

IRIS Toxicological Review of Perfluorodecanoic Acid [PFDA, CASRN 335-76-2] and Related Salts

Supplemental Information

April 2023

Integrated Risk Information System Center for Public Health and Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is an external review draft for review purposes only. This information is distributed solely for the purpose of predissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

CONTENTS

APPENDI	X A. SYSTEMATIC REVIEW PROTOCOL FOR THE PFAS IRIS ASSESSMENTS	A-1
APPENDI	X B. LITERATURE SEARCH STRATEGY AND POPULATIONS, EXPOSURES, COMPARATORS, AND OUTCOMES (PECO) CRITERIA	B-1
B.1.	LITERATURE SEARCH AND SCREENING STRATEGY	B-1
APPENDI	X C. BENCHMARK DOSE MODELING RESULTS	C-1
C.1.	BENCHMARK DOSE MODELING RESULTS FROM HUMAN STUDIES	C-1
	C.1.1. BENCHMARK DOSE MODELING APPROACHES FOR IMMUNE EFFECTS	C-1
	C.1.2. BENCHMARK DOSE MODELING APPROACHES FOR DEVELOPMENTAL EFFECTS	C-16
C.2.	BENCHMARK DOSE MODELING RESULTS FROM ANIMAL STUDIES	C-24
	C.2.1. BENCHMARK DOSE MODELING APPROACHES	C-24
	C.2.2. INCREASED AST—MALE RATS (NTP, 2018)	C-26
	C.2.3. INCREASED AST—FEMALE RATS (NTP, 2018)	C-31
	C.2.4. INCREASED ALP—FEMALE RAT (NTP, 2018)	C-35
	C.2.5. INCREASED RELATIVE LIVER WEIGHT—MALE RAT (NTP, 2018)	C-39
	C.2.6. INCREASED RELATIVE LIVER WEIGHT—FEMALE RAT (NTP, 2018)	C-44
	C.2.7. INCREASED RELATIVE LIVER WEIGHT (HISTO)—FEMALE RATS (Frawley et al., 2018)	C-51
	C.2.8. INCREASED RELATIVE LIVER WEIGHT (MPS)—FEMALE RATS (Frawley et al., 2018)	C-55
	C.2.9. INCREASED RELATIVE LIVER WEIGHT (TDAR)—FEMALE RATS (Frawley et al., 2018)	C-59
	C.2.10.DECREASED FETAL WEIGHT—MALE AND FEMALE RATS (Harris and Birnbaum, 1989)	C-63
	C.2.11.DECREASED SPERM COUNT—MALE RATS (NTP, 2018)	C-69
	C.2.12.DECREASED ABSOLUTE TESTIS WEIGHT IN MALE RATS (NTP, 2018)	C-71
	C.2.13.DECREASED ABSOLUTE CAUDAL EPIDIDYMIS WEIGHT IN MALE RATS (NTP, 2018)	C-75
	C.2.14.DECREASED ABSOLUTE WHOLE EPIDIDYMIS WEIGHT IN MALE RATS (NTP, 2018) .	C-78
	C.2.15.DECREASED DAYS IN ESTRUS—FEMALE RATS (Butenhoff et al., 2012; van Otterdijk, 2007)	C-82
	C.2.16.INCREASED DAYS IN DIESTRUS—FEMALE RATS (Butenhoff et al., 2012; van Otterdijk, 2007)	C-86

DRAFT-DO NOT CITE OR QUOTE

	C.2.17.DECREASED RELATIVE UTERINE WEIGHT—FEMALE RATS (Butenhoff et al., 2012; van Otterdijk, 2007)C-90
	C.2.18.DECREASED ABSOLUTE UTERINE WEIGHT—FEMALE RAT (Butenhoff et al., 2012; van Otterdijk, 2007)C-94
APPENDI	X D. ADVERSE OUTCOME PATHWAY/ MODE OF ACTION(AOP/MOA)-BASED APPROACH FOR EVALUATING PFDA-INDUCED MECHANISM OF HEPATOXITY
D.1.	OBJECTIVE AND METHODOLOGY D-1
D.2.	PROPOSED MOA/AOP APPROACH FOR EVALUATING PFAS-INDUCED LIVER TOXICITY D-2
D.3.	SYNTHESIS OF MECHANISTIC STUDIES AND SUPPLEMENTAL INFORMATION FOR PFDA D-4
	D.3.1. MOLECULAR INITIATING EVENTS D-4
	D.3.2. CELLULAR EFFECTS
	D.3.3. ORGAN-LEVEL EFFECTS D-15
APPENDI	X E. ANALYSIS OF RELEVANT HIGH-THROUGHPUT SCREENING ASSAYS FROM EPA'S CHEMICALS DASHBOARDE-1
E.1.	IN VITRO BIOACTIVITY DATA RELEVANT TO THE MECHANISMS OF PFDA-INDUCED LIVER EFFECTS
E.2.	IN VITRO BIOACTIVITY DATA RELEVANT TO THE POTENTIAL MECHANISMS OF REPRODUCTIVE TOXICITY
APPENDI	X F. ADDITIONAL CONFOUNDING CONSIDERATIONS F-23
F.1.	SPECIFIC PFAS CONFOUNDING CONSIDERATIONS FOR FETAL GROWTH RESTRICTION F-23
F.2.	PFAS COEXPOSURE STATISTICAL APPROACHES AND CONFOUNDING DIRECTIONALITY F-24
F.3.	PFDA AND PFAS COEXPOSURE STUDY RESULTS F-25
APPENDI	X G. DETAILED PHARMACOKINETIC ANALYSES
G.1.	PARTIAL POOLING OF PFDA PHARMACOKINETIC DATA FOR HIERARCHICAL BAYESIAN ANALYSIS
	G.1.1. Pharmacokinetic model G-1
	G.1.2. Bayesian inference G-3
	G.1.3. Prior sensitivity analysis G-5
	G.1.4. Study-specific Clearance Values and Model Fits G-6
G.2.	DESCRIPTION AND EVALUATION OF A SINGLE-COMPARTMENT PK APPROACH G-10
APPENDI	X H. SUMMARY OF PUBLIC AND EXTERNAL PEER REVIEW COMMENTS AND EPA'S DISPOSITION
APPENDI	X I. QUALITY ASSURANCE FOR THE IRIS TOXICOLOGICAL REVIEW OF PERFLUORODECANOIC ACID AND RELATED SALTSI-1

TABLES

Table B-1. Summary of detailed search strategies for Perfluorodecanoic Acid and Related Salts (PubMed. Web of Science, Toxline, TSCATS, Toxcenter)	B-1
Table C-1. Results specific to the slope from the linear analyses of PFDA measured in serum at age 5 years and log ₂ (tetanus antibody concentrations) measured at age 7 years in a single-PFAS model and in a multi-PFAS model from (Budtz-Jørgensen and	
Grandjean, 2018b).	C-1
Table C-2. BMDs and BMDLs for effect of PFDA at age five years on anti-tetanus antibody concentrations at age seven years using a BMR of ½ SD change in log ₂ (tetanus antibodies concentration) and a BMR of 1 SD change in log ₂ (tetanus antibodies	
concentration)	C-6
Table C-3. Results specific to the slope from the linear analyses of PFDA in serum measured at age 5 years and log ₂ (diphtheria antibodies) measured at age 7 years from Table 1 in a single-PFAS model and in a multi-PFAS model from (Budtz-Jørgensen and Grandiean, 2018b).	C-8
Table C-4. BMDs and BMDLs for effect of PFDA at age 5 years on anti-diphtheria antibody concentrations at age 7 years using a BMR of ½ SD change in log ₂ (diphtheria antibodies concentration) and a BMR of 1 SD log ₂ (diphtheria antibodies	
concentration).	C-10
tetanus antibodies measured at age 5 years in a single-PFAS model and in a multi-PFAS model from (Budtz-Jørgensen and Grandjean, 2018b)	C-11
Table C-6. BMDs and BMDLs for effect of PFDA measured perinatally and anti-tetanus antibody concentrations at age 5 years	C-12
Table C-7. Results of the analyses of PFDA measured perinatally in maternal serum and	
diphtheria antibodies measured at age 5 years in a single-PFAS model and in a	
multi-PFAS model from (Budtz-Jørgensen and Grandiean, 2018b)	C-14
Table C-8. BMDs and BMDLs for effect of PFDA measured perinatally and anti-diphtheria	
antibody concentrations at age 5 years	C-15
Table C-9. Selected BMDs and BMDLs and associated uncertainty for effect of PFDA on	
decreased antibody responses in children from Budtz-Jørgensen and Grandiean	
(2018a)	C-16
Table C-10. BMDs and BMDLs for effect of PFDA on decreased birth weight, by using percentage(8.27%) of live births falling below the public health definition of low birth	
weight, or alternative study-specific tail probability	C-22
Table C-11. Sources of data used in benchmark dose modeling of PFDA endpoints from animal	
studies	C-25
Table C-12. Dose-response data for increased AST in male rats (NTP, 2018)	C-26
Table C-13. Benchmark dose results for increased AST in male rats—constant variance, BMR = 1 standard deviation (NTP, 2018)	C-27
Table C-14. Dose-response data for increased AST in female rats (NTP, 2018)	C-31
Table C-15. Benchmark dose results for increased AST in female rats—constant variance,	
BMR = 1 standard deviation (NTP, 2018)	C-31
Table C-16. Benchmark dose results for increased AST in female rats—nonconstant variance,	
BMR = 1 standard deviation (NTP, 2018)	C-32

Table C-17. Benchmark dose results for increased AST in female rats—log-normal, constant	
variance, BMR = 1 standard deviation (NTP, 2018)	C-33
Table C-18. Dose-response data for increased ALP in female rats (NTP, 2018)	C-35
Table C-19. Benchmark dose results for increased ALP in female rats—BIVIR = constant variance,	0.05
1 standard deviation (NTP, 2018)	C-35
Table C-20. Benchmark dose results for increased ALP in female rats—nonconstant variance,	
BMR = 1 standard deviation (NTP, 2018)	C-37
Table C-21. Benchmark dose results for increased ALP in female rats—log-normal, constant	
variance, BMR = 1 standard deviation (NTP, 2018)	C-38
Table C-22. Dose-response data for increased relative liver weight in male rats (NTP, 2018)	C-39
Table C-23. Benchmark dose results for increased relative liver weight in male rats—constant	C-30
Table C 24. Renchmark dose results for increased relative liver weight in male rate - constant	
variance RMP = 1 standard deviation (NTP, 2018)	C-13
Table C-25 Dose-response data for increased relative liver weight in female rats (NTP, 2018)	C-43
Table C-26. Bonchmark dose results for increased relative liver weight in female	
rate _ PMP = constant variance _10% relative deviation (NTP_2018)	C 11
Table C 27. Denohmerk does results for increased relative liver weight in famale	
Table C-27. Benchmark dose results for increased relative liver weight in remaie	C 45
Table C 20. Dependence is accurate for increased relative liver weight in formale rate.	C-45
Table C-28. Benchmark dose results for increased relative liver weight in female rats—log-	C 4C
normal, constant variance, BMR = 10% relative deviation (NTP, 2018)	C-46
Table C-29. Benchmark dose results for increased relative liver weight in female rats, high dose	o 47
dropped—BMR = constant variance, 10% relative deviation (NTP, 2018)	C-47
Table C-30. Benchmark dose results for increased relative liver weight in female rats, high dose	
dropped—constant variance, BMR = 1 standard deviation (NTP, 2018)	C-51
Table C-31. Dose-response data for increased relative liver weight (Histo) in female rats (Frawley et al., 2018)	C-51
Table C-32. Benchmark dose results for increased relative liver weight (Histo) in female	
rats—constant variance, BMR = 10% relative deviation (Frawley et al., 2018)	C-52
Table C-33. Benchmark dose results for increased relative liver weight (Histo) in female	
rats—constant variance, BMR = 1 standard deviation (Frawley et al., 2018)	C-54
Table C-34. Dose-response data for increased relative liver weight (MPS) in female rats (Frawley	
et al. 2018)	C-55
Table C-35. Benchmark dose results for increased relative liver weight (Histo) in female	
rats—constant variance. BMR = 10% relative deviation (Frawley et al., 2018)	C-55
Table C-36. Benchmark dose results for increased relative liver weight (MPS) in female rats —	
constant variance. BMR = 1 standard deviation (Frawley et al., 2018)	C-58
Table C-37 Dose-response data for increased relative liver weight (TDAR) in female rats (Frawley	
et al. 2018)	C-59
Table C-38 Benchmark dose results for increased relative liver weight (TDAR) in female	
rate—constant variance $RMR = 10\%$ relative deviation (Frawley et al. 2018)	C-59
Table C-39 Benchmark dose results for increased relative liver weight (TDAR) in female	
rate—non-constant variance_RMR = 10% relative deviation (Frawley et al. 2019)	C_61
Table C-10 Benchmark dose results for increased relative liver weight (TDAP) in female	
rable C-+0. Denominary uose results for increased relative liver weight (TDAK) in reliable	
als - 10g-1101111al, constant variance, divir - 10% relative deviation (Frawley et	C 62
dl., 2010)	
Table C-41. Dose-response data for decreased retai weight in male and remaie rats (Harris and	c c 2
Birndaum, 1989)	

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

Table C-42. I	Benchmark dose results for decreased fetal weight in male and female	
	rats—constant variance, BMR = 5% relative deviation (Harris and Birnbaum, 1989)	C-64
Table C-43. I	Benchmark dose results for decreased fetal weight in male and female	
	rats—nonconstant variance, BMR = 5% relative deviation (Harris and Birnbaum, 1989)	C-65
Table C-44. I	Benchmark dose results for decreased fetal weight in male and female rats—log-	
	normal, constant variance, BMR = 5% relative deviation (Harris and Birnbaum, 1989)	C-67
Table C-45. I	Dose-response data for decreased sperm counts in male rats (NTP, 2018)	C-69
Table C-46. I	Benchmark dose results for decreased sperm counts in male rats, BMR = 1 standard deviation (NTP, 2018)	C-69
Table C-47. I	Dose-response data for decreased absolute testis weight in male rats (NTP, 2018)	C-71
Table C-48. I	Benchmark dose results for decreased absolute testis weight in male rats—constant variance, BMR = 1 standard deviation (NTP, 2018)	C-72
Table C-49. I	Dose-response data for decreased absolute caudal epididymis weight in male rats (NTP, 2018)	C-75
Table C-50. I	Benchmark dose results for decreased absolute caudal epididymis weight in male rats—constant variance_BMR = 1 standard deviation (NTP_2018)	C-75
Table C-51. I	Benchmark dose results for decreased absolute caudal epididymis weight in male rats—ponconstant variance_BMB = 1 standard deviation (NTP_2018)	C-76
Table C-52. I	Dose-response data for decreased absolute whole epididymis weight in male rats	C 70
Table C-53. I	Benchmark dose results for decreased whole caudal epididymis weight in male rats—constant variance_BMB = 1 standard deviation (NTP_2018)	C-79
Table C-54. I	Benchmark dose results for decreased absolute whole epididymis weight in male	
	rats—nonconstant variance, BMR = 1 standard deviation (NTP, 2018)	C-79
Table C-55. I	Dose-response data for decreased days in estrus in female rats (Butenhoff et al., 2012; van Otterdijk, 2007)	C-82
Table C-56. I	Benchmark dose results for decreased days in estrus in female rats—constant variance, BMR = 5% relative deviation (Butenhoff et al., 2012; van Otterdijk, 2007)	C-83
Table C-57. I	Benchmark dose results for decreased days in estrus in female rats—constant variance, BMR = 1 standard deviation (Butenhoff et al., 2012; van Otterdijk, 2007)	C-85
Table C-58. I	Dose-response data for increased days in diestrus in female rats (Butenhoff et al., 2012: van Otterdiik, 2007)	C-86
Table C-59. I	Benchmark dose results for increased days in diestrus in female rats—constant variance, BMR = 5% relative deviation (Butenhoff et al., 2012; van Otterdijk, 2007)	C-87
Table C-60. I	Benchmark dose results for increased days in diestrus in female rats—constant variance, BMR = 1 standard deviation (Butenhoff et al., 2012; van Otterdijk, 2007)	C-90
Table C-61. I	Dose-response data for decreased relative uterine weight in female rats (Butenhoff et al., 2012; van Otterdijk, 2007))	C-90
Table C-62. I	Benchmark dose results for decreased relative uterine weight in female rats—BMR = constant variance. 1 standard deviation (Butenhoff et al., 2012; van	
	Otterdijk, 2007)	C-91

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

Table C-63. Benchmark dose results for decreased relative uterine weight in female rats —	
nonconstant variance, BMR = 1 standard deviation (Butenhoff et al., 2012; van	
Otterdijk, 2007)	C-92
Table C-64. Benchmark dose results for decreased relative uterine weight in female rats—log-	
normal, constant variance, BMR = 1 standard deviation (Butenhoff et al., 2012;	
van Otterdijk, 2007)	C-92
Table C-65. Dose-response data for decreased absolute uterine weight in female rats (NTP,	
2018)	C-94
Table C-66. Benchmark dose results for decreased absolute uterine weight in female	
rats—BMR = constant variance, 1 standard deviation (Butenhoff et al., 2012; van	
Otterdijk, 2007)	C-94
Table C-67. Benchmark dose results for decreased absolute uterine weight in female	
rats—nonconstant variance, BMR = 1 standard deviation (Butenhoff et al., 2012;	
van Otterdijk, 2007)	C-95
Table C-68. Benchmark dose results for decreased absolute uterine weight in female rats—log-	
normal, constant variance, BMR = 1 standard deviation (Butenhoff et al., 2012;	
van Otterdijk, 2007)	C-96
Table E-1. Bioactivity summary for PFDA from in vitro HTS assays from ToxCast/Tox21 conducted	
in human liver cell lines (HepG2 and HepaRG cells) and grouped by biological	
response/target ^{a,b}	E-6
Table E-2. Bioactivity summary for PFDA from in vitro HTS assays evaluating nuclear receptor-	
related activities from ToxCast/Tox21 across multiple endpoints and cell	
types ^{a,y,c}	E-13
Table E-3. Bioactivity summary for PFDA from in vitro HTS assays evaluating activities for the AR,	- 4-
	E-1/
Table E-4. ToxCast model predictions for the ER and AR pathways for PFDA [®]	E-20
Table E-5. Bioactivity summary for PFDA from in vitro HTS assays related to steroidogenesis"	E-21
Table F-1. PFAS correlation coefficients in mutually adjusted studies	F-25
Table F-2. Impact of coexposure adjustment on estimated change in mean birth weight per unit r_{1}	F 20
cnange (ng/mL) in PFDA levels"	F-28
Table G-1. Weakly informed prior distributions for pharmacokinetic parameters used in the	<u> </u>
Bayesian analysis	ษ-ว

FIGURES

Figure C-1. Difference in population tail probabilities resulting from a one standard deviation	
shift in the mean from a standard normal distribution, illustrating the	
theoretical basis for a baseline BMR of 1 SD.	C-4
Figure C-2. Difference in population tail probabilities resulting from a ½ standard deviation shift	
in the mean from an estimation of the distribution of log ₂ (tetanus antibody	
concentrations at age seven years)	C-6
Figure C-3. Dose-response curve for the Hill model fit to increased AST in male rats (NTP, 2018)	C-28
Figure C-4. User Input for dose-response modeling of increased AST in male rats (NTP, 2018)	C-29
Figure C-5. Model Results for increased AST in male rats (NTP, 2018).	C-30

Figure C-6. Dose-response curve for the Hill model fit to increased relative liver weight in male	C 40
rats (NTP, 2018).	C-40
(NTP, 2018).	C-41
Figure C-8. Model Results for increased relative liver weight in male rats (NTP, 2018).	C-42
Figure C-9. Dose-response curve for the Hill model fit to increased relative liver weight in female	
rats with the highest dose dropped (NTP, 2018)	C-48
Figure C-10. User input for dose-response modeling of increased relative liver weight in females	
rats with highest dose dropped (NTP, 2018).	C-49
Figure C-11. Model results for increased relative liver weight in female rats with highest dose	
dropped (NTP, 2018)	C-50
Figure C-12. Dose-response curve for the Exponential 2 model fit to increased relative liver	
weight (Histo) in female rats (Frawley et al., 2018)	C-53
Figure C-13. User input for dose-response modeling of increased relative liver weight (Histo) in	
female rats (Frawley et al., 2018).	C-53
Figure C-14. Model results for increased relative liver weight (Histo) in female rats (Frawley et	
al., 2018)	C-54
Figure C-15. Dose-response curve for the Linear model fit to increased relative liver weight	
(MPS) in female rats (Frawley et al., 2018)	C-56
Figure C-16. User input for dose-response modeling of increased relative liver weight (MPS) in	
female rats (Frawley et al., 2018).	C-57
Figure C-17. Model results for increased relative liver weight (MPS) in female rats (Frawley et al.,	
2018)	C-58
Figure C-18. Dose-response curve for the Exponential 2 model fit to decreased sperm counts in	
male rats (NTP, 2018)	C-70
Figure C-19. User input for dose-response modeling of decreased sperm counts in male counts	
(NTP, 2018)	
Figure C-20. Model results for decreased sperm counts in rat males (NTP, 2018).	C-/1
Figure C-21. Dose-response curve for the Linear model fit to decreased absolute testis weight in	C 70
Tigure C 22 User input for doce response modeling of decreased absolute testic weight in mole	
rigure C-22. User input for dose-response modeling of decreased absolute testis weight in male	C 72
Figure C 22 Model results for decreased absolute testic weight in male rats (NTD, 2018)	C-75
Figure C-23. Model results for decreased absolute testis weight in male rats (NTP, 2018)	C-74
enididymic weight in male rate (NTD, 2019)	C 77
Figure C-25 User Input for dose-response modeling of decreased caudal epididumis weight in	
male rate (NTP, 2018)	C-77
Figure C-26 Model results for decreased caudal epididumis weight in male rats (NTP 2018)	C-77
Figure C-27. Dose-response curve for the Linear model fit to decreased absolute whole	
enididymis weight in male rats (NTP_2018)	C-80
Figure C-28 User input for dose-response modeling of decreased absolute whole enididymis	
weight in male rats (NTP, 2018)	C-81
Figure C-29. Model Results for decreased absolute whole epididymis weight in male rats (NTP.	
2018).	C-82
Figure C-30. Dose-response curve for the Polynomial 2 model fit to decreased days in estrus in	
female rats (Butenhoff et al., 2012; van Otterdijk, 2007).	C-84
Figure C-31. User input for dose-response modeling of decreased days in estrus in female rats	
(NTP, 2018)	C-84

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

Figure C-32. Model results for decreased days in estrus in female rats (NTP, 2018)	C-85
Figure C-33. Dose-response curve for the Exponential 2 model fit to increased days in diestrus in	
female rats (Butenhoff et al., 2012; van Otterdijk, 2007).	C-88
Figure C-34. User input for dose-response modeling of increased days in diestrus in female rats	
(NTP, 2018)	C-88
Figure C-35. Model results for increased days in diestrus in female rats (NTP, 2018)	C-89
Figure D-1. This proposed MOA is based on previous analyses on PFAS-induced	
(e.g., PFOA/PFOS) liver toxicity and the role of nuclear receptor pathways in	
hepatotoxicity	D-3
Figure E-1. Bioactivity data for PFDA from in vitro HTS ToxCast/Tox21 assays conducted in	
human liver cell lines (HepG2 and HepaRG cells).	E-3
Figure E-2. Analysis of PFDA-induced upregulation of transcriptional activity in ToxCast/Tox21	
assays conducted in human liver cell lines (HepG2 and HepaRG cells)	E-4
Figure E-3. Analysis of PFDA-induced nuclear receptor-related activities in ToxCast/Tox21 assays	
across multiple endpoints and cell types	E-5
Figure G-1. Prior predictive check to ensure equal-tailed interval from prior distributions	
encompass the available time-course concentration data for fitting.	G-5
Figure G-2. Prior sensitivity on half-life, steady-state volume of distribution, and clearance to	
ensure weakly informed priors do not bias posterior distributions of the	
pharmacokinetic parameters	G-6
Figure G-3. Predicted (black line with blue 90% credible interval) and observed (black circles)	
serum time-courses for female (left) and male (right) rats after a 25 mg/kg IV	
bolus of PFDA. Observed data from (Ohmori et al., 2003)	G-7
Figure G-4. Predicted (black line with blue 90% credible interval) and observed (black circles)	
serum time-courses for female (top 2 panels) and male (bottom 2 panels) rats	
after a 1 mg/kg gavage or IV bolus of PFDA. Gavage exposures are on the left,	
while IV exposures are on the left, while IV exposures are on the right. Observed	
data from (Kim et al., 2019)	G-8
Figure G-5. Predicted (black line with blue 90% credible interval) and observed (black circles)	
serum time-courses for female rats after a 2 mg/kg IV or 2, 10, or 20 mg/kg	
gavage bolus of PFDA. Observed data from (Dzierlenga et al., 2019)	G-9
Figure G-6. Predicted (black line with blue 90% credible interval) and observed (black circles)	
serum time-courses for male rats after a 2 mg/kg IV or 2, 10, or 20 mg/kg	
gavage bolus of PFDA. Observed data from (Dzierlenga et al., 2019)	G-10
Figure G-7. Male rat body weight changes during 28-day PFDA bioassay (NTP, 2018). Data sets	
are identified by the dose (mg/kg-d).	G-12
Figure G-8. Predicted accumulation and observed end-of-study of PFDA in male rats in the NTP	
bioassay (NTP, 2018) as a function of dose. Predicted and measured	
concentrations (mg/L) were normalized to respective doses (mg/kg-d)	G-12
Figure G-9. Measured end-of-study of PFDA in male rats in the NTP bioassay (NTP, 2018) as a	
function of dose	. G-13

ABBREVIATIONS AND ACRONYMS

AC50 ADME	activity concentration at 50% absorption, distribution, metabolism, and excretion	HAP HAWC	hazardous air pollutant Health Assessment Workspace Collaborativo
AIC	Alguito's information criterion	Ub/a A	animal blood, gas partition coefficient
	alaning aminotransforaça	Ub/g-A	human blood, gas partition coefficient
		пр/д-п	human blood: gas partition coefficient
AUP	adverse outcome pathway	HBCD	nexabromocyclododecane
ASI	aspartate aminotransferase	HEC	numan equivalent concentration
atm	atmosphere	HED	human equivalent dose
ATSDR	Agency for Toxic Substances and Disease Registry	HERO	Health and Environmental Research Online
BMC	benchmark concentration	i.p.	intraperitoneal
BMCL	benchmark concentration lower	i.v.	intravenous
	confidence limit	IAP	IRIS Assessment Plan
BMD	benchmark dose	IARC	International Agency for Research on
BMDL	benchmark dose lower confidence limit		Cancer
BMDS	Benchmark Dose Software	IRIS	Integrated Risk Information System
BMR	benchmark response	IUR	inhalation unit risk
BUN	blood urea nitrogen	LC50	median lethal concentration
BW	hody weight	LD50	median lethal dose
BW ^{3/4}	hody weight scaling to the 3/4 nower	LOAEL	lowest-observed-adverse-effect level
CA	chromosomal aberration	LOEL	lowest-observed-effect level
CAA	Clean Air Act	MeSH	Medical Subject Headings
	Chemical Abstracts Service	MN	micronuclei
CASEN	Chemical Abstracts Service registry	MNPCF	micronucleated polychromatic
CASIN	number	MINI CE	arythrocyte
	Comprohensive Environmental	MOA	mode of action
LENCLA	Completiensive Environmental	MUA	movinum tolorated doce
	A at		National Cancer Institute
CUO	All Chinaga hamatan ayawy (apll line golla)		national Calleer Institute
	chinese hanster ovary (cen nile cens)		normalized mean difference
	confidence interval	NOAEL	no-observed-adverse-effect level
		NUEL	no-observed-effect level
CNS	central nervous system	NIP	National Toxicology Program
	conflict of interest	NZW	New Zealand White (rabbit breed)
CPAD	Chemical and Pollutant Assessment	OAR	Office of Air and Radiation
OD LID A	Division	OECD	Organization for Economic
CPHEA	Center for Public Health and		Co-operation and Development
	Environmental Assessment	OLEM	Office of Land and Emergency
CYP450	cytochrome P450		Management
DAF	dosimetric adjustment factor	ORD	Office of Research and Development
DMSO	dimethylsulfoxide	OSF	oral slope factor
DNA	deoxyribonucleic acid	РВРК	physiologically based pharmacokinetic
EPA	Environmental Protection Agency	PECO	populations, exposures, comparators,
ER	extra risk		and outcomes
FDA	Food and Drug Administration	РК	pharmacokinetic
FEV_1	forced expiratory volume of 1 second	PND	postnatal day
GD	gestation day	POD	point of departure
GDH	glutamate dehydrogenase	POD _[ADJ]	duration-adjusted POD
GGT	γ-glutamyl transferase	QSAR	quantitative structure-activity
GLP	Good Laboratory Practice		relationship
GSH	glutathione	RD	relative deviation
GST	glutathione-S-transferase	RfC	inhalation reference concentration

This document is a draft for review purposes only and does not constitute Agency policy.

RfD	oral reference dose
RGDR	regional gas dose ratio
RNA	ribonucleic acid
ROBINS I	Risk of Bias in Nonrandomized Studies
	of Interventions
SAR	structure-activity relationship
SCE	sister chromatid exchange
SD	standard deviation
SDH	sorbitol dehydrogenase
SE	standard error
SGOT	serum glutamic oxaloacetic
	transaminase, also known as AST
SGPT	serum glutamic pyruvic transaminase,
	also known as ALT
ТК	toxicokinetics
TSCATS	Toxic Substances Control Act Test
	Submissions
TWA	time-weighted average
UF	uncertainty factor
UFA	animal-to-human uncertainty factor
UFd	database deficiencies uncertainty factor
UFh	human variation uncertainty factor
$\rm UF_L$	LOAEL-to-NOAEL uncertainty factor
UFs	subchronic-to-chronic uncertainty
	factor
WOS	Web of Science

APPENDIX A. SYSTEMATIC REVIEW PROTOCOL FOR THE PFAS IRIS ASSESSMENTS

- 1 A single systematic review protocol was used to guide the development of five separate IRIS
- 2 PFAS [per- and polyfluoroalkyl substances] assessments (i.e., perfluorobutanoic acid [PFBA],
- 3 perfluorohexanoic acid [PFHxA], perfluorohexane sulfonate [PFHxS], perfluorononanoic acid
- 4 [PFNA], and perfluorodecanoic acid [PFDA]). This "Systematic Review Protocol for the PFAS IRIS
- 5 Assessments" was released for public comment and subsequently updated. The updated protocol
- 6 and prior revisions can be found at the following location:
- 7 http://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=345065

APPENDIX B. LITERATURE SEARCH STRATEGY AND POPULATIONS, EXPOSURES, COMPARATORS, AND OUTCOMES (PECO) CRITERIA

B.1. LITERATURE SEARCH AND SCREENING STRATEGY

Table B-1. Summary of detailed search strategies for Perfluorodecanoic Acidand Related Salts (PubMed, Web of Science, Toxline, TSCATS, Toxcenter)

Search	Search strategy	Dates of search
PubMed		
Search terms	335-76-2[rn] OR "Ndfda"[tw] OR "Nonadecafluoro-n-decanoic acid"[tw] OR "Nonadecafluorodecanoic acid"[tw] OR "Perfluoro-n-decanoic acid"[tw] OR "Perfluorodecanoic acid"[tw] OR "2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluoro-Decanoic acid"[tw] OR "Decanoic acid, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluoro-"[tw] OR "Decanoic acid, nonadecafluoro-"[tw] OR "Perfluorodecanoate"[tw] OR "PEDeA"[tw] OR "PFDcA"[tw] OR ("PFDA"[tw] AND (fluorocarbon*[tw] OR fluorotelomer*[tw] OR polyfluoro*[tw] OR perfluoro-*[tw] OR perfluoroa*[tw] OR perfluorob*[tw] OR perfluoroc*[tw] OR perfluoroa*[tw] OR perfluorob*[tw] OR perfluoros*[tw] OR perfluoroa*[tw] OR perfluorob*[tw] OR perfluoros*[tw] OR perfluoroa*[tw] OR perfluorop*[tw] OR perfluoros*[tw] OR perfluoroa*[tw] OR perfluorop*[tw] OR perfluoros*[tw] OR perfluoroa*[tw] OR perfluorop*[tw] OR perfluoros*[tw] OR perfluorou*[tw] OR perfluoroa*[tw] OR perfluorop*[tw] OR perfluoros*[tw] OR perfluoroa*[tw] OR perfluorop*[tw] OR perfluoros*[tw] OR perfluorou*[tw] OR perfluorinated[tw] OR fluorinated[tw] OR PFAS[tw] OR PFOS[tw] OR	No date limit-7/26/2017
Literature update search terms	((335-76-2[rn] OR "Ndfda"[tw] OR "Nonadecafluoro-n-decanoic acid"[tw] OR "Nonadecafluorodecanoic acid"[tw] OR "Perfluoro-n-decanoic acid"[tw] OR "Perfluorodecanoic acid"[tw] OR "2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluoro-Decanoic acid"[tw] OR "Decanoic acid, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluoro-"[tw] OR "Decanoic acid, nonadecafluoro-"[tw] OR "Perfluorodecanoate"[tw] OR "PFDeA"[tw] OR "PFDcA"[tw] OR ("PFDA"[tw] AND (fluorocarbon*[tw] OR fluorotelomer*[tw] OR polyfluoro*[tw] OR perfluoro-*[tw] OR perfluoroa*[tw] OR perfluorob*[tw] OR perfluoroc*[tw] OR perfluorod*[tw] OR perfluorob*[tw] OR perfluoros*[tw] OR perfluoroa*[tw] OR perfluorob*[tw] OR perfluoros*[tw] OR perfluoroa*[tw] OR perfluorob*[tw] OR perfluoros*[tw] OR perfluoroa*[tw] OR perfluorob*[tw] OR fluorinated[tw] OR PFAS[tw] OR PFOS[tw] OR PFOA[tw]]) AND ("2017/08/01"[Date - Publication] : "2018/03/01"[Date - Publication])	8/1/2017-2/14/2018

Search	Search strategy	Dates of search
Web of Sci	ence	
Search terms	TS="PFDeA" OR TS="PFDcA" OR TS="Ndfda" OR TS="Nonadecafluoro-n-decanoic acid" OR TS="Nonadecafluorodecanoic acid" OR TS="Perfluoro-n-decanoic acid" OR TS="Perfluorodecanoic acid" OR TS="2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluoro-Decanoic acid" OR TS="Decanoic acid, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluoro-" OR TS="Decanoic acid, nonadecafluoro-" OR TS="Perfluorodecanoate" OR (TS=PFDA AND TS=(fluorocarbon* OR fluorotelomer* OR polyfluoro* OR perfluoro-* OR perfluoroa* OR perfluorob* OR perfluoroc* OR perfluorod* OR perfluoroe* OR perfluoros* OR perfluoron* OR perfluoroo* OR perfluorop* OR perfluoros* OR perfluorou* OR perfluoroa* OR perfluoroe* OR perfluoros* OR perfluorob* OR perfluoroc* OR perfluorop* OR perfluoros* OR perfluorob* OR perfluoroc* OR perfluoroa* OR perfluoro-* OR perfluoros* OR perfluorob* OR perfluoroc* OR perfluorop* OR perfluoros* OR perfluorob* OR perfluoroc* OR perfluoros* OR perfluoro-* OR perfluoros* OR perfluorob* OR perfluoroc* OR perfluoros* OR perfluoro-* OR perfluoros* OR perfluorob* OR perfluoroc* OR perfluoros* OR perfluoro-* OR perfluoros* OR perfluorob* OR perfluoroc* OR perfluoros* OR perfluoro-* OR perfluoroa* OR perfluorob* OR perfluoroc* OR perfluoros* OR perfluoro-* OR perfluoroa* OR perfluorob* OR perfluoroc* OR perfluoros* OR perfluoro-* OR perfluoros* OR perfluorob* OR perfluoroc* OR perfluoros* OR perfluoros* OR perfluorob* OR perfluoros* OR perfluoros* OR perfluorob* OR perfluoros* OR perfluorob* OR perfluoros* O	No date limit-7/26/2017
Literature update search terms	TS="PFDeA" OR TS="PFDcA" OR TS="Ndfda" OR TS="Nonadecafluoro-n-decanoic acid" OR TS="Nonadecafluorodecanoic acid" OR TS="Perfluoro-n-decanoic acid" OR TS="Perfluorodecanoic acid" OR TS="2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluoro-Decanoic acid" OR TS="Decanoic acid, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluoro-" OR TS="Decanoic acid, nonadecafluoro-" OR TS="Perfluorodecanoate" OR (TS=PFDA AND TS=(fluorocarbon* OR fluorotelomer* OR polyfluoro* OR perfluoro-* OR perfluoroa* OR perfluorob* OR perfluoroc* OR perfluorod* OR perfluoroe* OR perfluoroh* OR perfluoron* OR perfluoroo* OR perfluoroe* OR perfluoros* OR perfluoron* OR perfluoroa* OR perfluoroe* OR perfluoros* OR perfluorou* OR perfluoroa* OR perfluoroe* OR perfluoros* OR perfluorob* OR perfluoroc* OR perfluoroa* OR perfluoro-* OR perfluoros* OR perfluorob* OR perfluoroa* OR perfluoroa* OR perfluoroa* OR perfluoros* OR perfluoroa* OR fluorotelomer* OR polyfluoro* OR perfluoroa* OR perfluoros* OR perfluorob* OR perfluoroa* OR perfluoroa* OR perfluoros* OR perfluorob* OR perfluoroc* OR perfluoroa* OR perfluoro-* OR perfluoroa* OR perfluorob* OR perfluoroc* OR perfluoroa* OR perfluoro-* OR perfluoroa* OR perfluorob* OR perfluoroc* OR perfluoroa* OR perfluoroa* OR perfluoroa* OR perfluorob* OR perfluoroc* OR perfluoroa* OR perfluoroa* OR perfluoroa* OR perfluorob* OR perfluoroa* OR perfluoroa* OR perfluoroa* OR perfluoroa* OR perfluoroa* OR perfluoroa	2017–2018
Toxline		
Search terms	(335-76-2 [rn] OR "2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluorodecanoic acid" OR "2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluoro-decanoic acid" OR "decanoic acid 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluoro-" OR "decanoic acid nonadecafluoro-" OR "nonadecafluoro-n-decanoic acid" OR "nonadecafluorodecanoic acid" OR "perfluoro-1-nonanecarboxylic acid" OR "perfluoro-n-decanoic acid" OR "perfluorocapric acid" OR "perfluoro-n-decanoic acid" OR "perfluorocapric acid" OR "perfluorodecanoate" OR "perfluorodecanoic acid" OR "PFDeA" OR "PFDcA" OR (pfda AND (fluorocarbon* OR fluorotelomer* OR polyfluoro* OR perfluoro* OR perfluorinated OR fluorinated OR pfas OR pfos OR pfoa))) AND (ANEUPL [org] OR BIOSIS [org] OR CIS [org] OR DART [org] OR EMIC [org] OR EPIDEM [org] OR HEEP [org] OR HMTC [org] OR IPA [org] OR RISKLINE [org] OR MTGABS [org] OR NIOSH [org] OR NTIS [org] OR PESTAB [org] OR PPBIB [org]) AND NOT PubMed [org] AND NOT pubdart [org]	No date limit–7/21/2017

Search	Search strategy	Dates of search
Literature update search terms		2017–2018
TSCATS		
Search terms	335-76-2[rn] AND TSCATS [org]	No date limit-7/21/2017

APPENDIX C. BENCHMARK DOSE MODELING RESULTS

C.1. BENCHMARK DOSE MODELING RESULTS FROM HUMAN STUDIES

The endpoints selected for benchmark dose (BMD) modeling include decreased serum antibody concentrations (Budtz-Jørgensen and Grandjean, 2018a; Grandjean et al., 2012) and decreased birth weight (Luo et al., 2021; Yao et al., 2021; Wikström et al., 2020; Valvi et al., 2017; Lenters et al., 2016). The internal doses reported in the human studies were used in the BMD modeling and then converted to human equivalent doses (HEDs) using the estimated human clearance as described in Section 3.7 of the main document, the modeling results are presented in this appendix.

C.1.1. BENCHMARK DOSE MODELING APPROACHES FOR IMMUNE EFFECTS

8 Modeling Results for Decreased Tetanus Antibody Concentrations at 7 Years of Age and PFDA 9 Measured at 5 Years of Age

10 Budtz-Jørgensen and Grandjean (2018a) fit multivariate models of PFDA measured at age 11 five years, against log₂-transformed anti-tetanus antibody concentrations measured at the 7-year-12 old examination controlling for sex, exact age at the 7-year-old examination, and booster type at age 13 5 years. Models were evaluated with additional control for PFOS (as log₂[PFOS]) and PFOA (as 14 log₂[PFOA]), and without PFOS and PFOA. Three model shapes were evaluated by <u>Budtz-Jørgensen</u> 15 and Grandjean (2018a) using likelihood ratio tests: a linear model, a piecewise-linear model with a 16 knot at the median PFDA concentration, and a logarithmic function. The logarithmic functions did 17 not fit better than the piecewise-linear functions (Budtz-Jørgensen and Grandjean, 2018a). The 18 piecewise-linear model did not fit better than the linear model for the PFHxS exposure without 19 adjustment for PFOS and PFOA using a likelihood ratio test (*p* = 0.51; see <u>Budtz-Jørgensen and</u> 20 Grandiean (2018a) Table 3), or for the model that did adjust for PFOS and PFOA (log₂[PFOS] and 21 $\log_2[PFOA]) (p = 0.40).$ 22 Table C-1 summarizes the results from Budtz-Jørgensen and Grandjean (2018a) for PFDA 23 at age 5 years and tetanus antibodies at age 7 years. These regression coefficients (β), their 24 standard errors (SE), p-values, and the 90% lower confidence bounds were provided by Budtz-25 Jørgensen and Grandjean (2018b).

26

Table C-1. Results specific to the slope from the linear analyses of PFDA measured in serum at age 5 years and log₂(tetanus antibody concentrations)

This document is a draft for review purposes only and does not constitute Agency policy.C-1DRAFT-DO NOT CITE OR QUOTE

measured at age 7 years in a single-PFAS model and in a multi-PFAS model from (<u>Budtz-Jørgensen and Grandjean, 2018b</u>).

Exposure	Model shape	PFOS & PFOA adjusted	Slope (β) per ng/mL in serum	SE(β) ng/m Lin serum	Slope (β) fit	Lower bound slope (βιβ) per ng/mL in serum
PFDA at Age 5	Linear	No	-1.55	0.602	<i>p</i> = 0.01	-2.55
PFDA at Age 5	Linear	Yes	-0.98	0.681	<i>p</i> = 0.15	-2.10

1	Interpretation of results in Table C-1:
2	
3	• PFDA is a significant predictor in the single-PFAS model ($\beta = -1.55$; $p = 0.01$)
4	 Effects of PFDA in the single-PFAS model are attenuated when log₂[PFOS] and log₂[PFOA]
5	are included in the model (β = -0.98; <i>p</i> = 0.15).
6 7	 The point estimate results for PFDA (β) in the single-PFAS model are <i>potentially</i> confounded by PFOS and/or PFOA since there was a 37% reduction in the effect size for PFDA from -
8	1.55 to -0.98 when controlling for PFOS and PFOA.
9	• One explanation is that PFOS and/or PFOA was a confounder of the PFDA effect and
10	Controlling for those co-exposures removed confounding.
12	induced confounding (Weisskopf et al., 2018: Weisskopf and Webster, 2017).
13	• The reasons for the change in main effect size for PFDA are not known. For this
14	reason, there is uncertainty in knowing which point estimate is the best
15	representation of any effect of PFDA.
16	• However, the lower bound on the point estimates (β_{LB}) for the single-PFAS is 21% lower
1/ 18	than the multi-PFAS model estimate for PFDA.
19	of magnitude (10-fold or 1.000%) uncertainty in the estimate and the uncertainty
20	for potential confounding in the BMD from including, or excluding, PFOS and PFOA
21	here is about 37%, while the uncertainty for potential confounding in the BMDL is
22	about 21%.
23	Selection of the Benchmark Response
24	The benchmark dose (BMD) approach involves dose-response modeling to obtain BMDs,
25	i.e., dose levels corresponding to specific response levels near the low end of the observable range
26	of the data and the lower limit of the BMD (BMDLs) to serve as potential PODs for deriving
27	quantitative estimates below the range of observation (<u>U.S. EPA, 2012</u>). Selecting a BMR to
28	estimate the BMDs and BMDLs involves making judgments about the statistical and biological
29	characteristics of the data set and about the applications for which the resulting BMDs and BMDLs
30	will be used. An extra risk of 10% is recommended as a standard reporting level for quantal data
31	for toxicological data. Biological considerations may warrant the use of a BMR of 5% or lower for
32	some types of effects as the basis of the POD for a reference value. However, a BMR of 1% has
33	typically been used for quantal human data from epidemiology studies (<u>U.S. EPA, 2012</u>), although

this is more typically used for epidemiologic studies of cancer mortality within large cohorts of
 workers which can support the statistical estimation of small BMRs.

- 3 A blood concentration for tetanus antibodies of 0.1 IU/mL is sometimes cited in the tetanus
- 4 literature as a 'protective level' and (<u>Grandjean et al., 2017</u>) noted that the Danish vaccine producer
- 5 Statens Serum Institut recommended the 0.1 IU/mL "cutoff" level "to determine whether antibody
- 6 concentrations could be considered protective"; and <u>Galazka and Kardymowicz (1989)</u>mentions the
- 7 same concentration, but <u>Galazka et al. (1993)</u>argues:

8 "The amount of circulating antitoxin needed to ensure complete immunity against 9 tetanus is not known for certain. Establishment of a fixed level of tetanus antitoxin 10 does not take into consideration variable conditions of production and adsorption of tetanus toxin in the anaerobic area of a wound or a necrotic umbilical stump. A given 11 serum level could be overwhelmed by a sufficiently large dose of toxin. Therefore, there 12 13 is no absolute protective level of antitoxin and protection results when there is 14 sufficient toxin-neutralizing antibody in relation to the toxin load (Passen and Andersen, 1986)." 15

16 In the absence of a clear definition of an adverse effect for a continuous endpoint like

17 antibody concentrations, a default BMR of one SD change from the control mean may be selected, as

- 18 suggested in EPA's draft Benchmark Dose Technical Guidance Document (U.S. EPA, 2012). As noted
- 19 above, a lower BMR can also be used if it can be justified on a biological and/or statistical basis.
- Figure C-1 replicates a figure in the Technical Guidance (page 23; (U.S. EPA, 2012) to show that in a
- control population where 1.4% are considered to be at risk of having an adverse effect, a downward
- $22 \quad shift in the control mean of one SD results in a ~10\% extra risk of being at risk of having an adverse$
- 23 effect.

Figure C-1. Difference in population tail probabilities resulting from a one standard deviation shift in the mean from a standard normal distribution, illustrating the theoretical basis for a baseline BMR of 1 SD.

1 Statistically, the Technical Guidance additionally suggests that studies of developmental 2 effects can support lower BMRs. Biologically, a BMR of ½ SD is a reasonable choice as anti-tetanus 3 antibody concentrations prevent against tetanus, which is a rare, but severe and sometimes fatal 4 infection, with a case-fatality rate in the U.S. of 13% during 2001–2008 (Liang et al., 2018). The 5 case-fatality rate can be more than 80% for early lifestage cases (Patel and Mehta, 1999). Selgrade 6 (2007) suggests that specific immuno-toxic effects observed in children may be broadly indicative 7 of developmental immunosuppression impacting these children's ability to protect against a range 8 of immune hazards—which has the potential to be a more adverse effect than just a single immuno-9 toxic effect. Thus, decrements in the ability to maintain effective levels of tetanus antitoxins 10 following immunization may be indicative of wider immunosuppression in these children exposed 11 to PFDA. By contrast, a BMR of one SD may be more appropriate for an effect that would be 12 considered 'minimally adverse.' A BMR smaller than ½ SD is generally selected for severe effects 13 (e.g., 1% extra risk of cancer mortality); decreased antibody concentrations offer diminished protection from severe effects but are not themselves severe effects. 14 15 Following the technical guidance (U.S. EPA, 2012), EPA derived BMDs and BMDLs 16 associated with a one SD change in the distribution of log_2 (tetanus antibody concentrations), and $\frac{1}{2}$ 17 SD change in the distribution of $\log_2(\text{tetanus antibody concentrations})$. The SD of the $\log_2(\text{tetanus})$

> This document is a draft for review purposes only and does not constitute Agency policy. C-4

- 1 antibody concentrations) at age 7 years was estimated from the distributional data presented in
- 2 <u>Grandjean et al. (2012)</u> as follows: the interquartile range (IQR) of the tetanus antibody
- 3 concentrations at age 7 years in IU/mL was (0.65, 4.6). Log₂-tranforming these values provides the
- 4 IQR in log₂(IU/mL) as (-0.62, 2.20). Assuming that these log₂-transformed values are reasonably
- 5 represented by a normal distribution, the width of the IQR is approximately 1.35 SDs. Thus, SD =
- 6 IQR/1.35, and the SD of tetanus antibodies in log₂(IU/mL) is (2.20 (-0.62))/1.35 = 2.09
- $7 \quad \log_2(IU/mL)$. To show the impact of the BMR on these results, Table E-2 presents the BMDs and
- 8 BMDLs at BMRs of ½ SD and 1 SD.
- 9 While there was not a clear definition of the size of an adverse effect for a continuous
- 10 endpoint like antibody concentrations, the value of 0.1 IU/mL is sometimes cited. As a check, EPA
- evaluated how much extra risk would have been associated with a BMR set at a cutoff value of 0.1
- 12 IU/mL. Using the observed distribution of tetanus antibodies at age seven years in log₂(IU/mL),
- 13 EPA calculated that 2.8% of those values would be below the cutoff value of 0.1 IU/mL which is -
- 14 3.32 log₂(IU/mL). A BMR of ½ SD resulted in 7.9% of the values being below that cutoff which is
- 15 5.1% extra risk and shows that the generic guidance that a BMR of ½ SD can provide a reasonably
- 16 good estimate of 5% extra risk. Figure C-2 shows an example of this.

Figure C-2. Difference in population tail probabilities resulting from a $\frac{1}{2}$ standard deviation shift in the mean from an estimation of the distribution of $\log_2(\text{tetanus antibody concentrations at age seven years})$.

Table C-2. BMDs and BMDLs for effect of PFDA at age five years on anti-tetanus antibody concentrations at age seven years using a BMR of $\frac{1}{2}$ SD change in $\log_2(\text{tetanus antibodies concentration})$ and a BMR of 1 SD change in $\log_2(\text{tetanus antibodies concentration})$.

	Estimated without contro	l of PFOS and PFOA	Estimated with control of PFOS and PFOA		
DMD	BMD (ng/mL in serum)	BMDL (ng/mL in serum)	BMD (ng/mL in serum)	BMDL (ng/mL in serum)	
BIVIR	β = -1.55 per ng/mL	β _{LB} = -2.55 per ng/mL	β = -0.98 per ng/mL	β_{LB} = -2.10 per ng/mL	
½ SD	0.673	0.411ª	1.067	0.497	
1 SD	1.346	0.821	2.135	0.994	

^a Denotes the selected POD.

1

The lowest serum PFDA concentration measured at age five years was 0.05 ng/mL, the 5 $^{
m th}$

2 percentile was 0.1 ng/mL, and the 10th percentile was 0.2 ng/mL (<u>Grandjean and Bateson, 2021</u>) so

3 the estimated BMDL for a BMR of $\frac{1}{2}$ SD (BMDL $_{\frac{1}{2}$ SD}) in the single-PFAS model is above the 10th

1 percentile of the observed distribution. No information was available to judge the fit of the model

2 in the range of the BMDLs, but the BMD and BMDL were both within the range of observed values

3 and the model fit PFDA well.

- 4 The BMD $_{\mbox{$\frac{1}{2}$ SD}}$ estimate from the multi-PFAS models is 59% higher than the BMD $_{\mbox{$\frac{1}{2}$ SD}}$ estimate
- 5 from the models with just PFDA, and the $BMDL_{\frac{1}{2}SD}$ estimates is 21% higher. The change in BMD
- 6 estimates may, or may not, reflect control for any potential confounding of the regression effect
- 7 estimates. While it is not clear which PFAS model provided 'better' estimate of the point estimate of
- 8 the effect of PFDA, the two $BMDL_{\frac{1}{2}SD}$ estimates are similar (0.411 ng/mL vs. 0.497 ng/mL) and EPA
- 9 advanced the derivation based on results that did not controls for PFOS and PFOA because this
- 10 model appeared to fit PFDA better (p = 0.01 vs. 0.15) and there was low uncertainty due to
- 11 potential confounding in the BMDL. However, confidence was somewhat diminished by the
- 12 potential confounding in the main effect—even though there was low confounding of the BMDL.
- 13 Overall confidence in the BMDLs for Tetanus was judged to be medium confidence.

14For immunotoxicity related to tetanus associated with PFDA exposure measured at15age five years, the POD is based on a BMR of ½ SD and a BMDL ½ SD of 0.411 ng/mL in16serum.

Modeling Results for Decreased Diphtheria Antibody Concentrations at 7 Years of Age and PFDA Measured at 5 Years of Age

19 Budtz-Jørgensen and Grandjean (2018a) fit multivariate models of PFDA measured at age 20 5 years, against log₂-transformed anti-diphtheria antibody concentrations measured at the seven-21 year-old examination controlling for sex, exact age at the 7-year-old examination, and booster type 22 at age 5 years. Models were evaluated with additional control for PFOS (as log₂[PFOS]) and PFOA 23 (as log₂[PFOA]), and without PFOS and PFOA. Three model shapes were evaluated by Budtz-24 Jørgensen and Grandjean (2018a) using likelihood ratio tests: a linear model of PFDA, a piecewise-25 linear model with a knot at the median, and a logarithmic function. The logarithmic functions did 26 not fit better than the piecewise-linear functions (Budtz-Jørgensen and Grandjean, 2018a). The 27 piecewise-linear model did not fit better than the linear model for the PFHxS exposure without 28 adjustment for PFOS and PFOA using a likelihood ratio test (p = 0.55; see Budtz-Jørgensen and 29 Grandjean (2018a) Table 3), or for the model that did adjust for PFOS and PFOA (log₂[PFOS] and 30 \log_2 [PFOA]) (*p* = 0.73). Table C-3 summarizes the results from Budtz-Jørgensen and Grandjean 31 (2018a) for diphtheria in this exposure window. These regression coefficients (β), their standard errors (SE), *p*-values, and the 90% lower confidence bounds were provided by Budtz-Jørgensen 32 33 and Grandjean (2018b).

34

Table C-3. Results specific to the slope from the linear analyses of PFDA in serum measured at age 5 years and log₂(diphtheria antibodies) measured at age 7 years from Table 1 in a single-PFAS model and in a multi-PFAS model from (Budtz-Jørgensen and Grandjean, 2018b).

Exposure	Model shape	PFOS & PFOA adjusted	Slope (β) per ng/mL in serum	SE(β) ng/mL in serum	Slope (β) fit	Lower bound slope (β _{LB}) per ng/mL in serum
PFDA at Age 5	Linear	No	-0.894	0.561	p = 0.11	-1.82
PFDA at Age 5	Linear	Yes	-0.297	0.635	<i>p</i> = 0.64	-1.35

- 1 Interpretation of results in Table C-3:
 - PFDA is a non-significant predictor in the single-PFAS model ($\beta = -0.894$; p = 0.11)
 - Effects are attenuated when $\log_2[PFOS]$ and $\log_2[PFOA]$ are included in the model ($\beta = -$ 0.297; p = 0.64).
 - The point estimate results for PFDA are *potentially* confounded by PFOS and/or PFOA since • there was a 67% reduction in the effect size for PFDA from -0.894 to -0.297 when controlling for PFOS and PFOA.
 - One explanation is that PFOS and/or PFOA was a confounder of the PFDA effect and • controlling for those co-exposures removed confounding.
 - Another possibility is that controlling for co-exposures like PFOS and PFOA actually induced confounding (Weisskopf et al., 2018; Weisskopf and Webster, 2017).
 - The reasons for the change in main effect size for PFDA are not known. For this reason, there is uncertainty in knowing which point estimate is the best representation of any effect of PFDA.
- 15 However, the lower bound on the point estimates (β_{LB}) for the single-PFAS model is 35% lower than the multi-PFAS model estimate for PFDA. 16
- The definition of the RfD, which is based upon the β_{LB} , includes allowing for an order 17 0 18 of magnitude (10-fold or 1,000%) uncertainty in the estimate and the uncertainty for 19 potential confounding in the BMD from including, or excluding, PFOS and PFOA here is about 67%, while the uncertainty for potential confounding in the BMDL is about 20 21 35%.
- 22 Selection of the Benchmark Response
- 23

2

3

4

5

6

7

8

9

10

11

12

13 14

Following the technical guidance (U.S. EPA, 2012), EPA derived BMDs and BMDLs

24 associated with a one SD change in the distribution of $\log_2(diphtheria antibody concentrations)$,

- 25 and ½ SD change in the distribution of log₂(diphtheria antibody concentrations). A blood
- 26 concentration for diphtheria antibodies of 0.1 IU/mL is sometimes cited in the diphtheria literature
- 27 as a 'protective level' Grandjean et al. (2017) noted that the Danish vaccine producer Statens Serum
- 28 Institut recommended the 0.1 IU/mL 'cutoff' level; and Galazka et al. (1993) mentions the same
- 29 concentration), but <u>Galazka et al. (1993)</u> argues:
- "However, it has also been shown that there is no sharply defined level of antitoxin that gives 30 31 complete protection from diphtheria (Ipsen, 1946). A certain range of variation must be

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

accepted: the same degree of antitoxin may give an unequal degree of protection in different

1

2 persons. Other factors may influence the vulnerability to diphtheria including the dose and 3 virulence of the diphtheria bacilli and the general immune status of the person infected 4 (Christenson and Böttiger, 1986). Thus, an antibody concentration between 0.01 and 0.09 5 *IU/ml may be regarded as giving basic immunity, whereas a higher titer may be needed for full* 6 protection. In some studies that used in vitro techniques, a level of 0.1 IU/ml was considered 7 protective (Cellesi et al., 1989; Galazka and Kardymowicz, 1989)." 8 Statistically, the Technical Guidance suggests that studies of developmental effects can 9 support lower BMRs. Biologically, a BMR of ½ SD is a reasonable choice as anti-diphtheria antibody 10 concentrations prevent against diphtheria, which is very rare in the U.S., but can cause life-11 threatening airway obstruction, or cardiac failure (<u>Collier, 1975</u>). Among 13 cases reported in the 12 U.S. during 1996–2016, no deaths were mentioned (Liang et al., 2018). However, diphtheria 13 remains a potentially fatal disease in other parts of the world (Galazka et al., 1993) mentions a case 14 fatality rate of 5–10%) and PFDA-related changes in anti-diphtheria antibody concentrations 15 cannot be considered 'minimally adverse' given the historic lethality of diphtheria in the absence of 16 vaccination. <u>Selgrade (2007)</u> suggests that specific immuno-toxic effects observed in children may 17 be broadly indicative of developmental immunosuppression impacting these children's ability to protect against a range of immune hazards—which has the potential to be a more adverse effect 18 19 that just a single immuno-toxic effect. 20 Following the technical guidance (U.S. EPA, 2012). EPA derived BMDs and BMDLs 21 associated with a one SD change in the distribution of log₂(diphtheria antibody concentrations) as a 22 standard reporting level, and $\frac{1}{2}$ SD change in the distribution of $\log_2(diphtheria antibody)$ 23 concentrations). The SD of the $\log_2(diphtheria antibody concentrations)$ at age 7 years was 24 estimated from the distributional data presented in Grandjean et al. (2012) as follows: the 25 interquartile range (IQR) of the diphtheria antibody concentrations at age 7 years in IU/mL was 26 (0.4, 1.6). Log₂-tranforming these values provides the IQR in log₂(IU/mL) as (-1.32, 0.68). 27 Assuming that these log₂-transformed values are similar to the normal distribution, the width of the 28 IQR is approximately 1.35 SDs, thus SD = IQR/1.35, and the SD of tetanus antibodies in $\log_2(IU/mL)$ 29 is $(0.68 - (-1.32))/1.35 = 1.48 \log_2(IU/mL)$. To show the impact of the BMR on these results, Table 30 E-4 presents the BMDs and BMDLs at BMRs of ½ SD and 1 SD.

Table C-4. BMDs and BMDLs for effect of PFDA at age 5 years on antidiphtheria antibody concentrations at age 7 years using a BMR of ½ SD change in log₂(diphtheria antibodies concentration) and a BMR of 1 SD log₂(diphtheria antibodies concentration).

	Estimated without con	trol of PFOS and PFOA	Estimated with control of PFOS and PFOA		
BMR	BMD (ng/mL in serum) β = -0.894 per ng/mL	BMDL (ng/mL in serum) β _{LB} = -1.82 per ng/mL	BMD (ng/mL in serum) β = -0.297 per ng/mL	BMDL (ng/mL in serum) β _{LB} = -1.35 per ng/mL	
½ SD	0.827	0.407ª	2.488	0.550	
1 SD	1.655	0.813	4.976	1.100	

^a Denotes the selected POD.

The lowest serum PFDA concentration measured at age five years was 0.05 ng/mL, the 5th
 percentile was 0.1 ng/mL, and the 10th percentile was 0.2 ng/mL (<u>Grandjean and Bateson, 2021</u>) so

3 the estimated BMDL for a BMR of $\frac{1}{2}$ SD (BMDL_{$\frac{1}{2}$ SD) in the single-PFAS model is at the 10th}

4 percentile of the observed distribution. No information was available to judge the fit of the model

5 in the range of the BMDLs, but the BMD and BMDL were both within the range of observed values

- $\label{eq:constraint} 6 \qquad \text{and the model fit PFDA well.}$
- 7 The BMD $_{\frac{1}{2}SD}$ estimate from the multi-PFAS models is 3-fold higher than the BMD $_{\frac{1}{2}SD}$
- 8 estimate from the model with just PFDA, and the BMDL_{½ SD} is 35% higher. This may, or may not,
- 9 reflect control for any potential confounding of the regression effect estimates. While it is not clear
- 10 which PFAS model provided the 'better' estimate of the point estimate of the effect of PFDA, the two
- 11 BMDL^{1/2} SD estimates which serve as the PODs are comparable (0.407 ng/mL vs. 0.550 ng/mL) and
- 12 EPA advanced POD based on results that did not controls for PFOS and PFOA because this model
- 13 appeared to fit PFDA better (p = 0.11 vs. 0.64) and there was low uncertainty due to potential
- 14 confounding in the BMDL. However, confidence was diminished by the non-significant fit for PFDA
- 15 (p = 0.11) and stronger potential confounding in the main effect—even though there was low
- 16 confounding of the BMDL, and overall confidence in the BMDLs for diphtheria was judged to be low
- 17 confidence.

18For immunotoxicity related to diphtheria, associated with PFDA measured at age 519years, the POD is based on a BMR of ½ SD and a BMDL½ SD of 0.407 ng/mL in serum.

Modeling Results for Decreased Tetanus Antibody Concentrations at 5 Years of Age and perinatal PFDA

Budtz-Jørgensen and Grandjean (2018a) fit multivariate models of PFDA measured
 perinatally in maternal serum, against log₂-transformed anti-tetanus antibody concentrations
 measured at the 5-year-old examination controlling for sex, and exact age at the 5-year-old
 examination, cohort, and interaction terms between cohort and sex, and between cohort and age.
 Models were evaluated with additional control for PFOS (as log₂[PFOS]) and PFOA (as log₂[PFOA]),
 and without PFOS and PFOA. Three model shapes of PFDA were evaluated by Budtz-Jørgensen and

- 1 Grandjean (2018a) using likelihood ratio tests: a linear model, a piecewise-linear model with a knot
- 2 at the median, and a logarithmic function. The logarithmic functions did not fit better than the
- 3 piecewise-linear functions Budtz-Jørgensen and Grandjean (2018a). Compared to the linear model,
- 4 the piecewise-linear model did not fit better than the linear model for either the PFDA exposure
- 5 without adjustment for PFOS and PFOA using a likelihood ratio test (p = 0.81; see <u>Budtz-Jørgensen</u>
- 6 and Grandjean (2018a) Table 3), or for the model that did adjust for PFOS and PFOA ($\log_2[PFOS]$
- 7 and $\log_2[PFOA]$) (*p* = 0.84).
- 8 Table C-5 summarizes the results from Budtz-Jørgensen and Grandjean (2018a) for
- 9 tetanus in this exposure window. These regression coefficients (β), their standard errors (SE), *p*-
- 10 values, and the 90% lower confidence bounds were provided by Budtz-Jørgensen and Grandjean
- (2018b). 11

13

14 15

16

17

19

Table C-5. Results of the linear analyses of PFDA measured perinatally in maternal serum and tetanus antibodies measured at age 5 years in a single-PFAS model and in a multi-PFAS model from (Budtz-Jørgensen and Grandjean, <u>2018b</u>).

Exposure	Model shape	PFOS & PFOA adjusted	Slope (β) per ng/mL in serum	SE(β) ng/mL in serum	Slope (β) fit	Lower bound slope (β _{LB}) per ng/mL in serum
Perinatal PFDA	Linear	No	-0.343	0.462	<i>p</i> = 0.46	-1.103
Perinatal PFDA	Linear	Yes	0.038	0.554	<i>p</i> = 0.95	-0.874

- 12 Interpretation of results in Table C-5:
 - PFDA is a non-significant predictor in the single-PFAS model ($\beta = -0.34$; p = 0.46).
 - Effects are attenuated when $\log_2[PFOS]$ and $\log_2[PFOA]$ are included in the model (β = 0.038; p = 0.55)
 - Nevertheless, these data can be used to estimate a BMDL for completeness and to allow • comparisons across PFAS.

18 Selection of the Benchmark Response

Following the technical guidance (U.S. EPA, 2012), EPA derived BMDs and BMDLs

- 20 associated with a one SD change in the distribution of $\log_2(\text{tetanus antibody concentrations})$, and $\frac{1}{2}$
- 21 SD change in the distribution of $\log_2(\text{tetanus antibody concentrations})$. The SD of the $\log_2(\text{tetanus})$
- 22 antibody concentrations) at age 5 years was estimated from two sets of distributional data
- 23 presented from two different cohorts of 5-year-olds that were pooled in Budtz-Jørgensen and
- 24 Grandjean (2018a). Grandjean et al. (2012) reported on 587 5-year-olds from the cohort of
- 25 children born during 1997–2000 and in <u>Grandjean et al. (2017)</u> reported on 349 5-year-olds from
- 26 the cohort of children born during 2007–2009. The means and SDs were computed separately and
- 27 then pooled to describe the common SD. The IQR of the tetanus antibody concentrations in the
- 28 earlier birth cohort at age 5 years in IU/mL was (0.1, 0.51). Log₂-tranforming these values provides

- 1 the IQR in log₂(IU/mL) as (-3.32, -0.97). Assuming that these log₂-transformed values are similar to
- 2 the normal distribution, the width of the IQR is approximately 1.35 SDs, thus SD = IQR/1.35, and the
- 3 SD of tetanus antibodies in $\log_2(IU/mL)$ is $(-0.97 (-3.32))/1.35 = 1.74 \log_2(IU/mL)$. The IQR of the
- 4 tetanus antibody concentrations in the later birth cohort at age 5 years in IU/mL was (0.1, 0.3).
- 5 Log₂-tranforming these values provides the IQR in log₂(IU/mL) as (-3.32, -1.74), and the SD of
- 6 tetanus antibodies in $\log_2(IU/mL)$ is $(-1.74 (-3.32))/1.35 = 1.17 \log_2(IU/mL)$. The pooled variance
- 7 is a weighted sum of the independent SDs, and the pooled SD was estimated as $1.55 \log_2(IU/mL)$.¹
- 8 To show the impact of the BMR on these results, Table E-6 presents the BMDs and BMDLs at BMRs
- 9 of $\frac{1}{2}$ SD and 1 SD.

25

Table C-6. BMDs and BMDLs for effect of PFDA measured perinatally and antitetanus antibody concentrations at age 5 years

	Estimated without con	trol of PFOS and PFOA	Estimated with control of PFOS and PFOA		
DMD	BMD (ng/mL in serum)	BMDL (ng/mL in serum)	BMD (ng/mL in serum)	BMDL (ng/mL in serum)	
BINK	β = -0.343 per ng/mL	β _{LB} = -1.103 per ng/mL	β = 0.038 per ng/mL	β _{LB} = -0.874 per ng/mL	
½ SD	2.260	0.702ª	-	0.886	
1 SD	4.520	1.405	-	1.773	

^a Denotes the POD that corresponds to the analyses of PFDA concentrations perinatally and tetanus antibodies at age 5 years; - values can't be determined.

10 The lowest perinatal maternal serum PFDA concentration measured was 0.03 ng/mL, the 11 5^{th} percentile was 0.1 ng/mL, and the 10^{th} % was 0.2 ng/mL (Grandjean, 2021) so the estimated 12 BMDLs for a BMR of $\frac{1}{2}$ SD (BMDL $\frac{1}{2}$ SD = 0.702 ng/mL) in the single-PFAS model is well above the 13 $10^{\text{th}}\%$ of the observed distribution. No information was available to judge the fit of the model in the 14 range of the BMDLs, but the BMD and BMDL were both within the range of observed values and the 15 model fit PFDA well. The BMDL^{1/2} SD estimate from the single-PFAS models was 0.702 ng/mL in serum. The BMDL estimates from the multi-PFAS models were about 26% higher than for the 16 17 single-PFAS model. 18 Low confidence in the BMDLs from the PFDA-only model (0.702 ng/mL in serum) and in the 19 multi-PFAS model (0.886 ng/mL in serum). Confidence is diminished by the low quality of the 20 model fit for PFDA in either model compared to the PFDA results from tetanus in the 5-year to 7-21 year exposure-outcome window of time and there is some uncertainty regarding potential 22 confounding. 23 For immunotoxicity related to tetanus, associated with PFDA measured perinatally, the POD 24 is based on a BMR of $\frac{1}{2}$ SD and a BMDL_{$\frac{1}{2}$ SD of 0.702 ng/mL in serum. Note that this result is based}

on a poorly fit PFDA regression parameter (β) estimated as -0.343 per ng/mL in serum (90% CI:

¹ Pooled variance for tetanus in 5-year-olds = $[(502-1)(1.74)^2 + (298-1)(1.17)^2]/[502+298-2] = 2.41$. The pooled SD is the square root of 2.41 which is 1.55 log₂(IU/mL).

-1.103, 0.417; *p* = 0.46) <u>Budtz-Jørgensen and Grandjean (2018b</u>), and thus this POD is identified
 with low confidence.

For immunotoxicity related to tetanus associated with PFDA exposure measured at age 5 years, the POD estimated for comparison purposes were based on a BMR of ¹/₂ SD and a BMDL¹/₂ SD of 0.702 ng/mL in serum.

- Modeling Results for Decreased Diphtheria Antibody Concentrations at 5 Years of Age and
 perinatal PFDA
- 8 <u>Budtz-Jørgensen and Grandjean (2018a)</u> fit multivariate models of PFDA measured
- 9 perinatally, against log₂-transformed anti-diphtheria antibody concentrations measured at the 5-
- 10 year-old examination controlling for sex and age. Models were evaluated with additional control
- 11 for PFOS (as log₂[PFOS]) and PFOA (as log₂[PFOA]), and without PFOS and PFOA. Three model
- 12 shapes were evaluated by <u>Budtz-Jørgensen and Grandjean (2018a)</u> using likelihood ratio tests: a
- 13 linear model of PFDA, a piecewise-linear model with a knot at the median, and a logarithmic
- 14 function. The logarithmic functions did not fit better than the piecewise-linear functions <u>Budtz-</u>
- 15 <u>Jørgensen and Grandjean (2018a)</u>. There was evidence that the piecewise-linear model fit better
- 16 than the linear model for the PFDA exposure without adjustment for PFOS and PFOA (p = 0.05; see
- 17 in <u>Budtz-Jørgensen and Grandjean (2018a)</u>, Table 3), but not for the model that adjusted for PFOS
- and PFOA (log_2 [PFOS] and log_2 [PFOA]) (p = 0.12). Table C-7 summarizes the results from <u>Budtz-</u>
- 19 <u>Jørgensen and Grandjean (2018a)</u> for diphtheria in this exposure window. These regression
- 20 coefficients (β) and their standard errors (SE) were computed by EPA from the published BMDs
- 21 and BMDL based on a BMR of 5% change in diphtheria antibody concentrations in Table 2 of <u>Budtz-</u>
- 22 Jørgensen and Grandjean (2018a)².

² (Budtz-Jørgensen and Grandjean, 2018a) computed BMDs and BMDLs using a BMR of 5% decrease in the antibody concentrations. Their formula, BMD = log2(1-BMR)/β, can simply be reversed to solve for β = log2(1-BMR)/BMD. For negative dose-response where more exposure results in lower antibody concentration, the BMDL is based on the lower bound of β , (β LB). Thus, the β LB = log2(1-BMR)/BMDL. The SE(β) = (β - β LB)/1.645. The p-value is the two-sided probability that Z <= SE(β)/ β .

Table C-7. Results of the analyses of PFDA measured perinatally in maternal serum and diphtheria antibodies measured at age 5 years in a single-PFAS model and in a multi-PFAS model from (<u>Budtz-Jørgensen and Grandjean</u>, <u>2018b</u>).

Exposure	Model shape	PFOS & PFOA adjusted	Slope (β) per ng/mL in serum	SE(β)	Slope (β) fit	Lower bound slope (β _{LB}) per ng/mL in serum
Perinatal PFDA	Piecewise	No	-3.700	2.249	<i>p</i> = 0.100	-7.400
Perinatal PFDA	Piecewise	Yes	-2.467	0.750	<i>p</i> = 0.001	-3.700

1 Interpretation of results in Table C-7:

2

3

4

9

10

11

12 13

14

- PFDA is a non-significant predictor in the single-PFAS model ($\beta = -3.700$; p = 0.10)
- Effects of PFDA are attenuated when PFOA and PFOA are in the model (β = -2.467; *p* = 0.001).
- The point estimate results for PFDA are *potentially* confounded by PFOS and/or PFOA since there was a 33% change in the effect size for PFDA from -3.700 to -2.467 when controlling for PFOS and PFOA.
 One explanation is that PFOS and/or PFOA was a confounder of the PFDA effect and
 - One explanation is that PFOS and/or PFOA was a confounder of the PFDA effect and controlling for those co-exposures removed confounding.
 - Another possibility is that controlling for co-exposures like PFOS and PFOA actually induced confounding (Weisskopf et al., 2018; Weisskopf and Webster, 2017).
 - The reasons for the change in main effect size for PFDA are not known. For this reason, there is uncertainty in knowing which point estimate is the best representation of any effect of PFDA.
- However, the lower bound on the point estimates (β_{LB}) for the single-PFAS model for PFDA is 100% lower than the multi-PFAS model effect estimate for PFDA.
- $\begin{array}{cccc} 17 & & \circ & \mbox{The definition of the RfD, which is based upon the β_{LB}, includes allowing for an order $$ of magnitude (10-fold or 1,000%) uncertainty in the estimate and the uncertainty for $$ potential confounding in the BMD from including, or excluding, PFOS and PFOA here $$ is about 33%, while the uncertainty for potential confounding in the BMDL is about $$ 100\%. $$ \end{tabular}$
- 22 Selection of the Benchmark Response

Following the technical guidance (U.S. EPA, 2012), EPA derived BMDs and BMDLs

- 24 associated with a one SD change in the distribution of log₂(tetanus antibody concentrations) as a
- standard reporting level, and ½ SD change in the distribution of log₂(tetanus antibody
- 26 concentrations). The SD of the log₂(diphtheria antibody concentrations) at age 5 years was
- 27 estimated from two sets of distributional data presented from two different birth cohorts of 5-year-
- 28 olds that were pooled in <u>Budtz-Jørgensen and Grandjean (2018a</u>). <u>Grandjean et al. (2012)</u> reported
- on 587 5-year-olds from the cohort of children born during 1997–2000 and <u>Grandjean et al. (2017)</u>
- 30 reported on 349 5-year-olds from the cohort of children born during 2007–2009. The means and
- 31 SDs were computed separately and then pooled to describe the common SD. The IQR of the
- 32 diphtheria antibody concentrations in the earlier birth cohort at age 5 years in IU/mL was (0.05,

- 1 0.4). Log₂-tranforming these values provides the IQR in log₂(IU/mL) as (-4.32, -1.32). Assuming
- $2 \qquad \text{that these } \log_2\text{-transformed values are similar to the normal distribution, the width of the IQR is}$
- 3 approximately 1.35 SDs, thus SD = IQR/1.35, and the SD of diphtheria antibodies in $log_2(IU/mL)$ is
- 4 $(-1.32 (-4.32))/1.35 = 2.22 \log_2(IU/mL)$. The IQR of the diphtheria antibody concentrations in the
- 5 later birth cohort at age 5 years in IU/mL was (0.1, 0.3). Log₂-tranforming these values provides
- $6 \qquad the IQR in \log_2(IU/mL) as (-3.32, -1.74), and the SD of diphtheria antibodies in \log_2(IU/mL) is (-1.74).$
- 7 -(-3.32)/1.35 = 1.17 log₂(IU/mL). The pooled variance is a weighted sum of the independent SDs,
- 8 and the pooled SD was estimated as $1.90 \log_2(IU/mL)^3$. To show the impact of the BMR on these
- 9 results, Table C-8 presents the BMDs and BMDLs at BMRs of $\frac{1}{2}$ SD and 1 SD.

Table C-8. BMDs and BMDLs for effect of PFDA measured perinatally and antidiphtheria antibody concentrations at age 5 years.

	Estimated without con	trol of PFOS and PFOA	Estimated with control of PFOS and PFOA		
	BMD (ng/mL in serum) BMDL (ng/mL in serum)		BMD (ng/mL in serum)	BMDL (ng/mL in serum)	
BMR	β = -3.700 per ng/mL	β _{LB} = -7.400 per ng/mL	β = -2.467 per ng/mL	β _{LB} = -3.700 per ng/mL	
½ SD	0.257	0.128	0.385	0.257ª	
1 SD	0.514	0.257	0.770	0.514	

^a Denotes the POD that corresponds to the analyses of PFDA concentrations perinatally and diphtheria antibodies at age 5 years.

The lowest serum PFDA concentration measured perinatally was 0.03 ng/mL, the $5^{
m th}$

percentile was 0.1 ng/mL, and the 10th% was 0.2 ng/mL (<u>Grandjean and Bateson, 2021</u>) so the

12 estimated BMD for a BMR of $\frac{1}{2}$ SD (BMDL_{$\frac{1}{2}$ SD) in the single-PFAS model is well within the observed}

13 range. No information was available to judge the fit of the model in the range of the BMDLs, but the

14 BMD and BMDL were both within the range of observed values and the model fit PFDA well.

15 The BMD $_{^{1\!\!/_2}SD}$ estimate from the multi-PFAS models is 50% higher than the BMD $_{^{1\!\!/_2}SD}$

- estimated from the model with just PFDA, and the BMDL $_{\frac{1}{2}SD}$ is 100% higher. This may, or may not,
- 17 reflect control for any potential confounding of the regression effect estimates. The BMDLs which
- 18 serve as the PODs are two-fold different (0.128 ng/mL vs. 0.257 ng/mL) and EPA advanced the

19 derivation based on results that did control for PFOS and PFOA because this model appeared to fit

- 20 PFDA well (p = 0.001 vs. 0.10) and there was low uncertainty due to potential confounding in the
- 21 BMD and moderate uncertainty in the BMDL. Medium confidence in the BMDLs from PFDA linear
- 22 model (0.257 ng/mL in serum) with control of PFOS and PFOA since the model fit reasonably well
- 23 and these BMDLs show moderate uncertainty about confounding.

10

³ Pooled variance for diphtheria in 5-year-olds = $[(502-1)(2.22)^2 + (298-1)(1.17)^2]/[502+298-2] = 3.60$. The pooled SD is the square root of 2.41 which is 1.90 log2(IU/mL).

- For immunotoxicity related to diphtheria, associated with PFDA measured at age 5
 years, the POD is based on a BMR of ½ SD and a BMDL_{½ SD} of 0.257 ng/mL in serum.
- 3 Summary of Modeling Results for Decreased Antibody Responses in Children
- 4 Table C-9 presents the BMDs and BMDLs from <u>Budtz-Jørgensen and Grandjean (2018a)</u>
- 5 considered for POD derivation for reduced antibody responses across different combinations of
- 6 exposure timing and outcome measurement as detailed above. The BMDLs across the studies and
- 7 methods ranged from 0.257-0.702 ng/mL.

Table C-9. Selected BMDs and BMDLs and associated uncertainty for effect of PFDA on decreased antibody responses in children from <u>Budtz-Jørgensen and</u> <u>Grandjean (2018a)</u>

Endpoint	BMD _{1/2SD} (ng/mL)	BMDL _{1/2SD} (ng/mL)	Confidence
Decreased serum tetanus antibody concentrations at 7 years of age and PFDA measured at 5 years of age ^a	0.673	0.411	Medium
Decreased serum diphtheria antibody concentrations at 7 years of age and PFDA concentrations at 5 years of age ^a	0.827	0.407	Low
Decreased serum tetanus antibody concentrations at 5 years of age and perinatal PFDA (pregnancy week 32–2 weeks postpartum) ^a	2.260	0.702	Low
Decreased serum diphtheria antibody concentrations at 5 years of age and perinatal PFDA (pregnancy week 32–2 weeks postpartum) ^b	0.385	0.257	Medium

^aEstimated without control for PFOA and PFOS.

^bEstimated with control for PFOA and PFOS.

C.1.2. BENCHMARK DOSE MODELING APPROACHES FOR DEVELOPMENTAL EFFECTS

8 Modeling Results for Decreased Birth Weight

9

- Five *high* confidence studies (<u>Luo et al., 2021; Yao et al., 2021; Wikström et al., 2020; Valvi</u>
- 10 <u>et al., 2017; Division of Environmental Epidemiology et al., 2016</u>) reported decreased birth weight
- 11 in infants whose mothers were exposed to PFDA. All studies reported their exposure metric in
- 12 units of ng/mL and reported the β coefficients per ln(ng/mL) or per log₂(ng/mL), along with 95%
- 13 confidence intervals, estimated from linear regression models. The logarithmic transformation of
- 14 exposure yields a negative value for low numbers, which can result in implausible results from
- 15 dose-response modeling (i.e., estimated risks are negative and unable to determine the responses at
- 16 zero exposure). EPA first re-expressed the reported β coefficients in terms of per ng/mL according
- 17 to <u>Dzierlenga et al. (2020)</u>. Then EPA used the re-expressed β and the lower limit on the confidence

- 1 interval to estimate BMD and BMDL values using the general equation y = mx + b, where y is birth 2 weight and x is exposure, substituting the re-expressed β values from these studies for m. The
- 3 intercept *b* represents the baseline value of birth weight in an unexposed population and it can be
- 4 estimated through $\overline{y} = m\overline{x} + b$ using an average birth weight from an external population as \overline{y} , an
- 5 average exposure as \overline{x} and re-expressed β from the studies as *m*.
- 6 The CDC Wonder site (<u>https://wonder.cdc.gov/natality.html</u>) provides vital statistics for
- 7 babies born in the United States. There were 3,791,712 live births in the U.S. in 2018 according to
- 8 final natality data. The mean and standard deviation for birth weight were 3,261.6 ± 590.7 g
- 9 (7.19 ± 1.30 lb), with 8.27% of live births falling below the public health definition of low birth
- 10 weight (i.e., <2,500 g, or 5.5 lb). The full natality data for the U.S. data on birth weight was used as it
- 11 is more relevant for deriving toxicity values for the U.S. public than the study-specific birthweight
- 12 data. Also, the CDC Wonder database may be queried to find the exact percentage of the population
- 13 falling below the cut-off value for clinical adversity. The CDC Fourth National Report on Human
- 14 Exposure to Environmental Chemicals (<u>https://www.cdc.gov/exposurereport/index.html</u>)
- provides the median of serum PFDA concentrations (0.19 ng/mL) among NHANES females in
- 16 2011–2012. These values are subsequently used in the estimation of BMD and BMDL values from
- 17 the available five epidemiological studies.
- 18 (<u>Valvi et al., 2017</u>) reported a β coefficient of -41 g per log₂(ng/mL) (95%CI: -102, 18) for
- 19 the association between birth weight and maternal PFDA serum concentrations in a Denmark
- 20 cohort. The reported β coefficient can be re-expressed in terms of per ng/mL according to
- 21 (Dzierlenga et al., 2020). Given the reported study-specific median (0.28 ng/mL) and interquartile
- range (IQR) (0.22–0.38 ng/mL) of the exposure from (<u>Valvi et al., 2017</u>), EPA estimated the
- 23 distribution of exposure by assuming the exposure follows a log-normal distribution with mean and
- 24 standard deviation as:
- 25 26

$$\mu = ln(q_{50}) = ln(0.28) = -1.27$$
(C-1)

$$\sigma = ln(q_{75}/q_{25})/1.349 = ln(0.38/0.22)/1.349 = 0.41$$
(C-2)

- 27 Then, EPA estimated the 25th–75th percentiles at 10 percentile intervals of the exposure 28 distribution and corresponding responses of reported β coefficient. The re-expressed β coefficient 29 is determined by minimizing the sum of squared differences between the curves generated by the 30 re-expressed β and the reported β . This resulted in a re-expressed β coefficient of –207.7 g per 31 ng/mL (95% CI: –516.8, 91.2 g per ng/mL).
- Typically, for continuous data, the preferred definition of the benchmark response (BMR) is
 to have a basis for what constitutes a minimal level of change in the endpoint that is biologically
 significant. For birth weight, there is no accepted percent change that is considered adverse.
 However, there is a clinical measure for what constitutes an adverse response: babies born
 weighing less than 2,500 g are considered to have low birth weight, and further, low birth weight is
 associated with a wide range of health conditions throughout life (<u>Tian et al., 2019; Reyes and</u>

1 Mañalich, 2005; Hack et al., 1995). Given this clinical cut-off for adversity and that 8.27% of live 2 births in the U.S. in 2018 fell below this cut-off, the hybrid approach can be used to define the BMR. 3 The hybrid approach is advantageous in that it harmonizes the definition of the BMR for continuous 4 data with that for dichotomous data.⁴ Essentially, the hybrid approach involves the estimation of 5 the dose that increases the percentile of responses falling below (or above) some cut-off for 6 adversity in the tail of the response distribution. Application of the hybrid approach requires the 7 selection of an extra risk value for BMD estimation. In the case of birth weight, an extra risk of 5% 8 is selected given that this level of response is typically used when modeling developmental 9 responses from animal toxicology studies, and that low birthweight confers increased risk for 10 adverse health effects throughout life, thus supporting a BMR lower than the standard BMR of 10% 11 extra risk. 12 Therefore, given a background response and a BMR = 5% extra risk, the BMD would be the 13 dose that results in 12.86% of the responses falling below the 2,500 g cut-off value: 14 Extra Risk(ER) = (P(d) - P(0)) / (1 - P(0))(C-3)P(d) = ER(1 - P(0)) + P(0) = 0.05(1 - 0.0827) + 0.0827 = 0.128615 (C-4)16 Based on the mean birth weight for all births in the United States of 3,261.6 g with a 17 standard deviation of 590.7 g, EPA calculated the mean response that would be associated with the 18 12.86th percentile of the distribution falling below 2,500 g. In this case, the mean birth weight 19 would be 3,169.2 g. Given the median exposure among NHANES females as \overline{x} , the mean birth 20 weight in the United States as \overline{v} and the re-expressed β as *m* term, the intercept *b* can be estimated

21 as:

22

$$b = \overline{y} - m\overline{x} = 3261.6 \ g - \left(-207.7 \ g(\frac{ng}{mI})^{-1}\right) 0.19 \frac{ng}{mI} = 3301.1 \ g$$

The BMD was calculated by rearranging the equation y = mx + b and solving for x, using 3301.1 g for the b term and -207.7 for the m term. This resulted in a value of 0.63 ng/mL:

(C-5)

25
$$x = (y - b)/m = (3169.2 g - 3301.1 g)/(-207.7 g(\frac{ng}{mL})^{-1}) = 0.63 ng/mL$$
 (C-6)

To calculate the BMDL, the method is essentially the same except that the lower limit (LL) on the re-expressed β coefficient (-516.8 g per ng/mL) is used for the *m* term. However, (Valvi et al., 2017) reports a two-sided 95% confidence interval for the β coefficient, meaning that the lower limit of that confidence interval corresponds to a 97.5% one-sided lower limit. The BMDL is

30 defined as the 95% lower limit of the BMD (i.e., corresponds to a two-sided 90% confidence

⁴While the explicit application of the hybrid approach is not commonly used in IRIS dose/concentration/exposure-response analyses, the more commonly used SD-definition of the BMR for continuous data is simply one specific application of the hybrid approach. The SD-definition of the BMR assumes that the cut-off for adversity is the 1.4th percentile of a normally distributed response and that shifting the mean of that distribution by one standard deviation approximates an extra risk of 10%.

1 interval), so the corresponding lower limit on the re-expressed β coefficient needs to be calculated

2 before calculating the BMDL. First, the standard error of the re-expressed β coefficient can be
 3 calculated as:

4

$$SE = \frac{Upper \ Limit - Lower \ Limit}{3.92} = \frac{91.2 \ g(\frac{ng}{mL})^{-1} - \left(-516.8 \ g(\frac{ng}{mL})^{-1}\right)}{3.92} = 155.1 \ g(\frac{ng}{mL})^{-1}$$
(C-7)

5 Then the corresponding 95% one-sided lower limit on the re-expressed β coefficient is6 calculated as:

7 95% one - sided
$$LL = \beta - 1.645(SE(\beta)) = -207.7 g(\frac{ng}{mL})^{-1} - 1.645(155.1 g(\frac{ng}{mL})^{-1}) = -462.9 g(\frac{ng}{mL})^{-1}$$
 (C-8)

8 Using this value for the *m* term results in a BMDL value of 0.28 ng/mL maternal serum9 concentration.

10 Valvi et al. (2017) also reported a β coefficient of -44 g per log₂(ng/mL) (95%CI: -133, 44 g 11 per log₂(ng/mL) for boys and -28 g per log₂(ng/mL) (95%CI: -110, 54 g per log₂(ng/mL)) for girls. 12 The re-expressed β coefficients are -222.9 g per ng/mL (95%CI: -673.9, 222.9 g per ng/mL) and 13 -141.9 g per ng/mL (95%CI: -557.3, 273.6 g per ng/mL), and the intercepts *b* are 3,304.0 g and 14 3,288.6 g for boys and girls, respectively. Using these sex-specific values, the estimated BMD values 15 are 0.60 ng/mL for boys and 0.84 ng/mL for girls.

- To calculate the BMDL, the same procedure as above is used to calculate the corresponding
 95% one-sided lower limit for the re-expressed β coefficient from the re-expressed lower limit on
- 18 the 95% two-sided confidence interval of –673.9 g per ng/mL for boys and -557.3 g per ng/mL for
- 19 girls. Using the corresponding lower limit (-599.2 g per ng/mL for boys and -490.5 g per ng/mL
- 20 for girls), the BMDLs of 0.22 ng/mL for boys and 0.24 ng/mL for girls are calculated.

Division of Environmental Epidemiology et al. (2016) reported a β coefficient of -43.9 g per
 ln(ng/mL) (95%CI: -104.8, 17.0 g per ln(ng/mL) for the association between birth weight and
 maternal PFDA serum concentrations in a multi-country cohort. Given the reported study-specific
 geometric mean (0.25) and standard deviation of ln-transformed exposure (0.70), EPA estimated
 the mean (-1.41) and standard deviation (0.70) of the log normally distributed exposure. The re-

- 26 expressed β coefficient is -122.2 g (95%CI: -291.5, 47.2) per ng/mL and the intercept b is
- 27 3,284.8 g. The 95% one-sided lower limits for the re-expressed β coefficient are –264.3 g per

28 ng/mL. The values of the BMD and BMDL are 0.95 ng/mL and 0.44 ng/mL, respectively.

- Luo et al. (2021) reported a β coefficient of -96.8 g per ln(ng/mL) (95%CI: -178.0, -15.5 g
 per ln(ng/mL)) for the association between birth weight and maternal PFDA serum concentrations
 in a China cohort. Given the reported study-specific median (0.48 ng/mL) and IQR (0.34–0.70
 ng/mL) of the exposure, EPA estimated the mean (-0.73) and standard deviation (0.54) of the log
- 33 normally distributed exposure. The re-expressed β coefficient is -195.8 g per ng/mL (95%CI:
- 34 –360.2, -31.4 g per ng/mL) and the intercept *b* is 3,298.8 g. The 95% one-sided lower limits for the

1 re-expressed β coefficient are -333.8 g per ng/mL. The values of the BMD and BMDL are 0.66 2 ng/mL and 0.39 ng/mL, respectively. 3 Wikström et al. (2020) reported a β coefficient of -58.0 g per ln(ng/mL) (95%CI: -103.0, 4 -13.0 g per ln(ng/mL)) for the association between birth weight and maternal PFDA serum 5 concentrations in a Swedish cohort. Given the reported study-specific median (0.26 ng/mL) and 6 IQR (0.19-0.34 ng/mL) of the exposure, EPA estimated the mean (-1.35) and standard deviation 7 (0.43) of the log normally distributed exposure. The re-expressed β coefficient is -218.9 g per 8 ng/mL (95%CI: -388.7, -49.1 g per ng/mL) and the intercept *b* is 3303.2 g. The 95% one-sided 9 lower limits for the re-expressed β coefficient are -361.4 g per ng/mL. The values of the BMD and 10 BMDL are 0.61 ng/mL and 0.37 ng/mL, respectively. 11 Wikström et al. (2020) also reported β coefficients of -47 g per ln(ng/mL) (95%CI: -112, 12 17 g per $\ln(ng/mL)$ for boys and -69 g per $\ln(ng/mL)$ (95%CI: -133, -6 g per $\ln(ng/mL)$) for girls. 13 The re-expressed β coefficients are -177.4 g per (95%CI: -422.7, 64.2 g per ng/mL) and -260.4 g 14 per (95%CI: -501.9, -22.6 g per ng/mL), and the intercepts *b* are 3,295.3 g and 3,311.1 g for boys 15 and girls, respectively. Using these sex-specific values, the estimated BMD values are 0.71 ng/mL 16 for boys and 0.54 ng/mL for girls. The corresponding 95% one-sided lower limits for the re-17 expressed β coefficient are -381.6 g per and -461.5 g per for boys and girls, respectively. The 18 BMDL values are 0.33 ng/mL for boys and 0.31 ng/mL for girls. 19 Yao et al. (2021) reported a β coefficient of -46.3 g per ln(ng/mL) (95%CI: -131.1, 38.5 g 20 per ln(ng/mL)) for the association between birth weight and maternal PFDA serum concentrations 21 in a China cohort. Given the reported study-specific median (0.55 ng/mL) and IQR (0.37–0.74 22 ng/mL) of the exposure, EPA estimated the mean (-0.60) and standard deviation (0.51) of the log 23 normally distributed exposure. The re-expressed β coefficient is -82.0 g per (95%CI: -232.1, 68.1 g 24 per ng/mL) and the intercept *b* is 3277.2 g. The 95% one-sided lower limits for the re-expressed β 25 coefficient are -208.0 g per ng/mL. The values of the BMD and BMDL are 1.32 ng/mL and 0.52 26 ng/mL, respectively. 27 For all the above calculations, EPA used the exact percentage (8.27%) of live births in the 28 U.S. in 2018 that fell below the cut-off of 2,500 g as the tail probability to represent the probability 29 of extreme ("adverse") response at zero dose (P(0)). However, this exact percentage of 8.27% was 30 calculated without accounting for the existence of background PFDA exposure in the U.S. 31 population (i.e., 8.27% is not the tail probability of extreme response at zero dose). Thus, EPA

32 considers an alternative control-group response distribution ($N(\mu_c, \sigma_c)$), using the study-specific

33 intercept *b* obtained through equation (C-5) (representing the baseline value of birth weight in an

34 unexposed population) as μ_c and the standard deviation of the U.S. population as σ_c , to estimate the

tail probability that fell below the cut-off of 2,500 g. EPA estimated the study-specific tail

37

36 probability of live births falling below the public health definition of low birth weight (2,500 g) as:

$$P(0) = \frac{1}{\sigma_c \sqrt{2\pi}} \int_{-\infty}^{2500} e^{\left(-\frac{(x-b)^2}{2\sigma_c^2}\right)} dx = \frac{1}{590.7\sqrt{2\pi}} \int_{-\infty}^{2500} e^{\left(-\frac{(x-b)^2}{2*590.7^2}\right)} dx$$
(C-9)

This document is a draft for review purposes only and does not constitute Agency policy. C-20 DRAFT—DO NOT CITE OR QUOTE
$$b = \overline{y} - m\overline{x} = 3261.6 - (\beta_{re-expressed} * 0.19\frac{ng}{mL})$$
(C-10)

2 In this alternative approach, P(0) is 9.86% if there is no background exposure ($\overline{x} = 0$). By 3 using the median serum PFDA concentrations (0.19 ng/mL) from NHANES females in 2011–2012 4 as background exposure (x), the tail probabilities using this alternative approach were study 5 specific and ranged from 8.48% to 9.41%. As such, the results from this alternative approach, 6 presented under the column of "Alternative Tail Probability" in Table C-8, are very similar to the 7 main results, presented under the column of "Exact Percentage" in Table C-8, when background 8 exposure was not accounted for while estimating the tail probability. 9 Table C-8 presents the BMDs and BMDLs for all studies considered for POD derivation, with and without accounting for background exposure while estimating the percentage of the population 10

11 falling below the cut-off value. The BMDLs across the studies and methods ranged from 0.22 ng/mL

12 to 0.66 ng/mL.

	Exposure	F		Re-expressed B			05%	Exact per (<i>P</i> (0) =	centage 8.27%)	Alternative tail probability ^a		
Study	(IQR) or GM (SD)	distribution (μ, σ)	Reported β (95%Cl)	ke-expressed β (95%Cl) g/ng/mL	Intercept b	SE of β	sided LL of β	BMD (ng/mL)	BMDL (ng/mL)	P (0)	BMD (ng/mL)	BMDL (ng/mL)
<u>Valvi et al.</u> (2017)	0.28 (0.22–0.38)	(-1.27, 0.41)	-41.0 (-102.0, 18.0) g/log ₂ (ng/mL)	-207.7 (-516.8, 91.2)	3301.1	155.11	-462.9	0.63	0.28	8.75%	0.70	0.31
<u>Valvi et al.</u> (2017) Boys	0.28 (0.22–0.38)	(-1.27, 0.41)	-44.0 (-133.0, 44.0) g/log ₂ (ng/mL)	-222.9 (-673.9, 222.9)	3304.0	228.78	-599.2	0.60	0.22*	8.67%	0.65	0.24
<u>Valvi et al.</u> (2017) Girls	0.28 (0.22–0.38)	(-1.27, 0.41)	-28.0 (-110.0, 54.0) g/log ₂ (ng/mL)	-141.9 (-557.3, 273.6)	3288.6	211.98	-490.5	0.84	0.24	9.09%	0.99	0.29
<u>Division of</u> Environmental Epidemiology et al. (2016)	0.25 (0.70) ^ь	(-1.41, 0.70)	-43.9 (-104.8, 17.0) g/ln(ng/mL)	-122.2 (-291.5, 47.2)	3284.8	86.40	-264.3	0.95	0.44	9.20%	1.14	0.53
<u>Luo et al. (2021)</u>	0.48 (0.34–0.70)	(-0.73, 0.54)	-96.8 (-178.0, -15.5) g/ln(ng/mL)	-195.8 (-360.2, -31.4)	3298.8	83.88	-333.8	0.66	0.39	8.81%	0.73	0.43
<u>Wikström et al.</u> (2020)	0.26 (0.19–0.34)	(-1.35, 0.43)	-58.0 (-103.0, -13.0) g/ln(ng/mL)	-218.9 (-388.7, -49.1)	3303.2	86.64	-361.4	0.61	0.37	8.69%	0.66	0.40
<u>Wikström et al.</u> (2020) Boys	0.26 (0.19–0.34)	(-1.35, 0.43)	-47.0 (-112.0, 17.0) g/ln(ng/mL)	-177.4 (-422.7, 64.2)	3295.3	124.19	-381.6	0.71	0.33	8.91%	0.80	0.37
Wikström et al. (2020) Girls	0.26 (0.19–0.34)	(-1.35, 0.43)	-69.0 (-133.0, -6.0) g/ln(ng/mL)	-260.4 (-501.9, -22.6)	3311.1	122.26	-461.5	0.54	0.31	8.48%	0.57	0.32

Table C-10. BMDs and BMDLs for effect of PFDA on decreased birth weight, by using percentage (8.27%) of live births falling below the public health definition of low birth weight, or alternative study-specific tail probability

This document is a draft for review purposes only and does not constitute Agency policy.C-22DRAFT-DO NOT CITE OR QUOTE

	Exposure	F		De summered 0			05%	Exact per (<i>P</i> (0) =	Exact percentage (<i>P</i> (0) =8.27%)		Alternative tail probability ^a		
Study	(IQR) or GM (SD)	Exposure distribution (μ, σ)	Reported β (95%Cl)	ke-expressed β (95%Cl) g/ng/mL	Intercept b	SE of β	95% one- sided LL of β	BMD (ng/mL)	BMDL (ng/mL)	P (0)	BMD (ng/mL)	BMDL (ng/mL)	
<u>Yao et al. (2021)</u>	0.55 (0.37–0.74)	(-0.60, 0.51)	-46.3 (-131.1, 38.5) g/ln(ng/mL)	-82.0 (-232.1, 68.1)	3277.2	76.58	-208.0	1.32	0.52	9.41%	1.68	0.66	

*Smallest BMDL using the five individual studies.

^aThe alternative study-specific tail probability of live births falling below the public health definition of low birth weight based on Normal distribution with intercept b as mean and standard deviation of 590.7 based on U.S. population.

^bDivision of Environmental Epidemiology et al. (2016) reports Geometric Mean (GM) and standard deviation (SD) of In-transformed concentrations.

C.2. BENCHMARK DOSE MODELING RESULTS FROM ANIMAL STUDIES

C.2.1. BENCHMARK DOSE MODELING APPROACHES

The endpoints selected for benchmark dose (BMD) modeling are listed in Table C-11. The
 animal doses in the study were used in the BMD modeling and then converted to human equivalent
 doses (HEDs) using data-derived extrapolation factors (DDEFs) described in Section 3.1.7 of the
 main document; the modeling results are presented in this appendix.

5 Modeling Procedure for Dichotomous Noncancer Data

6 BMD modeling of dichotomous noncancer data was conducted using EPA's Benchmark Dose 7 Software (BMDS, version 3.2). For these data, the Gamma, Logistic, Log-Logistic, Log-Probit, 8 Multistage, Probit, Weibull, and Dichotomous Hill models available within the software were fit 9 using a benchmark response (BMR) of 10% extra risk (see Toxicological Review, Section 5.2.1 for 10 justification of selected BMRs). The Multistage model is run for all polynomial degrees up to n - 2, 11 where *n* is the number of dose groups including control. Adequacy of model fit was judged based 12 on χ^2 goodness-of-fit *p*-value (*p* > 0.1), scaled residuals at the data point (except the control) closest 13 to the predefined benchmark response (absolute value <2.0), and visual inspection of the model fit. 14 In the cases where no best model was found to fit to the data, a reduced data set without the 15 high-dose group was further attempted for modeling and the result presented with that of the full 16 data set. In cases where a model with several parameters equal to the number of dose groups was 17 fit to the data set, all parameters were estimated, and no *p*-value was calculated, that model was not 18 considered for estimating a point of departure (POD) unless no other model provided adequate fit. 19 Among all models providing adequate fit, the benchmark dose lower confidence limit (BMDL) from 20 the model with the lowest Akaike's information criterion (AIC) was selected as a potential POD

21 when BMDL values were sufficiently close (within 3-fold). Otherwise, the lowest BMDL was

22 selected as a potential POD.

23 Modeling Procedure for Continuous Noncancer Data

24 BMD modeling of continuous noncancer data was conducted using EPA's Benchmark Dose 25 Software (BMDS, version 3.2). For these data, the Exponential, Hill, Polynomial, and Power models 26 available within the software are fit using a BMR of 1 standard deviation (SD) when no toxicological 27 information was available to determine an adverse level of response. When toxicological 28 information was available, the BMR was based on relative deviation, as outlined in the Benchmark 29 Dose Technical Guidance (U.S. EPA, 2012) (see Toxicological Review, Section 5.2.1 justification for 30 using BMRs); when a BMR based on relative deviation was used, modeling results using BMRs 31 based on SD are included for reference. An adequate fit is judged on the basis of χ^2 goodness-of-fit 32 *p*-value (p > 0.1), scaled residuals at the data point (except the control) closest to the predefined 33 benchmark response (absolute value <2.0), and visual inspection of the model fit. In addition to 34 these three criteria for judging adequacy of model fit, a determination is made on whether the

- 1 variance across dose groups is homogeneous. If a homogeneous variance model is deemed
- 2 appropriate on the basis of the statistical test provided by BMDS (i.e., Test 2), the final BMD results
- 3 are estimated from a homogeneous variance model. If the test for homogeneity of variance is
- 4 rejected (*p* < 0.05), the model is run again while modeling the variance as a power function of the
- 5 mean to account for this nonhomogeneous variance. If this nonhomogeneous variance model does
- 6 not adequately fit the data (i.e., Test 3; p < 0.05), alternative approaches are assessed on a case-by-
- 7 case basis. For example, in cases where neither variance model fit, or constant variance did not fit
- 8 (with adequate Test-4 *p*-value) and nonconstant variance did fit (with inadequate Test-4 *p*-value),
- 9 the log-normal distribution was attempted.
- 10 In cases where a model with several parameters equal to the number of dose groups was fit
- 11 to the data set, all parameters were estimated, and no *p*-value was calculated, that model was not
- 12 considered for estimating a POD *unless* no other model provided adequate fit. Among all models
- 13 providing adequate fit, the BMDL from the model with the lowest AIC was selected as a potential
- 14 POD when BMDL estimates differed by less than 3-fold. When BMDL estimates differed by greater
- 15 than 3-fold, the model with the lowest BMDL was selected to account for model uncertainty.

16 Modeling Procedure for Continuous Noncancer Developmental Toxicity Data

17 For continuous developmental toxicity data, data for individual animals were requested 18 from the study authors when possible. The use of individual animal data allows for the correct 19 measure of variance to be calculated. When a biological rationale for selecting a benchmark 20 response level is lacking, a BMR equal to 0.5 SD was used. The use of 1 SD for the BMR for 21 continuous endpoints is based on the observation that shifting the distribution of the control group 22 by 1 SD results in \sim 10% of the animal data points falling beyond an adversity cutoff defined at the 23 \sim 1.5 percentile (<u>Crump, 1995</u>). This approximates the 10% extra risk commonly used as the BMR 24 for dichotomous endpoints. Thus, the use of 0.5 SD for continuous developmental toxicity 25 endpoints approximates the extra risk commonly used for dichotomous developmental toxicity

26 endpoints.

27 Data Used for Modeling

28 The source of the data used for modeling endpoints from animal studies is provided in29 Table C-11. These data also are included in full in the tables below.

Endpoint/reference Reference HAWC link ↑ AST - M NTP (2018) https://hawcprd.epa.gov/ani/endpoint/100506861/ ↑ AST - F NTP (2018) https://hawcprd.epa.gov/ani/endpoint/100506957/

Table C-11. Sources of data used in benchmark dose modeling of PFDA endpoints from animal studies

Endpoint/reference	Reference	HAWC link
↑ ALP – F	<u>NTP (2018)</u>	https://hawcprd.epa.gov/ani/endpoint/100506956/
↑ Relative Liver weight – M	<u>NTP (2018)</u>	https://hawcprd.epa.gov/ani/endpoint/100506814/
↑ Relative Liver weight – F	<u>NTP (2018)</u>	https://hawcprd.epa.gov/ani/endpoint/100506920/
↑ Relative Liver weight – F (Histo)	Frawley et al. (2018)	https://hawcprd.epa.gov/ani/endpoint/100506676/
↑ Relative Liver weight – F (MPS)	Frawley et al. (2018)	https://hawcprd.epa.gov/ani/endpoint/100506669/
↑ Relative Liver weight – F (TDAR)	Frawley et al. (2018)	https://hawcprd.epa.gov/ani/endpoint/100506677/
\downarrow Fetal Body Weight (GD6–15)	Harris and Birnbaum (1989)	https://hawcprd.epa.gov/ani/endpoint/100506643/
↓ Caudal Epididymis Sperm Count	<u>NTP (2018)</u>	https://hawcprd.epa.gov/ani/endpoint/100506879/
\downarrow Absolute Testis Weight	<u>NTP (2018)</u>	https://hawcprd.epa.gov/ani/endpoint/100506820/
↓ Absolute Cauda Epididymis Weight	<u>NTP (2018)</u>	https://hawcprd.epa.gov/ani/endpoint/100506878/
↓ Absolute Whole Epididymis Weight	<u>NTP (2018)</u>	https://hawcprd.epa.gov/ani/endpoint/100506877/
↓ Estrus Time	<u>NTP (2018)</u>	https://hawcprd.epa.gov/ani/endpoint/100524936/
↑ Diestrus Time	<u>NTP (2018)</u>	https://hawcprd.epa.gov/ani/endpoint/100524930/
\downarrow Relative Uterus Weight	<u>NTP (2018)</u>	https://hawcprd.epa.gov/ani/endpoint/100506941/
↓ Absolute Uterus Weight	<u>NTP (2018)</u>	https://hawcprd.epa.gov/ani/endpoint/100506940/

C.2.2. INCREASED AST-MALE RATS (NTP. 2018)

Table C-12. Dose-response data for increased AST in male rats (NTP, 2018)

Dose (mg/kg-d)	n	Mean	SD
0	10	65.3	10.18
0.156	10	74	9.55
0.312	10	77.3	16.98
0.625	10	81.3	9.84
1.25	10	87.5	14.61
2.5	9	92.67	8.04

Table C-13. Benchmark dose results for increased AST in male rats—constant variance, BMR = 1 standard deviation (<u>NTP, 2018</u>)¹

		1 star devia	idard ition			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian	ce	_	-	_	_		-
Exponential 2 (CV—normal)	Restricted	1.3924	1.0640	0.1386	467.4755	Viable—Alternate	
Exponential 3 (CV—normal)	Restricted	1.3924	1.0640	0.1386	467.4755	Viable—Alternate	
Exponential 4 (CV—normal)	Restricted	0.3933	0.1723	0.8692	463.2441	Viable—Alternate	
Exponential 5 (CV—normal)	Restricted	0.3949	0.1723	0.8692	463.2441	Viable—Alternate	
Hill (CV—normal)	Restricted	0.3266	0.1227	0.9560	462.8481	Viable— Recommended	Lowest BMDL
Polynomial (5 degree) (CV—normal)	Restricted	1.2558	0.9260	0.1910	466.6376	Viable—Alternate	
Polynomial (4 degree) (CV—normal)	Restricted	1.2558	0.9260	0.1910	466.6376	Viable—Alternate	
Polynomial (3 degree) (CV—normal)	Restricted	1.2558	0.9260	0.1910	466.6376	Viable—Alternate	
Polynomial (2 degree) (CV—normal)	Restricted	1.2558	0.9260	0.1910	466.6376	Viable—Alternate	
Power (CV—normal)	Restricted	1.2558	0.9260	0.1910	466.6376	Viable—Alternate	
Linear (CV—normal)	Unrestricted	1.2558	0.9260	0.1910	466.6376	Viable—Alternate	

¹ Throughout this section, in the Benchmark Dose results table, the "Restriction" column denotes the restriction status of applied models, and the "Classification" column denotes whether a model can be considered for model selection purposes. See BMDS User Guide: <u>https://www.epa.gov/bmds</u>. If a model was selected as appropriately fitting the modeled data, that model's entries in the tables are in green shaded cells and the text is bolded.

Figure C-3. Dose-response curve for the Hill model fit to increased AST in male rats (<u>NTP, 2018</u>).

User Input								
Info								
Model	froquentist Hill v1 1							
Nouel								
Dataset Name	ASI_M_NIP							
User notes	[Add user notes here]							
Dose-Response Model	M[dose] = g + v*dose^n/(k^n + dose^n)							
Variance Model	Var[i] = alpha							
Model Options								
BMR Type	Std. Dev.							
BMRF	1							
Tail Probability	-							
Confidence Level	0.95							
Distribution Type	Normal							
Variance Type	Constant							
Model Data								
Dependent Variable	[Dose]							
-	• •							
Independent Variable	[Mean]							
Total # of Observations	6							
Adverse Direction	Automatic							

Figure C-4. User Input for dose-response modeling of increased AST in male rats (<u>NTP, 2018</u>).

			Model R	lesults				
Benchm	ark Dose	1						
BMD	0.32659537							
BMDI	0.122653237							
BMDU	0.926151614							
AIC	462.8480778							
Test 4 P-value	0.956041631							
D.O.F.	3							
	1	,						
Model Pa	arameters							
# of Parameters	5							
Variable	Estimate							
g	65.96003464							
V	32.30491688							
k	0.59693749							
n	Bounded							
alpha	130.5126471]						
	6 - 11	1						
Goodne	ess of Fit	Ectimated	Calcid	Observed	Ectimated		Observed	Scalad
Dose	Size	Lodian	Calc u Madian	Maan	Estimated	Calc'd SD	Observed	Bosidual
0	10	65 96003464	65.3	65.3	11 /2/2132	10.18	10.18	-0 18270079
0 156	10	72 65324238	74	74	11.4242132	9.55	9.55	0.372789045
0.130	10	72.03324238	74	74	11.4242132	16.09	16.09	0.06040080
0.625	10	82.48344375	81.3	81.3	11.4242132	9.84	9.84	-0.32758297
1.25	10	87.82387482	87.5	87.5	11.4242132	14.61	14.61	-0.08965012
2.5	9	92.03814971	92.67	92.67	11.4242132	8.04	8.04	0.165923977
Likelihood	s of Interest							
		# of						
Model	Log Likelihood*	Parameters	AIC					
A1	-227.2635646	7	468.527129					
A2	-223.0848415	12	470.169683					
A3	-227.2635646	7	468.527129					
fitted	-227.4240389	4	462.848078					
R	-241.1426777	2	486.285355					
* Includes additive	constant of -54.217	737. This constar	nt was not inclu	uded in the Ll	derivation pr	ior to BMD	5 3.0.	
Toote of	f Interact							
Tests of	2*Log/Likolikaard							
Test	-2"Log(Likelihood	Toct of	n velue					
rest		10	p-value					
2	36.1156/239	10	<0.0001					
2	8.357446131	5	0.13760531					
3	8.357446131	5	0.13760531					

Figure C-5. Model Results for increased AST in male rats (<u>NTP, 2018</u>).

C.2.3. INCREASED AST-FEMALE RATS (NTP. 2018)

Dose (mg/kg-d)	n Mean		SD	
0	10	62.6	10.75	
0.156	9	60.44	6.51	
0.312	10	57.9	4.11	
0.625	10	63.3	5	
1.25	10	81.9	8.29	
2.5	7	112.57	22.54	

Table C-14. Dose-response data for increased AST in female rats (NTP, 2018)

Table C-15. Benchmark dose results for increased AST in female rats—constant variance, BMR = 1 standard deviation (<u>NTP, 2018</u>)

		1 standard deviation				BMDS	
Models	Restriction	BMD	BMDL	p-Value	AIC	classification	BMDS notes
Constant varian	ce						
Exponential 2 (CV—normal)	Restricted	0.6219	0.5312	0.1426	427.8867	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)
Exponential 3 (CV—normal)	Restricted	0.8024	0.5551	0.1375	428.5314	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)
Exponential 4 (CV—normal)	Restricted	0.5006	0.0000	0.0153	433.4316	Unusable	BMD computation failed; lower limit includes zero BMDL not estimated Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Exponential 5 (CV—normal)	Restricted	0.1055	0.1048	<0.0001	553.6193	Questionable	Constant variance test failed (Test 2 5-value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2 Modeled control response std. dev. > 1.5 actual response std. dev.
Hill (CV—normal)	Restricted	0.9445	0.6992	0.5341	426.2660	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)
Polynomial (5 degree) (CV—normal)	Restricted	0.8055	0.5285	0.1331	428.6052	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)
Polynomial (4 degree) (CV—normal)	Restricted	0.8055	0.5285	0.1331	428.6052	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)
Polynomial (3 degree) (CV—normal)	Restricted	0.8055	0.5285	0.1331	428.6052	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)

This document is a draft for review purposes only and does not constitute Agency policy.C-31DRAFT—DO NOT CITE OR QUOTE

		1 star devia	ndard ation			BMDS					
Models	Restriction	BMD	BMDL	p-Value	AIC	classification	BMDS notes				
Constant variance											
Polynomial (2 degree) (CV—normal)	Restricted	0.8055	0.5285	0.1331	428.6052	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)				
Power (CV—normal)	Restricted	0.8126	0.5686	0.2122	427.5127	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)				
Linear (CV—normal)	Unrestricted	0.5006	0.4134	0.0339	431.4316	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2				

Table C-16. Benchmark dose results for increased AST in female rats—nonconstant variance, BMR = 1 standard deviation (<u>NTP, 2018</u>)

		1 standard deviation				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Non-constant va	ariance						
Exponential 2 (NCV— normal)	Restricted	0.4683	0.3822	0.0006	417.7886	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Exponential 3 (NCV— normal)	Restricted	0.7433	0.5327	0.0048	413.2499	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1
Exponential 4 (NCV— normal)	Restricted	0.4044	0.3201	<0.0001	425.5227	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Exponential 5 (NCV— normal)	Restricted	0.9173	0.6965	0.0484	408.4035	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1
Hill (NCV— normal)	Restricted	1.1570	0.6738	0.0375	408.9143	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1
Polynomial (5 degree) (NCV— normal)	Restricted	0.8488	0.5738	0.0172	410.3710	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1
Polynomial (4 degree) (NCV— normal)	Restricted	0.8488	0.5738	0.0172	410.3710	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1

		1 standard deviation				BMDS					
Models	Restriction	BMD	BMDL	<i>p</i> -Value AIC		classification	BMDS notes				
Non-constant variance											
Polynomial (3 degree) (NCV— normal)	Restricted	0.8488	0.5738	0.0172	410.3710	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1				
Polynomial (2 degree) (NCV— normal)	Restricted	0.8488	0.5738	0.0172	410.3710	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1				
Power (NCV— normal)	Restricted	0.7553	0.5621	0.0104	411.6066	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1				
Linear (NCV— normal)	Unrestricted	0.4052	0.3203	<0.0001	423.4964	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2				

Table C-17. Benchmark dose results for increased AST in female rats—lognormal, constant variance, BMR = 1 standard deviation (<u>NTP, 2018</u>)

		1 stan devia	dard tion			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian							
Exponential 2 (CV—log- normal)	Restricted	0.4981	0.4114	0.0353	410.1569	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Exponential 3 (CV— log- normal)	Restricted	0.7017	0.4707	0.0518	409.5663	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Exponential 4 (CV— log- normal)	Restricted	0.4173	0.0000	0.0061	414.2361	Unusable	BMD computation failed; lower limit includes zero BMDL not estimated Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2

		1 stan devia	dard tion			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian	се						
Exponential 5 (CV— log- normal)	Restricted	-9999.00 00	0.0000	<0.0001	482.3726	Unusable	BMD computation failed; lower limit includes zero BMD not estimated BMDL not estimated Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Hill (CV— log- normal)	Restricted	0.8526	0.6413	0.4051	405.6388	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Residual at control > 2
Polynomial (5 degree) (CV— log- normal)	Restricted	0.7220	0.4645	0.0501	409.6412	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Polynomial (4 degree) (CV— log- normal)	Restricted	0.7220	0.4645	0.0501	409.6412	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Polynomial (3 degree) (CV— log- normal)	Restricted	0.7220	0.4645	0.0501	409.6412	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Polynomial (2 degree) (CV— log- normal)	Restricted	0.7220	0.4645	0.0501	409.6412	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Power (CV— log-normal)	Restricted	0.7158	0.5034	0.0953	408.1933	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Linear (CV— log-normal)	Unrestricted	0.4170	0.3303	0.0061	414.2360	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2

C.2.4. INCREASED ALP-FEMALE RAT (NTP. 2018)

Dose (mg/kg-d)	n	Mean	SD
0	9	136.4	18.6
0.156	9	156.1	24
0.312	10	182.8	36.68
0.625	10	184.2	33.2
1.25	10	281.1	72.42
2.5	7	262.4	60.06

Table C-18. Dose-response data for increased ALP in female rats (NTP, 2018)

Table C-19. Benchmark dose results for increased ALP in female rats—BMR = constant variance, 1 standard deviation (NTP, 2018)

		1 star devia	idard ition			RMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian	ce						
Exponential 2 (CV—normal)	Restricted	1.2058	0.9747	<0.0001	598.0449	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 3 (CV—normal)	Restricted	1.2058	0.9747	<0.0001	598.0449	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 4 (CV—normal)	Restricted	0.3043	0.1894	0.0206	585.6900	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 5 (CV—normal)	Restricted	0.6977	0.3389	0.0530	583.7962	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.

1 standard deviation			BMDS				
Models	Restriction	BMD	BMDL	p-Value	AIC	classification	BMDS notes
Constant varian	ce						
Hill (CV—normal)	Restricted	0.6547	0.6162	0.1011	582.1450	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (5 degree) (CV—normal)	Restricted	0.9018	0.6940	0.0005	594.1122	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (4 degree) (CV—normal)	Restricted	0.9018	0.6940	0.0005	594.1122	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (3 degree) (CV—normal)	Restricted	0.9018	0.6940	0.0005	594.1122	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (2 degree) (CV—normal)	Restricted	0.9018	0.6940	0.0005	594.1122	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Power (CV—normal)	Restricted	0.9018	0.6941	0.0005	594.1122	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Linear (CV—normal)	Unrestricted	0.9018	0.6940	0.0005	594.1122	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.

Table C-20. Benchmark dose results for increased ALP in female rats nonconstant variance, BMR = 1 standard deviation (<u>NTP, 2018</u>)

		1 star devia	ndard ation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Non-constant va	ariance						
Exponential 2 (NCV— normal)	Restricted	0.3761	0.2620	<0.0001	578.1584	Questionable	Goodness of fit <i>p</i> -value < 0.1
Exponential 3 (NCV— normal)	Restricted	0.3761	0.2620	<0.0001	578.1584	Questionable	Goodness of fit <i>p</i> -value < 0.1
Exponential 4 (NCV— normal)	Restricted	0.1191	0.0720	0.0174	565.0835	Questionable	Goodness of fit <i>p</i> -value < 0.1
Exponential 5 (NCV— normal)	Restricted	0.1556	0.0758	0.0083	566.5363	Questionable	Goodness of fit <i>p</i> -value < 0.1
Hill (NCV— normal)	Restricted	0.1501	0.0700	0.0056	567.3018	Questionable	Goodness of fit <i>p</i> -value < 0.1
Polynomial (5 degree) (NCV— normal)	Restricted	0.2457	0.1655	0.0012	570.9484	Questionable	Goodness of fit <i>p</i> -value < 0.1
Polynomial (4 degree) (NCV— normal)	Restricted	0.2457	0.1655	0.0012	570.9484	Questionable	Goodness of fit <i>p</i> -value < 0.1
Polynomial (3 degree) (NCV— normal)	Restricted	0.2457	0.1655	0.0012	570.9484	Questionable	Goodness of fit <i>p</i> -value < 0.1
Polynomial (2 degree) (NCV— normal)	Restricted	0.2457	0.1655	0.0012	570.9484	Questionable	Goodness of fit <i>p</i> -value < 0.1
Power (NCV— normal)	Restricted	0.2457	0.1655	0.0012	570.9484	Questionable	Goodness of fit <i>p</i> -value < 0.1
Linear (NCV— normal)	Unrestricted	0.2457	0.1655	0.0012	570.9484	Questionable	Goodness of fit <i>p</i> -value < 0.1

Table C-21. Benchmark dose results for increased ALP in female rats—lognormal, constant variance, BMR = 1 standard deviation (<u>NTP, 2018</u>)

		1 star devia	idard ition			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian	се		-				
Exponential 2 (CV—log- normal)	Restricted	0.8447	0.6570	0.0001	575.0495	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Exponential 3 (CV— log- normal)	Restricted	0.8447	0.6570	0.0001	575.0495	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Exponential 4 (CV— log- normal)	Restricted	0.2215	0.1355	0.0337	563.1028	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Exponential 5 (CV— log- normal)	Restricted	0.3331	0.1470	0.0200	564.2382	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Hill (CV— log- normal)	Restricted	0.2860	0.1283	0.0121	565.2461	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Polynomial (5 degree) (CV— log- normal)	Restricted	0.5606	0.4106	0.0017	569.7238	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Polynomial (4 degree) (CV— log- normal)	Restricted	0.5606	0.4106	0.0017	569.7238	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Polynomial (3 degree) (CV— log- normal)	Restricted	0.5606	0.4106	0.0017	569.7238	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Polynomial (2 degree) (CV— log- normal)	Restricted	0.5606	0.4106	0.0017	569.7238	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Power (CV— log-normal)	Restricted	0.5606	0.4107	0.0017	569.7238	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Linear (CV— log-normal)	Unrestricted	0.5606	0.4106	0.0017	569.7238	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group

		1 stan devia	dard tion			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant variand	ce						
							Near BMD > 2 Residual at control > 2

C.2.5. INCREASED RELATIVE LIVER WEIGHT-MALE RAT (NTP. 2018)

Table C-22. Dose-response data for increased relative liver weight in male rats (<u>NTP, 2018</u>)

Dose (mg/kg-d)	n	Mean	SD
0	10	35.5	3.07
0.156	10	39.32	1.68
0.312	10	42.61	1.77
0.625	10	45.56	2.66
1.25	10	54.77	2.15
2.5	10	67.9	3.76

Table C-23. Benchmark dose results for increased relative liver weight in male rats—constant variance, BMR = 10% relative deviation (<u>NTP, 2018</u>)

		10% re devia	elative ation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian	ce						
Exponential 2 (CV—normal)	Restricted	0.4081	0.3852	<0.0001	314.8501	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Exponential 3 (CV—normal)	Restricted	0.4081	0.3852	<0.0001	314.8501	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Exponential 4 (CV—normal)	Restricted	0.2116	0.1764	0.2654	291.5391	Viable—Alternate	
Exponential 5 (CV—normal)	Restricted	0.2112	0.1764	0.2653	291.5398	Viable—Alternate	
Hill (CV—normal)	Restricted	0.2078	0.1710	0.2774	291.4313	Viable— Recommended	Lowest AIC
Polynomial (5 degree) (CV—normal)	Restricted	0.2978	0.2836	0.0115	298.5321	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Polynomial (4 degree) (CV—normal)	Restricted	0.2978	0.2778	0.0115	298.5321	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2

		10% re devia	elative ntion			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant variand	ce						
Polynomial (3 degree) (CV—normal)	Restricted	0.2978	0.2775	0.0115	298.5321	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Polynomial (2 degree) (CV—normal)	Restricted	0.2978	0.2775	0.0115	298.5321	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Power (CV—normal)	Restricted	0.2978	0.2775	0.0115	298.5321	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Linear (CV—normal)	Unrestricted	0.2978	0.2775	0.0115	298.5321	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2

Figure C-6. Dose-response curve for the Hill model fit to increased relative liver weight in male rats (<u>NTP, 2018</u>).

	User Input				
Info					
Model	froquentist Hill v1 1				
Detect Name					
Dataset Name					
User notes	[Add user notes here]				
Dose-Response Model	M[dose] = g + v*dose^n/(k^n + dose^n)				
Variance Model	Var[i] = alpha				
Model Options					
BMR Type	Rel. Dev.				
BMRF	0.1				
Tail Probability	-				
Confidence Level	0.95				
Distribution Type	Normal				
<i>/</i> ·					
Variance Type	Constant				
Model Data					
Dependent Variable	[Dose]				
Independent Variable	[Mean]				
Total # of Observations	6				
Adverse Direction	Automatic				

Figure C-7. User Input for dose-response modeling of increased relative liver weight in male rats (<u>NTP, 2018</u>).

			Model R	lesults				
Benchm	ark Dose							
BMD	0 207847359							
BMDI	0.170963922							
BMDU	0.269772648							
AIC	291 4312778							
Test 4 P-value	0.277392913							
D.O.F.	3							
		1						
Model Pa	rameters							
# of Parameters	5							
Variable	Estimate							
g	36.19093843							
v	106.3618737							
k	5.900597337							
n	Bounded							
alpha	6.592795984							
Goodne	ss of Fit							
Dose	Sizo	Estimated	Calc'd	Observed	Estimated	Calc'd SD	Observed	Scaled
Dose	5120	Median	Median	Mean	SD	Calc u 5D	SD	Residual
0	10	36.19093843	35.5	35.5	2.56764405	3.07	3.07	-0.85095096
0.156	10	38.93050512	39.32	39.32	2.56764405	1.68	1.68	0.479696924
0.312	10	41.53248929	42.61	42.61	2.56764405	1.77	1.77	1.32704845
0.625	10	46.37792479	45.56	45.56	2.56764405	2.66	2.66	-1.00734574
1.25	10	54.78411826	54.77	54.77	2.56764405	2.15	2.15	-0.01738786
2.5	10	67.84400709	67.9	67.9	2.56764405	3.76	3.76	0.06896015
Libelik e e de	of lutowet	1						
Likelinoods	of Interest	# of						
Madal	Log Likelihood*	# UI	ALC					
IVIOUEI			AIC					
AI	-139./8/4356	/	293.5/48/1					
٨٥	12/ 77212/0	10	202 54427					
A2	-134.7721348	12	293.54427					
A2 A3	-134.7721348 -139.7874356	12 7	293.54427 293.574871					
A2 A3 fitted	-134.7721348 -139.7874356 -141.7156389	12 7 4	293.54427 293.574871 291.431278 463.520715					
A2 A3 fitted R	-134.7721348 -139.7874356 -141.7156389 -229.7698577	12 7 4 2	293.54427 293.574871 291.431278 463.539715					
A2 A3 fitted R * Includes additive	-134.7721348 -139.7874356 -141.7156389 -229.7698577 constant of -55.136	12 7 4 2 531. This constar	293.54427 293.574871 291.431278 463.539715 ht was not inclu	uded in the LL	derivation pr	ior to BMDS	5 3.0.	
A2 A3 fitted R * Includes additive	-134.7721348 -139.7874356 -141.7156389 -229.7698577 constant of -55.136	12 7 4 2 531. This constar	293.54427 293.574871 291.431278 463.539715 at was not inclu	uded in the LL	derivation pr	ior to BMDS	5 3.0.	
A2 A3 fitted R * Includes additive Tests of	-134.7721348 -139.7874356 -141.7156389 -229.7698577 constant of -55.136	12 7 4 2 531. This constar	293.54427 293.574871 291.431278 463.539715 ht was not inclu	uded in the LL	derivation pr	ior to BMDS	5 3.0.	
A2 A3 fitted R * Includes additive Tests of	-134.7721348 -139.7874356 -141.7156389 -229.7698577 constant of -55.136 Interest -2*Log(Likelihood Patio)	12 7 4 2 531. This constar	293.54427 293.574871 291.431278 463.539715 ht was not inclu	uded in the LL	derivation pr	ior to BMD!	5 3.0.	
A2 A3 fitted R * Includes additive Tests of	-134.7721348 -139.7874356 -141.7156389 -229.7698577 constant of -55.136 Interest -2*Log(Likelihood Ratio) 180.0054450	12 7 4 2 531. This constar Test df	293.54427 293.574871 291.431278 463.539715 ht was not inclu p-value	uded in the LL	derivation pr	ior to BMD!	5 3.0.	
A2 A3 fitted R * Includes additive Tests of Test 1 2	-134.7721348 -139.7874356 -141.7156389 -229.7698577 constant of -55.136 Interest -2*Log(Likelihood Ratio) 189.9954459 10.03060162	12 7 4 2 531. This constar Test df 10 c	293.54427 293.574871 291.431278 463.539715 ht was not inclu p-value <0.0001 0.074272720	uded in the LL	derivation pr	ior to BMD!	5 3.0.	
A2 A3 fitted R * Includes additive Tests of Test 1 2	-134.7721348 -139.7874356 -141.7156389 -229.7698577 constant of -55.136 Interest -2*Log(Likelihood Ratio) 189.9954459 10.03060162	12 7 4 531. This constar Test df 10 5	293.54427 293.574871 291.431278 463.539715 ht was not inclu p-value <0.0001 0.07437279	uded in the LL	derivation pr	ior to BMD!	5 3.0.	
A2 A3 fitted R * Includes additive Tests of Test 1 2 3	-134.7721348 -139.7874356 -141.7156389 -229.7698577 constant of -55.136 Interest -2*Log(Likelihood Ratio) 189.9954459 10.03060162 10.03060162	12 7 4 2 531. This constar Test df 10 5 5	293.54427 293.574871 291.431278 463.539715 ht was not incluse p-value <0.0001 0.07437279 0.07437279	uded in the LL	derivation pr	ior to BMD!	5 3.0.	

Figure C-8. Model Results for increased relative liver weight in male rats (<u>NTP.</u> <u>2018</u>).

Table C-24. Benchmark dose results for increased relative liver weight in male rats—constant variance, BMR = 1 standard deviation (<u>NTP, 2018</u>)

		10% relative deviation				BMDS	
Models	Restriction	BMD	BMD BMDL p-		AIC	classification	BMDS notes
Constant varian	ce						
Exponential 2 (CV—normal)	Restricted	0.3381	0.2930	<0.0001	314.8501	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Exponential 3 (CV—normal)	Restricted	0.3381	0.2930	<0.0001	314.8501	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Exponential 4 (CV—normal)	Restricted	0.1486	0.1209	0.2654	291.5391	Viable—Alternate	
Exponential 5 (CV—normal)	Restricted	0.1485	0.1209	0.2653	291.5398	Viable—Alternate	
Hill (CV—normal)	Restricted	0.1460	0.1169	0.2774	291.4313	Viable— Recommended	Lowest AIC
Polynomial (5 degree) (CV—normal)	Restricted	0.2202	0.1909	0.0115	298.5321	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Polynomial (4 degree) (CV—normal)	Restricted	0.2202	0.1976	0.0115	298.5321	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Polynomial (3 degree) (CV—normal)	Restricted	0.2202	0.1894	0.0115	298.5321	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Polynomial (2 degree) (CV—normal)	Restricted	0.2202	0.1894	0.0115	298.5321	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Power (CV—normal)	Restricted	0.2202	0.1894	0.0115	298.5321	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Linear (CV—normal)	Unrestricted	0.2202	0.1894	0.0115	298.5321	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2

C.2.6. INCREASED RELATIVE LIVER WEIGHT-FEMALE RAT (NTP. 2018)

Dose (mg/kg-d)	n	Mean	SD
0	10	33.52	2.37
0.156	10	37.66	2.81
0.312	10	40.08	1.77
0.625	10	44.25	2.59
1.25	10	50.84	2.12
2.5	10	67.75	2.85

Table C-25. Dose-response data for increased relative liver weight in female rats (<u>NTP, 2018</u>)

Table C-26. Benchmark dose results for increased relative liver weight in female rats–BMR = constant variance, 10% relative deviation (<u>NTP, 2018</u>)

		10% re devia	elative ation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	<i>p</i> -Value AIC		BMDS notes
Constant varian	ce						
Exponential 2 (CV—normal)	Restricted	0.3761	0.3585	0.0005	297.3583	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Exponential 3 (CV—normal)	Restricted	0.3761	0.3585	0.0005	297.3583	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Exponential 4 (CV—normal)	Restricted	0.2457	0.2042	0.0512	287.1715	Questionable	Goodness of fit <i>p</i> -value < 0.1
Exponential 5 (CV—normal)	Restricted	0.2456	0.2042	0.0512	287.1717	Questionable	Goodness of fit <i>p</i> -value < 0.1
Hill (CV—normal)	Restricted	0.2446	0.2018	0.0518	287.1453	Questionable	Goodness of fit <i>p</i> -value < 0.1
Polynomial (5 degree) (CV—normal)	Restricted	0.2688	0.2545	0.0764	285.8573	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Polynomial (4 degree) (CV—normal)	Restricted	0.2688	0.2528	0.0764	285.8573	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Polynomial (3 degree) (CV—normal)	Restricted	0.2688	0.2524	0.0764	285.8573	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Polynomial (2 degree) (CV—normal)	Restricted	0.2688	0.2524	0.0764	285.8573	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Power (CV—normal)	Restricted	0.2688	0.2524	0.0764	285.8573	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2
Linear (CV—normal)	Unrestricted	0.2688	0.2524	0.0764	285.8573	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2

This document is a draft for review purposes only and does not constitute Agency policy. C-44 DRAFT-DO NOT CITE OR QUOTE

Table C-27. Benchmark dose results for increased relative liver weight in female rats—nonconstant variance, BMR = 10% relative deviation (<u>NTP. 2018</u>)

		10% re devia	10% relative deviation			BMDS			
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes		
Non-constant v	ariance						•		
Exponential 2 (NCV— normal)	Restricted	0.3779	0.3586	0.0005	299.1741	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Exponential 3 (NCV— normal)	Restricted	0.3779	0.3586	0.0005	299.1741	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Exponential 4 (NCV— normal)	Restricted	0.2443	0.2017	0.0468	289.1376	Questionable	Goodness of fit <i>p</i> -value < 0.1		
Exponential 5 (NCV— normal)	Restricted	0.2464	0.2016	0.0466	289.1432	Questionable	Goodness of fit <i>p</i> -value < 0.1		
Hill (NCV— normal)	Restricted	0.2431	0.1997	0.0474	289.1075	Questionable	Goodness of fit <i>p</i> -value < 0.1		
Polynomial (5 degree) (NCV— normal)	Restricted	0.2688	0.2519	0.0695	287.8570	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Polynomial (4 degree) (NCV— normal)	Restricted	0.2688	0.2519	0.0695	287.8570	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Polynomial (3 degree) (NCV— normal)	Restricted	0.2688	0.2521	0.0695	287.8570	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Polynomial (2 degree) (NCV— normal)	Restricted	0.2688	0.2521	0.0695	287.8570	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Power (NCV— normal)	Restricted	0.2688	0.2521	0.0695	287.8570	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Linear (NCV— normal)	Unrestricted	0.2688	0.2521	0.0695	287.8570	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		

Table C-28. Benchmark dose results for increased relative liver weight in female rats—log-normal, constant variance, BMR = 10% relative deviation (<u>NTP, 2018</u>)

		10% relative deviation				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian	ice						
Exponential 2 (CV—log- normal)	Restricted	0.3617	0.3404	<0.0001	304.9243	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Exponential 3 (CV— log- normal)	Restricted	0.3617	0.3404	<0.0001	304.9243	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Exponential 4 (CV— log- normal)	Restricted	0.2228	0.1850	<0.0001	291.5746	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Exponential 5 (CV— log- normal)	Restricted	0.2228	0.1850	<0.0001	291.5746	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Hill (CV— log- normal)	Restricted	0.2200	0.1800	<0.0001	291.4503	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Polynomial (5 degree) (CV— log- normal)	Restricted	0.2622	0.2441	<0.0001	291.8437	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2
Polynomial (4 degree) (CV— log- normal)	Restricted	0.2622	0.2454	<0.0001	291.8437	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2

		10% relative deviation				BMDS					
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes				
Constant variance											
Polynomial (3 degree) (CV— log- normal)	Restricted	0.2622	0.2433	<0.0001	291.8437	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2				
Polynomial (2 degree) (CV— log- normal)	Restricted	0.2622	0.2433	<0.0001	291.8437	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2				
Power (CV— log-normal)	Restricted	0.2622	0.2433	<0.0001	291.8437	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2				
Linear (CV— log-normal)	Unrestricted	0.2622	0.2433	<0.0001	291.8437	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Residual at control > 2				

Table C-29. Benchmark dose results for increased relative liver weight in female rats, high dose dropped—BMR = constant variance, 10% relative deviation (<u>NTP, 2018</u>)

		10% ro devi	elative ation			BMDS				
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes			
Constant variance										
Exponential 2 (CV—normal)	Restricted	0.3195	0.2902	0.0031	242.3745	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2			
Exponential 3 (CV—normal)	Restricted	0.3195	0.2902	0.0031	242.3745	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2			
Exponential 4 (CV—normal)	Restricted	0.1611	0.1214	0.5849	231.5654	Viable— Alternate				
Exponential 5 (CV—normal)	Restricted	0.1610	0.1214	0.5849	231.5654	Viable— Alternate				
Hill (CV—normal)	Restricted	0.1544	0.1117	0.6566	231.3342	Viable— Recommended	Lowest AIC			

		10% r devi	elative ation			BMDS					
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes				
Constant variance											
Polynomial (5 degree) (CV—normal)	Restricted	0.2659	0.2374	0.0308	237.3809	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2				
Polynomial (4 degree) (CV—normal)	Restricted	0.2659	0.2374	0.0308	237.3809	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2				
Polynomial (3 degree) (CV—normal)	Restricted	0.2659	0.2374	0.0308	237.3809	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2				
Polynomial (2 degree) (CV—normal)	Restricted	0.2659	0.2374	0.0308	237.3809	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2				
Power (CV—normal)	Restricted	0.2659	0.2374	0.0308	237.3809	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2				
Linear (CV—normal)	Unrestricted	0.3195	0.2902	0.0031	242.3745	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2				

Figure C-9. Dose-response curve for the Hill model fit to increased relative liver weight in female rats with the highest dose dropped (<u>NTP, 2018</u>).

User Input							
Info							
Model	frequentist Hill v1.1						
Dataset Name	LiverWt_Rel_F_NTP_hdd						
User notes	[Add user notes here]						
Dose-Response Model	M[dose] = g + v*dose^n/(k^n + dose^n)						
Variance Model	Var[i] = alpha						
· · ·							
Model Options							
BMR Type	Rel. Dev.						
BMRF	0.1						
Tail Probability	-						
Confidence Level	0.95						
Distribution Type	Normal						
Variance Type	Constant						
Model Data							
Dependent Variable	[Custom]						
Independent Variable	[Custom]						
Total # of Observations	5						
Adverse Direction	Automatic						

Figure C-10. User input for dose-response modeling of increased relative liver weight in females rats with highest dose dropped (<u>NTP, 2018</u>).

			Model I	ic suits				
Dec. 1								
Benchm	ark Dose							
BMD	0.154369377							
BMDL	0.111740633							
BIVIDU	0.218901711							
AIC	231.3341743							
Test 4 P-value	0.656565161							
D.O.F.	2							
Model Pa	arameters							
# of Parameters	5							
Variable	Estimate							
g	33.78210999							
v	38.98056451							
k	1 626870887							
ĸ	1.020070007							
n	Bounded							
alnha	5 097775081							
aipita	5.057775001	I						
Goodne	ess of Fit							
D	C'a a	Estimated	Calc'd	Observed	Estimated		Observed	Scaled
Dose	Size	Median	Median	Mean	SD		SD	Residual
0	10	33.78210999	33.52	33.52	2.2578253	2.37	2.37	-0.367107486
0.156	10	37.19288309	37.66	37.66	2.2578253	2.81	2.81	0.654237225
0.312	10	40.05480005	40.08	40.08	2.2578253	1.77	1.77	0.035294693
0.625	10	44.60104858	44.25	44.25	2.2578253	2.59	2.59	-0.491673589
1.25	10	50.71915985	50.84	50.84	2.2578253	2.12	2.12	0.169246978
Likelihoods	s of Interest							
		# of						
Model	Log Likelihood*	Parameters	AIC					
A1	-111.2463538	6	234.492708					
A2	-110.0141933	10	240.028387					
A3	-111.2463538	6	234.492708					
fitted	-111.6670871	4	231.334174					
R	-163,1738575	2	330.347715					
* Includes additive	constant of -45.946	593. This constar	nt was not incl	uded in the LL	derivation pr	ior to BMD	S 3.0.	
Tests of	Interest							
	-2*Log(Likelihood							
Test	Ratio	Test df	p-value					
1	106 3193285	8	<0.0001					
	2 464321029	4	0.65103586					
2			0.00100000					
2	2.464321029	4	0.65103586					
2 3	2.464321029	4	0.65103586					

Figure C-11. Model results for increased relative liver weight in female rats with highest dose dropped (<u>NTP, 2018</u>).

Table C-30. Benchmark dose results for increased relative liver weight in female rats, high dose dropped—constant variance, BMR = 1 standard deviation (<u>NTP, 2018</u>)

		10% r devi	10% relative deviation		10% relative deviation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes		
Constant variand	ce								
Exponential 2 (CV—normal)	Restricted	0.2341	0.1980	0.0031	242.3745	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Exponential 3 (CV—normal)	Restricted	0.2341	0.1980	0.0031	242.3745	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Exponential 4 (CV—normal)	Restricted	0.1050	0.0785	0.5849	231.5654	Viable— Alternate			
Exponential 5 (CV—normal)	Restricted	0.1049	0.0785	0.5849	231.5654	Viable— Alternate			
Hill (CV—normal)	Restricted	0.1000	0.0722	0.6566	231.3342	Viable— Recommended	Lowest AIC		
Polynomial (5 degree) (CV—normal)	Restricted	0.1854	0.1675	0.0308	237.3809	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Polynomial (4 degree) (CV—normal)	Restricted	0.1854	0.1553	0.0308	237.3809	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Polynomial (3 degree) (CV—normal)	Restricted	0.1854	0.1553	0.0308	237.3809	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Polynomial (2 degree) (CV—normal)	Restricted	0.1854	0.1553	0.0308	237.3809	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Power (CV—normal)	Restricted	0.1854	0.1553	0.0308	237.3809	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		
Linear (CV—normal)	Unrestricted	0.2341	0.1980	0.0031	242.3745	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual at control > 2		

C.2.7. INCREASED RELATIVE LIVER WEIGHT (HISTO)-FEMALE RATS (Frawley et al., 2018)

Table C-31. Dose-response data for increased relative liver weight (Histo) in female rats (<u>Frawley et al., 2018</u>)

Dose (mg/kg-d)	n	Mean	SD
0	8	4.02	0.28
0.125	8	4.06	0.28
0.25	8	4.35	0.28
0.5	8	4.68	0.34

Table C-32. Benchmark dose results for increased relative liver weight (Histo) in female rats—constant variance, BMR = 10% relative deviation (<u>Frawley et al., 2018</u>)

		10% Relative deviation				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian	ce		-	-	_	-	-
Exponential 2 (CV—normal)	Restricted	0.2929	0.2224	0.6024	15.6701	Viable— Recommended	Lowest AIC
Exponential 3 (CV—normal)	Restricted	0.3215	0.2240	0.3551	17.5116	Viable—Alternate	
Exponential 4 (CV—normal)	Restricted	0.2823	0.1647	0.2944	17.7557	Viable—Alternate	
Exponential 5 (CV—normal)	Restricted	0.2729	0.1840	NA	18.6564	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)
Hill (CV—normal)	Restricted	0.2777	0.1901	NA	18.6564	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)
Polynomial (3 degree) (CV—normal)	Restricted	0.3170	0.2099	0.3338	17.5904	Viable—Alternate	
Polynomial (2 degree) (CV—normal)	Restricted	0.3170	0.2099	0.3338	17.5904	Viable—Alternate	
Power (CV—normal)	Restricted	0.3195	0.2113	0.3675	17.4686	Viable—Alternate	
Linear (CV—normal)	Unrestricted	0.2824	0.2081	0.5775	15.7543	Viable—Alternate	

Figure C-12. Dose-response curve for the Exponential 2 model fit to increased relative liver weight (Histo) in female rats (<u>Frawley et al., 2018</u>).

User Input						
Info	-					
Model	frequentist Exponential degree 2 v1.1					
Dataset Name	LiverWt_Rel_Frawley_Histo					
User notes	[Add user notes here]					
Dose-Response Model	M[dose] = a * exp(±1 * b * dose)					
Variance Model	Var[i] = alpha					
Model Options						
BMR Type	Rel. Dev.					
BMRF	0.1					
Tail Probability	-					
Confidence Level	0.95					
Distribution Type	Normal					
Variance Type	Constant					
· · ·						
Model Data						
Dependent Variable	[Dose]					
Independent Variable	[Mean]					
Total # of Observations	4					
Adverse Direction	Automatic					

Figure C-13. User input for dose-response modeling of increased relative liver weight (Histo) in female rats (<u>Frawley et al., 2018</u>).

			Model R	lesults				
Benchma	ark Dose							
BMD	0.292874336							
BMDL	0.222375421							
BINIDU	0.429901615							
AIC	15.6/013988							
Test 4 P-value	0.602376128							
D.O.F.	2							
Model Pa	rameters	[
# of Parameters	3							
Variable	Estimate							
а	3.97629556							
b	0.325430373							
log-alpha	-2.536765652							
Goodne	ss of Fit							
Doco	Sizo	Estimated	Calc'd	Observed	Estimated		Observed	Scaled
Dose	5120	Median	Median	Mean	SD	Calc u SD	SD	Residual
0	8	3.97629556	4.02	4.02	0.28128614	0.28	0.28	0.439462902
0.125	8	4.141381462	4.06	4.06	0.28128614	0.28	0.28	-0.818318074
0.25	8	4.31332132	4.35	4.35	0.28128614	0.28	0.28	0.368816506
0.5	8	4.678912956	4.68	4.68	0.28128614	0.34	0.34	0.01093059
Likalihoods	of Interest	l.						
Likelihoous	or interest	# of						
Model	Log Likelihood*	# UI Parameters	AIC					
Δ1	-// 328196707	5	18 6563924					
Δ2	-4 087877276	8	24 1757546					
Δ3	-4 328196707	5	18 6563934					
fitted	-4 825060020	2	15 6701200					
R	-4.033003333	2	33 //821/7					
IN Includes additive	constant of -29 /0/	603 This constant	t was not inclu	Ided in the U	derivation pr	ior to BMD	530	
	25.15001125.400				a crittation pr		5.0.	
Tests of	Interest	[
	-2*Log(Likelihood							
Test	Ratio)	Test df	p-value					
1	21.2724602	6	0.00163883					
2	0.480638862	3	0.92312391					
2	0 480638862	3	0.92312391					
3	0110000002	-						

Figure C-14. Model results for increased relative liver weight (Histo) in female rats (<u>Frawley et al., 2018</u>).

Table C-33. Benchmark dose results for increased relative liver weight (Histo)in female rats—constant variance, BMR = 1 standard deviation (Frawley.et.al.2018)

		1 standard deviation				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant variand	ce						
Exponential 2 (CV—normal)	Restricted	0.2100	0.1561	0.6024	15.6701	Viable— Recommended	Lowest AIC
Exponential 3 (CV—normal)	Restricted	0.2405	0.1572	0.3551	17.5116	Viable—Alternate	
Exponential 4 (CV—normal)	Restricted	0.2003	0.1453	0.2944	17.7557	Viable—Alternate	

This document is a draft for review purposes only and does not constitute Agency policy.C-54DRAFT—DO NOT CITE OR QUOTE

		1 standard	deviation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant variance							
Exponential 5 (CV—normal)	Restricted	0.2332	0.1314	NA	18.6564	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)
Hill (CV—normal)	Restricted	0.2310	0.1312	NA	18.6564	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)
Polynomial (3 degree) (CV—normal)	Restricted	0.2343	0.1467	0.3338	17.5904	Viable—Alternate	
Polynomial (2 degree) (CV—normal)	Restricted	0.2343	0.1467	0.3338	17.5904	Viable—Alternate	
Power (CV—normal)	Restricted	0.2394	0.1476	0.3675	17.4686	Viable—Alternate	
Linear (CV—normal)	Unrestricted	0.2005	0.1455	0.5775	15.7543	Viable—Alternate	

C.2.8. INCREASED RELATIVE LIVER WEIGHT (MPS)-FEMALE RATS (Frawley et al., 2018)

Table C-34. Dose-response data for increased relative liver weight (MPS) in female rats (<u>Frawley et al., 2018</u>)

Dose (mg/kg-d)	n	Mean	SD
0	8	3.42	0.26
0.125	8	3.77	0.28
0.25	8	3.86	0.26
0.5	8	4.19	0.17

Table C-35. Benchmark dose results for increased relative liver weight (Histo) in female rats—constant variance, BMR = 10% relative deviation (<u>Frawley et al., 2018</u>)

		10% Relative deviation				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian	ce						
Exponential 2 (CV—normal)	Restricted	0.2575	0.2036	0.2714	5.4499	Viable—Alternate	
Exponential 3 (CV—normal)	Restricted	0.2575	0.2044	0.2714	5.4499	Viable—Alternate	
Exponential 4 (CV—normal)	Restricted	0.1644	0.0852	0.3121	5.8634	Viable—Alternate	

		10% R devi	elative ation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Exponential 5 (CV—normal)	Restricted	0.1646	0.0851	0.3121	5.8634	Viable—Alternate	
Hill (CV—normal)	Restricted	0.1587	0.0730	0.3336	5.7766	Viable—Alternate	
Polynomial (3 degree) (CV—normal)	Restricted	0.2419	0.1864	0.3283	5.0691	Viable—Alternate	
Polynomial (2 degree) (CV—normal)	Restricted	0.2419	0.1864	0.3283	5.0691	Viable—Alternate	
Power (CV—normal)	Restricted	0.2419	0.1864	0.3283	5.0691	Viable—Alternate	
Linear (CV—normal)	Unrestricted	0.2419	0.1864	0.3283	5.0691	Viable— Recommended	Lowest AIC

Figure C-15. Dose-response curve for the Linear model fit to increased relative liver weight (MPS) in female rats (<u>Frawley et al., 2018</u>).
User Input							
Info							
Model	frequentist Linear v1.1						
Detecet Name	Liver)Mt. Del Freudev MDS						
Dataset Name	Liver wi_Rel_Frawley_WPS						
User notes	[Add user notes here]						
Dose-Response Model	M[dose] = g + b1*dose						
Variance Model	Var[i] = alpha						
Model Options							
BMR Type	Rel. Dev.						
BMRF	0.1						
Tail Probability	-						
Confidence Level	0.95						
Distribution Type	Normal						
Variance Type	Constant						
Model Data							
Dependent Variable	[Dose]						
Independent Variable	[Mean]						
Total # of Observations	4						
Adverse Direction	Automatic						

Figure C-16. User input for dose-response modeling of increased relative liver weight (MPS) in female rats (<u>Frawley et al., 2018</u>).

			would h	esuits				
Bonchm]						
Denum								
	0.24167066							
BMDU	0.180409723							
	5 060125072							
Test / P-value	0.328309463							
	0.520305405							
0.0.1.	2	J						
Model Pa	rameters							
# of Parameters	3							
Variable	Estimate							
g	3.49399996							
beta1	1.444571613							
alpha	0.05687116							
		1						
Goodne	ss of Fit							
Dees	Cine	Estimated	Calc'd	Observed	Estimated		Observed	Scaled
Dose	5120	Median	Median	Mean	SD		SD	Residual
0	8	3.49399996	3.42	3.42	0.23847675	0.26	0.26	-0.877668349
0.125	8	3.674571412	3.77	3.77	0.23847675	0.28	0.28	1.13182022
0.25	8	3.855142863	3.86	3.86	0.23847675	0.26	0.26	0.057607531
0.5	8	4.216285767	4.19	4.19	0.23847675	0.17	0.17	-0.31175943
		1						
Likelihoods	of Interest							
N. a. a. l. a. l.	1 1 - 1 - 1 - 1	# of						
Model	Log Likelihood*	Parameters	AIC					
A1	1.5/9236095	5	6.84152/81					
AZ	2.643027/12	8	10./139446					
A3	1.5/9236095	5	6.84152781					
fitted	0.465437464	3	5.06912507					
R	-12.53902329	2	29.0780466					
* Includes additive	constant of -29.406	503. This constar	nt was not inclu	uded in the Ll	L derivation pr	ior to BMD	5 3.0.	
		1						
Tests of	Interest							
T	-2*Log(Likelihood	T 16						
Test	Ratio)	lest df	p-value					
1	30.364102	6	<0.0001					
2	2.127583234	3	0.54635267					
2	2 127583234	3	0.54635267					
3	2.12/303234							

Figure C-17. Model results for increased relative liver weight (MPS) in female rats (<u>Frawley et al., 2018</u>).

Table C-36. Benchmark dose results for increased relative liver weight (MPS)in female rats – constant variance, BMR = 1 standard deviation (Frawley et al., 2018)

		1 standard	deviation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant variance							
Exponential 2 (CV—normal)	Restricted	0.1788	0.1367	0.2714	5.4499	Viable—Alternate	
Exponential 3 (CV—normal)	Restricted	0.1788	0.1367	0.2714	5.4499	Viable—Alternate	

This document is a draft for review purposes only and does not constitute Agency policy.C-58DRAFT-DO NOT CITE OR QUOTE

		1 standard	standard deviation			BMDS			
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes		
Constant varian	Constant variance								
Exponential 4 (CV—normal)	Restricted	0.1046	0.0549	0.3121	5.8634	Viable—Alternate			
Exponential 5 (CV—normal)	Restricted	0.1048	0.0549	0.3121	5.8634	Viable—Alternate			
Hill (CV—normal)	Restricted	0.0994	0.0450	0.3336	5.7766	Viable— Recommended	Lowest BMDL		
Polynomial (3 degree) (CV—normal)	Restricted	0.1651	0.1238	0.3283	5.0691	Viable—Alternate			
Polynomial (2 degree) (CV—normal)	Restricted	0.1651	0.1238	0.3283	5.0691	Viable—Alternate			
Power (CV—normal)	Restricted	0.1651	0.1238	0.3283	5.0691	Viable—Alternate			
Linear (CV—normal)	Unrestricted	0.1651	0.1238	0.3283	5.0691	Viable—Alternate			

C.2.9. INCREASED RELATIVE LIVER WEIGHT (TDAR)-FEMALE RATS (Frawley et al., 2018)

Table C-37. Dose-response data for increased relative liver weight (TDAR) in female rats (<u>Frawley et al., 2018</u>)

Dose (mg/kg-d)	n	Mean	SD
0	8	3.85	0.14
0.125	8	3.94	0.11
0.25	8	4.6	0.37
0.5	8	5.21	0.28

Table C-38. Benchmark dose results for increased relative liver weight (TDAR) in female rats—constant variance, BMR = 10% relative deviation (<u>Frawley et al., 2018</u>)

		10% F dev	Relative iation			BMDS		
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes	
Constant variance								
Exponential 2 (CV—normal)	Restricted	0.1478	0.1295	0.0284	10.5539	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.	

		10% l dev	Relative viation			RMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian	се						
Exponential 3 (CV—normal)	Restricted	0.1541	0.1297	0.0077	12.5248	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 4 (CV—normal)	Restricted	0.1294	0.0935	0.0073	12.6257	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 5 (CV—normal)	Restricted	0.1951	0.1458	NA	7.4299	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev. d.f. = 0, saturated model (Goodness of fit test cannot be calculated)
Hill (CV—normal)	Restricted	0.1904	0.1497	NA	7.4299	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev. d.f. = 0, saturated model (Goodness of fit test cannot be calculated)
Polynomial (3 degree) (CV—normal)	Restricted	0.1419	0.1108	0.0079	12.4766	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (2 degree) (CV—normal)	Restricted	0.1419	0.1108	0.0079	12.4766	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Power (CV—normal)	Restricted	0.1556	0.1124	0.0103	12.0114	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.

		10% F dev	Relative iation			BMDS		
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes	
Constant variance								
Linear (CV—normal)	Unrestricted	0.1295	0.1103	0.0274	10.6256	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2 Modeled control response std. dev. > 1.5 actual response std. dev.	

Table C-39. Benchmark dose results for increased relative liver weight (TDAR) in female rats—non-constant variance, BMR = 10% relative deviation (<u>Frawley</u> et al., 2018)

		10% R devi	elative ation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Non-constant va	ariance	•	•		-	<u>.</u>	
Exponential 2 (NCV— normal)	Restricted	0.1478	0.1284	0.0012	10.0543	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2
Exponential 3 (NCV— normal)	Restricted	0.1607	0.1292	0.0003	11.8202	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2
Exponential 4 (NCV— normal)	Restricted	0.1333	0.1030	0.0002	12.4411	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2
Exponential 5 (NCV— normal)	Restricted	0.1937	0.1654	NA	0.5572	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)
Hill (NCV— normal)	Restricted	0.1880	0.1653	NA	0.5577	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)
Polynomial (3 degree) (NCV— normal)	Restricted	0.1507	0.1144	0.0002	11.9784	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2
Polynomial (2 degree) (NCV— normal)	Restricted	0.1507	0.1144	0.0002	11.9784	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2
Power (NCV— normal)	Restricted	0.1628	0.1183	0.0004	11.0771	Questionable	Goodness of fit <i>p</i> -value < 0.1
Linear (NCV— normal)	Unrestricted	0.1334	0.1127	0.0010	10.4397	Questionable	Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2

This document is a draft for review purposes only and does not constitute Agency policy.C-61DRAFT-DO NOT CITE OR QUOTE

Table C-40. Benchmark dose results for increased relative liver weight (TDAR) in female rats—log-normal, constant variance, BMR = 10% relative deviation (Frawley et al., 2018)

		10% R devi	elative ation			BMDS			
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes		
Log-normal Constant variance									
Exponential 2 (CV—log- normal)	Restricted	0.1478	0.1295	0.0172	7.4633	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.		
Exponential 3 (CV— log- normal)	Restricted	0.1639	0.1304	0.0050	9.2051	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.		
Exponential 4 (CV— log- normal)	Restricted	0.1315	0.1026	0.0033	9.9692	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.		
Exponential 5 (CV— log- normal)	Restricted	0.1644	0.1111	NA	10.6210	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev. d.f. = 0, saturated model (Goodness of fit test cannot be calculated)		
Hill (CV— log- normal)	Restricted	0.1918	0.1692	NA	3.3425	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev. d.f. = 0, saturated model (Goodness of fit test cannot be calculated)		
Polynomial (3 degree) (CV— log- normal)	Restricted	0.1541	0.1143	0.0046	9.3729	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.		

		10% R devi	elative ation			BMDS		
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes	
Log-normal Constant variance								
Polynomial (2 degree) (CV— log- normal)	Restricted	0.1541	0.1143	0.0046	9.3729	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.	
Power (CV— log-normal)	Restricted	0.1649	0.1176	0.0070	8.6207	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.	
Linear (CV— log-normal)	Unrestricted	0.1315	0.1122	0.0134	7.9687	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.	

C.2.10. DECREASED FETAL WEIGHT–MALE AND FEMALE RATS (<u>Harris and Birnbaum, 1989</u>)

Table C-41. Dose-response data for decreased fetal weight in male and femalerats (Harris and Birnbaum, 1989)

Dose (mg/kg-d)	n	Mean	SD
0	86.4	1.17	0.09
0.03	85.8	1.16	0.02
0.1	94.8	1.13	0.2
0.3	102	1.16	0.3
1	103.6	1.12	0.2
3	87.6	1.1	0.09
6.4	75.4	0.9	0.26
12.8	32.2	0.59	0.11

Table C-42. Benchmark dose results for decreased fetal weight in male and female rats—constant variance, BMR = 5% relative deviation (<u>Harris and</u> <u>Birnbaum, 1989</u>)

		5% re devia	lative ation			RMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian	ce						
Exponential 2 (CV—normal)	Restricted	1.1862	1.0702	0.0010	-303.6182	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 3 (CV—normal)	Restricted	2.4486	1.8922	0.3529	-318.5263	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 4 (CV—normal)	Restricted	1.1862	1.0702	0.0010	-303.6182	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 5 (CV—normal)	Restricted	3.0401	2.0145	0.3470	-317.6098	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Hill (CV—normal)	Restricted	3.0451	2.0215	0.3383	-317.5367	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (7 degree) (CV—normal)	Restricted	1.9190	1.4664	0.1942	-316.6978	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (6 degree) (CV—normal)	Restricted	1.9190	1.4668	0.1942	-316.6978	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (5 degree) (CV—normal)	Restricted	1.9190	1.4667	0.1942	-316.6978	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.

		5% re devia	lative ation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant variand	ce						
Polynomial (4 degree) (CV—normal)	Restricted	1.9190	1.4667	0.1942	-316.6978	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (3 degree) (CV—normal)	Restricted	1.9190	1.4681	0.1942	-316.6978	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (2 degree) (CV—normal)	Restricted	1.9190	1.4884	0.1942	-316.6978	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Power (CV—normal)	Restricted	2.1795	1.6300	0.2568	-317.5277	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Linear (CV—normal)	Unrestricted	1.3815	1.2741	0.0441	-313.1368	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.

Table C-43. Benchmark dose results for decreased fetal weight in male and female rats—nonconstant variance, BMR = 5% relative deviation (<u>Harris and</u> <u>Birnbaum, 1989</u>)

		5% rel devia	ative tion			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Non-constant va	ariance						
Exponential 2 (NCV— normal)	Restricted	1.2032	1.0775	0.0012	-302.0911	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 3 (NCV— normal)	Restricted	2.4989	1.9388	0.4468	-317.3295	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.

		5% rel devia	lative Ition			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Non-constant va	ariance						
Exponential 4 (NCV— normal)	Restricted	1.2031	1.0775	0.0012	-302.0911	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 5 (NCV— normal)	Restricted	2.4942	1.9392	0.3140	-315.3322	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Hill (NCV— normal)	Restricted	2.9282	1.9155	0.3696	-315.8031	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (7 degree) (NCV— normal)	Restricted	1.9751	1.6128	0.2753	-315.7500	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (6 degree) (NCV— normal)	Restricted	1.9716	1.4955	0.2749	-315.7461	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (5 degree) (NCV— normal)	Restricted	1.9712	1.4921	0.2749	-315.7460	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (4 degree) (NCV— normal)	Restricted	1.9751	1.4965	0.2753	-315.7500	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (3 degree) (NCV— normal)	Restricted	1.9751	1.4973	0.2753	-315.7500	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Polynomial (2 degree) (NCV— normal)	Restricted	1.9751	1.5263	0.2753	-315.7500	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.

		5% rel devia	lative Ition			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Non-constant va	ariance						
Power (NCV— normal)	Restricted	2.2422	1.6842	0.3562	-316.5655	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.
Linear (NCV— normal)	Unrestricted	1.3772	1.2719	0.0450	-311.2042	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.

Table C-44. Benchmark dose results for decreased fetal weight in male and female rats—log-normal, constant variance, BMR = 5% relative deviation (<u>Harris and Birnbaum, 1989</u>)

		5% rel devia	ative ition			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Log-normal, con	istant variance						
Exponential 2 (CV—log- normal)	Restricted	1.0479	0.9755	<0.0001	-307.8546	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 3 (CV— log- normal)	Restricted	2.1631	1.7042	0.0286	-326.0092	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 4 (CV— log- normal)	Restricted	1.0479	0.9755	<0.0001	-307.8546	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.
Exponential 5 (CV— log- normal)	Restricted	3.4280	2.4438	0.1216	-329.2234	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.

		5% rel devia	ative ition			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Log-normal, cor	nstant variance		-				
Hill (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution
Polynomial (7 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution
Polynomial (6 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution
Polynomial (5 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution
Polynomial (4 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution
Polynomial (3 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution
Polynomial (2 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution
Power (CV— log-normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution
Linear (CV— log-normal)	Unrestricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution

C.2.11. DECREASED SPERM COUNT-MALE RATS (NTP. 2018)

Table C-45. Dose-response data for decreased sperm counts in mal	e
rats (<u>NTP, 2018</u>)	

Dose (mg/kg-d)	n	Mean	SD
0	10	136.3	32.26
0.625	10	120.8	17.39
1.25	10	112.9	23.09
2.5	10	95.7	36.37

Table C-46. Benchmark dose results for decreased sperm counts in male rats,BMR = 1 standard deviation (NTP, 2018)

		1 star devia	idard ition			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian	ce				-	-	
Exponential 2 (CV—normal)	Restricted	1.5928	0.9634	0.9331	382.8116	Viable— Recommended	Lowest AIC
Exponential 3 (CV—normal)	Restricted	1.5928	0.9634	0.9331	382.8116	Viable— Recommended	Lowest AIC
Exponential 4 (CV—normal)	Restricted	1.4241	0.5083	0.8023	384.7359	Viable—Alternate	
Exponential 5 (CV—normal)	Restricted	1.4241	0.5083	0.8023	384.7359	Viable—Alternate	
Hill (CV—normal)	Restricted	1.4208	0.4347	0.8120	384.7298	Viable—Alternate	
Polynomial (3 degree) (CV—normal)	Restricted	1.7202	1.1328	0.8756	382.9388	Viable—Alternate	
Polynomial (2 degree) (CV—normal)	Restricted	1.7202	1.1328	0.8756	382.9388	Viable—Alternate	
Power (CV—normal)	Restricted	1.7202	1.1329	0.8756	382.9388	Viable—Alternate	
Linear (CV—normal)	Unrestricted	1.7202	1.1328	0.8756	382.9388	Viable—Alternate	

Figure C-18. Dose-response curve for the Exponential 2 model fit to decreased sperm counts in male rats (<u>NTP, 2018</u>).

	User Input
Info	
Model	frequentist Exponential degree 2 v1.1
Dataset Name	Sperm_Count_NTP
User notes	[Add user notes here]
Dose-Response Model	M[dose] = a * exp(±1 * b * dose)
Variance Model	Var[i] = alpha
Model Options	
BMR Type	Std. Dev.
BMRF	1
Tail Probability	-
Confidence Level	0.95
Distribution Type	Normal
Variance Type	Constant
Model Data	
Dependent Variable	[Dose]
Independent Variable	[Mean]
Total # of Observations	4
Adverse Direction	Automatic

Figure C-19. User input for dose-response modeling of decreased sperm counts in male counts (<u>NTP, 2018</u>).

			Model R	Results				
Derster	anh Dasa	1						
Benchm	ark Dose							
BMD	1.592768431							
BIVIDL	0.963412903							
	3.024040003							
AIC Tost 4 Divaluo	0.022122027							
	0.935123027							
D.O.F.	2	J						
Model P	arameters							
# of Parameters	3							
Variable	Estimate							
a	134 5572517							
b	0.139886976							
log-alpha	6 582/135/2							
log-alpha	0.382413342	l						
Goodne	ess of Fit							
_		Estimated	Calc'd	Observed	Estimated		Observed	Scaled
Dose	Size	Median	Median	Mean	SD	Calc'd SD	SD	Residual
0	10	134.5572517	136.3	136.3	26.8752764	32.26	32.26	0.205060364
0.625	10	123.2926024	120.8	120.8	26.8752764	17.39	17.39	-0.293291902
1.25	10	112.9709891	112.9	112.9	26.8752764	23.09	23.09	-0.00835292
2.5	10	94.84768903	95.7	95.7	26.8752764	36.37	36.37	0.100287116
Likelihoods	s of Interest			1				
		# of						
Model	Log Likelihood*	Parameters	AIC					
A1	-188.3365941	5	386.673188					
A2	-185.2790038	8	386.558008					
A3	-188.3365941	5	386.673188					
fitted	-188.4058123	3	382.811625					
R	-193.5430425	2	391.086085					
* Includes additive	constant of -36.75	754. This constar	nt was not incl	uded in the Ll	derivation pr	ior to BMD	S 3.0.	
Tests of	Interest							
	-2*Log(Likelihood							
Test	Ratio)	Test df	p-value					
1	16.52807739	6	0.01118344					
2	6.115180405	3	0.10613895					
3	6.115180405	3	0.10613895					
	0.400406454	2	0.02212202					
4	0.138436451		109771/2017					

Figure C-20. Model results for decreased sperm counts in rat males (<u>NTP</u>, <u>2018</u>).

C.2.12. DECREASED ABSOLUTE TESTIS WEIGHT IN MALE RATS (NTP. 2018)

Table C-47. Dose-response data for decreased absolute testis weight in male rats (<u>NTP. 2018</u>)

Dose (mg/kg-d)	n	Mean	SD
0	9	1.777	0.17
0.156	10	1.797	0.15
0.312	10	1.742	0.12
0.625	10	1.74	0.1
1.25	10	1.695	0.11
2.5	10	1.553	0.2

This document is a draft for review purposes only and does not constitute Agency policy. C-71 DRAFT—DO NOT CITE OR QUOTE

		1 star devia	idard ition			BMDS		
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes	
Constant variance								
Exponential 2 (CV—normal)	Restricted	1.4763	1.0220	0.9324	-59.4936	Viable—Alternate		
Exponential 3 (CV—normal)	Restricted	1.7052	1.0373	0.8973	-57.7417	Viable—Alternate		
Exponential 4 (CV—normal)	Restricted	1.4763	1.0220	0.9324	-59.4936	Viable—Alternate		
Exponential 5 (CV—normal)	Restricted	1.7049	0.8202	0.7420	-55.7409	Viable—Alternate		
Hill (CV—normal)	Restricted	1.7088	0.8010	0.7448	-55.7486	Viable—Alternate		
Polynomial (5 degree) (CV—normal)	Restricted	1.7976	1.0880	0.9114	-57.8041	Viable—Alternate		
Polynomial (4 degree) (CV—normal)	Restricted	1.7750	1.0878	0.9107	-57.8008	Viable—Alternate		
Polynomial (3 degree) (CV—normal)	Restricted	1.7482	1.0873	0.9089	-57.7926	Viable—Alternate		
Polynomial (2 degree) (CV—normal)	Restricted	1.7214	1.0861	0.9046	-57.7738	Viable—Alternate		
Power (CV—normal)	Restricted	1.7089	1.0848	0.8995	-57.7514	Viable—Alternate		
Linear (CV—normal)	Unrestricted	1.5110	1.0742	0.9430	-59.5723	Viable— Recommended	Lowest AIC	

Table C-48. Benchmark dose results for decreased absolute testis weight in male rats—constant variance, BMR = 1 standard deviation (<u>NTP. 2018</u>)

Figure C-21. Dose-response curve for the Linear model fit to decreased absolute testis weight in male rats (<u>NTP, 2018</u>).

	User Input			
Info				
Model	frequentist Linear v1.1			
Dataset Name	TestisW/t Abs NTP			
User notes	[Add user notes here]			
Dose-Response Model	M[dose] = g + b1*dose			
Variance Model	Var[i] = alpha			
Model Options				
BMR Type	Std. Dev.			
BMRF	1			
Tail Probability	-			
Confidence Level	0.95			
Distribution Type	Normal			
Variance Type	Constant			
Model Data				
Dependent Variable	[Dose]			
Independent Variable	[Mean]			
Total # of Observations	6			
Adverse Direction	Automatic			

Figure C-22. User input for dose-response modeling of decreased absolute testis weight in male rats (<u>NTP. 2018</u>).

			Wodel R	esults				
Benchm	ark Dose							
BMD	1.511042118							
BMDL	1.074196873							
BMDU	2.542202182							
AIC	-59.57226688							
Test 4 P-value	0.943009409							
D.O.F.	4							
Model P	arameters]						
# of Parameters	3							
Variable	Estimate							
g	1.791729181							
beta1	-0.091864992							
alpha	0.019268735							
aipila	0.010100.00	I						
Goodn	ess of Fit							
-		Estimated	Calc'd	Observed	Estimated		Observed	Scaled
Dose	Size	Median	Median	Mean	SD	Calc'd SD	SD	Residual
0	9	1.791729181	1.777	1.777	0.13881187	0.17	0.17	-0.31832683
0.156	10	1.777398242	1.797	1.797	0.13881187	0.15	0.15	0.446548271
0.312	10	1.763067304	1.742	1.742	0.13881187	0.12	0.12	-0.47993491
0.625	10	1.734313561	1.74	1.74	0.13881187	0.1	0.1	0.129542952
1.25	10	1.676897941	1.695	1.695	0.13881187	0.11	0.11	0.412383595
2.5	10	1.5620667	1.553	1.553	0.13881187	0.2	0.2	-0.20654878
Likelihood	s of Interest							
		# of						
Model	Log Likelihood*	Parameters	AIC					
A1	33.16889532	7	-52.3377906					
A2	36.76108906	12	-49.5221781					
A3	33.16889532	7	-52.3377906					
fitted	32.78613344	3	-59.5722669					
R	24.53190731	2	-45.0638146					
* Includes additive	constant of -54.217	737. This constar	nt was not inclu	uded in the Ll	derivation pr	ior to BMD	S 3.0.	
Tests of	Interest							
	-2*Log(Likelihood							
Test	Ratio)	Test df	p-value					
1	24.4583635	10	0.0064724					
2	7.184387472	5	0.20728439					
	7 10 10 07 170	-						
3	/.18438/4/2	5	0.20728439					

Figure C-23. Model results for decreased absolute testis weight in male rats (<u>NTP, 2018</u>).

C.2.13. DECREASED ABSOLUTE CAUDAL EPIDIDYMIS WEIGHT IN MALE RATS (NTP. 2018)

Гable C-49. Dose-response data for decreased absolute caudal epididymi	S
weight in male rats (<u>NTP, 2018</u>)	

Dose (mg/kg-d)	n	Mean	SD
0	10	0.184	0.02
0.625	10	0.178	0.01
1.25	10	0.164	0.02
2.5	10	0.138	0.03

Table C-50. Benchmark dose results for decreased absolute caudal epididymis weight in male rats—constant variance, BMR = 1 standard deviation (<u>NTP</u>, 2018)

		1 star devia	ndard ation			BMDS					
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes				
Constant varian	Constant variance										
Exponential 2 (CV—normal)	Restricted	0.9906	0.7014	0.6614	-192.1231	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)				
Exponential 3 (CV—normal)	Restricted	1.2840	0.7347	0.7934	-190.8813	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)				
Exponential 4 (CV—normal)	Restricted	0.9906	0.7014	0.6614	-192.1231	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)				
Exponential 5 (CV—normal)	Restricted	1.2550	0.6841	NA	-188.9499	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) d.f. = 0, saturated model (Goodness of fit test cannot be calculated)				
Hill (CV—normal)	Restricted	1.2551	0.6802	NA	-188.9499	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) d.f. = 0, saturated model (Goodness of fit test cannot be calculated)				
Polynomial (3 degree) (CV—normal)	Restricted	1.2961	0.8004	0.6972	-190.7984	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)				
Polynomial (2 degree) (CV—normal)	Restricted	1.2961	0.8004	0.6972	-190.7984	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)				
Power (CV—normal)	Restricted	1.2924	0.8027	0.7563	-190.8535	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)				
Linear (CV—normal)	Unrestricted	1.0647	0.7868	0.7835	-192.4618	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)				

Table C-51. Benchmark dose results for decreased absolute caudal epididymis weight in male rats—nonconstant variance, BMR = 1 standard deviation (<u>NTP, 2018</u>)

		1 star devia	ndard ation			BMDS		
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes	
Constant variance								
Exponential 2 (NCV— normal)	Restricted	0.7898	0.5327	0.3071	-193.9474	Viable— Alternate		
Exponential 3 (NCV— normal)	Restricted	1.1440	0.6331	0.5123	-193.8789	Viable— Alternate		
Exponential 4 (NCV— normal)	Restricted	0.7902	0.5326	0.3070	-193.9463	Viable— Alternate		
Exponential 5 (NCV— normal)	Restricted	1.1558	0.6708	NA	-192.3083	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)	
Hill (NCV— normal)	Restricted	1.1495	0.6702	NA	-192.3080	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)	
Polynomial (3 degree) (NCV— normal)	Restricted	1.1618	0.6304	0.4150	-193.6438	Viable— Alternate		
Polynomial (2 degree) (NCV— normal)	Restricted	1.1618	0.6304	0.4150	-193.6438	Viable— Alternate		
Power (NCV— normal)	Restricted	1.1497	0.6390	0.4771	-193.8028	Viable— Alternate		
Linear (NCV— normal)	Unrestricted	0.8363	0.5824	0.4086	-194.5183	Viable— Recommended	Lowest AIC	

Figure C-24. Dose-response curve for the Linear model fit to decreased absolute caudal epididymis weight in male rats (<u>NTP, 2018</u>).

	User Input			
Info	· · · · · · · · · · · · · · · · · · ·			
Model	frequentist Linear v1.1			
Dataset Name	CaudaEpiWt_Abs_NTP			
User notes	[Add user notes here]			
Dose-Response Model	M[dose] = g + b1*dose			
Variance Model	Var[i] = alpha * mean[i] ^ rho			
Model Options				
BMR Type	Std. Dev.			
BMRF	1			
Tail Probability	-			
Confidence Level	0.95			
Distribution Type	Normal			
Variance Type	Non-Constant			
Model Data				
-				
Dependent Variable	[Dose]			
Independent Variable	[Mean]			
Total # of Observations	4			
Adverse Direction	Automatic			

Figure C-25. User Input for dose-response modeling of decreased caudal epididymis weight in male rats (<u>NTP, 2018</u>).

			Model R	lesults				
Bonchmi	ark Doco							
Denchina								
BIVID	0.836267471							
	0.562449660							
	-104 5182635							
Tost 4 B value	-194.3182033							
	0.408001003							
0.0.1.	2	J						
Model Pa	rameters							
# of Parameters	4							
Variable	Estimate							
g	0.186188825							
beta1	-0.018332295							
rho	-3 81191884							
1110	5.01151004							
alpha	-14,76361024							
aipila	1100000021	l						
Goodne	ess of Fit							
Doco	Sizo	Estimated	Calc'd	Observed	Estimated	Cale'd SD	Observed	Scaled
Dose	5120	Median	Median	Mean	SD	Calc u SD	SD	Residual
0	10	0.186188825	0.184	0.184	0.01533068	0.02	0.02	-0.45149146
0.625	10	0.174731141	0.178	0.178	0.01730351	0.01	0.01	0.59739552
1.25	10	0.163273457	0.164	0.164	0.01969127	0.02	0.02	0.116677641
2.5	10	0.140358089	0.138	0.138	0.02626961	0.03	0.03	-0.283861514
2.5	10	0.140358089	0.138	0.138	0.02626961	0.03	0.03	-0.283861514
2.5 Likelihoods	10 of Interest	0.140358089 # of	0.138	0.138	0.02626961	0.03	0.03	-0.283861514
2.5 Likelihoods	10 of Interest	0.140358089 # of Parameters	0.138 AIC	0.138	0.02626961	0.03	0.03	-0.283861514
2.5 Likelihoods Model A1	10 of Interest Log Likelihood* 99.47492849	0.140358089 # of Parameters 5	0.138 AIC -188.949857	0.138	0.02626961	0.03	0.03	-0.28386151
2.5 Likelihoods Model A1 A2	10 of Interest Log Likelihood* 99.47492849 104.7074099	0.140358089 # of Parameters 5 8	0.138 AIC -188.949857 -193.41482	0.138	0.02626961	0.03	0.03	-0.28386151
2.5 Likelihoods Model A1 A2 A3	10 of Interest Log Likelihood* 99.47492849 104.7074099 102.1541463	0.140358089 # of Parameters 5 8 6	0.138 AIC -188.949857 -193.41482 -192.308293	0.138	0.02626961	0.03	0.03	-0.283861514
2.5 Likelihoods Model A1 A2 A3 fitted	10 of Interest Log Likelihood* 99.47492849 104.7074099 102.1541463 101 2591317	0.140358089 # of Parameters 5 8 6 4	0.138 AIC -188.949857 -193.41482 -192.308293 -194 518263	0.138	0.02626961	0.03	0.03	-0.283861514
2.5 Likelihoods A1 A2 A3 fitted R	10 of Interest Log Likelihood* 99.47492849 104.7074099 102.1541463 101.2591317 87.99544268	0.140358089 # of Parameters 5 8 6 6 4 2	0.138 AIC -188.949857 -193.41482 -192.308293 -194.518263 -171.990885	0.138	0.02626961	0.03	0.03	-0.283861514
2.5 Likelihoods A1 A2 A3 fitted R	10 of Interest 99.47492849 104.7074099 102.1541463 101.2591317 87.99544268	0.140358089 # of Parameters 5 8 6 4 2	0.138 AIC -188.949857 -193.41482 -192.308293 -194.518263 -171.990885	0.138	0.02626961	0.03	0.03	-0.28386151
2.5 Likelihoods A1 A2 A3 fitted R * Includes additive	10 of Interest 99.47492849 104.7074099 102.1541463 101.2591317 87.99544268 constant of -36.757	0.140358089 # of Parameters 5 8 6 4 2 2 754. This constar	0.138 AIC -188.949857 -193.41482 -192.308293 -194.518263 -171.990885 tt was not inclu	0.138 uded in the Ll	0.02626961	0.03	<u>0.03</u>	-0.28386151
2.5 Likelihoods A1 A2 A3 fitted R * Includes additive Tests of	10 of Interest 99.47492849 104.7074099 102.1541463 101.2591317 87.99544268 constant of -36.757	0.140358089 # of Parameters 5 8 6 4 2 754. This constar	0.138 AIC -188.949857 -193.41482 -192.308293 -194.518263 -171.990885 th was not inclu	0.138 Jded in the Ll	0.02626961	0.03	<u>0.03</u>	-0.28386151
2.5 Likelihoods A1 A2 A3 fitted R * Includes additive Tests of	10 of Interest 99.47492849 104.7074099 102.1541463 101.2591317 87.99544268 constant of -36.757	0.140358089 # of Parameters 5 8 6 4 2 754. This constar	0.138 AIC -188.949857 -193.41482 -192.308293 -194.518263 -171.990885 th was not inclu	0.138 uded in the Ll	0.02626961	0.03	<u>0.03</u>	-0.28386151
2.5 Likelihoods A1 A2 A3 fitted R * Includes additive Tests of	10 of Interest 99.47492849 104.7074099 102.1541463 101.2591317 87.99544268 constant of -36.757 Interest -2*Log(Likelihood Ratio)	0.140358089 # of Parameters 5 8 6 4 2 754. This constar	0.138 AIC -188.949857 -193.41482 -192.308293 -194.518263 -171.990885 th was not inclu	0.138 uded in the Ll	0.02626961	0.03	<u>0.03</u>	-0.28386151
2.5 Likelihoods Model A1 A2 A3 fitted R * Includes additive Tests of Test 1	10 of Interest 99.47492849 104.7074099 102.1541463 101.2591317 87.99544268 constant of -36.757 Interest -2*Log(Likelihood Ratio) 33.42393448	0.140358089 # of Parameters 5 8 6 4 2 2 754. This constar Test df 6	0.138 AIC -188.949857 -193.41482 -192.308293 -194.518263 -171.990885 tt was not inclu	0.138 uded in the Ll	0.02626961	0.03	<u>0.03</u>	-0.28386151
2.5 Likelihoods Model A1 A2 A3 fitted R * Includes additive Tests of Test 1 2	10 of Interest 99.47492849 104.7074099 102.1541463 101.2591317 87.99544268 constant of -36.755 Interest -2*Log(Likelihood Ratio) 33.42393448 10.46496286	0.140358089 # of Parameters 5 8 6 4 2 2 54. This constar Test df 6 3	0.138 AIC -188.949857 -193.41482 -192.308293 -194.518263 -171.990885 tt was not inclu p-value <0.0001 0.01500047	0.138 uded in the Ll	0.02626961	0.03	<u>0.03</u>	-0.283861514
2.5 Likelihoods Model A1 A2 A3 fitted R * Includes additive Tests of Test 1 2 3	10 of Interest 99.47492849 104.7074099 102.1541463 101.2591317 87.99544268 constant of -36.755 Interest -2*Log(Likelihood Ratio) 33.42393448 10.46496286 5 106527298	0.140358089 # of Parameters 5 8 6 4 2 2 754. This constar Test df 6 3 2	0.138 AIC -188.949857 -193.41482 -192.308293 -194.518263 -171.990885 tt was not inclu p-value <0.0001 0.01500047 0.07282725	0.138 uded in the Ll	0.02626961	0.03	<u>0.03</u>	-0.283861514

Figure C-26. Model results for decreased caudal epididymis weight in male rats (<u>NTP, 2018</u>).

C.2.14. DECREASED ABSOLUTE WHOLE EPIDIDYMIS WEIGHT IN MALE RATS (NTP. 2018)

Table C-52. Dose-response data for decreased absolute whole epididymis weight in male rats (<u>NTP, 2018</u>)

Dose (mg/kg-d)	n	Mean	SD
0	10	0.528	0.05
0.625	10	0.508	0.03
1.25	10	0.474	0.04
2.5	10	0.407	0.08

This document is a draft for review purposes only and does not constitute Agency policy.C-78DRAFT-DO NOT CITE OR QUOTE

Table C-53. Benchmark dose results for decreased whole caudal epididymis weight in male rats—constant variance, BMR = 1 standard deviation (<u>NTP</u>, <u>2018</u>)

		1 star devia	ndard ation			BMDS			
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes		
Constant variance									
Exponential 2 (CV—normal)	Restricted	0.9572	0.6866	0.7614	-118.5715	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)		
Exponential 3 (CV—normal)	Restricted	1.2024	0.7076	0.8891	-117.0973	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)		
Exponential 4 (CV—normal)	Restricted	0.9572	0.6866	0.7614	-118.5715	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)		
Exponential 5 (CV—normal)	Restricted	1.2024	0.7076	0.8891	-117.0973	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)		
Hill (CV—normal)	Restricted	1.1911	0.6254	NA	-115.1168	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) d.f. = 0, saturated model (Goodness of fit test cannot be calculated)		
Polynomial (3 degree) (CV—normal)	Restricted	1.2061	0.7720	0.7980	-117.0513	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)		
Polynomial (2 degree) (CV—normal)	Restricted	1.2061	0.7720	0.7980	-117.0513	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)		
Power (CV—normal)	Restricted	1.2076	0.7732	0.8530	-117.0825	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)		
Linear (CV—normal)	Unrestricted	1.0266	0.7639	0.8678	-118.8333	Questionable	Constant variance test failed (Test 2 p-value < 0.05)		

Table C-54. Benchmark dose results for decreased absolute whole epididymis weight in male rats—nonconstant variance, BMR = 1 standard deviation (\underline{NTP} , 2018)

		1 sta devi	ndard ation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant variance							
Exponential 2 (NCV— normal)	Restricted	0.7358	0.5033	0.3609	-121.3235	Viable— Alternate	
Exponential 3 (NCV— normal)	Restricted	1.0959	0.5980	0.7979	-121.2963	Viable— Alternate	
Exponential 4 (NCV— normal)	Restricted	0.7360	0.5033	0.3609	-121.3235	Viable— Alternate	

		1 sta devi	ndard ation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant variance							
Exponential 5 (NCV— normal)	Restricted	1.0960	0.5986	NA	-119.2989	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)
Hill (NCV— normal)	Restricted	1.1035	0.6011	NA	-119.3619	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)
Polynomial (3 degree) (NCV— normal)	Restricted	1.1012	0.5975	0.6702	-121.1805	Viable— Alternate	
Polynomial (2 degree) (NCV— normal)	Restricted	1.1012	0.5974	0.6702	-121.1805	Viable— Alternate	
Power (NCV— normal)	Restricted	1.0965	0.6018	0.7557	-121.2651	Viable— Alternate	
Linear (NCV— normal)	Unrestricted	0.7766	0.5458	0.4809	-121.8975	Viable— Recommended	Lowest AIC

Figure C-27. Dose-response curve for the Linear model fit to decreased absolute whole epididymis weight in male rats (<u>NTP, 2018</u>).

User Input						
Info						
Model	frequentist Linear v1.1					
Dataset Name	EpididymisWt_Abs_NTP					
User notes	[Add user notes here]					
Dose-Response Model	M[dose] = g + b1*dose					
Variance Model	Var[i] = alpha * mean[i] ^ rho					
Model Options						
BMR Type	Std. Dev.					
BMRF	1					
Tail Probability	-					
Confidence Level	0.95					
Distribution Type	Normal					
Verience Terre						
variance Type	Non-Constant					
Model Data						
Dependent Variable	[Dose]					
Independent Variable	[Mean]					
Total # of Observations	4					
Adverse Direction	Automatic					

Figure C-28. User input for dose-response modeling of decreased absolute whole epididymis weight in male rats (<u>NTP, 2018</u>).

			Model R	lesults				
Bonchm	ark Doco	ן						
PMD								
BMDI	0.770300307							
BMDU	1 227214732							
AIC	-121,8975001							
Test 4 P-value	0.48085367							
D.O.F.	2							
	1	1						
Model Pa	arameters]						
# of Parameters	4							
Variable	Estimate							
g	0.532146909							
beta1	-0.048115367							
rho	-4.500456294							
alpha	-9.413118476							
		•						
Goodne	ess of Fit							
Doce	Sizo	Estimated	Calc'd	Observed	Estimated		Observed	Scaled
DOSC	5120	Median	Median	Mean	SD	cale a 5D	SD	Residual
0	10	0.532146909	0.528	0.528	0.03736447	0.05	0.05	-0.350966522
0.625	10	0.502074805	0.508	0.508	0.0425899	0.03	0.03	0.439942633
1.25	10	0.472002701	0.474	0.474	0.0489403	0.04	0.04	0.129055502
2.5	10	0.411858493	0.407	0.407	0.06650773	0.08	0.08	-0.23100927
Likelihoods	s of Interest]						
		# of						
Model	Log Likelihood*	Parameters	AIC					
A1	62.55839468	5	-115.116789					
A2	67.81861539	8	-119.637231					
A3	65.68094232	6	-119.361885					
fitted	64.94875004	4	-121.8975					
R	50.54148697	2	-97.0829739					
* Includes additive	constant of -36.757	754. This constar	nt was not inclu	uded in the Ll	derivation pr	ior to BMD	5 3.0.	
Tests of	Interest							
	-2*Log(Likelihood							
Test	Ratio)	Test df	p-value					
	34.55425682	6	<0.0001					
1								
1	10.52044141	3	0.01462287					
1 2 3	10.52044141 4.275346136	3	0.01462287 0.11792894					

Figure C-29. Model Results for decreased absolute whole epididymis weight in male rats (<u>NTP, 2018</u>).

C.2.15. DECREASED DAYS IN ESTRUS–FEMALE RATS (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk</u>, <u>2007</u>)

Table C-55. Dose-response data for decreased days in estrus in female rats (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk, 2007</u>)

Dose (mg/kg-d)	n	Mean	SD
0	10	5.5	1.5092
0.625	10	4.3	2.0575
1.25	10	3.2	1.8136
2.5	10	0.9	0.9944

This document is a draft for review purposes only and does not constitute Agency policy. C-82 DRAFT-DO NOT CITE OR QUOTE

Table C-56. Benchmark dose results for decreased days in estrus in female rats—constant variance, BMR = 5% relative deviation (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk, 2007</u>)

		5% re devia	lative ation			BMDS			
Models	Restriction	BMD	BMDL	p-Value	AIC	classification	BMDS notes		
Constant variance									
Exponential 2 (CV—normal)	Restricted	0.0923	0.0687	0.3592	157.0377	Viable—Alternate	BMD 3× lower than lowest non-zero dose BMDL 3× lower than lowest non-zero dose		
Exponential 3 (CV—normal)	Restricted	0.2611	0.0778	0.6119	157.2473	Viable—Alternate	BMDL 3× lower than lowest non-zero dose		
Exponential 4 (CV—normal)	Restricted	0.0923	0.0687	0.3592	157.0377	Viable—Alternate	BMD 3× lower than lowest non-zero dose BMDL 3× lower than lowest non-zero dose		
Exponential 5 (CV—normal)	Restricted	0.2608	0.0776	0.6119	157.2473	Viable—Alternate	BMDL 3× lower than lowest non-zero dose		
Hill (CV—normal)	Restricted	0.1487	0.0739	NA	158.9967	Questionable	BMD 3× lower than lowest non-zero dose BMDL 3× lower than lowest non-zero dose d.f. = 0, saturated model (Goodness of fit test cannot be calculated)		
Polynomial (3 degree) (CV—normal)	Restricted	0.1495	0.1283	0.9965	154.9969	Viable—Alternate	BMD 3× lower than lowest non-zero dose BMDL 3× lower than lowest non-zero dose		
Polynomial (2 degree) (CV—normal)	Restricted	0.1495	0.1283	0.9965	154.9969	Viable— Recommended	Lowest AIC BMD 3× lower than lowest non-zero dose BMDL 3× lower than lowest non-zero dose		
Power (CV—normal)	Restricted	0.1495	0.1283	0.9965	154.9969	Viable—Alternate	BMD 3× lower than lowest non-zero dose BMDL 3× lower than lowest non-zero dose		
Linear (CV—normal)	Unrestricted	0.1495	0.1283	0.9965	154.9969	Viable—Alternate	BMD 3× lower than lowest non-zero dose BMDL 3× lower than lowest non-zero dose		

Figure C-30. Dose-response curve for the Polynomial 2 model fit to decreased days in estrus in female rats (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk, 2007</u>).

User Input						
Info						
Model	frequentist Polynomial degree 2 v1.1					
Dataset Name	Estrus_Days_NTP					
User notes	[Add user notes here]					
Dose-Response Model	M[dose] = g + b1*dose + b2*dose^2 +					
Variance Model	Var[i] = alpha					
Model Options						
BMR Type	Rel. Dev.					
BMRF	0.05					
Tail Probability	-					
Confidence Level	0.95					
Distribution Type	Normal					
Variance Type	Constant					
Model Data						
Dependent Variable	[Dose]					
Independent Variable	[Mean]					
Total # of Observations	4					
Adverse Direction	Automatic					

Figure C-31. User input for dose-response modeling of decreased days in estrus in female rats (<u>NTP, 2018</u>).

			Model R	lesults				
Poncha	ark Dose]						
Dencim								
BMDI	0.149409972							
BMDU	0.128321044							
AIC	154 9969111							
Test 4 P-value	0.996475595							
D.O.F.	2							
Model Pa	arameters							
# of Parameters	4							
Variable	Estimate							
g	5.479999986							
beta1	-1.833142847							
beta2	Bounded							
alpha	2.427946195							
		1						
Goodne	ess of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd SD	Observed	Scaled
		Median	Median	Mean	SD		SD	Residual
0	10	5.479999986	5.5	5.5	1.55818683	1.5092	1.5092	0.040589227
0.625	10	4.334285706	4.3	4.3	1.55818683	2.0575	2.0575	-0.06958146
1.25	10	3.188571426	3.2	3.2	1.55818683	1.8136	1.8136	0.023193832
2.5	10	0.897142867	0.9	0.9	1.55818683	0.9944	0.9944	0.005798436
Likelihoods	of Interest							
		# of						
Model	Log Likelihood*	Parameters	AIC					
A1	-74.49492494	5	158.98985					
A2	-71.87802546	8	159.756051					
A3	-74.49492494	5	158.98985					
fitted	-74.49845557	3	154.996911					
R	-90.10938562	2	184.218771					
* Includes additive	constant of -36.75	754. This constar	nt was not incl	uded in the LL	derivation pr	ior to BMD	5 3.0.	
Tests of	Interest]						
	-2*Log(Likelihood							
Test	Ratio)	Test df	p-value					
1	36.46272031	6	< 0.0001					
2	5.233798961	3	0.15545622					
3	5.233798961	3	0.15545622					

Figure C-32. Model results for decreased days in estrus in female rats (<u>NTP, 2018</u>).

Table C-57. Benchmark dose results for decreased days in estrus in female rats—constant variance, BMR = 1 standard deviation (<u>Butenhoff et al., 2012;</u> <u>van Otterdijk, 2007</u>)

		1 stan devia	dard tion			BMDS	
Models	Restriction	BMD	BMDL	<i>p-</i> Value	AIC	classification	BMDS notes
Constant variand	Constant variance						
Exponential 2 (CV—normal)	Restricted	0.5895	0.3889	0.3592	157.0377	Viable—Alternate	

		1 star devia	ndard ation			BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes
Constant varian	ce						
Exponential 3 (CV—normal)	Restricted	0.8806	0.4576	0.6119	157.2473	Viable—Alternate	
Exponential 4 (CV—normal)	Restricted	0.5895	0.3889	0.3592	157.0377	Viable—Alternate	
Exponential 5 (CV—normal)	Restricted	0.8804	0.4576	0.6119	157.2473	Viable—Alternate	
Hill (CV—normal)	Restricted	0.8393	0.4491	NA	158.9967	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)
Polynomial (3 degree) (CV—normal)	Restricted	0.8500	0.6520	0.9965	154.9969	Viable—Alternate	
Polynomial (2 degree) (CV—normal)	Restricted	0.8500	0.6520	0.9965	154.9969	Viable— Recommended	Lowest AIC
Power (CV—normal)	Restricted	0.8500	0.6520	0.9965	154.9969	Viable—Alternate	
Linear (CV—normal)	Unrestricted	0.8500	0.6520	0.9965	154.9969	Viable—Alternate	

C.2.16. INCREASED DAYS IN DIESTRUS–FEMALE RATS (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk, 2007</u>)

Table C-58. Dose-response data for increased days in diestrus in female rats (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk, 2007</u>)

Dose (mg/kg-d)	n	Mean	SD
0	10	9.2	1.874
0.625	10	10.1	2.1833
1.25	10	11.7	2.2632
2.5	10	15	1.0541

Table C-59. Benchmark dose results for increased days in diestrus in female rats—constant variance, BMR = 5% relative deviation (<u>Butenhoff et al., 2012;</u> <u>van Otterdijk, 2007</u>)

		5% re devia	lative ation			BMDS		
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes	
Constant variance								
Exponential 2 (CV—normal)	Restricted	0.2430	0.2000	0.9231	167.0076	Viable— Recommended	Lowest AIC BMDL 3× lower than lowest non-zero dose	
Exponential 3 (CV—normal)	Restricted	0.2891	0.2006	0.7433	168.9548	Viable—Alternate	BMDL 3× lower than lowest non-zero dose	
Exponential 4 (CV—normal)	Restricted	0.1870	0.1136	0.4064	169.5368	Viable—Alternate	BMD 3× lower than lowest non-zero dose BMDL 3× lower than lowest non-zero dose	
Exponential 5 (CV—normal)	Restricted	0.4063	0.1241	NA	170.8476	Questionable	BMDL 3× lower than lowest non-zero dose d.f. = 0, saturated model (Goodness of fit test cannot be calculated)	
Hill (CV—normal)	Restricted	0.4079	0.1226	NA	170.8476	Questionable	BMDL 3× lower than lowest non-zero dose d.f. = 0, saturated model (Goodness of fit test cannot be calculated)	
Polynomial (3 degree) (CV—normal)	Restricted	0.2770	0.1470	0.7388	168.9588	Viable—Alternate	BMDL 3× lower than lowest non-zero dose	
Polynomial (2 degree) (CV—normal)	Restricted	0.2770	0.1470	0.7388	168.9588	Viable—Alternate	BMDL 3× lower than lowest non-zero dose	
Power (CV—normal)	Restricted	0.3283	0.1475	0.8200	168.8993	Viable—Alternate	BMDL 3× lower than lowest non-zero dose	
Linear (CV—normal)	Unrestricted	0.1872	0.1427	0.7099	167.5330	Viable—Alternate	BMD 3× lower than lowest non-zero dose BMDL 3× lower than lowest non-zero dose	

Figure C-33. Dose-response curve for the Exponential 2 model fit to increased days in diestrus in female rats (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk, 2007</u>).

User Input						
Info						
Model	frequentist Exponential degree 2 v1.1					
Dataset Name	Diestrus_Days_NTP					
User notes	[Add user notes here]					
Dose-Response Model	M[dose] = a * exp(±1 * b * dose)					
Variance Model	Var[i] = alpha					
Model Options						
BMR Type	Rel. Dev.					
BMRF	0.05					
Tail Probability	-					
Confidence Level	0.95					
Distribution Type	Normal					
Variance Type	Constant					
i						
Model Data						
Dependent Variable	[Dose]					
Independent Variable	[Mean]					
Total # of Observations	4					
Adverse Direction	Automatic					

Figure C-34. User input for dose-response modeling of increased days in diestrus in female rats (<u>NTP, 2018</u>).

			Model R	lesults				
Danahas	ark Daaa	1						
Benchm								
BMD	0.242986679							
BMDU	0.200009167							
	0.309079273							
AIC Tost 4 Divalua	0.022101014							
	0.923101914							
D.O.F.	2	J						
Model Pa	arameters	1						
# of Parameters	3							
Variable	Estimate							
a	9.070650097							
b	0.200793313							
log-alnha	1 187317248							
log uprid	1.10/31/240	J						
Goodne	ess of Fit							
_		Estimated	Calc'd	Observed	Estimated		Observed	Scaled
Dose	Size	Median	Median	Mean	SD	Calc'd SD	SD	Residual
0	10	9.070650097	9.2	9.2	1.81060062	1.874	1.874	0.225914154
0.625	10	10.28349063	10.1	10.1	1.81060062	2.1833	2.1833	-0.320472836
1.25	10	11.65850059	11.7	11.7	1.81060062	2.2632	2.2632	0.072480181
2.5	10	14.98466312	15	15	1.81060062	1.0541	1.0541	0.026786401
Likelihoods	of Interest							
		# of						
Model	Log Likelihood*	Parameters	AIC					
A1	-80.42379068	5	170.847581					
A2	-77.43412842	8	170.868257					
A3	-80.42379068	5	170.847581					
fitted	-80.50380632	3	167.007613					
R	-98.71832217	2	201.436644					
* Includes additive	constant of -36.75	754. This constar	nt was not inclu	uded in the LL	derivation pr	ior to BMD	S 3.0.	
Tests of	Interest							
	-2*Log(Likelihood							
Test	Ratio)	Test df	p-value					
1	42.56838749	6	<0.0001					
	E 070224E2	2	0 11262048					
2	5.9/952452	5	0.11202040					
2	5.97932452	3	0.11262048					

Figure C-35. Model results for increased days in diestrus in female rats (<u>NTP, 2018</u>).

Table C-60. Benchmark dose results for increased days in diestrus in female rats—constant variance, BMR = 1 standard deviation (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk, 2007</u>)

		1 standard deviation				BMDS			
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes		
Constant variance									
Exponential 2 (CV—normal)	Restricted	0.9064	0.7377	0.9231	167.0076	Viable— Recommended	Lowest AIC		
Exponential 3 (CV—normal)	Restricted	0.9766	0.7391	0.7433	168.9548	Viable—Alternate			
Exponential 4 (CV—normal)	Restricted	0.7661	0.5970	0.4064	169.5368	Viable—Alternate			
Exponential 5 (CV—normal)	Restricted	0.9947	0.5599	NA	170.8476	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)		
Hill (CV—normal)	Restricted	0.9936	0.5580	NA	170.8476	Questionable	d.f. = 0, saturated model (Goodness of fit test cannot be calculated)		
Polynomial (3 degree) (CV—normal)	Restricted	0.9687	0.6117	0.7388	168.9588	Viable—Alternate			
Polynomial (2 degree) (CV—normal)	Restricted	0.9687	0.6117	0.7388	168.9588	Viable—Alternate			
Power (CV—normal)	Restricted	0.9805	0.6134	0.8200	168.8993	Viable—Alternate			
Linear (CV—normal)	Unrestricted	0.7667	0.5963	0.7099	167.5330	Viable—Alternate			

C.2.17. DECREASED RELATIVE UTERINE WEIGHT–FEMALE RATS (<u>Butenhoff et al., 2012</u>; <u>van</u> <u>Otterdijk, 2007</u>)

Table C-61. Dose-response data for decreased relative uterine weight in female rats (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk, 2007</u>))

Dose (mg/kg-d)	n	Mean	SD
0	10	3.26	1.3
0.156	10	2.73	0.41
0.312	10	2.94	0.79
0.625	10	3.65	1.68
1.25	10	2.05	0.61
2.5	10	1.81	0.32

Table C-62. Benchmark dose results for decreased relative uterine weight in female rats—BMR = constant variance, 1 standard deviation (<u>Butenhoff et al.,</u> 2012; van Otterdijk, 2007)

		1 standard deviation				BMDS			
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	Classification	BMDS notes		
Constant variance									
Exponential 2 (CV—normal)	Restricted	1.6357	0.9728	0.0296	178.4420	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1		
Exponential 3 (CV—normal)	Restricted	1.8431	1.0220	0.0170	179.8915	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1		
Exponential 4 (CV—normal)	Restricted	1.6357	0.9728	0.0296	178.4420	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1		
Exponential 5 (CV—normal)	Restricted	1.2312	0.7036	0.1496	175.0232	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)		
Hill (CV—normal)	Restricted	1.2139	0.7285	0.1496	175.0233	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)		
Polynomial (5 degree) (CV—normal)	Restricted	1.8244	1.2032	0.0147	180.2109	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1		
Polynomial (4 degree) (CV—normal)	Restricted	1.8244	1.2032	0.0147	180.2109	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1		
Polynomial (3 degree) (CV—normal)	Restricted	1.8244	1.2032	0.0147	180.2109	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1		
Polynomial (2 degree) (CV—normal)	Restricted	1.8244	1.2032	0.0147	180.2109	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1		
Power (CV—normal)	Restricted	1.8813	1.2094	0.0153	180.1247	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1		
Linear (CV—normal)	Unrestricted	1.7547	1.2018	0.0324	178.2308	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1		

Table C-63. Benchmark dose results for decreased relative uterine weight in female rats – nonconstant variance, BMR = 1 standard deviation (<u>Butenhoff et al., 2012; van Otterdijk, 2007</u>)

		1 standard deviation				BMDS				
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes			
Non-constant variance										
Exponential 2 (NCV— normal)	Restricted	2.3599	1.4658	<0.0001	168.8763	Questionable	Goodness of fit <i>p</i> -value < 0.1			
Exponential 3 (NCV— normal)	Restricted	2.4946	1.8929	<0.0001	167.1138	Questionable	Goodness of fit <i>p</i> -value < 0.1			
Exponential 4 (NCV— normal)	Restricted	2.3592	1.4658	<0.0001	168.8763	Questionable	Goodness of fit <i>p</i> -value < 0.1			
Exponential 5 (NCV— normal)	Restricted	1.2787	1.1724	0.0011	157.4375	Questionable	Goodness of fit <i>p</i> -value < 0.1			
Hill (NCV— normal)	Restricted	1.3094	1.1258	0.0011	157.4376	Questionable	Goodness of fit <i>p</i> -value < 0.1			
Polynomial (5 degree) (NCV— normal)	Restricted	2.5118	1.9996	<0.0001	165.4887	Questionable	Goodness of fit <i>p</i> -value < 0.1 BMD higher than maximum dose			
Polynomial (4 degree) (NCV— normal)	Restricted	2.5118	1.9997	<0.0001	165.4887	Questionable	Goodness of fit <i>p</i> -value < 0.1 BMD higher than maximum dose			
Polynomial (3 degree) (NCV— normal)	Restricted	2.5118	1.9997	<0.0001	165.4887	Questionable	Goodness of fit <i>p</i> -value < 0.1 BMD higher than maximum dose			
Polynomial (2 degree) (NCV— normal)	Restricted	2.5118	1.9997	<0.0001	165.4887	Questionable	Goodness of fit <i>p</i> -value < 0.1 BMD higher than maximum dose			
Power (NCV— normal)	Restricted	2.5092	1.9643	<0.0001	167.4725	Questionable	Goodness of fit <i>p</i> -value < 0.1 BMD higher than maximum dose			
Linear (NCV— normal)	Unrestricted	2.4008	1.7105	<0.0001	167.5269	Questionable	Goodness of fit <i>p</i> -value < 0.1			

Table C-64. Benchmark dose results for decreased relative uterine weight in female rats—log-normal, constant variance, BMR = 1 standard deviation (Butenhoff et al., 2012; van Otterdijk, 2007)

		1 standard deviation		1 standard deviation				BMDS	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes		
Constant variance									
Exponential 2 (CV—log- normal)	Restricted	1.9961	0.9991	0.0518	147.6232	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1		
		1 star devia	ndard ation			BMDS			
--	--------------	-----------------	----------------	-----------------	----------	----------------	---	--	
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes		
Constant varian	се								
Exponential 3 (CV— log- normal)	Restricted	2.0457	1.0012	0.0249	149.5811	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1		
Exponential 4 (CV— log- normal)	Restricted	1.9491	0.6763	0.0246	149.6001	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1		
Exponential 5 (CV— log- normal)	Restricted	1.2532	0.6896	0.2457	145.0275	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)		
Hill (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution		
Polynomial (5 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution		
Polynomial (4 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution		
Polynomial (3 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution		
Polynomial (2 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution		
Power (CV— log-normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution		
Linear (CV— log-normal)	Unrestricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution		

C.2.18. DECREASED ABSOLUTE UTERINE WEIGHT–FEMALE RAT (<u>Butenhoff et al., 2012</u>; <u>van</u> <u>Otterdijk, 2007</u>)

Dose (mg/kg-d)	n	Mean	SD
0	10	0.731	0.27
0.156	10	0.646	0.09
0.312	10	0.691	0.18
0.625	10	0.818	0.35
1.25	10	0.409	0.13
2.5	10	0.26	0.03

 Table C-65. Dose-response data for decreased absolute uterine weight in female rats (<u>NTP. 2018</u>)

Table C-66. Benchmark dose results for decreased absolute uterine weight in female rats—BMR = constant variance, 1 standard deviation (<u>Butenhoff et al.</u>, <u>2012; van Otterdijk, 2007</u>)

		1 star devia	idard ition			BMDS		
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes	
Constant varian	ce							
Exponential 2 (CV—normal)	Restricted	0.8877	0.5920	0.0083	-6.1338	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2	
Exponential 3 (CV—normal)	Restricted	1.2592	0.7971	0.0140	-7.2318	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Exponential 4 (CV—normal)	Restricted	0.8877	0.5920	0.0083	-6.1338	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2	
Exponential 5 (CV—normal)	Restricted	1.2039	0.9713	0.2538	-13.7789	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)	
Hill (CV—normal)	Restricted	1.1828	0.8675	0.1306	-11.7788	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05)	
Polynomial (5 degree) (CV—normal)	Restricted	1.2569	0.8354	0.0076	-5.9234	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Polynomial (4 degree) (CV—normal)	Restricted	1.2569	0.8354	0.0076	-5.9234	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	

		1 stan devia	idard ition			BMDS		
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes	
Constant varian	ce							
Polynomial (3 degree) (CV—normal)	Restricted	1.2569	0.8354	0.0076	-5.9234	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Polynomial (2 degree) (CV—normal)	Restricted	1.2569	0.8354	0.0076	-5.9234	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Power (CV—normal)	Restricted	1.3086	0.8477	0.0088	-6.2298	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Linear (CV—normal)	Unrestricted	1.0823	0.8275	0.0163	-7.7099	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	

Table C-67. Benchmark dose results for decreased absolute uterine weight in female rats—nonconstant variance, BMR = 1 standard deviation (<u>Butenhoff et al., 2012; van Otterdijk, 2007</u>)

		1 stan devia	idard ition			BMDS		
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes	
Non-constant va	ariance							
Exponential 2 (NCV— normal)	Restricted	1.3500	0.9186	<0.0001	-25.2943	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Exponential 3 (NCV— normal)	Restricted	1.8175	1.3964	<0.0001	-33.2616	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2	
Exponential 4 (NCV— normal)	Restricted	1.3502	0.9186	<0.0001	-25.2943	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Exponential 5 (NCV— normal)	Restricted	1.2424	1.1367	0.0036	-42.1526	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Hill (NCV— normal)	Restricted	1.2387	1.1069	0.0103	-44.1525	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Polynomial (5 degree) (NCV— normal)	Restricted	2.0088	1.5693	0.0001	-33.9754	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	

		1 star devia	ndard ation			BMDS		
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes	
Non-constant variance								
Polynomial (4 degree) (NCV— normal)	Restricted	2.0088	1.5692	0.0001	-33.9754	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Polynomial (3 degree) (NCV— normal)	Restricted	2.0088	1.5692	0.0001	-33.9754	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Polynomial (2 degree) (NCV— normal)	Restricted	2.0088	1.5692	0.0001	-33.9754	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Power (NCV— normal)	Restricted	1.9555	1.5188	<0.0001	-32.0845	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1	
Linear (NCV— normal)	Unrestricted	1.6526	1.2761	<0.0001	-30.8879	Questionable	Nonconstant variance test failed (Test 3 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Residual for Dose Group Near BMD > 2	

Table C-68. Benchmark dose results for decreased absolute uterine weight in female rats—log-normal, constant variance, BMR = 1 standard deviation (<u>Butenhoff et al., 2012</u>; <u>van Otterdijk, 2007</u>)

		1 stan devia	idard ition			BMDS		
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes	
Constant varian	се							
Exponential 2 (CV—log- normal)	Restricted	1.0282	0.5795	0.0129	-43.7584	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.	
Exponential 3 (CV— log- normal)	Restricted	1.2617	0.6141	0.0101	-43.1248	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response std. dev. > 1.5 actual response std. dev.	
Exponential 4 (CV— log- normal)	Restricted	1.0282	1.0189	0.0129	-43.7584	Questionable	Constant variance test failed (Test 2 <i>p</i> -value < 0.05) Goodness of fit <i>p</i> -value < 0.1 Modeled control response	

		1 star devia	ndard ation			BMDS		
Models	Restriction	BMD	BMDL	<i>p</i> -Value	AIC	classification	BMDS notes	
Constant varian	ce							
							std. dev. > 1.5 actual response std. dev.	
Exponential 5 (CV— log- normal)	Restricted	1.2149	0.9197	0.3929	-50.5863	Questionable	Constant variance test faile (Test 2 <i>p</i> -value < 0.05) Modeled control response std. dev. > 1.5 actual response std. dev.	
Hill (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution	
Polynomial (5 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution	
Polynomial (4 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution	
Polynomial (3 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution	
Polynomial (2 degree) (CV— log- normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution	
Power (CV— log-normal)	Restricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution	
Linear (CV— log-normal)	Unrestricted	-	-	-	-	Unusable	BMD computation failed Model was not run. Adverse direction "down" not compatible with lognormal distribution	

1

APPENDIX D. ADVERSE OUTCOME PATHWAY/ MODE OF ACTION(AOP/MOA)-BASED APPROACH FOR EVALUATING PFDA-INDUCED MECHANISM OF HEPATOXITY

D.1. OBJECTIVE AND METHODOLOGY

1	The goal of the qualitative analysis described here is to evaluate the available mechanistic
2	evidence for PFDA-induced liver effects to assess the biological plausibility of effects observed in
3	animal models and identify mechanistic pathways that are conserved across species and strains of
4	animals and liver cell culture models and are therefore more relevant to human health. The
5	available mechanistic and toxicological evidence was organized and evaluated in concordance with
6	the frameworks used for mode of action (MOA) analysis for non-cancer effects and development of
7	adverse outcome pathways (AOP) ¹ (<u>Edwards et al., 2016; Boobis et al., 2008; IPCS, 2007</u>). PFDA-
8	induced hepatic effects reported in in vivo and cell culture studies were organized according to the
9	following levels of biological organization: molecular interactions, cellular effects, organ effects, and
10	organism effects. The analysis described here was focused on the concordance of key events and
11	adverse responses across species to obtain clarification on the relevance of animal studies to
12	human health.
13	In addition to analyzing the available evidence published in the peer-reviewed literature,
14	EPA also considered mechanistic evidence from in vitro high throughput screening (HTS) assays on
15	PFDA available from the EPA's CompTox Chemicals Dashboard
16	(https://comptox.epa.gov/dashboard) (U.S. EPA, 2019). Bioactivity data from the ToxCast and
17	Tox21 collaborative projects were also considered at the same levels of biological organization
18	described below. A more detailed description of the HTS analysis and results is provided in
19	Appendix E.

¹Although the World Health Organization (WHO)-International Programme on Chemical Safety (IPCS)-MOA and the Organization for Economic Co-operation and Development (OECD)-AOP frameworks are similar in the identification and analysis of key events following modified Bradford-Hill criteria (<u>Meek et al., 2014</u>), AOPs are chemically agnostic, whereas MOA analyses are intended to inform health assessments of individual (or groups of) chemical(s) (<u>Edwards et al., 2016</u>).

D.2. PROPOSED MOA/AOP APPROACH FOR EVALUATING PFAS-INDUCED LIVER TOXICITY

The proposed MOA displayed in Figure D-1 is based on molecular initiating events, key
 events, and adverse outcomes identified in previous mechanistic evaluations and reviews on PFOS
 and PFOA (ATSDR, 2018; Li et al., 2017; U.S. EPA, 2016a, b), which are structurally related to PFDA
 and among the most well-studied PFAS. Additional reviews on biological pathways associated with
 chemical-induced cancer and noncancer liver effects were also consulted (see citations below). A
 summary of the MOA is presented below.

7 At the molecular level, experimental studies using in vivo and cell culture models have 8 shown that perfluorinated compounds such as PFOS and PFOA can activate several nuclear 9 receptor pathways including the constitutive androstane receptor (CAR), the pregnane X receptor 10 (PXR), the farnesoid X receptor (FXR), the peroxisome proliferator activated receptor alpha 11 (PPAR α) and gamma (PPAR γ), estrogen receptor alpha (ER α) and other receptor-independent cell 12 signaling pathways (e.g., phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-Akt) 13 signal transduction pathway, and the nuclear factor kappa B pathway [NFκB]) (ATSDR, 2018; Li et 14 al., 2017; U.S. EPA, 2016a, b). PFOS- and PFOA-induced activation of PPAR α is associated with 15 hepatocellular hypertrophy caused by peroxisome proliferation, and increased peroxisomal fatty 16 acid β oxidation and cytochrome P450 4A (CYP4A) expression and activity (ATSDR, 2018; U.S. EPA, 17 <u>2016a, b</u>), and altered cholesterol metabolism (Li et al., 2017). Increased PPAR α activity can lead to 18 oxidative stress via induction of acyl CoA oxidase expression and activity and to H_2O_2 production in 19 peroxisomes (Hall et al., 2012). Several studies have used genetically modified animal and cell 20 culture models and immortalized human cell lines to evaluate potential PFOS or PFOA activation of 21 the human PPARa. COS-1 cells transfected with the murine or human PPARa were responsive to 22 PFAS exposure (<u>U.S. EPA, 2016a, b</u>), and F1 generation PPAR α -humanized mice were responsive to 23 PFOA-induced expression responsive genes on GD 18, but unlike wild type animals this response 24 was not apparent on PND 20 (U.S. EPA, 2016b; Takacs and Abbott, 2007). Studies using human 25 liver cell lines or humanized animal models suggest that humans are less sensitive to PPARa 26 activation by the perfluorinated compounds PFOS and PFOA (reviewed in Li et al. (2017) and U.S. 27 EPA (2016a)). PPARα has also been shown to be activated by exposure to several PFAS, including 28 PFOS, PFOA, PFNA, and PFHxS (<u>ATSDR, 2018</u>; Li et al., 2017). Although PPARα is not expressed in 29 high levels in the liver, its activation by pharmaceuticals and xenobiotic compounds has been 30 proposed to be associated with hepatic steatosis caused by lipid accumulation (Angrish et al., 2016; 31 Mellor et al., 2016). 32 As described above, exposure to perfluorinated compounds such as PFOS and PFOA has also 33 been shown to activate other nuclear receptor and cell signaling pathways including the CAR, PXR,

- **34** FXR, ERα, NFκB, and the oxidative stress responsive nuclear factor erythroid 2 related factor 2
- 35 (Nrf2) (<u>ATSDR, 2018; Li et al., 2017; U.S. EPA, 2016a</u>). Furthermore, experiments using null animal
- 36 models exposed to several PFAS suggest that activation of CAR/PXR occurs independently of PPARα

- (ATSDR, 2018; Li et al., 2017). Previous analyses of chemical-induced hepatotoxicity suggest that
 activation of these cell signaling pathways in experimental models is associated with increased
 expression and activity of xenobiotic metabolizing enzymes (XMEs) (Joshi-Barve et al., 2015; Hall et
 al., 2012), formation of reactive metabolites, alterations in cellular lipid metabolism (Angrish et al.,
 2016), and endoplasmic reticulum damage (Joshi-Barve et al., 2015).
 At the cellular level, exposure to PFAS such as PFOS and PFOA has been shown to increase
 reactive oxygen species production and oxidative damage to cellular macromolecules (ATSDR,
- 8 <u>2018; Li et al., 2017; U.S. EPA, 2016a</u>); promote mitochondrial damage, inhibit mitochondrial
- 9 function, activate mitochondrial-mediated cell death (<u>Li et al., 2017</u>; <u>U.S. EPA, 2016b</u>); increase
- 10 endoplasmic reticulum stress (U.S. EPA, 2016b); induce DNA damage (ATSDR, 2018; U.S. EPA,
- 11 <u>2016b</u>); disrupt intercellular gap junction communication (<u>ATSDR, 2018</u>); elevate
- 12 production/levels of proinflammatory cytokines (U.S. EPA, 2016b); alter lipid and glucose
- 13 metabolism and bile acid biosynthesis (U.S. EPA, 2016a, b); and increase hepatocellular death (Li et
- 14 <u>al., 2017; U.S. EPA, 2016a</u>). These pathways/mechanisms are associated with toxicant-induced
- 15 liver disease and can promote steatohepatitis and fibrosis (<u>Angrish et al., 2016</u>; <u>Cao et al., 2016</u>;
- 16 <u>Joshi-Barve et al., 2015; Wahlang et al., 2013</u>).

Figure D-1. This proposed MOA is based on previous analyses on PFASinduced (e.g., PFOA/PFOS) liver toxicity and the role of nuclear receptor pathways in hepatotoxicity.

D.3. SYNTHESIS OF MECHANISTIC STUDIES AND SUPPLEMENTAL INFORMATION FOR PFDA

1 As mentioned previously, mechanistic evidence from peer-reviewed studies and HTS assays 2 from EPA's ToxCast/Tox21 database were organized and evaluated according to the proposed MOA 3 for the noncancer-liver effects associated with exposure to PFAS (see Figure D-1). The evidence 4 consists primarily of in vitro and in vivo studies conducted in liver tissues derived from human and 5 animal models. When available, cell-free receptor binding studies and gene reporter assays 6 profiling different key events in receptor signaling pathways in other cell tissue models 7 (e.g., receptor dimerization, cofactor recruitment, DNA binding and gene transactivation) were 8 included in the analysis to provide additional information on the activation of nuclear receptor 9 pathways and on potential species-specific differences in receptor sensitivity relevant to the

10 mechanisms of liver toxicity for PFDA and other PFAS.

D.3.1. MOLECULAR INITIATING EVENTS

As discussed below, the available studies have examined several nuclear receptor and cell
 signaling pathways associated with chemical-induced liver toxicity.

13 **ΡΡΑR**α

14 PPAR α is involved in a variety of processes, including nutrient metabolism, tissue 15 development, cell differentiation, xenobiotic biotransformation and inflammation (Li et al., 2017). 16 Induction of PPAR α activity is primarily associated with increased CYP450 activity, peroxisomal 17 proliferation and hepatomegaly (liver enlargement) (Hall et al., 2012) and has been implicated in 18 the mechanisms of hepatotoxicity of PFAS such as PFOA and PFOS (ATSDR, 2018; U.S. EPA, 2016a). 19 Several experimental studies have evaluated PFDA-induced activation of the PPAR α in vivo in the 20 rat and mouse liver, and in human and rodent hepatocyte cell cultures. PFDA exposure was 21 associated with increased hepatic expression of PPAR α -responsive genes in Sprague Dawley rats 22 (<u>NTP, 2018</u>; <u>Sterchele et al., 1996</u>), C57BL/6J mice (<u>Abe et al., 2017</u>; <u>Cheng and Klaassen, 2008a</u>, b; 23 Maher et al., 2008) and SV129 mice (Luo et al., 2017). PFDA treatment has also been shown to 24 increase hepatic PPARα mRNA levels (Sterchele et al., 1996) and activity of the PPARα-responsive 25 enzyme acyl-CoA oxidase in Sprague Dawley rats (NTP, 2018). Chinje et al. (1994) exposed male 26 Wistar rats and Harley Guinea pigs to PFDA and reported increased CYP4A1 mRNA levels 27 (indicative of PPAR α activation) in rats, but no effects in Guinea pigs. These findings are consistent 28 with analyses, which conclude that Guinea pigs, along with Syrian hamsters and non-human 29 primates, are less responsive to PPAR α activation than other rodent models (Corton et al., 2018; 30 Hall et al., 2012). 31 Several cell culture and in vitro studies also report evidence considered supportive of the

in vivo findings. PFDA exposure increased mRNA levels of PPARα and PPARα-responsive genes in
 rat hepatoma FaO cells (Sterchele et al., 1996). Two studies evaluated PFDA-induced effects on

1 PPAR α -responsive genes in human hepatic progenitor cells (HepaRG). One study was unable to 2 measure activation of PPAR α or other nuclear receptors due to PFDA exposure associated with 3 cytotoxicity (100 μ M) but detected gene reported activity in non-human primate kidney cells 4 transfected with the mouse PPAR α (COS-1) (Abe et al., 2017). The other study that tested a lower 5 PFDA concentration (45 μ M) confirmed PPAR α activation (Lim et al., 2021). Rosen et al. (2013) 6 analyzed gene expression changes in response to PFDA treatment and reported higher 7 transcriptional activity in cultured primary human versus mouse hepatocytes, including the 8 induction of PPAR α -dependent and PPAR α -independent genes. The lower than expected pattern of 9 transcriptional activity for PFDA and other PFAS in cultured primary mouse hepatocytes compared 10 to previous in vivo studies was attributed to cell culture conditions and the absence of hepatic 11 non-parenchymal cells (Rosen et al., 2013). The authors also noted inconsistencies in the dose-12 response patterns of transcriptional activity in human hepatocytes across PFAS that could be due to 13 interindividual variation in donor cells or inherent differences in the pattern of gene expression of 14 tested chemicals (<u>Rosen et al., 2013</u>). PPARα-dependent reporter gene expression was also 15 induced after PFDA treatment in human hepatoma HepG2 cells (Rosenmai et al., 2018) and human 16 embryonic kidney HEK293 cells (Buhrke et al., 2013). HTS assays showed induction of PPAR α 17 transactivation in HepG2 cells but no activity in a binding reporter assay for the human PPAR α (see 18 Table E-2). However, a recent in vitro study in the peer-reviewed literature reported that PFDA can 19 bind to the human PPAR α ligand binding domain, albeit with lower affinity than the Baikal seal 20 PPAR α (Ishibashi et al., 2019). Potential interspecies differences in PPAR α activation were also 21 described by Routti et al. (2019); Wolf et al. (2012); Wolf et al. (2008), showing induction of 22 transcriptional activity of the mouse and polar PPAR α isoforms but minimal or no activity towards 23 the human PPAR α in non-human primate kidney cells (COS-1 and COS-7) exposed to PFDA. 24 Overall, the available evidence suggests that PFDA can activate hepatic PPAR α in rats and 25 mice in vivo and in cell culture models. There are inconsistencies with respect to the activation of 26 PPAR α in invitro human models possibly due to differences in experimental design and/or 27 potential confounding with PFDA-induced cytotoxicity. However, some evidence indicates that 28 PFDA interacts with the human PPAR α in immortalized and primary cells derived from liver tissue. 29 The data also suggest potential species differences in the binding affinity and activity of PPAR α with 30 the human isoform being potentially less sensitive compared to other mammalian species. In vivo 31 studies with genetically modified animals in which the gene encoding PPAR α is inactivated are 32 needed to further characterize these differences.

33 Other PPARs (PPARy and PPAR β/δ)

Two other PPAR subtypes have been characterized, PPARγ and PPARβ/δ, that play an
essential role in energy homeostasis and metabolism. PPARγ is known to regulate adipogenesis,
lipid and glucose metabolism and inflammatory pathways and its hepatic upregulation has been
proposed as a key mechanism in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) (<u>Al</u>
Sharif et al., 2014). PFDA-induced transactivation of human PPARγ was observed in HEK263

- 1 (Buhrke et al., 2013) and HepG2 cells (Zhang et al., 2014) and HTS results from the EPA's
- 2 ToxCast/Tox21 database displayed in Table F-2). PFDA also showed affinity for the human PPARγ
- 3 in receptor-ligand binding assays (<u>Zhang et al. (2014</u>) and Table E-2) but displayed no activity in
- 4 agonist/antagonist or cofactor recruitment assays related to this receptor conducted in HEK293T
- 5 cells (see Table E-2). Further, PFDA upregulated the expression of the PPARγ gene in primary
- 6 human hepatocytes (<u>Rosen et al., 2013</u>).
- 7 PPAR β/δ is involved in fatty acid metabolism and suppression of macrophage-derived
- 8 inflammation (Barish et al., 2006). Studies examining potential interaction between PFAS and
- 9 PPAR β/δ are limited. In vitro evidence showed that PFDA is capable of binding to the human
- 10 PPAR β/δ and activating its transcriptional activity in HEK293 cells at non-cytotoxic concentrations
- 11 (< 100 μM) (Li et al., 2019). In contrast, PFDA was inactive in ToxCast/Tox21 assays (see Table F-
- 12 2), evaluating human PPAR β/δ transactivation in HEK293 and HepG2 cells at concentrations up to
- 13 200 μM. Differences in experimental design (e.g., reporter system) could account for discrepancies
- in the results.
- 15 There is in vitro evidence that suggests potential activation of other human PPAR subtypes
- 16 after PFDA treatment, primarily PPAR γ and possibly PPAR β/δ . Experimental studies in animals
- 17 and humanized models would be critical to confirming and better characterizing the potential role
- 18 of these receptors in the mechanism(s) of hepatotoxicity from PFDA exposure.

19 *CAR/PXR*

20 Chemical-induced activation of CAR and PXR leads to increased expression and activity of 21 xenobiotic metabolizing enzymes (XMEs) (Li et al., 2017; Hall et al., 2012) and drug transport 22 proteins (Mackowiak et al., 2018). In addition to metabolism and excretion of xenobiotic 23 compounds (and endogenous substrates such as steroids and fatty acids), CAR/PXR-induced 24 xenobiotic enzyme activities have been proposed to promote formation of reactive metabolites 25 (Wang et al., 2014; Li et al., 2012), alter drug interactions (Mackowiak et al., 2018), and increase 26 oxidative stress, immune responses, and mitochondrial disfunction (Wang et al., 2014). CAR/PXR 27 activation can also alter lipid homeostasis and promote hepatic steatosis (Mackowiak et al., 2018; 28 Mellor et al., 2016). 29 Experimental studies have evaluated PFDA-mediated activation of CAR and PXR in rodents. 30 PFDA exposure led to increase in CAR mRNA levels, nuclear translocation of CAR, and increased 31 mRNA and/or protein levels of CAR- and PXR-responsive genes such as Cvp2B10 and Cvp3A11 in 32 C57BL6/6J mice (Abe et al., 2017; Cheng and Klaassen, 2008b). NTP (2018) also reported 33 increased in the mRNA levels of CAR-responsive genes, Cyp1B1 and cyp1B2, in Sprague-Dawley 34 rats. Further evaluation of the effects of PFDA on CYP450s in genetically modified mice devoid of 35 function of specific nuclear receptors revealed that PFDA-mediated Cyp2B10 mRNA expression is regulated by CAR and independent of PPARα, PXR or FXR (<u>Cheng and Klaassen, 2008b</u>). PXR was 36 37 also not required for the induction of Cyp3A11 mRNA after PFDA exposure (Cheng and Klaassen, 38 2008b).

1 Cell culture studies and HTS assays from the ToxCast database have also evaluated PFDA-2 induced activation of CAR and PXR. PFDA exposure resulted in increased mRNA and protein levels 3 of PXR but did not affect the expression of the PXR target gene, Cyp3A23, in primary rat hepatocytes (Ma et al., 2005). PXR-dependent CYP3A4 activation by PFDA was reported in HepG2 4 5 cells transfected with the human PXR (Zhang et al., 2017), and increased mRNA levels of CAR/PXR-6 responsive genes, CYP2B6 and CYP3A4, were detected in primary human hepatocytes after PFDA 7 treatment (<u>Rosen et al., 2013</u>). In primary mouse hepatocytes, PFDA treatment had no effect on 8 CAR-responsive genes, but according to the study authors this may have been caused by cell culture 9 conditions and time in culture before and during exposure (Rosen et al., 2013). An additional study 10 reported no effects on the induction of the mouse or human CAR in gene reporter assays using 11 nonhuman primate kidney COS-1 cells but failed to assess PFDA-induced expression of CAR-12 responsive genes in HepaRG cells due to increased cytotoxicity after chemical exposure (100 μ M) 13 (Abe et al., 2017). Using a lower PFDA concentration (45 µM), Lim et al. (2021) showed 14 upregulation of the CAR-target gene, CYP2B6. Gene reporter activity measured in HTS assays 15 conducted in HepG2 cells revealed PFDA-induced activation of the human PXR in 1 of 3 assays but 16 no activation of the human CAR across 4 assays (see Table E-2). PFDA also demonstrated binding 17 activity for the human PXR (see Table E-2). 18 Overall, the available evidence suggests that PFDA exposure can activate the murine CAR resulting in altered levels of CYP450s in vivo and, although not all of the available experiments 19

resulting in altered levels of CYP450S in vivo and, although not all of the available experiments
 were clearly positive, PFDA appears to interact with PXR in in vitro rodent and human model

21 systems. Future studies focusing on the potential involvement of these receptors in the

22 mechanisms of PFDA-induced liver effects would be informative.

23 *FXR*

24 FXR is a key regulator of bile acid synthesis and lipid metabolism (Russell, 2003). Deletion 25 of the mouse FXR gene (Nr1h4) leads to fatty liver and insulin resistance (Ma et al., 2006) and exacerbation of chemical-induced acute liver injury (<u>Takahashi et al., 2017</u>), while activation of FXR 26 27 in response to liver injury and disease may have a protective role (Han, 2018). PFDA was evaluated 28 in HTS from EPA's ToxCast/Tox21 database (see Analysis of relevant high throughput screening 29 assavs from the EPA's CompTox Chemicals Dashboard in Appendix E for more details). No FXR 30 activity was detected in assays related to receptor/cofactor interaction or agonist/antagonist 31 transactivation in human embryonic kidney HEK293 cells (see Table E-2). Conversely, PFDA 32 displayed agonist activity in a cell-free receptor-ligand binding assay and was active in one of two 33 assays profiling transcriptional activity of this receptor in a human liver cell line (HepG2) (see 34 Table E-2). Importantly, PFDA exhibited high potency for the human FXR compared to other 35 nuclear receptors (e.g., PPAR α/γ and CAR/PXR) based on estimated effective concentrations 36 (i.e., AC50 values) (see Figure F-2B). In summary, FXR appears to be a sensitive target of PFDA in 37 HTS assays and thus, similar to CAR above, experiments specifically targeting the potential role of 38 this receptor in the liver effects of PFDA would be informative.

1 Other Pathways

2 Additional cell signaling pathways have been evaluated in vivo and in liver cells in vitro. In

- Wistar rats and SV129 mice, PFDA exposure had no effects on mRNA levels of c-Jun/c-Fos (Luo et al., 2017) (Oguro et al., 1998). Similarly, PFDA exposure had no significant effects on aryl
- 5 hydrocarbon receptor (AHR)-inducible P450 activity in C57BL/6J mice (Brewster and Birnbaum,
- 6 <u>1989</u>) or mRNA expression of AHR-responsive genes (Cyp1A1/2) in C57BL/6J mice (<u>Cheng and</u>
- 7 Klaassen, 2008b) and HepaRG cells (Lim et al., 2021). However, PFDA increased 2,3,7,8-
- 8 Tetrachlorodibenzo-p-dioxin (TCDD)-induced AHR transactivation in an antagonist assay
- 9 conducted in mouse hepatoma Hepa 1.12cR cells (Long et al., 2013). Effects on inflammatory and
- 10 oxidative/cellular stress signaling involving the nuclear factor erythroid 2 related factor 2 (Nrf2),
- 11 nuclear factor kappa B pathway (NFκB), tumor necrosis factor alpha (TNFα), c-Jun-N-terminal
- 12 kinase (JNK) and activating transcription factor 2 (ATF-2) were reported following PFDA exposure
- 13 in rodents (see synthesis on Inflammation and Cellular Stress for more details).
- 14 In vitro HTS assays from ToxCast/Tox21 showed induction of target gene pathways in
- 15 HepG2 and HepaRG cells (measured as gene reporter activity) (see Table F-1), including several
- 16 nuclear receptors discussed previously. According to estimated AC50 values (concentration at half
- 17 maximal response), gene-specific activities occurred upstream but were closely associated with
- 18 responses indicative of cellular stress/cytotoxicity (see Figure E-1). Specifically, PFDA was active in
- all three assays measuring Nrf2 transcriptional or agonist activity but was inactive in
- 20 transactivation assays for NFκB and AHR in HepG2 and HepRG cells (see Table E-1). Induction of
- 21 transcriptional activity for JUN/FOS was demonstrated in HepaRG cells but not HepG2 cells with
- 22 PFDA exposure (see Table F-1).
- Overall, the available experimental studies suggest that in addition to activation of PPARα
 and CAR/PXR nuclear receptor pathways (and possibly PPARγ and FXR based on limited in vitro
 studies in human cells), exposure to PFDA may also promote activation of other cell signaling
 pathways associated with inflammatory and oxidative/cellular stress responses (see synthesis on
 Inflammation and Cellular stress in this Appendix for more details).

D.3.2. CELLULAR EFFECTS

- As discussed below, the available studies provide evidence on potential PFDA-induced
 alterations in hepatic expression and/or activity of XMEs, oxidative stress, cell and mitochondrial
 damage, inflammation, and alterations in liver metabolic functions.
- 31 Expression and Activity of XMEs
- 32 Several in vivo studies have evaluated PFDA-induced effects on the expression and activity
- of XMEs. In Wistar rats, PFDA exposure was associated with increased cytochrome P450 content
- 34 and activity of NADPH-cytochrome c (P-450) reductase (<u>Yamamoto and Kawashima, 1997</u>) and
- decreased GST protein levels and activity (<u>Oguro et al., 1998</u>; <u>Kawashima et al., 1995</u>; <u>Schramm et</u>

1 al., 1989). Furthermore, PFDA exposure altered bilirubin glucuronosyltransferase activities and 2 bilirubin, morphine, testosterone, and naphthol glucuronidation (Arand et al., 1991). In Fischer 3 rats, PFDA treatment resulted in decreased sulfotransferase protein levels (Witzmann et al., 1996) 4 and microsomal carboxylesterase activity (Derbel et al., 1996). A study using SV129 mice found 5 that PFDA exposure decreased hepatic mRNA levels of CYP450s, and organic-anion-transporting 6 polypeptides (OATPs) involved in the bile acid synthesis and uptake, while increasing mRNA levels 7 of UDP-glucuronosyltransferases (UGT) enzymes (Luo et al., 2017). PPAR α -null mice were mostly 8 resistant to these effects (Luo et al., 2017). Similarly, Cheng and Klaassen (2008b) reported that 9 PFDA-mediated downregulation of hepatic bile acid uptake transporters (OATPs and the Na+-10 taurocholate cotransporting peptide) is notably disrupted in PPAR α -null mice but not in CAR-, 11 PXR-, Nrf2- or FXR- null counterparts. As such, PPAR α appears to be involved in the modulation of 12 metabolizing enzymes and transport mechanisms important for bile acid homeostasis. 13 Several in vivo studies evaluated the effects of PFDA exposure on multidrug resistance 14 proteins, which play important roles in hepatic metabolic and detoxifying functions, including bile 15 acid excretion (Roth et al., 2019; Yang et al., 2014). In Sprague Dawley rats, PFDA exposure was 16 associated with decreased mRNA and protein levels of the hepatic multidrug resistance protein 2 17 (Mrp2), albeit effects were not statically significant (Johnson and Klaassen, 2002). A separate study 18 reported that PFDA exposure significantly increased Mrp2 mRNA levels in SV129 mice and that 19 PPAR α -null animals were resistant to this effect (Luo et al., 2017). Two studies using wild type and 20 PPAR α -null mice evaluated PFDA-induced changes in hepatic levels of Mrp3 and Mrp4 (Luo et al., 21 2017; Maher et al., 2008). Both studies report that PFDA treatment increased Mrp4 mRNA levels in 22 wild type SV129 or C57BL/6J mice, but the responses in PPAR α -null animals differed: Maher et al. 23 (2008) observed that elimination of PPAR α ameliorated this effect, while Luo et al. (2017) reported 24 that PPAR α -nulls were as responsive as wild type animals. Maher et al. (2008) observed that unlike 25 wild type mice, PPAR α -null animals were resistant to PFDA induction of Mrp3, and <u>Luo et al. (2017)</u> 26 reported no exposure-related effects on Mrp3 levels in either wild type or null animals. Luo et al. 27 (2017) and Maher et al. (2008) used a similar dose regimen (single i.p. injection of 80 mg/kg) but 28 Luo et al. (2017) sampled animals on day 5 post exposure whereas Maher et al. (2008) sampled 29 animals 48 hours post exposure) and test mouse strain (SV129 and C57BL/6, respectively) differed 30 between studies. These differences in experimental model and/or design features could account 31 for the perceived discrepancies in the results. <u>Maher et al. (2008)</u> also reported that Nrf2-null mice 32 were resistant to PFDA-induced expression of Mrp3 and Mrp4, and that pretreatment with 33 gadolinium chloride ameliorated PFDA-induction of Mrp4 mRNA levels but had no effect on Mrp3. 34 Overall, the results suggest that PPAR α and other signaling pathways (i.e., Nrf2 and Kupffer cell 35 activation) participate in PFDA-mediated disruption of hepatic efflux Mrp transporters. 36 A study evaluating transcriptomic changes in HepaRG cells with exposure to PFDA and 37 other long-chain PFAS observed enrichment of gene pathways involved in phase I and phase II 38 metabolism, transporters, bile acid metabolism, amino acid metabolism and carbohydrate

1 metabolism (Lim et al., 2021). An increase in transcriptomic response was reported with increasing 2 carbon chain length with PFDA being the most potent PFAS tested. Specifically with respect to 3 transporters, PFDA exposure was associated with the upregulation of xenobiotic efflux transporters 4 (e.g., ABCA3, ABCC3/MRP3, ABCC10/MRP7, and ABCG2/BCRP) and amino acid transporters 5 involved in protein synthesis (e.g., SLC1A4, SLC1A5, SLC6A9, SLC7A1, SLC7A2, SLC7A5, SLC7A11, 6 and SLC43A1), as well as the downregulation of bile acid or xenobiotic uptake transporters (e.g., 7 SLC10A1/NTCP, SLC02B1 and SLC04C1). These observations are consistent with a potential 8 compensatory mechanism against chemical-induced injury. The authors also noted that PFDA-9 mediated regulation of transporters appeared to be associated with the induction of Nrf2 rather 10 than PPARα or CAR (Lim et al., 2021). Similarly, HTS ToxCast/Tox21 assays showed PFDA-11 mediated induction of gene pathways associated with xenobiotic metabolism and transport (i.e., 12 CYP1A1, CYP2C19, CYP4A11, CYP4A22, ABCC3 and ABCG2,) in HepaRG cells (see Figure E-2 and 13 Table E-1). 14 The findings described above suggest that exposure to PFDA results in increased XME levels 15 and activity in animal models, which is supported by evidence on PFDA-induced activation of the 16 CAR/PXR signaling pathways, two key regulators of XMEs. Furthermore, evidence from 17 experiments using null animals suggest that PPAR α is important for PFDA-induced regulation of a 18 number of XMEs and transporters involved in bile acid homeostasis (e.g., CYP450, UGT OATP, and 19 Mrp proteins). Additional mechanisms involving Nrf2 and Kupffer cell-mediated inflammatory 20 responses appear to also play a role in regulating the expression of hepatic transporters in 21 response to chemical-induced toxicity. The disruption of bile acid synthesis and transport 22 mechanisms is consistent with the observed increases in markers of hepatobiliary function/injury 23 in mice following PFDA exposure (see synthesis on Cellular stress and Metabolic effects below). 24 Further studies are necessary to clarify inconsistencies in the results described above and to 25 characterize the specific role of PPAR α , Nrf2 and other cell signaling pathways (e.g., CAR/PXR) in 26 modulating XME expression and activity and associated downstream effects that could contribute 27 to the observed hepatic effects of PFDA exposure.

28 Oxidative Stress

Increased production of reactive oxygen species (ROS) can lead to hepatocellular toxicity as
 it can result in cellular damage (e.g., increase lipid peroxidation, protein oxidation, and oxidative

31 DNA damage) (Joshi-Barve et al., 2015; Wahlang et al., 2013) and activation of proinflammatory cell

- 32 signaling cascades (<u>Joshi-Barve et al., 2015</u>).
- 33 Several in vivo and cell culture studies have evaluated PFDA-induced oxidative stress. In

34 CD-1 mice, PFDA decreased the activity of antioxidant enzymes such as total superoxide dismutase

- 35 (T-SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, while increasing the level of
- 36 hepatic oxidative markers including ROS, thiobarbituric acid reactive substances (TBARS) and
- 37 malondialdehyde (MDA) in hepatic tissue (<u>Wang et al., 2020</u>). Likewise, PFDA exposure increased
- 38 hepatic expression of ROS-responsive genes (<u>Maher et al., 2008; Permadi et al., 1993</u>) and

2 rats, PFDA exposure consistently altered expression of ROS-sensitive proteins known to respond to 3 increased ROS including, glutathione-S-transferase, catalase, and glutathione reductase (Chen et al., 4 2001; Kim et al., 1998; Glauert et al., 1992; Ikeda et al., 1985). These findings are supported by the 5 observation that PFDA exposure results in the activation of the ROS-sensitive transcription factor, 6 Nrf2, in C57BL/6] mice (as indicated by the increase in the hepatic expression of the Nrf2 gene 7 marker, Ngo1) (Maher et al., 2008). Studies in PPAR α -null mice determined that PFDA-mediated 8 activation of the mouse Nrf2 was independent of PPAR α (<u>Maher et al., 2008</u>). Moreover, PFDA was 9 associated with an increase in oxidative DNA damage in rat liver (Huang et al., 1994; Takagi et al., 10 1991) in studies with repeated-dose exposure up to 54 weeks, while no alterations in oxidative 11 DNA damage (<u>Kim et al., 1998</u>), lipid peroxidation (<u>Glauert et al., 1992</u>), or changes in cellular 12 antioxidant levels (Glauert et al., 1992) were reported in single exposure studies in rats. Notably, 13 induction of microsomal lipid peroxidation in mice was also achieved after repeated-dose exposure 14 to PFDA for 2 weeks (Cai et al., 1995). 15 PFDA exposure induced ROS levels (Ojo et al., 2021; Wielsøe et al., 2015) and reduced

microsomal lipid peroxidation (Cai et al., 1995) in C57BL/6J mice. In Sprague Dawley and Wistar

intracellular glutathione (GSH) (<u>Ojo et al., 2021</u>) in HepG2 cells but did not affect the total cellular
antioxidant capacity (<u>Wielsøe et al., 2015</u>).

18 The available evidence suggests that PFDA exposure increases ROS production in animal 19 models and in HepG2 cells and may also promote ROS-related cellular damage (e.g., DNA oxidation 20 and lipid peroxidation) in rodent species after prolonged or repeated exposure. The specific 21 involvement of Nrf2 and other cell signaling pathways in PFDA-induced ROS and potential effects 22 on cellular antioxidant capacity and oxidative cellular and tissue damage with prolonged chemical 23 exposure remains to be elucidated.

24 Mitochondrial Damage

1

25 Mitochondrial damage is a mechanism associated with toxicant-induced alterations in 26 hepatocellular lipid balance (Angrish et al., 2016) and increased liver toxicity (Wahlang et al., 27 2013). Damage to mitochondria caused by oxidative stress, attenuation in mitochondrial 28 transmembrane potential, and alterations in membrane permeability, electron transport and 29 calcium fluxes are considered stimuli that induce hepatic steatosis (Kajser et al., 2012) and 30 mitochondrial-mediated liver cell death (Li et al., 2017; Cao et al., 2016). 31 Several in vivo studies using different animal species and strains have evaluated PFDA-32 induced responses in hepatic mitochondria. In Sprague Dawley rats, exposure to PFDA led to 33 reduced cytochrome c oxidase activity (Harrison et al., 1988) and increased mitochondrial swelling 34 (<u>Harrison et al., 1988</u>), a response that can lead to disruption of the mitochondrial membrane 35 [Jaeschke et al., 2012]. Consistent with this, PFDA exposure led to increased swelling and structural 36 alterations in liver mitochondria in CF-1 mice, Fischer rats, Syrian hamsters, and Guinea pigs;

- 37 responses varied across species with rats being most sensitive (<u>Van Rafelghem et al., 1987</u>). In
- 38 C57BL/6J mice and Fischer rats, PFDA treatment caused alterations in mitochondrial protein

- 1 content and increased mitochondrial enzyme activity (<u>Permadi et al., 1993</u>); (<u>Witzmann and</u>
- 2 <u>Parker, 1991; Kelling et al., 1987</u>). In vitro studies reported that isolated rat liver mitochondria
- 3 exposed to PFDA display uncoupling of electron transport and oxidative phosphorylation (Langley,
- 4 <u>1990</u>) and induction of mitochondrial permeability transition (<u>Wallace et al., 2013</u>). In primary
- 5 Sprague Dawley rat hepatocytes, PFDA treatment resulted in decreased mitochondrial metabolic
- 6 functions (Vanden Heuvel et al., 1991). In vitro HTS data showed changes in mitochondrial mass
- 7 but no effects on mitochondrial membrane potential in HepG2 cells after PFDA exposure (see
- 8 Table E-1).

9

- Overall, in vivo and in vitro studies suggest that PFDA exposure disrupts hepatic
- 10 mitochondrial proteins, integrity and function, and some of the observed effects appeared to be
- 11 conserved across different species of animals, including Syrian hamsters and Guinea pigs, known to
- 12 be low PPARα responders compared to other rodent models (Corton et al., 2018; Hall et al., 2012).
- 13 Additional studies assessing the potential mitochondrial effects of PFDA in human primary and
- 14 immortalized liver cells would help clarify the potential human relevance and essentiality of the
- 15 apparent PFDA-induced disruptions of mitochondrial pathways in PFDA-induced hepatotoxicity.

16 Inflammation

- 17 Hepatic inflammation is a mechanism associated with toxicant-induced liver injury (<u>Angrish</u>
- 18 <u>et al., 2016; Wahlang et al., 2013</u>). Activated macrophages and Kupffer cells produce cytokines
- **19** (e.g., TNFα, interleukin-6 [IL-6] and interleukin-10 [IL-10]) that activate hepatic stellate cells and
- 20 contribute toxicant-induced liver damage (<u>Joshi-Barve et al., 2015</u>; <u>Malhi and Gores, 2008</u>).
- PFDA-induced markers of hepatic inflammation and related mechanisms were evaluated in
 studies using rodent models. PFDA increased hepatic and/or serum protein levels of the
- 23 proinflammatory cytokine TNF α in C57BL/6J mice (<u>Maher et al., 2008</u>), CD-1 mice (<u>Wang et al.</u>,
- 24 <u>2020</u>) and Fisher-344 rats (<u>Adinehzadeh and Reo, 1998</u>). Induction of hepatic TNF- α levels were
- 25 accompanied by increases in other proinflammatory cytokines such as IL-1β, IL-18 and IL-6 and
- 26 increases in Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation
- 27 markers such as NLRP3, adaptor apoptosis-associated speck-like protein (ASC) and caspase-1 in
- 28 CD-1 mice (Wang et al., 2020). Maher et al. (2008) also reported that pretreatment with
- 29 gadolinium chloride, an anti-inflammatory agent that suppresses Kupffer cell responses,
- 30 ameliorated induction of TNF α levels in PFDA-exposed C57BL/6J mice. These results suggest that
- 31 Kupffer cells may play a role in pro-inflammatory responses following PFDA exposure. Another
- **32** study evaluated the involvement of PPARα on PFDA-induced responses related to hepatic
- 33 inflammation. <u>Luo et al. (2017)</u> reported that exposure to PFDA induced anti-inflammatory
- 34 responses such as increased IL-10 mRNA levels and decreased phosphorylation of NFκB in SV129
- 35 mice and that these effects did not occur in exposed PPARα-null animals. Hepatic TNFα and IL-6
- 36 mRNA levels were unaffected by exposure regardless of the genetic background of the animals.
- 37 Similarly, Li et al. (2022) showed enrichment of gene pathways associated with anti-inflammatory

1 responses in the liver of female C57BL/6I mice exposed to PFDA. Specifically, mRNA expression of 2 cvtokines IL-18 and IL-18, caspase-1, inflammasome-related genes (NLRP1, NLRP3, and NLRC4) 3 and key regulators of inflammasome assembly (e.g., cellular inhibitor of apoptosis 2 [cIAP2]) were 4 suppressed. The data also showed inhibition of T helper cell type 1 (Th1) differentiation in mouse 5 livers treated with PFDA. 6 The inconsistent responses on TNF α levels between Luo et al. (2017) versus Maher et al. 7 (2008), Adinehzadeh and Reo (1998) and Wang et al. (2020) may have been due to differences in 8 experimental design. Adinehzadeh and Reo (1998) and Maher et al. (2008) measured protein 9 levels 24 and 48 hours, respectively, after a single dose of 50–80 mg/kg via i.p. injection, whereas 10 Luo et al. (2017) measured transcription (i.e., mRNA levels) on day 5 after a single i.p. injection of 11 80 mg/kg. The negative response on TNF α in the Luo et al. (2017) study is consistent with the 12 observed anti-inflammatory response (i.e., inhibition NFkB and IL-10) and may reflect a 13 compensatory mechanism following initial acute hepatic injury (Luo et al., 2017). Furthermore, 14 Wang et al. (2020) evaluated protein levels of TNF α after oral administration of PFDA (13 mg/kg) 15 for 12 days, demonstrating induction of $TNF-\alpha$ and other pro-inflammatory markers with sustained 16 PFDA exposure. 17 In summary, although uncertainties remain, PFDA exposure appears capable of promoting

both pro- and anti-inflammatory responses in rodents, and PPARα may be involved in some of
these effects.

20 Cellular Stress

21 Several in vivo studies have evaluated markers of cellular stress after exposure to PFDA. As 22 described in the Animal Studies section for liver effects in the main assessment document (see 23 Section 3.2.1), short-term oral exposure to PFDA has been shown to promote degenerative changes 24 such as necrosis (Frawley et al., 2018; NTP, 2018) and increase in serum biomarkers of hepatocyte 25 damage in Sprague Dawley rats (<u>NTP, 2018</u>) and CD-1 mice (<u>Wang et al., 2020</u>). Liver cell necrosis 26 can promote steatohepatitis and fibrosis by exacerbating tissue damage via increased release of 27 cellular contents which in turn trigger proinflammatory responses and death of neighboring 28 hepatocytes (Cattley and Cullen, 2018; Joshi-Barye et al., 2015). One study using Wistar rats 29 evaluated PFDA-induced effects on cytoskeletal proteins and reported no exposure related 30 alterations (Witzmann and Parker, 1991). Additional effects indicative of cell damage/stress 31 include PFDA-induced disruptions to the endoplasmic reticulum in the livers of Fischer or Sprague-32 Dawley rats, CD-1 mice, Syrian hamsters, and Guinea pigs (Harrison et al., 1988; Van Rafelghem et 33 al., 1987), and dysregulation in intercellular gap junctions in Fischer rat and WB-F344 liver 34 epithelial cells (Sovadinova et al., 2015). Wang et al. (2020) also reported increased expression of 35 proapoptotic protein markers, Bax and cleaved caspase-3, in the liver of CD-1 mice exposed to PFDA. Furthermore, PFDA exposure was associated with increases in serum markers of hepatocyte 36 37 and biliary damage (ALT, AST, and ALP) in wildtype SV129 mice that corresponded with the

- 1 activation of responses indicative of cellular stress signaling, including phosphorylation of JNK and
- 2 its downstream target, ATF-2 (<u>Luo et al., 2017</u>). Notably, PPARα-null animals did not show these
- 3 effects (<u>Luo et al., 2017</u>).
- 4 Cell viability and DNA damage were not affected in HepG2 cells exposed to PFDA
- 5 concentrations of up to 100 μM across two studies (<u>Rosenmai et al., 2018</u>; <u>Wielsøe et al., 2015</u>) but
- 6 three other studies reported that PFDA induced cytotoxicity in HepG2 cells in a concentration-
- 7 dependent manner (effective concentrations causing 50% cytotoxicity [IC₅₀] were 14.10–15 μM)
- 8 (<u>Ojo et al., 2021; Ojo et al., 2020; Buhrke et al., 2013</u>). Similarly, PFDA elevated markers of cellular
- 9 stress and cytotoxicity in HTS assays conducted in HepG2 cells at higher concentrations (AC50
- 10 values ranging from 106.54 to 122.76 μM). PFDA-induced cytotoxicity was also reported in
- 11 HepaRG cells ((<u>Abe et al., 2017</u>) and Table E-1 of the ToxCast/Tox21 data summary), primary rat
- 12 and human hepatocytes (<u>Rosen et al., 2013</u>), immortalized human fetal liver cells (HL-7702) (<u>Hu et</u>
- 13 <u>al., 2014</u>).
- 14 Overall, the available evidence suggests that PFDA exposure increases hepatocyte
- 15 cytotoxicity in in vitro and in vivo animal models, including species considered less sensitive to
- 16 PPARα activation (i.e., Syrian hamsters and Guinea pigs). Studies using null animals suggest that
- 17 stress responses related to disruption of bile acid homeostasis in mice may be mediated, at least in
- 18 part, by PPARα. However, the potential involvement of other cellular signaling pathways in
- 19 PFDA-induced liver cell stress has not been investigated.

20 Metabolic Effects

- Toxicant-induced alterations in hepatocyte function can result in abnormal metabolism and
 accumulation of cholesterol, fatty acids and triglycerides, and exacerbate effects caused by steatosis
 (Angrish et al., 2016), which in turn may increase susceptibility to other insults or progress to
- 24 steatohepatitis (<u>Yang et al., 2014</u>; <u>Wahlang et al., 2013</u>).
- 25 PFDA-induced effects on liver metabolic function have been evaluated in multiple rodent
- 26 models. In Wistar, Fischer, and Sprague-Dawley rats PFDA exposure was associated with
- 27 alterations in lipid composition (<u>Adinehzadeh et al., 1999</u>; <u>Yamamoto and Kawashima, 1997</u>; <u>Olson</u>
- 28 and Andersen, 1983), fatty acid transport (Vanden Heuvel et al., 1993) and metabolism (Reo et al.,
- 29 <u>1994</u>; <u>Davis et al., 1991</u>); and increased fatty acid and triglyceride accumulation (<u>Kudo and</u>
- 30 Kawashima, 2003; Adinehzadeh and Reo, 1998; Kawashima et al., 1995; Sterchele et al., 1994;
- 31 <u>Harrison et al., 1988; Van Rafelghem et al., 1988</u>). Rat studies have also reported increased hepatic
- 32 levels of cholesterol (<u>Kawashima et al., 1995</u>), bilirubin, and bile acids (<u>NTP, 2018</u>); decreased
- 33 microsomal electron transport (<u>Kawashima et al., 1995; Van Rafelghem and Andersen, 1988</u>);
- 34 alterations in hepatic cholesterol metabolism (<u>Davis et al., 1991</u>); glucose transport (<u>Goecke-Flora</u>
- 35 <u>et al., 1995</u>) and metabolism (<u>Goecke et al., 1994</u>); and decreased albumin levels (<u>NTP, 2018</u>;
- 36 <u>Witzmann and Parker, 1991</u>). PFDA also increases peroxisomal proliferation (Van Rafelghem et al.,
- 37 <u>1987</u>), activity of responsive enzymes such as acyl-CoA oxidases (<u>NTP, 2018</u>; <u>Kim et al., 1998</u>;
- 38 Huang et al., 1994; Borges et al., 1993; Vanden Heuvel et al., 1993; Borges et al., 1992; Glauert et al.,

1 1992; Intrasuksri and Feller, 1991; Kozuka et al., 1991a; Borges et al., 1990), and β-oxidation (Kudo and Kawashima, 2003; Kudo et al., 2000; Adinehzadeh et al., 1999; Kawashima et al., 1995; Kozuka 2 3 et al., 1991b), which are consistent with the evidence of PPAR α activation in experimental animal 4 models (see synthesis on Molecular Initiating Events above). As mentioned previously, PPARs, 5 including PPAR α , regulate genes involved in lipid and cholesterol metabolism and promote β oxidation of fatty acids (Xu et al., 2005). The findings from in vivo studies are supported by cell 6 7 culture studies using primary rat hepatocytes that report alterations in fatty acid metabolism 8 (Vanden Heuvel et al., 1991) and increased peroxisomal β -oxidation (Kudo et al., 2000). 9 Mice exposed to PFDA also demonstrate alterations in hepatic metabolic functions. PFDA 10 exposure increased activity of fatty acid metabolizing enzymes (Permadi et al., 1993) and increased 11 hepatic lipid accumulation in C57BL/6J mice (Brewster and Birnbaum, 1989), an initial 12 manifestation of fatty liver disease that may progress to fibrosis (Wahlang et al., 2013). PFDA 13 exposure caused alterations in the levels of bile acid metabolizing enzymes and transporters and 14 increased serum levels of several indicators of cholestasis (including bile acids and their 15 components and bilirubin) in mice (Luo et al., 2017; Maher et al., 2008) but PPAR α -null animals were resistant to these effects (Luo et al., 2017). Finally, Van Rafelghem et al. (1987) reported 16 17 extensive hepatic lipid vacuolization in hamsters and guinea pigs (and to a lesser extent in rats or 18 mice) after PFDA treatment. 19 Studies examining PFDA-mediated liver metabolic effects in human models are mostly 20 lacking. A study by <u>Zhang et al. (2013)</u> showed binding affinity towards the human liver fatty acid 21 protein by multiple PFAS, including PFDA, which may disrupt fatty acid uptake and transport 22 The available evidence suggests that PFDA exposure alters liver metabolic functions across 23 multiple rodent species, and studies using genetically modified animals suggest that PFDA-induced 24 disruption of bile acid homeostasis is at least partially mediated by PPAR α . More studies are 25 needed to understand the specific role that PPAR α and other cell signaling pathways play in PFDA-26 induced alterations in liver metabolic functions involving bile acid, glucose, lipid and cholesterol 27 metabolism and under what conditions these alterations might lead to steatohepatitis and other 28 liver pathologies in humans following prolonged chemical exposure.

D.3.3. ORGAN-LEVEL EFFECTS

29 Animal toxicity studies via the oral route have reported effects on histological and clinical 30 markers and organ weight measures, which are indicative of adverse responses in the liver. These 31 include changes in the incidence of hepatocellular necrosis, serum biomarkers of hepatobiliary and 32 liver damage and increased liver weights (see synthesis of Animal studies). A study by (NTP, 2018) 33 compared liver effects in rats after short-term exposure between PFDA (and other PFAS) and 34 Wyeth-14,643, which was used as a positive control for PPAR α activation. Much like PFDA, 35 Wyeth-14,643 caused increases in liver weights, changes in liver biomarkers in the blood and 36 hepatocyte hypertrophy; however, no evidence of necrosis or other degenerative lesions were

1 associated with Wyeth-14,643 exposure. The findings provide support for the hypothesis that 2 some PFDA-induced liver responses are mediated by mechanisms independent of PPARa. 3 Additional evidence of PFDA-induced liver weight changes from i.p. injection studies is 4 described herein. Several studies using rats and mice support increases in liver weight following 5 PFDA exposure (Abe et al., 2017; Luo et al., 2017; Maher et al., 2008; Kim et al., 1998; Chen et al., 1994; Chinje et al., 1994; Borges et al., 1993; Borges et al., 1992; Kozuka et al., 1991b; Borges et al., 6 7 1990; Brewster and Birnbaum, 1989; Schramm et al., 1989; Van Rafelghem and Andersen, 1988; 8 Kelling et al., 1987; Van Rafelghem et al., 1987; Kelling et al., 1986; Powers and Aust, 1986; Ikeda et 9 al., 1985; Olson and Andersen, 1983). One study in particular used wild type and PPAR α -null mice 10 and reported that PFDA exposure led to increases in liver weight regardless of the genetic 11 background of the exposed animals (Luo et al., 2017). Two other studies evaluated PFDA-induced 12 effects in Guinea pigs and Syrian hamsters. In Guinea pigs, exposure to PFDA did not have a 13 significant impact on relative liver weight (Chinje et al., 1994; Van Rafelghem et al., 1987), while in 14 Syrian hamsters treatment was associated with increased liver weight (Van Rafelghem et al., 1987). 15 As described above, Guinea pigs and Syrian hamsters are less responsive to PPAR α activation when 16 compared to other rodent models. However, the observation that PFDA exposure caused increases 17 in liver weights in Syrian hamsters and PPAR α -null mice suggests that other cell signaling pathways 18 may be contributing to PFDA-induced hepatomegaly in hamsters. 19 Overall, the available evidence from in vivo studies reports that PFDA exposure results in 20 organ-level effects, such as increases in liver weights that are consistently observed across multiple 21 species and may be mediated, at least in part, by PPAR α -independent mechanisms.

APPENDIX E. ANALYSIS OF RELEVANT HIGH-THROUGHPUT SCREENING ASSAYS FROM EPA'S CHEMICALS DASHBOARD

E.1. IN VITRO BIOACTIVITY DATA RELEVANT TO THE MECHANISMS OF PFDA-INDUCED LIVER EFFECTS

1 In vitro high throughput screening (HTS) assays for PFDA were downloaded from EPA's 2 CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard) ((U.S. EPA, 2019), accessed 3 November 3, 2022) which provides bioactivity data from the ToxCast and Tox21 collaborative 4 projects. Available information most pertinent to the analysis of the potential mechanisms of 5 PFDA-induced liver effects was extracted to supplement and augment mechanistic findings from 6 studies in the peer-reviewed literature previously described. Results (active/inactive, AC50 values, 7 and scaled activity) from in vitro assays in human hepatoma HepG2 cells and metabolically 8 competent human hepatic progenitor cells (HepaRG) cells were obtained, filtering out background 9 control assays and nonspecific responses from inducible reporter gene assays analyzed in the 10 negative fitting direction relative to the control (" dn"). Bioactivity data were analyzed based on the type of biological response or gene target using the annotation structure within the ToxCast assav 11 12 summary information ((U.S. EPA, 2019), accessed November 3, 2022). 13 PFDA was active in 74 of 238 unique assay endpoints (\sim 31%) in HepG2 and HepaRG cells, 14 inducing a range of cell- and gene-specific changes (see Figure E-1 and Table E-1). PFDA was 15 associated with cell cycle arrest and proliferation responses and induction of markers of oxidative 16 stress and cell death (see Table E-1). Alterations in nuclear size and mitochondrial mass were also 17 observed in HTS assays for PFDA with no apparent changes in microtubule conformation and 18 mitochondrial membrane potential and respiration (see Table E-1). Further, PFDA caused 19 upregulation of transcriptional activity that occurred generally at lower effective concentrations 20 (i.e., AC50) compared to the cell-based responses (see Figure E-1). Specifically, PFDA induced the 21 expression of CYP450 enzymes, growth factors, transporters and transcriptional factors, including 22 several xenobiotic-sensing nuclear receptors previously implicated in the mechanisms of liver 23 toxicity of PFDA or other PFAS (i.e., PPAR α/γ , PXR, and FXR) (see Figure E-2 and Table E-1). 24 In summary, PFDA elicited in vitro responses in HTS assays conducted in HepG2 and 25 HepaRG cells most consistently for cellular stress and cytotoxicity. Additionally, induction of gene 26 target pathways corresponding to several transcriptional factor/nuclear receptor activities 27 occurred upstream of the cell-mediated responses, albeit at similar effective concentrations.

1 Nuclear receptor activities were investigated more closely to provide further insights into 2 the putative interaction of PFDA with these receptor-mediated signaling pathways in 3 ToxCast/Tox21 assays profiling multiple endpoints (e.g., receptor binding, coregulator recruitment, 4 and gene transactivation) and cell types (see Table E-2). As mentioned above, PFDA induced 5 activity of specific steroid/xenobiotic sensing receptors, most notably FXR, PPAR and PXR (see 6 Figure E-2A). PFDA interacted with the human FXR in a receptor-ligand binding assay evaluating 7 agonist activity and in one of two independent assays measuring transcriptional activity in HepG2 8 cells but was inactive in four FXR-related assays in human embryonic kidney cells (HEK293T), 9 targeting receptor/cofactor recruitment and agonist/antagonist activities (see Table E-2). 10 Upregulation of transcriptional activity for PPAR α and PPAR γ but not PPAR β/δ (PPARD) was 11 demonstrated in HepG2 cells, and PFDA was found to interact with the human PPARy (but not 12 human PPAR α) in a receptor-ligand binding assay (see Table E-2). No activity was detected in 13 assays conducted in HEK293T cells profiling agonist/antagonist activities for PPARγ or PPARβ/δ or 14 receptor/cofactor recruitment for PPARy (see Table E-2). PFDA was active in two of four assays for 15 PXR, showing transcriptional induction in HepG2 cells (one of two independent assays) and direct 16 binding to the human PXR but no activity in an agonist assay using HepG2 cells (see Table E-2). 17 HNF4A, NURR1, RAR, ROR, RXR, and VDR were also targets of PFDA in reporter gene assays using 18 HepG2 cells and antagonist activity toward ERR was reported in HEK293T cells (see Table E-2). 19 PFDA targeted the ER and AR in in vitro HTS assays; however, overall activity for these receptors 20 was low (refer to Appendix E.2 for additional details on the HTS results for the ER and AR). PFDA 21 showed no appreciable activity in assays for GR, CAR, LXR, TR, and PR (Figure E-2A). Comparison 22 of AC50 values across the nuclear receptor assays indicate that PFDA exerts the highest potency 23 toward the human FXR with the lowest AC50 of 0.52 μ M in a cell-free receptor binding assay 24 (Figure E-2B), which is below the lower bound of the ToxCast cytotoxicity limit estimated for this 25 chemical (7.108 µM) ((<u>U.S. EPA, 2019</u>), accessed November 3, 2022). 26 Altogether, the results of the ToxCast/Tox21 HTS analysis provide some mechanistic 27 support for the PFDA-induced liver effects. PFDA caused upregulation of transcriptional activity in 28 human hepatoma HepG2 cells involving multiple nuclear receptor pathways previously implicated 29 in the MOA for PFDA-induced liver toxicity, namely PXR, FXR, and PPAR α/γ . These target gene 30 responses were associated with the induction of cellular stress/cytotoxicity. PFDA also interacted directly with the human PXR, FXR, and PPARy in receptor binding assays, demonstrating particular 31 32 sensitivity for the human FXR at concentrations below those associated with cytotoxicity and 33 suggesting that FXR may be an important target for this chemical.

Figure E-1. Bioactivity data for PFDA from in vitro HTS ToxCast/Tox21 assays conducted in human liver cell lines (HepG2 and HepaRG cells).

Scatterplots show AC50 and scaled activity values from assays visualized according to the type of biological response. AC50 values refer to the concentration that elicits half maximal response and the scaled activity refers to the response value divided by the activity cutoff. Assays for which chemicals were inactive are not displayed. Additional information on all tested assays in HepG2 and HepaRG cells can be found in Table E-1.

Figure E-2. Analysis of PFDA-induced upregulation of transcriptional activity in ToxCast/Tox21 assays conducted in human liver cell lines (HepG2 and HepaRG cells).

Bar graph compares AC50 values (concentration at half maximal response) for active assays. The scale for the AC50 values is shown in reverse order to visualize the most sensitive assays (the higher bar indicates a lower AC50 value). Additional information on the transcriptional activity assays can be found in Table E-1.

Figure E-3. Analysis of PFDA-induced nuclear receptor-related activities in ToxCast/Tox21 assays across multiple endpoints and cell types.

Panel A summarizes active/inactive calls from nuclear receptor assays mapped to specific target genes. Panel B compares AC50 values (concentration at half maximal response) for active assays. The scale for the AC50 values is shown in reverse order to visualize the most sensitive nuclear receptor activities (the higher bar indicates a lower AC50 value). Additional information on all tested nuclear receptor-related assays can be found in Table E-2.

Abbreviations: AR, androgen receptor; CAR, constitutive androgen receptor; ER, estrogen receptor; ERR, estrogen-related receptor; FXR, farnesoid X receptor; GR, glucocorticoid receptor; HNF4A, hepatocyte nuclear factors 4 alpha; LXR, liver X receptor; NURR1, nuclear receptor related-1 protein; PPAR, peroxisome proliferator-activated receptor; PXR, pregnane X receptor; RAR, retinoid acid receptor; ROR, RAR-related orphan receptor; RXR, retinoid X receptor; TR, thyroid hormone receptor; VDR, vitamin D receptor.

Table E-1. Bioactivity summary for PFDA from in vitro HTS assays from ToxCast/Tox21 conducted in human liver cell lines (HepG2 and HepaRG cells) and grouped by biological response/target^{a,b}

Assay name	Activity call	Scaled activity	AC50 (μM)	Assay design	Cell line
Cell cycle					
APR_HepG2_CellCycleArrest_72h_dn	Active	1.23	69.51	morphology reporter	HepG2
APR_HepG2_MitoticArrest_24h_up	Active	2.25	107.91	morphology reporter	HepG2
APR_HepG2_MitoticArrest_72h_up	Active	2.44	98.57	morphology reporter	HepG2
APR_HepG2_CellCycleArrest_24h_dn	Inactive	NA	NA	morphology reporter	HepG2
APR_HepG2_CellCycleArrest_24h_up	Inactive	NA	NA	morphology reporter	HepG2
APR_HepG2_CellCycleArrest_72h_up	Inactive	NA	NA	morphology reporter	HepG2
APR_HepG2_MitoticArrest_24h_dn	Inactive	NA	NA	morphology reporter	HepG2
APR_HepG2_MitoticArrest_72h_dn	Inactive	NA	NA	morphology reporter	HepG2
Cellular/organelle conformation	·				
APR_HepG2_NuclearSize_24h_dn	Active	1.33	128.23	morphology reporter	HepG2
APR_HepG2_NuclearSize_72h_dn	Active	1.51	121.20	morphology reporter	HepG2
APR_HepG2_MicrotubuleCSK_24h_dn	Inactive	NA	NA	conformation reporter	HepG2
APR_HepG2_MicrotubuleCSK_24h_up	Inactive	NA	NA	conformation reporter	HepG2
APR_HepG2_MicrotubuleCSK_72h_dn	Inactive	NA	NA	conformation reporter	HepG2
APR_HepG2_MicrotubuleCSK_72h_up	Inactive	NA	NA	conformation reporter	HepG2
APR_HepG2_NuclearSize_24h_up	Inactive	NA	NA	morphology reporter	HepG2
APR_HepG2_NuclearSize_72h_up	Inactive	NA	NA	morphology reporter	HepG2
Cellular stress/cytotoxicity	·				
APR_HepG2_CellLoss_24h_dn	Active	3.75	108.88	viability reporter	HepG2
APR_HepG2_CellLoss_72h_dn	Active	3.63	106.54	viability reporter	HepG2
APR_HepG2_p53Act_24h_up	Active	1.61	107.89	viability reporter	HepG2
APR_HepG2_p53Act_72h_up	Active	2.28	113.49	viability reporter	HepG2
APR_HepG2_P-H2AX_24h_up	Active	2.35	112.97	viability reporter	HepG2
APR_HepG2_P-H2AX_72h_up	Active	2.88	108.81	viability reporter	HepG2
APR_HepG2_StressKinase_72h_up	Active	1.50	122.76	enzyme reporter	HepG2
LTEA_HepaRG_LDH_cytotoxicity	Active	7.31	66.39	viability reporter	HepaRG
APR_HepG2_CellLoss_24h_up	Inactive	NA	NA	viability reporter	HepG2
APR_HepG2_CellLoss_72h_up	Inactive	NA	NA	viability reporter	HepG2
APR_HepG2_p53Act_24h_dn	Inactive	NA	NA	viability reporter	HepG2
APR_HepG2_p53Act_72h_dn	Inactive	NA	NA	viability reporter	HepG2
APR_HepG2_P-H2AX_24h_dn	Inactive	NA	NA	viability reporter	HepG2
APR_HepG2_P-H2AX_72h_dn	Inactive	NA	NA	viability reporter	HepG2
APR_HepG2_StressKinase_24h_dn	Inactive	NA	NA	enzyme reporter	HepG2
APR_HepG2_StressKinase_24h_up	Inactive	NA	NA	enzyme reporter	HepG2
APR_HepG2_StressKinase_72h_dn	Inactive	NA	NA	enzyme reporter	HepG2
ATG_XTT_Cytotoxicity_up	Inactive	NA	NA	viability reporter	HepG2

This document is a draft for review purposes only and does not constitute Agency policy.

Assay name	Activity call	Scaled activity	ΑC50 (μΜ)	Assay design	Cell line
CCTE_Simmons_MITO_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_AhR_LUC_Agonist_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_ARE_BLA_agonist_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_CAR_Agonist_viabillity	Inactive	NA	NA	viability reporter	HepG2
TOX21_CAR_Antagonist_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_CASP3_HEPG2	Inactive	NA	NA	inducible reporter	HepG2
TOX21_CASP3_HEPG2_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_MMP_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_PXR_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_RT_HEPG2_FLO_00hr_ctrl_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_RT_HEPG2_FLO_08hr_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_RT_HEPG2_FLO_16hr_ctrl_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_RT_HEPG2_FLO_24hr_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_RT_HEPG2_FLO_32hr_ctrl_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_RT_HEPG2_FLO_40hr_ctrl_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_RT_HEPG2_GLO_00hr_ctrl_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_RT_HEPG2_GLO_08hr_ctrl_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_RT_HEPG2_GLO_16hr_ctrl_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_RT_HEPG2_GLO_24hr_ctrl_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_RT_HEPG2_GLO_32hr_ctrl_viability	Inactive	NA	NA	viability reporter	HepG2
TOX21_RT_HEPG2_GLO_40hr_viability	Inactive	NA	NA	viability reporter	HepG2
Mitochondrial toxicity					
APR_HepG2_MitoMass_24h_dn	Active	4.72	117.36	morphology reporter	HepG2
APR_HepG2_MitoMass_72h_dn	Active	4.83	113.92	morphology reporter	HepG2
APR_HepG2_MitoMass_24h_up	Inactive	NA	NA	morphology reporter	HepG2
APR_HepG2_MitoMass_72h_up	Inactive	NA	NA	morphology reporter	HepG2
APR_HepG2_MitoMembPot_24h_dn	Inactive	NA	NA	membrane potential reporter	HepG2
APR_HepG2_MitoMembPot_24h_up	Inactive	NA	NA	membrane potential reporter	HepG2
APR_HepG2_MitoMembPot_72h_dn	Inactive	NA	NA	membrane potential reporter	HepG2
APR_HepG2_MitoMembPot_72h_up	Inactive	NA	NA	membrane potential reporter	HepG2
CCTE_Simmons_MITO_basal_resp_rate_OCR_dn	Inactive	NA	NA	respirometric reporter	HepG2
CCTE_Simmons_MITO_basal_resp_rate_OCR_up	Inactive	NA	NA	respirometric reporter	HepG2
CCTE_Simmons_MITO_inhib_resp_rate_OCR_dn	Inactive	NA	NA	respirometric reporter	HepG2
CCTE_Simmons_MITO_inhib_resp_rate_OCR up	Inactive	NA	NA	respirometric reporter	HepG2
CCTE_Simmons_MITO max resp rate OCR dn	Inactive	NA	NA	respirometric reporter	HepG2
CCTE Simmons MITO max resp rate OCR up	Inactive	NA	NA	respirometric reporter	HepG2
TOX21_MMP_ratio_down	Inactive	NA	NA	membrane potential reporter	HepG2

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE E-7

Assay name	Activity call	Scaled activity	ΑC50 (μΜ)	Assay design	Cell line
TOX21_MMP_ratio_up	Inactive	NA	NA	membrane potential reporter	HepG2
Upregulation of transcriptional activity					
ATG_EGR_CIS_up	Active	1.19	19.92377	inducible reporter	HepG2
ATG_ERa_TRANS_up	Active	1.50	16.43561	inducible reporter	HepG2
ATG_FXR_TRANS_up	Active	2.28	18.99931	inducible reporter	HepG2
ATG_HNF4a_TRANS_up	Active	1.59	80.32058	inducible reporter	HepG2
ATG_HSE_CIS_up	Active	2.31	28.98294	inducible reporter	HepG2
ATG_MRE_CIS_up	Active	1.78	12.43083	inducible reporter	HepG2
ATG_NRF2_ARE_CIS_up	Active	3.54	20.6361	inducible reporter	HepG2
ATG_NURR1_TRANS_up	Active	1.87	25.56622	inducible reporter	HepG2
ATG_Pax6_CIS_up	Active	1.56	29.70391	inducible reporter	HepG2
ATG_PPARa_TRANS_up	Active	1.30	18.12921	inducible reporter	HepG2
ATG_PPARg_TRANS_up	Active	1.31	11.97573	inducible reporter	HepG2
ATG_PPRE_CIS_up	Active	2.29	25.89358	inducible reporter	HepG2
ATG_PXR_TRANS_up	Active	1.42	30.14653	inducible reporter	HepG2
ATG_RARg_TRANS_up	Active	1.50	21.20087	inducible reporter	HepG2
ATG_RORE_CIS_up	Active	1.41	21.068	inducible reporter	HepG2
ATG_RXRb_TRANS_up	Active	4.26	16.95397	inducible reporter	HepG2
ATG_TGFb_CIS_up	Active	2.94	14.44227	inducible reporter	HepG2
ATG_VDRE_CIS_up	Active	1.25	19.38327	inducible reporter	HepG2
ATG_Xbp1_CIS_up	Active	2.05	31.73703	inducible reporter	HepG2
LTEA_HepaRG_ABCC3_up	Active	1.71	17.53302	inducible reporter	HepaRG
LTEA_HepaRG_ABCG2_up	Active	1.08	11.2217	inducible reporter	HepaRG
LTEA_HepaRG_BAX_up	Active	3.20	22.88926	inducible reporter	HepaRG
LTEA_HepaRG_BCL2_up	Active	6.13	14.76859	inducible reporter	HepaRG
LTEA_HepaRG_BCL2L11_up	Active	3.41	22.55949	inducible reporter	HepaRG
LTEA_HepaRG_CASP8_up	Active	2.45	33.09058	inducible reporter	HepaRG
LTEA_HepaRG_CCND1_up	Active	3.50	21.35921	inducible reporter	HepaRG
LTEA_HepaRG_CDKN1A_up	Active	2.49	13.57402	inducible reporter	HepaRG
LTEA_HepaRG_CFLAR_up	Active	3.93	23.40259	inducible reporter	HepaRG
LTEA_HepaRG_CYP1A1_up	Active	1.40	37.12706	inducible reporter	HepaRG
LTEA_HepaRG_CYP2C19_up	Active	1.08	0.911362	inducible reporter	HepaRG
LTEA_HepaRG_CYP4A11_up	Active	3.00	4.084149	inducible reporter	HepaRG
LTEA_HepaRG_CYP4A22_up	Active	2.39	5.093503	inducible reporter	HepaRG
LTEA_HepaRG_DDIT3_up	Active	9.91	24.56621	inducible reporter	HepaRG
LTEA_HepaRG_EGR1_up	Active	2.35	27.13929	inducible reporter	HepaRG
LTEA_HepaRG_EZR_up	Active	2.29	20.2641	inducible reporter	HepaRG
LTEA_HepaRG_FAS_up	Active	2.46	23.51647	inducible reporter	HepaRG
LTEA_HepaRG_FOXO3_up	Active	1.08	17.79771	inducible reporter	HepaRG

This document is a draft for review purposes only and does not constitute Agency policy.

Assay name	Activity call	Scaled activity	ΑC50 (μΜ)	Assay design	Cell line
LTEA_HepaRG_GADD45B_up	Active	1.37	316.2278	inducible reporter	HepaRG
LTEA_HepaRG_GADD45G_up	Active	3.77	16.26879	inducible reporter	HepaRG
LTEA_HepaRG_GCLC_up	Active	2.58	13.26529	inducible reporter	HepaRG
LTEA_HepaRG_HSPA1A_up	Active	2.48	86.07431	inducible reporter	HepaRG
LTEA_HepaRG_ICAM1_up	Active	1.37	16.93707	inducible reporter	HepaRG
LTEA_HepaRG_IGFBP1_up	Active	5.77	24.20317	inducible reporter	HepaRG
LTEA_HepaRG_IL6_up	Active	4.33	39.10404	inducible reporter	HepaRG
LTEA_HepaRG_JUN_up	Active	1.15	13.67962	inducible reporter	HepaRG
LTEA_HepaRG_KCNK1_up	Active	1.37	31.6189	inducible reporter	HepaRG
LTEA_HepaRG_KRT19_up	Active	1.75	13.95732	inducible reporter	HepaRG
LTEA_HepaRG_LPL_up	Active	3.94	20.11038	inducible reporter	HepaRG
LTEA_HepaRG_MMP1_up	Active	3.30	38.55908	inducible reporter	HepaRG
LTEA_HepaRG_MMP10_up	Active	3.14	35.00735	inducible reporter	HepaRG
LTEA_HepaRG_MYC_up	Active	3.67	17.50487	inducible reporter	HepaRG
LTEA_HepaRG_NFE2L2_up	Active	1.16	18.16403	inducible reporter	HepaRG
LTEA_HepaRG_PDK4_up	Active	4.93	24.64551	inducible reporter	HepaRG
LTEA_HepaRG_PEG10_up	Active	2.01	12.83903	inducible reporter	HepaRG
LTEA_HepaRG_PPP2R4_up	Active	3.31	23.18532	inducible reporter	HepaRG
LTEA_HepaRG_TGFA_up	Active	3.96	21.42175	inducible reporter	HepaRG
LTEA_HepaRG_TGFB1_up	Active	1.48	18.53422	inducible reporter	HepaRG
LTEA_HepaRG_TP53_up	Active	5.61	13.70365	inducible reporter	HepaRG
TOX21_ARE_BLA_agonist_ratio	Active	4.79	39.41989	inducible reporter	HepG2
ATG_Ahr_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_AP_1_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_AP_2_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_AR_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_BRE_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_C_EBP_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_CAR_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_CRE_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_DR4_LXR_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_DR5_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_E_Box_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_E2F_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_ERE_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_ERRa_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_ERRg_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_Ets_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_FoxA2_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_FoxO_CIS_up	Inactive	NA	NA	inducible reporter	HepG2

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE E-9

Assay name	Activity call	Scaled activity	AC50 (μM) Assay design		Cell line
ATG_GATA_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_GLI_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_GR_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_GRE_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_HIF1a_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_HNF6_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_IR1_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_ISRE_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_LXRa_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_LXRb_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_Myb_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_Myc_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_NF_kB_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_NFI_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_NRF1_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_Oct_MLP_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_p53_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_PBREM_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_PPARd_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_PXRE_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_RARa_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_RARb_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_RORb_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_RORg_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_RXRa_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_Sox_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_Sp1_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_SREBP_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_STAT3_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_TCF_b_cat_CIS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_THRa1_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
ATG_VDR_TRANS_up	Inactive	NA	NA	inducible reporter	HepG2
LTEA_HepaRG_ABCB1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_ABCB11_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_ABCC2_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_ACLY_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_ACOX1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_ADK_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_ALPP_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_APOA5_up	Inactive	NA	NA	inducible reporter	HepaRG

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Assay name	Activity call	Scaled activity	ΑC50 (μΜ)	Assay design	Cell line
LTEA_HepaRG_BAD_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_BID_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_CASP3_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_CAT_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_CYP1A2_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_CYP24A1_1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_CYP2B6_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_CYP2C8_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_CYP2C9_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_CYP2E1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_CYP3A4_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_CYP3A5_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_CYP3A7_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_CYP7A1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_EGF_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_FABP1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_FASN_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_FMO3_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_FOXO1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_GADD45A_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_GSTA2_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_GSTM3_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_HGF_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_HIF1A_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_HMGCS2_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_IGF1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_IL6R_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_LIPC_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_MIR122_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_MMP3_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_NFKB1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_NQO1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_PTEN_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_SDHB_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_SLC10A1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_SLC22A1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_SLC22A6_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_SLCO1B1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_STAT3_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_SULT2A1_up	Inactive	NA	NA	inducible reporter	HepaRG

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Assay name	Activity call	Scaled activity	AC50 (μM)	Assay design	Cell line
LTEA_HepaRG_THRSP_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_TIMP1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_TNFRSF1A_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_UGT1A1_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_UGT1A6_up	Inactive	NA	NA	inducible reporter	HepaRG
LTEA_HepaRG_XBP1_up	Inactive	NA	NA	inducible reporter	HepaRG
TOX21_AhR_LUC_Agonist	Inactive	NA	NA	inducible reporter	HepG2
TOX21_CAR_Agonist	Inactive	NA	NA	inducible reporter	HepG2
TOX21_CAR_Antagonist	Inactive	NA	NA	inducible reporter	HepG2
TOX21_PXR_Agonist	Inactive	NA	NA	inducible reporter	HepG2

^aData were sourced from EPA's CompTox Chemicals Dashboard ((U.S. EPA, 2019), accessed November 3, 2022).

^bBackground control assays and nonspecific responses from inducible reporter gene assays analyzed in the

negative fitting direction relative to the control ("_dn") are not presented herein.

NA = not applicable.

Assay name	Activity call	Scaled Activity	AC50 (μM)	Biological target	Assay design	Organism	Tissue	Cell line
ATG_CAR_TRANS_up	Inactive	NA	NA	CAR (NR1I3)	inducible reporter	human	liver	HepG2
ATG_PBREM_CIS_up	Inactive	NA	NA	CAR (NR1I3)	inducible reporter	human	liver	HepG2
TOX21_CAR_Agonist	Inactive	NA	NA	CAR (NR1I3)	inducible reporter	human	liver	HepG2
TOX21_CAR_Antagonist	Inactive	NA	NA	CAR (NR1I3)	inducible reporter	human	liver	HepG2
TOX21_ERR_Antagonist	Active	1.31	6.62	ERR (ESRRA)	inducible reporter	human	kidney	HEK293T
ATG_ERRa_TRANS_up	Inactive	NA	NA	ERR (ESRRA)	inducible reporter	human	liver	HepG2
ATG_ERRg_TRANS_up	Inactive	NA	NA	ERR (ESRRA)	inducible reporter	human	liver	HepG2
TOX21_ERR_Agonist	Inactive	NA	NA	ERR (ESRRA)	inducible reporter	human	kidney	HEK293T
TOX21_PGC_ERR_Agonist	Inactive	NA	NA	ERR (ESRRA)	inducible reporter	human	kidney	HEK293T
TOX21_PGC_ERR_Antagonist	Inactive	NA	NA	ERR (ESRRG)	inducible reporter	human	kidney	HEK293T
ATG_FXR_TRANS_up	Active	2.28	19.00	FXR (NR1H4)	inducible reporter	human	liver	HepG2
NVS_NR_hFXR_Agonist	Active	5.52	0.52	FXR (NR1H4)	binding reporter	human	NA	NA
ATG_IR1_CIS_up	Inactive	NA	NA	FXR (NR1H4)	inducible reporter	human	liver	HepG2
OT_FXR_FXRSRC1_0480	Inactive	NA	NA	FXR (NR1H4)	binding reporter	human	kidney	HEK293T
OT_FXR_FXRSRC1_1440	Inactive	NA	NA	FXR (NR1H4)	binding reporter	human	kidney	HEK293T
TOX21_FXR_BLA_agonist_ratio	Inactive	NA	NA	FXR (NR1H4)	inducible reporter	human	kidney	HEK293T
TOX21_FXR_BLA_antagonist_ratio	Inactive	NA	NA	FXR (NR1H4)	inducible reporter	human	kidney	HEK293T
ATG_GR_TRANS_up	Inactive	NA	NA	GR (NR3C1)	inducible reporter	human	liver	HepG2
ATG_GRE_CIS_up	Inactive	NA	NA	GR (NR3C1)	inducible reporter	human	liver	HepG2
NVS_NR_hGR	Inactive	NA	NA	GR (NR3C1)	binding reporter	human	NA	NA
TOX21_GR_BLA_Agonist_ratio	Inactive	NA	NA	GR (NR3C1)	inducible reporter	human	cervix	HeLa
TOX21_GR_BLA_Antagonist_ratio	Inactive	NA	NA	GR (NR3C1)	inducible reporter	human	cervix	HeLa

Table E-2. Bioactivity summary for PFDA from in vitro HTS assays evaluating nuclear receptor-related activities from ToxCast/Tox21 across multiple endpoints and cell types^{a,b,c}

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Assay name	Activity call	Scaled Activity	AC50 (μM)	Biological target	Assay design	Organism	Tissue	Cell line
ATG_HNF4a_TRANS_up	Active	1.59	80.32	HNF4A	inducible reporter	human	liver	HepG2
ATG_LXRb_TRANS_up	Inactive	NA	NA	LXR (NR1H2)	inducible reporter	human	liver	HepG2
ATG_DR4_LXR_CIS_up	Inactive	NA	NA	LXR (NR1H2 NR1H3)	inducible reporter	human	liver	HepG2
ATG_LXRa_TRANS_up	Inactive	NA	NA	LXR (NR1H3)	inducible reporter	human	liver	HepG2
ATG_NURR1_TRANS_up	Active	1.87	25.57	NURR1 (NR4A2)	inducible reporter	human	liver	HepG2
ATG_PPARa_TRANS_up	Active	1.30	18.13	PPAR (PPARA)	inducible reporter	human	liver	HepG2
NVS_NR_hPPARa	Inactive	NA	NA	PPAR (PPARA)	binding reporter	human	NA	NA
ATG_PPARd_TRANS_up	Inactive	NA	NA	PPAR (PPARD)	inducible reporter	human	liver	HepG2
TOX21_PPARd_BLA_agonist_ratio	Inactive	NA	NA	PPAR (PPARD)	inducible reporter	human	kidney	НЕК293Т
TOX21_PPARd_BLA_antagonist_ratio	Inactive	NA	NA	PPAR (PPARD)	inducible reporter	human	kidney	НЕК293Т
ATG_PPARg_TRANS_up	Active	1.31	11.98	PPAR (PPARG)	inducible reporter	human	liver	HepG2
NVS_NR_hPPARg	Active	5.15	13.73	PPAR (PPARG)	binding reporter	human	NA	NA
OT_PPARg_PPARgSRC1_0480	Inactive	NA	NA	PPAR (PPARG)	binding reporter	human	kidney	HEK293T
OT_PPARg_PPARgSRC1_1440	Inactive	NA	NA	PPAR (PPARG)	binding reporter	human	kidney	HEK293T
TOX21_PPARg_BLA_Agonist_ratio	Inactive	NA	NA	PPAR (PPARG)	inducible reporter	human	kidney	HEK293T
TOX21_PPARg_BLA_antagonist_ratio	Inactive	NA	NA	PPAR (PPARG)	inducible reporter	human	kidney	HEK293
ATG_PPRE_CIS_up	Active	2.29	25.89	PPAR (PPARA PPARD PPARG)	inducible reporter	human	liver	HepG2
TOX21_PR_BLA_Agonist_ratio	Inactive	NA	NA	PR (PGR)	inducible reporter	human	kidney	НЕК293Т
TOX21_PR_BLA_Antagonist_ratio	Inactive	NA	NA	PR (PGR)	inducible reporter	human	kidney	НЕК293Т
ATG_PXR_TRANS_up	Active	1.42	30.15	PXR (NR1I2)	inducible reporter	human	liver	HepG2
NVS_NR_hPXR	Active	2.34	32.07	PXR (NR112)	binding reporter	human	NA	NA
ATG_PXRE_CIS_up	Inactive	NA	NA	PXR (NR112)	inducible reporter	human	liver	HepG2
TOX21_PXR_Agonist	Inactive	NA	NA	PXR (NR1I2)	inducible reporter	human	liver	HepG2
ATG_RARa_TRANS_up	Inactive	NA	NA	RAR (RARA)	inducible reporter	human	liver	HepG2
TOX21_RAR_LUC_Agonist	Inactive	NA	NA	RAR (RARA)	inducible reporter	mouse	embryo	C3H10T1/2

This document is a draft for review purposes only and does not constitute Agency policy.E-14DRAFT-DO NOT CITE OR QUOTE

Assay name	Activity call	Scaled Activity	ΑC50 (μΜ)	Biological target	Assay design	Organism	Tissue	Cell line
TOX21_RAR_LUC_Antagonist	Inactive	NA	NA	RAR (RARA)	inducible reporter	mouse	embryo	C3H10T1/2
ATG_RARb_TRANS_up	Inactive	NA	NA	RAR (RARB)	inducible reporter	human	liver	HepG2
ATG_RARg_TRANS_up	Active	1.50	21.20	RAR (RARG)	inducible reporter	human	liver	HepG2
ATG_DR5_CIS_up	Inactive	NA	NA	RAR (RARA RARB RARG)	inducible reporter	human	liver	HepG2
ATG_RORb_TRANS_up	Inactive	NA	NA	ROR (RORB)	inducible reporter	human	liver	HepG2
ATG_RORg_TRANS_up	Inactive	NA	NA	ROR (RORC)	inducible reporter	human	liver	HepG2
TOX21_RORg_LUC_CHO_Antagonist	Inactive	NA	NA	ROR (RORC)	inducible reporter	Chinese hamster	ovary	СНО-К1
ATG_RORE_CIS_up	Active	1.41	21.07	ROR (RORA RORB RORC)	inducible reporter	human	liver	HepG2
ATG_RXRa_TRANS_up	Inactive	NA	NA	RXR (RXRA)	inducible reporter	human	liver	HepG2
OT_NURR1_NURR1RXRa_0480	Inactive	NA	NA	RXR (RXRA)	binding reporter	human	kidney	HEK293T
OT_NURR1_NURR1RXRa_1440	Inactive	NA	NA	RXR (RXRA)	binding reporter	human	kidney	НЕК293Т
ATG_RXRb_TRANS_up	Active	4.26	16.95	RXR (RXRB)	inducible reporter	human	liver	HepG2
ATG_THRa1_TRANS_up	Inactive	NA	NA	TR (THRA)	inducible reporter	human	liver	HepG2
TOX21_TR_LUC_GH3_Agonist	Inactive	NA	NA	TR (THRA THRB)	inducible reporter	rat	pituitary gland	GH3
TOX21_TR_LUC_GH3_Antagonist	Inactive	NA	NA	TR (THRA THRB)	inducible reporter	rat	pituitary gland	GH3
ATG_VDRE_CIS_up	Active	1.25	19.38	VDR	inducible reporter	human	liver	HepG2
ATG_VDR_TRANS_up	Inactive	NA	NA	VDR	inducible reporter	human	liver	HepG2
TOX21_VDR_BLA_agonist_ratio	Inactive	NA	NA	VDR	inducible reporter	human	kidney	HEK293T
TOX21_VDR_BLA_antagonist_ratio	Inactive	NA	NA	VDR	inducible reporter	human	kidney	HEK293T

^aData were sourced from EPA's CompTox Chemicals Dashboard ((U.S. EPA, 2019), accessed November 3, 2022).

^bNonspecific responses from inducible reporter gene assays analyzed in the negative fitting direction relative to the control ("_dn") are not presented herein. ^cIn vitro bioactivity data for the AR and ER are summarized in detail in Appendix E.2 and, therefore, are not presented herein. NA = not applicable.
E.2. IN VITRO BIOACTIVITY DATA RELEVANT TO THE POTENTIAL MECHANISMS OF REPRODUCTIVE TOXICITY

HTS screening ToxCast assays profiling in vitro activities for the AR, ER and steroid
 hormone biosynthesis were sourced from EPA's CompTox Chemicals Dashboard ((U.S. EPA, 2019),
 accessed November 3, 2022) to investigate potential mechanisms of disruption of steroid hormone
 receptor activation and steroidogenesis that may be important for the reproductive toxicity of
 PFDA.

6 The suite of ToxCast assays and model predictions for the ER and AR encompass several 7 endpoints in the signaling pathway of these receptors (e.g., receptor binding, receptor dimerization, 8 cofactor recruitment, DNA binding, gene expression, and cell proliferation) across multiple in vitro 9 models. PFDA was active in 2 of 17 AR assays (13%), demonstrating binding to the AR in rat 10 prostrate tissue and AR-induced cell proliferation in a human prostate carcinoma cell line (22Rv1), 11 but no activity in assays for cofactor recruitment and AR agonist/antagonist transactivation 12 conducted primarily in human cell lines (see Table E-3). In ER assays, PFDA was active in 2 of 21 13 assays (11%), demonstrating activity for the ER α (ESR1) in 1 of 2 assays measuring RNA 14 transcription in human hepatoma HepG2 cells and in an antagonist transactivation assays 15 measuring protein expression in human embryonic kidney HEK293T cells (see Table E-3). PFDA 16 was inactive in receptor binding assays for the ER α in human, boyine, and mouse tissues and in ER 17 α/β assays for receptor dimerization, transcription factor-DNA binding, agonist transactivation, and 18 ER-induced cell proliferation in different human cell lines. The AC50 values for the active ER and 19 AR assays ranged from 8.40 to 62.3 µM, which are above the lower bound of the estimated ToxCast 20 cytotoxicity limit (7.108 μM) ((U.S. EPA, 2019), accessed November 3, 2022). ToxCast model 21 predictions incorporating in vitro assay results and nonspecific responses such as cytotoxicity 22 suggest that PFDA is inactive for both ER/AR agonist and antagonist pathways (AUC = 0) (see 23 Table E-4). 24 The ToxCast database also included in vitro assays related to the regulation of 25 steroidogenesis. PFDA showed a lack of activity in a single assay measuring inhibition of

- 26 transcriptional activity for the aromatase gene (CYP19A1) in human breast cancer MCF-7 cells and
- 27 several assays measuring biosynthesis of steroid hormones including glucocorticoids, androgens,
- estrogens and progestogens in adrenal gland H295R cells (see Table E-5).

Assay name	Activity call	Scaled activity	AC50 (μM)	Biological target	Assay design	Organism	Tissue	Cell line
ACEA_AR_antagonist_80hr	Active	9.34	62.3	AR	growth reporter	human	prostate	22Rv1
NVS_NR_rAR	Active	2.47	8.40	AR	binding reporter	rat	prostate	NA
ACEA_AR_agonist_80hr	Inactive	NA	NA	AR	growth reporter	human	prostate	22Rv1
ATG_AR_TRANS_up	Inactive	NA	NA	AR	inducible reporter	human	liver	HepG2
OT_AR_ARELUC_AG_1440	Inactive	NA	NA	AR	inducible reporter	Chinese hamster	ovary	CHO-K1
OT_AR_ARSRC1_0480	Inactive	NA	NA	AR	binding reporter	human	kidney	HEK293T
OT_AR_ARSRC1_0960	Inactive	NA	NA	AR	binding reporter	human	kidney	HEK293T
TOX21_AR_BLA_Agonist_ratio	Inactive	NA	NA	AR	inducible reporter	human	kidney	HEK293T
TOX21_AR_BLA_Antagonist_ratio	Inactive	NA	NA	AR	inducible reporter	human	kidney	HEK293T
TOX21_AR_LUC_MDAKB2_Agonist	Inactive	NA	NA	AR	inducible reporter	human	breast	MDA-kb2
TOX21_AR_LUC_MDAKB2_Agonist_3uM_Nilutamide	Inactive	NA	NA	AR	inducible reporter	human	breast	MDA-kb2
TOX21_AR_LUC_MDAKB2_Antagonist_0.5nM_R1881	Inactive	NA	NA	AR	inducible reporter	human	breast	MDA-kb2
TOX21_AR_LUC_MDAKB2_Antagonist_10nM_R1881	Inactive	NA	NA	AR	inducible reporter	human	breast	MDA-kb2
UPITT_HCI_U2OS_AR_TIF2_Nucleoli_Agonist	Inactive	NA	NA	AR	binding reporter	human	bone	U2OS

Table E-3. Bioactivity summary for PFDA from in vitro HTS assays evaluating activities for the AR, ER^{a,b}

This document is a draft for review purposes only and does not constitute Agency policy.E-17DRAFT-DO NOT CITE OR QUOTE

Assay name	Activity call	Scaled activity	AC50 (μM)	Biological target	Assay design	Organism	Tissue	Cell line
UPITT_HCI_U2OS_AR_TIF2_Nucleoli_Antagonist	Inactive	NA	NA	AR	binding reporter	human	bone	U2OS
UPITT_HCI_U2OS_AR_TIF2_Nucleoli_Cytoplasm_Ratio_Agonist	Inactive	NA	NA	AR	binding reporter	human	bone	U2OS
UPITT_HCI_U2OS_AR_TIF2_Nucleoli_Cytoplasm_Ratio_Antagonist	Inactive	NA	NA	AR	binding reporter	human	bone	U2OS
ATG_ERa_TRANS_up	Active	1.50	16.44	ER (ESR1)	inducible reporter	human	liver	HepG2
TOX21_ERa_BLA_Antagonist_ratio	Active	3.32	22.7	ER (ESR1)	inducible reporter	human	kidney	HEK293T
ACEA_ER_80hr	Inactive	NA	NA	ER (ESR1)	growth reporter	human	breast	T47D
ATG_ERE_CIS_up	Inactive	NA	NA	ER (ESR1)	inducible reporter	human	liver	HepG2
NVS_NR_bER	Inactive	NA	NA	ER (ESR1)	binding reporter	bovine	uterus	NA
NVS_NR_hER	Inactive	NA	NA	ER (ESR1)	binding reporter	human	NA	NA
NVS_NR_mERa	Inactive	NA	NA	ER (Esr1)	binding reporter	mouse	NA	NA
OT_ER_ERaERa_0480	Inactive	NA	NA	ER (ESR1)	binding reporter	human	kidney	HEK293T
OT_ER_ERaERa_1440	Inactive	NA	NA	ER (ESR1)	binding reporter	human	kidney	HEK293T
OT_ERa_EREGFP_0120	Inactive	NA	NA	ER (ESR1)	inducible reporter	human	cervix	HeLa
OT_ERa_EREGFP_0480	Inactive	NA	NA	ER (ESR1)	inducible reporter	human	cervix	HeLa
TOX21_ERa_BLA_Agonist_ratio	Inactive	NA	NA	ER (ESR1)	inducible reporter	human	kidney	HEK293T

This document is a draft for review purposes only and does not constitute Agency policy.E-18DRAFT-DO NOT CITE OR QUOTE

Assay name	Activity call	Scaled activity	AC50 (μM)	Biological target	Assay design	Organism	Tissue	Cell line
TOX21_ERa_LUC_VM7_Agonist	Inactive	NA	NA	ER (ESR1)	inducible reporter	human	ovary	VM7
TOX21_ERa_LUC_VM7_Antagonist_0.1nM_E2	Inactive	NA	NA	ER (ESR1)	inducible reporter	human	ovary	VM7
TOX21_ERa_LUC_VM7_Antagonist_0.5nM_E2	Inactive	NA	NA	ER (ESR1)	inducible reporter	human	ovary	VM7
OT_ER_ERbERb_0480	Inactive	NA	NA	ER (ESR2)	binding reporter	human	kidney	HEK293T
OT_ER_ERbERb_1440	Inactive	NA	NA	ER (ESR2)	binding reporter	human	kidney	HEK293T
TOX21_ERb_BLA_Agonist_ratio	Inactive	NA	NA	ER (ESR2)	inducible reporter	human	kidney	HEK293T
TOX21_ERb_BLA_Antagonist_ratio	Inactive	NA	NA	ER (ESR2)	inducible reporter	human	kidney	HEK293T
OT_ER_ERaERb_0480	Inactive	NA	NA	ER (ESR1 ESR2)	binding reporter	human	kidney	HEK293T
OT_ER_ERaERb_1440	Inactive	NA	NA	ER (ESR1 ESR2)	binding reporter	human	kidney	HEK293T

^aData were sourced from EPA's CompTox Chemicals Dashboard ((U.S. EPA, 2019), accessed November 3, 2022).

^bNonspecific responses from inducible reporter gene assays analyzed in the negative fitting direction relative to the control ("_dn") are not presented herein. NA = not applicable.

Table E-4. ToxCast mode	Inredictions	for the ER and	AR nathways	for PFDA ^a
Table L 4. Toxcast mout	i pi cuictions	ior the Livanu	m pathways	

	Agonist AUC values (95% CI)	Antagonist AUC values (95% CI)
ER pathway	0 (0–0.0051)	0 (0–0.019)
AR pathway	0 (0–0.063)	0 (0–0.00016)

^aData for ER and AR pathways were sourced from <u>Judson et al. (2015)</u> and <u>Kleinstreuer et al. (2017)</u>, respectively. ^b95% CI for the ER activity model were sourced from a subsequent publication to the <u>Judson et al. (2015)</u> study (<u>Watt and Judson, 2018</u>).

AUC = area under the curve score ranging from 0 to 1. An AUC value of 0 indicates that the chemical is inactive. CI = confidence interval.

Assay name	Activity call	Scaled activity	AC50 (μM)	Biological target	Assay design	Organism	Tissue	Cell line
CEETOX_H295R_11DCORT_noMTC_dn	Inactive	NA	NA	11-Deoxycortisol	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_11DCORT_noMTC_up	Inactive	NA	NA	11-Deoxycortisol	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_ANDR_noMTC_dn	Inactive	NA	NA	Androstenedione	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_ANDR_noMTC_up	Inactive	NA	NA	Androstenedione	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_CORTIC_noMTC_dn	Inactive	NA	NA	Corticosterone	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_CORTIC_noMTC_up	Inactive	NA	NA	Corticosterone	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_CORTISOL_noMTC_dn	Inactive	NA	NA	Cortisol	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_CORTISOL_noMTC_up	Inactive	NA	NA	Cortisol	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_DOC_noMTC_dn	Inactive	NA	NA	11-Deoxycorticosterone	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_DOC_noMTC_up	Inactive	NA	NA	11-Deoxycorticosterone	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_ESTRADIOL_noMTC_dn	Inactive	NA	NA	Estradiol	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_ESTRADIOL_noMTC_up	Inactive	NA	NA	Estradiol	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_ESTRONE_noMTC_dn	Inactive	NA	NA	Estrone	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_ESTRONE_noMTC_up	Inactive	NA	NA	Estrone	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_OHPREG_noMTC_dn	Inactive	NA	NA	17alpha- hydroxypregnenolone	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_OHPREG_noMTC_up	Inactive	NA	NA	17alpha- hydroxypregnenolone	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_OHPROG_noMTC_dn	Inactive	NA	NA	17alpha- hydroxyprogesterone	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_OHPROG_noMTC_up	Inactive	NA	NA	17alpha- hydroxyprogesterone	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_PROG_noMTC_dn	Inactive	NA	NA	Progesterone	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_PROG_noMTC_up	Inactive	NA	NA	Progesterone	inducible reporter	human	adrenal gland	H295R
CEETOX_H295R_TESTO_noMTC_dn	Inactive	NA	NA	Testosterone	inducible reporter	human	adrenal gland	H295R

Table E-5. Bioactivity summary for PFDA from in vitro HTS assays related to steroidogenesis^{a,b}

This document is a draft for review purposes only and does not constitute Agency policy.E-21DRAFT-DO NOT CITE OR QUOTE

Assay name	Activity call	Scaled activity	AC50 (μM)	Biological target	Assay design	Organism	Tissue	Cell line
CEETOX_H295R_TESTO_noMTC_up	Inactive	NA	NA	Testosterone	inducible reporter	human	adrenal gland	H295R
TOX21_Aromatase_Inhibition	Inactive	NA	NA	CYP19A1	inducible reporter	human	breast	MCF7

^aData were sourced from EPA's CompTox Chemicals Dashboard (U.S. EPA, 2019), accessed November 3, 2022).

NA = not applicable.

APPENDIX F. ADDITIONAL CONFOUNDING CONSIDERATIONS

F.1. SPECIFIC PFAS CONFOUNDING CONSIDERATIONS FOR FETAL GROWTH RESTRICTION

1 As noted, in the PFAS protocol, the potential for bias in effect estimates due to confounding 2 is a concern in epidemiological studies and was a focus during study evaluation. Hemodynamic 3 changes occur during pregnancy, such as increased blood plasma volume as a result of decreased 4 mean arterial pressure, increased cardiac output, and systemic vasodilation (Sagiv et al., 2018; 5 Sanghavi and Rutherford, 2014; Chapman et al., 1998). These changes could lead to lower PFAS 6 levels in plasma, due to dilution and increased renal filtration. A decrease in PFAS levels has been 7 noted in serial measurements of some PFAS during pregnancy, namely PFOA, PFOS, and PFNA 8 (Glynn et al., 2012). These hemodynamic changes have been proposed as a potential confounder 9 for associations between PFDA and neonatal and early childhood growth measures. This is 10 suggested by the association between glomerular filtration rate (GFR), a marker of renal function 11 and, indirectly, of plasma volume expansion, and fetal growth independent of gestational age and 12 other maternal covariates (Morken et al., 2014; Gibson, 1973). Because PFDA concentration in 13 serum is expected to decrease during pregnancy due to plasma volume expansion, increased renal 14 excretion, and transplacental transfer, time windows earlier in pregnancy prior to this decrease 15 may reflect the largest insult to a developing fetus. Potential confounding is one possible 16 explanation for the effects of pregnancy hemodynamics, but in their meta-analysis of PFOA 17 Steenland et al. (2018) also proposed that GFR may lead to reverse causality if increased fetal 18 growth leads to increased maternal blood expansion and glomerular filtration rate. This potential 19 source of bias related to pregnancy hemodynamics are anticipated to be of greater concern when 20 maternal serum PFAS samples are collected later in pregnancy. Therefore, as part of the study 21 quality evaluations, more confidence was placed in studies that adjusted for different pregnancy 22 hemodynamic markers or if they considered this potential source of confounding by sampling PFAS 23 levels earlier in pregnancy. As noted in the syntheses, pattern analyses of study results were also 24 considered according to biomarker sampling timing to determine pregnancy hemodynamics may 25 be a source of between-study heterogeneity. 26 Only 1 of the 22 PFDA birth weight-related studies included in the Developmental Effects 27 section collected and analyzed maternal hemodynamic data such as GFR and/or albumin (i.e., a 28 marker of plasma volume expansion). Gyllenhammar et al. (2018) did not find any evidence of 29 confounding following statistical adjustment of different GFR measures for any of the PFAS

30 examined. Outside of one study that showed some differences in PFOA results following

- 1 adjustment for albumin, the <u>Gyllenhammar et al. (2018)</u> results are consistent with a lack of
- 2 confounding demonstrated by either adjustment for albumin (<u>Sagiv et al., 2018</u>) or different GFR
- 3 measures (<u>Manzano-Salgado et al., 2017</u>; <u>Whitworth et al., 2012</u>) for different PFAS examined in
- 4 other studies. Nonetheless, existing meta-analyses for both PFOA (<u>Steenland et al., 2018</u>) and PFOS
- 5 (<u>Dzierlenga et al., 2020</u>) only detected birth weight deficits for later trimester sampling
- 6 (e.g., beyond trimester one). One limitation of these meta-analyses is that they did not have the
- 7 ability to differentiate late pregnancy from post-partum measures. Only 5 of the 22 PFDA studies of
- 8 mean BWT in the overall population examined any first trimester measures, which precluded a
- 9 more detailed examination here. Overall, there was limited evidence of any patterns of larger birth
- 10 weight associations with sample timing for PFDA. However, the ability to more fully evaluate this
- 11 further was limited given the available data as well as disparate exposure measures, distributions,
- 12 and contrasts being examined.

F.2. PFAS COEXPOSURE STATISTICAL APPROACHES AND CONFOUNDING DIRECTIONALITY

13 In general, an additional source of uncertainty in epidemiological is the potential for 14 confounding by other PFAS (and other co-occurring contaminants). Although scientific consensus 15 on how best to address PFAS co-exposures remains elusive, this was considered in the study quality 16 evaluations and as part of the overall weight of evidence determination. To be a confounder, the co-17 occurring PFAS would need to be associated with both the PFAS of interest and the outcome, but 18 not an intermediate in the causal pathway; such PFAS would be considered positive confounders if their effect estimate with the endpoint of interest is in the same direction as the primary PFAS of 19 20 interest. If positive confounders are not accounted for, the anticipation is that any resultant bias 21 would be away from the null.

- 22 Certain statistical approaches can help address the challenges of evaluating the associations 23 between health endpoints and numerous (often correlated) PFAS that may be present in the 24 environment. For example, multipollutant models (i.e., those that adjust for at least one co-25 occurring exposure) can provide an estimate of the independent association for specific pollutants 26 with the endpoint of interest. However, these models may not perform well when co-occurring 27 exposures are highly correlated. Such correlation can lead to collinearity concerns and instability of 28 modeling results. When exposures are highly correlated and additionally subject to different 29 potential confounding factors (which may occur, e.g., when PFAS arise from different sources), co-30 exposure amplification bias may be a concern (Weisskopf et al., 2018). Under this scenario, 31 estimated associations from multi-PFAS adjusted models would be subject to greater bias 32 compared with results from single-PFAS models. A different approach is to instead 'screen' large 33 groups of exposures to determine which are associated with the outcome of interest and important 34 to retain in further analyses. These dimension-reducing statistical approaches (e.g., principal
- 35 component analysis, penalized modeling based on elastic net regression, Bayesian kernel machine

- 1 regression, etc.) are increasingly being used for screening large groups of chemical exposures and
- 2 help prioritize specific mixtures. However, as noted by <u>Meng et al. (2018)</u>, these approaches might
- 3 be better suited as "prediction models to screen for a wide range of chemicals from different
- 4 sources, and the interpretation of results might become less straightforward due to the necessary
- 5 standardization of exposure values." Given these interpretation difficulties and potential for co-
- 6 exposure amplification bias, it is not clear which statistical approach best represents independent
- 7 effects of specific pollutants within complex PFAS mixtures.
- 8 The objective of this part of the appendix is to assess whether there is any direct evidence
- 9 for confounding in the studies comparing results from multipollutant (mutually adjusted for other
- 10 PFAS) models and results from single pollutant (i.e., PFDA alone with other confounders adjusted
- 11 for) models. A second objective is to compare relationships between co-occurring PFAS and
- 12 evaluate the extent to which these PFAS may be associated with the primary endpoints of interest
- 13 (e.g., birth weight-related measures).

F.3. PFDA AND PFAS COEXPOSURE STUDY RESULTS

14 In general, the stronger an association between coexposures, and the larger the effect sizes seen for the coexposure of interest, the more concern there would be for potential confounding. 15 16 Table F-1 shows correlations between PFAS coexposures and PFDA reported from five studies with 17 mutually adjusted PFAS data, including four *medium* confidence (Meng et al., 2018; Woods et al., 18 2017; Lenters et al., 2016; Robledo et al., 2015) and one high confidence study (Starling et al., 19 2017). As shown in the PFAS Systematic Review Protocol (see Appendix A) and in Table F-1, PFNA 20 and PFDA often co-occur (as expected given some similar anticipated sources) across studies with a 21 consistent correlation of 0.6 or higher. These results also show that other PFAS may not 22 consistently co-occur with PFDA, as the magnitude of these relationships can vary significantly

23 across studies.

Table F-1. PFAS correlation coefficients in mutually adjusted studies

			Correlations with PFDA		A Contraction of the second se	
Reference	Study Setting	Confidence	PFOS	PFOA	PFNA	PFHxS
<u>Woods et al.</u> (2017)	Cincinnati, Ohio, USA	Medium	0.3	0.1	0.6	0.1
<u>Lenters et al.</u> (2016)	Greenland; Kharkiv, Ukraine; Warsaw, Poland	Medium	0.78	0.50	0.60	0.35
<u>Luo et al. (2021)</u>	Guangzhou, China	High	0.68	0.13	0.85	-0.03
<u>Meng et al. (2018)</u>	Denmark	Medium	0.48	0.28	0.73	0.17
<u>Robledo et al.</u> (2015)	Michigan and Texas, USA	Medium	N/A	N/A	N/A	N/A

Starling et al.Colorado, USA(2017)	Low	0.49	0.56	0.65	0.27
------------------------------------	-----	------	------	------	------

1 The results for the six studies based on continuous PFDA data (expressed as change in mean 2 birth weight per unit change in exposure) are compared and summarized below in Table F-2. 3 Three of the studies included multiple PFAS as predictors in ordinary least squares regression 4 models (Meng et al., 2018; Woods et al., 2017; Robledo et al., 2015). Two studies (Starling et al., 5 2017; Lenters et al., 2016) examined multiple PFAS using elastic net regression models. Elastic net 6 regression is a modeling approach to select independent predictors (from an initial group of 7 potentially correlated predictors) for inclusion in the model using penalized shrinkage methods 8 (Lenters et al., 2016). As shown in Table F-2, two of the six studies (Luo et al., 2021; Lenters et al., 9 2016) reported nonsignificant birth weight deficits for PFDA from single-pollutant models. 10 However, PFDA was not associated with birth weight changes in multipollutant models for either 11 study. For example, Lenters et al. (2016) reported null results for PFDA in both their singlepollutant model and elastic net regression model, with only PFOA retained in the latter model. 12 13 Starling et al. (2017) did not report birth weight deficits associated with PFDA based on either 14 single-pollutant or multipollutant models nor was PFDA selected for inclusion using elastic net 15 regression. Meng et al. (2018) reported largely null results for PFDA in single-pollutant models but 16 detected increases in mean birth weight with adjustment for PFOS, PFOA, PFNA, perfluoroheptane 17 sulfonic acid (PFHpS), and PFHxS. Luo et al. (2021) reported large birth weight deficits (-97 g; -178, 18 -16 per each ln-unit PFDA increase) in single-pollutant PFDA model, but results were null in the 19 multipollutant model. Lastly, <u>Robledo et al. (2015)</u> did not report results from single pollutant 20 models (or correlations) but did find birth weight deficits associated with PFDA in female neonates 21 only. 22 Given the moderate and strong correlations between PDFA and other PFAS, the magnitude 23 of any associations may exist between these co-occurring PFAS and birth-weight related measures 24 (and other developmental effects) may inform the potential for confounding of PFDA associations. 25 For example, Lenters et al. (2016) reported birth weight deficits associated with increased levels of 26 PFNA ($\beta = -44.7$ g; 95%CI: -92.0, 2.7 per each 2SD ln-unit PFDA increase), PFOS ($\beta = -68.8$ g; 27 95%CI: -152.9, 15.2) and PFOA (β = -78.5 g; 95%CI: -137.01, -20.0) in single-pollutant models 28 although only PFOA (β =-63.8 g; 95%CI: -122.8, -4.7) was retained in the elastic net regression 29 model. Although birth weight deficits were not seen for PFDA in any of the regression models used 30 by <u>Starling et al. (2017</u>), there were large mean birth weight deficits associated with increased 31 exposure evaluated in single pollutant models for both PFNA ($\beta = -58$ g; 95%CI: -104, -11 per each In-unit PFDA increase) and PFOA ($\beta = -51$ g; 95%CI: -97, -6). These deficits were larger in 32 33 multipollutant models for both PFNA ($\beta = -92$ g; 95%CI: -167, -18) and PFOA ($\beta = -70$ g; 34 95%Cl: -148, -9) but were attenuated when included in a penalized elastic net regression model (β 35 = -33 g and -14 g, respectively). Meng et al. (2018) reported similar deficits in birth weight associated with increased exposure to PFNA ($\beta = -54.2$ g; 95%CI: -105.8, -2.7 per each log₂-unit 36

1 PFDA increase) and PFOS ($\beta = -55.5$ g; 95%CI: -145.6, 34.5) in their model containing mutually 2 adjusted PFAS; however, effects were seen in the opposite direction (increase in mean birth weight) 3 for PFDA (β = 48.0 g; 95%CI: -0.6, 96.5) and PFOA (β = 49.5 g; 95%CI: -8.7, 107.9) in the same 4 model. In the Woods et al. (2017) study, none of the five PFAS examined contributed greatly to the 5 overall changes in mean birth weight when other environmental contaminants were considered in 6 their elastic net model. Based on their multi-pollutant model, Luo et al. (2021) reported only large 7 birth weight deficits for PFOA (in excess of -100 g for each PFDA tertile. Finally, Robledo et al. 8 (2015) reported that only PFOA was associated with large deficits in mean birth weight (β =-61.6 g; 9 95%CI: -159.2, 35.9 per each SD ln-unit PFDA increase) in girls, while among boys deficits were 10 only seen for perfluorooctane sulfonamide (PFOSA) ($\beta = -104.2$ g; 95%CI: -194.2, -14.3) and PFDA 11 $(\beta = -53.4 \text{ g}; 95\%\text{CI}: -161.0, 54.2)$. In contrast, increased birth weight in boys was reported for 12 PFNA ($\beta = 62.7$ g; 95%CI: -32.1, 157.4) and PFOS ($\beta = 38$ g; 95%CI: -73.5, 148.5). 13 In the six studies using mutually adjusted PFAS approaches to address coexposures, there 14 was not consistent evidence for birth weight deficits associated with increased exposure to PFDA. 15 Among the five studies that examined both single and multipollutant models, none of studies that 16 showed birth weight deficits in single-pollutant models reported greater or more precise 17 associations following statistical adjustment for other PFAS. Of the three studies showing some adverse effects (Luo et al., 2021; Lenters et al., 2016; Robledo et al., 2015), only one (Robledo et al., 18 19 2015) showed deficits in multipollutant models and this was limited to females only. Among the 20 three studies that provided correlations among co-occurring PFAS and showed some evidence of 21 adverse effects for any PFAS, the largest birth weight deficits were seen for PFNA (Meng et al., 22 2018; Starling et al., 2017), PFOA (Robledo et al., 2015), and PFOS (Luo et al., 2021). The correlation 23 coefficients for PFDA and these three co-exposures across these studies were all at least 0.50. 24 As noted in the Developmental Effects section, 11 of 22 studies showed evidence of some 25 associations with PFDA and mean birth weight in the overall population. Among these 11 studies, which included the 3 highlighted above (Luo et al., 2021; Lenters et al., 2016; Robledo et al., 2015), 26 27 7 showed deficits comparable in magnitude for PFNA and PFDA. Two studies showed larger 28 deficits for PFDA compared to PFNA, and three studies showed larger deficits for PFNA compared 29 to PFDA. Given these comparable results seen in most of these studies for both PFNA and PFDA and 30 the moderately high correlations consistently reported between PFDA and PFNA, there is 31 considerable uncertainty due to potential confounding by co-occurring PFAS in the existing 32 literature. It remains unclear, however, if the consistency of birth weight deficits demonstrated 33 from (categorical and continuous) results in the full set of 22 mean birth weight PFDA studies could 34 be fully attributed to confounding by PFAS coexposures.

Reference	Study Confidence	Single PFAS Model Results (in grams) with 95%Cls ^a	Multi-PFAS Results (in grams) with 95%Cls ^a	Elastic Net Regression Results	Exposure Comparison ^b	Effect of adjustment on PFDA birth weight results	PFAS adjustments
<u>Starling et</u> <u>al. (2017)</u>	High	11.5 (-37.3, 60.4)	97.5 (31.5, 163.6)	15.7	In-unit (ng/mL) increase	Slightly Strengthened	PFOS, PFOA, PFNA, PFHxS
<u>Lenters et</u> al. (2016)	Medium	-43.9 (-104.8, 17.0)	N/A	N/S	2 SD In-unit (ng/mL) increase	Attenuated	PFOS, PFOA, PFNA, PFUnDA, PFDoDA, PFHxS
<u>Luo et al.</u> (2021)	High	-96.8 (-178.0, -15.5)	6.6 (95%CI: - 84.2, 97.3) ^b	N/A	In-unit () increase	Attenuated	PFOA, PFOS, PFBA, PFBS, PFHxS, PFNA, PFUnDA, PFDoDA, PFTrDA, 6:2 CI-PFESA, 8:2 CI-PFESA
<u>Meng et al.</u> (2018)	Medium	-9.0 (-43.2, 35.2)	48.0 (-0.6 <i>,</i> 96.5)	N/A	log ₂ -unit (ng/mL) increase	Changed from Null to Positive	PFOS, PFOA, PFNA, PFHxS, PFHpS
Robledo et al. (2015)	Medium	N/A	-53.4 (-161.0, 54.2) Girls -1.8 (-90.6, 87.1) Boys ^c	N/A	1 SD In-unit (ng/mL) increase	N/A	PFOA, PFOS, PFNA, PFOSA, Et- PFOSA-AcOH, Me-PFOSA-AcOH
<u>Woods et</u> al. (2017)	Medium	-12.6 (-56.8, 40.4) ^d	N/A	N/S	log ₁₀ unit (ng/mL) increase	Attenuated	PFOS, PFOA, PFNA, PFUnDA, PFDoDA, PFHxS

Table F-2. Impact of coexposure adjustment on estimated change in mean birth weight per unit change (ng/mL) in PFDA levels^a

Abbreviations: N/A: Not available; N/S: PFAS not selected in elastic net regression model. ^aModels were based on ordinary least squares regression.

^bBeta and 95%Cls estimated from Figure 3 of (Luo et al., 2021).

^cThe birth weight results tabulated here are all for the overall population (i.e., male, and female neonates combined), except for Robledo, which only reported sex-specific findings.

^dThe Posterior 95% credible intervals reported for <u>Woods et al. (2017)</u> based on a Bayesian hierarchical linear model.

APPENDIX G. DETAILED PHARMACOKINETIC ANALYSES

1	This appendix provides two detailed pharmacokinetic analyses. The first is a Bayesian
2	analysis of PFDA pharmacokinetics in laboratory animals to estimate key pharmacokinetic
3	parameters. The second is the description and evaluation of a one-compartment PK modeling
4	approach for estimating internal doses, evaluated against rat PFDA PK data using the mean
5	parameter values estimated for male rats in the Bayesian estimation.

G.1. PARTIAL POOLING OF PFDA PHARMACOKINETIC DATA FOR HIERARCHICAL BAYESIAN ANALYSIS

6 We estimated the sex-specific pharmacokinetic parameters (half-life, volume of 7 distribution, and clearance) of PFDA in rats by fitting one- and two-compartment models to the 8 available concentration vs. time data. A Bayesian hierarchical methodology was developed to fit 9 these models because of the need to pool time-course concentration data across numerous studies 10 with varying exposure scenarios within each study. This allowed for each concentration vs. time 11 dataset to be fit to each pharmacokinetic model where fitted parameters for each dataset are 12 sampled from a population-level distribution which models the similarities between each dataset. 13 In addition, the Bayesian analysis allowed for the generation of central estimates and credible 14 intervals for the pharmacokinetic parameter of interest e.g., half-life, volume of distribution and 15 clearance, using posterior distributions from the estimated variables. Finally, the Bayesian 16 methodology allowed for hypothesis testing of the 1- and 2-compartment formulations to decide 17 which model more appropriately fit the data.

G.1.1. Pharmacokinetic model

18

19 To determine pharmacokinetic parameters for PFDA, we estimated constants for both one-

20 and two-compartment model assumptions. For a one-compartment model assumption, the

21 following exponential decay functions were fit to the available data

22
$$C_{1-cmpt}^{IV}(t) = \frac{D}{V}e^{-k_e t}$$

23
$$C_{1-cmpt}^{oral}(t) = \frac{D}{V} \left(\frac{k_a}{k_a - k_e} \right) (e^{-k_e t} - e^{-k_a t})$$

- 1 where D represents the administered dose and V, ke, and ka represent the central compartment
- 2 volume, elimination constant, and absorption constant (for oral only) to be fit. From these fitted
- 3 constants, pharmacokinetic parameters are derived:

4
$$V_d = \frac{V}{BW}$$

5
$$t_{\frac{1}{2}} = \frac{\ln 2}{k_e}$$
6
$$CLC = V_d * k_e$$

7 where V_d , $t_{1/2}$, and CLC represent the volume of distribution, terminal half-life, and clearance 8 respectively and BW represents the animal body weight.

9 For the two-compartment model assumption, the following exponential decay functions 10 were fit to available data

11
$$A^{IV} = \frac{\alpha - k_{dc}}{\alpha - \beta}; \ A^{oral} = k_a \left(\frac{k_{dc} - \alpha}{(k_a - \alpha)(\beta - \alpha)} \right)$$

12
$$B^{IV} = \frac{\beta - k_{dc}}{\beta - \alpha}; B^{oral} = k_a \left(\frac{k_{dc} - \beta}{(k_a - \beta)(\alpha - \beta)} \right)$$

13
$$C_{2-cmpt}^{IV}(t) = \frac{D}{V} \left(A^{IV} e^{-\alpha t} + B^{IV} e^{-\beta t} \right)$$

14
$$C_{2-cmpt}^{oral}(t) = \frac{D}{V} \left(A^{oral} e^{-\alpha t} + B^{oral} e^{-\beta t} - (A^{oral} + B^{oral}) e^{-k_a t} \right)$$

where D represents the administered dose and V,
$$\alpha$$
, β , k_{dc} , and k_a represent central compartment
volume, alpha-phase elimination constant, beta-phase elimination constant, deep-to-central
compartment rate constant, and absorption constant (for oral only) to be fit. From these fitted
constants, the remaining two-compartment constants (k_{cd} : central-to-deep compartment rate
constant and k_e : elimination constant) and the deep compartment volume (V_{deep}) are derived by
solving:

21
$$\alpha + \beta = k_{cd} + k_{dc} + k_e$$

22
$$\alpha * \beta = k_{dc} * k_e$$

$$k_{cd}$$

$$V_d = V \frac{V_d}{k_{dc}}$$

which allows for the desired pharmacokinetic parameters to be derived using the following 24 25 equations:

26
$$V_{d-ss} = \frac{V + V_{deep}}{BW} = \frac{V}{BW} \left(\frac{k_{cd} + k_{dc}}{k_{dc}}\right)$$

$$t_{\frac{1}{2}} = \frac{\ln 2}{\beta}$$

1
$$CLC = \frac{V}{BW} * k_e$$

where V_{d-ss}, t_{1/2}, and CLC represent the steady-state volume of distribution, terminal half-life, and
 clearance respectively and BW represents the animal body weight.

G.1.2. Bayesian inference

4 The fitted constants for each model structure (described above) were estimated using available time-course concentration data reported in rats with parameters for each model 5 6 estimated using a hierarchical Bayesian calibration approach. This hierarchical Bayesian approach 7 pooled the time-course concentration data for male and female rats from multiple studies Ohmori et al. (2003), Kim et al. (2019), Dzierlenga et al. (2019). For the two-compartment model, to ensure 8 9 parameter identifiability, α and β were constrained to be ordered such that $\alpha > \beta$. This constraint ensures the exponential terms are identifiable and don't "flip" while exploring the parameter space 10 11 during Markov-chain Monte-Carlo (MCMC) sampling. Finally, priors for each pharmacokinetic parameter were chosen to be "weakly informative" based on prior knowledge of PFAS 12 pharmacokinetics (ATSDR, 2021) with 95% equal-tailed intervals spanning multiple order of 13 14 magnitude.

Priors for pharmacokinetic parameters are presented in Table G-1 with corresponding
 model-specific parameter prior distributions presented below. Finally, a sensitivity analysis on the

17 model priors is shown in the *Prior sensitivity analysis* section.

Table G-1. Weakly informed prior distributions for pharmacokinetic parameters used in the Bayesian analysis

	median	mad	eti_3%	eti_97%
Half-life (d)	15	12	0.88	250
Clearance (mL/kg-d)	50	49	0.32	6,000
Vd-ss (ml/kg)	900	811	9.3	32,822

For the hierarchical approach, the concentration vs. time data comprised a population- and
dataset-level for which model parameters were estimated. Here, each dataset represented each
study/sex/dose concentration vs. time dataset extracted from the literature and were fit using the

21 model

 $C_{ij} = \begin{cases} C_{1-cmpt}^{route} & \text{for 1-compartment model,} \\ C_{2-cmpt}^{route} & \text{for 2-compartment model} \end{cases}$

 $C_{ik} \sim LN(\bar{x}_{ij}, \tilde{\sigma}_k)$

- 1 where \bar{x}_{ij} is the sample mean of the observed concentrations at time t_{ij} for dataset j and $\tilde{\sigma}_k$ is
- 2 study-level log-transformed standard deviation for the relative errors based on study k. Study-level
- 3 priors for $\tilde{\sigma}_k$ were determined using the average log-transformed standard deviations

4
$$\bar{\sigma}_{i,j}^2 = \ln\left(1 + \frac{s_{i,j}^2}{\bar{x}_{i,j}^2}\right)$$

- 5 $\gamma_k = \frac{\sum_i \bar{\sigma}_{i,j \in k}}{n_k}$
- 6 where $s_{i,j}$ is the sample standard deviation on the observed concentrations at time $t_{i,j}$ for study k.
- 7 If s_{ij} was available, $\bar{\sigma}_{i,j}$ is the log-transformed standard deviation using the sample mean and

8 standard deviation. For studies where sample standard deviations could not be extracted, an

- 9 average of all log-transformed standard deviations was used. This allowed for study-level prior
- 10 distributions on the error model log-transformed standard deviation:

11
$$\tilde{\sigma}_k \sim \begin{cases} \exp(1/\gamma_k) & \text{if } \gamma_k \text{ available,} \\ \exp(1/\gamma) & \text{otherwise.} \end{cases}$$

- 12 Using this model, dataset-level fitted constants were assigned priors based on a non-13 centered parameterization of a population-level distribution. This reparameterization of a typical 14 hierarchical Bayesian model allows for increased sampling efficiency and can be more efficient for 15 sampling when there is limited data (Betancourt and Girolami, 2013). Finally, non-elimination rate constants (k_a and k_{dc}) were assigned a unit normal, weakly informative prior to aid parameter 16 17 identifiability (Gelman et al., 2015). 18 $\ln \mu_{k_a} \sim N(0,1)$ 19 $\ln \mu_V \sim N(0,1)$ $\ln \mu_{k_e} \sim N(-3,1.5)$ one compartment model 20 $\ln \mu_{k_{dc}} \sim N(0,1)$ two compartment model 21 22 $\ln \mu_{\alpha,\beta} \sim N(-3,1.5), \mu_{\beta} < \mu_{\alpha}$ two compartment model
- 23 $\sigma_{k_a,V,k_e,\alpha,\beta,k_{dc}} \sim \text{Exp}(3)$
- 24 $\ln(k_a, V, k_e, \alpha, \beta, k_{dc})_j \sim N(\mu_{k_a, V, k_e, \alpha, \beta, k_{dc}}, \sigma_{k_a, V, k_e, \alpha, \beta, k_{dc}})$

One- and two-compartment model goodness of fits were compared using the widely
applicable information criteria (WAIC). Pharmacokinetic parameters from the most appropriate
model, as judged by the WAIC comparison, were reported. To estimate the population-level
pharmacokinetic parameters we examined posterior probability densities of the parameters from
the WAIC-determined model and calculated distributional estimates of the half-life, volume of
distribution, and clearance using the equations described above. The parameter space was sampled
using PyMC (Salvatier et al., 2016) using four independent Markov chains run for 10,000 iterations

- 1 per chain. Posterior parameter distributions were determined using the final 5,000 iterations of
- 2 each chain ensuring an effective sample size (ESS) greater than 10,000 (<u>Kruschke, 2021</u>).
- 3 Convergence was assessed using a potential scale reduction factor with a maximum threshold of
- 4 $\hat{R} = 1.05$ (Kruschke, 2021).

G.1.3. Prior sensitivity analysis

5 To investigate the impact of prior selection on posterior pharmacokinetic parameter 6 estimation, we conducted a sensitivity analysis on the priors used in the Bayesian analysis. Priors 7 were classified into three categories: weakly informed, broad, and uninformed. Weakly informed 8 priors are defined using the half-life, clearance, and volume of distribution described above based 9 on reported ranges of PFDA pharmacokinetics with a prior predictive check demonstrating 10 available data for fitting fall within the prior 90% credible interval.

Figure G-1. Prior predictive check to ensure equal-tailed interval from prior distributions encompass the available time-course concentration data for fitting.

- 11 In addition to these weakly informed priors, we also characterized a set of broad priors,
- defined as uniform distributions spanning the 3% and 97% ETI from the weakly informed priors,

- 1 and completely uninformed priors, representing uniform priors spanning multiple orders of
- 2 magnitude i.e., flat priors. Figure G-2 (prior sensitivity) compares these three classes of priors and
- 3 their impact on the posterior pharmacokinetic parameter distributions,

Figure G-2. Prior sensitivity on half-life, steady-state volume of distribution, and clearance to ensure weakly informed priors do not bias posterior distributions of the pharmacokinetic parameters.

Based on these findings, we used the weakly informed pharmacokinetic priors for fitting 4 5 available time-course concentration data.

G.1.4. Study-specific Clearance Values and Model Fits

6 Three data sets were used for the sex-specific parameter estimation, which had a mixture of

7 gavage and iv exposure routes and follow-up times extending up to 150 days (Dzierlenga et al.,

8 2019; Kim et al., 2019; Ohmori et al., 2003). The sex-specific clearance value distribution obtained

9 from fitting the three data sets together had a mean and 90% credible interval of 4.06 (2.05–6.05)

- 10 mL/kg-day in female rats and 4.14 (0.68–7.02) mL/kg-day in male rats. For these data, a 2-
- 11 compartment PK model was deemed superior. Visual inspection shows some of the data have a
- 12 distinguishable distribution and excretion phase, which is appropriate for a 2-compartment model
- 13 (see Figure G-3). A 2-compartment model is also able to fit data that appear linear as is evidenced in

1 fits to other data sets (see Figure G-4). Credible intervals for the fits to individual data sets are

2 qualitatively small showing good model fits to the data from individual studies. The relatively large

- 3 credible interval for the pooled data is due to the large variation between studies. For example, in
- 4 male rats the mean clearance values for individual studies ranged from 1.51 to 7.45 mL/kg-day, and
- 5 a similar range was seen in female rats.
- 6 Trends comparing the terminal clearance following IV and gavages doses appeared within
 7 studies but did not hold for the whole data set. For example, in <u>Kim et al. (2019)</u> IV doses resulted
- 8 in smaller, but similar clearance to gavage doses (see Figure G-4). However, these clearance values
- 9 were consistently smaller than clearance values calculated from the two other data sets. In the
- 10 analysis of the <u>Dzierlenga et al. (2019)</u> dataset, IV doses resulted in clearly greater clearance than
- 11 the three dose levels administered by gavage, which all had similar clearance within each sex (see
- 12 Figure G-5,6). There was a difference in clearance between sexes in this study, but only for gavage
- doses. In this study, the gavage doses resulted in mean clearance values between 3.57 and 3.77

14 mL/kg-day in female rats and 5.12 and 5.74 mL/kg-day in male rats. However, the clearance

- 15 calculated from the single IV dose was similar between female and male rats. Likewise, the two
- 16 other studies showed similar mean clearance values for male and female rats (see Figure G-3 and
- 17 Figure G-4). It is possible that most of the difference in PFDA PK between male and female rats is
- 18 related to a difference in absorption, which can be moderated by active transport. Additional
- 19 experiments designed to carefully evaluate these factors would be needed to resolve this question.

Figure G-3. Predicted (black line with blue 90% credible interval) and observed (black circles) serum time-courses for female (left) and male (right) rats after a 25 mg/kg IV bolus of PFDA. Observed data from (<u>Ohmori et al.</u>, <u>2003</u>).

Figure G-4. Predicted (black line with blue 90% credible interval) and observed (black circles) serum time-courses for female (top 2 panels) and male (bottom 2 panels) rats after a 1 mg/kg gavage or IV bolus of PFDA. Gavage exposures are on the left, while IV exposures are on the left, while IV exposures are on the right. Observed data from (<u>Kim et al., 2019</u>).

Figure G-5. Predicted (black line with blue 90% credible interval) and observed (black circles) serum time-courses for female rats after a 2 mg/kg IV or 2, 10, or 20 mg/kg gavage bolus of PFDA. Observed data from (Dzierlenga et al., 2019).

Figure G-6. Predicted (black line with blue 90% credible interval) and observed (black circles) serum time-courses for male rats after a 2 mg/kg IV or 2, 10, or 20 mg/kg gavage bolus of PFDA. Observed data from (Dzierlenga et al., 2019).

G.2. DESCRIPTION AND EVALUATION OF A SINGLE-COMPARTMENT PK APPROACH

For PFDA, the clearance values obtained in the preceding Bayesian analysis are low enough

2 that internal doses will not reach steady-state for shorter-term studies, in particular for

3 developmental studies where dosing may only be for a few weeks. In this case a PK model can

4 potentially be used to account for the growth of the animal, the intrinsic elimination, and the

5 accumulation of PFDA over the period of dosing. The single-compartment PK model is given by:

11

1

$$dA/dt = F_{abs} \times dose \times BW - CL_{tot} \times A / Vd, \qquad (G-1)$$

7 where A is the total amount of PFDA in the animal (mg), F_{abs} is the fraction absorbed for an oral

8 dose (bioavailability), BW is the body-weight (kg), and CL_{tot} is the total clearance, and Vd is the

9 volume of distribution. Implicit in this model is an assumption of rapid distribution of PFDA in the

10 body (relative to the clearance), in which case the concentration in plasma is:

$$C_{\text{plasma}} = A / (Vd \times BW). \tag{G-2}$$

This document is a draft for review purposes only and does not constitute Agency policy. G-10 DRAFT-DO NOT CITE OR QUOTE 1

The differential equation for the amount of chemical in the body can then be re-written:

2

$$dA/dt = F_{abs} \times dose \times BW - CL_{tot} \times BW \times C_{plasma}$$
 (G-3)

which leads to the interpretation that the clearance or volume of blood cleared of the chemical per
unit time per kg BW is CL_{tot}.

While F_{abs} is shown in equations (G-1) and (G-3) for completeness, the available data could
not be used to identify a value for F_{abs} independent of other parameters in the Bayesian PK analysis
and given the observations of generally high uptake (see the section on Absorption in the
Toxicological Review) it was set to a value of 1 (i.e., 100%) for this analysis, and hence is not
included in the subsequent description.

10 PK parameters for rats (CL_{tot}, and Vd) are taken from the preceding Bayesian analysis (values listed in Table 3-3). Given the slow clearance of PFDA, the growth of rats during toxicity 11 12 studies lasting multiple weeks can be a significant factor as increases in BW dilute the body burden 13 from earlier exposures. The highest doses tested in the NTP bioassay significantly reduced animal 14 BW, which compounds this effect. Therefore, time-dependence in BW based on the empirical data 15 for BW at the doses evaluated was incorporated into the model evaluation, to account for this time-16 and dose-dependence. For illustration, the change in male rat BW observed in the NTP bioassay 17 (28-day exposure (NTP, 2018)) is shown in Figure G-7. Doses of 0.625 mg/kg-day and below did not significantly affect BW gain during the bioassay, but higher dose levels caused a significant 18 19 decline after 7 days of exposure.

20 The internal dose of PFDA predicted by the PK model as a function of exposure day, 21 normalized to the dose for comparison, is shown in Figure G-8. For example, the model simulated 22 concentrations obtained using a dose of 0.625 mg/kg-day were divided by 0.625 before plotting. If 23 the BW curve was the same for all doses, all the resulting normalized curves would lie on top of 24 each other. The predicted concentration increases steadily throughout the study for all dose levels, 25 showing no sign of saturation. However, the increase in animals receiving the highest doses 26 becomes relatively faster after day 7, deflecting above the lower-dose curves. This occurs because 27 the decreasing BW at these doses concentrates the PFDA already administered into a smaller total 28 animal mass. For model simulations the dose is assumed to be adjusted continuously based on the 29 interpolated weights as shown in Figure 3-3. (The study report states that animals were weighed 30 daily, but only weekly values are provided there.) For example, if an animal loses weight between 31 day 7 and 21, the daily dose is assumed to be adjusted accordingly. Since the animals were 32 necropsied on day 29, 1 day after the final dose, the model simulations include a final day with zero 33 exposure. Mean serum PFDA concentrations from the NTP study, collected at time of necropsy, are 34 shown for comparison.

Figure G-7. Male rat body weight changes during 28-day PFDA bioassay (NTP. 2018). Data sets are identified by the dose (mg/kg-d).

Figure G-8. Predicted accumulation and observed end-of-study of PFDA in male rats in the NTP bioassay (<u>NTP, 2018</u>) as a function of dose. Predicted and measured concentrations (mg/L) were normalized to respective doses (mg/kg-d).

- 1 In Figure G-8 the model consistently over-predicts the data by a factor of about 1.5. While
- 2 the EPA general considers this much discrepancy acceptable for a comparison of PK model
- 3 predictions to data, the fact that there is systematic bias, rather than some predictions being above
- 4 and some below the data raises concern. The direction of the error indicates that the model will

- 1 over-predict internal doses in rats, and hence the corresponding HEDs. One might also note that the
- 2 data point for 0.625 mg/kg-day is less than that for 0.312 mg/kg-day, whereas the model
- 3 simulations show only increasing normalized concentration with dose. The pattern in the data
- 4 (which points are more closely clustered vs. farther apart) is a bit different from that predicted by
- 5 the model. To further evaluate the extent of nonlinearity, the end-of-study plasma concentrations
- 6 from NTP (2018) are plotted against the dose in Figure G-9. The exposure-dose relationship is seen
- 7 to be essentially linear for the three lowest doses (to 0.625 mg/kg-day), with some variation, and
- 8 then to increase a bit faster than linear with dose above that. As indicated by the BW data in Figure
- 9 G-7 and resulting simulations in Figure G-8, this upward inflection could be due to dose-related BW
- 10 loses, which are predicted to concentrate the previously administered PFDA into a smaller total
- 11 volume. However, there is no evidence of saturation of renal resorption, which would result in
- 12 downward curvature in the exposure-dose relationship. Instead, the discrepancy between the NTP
- 13 data and the model simulations can be mostly explained if rat clearance is about three times higher
- 14 than estimated from the PK studies.

Figure G-9. Measured end-of-study of PFDA in male rats in the NTP bioassay (<u>NTP, 2018</u>) as a function of dose.

APPENDIX H. SUMMARY OF PUBLIC AND EXTERNAL PEER REVIEW COMMENTS AND EPA'S DISPOSITION

APPENDIX I. QUALITY ASSURANCE FOR THE IRIS TOXICOLOGICAL REVIEW OF PERFLUORODECANOIC ACID AND RELATED SALTS

1	This assessment is prepared under the auspices of the U.S. Environmental Protection
2	Agency's (EPA's) Integrated Risk Information System (IRIS) Program. The IRIS Program is housed
3	within the Office of Research and Development (ORD) in the Center for Public Health and
4	Environmental Assessment (CPHEA). EPA has an agency-wide quality assurance (QA) policy that is
5	outlined in the EPA Quality Manual for Environmental Programs (see <u>CIO 2105-P-01.1</u>) and follows
6	the specifications outlined in EPA Order <u>CIO 2105.1</u> .
7	As required by CIO 2105.1, ORD maintains a Quality Management Program, which is
8	documented in an internal Quality Management Plan (QMP). The latest version was developed in
9	2013 using Guidance for Developing Quality Systems for Environmental Programs (QA/G-1). An
10	NCEA/CPHEA-specific QMP was also developed in 2013 as an appendix to the ORD QMP. Quality
11	assurance for products developed within CPHEA is managed under the ORD QMP and applicable
12	appendices.
13	The IRIS Toxicological Review of Perfluorodecanoic acid (PFDA) is designated as Influential
14	Scientific Information (ISI) and is classified as QA Category A. Category A designations require
15	reporting of all critical QA activities, including audits. The development of IRIS assessments is done
16	through a seven-step process. Documentation of this process is available on the IRIS website:
17	https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system#process.
18	Specific management of quality assurance within the IRIS Program is documented in a
19	Programmatic Quality Assurance Project Plan (PQAPP). A PQAPP is developed using the EPA
20	Guidance for Quality Assurance Project Plans (QA/G-5). All IRIS assessments follow the IRIS
21	PQAPP, and all assessment leads and team members are required to receive QA training on the IRIS
22	PQAPP. During assessment development, additional QAPPs may be applied for quality assurance
23	management. They include:

Title	Document number	Date
Program Quality Assurance Project Plan (PQAPP) for the Integrated Risk Information System (IRIS) Program	L-CPAD-0030729-QP-1-5	June 2022
An Umbrella Quality Assurance Project Plan (QAPP) for Dosimetry and Mechanism-Based Models (PBPK)	L-CPAD-0032188-QP-1-2	December 2020

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Quality Assurance Project Plan (QAPP) for Enhancements to Benchmark Dose Software (BMDS)	L-HEEAD-0032189-QP-1-2	October 2020
Umbrella Quality Assurance Project Plan for CPHEA PFAS Toxicity Assessments	L-CPAD-0031652-QP-1-5	February 2023

During assessment development, this project undergoes four quality audits during

2 assessment development including:

1

Date	Type of audit	Major findings	Actions taken
August 2019	Technical system audit	None	None
August 2020	Technical system audit	None	None
July 2021	Technical system audit	None	None
August 2022	Technical system audit	None	None

- 3 During Step 3 and Step 6 of the IRIS process, the IRIS toxicological review is subjected to
- 4 external reviews by other federal agency partners, including the Executive Offices of the White
- 5 House. Comments during these IRIS process steps are available in the Docket EPA-HQ-ORD-2019-
- 6 0287 on <u>http://www.regulations.gov</u>.

1 **REFERENCES**

2	Abe, T; Takahashi, M; Kano, M; Amaike, Y; Ishii, C; Maeda, K; Kudoh, Y; Morishita, T; Hosaka, T;
3	<u>Sasaki, T; Kodama, S; Matsuzawa, A; Kojima, H; Yoshinari, K.</u> (2017). Activation of
4	nuclear receptor CAR by an environmental pollutant perfluorooctanoic acid. Arch
5	Toxicol 91: 2365-2374. <u>http://dx.doi.org/10.1007/s00204-016-1888-3</u> .
6	Adinehzadeh, M; Reo, NV. (1998). Effects of peroxisome proliferators on rat liver phospholipids:
7	sphingomyelin degradation may be involved in hepatotoxic mechanism of
8	perfluorodecanoic acid. Chem Res Toxicol 11: 428-440.
9	http://dx.doi.org/10.1021/tx970155t.
10	Adinehzadeh, M; Reo, NV; Jarnot, BM; Taylor, CA; Mattie, DR. (1999). Dose-response
11	hapatotoxicity of the peroxisome proliferator, perfluorodecanoic acid and the
12	relationship to phospholipid metabolism in rats. Toxicology 134: 179-195.
13	<u>http://dx.doi.org/10.1016/S0300-483X(99)00038-4</u> .
14	Al Sharif, M; Alov, P; Vitcheva, V; Pajeva, I; Tsakovska, I. (2014). Modes-of-action related to
15	repeated dose toxicity: tissue-specific biological roles of PPAR γ ligand-dependent
16	dysregulation in nonalcoholic fatty liver disease [Review]. PPAR Research 2014: 432647.
17	http://dx.doi.org/10.1155/2014/432647.
18	Angrish, MM; Kaiser, JP; Mcqueen, CA; Chorley, BN. (2016). Tipping the balance: Hepatotoxicity
19	and the 4 apical key events of hepatic steatosis [Review]. Toxicol Sci 150: 261-268.
20	http://dx.doi.org/10.1093/toxsci/kfw018.
21	Arand, M; Coughtrie, MW; Burchell, B; Oesch, F; Robertson, LW. (1991). Selective induction of
22	bilirubin UDP-glucuronosyl-transferase by perfluorodecanoic acid. Chem Biol Interact
23	77: 97-105. <u>http://dx.doi.org/10.1016/0009-2797(91)90008-U</u> .
24	ATSDR (Agency for Toxic Substances and Disease Registry). (2018). Toxicological profile for
25	perfluoroalkyls. Draft for public comment [ATSDR Tox Profile]. Atlanta, GA: U.S.
26	Department of Health and Human Services, Centers for Disease Control and Prevention.
27	https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf.
28	ATSDR (Agency for Toxic Substances and Disease Registry). (2021). Toxicological profile for
29	perfluoroalkyls [ATSDR Tox Profile]. Atlanta, GA: U.S. Department of Health and Human
30	Services, Public Health Service. <u>http://dx.doi.org/10.15620/cdc:59198</u> .
31	Barish, GD; Narkar, VA; Evans, RM. (2006). PPAR delta: a dagger in the heart of the metabolic
32	syndrome. J Clin Invest 116: 590-597. <u>http://dx.doi.org/10.1172/JCl27955</u> .
33	Betancourt, MJ; Girolami, M. (2013). Hamiltonian monte carlo for hierarchical models.
34	Betancourt, MJ; Girolami, M. <u>http://dx.doi.org/10.48550/arXiv.1312.0906</u> .
35	Boobis, AR; Doe, JE; Heinrich-Hirsch, B; Meek, ME; Munn, S; Ruchirawat, M; Schlatter, J; Seed, J;
36	Vickers, C. (2008). IPCS tramework for analyzing the relevance of a noncancer mode of
37	action for humans [Review]. Crit Rev Toxicol 38: 87-96.
38	http://dx.doi.org/10.1080/10408440701749421.

This document is a draft for review purposes only and does not constitute Agency policy.R-1DRAFT-DO NOT CITE OR QUOTE

1	Borges, T; Glauert, HP; Chen, LC; Chow, CK; Robertson, LW. (1990). Effect of the peroxisome
2	proliferator perfluorodecanoic acid on growth and lipid metabolism in Sprague Dawley
3	rats fed three dietary levels of selenium. Arch Toxicol 64: 26-30.
4	<u>http://dx.doi.org/10.1007/BF01973372</u> .
5	Borges, T; Glauert, HP; Robertson, LW. (1993). Perfluorodecanoic acid noncompetitively inhibits
6	the peroxisomal enzymes enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase.
7	Toxicol Appl Pharmacol 118: 8-15. <u>http://dx.doi.org/10.1006/taap.1993.1003</u> .
8	Borges, T; Robertson, LW; Peterson, RE; Glauert, HP. (1992). Dose-related effects of
9	perfluorodecanoic acid on growth, feed intake and hepatic peroxisomal beta-oxidation.
10	Arch Toxicol 66: 18-22. <u>http://dx.doi.org/10.1007/BF02307265</u> .
11	Brewster, DW; Birnbaum, LS. (1989). The biochemical toxicity of perfluorodecanoic acid in the
12	mouse is different from that of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl
13	Pharmacol 99: 544-554. <u>http://dx.doi.org/10.1016/0041-008X(89)90161-0</u> .
14	Budtz-Jørgensen, E; Grandjean, P. (2018a). Application of benchmark analysis for mixed
15	contaminant exposures: Mutual adjustment of perfluoroalkylate substances associated
16	with immunotoxicity. PLoS ONE 13: e0205388.
17	http://dx.doi.org/10.1371/journal.pone.0205388.
18	Budtz-Jørgensen, E; Grandjean, P. (2018b). Computational details for the paper "Application of
19	benchmark analysis for mixed contaminant exposures: Mutual adjustment of
20	perfluoroalkylate substances associated with immunotoxicity".
21	Buhrke, T; Kibellus, A; Lampen, A. (2013). In vitro toxicological characterization of
22	perfluorinated carboxylic acids with different carbon chain lengths. Toxicol Lett 218: 97-
23	104. <u>http://dx.doi.org/10.1016/j.toxlet.2013.01.025</u> .
24	Butenhoff, JL; Bjork, JA; Chang, SC; Ehresman, DJ; Parker, GA; Das, K; Lau, C; Lieder, PH; van
25	Otterdijk, FM; Wallace, KB. (2012). Toxicological evaluation of ammonium
26	perfluorobutyrate in rats: twenty-eight-day and ninety-day oral gavage studies. Reprod
27	Toxicol 33: 513-530. <u>http://dx.doi.org/10.1016/j.reprotox.2011.08.004</u> .
28	<u>Cal, Y; AppelkVist, EL; Depierre, JW.</u> (1995). Hepatic oxidative stress and related defenses during
29	treatment of mice with acetyisalicylic acid and other peroxisome proliferators. J
30 24	Biochem Toxicol 10: 87-94. <u>http://dx.doi.org/10.1002/jbt.2570100205</u> .
27 27	<u>Cab, L, Quall, XB, Zelig, WJ, Falig, XO, Walig, WJ.</u> (2010). Mechanism of nepatocyte apoptosis
22 22	Cattley RC: Cullen JM (2018) Chapter 8, Liver and call bladder. In MA Wallig: WM Hacebok:
21	<u>Cattley, RC, Cullen, JVI.</u> (2010). Chapter 8. Liver and gair bladder. In MA Wallig, WW Hascher,
25	151) Cambridge MA: Academic Press, http://dx.doi.org/10.1016/B978-0-12-809841-
32	7 00008-3
30	Cellesi C: Michelangeli C: Rossolini GM: Giovannoni E: Rossolini A (1989) Immunity to
38	diphtheria six to 15 years after a basic three-dose immunization schedule. Journal of
39	Biological Standardization 17: 29-34 http://dx.doi.org/10.1016/0092-1157(89)90025-5
40	Chapman, AB: Abraham, WT: Zamudio, S: Coffin, C: Merouani, A: Young, D: Johnson, A: Osorio
41	F: Goldberg, C: Moore, LG: Dahms, T: Schrier, RW, (1998), Temporal relationships
42	between hormonal and hemodynamic changes in early human pregnancy. Kidney Int 54:
43	2056-2063. http://dx.doi.org/10.1046/i.1523-1755.1998.00217.x

This document is a draft for review purposes only and does not constitute Agency policy. R-2 DRAFT-DO NOT CITE OR QUOTE

1	Chen, H; Huang, CY; Wilson, MW; Lay, LT; Robertson, LW; Chow, CK; Glauert, HP. (1994). Effect
2	of the peroxisome proliferators ciprofibrate and perfluorodecanoic acid on hepatic cell
3	proliferation and toxicity in Sprague-Dawley rats. Carcinogenesis 15: 2847-2850.
4	http://dx.doi.org/10.1093/carcin/15.12.2847.
5	Chen, LC; Tatum, V; Glauert, HP; Chow, CK. (2001). Peroxisome proliferator perfluorodecanoic
6	acid alters glutathione and related enzymes. J Biochem Mol Toxicol 15: 107-113.
7	<u>http://dx.doi.org/10.1002/jbt.6</u> .
8	Cheng, X; Klaassen, CD. (2008a). Critical role of PPAR-alpha in perfluorooctanoic acid- and
9	perfluorodecanoic acid-induced downregulation of Oatp uptake transporters in mouse
10	livers. Toxicol Sci 106: 37-45. <u>http://dx.doi.org/10.1093/toxsci/kfn161</u> .
11	Cheng, X; Klaassen, CD. (2008b). Perfluorocarboxylic acids induce cytochrome P450 enzymes in
12	mouse liver through activation of PPAR-alpha and CAR transcription factors. Toxicol Sci
13	106: 29-36. <u>http://dx.doi.org/10.1093/toxsci/kfn147</u> .
14	Chinje, E; Kentish, P; Jarnot, B; George, M; Gibson, G. (1994). Induction of the CYP4A subfamily
15	by perfluorodecanoic acid: The rat and the guinea pig as susceptible and non-
16	susceptible species. Toxicol Lett 71: 69-75. <u>http://dx.doi.org/10.1016/0378-</u>
17	<u>4274(94)90200-3</u> .
18	Christenson, B; Böttiger, M. (1986). Serological immunity to diphtheria in Sweden in 1978 and
19	1984. Scand J Infect Dis 18: 227-233. <u>http://dx.doi.org/10.3109/00365548609032331</u> .
20	Collier, RJ. (1975). Diphtheria toxin: Mode of action and structure [Review]. Bacteriol Rev 39:
21	54-85. <u>http://dx.doi.org/10.1128/br.39.1.54-85.1975</u> .
22	<u>Corton, JC; Peters, JM; Klaunig, JE.</u> (2018). The PPARα-dependent rodent liver tumor response is
23	not relevant to humans: addressing misconceptions [Review]. Arch Toxicol 92: 83-119.
24	http://dx.doi.org/10.1007/s00204-017-2094-7.
25	Crump, KS. (1995). Calculation of benchmark doses from continuous data. Risk Anal 15: 79-89.
26	http://dx.doi.org/10.1111/j.1539-6924.1995.tb00095.x
27	Davis, JW; Vanden Heuvel, JP; Peterson, RE. (1991). Effects of perfluorodecanoic acid on de
28	novo fatty acid and cholesterol synthesis in the rat. Lipids 26: 857-859.
29	http://dx.doi.org/10.1007/BF02536170
30	Derbel, M; Hosokawa, M; Satoh, T. (1996). Differences in the induction of carboxylesterase RL4
31	in rat liver microsomes by various perfluorinated fatty acids, metabolically inert
32	derivatives of fatty acids. Biol Pharm Bull 19: 765-767.
33	http://dx.doi.org/10.1248/bpb.19.765.
34	Division of Environmental Epidemiology, I, forRAS; Portengen, L; Rignell-Hydbom, A; Jonsson, B,
35	OAG; Lindh, CH; Piersma, AH; Toff, G; Bonde, JP; Heederik, D; Rylander, L; Vermeulen, R.
36	(2016). Prenatal Phthalate, Perfluoroalkyl Acid, and Organochlorine Exposures and Term
37	Birth Weight in Three Birth Conorts: Multi-Pollutant Models Based on Elastic Net
38	Regression. Environ Health Perspect 124: 365-372.
39	Dzierlenga, AL; Robinson, VG; Waldyanatha, S; Devito, MJ; Elfrid, MA; Gibbs, ST; Granville, CA;
4U 41	BIVSTONE, CK. (2019). TOXICOKINETICS OF PERTINOPONEXANOIC ACID (PEHXA),
4⊥ 4⊃	perhuorooctanoic acid (PFOA) and perhuorodecanoic acid (PFDA) in male and female
4Z	HSu:Sprague dawley SD rats following intravenous or gavage administration.
43	xenopiotica 50: 1-11. <u>http://ax.aoi.org/10.1080/00498254.2019.1683//6</u> .

This document is a draft for review purposes only and does not constitute Agency policy. R-3 DRAFT-DO NOT CITE OR QUOTE

1	Dzierlenga, M, .W.; Crawford, L, .; Longnecker, M, .P. (2020). Birth weight and perfluorooctane
2	sulfonic acid: a random-effects meta-regression analysis. Environmental Epidemiology 4:
3	e095. http://dx.doi.org/10.1097/EE9.000000000000095.
4	Edwards, SW; Tan, YM; Villeneuve, DL; Meek, ME; McQueen, CA. (2016). Adverse outcome
5	pathways—Organizing toxicological information to improve decision making [Review]. J
6	Pharmacol Exp Ther 356: 170-181. <u>http://dx.doi.org/10.1124/jpet.115.228239</u> .
7	Frawley, RP; Smith, M; Cesta, MF; Hayes-Bouknight, S; Blystone, C; Kissling, GE; Harris, S;
8	Germolec, D. (2018). Immunotoxic and hepatotoxic effects of perfluoro-n-decanoic acid
9	(PFDA) on female Harlan Sprague-Dawley rats and B6C3F1/N mice when administered
10	by oral gavage for 28 days. J Immunotoxicol 15: 41-52.
11	http://dx.doi.org/10.1080/1547691X.2018.1445145.
12	Galazka, A; Kardymowicz, B. (1989). Immunity against diphtheria in adults in Poland. Epidemiol
13	Infect 103: 587-593. http://dx.doi.org/10.1017/s0950268800030983.
14	Galazka, AM; Milstien, JB; Robertson, SE; Cutts, FT. (1993). The immunological basis for
15	immunization module 2 : Diphtheria. (WHO/EPI/Gen/93.11-18). Galazka, AM; Milstien,
16	JB; Robertson, SE; Cutts, FT.
17	http://apps.who.int/iris/bitstream/handle/10665/58891/WHO-EPI-GEN-93.12-mod2-
18	eng.pdf?sequence=38&isAllowed=y.
19	Gelman, A; Lee, D; Guo, L. (2015). Stan: a probabilistic programming language for bayesian
20	inference and optimization. American Educational Research Journal 40.
21	http://dx.doi.org/10.3102/1076998615606113.
22	Gibson, H, .M. (1973). Plasma volume and glomerular filtration rate in pregnancy and their
23	relation to differences in fetal growth. Br J Obstet Gynaecol 80: 1067-1074.
24	<u>http://dx.doi.org/10.1111/j.1471-0528.1973.tb02981.x</u> .
25	<u>Glauert, HP; Srinivasan, S; Tatum, VL; Chen, LC; Saxon, DM; Lay, LT; Borges, T; Baker, M; Chen,</u>
26	LH; Robertson, LW; Chow, CK. (1992). Effects of the peroxisome proliferators
27	ciprofibrate and perfluorodecanoic acid on hepatic cellular antioxidants and lipid
28	peroxidation in rats. Biochem Pharmacol 43: 1353-1359.
29	<u>http://dx.doi.org/10.1016/0006-2952(92)90513-I</u> .
30	<u>Glynn, A; Berger, U; Bignert, A; Ullah, S; Aune, M; Lignell, S; Darnerud, PO.</u> (2012).
31	Perfluorinated alkyl acids in blood serum from primiparous women in Sweden: serial
32	sampling during pregnancy and nursing, and temporal trends 1996-2010. Environ Sci
33	Technol 46: 9071-9079. <u>http://dx.doi.org/10.1021/es301168c</u> .
34	Goecke-Flora, CM; Wyman, JF; Jarnot, BM; Reo, NV. (1995). Effect of the peroxisome
35	proliferator perfluoro-n-decanoic acid on glucose transport in the isolated perfused rat
36	liver. Chem Res Toxicol 8: 77-81. <u>http://dx.doi.org/10.1021/tx00043a010</u> .
37	Goecke, CM; Jarnot, BM; Reo, NV. (1994). Effects of the peroxisome proliferator perfluoro-n-
38	decanoic acid on hepatic gluconeogenesis and glycogenesis: a 13C NMR investigation.
39	Chem Res Toxicol 7: 15-22. <u>http://dx.doi.org/10.1021/tx00037a003</u> .
40	<u>Grandjean, P; Andersen, EW; Budtz-Jørgensen, E; Nielsen, F; Mølbak, K; Weihe, P; Heilmann, C.</u>
41	(2012). Serum vaccine antibody concentrations in children exposed to perfluorinated
42	compounds. JAMA 307: 391-397. <u>http://dx.doi.org/10.1001/jama.2011.2034</u> .

1	Grandjean, P; Bateson, T. (2021). RE: Benchmark analysis for PFAS immunotoxicity. Available
2	online at (accessed
3	<u>Grandjean, P; Heilmann, C; Weihe, P; Nielsen, F; Mogensen, UB; Timmermann, A; Budtz-</u>
4	Jørgensen, E. (2017). Estimated exposures to perfluorinated compounds in infancy
5	predict attenuated vaccine antibody concentrations at age 5-years. J Immunotoxicol 14:
6	188-195. <u>http://dx.doi.org/10.1080/1547691X.2017.1360968</u> .
7	<u>Gyllenhammar, I; Diderholm, B; Gustafsson, J; Berger, U; Ridefelt, P; Benskin, JP; Lignell, S;</u>
8	Lampa, E; Glynn, A. (2018). Perfluoroalkyl acid levels in first-time mothers in relation to
9	offspring weight gain and growth. Environ Int 111: 191-199.
10	http://dx.doi.org/10.1016/j.envint.2017.12.002.
11	Hack, M; Klein, NK; Taylor, HG. (1995). Long-term developmental outcomes of low birth weight
12	infants [Review]. Future Child 5: 176-196. <u>http://dx.doi.org/10.2307/1602514</u> .
13	Hall, AP; Elcombe, CR; Foster, JR; Harada, T; Kaufmann, W; Knippel, A; Küttler, K; Malarkey, DE;
14	Maronpot, RR; Nishikawa, A; Nolte, T; Schulte, A; Strauss, V; York, MJ. (2012). Liver
15	hypertrophy: a review of adaptive (adverse and non-adverse) changesconclusions from
16	the 3rd International ESTP Expert Workshop [Review]. Toxicol Pathol 40: 971-994.
17	http://dx.doi.org/10.1177/0192623312448935.
18	Han, CY. (2018). Update on FXR Biology: Promising Therapeutic Target? International Journal of
19	Molecular Sciences 19. <u>http://dx.doi.org/10.3390/ijms19072069</u> .
20	Harris, MW; Birnbaum, LS. (1989). Developmental toxicity of perfluorodecanoic acid in
21	C57BL/6N mice. Fundam Appl Toxicol 12: 442-448. <u>http://dx.doi.org/10.1016/0272-</u>
22	<u>0590(89)90018-3</u> .
23	<u>Harrison, EH; Lane, JS; Luking, S; Van Rafelghem, MJ; Andersen, ME.</u> (1988). Perfluoro-n-
24	decanoic acid: Induction of peroxisomal beta-oxidation by a fatty acid with dioxin-like
25	toxicity. Lipids 23: 115-119. <u>http://dx.doi.org/10.1007/BF02535290</u> .
26	Hu, J; Li, J; Wang, J; Zhang, A; Dai, J. (2014). Synergistic effects of perfluoroalkyl acids mixtures
27	with J-shaped concentration-responses on viability of a human liver cell line.
28	Chemosphere 96: 81-88. http://dx.doi.org/10.1016/j.chemosphere.2013.07.033 .
29	Huang, CY; Wilson, MW; Lay, LT; Chow, CK; Robertson, LW; Glauert, HP. (1994). Increased 8-
30	hydroxydeoxyguanosine in hepatic DNA of rats treated with the peroxisome
31	proliferators ciprofibrate and perfluorodecanoic acid. Cancer Lett 87: 223-228.
32	http://dx.doi.org/10.1016/0304-3835(94)90226-7.
33	Ikeda, T; Aiba, K; Fukuda, K; Tanaka, M. (1985). The induction of peroxisome proliferation in rat
34	liver by perfluorinated fatty acids, metabolically inert derivatives of fatty acids. J
35	Biochem 98: 475-482. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a135302 .
36	Intrasuksri, U; Feller, DR. (1991). Comparison of the effects of selected monocarboxylic,
37	dicarboxylic and perfluorinated fatty acids on peroxisome proliferation in primary
38	cultured rat hepatocytes. Biochem Pharmacol 42: 184-188.
39	http://dx.doi.org/10.1016/0006-2952(91)90698-5.
40	IPCS (International Programme on Chemical Safety). (2007). Harmonization project document
41	no. 4: Part 2: IPCS framework for analysing the relevance of a non-cancer mode of
42	action for humans. Geneva, Switzerland: World Health Organization.
43	http://www.who.int/ipcs/methods/harmonization/areas/cancer_mode.pdf?ua=1.

1	Ishibashi, H; Hirano, M; Kim, EY; Iwata, H. (2019). In vitro and in silico evaluations of binding
2	affinities of perfluoroalkyl substances to baikal seal and human peroxisome proliferator-
3	activated receptor α. Environ Sci Technol 53: 2181-2188.
4	http://dx.doi.org/10.1021/acs.est.8b07273.
5	Jaeschke, H; Mcgill, MR; Ramachandran, A. (2012). Oxidant stress, mitochondria, and cell death
6	mechanisms in drug-induced liver injury: lessons learned from acetaminophen
7	hepatotoxicity [Review]. Drug Metab Rev 44: 88-106.
8	http://dx.doi.org/10.3109/03602532.2011.602688.
9	Johnson, DR; Klaassen, CD. (2002). Regulation of rat multidrug resistance protein 2 by classes of
10	prototypical microsomal enzyme inducers that activate distinct transcription pathways.
11	Toxicol Sci 67: 182-189. <u>http://dx.doi.org/10.1093/toxsci/67.2.182</u> .
12	Joshi-Barve, S; Kirpich, I; Cave, MC; Marsano, LS; McClain, CJ. (2015). Alcoholic, nonalcoholic,
13	and toxicant-associated steatohepatitis: Mechanistic similarities and differences
14	[Review]. CMGH 1: 356-367. <u>http://dx.doi.org/10.1016/j.jcmgh.2015.05.006</u> .
15	Judson, RS; Magpantay, FM; Chickarmane, V; Haskell, C; Tania, N; Taylor, J; Xia, M; Huang, R;
16	Rotroff, DM; Filer, DL; Houck, KA; Martin, MT; Sipes, N; Richard, AM; Mansouri, K;
17	<u>Setzer, RW; Knudsen, TB; Crofton, KM; Thomas, RS.</u> (2015). Integrated model of
18	chemical perturbations of a biological pathway using 18 in vitro high throughput
19	screening assays for the estrogen receptor. Toxicol Sci 148: 137-154.
20	http://dx.doi.org/10.1093/toxsci/kfv168.
21	Kaiser, JP; Lipscomb, JC; Wesselkamper, SC. (2012). Putative mechanisms of environmental
22	chemical-induced steatosis. Int J Toxicol 31: 551-563.
23	<u>http://dx.doi.org/10.1177/1091581812466418</u> .
24	Kawashima, Y; Kobayashi, H; Miura, H; Kozuka, H. (1995). Characterization of hepatic responses
25	of rat to administration of perfluorooctanoic and perfluorodecanoic acids at low levels.
26	Toxicology 99: 169-178. <u>http://dx.doi.org/10.1016/0300-483X(95)03027-D</u> .
27	Kelling, CK; Van Rafelghem, MJ; Drake, RL; Menahan, LA; Peterson, RE. (1986). Regulation of
28	hepatic malic enzyme by perfluorodecanoic acid. J Biochem Toxicol 1: 23-37.
29	http://dx.doi.org/10.1002/jbt.2570010304.
30	Kelling, CK; Van Rafelghem, MJ; Menahan, LA; Peterson, RE. (1987). Effects of
31	perfluorodecanoic acid on hepatic indices of thyroid status in the rat. Biochem
32	Pharmacol 36: 1337-1344. <u>http://dx.doi.org/10.1016/0006-2952(87)90091-8</u> .
33	<u>Kim, SC; Hong, JT; Jang, SJ; Kang, WS; Yoo, HS; Yun, YP.</u> (1998). Formation of 8-
34	oxodeoxyguanosine in liver DNA and hepatic injury by peroxisome proliferator clofibrate
35	and perfluorodecanoic acid in rats. J Toxicol Sci 23: 113-119.
36	http://dx.doi.org/10.2131/jts.23.2_113.
37	Kim, SJ; Choi, EJ; Choi, GW; Lee, YB; Cho, HY. (2019). Exploring sex differences in human health
38	risk assessment for PFNA and PFDA using a PBPK model. Arch Toxicol 93: 311-330.
39	<u>http://dx.doi.org/10.1007/s00204-018-2365-y</u> .
40	Kleinstreuer, NC; Ceger, P; Watt, ED; Martin, M; Houck, K; Browne, P; Thomas, RS; Casey, WM;
41	Dix, DJ; Allen, D; Sakamuru, S; Xia, M; Huang, R; Judson, R. (2017). Development and
42	validation of a computational model for androgen receptor activity. Chem Res Toxicol
43	30: 946-964. http://dx.doi.org/10.1021/acs.chemrestox.6b00347 .

This document is a draft for review purposes only and does not constitute Agency policy. R-6 DRAFT-DO NOT CITE OR QUOTE

1	Kozuka, H; Watanabe, T; Horie, S; Yamada, J; Suga, T; Ikeda, T. (1991a). Characteristics of
2	peroxisome proliferation: co-induction of peroxisomal fatty acid oxidation-related
3	enzymes with microsomal laurate hydroxylase. Chem Pharm Bull (Tokyo) 39: 1267-1271.
4	http://dx.doi.org/10.1248/cpb.39.1267.
5	Kozuka, H; Yamada, J; Horie, S; Watanabe, T; Suga, T; Ikeda, T. (1991b). Characteristics of
6	induction of peroxisomal fatty acid oxidation-related enzymes in rat liver by
7	drugs:Relationships between structure and inducing activity. Biochem Pharmacol 41:
8	617-623. http://dx.doi.org/10.1016/0006-2952(91)90635-I.
9	Kruschke, JK. (2021). Bayesian analysis reporting guidelines. Nat Hum Behav 5: 1282-1291.
10	http://dx.doi.org/10.1038/s41562-021-01177-7.
11	Kudo, N; Bandai, N; Suzuki, E; Katakura, M; Kawashima, Y. (2000). Induction by perfluorinated
12	fatty acids with different carbon chain length of peroxisomal beta-oxidation in the liver
13	of rats. Chem Biol Interact 124: 119-132. <u>http://dx.doi.org/10.1016/S0009-</u>
14	2797(99)00150-7.
15	Kudo, N; Kawashima, Y. (2003). Induction of triglyceride accumulation in the liver of rats by
16	perfluorinated fatty acids with different carbon chain lengths: Comparison with
17	induction of peroxisomal beta-oxidation. Biol Pharm Bull 26: 47-51.
18	http://dx.doi.org/10.1248/bpb.26.47.
19	Langley, AE. (1990). Effects of perfluoro-n-decanoic acid on the respiratory activity of isolated
20	rat liver mitochondria. J Toxicol Environ Health 29: 329-336.
21	<u>http://dx.doi.org/10.1080/15287399009531395</u> .
22	<u>Lenters, V; Portengen, L; Rignell-Hydbom, A; Jönsson, BA; Lindh, CH; Piersma, AH; Toft, G;</u>
23	<u>Bonde, JP; Heederik, D; Rylander, L; Vermeulen, R.</u> (2016). Prenatal phthalate,
24	perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth
25	cohorts: multi-pollutant models based on elastic net regression. Environ Health Perspect
26	124: 365-372. <u>http://dx.doi.org/10.1289/ehp.1408933</u> .
27	Li, C; Ren, X; Cao, L; Qin, W; Guo, LH. (2019). Investigation of binding and activity of
28	perfluoroalkyl substances to the human peroxisome proliferator-activated receptor β/δ .
29	Environ Sci Process Impacts 21: 1908-1914. <u>http://dx.doi.org/10.1039/c9em00218a</u> .
30	Li, K; Gao, P; Xiang, P; Zhang, X; Cui, X; Ma, LQ. (2017). Molecular mechanisms of PFOA-induced
31	toxicity in animals and humans: Implications for health risks [Review]. Environ Int 99: 43-
32	54. <u>http://dx.doi.org/10.1016/j.envint.2016.11.014</u> .
33	Li, KM; Zhao, Q; Fan, ZY; Jia, SY; Liu, Q; Liu, FY; Liu, SL. (2022). The toxicity of perfluorodecanoic
34	acid is mainly manifested as a deflected immune function. Mol Biol Rep 49: 4365-4376.
35	<u>http://dx.doi.org/10.1007/s11033-022-07272-w</u> .
36	Li, T; Yu, RT; Atkins, AR; Downes, M; Tukey, RH; Evans, RM. (2012). Targeting the pregnane X
37	receptor in liver injury [Review]. Expert Opin Ther Targets 16: 1075-1083.
38	http://dx.doi.org/10.1517/14728222.2012.715634.
39	<u>Liang, JL; Tiwari, T; Moro, P; Messonnier, NE; Reingold, A; Sawyer, M; Clark, TA.</u> (2018).
40	Prevention of pertussis, tetanus, and diphtheria with vaccines in the United States:
41	Recommendations of the Advisory Committee on Immunization Practices (ACIP).
42	MMWR Recomm Rep 67: 1-44. <u>http://dx.doi.org/10.15585/mmwr.rr6702a1</u> .
1	Lim U. Sub Y. Faustman FM: Cui IX (2021) Regulation of transporters by perfluorinated
----	---
2	carboxylic acids in HepaRG cells. Drug Metab Dispos 50: 1396-1413.
3	http://dx.doi.org/10.1124/dmd.121.000477.
4	Long, M; Ghisari, M; Bonefeld-Jørgensen, EC. (2013). Effects of perfluoroalkyl acids on the
5	function of the thyroid hormone and the aryl hydrocarbon receptor. Environ Sci Pollut
6	Res Int 20: 8045-8056. http://dx.doi.org/10.1007/s11356-013-1628-7.
7	Luo, D; Wu, WX; Pan, YA; Du, BB; Shen, MJ; Zeng, LX, (2021), Associations of prenatal exposure
8	to per- and polyfluoroalkyl substances with the neonatal birth size and hormones in the
9	growth hormone/insulin-like growth factor axis. Environ Sci Technol 55: 11859-11873.
10	http://dx.doi.org/10.1021/acs.est.1c02670.
11	Luo, M; Tan, Z; Dai, M; Song, D; Lin, J; Xie, M; Yang, J; Sun, L; Wei, D; Zhao, J; Gonzalez, FJ; Liu,
12	A. (2017). Dual action of peroxisome proliferator-activated receptor alpha in
13	perfluorodecanoic acid-induced hepatotoxicity. Arch Toxicol 91: 897-907.
14	http://dx.doi.org/10.1007/s00204-016-1779-7.
15	Ma, K; Saha, PK; Chan, L; Moore, DD. (2006). Farnesoid X receptor is essential for normal
16	glucose homeostasis. J Clin Invest 116: 1102-1109. http://dx.doi.org/10.1172/JCl25604.
17	Ma, Y; Sachdeva, K; Liu, J; Song, X; Li, Y; Yang, D; Deng, R; Chichester, CO; Yan, B. (2005).
18	Clofibrate and perfluorodecanoate both upregulate the expression of the pregnane X
19	receptor but oppositely affect its ligand-dependent induction on cytochrome P450
20	3A23. Biochem Pharmacol 69: 1363-1371. <u>http://dx.doi.org/10.1016/j.bcp.2005.02.011</u> .
21	Mackowiak, B; Hodge, J; Stern, S; Wang, H. (2018). The roles of xenobiotic receptors: Beyond
22	chemical disposition [Review]. Drug Metab Dispos 46: 1361-1371.
23	http://dx.doi.org/10.1124/dmd.118.081042.
24	<u>Maher, JM; Aleksunes, LM; Dieter, MZ; Tanaka, Y; Peters, JM; Manautou, JE; Klaassen, CD.</u>
25	(2008). Nrf2- and PPAR alpha-mediated regulation of hepatic Mrp transporters after
26	exposure to perfluorooctanoic acid and perfluorodecanoic acid. Toxicol Sci 106: 319-
27	328. <u>http://dx.doi.org/10.1093/toxsci/kfn177</u> .
28	Malhi, H; Gores, GJ. (2008). Cellular and molecular mechanisms of liver injury [Review].
29	Gastroenterology 134: 1641-1654. <u>http://dx.doi.org/10.1053/j.gastro.2008.03.002</u> .
30	Manzano-Salgado, CB; Casas, M; Lopez-Espinosa, MJ; Ballester, F; Iñiguez, C; Martinez, D; Costa,
31	<u>O; Santa-Marina, L; Pereda-Pereda, E; Schettgen, T; Sunyer, J; Vrijheid, M.</u> (2017).
32	Prenatal exposure to perfluoroalkyl substances and birth outcomes in a Spanish birth
33	cohort. Environ Int 108: 278-284. <u>http://dx.doi.org/10.1016/j.envint.2017.09.006</u> .
34	Meek, ME; Boobis, A; Cote, I; Dellarco, V; Fotakis, G; Munn, S; Seed, J; Vickers, C. (2014). New
35	developments in the evolution and application of the WHO/IPCS framework on mode of
36	action/species concordance analysis [Review]. J Appl Toxicol 34: 1-18.
37	http://dx.doi.org/10.1002/jat.2949.
38	Mellor, CL; Steinmetz, FP; Cronin, MT. (2016). The identification of nuclear receptors associated
39	with hepatic steatosis to develop and extend adverse outcome pathways [Review]. Crit
40	Rev Toxicol 46: 138-152. <u>http://dx.doi.org/10.3109/10408444.2015.1089471</u> .
41	Meng, Q; Inoue, K; Ritz, B; Olsen, J; Liew, Z. (2018). Prenatal exposure to perfluoroalkyl
42	substances and birth outcomes; an updated analysis from the danish national birth

This document is a draft for review purposes only and does not constitute Agency policy.R-8DRAFT-DO NOT CITE OR QUOTE

1	cohort. Int J Environ Res Public Health 15: 1832.
2	http://dx.doi.org/10.3390/ijerph15091832.
3	Morken, NH; Travlos, GS; Wilson, RE; Eggesbø, M; Longnecker, MP. (2014). Maternal glomerular
4	filtration rate in pregnancy and fetal size. PLoS ONE 9: e101897.
5	http://dx.doi.org/10.1371/journal.pone.0101897.
6	NTP (National Toxicology Program). (2018). 28-day evaluation of the toxicity (C20615) of
7	perfluorodecanoic acid (PFDA) (335-76-2) on Harlan Sprague-Dawley rats exposed via
8	gavage [NTP]. U.S. Department of Health and Human Services.
9	http://dx.doi.org/10.22427/NTP-DATA-002-02652-0004-0000-1.
10	<u>Oguro, T; Hayashi, M; Nakajo, S; Numazawa, S; Yoshida, T.</u> (1998). The expression of heme
11	oxygenase-1 gene responded to oxidative stress produced by phorone, a glutathione
12	depletor, in the rat liver; the relevance to activation of c-jun n-terminal kinase. J
13	Pharmacol Exp Ther 287: 773-778.
14	Ohmori, K; Kudo, N; Katayama, K; Kawashima, Y. (2003). Comparison of the toxicokinetics
15	between perfluorocarboxylic acids with different carbon chain length. Toxicology 184:
16	135-140. <u>http://dx.doi.org/10.1016/S0300-483X(02)00573-5</u> .
17	Ojo, AF; Peng, C; Ng, JC. (2020). Combined effects and toxicological interactions of
18	perfluoroalkyl and polyfluoroalkyl substances mixtures in human liver cells (HepG2).
19	Environ Pollut 263: 114182. <u>http://dx.doi.org/10.1016/j.envpol.2020.114182</u> .
20	Ojo, AF; Xia, Q; Peng, C; Ng, JC. (2021). Evaluation of the individual and combined toxicity of
21	perfluoroalkyl substances to human liver cells using biomarkers of oxidative stress.
22	Chemosphere 281: 130808. <u>http://dx.doi.org/10.1016/j.chemosphere.2021.130808</u> .
23	Olson, CT; Andersen, ME. (1983). The acute toxicity of perfluorooctanoic and perfluorodecanoic
24	acids in male rats and effects on tissue fatty acids. Toxicol Appl Pharmacol 70: 362-372.
25	http://dx.doi.org/10.1016/0041-008x(83)90154-0.
26	Passen, EL; Andersen, BR. (1986). Clinical tetanus despite a protective level of toxin-neutralizing
27	antibody [Case Report]. JAMA 255: 1171-1173.
28	http://dx.doi.org/10.1001/jama.1986.03370090093029.
29	Patel, JC; Menta, BC. (1999). Tetanus: Study of 8,697 cases. Indian J Med Sci 53: 393-401.
30	Permadi, H; Lundgren, B; Andersson, K; Sundberg, C; Depierre, JW. (1993). Effects of perfluoro
31 22	fatty acids on peroxisome proliferation and mitochondrial size in mouse liver: dose and
32 22	http://dv.doi.org/10.2100/00408250200166782
33 24	<u>IIIIp://dx.doi.org/10.3109/00498259309166782</u> .
34 25	Powers, RH, Aust, SD. (1986). The effects of honadecalitorio-fi-decalioic acid on serum retinoi
22 26	Toyicol 1: 27.42 http://dv.doi.org/10.1002/ibt 2570010204
00 27	Pop NV: Gooske CM: Narayapap I: Jarpet RM (1994) Effects of perfluere plottaneic acid
20	<u>norfluoro-n-decanoic acid</u> and clofibrate on henatic phosphorus metabolism in rate and
20	guinos pigs in vivo. Toxicol Appl Pharmacol 124: 165-172
40	$\frac{1}{24}$ $\frac{1}{25}$ $\frac{1}{27}$ $\frac{1}{26}$ $\frac{1}{26}$ $\frac{1}{26}$ $\frac{1}{27}$ $\frac{1}{26}$ $\frac{1}{27}$ $\frac{1}{26}$
4 0 Д1	Reves L: Mañalich R (2005) Long-term consequences of low hirth weight [Review] Kidney Int
42	Suppl 68: \$107-\$111, http://dx.doi.org/10.1111/i 1523-1755.2005.09718 x
-r ८	Suppriss. 5107 5111. http://dx.doi.org/10.1111/j.1525 1755.2005.05710.A.

4	Deblede, CA. Verme, F. Mandele, D. Credener, D. Meisen, J. Creenery, AMA Dem, DD. Levie, CMA
1	<u>Robledo, CA; Yeung, E; Mendola, P; Sundaram, R; Malsog, J; Sweeney, AM; Barr, DB; Louis, GM.</u>
2	(2015). Preconception maternal and paternal exposure to persistent organic pollutants
3 ⊿	and birth size: the LIFE study. Environ Health Perspect 123: 88-94.
4	<u>Inttp://dx.doi.org/10.1289/enp.1308016</u> .
5	<u>Rosen, MB; Das, RP; Wood, CR; Woll, CJ; Abboll, BD; Lau, C.</u> (2013). Evaluation of perhuoroalkyr
0	actu activity using primary mouse and numan nepatocytes. Toxicology 308: 129-137.
/ 0	IIII. (2018) Relationship hotwoon
0	<u>Roseninal, AK, Ameris, L, le Godec, T, Lundqvist, J, Oskarsson, A.</u> (2018). Relationship between
9 10	14 perfuerce alled substances in HenG2 cells. I Appl Toxicel 28: 210, 226
10	http://dv.doi.org/10.1002/int 2515
11 12	Roth RA: Jacspha H: Luwandyk JR (2010) Chanter 12: Toxic responses of the liver. In CD
12 12	<u>Косп, ка, Jaescrike, н. Luyendyk, јР.</u> (2019). Chapter 15. Toxic responses of the liver. In CD
17	710 766) Now York NV: McCrow Hill
14 15	Poutti H: Borg MK: Lillo Langey P: Øygardon L: Hariy M: Diotz P: Sonno C: Cokeeyr A
16	(2019) Environmental contaminants modulate the transcriptional activity of polar bear
17	(Ursus maritimus) and human perovisome proliferator-activated recentor alpha
10	(DISUS manufinus) and numan perovisione promerator activated receptor apria (PDARA) Sci Rep 9: 6018, http://dx.doi.org/10.1038/s/1508-019-/3337-w
10 10	Russell DW (2003) The enzymes regulation and genetics of hile acid synthesis [Review] Annu
20	Rev Biochem 72: 137-174
20	http://dx doi org/10.1146/appurey biochem 72.121801.161712
22	Sagiy SK: Bifas-Shiman SI: Eleisch AF: Webster TE: Calafat AM: Ye X: Gillman MW: Oken E
23	(2018). Early Pregnancy Perfluoroalkyl Substance Plasma Concentrations and Birth
24	Outcomes in Project Viva: Confounded by Pregnancy Hemodynamics? Am J Epidemiol
25	187: 793-802. http://dx.doi.org/10.1093/aje/kwx332.
26	Salvatier, J; Wiecki, TV; Fonnesbeck, C. (2016). Probabilistic programming in Python using
27	PyMC3. PeerJ Computer Science 2: e55. http://dx.doi.org/10.7717/peerj-cs.55.
28	Sanghavi, M; Rutherford, JD. (2014). Cardiovascular physiology of pregnancy. Circulation 130:
29	1003-1008. http://dx.doi.org/10.1161/CIRCULATIONAHA.114.009029.
30	Schramm, H; Friedberg, T; Robertson, LW; Oesch, F; Kissel, W. (1989). Perfluorodecanoic acid
31	decreases the enzyme activity and the amount of glutathione S-transferases proteins
32	and mRNAs in vivo. Chem Biol Interact 70: 127-143. <u>http://dx.doi.org/10.1016/0009-</u>
33	<u>2797(89)90068-9</u> .
34	Selgrade, MK. (2007). Immunotoxicity: The risk is real [Review]. Toxicol Sci 100: 328-332.
35	http://dx.doi.org/10.1093/toxsci/kfm244.
36	<u>Sovadinova, I; Babica, P; Böke, H; Kumar, E; Wilke, A; Park, JS; Trosko, JE; Upham, BL.</u> (2015).
37	Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust
38	Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat
39	Liver Cell Model. PLoS ONE 10: e0124454.
40	http://dx.doi.org/10.1371/journal.pone.0124454.
41	<u>Starling, AP; Adgate, JL; Hamman, RF; Kechris, K; Calafat, AM; Ye, X; Dabelea, D.</u> (2017).
42	Perfluoroalkyl substances during pregnancy and offspring weight and adiposity at birth:

Supplemental Information for the Toxicological Review of PFDA and Related Salts

1	Examining mediation by maternal fasting glucose in the healthy start study. Environ
2	Health Perspect 125: 067016. <u>http://dx.doi.org/10.1289/EHP641</u> .
3	Steenland, K; Barry, V; Savitz, D. (2018). Serum perfluorooctanoic acid and birthweight: an
4	updated meta-analysis with bias analysis. Epidemiology 29: 765-776.
5	http://dx.doi.org/10.109//EDE.0000000000000003.
6	Sterchele, PF; Sun, H; Peterson, RE; Vanden Heuvel, JP. (1996). Regulation of peroxisome
7	proliferator-activated receptor-alpha mRNA in rat liver. Arch Biochem Biophys 326: 281-
8	289. <u>http://dx.doi.org/10.1006/abbi.1996.0077</u> .
9	<u>Sterchele, PF; Vanden Heuvel, JP; Davis, JW; Shrago, E; Knudsen, J; Peterson, RE.</u> (1994).
10	Induction of hepatic acyl-CoA-binding protein and liver fatty acid-binding protein by
11	perfluorodecanoic acid in rats. Lack of correlation with hepatic long-chain acyl-CoA
12	levels. Biochem Pharmacol 48: 955-966. <u>http://dx.doi.org/10.1016/0006-</u>
13	<u>2952(94)90366-2</u> .
14	Takacs, ML; Abbott, BD. (2007). Activation of mouse and human peroxisome proliferator-
15	activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and
16	perfluorooctane sulfonate. Toxicol Sci 95: 108-117.
17	http://dx.doi.org/10.1093/toxsci/kfl135.
18	<u>Takagi, A; Sai, K; Umemura, T; Hasegawa, R; Kurokawa, Y.</u> (1991). Short-term exposure to the
19	peroxisome proliferators, perfluorooctanoic acid and perfluorodecanoic acid, causes
20	significant increase of 8-hydroxydeoxyguanosine in liver DNA of rats. Cancer Lett 57: 55-
21	60. <u>http://dx.doi.org/10.1016/0304-3835(91)90063-N</u> .
22	Takahashi, S; Tanaka, N; Golla, S; Fukami, T; Krausz, KW; Polunas, MA; Weig, BC; Masuo, Y; Xie,
23	<u>C; Jiang, C; Gonzalez, FJ.</u> (2017). Editor's highlight: farnesoid X receptor protects against
24	low-dose carbon tetrachloride-induced liver injury through the taurocholate-
25	JNKpathway. Toxicol Sci 158: 334–346. <u>http://dx.doi.org/10.1093/toxsci/kfx094</u> .
26	<u>Tian, M, .; Reichetzeder, C, .; Li, J, .; Hocher, B, .</u> (2019). Low birth weight, a risk factor for
27	diseases in later life, is a surrogate of insulin resistance at birth. J Hypertens 37: 2123-
28	2134. <u>http://dx.doi.org/10.1097/HJH.000000000002156</u> .
29	U.S. EPA (U.S. Environmental Protection Agency). (2012). Benchmark dose technical guidance
30	[EPA Report]. (EPA100R12001). Washington, DC: U.S. Environmental Protection Agency,
31	Risk Assessment Forum. <u>https://www.epa.gov/risk/benchmark-dose-technical-guidance</u> .
32	U.S. EPA (U.S. Environmental Protection Agency). (2016a). Health effects support document for
33	perfluorooctane sulfonate (PFOS) [EPA Report]. (EPA 822-R-16-002). Washington, DC:
34	U.S. Environmental Protection Agency, Office of Water, Health and Ecological Criteria
35	Division. https://www.epa.gov/sites/production/files/2016-
36	<u>05/documents/pfos_hesd_final_508.pdf</u> .
37	U.S. EPA (U.S. Environmental Protection Agency). (2016b). Health effects support document for
38	perfluorooctanoic acid (PFOA) [EPA Report]. (EPA 822-R-16-003). Washington, DC: U.S.
39	Environmental Protection Agency, Office of Water, Health and Ecological Criteria
40	Division. https://www.epa.gov/sites/production/files/2016-
41	05/documents/pfoa_hesd_final-plain.pdf.

1	U.S. EPA (U.S. Environmental Protection Agency). (2019). CompTox Chemicals Dashboard
2	https://comptoy.opa.gov/dashboard
1	Valvi D: Oulbote V: Weibe P: Dalgård C: Bierve KS: Steuerwald U: Grandiean P (2017)
4 5	<u>Valvi, D, Odinote, T, Weine, F, Dalgard, C, Djerve, KS, Stederwald, O, Grandjean, F.</u> (2017).
5	oversures. Environ let 107: 205-215, http://dv.doi.org/10.1016/j.opvint.2017.07.016
7	exposities. Environ Int 107. 203-213. <u>http://dx.doi.org/10.1010/j.envint.2017.07.010</u> .
/ 0	<u>vali Otterulik, Fivi.</u> (2007). Repeated dose 90-day of al toxicity study with with with 00 8391 by daily
0 9	Maplewood, MN: 3M.
10	Van Rafelghem, MJ: Andersen, ME. (1988). The effects of perfluorodecanoic acid on hepatic
11	stearoyl-coenzyme A desaturase and mixed function oxidase activities in rats. Fundam
12	Appl Toxicol 11: 503-510, http://dx.doi.org/10.1016/0272-0590(88)90114-5.
13	Van Rafelghem, MJ: Mattie, DR: Bruner, RH: Andersen, ME, (1987), Pathological and hepatic
14	ultrastructural effects of a single dose of perfluoro-n-decanoic acid in the rat, hamster.
15	mouse, and guinea pig. Fundam Appl Toxicol 9: 522-540.
16	http://dx.doi.org/10.1016/0272-0590(87)90034-0.
17	Van Rafelghem, MJ; Vanden Heuvel, JP; Menahan, LA; Peterson, RE. (1988). Perfluorodecanoic
18	acid and lipid metabolism in the rat. Lipids 23: 671-678.
19	http://dx.doi.org/10.1007/BF02535666
20	Vanden Heuvel, JP; Kuslikis, BI; Shrago, E; Peterson, RE. (1991). Inhibition of long-chain acyl-CoA
21	synthetase by the peroxisome proliferator perfluorodecanoic acid in rat hepatocytes.
22	Biochem Pharmacol 42: 295-302. <u>http://dx.doi.org/10.1016/0006-2952(91)90716-I</u> .
23	Vanden Heuvel, JP; Sterchele, PF; Nesbit, DJ; Peterson, RE. (1993). Coordinate induction of acyl-
24	CoA binding protein, fatty acid binding protein and peroxisomal beta-oxidation by
25	peroxisome proliferators. Biochim Biophys Acta 1177: 183-190.
26	<u>http://dx.doi.org/10.1016/0167-4889(93)90039-R</u> .
27	Wahlang, B; Beier, JI; Clair, HB; Bellis-Jones, HJ; Falkner, K; Mcclain, CJ; Cave, MC. (2013).
28	Toxicant-associated steatohepatitis [Review]. Toxicol Pathol 41: 343-360.
29	<u>http://dx.doi.org/10.1177/0192623312468517</u> .
30	Wallace, KB; Kissling, GE; Melnick, RL; Blystone, CR. (2013). Structure-activity relationships for
31	perfluoroalkane-induced in vitro interference with rat liver mitochondrial respiration.
32	Toxicol Lett 222: 257-264. <u>http://dx.doi.org/10.1016/j.toxlet.2013.07.025</u> .
33	<u>Wang, D; Gao, Q; Wang, T; Kan, Z; Li, X; Hu, L; Peng, CY; Qian, F; Wang, Y; Granato, D.</u> (2020).
34	Green tea polyphenols and epigallocatechin-3-gallate protect against perfluorodecanoic
35	acid induced liver damage and inflammation in mice by inhibiting NLRP3 inflammasome
36	activation. Food Res Int 127: 108628. <u>http://dx.doi.org/10.1016/j.foodres.2019.108628</u> .
37	Wang, YM; Chai, SC; Brewer, CT; Chen, T. (2014). Pregnane X receptor and drug-induced liver
38	injury [Review]. Expert Opin Drug Metab Toxicol 10: 1521-1532.
39	http://dx.doi.org/10.1517/17425255.2014.963555.
40	Watt, ED; Judson, RS. (2018). Uncertainty quantification in ToxCast high throughput screening.
41	PLoS ONE 13: e0196963. <u>http://dx.doi.org/10.1371/journal.pone.0196963</u> .
42	Weisskopf, MG; Seals, RM; Webster, TF. (2018). Bias amplification in epidemiologic analysis of
43	exposure to mixtures. Environ Health Perspect 126. <u>http://dx.doi.org/10.1289/EHP2450</u> .

1	Weisskopf, MG; Webster, TF. (2017). Trade-offs of personal versus more proxy exposure
2	measures in environmental epidemiology. Epidemiology 28: 635-643.
3	http://dx.doi.org/10.1097/EDE.000000000000686.
4	Whitworth, KW; Haug, LS; Baird, DD; Becher, G; Hoppin, JA; Skjaerven, R; Thomsen, C; Eggesbo,
5	M; Travlos, G; Wilson, R; Longnecker, MP. (2012). Perfluorinated compounds and
6	subfecundity in pregnant women. Epidemiology 23: 257-263.
7	http://dx.doi.org/10.1097/EDE.0b013e31823b5031.
8	Wielsøe, M; Long, M; Ghisari, M; Bonefeld-Jørgensen, EC. (2015). Perfluoroalkylated substances
9	(PFAS) affect oxidative stress biomarkers in vitro. Chemosphere 129: 239-245.
10	http://dx.doi.org/10.1016/j.chemosphere.2014.10.014.
11	Wikström, S; Lin, PI; Lindh, CH; Shu, H; Bornehag, CG. (2020). Maternal serum levels of
12	perfluoroalkyl substances in early pregnancy and offspring birth weight. Pediatr Res 87:
13	1093-1099. <u>http://dx.doi.org/10.1038/s41390-019-0720-1</u> .
14	Witzmann, F; Coughtrie, M; Fultz, C; Lipscomb, J. (1996). Effect of structurally diverse
15	peroxisome proliferators on rat hepatic sulfotransferase. Chem Biol Interact 99: 73-84.
16	<u>http://dx.doi.org/10.1016/0009-2797(95)03661-X</u> .
17	Witzmann, FA; Parker, DN. (1991). Hepatic protein pattern alterations following
18	perfluorodecanoic acid exposure in rats. Toxicol Lett 57: 29-36.
19	<u>http://dx.doi.org/10.1016/0378-4274(91)90116-N</u> .
20	Wolf, CJ; Schmid, JE; Lau, C; Abbott, BD. (2012). Activation of mouse and human peroxisome
21	proliferator-activated receptor-alpha (PPAR $lpha$) by perfluoroalkyl acids (PFAAs): further
22	investigation of C4-C12 compounds. Reprod Toxicol 33: 546-551.
23	http://dx.doi.org/10.1016/j.reprotox.2011.09.009.
24	Wolf, CJ; Takacs, ML; Schmid, JE; Lau, C; Abbott, BD. (2008). Activation of mouse and human
25	peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different
26	functional groups and chain lengths. Toxicol Sci 106: 162-171.
27	http://dx.doi.org/10.1093/toxsci/kfn166.
28	Woods, MM; Lanphear, BP; Braun, JM; McCandless, LC. (2017). Gestational exposure to
29	endocrine disrupting chemicals in relation to infant birth weight: A Bayesian analysis of
30	the HOME Study. Environ Health 16: 115. <u>http://dx.doi.org/10.1186/s12940-017-0332-</u>
31	<u>3</u> .
32	Xu, K; Guidez, F; Glasow, A; Chung, D; Petrie, K; Stegmaier, K; Wang, KK; Zhang, J; Jing, Y; Zelent,
33	A; Waxman, S. (2005). Benzodithiophenes potentiate differentiation of acute
34	promyelocytic leukemia cells by lowering the threshold for ligand-mediated
35	corepressor/coactivator exchange with retinoic acid receptor alpha and enhancing
36	changes in all-trans-retinoic acid-regulated gene expression. Cancer Res 65: 7856-7865.
37	<u>http://dx.doi.org/10.1158/0008-5472.CAN-05-1056</u> .
38	Yamamoto, A; Kawashima, Y. (1997). Perfluorodecanoic acid enhances the formation of oleic
39	acid in rat liver. Biochem J 325 (Pt 2): 429-434. <u>http://dx.doi.org/10.1042/bj3250429</u> .
40	Yang, X; Schnakenberg, LK; Shi, Q; Salminen, WF. (2014). Hepatic toxicity biomarkers. In RC
41	Gupta (Ed.), Biomarkers in Toxicology (pp. 241-259). New York, NY: Academic Press.
42	http://dx.doi.org/10.1016/B978-0-12-404630-6.00013-0.

Supplemental Information for the Toxicological Review of PFDA and Related Salts

1	Yao, Q; Gao, Y; Zhang, Y; Qin, K; Liew, Z; Tian, Y. (2021). Associations of paternal and maternal
2	per- and polyfluoroalkyl substances exposure with cord serum reproductive hormones,
3	placental steroidogenic enzyme and birth weight. Chemosphere 285: 131521.
4	http://dx.doi.org/10.1016/j.chemosphere.2021.131521.
5	Zhang, L; Ren, XM; Guo, LH. (2013). Structure-based investigation on the interaction of
6	perfluorinated compounds with human liver fatty acid binding protein. Environ Sci
7	Technol 47: 11293-11301. <u>http://dx.doi.org/10.1021/es4026722</u> .
8	Zhang, LY; Ren, XM; Wan, B; Guo, LH. (2014). Structure-dependent binding and activation of
9	perfluorinated compounds on human peroxisome proliferator-activated receptor γ.
10	Toxicol Appl Pharmacol 279: 275-283. <u>http://dx.doi.org/10.1016/j.taap.2014.06.020</u> .
11	<u>Zhang, YM; Dong, XY; Fan, LJ; Zhang, ZL; Wang, Q; Jiang, N; Yang, XS.</u> (2017). Poly- and
12	perfluorinated compounds activate human pregnane X receptor. Toxicology 380: 23-29.
13	http://dx.doi.org/10.1016/j.tox.2017.01.012.
14	