ (obtained from personal and area samplers). Mean chromium concentrations in urine (5.97 μ g/g creatinine), whole blood (5.5 μ g/L), plasma (2.8 μ g/L), and lymphocytes (1.01 μ g/10 ¹⁰ cells) of exposed workers were significantly higher than in nonexposed workers. <i>Duration:</i> The mean duration of exposure was 15 yrs.	No difference in 8- OHdG adducts or DNA strand breaks (lymphocytes) between exposed and referents	Also null DNA strand breaks; authors theorize null findings due to low exposure levels and/or insensitive measures used (very small sample + low exposure levels – probably very limited power)	<u>Gao et al. (1994)</u>

System	Exposure	Results	Comments	Reference
<i>Exposed 1:</i> Full time tannery workers (n = 33) <i>Exposed 2:</i> Full or part time stainless steel welders (n = 16) <i>Referents:</i> individuals unexposed to known environmental or occupational carcinogens (n = 30)	Assessment: Spot urine and venous blood samples collected from all subjects on the last day of the work week. Analyzed with graphite furnace atomic absorption spectrophotometer. Levels: Mean (SD) not reported Duration: No information on duration of exposure	 ↑ lipid peroxidation products (MDA) in urine of welders and tanners ↓ thiol antioxidants (glutathione) in lymphocytes of welders 	Cr levels in plasma correlated with urinary MDA in welders, not tanners, who are primarily exposed to Cr(III)	<u>Goulart et al.</u> (2005)
<i>Exposed:</i> Polishers working with chromium-tanned leather (n = 34) <i>Referents:</i> Individuals not employed in industry, free of acute or chronic disease (n = 104)	Assessment: Chromium measured in air at tannery 1978–1990 Levels: Workstation concentrations ranged from mean (SD): $0.023 \pm 0.009 \text{ mg Cr/m}^3$ to $0.11 \pm 0.07 \text{ mg Cr/m}^3$ Duration: Workers exposed to chromium for 3–16 years	↑ lipid peroxidation (TBARS) & ↓ Se in plasma in exposed group	Exposure assessment methods likely underestimate actual exposure value; TBARS results potentially confounded by other occupational exposures	<u>Gromadzińska et</u> <u>al. (1996)</u>

System	Exposure	Results	Comments	Reference
Cross-sectional study, China. <i>Exposed</i> : n = 87 workers from a single factory in China, who had 'occupational exposure to chromate from different work sections' <i>Referent</i> : n = 30 working in administrative offices without chromate exposure.	Assessment: Exposure to Cr(VI) inferred based on occupation; median duration of employment was 5 years in both exposed and referent. Also measured total Cr in air samples and in blood. Levels: Authors state "The concentration of Cr in the air and blood of subjects in the exposure group were significantly higher than the control group ($p < 0.001$)," which increases confidence in delineation of exposure groups. Geometric Mean ± SD of Cr in blood was $8.5 \pm 1.3 \mu$ g/L in exposed vs. $4.1 \pm 1.4 \mu$ g/L in referent group, while median (IQR) of air concentrations were 15.5 (19.0) vs. 0.2 (0.4) mg/m ³ . Duration: Workers had been in the same work section for at least three months and in the factory for at least one year. Median (IQR) years of working among the Cr group = 5.0 (7.0).	↑ hypermethylation of CpG sites (in RNA isolated from whole blood), serum 8- OHdG, and MN in peripheral blood lymphocytes in exposed workers compared with referent	Main limitations are related to lack of description (e.g., for participant selection).	Hu et al. (2018) Related studies: Li et al. (2014a; 2014b)
Exposed: male chrome-plating workers (n = 25) Referents: unexposed males (administrators and others) (n = 28)	Assessment: Chromium measured in whole blood, urine, and air; blood and urine measured with graphite furnace atomic absorption. Levels: Mean (SD) concentrations for exposed group: air = 65 (23.6) μ g/m ³ ; blood = 5.98 (3.17) μ g/L; urine = 5.25 (3.03) μ g/g creatinine. Duration: Chrome-plating factory workers had been exposed for 1–12 years (mean (SD): 5.9 (3.5) yrs).	个 Malondialdehyde measured in blood and urine	A strength of this study was that chromium was measured in both air and biological samples Limited adjustment for confounders	<u>Huang et al.</u> (1999)

System	Exposure	Results	Comments	Reference
<i>Exposed:</i> chrome-plating workers (n = 50) <i>Referents</i> : administrative workers, age and SES matched to exposed (n = 50) <i>Exclusions:</i> history of diabetes or hypertension	Assessment: Chromium in urine samples measured with flameless atomic absorption spectrophotometer with graphite furnace. Levels: Mean (SD) in exposed group: 10.42 (8.34 μg/g creatinine). Duration: Chrome plating workers had been exposed to chromium for 15–20 years.	 ↑ Plasma lipid peroxidation ↓ erythrocyte antioxidant enzymes 	This study is one of the only studies that adjusted for diet in investigating antioxidant enzymes High variation of urinary chromium among exposed individuals	<u>Kalahasthi et al.</u> (2006)
<i>Exposed:</i> lead chromate pigment factory workers (n = 22) <i>Referents:</i> office workers from chromate factory (n = 16)	Assessment: Chromium measured in urine, blood, and air; air sampling for 200 minutes at flow rate of 2–3 L/min; urine and blood measured with flameless atomic absorption spectrophotometer. Levels: Chromium in air ranged from below LOD (0.0005 mg/m ³ among office workers to 0.5150 mg/m ³ in high exposure area of factory (pulverizing process); mean (SD) chromium among exposed group in blood: 6.75 (3.30) µg/L; in urine: 12.97 (16.31) (µg/g creatinine). Duration: Mean (SD) duration of work among chromate pigment workers = 9.7 (20.5)* years.	In blood and sputum: No difference in 8- OHdG adducts (in respiratory epithelial and white blood cells) between exposed and control groups, or with duration of employment among exposed groups	Chromium levels in blood (which are a marker of recent exposure) were similar between exposed and control groups; this suggests that exposure misclassification may be contributing to the null effects reported in the study The authors also suggest that urinary chromium reflects chromium in reduced form, which might not reflect genotoxicity in blood cells No adjustment for supplements/vitamins or diet *SD appears incorrect	<u>Kim et al. (1999)</u>

System	Exposure	Results	Comments	Reference
<i>Exposed:</i> workers from electroplating plants (3 chromium; 1 nickel-chromium; 2 mixed) (n = 50) <i>Referents:</i> office workers with no previous exposure to chromium (n = 20)	Assessment: Urine samples obtained at end of work shift; analyzed with atomic absorption spectrophotometry. Air chromium measured with personal sampling. Levels: Mean (SD) urinary chromium among exposed = 5.72 (7.65) μg/g creatinine. Duration: Electroplaters had been employed for mean (SD): 75.6 (73.1) months.	↑ urinary 8-OHdG adducts among exposed group	High degree of variation in urinary chromium levels among exposed group Did adjust for some dietary factors (betel nut, alcohol), but this could have been more extensive; no adjustment for supplements/vitamins Did not account for co-exposures to other metals encountered in the factories – especially the mixed plants	Kuo et al. (2003)
Cross-sectional study, Korea. <i>Exposed</i> : n = 51 male chrome plating and buffing workers <i>Referent</i> : n = 31 male office workers from 'industrial areas' in South Korea.	Assessment: Exposure to Cr(VI) inferred based on occupation. Also measured Cr measured in air samples (total and VI), blood, and end-shift urine samples (See Table 1). Levels: Concentrations in blood and urine were significantly higher in exposed workers, indicating adequate delineation between groups. For example, the geometric mean blood level of Cr was 0.9 and 0.2 μ g/dL in exposed and referent workers, respectively. Differently, while air measures were higher for exposed workers the difference was not statistically significant. Duration: Mean duration of occupational exposure was 9.1 years (range: 1 month – 40 years).	↑ lipid peroxidation (TBARS) in plasma ↑ frequency of chromatid exchange, chromosome/chromat id breaks and exchanges, and of translocations, correlated with higher blood Cr ↑ frequency of translocations in exposed compared with unexposed	Main limitations are related to lack of description for analysis and results reporting.	Maeng et al. (2004)

System	Exposure	Results	Comments	Reference
Exposed: Electroplaters (n = 90), evenly split among near bath workers, degreasers, and washers Referent: Quality control personnel in same facilities (n = 30) Exclusions: smoking, employment duration <1 year	Assessment: Air samples (locations not specified) used to measure Cr(VI) using spectrophotometer. Levels: Median Cr(VI) exposure level was highest in near bath (0.38 mg/m ³) followed by degreasers (0.20 mg/m ³) and washers (0.05 mg/m ³); levels were below the LOD for referent workers. Duration: Median (IQR) working years among exposed = 4.5 (4.2).	个 serum malondialdehyde	Cr(VI) was measured in air samples, which lends confidence that exposure was occurring and at significantly higher levels in exposed workers vs. referents.	Mozafari et al. (2016)
Exposed: Electroplaters (n = 105 males) Referent: office workers (n = 125 males) Exclusions: smoking, employment duration <1 year, use of substances potentially containing Cr in past 3 months	Assessment: Air samples from personal breathing zones used to measure Cr(VI) using UV-visible spectrophotometer (also measured total Cr); values combined with duration of employment to estimate cumulative exposure. Total Cr was measured in urine, hair, and fingernails using graphite furnace atomic absorption spectrophotometry. <i>Levels:</i> Total and Cr(VI) in air were higher in exposed workers (see table 2); for example, the geometric mean daily cumulative Cr(VI) was 155.6 (GSD = 3.3) in exposed vs. 4.8 (GSD = 1.9) µg/m ³ in referents. Total chromium in biosamples was also significantly higher. <i>Duration:</i> Mean (SD) working years among exposed group = 9.4 (5.6).	个 urinary 8-OHdG 个 urinary malondialdehyde	The sample size is larger compared with other similar studies, and Cr(VI) was measured in air samples, which lends confidence that exposure was occurring and at significantly higher levels in electroplaters vs. referents.	<u>Pan et al. (2017)</u>

System	Exposure	Results	Comments	Reference
Exposed (direct): cement production unit factory workers (n = 60) Exposed (indirect): administrative workers in cement production factory (n = 28) Referents: healthy individuals from nearby city (n = 30) Exclusions: Use of drugs or vitamin supplements	Assessment: Serum chromium measured with platform partitionate varian graphite furnace. Levels: Mean (SE) serum chromium in direct exposed group: 5.2 (0.4) μg/L. Duration: mean (SE) years of employment direct exposed = 4.7 (0.08); indirect exposed = 4.5 (0.17).	↓ TTM & TAC No difference in TBARS or NO (indicators of lipid peroxidation)	No evaluation of air chromium levels; very limited consideration of covariates	Pournourmoham madi et al. (2008)
<i>Exposed:</i> individuals (n = 115; 29 female, 86 male) with exposure to sodium dichromate for at least 6 months <i>Referents:</i> healthy volunteers (n = 60; 15 female, 45 male) in the same city without chromate exposure history. <i>Exclusions:</i> medical history of liver or renal disease, hypertension, diabetes, cardiovascular disease, or pregnancy	Assessment: Air-Cr concentration collected with point dust sampler and measured with electrothermal atomic absorption spectrometry. Personal air samples collected through full shift (8h) sampling to calculate cumulative dose. Post- shift blood samples collected; chromium measured with ICP-MS. <i>Levels</i> : Mean (SD) chromium in blood of exposed workers = 12.45 (20.28) μg/L. <i>Duration:</i> Mean (SD) years of employment among exposed group: 12.86 (6.02); range: 1–33.	 ↑ urinary 8-OHdG, DNA strand breaks and global DNA hypomethylation in chromate exposed workers ↑ accumulation of Cr in peripheral red blood cells & ↓ serum folate in chromate- exposed workers 	No adjustment for diet or other non- folate supplements	<u>Wang et al.</u> (2012)

System	Exposure	Results	Comments	Reference
<i>Exposed:</i> chromium platers (n = 35) <i>Referents:</i> healthy subjects with no history of disease or previous exposure to chromium or other metals (n = 35)	Assessment: Personal exposure monitoring for 8h working shift (1.71/min) on only 10 individuals in the exposed group. Blood and urine samples collected at end of shift and analyzed with atomic absorption spectrophotometry. Levels: Individual time-weighted average range: 0.049–1.130 mg/m ³ . Duration: The mean duration of employment was 6.5 yrs.	Significantly lower SOD levels in Cr workers (6.86 ± 0.80 U/mg Hb) compared to controls (7.16 ± 0.53 U/mg Hb) (p < 0.01)	Also ↑ sister chromatid exchange and percent high frequency cells in exposed group compared to controls Personal air sampling only obtained for n = 10 individuals in the exposed group; SCE analysis conducted based on work group rather than measured exposure level Unable to draw conclusions about effect of genotype due to small sample size	<u>Wu et al. (2001)</u>
Cross-sectional study, Austria. <i>Exposed</i> : n = 22 bright chrome plating workers exposed to chromium and cobalt <i>Referent</i> : n = 22 jail wardens	Assessment: Exposure to Cr(VI) inferred based on occupation. Welders used mainly TIG process (95%) with smaller proportions of electric arc and very little autogenous welding. Also measured Cr in whole blood; levels were higher in welders compared with controls. <i>Levels:</i> Mean+SD levels for exposed workers at the beginning and end of the work week were 1.4+0.9 and 2.3+1.5 µg/L, respectively, while values for referent were 0.2+0.2 µg/L. <i>Duration:</i> All workers worked for 8 hours per day three weeks before and during the sample collection	No changes (slight but not statistically significant) in plasma malondialdehyde, oxidized low density lipoprotein, and total antioxidant capacity (TEAC) (biochemical parameters of redox status)	Limitations are due to small sample size and presence of co-exposures, which precluded more detailed analysis to separate effects. 个MN and rates of Nbuds in buccal and nasal mucosal cells	<u>Wultsch et al.</u> (2014)

System	Exposure	Results	Comments	Reference
<i>Exposed:</i> n = 319 living in villages with historic Cr contamination <i>Referents:</i> n = 307 living in villages without historic Cr contamination <i>Exclusions:</i> occupational Cr exposure; living in villages <10 years, age <18 years	Assessment: Cr measured in groundwater (7 m or 8 m deep wells), soil (field surface), and air (24 hrs/day for 5 days in both exposed and unexposed villages). Levels[median (min, Q1, Q3, max): Groundwater mg/L exposed: 0.002 (0.002, 0.002, 1.1, 2.5), n=13; unexposed: 0.002 (0.002, 0.002, 0.002, 0.002), n=18 Soil mg/kg exposed: 69.5 (48.7, 59.1, 93.9, 417.1), n=45; unexposed: 29.2 (20.1, 26.4, 30.4, 41.11), n=30 Air ng/m ³ exposed: 19.3 (10.1, 13.7, 28.4, 82.9), n=15; unexposed: 13.12 (5.0, 10.9, 16.8, 18.7), n=15 Duration: Mean (SD) years of residence: 45 (13).	In serum of exposed group: \uparrow MDA ($p < 0.001$) \uparrow Catalase activity ($p < 0.001$) \uparrow GSH-Px activity ($p < 0.001$) \uparrow 8-OHdG ($p = 0.008$) \downarrow SOD activity ($p < 0.001$)	Systemic increases in oxidative stress with chromium exposure	<u>Xu et al. (2018)</u>
Exposed: Electroplaters (n = 117) at one of five different metal factories <i>Referent</i> : office workers (n = 45) Exclusions: Chronic disease (exposed group, not sure about referents)	posed: ElectroplatersAssessment: Total Cr in urine= 117) at one of fivemeasured using graphite atomicabsorption spectrophotometry.absorption spectrophotometry.eferent: office workersLevels: Urine Cr was higher in= 45)exposed compared to referentclusions: Chronic disease(mean [SD] of 0.74 [0.53] vs. 0.34xposed group, not sure about[0.18] µg/g creatinine,		It is unclear if exposure was to Cr(VI) specifically (possible with electroplaters but seem to have measured total Cr in urine). Also, while difference in mean urine Cr was significant, the levels seem somewhat low. Co-exposures with nickel, did not exclude smokers (high prevalence), and significantly higher alcohol consumption among exposed workers may affect results.	Yazar and Yildirim (2018)

System	Exposure	Results	Comments	Reference
<i>Exposed</i> : Electroplaters at 7 workshops in Tehran (n = 30 males) <i>Referent</i> : Age and sex matched dairy production workers (n = 30 males) <i>Exclusions</i> : Smoking or drug use in past year	Assessment: Blood Cr levels measured using flameless atomic absorption spectrometer. Levels: Blood Cr higher in exposed vs. referent (mean [SD] = 5.97 [1.74] vs. 4.22 [0.08] ng/mL), increased from 4.42 μ g/L to 10.6 μ g/L. Duration: Work duration 1–10 years.	 ↑ lipid peroxidation ↓ plasma antioxidant capacity ↓ plasma total thiol (SH groups) 	It is unclear if exposure was to Cr(VI) specifically (possible with electroplaters). Also, while difference in mean blood Cr was significant, the levels were more similar than expected between exposed and referent.	<u>Zendehdel et al.</u> (2014)
<i>Exposed:</i> electroplating workers (n = 157) <i>Referents:</i> individuals without exposure to chromium or known physical/chemical genotoxic agents (n = 93) <i>Exclusions:</i> abnormal liver and kidney function; cancer, diabetes, heart disease	Assessment: Air-Cr and blood Cr determined by graphite furnace atomic absorption spectrophotometer. Levels: median (range) Cr in erythrocytes (μg/l) among exposed: 4.41 (0.93–14.98); among controls: 1.54 (0.14–4.58). Median (range) short-term concentrations of Cr in air: 0.060 (0.016–0.531) mg/m ³ . Duration: Median (min-max) years of exposure among exposed group: 5.3 (0.5–23).	 ↑ urinary 8-OHdG adducts among exposed compared to referents ↑ DNA damage (measured by the comet assay) in lymphocytes among exposed compared to referents 	Limited adjustment for confounders (including diet) Potential co-exposures to other metals in the workplace	<u>Zhang et al.</u> (2011)

1

1 <u>Human in vitro studies of oxidative stress</u>

- 2 Table C-57 summarizes in vitro studies of markers of oxidative stress in response to Cr(VI)
- 3 exposure. Because all in vivo animal studies of oxidative stress following Cr(VI) exposures focusing
- 4 on organ- or tissue-specific oxidative stress are already categorized within the health effect section
- 5 for supporting evidence relevant to the study (i.e., respiratory, GI, hepatic, hematological, male or
- 6 female reproductive, developmental), they have not been repeated here. In vitro studies of
- 7 oxidative stress induced by Cr(VI) were included if they were conducted in human primary cells or
- 8 immortalized human cell lines and not already summarized in another health effect section.

System	Exposure ^a	Results	Reference
Human chronic myelogenous leukemic (CML) K562 cells, promyelocytic leukemic HL-60 cells, and normal human peripheral blood mononuclear (HPBM) cells	12.5 and 25 μM Na ₂ Cr ₂ O ₇ , 24 or 48 h	 ↓ cytochrome c (个 SOD) ↑ hydroxyl radical ↑ intracellular 2,7-DCFD fluorescence ↑ DNA fragmentation No apoptosis (TUNEL) in HPBM; ↑ apoptosis in K562 at low dose but necrosis at high dose Human cultured leukemic cells more sensitive than primary cells 	Bagchi et al. (<u>2001</u> ; <u>2000b</u>)
Primary human lymphocytes	0, 50, 100, 200, 600, and 1000 μΜ K ₂ Cr ₂ O ₇ , 1 h	 ↑ DNA strand breaks (comet) (≥ 400 μM; p < 0.001) DNA damage ↑ with Endo III and ↓ with catalase (p < 0.001), indicating oxidative lesions Slight reduction in cell viability (trypan blue exclusion) (viability at top dose was 84.7%) 	<u>Blasiak and Kowalik</u> (2000)
Human umbilical vein endothelial cells (HUVECs)		 ↑ stress response/ inflammatory pathways (JNK, p38 MAPK, NLRP3, ICAM-1, VCAM-1, TNF-α, IL-1β) ↑ intracellular ROS ↑ apoptosis induced by mitochondrial (intrinsic) pathway 	<u>Cao et al. (2019)</u>
Cultured Jurkat cells (CD4+ human lymphoblast cell line)	0.4–2 mM K ₂ Cr ₂ O ₇	 ↑ NF-κB Enhanced by hydroxyl radical formation by alpha-lipoic acid; inhibited by hydroxyl radical scavenger sodium formate ESR spin trapping showed reaction of Cr(VI) with alpha-lipoic acid or SOD generated Cr(V) and hydroxyl radicals; this was inhibited by catalase and metal chelators 	<u>Chen et al. (1997)</u>

Table C-57. In vitro studies of Cr(VI)-induced oxidative stress

System Exposure ^a		Results	Reference	
Whole human blood	0.01–40.0 µg K ₂ Cr ₂ O ₇ /mL	 ↑ glutathione peroxidase ↓ SOD, GSH ↓ ferric-reducing ability of plasma (FRAP) 	Dlugosz et al. (2012)	
DU145 human prostate carcinoma cells		Cr(VI)→H ₂ O ₂ →p38 mitogen-activated protein kinase→ ↑hypoxia-inducible factor (HIF-1alpha) and ↑vascular endothelial growth factor Phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK1/2) activated but not required for HIF-1 expression	<u>Gao et al. (2002)</u> Shi	
Primary human lymphocytes and erythrocytes	K ₂ Cr ₂ O ₇	\downarrow GSH, \uparrow GSSG and ROS	Husain and Mahmood (2017)	
Primary human lymphocytes	1—100 μM Na ₂ Cr ₂ O ₇ , 1 hour	 ↑ standard and FPG-modified comet assay DNA strand breaks (≥100 nM) ↑ 8-OHdG (>10 μM) Significant interindividual variation in comet and FPG-comet DNA damage correlated with OGG1 polymorphisms 	Lee et al. (<u>2005</u> , <u>2004</u>)	
Primary human fibroblasts	0.5–500 μM Cr(VI)	 ↓ O2 consumption, dose-dependent (20-500 µM) ↑ standard and FPG-modified comet assay DNA strand breaks (0.5-3µM) Attributed to affected mitochondrial function and glucose catabolism 	<u>Liu et al. (2010b)</u>	
Human leukemic T-lymphocyte MOLT4 cells	0–200 μM K₂CrO₄, 2 h	 ↓ multiple antioxidants, dose-dependent (p < 0.01 at 10 μM) ↑ DNA-protein crosslinks (25 μM) ↑ ROS (DCFH-DA) ↑ DNA-protein crosslinks and protein carbonyls (2 h) and MDA (4 h), dose-dependent ESR showed reaction of Cr(VI) with NADPH, glutathione reductase or H₂O₂ generated Cr(V) and OH radicals Pretreatment with antioxidants reduced protein carbonyl, MDA and DPC formation but not with catalase inhibitor or riboflavin pretreatments 	Mattagajasingh et al. (<u>2008; 1997</u> , <u>1996</u> , <u>1995</u>)	
Human diploid fibroblasts	0, 0.2, 0.5, 1, 2, 3, 5 μΜ K ₂ Cr ₂ O ₇	 ↑ DNA strand breaks ≥0.5 μM Inhibition of excision repair did not prevent repair of breaks Scavenging superoxide (SOD) or H₂O₂ (catalase) but not hydroxyl radicals (KI) reduced DNA damage; reduced glutathione potentiated damage 	<u>Snyder (1988)</u>	

System	Exposure ^a	Results	Reference
		KRAS (Ras)↑	Wang et al. (2004b)
		NADPH oxidase↑	Shi

^aPotassium dichromate units conversion: $Cr(VI) = 0.353 \times K_2Cr_2O_7$; Potassium chromate units conversion: $Cr(VI) = 0.268 \times K_2 CrO_4$; Sodium dichromate dihydrate units conversion: $Cr(VI) = 0.349 \times Na_2 Cr_2 O_7 2H_2 O$ (usually denoted as Na₂Cr₂O₇, since study authors frequently list the salt as the chemical compound even if concentration or dose is based on the dihydrate).

1 C.3.2.6. Induces chronic inflammation (KC#6)

2 Mechanistic studies relevant to immunomodulation (including immune stimulation) are

3 summarized in Section C.2.5.

4 C.3.2.7. Immunosuppression (KC#7)

5 Mechanistic studies relevant to immunomodulation (including immune suppression) are

6 summarized in Section C.2.5. The evaluation of evidence for effects of Cr(VI) on the immune system,

7 presented in Section 3.2.6, suggests that Cr(VI) may have immunomodulatory effects that can

8 suppress (as well as stimulate) the immune system. This immunosuppressive effect was primarily

9 determined from a limited number of host resistance assays and the significance for Cr(VI)-induced

10 carcinogenesis is not currently known.

11 C.3.2.8. Modulation of receptor-mediated effects (KC#8)

- 12 There is no evidence that Cr(VI) itself has receptor binding activity, although indirectly it 13 can initiate cell signaling cascades involving receptor-mediated pathways (summarized in C.3.3) 14 and can affect the expression of sex hormone cell receptors (summarized in C.2.6 and C.2.7).
- 15

C.3.2.9. Causes immortalization (KC#9)

16 Enabling replicative immortality is a hallmark of cancer and may be informed by studies 17 that indicate inhibition of senescence induced by Cr(VI) exposure. Mechanistic studies reporting 18 endpoints relevant to senescence are summarized in Table C-58.

System	Exposure	Results	Comments	Reference
Exposed: male welders (n = 75) and sandblasters (n = 5) from shipyard industry Referents: subjects from exposed group with chromium blood levels >2 µg/L	Shipyard industry welders with mean (range) years working in industry: 18.5 (2– 35). Chromium measured in blood and urine with atomic absorption spectrometer; mean	Cr levels in blood and urine associated with ApoJ/CLU glycoprotein levels in serum	Authors conclude the upregulation of Apolipoprotein J/Clusterin glycoprotein that promotes cellular senescence by Cr(VI) is induced by oxidative stress	<u>Alexopoulos et al.</u> (2008)

Table C-58. Mechanistic studies informing Cr(VI)-induced cellular immortalization

System	Exposure	Results	Comments	Reference
who underwent intervention to reduce exposure for 5 months (n = 9)	(range) Cr levels in first sampling period: blood = 0.91 (0.1–6.1) μ g/L; urine = 1.33 (0.1– 50.2) μ g/L		Findings differ from earlier study by this group (<u>Katsiki et al.,</u> <u>2004</u>) Low sample size for the intervention arm of the	
<i>Exposed:</i> male workers (n = 55 welders; n = 10 sandblasters; n = 15 other) (total n = 80) <i>Referents:</i> non- exposed males of the same age range (n = 30)	Blood and urine samples collected; analyzed with graphite furnace atomic absorption spectroscopy Higher Cr(VI) in blood (11x) and urine (57x) in welders compared to controls	↓ serum ApoJ/CLU in exposed; dose- dependent decrease based on level of exposure and duration of exposure	study Reduced biomarker of cell survival and senescence Apolipoprotein J/Clusterin Findings differ from later study by this group (Alexopoulos et al., 2008) Did not appear to adjust for covariates Did not provide sample size for subgroup analyses by duration of exposure – difficult to assess confidence in these results	<u>Katsiki et al.</u> (2004)
L-02 human fetal hepatocytes	0, 5, 10, 15 μM Cr(VI)	个 Clusterin (CLU), dose- dependent	Overexpression of CLU can counteract Cr(VI)- induced MRCC I inhibition, enhancing survival	<u>Xiao et al. (2019)</u>

1

C.3.2.10.Alters cell proliferation, cell death, or nutrient supply (KC#10)

2 Table C-59 summarizes human, animal, and in vitro studies of markers of cell proliferation, 3 cell death, or changes in cellular nutrient supply in response to Cr(VI) exposure. Human 4 occupational and in vivo animal studies and in vitro studies using human primary or immortalized 5 cell lines that are relevant to cell proliferation and death following Cr(VI) exposures using organ-6 specific test systems or markers from these systems have already been categorized within the 7 corresponding health effect sections for supporting evidence. Human or animal in vivo studies 8 were included here if they measured any systemic markers of cell proliferation or death or were 9 not previously summarized elsewhere. Similarly, in vitro studies were included if they were 10 conducted in human primary cells or immortalized human cell lines that have not already been 11 summarized in another health effect section. An exception has been made for studies of Cr(VI)-12 induced changes in cellular energetics. These tables include all identified mammalian in vivo and 13 human in vitro studies that pertain to cellular nutrient supply, regardless of whether they were also 14 reported elsewhere.

System	Exposure ^a	Results	Comments	Reference
Cell death				
HLF fetal human lung fibroblasts L-41 human epithelial-like cells	1, 2, 5, 10, 15, 20, 25, and 30 μM K ₂ Cr ₂ O ₇ , 2, 24 or 48 h	 ↑ cytotoxicity (MTT assay), dose- and duration-dependent (significant ≥20 μM); ≤5 μM cytotoxicity recovered after 24 h Toxicity at 20 μM due to apoptosis (morphology, caspase-3, DNA fragmentation) ↑ ROS (DCFH-DA) at 2 h ↑ antioxidant enzymes (glutathione peroxidase, glutathione reductase, catalase) 1–5 μM 	Oxidative stress and antioxidant enzymes induced at mildly toxic µM concentrations	Asatiani et al. (<u>2011</u> ; <u>2010</u> ; <u>2004</u>)
Human lung fibroblasts	Na ₂ CrO ₄ ,	 Inhibiting protein tyrosine phosphatases (PTPs) using sodium orthovanadate (SOV): ↑ forward mutations ↑ cell survival by bypassing cell cycle checkpoints No change in apoptosis 	PTP inhibition may contribute to Cr(VI)- induced genomic instability	<u>Bae et al.</u> (2009a)
Human chronic myelogenous leukemic (CML) K562 cells, promyelocytic leukemic HL-60 cells, and normal human peripheral blood mononuclear (HPBM) cells	12.5 and 25 μM Na ₂ Cr ₂ O ₇ , 24 or 48 h	 ↓ cytochrome c (↑ SOD) ↑ hydroxyl radical ↑ intracellular 2,7-DCFD fluorescence ↑ DNA fragmentation No apoptosis (TUNEL) in HPBM; ↑ apoptosis in K562 at low dose but necrosis at high dose 	Human cultured leukemic cells more sensitive than primary cells	Bagchi et al. (<u>2001</u> ; <u>2000b</u>)
Human umbilical vein endothelial cells (HUVECs)		 ↑ stress response/ inflammatory pathways (JNK, p38 MAPK, NLRP3, ICAM-1, VCAM-1, TNF-a, IL-1b) ↑ intracellular ROS ↑ apoptosis 	Apoptosis induced by mitochondrial (intrinsic) pathway	<u>Cao et al.</u> (2019)

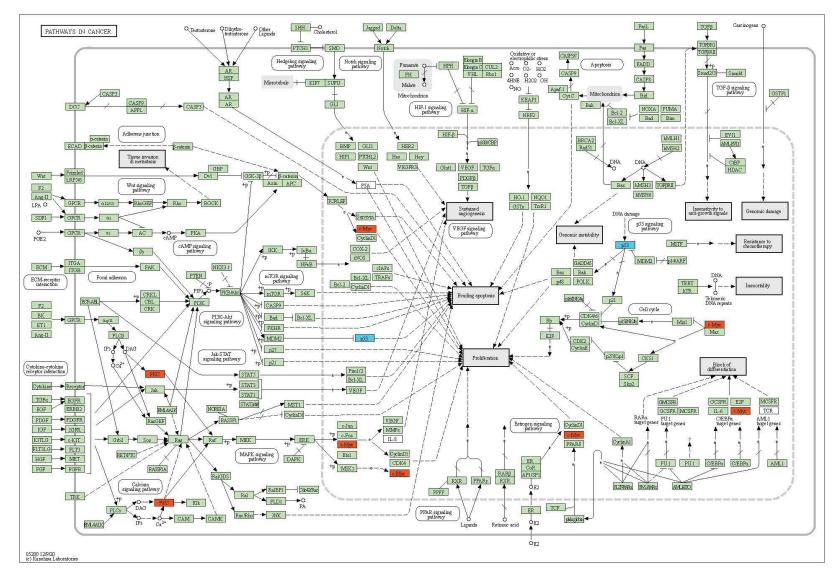
Table C-59. Mechanistic studies relevant to Cr(VI)-induced cell death, cell proliferation, and changes in cellular energetics

System	Exposure ^a	Results	Comments	Reference
HLF human lung fibroblasts (LL-24 cell line)	3, 6, and 9 μM Na ₂ CrO ₄ , 24 h	 ↑ cytotoxicity, duration- and dose-dependent (stat sig ≥6 μM) ↑ apoptosis ↑ p53 (4–6 fold) ↑ Cr-DNA adducts 	Pretreatment with 1 mM ascorbate or 20 μM tocopherol had no ameliorative effects	<u>Carlisle et al.</u> (2000a)
HeLa cells	1, 10, and 100 μM Na ₂ Cr ₂ O ₇ ; 1, 2.5, 8, 24, or 48 h	Intracellular Cr(III) inhibits DNA synthesis and replication fidelity by inhibiting DNA synthesome polymerases α, δ, and ε		<u>Dai et al.</u> (2009)
<i>Exposed:</i> Chrome- plating workers (n = 19) <i>Referents 1</i> : hospital workers (n = 18) <i>Referents 2</i> : university personnel (n = 20) <i>Exclusions:</i> None stated	Total Cr measured in urine, erythrocytes, and lymphocytes using graphite furnace atomic absorption Total Cr was higher in exposed workers compared with hospital workers (see table 3; for example, post- shift mean urine levels were 7.31 [SD = 4.33] in exposed vs. 0.12 [SD = 0.07] µg/g crt in referent).	No change in apoptosis (nuclear fluorescence measured by FACS flow cytometry) ↑ DNA damage (measured by the comet assay)	Did not exclude smokers (high prevalence) although did present results stratified by smoking (small numbers). It is unclear if exposure was to Cr(VI) specifically (possible with chromeplating workers, but measured total Cr in urine). State that previous air monitoring for total chromium showed levels of 0.4 to 5.6 µg/m ³ which is fairly low.	<u>Gambelungh</u> <u>e et al. (2003)</u>
Human lymphoma U937 cells lacking functional p53 gene	20 μM Cr(VI), 24 h	 ↑ mitochondria- dependent apoptotic pathway changes (intracellular Ca2+, DNA fragmentation, caspase- 3, low mitochondrial membrane potential (MMP), and nuclear morphology) ↑ hydroxyl and superoxide anion radicals (measured by ESR-spin trapping) Apoptosis inhibited by NAC 	Authors conclude Ca(2+)-calpain- and mitochondria-caspase- dependent pathways play significant roles in the Cr(VI)-induced apoptosis via the G2/M cell cycle checkpoint	<u>Hayashi et al.</u> (2004)

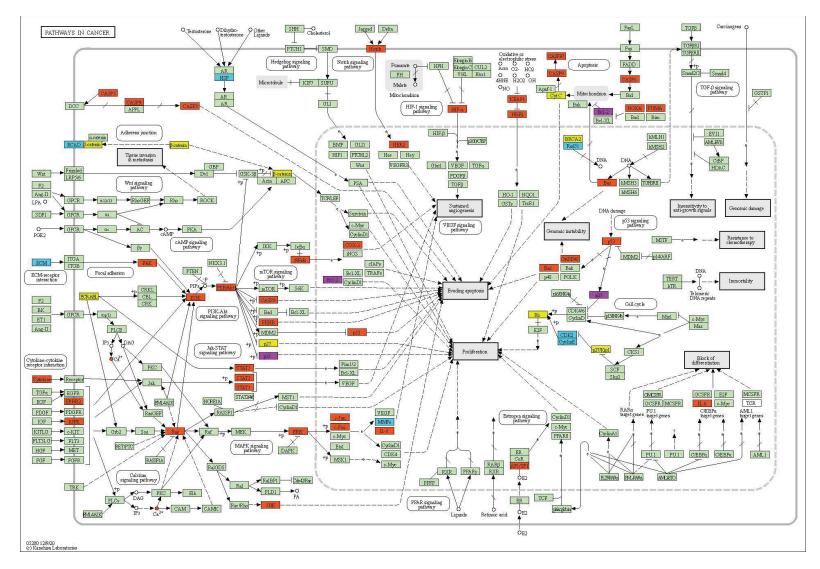
System	Exposure ^a	Results	Comments	Reference
		DNA fragmentation suppressed by inhibiting intracellular Ca2+ and calpain No increases in Fas or JNK		
Primary human lymphocytes		 ↑ apoptosis and ROS and ↓ cell viability with Cr(V) and Cr(VI) Cr(V)-induced apoptosis partially reversed with antioxidants Cr(V) and Cr(VI) activate Src-family protein tyrosine kinases leading to caspase 3 activation 	Cr(VI)-induced apoptosis partially induced by ROS generated by Cr(V) intermediates via SFKs	Vasant et al. (<u>2003</u> ; <u>2001</u>)
Cellular energetics				
BEAS-2B human bronchial epithelial cells	1 μM Cr(VI), 48	 ↑ glycolysis ↓ respiration ↓ protein levels of β-F1- ATPase ↑ GAPDH 	Cr(VI) caused shift to fermentative metabolism	<u>Cerveira et al.</u> (2014)
BEAS-2B human bronchial epithelial cells		↑ NOTCH1 (Notch1) ↑ CDKN1A (P21) ↓ FBP1	FBP1, involved in gluconeogenesis, is lost in Cr(VI)-transformed cells Reintroduction of FBP1 caused ↑ROS and ↑apoptosis	<u>Dai et al.</u> (2017a)
L-02 human fetal hepatocytes	4–32 μM	↓ mitochondrial respiratory chain complex (MRCC) I and II activity (25 μM)	Cr(VI)-induced MRCC I inhibition activates caspase-3; process dependent on ROS	Xiao et al. (<u>2012a</u> ; <u>2012b</u>)
L-02 human fetal hepatocytes	0, 2, 8, 32 μM Cr(VI), 24 h	 ↑ voltage-dependent anion channel 1 (VDAC1) expression, ROS, and apoptosis with ↓ ATP (32 μM) Effects reversed with NAC pretreatment or blocking VDAC1 	Cr(VI)-induced apoptosis and decreased ATP mediated by ROS and VDAC1	<u>Yuan et al.</u> (2012)

^aPotassium dichromate units conversion: $Cr(VI) = 0.353 \times K_2Cr_2O_7$; Potassium chromate units conversion: $Cr(VI) = 0.268 \times K_2CrO_4$; Sodium dichromate dihydrate units conversion: $Cr(VI) = 0.349 \times Na_2Cr_2O_72H_2O$ (usually denoted as $Na_2Cr_2O_7$, since study authors frequently list the salt as the chemical compound even if concentration or dose is based on the dihydrate).

C.3.3. Gene expression studies relevant to GI cancer cell signaling pathways


1 Mechanistic evidence investigating the cell signaling pathways involved in carcinogenesis 2 following exposure to Cr(VI) is summarized in Table C-61. Studies identified in preliminary title 3 and abstract screening as "mechanistic" were further screened and tagged as "cell signaling" if they 4 reported relevant gene expression data. Studies were prioritized if they were (a) oral, inhalation or 5 intratracheal instillation exposures in vivo, or (b) in vitro exposures in human cells. Two studies in 6 humans, two in vivo studies in rats, and 90 in vitro studies in human cells were identified. This 7 does not include studies reporting toxicogenomic data, which are summarized in Section C.3.4. 8 The human studies, presented in Table C-60, measured increases in p53 expression in the 9 peripheral blood of chromium-exposed workers compared to unexposed workers. Although these 10 studies were not formally evaluated for risk of bias and sensitivity, the potential for co-exposures 11 among these workers (Elhosary et al., 2014) or lack of Cr measures in exposed workers (Hanaoka 12 et al., 1997) precludes certainty regarding the potential association between increased p53 13 expression and Cr(VI) exposure specifically.

System	Exposure	Results	Reference
Exposed 1: Cement workers in building construction (n = 22 males)	Blood and urine total Cr measured using inductively coupled optical emission spectrometry Highest blood and urine Cr in tannery workers, followed by cement workers, then referents. Table 4. Comparison of total chromium level (µg/l) in the studied groups.	↑ p53 protein expression in peripheral blood of tannery and cement	Elhosary et al. (2014)
Exposed 2: Tannery	Chromium level (µg/l) Mean±SD Chromium level Groups Blood Urine	workers	
workers (n = 20 males)	Group I (control) $n = 23$ 3.81 ± 5.57 6.27 ± 5.31 Group II (cement) $n = 22$ 15.27 ± 2.61 17.22 ± 3.33 Group III (tannery) $n = 20$ 18.90 ± 1.88 20.84 ± 1.67		
<i>Referent</i> : 'normal healthy' volunteers	State that "Cement and tannery workers were usually exposed to chromium 8 h daily for a duration ranged from 1 month to 40 years."		
(n = 23 males) <i>Exclusions</i> : history of drug or alcohol abuse, genetic disorders, 'severe medical diseases'	It is unclear if exposure was to Cr(VI) specifically, although more likely for cement workers compared with tannery workers (as described in the discussion section); however, it is impossible to separate effects given total Cr was measured in blood and urine. Poor working conditions (e.g., lack of PPE) and co-exposures limit ability to attribute effects to chromium. The population also included adolescents (minimum age 14 years) which may affect comparability.		


Table C-60. Gene expression studies in humans exposed to Cr(VI)

System	Exposure	Results	Reference
<i>Exposed:</i> chromate plant workers (n = 31 males)	Duration of exposure in workers = 0–23 years No assessment of Cr levels in workers or referents	↑ serum p53 protein expression in chromium	<u>Hanaoka et al.</u> (1997)
Referents: volunteers without occupational chemical exposures (n = 10)		workers	

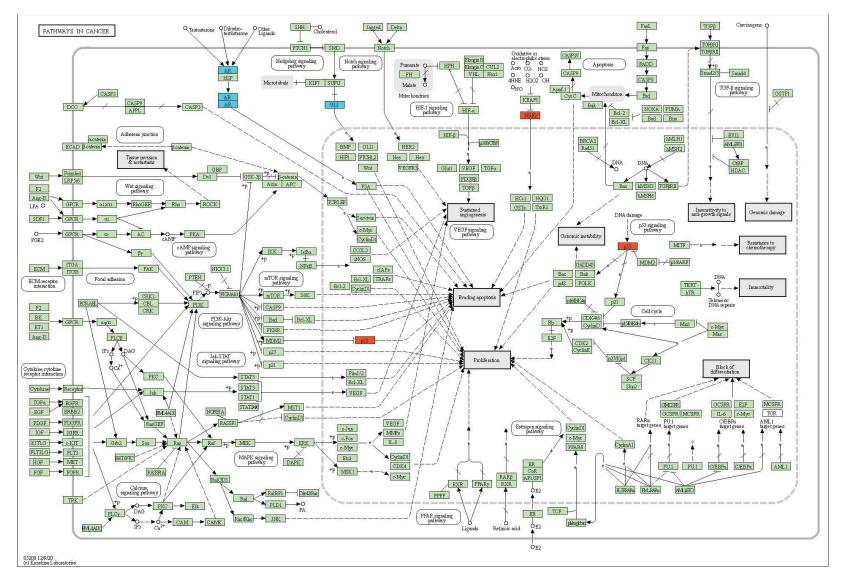

- All other studies were reviewed for effects relevant to the KEGG (Kyoto Encyclopedia of
 Genes and Genomes, https://www.genome.jp/kegg/pathway.html) "Pathways in cancer" maps for
 humans (https://www.genome.jp/pathway/hsa05200). Table C-61 summarizes the reference gene
 IDs and direction of change for each. KEGG pathways are publicly available, manually drawn, and
 curated pathway maps, based on evidence from recognized evidence-based relationships among
 genes involved in cancer-related processes. Data from the two rat oral studies or from the 90 in
 vitro studies in human cells specific to Cr(VI) were then overlayed onto the cancer pathway KEGG
- 8 maps for rats and humans, respectively, creating two maps (Figures C-26 and C-27). A third map
- 9 (Figure C-28) was created using gene expression changes reported by ToxCast/Tox21 high
- 10 throughput screening (HTS) assays in human cells exposed to Cr(VI) in vitro. Genes are color
- 11 coded: red = activation or increased expression, turquoise = inactivation or decreased expression,
- 12 violet = discordant changes showing both activation and inactivation among different studies, and
- 13 yellow = proteins that were modified or have changed localization. Green indicates a gene whose
- 14 expression (or activity of its products) was not tested or not found to have changed.

Figure C-26. KEGG pathways of gene expression changes in rats exposed to Cr(VI) via ingestion. Red = activated or increased expression; turquoise = inactivated or decreased expression; green = no data or no change detected.

Figure C-27. KEGG pathways of gene expression changes in human cells exposed to Cr(VI) in vitro. Red = activated or increased expression; turquoise = inactivated or decreased expression; violet = discordant results from different studies; yellow = proteins that were modified or have changed localization; green = no data or no change detected.

Figure C-28. KEGG pathways of gene expression changes in cells exposed to Cr(VI) reported by ToxCast/Tox21 HTS assays. Red = activated or increased expression; turquoise = inactivated or decreased expression; green = no data or no change detected.

1 C.3.3.1. Cell signaling pathways

2 <u>Tissue specific in vivo animal evidence</u>

3 The oncogene c-Myc was found to show a dose-dependent increase (protein and mRNA) in 4 the stomach and colon of male Wistar rats after 60 days of exposure to Cr(VI) in drinking water, 5 supporting increased cell proliferation in these tissues (Tsao et al., 2011). The same study also 6 observed decreased stomach and colon expression of the tumor-suppressor p53, MAPK inhibitor 7 RKIP, and Rho-GDI α , which is involved in the Rho-regulated pathways for metastasis/cytoskeleton 8 reorganization. Down-regulation of RKIP led to the activation of MEK/ERK signaling pathway in the rat stomach and colon. Activation of the ERK/MAPK signaling pathway promotes cell 9 10 proliferation, tumor cell invasion, angiogenesis and inhibits apoptosis (Guo et al., 2020). Tsao et al. 11 (2011) also reported increased galectin-1. Galectins are associated with gastric cancer cell motility 12 in response to integrin signaling, and galectin-1 is overexpressed in gastric tumor cells and 13 digestive cancers (<u>Wu et al., 2018</u>; <u>Kim et al., 2010</u>). In a separate study, Ki-67, a nuclear protein 14 associated with cellular proliferation, malignant metastasis, and tumor growth (Li et al., 2015) 15 showed non-dose-dependent increases in transcript expression in the duodena of mice after oral 16 exposure through drinking water at 11.6 and 31 mg/kg Cr(VI)-day (Rager et al., 2017; Kopec et al.,

17 <u>2012a</u>).

18 In vitro human evidence

19 In vitro studies in various human cell types demonstrated the role of several processes 20 relevant to the cancer development that include: (1) activation of MAPK signal pathway 21 extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK), and p38 MAPK involved in cell 22 proliferation, (2) changes involving DNA damage checkpoint/DNA repair components (e.g., ATM, 23 ATR, XRCC1, RAD17, RAD51, TP53 and DNA-PK); (3) changes in genes involved in the reactive 24 oxygen species homeostasis and/or (e.g., NFE2L2, NOX, SOD1, SOD2, CAT, GSR); (4) changes in 25 apoptosis-regulating genes (BCL2, MCL1, BBC3, BAX, CASP3, CASP9); and (5) changes indicating 26 tissue remodeling and epithelial-mesenchymal transition (SNAI2, ZEB1, PLAUR, CDH1, KLF8) and 27 pathways with pleiotropic roles in cancer (NOTCH, HIF-1a, PI3K/Akt). 28 The effects of chromium exposure were shown to be cell context- and exposure level/time-29 dependent. For instance, exposure to Cr(VI) resulted in considerably different changes in nuclear 30 binding of transcription factors AP-1, NF-κB, SP1, and YB-1 in human MDA-MB-435 breast cancer 31 cells in comparison with rat H4IIE hepatoma cells (Kaltreider et al., 1999). Exposure level/time

dependence was shown on transcriptional activity of NF-κB: At low exposure levels (20 μM for

- 2 hours), Cr(VI) exposure inhibited both basal and TNF-α-stimulated NF-κB-driven transcriptional
- 34 activity in human A549 lung carcinoma cells. This inhibition occurred through the interaction of
- **35** NF-κB with transcriptional co-activators (<u>Shumilla et al., 1999</u>). In contrast, exposures of HepG2
- 36 cells to potassium dichromate at 10 μ M for 48 hours significantly increased transcription from the

- 1 NF-κB response element (<u>Tully et al., 2000</u>). Importantly, NF-κB activation was shown to prevent
- 2 apoptosis induced by Cr(VI) exposure in non-tumorigenic lung epithelial BEAS-2B cells, which can
- 3 play a major role in the survival of Cr(VI)-exposed cells (<u>Wang et al., 2004a</u>) and their subsequent
- 4 malignant transformation.
- 5 Discordant changes in the expression or activity of certain genes were observed between
- 6 experiments in cells exposed to cytotoxic levels of Cr(VI) and cells transformed by Cr(VI). This can
- 7 be exemplified by the expression of BCL2 gene, a founding member of the BCL2 gene family of
- 8 apoptosis regulators. In immortalized human hepatocytes exposed to cytotoxic levels of Cr(VI),
- 9 decreased expression of the anti-apoptotic BCL2 gene led to increased apoptosis (<u>Zhong et al.</u>,
- 10 <u>2017b</u>), while in Cr(VI)-transformed BEAS-2B cells, the BCL2 gene was upregulated, contributing to
- 11 an apoptosis-resistant phenotype that is consistent with the malignant properties of transformed
- 12 cells (Medan et al., 2012). These results exemplify the complexity of molecular changes induced by
- 13 exposure of cells to Cr(VI) and their dependence on exposure level and cellular context.

Table C-61. Genes corresponding to positive results of Cr(VI) assays performed in vivo (rats) or in vitro (human cells or TOX21 HTS assays).

Direction of change: \uparrow (up-regulated or activated); \downarrow (down-regulated or inhibited); \triangle (protein modification or change of localization).

Study	Gene symbol	KEGG ID
Rat in vivo studies (Rattus norvegicus)		
Bagchi et al. (1997a)	Prkca↑	24680
<u>Tsao et al. (2011)</u>	Tp53↓	24842
	Arhgdia↓	360678
	Pebp1↓	29542
	Myc↑	24577
	Lgals1↑	56646
Human in vitro studies (Homo sapiens)		
<u>Abreu et al. (2018)</u>	HSPA1A (Hsp72)↓	
	Hsp90α.↓	
Adam et al. (2017)	NLRP3 [↑]	
	IL1B (IL-1b)↑	
<u>Akbar et al. (2011)</u>	IL-2 down↓	3558
Antonios et al. (2009)	CD86↑	
Asatiani et al. (2004)	CAT (Catalase)↑	
	SOD1 (Cu,Zn-SOD)↑	
<u>Bae et al. (2009b)</u>	FGR Δ	
	ABL1 (ABL) Δ	25
Barchowsky (2006)	Lck↑	
	Fyn↑	

Study	Gene symbol	KEGG ID
Browning and Wise (2017)	Rad51c Δ	
	BRCA2 Δ	675
Cammarota et al. (2006)	MMP2↓	4313
	TIMP1 (TIMP)↑	
Carlisle et al. (<u>2000a; 2000b</u>)	P53↑	7157
Castorina et al. (2008)	ERBB2个 (24h+)	2064
	ERBB3↑ (24h+)	
<u>Ceryak et al. (2004)</u>	тр53↑	7157
	CDKN1A (P21)↑	1026
	MAPK3, MAPK1 (ERK1/2)↑	5594, 5595
<u>Chen et al. (1997)</u>	RELA (NFkB)↑	5970
Chuang et al. (2000)	јлк↑	5599
	MAPK11-14 (P38)↑	
	MAPK3, MAPK1 (ERK1/2)↑	5594, 5595
Chuang and Yang (2001)	МАРКЗ, МАРК1 (ERK1/2)↑	5594, 5595
	↑nut	3725
<u>Chun et al. (2010)</u>	Plk1↑	
Clementino et al. (2019)	SIRT3↑	
	Pink1个	
	PRKN (Parkin)↑	
Curtis et al. (2007)	IL1a↑	3552
<u>Dai et al. (2017a)</u>	NOTCH1 (Notch1)↑	4851
	CDKN1A (P21)↑	1026
	FBP1↓	
Deloughery et al. (2015)	ATR↑	
Ding et al. (2013)	CDH1↓	999
	VIM 1	
	FN1↓	2335
	CTNNB1 (β -catenin - Δ)	1499
	SNAI2 (Slug)↑	
	Zeb1↑	
	KLF8↑	
Dubrovskaya and Wetterhahn (1998)	но↑	
Gambelunghe et al. (2006)	тр53↑	7157
	CASP3↑	836
	CASP8 [↑]	841
	CASP91	842
Ganapathy et al. (2017)	BCI2↑	596
	KRAS (Ras)↑	3845

Study	Gene symbol	KEGG ID
<u>Gao et al. (2002)</u>	MAPK11-14 (p38)↑	
	РІКЗСА (РІЗК)↑	5290
	MAPK3, MAPK1 (ERK1/2)↑	5594, 5595
	HIF1A (HIF-1alpha)↑	3091
	VEGFA (VEGF)↑	7422
Hayashi et al. (2004)	CAPN1 (calpain)↑	
<u>He et al. (2013)</u>	IGF1R (IGF-1R)↑	3480
	IRS11	
	HIF1A↑	3091
	RELA (NFkB)↑	5970
	CXCL8 (IL-8)↑	3576
<u>Hill et al. (2008a)</u>	тр53↑	7157
	CDKN1A (P21)↑	1026
	ATM↑	
	PRKDC (DNA-PK)↑	
	ATR↑	
	АКТ1 (АКТ)↑	207
	MAPK11-14 (P38 MAPK)↑	
<u>Hill et al. (2008b)</u>	тр53↑	7157
	CDKN1A (P21)↓	1026
	PUMA [↑]	27113
	BAX ↑	581
	PRKDC (DNA-PK)↑	
Hodges et al. (2004)	↑nut	3725
	јик↑	5599
Hu et al. (2018)	MGMT↓	
	XRCC1↓	
	OGG! (HOGG1)↓	
	RAD51↓	5888
Kaczmarek et al. (2007)	HIF1A↑	3091
Kaltreider et al. (1999)	FOS, JUN (AP1)↑	2353, 3725
	NFkB↑	5970
	SP1↑	6667
	YBX1 (YB1)↑	
<u>Kim et al. (2003)</u>	RELA (NFkB)↑	5970
Kost et al. (2012)	PTP↓	
Lal et al. (2009)	CDKN1B (P27) Δ	1027
	RB1 Δ	5925
<u>Li et al. (2016)</u>	XRCC2↑	
Liu et al. (2009)	WRN Δ	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE C-249

Study	Gene symbol	KEGG ID
Lozsekova et al. (2002)	VCL (Vinculin)↓	
	TLN1 (Talin)↓	
	CDH1 (E-cadherin) \downarrow	999
	DSP (Desmoplaktin) \downarrow	
<u>Lu et al. (2018b)</u>	STK11 (LKB1)↓	
Majumder et al. (2003)	SLC30A1 (Zn-T1)↓	
<u>Medan et al. (2012)</u>	BCL2↑	596
<u>Myers et al. (2011)</u>	TXN (TRx) Δ	
	TXNRD1 (TrxR)↓	7296
Nemec and Barchowsky (2009)	STAT1 [↑]	6772
	VEGFA↓	
	SP1↑	6667
<u>Nemec et al. (2010)</u>	Fyn↑	
	STAT1↑	6772
	IRF1↑	
<u>O'Hara et al. (2003)</u>	МАРК8 (JNK)↑	5599
	Fyn↑	
	Lck↑	
<u>O'Hara et al. (2004)</u>	Bmx↑	
	PTK2 (Fak)↑	5747
	PTK2B (Pyk2)↑	
	Fyn↑	
	STAT5A, STAT5B (Stat5)↑	6776, 6777
	Ap1↑	2353, 3725
<u>O'Hara et al. (2005)</u>	STAT3↑	6774
	Lck↑	
<u>O'Hara et al. (2007)</u>	Lck↑	
	STAT3↑	6774
	IL-6↑	3569
Pritchard et al. (2000)	ICAM1 [↑]	
Reynolds and Zhitkovich (2007)	тр53↑	7157
<u>Rizzi et al. (2014)</u>	MAPK3, MAPK1 (ERK1/2) [↑]	5594, 5595
Russo et al. (2005)	BBC3 (PUMA) ↑	27113
	PMAIP1 (NOXA)↑	5366
	ΒΑΧΔ	581
	CYCS Δ	54205
	CASP3 ↑	836
<u>Shumilla et al. (1999)</u>	RELA (NFkB)↓	5970

Study	Gene symbol	KEGG ID
Shumilla and Barchowsky (1999)	PLAU (uPA)↓	
	PLAUR (uPAR)↑	
<u>Son et al. (2013)</u>	PI3K/Akt↑	1499
	GSK-3b/CTNNB1↑	
Park et al. (2015)	тр53↑	7157
	CDKN1A (P21)↑	1026
Park et al. (2016)	ERFFI1↓	
Tessier and Pascal (2006)	MAPK11-14 (P38)↑	
	ΜΑΡΚ8 (SAPK/JNK)↑	5599
	МАРК3 <i>,</i> МАРК1 (ERK1/2)↑	5594, 5595
Tully et al. (2000)	TP53↑	7157
	FOS↑	2353
	RELA (NFkB)↑	5970
	AHR [↑] (inferred)	
	GADD45 [↑]	1647
	HSPA1A (HSP70)↑	
<u>Vasant et al. (2003)</u>	Lck (p56 ^{lck})↑	
	FYN (p59 ^{fyn})↑	
	Ly(p56/53 ^{ly})↑	
	CASP3↑	836
Vilcheck et al. (2006)	FANCD2 [↑]	
Wakeman et al. (2005)	MAPK11-14 (P38)↑	
Wakeman and Xu (2006)	ATM↑	
	SMC1A (SMC1)↑	
	ATR↑	
	RAD17↑	
<u>Wang et al. (2004a)</u>	RELA (NFkB)↑	5970
<u>Wang et al. (2004b)</u>	KRAS (Ras)↑	3845
	NADPH oxidase↑	
Wang et al. (2019)	RELA (NFkB, p65) ↑	5970
	IL-6↑	3569
	HIF1A (HIF-1a)↑	3091
<u>Xia et al. (2011)</u>	BTD↓	
<u>Xiao et al. (2012b)</u>	MRCCI↓	
	HSP1A1 (HSP70)↓	
	HSP90AB1 (HSP90)↓	3326
Xiao et al. (2012a)	MRCC1, 2↓	
	BUB1B (BuBR1)↓	
	CDC25A (CDC25)↓	

Study	Gene symbol	KEGG ID
Yang et al. (2017)	MAP1LC3A (LC3II)↑	
	Atg12-Atg5↑	
	Atg4↑	
	Atg10↑	
	HMGA1↑	
	HMGA2↑	
	SQSTM1 (p62)↓	
<u>Ye et al. (1995)</u>	RELA (NFkB)↑	5970
<u>Yi et al. (2016)</u>	STIM1↑	
	MAPK3, MAPK1 (ERK1/2)↑	5594, 5595
	RELA (NFkB)↑	5970
	Ca2+↑	C00076
<u>Yi et al. (2017)</u>	VDAC1 [↑]	
Zeng et al. (2013)	SOD1 (SOD)↓	
	GSR (GR)↓	
	CAT↓	
	NO↓	
Zhang et al. (2016)	тр53↑	7157
	BCL2↓	596
	MCL1 (Mcl-1)↓	
	CDK2↓	1017
	CCNE1 (Cyclin E)↓	898
Zhang et al. (2017)	PI3K/Akt↓	
	ER stress	
	Mito dysfunction	
Zhong et al. (2017b)	ETFDH↓	
	SOD↓	
	CASP3↑	836
	CASP9↑	842
	BCL2↓	596
	Ca2+↑	C00076
	CYCS Δ	54205

Study	Gene symbol	KEGG ID
Zhong et al. (2017a)	SOD1 [↑]	
	SOD2↑	
	KEAP1↑	9817
	NFE2L2 (NRF2) ↑	4780
	PPARGC1A (PGC-1a)↑	
	NRF1	
	TFAM↑	
	SIRT1	2308
	FOXO1	207
	AKT1↑	
	CREB1	
<u>Zuo et al. (2012)</u>	RELA (NFkB)↑	5970
	JUN [↑]	3725
	AP11	5743
	PTGS2 (COX2)↑	5745
Tox21 Assays, Assay ID: DTXSID6032061 (sodium dichron		
TOX21_TR_LUC_GH3_Antagonist	THRB↓	
TOX21_SSH_3T3_GLI3_Antagonist	GLI3↓	2737
TOX21_p53_BLA_p2_ch2	тр53↑	7157
TOX21_p53_BLA_p2_ratio		
TOX21_p53_BLA_p3_ch2		
TOX21_p53_BLA_p3_ratio		
TOX21_p53_BLA_p5_ch2		
TOX21_p53_BLA_p5_ratio		
TOX21_GR_BLA_Antagonist_ch2	NR3C1↓	
TOX21_GR_BLA_Antagonist_ratio		
TOX21_CAR_Antagonist	NR1I3↓	
TOX21_Aromatase_Inhibition	CYP19A1↓	
TOX21_RORg_LUC_CHO_Antagonist**	RORC↓	
TOX21_PR_BLA_Antagonist_ratio**	PGR↓	
TOX21_H2AX_HTRF_CHO_Agonist_ratio**	H2AFX↑	
TOX21_ERR_Antagonist**	ESRRA↓	
TOX21_ERb_BLA_Antagonist_ratio**	ESR2↓	
TOX21_ARE_BLA_agonist_ratio**	NFE2L2↑	4780
TOX21_AR_LUC_MDAKB2_Antagonist_0.5nM_R1881**	AR↓	367

C.3.4. Toxicogenomic studies

1 2 A number of studies of Cr(VI) exposure measuring toxicogenomic and/or cell signaling changes were identified in the evidence base. Given the complexity of these studies and

1 comprehensive applicability of the evidence reported, it was determined that an extra level of

2 review and analysis would be applied to these studies.

3

C.3.4.1. Prioritization of studies for consideration

4 Full-text screening of 40 mechanistic studies identified as reporting toxicogenomic data was 5 performed; these studies are summarized in Table C-62. Studies were prioritized based on 6 relevance for providing mechanistic insight for Cr(VI)-mediated carcinogenesis in the lung and/or 7 GI tract. Of these 40 studies. 13 studies were identified that fit these criteria. Five studies were 8 partially evaluated to determine relevance; of the remaining eight evaluated in HAWC, five used the 9 same microarray dataset, so only one evaluation was necessary (details below). An independent 10 analysis using this dataset was also conducted by EPA. In addition, one study in humans occupationally exposed to Cr(VI), one additional in vivo animal study, and one in vitro study were 11 12 selected for full study quality evaluations in HAWC.

13 Two of the included studies, Kopec et al. (2012b; 2012a), generated microarray datasets

14 from tissues collected in female B6C3F1 mice and F344 rat duodenal and jejunal epithelia following

15 7 and 90 days of exposure to 0.3–520 mg/L (as sodium dichromate dihydrate, SDD) in drinking

water, bioassays originally reported by Thompson et al. (<u>2012c</u>; <u>2011b</u>). Five additional studies

17 reported analyses using the same datasets: four from the same research group (<u>Rager et al., 2017</u>;

18 <u>Thompson et al., 2016; Suh et al., 2014; Thompson et al., 2012b</u>) and one analysis conducted

19 independently by EPA (<u>Mezencev and Auerbach, 2021</u>). Five of these studies were included in the

20 synthesis of toxicogenomic data analysis; one, <u>Suh et al. (2014)</u>, was not included because the scope

21 was restricted to genes involved in iron homeostasis. It was determined that one study evaluation,

22 pertaining to (1) the quality of the animal study that generated the microarray data, and (2) the

23 quality and usability of the generated microarray, was sufficient to determine confidence in this

24 original dataset, and this could apply to all studies using this dataset. The essential details of this

evaluation can be found in the HAWC database under <u>Kopec et al. (2012b)</u>.

26 The analysis by EPA, described in <u>Mezencev and Auerbach (2021)</u>, provides mechanistic

27 insight interpretable toward human relevance of the NTP 2-year rodent bioassays and suggests

28 possible vulnerable groups. As a part of the independent analysis of this dataset by Mezencev and

29 <u>Auerbach (2021)</u>, a more intensive evaluation of the microarray data was conducted; these details

30 are described in the following section.

					Microarray
		Exposure	Exposure		õ
Author (year)	Species (strain)	design	route	Inclusion	Mic
<u>Hu et al. (2017)</u>	Chromate production workers in China	Cohort	Occupational	Yes, evaluation in HAWC	M
Kopec et al. (2012b) ^a	Rat (F344/N), Mouse (B6C3F1)	Subchronic	Drinking water	Yes, evaluation in HAWC	Н
Chappell et al. (2019)	Mouse (B6C3F1)	Subchronic	Drinking water	Yes, evaluation in HAWC	Μ
<u>Huang et al.</u> (2017)	Human (BEAS-2B human lung epithelial cell line)		In vitro	Yes, evaluation in HAWC	Н ^ь
<u>Kopec et al.</u> (2012a)	Rat (F344/N), Mouse (B6C3F1)	Subchronic	Drinking water	Yes, but not evaluated, same dataset as <u>Kopec et</u> <u>al. (2012b)</u>	
<u>Thompson et al.</u> (2012b)	Rat (F344/N), Mouse (B6C3F1)	Subchronic	Drinking water	Yes, but not evaluated, same dataset as <u>Kopec et</u> <u>al. (2012b)</u>	
<u>Thompson et al.</u> (2016)	Rat (F344/N), Mouse (B6C3F1)	Subchronic	Drinking water	Yes, but not evaluated, same dataset as <u>Kopec et</u> <u>al. (2012b)</u>	
<u>Rager et al. (2017)</u>	Mouse (B6C3F1)	Subchronic	Drinking water	Yes, but not evaluated, same dataset as <u>Kopec et</u> <u>al. (2012b)</u>	
Mezencev and Auerbach (2021)	Mouse (B6C3F1)	Subchronic	Drinking water	Yes, but not evaluated, same dataset as <u>Kopec et</u> <u>al. (2012b)</u>	
Sánchez-Martín et al. (2015)	Mouse (C57BL/6J)	Subchronic	Drinking water	No, partial evaluation below	
<u>Izzotti et al.</u> (2002)	Rat (Sprague-Dawley)	Short-term	Intratracheal Instillation	Yes, partial evaluation below	
<u>Rager et al. (2019)</u>	Pending evaluation			Pending evaluation	
<u>Lu et al. (2018a)</u>	Human (BEAS-2B)		In vitro	Yes, partial evaluation below	
<u>Clancy et al.</u> (2012)	Human (BEAS-2B)		In vitro	Yes, partial evaluation below	
<u>Chen et al. (2002)</u>	Human (BEAS-2B)		In vitro	Yes, partial evaluation below	
Suh et al. (2014)	Rat (F344/N), female; Mouse (B6C3F1), female	Subchronic	Drinking water	No, limited scope	
<u>D'Agostini et al.</u> (2002)	Rat (Sprague-Dawley)	Short-term	Intratracheal instillation	No, study is limited in scope to a subset of genes; same data as <u>Izzotti</u> <u>et al. (2002)</u>	
<u>Izzotti et al.</u> (2004)	Rat (Sprague-Dawley)	Short-term	Intratracheal instillation	No, same data as <u>Izzotti et</u> <u>al. (2002)</u>	
<u>Madejczyk et al.</u> (2015)	Rat	Acute	Injection-i.p.	No, limited scope	

Table C-62. Summary of considered toxicogenomic studies for Cr(VI) overall confidence classification.

Author (year)	Species (strain)	Exposure design	Exposure route	Inclusion	Microarray
Kumar et al.	Mouse (Swiss albino)	Acute	Injection-i.p.	No, limited scope	
(2013) Hamilton et al. (1998)	Chick embryo	Acute	Injection-i.p.	No, limited scope, and model system less relevant to intestinal or respiratory carcinogenesis	
Pritchard et al. (2005)	Human (fibroblasts with ectopic expression of h-TERT)		In vitro	No, limited scope	
<u>Andrew et al.</u> (2003)	Human (BEAS-2B)		In vitro	No, limited scope	
<u>Joseph et al.</u> (2008)	Human (skin fibroblasts)		In vitro	No, model system less relevant to intestinal or respiratory carcinogenesis	
Ye and Shi (2001)	Human (A549 adenocarcinomic alveolar basal epithelial cells)		In vitro	No, limited scope	
Sun et al. (2011)	Human (BEAS-2B)		In vitro	No, limited scope	
<u>Gavin et al. (2007)</u>	Human (peripheral blood mononuclear cells)		In vitro	No, limited scope	
Lei et al. (2008)	Rat (lung epithelial cells)		In vitro	No, limited scope	
<u>Guo et al. (2013a)</u>	Human (skin fibroblasts)		In vitro	No, model system less relevant to intestinal or respiratory carcinogenesis	
Vaquero et al. (2013)	Human (Alexander hepatoma cells)		In vitro	No, limited scope	
<u>Guo et al. (2013b)</u>	Acellular protein binding		In vitro	No, limited scope	
Ovesen et al. (2014)	Mouse (Hepa-1c1c7)		In vitro	No, limited scope	
Lou et al. (2015)	Human (B lymphoblastoid cells)		In vitro	No, limited scope	
<u>Johnson et al.</u> (2016)	Yeast (Saccharomyces cerevisiae)		In vitro	No, limited scope, and model system less relevant to intestinal or respiratory carcinogenesis	
<u>Luczak et al.</u> (2016)	Human (H460 lung carcinoma cell line)		In vitro	No, limited scope	
Bruno et al. (2016)	Human (BEAS-2B)		In vitro	No, limited scope	
<u>Hu et al. (2016b)</u>	Human (16HBE bronchial epithelial cell line)		In vitro	No, limited scope	
Park et al. (2017)	Human (BEAS-2B)		In vitro	No, limited scope	
<u>Chen et al. (2019)</u>	Human (16HBE)		In vitro	No, limited scope	
<u>Hu et al. (2019)</u>	Human (16HBE)		In vitro	No, limited scope	
<u>Wu et al. (2012)</u>	Human (BEAS-2B)		In vitro	No, limited scope	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE High (H), medium (M), low (L), or uninformative (U).

^aThis study used animals from <u>Thompson et al. (2011b)</u> and <u>Thompson et al. (2012c)</u>. Additional included analyses using the same dataset: <u>Kopec et al. (2012a</u>), <u>Thompson et al. (2012b</u>), <u>Thompson et al. (2016</u>), and <u>Rager et al.</u> (2017). <u>Suh et al. (2014</u>) used same dataset but the analysis was limited in scope. ^bStudy was *high* confidence for all reported endpoints except for qPCR, which was determined to be *uninformative*.

C.3.4.2. Analysis of data reported by Kopec et al. (<u>2012b; 2012a</u>)

Several identified studies used the microarray dataset generated by Kopec et al. (2012b;
2012a) from tissues collected in female B6C3F1 mice and F344 rat duodenal and jejunal epithelia
following 7 and 90 days of exposure to 0.3–520 mg/L (as sodium dichromate dihydrate, SDD) in
drinking water, bioassays originally reported by Thompson et al. (2012c; 2011b). The exposure
levels and tissues were selected based on previously reported significant occurrence of tumors of
the small intestines in mice following chronic exposure to Cr(VI) in drinking water (NTP, 2008).

8 <u>Description of the studies and dataset</u>

1

9 Mice B6C3F1 were continuously exposed to drinking water containing SDD at target

10 concentrations 0 (control), 0.3, 4, 14, 60, 170, and 520 mg/L SDD until study termination at days 8

11 or 91, when the animals were euthanized and specimens of intestinal tissues (duodenum, jejunum)

12 and oral mucosa (palate) were collected for gene expression analysis (Kopec et al., 2012a;

13 <u>Thompson et al., 2011b</u>). Tissue collection, isolation of RNA, design and implementation of

14 microarray experiment, and the processing of microarray data have been described in detail (Kopec

15 <u>et al., 2012a</u>). The dataset "Transcriptomic data to assess hexavalent chromium mode of action in

16 mice and rats" is deposited in the Gene Expression Omnibus (GEO)

17 (https://www.ncbi.nlm.nih.gov/geo/) as a SuperSeries GSE87262. This dataset consists of

18 394 microarrays from the platforms Agilent-014868 Whole Mouse Genome Microarray 4x44K and

19 Agilent-014879 Whole Rat Genome Microarray 4x44K. The mouse subset of the data was deposited

20 under the accession number GSE87259 and includes 214 microarrays. The data are available in the

21 functional genomics data repository GEO supporting MIAME-compliant data submissions in the

22 form of raw data (.gpr files) and normalized data (normalized following a referenced

23 semiparametric approach).

24 Evaluation of microarray experiment and generated microarray data

A summary of the microarray study design performed by Kopec et al. (2012b; 2012a) can be found in Figure C-29. An evaluation focusing on study design, implementation, and on the quality and usability of preprocessed expression data for their reanalysis was conducted using criteria developed by Bourdon-Lacombe et al. (2015) (Table C-63). Additional criteria for DNA Microarrays presented by this group were not applied, as this evaluation is not focusing on the reported results of the microarray study. In addition, evaluation of the microarray data reporting quality was

- 1 conducted using the Minimum Information About a Microarray Experiment (MIAME) (Brazma et
- 2 <u>al., 2001</u>) (Table C-64).

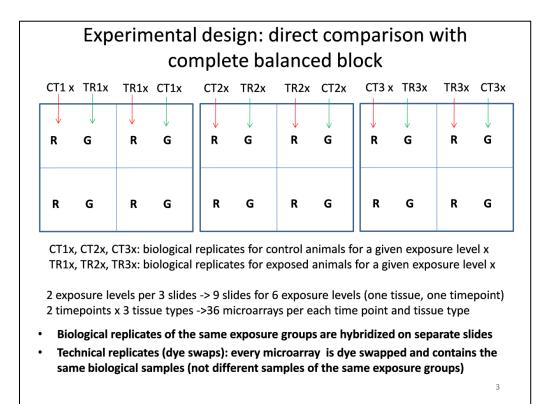


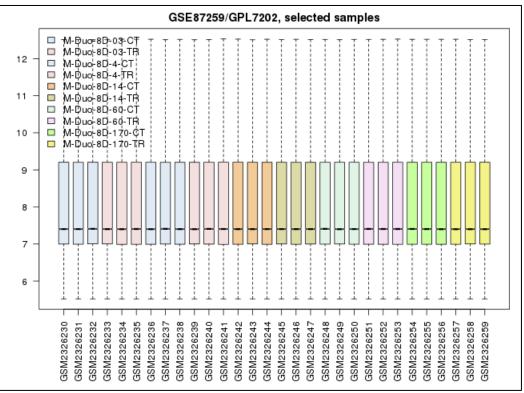
Figure C-29. Design of microarray experiments conducted by Kopec et al. (2012b; 2012a).

Table C-63. Evaluation of the DNA microarray experiments in Kopec et al.(2012b; 2012a) using criteria outlined by Bourdon-Lacombe et al. (2015)

Criterion	Status for Kopec et al. (2012b; 2012a)	
Mandatory or important criteria important in evaluating the overall quality of toxicogenomics experiments		
Control animals were handled alongside treated animals using identical procedures (e.g., controls in oral gavage experiments received vehicle only) and at similar times.	True. No additional variable (including time) was identified between exposure groups and corresponding controls. (Equivalent to confounding/variable control and exposure domains in the study evaluation in HAWC.)	
A minimum of three biological replicates (animals) were used per group (in order to reach desired power).	True for all exposures/tissues/timepoints with single exception for mice-duodenum-90-day-1.4 mg/L Cr(VI) exposure and control groups (2 replicates available only). This deficiency affects only one out of 18 tissue-exposure groups from 90-day mouse study. The impact is limited.	
If temporality is considered, time-matched controls were used.	True. There are two timepoints with separate time-matched controls. In fact, there are separate unexposed controls even for each exposure group.	

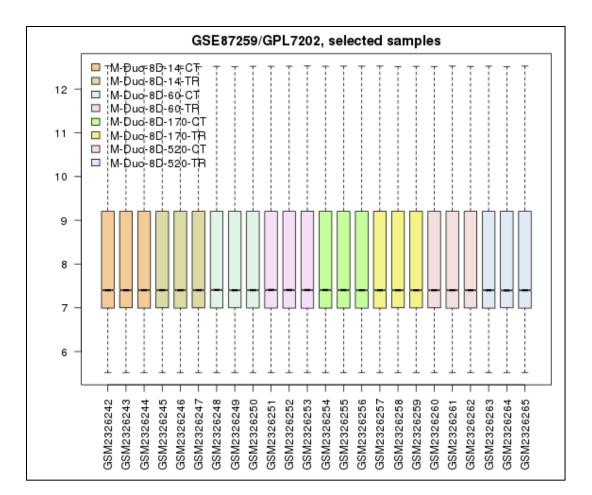
Criterion	Status for Kopec et al. (2012b; 2012a)
The appropriate animal model and tissue was used, and there is a rationale for the doses selected.	True. The study used the same mouse strain and exposure levels as previous NTP bioassay (<u>NTP, 2008, 2007b</u>) and focused on the tissues (duodenum, jejunum) in which the NTP study detected pathological changes of interest. (The same as the exposure design domain in the study evaluation in HAWC).
If dose–response is considered for risk modeling (including estimation of the BMD), a minimum of three doses plus control was used Ideally, at least one of these doses should be near the NOAEL.	True. Six doses plus control were employed. LOAEL for duodenal epithelial hyperplasia in female mice was at 5 mg/L Cr(VI) exposure in 2-year NTP bioassay (38% cumulative incidence). The evaluated study included much lower exposures 1.4 mg/L and 0.1 mg/L Cr(VI) (and shorter time).
Tests to assess various toxicities (e.g., histopathology, biomarkers of disease) were done using the same biological samples.	Partially true. Animals from the same study and exposed under the same conditions were used for histopathology evaluation and other phenotypic assays of target tissues.
Criteria that are required or should be cons	sidered in DNA microarray methodologies
RNA A260/A280 ratios are reported and are above 1.8 to indicate sample purity or are consistent across samples.	Partially true. Determination of the purity of RNA by A260/A280 has been indicated in the text, but the values have not been reported. It is an experience of this reviewer that these values are frequently
	determined and used to assess the quality of RNA preparations, but they are usually not reported, because of irrelevance of their actual values with respect to publication (if >1.8, the RNA is used for downstream experiments; If not, RNA is isolated again). This reviewer considers the fact that the ratio has been determined and used to assess the purity of RNA as sufficient even if its value is not reported.
The integrity of RNA was assessed (common strategies include an RNA integrity number (RIN), an RNA quality indicator (RQI) or 28s:18s ratio) to ensure minimal RNA degradation or consistency across samples.	True. Determination of the RNA integrity was performed using denatured gel electrophoresis. This is an older and more laborious, but less expensive method than using a lab-on-a chip (e.g., Agilent Bioanalyzer), which determines RIN. This reviewer considers the fact that the integrity of RNA was verified by denatured electrophoresis as sufficient.
When multiple microarrays are necessary and the experiment was run over different days, the samples were randomized across the slides/days to avoid confounding effects (often referred to as a block design). Note: not always specified in the methods.	Of three biological replicates for given exposure level, one exposure and one control specimen were always hybridized on the same microarray slide. Three replicates were spread across three different slides. This design ensures that even if each of these 3 slides is processed at different day, the confounding due to batch effect can be eliminated if the data are analyzed with consideration for pairing of specimens on the same slides. The information on timing of microarray processing was not provided; nevertheless, the batch effect can be identified through data analysis (if present) and under some circumstances it can be also corrected.
Generally, gene annotation and data quality are more robust when commercially produced microarray platforms are used.	True. Commercial microarray platform has been used.
Species appropriate microarrays were used (i.e., mouse arrays for mouse samples).	True. Mouse microarray Agilent-014868 Whole Mouse Genome Microarray 4x44K has been used.

Criterion	Status for Kopec et al. (2012b; 2012a)
Labeling and hybridization were done according to manufacturer protocol. Any deviations are reported.	True. Manufacturer's protocol has been reportedly followed (Agilent Manual: G4140-90050 v. 5.0.1) and no deviation was indicated.
When co-hybridizations of treated and control samples are done (use of different fluorophores for control and treated samples), dye-swapping experiments were done, or there is an indication that dye bias was assessed statistically.	True. Dye-swapping was performed (see Figure C-29; green and red colors represent Cy3 and Cy5 dyes).
Scanner specific quality control software was used to test microarray quality.	True. GenePix Pro 6.0 software was used for data collected by GenePix 4000B scanner. All data has reportedly passed quality control. The results of quality control assessment were not presented (which is not unusual in the field).
Data quality was assessed (through MA plots, heat maps, boxplots, scatterplots, signal to noise ratio, etc.).	 Partially true. Heatmaps for duodenal and jejunal data for 8-day and 90-day timepoints with hierarchical clustering on specimens was provided [Figures 6 (8 day) and 8 (91 day), (Kopec et al., 2012b)]. This is not an unsupervised analysis and only differentially expressed genes were analyzed. This reviewer does not consider this criterion to be "a hard criterion". Data quality plots can be usually re-created when needed and assessed by study evaluator.
In the case that outliers are identified, there is a minimum of three replicates remaining per group and a justification for removal has been provided.	Partially true. In one specific tissue/exposure combination, there are only 2 replicates available. An explanation for the missing replicates was not provided, but it is not certain that the replicates represented outliers (it could have been a technical failure affecting 2 specific microarrays). Other than that, removal of other microarrays was not identified.
The data were preprocessed (e.g., background subtracted and log transformed) and normalized (i.e., adjusted to remove technical variations between arrays) prior to statistical analysis.	True. Pre-processed data were submitted to the GEO repository.
Data files were made available through an open access public database such as Gene Expression Omnibus (GEO), Chemical Effects in Biological Systems (CEBS) or ArrayExpress).	True. See GEO https://www.ncbi.nlm.nih.gov/geo/); SuperSeries GSE87262.

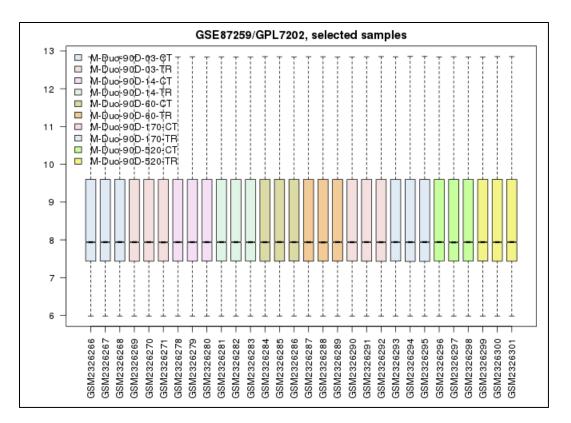

Table C-64. Evaluation of the information available with microarray data using MIAME sections

MIAME section	Evaluation of the available information
Part 1: Experimental	Information provided in sufficient detail. Dose-response type of experiment (0.1, 1.4, 5,
design	20, 50, 180 mg/L Cr(VI)) in drinking water continuously) with two timepoints (8 and 91
	days). Other experimental variables: 3 tissue types (duodenum, jejunum, palate
	epithelium). Three biological replicates per exposure level/tissue/timepoint.
Part2: Array design	Information available due to the commercial nature of microarray platform.
	Commercial microarray Agilent-014868 Whole Mouse Genome Microarray 4x44K
	(www.agilent.com). Designed to represent all known genes in the mouse genome and
	their resulting transcripts, it is comprised of 41,534 60-mer oligonucleotide probes
	representing over 41,000 mouse genes and transcripts.

This document is a draft for review purposes only and does not constitute Agency policy. C-260 DRAFT—DO NOT CITE OR QUOTE


MIAME section	Evaluation of the available information
Part 3: Samples	Information provided in sufficient detail.
	Organism: Mus musculus strain B6C3F1; sex = female; 6–7 week old at exposure.
	Sample: RNA (isolation and evaluation of purity and integrity reported).
	Labeling: Following manufacturer's protocol.
Part 4: Hybridizations	Information provided in sufficient detail. Hybridization was performed following
	manufacturer's protocol (Agilent Manual: G4140-90050 v. 5.0.1). Information on the
	dye swap and hybridization design reported adequately (see Figure C-29).
Part 5:	Reported sufficiently. Original scans: not available (these are usually not provided).
Measurements	Raw data provided. Normalized data provided as a gene expression matrix.
	Normalization approach reported and properly referenced.
Part 6: Normalization	Included in microarray design.
controls	

- 1 Distribution of normalized expression intensities (from GEO)
- 2 The dataset for the mouse small intestine reported by Kopec et al. (2012b; 2012a) was
- 3 further analyzed. Distributions of normalized expression intensities were retrieved using the
- 4 GEO2R tool (Figures C-30–C-32). The distributions demonstrate that the values submitted by the
- 5 study authors are median-centered and cross-comparable.



6

Figure C-30. Signal intensities box-plots for 8-day exposure mouse data (duodenum, top dose excluded). Due to the limitation in number of boxplots, this image does not include 520 mg/L SDD (180 mg/L Cr(VI)) exposure and control group. Note: 1 mg/L SDD = 0.349 mg/L Cr(VI).

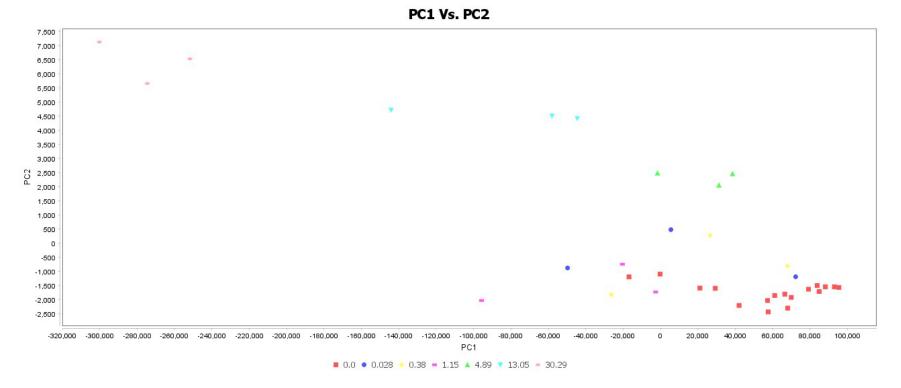
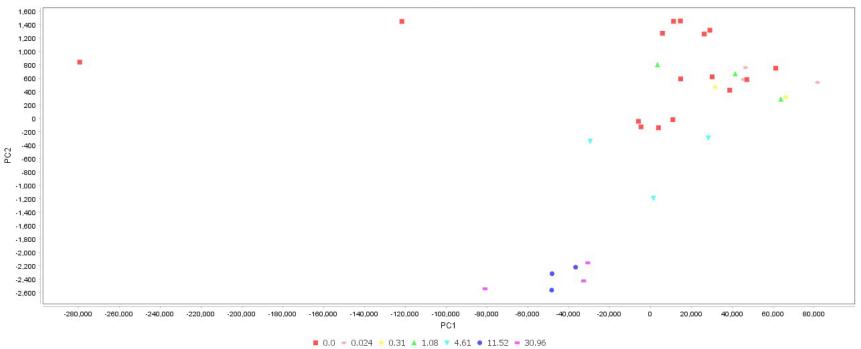


Figure C-31. Signal intensities box-plots for 8-day exposure mouse data (duodenum, top 4 dose groups). The image includes top 4 exposure groups and corresponding controls. Note: 1 mg/L SDD = 0.349 mg/L Cr(VI).


Figure C-32. Signal intensities box-plots for 90-day exposure mouse data (duodenum). The image includes all exposure groups and corresponding controls except for 4 mg/L SDD exposed and control groups. Note: 1 mg/L SDD = 0.349 mg/L Cr(VI).

- 1 Principal component analysis
- 2 Principal component analysis was performed using BMDExpress 2.20.0148 BETA (Sciome, 3 2018) separately for 8-day and 91-day mouse duodenum gene expression data. The data were 4 normalized and log2-transformed. This method reduces high-dimensionality of microarray data 5 (41,268 signal values per microarray) onto 2-dimensional space with orthogonal variables PC1 and 6 PC2 that capture the maximum amount of variance. The 8-day exposure duodenal data show 7 separation for three highest exposure levels along PC2 (Figure C-33). The 90-day data show 8 separation only for two highest exposure groups (combined) and 4.61 mg/kg-day group from all 9 other groups (Figure C-34). The results suggest separation of microarray data by exposure, which 10 is more pronounced in the 8-day than in the 90-day dataset and for higher but not for lower 11 exposure levels.

Figure C-33. Principal component analysis of 8-day exposure data for mice and duodenal tissues. Exposure levels (mg/kg-day Cr(VI)) are color-coded.

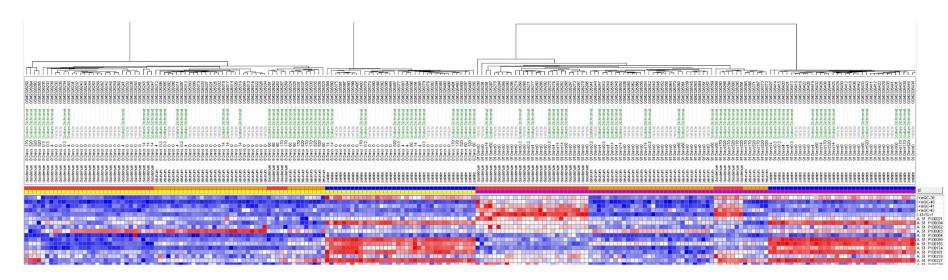


Figure C-34. Principal component analysis of 90-day exposure data for mice and duodenal tissues. Exposure levels (mg/kg-day Cr(VI)) are color-coded.

1 *Hierarchical clustering*

2 Hierarchical clustering was performed with the GENE-E tool (Broad Institute) for all mouse-

- 3 related data with GEO accession number GSE87259 (Figure C-35). Data used were all signal
- 4 intensities normalized by the study authors; distance metrics were 1- Pearson correlation
- 5 coefficient; the linkage method was average. Separation between 8-day and 90-day data was
- 6 forced.
- 7 The result of this unsupervised clustering displays clear separation of overall gene
- 8 expression of palate specimens from duodenum and jejunum for both 8-day and 91-day exposures,
- 9 which is consistent with expected biological differences. Duodenum specimens for 8-day exposure
- 10 to 520 mg/L clearly separate from all other duodenum and jejunum specimens. Duodenum
- specimens (8 day/20-60 mg/L Cr(VI)) and jejunum specimens (8 day/20-180 mg/L Cr(VI))
- 12 cluster together but separately from those exposed to 0.1–5 mg/L Cr(VI). Low exposures
- 13 (0.3 mg/L and 1.4 mg/L Cr(VI)) tend to cluster together with vehicle controls. In 90-day data,
- 14 duodenum and jejunum specimens from mice exposed to the highest concentrations of Cr(VI)
- 15 (60 mg/L and 180 mg/L) form a well-defined cluster with separation between duodenum and
- 16 jejunum specimens.

Figure C-35. Hierarchical clustering of microarrays from duodenum, jejunum and palate tissues from mice exposed to SDD for 7 days and 90 days. This visualization cannot provide adequate resolution and serves only for illustrative purposes. Text color coding: Green-exposed, gray-controls. Colored squares: red-duodenum, beige-jejunum, blue-palate; yellow-8 day, violet-91 days. Expression color coding: blue-low, red-high.

Supplemental Information—Hexavalent Chromium

1 The study that generated microarray dataset GSE87259 does not substantiate major 2 concerns with respect to the risk of bias. The only potential issue, which has been identified, is 3 apparently incomplete outcome data due to the discrepancy between the number of mice reportedly 4 allocated to the gene expression study and the number of mice needed to produce the dataset 5 GSE87259. This discrepancy is of possibly little significance, because the number of allocated mice 6 has been reported in an article that was not actually reporting microarray data generation, 7 processing, or interpretation (<u>Thompson et al., 2011b</u>). The study authors could have refined the 8 design of microarray study and eventually processed less mouse tissue for gene expression analysis 9 than originally planned. Issues specific to reporting and design of microarray experiment were of 10 little significance with respect to the quality and usability of data for toxicogenomic analysis. The 11 results of analysis of normalized data supplied by study authors demonstrated that the microarrays 12 are cross-comparable among different dose levels for a given tissue type and exposure time, which 13 supports their use for transcriptomics BMD determination and for analysis of gene expression 14 differences between exposed and control animals within the same tissue type. 15 In addition, the expression data were found to be similar for jejunum and duodenum, and 16 these two tissues were found to differ considerably from palate tissue with respect to overall gene 17 expression. This finding is consistent with expectations based on biological differences and 18 supports the quality of microarray data through biological plausibility. Furthermore, duodenum 19 specimens (8-day, 20–60 mg/L Cr(VI)) and jejunum specimens (8-day, 20–180 mg/L Cr(VI)) were 20 shown to cluster together but separately from the same specimens isolated from mice exposed to 21 0.1-5 mg/L Cr(VI). This finding supports the existence of dose dependence of overall expression 22 data and implies the existence of differences between low and high exposure groups. Interestingly, 23 the low exposures 0.1 mg/L and 1.4 mg/L Cr(VI) tend to cluster together with vehicle controls. 24 Thus, the result of hierarchical clustering shows consistency with biological expectations (support 25 for quality of microarray data) and identifies meaningful natural classes among specimens. 26 Another issue not addressed by this evaluation is related to the use of single channel data 27 from two-color microarrays that were used in accordance with a two-color protocol and with cohybridization of Cy-3 and Cy-5 labeled specimens. During a discussion with collaborators, a concern 28 29 was raised that Cy-3 only data were used, but Cy-5 data were excluded from further analysis. The 30 study authors argued in their report that Cy-5 data can be unreliable due to sensitivity of this dye to 31 ambient ozone. This issue has been recognized by the scientific community and the means for its 32 remediation are available from the microarray supplier (Agilent). Most likely, these means have not 33 been used by the study authors and they have decided to disregard affected Cy-5 data after the 34 experiment was completed. Therefore, it is unlikely that this approach does not represent a 35 selective reporting that increases the risk of bias. While some concerns may remain with respect to 36 the data processing, separate channel analysis for two-channel microarrays has been explored and 37 recommended by other investigators (Smyth and Altman, 2013).

1 This evaluation did not address the raw gene expression data and their pre-processing due 2 to time and resource limitations. Nevertheless, a collaborator was able to process raw data using a 3 code supplied by the study author and demonstrate reproducibility of the raw data processing 4 through independent generation of the same normalized data as supplied by study authors to the 5 GEO [personal communication].

6 C.3.4.3. Partial study evaluations

7 <u>Lu et al. (2018a)</u>

8 A full study evaluation to judge the potential risk of bias is not warranted. The source of 9 BEAS-2B cells was not reported, and the description of transformation of cells is very limited, 10 missing any narrative on how the cell culture changed during the 6-month incubation, whether the 11 cell growth was evaluated in the process, or how often cultures had to be subcultured, which are all 12 good practices to report for development of new cells by long-term exposures. Small, medium, and 13 large colonies were reportedly used for implantation in the animal study, but only a large colony 14 from the soft agar assay has been reportedly isolated and maintained as a cell culture, indicating 15 inconsistency in reporting. The growth of tumors seems to be too high for 6-day time after 16 implantation. The concentrations of Cr(VI) at which transformation of cells was achieved were 17 comparable to those used in similar studies, equivalent to 0.037 mg/L and 0.074 mg/L of sodium 18 dichromate dihydrate (0.013 and 0.026 mg/L Cr(VI)).

19 <u>Sánchez-Martín et al. (2015)</u>

This study examines changes in (1) histopathology, (2) IHC markers of proliferation (Ki-67)
and DNA damage (p-γH2AX), and (3) expression of selected genes by qPCR in the liver and in the
proximal (PSI) and distal (DSI) "sections of gastrointestinal tract" of the C57BL/6 J mice exposed to
Cr(VI) in drinking water. Mice were exposed to 0, 19, 191, and 1,919 µg/L Cr(VI) for 60 days and
subsequently to the same concentration of Cr(VI) in drinking water and 0–125 mg/kg/day B[a]P for
90 days.
This summary addresses the gene expression analysis reported in the study by <u>Sánchez-</u>

Martín et al. (2015). Gene expression changes reported in this study are of little informative value
 due to the reasons indicated below. Even though the study suggests interesting patterns of gene
 expression with discordant expression changes across anatomical sites and exposure levels, an
 evaluation is not justified because of considerable reporting deficiencies and the high risk of bias.

- Changes in gene expression are reported only in the form of a heat map. Information about the color coding of expression changes in the heat map is incomplete. No expression values and no statistical tests for significance of their differences are reported.
- The study is not a whole-genome ('omics') study, and it deals only with expression of selected genes with limited justification for their selection.

- The sample size appears to be 4 animals per exposure level (2 animals of each sex). This design allows identification of only differentially expressed genes that do not show substantial sex differences in response to the Cr(VI) exposure.
- The study uses qPCR for the evaluation of expression of selected genes in the proximal (PSI) and distal (DSI) "sections of the gastrointestinal tract". These sections are not sufficiently characterized, which allows ambiguous interpretation. The "proximal" and "distal" are indicated to reflect position of the section relative to the stomach, but this does not add sufficient information to ascertain whether only the small intestine or also the colon were examined and which specific segments of these anatomical structures were sampled for downstream analysis.
- The study employs GAPDH as an endogenous control for normalization of the gene expression. The choice of GAPDH is not justified and its invariant expression in the liver and intestine across all exposures has not been demonstrated. There is a lack of confidence for appropriateness of the use of GAPDH as an endogenous control in this study.
- Primers used in the qPCR studies are not reported. While this information is mentioned as being provided in the supplemental data, the information on the sequences and origin of primers (references, software used for their design, experimental validation of primers) is missing.
- The authors indicate the use of the △△Ct method for calculation of gene expression from the qPCR data. Since there is no information on the validation of primers and amplification efficacy for the target genes and an endogenous control, the use of △△Ct method is not supported and this method may not be appropriate in this study.

23 <u>Clancy et al. (2012)</u>

24 The source of BEAS-2B cells is reported; description of transformation of cells is sufficiently 25 reported; growth media and exposure conditions were properly reported; exposure was performed 26 at minimally cytotoxic concentration (0.5 μ M) of potassium chromate (0.1 μ M Cr(VI)), which does 27 not seem to have been determined in this study but is consistent with other reports. The form of 28 Cr(VI) and its source are reported (potassium chromate, Sigma). The cells have been altered by 29 Cr(VI)-mediated transformation (morphology, growth pattern in soft agar), and so there are no 30 sensitivity issues. Methods for mRNA analysis are succinctly described and refer to manufacturers' 31 protocols. qPCR validation relied on the GAPDH gene as an internal control, which is a frequent 32 practice in the field, but not appropriate without justification (the justification has not been 33 provided in this report). Differentially expressed genes were selected based on t-test *p*-value 34 of = 0.05 and a fold-change cut-off of 1.50. The lack of proper qPCR validation does not invalidate a 35 microarray study using systems biology approaches.

36 <u>Chen et al. (2002)</u>

- 37 Sources of BEAS-2B and MEF cells were provided; media composition was reported; sources
- of vectors pCR-FLAG-IKK, pCR-FLAG-IKK-KM, pcDNA3-myc-IAP1, and pEGFPluc were indicated.
- 39 However, the Cr(VI) compound used for this study was not specified. Exposure levels of Cr(VI) were

1 adequately described. For assays other than cytotoxicity/viability, conditions were adequately

- 2 selected to avoid convolution of the study outcomes with cell death. Likewise, exposure conditions
- 3 (concentrations, times) were chosen well with respect to sensitivity of outcome detection, as
- 4 evidenced by demonstrated differences between Cr(VI)-exposed and solvent control cells.
- 5 The microarray study employed (1) an old expression array design, (2) only a fold change-
- 6 based identification of differentially expressed genes, (3) unknown number of biological and/or
- 7 technical replicates. RT-PCR was used instead of qPCR for validation of selected genes identified by
- 8 microarray analysis, and endogenous control 7S RNA was used without justification. RT-PCR primer
- 9 design software, sequences, annealing sites, and amplicon lengths were reported. Reverse
- 10 transcription conditions were reported but the reverse transcriptase used in the reaction was not
- 11 described. RT-PCR conditions were reported.
- 12 Methods used in this study complemented each other and, in this way, compensated for the
- 13 identified deficiencies of individual experiments. For instance, deficiencies of microarray
- 14 experimental design and analysis were compensated by validation RT-PCR and demonstrated IAP-
- 15 mediated inhibition of cell death in cells exposed to Cr(VI). The somewhat surprising lack of
- 16 specification of Cr(VI) compound used in this study can be perceived as a critical deficiency
- 17 rendering most of the study uninformative (at least experiments that employed Cr(VI)-exposure).

18 <u>Izzotti et al. (2002)</u>

- 19 Izzotti et al. (2002) analyzed gene expression in SD rats intratracheally exposed to sodium
- 20 dichromate⁶ at the dose of 0.25 mg/kg (0.09 mg/kg Cr(VI)) body weight for 3 days and sodium
- 21 chloride control, using in-house radioactively labeled cDNA microarrays that probed expression of
- 22 216 genes tested in duplicates and 5 house-keeping genes. Gene expression was examined in lungs
- 23 and livers of SDD-exposed and NaCl-exposed (control) groups. Genes were considered differentially
- 24 expressed if the fold change exceeded 2. This study identified 56 genes over-expressed in lungs of
- 25 Cr(VI)-exposed rats, which included glutathione metabolism-related genes, membrane
- 26 channels/transporters, cell signaling molecules, cell cycle-related molecules, stress
- 27 response/protein folding-related genes, as well as DNA synthesis/DNA repair and apoptosis-related
- 28 genes. These expression data are consistent with generation of reactive oxygen species, cell
- 29 proliferation, and inhibition of apoptosis. Protein misfolding-related genes are likely reflecting
- 30 oxidative protein damage and increased protein synthesis. The study found no changes in gene
- 31 expression in livers of Cr(VI)-exposed mice relative to control animals, which indicated no
- 32 significant systemic effects after intratracheal exposure. Although these study results support
- 33 findings of other toxicogenomic and non-omic mechanistic studies, the study likely provides an

⁶As with many studies, the compound may be referred to as "sodium dichromate" (Na₂Cr₂O₇), when the compound is administered in an aqueous solution and the mass units are based on sodium dichromate dihydrate (Na₂Cr₂O₇ 2H₂O). Unless otherwise noted, the conversion factor for sodium dichromate dihydrate (0.349) was used to convert Cr(VI) units for studies labeled as either sodium dichromate or sodium dichromate dihydrate.

- 1 incomplete picture of molecular changes induced by Cr(VI) exposure. This is because (1) it
- 2 evaluated expression of a limited range of genes using in-house produced microarrays, and (2) the
- 3 dose used in this study (0.09 mg/kg-bw Cr(VI)) failed to induce lung tumors as in other studies in
- 4 SD rats exposed 5 times per week over 30 months (<u>Steinhoff et al., 1986</u>).
- 5 **C.3.4**

C.3.4.4. Toxicogenomic analyses

- 6 Toxicogenomic analyses of genome-wide changes in gene or protein expression in response
- 7 to Cr(VI) exposure can help inform carcinogenic signaling pathways relevant to lung and GI cancer.
- 8 Of 40 toxicogenomic studies initially identified, screening of the toxicogenomic literature base (see
 9 HAWC) identified one study of occupationally exposed humans, seven in vivo animal studies, and
- 10 four in vitro studies were prioritized for mechanistic considerations for Cr(VI)-induced
- 11 carcinogenesis. Four studies were fully evaluated in HAWC (one human study, (<u>Hu et al., 2017</u>), two
- 12 in vivo animal studies (<u>Chappell et al., 2019; Kopec et al., 2012b</u>), and one in vitro study using the
- 13 human BEAS-2B cell line (<u>Huang et al., 2017</u>)), with one evaluation, <u>Kopec et al. (2012b</u>),
- 14 representing five studies that used the same microarray dataset (see details below). An additional
- 15 four studies (one in vivo study in rats (<u>Izzotti et al., 2002</u>) and three in vitro studies (<u>Lu et al., 2018a</u>;
- 16 <u>Clancy et al., 2012; Chen et al., 2002</u>)) were partially evaluated in order to determine relevance prior
- 17 to deciding whether a full evaluation would be necessary. In addition to these 12 studies, an
- 18 independent analysis of published in vivo toxicogenomic data was conducted by Mezencev and
- 19 <u>Auerbach (2021)</u> and is described below. A full list of all toxicogenomic studies identified along
- 20 with screening criteria and study evaluation details specific to the data analysis can be found in
- 21 Appendix C.3.4.1.

22 <u>In vivo studies</u>

- 23 One *medium* confidence toxicogenomic study was identified in humans. <u>Hu et al. (2017)</u>
- 24 performed proteomic analysis of sera in male workers recruited from a chromate production facility
- 25 in China. Primary limitations of this study were the lack of description of participant selection and a
- 26 relatively small sample size. There were two stages of analysis; first, 25 exposed and 16 unexposed
- 27 workers underwent 'proteomics technology and bioinformatics analysis,' and second, 41 exposed
- 28 and 25 unexposed workers underwent a validation analysis to confirm findings from the first stage.
- 29 Sixteen significantly enriched pathways were identified related to innate immune system function,
- 30 extracellular matrix organization, platelet-related processes, and metabolism (<u>Hu et al., 2017</u>).
- 31 Notably, the increased abundance of SHH, a gene which promotes tumor growth and metastasis if
- 32 overactivated, in the sera of Cr(VI) exposed workers is consistent with the potential role of SHH in
- 33 Cr(VI)-mediated carcinogenesis identified by other toxicogenomic studies (Mezencev and Auerbach,
- 34 <u>2021; Huang et al., 2017</u>).
- 35 Six of the eight in vivo toxicogenomic analyses in animals after oral exposure to Cr(VI) were
- published by the ToxStrategies firm. A *high* confidence study, <u>Kopec et al. (2012b</u>), conducted an
- 37 analysis of gene expression in the oral mucosa and duodena in tissues collected from female Fischer

344 rats and female B6C3F1 mice exposed to sodium dichromate dihydrate (SDD) in drinking water
 as described in the original studies by Thompson et al. (2012c; 2011b). Because the same dataset

3 was used in four other studies published by this group repeated (<u>Rager et al., 2017; Thompson et al.</u>,

4 2016; Kopec et al., 2012a; Thompson et al., 2012b), this study evaluation (in HAWC) specific to the

5 original animal studies and the microarray dataset generation was not repeated.

6 Kopec et al. (2012a) reported gene expression changes in mouse intestinal epithelia after 7 8 days or 91 days corresponding to oxidative stress, xenobiotic metabolism signaling, glutathione 8 metabolism, cell cycle progression, lipid metabolism, and immune response pathways. In addition, 9 canonical DNA repair pathways (i.e., NER, MMR, and BRCA1) were enriched for genes differentially 10 expressed in the duodena of mice exposed to SDD for 8 days; however this response was absent in 11 duodena of mice exposed for 90 days and in jejuna of mice exposed for both time periods (Kopec et 12 al., 2012a). A subsequent publication using the same mouse dataset reported gene expression 13 changes indicating reduced apoptosis at day 91 and increased cell growth and proliferation at days 14 8 and 91 (<u>Rager et al., 2017</u>). Cancer-related signaling identified from the 8-day exposure data 15 largely reflected increased expression of matrix metalloproteases (Mmp2, Mmp7, Mmp9, Mmp10, 16 and Mmp13). Mmp10 and Mmp13 showed dose-dependent upregulation at day 91, which indicated 17 cell migration, tissue remodeling and angiogenesis. In the same study, a parallel analysis of 18 ToxCast/Tox21 and Comparative Toxicogenomics Database (CTD) data for Cr(VI) compounds 19 showed a variety of differences when comparing these in vitro results to the in vivo results for this 20 particular dataset; for example, some pathways associated with DNA damage (e.g., p53) were only 21 activated in vitro (Rager et al., 2017). In a toxicogenomic study in duodena of rats exposed to SDD in 22 drinking water at concentrations up to 180 mg/L, functional analysis revealed enrichment of cell 23 cycle, DNA metabolism, DNA replication, and DNA repair pathways at day 8 but not day 91 (Kopec et 24 al., 2012b). A comparative analysis of the same datasets for rats and mice showed a strong dose-25 response relationship of the number of differentially expressed genes in the duodenum in both 26 species when total Cr tissue levels exceeded 10mg/kg, with a minimal transcriptomic response in 27 the oral mucosa evidenced by very few gene expression changes showing dose-responsive statistical 28 significance (Thompson et al., 2016). 29 Additional reports published by this group included a reanalysis of the mouse dataset,

30 limited to 7 out of 23 gene categories, which suggested a higher similarity in Cr(VI) induced gene

31 expression changes in the mouse small intestine to expression changes induced by four

32 non-mutagenic carcinogens versus four mutagenic carcinogens (<u>Thompson et al., 2012b</u>). The

33 comparison dataset represented gene expression in rat liver reported by <u>Ellinger-Ziegelbauer et al.</u>

34 (2005). The limited nature of the analysis (cross-species, cross-tissue and cross-platform

35 comparison of gene expression data for the chemical of interest using a single in vivo study

36 annotated for four mutagenic and four non-mutagenic carcinogens) make the results difficult to

37 interpret.

Another *medium* confidence gene expression comparison study by the same group using a
 new dataset reported significant overlap between DEGs induced by oral exposure Cr(VI) and two

1 fungicides, captan and folpet, that also cause intestinal tumors in mice (<u>Chappell et al., 2019</u>).

- 2 Common pathways modulated by Cr(VI) and the higher concentrations of captan and/or folpet
- 3 include those involving HIF1, AP1, PPAR, mTOR 4, and Peroxisome (<u>Chappell et al., 2019</u>). While
- 4 these authors suggest the commonalities between two non-mutagenic compounds and Cr(VI) imply
- 5 a non-mutagenic MOA for Cr(VI)-induced mouse intestinal tumors, concordance among gene
- 6 expression across these three toxicants does not provide solid evidence for ruling out mechanisms
- 7 that are not shared by all these toxicants. The study was also limited by a single timepoint and
- 8 reporting inconsistencies for pathways that were found to be unique for duodena of Cr(VI) exposed9 mice.
- 10 An independent analysis of the 8 and 91 day B6C3F1 mouse data subset published by
- 11 ToxStrategies, Inc. (Rager et al., 2017; Kopec et al., 2012b; Kopec et al., 2012a; Thompson et al.,
- 12 <u>2011b</u>) that was deposited in the Gene Expression Omnibus implicated activation of oncogenic
- 13 signaling (MYC, MYCN, EGFR, ERBB2, TRIM24) and inhibition of tumor suppressors (CDKN2A,
- 14 STAT1), which support sustained cell proliferation in the duodenum (<u>Mezencev and Auerbach</u>,
- 15 <u>2021</u>) (see Appendix C.3.4.2). Similarly, a parallel analysis of enrichment of the cancer "hallmark"
- 16 and oncogenic signature gene set collections from the Molecular Signatures Database (MSigDB)
- 17 identified multiple molecular changes in duodena of mice orally exposed to Cr(VI) that are known to
- 18 be relevant for carcinogenesis, including c-Myc targets, E2F targets, and alterations in G2M
- 19 checkpoint and DNA repair pathways. Gene sets enriched in the duodena of mice exposed for 8 days
- 20 support angiogenesis, impaired apoptosis, and epithelial-mesenchymal transition, which also
- 21 represent hallmarks of cancer. Enrichment of the cholesterol homeostasis gene set found for 8-day
- 22 and 90-day exposures at several exposure levels implies activation of cholesterol biosynthesis that
- 23 is associated with intestinal crypt hyperproliferation and tumorigenesis. Enriched gene sets from
- 24 the Oncogenic Signature collection imply oncogenic activation of KRAS, SRC, SHH, and
- 25 PI3K/AKT/mTOR signaling and inactivation of signaling mediated by tumor suppressors PTEN and
- 26 RB (Mezencev and Auerbach, 2021).
- 27 The analyses by Mezencev and Auerbach (2021) (see Appendix C.3.4.2) also indicate 28 oxidative stress in duodena of mice exposed to Cr(VI) for 91 days through inferred activation of the 29 NFE2L2 upstream regulator. This gene encodes a redox-sensitive transcription factor NRF2, which, 30 upon activation, accumulates in the nucleus where it regulates expression of genes involved in the 31 oxidative stress response (<u>He et al., 2020</u>). In addition, a collection of 26 genes known to be 32 responsive to oxidative stress was also significantly enriched in duodena of mice exposed to Cr(VI) 33 for 91 days. This is in contrast with data after an 8-day exposure, which indicate that this collection 34 of genes was enriched in control mice. As a result, in mice exposed to Cr(VI), lower amounts of ROS 35 are inferred in duodena of mice exposed for 8 days, but higher amounts of ROS are inferred in 36 duodena of animals exposed for 91 days.
- Taken together, the results support duodenal carcinogenicity of Cr(VI) ingested in drinking
 water in mice through activation of oncogenic signaling, inactivation of signaling mediated by tumor

suppressors, sustained cell proliferation, oxidative stress, impaired apoptosis and tissue
 remodeling.

- A notable result of the analyses by <u>Mezencev and Auerbach (2021)</u> was the identification of
- 4 a potential role for the CFTR (cystic fibrosis transmembrane conductance regulator) in
- 5 carcinogenesis in mouse small intestines. Toxicogenomic analysis of Kopec et al. (2012b; 2012a)

6 datasets by <u>Mezencev and Auerbach (2021)</u> suggested inactivation of CFTR in mice exposed to

7 concentrations of Cr(VI) as low as 0.1 mg/L for 8 days. This inactivation does not appear to be

- 8 attributable to tissue damage, which was observed in these same animals following subchronic
- 9 exposure to Cr(VI) concentrations $\geq 60 \text{ mg/L}$ (<u>Thompson et al., 2011b</u>). Therefore, suppression of
- 10 CFTR activity may represent an early effect of Cr(VI) exposure that contributes to the carcinogenic
- 11 process. Considering the recently reported tumor-suppressor role of the CFTR gene in mouse and
- 12 human intestinal cancers (<u>Than et al., 2016</u>), this finding expands the range of plausible mechanisms
- 13 that may be operative in Cr(VI)-mediated carcinogenesis of intestinal and possibly other tissues,
- 14 which include mutagenesis, inflammation, or cytotoxicity followed by regenerative proliferation in
- 15 the carcinogenic MOA of Cr(VI).
- 16 Another toxicogenomic study, a limited short-term intratracheal study in rats, was
- 17 identified. <u>Izzotti et al. (2002)</u> observed gene expression changes in the lung consistent with the
- 18 generation of reactive oxygen species, cell proliferation and inhibition of apoptosis. The study found
- 19 no changes in gene expression in livers of Cr(VI)-exposed mice relative to control animals, which
- 20 indicated no significant systemic effects after 3 days of intratracheal exposure (<u>Izzotti et al., 2002</u>).
- However, the study was determined to be of limited value due low exposure levels and to its limited
- range of genes evaluated by in-house produced microarrays of an old design and therefore was not
- 23 considered for evaluation in HAWC.
- 24 <u>In vitro studies</u>
- 25 Four toxicogenomic in vitro studies were also identified as particularly informative for
- 26 Cr(VI) induced carcinogenicity and cellular transformation. All four studies were partially evaluated
- 27 (Appendix C.3.4.3), but only one, <u>Huang et al. (2017)</u>, was fully evaluated in HAWC. This study was
- found to be *high* confidence for all assays reported in the study, including cell transformation,
- 29 Western blotting, and an siRNA knockdown, but was determined to be *uninformative* for qPCR
- 30 findings due to reporting issues and lack of optimization for this assay.
- 31 <u>Clancy et al. (2012)</u> demonstrated transformation of bronchial epithelial BEAS-2B cells
- $32 \qquad \text{exposed to } 0.5 \ \mu\text{M Cr(VI)} \ \text{for } 4 \ \text{weeks that coincided with differential expression of genes that}$
- 33 showed enrichment in several pathways related to cancer development. These included cell
- 34 mobility and migration, TGFβ receptor signaling, MAP kinase activity, regulation of apoptosis,
- 35 response to hypoxia, and pathways involved in pancreatic cancer and small-cell lung cancer (<u>Clancy</u>
- 36 <u>et al., 2012</u>). Transformation of BEAS-2B cells using a similar study design (0.5 μM Cr(VI) for
- 4 weeks) was confirmed by a separate group that also demonstrated acquisition of a proliferative,
- 38 migratory, invasive and tumorigenic phenotype by Cr(VI)-transformed BEAS-2B cells (<u>Huang et al.</u>,

- 1 <u>2017</u>). In this study, Cr(VI)-mediated transformation was associated with activation of the
- 2 hedgehog (Hh) signaling pathway, which interplays with multiple oncogenic pathways, and Gli2-
- 3 mediated inhibition of autophagy. Inhibition of autophagy by Hh signaling activation has been
- 4 found in the lung cancer cell lines, which support biological relevance of this mechanistic finding.
- 5 Likewise, a study by Lu et al. (2018a) demonstrated the ability of Cr(VI) to transform BEAS-2B cells
- 6 exposed to 0.125 μ M or 0.25 μ M of Cr(VI) for 6 months, which displayed tumorigenicity after
- 7 subcutaneous injection in nude mice. Proteomic analysis revealed down-regulation of STK11
- 8 encoded by the tumor-suppressor gene LKB1, suggesting possible activation of Wnt/β -catenin and
- 9 mTOR signaling pathways that are involved in the development of various cancers. A fourth study
- 10 demonstrated the importance of NF-κB activation for survival and transformation of cells exposed
- 11 to Cr(VI), with upregulation of transcriptional targets cIAP1 and cIAP2 (<u>Chen et al., 2002</u>).

C.3.5. Susceptible populations

12 C.3.5.1. Genetic polymorphisms

- Thirteen studies in humans occupationally exposed to Cr(VI) were identified that evaluated
 genetic polymorphisms in relation to Cr(VI) exposure and/or mechanistic or apical outcomes. The
- 15 study findings are summarized in Table C-65.

Table C-65. Studies of genetic polymorphisms in humans occupationally exposed to Cr(VI)

Study Overview	Exposure	Results	Comments	Reference
Cases: workers in chromate factory who developed lung cancer (n = 31) Additional case groups: samples from lung adenocarcinoma (n = 38) and squamous cell carcinoma (n = 46) from individuals never employed in chromate-related industries Controls 1: workers in chromate factory who did not develop lung cancer (n = 26)	Mean (SD) years of chromate exposure in the workplace: cases = 22.8 (6.56) years; controls = 20.1 (7.71) years	↑ SP-B gene variants in chromate case group & in chromate small cell carcinoma compared to non- chromate small cell carcinoma	SNP genotyping of Surfactant protein B gene No evaluation for potential confounding	<u>Ewis et al.</u> (2006)

Study Overview	Exposure	Results	Comments	Reference
Controls 2: randomly selected healthy individuals (n = 89)				
Cross-sectional study, Slovak Republic. <i>Exposed</i> : n = 73 male welders <i>Referent</i> : n = 71 male controls (administrative officers and hospital employees)	Exposure to Cr(VI) inferred based on occupation. Mean \pm SD duration of occupational exposure was 10.2 \pm 1.7 years. Also measured Cr in blood. Exposed workers had average values about twice as high as referent group (stated to be significantly different). Mean \pm SE was 0.07 \pm 0.04 vs. 0.03 \pm 0.007 µmol/L.	↑ Cas in individuals with Gln/Gln genotype compared to Arg/Gln or Arg/Arg genotypes in XRCC1 Arg299Gln; more pronounced in Cr-exposed workers	Main limitations are related to lack of description (e.g., for participant selection) and lack of evaluation of confounders aside from smoking. SNP genotyping of genes encoding DNA repair enzymes (XRCC1, XPC, hOGG1)	<u>Halasova et al.</u> (2012)
Cross-sectional study, Slovak Republic. <i>Exposed</i> : n = 39 male welders <i>Referent</i> : n = 31 male controls (source not given)	Exposure to Cr(VI) inferred based on occupation. Mean ± SD duration of occupational exposure was 10.2 ± 1.7 years. Also measured Cr in blood. Exposed workers had average values about twice as high as referent group. Mean ± SE was 0.07 ± 0.04 vs. 0.03 ± 0.007 µmol/L.	↑ Cas & CTAs in individuals with Gln/Gln genotype compared to Arg/Gln or Arg/Arg genotypes in XRCC1 Arg299Gln	Main limitations are related to sample size, unclear differentiation between exposure groups, and lack of description (e.g., for participant selection). SNP genotyping of genes encoding DNA repair enzymes (XRCC1 and XRCC3)	<u>Halasova et al.</u> (2008)
<i>Cases:</i> chromium- exposed lung cancer patients (n = 45) <i>Controls:</i> hospital patients with no previous malignant disease in medical records or family history; matched on age, gender, and ethnicity (n = 61)	Mean(SD) exposure time in cases: 9.3 (1.7) years	个 odds of hMLH1 polymorphisms in lung cancer cases	SNP genotyping of DNA repair genes XRCC3, hMLH1, and hMSH2 No detailed information on exposure/occupatio nal history nor were exposure levels quantified; no consideration of confounders	<u>Halasova et al.</u> (2016)
Exposed: chromate workers with lung cancer	Chromate workers exposed to chromium for mean (SD) 22.9 (6.9) years ⁷	↑ frequency of RER in lung cancers with	Multiple samples taken from some chromate exposed	<u>Hirose et al.</u> (2002)

⁷Discrepancy between table and text in the original publication. Values from text noted above; values from table reported as 23.8 (7.0) years.

Study Overview	Exposure	Results	Comments	Reference
(n = 28; n = 38 tumors) <i>Referents:</i> lung cancer patients without chromium exposure (n = 26; n = 26 tumors)		chromate exposure compared to without chromate exposure ↑duration of chromate exposure in chromate lung cancer cases with RER compared to those without RER ↑ MSI with ↑ duration of chromate exposure No difference in frequency of LOH in tumors with or without chromate exposure	patients – these would not be statistically independent No consideration of confounders	
Cross-sectional study, France. <i>Exposed</i> : n = 60 male welders from 36 workshops in the 'building trade' <i>Referent</i> : n = 30 office workers recruited from 'general or administration services' without history of occupational exposure to welding fumes or other physical or chemical agents	Exposure to Cr(VI) inferred based on occupation. State that <5% of welding was done on stainless steel, which raises concern that total Cr measured in blood and urine may be attributed to Cr(III) exposure. Also measured total Cr in blood and urine. Cr levels in blood and urine were higher among both groups of welders compared with controls (means 129 to 145, compared with 92 ug/L), and urinary chromium was higher among welders working without smoke extraction systems.	SNP genotyping of DNA repair genes, XRCC1 and XRCC3 XRCC1 variant allele coding Gln amino acid at position 399 was associated with a higher number of DNA strand breaks	Main limitations are related to lack of description (e.g., for participant selection, analysis), unknown contribution of Cr(VI) to Cr exposure and known co-exposures to other metals. ↑ mean BN % in lymphocytes of welder compared to controls	larmarcovai et al. (2005)
Cross-sectional study, China. <i>Exposed</i> : n = 120 chromate exposed workers working at a chromate production facility <i>Referent</i> : n = 97 unexposed	Exposure to Cr(VI) inferred based on occupation. Also measured Cr in whole blood. Cr levels were significantly higher among exposed compared with controls, indicating delineation of exposure. Median (interquartile range) of Cr in whole blood was	Interaction between micronuclei frequency and SNPs in the following genes: XRCC3, BRCA2, NBS1	Main limitations are related to lack of description (e.g., for participant selection and statistical analysis) SNP genotyping of XRCC3, BRCA2, NBS1	<u>Long et al.</u> (2019)

This document is a draft for review purposes only and does not constitute Agency policy.C-278DRAFT—DO NOT CITE OR QUOTE

Study Overview	Exposure	Results	Comments	Reference
workers at same facility ('without contact history of harmful substances')	2.81 (3.86) and 0.99 (1.21) ug/L in exposed and referent groups, respectively.			
<i>Exposed:</i> workers in a chromate factory (n = 141) <i>Referents:</i> farmers from area approx. 90 miles from chromate factory (n = 54)	Full shift (8h) personal exposure sample taken; flow 2.1 min ⁻¹ . Median (IQR) of air Cr(VI) in workers = 17.8 (39.5) ug/m ³ ; in referents = 0.06 (0.12) ug/m ³ Blood samples collected; analyzed with graphite furnace atomic absorption with Zeeman background correction; Median (IQR) of Cr in workers = 6.0 (7.86); 2.64 (2.11)	 ↑ accumulation of Cr in RBCs per air Cr(VI) exposure among wild type Band 3 Memphis genotype 	SNP genotyping of genes involved in anion transport proteins No major concerns with study quality, except for minimal information on participant selection	<u>Qu et al. (2008)</u>
<i>Cases:</i> chromium- exposed lung cancer patients (n = 50) <i>Controls:</i> Individuals with no previous malignant disease in medical records or family history; age, gender, & ethnicity-matched to cases (n = 69)	Mean (SD) exposure time in cases: 9.3 (1.7) years	↑ risk of lung cancer with the following genotypes: XPD Lys/Gln+XPC Lys/Gln and XPD Lys/Gln+XPC Gln/Gln	SNP genotyping of XPC(rs2228001), XPD (rs13181,) XRCC1(rs25487), and hOGG1 (rs1052123) No quantitative assessment of exposure; no adjustment for missing data	Sarlinova et al. (2015)
Exposed 1: residents of areas contaminated with Cr(VI), asymptomatic with regard to dermal irritation (n = 108) Exposed 2: residents of areas contaminated with Cr(VI), reporting dermal irritation (n = 38) Referents: asymptomatic residents of area with no history of Cr(VI)	Mean (SD) residing at contaminated site (among exposed group): 24.17 (15.23) years	 ↑ OR dermal irritation in GSTM1 null genotype when comparing exposed symptomatic individuals to exposed asymptomatic individuals ↑ OR dermal irritation in GSTT1 null genotype when comparing exposed symptomatic individuals to control 	SNP genotyping of genes (GSTT1, GSTM1, NQO1 and hOGG1) involved in CrVI reduction and fate in cell adjustment only for smoking and no other confounders	<u>Sharma et al.</u> (2012)

This document is a draft for review purposes only and does not constitute Agency policy. C-279 DRAFT-DO NOT CITE OR QUOTE

Study Overview	Exposure	Results	Comments	Reference
contamination (n = 148)		asymptomatic individuals		
Exposed: chromium workers (n = 35) Referents: age and gender- matched controls (n = 35)	Exposure duration ranged from 2 to 14 yrs with a mean (SD) of 6.5 (4.2) yrs.	 ↑ sister chromatid exchanges in exposed group; association with work duration; synergy with smoking ↑ high frequency cells in exposed groups; synergy with smoking 	SNP genotyping for GSTM1 and T1 Limited sample size Only adjusted for smoking, no other confounding incorporating into Cr analysis	<u>Wu et al. (2000)</u>
<i>Exposed:</i> chromium platers (n = 35) <i>Referents:</i> healthy subjects with no history of disease or previous exposure to chromium or other metals (n = 35)	The mean duration of employment was 6.5 yrs. Personal exposure monitoring for 8h working shift (1.71/min); blood and urine samples collected at end of shift and analyzed with atomic absorption spectrophotometry Individual time-weighted average range: 0.049–1.130 mg/m ³	↑ sister chromatid exchange and percent high frequency cells in exposed group compared to controls	SNP genotyping for GSTM1 and T1 Personal air sampling only obtained for n = 10 individuals in the exposed group Unable to draw conclusions about effect of genotype due to small sample size	<u>Wu et al. (2001)</u>
Exposed: electroplating workers (n = 157) Referents: individuals without exposure to chromium or known physical/chemical genotoxic agents (n = 93) Exclusions: abnormal liver and kidney function; cancer, diabetes, heart disease	Air-Cr determined by graphite furnace atomic absorption spectrophotometer	↑ chromium concentrations in erythrocytes among exposed compared to referents ↑ Olive tail moment, tail length, & tail DNA% among exposed compared to referents	Polymorphisms in XRCC1 and Arg399Gln associated with Cr – induced DNA damage SNP genotyping for DNA repair genes: XRCC1 Arg399Gln, XRCC1Arg194Trp,ER CC1 C8092A, ERCC5 His1104Asp, ERCC6 Gly399Asp, GSTP1IIe105Val, OGG1 Ser326Cys, XPC Lys939Gln, XPDLys751Gln Limited adjustment for confounders (including diet) Potential co- exposures to other metals in the workplace	<u>Zhang et al.</u> (2012)

This document is a draft for review purposes only and does not constitute Agency policy. C-280 DRAFT—DO NOT CITE OR QUOTE Genetic polymorphisms can alter individual susceptibility to health effects of environmental
exposures, including chromium. Thirteen studies in humans were identified that evaluated genetic
polymorphisms in relation to chromium exposure and cancer-related outcomes (mechanistic or
apical).

1

6 Seven studies evaluated genetic polymorphisms in relation to mechanistic outcomes 7 relevant to cancer (e.g., mutations, genome instability). Of these, one focused on micronuclei, with 8 interaction effects reported for some genes related to DNA repair and tumor suppression (XRCC3, 9 BRCA2, NBS1) (Long et al., 2019). Two studies from the same lab group (Halasova et al., 2012; 10 Halasova et al., 2008) reported increased chromosomal aberrations among welders with 11 polymorphisms of one gene that encodes DNA repair enzymes (XRCC1) but not others (XPC, XPD, 12 EPG, XRCC3, hOGG1). Similarly, polymorphisms in XRCC1 were also associated with increases in 13 DNA strand breaks among welders (Iarmarcovai et al., 2005) and measures of DNA damage such as 14 olive tail moment, tail length, and tail DNA% among electroplating workers (Zhang et al., 2012). 15 Finally, two studies of electroplating workers from another lab group evaluated potential 16 differential effects on sister chromatid exchange due to polymorphisms in genes related to 17 detoxification (GSTM1, GSTT1); interaction effects were detected for GSTT1 (<u>Wu et al., 2001</u>) in one 18 study but not the other (<u>Wu et al., 2000</u>). 19 GSTM1 and GSTT1 were also evaluated in the context of dermal irritation among a 20 population exposed to Cr in groundwater. When comparing exposed symptomatic individuals to 21 exposed or control asymptomatic individuals, the authors observed an increased odds of the 22 symptoms in individuals null for GSTM1 or GSTT1 (Sharma et al., 2012). Four studies evaluated 23 genetic polymorphisms in the context of cancer. One study identified an increased risk of lung 24 cancer in individuals with certain polymorphisms in XPD (Sarlinova et al., 2015), which is involved 25 in nucleotide excision repair. Three studies approached the question in a different way, probing the 26 frequency of certain gene variants in cancer cases. Polymorphisms in the surfactant protein B gene 27 were found to be more common when comparing chromate small-cell carcinoma to non-chromate 28 small-cell carcinoma (Ewis et al., 2006). In another study, the odds of hMLH1 polymorphisms was 29 found to be elevated in lung cancer cases compared to hospital-matched controls (Halasova et al., 30 2016). Finally, one study evaluated microsatellite instability (operationalized as replication error 31 (RER), defined as microsatellite instability at two or more loci) among individuals with lung cancer; 32 study authors report increased frequency of RER among cases with chromate exposure compared to 33 those without chromate exposure as well as an association between duration of chromate exposure 34 and lung cancer cases with RER compared to those without RER (Hirose et al., 2002). 35 Additionally, one study evaluated the impact of genetic polymorphisms on Cr accumulation 36 in chromate factory workers; the band III polymorphism in red blood cells was associated with 37 increased accumulation of Cr(VI) (<u>Qu et al., 2008</u>).

Although it is difficult to draw conclusions based solely on the human evidence, the existing
data suggest that genetic polymorphisms may play a role in cancer susceptibility, and the impact of

1 polymorphisms relevant to DNA damage and detoxification pathways in particular can provide

2 important insight on the cancer mode(s) of action for chromium.

3

C.3.5.2. Carriers of the cystic fibrosis mutant allele

4 Cystic fibrosis is an inherited autosomal recessive disorder caused by inactivating mutations 5 in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which codes for the CFTR 6 anion channel protein. CFTR regulates the secretion of chloride and bicarbonate. Loss of CFTR 7 function causes abnormal mucus production, which affects every organ in the body, particularly the 8 lung and GI tract (<u>De Boeck, 2020</u>). Cystic fibrosis patients have a higher risk of developing 9 colorectal cancer (Miller et al., 2020; Scott et al., 2020). Tumor suppressor status of the CFTR gene 10 has been suggested based on the results of epidemiological, clinical, and experimental studies 11 (reviewed in <u>Zhang et al. (2018)</u>). In a mouse model with an intestinal-specific CFTR gene knock-12 out, Than et al. (2016) demonstrated that CFTR-deficient mice have a significantly increased risk of 13 development of tumors in the colon and small intestines. In addition, the loss of CFTR activity was 14 shown to enhance intestinal tumorigenesis in ApcMin mice that carry mutated tumor-suppressor 15 gene adenomatous polyposis coli (APC). These findings demonstrate that impairment of CFTR leads

16 to tumorigenesis in the mouse small intestine.

17 The analyses by Mezencev and Auerbach (2021) (see C.3.13.2) of the toxicogenomic data 18 reported in Kopec et al. (2012b; 2012a) from mice exposed to Cr(VI) have identified a potential role 19 for CFTR in the carcinogenic effects of Cr(VI). These data indicate that CFTR was inactivated in mice 20 exposed to Cr(VI) levels as low as 0.1 mg/L in drinking water for 8 days. This inactivation does not 21 appear to be attributable to tissue damage, which was observed in these animals following

subchronic exposure to Cr(VI) concentrations $\geq 60 \text{ mg/L}$ (<u>Thompson et al., 2011b</u>). Therefore,

23 suppression of CFTR activity may represent an effect of Cr(VI) exposure that contributes to the

24 carcinogenic process.

Tumorigenicity of impaired CFTR activity in animal models supports the relevance of the Cr(VI)-mediated inactivation of CFTR for the development of small intestinal tumors in mice exposed to Cr(VI) in drinking water. These findings indicate the identification of vulnerable groups, such as APC mutation carriers and carriers of the mutated CFTR allele, that can be more sensitive to the Cr(VI)-mediated carcinogenicity. This reasoning likely extends to humans, because (1) CFTR reportedly acts as a tumor-suppressor in human colon (<u>Than et al., 2016</u>) and (2) germline mutations in the APC gene or its regulatory sequences are known to cause familial adenomatous

32 polyposis (FAP) in humans. FAP is associated with high risk of colon cancer and increased risk of

33 cancers at other sites, including the duodenum, thyroid gland, and stomach (<u>Jasperson et al., 2017</u>;

34 <u>Leoz et al., 2015</u>).

In the United States alone, more than 10 million people are carriers of a mutated CFTR allele that confers an approximate 50% reduction in CFTR expression levels. Although these individuals do not develop cystic fibrosis, the deficit in CFTR function has been shown to lead to an increased risk for several conditions associated with the disease, including colorectal cancer (OR = 1.44,

- 1 95% CI: 1.01–2.05) (<u>Miller et al., 2020</u>). CFTR suppression induced by low Cr(VI) exposures in
- 2 drinking water can be expected to occur in all exposed populations, but a more significant effect
- 3 would be expected in humans already producing low levels of this protein. Moreover, enhancement
- 4 of tumorigenicity of the APC mutations by CFTR inactivation implies that carriers of these mutations
- 5 may be more susceptible to the tumorigenicity induced by events that inactivate CFTR, including
- 6 Cr(VI) exposure. Based on the analogy with the ApcMin mice study, humans affected by germline
- 7 APC mutations can be reasonably expected to be more vulnerable to carcinogenicity mediated by
- 8 Cr(VI) or other toxicants that can inactivate CFTR.

C.4. SUPPORTING EVIDENCE FOR EXPOSURE TO THE GENERAL POPULATION

C.4.1. Drinking water data from the Third Unregulated Contaminant Monitoring Rule

1 Cr(VI) was among 30 contaminants selected for monitoring at public water systems (PWS) 2 for the Third Unregulated Contaminant Monitoring Rule (UCMR3) between 2013 and 2015. A PWS 3 is a network of pipes and conveyances constructed to provide water for human consumption (U.S. 4 EPA, 2006a, b). Small systems, serving 10,000 or fewer people, account for more than 97% of the 5 total number of PWSs, while large systems, serving more than 10,000 people, account for the 6 remaining 3% (U.S. EPA, 2006a, b). A majority of the U.S. population is served by large PWSs (nearly 7 90% (U.S. EPA, 2006a, b)), and all of them (approximately 4,200) were tested under UCMR3. For 8 small water systems, approximately 800 systems were randomly selected and used as a 9 representative sample (U.S. EPA, 2012b). Small water systems were omitted from analyses presented in this section. While most of the public water systems in the United States have reported 10 11 Cr(VI) concentrations below 1 μ g/L, the highest concentrations have approached the MCL (for total 12 chromium) of 100 μ g/L. This is 50 times lower than the lowest concentration used in the <u>NTP</u> (2008) bioassay (5 mg/L = 5,000 μ g/L). When converting to dose, the lowest doses in rats and mice 13 14 were 0.2 mg/kg-d and 0.3 mg/kg-d, respectively. By BW^{3/4} scaling,⁸ this would adjust to 0.057 15 mg/kg-d human equivalent dose for rats and 0.05 mg/kg-d for mice. A standard 70-kg reference 16 human ingesting 2 liters of water/day at 100 μ g/L (0.05 mg/L) would ingest a Cr(VI) dose of 0.0029 17 mg/kg-d. Therefore, the lowest NTP doses are approximately 20 times higher than a potential

- human drinking water dose at 100 μ g/L. This is only an illustrative comparison and does not
- account for differences in Cr(VI) reduction.

Table C-66. Statistical summary of UCMR3 chromium (VI) concentrations in large public water systems (PWS)

Parameter (units)	Statistica
Total number of facilities reporting	3,927
Number of facilities >MRL	3,573
Number of measurements	45,712
Average PWS mean (μg/L)	0.485
Maximum PWS mean (µg/L)	42.31
Maximum measured value (µg/L)	97.38
25th %tile of PWS means (μg/L)	0.0413
50th %tile of PWS means (µg/L)	0.0963
75th %tile of PWS means (μg/L)	0.229
95th %tile of PWS means (μg/L)	1.87

⁸Assuming rat BW of 0.45 kg, mouse BW of 0.05 kg (based on study-specific data), and human BW of 70 kg.

Par	ameter (units)	Statistic ^a
Standard deviation of PWS means (μg/L)		1.84

^aData below the minimum reporting level (MRL, 0.03 μ g/L) are included as ½ the MRL in calculations. Data are from the posted January 2017 release of the EPA Third Unregulated Contaminant Monitoring Rule (UCMR3) (U.S. EPA, 2014c). Only data collected for large PWSs were used for statistical analysis. Statistics performed on the mean PWS values (each PWS had multiple facilities which collected multiple samples).

Table C-67. Summary of UCMR3 chromium (VI) concentration data (in μ g/L) grouped by EPA region

				Percentiles			
Region	Count	Mean	Max	25th	50th	75th	95th
1	237	0.131	3.80	0.0359	0.0647	0.128	0.420
2	351	0.281	23.0	0.0432	0.0829	0.239	0.709
3	282	0.165	1.47	0.0502	0.0899	0.189	0.513
4	905	0.124	2.42	0.0364	0.0692	0.133	0.365
5	748	0.206	3.31	0.0265	0.126	0.199	0.751
6	432	0.521	42.3	0.0238	0.0561	0.157	1.77
7	132	0.693	3.16	0.0475	0.277	1.19	2.35
8	162	0.273	1.99	0.0444	0.151	0.381	0.898
9	519	2.050	30.5	0.126	0.586	1.96	8.89
10	159	0.230	1.42	0.0719	0.142	0.274	0.750

Data below the minimum reporting level (MRL, 0.03 µg/L) are included as ½ the MRL in calculations. Data are from the posted January 2017 release of the EPA Third Unregulated Contaminant Monitoring Rule (UCMR3) (U.S. EPA, <u>2014c</u>). Only data for large PWSs were used for statistical analysis.

Table C-68. Summary of UCMR3 Cr(VI) data for 20 large public water systems with the highest mean concentrations

			Mean	Max.	
PWSID	Location	PWSID Name	(µg/L)	(µg/L)	n
OK1020801	ОК	Norman	42.3	97.4	80
CA2410005	CA	City of Los Banos	30.5	38.0	8
AZ0407154	AZ	Town of Buckeye Sundance	28.8	33.0	8
AZ0407056	AZ	AZ American Water Co. – Paradise	28.0	30.1	4
		Valley			
AZ0408020	AZ	Kingman Municipal Water	25.6	79.0	24
AZ0407500	AZ	City of Surprise – Mountain Vista	23.9	39.0	16
PR0004074	PR	Guanica Urbano	23.0	26.3	11
CA1010018	CA	City of Kerman	19.4	31.0	16
AZ0407078	AZ	Valencia Water Co. – Town Division	18.9	22.0	15
CA5010017	CA	City of Patterson	18.2	22.0	12
CA5710006	CA	City of Woodland	17.7	26.0	22

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

			Mean	Max.	
PWSID	Location	PWSID Name	(µg/L)	(µg/L)	n
CA5710009	CA	University of California – Davis	17.5	47.0	16
OK2001412	ОК	Moore	17.5	54.0	47
OK2000922	OK	Mustang	15.7	29.9	12
CA3310007	CA	City of Coachella	15.6	19.0	16
AZ0407695	AZ	AZ American Water Co. – Agua Fria	15.0	62.0	56
AZ0407094	AZ	Goodyear Water Department	14.4	27.0	20
CA5710001	CA	City of Davis	14.0	41.0	32
CA3310020	CA	Indio Water Authority	13.0	19.0	20
AZ0407025	AZ	City of Phoenix	12.8	54.0	80
				Total n=	515

Data below the minimum reporting level (MRL, 0.03 µg/L) are included as ½ the MRL in calculations. Data are from the posted January 2017 release of the EPA Third Unregulated Contaminant Monitoring Rule (UCMR3) (U.S. EPA, 2014c). Only data collected for large PWSs were used for statistical analysis.

C.4.2. Local data of air, soil, and dust Cr(VI) concentrations

1 Because Cr(VI) is classified as a hazardous air pollutant under the Clean Air Act, data for air, 2 dust, and soil are available from state and local environmental departments. Below lists datasets 3 from publicly available sources that were found by screening national, state, and local 4 environmental department websites. These datasets are not from EPA sources, and values are 5 subject to change. Readers are advised to consult the citations and the state websites for the raw 6 data, and detailed information related to data collection and interpretation. This is not an 7 exhaustive summary of all air, dust, and soil Cr(VI) and total chromium (Cr(VI)+Cr(III)) 8 concentrations in the United States.

Table C-69. Cr(VI) concentrations in ambient PM_{10} (ng/m³) at monitoring sites in Midlothian, Texas containing three cement manufacturing facilities and a steel mill (<u>ATSDR, 2016</u>)

Location	Mean (confidence interval)
Jaycee Park	0.016 (0.0094–0.024)
Old Fort Worth Road	0.055 (0.029–0.086)
Tayman Drive	0.018 (0.0097–0.035)
Wyatt Road	0.07 (0.037–0.12)
JA Vitovsky	0.021 (max) ^a
Midlothian HS	0.039 (max)ª
Mountain Peak Elementary	0.039 (max)ª

^aMaximum value reported only (descriptive statistics not generated by TCEQ because of the small number of observations).

Table C-70. Cr(VI) concentrations (ng/m ³) in air measured at monitoring sites
in Portland Oregon reporting elevated metals concentrations (<u>Oregon DEO</u> ,
<u>2016b</u>)

Location	Date	Mean ± SD ^a	Min	Max
Metal finishing site (Southeast Portland)				
Milwaukie Johnson Creek	April-Sept 2016	0.321 ± 0.239	0.047	1.16
SE Harney Dr.	April-Dec 2016	0.121 ± 0.118	0.038	1.01
SE 45th Ave & SE Harney	March 2016-March 2017	0.0707 ± 0.0501	0.035	0.44
Glass producer site (Northeast Portland)				
Daycare Center	March 2016-Feb 2017	0.201 ± 0.332	0.037	3.63
Winterhaven Elementary	March-Sept 2016	0.0759 ± 0.0604	0.037	0.695
Powell & SE 22nd	March 2017	0.147 ± 0.247	0.036	3.1
Haig & SE 20th	March 2017	0.129 ± 0.316	0.038	2.88
Reed College	May-Sept 2016	0.095 ± 0.0374	0.038	0.209
Glass producer site (North Portland)				
Tubman School	March-Aug 2016	0.0625 ± 0.0338	0.037	0.222
Portland North Coast Electric	March-July 2016	0.0993 ± 0.112	0.036	0.655
Portland Water Bureau East	March-Aug 2016	0.118 ± 0.0979	0.038	0.6
Portland Water Bureau West	March-July 2016	0.102 ± 0.0568	0.04	0.271

^aAverage daily value as reported by Oregon Department of Environmental Quality, applying the Kaplan-Meir method for non-detects.

Table C-71. Cr(VI) concentrations (mean \pm SD in ng/m³) in ambient PM₁₀ measured in urban and suburban New Jersey (Huang et al., 2014)

	Soluble Cr(VI)		Total Cr(VI)		
Location	Summer	Winter	Summer	Winter	
Meadowlands	0.3 ± 0.16	0.11 ± 0.04	1.25 ± 0.58	1.32 ± 0.56	
Elizabeth	0.21 ± 0.13	0.19 ± 0.09	1.56 ± 0.48	1.41 ± 0.56	
Rahway	0.33 ± 0.36	0.14 ± 0.07	0.99 ± 0.76	1.05 ± 0.36	
Piscataway ^a	0.2 ± 0.18	0.03 ± 0.01	0.86 ± 0.5	0.94 ± 0.49	

^aSuburban (all other locations urban).

Table C-72. Cr(VI) Mean Concentration in Air Districts with Chromium Plating and Anodizing Facilities for the Year 2005. Data from the California Air **Resources Board.**

District	Monitoring Site	Mean Concentration (ng/m ³)
South Coast Air Quality Management	Azusa-803 Loren Ave.	0.08
District	Burbank – W. Palm Ave.	0.113
	North Long Beach	0.10
San Diego County Air Pollution Control	Chula Vista	0.038
District	El Cajon-Redwood Avenue	0.048
Ventura County Air Pollution Control District	Simi Valley-Cochran Street	0.05

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

District	Monitoring Site	Mean Concentration (ng/m ³)
Bay Area Air Quality Management	Fremont-Chapel Way	0.05
District	San Francisco-Arkansas Street	0.11
San Joaquin Valley Air Pollution	Fresno-1st Street	0.063
Control District	Stockton-Hazelton Street	0.12
Sacramento Metropolitan Air Quality	Roseville-N Sunrise Blvd	0.058
Management District		

Adapted from <u>CARB (2006)</u>.

Table C-73. Estimated environmental concentrations of chromium in selected locations within the United States

Media and location	Units ^a	Mean	Max.	Reference
Ambient air, Barrio Logan San Diego CA	ng/m³	0.42	22.0	Residential areas near facilities potentially emitting Cr(VI) from California EPA (<u>CalEPA, 2004</u> , <u>2003</u>) (May 2001–May 2002)
Ambient air, Portland OR glass and metal sites	ng/m³	N/A	3.63	Elevated metals site data from Oregon DEQ (Oregon DEQ, 2016b). See Table 5
Ambient PM ₁₀ , Deer Park and Karnack, Texas	ng/m ³	0.1	0.4 ^b	24-hour average data from TCEQ (2006– 2013) (<u>TCEQ, 2017</u>)
Ambient PM ₁₀ ; soluble+ insoluble Cr(VI), New Jersey	ng/m³	1.17	1.56	Urban and suburban areas of New Jersey (<u>Huang et al., 2014</u>)
Ambient PM ₁₀ ; soluble Cr(VI), New Jersey	ng/m³	0.189	0.33	
Surface soil, Portland OR	mg/kg Cr(VI)	N/A	3.0	Data from Oregon DEQ (Oregon DEQ,
glass and metal sites	mg/kg total chromium	N/A	63	<u>2016a</u> , <u>c</u>)
Background (bulk soil),	mg/kg Cr(III)	19.5	130	Data from Montana DEQ (<u>Hydrometrics,</u>
Montana	mg/kg Cr(VI)	N/A ^c	1.2	<u>2013</u>)
House dust, New Jersey	µg/g	4.6	56.6	Background house dust in NJ (Stern et al.,
	μg/m²	10	169.3	2010). (μg/m ² are surface loading units)

^aUnits of Cr(VI) unless otherwise noted.

^bMaximum highest and second-highest hourly measurements are 1.9 and 0.7 ng/m³, respectively. ^c88% of values below the limit of detection (<0.29 mg/kg).

APPENDIX D. DOSE-RESPONSE MODELING

- This appendix provides technical detail on dose-response evaluation and determination of
 points of departure (PODs) for relevant toxicological endpoints. The endpoints were modeled using
 EPA's Benchmark Dose Software (BMDS, Version 3.2). Sections D.1 (noncancer) and D.2 (cancer)
 describe the common practices used in evaluating the model fit and selecting the appropriate model
 for determining the POD, as outlined in the *Benchmark Dose Technical Guidance Document* (U.S. EPA,
- 6 <u>2012a</u>). Logfiles of BMD model outputs are contained in U.S. EPA (<u>2021</u>).

D.1. BENCHMARK DOSE MODELING SUMMARY FOR NONCANCER ENDPOINTS

1 For this assessment, dose-response modeling of endpoints for the oral route was performed 2 based on the time-weighted average daily dose of Cr(VI), in mg/kg-d. This value could then be 3 converted to an internal rodent dose, depending on the tissue or endpoint. The time-weighted 4 average was calculated based on time-course dose data available through the data collection time 5 for each endpoint. For example, for endpoints measured at 12 months in the NTP (2008) study, the 6 time-weighted average daily dose over 12 months was applied, as opposed to the average daily dose 7 over the full 2-year bioassay. 8 For dose-response modeling of endpoints for the inhalation route, inhaled concentration

- 9 was used. Adjustments for respiratory-tract particle dosimetry and 24-hour/day time conversion
 10 were performed during the interspecies extrapolation step.
- 11 The noncancer endpoints that were selected for dose-response modeling are presented in
- 12 Tables D-1 through D-3 (oral) and Table D-4 (inhalation). For each endpoint, the exposure doses
- 13 and data used for the modeling are presented.

Species / Sex endpoint		Dose	s and effec	ct data		
Mouse / Male	Cr(VI) mg/L	0	5	10	30	90
	TWA Dose mg/kg-d	0	0.450	0.914	2.40	5.70
Diffuse epithelial hyperplasia (Duodenum) at lifetime	Incidence / Total	0/39	11/43	18/45	42/48	32/40
Mouse / Female	Cr(VI) mg/L	0	5	20	60	180
	TWA Dose mg/kg-d	0	0.302	1.18	3.24	8.89
Diffuse epithelial hyperplasia (Duodenum) at lifetime	Incidence / Total	0/42	16/42	35/48	31/42	42/48
Chronic inflammation (liver) at lifetime	Incidence / Total	16/49	21/50	22/50	27/50	24/50
Rat / Female	Cr(VI) mg/L	0	5	20	60	180
	TWA Dose mg/kg-d	0	0.248	0.961	2.60	7.13
Fatty change (liver) at lifetime	Incidence / Total	3/50	7/50	10/50	13/50	16/50
Chronic inflammation (liver) at lifetime	Incidence / Total	12/50	21/50	28/50	35/50	39/50
Rat / Male	Cr(VI) mg/L	0	5	20	60	180
	TWA Dose mg/kg-d (lifetime)	0	0.200	0.760	2.10	6.07

Table D-1. Noncancer endpoints selected for dose-response modeling forCr(VI) (oral) from <u>NTP (2008)</u>

Species / Sex endpoint		Dose	s and effec	t data		
	TWA Dose mg/kg-d (12 mos.)	0	0.237	0.882	2.49	7.19
	TWA Dose mg/kg-d (3 mos.)	0	0.413	1.46	4.30	12.0
Chronic Inflammation (liver) at lifetime	Incidence / Total	19/50	25/50	21/49	28/50ª	26/49
ALT (liver) at 12 mos.	IU/L ± SE, n = 10/group	102 ± 6	107 ± 8	135 ± 10	261 ± 23	223 ± 15
ALT (liver) at 3 mos.	IU/L ± SE, n = 10/group	82 ± 4	82 ± 12	135 ± 18	176 ± 13	216 ± 21
Rat / Male	N	10	10	10	8	10
	TWA Dose mg/kg-d (12 mos.)	0	0.237	0.882	2.49	7.19
	RBC (10 ⁶ /µL,	9.27 ± 0.10	9 17 + 0 07	0.1 ± 0.12	0.61 ± 0.11	0 74 1 0 00
	mean ± SE)	5.27 2 0.10	5.17 ± 0.07	9.4 ± 0.12	9.01 ± 0.11	9.74 ± 0.08
		52.6 ± 0.2	52.4 ± 0.2	51.9 ± 0.3	51.4 ± 0.3	
Hematological changes at 12 mos. (comparative purposes only)	mean ± SE) MCV (fL, mean ± SE)					
12 mos. (comparative	mean ± SE) MCV (fL, mean ± SE)	52.6 ± 0.2	52.4 ± 0.2	51.9 ± 0.3	51.4 ± 0.3	49.9 ± 0.2

^aRevised estimates for time weighted average daily doses calculated from NTP data. These may differ from the average doses presented elsewhere in this toxicological review, which are typically rounded or based on averages of fewer timepoints.

Table D-2. Non-cancer endpoints selected for dose-response modeling forCr(VI) (oral) from NTP (2007b)

Species / Sex								
endpoint		Doses and effect data						
Rat / Female	Cr(VI) mg/L	r(VI) mg/L 0 21.8 43.6 87.2 174.5 349						
	TWA Dose mg/kg-d	0	1.74	3.49	6.28	11.5	21.3	
ALT (liver) at 90 days	IU/L ± SE, n = 10/group	64 ± 5	437 ± 68	218 ± 27	245 ± 30	246 ± 37	248 ± 22	
Rat / Male	Cr(VI) mg/L	0	21.8	43.6	87.2	174.5	349	
	TWA Dose mg/kg-d	0	1.74	3.14	5.93	11.2	20.9	
ALT (liver) at 90 days	IU/L ± SE, n = 10/group ^a	98 ± 6	274 ± 30	461 ± 102	447 ± 121	740 ± 81	191 ± 17	

^an = 8 for the male rat control group.

Species / Sex endpoint	Doses and effect data							
Mouse / Female	TWA Dose mg/kg-d	24.4	50.6					
F1 male pups PND14	Pup weight g ± SE (N	7.95 ± 0.50	7.69 ± 0.36	7.51 ± 0.48	6.93 ± 0.27			
	litters)	(15)	(13)	(12)	(16)			
F1 male pups PND21		9.38 ± 0.64	8.52 ± 0.59	8.66 ± 0.63	7.94 ± 0.34			
		(15)	(14)	(12)	(16)			
F1 female pups PND14		7.71 ± 0.38	7.85 ± 0.36	8.05 ± 0.53	7.04 ± 0.33			
		(15)	(15)	(13)	(18)			
E1 formale round DND21]	9.03 ± 0.55	8.77 ± 0.55	9.01 ± 0.68	8.17 ± 0.42			
F1 female pups PND21		(15)	(16)	(13)	(18)			

Table D-3. Noncancer endpoints selected for dose-response modeling for Cr(VI) (oral) from <u>NTP (1997)</u>

TWA dose is for the female F0 (maternal) generation.

Table D-4. Noncancer endpoints selected for dose-response modeling for Cr(VI) (inhalation)

Species / Sex endpoint		Do	ses and effe	t data			
<u>Glaser et al. (1990)</u> (n = 1							
	Concentration (mg/m ³ Cr(VI))	0	0.054	0.109	0.204	0.403	
90 days, no recovery							
Lactate dehydrogenase (LDH) in BAL fluid	(U/L) mean ± SD	29 ± 5	34 ± 3	31 ± 4	63 ± 11	83 ± 17	
Albumin in BALF	(mg/L) mean ± SD	77 ± 13	115 ± 23	86 ± 13	117 ± 20	184 ± 59	
Total protein in BALF	(mg/L) mean ± SD	226 ± 30	396 ± 79	326 ± 35	703 ± 178	975 ± 246	
Histiocytosis	Incidence	2/10	9/10	10/10	9/10	10/10	

Note: Nominal/target inhalation concentrations were replaced with the reported mean concentrations measured in the studies.

D.1.1. Evaluation of Model Fit and Model Selection

1 Basic statistical background and guidance on choosing a model structure for the data being

2 analyzed, fitting models, comparing models, and calculating confidence limits to derive a BMDL to

3 use as a POD is outlined in EPA's *Benchmark Dose Technical Guidance* (U.S. EPA, 2012a), Sections

4 2.3.9 and 2.5. Empirical models that provide the best fit to the dose-response data are typically used

5 in the absence of data to develop a biologically based model. While these models are empirical,

6 parameters are typically constrained on some of them for the purposes of strengthening the

7 biological plausibility of the results (i.e., many toxic effects exhibit a monotonic dose-response), and

8 to prevent imprecise BMDs/BMDLs resulting from steeply supralinear models [(U.S. EPA, 2012a)

9 §2.3.3.3]. Consistent with EPA's Benchmark Dose Technical Guidance (U.S. EPA, 2012a), initial runs

10 of the LogProbit model did not constrain the slope parameter, whereas initial runs of the Gamma,

11 Dichotomous Hill, Weibull, and LogLogistic models constrained their slope or power parameters to

12 be ≥1.

13

For each candidate endpoint/study the following steps were taken:

- 1 1) Goodness-of-fit was assessed for all models [(U.S. EPA, 2012a) §2.3.5] 2 a. Models having a goodness-of-fit *p*-value of less than 0.1 were rejected.⁹ 3 b. Models not adequately describing the dose-response relationship (especially in the low-4 dose region) were rejected based on examining the dose group-scaled residuals¹⁰ and 5 graphs of models and data. 6 The models that remained (after rejecting those that did not meet the recommended default 7 statistical criteria for adequacy and fail in visual inspection of model fit) were used for 8 determining the BMDL. The default selection criteria are listed below [(U.S. EPA, 2012a) 9 §2.3.9]: 10 2) If the BMDL estimates from the remaining models were sufficiently close (generally defined 11 as being within threefold, as in the case of this assessment), it was assumed there was no particular influence of the individual models on the estimates. In this case, the model with 12 13 the lowest AIC was chosen. 14 3) If the BMDL estimates from the remaining models were not sufficiently close, it was 15 assumed there was some model dependence (i.e., model uncertainty) of the estimate. In this 16 case, if there was no clear remaining biological or statistical basis on which to choose among them, the lowest BMDL was selected as a reasonable conservative estimate (U.S. EPA 17 (2012a) Section 2.3.9). 18 19 4) In some cases, modeling attempts did not yield useful results. When this occurred, the 20 NOAEL (or LOAEL) was used as a candidate POD. 21 Logfiles of BMD model outputs are contained in U.S. EPA (2021). 22 D.1.1.1. Modeling issues related to diffuse epithelial hyperplasia in mice 23 Benchmark dose modeling did not result in useful results for diffuse epithelial hyperplasia in 24 female mice from <u>NTP (2008</u>). Using BMDS (v 3.2), three models fit the full dataset adequately 25 (based on goodness-of-fit *p*-value ≥ 0.10): dichotomous Hill, log-logistic, and log-probit. However, 26 the log-probit model yielded a very low BMDL (150 times lower than the lowest nonzero dose of 27 0.302 mg/kg-d). Because the model fit was adequate compared to the other two models, it could not 28 be excluded from model selection. The residuals for the log-probit result were sufficiently low, and
- 29 its AIC was between that of the other two models (see below). Changing model parameter

⁹For the $\chi 2$ goodness-of-fit test and a *p*-value of α , the critical value is the 1– α percentile of the $\chi 2$ distribution at the appropriate degrees of freedom. Models are rejected if there are large values of $\chi 2$ corresponding to *p*-values less than 0.1, the limiting probability of a Type I error (false positive) selected for this purpose. ¹⁰Scaled residuals reported by BMDS for dichotomous responses are defined as (Observed – Expected)/SE, where "Expected" is the predicted number of responders and SE equals the estimated standard error of that predicted number. For dichotomous models, the estimated standard error is equal to $\sqrt{[n \times p \times (1-p)]}$, where n is the sample size, and *p* is the model-predicted probability of response. Model fit is considered questionable if the scaled residual value for any dose group, particularly the control or low dose group, is greater than 2 or less than -2.

- 1 restrictions did not resolve the issue. It was concluded, based on the criteria outlined above in
- 2 Section D.1.1, that there was too much uncertainty in the BMD estimate to use these model results
- 3 for determining the POD.

Table D-5. BMD model results for diffuse epithelial hyperplasia in female micefrom NTP (2008) (no high doses omitted)

Model	BMR	BMD mg/kg-d	BMDL mg/kg-d	Goodness-of-fit <i>p</i> -value	AIC
Log-logistic	10% ER	0.0722	0.0530	0.1145	205.07
Log-probit	10% ER	0.0199	0.00199	0.3043	204.80
Dichotomous Hill	10% ER	0.0561	0.0268	0.4132	204.08

The lowest dose for female mice is 0.302 mg/kg-d.

4 The primary reason for the high uncertainty on the BMD estimate is that the response rate

5 (38%) at the lowest dose was much higher than the BMR of 10% ER (the control group had 0%

6 response). In addition, the data are supralinear and plateau at the three high doses (as the incidence

7 approaches 100%).

8 Dropping high doses can address the supralinear shape and high-dose effect, to achieve

9 adequate model fit in the response region of interest. In this case, dropping the highest dose does

10 not resolve the issue because the three high doses exhibit a flat response. However, omitting the

11 two highest doses can achieve an optimal model fit within the set of models run (see below).

Table D-6. Modeling alternatives for diffuse epithelial hyperplasia in mice fromNTP (2008)

Species/sex	Model	Doses dropped	BMR	BMD mg/kg-d	BMDL mg/kg-d
Mice/M	Quantal-linear	1	10% ER	0.148	0.121
Mice/F	Log-logistic	0	10% ER	0.0722	0.0530
	Dichotomous Hill	0	10% ER	0.0561	0.0268
	Log-probit	0	10% ER	0.0199	0.00199
	Quantal-linear	2	10% ER	0.0852	0.0672
	LOAEL			LOAEL = 0.302	LOAEL/10 = 0.0302

The lowest dose for female mice is 0.302 mg/kg-d.

12 Other approaches to address the modeling issues for this dataset include increasing the BMR

13 to be closer to the lowest observed response rate (which would decrease the uncertainty on the

- 1 BMD) or attempting alternative modeling (such as Bayesian model averaging). Other statistical
- 2 issues may arise if implementing these approaches (e.g., an additional uncertainty adjustment
- 3 would be needed when increasing the BMR).
- 4 As shown in the table above, the LOAEL divided by a $UF_L = 10$ (the LOAEL-to-NOAEL
- 5 uncertainty factor) produces a reasonable result when compared to the alternative BMDLs. The
- 6 value (0.0302 mg/kg-d) is within the bounds of the alternatives (significantly higher than log probit,
- 7 13% higher than dichotomous Hill, and 43% lower than log logistic).
- 8 Because the response rate is high at the lowest dose, the point of departure for this effect
- 9 based on female mice exhibits high uncertainty.

Species/sex	Model	Doses dropped	BMR	BMDL or LOAEL mg/kg-d	Internal dose mg/kg-d	TWA BW kg	BW ^{3/4} adjust	РОD _{неD} mg/kg-day	Composite UF	RfD mg/kg-d
Mice/M	Quantal-linear	1	10% ER	0.121	0.0182	0.05	2.88e-3	0.0443	10	4.43e-3
Mice/F	Log logistic	0	10% ER	0.0530	0.00792	0.05	1.25e-3	0.0204	10	2.04e-3
	Dichotomous Hill	0	10% ER	0.0268	0.00400	0.05	6.32e-4	0.0106	10	1.06e-3
	Log probit	0	10% ER	0.00199	0.000296	0.05	4.68e-5	7.95e-4	10	7.95e-5
	Quantal-linear	2	10% ER	0.0672	0.0101	0.05	1.60e-3	0.0258	10	2.58e-3
	LOAEL			0.302	0.0463	0.05	7.32e-3	0.0911	100	9.11e-4

Table D-7. RfDs for modeling alternatives of diffuse epithelial hyperplasia in mice from <u>NTP (2008)</u>

Mean and median value of log logistic, log probit, and dichotomous Hill results (with 0 dosses dropped) is 1.06e-3 mg/kg-d.

This document is a draft for review purposes only and does not constitute Agency policy.

1 D.1.1.2. Modeling issues related to chronic liver inflammation in female rats

2 An issue similar to that described above for hyperplasia also applied to data for chronic liver

3 inflammation in female rats. Three adequately fitting models produced very different results, with

4 one of them producing a BMDL that was over 75 times lower than the lowest dose.

Table D-8. BMD model results for chronic liver inflammation in female ratsfrom NTP (2008)

Model	BMR	BMD mg/kg-d	BMDL mg/kg-d	Goodness-of-fit <i>p</i> -value	AIC
Log logistic	10% ER	0.232	0.142	0.3871	312.44
Log probit	10% ER	0.0546	0.00325	0.943	311.63
Dichotomous Hill	10% ER	0.107	0.0424	0.8962	311.73

The lowest dose in female rats was 0.248 mg/kg-d.

5 As with female mouse hyperplasia, there was too much uncertainty in the BMD estimate to

6 use these model results for determining the POD. As a result, it was determined that this dataset

7 was not amenable to BMD modeling, and the lowest dose was chosen as the LOAEL (greater than

8 10% extra risk from control occurred at this level).

Model	BMR	BMDL or LOAEL mg/kg-d	Internal dose mg/kg-d	TWA BW kg	BW ^{3/4} adjust	POD _{HED} mg/kg- day	Composite UF	RfD mg/kg-d
Log logistic	10% ER	0.142	0.0109	0.260	2.60e-3	0.0402	10	4.02e-3
Log probit	10% ER	0.00325	2.43e-4	0.260	5.80e-5	9.97e-4	10	9.97e-5
Dichotomous hill	10% ER	0.0424	3.20e-3	0.260	7.64e-4	0.0128	10	1.28e-3
LOAEL		0.248	0.0195	0.260	4.66e-3	0.0669	100	6.69e-4

Table D-9. RfDs for modeling alternatives of chronic liver inflammation in female rats from <u>NTP (2008)</u>

1 D.1.1.3. Modeling issues related to liver fatty changes in female rats

As shown in the table below, all models achieved an adequate fit. Dichotomous Hill and log probit results were significantly different than the others. The model fits were adequate compared to the other models, and they could not be excluded from model selection. The log probit BMDL was over 130 times lower than the lowest dose.

 Table D-10. BMD model results for fatty change in liver of female rats from NTP (2008)

Model	BMR	BMD mg/kg-d	BMDL mg/kg-d	Goodness-of-fit <i>p</i> -value	AIC
Dichotomous Hill	10% ER	0.426	0.0117	0.911	239.410
Log-Logistic	10% ER	1.953	1.105	0.394	240.375
Multistage Degrees 1–4 and Gamma, Weibull	10% ER	2.300	1.414	0.335	240.843
Logistic	10% ER	3.480	2.532	0.205	242.244
Log-Probit	10% ER	0.342	0.00182	0.995	239.237
Probit	10% ER	3.325	2.387	0.217	242.074

The lowest dose in female rats was 0.248 mg/kg-d.

6 There was too much uncertainty in the BMD estimate to use these model results for

7 determining the POD. The lowest dose was chosen as the NOAEL (less than 10% extra risk from

8 control occurred at the lowest dose).

D.1.1.4. Modeling issues related to lower respiratory effects in male rats at 90 days 1

2 The following 90-day datasets in male rats from <u>Glaser et al. (1990)</u> were determined not to 3 be amenable for BMD modeling:

- 4 • Histiocytosis: the only adequately-fitting model did not produce a useable result; parameter 5 hit bound
- 6 • Total protein, albumen, and LDH in BALF: all models had goodness of fit p-value < 0.1

Table D-11. BMD results for histiocytosis in male rats at 90 days from Glaser et <u>al. (1990)</u>

Model	Restriction	RiskType	BMD	BMDL	BMDU	P Value	AIC	BMDS Recommendation Notes
Dichotomous Hill	Restricted	Extra Risk	0.000613		0.0387232	0.3535	31.4	BMD computation
Log-Probit	Unrestricted	Extra Risk	2.61E-05		Infinity	0.3696	31.4	failed
Log-Logistic	Restricted	Extra Risk	8.57E-04	1.91E-04	0.0161718	0.4778	29.5	BMD/BMDL ratio > 3 BMD 10x lower than lowest non- zero dose BMDL 10x lower than lowest non- zero dose
Gamma	Restricted	Extra Risk	4.89E-03	3.00E-03	0.0147435	0.0122	33.0	
Multistage Degree 4	Restricted	Extra Risk	4.89E-03	3.00E-03	0.009323	0.0122	33.0	
Multistage Degree 3	Restricted	Extra Risk	4.89E-03	3.00E-03	0.009323	0.0122	33.0	Goodness of fit p- value < 0.1
Multistage Degree 2	Restricted	Extra Risk	4.89E-03	3.00E-03	0.009323	0.0122	33.0	Goodness of fit p-
Multistage Degree 1	Restricted	Extra Risk	4.89E-03	3.00E-03	0.0089504	0.0122	33.0	value < 0.1
Weibull	Restricted	Extra Risk	4.89E-03	3.00E-03	0.0120185	0.0122	33.0	
Logistic	Unrestricted	Extra Risk	9.65E-03	5.97E-03	0.015877	0.0011	35.9	
Probit	Unrestricted	Extra Risk	1.21E-02	8.19E-03	0.019674	0.0078	37.6	

Table D-12. BMD results for total protein in BALF in male rats at 90 days from **Glaser et al. (1990)**

Model	Restriction	RiskType	BMRF	BMD	BMDL	BMDU	Test 4 P-Value	BMDS Recommendation Notes
Hill (NCV - normal)	Restricted	Std. Dev.	1	0.1801		0.1862	<0.0001	BMD computation failed
Exponential 2 (NCV - normal)	Restricted	Std. Dev.	1	0.0646	0.0471	0.0894	<0.0001	Goodness of fit p-
Exponential 3 (NCV - normal)	Restricted	Std. Dev.	1	0.0646	0.0471	0.0894	<0.0001	value < 0.1

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Supplemental Information—Hexavalent Chromium

Exponential 4 (NCV - normal)	Restricted	Std. Dev.	1	0.0181	0.0094	0.0334	<0.0001
Exponential 5 (NCV - normal)	Restricted	Std. Dev.	1	0.0180	0.0094	0.0365	<0.0001
Polynomial Degree 4 (NCV - normal)	Restricted	Std. Dev.	1	0.0250	0.0173	0.0389	<0.0001
Polynomial Degree 3 (NCV - normal)	Restricted	Std. Dev.	1	0.0250	0.0173	0.0389	<0.0001
Polynomial Degree 2 (NCV - normal)	Restricted	Std. Dev.	1	0.0250	0.0173	0.0389	<0.0001
Power (NCV - normal)	Restricted	Std. Dev.	1	0.0250	0.0173	0.0406	<0.0001
Linear (NCV - normal)	Unrestricted	Std. Dev.	1	0.0250	0.0173	0.0370	<0.0001

1

Model	Restriction	RiskType	BMRF	BMD	BMDL	BMDU	Test 4 P-Value	AIC	BMDS Recommendation Notes
Power (NCV - normal)	Restricted	Std. Dev.	1	Failed		Infinity	<0.0001	369.1135	BMD computation failed
Exponential 3 (NCV - normal)	Restricted	Std. Dev.	1	0.0554	0.0420	0.0803	<0.0001	373.2741	
Exponential 5 (NCV - normal)	Restricted	Std. Dev.	1	0.1789	0.1243	0.1832	0.0724	343.1427	
Hill (NCV - normal)	Restricted	Std. Dev.	1	0.1548	0.1225	0.1580	0.0204	345.2719	Goodness of fit p-value
Polynomial Degree 3 (NCV - normal)	Restricted	Std. Dev.	1	0.0464	0.0300	0.0474	<0.0001	374.5440	< 0.1
Polynomial Degree 2 (NCV - normal)	Restricted	Std. Dev.	1	0.0487	0.0326	0.0497	<0.0001	371.2904	
Linear (NCV - normal)	Un- restricted	Std. Dev.	1	0.0375	0.0282	0.0512	<0.0001	371.7154	

Table D-13. BMD results for LDH in BALF in male rats at 90 days from Glaser et al. (1990)

1

Table D-14. BMD results for albumen in BALF male rats at 90 days from Glaser et al. (1990)

Model	Restriction	RiskType	BMRF	BMD	BMDL	BMDU	Test 4 P-Value	AIC	BMDS Recommendation Notes
Exponential 2 (NCV - normal)	Restricted	Std. Dev.	1	0.1093	0.0842	0.1484	<0.0001	481.45	

This document is a draft for review purposes only and does not constitute Agency policy.D-14DRAFT—DO NOT CITE OR QUOTE

Exponential 3 (NCV - normal)	Restricted	Std. Dev.	1	0.2113	0.0864	0.3101	<0.0001	482.93	Goodness of fit p- value < 0.1
Exponential 4 (NCV - normal)	Restricted	Std. Dev.	1	0.0822	0.0640	0.1101	<0.0001	485.12	
Exponential 5 (NCV - normal)	Restricted	Std. Dev.	1	0.2239	0.1611	0.2647	<0.0001	484.98	
Hill (NCV - normal)	Restricted	Std. Dev.	1	0.2057	0.1468	0.2229	<0.0001	481.81	
Polynomial Degree 4 (NCV - normal)	Restricted	Std. Dev.	1	0.1653	0.0818	0.2777	<0.0001	481.14	
Polynomial Degree 3 (NCV - normal)	Restricted	Std. Dev.	1	0.1695	0.0811	0.2698	<0.0001	481.60	
Polynomial Degree 2 (NCV - normal)	Restricted	Std. Dev.	1	0.1593	0.0686	0.2343	<0.0001	483.10	
Power (NCV - normal)	Restricted	Std. Dev.	1	0.0822	0.0578	0.3883	< 0.0001	483.12	
Linear (NCV - normal)	Unrestricted	Std. Dev.	1	0.0822	0.0578	0.1254	<0.0001	483.12	

1

D.1.2. Calculation of regional deposited dose ratios (RDDR)

- 1 Fractional depositions in the pulmonary region (F_{PU}), the tracheobronchial region (F_{TB}), and 2 the extrathoracic region (F_{ET}) for rats and humans were calculated using the Multi-Path Particle Dosimetry (MPPD) model, a computational model that can be used for estimating airway particle 3 4 deposition and clearance (ARA (2009)). Log files of MPPD outputs are contained in U.S. EPA 5 (2021). Note: For this assessment, ARA MPPD Version 2.11 was applied. ARA MPPD Version 3.04, 6 and then subsequently EPA MPPD Version 1.01 have since been released. However, they do not 7 have the ability to save or load model runs, or the ability to run batch simulations; therefore, 8 version 2.11 results were maintained due to documentation and QA/QC capabilities. Versions ARA 9 3.04 and EPA 1.01 were tested using identical inputs as those specified below for Version ARA 2.11, 10 and differences between the older and newer models were negligible¹¹. 11 For the MPPD model runs, the Yeh-Schum 5-lobe model was used for the human and the 12 asymmetric multiple path model was used for the rat. Both models were run under nasal breathing 13 scenarios with the inhalability adjustment selected. 14 The human parameters used in the model for calculating F_r (fractional deposition in 15 respiratory tract region r) and in the subsequent calculation of the human equivalent concentration 16 at each rodent concentration were as follows: breathing frequency, 12 per minute (default); tidal 17 volume, 625 mL (default); ventilation rate V_E, 7.5 L/minute (calculated); functional residual 18 capacity, 3,300 mL (default); and upper respiratory tract volume, 50 mL (default). The parameters 19 used for the rat were breathing frequency, 102 per minute (default); tidal volume, 2.1 mL (default); V_E, 0.214 L/minute (calculated); functional residual capacity, 4 mL (default); and upper respiratory 20 21 tract volume, 0.42 mL (default). All other parameters were also set to the default MPPD software
- 22 values. The density of sodium dichromate is 2.52 g/cm³. The aerosol Cr(VI) concentration was
- 23 converted to aerosol sodium dichromate concentration by molecular weight conversion (see Table
- 24 D-17). Mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD)
- 25 varied slightly with concentration.

27

- 26 RDDR was calculated using the following equation:
 - $RDDR_{r} = \frac{(SA_{r})_{H}}{(SA_{r})_{A}} \times \frac{(V_{E})_{A}}{(V_{E})_{H}} \times \frac{(F_{r})_{A}}{(F_{r})_{H}}$
- 28 For the human, regional-specific surface areas for lung regions (used as normalizing 29
- factors) were 200 cm² for extrathoracic (ET), 3,200 cm² for tracheobronchial (TB), and 54 m² for
- 30 pulmonary (PU) (U.S. EPA, 1994). For the rat, lung surface areas were 15 cm² for ET, 22.5 cm² for 31 TB, and 0.34 m² for PU (U.S. EPA, 1994).

¹¹Differences in F_r and RDDR_r between ARA v.2.11 and EPA v.1.01 were less than 10%

This document is a draft for review purposes only and does not constitute Agency policy. D-16

Table D-15. Calculation of RD	DR for <u>Glaser et al</u>	(1985)	and <u>Glaser et al.</u>
(1990) using default MMAD p	arameters		

Concentration as Reported (mg/m ³ Cr(VI))	Aerosol concen- tration ^a	MMAD ± GSD (μm)		; at PU		r, man PU	RD TB	DR ^c PU
		Glaser et al. (1	<u>990)</u>					
54	136.0	0.28 ± 1.63	0.0277	0.1355	0.0664	0.1348	1.69	4.56
109	274.6	0.28 ± 1.63	0.0277	0.1355	0.0664	0.1348	1.69	4.56
204	513.9	0.39 ± 1.72	0.0244	0.1117	0.0585	0.1191	1.69	4.25
403	1015	0.39 ± 1.72	0.0244	0.1117	0.0585	0.1191	1.69	4.25
<u>Glaser et al.</u>			9 <mark>85)</mark> ^b					
52	131	0.20 ± 1.5	0.0334	0.1663	0.0781	0.1619	1.74	4.65

^aAerosol concentration = Cr(VI) concentration \div 0.39696 by molar mass conversion (sodium dichromate

MW = 261.97 g/mol and contains 2 moles of Cr; Cr MW = 51.996 g/mol).

^bGlaser et al. (1985) reported MMAD \pm GSD (0.20 \pm 1.5 μ m) for all exposure groups. Analysis of Glaser et al. (1990) found that aerosol concentration did not impact fractional deposition, and thus only one RDDR calculation was performed for <u>Glaser et al. (1985)</u>

Table D-16. Human Equivalent Concentrations of Cr(VI) in the 90-day inhalation study in rats by <u>Glaser et al. (1990)</u>

Concentration as Reported (mg/m ³	Continuous Exposure Adjustment	RDDR⁵		Human Equivalent Concentration ^c (mg/m ³)		
Cr(VI)	Factora	ТВ	Pulmonary	ТВ	Pulmonary	
54	0.917	1.69	4.56	83.5	225.5	
109	0.917	1.69	4.56	168.5	455.2	
204	0.917	1.69	4.25	316.5	794.8	
403	0.917	1.69	4.25	625.3	1570	

^a"Continuous Exposure Adjustment Factor" = (22/24) × (7/7); animals were exposed to Cr(VI) 22 hours per day and 7 days per week.

^bPlease refer to Table D-17

^c"Human Equivalent Concentration" = "Concentration as Reported" × "Continuous Exposure Adjustment Factor" × "RDDR"

1 As shown in the tables above, there is negligible change in RDDR as a function of

2 concentration and differences in particle size reported by <u>Glaser et al. (1990)</u>. The values of RDDR

3 were the same for the tracheobronchial region, and within 7% for the pulmonary region. As a

4 result, dose-response modeling does not need to be performed on the human equivalent

5 concentrations and may instead be performed on reported external concentrations. Conversion to

6 a human equivalent concentration may be done after calculation of an external point of departure.

7 Furthermore, the RDDR estimated using particle sizes reported by <u>Glaser et al. (1985)</u> differs by

8 less than 3%. As a result, the same RDDR values would be applied to extrapolations for both

9 studies.

- 1 Since RDDR is a strong function of age and physical activity (due to differences in breathing
- 2 rate, tidal volume, and surface area), MPPD (v 2.11) was run in batch mode for both the adult
- 3 (Ye/Schum 5-lobe, uniform expansion) and child (5-lobe, 9+ years old, uniform expansion) under
- 4 varying degrees of physical activity. Values for breathing rate and tidal volume under different
- 5 physical activities were obtained from <u>U.S. EPA (2011a)</u>.

Human	Breathing	Tidal volume	V _E L/min	F _r Human			RDDR ^c	
activity	rate (min ⁻¹)	(mL)	(calculated)	ТВ	PU	ТВ	PU	TB+PU
	MMAD: Adult Yeh/Schum 5-lobe, uniform expansion							
Breathing rate/tidal volumes for adult male (U.S. EPA, 2011a)								
Resting 1	12	750	9	0.0657	0.1514	1.4258	3.3799	2.8369
Resting 2	12	500	6	0.0664	0.1096	2.1161	7.0034	5.2491
Resting 3	15	500	7.5	0.062	0.0977	1.8130	6.2851	4.6279
Average RDDR (resting):						1.785	5.556	4.2380
Light work 1	17	1670	28.39	0.0588	0.1472	0.5050	1.1020	0.9478
Light work 2	16	1250	20	0.0599	0.1508	0.7037	1.5270	1.3154
Average RDDR (light work):						0.6044	1.3145	1.1316
Average RDDR (resting & light work):					1.1947	3.4353	2.6848	
Heavy work	21	2030	42.63	0.0578	0.1285	0.3422	0.8407	0.6979
Maximal work	40	3050	122	0.0598	0.0806	0.1156	0.4684	0.3236
MMAD default	12	625	7.5	0.0664	0.1348	1.6929	4.5553	3.6733

Table D-17. RDDR calculations under different human ages and physiologicalactivity for respiratory effects

Human respiratory parameters (tidal volume and breathing rate) obtained from U.S. EPA (2011a). Aerosol parameters: MMAD (0.28 \pm 1.63 μ m), concentration 136 mg/m³, and density 2.52 g/cm³. Inhalation parameters: inhalability adjustment on

RDDR calculations (see Table D-17: rat F_{TB} 0.0277, rat F_{PU} 0.1355, rat V_E 0.214 L/minute (calculated) Surface areas (rat): 15 cm² for ET, 22.5 cm² for TB, and 0.34 m² for PU,

Surface areas (adult male human): 200 cm² for ET, 3200 cm² for TB, and 54 m² for PU (U.S. EPA, 1994).

Calculation performed using total fractional deposition in the TB and PU regions, and using total surface area (with PU and TB units resolved).

Note: aerosol concentration in mg/m³ did not have an impact on predicted fractional lung depositions. Results for F_r of the human TB and PU regions were identical if aerosol concentration was set to either 1 or 136 mg/m³. For consistency, the value 136 mg/m³ (corresponding to the lowest Cr(VI) concentration in Glaser et al., (1990)) was applied.

- 6 For systemic effects (i.e., non respiratory-tract organ weights), the total fractional
- 7 deposition is applied, and RDDR uses species body weight as the normalizing factor:

8
$$RDDR_{TOT} = \frac{(BW)_{H}}{(BW)_{A}} \times \frac{(V_{E})_{A}}{(V_{E})_{H}} \times \frac{(F_{TOT})_{A}}{(F_{TOT})_{H}}$$

9 The current assessment does not apply RDDR_{TOT} to any endpoints.

Table D-18. RDDR calculations under different human ages and physiological
activity for systemic effects

Breathing rate	Tidal volume	V _E L/min	F TOT			
(min ⁻¹)	(mL)	(calculated)	Human	RDDR _{TOT} ^a		
MMAD: Adult Yeh/Schum 5-lobe, uniform expansion						
Breathing rate/tidal volumes for adult male (U.S. EPA, 2011a)						
12	750	9	0.2752	2.7579		
12	500	6	0.231	4.9285		
15	500	7.5	0.2173	4.1914		
Average RDDR (resting):						
17	1670	28.39	0.2966	0.8112		
16	1250	20	0.2871	1.1896		
Average RDDR (light work):						
Average RDDR (resting & light work):						
21	2030	42.63	0.3007	0.5329		
40	3050	122	0.3632	0.1542		
12	625	7.5	0.2576	3.5357		
	(min ⁻¹) MMAD: Adu Breathing rate/ti 12 12 15 Aver 17 16 Avera Average RI 21 40 12	(min ⁻¹)(mL)MMAD: Adult Yeh/Schum 5-lobeBreathing rate/tidal volumes for adult127501250015500Average RDDR (resting):171670161250Average RDDR (light work)Average RDDR (resting & light work)Average RDDR (resting & light work)40305012625	(min ⁻¹)(mL)(calculated)MMAD: Adult Yeh/Schum 5-lobe, uniform expansion Breathing rate/tidal volumes for adult male (U.S. EPA, 2011a)127509125006155007.5Average RDDR (resting):17167028.3916125020Average RDDR (light work):Average RDDR (resting & light work):21203042.63403050122126257.5	(min ⁻¹)(mL)(calculated)HumanMMAD: Adult Yeh/Schum 5-lobe, uniform expansion Breathing rate/tidal volumes for adult male (U.S. EPA, 2011a)1275090.27521275090.27521250060.231155007.50.2173Average RDDR (resting):17167028.390.2966161250200.2871Average RDDR (light work):Average RDDR (resting & light work):21203042.630.30074030501220.3632		

Human respiratory parameters (tidal volume and breathing rate) obtained from <u>U.S. EPA (2011a)</u>. Aerosol parameters: MMAD (0.28 ± 1.63 μ m), concentration 136 mg/m³, and density 2.52 g/cm³.

Inhalation parameters: inhalability adjustment on

RDDR calculations: rat F_{TOT} 0.228, rat V_E 0.214 L/minute (calculated)

Body weight (rat): 0.5 kg

Body weight (adult male human): 70 kg

^aCalculation performed using total fractional deposition in the ET, TB, and PU regions, and using species body weight as the normalization factor.

D.2. BENCHMARK DOSE MODELING SUMMARY FOR CANCER ENDPOINTS

1 For this assessment, dose-response modeling of endpoints for the oral route was performed 2 based on the time-weighted average daily dose of Cr(VI), in mg/kg-d. This value could then be 3 converted to an internal rodent dose, depending on the tissue or endpoint. The time-weighted 4 average was calculated based on time-course dose data available through the data collection time 5 for each endpoint. 6 The cancer endpoints that were selected for dose-response modeling are based on the data 7 presented in Table D-21. For reference, historical control data from the National Toxicology 8 Program encompassing the time period of the sodium dichromate dihydrate bioassays are 9 presented in Table D-22. These were not used to make adjustments to the dose-response modeling 10 data. Datasets modeled were: 11 12 1) Male mice bearing adenomas *or* carcinomas of the small intestine (duodenum, jejunum, *or* 13 ileum) 14 2) Female mice bearing adenomas *or* carcinomas of the small intestine (duodenum, jejunum, 15 or ileum) 16 3) Male rats bearing squamous cell carcinoma *or* papilloma (oral mucosa *or* tongue) 17 4) Female rats bearing squamous cell carcinoma *or* papilloma (oral mucosa *or* tongue) 18 For each endpoint, the exposure doses and data used for the modeling are presented. The 19 sample sizes were adjusted to be based on the number of animals surviving longer than one year. 20 The incidences were based on the number of tumor-bearing animals. For example, a mouse with 21 two tumors in the duodenum and one tumor in the jejunum is counted only once, and a rat with 22 both a squamous cell carcinoma in the tongue and a squamous cell papilloma in the oral mucosa is 23 counted once.

Tumor type and s	oecies/sex	Administ	-	;/L, mg/k lence/to	-	VI) and
Male B6C3F1	mice	0 mg/L	5	10	30	90
		0 mg/kg-d	0.450	0.914	2.40	5.70
Adenomas (duodenum)		1/50	0/50	1/50	5/50	15/50
Carcinomas (duodenum)	0/50	0/50	0/50	2/50	3/50	
Adenomas or Carcinomas	Incidence / Total	1/50	3/50	2/50	7/50	20/50
(duodenum, jejunum, or ileum)	Incidence / Total (adj) ‡	1/50	3/49	2/49	7/50	20/50
	mals dead prior to day 365	0	1	1	0	0
Female B6C3F	0 mg/L	5	20	60	180	
	0 mg/kg-d	0.302	1.18	3.24	8.89	
Adenomas (duodenum)		0/50	0/50	2/50	13/50	12/50
Carcinomas (duodenum)		0/50	0/50	0/50	1/50	6/50
Adenomas or Carcinomas	Incidence / Total	1/50	1/50	4/50	17/50	22/50
(duodenum, jejunum, or ileum)	Incidence / Total (adj) ‡	1/49	1/50	4/49	17/50	22/49
Anir	nals dead prior to day 365	1	0	1	0	1
Male F344 r	ats	0 mg/L	5	20	60	180
		0 mg/kg-d	0.200	0.760	2.10	6.07
Squamous cell carcinoma (oral mu	cosa)	0/50	0/50	0/49	0/50	6/49
Squamous cell papilloma (oral muc	-	0/50	0/50	0/49	0/50	1/49
Squamous cell carcinoma (tongue)	,	0/49	1/50	0/47	0/49	0/48
Squamous cell papilloma (tongue)		0/49	0/50	0/47	0/49	1/48
Squamous cell carcinoma or	Incidence / Total	0/50	1/50	0/49	0/50	7/49
papilloma (oral mucosa or tongue)	Incidence / Total (adj) ‡	0/50	1/47	0/47	0/50	7/49
	nals dead prior to day 365	0	3	2	0	0
Female F344	0 mg/L	5	20	60	180	
		0 mg/kg-d	0.248	0.961	2.60	7.13
Squamous cell carcinoma (oral mu	0/50	0/50	0/50	2/50	11/50	
Squamous cell carcinoma (tongue)	0/45	0/49	0/48	1/48	0/48	
Squamous cell carcinoma (oral Incidence / Total		1/50	1/50	0/50	2/50	11/50
mucosa or tongue)	Incidence / Total (adj) ‡	1/50	1/50	0/50	2/50	11/50
Anir	nals dead prior to day 365	0	0	0	0	0

Table D-19. Data of neoplastic lesions in rats and mice (<u>NTP, 2008</u>)

*Time-weighted average daily doses calculated from NTP data.

[‡]Tumor incidences adjusted based on the number of animals surviving beyond 365 days. First tumor onset: 451 days for intestinal tumors in mice, and 506 days for oral tumors in rats.

Table D-20. NTP historical control data for animals fed the NTP-2000 diet, from studies of all routes and vehicles of administration (incidence, mean % ± standard deviation %)^a

	Male B6C3F1	Female B6C3F1		Female F344/N
	mice	mice	Male F344/N rats	rats
		Adenoma	S	
Duodenum	9/1449	4/1498		
	(0.62% ± 1.32%)	(0.27% ± 0.69%)		
Jejunum	2/1449	1/1498		
-	(0.14% ± 0.52%)	(0.07% ± 0.37%)		
lleum	2/1449	1/1498		
	(0.14% ± 0.52%)	(0.07% ± 0.37%)		
SI	11/1449	5/1498		
unspecified	(0.76% ± 1.46%)	(0.33% ± 0.92%)		
		Carcinoma	IS	
Duodenum	4/1449	1/1498	1/1398(0.07% ± 0.38%)	0/1350
	(0.28% ± 0.88%)	(0.07% ± 0.37%)		
Jejunum	17/1449	4/1498	1/1398(0.07% ± 0.38%)	0/1350
	(1.17% ± 1.89%)	(0.27% ± 0.69%)		
lleum	17/1449	4/1498		
	(1.17% ± 1.89%)	(0.27% ± 0.69%)		
SI	23/1449	5/1498	2/1398(0.14% ± 0.52%)	0/1350
unspecified	(1.59% ± 2.23%)	(0.33% ± 0.76%)		
		Adenomas or car	cinomas	
SI	33/1449	10/1498	2/1398(0.14% ± 0.52%)	0/1350
unspecified	(2.28% ± 2.76%)	(0.67% ± 1.21%)		
	Male B6C3F1	Female B6C3F1	Male F344/N rats	Female F344/N
	mice	mice		rats
		Squamous cell car	rcinomas	
Oral mucosa			5/1398 (0.36% ± 0.78%)	4/1350
				(0.3% ± 0.72%)
Tongue	2/1449	2/1498	0/1398 (0% ± 0%)	1/1350
•	(0.14% ± 0.52%)	(0.13% ± 0.51%)		(0.07% ± 0.38%)
Oral cavity [‡]	2/1449	2/1498	5/1398 (0.36% ± 0.78%)	5/1350
	(0.14% ± 0.52%)	(0.13% ± 0.51%)		(0.37% ± 0.79%)
	· · · ·	Squamous cell pa	pillomas	
Oral mucosa			2/1398 (0.14% ± 0.53%)	2/1350
				(0.15% ± 0.53%)
Tongue	0/1449	2/1498	4/1398 (0.29% ± 0.71%)	6/1350
-		(0.13% ± 0.51%)		(0.44% ± 1.01%)
Oral cavity‡	0/1449	2/1498	6/1398 (0.43% ± 0.84%)	8/1350
-		(0.13% ± 0.51%)		(0.59% ± 1.08%)
	Squamo	ous cell carcinomas or p	papillomas squamous	•
Tongue	2/1449	4/1498	4/1398 (0.29% ± 0.71%)	7/1350
-	(0.14% ± 0.52%)	(0.27% ± 0.87%)		(0.52% ± 1.05%)
Oral cavity ^b	2/1449	4/1498	11/1398 (0.79% ± 1.14%)	13/1350
	(0.14% ± 0.52%)	(0.27% ± 0.87%)		(0.96% ± 1.51%)

^aMay 2009 historical control reports for F344/N rats and B6C3F1 mice. Control data encompass chronic studies with start dates from 2000–2004 and include the NTP sodium dichromate dihydrate study (start date of 2002). Denominator is number of animals necropsied.

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

		Male B6C3F1	Female B6C3F1	Mala E244 (N rate	Female F344/N
	^b Oral mucosa, squamous and		mice . gingiva. Note: for oral	Male F344/N rats cavity, papillomas include bc	rats oth papillomas
	D.2.1. Evalua	ation of Model Fit a	nd Model Selectior	1	
1	Follow	ving EPA's Benchmar	rk Dose Technical Gu	idance (<u>U.S. EPA, 2012a</u>) S	Sections 2.3.9 and
2	2.5 and EPA's	Choosing Appropriat	te Stage of a Multista	ge Model for Cancer Mode	eling (<u>U.S. EPA,</u>
3	<u>2014a</u>):				
4 5		lers of the Multistag up to model order k-2		ss than the number of dos groups).	se groups were fit
6 7 8 9 10	wa fit a s	as chosen as the best to the data. Consist	-fitting model if at le ent with EPA's guida <u>.S. EPA, 2012a</u>) §2.3	were positive, the model were positive, the models pro- east one of the models pro- nce when there is an a pr .5 and §2.3.9], Multistage ere rejected.	ovides an adequate iori reason to prefer
11 12		herwise (i.e., if any p llowing procedure (2		ed to be zero and is thus a	at a boundary), the
13 14 15	adequ			tic, respectively) were ex β1), and the quadratic mo	
16	a. If o	only one of the mode	els exhibited adequa	te fit, that model was chos	sen.
17	b. If l	both models exhibite	ed adequate fit:		
18 19	i)	The model with the were positive.	e lowest AIC was cho	osen if all of the paramete	rs (γ , β1,and β2)
20 21 22	ii)		tio is larger than 3, t	MDL (more health protec he matter was referred to	-
23	Logfiles of BM	D model outputs are	e contained in U.S. El	PA (<u>2021</u>).	

D.3. ALTERNATIVE APPROACHES FOR CANCER AND NONCANCER DOSE-RESPONSE ASSESSMENT

D.3.1. Noncancer oral dose-response applying default BW^{3/4} scaling approaches

- 1As a comparison against the pharmacokinetic method, RfDs were calculated using default2 $BW^{3/4}$ scaling. However, this comparison applies $UF_H = 3$ (removing the pharmacokinetic portion of3the intraindividual variability). By not accounting for Cr(VI) reduction in either the rodent (gastric
- 4 pH = 4.5) or the human (gastric pH = 1.3), the default scaling approach focuses on a sensitive
- 5 population in terms of pharmacokinetics (i.e., a human population where baseline gastric pH = 4.5,
- 6 and gastric juice reduction capacity is equivalent to that of the rodent).

Species/ sex	Model	BMR	BMD mg/kg-d	BMDL mg/kg-d	TWA BW (kg)	POD _{HED} mg/kg-day ^a
Diffuse epithe	lial hyperplasia	of the duod	lenum at two ye	ears (<u>NTP, 2008</u>)	
Mice/M	Quantal linear ^b	10	0.148	0.121	0.05	0.0191
Mice/F	LOAEL			0.302	0.05	0.0478
Changes in the	liver enzyme a	lanine amir	notransferase (A	LT) (<u>NTP, 2008</u>)		
Rat/M 12 mo	Exp2 ^b	1RD	1.82	1.55	0.395	0.411
Rat/M 3 mo.	NOAEL			1.46	0.246	0.344
Changes in the	liver enzyme a	lanine amir	notransferase (A	LT) at 90 days (NTP, 2007b)	
Rat/M	LOAEL			1.74	0.232	0.404
Rat/F	LOAEL			1.74	0.160	0.368
Chronic inflam	mation at two	years (<u>NTP,</u>	<u>2008</u>)			
Rat/F	LOAEL			0.248	0.260	0.0592
Mice/F	Log-logistic	10%ER	3.70	1.33	0.05	0.210
Liver fatty cha	nge at two year	s (<u>NTP, 200</u>	<u>8</u>)		· ·	
Rat/F	NOAEL			0.248	0.260	0.0592
Decreased offs	spring growth (NTP, 1997)			· ·	
Mouse/F	NOAEL			11.6	0.024	1.53

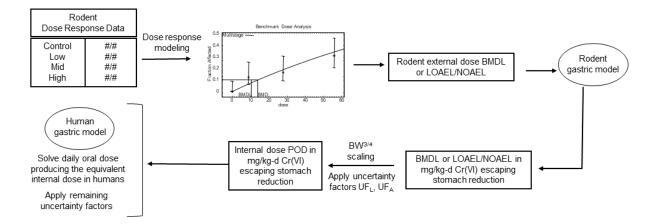
Table D-21. Summary of derivation of points of departure following oral exposure for effects outside of the gastrointestinal tract (default approach)

^aBW^{3/4} scaling adjustment: mg/kg-d multiplied by (BW_A/80)^{1/4}). Animal BW set to study/sex-specific time weighted average values for hybrid PBPK modeling/BW^{3/4} scaling approach to maintain consistency with bioassay PBPK simulation.

^bData were amenable to BMD modeling with the highest dose omitted.

Endpoint and reference	РОD _{неD} (mg/kg- day)	POD Type	UFA	UF _H	UF∟	UFs	UF₀	Composite UF	Candidate value (mg/kg-d)
Gastrointestinal									
Mouse (M) hyperplasia (<u>NTP, 2008</u>)	0.0191	BMDL ₁₀	3	3	1	1	1	10	1.91e-3
Mouse (F) hyperplasia (<u>NTP, 2008</u>)	0.0478	LOAEL	3	3	10	1	1	100	4.78e-4
Liver			•	•	•				
Rat (M) liver ALT (12 months) (<u>NTP, 2008</u>)	0.411	BMDL _{1RD}	3	3	1	1	1	10	0.0411ª
Rat (M) liver ALT (3 months) (<u>NTP, 2008</u>)	0.344	NOAEL	3	3	1	3	1	30	0.0115ª
Rat (M) liver ALT (90 days) (<u>NTP, 2007b</u>)	0.404	LOAEL	3	3	10	3	1	300	1.35e-3ª
Rat (F) liver ALT (90 days) (<u>NTP, 2007b</u>)	0.368	LOAEL	3	3	10	3	1	300	1.23e-3ª
Rat (F) liver chronic inflammation (2 years) (<u>NTP, 2008</u>)	0.0592	LOAEL	3	3	10	1	1	100	5.92e-4
Mouse (F) liver chronic inflammation (2 years) (<u>NTP, 2008</u>)	0.210	BMDL ₁₀	3	3	1	1	1	10	0.0210ª
Rat (F) liver fatty change (2 years) (<u>NTP,</u> <u>2008</u>)	0.0592	NOAEL	3	3	1	1	1	10	5.92e-3
Developmental									
Mouse (F) Decreased offspring growth (<u>NTP,</u> <u>1997</u>)	1.53	NOAEL	3	3	1	1	1	10	0.153ª

Table D-22. Effects and corresponding derivation of candidate values from PODS applying BW³/₄ scaling


^aDenotes values that are higher than RfDs derived from pharmacokinetic modeling

RfDs derived from the pharmacokinetic modeling are more health-protective than $BW^{3/4}$ scaling at high doses. This is because at high doses, the model is less sensitive to gastric pH and more sensitive to gastric reducing capacity. The assumed human variability in gastric reducing capacity is very high, causing the lower 1% prediction to ultimately produce a value lower than $BW^{3/4}$ scaling. At low doses, the model is more sensitive to gastric pH. The $BW^{3/4}$ method is essentially assuming that the human gastric pH is >4 (whereas the pharmacokinetic model assumes the human gastric pH is 1.3). As a result, the effectiveness of human gastric reduction when compared to the rodent has a stronger impact on the model at low doses, and produces less health-protective RfDs.

D.3.2. Order of uncertainty factor applications

1 An alternative uncertainty factor approach applies some uncertainty factors that represent

- 2 uncertainties on the internal rodent dose (specifically UF_L and UF_A) to the rodent internal dose
- 3 prior to calculation of the human equivalent dose. The remaining uncertainty factors are then
- 4 applied after HED calculation to estimate the candidate RfDs. This process is outlined below in
- 5 Figure D-1. Because of nonlinearities in the human gastric pharmacokinetics, this ultimately leads
- 6 to slightly different RfDs.

Figure D-1. Alternative process for calculating the human equivalent dose for Cr(VI). Uncertainty factors UFL and UFA are applied to the internal rodent dose prior to animal-to-human extrapolation.

Table D-23. Summary of derivation of points of departure following oral exposure

Species/ sex	Model	BMR	BMD mg/kg-d	BMDL mg/kg-d	Internal dose ^a mg/kg-d	TWA BW (kg)	BW ^{3/4} adjust ^b	UF _A , UF∟	Internal dose POD	POD _{HED} (mg/kg- day) ^c
Diffuse epi	ithelial hype	erplasia	of the duo	denum at tv	wo years (<mark>N</mark>	ITP, 2008)			
Mice/M	Quantal linear ^d	10% ER	0.148	0.121	0.0182	0.05	2.88e-3	3, 1	9.60e-4	0.0158
Mice/F	LOAEL			0.302	0.0463	0.05	7.32e-3	3, 10	2.44e-4	4.13e-3
Changes in	the liver e	nzyme a	alanine ami	notransfera	ise (ALT) (<u>N</u>	<u>TP, 2008</u>)				
Rat/M 12 mo	Expon.2 ^d	1RD	1.82	1.55	0.168	0.395	0.0445	3, 1	0.0148	0.129
Rat/M 3 mo.	NOAEL			1.46	0.149	0.246	0.0351	3, 1	0.0117	0.115
Changes in	Changes in the liver enzyme alanine aminotransferase (ALT) at 90 days (<u>NTP, 2007b</u>)									

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

Species/ sex	Model	BMR	BMD mg/kg-d	BMDL mg/kg-d	Internal dose ^a mg/kg-d	TWA BW (kg)	BW ^{3/4} adjust ^b	UF _A , UF∟	Internal dose POD	POD _{HED} (mg/kg- day) ^c
Rat/M	LOAEL			1.74	0.188	0.232	0.0436	3, 10	1.45e-3	0.0234
Rat/F	LOAEL			1.74	0.181	0.160	0.0383	3, 10	1.28e-3	0.0209
Chronic inflammation at two years (<u>NTP, 2008</u>)										
Rat/F	LOAEL			0.248	0.0195	0.260	4.66e-3	3, 10	1.55e-4	2.64e-3
Mice/F	Log- logistic	10% ER	3.70	1.33	0.225	0.05	0.0356	3, 1	0.0119	0.116
Liver fatty	change at t	wo yea	rs (<u>NTP, 200</u>	<mark>)8</mark>)						
Rat/F	NOAEL			0.248	0.0195	0.260	4.66e-3	3, 1	1.55e-3	0.0250
Decreased	offspring g	rowth (NTP, 1997)							
Mouse/F	NOAEL			11.6	3.09	0.024	0.407	3, 1	0.136	0.354

^aDose escaping stomach reduction in rodent (mg/kg-d) estimated by PBPK modeling.

^bBW^{3/4} scaling adjustment: mg/kg-d multiplied by (BW_A/80)^{1/4}. Animal BW set to study/sex-specific time weighted average values for hybrid PBPK modeling/BW^{3/4} scaling approach to maintain consistency with bioassay PBPK simulation.

^cPOD_{HED} in units of mg/kg-d Cr(VI) oral dose ingested by humans (lower 1% value of 20000 Monte Carlo PBPK simulations needed to achieve the internal dose POD). See Appendix C.1.5 for details.

^dData were amenable to BMD modeling with the highest dose omitted.

Table D-24. Effects and corresponding derivation of candidate values

Endpoint and reference	РОD _{неD} (mg/kg-day)	POD Type	UFA	UF _H	UF∟	UFs	UF₀	Composite UF ^a	Candidate value (mg/kg-d)
Digestive tract tissues									
Mouse (M) hyperplasia (<u>NTP,</u> <u>2008</u>)	0.0158	BMDL ₁₀	[3]	3	[1]	1	1	3[10]	5.27e-3
Mouse (F) hyperplasia (<u>NTP,</u> <u>2008</u>)	4.13e-3	LOAEL	[3]	3	[10]	1	1	3 [100]	1.38e-3

Endpoint and reference	POD _{HED} (mg/kg-day)	POD Type	UFA	UF _H	UF∟	UFs	UF₀	Composite UF ^a	Candidate value (mg/kg-d)
Liver		1						I	
Rat (M) liver ALT (12 months) (<u>NTP,</u> <u>2008</u>)	0.129	BMDL _{1RD}	[3]	3	[1]	1	1	3 [10]	0.0430
Rat (M) liver ALT (3 months) (<u>NTP,</u> <u>2008</u>)	0.115	NOAEL	[3]	3	[1]	3	1	10 [30]	0.0115
Rat (M) liver ALT (90 days) (<u>NTP,</u> <u>2007b</u>)	0.0234	LOAEL	[3]	3	[10]	3	1	10 [300]	2.34e-3
Rat (F) liver ALT (90 days) (<u>NTP,</u> <u>2007b</u>)	0.0209	LOAEL	[3]	3	[10]	3	1	10 [300]	2.09e-3
Rat (F) liver chronic inflammation (2 years) (<u>NTP, 2008</u>)	2.64e-3	LOAEL	[3]	3	[1]	1	1	3 [10]	8.80e-4
Mouse (F) liver chronic inflammation (2 years) (<u>NTP, 2008</u>)	0.116	BMDL ₁₀	[3]	3	[1]	1	1	3 [10]	0.0387
Rat (F) liver fatty change (2 years) (<u>NTP, 2008</u>)	0.0250	NOAEL	[3]	3	[1]	1	1	3 [10]	8.33e-3
Developmental				_					
Mouse (F) Decreased F1 postnatal growth (<u>NTP, 1997</u>)	0.354	NOAEL	[3]	3	[1]	1	1	3 [10]	0.118

^aUF_A and UF_L have been applied to the internal rodent dose prior to calculation of the POD_{HED}. The composite UF applied to the POD_{HED} reflects those applied after calculation of the POD_{HED} (UF_H, UF_D). The values in [brackets] indicate the product of all the uncertainty factors that have been applied in all steps.

D.3.3. Uncertainty assessment of low-dose extrapolation method for oral cancer doseresponse

Because a mutagenic mode of action for Cr(VI) carcinogenicity (see Section 3.2.3) is 1 2 "sufficiently supported in (laboratory) animals" and "relevant to humans," EPA used a linear low 3 dose extrapolation from the POD in accordance with *Guidelines for Carcinogen Risk Assessment* (U.S. 4 EPA, 2005). However, multiple modes of action for tumor formation in the mouse small intestine 5 could be occurring in parallel, and presenting different approaches may shed light on uncertainties 6 in the assessment (U.S. EPA, 2005). For comparative purposes, a nonlinear estimate is provided 7 using a reference value approach based on one of the other modes of action outlined in Section 8 3.2.3 (inflammatory hyperplasia being a key event or precursor to tumor development). 9 The dose-response relationships for diffuse epithelial hyperplasia in the small intestine of

- 10 male and female mice from the chronic <u>NTP (2008)</u> bioassay were more sensitive than the dose-
- 11 responses for adenomas and carcinomas in the same tissue (Figure D-2). The nonlinear dose-
- 12 response approach would assume the noncancer organ-specific reference dose for gastrointestinal
- 13 toxicity (based on hyperplasia dose-response presented in Section 4.1) is protective of tumors in
- 14 the small intestine: 9e–4 mg/kg-d.

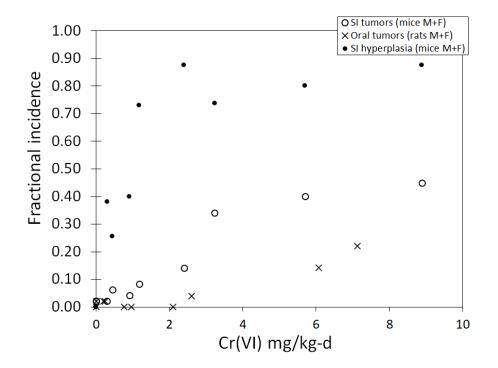


Figure D-2. Dose-response data for tumors and diffuse epithelial hyperplasia of the mouse small intestine (SI), and tumors of the rat oral cavity.

Applying the lifetime OSF for small intestinal tumors of 0.5 risk per mg/kg-d, the oral dose
 for 1/10,000 risk would be 0.0001/0.5 = 2e-4 mg/kg-d. The nonlinear, RfD-based estimate

- 1 (9e-4 mg/kg-d) is 4.5× higher. Based on the OSF, there would be a 4.5/10,000 increased cancer
- 2 risk at the dose estimated using the nonlinear, RfD-based approach.
- 3 Tumors of the rat oral cavity did not have a proposed mode of action, and the dose-response
- 4 for these tumors was less sensitive than that for tumors of the small intestine in mice (see
- 5 Section 3.2.3 and 4.1). The adult-based OSF for oral tumors is 0.1 risk per mg/kg-d (see
- 6 Section 4.3.3), and the ADAF-adjusted lifetime OSF¹² would be 0.17 risk per mg/kg-d. For this
- 7 tumor type, the oral dose for 1/10,000 risk would be 5.9e–4 mg/kg-d. The RfD-based estimate
- 8 would be 1.5× higher than this dose. Applying that OSF, there would be approximately a
- 9 1.5/10,000 increased cancer risk at the dose estimated using the RfD-based approach.

¹²ADAF calculation: 10 × 0.1 × 2/70 + 3 × 0.1 × 14/70 + 1 × 0.1 × 54/70 = 0.166 (see Section 4.3.4).

D.4. EXCLUSION OF HUMAN STUDIES FOR EXPOSURE-RESPONSE

Table D-25. Overview of studies excluded for exposure-response analysis of upper respiratory tract (nasal) effects in humans

Study	Population or industry	Reason(s) for exclusion		
Armienta-Hernández and Rodríguez-Castillo (1995)	General Population & Chromate production	Air data and nasal effects date not contained in study, and source of data not cited.		
Bloomfield and Blum (1928)	Electroplating	Cannot determine accuracy or precision of air concentration measurements.		
<u>Ceballos et al. (2019)</u> (related study: <u>Ceballos et al. (2017)</u>)	Paint stripping/aircraft refinishing	Air concentration data not representative of inhaled dose due to full face mask use by exposed workers.		
<u>Elhosary et al. (2014)</u>	Cement and tannery facilities	No air concentration data. Cannot determine if exposure was to Cr(VI) or Cr(III).		
<u>Fagliano et al. (1997)</u>	Residential (soil)	No air concentration data. Cannot determine if exposure was to Cr(VI) or Cr(III).		
<u>Gomes (1972)</u>	Electroplating	Relationship between air concentration and outcome cannot be estimated from presented data.		
Horiguchi et al. (1990)	Electroplating	No air measurements.		
<u>Kitamura et al. (2003)</u>	Electroplating	Did not include the preferred nasal outcome measurements.		
<u>Kleinfeld and Rosso (1965)</u>	Electroplating	Relationship between air concentration and outcome cannot be estimated from presented data. Cannot determine accuracy or precision of air concentration measurements.		
Korallus et al. (1982)	Chromate production	No air measurements.		
Lee and Goh (1988)	Electroplating	No air measurements.		
Lin et al. (1994)	Electroplating	Measurement only for total chromium in air, hexavalent chromium preferred.		
Lucas and Kramkowski (1975)	Electroplating	Single exposure group		
<u>Lucas (1976)</u>	Painting/varnishing	Single exposure group, co-exposures, did not include the preferred nasal outcome measurements.		
Machle and Gregorius (1948)	Chromate production	Relationship between air concentration and outcome unable to be estimated from results as they are presented.		
Mancuso (1951)	Chromate production	Measurement only for total chromium in air, hexavalent chromium preferred.		
<u>PHS (1953)</u>	Chromate production	Relationship between air concentration and outcome cannot be estimated from presented data.		
<u>Royle (1975b)</u>	Electroplating	Relationship between air concentration and outcome cannot be estimated from presented data.		
Singhal et al. (2015)	Chromate production and electroplating	No air measurements.		

Study	Population or industry	Reason(s) for exclusion
<u>Sorahan et al. (1998)</u> (related: <u>Sorahan et al. (1987)</u>)		Relationship between air concentration and outcome cannot be estimated from presented data.
Vigliani and Zurlo (1955)	Chromate production and electroplating	No description of methods.
<u>Wang et al. (1994)</u>	Ferrochromium production	No air measurements.
<u>Yuan et al. (2016)</u>	Children in school near electroplating plants	Did not include the preferred nasal outcome measurements.

Note: Some studies excluded for consideration of nasal dose-response assessment were still included in the IRIS assessment for other hazards.

Table D-26. Overview of studies excluded for exposure-response analysis of lung cancer in humans based on screening studies for adequate exposure-response data^a

Reference	Reason for Exclusion
Ahn and Jeong (2014)	Not an occupational study of chromium exposure and cancer; purpose was not
	estimating a measure of relative risk.
<u>Alderson et al. (1981)</u>	Exposure assignments were based on tasks/ job title, not chromium
	measurements. No air sampling was described.
<u>Alexander et al. (1996)</u>	Cumulative exposure estimated using approach with high likelihood of exposure
	misclassification and lack of confidence in its representation of exposure to
	individual participants. Median follow-up for most of the cohort was less than 10
	years and median age at end of study was 42 years, which reduced the ability to
	ascertain cancer deaths.
Armienta-Hernández and	No air data.
Rodríguez-Castillo (1995)	
<u>Becker et al. (1985)</u>	Group-level exposure assignments were based on tasks/ job title, not chromium measurements. No air sampling was described.
Beveridge et al. (2010)	Group-level exposure assignments were based on job title, not chromium
	measurements. No air sampling was described.
Bidstrup (1951)	Chromium exposures were not individually-assigned; no measures of association
	provided. No air sampling was described.
Bidstrup and Case (1956)	Exposure assignments were based on tasks/ job title, not chromium
	measurements. No air sampling was described.
<u>Blot et al. (2000)</u>	Exposure metrics were not based on air measurements.
Boffetta et al. (2010)	Not an occupational study of chromium exposure and cancer; purpose was not
	estimating a measure of relative risk.
<u>Brown et al. (2004)</u>	No effect estimates were reported for lung cancer and chromium exposure.
Chatham-Stephens et al. (2013)	Not an epidemiological study. No outcome measurements. Risk assessment was performed.
Cole and Rodu (2005)	
<u>Davies et al. (1991)</u>	Not an epidemiological study (meta analysis).Group-level exposure assignments were based on job title, not chromium
	measurements.
Franchini et al. (1983)	No air data
Frentzel-Beyme (1983)	
<u>FIEII(2EI-DEVIIIE (1965)</u>	Group-level exposure assignments were based on job title, not chromium measurements. No air sampling was described.
Girardi et al. (2015)	Exposure metrics were not based on air measurements.
Halasova et al. (2009)	Inadequate exposure information.
Hayes et al. (1989)	Group-level exposure assignments were based on job title, not chromium
<u>_</u>	measurements. No air sampling was described.
Hill and Ferguson (1979)	Analysis of trends over time; no analyses of associations with exposure metrics
	based on air measurements.
Johnson et al. (2011)	Ecological study with biomarker data and no air data.
Koh et al. (<u>2013</u> ; <u>2011</u>)	Inadequate exposure information.
Linos et al. (2011)	Ecological study with no air data.
Milatou-Smith et al. (1997)	Group-level exposure assignments were based on job tasks, not chromium
<u>Sjögren et al. (1987)</u>	measurements. No air sampling was described.
<u>Moulin et al. (1987)</u>	measurements. No air sampling was described. Group-level exposure assignments were based on job tasks, not chromium
	Group-level exposure assignments were based on job tasks, not chromium

This document is a draft for review purposes only and does not constitute Agency policy.

Reference	Reason for Exclusion
<u>NJ DEP (2008)</u>	Relationship between air concentration and outcome cannot be estimated from
	presented data.
Rafnsson et al. (1997)	Group-level exposure assignments were based on job tasks and duration of job,
	not chromium measurements.
Rosenman and Stanbury (1996)	Group-level exposure assignments were based on occupation, not chromium
	measurements. No air sampling was described.
<u>Royle (1975a)</u>	Inadequate exposure information. This article is part 1 of 2 two articles. Air
	sampling was described in part two and concentrations were reported as
	exceeding certain values, but measured concentrations were not reported.
Sorahan and Harrington (2000)	Group-level exposure assignments were based on occupation, not chromium
	measurements. No air sampling was described.
<u>Sorahan et al. (1987)</u>	Group-level exposure assignments were based on occupation, not chromium
	measurements. No air sampling was described.
<u>Sorahan et al. (1998)</u>	Group-level exposure assignments were based on occupation, not chromium
	measurements. No air sampling was described.
<u>Taylor (1966)</u>	No chromium measurements
van Wijngaarden et al. (2004)	Not an epidemiological study (meta-analysis)
<u>TOMA (1987)</u>	No chromium measurements
Yang et al. (2013)	Not an epidemiological study (review)
<u>Zhivin et al. (2013)</u>	Exposure assignments were qualitative; based on time and numeric score for
	level, not chromium measurements.

^aThese studies were obtained via title/abstract screening and backwards bibliography searches. Studies were excluded from consideration after full-text screening based on the rationale provided. In HERO (<u>click here</u>), these studies contain multiple inclusion/exclusion tags due to their potential relevance to other health effects. All were excluded from consideration for the lung cancer exposure-response.

Table D-27. Overview of studies excluded for exposure-response analysis of lung cancer in humans based on screening the most recent analyses

Reference	Reason for Exclusion
<u>Mancuso (1997)</u> <u>Mancuso and Hueper (1951)</u> <u>Crump et al. (2003)</u> <u>Luippold et al. (2003)</u>	Painesville Ohio cohort studies superseded by <u>Proctor et al. (2016)</u>
<u>Hayes et al. (1979)</u> <u>Braver et al. (1985)</u> <u>Park et al. (2004)</u> <u>Park and Stayner (2006)</u>	Baltimore Maryland cohort studies superseded by Gibb et al., (<u>2020</u> ; <u>2015</u> ; <u>2000b</u>)
Korallus et al. (1982) Korallus et al. (1993)	German cohort studies superseded by <u>Birk et al. (2006)</u>
Pastides et al. (1994)	Castle Hayne, North Carolina cohort superseded by <u>Luippold et al.</u> (2005)
Machle and Gregorius (1948)	Baltimore and Painesville cohort studies superseded by <u>Proctor et</u> <u>al. (2016)</u> and Gibb et al. (<u>2020</u> ; <u>2015</u>)

Table D-28. Overview of studies excluded for exposure-response analysis of lung cancer in humans

Reference	Reason for Exclusion			
Davies et al. (1991)				
Luippold et al. (2005)	SMR analysis conducted where no slope or standard error were produced or could be calculated based on published data.			
<u>AEI (2002)</u>	produced of could be calculated based on published data.			
<u>Girardi et al. (2015)</u>	Exposure only quantified in units of duration of employment. Exposures in units of air or biomarker concentrations were not reported or constructed.			

Note: These studies had passed the initial full-text screening (despite inadequacies in exposure data) because they contained quantitative analyses that warranted further review for consideration. Studies were excluded from consideration after review of the quantitative methods and their utility for the exposure-response assessment.

D.5. INDIVIDUAL-LEVEL ANALYSIS OF NEOPLASTIC AND NON-NEOPLASTIC LESIONS IN MICE FROM NTP (2008)

Table D-29. Individual-level overview of neoplastic and non-neoplastic lesionsin male mice from NTP (2008)

			Tumors			Hyperplasia	
ID	Cr(VI) (mg/L)	Duod	Jej	11	Duod	Jej	11
11	0	A					
55	5		C (multi)				
64	5			A			
81	5		С		DE	LT	
105	10			С	DE	LT	CY
140	10	А					
155	30	А			DE		
161	30	A, C			DE	LT	
162	30		С		DE		
165	30	А			DE	LT	
167	30	А			DE		
172	30	С			DE	LT	
173	30	A			DE		
202	90		С		DE	DE	
203	90		А				No eval
205	90	С			DE		
206	90	А			DE		
211	90		С		DE		
214	90	A (multi)			DE		
215	90	А, С	А		DE		
217	90	А					
218	90	A (multi)					
219	90	A (multi)			DE		LT
222	90	А			DE		
223	90	А			DE, FE		
227	90	A	No eval			No eval	
234	90		А		DE		
235	90	A (multi)			DE	LT	
238	90	A (multi)			DE		
240	90	A				No eval	No eval
242	90	A, C					
245	90	A					
249	90	A (multi)			DE		

Duod: duodenum; Jej: jejunum; II: ileum; A: adenoma; C: carcinoma; LT: lymphoid tissue hyperplasia; DE: diffuse epithelial hyperplasia; FE: focal epithelial hyperplasia; CY: cyst. Shaded rows correspond to exposed animals with no observed intestinal hyperplasia.

			Tumors			Hyperplasia	
ID	Cr(VI) (mg/L)	Duod	Jej	II	Duod	Jej	II
268	0		С				
317	5		A				
351	20		С		DE	LT	
371	20	A			DE, FE	DE	
379	20	A			DE		
380	20		С		DE		
408	60	A			DE		
411	60	А					
412	60	A			DE	LT	
413	60	A (multi)			DE		
415	60	А			DE, CY	LT	
416	60		A				
420	60		A		DE, FE		
421	60	A	С		DE		
423	60	A			DE		
427	60	А					
428	60	А					
431	60	А			DE		
438	60	С			DE		
439	60		С		DE		
440	60	А			DE		
446	60	А			DE		
450	60	А					
451	180	А			DE		
452	180	A (multi)			DE		
454	180		А		DE	DE	
455	180	A (multi)	А		DE	DE	
458	180	А			DE		
459	180	С					
461	180		А		DE	DE	
466	180		С		DE, LT		
470	180	С			DE		
472	180		А		DE	DE	
474	180	С			DE	DE	
475	180	A (multi)			DE		
486	180		A (multi)		DE		

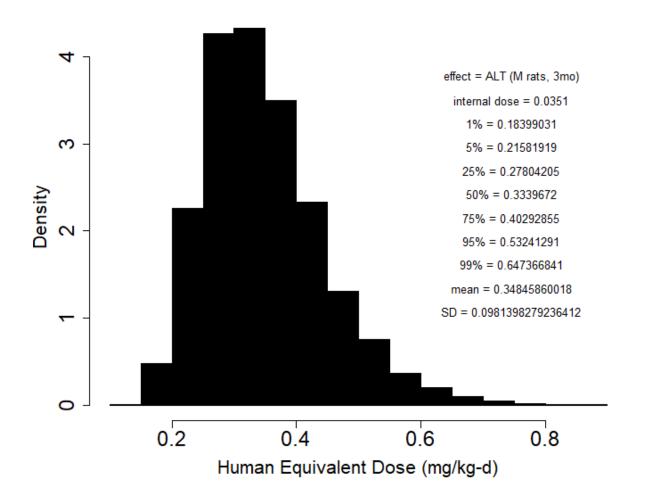
Table D-30. Individual-level overview of neoplastic and non-neoplastic lesions in female mice from <u>NTP (2008)</u>

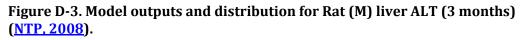
This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

			Tumors			Hyperplasia	
ID	Cr(VI) (mg/L)	Duod	Jej	11	Duod	Jej	II
488	180	A (multi)			DE		
489	180	A			DE		
490	180	A			DE		
492	180	С			DE		
495	180	A (multi)			DE		
496	180	А, С			DE	DE	
497	180	A			DE		
498	180	A (multi)			DE		
499	180	С			[dilation]		

Duod: duodenum; Jej: jejunum; II: ileum; LT: lymphoid tissue hyperplasia; DE: diffuse epithelial hyperplasia; FE: focal epithelial hyperplasia; CY: cyst.

Concentration (mg/L)	Sex	Total # animals with tumors of the small intestine	# animals with tumors in the small intestine and no nonneoplastic lesions ^a in the small intestine	Animal IDs
0	M+F	2	2 (100%)	11, 268
5	M+F	4	3 (75%)	55, 64, 317
10	М	2	1 (50%)	140
20	F	4	0	
30	М	7	0	
60	F	17	5 (29.4%)	411, 416, 427, 428, 450
90	М	20	7 (35%)	203, 217, 218, 227, 240, 242, 245
180	F	22	2 (9.1%)	459, 499
All (excluding control)	M+F	76	18 (23.7%)	


 Table D-31. Summary of neoplastic and non-neoplastic lesions in mice from


 NTP (2008)

^aNonneoplastic lesions considered: lymphoid tissue hyperplasia, diffuse epithelial hyperplasia, focal epithelial hyperplasia, cyst. Full individual-level datasets are available from <u>NTP (2007a)</u>.

D.6. PROBABILITY DISTRIBUTIONS OF HUMAN EQUIVALENT DOSE FOR CANCER AND NONCANCER PODS DERIVED FROM TOXICOKINETIC MODELING

D.6.1. Noncancer model outputs

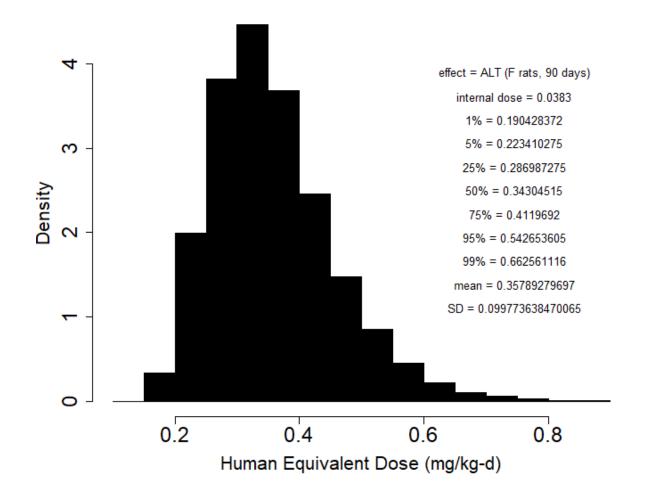


Figure D-4. Model outputs and distribution for Rat (F) liver ALT (90 days) (<u>NTP, 2007b</u>).

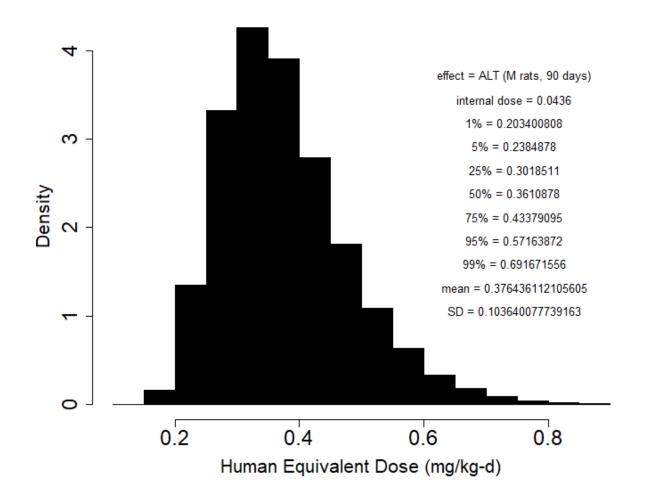


Figure D-5. Model outputs and distribution for Rat (M) liver ALT (90 days) (<u>NTP, 2007b</u>)

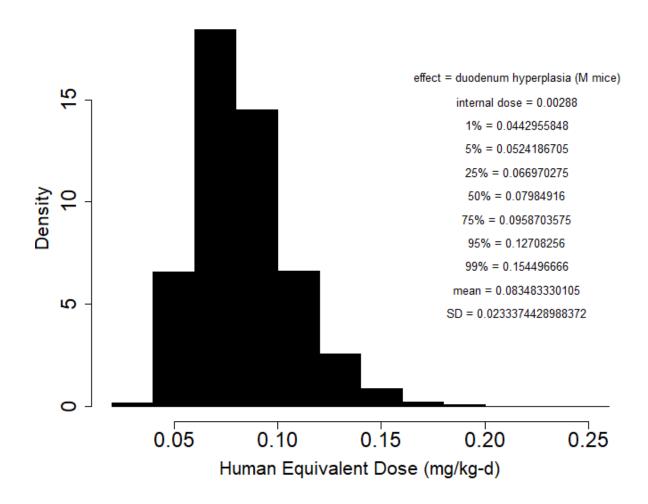


Figure D-6. Model outputs and distribution for Mouse (M) hyperplasia (<u>NTP.</u> 2008).

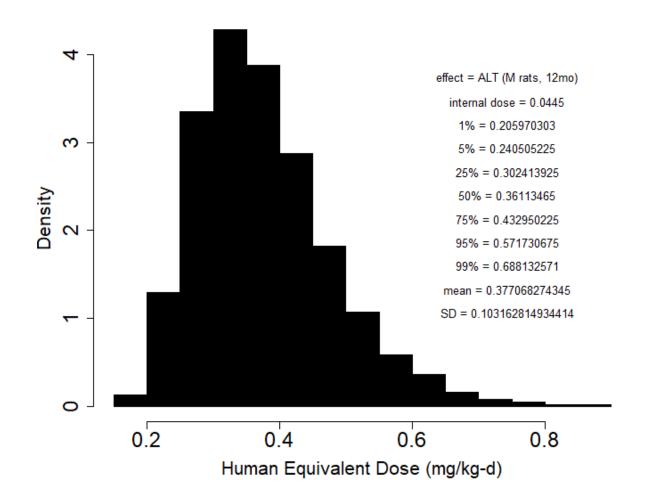


Figure D-7. Model outputs and distribution for Rat (M) liver ALT (12 months) (<u>NTP, 2008</u>).

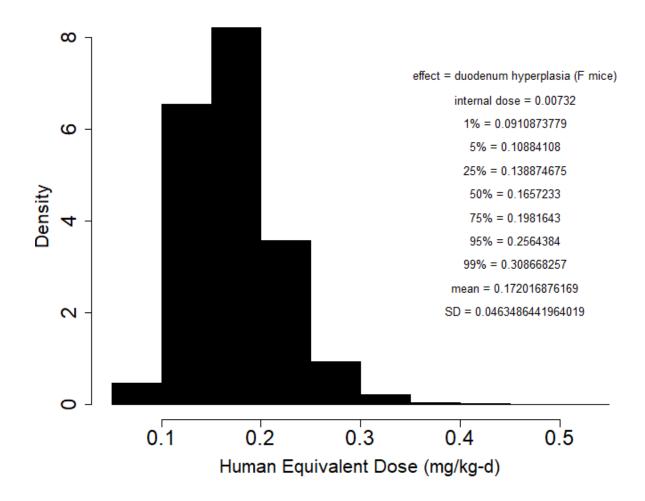


Figure D-8. Model outputs and distribution for Mouse (F) hyperplasia (<u>NTP,</u> <u>2008</u>).

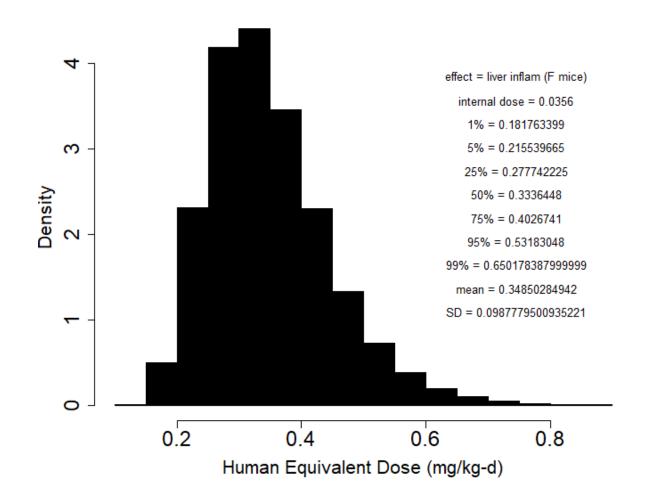


Figure D-9. Model outputs and distribution for Mouse (F) liver chronic inflammation (2 years) (<u>NTP, 2008</u>).

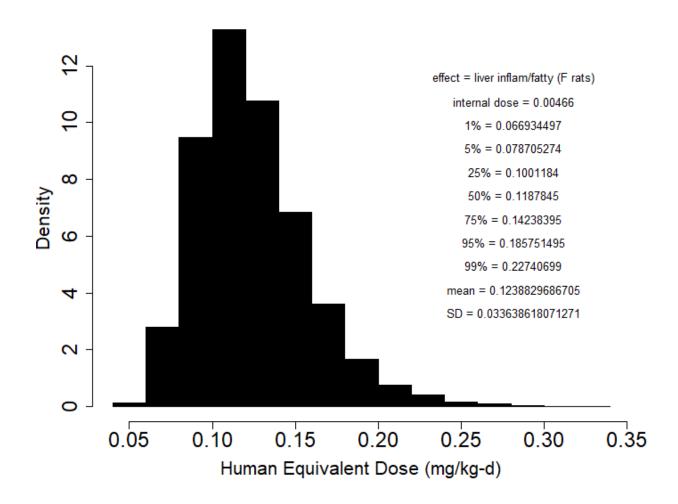


Figure D-10. Model outputs and distribution for Rat (F) liver chronic inflammation (2 years) (<u>NTP. 2008</u>).

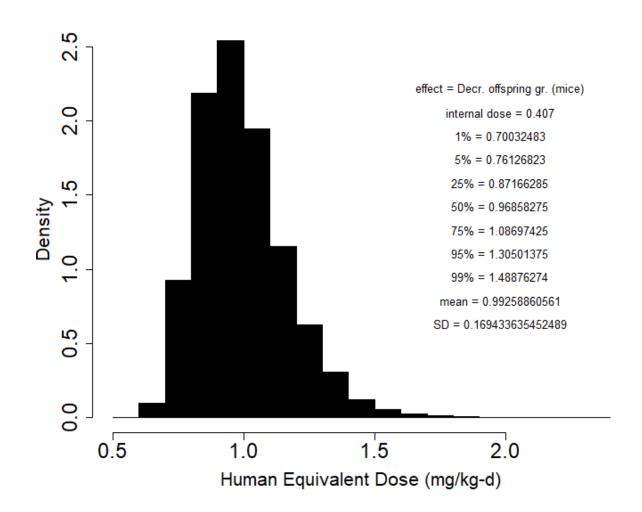
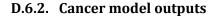



Figure D-11. Model outputs and distribution for Mouse (F) Decreased F1 postnatal growth (<u>NTP, 1997</u>).

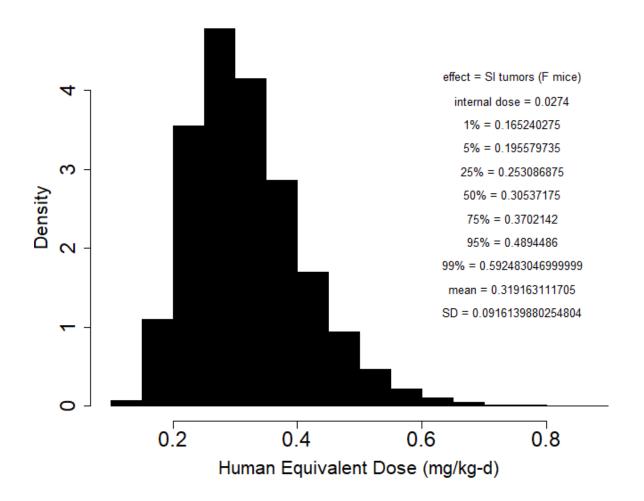


Figure D-12. Model outputs and distribution for Adenomas or Carcinomas in the female mouse small intestine (<u>NTP, 2008</u>).

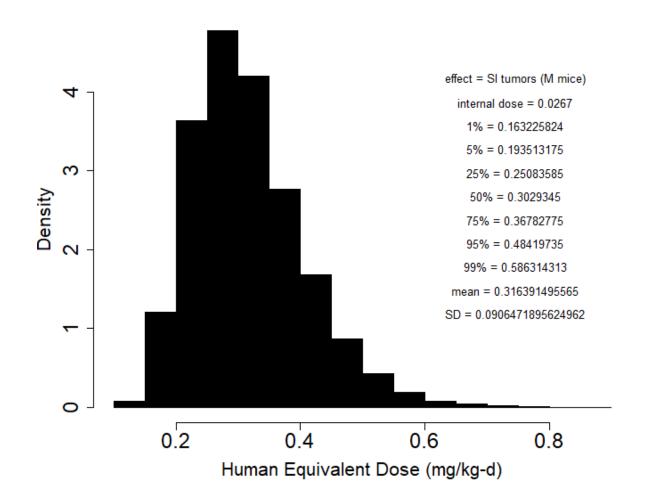


Figure D-13. Model outputs and distribution for Adenomas or Carcinomas in the male mouse small intestine (<u>NTP. 2008</u>).

APPENDIX E. SAS CODE FOR LIFE TABLE ANALYSIS

The following pages	contain the SAS n	rograms for life	table analysis
The following pages	contain the bill p	i ogi unito i or inic	cubic unury 515.

1

```
12345
      OPTIONS NODATE NONUMBER orientation=landscape linesize=max; *BT added 7/3/19;
      This program calculates the risk of lung cancer from inhalation exposure to Cr(VI),
      using a lifetable approach based on BEIR IV. The basic exposure-response model is RR = exp(beta
      * CE5).
6
7
8
9
      The basic code for the lifetable calculations were developed and provided to EPA
      by Randall Smith at NIOSH. The code from NIOSH calculates the baseline risk (R0) and the exposed
      risk (Rx)
      from exposure to an exposure concentration of X Level using NIOSH Model 1: Rx = R0 * exp(COEF *
      X Level).
11231451678900122234567
      EPA has modified the NIOSH as follows:
      1) The all-cause and cause-specific (lung cancer) mortality data tables have been updated
      2) The equation for calculation of X Time has been revised so all values are based on mid-point
      of vear:
                    = min(max(0,(age+0.5-&Age1st x-&Lag)),&Duration-0.5)
            XTime
      3) An equation has been added to calculate extra risk: Extra Risk = (Rx - R0) / (1 - R0)
      3) A macro has been added to find the exposure level (X Level) that yields an extra risk of 0.01
      (1%).
        This is referred to as EC1%, which may then be used to calculate the unit risk: UR = 0.01 /
      EC1%
      */
      /* .\Beta Version.sas 19jan00, 26jul00, 25oct01, 06dec05, 30nov18
      _____
      Experimental version
                                       */
      title "Lifetable calculation of lung cancer risk";
      title2 "under a non-linear relative rate model";
28
29
         | Compute excess risk by the BEIR IV method using SAS datasteps.
301233456789
         | These programs compute the risk of a cause-specific
         | death in the presence of competing risks, where the cause-
         | specific death-rate is modeled either as a relative rate
         | [h=h0*f(Coef*X)] or as an absolute rate [h=h0+f(Coef*X)]
         | where
              h denotes the cause-specific death-rate,
         X denotes cumulative occupational exposure (with Lag)
              Coef denotes the coefficient for the effect of exposure and
         h0 is the corresponding rate at baseline (X=0).
              (Except for Coef, these are functions of age.)
40
41
42
43
         | A few simple models of f(Coef*X) are easily specified as
         | described below. More complicated models can be specified with
         | a little more work. (For a more complicated example,
         see \ GENERAL.LIB\PROGRAMS\SAS\BEIR-4.Method\BEIR4ex2.SAS).
44
45
46
47
         +Reference:
         | Health Risks of Radon and Other Internally Deposited Alpha-
         | Emitters (BEIR IV). Commitee on the Biologic Effects of
| Ionizing Radiations. National Academy Press. Wash. DC (1988).
48
         | See especially pages 131-136.
49
         +USER-SUPPLIED ASSIGNMENTS:
5012334556789
         |> The following macro variables are assigned using "%LET" state-
         | ments: MODEL, COEF, LAG, AGE1ST_X, DURATION, LASTAGE.
         | Further information appears below.
         |> Exposure concentrations for computing risk are defined
         | in the datastep "X LEVELS."
         > All-cause mortality information is entered as a life-table in
         | the data step "ALLCAUSE," and converted to rates per individual.
         > Cause-specific mortality information for unexposed referents is
         | entered as rates per 100,000 and converted to rates per
         | individual in the data step "CAUSE."
```

	NOTES: +
2	> Datastep "EX_RISK" is where the desired risks are computed.
3 4 5 6 7 8	<pre> > If the unexposed(referent) cause-specific mortality rate is from a model then datastep "CAUSE" with variables AGE and RATE as modeled can be modified to incorporate this. However, care must be taken in calculating confidence limits since imprecision in the estimates of all of the parameters of the model contributes to the imprecision of excess risk estimates.</pre>
9 10 11 12	<pre> > This program is currently set up to apply the Linear Rel. Rate model (Lag= 0) and accumulation of excess risk is over the rates in ALLCAUSE and CAUSE unless truncated at a younger age. (See LASTAGE below.) </pre>
13 14 15 16 17 18 19 20 21	<pre>SAS Programmer: Randall Smith The Nat'l Inst. for Occupational Safety & Health 26jul2000, 23jul2001, 25oct2001, 18nov2018 Modifications: 26jul00 Fix the procedure bug causing it to report incorrectly the age at which accumulation of risk was stopped whenever the age-specific rates included ages before the value of &Agelst_X. (&Agelst_X is a macrol expression defining the age exposure begins.)</pre>
22 23 24 25 26 27	23jul01 Make changes to facilitate multiple applications of BEIR4 algorithm, i.e., MLE(Excess Risk), UCL(ExcessRisk), searching for concentrations for a fixed risk. These changes involve defining Macros named BEIR4 and SEARCH given below with code illustrating these uses for the linear relative rate model.
28 29 30 31	25oct01 Modified to add Macro variable EnvAdj for whether to increase inhaled dose from intermittent occupational exposures to continuous environmental exposures and update US rates for Gibb et al. cohort.
32 33 34	30nov18 A bug that prevented the calculation of excess risks after incorporating an adjustment from intermittent occupational exposures to continuous exposures is fixed.
35 36 37	March 2019: BT (SRC) Added maxro CONVERGE_BEIR4 which iteratively runs macro BEIR4 until the EXPOSURE_CONCENTRATION corresponds to an extra_risk=0.01 (the point of departure [POD]).
38 39	Macro CONVERGE_BEIR4 works with one value for the exposure variable XLevel (i.e., when the data C_Levels includes one record.)
40 41 42 43 44 45 46 47 48 49 50	<pre> The intent was to make as few changes to BEIR4 as possible. The data X_LEVELS and variable XLevel are retained but the initial value of XLevel is provided in the call to macro CONVERGE_BEIR4 (the value of Xlevel in the cards statement is not used in the calculations. Changes to the BEIR4 macro are in Part III and Part IV, and are indicated by the letters BT. In addition to the parameter values that are specified by the user in PART 1, and the user-provided data entered in Part II, parameters for the new macro CONVERGE_BEIR4 are specified in the call to the macro CONVERGE_BEIR4 (see end of this SAS program file below). +*/</pre>

```
/* PART I. USER-SUPPLIED ASSIGNMENTS (Macro variables):
       /*_____
                   -----+
        | Model of cumulative exposure effects:
                   1 => Loglinear Relative rate
                         R=R0*exp(COEF*X)
                    2 => Linear Relative rate,
        R=R0*(1+COEF*X)
                    3 => Absolute rate,
                         R=R0+COEF*X
        4 => Power relative rate
                         R=R0*(1+X)^COEF
        0 => User Defined & programmed
                      in datastep Ex Risk below |
        */ %Let Model = 1;
        /*
                                                */ %Let COEF = 0.001298;
        | Cumulative exposure parameter:
       /*
        | Lag or delay between exposure and effect: */ %Let Lag
                                                               = 5;
       /*
        | Age exposure begins:
                                                */ %Let Age1st x = 16;
       /* Adjust dose from occupational to
        | continuous environmental exposures (Y/N)? */ %Let EnvAdj = Yes;
       /* Age to stop accumulating excess risk
                                                | (supposing rates are available for
                                                1
       | ages >= &LastAge); otherwise use all of |
        | the supplied rate information: */ %Let LastAge =85;
       /*-----*/
29
     /* PART II. USER-SUPPLIED ASSIGNMENTS (Datesets AllCause, Cause, X Levels ): */
data AllCause (label="Unexposeds' age-spec mortalty rates (all)"
                    drop=Lx rename=(BLx=Lx) );
       /*_____
       | Input lifetable and calculate the corresponding age-specific
        | (all-causes) mortality rate (AllCause) and conditional survival |
        | probability for each year of age (qi) together with
        | the corresponding values of age (Age).
        +-----
           Label Age = "Age at start of year (Age=i)"
BLx = "Number alive at start of year"
Lx = "Number alive at end of year"
                  CndPrDth = "Pr[Death before age i+1 | alive at age i]"
                  qi = "Pr[Survive to age i+1 | Alive at age i]'
                  AllCause = "Age-spec mortality rate (all causes)";
if _n_=1 then input age //// @1 BLx @; /* //// => skip next 4 lines */
            input Lx 00;
            CndPrDth = (BLx - Lx)/BLx;
            ai
                   = 1-CndPrDth;
           if qi <= 0 then AllCause = 1e+50;</pre>
                     else AllCause = - log(qi);
           if age < &LastAge then output; else STOP;
            BLx=Lx;
            age+1;
            retain age BLx;
        cards;
```

```
0 = Life-table starting age. (Required: Values must begin 4 lines down!)
        The following are 2017 Life-table values of US population
        starting at birth and ending at age 85.
        (Source: Nat.Vital Statistics Reports 2019 Vol 68 No 7, Table 1,
https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf)
100000 99422 99384 99360 99341 99326 99312 99299 99288 99278
      99268 99259 99249 99236 99217 99191 99158 99116 99066 99006
      98937 98858 98770 98674 98573 98466 98355 98241 98122 97999
      97872 97740 97603 97461 97314 97163 97006 96843 96674 96501
     96321 96135 95939 95732 95511 95275 95023 94753 94461 94144
     93797 93419 93008 92560 92070 91538 90963 90345 89684 88978
     88226 87424 86570 85664 84706 83696 82632 81507 80315 79048
      77697 76265 74715 73064 71296 69418 67402 65245 62933 60462
57839 55053 52123 49035 45771 42382
  ;
*run;*BT 7/3/19 added Run statement here;
  data CAUSE (label="Unexposeds' age-cause-spec mortalty rates");
 /*-----
  | Specify unexposeds' age-specific mortality rates (per year) |
  | from specific cause.
  +-----
     label Age = "Age"
          Rate_e5 = "Age, cause-specific rate per 100,000"
                  = "Age, cause-specific rate per individual";
            Rate
      if _n = 1 then input age /* input starting age
                        ///; /* /// => skip next 3 lines */
      input Rate_e5 @0;
      Rate = Rate e5 * 1e-5; /* Convert to rate per individual */
      if age <= 4
         then DO; output; age+1; END;
         else DO i = 0,1,2,3,4; /*-----
                if age < &LastAge /* Fill out into yearly intervals from */</pre>
                   then output; /* inputted five year intervals after age 4*/
e+1; /*------*/
                age+1;
             END:
  cards;
0 = Start age of cause-specific rate (Required: Rates begin 3 lines down!)
       The following are 2017 ICD10 = 113, (C33-C34) death rates per 100,000 for US pop'n
starting at birth.
       For ages 5 and above, each rate holds for the age thru age+4 years.
      Source: CDC Wonder, https://wonder.cdc.gov/ucd-icd10.html
0 0.038 0.038 0.038 0.038 0.010 0.019 0.033 0.045 0.120 0.382 1.074 3.131 8.506 24.321 54.508
87.599 131.875 198.108 265.763 309.625
*run; *BT 7/3/19 added Run statement here;
  data X LEVELS (label= "Exposure levels (e.g., concentrations)" );
 /*_____
 | Specify environmental exposure levels
  | and update label for the variable, XLevel, if necessary:
  +-----*/
  /*-----
  | BT 3/8/19: Add maxro CONVERGE BEIR4 which iteratively runs macro
  | BEIR4 until the EXPOSURE CONCENTRATION corresponds to extra risk=0.01|
  | The intent was to make as few changes to BEIR4 as possible. The data |
  | X LEVELS and variable XLevel are retained but the initial value of |
  | XLevel is provided in the call to macro CONVERGE BEIR4 (the value
                                                                 1
  | of Xlevel in the cards statement is not used in the calculations.
  +-----*/
      input XLevel 00;
      label XLevel= "Cr(VI) exposure (µg Cr(VI)/m3)";
  cards;
1
  ;
run;
```

12345678901123456 11111111

25 26 27

28

46 47

```
123456
      %Macro BEIR4;
      /* March 2019 - BT (SRC): Macro BEIR4 is now called by macro CONVERGE BEIR4.
      */
      /* 23jul01 modification */
      /* Enclose the actual calculations and printed results in a macro
                                                                                */
      /* to facilitate multiple applications of the algorithm.
                                                                                 */
 7
      /* PART III. Perform calculations:
                                                                                */
8901123456789012234567890123
33333
          data EX RISK (label = "Estimated excess risks [Method=BEIR IV]"
                        /*keep = XLevel Rx ex risk RskRatio R0 extra Risk */
                        rename= (Rx=Risk));
                                               -----+
         | Calculate risk and excess risk for each exposure concentration|
         | in work.X Level by BEIR IV method using information in
                                                                          - I
         | work.AllCause and work.Cause to define referent population:
         +-----*/
                     format hi F15.8; *BT 7/3/19: added the format statement;
             length XLevel 8.;
             label Age = "Age at start of year (i)"
    XTime = "Exposure duration midway between i & i+1"
                    XDose = "CE5(adj) (µg Cr(VI)/m3-yrs)"
                    R0
                             = "Cumulative Risk of lung cancer (unexposed) (R0)"
                    Rx = "Cumulative risk of lung cancer (exposed) (Re)"
                     Ex Risk = "Excess risk (Rx-Ro)"
                     RskRatio = "Ratio of risks (Rx/Ro)"
                             = "Lung Cancer hazard (unexposed) (hi)"
                     hi
                             = "Lung Cancer hazard (exposed) (hei)"
                     hix
                     hstari = "All cause hazard (unexposed) (h*i)"
                     hstarix = "All cause hazard (exposed) (he*i)"
                      = "Probability of surviving year i assuming alive at start (unexposed) (qi)"
                   qi
                           = "Probability of surviving to end of year i (unexposed) (S1,i)"
= "Probability of surviving to end of yeari (exposed) (Se1,i)";
                     S li
                     S lix
34
35
36
37
      /* BT 3/8/19: Calculation of unexposed's risk (following DO LOOP) could be omitted from the
      iteration
                                     but may require further changes to BEIR4(?).
                      *e.g., %if i=1 %then %do;*/
38
39
40
                      if n =1 then DO;
                          /* Calculate unexposed's risk (R0) to be retained
                          /* based on equation 2A-21 (pg. 131) of BEIR IV:
                                                                                        * /
41
                         /* Initialize: */ S_1i = 1; R0 = 0;
42
43
44
45
46
                         DO pointer = 1 to min(n all,n cause) until (age>=&LastAge-1);
                              set allcause (keep=age AllCause rename=(AllCause=hstari))
                                   point=pointer nobs=n all;
                             set cause (keep=age Rate rename=(age=ageCause Rate=hi))
                                    point=pointer nobs=n cause;
47
48
49
50
51
                             if Age NE AgeCause then
                          put "** WARNING: Age values in datasets ALLCAUSE and CAUSE don't conform **"
                                    /
                                              @13 "Rates misaligned on age could give incorrect results"
                                              013 Pointer=
                                     1
                                               +2 "Age(ALLCAUSE) =" Age +2 "Age(CAUSE) =" AgeCause /;
52
53
54
55
56
                             qi = exp(-hstari);
                             R0 = R0 + ( hi/hstari * S 1i * (1-qi) );
                             S 1i = S 1i * qi;
                         END:
                                            /* End of 'if n =1 then DO; ' stmt */
                      END:
57
                      retain R0;
```

```
/* Calculate exposed's risk (Rx, renamed to Risk) for each exposure level
                                                                                           */
 123
      /* ultimately based on equation 2A-22 (pg. 132) of BEIR IV */
                                                                         * /
      /* but re-expressed in a form similar to equation 2A-21:
 456789
      * BT 3/20/19. This version of CONVERGE BEIR4 will work when there is one concentration in data
      set x levels - i.e., one value for xlevel.
                             The Do loop for X levels is commented out;
                             DO pointX = 1 to No of Xs;
      * set x_levels point=pointX nobs=No_of_Xs; /* BT 3/8/19: determines when to end the loop. Nobs is
      set at compilation, so the value of nobs is available at first run through loop - just one
1Ŏ
      record and one variable (XLevel) in dataset x levels. */
11
12
13
      /* BT 3/20/19: added the next lint to set the exposure concentration = current value of
      &exposure conc. */
                                                                 xlevel = &exposure conc;
14
15
16
17
18
19
20
                                 /* Initialize : */ S_lix = 1; Rx = 0;S_li=1; R0=0;
                                 DO pointer = 1 to min(n all,n cause) until (age>=&LastAge-1);
                                     set allcause (keep=age AllCause rename=(AllCause=hstari))
                                         point=pointer nobs=n all;
                                     set cause
                                                 (keep=Rate rename=(Rate=hi))
                                         point=pointer nobs=n cause;
21
22
                                     XTime = min( max(0, (age+0.5-&Age1st_x-&Lag))
                                                 , &Duration - 0.5 );
if UpCase("&EnvAdj") = "YES"
      /* Occupational to Environmental Conversion */
                                       then XDose = XLevel
                                                   * 365/240 /* Days per year */
* 20/10 /* Ventilation (L) per day */
                                              Converting Beta(CrO3) to Beta(Cr(VI)) */
                               * 1/0.52
      /*
                               * 1/1000
                                              Converting mg/m3 to ug/m3 */
                                                   * XTime;
                                    ELSE if UpCase("&EnvAdj") = "NO" /* 30nov2018 ('ELSE') */
                                       then XDose = XLevel*XTime;
else D0; put //"Macro variable ENVADJ incorrectly specified."
                                        /"It should be either YES or NO. Value specified is: &ENVADJ"
                                                      /;
                                                 STOP;
                                             END;
                                     hix=.:
                                     if &Model = 1 then hix = hi * exp(&COEF*XDose);
                                                                                          else
                                     if &Model = 2 then hix = hi * (1 + &COEF*XDose);
                                                                                          else
                                     if &Model = 3 then hix = hi + &COEF*XDose;
                                                                                          else
                                     if &Model = 4 then hix = hi * (1 + XDose) ** &COEF; else
                                     if \&Model = 0 then DO;
                                        hix = -99999; /* Code for user-defined model goes here. */
                                     END:
                                     hstarix = hstari
                                                               /* hi=backgrd rate is included in hstari
      */
                                               + (hix - hi):
                                                               /*
                                                                    so that adding in the excess
      */
                                                                /*
                                                                    from exposure (hix-hi) gives the
      */
                                                                /*
                                                                     total rate of the exposed.
      */
                                     qix = exp(-hstarix);
                                          = Rx + ( hix/hstarix * S lix * ( 1-qix ) );
                                     Rx
                                     S lix = S lix * qix;
57
58
59
60
                                                qi = exp(-hstari);
                                                R0 = R0 + ( hi/hstari * S_1i * (1-qi) );
                                                S 1i = S 1i * qi;
                                                output;
61
                                 END;
```

```
123
                                     Ex_Risk = Rx - R0;* Rx = risk in exposed population;
RskRatio = Rx / R0; * R0 = from cancer;
                                     Extra risk = Ex Risk/(1-R0);
 4
5
                                             /* BT 3/20/19 added:*/
                                            call symput('Extra Riskm',Extra Risk);
 6
7
8
9
                                             /*BT 4/24/19 replaced the next line
                                            Diff Ex Risk = abs(&ex risk target-Ex Risk); */
                                            Diff Ex Risk = abs(&ex_risk_target-Extra_Risk);
                                            call symput('Delta Ex Risk', Diff Ex Risk);
10
                                              output;
11
                              * END; * corresponds to X Levels;
12
                         STOP;
13
                        run;
14
      %Mend BEIR4;
15
16
17
                         _____
      /* _____
                     BT: March 2019: parameters for the convergence that are used
                     in the modified version of the BEIR4 macro.
18
        -----*/
19
      %macro Converge BEIR4 (init exposure conc=, ex risk target=, conv criterion=, max iteration=);
20
21
              %Let Delta Ex Risk = 1; * initial high value to make sure loop is run at least once
                                                            (i.e., macro BEIR4 is called at least once);
22
23
              /* BT 4/15/19: added next line to avoid error during compiling of BEIR4*/
              %Let Extra Riskm = 1;
24
              %Let i=1; * first time through loop;
25
26
             %Do %Until (%sysevalf(&Delta Ex risk < &conv criterion) OR %sysevalf(&i >
      &max iteration));
27
28
29
30
                             * first time through loop, set expsosure conc=init exposure conc;
                      %If &i=1 %Then
                             %Do;
                                     %Let exposure conc=&init exposure conc;
31
33
33
34
35
37
33
37
38
                             %End;
                      %If &i>1 %Then
                             %Do;
                                     data tempBEIRCONVERGE;
                                            *BEIR4 has run at least once. Adjust exposure conc
                                                   Extra Riskm is created in BEIR4 (=Extra Risk);
                                            NumLoops=&i;
                                            thisExposureConc=&exposure conc;
39
40
42
43
44
45
46
47
             /* BT 4/15/19: replaced all of the convergence code with the same code that we used
                                                     in the meso code.*/
                                            numvar=&ex risk target;
                                            denvar=&Extra Riskm;
                                            thisexposureconc = thisexposureconc * (numvar/denvar);
      *update the concentration;
                                            call symput('exposure conc', thisexposureconc);
                                            output;
                                     Run;
48
49
50
51
                             %End; *Corresponds to If i>1 statement;
                      %BEIR4;
                      %Let i=%eval(&i+1);
              %End;
```

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

```
%Let EC 1Percent = &exposure conc;
/*_____
  | Report results if convergence criterion met:
  +----*/
%If %sysevalf(&Delta Ex risk < &conv criterion) %then %do;</pre>
title5 "based on beta=&COEF, Concentration=&EC 1Percent, and LastAge=&LastAge";
 data _null_;
                     /* Modified 26-july-00 */
      pointer=1;
      set allcause (keep=age
                   rename=(age=ageall0)) point=pointer nobs=n_all;
       set cause
                  (keep=age
                   rename=(age=ageCs0)) point=pointer nobs=n cause;
      pointer=n all;
      set allcause (keep=age
                   rename=(age=ageall1)) point=pointer nobs=n all;
       pointer=n cause;
      set cause (keep=age
                   rename=(age=ageCs1)) point=pointer nobs=n cause;
      Tmp = sum(min(AgeAll1,AgeCs1,(&Lastage-1)),1);
      file PRINT;
      if ageallO NE ageCsO then DO;
         put /"ERROR: The initial age for all-causes rate differs from the"
             /"
                  initial age for the cause-specific rate.";
      END;
       else DO;
          put / "Values of macro variables used in this computation:
              // @3 "Value" @17 "Macro_Var" @29 "Description"
/ @3 "-----" @17 "------" @29 "------
                              @17 "-----" @29 "-----"
              // @3 "&Model " @17 "MODEL"
                                             @29 "1 = Loglinear Relative Rate,"
                                             @29 "2 = Linear Relative Rate,
                                             @29 "3 = Linear Absolute Rate,
                                             @29 "4 = 'Power' Relative Rate,
                                             @29 "0 = User defined.
              / @3 "&Coef " @17 "COEF" @29 "Exposure parameter estimate"
// @3 "&Lag " @17 "LAG" @29 "Exposure Lag "
              // @3 "&Lag " @17 "LAG" @29 "Exposure Lag "
// @3 "&Agelst_x" @17 "AGELST_X" @29 "Age exposure begins"
               / @3 "&Duration" @17 "DURATION" @29 "Duration of exposure"
               / @3 "&EnvAdj" @17 "ENVADJ" @29 "Adjust dose from intermittent"
                                             @29 "occupational exposures to "
                                             @29 "continuous environmental exposures"
             / @3 "-----" @29 "-----"
               // "------"
             // @3 "EC1% = " @10 "&EC 1Percent" @25 "(µg Cr(VI)/m3); Rx = " @39 "&Extra Riskm"
             /"The risks are calculated from age " ageall0 " up to age " {\tt Tmp} "."
              11 ;
       if ageall1 NE ageCs1 then
         put /"WARNING: The last age for the all-causes rates differs from"
                  the last age for the cause-specific rates, suggesting"
             /"
                       the possibility that the rates weren't entered as desired."
             /;
      END:
  Stop;
  run;
/* BT 7/5/19: Start of code that was added to merge variables for unexposed risk
                          (S 1i and S 1ix) to the rest of the output, by age;
Data newSRCData(keep=SRC_age SRC_S_1i SRC_S_1ix);
             set ex Risk;
             SRC age=0; SRC S li=1; SRC S lix=1;
             output;
             do obsnum=1 to last-1;
             set ex Risk point=obsnum nobs=last;
             if error then abort;
                   SRC age=age+1; SRC S 1i=S 1i; SRC S 1ix=S 1ix;
             output;
             end;
```

This document is a draft for review purposes only and does not constitute Agency policy. E-9 DRAFT-DO NOT CITE OR OUOTE

47490512535555555555560

1

23456

789012345678901234567890123456789012345678901234567

```
123456789
        stop;
     run;
      * rename variables to enable overwriting the values of S li and S lix in ex risk with the values
      in newSRCData;
      ^{*} Data file tempSRCData has age=0-85 while the ex Risk file has age 0-84, with last two records
                   both having age=84.;
      Data tempSRCData; Set newSRCData(rename=(SRC Age=age SRC S li=S li SRC S lix=S lix));
            if age=&LastAge then age=%sysevalf(&Lastage-1); Else age=age;
      Run:
10
11
12
13
      * there are duplicate values for age in both ex risk and tempSRCData
                    which may produce too many records. if that happens, then we use two set
      statements;
      Data ex risk; merge ex risk tempSRCData; By Age; Run;
14
15
16
      /* BT 7/5/19: End of code that was added to merge variables for unexposed risk
                                 (S 1i and S 1ix) to the rest of the output, by age;
      */
17
18
19
21
22
23
24
        *BT 7/3/19: made the these changes to the following Proc Print procedure:
                    - commented out the label option and added the split, uniform and width= options
                    - included all variables to the format statement;
        proc print data=ex_risk /*label*/ noobs split='/' width=FULL;
             format age F4. Xdose E11. hi E11. hstari E11. hix E11. hstarix E11. qi E11. qix E11.
                                 S_1i E11. S_1ix E11. R0 E11. Risk E11. Ex Risk E11. ;
                    label Age
                                         = "Age at start of year (i)"
                                  XDose = "CE5(adj) (µg Cr(VI)/m3-yrs)"
R0
                         = "Cumulative Risk of lung cancer (unexposed) (R0)"
                           = "Cumulative risk of lung cancer (exposed) (Re)"
                 Risk
                 Ex Risk
                           = "Excess risk/[Rx-Ro]/ /(Ex Risk)"
                          = "Lung Cancer hazard (unexposed) (hi)"
                 hi
                          = "Lung Cancer hazard (exposed) (hei)"
                 hix
                          = "All cause hazard (unexposed) (h*i)"
                 hstari
                 hstarix = "All cause hazard (exposed) (he*i)"
                 qi = "Probability of surviving year i assuming alive at start (unexposed) (qi)"
                 qix = "Probability of surviving year i assuming alive at start (exposed) (qei)"
                           = "Probability of surviving to end of year i (unexposed) (S1,i)"
                   S li
                                  = "Probability of surviving to end of yeari (exposed) (Sel,i)";
                   S lix
36
37
38
39
                    Var Age Xdose hi hstari hix hstarix qi qix S 1i S 1ix RO Risk Extra risk; *BT
      7/3/19: Var statement added;
                   label Extra risk="Extra Risk (Re â€" R0)\(1 â€" R0)";
        run:
40
      %End; *end of the If statement that tests if convergence was met;
41
      %Mend Converge BEIR4;
42
43
44
45
46
47
49
50
      /* _____
        | March 2019: BT (SRC) Added maxro CONVERGE BEIR4 which iteratively |
        | runs macro BEIR4 until the EXPOSURE CONCENTRATION corresponds to an
        | extra risk=0.01 (the point of departure [POD]).
        | In addition to the parameter for CONVERGE BEIR4, the user should also|
        | review parameters and data that are assigned/entered in Part 1 and |
        | Part II (see above). Parameters for CONVERGE BEIR4 are defined below |
         +-----*/
51
             *%BEIR4; * originally called macr BEIR4 directly. Now BEIR4 is called by Converge_BEIR4;
52
53
54
55
             % Converge BEIR4 (init exposure conc=1, /* initial exposure concentration (initial quess) */
                    ex_risk_target=0.01000000, /*the point of departure (POD)-the target extra risk */
                    conv criterion=0.0000001,
                    56
      Run;
```

APPENDIX F. QUALITY ASSURANCE FOR THE IRIS TOXICOLOGICAL REVIEW OF HEXAVALENT CHROMIUM

1	This assessment is prepared under the auspices of the U.S. Environmental Protection
2	Agency's (EPA's) Integrated Risk Information System (IRIS) Program. The IRIS Program is housed
3	within the Office of Research and Development (ORD) in the Center for Public Health and
4	Environmental Assessment (CPHEA). EPA has an agency-wide quality assurance (QA) policy that is
5	outlined in the EPA Quality Manual for Environmental Programs (see <u>CIO 2105-P-01.1</u>) and follows
6	the specifications outlined in EPA Order <u>CIO 2105.1</u> .
7	As required by CIO 2105.1, ORD maintains a Quality Management Program, which is
8	documented in an internal Quality Management Plan (QMP). The latest version was developed in
9	2013 using Guidance for Developing Quality Systems for Environmental Programs (QA/G-1). An
10	NCEA/CPHEA-specific QMP was also developed in 2013 as an appendix to the ORD QMP. Quality
11	assurance for products developed within CPHEA is managed under the ORD QMP and applicable
12	appendices.
13	The IRIS Toxicological Review of Hexavalent Chromium is designated as Highly Influential
14	Scientific Information (HISA) and is classified as QA Category A. Category A designations require
15	reporting of all critical QA activities, including audits. The development of IRIS assessments is done
16	through a seven-step process. Documentation of this process is available on the IRIS website:
17	https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system#process.
18	Specific management of quality assurance within the IRIS Program is documented in a
19	Programmatic Quality Assurance Project Plan (PQAPP). A PQAPP is developed using the EPA
20	Guidance for Quality Assurance Project Plans (QA/G-5), and the latest approved version is dated
21	March 2020. All IRIS assessments follow the IRIS PQAPP, and all assessment leads and team
22	members are required to receive QA training on the IRIS PQAPP. During assessment development,
23	additional QAPPs may be applied for quality assurance management. They include:
24	

Title	Document number	Date
Program Quality Assurance Project Plan (PQAPP) for the Integrated Risk Information System (IRIS) Program	L-CPAD-0030729-QP-1-4	April 2021
An Umbrella Quality Assurance Project Plan (QAPP) for Dosimetry	L-CPAD-0032188-QP-1-2	December 2020

and Mechanism-Based Models (PBPK)		
Quality Assurance Project Plan (QAPP) for Enhancements to Benchmark Dose Software (BMDS)	L-HEEAD-0032189-QP-1-2	October 2020

- 1 During assessment development, this project undergoes quality audits during assessment
- 2 development including:

Date	Type of audit	Major findings	Actions taken
Augusts 2018	Technical system audit	None	None
August 2019	Technical system audit	None	None
August 2020	Technical system audit	None	None
July 2021	Technical system audit	None	None

3 [Include this section during Step 4.] During Step 3 and Step 6 of the IRIS process, the IRIS 4 toxicological review is subjected to external reviews by other federal agency partners, including the 5 Executive Offices of the White House. Comments during these IRIS process steps are available in the 6 docket [insert chemical docket number—make sure the comments are in the docket] on 7 http://www.regulations.gov. 8 During Step 4 *[include this section AFTER Step 4]* of assessment development, the IRIS 9 Toxicological Review of [chemical X] undergoes public comment from [insert date of public 10 comment]. Following this comment period, the toxicological review undergoes external peer review 11 by [SAB/NAS/contractor peer-review panel] on [insert date of ERD]. The peer-review report is 12 available on the [NAS/SAB website—include the URL]. All public and peer-review comments are 13 available in the docket [insert chemical docket number-make sure that the ERD public comments are 14 available in the docket as well]. 15 [Include this section AFTER Step 6] Prior to release (Step 7 of the IRIS process), the final 16 toxicological review is submitted to management and QA clearance. During this step the CPHEA QA 17 Director and QA Managers review the project QA documentation and ensure that EPA QA 18 requirements are met.

APPENDIX G. RESPONSE TO EXTERNAL COMMENTS

1 [Template placeholder]

G.1. RESPONSE TO PUBLIC COMMENTS

2	The Toxicological Review of Hexavalent Chromium was released for a 60-day public
3	comment period on [date]. Public comments on the assessment were submitted to the U.S.
4	Environmental Protection Agency (EPA) by [insert public commenters and date comments were
5	posted to the docket].
6	A summary of major public comments provided in these submissions and EPA's response to
7	these comments are provided in the sections that follow. The comments are synthesized,
8	paraphrased, and organized by topic and commenter. Editorial changes and factual corrections
9	offered by public commenters are incorporated into the document as appropriate and are not
10	discussed further. All public comments provided are taken into consideration in revising the draft
11	assessment prior to release for external peer review. The complete set of public comments is
12	available on the docket at <u>http://www.regulations.gov</u> [insert docket number].
13	A public science meeting was held on [date] to provide the public an opportunity to engage
14	in early discussions on the draft Integrated Risk Information System (IRIS) toxicological review and
15	the draft charge to the peer-review panel prior to release for external peer review. [revise the next
16	sentence as appropriate.] The following sets of slides were presented at the [insert month year]
17	public meeting on hexavalent chromium and subsequently submitted to the hexavalent chromium
18	docket.

G.2. RESPONSE TO EXTERNAL PEER REVIEW COMMENTS

3) Topic [e.g., Comments Related to the Mechanisms by Which RDX Induces Seizures]

- 20 <u>Comment:</u> Commenter [X] observed...
- 21 <u>EPA Response:</u> EPA notes...
- 22 [For post-peer-review drafts and final]:
- 23 The *Toxicological Review of* [chemical X], dated [month year], underwent a formal external
- 24 peer review in accordance with U.S. Environmental Protection Agency (EPA) guidance on peer
- review (U.S. EPA, 2015). This peer review was conducted by the Chemical Assessment Advisory
- 26 Committee (CAAC) Augmented for Review of the Draft IRIS [chemical X] Assessment (SAB-CAAC
- 27 [chemical X] panel) of EPA's Science Advisory Board (SAB) [Revise if assessment does not undergo

Supplemental Information—Hexavalent Chromium

- 1 *review by the SAB]*. An external peer-review workshop was held on [insert date]. Public
- 2 teleconferences of the SAB-CAAC [chemical X] panel were held on [insert date(s)]. The SAB held a
- 3 public meeting on [insert date] to conduct a quality review of the draft peer-review report. The final
- 4 report of the SAB was released on [insert date].
- 5 The SAB was tasked with providing feedback in response to charge questions that
- 6 addressed scientific issues related to the hazard identification and dose-response assessment of
- 7 [chemical X]. Key recommendations of the SAB and EPA's responses to these recommendations,
- 8 organized by charge question, follow.
- 9 [Consider using the following format. Only key recommendations are included in this appendix,
- 10 and recommendations are copied from the peer-review report verbatim (i.e., not summarized). Check
- 11 with IRIS/CPHEA management for any updates to this practice.]
- 12 4) Topic [e.g., Literature Search/Study Selection and Evaluation]

Charge Question 1. The section on *Literature Search Strategy/Study Selection* and Evaluation describes the process...

- 15 <u>Key Recommendation:</u> EPA should include a literature search...
- 16 <u>EPA Response:</u> Along with review of references provided by the SAB in the peer-review report, a
- 17 targeted literature search was performed...

REFERENCES FOR APPENDICES

1	Aaseth, J: Alexander, J: Norseth, T. (1982). Uptake of 51Cr-chromate by human erythrocytes - a role
2	of glutathione. Acta Pharmacol Toxicol 50: 310-315. <u>http://dx.doi.org/10.1111/j.1600-</u>
3	<u>0773.1982.tb00979.x</u>
4	<u>Abreu, PL; Cunha-Oliveira, T; Ferreira, LMR; Urbano, AM.</u> (2018). Hexavalent chromium, a lung
5	carcinogen, confers resistance to thermal stress and interferes with heat shock protein
6	expression in human bronchial epithelial cells. Biometals.
7	http://dx.doi.org/10.1007/s10534-018-0093-7
8	Acharya, UR; Mishra, M; Mishra, I. (2004a). Status of antioxidant defense system in chromium-
9	induced Swiss mice tissues. Environ Toxicol Pharmacol 17: 117-123.
10	http://dx.doi.org/10.1016/j.etap.2004.02.005
11	Acharya, UR; Mishra, M; Mishra, I; Tripathy, RR. (2004b). Potential role of vitamins in chromium
12	induced spermatogenesis in Swiss mice. Environ Toxicol Pharmacol 15: 53-59.
13	http://dx.doi.org/10.1016/j.etap.2003.08.010
14	Acharya, UR; Mishra, M; Tripathy, RR; Mishra, I. (2006). Testicular dysfunction and antioxidative
15	defense system of Swiss mice after chromic acid exposure. Reprod Toxicol 22: 87-91.
16	<u>http://dx.doi.org/10.1016/j.reprotox.2005.11.004</u>
17	<u>Adam, C; Wohlfarth, J; Haußmann, M; Sennefelder, H; Rodin, A; Maler, M; Martin, SF; Goebeler, M;</u>
18	Schmidt, M. (2017). Allergy-Inducing Chromium Compounds Trigger Potent Innate Immune
19	Stimulation Via ROS-Dependent Inflammasome Activation. J Invest Dermatol 137: 367-376.
20	http://dx.doi.org/10.1016/j.jid.2016.10.003
21	<u>AEI</u> (Applied Epidemiology Inc). (2002). Collaborative cohort mortality study of four chromate
22	production facilities, 1958-1998: Final report. (8EHQ-0810-18050; OSHA Docket H054A Ex.
23	48–1-2). Pittsburgh, PA: Industrial Health Foundation.
24	https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/OTS0602411.xhtml
25	Afolaranmi, GA; Grant, MH. (2013). The effect of ascorbic acid on the distribution of soluble Cr and
26	Co ions in the blood and organs of rats. J Appl Toxicol 33: 220-226.
27	http://dx.doi.org/10.1002/jat.1744
28	<u>Afolaranmi, GA; Tettey, JNA; Murray, HM; Meek, RMD; Grant, MH.</u> (2010). The effect of
29	anticoagulants on the distribution of chromium VI in blood fractions. J Arthroplasty 25: 118-
30	120. <u>http://dx.doi.org/10.1016/j.arth.2008.10.012</u>
31	Ahmad, MK; Syma, S; Mahmood, R. (2011). Cr(VI) Induces Lipid Peroxidation, Protein Oxidation and
32	Alters the Activities of Antioxidant Enzymes in Human Erythrocytes. Biol Trace Elem Res
33	144: 426-435. <u>http://dx.doi.org/10.1007/s12011-011-9119-5</u>
34	Ahn, YS; Jeong, KS. (2014). Epidemiologic characteristics of compensated occupational lung cancers
35	among Korean workers. J Korean Med Sci 29: 1473-1481.
36	http://dx.doi.org/10.3346/jkms.2014.29.11.1473
37	Ahn, YS; Park, RM; Stayner, L; Kang, SK; Jang, JK. (2006). Cancer morbidity in iron and steel workers
38	in Korea. Am J Ind Med 49: 647-657. <u>http://dx.doi.org/10.1002/ajim.20337</u>
39	<u>Aiyar, J; Berkovits, HJ; Floyd, RA; Wetterhahn, KE.</u> (1990). REACTION OF CHROMIUM(VI) WITH
40	HYDROGEN PEROXIDE IN THE PRESENCE OF GLUTATHIONE: REACTIVE INTERMEDIATES
41	AND RESULTING DNA DAMAGE. Chem Res Toxicol 595: 595-603.
42	http://dx.doi.org/10.1021/tx00018a016

1	<u>Aiyar, J: Berkovits, HJ; Floyd, RA; Wetterhahn, KE.</u> (1991). Reaction of chromium(VI) with
2	glutathione or with hydrogen peroxide: identification of reactive intermediates and their
3	role in chromium(VI)-induced DNA damage. Environ Health Perspect 92: 53-62.
4	<u>Aiyar, J: Borges, K; Floyd, R; Wetterhahn, K.</u> (1989). Role of chromium(V), glutathione thiyl radical
5	and hydroxyl radical intermediates in Chromium(VI)-induced DNA Damage. Toxicol
6	Environ Chem 22: 135-148. <u>http://dx.doi.org/10.1080/02772248909357432</u>
7	<u>Aiyar, J: Deflora, S: Wetterhahn, KE.</u> (1992). Reduction of chromium(VI) to chromium(V) by rat liver
8	cytosolic and microsomal fractions: is DT-diaphorase involved. Carcinogenesis 13: 1159-
9	1166.
10	Akbar, M; Brewer, JM; Grant, MH. (2011). Effect of chromium and cobalt ions on primary human
11	lymphocytes in vitro. J Immunotoxicol 8: 140-149.
12	http://dx.doi.org/10.3109/1547691X.2011.553845
13	Alderson, MR; Rattan, NS; Bidstrup, L. (1981). Health of workmen in the chromate-producing
14	industry in Britain. Occup Environ Med 38: 117-124.
15	Alexander, BH; Checkoway, H; Wechsler, L; Heyer, NJ; Muhm, JM; O'Keeffe, TP. (1996). Lung cancer
16	in chromate-exposed aerospace workers. J Occup Environ Med 38: 1253-1258.
17	http://dx.doi.org/10.1097/00043764-199612000-00011
18	Alexander, J: Aaseth, J. (1995). Uptake of chromate in human red blood cells and isolated rat liver
19	cells: the role of the anion carrier. Analyst 120: 931-933.
20	http://dx.doi.org/10.1039/AN9952000931
21	<u>Alexander, J: Aaseth, J: Norseth, T. (1982).</u> Uptake of chromium by rat liver mitochondria.
22	Toxicology 24: 115-122. http://dx.doi.org/10.1016/0300-483X(82)90050-6
23	Alexander, J; Mikalsen, A; Ryberg, D. (1986). Microsomal reduction of Cr VI. Acta Pharmacol Toxicol
24	59: 267-269. http://dx.doi.org/10.1111/j.1600-0773.1986.tb02759.x
25	<u>Alexopoulos, EC; Cominos, X; Trougakos, IP; Lourda, M; Gonos, ES; Makropoulos, V. (2008).</u>
26	Biological monitoring of hexavalent chromium and serum levels of the senescence
27	biomarker Apolipoprotein J/Clusterin in welders. Bioinorganic Chemistry and Applications
28	2008: 420578. <u>http://dx.doi.org/10.1155/2008/420578</u>
29	<u>Alguacil, J; Porta, M; Kauppinen, T; Malats, N; Kogevinas, M; Carrato, A; Grp, PIS. (2003).</u>
30	Occupational exposure to dyes, metals, polycyclic aromatic hydrocarbons and other agents
31	and K-ras activation in human exocrine pancreatic cancer. Int J Cancer 107: 635-641.
32	http://dx.doi.org/10.1002/ijc.11431
33	<u>Ali, AH; Kondo, K; Namura, T; Senba, Y; Takizawa, H; Nakagawa, Y; Toba, H; Kenzaki, K; Sakiyama, S;</u>
34	Tangoku, A. (2011). Aberrant DNA methylation of some tumor suppressor genes in lung
35	cancers from workers with chromate exposure. Mol Carcinog 50: 89-99.
36	<u>http://dx.doi.org/10.1002/mc.20697</u>
37	<u>Alimba, CG; Dhillon, V; Bakare, AA; Fenech, M.</u> (2016). Genotoxicity and cytotoxicity of chromium,
38	copper, manganese and lead, and their mixture in WIL2-NS human B lymphoblastoid cells is
39	enhanced by folate depletion. Mutat Res Genet Toxicol Environ Mutagen 798-799: 35-47.
40	<u>http://dx.doi.org/10.1016/j.mrgentox.2016.02.002</u>
41	Amandus, HE. (1986). Mortality from stomach cancer in United States cement plant and quarry
42	workers, 1950-80. Br J Ind Med 43: 526-528. <u>http://dx.doi.org/10.1136/oem.43.8.526</u>
43	<u>Andersen, A; Barlow, L; Engeland, A; Kjaerheim, K; Lynge, E; Pukkala, E.</u> (1999). Work-related
44	cancer in the Nordic countries [Supplemental Data]. Scand J Work Environ Health 25: 1-116.
45	Andersson, E; Persson, B; Bryngelsson, IL; Magnuson, A; Westberg, H. (2010). Cancer mortality in a
46	Swedish cohort of pulp and paper mill workers. Int Arch Occup Environ Health 83: 123-132.
47	http://dx.doi.org/10.1007/s00420-009-0446-1
48	Andjelkovich, DA; Mathew, RM; Yu, RC; Richardson, RB; Levine, RJ. (1992). Mortality of iron foundry
49	workers: II Analysis by work area. J Occup Environ Med 34: 391-401.

1	<u>Andrew, AS; Warren, AJ; Barchowsky, A; Temple, KA; Klei, L; Soucy, NV; O'Hara, KA; Hamilton, JW.</u>
2	(2003). Genomic and proteomic profiling of responses to toxic metals in human lung cells.
3	Environ Health Perspect 111: 825-835. <u>http://dx.doi.org/10.1289/txg.6249</u>
4	Antonini, JM; Roberts, JR; Chapman, RS; Soukup, JM; Ghio, AJ; Sriram, K. (2010). Pulmonary toxicity
5	and extrapulmonary tissue distribution of metals after repeated exposure to different
6	welding fumes. Inhal Toxicol 22: 805-816.
7	<u>http://dx.doi.org/10.3109/08958371003621641</u>
8	<u>Antonios, D; Ade, N; Kerdine-Römer, S; Assaf-Vandecasteele, H; Larangé, A; Azouri, H; Pallardy, M.</u>
9	(2009). Metallic haptens induce differential phenotype of human dendritic cells through
10	activation of mitogen-activated protein kinase and NF-kappaB pathways. Toxicol In Vitro
11	23: 227-234. <u>http://dx.doi.org/10.1016/j.tiv.2008.11.009</u>
12	<u>Aragones, N; Pollan, M; Gustavsson, P.</u> (2002). Stomach cancer and occupation in Sweden: 1971-89.
13	Occup Environ Med 59: 329-337. <u>http://dx.doi.org/10.1136/oem.59.5.329</u>
14	Arakawa, H; Ahmad, R; Naoui, M; Tajmir-Riahi, HA. (2000). A comparative study of calf thymus DNA
15	binding to Cr(III) and Cr(VI) ions. Evidence for the guanine N-7-chromium-phosphate
16	chelate formation. J Biol Chem 275: 10150-10153.
17	<u>Arakawa, H; Weng, MW; Chen, WC; Tang, MS.</u> (2012). Chromium (VI) induces both bulky DNA
18	adducts and oxidative DNA damage at adenines and guanines in the p53 gene of human lung
19	cells. Carcinogenesis 33: 1993-2000. <u>http://dx.doi.org/10.1093/carcin/bgs237</u>
20	Arillo, A; Melodia, F; Frache, R. (1987). Reduction of Hexavalent Chromium by Mitochondria:
21	Methodological Implications and Possible Mechanisms. Ecotoxicol Environ Saf 14: 164-177.
22	Armienta-Hernández, MA; Rodríguez-Castillo, R. (1995). Environmental exposure to chromium
23	compounds in the valley of León, México. Environ Health Perspect 103 Suppl 1: 47-51.
24	Arslan, P; Beltrame, M; Tomasi, A. (1987). Intracellular chromium reduction. Biochim Biophys Acta
25	931: 10-15. <u>http://dx.doi.org/10.1016/0167-4889(87)90044-9</u>
26	Aruldhas, MM; Subramanian, S; Sekar, P; Vengatesh, G; Chandrahasan, G; Govindarajulu, P;
27	Akbarsha, MA. (2005). Chronic chromium exposure-induced changes in testicular
28	histoarchitecture are associated with oxidative stress: study in a non-human primate
29	(Macaca radiata Geoffroy). Hum Reprod 20: 2801-2813.
30	http://dx.doi.org/10.1093/humrep/dei148
31 32	<u>Asatiani, N; Abuladze, M; Kartvelishvili, T; Kulikova, N; Asanishvili, L; Holman, HY; Sapojnikova, N.</u> (2010). Response of antioxidant defense system to chromium (VI)-induced cytotoxicity in
32 33	human diploid cells. Biometals 23: 161-172. http://dx.doi.org/10.1007/s10534-009-9276-
33 34	6
35 35	Asatiani, N; Kartvelishvili, T; Abuladze, M; Asanishvili, L; Sapojnikova, N. (2011). Chromium (VI) can
36	activate and impair antioxidant defense system. Biol Trace Elem Res 142: 388-397.
30 37	http://dx.doi.org/10.1007/s12011-010-8806-v
38	Asatiani, N; Sapojnikova, N; Abuladze, M; Kartvelishvili, T; Kulikova, N; Kiziria, E; Namchevadze, E;
39	Holman, HY. (2004). Effects of Cr(VI) long-term and low-dose action on mammalian
40	antioxidant enzymes (an in vitro study). J Inorg Biochem 98: 490-496.
41	http://dx.doi.org/10.1016/j.jinorgbio.2003.12.014
42	Asgharian, B; Price, O. (2009). Multiple-path particle dosimetry model (MPPD v 2.11) (Version 2.11)
43	[Computer Program]. Albuquerque, NM: Applied Research Associates. Retrieved from
44	https://www.ara.com/mppd/
45	ATSDR (Agency for Toxic Substances and Disease Registry). (2012). Toxicological profile for
46	chromium. Atlanta, GA: US Department of Health and Human Services, Public Health
47	Service. <u>http://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=62&tid=17</u>
48	ATSDR (Agency for Toxic Substances and Disease Registry). (2016). Review and analysis of volatile
49	organic compounds (VOCs) and metal exposures in air as part of the Midlothian Area Air

1	Quality Petition Response Midlothian, Ellis County, Texas November 17, 2016. Atlanta, GA:
2	U.S. Department of Health and Human Services.
3	<u>Awogi, T; Murata, K; Uejima, M; Kuwahara, T; Asanami, S; Shimono, K; Morita, T. (1992). Induction</u>
4	of micronucleated reticulocytes by potassium bromate and potassium chromate in CD-1
5	male mice. Mutat Res 278: 181-185.
6	Axelsson, G; Rylander, R; Schmidt, A. (1980). Mortality and incidence of tumours among
7	ferrochromium workers. Occup Environ Med 37: 121-127.
8	<u>Azad, N; Iyer, AK; Manosroi, A; Wang, L; Rojanasakul, Y.</u> (2008). Superoxide-mediated proteasomal
9	degradation of Bcl-2 determines cell susceptibility to Cr(VI)-induced apoptosis.
10	Carcinogenesis 29: 1538-1545. <u>http://dx.doi.org/10.1093/carcin/bgn137</u>
11	Badding, MA; Fix, NR; Antonini, JM; Leonard, SS. (2014). A Comparison of Cytotoxicity and Oxidative
12	Stress from Welding Fumes Generated with a New Nickel-, Copper-Based Consumable
13	versus Mild and Stainless Steel-Based Welding in RAW 264.7 Mouse Macrophages. PLoS
14	ONE 9: e101310. <u>http://dx.doi.org/10.1371/journal.pone.0101310</u>
15	Bae, D; Camilli, TC; Chun, G; Lal, M; Wright, K; O'Brien, TJ; Patierno, S. R.; Ceryak, S. (2009a). Bypass
16	of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor:
17	Enhanced survival and mutagenesis. Mutat Res Fundam Mol Mech Mutagen 660: 40-46.
18	http://dx.doi.org/10.1016/j.mrfmmm.2008.10.006
19	Bae, D; Camilli, TC; Ha, NT; Ceryak, S. (2009b). Enhanced clonogenic survival induced by protein
20	tyrosine phosphatase (PTP) inhibition after Cr(VI) exposure is mediated by c-Raf and Ras
21	activity. Cell Signal 21: 727-736. <u>http://dx.doi.org/10.1016/j.cellsig.2009.01.011</u>
22	Bagchi, D; Bagchi, M; Stohs, SJ. (2001). Chromium (VI)-induced oxidative stress, apoptotic cell death
23 24	and modulation of p53 tumor suppressor gene. Mol Cell Biochem 222: 149-158.
24 25	Bagchi, D; Bagchi, M; Tang, L; Stohs, SJ. (1997a). Comparative in vitro and in vivo protein kinase C activation by selected pesticides and transition metal salts. Toxicol Lett 91: 31-37.
26	Bagchi, D; Balmoori, J; Bagchi, M; Ye, X; Williams, CB; Stohs, SJ. (2000a). Role of p53 tumor
20 27	suppressor gene in the toxicity of TCDD, endrin, naphthalene, and chromium (VI) in liver
28	and brain tissues of mice. Free Radic Biol Med 28: 895-903.
29	Bagchi, D; Balmoori, J; Bagchi, M; Ye, X; Williams, CB; Stohs, SI. (2002a). Comparative effects of
30	TCDD, endrin, naphthalene and chromium (VI) on oxidative stress and tissue damage in the
31	liver and brain tissues of mice. Toxicology 175: 73-82. <u>http://dx.doi.org/10.1016/S0300-</u>
32	<u>483X(02)00062-8</u>
33	Bagchi, D; Hassoun, EA; Bagchi, M; Muldoon, DF; Stohs, SJ. (1995a). Oxidative stress induced by
34	chronic administration of sodium dichromate [Cr(VI)] to rats. Comp Biochem Physiol C
35	Pharmacol Toxicol Endocrinol 110: 281-287. http://dx.doi.org/10.1016/0742-
36	<u>8413(94)00103-H</u>
37	Bagchi, D; Hassoun, EA; Bagchi, M; Stohs, SJ. (1995b). Chromium-induced excretion of urinary lipid
38	metabolites, DNA damage, nitric oxide production, and generation of reactive oxygen
39	species in Sprague-Dawley rats. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol
40	110: 177-187. <u>http://dx.doi.org/10.1016/0742-8413(94)00093-P</u>
41	Bagchi, D; Joshi, SS; Bagchi, M; Balmoori, J; Benner, EJ; Kuszynski, CA; Stohs, SJ. (2000b). Cadmium-
42	and chromium-induced oxidative stress, DNA damage, and apoptotic cell death in cultured
43	human chronic myelogenous leukemic K562 cells, promyelocytic leukemic HL-60 cells, and
44	normal human peripheral blood mononuclear cells. J Biochem Mol Toxicol 14: 33-41.
45	Bagchi, D; Stohs, SJ; Downs, BW; Bagchi, M; Preuss, HG. (2002b). Cytotoxicity and oxidative
46	mechanisms of different forms of chromium. Toxicology 180: 5-22.
47	Bagchi, D; Vuchetich, PJ; Bagchi, M; Hassoun, EA; Tran, MX; Tang, L; Stohs, SJ. (1997b). Induction of
48	oxidative stress by chronic administration of sodium dichromate [chromium VI] and
49	cadmium chloride [cadmium II] to rats. Free Radic Biol Med 22: 471-478.
50	<u>http://dx.doi.org/10.1016/s0891-5849(96)00352-8</u>

1	Bai, JPF; Burckart, GJ; Mulberg, AE. (2016). Literature review of gastrointestinal physiology in the
2	elderly, in pediatric patients, and in patients with gastrointestinal diseases [Review]. J
3	Pharm Sci 105: 476-483. <u>http://dx.doi.org/10.1002/jps.24696</u>
4	<u>Balachandar, V; Arun, M; Mohana Devi, S; Velmurugan, P; Manikantan, P; Karthick Kumar, A;</u>
5	Sasikala, K; Venkatesan, C. (2010). Evaluation of the genetic alterations in direct and
6	indirect exposures of hexavalent chromium [Cr(VI)] in leather tanning industry workers
7	North Arcot District, South India. Int Arch Occup Environ Health 83: 791-801.
8	<u>http://dx.doi.org/10.1007/s00420-010-0562-y</u>
9	Balakin, VM; Sukhacheva, EI; Buryndin, VG; Masna, VM; Semenov, DI. (1981). Synthesis and study of
10	the effect of oligomeric quaternary salts on the excretion and resorption of hexavalent
11	chromium from the rat organism. Pharmaceutical Chemistry Journal 15: 712-715.
12	Ban, M; Langonné, I; Goutet, M; Huguet, N; Pépin, E. (2010). Simultaneous analysis of the local and
13	systemic immune responses in mice to study the occupational asthma mechanisms induced
14	by chromium and platinum. Toxicology 277: 29-37.
15	http://dx.doi.org/10.1016/j.tox.2010.08.010
16	Banu, SK; Samuel, JB; Arosh, JA; Burghardt, RC; Aruldhas, MM. (2008). Lactational exposure to
17	hexavalent chromium delays puberty by impairing ovarian development, steroidogenesis
18	and pituitary hormone synthesis in developing Wistar rats. Toxicol Appl Pharmacol 232:
19	180-189. <u>http://dx.doi.org/10.1016/j.taap.2008.06.002</u>
20	Banu, SK; Stanley, JA; Lee, J; Stephen, SD; Arosh, JA; Hoyer, PB; Burghardt, RC. (2011). Hexavalent
21	chromium-induced apoptosis of granulosa cells involves selective sub-cellular translocation
22	of Bcl-2 members, ERK1/2 and p53. Toxicol Appl Pharmacol 251: 253-266.
23	http://dx.doi.org/10.1016/j.taap.2011.01.011 Reny, SK. Stanlay, IA, Singlaymen, KK, Areah, IA, Barbaymi, B, Byrghardt, BC, (2015), Identifying a
24 25	Banu, SK; Stanley, JA; Sivakumar, KK; Arosh, JA; Barhoumi, R; Burghardt, RC. (2015). Identifying a novel role for X-prolyl aminopeptidase (Xpnpep) 2 in CrVI-induced adverse effects on germ
26	cell nest breakdown and follicle development in rats. Biol Reprod 92: 67.
20	http://dx.doi.org/10.1095/biolreprod.114.125708
28	Banu, SK; Stanley, JA; Sivakumar, KK; Arosh, JA; Burghardt, RC. (2016). Resveratrol protects the
29	ovary against chromium-toxicity by enhancing endogenous antioxidant enzymes and
30	inhibiting metabolic clearance of estradiol. Toxicol Appl Pharmacol 303: 65-78.
31	http://dx.doi.org/10.1016/j.taap.2016.04.016
32	Banu, SK; Stanley, JA; Sivakumar, KK; Arosh, JA; Taylor, RJ; Burghardt, RC. (2017a). Chromium VI -
33	Induced developmental toxicity of placenta is mediated through spatiotemporal
34	dysregulation of cell survival and apoptotic proteins. Reprod Toxicol 68: 171-190.
35	http://dx.doi.org/10.1016/j.reprotox.2016.07.006
36	Banu, SK; Stanley, JA; Siyakumar, KK; Taylor, RJ; Arosh, JA; Burghardt, RC. (2017b). Editor's
37	highlight: Exposure to CrVI during early pregnancy increases oxidative stress and disrupts
38	the expression of antioxidant proteins in placental compartments. Toxicol Sci 155: 497-511.
39	http://dx.doi.org/10.1093/toxsci/kfw231
40	Banu, SK; Stanley, JA; Taylor, RJ; Sivakumar, KK; Arosh, JA; Zeng, L; Pennathur, S; Padmanabhan, V.
41	(2018). Sexually Dimorphic Impact of Chromium Accumulation on Human Placental
42	Oxidative Stress and Apoptosis. Toxicol Sci 161: 375-387.
43	http://dx.doi.org/10.1093/toxsci/kfx224
44	Barchowsky, A. (2006). JNK activation by chromium in the lung [Abstract]. Toxicologist 90: 309.
45	Barraj, L; Scrafford, C; Lantz, J; Daniels, C; Mihlan, G. (2009). Within-day drinking water
46	consumption patterns: results from a drinking water consumption survey. J Expo Sci
47	Environ Epidemiol 19: 382-395. <u>http://dx.doi.org/10.1038/jes.2008.28</u>
48	Bartholomäus, R; Irwin, JA; Shi, L; Smith, SM; Levina, A; Lay, PA. (2013). Isolation, characterization,
49	and nuclease activity of biologically relevant chromium(V) complexes with

1	monosaccharides and model diols. Likely intermediates in chromium-induced cancers.
2	Inorg Chem 52: 4282-4292. <u>http://dx.doi.org/10.1021/ic3022408</u>
3	Beasley, DE; Koltz, AM; Lambert, JE; Fierer, N; Dunn, RR. (2015). The evolution of stomach acidity
4	and its relevance to the human microbiome [Review]. PLoS ONE 10: e0134116.
5	http://dx.doi.org/10.1371/journal.pone.0134116
6	Becker, N. (1999). Cancer mortality among arc welders exposed to fumes containing chromium and
7	nickel. Results of a third follow-up: 1989-1995. J Occup Environ Med 41: 294-303.
8	<u>http://dx.doi.org/10.1097/00043764-199904000-00012</u>
9	Becker, N; Changclaude, J; Frentzelbeyme, R. (1991). Risk of cancer for arc welders in the Federal
10	Republic of Germany: results of a second follow up (1983-8). Br J Ind Med 48: 675-683.
11	http://dx.doi.org/10.1136/oem.48.10.675
12	Becker, N; Claude, J; Frentzel-Beyme, R. (1985). Cancer risk of arc welders exposed to fumes
13	containing chromium and nickel. Scand J Work Environ Health 11: 75-82.
14	Behari, J: Chandra, SV; Tandon, SK. (1978). Comparative toxicity of trivalent and hexavalent
15	chromium to rabbits III Biochemical and histological changes in testicular tissue. Biomed
16	Biochim Acta 37: 463-468.
17	Bennink, RJ; de Jonge, WJ; Symonds, EL; van den Wijngaard, RM; Spijkerboer, AL; Benninga, MA;
18	Boeckxstaens, GE. (2003). Validation of gastric-emptying scintigraphy of solids and liquids
19	in mice using dedicated animal pinhole scintigraphy. J Nucl Med 44: 1099-1104.
20	<u>Benova, D; Hadjidekova, V; Hristova, R; Nikolova, T; Boulanova, M; Georgieva, I; Grigorova, M;</u>
21	Popov, T; Panev, T; Georgieva, R; Natarajan, AT; Darroudi, F; Nilsson, R. (2002). Cytogenetic
22	effects of hexavalent chromium in Bulgarian chromium platers. Mutat Res 514: 29-38.
23	Berndt, WO. (1976). Renal chromium accumulation and its relationship to chromium-induced
24	nephrotoxicity. J Toxicol Environ Health 1: 449-459.
25	http://dx.doi.org/10.1080/15287397609529344
26	Bertazzi, PA; Zocchetti, C. (1980). A mortality study of newspaper printing workers. Am J Ind Med 1: 85-97.
27	
28	Bortram I: Brand D: Schottgon T: Long K: Durrio E: Roisgon II: Kraus T (2014) Human
28 20	Bertram, J; Brand, P; Schettgen, T; Lenz, K; Purrio, E; Reisgen, U; Kraus, T. (2014). Human Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal
29	Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal
29 30	Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480.
29 30 31	Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104
29 30 31 32	Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. <u>http://dx.doi.org/10.1093/annhyg/meu104</u> <u>Bethwaite, PB; Pearce, N; Fraser, J.</u> (1990). Cancer risks in painters: study based on the New
29 30 31 32 33	 Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. <u>http://dx.doi.org/10.1093/annhyg/meu104</u> Bethwaite, PB: Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746.
29 30 31 32 33 34	Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. <u>http://dx.doi.org/10.1093/annhyg/meu104</u> Bethwaite, PB; Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. <u>http://dx.doi.org/10.1136/oem.47.11.742</u>
29 30 31 32 33 34 35	Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. <u>http://dx.doi.org/10.1093/annhyg/meu104</u> Bethwaite, PB; Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. <u>http://dx.doi.org/10.1136/oem.47.11.742</u> Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated
29 30 31 32 33 34 35 36	Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104 Bethwaite, PB; Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. http://dx.doi.org/10.1136/oem.47.11.742 Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based
29 30 31 32 33 34 35 36 37	 Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104 Bethwaite, PB; Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. http://dx.doi.org/10.1136/oem.47.11.742 Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based case-control studies in Montreal. Am J Ind Med 53: 476-485.
29 30 31 32 33 34 35 36	Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104 Bethwaite, PB; Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. http://dx.doi.org/10.1136/oem.47.11.742 Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based
29 30 31 32 33 34 35 36 37 38	Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104 Bethwaite, PB; Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. http://dx.doi.org/10.1136/oem.47.11.742 Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based case-control studies in Montreal. Am J Ind Med 53: 476-485. http://dx.doi.org/10.1002/ajim.20801
29 30 31 32 33 34 35 36 37 38 39	 Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104 Bethwaite, PB; Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. http://dx.doi.org/10.1136/oem.47.11.742 Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based case-control studies in Montreal. Am J Ind Med 53: 476-485. http://dx.doi.org/10.1002/ajim.20801 Beyersmann, D; Koster, A; Buttner, B; Flessel, P. (1984). Model reactions of chromium compounds
29 30 31 32 33 34 35 36 37 38 39 40	 Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104 Bethwaite, PB; Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. http://dx.doi.org/10.1136/oem.47.11.742 Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based case-control studies in Montreal. Am J Ind Med 53: 476-485. http://dx.doi.org/10.1002/ajim.20801 Beyersmann, D; Koster, A; Buttner, B; Flessel, P. (1984). Model reactions of chromium compounds with mammalian and bacterial cells. Toxicol Environ Chem 8: 279-286. http://dx.doi.org/10.1080/02772248409357059 Bidstrup, PL. (1951). Carcinoma of the lung in chromate workers. Occup Environ Med 8: 302-305.
29 30 31 32 33 34 35 36 37 38 39 40 41	Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104 Bethwaite, PB; Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. http://dx.doi.org/10.1136/oem.47.11.742 Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based case-control studies in Montreal. Am J Ind Med 53: 476-485. http://dx.doi.org/10.1002/ajim.20801 Beyersmann, D; Koster, A; Buttner, B; Flessel, P. (1984). Model reactions of chromium compounds with mammalian and bacterial cells. Toxicol Environ Chem 8: 279-286. http://dx.doi.org/10.1080/02772248409357059
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104 Bethwaite, PB: Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. http://dx.doi.org/10.1136/oem.47.11.742 Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based case-control studies in Montreal. Am J Ind Med 53: 476-485. http://dx.doi.org/10.1002/ajim.20801 Beyersmann, D; Koster, A; Buttner, B; Flessel, P. (1984). Model reactions of chromium compounds with mammalian and bacterial cells. Toxicol Environ Chem 8: 279-286. http://dx.doi.org/10.1080/02772248409357059 Bidstrup, PL, (1951). Carcinoma of the lung in chromate workers. Occup Environ Med 8: 302-305. Bidstrup, PL; Case, RAM, (1956). Carcinoma of the lung in workmen in the bichromates-producing industry in Great Britain. Occup Environ Med 13: 260-264.
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	 Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104 Bethwaite, PB; Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. http://dx.doi.org/10.1136/oem.47.11.742 Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based case-control studies in Montreal. Am J Ind Med 53: 476-485. http://dx.doi.org/10.1002/ajim.20801 Beyersmann, D; Koster, A; Buttner, B; Flessel, P. (1984). Model reactions of chromium compounds with mammalian and bacterial cells. Toxicol Environ Chem 8: 279-286. http://dx.doi.org/10.1080/02772248409357059 Bidstrup, PL, (1951). Carcinoma of the lung in chromate workers. Occup Environ Med 8: 302-305. Bidstrup, PL; Case, RAM. (1956). Carcinoma of the lung in workmen in the bichromates-producing industry in Great Britain. Occup Environ Med 13: 260-264. Birk, T; Mundt, KA; Dell, LD; Luippold, RS; Miksche, L; Steinmann-Steiner-Haldenstaett, W; Mundt,
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	 Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104 Bethwaite, PB; Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. http://dx.doi.org/10.1136/oem.47.11.742 Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based case-control studies in Montreal. Am J Ind Med 53: 476-485. http://dx.doi.org/10.1002/ajim.20801 Beyersmann, D; Koster, A; Buttner, B; Flessel, P. (1984). Model reactions of chromium compounds with mammalian and bacterial cells. Toxicol Environ Chem 8: 279-286. http://dx.doi.org/10.1080/02772248409357059 Bidstrup, PL, (1951). Carcinoma of the lung in chromate workers. Occup Environ Med 8: 302-305. Bidstrup, PL; Case, RAM. (1956). Carcinoma of the lung in workmen in the bichromates-producing industry in Great Britain. Occup Environ Med 13: 260-264. Birk, T; Mundt, KA; Dell, LD; Luippold, RS; Miksche, L; Steinmann-Steiner-Haldenstaett, W; Mundt, DJ. (2006). Lung cancer mortality in the German chromate industry, 1958 to 1998. J Occup
29 30 31 32 33 34 35 36 37 38 30 41 42 43 44 45 46 47	 Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104 Bethwaite, PB: Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. http://dx.doi.org/10.1136/oem.47.11.742 Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based case-control studies in Montreal. Am J Ind Med 53: 476-485. http://dx.doi.org/10.1002/ajim.20801 Beyersmann, D; Koster, A; Buttner, B; Flessel, P. (1984). Model reactions of chromium compounds with mammalian and bacterial cells. Toxicol Environ Chem 8: 279-286. http://dx.doi.org/10.1080/02772248409357059 Bidstrup, PL, (1951). Carcinoma of the lung in chromate workers. Occup Environ Med 8: 302-305. Bidstrup, PL; Case, RAM. (1956). Carcinoma of the lung in workmen in the bichromates-producing industry in Great Britain. Occup Environ Med 13: 260-264. Birk, T; Mundt, KA; Dell, LD; Luippold, RS; Miksche, L; Steinmann-Steiner-Haldenstaett, W; Mundt, DJ. (2006). Lung cancer mortality in the German chromate industry, 1958 to 1998. J Occup Environ Med 48: 426-433. http://dx.doi.org/10.1097/01.jom.0000194159.88688.f8
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	 Biomonitoring of Chromium and Nickel from an Experimental Exposure to Manual Metal Arc Welding Fumes of Low and High Alloyed Steel. Ann Occup Hyg 59: 467-480. http://dx.doi.org/10.1093/annhyg/meu104 Bethwaite, PB; Pearce, N; Fraser, J. (1990). Cancer risks in painters: study based on the New Zealand Cancer Registry. Br J Ind Med 47: 742-746. http://dx.doi.org/10.1136/oem.47.11.742 Beveridge, R; Pintos, J; Parent, ME; Asselin, J; Siemiatycki, J. (2010). Lung cancer risk associated with occupational exposure to nickel, chromium VI, and cadmium in two population-based case-control studies in Montreal. Am J Ind Med 53: 476-485. http://dx.doi.org/10.1002/ajim.20801 Beyersmann, D; Koster, A; Buttner, B; Flessel, P. (1984). Model reactions of chromium compounds with mammalian and bacterial cells. Toxicol Environ Chem 8: 279-286. http://dx.doi.org/10.1080/02772248409357059 Bidstrup, PL, (1951). Carcinoma of the lung in chromate workers. Occup Environ Med 8: 302-305. Bidstrup, PL; Case, RAM. (1956). Carcinoma of the lung in workmen in the bichromates-producing industry in Great Britain. Occup Environ Med 13: 260-264. Birk, T; Mundt, KA; Dell, LD; Luippold, RS; Miksche, L; Steinmann-Steiner-Haldenstaett, W; Mundt, DJ. (2006). Lung cancer mortality in the German chromate industry, 1958 to 1998. J Occup

1	chromium in house dust and urinary chromium in children. J Expo Sci Environ Epidemiol
2	25: 616-622. http://dx.doi.org/10.1038/jes.2015.50
3 4	Blair, A. (1980). Mortality among workers in the metal polishing and plating industry, 1951-1969. J Occup Med 22: 158-162.
5	Blasiak, J; Kowalik, J. (2000). A comparison of the in vitro genotoxicity of tri- and hexavalent
6	chromium. Mutat Res 469: 135-145.
7	Błasiak, J; Trzeciak, A; Małecka-Panas, E; Drzewoski, J; Iwanienko, T; Szumiel, I; Wojewódzka, M.
8	(1999). DNA damage and repair in human lymphocytes and gastric mucosa cells exposed to
9	chromium and curcumin. Teratog Carcinog Mutagen 19: 19-31.
10	http://dx.doi.org/10.1002/(SICI)1520-6866(1999)19:1<19::AID-TCM3>3.0.CO;2-H
11	Bloomfield, JJ: Blum, W. (1928). Health hazards in chromium plating. Public Health Rep 43: 527-
12	528. <u>http://dx.doi.org/10.2307/4578958</u>
13	<u>Blot, WJ; Fryzek, JP; Henderson, BE; Sadler, CJ; Mclaughlin, JK.</u> (2000). A cohort mortality study
14	among gas generator utility workers. J Occup Environ Med 42: 194-199.
15	<u>Boffetta, P; Autier, P; Boniol, M; Boyle, P; Hill, C; Aurengo, A; Masse, R; Thé, G; Valleron, AJ; Monier,</u>
16	R; Tubiana, M. (2010). An estimate of cancers attributable to occupational exposures in
17	France. J Occup Environ Med 52: 399-406.
18	<u>http://dx.doi.org/10.1097/JOM.0b013e3181d5e355</u>
19	<u>Boice, JD, Jr; Marano, D; Fryzek, J; Sadler, C; Mclaughlin, JK.</u> (1999). Mortality among aircraft
20	manufacturing workers. Occup Environ Med 56: 581-597.
21	<u>http://dx.doi.org/10.1136/oem.56.9.581</u>
22	Borella, P; Bargellini, A. (1993). Effects of trace elements on immune system: results in cultured
23	human lymphocytes. J Trace Elem Med Biol 7: 231-233.
24	Borges, KM: Boswell, JS: Liebross, RH: Wetterhahn, KE. (1991). Activation of chromium(VI) by thiols
25	results in chromium(V) formation, chromium binding to DNA and altered DNA
26	conformation. Carcinogenesis 12: 551-561. <u>http://dx.doi.org/10.1093/carcin/12.4.551</u>
27	Borges, KM; Wetterhahn, KE. (1989). Chromium cross-links glutathione and cysteine to DNA.
28	Carcinogenesis 10: 2165-2168. <u>http://dx.doi.org/10.1093/carcin/10.11.2165</u>
29	Borthiry, GR; Antholine, WE; Kalyanaraman, B; Myers, JM; Myers, CR. (2007). Reduction of
30 21	hexavalent chromium by human cytochrome b5: generation of hydroxyl radical and superoxide. Free Radic Biol Med 42: 738-755; discussion 735-737.
31 22	1 ,
32 33	<u>http://dx.doi.org/10.1016/j.freeradbiomed.2006.10.055</u> Borthiry, GR; Antholine, WE; Myers, JM; Myers, CR. (2008). Reductive activation of hexavalent
33 34	chromium by human lung epithelial cells: Generation of Cr(V) and Cr(V)-thiol species. J
34 35	Inorg Biochem 102: 1449-1462. <u>http://dx.doi.org/10.1016/j.jinorgbio.2007.12.030</u>
36	Botta, A: Occhipinti, P: Bartfai, E: Orsiere, T. (1996). Genotoxic effects of potassium dichromate in
37	cultural human lymphocytes. Med Sci Res 24: 797-799.
38	Bouchardy, C; Schüler, G; Minder, C; Hotz, P; Bousquet, A; Levi, F; Fisch, T; Torhorst, J; Raymond, L.
39	(2002). Cancer risk by occupation and socioeconomic group among menA study by the
40	Association of Swiss Cancer Registries. Scand J Work Environ Health 28: 1-88.
41	Bourdon-Lacombe, JA; Moffat, ID; Deveau, M; Husain, M; Auerbach, S; Krewski, D; Thomas, RS;
42	Bushel, PR; Williams, A; Yauk, CL. (2015). Technical guide for applications of gene
43	expression profiling in human health risk assessment of environmental chemicals. Regul
44	Toxicol Pharmacol 72: 292-309. <u>http://dx.doi.org/10.1016/j.vrtph.2015.04.010</u>
45	Bragt, PC; van Dura, EA. (1983). Toxicokinetics of hexavalent chromium in the rat after
46	intratracheal administration of chromates of different solubilities. Ann Occup Hyg 27: 315-
47	322. <u>http://dx.doi.org/10.1093/annhyg/27.3.315</u>
48	Branca, M; Dessi, A; Kozlowski, H; Micera, G; Serra, MV. (1989). In vitro interaction of mutagenic
49	chromium (VI) with red blood cells. FEBS Lett 257: 52-54.

1	Braver, ER: Infante, P; Chu, K. (1985). An analysis of lung cancer risk from exposure to hexavalent
2	chromium. Birth Defects Res B Dev Reprod Toxicol 5: 365-378.
3	Bravo, I; Carvalho, GS; Barbosa, MA; de Sousa, M. (1990). Differential effects of eight metal ions on
4	lymphocyte differentiation antigens in vitro. J Biomed Mater Res 24: 1059-1068.
5	http://dx.doi.org/10.1002/jbm.820240808
6	Brazma, A; Hingamp, P; Quackenbush, J; Sherlock, G; Spellman, P; Stoeckert, C; Aach, J; Ansorge, W;
7	Ball, CA; Causton, HC; Gaasterland, T; Glenisson, P; Holstege, FC; Kim, IF; Markowitz, V;
8	Matese, JC; Parkinson, H; Robinson, A; Sarkans, U; Schulze-Kremer, S; Stewart, J; Taylor, R;
9	<u>Vilo, J; Vingron, M.</u> (2001). Minimum information about a microarray experiment (MIAME)-
10	toward standards for microarray data. Nat Genet 29: 365-371.
11	http://dx.doi.org/10.1038/ng1201-365
12	Bridgewater, LC; Manning, FC; Patierno, SR. (1994). Base-specific arrest of in vitro DNA replication
13	by carcinogenic chromium: relationship to DNA interstrand crosslinking. Carcinogenesis 15:
14 15	2421-2427. http://dx.doi.org/10.1093/carcin/15.11.2421
	Brown, LM; Moradi, T; Gridley, G; Plato, N; Dosemeci, M; Fraumeni, JF. (2002). Exposures in the
16 17	painting trades and paint manufacturing industry and risk of cancer among men and women in Sweden. J Occup Environ Med 44: 258-264.
18	http://dx.doi.org/10.1097/00043764-200203000-00013
19	Brown, RP; Delp, MD; Lindstedt, SL; Rhomberg, LR; Beliles, RP. (1997). Physiological parameter
20	values for physiologically based pharmacokinetic models. Toxicol Ind Health 13: 407-484.
20	http://dx.doi.org/10.1177/074823379701300401
22	Brown, S; Lockart, MM; Thomas, CS; Bowman, MK; Woski, SA; Vincent, JB. (2020). Molecular
23	Structure of Binary Chromium(III)-DNA Adducts. Chembiochem 21: 628-631.
24	http://dx.doi.org/10.1002/cbic.201900436
25	Brown, SC; Schonbeck, MF; Mcclure, D; Barón, AE; Navidi, WC; Byers, T; Ruttenber, AJ. (2004). Lung
26	cancer and internal lung doses among plutonium workers at the Rocky Flats Plant: a case-
27	control study. Am J Epidemiol 160: 163-172. <u>http://dx.doi.org/10.1093/aje/kwh192</u>
28	Browning, CL; Qin, Q; Kelly, DF; Prakash, R; Vanoli, F; Jasin, M; Wise, JP. (2016). Prolonged
29	Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair
30	in Human Lung Cells. Toxicol Sci 153: 70-78. <u>http://dx.doi.org/10.1093/toxsci/kfw103</u>
31	Browning, CL; Wise, IP. (2017). Prolonged exposure to particulate chromate inhibits RAD51 nuclear
32	import mediator proteins. Toxicol Appl Pharmacol 331: 101-107.
33	http://dx.doi.org/10.1016/j.taap.2017.05.030
34	Browning, J: Gannon, BJ: O'Brien, P. (1983). The microvasculature and gastric luminal pH of the
35	forestomach of the rat: A comparison with the glandular stomach. Int J Microcirc Clin Exp 2:
36	109-118.
37	Brownson, RC; Zahm, SH; Chang, JC; Blair, A. (1989). Occupational risk of colon cancer. An analysis
38	by anatomic subsite. Am J Epidemiol 130: 675-687.
39	http://dx.doi.org/10.1093/oxfordjournals.aje.a115389
40	Bruno, M; Ross, J; Ge, Y. (2016). Proteomic responses of BEAS-2B cells to nontoxic and toxic
41	chromium: Protein indicators of cytotoxicity conversion. Toxicol Lett 264: 59-70.
42	<u>http://dx.doi.org/10.1016/j.toxlet.2016.08.025</u>
43	Bryson, WG; Goodall, CM. (1983). Differential toxicity and clearance kinetics of chromium(III) or
44	(VI) in mice. Carcinogenesis 4: 1535-1539.
45	Bulbulyan, MA; Ilychova, SA; Zahm, SH; Astashevsky, SV; Zaridze, DG. (1999). Cancer mortality
46	among women in the Russian printing industry. Am J Ind Med 36: 166-171.
47	Bulikowski, W; Pietrzak, I; Borzecki, A; Lingas, W. (1999). Investigations on magnesium and
48	chromium antagonism in the skin of experimental animals. Magnes Res 12: 115-121.
49 50	Buttner, B; Beyersmann, D. (1985). Modification of the erythrocyte anion carrier by chromate.
50	Xenobiotica 15: 735-741. <u>http://dx.doi.org/10.3109/00498258509047435</u>

1	Buttner, B; Hebeler, M; Beyersmann, D. (1988). Chromate effects on human erythrocytes
2	investigations on sulphydryl groups, cross-linking of membrane proteins and
3	electromechanical properties in the coulter-counter. Sci Total Environ 71: 555-560.
4	http://dx.doi.org/10.1016/0048-9697(88)90236-7
5	<u>CA State Water Board</u> (California State Water Quality Control Board). (2017). Frequently asked
6	questions about hexavalent chromium in public water systems [Fact Sheet]. Sacramento,
7	CA.
8	<u>Caglieri, A; Goldoni, M; Acampa, O; Andreoli, R; Vettori, MV; Corradi, M; Apostoli, P; Mutti, A.</u> (2006).
9 10	The effect of inhaled chromium on different exhaled breath condensate biomarkers among chrome-plating workers. Environ Health Perspect 114: 542-546.
10	
12	http://dx.doi.org/10.1289/ehp.8506
13	<u>Caglieri, A; Goldoni, M; De Palma, G; Mozzoni, P; Gemma, S; Vichi, S; Testai, E; Panico, F; Corradi, M;</u> <u>Tagliaferri, S; Costa, LG.</u> (2008). Exposure to low levels of hexavalent chromium: target
14	doses and comparative effects on two human pulmonary cell lines. Acta Biomed 79 Suppl 1:
14	104-115.
16	<u>CalEPA</u> (California Environmental Protection Agency). (2003). Ambient air monitoring for
17	hexavalent chromium and metals in Barrio Logan: May 2001 through May 2002. (Report:
18	2003-10-14). Sacramento, CA.
19	<u>CalEPA</u> (California Environmental Protection Agency). (2004). Barrio Logan report: A compilation
20	of air quality studies in Barrio Logan. November 2004. (Report: 2005-11-00). Sacramento,
21	CA.
22	<u>CalEPA</u> (California Environmental Protection Agency). (2008). TSD for noncancer RELs - Appendix
23	D.3 Chronic RELs and toxicity summaries using the previous version of the Hot Spots Risk
24	Assessment guidelines (OEHHA 1999). Sacramento, CA: California Office of Environmental
25	Health Hazard Assessment :: OEHHA.
25 26	
25 26 27	http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf <u>CalEPA</u> (California Environmental Protection Agency). (2011). Public health goal for Hexavalent
26	http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf
26 27	http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf <u>CalEPA</u> (California Environmental Protection Agency). (2011). Public health goal for Hexavalent
26 27 28	http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental
26 27 28 29 30 31	http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment.
26 27 28 29 30 31 32	http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M; Lamberti, M; Masella, L; Galletti, P; De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro.
26 27 28 29 30 31 32 33	http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. <u>http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf</u> Cammarota, M; Lamberti, M; Masella, L; Galletti, P; De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. <u>http://dx.doi.org/10.1016/j.tiv.2006.02.004</u>
26 27 28 29 30 31 32 33 34	http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. <u>http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf</u> Cammarota, M; Lamberti, M; Masella, L; Galletti, P; De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. <u>http://dx.doi.org/10.1016/j.tiv.2006.02.004</u> Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin
26 27 28 29 30 31 32 33 34 35	http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M; Lamberti, M; Masella, L; Galletti, P; De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere
26 27 28 29 30 31 32 33 34 35 36	http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M; Lamberti, M; Masella, L; Galletti, P; De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137
26 27 28 29 30 31 32 33 34 35 36 37	 http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M; Lamberti, M; Masella, L; Galletti, P; De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137 Capellmann, M; Bolt, HM. (1992). Chromium (VI) reducing capacity of ascorbic acid and of human
26 27 28 29 30 31 32 33 34 35 36 37 38	 http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M; Lamberti, M; Masella, L; Galletti, P: De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137 Capellmann, M; Bolt, HM. (1992). Chromium (VI) reducing capacity of ascorbic acid and of human plasma in vitro. Arch Toxicol 66: 45-50. http://dx.doi.org/10.1007/BF02307269
26 27 28 29 30 31 32 33 34 35 36 37 38 39	 http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M; Lamberti, M; Masella, L; Galletti, P; De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137 Capellmann, M; Bolt, HM. (1992). Chromium (VI) reducing capacity of ascorbic acid and of human plasma in vitro. Arch Toxicol 66: 45-50. http://dx.doi.org/10.1007/BF02307269 CARB (California Air Resources Board). (2006). Proposed amendments to the hexavalent chromium
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	 http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M; Lamberti, M; Masella, L; Galletti, P: De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137 Capellmann, M: Bolt, HM. (1992). Chromium (VI) reducing capacity of ascorbic acid and of human plasma in vitro. Arch Toxicol 66: 45-50. http://dx.doi.org/10.1007/BF02307269 CARB (California Air Resources Board). (2006). Proposed amendments to the hexavalent chromium airborne toxic control measure for chrome plating and chromic acid anodizing operations.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	 http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M; Lamberti, M; Masella, L; Galletti, P; De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137 Capellmann, M; Bolt, HM. (1992). Chromium (VI) reducing capacity of ascorbic acid and of human plasma in vitro. Arch Toxicol 66: 45-50. http://dx.doi.org/10.1007/BF02307269 CARB (California Air Resources Board). (2006). Proposed amendments to the hexavalent chromium airborne toxic control measure for chrome plating and chromic acid anodizing operations. Sacramento, CA: California Environmental Protection Agency.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	 http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M: Lamberti, M: Masella, L: Galletti, P: De Rosa, M: Sannolo, N: Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X: Wang, S: Bi, R: Tian, S: Huo, Y: Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137 Capellmann, M: Bolt, HM. (1992). Chromium (VI) reducing capacity of ascorbic acid and of human plasma in vitro. Arch Toxicol 66: 45-50. http://dx.doi.org/10.1007/BF02307269 CARB (California Air Resources Board). (2006). Proposed amendments to the hexavalent chromium airborne toxic control measure for chrome plating and chromic acid anodizing operations. Sacramento, CA: California Environmental Protection Agency. Carette, D: Perrard, MH: Prisant, N; Gilleron, J: Pointis, G; Segretain, D; Durand, P. (2013).
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	 http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota. M; Lamberti, M; Masella, L; Galletti, P: De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137 Capellmann, M; Bolt, HM. (1992). Chromium (VI) reducing capacity of ascorbic acid and of human plasma in vitro. Arch Toxicol 66: 45-50. http://dx.doi.org/10.1007/BF02307269 CARB (California Air Resources Board). (2006). Proposed amendments to the hexavalent chromium airborne toxic control measure for chrome plating and chromic acid anodizing operations. Sacramento, CA: California Environmental Protection Agency. Carette, D: Perrard, MH; Prisant, N; Gilleron, J; Pointis, G; Segretain, D; Durand, P. (2013). Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M; Lamberti, M; Masella, L; Galletti, P; De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137 Capellmann, M; Bolt, HM. (1992). Chromium (VI) reducing capacity of ascorbic acid and of human plasma in vitro. Arch Toxicol 66: 45-50. http://dx.doi.org/10.1007/BF02307269 CARB (California Air Resources Board). (2006). Proposed amendments to the hexavalent chromium airborne toxic control measure for chrome plating and chromic acid anodizing operations. Sacramento, CA: California Environmental Protection Agency. Carette, D; Perrard, MH; Prisant, N; Gilleron, J; Pointis, G; Segretain, D; Durand, P. (2013). Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	 http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M: Lamberti, M: Masella, L; Galletti, P: De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X: Wang, S: Bi, R: Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137 Capellmann, M: Bolt, HM. (1992). Chromium (VI) reducing capacity of ascorbic acid and of human plasma in vitro. Arch Toxicol 66: 45-50. http://dx.doi.org/10.1007/BF02307269 CARB (California Air Resources Board). (2006). Proposed amendments to the hexavalent chromium airborne toxic control measure for chrome plating and chromic acid anodizing operations. Sacramento, CA: California Environmental Protection Agency. Carette, D; Perrard, MH; Prisant, N; Gilleron, J; Pointis, G; Segretain, D; Durand, P. (2013). Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model. Toxicol Appl Pharmacol 268: 27-36. http://dx.doi.org/10.1016/j.taap.2013.01.016
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	 http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M; Lamberti, M; Masella, L; Galletti, P; De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137 Capellmann, M: Bolt, HM. (1992). Chromium (VI) reducing capacity of ascorbic acid and of human plasma in vitro. Arch Toxicol 66: 45-50. http://dx.doi.org/10.1007/BF02307269 CARB (California Air Resources Board). (2006). Proposed amendments to the hexavalent chromium airborne toxic control measure for chrome plating and chromic acid anodizing operations. Sacramento, CA: California Environmental Protection Agency. Carette, D; Perrard, MH; Prisant, N; Gilleron, J; Pointis, G; Segretain, D; Durand, P. (2013). Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model. Toxicol Appl Pharmacol 268: 27-36. http://dx.doi.org/10.1016/j.taap.2013.01.016 Carlisle, DL; Pritchard, DE; Singh, J; Owens, BM; Blankenship, LJ; Orenstein, JM; Patierno, SR.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	 http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M; Lamberti, M; Masella, L; Galletti, P; De Rosa, M; Sannolo, N; Giuliano, M, (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137 Capellmann, M: Bolt, HM. (1992). Chromium (VI) reducing capacity of ascorbic acid and of human plasma in vitro. Arch Toxicol 66: 45-50. http://dx.doi.org/10.1007/BF02307269 CARB (California Air Resources Board). (2006). Proposed amendments to the hexavalent chromium airborne toxic control measure for chrome plating and chromic acid anodizing operations. Sacramento, CA: California Environmental Protection Agency. Carette, D; Perrard, MH; Prisant, N; Gilleron, J; Pointis, G; Segretain, D; Durand, P. (2013). Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model. Toxicol Appl Pharmacol 268: 27-36. http://dx.doi.org/10.1016/j.taap.2013.01.016 Carlisle, DL; Pritchard, DE; Singh, J; Owens, BM; Blankenship, LJ; Orenstein, JM; Patierno, SR. (2000a). Apoptosis and P53 induction in human lung fibroblasts exposed to chromium (VI):
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	 http://oehha.ca.gov/media/downloads/crnr/appendixd3final.pdf CalEPA (California Environmental Protection Agency). (2011). Public health goal for Hexavalent Chromium (Cr VI) in drinking water. Sacramento, CA: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment. http://oehha.ca.gov/media/downloads/water/public-health-goal/cr6phg072911.pdf Cammarota, M; Lamberti, M; Masella, L; Galletti, P; De Rosa, M; Sannolo, N; Giuliano, M. (2006). Matrix metalloproteinases and their inhibitors as biomarkers for metal toxicity in vitro. Toxicol In Vitro 20: 1125-1132. http://dx.doi.org/10.1016/j.tiv.2006.02.004 Cao, X; Wang, S; Bi, R; Tian, S; Huo, Y; Liu, J. (2019). Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 222: 355-363. http://dx.doi.org/10.1016/j.chemosphere.2019.01.137 Capellmann, M: Bolt, HM. (1992). Chromium (VI) reducing capacity of ascorbic acid and of human plasma in vitro. Arch Toxicol 66: 45-50. http://dx.doi.org/10.1007/BF02307269 CARB (California Air Resources Board). (2006). Proposed amendments to the hexavalent chromium airborne toxic control measure for chrome plating and chromic acid anodizing operations. Sacramento, CA: California Environmental Protection Agency. Carette, D; Perrard, MH; Prisant, N; Gilleron, J; Pointis, G; Segretain, D; Durand, P. (2013). Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model. Toxicol Appl Pharmacol 268: 27-36. http://dx.doi.org/10.1016/j.taap.2013.01.016 Carlisle, DL; Pritchard, DE; Singh, J; Owens, BM; Blankenship, LJ; Orenstein, JM; Patierno, SR.

1	Carlisle, DL; Pritchard, DE; Singh, J; Patierno, SR. (2000b). Chromium(VI) induces p53-dependent
2	apoptosis in diploid human lung and mouse dermal fibroblasts. Mol Carcinog 28: 111-118.
3	http://dx.doi.org/10.1002/1098-2744(200006)28:2<111::AID-MC7>3.0.CO;2-Y
4	Casadevall, M; da Cruz Fresco, P; Kortenkamp, A. (1999). Chromium(VI)-mediated DNA damage:
5	oxidative pathways resulting in the formation of DNA breaks and abasic sites. Chem Biol
6	Interact 123: 117-132.
7	Casadevall, M; Kortenkamp, A. (1995). The formation of both apurinic/apyrimidinic sites and
8	single-strand breaks by chromate and glutathione arises from attack by the same single
9	reactive species and is dependent on molecular oxygen. Carcinogenesis 16: 805-809.
10	http://dx.doi.org/10.1093/carcin/16.4.805
11	<u>Castorina, A; Tiralongo, A; Cavallo, D; Loreto, C; Carnazza, ML; Iavicoli, S; D'Agata, V.</u> (2008).
12	Expression profile of ErbB receptor's family in human alveolar type 2-like cell line A549
13	exposed to hexavalent chromium. Toxicol In Vitro 22: 541-547.
14	http://dx.doi.org/10.1016/j.tiv.2007.10.003
15	Cavalleri, A; Minoia, C; Richelmi, P; Baldi, C; Micoli, G. (1985). Determination of total and hexavalent
16	chromium in bile after intravenous administration of potassium dichromate in rats. Environ
17	Res 37: 490-496. <u>http://dx.doi.org/10.1016/0013-9351(85)90130-6</u>
18	<u>Cavallo, D; Ursini, CL; Fresegna, AM; Ciervo, A; Maiello, R; Rondinone, B; D'Agata, V; Iavicoli, S.</u>
19	(2010). Direct-oxidative DNA damage and apoptosis induction in different human
20	respiratory cells exposed to low concentrations of sodium chromate. J Appl Toxicol 30: 218-
21	225. <u>http://dx.doi.org/10.1002/jat.1487</u>
22	<u>CDHS</u> (California Department of Health Services). (1985). Health Assessment for Chromium.
23	Berkeley and Sacramento, CA: California Department of Health Services (later OEHHA,
24	California Environmental Protection Agency).
25	<u>CDPH</u> (California Department of Public Health). (2013). Notice of proposed rulemaking: Title 22,
26	California Code of Regulations subject: Hexavalent chromium mcl (DPH-11-005). Available
27	online
28	<u>Ceballos, D; West, C; Methner, M; Gong, W.</u> (2017). Health hazard evaluation report: HHE-2013-
29 30	0011-3278, May 2017. Evaluation of chromium, hexavalent chromium, cadmium, and
30 31	isocyanate exposures in an African refinishing plant. (HHE-2013-0011-3278). National Institute for Occupational Safety and Health.
32	https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB2017102698.xhtml
33	<u>Ceballos, D; West, C; Methner, M; Gong, W.</u> (2019). Hexavalent Chromium Exposure and Nasal
34	Tissue Effects at a Commercial Aircraft Refinishing Facility. J Occup Environ Med 61: e69-
35	e73. http://dx.doi.org/10.1097/JOM.00000000001510
36	<u>Cena, LG; Chisholm, WP; Keane, MI; Chen, BT.</u> (2015). A Field Study on the Respiratory Deposition
37	of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals. J Occup
38	Environ Hyg 12: 721-728. <u>http://dx.doi.org/10.1080/15459624.2015.1043055</u>
39	<u>Cerveira, JF; Sánchez-Aragó, M; Urbano, AM; Cuezva, JM.</u> (2014). Short-term exposure of
40	nontumorigenic human bronchial epithelial cells to carcinogenic chromium(VI)
41	compromises their respiratory capacity and alters their bioenergetic signature. 4: 594-601.
42	http://dx.doi.org/10.1016/j.fob.2014.06.006
43	Ceryak, S; Zingariello, C; O'Brien, T; Patierno, S. R. (2004). Induction of pro-apoptotic and cell cycle-
44	inhibiting genes in chromium (VI)-treated human lung fibroblasts: Lack of effect of ERK. Mol
45	Cell Biochem 255: 139-149. http://dx.doi.org/10.1023/B:MCBI.0000007270.82431.3e
46	Chang, FH; Wang, SL; Huang, YL; Tsai, MH; Yu, ST; Chang, LW. (2006). Biomonitoring of chromium
47	for residents of areas with a high density of electroplating factories. J Expo Sci Environ
48	Epidemiol 16: 138-146. <u>http://dx.doi.org/10.1038/sj.jea.7500445</u>
49	Chappell, GA; Rager, JE; Wolf, J; Babic, M; Leblanc, KJ; Ring, CL; Harris, MA; Thompson, CM. (2019).
50	Comparison of Gene Expression Responses in the Small Intestine of Mice Following

1 2	Exposure to 3 Carcinogens Using the S1500+ Gene Set Informs a Potential Common Adverse Outcome Pathway. Toxicol Pathol 47: 192623319873882.
2 3	http://dx.doi.org/10.1177/0192623319873882
4	<u>Chatham-Stephens, K; Caravanos, J; Ericson, B; Sunga-Amparo, J; Susilorini, B; Sharma, P; Landrigan,</u>
5	<u>PI; Fuller, R.</u> (2013). Burden of disease from toxic waste sites in India, indonesia, and the
6	Philippines in 2010. Environ Health Perspect 121: 791-796.
7	http://dx.doi.org/10.1289/ehp.1206127
8	<u>Chen, F; Bower, J; Leonard, SS; Ding, M; Lu, Y; Rojanasakul, Y; Kung, HF; Vallyathan, V; Castranova,</u>
9	V: Shi, X. (2002). Protective roles of NF-kappa B for chromium(VI)-induced cytotoxicity is
10	revealed by expression of Ikappa B kinase-beta mutant. J Biol Chem 277: 3342-3349.
11	http://dx.doi.org/10.1074/jbc.M101089200
12	Chen, F; Ye, J; Zhang, X; Rojanasakul, Y; Shi, X. (1997). One-electron reduction of chromium(VI) by
13	alpha-lipoic acid and related hydroxyl radical generation, dG hydroxylation and nuclear
14	transcription factor-kappaB activation. Arch Biochem Biophys 338: 165-172.
15	http://dx.doi.org/10.1006/abbi.1996.9849
16 17	<u>Chen, J: Thilly, WG.</u> (1994a). Mutational spectrum of chromium(VI) in human cells. Mutat Res 323: 21-27. <u>http://dx.doi.org/10.1016/0165-7992(94)90040-X</u>
18	<u>Chen, J: Thilly, WG.</u> (1994b). Use of Denaturing-Gradient Gel Electrophoresis to Study Chromium-
19	Induced Point Mutations in Human Cells. Environ Health Perspect 102: 227-229.
20	http://dx.doi.org/10.1289/ehp.94102s3227
21	Chen, ZH; Luo, NY; Ren, XH; Wang, SQ; Huang, C; Liu, YG; Liu, JJ. (2019). [Analysis of the potential
22	role of SET in chromium-induced malignant transformation cells based on quantitative
23	proteomics]. Zhonghua Laodong Weisheng Zhiyebing Zazhi 37: 169-173.
24	http://dx.doi.org/10.3760/cma.j.issn.1001-9391.2019.03.002
25	Cheng, L; Liu, S; Dixon, K. (1998). Analysis of repair and mutagenesis of chromium-induced DNA
26	damage in yeast, mammalian cells, and transgenic mice. Environ Health Perspect 106: 1027-
27	1032.
27 28	1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the
27 28 29	1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249.
27 28 29 30	1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray
27 28 29 30 31	1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526.
27 28 29 30 31 32	1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray
27 28 29 30 31	 1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. <u>Choi, KM; Zhu, J; Stoltz, GJ; Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G.</u>
27 28 29 30 31 32 33	 1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. <u>Choi, KM; Zhu, J; Stoltz, GJ; Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G.</u> (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol
27 28 29 30 31 32 33 34	 1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. <u>Choi, KM; Zhu, J; Stoltz, GJ; Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G.</u> (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. <u>http://dx.doi.org/10.1152/ajpgi.00317.2007</u>
27 28 29 30 31 32 33 34 35 36 37	 1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. <u>Choi, KM; Zhu, J: Stoltz, GJ: Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G.</u> (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. <u>http://dx.doi.org/10.1152/ajpgi.00317.2007</u> <u>Chow, WH; Malker, HSR; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ; Ericsson, JLE; Blot, WJ.</u> (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. <u>Chow, WH; McLaughlin, JK; Malker, HS; Linet, MS; Weiner, JA; Stone, BJ.</u> (1995). Esophageal cancer
27 28 29 30 31 32 33 34 35 36 37 38	 1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. <u>Choi, KM; Zhu, J; Stoltz, GJ; Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G.</u> (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. <u>http://dx.doi.org/10.1152/ajpgi.00317.2007</u> <u>Chow, WH; Malker, HSR; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ; Ericsson, JLE; Blot, WJ.</u> (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. <u>Chow, WH; McLaughlin, JK; Malker, HS; Linet, MS; Weiner, JA; Stone, BJ.</u> (1995). Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 27: 749-757.
27 28 29 30 31 32 33 34 35 36 37 38 39	 1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. <u>Choi, KM; Zhu, J; Stoltz, GJ; Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G.</u> (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. <u>http://dx.doi.org/10.1152/ajpgi.00317.2007</u> <u>Chow, WH; Malker, HSR; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ; Ericsson, JLE; Blot, WJ.</u> (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. <u>Chow, WH; McLaughlin, JK; Malker, HS; Linet, MS; Weiner, JA; Stone, BJ.</u> (1995). Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 27: 749-757. http://dx.doi.org/10.1002/ajim.4700270509
27 28 29 30 31 32 33 34 35 36 37 38 39 40	 1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. <u>Choi, KM; Zhu, J; Stoltz, GJ; Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G.</u> (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. <u>http://dx.doi.org/10.1152/ajpgi.00317.2007</u> <u>Chow, WH; Malker, HSR; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ; Ericsson, JLE; Blot, WJ.</u> (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. <u>Chow, WH; McLaughlin, JK; Malker, HS; Linet, MS; Weiner, JA; Stone, BJ.</u> (1995). Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 27: 749-757. <u>http://dx.doi.org/10.1002/ajim.4700270509</u> <u>Christensen, MM; Ernst, E; Ellermann-Eriksen, S.</u> (1992). Cytotoxic effects of hexavalent chromium
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	 1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. <u>Choi, KM; Zhu, J; Stoltz, GJ; Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G.</u> (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. <u>http://dx.doi.org/10.1152/ajpgi.00317.2007</u> <u>Chow, WH; Malker, HSR; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ; Ericsson, JLE; Blot, WJ.</u> (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. <u>Chow, WH; McLaughlin, JK; Malker, HS; Linet, MS; Weiner, JA; Stone, BJ.</u> (1995). Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 27: 749-757. <u>http://dx.doi.org/10.1002/ajim.4700270509</u> <u>Christensen, MM; Ernst, E; Ellermann-Eriksen, S.</u> (1992). Cytotoxic effects of hexavalent chromium in cultured murine macrophages. Arch Toxicol 66: 347-353.
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	 1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. <u>Choi, KM; Zhu, J; Stoltz, GJ; Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G.</u> (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. http://dx.doi.org/10.1152/ajpgi.00317.2007 <u>Chow, WH; Malker, HSR; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ; Ericsson, ILE; Blot, WJ.</u> (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. <u>Chow, WH; McLaughlin, JK; Malker, HS; Linet, MS; Weiner, JA; Stone, BJ.</u> (1995). Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 27: 749-757. http://dx.doi.org/10.1002/ajim.4700270509 <u>Christensen, MM; Ernst, E; Ellermann-Eriksen, S.</u> (1992). Cytotoxic effects of hexavalent chromium in cultured murine macrophages. Arch Toxicol 66: 347-353. <u>Christiansen, PM.</u> (1968). The incidence of achlorhydria and hypochlorhydria in healthy subjects
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	 1032. <u>Cheng, L; Sonntag, DM; de Boer, J; Dixon, K.</u> (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. <u>Chiazze, L; Ference, LD; Wolf, PH.</u> (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. <u>Choi, KM: Zhu, J; Stoltz, GJ: Vernino, S: Camilleri, M; Szurszewski, JH: Gibbons, SJ: Farrugia, G.</u> (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. <u>http://dx.doi.org/10.1152/ajpgi.00317.2007</u> <u>Chow, WH; Malker, HSR; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ: Ericsson, JLE; Blot, WJ.</u> (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. <u>Chow, WH; McLaughlin, JK; Malker, HS; Linet, MS; Weiner, JA; Stone, BJ.</u> (1995). Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 27: 749-757. <u>http://dx.doi.org/10.1002/ajim.4700270509</u> <u>Christensen, MM; Ernst, E; Ellermann-Eriksen, S.</u> (1992). Cytotoxic effects of hexavalent chromium in cultured murine macrophages. Arch Toxicol 66: 347-353. <u>Christiansen, PM.</u> (1968). The incidence of achlorhydria and hypochlorhydria in healthy subjects and patients with gastrointestinal diseases. Scand J Gastroenterol 3: 497-508.
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 1032. Cheng, L; Sonntag, DM; de Boer, J; Dixon, K. (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. Chiazze, L; Ference, LD; Wolf, PH. (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. Choi, KM; Zhu, J; Stoltz, GJ; Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G. (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. http://dx.doi.org/10.1152/ajpgi.00317.2007 Chow, WH; Malker, HSR; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ; Ericsson, ILE; Blot, WJ. (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. Chow, WH; McLaughlin, JK; Malker, HS; Linet, MS; Weiner, IA; Stone, BJ. (1995). Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 27: 749-757. http://dx.doi.org/10.1002/ajim.4700270509 Christensen, MM; Ernst, E; Ellermann-Eriksen, S. (1992). Cytotoxic effects of hexavalent chromium in cultured murine macrophages. Arch Toxicol 66: 347-353. Christiansen, PM. (1968). The incidence of achlorhydria and hypochlorhydria in healthy subjects and patients with gastrointestinal diseases. Scand J Gastroenterol 3: 497-508. http://dx.doi.org/10.3109/00365526809179909
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	 1032. Cheng, L; Sonntag, DM; de Boer, J; Dixon, K. (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. Chiazze, L; Ference, LD; Wolf, PH. (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. Choi, KM; Zhu, J; Stoltz, GJ; Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G. (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. http://dx.doi.org/10.1152/ajpgi.00317.2007 Chow, WH; Malker, HSR; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ; Ericsson, JLE; Blot, WJ. (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. Chow, WH; McLaughlin, JK; Malker, HS; Linet, MS; Weiner, JA; Stone, BJ. (1995). Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 27: 749-757. http://dx.doi.org/10.1002/ajim.4700270509 Christensen, MM; Ernst, E; Ellermann-Eriksen, S. (1992). Cytotoxic effects of hexavalent chromium in cultured murine macrophages. Arch Toxicol 66: 347-353. Christiansen, PM. (1968). The incidence of achlorhydria and hypochlorhydria in healthy subjects and patients with gastrointestinal diseases. Scand J Gastroenterol 3: 497-508. http://dx.doi.org/10.3109/00365526809179909 Chuang, SM; Liou, GY; Yang, JL. (2000). Activation of JNK, p38 and ERK mitogen-activated protein
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	 1032. Cheng, L; Sonntag, DM; de Boer, J; Dixon, K. (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. Chiazze, L; Ference, LD; Wolf, PH. (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. Choi, KM; Zhu, J; Stoltz, GJ: Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G. (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. http://dx.doi.org/10.1152/ajpgi.00317.2007 Chow, WH; Malker, HSR; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ; Ericsson, JLE; Blot, WJ. (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. Chow, WH; McLaughlin, JK; Malker, HS; Linet, MS; Weiner, JA; Stone, BJ. (1995). Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 27: 749-757. http://dx.doi.org/10.1002/ajim.4700270509 Christensen, MM; Ernst, E; Ellermann-Eriksen, S. (1992). Cytotoxic effects of hexavalent chromium in cultured murine macrophages. Arch Toxicol 66: 347-353. Christiansen, PM. (1968). The incidence of achlorhydria and hypochlorhydria in healthy subjects and patients with gastrointestinal diseases. Scand J Gastroenterol 3: 497-508. http://dx.doi.org/10.3109/00365526809179909 Chuang, SM; Liou, GY; Yang, JL. (2000). Activation of JNK, p38 and ERK mitogen-activated protein kinases by chromium(VI) is mediated through oxidative stress but does not affect
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	 1032. Cheng, L; Sonntag, DM; de Boer, J; Dixon, K. (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. Chiazze, L; Ference, LD; Wolf, PH. (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. Choi, KM; Zhu, J; Stoltz, GJ; Vernino, S; Camilleri, M; Szurszewski, IH; Gibbons, SJ; Farrugia, G. (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. http://dx.doi.org/10.1152/ajpgi.00317.2007 Chow, WH; Malker, HS; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ; Ericsson, ILE; Blot, WJ. (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. Chow, WH: McLaughlin, JK; Malker, HS; Linet, MS; Weiner, JA; Stone, BJ. (1995). Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 27: 749-757. http://dx.doi.org/10.1002/ajim.4700270509 Christensen, MM; Ernst, E; Ellermann-Eriksen, S. (1992). Cytotoxic effects of hexavalent chromium in cultured murine macrophages. Arch Toxicol 66: 347-353. Christiansen, PM. (1968). The incidence of achlorhydria and hypochlorhydria in healthy subjects and patients with gastrointestinal diseases. Scand J Gastroenterol 3: 497-508. http://dx.doi.org/10.3109/00365526809179909 Chuang, SM; Liou, GY; Yang, JL. (2000). Activation of JNK, p38 and ERK mitogen-activated protein kinases by chromium(VI) is mediated through oxidative stress but does not affect cytotoxicity. Carcinogenesis 21: 1491-1500.
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	 1032. Cheng, L: Sonntag, DM; de Boer, J; Dixon, K. (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. Chiazze, L; Ference, LD; Wolf, PH. (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. Choi, KM: Zhu, J: Stoltz, GJ; Vernino, S; Camilleri, M: Szurszewski, JH; Gibbons, SJ; Farrugia, G. (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. http://dx.doi.org/10.1152/ajpgi.00317.2007 Chow, WH; Malker, HSR; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ; Ericsson, ILE; Blot, WJ. (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. Chow, WH; McLaughlin, JK: Malker, HS: Linet, MS; Weiner, JA; Stone, BJ. (1995). Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 27: 749-757. http://dx.doi.org/10.1002/ajim.4700270509 Christensen, MM; Ernst, E; Ellermann-Eriksen, S. (1992). Cytotoxic effects of hexavalent chromium in cultured murine macrophages. Arch Toxicol 66: 347-353. Christiansen, PM. (1968). The incidence of achlorhydria and hypochlorhydria in healthy subjects and patients with gastrointestinal diseases. Scand J Gastroenterol 3: 497-508. http://dx.doi.org/10.3109/00365526809179009 Chuang, SM; Liou, GY; Yang, JL. (2000). Activation of JNK, p38 and ERK mitogen-activated protein kinases by chromium(VI) is mediated through oxidative stress but does not affect cytotoxicity. Carcinogenesis 21: 1491-1500. Chuang, SM; Yang, JL. (2001). Comparison of roles of three mitogen-activated protein kinases
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	 1032. Cheng, L; Sonntag, DM; de Boer, J; Dixon, K. (2000). Chromium(VI)-induced mutagenesis in the lungs of big blue transgenic mice. J Environ Pathol Toxicol Oncol 19: 239-249. Chiazze, L; Ference, LD; Wolf, PH. (1980). Mortality among automobile assembly workers. I. Spray painters. J Occup Med 22: 520-526. Choi, KM; Zhu, J; Stoltz, GJ; Vernino, S; Camilleri, M; Szurszewski, JH; Gibbons, SJ; Farrugia, G. (2007). Determination of gastric emptying in nonobese diabetic mice. Am J Physiol Gastrointest Liver Physiol 293: G1039-G1045. http://dx.doi.org/10.1152/ajpgi.00317.2007 Chow, WH; Malker, HS; Hsing, AW; Mclaughlin, JK; Weiner, JA; Stone, BJ; Ericsson, ILE; Blot, WJ. (1994). Occupational risks for colon-cancer in Sweden. J Occup Environ Med 36: 647-651. Chow, WH: McLaughlin, JK; Malker, HS; Linet, MS; Weiner, JA; Stone, BJ, (1995). Esophageal cancer and occupation in a cohort of Swedish men. Am J Ind Med 27: 749-757. http://dx.doi.org/10.1002/ajim.4700270509 Christensen, MM; Ernst, E; Ellermann-Eriksen, S. (1992). Cytotoxic effects of hexavalent chromium in cultured murine macrophages. Arch Toxicol 66: 347-353. Christiansen, PM. (1968). The incidence of achlorhydria and hypochlorhydria in healthy subjects and patients with gastrointestinal diseases. Scand J Gastroenterol 3: 497-508. http://dx.doi.org/10.3109/00365526809179909 Chuang, SM; Liou, GY; Yang, JL. (2000). Activation of JNK, p38 and ERK mitogen-activated protein kinases by chromium(VI) is mediated through oxidative stress but does not affect cytotoxicity. Carcinogenesis 21: 1491-1500.

1	<u>Chun, G; Bae, D; Nickens, K; O'Brien, TJ; Patierno, S. R.; Ceryak, S.</u> (2010). Polo-like kinase 1
2	enhances survival and mutagenesis after genotoxic stress in normal cells through cell cycle
3	checkpoint bypass. Carcinogenesis 31: 785-793. <u>http://dx.doi.org/10.1093/carcin/bgq014</u>
4	Cid, MG; Loria, D; Vilensky, M; Miotti, JL; Matos, E. (1991). Leather tanning workers: chromosomal
5	aberrations in peripheral lymphocytes and micronuclei in exfoliated cells in urine. Mutat
6	Res 259: 197-201. <u>http://dx.doi.org/10.1016/0165-1218(91)90053-0</u>
7	<u>Cieślak-Golonka, M.</u> (1996). Toxic and mutagenic effects of chromium(VI). A review. Polyhedron 15:
8	3667-3689. <u>http://dx.doi.org/10.1016/0277-5387(96)00141-6</u>
9	<u>Cikrt, M; Bencko, V.</u> (1979). Biliary excretion and distribution of 51Cr(III) and 51Cr(VI) in rats. J
10	Hyg Epidemiol Microbiol Immunol 23: 241-246.
11	<u>Clancy, HA; Sun, H; Passantino, L; Kluz, T; Muñoz, A; Zavadil, J; Costa, M.</u> (2012). Gene expression
12	changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the
13	first steps in cancer. Metallomics 4: 784-793. <u>http://dx.doi.org/10.1039/c2mt20074k</u>
14	<u>Clementino, M; Kim, D; Zhang, Z.</u> (2019). Constitutive Activation of NAD-Dependent Sirtuin 3 Plays
15	an Important Role in Tumorigenesis of Chromium(VI)-Transformed Cells. Toxicol Sci 169:
16	224-234. <u>http://dx.doi.org/10.1093/toxsci/kfz032</u>
17	Cocco, P; Ward, MH; Dosemeci, M. (1998). Occupational risk factors for cancer of the gastric cardia:
18	Analysis of death certificates from 24 US states. J Occup Environ Med 40: 855-861.
19	Coelho, P; García-Lestón, J; Costa, S; Costa, C; Silva, S; Dall'Armi, V; Zoffoli, R; Bonassi, S; de Lima, JP;
20	Gaspar, JF; Pásaro, E; Laffon, B; Teixeira, JP. (2013). Genotoxic effect of exposure to
21	metal(loid)s. A molecular epidemiology survey of populations living and working in
22	Panasqueira mine area, Portugal. Environ Int 60: 163-170.
23	http://dx.doi.org/10.1016/j.envint.2013.08.014
24	Cohen, MD; Prophete, C; Sisco, M; Chen, LC; Zelikoff, JT; Smee, JJ; Holder, AA; Crans, DC. (2006).
25	Pulmonary immunotoxic potentials of metals are governed by select physicochemical
26	properties: chromium agents. J Immunotoxicol 3: 69-81.
27	http://dx.doi.org/10.1080/15476910600718434
28	Cohen, MD; Sisco, M; Prophete, C; Yoshida, K; Chen, LC; Zelikoff, JT; Smee, J; Holder, AA;
29	Stonehuerner, J: Crans, DC: Ghio, AJ. (2010). Effects of metal compounds with distinct
30	physicochemical properties on iron homeostasis and antibacterial activity in the lungs:
31	Chromium and vanadium. Inhal Toxicol 22: 169-178.
32	http://dx.doi.org/10.3109/08958370903161232
33	Cohen, MD; Zelikoff, JT; Chen, LC; Schlesinger, RB. (1997). Pulmonary retention and distribution of
34	inhaled chromium: effects of particle solubility and coexposure to ozone. Inhal Toxicol 9:
35	
36	Cohen, MD; Zelikoff, JT; Chen, LC; Schlesinger, RB. (1998). Immunotoxicologic effects of inhaled
37	chromium: role of particle solubility and co-exposure to ozone. Toxicol Appl Pharmacol
38	152: 30-40. <u>http://dx.doi.org/10.1006/taap.1998.8502</u>
39	Cohen, RE; Neiders, ME; Bedi, GS; Comeau, R. (1993). Induction of type 2 cystatin in rat
40	submandibular glands by systemically administered agents. Arch Oral Biol 38: 319-325.
41	<u>Cole, P; Rodu, B.</u> (2005). Epidemiologic studies of chrome and cancer mortality: a series of meta-
42 43	analyses. Regul Toxicol Pharmacol 43: 225-231.
	http://dx.doi.org/10.1016/j.yrtph.2005.06.009
44 45	<u>Collins, BJ; Stout, MD; Levine, KE; Kissling, GE; Melnick, RL; Fennell, TR; Walden, R; Abdo, K;</u> <u>Pritchard, JB; Fernando, RA; Burka, LT; Hooth, MJ.</u> (2010). Exposure to hexavalent
45 46	chromium resulted in significantly higher tissue chromium burden compared with trivalent
40 47	chromium following similar oral doses to male F344/N rats and female B6C3F1 mice.
47	Toxicol Sci 118: 368-379. <u>http://dx.doi.org/10.1093/toxsci/kfq263</u>
48 49	<u>Coniglio, WA; Fagliano, J; Goldoft, M; Udasin, J; Miller, S.</u> (1990). Urinary excretion of chromium, an
49 50	index of exposure.
	meen of onposition

1	<u>Coogan, TP; Motz, J; Snyder, CA; Squibb, KS; Costa, M.</u> (1991a). Differential DNA-protein
2	crosslinking in lymphocytes and liver following chronic drinking water exposure of rats to
3	potassium chromate. Toxicol Appl Pharmacol 109: 60-72. <u>http://dx.doi.org/10.1016/0041-</u>
4	<u>008X(91)90191-G</u>
5	Coogan, TP; Squibb, KS; Motz, J; Kinney, PL; Costa, M. (1991b). Distribution of chromium within
6	cells of the blood. Toxicol Appl Pharmacol 108: 157-166. <u>http://dx.doi.org/10.1016/0041-</u>
7 8	008X(91)90279-N Conhett CE: Dodgo DC: O'Eleborty E: Liong I: Throom I: Einley BL: Kongor BD (1000) In without
o 9	<u>Corbett, GE; Dodge, DG; O'Flaherty, E; Liang, J; Throop, L; Finley, BL; Kerger, BD.</u> (1998). In vitro reduction kinetics of hexavalent chromium in human blood. Environ Res 78: 7-11.
9 10	http://dx.doi.org/10.1006/enrs.1998.3840
11	<u>Corbett, GE; Finley, BL; Paustenbach, DI; Kerger, BD.</u> (1997). Systemic uptake of chromium in
12	human volunteers following dermal contact with hexavalent chromium (22 mg/L). J Expo
13	Anal Environ Epidemiol 7: 179-189.
14	<u>Costa, G; Merletti, F; Segnan, N.</u> (1989). A mortality cohort study in a north Italian aircraft factory.
15	Br J Ind Med 46: 738-743. http://dx.doi.org/10.1136/oem.46.10.738
16	Costa, M: Zhitkovich, A: Toniolo, P. (1993). DNA-protein cross-links in welders: molecular
17	implications. Cancer Res 53: 460-463.
18	<u>Costantini, AS; Paci, E; Miligi, L; Buiatti, E; Martelli, C; Lenzi, S.</u> (1989). Cancer mortality among
19	workers in the Tuscan tanning industry. Br J Ind Med 46: 384-388.
20	<u>http://dx.doi.org/10.1136/oem.46.6.384</u>
21	<u>Crump, C; Crump, K; Hack, E; Luippold, R; Mundt, K; Liebig, E; Panko, J; Paustenbach, D; Proctor, D.</u>
22	(2003). Dose-response and risk assessment of airborne hexavalent chromium and lung
23	cancer mortality. Risk Anal 23: 1147-1163. <u>http://dx.doi.org/10.1111/j.0272-</u>
24	<u>4332.2003.00388.x</u>
25	<u>Cupo, DY; Wetterhahn, KE.</u> (1985). Binding of chromium to chromatin and DNA from liver and
26 27	kidney of rats treated with sodium dichromate and chromium(III) chloride in vivo. Cancer Res 45: 1146-1151.
27	<u>Curtis, A; Morton, J; Balafa, C; Macneil, S; Gawkrodger, DJ; Warren, ND; Evans, GS.</u> (2007). The
29	effects of nickel and chromium on human keratinocytes: differences in viability, cell
30	associated metal and IL-1alpha release. Toxicol In Vitro 21: 809-819.
31	http://dx.doi.org/10.1016/j.tiv.2007.01.026
32	<u>D'Agostini, F; Izzotti, A; Bennicelli, C; Camoirano, A; Tampa, E; De Flora, S.</u> (2002). Induction of
33	apoptosis in the lung but not in the liver of rats receiving intra-tracheal instillations of
34	chromium(VI). Carcinogenesis 23: 587-593. http://dx.doi.org/10.1093/carcin/23.4.587
35	da Cruz Fresco, P; Shacker, F; Kortenkamp, A. (1995). The reductive conversion of chromium (VI)
36	by ascorbate gives rise to apurinic/apyrimidinic sites in isolated DNA. Chem Res Toxicol 8:
37	884-890.
38	<u>Dab, W; Rossignol, M; Luce, D; Benichou, J; Marconi, A; Clement, P; Aubier, M; Zmirou-Navier, D;</u>
39	Abenhaim, L. (2011). Cancer mortality study among French cement production workers. Int
40	Arch Occup Environ Health 84: 167-173. <u>http://dx.doi.org/10.1007/s00420-010-0530-6</u>
41	Dai, H; Liu, J; Malkas, LH; Catalano, J; Alagharu, S; Hickey, RJ. (2009). Chromium reduces the in vitro
42	activity and fidelity of DNA replication mediated by the human cell DNA synthesome.
43 44	Toxicol Appl Pharmacol 236: 154-165. <u>http://dx.doi.org/10.1016/j.taap.2008.12.028</u> Dai, J: Ji, Y: Wang, W: Kim, D: Fai, LY: Wang, L: Luo, J: Zhang, Z. (2017a). Loss of fructose-1,6-
44 45	bisphosphatase induces glycolysis and promotes apoptosis resistance of cancer stem-like
45 46	cells: an important role in hexavalent chromium-induced carcinogenesis. Toxicol Appl
40	Pharmacol 331: 164-173. http://dx.doi.org/10.1016/j.taap.2017.06.014
48	Dai, L; Xu, W; Li, H; Frank, JA; He, C; Zhang, Z; Chen, G. (2017b). Effects of hexavalent chromium on
49	mouse splenic T lymphocytes. Toxicol In Vitro 45: 166-171.
50	http://dx.doi.org/10.1016/j.tiv.2017.09.006

1	Dalager, NA; Mason, TJ; Fraumeni, JF; Hoover, R; Payne, WW. (1980). Cancer mortality among
2	workers exposed to zinc chromate paints. J Occup Med 22: 25-29.
3	Dana Devi, K; Rozati, R; Saleha Banu, B; Jamil, K; Grover, P. (2001). In vivo genotoxic effect of
4	potassium dichromate in mice leukocytes using comet assay. Food Chem Toxicol 39: 859-
5	865.
6	Danadevi, K; Rozati, R; Banu, BS; Grover, P. (2004). Genotoxic evaluation of welders occupationally
7	exposed to chromium and nickel using the Comet and micronucleus assays. Mutagenesis 19:
8	35-41. <u>http://dx.doi.org/10.1093/mutage/geh001</u>
9	Danielsen, TE; Langård, S; Andersen, A. (1996). Incidence of cancer among Norwegian boiler
10	welders. Occup Environ Med 53: 231-234. <u>http://dx.doi.org/10.1136/oem.53.4.231</u>
11	Danielsen, TE; Langard, S; Andersen, A; Knudsen, O. (1993). INCIDENCE OF CANCER AMONG
12	WELDERS OF MILD-STEEL AND OTHER SHIPYARD WORKERS. Br J Ind Med 50: 1097-1103.
13	http://dx.doi.org/10.1136/oem.50.12.1097
14	Das, J: Kang, MH; Kim, E; Kwon, DN; Choi, YJ; Kim, JH. (2015). Hexavalent chromium induces
15	apoptosis in male somatic and spermatogonial stem cells via redox imbalance. Sci Rep 5:
16	13921. <u>http://dx.doi.org/10.1038/srep13921</u>
17	Davies, JM; Easton, DF; Bidstrup, PL. (1991). Mortality from respiratory cancer and other causes in
18	United Kingdom chromate production workers. Br J Ind Med 48: 299-313.
19	De Boeck, K. (2020). Cystic fibrosis in the year 2020: A disease with a new face [Review]. Acta
20	Paediatr 109: 893-899. <u>http://dx.doi.org/10.1111/apa.15155</u>
21	<u>De Flora, S; Badolati, GS; Serra, D; Picciotto, A; Magnolia, MR; Savarino, V. (</u> 1987a). Circadian
22	reduction of chromium in the gastric environment. Mutat Res Lett 192: 169-174.
23	http://dx.doi.org/10.1016/0165-7992(87)90051-0
24	<u>De Flora, S; Camoirano, A; Bagnasco, M; Bennicelli, C; Corbett, GE; Kerger, BD.</u> (1997). Estimates of
25	the chromium(VI) reducing capacity in human body compartments as a mechanism for
26	attenuating its potential toxicity and carcinogenicity. Carcinogenesis 18: 531-537.
27	<u>De Flora, S; Camoirano, A; Micale, RT; La Maestra, S; Savarino, V; Zentilin, P; Marabotto, E; Suh, M;</u>
28	Proctor, DM. (2016). Reduction of hexavalent chromium by fasted and fed human gastric
29	fluid. I. Chemical reduction and mitigation of mutagenicity. Toxicol Appl Pharmacol 306:
30	113-119. <u>http://dx.doi.org/10.1016/j.taap.2016.07.004</u>
31	<u>De Flora, S; D'Agostini, F; Balansky, R; Micale, R; Baluce, B; Izzotti, A.</u> (2008). Lack of genotoxic
32	effects in hematopoietic and gastrointestinal cells of mice receiving chromium(VI) with the
33	drinking water [Review]. Mutat Res 659: 60-67.
34	http://dx.doi.org/10.1016/j.mrrev.2007.11.005
35	De Flora, S; Iltcheva, M; Balansky, RM. (2006). Oral chromium(VI) does not affect the frequency of
36	micronuclei in hematopoietic cells of adult mice and of transplacentally exposed fetuses.
37	Mutat Res 610: 38-47. <u>http://dx.doi.org/10.1016/j.mrgentox.2006.06.011</u>
38	<u>De Flora, S; Morelli, A; Basso, C; Romano, M; Serra, D; De Flora, A.</u> (1985). Prominent role of DT-
39	diaphorase as a cellular mechanism reducing chromium(VI) and reverting its mutagenicity.
40	Cancer Res 45: 3188-3196.
41	De Flora, S; Petruzzelli, S; Camoirano, A; Bennicelli, C; Romano, M; Rindi, M; Ghelarducci, L; Giuntini,
42	<u>C.</u> (1987b). Pulmonary metabolism of mutagens and its relationship with lung cancer and
43	smoking habits. Cancer Res 47: 4740-4745.
44	<u>De Mattia, G; Bravi, MC; Laurenti, O; De Luca, O; Palmeri, A; Sabatucci, A; Mendico, G; Ghiselli, A.</u>
45	(2004). Impairment of cell and plasma redox state in subjects professionally exposed to
46	chromium. Am J Ind Med 46: 120-125. <u>http://dx.doi.org/10.1002/ajim.20044</u>
47	<u>De Smet, B; Depoortere, I; Moechars, D; Swennen, Q; Moreaux, B; Cryns, K; Tack, J; Buyse, J; Coulie,</u>
48	B: Peeters, TL. (2006). Energy homeostasis and gastric emptying in ghrelin knockout mice. J
49	Pharmacol Exp Ther 316: 431-439. <u>http://dx.doi.org/10.1124/jpet.105.091504</u>

<u></u>	Debetto, P; Arslan, P; Antolini, M; Luciani, S. (1988). Uptake of chromate by rat thymocytes and role
	of glutathione in its cytoplasmic reduction. Xenobiotica 18: 657-664.
Г	http://dx.doi.org/10.3109/00498258809041704
L	<u>Deloughery, Z; Luczak, MW; Ortega-Atienza, S; Zhitkovich, A.</u> (2015). DNA double-strand breaks by
	Cr(VI) are targeted to euchromatin and cause ATR-dependent phosphorylation of histone
	H2AX and its ubiquitination. Toxicol Sci 143: 54-63.
Г	http://dx.doi.org/10.1093/toxsci/kfu207
L	Delzell, E; Brown, DA; Matthews, R. (2003). Mortality among hourly motor vehicle manufacturing
	workers. J Occup Environ Med 45: 813-830.
Г	<u>http://dx.doi.org/10.1097/01.jom.0000079092.95532.49</u> Delzell, E: Macaluso, M: Honda, Y: Austin, H. (1993). Mortality patterns among men in the motor-
L	vehicle manufacturing-industry. Am J Ind Med 24: 471-484.
	http://dx.doi.org/10.1002/ajim.4700240411
Г	Deng, C: Lee, HH: Xian, H: Yao, M: Huang, J: Ou, B. (1988). Chromosomal aberrations and sister
L	chromatid exchanges of peripheral blood lymphocytes in Chinese electroplating workers:
	Effect of nickel and chromium. J Trace Elem Exp Med 1: 57-62.
Г	Deng, Y; Wang, M; Tian, T; Lin, S; Xu, P; Zhou, L; Dai, C; Hao, Q; Wu, Y; Zhai, Z; Zhu, Y; Zhuang, G; Dai,
1	<u>Z.</u> (2019). The Effect of Hexavalent Chromium on the Incidence and Mortality of Human
	Cancers: A Meta-Analysis Based on Published Epidemiological Cohort Studies. 9: 24.
	http://dx.doi.org/10.3389/fonc.2019.00024
Г	Denniston, ML; Uyeki, EM. (1987). Distribution and HPLC study of chromium-51 binding sites in
-	Chinese hamster ovary cells. J Toxicol Environ Health 21: 375-386.
	http://dx.doi.org/10.1080/15287398709531026
Г	Deschamps, F; Moulin, IJ; Wild, P; Labriffe, H; Haguenoer, IM. (1995). Mortality study among
_	workers producing chromate pigments in France. Int Arch Occup Environ Health 67: 147-
	152. <u>http://dx.doi.org/10.1007/BF00626345</u>
Г	Devoy, J; Géhin, A; Müller, S; Melczer, M; Remy, A; Antoine, G; Sponne, I. (2016). Evaluation of
	chromium in red blood cells as an indicator of exposure to hexavalent chromium: An in
	vitro study. Toxicol Lett 255: 63–70. <u>http://dx.doi.org/10.1016/j.toxlet.2016.05.008</u>
D	Dillon, CT; Lay, PA; Kennedy, BJ; Stampfl, AP; Cai, Z; Ilinski, P; Rodrigues, W; Legnini, DG; Lai, B;
	Maser, J. (2002). Hard X-ray microprobe studies of chromium(VI)-treated V79 Chinese
	hamster lung cells: intracellular mapping of the biotransformation products of a chromium
	carcinogen. J Biol Inorg Chem 7: 640-645. <u>http://dx.doi.org/10.1007/s00775-002-0343-5</u>
Ľ	Ding, SZ; Yang, YX; Li, XL; Michelli-Rivera, A; Han, SY; Wang, L; Pratheeshkumar, P; Wang, X; Lu, J;
	Yin, YQ; Budhraja, A; Hitron, AJ. (2013). Epithelial-mesenchymal transition during
	oncogenic transformation induced by hexavalent chromium involves reactive oxygen
	species-dependent mechanism in lung epithelial cells. Toxicol Appl Pharmacol 269: 61-71.
	http://dx.doi.org/10.1016/j.taap.2013.03.006
Ľ	Divine, BJ: Barron, V. (1986). Texaco mortality study: II. Patterns of mortality among white males by
	specific job groups. Am J Ind Med 10: 371-381.
	http://dx.doi.org/10.1002/ajim.4700100405
D	<u>Jugosz, A; Rembacz, KP; Pruss, A; Durlak, M; Lembas-Bogaczyk, J.</u> (2012). Influence of chromium
	on the natural antioxidant barrier. Pol J Environ Stud 21: 331-335.
D	Döker, S; Mounicou, S; Doğan, M; Lobinski, R. (2010). Probing the metal-homeostatis effects of the
	administration of chromium(vi) to mice by ICP MS and size-exclusion chromatography-ICP
	MS. Metallomics 2: 549-555. <u>http://dx.doi.org/10.1039/c004508j</u>
Ľ	Donaldson, RM, Jr; Barreras, RF. (1966). Intestinal absorption of trace quantities of chromium. J Lab
	Clin Med 68: 484-493.

1	Dressman, JB; Berardi, RR; Dermentzoglou, LC; Russell, TL; Schmaltz, SP; Barnett, JL; Jarvenpaa, KM.
2	(1990). Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 7:
3	756-761.
4	Dubrovskaya, VA; Wetterhahn, KE. (1998). Effects of Cr(VI) on the expression of the oxidative stress
5	genes in human lung cells. Carcinogenesis 19: 1401-1407.
6	Dubrow, R; Gute, DM. (1988). Cause-specific mortality among male textile workers in Rhode Island.
7	Am J Ind Med 13: 439-454. <u>http://dx.doi.org/10.1002/ajim.4700130404</u>
8	Dubrow, R; Wegman, DH. (1984). Cancer and occupation in Massachusetts: A death certificate
9	study. Am J Ind Med 6: 207-230. <u>http://dx.doi.org/10.1002/ajim.4700060305</u>
10	Eastmond, DA. (2014). Sister chromatid exchanges [Encyclopedia]. In P Wexler (Ed.), Encyclopedia
11	of toxicology: Volume 4 (3rd ed., pp. 276-277). Cambridge, MA: Academic Press.
12	http://dx.doi.org/10.1016/B978-0-12-386454-3.00062-2
13	Edel, J: Sabbioni, E. (1985). Pathways of Cr (III) and Cr (VI) in the rat after intratracheal
14	administration. Hum Exp Toxicol 4: 409-416.
15	Edling, C; Kling, H; Flodin, U; Axelson, O. (1986). Cancer mortality among leather tanners. Br J Ind
16	Med 43: 495-496. <u>http://dx.doi.org/10.1136/oem.43.7.494</u>
17	Egger, M; Smith, GD; Schneider, M; Minder, C. (1997). Bias in meta-analysis detected by a simple,
18	graphical test. Br Med J 315: 629-634. <u>http://dx.doi.org/10.1136/bmj.315.7109.629</u>
19	El-Demerdash, FM; Jebur, AB; Nasr, HM; Hamid, HM. (2019). Modulatory effect of Turnera diffusa
20	against testicular toxicity induced by fenitrothion and/or hexavalent chromium in rats.
21	Environ Toxicol 34: 330-339. <u>http://dx.doi.org/10.1002/tox.22688</u>
22	<u>El-Yamani, N; Zúñiga, L; Stoyanova, E; Creus, A; Marcos, R.</u> (2011). Chromium-induced genotoxicity
23	and interference in human lymphoblastoid cell (TK6) repair processes. J Toxicol Environ
24	Health A 74: 1030-1039. <u>http://dx.doi.org/10.1080/15287394.2011.582282</u>
25	El Safty, AMK; Samir, AM; Mekkawy, MK; Fouad, MM. (2018). Genotoxic effects due to exposure to
26	chromium and nickel among electroplating workers. Int J Toxicol 37: 234-240.
27	http://dx.doi.org/10.1177/1091581818764084
28	Elhosary, N; Maklad, A; Soliman, E; El-Ashmawy, N; Oreby, M. (2014). Evaluation of oxidative stress
29	and DNA damage in cement and tannery workers in Egypt. Inhal Toxicol 26: 289-298.
30	http://dx.doi.org/10.3109/08958378.2014.885100
31	Ellinger-Ziegelbauer, H: Stuart, B: Wahle, B: Bomann, W: Ahr, HJ. (2005). Comparison of the
32	expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat
33	Res 575: 61-84. <u>http://dx.doi.org/10.1016/j.mrfmmm.2005.02.004</u>
34	Enck, P; Wienbeck, M. (1989). Repeated noninvasive measurement of gastrointestinal transit in
35	rats. Physiol Behav 46: 633-637. http://dx.doi.org/10.1016/0031-9384(89)90343-0
36	Engel, LS; Vaughan, TL; Gammon, MD; Chow, WH; Risch, HA; Dubrow, R; Mayne, ST; Rotterdam, H;
37	Schoenberg, JB; Stanford, JL; West, AB; Blot, WJ; Fraumeni, JF. (2002). Occupation and risk
38	of esophageal and gastric cardia adenocarcinoma. Am J Ind Med 42: 11-22.
39	http://dx.doi.org/10.1002/ajim.10077
40	EPA (Environmental Protection Agency). (2021). Model log files for the IRIS toxicological review of
41	hexavalent chromium.
42	Ewis, AA; Kondo, K; Dang, F; Nakahori, Y; Shinohara, Y; Ishikawa, M; Baba, Y. (2006). Surfactant
43	protein B gene variations and susceptibility to lung cancer in chromate workers. Am J Ind
44 45	Med 49: 367-373. <u>http://dx.doi.org/10.1002/ajim.20283</u>
45 46	Fagliano, JA; Savrin, J; Udasin, I; Gochfeld, M. (1997). Community exposure and medical screening
46 47	near chromium waste sites in New Jersey. Regul Toxicol Pharmacol 26: S13-S22. http://dx.doi.org/10.1006/rtph.1997.1134
47 48	Fang, Z; Zhao, M; Zhen, H; Chen, L; Shi, P; Huang, Z. (2014). Genotoxicity of tri- and hexavalent
48 49	chromium compounds in vivo and their modes of action on DNA damage in vitro. PLoS ONE
49 50	9: e103194. <u>http://dx.doi.org/10.1371/journal.pone.0103194</u>
50	7.0103174. <u>http://ux.u0i.org/10.13/1/j0urnai.pone.0103174</u>

1	Faux, SP; Gao, M; Aw, TC; Braithwaite, RA; Levy, LS. (1994). Molecular epidemiological studies in
2	workers exposed to chromium-containing compounds. Clin Chem 40: 1454-1456.
3	FDA, US. (2013). Beverages: Bottle water. Code of Federal Regulations: 21 CFR 165.110.
4	http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm
5	<u>Fébel, H; Szegedi, B; Huszár, S.</u> (2001). Absorption of inorganic, trivalent and hexavalent chromium
6	following oral and intrajejunal doses in rats. Acta Vet Hung 49: 203-209.
7	Federal Register. (2010). Federal Register: March 29 2010 National Primary Drinking Water
8	Regulations Announcement of the Results of EPA's Review of Existing Drinking Water
9	Standards and Request for Public Comment and/or Information on Related Issues Notice.
10	(815Z10001). <u>http://nepis.epa.gov/exe/ZyPURL.cgi?Dockey=P1007TNX.txt</u>
11	Feldman, M; Barnett, C. (1991). Fasting gastric pH and its relationship to true hypochlorhydria in
12	humans. Dig Dis Sci 36: 866-869. <u>http://dx.doi.org/10.1007/BF01297133</u>
13	Fernandes, MA; Mota, IM; Silva, MT; Oliveira, CR; Geraldes, CF; Alpoim, MC. (1999). Human
14	erythrocytes are protected against chromate-induced peroxidation. Ecotoxicol Environ Saf
15	43: 38-46. <u>http://dx.doi.org/10.1006/eesa.1998.1755</u>
16	Figgitt, M; Newson, R; Leslie, IJ; Fisher, J; Ingham, E; Case, CP. (2010). The genotoxicity of
17	physiological concentrations of chromium (Cr(III) and Cr(VI)) and cobalt (Co(II)): an in
18 19	vitro study. Mutat Res 688: 53-61. <u>http://dx.doi.org/10.1016/j.mrfmmm.2010.03.008</u> <u>Finkelstein, MM; Verma, DK.</u> (2005). Mortality among Ontario members of the International Union
20	of Bricklayers and Allied Craftworkers. Am J Ind Med 47: 4-9.
20	http://dx.doi.org/10.1002/ajim.20116
22	<u>Finley, BL; Kerger, BD; Katona, MW; Gargas, ML; Corbett, GC; Paustenbach, DJ.</u> (1997). Human
23	ingestion of chromium (VI) in drinking water: pharmacokinetics following repeated
24	exposure. Toxicol Appl Pharmacol 142: 151-159.
25	http://dx.doi.org/10.1006/taap.1996.7993
26	<u>Finley, BL; Scott, PK; Norton, RL; Gargas, ML; Paustenbach, DJ.</u> (1996). Urinary chromium
27	concentrations in humans following ingestion of safe doses of hexavalent and trivalent
28	chromium: implications for biomonitoring. J Toxicol Environ Health 48: 479-499.
29	http://dx.doi.org/10.1080/009841096161195
30	Floro, NA; Wetterhahn, KE. (1984). Effect of chromium(III) on poly(dG-dC) conformation. Biochem
31	Biophys Res Commun 124: 106-113. <u>http://dx.doi.org/10.1016/0006-291x(84)90923-9</u>
32	Fornace, AJ, Jr. (1982). Detection of DNA single-strand breaks produced during the repair of
33	damage by DNA-protein cross-linking agents. Cancer Res 42: 145-149.
34	Fornace, AJ, Jr; Seres, DS; Lechner, JF; Harris, CC. (1981). DNA-protein cross-linking by chromium
35	salts. Chem Biol Interact 36: 345-354. <u>http://dx.doi.org/10.1016/0009-2797(81)90077-6</u>
36	Franchini, I: Magnani, F: Mutti, A. (1983). Mortality experience among chromeplating workers.
37	Initial findings. Scand J Work Environ Health 9: 247-252.
38	http://dx.doi.org/10.5271/sjweh.2413
39	<u>Frentzel-Beyme, R.</u> (1983). Lung cancer mortality of workers employed in chromate pigment
40	factories: a multicentric European epidemiological study. J Cancer Res Clin Oncol 105: 183-
41	188.
42	Friis-Hansen, L; Sundler, F; Li, Y; Gillespie, PJ; Saunders, TL; Greenson, JK; Owyang, C; Rehfeld, JF;
43	Samuelson, LC. (1998). Impaired gastric acid secretion in gastrin-deficient mice. Am J
44	Physiol 274: G561-G568.
45	<u>Galvin, JB; Oberg, SG.</u> (1984). Toxicity of hexavalent chromium to the alveolar macrophage in vivo
46	and in vitro. Environ Res 33: 7-16. <u>http://dx.doi.org/10.1016/0013-9351(84)90003-3</u>
47	Gambelunghe, A; Piccinini, R; Abbritti, G; Ambrogi, M; Ugolini, B; Marchetti, C; Migliorati, G;
48	Balducci, C; Muzi, G. (2006). Chromium VI-induced apoptosis in a human bronchial
49	epithelial cell line (BEAS-2B) and a lymphoblastic leukemia cell line (MOLT-4). J Occup
50	Environ Med 48: 319-325. <u>http://dx.doi.org/10.1097/01.jom.0000197859.46894.7d</u>

1	<u>Gambelunghe, A; Piccinini, R; Ambrogi, M; Villarini, M; Moretti, M; Marchetti, C; Abbritti, G; Muzi, G.</u>
2	(2003). Primary DNA damage in chrome-plating workers. Toxicology 188: 187-195.
3	Gammelgaard, B; Jensen, K; Steffansen, B. (1999). In vitro metabolism and permeation studies in rat
4	jejunum: Organic chromium compared to inorganic chromium. J Trace Elem Med Biol 13:
5	82-88.
6	Ganapathy, S; Li, P; Lafontant, J; Xiong, R; Yu, T; Zhang, G; Chen, C. (2017). Chromium IV exposure,
7	via src/Ras signaling, promotes cell transformation. Mol Carcinog 56: 1808-1815.
8	http://dx.doi.org/10.1002/mc.22639
9	Gao, M; Binks, SP; Chipman, JK; Levy, LS; Braithwaite, RA; Brown, SS. (1992). Induction of DNA
10	strand breaks in peripheral lymphocytes by soluble chromium compounds. Hum Exp
11	Toxicol 11: 77-82. <u>http://dx.doi.org/10.1177/096032719201100203</u>
12	Gao, M; Levy, LS; Braithwaite, RA; Brown, SS. (1993). Monitoring of total chromium in rat fluids and
13	lymphocytes following intratracheal administration of soluble trivalent or hexavalent
14	chromium compounds. Hum Exp Toxicol 12: 377-382.
15	Gao, M; Levy, LS; Faux, SP; Aw, TC; Braithwaite, RA; Brown, SS. (1994). Use of molecular
16	epidemiological techniques in a pilot study on workers exposed to chromium. Occup
17	Environ Med 51: 663-668. http://dx.doi.org/10.1136/oem.51.10.663
18	Gao, N; Jiang, BH; Leonard, SS; Corum, L; Zhang, Z; Roberts, JR; Antonini, J; Zheng, JZ; Flynn, DC;
19 20	<u>Castranova, V: Shi, X.</u> (2002). p38 Signaling-mediated hypoxia-inducible factor 1alpha and vascular endothelial growth factor induction by Cr(VI) in DU145 human prostate carcinoma
20	cells. J Biol Chem 277: 45041-45048. http://dx.doi.org/10.1074/jbc.M202775200
22	Garabrant, D; Held, J; Langholz, B; Bernstein, L. (1988). Mortality of aircraft manufacturing workers
23	in southern California. Am J Ind Med 13: 683-693.
24	http://dx.doi.org/10.1002/ajim.4700130607
25	<u>Garabrant, DH; Wegman, DH.</u> (1984). Cancer mortality among shoe and leather workers in
26	Massachusetts. Am J Ind Med 5: 303-314.
27	Garcia, ID: Jennette, KW. (1981). Electron-transport cytochrome P-450 system is involved in the
28	microsomal metabolism of the carcinogen chromate. J Inorg Biochem 14: 281-295.
29	http://dx.doi.org/10.1016/S0162-0134(00)80286-X
30	Gargas, ML; Norton, RL; Harris, MA; Paustenbach, DJ; Finley, BL. (1994). Urinary excertion of
31	chromium following ingestion of chromite-ore processing residues in humans: implications
32	for biomonitoring. Risk Anal 14: 1019-1024.
33	Garrison, JC; Bisel, TU; Peterson, P; Uyeki, EM. (1990). Changes in hepatocyte ploidy in response to
34	chromium, analyzed by computer-assisted microscopy. Fundam Appl Toxicol 14: 346-355.
35	http://dx.doi.org/10.1016/0272-0590(90)90214-5
36	Gatto, NM; Kelsh, MA; Mai, DH; Suh, M; Proctor, DM. (2010). Occupational exposure to hexavalent
37	chromium and cancers of the gastrointestinal tract: a meta-analysis. Cancer Detect Prev 34:
38	
	388-399. <u>http://dx.doi.org/10.1016/j.canep.2010.03.013</u>
39	388-399. <u>http://dx.doi.org/10.1016/j.canep.2010.03.013</u> Gavin, IM; Gillis, B; Arbieva, Z; Prabhakar, BS. (2007). Identification of human cell responses to
40	388-399. <u>http://dx.doi.org/10.1016/j.canep.2010.03.013</u> Gavin, IM; Gillis, B; Arbieva, Z; Prabhakar, BS. (2007). Identification of human cell responses to hexavalent chromium. Environ Mol Mutagen 48: 650-657.
40 41	388-399. <u>http://dx.doi.org/10.1016/j.canep.2010.03.013</u> Gavin, IM; Gillis, B; Arbieva, Z; Prabhakar, BS. (2007). Identification of human cell responses to hexavalent chromium. Environ Mol Mutagen 48: 650-657. <u>http://dx.doi.org/10.1002/em.20331</u>
40 41 42	388-399. <u>http://dx.doi.org/10.1016/j.canep.2010.03.013</u> <u>Gavin, IM; Gillis, B; Arbieva, Z; Prabhakar, BS.</u> (2007). Identification of human cell responses to hexavalent chromium. Environ Mol Mutagen 48: 650-657. <u>http://dx.doi.org/10.1002/em.20331</u> <u>Ge, H; Li, Z; Jiang, L; Li, Q; Geng, C; Yao, X; Shi, X; Liu, Y; Cao, J.</u> (2019). Cr (VI) induces crosstalk
40 41 42 43	 388-399. <u>http://dx.doi.org/10.1016/j.canep.2010.03.013</u> Gavin, IM; Gillis, B; Arbieva, Z; Prabhakar, BS. (2007). Identification of human cell responses to hexavalent chromium. Environ Mol Mutagen 48: 650-657. http://dx.doi.org/10.1002/em.20331 Ge, H: Li, Z; Jiang, L; Li, Q; Geng, C; Yao, X; Shi, X; Liu, Y; Cao, J. (2019). Cr (VI) induces crosstalk between apoptosis and autophagy through endoplasmic reticulum stress in A549 cells.
40 41 42 43 44	 388-399. <u>http://dx.doi.org/10.1016/j.canep.2010.03.013</u> Gavin, IM; Gillis, B; Arbieva, Z; Prabhakar, BS. (2007). Identification of human cell responses to hexavalent chromium. Environ Mol Mutagen 48: 650-657. <u>http://dx.doi.org/10.1002/em.20331</u> Ge, H; Li, Z; Jiang, L; Li, Q; Geng, C; Yao, X; Shi, X; Liu, Y; Cao, J. (2019). Cr (VI) induces crosstalk between apoptosis and autophagy through endoplasmic reticulum stress in A549 cells. Chem Biol Interact 298: 35-42. <u>http://dx.doi.org/10.1016/j.cbi.2018.10.024</u>
40 41 42 43 44 45	 388-399. <u>http://dx.doi.org/10.1016/j.canep.2010.03.013</u> Gavin, IM; Gillis, B; Arbieva, Z; Prabhakar, BS. (2007). Identification of human cell responses to hexavalent chromium. Environ Mol Mutagen 48: 650-657. http://dx.doi.org/10.1002/em.20331 Ge, H; Li, Z; Jiang, L; Li, Q; Geng, C; Yao, X; Shi, X; Liu, Y; Cao, J. (2019). Cr (VI) induces crosstalk between apoptosis and autophagy through endoplasmic reticulum stress in A549 cells. Chem Biol Interact 298: 35-42. <u>http://dx.doi.org/10.1016/j.cbi.2018.10.024</u> Geoffroy-Siraudin, C; Perrard, MH; Chaspoul, F; Lanteaume, A; Gallice, P; Durand, P; Guichaoua, MR.
40 41 42 43 44 45 46	 388-399. http://dx.doi.org/10.1016/j.canep.2010.03.013 Gavin, IM; Gillis, B; Arbieva, Z; Prabhakar, BS. (2007). Identification of human cell responses to hexavalent chromium. Environ Mol Mutagen 48: 650-657. http://dx.doi.org/10.1002/em.20331 Ge, H; Li, Z; Jiang, L; Li, Q; Geng, C; Yao, X; Shi, X; Liu, Y; Cao, J. (2019). Cr (VI) induces crosstalk between apoptosis and autophagy through endoplasmic reticulum stress in A549 cells. Chem Biol Interact 298: 35-42. http://dx.doi.org/10.1016/j.cbi.2018.10.024 Geoffroy-Siraudin, C; Perrard, MH; Chaspoul, F; Lanteaume, A; Gallice, P; Durand, P; Guichaoua, MR. (2010). Validation of a rat seminiferous tubule culture model as a suitable system for
40 41 42 43 44 45	 388-399. <u>http://dx.doi.org/10.1016/j.canep.2010.03.013</u> Gavin, IM; Gillis, B; Arbieva, Z; Prabhakar, BS. (2007). Identification of human cell responses to hexavalent chromium. Environ Mol Mutagen 48: 650-657. http://dx.doi.org/10.1002/em.20331 Ge, H; Li, Z; Jiang, L; Li, Q; Geng, C; Yao, X; Shi, X; Liu, Y; Cao, J. (2019). Cr (VI) induces crosstalk between apoptosis and autophagy through endoplasmic reticulum stress in A549 cells. Chem Biol Interact 298: 35-42. <u>http://dx.doi.org/10.1016/j.cbi.2018.10.024</u> Geoffroy-Siraudin, C; Perrard, MH; Chaspoul, F; Lanteaume, A; Gallice, P; Durand, P; Guichaoua, MR.

1	Gibb, H; Wang, J; O'Leary, K; Chen, C; Bateson, TF; Kopylev, L. (2020). The effect of age on the
2	relative risk of lung cancer mortality in a cohort of chromium production workers. Am J Ind
3	Med 63: 774-778. <u>http://dx.doi.org/10.1002/ajim.23152</u>
4	Gibb, HJ; Lees, PS; Pinsky, PF; Rooney, BC. (2000a). Clinical findings of irritation among chromium
5	chemical production workers. Am J Ind Med 38: 127-131.
6	Gibb, HJ; Lees, PS; Pinsky, PF; Rooney, BC. (2000b). Lung cancer among workers in chromium
7	chemical production. Am J Ind Med 38: 115-126.
8	Gibb, HJ; Lees, PS; Wang, J; Grace O'Leary, K. (2015). Extended followup of a cohort of chromium
9	production workers. Am J Ind Med 58: 905-913. <u>http://dx.doi.org/10.1002/ajim.22479</u>
10	<u>Gibel, W; Nischan, P; Staneczek, W.</u> (1985). OCCUPATIONAL-CANCER OF NASAL CAVITY AND
11	PARA-NASAL SINUSES IN WOODWORKERS. Arch Geschwulstforsch 55: 279-284.
12	Girardi, P; Bressan, V; Mabilia, T; Merler, E. (2015). [Confirmation of an excess of cancer mortality in
13	a cohort of workers of a chromium thin-layer plating]. Epidemiol Prev 39: 183-187.
14	Glaser, U; Hochrainer, D; Klöeppel, H; Kuhnen, H. (1985). Low level chromium (VI) inhalation
15	effects on alveolar macrophages and immune functions in Wistar rats. Arch Toxicol 57: 250-
16	256. <u>http://dx.doi.org/10.1007/BF00324787</u>
17	<u>Glaser, U; Hochrainer, D; Kloeppel, H; Oldiges, H.</u> (1986). Carcinogenicity of sodium dichromate and
18	chromium (VI/III)oxide aerosols inhaled by male Wistar rats. Toxicology 42: 219-232.
19 20	http://dx.doi.org/10.1016/0300-483X(86)90011-9 Glaser, U; Hochrainer, D; Steinhoff, D. (1990). Investigation of irritating properties of inhaled Cr(VI)
20	with possible influence on its carcinogenic action. In NH Seemayer; W Hadnagy (Eds.),
22	Environmental hygiene II (pp. 239-245). Berlin, Germany: Springer-Verlag.
23	<u>Glaviano, A; Nayak, V; Cabuy, E; Baird, DM; Yin, Z; Newson, R; Ladon, D; Rubio, MA; Slijepcevic, P;</u>
24	Lyng, F; Mothersill, C; Case, CP. (2006). Effects of hTERT on metal ion-induced genomic
25	instability. Oncogene 25: 3424-3435. <u>http://dx.doi.org/10.1038/sj.onc.1209399</u>
26	Goldoni, M; Caglieri, A; Corradi, M; Poli, D; Rusca, M; Carbognani, P; Mutti, A. (2008). Chromium in
27	exhaled breath condensate and pulmonary tissue of non-small cell lung cancer patients. Int
28	Arch Occup Environ Health 81: 487-493. <u>http://dx.doi.org/10.1007/s00420-007-0242-8</u>
29	<u>Goldoni, M; Caglieri, A; De Palma, G; Acampa, O; Gergelova, P; Corradi, M; Apostoli, P; Mutti, A.</u>
30	(2010). Chromium in exhaled breath condensate (EBC), erythrocytes, plasma and urine in
31	the biomonitoring of chrome-plating workers exposed to soluble Cr(VI). J Environ Monit 12:
32	442-447. <u>http://dx.doi.org/10.1039/b914673c</u>
33	Goldoni, M; Caglieri, A; Poli, D; Vettori, MV; Corradi, M; Apostoli, P; Mutti, A. (2006). Determination
34	of hexavalent chromium in exhaled breath condensate and environmental air among
35	chrome plating workers. Anal Chim Acta 562: 229-235.
36	http://dx.doi.org/10.1016/j.aca.2006.01.065
37 38	<u>Golka, K; Roemer, HC; Weistenhöfer, W; Blaszkewicz, M; Hammad, S; Reckwitz, T; Loehlein, D;</u> <u>Hartel, M; Hengstler, JG; Geller, F.</u> (2012). N-Acetyltransferase 2 and glutathione s-
30 39	transferase M1 in colon and rectal cancer cases from an industrialized area. J Toxicol
39 40	Environ Health A 75: 572-581. <u>http://dx.doi.org/10.1080/15287394.2012.675310</u>
40 41	<u>Gomes, ER.</u> (1972). Incidence of chromium-induced lesions among electroplating workers in Brazil.
42	Ind Med Surg 41: 21-25.
43	<u>González, CA; Sanz, M; Marcos, G; Pita, S; Brullet, E; Vida, F; Agudo, A; Hsieh, CC.</u> (1991). Occupation
44	and gastric cancer in Spain. Scand J Work Environ Health 17: 240-247.
45	http://dx.doi.org/10.5271/sjweh.1707
46	<u>Goulart, M; Batoréu, MC; Rodrigues, AS; Laires, A; Rueff, J.</u> (2005). Lipoperoxidation products and
47	thiol antioxidants in chromium exposed workers. Mutagenesis 20: 311-315.
48	http://dx.doi.org/10.1093/mutage/gei043
49	Gray, SJ: Sterling, K. (1950). The tagging of red cells and plasma proteins with radioactive
50	chromium. J Clin Invest 29: 1604-1613. http://dx.doi.org/10.1172/JCI102403

1	Greene, MH; Hoover, RN; Eck, RL; Fraumeni JF, J. R. (1979). Cancer mortality among printing plant
2	workers. Environ Res 20: 66-73. <u>http://dx.doi.org/10.1016/0013-9351(79)90085-9</u>
3	<u>Grimm, M; Koziolek, M; Kühn, JP; Weitschies, W.</u> (2018). Interindividual and intraindividual
4	variability of fasted state gastric fluid volume and gastric emptying of water.
5	<u>http://dx.doi.org/10.1016/j.ejpb.2018.03.002</u>
6	Gromadzińska, J; Wasowicz, W; Sklodowska, M; Bulikowski, W; Rydzyński, K. (1996). The influence
7	of atmospheric chromium on selenium content and glutathione peroxidase activity in blood
8	of tannery workers. Environ Health Perspect 104: 1312-1316.
9	http://dx.doi.org/10.1289/ehp.104-1469531
10	Gruber, JE; Jennette, KW. (1978). Metabolism of the carcinogen chromate by rat liver microsomes.
11	Biochem Biophys Res Commun 82: 700-706. <u>http://dx.doi.org/10.1016/0006-</u>
12	<u>291X(78)90931-2</u>
13	Guberan, E: Usel, M; Raymond, L; Tissot, R; Sweetnam, PM. (1989). Disability, Mortality, and
14	Incidence of Cancer among Geneva Painters and Electricians: A Historical Prospective Study.
15	Br J Ind Med 46: 16-23. <u>http://dx.doi.org/10.1136/oem.46.1.16</u>
16	<u>Güerci, A: Seoane, A: Dulout, FN.</u> (2000). Aneugenic effects of some metal compounds assessed by
17	chromosome counting in MRC-5 human cells. Mutat Res 469: 35-40.
18	Gunaratnam, M; Grant, MH. (2001). Glutathione reductase reduces chromium VI to cytotoxic
19 20	metabolites in isolated rat hepatocytes [Abstract]. Toxicology 168: 119-121. <u>Guo, L; Xiao, Y; Wang, Y.</u> (2013a). Hexavalent chromium-induced alteration of proteomic landscape
20	in human skin fibroblast cells. J Proteome Res 12: 3511-3518.
22	http://dx.doi.org/10.1021/pr400375p
23	<u>Guo, M; Huang, FQ; Liu, MM; Li, MH.</u> (2013b). Performance of binding interaction between Cr(VI)
24	and serum proteome. Chin J Inorg Chem 29: 1037-1044.
25	http://dx.doi.org/10.3969/j.issn.1001-4861.2013.00.159
26	Guo, YJ; Pan, WW; Liu, SB; Shen, ZF; Xu, Y; Hu, LL. (2020). ERK/MAPK signalling pathway and
27	tumorigenesis [Review]. Exp Ther Med 19: 1997-2007.
28	http://dx.doi.org/10.3892/etm.2020.8454
29	Guttmann, D; Poage, G; Johnston, T; Zhitkovich, A. (2008). Reduction with glutathione is a weakly
30	mutagenic pathway in chromium(VI) metabolism. Chem Res Toxicol 21: 2188-2194.
31	<u>http://dx.doi.org/10.1021/tx800265g</u>
32	<u>Halasova, E; Adamkov, M; Matakova, T; Kavcova, E; Poliacek, I; Singliar, A.</u> (2010). Lung cancer
33	incidence and survival in chromium exposed individuals with respect to expression of anti-
34	apoptotic protein survivin and tumor suppressor P53 protein. Eur J Med Res 15: 55-59.
35	Halasova, E; Matakova, T; Kavcova, E; Musak, L; Letkova, L; Adamkov, M; Ondrusova, M; Bukovska,
36	<u>E: Singliar, A.</u> (2009). Human lung cancer and hexavalent chromium exposure. Neuro
37	Endocrinol Lett 30: 182-185.
38	Halasova, E; Matakova, T; Musak, L; Polakova, V; Letkova, L; Dobrota, D; Vodicka, P. (2012).
39 40	Evaluating chromosomal damage in workers exposed to hexavalent chromium and the
40 41	modulating role of polymorphisms of DNA repair genes. Int Arch Occup Environ Health 85: 473. <u>http://dx.doi.org/10.1007/s00420-011-0684-x</u>
41	Halasova, E; Matakova, T; Musak, L; Polakova, V; Vodicka, P. (2008). Chromosomal damage and
42 43	polymorphisms of DNA repair genes XRCC1 and XRCC3 in workers exposed to chromium.
44	Neuro Endocrinol Lett 29: 658-662.
45	Halasova, E; Matakova, T; Skerenova, M; Krutakova, M; Slovakova, P; Dzian, A; Javorkova, S; Pec, M;
46	<u>Kypusova, K; Hamzik, J.</u> (2016). Polymorphisms of selected DNA repair genes and lung
47	cancer in chromium exposure. Adv Exp Med Biol 911: 17-22.
48	http://dx.doi.org/10.1007/5584 2016 218
49	Hamilton, JW; Kaltreider, RC; Bajenova, OV; Ihnat, MA; Mccaffrey, J; Turpie, BW; Rowell, EE; Oh, J;
50	Nemeth, MJ; Pesce, CA; Lariviere, JP. (1998). Molecular basis for effects of carcinogenic

1	heavy metals on inducible gene expression. Environ Health Perspect 106: 1005-1015.
2	http://dx.doi.org/10.2307/3434145
3	Hanaoka, T; Yamano, Y; Katsuno, N; Kagawa, J; Ishizu, S. (1997). Elevated serum levels of pantropic
4	p53 proteins in chromium workers. Scand J Work Environ Health 23: 37-40.
5	http://dx.doi.org/10.5271/sjweh.176
6	Hansen, KS; Lauritsen, JM; Skytthe, A. (1996). Cancer incidence among mild steel and stainless steel
7	welders and other metal workers. Am J Ind Med 30: 373-382.
8	http://dx.doi.org/10.1002/(SICI)1097-0274(199610)30:4<373::AID-AJIM1>3.0.CO;2-
9	X
10	<u>Hara, T; Hoshuyama, T; Takahashi, K; Delgermaa, V; Sorahan, T.</u> (2010). Cancer risk among
11	Japanese chromium platers, 1976-2003. Scand J Work Environ Health 36: 216-221.
12	http://dx.doi.org/10.5271/sjweh.2889
13	Harris, HH; Levina, A; Dillon, CT; Mulyani, I; Lai, B; Cai, Z; Lay, PA. (2005). Time-dependent uptake,
14	distribution and biotransformation of chromium(VI) in individual and bulk human lung
15	cells: application of synchrotron radiation techniques. J Biol Inorg Chem 10: 105-118.
16	http://dx.doi.org/10.1007/s00775-004-0617-1
17	Hayashi, M; Sofuni, T; Ishidate, M. (1982). High-sensitivity in micronucleus induction of a mouse
18	strain (MS). Mutat Res 105: 253-256. <u>http://dx.doi.org/10.1016/0165-7992(82)90038-0</u>
19	Hayashi, Y; Kondo, T; Zhao, QL; Ogawa, R; Cui, ZG; Feril, LB; Teranishi, H; Kasuya, M. (2004). Signal
20	transduction of p53-independent apoptotic pathway induced by hexavalent chromium in
21	U937 cells. Toxicol Appl Pharmacol 197: 96-106.
22	http://dx.doi.org/10.1016/j.taap.2004.02.011
23	Hayes, RB; Lilienfeld, AM; Snell, LM. (1979). Mortality in chromium chemical production workers: A
24	prospective study. Int J Epidemiol 8: 365-374. http://dx.doi.org/10.1093/ije/8.4.365
25	Hayes, RB; Sheffet, A; Spirtas, R. (1989). Cancer mortality among a cohort of chromium pigment
26	workers. Am J Ind Med 16: 127-133.
27	He, F; Ru, X; Wen, T. (2020). NRF2, a transcription factor for stress response and beyond [Review].
28	International Journal of Molecular Sciences 21: 4777.
29	http://dx.doi.org/10.3390/ijms21134777
30	He, J; Qian, X; Carpenter, R; Xu, Q; Wang, L; Qi, Y; Wang, ZX; Liu, LZ; Jiang, BH. (2013). Repression of
31	miR-143 Mediates Cr (VI)-Induced Tumor Angiogenesis via IGF-IR/IRS1/ERK/IL-8
32	Pathway. Toxicol Sci 134: 26-38. <u>http://dx.doi.org/10.1093/toxsci/kft101</u>
33	Health Canada. (2016). Guidelines for Canadian drinking water quality: Guideline technical
34	document: Chromium. In Guidelines for Canadian Drinking Water Quality. (160192).
35	Ottawa, Ontario: Minister of Health. <u>https://www.canada.ca/en/health-</u>
36	<u>canada/services/environmental-workplace-health/reports-publications/water-</u>
37	<u>quality.html</u>
38	<u>Hfaiedh, M; Brahmi, D; Zourgui, L.</u> (2014). Protective role of cactus cladodes extract on sodium
39	dichromate-induced testicular injury and oxidative stress in rats. Biol Trace Elem Res 159:
40	304-311. <u>http://dx.doi.org/10.1007/s12011-014-9969-8</u>
41	Hilali, A; Anane, R; Jaaouani, N; Creppy, EE; Verschaeve, L. (2008). Cytogenetic analysis of tannery
42	workers in Morocco. J Appl Toxicol 28: 439-442. <u>http://dx.doi.org/10.1002/jat.1291</u>
43	<u>Hill, R; Leidal, AM; Madureira, PA; Gillis, LD; Cochrane, HK; Waisman, DM; Chiu, A; Lee, PWK.</u>
44	(2008a). Hypersensitivity to chromium-induced DNA damage correlates with constitutive
45	deregulation of upstream p53 kinases in p21-/- HCT116 colon cancer cells. DNA Repair 7:
46	239-252. <u>http://dx.doi.org/10.1016/j.dnarep.2007.10.001</u>
47	Hill, R; Leidal, AM; Madureira, PA; Gillis, LD; Waisman, DM; Chiu, A; Lee, PWK. (2008b). Chromium-
48	mediated apoptosis: Involvement of DNA-dependent protein kinase (DNA-PK) and
49	differential induction of p53 target genes. DNA Repair 7: 1484-1499.
50	http://dx.doi.org/10.1016/j.dnarep.2008.05.007

1	Hill, WI; Ferguson, WS. (1979). Statistical analysis of epidemiological data from a chromium
2	chemical manufacturing plant. J Occup Med 21: 103-106.
3	http://dx.doi.org/10.1097/00043764-197902000-00010
4	<u>Hirose, T; Kondo, K; Takahashi, Y; Ishikura, H; Fujino, H; Tsuyuguchi, M; Hashimoto, M; Yokose, T;</u>
5	Mukai, K; Kodama, T; Monden, Y. (2002). Frequent microsatellite instability in lung cancer
6	from chromate-exposed workers. Mol Carcinog 33: 172-180.
7	Hodges, NJ; Adám, B; Lee, AJ; Cross, HJ; Chipman, JK. (2001). Induction of DNA-strand breaks in
8	human peripheral blood lymphocytes and A549 lung cells by sodium dichromate:
9	association with 8-oxo-2-deoxyguanosine formation and inter-individual variability.
10	Mutagenesis 16: 467-474. <u>http://dx.doi.org/10.1093/mutage/16.6.467</u>
11	Hodges, NJ: Chipman, JK. (2002). Down-regulation of the DNA-repair endonuclease 8-oxo-guanine
12	DNA glycosylase 1 (hOGG1) by sodium dichromate in cultured human A549 lung carcinoma
13	cells. Carcinogenesis 23: 55-60. http://dx.doi.org/10.1093/carcin/23.1.55
14	Hodges, NJ; Smart, D; Lee, AJ; Lewis, NA; Chipman, JK. (2004). Activation of c-Jun N-terminal kinase
15	in A549 lung carcinoma cells by sodium dichromate: role of dissociation of apoptosis signal
16	regulating kinase-1 from its physiological inhibitor thioredoxin. Toxicology 197: 101-112.
17	http://dx.doi.org/10.1016/j.tox.2003.12.004
18	Holmes, AL; Wise, SS; Wise, JP. (2008). Carcinogenicity of hexavalent chromium [Review]. Indian J
19	Med Res 128: 353-372.
20	<u>Hooftman, RN; Arkesteyn, CWM; Roza, P.</u> (1988). Cytotoxicity of some types of welding fume
21	particles to bovine alveolar macrophages. Ann Occup Hyg 32: 95-102.
22	http://dx.doi.org/10.1093/annhyg/32.1.95
23	Horiguchi, S; Morinaga, K; Endo, G. (1990). Epidemiological study of mortality from cancer among
24	chromium platers. Asia Pac J Public Health 4: 169-174.
25	http://dx.doi.org/10.1177/101053959000400316
26	Hu, G; Feng, H; Long, C; Zhou, D; Li, P; Gao, X; Chen, Z; Wang, T; Jia, G. (2019). LncRNA expression
27	profiling and its relationship with DNA damage in Cr(VI)-treated 16HBE cells. Sci Total
28	Environ 655: 622-632. <u>http://dx.doi.org/10.1016/j.scitotenv.2018.11.074</u>
29	Hu, G; Li, P; Cui, X; Li, Y; Zhang, J; Zhai, X; Yu, S; Tang, S; Zhao, Z; Wang, J; Jia, G. (2018). Cr(VI)-
30	induced methylation and down-regulation of DNA repair genes and its association with
31	markers of genetic damage in workers and 16HBE cells. Environ Pollut 238: 833-843.
32	http://dx.doi.org/10.1016/j.envpol.2018.03.046
33	Hu, G; Li, P; Li, Y; Wang, T; Gao, X, in; Zhang, W; Jia, G. (2016a). Methylation levels of P16 and TP53
34	that are involved in DNA strand breakage of 16HBE cells treated by hexavalent chromium.
35	Toxicol Lett 249: 15-21. <u>http://dx.doi.org/10.1016/j.toxlet.2016.03.003</u>
36	Hu, G; Liu, J; Zhang, Y; Zheng, P; Wang, L; Zhao, L; Xu, H; Chen, Z; Wang, T; Jia, G. (2016b). Gene
37	expression profiling and bioinformatics analysis in 16HBE cells treated by chromium (VI).
38	Toxicol Lett 264: 71-78. <u>http://dx.doi.org/10.1016/j.toxlet.2016.10.015</u>
39	Hu, G; Wang, T; Liu, J; Chen, Z; Zhong, L; Yu, S; Zhao, Z; Zhai, M; Jia, G. (2017). Serum protein
40	expression profiling and bioinformatics analysis in workers occupationally exposed to
41	chromium (VI). Toxicol Lett 277: 76-83. <u>http://dx.doi.org/10.1016/j.toxlet.2017.05.026</u>
42	<u>Hu, L; Liu, X; Chervona, Y; Yang, F; Tang, MS; Darzynkiewicz, Z; Dai, W.</u> (2011). Chromium induces
43	chromosomal instability, which is partly due to deregulation of BubR1 and Emi1, two APC/C
44	inhibitors. 10: 2373-2379.
45	<u>Huang, J; Wu, G; Zeng, R; Wang, J; Cai, R, ui; Ho, JCM, an; Zhang, J; Zheng, Y. (</u> 2017). Chromium
46	contributes to human bronchial epithelial cell carcinogenesis by activating Gli2 and
47	inhibiting autophagy. Toxicology Research 6: 324-332.
48	http://dx.doi.org/10.1039/c6tx00372a

1	Huang, L; Yu, CH: Hopke, PK; Lioy, PJ; Buckley, BT; Shin, JY; Fan, ZT. (2014). Measurement of soluble
2	and total hexavalent chromium in the ambient airborne particles in New Jersey. Aerosol Air Qual Res 14: 1939-1949. <u>http://dx.doi.org/10.4209/aagr.2013.10.0312</u>
3	
4 5	Huang, YL; Chen, CY; Sheu, JY; Chuang, IC; Pan, JH; Lin, TH. (1999). Lipid peroxidation in workers
	exposed to hexavalent chromium. J Toxicol Environ Health A 56: 235-247.
6 7	http://dx.doi.org/10.1080/009841099158088
8	<u>Huebner, W; Schoenberg, J; Kelsey, J; Wilcox, H; Mclaughlin, J; Greenberg, R; Preston-Martin, S;</u> <u>Austin, D; Stemhagen, A; Blot, W.</u> (1992). Oral and pharyngeal cancer and occupation: a
8 9	case-control study. Epidemiology 3: 300-309.
9 10	Husain, N; Mahmood, R. (2017). Hexavalent chromium induces reactive oxygen species and impairs
10	the antioxidant power of human erythrocytes and lymphocytes: Decreased metal reducing
12	and free radical quenching ability of the cells. Toxicol Ind Health 33: 748233717703892.
13	http://dx.doi.org/10.1177/0748233717703892
14	Husgafvel-Pursiainen, K; Kalliomaki, PL; Sorsa, M. (1982). A chromosome study among stainless
15	steel welders. J Occup Environ Med 24: 762-766.
16	Huvinen, M; Pukkala, E. (2013). Cancer incidence among Finnish ferrochromium and stainless steel
17	production workers in 1967-2011: a cohort study. BMJ Open 3: 1-7.
18	http://dx.doi.org/10.1136/bmjopen-2013-003819
19	Huvinen, M; Pukkala, E. (2016). Cause-specific mortality in Finnish ferrochromium and stainless
20	steel production workers. Occup Med (Lond) 66: 241-246.
21	http://dx.doi.org/10.1093/occmed/kgv197
22	Hydrometrics. (2013). Project report background concentrations of inorganic constituents in
23	Montana surface soils. Helena, MT: Hydrometrics, Inc.
24	https://deq.mt.gov/Portals/112/Land/StateSuperfund/Documents/InorganicBackground/
25	<u>BkgdInorganicsReport.pdf</u>
26	Iaia, TE; Bartoli, D; Calzoni, P; Comba, P; De Santis, M; Dini, F; Ercolanelli, M; Farina, GA; Pirastu, R;
27	Seniori Costantini, A; Valiani, M. (2002). [Cohort study of mortality among leather tanners in
28	the Lower Valdarno area]. Med Lav 93: 95-107.
29	<u>Iaia, TE; Bartoli, D; Calzoni, P; Comba, P; De Santis, M; Dini, F; Farina, GA; Valiani, M; Pirastu, R.</u>
30	(2006). A cohort mortality study of leather tanners in Tuscany, Italy. Am J Ind Med 49: 452-
31	459. <u>http://dx.doi.org/10.1002/ajim.20309</u>
32	<u>IARC</u> (International Agency for Research on Cancer). (1981). Wood, leather and some associated
33	industries. Lyon, France: World Health Orgqanization.
34	http://monographs.iarc.fr/ENG/Monographs/vol25/volume25.pdf
35	<u>IARC</u> (International Agency for Research on Cancer). (1990). Chromium, nickel and welding [IARC
36	Monograph]. Lyon, France. <u>http://monographs.iarc.fr/ENG/Monographs/vol49/index.php</u>
37	<u>IARC</u> (International Agency for Research on Cancer). (1998). Some flame retardants and textile
38	chemicals, and exposures in the textile manufacturing industry. Lyon, France.
39	<u>IARC</u> (International Agency for Research on Cancer). (2010). Painting, firefighting, and shiftwork
40	[IARC Monograph]. In IARC monographs on the evaluation of carcinogenic risks to humans,
41	v 98 (pp. 804-804 pages). Lyon, France.
42	http://monographs.iarc.fr/ENG/Monographs/vol98/mono98.pdf
43	<u>IARC</u> (International Agency for Research on Cancer). (2012). A review of human carcinogens. Part
44	C: Arsenic, metals, fibres, and dusts [IARC Monograph]. Lyon, France: World Health
45 46	Organization. <u>http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C.pdf</u>
46 47	<u>IARC</u> (IARC Working Group on the Evaluation of Carcinogenic Risks to Humans). (2018). Welding,
47 19	molybdenum trioxide, and indium tin oxide. Lyon, France: International Agency for
48 49	Research on Cancer.
49 50	https://publications.iarc.fr/_publications/media/download/4890/8dea8d7fcfc96b300786 a8718b69e44475274beb.pdf
50	<u>a0/1000/0444/04/4000.put</u>

This document is a draft for review purposes only and does not constitute Agency policy. R-23

1	<u>Iarmarcovai, G; Sari-Minodier, I; Chaspoul, F; Botta, C; De Meo, M; Orsiere, T; Berge-Lefranc, JL;</u>
2	Gallice, P; Botta, A. (2005). Risk assessment of welders using analysis of eight metals by ICP-
3	MS in blood and urine and DNA damage evaluation by the comet and micronucleus assays;
4	influence of XRCC1 and XRCC3 polymorphisms. Mutagenesis 20: 425-432.
5	http://dx.doi.org/10.1093/mutage/gei058
6	ICRP (International Commission on Radiological Protection). (2002). Basic anatomical and
7	physiological data for use in radiological protection: Reference values. (ICRP Publication
8	89). New York, NY: Pergamon Press. <u>http://dx.doi.org/10.1016/S0146-6453(03)00002-2</u>
9	ICRP (International Commission on Radiological Protection). (2006). Human alimentary tract
10	model for radiological protection. ICRP Publication 100. A report of The International
11	Commission on Radiological Protection. Ann ICRP 36: 25-327, iii.
12	Igarashi, M; Shimada, H. (1997). An improved method for the mouse liver micronucleus test. Mutat
13	Res 391: 49-55.
14	<u>Iijima, S: Spindle, A: Pedersen, RA.</u> (1983). Developmental and cytogenetic effects of potassium
15	dichromate on mouse embryos in vitro. Teratology 27: 109-115.
16	http://dx.doi.org/10.1002/tera.1420270116
17	Inada, T; Asai, T; Yamada, M; Shingu, K. (2004). A new method using flow cytometry to measure the
18	effects of drugs on gastric emptying and gastrointestinal transit in mice.
19	Arzneimittelforschung 54: 557-562. <u>http://dx.doi.org/10.1055/s-0031-1297012</u>
20	IPCS (International Programme on Chemical Safety). (2012). Harmonization project document no.
21	10: Guidance for immunotoxicity risk assessment for chemicals. (Harmonization Project
22	Document No. 10). Geneva, Switzerland: World Health Organization.
23	<u>http://www.inchem.org/documents/harmproj/harmproj/harmproj10.pdf</u>
24	IPCS (International Programme on Chemical Safety). (2013). Inorganic chromium(VI) compounds.
25	(78). Geneva, Switzerland: World Health Organization.
26	http://www.who.int/ipcs/publications/cicad/cicad_78.pdf
27	Iranmanesh, M; Fatemi, SJ; Ebrahimpour, R; Dahooee Balooch, F. (2013). Chelation of chromium(VI)
28	by combining deferasirox and deferiprone in rats. Biometals 26: 465-471.
29	http://dx.doi.org/10.1007/s10534-013-9631-5
30	Ito, S: Schofield, GC. (1974). Studies on the depletion and accumulation of microvilli and changes in
31	the tubulovesicular compartment of mouse parietal cells in relation to gastric acid secretion.
32	J Cell Biol 63: 364-382.
33	Itoh, S; Shimada, H. (1996). Micronucleus induction by chromium and selenium, and suppression by
34 35	metallothionein inducer. Mutat Res Genet Toxicol 367: 233-236. http://dx.doi.org/10.1016/S0165-1218(96)90082-8
35 36	Itoh, S; Shimada, H. (1997). Clastogenicity and mutagenicity of hexavalent chromium in lacZ
30 37	transgenic mice. Toxicol Lett 91: 229-233.
38	Itoh, S; Shimada, H. (1998). Bone marrow and liver mutagenesis in lacZ transgenic mice treated
39	with hexavalent chromium. Mutat Res 412: 63-67.
40	Izzotti, A; Bagnasco, M; Camoirano, A; Orlando, M; De Flora, S. (1998). DNA fragmentation, DNA-
41	protein crosslinks, 32P postlabeled nucleotidic modifications, and 8-hydroxy-2'-
42	deoxyguanosine in the lung but not in the liver of rats receiving intratracheal instillations of
43	chromium(VI). Chemoprevention by oral N-acetylcysteine. Mutat Res Fundam Mol Mech
44	Mutagen 400: 233-244. <u>http://dx.doi.org/10.1016/S0027-5107(98)00028-1</u>
45	<u>Izzotti, A; Bagnasco, M; Cartiglia, C; Longobardi, M; De Flora, S.</u> (2004). Proteomic analysis as
46	related to transcriptome data in the lung of chromium(VI)-treated rats. Int J Oncol 24: 1513-
47	1522.
48	Izzotti, A; Cartiglia, C; Balansky, R; D'Agostini, F; Longobardi, M; De Flora, S. (2002). Selective
49	induction of gene expression in rat lung by hexavalent chromium. Mol Carcinog 35: 75-84.
50	http://dx.doi.org/10.1002/mc.10077

1	Jacquet, P; Draye, JP. (1982). Toxicity of chromium salts to cultured mouse embryos. Toxicol Lett
2	12: 53-57. <u>http://dx.doi.org/10.1016/0378-4274(82)90198-9</u>
3	Jakobsson, K; Horstmann, V; Welinder, H. (1993). Mortality and cancer morbidity among cement
4	workers. Br J Ind Med 50: 264-272.
5	Jakobsson, K; Mikoczy, Z; Skerfving, S. (1997). Deaths and tumours among workers grinding
6	stainless steel: a follow up. Occup Environ Med 54: 825-829.
7	http://dx.doi.org/10.1136/oem.54.11.825
8	<u>Jannetto, PJ; Antholine, WE; Myers, CR.</u> (2001). Cytochrome b(5) plays a key role in human
9	microsomal chromium(VI) reduction. Toxicology 159: 119-133.
10	<u>Jansson, C; Oh, JK; Martinsen, JI; Lagergren, J; Plato, N; Kjaerheim, K; Pukkala, E; Sparén, P;</u>
11	Tryggvadottir, L; Weiderpass, E. (2015). Occupation and risk of oesophageal
12	adenocarcinoma and squamous-cell carcinoma: The Nordic Occupational Cancer Study. Int J
13	Cancer 137: 590-597. <u>http://dx.doi.org/10.1002/ijc.29409</u>
14	<u>Järvholm, B; Thiringer, G; Axelson, O.</u> (1982). Cancer morbidity among polishers. Br J Ind Med 39:
15	196-197. <u>http://dx.doi.org/10.1136/oem.39.2.196</u>
16	Jasperson, KW; Patel, SG; Ahnen, DJ. (2017). APC-Associated Polyposis Conditions. In MP Adam; HH
17	Ardinger; RA Pagon; SE Wallace; LJH Bean; G Mirzaa; A Amemiya (Eds.), GeneReviews
18	[Internet]. Seattle, WA: University of Washington, Seattle.
19	Ji, J: Hemminki, K. (2006). Socio-economic and occupational risk factors for gastric cancer: a cohort
20	study in Sweden. Eur J Cancer Prev 15: 391-397.
21	Jin, Y; Liu, L; Zhang, S; Tao, B; Tao, R; He, X; Qu, L; Huang, J; Wang, X; Fu, Z. (2016). Chromium alters
22 23	lipopolysaccharide-induced inflammatory responses both in vivo and in vitro. Chemosphere
25 24	148: 436-443. <u>http://dx.doi.org/10.1016/j.chemosphere.2016.01.057</u> Jin, Y; Zhang, S; Tao, R; Huang, J; He, X; Qu, L; Fu, Z. (2014). Oral exposure of mice to cadmium (II),
24 25	chromium (VI) and their mixture induce oxidative- and endoplasmic reticulum-stress
26	mediated apoptosis in the livers. Environ Toxicol 31: 693-705.
20	IIIeulaleu aboblosis III ule IIveis. Elivitoli Toxicol 51, 075-705.
27	• •
27 28	http://dx.doi.org/10.1002/tox.22082
28	http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after
28 29	http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385.
28 29 30	http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9
28 29 30 31	http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G;
28 29 30 31 32	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by
28 29 30 31 32 33	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550.
28 29 30 31 32 33 34	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h
28 29 30 31 32 33 34 35	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550.
28 29 30 31 32 33 34	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ; Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi,
28 29 30 31 32 33 34 35 36	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ; Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi, X; Li, L. (2011). Concentrations of arsenic, chromium, and nickel in toenail samples from
28 29 30 31 32 33 34 35 36 37	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ; Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi, X; Li, L. (2011). Concentrations of arsenic, chromium, and nickel in toenail samples from Appalachian Kentucky residents. J Environ Pathol Toxicol Oncol 30: 213-223.
28 29 30 31 32 33 34 35 36 37 38	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ; Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi, X; Li, L. (2011). Concentrations of arsenic, chromium, and nickel in toenail samples from Appalachian Kentucky residents. J Environ Pathol Toxicol Oncol 30: 213-223. http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.40
28 29 30 31 32 33 34 35 36 37 38 39	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ; Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi, X; Li, L. (2011). Concentrations of arsenic, chromium, and nickel in toenail samples from Appalachian Kentucky residents. J Environ Pathol Toxicol Oncol 30: 213-223. http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.40 Joseph, P; He, Q; Umbright, C. (2008). Heme-oxygenase 1 gene expression is a marker for
28 29 30 31 32 33 34 35 36 37 38 39 40	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ; Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi, X; Li, L. (2011). Concentrations of arsenic, chromium, and nickel in toenail samples from Appalachian Kentucky residents. J Environ Pathol Toxicol Oncol 30: 213-223. http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.40 Joseph, P; He, Q; Umbright, C. (2008). Heme-oxygenase 1 gene expression is a marker for hexavalent chromium-induced stress and toxicity in human dermal fibroblasts. Toxicol Sci 103: 325-334. http://dx.doi.org/10.1093/toxsci/kfn048 Kaczmarek, M; Timofeeva, OA; Karaczyn, A; Malyguine, A; Kasprzak, KS; Salnikow, K. (2007). The
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ: Veljanoski, F; O'Doherty, PJ: Zaman, MS: Petersingham, G; Bailey, TD: Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ; Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi, X; Li, L. (2011). Concentrations of arsenic, chromium, and nickel in toenail samples from Appalachian Kentucky residents. J Environ Pathol Toxicol Oncol 30: 213-223. http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.40 Joseph, P; He, Q; Umbright, C. (2008). Heme-oxygenase 1 gene expression is a marker for hexavalent chromium-induced stress and toxicity in human dermal fibroblasts. Toxicol Sci 103: 325-334. http://dx.doi.org/10.1093/toxsci/kfn048 Kaczmarek, M; Timofeeva, OA; Karaczyn, A; Malyguine, A; Kasprzak, KS; Salnikow, K. (2007). The role of ascorbate in the modulation of HIF-1 alpha protein and HIF-dependent transcription
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ: Veljanoski, F: O'Doherty, PJ: Zaman, MS: Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ: Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi, X; Li, L. (2011). Concentrations of arsenic, chromium, and nickel in toenail samples from Appalachian Kentucky residents. J Environ Pathol Toxicol Oncol 30: 213-223. http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.40 Joseph, P; He, Q; Umbright, C. (2008). Heme-oxygenase 1 gene expression is a marker for hexavalent chromium-induced stress and toxicity in human dermal fibroblasts. Toxicol Sci 103: 325-334. http://dx.doi.org/10.1093/toxsci/kfn048 Kaczmarek, M; Timofeeva, OA; Karaczyn, A; Malyguine, A; Kasprzak, KS; Salnikow, K. (2007). The role of ascorbate in the modulation of HIF-1 alpha protein and HIF-dependent transcription by chromium(VI) and nickel(II). Free Radic Biol Med 42: 1246-1257.
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ; Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi, X; Li, L (2011). Concentrations of arsenic, chromium, and nickel in toenail samples from Appalachian Kentucky residents. J Environ Pathol Toxicol Oncol 30: 213-223. http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.40 Joseph, P; He, Q; Umbright, C. (2008). Heme-oxygenase 1 gene expression is a marker for hexavalent chromium-induced stress and toxicity in human dermal fibroblasts. Toxicol Sci 103: 325-334. http://dx.doi.org/10.1093/toxsci/kfn048 Kaczmarek, M; Timofeeva, OA; Karaczyn, A; Malyguine, A; Kasprzak, KS; Salnikow, K, (2007). The role of ascorbate in the modulation of HIF-1 alpha protein and HIF-dependent transcription by chromium(VI) and nickel(II). Free Radic Biol Med 42: 1246-1257. http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.026
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, A]; Veljanoski, F: O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ; Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi, X; Li, L. (2011). Concentrations of arsenic, chromium, and nickel in toenail samples from Appalachian Kentucky residents. J Environ Pathol Toxicol Oncol 30: 213-223. http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.40 Joseph, P; He, Q; Umbright, C. (2008). Heme-oxygenase 1 gene expression is a marker for hexavalent chromium-induced stress and toxicity in human dermal fibroblasts. Toxicol Sci 103: 325-334. http://dx.doi.org/10.1093/toxsci/kfn048 Kaczmarek, M; Timofeeva, OA; Karaczyn, A: Malyguine, A; Kasprzak, KS; Salnikow, K. (2007). The role of ascorbate in the modulation of HIF-1 alpha protein and HIF-dependent transcription by chromium(VI) and nickel(II). Free Radic Biol Med 42: 1246-1257. http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.026 Kadiiska, MB; Morrow, JD; Awad, JA; Roberts, LJ; Mason, RP. (1998). Identification of free radical
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F: O'Doherty, PJ; Zaman, MS: Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ; Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi, X: Li, L. (2011). Concentrations of arsenic, chromium, and nickel in toenail samples from Appalachian Kentucky residents. J Environ Pathol Toxicol Oncol 30: 213-223. http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.40 Joseph, P: He, Q; Umbright, C. (2008). Heme-oxygenase 1 gene expression is a marker for hexavalent chromium-induced stress and toxicity in human dermal fibroblasts. Toxicol Sci 103: 325-334. http://dx.doi.org/10.1093/toxsci/kfn048 Kaczmarek, M; Timofeeva, OA; Karaczyn, A; Malyguine, A; Kasprzak, KS; Salnikow, K. (2007). The role of ascorbate in the modulation of HIF-1 alpha protein and HIF-dependent transcription by chromium(VI) and nickel(II). Free Radic Biol Med 42: 1246-1257. http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.026 Kadiiska, MB; Morrow, JD; Awad, JA; Roberts, LJ; Mason, RP. (1998). Identification of free radical formation and F-2-isoprostanes in vivo by acute Cr(VI) poisoning. Chem Res Toxicol 11:
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F; O'Doherty, PJ; Zaman, MS; Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ; Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi, X; Li, L (2011). Concentrations of arsenic, chromium, and nickel in toenail samples from Appalachian Kentucky residents. J Environ Pathol Toxicol Oncol 30: 213-223. http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.40 Joseph, P; He, Q; Umbright, C. (2008). Heme-oxygenase 1 gene expression is a marker for hexavalent chromium-induced stress and toxicity in human dermal fibroblasts. Toxicol Sci 103: 325-334. http://dx.doi.org/10.1093/toxsci/kfn048 Kaczmarek, M; Timofeeva, OA; Karaczyn, A; Malyguine, A; Kasprzak, KS; Salnikow, K. (2007). The role of ascorbate in the modulation of HIF-1 alpha protein and HIF-dependent transcription by chromium(VI) and nickel(II). Free Radic Biol Med 42: 1246-1257. http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.026 Kadiiska, MB; Morrow, ID; Awad, JA; Roberts, LJ; Mason, RP. (1998). Identification of free radical formation and F-2-isoprostanes in vivo by acute Cr(VI) poisoning. Chem Res Toxicol 11: 1516-1520. http://dx.doi.org/10.1021/tx980169e
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	 http://dx.doi.org/10.1002/tox.22082 Johansson, A; Wiernik, A; Jarstrand, C; Camner, P. (1986). Rabbit alveolar macrophages after inhalation of hexa- and trivalent chromium. Environ Res 39: 372-385. http://dx.doi.org/10.1016/S0013-9351(86)80063-9 Johnson, AJ; Veljanoski, F: O'Doherty, PJ; Zaman, MS: Petersingham, G; Bailey, TD; Münch, G; Kersaitis, C; Wu, MJ. (2016). Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8: 542-550. http://dx.doi.org/10.1039/c6mt00039h Johnson, N; Shelton, BJ; Hopenhayn, C; Tucker, TT; Unrine, JM; Huang, B; Christian, WJ; Zhang, Z; Shi, X: Li, L. (2011). Concentrations of arsenic, chromium, and nickel in toenail samples from Appalachian Kentucky residents. J Environ Pathol Toxicol Oncol 30: 213-223. http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v30.i3.40 Joseph, P: He, Q; Umbright, C. (2008). Heme-oxygenase 1 gene expression is a marker for hexavalent chromium-induced stress and toxicity in human dermal fibroblasts. Toxicol Sci 103: 325-334. http://dx.doi.org/10.1093/toxsci/kfn048 Kaczmarek, M; Timofeeva, OA; Karaczyn, A; Malyguine, A; Kasprzak, KS; Salnikow, K. (2007). The role of ascorbate in the modulation of HIF-1 alpha protein and HIF-dependent transcription by chromium(VI) and nickel(II). Free Radic Biol Med 42: 1246-1257. http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.026 Kadiiska, MB; Morrow, JD; Awad, JA; Roberts, LJ; Mason, RP. (1998). Identification of free radical formation and F-2-isoprostanes in vivo by acute Cr(VI) poisoning. Chem Res Toxicol 11:

This document is a draft for review purposes only and does not constitute Agency policy.

1	and small bowel adenocarcinoma: a European case-control study. Occup Environ Med 57:
2	760-766. <u>http://dx.doi.org/10.1136/oem.57.11.760</u>
3	Kaerlev, L; Teglbjaerg, PS; Sabroe, S; Kolstad, HA; Ahrens, W; Eriksson, M; Guénel, P; Hardell, L; Cyr,
4	<u>D; Ballard, T; Zambon, P; Morales Suárez-Varela, MM; Stang, A; Olsen, J.</u> (2002).
5	Occupational risk factors for small bowel carcinoid tumor: A European population-based
6	case-control study. J Occup Environ Med 44: 516-522.
7	Kalahasthi, RB; Rao, RH; Murthy, RB; Kumar, MK. (2006). Effect of chromium(VI) on the status of
8	plasma lipid peroxidation and erythrocyte antioxidant enzymes in chromium plating
9	workers. Chem Biol Interact 164: 192-199. <u>http://dx.doi.org/10.1016/j.cbi.2006.09.012</u>
10	<u>Kalantzi, L; Goumas, K; Kalioras, V; Abrahamsson, B; Dressman, JB; Reppas, C.</u> (2006).
11	Characterization of the human upper gastrointestinal contents under conditions simulating
12	bioavailability/bioequivalence studies. Pharm Res 23: 165-176.
13	<u>http://dx.doi.org/10.1007/s11095-005-8476-1</u>
14	Kalliomäki, PL; Kiilunen, M; Vaaranen, V; Lakomaa, EL; Kalliomäki, K; Kivelä, R. (1982). Retention of
15	stainless steel manual metal arc welding fumes in rats. J Toxicol Environ Health 10: 223-
16	232. <u>http://dx.doi.org/10.1080/15287398209530245</u>
17	Kalliomäki, PL; Lakomaa, E; Kalliomäki, K; Kiilunen, M; Kivelä, R; Vaaranen, V. (1983). Stainless
18	steel manual metal arc welding fumes in rats. Br J Ind Med 40: 229-234.
19	Kaltreider, RC; Pesce, CA; Ihnat, MA; Lariviere, JP; Hamilton, JW. (1999). Differential effects of
20	arsenic(III) and chromium(VI) on nuclear transcription factor binding. Mol Carcinog 25:
21	219-229. <u>http://dx.doi.org/10.1002/(SICI)1098-2744(199907)25:3</u> <219::AID-
22	MC8>3.0.C0;2-X
23	Kang, SK; Burnett, CA; Freund, E; Walker, J; Lalich, N; Sestito, J. (1997). Gastrointestinal cancer
24	mortality of workers in occupations with high asbestos exposures. Am J Ind Med 31: 713-
25	718.
26	Kano, K; Horikawa, M; Utsunomiya, T; Tati, M; Satoh, K; Yamaguchi, S. (1993). Lung cancer mortality
26 27	among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22.
26 27 28	among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. <u>http://dx.doi.org/10.1093/ije/22.1.16</u>
26 27 28 29	among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. <u>http://dx.doi.org/10.1093/ije/22.1.16</u> Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K;
26 27 28 29 30	among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. <u>http://dx.doi.org/10.1093/ije/22.1.16</u> <u>Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K;</u> <u>Buha Djordjevic, A; Hartung, T; Tsatsakis, A.</u> (2019). Long-term effects of chromium on
26 27 28 29 30 31	among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. <u>http://dx.doi.org/10.1093/ije/22.1.16</u> <u>Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K;</u> <u>Buha Djordjevic, A; Hartung, T; Tsatsakis, A.</u> (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133:
26 27 28 29 30 31 32	among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. <u>http://dx.doi.org/10.1093/ije/22.1.16</u> Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; <u>Buha Djordjevic, A; Hartung, T; Tsatsakis, A.</u> (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. <u>http://dx.doi.org/10.1016/j.fct.2019.110748</u>
26 27 28 29 30 31 32 33	among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. <u>http://dx.doi.org/10.1093/ije/22.1.16</u> <u>Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K;</u> <u>Buha Djordjevic, A; Hartung, T; Tsatsakis, A.</u> (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. <u>http://dx.doi.org/10.1016/j.fct.2019.110748</u> <u>Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M.</u> (1993). Comparison of the uptake and
26 27 28 29 30 31 32 33 33	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; Buha Djordjevic, A; Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318.
26 27 28 29 30 31 32 33 34 35	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; Buha Djordjevic, A; Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964
26 27 28 29 30 31 32 33 34 35 36	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; Buha Djordjevic, A; Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964 Katabami, M; Dosaka-Akita, H; Mishina, T; Honma, K; Kimura, K; Uchida, Y; Morikawa, K; Mikami, H;
26 27 28 29 30 31 32 33 34 35 36 37	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; Buha Djordjevic, A; Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964 Katabami, M; Dosaka-Akita, H; Mishina, T; Honma, K; Kimura, K; Uchida, Y; Morikawa, K; Mikami, H; Fukuda, S; Inuyama, Y; Ohsaki, Y; Kawakami, Y. (2000). Frequent cyclin D1 expression in
26 27 28 29 30 31 32 33 34 35 36 37 38	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; Buha Djordjevic, A; Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964 Katabami, M; Dosaka-Akita, H; Mishina, T; Honma, K; Kimura, K; Uchida, Y; Morikawa, K; Mikami, H; Fukuda, S; Inuyama, Y; Ohsaki, Y; Kawakami, Y. (2000). Frequent cyclin D1 expression in chromate-induced lung cancers. Hum Pathol 31: 973-979.
26 27 28 29 30 31 32 33 34 35 36 37 38 39	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; Buha Djordjevic, A; Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964 Katabami, M; Dosaka-Akita, H; Mishina, T; Honma, K; Kimura, K; Uchida, Y; Morikawa, K; Mikami, H; Fukuda, S; Inuyama, Y; Ohsaki, Y; Kawakami, Y. (2000). Frequent cyclin D1 expression in chromate-induced lung cancers. Hum Pathol 31: 973-979. http://dx.doi.org/10.1053/hupa.2000.9081
26 27 28 30 31 32 33 34 35 36 37 38 39 40	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; Buha Djordjevic, A; Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964 Katabami, M; Dosaka-Akita, H; Mishina, T; Honma, K; Kimura, K; Uchida, Y; Morikawa, K; Mikami, H; Fukuda, S; Inuyama, Y; Ohsaki, Y; Kawakami, Y. (2000). Frequent cyclin D1 expression in chromate-induced lung cancers. Hum Pathol 31: 973-979. http://dx.doi.org/10.1053/hupa.2000.9081 Kataoka, M; Takashima, T; Shingaki, T; Hashidzume, Y; Katayama, Y; Wada, Y; Oh, H; Masaoka, Y;
26 27 28 30 31 32 33 34 35 36 37 38 39 40 41	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV: Renieri, EA: Smolyagin, AI: Mikhaylova, IV: Stadnikov, AA: Begun, DN: Tsarouhas, K: Buha Djordjevic, A: Hartung, T: Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B: Squibb, KS: Cosentino, S: Zhitkovich, A: Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964 Katabami, M: Dosaka-Akita, H: Mishina, T: Honma, K: Kimura, K: Uchida, Y: Morikawa, K: Mikami, H: Fukuda, S: Inuyama, Y: Ohsaki, Y: Kawakami, Y. (2000). Frequent cyclin D1 expression in chromate-induced lung cancers. Hum Pathol 31: 973-979. http://dx.doi.org/10.1053/hupa.2000.9081 Kataoka, M: Takashima, T: Shingaki, T: Hashidzume, Y: Katayama, Y: Wada, Y: Oh, H: Masaoka, Y: Sakuma, S: Sugiyama, Y: Yamashita, S: Watanabe, Y. (2012). Dynamic analysis of GI
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; Buha Djordjevic, A; Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964 Katabami, M; Dosaka-Akita, H; Mishina, T; Honma, K; Kimura, K; Uchida, Y; Morikawa, K; Mikami, H; Fukuda, S; Inuyama, Y; Ohsaki, Y; Kawakami, Y. (2000). Frequent cyclin D1 expression in chromate-induced lung cancers. Hum Pathol 31: 973-979. http://dx.doi.org/10.1053/hupa.2000.9081 Kataoka, M; Takashima, T; Shingaki, T; Hashidzume, Y; Katayama, Y; Wada, Y; Oh, H; Masaoka, Y; Sakuma, S; Sugiyama, Y; Yamashita, S; Watanabe, Y. (2012). Dynamic analysis of GI absorption and hepatic distribution processes of telmisartan in rats using positron emission
26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; Buha Djordjevic, A; Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964 Katabami, M; Dosaka-Akita, H; Mishina, T; Honma, K; Kimura, K; Uchida, Y; Morikawa, K; Mikami, H; Fukuda, S; Inuyama, Y; Ohsaki, Y; Kawakami, Y. (2000). Frequent cyclin D1 expression in chromate-induced lung cancers. Hum Pathol 31: 973-979. http://dx.doi.org/10.1053/hupa.2000.9081 Kataoka, M; Takashima, T; Shingaki, T; Hashidzume, Y; Katayama, Y; Wada, Y; Oh, H; Masaoka, Y; Sakuma, S; Sugiyama, Y; Yamashita, S; Watanabe, Y. (2012). Dynamic analysis of GI absorption and hepatic distribution processes of telmisartan in rats using positron emission tomography. Pharm Res 29: 2419-2431. http://dx.doi.org/10.1007/s11095-012-0768-7
26 27 28 30 31 32 33 34 35 36 37 38 39 40 41	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; Buha Djordjevic, A; Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964 Katabami, M; Dosaka-Akita, H; Mishina, T; Honma, K; Kimura, K; Uchida, Y; Morikawa, K; Mikami, H; Fukuda, S; Inuyama, Y; Ohsaki, Y; Kawakami, Y. (2000). Frequent cyclin D1 expression in chromate-induced lung cancers. Hum Pathol 31: 973-979. http://dx.doi.org/10.1053/hupa.2000.9081 Kataoka, M; Takashima, T; Shingaki, T; Hashidzume, Y; Katayama, Y; Wada, Y; Oh, H; Masaoka, Y; Sakuma, S; Sugiyama, Y; Yamashita, S; Watanabe, Y. (2012). Dynamic analysis of GI absorption and hepatic distribution processes of telmisartan in rats using positron emission
26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; Buha Djordjevic, A; Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964 Katabami, M; Dosaka-Akita, H; Mishina, T; Honma, K; Kimura, K; Uchida, Y; Morikawa, K; Mikami, H; Fukuda, S; Inuyama, Y; Ohsaki, Y; Kawakami, Y. (2000). Frequent cyclin D1 expression in chromate-induced lung cancers. Hum Pathol 31: 973-979. http://dx.doi.org/10.1053/hupa.2000.9081 Kataoka, M; Takashima, T; Shingaki, T; Hashidzume, Y; Katayama, Y; Wada, Y; Oh, H; Masaoka, Y; Sakuma, S; Sugiyama, Y; Yamashita, S; Watanabe, Y. (2012). Dynamic analysis of GI absorption and hepatic distribution processes of telmisartan in rats using positron emission tomography. Pharm Res 29: 2419-2431. http://dx.doi.org/10.1007/s11095-012-0768-7 Katiyar, S; Awasthi, SK; Sahu, RK. (2008). Suppression of IL-6 level in human peripheral blood mononuclear cells stimulated with PHA/LPS after occupational exposure to chromium. Sci
26 27 28 30 31 32 33 35 37 39 41 42 43 44 45 46	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV: Renieri, EA: Smolyagin, AI: Mikhaylova, IV: Stadnikov, AA: Begun, DN: Tsarouhas, K: Buha Djordjevic, A: Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A: Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964 Katabami, M: Dosaka-Akita, H: Mishina, T: Honma, K: Kimura, K: Uchida, Y: Morikawa, K: Mikami, H: Fukuda, S: Inuyama, Y: Ohsaki, Y: Kawakami, Y. (2000). Frequent cyclin D1 expression in chromate-induced lung cancers. Hum Pathol 31: 973-979. http://dx.doi.org/10.1053/hupa.2000.9081 Kataoka, M: Takashima, T: Shingaki, T: Hashidzume, Y: Katayama, Y: Wada, Y: Oh, H: Masaoka, Y: Sakuma, S; Sugiyama, Y: Yamashita, S; Watanabe, Y. (2012). Dynamic analysis of GI absorption and hepatic distribution processes of telmisartan in rats using positron emission tomography. Pharm Res 29: 2419-2431. http://dx.doi.org/10.1007/s11095-012-0768-7 Katiyar, S: Awasthi, SK: Sahu, RK. (2008). Suppression of IL-6 level in human peripheral blood
26 27 28 30 31 32 33 35 36 37 38 40 41 42 43 44 45	 among a cohort of male chromate pigment workers in Japan. Int J Epidemiol 22: 16-22. http://dx.doi.org/10.1093/ije/22.1.16 Karaulov, AV; Renieri, EA; Smolyagin, AI; Mikhaylova, IV; Stadnikov, AA; Begun, DN; Tsarouhas, K; Buha Djordjevic, A; Hartung, T; Tsatsakis, A. (2019). Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 133: 110748. http://dx.doi.org/10.1016/j.fct.2019.110748 Kargacin, B; Squibb, KS; Cosentino, S; Zhitkovich, A; Costa, M. (1993). Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36: 307-318. http://dx.doi.org/10.1007/BF02783964 Katabami, M; Dosaka-Akita, H; Mishina, T; Honma, K; Kimura, K; Uchida, Y; Morikawa, K; Mikami, H; Fukuda, S; Inuyama, Y; Ohsaki, Y; Kawakami, Y. (2000). Frequent cyclin D1 expression in chromate-induced lung cancers. Hum Pathol 31: 973-979. http://dx.doi.org/10.1053/hupa.2000.9081 Kataoka, M; Takashima, T; Shingaki, T; Hashidzume, Y; Katayama, Y; Wada, Y; Oh, H; Masaoka, Y; Sakuma, S; Sugiyama, Y; Yamashita, S; Watanabe, Y. (2012). Dynamic analysis of GI absorption and hepatic distribution processes of telmisartan in rats using positron emission tomography. Pharm Res 29: 2419-2431. http://dx.doi.org/10.1007/s11095-012-0768-7 Katiyar, S; Awasthi, SK; Sahu, RK (2008). Suppression of IL-6 level in human peripheral blood mononuclear cells stimulated with PHA/LPS after occupational exposure to chromium. Sci Total Environ 390: 355-361. http://dx.doi.org/10.1016/j.scitotenv.2007.10.031

1	Keller, JE; Howe, HL (1993). Cancer in illinois construction workers: A study. Am J Ind Med 24: 223-
2	230. <u>http://dx.doi.org/10.1002/ajim.4700240208</u>
3	Kerger, BD; Finley, BL; Corbett, GE; Dodge, DG; Paustenbach, DJ. (1997). Ingestion of chromium (VI)
4	in drinking water by human volunteers: absorption, distribution, and excretion of single and
5	repeated doses. J Toxicol Environ Health 50: 67-95.
6	Kerger, BD; Paustenbach, DJ; Corbett, GE; Finley, BL. (1996). Absorption and elimination of trivalent
7	and hexavalent chromium in humans following ingestion of a bolus dose in drinking water.
8	Toxicol Appl Pharmacol 141: 145-158. <u>http://dx.doi.org/10.1006/taap.1996.0271</u>
9	Khorsandi, K; Rabbani-Chadegani, A. (2013). Studies on the genotoxic effect of chromium oxide (Cr
10	VI): interaction with deoxyribonucleic acid in solution. Mutat Res 750: 105-110.
11	http://dx.doi.org/10.1016/j.mrgentox.2012.10.002
12	Kim, H; Cho, SH; Chung, MH. (1999). Exposure to hexavalent chromium does not increase 8-
13	hydroxydeoxyguanosine levels in Korean chromate pigment workers. Ind Health 37: 335-
14	341.
15	Kim, HY; Lee, SB; Jang, BS. (2004). Subchronic inhalation toxicity of soluble hexavalent chromium
16	trioxide in rats. Arch Toxicol 78: 363-368. <u>http://dx.doi.org/10.1007/s00204-004-0553-4</u>
17	<u>Kim, SH; Lee, I, nC; Baek, HS; Moon, C; Kang, SS, oo; Bae, CS, ik; Kim, SH, o; Shin, DH, o; Kim, JC.</u>
18	(2012). Pycnogenol (R) prevents hexavalent chromium-induced spermatotoxicity in rats.
19	Mol Cell Toxicol 8: 249-256. <u>http://dx.doi.org/10.1007/s13273-012-0030-8</u>
20	<u>Kim, SJ; Choi, IJ; Cheong, TC; Lee, SJ; Lotan, R; Park, SH; Chun, KH.</u> (2010). Galectin-3 increases
21	gastric cancer cell motility by up-regulating fascin-1 expression. Gastroenterology 138:
22	1035-1045. <u>http://dx.doi.org/10.1053/j.gastro.2009.09.061</u>
23	Kim, YD; An, SC; Oyama, T; Kawamoto, T; Kim, H. (2003). Oxidative stress, hogg1 expression and
24	NF-kappaB activity in cells exposed to low level chromium. J Occup Health 45: 271-277.
25	http://dx.doi.org/10.1539/joh.45.271
26	Kirman, CR; Aylward, LL; Suh, M; Harris, MA; Thompson, CM; Haws, LC; Proctor, DM; Lin, SS; Parker,
27	W: Hays, SM. (2013). Physiologically based pharmacokinetic model for humans orally
28	exposed to chromium. Chem Biol Interact 204: 13-27.
29	http://dx.doi.org/10.1016/j.cbi.2013.04.003
30	Kirman, CR; Hays, SM; Aylward, LL; Suh, M; Harris, MA; Thompson, CM; Haws, LC; Proctor, DM.
31	(2012). Physiologically based pharmacokinetic model for rats and mice orally exposed to
32	chromium. Chem Biol Interact 200: 45-64. <u>http://dx.doi.org/10.1016/j.cbi.2012.08.016</u>
33	Kirman, CR; Suh, M; Hays, SM; Gürleyük, H; Gerads, R; De Flora, S; Parker, W; Lin, S; Haws, LC;
34	Harris, MA: Proctor, DM. (2016). Reduction of hexavalent chromium by fasted and fed
35	human gastric fluid. II. Ex vivo gastric reduction modeling. Toxicol Appl Pharmacol 306:
36	120-133. <u>http://dx.doi.org/10.1016/j.taap.2016.07.002</u>
37	Kirman, CR; Suh, M; Proctor, DM; Hays, SM. (2017). Improved physiologically based
38	pharmacokinetic model for oral exposures to chromium in mice, rats, and humans to
39	address temporal variation and sensitive populations. Toxicol Appl Pharmacol.
40	http://dx.doi.org/10.1016/j.taap.2017.03.023
41	Kitagawa, S; Seki, H; Kametani, F; Sakurai, H. (1982). Uptake of hexavalent chromium by bovine
42	erythrocytes and its interaction with cytoplasmic components; the role of glutathione. Chem
43	Biol Interact 40: 265-274.
44	Kitamura, F; Yokoyama, K; Araki, S; Nishikitani, M; Choi, JW; Yum, YT; Park, HC; Park, SH; Sato, H.
45	(2003). Increase of olfactory threshold in plating factory workers exposed to chromium in
46	Korea. Ind Health 41: 279-285. <u>http://dx.doi.org/10.2486/indhealth.41.279</u>
47	Kitamura, M: Sugamoto, S: Kawauchi, S: Kato, S: Takeuchi, K. (1999). Modulation by endogenous
48 49	nitric oxide of acid secretion induced by gastric distention in rats: Enhancement by nitric oxide synthase inhibitor. J Pharmacol Exp Ther 291: 181-187.
411	

1	Kleinfeld, M; Rosso, A. (1965). Ulcerations of the nasal septum due to inhalation of chromic acid
2	mist. Indian J Med Surg 34: 242-243.
3	<u>Kneller, RW; Gao, YT; McLaughlin, JK; Gao, RN; Blot, WJ; Liu, MH; Sheng, JP; Fraumeni, JF. (1990).</u>
4	Occupational risk factors for gastric cancer in Shanghai, China. Am J Ind Med 18: 69-78.
5	<u>http://dx.doi.org/10.1002/ajim.4700180108</u>
6	Knudsen, I. (1980). The mammalian spot test and its use for the testing of potential carcinogenicity
7	of welding fume particles and hexavalent chromium. Acta Pharmacol Toxicol 47: 66-70.
8	http://dx.doi.org/10.1111/j.1600-0773.1980.tb02027.x
9	Koh, DH; Kim, TW; Jang, S; Ryu, HW. (2013). Dust exposure and the risk of cancer in cement
10	industry workers in Korea. Am J Ind Med 56: 276-281.
11	http://dx.doi.org/10.1002/ajim.22132
12	Koh, DH; Kim, TW; Jang, SH; Ryu, HW. (2011). Cancer mortality and incidence in cement industry
13	workers in Korea. Saf Health Work 2: 243-249.
14	http://dx.doi.org/10.5491/SHAW.2011.2.3.243
15	Kohl, KD; Stengel, A; Samuni-Blank, M; Dearing, MD. (2013). Effects of anatomy and diet on
16	gastrointestinal pH in rodents. J Exp Zool A Ecol Genet Physiol 319: 225-229.
17	http://dx.doi.org/10.1002/jez.1786
18	Kondo, K; Hino, N; Sasa, M; Kamamura, Y; Sakiyama, S; Tsuyuguchi, M; Hashimoto, M; Uyama, T;
19	Monden, Y. (1997). Mutations of the p53 gene in human lung cancer from chromate-
20	exposed workers. Biochem Biophys Res Commun 239: 95-100.
21	http://dx.doi.org/10.1006/bbrc.1997.7425
22	<u>Kondo, K; Takahashi, Y; Hirose, Y; Nagao, T; Tsuyuguchi, M; Hashimoto, M; Ochiai, A; Monden, Y;</u>
23	Tangoku, A. (2006). The reduced expression and aberrant methylation of p16(INK4a) in
24	chromate workers with lung cancer. Lung Cancer 53: 295-302.
25	http://dx.doi.org/10.1016/j.lungcan.2006.05.022
26	<u>Kopec, AK; Kim, S; Forgacs, AL; Zacharewski, TR; Proctor, DM; Harris, MA; Haws, LC; Thompson,</u>
27	<u>CM.</u> (2012a). Genome-wide gene expression effects in B6C3F1 mouse intestinal epithelia
28	following 7 and 90days of exposure to hexavalent chromium in drinking water. Toxicol Appl
29	Pharmacol 259: 13-26. <u>http://dx.doi.org/10.1016/j.taap.2011.11.012</u>
30	Kopec, AK; Thompson, CM; Kim, S; Forgacs, AL; Zacharewski, TR. (2012b). Comparative
31	toxicogenomic analysis of oral Cr(VI) exposure effects in rat and mouse small intestinal
32	epithelia. Toxicol Appl Pharmacol 262: 124-138.
33	http://dx.doi.org/10.1016/j.taap.2012.04.026
34	Korallus, U; H-J, L; Neiss, A; Zwingers, T. (1982). [Relationships between hygienic measures and the
35	bronchial carcinoma mortality in the chromate producing industry]. Arbeitsmed Sozialmed
36	Praventivmed 17: 159-167.
37	Korallus, U; Ulm, K; Steinmann-Steiner-Haldenstaett, W. (1993). Bronchial carcinoma mortality in
38	the German chromate-producing industry: the effects of process modification. Int Arch
39	Occup Environ Health 65: 171-178. <u>http://dx.doi.org/10.1007/BF00381153</u>
40	Kortenkamp, A; Beyersmann, D; O'Brien, P. (1987). Uptake of chromium (III) complexes by
41	erythrocytes. Toxicol Environ Chem 14: 23-32.
42	http://dx.doi.org/10.1080/02772248709357191
43	Koshi, K; Yagami, T; Nakanishi, Y. (1984). Cytogenetic analysis of peripheral blood lymphocytes
44	from stainless steel welders. Ind Health 22: 305-318.
45	http://dx.doi.org/10.2486/indhealth.22.305
46	Kost, GC; Patierno, SR; Wise, SS; Holmes, AL; Wise, JP; Ceryak, S. (2012). Protein tyrosine
47	phosphatase (PTP) inhibition enhances chromosomal stability after genotoxic stress:
48	decreased chromosomal instability (CIN) at the expense of enhanced genomic instability
49	(GIN)? Mutat Res 735: 51-55. <u>http://dx.doi.org/10.1016/j.mrfmmm.2012.05.001</u>

1	<u>Kotyzova, D; Hodková, A; Bludovská, M; Eybl, V.</u> (2015). Effect of chromium (VI) exposure on
2	antioxidant defense status and trace element homeostasis in acute experiment in rat.
3	Toxicol Ind Health 31: 1044-1050. <u>http://dx.doi.org/10.1177/0748233713487244</u>
4	<u>Koutras, GA; Hattori, M; Schneider, AS; Ebaugh, FG; Valentine, WN.</u> (1964). STUDIES ON
5	CHROMATED ERYTHROCYTES. EFFECT OF SODIUM CHROMATE ON ERYTHROCYTE
6	GLUTATHIONE REDUCTASE. J Clin Invest 43: 323-331.
7	http://dx.doi.org/10.1172/JCI104917
8	Kraus, JF; Franti, CE; Newman, B. (1982). The utility of regional cancer mortality data for identifying
9	occupations at high risk. Scand J Work Environ Health 8 Suppl 1: 65-71.
10	Krawic, A; Luczak, M; Zhitkovich, A. (2017). Variation in extracellular detoxification is a link to
11	different carcinogenicity among chromates in rodent and human lungs. Chem Res Toxicol
12	30: 1720-1729. <u>http://dx.doi.org/10.1021/acs.chemrestox.7b00172</u>
13	Krepkiy, D; Antholine, WE; Petering, DH. (2003). Properties of the reaction of chromate with
14	metallothionein. Chem Res Toxicol 16: 750-756. <u>http://dx.doi.org/10.1021/tx020074j</u>
15	Krim, M; Messaadia, A; Maidi, I; Aouacheri, O; Saka, S. (2013). Protective effect of ginger against
16	toxicity induced by chromate in rats. Ann Biol Clin (Paris) 71: 165-173.
17	http://dx.doi.org/10.1684/abc.2013.0806
18	Krstev, S; Dosemeci, M; Lissowska, J; Chow, WH; Zatonski, W; Ward, MH. (2005). Occupation and
19	risk of stomach cancer in Poland. Occup Environ Med 62: 318-324.
20	http://dx.doi.org/10.1136/oem.2004.015883
21	Kumar, A; Rana, SVS. (1982). Lipid accumulation in chromium poisoned rats. Int J Tissue React 4:
22	291-295.
23	<u>Kumar, KM; Aruldhas, MM; Banu, SL; Sadasivam, B; Vengatesh, G; Ganesh, KM;</u>
24	<u>Navaneethabalakrishnan, S; Navin, AK; Michael, FM; Venkatachalam, S; Stanley, JA;</u>
25	Ramachandran, I; Banu, SK; Akbarsha, MA. (2017). Male reproductive toxicity of CrVI: In-
26	utero exposure to CrVI at the critical window of testis differentiation represses the
27	expression of Sertoli cell tight junction proteins and hormone receptors in adult F1 progeny
28	rats. Reprod Toxicol 69: 84-98. <u>http://dx.doi.org/10.1016/j.reprotox.2017.02.007</u>
29	Kumar, S; Nigam, A; Priya, S; Bajpai, P; Budhwar, R. (2013). Lipoic acid prevents Cr(6+) induced cell
30	transformation and the associated genomic dysregulation. Environ Toxicol Pharmacol 36:
31	182-193. <u>http://dx.doi.org/10.1016/j.etap.2013.02.016</u>
32	Kuo, HW; Chang, SF; Wu, KY; Wu, FY. (2003). Chromium (VI) induced oxidative damage to DNA:
33	increase of urinary 8-hydroxydeoxyguanosine concentrations (8-OHdG) among
34	electroplating workers. Occup Environ Med 60: 590-594.
35	Kuo, HW; Wu, ML. (2002). Effects of chromic acid exposure on immunological parameters among
36	electroplating workers. Int Arch Occup Environ Health 75: 186-190.
37	Kusiak, RA; Ritchie, AC; Springer, J; Muller, J. (1993). Mortality from stomach cancer in Ontario
38	miners. Br J Ind Med 50: 117-126. <u>http://dx.doi.org/10.1136/oem.50.2.117</u>
39	Kuwahara, Y; Sunagawa, Y; Imoto, Y; Okabe, S. (1990). Effects of orally administered human
40	epidermal growth factor on natural and delayed healing of acetic acid-induced gastric ulcers
41	in rats. Jpn J Pharmacol 52: 164-166. <u>http://dx.doi.org/10.1254/jjp.52.164</u>
42	Kuykendall, JR; Kerger, BD; Jarvi, EJ; Corbett, GE; Paustenbach, DJ. (1996). Measurement of DNA-
43	protein cross-links in human leukocytes following acute ingestion of chromium in drinking
44	water. Carcinogenesis 19: 1971-1977. <u>http://dx.doi.org/10.1093/carcin/17.9.1971</u>
45 46	Lai, JS; Kuo, HW; Liao, FC; Lien, CH. (1998). Sister chromatid exchange induced by chromium
46	compounds in human lymphocytes. Int Arch Occup Environ Health 71: 550-553.
47 49	Lal, MA; Bae, D; Camilli, TC; Patierno, SR; Ceryak, S. (2009). AKT1 mediates bypass of the G1/S
48	checkpoint after genotoxic stress in normal human cells. 8: 1589-1602.
49 50	Langard, S; Andersen, A; Ravnestad, J. (1990). Incidence of cancer among ferrochromium and
50	ferrosilicon workers: an extended observation period. Br J Ind Med 47: 14-19.

1	Lavin, MF; Kozlov, S. (2007). ATM activation and DNA damage response [Review]. Cell Cycle 6: 931-
2	942. <u>http://dx.doi.org/10.4161/cc.6.8.4180</u>
3	Lee, AJ: Hodges, NJ: Chipman, JK. (2004). Modified comet assay as a biomarker of sodium
4	dichromate-induced oxidative DNA damage: Optimization and reproducibility. Biomarkers
5	9: 103-115. <u>http://dx.doi.org/10.1080/13547500410001704891</u>
6	Lee, AJ: Hodges, NJ: Chipman, JK. (2005). Interindividual variability in response to sodium
7	dichromate-induced oxidative DNA damage: role of the Ser326Cys polymorphism in the
8	DNA-repair protein of 8-oxo-7,8-dihydro-2'-deoxyguanosine DNA glycosylase 1. Cancer
9	Epidemiol Biomarkers Prev 14: 497-505. <u>http://dx.doi.org/10.1158/1055-9965.EPI-04-</u>
10	<u>0295</u>
11	Lee, HS; Goh, CL. (1988). Occupational dermatosis among chrome platers. Contact Derm 18: 89-93.
12	http://dx.doi.org/10.1111/j.1600-0536.1988.tb02746.x
13	Lee, YH; Su, SB; Huang, CC; Sheu, HM; Tsai, JC; Lin, CH; Wang, YJ; Wang, BJ. (2014). N-acetylcysteine
14 15	attenuates hexavalent chromium-induced hypersensitivity through inhibition of cell death,
15	ROS-related signaling and cytokine expression. PLoS ONE 9: e108317.
16 17	http://dx.doi.org/10.1371/journal.pone.0108317 Lei, T; He, QY; Cai, Z; Zhou, Y; Wang, YL; Si, LS; Cai, Z; Chiu, JF. (2008). Proteomic analysis of
17 18	chromium cytotoxicity in cultured rat lung epithelial cells. Proteomics 8: 2420-2429.
18 19	http://dx.doi.org/10.1002/pmic.200701050
20	Leoz, ML; Carballal, S; Moreira, L; Ocaña, T; Balaguer, F. (2015). The genetic basis of familial
20	adenomatous polyposis and its implications for clinical practice and risk management
22	[Review]. The Application of Clinical Genetics 8: 95-107.
23	http://dx.doi.org/10.2147/TACG.S51484
24	Levina, A; Harris, HH; Lay, PA. (2007). X-ray absorption and EPR spectroscopic studies of the
25	biotransformations of chromium(VI) in mammalian cells. Is chromodulin an artifact of
26	isolation methods? J Am Chem Soc 129: 1065-1075. <u>http://dx.doi.org/10.1021/ja063792r</u>
27	Levina, A; Zhang, L; Lay, PA. (2010). Formation and reactivity of chromium(V)-thiolato complexes: a
28	model for the intracellular reactions of carcinogenic chromium(VI) with biological thiols. J
29	Am Chem Soc 132: 8720-8731. <u>http://dx.doi.org/10.1021/ja101675w</u>
30	Lewalter, J: Korallus, U. (1989). The significance of ascorbic acid and glutathione for chromate
31	metabolism in man. Toxicol Environ Chem 24: 25-33.
32	<u>http://dx.doi.org/10.1080/02772248909357474</u>
33	Li, LT; Jiang, G; Chen, Q; Zheng, JN. (2015). Ki67 is a promising molecular target in the diagnosis of
34	cancer [Review]. Mol Med Rep 11: 1566-1572. <u>http://dx.doi.org/10.3892/mmr.2014.2914</u>
35	Li, P; Gu, Y; Yu, S; Li, Y; Yang, J; Jia, G. (2014a). Assessing the suitability of 8-OHdG and micronuclei
36	as genotoxic biomarkers in chromate-exposed workers: a cross-sectional study. BMJ Open
37	4: e005979. <u>http://dx.doi.org/10.1136/bmjopen-2014-005979</u>
38	Li, Y; Hu, G; Li, P; Tang, S; Zhang, J; Jia, G. (2016). miR-3940-5p enhances homologous
39	recombination after DSB in Cr(VI) exposed 16HBE cell. Toxicology 344-346: 1-6.
40	http://dx.doi.org/10.1016/j.tox.2016.02.003
41	Li, Y; Li, P; Yu, S; Zhang, J; Wang, T; Jia, G. (2014b). miR-3940-5p associated with genetic damage in
42	workers exposed to hexavalent chromium. Toxicol Lett 229: 319-326.
43	http://dx.doi.org/10.1016/j.toxlet.2014.06.033
44 45	Liang, Q; Xiao, Y; Liu, K; Zhong, C; Zeng, M; Xiao, F. (2018). Cr(VI)-induced autophagy protects L-02
45 46	hepatocytes from apoptosis through the ROS-AKT-mTOR pathway. Cell Physiol Biochem 51: 1962, 1979, http://dx.doi.org/10.1159/000405712
46 47	1863-1878. <u>http://dx.doi.org/10.1159/000495713</u> Liang, Q; Zhang, Y; Huang, M; Xiao, Y; Xiao, F. (2019). Role of mitochondrial damage in
47 48	Cr(VI)-induced endoplasmic reticulum stress in L-02 hepatocytes. Mol Med Rep 19: 1256-
40 49	1265. http://dx.doi.org/10.3892/mmr.2018.9704
+5	1205. $\frac{1100}{100} \frac{1000}{100} \frac{1000}{10$

1	Lin, SC; Tai, CC; Chan, CC; Wang, JD. (1994). Nasal septum lesions caused by chromium exposure
2	among chromium electroplating workers. Am J Ind Med 26: 221-228.
3	<u>http://dx.doi.org/10.1002/ajim.4700260207</u>
4	Lindberg, E; Hedenstierna, G. (1983). Chrome plating: Symptoms, findings in the upper airways, and
5	effects on lung function. Arch Environ Occup Health 38: 367-374.
6	Lindemann, M; Rietschel, F; Zabel, M; Grosse-Wilde, H. (2008). Detection of chromium allergy by
7	cellular in vitro methods. Clin Exp Allergy 38: 1468-1475.
8	http://dx.doi.org/10.1111/j.1365-2222.2008.02970.x
9	Lindsay, JP; Stavraky, KM; Howe, GR. (1993). The Canadian Labour Force Ten Percent Sample
10	Study. Cancer mortality among men, 1965-1979. J Occup Med 35: 408-414.
11	Linos, A; Petralias, A; Christophi, CA; Christoforidou, E; Kouroutou, P; Stoltidis, M; Veloudaki, A;
12	<u>Tzala, E; Makris, KC; Karagas, MR.</u> (2011). Oral ingestion of hexavalent chromium through
13	drinking water and cancer mortality in an industrial area of Greecean ecological study.
14 15	Environ Health 10: 50. <u>http://dx.doi.org/10.1186/1476-069X-10-50</u>
16	<u>Linqing, Y; Bo, X; Xueqin, Y; Hong, D; Desheng, W; Huimin, Z; Gaofeng, J; Jianjun, L; Zhixiong, Z.</u> (2016). Mitochondrial DNA hypomethylation in chrome plating workers. Toxicol Lett 243:
17	1-6. <u>http://dx.doi.org/10.1016/j.toxlet.2015.11.031</u>
18	Lipworth, L; Sonderman, JS; Mumma, MT; Tarone, RE; Marano, DE; Boice, JD; McLaughlin, JK.
19	(2011). Cancer mortality among aircraft manufacturing workers: An extended follow-up. J
20	Occup Environ Med 53: 992-1007. <u>http://dx.doi.org/10.1097/IOM.0b013e31822e0940</u>
21	listed, Na. (1988). Strain difference in the micronucleus test. The Collaborative Study Group for the
22	Micronucleus Test. Mutat Res 204: 307-316. <u>http://dx.doi.org/10.1016/0165-</u>
23	1218(88)90104-8
24	Littorin, M; Hogstedt, B; Stromback, B; Karlsson, A; Welinder, H; Mitelman, F; Skerfving, S. (1983).
25	No cytogenetic effects in lymphocytes of stainless steel welders. Scand J Work Environ
26	Health 9: 259-264.
27	Liu, FJ; Barchowsky, A; Opresko, PL. (2009). The Werner syndrome protein functions in repair of
28	Cr(VI)-induced replication-associated DNA damage. Toxicol Sci 110: 307-318.
29	http://dx.doi.org/10.1093/toxsci/kfp104
30	Liu, FJ; Barchowsky, A; Opresko, PL. (2010a). The Werner syndrome protein suppresses telomeric
31	instability caused by chromium (VI) induced DNA replication stress. PLoS ONE 5: e11152.
32	http://dx.doi.org/10.1371/journal.pone.0011152
33	Liu, KJ; Jiang, J; Swartz, HM; Shi, X. (1994). Low-frequency EPR detection of chromium(V) formation
34 35	by chromium(VI) reduction in whole live mice. Arch Biochem Biophys 313: 248-252. Liu, KJ; Mäder, K; Shi, X; Swartz, HM. (1997). Reduction of carcinogenic chromium(VI) on the skin of
36	living rats. Magn Reson Med 38: 524-526. http://dx.doi.org/10.1002/mrm.1910380403
30 37	Liu, KJ; Shi, X. (2001). In vivo reduction of chromium (VI) and its related free radical generation.
38	Mol Cell Biochem 222: 41-47. <u>http://dx.doi.org/10.1023/A:1017994720562</u>
39	Liu, KJ; Shi, X; Jiang, J; Goda, F; Dalal, N; Swartz, HM. (1996). Low frequency electron paramagnetic
40	resonance investigation on metabolism of chromium (VI) by whole live mice. Ann Clin Lab
41	Sci 26: 176-184.
42	Liu, W; Chaspoul, F; Botta, C; De Méo, M; Gallice, P. (2010b). Bioenergetics and DNA alteration of
43	normal human fibroblasts by hexavalent chromium. Environ Toxicol Pharmacol 29: 58-63.
44	http://dx.doi.org/10.1016/j.etap.2009.10.001
45	Long, C; Liu, J; Hu, G; Feng, H; Zhou, D; Wang, J; Zhai, X; Zhao, Z; Yu, S; Wang, T; Jia, G. (2019).
46	Modulation of homologous recombination repair gene polymorphisms on genetic damage in
47	chromate exposed workers. Environ Toxicol Pharmacol 66: 126-132.
48	http://dx.doi.org/10.1016/j.etap.2019.01.004
49	Lou, J; Wang, Y; Chen, J; Ju, L; Yu, M; Jiang, Z; Feng, L; Jin, L; Zhang, X. (2015). Effects of soluble and
50	particulate Cr(VI) on genome-wide DNA methylation in human B lymphoblastoid cells.

1	Mutat Res Genet Toxicol Environ Mutagen 792: 12-18.
2	<u>http://dx.doi.org/10.1016/j.mrgentox.2015.08.004</u>
3	Lozsekova, A; Kaiser, HW; Danilla, T; Buchvald, J; Simko, J. (2002). The effect of nickel sulphate,
4	potassium dichromate, cobalt nitrate and cadmium sulphate on the proteins of cellular
5	contacts and actin skeleton of cultivated human keratinocytes. Bratisl Lek Listy 103: 254-
6	259.
7	Lu, J; Tang, M; Liu, Y; Wang, J; Wu, Z. (2018a). Comparative Proteomics of Chromium-Transformed
8	Beas-2B Cells by 2D-DIGE and MALDI-TOF/TOF MS. Biol Trace Elem Res.
9	http://dx.doi.org/10.1007/s12011-017-1222-9
10	Lu, J; Zhou, Z; Tang, M; Shen, H; Liu, Y; Wang, J; Jiang, Y; Chen, Y; Wu, Z. (2018b). Role of LKB1 in
11	migration and invasion of Cr(VI)-transformed human bronchial epithelial Beas-2B cells.
12	Anticancer Drugs 29: 660-673. <u>http://dx.doi.org/10.1097/CAD.000000000000638</u>
13	Lucas, JB. (1976). Health Hazard Evaluation Determination, Report No. HHE-74-111-283, Cook
14	Paint and Varnish Company, North Kansas City, Missouri, April 1976 (pp. 74-111).
15	(NIOSH/00099446). Lucas, JB.
16	Lucas, JB; Kramkowski, RS. (1975). Health Hazard Evaluation Report No. HHE-74-87-221, Industrial
17	Platers, Inc., Columbus, Ohio (pp. 74-87). (NIOSH/00049983). Cincinnati, OH: National Inst.
18	for Occupational Safety and Health.
19	Luczak, MW; Green, SE; Zhitkovich, A. (2016). Different ATM Signaling in Response to
20	Chromium(VI) Metabolism via Ascorbate and Nonascorbate Reduction: Implications for in
21	Vitro Models and Toxicogenomics. Environ Health Perspect 124: 61-66.
22	http://dx.doi.org/10.1289/ehp.1409434
23	Luippold, RS; Mundt, KA; Austin, RP; Liebig, E; Panko, J; Crump, C; Crump, K; Proctor, D. (2003).
24	Lung cancer mortality among chromate production workers. Occup Environ Med 60: 451-
25	457.
26	Luippold, RS; Mundt, KA; Dell, LD; Birk, T. (2005). Low-level hexavalent chromium exposure and
27	rate of mortality among US chromate production employees. J Occup Environ Med 47: 381-
28	385. <u>http://dx.doi.org/10.1097/01.jom.0000158703.32263.0d</u>
29	Lukanova, A; Toniolo, P; Zhitkovich, A; Nikolova, V; Panev, T; Popov, T; Taioli, E; Costa, M. (1996).
30	Occupational exposure to Cr(VI): comparison between chromium levels in lymphocytes,
31	erythrocytes, and urine. Int Arch Occup Environ Health 69: 39-44.
32	Luo, D; Xu, Z; Hu, X; Zhang, F; Bian, H; Li, N; Wang, Q; Lu, Y; Zheng, Q; Gu, J. (2016). URI prevents
33	potassium dichromate-induced oxidative stress and cell death in gastric cancer cells. 8:
34	5399-5409.
35	Luo, H; Lu, Y; Shi, X; Mao, Y; Dalal, NS. (1996). Chromium (IV)-mediated fenton-like reaction causes
36	DNA damage: implication to genotoxicity of chromate. Ann Clin Lab Sci 26: 185-191.
37	Lupescu, A; Jilani, K; Zelenak, C; Zbidah, M; Qadri, SM; Lang, F. (2012). Hexavalent chromium-
38	induced erythrocyte membrane phospholipid asymmetry. Biometals 25: 309-318.
39	<u>http://dx.doi.org/10.1007/s10534-011-9507-5</u>
40	<u>Lv, Y; Zhang, P; Guo, J; Zhu, Z; Li, X; Xu, D; Zeng, W.</u> (2018). Melatonin protects mouse
41	spermatogonial stem cells against hexavalent chromium-induced apoptosis and epigenetic
42	histone modification. Toxicol Appl Pharmacol 340: 30-38.
43	<u>http://dx.doi.org/10.1016/j.taap.2017.12.017</u>
44	<u>Lynge, E; Rix, BA; Villadsen, E; Andersen, I; Hink, M; Olsen, E; Møller, UL; Silfverberg, E.</u> (1995).
45	Cancer in printing workers in Denmark. Occup Environ Med 52: 738-744.
46	http://dx.doi.org/10.1136/oem.52.11.738
17	
47	Ma, F; Zhang, Z; Jiang, J; Hu, J. (2015). Chromium (VI) potentiates the DNA adducts (O(6)-
47 48	Ma, F; Zhang, Z; Jiang, J; Hu, J. (2015). Chromium (VI) potentiates the DNA adducts (O(6)- methylguanine) formation of N-nitrosodimethylamine in rat: implication on carcinogenic

1	Macfie, A: Hagan, E: Zhitkovich, A. (2010). Mechanism of DNA-protein cross-linking by chromium.
2	Chem Res Toxicol 23: 341-347. <u>http://dx.doi.org/10.1021/tx9003402</u>
3	Machle, W; Gregorius, F. (1948). Cancer of the respiratory system in the United States chromate-
4	producing industry. Public Health Rep 63: 1114-1127. <u>http://dx.doi.org/10.2307/4586677</u>
5	MacKenzie, RD; Anwar, RA; Byerrum, RU; Hoppert, CA. (1959). Absorption and distribution of Cr51
6	in the albino rat. Arch Biochem Biophys 79: 200-205. <u>http://dx.doi.org/10.1016/0003-</u>
7	<u>9861(59)90396-0</u>
8	MacKenzie, RD; Byerrum, RU; Decker, CF; Hoppert, CA; Langham, RF. (1958). Chronic toxicity
9	studies. II. Hexavalent and trivalent chromium administered in drinking water to rats. AMA
10	Arch Ind Health 18: 232-234.
11	Macleod, JS; Harris, MA; Tjepkema, M; Peters, PA; Demers, PA. (2017). Cancer risks among welders
12	and occasional welders in a national population-based cohort study: Canadian census health
13	and environmental cohort. Saf Health Work 8: 258-266.
14	http://dx.doi.org/10.1016/j.shaw.2016.12.001
15	Madejczyk, MS; Baer, CE; Dennis, WE; Minarchick, VC; Leonard, SS; Jackson, DA; Stallings, JD; Lewis,
16	<u>JA.</u> (2015). Temporal changes in rat liver gene expression after acute cadmium and
17	chromium exposure. PLoS ONE 10: e0127327.
18	http://dx.doi.org/10.1371/journal.pone.0127327
19	Maeng, SH; Chung, HW; Kim, KI; Lee, BM; Shin YC Kim, SI; Yu, II. (2004). Chromosome aberration
20	and lipid peroxidation in chromium-exposed workers. Biomarkers 9: 418-434.
21	http://dx.doi.org/10.1080/13547500400022200
22	Maeng, SH; Chung, HW; Yu, IJ; Kim, HY; Lim, CH; Kim, KJ; Kim, SJ; Ootsuyama, Y; Kasai, H. (2003).
23	Changes of 8-OH-dG levels in DNA and its base excision repair activity in rat lungs after
24	inhalation exposure to hexavalent chromium. Mutat Res 539: 109-116.
25	http://dx.doi.org/10.1016/S1383-5718(03)00154-2
26	Majumder, S; Ghoshal, K; Summers, D; Bai, S; Datta, J; Jacob, ST. (2003). Chromium(VI) down-
27	regulates heavy metal-induced metallothionein gene transcription by modifying
28	transactivation potential of the key transcription factor, metal-responsive transcription
29	factor 1. J Biol Chem 278: 26216-26226. <u>http://dx.doi.org/10.1074/jbc.M302887200</u>
30	Malker, HS; Gemne, G. (1987). A register-epidemiology study on cancer among Swedish printing
31	industry workers. Arch Environ Health 42: 73-82.
32	http://dx.doi.org/10.1080/00039896.1987.9935799
33	Mallin, K; Rubin, M; Joo, E. (1989). Occupational cancer mortality in Illinois white and black males,
34	1979-1984, for seven cancer sites. Am J Ind Med 15: 699-717.
35	Malsch, PA; Proctor, DM; Finley, BL. (1994). Estimation of a chromium inhalation reference
36	concentration using the benchmark dose method: A case study [Review]. Regul Toxicol
37	Pharmacol 20: 58-82. http://dx.doi.org/10.1006/rtph.1994.1036
38	Mancuso, TF. (1951). Occupational cancer and other health hazards in a chromate plant: A medical
39	appraisal. II. Clinical and toxicologic aspects. Ind Med Surg 20: 393-407.
40	Mancuso, TF. (1975). Consideration of chromium as an industrial carcinogen. In International
40 41	conference on heavy metals in the environment: v III, health; October. Toronto, ON, Canada:
42	Institute for Environmental Studies.
42	Mancuso, TF. (1997). Chromium as an industrial carcinogen: Part I. Am J Ind Med 31: 129-139.
43 44	http://dx.doi.org/10.1002/(SICI)1097-0274(199702)31:2<129::AID-AJIM1>3.0.CO;2-V
44 45	Mancuso, TF; Hueper, WC. (1951). Occupational cancer and other health hazards in a chromate
45 46	plant: a medical appraisal I Lung cancers in chromate workers. Indian J Med Surg 20: 358-
40 47	363.
47 48	<u>Manzo, L; Di Nucci, A; Edel, J; Gregotti, C; Sabbioni, E.</u> (1983). Biliary and gastrointestinal excretion
40 49	of chromium after administration of Cr-III and Cr-VI in rats. Res Commun Mol Pathol
49 50	Pharmacol 42: 113-125.
50	

1 Marat, I; Arstan, M; Galymzhan, Y; Timu	r, J; Yerbolat, I; Almasbek, Y. (2018). Impact of chromium
	productive function in rats. Toxicol Ind Health 34: 365-374.
3 <u>http://dx.doi.org/10.1177/074</u>	
	nik, S. (2018). Magnetic Characterization of Chromium
5 Intermediates in the Reduction	of Chromium (VI) by Glutathione in Acidic Solutions. 4.
6 <u>http://dx.doi.org/10.3390/mag</u>	netochemistry4020023
7 Marouani, N; Tebourbi, O; Hallègue, D; I	Mokni, M; Yacoubi, MT; Sakly, M; Benkhalifa, M; Rhouma, KB.
8 (2015a). Mechanisms of chromi	um hexavalent-induced apoptosis in rat testes. Toxicol Ind
9 Health 33: 97-106. <u>http://dx.do</u>	i.org/10.1177/0748233715600333
	<u>acoubi, MT; Sakly, M; Benkhalifa, M; Rhouma, KB.</u> (2012).
	on reproductive functions of male adult rats. Reprod Biol
12 12: 119-133.	
	coubi, MT; Sakly, M; Benkhalifa, M; Ben Rhouma, K. (2015b).
	apoptosis in rat uterus: Involvement of oxidative stress.
15Arch Environ Occup Health 70:	
16 <u>http://dx.doi.org/10.1080/193</u>	
	Sugden, KD. (2006). Ascorbate is a pro-oxidant in
18 chromium-treated human lung	
19 <u>http://dx.doi.org/10.1016/j.mr</u> 20 Marting L. Halmag Al, Via II, Wigg SS	
	<u>Wise, JP.</u> (2015). Chronic Exposure to Particulate Chromate
	Separation and Centriole Disengagement in Human Lung http://dx.doi.org/10.1093/toxsci/kfv146
	n, <u>G; Lange, JH.</u> (2002). Epidemiologic evidence of cancer
	a review and update. Toxicol Ind Health 18: 171-181.
25 <u>http://dx.doi.org/10.1191/074</u>	
	l, EL; Haring-Sweeney, M; Joffe, RD; Mele, LM; Johnson, ML.
	y of painters and allied tradesmen. Scand J Work Environ
28 Health 12: 16-21.	, F,
	P. (2008). Carcinogenic chromium(VI)-induced protein
	n: implications in DNA-protein crosslinking. J Appl Toxicol
31 28: 987-997. <u>http://dx.doi.org/</u>	10.1002/jat.1364
32 Mattagajasingh, SN; Misra, HP. (1995). A	Alterations in the prooxidant and antioxidant status of
33 human leukemic T-lymphocyte	MOLT4 cells treated with potassium chromate. Mol Cell
34 Biochem 142: 61-70. <u>http://dx.</u>	
	Mechanisms of the carcinogenic chromium(VI)-induced
	heir characterization in cultured intact human cells. J Biol
37 Chem 271: 33550-33560.	
	Carcinogenic chromium(VI) induces oxidative stress in
-	phocytes. 1. Generation of hydrogen peroxide during
	ate. Toxic Subst Mech 16: 63-79.
41 <u>Mcconnell, EL; Basit, AW; Murdan, S.</u> (2)	JU81. Measurements of rat and mouse gastrointestinal pH.
42 fluid and house haid there and in	
	nplications for in-vivo experiments. J Pharm Pharmacol 60:
43 63-70. <u>http://dx.doi.org/10.121</u>	nplications for in-vivo experiments. J Pharm Pharmacol 60: <u>1/jpp.60.1.0008</u>
43 63-70. <u>http://dx.doi.org/10.121</u> 44 <u>Mcdowall, ME.</u> (1984). A mortality study	mplications for in-vivo experiments. J Pharm Pharmacol 60: <u>1/jpp.60.1.0008</u> y of cement workers. Br J Ind Med 41: 179-182.
43 63-70. http://dx.doi.org/10.121 44 Mcdowall, ME. (1984). A mortality stud 45 http://dx.doi.org/10.1136/oem	nplications for in-vivo experiments. J Pharm Pharmacol 60: <u>1/jpp.60.1.0008</u> y of cement workers. Br J Ind Med 41: 179-182. <u>.41.2.179</u>
 43 63-70. <u>http://dx.doi.org/10.121</u> 44 <u>Mcdowall, ME.</u> (1984). A mortality stud 45 <u>http://dx.doi.org/10.1136/oem</u> 46 <u>Mcmillan, GH; Pethybridge, RJ.</u> (1983). 	mplications for in-vivo experiments. J Pharm Pharmacol 60: <u>1/jpp.60.1.0008</u> y of cement workers. Br J Ind Med 41: 179-182. <u>.41.2.179</u> The health of welders in naval dockyards: proportional
 43 63-70. <u>http://dx.doi.org/10.121</u> 44 <u>Mcdowall, ME.</u> (1984). A mortality study 45 <u>http://dx.doi.org/10.1136/oem</u> 46 <u>Mcmillan, GH; Pethybridge, RJ.</u> (1983). 7 47 mortality study of welders and the study of welders and the study 	mplications for in-vivo experiments. J Pharm Pharmacol 60: <u>1/jpp.60.1.0008</u> y of cement workers. Br J Ind Med 41: 179-182. <u>.41.2.179</u> The health of welders in naval dockyards: proportional two control groups. J Soc Occup Med 33: 75-84.
 43 63-70. <u>http://dx.doi.org/10.121</u> 44 <u>Mcdowall, ME.</u> (1984). A mortality study 45 <u>http://dx.doi.org/10.1136/oem</u> 46 <u>Mcmillan, GH; Pethybridge, RJ.</u> (1983). 7 47 mortality study of welders and thttp://dx.doi.org/10.1093/occr 	mplications for in-vivo experiments. J Pharm Pharmacol 60: <u>1/jpp.60.1.0008</u> y of cement workers. Br J Ind Med 41: 179-182. <u>.41.2.179</u> The health of welders in naval dockyards: proportional two control groups. J Soc Occup Med 33: 75-84.

Cr(VI)-Transformed Lung Cells. PLoS ONE 7: e37045.
http://dx.doi.org/10.1371/journal.pone.0037045
<u>Medeiros, MG; Rodrigues, AS; Batoréu, MC; Laires, A; Rueff, J; Zhitkovich, A.</u> (2003). Elevated levels
of DNA-protein crosslinks and micronuclei in peripheral lymphocytes of tannery workers
exposed to trivalent chromium. Mutagenesis 18: 19-24.
Melkild, A; Langård, S; Andersen, A; Tønnessen, JN. (1989). Incidence of cancer among welders and
other workers in a Norwegian shipyard. Scand J Work Environ Health 15: 387-394.
http://dx.doi.org/10.5271/sjweh.1834
Merritt, K: Brown, SA; Sharkey, NA. (1984). The binding of metal salts and corrosion products to
cells and proteins in vitro. J Biomed Mater Res 18: 1005-1015.
http://dx.doi.org/10.1002/jbm.820180905
Merritt, K; Crowe, TD; Brown, SA. (1989). Elimination of nickel, cobalt, and chromium following
repeated injections of high dose metal salts. J Biomed Mater Res 23: 845-862.
http://dx.doi.org/10.1002/jbm.820230804
Mertz, W; Roginski, EE; Feldman, FJ; Thurman, DE. (1969). Dependence of chromium transfer into
the rat embryo on the chemical form. J Nutr 99: 363-367.
Mezencev, R; Auerbach, SS. (2021). Inferred inactivation of the Cftr gene in the duodena of mice
exposed to hexavalent chromium (Cr(VI)) in drinking water supports its tumor-suppressor
status and implies its potential role in Cr(VI)-induced carcinogenesis of the small intestines.
Toxicol Appl Pharmacol 433: 115773. <u>http://dx.doi.org/10.1016/j.taap.2021.115773</u>
Migliore, L; Parrini, M; Sbrana, I; Biagini, C; A; Loprieno, N. (1991). Micronucleated lymphocytes in
people occupationally exposed to potential environmental contaminants: The age effect.
Mutat Res 256: 13-20. <u>http://dx.doi.org/doi:10.1016/0921-8734(91)90028-A</u>
Mignini, F; Streccioni, V; Baldo, M; Vitali, M; Indraccolo, U; Bernacchia, G; Cocchioni, M. (2004).
Individual susceptibility to hexavalent chromium of workers of shoe, hide, and leather
industries. Immunological pattern of HLA-B8, DR3-positive subjects. Prev Med 39: 767-775.
http://dx.doi.org/10.1016/j.ypmed.2004.02.048
<u>Mignini, F; Tomassoni, D; Traini, E; Vitali, M; Scuri, S; Baldoni, E; Grappasonni, I; Cocchioni, M.</u>
(2009). Immunological pattern alteration in shoe, hide, and leather industry workers
exposed to hexavalent chromium. Environ Toxicol 24: 594-602.
<u>http://dx.doi.org/10.1002/tox.20464</u>
Mikalsen, A; Alexander, J; Ryberg, D. (1989). Microsomal metabolism of hexavalent chromium
Inhibitory effect of oxygen and involvement of cytochrome P-450. Chem Biol Interact 69:
175-192.
Mikalsen, A; Alexander, J; Wallin, H; Ingelman-Sundberg, M; Andersen, RA. (1991). Reductive
metabolism and protein binding of chromium(VI) by P450 protein enzymes. Carcinogenesis
12: 825-831.
Mikoczy, Z; Hagmar, L. (2005). Cancer incidence in the Swedish leather tanning industry: updated
findings 1958-99. Occup Environ Med 62: 461-464.
http://dx.doi.org/10.1136/oem.2004.017038
Mikoczy, Z; Schütz, A; Hagmar, L. (1994). Cancer incidence and mortality among Swedish leather
tanners. Occup Environ Med 51: 530-535. <u>http://dx.doi.org/10.1136/oem.51.8.530</u>
Miksche, LW; Lewalter, J. (1995). Biological monitoring of exposure to hexavalent chromium in
isolated erythrocytes. In Biomarkers and Occupational Health:: Progress and Perspectives.
Washington, DC: National Academies Press.
http://www.nap.edu/catalog.php?record_id=4924
<u>Milatou-Smith, R; Gustavsson, A; Sjögren, B.</u> (1997). Mortality among welders exposed to high and
to low levels of hexavalent chromium and followed for more than 20 Years. Int J Occup Environ Health 3: 128-131.

1	Miller, AC; Comellas, AP; Hornick, DB; Stoltz, DA; Cavanaugh, JE; Gerke, AK; Welsh, MJ; Zabner, J;
2	Polgreen, PM. (2020). Cystic fibrosis carriers are at increased risk for a wide range of cystic
3	fibrosis-related conditions. Proc Natl Acad Sci USA 117: 1621-1627.
4	http://dx.doi.org/10.1073/pnas.1914912117
5	Miller, CA; Cohen, MD; Costa, M. (1991). Complexing of actin and other nuclear proteins to DNA by
6	cis-diamminedichloroplatinum(II) and chromium compounds. Carcinogenesis 12: 269-276.
7	Minder, CE; Beerporizek, V. (1992). Cancer mortality of Swiss men by occupation, 1979-1982.
8	Scand J Work Environ Health 18: 1-27.
9	Minigaliyeva, IA; Katsnelson, BA; Privalova, LI; Gurvich, VB; Panov, VG; Varaksin, AN; Makeyev, OH;
10	Sutunkova, MP; Loginova, NV; Kireyeva, EP; Grigoryeva, EV; Slyshkina, TV; Ganebnykh, EV;
11	Grebenkina, SV. (2014). Toxicodynamic and toxicokinetic descriptors of combined
12	chromium (VI) and nickel toxicity. Int J Toxicol 33: 498-505.
13	http://dx.doi.org/10.1177/1091581814555915
14	Minoia, C; Cavalleri, A. (1988). Chromium in urine, serum and red blood cells in the biological
15	monitoring of workers exposed to different chromium valency states. Sci Total Environ 71:
16	323-327. <u>http://dx.doi.org/10.1016/0048-9697(88)90204-5</u>
17	Minoia, C; Cavalleri, A; D'Andrea, F. (1983). Urinary excretion of total and hexavalent chromium in
18	workers exposed to trivalent chromium and hexavalent chromium. In Braetter, P And P
19	Schramel (Ed) Trace Element Analytical Chemistry in Medicine and Biology, Vol 2 Proceedings of the International Workshop, Newbork and West Cormony, April 1992
20 21	Proceedings of the International Workshop, Neuherberg, West Germany, April 1982
22	Xvi+1189p Walter De Gruyter: Berlin, West Germany; New York, NY, USA Illus Isbn 3-11- 008681-6; 0 (0) 1983 P623-626.
22	Mirsalis, JC; Hamilton, CM; O'Loughlin, KG; Paustenbach, DJ; Kerger, BD; Patierno, S. (1996).
23	Chromium (VI) at plausible drinking water concentrations is not genotoxic in the in vivo
25	bone marrow micronucleus or liver unscheduled DNA synthesis assays. Environ Mol
26	Mutagen 28: 60-63. <u>http://dx.doi.org/10.1002/(SICI)1098-2280(1996)28:1</u> <60::AID-
27	EM9>3.0.CO;2-I
28	Mitrov, D; Hadzi-Petrushev, N; Stojkovski, V; Gjorgievska, E; Gagov, H; Mladenov, M. (2014).
29	Influence of chronic chromium exposition on the processes of lipid peroxidation
30	inflammation and platelet activation in rats [Letter]. J Biol Regul Homeost Agents 28: 531-
31	535.
32	Miyai, T. (1980). Absorption and accumulation of chromium in animals after chromium compound
33	inhalation: 1. Accumulation in rats by long-term inhalation (pp. 193-209).
34	(HEEP/81/07171). Miyai, T.
35	<u>Miyai, T; Fujii, N; Suzuki, Y.</u> (1980). [Absorption and accumulation of chromium in animals after
36	chromium compound inhalation: 2. comparison of various chromium compounds]. Shikoku
37	Acta Medica 36: 210-223.
38	Miyasaka, K; Ohta, M; Kanai, S; Yoshida, Y; Sato, N; Nagata, A; Matsui, T; Noda, T; Jimi, A; Takiguchi,
39	S; Takata, Y; Kawanami, T; Funakoshi, A. (2004). Enhanced gastric emptying of a liquid
40	gastric load in mice lacking cholecystokinin-B receptor: A study of CCK-A,B, and AB receptor
41	gene knockout mice. J Gastroenterol 39: 319-323. http://dx.doi.org/10.1007/s00535-003-
42	1297-2
43	Montanaro, F; Ceppi, M; Demers, PA; Puntoni, R; Bonassi, S. (1997). Mortality in a cohort of tannery
44	workers. Occup Environ Med 54: 588-591. <u>http://dx.doi.org/10.1136/oem.54.8.588</u>
45	Morgan, RW; Kaplan, SD; Gaffey, WR. (1981). A general mortality study of production workers in
46	the paint and coatings manufacturing industry. A preliminary report. J Occup Med 23: 13-
47	21.
48	Morse, JL; Luczak, MW; Zhitkovich, A. (2013). Chromium(VI) causes interstrand DNA cross-linking
49	in vitro but shows no hypersensitivity in cross-link repair-deficient human cells. Chem Res
50	Toxicol 26: 1591-1598. <u>http://dx.doi.org/10.1021/tx400293s</u>

1 2	<u>Moulin, JJ.</u> (1995). Assessment of risk of lung cancer among mild steel and stainless steel welders [Letter]. Occup Environ Med 52: 284-285.
3	Moulin, JJ: Clavel, T; Roy, D; Dananché, B; Marquis, N; Févotte, J: Fontana, JM. (2000). Risk of lung
4	cancer in workers producing stainless steel and metallic alloys. Int Arch Occup Environ
5	Health 73: 171-180. <u>http://dx.doi.org/10.1007/s004200050024</u>
6	Moulin, JJ: Portefaix, P: Wild, P: Mur, JM: Smagghe, G: Mantout, B. (1990). Mortality study among
7	workers producing ferroalloys and stainless steel in France. Br J Ind Med 47: 537-543.
8	http://dx.doi.org/10.1136/oem.47.8.537
9	Moulin, JJ: Wild, P; Haguenoer, JM; Faucon, D; De Gaudemaris, R; Mur, JM; Mereau, M; Gary, Y;
10	<u>Toamain, JP; Birembaut, Y.</u> (1993a). A mortality study among mild steel and stainless steel
11	welders. Br J Ind Med 50: 234-243. http://dx.doi.org/10.1136/oem.50.3.234
12	Moulin, JJ: Wild, P; Mantout, B; Fournier-Betz, M; Mur, JM; Smagghe, G. (1993b). Mortality from lung
13	cancer and cardiovascular diseases among stainless-steel producing workers. Cancer
14	Causes Control 4: 75-81. <u>http://dx.doi.org/10.1007/BF00053147</u>
15	Mozafari, P; Rezazadeh Azari, M; Shokoohi, Y; Sayadi, M. (2016). Feasibility of biological effective
16	monitoring of chrome electroplaters to chromium through analysis of serum
17	malondialdehyde. Int J Occup Environ Med 7: 199-206.
18	http://dx.doi.org/10.15171/ijoem.2016.782
19	Mudie, DM; Amidon, GL; Amidon, GE. (2010). Physiological parameters for oral delivery and in vitro
20	testing [Review]. Mol Pharm 7: 1388-1405. <u>http://dx.doi.org/10.1021/mp100149j</u>
21	Mudie, DM; Murray, K; Hoad, CL; Pritchard, SE; Garnett, MC; Amidon, GL; Gowland, PA; Spiller, RC;
22	Amidon, GE; Marciani, L. (2014). Quantification of gastrointestinal liquid volumes and
23	distribution following a 240 ml dose of water in the fasted state. Mol Pharm 11: 3039-3047.
24	http://dx.doi.org/10.1021/mp500210c
25	Murthy, RC; Saxena, DK; Gupta, SK; Chandra, SV. (1991). Ultrastructural observations in testicular
26	tissue of chromium-treated rats. Reprod Toxicol 5: 443-447.
27	<u>http://dx.doi.org/10.1016/0890-6238(91)90008-4</u>
28	Muttamara, S; Leong, ST. (2004). Health implication among occupational exposed workers in a
29	chromium alloy factory, Thailand. J Environ Sci 16: 181-186.
30	<u>Mutti, A; Cavatorta, A; Borghi, L; Canali, M; Giaroli, C; Franchini, I.</u> (1979). Distribution and urinary
31	excretion of chromium. Studies on rats after administration of single and repeated doses of
32	potassium dichromate. Med Lav 70: 171-179.
33	Myers, CR; Antholine, WE; Myers, JM. (2010). The pro-oxidant chromium(VI) inhibits mitochondrial
34	complex I, complex II, and aconitase in the bronchial epithelium: EPR markers for Fe-S
35	proteins. Free Radic Biol Med 49: 1903-1915.
36	http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.020
37	Myers, CR; Myers, JM. (1998). Iron stimulates the rate of reduction of hexavalent chromium by
38	human microsomes. Carcinogenesis 19: 1029-1038.
39	http://dx.doi.org/10.1093/carcin/19.6.1029
40	Myers, JM; Antholine, WE; Myers, CR. (2008). Hexavalent Chromium Causes the Oxidation of
41	Thioredoxin in Human Bronchial Epithelial Cells. Toxicology 246(2-3): 222-233.
42	http://dx.doi.org/10.1016/j.tox.2008.01.017
43	Myers, JM; Antholine, WE; Myers, CR. (2011). The intracellular redox stress caused by hexavalent
44	chromium is selective for proteins that have key roles in cell survival and thiol redox
45 46	control. Toxicology 281: 37-47. <u>http://dx.doi.org/10.1016/j.tox.2011.01.001</u>
46 47	<u>Myers, JM; Myers, CR.</u> (2009). The effects of hexavalent chromium on thioredoxin reductase and
47 48	peroxiredoxins in human bronchial epithelial cells. Free Radic Biol Med 47: 1477-1485. <u>http://dx.doi.org/10.1016/j.freeradbiomed.2009.08.015</u>
48 49	<u>Nagaya, T.</u> (1986). No increase in sister-chromatid exchange frequency in lymphocytes of
49 50	chromium platers. Mutat Res 170: 129-132.
50	cm omnum praters. Mutat Nes 1/0. 127-132.

1	<u>Nagaya, T; Ishikawa, N; Hata, H.</u> (1989). Sister chromatid exchange analysis in lymphocytes of
2	workers exposed to hexavalent chromium. Br J Ind Med 46: 48-51. <u>Nagava, T: Ishikawa, N: Hata, H: Otobe, T.</u> (1991). Sister-chromatid exchanges in lymphocytes from
3 4	12 chromium platers: a 5-year follow-up study. Toxicol Lett 58: 329-335.
5	Navya, K; Kumar, GP; Anilakumar, KR. (2017). Ameliorating effect of Curculigo orchoides on
6	chromium(VI) induced oxidative stress via, modulation of cytokines, transcription factors
7	and apoptotic genes. J Appl Biomed 15: 299-306.
8	http://dx.doi.org/10.1016/j.jab.2017.03.003
9	<u>Neal-Kluever, A; Fisher, J; Grylack, L; Kakiuchi-Kiyota, S; Halpern, W.</u> (2019). Physiology of the
10	Neonatal Gastrointestinal System Relevant to the Disposition of Orally Administered
11	Medications. Drug Metab Dispos 47: 296-313. http://dx.doi.org/10.1124/dmd.118.084418
12	<u>Nemec, AA; Barchowsky, A. (2009)</u> . Signal transducer and activator of transcription 1 (STAT1) is
13	essential for chromium silencing of gene induction in human airway epithelial cells. Toxicol
14	Sci 110: 212-223. <u>http://dx.doi.org/10.1093/toxsci/kfp084</u>
15	<u>Nemec, AA; Zubritsky, LM; Barchowsky, A.</u> (2010). Chromium(VI) stimulates Fyn to initiate innate
16	immune gene induction in human airway epithelial cells. Chem Res Toxicol 23: 396-404.
17	http://dx.doi.org/10.1021/tx900365u
18	Newton, MF; Lilly, LJ. (1986). Tissue-specific clastogenic effects of chromium and selenium salts in
19	vivo. Mutat Res 169: 61-69.
20	Nijs, M; Kirsch-Volders, M. (1986). Induction of spindle inhibition and abnormal mitotic figures by
21	Cr(II), Cr(III) and Cr(VI) ions. Mutagenesis 1: 247-252.
22	http://dx.doi.org/10.1093/mutage/1.4.247
23	Ning, J; Grant, MH. (1999). Chromium (VI)-induced cytotoxicity to osteoblast-derived cells. Toxicol
24	In Vitro 13: 879-887.
25	Ning, J; Grant, MH. (2000). The role of reduced glutathione and glutathione reductase in the
26	cytotoxicity of chromium (VI) in osteoblasts. Toxicol In Vitro 14: 329-335.
27	Ning, J: Henderson, C: Grant, MH. (2002). The cytotoxicity of chromium in osteoblasts: Effects on
28	macromolecular synthesis. J Mater Sci Mater Med 13: 47-52.
29	<u>http://dx.doi.org/10.1023/A:1013630401959</u>
30	NIOSH (National Institute for Occupational Safety and Health). (2013). Criteria for a recommended
31	standard: Occupational exposure to hexavalent chromium. (NIOSH Publication Number
32	2013-128). Centers for Disease Control and Prevention.
33	https://www.cdc.gov/niosh/docs/2013-
34	<u>128/pdfs/2013_128.pdf?id=10.26616/NIOSHPUB2013128</u>
35	NI DEP (New Jersey Department of Environmental Protection). (2008). Health Consultation:
36	Analysis of Lung Cancer Incidence near Chromium-Contaminated Sites in New Jersey (a/k/a
37	Hudson County Chromium Sites) Jersey City, Hudson County, New Jersey. 56.
38	NJ DEP (New Jersey Department of Environmental Protection). (2009). Derivation of ingestion-
39	based soil remediation criterion for Cr+6 based on the NTP chronic bioassay data for
40	Sodium Dichromate Dihydrate. <u>http://www.state.nj.us/dep/dsr/chromium/soil-cleanup-</u>
41	derivation.pdf
42	Nomiyama, H: Yotoriyama, M: Nomiyama, K. (1980). Normal chromium levels in urine and blood of
43	Japanese subjects determined by direct flameless atomic absorption spectrophotometry,
44 45	and valency of chromium in urine after exposure to hexavalent chromium. Am Ind Hyg
45 46	Assoc J 41: 98-102. <u>http://dx.doi.org/10.1080/15298668091424438</u>
46 47	<u>Norseth, T; Alexander, J; Aaseth, J; Langard, S.</u> (1982). Biliary excretion of chromium in the rat: a role of glutathione. Basic Clin Pharmacol Toxicol 51: 450-455.
47 48	NTP (National Toxicology Program). (1996). Final report on the reproductive toxicity of potassium
48 49	dichromate (hexavalent) (CAS No. 7778-50-9) administered in diet to BALB/c mice [NTP].

1 2	Research Triangle Park: U.S. Department of Health and Human Services, Public Health Service.
3	<u>NTP</u> (National Toxicology Program). (1997). Final report on the reproductive toxicity of potassium
4	dichromate (CAS No. 7778-50-9) administered in diet to BALB/c mice [NTP]. Research
5	Triangle Park: National Institute of Environmental Health Sciences, National Toxicology
6 7	Program.
8	<u>NTP.</u> (2005). Immunotoxicity of hexavalent chromium in female B6C3F1 mice. Protocol: RF-HCR- 28-1 M-DW. RTP: NIEHS.
9	<u>NTP.</u> (2006a). Immunotoxicity of hexavalent chromium in female Fischer 344 rats. Protocol: RF-
10	HCR-28-2R-DW. RTP: NIEHS.
11	NTP. (2006b). Immunotoxicity of hexavalent chromium in female Sprague Dawley rats. Protocol:
12	RF-HCR-28-1R-DW. RTP: NIEHS.
13 14	<u>NTP</u> (National Toxicology Program). (2007a). NTP pathology tables, survival and growth curves for TR-546. Research Triangle Park, NC. Retrieved from
14 15	https://ntp.niehs.nih.gov/results/path/tablelistings/longterm/tr500599/tr546/index.html
16	<u>NTP</u> (National Toxicology Program). (2007b). NTP technical report on the toxicity studies of
17	sodium dichromate dihydrate (CAS No. 7789-12-0) administered in drinking water to male
18	and female F344/N rats and B6C3F1 mice and male BALB/c and am3-C57BL/6 mice [NTP].
19	(Toxicity Report Series 72). Research Triangle Park, NC.
20	https://ntp.niehs.nih.gov/ntp/htdocs/st_rpts/tox072.pdf
21 22	<u>NTP</u> (National Toxicology Program). (2008). Toxicology and carcinogenesis studies of sodium dichromate dihydrate (Cas No. 7789-12-0) in F344/N rats and B6C3F1 mice (drinking
23	water studies) (pp. 1-192). (NTP TR 546; NIH Publication No. 08-5887).
24	<u>NTP</u> (National Toxicology Program). (2011). Report on carcinogens. Twelfth Edition, 2011 (12th
25	ed., pp. 507). Research Triangle Park, NC: U.S. Department of Health and Human Services,
26	Public Health Service, National Institutes of Health.
27	https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB2011111646.xhtml
28	Nudler, SI; Quinteros, FA; Miler, EA; Cabilla, JP; Ronchetti, SA; Duvilanski, BH. (2009). Chromium VI
29 30	administration induces oxidative stress in hypothalamus and anterior pituitary gland from male rats. Toxicol Lett 185: 187-192. <u>http://dx.doi.org/10.1016/j.toxlet.2009.01.003</u>
31	<u>O'Brien, P; Wang, GF; Wyatt, PB.</u> (1992). Studies of the kinetics of the reduction of chromate by
32	glutathione and related thiols. Polyhedron 11: 3211-3216.
33	http://dx.doi.org/10.1016/s0277-5387(00)83664-5
34	<u>O'Brien, T; Mandel, HG; Pritchard, DE; Patierno, S. R.</u> (2002). Critical role of chromium (Cr)-DNA
35	interactions in the formation of Cr-induced polymerase arresting lesions. Biochemistry 41:
36	12529-12537.
37 38	<u>O'Brien, TJ; Ding, H; Suh, M; Thompson, CM; Parsons, BL; Harris, MA; Winkelman, WA; Wolf, JC;</u> <u>Hixon, JG; Schwartz, AM; Myers, MB; Haws, LC; Proctor, DM. (2013)</u> . Assessment of K-Ras
39	mutant frequency and micronucleus incidence in the mouse duodenum following 90-days of
40	exposure to Cr(VI) in drinking water. Mutat Res 754: 15-21.
41	http://dx.doi.org/10.1016/j.mrgentox.2013.03.008
42	<u>O'Flaherty, EJ; Radike, MJ.</u> (1991). Pharmacokinetic modeling of trivalent and hexavalent chromium
43	based on ingestion and inhalation of soluble chromium compounds. (AL-TR-1991-0162).
44	Wright-Patterson AFB, Ohio: Armstrong Laboratory.
45 46	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=ADA256238
46 47	<u>O'Hara, KA; Klei, LR; Barchowsky, A.</u> (2003). Selective activation of Src family kinases and JNK by low levels of chromium(VI). Toxicol Appl Pharmacol 190: 214-223.
48	http://dx.doi.org/10.1016/S0041-008X(03)00188-1
-	$- \cdot \cdot$

1	<u>O'Hara, KA; Vaghjiani, RJ; Nemec, AA; Klei, LR; Barchowsky, A.</u> (2007). Cr(VI)-stimulated STAT3
2	tyrosine phosphorylation and nuclear translocation in human airway epithelial cells
3	requires Lck. Biochem J 402: 261-269. <u>http://dx.doi.org/10.1042/BJ20061427</u>
4	<u>O'Hara; Vaghjiani; Klei; Barchowsky.</u> (2005). Chromium(VI) Activates Stat3 In Bronchial Epithelial
5	Cells [Abstract]. Toxicol Sci 84: 232.
6	<u>O'Hara, KA; Klei, LR; Vaghjiani, RJ; Barchowsky, A.</u> (2004). Selective signaling pathways for
7	chromium(VI) induced patterns of transcription factor binding in exposed airway epithelial
8	cells [Abstract]. Toxicologist 78: 239.
9	Ogawa, E; Tsuzuki, H; Yamazaki, Y. (1976). Experimental study on absorption distribution and
10	excretion of trivalent and hexavalent chromium compounds [Abstract]. Jpn J Pharmacol 26:
11	92.
12	<u>Ohta, H; Soewarno, T; Yoshikawa, H.</u> (1980). Distribution of chromium and induction of
13	metallothionein-like protein in rat livers injected with trivalent and hexavalent chromium.
14	Acta Sch Med Univ Gifu 28: 205-210.
15	<u>Ohta, Y; Inui, M.</u> (1992). Concentration of Accumulated Substances in the Human Lung with Special
16	Regard to the Toxic Effects of Hexavalent Chromium in a Factory Worker.
17 10	Olsen, JH; Moller, H; Jensen, OM. (1988). Risks for respiratory and gastric-cancer in woodworking
18 19	occupations in Denmark. J Cancer Res Clin Oncol 114: 420-424. http://dx.doi.org/10.1007/BF02128189
20	Oregon DEQ (Oregon Department of Environmental Quality). (2016a). Bullseye Glass area-wide soil
20	sampling report. Portland, OR.
22	Oregon DEQ (Oregon Department of Environmental Quality). (2016b). Portland Metals air
23	monitoring data. Portland, OR.
24	Oregon DEQ (Oregon Department of Environmental Quality). (2016c). Uroboros Glass area-wide
25	soil sampling report. Portland, OR.
26	http://www.oregon.gov/deq/FilterDocs/soilsamplingUro.pdf
27	Ormos, G; Mányai, S. (1974). Chromate uptake by human red blood cells: comparison of
28	permeability for different divalent anions. Acta Biochim Biophys Acad Sci Hung 9: 197-207.
29	Ormos, G; Mányai, S. (1977). Chemical modification of erythrocytes. Effect on the velocity of
30	chromate uptake. Acta Biochim Biophys Acad Sci Hung 12: 343-352.
31	Ortega, R; Fayard, B; Salome, M; Deves, G; Susini, J. (2005). Chromium oxidation state imaging in
32	mammalian cells exposed in vitro to soluble or particulate chromate compounds. Chem Res
33	Toxicol 18: 1512-1519. <u>http://dx.doi.org/10.1021/tx049735y</u>
34	OSHA (Occupational Safety & Health Administration). (2006a). Asbestos-automotive brake and
35	clutch repair work. Washington, DC: U.S. Department of Labor, Occupational Safety and
36	Health Administration. <u>https://www.osha.gov/dts/shib/shib072606.html</u>
37	OSHA (Occupational Safety & Health Administration). (2006b). Occupational exposure to
38	hexavalent chromium. Final rule. Fed Reg 71: 10099-10385.
39	Osinski, MA; Seifert, TR; Cox, BF; Gintant, GA. (2002). An improved method of evaluation of drug-
40	evoked changes in gastric emptying in mice. J Pharmacol Toxicol Methods 47: 115-120.
41	http://dx.doi.org/10.1016/S1056-8719(02)00217-4
42	Ottenwaelder, H: Wiegand, HJ: Bolt, HM. (1988). Uptake of 51Cr(VI) by human erythrocytes:
43	Evidence for a carrier-mediated transport mechanism. Sci Total Environ 71: 561-566.
44	http://dx.doi.org/10.1016/0048-9697(88)90237-9
45 46	Ottenwälder, H; Wiegand, HJ; Bolt, HM. (1987). Membrane permeability and intracellular
46 47	disposition of 51Cr(VI) in human red blood cells. Toxicol Environ Chem 14: 219-226.
47 49	http://dx.doi.org/10.1080/02772248709357205 Ovesen, JL; Fan, Y; Zhang, X; Chen, J; Medvedovic, M; Xia, Y; Puga, A. (2014). Formaldehyde-Assisted
48 49	Isolation of Regulatory Elements (FAIRE) Analysis Uncovers Broad Changes in Chromatin
47	ISOlation of Regulatory Elements (FAIRE) Analysis Uncovers broad Changes in Chromatin

1	Structure Resulting from Hexavalent Chromium Exposure. PLoS ONE 9: e97849.
2 3	<u>http://dx.doi.org/10.1371/journal.pone.0097849</u> <u>Pan, CH; Ieng, HA; Lai, CH.</u> (2017). Biomarkers of oxidative stress in electroplating workers exposed
4	to hexavalent chromium. J Expo Sci Environ Epidemiol 28: 76-83.
5	http://dx.doi.org/10.1038/jes.2016.85
6	Parent, ME; Siemiatycki, J; Fritschi, L. (1998). Occupational exposures and gastric cancer.
7	Epidemiology 9: 48-55. http://dx.doi.org/10.1097/00001648-199801000-00011
8	Park, R; Krebs, J; Mirer, F. (1994). Mortality at an automotive stamping and assembly complex. Am J
9	Ind Med 26: 449-463.
10	Park, RM; Ahn, YS; Stayner, LT; Kang, SK; Jang, JK. (2005). Mortality of iron and steel workers in
11	Korea. Am J Ind Med 48: 194-204. <u>http://dx.doi.org/10.1002/ajim.20197</u>
12	Park, RM; Bena, JF; Stayner, LT; Smith, RJ; Gibb, HJ; Lees, PS. (2004). Hexavalent chromium and lung
13	cancer in the chromate industry: a quantitative risk assessment. Risk Anal 24: 1099-1108.
14	http://dx.doi.org/10.1111/j.0272-4332.2004.00512.x
15	Park, RM: Stayner, LT. (2006). A search for thresholds and other nonlinearities in the relationship
16 17	between hexavalent chromium and lung cancer. Risk Anal 26: 79-88.
17 18	http://dx.doi.org/10.1111/j.1539-6924.2006.00709.x Park, S; Li, C; Zhao, H; Darzynkiewicz, Z; Xu, D. (2016). Gene 33/Mig6 inhibits hexavalent
19	chromium-induced DNA damage and cell transformation in human lung epithelial cells.
20	Onct 7: 8916-8930. <u>http://dx.doi.org/10.18632/oncotarget.6866</u>
21	Park, S; Zhang, X; Li, C; Yin, C; Li, J; Fallon, JT; Huang, W; Xu, D. (2017). Single-cell RNA sequencing
22	reveals an altered gene expression pattern as a result of CRISPR/cas9-mediated deletion of
23	Gene 33/Mig6 and chronic exposure to hexavalent chromium in human lung epithelial cells.
24	Toxicol Appl Pharmacol 330: 30-39. <u>http://dx.doi.org/10.1016/j.taap.2017.07.003</u>
25	Park, YH; Kim, D; Dai, J; Zhang, Z. (2015). Human bronchial epithelial BEAS-2B cells, an appropriate
26	in vitro model to study heavy metals induced carcinogenesis. Toxicol Appl Pharmacol 287:
27	240-245. <u>http://dx.doi.org/10.1016/j.taap.2015.06.008</u>
28	Parrott, N; Lukacova, V; Fraczkiewicz, G; Bolger, MB. (2009). Predicting pharmacokinetics of drugs
29	using physiologically based modelingapplication to food effects [Review]. AAPS J 11: 45-
30 31	53. <u>http://dx.doi.org/10.1208/s12248-008-9079-7</u> Pascal, LE: Tessier, DM. (2004). Cytotoxicity of chromium and manganese to lung epithelial cells in
32	vitro. Toxicol Lett 147: 143-151. http://dx.doi.org/10.1016/j.toxlet.2003.11.004
33	Paschin, YV; Zacepilova, TA; Kozachenko, VI. (1982). Induction of dominant lethal mutations in
34	male mice by potassium dichromate. Mutat Res 103: 345-347.
35	Pastides, H; Austin, R; Lemeshow, S; Klar, J; Mundt, KA. (1994). A retrospective-cohort study of
36 37	occupational exposure to hexavalent chromium. Am J Ind Med 25: 663-675. http://dx.doi.org/10.1002/ajim.4700250506
38	Patlolla, AK; Barnes, C; Hackett, D; Tchounwou, PB. (2009a). Potassium dichromate induced
39	cytotoxicity, genotoxicity and oxidative stress in human liver carcinoma (HepG2) cells. Int J
40	Environ Res Public Health 6: 643-653. <u>http://dx.doi.org/10.3390/ijerph6020643</u>
41	Patlolla, AK; Barnes, C; Yedjou, C; Velma, VR; Tchounwou, PB. (2009b). Oxidative Stress, DNA
42	Damage, and Antioxidant Enzyme Activity Induced by Hexavalent Chromium in Sprague-
43	Dawley Rats. Environ Toxicol 24: 66-73. <u>http://dx.doi.org/10.1002/tox.20395</u>
44	Paustenbach, DJ; Hays, SM; Brien, BA; Dodge, DG; Kerger, BD. (1996). Observation of steady state in
45	blood and urine following human ingestion of hexavalent chromium in drinking water. J
46	Toxicol Environ Health 49: 453-461. <u>http://dx.doi.org/10.1080/009841096160682</u>
47	Pedersen, DH; Sieber, WK. (1988). National occupational exposure survey Volume III: analysis of
48	management interview responses. Pedersen, DH; Sieber, WK.

1	Percy, C; Stanek, E, III; Gloeckler, L. (1981). Accuracy of cancer death certificates and its effect on
2	cancer mortality statistics. Am J Public Health 71: 242-250.
3	http://dx.doi.org/10.2105/AJPH.71.3.242
4	Percy, CL; Miller, BA; Gloeckler Ries, LA. (1990). Effect of changes in cancer classification and the
5	accuracy of cancer death certificates on trends in cancer mortality. Ann N Y Acad Sci 609:
6	87-99. <u>http://dx.doi.org/10.1111/j.1749-6632.1990.tb32059.x</u>
7	Pereira, M; Pereira, M; Sousa, JP. (1999). Individual study of chromium in the stainless steel
8	implants degradation: an experimental study in mice. Biometals 12: 275-280.
9	<u>Perrault, G; Dufresne, A; Strati, G; Mcneil, M; Michaud, D; Baril, M; Bégin, R; Labbé, J; Larivière, P;</u>
10	Eeckhaoudt, S. (1995). Physico-chemical fate of chromium compounds in the sheep lung
11	model. J Toxicol Environ Health 44: 247-262.
12	<u>http://dx.doi.org/10.1080/15287399509531958</u>
13	<u>Pesch, B; Lehnert, M; Weiss, T; Kendzia, B; Menne, E; Lotz, A; Heinze, E; Behrens, T; Gabriel, S;</u>
14	Schneider, W; Brüning, T. (2018). Exposure to hexavalent chromium in welders: Results of
15	the WELDOX II field study. 62: 351-361. <u>http://dx.doi.org/10.1093/annweh/wxy004</u>
16	Peterson-Roth, E; Reynolds, M; Quievryn, G; Zhitkovich, A. (2005). Mismatch repair proteins are
17	activators of toxic responses to chromium-DNA damage. Mol Cell Biol 25: 3596-3607.
18	http://dx.doi.org/10.1128/MCB.25.9.3596-3607.2005
19	Petrilli, FL; De Flora, S. (1982). Interpretations on chromium mutagenicity and carcinogenicity. In M
20	Sorsa; H Vainio (Eds.), Mutagens in our environment: Proceedings of the twelfth annual
21	meeting of the European Environmental Mutagen Society (pp. 453-464). New York, NY: A. R.
22	Liss.
23	<u>Petrilli, FL; Rossi, GA; Camoirano, A; Romano, M; Serra, D; Bennicelli, C; De Flora, A; De Flora, S.</u>
24	(1986). Metabolic reduction of chromium by alveolar macrophages and its relationships to
25	cigarette smoke. J Clin Invest 77: 1917-1924. <u>http://dx.doi.org/10.1172/JCI112520</u>
26	<u>Petruzzelli, S; De Flora, S; Bagnasco, M; Hietanen, E; Camus, AM; Saracci, R; Izzotti, A; Bartsch, H;</u>
27	Giuntini, C. (1989). Carcinogen metabolism studies in human bronchial and lung
28	parenchymal tissues. Am Rev Respir Dis 140: 417-422.
29	http://dx.doi.org/10.1164/ajrccm/140.2.417
30	PHS (U.S. Public Health Service). (1953). Health of workers in chromate producing industry. (No.
31	192). Washington, DC.
32	Pierre, F; Fo, D; Fo, B. (2008). Biomonitoring of two types of chromium exposure in an
33	electroplating shop. Int Arch Occup Environ Health 81: 321-329.
34	http://dx.doi.org/10.1007/s00420-007-0216-x
35	Pippard, EC; Acheson, ED; Winter, PD. (1985). Mortality of tanners. Br J Ind Med 42: 285-287.
36	http://dx.doi.org/10.1136/oem.42.4.285
37	Polednak, AP. (1981). Mortality among welders, including a group exposed to nickel oxides. Arch
38	Environ Occup Health 36: 235-242.
39	Pool-Zobel, BL; Lotzmann, N; Knoll, M; Kuchenmeister, F; Lambertz, R; Leucht, U; Schröder, HG;
40	Schmezer, P. (1994). Detection of genotoxic effects in human gastric and nasal mucosa cells
41	isolated from biopsy samples. Environ Mol Mutagen 24: 23-45.
42	http://dx.doi.org/10.1002/em.2850240105
43	Popp, W; Vahrenholz, C; Schmieding, W; Krewet, E; Norpoth, K. (1991). Investigations of the
44 45	frequency of DNA strand breakage and cross-linking and of sister chromatid exchange in the
45 46	lymphocytes of electric welders exposed to chromium- and nickel-containing fumes. Int
46 47	Arch Occup Environ Health 63: 115-120. <u>http://dx.doi.org/10.1007/BF00379074</u>
47 10	Popper, HH; Grygar, E; Ingolic, E; Wawschinek, O. (1993). Cytotoxicity of chromium-III and
48	chromium-VI compounds. I. In vitro studies using different cell culture systems. Inhal
49	Toxicol 5: 345-369. <u>http://dx.doi.org/10.3109/08958379308998392</u>

1	Poulakos, L; Kent, TH. (1973). Gastric emptying and small intestinal propulsion in fed and fasted
2	rats. Gastroenterology 64: 962-967. <u>http://dx.doi.org/10.1016/S0016-5085(73)80008-3</u>
3	<u>Pournourmohammadi, S; Khazaelp, P; Eslamizad, S; Tajvar, A; Mohammadirad, A; Abdollahi, M.</u>
4	(2008). Study on the oxidative stress status among cement plant workers. Hum Exp Toxicol
5	27: 463-469. <u>http://dx.doi.org/10.1177/0960327108094956</u>
6	Pratt, PF; Myers, CR. (1993). Enzymatic reduction of chromium(VI) by human hepatic microsomes.
7	Carcinogenesis 14: 2051-2057. <u>http://dx.doi.org/10.1093/carcin/14.10.2051</u>
8	<u>Pritchard, DE; Ceryak, S; Ramsey, KE; O'Brien, TJ; Ha, LN; Fornsaglio, JL; Stephan, DA; Patierno, P,</u>
9	<u>SR.</u> (2005). Resistance to apoptosis, increased growth potential, and altered gene
10	expression in cells that survived genotoxic hexavalent chromium Cr(VI) exposure. Mol Cell
11	Biochem 279: 169-181. <u>http://dx.doi.org/10.1007/s11010-005-8292-2</u>
12	Pritchard, KA; Ackerman, A; Kalyanaraman, B. (2000). Chromium (VI) increases endothelial cell
13	expression of ICAM-1 and decreases nitric oxide activity. J Environ Pathol Toxicol Oncol 19:
14	251-260.
15	Proctor, DM; Suh, M; Aylward, LL; Kirman, CR; Harris, MA; Thompson, CM; Gürleyük, H; Gerads, R;
16	Haws, LC; Hays, SM. (2012). Hexavalent chromium reduction kinetics in rodent stomach
17	contents. Chemosphere 89: 487-493.
18	http://dx.doi.org/10.1016/j.chemosphere.2012.04.065
19	Proctor, DM; Suh, M; Mittal, L, iz; Hirsch, S; Salgado, RV; Bartlett, C; Van Landingham, C; Rohr, A;
20	<u>Crump, K.</u> (2016). Inhalation cancer risk assessment of hexavalent chromium based on updated mortality for Painesville chromate production workers. J Expo Sci Environ
21 22	Epidemiol 26: 224-231. <u>http://dx.doi.org/10.1038/jes.2015.77</u>
23	Pukkala, E; Martinsen, J; Lynge, E; Gunnarsdottir, H; Sparén, P; Tryggvadottir, L; Weiderpass, E;
24	<u>Kjaerheim, K.</u> (2009). Occupation and cancer - follow-up of 15 million people in five Nordic
25	countries. Acta Oncol 48: 646-790. <u>http://dx.doi.org/10.1080/02841860902913546</u>
26	Purdon, RA; Bass, P. (1973). Gastric and intestinal transit in rats measured by a radioactive test
27	meal. Gastroenterology 64: 968-976. <u>http://dx.doi.org/10.1016/S0016-5085(73)80009-5</u>
28	Qayyum, S; Ara, A; Usmani, JA. (2012). Effect of nickel and chromium exposure on buccal cells of
29	electroplaters. Toxicol Ind Health 28: 74-82.
30	http://dx.doi.org/10.1177/0748233711407237
31	Qian, Q, in; Li, P; Wang, T; Zhang, J, i; Yu, S; Chen, T; Yan, L, ei; Song, Y; Liu, X; Gu, Y; Wang, Y, un; Jia,
32	G. (2013). Alteration of Th1/Th2/Th17 cytokine profile and humoral immune responses
33	associated with chromate exposure. Occup Environ Med 70: 697-702.
34	http://dx.doi.org/10.1136/oemed-2013-101421
35	Qu, Q; Li, X; An, F; Jia, G; Liu, L; Watanabe-Meserve, H; Koenig, K; Cohen, B; Costa, M; Roy, N; Zhong,
36	M: Chen, LC: Liu, S: Yan, L. (2008). Cr(VI) exposure and biomarkers: Cr in erythrocytes in
37	relation to exposure and polymorphisms of genes encoding anion transport proteins.
38	Biomarkers 13: 467-477. http://dx.doi.org/10.1080/13547500802099574
39	Qualls-Creekmore, E: Tong, M: Holmes, GM. (2010). Gastric emptying of enterally administered
40	liquid meal in conscious rats and during sustained anaesthesia. Neurogastroenterol Motil
41	22: 181-185. <u>http://dx.doi.org/10.1111/j.1365-2982.2009.01393.x</u>
42	Quievryn, G; Goulart, M; Messer, J; Zhitkovich, A. (2001). Reduction of Cr (VI) by cysteine:
43 44	Significance in human lymphocytes and formation of DNA damage in reactions with variable reduction rates. Mol Cell Biochem 222: 107-118.
44 45	Quievryn, G; Messer, J; Zhitkovich, A. (2002). Carcinogenic chromium(VI) induces cross-linking of
45 46	vitamin C to DNA in vitro and in human lung A549 cells. Biochemistry 41: 3156-3167.
40 47	Quievryn, G: Messer, J: Zhitkovich, A. (2006). Lower mutagenicity but higher stability of Cr-DNA
47 48	adducts formed during gradual chromate activation with ascorbate. Carcinogenesis 27:
49	2316-2321. http://dx.doi.org/10.1093/carcin/bgl076

1	Quievryn, G; Peterson, E; Messer, J; Zhitkovich, A. (2003). Genotoxicity and mutagenicity of
2	chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells.
3	Biochemistry 42: 1062-1070. <u>http://dx.doi.org/10.1021/bi0271547</u>
4	Quinteros, FA; Machiavelli, LI; Miler, EA; Cabilla, JP; Duvilanski, BH. (2008). Mechanisms of
5	chromium (VI)-induced apoptosis in anterior pituitary cells. Toxicology 249: 109-115.
6	<u>http://dx.doi.org/10.1016/j.tox.2008.04.012</u>
7	Quinteros, FA; Poliandri, AH; Machiavelli, LI; Cabilla, JP; Duvilanski, BH. (2007). In vivo and in vitro
8	effects of chromium VI on anterior pituitary hormone release and cell viability. Toxicol Appl
9	Pharmacol 218: 79-87. <u>http://dx.doi.org/10.1016/j.taap.2006.10.017</u>
10	Qureshi, IZ; Mahmood, T. (2010). Prospective role of ascorbic acid (vitamin C) in attenuating
11	hexavalent chromium-induced functional and cellular damage in rat thyroid. Toxicol Ind
12	Health 26: 349-359. <u>http://dx.doi.org/10.1177/0748233710371109</u>
13	Rafnsson, V; Gunnarsdottir, H; Kiilunen, M. (1997). Risk of lung cancer among masons in Iceland.
14	Occup Environ Med 54: 184-188.
15	Rafnsson, V: Jóhannesdóttir, SG. (1986). Mortality among masons in Iceland. Br J Ind Med 43: 522-
16	525.
17	Rager, JE; Ring, CL; Fry, RC; Suh, M; Proctor, DM; Haws, LC; Harris, MA; Thompson, CM. (2017).
18	High-throughput screening data interpretation in the context of in vivo transcriptomic
19	responses to oral Cr(VI) exposure. Toxicol Sci 158: 199-212.
20	http://dx.doi.org/10.1093/toxsci/kfx085
21	Rager, JE; Suh, M; Chappell, GA; Thompson, CM; Proctor, DM. (2019). Review of transcriptomic
22	responses to hexavalent chromium exposure in lung cells supports a role of epigenetic
23	mediators in carcinogenesis [Review]. Toxicol Lett 305: 40-50.
24	<u>http://dx.doi.org/10.1016/j.toxlet.2019.01.011</u>
25	Ramanakumar, AV; Nadon, L; Siemiatycki, J. (2008). Exposures in painting related occupations and
26	risk of selected cancers: Results from a case-control study in Montreal. Am J Ind Med 51:
27	419-427. <u>http://dx.doi.org/10.1002/ajim.20564</u>
28	Rao, MV; Chawla, SL; Sharma, SR. (2009). Protective role of vitamin E on nickel and/or chromium
29	induced oxidative stress in the mouse ovary. Food Chem Toxicol 47: 1368-1371.
30	http://dx.doi.org/10.1016/j.fct.2009.03.018
31	Rao, MV; Chinoy, NJ; Mitali, R. (1999). Genotoxic effects of potassium dichromate in human blood
32	cultures. Med Sci Res 27: 839-841.
33	Rasool, M; Zaigham, K; Malik, A; Naseer, MI; Umm-E-Habiba, MI; Manan, A; Qazi, MH; Asif, M.
34	(2014). Potential reproductive health effects and oxidative stress associated with exposure
35	to potassium dichromate (K2Cr2O7) and magnesium sulphate (MgSO4) in male mice.
36	Pakistan Journal of Medical Sciences online 30: 819-823.
37	Ray, RR; Sarkar, NK. (2012). Light and scanning electron microscopic studies on chromium-induced
38	anemia in a murine model. Bull Environ Contam Toxicol 88: 10-14.
39	http://dx.doi.org/10.1007/s00128-011-0469-7
40	Reutter, K: Jaeger, D: Degwert, J: Hoppe, U. (1997). In vitro model for contact sensitization: II.
41	Induction of IL-1beta mRNA in human blood-derived dendritic cells by contact sensitizers.
42	Toxicol In Vitro 11: 619-626. <u>http://dx.doi.org/10.1016/S0887-2333(97)00048-9</u>
43	<u>Reynolds, M; Armknecht, S; Johnston, T; Zhitkovich, A.</u> (2012). Undetectable role of oxidative DNA
44	damage in cell cycle, cytotoxic and clastogenic effects of Cr(VI) in human lung cells with
45	restored ascorbate levels. Mutagenesis 27: 437-443.
46	http://dx.doi.org/10.1093/mutage/ger095
47 49	<u>Reynolds, M; Peterson, E; Quievryn, G; Zhitkovich, A.</u> (2004). Human nucleotide excision repair
48	efficiently removes chromium-DNA phosphate adducts and protects cells against chromate
49	toxicity. J Biol Chem 279: 30419-30424. <u>http://dx.doi.org/10.1074/jbc.M402486200</u>

1	Reynolds, M: Stoddard, L; Bespalov, I; Zhitkovich, A. (2007). Ascorbate acts as a highly potent
2	inducer of chromate mutagenesis and clastogenesis: linkage to DNA breaks in G2 phase by
3	mismatch repair. Nucleic Acids Res 35: 465-476. <u>http://dx.doi.org/10.1093/nar/gkl1069</u>
4	Reynolds, M; Zhitkovich, A. (2007). Cellular vitamin C increases chromate toxicity via a death
5	program requiring mismatch repair but not p53. Carcinogenesis 28: 1613-1620.
6	http://dx.doi.org/10.1093/carcin/bgm031
7	<u>Reynolds, MF; Peterson-Roth, EC; Bespalov, IA; Johnston, T; Gurel, VM; Menard, HL; Zhitkovich, A.</u>
8	(2009). Rapid DNA double-strand breaks resulting from processing of Cr-DNA cross-links
9	by both MutS dimers. Cancer Res 69: 1071-1079. <u>http://dx.doi.org/10.1158/0008-</u>
10	<u>5472.CAN-08-2306</u>
11	Rich, A; Zhang, S. (2003). Timeline: Z-DNA: the long road to biological function [Review]. Nat Rev
12	Genet 4: 566-572. <u>http://dx.doi.org/10.1038/nrg1115</u>
13	Richelmi, P; Baldi, C; Minoia, C. (1984). Blood levels of hexavalent chromium in rats. "In vitro" and
14 15	"In vivo" experiments. Int J Environ Anal Chem 17: 181-186.
15 16	http://dx.doi.org/10.1080/03067318408076971 Richiardi, L; Corbin, M; Marron, M; Ahrens, W; Pohlabeln, H; Lagiou, P; Minaki, P; Agudo, A;
17	<u>Castellsague, X; Slamova, A; Schejbalova, M; Kjaerheim, K; Barzan, L; Talamini, R;</u>
18	<u>Macfarlane, GJ; Macfarlane, TV; Canova, C; Simonato, L; Conway, DI; Mckinney, PA; Sneddon,</u>
19	L; Thomson, P; Znaor, A; Healy, CM; Mccartan, BE; Benhamou, S; Bouchardy, C; Hashibe, M.
20	ia; Brennan, P; Merletti, F. (2012). Occupation and risk of upper aerodigestive tract cancer:
21	The ARCAGE study. Int J Cancer 130: 2397-2406. <u>http://dx.doi.org/10.1002/ijc.26237</u>
22	<u>RIVM</u> (National Institute for Public Health and the Environment (Netherlands)). (2001). Re-
23	evaluation of human-toxicological maximum permissible risk levels. (RIVM report
24	711701025). Bilthoven, Netherlands: National Institute for Public Health and the
25	Environment (RIVM). <u>https://www.rivm.nl/bibliotheek/rapporten/711701025.pdf</u>
26	Rizzi, M; Cravello, B; Renò, F. (2014). Textile industry manufacturing by-products induce human
27	melanoma cell proliferation via ERK1/2 activation. Cell Prolif 47: 578-586.
28	http://dx.doi.org/10.1111/cpr.12132
29	Robinson, C; Stern, F; Halperin, W; Venable, H; Petersen, M; Frazier, T; Burnett, C; Lalich, N; Salg, J;
30	Sestito, J. (1995). Assessment of mortality in the construction industry in the United States,
31	1984-1986. Am J Ind Med 28: 49-70.
32	Robinson, CF; Petersen, M; Sieber, WK; Palu, S; Halperin, WE. (1996). Mortality of Carpenters' Union
33	members employed in the U.S. construction or wood products industries, 1987-1990. Am J
34 25	Ind Med 30: 674-694. <u>http://dx.doi.org/10.1002/(SICI)1097-</u> 0274(100612)20(62)tr(74) AUX 410, AUX 48 ct; 2.0 CO; 2.P.
35 36	<u>0274(199612)30:6<674::AID-AJIM4>3.0.CO;2-R</u> <u>Roda, A; Mezzanotte, L; Aldini, R; Michelini, E; Cevenini, L.</u> (2010). A new gastric-emptying mouse
37	model based on in vivo non-invasive bioluminescence imaging. Neurogastroenterol Motil
38	22: 1117-e1288. <u>http://dx.doi.org/10.1111/j.1365-2982.2010.01535.x</u>
39	Rodrigues, CFD; Urbano, AM; Matoso, E; Carreira, I; Almeida, A; Santos, P; Botelho, F; Carvalho, L;
40	<u>Alves, M; Monteiro, C; Costa, AN; Moreno, V; Alpoim, MC.</u> (2009). Human bronchial epithelial
41	cells malignantly transformed by hexavalent chromium exhibit an aneuploid phenotype but
42	no microsatellite instability. Mutat Res Fundam Mol Mech Mutagen 670: 42-52.
43	http://dx.doi.org/10.1016/j.mrfmmm.2009.07.004
44	Rosenman, KD: Stanbury, M. (1996). Risk of lung cancer among former chromium smelter workers.
45	Am J Ind Med 29: 491-500. http://dx.doi.org/10.1002/(SICI)1097-
46	<u>0274(199605)29:5</u> <491::AID-AJIM7>3.0.CO;2-P
47	Rossi, SC; Gorman, N; Wetterhahn, KE. (1988). Mitochondrial reduction of the carcinogen chromate:
48	formation of chromium (V). Chem Res Toxicol 1: 101-107.
49	http://dx.doi.org/10.1021/tx00002a003

1	Rossi, SC: Wetterhahn, KE. (1989). Chromium(V) is produced upon reduction of chromate by
2	mitochondrial electron transport chain complexes. Carcinogenesis 10: 913-920.
3	http://dx.doi.org/10.1093/carcin/10.5.913
4	Royle, H. (1975a). Toxicity of chromic acid in the chromium plating industry (1). Environ Res 10:
5	39-53. <u>http://dx.doi.org/10.1016/0013-9351(75)90072-9</u>
6	Royle, H. (1975b). Toxicity of chromic acid in the chromium plating industry(2). Environ Res 10:
7	141-163. <u>http://dx.doi.org/10.1016/0013-9351(75)90079-1</u>
8	Rudnykh, AA; Zasukhina, GD. (1985). DNA repair synthesis in lymphocytes of people contacting
9	chromium compounds in industry. Cytology and Genetics 19: 68-69.
10	<u>Runfola, M; Rossi, S; Panunzi, S; Spada, PL; Gui, D.</u> (2003). Botulinum toxin in gastric submucosa
11	reduces stimulated HCl production in rats. BMC Gastroenterol 3: 26.
12	http://dx.doi.org/10.1186/1471-230X-3-26
13	Russell, TL; Berardi, RR; Barnett, JL; Dermentzoglou, LC; Jarvenpaa, KM; Schmaltz, SP; Dressman, JB.
14	(1993). Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men
15	and women. Pharm Res 10: 187-196. <u>http://dx.doi.org/10.1023/A:1018970323716</u>
16	Russo, P; Catassi, A; Cesario, A; Imperatori, A; Rotolo, N; Fini, M; Granone, P; Dominioni, L. (2005).
17	Molecular mechanisms of hexavalent chromium-induced apoptosis in human
18	bronchoalveolar cells. Am J Respir Cell Mol Biol 33: 589-600.
19	http://dx.doi.org/10.1165/rcmb.2005-02130C
20	Sakurai, H; Takechi, K; Tsuboi, H; Yasui, H. (1999). ESR characterization and metallokinetic analysis
21	of Cr(V) in the blood of rats given carcinogen chromate(VI) compounds. J Inorg Biochem 76:
22	71-80.
23	Salg, J: Alterman, T. (2005). A proportionate mortality study of bricklayers and allied craftworkers.
24	Am J Ind Med 47: 10-19. <u>http://dx.doi.org/10.1002/ajim.20115</u>
25	Salnikow, K; Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and
26	cocarcinogenesis: Nickel, arsenic, and chromium [Review]. Chem Res Toxicol 21: 28-44.
27	http://dx.doi.org/10.1021/tx700198a
28	Samuel, JB; Stanley, JA; Sekar, P; Princess, RA; Sebastian, MS; Aruldhas, MM. (2012). Persistent
29	hexavalent chromium exposure impaired the pubertal development and ovarian
30	histoarchitecture in wistar rat offspring. Environ Toxicol 29: 814-828.
31	http://dx.doi.org/10.1002/tox.21810
32	Sánchez-Martín, FJ; Fan, Y; Carreira, V; Ovesen, JL; Vonhandorf, A; Xia, Y; Puga, A. (2015). Long-term
33	coexposure to hexavalent chromium and B[a]P causes tissue-specific differential biological
34 35	effects in liver and gastrointestinal tract of mice. Toxicol Sci 146: 52-64.
35 36	<u>http://dx.doi.org/10.1093/toxsci/kfv070</u> Sankaramanivel, S; Jeyapriya, R; Hemalatha, D; Djody, S; Arunakaran, J; Srinivasan, N. (2006). Effect
30 37	of chromium on vertebrae, femur and calvaria of adult male rats. Hum Exp Toxicol 25: 311-
38	318.
39	Santibañez, M; Alguacil, J; de La Hera, MG; Navarrete-Muñoz, EM; Llorca, J; Aragonés, N; Kauppinen,
40	<u>T; Vioque, J; Group, PS.</u> (2012). Occupational exposures and risk of stomach cancer by
40 41	histological type. Occup Environ Med 69: 268-275. <u>http://dx.doi.org/10.1136/oemed-2011-</u>
42	100071
43	Santibanez, M; Vioque, J; Alguacil, J; Barber, X; de la Hera, G; Kauppinen, T. (2008). Occupational
44	exposures and risk of oesophageal cancer by histological type: a case-control study in
45	eastern Spain. Occup Environ Med 65: 774-781.
46	http://dx.doi.org/10.1136/oem.2007.037929
47	Sarlinova, M; Majerova, L; Matakova, T; Musak, L; Slovakova, P; Skereňová, M; Kavcová, E; Halašová,
48	<u>E.</u> (2015). Polymorphisms of DNA repair genes and lung cancer in chromium exposure. Adv
49	Exp Med Biol 833: 1-8. <u>http://dx.doi.org/10.1007/5584_2014_82</u>
-	· · · · · · · · · · · · · · · · · · ·

1	Sarto, F; Cominato, I; Bianchi, V; Levis, AG. (1982). Increased incidence of chromosomal aberrations
2	and sister chromatid exchanges in workers exposed to chromic acid (CrO3) in electroplating
3	factories. Carcinogenesis 3: 1011-1016. <u>http://dx.doi.org/10.1093/carcin/3.9.1011</u>
4	<u>Sarto, F; Tomanin, R; Giacomelli, L; Iannini, G; Cupiraggi, AR.</u> (1990). The micronucleus assay in
5	human exfoliated cells of the nose and mouth: Application to occupational exposures to
6	chromic acid and ethylene oxide. Mutat Res 244: 345-351. <u>http://dx.doi.org/10.1016/0165-</u>
7	<u>7992(90)90083-V</u>
8	Sasaki, YF; Nishidate, E; Izumiyama, F; Matsusaka, N; Tsuda, S. (1997). Simple detection of chemical
9	mutagens by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse
10	organs (liver, lung, spleen, kidney, and bone marrow). Mutat Res Genet Toxicol Environ
11	Mutagen 391: 215-231. <u>http://dx.doi.org/10.1016/S1383-5718(97)00073-9</u>
12	Sasso, AF; Schlosser, PM. (2015). An evaluation of in vivo models for toxicokinetics of hexavalent
13	chromium in the stomach. Toxicol Appl Pharmacol 287: 293-298.
14	<u>http://dx.doi.org/10.1016/j.taap.2015.06.016</u>
15	Sato, S; Takizawa, H; Inui, N. (1990). A comparison of micronucleus induction in 3 mouse strains
16	with representative clastogens. Toxicol Lett 52: 215-220.
17	Satoh, K; Fukuda, Y; Torii, K; Katsuno, N. (1981). Epidemiological study of workers engaged in the
18	manufacture of chromium compounds. J Occup Med 23: 835-838.
19	Sawicka, E: Długosz, A. (2017). The role of 17β -estradiol metabolites in chromium-induced
20	oxidative stress. Advances in Clinical and Experimental Medicine 26: 215-221.
21	http://dx.doi.org/10.17219/acem/62217
22	Sawicka, E; Piwowar, A; Musiala, T; Dlugosz, A. (2017). THE ESTROGENS / CHROMIUM
23	INTERACTION IN THE NITRIC OXIDE GENERATION. Acta Pol Pharm 74: 785-791.
24	Saxena, DK; Murthy, RC; Jain, VK; Chandra, SV. (1990). Fetoplacental-maternal uptake of hexavalent
25	chromium administered orally in rats and mice. Bull Environ Contam Toxicol 45: 430-435.
26	http://dx.doi.org/10.1007/BF01701168
27	Sayato, Y; Nakamuro, K; Matsui, S; Ando, M. (1980). Metabolic fate of chromium compounds. I.
28	Comparative behavior of chromium in rat administered with Na251CrO4 and 51CrCl3. J
29	Pharmacobio-Dyn 3: 17-23. <u>http://dx.doi.org/10.1248/bpb1978.3.17</u>
30 21	Sazakli, E; Villanueva, CM; Kogevinas, M; Maltezis, K; Mouzaki, A; Leotsinidis, M. (2014). Chromium
31 32	in Drinking Water: Association with Biomarkers of Exposure and Effect. Int J Environ Res Public Health 11: 10125-10145. <u>http://dx.doi.org/10.3390/ijerph111010125</u>
32 33	Scarpignato, C; Girone, MG; Tirelli, F; Bertaccini, G. (1984). Inhibition of gastric emptying and
33 34	secretion by pirenzepine and atropine in rats. Eur J Pharmacol 101: 193-200.
35	http://dx.doi.org/10.1016/0014-2999(84)90156-0
36	Schlosser, PM; Sasso, AF. (2014). A revised model of ex-vivo reduction of hexavalent chromium in
37	human and rodent gastric juices. Toxicol Appl Pharmacol 280: 352-361.
38	http://dx.doi.org/10.1016/j.taap.2014.08.010
39	<u>Schoonjans, R; Van Vlem, B; Van Heddeghem, N; Vandamme, W; Vanholder, R; Lameire, N; Lefebvre,</u>
40	<u>R; De Vos, M.</u> (2002). The 13C-octanoic acid breath test: validation of a new noninvasive
41	method of measuring gastric emptying in rats. Neurogastroenterol Motil 14: 287-293.
42	http://dx.doi.org/10.1046/j.1365-2982.2002.00334.x
43	<u>Sciannameo, V; Ricceri, F; Soldati, S; Scarnato, C; Gerosa, A; Giacomozzi, G; D'Errico, A.</u> (2019).
44	Cancer mortality and exposure to nickel and chromium compounds in a cohort of Italian
45	electroplaters. Am J Ind Med 62: 99-110. <u>http://dx.doi.org/10.1002/ajim.22941</u>
46	Sciome (Sciome, LLC.). (2018). BMDExpress 2 software (Version 44) [Computer Program].
47	Research Triangle Park, NC: National Toxicology Program. Retrieved from
48	https://www.sciome.com/bmdexpress/

1	Scott, P; Anderson, K; Singhania, M; Cormier, R. (2020). Cystic Fibrosis, CFTR, and Colorectal Cancer
2	[Review]. International Journal of Molecular Sciences 21.
3	http://dx.doi.org/10.3390/ijms21082891
4	Sehlmeyer, U; Hechtenberg, S; Klyszcz, H; Beyersmann, D. (1990). Accumulation of chromium in
5	Chinese hamster V79-cells and nuclei. Arch Toxicol 64: 506-508.
6	<u>http://dx.doi.org/10.1007/BF01977636</u>
7	<u>Sekihashi, K; Sasaki, T; Yamamoto, A; Kawamura, K; Ikka, T; Tsuda, S; Sasaki, YF. (2001). A</u>
8	comparison of intraperitoneal and oral gavage administration in comet assay in mouse eight
9	organs. Mutat Res 493: 39-54. <u>http://dx.doi.org/10.1016/S1383-5718(01)00157-7</u>
10	<u>Sellappa, S; Prathyumnan, S; Keyan, KS; Joseph, S; Vasudevan, BS; Sasikala, K.</u> (2010). Evaluation of
11	DNA damage induction and repair inhibition in welders exposed to hexavalent chromium.
12	Asian Pac J Cancer Prev 11: 95-100.
13	<u>Sengupta, T; Chattopadhyay, D; Ghosh, N; Das, M; Chatterjee, GC.</u> (1990). Effect of chromium
14	administration on glutathione cycle of rat intestinal epithelial cells. Indian J Exp Biol 28:
15	1132-1135.
16	Seoane, AI; Dulout, FN. (1999). Contribution to the validation of the anaphase-telophase test:
17	Aneugenic and clastogenic effects of cadmium sulfate, potassium dichromate and nickel
18	chloride in Chinese hamster ovary cells. Genet Mol Biol 22: 551-555.
19	Seoane, AI; Dulout, FN. (2001). Genotoxic ability of cadmium, chromium and nickel salts studied by
20	kinetochore staining in the cytokinesis-blocked micronucleus assay. Mutat Res 490: 99-106.
21	http://dx.doi.org/10.1016/S1383-5718(00)00145-5
22	Seoane, AI; Güerci, AM; Dulout, FN. (2002). Malsegregation as a possible mechanism of aneuploidy
23	induction by metal salts in MRC-5 human cells. Environ Mol Mutagen 40: 200-206.
24	http://dx.doi.org/10.1002/em.10110
25	Seta, JA; Sundin, DS; Pedersen, DH. (1988). NOES National Occupational Exposure Survey Field
26	Guidelines. (88-106). Cincinnati, OH: National Institute for Occupational Safety and Health.
27	http://www.cdc.gov/noes/default.html
28	Sharma, P; Bihari, V; Agarwal, SK; Goel, SK. (2012). Genetic predisposition for dermal problems in
29	hexavalent chromium exposed population. Journal of Nucleic Acids 2012: 968641.
30	http://dx.doi.org/10.1155/2012/968641
31	Shaw Environmental (Shaw Environmental, Inc). (2006). Final report. Industry profile, exposure
32	profile, technological feasibility evaluation, and environmental impact for industries
33	affected by a revised OSHA standard for hexavalent chromium (General industry,
34	construction, and maritime sectors). (OSHA-H054A-2006-0064-2537). Washington, DC: U.S.
35	Department of Labor, Occupational Safety and Health Administration.
36	https://www.regulations.gov/document?D=OSHA-H054A-2006-0064-2537
37	Shi, X; Dalal, NS. (1994). Generation of hydroxyl radical by chromate in biologically relevant
38	systems: role of Cr(V) complexes versus tetraperoxochromate(V). Environ Health Perspect
39	102 Suppl 3: 231-236.
40	Shi, X; Ding, M; Ye, J; Wang, S; Leonard, SS; Zang, L; Castranova, V; Vallyathan, V; Chiu, A; Dalal, N;
41	Liu, K. (1999). Cr(IV) causes activation of nuclear transcription factor-kappa B, DNA strand
42	breaks and dG hydroxylation via free radical reactions. J Inorg Biochem 75: 37-44.
43	http://dx.doi.org/10.1016/S0162-0134(99)00030-6
44	Shindo, Y; Toyoda, Y; Kawamura, K; Kurebe, M; Shimada, H; Hattori, C; Satake, S. (1989).
45	Micronucleus test with potassium chromate(VI) administered intraperitoneally and orally
46	to mice. Mutat Res 223: 403-406.
47	Shobana, N; Aruldhas, MM; Tochhawng, L; Loganathan, A; Balaji, S; Kumar, MK; Banu, LAS; Navin,
48	AK; Mayilvanan, C; Ilangovan, R; Balasubramanian, K. (2017). Transient gestational
49	exposure to drinking water containing excess hexavalent chromium modifies insulin
	· · · · · · · · · · · · · · · · · · ·

1 2	signaling in liver and skeletal muscle of rat progeny. Chem Biol Interact 277: 119-128. http://dx.doi.org/10.1016/j.cbi.2017.09.003
3 4 5	Shrivastava, R; Srivastava, S; Upreti, RK; Chaturvedi, UC. (2005a). Effects of dengue virus infection on peripheral blood cells of mice exposed to hexavalent chromium with drinking water. Indian J Med Res 122: 111-119.
6	Shrivastava, R; Upreti, RK; Chaturvedi, UC. (2003). Various cells of the immune system and intestine
7	differ in their capacity to reduce hexavalent chromium. FEMS Immunol Med Microbiol 38:
8	65-70.
9 10	Shrivastava, R; Upreti, RK; Chaturvedi, UC. (2005b). Effects of dengue virus infection on the spleen of male mice given hexavalent chromium with drinking water. Toxicol Mech Meth 15: 323-
11 12	329. <u>http://dx.doi.org/10.1080/153765291009732</u>
12 13	<u>Shumilla, JA; Barchowsky, A.</u> (1999). Inhibition of protein synthesis by chromium(VI) differentially affects expression of urokinase and its receptor in human type II pneumocytes. Toxicol Appl
14	Pharmacol 158: 288-295. <u>http://dx.doi.org/10.1006/taap.1999.8704</u>
15	Shumilla, JA; Broderick, RJ; Wang, Y; Barchowsky, A. (1999). Chromium(VI) inhibits the
16	transcriptional activity of nuclear factor-kappaB by decreasing the interaction of p65 with
17 18	cAMP-responsive element-binding protein-binding protein. J Biol Chem 274: 36207-36212. <u>http://dx.doi.org/10.1074/jbc.274.51.36207</u>
18 19	<u>Silverstein, M; Maizlish, N; Park, R; Mirer, F.</u> (1985). Mortality among workers exposed to coal tar
20	pitch volatiles and welding emissions an exercise in epidemiologic triage. Am J Public Health
21	75: 1283-1287. <u>http://dx.doi.org/10.2105/ajph.75.11.1283</u>
22	Silverstein, M; Mirer, F; Kotelchuck, D; Silverstein, B; Bennett, M. (1981). Mortality among workers
23	in a die-casting and electroplating plant. Scand J Work Environ Health 7: 156-165.
24	Simonato, L; Fletcher, AC; Andersen, A; Anderson, K; Becker, N; Chang-Claude, J; Ferro, G; Gérin, M;
25	Gray, CN; Hansen, KS. (1991). A historical prospective study of European stainless steel,
26	mild steel, and shipyard welders. Br J Ind Med 48: 145-154.
27	http://dx.doi.org/10.1136/oem.48.3.145
28	Singh, J; Snow, ET. (1998). Chromium(III) decreases the fidelity of human DNA polymerase beta.
29	Biochemistry 37: 9371-9378. http://dx.doi.org/10.1021/bi9731551
30	Singhal, VK; Deswal, BS; Singh, BN. (2015). Study of skin and mucous membrane disorders among
31 22	workers engaged in the sodium dichromate manufacturing industry and chrome plating
32 33	industry. Indian J Occup Environ Med 19: 129-133. <u>http://dx.doi.org/10.4103/0019-</u> <u>5278.173994</u>
33 34	<u>Sivakumar, KK; Stanley, JA; Arosh, JA; Pepling, ME; Burghardt, RC; Banu, SK.</u> (2014). Prenatal
35	exposure to chromium induces early reproductive senescence by increasing germ cell
36	apoptosis and advancing germ cell cyst breakdown in the F1 offspring. Dev Biol 388: 22-34.
37	http://dx.doi.org/10.1016/j.ydbio.2014.02.003
38	Sjödahl, K; Jansson, C; Bergdahl, IA; Adami, J; Boffetta, P; Lagergren, J. (2007). Airborne exposures
39	and risk of gastric cancer: a prospective cohort study. Int J Cancer 120: 2013-2018.
40	http://dx.doi.org/10.1002/ijc.22566
41	Sjögren, B; Gustavsson, A; Hedström, L. (1987). Mortality in two cohorts of welders exposed to
42	high- and low-levels of hexavalent chromium. Scand J Work Environ Health 13: 247-251.
43	http://dx.doi.org/10.5271/sjweh.2056
44	Sjogren, B; Hedstrom, L; Ulfvarson, U. (1983). Urine chromium as an estimator of air exposure to
45 46	stainless steel welding fumes. Int Arch Occup Environ Health 51: 347-354.
46 47	Skowronski, GA; Seide, M; Abdel-Rahman, MS. (2001). Oral bioaccessibility of trivalent and hexavalent chromium in soil by simulated gastric fluid. J Toxicol Environ Health A 63: 351-
47 48	362. <u>http://dx.doi.org/10.1080/15287390152103652</u>
40	502. <u>http://ux.u0i.01g/10.1000/1520/570152105052</u>

	Smailyte, G; Kurtinaitis, J; Andersen, A. (2004). Mortality and cancer incidence among Lithuanian
	cement producing workers. Occup Environ Med 61: 529-534.
	<u>http://dx.doi.org/10.1136/oem.2003.009936</u>
-	<u>Smith, MT; Guyton, KZ; Gibbons, CF; Fritz, JM; Portier, CJ; Rusyn, I; DeMarini, DM; Caldwell, JC;</u>
	<u>Kavlock, RJ; Lambert, PF; Hecht, SS; Bucher, JR; Stewart, BW; Baan, RA; Cogliano, VJ; Straif,</u>
	<u>K.</u> (2016). Key characteristics of carcinogens as a basis for organizing data on mechanisms
	of carcinogenesis [Review]. Environ Health Perspect 124: 713-721.
	<u>http://dx.doi.org/10.1289/ehp.1509912</u>
	Smyth, GK; Altman, NS. (2013). Separate-channel analysis of two-channel microarrays: Recovering
	inter-spot information. BMC Bioinformatics 14: 165. <u>http://dx.doi.org/10.1186/1471-</u>
	<u>2105-14-165</u>
	Snow, ET. (1994). Effects of chromium on DNA replication in vitro. Environ Health Perspect 102
	Suppl 3: 41-44.
	Snow, ET; Xu, LS. (1991). Chromium(III) bound to DNA templates promotes increased polymerase
	processivity and decreased fidelity during replication in vitro. Biochemistry 30: 11238-
	11245.
	Snyder, CA; Udasin, I; Waterman, SJ; Toioli, E; Gochfeld, M. (1996). Reduced IL-6 levels among
	individuals in Hudson County, New Jersey, an area contaminated with chromium. Arch
	Environ Health 51: 26-28. <u>http://dx.doi.org/10.1080/00039896.1996.9935989</u>
	Snyder, CA; Valle, CD. (1991). Immune function assays as indicators of chromate exposure. Environ
	Health Perspect 92: 83-86. <u>http://dx.doi.org/10.1289/ehp.919283</u>
	Snyder, RD. (1988). Role of active oxygen species in metal-induced DNA strand breakage in human
	diploid fibroblasts. Mutat Res DNA Repair 193: 237-246. http://dx.doi.org/10.1016/0167-
	<u>8817(88)90034-X</u>
	Sognier, MA; Lu, LW; Lu, TT; Kuo, CM; Alcock, NW; Ramanujam, VS. (1991). Uptake/persistence of
	chromium compounds in Chinese hamster V79 cells [Abstract]. Environ Mol Mutagen 17:
	69.
	<u>Son, YO; Pratheeshkumar, P; Wang, L; Wang, X; Fan, J; Kim, DH; Lee, JY; Zhang, Z; Lee, JC; Shi, X.</u>
	(2013). Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-
	dependent activation of GSK-3 β / β -catenin signaling. Toxicol Appl Pharmacol 271: 239-248.
	http://dx.doi.org/10.1016/j.taap.2013.04.036
	Song, Y; Wang, T; Pu, J; Guo, J; Chen, Z; Wang, Y; Jia, G. (2014). Multi-element distribution profile in
	Sprague-Dawley rats: effects of intratracheal instillation of Cr(VI) and Zn intervention.
	Toxicol Lett 226: 198-205. <u>http://dx.doi.org/10.1016/j.toxlet.2014.02.008</u>
	Sorahan, T; Burges, DC; Hamilton, L; Harrington, JM. (1998). Lung cancer mortality in
	nickel/chromium platers, 1946-95. Occup Environ Med 55: 236-242.
	http://dx.doi.org/10.1136/oem.55.4.236
	Sorahan, T; Burges, DCL; Waterhouse, JAH. (1987). A mortality study of nickel/chromium platers.
	Br J Ind Med 44: 250-258.
	Sorahan, T; Cooke, MA. (1989). Cancer mortality in a cohort of United Kingdom steel foundry
	workers: 1946-85. Br J Ind Med 46: 74-81. <u>http://dx.doi.org/10.1136/oem.46.2.74</u>
	Sorahan, T; Faux, AM; Cooke, MA. (1994). Mortality among a cohort of United Kingdom steel
	foundry workers with special reference to cancers of the stomach and lung, 1946-90. Occup
	Environ Med 51: 316-322. <u>http://dx.doi.org/10.1136/oem.51.5.316</u>
	Sorahan, T; Harrington, JM. (2000). Lung cancer in Yorkshire chrome platers, 1972-97. Occup
	Environ Med 57: 385-389.
	Spiteri, NJ. (1982). Circadian patterning of feeding, drinking and activity during diurnal food access
	in rats. Physiol Behav 28: 139-147. http://dx.doi.org/10.1016/0031-9384(82)90115-9

1	Standeven, AM: Wetterhahn, KE. (1991a). Ascorbate is the principal reductant of chromium (VI) in
2	rat liver and kidney ultrafiltrates. Carcinogenesis 12: 1733-1737.
3	http://dx.doi.org/10.1093/carcin/12.9.1733
4	Standeven, AM; Wetterhahn, KE. (1991b). Possible role of glutathione in chromium(VI) metabolism
5	and toxicity in rats. Pharmacol Toxicol 68: 469-476. <u>http://dx.doi.org/10.1111/j.1600-</u>
6	<u>0773.1991.tb01272.x</u>
7	Standeven, AM; Wetterhahn, KE. (1992). Ascorbate is the principal reductant of chromium(VI) in
8	rat lung ultrafiltrates and cytosols, and mediates chromium-DNA binding in vitro.
9	Carcinogenesis 13: 1319-1324. <u>http://dx.doi.org/10.1093/carcin/13.8.1319</u>
10	Stanley, JA: Lee, J: Nithy, TK: Arosh, JA: Burghardt, RC: Banu, SK. (2011). Chromium-VI arrests cell
11	cycle and decreases granulosa cell proliferation by down-regulating cyclin-dependent
12	kinases (CDK) and cyclins and up-regulating CDK-inhibitors. Reprod Toxicol 32: 112-123.
13	http://dx.doi.org/10.1016/j.reprotox.2011.05.007
14 15	Stanley, JA; Sivakumar, KK; Arosh, JA; Burghardt, RC; Banu, SK. (2014). Edaravone mitigates
15 16	hexavalent chromium-induced oxidative stress and depletion of antioxidant enzymes while estrogen restores antioxidant enzymes in the rat ovary in F1 offspring. Biol Reprod 91: 12.
16 17	http://dx.doi.org/10.1095/biolreprod.113.113332
18	Stanley, JA; Sivakumar, KK; Nithy, TK; Arosh, JA; Hoyer, PB; Burghardt, RC; Banu, SK. (2013).
19	Postnatal exposure to chromium through mother's milk accelerates follicular atresia in F1
20	offspring through increased oxidative stress and depletion of antioxidant enzymes. Free
21	Radic Biol Med 61: 179-196. <u>http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.006</u>
22	<u>Stearns, DM; Wetterhahn, KE.</u> (1994). Reaction of chromium(VI) with ascorbate produces
23	chromium(V), chromium(IV), and carbon-based radicals. Chem Res Toxicol 7: 219-230.
24	http://dx.doi.org/10.1021/tx00038a016
25	Stearns, DM; Wetterhahn, KE. (1997). Intermediates Produced in the Reaction of Chromium(VI)
26	with Dehydroascorbate Cause Single-Strand Breaks in Plasmid DNA. Chem Res Toxicol 10:
27	271-278. http://dx.doi.org/10.1021/tx9601521
28	Steenland, K. (2002). Ten-year update on mortality among mild-steel welders. Scand J Work
29	Environ Health 28: 163-167.
30	Steenland, K; Beaumont, J; Elliot, L. (1991). Lung-cancer in mild-steel welders. Am J Epidemiol 133:
31	220-229. http://dx.doi.org/10.1093/oxfordjournals.aje.a115866
32	Steinhoff, D; ShC, G; Hatfield, GK; Mohr, U. (1986). Carcinogenicity study with sodium dichromate in
33	rats. Exp Toxicol Pathol 30: 129-141. <u>http://dx.doi.org/10.1016/S0232-1513(86)80085-8</u>
34	Stella, M; Montaldi, A; Rossi, R; Rossi, G; Levis, AG. (1982). Clastogenic effects of chromium on
35	human lymphocytes in vitro and in vivo. Mutat Res Genet Toxicol 101: 151-164.
36	http://dx.doi.org/10.1016/0165-1218(82)90005-2
37	Stellman, SD; Garfinkel, L. (1984). Cancer mortality among woodworkers. Am J Ind Med 5: 343-357.
38	http://dx.doi.org/10.1002/ajim.4700050503
39 40	Stern, AH; Yu, CH; Black, K; Lin, L; Lioy, PJ; Gochfeld, M; Fan, ZH. (2010). Hexavalent chromium in house dusta comparison between an area with historic contamination from chromate
40 41	production and background locations. Sci Total Environ 408: 4993-4998.
41 42	http://dx.doi.org/10.1016/j.scitotenv.2010.07.035
42 43	<u>Stern, F; Lehman, E; Ruder, A.</u> (2001). Mortality among unionized construction plasterers and
43 44	cement masons. Am J Ind Med 39: 373-388.
45	Stern, FB. (2003). Mortality among chrome leather tannery workers: an update. Am J Ind Med 44:
46	197-206. <u>http://dx.doi.org/10.1002/ajim.10242</u>
47	Stern, FB; Beaumont, JJ; Halperin, WE; Murthy, LI; Hills, BW; Fajen, JM. (1987). Mortality of chrome
48	leather tannery workers and chemical exposures in tanneries. Scand J Work Environ Health
49	13: 108-117. <u>http://dx.doi.org/10.5271/sjweh.2073</u>

1	Stohs, SJ; Bagchi, D; Hassoun, E; Bagchi, M. (2001). Oxidative mechanisms in the toxicity of
2	chromium and cadmium ions. J Environ Pathol Toxicol Oncol 20: 201-213.
3	http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v20.i2.10
4	<u>Subramanian, S; Rajendiran, G; Sekhar, P; Gowri, C; Govindarajulu, P; Aruldhas, MM.</u> (2006).
5	Reproductive toxicity of chromium in adult bonnet monkeys (Macaca radiata Geoffrey).
6	Reversible oxidative stress in the semen. Toxicol Appl Pharmacol 215: 237-249.
7	http://dx.doi.org/10.1016/j.taap.2006.03.004
8	Sudha, S; Kripa, SK; Shibily, P; Joseph, S; Balachandar, V. (2011). Biomonitoring of genotoxic effects
9	among shielded manual metal arc welders. Asian Pac J Cancer Prev 12: 1041-1044.
10	Sugden, KD; Campo, CK; Martin, BD. (2001). Direct oxidation of guanine and 7,8-dihydro-8-
11	oxoguanine in DNA by a high-valent chromium complex: a possible mechanism for
12	chromate genotoxicity. Chem Res Toxicol 14: 1315-1322.
13	Sugden, KD; Stearns, DM. (2000). The role of chromium(V) in the mechanism of chromate-induced
14	oxidative DNA damage and cancer [Review]. J Environ Pathol Toxicol Oncol 19: 215-230.
15	Sugden, KD; Wetterhahn, KE. (1997). Direct and hydrogen peroxide-induced chromium(V)
16	oxidation of deoxyribose in single-stranded and double-stranded calf thymus DNA. Chem
17	Res Toxicol 10: 1397-1406. <u>http://dx.doi.org/10.1021/tx970135r</u>
18	<u>Suh, M; Thompson, CM; Kirman, CR; Carakostas, MC; Haws, LC; Harris, MA; Proctor, DM. (2014).</u>
19	High concentrations of hexavalent chromium in drinking water alter iron homeostasis in
20	F344 rats and B6C3F1 mice. Food Chem Toxicol 65: 381-388.
21	http://dx.doi.org/10.1016/j.fct.2014.01.009
22	Sun, H; Clancy, HA; Kluz, T; Zavadil, J; Costa, M. (2011). Comparison of gene expression profiles in
23	chromate transformed BEAS-2B cells. PLoS ONE 6: e17982.
24	http://dx.doi.org/10.1371/journal.pone.0017982
25	Sun, J: Kubota, H: Hisanaga, N: Shibata, E: Kamijima, M: Nakamura, K. (2002). Mortality among
26	Japanese construction workers in Mie Prefecture. Occup Environ Med 59: 512-516.
27	http://dx.doi.org/10.1136/oem.59.8.512
28	Susa, N; Ueno, S; Furukawa, Y; Michiba, N; Minoura, S. (1989). Induction of lipid peroxidation in
29	mice by hexavalent chromium and its relation to the toxicity. Nihon Juigaku Zasshi 51:
30	1103-1110. <u>http://dx.doi.org/10.1292/jvms1939.51.1103</u>
31	Susa, N; Ueno, S; Furukawa, Y; Sunaga, S; Taruta, Y; Sato, K. (1988). Effect of combined
32	administration of DL-penicillamine and potassium dichromate on lethality, distribution and
33 34	excretion of chromium in mice. Kitasato Arch Exper Med 61: 51-57. Sutherland, IE: Zhitkovich, A: Kluz, T: Costa, M. (2000). Rats retain chromium in tissues following
34 35	chronic ingestion of drinking water containing hexavalent chromium. Biol Trace Elem Res
36	74: 41-53. <u>http://dx.doi.org/10.1385/BTER:74:1:41</u>
30 37	Suzuki, T: Matsumoto, K: Honma, M: Nohmi, T. (2018). Impact of DNA polymerase ζ mutations on
38	genotoxic thresholds of oxidative mutagens. Mutat Res 828: 10-14.
39	http://dx.doi.org/10.1016/j.mrgentox.2018.02.001
40	Suzuki, Y. (1988a). Reduction of hexavalent chromium by ascorbic acid in rat lung lavage fluid. Arch
41	Toxicol 62: 116-122. http://dx.doi.org/10.1007/BF00570129
42	Suzuki, Y. (1988b). Valence states of plasma chromium in rats after intraperitoneal administration
43	of sodium chromate. Ind Health 26: 153-157. <u>http://dx.doi.org/10.2486/indhealth.26.153</u>
44	Suzuki, Y. (1990). Synergism of ascorbic acid and glutathione in the reduction of hexavalent
45	chromium in vitro. Ind Health 28: 9-19.
46	Suzuki, Y; Fukuda, K. (1990). Reduction of hexavalent chromium by ascorbic acid and glutathione
47	with special reference to the rat lung. Arch Toxicol 64: 169-176.
48	http://dx.doi.org/10.1007/BF02010721
49	Suzuki, Y; Homma, K; Minami, M; Yoshikawa, H. (1984). Distribution of chromium in rats exposed to
50	hexavalent chromium and trivalent chromium aerosols. Ind Health 22: 261-277.

1	<u>Svensson, BG; Englander, V; Akesson, B; Attewell, R; Skerfving, S; Ericson, A; Möller, T. (1989).</u>
2	Deaths and tumors among workers grinding stainless steel. Am J Ind Med 15: 51-59.
3	http://dx.doi.org/10.1002/ajim.4700150107
4	Sweeney, MH; Walrath, J; Waxweiler, RJ. (1985). Mortality among retired fur workers dyers
5	dressers tanners and service workers. Scand J Work Environ Health 11: 257-264.
6	http://dx.doi.org/10.5271/sjweh.2222
7	SWRCB. Title 22, Division 4, Chapter 14, Article 3: Amendments, (2014).
8	Symonds, E; Butler, R; Omari, T. (2002). Noninvasive breath tests can detect alterations in gastric
9	emptying in the mouse. Eur J Clin Invest 32: 341-344. http://dx.doi.org/10.1046/j.1365-
10	<u>2362.2002.00991.x</u>
11	Symonds, EL; Tran, CD; Butler, RN; Omari, TI. (2008). Gastric emptying is altered with the presence
12	of gastritis. Dig Dis Sci 53: 636-641. <u>http://dx.doi.org/10.1007/s10620-007-9928-8</u>
13	Tagliari, KC; Vargas, VM; Zimiani, K; Cecchini, R. (2004). Oxidative stress damage in the liver of fish
14	and rats receiving an intraperitoneal injection of hexavalent chromium as evaluated by
15	chemiluminescence. Environ Toxicol Pharmacol 17: 149-157.
16	<u>http://dx.doi.org/10.1016/j.etap.2004.04.001</u>
17	Taioli, E; Zhitkovich, A; Kinney, P; Udasin, I; Toniolo, P; Costa, M. (1995). Increased DNA-protein
18	crosslinks in lymphocytes of residents living in chromium-contaminated areas. Biol Trace
19	Elem Res 50: 175-180. <u>http://dx.doi.org/10.1007/BF02785408</u>
20	Takahashi, K; Okubo, T. (1990). A prospective cohort study of chromium plating workers in Japan.
21	Arch Environ Health 45: 107-111. http://dx.doi.org/10.1080/00039896.1990.9935934
22	Takahashi, Y; Kondo, K; Hirose, T; Nakagawa, H; Tsuyuguchi, M; Hashimoto, M; Sano, T; Ochiai, A;
23	Monden, Y. (2005). Microsatellite instability and protein expression of the DNA mismatch
24	repair gene, hMLH1, of lung cancer in chromate-exposed workers. Mol Carcinog 42: 150-
25	158. <u>http://dx.doi.org/10.1002/mc.20073</u>
26	Takashima, T; Shingaki, T; Katayama, Y; Hayashinaka, E; Wada, Y; Kataoka, M; Ozaki, D; Doi, H;
27	Suzuki, M; Ishida, S; Hatanaka, K; Sugiyama, Y; Akai, S; Oku, N; Yamashita, S; Watanabe, Y.
28	(2013). Dynamic analysis of fluid distribution in the gastrointestinal tract in rats: positron
29	emission tomography imaging after oral administration of nonabsorbable marker,
30	[(18)F]Deoxyfluoropoly(ethylene glycol). Mol Pharm 10: 2261-2269.
31	http://dx.doi.org/10.1021/mp300469m
32	<u>Takeuchi, K; Ukawa, H; Konaka, A; Kitamura, M; Sugawa, Y.</u> (1998). Effect of nitric oxide-releasing
33	aspirin derivative on gastric functional and ulcerogenic responses in rats: Comparison with
34	plain aspirin. J Pharmacol Exp Ther 286: 115-121.
35	<u>Tarvainen, L; Kyyronen, P; Kauppinen, T; Pukkala, E.</u> (2008). Cancer of the mouth and pharynx,
36	occupation and exposure to chemical agents in Finland [in 1971-95]. Int J Cancer 123: 653-
37	659. <u>http://dx.doi.org/10.1002/ijc.23286</u>
38	Taylor, FH. (1966). The relationship of mortality and duration of employment as reflected by a
39	cohort of chromate workers. Am J Public Health 56: 218-229.
40	<u>TCEQ</u> (Texas Commission on Environmental Quality). (2014). Development support document for
41	hexavalent chromium (Particulate compounds). Austin, TX.
42	<u>TCEQ</u> (Texas Commission on Environmental Quality). (2016). Development support document for
43	hexavalent chromium oral reference dose. Austin, TX.
44	<u>TCEQ</u> (Texas Commission on Environmental Quality). (2017). Texas Air Monitoring Information
45	System statistical summary report for chromium VI (Tsp) Stp (Version 4.3.2) [Database].
46	Austin, TX.
47	Tessier, DM; Pascal, LE. (2006). Activation of MAP kinases by hexavalent chromium, manganese and
48	nickel in human lung epithelial cells. Toxicol Lett 167: 114-121.
49	http://dx.doi.org/10.1016/j.toxlet.2006.08.015
	mapy / amaging f 101010/ jitonici 2000/0010

1	<u>Than, BL; Linnekamp, JF; Starr, TK; Largaespada, DA; Rod, A; Zhang, Y; Bruner, V; Abrahante, J;</u>
2	Schumann, A; Luczak, T; Walter; Niemczyk, A; O'Sullivan, MG; Medema, JP; Fijneman, RJ;
3	Meijer, GA; Van Den Broek, E; Hodges, CA; Scott, PM; Vermeulen, L; Cormier, RT. (2016).
4	CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene 35:
5	4179-4187. <u>http://dx.doi.org/10.1038/onc.2015.483</u>
6	Thomann, RV; Snyder, CA; Squibb, KS. (1994). Development of a pharmacokinetic model for
7	chromium in the rat following subchronic exposure: I. The importance of incorporating
8	long-term storage compartment. Toxicol Appl Pharmacol 128: 189-198.
9	<u>http://dx.doi.org/10.1006/taap.1994.1197</u>
10	<u>Thompson, CM; Fedorov, Y; Brown, DD; Suh, M; Proctor, DM; Kuriakose, L; Haws, LC; Harris, MA.</u>
11	(2012a). Assessment of Cr(VI)-induced cytotoxicity and genotoxicity using high content
12	analysis. PLoS ONE 7: e42720. <u>http://dx.doi.org/10.1371/journal.pone.0042720</u>
13	<u>Thompson, CM; Gregory Hixon, J; Proctor, DM; Haws, LC; Suh, M; Urban, JD; Harris, MA.</u> (2012b).
14	Assessment of genotoxic potential of Cr(VI) in the mouse duodenum: An in silico
15	comparison with mutagenic and nonmutagenic carcinogens across tissues. Regul Toxicol
16	Pharmacol 64: 68-76. <u>http://dx.doi.org/10.1016/j.yrtph.2012.05.019</u>
17	Thompson, CM; Haws, LC; Harris, MA; Gatto, NM; Proctor, DM. (2011a). Application of the U.S. EPA
18	mode of action framework for purposes of guiding future research: A case study involving
19	the oral carcinogenicity of hexavalent chromium [Review]. Toxicol Sci 119: 20-40.
20	http://dx.doi.org/10.1093/toxsci/kfq320
21	Thompson, CM; Kirman, CR; Proctor, DM; Haws, LC; Suh, M; Hays, SM; Hixon, JG; Harris, MA. (2014).
22	A chronic oral reference dose for hexavalent chromium-induced intestinal cancer. J Appl
23	Toxicol 34: 525-536. <u>http://dx.doi.org/10.1002/jat.2907</u>
24	Thompson, CM; Proctor, DM; Haws, LC; Hébert, CD; Grimes, SD; Shertzer, HG; Kopec, AK; Hixon, JG;
25	Zacharewski, TR; Harris, MA. (2011b). Investigation of the mode of action underlying the
26	tumorigenic response induced in B6C3F1 mice exposed orally to hexavalent chromium.
27	Toxicol Sci 123: 58-70. <u>http://dx.doi.org/10.1093/toxsci/kfr164</u>
28	Thompson, CM; Proctor, DM; Suh, M; Haws, LC; Hébert, CD; Mann, JF; Shertzer, HG; Hixon, JG;
29	Harris, MA. (2012c). Comparison of the effects of hexavalent chromium in the alimentary
30	canal of F344 rats and B6C3F1 mice following exposure in drinking water: implications for
31	carcinogenic modes of action. Toxicol Sci 125: 79-90.
32	http://dx.doi.org/10.1093/toxsci/kfr280
33	Thompson, CM; Rager, JE; Suh, M; Ring, CL; Proctor, DM; Haws, LC; Fry, RC; Harris, MA. (2016).
34 35	Transcriptomic responses in the oral cavity of F344 rats and B6C3F1 mice following
35 36	exposure to Cr(VI): Implications for risk assessment. Environ Mol Mutagen 57: 706-716. <u>http://dx.doi.org/10.1002/em.22064</u>
30 37	<u>Thompson, CM; Seiter, J; Chappell, MA; Tappero, RV; Proctor, DM; Suh, M; Wolf, IC; Haws, LC; Vitale,</u>
38	<u>R; Mittal, L; Kirman, CR; Hays, SM; Harris, MA.</u> (2015a). Synchrotron-based imaging of
39	$\frac{N}{N}$ mittal, L, Kirman, CK, mays, SM, Harris, MA. (2013a). Synchronout on-based imaging of chromium and γ -H2AX immunostaining in the duodenum following repeated exposure to
40	Cr(VI) in drinking water. Toxicol Sci 143: 16-25. <u>http://dx.doi.org/10.1093/toxsci/kfu206</u>
40 41	Thompson, CM; Wolf, JC; Elbekai, RH; Paranjpe, MG; Seiter, JM; Chappell, MA; Tappero, RV; Suh, M;
42	Proctor, DM; Bichteler, A; Haws, LC; Harris, MA. (2015b). Duodenal crypt health following
43	exposure to Cr(VI): Micronucleus scoring, γ -H2AX immunostaining, and synchrotron X-ray
44	fluorescence microscopy. Mutat Res Genet Toxicol Environ Mutagen 789-790: 61-66.
45	http://dx.doi.org/10.1016/j.mrgentox.2015.05.004
46	<u>Tian, M; Guo, F; Sun, Y; Zhang, W; Miao, F; Liu, Y; Song, G; Ho, CL; Yu, X; Sun, JZ; Wong, WY. (2014).</u> A
47	fluorescent probe for intracellular cysteine overcoming the interference by glutathione. Org
48	Biomol Chem 12: 6128-6133. <u>http://dx.doi.org/10.1039/c4ob00382a</u>
49	Tian, X; Patel, K; Ridpath, JR; Chen, Y; Zhou, YH; Neo, D; Clement, J; Takata, M; Takeda, S; Sale, J;
50	Wright, FA; Swenberg, JA; Nakamura, J. (2016). Homologous Recombination and

1	Translesion DNA Synthesis Play Critical Roles on Tolerating DNA Damage Caused by Trace
2	Levels of Hexavalent Chromium. PLoS ONE 11: e0167503.
3	http://dx.doi.org/10.1371/journal.pone.0167503
4	<u>Tibbitts, J.</u> (2003). Issues related to the use of canines in toxicologic pathology—issues with
5	pharmacokinetics and metabolism. Toxicol Pathol 31: 17-24.
6	http://dx.doi.org/10.1080/01926230390174896
7	Timchalk, C; Poet, TS; Lin, Y; Weitz, KK; Zhao, R; Thrall, KD. (2001). Development of an integrated
8	microanalytical system for analysis of lead in saliva and linkage to a physiologically based
9	pharmacokinetic model describing lead saliva secretion. AIHAJ 62: 295-302.
10	http://dx.doi.org/10.1080/15298660108984631
11	Toebak, MJ; Pohlmann, PR; Sampat-Sardjoepersad, SC; von Blomberg, BM; Bruynzeel, DP; Scheper,
12	RJ: Rustemeyer, T; Gibbs, S. (2006). CXCL8 secretion by dendritic cells predicts contact
13	allergens from irritants. Toxicol In Vitro 20: 117-124.
14	http://dx.doi.org/10.1016/j.tiv.2005.06.039
15	TOMA (Tabershaw Occupational Medicine Associates). (1987). 1978 Cross sectional health study of
16	workers at a wood preserving plant with attachments [TSCA Submission]. (EPA/OTS Doc
17	#86-870001565).
18	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=0TS0516146
19	Trzeciak, A; Kowalik, J; Małecka-Panas, E; Drzewoski, J; Wojewódzka, M; Iwaneńko, T; Błasiak, J.
20	(2000). Genotoxicity of chromium in human gastric mucosa cells and peripheral blood
21	lymphocytes evaluated by the single cell gel electrophoresis (comet assay). Med Sci Monit 6:
22	24-29.
23	Tsao, DA; Tseng, WC; Chang, HR. (2011). The expression of RKIP, RhoGDI, galectin, c-Myc and p53
24	in gastrointestinal system of Cr(VI)-exposed rats. J Appl Toxicol 31: 730-740.
25	http://dx.doi.org/10.1002/jat.1621
26	<u>Tsapakos, MJ; Hampton, TH; Jennette, KW.</u> (1981). The carcinogen chromate induces DNA cross-
27	links in rat liver and kidney. J Biol Chem 256: 3623-3626.
28	<u>Tsapakos, MJ; Hampton, TH; Wetterhahn, KE.</u> (1983). Chromium(VI)-induced DNA lesions and
29 30	chromium distribution in rat kidney, liver, and lung. Cancer Res 43: 5662-5667. <u>Tsou, TC; Yang, JL.</u> (1996). Formation of reactive oxygen species and DNA strand breakage during
30 31	interaction of chromium (III) and hydrogen peroxide in vitro: evidence for a chromium (III)-
32	mediated Fenton-like reaction. Chem Biol Interact 102.
33	<u>Tully, DB; Collins, BJ; Overstreet, ID; Smith, CS; Dinse, GE; Mumtaz, MM; Chapin, RE.</u> (2000). Effects
33 34	of arsenic, cadmium, chromium, and lead on gene expression regulated by a battery of 13
34 35	different promoters in recombinant HepG2 cells. Toxicol Appl Pharmacol 168: 79-90.
36	http://dx.doi.org/10.1006/taap.2000.9014
37	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (1994). Methods for derivation of inhalation
38	reference concentrations and application of inhalation dosimetry [EPA Report].
39	(EPA600890066F). Research Triangle Park, NC.
40	https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=71993&CFID=51174829&CFTOKE
41	N=25006317
42	U.S. EPA (U.S. Environmental Protection Agency). (1998). Toxicological review of hexavalent
43	chromium [EPA Report] (pp. 80). (630R98009). Washington, DC.
44	https://cfpub.epa.gov/ncea/iris/iris/documents/documents/toxreviews/0144tr.pdf
45	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2005). Guidelines for carcinogen risk assessment
46	[EPA Report]. (EPA630P03001F). Washington, DC.
47	https://www.epa.gov/sites/production/files/2013-
48	<u>09/documents/cancer guidelines final 3-25-05.pdf</u>
49	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2006a). 2006 community water system survey -
50	Volume I: Overview [EPA Report]. (EPA 815-R-09-001). Washington, DC: U.S.

cy water system survey - EPA 815-R-09-002). Tater. tive risk assessment Q*1 fects Division, Office of il;D=EPA-HQ-OPP-2003- e carcinogenic potential n Effects Division, Office
EPA 815-R-09-002). 'ater. tive risk assessment Q*1 fects Division, Office of il:D=EPA-HQ-OPP-2003- e carcinogenic potential
EPA 815-R-09-002). 'ater. tive risk assessment Q*1 fects Division, Office of il:D=EPA-HQ-OPP-2003- e carcinogenic potential
Tater. tive risk assessment Q*1 fects Division, Office of <u>il;D=EPA-HQ-OPP-2003-</u> e carcinogenic potential
tive risk assessment Q*1 fects Division, Office of <u>il;D=EPA-HQ-OPP-2003-</u> e carcinogenic potential
fects Division, Office of il:D=EPA-HQ-OPP-2003- e carcinogenic potential
fects Division, Office of il:D=EPA-HQ-OPP-2003- e carcinogenic potential
il;D=EPA-HQ-OPP-2003- e carcinogenic potential
e carcinogenic potential
etail;D=EPA-HQ-OPP-
s handbook: 2011
S. Environmental
enter for Environmental
<u>d=236252</u>
use of body weight 3/4
100R110001).
<u>3-</u>
e technical guidance
tal Protection Agency,
<u>ose-technical-guidance</u>
ulated Contaminant
inar, September, 2012,
er of stages of multistage
terials for the Integrated
chromium part 1:
EPA/635/R-14/094).
<u>hly-public-meeting-jun-</u>
ulated Contaminant
ulated Contaminant
<u>cmr2013</u>
lbook [EPA Report] (4th
otection Agency, Science
4th-edition-2015
s handbook chapter 3
18/259F).
2071 j.
ew Protocol for the
(aterials) [EPA Report].
) L - F J.
ook for developing IRIS
/137). Washington, DC:
lopment, Center for

1	Public Health and Environmental Assessment.
2	https://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=350086
3	U.S. EPA (U.S. Environmental Protection Agency). (2021). Supplementary ex vivo model evaluation
4	in support of the Cr(VI) IRIS assessment [Supplemental Data].
5	<u>Ueno, S; Kashimoto, T; Susa, N; Furukawa, Y; Ishii, M; Yokoi, K; Yasuno, M; Sasaki, YF; Ueda, J;</u>
6	Nishimura, Y: Sugiyama, M. (2001). Detection of dichromate (VI)-induced DNA strand
7	breaks and formation of paramagnetic chromium in multiple mouse organs. Toxicol Appl
8	Pharmacol 170: 56-62. <u>http://dx.doi.org/10.1006/taap.2000.9081</u>
9	<u>Ueno, S; Susa, N; Furukawa, Y.</u> (1990). Uptake and distribution of chromium in isolated rat
10	hepatocytes and its relation to cellular injury. Kitasato Arch Exper Med 63: 49-57.
11	<u>Ueno, S; Susa, N; Furukawa, Y; Sugiyama, M.</u> (1995). Formation of paramagnetic chromium in liver
12	of mice treated with dichromate (VI). Toxicol Appl Pharmacol 135: 165-171.
13	http://dx.doi.org/10.1006/taap.1995.1219
14	<u>Upreti, RK; Shrivastava, R; Kannan, A; Chaturvedi, UC.</u> (2005). A comparative study on rat intestinal
15	epithelial cells and resident gut bacteria: (I) - Effect of hexavalent chromium. Toxicol Mech
16	Meth 15: 331-338. http://dx.doi.org/10.1080/153765291009804
17	<u>Urbaneja Arrúe, F; Aurrekoetxea Agirre, J]; Echenagusía Capelastegui, V. (</u> 1995). [Mortality among
18	steel workers of the Basque Country]. Gac Sanit 9: 287-294.
19	http://dx.doi.org/10.1016/S0213-9111(95)71251-1
20	US DHHS. (1990). National Occupational Exposure Survey: Sampling methodology. (DHHS (NIOSH)
21	Publication Number 89-102). Cincinnati, OH: Public Health Service, CDC, NIOSH.
22	https://www.cdc.gov/niosh/docs/89-102/default.html
23	Vaglenov, A; Nosko, M; Georgieva, R; Carbonell, E; Creus, A; Marcos, R. (1999). Genotoxicity and
24	radioresistance in electroplating workers exposed to chromium. Mutat Res 446: 23-34.
25	van Wijngaarden, E; Mundt, KA; Luippold, RS. (2004). Evaluation of the exposure-response
26	relationship of lung cancer mortality and occupational exposure to hexavalent chromium
27	based on published epidemiological data. Nonlinearity Biol Toxicol Med 2: 27-34.
28	<u>http://dx.doi.org/10.1080/15401420490426972</u>
29	<u>Vanoirbeek, JA; Hoet, PH; Nemery, B; Verbeken, EK; Haufroid, V; Lison, D; Dinsdale, D. (2003).</u>
30	Kinetics of an intratracheally administered chromium catalyst in rats. J Toxicol Environ
31	Health A 66: 393-409. <u>http://dx.doi.org/10.1080/15287390306366</u>
32	Vaquero, J: Briz, O: Herraez, E: Muntané, J: Marin, JJ. (2013). Activation of the nuclear receptor FXR
33	enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic
34	compounds. Biochim Biophys Acta 1833: 2212-2219.
35	<u>http://dx.doi.org/10.1016/j.bbamcr.2013.05.006</u>
36	Vasant, C; Balamurugan, K; Rajaram, R; Ramasami, T. (2001). Apoptosis of lymphocytes in the
37	presence of Cr(V) complexes: role in Cr(VI)-induced toxicity. Biochem Biophys Res Commun
38	285: 1354-1360. http://dx.doi.org/10.1006/bbrc.2001.5335
39	Vasant, C; Rajaram, R; Ramasami, T. (2003). Apoptosis of lymphocytes induced by chromium(VI/V)
40	is through ROS-mediated activation of Src-family kinases and caspase-3. Free Radic Biol
41	Med 35: 1082-1100. <u>http://dx.doi.org/10.1016/S0891-5849(03)00471-4</u>
42	Verschoor, MA; Bragt, PC; Herber, RFM; Zielhuis, RL; Zwennis, WCM. (1988). Renal function of
43	chrome-plating workers and welders. Int Arch Occup Environ Health 60: 67-70.
44	http://dx.doi.org/10.1007/BF00409381
45	<u>Veyalkin, I: Gerein, V.</u> (2006). Retrospective cohort study of cancer mortality at the Minsk Leather
46	Tannery. Ind Health 44: 69-74.
47	Veyalkin, IV; Milyutin, AA. (2003). Proportionate cancer mortality among workers in the
48	Belarussian tanning industry. Am J Ind Med 44: 637-642.
49	http://dx.doi.org/10.1002/ajim.10275

1	<u>Vigliani, EC; Zurlo, N.</u> (1955). Erfahrungen der Clinica del Lavoro mit einigen maximalen
2	Arbeitsplatzkonzentrationen (MAK) von Industriegiften. Int Arch Occup Environ Health 13:
3	528-534. <u>http://dx.doi.org/10.1007/BF00312756</u>
4	Vilcheck, SK; Ceryak, S; O'Brien, TJ; Patierno, S. R. (2006). FANCD2 monoubiquitination and
5	activation by hexavalent chromium [Cr(VI)] exposure: activation is not required for repair
6	of Cr(VI)-induced DSBs. Mutat Res 610: 21-30.
7	http://dx.doi.org/10.1016/j.mrgentox.2006.06.009
8	Voitkun, V; Zhitkovich, A; Costa, M. (1998). Cr(III)-mediated crosslinks of glutathione or amino
9 10	acids to the DNA phosphate backbone are mutagenic in human cells. Nucleic Acids Res 26: 2024-2030.
11	Wada, O; Wu, GY; Yamamoto, A; Manabe, S; Ono, T. (1983). Purification and chromium-excretory
12	function of low-molecular-weight, chromium-binding substances from dog liver. Environ
13	Res 32: 228-239.
14	Wakeman, TP; Wyczechowska, D; Xu, B. (2005). Involvement of the p38 MAP kinase in Cr(VI)-
15	induced growth arrest and apoptosis. Mol Cell Biochem 279: 69-73.
16	http://dx.doi.org/10.1007/s11010-005-8216-1
17	Wakeman, TP; Xu, B. (2006). ATR regulates hexavalent chromium-induced S-phase checkpoint
18	through phosphorylation of SMC1. Mutat Res 610: 14-20.
19	http://dx.doi.org/10.1016/j.mrgentox.2006.06.007
20	Wallmark, B; Larsson, H; Humble, L. (1985). The relationship between gastric acid secretion and
21	gastric H+,K+-ATPase activity. J Biol Chem 260: 13681-13684.
22	Walrath, J; Decouflé, P; Thomas, TL. (1987). Mortality among workers in a shoe manufacturing
23	company. Am J Ind Med 12: 615-623.
24	Wang, BJ; Sheu, HM; Guo, YL; Lee, YH; Lai, CS; Pan, MH; Wang, YJ. (2010a). Hexavalent chromium
25	induced ROS formation, Akt, NF-kappaB, and MAPK activation, and TNF-alpha and IL-1alpha
26	production in keratinocytes. Toxicol Lett 198: 216-224.
27	http://dx.doi.org/10.1016/j.toxlet.2010.06.024
28	Wang, E; Dement, JM; Lipscomb, H. (1999). Mortality among North Carolina construction workers,
29 30	1988-1994. Appl Occup Environ Hyg 14: 45-58. http://dx.doi.org/10.1080/104732299303412
31	Wang, KS; Komar, AR; Ma, T; Filiz, F; McLeroy, J; Hoda, K; Verkman, AS; Bastidas, JA. (2000). Gastric
32	acid secretion in aquaporin-4 knockout mice. Am J Physiol Gastrointest Liver Physiol 279:
33	G448-G453.
34	Wang, L; Qiu, JG; He, J; Liu, WJ; Ge, X; Zhou, FM; Huang, YX; Jiang, BH; Liu, LZ. (2019). Suppression of
35	miR-143 contributes to overexpression of IL-6, HIF-1α and NF-κB p65 in Cr(VI)-induced
36	human exposure and tumor growth. Toxicol Appl Pharmacol 378: 114603.
37	http://dx.doi.org/10.1016/j.taap.2019.114603
38	Wang, S; Chen, F; Zhang, Z; Jiang, BH; Jia, L; Shi, X. (2004a). NF-kappaB prevents cells from
39	undergoing Cr(VI)-induced apoptosis. Mol Cell Biochem 255: 129-137.
40	Wang, S; Leonard, SS; Ye, J; Gao, N; Wang, L; Shi, X. (2004b). Role of reactive oxygen species and
41	Cr(VI) in Ras-mediated signal transduction. Mol Cell Biochem 255: 119-127.
42	<u>Wang, TC; Song, YS; Wang, H; Zhang, J; Yu, SF; Gu, YE; Chen, T; Wang, Y; Shen, HQ; Jia, G.</u> (2012).
43	Oxidative DNA damage and global DNA hypomethylation are related to folate deficiency in
44	chromate manufacturing workers. J Hazard Mater 213-214: 440-446.
45	http://dx.doi.org/10.1016/j.jhazmat.2012.02.024
46	Wang, X; Qin, Q; Xu, X; Xu, J; Wang, J; Zhou, J; Huang, S; Zhai, W; Zhou, H; Chen, J. (1994). Chromium-
47	Induced Early Changes in Renal Function among Ferrochromium-Producing Workers.
48	Toxicology 90: 93-101. <u>http://dx.doi.org/10.1016/0300-483X(94)90208-9</u>

1	Wang, XF; Lou, XM; Shen, Y; Xing, ML; Xu, LH. (2010b). Apoptotic-related protein changes induced
2	by hexavalent chromium in mice liver. Environ Toxicol 25: 77-82.
3	http://dx.doi.org/10.1002/tox.20478
4	Wang, XF; Xing, ML; Shen, Y; Zhu, X; Xu, LH. (2006). Oral administration of Cr(VI) induced oxidative
5	stress, DNA damage and apoptotic cell death in mice. Toxicology 228: 16-23.
6	http://dx.doi.org/10.1016/j.tox.2006.08.005
7	Wang, Y; Wu, W; Yao, C; Lou, J; Chen, R; Jin, L; Wu, N; Gao, M; Song, P; Tan, Y; Liu, K. (2015). Elevated
8	tissue Cr levels, increased plasma oxidative markers, and global hypomethylation of blood
9	DNA in male Sprague-Dawley rats exposed to potassium dichromate in drinking water.
10	Environ Toxicol. <u>http://dx.doi.org/10.1002/tox.22117</u>
11	Wang, Z; Peng, H; Zhang, R; Jiang, X; Chen, S; Guo, P; Xiao, Y; Zeng, X; Wang, Q; Aschner, M; Chou,
12	WC; Li, D; Chen, W; Chen, L. (In Press) Assessment of intestinal injury of hexavalent
13	chromium using a modified in vitro gastrointestinal digestion model. Toxicol Appl
14	Pharmacol. <u>http://dx.doi.org/10.1016/j.taap.2022.115880</u>
15	Wei, X; Hu, LL; Chen, ML; Yang, T; Wang, JH. (2016). Analysis of the Distribution Pattern of
16	Chromium Species in Single Cells. Anal Chem 88: 12437-12444.
17	http://dx.doi.org/10.1021/acs.analchem.6b03810
18	Welinder, H; Littorin, M; Gullberg, B; Skerfving, S. (1983). Elimination of chromium in urine after
19	stainless steel welding. Scand J Work Environ Health 9: 397-403.
20	http://dx.doi.org/10.5271/sjweh.2394
21	Welling, R; Beaumont, JJ; Petersen, SJ; Alexeeff, GV; Steinmaus, C. (2015). Chromium VI and stomach
22 23	cancer: a meta-analysis of the current epidemiological evidence [Review]. Occup Environ Med 72: 151-159. <u>http://dx.doi.org/10.1136/oemed-2014-102178</u>
23 24	Werfel, U; Langen, V; Eickhoff, I; Schoonbrood, J; Vahrenholz, C; Brauksiepe, A; Popp, W; Norpoth, K.
25	(1998). Elevated DNA single-strand breakage frequencies in lymphocytes of welders
26	exposed to chromium and nickel. Carcinogenesis 19: 413-418.
27	Westberg, H; Andersson, L; Bryngelsson, IL; Ngo, Y; Ohlson, CG. (2013). Cancer morbidity and
28	quartz exposure in Swedish iron foundries. Int Arch Occup Environ Health 86: 499-507.
29	http://dx.doi.org/10.1007/s00420-012-0782-4
30	Wetterhahn, KE; Hamilton, JW; Aiyar, J; Borges, KM; Floyd, R. (1989). Mechanism of chromium(VI)
31	carcinogenesis: Reactive intermediates and effect on gene expression [Review]. Biol Trace
32	Elem Res 21: 405-411. <u>http://dx.doi.org/10.1007/BF02917282</u>
33	WHO (World Health Organization). (2000). Air quality guidelines for Europe (2nd ed.). Copenhagen,
34	Denmark: World Health Organization, Regional Office for Europe.
35	http://www.euro.who.int/en/health-topics/environment-and-health/air-
36	quality/publications/pre2009/air-quality-guidelines-for-europe
37	WHO (World Health Organization). (2003). Chromium in drinking water.
38	(WHO/SDE/WSH/03.04/04). Geneva, Switzerland.
39	http://www.who.int/water_sanitation_health/dwq/chemicals/chromium.pdf
40	Wiegand, HJ; Bolt, HM. (1985). Intracellular disposition of chromium-vi in the isolated perfused rat
41	liver [Abstract]. Naunyn-Schmiedebergs Arch Pharmacol 329: R34.
42	Wiegand, HJ: Ottenwaelder, H. (1985). Molecular mechanisms for the in-vitro reduction of
43	chromium-VI to chromium-III by glutathione and their relevance for the metabolism of
44	chromates [Abstract]. Naunyn-Schmiedebergs Arch Pharmacol 330: R22.
45	Wiegand, HJ; Ottenwaelder, H; Bolt, HM. (1986a). Possible involvement of the anion transport
46	system band-3-protein in fast chromium-vi uptake of human red blood cells. 332: R27.
47	Wiegand, HJ: Ottenwalder, H: Bolt, HM. (1987). Bioavailability and metabolism of hexavalent
48	chromium compounds. Toxicol Environ Chem 14: 263-275.
49	http://dx.doi.org/10.1080/02772248709357210

1 2	Wiegand, HJ; Ottenwälder, H; Bolt, HM. (1984a). Disposition of intratracheally administered
	chromium(III) and chromium(VI) in rabbits. Toxicol Lett 22: 273-276. http://dx.doi.org/10.1016/0378-4274(84)90078-X
3 4	<u>Wiegand, HJ; Ottenwälder, H; Bolt, HM.</u> (1984b). The reduction of chromium (VI) to chromium (III)
5	by glutathione: An intracellular redox pathway in the metabolism of the carcinogen
6	chromate. Toxicology 33: 341-348. <u>http://dx.doi.org/10.1016/0300-483X(84)90050-7</u>
7	Wiegand, HJ; Ottenwälder, H; Bolt, HM. (1985). Fast uptake kinetics in vitro of 51Cr (VI) by red
8	blood cells of man and rat. Arch Toxicol 57: 31-34. http://dx.doi.org/10.1007/BF00286571
9	<u>Wiegand, HJ: Ottenwälder, H: Bolt, HM.</u> (1986b). Disposition of a soluble chromate in the isolated
10	perfused rat liver. Xenobiotica 16: 839-844.
11	http://dx.doi.org/10.3109/00498258609038965
12	<u>Wiegand, HJ; Ottenwälder, H; Bolt, HM.</u> (1988). Recent advances in biological monitoring of
13	hexavalent chromium compounds. Sci Total Environ 71: 309-315.
14	http://dx.doi.org/10.1016/0048-9697(88)90202-1
15	Wild, D. (1978). Cytogenetic effects in the mouse of 17 chemical mutagens and carcinogens
16	evaluated by the micronucleus test. DNA Repair 56: 319-327.
17	<u>Wise [P, S,r; Wise, SS; Little, JE.</u> (2002). The cytotoxicity and genotoxicity of particulate and soluble
18	hexavalent chromium in human lung cells. Mutat Res Genet Toxicol Environ Mutagen 517:
19	221-229. <u>http://dx.doi.org/10.1016/S1383-5718(02)00071-2</u>
20	Wise, SS; Holmes, AL; Liou, L; Adam, RM; Wise, JP. (2016). Hexavalent chromium induces
21	chromosome instability in human urothelial cells. Toxicol Appl Pharmacol 296: 54-60.
22	http://dx.doi.org/10.1016/j.taap.2016.02.015
23	Witmer, CM; Park, HS; Shupack, SI. (1989). Mutagenicity and disposition of chromium. Sci Total
24	Environ 86: 131-148.
25	Witt, KL; Knapton, A; Wehr, CM; Hook, GJ; Mirsalis, J; Shelby, MD; Macgregor, JT. (2000).
26	Micronucleated erythrocyte frequency in peripheral blood of B6C3F(1) mice from short-
27	term, prechronic, and chronic studies of the NTP carcinogenesis bioassay program. Environ
28	Mol Mutagen 36: 163-194. <u>http://dx.doi.org/10.1002/1098-2280(2000)36:3</u> <163::AID-
29	EM1>3.0.CO;2-P
30	Wong, V; Armknecht, S; Zhitkovich, A. (2012). Metabolism of Cr(VI) by ascorbate but not
31 32	glutathione is a low oxidant-generating process. 26: 192-196. http://dx.doi.org/10.1016/j.jtemb.2012.04.016
33	<u>Woodbine, L; Brunton, H; Goodarzi, AA; Shibata, A; Jeggo, PA.</u> (2011). Endogenously induced DNA
34	double strand breaks arise in heterochromatic DNA regions and require ataxia
35	telangiectasia mutated and Artemis for their repair. Nucleic Acids Res 39: 6986-6997.
36	http://dx.doi.org/10.1093/nar/gkr331
37	<u>Wroñska-Nofer, T; Wisniewska-Knypl, J; Dziubaltowska, E; Wyszyńska, K.</u> (1999). Prooxidative and
38	genotoxic effect of transition metals (cadmium, nickel, chromium, and vanadium) in mice.
39	Trace Elem Electroly 16: 87-92.
40	Wu, F; Sun, H; Kluz, T; Clancy, HA; Kiok, K; Costa, M. (2012). Epigallocatechin-3-gallate (EGCG)
41	protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol 258: 166-175.
42	http://dx.doi.org/10.1016/j.taap.2011.10.018
43	<u>Wu, FY; Tsai, FJ; Kuo, HW; Tsai, CH; Wu, WY; Wang, RY; Lai, JS.</u> (2000). Cytogenetic study of workers
44	exposed to chromium compounds. Mutat Res Genet Toxicol Environ Mutagen 464: 289-296.
45	http://dx.doi.org/10.1016/S1383-5718(99)00206-5
46	Wu, FY; Wu, WY; Kuo, HW; Liu, CS; Wang, RY; Lai, JS. (2001). Effect of genotoxic exposure to
47	chromium among electroplating workers in Taiwan. Sci Total Environ 279: 21-28.
48	Wu, R; Wu, T; Wang, K; Luo, S; Chen, Z; Fan, M; Xue, D; Lu, H; Zhuang, Q; Xu, X. (2018). Prognostic
49	significance of galectin-1 expression in patients with cancer: a meta-analysis [Review]. Canc
50	Cell Int 18: 108. <u>http://dx.doi.org/10.1186/s12935-018-0607-y</u>

1	<u>Wultsch, G; Nersesyan, A; Kundi, M; Jakse, R; Beham, A; Wagner, KH; Knasmueller, S. (2014). The</u>
2	sensitivity of biomarkers for genotoxicity and acute cytotoxicity in nasal and buccal cells of
3	welders. Int J Hyg Environ Health 217: 492-498.
4	http://dx.doi.org/10.1016/j.ijheh.2013.09.005
5	<u>Wultsch, G; Nersesyan, A; Kundi, M; Mišík, M; Setayesh, T; Waldherr, M; Vodicka, P; Vodickova, L;</u>
6	Knasmüller, S. (2017). Genotoxic and cytotoxic effects in exfoliated buccal and nasal cells of
7	chromium and cobalt exposed electroplaters. J Toxicol Environ Health A 80: 1-10.
8	<u>http://dx.doi.org/10.1080/15287394.2017.1286918</u>
9	<u>Xia, B; Yang, LQ; Huang, HY; Pang, L; Hu, GH; Liu, QC; Yuan, JH; Liu, JJ; Xia, YB; Zhuang, ZX. (2011).</u>
10	Chromium(VI) causes down regulation of biotinidase in human bronchial epithelial cells by
11	modifications of histone acetylation. Toxicol Lett 205: 140-145.
12	http://dx.doi.org/10.1016/j.toxlet.2011.05.1032
13	<u>Xiao, F; Feng, X; Zeng, M; Guan, L; Hu, Q; Zhong, C.</u> (2012a). Hexavalent chromium induces energy
14	metabolism disturbance and p53-dependent cell cycle arrest via reactive oxygen species in
15	L-02 hepatocytes. Mol Cell Biochem 371: 65-76. <u>http://dx.doi.org/10.1007/s11010-012-</u>
16	<u>1423-7</u>
17	Xiao, F; Li, Y; Dai, L; Deng, Y; Zou, Y; Li, P; Yang, Y; Zhong, C. (2012b). Hexavalent chromium targets
18	mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent
19	caspase-3 activation in L-02 hepatocytes. Int J Mol Med 30: 629-635.
20	<u>http://dx.doi.org/10.3892/ijmm.2012.1031</u>
21	<u>Xiao, F; Li, Y; Luo, L; Xie, Y; Zeng, M; Wang, A; Chen, H; Zhong, C.</u> (2014). Role of mitochondrial
22	electron transport chain dysfunction in Cr(VI)-induced cytotoxicity in L-02 hepatocytes. Cell
23	Physiol Biochem 33: 1013-1025. <u>http://dx.doi.org/10.1159/000358672</u>
24	Xiao, Y; Zeng, M; Yin, L; Li, N; Xiao, F. (2019). Clusterin increases mitochondrial respiratory chain
25	complex I activity and protects against hexavalent chromium-induced cytotoxicity in L-02
26	hepatocytes. Toxicology Research 8: 15-24. <u>http://dx.doi.org/10.1039/c8tx00231b</u>
27	<u>Xiaohua, L; Yanshuang, S; Li, W; Yuhui, L; Ji, Z; Yanhui, M; Yun, W; Wenjun, M; Lei, Y; Guang, J.</u>
28	(2012). Evaluation of the correlation between genetic damage and occupational chromate
29	exposure through BNMN frequencies. J Occup Environ Med 54: 166-170.
30	http://dx.doi.org/10.1097/JOM.0b013e31823d86b4
31	Xie, Y; Xiao, F; Luo, L; Zhong, C. (2014). Activation of autophagy protects against ROS-mediated
32	mitochondria-dependent apoptosis in L-02 hepatocytes induced by Cr(VI). Cell Physiol
33	Biochem 33: 705-716. <u>http://dx.doi.org/10.1159/000358646</u>
34	Xu, J; Bubley, GJ; Detrick, B; Blankenship, LJ; Patierno, SR. (1996a). Chromium(VI) treatment of
35	normal human lung cells results in guanine-specific DNA polymerase arrest, DNA-DNA
36	cross-links and S-phase blockade of cell cycle. Carcinogenesis 17: 1511-1517.
37	<u>Xu, J; Zhao, M; Pei, L; Zhang, R; Liu, X; Wei, L; Yang, M; Xu, Q</u> . (2018). Oxidative stress and DNA
38	damage in a long-term hexavalent chromium-exposed population in North China: a cross-
39	sectional study. BMJ Open 8: e021470. <u>http://dx.doi.org/10.1136/bmjopen-2017-021470</u>
40	<u>Xu, Z; Brown, LM; Pan, GW; Liu, TF; Gao, GS; Stone, BJ; Cao, RM; Guan, DX; Sheng, JH; Yan, ZS;</u>
41	Dosemeci, M; Fraumeni, JF; Blot, WJ. (1996b). Cancer risks among iron and steel workers in
42	Anshan, China, Part II: Case-control studies of lung and stomach cancer. Am J Ind Med 30: 7-
43	15. <u>http://dx.doi.org/10.1002/(SICI)1097-0274(199607)30:1<7::AID-</u>
44	<u>AJIM2>3.0.CO;2-#</u>
45	Yamaguchi, S; K, S; Shimojo, N. (1983). On the biological half-time of hexavalent chromium in rats.
46	Ind Health 21: 25-34.
47	Yamamoto, A; Wada, O; Ono, T. (1981). A low-molecular-weight, chromium-binding substance in
48	mammals. Toxicol Appl Pharmacol 59: 515-523.

1	<u>Yang, F; Zhao, L; Mei, D; Jiang, L; Geng, C; Li, Q; Yao, X; Liu, Y; Kong, Y; Cao, J.</u> (2017). HMGA2 plays
2	an important role in Cr (VI)-induced autophagy. Int J Cancer.
3	<u>http://dx.doi.org/10.1002/ijc.30789</u>
4	Yang, Y; Liu, H; Xiang, XH; Liu, FY. (2013). Outline of occupational chromium poisoning in China.
5	Bull Environ Contam Toxicol 90: 742-749. <u>http://dx.doi.org/10.1007/s00128-013-0998-3</u>
6	Yawets, A: Alter, A: Oron, U. (1984). Biochemical and histological anomalies in the rat hepatic tissue
7	following administration of bichromate and nickel in ionized form. Toxicology 33: 145-155.
8	Yazar, S; Yildirim, IY. (2018). Oxidative DNA damage in electroplaters co-exposed to chromium and
9	nickel. Fresen Environ Bull 27: 6831-6836.
10	Ye, J: Shi, X. (2001). Gene expression profile in response to chromium-induced cell stress in A549
11	cells. Mol Cell Biochem 222: 189-197.
12	Ye, J; Zhang, X; Young, HA; Mao, Y; Shi, X. (1995). Chromium(VI)-induced nuclear factor-kappa B
13	activation in intact cells via free radical reactions. Carcinogenesis 16: 2401-2405.
14	<u>http://dx.doi.org/10.1093/carcin/16.10.2401</u>
15	Yi, X; Xiao, F; Zhong, X; Duan, Y; Liu, K; Zhong, C. (2017). A Ca(2+) chelator ameliorates chromium
16	(VI)-induced hepatocyte L-02 injury via down-regulation of voltage-Dependent anion
17	channel 1 (VDAC1) expression. Environ Toxicol Pharmacol 49: 27-33.
18	<u>http://dx.doi.org/10.1016/j.etap.2016.11.007</u>
19	Yi, X; Zhang, Y; Zhong, C; Zhong, X; Xiao, F. (2016). The role of STIM1 in the Cr(vi)-induced [Ca(2+)]i
20	increase and cell injury in L-02 hepatocytes. Metallomics 8: 1273-1282.
21	http://dx.doi.org/10.1039/c6mt00204h
22	Yoisungnern, T; Das, J; Choi, YJ; Parnpai, R; Kim, JH. (2015). Effect of hexavalent chromium-treated
23	sperm on in vitro fertilization and embryo development. Toxicol Ind Health.
24	http://dx.doi.org/10.1177/0748233715579805
25	Yousef, MI; El-Demerdash, FM; Kamil, KI; Elaswad, FA. (2006). Ameliorating effect of folic acid on
26	chromium(VI)-induced changes in reproductive performance and seminal plasma bigshemistry in male rephits. Benned Toying, 21, 222, 220
27 28	biochemistry in male rabbits. Reprod Toxicol 21: 322-328. <u>http://dx.doi.org/10.1016/j.reprotox.2005.09.005</u>
28 29	Yuan, JH. (1993). Modeling blood/plasma concentrations in dosed feed and dosed drinking water
29 30	toxicology studies. Toxicol Appl Pharmacol 119: 131-141.
30 31	Yuan, TH; Lian, I, eB; Tsai, KY; Chang, TK; Chiang, CT; Su, CC; Hwang, YH. (2011). Possible
32	association between nickel and chromium and oral cancer: a case-control study in central
33	Taiwan. Sci Total Environ 409: 1046-1052.
34	http://dx.doi.org/10.1016/j.scitotenv.2010.11.038
35	Yuan, WM; Lu, YQ; Wei, Z; Chen, M; He, SL; Mai, WY; Zhang, MB. (2016). An epistaxis emergency
36	associated with multiple pollutants in elementary students. Biomed Environ Sci 29: 893-
37	897. <u>http://dx.doi.org/10.3967/bes2016.119</u>
38	Yuan, Y; Ming, Z; Gong-Hua, H; Lan, G; Lu, D; Peng, L; Feng, J; Cai-Gao, Z. (2012). Cr(VI) induces the
39	decrease of ATP level and the increase of apoptosis rate mediated by ROS or VDAC1 in L-02
40	hepatocytes. Environ Toxicol Pharmacol 34: 579-587.
41	http://dx.doi.org/10.1016/j.etap.2012.06.016
42	Zecevic, A; Menard, H; Gurel, V; Hagan, E; Decaro, R; Zhitkovich, A. (2009). WRN helicase promotes
43	repair of DNA double-strand breaks caused by aberrant mismatch repair of chromium-DNA
44	adducts. 8: 2769-2778.
45	Zendehdel, R; Shetab-Boushehri, SV; Azari, MR; Hosseini, V; Mohammadi, H. (2014). Chemometrics
46	models for assessment of oxidative stress risk in chrome-electroplating workers. Drug
47	Chem Toxicol 38: 1-6. <u>http://dx.doi.org/10.3109/01480545.2014.922096</u>
48	Zeng, M; Xiao, F; Zhong, X; Jin, F; Guan, L; Wang, A; Liu, X; Zhong, C. (2013). Reactive oxygen species
49	play a central role in hexavalent chromium-induced apoptosis in Hep3B cells without the

1	functional roles of p53 and caspase-3. Cell Physiol Biochem 32: 279-290.
2	http://dx.doi.org/10.1159/000354436
3	Zhang, J; Wang, Y; Jiang, X; Chan, HC. (2018). Cystic fibrosis transmembrane conductance regulator-
4	emerging regulator of cancer [Review]. Cell Mol Life Sci 75: 1737-1756.
5	<u>http://dx.doi.org/10.1007/s00018-018-2755-6</u>
6	Zhang, Q: Kluz, T: Salnikow, K: Costa, M. (2002). Comparison of the cytotoxicity, cellular uptake, and
7	DNA-protein crosslinks induced by potassium chromate in lymphoblast cell lines derived
8	from three different individuals. Biol Trace Elem Res 86: 11-22.
9	http://dx.doi.org/10.1385/BTER:86:1:11
10	Zhang, R; Xiang, Y; Ran, Q; Deng, X; Xiao, Y; Xiang, L; Li, Z. (2014). Involvement of calcium, reactive
11	oxygen species, and ATP in hexavalent chromium-induced damage in red blood cells. Cell
12	Physiol Biochem 34: 1780-1791. <u>http://dx.doi.org/10.1159/000366378</u>
13	<u>Zhang, XH; Zhang, X; Wang, XC; Jin, LF; Yang, ZP; Jiang, CX; Chen, Q; Ren, XB; Cao, JZ; Wang, Q; Zhu,</u>
14	YM. (2011). Chronic occupational exposure to hexavalent chromium causes DNA damage in
15	electroplating workers. BMC Public Health 11: 224. <u>http://dx.doi.org/10.1186/1471-2458-</u>
16	<u>11-224</u>
17	Zhang, XH; Zhang, X; Zhang, L; Chen, Q; Yang, Z; Yu, J; Fu, H; Zhu, YM. (2012). XRCC1 Arg399Gln was
18	associated with repair capacity for DNA damage induced by occupational chromium
19	exposure. BMC Research Notes 5: 263. <u>http://dx.doi.org/10.1186/1756-0500-5-263</u>
20	Zhang, Y: Xiao, F: Liu, X: Liu, K: Zhou, X: Zhong, C. (2017). Cr(VI) induces cytotoxicity in vitro
21	through activation of ROS-mediated endoplasmic reticulum stress and mitochondrial
22	dysfunction via the PI3K/Akt signaling pathway. Toxicol In Vitro 41: 232-244.
23	http://dx.doi.org/10.1016/j.tiv.2017.03.003
24 25	Zhang, Y; Zhang, Y; Zhong, C; Xiao, F. (2016). Cr(VI) induces premature senescence through ROS-
25 26	mediated p53 pathway in L-02 hepatocytes. Sci Rep 6(34578): 1-10. http://dx.doi.org/10.1038/srep34578
20	<u>Zhao, L; Song, Y; Pu, J; Guo, J; Wang, Y; Chen, Z; Chen, T; Gu, Y; Jia, G.</u> (2014). Effects of repeated
28	Cr(VI) intratracheal instillation on club (Clara) cells and activation of nuclear factor-kappa B
29	pathway via oxidative stress. Toxicol Lett 231: 72-81.
30	http://dx.doi.org/10.1016/j.toxlet.2014.09.011
31	Zheng, W; Ge, F; Wu, K; Chen, X; Li, X; Chen, Y; Lv, Y; Lian, Q; Ge, RS. (2018). In utero exposure to
32	hexavalent chromium disrupts rat fetal testis development. Toxicol Lett 299: 201-209.
33	http://dx.doi.org/10.1016/j.toxlet.2018.10.010
34	Zhitkovich, A. (2005). Importance of chromium-DNA adducts in mutagenicity and toxicity of
35	chromium(VI) [Review]. Chem Res Toxicol 18: 3-11. <u>http://dx.doi.org/10.1021/tx049774</u> +
36	Zhitkovich, A. (2011). Chromium in drinking water: sources, metabolism, and cancer risks [Review].
37	Chem Res Toxicol 24: 1617-1629. http://dx.doi.org/10.1021/tx200251t
38	Zhitkovich, A; Lukanova, A; Popov, T; Taioli, E; Cohen, H; Costa, M; Toniolo, P. (1996a). DNA-protein
39	crosslinks in peripheral lymphocytes of individuals exposed to hexavalent chromium
40	compounds. Biomarkers 1: 86-93. <u>http://dx.doi.org/10.3109/13547509609088675</u>
41	Zhitkovich, A; Peterson-Roth, E; Reynolds, M. (2006). Abnormal processing of chromium-DNA
42	adducts by mismatch repair proteins activates genotoxicity of chromium(VI) [Abstract].
43	Toxicol Sci 90: 107-108.
44	Zhitkovich, A: Quievryn, G: Messer, J: Motylevich, Z. (2002). Reductive activation with cysteine
45	represents a chromium(III)-dependent pathway in the induction of genotoxicity by
46	carcinogenic chromium(VI). Environ Health Perspect 110 Suppl 5: 729-731.
47	Zhitkovich, A: Shrager, S: Messer, J. (2000). Reductive metabolism of Cr(VI) by cysteine leads to the
48	formation of binary and ternary CrDNA adducts in the absence of oxidative DNA damage.
49	Chem Res Toxicol 13: 1114-1124.

1	Zhitkovich, A; Song, Y; Quievryn, G; Voitkun, V. (2001). Non-oxidative mechanisms are responsible
2	for the induction of mutagenesis by reduction of Cr(VI) with cysteine: role of ternary DNA
3	adducts in Cr(III)-dependent mutagenesis. Biochemistry 40: 549-560.
4	<u>http://dx.doi.org/10.1021/bi0015459</u>
5	Zhitkovich, A; Voitkun, V; Costa, M. (1996b). Formation of the amino acid-DNA complexes by
6	hexavalent and trivalent chromium in vitro: importance of trivalent chromium and the
7	phosphate group. Biochemistry 35: 7275-7282.
8	Zhivin, S; Laurier, D; Caër-Lorho, S; Acker, A; Guseva Canu, I. (2013). Impact of chemical exposure
9	on cancer mortality in a French cohort of uranium processing workers. Am J Ind Med 56:
10	1262-1271. http://dx.doi.org/10.1002/ajim.22231
11	Zhong, X; de Cássia da Silveira E Sá, R; Zhong, C. (2017a). Mitochondrial biogenesis in response to
12	chromium (VI) toxicity in human liver cells. International Journal of Molecular Sciences 18.
13	http://dx.doi.org/10.3390/ijms18091877
14	Zhong, X; Yi, X; da Silveira E Sá, RC; Zhang, Y; Liu, K; Xiao, F; Zhong, C. (2017b). CoQ10 Deficiency
15	May Indicate Mitochondrial Dysfunction in Cr(VI) Toxicity. International Journal of
16	Molecular Sciences 18. <u>http://dx.doi.org/10.3390/ijms18040816</u>
17	Zhong, X; Zeng, M; Bian, H; Zhong, C; Xiao, F. (2017c). An evaluation of the protective role of vitamin
18	C in reactive oxygen species-induced hepatotoxicity due to hexavalent chromium in vitro
19	and in vivo. J Occup Med Toxicol 12: 12. <u>http://dx.doi.org/10.1186/s12995-017-0161-x</u>
20	Zhou, W; Yu, T; Vazin, M; Ding, J: Liu, J. (2016). Cr(3+) binding to DNA backbone phosphate and
21	bases: Slow ligand exchange rates and metal hydrolysis. Inorg Chem 55: 8193-8200.
22	http://dx.doi.org/10.1021/acs.inorgchem.6b01357
23	Zuo, Z; Cai, T; Li, J; Zhang, D; Yu, Y; Huang, C. (2012). Hexavalent chromium Cr(VI) up-regulates
24	COX-2 expression through an NFkB/c-Jun/AP-1-dependent pathway. Environ Health
25	Perspect 120: 547-553. <u>http://dx.doi.org/10.1289/ehp.1104179</u>

26